file_path
stringlengths
7
180
content
stringlengths
0
811k
repo
stringclasses
11 values
tests/python/unittest/test_tir_transform_coproc_sync.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm from tvm import te # register the ops tvm.ir.register_op_attr("tir.cop.coproc_sync", "TGlobalSymbol", "coproc_sync") tvm.ir.register_op_attr("tir.cop.coproc_read_barrier", "TGlobalSymbol", "coproc_readb") tvm.ir.register_op_attr("tir.cop.coproc_write_barrier", "TGlobalSymbol", "coproc_writeb") tvm.ir.register_op_attr("tir.cop.coproc_dep_push", "TGlobalSymbol", "coproc_dep_push") tvm.ir.register_op_attr("tir.cop.coproc_dep_pop", "TGlobalSymbol", "coproc_dep_pop") def test_coproc_sync(): @tvm.register_func("tvm.info.mem.global.cache") def meminfo_cache(): return tvm.ir.make_node( "MemoryInfo", unit_bits=8, max_simd_bits=32, max_num_bits=128, head_address=tvm.tir.call_extern("handle", "global_cache"), ) ib = tvm.tir.ir_builder.create() n = te.size_var("n") cp = te.thread_axis((0, 1), "cop") A = ib.allocate("float32", 128, name="A", scope="global.cache") with ib.for_range(0, n, name="i") as i: A[i] = A[i] + 1 with ib.for_range(0, 8, name="k") as k: with ib.for_range(0, 10, name="j") as j: ib.scope_attr(cp, "coproc_scope", 1) A[j] = A[j + k * 10] + 2 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([n], stmt)) stmt = tvm.tir.transform.CoProcSync()(mod)["main"].body body = stmt.body.body blist = tvm.tir.stmt_list(body) assert blist[1].value.op.same_as(tvm.ir.Op.get("tir.cop.coproc_read_barrier")) assert blist[1].value.args[3].value == 80 assert blist[-2].value.op.same_as(tvm.ir.Op.get("tir.cop.coproc_sync")) assert blist[-1].value.op.same_as(tvm.ir.Op.get("tir.cop.coproc_write_barrier")) assert blist[-1].value.args[3].value == 10 def test_coproc_sync2(): ib = tvm.tir.ir_builder.create() n = te.size_var("n") cp = te.thread_axis((0, 1), "cop") ty = te.thread_axis("cthread") A = ib.allocate("float32", 128, name="A") ib.scope_attr(ty, "virtual_thread", 2) with ib.new_scope(): ib.scope_attr(cp, "coproc_scope", 2) A[ty] = 0.0 with ib.for_range(0, n, name="i") as i: with ib.new_scope(): ib.scope_attr(cp, "coproc_scope", 1) A[ty] = 1.0 with ib.new_scope(): ib.scope_attr(cp, "coproc_scope", 2) A[ty] = 1.0 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([n], stmt)) stmt = tvm.tir.transform.CoProcSync()(mod)["main"].body def test_coproc_sync3(): def __check_list(tvm_array, py_list): for ti, li in zip(tvm_array, py_list): if ti.value != li: return False return True ib = tvm.tir.ir_builder.create() n = te.size_var("n") cp = te.thread_axis((0, 1), "cop") A = ib.allocate("float32", 128, name="A", scope="global.cache") with ib.for_range(0, n, name="i") as i: with ib.for_range(0, n, name="i") as j: with ib.new_scope(): ib.scope_attr(cp, "coproc_scope", 1) A[i] = 1.0 with ib.new_scope(): ib.scope_attr(cp, "coproc_scope", 2) A[i] = 1.0 with ib.new_scope(): ib.scope_attr(cp, "coproc_scope", 3) A[0] = 0.0 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([n], stmt)) stmt = tvm.tir.transform.CoProcSync()(mod)["main"].body slist = tvm.tir.stmt_list(stmt[0].body) push_st = slist[2] slist = tvm.tir.stmt_list(slist[-1]) pop_st = slist[0].body[0] assert push_st.value.op.same_as(tvm.ir.Op.get("tir.cop.coproc_dep_push")) assert __check_list(push_st.value.args, [2, 3]) assert pop_st.value.op.same_as(tvm.ir.Op.get("tir.cop.coproc_dep_pop")) assert __check_list(pop_st.value.args, [2, 3]) if __name__ == "__main__": test_coproc_sync() test_coproc_sync2() test_coproc_sync3()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_transform_decorate_device_scope.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm from tvm import te def test_decorate_device(): x = te.var("x") mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([x], tvm.tir.Evaluate(x))) stmt = tvm.tir.transform.DecorateDeviceScope()(mod)["main"].body assert stmt.attr_key == "device_scope" if __name__ == "__main__": test_decorate_device()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_transform_extract_constants.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import numpy as np import tvm from tvm import tir from tvm.script import tir as T import tvm.testing @tvm.script.ir_module class Module4: @T.prim_func def constant1(a: T.handle) -> None: A = T.match_buffer(a, (10), "int32") B = T.alloc_buffer((10), "int32") K_data = T.allocate_const([1, 1, 1, 1, 1, 1, 1, 1, 1, 1], "int32", [10]) K = T.buffer_decl(shape=(10), dtype="int32", data=K_data) for x in T.serial(0, 10): B[x] = A[x] + K[x] @T.prim_func def constant2(a: T.handle) -> None: A = T.match_buffer(a, (10), "int32") B = T.alloc_buffer((10), "int32") K_data = T.allocate_const([1, 1, 1, 1, 1, 1, 1, 1, 1, 1], "int32", [10]) K = T.buffer_decl(shape=(10), dtype="int32", data=K_data) for x in T.serial(0, 10): B[x] = A[x] + K[x] @T.prim_func def constant3(a: T.handle) -> None: A = T.match_buffer(a, (10), "int32") B = T.alloc_buffer((10), "int32") K_data = T.allocate_const([1, 2, 3, 1, 1, 1, 1, 1, 1, 1], "int32", [10]) K = T.buffer_decl(shape=(10), dtype="int32", data=K_data) for x in T.serial(0, 10): B[x] = A[x] + K[x] def test_const_extraction(): mod = tvm.tir.transform.ExtractPrimFuncConstants()(Module4) constants = mod.attrs["constants"] assert len(constants) == 2 def _visit(stmt): if isinstance(stmt, tvm.tir.AllocateConst): assert np.array_equal(stmt.data.numpy(), constants[int(stmt.irmod_storage_idx)].numpy()) for n, f in mod.functions.items(): tvm.tir.stmt_functor.post_order_visit(f.body, _visit) tvm.lower(mod) if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_transform_flatten_buffer.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm import tvm.testing from tvm import te from tvm.script import tir as T class BaseCompare(tvm.testing.CompareBeforeAfter): transform = tvm.transform.Sequential( [ tvm.tir.transform.FlattenBuffer(), tvm.tir.transform.Simplify(), ] ) class TestElementwise(BaseCompare): """2-d buffers are flattened to 1-d""" def before(A: T.Buffer[(16, 16), "float32"], C: T.Buffer[(16, 16), "float32"]): for i in T.serial(0, 16): B_new = T.decl_buffer([1, 16], "float32") for j in T.serial(0, 16): B_new[0, j] = A[i, j] + 1.0 for j in T.serial(0, 16): C[i, j] = B_new[0, j] * 2.0 def expected(A: T.Buffer[256, "float32"], C: T.Buffer[256, "float32"]): T.preflattened_buffer(A, (16, 16), dtype="float32", data=A.data) T.preflattened_buffer(C, (16, 16), dtype="float32", data=C.data) for i in T.serial(0, 16): B_new_data = T.allocate([16], "float32", scope="global") B_new = T.buffer_decl([16], "float32", scope="global", data=B_new_data) for j in T.serial(0, 16): B_new[j] = A[((i * 16) + j)] + 1.0 for j in T.serial(0, 16): C[((i * 16) + j)] = B_new[j] * 2.0 class TestElementwiseWithoutDeclBuffer(BaseCompare): """2-d buffers are flattened to 1-d Like TestElementwise, but the TIR doesn't have the DeclBuffer node. The T.buffer_decl declaration applies only during the parsing the TVMScript, and doesn't occur in the TIR itself. In this case, the allocation should be assumed to be targeting flat memory, and should be flattened to a 1-d allocation. """ def before(A: T.Buffer[(16, 16), "float32"], C: T.Buffer[(16, 16), "float32"]): for i in T.serial(0, 16): B_new_data = T.allocate([1, 16], "float32", "global") B_new = T.buffer_decl([1, 16], "float32", data=B_new_data) for j in T.serial(0, 16): B_new[0, j] = A[i, j] + 1.0 for j in T.serial(0, 16): C[i, j] = B_new[0, j] * 2.0 def expected(A: T.Buffer[256, "float32"], C: T.Buffer[256, "float32"]): T.preflattened_buffer(A, (16, 16), dtype="float32", data=A.data) T.preflattened_buffer(C, (16, 16), dtype="float32", data=C.data) for i in T.serial(0, 16): B_new_data = T.allocate([16], "float32", "global") B_new = T.buffer_decl(16, "float32", data=B_new_data) for j in T.serial(0, 16): B_new[j] = A[((i * 16) + j)] + 1.0 for j in T.serial(0, 16): C[((i * 16) + j)] = B_new[j] * 2.0 class TestGPU(BaseCompare): """Buffer flattening may have indices based on GPU thread vars""" def before(A: T.Buffer[(16, 16), "float32"], C: T.Buffer[(16, 16), "float32"]): i0 = T.env_thread("blockIdx.x") i1 = T.env_thread("threadIdx.x") i2 = T.env_thread("vthread") T.launch_thread(i0, 4) T.launch_thread(i1, 2) T.launch_thread(i2, 2) B = T.decl_buffer([1, 16], "float32", scope="local") for j in range(0, 16): B[0, j] = A[i0 * 4 + i1 * 2 + i2, j] + 1.0 for j in range(0, 16): C[i0 * 4 + i1 * 2 + i2, j] = B[0, j] * 2.0 def expected(A: T.Buffer[256, "float32"], C: T.Buffer[256, "float32"]): T.preflattened_buffer(A, (16, 16), dtype="float32", data=A.data) T.preflattened_buffer(C, (16, 16), dtype="float32", data=C.data) i0 = T.env_thread("blockIdx.x") i1 = T.env_thread("threadIdx.x") i2 = T.env_thread("vthread") T.launch_thread(i0, 4) T.launch_thread(i1, 2) T.launch_thread(i2, 2) B_data = T.allocate([16], "float32", scope="local") B = T.buffer_decl([16], "float32", scope="local", data=B_data) for j in range(0, 16): B[j] = A[i0 * 64 + i1 * 32 + i2 * 16 + j] + 1.0 for j in range(0, 16): C[i0 * 64 + i1 * 32 + i2 * 16 + j] = B[j] * 2.0 class TestSymbolic(BaseCompare): """Dynamically-sized arrrays are flattened""" def before(a: T.handle, c: T.handle, n: T.int32, m: T.int32) -> None: A = T.match_buffer(a, (n, m), "float32") C = T.match_buffer(c, (n, m), "float32") for i in range(0, n): B = T.decl_buffer([m], "float32") for j in range(0, m): B[j] = A[i, j] + 1.0 for j in range(0, m): C[i, j] = B[j] * 2.0 def expected(a: T.handle, c: T.handle, n: T.int32, m: T.int32) -> None: A = T.match_buffer(a, n * m, "float32") C = T.match_buffer(c, n * m, "float32") T.preflattened_buffer(A, (n, m), "float32", data=A.data) T.preflattened_buffer(C, (n, m), "float32", data=C.data) for i in range(0, n): B_data = T.allocate([m], "float32", scope="global") B = T.buffer_decl([m], "float32", scope="global", data=B_data) for j in range(0, m): B[j] = A[i * m + j] + 1.0 for j in range(0, m): C[i * m + j] = B[j] * 2.0 class TestMultiAlloc(BaseCompare): """If multiple allocations occur, all are flattened.""" def before(A: T.Buffer[(4, 32), "float32"], D: T.Buffer[(4, 32), "float32"]): for i, j in T.grid(4, 32): B = T.decl_buffer((4, 32), "float32", scope="global") C = T.decl_buffer((4, 32), "float32", scope="global") B[i, j] = A[i, j] + 1.0 C[i, j] = A[i, j] + B[i, j] D[i, j] = C[i, j] * 2.0 def expected(A: T.Buffer[128, "float32"], D: T.Buffer[128, "float32"]): T.preflattened_buffer(A, (4, 32), "float32", data=A.data) T.preflattened_buffer(D, (4, 32), "float32", data=D.data) for i, j in T.grid(4, 32): B_data = T.allocate([128], "float32", scope="global") B = T.buffer_decl([128], "float32", scope="global", data=B_data) C_data = T.allocate([128], "float32", scope="global") C = T.buffer_decl([128], "float32", scope="global", data=C_data) B[i * 32 + j] = A[i * 32 + j] + 1.0 C[i * 32 + j] = A[i * 32 + j] + B[i * 32 + j] D[i * 32 + j] = C[i * 32 + j] * 2.0 class TestStrided(BaseCompare): """Indices for flattened buffers use the specified striding.""" def before(A: T.Buffer[(16, 16), "float32"], C: T.Buffer[(16, 16), "float32"]): for i0 in T.serial(4): B = T.decl_buffer([4, 17], "float32") B_1 = T.buffer_decl([4, 16], dtype="float32", data=B.data, strides=[17, 1]) for i1, j in T.grid(4, 16): B_1[i1, j] = A[i0 * 4 + i1, j] + 1.0 for i1, j in T.grid(4, 16): C[i0 * 4 + i1, j] = B_1[i1, j] * 2.0 def expected(A: T.Buffer[256, "float32"], C: T.Buffer[256, "float32"]): T.preflattened_buffer(A, [16, 16], dtype="float32", data=A.data) T.preflattened_buffer(C, [16, 16], dtype="float32", data=C.data) for i0 in T.serial(0, 4): B_new_data = T.allocate([68], "float32", scope="global") B_new = T.buffer_decl([68], "float32", scope="global", data=B_new_data) for i1 in T.serial(0, 4): for j in T.serial(0, 16): B_new[i1 * 17 + j] = A[i0 * 64 + i1 * 16 + j] + 1.0 for i1 in T.serial(0, 4): for j in T.serial(0, 16): C[i0 * 64 + i1 * 16 + j] = B_new[i1 * 17 + j] * 2.0 class TestBoolean(BaseCompare): """Boolean buffers should be replaced by a backing int8 array""" def before(A: T.Buffer[10, "bool"], B: T.Buffer[10, "bool"]) -> None: for i0 in T.serial(10): B[i0] = A[i0] def expected(A: T.Buffer[10, "int8"], B: T.Buffer[10, "int8"]) -> None: T.preflattened_buffer(A, [10], dtype="bool", data=A.data) T.preflattened_buffer(B, [10], dtype="bool", data=B.data) # body for i0 in T.serial(10): B[i0] = T.cast(T.cast(A[i0], "bool"), "int8") class TestLowerTE(BaseCompare): """FlattenBuffer should do nothing on TE-based functions""" def before(self): x = te.placeholder((1,)) y = te.compute((1,), lambda i: x[i] + 2) s = te.create_schedule(y.op) mod = tvm.driver.build_module.schedule_to_module(s, [x, y]) return mod["main"] expected = before class TestFlattenInsideBlock(BaseCompare): """Flattening access inside a block flattens the accessed region.""" def before(): A = T.alloc_buffer([32, 32]) for i, j in T.grid(32, 32): with T.block("block"): T.reads(A[i, j]) T.evaluate(A[i, j]) def expected(): A = T.alloc_buffer([1024]) for i, j in T.grid(32, 32): with T.block("block"): T.reads(A[i * 32 + j]) T.evaluate(A[i * 32 + j]) class TestNoChangeTo2DPhysicalBuffer(BaseCompare): """Flattening preserves axis separators.""" def before(): A = T.alloc_buffer([32, 32], axis_separators=[1]) for i, j in T.grid(32, 32): T.evaluate(A[i, j]) expected = before class TestFlattenAllocBufferWithAxisSeparators(BaseCompare): """Flattening preserves axis separators""" def before(): A = T.alloc_buffer([2, 3, 5, 7, 11, 13], axis_separators=[3]) for i0, i1, i2, i3, i4, i5 in T.grid(2, 3, 5, 7, 11, 13): T.evaluate(A[i0, i1, i2, i3, i4, i5]) def expected(): A = T.alloc_buffer([30, 1001], axis_separators=[1]) for i0, i1, i2, i3, i4, i5 in T.grid(2, 3, 5, 7, 11, 13): T.evaluate(A[i0 * 15 + i1 * 5 + i2, i3 * 143 + i4 * 13 + i5]) class TestFlattenDeclBufferWithAxisSeparators(BaseCompare): """Flattening preserves axis separators Like TestFlattenAllocBufferWithAxisSeparators, but the allocations is done using Allocate/DeclBuffer, rather than through BlockNode::alloc_buffers. """ def before(): A = T.decl_buffer([2, 3, 5, 7, 11, 13], axis_separators=[3]) for i0, i1, i2, i3, i4, i5 in T.grid(2, 3, 5, 7, 11, 13): T.evaluate(A[i0, i1, i2, i3, i4, i5]) def expected(): A_data = T.allocate([30, 1001], dtype="float32", scope="global") A = T.buffer_decl( [30, 1001], dtype="float32", scope="global", axis_separators=[1], data=A_data ) for i0, i1, i2, i3, i4, i5 in T.grid(2, 3, 5, 7, 11, 13): T.evaluate(A[i0 * 15 + i1 * 5 + i2, i3 * 143 + i4 * 13 + i5]) def test_lower_2d_physical_memory(): """Axis separators should preserve 2-d buffers through lowering. A catch-all test to ensure that defining axis_separators is sufficient to maintain non-flat buffer descriptions through all lowering steps. """ # This test doesn't use CompareBeforeAfter, because the after step # is not currently expressible in TVMScript. This test can be # re-written after https://github.com/apache/tvm/pull/12412. @T.prim_func def func(): buf = T.alloc_buffer( [1, 1], dtype="int32", scope="global", axis_separators=[1], ) buf[0, 0] = 0 lowered = tvm.lower(func)["main"] assert isinstance(lowered.body, tvm.tir.Allocate) assert list(lowered.body.extents) == [1, 1], ( "Non-flat buffer allocations, " "marked by axis_separators, " "flattened to flat memory allocation." ) if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_transform_helpers.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import pytest import tvm from tvm.script import tir as T import tvm.testing def test_annotate_entry_func_single_primfunc(): @tvm.script.ir_module class MockModule: @T.prim_func def func1(A: T.Buffer[(16,), "float32"]): for i in T.serial(16): if i == 5: if i == 5: A[i] = 0.0 mod = MockModule assert mod assert mod["func1"].attrs is None after = tvm.tir.transform.AnnotateEntryFunc()(mod) assert ( after["func1"].attrs and "tir.is_entry_func" in after["func1"].attrs and after["func1"].attrs["tir.is_entry_func"] ) # Test module @tvm.script.ir_module class MockModule: @T.prim_func def func1(A: T.Buffer[(16,), "float32"]): for i in T.serial(16): if i == 5: if i == 5: A[i] = 0.0 @T.prim_func def func2(A: T.Buffer[(32,), "float32"]): for i in T.serial(32): if i == 15: if i == 15: A[i] = 0.0 @pytest.mark.xfail def test_annotate_entry_func_multiple_primfunc(): mod = MockModule assert mod assert mod["func1"].attrs is None assert mod["func2"].attrs is None # This should fail after = tvm.tir.transform.AnnotateEntryFunc()(mod) def test_bind_target(): mod = MockModule assert mod target = tvm.target.Target("cuda") assert mod["func1"].attrs is None assert mod["func2"].attrs is None after = tvm.tir.transform.BindTarget(target)(mod) assert after["func1"].attrs and "target" in after["func1"].attrs assert after["func1"].attrs["target"] == target assert after["func2"].attrs and "target" in after["func2"].attrs assert after["func2"].attrs["target"] == target def test_filter_primfunc(): mod = MockModule assert mod # Annotate each function for testing mod["func1"] = mod["func1"].with_attr("temp", "test1") mod["func2"] = mod["func2"].with_attr("temp", "test2") # Test condition that does not filter out anything def checker_filter_out_none(func: tvm.tir.PrimFunc): return (func.attrs is not None) and ("temp" in func.attrs) after = tvm.tir.transform.Filter(checker_filter_out_none)(mod) assert len(after.functions) == 2 # Filtered functions should satisfy the given condition. assert checker_filter_out_none(after["func1"]) assert checker_filter_out_none(after["func2"]) # Test condition that selectively filters out primfuncs def checker_filter_out_one(func: tvm.tir.PrimFunc): return (func.attrs is not None) and ("temp" in func.attrs) and func.attrs["temp"] == "test1" after = tvm.tir.transform.Filter(checker_filter_out_one)(mod) assert len(after.functions) == 1 # Filtered functions should satisfy the given condition. assert checker_filter_out_one(after["func1"]) # Test condition that filters out everything def checker_filter_out_both(func: tvm.tir.PrimFunc): return (func.attrs is not None) and ("invalid_attr" in func.attrs) after = tvm.tir.transform.Filter(checker_filter_out_both)(mod) assert len(after.functions) == 0 if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_transform_hoist_expression.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm from tvm import tir import tvm.testing from tvm.script import tir as T from tvm.tir.transform import HoistExpression, HoistedConditionals, HoistedLetBindings class BaseBeforeAfter: hoisted_conditionals = tvm.testing.parameter(HoistedConditionals.All) hoisted_let_bindings = tvm.testing.parameter(HoistedLetBindings.All) def test_hoist(self, hoisted_conditionals, hoisted_let_bindings): before = self.before before_mod = tvm.IRModule.from_expr(before) config = { "tir.HoistExpression": { "hoisted_conditionals": hoisted_conditionals.value, "hoisted_let_bindings": hoisted_let_bindings.value, } } with tvm.transform.PassContext(config=config): after_mod = tvm.tir.transform.HoistExpression()(before_mod) after = after_mod["main"] expected = self.expected try: tvm.ir.assert_structural_equal(after, expected) except ValueError as err: script = tvm.IRModule({"expected": expected, "after": after, "before": before}).script() raise ValueError( f"Function after simplification did not match expected:\n{script}" ) from err class TestHoistToTop(BaseBeforeAfter): hoisted_conditionals = tvm.testing.parameter( HoistedConditionals.IfElseStmt, HoistedConditionals.All, ) @T.prim_func def before(A: T.Buffer[(16,), "float32"], n: T.int32): for i in T.serial(16): if n != 0: A[i] = 0.0 @T.prim_func def expected(A: T.Buffer[(16,), "float32"], n: T.int32): if n != 0: for i in T.serial(16): A[i] = 0.0 class TestSuppressHoistIfElse(BaseBeforeAfter): hoisted_conditionals = tvm.testing.parameter( HoistedConditionals.Never, HoistedConditionals.IfElseExpr, ) @T.prim_func def before(A: T.Buffer[(16,), "float32"], n: T.int32): for i in T.serial(16): if n != 0: A[i] = 0.0 expected = before class TestHoistBlockVar(BaseBeforeAfter): @T.prim_func def before(A: T.Buffer[(128, 16), "float32"], n: T.int32): i = T.env_thread("threadIdx.x") T.launch_thread(i, 128) for j in T.serial(16): if i < 32: A[i, j] = 0.0 @T.prim_func def expected(A: T.Buffer[(128, 16), "float32"], n: T.int32): i = T.env_thread("threadIdx.x") T.launch_thread(i, 128) if i < 32: for j in T.serial(16): A[i, j] = 0.0 class TestSuppressHoistBlockVar(BaseBeforeAfter): hoisted_conditionals = tvm.testing.parameter( HoistedConditionals.All & ~HoistedConditionals.UsingBlockVar ) @T.prim_func def before(A: T.Buffer[(128, 16), "float32"], n: T.int32): thread_x = T.env_thread("threadIdx.x") T.launch_thread(thread_x, 128) for i in T.thread_binding(0, 128, thread="threadIdx.x"): if i < 32: for j in T.serial(16): A[i, j] = 0.0 expected = before class TestHoistAcrossBlockVar(BaseBeforeAfter): @T.prim_func def before(A: T.Buffer[(128, 16), "float32"], n: T.int32): thread_x = T.env_thread("threadIdx.x") T.launch_thread(thread_x, 128) for i in T.thread_binding(0, 128, thread="threadIdx.x"): if n == 0: for j in T.serial(16): A[i, j] = 0.0 @T.prim_func def expected(A: T.Buffer[(128, 16), "float32"], n: T.int32): thread_x = T.env_thread("threadIdx.x") if n == 0: T.launch_thread(thread_x, 128) for i in T.thread_binding(0, 128, thread="threadIdx.x"): for j in T.serial(16): A[i, j] = 0.0 class TestSuppressHoistAcrossBlockVar(BaseBeforeAfter): hoisted_conditionals = tvm.testing.parameter( HoistedConditionals.All & ~HoistedConditionals.UsingBlockVar ) @T.prim_func def before(A: T.Buffer[(128, 16), "float32"], n: T.int32): thread_x = T.env_thread("threadIdx.x") T.launch_thread(thread_x, 128) for i in T.thread_binding(0, 128, thread="threadIdx.x"): for j in T.serial(16): if n == 0: A[i, j] = 0.0 @T.prim_func def expected(A: T.Buffer[(128, 16), "float32"], n: T.int32): thread_x = T.env_thread("threadIdx.x") T.launch_thread(thread_x, 128) if n == 0: for i in T.thread_binding(0, 128, thread="threadIdx.x"): for j in T.serial(16): A[i, j] = 0.0 class TestHoistToMiddle(BaseBeforeAfter): @T.prim_func def before(A: T.Buffer[(4, 4), "float32"]): for i in T.serial(4): for j in T.serial(4): if i < 3: A[i, j] = 0.0 @T.prim_func def expected(A: T.Buffer[(4, 4), "float32"]): for i in T.serial(4): if i < 3: for j in T.serial(4): A[i, j] = 0.0 class TestHoistWithLet(BaseBeforeAfter): @T.prim_func def before(A: T.Buffer[(4, 4), "float32"]): for i in T.serial(4): for j in T.serial(4): condition = i < 3 if condition: A[i, j] = 0.0 @T.prim_func def expected(A: T.Buffer[(4, 4), "float32"]): for i in T.serial(4): condition = i < 3 if condition: for j in T.serial(4): A[i, j] = 0.0 class TestHoistDisableLet(BaseBeforeAfter): """As TestHoistWithLet, but forbid hoisting of LetStmt Because the condition depends on the let binding, it should no longer be hoisted. """ hoisted_let_bindings = tvm.testing.parameter(HoistedLetBindings.Never) @T.prim_func def before(A: T.Buffer[(4, 4), "float32"]): for i in T.serial(4): for j in T.serial(4): condition = i < 3 if condition: A[i, j] = 0.0 expected = before class TestHoistIfElse(BaseBeforeAfter): @T.prim_func def before(A: T.Buffer[(4, 4), "float32"]): for i in T.serial(4): for j in T.serial(4): if i < 3: A[i, j] = 0.0 else: A[i, j] = 1.0 @T.prim_func def expected(A: T.Buffer[(4, 4), "float32"]): for i in T.serial(4): if i < 3: for j in T.serial(4): A[i, j] = 0.0 else: for j in T.serial(4): A[i, j] = 1.0 class TestHoistSequentialAssign(BaseBeforeAfter): @T.prim_func def before(A: T.Buffer[(4, 4), "float32"], B: T.Buffer[(4, 4), "float32"]): for i in T.serial(4): for j in T.serial(4): if i < 3: A[i, j] = 0.0 B[i, j] = 0.0 else: A[i, j] = 1.0 B[i, j] = 1.0 @T.prim_func def expected(A: T.Buffer[(4, 4), "float32"], B: T.Buffer[(4, 4), "float32"]): for i in T.serial(4): if i < 3: for j in T.serial(4): A[i, j] = 0.0 B[i, j] = 0.0 else: for j in T.serial(4): A[i, j] = 1.0 B[i, j] = 1.0 class TestHoistMultiIf(BaseBeforeAfter): @T.prim_func def before(A: T.Buffer[(4, 4), "float32"]): for i in T.serial(4): for j in T.serial(4): for k in T.serial(4): if j < 3: if i < 2: A[i, j] = 0.0 @T.prim_func def expected(A: T.Buffer[(4, 4), "float32"]): for i in T.serial(4): if i < 2: for j in T.serial(4): if j < 3: for k in T.serial(4): A[i, j] = 0.0 class TestHoistComplexConditional(BaseBeforeAfter): @T.prim_func def before(A: T.Buffer[(4, 4), "float32"]): for i, j, k in T.grid(4, 4, 4): if j < 3 and i < 2: A[i, j] = 0.0 @T.prim_func def expected(A: T.Buffer[(4, 4), "float32"]): for i in T.serial(4): if i < 2: for j in T.serial(4): if j < 3: for k in T.serial(4): A[i, j] = 0.0 class TestSuppressSplittingConditional(BaseBeforeAfter): hoisted_conditionals = tvm.testing.parameter( HoistedConditionals.All & ~HoistedConditionals.BooleanExpression ) @T.prim_func def before(A: T.Buffer[(4, 4), "float32"]): for i, j, k in T.grid(4, 4, 4): if j < 3 and i < 2: A[i, j] = 0.0 @T.prim_func def expected(A: T.Buffer[(4, 4), "float32"]): for i, j in T.grid(4, 4): if j < 3 and i < 2: for k in T.serial(4): A[i, j] = 0.0 class TestHoistMultiIfElse(BaseBeforeAfter): @T.prim_func def before(A: T.Buffer[(4, 4), "float32"]): for i in T.serial(4): for j in T.serial(4): for k in T.serial(4): if j < 3: if i < 2: A[i, j] = 0.0 else: A[i, j] = 1.0 else: if i < 2: A[i, j] = 2.0 else: A[i, j] = 3.0 @T.prim_func def expected(A: T.Buffer[(4, 4), "float32"]): for i in T.serial(4): if i < 2: for j in T.serial(4): if j < 3: for k in T.serial(4): A[i, j] = 0.0 else: for k in T.serial(4): A[i, j] = 2.0 else: for j in T.serial(4): if j < 3: for k in T.serial(4): A[i, j] = 1.0 else: for k in T.serial(4): A[i, j] = 3.0 class TestHoistMultiIfElseDifferentBranches(BaseBeforeAfter): @T.prim_func def before(A: T.Buffer[(4, 4), "float32"]): for i in T.serial(4): for j in T.serial(4): for k in T.serial(4): if j < 3: if i < 2: A[i, j] = 0.0 else: A[i, j] = 1.0 else: if i < 1: A[i, j] = 2.0 else: A[i, j] = 3.0 @T.prim_func def expected(A: T.Buffer[(4, 4), "float32"]): for i in T.serial(4): if i < 2: if i < 1: for j in T.serial(4): if j < 3: for k in T.serial(4): A[i, j] = 0.0 else: for k in T.serial(4): A[i, j] = 2.0 else: for j in T.serial(4): if j < 3: for k in T.serial(4): A[i, j] = 0.0 else: for k in T.serial(4): A[i, j] = 3.0 else: for j in T.serial(4): if j < 3: for k in T.serial(4): A[i, j] = 1.0 else: for k in T.serial(4): A[i, j] = 3.0 class TestHoistIfElseExpr(BaseBeforeAfter): @T.prim_func def before(A: T.Buffer[(4, 4), "float32"]): for i, j in T.grid(4, 4): A[i, j] = T.if_then_else(i < 2, 1.0, 2.0, dtype="float32") @T.prim_func def expected(A: T.Buffer[(4, 4), "float32"]): for i in T.serial(4): if i < 2: for j in T.serial(4): A[i, j] = 1.0 else: for j in T.serial(4): A[i, j] = 2.0 class TestSuppressHoistIfElseExpr(TestHoistIfElseExpr): hoisted_conditionals = tvm.testing.parameter( HoistedConditionals.All & ~HoistedConditionals.IfElseExpr ) @T.prim_func def before(A: T.Buffer[(4, 4), "float32"]): for i, j in T.grid(4, 4): A[i, j] = T.if_then_else(i < 2, 1.0, 2.0, dtype="float32") expected = before class TestHoistLetExpr(BaseBeforeAfter): @T.prim_func def before(A: T.Buffer[(4, 4), "float32"]): for i, j in T.grid(4, 4): x = T.var("float32") A[i, j] = T.Let(x, T.cast(i + 1, "float32"), 5.0 * x + T.cast(j, "float32")) @T.prim_func def expected(A: T.Buffer[(4, 4), "float32"]): for i in T.serial(4): x = T.cast(i + 1, "float32") for j in T.serial(4): A[i, j] = 5.0 * x + T.cast(j, "float32") class TestSuppressHoistLetExpr(BaseBeforeAfter): hoisted_let_bindings = tvm.testing.parameter( HoistedLetBindings.All & ~HoistedLetBindings.LetExpr ) @T.prim_func def before(A: T.Buffer[(4, 4), "float32"]): for i, j in T.grid(4, 4): x = T.var("float32") A[i, j] = T.Let(x, T.cast(i + 1, "float32"), 5.0 * x + T.cast(j, "float32")) expected = before if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_transform_hoist_if.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm from tvm import te from tvm import relay import numpy as np import pytest from tvm.testing import enabled_targets var_list = [] def verify_structure(stmt, expected_struct): node_dict = {} struct = {} def _extract_vars(op): global var_list if isinstance(op, tvm.tir.Var): var_list.append(op.name) def _visit(op): key = op if isinstance(op, tvm.tir.IfThenElse): global var_list tvm.tir.stmt_functor.post_order_visit(op.condition, _extract_vars) val = [(op.then_case, op.else_case), ("tir.IfThenElse", tuple(var_list))] var_list.clear() elif isinstance(op, tvm.tir.For): val = [(op.body,), ("tir.For", op.loop_var.name)] elif isinstance(op, tvm.tir.AttrStmt): val = [(op.body,), ("tir.AttrStmt", op.attr_key, int(op.value))] else: return node_dict[key] = val tvm.tir.stmt_functor.post_order_visit(stmt, _visit) for key, val in node_dict.items(): struct[val[1]] = tuple( node_dict[child][1] if child in node_dict else None for child in val[0] ) assert struct == expected_struct, "Structure mismatch: expect %s but got %s" % ( expected_struct, struct, ) var_list.clear() def _opaque_eval(var): return tvm.tir.Evaluate(tvm.tir.call_extern("int32", "dummy", var)) def test_hoist_top_for(): ib = tvm.tir.ir_builder.create() l = te.var("l") m = te.var("m") n = te.var("n") data = ib.pointer("float32", name="data") with ib.for_range(0, l, "i") as i: with ib.for_range(0, m, "j") as j: with ib.for_range(0, n, "k") as k: with ib.if_scope(ib.likely(i < 2)): ib.emit(_opaque_eval(m)) with ib.else_scope(): ib.emit(_opaque_eval(n)) stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body expected_struct = { ("tir.For", "k"): (None,), ("tir.For", "j"): (("tir.For", "k"),), ("tir.IfThenElse", ("i",)): (("tir.For", "j"), ("tir.For", "j")), ("tir.For", "i"): (("tir.IfThenElse", ("i",)),), } verify_structure(new_stmt, expected_struct) def test_hoist_multi_var_if(): ib = tvm.tir.ir_builder.create() l = te.var("l") m = te.var("m") n = te.var("n") data = ib.pointer("float32", name="data") with ib.for_range(0, l, "i") as i: with ib.for_range(0, m, "j") as j: with ib.for_range(0, n, "k") as k: with ib.if_scope(ib.likely(i + j < 2)): ib.emit(_opaque_eval(m)) with ib.else_scope(): ib.emit(_opaque_eval(n)) stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) new_mod = tvm.tir.transform.HoistIfThenElse()(mod) new_stmt = new_mod["main"].body expected_struct = { ("tir.For", "k"): (None,), ("tir.IfThenElse", ("i", "j")): (("tir.For", "k"), ("tir.For", "k")), ("tir.For", "j"): (("tir.IfThenElse", ("i", "j")),), ("tir.For", "i"): (("tir.For", "j"),), } verify_structure(new_stmt, expected_struct) def test_hoist_no_match_for(): ib = tvm.tir.ir_builder.create() l = te.var("l") m = te.var("m") n = te.var("n") data = ib.pointer("float32", name="data") with ib.for_range(0, l, "i") as i: with ib.for_range(0, m, "j") as j: data[i * 3 + j] = data[i * 3 + j] + 0.5 with ib.for_range(0, n, "k") as k: with ib.if_scope(ib.likely(i < 2)): ib.emit(_opaque_eval(m)) with ib.else_scope(): ib.emit(_opaque_eval(n)) stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body expected_struct = { ("tir.For", "k"): (None,), ("tir.IfThenElse", ("i",)): (("tir.For", "k"), ("tir.For", "k")), ("tir.For", "j"): (None,), ("tir.For", "i"): (("tir.For", "j"),), } verify_structure(new_stmt, expected_struct) def test_no_else(): ib = tvm.tir.ir_builder.create() l = te.var("l") m = te.var("m") n = te.var("n") with ib.for_range(0, l, "i") as i: with ib.for_range(0, m, "j") as j: with ib.for_range(0, n, "k") as k: with ib.if_scope(ib.likely(i < 2)): ib.emit(_opaque_eval(m)) stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body expected_struct = { ("tir.For", "k"): (None,), ("tir.For", "j"): (("tir.For", "k"),), ("tir.IfThenElse", ("i",)): (("tir.For", "j"), None), ("tir.For", "i"): (("tir.IfThenElse", ("i",)),), } verify_structure(new_stmt, expected_struct) def test_attr_stmt(): ib = tvm.tir.ir_builder.create() dshape = (32, 64) data = ib.pointer("float32", name="data") l = te.var("l") m = te.var("m") n = te.var("n") tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") ib.scope_attr(tx, "thread_extent", dshape[0]) ib.scope_attr(bx, "thread_extent", dshape[1]) with ib.for_range(0, l, "i") as i: with ib.for_range(0, m, "j") as j: with ib.for_range(0, n, "k") as k: with ib.if_scope(tvm.tir.any(i < 4, j >= 8)): data[bx * j + tx * j * k] = data[bx * j + tx * j * k] + 0.5 with ib.else_scope(): data[bx * j + tx * j * k] = data[bx * j + tx * j * k] + 1.0 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body expected_struct = { ("tir.For", "k"): (None,), ("tir.IfThenElse", ("i", "j")): (("tir.For", "k"), ("tir.For", "k")), ("tir.For", "j"): (("tir.IfThenElse", ("i", "j")),), ("tir.For", "i"): (("tir.For", "j"),), ("tir.AttrStmt", "thread_extent", 64): (("tir.For", "i"),), ("tir.AttrStmt", "thread_extent", 32): (("tir.AttrStmt", "thread_extent", 64),), } verify_structure(new_stmt, expected_struct) def test_nested_for(): ib = tvm.tir.ir_builder.create() data = ib.pointer("float32", name="data") with ib.for_range(0, 5, "i") as i: with ib.for_range(0, 10, "j") as j: with ib.if_scope(i >= 3): data[i * 3 + j] = data[i * 3 + j] + 0.5 with ib.for_range(0, 15, "k") as k: with ib.for_range(0, 20, "l") as l: with ib.if_scope(tvm.tir.any(i < 4, j >= 8)): data[i * 3 + j + k + l] = data[i * 3 + j + k + l] * 2 with ib.else_scope(): data[i * 3 + j + k + l] = data[i * 3 + j + k + l] * 1.5 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body expected_struct = { ("tir.For", "l"): (None,), ("tir.For", "k"): (("tir.For", "l"),), ("tir.IfThenElse", ("i", "j")): (("tir.For", "k"), ("tir.For", "k")), ("tir.For", "j"): (None,), ("tir.IfThenElse", ("i",)): (("tir.For", "j"), None), ("tir.For", "i"): (("tir.IfThenElse", ("i",)),), } verify_structure(new_stmt, expected_struct) def test_if_block(): ib = tvm.tir.ir_builder.create() data = ib.pointer("float32", name="data") n = te.var("n") with ib.for_range(0, 5, "i") as i: with ib.for_range(0, 10, "j") as j: with ib.if_scope(i >= 3): data[i * 3 + j] = data[i * 3 + j] + 0.5 with ib.for_range(0, 15, "k") as k: with ib.for_range(0, 20, "l") as l: with ib.if_scope(tvm.tir.any(i < 4, j >= 8)): data[i * 3 + j + k + l] = data[i * 3 + j + k + l] * 2 with ib.else_scope(): data[i * 3 + j + k + l] = data[i * 3 + j + k + l] * 1.5 with ib.if_scope(j < 5): data[i * 3 + j + k + l] = data[i * 3 + j + k + l] - 1 with ib.for_range(0, 5, "i") as i: with ib.for_range(0, 10, "j") as j: with ib.for_range(0, 15, "k") as k: with ib.if_scope(n >= 3): data[i * 3 + j + k] = data[i * 3 + j + k] + 0.6 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body expected_struct = { ("tir.IfThenElse", ("i", "j")): (None, None), ("tir.IfThenElse", ("j",)): (None, None), ("tir.For", "l"): (None,), ("tir.For", "k"): (None,), ("tir.For", "j"): (("tir.For", "j"),), ("tir.IfThenElse", ("i",)): (("tir.For", "j"), None), ("tir.For", "i"): (("tir.IfThenElse", ("i",)),), ("tir.IfThenElse", ("n",)): (("tir.For", "j"), None), } verify_structure(new_stmt, expected_struct) def test_multi_if(): ib = tvm.tir.ir_builder.create() data = ib.pointer("float32", name="data") with ib.for_range(0, 10, "i") as i: with ib.for_range(0, 10, "j") as j: with ib.for_range(0, 10, "k") as k: with ib.if_scope(3 <= i): with ib.if_scope(3 <= j): data[i * 100 + j * 10 + k] = data[i * 100 + j * 10 + k] + 0.5 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) new_mod = tvm.tir.transform.HoistIfThenElse()(mod) new_stmt = new_mod["main"].body expected_struct = { ("tir.For", "k"): (None,), ("tir.IfThenElse", ("j",)): (("tir.For", "k"), None), ("tir.For", "j"): (("tir.IfThenElse", ("j",)),), ("tir.IfThenElse", ("i",)): (("tir.For", "j"), None), ("tir.For", "i"): (("tir.IfThenElse", ("i",)),), } verify_structure(new_stmt, expected_struct) def test_no_hoisting_1(): ib = tvm.tir.ir_builder.create() data = ib.pointer("float32", name="data") n = te.var("n") with ib.for_range(0, 10, "i") as i: with ib.for_range(0, 10, "j") as j: with ib.for_range(0, 10, "k") as k: with ib.if_scope(k <= 3): data[i * 100 + j * 10 + k] = data[i * 100 + j * 10 + k] + 0.5 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body tvm.ir.assert_structural_equal(new_stmt, stmt) with tvm.transform.PassContext( config={"tir.HoistIfThenElse": {"support_block_scope_hosting": True}} ): new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body tvm.ir.assert_structural_equal(new_stmt, stmt) def test_no_hoisting_2(): ib = tvm.tir.ir_builder.create() data = ib.pointer("float32", name="data") n = te.var("n") x = te.var("x") with ib.for_range(0, 10, "i") as i: with ib.for_range(0, 10, "j") as j: with ib.for_range(0, 10, "k") as k: with ib.if_scope(i <= 3): data[i * 100 + j * 10 + k] = data[i * 100 + j * 10 + k] + 0.3 data[i * 100 + j * 10 + k] = data[i * 100 + j * 10 + k] + 0.5 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body tvm.ir.assert_structural_equal(new_stmt, stmt) with tvm.transform.PassContext( config={"tir.HoistIfThenElse": {"support_block_scope_hosting": True}} ): new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body tvm.ir.assert_structural_equal(new_stmt, stmt) @pytest.mark.xfail(reason="Inconsistent thread_extent", strict=True) def test_no_hoisting_3(): ib = tvm.tir.ir_builder.create() dshape = (32, 64) dshape_inner = (33, 63) data = ib.pointer("float32", name="data") l = te.var("l") m = te.var("m") n = te.var("n") tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") ib.scope_attr(tx, "thread_extent", dshape[0]) ib.scope_attr(bx, "thread_extent", dshape[1]) with ib.for_range(0, l, "i") as i: with ib.for_range(0, m, "j") as j: with ib.for_range(0, n, "k") as k: ib.scope_attr(tx, "thread_extent", dshape_inner[0]) ib.scope_attr(bx, "thread_extent", dshape_inner[1]) with ib.if_scope(tx < 3): data[bx * j + tx * j * k] = data[bx * j + tx * j * k] + 0.3 with ib.else_scope(): data[bx * j + tx * j * k] = data[bx * j + tx * j * k] + 1.3 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body tvm.ir.assert_structural_equal(new_stmt, stmt) with tvm.transform.PassContext( config={"tir.HoistIfThenElse": {"support_block_scope_hosting": True}} ): new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body tvm.ir.assert_structural_equal(new_stmt, stmt) def test_no_hoisting_4(): ib = tvm.tir.ir_builder.create() dshape = (32, 64) dshape_inner = (33, 63) data = ib.pointer("float32", name="data") l = te.var("l") m = te.var("m") n = te.var("n") tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") ib.scope_attr(bx, "thread_extent", dshape[1]) with ib.for_range(0, l, "i") as i: with ib.for_range(0, m, "j") as j: with ib.for_range(0, n, "k") as k: ib.scope_attr(tx, "thread_extent", dshape_inner[0]) with ib.if_scope(tx < 3): data[bx * j + tx * j * k] = data[bx * j + tx * j * k] + 0.3 with ib.else_scope(): data[bx * j + tx * j * k] = data[bx * j + tx * j * k] + 1.3 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body tvm.ir.assert_structural_equal(new_stmt, stmt) with tvm.transform.PassContext( config={"tir.HoistIfThenElse": {"support_block_scope_hosting": True}} ): new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body tvm.ir.assert_structural_equal(new_stmt, stmt) @pytest.mark.xfail(reason="Inconsistent thread_extent", strict=True) def test_no_hoisting_5(): ib = tvm.tir.ir_builder.create() dshape = (32, 64) dshape_inner = (33, 63) data = ib.pointer("float32", name="data") l = te.var("l") m = te.var("m") n = te.var("n") tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") ib.scope_attr(tx, "thread_extent", dshape[0]) ib.scope_attr(bx, "thread_extent", dshape[1]) with ib.for_range(0, l, "i") as i: with ib.for_range(0, m, "j") as j: ib.scope_attr(bx, "thread_extent", dshape_inner[1]) with ib.for_range(0, n, "k") as k: ib.scope_attr(tx, "thread_extent", dshape_inner[0]) with ib.if_scope(tx < 3): data[bx * j + tx * j * k] = data[bx * j + tx * j * k] + 0.3 with ib.else_scope(): data[bx * j + tx * j * k] = data[bx * j + tx * j * k] + 1.3 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body tvm.ir.assert_structural_equal(new_stmt, stmt) with tvm.transform.PassContext( config={"tir.HoistIfThenElse": {"support_block_scope_hosting": True}} ): new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body tvm.ir.assert_structural_equal(new_stmt, stmt) def test_no_hoisting_6(): ib = tvm.tir.ir_builder.create() dshape = (32, 64) data = ib.pointer("float32", name="data") l = te.var("l") m = te.var("m") n = te.var("n") tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") ib.scope_attr(tx, "thread_extent", dshape[0]) ib.scope_attr(bx, "thread_extent", dshape[1]) with ib.for_range(0, l, "i") as i: with ib.for_range(0, m, "j") as j: with ib.for_range(0, n, "k") as k: with ib.if_scope((tx + k) < 3): data[bx * j + tx * j * k] = data[bx * j + tx * j * k] + 0.3 with ib.else_scope(): data[bx * j + tx * j * k] = data[bx * j + tx * j * k] + 1.3 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body tvm.ir.assert_structural_equal(new_stmt, stmt) with tvm.transform.PassContext( config={"tir.HoistIfThenElse": {"support_block_scope_hosting": True}} ): new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body tvm.ir.assert_structural_equal(new_stmt, stmt) def test_no_hoisting_7(): ib = tvm.tir.ir_builder.create() dshape = (32, 64) data = ib.pointer("float32", name="data") l = te.var("l") m = te.var("m") n = te.var("n") tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") ib.scope_attr(tx, "thread_extent", dshape[0]) ib.scope_attr(bx, "thread_extent", dshape[1]) with ib.for_range(0, l, "i") as i: with ib.for_range(0, m, "j") as j: with ib.if_scope((tx + j) < 9): with ib.for_range(0, n, "k") as k: with ib.if_scope((tx + k) < 3): data[bx * j + tx * j * k] = data[bx * j + tx * j * k] + 0.3 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body tvm.ir.assert_structural_equal(new_stmt, stmt) with tvm.transform.PassContext( config={"tir.HoistIfThenElse": {"support_block_scope_hosting": True}} ): new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body tvm.ir.assert_structural_equal(new_stmt, stmt) def test_hoisting_block_scope_1(): n = te.size_var("n") m = te.size_var("m") A = te.placeholder((n, m), name="A") k = te.reduce_axis((0, m), "k") B = te.compute((n,), lambda i: te.sum(A[i, k], axis=k), name="B") s = te.create_schedule(B.op) ko, ki = s[B].split(B.op.reduce_axis[0], factor=16) BF = s.rfactor(B, ki) xo, xi = s[B].split(s[B].op.axis[0], factor=32) s[B.op].bind(xo, te.thread_axis("blockIdx.x")) s[B.op].bind(xi, te.thread_axis("threadIdx.y")) s[B].bind(s[B].op.reduce_axis[0], te.thread_axis("threadIdx.x")) s[BF].compute_at(s[B], s[B].op.reduce_axis[0]) mod = tvm.driver.build_module.schedule_to_module(s, [A, B], "main", None) mod = tvm.tir.transform.Simplify()(mod) mod = tvm.tir.transform.RemoveNoOp()(mod) stmt = mod["main"].body new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body tvm.ir.assert_structural_equal(new_stmt, stmt) with tvm.transform.PassContext( config={"tir.HoistIfThenElse": {"support_block_scope_hosting": True}} ): new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body assert not tvm.ir.structural_equal(new_stmt, stmt) def test_hoisting_block_scope_2(): ib = tvm.tir.ir_builder.create() dshape = (32, 64) dshape_inner = (33, 63) data = ib.pointer("float32", name="data") l = te.var("l") m = te.var("m") n = te.var("n") tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") ib.scope_attr(tx, "thread_extent", dshape[0]) # ib.scope_attr(bx, "thread_extent", dshape[1]) with ib.for_range(0, l, "i") as i: with ib.for_range(0, m, "j") as j: with ib.for_range(0, n, "k") as k: ib.scope_attr(bx, "thread_extent", dshape[1]) with ib.if_scope(tx < 3): data[bx * j + tx * j * k] = data[bx * j + tx * j * k] + 0.3 with ib.else_scope(): data[bx * j + tx * j * k] = data[bx * j + tx * j * k] + 1.3 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) mod = tvm.tir.transform.Simplify()(mod) mod = tvm.tir.transform.RemoveNoOp()(mod) stmt = mod["main"].body new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body tvm.ir.assert_structural_equal(new_stmt, stmt) with tvm.transform.PassContext( config={"tir.HoistIfThenElse": {"support_block_scope_hosting": True}} ): new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body assert not tvm.ir.structural_equal(new_stmt, stmt) @pytest.mark.xfail(reason="Inconsistent thread_extent", strict=True) def test_hoisting_block_scope_3(): ib = tvm.tir.ir_builder.create() dshape = (32, 64) dshape_inner = (33, 63) data = ib.pointer("float32", name="data") l = te.var("l") m = te.var("m") n = te.var("n") tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") ib.scope_attr(tx, "thread_extent", dshape[0]) ib.scope_attr(bx, "thread_extent", dshape[1]) with ib.for_range(0, l, "i") as i: with ib.for_range(0, m, "j") as j: ib.scope_attr(tx, "thread_extent", dshape_inner[0]) ib.scope_attr(bx, "thread_extent", dshape_inner[1]) with ib.for_range(0, n, "k") as k: with ib.if_scope(tx < 3): data[bx * j + tx * j * k] = data[bx * j + tx * j * k] + 0.3 with ib.else_scope(): data[bx * j + tx * j * k] = data[bx * j + tx * j * k] + 1.3 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body tvm.ir.assert_structural_equal(new_stmt, stmt) with tvm.transform.PassContext( config={"tir.HoistIfThenElse": {"support_block_scope_hosting": True}} ): new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body assert not tvm.ir.structural_equal(new_stmt, stmt) def test_hoisting_block_scope_4(): nn = 1024 n = tvm.runtime.convert(nn) A = te.placeholder((n,), name="A") B = te.placeholder((n,), name="B") AA = te.compute((n,), lambda *i: A(*i), name="A") BB = te.compute((n,), lambda *i: B(*i), name="B") T = te.compute(A.shape, lambda *i: AA(*i) + BB(*i), name="T") C = te.compute(A.shape, lambda *i: T(*i), name="C") s = te.create_schedule(C.op) xo, xi = s[C].split(C.op.axis[0], factor=4) xo1, xo2 = s[C].split(xo, factor=13) s[C].parallel(xo2) s[C].pragma(xo1, "parallel_launch_point") s[C].pragma(xo2, "parallel_stride_pattern") s[C].pragma(xo2, "parallel_barrier_when_finish") s[C].vectorize(xi) mod = tvm.driver.build_module.schedule_to_module(s, [A, B, C], "main", None) mod = tvm.tir.transform.Simplify()(mod) stmt = mod["main"].body new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body tvm.ir.assert_structural_equal(new_stmt, stmt) with tvm.transform.PassContext( config={"tir.HoistIfThenElse": {"support_block_scope_hosting": True}} ): new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body assert not tvm.ir.structural_equal(new_stmt, stmt) def test_hoisting_block_scope_5(): ib = tvm.tir.ir_builder.create() data = ib.pointer("float32", name="data", scope="global") l = te.var("l") m = te.var("m") n = te.var("n") g = te.var("g") ib.scope_attr(data, "storage_scope", "global") with ib.for_range(0, l, "i") as i: with ib.for_range(0, m, "j") as j: with ib.for_range(0, n, "k") as k: with ib.if_scope(data[g] < 3): data[9 * j + 3 * j * k] = data[9 * j + 3 * j * k] + 0.3 with ib.else_scope(): data[9 * j + 3 * j * k] = data[9 * j + 3 * j * k] + 1.3 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body assert not tvm.ir.structural_equal(new_stmt, stmt) stmt = new_stmt mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) with tvm.transform.PassContext( config={"tir.HoistIfThenElse": {"support_block_scope_hosting": True}} ): new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body tvm.ir.assert_structural_equal(new_stmt, stmt) def test_hoisting_block_scope_6(): ib = tvm.tir.ir_builder.create() dshape = (32, 64) data = ib.pointer("float32", name="data") l = te.var("l") m = te.var("m") n = te.var("n") tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") ib.scope_attr(tx, "thread_extent", dshape[0]) ib.scope_attr(bx, "thread_extent", dshape[1]) with ib.for_range(0, l, "i") as i: with ib.for_range(0, m, "j") as j: with ib.for_range(0, n, "k") as k: with ib.if_scope((tx + n) < 3): data[bx * j + tx * j * k] = data[bx * j + tx * j * k] + 0.3 with ib.else_scope(): data[bx * j + tx * j * k] = data[bx * j + tx * j * k] + 1.3 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body tvm.ir.assert_structural_equal(new_stmt, stmt) with tvm.transform.PassContext( config={"tir.HoistIfThenElse": {"support_block_scope_hosting": True}} ): new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body assert not tvm.ir.structural_equal(new_stmt, stmt) def test_hoisting_block_scope_7(): ib = tvm.tir.ir_builder.create() dshape = (32, 64) data = ib.pointer("float32", name="data") l = te.var("l") m = te.var("m") n = te.var("n") tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") ib.scope_attr(tx, "thread_extent", dshape[0]) ib.scope_attr(bx, "thread_extent", dshape[1]) with ib.for_range(0, l, "i") as i: with ib.for_range(0, m, "j") as j: with ib.for_range(0, n, "k") as k: with ib.if_scope((tx + i) < 3): data[bx * j + tx * j * k] = data[bx * j + tx * j * k] + 0.3 with ib.else_scope(): data[bx * j + tx * j * k] = data[bx * j + tx * j * k] + 1.3 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body tvm.ir.assert_structural_equal(new_stmt, stmt) with tvm.transform.PassContext( config={"tir.HoistIfThenElse": {"support_block_scope_hosting": True}} ): new_stmt = tvm.tir.transform.HoistIfThenElse()(mod)["main"].body assert not tvm.ir.structural_equal(new_stmt, stmt) @pytest.mark.skip() def test_hoisting_op_conv(): dtype = "float32" dshape = (1, 80, 73, 73) kshape = (192, 80, 3, 3) padding = (1, 1) groups = 1 dilation = (1, 1) kernel_size = (3, 3) channels = 192 scale = 1 x = relay.var("x", shape=dshape, dtype=dtype) w = relay.var("w", shape=kshape, dtype=dtype) y = relay.nn.conv2d( x, w, padding=padding, dilation=dilation, groups=groups, channels=channels, kernel_size=kernel_size, ) func = relay.Function([x, w], y) mod = tvm.IRModule() mod["main"] = func mod = relay.transform.InferType()(mod) data = np.random.uniform(-scale, scale, size=dshape).astype(dtype) kernel = np.random.uniform(-scale, scale, size=kshape).astype(dtype) params = {"w": tvm.nd.array(kernel)} for target, dev in enabled_targets(): with tvm.transform.PassContext(opt_level=3): lib = relay.build_module.build(mod, target=target, params=params) m = tvm.contrib.graph_executor.GraphModule(lib["default"](dev)) x = np.random.uniform(size=dshape) data_tvm = tvm.nd.array(data) m.set_input("x", data_tvm) m.run() e = m.module.time_evaluator("run", dev, number=300, repeat=3) t1 = e(data_tvm).results t1 = np.array(t1) * 1000 print("{} ms".format(t1.mean())) with tvm.transform.PassContext( opt_level=3, config={"tir.HoistIfThenElse": {"support_block_scope_hosting": True}} ): lib = relay.build_module.build(mod, target=target, params=params) m = tvm.contrib.graph_executor.GraphModule(lib["default"](dev)) x = np.random.uniform(size=dshape) data_tvm = tvm.nd.array(data) m.set_input("x", data_tvm) m.set_input(**params) m.run() e = m.module.time_evaluator("run", dev, number=300, repeat=3) t2 = e(data_tvm).results t2 = np.array(t2) * 1000 print("{} ms".format(t2.mean())) tvm.testing.assert_allclose(t1.mean(), t2.mean(), atol=1, rtol=1e-1) if __name__ == "__main__": pytest.main([__file__])
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_transform_inject_copy_intrin.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm import tvm.testing from tvm import te from tvm.driver.build_module import schedule_to_module def test_copy2d(): m = te.var("m") l = te.var("l") A = te.placeholder((m, l), name="A") B = te.compute((m, l), lambda i, j: A[i, j], name="B") s = te.create_schedule(B.op) s[B].pragma(B.op.axis[0], "memcpy") bounds = tvm.te.schedule.InferBound(s) stmt = tvm.te.schedule.ScheduleOps(s, bounds) func = tvm.te.schedule.SchedulePostProcToPrimFunc([A, B], stmt, None) mod = tvm.IRModule.from_expr(func) mod = tvm.tir.transform.StorageFlatten(64)(mod) def cb(src, dst, pad_before, pad_after, pad_value): assert dst.strides[0] == l assert dst.strides[1].value == 1 assert src.strides[0] == l assert tuple(src.shape) == (m, l) return tvm.tir.Evaluate(0) stmt = tvm.tir.transform.InjectCopyIntrin("memcpy", cb)(mod)["main"].body def test_copy_pad(): m = te.var("m") l = te.var("l") A = te.placeholder((m, l), name="A") B = te.compute( (m + 2, l), lambda i, j: tvm.tir.if_then_else(tvm.tir.all(i >= 1, i < m + 1), A[i - 1, j], 1.0), name="B", ) s = te.create_schedule(B.op) s[B].pragma(B.op.axis[0], "memcpy") mod = schedule_to_module(s, [A, B]) mod = tvm.tir.transform.StorageFlatten(64)(mod) def cb(src, dst, pad_before, pad_after, pad_value): tvm.testing.assert_prim_expr_equal(src.elem_offset, 0) assert pad_before[0].value == 1 assert pad_before[1].value == 0 assert pad_after[0].value == 1 assert pad_after[1].value == 0 assert pad_value.value == 1.0 return tvm.tir.Evaluate(0) stmt = tvm.tir.transform.InjectCopyIntrin("memcpy", cb)(mod)["main"].body def test_single_point_test(): A = te.placeholder((1,), name="A") B = te.compute((1,), lambda i: A[i], name="B") s = te.create_schedule(B.op) s[B].pragma(B.op.axis[0], "memcpy") mod = schedule_to_module(s, [A, B]) mod = tvm.tir.transform.StorageFlatten(64)(mod) def cb(src, dst, pad_before, pad_after, pad_value): tvm.testing.assert_prim_expr_equal(src.elem_offset, 0) tvm.testing.assert_prim_expr_equal(dst.elem_offset, 0) tvm.testing.assert_prim_expr_equal(src.strides[0], 1) tvm.testing.assert_prim_expr_equal(dst.strides[0], 1) return tvm.tir.Evaluate(0) stmt = tvm.tir.transform.InjectCopyIntrin("memcpy", cb)(mod)["main"].body def test_copy_pad_split(): m = 4 * 3 A = te.placeholder((m,), name="A") Apad = te.compute( (m + 2,), lambda i: tvm.tir.if_then_else(tvm.tir.all(i >= 1, i <= m), A[i - 1], 0.0), "Apad" ) B = te.compute((m,), lambda i: Apad[i] + Apad[i + 1] + Apad[i + 2]) s = te.create_schedule(B.op) xo, xi = s[B].split(B.op.axis[0], factor=4) s[Apad].compute_at(s[B], xo) s[Apad].pragma(s[Apad].op.axis[0], "memcpy") mod = schedule_to_module(s, [A, B]) mod = tvm.tir.transform.StorageFlatten(64)(mod._move()) mod = tvm.tir.transform.Simplify()(mod._move()) def cb(src, dst, pad_before, pad_after, pad_value): assert dst.elem_offset.value == 0 tvm.testing.assert_prim_expr_equal(src.elem_offset, tvm.te.max(xo * 4, 1) - 1) rpad_before = tvm.te.max(1 - xo * 4, 0) rpad_after = tvm.te.max(xo * 4 - 7, 0) tvm.testing.assert_prim_expr_equal(pad_before[0], rpad_before) tvm.testing.assert_prim_expr_equal(pad_after[0], rpad_after) tvm.testing.assert_prim_expr_equal(src.shape[0], 6 - rpad_before - rpad_after) return tvm.tir.Evaluate(0) stmt = tvm.tir.transform.InjectCopyIntrin("memcpy", cb)(mod)["main"].body if __name__ == "__main__": test_copy2d() test_copy_pad() test_copy_pad_split() test_single_point_test()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_transform_inject_double_buffer.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm from tvm import te def test_double_buffer(): dtype = "int64" n = 100 m = 4 tx = te.thread_axis("threadIdx.x") ib = tvm.tir.ir_builder.create() A = ib.pointer("float32", name="A") C = ib.pointer("float32", name="C") ib.scope_attr(tx, "thread_extent", 1) with ib.for_range(0, n) as i: B = ib.allocate("float32", m, name="B", scope="shared") with ib.new_scope(): ib.scope_attr(B.asobject().data, "double_buffer_scope", 1) with ib.for_range(0, m) as j: B[j] = A[i * 4 + j] with ib.for_range(0, m) as j: C[j] = B[j] + 1 stmt = ib.get() mod = tvm.IRModule({"db": tvm.tir.PrimFunc([A.asobject(), C.asobject()], stmt)}) opt = tvm.transform.Sequential( [tvm.tir.transform.InjectDoubleBuffer(), tvm.tir.transform.Simplify()] ) with tvm.transform.PassContext(config={"tir.InjectDoubleBuffer": {"split_loop": 2}}): mod = opt(mod) stmt = mod["db"].body assert isinstance(stmt.body, tvm.tir.Allocate) assert list(stmt.body.extents) == [m * 2] f = tvm.tir.transform.ThreadSync("shared")(mod)["db"] count = [0] def count_sync(op): if isinstance(op, tvm.tir.Call) and op.op.same_as(tvm.ir.Op.get("tir.tvm_storage_sync")): count[0] += 1 tvm.tir.stmt_functor.post_order_visit(f.body, count_sync) assert count[0] == 4 if __name__ == "__main__": test_double_buffer()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_transform_inject_ptx_async_copy.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm from tvm.script import tir as T import numpy as np import tvm.testing def count_cp_async(stmt): num_alloc = [0] def verify(n): if isinstance(n, tvm.tir.Call) and str(n.op) == "tir.ptx_cp_async": num_alloc[0] += 1 tvm.tir.stmt_functor.post_order_visit(stmt, verify) return num_alloc[0] def generate_global_to_shared_vectorized_copy(dtype, vector_size): num_iters = 128 // vector_size vector_size_expr = tvm.runtime.convert(vector_size) @T.prim_func def ptx_global_to_shared_copy( A: T.Buffer[(32, 128), dtype], B: T.Buffer[(32, 128), dtype] ) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) bx = T.env_thread("blockIdx.x") tx = T.env_thread("threadIdx.x") T.launch_thread(bx, 1) T.launch_thread(tx, 32) with T.block(): A_shared = T.alloc_buffer([32, 128], dtype, scope="shared") T.reads(A[0:32, 0:128]) T.writes(B[0:32, 0:128]) T.attr("default", "async_scope", 1) for i in T.serial(num_iters): for j in T.vectorized(vector_size): A_shared[tx, i * vector_size_expr + j] = A[tx, i * vector_size_expr + j] T.evaluate(T.ptx_commit_group(dtype="")) T.evaluate(T.ptx_wait_group(0, dtype="")) for i in range(128): B[tx, i] = A_shared[tx, i] return ptx_global_to_shared_copy @T.prim_func def ptx_global_to_shared_copy_fp32x1( A: T.Buffer[(32, 128), "float32"], B: T.Buffer[(32, 128), "float32"] ) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) bx = T.env_thread("blockIdx.x") tx = T.env_thread("threadIdx.x") T.launch_thread(bx, 1) T.launch_thread(tx, 32) with T.block(): A_shared = T.alloc_buffer([32, 128], "float32", scope="shared") T.reads(A[0:32, 0:128]) T.writes(B[0:32, 0:128]) T.attr("default", "async_scope", 1) for i in T.serial(128): A_shared[tx, i] = A[tx, i] T.evaluate(T.ptx_commit_group(dtype="")) T.evaluate(T.ptx_wait_group(0, dtype="")) for i in range(128): B[tx, i] = A_shared[tx, i] @T.prim_func def ptx_global_to_shared_dyn_copy_fp16x8( A: T.Buffer[(32, 128), "float16"], B: T.Buffer[(32, 128), "float16"], C: T.Buffer[(32, 128), "float16"], ) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) bx = T.env_thread("blockIdx.x") tx = T.env_thread("threadIdx.x") T.launch_thread(bx, 1) T.launch_thread(tx, 32) with T.block(): A_shared = T.alloc_buffer([32, 128], "float16", scope="shared.dyn") B_shared = T.alloc_buffer([32, 128], "float16", scope="shared.dyn") T.reads(A[0:32, 0:128], B[0:32, 0:128]) T.writes(C[0:32, 0:128]) T.attr("default", "async_scope", 1) for i in T.serial(16): for j in T.vectorized(8): A_shared[tx, i * 8 + j] = A[tx, i * 8 + j] B_shared[tx, i * 8 + j] = B[tx, i * 8 + j] T.evaluate(T.ptx_commit_group(dtype="")) T.evaluate(T.ptx_wait_group(0, dtype="")) for i in range(128): C[tx, i] = A_shared[tx, i] + B_shared[tx, i] @tvm.testing.requires_cuda def test_inject_async_copy(): for dtype, vec_size in [("float16", 8), ("float16", 4), ("float32", 4), ("float32", 1)]: if vec_size == 1: f = ptx_global_to_shared_copy_fp32x1 else: f = generate_global_to_shared_vectorized_copy(dtype, vec_size) mod = tvm.IRModule.from_expr(f) mod = tvm.tir.transform.LowerOpaqueBlock()(mod) mod = tvm.tir.transform.FlattenBuffer()(mod) if vec_size > 1: mod = tvm.tir.transform.VectorizeLoop()(mod) mod = tvm.tir.transform.InjectPTXAsyncCopy()(mod) assert count_cp_async(mod["main"].body) == 1 if not tvm.testing.is_ampere_or_newer(): continue with tvm.transform.PassContext(config={"tir.use_async_copy": 1}): mod = tvm.build(tvm.IRModule.from_expr(f), target="cuda") A_np = np.random.rand(32, 128).astype(dtype) B_np = np.zeros((32, 128)).astype(dtype) dev = tvm.cuda(0) A_nd = tvm.nd.array(A_np, device=dev) B_nd = tvm.nd.array(B_np, device=dev) mod(A_nd, B_nd) tvm.testing.assert_allclose(B_nd.numpy(), A_np) @tvm.testing.requires_cuda def test_inject_async_copy_shared_dyn(): f = ptx_global_to_shared_dyn_copy_fp16x8 mod = tvm.IRModule.from_expr(f) mod = tvm.tir.transform.LowerOpaqueBlock()(mod) mod = tvm.tir.transform.FlattenBuffer()(mod) mod = tvm.tir.transform.VectorizeLoop()(mod) mod = tvm.tir.transform.MergeDynamicSharedMemoryAllocations()(mod) mod = tvm.tir.transform.InjectPTXAsyncCopy()(mod) assert count_cp_async(mod["main"].body) == 2 if not tvm.testing.is_ampere_or_newer(): return with tvm.transform.PassContext(config={"tir.use_async_copy": 1}): mod = tvm.build(tvm.IRModule.from_expr(f), target="cuda") A_np = np.random.rand(32, 128).astype("float16") B_np = np.random.rand(32, 128).astype("float16") C_np = np.zeros((32, 128)).astype("float16") dev = tvm.cuda(0) A_nd = tvm.nd.array(A_np, device=dev) B_nd = tvm.nd.array(B_np, device=dev) C_nd = tvm.nd.array(C_np, device=dev) mod(A_nd, B_nd, C_nd) tvm.testing.assert_allclose(C_nd.numpy(), A_np + B_np) if __name__ == "__main__": test_inject_async_copy() test_inject_async_copy_shared_dyn()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_transform_inject_rolling_buffer.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm import tvm.script from tvm.script import tir as T from tvm import te from tvm import topi from tvm.driver.build_module import get_binds import numpy as np import pytest def _tile_nd(s, tensor, tile): outer_indices = [] inner_indices = [] for i, size in enumerate(tile): outer, inner = s[tensor].split(tensor.op.axis[i], size) outer_indices.append(outer) inner_indices.append(inner) s[tensor].reorder(*outer_indices, *inner_indices) return outer_indices, inner_indices @tvm.tir.transform.prim_func_pass(opt_level=0) def remove_rolling_buffer_attr(func, mod, ctx): def unwrap(node): if isinstance(node, tvm.tir.AttrStmt) and node.attr_key == "rolling_buffer_scope": return node.body else: return node return func.with_body( tvm.tir.stmt_functor.ir_transform( func.body, None, postorder=unwrap, only_enable=["tir.AttrStmt"] ) ) @tvm.tir.transform.prim_func_pass(opt_level=0) def verify_no_rolling_buffer_attr(func, mod, ctx): def verify(node): if isinstance(node, tvm.tir.AttrStmt): assert node.attr_key != "rolling_buffer_scope", "Failed to lower rolling buffers" tvm.tir.stmt_functor.post_order_visit(func.body, verify) return func def _verify_schedule(sch, inputs, output): user_pass_lists = [ [(0, remove_rolling_buffer_attr), (0, verify_no_rolling_buffer_attr)], [(0, tvm.tir.transform.InjectRollingBuffer()), (0, verify_no_rolling_buffer_attr)], ] built_funcs = [] for user_pass_list in user_pass_lists: with tvm.transform.PassContext(config={"tir.add_lower_pass": user_pass_list}): built_funcs.append(tvm.build(sch, inputs + [output])) outputs = [] ctx = tvm.cpu(0) input_data = [] for tensor in inputs: shape = [i.value for i in tensor.shape] input_data.append( tvm.nd.array(np.random.randint(low=-100, high=100, size=shape).astype("int8"), ctx) ) shape = [i.value for i in output.shape] out = tvm.nd.array(np.zeros(shape, dtype="int8"), ctx) for func in built_funcs: func(*input_data, out) outputs.append(out.numpy()) np.testing.assert_equal(outputs[0], outputs[1]) @pytest.mark.parametrize("tile_shape", [(1, 4, 8, 16), (1, 8, 7, 11), (1, 8, 3, 8), (1, 7, 5, 3)]) def test_tile_shapes(tile_shape): A = te.placeholder((1, 12, 14, 16), name="A", dtype="int8") pool_a = topi.nn.pool2d(A, (3, 3), (1, 1), (1, 1), (0, 0, 0, 0), "max", layout="NHWC") pool_b = topi.nn.pool2d(pool_a, (3, 5), (1, 1), (1, 1), (0, 0, 0, 0), "max", layout="NHWC") sch = tvm.te.create_schedule([pool_b.op]) oi, ii = _tile_nd(sch, pool_b, tile_shape) sch[pool_a].compute_at(sch[pool_b], oi[-1]) sch[pool_a].rolling_buffer() _verify_schedule(sch, [A], pool_b) def test_implied_split(): A = te.placeholder((1, 12, 12, 16), name="A", dtype="int8") pool_a = topi.nn.pool2d(A, (3, 3), (1, 1), (1, 1), (0, 0, 0, 0), "max", layout="NHWC") pool_b = topi.nn.pool2d(pool_a, (3, 3), (1, 1), (1, 1), (0, 0, 0, 0), "max", layout="NHWC") sch = tvm.te.create_schedule([pool_b.op]) n, h, w, c = pool_b.op.axis oi, ii = sch[pool_b].split(w, 4) sch[pool_a].compute_at(sch[pool_b], oi) sch[pool_a].rolling_buffer() _verify_schedule(sch, [A], pool_b) @pytest.mark.parametrize("kernel_shape", [(1, 1), (3, 3)]) def test_upscale(kernel_shape): output_shape = (1, 24, 24, 16) input_shape = ( output_shape[0], output_shape[1] // 2 + 2 * (kernel_shape[0] - 1), output_shape[2] // 2 + 2 * (kernel_shape[1] - 1), output_shape[3], ) A = te.placeholder(input_shape, name="A", dtype="int8") pool_a = topi.nn.pool2d(A, kernel_shape, (1, 1), (1, 1), (0, 0, 0, 0), "max", layout="NHWC") pool_b = topi.nn.pool2d( pool_a, kernel_shape, (1, 1), (1, 1), (0, 0, 0, 0), "max", layout="NHWC" ) upscale = te.compute((1, 24, 24, 16), lambda nn, hh, ww, cc: pool_b[nn, hh // 2, ww // 2, cc]) sch = tvm.te.create_schedule([upscale.op]) oi, ii = _tile_nd(sch, upscale, (1, 5, 5, 16)) sch[pool_b].compute_at(sch[upscale], oi[-1]) sch[pool_b].rolling_buffer() sch[pool_a].compute_at(sch[upscale], oi[-1]) sch[pool_a].rolling_buffer() _verify_schedule(sch, [A], upscale) @pytest.mark.parametrize("tile_shape", [(1, 4, 8, 16), (1, 8, 7, 11), (1, 8, 3, 8), (1, 7, 5, 3)]) def test_3_tiled_poolings(tile_shape): A = te.placeholder((1, 14, 14, 16), name="A", dtype="int8") pool_a = topi.nn.pool2d(A, (3, 3), (1, 1), (1, 1), (0, 0, 0, 0), "max", layout="NHWC") pool_b = topi.nn.pool2d(pool_a, (3, 3), (1, 1), (1, 1), (0, 0, 0, 0), "max", layout="NHWC") pool_c = topi.nn.pool2d(pool_b, (3, 3), (1, 1), (1, 1), (0, 0, 0, 0), "max", layout="NHWC") sch = tvm.te.create_schedule([pool_c.op]) oi, ii = _tile_nd(sch, pool_c, tile_shape) sch[pool_b].compute_at(sch[pool_c], oi[-1]) sch[pool_b].rolling_buffer() sch[pool_a].compute_at(sch[pool_c], oi[-1]) sch[pool_a].rolling_buffer() _verify_schedule(sch, [A], pool_c) @pytest.mark.parametrize("tile_shape", [(1, 4, 8, 16), (1, 8, 7, 11), (1, 8, 3, 8), (1, 7, 5, 3)]) def test_tiled_added_poolings(tile_shape): A = te.placeholder((1, 12, 12, 16), name="A", dtype="int8") B = te.placeholder((1, 14, 14, 16), name="A", dtype="int8") pool_a = topi.nn.pool2d(A, (3, 3), (1, 1), (1, 1), (0, 0, 0, 0), "max", layout="NHWC") pool_b = topi.nn.pool2d(B, (5, 5), (1, 1), (1, 1), (0, 0, 0, 0), "max", layout="NHWC") add = topi.add(pool_a, pool_b) pool_c = topi.nn.pool2d(add, (3, 3), (1, 1), (1, 1), (0, 0, 0, 0), "max", layout="NHWC") sch = tvm.te.create_schedule([pool_c.op]) oi, ii = _tile_nd(sch, pool_c, tile_shape) sch[add].compute_at(sch[pool_c], oi[-1]) sch[add].rolling_buffer() sch[pool_b].compute_at(sch[pool_c], oi[-1]) sch[pool_b].rolling_buffer() sch[pool_a].compute_at(sch[pool_c], oi[-1]) sch[pool_a].rolling_buffer() _verify_schedule(sch, [A, B], pool_c) @pytest.mark.parametrize("make_rolling", [(0, 0), (1, 0), (0, 1), (1, 1)]) def test_mixed_buffers(make_rolling): A = te.placeholder((1, 14, 14, 16), name="A", dtype="int8") pool_a = topi.nn.pool2d(A, (3, 3), (1, 1), (1, 1), (0, 0, 0, 0), "max", layout="NHWC") pool_b = topi.nn.pool2d(pool_a, (3, 3), (1, 1), (1, 1), (0, 0, 0, 0), "max", layout="NHWC") pool_c = topi.nn.pool2d(pool_b, (3, 3), (1, 1), (1, 1), (0, 0, 0, 0), "max", layout="NHWC") sch = tvm.te.create_schedule([pool_c.op]) oi, ii = _tile_nd(sch, pool_c, (1, 4, 8, 16)) sch[pool_b].compute_at(sch[pool_c], oi[-1]) if make_rolling[0]: sch[pool_b].rolling_buffer() sch[pool_a].compute_at(sch[pool_c], oi[-1]) if make_rolling[1]: sch[pool_a].rolling_buffer() _verify_schedule(sch, [A], pool_c) # fmt: off @tvm.script.ir_module class PreRollingBuffer: @T.prim_func def main(A: T.handle, tensor: T.handle) -> None: # function attr dict T.func_attr({"from_legacy_te_schedule": True, "global_symbol": "main", "tir.noalias": True}) # buffer definition tensor_2 = T.buffer_decl([1, 10, 12, 16], dtype="int8", elem_offset=0, align=64, offset_factor=1) A_1 = T.match_buffer(A, [1, 12, 14, 16], dtype="int8", elem_offset=0, align=64, offset_factor=1) tensor_1 = T.match_buffer(tensor, [1, 8, 8, 16], dtype="int8", elem_offset=0, align=64, offset_factor=1) # body T.realize(tensor_1[0:1, 0:8, 0:8, 0:16], "") for ax1_outer in T.serial(0, 2): T.realize(tensor_2[0:1, (ax1_outer*4):((ax1_outer*4) + 6), 0:12, 0:16], "") T.attr(tensor_2, "rolling_buffer_scope", True) for ax1 in T.serial(0, 6): for ax2 in T.serial(0, 12): for ax3 in T.serial(0, 16): tensor_2[0, (ax1 + (ax1_outer*4)), ax2, ax3] = T.int8(0) for dh in T.serial(0, 3): for dw in T.serial(0, 3): tensor_2[0, (ax1 + (ax1_outer*4)), ax2, ax3] = T.max(tensor_2[0, (ax1 + (ax1_outer*4)), ax2, ax3], A_1[0, ((ax1 + (ax1_outer*4)) + dh), (ax2 + dw), ax3]) for ax1_inner in T.serial(0, 4): for ax2_inner in T.serial(0, 8): for ax3_inner in T.serial(0, 16): tensor_1[0, (ax1_inner + (ax1_outer*4)), ax2_inner, ax3_inner] = T.int8(0) for dh_1 in T.serial(0, 3): for dw_1 in T.serial(0, 5): tensor_1[0, (ax1_inner + (ax1_outer*4)), ax2_inner, ax3_inner] = T.max(tensor_1[0, (ax1_inner + (ax1_outer*4)), ax2_inner, ax3_inner], tensor_2[0, ((ax1_inner + (ax1_outer*4)) + dh_1), (ax2_inner + dw_1), ax3_inner]) __tvm_meta__ = None @tvm.script.ir_module class PostRollingBuffer: @T.prim_func def main(A: T.handle, tensor: T.handle) -> None: # function attr dict T.func_attr({"from_legacy_te_schedule": True, "global_symbol": "main", "tir.noalias": True}) # buffer definition tensor_2 = T.buffer_decl([1, 10, 12, 16], dtype="int8", elem_offset=0, align=64, offset_factor=1) A_1 = T.match_buffer(A, [1, 12, 14, 16], dtype="int8", elem_offset=0, align=64, offset_factor=1) tensor_1 = T.match_buffer(tensor, [1, 8, 8, 16], dtype="int8", elem_offset=0, align=64, offset_factor=1) # body T.realize(tensor_1[0:1, 0:8, 0:8, 0:16], "") T.realize(tensor_2[0:1, 0:6, 0:12, 0:16], "") for ax1_outer in T.serial(0, 2): for ax1 in T.serial(0, 6): for ax2 in T.serial(0, 12): for ax3 in T.serial(0, 16): if T.likely(((ax1_outer < 1) or (ax1 >= 2)), dtype='bool') : tensor_2[0, T.floormod((ax1 + (ax1_outer*4)), 6), ax2, ax3] = T.int8(0) for dh in T.serial(0, 3): for dw in T.serial(0, 3): if T.likely(((ax1_outer < 1) or (ax1 >= 2)), dtype='bool'): tensor_2[0, T.floormod((ax1 + (ax1_outer*4)), 6), ax2, ax3] = T.max(tensor_2[0, T.floormod((ax1 + (ax1_outer*4)), 6), ax2, ax3], A_1[0, ((ax1 + (ax1_outer*4)) + dh), (ax2 + dw), ax3]) for ax1_inner in T.serial(0, 4): for ax2_inner in T.serial(0, 8): for ax3_inner in T.serial(0, 16): tensor_1[0, (ax1_inner + (ax1_outer*4)), ax2_inner, ax3_inner] = T.int8(0) for dh_1 in T.serial(0, 3): for dw_1 in T.serial(0, 5): tensor_1[0, (ax1_inner + (ax1_outer*4)), ax2_inner, ax3_inner] = T.max(tensor_1[0, (ax1_inner + (ax1_outer*4)), ax2_inner, ax3_inner], tensor_2[0, T.floormod(((ax1_inner + (ax1_outer*4)) + dh_1), 6), (ax2_inner + dw_1), ax3_inner]) __tvm_meta__ = None # fmt: on def test_rolling_buffer_ir_transform(): mod = PreRollingBuffer mod = tvm.tir.transform.InjectRollingBuffer()(mod) script = mod.script(show_meta=True) mod = tvm.script.from_source(script) tvm.ir.assert_structural_equal(mod["main"], PostRollingBuffer["main"], True) if __name__ == "__main__": pytest.main([__file__])
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_transform_inject_software_pipeline.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import sys import numpy as np import pytest import tvm import tvm.testing import tvm.tir.tensor_intrin.cuda from tvm import TVMError, te, tir from tvm.meta_schedule.testing import te_workload from tvm.script import tir as T from tvm.testing.tir import mma_schedule from tvm.tir.tensor_intrin.cuda import ( LDMATRIX_16x16_A_DYN_INTRIN, LDMATRIX_16x16_B_DYN_INTRIN, MMA_f16f16f32_INTRIN, MMA_fill_16x16_f32_INTRIN, MMA_store_16x16_f32_global_INTRIN, shared_16x16_to_ldmatrix_32x8_layout, ) def _check(original, transformed): func = original mod = tvm.IRModule.from_expr(func) mod = tvm.tir.transform.InjectSoftwarePipeline()(mod) mod = tvm.tir.transform.Simplify()(mod) tvm.ir.assert_structural_equal(mod["main"], transformed, True) def _check_error(func): mod = tvm.IRModule.from_expr(func) with pytest.raises(ValueError): tvm.tir.transform.InjectSoftwarePipeline()(mod) @T.prim_func def trivial_pipeline(A: T.Buffer[(16, 1), "float32"], C: T.Buffer[(16, 1), "float32"]): for tx in T.thread_binding(0, 16, thread="threadIdx.x"): for i in T.serial( 0, 1, annotations={"software_pipeline_stage": [0, 1], "software_pipeline_order": [0, 1]} ): with T.block(): T.reads(A[tx, i]) T.writes(C[tx, i]) B = T.alloc_buffer((16, 1), dtype="float32", scope="shared") with T.block(): T.reads(A[tx, i]) T.writes(B[tx, 0]) B[tx, 0] = A[tx, i] * T.float32(2) with T.block(): T.reads(B[tx, 0]) T.writes(C[tx, i]) C[tx, i] = B[tx, 0] + T.float32(1) @T.prim_func def transformed_trivial_pipeline( A: T.Buffer[(16, 1), "float32"], C: T.Buffer[(16, 1), "float32"] ) -> None: for tx in T.thread_binding(16, thread="threadIdx.x"): with T.block(): T.reads(A[tx, 0]) T.writes(C[tx, 0]) B = T.alloc_buffer([2, 16, 1], dtype="float32", scope="shared") with T.block(): T.reads(A[tx, 0]) T.writes(B[0, tx, 0]) B[0, tx, 0] = A[tx, 0] * T.float32(2) with T.block(): T.reads() T.writes() T.evaluate(0) with T.block(): T.reads(B[0, tx, 0]) T.writes(C[tx, 0]) C[tx, 0] = B[0, tx, 0] + T.float32(1) def gen_simple_compute(num_stages): @T.prim_func def simple_compute(A: T.Buffer[(16, 16), "float32"], C: T.Buffer[(16, 16), "float32"]): for tx in T.thread_binding(0, 16, thread="threadIdx.x"): for i in T.serial( 0, 16, annotations={ "software_pipeline_stage": [0, num_stages], "software_pipeline_order": [0, 1], }, ): with T.block("compute"): T.reads(A[tx, i]) T.writes(C[tx, i]) B = T.alloc_buffer((16, 1), dtype="float32", scope="shared") with T.block(): T.reads(A[tx, i]) T.writes(B[tx, 0]) B[tx, 0] = A[tx, i] * T.float32(2) with T.block(): T.reads(B[tx, 0]) T.writes(C[tx, i]) C[tx, i] = B[tx, 0] + T.float32(1) return simple_compute @T.prim_func def transformed_simple_compute( A: T.Buffer[(16, 16), "float32"], C: T.Buffer[(16, 16), "float32"] ) -> None: for tx in T.thread_binding(0, 16, thread="threadIdx.x"): with T.block(): T.reads([A[tx, 0:16]]) T.writes([C[tx, 0:16]]) B = T.alloc_buffer([2, 16, 1], dtype="float32", scope="shared") with T.block(): T.reads([A[tx, 0]]) T.writes([B[0, tx, 0]]) B[0, tx, 0] = A[tx, 0] * T.float32(2) with T.block(): T.reads([A[tx, 1:16], B[0:2, tx, 0]]) T.writes([B[0:2, tx, 0], C[tx, 0:15]]) for i in T.serial(0, 15): with T.block(): T.reads([A[tx, i + 1]]) T.writes([B[(i + 1) % 2, tx, 0]]) B[(i + 1) % 2, tx, 0] = A[tx, i + 1] * T.float32(2) with T.block(): T.reads([B[i % 2, tx, 0]]) T.writes([C[tx, i]]) C[tx, i] = B[i % 2, tx, 0] + T.float32(1) with T.block(): T.reads([B[1, tx, 0]]) T.writes([C[tx, 15]]) C[tx, 15] = B[1, tx, 0] + T.float32(1) @T.prim_func def simple_compute_with_other_annotation( A: T.Buffer[(16, 16), "float32"], C: T.Buffer[(16, 16), "float32"] ): for tx in T.thread_binding(0, 16, thread="threadIdx.x"): for i in T.serial( 0, 16, annotations={ "software_pipeline_stage": [0, 1], "software_pipeline_order": [0, 1], "pragma_loop_partition_hint": True, }, ): with T.block("compute"): T.reads(A[tx, i]) T.writes(C[tx, i]) B = T.alloc_buffer((16, 1), dtype="float32", scope="shared") with T.block(): T.reads(A[tx, i]) T.writes(B[tx, 0]) B[tx, 0] = A[tx, i] * T.float32(2) with T.block(): T.reads(B[tx, 0]) T.writes(C[tx, i]) C[tx, i] = B[tx, 0] + T.float32(1) @T.prim_func def transformed_simple_compute_with_other_annotation( A: T.Buffer[(16, 16), "float32"], C: T.Buffer[(16, 16), "float32"] ) -> None: for tx in T.thread_binding(0, 16, thread="threadIdx.x"): with T.block(): T.reads([A[tx, 0:16]]) T.writes([C[tx, 0:16]]) B = T.alloc_buffer([2, 16, 1], dtype="float32", scope="shared") with T.block(): T.reads([A[tx, 0]]) T.writes([B[0, tx, 0]]) B[0, tx, 0] = A[tx, 0] * T.float32(2) with T.block(): T.reads([A[tx, 1:16], B[0:2, tx, 0]]) T.writes([B[0:2, tx, 0], C[tx, 0:15]]) for i in T.serial( 0, 15, annotations={"pragma_loop_partition_hint": True}, ): with T.block(): T.reads([A[tx, i + 1]]) T.writes([B[(i + 1) % 2, tx, 0]]) B[(i + 1) % 2, tx, 0] = A[tx, i + 1] * T.float32(2) with T.block(): T.reads([B[i % 2, tx, 0]]) T.writes([C[tx, i]]) C[tx, i] = B[i % 2, tx, 0] + T.float32(1) with T.block(): T.reads([B[1, tx, 0]]) T.writes([C[tx, 15]]) C[tx, 15] = B[1, tx, 0] + T.float32(1) @T.prim_func def three_stage_compute(A: T.Buffer[(16, 16), "float32"], D: T.Buffer[(16, 16), "float32"]): for tx in T.thread_binding(0, 16, thread="threadIdx.x"): for i in T.serial( 0, 16, annotations={ "software_pipeline_stage": [0, 1, 2], "software_pipeline_order": [0, 1, 2], }, ): with T.block("compute"): T.reads(A[tx, i]) T.writes(D[tx, i]) B = T.alloc_buffer((16, 1), dtype="float32", scope="shared") C = T.alloc_buffer((16, 1), dtype="float32", scope="shared") with T.block(): T.reads(A[tx, i]) T.writes(B[tx, 0]) B[tx, 0] = A[tx, i] * T.float32(2) with T.block(): T.reads(B[tx, 0]) T.writes(C[tx, 0]) C[tx, 0] = B[tx, 0] + T.float32(2) with T.block(): T.reads(C[tx, 0]) T.writes(D[tx, i]) D[tx, i] = C[tx, 0] + T.float32(1) @T.prim_func def transformed_three_stage_compute( A: T.Buffer[(16, 16), "float32"], D: T.Buffer[(16, 16), "float32"] ) -> None: for tx in T.thread_binding(16, thread="threadIdx.x"): with T.block(): T.reads(A[tx, 0:16]) T.writes(D[tx, 0:16]) B = T.alloc_buffer([2, 16, 1], dtype="float32", scope="shared") C = T.alloc_buffer([2, 16, 1], dtype="float32", scope="shared") with T.block(): T.reads(A[tx, 0:2], B[0:2, tx, 0]) T.writes(B[0:2, tx, 0], C[0:2, tx, 0]) for i in T.unroll(2): with T.block(): T.reads(A[tx, i]) T.writes(B[0:2, tx, 0]) B[i, tx, 0] = A[tx, i] * T.float32(2) with T.block(): T.where(i == 1) T.reads(B[0:2, tx, 0]) T.writes(C[0:2, tx, 0]) C[(i + 1) % 2, tx, 0] = B[(i + 1) % 2, tx, 0] + T.float32(2) with T.block(): T.reads(A[tx, 2:16], B[0:2, tx, 0], C[0:2, tx, 0]) T.writes(B[0:2, tx, 0], C[0:2, tx, 0], D[tx, 0:14]) for i in T.serial(14): with T.block(): T.reads(A[tx, i + 2]) T.writes(B[0:2, tx, 0]) B[i % 2, tx, 0] = A[tx, i + 2] * T.float32(2) with T.block(): T.reads(B[0:2, tx, 0]) T.writes(C[0:2, tx, 0]) C[(i + 1) % 2, tx, 0] = B[(i + 1) % 2, tx, 0] + T.float32(2) with T.block(): T.reads(C[0:2, tx, 0]) T.writes(D[tx, i]) D[tx, i] = C[i % 2, tx, 0] + T.float32(1) with T.block(): T.reads(B[0:2, tx, 0], C[0:2, tx, 0]) T.writes(C[0:2, tx, 0], D[tx, 14:16]) for i in T.unroll(2): with T.block(): T.where(i < 1) T.reads(B[0:2, tx, 0]) T.writes(C[0:2, tx, 0]) C[(i + 1) % 2, tx, 0] = B[(i + 1) % 2, tx, 0] + T.float32(2) with T.block(): T.reads(C[0:2, tx, 0]) T.writes(D[tx, i + 14]) D[tx, i + 14] = C[i, tx, 0] + T.float32(1) @T.prim_func def dag_interleaving( A: T.Buffer[(16, 16), "float32"], B: T.Buffer[(16, 16), "float32"], C: T.Buffer[(16, 16), "float32"], ) -> None: for tx in T.thread_binding(0, 16, thread="threadIdx.x"): for i in T.serial( 0, 16, annotations={ "software_pipeline_stage": [0, 0, 0, 0, 1], "software_pipeline_order": [0, 2, 1, 3, 4], }, ): with T.block(): T.reads(A[tx, i]) T.writes(C[tx, i]) AS = T.alloc_buffer((16, 1), dtype="float32", scope="shared") BS = T.alloc_buffer((16, 1), dtype="float32", scope="shared") AL = T.alloc_buffer((1, 1), dtype="float32", scope="local") BL = T.alloc_buffer((1, 1), dtype="float32", scope="local") with T.block(): T.reads(A[tx, i]) T.writes(AS[tx, 0]) AS[tx, 0] = A[tx, i] * T.float32(2) with T.block(): T.reads(AS[tx, 0]) T.writes(AL[0, 0]) AL[0, 0] = AS[tx, 0] with T.block(): T.reads(B[tx, i]) T.writes(BS[tx, 0]) BS[tx, 0] = B[tx, i] + T.float32(2) with T.block(): T.reads(BS[tx, 0]) T.writes(BL[0, 0]) BL[0, 0] = BS[tx, 0] with T.block(): T.reads(AL[0, 0], BL[0, 0]) T.writes(C[tx, i]) C[tx, i] = AL[0, 0] * BL[0, 0] @T.prim_func def transformed_dag_interleaving( A: T.Buffer[(16, 16), "float32"], B: T.Buffer[(16, 16), "float32"], C: T.Buffer[(16, 16), "float32"], ) -> None: for tx in T.thread_binding(16, thread="threadIdx.x"): with T.block(): T.reads(A[tx, 0:16], B[tx, 0:16]) T.writes(C[tx, 0:16]) AS = T.alloc_buffer([16, 1], dtype="float32", scope="shared") BS = T.alloc_buffer([16, 1], dtype="float32", scope="shared") AL = T.alloc_buffer([2, 1, 1], dtype="float32", scope="local") BL = T.alloc_buffer([2, 1, 1], dtype="float32", scope="local") with T.block(): T.reads(A[tx, 0], B[tx, 0], AS[tx, 0], BS[tx, 0]) T.writes(AS[tx, 0], BS[tx, 0], AL[0, 0, 0], BL[0, 0, 0]) with T.block(): T.reads(A[tx, 0]) T.writes(AS[tx, 0]) AS[tx, 0] = A[tx, 0] * T.float32(2) with T.block(): T.reads(B[tx, 0]) T.writes(BS[tx, 0]) BS[tx, 0] = B[tx, 0] + T.float32(2) with T.block(): T.reads(AS[tx, 0]) T.writes(AL[0, 0, 0]) AL[0, 0, 0] = AS[tx, 0] with T.block(): T.reads(BS[tx, 0]) T.writes(BL[0, 0, 0]) BL[0, 0, 0] = BS[tx, 0] with T.block(): T.reads( A[tx, 1:16], B[tx, 1:16], AS[tx, 0], BS[tx, 0], AL[0:2, 0, 0], BL[0:2, 0, 0] ) T.writes(AS[tx, 0], BS[tx, 0], AL[0:2, 0, 0], BL[0:2, 0, 0], C[tx, 0:15]) for i in T.serial(15): with T.block(): T.reads(A[tx, i + 1]) T.writes(AS[tx, 0]) AS[tx, 0] = A[tx, i + 1] * T.float32(2) with T.block(): T.reads(B[tx, i + 1]) T.writes(BS[tx, 0]) BS[tx, 0] = B[tx, i + 1] + T.float32(2) with T.block(): T.reads(AS[tx, 0]) T.writes(AL[(i + 1) % 2, 0, 0]) AL[(i + 1) % 2, 0, 0] = AS[tx, 0] with T.block(): T.reads(BS[tx, 0]) T.writes(BL[(i + 1) % 2, 0, 0]) BL[(i + 1) % 2, 0, 0] = BS[tx, 0] with T.block(): T.reads(AL[i % 2, 0, 0], BL[i % 2, 0, 0]) T.writes(C[tx, i]) C[tx, i] = AL[i % 2, 0, 0] * BL[i % 2, 0, 0] with T.block(): T.reads(AL[1, 0, 0], BL[1, 0, 0]) T.writes(C[tx, 15]) C[tx, 15] = AL[1, 0, 0] * BL[1, 0, 0] @T.prim_func def nested_pipeline_simple( A: T.Buffer[(16, 16, 16), "float32"], C: T.Buffer[(16, 16, 16), "float32"] ): for tx in T.thread_binding(0, 16, thread="threadIdx.x"): for i in T.serial( 0, 16, annotations={ "software_pipeline_stage": [0, 1, 1, 1], "software_pipeline_order": [0, 1, 2, 3], }, ): with T.block(): T.reads(A[tx, i, 0:16]) T.writes(C[tx, i, 0:16]) A_shared = T.alloc_buffer((16, 1, 16), dtype="float32", scope="shared") for j in T.serial(0, 16): with T.block(): T.reads(A[tx, i, j]) T.writes(A_shared[tx, 0, j]) A_shared[tx, 0, j] = A[tx, i, j] for j in T.serial( 0, 16, annotations={ "software_pipeline_stage": [0, 1], "software_pipeline_order": [0, 1], }, ): with T.block(): T.reads(A_shared[tx, 0, j]) T.writes(C[tx, i, j]) B = T.alloc_buffer((16, 1, 1), dtype="float32", scope="shared") with T.block(): T.reads(A_shared[tx, i, j]) T.writes(B[tx, i, 0]) B[tx, i, 0] = A_shared[tx, 0, j] * T.float32(2) with T.block(): T.reads(B[tx, i, 0]) T.writes(C[tx, i, j]) C[tx, i, j] = B[tx, i, 0] + T.float32(1) @T.prim_func def transformed_nested_pipeline_simple( A: T.Buffer[(16, 16, 16), "float32"], C: T.Buffer[(16, 16, 16), "float32"] ) -> None: for tx in T.thread_binding(0, 16, thread="threadIdx.x"): with T.block(): T.reads([A[tx, 0:16, 0:16]]) T.writes([C[tx, 0:16, 0:16]]) A_shared = T.alloc_buffer([2, 16, 1, 16], dtype="float32", scope="shared") B = T.alloc_buffer([2, 16, 1, 1], dtype="float32", scope="shared") with T.block(): T.reads([A[tx, 0, 0:16]]) T.writes([A_shared[0, tx, 0, 0:16]]) for j in T.serial(0, 16): with T.block(): T.reads([A[tx, 0, j]]) T.writes([A_shared[0, tx, 0, j]]) A_shared[0, tx, 0, j] = A[tx, 0, j] with T.block(): T.reads([A[tx, 1:16, 0:16], A_shared[0:2, tx, 0:15, 0:16], B[0:2, tx, 0:15, 0]]) T.writes([A_shared[0:2, tx, 0, 0:16], B[0:2, tx, 0:15, 0], C[tx, 0:15, 0:16]]) for i in T.serial(0, 15): with T.block(): T.reads([A[tx, i + 1, 0:16]]) T.writes([A_shared[(i + 1) % 2, tx, 0, 0:16]]) for j in T.serial(0, 16): with T.block(): T.reads([A[tx, i + 1, j]]) T.writes([A_shared[(i + 1) % 2, tx, 0, j]]) A_shared[(i + 1) % 2, tx, 0, j] = A[tx, i + 1, j] with T.block(): T.reads([A_shared[i % 2, tx, i, 0]]) T.writes([B[0, tx, i, 0]]) B[0, tx, i, 0] = A_shared[i % 2, tx, 0, 0] * T.float32(2) with T.block(): T.reads([A_shared[i % 2, tx, i, 1:16], B[0:2, tx, i, 0]]) T.writes([B[0:2, tx, i, 0], C[tx, i, 0:15]]) for j in T.serial(0, 15): with T.block(): T.reads([A_shared[i % 2, tx, i, j + 1]]) T.writes([B[(j + 1) % 2, tx, i, 0]]) B[(j + 1) % 2, tx, i, 0] = A_shared[ i % 2, tx, 0, j + 1 ] * T.float32(2) with T.block(): T.reads([B[j % 2, tx, i, 0]]) T.writes([C[tx, i, j]]) C[tx, i, j] = B[j % 2, tx, i, 0] + T.float32(1) with T.block(): T.reads([B[1, tx, i, 0]]) T.writes([C[tx, i, 15]]) C[tx, i, 15] = B[1, tx, i, 0] + T.float32(1) with T.block(): T.reads([A_shared[1, tx, 15, 0:16], B[0:2, tx, 15, 0]]) T.writes([B[0:2, tx, 15, 0], C[tx, 15, 0:16]]) with T.block(): T.reads([A_shared[1, tx, 15, 0]]) T.writes([B[0, tx, 15, 0]]) B[0, tx, 15, 0] = A_shared[1, tx, 0, 0] * T.float32(2) with T.block(): T.reads([A_shared[1, tx, 15, 1:16], B[0:2, tx, 15, 0]]) T.writes([B[0:2, tx, 15, 0], C[tx, 15, 0:15]]) for j in T.serial(0, 15): with T.block(): T.reads([A_shared[1, tx, 15, j + 1]]) T.writes([B[(j + 1) % 2, tx, 15, 0]]) B[(j + 1) % 2, tx, 15, 0] = A_shared[1, tx, 0, j + 1] * T.float32(2) with T.block(): T.reads([B[j % 2, tx, 15, 0]]) T.writes([C[tx, 15, j]]) C[tx, 15, j] = B[j % 2, tx, 15, 0] + T.float32(1) with T.block(): T.reads([B[1, tx, 15, 0]]) T.writes([C[tx, 15, 15]]) C[tx, 15, 15] = B[1, tx, 15, 0] + T.float32(1) @T.prim_func def nested_pipeline_prefetch_inner( A: T.Buffer[(16, 16, 16), "float32"], C: T.Buffer[(16, 16, 16), "float32"] ): for tx in T.thread_binding(0, 16, thread="threadIdx.x"): for i in T.serial( 0, 16, annotations={ "software_pipeline_stage": [0, 0, 1, 1], "software_pipeline_order": [0, 2, 1, 3], }, ): with T.block(): T.reads(A[tx, i, 0:16]) T.writes(C[tx, i, 0:16]) A_shared = T.alloc_buffer((16, 1, 16), dtype="float32", scope="shared") for j in T.serial(0, 16): with T.block(): T.reads(A[tx, i, j]) T.writes(A_shared[tx, 0, j]) A_shared[tx, 0, j] = A[tx, i, j] for j in T.serial( 0, 16, annotations={ "software_pipeline_stage": [0, 1], "software_pipeline_order": [0, 1], }, ): with T.block(): T.reads(A_shared[tx, 0, j]) T.writes(C[tx, i, j]) B = T.alloc_buffer((16, 1, 1), dtype="float32", scope="shared") with T.block(): T.reads(A_shared[tx, i, j]) T.writes(B[tx, i, 0]) B[tx, i, 0] = A_shared[tx, 0, j] * T.float32(2) with T.block(): T.reads(B[tx, i, 0]) T.writes(C[tx, i, j]) C[tx, i, j] = B[tx, i, 0] + T.float32(1) @T.prim_func def transformed_nested_pipeline_prefetch_inner( A: T.Buffer[(16, 16, 16), "float32"], C: T.Buffer[(16, 16, 16), "float32"] ) -> None: for tx in T.thread_binding(0, 16, thread="threadIdx.x"): with T.block(): T.reads([A[tx, 0:16, 0:16]]) T.writes([C[tx, 0:16, 0:16]]) A_shared = T.alloc_buffer([2, 16, 1, 16], dtype="float32", scope="shared") B = T.alloc_buffer([2, 16, 1, 1], dtype="float32", scope="shared") with T.block(): T.reads([A[tx, 0, 0:16], A_shared[0, tx, 0, 0]]) T.writes([A_shared[0, tx, 0, 0:16], B[0, tx, 0, 0]]) with T.block(): T.reads([A[tx, 0, 0:16]]) T.writes([A_shared[0, tx, 0, 0:16]]) for j in T.serial(0, 16): with T.block(): T.reads([A[tx, 0, j]]) T.writes([A_shared[0, tx, 0, j]]) A_shared[0, tx, 0, j] = A[tx, 0, j] with T.block(): T.reads([A_shared[0, tx, 0, 0]]) T.writes([B[0, tx, 0, 0]]) B[0, tx, 0, 0] = A_shared[0, tx, 0, 0] * T.float32(2) with T.block(): T.reads([A[tx, 1:16, 0:16], A_shared[0:2, tx, 0:16, 0:16], B[0:2, tx, 0:15, 0]]) T.writes([A_shared[0:2, tx, 0, 0:16], B[0:2, tx, 0:16, 0], C[tx, 0:15, 0:16]]) for i in T.serial(0, 15): with T.block(): T.reads([A[tx, i + 1, 0:16]]) T.writes([A_shared[(i + 1) % 2, tx, 0, 0:16]]) for j in T.serial(0, 16): with T.block(): T.reads([A[tx, i + 1, j]]) T.writes([A_shared[(i + 1) % 2, tx, 0, j]]) A_shared[(i + 1) % 2, tx, 0, j] = A[tx, i + 1, j] with T.block(): T.reads([A_shared[i % 2, tx, i, 1:16], B[0:2, tx, i, 0]]) T.writes([B[0:2, tx, i, 0], C[tx, i, 0:15]]) for j in T.serial(0, 15): with T.block(): T.reads([A_shared[i % 2, tx, i, j + 1]]) T.writes([B[(j + 1) % 2, tx, i, 0]]) B[(j + 1) % 2, tx, i, 0] = A_shared[ i % 2, tx, 0, j + 1 ] * T.float32(2) with T.block(): T.reads([B[j % 2, tx, i, 0]]) T.writes([C[tx, i, j]]) C[tx, i, j] = B[j % 2, tx, i, 0] + T.float32(1) with T.block(): T.reads([A_shared[(i + 1) % 2, tx, i + 1, 0]]) T.writes([B[0, tx, i + 1, 0]]) B[0, tx, i + 1, 0] = A_shared[(i + 1) % 2, tx, 0, 0] * T.float32(2) with T.block(): T.reads([B[1, tx, i, 0]]) T.writes([C[tx, i, 15]]) C[tx, i, 15] = B[1, tx, i, 0] + T.float32(1) with T.block(): T.reads([A_shared[1, tx, 15, 1:16], B[0:2, tx, 15, 0]]) T.writes([B[0:2, tx, 15, 0], C[tx, 15, 0:16]]) with T.block(): T.reads([A_shared[1, tx, 15, 1:16], B[0:2, tx, 15, 0]]) T.writes([B[0:2, tx, 15, 0], C[tx, 15, 0:15]]) for j in T.serial(0, 15): with T.block(): T.reads([A_shared[1, tx, 15, j + 1]]) T.writes([B[(j + 1) % 2, tx, 15, 0]]) B[(j + 1) % 2, tx, 15, 0] = A_shared[1, tx, 0, j + 1] * T.float32(2) with T.block(): T.reads([B[j % 2, tx, 15, 0]]) T.writes([C[tx, 15, j]]) C[tx, 15, j] = B[j % 2, tx, 15, 0] + T.float32(1) with T.block(): T.reads([B[1, tx, 15, 0]]) T.writes([C[tx, 15, 15]]) C[tx, 15, 15] = B[1, tx, 15, 0] + T.float32(1) @T.prim_func def nested_pipeline_interleaving( A: T.Buffer[(16, 16, 16), "float32"], C: T.Buffer[(16, 16, 16), "float32"] ): for tx in T.thread_binding(0, 16, thread="threadIdx.x"): for i in T.serial( 0, 16, annotations={ "software_pipeline_stage": [0, 0, 0, 1, 1], "software_pipeline_order": [0, 2, 3, 1, 4], }, ): with T.block(): T.reads(A[tx, i, 0:16]) T.writes(C[tx, i, 0:16]) A_shared = T.alloc_buffer((16, 1, 16), dtype="float32", scope="shared") A_local = T.alloc_buffer((1, 1, 16), dtype="float32", scope="local") for j in T.serial(0, 16): with T.block(): T.reads(A[tx, i, j]) T.writes(A_shared[tx, 0, j]) A_shared[tx, 0, j] = A[tx, i, j] for j in T.serial(0, 16): with T.block(): T.reads(A_shared[tx, 0, j]) T.writes(A_local[0, 0, j]) A_local[0, 0, j] = A_shared[tx, i, j] for j in T.serial( 0, 16, annotations={ "software_pipeline_stage": [0, 1], "software_pipeline_order": [0, 1], }, ): with T.block(): T.reads(A_local[0, 0, j]) T.writes(C[tx, i, j]) B = T.alloc_buffer((16, 1, 1), dtype="float32", scope="shared") with T.block(): T.reads(A_local[tx, i, j]) T.writes(B[tx, i, 0]) B[tx, i, 0] = A_local[0, 0, j] * T.float32(2) with T.block(): T.reads(B[tx, i, 0]) T.writes(C[tx, i, j]) C[tx, i, j] = B[tx, i, 0] + T.float32(1) @T.prim_func def transformed_nested_pipeline_interleaving( A: T.Buffer[(16, 16, 16), "float32"], C: T.Buffer[(16, 16, 16), "float32"] ) -> None: for tx in T.thread_binding(0, 16, thread="threadIdx.x"): with T.block(): T.reads([A[tx, 0:16, 0:16]]) T.writes([C[tx, 0:16, 0:16]]) A_shared = T.alloc_buffer([16, 1, 16], dtype="float32", scope="shared") A_local = T.alloc_buffer([1, 1, 16], dtype="float32", scope="local") B = T.alloc_buffer([2, 16, 1, 1], dtype="float32", scope="shared") with T.block(): T.reads([A[tx, 0, 0:16], A_shared[tx, 0, 0:16], A_local[tx, 0, 0]]) T.writes([A_shared[tx, 0, 0:16], A_local[0, 0, 0:16], B[0, tx, 0, 0]]) with T.block(): T.reads([A[tx, 0, 0:16]]) T.writes([A_shared[tx, 0, 0:16]]) for j in T.serial(0, 16): with T.block(): T.reads([A[tx, 0, j]]) T.writes([A_shared[tx, 0, j]]) A_shared[tx, 0, j] = A[tx, 0, j] with T.block(): T.reads([A_shared[tx, 0, 0:16]]) T.writes([A_local[0, 0, 0:16]]) for j in T.serial(0, 16): with T.block(): T.reads([A_shared[tx, 0, j]]) T.writes([A_local[0, 0, j]]) A_local[0, 0, j] = A_shared[tx, 0, j] with T.block(): T.reads([A_local[tx, 0, 0]]) T.writes([B[0, tx, 0, 0]]) B[0, tx, 0, 0] = A_local[0, 0, 0] * T.float32(2) with T.block(): T.reads( [ A[tx, 1:16, 0:16], A_local[tx, 0:16, 0:16], B[0:2, tx, 0:15, 0], A_shared[tx, 0, 0:16], ] ) T.writes( [ A_shared[tx, 0, 0:16], B[0:2, tx, 0:16, 0], C[tx, 0:15, 0:16], A_local[0, 0, 0:16], ] ) for i in T.serial(0, 15): with T.block(): T.reads([A[tx, i + 1, 0:16]]) T.writes([A_shared[tx, 0, 0:16]]) for j in T.serial(0, 16): with T.block(): T.reads([A[tx, i + 1, j]]) T.writes([A_shared[tx, 0, j]]) A_shared[tx, 0, j] = A[tx, i + 1, j] with T.block(): T.reads([A_local[tx, i, 1:16], B[0:2, tx, i, 0]]) T.writes([B[0:2, tx, i, 0], C[tx, i, 0:15]]) for j in T.serial(0, 15): with T.block(): T.reads([A_local[tx, i, j + 1]]) T.writes([B[(j + 1) % 2, tx, i, 0]]) B[(j + 1) % 2, tx, i, 0] = A_local[0, 0, j + 1] * T.float32(2) with T.block(): T.reads([B[j % 2, tx, i, 0]]) T.writes([C[tx, i, j]]) C[tx, i, j] = B[j % 2, tx, i, 0] + T.float32(1) with T.block(): T.reads([A_shared[tx, 0, 0:16]]) T.writes([A_local[0, 0, 0:16]]) for j in T.serial(0, 16): with T.block(): T.reads([A_shared[tx, 0, j]]) T.writes([A_local[0, 0, j]]) A_local[0, 0, j] = A_shared[tx, i + 1, j] with T.block(): T.reads([A_local[tx, i + 1, 0]]) T.writes([B[0, tx, i + 1, 0]]) B[0, tx, i + 1, 0] = A_local[0, 0, 0] * T.float32(2) with T.block(): T.reads([B[1, tx, i, 0]]) T.writes([C[tx, i, 15]]) C[tx, i, 15] = B[1, tx, i, 0] + T.float32(1) with T.block(): T.reads([A_local[tx, 15, 1:16], B[0:2, tx, 15, 0]]) T.writes([B[0:2, tx, 15, 0], C[tx, 15, 0:16]]) with T.block(): T.reads([A_local[tx, 15, 1:16], B[0:2, tx, 15, 0]]) T.writes([B[0:2, tx, 15, 0], C[tx, 15, 0:15]]) for j in T.serial(0, 15): with T.block(): T.reads([A_local[tx, 15, j + 1]]) T.writes([B[(j + 1) % 2, tx, 15, 0]]) B[(j + 1) % 2, tx, 15, 0] = A_local[0, 0, j + 1] * T.float32(2) with T.block(): T.reads([B[j % 2, tx, 15, 0]]) T.writes([C[tx, 15, j]]) C[tx, 15, j] = B[j % 2, tx, 15, 0] + T.float32(1) with T.block(): T.reads([B[1, tx, 15, 0]]) T.writes([C[tx, 15, 15]]) C[tx, 15, 15] = B[1, tx, 15, 0] + T.float32(1) @T.prim_func def nested_pipeline_double_buffer( A: T.Buffer[(16, 16, 16), "float32"], C: T.Buffer[(16, 16, 16), "float32"] ): for tx in T.thread_binding(0, 16, thread="threadIdx.x"): for i in T.serial( 0, 16, annotations={ "software_pipeline_stage": [0, 0, 0, 1, 1], "software_pipeline_order": [0, 2, 3, 1, 4], }, ): with T.block(): T.reads(A[tx, i, 0:16]) T.writes(C[tx, i, 0:16]) A_shared = T.alloc_buffer((16, 1, 16), dtype="float32", scope="shared") A_local = T.alloc_buffer((1, 1, 16), dtype="float32", scope="local") for j in T.serial(0, 16): with T.block(): T.reads(A[tx, i, j]) T.writes(A_shared[tx, 0, j]) A_shared[tx, 0, j] = A[tx, i, j] for j in T.serial(0, 16): with T.block(): T.block_attr({"double_buffer_scope": 0}) T.reads(A_shared[tx, 0, j]) T.writes(A_local[0, 0, j]) A_local[0, 0, j] = A_shared[tx, i, j] for j in T.serial( 0, 16, annotations={ "software_pipeline_stage": [0, 1], "software_pipeline_order": [0, 1], }, ): with T.block(): T.reads(A_local[0, 0, j]) T.writes(C[tx, i, j]) B = T.alloc_buffer((16, 1, 1), dtype="float32", scope="shared") with T.block(): T.reads(A_local[tx, i, j]) T.writes(B[tx, i, 0]) B[tx, i, 0] = A_local[0, 0, j] * T.float32(2) with T.block(): T.reads(B[tx, i, 0]) T.writes(C[tx, i, j]) C[tx, i, j] = B[tx, i, 0] + T.float32(1) @T.prim_func def transformed_nested_pipeline_double_buffer( A: T.Buffer[(16, 16, 16), "float32"], C: T.Buffer[(16, 16, 16), "float32"] ) -> None: for tx in T.thread_binding(0, 16, thread="threadIdx.x"): with T.block(): T.reads([A[tx, 0:16, 0:16]]) T.writes([C[tx, 0:16, 0:16]]) A_shared = T.alloc_buffer([16, 1, 16], dtype="float32", scope="shared") A_local = T.alloc_buffer([2, 1, 1, 16], dtype="float32", scope="local") B = T.alloc_buffer([2, 16, 1, 1], dtype="float32", scope="shared") with T.block(): T.reads([A[tx, 0, 0:16], A_shared[tx, 0, 0:16], A_local[0, tx, 0, 0]]) T.writes([A_shared[tx, 0, 0:16], A_local[0, 0, 0, 0:16], B[0, tx, 0, 0]]) with T.block(): T.reads([A[tx, 0, 0:16]]) T.writes([A_shared[tx, 0, 0:16]]) for j in T.serial(0, 16): with T.block(): T.reads([A[tx, 0, j]]) T.writes([A_shared[tx, 0, j]]) A_shared[tx, 0, j] = A[tx, 0, j] with T.block(): T.reads([A_shared[tx, 0, 0:16]]) T.writes([A_local[0, 0, 0, 0:16]]) for j in T.serial(0, 16): with T.block(): T.reads([A_shared[tx, 0, j]]) T.writes([A_local[0, 0, 0, j]]) T.block_attr({"double_buffer_scope": 0}) A_local[0, 0, 0, j] = A_shared[tx, 0, j] with T.block(): T.reads([A_local[0, tx, 0, 0]]) T.writes([B[0, tx, 0, 0]]) B[0, tx, 0, 0] = A_local[0, 0, 0, 0] * T.float32(2) with T.block(): T.reads( [ A[tx, 1:16, 0:16], A_local[0:2, tx, 0:16, 0:16], B[0:2, tx, 0:15, 0], A_shared[tx, 0, 0:16], ] ) T.writes( [ A_shared[tx, 0, 0:16], B[0:2, tx, 0:16, 0], C[tx, 0:15, 0:16], A_local[0:2, 0, 0, 0:16], ] ) for i in T.serial(0, 15): with T.block(): T.reads([A[tx, i + 1, 0:16]]) T.writes([A_shared[tx, 0, 0:16]]) for j in T.serial(0, 16): with T.block(): T.reads([A[tx, i + 1, j]]) T.writes([A_shared[tx, 0, j]]) A_shared[tx, 0, j] = A[tx, i + 1, j] with T.block(): T.reads([A_local[i % 2, tx, i, 1:16], B[0:2, tx, i, 0]]) T.writes([B[0:2, tx, i, 0], C[tx, i, 0:15]]) for j in T.serial(0, 15): with T.block(): T.reads([A_local[i % 2, tx, i, j + 1]]) T.writes([B[(j + 1) % 2, tx, i, 0]]) B[(j + 1) % 2, tx, i, 0] = A_local[i % 2, 0, 0, j + 1] * T.float32( 2 ) with T.block(): T.reads([B[j % 2, tx, i, 0]]) T.writes([C[tx, i, j]]) C[tx, i, j] = B[j % 2, tx, i, 0] + T.float32(1) with T.block(): T.reads([A_shared[tx, 0, 0:16]]) T.writes([A_local[(i + 1) % 2, 0, 0, 0:16]]) for j in T.serial(0, 16): with T.block(): T.reads([A_shared[tx, 0, j]]) T.writes([A_local[(i + 1) % 2, 0, 0, j]]) T.block_attr({"double_buffer_scope": 0}) A_local[(i + 1) % 2, 0, 0, j] = A_shared[tx, i + 1, j] with T.block(): T.reads([A_local[(i + 1) % 2, tx, i + 1, 0]]) T.writes([B[0, tx, i + 1, 0]]) B[0, tx, i + 1, 0] = A_local[(i + 1) % 2, 0, 0, 0] * T.float32(2) with T.block(): T.reads([B[1, tx, i, 0]]) T.writes([C[tx, i, 15]]) C[tx, i, 15] = B[1, tx, i, 0] + T.float32(1) with T.block(): T.reads([A_local[1, tx, 15, 1:16], B[0:2, tx, 15, 0]]) T.writes([B[0:2, tx, 15, 0], C[tx, 15, 0:16]]) with T.block(): T.reads([A_local[1, tx, 15, 1:16], B[0:2, tx, 15, 0]]) T.writes([B[0:2, tx, 15, 0], C[tx, 15, 0:15]]) for j in T.serial(0, 15): with T.block(): T.reads([A_local[1, tx, 15, j + 1]]) T.writes([B[(j + 1) % 2, tx, 15, 0]]) B[(j + 1) % 2, tx, 15, 0] = A_local[1, 0, 0, j + 1] * T.float32(2) with T.block(): T.reads([B[j % 2, tx, 15, 0]]) T.writes([C[tx, 15, j]]) C[tx, 15, j] = B[j % 2, tx, 15, 0] + T.float32(1) with T.block(): T.reads([B[1, tx, 15, 0]]) T.writes([C[tx, 15, 15]]) C[tx, 15, 15] = B[1, tx, 15, 0] + T.float32(1) @T.prim_func def simple_compute_incorrect_reorder( A: T.Buffer[(16, 16), "float32"], D: T.Buffer[(16, 16), "float32"] ): for tx in T.thread_binding(0, 16, thread="threadIdx.x"): for i in T.serial( 0, 16, annotations={ "software_pipeline_stage": [0, 1, 1], "software_pipeline_order": [0, 2, 1], }, ): with T.block(): T.reads(A[tx, i]) T.writes(D[tx, i]) B = T.alloc_buffer((16, 1), dtype="float32", scope="shared") C = T.alloc_buffer((16, 1), dtype="float32", scope="shared") with T.block(): T.reads(A[tx, i]) T.writes(B[tx, 0]) B[tx, 0] = A[tx, i] * T.float32(2) with T.block(): T.reads(B[tx, 0]) T.writes(C[tx, 0]) C[tx, 0] = B[tx, 0] + T.float32(2) with T.block(): T.reads(C[tx, 0]) T.writes(D[tx, i]) D[tx, i] = C[tx, 0] + T.float32(1) @T.prim_func def simple_compute_conflicting_order( A: T.Buffer[(16, 16), "float32"], D: T.Buffer[(16, 16), "float32"] ): for tx in T.thread_binding(0, 16, thread="threadIdx.x"): for i in T.serial( 0, 16, annotations={ "software_pipeline_stage": [0, 1, 1], "software_pipeline_order": [0, 1, 1], }, ): with T.block(): T.reads(A[tx, i]) T.writes(D[tx, i]) B = T.alloc_buffer((16, 1), dtype="float32", scope="shared") C = T.alloc_buffer((16, 1), dtype="float32", scope="shared") with T.block(): T.reads(A[tx, i]) T.writes(B[tx, 0]) B[tx, 0] = A[tx, i] * T.float32(2) with T.block(): T.reads(B[tx, 0]) T.writes(C[tx, 0]) C[tx, 0] = B[tx, 0] + T.float32(2) with T.block(): T.reads(C[tx, 0]) T.writes(D[tx, i]) D[tx, i] = C[tx, 0] + T.float32(1) @T.prim_func def simple_compute_missing_annotation( A: T.Buffer[(16, 16), "float32"], C: T.Buffer[(16, 16), "float32"] ): for tx in T.thread_binding(0, 16, thread="threadIdx.x"): for i in T.serial(0, 16, annotations={"software_pipeline_stage": [0, 1]}): with T.block(): T.reads(A[tx, i]) T.writes(C[tx, i]) B = T.alloc_buffer((16, 1), dtype="float32", scope="shared") with T.block(): T.reads(A[tx, i]) T.writes(B[tx, 0]) B[tx, 0] = A[tx, i] * T.float32(2) with T.block(): T.reads(B[tx, 0]) T.writes(C[tx, i]) C[tx, i] = B[tx, 0] + T.float32(1) def test_simple_compute(): _check(gen_simple_compute(1), transformed_simple_compute) def test_simple_compute_with_other_annotation(): _check(simple_compute_with_other_annotation, transformed_simple_compute_with_other_annotation) def test_trivial_pipeline(): _check(trivial_pipeline, transformed_trivial_pipeline) def test_three_stage_compute(): _check(three_stage_compute, transformed_three_stage_compute) def test_dag_interleaving(): _check(dag_interleaving, transformed_dag_interleaving) def test_nest_pipeline_simple(): _check(nested_pipeline_simple, transformed_nested_pipeline_simple) def test_nest_pipeline_prefetch_inner(): _check(nested_pipeline_prefetch_inner, transformed_nested_pipeline_prefetch_inner) def test_nest_pipeline_interleaving(): _check(nested_pipeline_interleaving, transformed_nested_pipeline_interleaving) def test_nest_pipeline_double_buffer(): _check(nested_pipeline_double_buffer, transformed_nested_pipeline_double_buffer) def test_error_reorder(): _check_error(simple_compute_incorrect_reorder) def test_error_conflicting_order(): _check_error(simple_compute_conflicting_order) def test_error_missing_annotation(): _check_error(simple_compute_missing_annotation) def test_simple_compute_async(): mod = tvm.IRModule.from_expr(gen_simple_compute(1)) sch = tvm.tir.Schedule(mod) _, loop = sch.get_loops(sch.get_block("compute")) sch.annotate(loop, ann_key="software_pipeline_async_stages", ann_val=[0]) mod = tvm.tir.transform.InjectSoftwarePipeline()(sch.mod) @T.prim_func def ref(A: T.Buffer[(16, 16), "float32"], C: T.Buffer[(16, 16), "float32"]): for tx in T.thread_binding(16, thread="threadIdx.x"): with T.block(): T.reads(A[tx, 0:16]) T.writes(C[tx, 0:16]) B = T.alloc_buffer([2, 16, 1], dtype="float32", scope="shared") with T.block(): T.reads(A[tx, 0]) T.writes(B[0, tx, 0]) with T.attr(0, "async_commit_queue_scope", 0): with T.attr(0, "async_scope", 1): B[T.FloorMod(0, 2), tx, 0] = A[tx, 0] * T.float32(2) with T.block(): T.reads(A[tx, 1:16], B[0:2, tx, 0]) T.writes(B[0:2, tx, 0], C[tx, 0:15]) for i in T.serial(15): with T.block(): T.where(i + 1 < 16) T.reads(A[tx, i + 1]) T.writes(B[(i + 1) % 2, tx, 0]) with T.attr(0, "async_commit_queue_scope", 0): with T.attr(0, "async_scope", 1): B[(i + 1) % 2, tx, 0] = A[tx, i + 1] * T.float32(2) with T.block(): T.where(i + 1 - 1 < 16) T.reads(B[(i - 1 + 1) % 2, tx, 0]) T.writes(C[tx, i - 1 + 1]) with T.attr(0, "async_wait_queue_scope", 0): with T.attr(0, "async_wait_inflight_count", 1): C[tx, i - 1 + 1] = B[(i - 1 + 1) % 2, tx, 0] + T.float32(1) with T.block(): T.reads(B[T.FloorMod(15, 2), tx, 0]) T.writes(C[tx, 15]) with T.attr(0, "async_wait_queue_scope", 0): with T.attr(0, "async_wait_inflight_count", 0): C[tx, 15] = B[T.FloorMod(15, 2), tx, 0] + T.float32(1) tvm.ir.assert_structural_equal(mod["main"], ref, True) mod = tvm.IRModule.from_expr(gen_simple_compute(3)) sch = tvm.tir.Schedule(mod) _, loop = sch.get_loops(sch.get_block("compute")) sch.annotate(loop, ann_key="software_pipeline_async_stages", ann_val=[0]) mod = tvm.tir.transform.InjectSoftwarePipeline()(sch.mod) @T.prim_func def ref(A: T.Buffer[(16, 16), "float32"], C: T.Buffer[(16, 16), "float32"]) -> None: for tx in T.thread_binding(16, thread="threadIdx.x"): with T.block(): T.reads(A[tx, 0:16]) T.writes(C[tx, 0:16]) B = T.alloc_buffer([4, 16, 1], dtype="float32", scope="shared") with T.block(): T.reads(A[tx, 0:3]) T.writes(B[0:3, tx, 0]) for i in T.unroll(3): with T.block(): T.where(i < 16) T.reads(A[tx, i]) T.writes(B[i % 4, tx, 0]) T.attr(0, "async_commit_queue_scope", 0) T.attr(0, "async_scope", 1) B[i % 4, tx, 0] = A[tx, i] * T.float32(2) with T.block(): T.reads(A[tx, 3:16], B[0:4, tx, 0]) T.writes(B[0:4, tx, 0], C[tx, 0:13]) for i in T.serial(13): with T.block(): T.where(i + 3 < 16) T.reads(A[tx, i + 3]) T.writes(B[(i + 3) % 4, tx, 0]) T.attr(0, "async_commit_queue_scope", 0) T.attr(0, "async_scope", 1) B[(i + 3) % 4, tx, 0] = A[tx, i + 3] * T.float32(2) with T.block(): T.where(i + 3 - 3 < 16) T.reads(B[0:4, tx, 0]) T.writes(C[tx, i - 3 + 3]) with T.attr(0, "async_wait_queue_scope", 0): with T.attr(0, "async_wait_inflight_count", 3): C[tx, i - 3 + 3] = B[(i - 3 + 3) % 4, tx, 0] + T.float32(1) with T.block(): T.reads(B[0:4, tx, 0]) T.writes(C[tx, 13:16]) for i in T.unroll(3): with T.block(): T.where(i + 16 - 3 < 16) T.reads(B[0:4, tx, 0]) T.writes(C[tx, i - 3 + 16]) with T.attr(0, "async_wait_queue_scope", 0): with T.attr(0, "async_wait_inflight_count", 2 - i): C[tx, i - 3 + 16] = B[(i - 3 + 16) % 4, tx, 0] + T.float32(1) tvm.ir.assert_structural_equal(mod["main"], ref, True) def test_async_producer_interleaving(): @T.prim_func def simple_compute( A: T.Buffer[(16, 16), "float32"], B: T.Buffer[(16, 16), "float32"], C: T.Buffer[(16, 16), "float32"], ): for tx in T.thread_binding(0, 16, thread="threadIdx.x"): for i in range(16): with T.block("compute"): T.reads(A[tx, i]) T.writes(C[tx, i]) A_shared = T.alloc_buffer((16, 1), dtype="float32", scope="shared") B_shared = T.alloc_buffer((16, 1), dtype="float32", scope="shared") with T.block(): T.reads(A[tx, i]) T.writes(A_shared[tx, 0]) A_shared[tx, 0] = A[tx, i] with T.block(): T.reads(B[tx, i]) T.writes(B_shared[tx, 0]) B_shared[tx, 0] = B[tx, i] with T.block(): T.reads(A_shared[tx, 0], B_shared[tx, 0]) T.writes(C[tx, i]) C[tx, i] = A_shared[tx, 0] + B_shared[tx, 0] mod = tvm.IRModule.from_expr(simple_compute) sch = tvm.tir.Schedule(mod) _, loop = sch.get_loops(sch.get_block("compute")) sch.annotate(loop, ann_key="software_pipeline_stage", ann_val=[0, 0, 3]) sch.annotate(loop, ann_key="software_pipeline_order", ann_val=[0, 2, 1]) sch.annotate(loop, ann_key="software_pipeline_async_stages", ann_val=[0]) mod = tvm.tir.transform.InjectSoftwarePipeline()(sch.mod) @T.prim_func def ref( A: T.Buffer[(16, 16), "float32"], B: T.Buffer[(16, 16), "float32"], C: T.Buffer[(16, 16), "float32"], ) -> None: for tx in T.thread_binding(16, thread="threadIdx.x"): with T.block(): T.reads(A[tx, 0:16], B[tx, 0:16]) T.writes(C[tx, 0:16]) A_shared = T.alloc_buffer([4, 16, 1], dtype="float32", scope="shared") B_shared = T.alloc_buffer([4, 16, 1], dtype="float32", scope="shared") with T.block(): T.reads(A[tx, 0:3], B[tx, 0:3]) T.writes(A_shared[0:3, tx, 0], B_shared[0:3, tx, 0]) for i in T.unroll(3): with T.block(): T.where(i < 16) T.reads(A[tx, i], B[tx, i]) T.writes(A_shared[i % 4, tx, 0], B_shared[i % 4, tx, 0]) with T.attr(0, "async_commit_queue_scope", 0): with T.attr(0, "async_scope", 1): A_shared[i % 4, tx, 0] = A[tx, i] with T.attr(0, "async_scope", 1): B_shared[i % 4, tx, 0] = B[tx, i] with T.block(): T.reads(A[tx, 3:16], A_shared[0:4, tx, 0], B_shared[0:4, tx, 0], B[tx, 3:16]) T.writes(A_shared[0:4, tx, 0], C[tx, 0:13], B_shared[0:4, tx, 0]) for i in T.serial(13): with T.block(): T.where(i + 3 < 16) T.reads(A[tx, i + 3]) T.writes(A_shared[(i + 3) % 4, tx, 0]) with T.attr(0, "async_commit_queue_scope", 0): with T.attr(0, "async_scope", 1): A_shared[(i + 3) % 4, tx, 0] = A[tx, i + 3] with T.block(): T.where(i + 3 - 3 < 16) T.reads(A_shared[0:4, tx, 0], B_shared[0:4, tx, 0]) T.writes(C[tx, i - 3 + 3]) with T.attr(0, "async_wait_queue_scope", 0): with T.attr(0, "async_wait_inflight_count", 5): C[tx, i - 3 + 3] = ( A_shared[(i - 3 + 3) % 4, tx, 0] + B_shared[(i - 3 + 3) % 4, tx, 0] ) with T.block(): T.where(i + 3 < 16) T.reads(B[tx, i + 3]) T.writes(B_shared[(i + 3) % 4, tx, 0]) with T.attr(0, "async_commit_queue_scope", 0): with T.attr(0, "async_scope", 1): B_shared[(i + 3) % 4, tx, 0] = B[tx, i + 3] with T.block(): T.reads(A_shared[0:4, tx, 0], B_shared[0:4, tx, 0]) T.writes(C[tx, 13:16]) for i in T.unroll(3): with T.block(): T.where(i + 16 - 3 < 16) T.reads(A_shared[0:4, tx, 0], B_shared[0:4, tx, 0]) T.writes(C[tx, i - 3 + 16]) with T.attr(0, "async_wait_queue_scope", 0): with T.attr(0, "async_wait_inflight_count", 2 - i): C[tx, i - 3 + 16] = ( A_shared[(i - 3 + 16) % 4, tx, 0] + B_shared[(i - 3 + 16) % 4, tx, 0] ) tvm.ir.assert_structural_equal(mod["main"], ref, True) def test_three_stage_compute_two_stage_async(): mod = tvm.IRModule.from_expr(three_stage_compute) sch = tvm.tir.Schedule(mod) _, loop = sch.get_loops(sch.get_block("compute")) sch.annotate(loop, ann_key="software_pipeline_async_stages", ann_val=[0, 1]) mod = tvm.tir.transform.InjectSoftwarePipeline()(sch.mod) @T.prim_func def ref(A: T.Buffer[(16, 16), "float32"], D: T.Buffer[(16, 16), "float32"]) -> None: for tx in T.thread_binding(16, thread="threadIdx.x"): with T.block(): T.reads(A[tx, 0:16]) T.writes(D[tx, 0:16]) B = T.alloc_buffer([2, 16, 1], dtype="float32", scope="shared") C = T.alloc_buffer([2, 16, 1], dtype="float32", scope="shared") with T.block(): T.reads(A[tx, 0:2], B[0:2, tx, 0]) T.writes(B[0:2, tx, 0], C[0:2, tx, 0]) for i in T.unroll(2): with T.block(): T.where(i < 16) T.reads(A[tx, i]) T.writes(B[i % 2, tx, 0]) with T.attr(0, "async_commit_queue_scope", 0): with T.attr(0, "async_scope", 1): B[i % 2, tx, 0] = A[tx, i] * T.float32(2) with T.block(): T.where(i == 1 and i - 1 < 16) T.reads(B[(i + 1) % 2, tx, 0]) T.writes(C[(i + 1) % 2, tx, 0]) with T.attr(0, "async_commit_queue_scope", 1): with T.attr(0, "async_wait_queue_scope", 0): with T.attr(0, "async_wait_inflight_count", 1): with T.attr(0, "async_scope", 1): C[(i - 1) % 2, tx, 0] = B[ (i - 1) % 2, tx, 0 ] + T.float32(2) with T.block(): T.reads(A[tx, 2:16], B[0:2, tx, 0], C[0:2, tx, 0]) T.writes(B[0:2, tx, 0], C[0:2, tx, 0], D[tx, 0:14]) for i in T.serial(14): with T.block(): T.where(i + 2 < 16) T.reads(A[tx, i + 2]) T.writes(B[i % 2, tx, 0]) with T.attr(0, "async_commit_queue_scope", 0): with T.attr(0, "async_scope", 1): B[(i + 2) % 2, tx, 0] = A[tx, i + 2] * T.float32(2) with T.block(): T.where(i + 2 - 1 < 16) T.reads(B[(i + 1) % 2, tx, 0]) T.writes(C[(i + 1) % 2, tx, 0]) with T.attr(0, "async_commit_queue_scope", 1): with T.attr(0, "async_wait_queue_scope", 0): with T.attr(0, "async_wait_inflight_count", 1): with T.attr(0, "async_scope", 1): C[(i - 1 + 2) % 2, tx, 0] = B[ (i - 1 + 2) % 2, tx, 0 ] + T.float32(2) with T.block(): T.where(i + 2 - 2 < 16) T.reads(C[0:2, tx, 0]) T.writes(D[tx, i - 2 + 2]) with T.attr(0, "async_wait_queue_scope", 1): with T.attr(0, "async_wait_inflight_count", 1): D[tx, i - 2 + 2] = C[(i - 2 + 2) % 2, tx, 0] + T.float32(1) with T.block(): T.reads(B[0:2, tx, 0], C[0:2, tx, 0]) T.writes(C[0:2, tx, 0], D[tx, 14:16]) for i in T.unroll(2): with T.block(): T.where(i + 16 - 1 < 16) T.reads(B[(i + 1) % 2, tx, 0]) T.writes(C[(i + 1) % 2, tx, 0]) with T.attr(0, "async_commit_queue_scope", 1): with T.attr(0, "async_wait_queue_scope", 0): with T.attr(0, "async_wait_inflight_count", 0 - i): with T.attr(0, "async_scope", 1): C[(i - 1 + 16) % 2, tx, 0] = B[ (i - 1 + 16) % 2, tx, 0 ] + T.float32(2) with T.block(): T.where(i + 16 - 2 < 16) T.reads(C[0:2, tx, 0]) T.writes(D[tx, i - 2 + 16]) with T.attr(0, "async_wait_queue_scope", 1): with T.attr( 0, "async_wait_inflight_count", T.if_then_else(i + 16 - 1 < 16, 1, 0, dtype="int32"), ): D[tx, i - 2 + 16] = C[(i - 2 + 16) % 2, tx, 0] + T.float32(1) tvm.ir.assert_structural_equal(mod["main"], ref, True) N = K = M = 4096 def get_mma_schedule(): i_factors, j_factors, k_factors = [1, 32, 1, 4, 2], [16, 2, 4, 1, 2], [128, 2, 1] def index_map(i, j): return ( i // 16, j // 16, *shared_16x16_to_ldmatrix_32x8_layout(i % 16, j % 16), ) workload = te.create_prim_func( te_workload.matmul(N, M, K, in_dtype="float16", out_dtype="float32") ) return mma_schedule( workload, 16, "float16", False, i_factors, j_factors, k_factors, index_map, index_map, index_map, LDMATRIX_16x16_A_DYN_INTRIN, LDMATRIX_16x16_B_DYN_INTRIN, MMA_f16f16f32_INTRIN, MMA_fill_16x16_f32_INTRIN, MMA_store_16x16_f32_global_INTRIN, "shared.dyn", ) def build_and_run(sch): if tvm.testing.is_ampere_or_newer(): with tvm.transform.PassContext(config={"tir.use_async_copy": 1}): f = tvm.build(sch.mod["main"], target="cuda") dev = tvm.device("cuda", 0) a_np = np.random.uniform(size=(N, K)).astype("float16") b_np = np.random.uniform(size=(K, M)).astype("float16") c_np = np.dot(a_np.astype("float32"), b_np.astype("float32")) a = tvm.nd.array(a_np, dev) b = tvm.nd.array(b_np, dev) c = tvm.nd.array(np.zeros((N, M), dtype="float32"), dev) f(a, b, c) tvm.testing.assert_allclose(c.numpy(), c_np, rtol=1e-3) @tvm.testing.requires_cuda def test_async_pipelined_mma_gemm_simple(): sch = get_mma_schedule() k0 = sch.get_loops(sch.get_block("C_o_update"))[3] sch.annotate(k0, ann_key="software_pipeline_stage", ann_val=[0, 0, 3]) sch.annotate(k0, ann_key="software_pipeline_order", ann_val=[0, 1, 2]) sch.annotate(k0, ann_key="software_pipeline_async_stages", ann_val=[0]) seq = tvm.transform.Sequential( [ tvm.tir.transform.PlanAndUpdateBufferAllocationLocation(), tvm.tir.transform.ConvertBlocksToOpaque(), tvm.tir.transform.UnifyThreadBinding(), tvm.tir.transform.LowerMatchBuffer(), tvm.tir.transform.InjectSoftwarePipeline(), ] ) mod = seq(sch.mod) pipeline = mod["main"].body.block.body.body.body.body.body.block.body[1].block.body prologue, body, epilogue = pipeline commit_queue_scope = prologue.block.body.body.block.body assert len(commit_queue_scope.body) == 2 assert commit_queue_scope.value == 0 commit_queue_scope = body.block.body.body[0].block.body assert len(commit_queue_scope.body) == 2 assert commit_queue_scope.value == 0 assert body.block.body.body[1].block.body.body.attr_key == "async_wait_inflight_count" assert body.block.body.body[1].block.body.body.value == 3 assert epilogue.block.body.body.block.body.body.attr_key == "async_wait_inflight_count" assert str(epilogue.block.body.body.block.body.body.value) == "(2 - i2_0_0: int32)" build_and_run(sch) @tvm.testing.requires_cuda def test_async_nested_pipeline_mma_gemm_ideal_annotation(): sch = get_mma_schedule() k0 = sch.get_loops(sch.get_block("C_o_update"))[3] k1 = sch.get_loops(sch.get_block("C_o_update"))[4] sch.annotate(k0, ann_key="software_pipeline_stage", ann_val=[0, 0, 2, 3, 3]) sch.annotate(k0, ann_key="software_pipeline_order", ann_val=[0, 1, 3, 2, 4]) sch.annotate(k0, ann_key="software_pipeline_async_stages", ann_val=[0]) sch.annotate(k1, ann_key="software_pipeline_stage", ann_val=[0, 0, 1]) sch.annotate(k1, ann_key="software_pipeline_order", ann_val=[0, 1, 2]) seq = tvm.transform.Sequential( [ tvm.tir.transform.PlanAndUpdateBufferAllocationLocation(), tvm.tir.transform.ConvertBlocksToOpaque(), tvm.tir.transform.UnifyThreadBinding(), tvm.tir.transform.LowerMatchBuffer(), tvm.tir.transform.InjectSoftwarePipeline(), ] ) mod = seq(sch.mod) pipeline = mod["main"].body.block.body.body.body.body.body.block.body[1].block.body prologue, body, epilogue = pipeline commit_queue_scope = prologue.block.body.body[0].block.body assert len(commit_queue_scope.body) == 2 assert commit_queue_scope.value == 0 assert prologue.block.body.body[1].block.body.body.attr_key == "async_wait_inflight_count" assert prologue.block.body.body[1].block.body.body.value == 2 commit_queue_scope = body.block.body.body[0].block.body assert len(commit_queue_scope.body) == 2 assert commit_queue_scope.value == 0 assert body.block.body.body[1].block.body.body.attr_key == "async_wait_inflight_count" assert body.block.body.body[1].block.body.body.value == 2 assert str(epilogue.block.body.body[0].block.body.body.value) == "(1 - i2_0_0: int32)" build_and_run(sch) if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_transform_inject_virtual_thread.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm import tvm.testing from tvm import te from tvm.script import tir as T vthread_name = tvm.testing.parameter("vthread", "cthread") def test_vthread(vthread_name): dtype = "int64" n = 100 m = 4 nthread = 2 def get_vthread(name): tx = te.thread_axis(name) ty = te.thread_axis(name) ib = tvm.tir.ir_builder.create() A = ib.pointer("float32", name="A") C = ib.pointer("float32", name="C") with ib.for_range(0, n) as i: ib.scope_attr(tx, "virtual_thread", nthread) ib.scope_attr(ty, "virtual_thread", nthread) B = ib.allocate("float32", m, name="B", scope="shared") B[i] = A[i * nthread + tx] bbuffer = B.asobject() ib.emit( tvm.tir.call_extern( "int32", "Run", bbuffer.access_ptr("r"), tvm.tir.call_intrin("int32", "tir.tvm_context_id"), ) ) C[i * nthread + tx] = B[i] + 1 return ib.get() if vthread_name == "vthread": B_expected_alloc = m * nthread elif vthread_name == "cthread": B_expected_alloc = m * nthread * nthread stmt = tvm.tir.transform.InjectVirtualThread()( tvm.IRModule.from_expr(tvm.tir.PrimFunc([], get_vthread(vthread_name))) )["main"] assert list(stmt.body.body.extents) == [B_expected_alloc] def test_vthread_extern(vthread_name): dtype = "int64" n = 100 m = 4 nthread = 2 def get_vthread(name): tx = te.thread_axis(name) ty = te.thread_axis(name) ib = tvm.tir.ir_builder.create() with ib.for_range(0, n) as i: ib.scope_attr(tx, "virtual_thread", nthread) ib.scope_attr(ty, "virtual_thread", nthread) A = ib.allocate("float32", m, name="A", scope="shared") B = ib.allocate("float32", m, name="B", scope="shared") C = ib.allocate("float32", m, name="C", scope="shared") abuffer = A.asobject() bbuffer = B.asobject() cbuffer = C.asobject() A[tx] = tx + 1.0 B[ty] = ty + 1.0 ib.emit( tvm.tir.call_extern( "int32", "Run", abuffer.access_ptr("r"), bbuffer.access_ptr("r"), cbuffer.access_ptr("rw"), ) ) return ib.get() if vthread_name == "vthread": A_expected_alloc = m * nthread elif vthread_name == "cthread": A_expected_alloc = m * nthread * nthread C_expected_alloc = m * nthread * nthread stmt = tvm.tir.transform.InjectVirtualThread()( tvm.IRModule.from_expr(tvm.tir.PrimFunc([], get_vthread(vthread_name))) )["main"] assert list(stmt.body.body.extents) == [A_expected_alloc] assert list(stmt.body.body.body.body.extents) == [C_expected_alloc] def test_vthread_if_then_else(): nthread = 2 tx = te.thread_axis("vthread") ib = tvm.tir.ir_builder.create() A = ib.pointer("float32", name="A") with ib.for_range(0, 100) as i: ib.scope_attr(tx, "virtual_thread", nthread) B = ib.allocate("float32", 128, name="B", scope="shared") with ib.if_scope(i == 0): B[i] = A[i * nthread + tx] with ib.else_scope(): B[i] = A[i * nthread + tx] + 1 with ib.if_scope(i == 0): B[i] = A[i * nthread + tx] + 2 stmt = ib.get() stmt = tvm.tir.transform.InjectVirtualThread()( tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) )["main"] assert stmt.body.body.body[0].else_case != None assert stmt.body.body.body[1].else_case == None def test_vthread_simplified(): """Indices resulting from vthread injection should simplified This ensures that downstream passes that check for Ramp nodes do not need to each simplify the indices. """ @T.prim_func def before_func(): vthread = T.env_thread("vthread") T.launch_thread(vthread, 4) B_data = T.allocate([4], "int32", scope="shared") B = T.buffer_decl([4], "int32", data=B_data, scope="shared") B[0:4] = T.broadcast(vthread, 4) @T.prim_func def expected_func(): B_data = T.allocate([16], "int32", scope="shared") B = T.buffer_decl([16], "int32", data=B_data, scope="shared") # The indices for B should each be a single Ramp node, and # should not be the sum of a Ramp and Broadcast node. B[T.Mul(0, 4) : T.Mul(0, 4) + 4] = T.broadcast(0, 4) B[T.Mul(1, 4) : T.Mul(1, 4) + 4] = T.broadcast(1, 4) B[T.Mul(2, 4) : T.Mul(2, 4) + 4] = T.broadcast(2, 4) B[T.Mul(3, 4) : T.Mul(3, 4) + 4] = T.broadcast(3, 4) before_mod = tvm.IRModule.from_expr(before_func) after_mod = tvm.tir.transform.InjectVirtualThread()(before_mod) after_func = after_mod["main"] tvm.ir.assert_structural_equal(after_func, expected_func) def test_vthread_vectorized(): """Use of vthread is compatible with vector allocations""" @T.prim_func def before_func(): vthread = T.env_thread("vthread") T.launch_thread(vthread, 4) B_data = T.allocate([4], "int32", "shared") B = T.buffer_decl([4], "int32", data=B_data, scope="shared") B[0:4] = T.broadcast(vthread, 4) @T.prim_func def expected_func(): B_data = T.allocate([4], "int32x4", "shared") B = T.buffer_decl([4], "int32x4", data=B_data, scope="shared") B[T.Mul(0, 4) / 4] = T.broadcast(0, 4) B[T.Mul(1, 4) / 4] = T.broadcast(1, 4) B[T.Mul(2, 4) / 4] = T.broadcast(2, 4) B[T.Mul(3, 4) / 4] = T.broadcast(3, 4) before_mod = tvm.IRModule.from_expr(before_func) intermediate_mod = tvm.tir.transform.InjectVirtualThread()(before_mod) after_mod = tvm.tir.transform.StorageRewrite()(intermediate_mod) after_func = after_mod["main"] tvm.ir.assert_structural_equal(after_func, expected_func) if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_transform_instrument_bound_checkers.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import pytest import tvm import tvm.testing from tvm import te import numpy as np def collect_visit(stmt, f): ret = [] tvm.tir.stmt_functor.post_order_visit(stmt, lambda x: ret.append(f(x))) return ret @tvm.testing.requires_llvm @pytest.mark.xfail def test_out_of_bounds_llvm(index_a, index_b): n = te.size_var("n") A = te.placeholder((n,), name="A") B = te.placeholder((n,), name="B") C = te.compute(A.shape, lambda i: A[i + index_a] + B[i + index_b], name="C") s = te.create_schedule(C.op) tgt = "llvm" tgt_host = "llvm" stmt = tvm.lower(s, [A, B, C], simple_mode=True) print(stmt) tgt = tvm.target.Target(tgt, tgt_host) fadd = tvm.build(s, [A, B, C], target=tgt, name="myadd") dev = tvm.device(tgt.kind.name, 0) a = tvm.nd.array(np.random.uniform(size=1024).astype(A.dtype), dev) b = tvm.nd.array(np.random.uniform(size=1024).astype(B.dtype), dev) c = tvm.nd.array(np.zeros(1024, dtype=C.dtype), dev) fadd(a, b, c) @tvm.testing.requires_llvm def test_in_bounds_llvm(): n = te.size_var("n") A = te.placeholder((n,), name="A") B = te.placeholder((n,), name="B") C = te.compute(A.shape, lambda i: A[i] + B[i], name="C") s = te.create_schedule(C.op) tgt = "llvm" tgt_host = "llvm" stmt = tvm.lower(s, [A, B, C], simple_mode=True) tgt = tvm.target.Target(tgt, tgt_host) fadd = tvm.build(s, [A, B, C], target=tgt, name="myadd") dev = tvm.device(tgt.kind.name, 0) a = tvm.nd.array(np.random.uniform(size=1024).astype(A.dtype), dev) b = tvm.nd.array(np.random.uniform(size=1024).astype(B.dtype), dev) c = tvm.nd.array(np.zeros(1024, dtype=C.dtype), dev) fadd(a, b, c) @tvm.testing.requires_llvm @pytest.mark.xfail def test_out_of_bounds_vectorize_llvm(nn, index_a, index_b): n = tvm.runtime.convert(nn) a = te.placeholder((n), name="a") b = te.placeholder((n), name="b") c = te.compute((n,), lambda i: a[i + index_a] + b[i + index_b], name="c") s = te.create_schedule(c.op) xo, xi = s[c].split(c.op.axis[0], factor=8) s[c].parallel(xo) s[c].vectorize(xi) tgt = "llvm" tgt_host = "llvm" stmt = tvm.lower(s, [a, b, c], simple_mode=True) tgt = tvm.target.Target(tgt, tgt_host) f = tvm.build(s, [a, b, c], target=tgt, name="myaddvec") dev = tvm.cpu(0) n = nn a = tvm.nd.array(np.random.uniform(size=(n)).astype(a.dtype), dev) b = tvm.nd.array(np.random.uniform(size=(n)).astype(a.dtype), dev) c = tvm.nd.array(np.zeros(n, dtype=c.dtype), dev) f(a, b, c) @tvm.testing.requires_llvm def test_in_bounds_vectorize_llvm(): n = 512 lanes = 2 A = te.placeholder((n,), name="A", dtype="float32x%d" % lanes) B = te.compute((n,), lambda i: A[i], name="B") C = te.compute((n,), lambda i: B[i] + tvm.tir.const(1, A.dtype), name="C") s = te.create_schedule(C.op) xo, xi = s[C].split(C.op.axis[0], nparts=2) _, xi = s[C].split(xi, factor=2) s[C].parallel(xo) s[C].vectorize(xi) s[B].compute_at(s[C], xo) xo, xi = s[B].split(B.op.axis[0], factor=2) s[B].vectorize(xi) # build and invoke the kernel. lowered_func = tvm.lower(s, [A, C], "llvm", simple_mode=False) f = tvm.build(s, [A, C], "llvm") dev = tvm.cpu(0) # launch the kernel. a = tvm.nd.empty((n,), A.dtype).copyfrom( np.random.uniform(size=[n] + ([] if lanes == 1 else [lanes])) ) c = tvm.nd.empty((n,), C.dtype, dev) f(a, c) tvm.testing.assert_allclose(c.numpy(), a.numpy() + 1) @tvm.testing.requires_llvm def test_in_bounds_loop_partition_basic_llvm(): n = te.size_var("n") A = te.placeholder((n,), name="A") B = te.placeholder((n,), name="B") T = te.compute((n,), lambda i: A[i] + B[i]) s = te.create_schedule(T.op) xo, xi = s[T].split(T.op.axis[0], factor=4) lowered_func = tvm.lower(s, [A, B, T], "llvm", simple_mode=False) dev = tvm.cpu(0) f = tvm.build(s, [A, B, T], "llvm") a = tvm.nd.array(np.random.uniform(size=(32,)).astype(A.dtype), dev) b = tvm.nd.array(np.random.uniform(size=(32,)).astype(B.dtype), dev) t = tvm.nd.empty((32,), T.dtype, dev) f(a, b, t) @tvm.testing.requires_llvm @pytest.mark.xfail def test_out_of_bounds_loop_partition_basic_llvm(index_a, index_b): n = te.size_var("n") A = te.placeholder((n,), name="A") B = te.placeholder((n,), name="B") T = te.compute((n,), lambda i: A[i + index_a] + B[i + index_b]) s = te.create_schedule(T.op) xo, xi = s[T].split(T.op.axis[0], factor=4) lowered_func = tvm.lower(s, [A, B, T], "llvm", simple_mode=False) dev = tvm.cpu(0) f = tvm.build(s, [A, B, T], "llvm") a = tvm.nd.array(np.random.uniform(size=(32,)).astype(A.dtype), dev) b = tvm.nd.array(np.random.uniform(size=(32,)).astype(B.dtype), dev) t = tvm.nd.empty((32,), T.dtype, dev) f(a, b, t) def test_in_bounds_const_loop_partition_ir(): def check_attr_stmt(x): if ( isinstance(x, tvm.tir.AttrStmt) and x.attr_key == "buffer_bound" and tvm.ir.structural_equal(x.value.args, [n]) ): return True return False def check_branch_stmt(x): if isinstance(x, tvm.tir.IfThenElse): return True return False def assert_bound_instrumentation(stmt, f, nums): count = 0 for i in collect_visit(stmt, f): if i is True: count = count + 1 assert count == nums def collect_branch_stmt(x): if isinstance(x, tvm.tir.IfThenElse): branch_collector.append(x) n = 21 A = te.placeholder((n,), name="A") B = te.placeholder((n,), name="B") T = te.compute((n,), lambda i: A[i] + B[i]) s = te.create_schedule(T.op) xo, xi = s[T].split(T.op.axis[0], factor=4) with tvm.transform.PassContext( config={ "tir.instrument_bound_checkers": True, "tir.LoopPartition": {"partition_const_loop": True}, } ): mod = tvm.driver.lower(s, [A, B, T], name="main") stmt = mod["main"].body # after instrumentation assert_bound_instrumentation(stmt, check_attr_stmt, 2 * 3) assert_bound_instrumentation(stmt, check_branch_stmt, 2) branch_collector = list() collect_visit(stmt, collect_branch_stmt) assert len(branch_collector) == 2 @tvm.testing.requires_llvm def test_in_bounds_const_loop_partition_llvm(): with tvm.transform.PassContext( config={ "tir.instrument_bound_checkers": True, "tir.LoopPartition": {"partition_const_loop": True}, } ): n = 21 A = te.placeholder((n,), name="A") B = te.placeholder((n,), name="B") T = te.compute((n,), lambda i: A[i] + B[i]) s = te.create_schedule(T.op) xo, xi = s[T].split(T.op.axis[0], factor=4) lowered_func = tvm.lower(s, [A, B, T], "llvm", simple_mode=False) dev = tvm.cpu(0) f = tvm.build(s, [A, B, T], "llvm") a = tvm.nd.array(np.random.uniform(size=(n,)).astype(A.dtype), dev) b = tvm.nd.array(np.random.uniform(size=(n,)).astype(B.dtype), dev) t = tvm.nd.empty((n,), T.dtype, dev) f(a, b, t) @tvm.testing.requires_llvm @pytest.mark.xfail def test_out_of_bounds_const_loop_partition_llvm(index_a, index_b): with tvm.transform.PassContext( config={ "tir.instrument_bound_checkers": True, "tir.LoopPartition": {"partition_const_loop": True}, } ): n = 21 A = te.placeholder((n,), name="A") B = te.placeholder((n,), name="B") T = te.compute((n,), lambda i: A[i + index_a] + B[i + index_b]) s = te.create_schedule(T.op) xo, xi = s[T].split(T.op.axis[0], factor=4) lowered_func = tvm.lower(s, [A, B, T], "llvm", simple_mode=False) dev = tvm.cpu(0) f = tvm.build(s, [A, B, T], "llvm") a = tvm.nd.array(np.random.uniform(size=(n,)).astype(A.dtype), dev) b = tvm.nd.array(np.random.uniform(size=(n,)).astype(B.dtype), dev) t = tvm.nd.empty((n,), T.dtype, dev) f(a, b, t) @tvm.testing.requires_llvm def test_in_bounds_conv_llvm(loop_tiling=False): HSTR = WSTR = 1 in_channel = 128 kernel_height = kernel_width = 3 out_channel = 64 batch_size = 1 in_height = in_width = 64 out_height = out_width = in_height - kernel_height + 1 data = te.placeholder((batch_size, in_channel, in_height, in_width), name="data") kernel = te.placeholder((kernel_height, kernel_width, in_channel, out_channel), name="kernel") ic = te.reduce_axis((0, in_channel), name="ic") kh = te.reduce_axis((0, kernel_height), name="kh") kw = te.reduce_axis((0, kernel_width), name="kw") conv = te.compute( (batch_size, out_channel, out_height, out_width), lambda n, oc, oh, ow: te.sum( data[n, ic, oh * HSTR + kh, ow * WSTR + kw] * kernel[kh, kw, ic, oc], axis=[ic, kh, kw] ), name="conv2d", ) s = te.create_schedule(conv.op) n, oc, oh, ow = conv.op.axis if loop_tiling: oho, owo, ohi, owi = s[conv].tile(oh, ow, 16, 16) lowered_func = tvm.lower(s, [data, kernel, conv], simple_mode=True) dev = tvm.cpu(0) f = tvm.build(s, [data, kernel, conv], "llvm") data_input = tvm.nd.array( np.random.uniform(size=(batch_size, in_channel, in_height, in_width)).astype("float32"), dev ) kernel_input = tvm.nd.array( np.random.uniform(size=(kernel_height, kernel_width, in_channel, out_channel)).astype( "float32" ), dev, ) conv_out = tvm.nd.empty((batch_size, out_channel, out_height, out_width), "float32", dev) f(data_input, kernel_input, conv_out) @tvm.testing.requires_llvm @pytest.mark.xfail def test_out_of_bounds_conv_llvm(data_offsets, kernel_offsets, loop_tiling=False): HSTR = WSTR = 1 in_channel = 128 kernel_height = kernel_width = 3 out_channel = 64 batch_size = 1 in_height = in_width = 64 out_height = out_width = in_height - kernel_height + 1 data = te.placeholder((batch_size, in_channel, in_height, in_width), name="data") kernel = te.placeholder((kernel_height, kernel_width, in_channel, out_channel), name="kernel") ic = te.reduce_axis((0, in_channel), name="ic") kh = te.reduce_axis((0, kernel_height), name="kh") kw = te.reduce_axis((0, kernel_width), name="kw") conv = te.compute( (batch_size, out_channel, out_height, out_width), lambda n, oc, oh, ow: te.sum( data[ n + data_offsets[0], ic + data_offsets[1], oh * HSTR + kh + data_offsets[2], ow * WSTR + kw + data_offsets[3], ] * kernel[ kh + kernel_offsets[0], kw + kernel_offsets[1], ic + kernel_offsets[2], oc + kernel_offsets[3], ], axis=[ic, kh, kw], ), name="conv2d", ) s = te.create_schedule(conv.op) n, oc, oh, ow = conv.op.axis if loop_tiling: oho, owo, ohi, owi = s[conv].tile(oh, ow, 16, 16) lowered_func = tvm.lower(s, [data, kernel, conv], simple_mode=True) dev = tvm.cpu(0) f = tvm.build(s, [data, kernel, conv], "llvm") data_input = tvm.nd.array( np.random.uniform(size=(batch_size, in_channel, in_height, in_width)).astype("float32"), dev ) kernel_input = tvm.nd.array( np.random.uniform(size=(kernel_height, kernel_width, in_channel, out_channel)).astype( "float32" ), dev, ) conv_out = tvm.nd.empty((batch_size, out_channel, out_height, out_width), "float32", dev) f(data_input, kernel_input, conv_out) @tvm.testing.requires_llvm def test_in_bounds_tensors_with_same_shapes1D_llvm(): n = te.size_var("n") k = te.size_var("k") m = te.size_var("m") A = te.placeholder((n,), name="A") B = te.placeholder((k,), name="B") T = te.compute((m,), lambda i: A[i] * B[i]) s = te.create_schedule(T.op) lowered_func = tvm.lower(s, [A, B, T], "llvm", simple_mode=False) dev = tvm.cpu(0) f = tvm.build(s, [A, B, T], "llvm") a = tvm.nd.array(np.random.uniform(size=(32,)).astype(A.dtype), dev) b = tvm.nd.array(np.random.uniform(size=(32,)).astype(B.dtype), dev) t = tvm.nd.empty((32,), T.dtype, dev) f(a, b, t) @tvm.testing.requires_llvm @pytest.mark.xfail def test_out_of_bounds_tensors_with_diff_shapes1D_llvm(a_shape, b_shape, c_shape): n = te.size_var("n") k = te.size_var("k") m = te.size_var("m") A = te.placeholder((n,), name="A") B = te.placeholder((k,), name="B") T = te.compute((m,), lambda i: A[i] * B[i]) s = te.create_schedule(T.op) lowered_func = tvm.lower(s, [A, B, T], "llvm", simple_mode=False) dev = tvm.cpu(0) f = tvm.build(s, [A, B, T], "llvm") a = tvm.nd.array(np.random.uniform(size=(a_shape,)).astype(A.dtype), dev) b = tvm.nd.array(np.random.uniform(size=(b_shape,)).astype(B.dtype), dev) t = tvm.nd.empty((c_shape,), T.dtype, dev) f(a, b, t) @tvm.testing.requires_llvm def test_in_bounds_tensors_with_same_shapes2D_llvm(): n = te.size_var("n") k = te.size_var("k") m = te.size_var("m") A = te.placeholder((n, n), name="A") B = te.placeholder((k, k), name="B") T = te.compute((m, m), lambda i, j: A[i][j] * B[i][j]) s = te.create_schedule(T.op) lowered_func = tvm.lower(s, [A, B, T], "llvm", simple_mode=False) dev = tvm.cpu(0) f = tvm.build(s, [A, B, T], "llvm") a = tvm.nd.array(np.random.uniform(size=(32, 32)).astype(A.dtype), dev) b = tvm.nd.array(np.random.uniform(size=(32, 32)).astype(B.dtype), dev) t = tvm.nd.empty((32, 32), T.dtype, dev) f(a, b, t) @tvm.testing.requires_llvm @pytest.mark.xfail def test_out_of_bounds_tensors_with_diff_shapes2D_llvm(a_shape, b_shape, c_shape): n = te.size_var("n") k = te.size_var("k") m = te.size_var("m") A = te.placeholder((n, n), name="A") B = te.placeholder((k, k), name="B") T = te.compute((m, m), lambda i, j: A[i][j] * B[i][j]) s = te.create_schedule(T.op) lowered_func = tvm.lower(s, [A, B, T], "llvm", simple_mode=False) dev = tvm.cpu(0) f = tvm.build(s, [A, B, T], "llvm") a = tvm.nd.array(np.random.uniform(size=(a_shape[0], a_shape[1])).astype(A.dtype), dev) b = tvm.nd.array(np.random.uniform(size=(b_shape[0], b_shape[1])).astype(B.dtype), dev) t = tvm.nd.empty((c_shape[0], c_shape[1]), T.dtype, dev) f(a, b, t) @tvm.testing.requires_llvm def test_in_bounds_tensors_with_same_shapes3D_llvm(): n = te.size_var("n") k = te.size_var("k") m = te.size_var("m") A = te.placeholder((n, n, n), name="A") B = te.placeholder((k, k, k), name="B") T = te.compute((m, m, m), lambda i, j, p: A[i][j][p] * B[i][j][p]) s = te.create_schedule(T.op) lowered_func = tvm.lower(s, [A, B, T], "llvm", simple_mode=False) dev = tvm.cpu(0) f = tvm.build(s, [A, B, T], "llvm") a = tvm.nd.array(np.random.uniform(size=(32, 32, 32)).astype(A.dtype), dev) b = tvm.nd.array(np.random.uniform(size=(32, 32, 32)).astype(B.dtype), dev) t = tvm.nd.empty((32, 32, 32), T.dtype, dev) f(a, b, t) @tvm.testing.requires_llvm @pytest.mark.xfail def test_out_of_bounds_tensors_with_diff_shapes3D_llvm(a_shape, b_shape, c_shape): n = te.size_var("n") k = te.size_var("k") m = te.size_var("m") A = te.placeholder((n, n, n), name="A") B = te.placeholder((k, k, k), name="B") T = te.compute((m, m, m), lambda i, j, p: A[i][j][p] * B[i][j][p]) s = te.create_schedule(T.op) lowered_func = tvm.lower(s, [A, B, T], "llvm", simple_mode=False) dev = tvm.cpu(0) f = tvm.build(s, [A, B, T], "llvm") a = tvm.nd.array( np.random.uniform(size=(a_shape[0], a_shape[1], c_shape[2])).astype(A.dtype), dev ) b = tvm.nd.array( np.random.uniform(size=(b_shape[0], b_shape[1], b_shape[2])).astype(B.dtype), dev ) t = tvm.nd.empty((c_shape[0], c_shape[1], c_shape[2]), T.dtype, dev) f(a, b, t) @tvm.testing.requires_llvm @pytest.mark.xfail def test_out_of_bounds_tensors_with_zero_shape_op_with_not_zero_shape_llvm(): n = 64 A = te.placeholder((n,), name="A") scale = te.placeholder((), name="scale") k = te.reduce_axis((0, n), name="k") C = te.compute((), lambda: te.sum(A[k + k + k] * scale, axis=k), name="C") D = te.compute((), lambda: C + 1) s = te.create_schedule(D.op) stmt = tvm.lower(s, [A, scale, D], simple_mode=True) # build and invoke the kernel. f = tvm.build(s, [A, scale, D], "llvm") dev = tvm.cpu(0) # launch the kernel. a = tvm.nd.array(np.random.randint(0, 2, size=(n,)).astype(A.dtype), dev) sc = tvm.nd.array(np.random.randint(0, 2, size=()).astype(scale.dtype), dev) d = tvm.nd.empty((), D.dtype, dev) f(a, sc, d) d_np = np.sum(a.numpy()) * sc.numpy() + 1 tvm.testing.assert_allclose(d.numpy(), d_np) if __name__ == "__main__": with tvm.transform.PassContext( config={ "tir.instrument_bound_checkers": True, } ): # zero scale test_out_of_bounds_tensors_with_zero_shape_op_with_not_zero_shape_llvm() # in bound test_in_bounds_llvm() # upper bound test_out_of_bounds_llvm(1, 0) test_out_of_bounds_llvm(0, 1) test_out_of_bounds_llvm(1, 1) test_out_of_bounds_llvm(10000, 0) test_out_of_bounds_llvm(0, 10000) test_out_of_bounds_llvm(10000, 10000) # lower bound test_out_of_bounds_llvm(-1, 0) test_out_of_bounds_llvm(0, -1) test_out_of_bounds_llvm(-1, -1) test_out_of_bounds_llvm(-10000, 0) test_out_of_bounds_llvm(0, -10000) test_out_of_bounds_llvm(-10000, -10000) # vectorize in bound test_in_bounds_vectorize_llvm() # vectorization upper bound test_out_of_bounds_vectorize_llvm(1024, 1000, 0) test_out_of_bounds_vectorize_llvm(1024, 0, 10000) # vectorization lower bound test_out_of_bounds_vectorize_llvm(1024, -1000, 0) test_out_of_bounds_vectorize_llvm(1024, 0, -10000) test_in_bounds_const_loop_partition_llvm() test_out_of_bounds_const_loop_partition_llvm(1, 0) test_out_of_bounds_const_loop_partition_llvm(0, 1) test_out_of_bounds_const_loop_partition_llvm(-1, 0) test_out_of_bounds_const_loop_partition_llvm(0, -1) test_in_bounds_loop_partition_basic_llvm() test_out_of_bounds_loop_partition_basic_llvm(32, 0) test_out_of_bounds_loop_partition_basic_llvm(0, 32) test_out_of_bounds_loop_partition_basic_llvm(-32, 0) test_out_of_bounds_loop_partition_basic_llvm(0, -32) # conv test_in_bounds_conv_llvm() test_out_of_bounds_conv_llvm([1, 0, 0, 0], [0, 0, 0, 0]) test_out_of_bounds_conv_llvm([0, 1, 0, 0], [0, 0, 0, 0]) test_out_of_bounds_conv_llvm([0, 0, 1, 0], [0, 0, 0, 0]) test_out_of_bounds_conv_llvm([0, 0, 0, 1], [0, 0, 0, 0]) test_out_of_bounds_conv_llvm([-1, 0, 0, 0], [0, 0, 0, 0]) test_out_of_bounds_conv_llvm([0, -1, 0, 0], [0, 0, 0, 0]) test_out_of_bounds_conv_llvm([0, 0, -1, 0], [0, 0, 0, 0]) test_out_of_bounds_conv_llvm([0, 0, 0, -1], [0, 0, 0, 0]) test_out_of_bounds_conv_llvm([0, 0, 0, 0], [1, 0, 0, 0]) test_out_of_bounds_conv_llvm([0, 0, 0, 0], [0, 1, 0, 0]) test_out_of_bounds_conv_llvm([0, 0, 0, 0], [0, 0, 1, 0]) test_out_of_bounds_conv_llvm([0, 0, 0, 0], [0, 0, 0, 1]) test_out_of_bounds_conv_llvm([0, 0, 0, 0], [-1, 0, 0, 0]) test_out_of_bounds_conv_llvm([0, 0, 0, 0], [0, -1, 0, 0]) test_out_of_bounds_conv_llvm([0, 0, 0, 0], [0, 0, -1, 0]) test_out_of_bounds_conv_llvm([0, 0, 0, 0], [0, 0, 0, -1]) # loop tiling test_in_bounds_conv_llvm(True) test_out_of_bounds_conv_llvm([1, 0, 0, 0], [0, 0, 0, 0], True) test_out_of_bounds_conv_llvm([0, 1, 0, 0], [0, 0, 0, 0], True) test_out_of_bounds_conv_llvm([0, 0, 1, 0], [0, 0, 0, 0], True) test_out_of_bounds_conv_llvm([0, 0, 0, 1], [0, 0, 0, 0], True) test_out_of_bounds_conv_llvm([-1, 0, 0, 0], [0, 0, 0, 0], True) test_out_of_bounds_conv_llvm([0, -1, 0, 0], [0, 0, 0, 0], True) test_out_of_bounds_conv_llvm([0, 0, -1, 0], [0, 0, 0, 0], True) test_out_of_bounds_conv_llvm([0, 0, 0, -1], [0, 0, 0, 0], True) test_out_of_bounds_conv_llvm([0, 0, 0, 0], [1, 0, 0, 0], True) test_out_of_bounds_conv_llvm([0, 0, 0, 0], [0, 1, 0, 0], True) test_out_of_bounds_conv_llvm([0, 0, 0, 0], [0, 0, 1, 0], True) test_out_of_bounds_conv_llvm([0, 0, 0, 0], [0, 0, 0, 1], True) test_out_of_bounds_conv_llvm([0, 0, 0, 0], [-1, 0, 0, 0], True) test_out_of_bounds_conv_llvm([0, 0, 0, 0], [0, -1, 0, 0], True) test_out_of_bounds_conv_llvm([0, 0, 0, 0], [0, 0, -1, 0], True) test_out_of_bounds_conv_llvm([0, 0, 0, 0], [0, 0, 0, -1], True) # tensors with diff shapes basic operation such as mul test_out_of_bounds_tensors_with_diff_shapes1D_llvm(32, 64, 64) test_out_of_bounds_tensors_with_diff_shapes1D_llvm(64, 32, 64) test_out_of_bounds_tensors_with_diff_shapes2D_llvm([64, 64], [32, 32], [64, 64]) test_out_of_bounds_tensors_with_diff_shapes2D_llvm([32, 32], [64, 64], [64, 64]) test_out_of_bounds_tensors_with_diff_shapes3D_llvm([64, 64, 64], [32, 32, 32], [64, 64, 64]) test_out_of_bounds_tensors_with_diff_shapes3D_llvm([32, 32, 32], [64, 64, 64], [64, 64, 64]) # check tensors with the same shapes test_in_bounds_tensors_with_same_shapes1D_llvm() test_in_bounds_tensors_with_same_shapes2D_llvm() test_in_bounds_tensors_with_same_shapes3D_llvm() # ir tests test_in_bounds_const_loop_partition_ir()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_transform_ir_utils.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import pytest import tvm from tvm import tir, ir def test_convert_ssa(): dtype = "int32" zero = tir.const(0) nop = tir.Evaluate(zero) var_type = ir.PointerType(ir.PrimType(dtype)) v = tir.Var("i1", var_type) buf = tir.decl_buffer([16], dtype=dtype, data=v) let = tir.LetStmt(v, v, nop) load = tir.Evaluate(tir.BufferLoad(buf, [zero])) seq = tir.SeqStmt([let, let, load]) func = tir.PrimFunc([], seq) mod = tvm.IRModule({"main": func}) mod = tir.transform.InjectVirtualThread()( mod ) # Use pass InjectVirtualThread to invoke ConvertSSA if __name__ == "__main__": pytest.main([__file__])
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_transform_lift_attr_scope.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm from tvm import te def test_coproc_lift(): ib = tvm.tir.ir_builder.create() n = te.var("n") cp = te.thread_axis((0, 1), "cop") value = tvm.tir.StringImm("xxx") A = ib.allocate("float32", n, name="A", scope="global") with ib.for_range(0, n, name="i") as i: with ib.for_range(0, 10, name="j") as j: ib.scope_attr(cp, "coproc_uop_scope", value) A[i] = A[i] + 1 with ib.if_scope(i.equal(0)): with ib.for_range(0, 10, name="j") as j: ib.scope_attr(cp, "coproc_uop_scope", value) A[j] = A[j] + 2 A[j] = A[j] + 3 A[j] = A[j] + 3 body = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([n], body)) body = tvm.tir.transform.LiftAttrScope("coproc_uop_scope")(mod)["main"] assert body.body.body.node == cp # only able to lift to the common pattern of the last two fors. ib = tvm.tir.ir_builder.create() A = ib.allocate("float32", n, name="A", scope="global") with ib.for_range(0, n, name="i") as i: with ib.for_range(0, 10, name="j") as j: A[j] = A[j] + 1 with ib.for_range(0, 10, name="j") as j: ib.scope_attr(cp, "coproc_uop_scope", value) A[i] = A[i] + 1 with ib.for_range(0, 10, name="j") as j: ib.scope_attr(cp, "coproc_uop_scope", value) A[i] = A[i] + 2 body = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([n], body)) body = tvm.tir.transform.LiftAttrScope("coproc_uop_scope")(mod)["main"] assert body.body.body.body[1].node == cp assert len(body.body.body.body) == 2 if __name__ == "__main__": test_coproc_lift()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_transform_loop_partition.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm import tvm.testing from tvm import te from tvm.ir.module import IRModule from tvm.script import tir as T import numpy def collect_visit(stmt, f): ret = [] tvm.tir.stmt_functor.post_order_visit(stmt, lambda x: ret.append(f(x))) return ret def test_basic(): n = te.size_var("n") A = te.placeholder((n,), name="A") B = te.placeholder((n,), name="B") T = te.compute((n,), lambda i: A[i] + B[i]) s = te.create_schedule(T.op) xo, xi = s[T].split(T.op.axis[0], factor=4) bounds = tvm.te.schedule.InferBound(s) stmt = tvm.te.schedule.ScheduleOps(s, bounds) mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([n], stmt)) mod = tvm.tir.transform.LoopPartition()(mod) stmt = tvm.tir.transform.Simplify()(mod)["main"] assert not any(collect_visit(stmt.body.body[0], lambda x: isinstance(x, tvm.tir.IfThenElse))) assert any(collect_visit(stmt.body.body[1], lambda x: isinstance(x, tvm.tir.IfThenElse))) def test_const_loop(): n = 21 A = te.placeholder((n,), name="A") B = te.placeholder((n,), name="B") T = te.compute((n,), lambda i: A[i] + B[i]) s = te.create_schedule(T.op) xo, xi = s[T].split(T.op.axis[0], factor=4) bounds = tvm.te.schedule.InferBound(s) stmt = tvm.te.schedule.ScheduleOps(s, bounds) mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) with tvm.transform.PassContext(config={"tir.LoopPartition": {"partition_const_loop": True}}): mod = tvm.tir.transform.LoopPartition()(mod) stmt = tvm.tir.transform.Simplify()(mod)["main"].body assert not any(collect_visit(stmt, lambda x: isinstance(x, tvm.tir.IfThenElse))) def test_no_unroll_loop(): n = 21 A = te.placeholder((n,), name="A") B = te.placeholder((n,), name="B") T = te.compute((n,), lambda i: A[i] + B[i]) s = te.create_schedule(T.op) xo, xi = s[T].split(T.op.axis[0], factor=4) bounds = tvm.te.schedule.InferBound(s) stmt = tvm.te.schedule.ScheduleOps(s, bounds) mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) with tvm.transform.PassContext( config={ "tir.LoopPartition": { "partition_const_loop": True, "no_unroll_loop_with_extent_one": True, } } ): mod = tvm.tir.transform.LoopPartition()(mod) mod = tvm.tir.transform.Simplify()(mod) stmt = tvm.tir.transform.RemoveNoOp()(mod)["main"].body assert sum(collect_visit(stmt, lambda x: isinstance(x, tvm.tir.For))) == 4 def test_multi_loop(): ib = tvm.tir.ir_builder.create() m = te.size_var("m") n = te.size_var("n") with ib.for_range(0, 4, "i") as i: with ib.for_range(0, n, "j") as j: with ib.for_range(0, m, "k") as k: with ib.if_scope(ib.likely(i * m + j + k < n)): ib.emit(tvm.tir.Evaluate(m)) with ib.else_scope(): ib.emit(tvm.tir.Evaluate(n)) stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([n, m], stmt)) mod = tvm.tir.transform.LoopPartition()(mod) stmt = tvm.tir.transform.Simplify()(mod)["main"].body assert not any(collect_visit(stmt.body[0], lambda x: isinstance(x, tvm.tir.IfThenElse))) def test_multi_if(): ib = tvm.tir.ir_builder.create() m = te.size_var("m") n = te.size_var("n") with ib.for_range(0, 4, "i") as i: with ib.for_range(0, n, "j") as j: with ib.for_range(0, m, "k") as k: with ib.if_scope(ib.likely(i * m + j + k < n)): ib.emit(tvm.tir.Evaluate(m)) with ib.else_scope(): ib.emit(tvm.tir.Evaluate(n)) with ib.if_scope(ib.likely(i * m + j - k < n)): ib.emit(tvm.tir.Evaluate(m)) with ib.else_scope(): ib.emit(tvm.tir.Evaluate(n)) stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) mod = tvm.tir.transform.LoopPartition()(mod) stmt = tvm.tir.transform.Simplify()(mod)["main"].body assert not any(collect_visit(stmt.body[0], lambda x: isinstance(x, tvm.tir.IfThenElse))) def test_thread_axis(): m = te.size_var("m") l = te.size_var("l") A = te.placeholder((m, l), name="A") B = te.compute((m, l), lambda i, j: A[i, j] + 3, name="B") s = te.create_schedule(B.op) s[B].set_scope("shared") num_thread = 16 xo, xi = s[B].split(B.op.axis[0], 32) xi0, xi1 = s[B].split(xi, nparts=num_thread) s[B].bind(xi0, te.thread_axis("threadIdx.x")) bounds = tvm.te.schedule.InferBound(s) stmt = tvm.te.schedule.ScheduleOps(s, bounds) mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) mod = tvm.tir.transform.LoopPartition()(mod) stmt = tvm.tir.transform.Simplify()(mod)["main"] assert not any(collect_visit(stmt.body.body[0], lambda x: isinstance(x, tvm.tir.IfThenElse))) def test_vectorize(): n = te.size_var("n") A = te.placeholder((n,), name="A") B = te.placeholder((n,), name="B") bias = te.size_var("bias", dtype="float32") scale = te.size_var("scale", dtype="float32") C = te.compute(A.shape, lambda *i: A(*i) + B(*i) * scale + bias, name="C") # schedule s = te.create_schedule(C.op) # create iter var and assign them tags. num_thread = 32 bx, x = s[C].split(C.op.axis[0], factor=num_thread * 4) tx, x = s[C].split(x, nparts=num_thread) _, x = s[C].split(x, factor=4) s[C].bind(bx, te.thread_axis("blockIdx.x")) s[C].bind(tx, te.thread_axis("threadIdx.x")) s[C].vectorize(x) stmt = tvm.lower(s, [A, B], name="main")["main"] body = stmt.body.body.body.body assert x.var.name not in str(body.condition) assert any(collect_visit(body.then_case, lambda x: isinstance(x, tvm.tir.Ramp))) def test_condition(): ib = tvm.tir.ir_builder.create() m = te.size_var("m") n = te.size_var("n") with ib.for_range(0, tvm.tir.truncdiv(n + 3, 4), "i") as i: with ib.for_range(0, 4, "j") as j: ib.emit(tvm.tir.Evaluate(tvm.tir.Select(ib.likely(i * 4 + j < n), m, n))) stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([m, n], stmt)) mod = tvm.tir.transform.LoopPartition()(mod) stmt = tvm.tir.transform.Simplify()(mod)["main"].body assert not any(collect_visit(stmt[0], lambda x: isinstance(x, tvm.tir.Select))) def test_condition_EQ(): ib = tvm.tir.ir_builder.create() m = te.size_var("m") n = te.size_var("n") with ib.for_range(0, 10, "i") as i: ib.emit(tvm.tir.Evaluate(tvm.tir.Select(ib.likely(tvm.tir.EQ(i, 5)), m, n))) stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([m, n], stmt)) with tvm.transform.PassContext(config={"tir.LoopPartition": {"partition_const_loop": True}}): mod = tvm.tir.transform.LoopPartition()(mod) stmt = tvm.tir.transform.Simplify()(mod)["main"].body assert not any(collect_visit(stmt[0], lambda x: isinstance(x, tvm.tir.Select))) def test_thread_axis2(): n = tvm.runtime.convert(4096) m = te.size_var("m") A = te.placeholder((n,), name="A") B = te.placeholder((n,), name="B") C = te.compute(A.shape, lambda i: A[i] + B[i], name="C") s = te.create_schedule(C.op) num_thread = 32 bx, x = s[C].split(C.op.axis[0], factor=32) tx, x = s[C].split(x, nparts=num_thread) _, x = s[C].split(x, factor=m) s[C].bind(bx, te.thread_axis("blockIdx.x")) s[C].bind(tx, te.thread_axis("threadIdx.x")) stmt = tvm.lower(s, [A, B], name="main")["main"] for_body = stmt.body.body.body.body[0] assert "threadIdx" not in str(for_body.extent) def test_everything_during_deduction(): m = te.size_var("m") n = te.size_var("n") ib = tvm.tir.ir_builder.create() with ib.for_range(0, n, "i") as i: with ib.for_range(0, 32, "j") as j: with ib.if_scope(ib.likely(tvm.tir.truncdiv(i, j) < m)): # this guard will produce everything during deduction ib.emit(tvm.tir.Evaluate(m)) stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([m, n], stmt)) mod = tvm.tir.transform.LoopPartition()(mod) stmt = tvm.tir.transform.Simplify()(mod)["main"].body assert isinstance(stmt.body.body, tvm.tir.IfThenElse) def test_single_likely(): n = 60 A = te.placeholder((n,), name="A") B = te.placeholder((n,), name="B") T = te.compute((n,), lambda i: A[i] + B[i]) s = te.create_schedule(T.op) x = T.op.axis[0] xo, xi = s[T].split(x, factor=16) bounds = tvm.te.schedule.InferBound(s) stmt = tvm.te.schedule.ScheduleOps(s, bounds) mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) with tvm.transform.PassContext(config={"tir.LoopPartition": {"partition_const_loop": True}}): mod = tvm.tir.transform.LoopPartition()(mod) stmt = tvm.tir.transform.Simplify()(mod)["main"].body assert not any(collect_visit(stmt, lambda x: isinstance(x, tvm.tir.IfThenElse))) def test_multi_likely(): n = 94 m = 62 A = te.placeholder((n, m), name="A") B = te.placeholder((n, m), name="B") T = te.compute((n, m), lambda i, j: A[i, j] + B[i, j]) s = te.create_schedule(T.op) bounds = tvm.te.schedule.InferBound(s) stmt = tvm.te.schedule.ScheduleOps(s, bounds) x, y = T.op.axis xo, xi = s[T].split(x, factor=16) yo, yi = s[T].split(y, factor=16) s[T].reorder(xo, yo, xi, yi) bounds = tvm.te.schedule.InferBound(s) stmt = tvm.te.schedule.ScheduleOps(s, bounds) mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) with tvm.transform.PassContext(config={"tir.LoopPartition": {"partition_const_loop": True}}): mod = tvm.tir.transform.LoopPartition()(mod) stmt = tvm.tir.transform.Simplify()(mod)["main"].body assert not any(collect_visit(stmt, lambda x: isinstance(x, tvm.tir.IfThenElse))) def test_oneD_pool(): m = te.size_var("m") ib = tvm.tir.ir_builder.create() # data = te.placeholder((16,), name = 'data') data = ib.pointer("float32", name="A") out = ib.pointer("float32", name="A") with ib.for_range(0, 16, "ow") as ow: with ib.for_range(0, 3, "kw") as kw: with ib.if_scope(ib.likely(ow > 0)): with ib.if_scope(ib.likely(ow < 15)): out[ow] = tvm.te.max(out[ow], data[ow + kw - 1]) with ib.for_range(0, 16, "ow") as ow: with ib.for_range(0, 3, "kw") as kw: with ib.if_scope(ib.likely(ow < 1)): with ib.if_scope(ib.likely(kw > 0)): out[ow] = tvm.te.max(out[ow], data[ow + kw - 1]) with ib.for_range(0, 16, "ow") as ow: with ib.for_range(0, 3, "kw") as kw: with ib.if_scope(ib.likely(ow > 14)): with ib.if_scope(ib.likely(kw < 2)): out[ow] = tvm.te.max(out[ow], data[ow + kw - 1]) stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([m, data, out], stmt)) with tvm.transform.PassContext(config={"tir.LoopPartition": {"partition_const_loop": True}}): mod = tvm.tir.transform.LoopPartition()(mod) stmt = tvm.tir.transform.Simplify()(mod)["main"].body assert not any(collect_visit(stmt, lambda x: isinstance(x, tvm.tir.IfThenElse))) def test_cce_loop_1(): ib = tvm.tir.ir_builder.create() dtype = "float16" n = 514 m = 514 _A = te.placeholder((n * m,), name="A") Ab = tvm.tir.decl_buffer((n * m,), dtype, name="A") A = ib.buffer_ptr(Ab) _B = te.placeholder((n * m,), name="B") Bb = tvm.tir.decl_buffer((n * m,), dtype, name="B") B = ib.buffer_ptr(Bb) # for i in 0 to n-1: with ib.for_range(0, 11, name="i") as i: with ib.for_range(0, 160, name="j") as j: with ib.if_scope(ib.likely(((i * 160) + j) < 1600)): A[(i + 1) * m + j + 1] = ( B[(i) * m + j + 1] + B[(i + 1) * m + j + 1] + B[(i + 2) * m + j + 1] ) stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([Ab, Bb], stmt)) with tvm.transform.PassContext(config={"tir.LoopPartition": {"partition_const_loop": True}}): mod = tvm.tir.transform.LoopPartition()(mod) stmt = tvm.tir.transform.Simplify()(mod)["main"].body assert not any(collect_visit(stmt, lambda x: isinstance(x, tvm.tir.IfThenElse))) def test_cce_loop_2(): ib = tvm.tir.ir_builder.create() len = 112 tile = 32 loop = (len + tile - 1) // tile with ib.for_range(0, loop, "i") as i: head = i * tile with ib.if_scope(ib.likely(head + tile > len)): tail = len ib.emit(tvm.tir.call_extern("float32", "cce_intrisic", head, tail)) with ib.else_scope(): tail = head + tile ib.emit(tvm.tir.call_extern("float32", "cce_intrisic", head, tail)) stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) with tvm.transform.PassContext(config={"tir.LoopPartition": {"partition_const_loop": True}}): mod = tvm.tir.transform.LoopPartition()(mod) stmt = tvm.tir.transform.Simplify()(mod)["main"].body assert not any(collect_visit(stmt, lambda x: isinstance(x, tvm.tir.IfThenElse))) def test_cce_loop_3(): ib = tvm.tir.ir_builder.create() loop1 = 4 loop2 = 9998 tile = 39991 with ib.for_range(0, loop2, "i") as i: with ib.for_range(0, loop1, "j") as j: head1 = i head2 = j with ib.if_scope(ib.likely(head1 * loop1 + head2 < tile)): ib.emit(tvm.tir.call_extern("float16", "cce_intrisic", head1)) stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) with tvm.transform.PassContext(config={"tir.LoopPartition": {"partition_const_loop": True}}): mod = tvm.tir.transform.LoopPartition()(mod) stmt = tvm.tir.transform.Simplify()(mod)["main"].body assert not any(collect_visit(stmt, lambda x: isinstance(x, tvm.tir.IfThenElse))) def test_conv_tiling(): HSTR = WSTR = 1 in_channel = 128 kernel_height = kernel_width = 3 out_channel = 64 batch_size = 1 in_height = in_width = 64 out_height = out_width = in_height - kernel_height + 1 data = te.placeholder((batch_size, in_channel, in_height, in_width), name="data") kernel = te.placeholder((kernel_height, kernel_width, in_channel, out_channel), name="kernel") ic = te.reduce_axis((0, in_channel), name="ic") kh = te.reduce_axis((0, kernel_height), name="kh") kw = te.reduce_axis((0, kernel_width), name="kw") conv = te.compute( (batch_size, out_channel, out_height, out_width), lambda n, oc, oh, ow: te.sum( data[n, ic, oh * HSTR + kh, ow * WSTR + kw] * kernel[kh, kw, ic, oc], axis=[ic, kh, kw] ), name="conv2d", ) s = te.create_schedule(conv.op) n, oc, oh, ow = conv.op.axis oho, owo, ohi, owi = s[conv].tile(oh, ow, 16, 16) bounds = tvm.te.schedule.InferBound(s) stmt = tvm.te.schedule.ScheduleOps(s, bounds) mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) with tvm.transform.PassContext(config={"tir.LoopPartition": {"partition_const_loop": True}}): mod = tvm.tir.transform.LoopPartition()(mod) stmt = tvm.tir.transform.Simplify()(mod)["main"].body assert not any(collect_visit(stmt, lambda x: isinstance(x, tvm.tir.IfThenElse))) def test_multilevel_splitting_with_indivisble_factors(): from tvm import topi A = te.placeholder((130,), dtype="float32") B = topi.nn.relu(A) s = te.create_schedule(B.op) (y,) = s[B].op.axis (yo, yi) = s[B].split(y, factor=8) (yoo, yoi) = s[B].split(yo, factor=16) s[B].reorder(yoo, yoi, yi) s[B].unroll(yi) ## But this does the right thing. with tvm.transform.PassContext(config={"tir.LoopPartition": {"partition_const_loop": True}}): lowered_body = tvm.lower(s, [A, B], name="x")["x"].body def visit_stmt(op): return isinstance(op, tvm.tir.Max) num_max = collect_visit(lowered_body, visit_stmt) assert num_max.count(True) == 10 def test_double_splitting_with_indivisible_factors(): m = 48 dtype = "float32" A = te.placeholder((m,), name="A", dtype=dtype) C = te.compute((m,), lambda i: A[i], name="C") D = te.compute((m,), lambda i: C[i], name="D") s = te.create_schedule(D.op) co, ci = s[C].split(C.op.axis[0], factor=10) do, di = s[D].split(D.op.axis[0], 32) s[C].compute_at(s[D], do) target = "llvm" with tvm.transform.PassContext(config={"tir.LoopPartition": {"partition_const_loop": True}}): f = tvm.lower(s, [A, C, D], name="fadd1", simple_mode=False) func = tvm.build(f, target=target) top_produce = f["fadd1"].body assert not any(collect_visit(top_produce, lambda x: isinstance(x, tvm.tir.IfThenElse))) # check functional correctness of generated code dev = tvm.device(target, 0) a = tvm.nd.array( numpy.ones( m, ).astype(dtype), dev, ) c = tvm.nd.array( numpy.zeros( m, ).astype(dtype), dev, ) d = tvm.nd.array( numpy.zeros( m, ).astype(dtype), dev, ) func(a, c, d) tvm.testing.assert_allclose(c.numpy(), a.numpy(), rtol=1e-5) tvm.testing.assert_allclose(d.numpy(), a.numpy(), rtol=1e-5) def test_simple_rfactor(): K = 16 * 4 + 4 k = te.reduce_axis((0, K), "k") A = te.placeholder((1, K), name="A") B = te.compute((1,), lambda b: te.sum(A[b, k], axis=k), name="B") s = te.create_schedule(B.op) ko, _ = s[B].split(s[B].op.reduce_axis[0], 16) BF = s.rfactor(B, ko, 0) s.normalize() bounds = tvm.te.schedule.InferBound(s) stmt1 = tvm.te.schedule.ScheduleOps(s, bounds) mod1 = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt1)) stmt1 = tvm.tir.transform.Simplify()(mod1)["main"].body with tvm.transform.PassContext(config={"tir.LoopPartition": {"partition_const_loop": True}}): mod2 = tvm.tir.transform.LoopPartition()(mod1) stmt2 = tvm.tir.transform.Simplify()(mod2)["main"].body # make sure loop partition actually did something assert not tvm.ir.structural_equal(stmt1.body, stmt2.body) @T.prim_func def partitioned_concat( A: T.Buffer[(16,), "float32"], B: T.Buffer[(16,), "float32"], C: T.Buffer[(32,), "float32"] ) -> None: T.func_attr({"from_legacy_te_schedule": True, "global_symbol": "main", "tir.noalias": True}) T.preflattened_buffer(A, [16], data=A.data) T.preflattened_buffer(B, [16], data=B.data) T.preflattened_buffer(C, [32], data=C.data) for i in T.serial(0, 16): C[i] = A[i] for i in T.serial(0, 16): C[i + 16] = B[i + 16] def test_explicit_partition_hint(): A = te.placeholder((16,), name="A") B = te.placeholder((16,), name="B") C = te.compute((32,), lambda i: te.if_then_else(i < 16, A[i], B[i]), name="C") s = te.create_schedule(C.op) s.normalize() s[C].pragma(s[C].op.axis[0], "loop_partition_hint", True) mod = tvm.driver.build_module.schedule_to_module(s, [A, B, C], "main", None) with tvm.transform.PassContext(config={"tir.LoopPartition": {"partition_const_loop": True}}): mod = tvm.tir.transform.StorageFlatten(64)(mod) mod = tvm.tir.transform.LoopPartition()(mod) mod = tvm.tir.transform.Simplify()(mod) assert tvm.ir.structural_equal(mod["main"], partitioned_concat) def partition_from_scheduled_tir(prim_func, pass_cfg): with tvm.transform.PassContext(config=pass_cfg): mod = IRModule.from_expr(prim_func) mod = tvm.tir.transform.LowerOpaqueBlock()(mod) mod = tvm.tir.transform.FlattenBuffer()(mod) mod = tvm.tir.transform.LoopPartition()(mod) mod = tvm.tir.transform.Simplify()(mod) mod = tvm.tir.transform.RemoveNoOp()(mod) return mod @T.prim_func def partitioned_concat_3( placeholder: T.Buffer[(50176,), "int8"], placeholder_1: T.Buffer[(25088,), "int8"], placeholder_2: T.Buffer[(25088,), "int8"], T_concat: T.Buffer[(100352,), "int8"], ) -> None: T.preflattened_buffer(placeholder, [1, 64, 28, 28], "int8", data=placeholder.data) T.preflattened_buffer(placeholder_1, [1, 32, 28, 28], "int8", data=placeholder_1.data) T.preflattened_buffer(placeholder_2, [1, 32, 28, 28], "int8", data=placeholder_2.data) T.preflattened_buffer(T_concat, [1, 128, 28, 28], "int8", data=T_concat.data) for i1, i2, i3 in T.grid(64, 28, 28): T_concat[i1 * 784 + i2 * 28 + i3] = placeholder[i1 * 784 + i2 * 28 + i3] for i1, i2, i3 in T.grid(32, 28, 28): T_concat[i1 * 784 + i2 * 28 + i3 + 50176] = placeholder_1[i1 * 784 + i2 * 28 + i3] for i1, i2, i3 in T.grid(32, 28, 28): T_concat[i1 * 784 + i2 * 28 + i3 + 75264] = placeholder_2[i1 * 784 + i2 * 28 + i3] @T.prim_func def concat_func_3( placeholder: T.Buffer[(50176,), "int8"], placeholder_1: T.Buffer[(25088,), "int8"], placeholder_2: T.Buffer[(25088,), "int8"], T_concat: T.Buffer[(100352,), "int8"], ) -> None: T.preflattened_buffer(placeholder, (1, 64, 28, 28), "int8", data=placeholder.data) T.preflattened_buffer(placeholder_1, (1, 32, 28, 28), "int8", data=placeholder_1.data) T.preflattened_buffer(placeholder_2, (1, 32, 28, 28), "int8", data=placeholder_2.data) T.preflattened_buffer(T_concat, (1, 128, 28, 28), "int8", data=T_concat.data) for i1 in T.serial(128, annotations={"pragma_loop_partition_hint": 1}): for i2, i3 in T.grid(28, 28): if 96 <= i1: T_concat[i1 * 784 + i2 * 28 + i3] = placeholder_2[i1 * 784 + i2 * 28 + i3 - 75264] if 64 <= i1 and i1 < 96: T_concat[i1 * 784 + i2 * 28 + i3] = placeholder_1[i1 * 784 + i2 * 28 + i3 - 50176] if i1 < 64: T_concat[i1 * 784 + i2 * 28 + i3] = placeholder[i1 * 784 + i2 * 28 + i3] def test_condition_mutually_exclusive(): mod = partition_from_scheduled_tir( concat_func_3, {"tir.LoopPartition": {"partition_const_loop": True}} ) assert tvm.ir.structural_equal(mod["main"], partitioned_concat_3) def test_loop_partition_unroll_hint(): @T.prim_func def main(A: T.Buffer[150528, "int8"], B: T.Buffer[25088, "int8"]) -> None: T.preflattened_buffer(A, [1, 3, 224, 224], "int8", data=A.data) T.preflattened_buffer(B, [1, 224, 7, 16], "int8", data=B.data) for ax0 in T.serial( 112, annotations={"pragma_loop_partition_hint": True}, ): for ax1, ax2, ax3 in T.grid(224, 7, 16): if 3 <= ax0 * 2 + ax2 and ax0 * 2 + ax2 < 227 and ax3 < 3: B[ax1 * 112 + ax2 * 16 + ax3] = A[ax3 * 50176 + ax1 * 224 + ax0 * 2 + ax2 - 3] @T.prim_func def partitioned_main(A: T.Buffer[150528, "int8"], B: T.Buffer[25088, "int8"]) -> None: T.preflattened_buffer(A, [1, 3, 224, 224], dtype="int8", data=A.data) T.preflattened_buffer(B, [1, 224, 7, 16], dtype="int8", data=B.data) # body for ax1, ax2, ax3 in T.grid(224, 7, 16): if 3 <= ax2 and ax3 < 3: B[ax1 * 112 + ax2 * 16 + ax3] = A[ax3 * 50176 + ax1 * 224 + ax2 - 3] for ax1, ax2, ax3 in T.grid(224, 7, 16): if 1 <= ax2 and ax3 < 3: B[ax1 * 112 + ax2 * 16 + ax3] = A[ax3 * 50176 + ax1 * 224 + ax2 - 1] for ax0, ax1, ax2, ax3 in T.grid(109, 224, 7, 16): if ax3 < 3: B[ax1 * 112 + ax2 * 16 + ax3] = A[ax3 * 50176 + ax1 * 224 + ax0 * 2 + ax2 + 1] for ax1, ax2, ax3 in T.grid(224, 7, 16): if ax2 < 5 and ax3 < 3: B[ax1 * 112 + ax2 * 16 + ax3] = A[ax3 * 50176 + ax1 * 224 + ax2 + 219] mod = partition_from_scheduled_tir( main, { "tir.LoopPartition": { "partition_const_loop": True, "unroll_loop_with_partition_hint_no_interval": True, } }, ) mod = tvm.tir.transform.UnrollLoop()(mod) mod = tvm.tir.transform.RemoveNoOp()(mod) mod = tvm.tir.transform.Simplify()(mod) assert tvm.ir.structural_equal(mod["main"], partitioned_main) def test_loop_partition_keep_loop_annotations(): @T.prim_func def before(A: T.Buffer[160, "int32"], B: T.Buffer[160, "int32"]) -> None: for i in T.serial( 160, annotations={"pragma_loop_partition_hint": True, "key": "value"}, ): if i < 10: B[i] = A[i] + 1 elif 10 <= i and i < 150: B[i] = A[i] + 2 else: B[i] = A[i] + 3 @T.prim_func def after(A: T.Buffer[160, "int32"], B: T.Buffer[160, "int32"]) -> None: T.preflattened_buffer(A, [160], dtype="int32", data=A.data) T.preflattened_buffer(B, [160], dtype="int32", data=B.data) for i in T.serial(10, annotations={"key": "value"}): B[i] = A[i] + 1 for i in T.serial(140, annotations={"key": "value"}): B[i + 10] = A[i + 10] + 2 for i in T.serial(10, annotations={"key": "value"}): B[i + 150] = A[i + 150] + 3 mod = partition_from_scheduled_tir( before, { "tir.LoopPartition": { "partition_const_loop": True, } }, ) assert tvm.ir.structural_equal(mod["main"], after) def test_loop_partition_with_unit_loop_in_condition(): @T.prim_func def before( placeholder: T.Buffer[(50176,), "int8"], placeholder_1: T.Buffer[(25088,), "int8"], placeholder_2: T.Buffer[(25088,), "int8"], T_concat: T.Buffer[(100352,), "int8"], ) -> None: for k in range(1, annotations={"preserve_unit_loop": True}): for i1 in T.serial(128, annotations={"pragma_loop_partition_hint": 1}): for i2, i3 in T.grid(28, 28): if 96 <= k * 128 + i1: T_concat[k * i1 * 784 + i2 * 28 + i3] = placeholder_2[ i1 * 784 + i2 * 28 + i3 - 75264 ] if 64 <= k * 128 + i1 and k * 128 + i1 < 96: T_concat[i1 * 784 + i2 * 28 + i3] = placeholder_1[ i1 * 784 + i2 * 28 + i3 - 50176 ] if k * 128 + i1 < 64: T_concat[i1 * 784 + i2 * 28 + i3] = placeholder[i1 * 784 + i2 * 28 + i3] @T.prim_func def after( placeholder: T.Buffer[50176, "int8"], placeholder_1: T.Buffer[25088, "int8"], placeholder_2: T.Buffer[25088, "int8"], T_concat: T.Buffer[100352, "int8"], ) -> None: T.preflattened_buffer(placeholder, [50176], dtype="int8", data=placeholder.data) T.preflattened_buffer(placeholder_1, [25088], dtype="int8", data=placeholder_1.data) T.preflattened_buffer(placeholder_2, [25088], dtype="int8", data=placeholder_2.data) T.preflattened_buffer(T_concat, [100352], dtype="int8", data=T_concat.data) for _ in T.serial(1, annotations={"preserve_unit_loop": True}): for i1, i2, i3 in T.grid(64, 28, 28): T_concat[i1 * 784 + i2 * 28 + i3] = placeholder[i1 * 784 + i2 * 28 + i3] for i1, i2, i3 in T.grid(32, 28, 28): T_concat[i1 * 784 + i2 * 28 + i3 + 50176] = placeholder_1[i1 * 784 + i2 * 28 + i3] for i1, i2, i3 in T.grid(32, 28, 28): T_concat[i2 * 28 + i3] = placeholder_2[i1 * 784 + i2 * 28 + i3] mod = partition_from_scheduled_tir( before, { "tir.LoopPartition": { "partition_const_loop": True, } }, ) assert tvm.ir.structural_equal(mod["main"], after) if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_transform_lower_cross_thread_reduction.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=missing-function-docstring,missing-module-docstring import sys import pytest import tvm import tvm.testing from tvm import te from tvm.script import tir as T # pylint: disable=no-member,invalid-name,unused-variable,unexpected-keyword-arg def _check(original, transformed): mod = tvm.IRModule.from_expr(original) mod = tvm.tir.transform.LowerCrossThreadReduction()(mod) tvm.ir.assert_structural_equal(mod["main"], transformed, True) def _check_fail(original): mod = tvm.IRModule.from_expr(original) with pytest.raises(ValueError): tvm.tir.transform.LowerCrossThreadReduction()(mod) @T.prim_func def loop_split(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [128, 128], dtype="float32") B = T.match_buffer(b, [128], dtype="float32") for i, ko in T.grid(128, 4): for ki in T.thread_binding(0, 32, thread="threadIdx.x"): with T.block("B"): vi = T.axis.S(128, i) vk = T.axis.R(128, ko * 32 + ki) T.reads([A[vi, vk]]) T.writes([B[vi]]) with T.init(): B[vi] = T.float32(0) B[vi] = B[vi] + A[vi, vk] @T.prim_func def lowered_loop_split(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [128, 128], dtype="float32") B = T.match_buffer(b, [128], dtype="float32") reduce_temp0 = T.alloc_buffer([1], dtype="float32", strides=[1], scope="local") normal_reduce_temp0 = T.alloc_buffer([1], dtype="float32", strides=[1], scope="local") for i in T.serial(0, 128): for ki in T.thread_binding(0, 32, thread="threadIdx.x"): with T.block("B_in_thread_init"): T.reads([]) T.writes([normal_reduce_temp0[0]]) normal_reduce_temp0[0] = T.float32(0) for ko in T.serial(0, 4): with T.block("B_normal_reduction"): vi = T.axis.S(128, i) vk = T.axis.R(128, ko * 32 + ki) T.reads([A[vi, vk]]) T.writes([normal_reduce_temp0[0]]) normal_reduce_temp0[0] = normal_reduce_temp0[0] + A[vi, vk] with T.block("B_cross_thread_reduction"): T.reads([normal_reduce_temp0[0]]) T.writes([reduce_temp0[0]]) T.attr( T.comm_reducer(lambda x, y: x + y, [T.float32(0)]), "reduce_scope", T.reinterpret(T.uint64(0), dtype="handle"), ) T.evaluate( T.tvm_thread_allreduce( T.uint32(1), normal_reduce_temp0[0], True, reduce_temp0[0], ki, dtype="handle", ) ) with T.block("B_write_back"): vi = T.axis.S(128, i) T.reads([reduce_temp0[0]]) T.writes([B[vi]]) B[vi] = reduce_temp0[0] @T.prim_func def no_normal_reduction(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [128, 128], dtype="float32") B = T.match_buffer(b, [128], dtype="float32") for i in T.serial(0, 128): for k in T.thread_binding(0, 128, thread="threadIdx.x"): with T.block("B"): vi, vk = T.axis.remap("SR", [i, k]) T.reads([A[vi, vk]]) T.writes([B[vi]]) with T.init(): B[vi] = T.float32(0) B[vi] = B[vi] + A[vi, vk] @T.prim_func def lowered_no_normal_reduction(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [128, 128], dtype="float32") B = T.match_buffer(b, [128], dtype="float32") reduce_temp0 = T.alloc_buffer([1], dtype="float32", strides=[1], scope="local") for i in T.serial(0, 128): for k in T.thread_binding(0, 128, thread="threadIdx.x"): with T.block("B_cross_thread_reduction"): vi, vk = T.axis.remap("SR", [i, k]) T.reads([A[vi, vk]]) T.writes([reduce_temp0[0]]) T.attr( T.comm_reducer(lambda x, y: x + y, [T.float32(0)]), "reduce_scope", T.reinterpret(T.uint64(0), dtype="handle"), ) T.evaluate( T.tvm_thread_allreduce( T.uint32(1), A[vi, vk], True, reduce_temp0[0], k, dtype="handle" ) ) with T.block("B_write_back"): vi = T.axis.spatial(128, i) T.reads([reduce_temp0[0]]) T.writes([B[vi]]) B[vi] = reduce_temp0[0] @T.prim_func def two_bound_loops(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [128, 128], dtype="float32") B = T.match_buffer(b, [128], dtype="float32") for i in T.serial(0, 128): for ko in T.thread_binding(0, 4, thread="threadIdx.x"): for ki in T.thread_binding(0, 32, thread="threadIdx.y"): with T.block("B"): vi = T.axis.spatial(128, i) vk = T.axis.reduce(128, ko * 32 + ki) T.reads([A[vi, vk]]) T.writes([B[vi]]) with T.init(): B[vi] = T.float32(0) B[vi] = B[vi] + A[vi, vk] @T.prim_func def lowered_two_bound_loops(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [128, 128], dtype="float32") B = T.match_buffer(b, [128], dtype="float32") reduce_temp0 = T.alloc_buffer([1], dtype="float32", strides=[1], scope="local") for i in T.serial(0, 128): for ko in T.thread_binding(0, 4, thread="threadIdx.x"): for ki in T.thread_binding(0, 32, thread="threadIdx.y"): with T.block("B_cross_thread_reduction"): vi = T.axis.spatial(128, i) vk = T.axis.reduce(128, ko * 32 + ki) T.reads([A[vi, vk]]) T.writes([reduce_temp0[0]]) T.attr( T.comm_reducer(lambda x, y: x + y, [T.float32(0)]), "reduce_scope", T.reinterpret(T.uint64(0), dtype="handle"), ) T.evaluate( T.tvm_thread_allreduce( T.uint32(1), A[vi, vk], True, reduce_temp0[0], ko, ki, dtype="handle" ) ) with T.block("B_write_back"): vi = T.axis.spatial(128, i) T.reads([reduce_temp0[0]]) T.writes([B[vi]]) B[vi] = reduce_temp0[0] @T.prim_func def multiple_blocks_under_reduction_loop(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [16, 16, 16], dtype="float32") B = T.match_buffer(b, [16], dtype="float32") B_rf_local = T.alloc_buffer([16, 16], dtype="float32", scope="local") for i in T.thread_binding(0, 16, thread="blockIdx.x"): for k0o in T.thread_binding(0, 4, thread="threadIdx.x"): for k0i0, k1 in T.grid(4, 16): with T.block("B_rf"): vk0 = T.axis.spatial(16, k0o * 4 + k0i0) vi, vk1 = T.axis.remap("SR", [i, k1]) T.reads([A[vi, vk0, vk1]]) T.writes([B_rf_local[vk0, vi]]) with T.init(): B_rf_local[vk0, vi] = T.float32(0) B_rf_local[vk0, vi] = B_rf_local[vk0, vi] + A[vi, vk0, vk1] for k0i1 in T.serial(0, 4): with T.block("B"): vk0 = T.axis.reduce(16, k0o * 4 + k0i1) vi = T.axis.spatial(16, i) T.reads([B_rf_local[vk0, vi]]) T.writes([B[vi]]) with T.init(): B[vi] = T.float32(0) B[vi] = B[vi] + B_rf_local[vk0, vi] @T.prim_func def lowered_multiple_blocks_under_reduction_loop(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [16, 16, 16], dtype="float32") B = T.match_buffer(b, [16], dtype="float32") B_rf_local = T.alloc_buffer([16, 16], dtype="float32", scope="local") reduce_temp0 = T.alloc_buffer([1], dtype="float32", strides=[1], scope="local") normal_reduce_temp0 = T.alloc_buffer([1], dtype="float32", strides=[1], scope="local") for i in T.thread_binding(0, 16, thread="blockIdx.x"): for k0o in T.thread_binding(0, 4, thread="threadIdx.x"): with T.block("B_in_thread_init"): T.reads([]) T.writes([normal_reduce_temp0[0]]) normal_reduce_temp0[0] = T.float32(0) for k0i0, k1 in T.grid(4, 16): with T.block("B_rf"): vk0 = T.axis.spatial(16, k0o * 4 + k0i0) vi, vk1 = T.axis.remap("SR", [i, k1]) T.reads([A[vi, vk0, vk1]]) T.writes([B_rf_local[vk0, vi]]) with T.init(): B_rf_local[vk0, vi] = T.float32(0) B_rf_local[vk0, vi] = B_rf_local[vk0, vi] + A[vi, vk0, vk1] for k0i1 in T.serial(0, 4): with T.block("B_normal_reduction"): vk0 = T.axis.reduce(16, k0o * 4 + k0i1) vi = T.axis.spatial(16, i) T.reads([B_rf_local[vk0, vi]]) T.writes([normal_reduce_temp0[0]]) normal_reduce_temp0[0] = normal_reduce_temp0[0] + B_rf_local[vk0, vi] with T.block("B_cross_thread_reduction"): T.reads([normal_reduce_temp0[0]]) T.writes([reduce_temp0[0]]) T.attr( T.comm_reducer(lambda x, y: x + y, [T.float32(0)]), "reduce_scope", T.reinterpret(T.uint64(0), dtype="handle"), ) T.evaluate( T.tvm_thread_allreduce( T.uint32(1), normal_reduce_temp0[0], True, reduce_temp0[0], k0o, dtype="handle", ) ) with T.block("B_write_back"): vi = T.axis.spatial(16, i) T.reads([reduce_temp0[0]]) T.writes([B[vi]]) B[vi] = reduce_temp0[0] @T.prim_func def with_block_predicate(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [128, 120], dtype="float32") B = T.match_buffer(b, [128], dtype="float32") for i, ko in T.grid(128, 4): for ki in T.thread_binding(0, 32, thread="threadIdx.x"): with T.block("B"): vi = T.axis.spatial(128, i) vk = T.axis.reduce(120, ko * 32 + ki) T.where(ko * 32 + ki < 120) T.reads([A[vi, vk]]) T.writes([B[vi]]) with T.init(): B[vi] = T.float32(0) B[vi] = B[vi] + A[vi, vk] @T.prim_func def lowered_with_block_predicate(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [128, 120], dtype="float32") B = T.match_buffer(b, [128], dtype="float32") reduce_temp0 = T.alloc_buffer([1], dtype="float32", strides=[1], scope="local") normal_reduce_temp0 = T.alloc_buffer([1], dtype="float32", strides=[1], scope="local") for i in T.serial(0, 128): for ki in T.thread_binding(0, 32, thread="threadIdx.x"): with T.block("B_in_thread_init"): T.reads([]) T.writes([normal_reduce_temp0[0]]) normal_reduce_temp0[0] = T.float32(0) for ko in T.serial(0, 4): with T.block("B_normal_reduction"): vi = T.axis.spatial(128, i) vk = T.axis.reduce(120, ko * 32 + ki) T.where(ko * 32 + ki < 120) T.reads([A[vi, vk]]) T.writes([normal_reduce_temp0[0]]) normal_reduce_temp0[0] = normal_reduce_temp0[0] + A[vi, vk] with T.block("B_cross_thread_reduction"): T.reads([normal_reduce_temp0[0]]) T.writes([reduce_temp0[0]]) T.attr( T.comm_reducer(lambda x, y: x + y, [T.float32(0)]), "reduce_scope", T.reinterpret(T.uint64(0), dtype="handle"), ) T.evaluate( T.tvm_thread_allreduce( T.uint32(1), normal_reduce_temp0[0], True, reduce_temp0[0], ki, dtype="handle", ) ) with T.block("B_write_back"): vi = T.axis.spatial(128, i) T.reads([reduce_temp0[0]]) T.writes([B[vi]]) B[vi] = reduce_temp0[0] @T.prim_func def single_reduction_loop_with_block_predicate( A: T.Buffer[(256, 256), "float32"], T_softmax_norm: T.Buffer[(256, 256), "float32"] ) -> None: T_softmax_maxelem_shared = T.alloc_buffer([256], dtype="float32", scope="shared") T_softmax_expsum_shared = T.alloc_buffer([256], dtype="float32", scope="shared") for i0 in T.serial(256): for ax0, ax1_0 in T.grid(1, 1): for ax1_1 in T.thread_binding(512, thread="threadIdx.x"): with T.block("T_softmax_maxelem"): i0_1 = T.axis.spatial(256, i0 + ax0) k = T.axis.reduce(256, ax1_0 * 512 + ax1_1) T.where(ax1_0 * 512 + ax1_1 < 256) T.reads(A[i0_1, k]) T.writes(T_softmax_maxelem_shared[i0_1]) with T.init(): T_softmax_maxelem_shared[i0_1] = T.float32(-3.4028234663852886e38) T_softmax_maxelem_shared[i0_1] = T.max( T_softmax_maxelem_shared[i0_1], A[i0_1, k] ) for ax0, ax1_0 in T.grid(1, 1): for ax1_1 in T.thread_binding(512, thread="threadIdx.x"): with T.block("T_softmax_expsum"): i0_2 = T.axis.spatial(256, i0 + ax0) k = T.axis.reduce(256, ax1_0 * 512 + ax1_1) T.where(ax1_0 * 512 + ax1_1 < 256) T.reads(A[i0_2, k], T_softmax_maxelem_shared[i0_2]) T.writes(T_softmax_expsum_shared[i0_2]) with T.init(): T_softmax_expsum_shared[i0_2] = T.float32(0) T_softmax_expsum_shared[i0_2] = T_softmax_expsum_shared[i0_2] + T.exp( A[i0_2, k] - T_softmax_maxelem_shared[i0_2], dtype="float32" ) for i1_0 in T.serial(1): for i1_1 in T.thread_binding(512, thread="threadIdx.x"): with T.block("T_softmax_norm"): i0_3 = T.axis.spatial(256, i0) i1 = T.axis.spatial(256, i1_0 * 512 + i1_1) T.where(i1_0 * 512 + i1_1 < 256) T.reads( A[i0_3, i1], T_softmax_maxelem_shared[i0_3], T_softmax_expsum_shared[i0_3] ) T.writes(T_softmax_norm[i0_3, i1]) T.block_attr({"axis": 1}) T_softmax_norm[i0_3, i1] = ( T.exp(A[i0_3, i1] - T_softmax_maxelem_shared[i0_3], dtype="float32") / T_softmax_expsum_shared[i0_3] ) @T.prim_func def lowered_single_reduction_loop_with_block_predicate( A: T.Buffer[(256, 256), "float32"], T_softmax_norm: T.Buffer[(256, 256), "float32"] ) -> None: T_softmax_maxelem_shared = T.alloc_buffer([256], dtype="float32", scope="shared") T_softmax_expsum_shared = T.alloc_buffer([256], dtype="float32", scope="shared") cross_thread_0 = T.alloc_buffer([1], dtype="float32", strides=[1], scope="local") in_thread_0 = T.alloc_buffer([1], dtype="float32", strides=[1], scope="local") cross_thread_1 = T.alloc_buffer([1], dtype="float32", strides=[1], scope="local") in_thread_1 = T.alloc_buffer([1], dtype="float32", strides=[1], scope="local") for i0 in T.serial(256): for ax0 in T.serial(1): for ax1_1 in T.thread_binding(512, thread="threadIdx.x"): with T.block("T_softmax_maxelem_in_thread_init"): T.reads() T.writes(in_thread_0[0]) in_thread_0[0] = T.float32(-3.4028234663852886e38) for ax1_0 in T.serial(1): with T.block("T_softmax_maxelem_in_thread"): T.where(ax1_0 * 512 + ax1_1 < 256) i0_1 = T.axis.spatial(256, i0 + ax0) k = T.axis.reduce(256, ax1_0 * 512 + ax1_1) T.reads(A[i0_1, k]) T.writes(in_thread_0[0]) in_thread_0[0] = T.max(in_thread_0[0], A[i0_1, k]) with T.block("T_softmax_maxelem_cross_thread"): T.reads(in_thread_0[0]) T.writes(cross_thread_0[0]) T.attr( T.comm_reducer( lambda x, y: T.max(x, y), [T.float32(-3.4028234663852886e38)] ), "reduce_scope", T.reinterpret(T.uint64(0), dtype="handle"), ) T.evaluate( T.tvm_thread_allreduce( T.uint32(1), in_thread_0[0], True, cross_thread_0[0], ax1_1, dtype="handle", ) ) with T.block("T_softmax_maxelem_write_back"): i0_2 = T.axis.spatial(256, i0 + ax0) T.reads(cross_thread_0[0]) T.writes(T_softmax_maxelem_shared[i0_2]) T_softmax_maxelem_shared[i0_2] = cross_thread_0[0] for ax0 in T.serial(1): for ax1_1 in T.thread_binding(512, thread="threadIdx.x"): with T.block("T_softmax_expsum_in_thread_init"): T.reads() T.writes(in_thread_1[0]) in_thread_1[0] = T.float32(0) for ax1_0 in T.serial(1): with T.block("T_softmax_expsum_in_thread"): T.where(ax1_0 * 512 + ax1_1 < 256) i0_3 = T.axis.spatial(256, i0 + ax0) k = T.axis.reduce(256, ax1_0 * 512 + ax1_1) T.reads(A[i0_3, k], T_softmax_maxelem_shared[i0_3]) T.writes(in_thread_1[0]) in_thread_1[0] = in_thread_1[0] + T.exp( A[i0_3, k] - T_softmax_maxelem_shared[i0_3], dtype="float32" ) with T.block("T_softmax_expsum_cross_thread"): T.reads(in_thread_1[0]) T.writes(cross_thread_1[0]) T.attr( T.comm_reducer(lambda x_1, y_1: x_1 + y_1, [T.float32(0)]), "reduce_scope", T.reinterpret(T.uint64(0), dtype="handle"), ) T.evaluate( T.tvm_thread_allreduce( T.uint32(1), in_thread_1[0], True, cross_thread_1[0], ax1_1, dtype="handle", ) ) with T.block("T_softmax_expsum_write_back"): i0_4 = T.axis.spatial(256, i0 + ax0) T.reads(cross_thread_1[0]) T.writes(T_softmax_expsum_shared[i0_4]) T_softmax_expsum_shared[i0_4] = cross_thread_1[0] for i1_0 in T.serial(1): for i1_1 in T.thread_binding(512, thread="threadIdx.x"): with T.block("T_softmax_norm"): i0_5 = T.axis.spatial(256, i0) i1 = T.axis.spatial(256, i1_0 * 512 + i1_1) T.where(i1_0 * 512 + i1_1 < 256) T.reads( A[i0_5, i1], T_softmax_maxelem_shared[i0_5], T_softmax_expsum_shared[i0_5] ) T.writes(T_softmax_norm[i0_5, i1]) T.block_attr({"axis": 1}) T_softmax_norm[i0_5, i1] = ( T.exp(A[i0_5, i1] - T_softmax_maxelem_shared[i0_5], dtype="float32") / T_softmax_expsum_shared[i0_5] ) @T.prim_func def single_reduction_loop_with_tensorize( input_A: T.Buffer[(1, 64, 7, 7, 32), "uint8"], input_B: T.Buffer[(16, 64, 1, 1, 8, 32, 4), "int8"], output: T.Buffer[(1, 16, 7, 7, 32), "int32"], ) -> None: # body # with T.block("root") for i1, i2, i3, i4, i5 in T.grid(16, 4, 98, 2, 32): with T.block("compute_o"): n = T.axis.spatial(1, 0) oc_chunk = T.axis.spatial(16, i1) oh = T.axis.spatial(7, (i2 * 6272 + i3 * 64 + i4 * 32 + i5) // 3584) ow = T.axis.spatial(7, (i2 * 6272 + i3 * 64 + i4 * 32 + i5) % 3584 // 512) kh = T.axis.reduce(1, 0) kw = T.axis.reduce(1, 0) ic_outer = T.axis.reduce(64, (i2 * 6272 + i3 * 64 + i4 * 32 + i5) % 512 // 8) ic_f_inner = T.axis.reduce(8, (i2 * 6272 + i3 * 64 + i4 * 32 + i5) % 8) T.reads( input_A[n, ic_outer, oh + kh, ow + kw, ic_f_inner * 4 : ic_f_inner * 4 + 4], input_B[oc_chunk, ic_outer, kh, kw, ic_f_inner, 0:32, 0:4], ) T.writes(output[n, oc_chunk, oh, ow, 0:32]) with T.init(): for x in T.serial(32): with T.block("compute_init"): oc_block_i_init = T.axis.spatial(32, x) T.reads() T.writes(output[n, oc_chunk, oh, ow, oc_block_i_init]) output[n, oc_chunk, oh, ow, oc_block_i_init] = 0 with T.block("compute_o"): T.reads( output[n, oc_chunk, oh, ow, 0:32], input_A[n, ic_outer, oh + kh, ow + kw, ic_f_inner * 4 : ic_f_inner * 4 + 4], input_B[oc_chunk, ic_outer, kh, kw, ic_f_inner, 0:32, 0:4], ) T.writes(output[n, oc_chunk, oh, ow, 0:32]) A = T.match_buffer( input_A[n, ic_outer, oh + kh, ow + kw, ic_f_inner * 4 : ic_f_inner * 4 + 4], [4], dtype="uint8", offset_factor=1, ) B = T.match_buffer( input_B[oc_chunk, ic_outer, kh, kw, ic_f_inner, 0:32, 0:4], [32, 4], dtype="int8", offset_factor=1, ) C = T.match_buffer( output[n, oc_chunk, oh, ow, 0:32], [32], dtype="int32", offset_factor=1 ) A_u8x4: T.uint8x4 = A[0:4] A_i32: T.int32 = T.reinterpret(A_u8x4, dtype="int32") B_i8x128 = B[0, 0:128] B_i32x32: T.int32x32 = T.reinterpret(B_i8x128, dtype="int32x32") C[0:32] = T.call_llvm_pure_intrin( 4217, T.uint32(3), C[0:32], T.broadcast(A_i32, 32), B_i32x32, dtype="int32x32" ) @T.prim_func def reducer_max(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [128, 128], dtype="float32") B = T.match_buffer(b, [128], dtype="float32") for i in T.serial(0, 128): for k in T.thread_binding(0, 128, thread="threadIdx.x"): with T.block("B"): vi, vk = T.axis.remap("SR", [i, k]) T.reads([A[vi, vk]]) T.writes([B[vi]]) with T.init(): B[vi] = T.min_value("float32") B[vi] = T.max(B[vi], A[vi, vk]) @T.prim_func def lowered_reducer_max(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [128, 128], dtype="float32") B = T.match_buffer(b, [128], dtype="float32") reduce_temp0 = T.alloc_buffer([1], dtype="float32", strides=[1], scope="local") for i in T.serial(0, 128): for k in T.thread_binding(0, 128, thread="threadIdx.x"): with T.block("B_cross_thread_reduction"): vi, vk = T.axis.remap("SR", [i, k]) T.reads([A[vi, vk]]) T.writes([reduce_temp0[0]]) T.attr( T.comm_reducer(lambda x, y: T.max(x, y), [T.min_value("float32")]), "reduce_scope", T.reinterpret(T.uint64(0), dtype="handle"), ) T.evaluate( T.tvm_thread_allreduce( T.uint32(1), A[vi, vk], True, reduce_temp0[0], k, dtype="handle" ) ) with T.block("B_write_back"): vi = T.axis.spatial(128, i) T.reads([reduce_temp0[0]]) T.writes([B[vi]]) B[vi] = reduce_temp0[0] @T.prim_func def zero_rank_buffer(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [128], dtype="float32") B = T.match_buffer(b, [], dtype="float32") for k in T.thread_binding(0, 128, thread="threadIdx.x"): with T.block("B"): vk = T.axis.reduce(128, k) T.reads([A[vk]]) T.writes([B[()]]) with T.init(): B[()] = T.float32(0) B[()] = B[()] + A[vk] @T.prim_func def lowered_zero_rank_buffer(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [128], dtype="float32") B = T.match_buffer(b, [], dtype="float32") reduce_temp0 = T.alloc_buffer([1], dtype="float32", strides=[1], scope="local") for k in T.thread_binding(0, 128, thread="threadIdx.x"): with T.block("B_cross_thread_reduction"): vk = T.axis.reduce(128, k) T.reads([A[vk]]) T.writes([reduce_temp0[0]]) T.attr( T.comm_reducer(lambda x, y: x + y, [T.float32(0)]), "reduce_scope", T.reinterpret(T.uint64(0), dtype="handle"), ) T.evaluate( T.tvm_thread_allreduce(T.uint32(1), A[vk], True, reduce_temp0[0], k, dtype="handle") ) with T.block("B_write_back"): T.reads([reduce_temp0[0]]) T.writes([B[()]]) B[()] = reduce_temp0[0] @T.prim_func def multiple_bufferstore(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [128, 128], dtype="float32") B = T.match_buffer(b, [128], dtype="float32") C = T.alloc_buffer([], dtype="float32") for i in T.serial(0, 128): for k in T.thread_binding(0, 128, thread="threadIdx.x"): with T.block("B"): vi, vk = T.axis.remap("SR", [i, k]) T.reads([A[vi, vk], B[vi], C[()]]) T.writes([B[vi], C[()]]) with T.init(): B[vi] = T.float32(0) C[()] = A[vi, vk] B[vi] = B[vi] + C[()] @T.prim_func def reduction_loop_not_deepest(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [128, 128], dtype="float32") B = T.match_buffer(b, [128], dtype="float32") for k in T.thread_binding(0, 128, thread="threadIdx.x"): for i in T.serial(0, 128): with T.block("B"): vi, vk = T.axis.remap("SR", [i, k]) T.reads([A[vi, vk]]) T.writes([B[vi]]) with T.init(): B[vi] = T.float32(0) B[vi] = B[vi] + A[vi, vk] @T.prim_func def reduction_loop_bound_to_blockidx(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [128, 128], dtype="float32") B = T.match_buffer(b, [128], dtype="float32") for i in T.serial(0, 128): for k in T.thread_binding(0, 128, thread="blockIdx.x"): with T.block("B"): vi, vk = T.axis.remap("SR", [i, k]) T.reads([A[vi, vk]]) T.writes([B[vi]]) with T.init(): B[vi] = T.float32(0) B[vi] = B[vi] + A[vi, vk] @T.prim_func def different_access_indices(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [128, 128, 128], dtype="float32") B = T.match_buffer(b, [128, 128], dtype="float32") for i, j in T.grid(128, 128): for k in T.thread_binding(0, 128, thread="threadIdx.x"): with T.block("B"): vi, vj, vk = T.axis.remap("SSR", [i, j, k]) T.reads([A[vi, vj, vk]]) T.writes( [ B[ T.min(vj, vi) : T.min(vj, vi) + (T.max(vj, vi) + 1 - T.min(vj, vi)), T.min(vi, vj) : T.min(vi, vj) + (T.max(vi, vj) + 1 - T.min(vi, vj)), ] ] ) with T.init(): B[vj, vi] = T.float32(0) B[vi, vj] = B[vi, vj] + A[vi, vj, vk] @T.prim_func def invalid_reducer(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [128, 128], dtype="float32") B = T.match_buffer(b, [128], dtype="float32") for i in T.serial(0, 128): for k in T.thread_binding(0, 128, thread="threadIdx.x"): with T.block("B"): vi, vk = T.axis.remap("SR", [i, k]) T.reads([A[vi, vk]]) T.writes([B[vi]]) with T.init(): B[vi] = T.float32(0) B[vi] = B[vi] - A[vi, vk] @T.prim_func def softmax(var_A: T.handle, var_T_softmax_norm: T.handle) -> None: A = T.match_buffer(var_A, [256, 256], dtype="float32") T_softmax_norm = T.match_buffer(var_T_softmax_norm, [256, 256], dtype="float32") T_softmax_maxelem_shared = T.alloc_buffer([256], dtype="float32", scope="shared") T_softmax_expsum_shared = T.alloc_buffer([256], dtype="float32", scope="shared") for i0 in T.thread_binding(0, 256, thread="blockIdx.x"): for ax0_0 in T.serial(0, 8): for ax0_1 in T.thread_binding(0, 32, thread="threadIdx.x"): with T.block("T_softmax_maxelem"): i0_1 = T.axis.spatial(256, i0) k = T.axis.reduce(256, ax0_0 * 32 + ax0_1) T.reads([A[i0_1, k]]) T.writes([T_softmax_maxelem_shared[i0_1]]) with T.init(): T_softmax_maxelem_shared[i0_1] = T.min_value("float32") T_softmax_maxelem_shared[i0_1] = T.max( T_softmax_maxelem_shared[i0_1], A[i0_1, k] ) for ax0_0 in T.serial(0, 8): for ax0_1 in T.thread_binding(0, 32, thread="threadIdx.x"): with T.block("T_softmax_expsum"): i0_2 = T.axis.spatial(256, i0) k = T.axis.reduce(256, ax0_0 * 32 + ax0_1) T.reads( [ A[i0_2, k], T_softmax_maxelem_shared[i0_2], ] ) T.writes([T_softmax_expsum_shared[i0_2]]) with T.init(): T_softmax_expsum_shared[i0_2] = T.float32(0) T_softmax_expsum_shared[i0_2] = T_softmax_expsum_shared[i0_2] + T.exp( A[i0_2, k] - T_softmax_maxelem_shared[i0_2], dtype="float32" ) for i1_0 in T.serial(0, 8): for i1_1 in T.thread_binding(0, 32, thread="threadIdx.x"): with T.block("T_softmax_norm"): i0_3 = T.axis.spatial(256, i0) i1 = T.axis.spatial(256, i1_0 * 32 + i1_1) T.reads( [ A[i0_3, i1], T_softmax_maxelem_shared[i0_3], T_softmax_expsum_shared[i0_3], ] ) T.writes([T_softmax_norm[i0_3, i1]]) T.block_attr({"axis": 1}) T_softmax_norm[i0_3, i1] = ( T.exp( A[i0_3, i1] - T_softmax_maxelem_shared[i0_3], dtype="float32", ) / T_softmax_expsum_shared[i0_3] ) @T.prim_func def lowered_softmax(var_A: T.handle, var_T_softmax_norm: T.handle) -> None: A = T.match_buffer(var_A, [256, 256], dtype="float32") T_softmax_norm = T.match_buffer(var_T_softmax_norm, [256, 256], dtype="float32") T_softmax_maxelem_shared = T.alloc_buffer([256], dtype="float32", scope="shared") T_softmax_expsum_shared = T.alloc_buffer([256], dtype="float32", scope="shared") reduce_temp0 = T.alloc_buffer([1], dtype="float32", strides=[1], scope="local") normal_reduce_temp0 = T.alloc_buffer([1], dtype="float32", strides=[1], scope="local") reduce_temp1 = T.alloc_buffer([1], dtype="float32", strides=[1], scope="local") normal_reduce_temp1 = T.alloc_buffer([1], dtype="float32", strides=[1], scope="local") for i0 in T.thread_binding(0, 256, thread="blockIdx.x"): for ax0_1 in T.thread_binding(0, 32, thread="threadIdx.x"): with T.block("T_softmax_maxelem_normal_reduction_init"): T.reads([]) T.writes([normal_reduce_temp0[0]]) normal_reduce_temp0[0] = T.min_value("float32") for ax0_0 in T.serial(0, 8): with T.block("T_softmax_maxelem_normal_reduction"): i0_1 = T.axis.spatial(256, i0) k = T.axis.reduce(256, ax0_0 * 32 + ax0_1) T.reads([A[i0_1, k]]) T.writes([normal_reduce_temp0[0]]) normal_reduce_temp0[0] = T.max(normal_reduce_temp0[0], A[i0_1, k]) with T.block("T_softmax_maxelem_cross_thread_reduction"): T.reads([normal_reduce_temp0[0]]) T.writes([reduce_temp0[0]]) T.attr( T.comm_reducer(lambda x, y: T.max(x, y), [T.min_value("float32")]), "reduce_scope", T.reinterpret(T.uint64(0), dtype="handle"), ) T.evaluate( T.tvm_thread_allreduce( T.uint32(1), normal_reduce_temp0[0], True, reduce_temp0[0], ax0_1, dtype="handle", ) ) with T.block("T_softmax_maxelem_write_back"): i0_2 = T.axis.spatial(256, i0) T.reads([reduce_temp0[0]]) T.writes([T_softmax_maxelem_shared[i0_2]]) T_softmax_maxelem_shared[i0_2] = reduce_temp0[0] for ax0_1 in T.thread_binding(0, 32, thread="threadIdx.x"): with T.block("T_softmax_expsum_normal_reduction_init"): T.reads([]) T.writes([normal_reduce_temp1[0]]) normal_reduce_temp1[0] = T.float32(0) for ax0_0 in T.serial(0, 8): with T.block("T_softmax_expsum_normal_reduction"): i0_3 = T.axis.spatial(256, i0) k = T.axis.reduce(256, ax0_0 * 32 + ax0_1) T.reads( [ A[i0_3, k], T_softmax_maxelem_shared[i0_3], ] ) T.writes([normal_reduce_temp1[0]]) normal_reduce_temp1[0] = normal_reduce_temp1[0] + T.exp( A[i0_3, k] - T_softmax_maxelem_shared[i0_3], dtype="float32" ) with T.block("T_softmax_expsum_cross_thread_reduction"): T.reads([normal_reduce_temp1[0]]) T.writes([reduce_temp1[0]]) T.attr( T.comm_reducer(lambda x_1, y_1: x_1 + y_1, [T.float32(0)]), "reduce_scope", T.reinterpret(T.uint64(0), dtype="handle"), ) T.evaluate( T.tvm_thread_allreduce( T.uint32(1), normal_reduce_temp1[0], True, reduce_temp1[0], ax0_1, dtype="handle", ) ) with T.block("T_softmax_expsum_write_back"): i0_4 = T.axis.spatial(256, i0) T.reads([reduce_temp1[0]]) T.writes([T_softmax_expsum_shared[i0_4]]) T_softmax_expsum_shared[i0_4] = reduce_temp1[0] for i1_0 in T.serial(0, 8): for i1_1 in T.thread_binding(0, 32, thread="threadIdx.x"): with T.block("T_softmax_norm"): i0_5 = T.axis.spatial(256, i0) i1 = T.axis.spatial(256, i1_0 * 32 + i1_1) T.reads( [ A[i0_5, i1], T_softmax_maxelem_shared[i0_5], T_softmax_expsum_shared[i0_5], ] ) T.writes([T_softmax_norm[i0_5, i1]]) T.block_attr({"axis": 1}) T_softmax_norm[i0_5, i1] = ( T.exp( A[i0_5, i1] - T_softmax_maxelem_shared[i0_5], dtype="float32", ) / T_softmax_expsum_shared[i0_5] ) @T.prim_func def argmax_split( idx: T.Buffer[(128, 128), "int32"], val: T.Buffer[(128, 128), "float32"], argmax_v0: T.Buffer[(128,), "int32"], argmax_v1: T.Buffer[(128,), "float32"], ) -> None: for i0, i1_0 in T.grid(128, 4): for i1_1 in T.thread_binding(32, thread="threadIdx.x"): with T.block("argmax"): i = T.axis.spatial(128, i0) k = T.axis.reduce(128, i1_0 * 32 + i1_1) T.reads(idx[i, k], val[i, k]) T.writes(argmax_v0[i], argmax_v1[i]) with T.init(): argmax_v0[i] = -1 argmax_v1[i] = T.float32(-3.4028234663852886e38) v_argmax_v0: T.int32 = T.Select(argmax_v1[i] >= val[i, k], argmax_v0[i], idx[i, k]) v_argmax_v1: T.float32 = T.Select( argmax_v1[i] >= val[i, k], argmax_v1[i], val[i, k] ) argmax_v0[i] = v_argmax_v0 argmax_v1[i] = v_argmax_v1 @T.prim_func def lowered_argmax_split( idx: T.Buffer[(128, 128), "int32"], val: T.Buffer[(128, 128), "float32"], argmax_v0: T.Buffer[(128,), "int32"], argmax_v1: T.Buffer[(128,), "float32"], ) -> None: cross_thread_argmax_v0 = T.alloc_buffer([1], dtype="int32", strides=[1], scope="local") cross_thread_argmax_v1 = T.alloc_buffer([1], dtype="float32", strides=[1], scope="local") in_thread_argmax_v0 = T.alloc_buffer([1], dtype="int32", strides=[1], scope="local") in_thread_argmax_v1 = T.alloc_buffer([1], dtype="float32", strides=[1], scope="local") for i0 in T.serial(128): for i1_1 in T.thread_binding(32, thread="threadIdx.x"): with T.block("argmax_in_thread_init"): T.reads() T.writes(in_thread_argmax_v0[0], in_thread_argmax_v1[0]) in_thread_argmax_v0[0] = -1 in_thread_argmax_v1[0] = T.float32(-3.4028234663852886e38) for i1_0 in T.serial(4): with T.block("argmax_in_thread"): i = T.axis.spatial(128, i0) k = T.axis.reduce(128, i1_0 * 32 + i1_1) T.reads(idx[i, k], val[i, k]) T.writes(in_thread_argmax_v0[0], in_thread_argmax_v1[0]) v_argmax_v0: T.int32 = T.Select( in_thread_argmax_v1[0] >= val[i, k], in_thread_argmax_v0[0], idx[i, k] ) v_argmax_v1: T.float32 = T.Select( in_thread_argmax_v1[0] >= val[i, k], in_thread_argmax_v1[0], val[i, k] ) in_thread_argmax_v0[0] = v_argmax_v0 in_thread_argmax_v1[0] = v_argmax_v1 with T.block("argmax_cross_thread"): T.reads(in_thread_argmax_v0[0], in_thread_argmax_v1[0]) T.writes(cross_thread_argmax_v0[0], cross_thread_argmax_v1[0]) T.attr( T.comm_reducer( lambda x0, x1, y0, y1: ( T.Select(x1 >= y1, x0, y0), T.Select(x1 >= y1, x1, y1), ), [-1, T.float32(-3.4028234663852886e38)], ), "reduce_scope", T.reinterpret(T.uint64(0), dtype="handle"), ) T.evaluate( T.tvm_thread_allreduce( T.uint32(2), in_thread_argmax_v0[0], in_thread_argmax_v1[0], True, cross_thread_argmax_v0[0], cross_thread_argmax_v1[0], i1_1, dtype="handle", ) ) with T.block("argmax_write_back"): i = T.axis.spatial(128, i0) T.reads(cross_thread_argmax_v0[0], cross_thread_argmax_v1[0]) T.writes(argmax_v0[i], argmax_v1[i]) argmax_v0[i] = cross_thread_argmax_v0[0] argmax_v1[i] = cross_thread_argmax_v1[0] @T.prim_func def argmin_split_init_update_reordered( idx: T.Buffer[(128, 128), "int32"], val: T.Buffer[(128, 128), "float32"], argmin_v0: T.Buffer[(128,), "int32"], argmin_v1: T.Buffer[(128,), "float32"], ) -> None: for i0, i1_0 in T.grid(128, 4): for i1_1 in T.thread_binding(32, thread="threadIdx.x"): with T.block("argmin"): i = T.axis.spatial(128, i0) k = T.axis.reduce(128, i1_0 * 32 + i1_1) T.reads(idx[i, k], val[i, k]) T.writes(argmin_v0[i], argmin_v1[i]) with T.init(): argmin_v1[i] = T.float32(3.4028234663852886e38) argmin_v0[i] = -1 v_argmin_v0: T.int32 = T.Select(argmin_v1[i] <= val[i, k], argmin_v0[i], idx[i, k]) v_argmin_v1: T.float32 = T.Select( argmin_v1[i] <= val[i, k], argmin_v1[i], val[i, k] ) argmin_v1[i] = v_argmin_v1 argmin_v0[i] = v_argmin_v0 @T.prim_func def lowered_argmin_split_init_update_reordered( idx: T.Buffer[(128, 128), "int32"], val: T.Buffer[(128, 128), "float32"], argmin_v0: T.Buffer[(128,), "int32"], argmin_v1: T.Buffer[(128,), "float32"], ) -> None: cross_thread_argmin_v0 = T.alloc_buffer([1], dtype="int32", strides=[1], scope="local") cross_thread_argmin_v1 = T.alloc_buffer([1], dtype="float32", strides=[1], scope="local") in_thread_argmin_v0 = T.alloc_buffer([1], dtype="int32", strides=[1], scope="local") in_thread_argmin_v1 = T.alloc_buffer([1], dtype="float32", strides=[1], scope="local") for i0 in T.serial(128): for i1_1 in T.thread_binding(32, thread="threadIdx.x"): with T.block("argmin_in_thread_init"): T.reads() T.writes(in_thread_argmin_v0[0], in_thread_argmin_v1[0]) in_thread_argmin_v0[0] = -1 in_thread_argmin_v1[0] = T.float32(3.4028234663852886e38) for i1_0 in T.serial(4): with T.block("argmin_in_thread"): i = T.axis.spatial(128, i0) k = T.axis.reduce(128, i1_0 * 32 + i1_1) T.reads(idx[i, k], val[i, k]) T.writes(in_thread_argmin_v0[0], in_thread_argmin_v1[0]) v_argmin_v0: T.int32 = T.Select( in_thread_argmin_v1[0] <= val[i, k], in_thread_argmin_v0[0], idx[i, k] ) v_argmin_v1: T.float32 = T.Select( in_thread_argmin_v1[0] <= val[i, k], in_thread_argmin_v1[0], val[i, k] ) in_thread_argmin_v1[0] = v_argmin_v1 in_thread_argmin_v0[0] = v_argmin_v0 with T.block("argmin_cross_thread"): T.reads(in_thread_argmin_v0[0], in_thread_argmin_v1[0]) T.writes(cross_thread_argmin_v0[0], cross_thread_argmin_v1[0]) T.attr( T.comm_reducer( lambda x0, x1, y0, y1: ( T.Select(x1 <= y1, x0, y0), T.Select(x1 <= y1, x1, y1), ), [-1, T.float32(3.4028234663852886e38)], ), "reduce_scope", T.reinterpret(T.uint64(0), dtype="handle"), ) T.evaluate( T.tvm_thread_allreduce( T.uint32(2), in_thread_argmin_v0[0], in_thread_argmin_v1[0], True, cross_thread_argmin_v0[0], cross_thread_argmin_v1[0], i1_1, dtype="handle", ) ) with T.block("argmin_write_back"): i = T.axis.spatial(128, i0) T.reads(cross_thread_argmin_v0[0], cross_thread_argmin_v1[0]) T.writes(argmin_v0[i], argmin_v1[i]) argmin_v0[i] = cross_thread_argmin_v0[0] argmin_v1[i] = cross_thread_argmin_v1[0] @T.prim_func def layer_norm_tuple_sum( data: T.Buffer[(128, 768), "float32"], gamma: T.Buffer[768, "float32"], bias: T.Buffer[768, "float32"], T_layer_norm: T.Buffer[(128, 768), "float32"], ) -> None: data_red_temp_v0 = T.alloc_buffer([128], dtype="float32") data_red_temp_v1 = T.alloc_buffer([128], dtype="float32") for i0_fused in T.thread_binding(128, thread="blockIdx.x"): for i1_0 in T.serial(24): for i1_1 in T.thread_binding(32, thread="threadIdx.x"): with T.block("data_red_temp"): ax0 = T.axis.spatial(128, i0_fused) k1 = T.axis.reduce(768, i1_0 * 32 + i1_1) T.reads(data[ax0, k1]) T.writes(data_red_temp_v0[ax0], data_red_temp_v1[ax0]) with T.init(): data_red_temp_v0[ax0] = T.float32(0) data_red_temp_v1[ax0] = T.float32(0) v_data_red_temp_v0: T.float32 = data_red_temp_v0[ax0] + data[ax0, k1] v_data_red_temp_v1: T.float32 = ( data_red_temp_v1[ax0] + data[ax0, k1] * data[ax0, k1] ) data_red_temp_v0[ax0] = v_data_red_temp_v0 data_red_temp_v1[ax0] = v_data_red_temp_v1 for i0_i1_fused_0 in T.thread_binding(384, thread="blockIdx.x"): for i0_i1_fused_1 in T.thread_binding(256, thread="threadIdx.x"): with T.block("T_layer_norm"): ax0 = T.axis.spatial(128, (i0_i1_fused_0 * 256 + i0_i1_fused_1) // 768) ax1 = T.axis.spatial(768, (i0_i1_fused_0 * 256 + i0_i1_fused_1) % 768) T.reads( data[ax0, ax1], data_red_temp_v0[ax0], data_red_temp_v1[ax0], gamma[ax1], bias[ax1], ) T.writes(T_layer_norm[ax0, ax1]) T_layer_norm[ax0, ax1] = ( data[ax0, ax1] - data_red_temp_v0[ax0] * T.float32(0.0013020833333333333) ) * T.rsqrt( data_red_temp_v1[ax0] * T.float32(0.0013020833333333333) - data_red_temp_v0[ax0] * T.float32(0.0013020833333333333) * (data_red_temp_v0[ax0] * T.float32(0.0013020833333333333)) + T.float32(1.0000000000000001e-05), dtype="float32", ) * gamma[ ax1 ] + bias[ ax1 ] @T.prim_func def lowered_layer_norm_tuple_sum( data: T.Buffer[(128, 768), "float32"], gamma: T.Buffer[768, "float32"], bias: T.Buffer[768, "float32"], T_layer_norm: T.Buffer[(128, 768), "float32"], ) -> None: # with T.block("root") data_red_temp_v0 = T.alloc_buffer([128], dtype="float32") data_red_temp_v1 = T.alloc_buffer([128], dtype="float32") cross_thread_data_red_temp_v0 = T.alloc_buffer([1], dtype="float32", strides=[1], scope="local") cross_thread_data_red_temp_v1 = T.alloc_buffer([1], dtype="float32", strides=[1], scope="local") in_thread_data_red_temp_v0 = T.alloc_buffer([1], dtype="float32", strides=[1], scope="local") in_thread_data_red_temp_v1 = T.alloc_buffer([1], dtype="float32", strides=[1], scope="local") for i0_fused in T.thread_binding(128, thread="blockIdx.x"): for i1_1 in T.thread_binding(32, thread="threadIdx.x"): with T.block("data_red_temp_in_thread_init"): T.reads() T.writes(in_thread_data_red_temp_v0[0], in_thread_data_red_temp_v1[0]) in_thread_data_red_temp_v0[0] = T.float32(0) in_thread_data_red_temp_v1[0] = T.float32(0) for i1_0 in T.serial(24): with T.block("data_red_temp_in_thread"): ax0 = T.axis.spatial(128, i0_fused) k1 = T.axis.reduce(768, i1_0 * 32 + i1_1) T.reads(data[ax0, k1]) T.writes(in_thread_data_red_temp_v0[0], in_thread_data_red_temp_v1[0]) v_data_red_temp_v0: T.float32 = in_thread_data_red_temp_v0[0] + data[ax0, k1] v_data_red_temp_v1: T.float32 = ( in_thread_data_red_temp_v1[0] + data[ax0, k1] * data[ax0, k1] ) in_thread_data_red_temp_v0[0] = v_data_red_temp_v0 in_thread_data_red_temp_v1[0] = v_data_red_temp_v1 with T.block("data_red_temp_cross_thread"): T.reads(in_thread_data_red_temp_v0[0], in_thread_data_red_temp_v1[0]) T.writes(cross_thread_data_red_temp_v0[0], cross_thread_data_red_temp_v1[0]) T.attr( T.comm_reducer( lambda x0, x1, y0, y1: (x0 + y0, x1 + y1), [T.float32(0), T.float32(0)] ), "reduce_scope", T.reinterpret(T.uint64(0), dtype="handle"), ) T.evaluate( T.tvm_thread_allreduce( T.uint32(2), in_thread_data_red_temp_v0[0], in_thread_data_red_temp_v1[0], True, cross_thread_data_red_temp_v0[0], cross_thread_data_red_temp_v1[0], i1_1, dtype="handle", ) ) with T.block("data_red_temp_write_back"): ax0 = T.axis.spatial(128, i0_fused) T.reads(cross_thread_data_red_temp_v0[0], cross_thread_data_red_temp_v1[0]) T.writes(data_red_temp_v0[ax0], data_red_temp_v1[ax0]) data_red_temp_v0[ax0] = cross_thread_data_red_temp_v0[0] data_red_temp_v1[ax0] = cross_thread_data_red_temp_v1[0] for i0_i1_fused_0 in T.thread_binding(384, thread="blockIdx.x"): for i0_i1_fused_1 in T.thread_binding(256, thread="threadIdx.x"): with T.block("T_layer_norm"): ax0 = T.axis.spatial(128, (i0_i1_fused_0 * 256 + i0_i1_fused_1) // 768) ax1 = T.axis.spatial(768, (i0_i1_fused_0 * 256 + i0_i1_fused_1) % 768) T.reads( data[ax0, ax1], data_red_temp_v0[ax0], data_red_temp_v1[ax0], gamma[ax1], bias[ax1], ) T.writes(T_layer_norm[ax0, ax1]) T_layer_norm[ax0, ax1] = ( data[ax0, ax1] - data_red_temp_v0[ax0] * T.float32(0.0013020833333333333) ) * T.rsqrt( data_red_temp_v1[ax0] * T.float32(0.0013020833333333333) - data_red_temp_v0[ax0] * T.float32(0.0013020833333333333) * (data_red_temp_v0[ax0] * T.float32(0.0013020833333333333)) + T.float32(1.0000000000000001e-05), dtype="float32", ) * gamma[ ax1 ] + bias[ ax1 ] # pylint: enable=no-member,invalid-name,unused-variable,unexpected-keyword-arg def test_loop_split(): _check(loop_split, lowered_loop_split) def test_no_normal_reduction(): _check(no_normal_reduction, lowered_no_normal_reduction) def test_two_bound_loops(): _check(two_bound_loops, lowered_two_bound_loops) def test_multiple_blocks_under_reduction_loop(): _check(multiple_blocks_under_reduction_loop, lowered_multiple_blocks_under_reduction_loop) def test_with_block_predicate(): _check(with_block_predicate, lowered_with_block_predicate) def test_single_reduction_loop_with_block_predicate(): _check( single_reduction_loop_with_block_predicate, lowered_single_reduction_loop_with_block_predicate, ) def test_single_reduction_loop_with_tensorize(): _check( single_reduction_loop_with_tensorize, single_reduction_loop_with_tensorize, ) def test_reducer_max(): _check(reducer_max, lowered_reducer_max) def test_zero_rank_buffer(): _check(zero_rank_buffer, lowered_zero_rank_buffer) def test_multiple_bufferstore(): _check_fail(multiple_bufferstore) def test_reduction_block_not_deepest(): _check_fail(reduction_loop_not_deepest) def test_reduction_loop_bound_to_blockidx(): _check_fail(reduction_loop_bound_to_blockidx) def test_different_access_indices(): _check_fail(different_access_indices) def test_invalid_reducer(): _check_fail(invalid_reducer) def test_softmax(): _check(softmax, lowered_softmax) def test_argmax_split(): _check(argmax_split, lowered_argmax_split) def test_argmin_split_init_update_reordered(): _check(argmin_split_init_update_reordered, lowered_argmin_split_init_update_reordered) def test_lower_te(): a = te.placeholder((32, 2, 2)) k1 = te.reduce_axis((0, 2), "k1") k2 = te.reduce_axis((0, 2), "k2") b = te.compute((32,), lambda i: te.sum(a[i, k1, k2], axis=[k1, k2])) s = te.create_schedule(b.op) s[b].bind(k1, te.thread_axis("threadIdx.x")) s[b].bind(k2, te.thread_axis("threadIdx.y")) orig_mod = tvm.driver.build_module.schedule_to_module(s, [a, b]) mod = tvm.tir.transform.LowerCrossThreadReduction()(orig_mod) tvm.ir.assert_structural_equal( mod, orig_mod ) # LowerCrossThreadReduction should do nothing on TE def test_layer_norm_tuple_sum(): _check(layer_norm_tuple_sum, lowered_layer_norm_tuple_sum) if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_transform_lower_init_block.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm from tvm import te from tvm.script import tir as T # pylint: disable=no-self-argument @tvm.script.ir_module class WithInit: @T.prim_func def main(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [64, 64, 64]) B = T.match_buffer(b, [64]) for i0, j0 in T.grid(64, 64): for k0 in T.serial(32, 64): with T.block(): i, j, k = T.axis.remap("SRR", [i0, j0, k0]) with T.init(): B[i] = T.float32(0) B[i] += A[i, j, k] @tvm.script.ir_module class WithBranch: @T.prim_func def main(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [64, 64, 64]) B = T.match_buffer(b, [64]) for i0, j0 in T.grid(64, 64): for k0 in T.serial(32, 64): with T.block(): i, j, k = T.axis.remap("SRR", [i0, j0, k0]) T.reads(A[i, j, k]) T.writes(B[i]) if (j == 0) and (k == 32): B[i] = T.float32(0) B[i] += A[i, j, k] @tvm.script.ir_module class InitWithMatchBuffer: @T.prim_func def main(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [64, 64, 64]) B = T.match_buffer(b, [64]) for i0, j0 in T.grid(64, 64): for k0 in T.serial(32, 64): with T.block(): i, j, k = T.axis.remap("SRR", [i0, j0, k0]) BB = T.match_buffer(B[i], ()) AA = T.match_buffer(A[i, 0:64, 0:64], (64, 64)) with T.init(): BB[()] = T.float32(0) BB[()] += AA[j, k] @tvm.script.ir_module class BranchWithMatchBuffer: @T.prim_func def main(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [64, 64, 64]) B = T.match_buffer(b, [64]) for i0, j0 in T.grid(64, 64): for k0 in T.serial(32, 64): with T.block(): i, j, k = T.axis.remap("SRR", [i0, j0, k0]) T.reads(A[i, j, k]) T.writes(B[i]) BB = T.match_buffer(B[i], ()) AA = T.match_buffer(A[i, 0:64, 0:64], (64, 64)) if (j == 0) and (k == 32): BB[()] = T.float32(0) BB[()] += AA[j, k] def test_lower_reduction(): origin_mod = WithInit mod = tvm.tir.transform.LowerInitBlock()(origin_mod) tvm.ir.assert_structural_equal(mod, WithBranch, True) def test_lower_match_buffer(): origin_mod = InitWithMatchBuffer mod = tvm.tir.transform.LowerInitBlock()(origin_mod) tvm.ir.assert_structural_equal(mod, BranchWithMatchBuffer, True) def test_lower_te(): x = te.placeholder((1,)) y = te.compute((1,), lambda i: x[i] + 2) s = te.create_schedule(y.op) orig_mod = tvm.driver.build_module.schedule_to_module(s, [x, y]) mod = tvm.tir.transform.LowerInitBlock()(orig_mod) tvm.ir.assert_structural_equal(mod, orig_mod) # LowerInitBlock should do nothing on TE if __name__ == "__main__": test_lower_reduction() test_lower_match_buffer() test_lower_te()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_transform_lower_intrin.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm import tvm.testing from tvm import te import numpy as np def lower_intrin(params, stmt): """wrapper to call transformation in stmt""" lower_expr = isinstance(stmt, tvm.tir.PrimExpr) stmt = tvm.tir.Evaluate(stmt) if lower_expr else stmt mod = tvm.IRModule.from_expr( tvm.tir.PrimFunc(params, stmt).with_attr("target", tvm.target.Target("llvm")) ) mod = tvm.transform.Sequential([tvm.tir.transform.Simplify(), tvm.tir.transform.LowerIntrin()])( mod ) func = mod["main"] stmt = func.body return stmt.value if lower_expr else stmt.body def check_value(expr, vx, vy, data, fref): n = len(data) A = te.placeholder((n,), name="A", dtype=expr.dtype) B = te.placeholder((n,), name="B", dtype=expr.dtype) def make_binds(i): x = expr x = tvm.tir.Let(vx, A[i], x) x = tvm.tir.Let(vy, B[i], x) return x C = te.compute((n,), make_binds) s = te.create_schedule([C.op]) f = tvm.build(s, [A, B, C], "llvm") a = tvm.nd.array(np.array([x for x, y in data], dtype=expr.dtype)) b = tvm.nd.array(np.array([y for x, y in data], dtype=expr.dtype)) c = tvm.nd.array(np.zeros(len(data), dtype=expr.dtype)) f(a, b, c) cref = np.array([fref(x, y) for x, y in data]) np.testing.assert_equal(c.numpy(), cref) def get_ref_data(): """Get reference data for every pairs""" import itertools x = range(-10, 10) y = list(range(-10, 10)) y.remove(0) return list(itertools.product(x, y)) @tvm.testing.requires_llvm def test_lower_floordiv(): data = get_ref_data() for dtype in ["int32", "int64", "int16"]: x = te.var("x", dtype=dtype) y = te.var("y", dtype=dtype) zero = tvm.tir.const(0, dtype) # no constraints res = lower_intrin([x, y], tvm.te.floordiv(x, y)) check_value(res, x, y, data, lambda a, b: a // b) # rhs >= 0 res = lower_intrin([x, y], tvm.tir.Select(y >= 0, tvm.te.floordiv(x, y), zero)) check_value(res, x, y, data, lambda a, b: a // b if b > 0 else 0) # involves max res = lower_intrin( [x, y], tvm.tir.Select(y >= 0, tvm.te.max(tvm.te.floordiv(x, y), zero), zero) ) check_value(res, x, y, data, lambda a, b: max(a // b, 0) if b > 0 else 0) # lhs >= 0 res = lower_intrin( [x, y], tvm.tir.Select(tvm.tir.all(y >= 0, x >= 0), tvm.te.floordiv(x, y), zero) ) check_value(res, x, y, data, lambda a, b: a // b if b > 0 and a >= 0 else 0) # const power of two res = lower_intrin([x, y], tvm.te.floordiv(x, tvm.tir.const(8, dtype=dtype))) check_value(res, x, y, [(a, b) for a, b in data if b == 8], lambda a, b: a // b) @tvm.testing.requires_llvm def test_lower_floormod(): data = get_ref_data() for dtype in ["int32", "int64", "int16"]: x = te.var("x", dtype=dtype) y = te.var("y", dtype=dtype) zero = tvm.tir.const(0, dtype) # no constraints res = lower_intrin([x, y], tvm.te.floormod(x, y)) check_value(res, x, y, data, lambda a, b: a % b) # rhs >= 0 res = lower_intrin([x, y], tvm.tir.Select(y >= 0, tvm.te.floormod(x, y), zero)) check_value(res, x, y, data, lambda a, b: a % b if b > 0 else 0) # lhs >= 0 res = lower_intrin( [x, y], tvm.tir.Select(tvm.tir.all(y >= 0, x >= 0), tvm.te.floormod(x, y), zero) ) check_value(res, x, y, data, lambda a, b: a % b if b > 0 and a >= 0 else 0) # const power of two res = lower_intrin([x, y], tvm.te.floormod(x, tvm.tir.const(8, dtype=dtype))) check_value(res, x, y, [(a, b) for a, b in data if b == 8], lambda a, b: a % b) if __name__ == "__main__": test_lower_floordiv() test_lower_floormod()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_transform_lower_opaque_block.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm import tvm.testing from tvm import te from tvm.script import tir as T def _check(original, transformed): func = original mod = tvm.IRModule.from_expr(func) mod = tvm.tir.transform.LowerOpaqueBlock()(mod) mod = tvm.tir.transform.Simplify()(mod) tvm.ir.assert_structural_equal(mod["main"], transformed, True) @T.prim_func def compacted_elementwise_func(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (16, 16), "float32") C = T.match_buffer(c, (16, 16), "float32") for i in range(0, 16): with T.block(): T.reads(A[i, 0:16]) T.writes(C[i, 0:16]) B = T.alloc_buffer([1, 16], "float32", scope="global") for j in range(0, 16): with T.block(): T.reads(A[i, j]) T.writes(B[0, j]) B[0, j] = A[i, j] + 1.0 for j in range(0, 16): with T.block(): T.reads(B[0, j]) T.writes(C[i, j]) C[i, j] = B[0, j] * 2.0 @T.prim_func def transformed_elementwise_func(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (16, 16), "float32") C = T.match_buffer(c, (16, 16), "float32") for i in T.serial(0, 16): B_new = T.decl_buffer(shape=[1, 16], dtype="float32") for j in T.serial(0, 16): B_new[0, j] = A[i, j] + 1.0 for j in T.serial(0, 16): C[i, j] = B_new[0, j] * 2.0 @T.prim_func def compacted_gpu_func(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (16, 16), "float32") C = T.match_buffer(c, (16, 16), "float32") for i0 in T.thread_binding(0, 4, thread="blockIdx.x"): for i1 in T.thread_binding(0, 2, thread="threadIdx.x"): for i2 in T.thread_binding(0, 2, thread="vthread"): with T.block(): T.reads(A[i0 * 4 + i1 * 2 + i2, 0:16]) T.writes(C[i0 * 4 + i1 * 2 + i2, 0:16]) B = T.alloc_buffer([1, 16], "float32", scope="local") for j in range(0, 16): with T.block(): T.reads(A[i0 * 4 + i1 * 2 + i2, j]) T.writes(B[0, j]) B[0, j] = A[i0 * 4 + i1 * 2 + i2, j] + 1.0 for j in range(0, 16): with T.block(): T.reads(B[0, j]) T.writes(C[i0 * 4 + i1 * 2 + i2, j]) C[i0 * 4 + i1 * 2 + i2, j] = B[0, j] * 2.0 @T.prim_func def transformed_gpu_func(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (16, 16), "float32") C = T.match_buffer(c, (16, 16), "float32") i0 = T.env_thread("blockIdx.x") i1 = T.env_thread("threadIdx.x") i2 = T.env_thread("vthread") T.launch_thread(i0, 4) T.launch_thread(i1, 2) T.launch_thread(i2, 2) B = T.decl_buffer(shape=[1, 16], dtype="float32", scope="local") for j in range(0, 16): B[0, j] = A[i0 * 4 + i1 * 2 + i2, j] + 1.0 for j in range(0, 16): C[i0 * 4 + i1 * 2 + i2, j] = B[0, j] * 2.0 @T.prim_func def compacted_symbolic_func(a: T.handle, c: T.handle, n: T.int32, m: T.int32) -> None: A = T.match_buffer(a, (n, m), "float32") C = T.match_buffer(c, (n, m), "float32") for i in range(0, n): with T.block(): T.reads(A[i, m]) T.writes(C[i, m]) B = T.alloc_buffer((m,), "float32", scope="global") for j in range(0, m): with T.block(): T.reads(A[i, j]) T.writes(B[j]) B[j] = A[i, j] + 1.0 for j in range(0, m): with T.block(): T.reads(B[j]) T.writes(C[i, j]) C[i, j] = B[j] * 2.0 @T.prim_func def transformed_symbolic_func(a: T.handle, c: T.handle, n: T.int32, m: T.int32) -> None: A = T.match_buffer(a, (n, m), "float32") C = T.match_buffer(c, (n, m), "float32") for i in range(0, n): B = T.decl_buffer(shape=[m], dtype="float32") for j in range(0, m): B[j] = A[i, j] + 1.0 for j in range(0, m): C[i, j] = B[j] * 2.0 @T.prim_func def compacted_predicate_func(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (32), "float32") C = T.match_buffer(c, (32), "float32") for i, j in T.grid(5, 7): with T.block(): T.reads(A[i * 7 + j]) T.writes(C[i * 7 + j]) T.where(i * 7 + j < 32) C[i * 7 + j] = A[i * 7 + j] + 1.0 @T.prim_func def transformed_predicate_func(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (32), "float32") C = T.match_buffer(c, (32), "float32") for i, j in T.grid(5, 7): if i * 7 + j < 32: C[i * 7 + j] = A[i * 7 + j] + 1.0 @T.prim_func def compacted_unit_loop_func(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (32), "float32") C = T.match_buffer(c, (32), "float32") for x, y, z in T.grid(4, 1, 8): with T.block(): T.reads(A[x * 8 + y * 8 + z]) T.writes(C[x * 8 + y * 8 + z]) C[x * 8 + y * 8 + z] = A[x * 8 + y * 8 + z] + 1.0 @T.prim_func def transformed_unit_loop_func(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (32), "float32") C = T.match_buffer(c, (32), "float32") for x, z in T.grid(4, 8): C[x * 8 + z] = A[x * 8 + z] + 1.0 @T.prim_func def compacted_multi_alloc_func(a: T.handle, d: T.handle) -> None: A = T.match_buffer(a, (32), "float32") D = T.match_buffer(d, (32), "float32") for i in range(0, 32): with T.block(): T.reads(A[i]) T.writes(D[i]) B = T.alloc_buffer((32,), scope="global") C = T.alloc_buffer((32,), scope="global") B[i] = A[i] + 1.0 C[i] = A[i] + B[i] D[i] = C[i] * 2.0 @T.prim_func def transformed_multi_alloc_func(a: T.handle, d: T.handle) -> None: A = T.match_buffer(a, (32), "float32") D = T.match_buffer(d, (32), "float32") for i in range(0, 32): B = T.decl_buffer(shape=(32,), dtype="float32") C = T.decl_buffer(shape=(32,), dtype="float32") B[i] = A[i] + 1.0 C[i] = A[i] + B[i] D[i] = C[i] * 2.0 @T.prim_func def compacted_strided_buffer_func(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (16, 16), "float32") C = T.match_buffer(c, (16, 16), "float32") for i0 in range(0, 4): with T.block(): T.reads(A[i0 * 4 : i0 * 4 + 4, 0:16]) T.writes(C[i0 * 4 : i0 * 4 + 4, 0:16]) B = T.alloc_buffer([4, 16], "float32", strides=[17, 1], scope="global") for i1 in range(0, 4): for j in range(0, 16): with T.block(): T.reads(A[i0 * 4 + i1, j]) T.writes(B[i1, j]) B[i1, j] = A[i0 * 4 + i1, j] + 1.0 for i1 in range(0, 4): for j in range(0, 16): with T.block(): T.reads(B[i1, j]) T.writes(C[i0 * 4 + i1, j]) C[i0 * 4 + i1, j] = B[i1, j] * 2.0 @T.prim_func def transformed_strided_buffer_func( A: T.Buffer[(16, 16), "float32"], C: T.Buffer[(16, 16), "float32"] ) -> None: # body for i0 in T.serial(4): B_data = T.allocate([4, 17], "float32", "global") B = T.decl_buffer(shape=[4, 16], dtype="float32", strides=[17, 1], data=B_data) for i1, j in T.grid(4, 16): B[i1, j] = A[i0 * 4 + i1, j] + T.float32(1) for i1, j in T.grid(4, 16): C[i0 * 4 + i1, j] = B[i1, j] * T.float32(2) @T.prim_func def annotated_loops(a: T.handle) -> None: A = T.match_buffer(a, (16,), "float32") for i in range(0, 16, annotations={"pragma_1": "str_value", "pragma_2": 1, "pragma_3": 0.0}): A[i] = 0.0 @T.prim_func def boolean_handling_before(a: T.Buffer[10, "bool"], b: T.Buffer[10, "bool"]) -> None: for i0 in T.serial(10): with T.block("b"): T.reads(a[i0]) T.writes(b[i0]) b[i0] = a[i0] @T.prim_func def boolean_handling_after(a: T.Buffer[10, "bool"], b: T.Buffer[10, "bool"]) -> None: # body for i0 in T.serial(10): b[i0] = a[i0] def test_elementwise(): _check(compacted_elementwise_func, transformed_elementwise_func) def test_gpu_workload(): _check(compacted_gpu_func, transformed_gpu_func) def test_symbolic_shape(): _check(compacted_symbolic_func, transformed_symbolic_func) def test_predicate(): _check(compacted_predicate_func, transformed_predicate_func) def test_unit_loops(): _check(compacted_unit_loop_func, transformed_unit_loop_func) def test_multi_alloc(): _check(compacted_multi_alloc_func, transformed_multi_alloc_func) def test_strided_buffer(): _check(compacted_strided_buffer_func, transformed_strided_buffer_func) def test_lower_te(): x = te.placeholder((1,)) y = te.compute((1,), lambda i: x[i] + 2) s = te.create_schedule(y.op) orig_mod = tvm.driver.build_module.schedule_to_module(s, [x, y]) mod = tvm.tir.transform.LowerOpaqueBlock()(orig_mod) tvm.ir.assert_structural_equal(mod, orig_mod) # LowerOpaqueBlock should do nothing on TE def test_annotated_loops(): mod = tvm.IRModule.from_expr(annotated_loops) mod = tvm.tir.transform.LowerOpaqueBlock()(mod) attr1 = mod["main"].body attr2 = attr1.body attr3 = attr2.body assert attr1.attr_key == "pragma_1" and attr1.value == "str_value" assert attr2.attr_key == "pragma_2" tvm.ir.assert_structural_equal(attr2.value, tvm.tir.IntImm("int32", 1)) assert attr3.attr_key == "pragma_3" tvm.ir.assert_structural_equal(attr3.value, tvm.tir.FloatImm("float32", 0.0)) def test_annotated_block(): @T.prim_func def annotated_block() -> None: with T.block(): T.block_attr({"pragma_1": "str_value", "pragma_2": 1, "pragma_3": 0.0}) T.evaluate(0) mod = tvm.IRModule.from_expr(annotated_block) mod = tvm.tir.transform.LowerOpaqueBlock()(mod) attr1 = mod["main"].body attr2 = attr1.body attr3 = attr2.body assert attr1.attr_key == "pragma_1" and attr1.value == "str_value" assert attr2.attr_key == "pragma_2" tvm.ir.assert_structural_equal(attr2.value, tvm.tir.IntImm("int32", 1)) assert attr3.attr_key == "pragma_3" tvm.ir.assert_structural_equal(attr3.value, tvm.tir.FloatImm("float32", 0.0)) def test_preserved_annotations(): @T.prim_func def before(A: T.Buffer[8, "float32"], B: T.Buffer[8, "float32"]): for i in T.serial(8, annotations={"k_0": 1, "k_1": [2, 3], "k_2": 3.14}): with T.block("block"): T.block_attr({"k_3": "oops"}) B[i] = A[i] + 1.0 @T.prim_func def after(A: T.Buffer[8, "float32"], B: T.Buffer[8, "float32"]): for i in T.serial(8, annotations={"k_0": 1, "k_1": [2, 3], "k_2": 3.14}): B[i] = A[i] + 1.0 mod = tvm.IRModule.from_expr(before) mod = tvm.tir.transform.LowerOpaqueBlock()(mod) tvm.ir.assert_structural_equal(mod["main"], after) def test_boolean_handling(): _check(boolean_handling_before, boolean_handling_after) if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_transform_lower_tvm_builtin.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm from tvm import te import numpy as np from tvm import testing @tvm.register_func("tvm.test_matmul") def my_matmul(a, b, c): c.copyfrom(np.dot(a.numpy(), b.numpy())) def check_packed_func(target="llvm"): ib = tvm.tir.ir_builder.create() m = n = k = 16 # # Prepare buffer for a, b and c: # a = te.placeholder((m, k), name="a", dtype="float64") b = te.placeholder((k, n), name="b", dtype="float64") k = te.reduce_axis((0, k), name="k") c = te.compute((m, n), lambda i, j: te.sum(a[i, k] * b[k, j], axis=k), name="c") a_buffer = tvm.tir.decl_buffer( a.shape, a.dtype, name="a_buffer", offset_factor=1, strides=[te.var("s1"), 1] ) b_buffer = tvm.tir.decl_buffer( b.shape, b.dtype, name="b_buffer", offset_factor=1, strides=[te.var("s2"), 1] ) c_buffer = tvm.tir.decl_buffer( c.shape, c.dtype, name="c_buffer", offset_factor=1, strides=[te.var("s3"), 1] ) with ib.for_range(0, 10, "i", kind="parallel"): ib.emit(tvm.tir.call_packed("tvm.test_matmul", a_buffer, b_buffer, c_buffer)) stmt = ib.get() # Construct a valid IRModule to be lowered: mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([a_buffer, b_buffer, c_buffer], stmt)) target = tvm.target.Target(target) mod = tvm.tir.transform.Apply(lambda f: f.with_attr("target", target))(mod) mod = tvm.tir.transform.Apply(lambda f: f.with_attr("global_symbol", "main"))(mod) mod = tvm.tir.transform.MakePackedAPI()(mod) # Do the lowering: mod = tvm.tir.transform.LowerTVMBuiltin()(mod) # Get the PrimFunc from module: prim_func = mod.functions.items()[0][1] node = prim_func.body # Recursively visit PrimFunc until we meet the for-loop: while isinstance(node, (tvm.tir.AssertStmt, tvm.tir.LetStmt, tvm.tir.AttrStmt)): node = node.body # For-loop: assert isinstance(node, tvm.tir.stmt.For) # # let stack_tcode = tir.tvm_stack_alloca("arg_tcode", 4) # alloca_tcode = node.body assert isinstance(alloca_tcode, tvm.tir.LetStmt) expected_value = tvm.tir.call_intrin( "handle", tvm.ir.Op.get("tir.tvm_stack_alloca"), "arg_tcode", 4 ) expected_var = alloca_tcode.var expected_stmt = tvm.tir.LetStmt(expected_var, expected_value, alloca_tcode.body) tvm.ir.assert_structural_equal(alloca_tcode, expected_stmt, map_free_vars=True) # # let stack_value = tir.tvm_stack_alloca("arg_value", 4) # alloca_value = alloca_tcode.body assert isinstance(alloca_value, tvm.tir.LetStmt) expected_value = tvm.tir.call_intrin( "handle", tvm.ir.Op.get("tir.tvm_stack_alloca"), "arg_value", 4 ) expected_var = alloca_value.var expected_stmt = tvm.tir.LetStmt(expected_var, expected_value, alloca_value.body) tvm.ir.assert_structural_equal(alloca_value, expected_stmt, map_free_vars=True) # # let stack_array = tir.tvm_stack_alloca("array", 3) # alloca_array = alloca_value.body assert isinstance(alloca_array, tvm.tir.LetStmt) expected_value = tvm.tir.call_intrin( "handle", tvm.ir.Op.get("tir.tvm_stack_alloca"), "array", 3 ) expected_var = alloca_array.var expected_stmt = tvm.tir.LetStmt(expected_var, expected_value, alloca_array.body) tvm.ir.assert_structural_equal(alloca_array, expected_stmt, map_free_vars=True) # # let stack_shape = tir.tvm_stack_alloca("shape", 12) # alloca_shape = alloca_array.body assert isinstance(alloca_shape, tvm.tir.LetStmt) expected_value = tvm.tir.call_intrin( "handle", tvm.ir.Op.get("tir.tvm_stack_alloca"), "shape", 12 ) expected_var = alloca_shape.var expected_stmt = tvm.tir.LetStmt(expected_var, expected_value, alloca_shape.body) tvm.ir.assert_structural_equal(alloca_shape, expected_stmt, map_free_vars=True) def test_lower_packed_func(): check_packed_func("llvm") check_packed_func("stackvm") @tvm.testing.requires_llvm def test_call_packed_return_non_i32(): # This call packed that return non i32 types expected_value = np.array([1.2, 1.4], dtype="float32") def packed_echo(value): return tvm.tir.call_intrin( value.dtype, tvm.ir.Op.get("tir.tvm_call_packed"), "testing.echo", value ) def build_tir(): Ab = tvm.tir.decl_buffer((2,), "float32") ib = tvm.tir.ir_builder.create() Aptr = ib.buffer_ptr(Ab) # return f32 # Aptr[0] = testing.echo(expected_value[0]) Aptr[0] = packed_echo(tvm.tir.const(expected_value[0], "float32")) # return handle # let Aptr_var = testing.echo(Aptr) in Aptr_var[1] = expected_value[1] Aptr_var = ib.let("Aptr_dup", packed_echo(Aptr.asobject().data)) ib.emit(tvm.tir.BufferStore(Aptr, tvm.tir.const(expected_value[1], "float32"), [1])) stmt = ib.get() return tvm.IRModule.from_expr( tvm.tir.PrimFunc([Ab], stmt).with_attr("global_symbol", "packed_test") ) mod = build_tir() f = tvm.build(mod, None, "llvm") a = tvm.nd.array(np.zeros(2, dtype="float32")) f(a) tvm.testing.assert_allclose(a.numpy(), expected_value) if __name__ == "__main__": test_call_packed_return_non_i32() test_lower_packed_func()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_transform_lower_warp_memory.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm from tvm import te from tvm.contrib.nvcc import have_fp16 import numpy as np import tvm.testing import pytest @tvm.testing.requires_cuda def test_lower_warp_memory_local_scope(): m = 128 A = te.placeholder((m,), name="A") B = te.compute((m,), lambda i: A[i] + 3, name="B") s = te.create_schedule(B.op) AA = s.cache_read(A, "warp", [B]) xo, xi = s[B].split(B.op.axis[0], 64) xi0, xi1 = s[B].split(xi, factor=32) tx = te.thread_axis("threadIdx.x") s[B].bind(xi1, tx) s[B].bind(xo, te.thread_axis("blockIdx.x")) s[AA].compute_at(s[B], xo) xo, xi = s[AA].split(s[AA].op.axis[0], 32) s[AA].bind(xi, tx) cuda_target = tvm.target.Target("cuda") assert cuda_target.thread_warp_size == 32 # lowering with the CSE pass disabled as otherwise it would do some commoning with tvm.transform.PassContext(opt_level=3, disabled_pass=["tir.CommonSubexprElimTIR"]): mod = tvm.lower(s, [A, B], name="f") mod = tvm.tir.transform.Apply(lambda f: f.with_attr("target", cuda_target))(mod) fdevice = tvm.tir.transform.SplitHostDevice()(mod)["f_kernel0"] mod = tvm.IRModule.from_expr(fdevice) fdevice = tvm.tir.transform.LowerWarpMemory()(mod)["f_kernel0"] allocate = fdevice.body.body assert allocate.buffer_var.type_annotation.storage_scope == "local" assert fdevice.body.body.extents[0].value == 2 @tvm.testing.requires_cuda def test_lower_warp_memory_correct_indices(): n = 32 A = te.placeholder((2, n, n), name="A", dtype="float32") C = te.compute((2, n, n), lambda x, i, j: A(x, i, (j + 1) % n), name="C") s = te.create_schedule(C.op) bk_x = te.thread_axis("blockIdx.x") th_y = te.thread_axis("threadIdx.y") th_x = te.thread_axis("threadIdx.x") B = s.cache_read(A, "warp", [C]) cx, ci, cj = C.op.axis bx, bi, bj = B.op.axis s[C].bind(cj, th_x) s[C].bind(cx, bk_x) s[B].compute_at(s[C], cx) s[B].bind(bi, th_y) s[B].bind(bj, th_x) bounds = tvm.te.schedule.InferBound(s) ir = tvm.te.schedule.ScheduleOps(s, bounds) inner_func = ir.body.body.body store_A_warp = inner_func.seq[0].body.body indices = list(store_A_warp.indices) # A.warp is actually many buffers, one for each warp, although they are all called A.warp # 1. If we are accessing from different threads within a same warp (different # threadIdx.x), we need to distinguish between each elements using threadIdx.x, # so threadIdx.x is one if the indices. # 2. If we are accessing from different warps (different threadIdx.y), we are actually # assessing different buffers, so there is no need to distinguish from elements, # and therefore threadIdx.y is NOT a index. idx_names = map(lambda x: x.name, filter(lambda x: type(x) is tvm.tir.expr.Var, indices)) assert "threadIdx.x" in idx_names assert "threadIdx.y" not in idx_names @tvm.testing.requires_gpu @tvm.testing.requires_cuda def test_lower_warp_memory_cuda_end_to_end(): def check_cuda(dtype): if dtype == "float16" and not have_fp16(tvm.cuda(0).compute_version): print("Skip because gpu does not have fp16 support") return m = 128 A = te.placeholder((m,), name="A", dtype=dtype) B = te.compute((m,), lambda i: A[i // 32 * 32 + (i + 1) % 32], name="B") cuda_target = tvm.target.Target("cuda") assert cuda_target.thread_warp_size == 32 with cuda_target: s = te.create_schedule(B.op) AA = s.cache_read(A, "warp", [B]) xo, xi = s[B].split(B.op.axis[0], 64) xi0, xi1 = s[B].split(xi, factor=32) tx = te.thread_axis("threadIdx.x") s[B].bind(xi1, tx) s[B].bind(xo, te.thread_axis("blockIdx.x")) s[AA].compute_at(s[B], xo) xo, xi = s[AA].split(s[AA].op.axis[0], 32) s[AA].bind(xi, tx) dev = tvm.cuda(0) # building with the CSE pass disabled as otherwise it would do some commoning with tvm.transform.PassContext(opt_level=3, disabled_pass=["tir.CommonSubexprElimTIR"]): func = tvm.build(s, [A, B], "cuda") A_np = np.array(list(range(m)), dtype=dtype) B_np = np.array( list(range(1, 32)) + [0] + list(range(33, 64)) + [32] + list(range(65, 96)) + [64] + list(range(97, 128)) + [96], dtype=dtype, ) A_nd = tvm.nd.array(A_np, dev) B_nd = tvm.nd.array(np.zeros(B_np.shape, dtype=B_np.dtype), dev) func(A_nd, B_nd) tvm.testing.assert_allclose(B_nd.numpy(), B_np, rtol=1e-3) check_cuda("float32") check_cuda("float16") @tvm.testing.requires_gpu @tvm.testing.requires_cuda def test_lower_warp_memory_cuda_half_a_warp(): def check_cuda(dtype): if dtype == "float16" and not have_fp16(tvm.cuda(0).compute_version): print("Skip because gpu does not have fp16 support") return n, m = 16, 16 A = te.placeholder( ( n, m, ), name="A", dtype=dtype, ) B = te.compute( ( n, m, ), lambda j, i: A[j, (i + 1) % m], name="B", ) cuda_target = tvm.target.Target("cuda") assert cuda_target.thread_warp_size == 2 * m with cuda_target: s = te.create_schedule(B.op) tx = te.thread_axis("threadIdx.x") ty = te.thread_axis("threadIdx.y") bx = te.thread_axis("blockIdx.x") AA = s.cache_read(A, "warp", [B]) y, x = B.op.axis z, y = s[B].split(y, nparts=2) s[B].bind(x, tx) s[B].bind(y, ty) s[B].bind(z, bx) s[AA].compute_at(s[B], y) _, x = AA.op.axis s[AA].bind(x, tx) dev = tvm.cuda(0) # building with the CSE pass disabled as otherwise it would do some commoning with tvm.transform.PassContext(opt_level=3, disabled_pass=["tir.CommonSubexprElimTIR"]): func = tvm.build(s, [A, B], "cuda") A_np = np.array([list(range(i, m + i)) for i in range(n)], dtype=dtype) B_np = np.array([list(range(1 + i, m + i)) + [i] for i in range(n)], dtype=dtype) A_nd = tvm.nd.array(A_np, dev) B_nd = tvm.nd.array(np.zeros(B_np.shape, dtype=B_np.dtype), dev) func(A_nd, B_nd) tvm.testing.assert_allclose(B_nd.numpy(), B_np, rtol=1e-3) check_cuda("float32") check_cuda("float16") @tvm.testing.requires_gpu @tvm.testing.requires_cuda def test_lower_warp_memory_cuda_2_buffers(): def check_cuda(dtype): if dtype == "float16" and not have_fp16(tvm.cuda(0).compute_version): print("Skip because gpu does not have fp16 support") return m = 32 A = te.placeholder((m,), name="A", dtype=dtype) B = te.placeholder((m,), name="B", dtype=dtype) C = te.compute((m,), lambda i: A[(i + 1) % m] + B[(i + 1) % m], name="C") cuda_target = tvm.target.Target("cuda") assert m <= cuda_target.thread_warp_size with cuda_target: s = te.create_schedule(C.op) tx = te.thread_axis("threadIdx.x") bx = te.thread_axis("blockIdx.x") AA = s.cache_read(A, "warp", [C]) BB = s.cache_read(B, "warp", [C]) xo, xi = s[C].split(C.op.axis[0], nparts=1) s[C].bind(xi, tx) s[C].bind(xo, bx) s[AA].compute_at(s[C], xo) s[BB].compute_at(s[C], xo) xo, xi = s[AA].split(s[AA].op.axis[0], nparts=1) s[AA].bind(xo, bx) s[AA].bind(xi, tx) xo, xi = s[BB].split(s[BB].op.axis[0], nparts=1) s[BB].bind(xo, bx) s[BB].bind(xi, tx) dev = tvm.cuda(0) # building with the CSE pass disabled as otherwise it would do some commoning with tvm.transform.PassContext(opt_level=3, disabled_pass=["tir.CommonSubexprElimTIR"]): func = tvm.build(s, [A, B, C], "cuda") AB_np = np.array(list(range(m)), dtype=dtype) C_np = np.array(list(range(1, m)) + [0], dtype=dtype) * 2 A_nd = tvm.nd.array(AB_np, dev) B_nd = tvm.nd.array(AB_np, dev) C_nd = tvm.nd.array(np.zeros(C_np.shape, dtype=C_np.dtype), dev) func(A_nd, B_nd, C_nd) tvm.testing.assert_allclose(C_nd.numpy(), C_np, rtol=1e-3) check_cuda("float32") check_cuda("float16") @tvm.testing.requires_gpu def test_lower_warp_memory_roundup(): def check(device, m): A = te.placeholder((m,), name="A") B = te.compute((m,), lambda i: A[i] + 1, name="B") with tvm.target.Target(device): s = te.create_schedule(B.op) xo, xi = s[B].split(B.op.axis[0], factor=32) tx = te.thread_axis("threadIdx.x") s[B].bind(xo, te.thread_axis("blockIdx.x")) s[B].bind(xi, tx) AA = s.cache_read(A, "warp", [B]) _, yi = s[AA].split(s[AA].op.axis[0], factor=32) s[AA].bind(yi, tx) s[AA].compute_at(s[B], xo) dev = tvm.device(device, 0) # building with the CSE pass disabled as otherwise it would do some commoning with tvm.transform.PassContext(opt_level=3, disabled_pass=["tir.CommonSubexprElimTIR"]): func = tvm.build(s, [A, B], device) A_np = np.random.uniform(size=(m,)).astype(A.dtype) B_np = np.zeros(shape=(m,)).astype(B.dtype) A_nd = tvm.nd.array(A_np, dev) B_nd = tvm.nd.array(B_np, dev) func(A_nd, B_nd) B_np = A_np + 1 tvm.testing.assert_allclose(B_nd.numpy(), B_np) for device in ["cuda", "rocm"]: if not tvm.testing.device_enabled(device): print("skip because", device, "is not enabled..") continue check(device, m=31) check(device, m=32) check(device, m=33) check(device, m=63) check(device, m=64) check(device, m=65) @tvm.testing.requires_cuda def test_lower_warp_memory_same_thread(): m = n = 128 A = te.placeholder((m, n), name="A") k = te.reduce_axis((0, n), name="k") B = te.compute((m,), lambda i: te.sum(A[i, k], axis=[k])) s = te.create_schedule(B.op) BB = s.cache_write(B, "warp") tx = te.thread_axis("threadIdx.x") xo, xi = s[B].split(B.op.axis[0], factor=32) s[B].bind(xi, tx) s[B].bind(xo, te.thread_axis("blockIdx.x")) s[BB].compute_at(s[B], xo) xo, xi = s[BB].split(s[BB].op.axis[0], factor=32) s[BB].bind(xi, tx) cuda_target = tvm.target.Target("cuda") assert cuda_target.thread_warp_size == 32 # lowering with the CSE pass disabled as otherwise it would do some commoning with tvm.transform.PassContext(opt_level=3, disabled_pass=["tir.CommonSubexprElimTIR"]): mod = tvm.lower(s, [A, B], name="f") mod = tvm.tir.transform.Apply(lambda f: f.with_attr("target", cuda_target))(mod) fdevice = tvm.tir.transform.SplitHostDevice()(mod)["f_kernel0"] mod = tvm.IRModule.from_expr(fdevice) fdevice = tvm.tir.transform.LowerWarpMemory()(mod)["f_kernel0"] assert "tvm_warp_shuffle" not in fdevice.astext() @tvm.testing.requires_cuda def test_lower_warp_memory_divide_by_factor(): ib = tvm.tir.ir_builder.IRBuilder() bx = te.thread_axis("blockIdx.x") tx = te.thread_axis("threadIdx.x") with ib.new_scope(): ib.scope_attr(bx, "thread_extent", 32) ib.scope_attr(tx, "thread_extent", 32) t = ib.allocate("float32", 16, name="t", scope="warp") n = ib.allocate("float32", 16, name="n", scope="local") n[0] = t[0] stmt = ib.get() func = tvm.tir.PrimFunc([], stmt) func = func.with_attr("from_legacy_te_schedule", True) cuda_target = tvm.target.Target("cuda") # lowering with the CSE pass disabled as otherwise it would do some commoning with tvm.transform.PassContext(opt_level=3, disabled_pass=["tir.CommonSubexprElimTIR"]): mod = tvm.lower(func, name="f") mod = tvm.tir.transform.Apply(lambda f: f.with_attr("target", cuda_target))(mod) with pytest.raises(tvm.error.TVMError, match="Divide by zero") as cm: tvm.tir.transform.LowerWarpMemory()(mod)["f_kernel0"] if __name__ == "__main__": pytest.main([__file__])
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_transform_make_packed_api.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm from tvm import te from tvm.driver.build_module import schedule_to_module def test_makeapi(): """Not yet working, mock design""" n = te.size_var("n") A = te.placeholder((n,), name="A") B = te.placeholder((n,), name="B") C = te.compute(A.shape, lambda *i: A(*i) + B(*i), name="C") s = te.create_schedule(C.op) mod = schedule_to_module(s, [n, A, B, C]) mod = tvm.tir.transform.StorageFlatten(64)(mod) mod = tvm.tir.transform.Apply( lambda f: f.with_attr( { "target": tvm.target.Target("llvm"), "global_symbol": "main", } ) )(mod) f = tvm.tir.transform.MakePackedAPI()(mod)["main"] assert len(f.params) == 6 def _find_assignment(stmt, var_name): while not isinstance(stmt, tvm.tir.LetStmt): stmt = stmt.body if stmt.var.name != var_name: return _find_assignment(stmt.body, var_name) return stmt def _find_next(stmt, type): while not isinstance(stmt, type): stmt = stmt.body return stmt def test_variable_passed_from_args(): ib = tvm.tir.ir_builder.create() input_buffer = tvm.tir.decl_buffer(name="input_buffer", shape=[1]) not_device_context = tvm.tir.Var("not_device_context", dtype="handle") ib.emit( tvm.tir.call_extern("float32", "some_external_call", input_buffer.data, not_device_context), ) stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([input_buffer, not_device_context], stmt)) mod = tvm.tir.transform.Apply(lambda f: f.with_attr("target", tvm.target.Target("llvm")))(mod) mod = tvm.tir.transform.Apply(lambda f: f.with_attr("global_symbol", "main"))(mod) func = tvm.tir.transform.MakePackedAPI()(mod)["main"] num_args = func.params[2] # num_args assertion assert func.body.condition.a == num_args assert func.body.condition.b == 2 # Arguments unpacking assignment = _find_assignment(func.body, "arg.input_buffer") assert str(assignment.value) == "@tir.tvm_struct_get(args: handle, 0, 12, dtype=handle)" assignment = _find_assignment(func.body, "arg.not_device_context") assert str(assignment.value) == "@tir.tvm_struct_get(args: handle, 1, 12, dtype=handle)" assignment = _find_assignment(func.body, "input_buffer") assert ( str(assignment.value) == "@tir.tvm_struct_get(arg.input_buffer: handle, 0, 1, dtype=handle)" ) unpacked_input_buffer = assignment.var assignment = _find_assignment(func.body, "not_device_context") assert str(assignment.value) == "arg.not_device_context: handle" unpacked_not_device_context = assignment.var seq_stmt = _find_next(assignment, tvm.tir.SeqStmt) call = _find_next(seq_stmt[1], tvm.tir.Evaluate) call_extern = call.value assert call_extern.args[1] == unpacked_input_buffer assert call_extern.args[2] == unpacked_not_device_context def test_device_api_context_implicit_resource_handle(): ib = tvm.tir.ir_builder.create() input_buffer = tvm.tir.decl_buffer(name="input_buffer", shape=[1]) device_context = tvm.tir.Var("device_api_context", dtype="handle") ib.emit( tvm.tir.call_extern("float32", "some_external_call", input_buffer.data, device_context), ) stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([input_buffer, device_context], stmt)) mod = tvm.tir.transform.Apply(lambda f: f.with_attr("target", tvm.target.Target("llvm")))(mod) mod = tvm.tir.transform.Apply(lambda f: f.with_attr("global_symbol", "main"))(mod) func = tvm.tir.transform.MakePackedAPI()(mod)["main"] num_args = func.params[2] device_context_in_resource_handle = func.params[5] # num_args assertion assert func.body.condition.a == num_args assert func.body.condition.b == 1 # Arguments unpacking assignment = _find_assignment(func.body, "arg.input_buffer") assert str(assignment.value) == "@tir.tvm_struct_get(args: handle, 0, 12, dtype=handle)" assignment = _find_assignment(func.body, "input_buffer") assert ( str(assignment.value) == "@tir.tvm_struct_get(arg.input_buffer: handle, 0, 1, dtype=handle)" ) unpacked_input_buffer = assignment.var seq_stmt = _find_next(assignment, tvm.tir.SeqStmt) call = _find_next(seq_stmt[1], tvm.tir.Evaluate) call_extern = call.value assert call_extern.args[1] == unpacked_input_buffer assert call_extern.args[2] == device_context_in_resource_handle if __name__ == "__main__": test_makeapi()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_transform_make_unpacked_api.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import pytest import tvm from tvm import te import numpy @pytest.fixture def mod_without_attrs(): ib = tvm.tir.ir_builder.create() A = tvm.tir.decl_buffer(name="A", shape=[1]) stmt = ib.get() return tvm.IRModule.from_expr(tvm.tir.PrimFunc([A], stmt)) @pytest.fixture def mod(mod_without_attrs): mod = tvm.tir.transform.Apply(lambda f: f.with_attr("target", tvm.target.Target("llvm")))( mod_without_attrs ) mod = tvm.tir.transform.Apply(lambda f: f.with_attr("global_symbol", "main"))(mod) return mod def test_fails_if_not_global_symbol(mod_without_attrs): mod = tvm.tir.transform.Apply(lambda f: f.with_attr("target", tvm.target.Target("llvm")))( mod_without_attrs ) with pytest.raises(tvm.TVMError, match="Expect PrimFunc to have the global_symbol attribute"): f = tvm.tir.transform.MakeUnpackedAPI()(mod)["main"] def test_fails_if_no_target(mod_without_attrs): mod = tvm.tir.transform.Apply(lambda f: f.with_attr("global_symbol", "main"))(mod_without_attrs) with pytest.raises(tvm.TVMError, match="Require the target attribute"): f = tvm.tir.transform.MakeUnpackedAPI()(mod)["main"] @tvm.testing.parametrize_targets("c", "llvm", "cuda") def test_device_setup(mod, target, dev): mod = tvm.tir.transform.Apply(lambda f: f.with_attr("target", tvm.target.Target(target)))(mod) f = tvm.tir.transform.MakeUnpackedAPI()(mod)["main"] assert len(f.params) == 1 assert f.params[0].name == "A" assert f.body.node == "default" assert f.body.attr_key == "device_id" assert f.body.value == 0 assert f.body.body.node == "default" assert f.body.body.attr_key == "device_type" assert f.body.body.value == dev.device_type def test_no_buffers_no_device_setup(): ib = tvm.tir.ir_builder.create() A = ib.pointer("float32", name="A") stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([A], stmt)) mod = tvm.tir.transform.Apply(lambda f: f.with_attr("target", tvm.target.Target("llvm")))(mod) mod = tvm.tir.transform.Apply(lambda f: f.with_attr("global_symbol", "main"))(mod) f = tvm.tir.transform.MakeUnpackedAPI()(mod)["main"] assert len(f.params) == 1 assert f.params[0].name == "A" def test_argument_mapping(mod): f = tvm.tir.transform.MakeUnpackedAPI()(mod)["main"] assert len(f.params) == 1 assert f.params[0].name == "A" def test_argument_mapping_multiple(): ib = tvm.tir.ir_builder.create() A = tvm.tir.decl_buffer(name="A", shape=[1]) B = tvm.tir.decl_buffer(name="B", shape=[1]) stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([A, B], stmt)) mod = tvm.tir.transform.Apply(lambda f: f.with_attr("target", tvm.target.Target("llvm")))(mod) mod = tvm.tir.transform.Apply(lambda f: f.with_attr("global_symbol", "main"))(mod) f = tvm.tir.transform.MakeUnpackedAPI()(mod)["main"] assert len(f.params) == 2 assert f.params[0].name == "A" assert f.params[1].name == "B" def test_argument_mapping_multiple_matching(): ib = tvm.tir.ir_builder.create() A = tvm.tir.decl_buffer(name="A", shape=[1]) B = tvm.tir.decl_buffer(name="B", shape=[1]) stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([A, A], stmt)) mod = tvm.tir.transform.Apply(lambda f: f.with_attr("target", tvm.target.Target("llvm")))(mod) mod = tvm.tir.transform.Apply(lambda f: f.with_attr("global_symbol", "main"))(mod) f = tvm.tir.transform.MakeUnpackedAPI()(mod)["main"] assert len(f.params) == 2 assert f.params[0].name == "A" assert f.params[1].name == "A" def test_body(): ib = tvm.tir.ir_builder.create() A = tvm.tir.decl_buffer(name="A", shape=[1]) B = tvm.tir.decl_buffer(name="B", shape=[1]) C = ib.buffer_ptr(A) stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([A, B, C], stmt)) mod = tvm.tir.transform.Apply(lambda f: f.with_attr("target", tvm.target.Target("llvm")))(mod) mod = tvm.tir.transform.Apply(lambda f: f.with_attr("global_symbol", "main"))(mod) f = tvm.tir.transform.MakeUnpackedAPI()(mod)["main"] assert len(f.params) == 3 assert f.params[0].name == "A" assert f.params[1].name == "B" assert f.params[2].name == "A" if __name__ == "__main__": pytest.main([__file__])
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_transform_manifest_shared_memory_local_stage.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm import tvm.testing from tvm.script import tir as T # fmt: off # pylint: disable=no-member,invalid-name,unused-variable,line-too-long,redefined-outer-name,unexpected-keyword-arg,too-many-nested-blocks @tvm.script.ir_module class MatmulBefore: @T.prim_func def main(A: T.Buffer[(1024, 1024), "float32"], B: T.Buffer[(1024, 1024), "float32"], C: T.Buffer[(1024, 1024), "float32"]) -> None: # function attr dict T.func_attr({"global_symbol": "default_function", "tir.noalias": True}) # body # with T.block("root") for blockIdx_y in T.thread_binding(32, thread="blockIdx.y"): for blockIdx_x in T.thread_binding(32, thread="blockIdx.x"): for threadIdx_y in T.thread_binding(2, thread="threadIdx.y"): for threadIdx_x in T.thread_binding(2, thread="threadIdx.x"): for k_0 in T.serial(32): with T.block(): T.reads(A[blockIdx_y * 32 : blockIdx_y * 32 + 32, k_0 * 32 : k_0 * 32 + 32], B[k_0 * 32 : k_0 * 32 + 32, blockIdx_x * 32 : blockIdx_x * 32 + 32]) T.writes(C[blockIdx_y * 32 : blockIdx_y * 32 + 32, blockIdx_x * 32 : blockIdx_x * 32 + 32]) A_shared = T.alloc_buffer([1024, 1024], dtype="float32", scope="shared") B_shared = T.alloc_buffer([1024, 1024], dtype="float32", scope="shared") for ax0_ax1_fused_0 in T.serial(64): for ax0_ax1_fused_3 in T.vectorized(4): with T.block("A_shared"): T.reads(A[blockIdx_y * 32 + (ax0_ax1_fused_0 * 16 + threadIdx_y * 8 + threadIdx_x * 4 + ax0_ax1_fused_3) // 32, k_0 * 32 + (ax0_ax1_fused_0 * 16 + threadIdx_y * 8 + threadIdx_x * 4 + ax0_ax1_fused_3) % 32]) T.writes(A_shared[blockIdx_y * 32 + (ax0_ax1_fused_0 * 16 + threadIdx_y * 8 + threadIdx_x * 4 + ax0_ax1_fused_3) // 32, k_0 * 32 + (ax0_ax1_fused_0 * 16 + threadIdx_y * 8 + threadIdx_x * 4 + ax0_ax1_fused_3) % 32]) T.block_attr({"tir.manifest_shared_memory_local_stage":1}) A_shared[blockIdx_y * 32 + (ax0_ax1_fused_0 * 16 + threadIdx_y * 8 + threadIdx_x * 4 + ax0_ax1_fused_3) // 32, k_0 * 32 + (ax0_ax1_fused_0 * 16 + threadIdx_y * 8 + threadIdx_x * 4 + ax0_ax1_fused_3) % 32] = A[blockIdx_y * 32 + (ax0_ax1_fused_0 * 16 + threadIdx_y * 8 + threadIdx_x * 4 + ax0_ax1_fused_3) // 32, k_0 * 32 + (ax0_ax1_fused_0 * 16 + threadIdx_y * 8 + threadIdx_x * 4 + ax0_ax1_fused_3) % 32] for ax0_ax1_fused_0 in T.serial(64): for ax0_ax1_fused_3 in T.vectorized(4): with T.block("B_shared"): T.reads(B[k_0 * 32 + (ax0_ax1_fused_0 * 16 + threadIdx_y * 8 + threadIdx_x * 4 + ax0_ax1_fused_3) // 32, blockIdx_x * 32 + (ax0_ax1_fused_0 * 16 + threadIdx_y * 8 + threadIdx_x * 4 + ax0_ax1_fused_3) % 32]) T.writes(B_shared[k_0 * 32 + (ax0_ax1_fused_0 * 16 + threadIdx_y * 8 + threadIdx_x * 4 + ax0_ax1_fused_3) // 32, blockIdx_x * 32 + (ax0_ax1_fused_0 * 16 + threadIdx_y * 8 + threadIdx_x * 4 + ax0_ax1_fused_3) % 32]) T.block_attr({"tir.manifest_shared_memory_local_stage":1}) B_shared[k_0 * 32 + (ax0_ax1_fused_0 * 16 + threadIdx_y * 8 + threadIdx_x * 4 + ax0_ax1_fused_3) // 32, blockIdx_x * 32 + (ax0_ax1_fused_0 * 16 + threadIdx_y * 8 + threadIdx_x * 4 + ax0_ax1_fused_3) % 32] = B[k_0 * 32 + (ax0_ax1_fused_0 * 16 + threadIdx_y * 8 + threadIdx_x * 4 + ax0_ax1_fused_3) // 32, blockIdx_x * 32 + (ax0_ax1_fused_0 * 16 + threadIdx_y * 8 + threadIdx_x * 4 + ax0_ax1_fused_3) % 32] for k_1, i_2, j_2, k_2 in T.grid(2, 16, 16, 16): with T.block("C"): T.reads(A_shared[blockIdx_y * 32 + threadIdx_y * 16 + i_2, k_0 * 32 + k_1 * 16 + k_2], B_shared[k_0 * 32 + k_1 * 16 + k_2, blockIdx_x * 32 + threadIdx_x * 16 + j_2]) T.writes(C[blockIdx_y * 32 + threadIdx_y * 16 + i_2, blockIdx_x * 32 + threadIdx_x * 16 + j_2]) if k_0 * 32 + k_1 * 16 + k_2 == 0: C[blockIdx_y * 32 + threadIdx_y * 16 + i_2, blockIdx_x * 32 + threadIdx_x * 16 + j_2] = T.float32(0) C[blockIdx_y * 32 + threadIdx_y * 16 + i_2, blockIdx_x * 32 + threadIdx_x * 16 + j_2] = C[blockIdx_y * 32 + threadIdx_y * 16 + i_2, blockIdx_x * 32 + threadIdx_x * 16 + j_2] + A_shared[blockIdx_y * 32 + threadIdx_y * 16 + i_2, k_0 * 32 + k_1 * 16 + k_2] * B_shared[k_0 * 32 + k_1 * 16 + k_2, blockIdx_x * 32 + threadIdx_x * 16 + j_2] @tvm.script.ir_module class MatmulAfter: @T.prim_func def main(A: T.Buffer[(1024, 1024), "float32"], B: T.Buffer[(1024, 1024), "float32"], C: T.Buffer[(1024, 1024), "float32"]) -> None: # function attr dict T.func_attr({"global_symbol": "default_function", "tir.noalias": True}) # body # with T.block("root") for blockIdx_y in T.thread_binding(32, thread="blockIdx.y"): for blockIdx_x in T.thread_binding(32, thread="blockIdx.x"): for threadIdx_y in T.thread_binding(2, thread="threadIdx.y"): for threadIdx_x in T.thread_binding(2, thread="threadIdx.x"): for k_0 in T.serial(32): with T.block(): T.reads(A[blockIdx_y * 32 : blockIdx_y * 32 + 32, k_0 * 32 : k_0 * 32 + 32], B[k_0 * 32 : k_0 * 32 + 32, blockIdx_x * 32 : blockIdx_x * 32 + 32]) T.writes(C[blockIdx_y * 32 : blockIdx_y * 32 + 32, blockIdx_x * 32 : blockIdx_x * 32 + 32]) A_shared = T.alloc_buffer([1024, 1024], dtype="float32", scope="shared") B_shared = T.alloc_buffer([1024, 1024], dtype="float32", scope="shared") A_shared_local = T.alloc_buffer([64, 4], dtype="float32", scope="local") B_shared_local = T.alloc_buffer([64, 4], dtype="float32", scope="local") for ax0_ax1_fused_0 in T.serial(64): for ax0_ax1_fused_3 in T.vectorized(4): with T.block(): T.reads(A[blockIdx_y * 32 + (ax0_ax1_fused_0 * 16 + threadIdx_y * 8 + threadIdx_x * 4 + ax0_ax1_fused_3) // 32, k_0 * 32 + (ax0_ax1_fused_0 * 16 + threadIdx_y * 8 + threadIdx_x * 4 + ax0_ax1_fused_3) % 32]) T.writes(A_shared_local[ax0_ax1_fused_0, ax0_ax1_fused_3]) A_shared_local[ax0_ax1_fused_0, ax0_ax1_fused_3] = A[blockIdx_y * 32 + (ax0_ax1_fused_0 * 16 + threadIdx_y * 8 + threadIdx_x * 4 + ax0_ax1_fused_3) // 32, k_0 * 32 + (ax0_ax1_fused_0 * 16 + threadIdx_y * 8 + threadIdx_x * 4 + ax0_ax1_fused_3) % 32] for ax0_ax1_fused_0 in T.serial(64): for ax0_ax1_fused_3 in T.vectorized(4): with T.block("A_shared"): T.reads(A[blockIdx_y * 32 + (ax0_ax1_fused_0 * 16 + threadIdx_y * 8 + threadIdx_x * 4 + ax0_ax1_fused_3) // 32, k_0 * 32 + (ax0_ax1_fused_0 * 16 + threadIdx_y * 8 + threadIdx_x * 4 + ax0_ax1_fused_3) % 32]) T.writes(A_shared[blockIdx_y * 32 + (ax0_ax1_fused_0 * 16 + threadIdx_y * 8 + threadIdx_x * 4 + ax0_ax1_fused_3) // 32, k_0 * 32 + (ax0_ax1_fused_0 * 16 + threadIdx_y * 8 + threadIdx_x * 4 + ax0_ax1_fused_3) % 32]) A_shared[blockIdx_y * 32 + (ax0_ax1_fused_0 * 16 + threadIdx_y * 8 + threadIdx_x * 4 + ax0_ax1_fused_3) // 32, k_0 * 32 + (ax0_ax1_fused_0 * 16 + threadIdx_y * 8 + threadIdx_x * 4 + ax0_ax1_fused_3) % 32] = A_shared_local[ax0_ax1_fused_0, ax0_ax1_fused_3] for ax0_ax1_fused_0 in T.serial(64): for ax0_ax1_fused_3 in T.vectorized(4): with T.block(): T.reads(B[k_0 * 32 + (ax0_ax1_fused_0 * 16 + threadIdx_y * 8 + threadIdx_x * 4 + ax0_ax1_fused_3) // 32, blockIdx_x * 32 + (ax0_ax1_fused_0 * 16 + threadIdx_y * 8 + threadIdx_x * 4 + ax0_ax1_fused_3) % 32]) T.writes(B_shared_local[ax0_ax1_fused_0, ax0_ax1_fused_3]) B_shared_local[ax0_ax1_fused_0, ax0_ax1_fused_3] = B[k_0 * 32 + (ax0_ax1_fused_0 * 16 + threadIdx_y * 8 + threadIdx_x * 4 + ax0_ax1_fused_3) // 32, blockIdx_x * 32 + (ax0_ax1_fused_0 * 16 + threadIdx_y * 8 + threadIdx_x * 4 + ax0_ax1_fused_3) % 32] for ax0_ax1_fused_0 in T.serial(64): for ax0_ax1_fused_3 in T.vectorized(4): with T.block("B_shared"): T.reads(B[k_0 * 32 + (ax0_ax1_fused_0 * 16 + threadIdx_y * 8 + threadIdx_x * 4 + ax0_ax1_fused_3) // 32, blockIdx_x * 32 + (ax0_ax1_fused_0 * 16 + threadIdx_y * 8 + threadIdx_x * 4 + ax0_ax1_fused_3) % 32]) T.writes(B_shared[k_0 * 32 + (ax0_ax1_fused_0 * 16 + threadIdx_y * 8 + threadIdx_x * 4 + ax0_ax1_fused_3) // 32, blockIdx_x * 32 + (ax0_ax1_fused_0 * 16 + threadIdx_y * 8 + threadIdx_x * 4 + ax0_ax1_fused_3) % 32]) B_shared[k_0 * 32 + (ax0_ax1_fused_0 * 16 + threadIdx_y * 8 + threadIdx_x * 4 + ax0_ax1_fused_3) // 32, blockIdx_x * 32 + (ax0_ax1_fused_0 * 16 + threadIdx_y * 8 + threadIdx_x * 4 + ax0_ax1_fused_3) % 32] = B_shared_local[ax0_ax1_fused_0, ax0_ax1_fused_3] for k_1, i_2, j_2, k_2 in T.grid(2, 16, 16, 16): with T.block("C"): T.reads(A_shared[blockIdx_y * 32 + threadIdx_y * 16 + i_2, k_0 * 32 + k_1 * 16 + k_2], B_shared[k_0 * 32 + k_1 * 16 + k_2, blockIdx_x * 32 + threadIdx_x * 16 + j_2]) T.writes(C[blockIdx_y * 32 + threadIdx_y * 16 + i_2, blockIdx_x * 32 + threadIdx_x * 16 + j_2]) if k_0 * 32 + k_1 * 16 + k_2 == 0: C[blockIdx_y * 32 + threadIdx_y * 16 + i_2, blockIdx_x * 32 + threadIdx_x * 16 + j_2] = T.float32(0) C[blockIdx_y * 32 + threadIdx_y * 16 + i_2, blockIdx_x * 32 + threadIdx_x * 16 + j_2] = C[blockIdx_y * 32 + threadIdx_y * 16 + i_2, blockIdx_x * 32 + threadIdx_x * 16 + j_2] + A_shared[blockIdx_y * 32 + threadIdx_y * 16 + i_2, k_0 * 32 + k_1 * 16 + k_2] * B_shared[k_0 * 32 + k_1 * 16 + k_2, blockIdx_x * 32 + threadIdx_x * 16 + j_2] # fmt: on # pylint: enable=no-member,invalid-name,unused-variable,line-too-long,redefined-outer-name,unexpected-keyword-arg,too-many-nested-blocks def _check(before, expected): after = tvm.tir.transform.ManifestSharedMemoryLocalStage()(before) tvm.ir.assert_structural_equal(after, expected) def test_transform_matmul(): _check(MatmulBefore, MatmulAfter) if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_transform_merge_dynamic_shared_memory_allocations.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import numpy as np import tvm import tvm.testing from tvm import te from tvm.driver.build_module import schedule_to_module from tvm.topi.math import cast def run_passes(sch, args): mod = schedule_to_module(sch, args) return tvm.transform.Sequential( [ tvm.tir.transform.StorageFlatten(64), tvm.tir.transform.Simplify(), tvm.tir.transform.VectorizeLoop(), tvm.tir.transform.StorageRewrite(), tvm.tir.transform.MergeDynamicSharedMemoryAllocations(), ] )(mod) def verify_single_allocation(stmt, alloc_size=None): num_alloc = [0] alloc_extents = [] def verify(n): if ( isinstance(n, tvm.tir.Allocate) and n.buffer_var.type_annotation.storage_scope == "shared.dyn" ): num_alloc[0] += 1 alloc_extents.append(n.extents[0]) tvm.tir.stmt_functor.post_order_visit(stmt, verify) assert num_alloc[0] == 1 if alloc_size: assert alloc_extents[0] == alloc_size @tvm.testing.requires_gpu def test_matmul_dyn_shared(): n = 1024 block = 16 A = te.placeholder((n, n), name="A", dtype="float16") B = te.placeholder((n, n), name="B", dtype="float16") def syncthread(): return tvm.tir.Call(None, "tir.tvm_storage_sync", tvm.runtime.convert(["shared"])) def test_matmul_ir(A, B, C): ib = tvm.tir.ir_builder.create() tx = te.thread_axis("threadIdx.x") ty = te.thread_axis("threadIdx.y") bx = te.thread_axis("blockIdx.x") by = te.thread_axis("blockIdx.y") ib.scope_attr(tx, "thread_extent", block) ib.scope_attr(ty, "thread_extent", block) ib.scope_attr(bx, "thread_extent", n // block) ib.scope_attr(by, "thread_extent", n // block) A_sh = ib.allocate(A.dtype, (block, block), scope="shared.dyn", name="A_sh") # fp16 B_sh = ib.allocate(B.dtype, (block, block), scope="shared.dyn", name="B_sh") # fp16 # Create a dynamic shared memory for the accumulation. # This is for testing merging dynamic shared memory alloctions with different data type. # In practice, there is no need to allocate a shared memory for C. C_local = ib.allocate(C.dtype, (1,), scope="local", name="C_local") C_sh = ib.allocate(C.dtype, (block, block), scope="shared.dyn", name="C_sh") # fp32 A_ptr = ib.buffer_ptr(A) B_ptr = ib.buffer_ptr(B) C_ptr = ib.buffer_ptr(C) C_local[0] = 0.0 with ib.for_range(0, n // block, name="i") as i: A_sh[ty, tx] = A_ptr[by * block + ty, i * block + tx] B_sh[ty, tx] = B_ptr[i * block + ty, bx * block + tx] ib.emit(syncthread()) with ib.for_range(0, block, name="k") as k: C_local[0] += cast(A_sh[ty, k] * B_sh[k, tx], "float32") ib.emit(syncthread()) C_sh[ty, tx] = C_local[0] C_ptr[by * block + ty, bx * block + tx] = C_sh[ty, tx] return ib.get() C = te.extern( A.shape, [A, B], lambda ins, outs: test_matmul_ir(ins[0], ins[1], outs[0]), name="matmul", dtype="float32", ) s = te.create_schedule(C.op) mod = run_passes(s, [A, B, C]) # C can be allocated at the start of A, so we only need to allocate 2 block * block memory with dtype = float16 expected_alloc_size = block * block * 4 verify_single_allocation(mod["main"].body, expected_alloc_size) def check_target(target): if not tvm.testing.device_enabled(target): return fmatmul = tvm.build(s, [A, B, C], target) dev = tvm.device(target, 0) size = (n, n) a_np = np.random.uniform(size=size).astype(A.dtype) b_np = np.random.uniform(size=size).astype(B.dtype) a = tvm.nd.array(a_np, dev) b = tvm.nd.array(b_np, dev) c = tvm.nd.array(np.zeros(size, dtype=C.dtype), dev) fmatmul(a, b, c) np_ref = np.dot(a_np.astype("float32"), b_np.astype("float32")) tvm.testing.assert_allclose(c.numpy(), np_ref, 1e-4, 1e-4) for target in ["cuda", "nvptx"]: check_target(target) @tvm.testing.requires_gpu def test_dyn_shared_vectorized_store(): """Test vectorized store into dynamic shared memory""" n = te.size_var("n") A = te.placeholder((n,), name="A", dtype="float16") B = te.placeholder((n,), name="B", dtype="float32") def test_device_ir(A, B, C): n = A.shape[0] ib = tvm.tir.ir_builder.create() values_per_thread = 4 tx = te.thread_axis("threadIdx.x") ib.scope_attr(tx, "thread_extent", tvm.tir.indexdiv(n, values_per_thread)) A_sh = ib.allocate(A.dtype, (n,), scope="shared.dyn") # fp16 B_sh = ib.allocate(B.dtype, (n,), scope="shared.dyn") # fp32 Aptr = ib.buffer_ptr(A) Bptr = ib.buffer_ptr(B) Cptr = ib.buffer_ptr(C) with ib.for_range(0, values_per_thread, kind="vectorize") as i: A_sh[tx * values_per_thread + i] = Aptr[tx * values_per_thread + i] B_sh[tx * values_per_thread + i] = Bptr[tx * values_per_thread + i] with ib.for_range(0, values_per_thread) as i: Cptr[tx * values_per_thread + i] = ( cast(A_sh[tx * values_per_thread + i], "float32") + B_sh[tx * values_per_thread + i] ) return ib.get() C = te.extern( (n,), [A, B], lambda ins, outs: test_device_ir(ins[0], ins[1], outs[0]), name="vadd", dtype="float32", ) s = te.create_schedule(C.op) mod = run_passes(s, [A, B, C]) verify_single_allocation(mod["main"].body) def check_target(target): if not tvm.testing.device_enabled(target): return fadd = tvm.build(s, [A, B, C], target) dev = tvm.device(target, 0) for n in [512, 1024]: a = tvm.nd.array(np.random.uniform(size=n).astype(A.dtype), dev) b = tvm.nd.array(np.random.uniform(size=n).astype(B.dtype), dev) c = tvm.nd.array(np.zeros((n,), dtype=C.dtype), dev) fadd(a, b, c) tvm.testing.assert_allclose( c.numpy(), a.numpy().astype("float32") + b.numpy(), 1e-4, 1e-4 ) for target in ["cuda", "nvptx"]: check_target(target) @tvm.testing.requires_gpu def test_dyn_shared_reuse_and_merge(): n = 64 A = te.placeholder((n,), name="A", dtype="float32") B = te.placeholder((n,), name="B", dtype="float32") C = te.placeholder((te.size_var("n_dyn"),), name="C", dtype="float32") def test_device_ir(A, B, C, D): ib = tvm.tir.ir_builder.create() tx = te.thread_axis("threadIdx.x") ib.scope_attr(tx, "thread_extent", n) A_sh = ib.allocate(A.dtype, (n,), scope="shared.dyn", name="A_sh") B_sh = ib.allocate(B.dtype, (n,), scope="shared.dyn", name="B_sh") C_sh = ib.allocate(C.dtype, (C.shape[0],), scope="shared.dyn", name="C_sh") Aptr = ib.buffer_ptr(A) Bptr = ib.buffer_ptr(B) Cptr = ib.buffer_ptr(C) Dptr = ib.buffer_ptr(D) A_sh[tx] = Aptr[tx] Dptr[tx] = A_sh[tx] B_sh[tx] = Bptr[tx] Dptr[tx] += B_sh[tx] C_sh[tx] = Cptr[tx] # C cannot reuse other buffers since it size is dynamic Dptr[tx] += C_sh[tx] return ib.get() D = te.extern( (n,), [A, B, C], lambda ins, outs: test_device_ir(ins[0], ins[1], ins[2], outs[0]), name="vadd", dtype="float32", ) s = te.create_schedule(D.op) mod = run_passes(s, [A, B, C, D]) # merged allocation # allocate(buf_dyn_shmem: Pointer(shared.dyn uint8), uint8, [((n_dyn*4) + 256)]); verify_single_allocation(mod["main"].body) def check_target(target): if not tvm.testing.device_enabled(target): return fadd = tvm.build(s, [A, B, C, D], target) dev = tvm.device(target, 0) a = tvm.nd.array(np.random.uniform(size=n).astype(A.dtype), dev) b = tvm.nd.array(np.random.uniform(size=n).astype(B.dtype), dev) c = tvm.nd.array(np.random.uniform(size=n).astype(C.dtype), dev) d = tvm.nd.array(np.zeros((n,), dtype=D.dtype), dev) fadd(a, b, c, d) tvm.testing.assert_allclose(d.numpy(), a.numpy() + b.numpy() + c.numpy(), 1e-4, 1e-4) for target in ["cuda", "nvptx"]: check_target(target) def test_dyn_shared_more_dtype(): """Test vectorized store into dynamic shared memory""" n = 512 A = te.placeholder((n,), name="A", dtype="int8") B = te.placeholder((n,), name="B", dtype="int16") def test_device_ir(A, B, C): n = A.shape[0] ib = tvm.tir.ir_builder.create() tx = te.thread_axis("threadIdx.x") ib.scope_attr(tx, "thread_extent", n) A_sh = ib.allocate(A.dtype, (n,), scope="shared.dyn") # i8 B_sh = ib.allocate(B.dtype, (n,), scope="shared.dyn") # i16 C_sh = ib.allocate(C.dtype, (n,), scope="shared.dyn") # i32 Aptr = ib.buffer_ptr(A) Bptr = ib.buffer_ptr(B) Cptr = ib.buffer_ptr(C) A_sh[tx] = Aptr[tx] B_sh[tx] = Bptr[tx] C_sh[tx] = cast(A_sh[tx], "int32") + cast(B_sh[tx], "int32") Cptr[tx] = C_sh[tx] return ib.get() C = te.extern( (n,), [A, B], lambda ins, outs: test_device_ir(ins[0], ins[1], outs[0]), name="vadd", dtype="int32", ) s = te.create_schedule(C.op) mod = run_passes(s, [A, B, C]) verify_single_allocation(mod["main"].body, n * 4) def check_target(target): if not tvm.testing.device_enabled(target): return fadd = tvm.build(s, [A, B, C], target) dev = tvm.device(target, 0) a = tvm.nd.array(np.random.uniform(size=n).astype(A.dtype), dev) b = tvm.nd.array(np.random.uniform(size=n).astype(B.dtype), dev) c = tvm.nd.array(np.zeros((n,), dtype=C.dtype), dev) fadd(a, b, c) tvm.testing.assert_allclose(c.numpy(), a.numpy().astype("float32") + b.numpy(), 1e-4, 1e-4) for target in ["cuda", "nvptx"]: check_target(target) if __name__ == "__main__": test_matmul_dyn_shared() test_dyn_shared_vectorized_store() test_dyn_shared_reuse_and_merge() test_dyn_shared_more_dtype()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_transform_narrow_datatype.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm from tvm import relay, te from tvm.driver.build_module import schedule_to_module from tvm.script import tir as T from tvm.tir import const def lower_stmt(params, stmt, target_bits): func = tvm.tir.PrimFunc(params, stmt) func = tvm.tir.transform.NarrowDataType(target_bits)(tvm.IRModule.from_expr(func))["main"] stmt = func.body return stmt def lower_sch(sch, args, target_bits, extra_passes=None): binds = {} arg_list = [] for x in args: if isinstance(x, te.tensor.Tensor): buf = tvm.tir.decl_buffer(x.shape, dtype=x.dtype, name=x.name) assert x not in binds binds[x] = buf arg_list.append(buf) else: raise ValueError("args must be Tensor, Buffer or Var") sch = sch.normalize() mod = schedule_to_module(sch, args) mod = tvm.tir.transform.StorageFlatten(64)(mod) if extra_passes: for p in extra_passes: mod = p(mod) return tvm.tir.transform.NarrowDataType(target_bits)(mod)["main"].body def test_basic(): def check(m, n, target_bits, target_dtype): ib = tvm.tir.ir_builder.create() Ab = tvm.tir.decl_buffer([m * n], name="A") A = ib.buffer_ptr(Ab) Bb = tvm.tir.decl_buffer([m * n], name="B") B = ib.buffer_ptr(Bb) with ib.for_range(0, m, name="i") as i: with ib.for_range(0, n, name="j") as j: B[i * n + j] = A[i * n + j] + 1 stmt = ib.get() stmt = lower_stmt([Ab, Bb], stmt, target_bits) assert stmt.loop_var.dtype == target_dtype assert stmt.body.loop_var.dtype == target_dtype # const shape # i32 -> i32 check(2, 2, 32, "int32") # i64 -> i32 check(const(2, dtype="int64"), const(2, dtype="int64"), 32, "int32") check(const(2**16, dtype="int64"), const(2**16, dtype="int64"), 32, "int64") # i32 -> i16 check(2, 2, 16, "int16") check(2**10, 2**10, 16, "int32") # symbolic shape check(te.size_var(name="m", dtype="int32"), te.size_var(name="n", dtype="int32"), 32, "int32") check(te.size_var(name="m", dtype="int64"), te.size_var(name="n", dtype="int64"), 32, "int64") def test_thread_axis(): def check(m, n, target_bits, target_dtype): ib = tvm.tir.ir_builder.create() Ab = tvm.tir.decl_buffer([m * n], name="A") A = ib.buffer_ptr(Ab) Bb = tvm.tir.decl_buffer([m * n], name="B") B = ib.buffer_ptr(Bb) bx = te.thread_axis("blockIdx.x") tx = te.thread_axis("threadIdx.x") ib.scope_attr(bx, "thread_extent", m) ib.scope_attr(tx, "thread_extent", n) B[bx * n + tx] = A[bx * n + tx] + 1 stmt = ib.get() stmt = lower_stmt([Ab, Bb], stmt, target_bits) assert stmt.node.var.dtype == target_dtype assert stmt.body.node.var.dtype == target_dtype # i32 -> i32 check(2, 32, target_bits=32, target_dtype="int32") # i64 -> i32 check(const(2, dtype="int64"), const(32, dtype="int64"), target_bits=32, target_dtype="int32") check( const(2**30, dtype="int64"), const(32, dtype="int64"), target_bits=32, target_dtype="int64", ) # i32 -> i16 check(2, 32, target_bits=16, target_dtype="int16") check(2**14, 32, target_bits=16, target_dtype="int32") def test_thread_axis_2(): # fmt: off @tvm.script.ir_module class Before: @T.prim_func def main(T_reshape: T.Buffer[(1, 12, 384, 384), "float32"], placeholder_1: T.Buffer[(T.int64(1), T.int64(12), T.int64(384), 384), "bool"], T_where: T.Buffer[(T.int64(1), T.int64(12), T.int64(384), 384), "float32"]) -> None: # function attr dict T.func_attr({"global_symbol": "main", "tir.noalias": True}) # body # with T.block("root") for i0_i1_i2_i3_fused_1 in T.thread_binding(T.int64(256), thread="blockIdx.x"): for i0_i1_i2_i3_fused_2 in T.thread_binding(T.int64(1024), thread="threadIdx.x"): for i0_i1_i2_i3_fused_0 in T.serial(T.int64(7)): with T.block("T_where"): ax0 = T.axis.spatial(T.int64(1), T.int64(0)) ax1 = T.axis.spatial(T.int64(12), ((i0_i1_i2_i3_fused_0 * T.int64(256) + i0_i1_i2_i3_fused_1) * T.int64(1024) + i0_i1_i2_i3_fused_2) % T.int64(1769472) // T.int64(147456)) ax2 = T.axis.spatial(T.int64(384), ((i0_i1_i2_i3_fused_0 * T.int64(256) + i0_i1_i2_i3_fused_1) * T.int64(1024) + i0_i1_i2_i3_fused_2) % T.int64(147456) // T.int64(384)) ax3 = T.axis.spatial(384, T.cast(((i0_i1_i2_i3_fused_0 * T.int64(256) + i0_i1_i2_i3_fused_1) * T.int64(1024) + i0_i1_i2_i3_fused_2) % T.int64(384), "int32")) T.where((i0_i1_i2_i3_fused_0 * T.int64(256) + i0_i1_i2_i3_fused_1) * T.int64(1024) + i0_i1_i2_i3_fused_2 < T.int64(1769472)) T.reads(placeholder_1[ax0, ax1, ax2, ax3], T_reshape[ax0, ax1, ax2, ax3]) T.writes(T_where[ax0, ax1, ax2, ax3]) T_where[ax0, ax1, ax2, ax3] = T.Select(T.cast(placeholder_1[ax0, ax1, ax2, ax3], "int32") != 0, T.float32(-1000000000), T_reshape[ax0, ax1, ax2, ax3]) # fmt: on # TODO(@junrushao1994): make this test more "unit" after the new TVMScript printer/parser lands tvm.lower(Before) def test_multilanes(): def check(m, lanes, target_bits, target_dtype): ib = tvm.tir.ir_builder.create() Ab = tvm.tir.decl_buffer((m,), dtype="float32x{}".format(lanes), name="A") A = ib.buffer_ptr(Ab) Bb = tvm.tir.decl_buffer((m,), dtype="float32x{}".format(lanes), name="B") B = ib.buffer_ptr(Bb) with ib.for_range(0, m, name="i", dtype=m.dtype) as i: B[i] = A[i] + 1 A[0] = B[1] stmt = ib.get() stmt = lower_stmt([Ab, Bb], stmt, target_bits) assert stmt.seq[0].loop_var.dtype == target_dtype # i32 -> i32 check(const(2**10, dtype="int32"), 2, target_bits=32, target_dtype="int32") # i64 -> i32 check(const(2**10, dtype="int64"), 2, target_bits=32, target_dtype="int32") check(const(2**32, dtype="int64"), 2, target_bits=32, target_dtype="int64") # i32 -> i16 check(const(2**10, dtype="int32"), 2, target_bits=16, target_dtype="int16") check(const(2**16, dtype="int32"), 2, target_bits=16, target_dtype="int32") def test_reduce(): def check(m, target_bits, target_dtype): A = te.placeholder((m,), name="A", dtype="float32") k = te.reduce_axis((0, m), "k") B = te.compute((), lambda *idx: te.sum(A[k], axis=k), name="B") s = te.create_schedule(B.op) stmt = lower_sch(s, [A, B], target_bits) assert stmt[1].loop_var.dtype == target_dtype # i32 -> i32 check(const(64, dtype="int32"), 32, "int32") # i64 -> i32 check(const(64, dtype="int64"), 32, "int32") # i32 -> i16 check(const(64, dtype="int32"), 16, "int16") check(const(2**16, dtype="int32"), 16, "int32") # symbolic check(te.var("n", dtype="int32"), 32, "int32") check(te.var("n", dtype="int64"), 32, "int64") def test_slice(): def check(m, n, target_bits, target_dtype): # The index may overflow in B, while not in A ib = tvm.tir.ir_builder.create() Ab = tvm.tir.decl_buffer([m * n], name="A") A = ib.buffer_ptr(Ab) Bb = tvm.tir.decl_buffer([m * n * 2], name="B") B = ib.buffer_ptr(Bb) with ib.for_range(0, m, name="i") as i: with ib.for_range(0, n, name="j") as j: A[i * n + j] = B[i * 2 * n + 2 * j] + 1 stmt = ib.get() stmt = lower_stmt([Ab, Bb], stmt, target_bits) assert stmt.loop_var.dtype == target_dtype assert stmt.body.loop_var.dtype == target_dtype # The maximum index is (2**15 * 2**15 - 1) * 2 <= 2**31 - 1 check(const(2**15, "int64"), const(2**15, "int64"), target_bits=32, target_dtype="int32") # The maximum index is (2**15 * 2**15 - 1 + 2**15) * 2 > 2**31 - 1 check( const(2**15, "int64"), const((2**15 + 1), "int64"), target_bits=32, target_dtype="int64" ) def test_relay_basic(): engine = relay.backend.te_compiler.get() def check(shapex, shapey, target_bits, target_dtype): x = relay.var("x", shape=shapex) y = relay.var("y", shape=shapey) z = relay.add(x, y) func = relay.Function([x, y], z) mod = tvm.IRModule.from_expr(func) mod = relay.transform.InferType()(mod) func = mod["main"] z = engine.lower(func, "llvm") stmt = lower_sch(z.schedule, tuple(z.inputs) + tuple(z.outputs), 32) # outer loop assert stmt.loop_var.dtype == target_dtype # inner loop if len(shapex) > 1 or len(shapey) > 1: assert stmt.body.loop_var.dtype == target_dtype check( (const(2**16, "int64"), const(2**15 + 1, "int64")), (1, const(2**15 + 1, "int64")), target_bits=32, target_dtype="int64", ) check( (const(2**16, "int64"), const(2**15, "int64")), (1, const(2**15, "int64")), target_bits=32, target_dtype="int32", ) check( (const(2**31, "int64"),), (const(2**31, "int64"),), target_bits=32, target_dtype="int32" ) check( (const(2**31 + 1, "int64"),), (const(2**31 + 1, "int64"),), target_bits=32, target_dtype="int64", ) def test_relay_take(): engine = relay.backend.te_compiler.get() def check(shape, index, target_bits, target_dtype): x = relay.var("x", shape=shape) y = relay.op.take(x, indices=index) func = relay.Function([x], y) mod = tvm.IRModule.from_expr(func) mod = relay.transform.InferType()(mod) func = mod["main"] z = engine.lower(func, "llvm") stmt = lower_sch(z.schedule, tuple(z.inputs) + tuple(z.outputs), 32) assert stmt.value.indices[0].dtype == target_dtype check( (const(2**16, "int64"), const(2**15 + 1, "int64")), relay.const(0, dtype="int64"), target_bits=32, target_dtype="int32", ) check( (const(2**16, "int64"), const(2**15 + 1, "int64")), relay.const(2**31, dtype="int64"), target_bits=32, target_dtype="int64", ) def test_ramp_dtype_consistency(): """ for (i :int64, (int64)0, (int64)4) { A[ramp(i*(int64)2, (int64)1, 2)] = cast(int64, 2 ** 31 - 1) * i; } The infer result: base: int64 -> int64 (since i is involved in another int64 expr) stride: int64 -> int32 Thus ramp should still use int64 for both stride and base after rewrite. """ n = tvm.tir.IntImm("int64", 4) m = tvm.tir.IntImm("int64", 2) A = te.compute((n, m), lambda i, j: tvm.tir.Cast("int64", 2**31 - 1) * i, name="A") s = te.create_schedule(A.op) s[A].vectorize(A.op.axis[1]) lower_sch(s, [A], 32, extra_passes=[tvm.tir.transform.VectorizeLoop()]) def test_condition(): @T.prim_func def before(A: T.Buffer[(128,), "float32"], B: T.Buffer[(130,), "float32"]): for i, j in T.grid(T.int64(2), T.int64(65)): if i * T.int64(65) + j >= T.int64(0) and i * T.int64(65) + j < T.int64(128): A[i * T.int64(65) + j] = 0.0 for i, j in T.grid(T.int64(2), T.int64(65)): B[i * T.int64(65) + j] = T.if_then_else( i * T.int64(65) + j >= T.int64(0) and i * T.int64(65) + j < T.int64(128), A[i * T.int64(65) + j], 0.0, dtype="float32", ) @T.prim_func def expected_after(A: T.Buffer[128, "float32"], B: T.Buffer[130, "float32"]): for i, j in T.grid(2, 65): if i * 65 + j >= 0 and i * 65 + j < 128: A[i * 65 + j] = T.float32(0) for i, j in T.grid(2, 65): B[i * 65 + j] = T.if_then_else( i * 65 + j >= 0 and i * 65 + j < 128, A[i * 65 + j], T.float32(0), dtype="float32" ) after = tvm.tir.transform.NarrowDataType(32)(tvm.IRModule.from_expr(before))["main"] tvm.ir.assert_structural_equal(after, expected_after) if __name__ == "__main__": test_basic() test_thread_axis() test_thread_axis_2() test_multilanes() test_reduce() test_slice() test_relay_basic() test_relay_take() test_ramp_dtype_consistency() test_condition()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_transform_plan_update_buffer_allocation_location.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm import tvm.testing from tvm import te from tvm.script import tir as T def _check(original, transformed): func = original mod = tvm.IRModule.from_expr(func) mod = tvm.tir.transform.PlanAndUpdateBufferAllocationLocation()(mod) tvm.ir.assert_structural_equal(mod["main"], transformed) @T.prim_func def element_func(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (16, 16)) C = T.match_buffer(c, (16, 16)) B = T.alloc_buffer((16, 16)) for i0 in range(0, 16): for j0 in range(0, 16): with T.block(): i, j = T.axis.remap("SS", [i0, j0]) B[i, j] = A[i, j] + 1.0 for j0 in range(0, 16): with T.block(): i, j = T.axis.remap("SS", [i0, j0]) C[i, j] = B[i, j] * 2.0 @T.prim_func def transformed_element_func(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [16, 16]) C = T.match_buffer(c, [16, 16]) for i_0 in range(0, 16): with T.block(): T.reads([A[i_0, 0:16]]) T.writes([C[i_0, 0:16]]) B = T.alloc_buffer([16, 16]) for j_0 in T.serial(0, 16): with T.block(): i, j = T.axis.remap("SS", [i_0, j_0]) B[i, j] = A[i, j] + 1.0 for j_0 in T.serial(0, 16): with T.block(): i, j = T.axis.remap("SS", [i_0, j_0]) C[i, j] = B[i, j] * 2.0 @T.prim_func def original_func() -> None: A = T.alloc_buffer((128, 128), "float32") for i0, j0 in T.grid(128, 128): with T.block(): i, j = T.axis.remap("SS", [i0, j0]) A[i, j] = T.float32(0) for i0, j0, k0 in T.grid(32, 32, 32): with T.block(): i, j, k = T.axis.remap("SSR", [i0, j0, k0]) B = T.alloc_buffer((128, 128), "float32") C = T.alloc_buffer((128, 128), "float32") D = T.alloc_buffer((128, 128), "float32") if k == 0: for ii, jj in T.grid(4, 4): B[i * 4 + ii, j * 4 + jj] = A[i * 4 + ii, j * 4 + jj] for ii, jj in T.grid(4, 4): for kk in range(0, 4): B[i * 4 + ii, j * 4 + jj] += C[i * 4 + ii, k * 4 + kk] for kk in range(0, 4): B[i * 4 + ii, j * 4 + jj] += ( D[j * 4 + jj, k * 4 + kk] * C[i * 4 + ii, k * 4 + kk] ) @T.prim_func def transformed_func() -> None: A = T.alloc_buffer([128, 128]) for i0, j0 in T.grid(128, 128): with T.block(): i, j = T.axis.remap("SS", [i0, j0]) A[i, j] = T.float32(0) for i0, j0, k0 in T.grid(32, 32, 32): with T.block(): i, j, k = T.axis.remap("SSR", [i0, j0, k0]) B = T.alloc_buffer([128, 128]) if k == 0: for ii, jj in T.grid(4, 4): B[i * 4 + ii, j * 4 + jj] = A[i * 4 + ii, j * 4 + jj] for ii, jj in T.grid(4, 4): with T.block(""): T.reads([B[((i * 4) + ii), ((j * 4) + jj)]]) T.writes([B[((i * 4) + ii), ((j * 4) + jj)]]) C = T.alloc_buffer([128, 128]) for kk in T.serial(0, 4): B[((i * 4) + ii), ((j * 4) + jj)] = ( B[((i * 4) + ii), ((j * 4) + jj)] + C[((i * 4) + ii), ((k * 4) + kk)] ) for kk in T.serial(0, 4): with T.block(""): T.reads( [ B[((i * 4) + ii), ((j * 4) + jj)], C[((i * 4) + ii), ((k * 4) + kk)], ] ) T.writes([B[((i * 4) + ii), ((j * 4) + jj)]]) D = T.alloc_buffer([128, 128]) B[((i * 4) + ii), ((j * 4) + jj)] = B[ ((i * 4) + ii), ((j * 4) + jj) ] + ( D[((j * 4) + jj), ((k * 4) + kk)] * C[((i * 4) + ii), ((k * 4) + kk)] ) @T.prim_func def match_buffer_func() -> None: C = T.alloc_buffer((128, 128)) for i in range(128): with T.block(): vi = T.axis.S(128, i) C0 = T.match_buffer(C[vi, 0:128], (128)) for j in range(128): with T.block(): jj = T.axis.S(128, j) C1 = T.match_buffer(C0[jj], ()) C1[()] = 0 @T.prim_func def transformed_match_buffer_func() -> None: for i in range(0, 128): with T.block(): vi = T.axis.S(128, i) C = T.alloc_buffer((128, 128)) C0 = T.match_buffer(C[vi, 0:128], (128)) for j in range(128): with T.block(): jj = T.axis.S(128, j) C1 = T.match_buffer(C0[jj], ()) C1[()] = 0 @T.prim_func def opaque_access(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [1024]) B = T.match_buffer(b, [1024]) A_cache = T.alloc_buffer([1024]) for i in T.serial(0, 8): with T.block(): vi = T.axis.S(8, i) with T.block(): v = T.axis.S(8, vi) T.reads([A[(v * 128) : ((v * 128) + 128)]]) T.writes([A_cache[(v * 128) : ((v * 128) + 128)]]) T.evaluate( T.call_extern( "test", A_cache.data, (v * 128), 128, A.data, (v * 128), 128, dtype="float32", ) ) for j in T.serial(0, 128): with T.block(): v = T.axis.S(1024, vi * 128 + j) T.reads([A_cache[v]]) T.writes([B[v]]) B[v] = A_cache[v] @T.prim_func def transformed_opaque_access(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [1024]) B = T.match_buffer(b, [1024]) for i in T.serial(0, 8): with T.block(): vi = T.axis.S(8, i) T.reads(A[vi * 128 : vi * 128 + 128]) T.writes(B[vi * 128 : vi * 128 + 128]) A_cache = T.alloc_buffer([1024]) with T.block(): v = T.axis.S(8, vi) T.reads([A[v * 128 : v * 128 + 128]]) T.writes([A_cache[v * 128 : v * 128 + 128]]) T.evaluate( T.call_extern( "test", A_cache.data, v * 128, 128, A.data, v * 128, 128, dtype="float32" ) ) for j in T.serial(0, 128): with T.block(): v = T.axis.S(1024, vi * 128 + j) T.reads([A_cache[v]]) T.writes([B[v]]) B[v] = A_cache[v] def test_elementwise(): _check(element_func, transformed_element_func) def test_locate_buffer_allocation(): _check(original_func, transformed_func) def test_match_buffer_allocation(): _check(match_buffer_func, transformed_match_buffer_func) def test_opaque_access(): _check(opaque_access, transformed_opaque_access) def test_lower_te(): x = te.placeholder((1,)) y = te.compute((1,), lambda i: x[i] + 2) s = te.create_schedule(y.op) orig_mod = tvm.driver.build_module.schedule_to_module(s, [x, y]) mod = tvm.tir.transform.PlanAndUpdateBufferAllocationLocation()(orig_mod) tvm.ir.assert_structural_equal( mod, orig_mod ) # PlanAndUpdateBufferAllocationLocation should do nothing on TE def test_loop_carried_dependency(): """The buffer allocation should be above opaque iter var's loop scopes such that buffer accesses with loop carried dependencies are covered.""" @T.prim_func def before(A: T.Buffer[(8, 8, 8), "int32"], B: T.Buffer[(8, 8, 8), "int32"]): C = T.alloc_buffer([8, 8, 8], dtype="int32") for i in T.serial(8): for j in T.serial(8): for k in T.serial(8): with T.block("b0"): vi, vj, vk = T.axis.remap("SSS", [i, j, k]) C[vi, vj, vk] = A[vi, vj, vk] + 1 for k in T.serial(8): with T.block("b1"): vi, vk = T.axis.remap("SS", [i, k]) vj = T.axis.opaque(8, j) B[vi, vj, vk] = C[vi, vj, vk] + T.if_then_else( 0 < vj, C[vi, vj - 1, vk], 0, dtype="int32" ) @T.prim_func def after(A: T.Buffer[(8, 8, 8), "int32"], B: T.Buffer[(8, 8, 8), "int32"]) -> None: for i in T.serial(8): with T.block(): T.reads(A[i, 0:8, 0:8]) T.writes(B[i, 0:8, 0:8]) C = T.alloc_buffer([8, 8, 8], dtype="int32") for j in T.serial(8): for k in T.serial(8): with T.block("b0"): vi, vj, vk = T.axis.remap("SSS", [i, j, k]) C[vi, vj, vk] = A[vi, vj, vk] + 1 for k in T.serial(8): with T.block("b1"): vi, vk = T.axis.remap("SS", [i, k]) vj = T.axis.opaque(8, j) B[vi, vj, vk] = C[vi, vj, vk] + T.if_then_else( 0 < vj, C[vi, vj - 1, vk], 0, dtype="int32" ) _check(before, after) def test_1D_cascade_op_rolling_buffer(): """The intermediate buffer must be allocated above rolling buffer's rolling loop, which is marked as opaque in consumer block's iter mappings.""" @T.prim_func def before(A: T.Buffer[(4, 16), "int32"], C: T.Buffer[(4, 8), "int32"]): B = T.alloc_buffer((4, 6), "int32") for c in T.serial(4): for i in T.serial(0, 2): for j in T.serial(0, 6): for k in T.serial(3): with T.block("P1"): T.where(i < 1 or j >= 2) cc, vi, vj, vk = T.axis.remap("SSSR", [c, i, j, k]) if vk == 0: B[cc, T.floormod(vi * 4 + vj, 6)] = 0 B[cc, T.floormod(vi * 4 + vj, 6)] = ( B[cc, T.floormod(vi * 4 + vj, 6)] + A[cc, vi * 4 + vj + vk] ) for j in T.serial(0, 4): for k in T.serial(3): with T.block("P2"): vi = T.axis.opaque(2, i) cc, vj, vk = T.axis.remap("SSR", [c, j, k]) if vk == 0: C[cc, vi * 4 + vj] = 0 C[cc, vi * 4 + vj] = ( C[cc, vi * 4 + vj] + B[cc, T.floormod(vi * 4 + vj + vk, 6)] ) @T.prim_func def after(A: T.Buffer[(4, 16), "int32"], C: T.Buffer[(4, 8), "int32"]): for c in T.serial(4): with T.block(): T.reads(A[c, 0:12], C[c, 0:8]) T.writes(C[c, 0:8]) B = T.alloc_buffer([4, 6], dtype="int32") for i in T.serial(2): for j, k in T.grid(6, 3): with T.block("P1"): T.where(i < 1 or j >= 2) cc, vi, vj, vk = T.axis.remap("SSSR", [c, i, j, k]) if vk == 0: B[cc, (vi * 4 + vj) % 6] = 0 B[cc, (vi * 4 + vj) % 6] = ( B[cc, (vi * 4 + vj) % 6] + A[cc, vi * 4 + vj + vk] ) for j, k in T.grid(4, 3): with T.block("P2"): vi = T.axis.opaque(2, i) cc, vj, vk = T.axis.remap("SSR", [c, j, k]) if vk == 0: C[cc, vi * 4 + vj] = 0 C[cc, vi * 4 + vj] = C[cc, vi * 4 + vj] + B[cc, (vi * 4 + vj + vk) % 6] _check(before, after) if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_transform_prim_func_pass.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm import tvm.testing from tvm import te def test_prim_func_pass(): @tvm.tir.transform.prim_func_pass(opt_level=1) class TestReplaceFunc: """Simple test function to replace one argument to another.""" def __init__(self, new_func): self.new_func = new_func def transform_function(self, func, mod, ctx): return self.new_func x = te.var("x") y = te.var("y") b = tvm.tir.decl_buffer((x,), "float32") stmt = tvm.tir.LetStmt(x, 10, tvm.tir.Evaluate(x + 1)) func = tvm.tir.PrimFunc([x, y, b], stmt) new_func = tvm.tir.PrimFunc([x, y, b], tvm.tir.Evaluate(0)) mod = tvm.IRModule({"main": func}) mod = TestReplaceFunc(new_func)(mod) assert tvm.ir.structural_equal(mod["main"].body, new_func.body) def test_cow_pass(): def fapply(f): assert tvm.testing.object_use_count(f) == 1 return f pidentity = tvm.tir.transform.Apply(fapply) x = te.var("x") func = tvm.tir.PrimFunc([x], tvm.tir.Evaluate(x)).with_attr("target_bits", 32) func_hash = func.__hash__() mod = tvm.IRModule({"main": func}) del func # copy on write mod_hash = mod.__hash__() mod = tvm.transform.Sequential([pidentity, tvm.tir.transform.NarrowDataType(32)])(mod._move()) assert mod_hash == mod.__hash__() assert func_hash == mod["main"].__hash__() if __name__ == "__main__": test_cow_pass() test_prim_func_pass()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_transform_profiling_instr.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm import tvm.testing from tvm import te from tvm.ir.module import IRModule from tvm.script import tir as T import numpy default_lwp_test_config = { "tir.instrument_lwp": True, "tir.lwp_disable_func_prof": True, "tir.reset_start_id": True, } @T.prim_func def input1(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (8, 8, 128), dtype="int32") B = T.match_buffer(b, (8, 8, 128), dtype="int32") C = T.match_buffer(c, (8, 8, 128), dtype="int32") for i, j in T.grid(8, 8): for k, l in T.grid(8, 16): with T.block("B"): vi, vj, vk, vl = T.axis.remap("SSSS", [i, j, k, l]) B[vi, vj, vk * 16 + vl] = A[vi, vj, vk * 16 + vl] * 2 for k, l in T.grid(8, 16): with T.block("C"): vi, vj, vk, vl = T.axis.remap("SSSS", [i, j, k, l]) C[vi, vj, vk * 16 + vl] = B[vi, vj, vk * 16 + vl] * 2 @T.prim_func def input2(a: T.handle, b: T.handle, c: T.handle, d: T.handle) -> None: A = T.match_buffer(a, (8, 8, 128), dtype="int32") B = T.match_buffer(b, (8, 8, 128), dtype="int32") C = T.match_buffer(c, (8, 8, 128), dtype="int32") D = T.match_buffer(d, (8, 8, 128), dtype="int32") for i in T.serial(0, 8): for j in T.serial(0, 8): for k, l in T.grid(8, 16): with T.block("B"): vi, vj, vk, vl = T.axis.remap("SSSS", [i, j, k, l]) B[vi, vj, vk * 16 + vl] = A[vi, vj, vk * 16 + vl] * 2 for k, l in T.grid(8, 16): with T.block("B"): vi, vj, vk, vl = T.axis.remap("SSSS", [i, j, k, l]) B[vi, vj, vk * 16 + vl] = B[vi, vj, vk * 16 + vl] * D[vi, vj, vk * 16 + vl] for j in T.serial(0, 8): for k, l in T.grid(8, 16): with T.block("C"): vi, vj, vk, vl = T.axis.remap("SSSS", [i, j, k, l]) C[vi, vj, vk * 16 + vl] = B[vi, vj, vk * 16 + vl] + 2 for k, l in T.grid(8, 16): with T.block("B"): vi, vj, vk, vl = T.axis.remap("SSSS", [i, j, k, l]) C[vi, vj, vk * 16 + vl] = C[vi, vj, vk * 16 + vl] * D[vi, vj, vk * 16 + vl] @T.prim_func def input3(a: T.handle, b: T.handle, c: T.handle, d: T.handle) -> None: A = T.match_buffer(a, (8, 8, 128), dtype="int32") B = T.match_buffer(b, (8, 8, 128), dtype="int32") C = T.match_buffer(c, (8, 8, 128), dtype="int32") D = T.match_buffer(d, (8, 8, 128), dtype="int32") for i in T.serial(0, 8): for j in T.parallel(0, 8): for k in T.serial(0, 8): for l in T.serial(0, 16): with T.block("B"): vi, vj, vk, vl = T.axis.remap("SSSS", [i, j, k, l]) B[vi, vj, vk * 16 + vl] = A[vi, vj, vk * 16 + vl] * 2 for k in T.serial(0, 8): for l in T.serial(0, 16): with T.block("B"): vi, vj, vk, vl = T.axis.remap("SSSS", [i, j, k, l]) B[vi, vj, vk * 16 + vl] = B[vi, vj, vk * 16 + vl] * D[vi, vj, vk * 16 + vl] for j in T.serial(0, 8): for k in T.parallel(0, 8): for l in T.serial(0, 16): with T.block("C"): vi, vj, vk, vl = T.axis.remap("SSSS", [i, j, k, l]) C[vi, vj, vk * 16 + vl] = B[vi, vj, vk * 16 + vl] + 2 for k in T.parallel(0, 8): for l in T.serial(0, 16): with T.block("B"): vi, vj, vk, vl = T.axis.remap("SSSS", [i, j, k, l]) C[vi, vj, vk * 16 + vl] = C[vi, vj, vk * 16 + vl] * D[vi, vj, vk * 16 + vl] @T.prim_func def test1_expected_output(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (8, 8, 128), dtype="int32") B = T.match_buffer(b, (8, 8, 128), dtype="int32") C = T.match_buffer(c, (8, 8, 128), dtype="int32") for i, j in T.grid(8, 8): T.evaluate(T.start_profile_intrinsic(3, dtype="handle")) for k, l in T.grid(8, 16): with T.block("B"): vi, vj, vk, vl = T.axis.remap("SSSS", [i, j, k, l]) B[vi, vj, vk * 16 + vl] = A[vi, vj, vk * 16 + vl] * 2 T.evaluate(T.end_profile_intrinsic(3, dtype="handle")) T.evaluate(T.start_profile_intrinsic(5, dtype="handle")) for k, l in T.grid(8, 16): with T.block("C"): vi, vj, vk, vl = T.axis.remap("SSSS", [i, j, k, l]) C[vi, vj, vk * 16 + vl] = B[vi, vj, vk * 16 + vl] * 2 T.evaluate(T.end_profile_intrinsic(5, dtype="handle")) @T.prim_func def test2_expected_output(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (8, 8, 128), dtype="int32") B = T.match_buffer(b, (8, 8, 128), dtype="int32") C = T.match_buffer(c, (8, 8, 128), dtype="int32") T.evaluate(T.start_profile_intrinsic(1, dtype="handle")) for i in T.serial(0, 8): T.evaluate(T.start_profile_intrinsic(2, dtype="handle")) for j in T.serial(0, 8): for k in T.serial(0, 8): for l in T.serial(0, 16): with T.block("B"): vi, vj, vk, vl = T.axis.remap("SSSS", [i, j, k, l]) B[vi, vj, vk * 16 + vl] = A[vi, vj, vk * 16 + vl] * 2 for k in T.serial(0, 8): for l in T.serial(0, 16): with T.block("C"): vi, vj, vk, vl = T.axis.remap("SSSS", [i, j, k, l]) C[vi, vj, vk * 16 + vl] = B[vi, vj, vk * 16 + vl] * 2 T.evaluate(T.end_profile_intrinsic(2, dtype="handle")) T.evaluate(T.end_profile_intrinsic(1, dtype="handle")) @T.prim_func def test3_expected_output(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (8, 8, 128), dtype="int32") B = T.match_buffer(b, (8, 8, 128), dtype="int32") C = T.match_buffer(c, (8, 8, 128), dtype="int32") T.evaluate(T.start_profile_intrinsic(1, dtype="handle")) for i in T.serial(0, 8): T.evaluate(T.start_profile_intrinsic(2, dtype="handle")) for j in T.serial(0, 8): T.evaluate(T.start_profile_intrinsic(3, dtype="handle")) for k in T.serial(0, 8): for l in T.serial(0, 16): with T.block("B"): vi, vj, vk, vl = T.axis.remap("SSSS", [i, j, k, l]) B[vi, vj, vk * 16 + vl] = A[vi, vj, vk * 16 + vl] * 2 T.evaluate(T.end_profile_intrinsic(3, dtype="handle")) T.evaluate(T.start_profile_intrinsic(5, dtype="handle")) for k in T.serial(0, 8): for l in T.serial(0, 16): with T.block("C"): vi, vj, vk, vl = T.axis.remap("SSSS", [i, j, k, l]) C[vi, vj, vk * 16 + vl] = B[vi, vj, vk * 16 + vl] * 2 T.evaluate(T.end_profile_intrinsic(5, dtype="handle")) T.evaluate(T.end_profile_intrinsic(2, dtype="handle")) T.evaluate(T.end_profile_intrinsic(1, dtype="handle")) @T.prim_func def test4_expected_output(a: T.handle, b: T.handle, c: T.handle, d: T.handle) -> None: A = T.match_buffer(a, (8, 8, 128), dtype="int32") B = T.match_buffer(b, (8, 8, 128), dtype="int32") C = T.match_buffer(c, (8, 8, 128), dtype="int32") D = T.match_buffer(d, (8, 8, 128), dtype="int32") for i in T.serial(0, 8): T.evaluate(T.start_profile_intrinsic(2, dtype="handle")) for j in T.serial(0, 8): T.evaluate(T.start_profile_intrinsic(3, dtype="handle")) for k, l in T.grid(8, 16): with T.block("B"): vi, vj, vk, vl = T.axis.remap("SSSS", [i, j, k, l]) B[vi, vj, vk * 16 + vl] = A[vi, vj, vk * 16 + vl] * 2 T.evaluate(T.end_profile_intrinsic(3, dtype="handle")) T.evaluate(T.start_profile_intrinsic(5, dtype="handle")) for k, l in T.grid(8, 16): with T.block("B"): vi, vj, vk, vl = T.axis.remap("SSSS", [i, j, k, l]) B[vi, vj, vk * 16 + vl] = B[vi, vj, vk * 16 + vl] * D[vi, vj, vk * 16 + vl] T.evaluate(T.end_profile_intrinsic(5, dtype="handle")) T.evaluate(T.end_profile_intrinsic(2, dtype="handle")) T.evaluate(T.start_profile_intrinsic(7, dtype="handle")) for j in T.serial(0, 8): T.evaluate(T.start_profile_intrinsic(8, dtype="handle")) for k, l in T.grid(8, 16): with T.block("C"): vi, vj, vk, vl = T.axis.remap("SSSS", [i, j, k, l]) C[vi, vj, vk * 16 + vl] = B[vi, vj, vk * 16 + vl] + 2 T.evaluate(T.end_profile_intrinsic(8, dtype="handle")) T.evaluate(T.start_profile_intrinsic(10, dtype="handle")) for k, l in T.grid(8, 16): with T.block("B"): vi, vj, vk, vl = T.axis.remap("SSSS", [i, j, k, l]) C[vi, vj, vk * 16 + vl] = C[vi, vj, vk * 16 + vl] * D[vi, vj, vk * 16 + vl] T.evaluate(T.end_profile_intrinsic(10, dtype="handle")) T.evaluate(T.end_profile_intrinsic(7, dtype="handle")) @T.prim_func def test5_expected_output(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (8, 8, 128), dtype="int32") B = T.match_buffer(b, (8, 8, 128), dtype="int32") C = T.match_buffer(c, (8, 8, 128), dtype="int32") T.evaluate(T.start_profile_intrinsic(1, dtype="handle")) for i in T.serial(0, 8): T.evaluate(T.start_profile_intrinsic(2, dtype="handle")) for j in T.serial(0, 8): for k in T.serial(0, 8): for l in T.serial(0, 16): with T.block("B"): vi, vj, vk, vl = T.axis.remap("SSSS", [i, j, k, l]) B[vi, vj, vk * 16 + vl] = A[vi, vj, vk * 16 + vl] * 2 for k in T.serial(0, 8): for l in T.serial(0, 16): with T.block("C"): vi, vj, vk, vl = T.axis.remap("SSSS", [i, j, k, l]) C[vi, vj, vk * 16 + vl] = B[vi, vj, vk * 16 + vl] * 2 T.evaluate(T.end_profile_intrinsic(2, dtype="handle")) T.evaluate(T.end_profile_intrinsic(1, dtype="handle")) @T.prim_func def test6_expected_output(a: T.handle, b: T.handle, c: T.handle, d: T.handle) -> None: A = T.match_buffer(a, (8, 8, 128), dtype="int32") B = T.match_buffer(b, (8, 8, 128), dtype="int32") C = T.match_buffer(c, (8, 8, 128), dtype="int32") D = T.match_buffer(d, (8, 8, 128), dtype="int32") for i in T.serial(0, 8): T.evaluate(T.start_profile_intrinsic(2, dtype="handle")) for j in T.parallel(0, 8): for k in T.serial(0, 8): for l in T.serial(0, 16): with T.block("B"): vi, vj, vk, vl = T.axis.remap("SSSS", [i, j, k, l]) B[vi, vj, vk * 16 + vl] = A[vi, vj, vk * 16 + vl] * 2 for k in T.serial(0, 8): for l in T.serial(0, 16): with T.block("B"): vi, vj, vk, vl = T.axis.remap("SSSS", [i, j, k, l]) B[vi, vj, vk * 16 + vl] = B[vi, vj, vk * 16 + vl] * D[vi, vj, vk * 16 + vl] T.evaluate(T.end_profile_intrinsic(2, dtype="handle")) T.evaluate(T.start_profile_intrinsic(7, dtype="handle")) for j in T.serial(0, 8): T.evaluate(T.start_profile_intrinsic(8, dtype="handle")) for k in T.parallel(0, 8): for l in T.serial(0, 16): with T.block("C"): vi, vj, vk, vl = T.axis.remap("SSSS", [i, j, k, l]) C[vi, vj, vk * 16 + vl] = B[vi, vj, vk * 16 + vl] + 2 T.evaluate(T.end_profile_intrinsic(8, dtype="handle")) T.evaluate(T.start_profile_intrinsic(10, dtype="handle")) for k in T.parallel(0, 8): for l in T.serial(0, 16): with T.block("B"): vi, vj, vk, vl = T.axis.remap("SSSS", [i, j, k, l]) C[vi, vj, vk * 16 + vl] = C[vi, vj, vk * 16 + vl] * D[vi, vj, vk * 16 + vl] T.evaluate(T.end_profile_intrinsic(10, dtype="handle")) T.evaluate(T.end_profile_intrinsic(7, dtype="handle")) # By default, only loops with siblings are instrumented. def test1(): with tvm.transform.PassContext(config=default_lwp_test_config): mod = tvm.IRModule.from_expr(input1) mod = tvm.tir.transform.InstrumentProfileIntrinsics()(mod) tvm.ir.assert_structural_equal(mod["main"], test1_expected_output) # By default, only loops with siblings are instrumented. Here, 'lwp_max_depth' # doesn't have any effect unless 'instr_siblings' is set to False (ex: test3). def test2(): test2_config = default_lwp_test_config.copy() test2_config.update({"tir.lwp_max_depth": 3}) with tvm.transform.PassContext(config=test2_config): mod = tvm.IRModule.from_expr(input1) mod = tvm.tir.transform.InstrumentProfileIntrinsics()(mod) tvm.ir.assert_structural_equal(mod["main"], test1_expected_output) # test3: Use 'lwp_max_depth' to instrument loops upto a certain depth. This flag # is effective only when 'instr_siblings' is disabled. Also, note that inner-most # loops are always excluded from instrumentation unless overwritten using # 'lwp_min_height' (ex: test5) def test3(): test3_config = default_lwp_test_config.copy() test3_config.update({"tir.lwp_max_depth": 3, "tir.instr_siblings": False}) with tvm.transform.PassContext(config=test3_config): mod = tvm.IRModule.from_expr(input1) mod = tvm.tir.transform.InstrumentProfileIntrinsics()(mod) tvm.ir.assert_structural_equal(mod["main"], test3_expected_output) # test4: Use 'lwp_min_height' to exclude inner loops upto a certain height from # instrumentation. def test4(): with tvm.transform.PassContext(config=default_lwp_test_config): mod = tvm.IRModule.from_expr(input2) mod = tvm.tir.transform.InstrumentProfileIntrinsics()(mod) tvm.ir.assert_structural_equal(mod["main"], test4_expected_output) # test5: Use both 'lwp_min_height' and 'lwp_max_depth'. # instrumentation. def test5(): test5_config = default_lwp_test_config.copy() test5_config.update( {"tir.lwp_max_depth": 3, "tir.instr_siblings": False, "tir.lwp_min_height": 2} ) with tvm.transform.PassContext(config=test5_config): mod = tvm.IRModule.from_expr(input1) mod = tvm.tir.transform.InstrumentProfileIntrinsics()(mod) tvm.ir.assert_structural_equal(mod["main"], test5_expected_output) # test6: Tests instrumentation for the parallel loops def test6(): with tvm.transform.PassContext(config=default_lwp_test_config): mod = tvm.IRModule.from_expr(input3) mod = tvm.tir.transform.InstrumentProfileIntrinsics()(mod) tvm.ir.assert_structural_equal(mod["main"], test6_expected_output) if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_transform_remove_assume.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm import tvm.testing from tvm import TVMError from tvm.script import tir as T class BaseBeforeAfter(tvm.testing.CompareBeforeAfter): @tvm.testing.fixture def transform(self): return tvm.tir.transform.RemoveAssume() class TestRemoveAssume(BaseBeforeAfter): """Remove any instance of T.assume""" def before(A: T.Buffer[1, "int32"]): T.evaluate(T.assume(A[0] == 5)) A[0] = 10 def expected(A: T.Buffer[1, "int32"]): A[0] = 10 class TestRemoveAssumeLoop(BaseBeforeAfter): """Loops containing only T.assume should be removed""" def before(A: T.Buffer[16, "int32"]): for i in T.serial(16): T.evaluate(T.assume(A[i] == 0)) for i in T.serial(16): A[i] = 10 def expected(A: T.Buffer[16, "int32"]): for i in T.serial(16): A[i] = 10 if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_transform_remove_no_op.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm from tvm import te from tvm.script import tir as T import tvm.testing def nop(): return tvm.tir.Evaluate(0) def test_remove_no_op(): i = te.var("i") j = te.var("j") k = te.var("k") m = te.var("m") n = te.var("n") dtype = "int64" Ab = tvm.tir.decl_buffer((n,), dtype) stmt = tvm.tir.For( i, 0, 4, tvm.tir.ForKind.SERIAL, tvm.tir.For( j, 0, n, tvm.tir.ForKind.SERIAL, tvm.tir.For( k, 0, m, tvm.tir.ForKind.SERIAL, tvm.tir.IfThenElse((i * m + j + k < n), tvm.tir.Evaluate(m), tvm.tir.Evaluate(n)), ), ), ) mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([Ab], stmt)) ret = tvm.tir.transform.RemoveNoOp()(mod)["main"].body assert isinstance(ret, tvm.tir.Evaluate) store = tvm.tir.BufferStore(Ab, tvm.tir.BufferLoad(Ab, [i]) + 1, [i + 1]) stmt2 = tvm.tir.SeqStmt([nop(), tvm.tir.SeqStmt([store, nop()])]) mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([Ab], stmt2)) ret = tvm.tir.transform.RemoveNoOp()(mod)["main"].body assert ret == store # remove zero extent loop stmt3 = tvm.tir.For(i, 0, 0, tvm.tir.ForKind.SERIAL, store) mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([Ab], stmt3)) ret = tvm.tir.transform.RemoveNoOp()(mod)["main"].body assert isinstance(ret, tvm.tir.Evaluate) def test_remove_no_op_with_invalid_extent(): @T.prim_func def main(A: T.Buffer[(16), "int32"], B: T.Buffer[(16), "int32"]) -> None: for i in T.serial(16): for j in T.serial(i - 20): B[i] = A[i] + j mod = tvm.ir.module.IRModule.from_expr(main) ret = tvm.tir.transform.RemoveNoOp()(mod)["main"].body assert isinstance(ret, tvm.tir.Evaluate) if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_transform_remove_undef.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm import tvm.testing from tvm.script import tir as T from tvm import TVMError class BaseBeforeAfter(tvm.testing.CompareBeforeAfter): @tvm.testing.fixture def transform(self): return tvm.tir.transform.RemoveStoreUndef() class TestRemoveStoreUndef(BaseBeforeAfter): """Remove a store whose value is T.undef()""" def before(A: T.Buffer[1, "int32"]): A[0] = T.undef(dtype="int32") def expected(A: T.Buffer[1, "int32"]): T.evaluate(0) class TestRemoveStoreUndefExpression(BaseBeforeAfter): """Expressions containing T.undef() are removed""" def before(A: T.Buffer[1, "int32"]): A[0] = 1 + T.undef(dtype="int32") def expected(A: T.Buffer[1, "int32"]): T.evaluate(0) class TestKeepOtherCallNodes(BaseBeforeAfter): """Expressions containing other CallNodes are not removed""" def before(A: T.Buffer[1, "int32"], n: T.int32): A[0] = T.shift_left(n, 1, dtype="int32") expected = before class TestRemoveLetUndef(BaseBeforeAfter): """Remove a store whose value is bound to T.undef()""" def before(A: T.Buffer[1, "int32"]): val = T.undef(dtype="int32") A[0] = val def expected(A: T.Buffer[1, "int32"]): T.evaluate(0) class TestRaiseErrorForUndefAsStoreIndices(BaseBeforeAfter): """Use of T.undef() as buffer indices is an error""" def before(A: T.Buffer[1, "int32"]): val = T.undef(dtype="int32") A[val] = 5 expected = TVMError class TestRaiseErrorForUndefAsLoadIndices(BaseBeforeAfter): """Use of T.undef() as buffer indices is an error Even though this occurs as part of the BufferStore's value, the T.undef() may not appear in a buffer's indices. """ def before(A: T.Buffer[1, "int32"], B: T.Buffer[1, "int32"]): B[0] = A[T.undef(dtype="int32")] expected = TVMError if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_transform_remove_weight_layout_rewrite_block.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import sys import tvm from tvm.ir.module import IRModule from tvm.script import tir as T from tvm.tir.function import PrimFunc def _check(before, expect): if isinstance(before, PrimFunc): before = IRModule({"main": before}) if isinstance(expect, PrimFunc): expect = IRModule({"main": expect}) mod = tvm.tir.transform.RemoveWeightLayoutRewriteBlock()(before) tvm.ir.assert_structural_equal(mod, expect) def test_matmul(): @T.prim_func def before( A: T.Buffer[(16, 16), "float32"], B: T.Buffer[(16, 16), "float32"], C: T.Buffer[(16, 16), "float32"], ) -> None: T.func_attr({"layout_free_buffers": [1]}) B_ = T.alloc_buffer([16, 4, 4], dtype="float32") for i0_o, i1_o in T.grid(16, 16): with T.block("layout_rewrite"): i0, i1 = T.axis.remap("SS", [i0_o, i1_o]) T.reads(B[i0, i1]) T.writes(B_[i1, i0 // 4, i0 % 4]) T.block_attr({"meta_schedule.layout_rewrite_preproc": True}) B_[i1, i0 // 4, i0 % 4] = B[i0, i1] for i0, j, k0, i1, k1 in T.grid(4, 16, 4, 4, 4): with T.block("matmul"): vi = T.axis.spatial(16, i0 * 4 + i1) vj = T.axis.spatial(16, j) vk = T.axis.reduce(16, k0 * 4 + k1) T.reads(A[vi, vk], B_[vj, vk // 4, vk % 4]) T.writes(C[vi, vj]) with T.init(): C[vi, vj] = T.float32(0) C[vi, vj] = C[vi, vj] + A[vi, vk] * B_[vj, vk // 4, vk % 4] @T.prim_func def after( A: T.Buffer[(16, 16), "float32"], B: T.Buffer[(16, 4, 4), "float32"], C: T.Buffer[(16, 16), "float32"], ) -> None: T.func_attr({"layout_free_buffers": [1]}) for i0_o, i1_o in T.grid(16, 16): with T.block("layout_rewrite"): i0, i1 = T.axis.remap("SS", [i0_o, i1_o]) T.reads() T.writes() T.block_attr({"meta_schedule.layout_rewrite_preproc": True}) T.evaluate(0) for i0, j, k0, i1, k1 in T.grid(4, 16, 4, 4, 4): with T.block("matmul"): vi = T.axis.spatial(16, i0 * 4 + i1) vj = T.axis.spatial(16, j) vk = T.axis.reduce(16, k0 * 4 + k1) T.reads(A[vi, vk], B[vj, vk // 4, vk % 4]) T.writes(C[vi, vj]) with T.init(): C[vi, vj] = T.float32(0) C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vj, vk // 4, vk % 4] _check(before, after) if __name__ == "__main__": test_matmul()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_transform_renormalize_split_pattern.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm import tvm.testing from tvm.script import tir as T # fmt: off # pylint: disable=no-member,invalid-name,unused-variable,line-too-long,redefined-outer-name,redundant-keyword-arg @tvm.script.ir_module class Before: @T.prim_func def main(inputs: T.Buffer[(8192,), "float32"], weight: T.Buffer[(2097152,), "float32"], conv2d_transpose_nhwc: T.Buffer[(16384,), "float32"]) -> None: # function attr dict T.func_attr({"global_symbol": "main", "tir.noalias": True}) T.preflattened_buffer(inputs, [1, 4, 4, 512], dtype="float32", data=inputs.data) T.preflattened_buffer(weight, [4, 4, 512, 256], dtype="float32", data=weight.data) T.preflattened_buffer(conv2d_transpose_nhwc, [1, 8, 8, 256], dtype="float32", data=conv2d_transpose_nhwc.data) # var definition threadIdx_x = T.env_thread("threadIdx.x") blockIdx_x = T.env_thread("blockIdx.x") # body T.launch_thread(blockIdx_x, 64) conv2d_transpose_nhwc_local = T.decl_buffer([8], "float32", scope="local") PadInput_shared = T.decl_buffer([768], "float32", scope="shared") weight_shared = T.decl_buffer([4096], "float32", scope="shared") T.launch_thread(threadIdx_x, 32) for i2_3_init, i1_4_init, i2_4_init in T.grid(2, 2, 2): conv2d_transpose_nhwc_local[i1_4_init * 4 + i2_3_init * 2 + i2_4_init] = T.float32(0) for i6_0 in T.serial(16): for ax0_ax1_ax2_ax3_fused_0 in T.serial(24): PadInput_shared[ax0_ax1_ax2_ax3_fused_0 * 32 + threadIdx_x] = T.if_then_else(128 <= ax0_ax1_ax2_ax3_fused_0 * 32 + threadIdx_x and ax0_ax1_ax2_ax3_fused_0 * 32 + threadIdx_x < 640 and 1 <= blockIdx_x // 32 * 2 + (ax0_ax1_ax2_ax3_fused_0 * 32 + threadIdx_x) % 128 // 32 and blockIdx_x // 32 * 2 + (ax0_ax1_ax2_ax3_fused_0 * 32 + threadIdx_x) % 128 // 32 < 5, inputs[blockIdx_x // 32 * 1024 + ax0_ax1_ax2_ax3_fused_0 * 512 + i6_0 * 32 + threadIdx_x - 2560], T.float32(0), dtype="float32") for ax0_ax1_ax2_ax3_fused_0 in T.serial(32): weight_shared[T.ramp(ax0_ax1_ax2_ax3_fused_0 * 128 + threadIdx_x * 4, 1, 4)] = weight[T.ramp((ax0_ax1_ax2_ax3_fused_0 * 128 + threadIdx_x * 4) // 256 * 131072 + i6_0 * 8192 + (ax0_ax1_ax2_ax3_fused_0 * 128 + threadIdx_x * 4) % 256 // 8 * 256 + blockIdx_x % 32 * 8 + threadIdx_x % 2 * 4, 1, 4)] for i6_1, i2_3, i4_2, i5_2, i6_2, i1_4, i2_4 in T.grid(4, 2, 4, 4, 8, 2, 2): conv2d_transpose_nhwc_local[i1_4 * 4 + i2_3 * 2 + i2_4] = conv2d_transpose_nhwc_local[i1_4 * 4 + i2_3 * 2 + i2_4] + T.if_then_else((i1_4 + i4_2) % 2 == 0 and (i2_4 + i5_2) % 2 == 0, PadInput_shared[threadIdx_x // 8 * 128 + (i1_4 + i4_2) // 2 * 128 + (i2_4 + i5_2) // 2 * 32 + i2_3 * 32 + i6_1 * 8 + i6_2], T.float32(0), dtype="float32") * weight_shared[i6_1 * 64 + i6_2 * 8 + threadIdx_x % 8 + 3840 - i5_2 * 256 - i4_2 * 1024] for ax1, ax2 in T.grid(2, 4): conv2d_transpose_nhwc[threadIdx_x // 8 * 4096 + ax1 * 2048 + blockIdx_x // 32 * 1024 + ax2 * 256 + blockIdx_x % 32 * 8 + threadIdx_x % 8] = conv2d_transpose_nhwc_local[ax1 * 4 + ax2] @tvm.script.ir_module class After: @T.prim_func def main(inputs: T.Buffer[(8192,), "float32"], weight: T.Buffer[(2097152,), "float32"], conv2d_transpose_nhwc: T.Buffer[(16384,), "float32"]) -> None: # function attr dict T.func_attr({"global_symbol": "main", "tir.noalias": True}) T.preflattened_buffer(inputs, [1, 4, 4, 512], dtype="float32", data=inputs.data) T.preflattened_buffer(weight, [4, 4, 512, 256], dtype="float32", data=weight.data) T.preflattened_buffer(conv2d_transpose_nhwc, [1, 8, 8, 256], dtype="float32", data=conv2d_transpose_nhwc.data) # var definition threadIdx_x = T.env_thread("threadIdx.x") blockIdx_x = T.env_thread("blockIdx.x") # body T.launch_thread(blockIdx_x, 64) conv2d_transpose_nhwc_local = T.decl_buffer([8], "float32", scope="local") PadInput_shared = T.decl_buffer([768], "float32", scope="shared") weight_shared = T.decl_buffer([4096], "float32", scope="shared") T.launch_thread(threadIdx_x, 32) for i2_3_init, i1_4_init, i2_4_init in T.grid(2, 2, 2): conv2d_transpose_nhwc_local[i1_4_init * 4 + i2_3_init * 2 + i2_4_init] = T.float32(0) for i6_0 in T.serial(16): for ax0_ax1_ax2_ax3_fused_0 in T.serial(24): PadInput_shared[ax0_ax1_ax2_ax3_fused_0 * 32 + threadIdx_x] = T.if_then_else(1 <= (ax0_ax1_ax2_ax3_fused_0 + threadIdx_x // 32) // 4 and (ax0_ax1_ax2_ax3_fused_0 + threadIdx_x // 32) // 20 < 1 and 1 <= blockIdx_x // 32 * 2 + (ax0_ax1_ax2_ax3_fused_0 + threadIdx_x // 32) % 4 and (blockIdx_x // 32 * 2 + (ax0_ax1_ax2_ax3_fused_0 + threadIdx_x // 32) % 4) // 5 < 1, inputs[blockIdx_x // 32 * 1024 + ax0_ax1_ax2_ax3_fused_0 * 512 + i6_0 * 32 + threadIdx_x - 2560], T.float32(0), dtype="float32") for ax0_ax1_ax2_ax3_fused_0 in T.serial(32): weight_shared[T.ramp(ax0_ax1_ax2_ax3_fused_0 * 128 + threadIdx_x * 4, 1, 4)] = weight[T.ramp((ax0_ax1_ax2_ax3_fused_0 + threadIdx_x * 4 // 128) // 2 * 131072 + i6_0 * 8192 + (ax0_ax1_ax2_ax3_fused_0 * 16 + threadIdx_x * 4 // 8) % 32 * 256 + blockIdx_x % 32 * 8 + threadIdx_x % 2 * 4, 1, 4)] for i6_1, i2_3, i4_2, i5_2, i6_2, i1_4, i2_4 in T.grid(4, 2, 4, 4, 8, 2, 2): conv2d_transpose_nhwc_local[i1_4 * 4 + i2_3 * 2 + i2_4] = conv2d_transpose_nhwc_local[i1_4 * 4 + i2_3 * 2 + i2_4] + T.if_then_else((i1_4 + i4_2) % 2 == 0 and (i2_4 + i5_2) % 2 == 0, PadInput_shared[threadIdx_x // 8 * 128 + (i1_4 + i4_2) // 2 * 128 + (i2_4 + i5_2) // 2 * 32 + i2_3 * 32 + i6_1 * 8 + i6_2], T.float32(0), dtype="float32") * weight_shared[i6_1 * 64 + i6_2 * 8 + threadIdx_x % 8 + 3840 - i5_2 * 256 - i4_2 * 1024] for ax1, ax2 in T.grid(2, 4): conv2d_transpose_nhwc[threadIdx_x // 8 * 4096 + ax1 * 2048 + blockIdx_x // 32 * 1024 + ax2 * 256 + blockIdx_x % 32 * 8 + threadIdx_x % 8] = conv2d_transpose_nhwc_local[ax1 * 4 + ax2] @tvm.script.ir_module class After_simplified: @T.prim_func def main(inputs: T.Buffer[(8192,), "float32"], weight: T.Buffer[(2097152,), "float32"], conv2d_transpose_nhwc: T.Buffer[(16384,), "float32"]) -> None: # function attr dict T.func_attr({"global_symbol": "main", "tir.noalias": True}) # var definition threadIdx_x = T.env_thread("threadIdx.x") blockIdx_x = T.env_thread("blockIdx.x") T.preflattened_buffer(inputs, [1, 4, 4, 512], dtype="float32", data=inputs.data) T.preflattened_buffer(weight, [4, 4, 512, 256], dtype="float32", data=weight.data) T.preflattened_buffer(conv2d_transpose_nhwc, [1, 8, 8, 256], dtype="float32", data=conv2d_transpose_nhwc.data) # body T.launch_thread(blockIdx_x, 64) conv2d_transpose_nhwc_local = T.decl_buffer([8], "float32", scope="local") PadInput_shared = T.decl_buffer([768], "float32", scope="shared") weight_shared = T.decl_buffer([4096], "float32", scope="shared") T.launch_thread(threadIdx_x, 32) for i2_3_init, i1_4_init, i2_4_init in T.grid(2, 2, 2): conv2d_transpose_nhwc_local[i1_4_init * 4 + i2_3_init * 2 + i2_4_init] = T.float32(0) for i6_0 in T.serial(16): for ax0_ax1_ax2_ax3_fused_0 in T.serial(24): PadInput_shared[ax0_ax1_ax2_ax3_fused_0 * 32 + threadIdx_x] = T.if_then_else(4 <= ax0_ax1_ax2_ax3_fused_0 and ax0_ax1_ax2_ax3_fused_0 < 20 and 1 <= blockIdx_x // 32 * 2 + ax0_ax1_ax2_ax3_fused_0 % 4 and blockIdx_x // 32 * 2 + ax0_ax1_ax2_ax3_fused_0 % 4 < 5, inputs[blockIdx_x // 32 * 1024 + ax0_ax1_ax2_ax3_fused_0 * 512 + i6_0 * 32 + threadIdx_x - 2560], T.float32(0), dtype="float32") for ax0_ax1_ax2_ax3_fused_0 in T.serial(32): weight_shared[T.ramp(ax0_ax1_ax2_ax3_fused_0 * 128 + threadIdx_x * 4, 1, 4)] = weight[T.ramp(ax0_ax1_ax2_ax3_fused_0 // 2 * 131072 + i6_0 * 8192 + ax0_ax1_ax2_ax3_fused_0 % 2 * 4096 + threadIdx_x // 2 * 256 + blockIdx_x % 32 * 8 + threadIdx_x % 2 * 4, 1, 4)] for i6_1, i2_3, i4_2, i5_2, i6_2, i1_4, i2_4 in T.grid(4, 2, 4, 4, 8, 2, 2): conv2d_transpose_nhwc_local[i1_4 * 4 + i2_3 * 2 + i2_4] = conv2d_transpose_nhwc_local[i1_4 * 4 + i2_3 * 2 + i2_4] + T.if_then_else((i1_4 + i4_2) % 2 == 0 and (i2_4 + i5_2) % 2 == 0, PadInput_shared[threadIdx_x // 8 * 128 + (i1_4 + i4_2) // 2 * 128 + (i2_4 + i5_2) // 2 * 32 + i2_3 * 32 + i6_1 * 8 + i6_2], T.float32(0), dtype="float32") * weight_shared[i6_1 * 64 + i6_2 * 8 + threadIdx_x % 8 + 3840 - i5_2 * 256 - i4_2 * 1024] for ax1, ax2 in T.grid(2, 4): conv2d_transpose_nhwc[threadIdx_x // 8 * 4096 + ax1 * 2048 + blockIdx_x // 32 * 1024 + ax2 * 256 + blockIdx_x % 32 * 8 + threadIdx_x % 8] = conv2d_transpose_nhwc_local[ax1 * 4 + ax2] # pylint: enable=no-member,invalid-name,unused-variable,line-too-long,redefined-outer-name,redundant-keyword-arg # fmt: on def test_renormalize_split_pattern(): after = tvm.tir.transform.RenormalizeSplitPattern()(Before) tvm.ir.assert_structural_equal(after, After) after = tvm.tir.transform.Simplify()(after) tvm.ir.assert_structural_equal(after, After_simplified) @T.prim_func def impossible_equality(n: T.int32): # Prior to bugfix, this conditional defined the expression "2" as # equal to zero within the then_case. [min_value=2, max_value=0] if 2 == 0: # Then this expression evaluates n/2, using the min/max values # of "2", which is caught as a divide by zero error. if n // 2 >= 16: T.evaluate(0) @T.prim_func def impossible_inequality(n: T.int32): # Prior to bugfix, this conditional set up a range of possible # values for the expression "-2" as [0, kPosInf]. if -1 < -2: if n // (-2) >= 16: T.evaluate(0) integer_condition = tvm.testing.parameter( impossible_equality, impossible_inequality, ) def test_analyze_inside_integer_conditional(integer_condition): """Avoid crash occurring in ConstIntBoundAnalyzer. Crash occurred when simplifying some expressions with provably false integer expressions. If the expressions were renormalized before calling Simplify, conditional statements could assign a range of possible values to integers, as if they were variables. This would result in divide by zero throwing an exception, followed by a second exception during stack unwinding causing the program to crash. """ # Similar issue would occur in most transformations that subclass # IRMutatorWithAnalyzer. tir.transform.Simplify() is an # exception, as it rewrites the integer conditionals first. These # tests are written using RenormalizeSplitPattern as it is the # first case identified. transform = tvm.tir.transform.RenormalizeSplitPattern() # Issue would result in an error through while applying the transformation. mod = tvm.IRModule.from_expr(integer_condition) transform(mod) if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_transform_rewrite_unsafe_select.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm from tvm import te def test_rewrite_Select(): ib = tvm.tir.ir_builder.create() A = ib.allocate("float32", 100, name="A", scope="global") i = te.var("i") y = tvm.tir.Select(i > 1, A[i - 1], 1.0) mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([i], tvm.tir.Evaluate(y))) yy = tvm.tir.transform.RewriteUnsafeSelect()(mod)["main"].body.value z = tvm.tir.Select(tvm.tir.Select(i > 1, A[i - 1], 1.0) > 0.0, A[i], 0.1) mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([i], tvm.tir.Evaluate(z))) zz = tvm.tir.transform.RewriteUnsafeSelect()(mod)["main"].body.value a = tvm.tir.Select(tvm.tir.floordiv(i, 4) > 10, y, z) mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([i], tvm.tir.Evaluate(a))) aa = tvm.tir.transform.RewriteUnsafeSelect()(mod)["main"].body.value builtin_if_then_else = tvm.ir.Op.get("tir.if_then_else") assert yy.op.same_as(builtin_if_then_else) assert yy.op.same_as(builtin_if_then_else) assert isinstance(aa, tvm.tir.Select) if __name__ == "__main__": test_rewrite_Select()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_transform_simplify.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm import tvm.testing from tvm import te from tvm.script import tir as T def test_stmt_simplify(): ib = tvm.tir.ir_builder.create() A = ib.pointer("float32", name="A") C = ib.pointer("float32", name="C") n = te.size_var("n") with ib.for_range(0, n, name="i") as i: with ib.if_scope(i < 12): A[i] = C[i] body = tvm.tir.LetStmt(n, 10, ib.get()) mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([A, C, n], body)) body = tvm.tir.transform.Simplify()(mod)["main"].body assert isinstance(body.body, tvm.tir.BufferStore) def test_thread_extent_simplify(): ib = tvm.tir.ir_builder.create() A = ib.pointer("float32", name="A") C = ib.pointer("float32", name="C") n = te.size_var("n") tx = te.thread_axis("threadIdx.x") ty = te.thread_axis("threadIdx.y") ib.scope_attr(tx, "thread_extent", n) ib.scope_attr(tx, "thread_extent", n) ib.scope_attr(ty, "thread_extent", 1) with ib.if_scope(tx + ty < 12): A[tx] = C[tx + ty] body = tvm.tir.LetStmt(n, 10, ib.get()) mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([A, C, n], body)) body = tvm.tir.transform.Simplify()(mod)["main"].body assert isinstance(body.body.body.body, tvm.tir.BufferStore) def test_if_likely(): ib = tvm.tir.ir_builder.create() A = ib.pointer("float32", name="A") C = ib.pointer("float32", name="C") n = te.size_var("n") tx = te.thread_axis("threadIdx.x") ty = te.thread_axis("threadIdx.y") ib.scope_attr(tx, "thread_extent", 32) ib.scope_attr(ty, "thread_extent", 32) with ib.if_scope(ib.likely(tx * 32 + ty < n)): with ib.if_scope(ib.likely(tx * 32 + ty < n)): A[tx] = C[tx * 32 + ty] body = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([A, C, n], body)) body = tvm.tir.transform.Simplify()(mod)["main"].body assert isinstance(body.body.body, tvm.tir.IfThenElse) assert not isinstance(body.body.body.then_case, tvm.tir.IfThenElse) def test_basic_likely_elimination(): n = te.size_var("n") X = te.placeholder(shape=(n,), name="x") W = te.placeholder(shape=(n + 1,), dtype="int32", name="w") def f(i): start = W[i] extent = W[i + 1] - W[i] rv = te.reduce_axis((0, extent)) return te.sum(X[rv + start], axis=rv) Y = te.compute(X.shape, f, name="y") s = te.create_schedule([Y.op]) stmt = tvm.lower(s, [X, W, Y], simple_mode=True) assert "if" not in str(stmt) def test_complex_likely_elimination(): def cumsum(X): """ Y[i] = sum(X[:i]) """ (m,) = X.shape s_state = te.placeholder((m + 1,), dtype="int32", name="state") s_init = te.compute((1,), lambda _: tvm.tir.const(0, "int32")) s_update = te.compute((m + 1,), lambda l: s_state[l - 1] + X[l - 1]) return tvm.te.scan(s_init, s_update, s_state, inputs=[X], name="cumsum") def sparse_lengths_sum(data, indices, lengths): oshape = list(data.shape) oshape[0] = lengths.shape[0] length_offsets = cumsum(lengths) def sls(n, d): gg = te.reduce_axis((0, lengths[n])) indices_idx = length_offsets[n] + gg data_idx = indices[indices_idx] data_val = data[data_idx, d] return te.sum(data_val, axis=gg) return te.compute(oshape, sls) m, n, d, i, l = ( te.size_var("m"), te.size_var("n"), te.size_var("d"), te.size_var("i"), te.size_var("l"), ) data_ph = te.placeholder((m, d * 32), name="data") indices_ph = te.placeholder((i,), name="indices", dtype="int32") lengths_ph = te.placeholder((n,), name="lengths", dtype="int32") Y = sparse_lengths_sum(data_ph, indices_ph, lengths_ph) s = te.create_schedule([Y.op]) (n, d) = s[Y].op.axis (do, di) = s[Y].split(d, factor=32) (gg,) = s[Y].op.reduce_axis s[Y].reorder(n, do, gg, di) s[Y].vectorize(di) stmt = tvm.lower(s, [data_ph, indices_ph, lengths_ph, Y], simple_mode=True) assert "if" not in str(stmt) class BaseBeforeAfter(tvm.testing.CompareBeforeAfter): transitively_prove_inequalities = False convert_boolean_to_and_of_ors = False apply_constraints_to_boolean_branches = False def transform(self): def inner(mod): config = { "tir.Simplify": { "transitively_prove_inequalities": self.transitively_prove_inequalities, "convert_boolean_to_and_of_ors": self.convert_boolean_to_and_of_ors, "apply_constraints_to_boolean_branches": self.apply_constraints_to_boolean_branches, } } with tvm.transform.PassContext(config=config): mod = tvm.tir.transform.Simplify()(mod) return mod return inner class TestLoadStoreNoop(BaseBeforeAfter): """Store of a value that was just read from the same location is a no-op.""" def before(A: T.Buffer[(1,), "float32"]): A[0] = A[0] def expected(A: T.Buffer[(1,), "float32"]): T.evaluate(0) class TestLoadStoreNoopAfterSimplify(BaseBeforeAfter): """As test_load_store_noop, but requiring simplification to identify. Previously, a bug caused the self-assignment of a buffer to checked based on the pre-simplification assignment, not the post-simplification. This test is to identify any similar regression. """ def before(A: T.Buffer[(1,), "float32"]): A[0] = A[0] + (5.0 - 5.0) def expected(A: T.Buffer[(1,), "float32"]): T.evaluate(0) class TestNestedCondition(BaseBeforeAfter): """Nested IfThenElse with the same condition can be simplified. Requires const_int_bound to narrow scope of i within the conditional, or for rewrite_simplify to recognize the literal constraint. """ def before(A: T.Buffer[(16,), "float32"]): for i in T.serial(16): if i == 5: if i == 5: A[i] = 0.0 def expected(A: T.Buffer[(16,), "float32"]): for i in T.serial(16): if i == 5: A[i] = 0.0 class TestNestedProvableCondition(BaseBeforeAfter): """Simplify inner conditional using constraint from outer. Requires const_int_bound to narrow scope of i within the conditional. """ def before(A: T.Buffer[(16,), "float32"]): for i in T.serial(16): if i == 5: if i < 7: A[i] = 0.0 def expected(A: T.Buffer[(16,), "float32"]): for i in T.serial(16): if i == 5: A[i] = 0.0 class TestNestedVarCondition(BaseBeforeAfter): """Simplify inner conditional using constraint from outer. Requires for rewrite_simplify to recognize the repeated constraint. """ def before(A: T.Buffer[(16,), "float32"], n: T.int32): for i in T.serial(16): if i == n: if i == n: A[i] = 0.0 def expected(A: T.Buffer[(16,), "float32"], n: T.int32): for i in T.serial(16): if i == n: A[i] = 0.0 class TestAlteredBufferContents(BaseBeforeAfter): """No simplification of data-dependent conditionals. A literal constraint must not be propagated if the values referenced may change. TIR requires single assignment of variables, so Var objects may be assumed constant, but BufferLoad may not. """ def before(A: T.Buffer[(1,), "int32"], n: T.int32): if A[0] == n: A[0] = A[0] + 1 if A[0] == n: A[0] = 0 expected = before class TestNegationOfCondition(BaseBeforeAfter): """Use negation of outer condition to simplify innner. Within the body of an if statement, the negation of the condition is known to be false. """ def before(A: T.Buffer[(16,), "int32"]): for i in T.serial(16): if i == 5: if i != 5: A[i] = 0 else: A[i] = 1 def expected(A: T.Buffer[(16,), "int32"]): for i in T.serial(16): if i == 5: A[i] = 1 class TestNegationOfNotEqual(BaseBeforeAfter): """As TestNegationOfVarCondition, but with a != outer condition. Because ConstIntBoundAnalyzer only tracks the min and max allowed values, the outer i!=5 condition does provide a constraint on the bounds. This test relies on RewriteSimplifier to recognize ``i==5`` as the negation of a literal constraint. """ def before(A: T.Buffer[(16,), "int32"]): for i in T.serial(16): if i != 5: if i == 5: A[i] = 0 else: A[i] = 1 def expected(A: T.Buffer[(16,), "int32"]): for i in T.serial(16): if i != 5: A[i] = 1 class TestNegationOfVarCondition(BaseBeforeAfter): """As TestNegationOfVarCondition, but with a dynamic condition. This simplification cannot be done with ConstIntBoundAnalyzer, and must rely on RewriteSimplifier recognizing the repeated literal. """ def before(A: T.Buffer[(16,), "int32"], n: T.int32): for i in T.serial(16): if i == n: if i != n: A[i] = 0 else: A[i] = 1 def expected(A: T.Buffer[(16,), "int32"], n: T.int32): for i in T.serial(16): if i == n: A[i] = 1 class TestLiteralConstraintSplitBooleanAnd(BaseBeforeAfter): """Split a boolean AND into independent constraints A single if condition may impose multiple literal constraints. Each constraint that is ANDed together to form the condition should be treated as an independent constraint. The use of n in the condition is to ensure we exercise RewriteSimplifier. """ def before(A: T.Buffer[(16, 16), "int32"], n: T.int32): for i, j in T.grid(16, 16): if i == n and j == n: if i == n: A[i, j] = 0 def expected(A: T.Buffer[(16, 16), "int32"], n: T.int32): for i, j in T.grid(16, 16): if i == n and j == n: A[i, j] = 0 class TestLiteralConstraintSplitBooleanOr(BaseBeforeAfter): """Split a boolean OR into independent constraints Similar to TestLiteralConstraintSplitBooleanAnd, but splitting a boolean OR into independent conditions. This uses the simplification that ``!(x || y) == !x && !y``. The use of ``n`` in the condition is to ensure we exercise RewriteSimplifier. """ def before(A: T.Buffer[(16, 16), "int32"], n: T.int32): for i, j in T.grid(16, 16): if i == n or j == n: A[i, j] = 0 else: if i == n: A[i, j] = 1 else: A[i, j] = 2 def expected(A: T.Buffer[(16, 16), "int32"], n: T.int32): for i, j in T.grid(16, 16): if i == n or j == n: A[i, j] = 0 else: A[i, j] = 2 class TestProveConditionUsingLet(BaseBeforeAfter): """Simplify conditions using non-inlined let bindings Not all let bindings are inlined when they occur in later expressions. However, even if they are not inlined, they may be used to prove the value of a condition. """ @T.prim_func def before(A: T.Buffer[4, "bool"]): for i in T.serial(4): condition = i < 3 if condition or i >= 3: A[i] = condition @T.prim_func def expected(A: T.Buffer[4, "bool"]): for i in T.serial(4): condition = i < 3 A[i] = condition class TestProveLetCondition(BaseBeforeAfter): """Simplify conditions using non-inlined let bindings Not all let bindings are inlined when they occur in later expressions. However, even if they are not inlined, they may be used to prove the value of a condition. """ @T.prim_func def before(A: T.Buffer[4, "bool"]): for i in T.serial(4): condition = i < 3 if i < 3: if condition: A[i] = condition @T.prim_func def expected(A: T.Buffer[4, "bool"]): for i in T.serial(4): condition = i < 3 if i < 3: A[i] = condition class TestProveRepeatedLetCondition(BaseBeforeAfter): """Simplify conditions using non-inlined let bindings A variable may be used as a literal constraint, and be recognized as being True within the context of the constraint. """ @T.prim_func def before(A: T.Buffer[4, "bool"]): for i in T.serial(4): condition = i < 3 if condition: if condition: A[i] = condition @T.prim_func def expected(A: T.Buffer[4, "bool"]): for i in T.serial(4): condition = i < 3 if condition: A[i] = True class TestIfThenElseExpr(BaseBeforeAfter): @T.prim_func def before(A: T.Buffer[16, "float32"]): for i in T.serial(16): if i < 12: A[i] = T.if_then_else(i < 12, 1.0, 2.0, dtype="float32") @T.prim_func def expected(A: T.Buffer[16, "float32"]): for i in T.serial(16): if i < 12: A[i] = 1.0 class TestCeilLog2Int(BaseBeforeAfter): """Simplify expressions resulting from topi.math.ceil_log2""" @T.prim_func def before(A: T.Buffer[1, "int32"]): A[0] = T.cast( T.ceil(T.log2(T.cast(14, "float64"), dtype="float64"), dtype="float64"), dtype="int32" ) @T.prim_func def expected(A: T.Buffer[1, "int32"]): A[0] = 4 class TestLeftCeilLog2LowerBound(BaseBeforeAfter): """Integer bounds are propagated through topi.math.ceil_log2""" @T.prim_func def before(A: T.Buffer[16, "float32"]): for i in T.serial(16): x = T.cast( T.ceil(T.log2(T.cast(i + 1024 + 1, "float64"), dtype="float64"), dtype="float64"), dtype="int32", ) if x == 11: A[i] = 0.0 @T.prim_func def expected(A: T.Buffer[16, "float32"]): for i in T.serial(16): A[i] = 0.0 class TestLeftShiftLowerBound(BaseBeforeAfter): """Integer bounds are propagated through left shift min(1 << i) = 1 << min(i) = 1 << 0 = 1 """ @T.prim_func def before(A: T.Buffer[16, "float32"]): for i in T.serial(16): if T.shift_left(1, i, dtype="int32") >= 1: A[i] = 0.0 @T.prim_func def expected(A: T.Buffer[16, "float32"]): for i in T.serial(16): A[i] = 0.0 class TestLeftShiftUpperBound(BaseBeforeAfter): """Integer bounds are propagated through left shift max(31 << i) = 31 << max(i) = 31 << 15 = 1015808 """ @T.prim_func def before(A: T.Buffer[16, "float32"]): for i in T.serial(16): if T.shift_left(31, i, dtype="int32") <= 1015808: A[i] = 0.0 @T.prim_func def expected(A: T.Buffer[16, "float32"]): for i in T.serial(16): A[i] = 0.0 class TestLeftShiftOfNegativeValue(BaseBeforeAfter): """No const int bounds of left shift of negative value. This is target dependent, and does not currently have a specified behavior in TIR. For example, in CodeGenC, this generates C code with undefined behavior. """ @T.prim_func def before(A: T.Buffer[16, "float32"]): for i in T.serial(16): if -64 <= T.shift_left(-i, 4, dtype="int32"): A[i] = 0.0 expected = before class TestLeftShiftByNegativeValue(BaseBeforeAfter): """No const int bounds of left shift by negative bit count. This is target dependent, and does not currently have a specified behavior in TIR. For example, in CodeGenC, this generates C code with undefined behavior. """ @T.prim_func def before(A: T.Buffer[16, "float32"]): for i in T.serial(16): if T.shift_left(16, -i, dtype="int32") <= 16: A[i] = 0.0 expected = before class TestRemoveTransitivelyProvableCondition(BaseBeforeAfter): """Remove comparisons that may be proven using multiple others For example, the `0 < i` and `i <= j` conditions can be used to prove that `0 < j`. """ transitively_prove_inequalities = True i, j, k = [tvm.tir.Var(name, "int32") for name in "ijk"] zero = tvm.tir.IntImm("int32", 0) test_case = tvm.testing.parameter( (tvm.tir.all(zero < i, i <= j), zero < j, True), # Transitive comparisons from LT (tvm.tir.all(i < j, j < k), i < k, True), (tvm.tir.all(i < j, j == k), i < k, True), (tvm.tir.all(i < j, j <= k), i < k, True), (tvm.tir.all(i < j, j > k), i < k, False), (tvm.tir.all(i < j, j >= k), i < k, False), (tvm.tir.all(i < j, j != k), i < k, False), # Transitive comparisons from LE (tvm.tir.all(i <= j, j < k), i < k, True), (tvm.tir.all(i <= j, j == k), i == k, False), (tvm.tir.all(i <= j, j == k), i <= k, True), (tvm.tir.all(i <= j, j <= k), i <= k, True), (tvm.tir.all(i <= j, j <= k), i < k, False), (tvm.tir.all(i <= j, j > k), i < k, False), (tvm.tir.all(i <= j, j >= k), i < k, False), (tvm.tir.all(i <= j, j != k), i < k, False), # Transitive comparisons from GT (tvm.tir.all(i > j, j > k), i > k, True), (tvm.tir.all(i > j, j == k), i > k, True), (tvm.tir.all(i > j, j >= k), i > k, True), (tvm.tir.all(i > j, j < k), i > k, False), (tvm.tir.all(i > j, j <= k), i > k, False), (tvm.tir.all(i > j, j != k), i > k, False), # Transitive comparisons from GE (tvm.tir.all(i >= j, j > k), i > k, True), (tvm.tir.all(i >= j, j == k), i == k, False), (tvm.tir.all(i >= j, j == k), i >= k, True), (tvm.tir.all(i >= j, j >= k), i >= k, True), (tvm.tir.all(i >= j, j >= k), i > k, False), (tvm.tir.all(i >= j, j < k), i > k, False), (tvm.tir.all(i >= j, j <= k), i > k, False), (tvm.tir.all(i >= j, j != k), i > k, False), # GT or LT may be used to prove NE (tvm.tir.all(i == j, j != k), i != k, True), (tvm.tir.all(i == j, j < k), i != k, True), (tvm.tir.all(i == j, j > k), i != k, True), (tvm.tir.all(i == j, j != k), i < k, False), (tvm.tir.all(i == j, j != k), i > k, False), # Because these are integers, x<y is equivalent to x <= y-1, # and may be used in equivalent simplifications. (tvm.tir.all(i <= j - 1, j < k), i < k, True), (tvm.tir.all(i <= j - 1, j == k), i < k, True), (tvm.tir.all(i <= j - 1, j <= k), i < k, True), (tvm.tir.all(i <= j - 1, j > k), i < k, False), (tvm.tir.all(i <= j - 1, j >= k), i < k, False), (tvm.tir.all(i <= j - 1, j != k), i < k, False), # Either or both inequalities may have an additive offset. (tvm.tir.all(i <= j + 5, j <= k + 7), i <= k + 12, True), (tvm.tir.all(i <= j + 5, j <= k + 7), i <= k + 11, False), # For floats, x < y + c1 and y < z + c2 implies that x < z + (c1 + c2). # Because this simplification applies to integers, transitive # application of LT or GT can give a tighter constraint. # # i < j + c1, j < k + c2 # i <= j + c1 - 1, j <= k + c2 - 1 # i + 1 - c1 <= j, j <= k + c2 - 1 # i + 1 - c1 <= k + c2 - 1 # i <= k + c1 + c2 - 2 # i < k + (c1 + c2 - 1) # (tvm.tir.all(i < j + 5, j < k + 7), i < k + 11, True), (tvm.tir.all(i < j + 5, j < k + 7), i < k + 10, False), ) @tvm.testing.fixture def before(self, test_case): priors, postulate, _ = test_case @T.prim_func def func(A: T.Buffer[1, "bool"]): if priors: A[0] = postulate return func @tvm.testing.fixture def expected(self, test_case): priors, postulate, provable = test_case analyzer = tvm.arith.Analyzer() priors = analyzer.canonical_simplify(priors) if provable: @T.prim_func def func(A: T.Buffer[1, "bool"]): if priors: A[0] = True return func else: postulate = analyzer.canonical_simplify(postulate) @T.prim_func def func(A: T.Buffer[1, "bool"]): if priors: A[0] = postulate return func class TestSuppressTransitivelyProvableCondition(BaseBeforeAfter): transitively_prove_inequalities = False def before(A: T.Buffer[1, "bool"], i: T.int32, j: T.int32, k: T.int32): if i < j and j < k: A[0] = i < k expected = before class TestRewriteAsAndOfOrs(BaseBeforeAfter): """If enabled, rewrite boolean expressions into AND of OR""" convert_boolean_to_and_of_ors = True def before(A: T.Buffer[3, "bool"]): T.evaluate(A[0] or (A[1] and A[2])) def expected(A: T.Buffer[3, "bool"]): T.evaluate((A[0] or A[1]) and (A[0] or A[2])) class TestSuppressRewriteAsAndOfOrs(BaseBeforeAfter): """Only rewrite into AND of OR when allowed""" convert_boolean_to_and_of_ors = False def before(A: T.Buffer[3, "bool"]): T.evaluate(A[0] or (A[1] and A[2])) expected = before class TestRewriteAsAndOfOrsWithTopLevelAnd(BaseBeforeAfter): """The expression being rewritten may start with an AND Like TestRewriteAsAndOfOrs, but with an AndNode as the outermost booelan operator. Even though it is primarily OR nodes that are being rewritten, the call to SimplifyAsAndOfOrs should apply to the outermost AndNode or OrNode in order to enable better simplification. """ convert_boolean_to_and_of_ors = True def before(A: T.Buffer[4, "bool"]): T.evaluate((A[0] or A[1]) and (A[1] or (A[0] and A[2] and A[3]))) def expected(A: T.Buffer[4, "bool"]): # If the simplification is applied to the OrNode, then a # redundant `(A[1] or A[0])` would't be canceled out. When # applying SimplifyAsAndOfOrs to the top-level AndNode, the # internal representation is `[[0,1], [1,0], [1,2], [1,3]]`, and # the redundant `[1,0]` can be removed. # # If the simplification were only applied when encountering an # OrNode, the internal representation would be `[[0,1]]` during # the first call and `[[1,0], [1,2], [1,3]]` during the second # call. As a result, the `[0,1]` and `[1,0]` representations # wouldn't occur within the same call, and the redundant `[1,0]` # wouldn't be removed. T.evaluate((A[0] or A[1]) and (A[1] or A[2]) and (A[1] or A[3])) class TestRewriteAsAndOfOrsWithSimplificationBetweenGroups(BaseBeforeAfter): """Apply rewrite rules between OR groups that differ by a single element The expression `(k==20 and k!=30)` could be rewritten into `(k==20)`. However, by default these two terms must appear as part of an explict part of the simplified expression. The AndOfOr simplification checks for rewrite patterns of the form `(A or B) and (A or C)`, where `(B and C)` can simplify to a single expression `D`. These can be rewritten to `(A or D)`. """ convert_boolean_to_and_of_ors = True def before(A: T.Buffer[1, "bool"], i: T.int32, j: T.int32, k: T.int32): A[0] = (i == 0 or j == 10 or k == 20) and (i == 0 or j == 10 or k != 30) def expected(A: T.Buffer[1, "bool"], i: T.int32, j: T.int32, k: T.int32): A[0] = i == 0 or j == 10 or k == 20 class TestRewriteAsAndOfOrsWithSimplificationBetweenReorderedGroups(BaseBeforeAfter): """Rewrite rules between OR groups do not depend on order Like TestRewriteAsAndOfOrsWithSimplificationBetweenGroups, but the groups are ordered differently. If this removes a group entirely, the result is ordered according to the first group in the expression. """ convert_boolean_to_and_of_ors = True def before(A: T.Buffer[1, "bool"], i: T.int32, j: T.int32, k: T.int32): A[0] = (i == 0 or j == 10 or k == 20) and (j == 10 or k != 30 or i == 0) def expected(A: T.Buffer[1, "bool"], i: T.int32, j: T.int32, k: T.int32): A[0] = i == 0 or j == 10 or k == 20 class TestRewriteAsAndOfOrUsingSimplificationAcrossAnd(BaseBeforeAfter): """Apply AndNode rewrites to non-adjacent expressions The RewriteSimplifier rules only check for simplifications between left/right branches of an And/Or node. Simplifications that would require rearranging components in a chain of And/Or nodes are not performed. """ convert_boolean_to_and_of_ors = True def before(A: T.Buffer[1, "bool"], i: T.int32, j: T.int32, k: T.int32): A[0] = (k == 20) and ((i == 0 or j == 10) and (k != 30)) def expected(A: T.Buffer[1, "bool"], i: T.int32, j: T.int32, k: T.int32): A[0] = (k == 20) and (i == 0 or j == 10) class TestRewriteAsAndOfOrUsingSimplificationWithinOr(BaseBeforeAfter): """Rewrite rules between OR groups do not depend on order The RewriteSimplifier rules only check for simplifications between left/right branches of an And/Or node. Simplifications that would require rearranging components in a chain of And/Or nodes are not performed. This test validates that `(i == 20) or (i != 30)` can be rewritten to `(i != 30)`, even when there's an intervening clause between the clauses being simplified. """ convert_boolean_to_and_of_ors = True def before(A: T.Buffer[1, "bool"], i: T.int32, j: T.int32, k: T.int32): A[0] = (i == 20) or (j == 0) or (i != 30) def expected(A: T.Buffer[1, "bool"], i: T.int32, j: T.int32, k: T.int32): A[0] = (i != 30) or (j == 0) class TestConditionalFloorMod(BaseBeforeAfter): """A regression test for negative floormod denominator Previously, simplifying this function could throw an error. First, the `canonical_simplify` would rewrite `floormod(0-i,2)` to the equivalent `floormod(i,-2)`. Then, the rewrite_simplifier would enter a constrained context in which `floormod(i,-2)==1`. Passing this expression to `ModularSet::EnterConstraint`, which previously did not support a negative value for the second argument, threw an error. The analogous failure mode never occurred for `truncmod`, because `truncmod(0-i,2)` would be canonicalized to `truncmod(i, -2) * -1`, and the pattern matching in `ModularSet` didn't recognize the constant factor. This failure mode was resolved by supporting negative arguments in `ModularSet`, using the same sign convention as is used by `canonical_simplify`. """ def before(A: T.Buffer[1, "bool"], i: T.int32): if T.floormod(0 - i, 2) == 0: A[0] = T.floormod(i, 2) == 0 def expected(A: T.Buffer[1, "bool"], i: T.int32): if T.floormod(i, -2) == 0: A[0] = True class TestSimplifyRHSOfBooleanAndUsingLHS(BaseBeforeAfter): """Boolean expressions can introduce contexts. In `A and B`, the result of `B` only matters when `A` is true, and can be simplified under that context. This test simplifies `n < 10` under the assumption that `n < 5`. """ apply_constraints_to_boolean_branches = True def before(A: T.Buffer[1, "bool"], n: T.int32): A[0] = n < 5 and n < 10 def expected(A: T.Buffer[1, "bool"], n: T.int32): A[0] = n < 5 class TestSimplifyLHSOfBooleanAndUsingRHS(BaseBeforeAfter): """Boolean expressions can introduce contexts for their arguments. Like TestSimplifyRHSOfBooleanAndUsingLHS, but using the RHS to simplify the LHS. """ apply_constraints_to_boolean_branches = True def before(A: T.Buffer[1, "bool"], n: T.int32): A[0] = n < 10 and n < 5 def expected(A: T.Buffer[1, "bool"], n: T.int32): A[0] = n < 5 class TestSimplifyRHSOfBooleanOrUsingLHS(BaseBeforeAfter): """Boolean expressions can introduce contexts. In `A or B`, the result of `B` only matters when `A` is false, so `B` can be simplified under the assumption that `A` is false. This test simplifies `n < 5` under the assumption that `!(n < 10)` """ apply_constraints_to_boolean_branches = True def before(A: T.Buffer[1, "bool"], n: T.int32): A[0] = n < 10 or n < 5 def expected(A: T.Buffer[1, "bool"], n: T.int32): A[0] = n < 10 class TestSimplifyLHSOfBooleanOrUsingRHS(BaseBeforeAfter): """Boolean expressions can introduce contexts for their arguments. Like TestSimplifyRHSOfBooleanOrUsingLHS, but using the RHS to simplify the LHS. """ apply_constraints_to_boolean_branches = True def before(A: T.Buffer[1, "bool"], n: T.int32): A[0] = n < 5 or n < 10 def expected(A: T.Buffer[1, "bool"], n: T.int32): A[0] = n < 10 class TestSimplifyRHSOfBooleanAndUsingLHSWithoutConst(BaseBeforeAfter): """Boolean expressions can introduce contexts. Like TestSimplifyRHSOfBooleanAndUsingLHS, but with variables in the conditions, preventing ConstIntBoundAnalyzer from handling it. This proof requires the extension to transitively prove inequalities. """ apply_constraints_to_boolean_branches = True transitively_prove_inequalities = True def before(A: T.Buffer[1, "bool"], n: T.int32, m: T.int32): A[0] = n < m + 5 and n < m + 10 def expected(A: T.Buffer[1, "bool"], n: T.int32, m: T.int32): A[0] = n < m + 5 class TestSimplifyLHSOfBooleanAndUsingRHSWithoutConst(BaseBeforeAfter): """Boolean expressions can introduce contexts for their arguments. Like TestSimplifyLHSOfBooleanAndUsingRHS, but with variables in the conditions, preventing ConstIntBoundAnalyzer from handling it. This proof requires the extension to transitively prove inequalities. """ apply_constraints_to_boolean_branches = True transitively_prove_inequalities = True def before(A: T.Buffer[1, "bool"], n: T.int32, m: T.int32): A[0] = n < m + 10 and n < m + 5 def expected(A: T.Buffer[1, "bool"], n: T.int32, m: T.int32): A[0] = n < m + 5 class TestSimplifyRHSOfBooleanOrUsingLHSWithoutConst(BaseBeforeAfter): """Boolean expressions can introduce contexts. Like TestSimplifyRHSOfBooleanOrUsingLHS, but with variables in the conditions, preventing ConstIntBoundAnalyzer from handling it. This proof requires the extension to transitively prove inequalities. """ apply_constraints_to_boolean_branches = True transitively_prove_inequalities = True def before(A: T.Buffer[1, "bool"], n: T.int32, m: T.int32): A[0] = n < m + 10 or n < m + 5 def expected(A: T.Buffer[1, "bool"], n: T.int32, m: T.int32): A[0] = n < m + 10 class TestSimplifyLHSOfBooleanOrUsingRHSWithoutConst(BaseBeforeAfter): """Boolean expressions can introduce contexts for their arguments. Like TestSimplifyLHSOfBooleanOrUsingRHS, but with variables in the conditions, preventing ConstIntBoundAnalyzer from handling it. This proof requires the extension to transitively prove inequalities. """ apply_constraints_to_boolean_branches = True transitively_prove_inequalities = True def before(A: T.Buffer[1, "bool"], n: T.int32, m: T.int32): A[0] = n < m + 5 or n < m + 10 def expected(A: T.Buffer[1, "bool"], n: T.int32, m: T.int32): A[0] = n < m + 10 class TestProvableConditionWithOffset(BaseBeforeAfter): """Use scoped-constraint to prove inequalities""" transitively_prove_inequalities = False def before(A: T.Buffer[1, "bool"], i: T.int32, j: T.int32): if i < j: A[0] = i < j + 1 def expected(A: T.Buffer[1, "bool"], i: T.int32, j: T.int32): if i < j: A[0] = True class TestMostRestrictiveConditional(BaseBeforeAfter): """Preferentially prove part of a compound conditional. Even if we cannot prove a conditional as true or false on its own, proving that a conditional must satisfy a stronger condition may allow for later rewrites. For example, if it is known that `a <= b`, then `a >= b` cannot be proven, but can be reduced to `a == b`. """ i, j, k = [tvm.tir.Var(name, "int32") for name in "ijk"] tir_int = tvm.tir.IntImm("int32", 0) test_case = tvm.testing.parameter( (i <= tir_int, tir_int <= i, i == tir_int), (i <= tir_int, i != tir_int, i < tir_int), (i != tir_int, i <= tir_int, i < tir_int), (i != tir_int, tir_int <= i, tir_int < i), (i <= j, j <= i, j == i), (i <= j, i != j, i < j), (i != j, i <= j, i < j), (i != j, j <= i, j < i), ) @tvm.testing.fixture def before(self, test_case): priors, expr_before, _ = test_case @T.prim_func def func(A: T.Buffer[1, "bool"]): if priors: A[0] = expr_before return func @tvm.testing.fixture def expected(self, test_case): priors, _, expr_after = test_case @T.prim_func def func(A: T.Buffer[1, "bool"]): if priors: A[0] = expr_after return func if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_transform_split_host_device.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm from tvm import te import tvm.testing @tvm.testing.requires_cuda def test_split_host_device_func_attr(): m = te.size_var("m") l = te.size_var("l") A = te.placeholder((m, l), name="A") A1 = te.compute((m, l), lambda i, j: A[i, j], name="A1") A2 = te.compute((m, l), lambda i, j: A1[i, j] + 3, name="A2") s = te.create_schedule(A2.op) xo, xi = s[A2].split(A2.op.axis[0], factor=8) s[A2].bind(xo, te.thread_axis("blockIdx.x")) s[A1].compute_at(s[A2], xo) s[A1].set_scope("shared") mod = tvm.lower(s, [A, A2], name="f") cuda_target = tvm.target.Target("cuda") mod = tvm.tir.transform.Apply( lambda f: f.with_attr({"global_symbol": "test", "target": cuda_target}) )(mod) fdevice = tvm.tir.transform.SplitHostDevice()(mod)["test_kernel0"] assert fdevice.attrs["global_symbol"] == "test_kernel0" assert fdevice.attrs["calling_conv"].value == 2 assert fdevice.attrs["target"] == cuda_target assert fdevice.attrs["tir.is_global_func"].value if __name__ == "__main__": test_split_host_device_func_attr()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_transform_storage_flatten.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm import tvm.testing from tvm import te from tvm.driver.build_module import schedule_to_module from tvm.script import tir as T from tvm.relay import GlobalVar def test_flatten2(): m = te.size_var("m") l = te.size_var("l") A = te.placeholder((m, l), name="A") A1 = te.compute((m, l), lambda i, j: A[i, j], name="A1") A2 = te.compute((m, l), lambda i, j: A1[i, j] + 3, name="A2") s = te.create_schedule(A2.op) xo, xi = s[A2].split(A2.op.axis[0], 8) s[A1].compute_at(s[A2], xo) Ab = tvm.tir.decl_buffer(A.shape, A.dtype, name="A") A2b = tvm.tir.decl_buffer(A2.shape, A2.dtype, name="A2") mod = schedule_to_module(s, [Ab, A2b], binds={A: Ab, A2: A2b}) mod = tvm.tir.transform.StorageFlatten(64)(mod) def test_flatten_prefetch(): A = te.placeholder((25, 100, 4), name="A") _A = tvm.tir.decl_buffer(A.shape, A.dtype, name="A") i = te.size_var("i") j = te.size_var("j") region = [tvm.ir.Range.from_min_extent(i[0], i[1]) for i in [(i, 2), (j, 8), (0, 4)]] stmt = tvm.tir.Prefetch(_A, region) func = tvm.te.schedule.SchedulePostProcToPrimFunc([_A], stmt, {A: _A}) mod = tvm.IRModule.from_expr(func) mod = tvm.transform.Sequential( [tvm.tir.transform.StorageFlatten(64), tvm.tir.transform.Simplify()] )(mod) stmt = mod["main"].body assert stmt.extent.value == 2 assert isinstance(stmt.body, tvm.tir.For) assert stmt.body.extent.value == 2 def assert_flat_loads(stmt): if isinstance(stmt, tvm.tir.BufferLoad): assert len(stmt.indices) == 1, "All prefetch indices should be flattened" tvm.tir.stmt_functor.post_order_visit(stmt, assert_flat_loads) def test_flatten_storage_align(): m = 8 l = 16 A = te.placeholder((m, l), name="A") A1 = te.compute((m, l), lambda i, j: A[i, j], name="A1") A2 = te.compute((m, l), lambda i, j: A1[i, j] + 3, name="A2") s = te.create_schedule(A2.op) s[A1].storage_align(A1.op.axis[0], 2, 1) mod = schedule_to_module(s, [A, A2]) mod = tvm.transform.Sequential( [tvm.tir.transform.StorageFlatten(64), tvm.tir.transform.Simplify()] )(mod) stmt = mod["main"].body assert stmt.extents[0].value == 17 * 8 def test_flatten_double_buffer(): @tvm.script.ir_module class ModFromScript: @T.prim_func def main(A_param: T.handle, C_param: T.handle): A = T.match_buffer(A_param, (400,), "float32", strides=[1]) C = T.match_buffer(C_param, (4,), "float32", strides=[1]) T.func_attr({"from_legacy_te_schedule": True}) threadIdx_x = T.env_thread("threadIdx.x") T.launch_thread(threadIdx_x, 1) for i in T.serial(0, 100): B = T.decl_buffer([4], "float32", scope="shared") with T.attr(B.data, "double_buffer_scope", 1): for j in T.serial(0, 4): B[j] = A[4 * i + j] for j in T.serial(0, 4): C[j] = B[j] + 1.0 mod = ModFromScript with tvm.transform.PassContext(config={"tir.InjectDoubleBuffer": {"split_loop": 2}}): mod = tvm.transform.Sequential( [ tvm.tir.transform.StorageFlatten(64), tvm.tir.transform.InjectDoubleBuffer(), tvm.tir.transform.Simplify(), ] )(mod) stmt = mod["main"].body assert isinstance(stmt.body, tvm.tir.Allocate) assert list(stmt.body.extents) == [8] mod = tvm.tir.transform.ThreadSync("shared")(mod) f = mod["main"] count = [0] def count_sync(op): if isinstance(op, tvm.tir.Call) and op.op.same_as(tvm.ir.Op.get("tir.tvm_storage_sync")): count[0] += 1 tvm.tir.stmt_functor.post_order_visit(f.body, count_sync) assert count[0] == 4 def test_flatten_let_buffer(): @tvm.script.ir_module class module: @T.prim_func def main(): T.func_attr({"from_legacy_te_schedule": True}) # If a pointer defined using a LetStmt, A_data: T.Ptr[T.int32] = T.call_extern("dummy_extern_function", dtype="handle") # and a buffer is backed by that pointer, A = T.decl_buffer([1], dtype="float32", data=A_data) T.evaluate(A[0]) # then the call to StorageFlatten would result in an exception # being thrown. tvm.tir.transform.StorageFlatten(64)(module) @T.prim_func def tir_func(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [2, 2]) B = T.match_buffer(a, [2, 2]) A[0, 1] = B[1, 1] def test_flatten_tir(): orig_mod = tvm.IRModule({GlobalVar("main"): tir_func}) mod = tvm.tir.transform.StorageFlatten(64)(orig_mod) tvm.ir.assert_structural_equal( orig_mod, mod ) # StorageFlatten should do nothing to TIR functions if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_transform_storage_rewrite.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import sys import pytest import tvm import tvm.testing from tvm import te from tvm.driver.build_module import schedule_to_module from tvm.script import tir as T def test_storage_share(): m = te.var("m") l = te.var("l") A = te.placeholder((m, l), name="A") num_stage = 5 B = A for t in range(num_stage): B = te.compute((m, l), lambda i, j: B[i, j] + (t + 1), name="A%d" % t) s = te.create_schedule(B.op) mod = schedule_to_module(s, [A, B]) mod = tvm.tir.transform.StorageFlatten(64)(mod) mod = tvm.tir.transform.Simplify()(mod) mod = tvm.tir.transform.StorageRewrite()(mod) stmt = mod["main"].body # verify only have one allocations. # verify inplace folding works num_alloc = [0] def verify(n): if isinstance(n, tvm.tir.Allocate): num_alloc[0] += 1 tvm.tir.stmt_functor.post_order_visit(stmt, verify) assert num_alloc[0] == 1 def register_mem(scope_tb, max_bits): # Register mem @tvm.register_func("tvm.info.mem.%s" % scope_tb) def mem_info_inp_buffer(): return tvm.ir.make_node( "MemoryInfo", unit_bits=16, max_simd_bits=32, max_num_bits=max_bits, head_address=None ) def test_alloc_seq(): scope_tb = "local.L0A" max_bits = 1024 * 1024 * 1024 register_mem(scope_tb, max_bits) ib = tvm.tir.ir_builder.create() n = te.var("n") with ib.for_range(0, n, name="i") as i: with ib.for_range(0, 10, name="j") as j: A = ib.allocate("float32", 200, name="A", scope=scope_tb) A[j] = 1.2 with ib.for_range(0, 10, name="j") as j: A = ib.allocate("float32", 200, name="B", scope=scope_tb) A[j] = 1.3 body = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([n], body)) body = tvm.tir.transform.StorageRewrite()(mod)["main"].body num_alloc = [0] def verify(n): if isinstance(n, tvm.tir.Allocate): num_alloc[0] += 1 assert n.extents[0].value == 200 tvm.tir.stmt_functor.post_order_visit(body, verify) assert num_alloc[0] == 1 def test_alloc_different_dtypes(): def stmt_generater(dtype_list, length): ib = tvm.tir.ir_builder.create() base_dtype = dtype_list[0] global_a = te.placeholder((length,), name="global_a", dtype=base_dtype) assert len(dtype_list) == 4 with ib.for_range(0, length, name="j") as j: dtype = dtype_list[0] A = ib.allocate(dtype, length, name="A", scope="local.L0A") A[j] = tvm.tir.const(1, dtype=dtype) with ib.for_range(0, length, name="j") as j: dtype = dtype_list[1] B = ib.allocate(dtype, length, name="B", scope="local.L0A") B[j] = tvm.tir.const(1, dtype=dtype) with ib.for_range(0, length, name="j") as j: dtype = dtype_list[2] C = ib.allocate(dtype, length, name="C", scope="local.L0A") C[j] = tvm.tir.const(1, dtype=dtype) with ib.for_range(0, length, name="j") as j: dtype = dtype_list[3] D = ib.allocate(dtype, length, name="D", scope="local.L0A") D[j] = tvm.tir.const(1, dtype=dtype) with ib.for_range(0, length, name="j") as j: dtype = "int8" E = ib.allocate(dtype, length, name="E", scope="local.L0A") E[j] = A[j].astype(dtype) + B[j].astype(dtype) + C[j].astype(dtype) + D[j].astype(dtype) return ib.get() def dtype_bit_len(dtype): index = 0 for i in dtype: if i.isdigit(): break index += 1 return int(dtype[index:]) def offset_generater(dtype_list, length): dtype_len_list = [dtype_bit_len(i) for i in dtype_list] base_len = dtype_len_list[0] return sum([i * length / base_len for i in dtype_len_list]) def dtype_test(dtype_list, length): def verify(n): if isinstance(n, tvm.tir.Allocate): assert n.extents[0].value == offset body = stmt_generater(dtype_list, length) offset = offset_generater(dtype_list, length) mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], body)) body = tvm.tir.transform.StorageRewrite()(mod)["main"].body tvm.tir.stmt_functor.post_order_visit(body, verify) length = 1024 dtype_list = ["float16", "int32", "uint16", "int8"] dtype_test(dtype_list, length) dtype_list = ["float32", "int32", "uint16", "int8"] dtype_test(dtype_list, length) dtype_list = ["float64", "int32", "uint16", "int8"] dtype_test(dtype_list, length) dtype_list = ["int8", "int32", "uint16", "uint8"] dtype_test(dtype_list, length) def test_inplace_rule(): m = 10 A = te.placeholder((m,), name="A") A0 = te.compute((m,), lambda i: A[i], name="A0") A1 = te.compute((m,), lambda i: A[i] + 1, name="A1") AA = te.compute((m,), lambda i: A0[i] + A1[i] + A1[0], name="AA") B = te.compute((m,), lambda i: AA[i] + 1, name="B") s = te.create_schedule(B.op) mod = schedule_to_module(s, [A, B]) mod = tvm.tir.transform.StorageFlatten(64)(mod) mod = tvm.tir.transform.Simplify()(mod) mod = tvm.tir.transform.StorageRewrite()(mod) stmt = mod["main"].body # verify only have one allocations. # verify inplace folding works num_alloc = [0] def verify(n): if isinstance(n, tvm.tir.Allocate): num_alloc[0] += 1 tvm.tir.stmt_functor.post_order_visit(stmt, verify) assert num_alloc[0] == 2 def test_storage_combine(): n = 8 A = te.placeholder((4,), name="A") num_stage = 5 B = A stages = [] for t in range(num_stage): B = te.compute((n,), lambda i: B[i] + B[0] + (t + 1), name="A%d" % t) stages.append(B) s = te.create_schedule(B.op) for S in stages[:-1]: s[S].set_scope("global:tag") mod = schedule_to_module(s, [A, B]) mod = tvm.tir.transform.StorageFlatten(64)(mod) mod = tvm.tir.transform.Simplify()(mod) mod = tvm.tir.transform.StorageRewrite()(mod) stmt = mod["main"].body num_alloc = [0] def verify(n): if isinstance(n, tvm.tir.Allocate): num_alloc[0] += 1 assert n.extents[0].value == 16 tvm.tir.stmt_functor.post_order_visit(stmt, verify) assert num_alloc[0] == 1 def test_storage_combine_with_vectorization(): n = 1024 A = te.placeholder((n,), name="A") B = te.placeholder((n,), name="B") C = te.compute((n,), lambda i: A[i] + B[i], name="C") s = te.create_schedule(C.op) AA = s.cache_read(A, "global:tag", readers=[C]) BB = s.cache_read(B, "global:tag", readers=[C]) CC = s.cache_write(C, "global:tag") s[CC].vectorize(s[CC].op.axis[0]) mod = schedule_to_module(s, [A, B, C]) mod = tvm.tir.transform.StorageFlatten(64)(mod) mod = tvm.tir.transform.VectorizeLoop()(mod) mod = tvm.tir.transform.StorageRewrite()(mod) mod = tvm.tir.transform.Simplify()(mod) stmt = mod["main"].body num_alloc = [0] def verify(v): # find add op if ( isinstance(v, tvm.tir.Add) and isinstance(v.a, tvm.tir.Load) and isinstance(v.b, tvm.tir.Load) ): lhs_ramp = v.a.index rhs_ramp = v.b.index # these two ramp load should not overlap assert lhs_ramp.lanes == n assert rhs_ramp.lanes == n assert lhs_ramp.base >= rhs_ramp.base + n or rhs_ramp.base >= lhs_ramp.base + n elif isinstance(v, tvm.tir.Allocate): num_alloc[0] += 1 tvm.tir.stmt_functor.post_order_visit(stmt, verify) assert num_alloc[0] == 1 def test_storage_share_gpu(): m = te.var("m") A = [te.placeholder((m), name="A")] num_stage = 5 for t in range(num_stage): A.append(te.compute((m,), lambda i: A[-1][i] + (t + 1), name="A%d_s" % t)) A.append(te.compute((m,), lambda i: A[-1][i], name="A%d" % t)) s = te.create_schedule(A[-1].op) for t in range(num_stage): x = A[2 * t + 2].op.axis[0] bx, tx = s[A[2 * t + 2]].split(x, factor=32) s[A[2 * t + 2]].bind(bx, te.thread_axis("blockIdx.x")) s[A[2 * t + 2]].bind(tx, te.thread_axis("threadIdx.x")) s[A[2 * t + 1]].compute_at(s[A[2 * t + 2]], tx) s[A[2 * t + 1]].set_scope("shared") mod = schedule_to_module(s, [A[0], A[-1]]) mod = tvm.tir.transform.StorageFlatten(64)(mod) mod = tvm.tir.transform.Simplify()(mod) mod = tvm.tir.transform.StorageRewrite()(mod) stmt = mod["main"].body alloc_stats = {"global": 0, "shared": 0} def verify(n): if isinstance(n, tvm.tir.Allocate): scope = n.buffer_var.type_annotation.storage_scope alloc_stats[scope] += 1 tvm.tir.stmt_functor.post_order_visit(stmt, verify) assert alloc_stats["global"] == 2 assert alloc_stats["shared"] == num_stage def test_parallel_alloc(): ib = tvm.tir.ir_builder.create() n = te.var("n") with ib.for_range(0, n, name="i", kind="parallel") as i: with ib.for_range(0, 10, name="j") as j: A = ib.allocate("float32", n, name="A", scope="global") A[j] = A[j] + 2 body = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([n], body)) body = tvm.tir.transform.StorageRewrite()(mod)["main"] assert isinstance(body.body.body, tvm.tir.Allocate) ib = tvm.tir.ir_builder.create() n = te.var("n") with ib.for_range(0, n, name="t") as i: ib.scope_attr( tvm.tir.const(1, "int32"), "pragma_scope", tvm.tir.StringImm("parallel_launch_point") ) with ib.for_range(0, n, name="i", kind="parallel") as i: with ib.for_range(0, 10, name="j") as j: A = ib.allocate("float32", n, name="A", scope="global") A[j] = A[j] + 2 body = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([n], body)) body = tvm.tir.transform.StorageRewrite()(mod)["main"] assert isinstance(body.body.body.body.body, tvm.tir.Allocate) def test_while_alloc(): def get_mod(kind="serial"): ib = tvm.tir.ir_builder.create() n = te.var("n") with ib.for_range(0, n, name="i", kind=kind) as i: j = ib.allocate("int32", 1, name="j", scope="global") j[0] = 0 with ib.while_loop(j[0] < 10): A = ib.allocate("float32", n, name="A", scope="global") A[j[0]] = A[j[0]] + 2 j[0] += j[0] + 1 body = ib.get() return tvm.IRModule.from_expr(tvm.tir.PrimFunc([n], body)) mod = get_mod(kind="parallel") # parallel (i, 0, n) { # allocate j[int32 * 1] # j[0] = 0 # while((j[0] < 10)){ # // attr [A] storage_scope = "global" # allocate A[float32 * n] # A[j[0]] = (A[j[0]] + 2f) # j[0] = (j[0] + (j[0] + 1)) # } # } body = tvm.tir.transform.StorageRewrite()(mod)["main"] # parallel (i, 0, n) { # allocate j[int32 * 1] # allocate A[float32 * n] # j[0] = 0 # while((j[0] < 10)){ # A[j[0]] = (A[j[0]] + 2f) # j[0] = (j[0] + (j[0] + 1)) # } # } assert isinstance(body.body.body, tvm.tir.Allocate) # j assert isinstance(body.body.body.body, tvm.tir.Allocate) # A mod = get_mod(kind="serial") # for (i, 0, n) { # allocate j[int32 * 1] # j[0] = 0 # while((j[0] < 10)){ # // attr [A] storage_scope = "global" # allocate A[float32 * n] # A[j[0]] = (A[j[0]] + 2f) # j[0] = (j[0] + (j[0] + 1)) # } # } body = tvm.tir.transform.StorageRewrite()(mod)["main"] # allocate j[int32 * 1] # allocate A[float32 * n] # for (i, 0, n) { # j[0] = 0 # while((j[0] < 10)){ # A[j[0]] = (A[j[0]] + 2f) # j[0] = (j[0] + (j[0] + 1)) # } # } assert isinstance(body.body, tvm.tir.Allocate) # j assert isinstance(body.body.body, tvm.tir.Allocate) # A def test_inplace_rule2(scope_tb="local_TB2", max_bits=1024 * 1024 * 1024): # Test Buffer register_mem(scope_tb, max_bits) m = 10 A = te.placeholder((m,), name="A") C = te.placeholder((m,), name="C") D = te.placeholder((m,), name="D") A0 = te.compute((m,), lambda i: A[i] + C[i], name="A0") A1 = te.compute((m,), lambda i: D[i] * D[i], name="A1") A2 = te.compute((m,), lambda i: A0[i] + A1[i], name="A2") B = te.compute((m,), lambda i: A2[i], name="B") s = te.create_schedule(B.op) A0L = s.cache_read(A0, scope_tb, [A2]) A1L = s.cache_read(A1, scope_tb, [A2]) A2L = s.cache_read(A2, scope_tb, [B]) mod = schedule_to_module(s, [A, B, C, D]) mod = tvm.tir.transform.StorageFlatten(64)(mod) mod = tvm.tir.transform.Simplify()(mod) mod = tvm.tir.transform.StorageRewrite()(mod) stmt = mod["main"].body # verify only have one allocations. # verify inplace folding works num_alloc = [0] def verify(n): if isinstance(n, tvm.tir.Allocate): num_alloc[0] += 1 tvm.tir.stmt_functor.post_order_visit(stmt, verify) assert num_alloc[0] == 2 def test_exceed_mem(): max_bits = 639 # The critical max_num_bits is between 639 and 640 loc = -1 try: test_inplace_rule2("local_TEM", max_bits) except Exception as e: estr = str(e) loc = estr.find("Allocation exceed bound of memory") assert loc != -1 def test_inplace_rule3(): # Test Buffer scope_tb = "local_TB3" max_bits = 1024 * 1024 * 1024 register_mem(scope_tb, max_bits) m = 10 B0 = te.placeholder((m,), name="B0") B1 = te.placeholder((m,), name="B1") B2 = te.placeholder((m,), name="B2") B3 = te.placeholder((m,), name="B3") B4 = te.placeholder((m,), name="B4") B5 = te.placeholder((m,), name="B5") B6 = te.compute((m,), lambda i: B1[i] * B5[i], name="B6") B7 = te.compute((m,), lambda i: B2[i] * B4[i], name="B7") B8 = te.compute((m,), lambda i: B6[i] - B7[i], name="B8") B9 = te.compute((m,), lambda i: B2[i] * B3[i], name="B9") B10 = te.compute((m,), lambda i: B0[i] * B5[i], name="B10") B11 = te.compute((m,), lambda i: B9[i] - B10[i], name="B11") B12 = te.compute((m,), lambda i: B0[i] * B4[i], name="B12") B13 = te.compute((m,), lambda i: B1[i] * B3[i], name="B13") B14 = te.compute((m,), lambda i: B12[i] - B13[i], name="B14") B = te.compute((m,), lambda i: B8[i] * B11[i] + B14[i], name="B") s = te.create_schedule(B.op) B1L = s.cache_read(B1, scope_tb, [B6, B13]) B5L = s.cache_read(B5, scope_tb, [B6, B10]) B2L = s.cache_read(B2, scope_tb, [B7, B9]) B4L = s.cache_read(B4, scope_tb, [B7, B12]) B3L = s.cache_read(B3, scope_tb, [B9, B13]) B0L = s.cache_read(B0, scope_tb, [B10, B12]) B8L = s.cache_write(B8, scope_tb) B11L = s.cache_write(B11, scope_tb) B14L = s.cache_write(B14, scope_tb) B6L = s.cache_write(B6, scope_tb) B7L = s.cache_write(B7, scope_tb) B9L = s.cache_write(B9, scope_tb) B10L = s.cache_write(B10, scope_tb) B12L = s.cache_write(B12, scope_tb) B13L = s.cache_write(B13, scope_tb) s[B12].compute_inline() s[B13].compute_inline() s[B8].compute_inline() s[B11].compute_inline() s[B14].compute_inline() s[B6].compute_inline() s[B7].compute_inline() s[B9].compute_inline() s[B10].compute_inline() s = s.normalize() mod = schedule_to_module(s, [B0, B1, B2, B3, B4, B5, B]) mod = tvm.tir.transform.StorageFlatten(64)(mod) mod = tvm.tir.transform.Simplify()(mod) mod = tvm.tir.transform.StorageRewrite()(mod) stmt = mod["main"].body # verify only have one allocations. # verify inplace folding works def verify(n): if isinstance(n, tvm.tir.Allocate): assert n.extents[0].value == 70 tvm.tir.stmt_functor.post_order_visit(stmt, verify) def test_alloc_seq_type(): ib = tvm.tir.ir_builder.create() n = te.var("n") with ib.for_range(0, n, name="i") as i: with ib.for_range(0, 10, name="j") as j: A = ib.allocate("float32", 200, name="A", scope="local.L0A") A1 = ib.allocate("float32", 200, name="A1", scope="local.L0A") A[j] = 1.2 A1[j] = 1.3 B = ib.allocate("int16", 200, name="B", scope="local.L0A") B[j] = tvm.tir.const(1, "int16") C = ib.allocate("int16", 200, name="C", scope="local.L0A") C[j] = tvm.tir.const(1, "int16") D = ib.allocate("int16", 200, name="D", scope="local.L0A") D[j] = B[j] + C[j] A2 = ib.allocate("float32", 200, name="A2", scope="local.L0A") A2[j] = A[j] body = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([n], body)) body = tvm.tir.transform.StorageRewrite()(mod)["main"].body num_alloc = [0] def verify(n): if isinstance(n, tvm.tir.Allocate): num_alloc[0] += 1 assert n.extents[0].value == 500 tvm.tir.stmt_functor.post_order_visit(body, verify) assert num_alloc[0] == 1 def test_alloc_seq_type2(): scope_tb = "local.L0A2" max_bits = 1024 * 1024 * 1024 register_mem(scope_tb, max_bits) ib = tvm.tir.ir_builder.create() n = te.var("n") with ib.for_range(0, n, name="i") as i: with ib.for_range(0, 10, name="j") as j: A = ib.allocate("float32", 200, name="A", scope=scope_tb) A[j] = 1.2 with ib.for_range(0, 20, name="j") as j: B = ib.allocate("int16", 400, name="B", scope=scope_tb) B[j] = tvm.tir.const(1, "int16") with ib.for_range(0, 10, name="j") as j: C = ib.allocate("float32", 200, name="C", scope=scope_tb) C[j] = 1.2 body = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([n], body)) body = tvm.tir.transform.StorageRewrite()(mod)["main"].body num_alloc = [0] def verify(n): if isinstance(n, tvm.tir.Allocate): num_alloc[0] += 1 assert n.extents[0].value == 200 tvm.tir.stmt_functor.post_order_visit(body, verify) assert num_alloc[0] == 1 def test_reuse_small_buffer(): ib = tvm.tir.ir_builder.create() n = te.var("n") with ib.for_range(0, n, name="i") as i: with ib.for_range(0, 10, name="j") as j: A = ib.allocate("int16", 200, name="A", scope="local.L0A") A[j] = tvm.tir.const(1, "int16") B = ib.allocate("int16", 200, name="B", scope="local.L0A") B[j] = tvm.tir.const(1, "int16") B1 = ib.allocate("int16", 200, name="B1", scope="local.L0A") B1[j] = A[j] + B[j] C = ib.allocate("int16", 400, name="C", scope="local.L0A") C[j] = tvm.tir.const(1, "int16") D = ib.allocate("int16", 400, name="D", scope="local.L0A") D[j] = tvm.tir.const(1, "int16") E = ib.allocate("int16", 400, name="E", scope="local.L0A") E[j] = C[j] body = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([n], body)) body = tvm.tir.transform.StorageRewrite()(mod)["main"].body num_alloc = [0] def verify(n): if isinstance(n, tvm.tir.Allocate): num_alloc[0] += 1 assert n.extents[0].value == 800 tvm.tir.stmt_functor.post_order_visit(body, verify) assert num_alloc[0] == 1 def test_replace_dataflow(): shape = (255,) A = te.placeholder(shape, name="A") B = te.compute(shape, lambda i: A[i] + A[i], name="B") C = te.compute(shape, lambda i: A[i] + B[i], name="C") D = te.compute(shape, lambda i: A[i] + C[i], name="D") E = te.compute(shape, lambda i: A[i] + D[i], name="E") s = te.create_schedule(E.op) s.cache_read(A, "local", [B, C, D, E]) bounds = tvm.te.schedule.InferBound(s) assert isinstance(bounds, tvm.container.Map) def test_large_input(): @te.hybrid.script def compute(a, b): n = 16384 c = output_tensor((n, n), "int32") for i in range(n): for j in range(n): c[i, j] = a[i, j] - b[i, j] return c n = 16384 shape = (n, n) a = te.placeholder(shape, name="a", dtype="int32") b = te.placeholder(shape, name="b", dtype="int32") c = te.compute(shape, lambda i, j: compute(a, b)[i, j]) c = te.compute(shape, lambda i, j: 1 + c[i, j]) s = te.create_schedule(c.op) stmt = tvm.lower(s, [a, b, c])["main"].body def verify(n): if isinstance(n, tvm.tir.Allocate): assert n.extents[0].value == 268435456 tvm.tir.stmt_functor.post_order_visit(stmt, verify) def test_access_in_let_value(): @T.prim_func def func(A: T.Buffer[(8,), "float32"]): for i in range(8): B_data = T.allocate((1,), "float32", "global") B = T.buffer_decl(shape=[1], dtype="float32", data=B_data) B[0] = 3.14 x: T.float32 = T.exp(B[0], dtype="float32") A[i] = (x + 1.0) / (x - 1.0) @T.prim_func def func_rewritten(A: T.Buffer[(8,), "float32"]) -> None: B_data = T.allocate((1,), "float32", "global") B = T.buffer_decl(shape=[1], dtype="float32", data=B_data) for i in range(8): B[0] = 3.14 x: T.float32 = T.exp(B[0], dtype="float32") A[i] = (x + 1.0) / (x - 1.0) mod = tvm.tir.transform.StorageRewrite()(tvm.IRModule.from_expr(func)) tvm.ir.assert_structural_equal(mod["main"], func_rewritten) class BaseCompare(tvm.testing.CompareBeforeAfter): transform = tvm.tir.transform.StorageRewrite() class TestLetBufferRewrite(BaseCompare): """StorageRewrite replaces the bound var of backing allocations If StorageRewrite replaces the backing variable of an array, such as when vectorizing the storage type, the variable must be replaced in the LetStmt that defines it. Currently, StmtMutator only visits usage of variables, and does not visit definitions of variables, so the definition in a LetStmt must be explicitly handled. """ def before() -> None: A_data: T.Ptr[T.int32] = T.call_extern("dummy_func", dtype="handle") A = T.buffer_decl([8], "int32", data=A_data) A[0:8] = T.broadcast(42, 8) def expected() -> None: A_data: T.Ptr[T.int32x8] = T.call_extern("dummy_func", dtype="handle") A = T.buffer_decl([1], "int32x8", data=A_data) A[0] = T.broadcast(42, 8) class TestRewriteInPlaceUseOfNonFlatBuffer(BaseCompare): """A non-flat buffer may be re-used for in-place operations""" def before(A: T.Buffer[(16, 16), "float32"], D: T.Buffer[(16, 16), "float32"]): B_data = T.allocate( [16, 16], dtype="float32", scope="global", ) B = T.buffer_decl( [16, 16], dtype="float32", axis_separators=[1], data=B_data, ) C_data = T.allocate( [16, 16], dtype="float32", scope="global", ) C = T.buffer_decl( [16, 16], dtype="float32", axis_separators=[1], data=C_data, ) for i, j in T.grid(16, 16): B[i, j] = A[i, j] for i, j in T.grid(16, 16): C[i, j] = 2.0 * B[i, j] for i, j in T.grid(16, 16): D[i, j] = C[i, j] def expected(A: T.Buffer[(16, 16), "float32"], D: T.Buffer[(16, 16), "float32"]): B_data = T.allocate( [16, 16], dtype="float32", scope="global", ) B = T.buffer_decl([16, 16], dtype="float32", axis_separators=[1], data=B_data) C = T.buffer_decl( [16, 16], dtype="float32", axis_separators=[1], data=B.data, ) for i, j in T.grid(16, 16): B[i, j] = A[i, j] for i, j in T.grid(16, 16): C[i, j] = 2.0 * B[i, j] for i, j in T.grid(16, 16): D[i, j] = C[i, j] class TestNoRewriteOfSharedNonFlatBuffer(BaseCompare): """In general, sharing of non-flat buffer isn't supported The current packing algorithms in StorageRewrite assume a flat memory space, and do not support packing of N-d buffers. For buffers with axis separators, normal buffer sharing should be disabled. Like TestRewriteInPlaceUseOfNonFlatBuffer, except that B and C do not have matching shapes. """ def before(A: T.Buffer[(16, 16), "float32"], D: T.Buffer[(16, 16), "float32"]): B_data = T.allocate( [16, 16], dtype="float32", scope="global", ) B = T.buffer_decl( [16, 16], dtype="float32", axis_separators=[1], data=B_data, ) C_data = T.allocate( [20, 20], dtype="float32", scope="global", ) C = T.buffer_decl( [20, 20], dtype="float32", axis_separators=[1], data=C_data, ) for i, j in T.grid(16, 16): B[i, j] = A[i, j] for i, j in T.grid(16, 16): C[i, j] = 2.0 * B[i, j] for i, j in T.grid(16, 16): D[i, j] = C[i, j] expected = before if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_transform_thread_sync.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm import tvm.testing from tvm import te from tvm.script import tir as T def run_passes(func: tvm.tir.PrimFunc): mod = tvm.IRModule.from_expr(func) mod = tvm.tir.transform.StorageFlatten(64)(mod) cuda_target = tvm.target.Target("cuda") mod = tvm.tir.transform.Apply( lambda f: f.with_attr({"global_symbol": "test", "target": cuda_target}) )(mod) mod = tvm.tir.transform.SplitHostDevice()(mod) return tvm.tir.transform.ThreadSync("shared")(mod) @tvm.testing.requires_cuda def test_thread_storage_sync(): m = te.size_var("m") l = te.size_var("l") A = te.placeholder((m, l), name="A") A1 = te.compute((m, l), lambda i, j: A[i, j], name="A1") A2 = te.compute((m, l), lambda i, j: A1[i, j] + 3, name="A2") s = te.create_schedule(A2.op) xo, xi = s[A2].split(A2.op.axis[0], factor=8) s[A2].bind(xo, te.thread_axis("blockIdx.x")) s[A1].compute_at(s[A2], xo) s[A1].set_scope("shared") bounds = tvm.te.schedule.InferBound(s) assert isinstance(bounds, tvm.container.Map) stmt = tvm.te.schedule.ScheduleOps(s, bounds) func = tvm.te.schedule.SchedulePostProcToPrimFunc([A, A2], stmt, None) mod = run_passes(func) f = mod["test_kernel0"] body_list = tvm.tir.stmt_list(f.body.body.body) assert body_list[1].value.op.same_as(tvm.ir.Op.get("tir.tvm_storage_sync")) @tvm.testing.requires_cuda def test_sync_else_branch(): def ir(A, B): ib = tvm.tir.ir_builder.create() Aptr = ib.buffer_ptr(A) Bptr = ib.buffer_ptr(B) tx = te.thread_axis("threadIdx.x") ib.scope_attr(tx, "thread_extent", 1) local = ib.allocate(A.dtype, (8,), name="buf_local", scope="local") shared = ib.allocate(A.dtype, (8,), name="buf_shared", scope="shared") with ib.for_range(0, 8) as i: with ib.if_scope(Aptr[i] < 0): local[i] = Aptr[i] with ib.else_scope(): shared[i] = Aptr[i] with ib.for_range(0, 8) as i: with ib.if_scope(Aptr[i] < 0): Bptr[i] = local[i] with ib.else_scope(): Bptr[i] = shared[i] return ib.get() A = tvm.tir.decl_buffer((8,), "float32") B = tvm.tir.decl_buffer((8,), "float32") stmt = ir(A, B) func = tvm.te.schedule.SchedulePostProcToPrimFunc([A, B], stmt, None) mod = run_passes(func) assert "@tir.tvm_storage_sync" in str(mod) @tvm.testing.requires_cuda def test_sync_read_thread_id_independent_location(): @T.prim_func def func(p0: T.Buffer[2, "float32"], p1: T.Buffer[2, "float32"]) -> None: threadIdx_x = T.env_thread("threadIdx.x") blockIdx_x = T.env_thread("blockIdx.x") T.preflattened_buffer(p0, [1, 2, 1, 1], dtype="float32", data=p0.data) result_local = T.alloc_buffer([1], dtype="float32", scope="local") temp_shared = T.alloc_buffer([1], dtype="float32", scope="shared") T.launch_thread(blockIdx_x, 8) T.launch_thread(threadIdx_x, 4) result_local[0] = T.float32(0) if threadIdx_x < 1: temp_shared[0] = p0[0] result_local[0] = result_local[0] + temp_shared[0] * p1[0] if threadIdx_x < 1: temp_shared[0] = p0[1] result_local[0] = result_local[0] + temp_shared[0] * p1[1] mod = run_passes(func) assert "@tir.tvm_storage_sync" in str(mod) if __name__ == "__main__": test_thread_storage_sync() test_sync_else_branch() test_sync_read_thread_id_independent_location()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_transform_unify_thread_binding.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import pytest import sys import tvm import tvm.testing from tvm import te from tvm.script import tir as T def _check(original, transformed): mod = tvm.IRModule.from_expr(original) mod = tvm.tir.transform.UnifyThreadBinding()(mod) mod = tvm.tir.transform.Simplify()(mod) tvm.ir.assert_structural_equal(mod["main"], transformed, True) def _check_fail(original): mod = tvm.IRModule.from_expr(original) with pytest.raises(ValueError): tvm.tir.transform.UnifyThreadBinding()(mod) @T.prim_func def element_wise_thread_x(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [128, 128]) B = T.match_buffer(b, [128, 128]) C = T.match_buffer(c, [128, 128]) for i in T.thread_binding(0, 128, "blockIdx.x"): for j0_0 in T.thread_binding(0, 4, "threadIdx.x"): for j0_1 in T.serial(0, 32): with T.block(""): B[i, j0_0 * 32 + j0_1] = A[i, j0_0 * 32 + j0_1] * 2.0 for j1_0 in T.thread_binding(0, 4, "threadIdx.x"): for j1_1 in T.serial(0, 32): with T.block(""): C[i, j1_0 * 32 + j1_1] = B[i, j1_0 * 32 + j1_1] + 1.0 @T.prim_func def unified_element_wise_thread_x(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [128, 128]) B = T.match_buffer(b, [128, 128]) C = T.match_buffer(c, [128, 128]) for blockIdx_x in T.thread_binding(0, 128, "blockIdx.x"): for threadIdx_x in T.thread_binding(0, 4, "threadIdx.x"): for j0_1 in T.serial(0, 32): with T.block(""): B[blockIdx_x, threadIdx_x * 32 + j0_1] = ( A[blockIdx_x, threadIdx_x * 32 + j0_1] * 2.0 ) for j1_1 in T.serial(0, 32): with T.block(""): C[blockIdx_x, threadIdx_x * 32 + j1_1] = ( B[blockIdx_x, threadIdx_x * 32 + j1_1] + 1.0 ) @T.prim_func def element_wise_thread_x_different_dtype( A: T.Buffer[(128, 128), "float32"], B: T.Buffer[(128, 128), "float32"], C: T.Buffer[(128, 128), "float32"], ) -> None: for i in T.thread_binding(128, "blockIdx.x"): for j0_0 in T.thread_binding(4, "threadIdx.x"): for j0_1 in T.serial(0, 32): with T.block(""): B[i, j0_0 * 32 + j0_1] = A[i, j0_0 * 32 + j0_1] * 2.0 for j1_0 in T.thread_binding(T.int64(4), "threadIdx.x"): for j1_1 in T.serial(T.int64(32)): with T.block(""): C[i, j1_0 * T.int64(32) + j1_1] = B[i, j1_0 * T.int64(32) + j1_1] + 1.0 @T.prim_func def unified_element_wise_thread_x_different_dtype( A: T.Buffer[(128, 128), "float32"], B: T.Buffer[(128, 128), "float32"], C: T.Buffer[(128, 128), "float32"], ) -> None: for blockIdx_x in T.thread_binding(128, "blockIdx.x"): for threadIdx_x in T.thread_binding(4, "threadIdx.x"): for j0_1 in T.serial(0, 32): with T.block(""): B[blockIdx_x, threadIdx_x * 32 + j0_1] = ( A[blockIdx_x, threadIdx_x * 32 + j0_1] * 2.0 ) for j1_1 in T.serial(T.int64(32)): with T.block(""): C[blockIdx_x, T.cast(threadIdx_x, "int64") * T.int64(32) + j1_1] = ( B[blockIdx_x, T.cast(threadIdx_x, "int64") * T.int64(32) + j1_1] + 1.0 ) @T.prim_func def element_wise_env_thread_x(a: T.handle, b: T.handle, c: T.handle) -> None: j1_0 = T.env_thread("threadIdx.x") j0_0 = T.env_thread("threadIdx.x") i = T.env_thread("blockIdx.x") A = T.match_buffer(a, [128, 128]) B = T.match_buffer(b, [128, 128]) C = T.match_buffer(c, [128, 128]) T.launch_thread(i, 128) T.launch_thread(j0_0, 4) T.launch_thread(j1_0, 4) for j0_1 in T.serial(0, 32): with T.block(""): B[i, j0_0 * 32 + j0_1] = A[i, j0_0 * 32 + j0_1] * 2.0 for j1_1 in T.serial(0, 32): with T.block(""): C[i, j1_0 * 32 + j1_1] = B[i, j1_0 * 32 + j1_1] + 1.0 @T.prim_func def unified_element_wise_env_thread_x(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [128, 128]) B = T.match_buffer(b, [128, 128]) C = T.match_buffer(c, [128, 128]) for blockIdx_x in T.thread_binding(0, 128, "blockIdx.x"): for threadIdx_x in T.thread_binding(0, 4, "threadIdx.x"): for j0_1 in T.serial(0, 32): with T.block(""): B[blockIdx_x, threadIdx_x * 32 + j0_1] = ( A[blockIdx_x, threadIdx_x * 32 + j0_1] * 2.0 ) for j1_1 in T.serial(0, 32): with T.block(""): C[blockIdx_x, threadIdx_x * 32 + j1_1] = ( B[blockIdx_x, threadIdx_x * 32 + j1_1] + 1.0 ) @T.prim_func def element_wise_vthread_x(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [128, 128]) B = T.match_buffer(b, [128, 128]) for i_0 in T.thread_binding(0, 2, "vthread.x"): for i_1 in T.thread_binding(0, 64, "threadIdx.x"): for j_0 in T.thread_binding(0, 2, "vthread.x"): for j_1 in T.serial(0, 64): with T.block(""): B[i_0 * 64 + i_1, j_0 * 64 + j_1] = A[i_0 * 64 + i_1, j_0 * 64 + j_1] * 2.0 @T.prim_func def unified_element_wise_vthread_x(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [128, 128]) B = T.match_buffer(b, [128, 128]) for vthread_x in T.thread_binding(0, 2, "vthread.x"): for threadIdx_x in T.thread_binding(0, 64, "threadIdx.x"): for j_1 in T.serial(0, 64): with T.block(""): B[vthread_x * 64 + threadIdx_x, vthread_x * 64 + j_1] = ( A[vthread_x * 64 + threadIdx_x, vthread_x * 64 + j_1] * 2.0 ) @T.prim_func def element_wise_two_thread_x_in_same_kernel_not_equal( a: T.handle, b: T.handle, c: T.handle ) -> None: A = T.match_buffer(a, [128, 128]) B = T.match_buffer(b, [128, 128]) C = T.match_buffer(c, [128, 64]) for i in T.thread_binding(0, 128, "blockIdx.x"): for j0 in T.thread_binding(0, 128, "threadIdx.x"): B[i, j0] = A[i, j0] * 2.0 for j1 in T.thread_binding(0, 64, "threadIdx.x"): C[i, j1] = A[i, j1] + 1.0 @T.prim_func def element_wise_kernels_with_different_size( a: T.handle, b: T.handle, c: T.handle, d: T.handle ) -> None: A = T.match_buffer(a, [128, 128]) B = T.match_buffer(b, [128, 128]) C = T.match_buffer(c, [256, 256]) D = T.match_buffer(d, [256, 256]) for i0 in T.thread_binding(0, 128, "blockIdx.x"): for j0 in T.thread_binding(0, 128, "threadIdx.x"): B[i0, j0] = A[i0, j0] * 2.0 for i1 in T.thread_binding(0, 256, "blockIdx.x"): for j1 in T.thread_binding(0, 256, "threadIdx.x"): D[i1, j1] = C[i1, j1] + 1.0 @T.prim_func def unified_element_wise_kernels_with_different_size( a: T.handle, b: T.handle, c: T.handle, d: T.handle ) -> None: A = T.match_buffer(a, [128, 128]) B = T.match_buffer(b, [128, 128]) C = T.match_buffer(c, [256, 256]) D = T.match_buffer(d, [256, 256]) for blockIdx_x in T.thread_binding(0, 128, "blockIdx.x"): for threadIdx_x in T.thread_binding(0, 128, "threadIdx.x"): B[blockIdx_x, threadIdx_x] = A[blockIdx_x, threadIdx_x] * 2.0 for blockIdx_x in T.thread_binding(0, 256, "blockIdx.x"): for threadIdx_x in T.thread_binding(0, 256, "threadIdx.x"): D[blockIdx_x, threadIdx_x] = C[blockIdx_x, threadIdx_x] + 1.0 @T.prim_func def element_wise_implicit_block(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [128, 128]) B = T.match_buffer(b, [128, 128]) C = T.match_buffer(c, [128, 128]) for i in T.thread_binding(0, 128, "threadIdx.y"): for j0_0 in T.thread_binding(0, 4, "threadIdx.x"): for j0_1 in T.serial(0, 32): with T.block(""): B[i, j0_0 * 32 + j0_1] = A[i, j0_0 * 32 + j0_1] * 2.0 for j1_0 in T.thread_binding(0, 4, "threadIdx.x"): for j1_1 in T.serial(0, 32): with T.block(""): C[i, j1_0 * 32 + j1_1] = B[i, j1_0 * 32 + j1_1] + 1.0 @T.prim_func def unified_element_wise_implicit_block(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [128, 128]) B = T.match_buffer(b, [128, 128]) C = T.match_buffer(c, [128, 128]) for blockIdx_x in T.thread_binding(0, 128, "threadIdx.y"): for threadIdx_x in T.thread_binding(0, 4, "threadIdx.x"): for j0_1 in T.serial(0, 32): with T.block(""): B[blockIdx_x, threadIdx_x * 32 + j0_1] = ( A[blockIdx_x, threadIdx_x * 32 + j0_1] * 2.0 ) for j1_1 in T.serial(0, 32): with T.block(""): C[blockIdx_x, threadIdx_x * 32 + j1_1] = ( B[blockIdx_x, threadIdx_x * 32 + j1_1] + 1.0 ) def test_thread_x(): _check(element_wise_thread_x, unified_element_wise_thread_x) def test_thread_x_different_dtype(): _check(element_wise_thread_x_different_dtype, unified_element_wise_thread_x_different_dtype) def test_env_thread_x(): _check(element_wise_env_thread_x, unified_element_wise_env_thread_x) def test_vthread_x(): _check(element_wise_vthread_x, unified_element_wise_vthread_x) def test_two_thread_x_in_same_kernel_not_equal(): _check_fail(element_wise_two_thread_x_in_same_kernel_not_equal) def test_kernels_with_different_size(): _check( element_wise_kernels_with_different_size, unified_element_wise_kernels_with_different_size ) def test_implicit_block(): _check(element_wise_implicit_block, unified_element_wise_implicit_block) def test_lower_te(): a = te.placeholder((32, 2, 2)) b = te.compute((32, 2, 2), lambda i, j, k: a[i, j, k] * 2.0) s = te.create_schedule(b.op) s[b].bind(b.op.axis[1], te.thread_axis("threadIdx.x")) s[b].bind(b.op.axis[2], te.thread_axis("threadIdx.x")) orig_mod = tvm.driver.build_module.schedule_to_module(s, [a, b]) mod = tvm.tir.transform.UnifyThreadBinding()(orig_mod) tvm.ir.assert_structural_equal(mod, orig_mod) # UnifyThreadBinding should do nothing on TE if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_transform_unroll_loop.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm from tvm import te from tvm.script import tir as T import os def test_unroll_loop(): ib = tvm.tir.ir_builder.create() dtype = "int64" n = te.size_var("n") Ab = tvm.tir.decl_buffer((n,), dtype) Aptr = ib.buffer_ptr(Ab) # for i in 0 to n-1: with ib.for_range(n, n + 2, name="i") as i: with ib.for_range(0, 8, name="i", kind="unroll") as j: Aptr[j + 1] = Aptr[i] + 1 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([Ab], stmt)) assert isinstance(stmt, tvm.tir.For) with tvm.transform.PassContext(config={"tir.UnrollLoop": {"auto_max_step": 16}}): ret = tvm.tir.transform.UnrollLoop()(mod)["main"].body assert not isinstance(ret, tvm.tir.For) with tvm.transform.PassContext(config={"tir.UnrollLoop": {"auto_max_step": 15}}): ret = tvm.tir.transform.UnrollLoop()(mod)["main"].body assert isinstance(ret, tvm.tir.For) with tvm.transform.PassContext( config={"tir.UnrollLoop": {"auto_max_step": 16, "explicit_unroll": False}} ): ret = tvm.tir.transform.UnrollLoop()(mod)["main"].body assert isinstance(ret, tvm.tir.For) assert ret.kind == tvm.tir.ForKind.UNROLLED ib = tvm.tir.ir_builder.create() ib.scope_attr(tvm.tir.const(0, "int32"), "pragma_auto_unroll_max_step", 16) ib.emit(stmt) wrapped = ib.get() wrapped = tvm.tir.SeqStmt([wrapped, stmt]) assert isinstance(ret, tvm.tir.For) mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([Ab], wrapped)) with tvm.transform.PassContext( config={"tir.UnrollLoop": {"auto_max_depth": 8, "explicit_unroll": False}} ): ret = tvm.tir.transform.UnrollLoop()(mod)["main"].body assert isinstance(ret[0], tvm.tir.For) assert ret[0].kind == tvm.tir.ForKind.UNROLLED assert isinstance(ret[1], tvm.tir.For) assert ret[1].kind != tvm.tir.ForKind.UNROLLED def test_unroll_fake_loop(): ib = tvm.tir.ir_builder.create() dtype = "int32" n = te.size_var("n") Ab = tvm.tir.decl_buffer((n,), dtype) Aptr = ib.buffer_ptr(Ab) # for i in 0 to n-1: with ib.for_range(0, 1, name="i") as i: Aptr[i * 2] = 3 with ib.for_range(0, 10, name="j") as j: Aptr[j + 1] = Aptr[i] + 1 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([Ab], stmt)) with tvm.transform.PassContext( config={ "tir.UnrollLoop": {"auto_max_depth": 8, "auto_max_extent": 1, "explicit_unroll": False} } ): ret = tvm.tir.transform.UnrollLoop()(mod)["main"].body assert isinstance(ret[0], tvm.tir.BufferStore) def test_unroll_single_count_loops(): n = te.size_var("n") A = te.placeholder((n,), name="A") B = te.compute((n,), lambda *i: A(*i), name="B") s = te.create_schedule(B.op) s = s.normalize() dom_map = tvm.te.schedule.InferBound(s) stmt = tvm.te.schedule.ScheduleOps(s, dom_map) # all parameters to UnrolLoops are default values except for # auto_unroll_max_extent which has been set to 1 (default:0) mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([], stmt)) with tvm.transform.PassContext(config={"tir.UnrollLoop": {"auto_max_step": 1}}): ret = tvm.tir.transform.UnrollLoop()(mod)["main"].body assert ret == stmt def test_unroll_allocations(): @tvm.script.ir_module class before: @T.prim_func def main(): for i in T.unroll(2): with T.decl_buffer([16], "float32") as buf: buf[0] = 0.0 @tvm.script.ir_module class expected: @T.prim_func def main(): with T.decl_buffer([16], "float32") as buf1: buf1[0] = 0.0 with T.decl_buffer([16], "float32") as buf2: buf2[0] = 0.0 after = tvm.tir.transform.UnrollLoop()(before) tvm.ir.assert_structural_equal(after, expected) if __name__ == "__main__": test_unroll_loop() test_unroll_fake_loop() test_unroll_single_count_loops() test_unroll_allocations()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_transform_vectorize.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm from tvm import te def test_vectorize_loop(): dtype = "int64" n = te.var("n") ib = tvm.tir.ir_builder.create() A = ib.pointer("float32", name="A") with ib.for_range(0, n) as i: with ib.for_range(0, 4, kind="vectorize") as j: A[j] = tvm.tir.const(1, A.dtype) stmt = ib.get() assert isinstance(stmt.body, tvm.tir.For) mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([A, n], stmt)) stmt = tvm.tir.transform.VectorizeLoop()(mod)["main"].body assert isinstance(stmt, tvm.tir.For) assert not isinstance(stmt.body, tvm.tir.For) assert len(stmt.body.indices) == 1 assert isinstance(stmt.body.indices[0], tvm.tir.Ramp) assert isinstance(stmt.body.value, tvm.tir.Broadcast) def test_vectorize_vector(): dtype = "int64" n = te.var("n") ib = tvm.tir.ir_builder.create() A = ib.pointer("float32x4", name="A") with ib.for_range(0, n) as i: with ib.for_range(0, 4, kind="vectorize") as j: A[j] = tvm.tir.const(1, A.dtype) stmt = ib.get() assert isinstance(stmt.body, tvm.tir.For) mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([A, n], stmt)) stmt = tvm.tir.transform.VectorizeLoop()(mod)["main"].body assert isinstance(stmt, tvm.tir.For) assert not isinstance(stmt.body, tvm.tir.For) assert len(stmt.body.indices) == 1 assert isinstance(stmt.body.indices[0], tvm.tir.Ramp) assert isinstance(stmt.body.value, tvm.tir.Broadcast) def test_vectorize_with_if(): n = te.var("n") x = te.var("x") ib = tvm.tir.ir_builder.create() A = ib.pointer("float32", name="A") with ib.for_range(0, 4, kind="vectorize") as i: with ib.if_scope(x < n): A[i] = A[i] + 1 with ib.else_scope(): with ib.if_scope(i < n): A[i] = 2.0 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([A, n, x], stmt)) stmt = tvm.tir.transform.VectorizeLoop()(mod)["main"].body assert isinstance(stmt, tvm.tir.IfThenElse) assert len(stmt.then_case.indices) == 1 assert isinstance(stmt.then_case.indices[0], tvm.tir.Ramp) assert isinstance(stmt.then_case.value, tvm.tir.Add) assert stmt.then_case.value.dtype == "float32x4" assert isinstance(stmt.else_case, tvm.tir.For) def test_vectorize_with_if_cond_int64(): m = te.size_var("m", dtype="int64") A = te.placeholder((m,), name="A", dtype="float32") B = te.compute((m,), lambda i: te.if_then_else(i < 2, A[i], A[i] * 2), name="B") s = te.create_schedule(B.op) x, y = s[B].split(B.op.axis[0], factor=4) s[B].vectorize(y) f = tvm.build(s, [A, B], "llvm") def test_vectorize_let(): v = tvm.tir.Var("v", "float32") ib = tvm.tir.ir_builder.create() A = ib.pointer("float32", name="A") with ib.for_range(0, 4, kind="vectorize") as i: ib.emit(lambda body: tvm.tir.LetStmt(v, A[i] + 1, body)) A[i] = v + 2 mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([A], ib.get())) stmt = tvm.tir.transform.VectorizeLoop()(mod)["main"].body assert isinstance(stmt, tvm.tir.LetStmt) assert stmt.value.dtype == "float32x4" def test_vectorize_with_le_cond(): n = te.var("n") ib = tvm.tir.ir_builder.create() A = ib.pointer("float32", name="A") with ib.for_range(0, 4, kind="vectorize") as i: with ib.if_scope(i <= n): A[i] = A[i] + 1 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([A, n], stmt)) stmt = tvm.tir.transform.VectorizeLoop()(mod)["main"].body assert isinstance(stmt, tvm.tir.For) def test_vectorize_with_ge_cond(): n = te.var("n") ib = tvm.tir.ir_builder.create() A = ib.pointer("float32", name="A") with ib.for_range(0, 4, kind="vectorize") as i: with ib.if_scope(i >= n): A[i] = A[i] + 1 stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([A, n], stmt)) stmt = tvm.tir.transform.VectorizeLoop()(mod)["main"].body assert isinstance(stmt, tvm.tir.For) def test_vectorize_if_then_else(): n = te.var("n") x = te.var("x") ib = tvm.tir.ir_builder.create() A = ib.pointer("float32", name="A") with ib.for_range(0, 4, kind="vectorize") as i: A[i] = tvm.tir.call_intrin("float32", "tir.if_then_else", i > 0, A[i] + 1, A[i]) stmt = ib.get() mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([A, n, x], stmt)) stmt = tvm.tir.transform.VectorizeLoop()(mod)["main"].body assert isinstance(stmt, tvm.tir.For) ib = tvm.tir.ir_builder.create() A = ib.pointer("float32", name="A") with ib.for_range(0, n) as k: with ib.for_range(0, 4, kind="vectorize") as i: A[k * 4 + i] = tvm.tir.call_intrin( "float32", "tir.if_then_else", k > 0, A[k * 4 + i], 0 ) stmt = ib.get() assert isinstance(stmt.body, tvm.tir.For) mod = tvm.IRModule.from_expr(tvm.tir.PrimFunc([A, n], stmt)) stmt = tvm.tir.transform.VectorizeLoop()(mod)["main"].body assert not isinstance(stmt.body, tvm.tir.For) assert isinstance(stmt.body.value.args[2], tvm.tir.Broadcast) def test_vectorize_while_fail(): """A while loop inside a vectorized loop should fail.""" n = 64 num_iter = 10 def test_ir(A, B, C): ib = tvm.tir.ir_builder.create() n = C.shape[0] A = ib.buffer_ptr(A) B = ib.buffer_ptr(B) C = ib.buffer_ptr(C) i = ib.allocate("int32", (1,), name="i", scope="local") i[0] = 0 with ib.for_range(0, n) as j: C[j] = 0.0 with ib.for_range(0, n, kind="vectorize") as j: with ib.while_loop(i[0] < num_iter): C[j] += A[j] + B[j] i[0] += 1 return ib.get() dtype = "float32" A = te.placeholder((n,), name="A", dtype=dtype) B = te.placeholder((n,), name="B", dtype=dtype) C = te.extern( (n,), [A, B], lambda ins, outs: test_ir(ins[0], ins[1], outs[0]), name="while_vectorize", dtype=dtype, ) s = te.create_schedule(C.op) try: tvm.lower(s, [A, B, C], "llvm") assert False except tvm.error.TVMError as e: error_msg = str(e).split("\n")[-1] expected = "A while loop inside a vectorized loop not supported" assert expected in error_msg def test_vectorize_dtype_mismatch(): n = tvm.tir.IntImm("int64", 4) A = te.compute((n,), lambda i: tvm.tir.IntImm("int64", 2**31 - 1) + i, name="A") s = te.create_schedule(A.op) s[A].vectorize(A.op.axis[0]) tvm.lower(s, [A], "llvm", simple_mode=True) if __name__ == "__main__": test_vectorize_vector() test_vectorize_with_if() test_vectorize_loop() test_vectorize_if_then_else() test_vectorize_with_le_cond() test_vectorize_with_ge_cond() test_vectorize_let() test_vectorize_while_fail() test_vectorize_dtype_mismatch()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_usmp_algo.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import pytest import tvm from tvm import tir, script from tvm.script import tir as T from tvm.tir import stmt_functor from tvm.tir.usmp import utils as usmp_utils from tvm.target import Target from tvm import WorkspacePoolInfo, PoolInfoProperties def _replace_stmt_with_buf_var_names(buffer_info_map): """helper to replace tir.allocates with buffer names""" new_buffer_info_map = dict() for k, v in buffer_info_map.items(): new_buffer_info_map[v.buffer_var.name] = k return new_buffer_info_map def _verify_conflicts(main_buf_name, conflicting_buf_names, buffer_info_map): """helper to check expected liveness conflicts""" buf_info = buffer_info_map[main_buf_name] for conflict in buf_info.conflicts: assert conflict.name_hint in conflicting_buf_names def _get_allocates(primfunc): """helper to extract all allocate nodes by name""" allocates = dict() def get_allocate(stmt): if isinstance(stmt, tvm.tir.Allocate): allocates[str(stmt.buffer_var.name)] = stmt stmt_functor.post_order_visit(primfunc.body, get_allocate) return allocates def _assign_poolinfos_to_allocates_in_primfunc(primfunc, pool_infos): """helper to assing poolinfos to allocate nodes in a tir.PrimFunc""" def set_poolinfos(stmt): if isinstance(stmt, tvm.tir.Allocate): return tvm.tir.Allocate( buffer_var=stmt.buffer_var, dtype=stmt.dtype, extents=stmt.extents, condition=stmt.condition, body=stmt.body, annotations={tvm.tir.usmp.utils.CANDIDATE_MEMORY_POOL_ATTR: pool_infos}, ) return primfunc.with_body(stmt_functor.ir_transform(primfunc.body, None, set_poolinfos)) def _assign_poolinfos_to_allocates_in_irmodule(mod, pool_infos): """helper to assing poolinfos to allocate nodes in a IRModule""" ret = tvm.IRModule() for global_var, basefunc in mod.functions.items(): if isinstance(basefunc, tvm.tir.PrimFunc): ret[global_var] = _assign_poolinfos_to_allocates_in_primfunc(basefunc, pool_infos) return ret def _assign_targets_to_primfuncs_irmodule(mod, target): """helper to assign target for PrimFunc in a IRModule""" ret = tvm.IRModule() for global_var, basefunc in mod.functions.items(): if isinstance(basefunc, tvm.tir.PrimFunc): ret[global_var] = basefunc.with_attr("target", target) return ret def _check_max_workspace_size(buffer_pool_allocations, pool_info, size): max_workspace_size = 0 for buffer_info, pool_allocation in buffer_pool_allocations.items(): if pool_allocation.pool_info == pool_info: size_candidate = pool_allocation.byte_offset + buffer_info.size_bytes if size_candidate > max_workspace_size: max_workspace_size = size_candidate assert max_workspace_size == size def test_no_pool_error(): target = Target("c") tiny_workspace_pool = WorkspacePoolInfo( "tiny_workspace", [target], PoolInfoProperties(size_hint_bytes=10), ) bi_a = usmp_utils.BufferInfo( name_hint="bi_a", size_bytes=10, pool_candidates=[tiny_workspace_pool] ) bi_b = usmp_utils.BufferInfo( name_hint="bi_b", size_bytes=10, pool_candidates=[tiny_workspace_pool] ) bi_c = usmp_utils.BufferInfo( name_hint="bi_c", size_bytes=10, pool_candidates=[tiny_workspace_pool] ) bi_a.set_conflicts([bi_b]) bi_b.set_conflicts([bi_c]) bi_c.set_conflicts([bi_a]) buffer_info_arr = [bi_a, bi_b, bi_c] fusmp_algo = tvm.get_global_func(f"tir.usmp.algo.greedy_by_size") with pytest.raises( tvm.TVMError, match="TVM USMP Error: the space available in the provided pools exceeded" ): buffer_pool_allocations = fusmp_algo(buffer_info_arr, 0) @pytest.mark.parametrize("algorithm", ["greedy_by_size", "greedy_by_conflicts", "hill_climb"]) def test_name_based_ordering(algorithm): """This checks when the size and conlicts are same a stable result is generated""" def _test(): target = Target("c") global_workspace_pool = WorkspacePoolInfo( "global_workspace", [target], ) bi_a = usmp_utils.BufferInfo( name_hint="bi_a", size_bytes=10, pool_candidates=[global_workspace_pool] ) bi_b = usmp_utils.BufferInfo( name_hint="bi_b", size_bytes=10, pool_candidates=[global_workspace_pool] ) bi_c = usmp_utils.BufferInfo( name_hint="bi_c", size_bytes=10, pool_candidates=[global_workspace_pool] ) bi_a.set_conflicts([bi_b, bi_c]) bi_b.set_conflicts([bi_c, bi_a]) bi_c.set_conflicts([bi_a, bi_b]) buffer_info_arr = [bi_a, bi_b, bi_c] fusmp_algo = tvm.get_global_func(f"tir.usmp.algo.{algorithm}") buffer_pool_allocations = fusmp_algo(buffer_info_arr, 0) assert buffer_pool_allocations[bi_a].byte_offset == 20 assert buffer_pool_allocations[bi_b].byte_offset == 10 assert buffer_pool_allocations[bi_c].byte_offset == 0 # This is tested for several times to check stability for x in range(0, 10): _test() @pytest.mark.parametrize( ["algorithm", "workspace_size"], [("greedy_by_size", 140), ("greedy_by_conflicts", 140), ("hill_climb", 140)], ) def test_linear(algorithm, workspace_size): """ The test case here represent BufferInfo objects that could get generated for a linear sequence such as : (Op A) | bi_a | (Op B) | bi_b | . . . (Op F) | bi_f """ target = Target("c") global_workspace_pool = WorkspacePoolInfo( "global_workspace", [target], ) bi_a = usmp_utils.BufferInfo( name_hint="bi_a", size_bytes=10, pool_candidates=[global_workspace_pool] ) bi_b = usmp_utils.BufferInfo( name_hint="bi_b", size_bytes=20, pool_candidates=[global_workspace_pool] ) bi_c = usmp_utils.BufferInfo( name_hint="bi_c", size_bytes=100, pool_candidates=[global_workspace_pool] ) bi_d = usmp_utils.BufferInfo( name_hint="bi_d", size_bytes=40, pool_candidates=[global_workspace_pool] ) bi_e = usmp_utils.BufferInfo( name_hint="bi_e", size_bytes=50, pool_candidates=[global_workspace_pool] ) bi_f = usmp_utils.BufferInfo( name_hint="bi_f", size_bytes=50, pool_candidates=[global_workspace_pool] ) # Creating conflicts for a linear graph bi_a.set_conflicts([bi_b]) bi_b.set_conflicts([bi_a, bi_c]) bi_c.set_conflicts([bi_b, bi_d]) bi_d.set_conflicts([bi_c, bi_e]) bi_e.set_conflicts([bi_d, bi_f]) bi_f.set_conflicts([bi_e]) buffer_info_arr = [bi_a, bi_b, bi_c, bi_d, bi_e, bi_f] fusmp_algo = tvm.get_global_func(f"tir.usmp.algo.{algorithm}") buffer_pool_allocations = fusmp_algo(buffer_info_arr, 0) _check_max_workspace_size(buffer_pool_allocations, global_workspace_pool, workspace_size) @pytest.mark.parametrize( ["algorithm", "workspace_size"], [("greedy_by_size", 190), ("greedy_by_conflicts", 320), ("hill_climb", 190)], ) def test_fanout(algorithm, workspace_size): """ The test case here represent BufferInfo objects that could get generated for a fanout topology such as : (Op A) | bi_a --------- | | (Op B) (Op C) | | bi_b bi_c | | (Op D) (Op E) | | bi_d bi_e | | (Op F) ------ | bi_f | (Op G) | bi_g """ target = Target("c") global_workspace_pool = WorkspacePoolInfo( "global_workspace", targets=[target], ) bi_a = usmp_utils.BufferInfo( name_hint="bi_a", size_bytes=10, pool_candidates=[global_workspace_pool] ) bi_b = usmp_utils.BufferInfo( name_hint="bi_b", size_bytes=20, pool_candidates=[global_workspace_pool] ) bi_c = usmp_utils.BufferInfo( name_hint="bi_c", size_bytes=100, pool_candidates=[global_workspace_pool] ) bi_d = usmp_utils.BufferInfo( name_hint="bi_d", size_bytes=40, pool_candidates=[global_workspace_pool] ) bi_e = usmp_utils.BufferInfo( name_hint="bi_e", size_bytes=50, pool_candidates=[global_workspace_pool] ) bi_f = usmp_utils.BufferInfo( name_hint="bi_f", size_bytes=60, pool_candidates=[global_workspace_pool] ) bi_g = usmp_utils.BufferInfo( name_hint="bi_g", size_bytes=70, pool_candidates=[global_workspace_pool] ) # Creating conflicts for a linear graph bi_a.set_conflicts([bi_b, bi_c]) bi_b.set_conflicts([bi_a, bi_c, bi_e]) bi_c.set_conflicts([bi_e, bi_a, bi_b, bi_d]) bi_d.set_conflicts([bi_b, bi_f, bi_c, bi_e]) bi_e.set_conflicts([bi_c, bi_f, bi_b, bi_d]) bi_f.set_conflicts([bi_d, bi_e, bi_f]) bi_g.set_conflicts([bi_f]) buffer_info_arr = [bi_a, bi_b, bi_c, bi_d, bi_e, bi_f, bi_g] fusmp_algo = tvm.get_global_func(f"tir.usmp.algo.{algorithm}") buffer_pool_allocations = fusmp_algo(buffer_info_arr, 0) _check_max_workspace_size(buffer_pool_allocations, global_workspace_pool, workspace_size) # fmt: off @tvm.script.ir_module class MobilenetStructure: @T.prim_func def tvmgen_default_fused_cast_subtract(placeholder_2: T.handle, placeholder_3: T.handle, T_subtract: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_fused_cast_subtract", "tir.noalias": True}) placeholder_4 = T.match_buffer(placeholder_2, [150528], dtype="uint8", elem_offset=0, align=64, offset_factor=1) placeholder_5 = T.match_buffer(placeholder_3, [1], dtype="int16", elem_offset=0, align=64, offset_factor=1) T_subtract_1 = T.match_buffer(T_subtract, [150528], dtype="int16", elem_offset=0, align=64, offset_factor=1) # body for ax0_ax1_fused_1 in T.serial(0, 224): for ax2_1, ax3_inner_1 in T.grid(224, 3): T_subtract_1[(((ax0_ax1_fused_1*672) + (ax2_1*3)) + ax3_inner_1)] = (T.cast(placeholder_4[(((ax0_ax1_fused_1*672) + (ax2_1*3)) + ax3_inner_1)], "int16") - placeholder_5[0]) @T.prim_func def tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast(placeholder_62: T.handle, placeholder_63: T.handle, placeholder_64: T.handle, T_cast_20: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast", "tir.noalias": True}) placeholder_65 = T.match_buffer(placeholder_62, [150528], dtype="int16", elem_offset=0, align=64, offset_factor=1) placeholder_66 = T.match_buffer(placeholder_63, [9408], dtype="int16", elem_offset=0, align=64, offset_factor=1) placeholder_67 = T.match_buffer(placeholder_64, [64], dtype="int32", elem_offset=0, align=64, offset_factor=1) T_cast_21 = T.match_buffer(T_cast_20, [802816], dtype="uint8", elem_offset=0, align=64, offset_factor=1) # body PaddedInput_7 = T.decl_buffer([157323], "int16") for i0_i1_fused_7 in T.serial(0, 229): for i2_7, i3_7 in T.grid(229, 3): PaddedInput_7[(((i0_i1_fused_7*687) + (i2_7*3)) + i3_7)] = T.if_then_else(((((2 <= i0_i1_fused_7) and (i0_i1_fused_7 < 226)) and (2 <= i2_7)) and (i2_7 < 226)), placeholder_65[((((i0_i1_fused_7*672) + (i2_7*3)) + i3_7) - 1350)], T.int16(0), dtype="int16") for ax0_ax1_fused_ax2_fused_7 in T.serial(0, 12544): Conv2dOutput_7 = T.decl_buffer([64], "int32") for ff_3 in T.serial(0, 64): Conv2dOutput_7[ff_3] = 0 for ry_2, rx_2, rc_7 in T.grid(7, 7, 3): Conv2dOutput_7[ff_3] = (Conv2dOutput_7[ff_3] + (T.cast(PaddedInput_7[(((((T.floordiv(ax0_ax1_fused_ax2_fused_7, 112)*1374) + (ry_2*687)) + (T.floormod(ax0_ax1_fused_ax2_fused_7, 112)*6)) + (rx_2*3)) + rc_7)], "int32")*T.cast(placeholder_66[((((ry_2*1344) + (rx_2*192)) + (rc_7*64)) + ff_3)], "int32"))) for ax3_inner_7 in T.serial(0, 64): T_cast_21[((ax0_ax1_fused_ax2_fused_7*64) + ax3_inner_7)] = T.cast(T.max(T.min(T.q_multiply_shift((Conv2dOutput_7[ax3_inner_7] + placeholder_67[ax3_inner_7]), 1939887962, 31, -9, dtype="int32"), 255), 0), "uint8") @T.prim_func def tvmgen_default_fused_nn_max_pool2d_cast(placeholder_28: T.handle, T_cast_6: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_fused_nn_max_pool2d_cast", "tir.noalias": True}) placeholder_29 = T.match_buffer(placeholder_28, [802816], dtype="uint8", elem_offset=0, align=64, offset_factor=1) T_cast_7 = T.match_buffer(T_cast_6, [200704], dtype="int16", elem_offset=0, align=64, offset_factor=1) # body tensor_2 = T.decl_buffer([200704], "uint8") for ax0_ax1_fused_4 in T.serial(0, 56): for ax2_4 in T.serial(0, 56): for ax3_init in T.serial(0, 64): tensor_2[(((ax0_ax1_fused_4*3584) + (ax2_4*64)) + ax3_init)] = T.uint8(0) for rv0_rv1_fused_1, ax3_2 in T.grid(9, 64): tensor_2[(((ax0_ax1_fused_4*3584) + (ax2_4*64)) + ax3_2)] = T.max(tensor_2[(((ax0_ax1_fused_4*3584) + (ax2_4*64)) + ax3_2)], T.if_then_else(((((ax0_ax1_fused_4*2) + T.floordiv(rv0_rv1_fused_1, 3)) < 112) and (((ax2_4*2) + T.floormod(rv0_rv1_fused_1, 3)) < 112)), placeholder_29[(((((ax0_ax1_fused_4*14336) + (T.floordiv(rv0_rv1_fused_1, 3)*7168)) + (ax2_4*128)) + (T.floormod(rv0_rv1_fused_1, 3)*64)) + ax3_2)], T.uint8(0), dtype="uint8")) for ax0_ax1_fused_5 in T.serial(0, 56): for ax2_5, ax3_3 in T.grid(56, 64): T_cast_7[(((ax0_ax1_fused_5*3584) + (ax2_5*64)) + ax3_3)] = T.cast(tensor_2[(((ax0_ax1_fused_5*3584) + (ax2_5*64)) + ax3_3)], "int16") @T.prim_func def run_model(input: T.handle, output: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_run_model", "runner_function": True}) # body T.attr("default", "device_id", 0) T.attr("default", "device_type", 1) sid_9 = T.allocate([301056], "int8", "global") sid_8 = T.allocate([802816], "int8", "global") T.evaluate(T.call_extern("tvmgen_default_fused_cast_subtract", input, T.lookup_param("p0", dtype="handle"), sid_9, dtype="int32")) T.evaluate(T.call_extern("tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast", sid_9, T.lookup_param("p1", dtype="handle"), T.lookup_param("p2", dtype="handle"), sid_8, dtype="int32")) T.evaluate(T.call_extern("tvmgen_default_fused_nn_max_pool2d_cast", sid_8, output, dtype="int32")) __tvm_meta__ = None # fmt: on @pytest.mark.parametrize( ["algorithm", "fast_memory_size", "slow_memory_size"], [ ("greedy_by_size", 200704, 1418528), ("greedy_by_conflicts", 200704, 1418528), ("hill_climb", 200704, 1117462), ], ) def test_mobilenet_subgraph(algorithm, fast_memory_size, slow_memory_size): target = Target("c") fast_memory_pool = WorkspacePoolInfo( "fast_memory", [target], PoolInfoProperties(size_hint_bytes=200704), ) slow_memory_pool = WorkspacePoolInfo( "slow_memory", [target], ) tir_mod = MobilenetStructure tir_mod = _assign_targets_to_primfuncs_irmodule(tir_mod, target) tir_mod = _assign_poolinfos_to_allocates_in_irmodule( tir_mod, [fast_memory_pool, slow_memory_pool] ) main_func = tir_mod["run_model"] buffer_info_analysis = tvm.tir.usmp.analysis.extract_buffer_info(main_func, tir_mod) assert buffer_info_analysis.memory_pressure == 1117718 fcreate_array_bi = tvm.get_global_func("tir.usmp.CreateArrayBufferInfo") buffer_info_arr = fcreate_array_bi(buffer_info_analysis.buffer_info_stmts) fusmp_algo = tvm.get_global_func(f"tir.usmp.algo.{algorithm}") buffer_pool_allocations = fusmp_algo(buffer_info_arr, buffer_info_analysis.memory_pressure) buffer_info_map_names = dict() for buf_info in buffer_info_arr: buffer_info_map_names[buf_info.name_hint] = buf_info # check conflicts _verify_conflicts("PaddedInput_7", ["sid_9", "sid_8", "Conv2dOutput_7"], buffer_info_map_names) _verify_conflicts("tensor_2", ["sid_8"], buffer_info_map_names) _verify_conflicts("sid_9", ["PaddedInput_7"], buffer_info_map_names) _verify_conflicts( "sid_8", ["PaddedInput_7", "Conv2dOutput_7", "tensor_2"], buffer_info_map_names ) _verify_conflicts("Conv2dOutput_7", ["sid_8", "PaddedInput_7"], buffer_info_map_names) _check_max_workspace_size(buffer_pool_allocations, slow_memory_pool, slow_memory_size) _check_max_workspace_size(buffer_pool_allocations, fast_memory_pool, fast_memory_size) # fmt: off @tvm.script.ir_module class ResnetStructure: @T.prim_func def tvmgen_default_fused_cast_subtract_fixed_point_multiply_add_clip_cast_cast(placeholder: T.handle, placeholder_1: T.handle, T_cast: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_fused_cast_subtract_fixed_point_multiply_add_clip_cast_cast", "tir.noalias": True}) placeholder_2 = T.match_buffer(placeholder, [360000], dtype="uint8") placeholder_3 = T.match_buffer(placeholder_1, [64], dtype="int32") T_cast_1 = T.match_buffer(T_cast, [360000], dtype="int16") # body for ax0_ax1_fused, ax2, ax3_outer, ax3_inner in T.grid(75, 75, 4, 16): T_cast_1[ax0_ax1_fused * 4800 + ax2 * 64 + ax3_outer * 16 + ax3_inner] = T.cast(T.cast(T.max(T.min(T.q_multiply_shift(T.cast(placeholder_2[ax0_ax1_fused * 4800 + ax2 * 64 + ax3_outer * 16 + ax3_inner], "int32") - 94, 1843157232, 31, 1, dtype="int32") + placeholder_3[ax3_outer * 16 + ax3_inner], 255), 0), "uint8"), "int16") @T.prim_func def tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_cast_1(placeholder_10: T.handle, placeholder_11: T.handle, placeholder_12: T.handle, T_cast_4: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_cast_1", "tir.noalias": True}) placeholder_13 = T.match_buffer(placeholder_10, [360000], dtype="int16") placeholder_14 = T.match_buffer(placeholder_11, [36864], dtype="int16") placeholder_15 = T.match_buffer(placeholder_12, [64], dtype="int32") T_cast_5 = T.match_buffer(T_cast_4, [360000], dtype="int16") # body PaddedInput_1 = T.decl_buffer([379456], "int16") for i0_i1_fused_1, i2_1, i3_1 in T.grid(77, 77, 64): PaddedInput_1[i0_i1_fused_1 * 4928 + i2_1 * 64 + i3_1] = T.if_then_else(1 <= i0_i1_fused_1 and i0_i1_fused_1 < 76 and 1 <= i2_1 and i2_1 < 76, placeholder_13[i0_i1_fused_1 * 4800 + i2_1 * 64 + i3_1 - 4864], T.int16(0), dtype="int16") for ax0_ax1_fused_ax2_fused_1 in T.serial(0, 5625): Conv2dOutput_1 = T.decl_buffer([64], "int32") for ff_1 in T.serial(0, 64): Conv2dOutput_1[ff_1] = 0 for ry, rx, rc_1 in T.grid(3, 3, 64): Conv2dOutput_1[ff_1] = Conv2dOutput_1[ff_1] + T.cast(PaddedInput_1[T.floordiv(ax0_ax1_fused_ax2_fused_1, 75) * 4928 + ry * 4928 + rx * 64 + T.floormod(ax0_ax1_fused_ax2_fused_1, 75) * 64 + rc_1], "int32") * T.cast(placeholder_14[ry * 12288 + rx * 4096 + rc_1 * 64 + ff_1], "int32") for ax3_inner_2 in T.serial(0, 64): T_cast_5[ax0_ax1_fused_ax2_fused_1 * 64 + ax3_inner_2] = T.cast(T.cast(T.max(T.min(T.q_multiply_shift(Conv2dOutput_1[ax3_inner_2] + placeholder_15[ax3_inner_2], 1608879842, 31, -7, dtype="int32"), 255), 0), "uint8"), "int16") @T.prim_func def tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_add_clip_cast_cast_subtract_fixed_point_15934180698220515269_(placeholder_16: T.handle, placeholder_17: T.handle, placeholder_18: T.handle, T_add: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_add_clip_cast_cast_subtract_fixed_point_15934180698220515269_", "tir.noalias": True}) placeholder_19 = T.match_buffer(placeholder_16, [360000], dtype="int16") placeholder_20 = T.match_buffer(placeholder_17, [16384], dtype="int16") placeholder_21 = T.match_buffer(placeholder_18, [256], dtype="int32") T_add_1 = T.match_buffer(T_add, [1440000], dtype="int32") # body PaddedInput_2 = T.decl_buffer([360000], "int16") for i0_i1_fused_2, i2_2, i3_2 in T.grid(75, 75, 64): PaddedInput_2[i0_i1_fused_2 * 4800 + i2_2 * 64 + i3_2] = placeholder_19[i0_i1_fused_2 * 4800 + i2_2 * 64 + i3_2] for ax0_ax1_fused_ax2_fused_2 in T.serial(0, 5625): Conv2dOutput_2 = T.decl_buffer([64], "int32") for ax3_outer_1 in T.serial(0, 4): for ff_2 in T.serial(0, 64): Conv2dOutput_2[ff_2] = 0 for rc_2 in T.serial(0, 64): Conv2dOutput_2[ff_2] = Conv2dOutput_2[ff_2] + T.cast(PaddedInput_2[ax0_ax1_fused_ax2_fused_2 * 64 + rc_2], "int32") * T.cast(placeholder_20[rc_2 * 256 + ax3_outer_1 * 64 + ff_2], "int32") for ax3_inner_3 in T.serial(0, 64): T_add_1[ax0_ax1_fused_ax2_fused_2 * 256 + ax3_outer_1 * 64 + ax3_inner_3] = T.q_multiply_shift(T.cast(T.cast(T.max(T.min(T.q_multiply_shift(Conv2dOutput_2[ax3_inner_3] + placeholder_21[ax3_outer_1 * 64 + ax3_inner_3], 1711626602, 31, -8, dtype="int32") + 132, 255), 0), "uint8"), "int32") - 132, 2094289803, 31, -2, dtype="int32") + 136 @T.prim_func def tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_add_clip_cast_cast_subtract_fixed_point_4200876283395191415_(placeholder_22: T.handle, placeholder_23: T.handle, placeholder_24: T.handle, placeholder_25: T.handle, T_cast_6: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_add_clip_cast_cast_subtract_fixed_point_4200876283395191415_", "tir.noalias": True}) placeholder_29 = T.match_buffer(placeholder_22, [360000], dtype="int16") placeholder_27 = T.match_buffer(placeholder_23, [16384], dtype="int16") placeholder_26 = T.match_buffer(placeholder_24, [256], dtype="int32") placeholder_28 = T.match_buffer(placeholder_25, [1440000], dtype="int32") T_cast_7 = T.match_buffer(T_cast_6, [1440000], dtype="uint8") # body PaddedInput_3 = T.decl_buffer([360000], "int16") for i0_i1_fused_3, i2_3, i3_3 in T.grid(75, 75, 64): PaddedInput_3[i0_i1_fused_3 * 4800 + i2_3 * 64 + i3_3] = placeholder_29[i0_i1_fused_3 * 4800 + i2_3 * 64 + i3_3] for ax0_ax1_fused_ax2_fused_3 in T.serial(0, 5625): Conv2dOutput_3 = T.decl_buffer([64], "int32") for ax3_outer_2 in T.serial(0, 4): for ff_3 in T.serial(0, 64): Conv2dOutput_3[ff_3] = 0 for rc_3 in T.serial(0, 64): Conv2dOutput_3[ff_3] = Conv2dOutput_3[ff_3] + T.cast(PaddedInput_3[ax0_ax1_fused_ax2_fused_3 * 64 + rc_3], "int32") * T.cast(placeholder_27[rc_3 * 256 + ax3_outer_2 * 64 + ff_3], "int32") for ax3_inner_4 in T.serial(0, 64): T_cast_7[ax0_ax1_fused_ax2_fused_3 * 256 + ax3_outer_2 * 64 + ax3_inner_4] = T.cast(T.max(T.min(T.q_multiply_shift(T.cast(T.cast(T.max(T.min(T.q_multiply_shift(Conv2dOutput_3[ax3_inner_4] + placeholder_26[ax3_outer_2 * 64 + ax3_inner_4], 1343014664, 31, -8, dtype="int32") + 136, 255), 0), "uint8"), "int32") - 136, 1073903788, 31, 1, dtype="int32") + placeholder_28[ax0_ax1_fused_ax2_fused_3 * 256 + ax3_outer_2 * 64 + ax3_inner_4], 255), 0), "uint8") @T.prim_func def tvmgen_default_run_model(input: T.handle, output: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_run_model", "runner_function": True}) # body T.attr("default", "device_id", 0) T.attr("default", "device_type", 1) sid_2 = T.allocate([720000], "int8", "global") sid_6 = T.allocate([5760000], "int8", "global") sid_7 = T.allocate([720000], "int8", "global") sid_8 = T.allocate([720000], "int8", "global") T.evaluate(T.call_extern("tvmgen_default_fused_cast_subtract_fixed_point_multiply_add_clip_cast_cast", input, T.lookup_param("p0", dtype="handle"), sid_2, dtype="int32")) T.evaluate(T.call_extern("tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_cast", sid_2, T.lookup_param("p3", dtype="handle"), T.lookup_param("p4", dtype="handle"), sid_8, dtype="int32")) T.evaluate(T.call_extern("tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_cast_1", sid_8, T.lookup_param("p5", dtype="handle"), T.lookup_param("p6", dtype="handle"), sid_7, dtype="int32")) T.evaluate(T.call_extern("tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_add_clip_cast_cast_subtract_fixed_point_15934180698220515269_", sid_7, T.lookup_param("p7", dtype="handle"), T.lookup_param("p8", dtype="handle"), sid_6, dtype="int32")) T.evaluate(T.call_extern("tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_add_clip_cast_cast_subtract_fixed_point_4200876283395191415_", sid_2, T.lookup_param("p1", dtype="handle"), T.lookup_param("p2", dtype="handle"), sid_6, output, dtype="int32")) @T.prim_func def tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_cast(placeholder_4: T.handle, placeholder_5: T.handle, placeholder_6: T.handle, T_cast_2: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_cast", "tir.noalias": True}) placeholder_7 = T.match_buffer(placeholder_4, [360000], dtype="int16") placeholder_8 = T.match_buffer(placeholder_5, [4096], dtype="int16") placeholder_9 = T.match_buffer(placeholder_6, [64], dtype="int32") T_cast_3 = T.match_buffer(T_cast_2, [360000], dtype="int16") # body PaddedInput = T.decl_buffer([360000], "int16") for i0_i1_fused, i2, i3 in T.grid(75, 75, 64): PaddedInput[i0_i1_fused * 4800 + i2 * 64 + i3] = placeholder_7[i0_i1_fused * 4800 + i2 * 64 + i3] for ax0_ax1_fused_ax2_fused in T.serial(0, 5625): Conv2dOutput = T.decl_buffer([64], "int32") for ff in T.serial(0, 64): Conv2dOutput[ff] = 0 for rc in T.serial(0, 64): Conv2dOutput[ff] = Conv2dOutput[ff] + T.cast(PaddedInput[ax0_ax1_fused_ax2_fused * 64 + rc], "int32") * T.cast(placeholder_8[rc * 64 + ff], "int32") for ax3_inner_1 in T.serial(0, 64): T_cast_3[ax0_ax1_fused_ax2_fused * 64 + ax3_inner_1] = T.cast(T.cast(T.max(T.min(T.q_multiply_shift(Conv2dOutput[ax3_inner_1] + placeholder_9[ax3_inner_1], 1843106743, 31, -6, dtype="int32"), 255), 0), "uint8"), "int16") __tvm_meta__ = None # fmt: on @pytest.mark.parametrize( ["algorithm", "workspace_size"], [("greedy_by_size", 7920256), ("greedy_by_conflicts", 7200256), ("hill_climb", 7200256)], ) def test_resnet_subgraph(algorithm, workspace_size): target = Target("c") global_workspace_pool = WorkspacePoolInfo( "global_workspace", [target], ) tir_mod = ResnetStructure tir_mod = _assign_targets_to_primfuncs_irmodule(tir_mod, target) tir_mod = _assign_poolinfos_to_allocates_in_irmodule(tir_mod, [global_workspace_pool]) main_func = tir_mod["tvmgen_default_run_model"] buffer_info_analysis = tvm.tir.usmp.analysis.extract_buffer_info(main_func, tir_mod) assert buffer_info_analysis.memory_pressure == 7200256 fcreate_array_bi = tvm.get_global_func("tir.usmp.CreateArrayBufferInfo") buffer_info_arr = fcreate_array_bi(buffer_info_analysis.buffer_info_stmts) fusmp_algo = tvm.get_global_func(f"tir.usmp.algo.{algorithm}") buffer_pool_allocations = fusmp_algo(buffer_info_arr, buffer_info_analysis.memory_pressure) buffer_info_map_names = dict() for buf_info in buffer_info_arr: buffer_info_map_names[buf_info.name_hint] = buf_info # check conflicts _verify_conflicts( "sid_7", [ "PaddedInput_1", "sid_2", "Conv2dOutput_1", "PaddedInput_2", ], buffer_info_map_names, ) _verify_conflicts( "Conv2dOutput_3", [ "PaddedInput_3", "sid_6", ], buffer_info_map_names, ) _verify_conflicts( "sid_6", [ "Conv2dOutput_2", "PaddedInput_2", "sid_2", "PaddedInput_3", "Conv2dOutput_3", ], buffer_info_map_names, ) _verify_conflicts( "Conv2dOutput", [ "sid_8", "sid_2", "PaddedInput", ], buffer_info_map_names, ) _verify_conflicts( "PaddedInput_3", [ "sid_6", "sid_2", "Conv2dOutput_3", ], buffer_info_map_names, ) _verify_conflicts( "Conv2dOutput_2", [ "PaddedInput_2", "sid_2", "sid_6", ], buffer_info_map_names, ) _verify_conflicts( "PaddedInput_1", [ "sid_8", "sid_2", "sid_7", "Conv2dOutput_1", ], buffer_info_map_names, ) _verify_conflicts( "Conv2dOutput_1", [ "sid_7", "PaddedInput_1", "sid_2", ], buffer_info_map_names, ) _verify_conflicts( "PaddedInput", [ "sid_2", "sid_8", "Conv2dOutput", ], buffer_info_map_names, ) _verify_conflicts( "sid_8", [ "PaddedInput", "sid_2", "Conv2dOutput", "PaddedInput_1", ], buffer_info_map_names, ) _verify_conflicts( "sid_2", [ "PaddedInput", "sid_8", "Conv2dOutput", "PaddedInput_1", "sid_7", "Conv2dOutput_1", "PaddedInput_2", "Conv2dOutput_2", "sid_6", "PaddedInput_3", ], buffer_info_map_names, ) _verify_conflicts( "PaddedInput_2", [ "sid_7", "sid_2", "Conv2dOutput_2", "sid_6", ], buffer_info_map_names, ) _check_max_workspace_size(buffer_pool_allocations, global_workspace_pool, workspace_size) def test_custom_algo(): target = Target("c") global_workspace_pool = WorkspacePoolInfo( "global_workspace", [target], ) tir_mod = ResnetStructure tir_mod = _assign_targets_to_primfuncs_irmodule(tir_mod, target) tir_mod = _assign_poolinfos_to_allocates_in_irmodule(tir_mod, [global_workspace_pool]) tir_mod = tir_mod.with_attr("executor", tvm.relay.backend.Executor("aot")) tir_mod = tir_mod.with_attr("runtime", tvm.relay.backend.Runtime("crt")) tir_mod["__tvm_main__"] = tir_mod[ "tvmgen_default_fused_cast_subtract_fixed_point_multiply_add_clip_cast_cast" ] algo_called = False @tvm.register_func("tir.usmp.algo.trivial") def _trivial_algo(buf_infos, mem_pressure): nonlocal algo_called algo_called = True out_layout = {} offset = 0 for buf_info in buf_infos: pool_info = buf_info.pool_candidates[0] out_layout[buf_info] = usmp_utils.PoolAllocation(pool_info, offset) offset += buf_info.size_bytes return out_layout usmp_pass = tvm.get_global_func("tir.transform.UnifiedStaticMemoryPlanner") usmp_pass()(tir_mod) assert not algo_called with tvm.transform.PassContext(config={"tir.usmp.custom_algorithm": "trivial"}): usmp_pass()(tir_mod) assert algo_called with pytest.raises( tvm.TVMError, match="The selected custom USMP algorithm : invalid is not defined" ): with tvm.transform.PassContext(config={"tir.usmp.custom_algorithm": "invalid"}): usmp_pass()(tir_mod)
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_usmp_algo_hill_climb.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import sys import pytest import random import tvm import tvm.testing from tvm.tir.usmp.utils import BufferInfo from tvm import WorkspacePoolInfo, PoolInfoProperties def _check_max_workspace_size(buffer_pool_allocations, pool_info, size, tolerance=0): """Helper to check maximum allocated memory size""" max_workspace_size = 0 for buffer_info, pool_allocation in buffer_pool_allocations.items(): if pool_allocation.pool_info == pool_info: size_candidate = pool_allocation.byte_offset + buffer_info.size_bytes if size_candidate > max_workspace_size: max_workspace_size = size_candidate _diff = max_workspace_size.value - size return ( (max_workspace_size.value == size if tolerance == 0 else tolerance > 100 * _diff / size), "'{}': expected {} got {}, diff {:0.2f}% ({} bytes)".format( pool_info.pool_name, size, max_workspace_size, 100 * _diff / size, _diff ), ) def _verify_conflicts(buffer_info, pool_allocation, buffer_info_map): """Helper to check expected liveness conflicts""" for conflict in buffer_info.conflicts: conflict_pool_allocation = buffer_info_map[conflict] if conflict_pool_allocation.pool_info == pool_allocation.pool_info: assert conflict_pool_allocation.byte_offset != pool_allocation.byte_offset l2 = max( conflict_pool_allocation.byte_offset + conflict.size_bytes, pool_allocation.byte_offset + buffer_info.size_bytes, ) - min(conflict_pool_allocation.byte_offset, pool_allocation.byte_offset) assert ( conflict.size_bytes + buffer_info.size_bytes <= l2 ), 'Conflicting: \n"{} @{}"\n"{} @{}"'.format( conflict, conflict_pool_allocation, buffer_info, pool_allocation ) def _verify_all_conflicts(buffer_pool_allocations): """Helper to verify liveness conflicts""" for buffer_info, pool_allocation in buffer_pool_allocations.items(): _verify_conflicts(buffer_info, pool_allocation, buffer_pool_allocations) def test_bounded( random_len=150, pools=[ WorkspacePoolInfo("default", [], PoolInfoProperties(65535)), WorkspacePoolInfo("slow", []), ], ): """Tests two pools, one is bounded and one is not limited""" random.seed(0) mem_range = [BufferInfo(str(i), random.randrange(1, 65535), pools) for i in range(random_len)] for mr in mem_range: pr = random.choice(mem_range) while pr in (*mr.conflicts, mr): pr = random.choice(mem_range) mr.set_conflicts([*mr.conflicts, pr]) pr.set_conflicts([*pr.conflicts, mr]) fusmp_algo = tvm.get_global_func("tir.usmp.algo.hill_climb") result_map = fusmp_algo(mem_range, 0) _verify_all_conflicts(result_map) def __test_data_alloc_max(): """Test data""" intervals = [ (0, 159, 2048), (0, 13, 7904), (4, 35, 16), (12, 17, 32768), (16, 21, 32768), ] return intervals def __test_data_deep_speech(): """Test data""" intervals = [ (0, 159, 2048), (0, 151, 2048), (0, 13, 7904), (2, 49, 16), (4, 35, 16), (6, 21, 16), (12, 17, 32768), (16, 21, 32768), (20, 27, 32768), (26, 31, 32768), (30, 35, 32768), (34, 41, 32768), (40, 45, 32768), (44, 49, 32768), (48, 145, 32768), (54, 59, 2048), (58, 483, 4096), (60, 65, 2048), (64, 461, 4096), (66, 71, 2048), (70, 439, 4096), (72, 77, 2048), (76, 417, 4096), (78, 83, 2048), (82, 395, 4096), (84, 89, 2048), (88, 373, 4096), (90, 95, 2048), (94, 351, 4096), (96, 101, 2048), (100, 329, 4096), (102, 107, 2048), (106, 307, 4096), (108, 113, 2048), (112, 285, 4096), (114, 119, 2048), (118, 263, 4096), (120, 125, 2048), (124, 241, 4096), (126, 131, 2048), (130, 219, 4096), (132, 137, 2048), (136, 197, 4096), (138, 143, 2048), (142, 175, 4096), (144, 149, 2048), (148, 153, 4096), (152, 163, 8192), (154, 171, 2048), (156, 181, 2048), (160, 167, 2048), (162, 165, 2048), (168, 171, 2048), (170, 509, 2048), (174, 185, 8192), (176, 193, 2048), (178, 203, 2048), (182, 189, 2048), (184, 187, 2048), (190, 193, 2048), (192, 511, 2048), (196, 207, 8192), (198, 215, 2048), (200, 225, 2048), (204, 211, 2048), (206, 209, 2048), (212, 215, 2048), (214, 513, 2048), (218, 229, 8192), (220, 237, 2048), (222, 247, 2048), (226, 233, 2048), (228, 231, 2048), (234, 237, 2048), (236, 515, 2048), (240, 251, 8192), (242, 259, 2048), (244, 269, 2048), (248, 255, 2048), (250, 253, 2048), (256, 259, 2048), (258, 517, 2048), (262, 273, 8192), (264, 281, 2048), (266, 291, 2048), (270, 277, 2048), (272, 275, 2048), (278, 281, 2048), (280, 519, 2048), (284, 295, 8192), (286, 303, 2048), (288, 313, 2048), (292, 299, 2048), (294, 297, 2048), (300, 303, 2048), (302, 521, 2048), (306, 317, 8192), (308, 325, 2048), (310, 335, 2048), (314, 321, 2048), (316, 319, 2048), (322, 325, 2048), (324, 523, 2048), (328, 339, 8192), (330, 347, 2048), (332, 357, 2048), (336, 343, 2048), (338, 341, 2048), (344, 347, 2048), (346, 525, 2048), (350, 361, 8192), (352, 369, 2048), (354, 379, 2048), (358, 365, 2048), (360, 363, 2048), (366, 369, 2048), (368, 527, 2048), (372, 383, 8192), (374, 391, 2048), (376, 401, 2048), (380, 387, 2048), (382, 385, 2048), (388, 391, 2048), (390, 529, 2048), (394, 405, 8192), (396, 413, 2048), (398, 423, 2048), (402, 409, 2048), (404, 407, 2048), (410, 413, 2048), (412, 531, 2048), (416, 427, 8192), (418, 435, 2048), (420, 445, 2048), (424, 431, 2048), (426, 429, 2048), (432, 435, 2048), (434, 533, 2048), (438, 449, 8192), (440, 457, 2048), (442, 467, 2048), (446, 453, 2048), (448, 451, 2048), (454, 457, 2048), (456, 535, 2048), (460, 471, 8192), (462, 479, 2048), (464, 489, 2048), (468, 475, 2048), (470, 473, 2048), (476, 479, 2048), (478, 537, 2048), (482, 493, 8192), (484, 501, 2048), (486, 497, 2048), (490, 497, 2048), (492, 495, 2048), (496, 626, 2048), (498, 501, 2048), (500, 626, 2048), (504, 549, 16), (508, 543, 32768), (542, 549, 32768), (548, 555, 32768), (554, 563, 464), (560, 563, 256), (562, 617, 2048), (564, 567, 1856), (566, 573, 1024), (568, 619, 1024), (570, 573, 1024), (572, 577, 1024), (576, 579, 1024), (578, 605, 1024), (580, 593, 1024), (584, 587, 1024), (586, 603, 1024), (594, 597, 1024), (596, 613, 1024), (604, 607, 1024), (606, 617, 1024), (616, 621, 2048), (618, 621, 1024), (620, 626, 464), ] return intervals def __test_data_five(): """Test data""" return [ (4, 5, 95), (1, 4, 52135), (3, 4, 12136), (3, 5, 62099), (4, 5, 50458), ] def __test_data_simple(): """Test data""" return [ (0, 23, 131072), # 0 (4, 5, 65568), # 1 (4, 9, 8192), # 2 (8, 30, 15360), # 3 (10, 11, 65568), # 4 (10, 15, 4096), # 5 (16, 17, 65552), # 6 (16, 21, 2048), # 7 (22, 23, 32784), # 8 (22, 27, 1024), # 9 ] def find_maximum_from_intervals(intervals): """Expected list of intervals of (start, end, size)""" sorted_list = sorted(intervals, key=lambda _: _[0]) max_mem = 0 for t in range(sorted_list[0][0], sorted_list[-1][1] + 1): max_mem = max( max_mem, sum([size for (start, end, size) in sorted_list if t >= start and t <= end]) ) return max_mem @pytest.mark.parametrize( "intervals", [__test_data_alloc_max(), __test_data_simple(), __test_data_deep_speech(), __test_data_five()], ) def test_intervals(intervals): """Tests supplied intervals""" random.seed(0) result = run_intervals(intervals, 5) assert result["tir.usmp.algo.hill_climb"] == True, f" {result}" def generate_range(sz, max_segment_sz=65535): """Helper func to generate list of size sz of ranges of random size max_segment_sz""" for i in range(0, sz): start = random.randrange(i, sz) stop = random.randrange(start + 1, start + 2 + ((sz - start) // 2)) assert stop - start > 0 yield (start, stop, random.randrange(1, max_segment_sz)) def test_random_intervals(interval_len=16): """Tests randomly generated interval of length interval_len""" random.seed(0) intervals = list(generate_range(interval_len)) return run_intervals(intervals) def run_intervals(intervals, tolerance=0): """Helper to run intervals""" expected_mem = find_maximum_from_intervals(intervals) pools = [WorkspacePoolInfo("default", [])] buffers = [] # populate for i, (start, stop, size) in enumerate(intervals): buf = BufferInfo(str(i), size, pools) # buf.set_pool_candidates( ["default"] ) buffers.append(buf) # intersect for i, (i_start, i_stop, _) in enumerate(intervals): conflicts = set() for j, (j_start, j_stop, _) in enumerate(intervals): start = min(i_start, j_start) stop = max(i_stop, j_stop) i_dur = i_stop - i_start + 1 j_dur = j_stop - j_start + 1 if i != j and (stop - start + 1 < i_dur + j_dur): conflicts.add(buffers[j]) buffers[i].set_conflicts([c for c in sorted(conflicts, key=lambda c: c.name_hint)]) result = {} for (alg, params) in [ ("tir.usmp.algo.hill_climb", (expected_mem,)), ("tir.usmp.algo.greedy_by_size", (expected_mem,)), ]: fusmp_algo = tvm.get_global_func(alg) print("\n", "started", alg) buffer_info_arr = fusmp_algo(buffers, *params) print() _verify_all_conflicts(buffer_info_arr) result[alg], msg = _check_max_workspace_size( buffer_info_arr, pools[0], expected_mem, tolerance ) if not result[alg]: print(alg, msg) return result if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_usmp_analysis_extract_bufferinfo.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import pytest import sys import tvm from tvm import tir, script from tvm.ir import Range from tvm.script import tir as T from tvm.tir import stmt_functor from tvm.tir import PrimFunc from tvm.tir.usmp import utils as usmp_utils from tvm.target import Target from tvm import WorkspacePoolInfo, ConstantPoolInfo def _replace_stmt_with_buf_var_names(buffer_info_map): """helper to replace tir.allocates with buffer names""" new_buffer_info_map = dict() for k, v in buffer_info_map.items(): new_buffer_info_map[k.name_hint] = k return new_buffer_info_map def _verify_conflicts(main_buf_name, conflicting_buf_names, buffer_info_map): """helper to check expected liveness conflicts""" buf_info = buffer_info_map[main_buf_name] for conflict in buf_info.conflicts: assert conflict.name_hint in conflicting_buf_names def _get_allocates(primfunc): """helper to extract all allocate nodes by name""" allocates = dict() def get_allocate(stmt): if isinstance(stmt, tvm.tir.Allocate): allocates[str(stmt.buffer_var.name)] = stmt stmt_functor.post_order_visit(primfunc.body, get_allocate) return allocates def _assign_poolinfos_to_allocates_in_primfunc(primfunc, pool_infos, constant_pool_infos): """helper to assing poolinfos to allocate nodes in a tir.PrimFunc""" def set_poolinfos(stmt): if isinstance(stmt, tvm.tir.Allocate): return tvm.tir.Allocate( buffer_var=stmt.buffer_var, dtype=stmt.dtype, extents=stmt.extents, condition=stmt.condition, body=stmt.body, annotations={tvm.tir.usmp.utils.CANDIDATE_MEMORY_POOL_ATTR: pool_infos}, ) elif isinstance(stmt, tvm.tir.AllocateConst): return tvm.tir.AllocateConst( buffer_var=stmt.buffer_var, dtype=stmt.dtype, extents=stmt.extents, data_or_idx=stmt.data, body=stmt.body, annotations={tvm.tir.usmp.utils.CANDIDATE_MEMORY_POOL_ATTR: constant_pool_infos}, ) return primfunc.with_body(stmt_functor.ir_transform(primfunc.body, None, set_poolinfos)) def _assign_poolinfos_to_allocates_in_irmodule(mod, pool_infos, constant_pool_infos=None): """helper to assign poolinfos to allocate nodes in a IRModule""" ret = tvm.IRModule() for global_var, basefunc in mod.functions.items(): if isinstance(basefunc, tvm.tir.PrimFunc): ret[global_var] = _assign_poolinfos_to_allocates_in_primfunc( basefunc, pool_infos, constant_pool_infos ) return ret def _assign_targets_to_primfuncs_irmodule(mod, target): """helper to assign target for PrimFunc in a IRModule""" ret = tvm.IRModule() for global_var, basefunc in mod.functions.items(): if isinstance(basefunc, tvm.tir.PrimFunc): ret[global_var] = basefunc.with_attr("target", target) return ret # These are test IRModules that contains varied topologies of operator graphs # that includes a main TIR function that includes call to such operators. # fmt: off @tvm.script.ir_module class LinearStructure: @T.prim_func def tvmgen_default_fused_cast_subtract(placeholder_2: T.handle, placeholder_3: T.handle, T_subtract: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_fused_cast_subtract", "tir.noalias": True}) placeholder_4 = T.match_buffer(placeholder_2, [150528], dtype="uint8", elem_offset=0, align=64, offset_factor=1) placeholder_5 = T.match_buffer(placeholder_3, [1], dtype="int16", elem_offset=0, align=64, offset_factor=1) T_subtract_1 = T.match_buffer(T_subtract, [452], dtype="int16", elem_offset=0, align=64, offset_factor=1) # body for ax0_ax1_fused_1 in T.serial(0, 224): for ax2_1, ax3_inner_1 in T.grid(224, 3): T_subtract_1[(((ax0_ax1_fused_1*672) + (ax2_1*3)) + ax3_inner_1)] = (T.cast(placeholder_4[(((ax0_ax1_fused_1*672) + (ax2_1*3)) + ax3_inner_1)], "int16") - placeholder_5[0]) @T.prim_func def tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast(placeholder_62: T.handle, placeholder_63: T.handle, placeholder_64: T.handle, T_cast_20: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast", "tir.noalias": True}) placeholder_65 = T.match_buffer(placeholder_62, [150528], dtype="int16", elem_offset=0, align=64, offset_factor=1) placeholder_66 = T.match_buffer(placeholder_63, [9408], dtype="int16", elem_offset=0, align=64, offset_factor=1) placeholder_67 = T.match_buffer(placeholder_64, [64], dtype="int32", elem_offset=0, align=64, offset_factor=1) T_cast_21 = T.match_buffer(T_cast_20, [289], dtype="uint8", elem_offset=0, align=64, offset_factor=1) # body PaddedInput_7 = T.decl_buffer([157323], "int16") for i0_i1_fused_7 in T.serial(0, 229): for i2_7, i3_7 in T.grid(229, 3): PaddedInput_7[(((i0_i1_fused_7*687) + (i2_7*3)) + i3_7)] = T.if_then_else(((((2 <= i0_i1_fused_7) and (i0_i1_fused_7 < 226)) and (2 <= i2_7)) and (i2_7 < 226)), placeholder_65[((((i0_i1_fused_7*672) + (i2_7*3)) + i3_7) - 1350)], T.int16(0), dtype="int16") for ax0_ax1_fused_ax2_fused_7 in T.serial(0, 12544): Conv2dOutput_7 = T.decl_buffer([64], "int32") for ff_3 in T.serial(0, 64): Conv2dOutput_7[ff_3] = 0 for ry_2, rx_2, rc_7 in T.grid(7, 7, 3): Conv2dOutput_7[ff_3] = (Conv2dOutput_7[ff_3] + (T.cast(PaddedInput_7[(((((T.floordiv(ax0_ax1_fused_ax2_fused_7, 112)*1374) + (ry_2*687)) + (T.floormod(ax0_ax1_fused_ax2_fused_7, 112)*6)) + (rx_2*3)) + rc_7)], "int32")*T.cast(placeholder_66[((((ry_2*1344) + (rx_2*192)) + (rc_7*64)) + ff_3)], "int32"))) for ax3_inner_7 in T.serial(0, 64): T_cast_21[((ax0_ax1_fused_ax2_fused_7*64) + ax3_inner_7)] = T.cast(T.max(T.min(T.q_multiply_shift((Conv2dOutput_7[ax3_inner_7] + placeholder_67[ax3_inner_7]), 1939887962, 31, -9, dtype="int32"), 255), 0), "uint8") @T.prim_func def tvmgen_default_fused_nn_max_pool2d_cast(placeholder_28: T.handle, T_cast_6: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_fused_nn_max_pool2d_cast", "tir.noalias": True}) placeholder_29 = T.match_buffer(placeholder_28, [802816], dtype="uint8", elem_offset=0, align=64, offset_factor=1) T_cast_7 = T.match_buffer(T_cast_6, [177], dtype="int16", elem_offset=0, align=64, offset_factor=1) # body tensor_2 = T.decl_buffer([200704], "uint8") for ax0_ax1_fused_4 in T.serial(0, 56): for ax2_4 in T.serial(0, 56): for ax3_init in T.serial(0, 64): tensor_2[(((ax0_ax1_fused_4*3584) + (ax2_4*64)) + ax3_init)] = T.uint8(0) for rv0_rv1_fused_1, ax3_2 in T.grid(9, 64): tensor_2[(((ax0_ax1_fused_4*3584) + (ax2_4*64)) + ax3_2)] = T.max(tensor_2[(((ax0_ax1_fused_4*3584) + (ax2_4*64)) + ax3_2)], T.if_then_else(((((ax0_ax1_fused_4*2) + T.floordiv(rv0_rv1_fused_1, 3)) < 112) and (((ax2_4*2) + T.floormod(rv0_rv1_fused_1, 3)) < 112)), placeholder_29[(((((ax0_ax1_fused_4*14336) + (T.floordiv(rv0_rv1_fused_1, 3)*7168)) + (ax2_4*128)) + (T.floormod(rv0_rv1_fused_1, 3)*64)) + ax3_2)], T.uint8(0), dtype="uint8")) for ax0_ax1_fused_5 in T.serial(0, 56): for ax2_5, ax3_3 in T.grid(56, 64): T_cast_7[(((ax0_ax1_fused_5*3584) + (ax2_5*64)) + ax3_3)] = T.cast(tensor_2[(((ax0_ax1_fused_5*3584) + (ax2_5*64)) + ax3_3)], "int16") @T.prim_func def run_model(input: T.handle, output: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_run_model", "runner_function": True}) # body T.attr("default", "device_id", 0) T.attr("default", "device_type", 1) sid_9 = T.allocate([301056], "int8", "global") sid_8 = T.allocate([802816], "int8", "global") T.evaluate(T.call_extern("tvmgen_default_fused_cast_subtract", input, T.lookup_param("p0", dtype="handle"), sid_9, dtype="int32")) T.evaluate(T.call_extern("tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast", sid_9, T.lookup_param("p1", dtype="handle"), T.lookup_param("p2", dtype="handle"), sid_8, dtype="int32")) T.evaluate(T.call_extern("tvmgen_default_fused_nn_max_pool2d_cast", sid_8, output, dtype="int32")) __tvm_meta__ = None # fmt: on def test_linear(): target = Target("c") fast_memory_pool = WorkspacePoolInfo(pool_name="fast_memory", targets=[target]) slow_memory_pool = WorkspacePoolInfo(pool_name="slow_memory", targets=[target]) tir_mod = LinearStructure tir_mod = _assign_targets_to_primfuncs_irmodule(tir_mod, target) tir_mod = _assign_poolinfos_to_allocates_in_irmodule( tir_mod, [fast_memory_pool, slow_memory_pool] ) buffer_info_analysis = tvm.tir.usmp.analysis.extract_buffer_info(tir_mod["run_model"], tir_mod) assert buffer_info_analysis.memory_pressure == 1117718 buffer_info_map = _replace_stmt_with_buf_var_names(buffer_info_analysis.buffer_info_stmts) # check conflicts _verify_conflicts("PaddedInput_7", ["sid_9", "sid_8", "Conv2dOutput_7"], buffer_info_map) _verify_conflicts("tensor_2", ["sid_8"], buffer_info_map) _verify_conflicts("sid_9", ["PaddedInput_7"], buffer_info_map) _verify_conflicts("sid_8", ["PaddedInput_7", "Conv2dOutput_7", "tensor_2"], buffer_info_map) _verify_conflicts("Conv2dOutput_7", ["sid_8", "PaddedInput_7"], buffer_info_map) # check sizes assert buffer_info_map["sid_8"].size_bytes == 802816 assert buffer_info_map["Conv2dOutput_7"].size_bytes == 256 assert buffer_info_map["PaddedInput_7"].size_bytes == 314646 assert buffer_info_map["tensor_2"].size_bytes == 200704 assert buffer_info_map["sid_9"].size_bytes == 301056 # check_pool_candidates assert [ pool_info.pool_name for pool_info in list(buffer_info_map["sid_8"].pool_candidates) ] == ["fast_memory", "slow_memory"] # fmt: off @tvm.script.ir_module class ParallelSerialMixedForLoops: @T.prim_func def tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_1(placeholder_68: T.handle, placeholder_69: T.handle, placeholder_70: T.handle, T_cast_22: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_1", "tir.noalias": True}) placeholder_71 = T.match_buffer(placeholder_68, [200704], dtype="int16", elem_offset=0, align=64, offset_factor=1) placeholder_72 = T.match_buffer(placeholder_69, [110592], dtype="int16", elem_offset=0, align=64, offset_factor=1) placeholder_73 = T.match_buffer(placeholder_70, [192], dtype="int32", elem_offset=0, align=64, offset_factor=1) T_cast_23 = T.match_buffer(T_cast_22, [305], dtype="uint8", elem_offset=0, align=64, offset_factor=1) # body PaddedInput_8 = T.decl_buffer([215296], "int16") for i0_i1_fused_8 in T.serial(0, 58): for i2_8, i3_8 in T.grid(58, 64): PaddedInput_8[(((i0_i1_fused_8*3712) + (i2_8*64)) + i3_8)] = T.if_then_else(((((1 <= i0_i1_fused_8) and (i0_i1_fused_8 < 57)) and (1 <= i2_8)) and (i2_8 < 57)), placeholder_71[((((i0_i1_fused_8*3584) + (i2_8*64)) + i3_8) - 3648)], T.int16(0), dtype="int16") for ax0_ax1_fused_ax2_fused_8 in T.parallel(0, 3136): dummy_allocate = T.decl_buffer([1], "int32") for ax3_outer_4 in T.serial(0, 3): Conv2dOutput_8 = T.decl_buffer([64], "int32") for ff_4 in T.serial(0, 64): Conv2dOutput_8[ff_4] = 0 for ry_3, rx_3, rc_8 in T.grid(3, 3, 64): Conv2dOutput_8[ff_4] = (Conv2dOutput_8[ff_4] + (T.cast(PaddedInput_8[(((((T.floordiv(ax0_ax1_fused_ax2_fused_8, 56)*3712) + (ry_3*3712)) + (rx_3*64)) + (T.floormod(ax0_ax1_fused_ax2_fused_8, 56)*64)) + rc_8)], "int32")*T.cast(placeholder_72[(((((ry_3*36864) + (rx_3*12288)) + (rc_8*192)) + (ax3_outer_4*64)) + ff_4)], "int32"))) for ax3_inner_8 in T.serial(0, 64): T_cast_23[(((ax0_ax1_fused_ax2_fused_8*192) + (ax3_outer_4*64)) + ax3_inner_8)] = T.cast(T.max(T.min(T.q_multiply_shift((Conv2dOutput_8[ax3_inner_8] + placeholder_73[((ax3_outer_4*64) + ax3_inner_8)]), 1139793473, 31, -6, dtype="int32"), 255), 0), "uint8") @T.prim_func def run_model(input: T.handle, output: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_run_model", "runner_function": True}) # body T.attr("default", "device_id", 0) T.attr("default", "device_type", 1) T.evaluate(T.call_extern("tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_1", input, T.lookup_param("p5", dtype="handle"), T.lookup_param("p6", dtype="handle"), output, dtype="int32")) __tvm_meta__ = None # fmt: on # fmt: off @tvm.script.ir_module class AllSerialForLoops: @T.prim_func def tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_1(placeholder_68: T.handle, placeholder_69: T.handle, placeholder_70: T.handle, T_cast_22: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_1", "tir.noalias": True}) placeholder_71 = T.match_buffer(placeholder_68, [200704], dtype="int16", elem_offset=0, align=64, offset_factor=1) placeholder_72 = T.match_buffer(placeholder_69, [110592], dtype="int16", elem_offset=0, align=64, offset_factor=1) placeholder_73 = T.match_buffer(placeholder_70, [192], dtype="int32", elem_offset=0, align=64, offset_factor=1) T_cast_23 = T.match_buffer(T_cast_22, [305], dtype="uint8", elem_offset=0, align=64, offset_factor=1) # body PaddedInput_8 = T.decl_buffer([215296], "int16") for i0_i1_fused_8 in T.serial(0, 58): for i2_8, i3_8 in T.grid(58, 64): PaddedInput_8[(((i0_i1_fused_8*3712) + (i2_8*64)) + i3_8)] = T.if_then_else(((((1 <= i0_i1_fused_8) and (i0_i1_fused_8 < 57)) and (1 <= i2_8)) and (i2_8 < 57)), placeholder_71[((((i0_i1_fused_8*3584) + (i2_8*64)) + i3_8) - 3648)], T.int16(0), dtype="int16") for ax0_ax1_fused_ax2_fused_8 in T.serial(0, 3136): dummy_allocate = T.decl_buffer([1], "int32") for ax3_outer_4 in T.serial(0, 3): Conv2dOutput_8 = T.decl_buffer([64], "int32") for ff_4 in T.serial(0, 64): Conv2dOutput_8[ff_4] = 0 for ry_3, rx_3, rc_8 in T.grid(3, 3, 64): Conv2dOutput_8[ff_4] = (Conv2dOutput_8[ff_4] + (T.cast(PaddedInput_8[(((((T.floordiv(ax0_ax1_fused_ax2_fused_8, 56)*3712) + (ry_3*3712)) + (rx_3*64)) + (T.floormod(ax0_ax1_fused_ax2_fused_8, 56)*64)) + rc_8)], "int32")*T.cast(placeholder_72[(((((ry_3*36864) + (rx_3*12288)) + (rc_8*192)) + (ax3_outer_4*64)) + ff_4)], "int32"))) for ax3_inner_8 in T.serial(0, 64): T_cast_23[(((ax0_ax1_fused_ax2_fused_8*192) + (ax3_outer_4*64)) + ax3_inner_8)] = T.cast(T.max(T.min(T.q_multiply_shift((Conv2dOutput_8[ax3_inner_8] + placeholder_73[((ax3_outer_4*64) + ax3_inner_8)]), 1139793473, 31, -6, dtype="int32"), 255), 0), "uint8") @T.prim_func def run_model(input: T.handle, output: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_run_model", "runner_function": True}) # body T.attr("default", "device_id", 0) T.attr("default", "device_type", 1) T.evaluate(T.call_extern("tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_1", input, T.lookup_param("p5", dtype="handle"), T.lookup_param("p6", dtype="handle"), output, dtype="int32")) __tvm_meta__ = None # fmt: on def test_parallel_serial_mixed_for_loops(): target = Target("c") global_ws_pool = WorkspacePoolInfo( pool_name="global_workspace", targets=[target], ) all_serial_tir_mod = AllSerialForLoops all_serial_tir_mod = _assign_targets_to_primfuncs_irmodule(all_serial_tir_mod, target) all_serial_tir_mod = _assign_poolinfos_to_allocates_in_irmodule( all_serial_tir_mod, [global_ws_pool] ) main_func = all_serial_tir_mod["run_model"] buffer_info_analysis = tvm.tir.usmp.analysis.extract_buffer_info(main_func, all_serial_tir_mod) assert buffer_info_analysis.memory_pressure == 430848 buffer_info_map = _replace_stmt_with_buf_var_names(buffer_info_analysis.buffer_info_stmts) # When all loops are serial all allocates are touched by USMP assert len(buffer_info_map) == 3 for name, _ in buffer_info_map.items(): assert name in ["dummy_allocate", "Conv2dOutput_8", "PaddedInput_8"] parallel_serial_mixed_tir_mod = ParallelSerialMixedForLoops parallel_serial_mixed_tir_mod = _assign_targets_to_primfuncs_irmodule( parallel_serial_mixed_tir_mod, target ) parallel_serial_mixed_tir_mod = _assign_poolinfos_to_allocates_in_irmodule( parallel_serial_mixed_tir_mod, [global_ws_pool] ) main_func = parallel_serial_mixed_tir_mod["run_model"] buffer_info_analysis = tvm.tir.usmp.analysis.extract_buffer_info( main_func, parallel_serial_mixed_tir_mod ) assert buffer_info_analysis.memory_pressure == 430848 buffer_info_map = _replace_stmt_with_buf_var_names(buffer_info_analysis.buffer_info_stmts) # USMP will not touch (yet) the allocates inside parallel for loops assert len(buffer_info_map) == 2 for name, _ in buffer_info_map.items(): assert name in ["Conv2dOutput_8", "PaddedInput_8"] # fmt: off @tvm.script.ir_module class InceptionStructure: @T.prim_func def tvmgen_default_fused_nn_max_pool2d(placeholder: T.handle, tensor: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_fused_nn_max_pool2d", "tir.noalias": True}) placeholder_1 = T.match_buffer(placeholder, [602112], dtype="uint8", elem_offset=0, align=64, offset_factor=1) tensor_1 = T.match_buffer(tensor, [249], dtype="uint8", elem_offset=0, align=64, offset_factor=1) # body for ax0_ax1_fused in T.serial(0, 28): for ax2 in T.serial(0, 28): for ax3_outer_init, ax3_inner_init in T.grid(3, 64): tensor_1[((((ax0_ax1_fused*5376) + (ax2*192)) + (ax3_outer_init*64)) + ax3_inner_init)] = T.uint8(0) for rv0_rv1_fused, ax3_outer, ax3_inner in T.grid(9, 3, 64): tensor_1[((((ax0_ax1_fused*5376) + (ax2*192)) + (ax3_outer*64)) + ax3_inner)] = T.max(tensor_1[((((ax0_ax1_fused*5376) + (ax2*192)) + (ax3_outer*64)) + ax3_inner)], T.if_then_else(((((ax0_ax1_fused*2) + T.floordiv(rv0_rv1_fused, 3)) < 56) and (((ax2*2) + T.floormod(rv0_rv1_fused, 3)) < 56)), placeholder_1[((((((ax0_ax1_fused*21504) + (T.floordiv(rv0_rv1_fused, 3)*10752)) + (ax2*384)) + (T.floormod(rv0_rv1_fused, 3)*192)) + (ax3_outer*64)) + ax3_inner)], T.uint8(0), dtype="uint8")) @T.prim_func def tvmgen_default_fused_cast_subtract(placeholder_2: T.handle, placeholder_3: T.handle, T_subtract: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_fused_cast_subtract", "tir.noalias": True}) placeholder_4 = T.match_buffer(placeholder_2, [150528], dtype="uint8", elem_offset=0, align=64, offset_factor=1) placeholder_5 = T.match_buffer(placeholder_3, [1], dtype="int16", elem_offset=0, align=64, offset_factor=1) T_subtract_1 = T.match_buffer(T_subtract, [452], dtype="int16", elem_offset=0, align=64, offset_factor=1) # body for ax0_ax1_fused_1 in T.serial(0, 224): for ax2_1, ax3_inner_1 in T.grid(224, 3): T_subtract_1[(((ax0_ax1_fused_1*672) + (ax2_1*3)) + ax3_inner_1)] = (T.cast(placeholder_4[(((ax0_ax1_fused_1*672) + (ax2_1*3)) + ax3_inner_1)], "int16") - placeholder_5[0]) @T.prim_func def tvmgen_default_fused_cast(placeholder_6: T.handle, T_cast: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_fused_cast", "tir.noalias": True}) placeholder_7 = T.match_buffer(placeholder_6, [150528], dtype="uint8", elem_offset=0, align=64, offset_factor=1) T_cast_1 = T.match_buffer(T_cast, [249], dtype="int16", elem_offset=0, align=64, offset_factor=1) # body for ax0_ax1_fused_2 in T.serial(0, 28): for ax2_2, ax3_outer_1, ax3_inner_2 in T.grid(28, 12, 16): T_cast_1[((((ax0_ax1_fused_2*5376) + (ax2_2*192)) + (ax3_outer_1*16)) + ax3_inner_2)] = T.cast(placeholder_7[((((ax0_ax1_fused_2*5376) + (ax2_2*192)) + (ax3_outer_1*16)) + ax3_inner_2)], "int16") @T.prim_func def tvmgen_default_fused_concatenate(placeholder_8: T.handle, placeholder_9: T.handle, placeholder_10: T.handle, placeholder_11: T.handle, T_concat: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_fused_concatenate", "tir.noalias": True}) placeholder_12 = T.match_buffer(placeholder_8, [50176], dtype="uint8", elem_offset=0, align=64, offset_factor=1) T_concat_1 = T.match_buffer(T_concat, [313], dtype="uint8", elem_offset=0, align=64, offset_factor=1) placeholder_13 = T.match_buffer(placeholder_9, [100352], dtype="uint8", elem_offset=0, align=64, offset_factor=1) placeholder_14 = T.match_buffer(placeholder_11, [25088], dtype="uint8", elem_offset=0, align=64, offset_factor=1) placeholder_15 = T.match_buffer(placeholder_10, [25088], dtype="uint8", elem_offset=0, align=64, offset_factor=1) # body for ax0_ax1_fused_3 in T.serial(0, 28): for ax2_3, ax3 in T.grid(28, 256): T_concat_1[(((ax0_ax1_fused_3*7168) + (ax2_3*256)) + ax3)] = T.if_then_else((224 <= ax3), placeholder_14[((((ax0_ax1_fused_3*896) + (ax2_3*32)) + ax3) - 224)], T.if_then_else((192 <= ax3), placeholder_15[((((ax0_ax1_fused_3*896) + (ax2_3*32)) + ax3) - 192)], T.if_then_else((64 <= ax3), placeholder_13[((((ax0_ax1_fused_3*3584) + (ax2_3*128)) + ax3) - 64)], placeholder_12[(((ax0_ax1_fused_3*1792) + (ax2_3*64)) + ax3)], dtype="uint8"), dtype="uint8"), dtype="uint8") @T.prim_func def tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_cast(placeholder_16: T.handle, placeholder_17: T.handle, placeholder_18: T.handle, T_cast_2: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_cast", "tir.noalias": True}) placeholder_19 = T.match_buffer(placeholder_16, [200704], dtype="int16", elem_offset=0, align=64, offset_factor=1) placeholder_20 = T.match_buffer(placeholder_17, [4096], dtype="int16", elem_offset=0, align=64, offset_factor=1) placeholder_21 = T.match_buffer(placeholder_18, [64], dtype="int32", elem_offset=0, align=64, offset_factor=1) T_cast_3 = T.match_buffer(T_cast_2, [177], dtype="int16", elem_offset=0, align=64, offset_factor=1) # body PaddedInput = T.decl_buffer([200704], "int16") for i0_i1_fused in T.serial(0, 56): for i2, i3 in T.grid(56, 64): PaddedInput[(((i0_i1_fused*3584) + (i2*64)) + i3)] = placeholder_19[(((i0_i1_fused*3584) + (i2*64)) + i3)] for ax0_ax1_fused_ax2_fused in T.serial(0, 3136): Conv2dOutput = T.decl_buffer([64], "int32") for ff in T.serial(0, 64): Conv2dOutput[ff] = 0 for rc in T.serial(0, 64): Conv2dOutput[ff] = (Conv2dOutput[ff] + (T.cast(PaddedInput[((ax0_ax1_fused_ax2_fused*64) + rc)], "int32")*T.cast(placeholder_20[((rc*64) + ff)], "int32"))) for ax3_inner_3 in T.serial(0, 64): T_cast_3[((ax0_ax1_fused_ax2_fused*64) + ax3_inner_3)] = T.cast(T.cast(T.max(T.min(T.q_multiply_shift((Conv2dOutput[ax3_inner_3] + placeholder_21[ax3_inner_3]), 1191576922, 31, -4, dtype="int32"), 255), 0), "uint8"), "int16") @T.prim_func def tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_cast_1(placeholder_22: T.handle, placeholder_23: T.handle, placeholder_24: T.handle, T_cast_4: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_cast_1", "tir.noalias": True}) placeholder_25 = T.match_buffer(placeholder_22, [150528], dtype="int16", elem_offset=0, align=64, offset_factor=1) placeholder_26 = T.match_buffer(placeholder_23, [18432], dtype="int16", elem_offset=0, align=64, offset_factor=1) placeholder_27 = T.match_buffer(placeholder_24, [96], dtype="int32", elem_offset=0, align=64, offset_factor=1) T_cast_5 = T.match_buffer(T_cast_4, [153], dtype="int16", elem_offset=0, align=64, offset_factor=1) # body PaddedInput_1 = T.decl_buffer([150528], "int16") for i0_i1_fused_1 in T.serial(0, 28): for i2_1, i3_1 in T.grid(28, 192): PaddedInput_1[(((i0_i1_fused_1*5376) + (i2_1*192)) + i3_1)] = placeholder_25[(((i0_i1_fused_1*5376) + (i2_1*192)) + i3_1)] for ax0_ax1_fused_ax2_fused_1 in T.serial(0, 784): Conv2dOutput_1 = T.decl_buffer([1], "int32") for ax3_1 in T.serial(0, 96): Conv2dOutput_1[0] = 0 for rc_1 in T.serial(0, 192): Conv2dOutput_1[0] = (Conv2dOutput_1[0] + (T.cast(PaddedInput_1[((ax0_ax1_fused_ax2_fused_1*192) + rc_1)], "int32")*T.cast(placeholder_26[((rc_1*96) + ax3_1)], "int32"))) T_cast_5[((ax0_ax1_fused_ax2_fused_1*96) + ax3_1)] = T.cast(T.cast(T.max(T.min(T.q_multiply_shift((Conv2dOutput_1[0] + placeholder_27[ax3_1]), 1201322342, 31, -6, dtype="int32"), 255), 0), "uint8"), "int16") @T.prim_func def tvmgen_default_fused_nn_max_pool2d_cast(placeholder_28: T.handle, T_cast_6: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_fused_nn_max_pool2d_cast", "tir.noalias": True}) placeholder_29 = T.match_buffer(placeholder_28, [802816], dtype="uint8", elem_offset=0, align=64, offset_factor=1) T_cast_7 = T.match_buffer(T_cast_6, [177], dtype="int16", elem_offset=0, align=64, offset_factor=1) # body tensor_2 = T.decl_buffer([200704], "uint8") for ax0_ax1_fused_4 in T.serial(0, 56): for ax2_4 in T.serial(0, 56): for ax3_init in T.serial(0, 64): tensor_2[(((ax0_ax1_fused_4*3584) + (ax2_4*64)) + ax3_init)] = T.uint8(0) for rv0_rv1_fused_1, ax3_2 in T.grid(9, 64): tensor_2[(((ax0_ax1_fused_4*3584) + (ax2_4*64)) + ax3_2)] = T.max(tensor_2[(((ax0_ax1_fused_4*3584) + (ax2_4*64)) + ax3_2)], T.if_then_else(((((ax0_ax1_fused_4*2) + T.floordiv(rv0_rv1_fused_1, 3)) < 112) and (((ax2_4*2) + T.floormod(rv0_rv1_fused_1, 3)) < 112)), placeholder_29[(((((ax0_ax1_fused_4*14336) + (T.floordiv(rv0_rv1_fused_1, 3)*7168)) + (ax2_4*128)) + (T.floormod(rv0_rv1_fused_1, 3)*64)) + ax3_2)], T.uint8(0), dtype="uint8")) for ax0_ax1_fused_5 in T.serial(0, 56): for ax2_5, ax3_3 in T.grid(56, 64): T_cast_7[(((ax0_ax1_fused_5*3584) + (ax2_5*64)) + ax3_3)] = T.cast(tensor_2[(((ax0_ax1_fused_5*3584) + (ax2_5*64)) + ax3_3)], "int16") @T.prim_func def tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_2(placeholder_30: T.handle, placeholder_31: T.handle, placeholder_32: T.handle, T_cast_8: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_2", "tir.noalias": True}) placeholder_33 = T.match_buffer(placeholder_30, [150528], dtype="int16", elem_offset=0, align=64, offset_factor=1) placeholder_34 = T.match_buffer(placeholder_31, [12288], dtype="int16", elem_offset=0, align=64, offset_factor=1) placeholder_35 = T.match_buffer(placeholder_32, [64], dtype="int32", elem_offset=0, align=64, offset_factor=1) T_cast_9 = T.match_buffer(T_cast_8, [121], dtype="uint8", elem_offset=0, align=64, offset_factor=1) # body PaddedInput_2 = T.decl_buffer([150528], "int16") for i0_i1_fused_2 in T.serial(0, 28): for i2_2, i3_2 in T.grid(28, 192): PaddedInput_2[(((i0_i1_fused_2*5376) + (i2_2*192)) + i3_2)] = placeholder_33[(((i0_i1_fused_2*5376) + (i2_2*192)) + i3_2)] for ax0_ax1_fused_ax2_fused_2 in T.serial(0, 784): Conv2dOutput_2 = T.decl_buffer([64], "int32") for ff_1 in T.serial(0, 64): Conv2dOutput_2[ff_1] = 0 for rc_2 in T.serial(0, 192): Conv2dOutput_2[ff_1] = (Conv2dOutput_2[ff_1] + (T.cast(PaddedInput_2[((ax0_ax1_fused_ax2_fused_2*192) + rc_2)], "int32")*T.cast(placeholder_34[((rc_2*64) + ff_1)], "int32"))) for ax3_inner_4 in T.serial(0, 64): T_cast_9[((ax0_ax1_fused_ax2_fused_2*64) + ax3_inner_4)] = T.cast(T.max(T.min(T.q_multiply_shift((Conv2dOutput_2[ax3_inner_4] + placeholder_35[ax3_inner_4]), 1663316467, 31, -7, dtype="int32"), 255), 0), "uint8") @T.prim_func def tvmgen_default_fused_nn_max_pool2d_cast_1(placeholder_36: T.handle, T_cast_10: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_fused_nn_max_pool2d_cast_1", "tir.noalias": True}) placeholder_37 = T.match_buffer(placeholder_36, [150528], dtype="uint8", elem_offset=0, align=64, offset_factor=1) T_cast_11 = T.match_buffer(T_cast_10, [249], dtype="int16", elem_offset=0, align=64, offset_factor=1) # body tensor_3 = T.decl_buffer([150528], "uint8") for ax0_ax1_fused_6 in T.serial(0, 28): for ax2_6 in T.serial(0, 28): for ax3_outer_init_1, ax3_inner_init_1 in T.grid(3, 64): tensor_3[((((ax0_ax1_fused_6*5376) + (ax2_6*192)) + (ax3_outer_init_1*64)) + ax3_inner_init_1)] = T.uint8(0) for rv0_rv1_fused_2, ax3_outer_2, ax3_inner_5 in T.grid(9, 3, 64): tensor_3[((((ax0_ax1_fused_6*5376) + (ax2_6*192)) + (ax3_outer_2*64)) + ax3_inner_5)] = T.max(tensor_3[((((ax0_ax1_fused_6*5376) + (ax2_6*192)) + (ax3_outer_2*64)) + ax3_inner_5)], T.if_then_else(((((1 <= (T.floordiv(rv0_rv1_fused_2, 3) + ax0_ax1_fused_6)) and ((T.floordiv(rv0_rv1_fused_2, 3) + ax0_ax1_fused_6) < 29)) and (1 <= (ax2_6 + T.floormod(rv0_rv1_fused_2, 3)))) and ((ax2_6 + T.floormod(rv0_rv1_fused_2, 3)) < 29)), placeholder_37[(((((((T.floordiv(rv0_rv1_fused_2, 3)*5376) + (ax0_ax1_fused_6*5376)) + (ax2_6*192)) + (T.floormod(rv0_rv1_fused_2, 3)*192)) + (ax3_outer_2*64)) + ax3_inner_5) - 5568)], T.uint8(0), dtype="uint8")) for ax0_ax1_fused_7 in T.serial(0, 28): for ax2_7, ax3_4 in T.grid(28, 192): T_cast_11[(((ax0_ax1_fused_7*5376) + (ax2_7*192)) + ax3_4)] = T.cast(tensor_3[(((ax0_ax1_fused_7*5376) + (ax2_7*192)) + ax3_4)], "int16") @T.prim_func def tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_cast_fixed_point_multiply_cli_4464294615199028320__2(placeholder_38: T.handle, placeholder_39: T.handle, placeholder_40: T.handle, T_cast_12: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_cast_fixed_point_multiply_cli_4464294615199028320__2", "tir.noalias": True}) placeholder_41 = T.match_buffer(placeholder_38, [150528], dtype="int16", elem_offset=0, align=64, offset_factor=1) placeholder_42 = T.match_buffer(placeholder_39, [6144], dtype="int16", elem_offset=0, align=64, offset_factor=1) placeholder_43 = T.match_buffer(placeholder_40, [32], dtype="int32", elem_offset=0, align=64, offset_factor=1) T_cast_13 = T.match_buffer(T_cast_12, [89], dtype="uint8", elem_offset=0, align=64, offset_factor=1) # body PaddedInput_3 = T.decl_buffer([150528], "int16") for i0_i1_fused_3 in T.serial(0, 28): for i2_3, i3_3 in T.grid(28, 192): PaddedInput_3[(((i0_i1_fused_3*5376) + (i2_3*192)) + i3_3)] = placeholder_41[(((i0_i1_fused_3*5376) + (i2_3*192)) + i3_3)] for ax0_ax1_fused_ax2_fused_3 in T.serial(0, 784): Conv2dOutput_3 = T.decl_buffer([1], "int32") for ax3_5 in T.serial(0, 32): Conv2dOutput_3[0] = 0 for rc_3 in T.serial(0, 192): Conv2dOutput_3[0] = (Conv2dOutput_3[0] + (T.cast(PaddedInput_3[((ax0_ax1_fused_ax2_fused_3*192) + rc_3)], "int32")*T.cast(placeholder_42[((rc_3*32) + ax3_5)], "int32"))) T_cast_13[((ax0_ax1_fused_ax2_fused_3*32) + ax3_5)] = T.cast(T.max(T.min(T.q_multiply_shift(T.cast(T.cast(T.max(T.min(T.q_multiply_shift((Conv2dOutput_3[0] + placeholder_43[ax3_5]), 1811141736, 31, -6, dtype="int32"), 255), 0), "uint8"), "int32"), 1136333842, 31, 0, dtype="int32"), 255), 0), "uint8") @T.prim_func def tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_cast_2(placeholder_44: T.handle, placeholder_45: T.handle, placeholder_46: T.handle, T_cast_14: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_cast_2", "tir.noalias": True}) placeholder_47 = T.match_buffer(placeholder_44, [150528], dtype="int16", elem_offset=0, align=64, offset_factor=1) placeholder_48 = T.match_buffer(placeholder_45, [3072], dtype="int16", elem_offset=0, align=64, offset_factor=1) placeholder_49 = T.match_buffer(placeholder_46, [16], dtype="int32", elem_offset=0, align=64, offset_factor=1) T_cast_15 = T.match_buffer(T_cast_14, [73], dtype="int16", elem_offset=0, align=64, offset_factor=1) # body PaddedInput_4 = T.decl_buffer([150528], "int16") for i0_i1_fused_4 in T.serial(0, 28): for i2_4, i3_4 in T.grid(28, 192): PaddedInput_4[(((i0_i1_fused_4*5376) + (i2_4*192)) + i3_4)] = placeholder_47[(((i0_i1_fused_4*5376) + (i2_4*192)) + i3_4)] for ax0_ax1_fused_ax2_fused_4 in T.serial(0, 784): Conv2dOutput_4 = T.decl_buffer([1], "int32") for ax3_6 in T.serial(0, 16): Conv2dOutput_4[0] = 0 for rc_4 in T.serial(0, 192): Conv2dOutput_4[0] = (Conv2dOutput_4[0] + (T.cast(PaddedInput_4[((ax0_ax1_fused_ax2_fused_4*192) + rc_4)], "int32")*T.cast(placeholder_48[((rc_4*16) + ax3_6)], "int32"))) T_cast_15[((ax0_ax1_fused_ax2_fused_4*16) + ax3_6)] = T.cast(T.cast(T.max(T.min(T.q_multiply_shift((Conv2dOutput_4[0] + placeholder_49[ax3_6]), 1764006585, 31, -7, dtype="int32"), 255), 0), "uint8"), "int16") @T.prim_func def tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_cast_fixed_point_multiply_cli_4464294615199028320__1(placeholder_50: T.handle, placeholder_51: T.handle, placeholder_52: T.handle, T_cast_16: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_cast_fixed_point_multiply_cli_4464294615199028320__1", "tir.noalias": True}) placeholder_53 = T.match_buffer(placeholder_50, [12544], dtype="int16", elem_offset=0, align=64, offset_factor=1) placeholder_54 = T.match_buffer(placeholder_51, [4608], dtype="int16", elem_offset=0, align=64, offset_factor=1) placeholder_55 = T.match_buffer(placeholder_52, [32], dtype="int32", elem_offset=0, align=64, offset_factor=1) T_cast_17 = T.match_buffer(T_cast_16, [89], dtype="uint8", elem_offset=0, align=64, offset_factor=1) # body PaddedInput_5 = T.decl_buffer([14400], "int16") for i0_i1_fused_5 in T.serial(0, 30): for i2_5, i3_5 in T.grid(30, 16): PaddedInput_5[(((i0_i1_fused_5*480) + (i2_5*16)) + i3_5)] = T.if_then_else(((((1 <= i0_i1_fused_5) and (i0_i1_fused_5 < 29)) and (1 <= i2_5)) and (i2_5 < 29)), placeholder_53[((((i0_i1_fused_5*448) + (i2_5*16)) + i3_5) - 464)], T.int16(0), dtype="int16") for ax0_ax1_fused_ax2_fused_5 in T.serial(0, 784): Conv2dOutput_5 = T.decl_buffer([1], "int32") for ax3_7 in T.serial(0, 32): Conv2dOutput_5[0] = 0 for ry, rx, rc_5 in T.grid(3, 3, 16): Conv2dOutput_5[0] = (Conv2dOutput_5[0] + (T.cast(PaddedInput_5[(((((T.floordiv(ax0_ax1_fused_ax2_fused_5, 28)*480) + (ry*480)) + (rx*16)) + (T.floormod(ax0_ax1_fused_ax2_fused_5, 28)*16)) + rc_5)], "int32")*T.cast(placeholder_54[((((ry*1536) + (rx*512)) + (rc_5*32)) + ax3_7)], "int32"))) T_cast_17[((ax0_ax1_fused_ax2_fused_5*32) + ax3_7)] = T.cast(T.max(T.min(T.q_multiply_shift(T.cast(T.cast(T.max(T.min(T.q_multiply_shift((Conv2dOutput_5[0] + placeholder_55[ax3_7]), 1131968888, 31, -6, dtype="int32"), 255), 0), "uint8"), "int32"), 1900719667, 31, 0, dtype="int32"), 255), 0), "uint8") @T.prim_func def tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_cast_fixed_point_multiply_cli_4464294615199028320_(placeholder_56: T.handle, placeholder_57: T.handle, placeholder_58: T.handle, T_cast_18: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_cast_fixed_point_multiply_cli_4464294615199028320_", "tir.noalias": True}) placeholder_59 = T.match_buffer(placeholder_56, [75264], dtype="int16", elem_offset=0, align=64, offset_factor=1) placeholder_60 = T.match_buffer(placeholder_57, [110592], dtype="int16", elem_offset=0, align=64, offset_factor=1) placeholder_61 = T.match_buffer(placeholder_58, [128], dtype="int32", elem_offset=0, align=64, offset_factor=1) T_cast_19 = T.match_buffer(T_cast_18, [185], dtype="uint8", elem_offset=0, align=64, offset_factor=1) # body PaddedInput_6 = T.decl_buffer([86400], "int16") for i0_i1_fused_6 in T.serial(0, 30): for i2_6, i3_6 in T.grid(30, 96): PaddedInput_6[(((i0_i1_fused_6*2880) + (i2_6*96)) + i3_6)] = T.if_then_else(((((1 <= i0_i1_fused_6) and (i0_i1_fused_6 < 29)) and (1 <= i2_6)) and (i2_6 < 29)), placeholder_59[((((i0_i1_fused_6*2688) + (i2_6*96)) + i3_6) - 2784)], T.int16(0), dtype="int16") for ax0_ax1_fused_ax2_fused_6 in T.serial(0, 784): Conv2dOutput_6 = T.decl_buffer([64], "int32") for ax3_outer_3 in T.serial(0, 2): for ff_2 in T.serial(0, 64): Conv2dOutput_6[ff_2] = 0 for ry_1, rx_1, rc_6 in T.grid(3, 3, 96): Conv2dOutput_6[ff_2] = (Conv2dOutput_6[ff_2] + (T.cast(PaddedInput_6[(((((T.floordiv(ax0_ax1_fused_ax2_fused_6, 28)*2880) + (ry_1*2880)) + (rx_1*96)) + (T.floormod(ax0_ax1_fused_ax2_fused_6, 28)*96)) + rc_6)], "int32")*T.cast(placeholder_60[(((((ry_1*36864) + (rx_1*12288)) + (rc_6*128)) + (ax3_outer_3*64)) + ff_2)], "int32"))) for ax3_inner_6 in T.serial(0, 64): T_cast_19[(((ax0_ax1_fused_ax2_fused_6*128) + (ax3_outer_3*64)) + ax3_inner_6)] = T.cast(T.max(T.min(T.q_multiply_shift(T.cast(T.cast(T.max(T.min(T.q_multiply_shift((Conv2dOutput_6[ax3_inner_6] + placeholder_61[((ax3_outer_3*64) + ax3_inner_6)]), 1374050734, 31, -7, dtype="int32"), 255), 0), "uint8"), "int32"), 1544713713, 31, 0, dtype="int32"), 255), 0), "uint8") @T.prim_func def tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast(placeholder_62: T.handle, placeholder_63: T.handle, placeholder_64: T.handle, T_cast_20: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast", "T.noalias": True}) placeholder_65 = T.match_buffer(placeholder_62, [150528], dtype="int16", elem_offset=0, align=64, offset_factor=1) placeholder_66 = T.match_buffer(placeholder_63, [9408], dtype="int16", elem_offset=0, align=64, offset_factor=1) placeholder_67 = T.match_buffer(placeholder_64, [64], dtype="int32", elem_offset=0, align=64, offset_factor=1) T_cast_21 = T.match_buffer(T_cast_20, [289], dtype="uint8", elem_offset=0, align=64, offset_factor=1) # body PaddedInput_7 = T.decl_buffer([157323], "int16") for i0_i1_fused_7 in T.serial(0, 229): for i2_7, i3_7 in T.grid(229, 3): PaddedInput_7[(((i0_i1_fused_7*687) + (i2_7*3)) + i3_7)] = T.if_then_else(((((2 <= i0_i1_fused_7) and (i0_i1_fused_7 < 226)) and (2 <= i2_7)) and (i2_7 < 226)), placeholder_65[((((i0_i1_fused_7*672) + (i2_7*3)) + i3_7) - 1350)], T.int16(0), dtype="int16") for ax0_ax1_fused_ax2_fused_7 in T.serial(0, 12544): Conv2dOutput_7 = T.decl_buffer([64], "int32") for ff_3 in T.serial(0, 64): Conv2dOutput_7[ff_3] = 0 for ry_2, rx_2, rc_7 in T.grid(7, 7, 3): Conv2dOutput_7[ff_3] = (Conv2dOutput_7[ff_3] + (T.cast(PaddedInput_7[(((((T.floordiv(ax0_ax1_fused_ax2_fused_7, 112)*1374) + (ry_2*687)) + (T.floormod(ax0_ax1_fused_ax2_fused_7, 112)*6)) + (rx_2*3)) + rc_7)], "int32")*T.cast(placeholder_66[((((ry_2*1344) + (rx_2*192)) + (rc_7*64)) + ff_3)], "int32"))) for ax3_inner_7 in T.serial(0, 64): T_cast_21[((ax0_ax1_fused_ax2_fused_7*64) + ax3_inner_7)] = T.cast(T.max(T.min(T.q_multiply_shift((Conv2dOutput_7[ax3_inner_7] + placeholder_67[ax3_inner_7]), 1939887962, 31, -9, dtype="int32"), 255), 0), "uint8") @T.prim_func def tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_1(placeholder_68: T.handle, placeholder_69: T.handle, placeholder_70: T.handle, T_cast_22: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_1", "tir.noalias": True}) placeholder_71 = T.match_buffer(placeholder_68, [200704], dtype="int16", elem_offset=0, align=64, offset_factor=1) placeholder_72 = T.match_buffer(placeholder_69, [110592], dtype="int16", elem_offset=0, align=64, offset_factor=1) placeholder_73 = T.match_buffer(placeholder_70, [192], dtype="int32", elem_offset=0, align=64, offset_factor=1) T_cast_23 = T.match_buffer(T_cast_22, [305], dtype="uint8", elem_offset=0, align=64, offset_factor=1) # body PaddedInput_8 = T.decl_buffer([215296], "int16") for i0_i1_fused_8 in T.serial(0, 58): for i2_8, i3_8 in T.grid(58, 64): PaddedInput_8[(((i0_i1_fused_8*3712) + (i2_8*64)) + i3_8)] = T.if_then_else(((((1 <= i0_i1_fused_8) and (i0_i1_fused_8 < 57)) and (1 <= i2_8)) and (i2_8 < 57)), placeholder_71[((((i0_i1_fused_8*3584) + (i2_8*64)) + i3_8) - 3648)], T.int16(0), dtype="int16") for ax0_ax1_fused_ax2_fused_8 in T.serial(0, 3136): Conv2dOutput_8 = T.decl_buffer([64], "int32") for ax3_outer_4 in T.serial(0, 3): for ff_4 in T.serial(0, 64): Conv2dOutput_8[ff_4] = 0 for ry_3, rx_3, rc_8 in T.grid(3, 3, 64): Conv2dOutput_8[ff_4] = (Conv2dOutput_8[ff_4] + (T.cast(PaddedInput_8[(((((T.floordiv(ax0_ax1_fused_ax2_fused_8, 56)*3712) + (ry_3*3712)) + (rx_3*64)) + (T.floormod(ax0_ax1_fused_ax2_fused_8, 56)*64)) + rc_8)], "int32")*T.cast(placeholder_72[(((((ry_3*36864) + (rx_3*12288)) + (rc_8*192)) + (ax3_outer_4*64)) + ff_4)], "int32"))) for ax3_inner_8 in T.serial(0, 64): T_cast_23[(((ax0_ax1_fused_ax2_fused_8*192) + (ax3_outer_4*64)) + ax3_inner_8)] = T.cast(T.max(T.min(T.q_multiply_shift((Conv2dOutput_8[ax3_inner_8] + placeholder_73[((ax3_outer_4*64) + ax3_inner_8)]), 1139793473, 31, -6, dtype="int32"), 255), 0), "uint8") @T.prim_func def run_model(input: T.handle, output: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_run_model", "runner_function": True}) # body T.attr("default", "device_id", 0) T.attr("default", "device_type", 1) sid_32 = T.allocate([301056], "int8", "global") sid_20 = T.allocate([150528], "int8", "global") sid_6 = T.allocate([401408], "int8", "global") sid_9 = T.allocate([301056], "int8", "global") sid_7 = T.allocate([401408], "int8", "global") sid_8 = T.allocate([802816], "int8", "global") sid_2 = T.allocate([50176], "int8", "global") sid_3 = T.allocate([301056], "int8", "global") sid_19 = T.allocate([100352], "int8", "global") sid_4 = T.allocate([150528], "int8", "global") sid_5 = T.allocate([602112], "int8", "global") sid_25 = T.allocate([25088], "int8", "global") sid_26 = T.allocate([25088], "int8", "global") sid_31 = T.allocate([25088], "int8", "global") T.evaluate(T.call_extern("tvmgen_default_fused_cast_subtract", input, T.lookup_param("p0", dtype="handle"), sid_9, dtype="int32")) T.evaluate(T.call_extern("tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast", sid_9, T.lookup_param("p1", dtype="handle"), T.lookup_param("p2", dtype="handle"), sid_8, dtype="int32")) T.evaluate(T.call_extern("tvmgen_default_fused_nn_max_pool2d_cast", sid_8, sid_7, dtype="int32")) T.evaluate(T.call_extern("tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_cast", sid_7, T.lookup_param("p3", dtype="handle"), T.lookup_param("p4", dtype="handle"), sid_6, dtype="int32")) T.evaluate(T.call_extern("tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_1", sid_6, T.lookup_param("p5", dtype="handle"), T.lookup_param("p6", dtype="handle"), sid_5, dtype="int32")) T.evaluate(T.call_extern("tvmgen_default_fused_nn_max_pool2d", sid_5, sid_4, dtype="int32")) T.evaluate(T.call_extern("tvmgen_default_fused_cast", sid_4, sid_3, dtype="int32")) T.evaluate(T.call_extern("tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_2", sid_3, T.lookup_param("p7", dtype="handle"), T.lookup_param("p8", dtype="handle"), sid_2, dtype="int32")) T.evaluate(T.call_extern("tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_cast_1", sid_3, T.lookup_param("p9", dtype="handle"), T.lookup_param("p10", dtype="handle"), sid_20, dtype="int32")) T.evaluate(T.call_extern("tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_cast_fixed_point_multiply_cli_4464294615199028320_", sid_20, T.lookup_param("p11", dtype="handle"), T.lookup_param("p12", dtype="handle"), sid_19, dtype="int32")) T.evaluate(T.call_extern("tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_cast_2", sid_3, T.lookup_param("p13", dtype="handle"), T.lookup_param("p14", dtype="handle"), sid_26, dtype="int32")) T.evaluate(T.call_extern("tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_cast_fixed_point_multiply_cli_4464294615199028320__1", sid_26, T.lookup_param("p15", dtype="handle"), T.lookup_param("p16", dtype="handle"), sid_25, dtype="int32")) T.evaluate(T.call_extern("tvmgen_default_fused_nn_max_pool2d_cast_1", sid_4, sid_32, dtype="int32")) T.evaluate(T.call_extern("tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_cast_fixed_point_multiply_cli_4464294615199028320__2", sid_32, T.lookup_param("p17", dtype="handle"), T.lookup_param("p18", dtype="handle"), sid_31, dtype="int32")) T.evaluate(T.call_extern("tvmgen_default_fused_concatenate", sid_2, sid_19, sid_25, sid_31, output, dtype="int32")) __tvm_meta__ = None # fmt: on def test_inception_structure(): target = Target("c") global_ws_pool = WorkspacePoolInfo( pool_name="global_workspace", targets=[target], ) tir_mod = InceptionStructure tir_mod = _assign_targets_to_primfuncs_irmodule(tir_mod, target) tir_mod = _assign_poolinfos_to_allocates_in_irmodule(tir_mod, [global_ws_pool]) main_func = tir_mod["run_model"] buffer_info_analysis = tvm.tir.usmp.analysis.extract_buffer_info(main_func, tir_mod) assert buffer_info_analysis.memory_pressure == 1117718 buffer_info_map = _replace_stmt_with_buf_var_names(buffer_info_analysis.buffer_info_stmts) # check conflicts _verify_conflicts( "sid_3", [ "sid_4", "PaddedInput_2", "sid_2", "Conv2dOutput_2", "PaddedInput_1", "Conv2dOutput_1", "sid_20", "PaddedInput_6", "Conv2dOutput_6", "sid_19", "PaddedInput_4", ], buffer_info_map, ) _verify_conflicts( "Conv2dOutput", [ "sid_6", "PaddedInput", ], buffer_info_map, ) _verify_conflicts( "Conv2dOutput_7", [ "PaddedInput_7", "sid_8", ], buffer_info_map, ) _verify_conflicts( "sid_4", [ "sid_5", "sid_3", "PaddedInput_2", "sid_2", "Conv2dOutput_2", "PaddedInput_1", "Conv2dOutput_1", "sid_20", "PaddedInput_6", "Conv2dOutput_6", "sid_19", "PaddedInput_4", "Conv2dOutput_4", "sid_26", "PaddedInput_5", "Conv2dOutput_5", "sid_25", "tensor_3", ], buffer_info_map, ) _verify_conflicts( "sid_2", [ "PaddedInput_2", "sid_3", "sid_4", "Conv2dOutput_2", "PaddedInput_1", "Conv2dOutput_1", "sid_20", "PaddedInput_6", "Conv2dOutput_6", "sid_19", "PaddedInput_4", "Conv2dOutput_4", "sid_26", "PaddedInput_5", "Conv2dOutput_5", "sid_25", "tensor_3", "sid_32", "PaddedInput_3", "Conv2dOutput_3", "sid_31", ], buffer_info_map, ) _verify_conflicts( "sid_19", [ "Conv2dOutput_6", "sid_2", "PaddedInput_6", "sid_3", "sid_4", "PaddedInput_4", "Conv2dOutput_4", "sid_26", "PaddedInput_5", "Conv2dOutput_5", "sid_25", "tensor_3", "sid_32", "PaddedInput_3", "Conv2dOutput_3", "sid_31", ], buffer_info_map, ) _verify_conflicts( "PaddedInput_2", [ "sid_3", "sid_4", "sid_2", "Conv2dOutput_2", ], buffer_info_map, ) _verify_conflicts( "Conv2dOutput_6", [ "sid_2", "PaddedInput_6", "sid_3", "sid_4", "sid_19", ], buffer_info_map, ) _verify_conflicts( "sid_9", [ "PaddedInput_7", ], buffer_info_map, ) _verify_conflicts( "sid_7", [ "tensor_2", "PaddedInput", ], buffer_info_map, ) _verify_conflicts( "PaddedInput_4", [ "sid_2", "sid_19", "sid_3", "sid_4", "Conv2dOutput_4", "sid_26", ], buffer_info_map, ) _verify_conflicts( "PaddedInput_3", [ "sid_2", "sid_32", "sid_25", "sid_19", "Conv2dOutput_3", "sid_31", ], buffer_info_map, ) _verify_conflicts( "sid_5", [ "PaddedInput_8", "Conv2dOutput_8", "sid_4", ], buffer_info_map, ) _verify_conflicts( "sid_31", [ "Conv2dOutput_3", "PaddedInput_3", "sid_2", "sid_25", "sid_19", ], buffer_info_map, ) _verify_conflicts( "PaddedInput", [ "sid_7", "sid_6", "Conv2dOutput", ], buffer_info_map, ) _verify_conflicts( "Conv2dOutput_2", [ "sid_2", "PaddedInput_2", "sid_3", "sid_4", ], buffer_info_map, ) _verify_conflicts( "sid_32", [ "tensor_3", "sid_2", "sid_25", "sid_19", "PaddedInput_3", ], buffer_info_map, ) _verify_conflicts( "tensor_2", [ "sid_8", "sid_7", ], buffer_info_map, ) _verify_conflicts( "sid_26", [ "Conv2dOutput_4", "PaddedInput_4", "sid_2", "sid_19", "sid_4", "PaddedInput_5", ], buffer_info_map, ) _verify_conflicts( "Conv2dOutput_3", [ "PaddedInput_3", "sid_2", "sid_25", "sid_19", "sid_31", ], buffer_info_map, ) _verify_conflicts( "PaddedInput_6", [ "sid_2", "sid_3", "sid_20", "sid_4", "Conv2dOutput_6", "sid_19", ], buffer_info_map, ) _verify_conflicts( "sid_6", [ "PaddedInput", "Conv2dOutput", "PaddedInput_8", ], buffer_info_map, ) _verify_conflicts( "PaddedInput_8", [ "sid_6", "sid_5", "Conv2dOutput_8", ], buffer_info_map, ) _verify_conflicts( "Conv2dOutput_5", [ "PaddedInput_5", "sid_2", "sid_19", "sid_4", "sid_25", ], buffer_info_map, ) _verify_conflicts( "Conv2dOutput_1", [ "PaddedInput_1", "sid_2", "sid_3", "sid_4", "sid_20", ], buffer_info_map, ) _verify_conflicts( "tensor_3", [ "sid_2", "sid_25", "sid_19", "sid_4", "sid_32", ], buffer_info_map, ) _verify_conflicts( "sid_8", [ "Conv2dOutput_7", "PaddedInput_7", "tensor_2", ], buffer_info_map, ) _verify_conflicts( "sid_20", [ "Conv2dOutput_1", "PaddedInput_1", "sid_2", "sid_3", "sid_4", "PaddedInput_6", ], buffer_info_map, ) _verify_conflicts( "Conv2dOutput_8", [ "sid_5", "PaddedInput_8", ], buffer_info_map, ) _verify_conflicts( "PaddedInput_1", [ "sid_2", "sid_3", "sid_4", "Conv2dOutput_1", "sid_20", ], buffer_info_map, ) _verify_conflicts( "Conv2dOutput_4", [ "PaddedInput_4", "sid_2", "sid_19", "sid_4", "sid_26", ], buffer_info_map, ) _verify_conflicts( "sid_25", [ "PaddedInput_5", "Conv2dOutput_5", "sid_2", "sid_19", "sid_4", "tensor_3", "sid_32", "PaddedInput_3", "Conv2dOutput_3", "sid_31", ], buffer_info_map, ) _verify_conflicts( "PaddedInput_7", [ "sid_9", "Conv2dOutput_7", "sid_8", ], buffer_info_map, ) _verify_conflicts( "PaddedInput_5", [ "sid_2", "sid_19", "sid_26", "sid_4", "Conv2dOutput_5", "sid_25", ], buffer_info_map, ) # check sizes assert buffer_info_map["sid_20"].size_bytes == 150528 assert buffer_info_map["tensor_2"].size_bytes == 200704 assert buffer_info_map["sid_5"].size_bytes == 602112 assert buffer_info_map["sid_9"].size_bytes == 301056 assert buffer_info_map["Conv2dOutput_3"].size_bytes == 4 assert buffer_info_map["sid_26"].size_bytes == 25088 assert buffer_info_map["Conv2dOutput_2"].size_bytes == 256 assert buffer_info_map["PaddedInput_5"].size_bytes == 28800 assert buffer_info_map["sid_8"].size_bytes == 802816 assert buffer_info_map["Conv2dOutput_5"].size_bytes == 4 assert buffer_info_map["sid_3"].size_bytes == 301056 assert buffer_info_map["Conv2dOutput"].size_bytes == 256 assert buffer_info_map["PaddedInput_3"].size_bytes == 301056 assert buffer_info_map["sid_32"].size_bytes == 301056 assert buffer_info_map["PaddedInput_8"].size_bytes == 430592 assert buffer_info_map["sid_4"].size_bytes == 150528 assert buffer_info_map["PaddedInput_7"].size_bytes == 314646 assert buffer_info_map["sid_6"].size_bytes == 401408 assert buffer_info_map["Conv2dOutput_8"].size_bytes == 256 assert buffer_info_map["sid_25"].size_bytes == 25088 assert buffer_info_map["PaddedInput"].size_bytes == 401408 assert buffer_info_map["sid_7"].size_bytes == 401408 assert buffer_info_map["Conv2dOutput_1"].size_bytes == 4 assert buffer_info_map["Conv2dOutput_4"].size_bytes == 4 assert buffer_info_map["PaddedInput_2"].size_bytes == 301056 assert buffer_info_map["sid_31"].size_bytes == 25088 assert buffer_info_map["PaddedInput_1"].size_bytes == 301056 assert buffer_info_map["Conv2dOutput_6"].size_bytes == 256 assert buffer_info_map["PaddedInput_4"].size_bytes == 301056 assert buffer_info_map["sid_2"].size_bytes == 50176 assert buffer_info_map["tensor_3"].size_bytes == 150528 assert buffer_info_map["Conv2dOutput_7"].size_bytes == 256 assert buffer_info_map["sid_19"].size_bytes == 100352 assert buffer_info_map["PaddedInput_6"].size_bytes == 172800 # fmt: off @tvm.script.ir_module class MultipleCallsToSamePrimFuncModule: @T.prim_func def tvmgen_default_fused_layout_transform_1(placeholder: T.handle, T_layout_trans: T.handle) -> None: # function attr dict T.func_attr({"from_legacy_te_schedule": True, "global_symbol": "tvmgen_default_fused_layout_transform_1", "tir.noalias": True}) placeholder_1 = T.match_buffer(placeholder, [864], dtype="float32") T_layout_trans_1 = T.match_buffer(T_layout_trans, [41], dtype="float32") # body for ax0_ax1_fused_ax2_fused, ax3, ax4_inner in T.grid(24, 12, 3): T_layout_trans_1[ax0_ax1_fused_ax2_fused * 36 + ax3 * 3 + ax4_inner] = placeholder_1[ax4_inner * 288 + ax0_ax1_fused_ax2_fused * 12 + ax3] @T.prim_func def tvmgen_default_fused_nn_contrib_conv2d_NCHWc(placeholder_2: T.handle, placeholder_3: T.handle, conv2d_NCHWc: T.handle) -> None: # function attr dict T.func_attr({"from_legacy_te_schedule": True, "global_symbol": "tvmgen_default_fused_nn_contrib_conv2d_NCHWc", "tir.noalias": True}) placeholder_4 = T.match_buffer(placeholder_2, [864], dtype="float32") placeholder_5 = T.match_buffer(placeholder_3, [81], dtype="float32") conv2d_NCHWc_1 = T.match_buffer(conv2d_NCHWc, [41], dtype="float32") # body data_pad = T.decl_buffer([1092], "float32") for i0_i1_fused_i2_fused, i3, i4 in T.grid(26, 14, 3): data_pad[i0_i1_fused_i2_fused * 42 + i3 * 3 + i4] = T.if_then_else(1 <= i0_i1_fused_i2_fused and i0_i1_fused_i2_fused < 25 and 1 <= i3 and i3 < 13, placeholder_4[i0_i1_fused_i2_fused * 36 + i3 * 3 + i4 - 39], T.float32(0), dtype="float32") for n_oc_chunk_fused_oh_fused in T.serial(0, 24): conv2d_NCHWc_global = T.decl_buffer([36], "float32") for oc_block_c_init in T.serial(0, 3): conv2d_NCHWc_global[oc_block_c_init] = T.float32(0) for oc_block_c_init in T.serial(0, 3): conv2d_NCHWc_global[oc_block_c_init + 3] = T.float32(0) for oc_block_c_init in T.serial(0, 3): conv2d_NCHWc_global[oc_block_c_init + 6] = T.float32(0) for oc_block_c_init in T.serial(0, 3): conv2d_NCHWc_global[oc_block_c_init + 9] = T.float32(0) for oc_block_c_init in T.serial(0, 3): conv2d_NCHWc_global[oc_block_c_init + 12] = T.float32(0) for oc_block_c_init in T.serial(0, 3): conv2d_NCHWc_global[oc_block_c_init + 15] = T.float32(0) for oc_block_c_init in T.serial(0, 3): conv2d_NCHWc_global[oc_block_c_init + 18] = T.float32(0) for oc_block_c_init in T.serial(0, 3): conv2d_NCHWc_global[oc_block_c_init + 21] = T.float32(0) for oc_block_c_init in T.serial(0, 3): conv2d_NCHWc_global[oc_block_c_init + 24] = T.float32(0) for oc_block_c_init in T.serial(0, 3): conv2d_NCHWc_global[oc_block_c_init + 27] = T.float32(0) for oc_block_c_init in T.serial(0, 3): conv2d_NCHWc_global[oc_block_c_init + 30] = T.float32(0) for oc_block_c_init in T.serial(0, 3): conv2d_NCHWc_global[oc_block_c_init + 33] = T.float32(0) for kh, kw, ic_inner in T.grid(3, 3, 3): for oc_block_c in T.serial(0, 3): conv2d_NCHWc_global[oc_block_c] = conv2d_NCHWc_global[oc_block_c] + data_pad[kh * 42 + n_oc_chunk_fused_oh_fused * 42 + kw * 3 + ic_inner] * placeholder_5[kh * 27 + kw * 9 + ic_inner * 3 + oc_block_c] for oc_block_c in T.serial(0, 3): conv2d_NCHWc_global[oc_block_c + 3] = conv2d_NCHWc_global[oc_block_c + 3] + data_pad[kh * 42 + n_oc_chunk_fused_oh_fused * 42 + kw * 3 + ic_inner + 3] * placeholder_5[kh * 27 + kw * 9 + ic_inner * 3 + oc_block_c] for oc_block_c in T.serial(0, 3): conv2d_NCHWc_global[oc_block_c + 6] = conv2d_NCHWc_global[oc_block_c + 6] + data_pad[kh * 42 + n_oc_chunk_fused_oh_fused * 42 + kw * 3 + ic_inner + 6] * placeholder_5[kh * 27 + kw * 9 + ic_inner * 3 + oc_block_c] for oc_block_c in T.serial(0, 3): conv2d_NCHWc_global[oc_block_c + 9] = conv2d_NCHWc_global[oc_block_c + 9] + data_pad[kh * 42 + n_oc_chunk_fused_oh_fused * 42 + kw * 3 + ic_inner + 9] * placeholder_5[kh * 27 + kw * 9 + ic_inner * 3 + oc_block_c] for oc_block_c in T.serial(0, 3): conv2d_NCHWc_global[oc_block_c + 12] = conv2d_NCHWc_global[oc_block_c + 12] + data_pad[kh * 42 + n_oc_chunk_fused_oh_fused * 42 + kw * 3 + ic_inner + 12] * placeholder_5[kh * 27 + kw * 9 + ic_inner * 3 + oc_block_c] for oc_block_c in T.serial(0, 3): conv2d_NCHWc_global[oc_block_c + 15] = conv2d_NCHWc_global[oc_block_c + 15] + data_pad[kh * 42 + n_oc_chunk_fused_oh_fused * 42 + kw * 3 + ic_inner + 15] * placeholder_5[kh * 27 + kw * 9 + ic_inner * 3 + oc_block_c] for oc_block_c in T.serial(0, 3): conv2d_NCHWc_global[oc_block_c + 18] = conv2d_NCHWc_global[oc_block_c + 18] + data_pad[kh * 42 + n_oc_chunk_fused_oh_fused * 42 + kw * 3 + ic_inner + 18] * placeholder_5[kh * 27 + kw * 9 + ic_inner * 3 + oc_block_c] for oc_block_c in T.serial(0, 3): conv2d_NCHWc_global[oc_block_c + 21] = conv2d_NCHWc_global[oc_block_c + 21] + data_pad[kh * 42 + n_oc_chunk_fused_oh_fused * 42 + kw * 3 + ic_inner + 21] * placeholder_5[kh * 27 + kw * 9 + ic_inner * 3 + oc_block_c] for oc_block_c in T.serial(0, 3): conv2d_NCHWc_global[oc_block_c + 24] = conv2d_NCHWc_global[oc_block_c + 24] + data_pad[kh * 42 + n_oc_chunk_fused_oh_fused * 42 + kw * 3 + ic_inner + 24] * placeholder_5[kh * 27 + kw * 9 + ic_inner * 3 + oc_block_c] for oc_block_c in T.serial(0, 3): conv2d_NCHWc_global[oc_block_c + 27] = conv2d_NCHWc_global[oc_block_c + 27] + data_pad[kh * 42 + n_oc_chunk_fused_oh_fused * 42 + kw * 3 + ic_inner + 27] * placeholder_5[kh * 27 + kw * 9 + ic_inner * 3 + oc_block_c] for oc_block_c in T.serial(0, 3): conv2d_NCHWc_global[oc_block_c + 30] = conv2d_NCHWc_global[oc_block_c + 30] + data_pad[kh * 42 + n_oc_chunk_fused_oh_fused * 42 + kw * 3 + ic_inner + 30] * placeholder_5[kh * 27 + kw * 9 + ic_inner * 3 + oc_block_c] for oc_block_c in T.serial(0, 3): conv2d_NCHWc_global[oc_block_c + 33] = conv2d_NCHWc_global[oc_block_c + 33] + data_pad[kh * 42 + n_oc_chunk_fused_oh_fused * 42 + kw * 3 + ic_inner + 33] * placeholder_5[kh * 27 + kw * 9 + ic_inner * 3 + oc_block_c] for ow_inner, oc_block in T.grid(12, 3): conv2d_NCHWc_1[n_oc_chunk_fused_oh_fused * 36 + ow_inner * 3 + oc_block] = conv2d_NCHWc_global[ow_inner * 3 + oc_block] @T.prim_func def tvmgen_default_fused_nn_softmax_add_add_multiply_add(placeholder_6: T.handle, placeholder_7: T.handle, placeholder_8: T.handle, placeholder_9: T.handle, placeholder_10: T.handle, T_add: T.handle) -> None: # function attr dict T.func_attr({"from_legacy_te_schedule": True, "global_symbol": "tvmgen_default_fused_nn_softmax_add_add_multiply_add", "tir.noalias": True}) placeholder_11 = T.match_buffer(placeholder_6, [864], dtype="float32") placeholder_12 = T.match_buffer(placeholder_7, [864], dtype="float32") placeholder_13 = T.match_buffer(placeholder_8, [3], dtype="float32") placeholder_14 = T.match_buffer(placeholder_9, [3], dtype="float32") placeholder_15 = T.match_buffer(placeholder_10, [3], dtype="float32") T_add_1 = T.match_buffer(T_add, [864], dtype="float32") # body for ax0_ax1_fused_ax2_fused in T.serial(0, 72): T_softmax_norm = T.decl_buffer([12], "float32") with T.decl_buffer([1], "float32") as T_softmax_maxelem: T_softmax_maxelem[0] = T.float32(-3.4028234663852886e+38) for k in T.serial(0, 12): T_softmax_maxelem[0] = T.max(T_softmax_maxelem[0], placeholder_11[ax0_ax1_fused_ax2_fused * 12 + k]) T_softmax_exp = T.decl_buffer([12], "float32") for i3 in T.serial(0, 12): T_softmax_exp[i3] = T.exp(placeholder_11[ax0_ax1_fused_ax2_fused * 12 + i3] - T_softmax_maxelem[0], dtype="float32") T_softmax_expsum = T.decl_buffer([1], "float32") T_softmax_expsum[0] = T.float32(0) for k in T.serial(0, 12): T_softmax_expsum[0] = T_softmax_expsum[0] + T_softmax_exp[k] for i3 in T.serial(0, 12): T_softmax_norm[i3] = T_softmax_exp[i3] / T_softmax_expsum[0] for ax3 in T.serial(0, 12): T_add_1[ax0_ax1_fused_ax2_fused * 12 + ax3] = (placeholder_12[ax0_ax1_fused_ax2_fused * 12 + ax3] + T_softmax_norm[ax3] + placeholder_13[T.floordiv(ax0_ax1_fused_ax2_fused, 24)]) * placeholder_14[T.floordiv(ax0_ax1_fused_ax2_fused, 24)] + placeholder_15[T.floordiv(ax0_ax1_fused_ax2_fused, 24)] @T.prim_func def tvmgen_default_fused_nn_contrib_dense_pack_nn_relu(placeholder_16: T.handle, placeholder_17: T.handle, T_relu: T.handle) -> None: # function attr dict T.func_attr({"from_legacy_te_schedule": True, "global_symbol": "tvmgen_default_fused_nn_contrib_dense_pack_nn_relu", "tir.noalias": True}) placeholder_18 = T.match_buffer(placeholder_16, [864], dtype="float32") placeholder_19 = T.match_buffer(placeholder_17, [144], dtype="float32") T_relu_1 = T.match_buffer(T_relu, [864], dtype="float32") # body for ax1_outer_ax0_outer_fused in T.serial(0, 18): compute = T.decl_buffer([48], "float32") with T.decl_buffer([48], "float32") as compute_global: for x_c_init in T.serial(0, 6): compute_global[x_c_init] = T.float32(0) for x_c_init in T.serial(0, 6): compute_global[x_c_init + 6] = T.float32(0) for x_c_init in T.serial(0, 6): compute_global[x_c_init + 12] = T.float32(0) for x_c_init in T.serial(0, 6): compute_global[x_c_init + 18] = T.float32(0) for x_c_init in T.serial(0, 6): compute_global[x_c_init + 24] = T.float32(0) for x_c_init in T.serial(0, 6): compute_global[x_c_init + 30] = T.float32(0) for x_c_init in T.serial(0, 6): compute_global[x_c_init + 36] = T.float32(0) for x_c_init in T.serial(0, 6): compute_global[x_c_init + 42] = T.float32(0) for k_outer in T.serial(0, 12): for x_c in T.serial(0, 6): compute_global[x_c] = compute_global[x_c] + placeholder_18[T.floormod(ax1_outer_ax0_outer_fused, 9) * 96 + k_outer] * placeholder_19[T.floordiv(ax1_outer_ax0_outer_fused, 9) * 72 + k_outer * 6 + x_c] for x_c in T.serial(0, 6): compute_global[x_c + 6] = compute_global[x_c + 6] + placeholder_18[T.floormod(ax1_outer_ax0_outer_fused, 9) * 96 + k_outer + 12] * placeholder_19[T.floordiv(ax1_outer_ax0_outer_fused, 9) * 72 + k_outer * 6 + x_c] for x_c in T.serial(0, 6): compute_global[x_c + 12] = compute_global[x_c + 12] + placeholder_18[T.floormod(ax1_outer_ax0_outer_fused, 9) * 96 + k_outer + 24] * placeholder_19[T.floordiv(ax1_outer_ax0_outer_fused, 9) * 72 + k_outer * 6 + x_c] for x_c in T.serial(0, 6): compute_global[x_c + 18] = compute_global[x_c + 18] + placeholder_18[T.floormod(ax1_outer_ax0_outer_fused, 9) * 96 + k_outer + 36] * placeholder_19[T.floordiv(ax1_outer_ax0_outer_fused, 9) * 72 + k_outer * 6 + x_c] for x_c in T.serial(0, 6): compute_global[x_c + 24] = compute_global[x_c + 24] + placeholder_18[T.floormod(ax1_outer_ax0_outer_fused, 9) * 96 + k_outer + 48] * placeholder_19[T.floordiv(ax1_outer_ax0_outer_fused, 9) * 72 + k_outer * 6 + x_c] for x_c in T.serial(0, 6): compute_global[x_c + 30] = compute_global[x_c + 30] + placeholder_18[T.floormod(ax1_outer_ax0_outer_fused, 9) * 96 + k_outer + 60] * placeholder_19[T.floordiv(ax1_outer_ax0_outer_fused, 9) * 72 + k_outer * 6 + x_c] for x_c in T.serial(0, 6): compute_global[x_c + 36] = compute_global[x_c + 36] + placeholder_18[T.floormod(ax1_outer_ax0_outer_fused, 9) * 96 + k_outer + 72] * placeholder_19[T.floordiv(ax1_outer_ax0_outer_fused, 9) * 72 + k_outer * 6 + x_c] for x_c in T.serial(0, 6): compute_global[x_c + 42] = compute_global[x_c + 42] + placeholder_18[T.floormod(ax1_outer_ax0_outer_fused, 9) * 96 + k_outer + 84] * placeholder_19[T.floordiv(ax1_outer_ax0_outer_fused, 9) * 72 + k_outer * 6 + x_c] for x_inner_inner in T.serial(0, 6): compute[x_inner_inner] = compute_global[x_inner_inner] for x_inner_inner in T.serial(0, 6): compute[x_inner_inner + 6] = compute_global[x_inner_inner + 6] for x_inner_inner in T.serial(0, 6): compute[x_inner_inner + 12] = compute_global[x_inner_inner + 12] for x_inner_inner in T.serial(0, 6): compute[x_inner_inner + 18] = compute_global[x_inner_inner + 18] for x_inner_inner in T.serial(0, 6): compute[x_inner_inner + 24] = compute_global[x_inner_inner + 24] for x_inner_inner in T.serial(0, 6): compute[x_inner_inner + 30] = compute_global[x_inner_inner + 30] for x_inner_inner in T.serial(0, 6): compute[x_inner_inner + 36] = compute_global[x_inner_inner + 36] for x_inner_inner in T.serial(0, 6): compute[x_inner_inner + 42] = compute_global[x_inner_inner + 42] for ax0_inner_inner, ax1_inner_inner in T.grid(8, 6): T_relu_1[T.floormod(ax1_outer_ax0_outer_fused, 9) * 96 + ax0_inner_inner * 12 + T.floordiv(ax1_outer_ax0_outer_fused, 9) * 6 + ax1_inner_inner] = T.max(compute[ax0_inner_inner * 6 + ax1_inner_inner], T.float32(0)) @T.prim_func def tvmgen_default_fused_reshape_1(placeholder_20: T.handle, T_reshape: T.handle) -> None: # function attr dict T.func_attr({"from_legacy_te_schedule": True, "global_symbol": "tvmgen_default_fused_reshape_1", "tir.noalias": True}) placeholder_21 = T.match_buffer(placeholder_20, [864], dtype="float32") T_reshape_1 = T.match_buffer(T_reshape, [864], dtype="float32") # body for ax0, ax1_inner in T.grid(72, 12): T_reshape_1[ax0 * 12 + ax1_inner] = placeholder_21[ax0 * 12 + ax1_inner] @T.prim_func def tvmgen_default_fused_layout_transform(placeholder_22: T.handle, T_layout_trans_2: T.handle) -> None: # function attr dict T.func_attr({"from_legacy_te_schedule": True, "global_symbol": "tvmgen_default_fused_layout_transform", "tir.noalias": True}) placeholder_23 = T.match_buffer(placeholder_22, [864], dtype="float32") T_layout_trans_3 = T.match_buffer(T_layout_trans_2, [864], dtype="float32") # body for ax0_ax1_fused, ax2, ax3_inner in T.grid(3, 24, 12): T_layout_trans_3[ax0_ax1_fused * 288 + ax2 * 12 + ax3_inner] = placeholder_23[ax2 * 36 + ax3_inner * 3 + ax0_ax1_fused] @T.prim_func def tvmgen_default_fused_reshape(placeholder_24: T.handle, T_reshape_2: T.handle) -> None: # function attr dict T.func_attr({"from_legacy_te_schedule": True, "global_symbol": "tvmgen_default_fused_reshape", "tir.noalias": True}) placeholder_25 = T.match_buffer(placeholder_24, [864], dtype="float32") T_reshape_3 = T.match_buffer(T_reshape_2, [864], dtype="float32") # body for ax0_ax1_fused, ax2, ax3_inner in T.grid(3, 24, 12): T_reshape_3[ax0_ax1_fused * 288 + ax2 * 12 + ax3_inner] = placeholder_25[ax0_ax1_fused * 288 + ax2 * 12 + ax3_inner] @T.prim_func def tvmgen_default_fused_nn_softmax_add(placeholder_26: T.handle, placeholder_27: T.handle, T_add_2: T.handle) -> None: # function attr dict T.func_attr({"from_legacy_te_schedule": True, "global_symbol": "tvmgen_default_fused_nn_softmax_add", "tir.noalias": True}) placeholder_28 = T.match_buffer(placeholder_26, [864], dtype="float32") placeholder_29 = T.match_buffer(placeholder_27, [864], dtype="float32") T_add_3 = T.match_buffer(T_add_2, [864], dtype="float32") # body for ax0_ax1_fused_ax2_fused in T.serial(0, 72): T_softmax_norm = T.decl_buffer([12], "float32") with T.decl_buffer([1], "float32") as T_softmax_maxelem: T_softmax_maxelem[0] = T.float32(-3.4028234663852886e+38) for k in T.serial(0, 12): T_softmax_maxelem[0] = T.max(T_softmax_maxelem[0], placeholder_28[ax0_ax1_fused_ax2_fused * 12 + k]) T_softmax_exp= T.decl_buffer([12], "float32") for i3 in T.serial(0, 12): T_softmax_exp[i3] = T.exp(placeholder_28[ax0_ax1_fused_ax2_fused * 12 + i3] - T_softmax_maxelem[0], dtype="float32") T_softmax_expsum = T.decl_buffer([1], "float32") T_softmax_expsum[0] = T.float32(0) for k in T.serial(0, 12): T_softmax_expsum[0] = T_softmax_expsum[0] + T_softmax_exp[k] for i3 in T.serial(0, 12): T_softmax_norm[i3] = T_softmax_exp[i3] / T_softmax_expsum[0] for ax3 in T.serial(0, 12): T_add_3[ax0_ax1_fused_ax2_fused * 12 + ax3] = placeholder_29[ax0_ax1_fused_ax2_fused * 12 + ax3] + T_softmax_norm[ax3] @T.prim_func def run_model(data: T.handle, output: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_run_model", "runner_function": True}) data_buffer = T.match_buffer(data, [864], dtype="float32", align=16) output_buffer = T.match_buffer(output, [864], dtype="float32", align=16) # body sid_11 = T.allocate([3456], "int8", "global.workspace") sid_5 = T.allocate([3456], "int8", "global.workspace") sid_10 = T.allocate([3456], "int8", "global.workspace") sid_6 = T.allocate([3456], "int8", "global.workspace") sid_8 = T.allocate([3456], "int8", "global.workspace") sid_2 = T.allocate([3456], "int8", "global.workspace") sid_7 = T.allocate([3456], "int8", "global.workspace") sid_3 = T.allocate([3456], "int8", "global.workspace") sid_12 = T.allocate([3456], "int8", "global.workspace") sid_4 = T.allocate([3456], "int8", "global.workspace") sid_18 = T.allocate([3456], "int8", "global.workspace") sid_19 = T.allocate([3456], "int8", "global.workspace") sid_20 = T.allocate([3456], "int8", "global.workspace") sid_21 = T.allocate_const([0,1,2,3,4,5,6,7,8,9], "int8", [10]) sid_22 = T.allocate_const([1], "int8", [1]) sid_23 = T.allocate_const([2,1], "int8", [3456]) T.evaluate(T.tvm_call_cpacked("tvmgen_default_fused_layout_transform_1", data_buffer.data, sid_23, dtype="int32")) T.evaluate(T.tvm_call_cpacked("tvmgen_default_fused_nn_contrib_conv2d_NCHWc", sid_8, T.cast(T.lookup_param("p0", dtype="handle"), "handle"), sid_7, dtype="int32")) T.evaluate(T.tvm_call_cpacked("tvmgen_default_fused_layout_transform", sid_7, sid_6, dtype="int32")) T.evaluate(T.tvm_call_cpacked("tvmgen_default_fused_reshape_1", data_buffer.data, sid_12, dtype="int32")) T.evaluate(T.tvm_call_cpacked("tvmgen_default_fused_nn_contrib_dense_pack_nn_relu", sid_12, T.cast(T.lookup_param("p1", dtype="handle"), "handle"), sid_11, dtype="int32")) T.evaluate(T.tvm_call_cpacked("tvmgen_default_fused_reshape", sid_11, sid_10, dtype="int32")) T.evaluate(T.tvm_call_cpacked("tvmgen_default_fused_nn_softmax_add_add_multiply_add", sid_6, sid_10, T.cast(T.lookup_param("p2", dtype="handle"), "handle"), T.cast(T.lookup_param("p3", dtype="handle"), "handle"), T.cast(T.lookup_param("p4", dtype="handle"), "handle"), sid_5, dtype="int32")) T.evaluate(T.tvm_call_cpacked("tvmgen_default_fused_layout_transform_1", sid_5, sid_4, dtype="int32")) T.evaluate(T.tvm_call_cpacked("tvmgen_default_fused_nn_contrib_conv2d_NCHWc", sid_4, T.cast(T.lookup_param("p5", dtype="handle"), "handle"), sid_3, dtype="int32")) T.evaluate(T.tvm_call_cpacked("tvmgen_default_fused_layout_transform", sid_3, sid_2, dtype="int32")) T.evaluate(T.tvm_call_cpacked("tvmgen_default_fused_reshape_1", sid_5, sid_20, dtype="int32")) T.evaluate(T.tvm_call_cpacked("tvmgen_default_fused_nn_contrib_dense_pack_nn_relu", sid_20, T.cast(T.lookup_param("p6", dtype="handle"), "handle"), sid_19, dtype="int32")) T.evaluate(T.tvm_call_cpacked("tvmgen_default_fused_reshape", sid_19, sid_18, dtype="int32")) T.evaluate(T.tvm_call_cpacked("tvmgen_default_fused_nn_softmax_add", sid_2, sid_18, output_buffer.data, dtype="int32")) # fmt: on def test_multiple_calls_to_same_primfunc(): target = Target("c") global_ws_pool = WorkspacePoolInfo( pool_name="global_workspace", targets=[target], ) global_const_pool = ConstantPoolInfo( pool_name="global_constants", targets=[target], ) tir_mod = MultipleCallsToSamePrimFuncModule tir_mod = _assign_targets_to_primfuncs_irmodule(tir_mod, target) tir_mod = _assign_poolinfos_to_allocates_in_irmodule( tir_mod, [global_ws_pool], [global_const_pool] ) main_func = tir_mod["run_model"] buffer_info_analysis = tvm.tir.usmp.analysis.extract_buffer_info(main_func, tir_mod) assert buffer_info_analysis.memory_pressure == 11424 buffer_info_map = _replace_stmt_with_buf_var_names(buffer_info_analysis.buffer_info_stmts) # check conflicts _verify_conflicts("sid_23", ["sid_22", "sid_21"], buffer_info_map) _verify_conflicts( "sid_6", [ "sid_7", "sid_12", "compute", "compute_global", "sid_11", "sid_10", "T_softmax_exp", "T_softmax_maxelem", "sid_5", "T_softmax_norm", "T_softmax_expsum", ], buffer_info_map, ) _verify_conflicts( "T_softmax_exp", [ "sid_10", "sid_6", "T_softmax_maxelem", "sid_5", "T_softmax_norm", "T_softmax_expsum", ], buffer_info_map, ) _verify_conflicts( "T_softmax_expsum2", [ "T_softmax_exp2", "T_softmax_norm2", "sid_18", "T_softmax_maxelem2", "sid_2", ], buffer_info_map, ) _verify_conflicts( "compute", [ "sid_12", "sid_6", "compute_global", "sid_11", "sid_19", "sid_20", "sid_2", "compute_global", ], buffer_info_map, ) _verify_conflicts( "compute_global", [ "compute", "sid_12", "sid_6", "sid_11", "compute", "sid_19", "sid_20", "sid_2", ], buffer_info_map, ) _verify_conflicts( "sid_10", [ "sid_11", "sid_6", "T_softmax_exp", "T_softmax_maxelem", "sid_5", "T_softmax_norm", "T_softmax_expsum", ], buffer_info_map, ) _verify_conflicts( "sid_2", [ "sid_3", "sid_5", "sid_20", "sid_19", "compute", "compute_global", "sid_18", "T_softmax_norm2", "T_softmax_exp2", "T_softmax_maxelem2", "T_softmax_expsum2", ], buffer_info_map, ) _verify_conflicts( "sid_5", [ "T_softmax_maxelem", "sid_10", "T_softmax_exp", "sid_6", "T_softmax_norm", "T_softmax_expsum", "sid_4", "data_pad", "sid_3", "conv2d_NCHWc_global", "sid_2", "sid_20", ], buffer_info_map, ) _verify_conflicts( "T_softmax_norm2", [ "sid_18", "sid_2", "T_softmax_exp2", "T_softmax_maxelem2", "T_softmax_expsum2", ], buffer_info_map, ) _verify_conflicts( "sid_20", [ "sid_2", "sid_5", "sid_19", "compute", "compute_global", ], buffer_info_map, ) _verify_conflicts( "T_softmax_expsum", [ "sid_5", "T_softmax_norm", "T_softmax_maxelem", "sid_10", "T_softmax_exp", "sid_6", ], buffer_info_map, ) _verify_conflicts( "data_pad", [ "sid_8", "conv2d_NCHWc_global", "sid_7", "sid_4", "sid_5", "sid_3", "conv2d_NCHWc_global", ], buffer_info_map, ) _verify_conflicts( "sid_19", [ "sid_20", "sid_2", "compute", "compute_global", "sid_18", ], buffer_info_map, ) _verify_conflicts( "conv2d_NCHWc_global", [ "data_pad", "sid_7", "sid_3", "data_pad", "sid_5", ], buffer_info_map, ) _verify_conflicts( "sid_18", [ "sid_19", "sid_2", "T_softmax_norm2", "T_softmax_exp2", "T_softmax_maxelem2", "T_softmax_expsum2", ], buffer_info_map, ) _verify_conflicts( "sid_7", [ "conv2d_NCHWc_global", "data_pad", "sid_6", ], buffer_info_map, ) _verify_conflicts( "T_softmax_exp2", [ "T_softmax_norm2", "sid_18", "sid_2", "T_softmax_maxelem2", "T_softmax_expsum2", ], buffer_info_map, ) _verify_conflicts( "sid_4", [ "sid_5", "data_pad", ], buffer_info_map, ) _verify_conflicts( "T_softmax_maxelem", [ "sid_10", "T_softmax_exp", "sid_6", "sid_5", "T_softmax_norm", "T_softmax_expsum", ], buffer_info_map, ) _verify_conflicts( "T_softmax_maxelem2", [ "T_softmax_exp2", "T_softmax_norm2", "sid_18", "sid_2", "T_softmax_expsum2", ], buffer_info_map, ) _verify_conflicts( "sid_11", [ "compute", "sid_12", "compute_global", "sid_6", "sid_10", ], buffer_info_map, ) _verify_conflicts( "sid_12", [ "sid_6", "compute", "compute_global", "sid_11", ], buffer_info_map, ) _verify_conflicts( "T_softmax_norm", [ "sid_5", "T_softmax_maxelem", "sid_10", "T_softmax_exp", "sid_6", "T_softmax_expsum", ], buffer_info_map, ) _verify_conflicts( "sid_8", [ "data_pad", ], buffer_info_map, ) if __name__ == "__main__": pytest.main([__file__] + sys.argv[1:])
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_usmp_transform_convert_pool_allocations_to_offsets.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import pytest import sys import tvm from tvm.script import tir as T from tvm.tir import stmt_functor from tvm.tir.usmp import utils as usmp_utils from tvm.target import Target from tvm import WorkspacePoolInfo, PoolInfoProperties def _get_primfuncs_from_module(module): primfuncs = list() for gv, primfunc in module.functions.items(): primfuncs.append(primfunc) return primfuncs def assign_poolinfos_to_allocates_in_primfunc(primfunc, pool_infos): """Helper to assign poolinfos to allocate nodes in a tir.PrimFunc""" def set_poolinfos(stmt): if isinstance(stmt, tvm.tir.Allocate): return tvm.tir.Allocate( buffer_var=stmt.buffer_var, dtype=stmt.dtype, extents=stmt.extents, condition=stmt.condition, body=stmt.body, annotations={tvm.tir.usmp.utils.CANDIDATE_MEMORY_POOL_ATTR: pool_infos}, ) return primfunc.with_body(stmt_functor.ir_transform(primfunc.body, None, set_poolinfos)) def assign_poolinfos_to_allocates_in_irmodule(mod, pool_infos): """Helper to assign poolinfos to allocate nodes in a IRModule""" ret = tvm.IRModule() for global_var, basefunc in mod.functions.items(): if isinstance(basefunc, tvm.tir.PrimFunc): ret[global_var] = assign_poolinfos_to_allocates_in_primfunc(basefunc, pool_infos) return ret def _assign_targets_to_primfuncs_irmodule(mod, target): """Helper to assign target for PrimFunc in a IRModule""" ret = tvm.IRModule() for global_var, basefunc in mod.functions.items(): if isinstance(basefunc, tvm.tir.PrimFunc): ret[global_var] = basefunc.with_attr("target", target) return ret # fmt: off @tvm.script.ir_module class LinearStructure: @T.prim_func def tvmgen_default_fused_cast_subtract(placeholder_2: T.handle, placeholder_3: T.handle, T_subtract: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_fused_cast_subtract", "tir.noalias": True}) placeholder_4 = T.match_buffer(placeholder_2, [150528], dtype="uint8", elem_offset=0, align=64, offset_factor=1) T.preflattened_buffer(placeholder_4, [150528], dtype="uint8", elem_offset=0, align=64, offset_factor=1) placeholder_5 = T.match_buffer(placeholder_3, [1], dtype="int16", elem_offset=0, align=64, offset_factor=1) T.preflattened_buffer(placeholder_5, [1], dtype="int16", elem_offset=0, align=64, offset_factor=1) T_subtract_1 = T.match_buffer(T_subtract, [452], dtype="int16", elem_offset=0, align=64, offset_factor=1) T.preflattened_buffer(T_subtract_1, [452], dtype="int16", elem_offset=0, align=64, offset_factor=1) # body for ax0_ax1_fused_1 in T.serial(0, 224): for ax2_1, ax3_inner_1 in T.grid(224, 3): T_subtract_1[(((ax0_ax1_fused_1*672) + (ax2_1*3)) + ax3_inner_1)] = (T.cast(placeholder_4[(((ax0_ax1_fused_1*672) + (ax2_1*3)) + ax3_inner_1)], "int16") - placeholder_5[0]) @T.prim_func def tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast(placeholder_62: T.handle, placeholder_63: T.handle, placeholder_64: T.handle, T_cast_20: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast", "tir.noalias": True}) placeholder_65 = T.match_buffer(placeholder_62, [150528], dtype="int16", elem_offset=0, align=64, offset_factor=1) T.preflattened_buffer(placeholder_65, [150528], dtype="int16", elem_offset=0, align=64, offset_factor=1) placeholder_66 = T.match_buffer(placeholder_63, [9408], dtype="int16", elem_offset=0, align=64, offset_factor=1) T.preflattened_buffer(placeholder_66, [9408], dtype="int16", elem_offset=0, align=64, offset_factor=1) placeholder_67 = T.match_buffer(placeholder_64, [64], dtype="int32", elem_offset=0, align=64, offset_factor=1) T.preflattened_buffer(placeholder_67, [64], dtype="int32", elem_offset=0, align=64, offset_factor=1) T_cast_21 = T.match_buffer(T_cast_20, [289], dtype="uint8", elem_offset=0, align=64, offset_factor=1) T.preflattened_buffer(T_cast_21, [289], dtype="uint8", elem_offset=0, align=64, offset_factor=1) # body PaddedInput_7_data = T.allocate([157323], "int16", "global") PaddedInput_7 = T.buffer_decl(shape=[157323], dtype="int16", data=PaddedInput_7_data) for i0_i1_fused_7 in T.serial(0, 229): for i2_7, i3_7 in T.grid(229, 3): PaddedInput_7[(((i0_i1_fused_7*687) + (i2_7*3)) + i3_7)] = T.if_then_else(((((2 <= i0_i1_fused_7) and (i0_i1_fused_7 < 226)) and (2 <= i2_7)) and (i2_7 < 226)), placeholder_65[((((i0_i1_fused_7*672) + (i2_7*3)) + i3_7) - 1350)], T.int16(0), dtype="int16") for ax0_ax1_fused_ax2_fused_7 in T.serial(0, 12544): Conv2dOutput_7_data = T.allocate([64], "int32", "global") Conv2dOutput_7 = T.buffer_decl(shape=[64], dtype="int32", data=Conv2dOutput_7_data) for ff_3 in T.serial(0, 64): Conv2dOutput_7[ff_3] = 0 for ry_2, rx_2, rc_7 in T.grid(7, 7, 3): Conv2dOutput_7[ff_3] = (Conv2dOutput_7[ff_3] + (T.cast(PaddedInput_7[(((((T.floordiv(ax0_ax1_fused_ax2_fused_7, 112)*1374) + (ry_2*687)) + (T.floormod(ax0_ax1_fused_ax2_fused_7, 112)*6)) + (rx_2*3)) + rc_7)], "int32")*T.cast(placeholder_66[((((ry_2*1344) + (rx_2*192)) + (rc_7*64)) + ff_3)], "int32"))) for ax3_inner_7 in T.serial(0, 64): T_cast_21[((ax0_ax1_fused_ax2_fused_7*64) + ax3_inner_7)] = T.cast(T.max(T.min(T.q_multiply_shift((Conv2dOutput_7[ax3_inner_7] + placeholder_67[ax3_inner_7]), 1939887962, 31, -9, dtype="int32"), 255), 0), "uint8") @T.prim_func def tvmgen_default_fused_nn_max_pool2d_cast(placeholder_28: T.handle, T_cast_6: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_fused_nn_max_pool2d_cast", "tir.noalias": True}) placeholder_29 = T.match_buffer(placeholder_28, [802816], dtype="uint8", elem_offset=0, align=64, offset_factor=1) T.preflattened_buffer(placeholder_29, [802816], dtype="uint8", elem_offset=0, align=64, offset_factor=1) T_cast_7 = T.match_buffer(T_cast_6, [177], dtype="int16", elem_offset=0, align=64, offset_factor=1) T.preflattened_buffer(T_cast_7, [177], dtype="int16", elem_offset=0, align=64, offset_factor=1) # body tensor_2_data = T.allocate([200704], "uint8", "global") tensor_2 = T.buffer_decl(shape=[200704], dtype="uint8", data=tensor_2_data) for ax0_ax1_fused_4 in T.serial(0, 56): for ax2_4 in T.serial(0, 56): for ax3_init in T.serial(0, 64): tensor_2[(((ax0_ax1_fused_4*3584) + (ax2_4*64)) + ax3_init)] = T.uint8(0) for rv0_rv1_fused_1, ax3_2 in T.grid(9, 64): tensor_2[(((ax0_ax1_fused_4*3584) + (ax2_4*64)) + ax3_2)] = T.max(tensor_2[(((ax0_ax1_fused_4*3584) + (ax2_4*64)) + ax3_2)], T.if_then_else(((((ax0_ax1_fused_4*2) + T.floordiv(rv0_rv1_fused_1, 3)) < 112) and (((ax2_4*2) + T.floormod(rv0_rv1_fused_1, 3)) < 112)), placeholder_29[(((((ax0_ax1_fused_4*14336) + (T.floordiv(rv0_rv1_fused_1, 3)*7168)) + (ax2_4*128)) + (T.floormod(rv0_rv1_fused_1, 3)*64)) + ax3_2)], T.uint8(0), dtype="uint8")) for ax0_ax1_fused_5 in T.serial(0, 56): for ax2_5, ax3_3 in T.grid(56, 64): T_cast_7[(((ax0_ax1_fused_5*3584) + (ax2_5*64)) + ax3_3)] = T.cast(tensor_2[(((ax0_ax1_fused_5*3584) + (ax2_5*64)) + ax3_3)], "int16") @T.prim_func def __tvm_main__(input: T.handle, output: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "__tvm_main__", "runner_function": True}) # body T.attr("default", "device_id", 0) T.attr("default", "device_type", 1) sid_9 = T.allocate([301056], "int8", "global") sid_8 = T.allocate([802816], "int8", "global") T.evaluate(T.call_extern("tvmgen_default_fused_cast_subtract", input, T.lookup_param("p0", dtype="handle"), sid_9, dtype="int32")) T.evaluate(T.call_extern("tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast", sid_9, T.lookup_param("p1", dtype="handle"), T.lookup_param("p2", dtype="handle"), sid_8, dtype="int32")) T.evaluate(T.call_extern("tvmgen_default_fused_nn_max_pool2d_cast", sid_8, output, dtype="int32")) # fmt: on # fmt: off @tvm.script.ir_module class LinearStructurePlanned: @T.prim_func def __tvm_main__(input: T.handle, fast_memory_0_var: T.Ptr[T.uint8], slow_memory_1_var: T.Ptr[T.uint8], output: T.handle) -> None: fast_memory_0_buffer_var = T.match_buffer(fast_memory_0_var, [200704], dtype="uint8", strides=[1], elem_offset=0, align=16) slow_memory_1_buffer_var = T.match_buffer(slow_memory_1_var, [1418528], dtype="uint8", strides=[1], elem_offset=0, align=16) # body T.attr("default", "device_id", 0) T.attr("default", "device_type", 1) sid_9_let: T.Ptr[T.int8] = T.address_of(slow_memory_1_buffer_var[1117472], dtype="handle") sid_8_let: T.Ptr[T.int8] = T.address_of(slow_memory_1_buffer_var[0], dtype="handle") T.evaluate(T.call_extern("tvmgen_default_fused_cast_subtract", input, T.lookup_param("p0", dtype="handle"), sid_9_let, fast_memory_0_buffer_var.data, slow_memory_1_buffer_var.data, dtype="int32")) T.evaluate(T.call_extern("tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast", sid_9_let, T.lookup_param("p1", dtype="handle"), T.lookup_param("p2", dtype="handle"), sid_8_let, fast_memory_0_buffer_var.data, slow_memory_1_buffer_var.data, dtype="int32")) T.evaluate(T.call_extern("tvmgen_default_fused_nn_max_pool2d_cast", sid_8_let, output, fast_memory_0_buffer_var.data, slow_memory_1_buffer_var.data, dtype="int32")) @T.prim_func def tvmgen_default_fused_nn_max_pool2d_cast(placeholder_28: T.handle, T_cast_6: T.handle, fast_memory_6_var: T.Ptr[T.uint8], slow_memory_7_var: T.Ptr[T.uint8]) -> None: placeholder_29 = T.match_buffer(placeholder_28, [802816], dtype="uint8") T.preflattened_buffer(placeholder_29, [802816], dtype="uint8") T_cast_7 = T.match_buffer(T_cast_6, [177], dtype="int16") T.preflattened_buffer(T_cast_7, [177], dtype="int16") fast_memory_6_buffer_var = T.match_buffer(fast_memory_6_var, [200704], dtype="uint8", strides=[1], elem_offset=0, align=16) T.preflattened_buffer(fast_memory_6_buffer_var, [200704], dtype="uint8", strides=[1], elem_offset=0, align=16) slow_memory_7_buffer_var = T.match_buffer(slow_memory_7_var, [1418528], dtype="uint8", strides=[1], elem_offset=0, align=16) T.preflattened_buffer(slow_memory_7_buffer_var, [1418528], dtype="uint8", strides=[1], elem_offset=0, align=16) # body tensor_2_let = T.buffer_decl([200704], dtype="uint8") with T.let(tensor_2_let.data, T.address_of(fast_memory_6_buffer_var[0], dtype="handle")): for ax0_ax1_fused_4, ax2_4 in T.grid(56, 56): for ax3_init in T.serial(0, 64): tensor_2_let[ax0_ax1_fused_4 * 3584 + ax2_4 * 64 + ax3_init] = T.uint8(0) for rv0_rv1_fused_1, ax3_2 in T.grid(9, 64): tensor_2_let[ax0_ax1_fused_4 * 3584 + ax2_4 * 64 + ax3_2] = T.max(tensor_2_let[ax0_ax1_fused_4 * 3584 + ax2_4 * 64 + ax3_2], T.if_then_else(ax0_ax1_fused_4 * 2 + rv0_rv1_fused_1 // 3 < 112 and ax2_4 * 2 + rv0_rv1_fused_1 % 3 < 112, placeholder_29[ax0_ax1_fused_4 * 14336 + rv0_rv1_fused_1 // 3 * 7168 + ax2_4 * 128 + rv0_rv1_fused_1 % 3 * 64 + ax3_2], T.uint8(0), dtype="uint8")) for ax0_ax1_fused_5, ax2_5, ax3_3 in T.grid(56, 56, 64): T_cast_7[ax0_ax1_fused_5 * 3584 + ax2_5 * 64 + ax3_3] = T.cast(tensor_2_let[ax0_ax1_fused_5 * 3584 + ax2_5 * 64 + ax3_3], "int16") @T.prim_func def tvmgen_default_fused_cast_subtract(placeholder_2: T.handle, placeholder_3: T.handle, T_subtract: T.handle, fast_memory_2_var: T.Ptr[T.uint8], slow_memory_3_var: T.Ptr[T.uint8]) -> None: placeholder_4 = T.match_buffer(placeholder_2, [150528], dtype="uint8") T.preflattened_buffer(placeholder_4, [150528], dtype="uint8") placeholder_5 = T.match_buffer(placeholder_3, [1], dtype="int16") T.preflattened_buffer(placeholder_5, [1], dtype="int16") T_subtract_1 = T.match_buffer(T_subtract, [452], dtype="int16") T.preflattened_buffer(T_subtract_1, [452], dtype="int16") fast_memory_2_buffer_var = T.match_buffer(fast_memory_2_var, [200704], dtype="uint8", strides=[1], elem_offset=0, align=16) T.preflattened_buffer(fast_memory_2_buffer_var, [200704], dtype="uint8", strides=[1], elem_offset=0, align=16) slow_memory_3_buffer_var = T.match_buffer(slow_memory_3_var, [1418528], dtype="uint8", strides=[1], elem_offset=0, align=16) T.preflattened_buffer(slow_memory_3_buffer_var, [1418528], dtype="uint8", strides=[1], elem_offset=0, align=16) # body for ax0_ax1_fused_1, ax2_1, ax3_inner_1 in T.grid(224, 224, 3): T_subtract_1[ax0_ax1_fused_1 * 672 + ax2_1 * 3 + ax3_inner_1] = T.cast(placeholder_4[ax0_ax1_fused_1 * 672 + ax2_1 * 3 + ax3_inner_1], "int16") - placeholder_5[0] @T.prim_func def tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast(placeholder_62: T.handle, placeholder_63: T.handle, placeholder_64: T.handle, T_cast_20: T.handle, fast_memory_4_var: T.Ptr[T.uint8], slow_memory_5_var: T.Ptr[T.uint8]) -> None: placeholder_65 = T.match_buffer(placeholder_62, [150528], dtype="int16") T.preflattened_buffer(placeholder_65, [150528], dtype="int16") placeholder_66 = T.match_buffer(placeholder_63, [9408], dtype="int16") T.preflattened_buffer(placeholder_66, [9408], dtype="int16") placeholder_67 = T.match_buffer(placeholder_64, [64], dtype="int32") T.preflattened_buffer(placeholder_67, [64], dtype="int32") T_cast_21 = T.match_buffer(T_cast_20, [289], dtype="uint8") T.preflattened_buffer(T_cast_21, [289], dtype="uint8") fast_memory_4_buffer_var = T.match_buffer(fast_memory_4_var, [200704], dtype="uint8", strides=[1], elem_offset=0, align=16) T.preflattened_buffer(fast_memory_4_buffer_var, [200704], dtype="uint8", strides=[1], elem_offset=0, align=16) slow_memory_5_buffer_var = T.match_buffer(slow_memory_5_var, [1418528], dtype="uint8", strides=[1], elem_offset=0, align=16) T.preflattened_buffer(slow_memory_5_buffer_var, [1418528], dtype="uint8", strides=[1], elem_offset=0, align=16) # body PaddedInput_7_let = T.buffer_decl([157323], "int16") with T.let(PaddedInput_7_let.data, T.address_of(slow_memory_5_buffer_var[802816], dtype="handle")): for i0_i1_fused_7, i2_7, i3_7 in T.grid(229, 229, 3): PaddedInput_7_let[i0_i1_fused_7 * 687 + i2_7 * 3 + i3_7] = T.if_then_else(2 <= i0_i1_fused_7 and i0_i1_fused_7 < 226 and 2 <= i2_7 and i2_7 < 226, placeholder_65[i0_i1_fused_7 * 672 + i2_7 * 3 + i3_7 - 1350], T.int16(0), dtype="int16") for ax0_ax1_fused_ax2_fused_7 in T.serial(0, 12544): Conv2dOutput_7_let = T.buffer_decl([64], "int32") with T.let(Conv2dOutput_7_let.data, T.address_of(fast_memory_4_buffer_var[0], dtype="handle")): for ff_3 in T.serial(0, 64): Conv2dOutput_7_let[ff_3] = 0 for ry_2, rx_2, rc_7 in T.grid(7, 7, 3): Conv2dOutput_7_let[ff_3] = Conv2dOutput_7_let[ff_3] + T.cast(PaddedInput_7_let[ax0_ax1_fused_ax2_fused_7 // 112 * 1374 + ry_2 * 687 + ax0_ax1_fused_ax2_fused_7 % 112 * 6 + rx_2 * 3 + rc_7], "int32") * T.cast(placeholder_66[ry_2 * 1344 + rx_2 * 192 + rc_7 * 64 + ff_3], "int32") for ax3_inner_7 in T.serial(0, 64): T_cast_21[ax0_ax1_fused_ax2_fused_7 * 64 + ax3_inner_7] = T.cast(T.max(T.min(T.q_multiply_shift(Conv2dOutput_7_let[ax3_inner_7] + placeholder_67[ax3_inner_7], 1939887962, 31, -9, dtype="int32"), 255), 0), "uint8") # fmt: on def test_mobilenet_subgraph(): target = Target("c") fast_memory_pool = WorkspacePoolInfo( "fast_memory", [target], PoolInfoProperties(size_hint_bytes=200704), ) slow_memory_pool = WorkspacePoolInfo( "slow_memory", [target], ) tir_mod = LinearStructure tir_mod = _assign_targets_to_primfuncs_irmodule(tir_mod, target) tir_mod = assign_poolinfos_to_allocates_in_irmodule( tir_mod, [fast_memory_pool, slow_memory_pool] ) main_func = tir_mod["__tvm_main__"] buffer_analysis = tvm.tir.usmp.analysis.extract_buffer_info(main_func, tir_mod) buffer_info_map = buffer_analysis.buffer_info_stmts fcreate_array_bi = tvm.get_global_func("tir.usmp.CreateArrayBufferInfo") buffer_info_arr = fcreate_array_bi(buffer_info_map) fusmp_algo_greedy_by_size = tvm.get_global_func("tir.usmp.algo.greedy_by_size") buffer_pool_allocations = fusmp_algo_greedy_by_size( buffer_info_arr, buffer_analysis.memory_pressure ) fassign_stmt_pool_allocations = tvm.get_global_func("tir.usmp.AssignStmtPoolAllocations") pool_allocations = fassign_stmt_pool_allocations(buffer_info_map, buffer_pool_allocations) tir_mod_with_offsets = tvm.tir.usmp.transform.convert_pool_allocations_to_offsets( pool_allocations, emit_tvmscript_printable=True )(tir_mod) tir_mod_with_offsets_ref = LinearStructurePlanned for gv, ref_func in tir_mod_with_offsets_ref.functions.items(): actual_func = tir_mod_with_offsets[gv.name_hint] tvm.ir.assert_structural_equal(actual_func, ref_func) # fmt: off @tvm.script.ir_module class ResnetStructure: @T.prim_func def tvmgen_default_fused_cast_subtract_fixed_point_multiply_add_clip_cast_cast(placeholder: T.handle, placeholder_1: T.handle, T_cast: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_fused_cast_subtract_fixed_point_multiply_add_clip_cast_cast", "tir.noalias": True}) placeholder_2 = T.match_buffer(placeholder, [360000], dtype="uint8") T.preflattened_buffer(placeholder_2, [360000], dtype="uint8") placeholder_3 = T.match_buffer(placeholder_1, [64], dtype="int32") T.preflattened_buffer(placeholder_3, [64], dtype="int32") T_cast_1 = T.match_buffer(T_cast, [215], dtype="int16") T.preflattened_buffer(T_cast_1, [215], dtype="int16") # body for ax0_ax1_fused, ax2, ax3_outer, ax3_inner in T.grid(75, 75, 4, 16): T_cast_1[ax0_ax1_fused * 4800 + ax2 * 64 + ax3_outer * 16 + ax3_inner] = T.cast(T.cast(T.max(T.min(T.q_multiply_shift(T.cast(placeholder_2[ax0_ax1_fused * 4800 + ax2 * 64 + ax3_outer * 16 + ax3_inner], "int32") - 94, 1843157232, 31, 1, dtype="int32") + placeholder_3[ax3_outer * 16 + ax3_inner], 255), 0), "uint8"), "int16") @T.prim_func def tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_cast_1(placeholder_10: T.handle, placeholder_11: T.handle, placeholder_12: T.handle, T_cast_4: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_cast_1", "tir.noalias": True}) placeholder_13 = T.match_buffer(placeholder_10, [360000], dtype="int16") T.preflattened_buffer(placeholder_13, [360000], dtype="int16") placeholder_14 = T.match_buffer(placeholder_11, [36864], dtype="int16") T.preflattened_buffer(placeholder_14, [36864], dtype="int16") placeholder_15 = T.match_buffer(placeholder_12, [64], dtype="int32") T.preflattened_buffer(placeholder_15, [64], dtype="int32") T_cast_5 = T.match_buffer(T_cast_4, [215], dtype="int16") T.preflattened_buffer(T_cast_5, [215], dtype="int16") # body PaddedInput_1_data = T.allocate([379456], "int16", "global") PaddedInput_1 = T.buffer_decl(shape=[379456], dtype="int16", data=PaddedInput_1_data) for i0_i1_fused_1, i2_1, i3_1 in T.grid(77, 77, 64): PaddedInput_1[i0_i1_fused_1 * 4928 + i2_1 * 64 + i3_1] = T.if_then_else(1 <= i0_i1_fused_1 and i0_i1_fused_1 < 76 and 1 <= i2_1 and i2_1 < 76, placeholder_13[i0_i1_fused_1 * 4800 + i2_1 * 64 + i3_1 - 4864], T.int16(0), dtype="int16") for ax0_ax1_fused_ax2_fused_1 in T.serial(0, 5625): Conv2dOutput_1_data = T.allocate([64], "int32", "global") Conv2dOutput_1 = T.buffer_decl(shape=[64], dtype="int32", data=Conv2dOutput_1_data) for ff_1 in T.serial(0, 64): Conv2dOutput_1[ff_1] = 0 for ry, rx, rc_1 in T.grid(3, 3, 64): Conv2dOutput_1[ff_1] = Conv2dOutput_1[ff_1] + T.cast(PaddedInput_1[T.floordiv(ax0_ax1_fused_ax2_fused_1, 75) * 4928 + ry * 4928 + rx * 64 + T.floormod(ax0_ax1_fused_ax2_fused_1, 75) * 64 + rc_1], "int32") * T.cast(placeholder_14[ry * 12288 + rx * 4096 + rc_1 * 64 + ff_1], "int32") for ax3_inner_2 in T.serial(0, 64): T_cast_5[ax0_ax1_fused_ax2_fused_1 * 64 + ax3_inner_2] = T.cast(T.cast(T.max(T.min(T.q_multiply_shift(Conv2dOutput_1[ax3_inner_2] + placeholder_15[ax3_inner_2], 1608879842, 31, -7, dtype="int32"), 255), 0), "uint8"), "int16") @T.prim_func def tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_add_clip_cast_cast_subtract_fixed_point_15934180698220515269_(placeholder_16: T.handle, placeholder_17: T.handle, placeholder_18: T.handle, T_add: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_add_clip_cast_cast_subtract_fixed_point_15934180698220515269_", "tir.noalias": True}) placeholder_19 = T.match_buffer(placeholder_16, [360000], dtype="int16") T.preflattened_buffer(placeholder_19, [360000], dtype="int16") placeholder_20 = T.match_buffer(placeholder_17, [16384], dtype="int16") T.preflattened_buffer(placeholder_20, [16384], dtype="int16") placeholder_21 = T.match_buffer(placeholder_18, [256], dtype="int32") T.preflattened_buffer(placeholder_21, [256], dtype="int32") T_add_1 = T.match_buffer(T_add, [407], dtype="int32") T.preflattened_buffer(T_add_1, [407], dtype="int32") # body PaddedInput_2_data = T.allocate([360000], "int16", "global") PaddedInput_2 = T.buffer_decl(shape=[360000], dtype="int16", data=PaddedInput_2_data) for i0_i1_fused_2, i2_2, i3_2 in T.grid(75, 75, 64): PaddedInput_2[i0_i1_fused_2 * 4800 + i2_2 * 64 + i3_2] = placeholder_19[i0_i1_fused_2 * 4800 + i2_2 * 64 + i3_2] for ax0_ax1_fused_ax2_fused_2 in T.serial(0, 5625): Conv2dOutput_2_data = T.allocate([64], "int32", "global") Conv2dOutput_2 = T.buffer_decl(shape=[64], dtype="int32", data=Conv2dOutput_2_data) for ax3_outer_1 in T.serial(0, 4): for ff_2 in T.serial(0, 64): Conv2dOutput_2[ff_2] = 0 for rc_2 in T.serial(0, 64): Conv2dOutput_2[ff_2] = Conv2dOutput_2[ff_2] + T.cast(PaddedInput_2[ax0_ax1_fused_ax2_fused_2 * 64 + rc_2], "int32") * T.cast(placeholder_20[rc_2 * 256 + ax3_outer_1 * 64 + ff_2], "int32") for ax3_inner_3 in T.serial(0, 64): T_add_1[ax0_ax1_fused_ax2_fused_2 * 256 + ax3_outer_1 * 64 + ax3_inner_3] = T.q_multiply_shift(T.cast(T.cast(T.max(T.min(T.q_multiply_shift(Conv2dOutput_2[ax3_inner_3] + placeholder_21[ax3_outer_1 * 64 + ax3_inner_3], 1711626602, 31, -8, dtype="int32") + 132, 255), 0), "uint8"), "int32") - 132, 2094289803, 31, -2, dtype="int32") + 136 @T.prim_func def tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_add_clip_cast_cast_subtract_fixed_point_4200876283395191415_(placeholder_22: T.handle, placeholder_23: T.handle, placeholder_24: T.handle, placeholder_25: T.handle, T_cast_6: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_add_clip_cast_cast_subtract_fixed_point_4200876283395191415_", "tir.noalias": True}) placeholder_29 = T.match_buffer(placeholder_22, [360000], dtype="int16") T.preflattened_buffer(placeholder_29, [360000], dtype="int16") placeholder_27 = T.match_buffer(placeholder_23, [16384], dtype="int16") T.preflattened_buffer(placeholder_27, [16384], dtype="int16") placeholder_26 = T.match_buffer(placeholder_24, [256], dtype="int32") T.preflattened_buffer(placeholder_26, [256], dtype="int32") placeholder_28 = T.match_buffer(placeholder_25, [1440000], dtype="int32") T.preflattened_buffer(placeholder_28, [1440000], dtype="int32") T_cast_7 = T.match_buffer(T_cast_6, [407], dtype="uint8") T.preflattened_buffer(T_cast_7, [407], dtype="uint8") # body PaddedInput_3_data = T.allocate([360000], "int16", "global") PaddedInput_3 = T.buffer_decl(shape=[360000], dtype="int16", data=PaddedInput_3_data) for i0_i1_fused_3, i2_3, i3_3 in T.grid(75, 75, 64): PaddedInput_3[i0_i1_fused_3 * 4800 + i2_3 * 64 + i3_3] = placeholder_29[i0_i1_fused_3 * 4800 + i2_3 * 64 + i3_3] for ax0_ax1_fused_ax2_fused_3 in T.serial(0, 5625): Conv2dOutput_3_data = T.allocate([64], "int32", "global") Conv2dOutput_3 = T.buffer_decl(shape=[64], dtype="int32", data=Conv2dOutput_3_data) for ax3_outer_2 in T.serial(0, 4): for ff_3 in T.serial(0, 64): Conv2dOutput_3[ff_3] = 0 for rc_3 in T.serial(0, 64): Conv2dOutput_3[ff_3] = Conv2dOutput_3[ff_3] + T.cast(PaddedInput_3[ax0_ax1_fused_ax2_fused_3 * 64 + rc_3], "int32") * T.cast(placeholder_27[rc_3 * 256 + ax3_outer_2 * 64 + ff_3], "int32") for ax3_inner_4 in T.serial(0, 64): T_cast_7[ax0_ax1_fused_ax2_fused_3 * 256 + ax3_outer_2 * 64 + ax3_inner_4] = T.cast(T.max(T.min(T.q_multiply_shift(T.cast(T.cast(T.max(T.min(T.q_multiply_shift(Conv2dOutput_3[ax3_inner_4] + placeholder_26[ax3_outer_2 * 64 + ax3_inner_4], 1343014664, 31, -8, dtype="int32") + 136, 255), 0), "uint8"), "int32") - 136, 1073903788, 31, 1, dtype="int32") + placeholder_28[ax0_ax1_fused_ax2_fused_3 * 256 + ax3_outer_2 * 64 + ax3_inner_4], 255), 0), "uint8") @T.prim_func def __tvm_main__(input: T.handle, output: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "__tvm_main__", "runner_function": True}) # body T.attr("default", "device_id", 0) T.attr("default", "device_type", 1) sid_2 = T.allocate([720000], "int8", "global") sid_6 = T.allocate([5760000], "int8", "global") sid_7 = T.allocate([720000], "int8", "global") sid_8 = T.allocate([720000], "int8", "global") T.evaluate(T.call_extern("tvmgen_default_fused_cast_subtract_fixed_point_multiply_add_clip_cast_cast", input, T.lookup_param("p0", dtype="handle"), sid_2, dtype="int32")) T.evaluate(T.call_extern("tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_cast", sid_2, T.lookup_param("p3", dtype="handle"), T.lookup_param("p4", dtype="handle"), sid_8, dtype="int32")) T.evaluate(T.call_extern("tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_cast_1", sid_8, T.lookup_param("p5", dtype="handle"), T.lookup_param("p6", dtype="handle"), sid_7, dtype="int32")) T.evaluate(T.call_extern("tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_add_clip_cast_cast_subtract_fixed_point_15934180698220515269_", sid_7, T.lookup_param("p7", dtype="handle"), T.lookup_param("p8", dtype="handle"), sid_6, dtype="int32")) T.evaluate(T.call_extern("tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_add_clip_cast_cast_subtract_fixed_point_4200876283395191415_", sid_2, T.lookup_param("p1", dtype="handle"), T.lookup_param("p2", dtype="handle"), sid_6, output, dtype="int32")) @T.prim_func def tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_cast(placeholder_4: T.handle, placeholder_5: T.handle, placeholder_6: T.handle, T_cast_2: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_cast", "tir.noalias": True}) placeholder_7 = T.match_buffer(placeholder_4, [360000], dtype="int16") T.preflattened_buffer(placeholder_7, [360000], dtype="int16") placeholder_8 = T.match_buffer(placeholder_5, [4096], dtype="int16") T.preflattened_buffer(placeholder_8, [4096], dtype="int16") placeholder_9 = T.match_buffer(placeholder_6, [64], dtype="int32") T.preflattened_buffer(placeholder_9, [64], dtype="int32") T_cast_3 = T.match_buffer(T_cast_2, [215], dtype="int16") T.preflattened_buffer(T_cast_3, [215], dtype="int16") # body PaddedInput_data = T.allocate([360000], "int16", "global") PaddedInput = T.buffer_decl([360000], "int16", data=PaddedInput_data) for i0_i1_fused, i2, i3 in T.grid(75, 75, 64): PaddedInput[i0_i1_fused * 4800 + i2 * 64 + i3] = placeholder_7[i0_i1_fused * 4800 + i2 * 64 + i3] for ax0_ax1_fused_ax2_fused in T.serial(0, 5625): Conv2dOutput_data = T.allocate([64], "int32", "global") Conv2dOutput = T.buffer_decl([64], "int32", data=Conv2dOutput_data) for ff in T.serial(0, 64): Conv2dOutput[ff] = 0 for rc in T.serial(0, 64): Conv2dOutput[ff] = Conv2dOutput[ff] + T.cast(PaddedInput[ax0_ax1_fused_ax2_fused * 64 + rc], "int32") * T.cast(placeholder_8[rc * 64 + ff], "int32") for ax3_inner_1 in T.serial(0, 64): T_cast_3[ax0_ax1_fused_ax2_fused * 64 + ax3_inner_1] = T.cast(T.cast(T.max(T.min(T.q_multiply_shift(Conv2dOutput[ax3_inner_1] + placeholder_9[ax3_inner_1], 1843106743, 31, -6, dtype="int32"), 255), 0), "uint8"), "int16") # fmt: on # fmt: off @tvm.script.ir_module class ResnetStructurePlanned: @T.prim_func def tvmgen_default_fused_cast_subtract_fixed_point_multiply_add_clip_cast_cast(placeholder: T.handle, placeholder_1: T.handle, T_cast: T.handle, global_workspace_1_var: T.Ptr[T.uint8]) -> None: placeholder_2 = T.match_buffer(placeholder, [360000], dtype="uint8") T.preflattened_buffer(placeholder_2, [360000], dtype="uint8") placeholder_3 = T.match_buffer(placeholder_1, [64], dtype="int32") T.preflattened_buffer(placeholder_3, [64], dtype="int32") T_cast_1 = T.match_buffer(T_cast, [215], dtype="int16") T.preflattened_buffer(T_cast_1, [215], dtype="int16") global_workspace_1_buffer_var = T.match_buffer(global_workspace_1_var, [7920256], dtype="uint8", strides=[1], elem_offset=0, align=16) T.preflattened_buffer(global_workspace_1_buffer_var, [7920256], dtype="uint8", strides=[1], elem_offset=0, align=16) # body for ax0_ax1_fused, ax2, ax3_outer, ax3_inner in T.grid(75, 75, 4, 16): T_cast_1[ax0_ax1_fused * 4800 + ax2 * 64 + ax3_outer * 16 + ax3_inner] = T.cast(T.cast(T.max(T.min(T.q_multiply_shift(T.cast(placeholder_2[ax0_ax1_fused * 4800 + ax2 * 64 + ax3_outer * 16 + ax3_inner], "int32") - 94, 1843157232, 31, 1, dtype="int32") + placeholder_3[ax3_outer * 16 + ax3_inner], 255), 0), "uint8"), "int16") @T.prim_func def tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_add_clip_cast_cast_subtract_fixed_point_4200876283395191415_(placeholder_22: T.handle, placeholder_23: T.handle, placeholder_24: T.handle, placeholder_25: T.handle, T_cast_6: T.handle, global_workspace_5_var: T.Ptr[T.uint8]) -> None: placeholder_29 = T.match_buffer(placeholder_22, [360000], dtype="int16") T.preflattened_buffer(placeholder_29, [360000], dtype="int16") placeholder_27 = T.match_buffer(placeholder_23, [16384], dtype="int16") T.preflattened_buffer(placeholder_27, [16384], dtype="int16") placeholder_26 = T.match_buffer(placeholder_24, [256], dtype="int32") T.preflattened_buffer(placeholder_26, [256], dtype="int32") placeholder_28 = T.match_buffer(placeholder_25, [1440000], dtype="int32") T.preflattened_buffer(placeholder_28, [1440000], dtype="int32") T_cast_7 = T.match_buffer(T_cast_6, [407], dtype="uint8") T.preflattened_buffer(T_cast_7, [407], dtype="uint8") global_workspace_5_buffer_var = T.match_buffer(global_workspace_5_var, [7920256], dtype="uint8", strides=[1], elem_offset=0, align=16) T.preflattened_buffer(global_workspace_5_buffer_var, [7920256], dtype="uint8", strides=[1], elem_offset=0, align=16) # body PaddedInput_3_let = T.buffer_decl([360000], 'int16') with T.let(PaddedInput_3_let.data, T.address_of(global_workspace_5_buffer_var[6480000], dtype="handle")): for i0_i1_fused_3, i2_3, i3_3 in T.grid(75, 75, 64): PaddedInput_3_let[i0_i1_fused_3 * 4800 + i2_3 * 64 + i3_3] = placeholder_29[i0_i1_fused_3 * 4800 + i2_3 * 64 + i3_3] for ax0_ax1_fused_ax2_fused_3 in T.serial(0, 5625): Conv2dOutput_3_let = T.buffer_decl([64], 'int32') with T.let(Conv2dOutput_3_let.data, T.address_of(global_workspace_5_buffer_var[7200000], dtype="handle")): for ax3_outer_2 in T.serial(0, 4): for ff_3 in T.serial(0, 64): Conv2dOutput_3_let[ff_3] = 0 for rc_3 in T.serial(0, 64): Conv2dOutput_3_let[ff_3] = Conv2dOutput_3_let[ff_3] + T.cast(PaddedInput_3_let[ax0_ax1_fused_ax2_fused_3 * 64 + rc_3], "int32") * T.cast(placeholder_27[rc_3 * 256 + ax3_outer_2 * 64 + ff_3], "int32") for ax3_inner_4 in T.serial(0, 64): T_cast_7[ax0_ax1_fused_ax2_fused_3 * 256 + ax3_outer_2 * 64 + ax3_inner_4] = T.cast(T.max(T.min(T.q_multiply_shift(T.cast(T.cast(T.max(T.min(T.q_multiply_shift(Conv2dOutput_3_let[ax3_inner_4] + placeholder_26[ax3_outer_2 * 64 + ax3_inner_4], 1343014664, 31, -8, dtype="int32") + 136, 255), 0), "uint8"), "int32") - 136, 1073903788, 31, 1, dtype="int32") + placeholder_28[ax0_ax1_fused_ax2_fused_3 * 256 + ax3_outer_2 * 64 + ax3_inner_4], 255), 0), "uint8") @T.prim_func def tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_add_clip_cast_cast_subtract_fixed_point_15934180698220515269_(placeholder_16: T.handle, placeholder_17: T.handle, placeholder_18: T.handle, T_add: T.handle, global_workspace_4_var: T.Ptr[T.uint8]) -> None: placeholder_19 = T.match_buffer(placeholder_16, [360000], dtype="int16") T.preflattened_buffer(placeholder_19, [360000], dtype="int16") placeholder_20 = T.match_buffer(placeholder_17, [16384], dtype="int16") T.preflattened_buffer(placeholder_20, [16384], dtype="int16") placeholder_21 = T.match_buffer(placeholder_18, [256], dtype="int32") T.preflattened_buffer(placeholder_21, [256], dtype="int32") T_add_1 = T.match_buffer(T_add, [407], dtype="int32") T.preflattened_buffer(T_add_1, [407], dtype="int32") global_workspace_4_buffer_var = T.match_buffer(global_workspace_4_var, [7920256], dtype="uint8", strides=[1], elem_offset=0, align=16) T.preflattened_buffer(global_workspace_4_buffer_var, [7920256], dtype="uint8", strides=[1], elem_offset=0, align=16) # body PaddedInput_2_let = T.buffer_decl([360000], "int16") with T.let(PaddedInput_2_let.data, T.address_of(global_workspace_4_buffer_var[7200000], dtype="handle")): for i0_i1_fused_2, i2_2, i3_2 in T.grid(75, 75, 64): PaddedInput_2_let[i0_i1_fused_2 * 4800 + i2_2 * 64 + i3_2] = placeholder_19[i0_i1_fused_2 * 4800 + i2_2 * 64 + i3_2] for ax0_ax1_fused_ax2_fused_2 in T.serial(0, 5625): Conv2dOutput_2_let = T.buffer_decl([64], 'int32') with T.let(Conv2dOutput_2_let.data, T.address_of(global_workspace_4_buffer_var[7920000], dtype="handle")): for ax3_outer_1 in T.serial(0, 4): for ff_2 in T.serial(0, 64): Conv2dOutput_2_let[ff_2] = 0 for rc_2 in T.serial(0, 64): Conv2dOutput_2_let[ff_2] = Conv2dOutput_2_let[ff_2] + T.cast(PaddedInput_2_let[ax0_ax1_fused_ax2_fused_2 * 64 + rc_2], "int32") * T.cast(placeholder_20[rc_2 * 256 + ax3_outer_1 * 64 + ff_2], "int32") for ax3_inner_3 in T.serial(0, 64): T_add_1[ax0_ax1_fused_ax2_fused_2 * 256 + ax3_outer_1 * 64 + ax3_inner_3] = T.q_multiply_shift(T.cast(T.cast(T.max(T.min(T.q_multiply_shift(Conv2dOutput_2_let[ax3_inner_3] + placeholder_21[ax3_outer_1 * 64 + ax3_inner_3], 1711626602, 31, -8, dtype="int32") + 132, 255), 0), "uint8"), "int32") - 132, 2094289803, 31, -2, dtype="int32") + 136 @T.prim_func def tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_cast(placeholder_4: T.handle, placeholder_5: T.handle, placeholder_6: T.handle, T_cast_2: T.handle, global_workspace_2_var: T.Ptr[T.uint8]) -> None: placeholder_7 = T.match_buffer(placeholder_4, [360000], dtype="int16") T.preflattened_buffer(placeholder_7, [360000], dtype="int16") placeholder_8 = T.match_buffer(placeholder_5, [4096], dtype="int16") T.preflattened_buffer(placeholder_8, [4096], dtype="int16") placeholder_9 = T.match_buffer(placeholder_6, [64], dtype="int32") T.preflattened_buffer(placeholder_9, [64], dtype="int32") T_cast_3 = T.match_buffer(T_cast_2, [215], dtype="int16") T.preflattened_buffer(T_cast_3, [215], dtype="int16") global_workspace_2_buffer_var = T.match_buffer(global_workspace_2_var, [7920256], dtype="uint8", strides=[1], elem_offset=0, align=16) T.preflattened_buffer(global_workspace_2_buffer_var, [7920256], dtype="uint8", strides=[1], elem_offset=0, align=16) # body PaddedInput_let = T.buffer_decl([360000], "int16") with T.let(PaddedInput_let.data, T.address_of(global_workspace_2_buffer_var[7200000], dtype="handle")): for i0_i1_fused, i2, i3 in T.grid(75, 75, 64): PaddedInput_let[i0_i1_fused * 4800 + i2 * 64 + i3] = placeholder_7[i0_i1_fused * 4800 + i2 * 64 + i3] for ax0_ax1_fused_ax2_fused in T.serial(0, 5625): Conv2dOutput_let = T.buffer_decl([64], "int32") with T.let(Conv2dOutput_let.data, T.address_of(global_workspace_2_buffer_var[7920000], dtype="handle")): for ff in T.serial(0, 64): Conv2dOutput_let[ff] = 0 for rc in T.serial(0, 64): Conv2dOutput_let[ff] = Conv2dOutput_let[ff] + T.cast(PaddedInput_let[ax0_ax1_fused_ax2_fused * 64 + rc], "int32") * T.cast(placeholder_8[rc * 64 + ff], "int32") for ax3_inner_1 in T.serial(0, 64): T_cast_3[ax0_ax1_fused_ax2_fused * 64 + ax3_inner_1] = T.cast(T.cast(T.max(T.min(T.q_multiply_shift(Conv2dOutput_let[ax3_inner_1] + placeholder_9[ax3_inner_1], 1843106743, 31, -6, dtype="int32"), 255), 0), "uint8"), "int16") @T.prim_func def tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_cast_1(placeholder_10: T.handle, placeholder_11: T.handle, placeholder_12: T.handle, T_cast_4: T.handle, global_workspace_3_var: T.Ptr[T.uint8]) -> None: placeholder_13 = T.match_buffer(placeholder_10, [360000], dtype="int16") T.preflattened_buffer(placeholder_13, [360000], dtype="int16") placeholder_14 = T.match_buffer(placeholder_11, [36864], dtype="int16") T.preflattened_buffer(placeholder_14, [36864], dtype="int16") placeholder_15 = T.match_buffer(placeholder_12, [64], dtype="int32") T.preflattened_buffer(placeholder_15, [64], dtype="int32") T_cast_5 = T.match_buffer(T_cast_4, [215], dtype="int16") T.preflattened_buffer(T_cast_5, [215], dtype="int16") global_workspace_3_buffer_var = T.match_buffer(global_workspace_3_var, [7920256], dtype="uint8", strides=[1], elem_offset=0, align=16) T.preflattened_buffer(global_workspace_3_buffer_var, [7920256], dtype="uint8", strides=[1], elem_offset=0, align=16) # body PaddedInput_1_let = T.buffer_decl([379456], "int16") with T.let(PaddedInput_1_let.data, T.address_of(global_workspace_3_buffer_var[0], dtype="handle")): for i0_i1_fused_1, i2_1, i3_1 in T.grid(77, 77, 64): PaddedInput_1_let[i0_i1_fused_1 * 4928 + i2_1 * 64 + i3_1] = T.if_then_else(1 <= i0_i1_fused_1 and i0_i1_fused_1 < 76 and 1 <= i2_1 and i2_1 < 76, placeholder_13[i0_i1_fused_1 * 4800 + i2_1 * 64 + i3_1 - 4864], T.int16(0), dtype="int16") for ax0_ax1_fused_ax2_fused_1 in T.serial(0, 5625): Conv2dOutput_1_let = T.buffer_decl([64], "int32") with T.let(Conv2dOutput_1_let.data, T.address_of(global_workspace_3_buffer_var[7200000], dtype="handle")): for ff_1 in T.serial(0, 64): Conv2dOutput_1_let[ff_1] = 0 for ry, rx, rc_1 in T.grid(3, 3, 64): Conv2dOutput_1_let[ff_1] = Conv2dOutput_1_let[ff_1] + T.cast(PaddedInput_1_let[ax0_ax1_fused_ax2_fused_1 // 75 * 4928 + ry * 4928 + rx * 64 + ax0_ax1_fused_ax2_fused_1 % 75 * 64 + rc_1], "int32") * T.cast(placeholder_14[ry * 12288 + rx * 4096 + rc_1 * 64 + ff_1], "int32") for ax3_inner_2 in T.serial(0, 64): T_cast_5[ax0_ax1_fused_ax2_fused_1 * 64 + ax3_inner_2] = T.cast(T.cast(T.max(T.min(T.q_multiply_shift(Conv2dOutput_1_let[ax3_inner_2] + placeholder_15[ax3_inner_2], 1608879842, 31, -7, dtype="int32"), 255), 0), "uint8"), "int16") @T.prim_func def __tvm_main__(input: T.handle, global_workspace_0_var: T.Ptr[T.uint8], output: T.handle) -> None: global_workspace_0_buffer_var = T.match_buffer(global_workspace_0_var, [7920256], dtype="uint8", strides=[1], elem_offset=0, align=16) # body T.attr("default", "device_id", 0) T.attr("default", "device_type", 1) sid_2_let: T.Ptr[T.int8] = T.address_of(global_workspace_0_buffer_var[5760000], dtype="handle") sid_6_let: T.Ptr[T.int8] = T.address_of(global_workspace_0_buffer_var[0], dtype="handle") sid_7_let: T.Ptr[T.int8] = T.address_of(global_workspace_0_buffer_var[6480000], dtype="handle") sid_8_let: T.Ptr[T.int8] = T.address_of(global_workspace_0_buffer_var[6480000], dtype="handle") T.evaluate(T.call_extern("tvmgen_default_fused_cast_subtract_fixed_point_multiply_add_clip_cast_cast", input, T.lookup_param("p0", dtype="handle"), sid_2_let, global_workspace_0_buffer_var.data, dtype="int32")) T.evaluate(T.call_extern("tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_cast", sid_2_let, T.lookup_param("p3", dtype="handle"), T.lookup_param("p4", dtype="handle"), sid_8_let, global_workspace_0_buffer_var.data, dtype="int32")) T.evaluate(T.call_extern("tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast_cast_1", sid_8_let, T.lookup_param("p5", dtype="handle"), T.lookup_param("p6", dtype="handle"), sid_7_let, global_workspace_0_buffer_var.data, dtype="int32")) T.evaluate(T.call_extern("tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_add_clip_cast_cast_subtract_fixed_point_15934180698220515269_", sid_7_let, T.lookup_param("p7", dtype="handle"), T.lookup_param("p8", dtype="handle"), sid_6_let, global_workspace_0_buffer_var.data, dtype="int32")) T.evaluate(T.call_extern("tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_add_clip_cast_cast_subtract_fixed_point_4200876283395191415_", sid_2_let, T.lookup_param("p1", dtype="handle"), T.lookup_param("p2", dtype="handle"), sid_6_let, output, global_workspace_0_buffer_var.data, dtype="int32")) __tvm_meta__ = None # fmt: on def test_resnet_subgraph(): target = Target("c") global_workspace_pool = WorkspacePoolInfo( "global_workspace", [target], ) tir_mod = ResnetStructure tir_mod = _assign_targets_to_primfuncs_irmodule(tir_mod, target) tir_mod = assign_poolinfos_to_allocates_in_irmodule(tir_mod, [global_workspace_pool]) main_func = tir_mod["__tvm_main__"] buffer_analysis = tvm.tir.usmp.analysis.extract_buffer_info(main_func, tir_mod) buffer_info_map = buffer_analysis.buffer_info_stmts fcreate_array_bi = tvm.get_global_func("tir.usmp.CreateArrayBufferInfo") buffer_info_arr = fcreate_array_bi(buffer_info_map) fusmp_algo_greedy_by_size = tvm.get_global_func("tir.usmp.algo.greedy_by_size") buffer_pool_allocations = fusmp_algo_greedy_by_size( buffer_info_arr, buffer_analysis.memory_pressure ) fassign_stmt_pool_allocations = tvm.get_global_func("tir.usmp.AssignStmtPoolAllocations") pool_allocations = fassign_stmt_pool_allocations(buffer_info_map, buffer_pool_allocations) tir_mod_with_offsets = tvm.tir.usmp.transform.convert_pool_allocations_to_offsets( pool_allocations, emit_tvmscript_printable=True )(tir_mod) tir_mod_with_offsets_ref = ResnetStructurePlanned for gv, ref_func in tir_mod_with_offsets_ref.functions.items(): actual_func = tir_mod_with_offsets[gv.name_hint] tvm.ir.assert_structural_equal(actual_func, ref_func) @tvm.script.ir_module class TensorIntrinStructure: @T.prim_func def tensor_intrin_primfunc() -> None: dense_data = T.allocate([10], "int32", "global") T.evaluate( T.call_extern( "intrin_function", T.tvm_access_ptr( T.type_annotation(dtype="int32"), dense_data, 0, 1, 2, dtype="handle" ), dtype="int32", ) ) dense = T.buffer_decl([10], "int32", data=dense_data) dense[0] = T.q_multiply_shift(dense[0], 1608879842, 31, -7, dtype="int32") @T.prim_func def __tvm_main__(input: T.handle, output: T.handle) -> None: T.evaluate(T.call_extern("tensor_intrin_primfunc", dtype="int32")) @tvm.script.ir_module class TensorIntrinStructurePlanned: @T.prim_func def tensor_intrin_primfunc(global_workspace_1_var: T.Ptr[T.uint8]) -> None: global_workspace_1_buffer_var = T.match_buffer( global_workspace_1_var, [40], dtype="uint8", strides=[1], elem_offset=0, align=16 ) T.preflattened_buffer( global_workspace_1_buffer_var, [40], dtype="uint8", strides=[1], elem_offset=0, align=16 ) dense_let = T.buffer_decl([10], "int32") with T.let(dense_let.data, T.address_of(global_workspace_1_buffer_var[0], dtype="handle")): T.evaluate( T.call_extern( "intrin_function", T.tvm_access_ptr( T.type_annotation(dtype="int32"), dense_let.data, 0, 1, 2, dtype="handle" ), dtype="int32", ) ) dense_let[0] = T.q_multiply_shift(dense_let[0], 1608879842, 31, -7, dtype="int32") @T.prim_func def __tvm_main__( input: T.handle, global_workspace_1_var: T.Ptr[T.uint8], output: T.handle ) -> None: global_workspace_1_buffer_var = T.match_buffer( global_workspace_1_var, [40], dtype="uint8", strides=[1], elem_offset=0, align=16 ) T.evaluate( T.call_extern( "tensor_intrin_primfunc", global_workspace_1_buffer_var.data, dtype="int32" ) ) def test_tensor_intrin(): target = Target("c") global_workspace_pool = WorkspacePoolInfo( "global_workspace", [target], ) tir_mod = TensorIntrinStructure tir_mod = _assign_targets_to_primfuncs_irmodule(tir_mod, target) tir_mod = assign_poolinfos_to_allocates_in_irmodule(tir_mod, [global_workspace_pool]) main_func = tir_mod["__tvm_main__"] buffer_analysis = tvm.tir.usmp.analysis.extract_buffer_info(main_func, tir_mod) buffer_info_map = buffer_analysis.buffer_info_stmts fcreate_array_bi = tvm.get_global_func("tir.usmp.CreateArrayBufferInfo") buffer_info_arr = fcreate_array_bi(buffer_info_map) fusmp_algo_greedy_by_size = tvm.get_global_func("tir.usmp.algo.greedy_by_size") buffer_pool_allocations = fusmp_algo_greedy_by_size( buffer_info_arr, buffer_analysis.memory_pressure ) fassign_stmt_pool_allocations = tvm.get_global_func("tir.usmp.AssignStmtPoolAllocations") pool_allocations = fassign_stmt_pool_allocations(buffer_info_map, buffer_pool_allocations) tir_mod_with_offsets = tvm.tir.usmp.transform.convert_pool_allocations_to_offsets( pool_allocations, emit_tvmscript_printable=True )(tir_mod) expected = TensorIntrinStructurePlanned for gv, ref_func in expected.functions.items(): actual_func = tir_mod_with_offsets[gv.name_hint] tvm.ir.assert_structural_equal(actual_func, ref_func) if __name__ == "__main__": pytest.main([__file__] + sys.argv[1:])
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_usmp_transform_create_io_allocates.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import pytest from typing import NamedTuple, List import tvm from tvm.script import tir as T # fmt: off @tvm.script.ir_module class SingleInputSingleOutput: @T.prim_func def tvmgen_default_fused_cast_subtract(placeholder_2: T.handle, placeholder_3: T.handle, T_subtract: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_fused_cast_subtract", "tir.noalias": True}) placeholder_4 = T.match_buffer(placeholder_2, [150528], dtype="uint8", elem_offset=0, align=64, offset_factor=1) placeholder_5 = T.match_buffer(placeholder_3, [1], dtype="int16", elem_offset=0, align=64, offset_factor=1) T_subtract_1 = T.match_buffer(T_subtract, [452], dtype="int16", elem_offset=0, align=64, offset_factor=1) # body for ax0_ax1_fused_1 in T.serial(0, 224): for ax2_1, ax3_inner_1 in T.grid(224, 3): T_subtract_1[(((ax0_ax1_fused_1*672) + (ax2_1*3)) + ax3_inner_1)] = (T.cast(placeholder_4[(((ax0_ax1_fused_1*672) + (ax2_1*3)) + ax3_inner_1)], "int16") - placeholder_5[0]) @T.prim_func def __tvm_main__(input: T.handle, output: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "__tvm_main__", "runner_function": True}) input_buffer_var = T.match_buffer(input, [150528], dtype="uint8", elem_offset=0, align=64, offset_factor=1) output_buffer_var = T.match_buffer(output, [452], dtype="int16", elem_offset=0, align=64, offset_factor=1) # body T.evaluate(T.call_extern("tvmgen_default_fused_cast_subtract", input_buffer_var.data, T.lookup_param("p0", dtype="handle"), output_buffer_var.data, dtype="int32")) # fmt: on # fmt: off @tvm.script.ir_module class TwoInputSingleOutput: @T.prim_func def tvmgen_default_fused_cast_subtract(placeholder_2: T.handle, placeholder_3: T.handle, T_subtract: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_fused_cast_subtract", "tir.noalias": True}) placeholder_4 = T.match_buffer(placeholder_2, [150528], dtype="uint8", elem_offset=0, align=64, offset_factor=1) placeholder_5 = T.match_buffer(placeholder_3, [1], dtype="int16", elem_offset=0, align=64, offset_factor=1) T_subtract_1 = T.match_buffer(T_subtract, [452], dtype="int16", elem_offset=0, align=64, offset_factor=1) # body for ax0_ax1_fused_1 in T.serial(0, 224): for ax2_1, ax3_inner_1 in T.grid(224, 3): T_subtract_1[(((ax0_ax1_fused_1*672) + (ax2_1*3)) + ax3_inner_1)] = (T.cast(placeholder_4[(((ax0_ax1_fused_1*672) + (ax2_1*3)) + ax3_inner_1)], "int16") - placeholder_5[0]) @T.prim_func def __tvm_main__(input1: T.handle, input2: T.handle, output: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "__tvm_main__", "runner_function": True}) input1_buffer_var = T.match_buffer(input1, [150528], dtype="uint8", elem_offset=0, align=64, offset_factor=1) input2_buffer_var = T.match_buffer(input2, [1], dtype="int16", elem_offset=0, align=64, offset_factor=1) output_buffer_var = T.match_buffer(output, [452], dtype="int16", elem_offset=0, align=64, offset_factor=1) # body T.evaluate(T.call_extern("tvmgen_default_fused_cast_subtract", input1_buffer_var.data, input2_buffer_var.data, output_buffer_var.data, dtype="int32")) # fmt: on # fmt: off @tvm.script.ir_module class TwoInputTwoOutput: @T.prim_func def tvmgen_default_fused_cast_subtract(placeholder_2: T.handle, placeholder_3: T.handle, T_subtract: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_fused_cast_subtract", "tir.noalias": True}) placeholder_4 = T.match_buffer(placeholder_2, [150528], dtype="uint8", elem_offset=0, align=64, offset_factor=1) placeholder_5 = T.match_buffer(placeholder_3, [1], dtype="int16", elem_offset=0, align=64, offset_factor=1) T_subtract_1 = T.match_buffer(T_subtract, [452], dtype="int16", elem_offset=0, align=64, offset_factor=1) # body for ax0_ax1_fused_1 in T.serial(0, 224): for ax2_1, ax3_inner_1 in T.grid(224, 3): T_subtract_1[(((ax0_ax1_fused_1*672) + (ax2_1*3)) + ax3_inner_1)] = (T.cast(placeholder_4[(((ax0_ax1_fused_1*672) + (ax2_1*3)) + ax3_inner_1)], "int16") - placeholder_5[0]) @T.prim_func def __tvm_main__(input1: T.handle, input2: T.handle, output1: T.handle, output2: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "__tvm_main__", "runner_function": True}) input1_buffer_var = T.match_buffer(input1, [150528], dtype="uint8", elem_offset=0, align=64, offset_factor=1) input2_buffer_var = T.match_buffer(input2, [150528], dtype="uint8", elem_offset=0, align=64, offset_factor=1) output1_buffer_var = T.match_buffer(output1, [452], dtype="int16", elem_offset=0, align=64, offset_factor=1) output2_buffer_var = T.match_buffer(output2, [452], dtype="int16", elem_offset=0, align=64, offset_factor=1) # body T.evaluate(T.call_extern("tvmgen_default_fused_cast_subtract", input1_buffer_var.data, T.lookup_param("p0", dtype="handle"), output1_buffer_var.data, dtype="int32")) T.evaluate(T.call_extern("tvmgen_default_fused_cast_subtract", input2_buffer_var.data, T.lookup_param("p1", dtype="handle"), output2_buffer_var.data, dtype="int32")) # fmt: on # fmt: off @tvm.script.ir_module class SingleInputTwoOutput: @T.prim_func def tvmgen_default_fused_cast_subtract(placeholder_2: T.handle, placeholder_3: T.handle, T_subtract: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_fused_cast_subtract", "tir.noalias": True}) placeholder_4 = T.match_buffer(placeholder_2, [150528], dtype="uint8", elem_offset=0, align=64, offset_factor=1) placeholder_5 = T.match_buffer(placeholder_3, [1], dtype="int16", elem_offset=0, align=64, offset_factor=1) T_subtract_1 = T.match_buffer(T_subtract, [452], dtype="int16", elem_offset=0, align=64, offset_factor=1) # body for ax0_ax1_fused_1 in T.serial(0, 224): for ax2_1, ax3_inner_1 in T.grid(224, 3): T_subtract_1[(((ax0_ax1_fused_1*672) + (ax2_1*3)) + ax3_inner_1)] = (T.cast(placeholder_4[(((ax0_ax1_fused_1*672) + (ax2_1*3)) + ax3_inner_1)], "int16") - placeholder_5[0]) @T.prim_func def __tvm_main__(input: T.handle, output1: T.handle, output2: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "__tvm_main__", "runner_function": True}) input_buffer_var = T.match_buffer(input, [150528], dtype="uint8", elem_offset=0, align=64, offset_factor=1) output1_buffer_var = T.match_buffer(output1, [452], dtype="int16", elem_offset=0, align=64, offset_factor=1) output2_buffer_var = T.match_buffer(output2, [452], dtype="int16", elem_offset=0, align=64, offset_factor=1) # body T.evaluate(T.call_extern("tvmgen_default_fused_cast_subtract", input_buffer_var.data, T.lookup_param("p0", dtype="handle"), output1_buffer_var.data, dtype="int32")) T.evaluate(T.call_extern("tvmgen_default_fused_cast_subtract", input_buffer_var.data, T.lookup_param("p1", dtype="handle"), output2_buffer_var.data, dtype="int32")) # fmt: on class IOInfo(NamedTuple): """A data structure to hold test outputs per I/O tensor""" name: str shape: list dtype: str def check_io_allocations(mod: tvm.IRModule, inputs: List[IOInfo], outputs: List[IOInfo]): """This function checks whether outer most allocates correspond to I/O tensors""" found_non_io_allocate_node = False input_name_to_info = {} for input in inputs: input_name_to_info[input.name] = input output_name_to_info = {} for output in outputs: output_name_to_info[output.name] = output def _visit(stmt): nonlocal found_non_io_allocate_node if isinstance(stmt, tvm.tir.Allocate) and not found_non_io_allocate_node: allocate = stmt if dict(allocate.annotations).get("input_tensor"): input_tensor_name = str(dict(allocate.annotations).get("input_tensor")) assert input_tensor_name in input_name_to_info.keys() assert input_name_to_info[input_tensor_name].shape == list(allocate.extents) assert input_name_to_info[input_tensor_name].dtype == str(allocate.dtype) del input_name_to_info[input_tensor_name] if dict(allocate.annotations).get("output_tensor"): output_tensor_name = str(dict(allocate.annotations).get("output_tensor")) assert output_tensor_name in output_name_to_info.keys() assert output_name_to_info[output_tensor_name].shape == list(allocate.extents) assert output_name_to_info[output_tensor_name].dtype == str(allocate.dtype) del output_name_to_info[output_tensor_name] else: found_non_io_allocate_node = True main = mod["__tvm_main__"] tvm.tir.stmt_functor.ir_transform(main.body, _visit, None, ["tir.Allocate", "tir.Call"]) assert len(input_name_to_info) == 0 assert len(output_name_to_info) == 0 @pytest.mark.parametrize( "test_mod, input_names, output_names", [ ( SingleInputSingleOutput, [IOInfo("input", [150528], "uint8")], [IOInfo("output", [452], "int16")], ), ( SingleInputTwoOutput, [IOInfo("input", [150528], "uint8")], [IOInfo("output1", [452], "int16"), IOInfo("output2", [452], "int16")], ), ( TwoInputSingleOutput, [IOInfo("input1", [150528], "uint8"), IOInfo("input2", [1], "int16")], [IOInfo("output", [452], "int16")], ), ( TwoInputTwoOutput, [IOInfo("input1", [150528], "uint8"), IOInfo("input2", [150528], "uint8")], [IOInfo("output1", [452], "int16"), IOInfo("output2", [452], "int16")], ), ], ) def test_mobilenet_subgraph(test_mod, input_names, output_names): CreateAllocatesForIO = tvm.get_global_func("tir.usmp.transform.CreateAllocatesForIO") test_mod = CreateAllocatesForIO()(test_mod) check_io_allocations(test_mod, input_names, output_names)
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tir_usmp_utils.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import pytest import sys import tvm from tvm.script import tir as T from tvm.tir import stmt_functor from tvm.tir.usmp import utils as usmp_utils from tvm.target import Target from tvm import WorkspacePoolInfo, PoolInfoProperties # fmt: off @tvm.script.ir_module class LinearStructure: @T.prim_func def tvmgen_default_fused_cast_subtract(placeholder_2: T.handle, placeholder_3: T.handle, T_subtract: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_fused_cast_subtract", "tir.noalias": True}) placeholder_4 = T.match_buffer(placeholder_2, [150528], dtype="uint8", elem_offset=0, align=64, offset_factor=1) placeholder_5 = T.match_buffer(placeholder_3, [1], dtype="int16", elem_offset=0, align=64, offset_factor=1) T_subtract_1 = T.match_buffer(T_subtract, [150528], dtype="int16", elem_offset=0, align=64, offset_factor=1) # body for ax0_ax1_fused_1 in T.serial(0, 224): for ax2_1, ax3_inner_1 in T.grid(224, 3): T_subtract_1[(((ax0_ax1_fused_1*672) + (ax2_1*3)) + ax3_inner_1)] = (T.cast(placeholder_4[(((ax0_ax1_fused_1*672) + (ax2_1*3)) + ax3_inner_1)], "int16") - placeholder_5[0]) @T.prim_func def tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast(placeholder_62: T.handle, placeholder_63: T.handle, placeholder_64: T.handle, T_cast_20: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast", "tir.noalias": True}) placeholder_65 = T.match_buffer(placeholder_62, [150528], dtype="int16", elem_offset=0, align=64, offset_factor=1) placeholder_66 = T.match_buffer(placeholder_63, [9408], dtype="int16", elem_offset=0, align=64, offset_factor=1) placeholder_67 = T.match_buffer(placeholder_64, [64], dtype="int32", elem_offset=0, align=64, offset_factor=1) T_cast_21 = T.match_buffer(T_cast_20, [289], dtype="uint8", elem_offset=0, align=64, offset_factor=1) # body PaddedInput_7 = T.decl_buffer([157323], "int16") for i0_i1_fused_7 in T.serial(0, 229): for i2_7, i3_7 in T.grid(229, 3): PaddedInput_7[(((i0_i1_fused_7*687) + (i2_7*3)) + i3_7)] = T.if_then_else(((((2 <= i0_i1_fused_7) and (i0_i1_fused_7 < 226)) and (2 <= i2_7)) and (i2_7 < 226)), placeholder_65[((((i0_i1_fused_7*672) + (i2_7*3)) + i3_7) - 1350)], T.int16(0), dtype="int16") for ax0_ax1_fused_ax2_fused_7 in T.serial(0, 12544): Conv2dOutput_7 = T.decl_buffer([64], "int32") for ff_3 in T.serial(0, 64): Conv2dOutput_7[ff_3] = 0 for ry_2, rx_2, rc_7 in T.grid(7, 7, 3): Conv2dOutput_7[ff_3] = (Conv2dOutput_7[ff_3] + (T.cast(PaddedInput_7[(((((T.floordiv(ax0_ax1_fused_ax2_fused_7, 112)*1374) + (ry_2*687)) + (T.floormod(ax0_ax1_fused_ax2_fused_7, 112)*6)) + (rx_2*3)) + rc_7)], "int32")*T.cast(placeholder_66[((((ry_2*1344) + (rx_2*192)) + (rc_7*64)) + ff_3)], "int32"))) for ax3_inner_7 in T.serial(0, 64): T_cast_21[((ax0_ax1_fused_ax2_fused_7*64) + ax3_inner_7)] = T.cast(T.max(T.min(T.q_multiply_shift((Conv2dOutput_7[ax3_inner_7] + placeholder_67[ax3_inner_7]), 1939887962, 31, -9, dtype="int32"), 255), 0), "uint8") @T.prim_func def tvmgen_default_fused_nn_max_pool2d_cast(placeholder_28: T.handle, T_cast_6: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_fused_nn_max_pool2d_cast", "tir.noalias": True}) placeholder_29 = T.match_buffer(placeholder_28, [802816], dtype="uint8", elem_offset=0, align=64, offset_factor=1) T_cast_7 = T.match_buffer(T_cast_6, [177], dtype="int16", elem_offset=0, align=64, offset_factor=1) # body tensor_2 = T.decl_buffer([200704], "uint8") for ax0_ax1_fused_4 in T.serial(0, 56): for ax2_4 in T.serial(0, 56): for ax3_init in T.serial(0, 64): tensor_2[(((ax0_ax1_fused_4*3584) + (ax2_4*64)) + ax3_init)] = T.uint8(0) for rv0_rv1_fused_1, ax3_2 in T.grid(9, 64): tensor_2[(((ax0_ax1_fused_4*3584) + (ax2_4*64)) + ax3_2)] = T.max(tensor_2[(((ax0_ax1_fused_4*3584) + (ax2_4*64)) + ax3_2)], T.if_then_else(((((ax0_ax1_fused_4*2) + T.floordiv(rv0_rv1_fused_1, 3)) < 112) and (((ax2_4*2) + T.floormod(rv0_rv1_fused_1, 3)) < 112)), placeholder_29[(((((ax0_ax1_fused_4*14336) + (T.floordiv(rv0_rv1_fused_1, 3)*7168)) + (ax2_4*128)) + (T.floormod(rv0_rv1_fused_1, 3)*64)) + ax3_2)], T.uint8(0), dtype="uint8")) for ax0_ax1_fused_5 in T.serial(0, 56): for ax2_5, ax3_3 in T.grid(56, 64): T_cast_7[(((ax0_ax1_fused_5*3584) + (ax2_5*64)) + ax3_3)] = T.cast(tensor_2[(((ax0_ax1_fused_5*3584) + (ax2_5*64)) + ax3_3)], "int16") @T.prim_func def tvmgen_default_run_model(input: T.handle, output: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_run_model", "runner_function": True}) # body T.attr("default", "device_id", 0) T.attr("default", "device_type", 1) sid_9 = T.allocate([301056], "int8", "global") sid_8 = T.allocate([802816], "int8", "global") T.evaluate(T.call_extern("tvmgen_default_fused_cast_subtract", input, T.lookup_param("p0", dtype="handle"), sid_9, dtype="int32")) T.evaluate(T.call_extern("tvmgen_default_fused_nn_conv2d_add_fixed_point_multiply_clip_cast", sid_9, T.lookup_param("p1", dtype="handle"), T.lookup_param("p2", dtype="handle"), sid_8, dtype="int32")) T.evaluate(T.call_extern("tvmgen_default_fused_nn_max_pool2d_cast", sid_8, output, dtype="int32")) __tvm_meta__ = None # fmt: on def test_create_pool_info(): target = Target("c") pool_info = WorkspacePoolInfo( "foo_workspace", [target], ) assert pool_info.pool_name == "foo_workspace" # default pool size constraint assert pool_info.size_hint_bytes == -1 pool_info = WorkspacePoolInfo( "bar_workspace", [target], PoolInfoProperties(size_hint_bytes=1425), ) assert pool_info.pool_name == "bar_workspace" assert pool_info.size_hint_bytes == 1425 def test_create_buffer_info(): global_ws_pool = WorkspacePoolInfo( "global_workspace", [Target("c")], ) buffer_info_obj = tvm.tir.usmp.BufferInfo( name_hint="buf1", size_bytes=256, pool_candidates=[global_ws_pool] ) assert buffer_info_obj.name_hint == "buf1" assert buffer_info_obj.size_bytes == 256 assert list(buffer_info_obj.pool_candidates) == [global_ws_pool] # default workspace alignment assert buffer_info_obj.alignment == 1 buffer_info_obj = tvm.tir.usmp.BufferInfo("buf2", 512, [global_ws_pool], 8) assert buffer_info_obj.name_hint == "buf2" assert buffer_info_obj.size_bytes == 512 assert list(buffer_info_obj.pool_candidates) == [global_ws_pool] assert buffer_info_obj.alignment == 8 def test_create_pool_allocation(): pool_info = WorkspacePoolInfo( "foo_workspace", [Target("c")], ) pool_allocation = usmp_utils.PoolAllocation(pool_info=pool_info, byte_offset=64) assert pool_allocation.pool_info == pool_info assert pool_allocation.byte_offset == 64 def _assign_poolinfos_to_allocates_in_primfunc(primfunc, pool_infos): """helper to assing poolinfos to allocate nodes in a tir.PrimFunc""" def set_poolinfos(stmt): if isinstance(stmt, tvm.tir.Allocate): return tvm.tir.Allocate( buffer_var=stmt.buffer_var, dtype=stmt.dtype, extents=stmt.extents, condition=stmt.condition, body=stmt.body, annotations={tvm.tir.usmp.utils.CANDIDATE_MEMORY_POOL_ATTR: pool_infos}, ) return primfunc.with_body(stmt_functor.ir_transform(primfunc.body, None, set_poolinfos)) def _assign_poolinfos_to_allocates_in_irmodule(mod, pool_infos): """helper to assing poolinfos to allocate nodes in a IRModule""" ret = tvm.IRModule() for global_var, basefunc in mod.functions.items(): if isinstance(basefunc, tvm.tir.PrimFunc): ret[global_var] = _assign_poolinfos_to_allocates_in_primfunc(basefunc, pool_infos) return ret def _assign_targets_to_primfuncs_irmodule(mod, target): """helper to assign target for PrimFunc in a IRModule""" ret = tvm.IRModule() for global_var, basefunc in mod.functions.items(): if isinstance(basefunc, tvm.tir.PrimFunc): ret[global_var] = basefunc.with_attr("target", target) return ret def test_create_array_buffer_info(): target = Target("c") global_ws_pool = WorkspacePoolInfo( "global_workspace", [target], ) fcreate_array_bi = tvm.get_global_func("tir.usmp.CreateArrayBufferInfo") tir_mod = LinearStructure tir_mod = _assign_targets_to_primfuncs_irmodule(tir_mod, target) tir_mod = _assign_poolinfos_to_allocates_in_irmodule(tir_mod, [global_ws_pool]) main_func = tir_mod["tvmgen_default_run_model"] buffer_info_analysis = tvm.tir.usmp.analysis.extract_buffer_info(main_func, tir_mod) buffer_info_array = fcreate_array_bi(buffer_info_analysis.buffer_info_stmts) for buffer_info in buffer_info_array: assert buffer_info in buffer_info_analysis.buffer_info_stmts.keys() if __name__ == "__main__": pytest.main([__file__] + sys.argv[1:])
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_transform_layout.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import functools import sys import pytest import numpy as np import tvm import tvm.testing from tvm import te from tvm.tir.stmt_functor import post_order_visit from tvm.driver.build_module import schedule_to_module dtype = tvm.testing.parameter("int32") def flatten_all_indices(preflatten_shape): def mapping(*indices): output = 0 for index, size in zip(indices, preflatten_shape): output = output * size + index return [output] return mapping def unpack_flattened_indices(preflatten_shape): def mapping(i): output = [] for dim in reversed(preflatten_shape): output.append(i % dim) i //= dim return output[::-1] return mapping def traverse(s, op, callback): visited = set() def _traverse(op): if op in visited: return visited.add(op) for tensor in op.input_tensors: _traverse(tensor.op) callback(op) _traverse(op) class TestCompareAgainstExplicitReshape: A_definition_style = tvm.testing.parameter( "explicit_reshape", "transform_layout", ) B_definition_style = tvm.testing.parameter( "explicit_reshape", "transform_layout", ) reordered_shape = tvm.testing.parameter((2, 3, 4)) @tvm.testing.fixture def n_items(self, reordered_shape): return functools.reduce(lambda x, y: x * y, reordered_shape, 1) @tvm.testing.fixture def fphysical_layout(self, reordered_shape): return unpack_flattened_indices(reordered_shape) @tvm.testing.fixture def fcompute(self, A_definition_style, B_definition_style, reordered_shape, n_items, dtype): assert A_definition_style in ["explicit_reshape", "transform_layout"] assert B_definition_style in ["explicit_reshape", "transform_layout"] def func(): if A_definition_style == "explicit_reshape": A_input = te.placeholder(shape=reordered_shape, name="A_input", dtype=dtype) A = te.compute( shape=(n_items,), fcompute=lambda i: A_input[ i // (reordered_shape[1] * reordered_shape[2]), (i // reordered_shape[2]) % reordered_shape[1], i % reordered_shape[2], ], name="A", ) elif A_definition_style == "transform_layout": A = te.placeholder(shape=(n_items,), name="A", dtype=dtype) A_input = A B = te.compute(shape=A.shape, fcompute=lambda i: A[i], name="B") if B_definition_style == "explicit_reshape": B_output = te.compute( shape=reordered_shape, fcompute=lambda i, j, k: B[ i * reordered_shape[1] * reordered_shape[2] + j * reordered_shape[2] + k ], name="B_output", ) elif B_definition_style == "transform_layout": B_output = B return A_input, B_output return func @tvm.testing.fixture def fschedule(self, A_definition_style, B_definition_style, fphysical_layout): def func(outs): outs = [outs] if isinstance(outs, te.tensor.Tensor) else outs s = te.create_schedule([x.op for x in outs]) def callback(op): if (op.name == "A" and A_definition_style == "transform_layout") or ( op.name == "B" and B_definition_style == "transform_layout" ): s[op].transform_layout(fphysical_layout) traverse(s, outs[0].op, callback) return s return func @tvm.testing.parametrize_targets("llvm") def test_external_reshape( self, target, dev, fcompute, fschedule, n_items, reordered_shape, dtype ): A, B = fcompute() s = fschedule(B) func = tvm.build(s, [A, B], target=target, name="copy_reshape") a_np = np.arange(n_items).reshape(reordered_shape).astype(dtype) b_np = np.arange(n_items).reshape(reordered_shape).astype(dtype) a = tvm.nd.array(a_np, dev) b = tvm.nd.empty(b_np.shape, dtype=dtype, device=dev) func(a, b) tvm.testing.assert_allclose(b.numpy(), b_np) @tvm.testing.parametrize_targets("llvm") def test_internal_reshape(self, target, dev, n_items, reordered_shape, dtype, fphysical_layout): # The reshaping of the buffer gets flattened away in # StorageFlatten. Therefore, testing the behavior by running only # ApplyLayoutTransforms. logical_shape = (n_items,) A = te.placeholder(logical_shape, name="A", dtype=dtype) B = te.compute(shape=logical_shape, fcompute=lambda i: A[i], name="B") C = te.compute(shape=logical_shape, fcompute=lambda i: B[i], name="C") s = te.create_schedule(C.op) s[B].transform_layout(fphysical_layout) mod = schedule_to_module(s, [A, C]) body = mod["main"].body def walk_buffer_interactions(stmt, callback): buffer_classes = [ tvm.tir.BufferLoad, tvm.tir.BufferStore, tvm.tir.BufferRealize, ] def inner(node): if (type(node) in buffer_classes) and node.buffer.name == "B": callback(node) post_order_visit(stmt, inner) # All references to the buffer are the same object def check_references(): buffer_object = None def inner(node): nonlocal buffer_object if buffer_object is None: buffer_object = node.buffer else: assert node.buffer.same_as(buffer_object) return inner # The buffer has the expected shape. def check_shape(expected_shape): def inner(node): assert tuple(node.buffer.shape) == expected_shape return inner # Before the transform, the buffer should be in the logical shape. walk_buffer_interactions(body, check_references()) walk_buffer_interactions(body, check_shape(logical_shape)) mod = tvm.tir.transform.ApplyLayoutTransforms()(mod) body = mod["main"].body # After the transform, the buffer should be in the physical shape. walk_buffer_interactions(body, check_references()) walk_buffer_interactions(body, check_shape(reordered_shape)) class Test2DPhysicalLayout: transform_A = tvm.testing.parameter( "1d_A", "2d_A", "2d_rev_A", "3d_A", ) transform_B = tvm.testing.parameter( "1d_B", "2d_B", "2d_rev_B", "3d_B", ) @staticmethod def extract_logical_indices(stmt): output = {} # Since the for loops can be reordered by the layout # transformation, identify the loop corresponding to each # pre-transformation axis based on the iteration extent. def callback(node): if isinstance(node, tvm.tir.For): output[node.loop_var] = node.extent.value post_order_visit(stmt, callback) return sorted(output, key=output.get) def get_transform(self, name): name = name[:-2] if name == "1d": return None elif name == "2d": return lambda i, j, k: [i, j, te.AXIS_SEPARATOR, k] elif name == "2d_rev": return lambda i, j, k: [k, j, te.AXIS_SEPARATOR, i] elif name == "3d": return lambda i, j, k: [i, te.AXIS_SEPARATOR, j, te.AXIS_SEPARATOR, k] else: raise ValueError(f"Unknown transformation: {name}") def transform_indices(self, name, logical_shape, logical_index_vars): name = name[:-2] i, j, k = logical_index_vars if name == "1d": return [i * (logical_shape[1] * logical_shape[2]) + j * logical_shape[2] + k] elif name == "2d": return [i * logical_shape[1] + j, k] elif name == "2d_rev": return [k * logical_shape[1] + j, i] elif name == "3d": return [i, j, k] else: raise ValueError(f"Unknown transformation: {name}") def test_2d_physical(self, dtype, transform_A, transform_B): logical_shape = (2, 3, 4) A = te.placeholder(shape=logical_shape, dtype=dtype, name="A") B = te.compute(shape=A.shape, fcompute=lambda i, j, k: A[i, j, k], name="B") s = te.create_schedule(B.op) func = self.get_transform(transform_A) if func: s[A].transform_layout(func) func = self.get_transform(transform_B) if func: s[B].transform_layout(func) # If the two buffers are accessed with the same indices, CSE # will replace them with a Let binding. Since this makes it # harder to test what the transformed indices are, disabling # the CSE pass for this test. with tvm.transform.PassContext(disabled_pass=["tir.CommonSubexprElimTIR"]): mod = tvm.lower(s, [A, B]) logical_index_vars = self.extract_logical_indices(mod["main"].body) expected_indices_A = self.transform_indices(transform_A, logical_shape, logical_index_vars) expected_indices_B = self.transform_indices(transform_B, logical_shape, logical_index_vars) def callback(node): if type(node) in [tvm.tir.BufferLoad, tvm.tir.BufferStore]: name = node.buffer.name if name == "A": expected_indices = expected_indices_A elif name == "B": expected_indices = expected_indices_B else: raise RuntimeError(f"Unexpected buffer: {name}") tvm.ir.assert_structural_equal(expected_indices, node.indices) post_order_visit(mod["main"].body, callback) class TestTransformedSchedules: logical_shape = tvm.testing.parameter((4, 6, 40)) transform_names = [ None, "reverse", "flatten_all", "factor_last_by_4", ] transform_A = tvm.testing.parameter(by_dict={f"A_{t}": t for t in transform_names}) transform_B = tvm.testing.parameter( by_dict={f"B_{t}": t for t in transform_names if t is not None} ) after_transform = tvm.testing.parameter(None) def make_transform(self, logical_shape, transform_name): if transform_name is None: return lambda *indices: indices elif transform_name == "reverse": return lambda *indices: indices[::-1] elif transform_name == "flatten_all": return flatten_all_indices(logical_shape) elif transform_name == "factor_last_by_4": return lambda *indices, n: [*indices, n // 4, n % 4] else: raise NotImplementedError(f"Unknown transformation {transform_name}") def make_transformed_shape(self, logical_shape, transform_name): if transform_name is None: return logical_shape elif transform_name == "reverse": return logical_shape[::-1] elif transform_name == "flatten_all": num_elements = functools.reduce(lambda x, y: x * y, logical_shape, 1) return [num_elements] elif transform_name == "factor_last_by_4": *indices, n = logical_shape return [*indices, n // 4, 4] else: raise NotImplementedError(f"Unknown transformation {transform_name}") @tvm.testing.fixture def expected_loop_order(self, logical_shape, transform_B, after_transform): shape = self.make_transformed_shape(logical_shape, transform_B) if after_transform == "reorder": shape = shape[::-1] elif after_transform == "split": shape = [ *shape[:-1], 2, shape[-1] // 2, ] elif after_transform == "fuse": fused_size = shape[0] if transform_B == "flatten_all" else shape[0] * shape[1] shape = [fused_size, *shape[2:]] return shape @tvm.testing.fixture def schedule(self, logical_shape, dtype, transform_A, transform_B, after_transform): A = te.placeholder(shape=logical_shape, dtype=dtype, name="A") B = te.compute(shape=A.shape, fcompute=lambda i, j, k: A[i, j, k], name="B") s = te.create_schedule(B.op) if transform_A: s[A].transform_layout(self.make_transform(logical_shape, transform_A)) iter_vars = s[B].transform_layout(self.make_transform(logical_shape, transform_B)) iter_vars = list(iter_vars) if after_transform == "reorder": s[B].reorder(*iter_vars[::-1]) elif after_transform == "split": s[B].split(iter_vars[-1], nparts=2) elif after_transform == "fuse": to_fuse = iter_vars[:2] s[B].fuse(*iter_vars[:2]) return { "schedule": s, "tensors": [A, B], "iter_vars": iter_vars, } def compare_tir_loop_order(self, stmt, expected_loop_order): def collect_loops(node): output = [] def callback(node): if isinstance(node, tvm.tir.For): output.append(node) post_order_visit(node, callback) return output[::-1] loops = collect_loops(stmt) loop_order = [loop.extent for loop in loops] np.testing.assert_array_equal(loop_order, expected_loop_order) def test_tir_loop_order(self, schedule, expected_loop_order): func = tvm.lower(schedule["schedule"], schedule["tensors"])["main"] self.compare_tir_loop_order(func.body, expected_loop_order) def test_te_loop_order(self, schedule, expected_loop_order): s = schedule["schedule"] A, B = schedule["tensors"] iter_vars = schedule["iter_vars"] # No reduction axis, so all leaf_iter_vars are over the data # array, and should have the new iteration variables. extents = [int(iter_var.dom.extent) for iter_var in s[B].leaf_iter_vars] np.testing.assert_array_equal(extents, expected_loop_order) # layout_transform should return the new iteration variables. extents = [int(iter_var.dom.extent) for iter_var in iter_vars] np.testing.assert_array_equal(extents, expected_loop_order) @pytest.mark.parametrize("after_transform", ["reorder", "split", "fuse"]) def test_use_transformed_axes( self, schedule, expected_loop_order, transform_A, transform_B, after_transform ): s = schedule["schedule"] A, B = schedule["tensors"] func = tvm.lower(s, [A, B])["main"] self.compare_tir_loop_order(func.body, expected_loop_order) class TestTransformCache: A_size = tvm.testing.parameter(16) transform_A = tvm.testing.parameter(by_dict={"transformA": True, "": False}) transform_B = tvm.testing.parameter(by_dict={"transformB": True, "": False}) cache_A = tvm.testing.parameter(by_dict={"cacheA": True, "": False}) cache_B = tvm.testing.parameter(by_dict={"cacheB": True, "": False}) @tvm.testing.fixture def schedule_args(self, target, A_size, transform_A, transform_B, cache_A, cache_B, dtype): A = te.placeholder(shape=[A_size], dtype=dtype, name="A") B = te.compute(A.shape, lambda i: A[i], name="B") s = te.create_schedule(B.op) requires_thread_bind = "gpu" in tvm.target.Target(target).keys thread_x = te.thread_axis("threadIdx.x") thread_y = te.thread_axis("threadIdx.y") thread_z = te.thread_axis("threadIdx.z") if cache_A: AA = s.cache_read(A, "shared", [B]) if requires_thread_bind: s[AA].bind(AA.op.axis[0], thread_x) if cache_B: BB = s.cache_write(B, "shared") if requires_thread_bind: s[BB].bind(BB.op.axis[0], thread_y) if transform_A: A_axis = s[A].transform_layout(lambda i: [i // 4, i % 4]) if transform_B: B_axis = s[B].transform_layout(lambda i: [i // 4, i % 4]) else: B_axis = B.op.axis if requires_thread_bind: s[B].bind(B_axis[0], thread_z) return [s, [A, B]] @tvm.testing.fixture def ref_data(self, A_size, dtype, transform_A, transform_B): a_np = (100 * np.random.uniform(size=A_size)).astype(dtype) b_np = a_np if transform_A: a_np = a_np.reshape((-1, 4)) if transform_B: b_np = b_np.reshape((-1, 4)) return a_np, b_np def test_lower(self, schedule_args): tvm.lower(*schedule_args) def test_execute(self, target, dev, schedule_args, ref_data, dtype): func = tvm.build(*schedule_args, target=target) a_np, b_np = ref_data a = tvm.nd.array(a_np, dev) b = tvm.nd.empty(b_np.shape, dtype=dtype, device=dev) func(a, b) if "int" in dtype: np.testing.assert_equal(b.numpy(), b_np) else: tvm.testing.assert_allclose(b.numpy(), b_np) def test_transform_with_reduction(): # To trigger this failure mode, the computation must use a # reduction axis, A = te.placeholder([16, 32, 64], dtype="float32", name="A") k = te.reduce_axis((0, A.shape[-1]), name="k") B = te.compute(A.shape[:-1], lambda i, j: te.sum(A[i, j, k], axis=[k])) s = te.create_schedule(B.op) # And the output of the computation must have a layout # transformation applied. s[B].transform_layout(lambda i, j: [j, i]) # When present, the failure occurred during tvm.lower, during the # call to `tvm::te::PassDownBitMaskOr`. tvm.lower(s, [A, B]) shape, transform = tvm.testing.parameters( ([1, 8], lambda n, i: [i, n]), ([1, 1, 8], lambda i, j, k: [j, te.AXIS_SEPARATOR, i, k]), ([1, 1, 8], lambda i, j, k: [i, te.AXIS_SEPARATOR, j, k]), ) def test_size_one_buffer(shape, transform): # This test is to catch a failure mode that occurred if a # transformation were applied to a te.compute buffer, and one of # the dimensions of the buffer was 1. Prior to bugfix, # arith::DetectIterMap would fold the variable as a constant, # causing an error when attempting to solve for the variable using # arith::InverseAffineIterMap. dtype = "int8" A = te.placeholder(shape, dtype, name="A") B = te.compute( shape=A.shape, fcompute=lambda *indices: A[indices].astype(dtype), name="B", ) s = te.create_schedule(B.op) # If layout transformation is on the output buffer, and any # dimension of the output buffer is 1, failure occurs in # CheckFusePattern. s[B].transform_layout(transform) def test_non_divisible_transform_raises_error(): A = te.placeholder([1, 3, 8, 8]) B = te.compute(A.shape, lambda *indices: A[indices]) s = te.create_schedule(B.op) transform = lambda n, c, h, w: [n, c // 4, h, w, c % 4] # Error occurs here, because the transformation would introduce # padding. Padded transforms are supported in TIR-based # schedules. with pytest.raises(tvm.TVMError): s[B].transform_layout(transform) if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tvm_testing_before_after.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm import tvm.testing from tvm.script import tir as T, ir_module class BaseBeforeAfter(tvm.testing.CompareBeforeAfter): def transform(self): return lambda x: x class TestBeforeAfterPrimFunc(BaseBeforeAfter): @T.prim_func def before(): T.evaluate(0) expected = before class TestBeforeAfterMethod(BaseBeforeAfter): def before(self): @T.prim_func def func(): T.evaluate(0) return func expected = before class TestBeforeAfterFixture(BaseBeforeAfter): @tvm.testing.fixture def before(self): @T.prim_func def func(): T.evaluate(0) return func expected = before class TestBeforeAfterDelayedPrimFunc(BaseBeforeAfter): def before(): T.evaluate(0) expected = before class TestBeforeAfterParametrizedFixture(BaseBeforeAfter): n = tvm.testing.parameter(1, 8, 16) @tvm.testing.fixture def before(self, n): @T.prim_func def func(A: T.Buffer[n, "float32"]): for i in T.serial(n): A[i] = 0.0 return func expected = before class TestBeforeAfterIRModule(BaseBeforeAfter): """The preferred form for writing TIR unit tests All evaluation is done at test-time, with the minimal amount of additional lines. The `@tvm.testing.fixture`, `@ir_module`, and `@T.prim_func` annotations are handled by `tvm.testing.CompareBeforeAfter`. """ class before: def func_A(A: T.Buffer[16, "float32"]): for i in T.serial(16): A[i] = 0.0 def func_B(A: T.Buffer[16, "int32"]): for i in T.serial(16): A[i] = 42 expected = before class TestBeforeAfterIRModuleExplicitFixture(BaseBeforeAfter): """Like TestBeforeAfterIRModule, but with an explicit fixture If the IRModule depends on additional fixtures, this form can be used. """ @tvm.testing.fixture def before(self): @ir_module class mod: @T.prim_func def func_A(A: T.Buffer[16, "float32"]): for i in T.serial(16): A[i] = 0.0 @T.prim_func def func_B(A: T.Buffer[16, "int32"]): for i in T.serial(16): A[i] = 42 return mod expected = before if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tvm_testing_features.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import os import sys import pytest import tvm.testing # This file tests features in tvm.testing, such as verifying that # cached fixtures are run an appropriate number of times. As a # result, the order of the tests is important. Use of --last-failed # or --failed-first while debugging this file is not advised. If # these tests are distributed/parallelized using pytest-xdist or # similar, all tests in this file should run sequentially on the same # node. (See https://stackoverflow.com/a/59504228) class TestTargetAutoParametrization: targets_used = [] devices_used = [] enabled_targets = [target for target, dev in tvm.testing.enabled_targets()] enabled_devices = [dev for target, dev in tvm.testing.enabled_targets()] def test_target_parametrization(self, target): assert target in self.enabled_targets self.targets_used.append(target) def test_device_parametrization(self, dev): assert dev in self.enabled_devices self.devices_used.append(dev) def test_all_targets_used(self): assert sorted(self.targets_used) == sorted(self.enabled_targets) def test_all_devices_used(self): sort_key = lambda dev: (dev.device_type, dev.device_id) assert sorted(self.devices_used, key=sort_key) == sorted(self.enabled_devices, key=sort_key) targets_with_explicit_list = [] @tvm.testing.parametrize_targets("llvm") def test_explicit_list(self, target): assert target == "llvm" self.targets_with_explicit_list.append(target) def test_no_repeats_in_explicit_list(self): if tvm.testing.device_enabled("llvm"): assert self.targets_with_explicit_list == ["llvm"] else: assert self.targets_with_explicit_list == [] targets_with_exclusion = [] @tvm.testing.exclude_targets("llvm") def test_exclude_target(self, target): assert "llvm" not in target self.targets_with_exclusion.append(target) def test_all_nonexcluded_targets_ran(self): assert sorted(self.targets_with_exclusion) == sorted( [target for target in self.enabled_targets if not target.startswith("llvm")] ) run_targets_with_known_failure = [] @tvm.testing.known_failing_targets("llvm") def test_known_failing_target(self, target): # This test runs for all targets, but intentionally fails for # llvm. The behavior is working correctly if this test shows # up as an expected failure, xfail. self.run_targets_with_known_failure.append(target) assert "llvm" not in target def test_all_targets_ran(self): assert sorted(self.run_targets_with_known_failure) == sorted(self.enabled_targets) @tvm.testing.known_failing_targets("llvm") @tvm.testing.parametrize_targets("llvm") def test_known_failing_explicit_list(self, target): assert target != "llvm" class TestJointParameter: param1_vals = [1, 2, 3] param2_vals = ["a", "b", "c"] independent_usages = 0 param1 = tvm.testing.parameter(*param1_vals) param2 = tvm.testing.parameter(*param2_vals) joint_usages = 0 joint_param_vals = list(zip(param1_vals, param2_vals)) joint_param_ids = ["apple", "pear", "banana"] joint_param1, joint_param2 = tvm.testing.parameters(*joint_param_vals, ids=joint_param_ids) def test_using_independent(self, param1, param2): type(self).independent_usages += 1 def test_independent(self): assert self.independent_usages == len(self.param1_vals) * len(self.param2_vals) def test_using_joint(self, joint_param1, joint_param2): type(self).joint_usages += 1 assert (joint_param1, joint_param2) in self.joint_param_vals def test_joint(self): assert self.joint_usages == len(self.joint_param_vals) def test_joint_test_id(self, joint_param1, joint_param2, request): param_string = ( request.node.name.replace(request.node.originalname, "") .replace("[", "") .replace("]", "") ) assert param_string in self.joint_param_ids class TestFixtureCaching: param1_vals = [1, 2, 3] param2_vals = ["a", "b", "c"] param1 = tvm.testing.parameter(*param1_vals) param2 = tvm.testing.parameter(*param2_vals) uncached_calls = 0 cached_calls = 0 @tvm.testing.fixture def uncached_fixture(self, param1): type(self).uncached_calls += 1 return 2 * param1 def test_use_uncached(self, param1, param2, uncached_fixture): assert 2 * param1 == uncached_fixture def test_uncached_count(self): assert self.uncached_calls == len(self.param1_vals) * len(self.param2_vals) @tvm.testing.fixture(cache_return_value=True) def cached_fixture(self, param1): type(self).cached_calls += 1 return 3 * param1 def test_use_cached(self, param1, param2, cached_fixture): assert 3 * param1 == cached_fixture def test_cached_count(self): cache_disabled = bool(int(os.environ.get("TVM_TEST_DISABLE_CACHE", "0"))) if cache_disabled: assert self.cached_calls == len(self.param1_vals) * len(self.param2_vals) else: assert self.cached_calls == len(self.param1_vals) class TestCachedFixtureIsCopy: param = tvm.testing.parameter(1, 2, 3, 4) @tvm.testing.fixture(cache_return_value=True) def cached_mutable_fixture(self): return {"val": 0} def test_modifies_fixture(self, param, cached_mutable_fixture): assert cached_mutable_fixture["val"] == 0 # The tests should receive a copy of the fixture value. If # the test receives the original and not a copy, then this # will cause the next parametrization to fail. cached_mutable_fixture["val"] = param class TestBrokenFixture: # Tests that use a fixture that throws an exception fail, and are # marked as setup failures. The tests themselves are never run. # This behavior should be the same whether or not the fixture # results are cached. num_uses_broken_uncached_fixture = 0 num_uses_broken_cached_fixture = 0 @tvm.testing.fixture def broken_uncached_fixture(self): raise RuntimeError("Intentionally broken fixture") @pytest.mark.xfail(True, reason="Broken fixtures should result in a failing setup", strict=True) def test_uses_broken_uncached_fixture(self, broken_uncached_fixture): type(self).num_uses_broken_fixture += 1 def test_num_uses_uncached(self): assert self.num_uses_broken_uncached_fixture == 0 @tvm.testing.fixture(cache_return_value=True) def broken_cached_fixture(self): raise RuntimeError("Intentionally broken fixture") @pytest.mark.xfail(True, reason="Broken fixtures should result in a failing setup", strict=True) def test_uses_broken_cached_fixture(self, broken_cached_fixture): type(self).num_uses_broken_cached_fixture += 1 def test_num_uses_cached(self): assert self.num_uses_broken_cached_fixture == 0 class TestAutomaticMarks: @staticmethod def check_marks(request, target): decorators = tvm.testing.plugin._target_to_requirement(target) required_marks = [decorator.mark for decorator in decorators] applied_marks = list(request.node.iter_markers()) for required_mark in required_marks: assert required_mark in applied_marks def test_automatic_fixture(self, request, target): self.check_marks(request, target) @tvm.testing.parametrize_targets def test_bare_parametrize(self, request, target): self.check_marks(request, target) @tvm.testing.parametrize_targets("llvm", "cuda", "vulkan") def test_explicit_parametrize(self, request, target): self.check_marks(request, target) @pytest.mark.parametrize("target", ["llvm", "cuda", "vulkan"]) def test_pytest_mark(self, request, target): self.check_marks(request, target) @pytest.mark.parametrize("target,other_param", [("llvm", 0), ("cuda", 1), ("vulkan", 2)]) def test_pytest_mark_covariant(self, request, target, other_param): self.check_marks(request, target) @pytest.mark.skipif( bool(int(os.environ.get("TVM_TEST_DISABLE_CACHE", "0"))), reason="Cannot test cache behavior while caching is disabled", ) class TestCacheableTypes: class EmptyClass: pass @tvm.testing.fixture(cache_return_value=True) def uncacheable_fixture(self): return self.EmptyClass() def test_uses_uncacheable(self, request): # Normally the num_tests_use_this_fixture would be set before # anything runs. For this test case only, because we are # delaying the use of the fixture, we need to manually # increment it. self.uncacheable_fixture.num_tests_use_this_fixture[0] += 1 with pytest.raises(TypeError): request.getfixturevalue("uncacheable_fixture") class ImplementsReduce: def __reduce__(self): return super().__reduce__() @tvm.testing.fixture(cache_return_value=True) def fixture_with_reduce(self): return self.ImplementsReduce() def test_uses_reduce(self, fixture_with_reduce): pass class ImplementsDeepcopy: def __deepcopy__(self, memo): return type(self)() @tvm.testing.fixture(cache_return_value=True) def fixture_with_deepcopy(self): return self.ImplementsDeepcopy() def test_uses_deepcopy(self, fixture_with_deepcopy): pass if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tvmscript_complete.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm from tvm.ir import Range from tvm.script import tir as T @T.prim_func def matmul(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [128, 128]) B = T.match_buffer(b, [128, 128]) C = T.match_buffer(c, [128, 128]) for i, j, k in T.grid(128, 128, 128): with T.block("update"): vi, vj, vk = T.axis.remap("SSR", [i, j, k]) with T.init(): C[vi, vj] = T.float32(0) C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vj, vk] @T.prim_func def matmul_original(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [128, 128]) B = T.match_buffer(b, [128, 128]) C = T.match_buffer(c, [128, 128]) for i, j in T.grid(32, 32): with T.block("init"): vi, vj = T.axis.remap("SS", [i, j]) for ii, jj in T.grid(4, 4): C[vi * 4 + ii, vj * 4 + jj] = T.float32(0) for k in range(0, 32): with T.block("update"): vi, vj, vk = T.axis.remap("SSR", [i, j, k]) for ii, jj, kk in T.grid(4, 4, 4): C[vi * 4 + ii, vj * 4 + jj] = ( C[vi * 4 + ii, vj * 4 + jj] + A[vi * 4 + ii, vk * 4 + kk] * B[vj * 4 + jj, vk * 4 + kk] ) @T.prim_func def elementwise_with_root(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [128, 128]) B = T.match_buffer(b, [128, 128]) C = T.match_buffer(c, [128, 128]) with T.block(): for i, j in T.grid(128, 128): with T.block(): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] + T.float32(1) for i, j in T.grid(128, 128): with T.block(): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = B[vi, vj] + T.float32(1) def func_with_opaque_block(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [128, 128]) B = T.match_buffer(b, [128, 128]) C = T.match_buffer(c, [128, 128]) with T.block(): with T.block(): B[0, 0] = A[0, 0] + T.float32(1) for i, j in T.grid(128, 128): with T.block(): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = B[vi, vj] + T.float32(1) @T.prim_func def func_with_part_access_region(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [128, 128]) B = T.match_buffer(b, [128, 128]) C = T.match_buffer(c, [128, 128]) with T.block(): for i, j in T.grid(128, 128): with T.block(): vi, vj = T.axis.remap("SS", [i, j]) T.reads(A[vi, vj]) B[vi, vj] = A[vi, vj] + T.float32(1) for i, j in T.grid(128, 128): with T.block(): vi, vj = T.axis.remap("SS", [i, j]) T.writes(C[vi, vj]) C[vi, vj] = B[vi, vj] + T.float32(1) def test_complete_matmul(): func = matmul A, B, C = [func.buffer_map[x] for x in func.params] block = func.body.block.body.body.body.body.block assert isinstance(block, tvm.tir.Block) vi, vj, vk = [x.var for x in block.iter_vars] access_A = tvm.tir.BufferRegion(A, [Range.from_min_extent(vi, 1), Range.from_min_extent(vk, 1)]) access_B = tvm.tir.BufferRegion(B, [Range.from_min_extent(vj, 1), Range.from_min_extent(vk, 1)]) access_C = tvm.tir.BufferRegion(C, [Range.from_min_extent(vi, 1), Range.from_min_extent(vj, 1)]) tvm.ir.assert_structural_equal(block.reads, [access_A, access_B]) tvm.ir.assert_structural_equal(block.writes, [access_C]) def test_complete_matmul_original(): func = matmul_original A, B, C = [func.buffer_map[x] for x in func.params] block1 = func.body.block.body.body.body[0].block assert isinstance(block1, tvm.tir.Block) vi, vj = [x.var for x in block1.iter_vars] access_C = tvm.tir.BufferRegion( C, [Range.from_min_extent(vi * 4, 4), Range.from_min_extent(vj * 4, 4)] ) tvm.ir.assert_structural_equal(block1.reads, []) tvm.ir.assert_structural_equal(block1.writes, [access_C]) block2 = func.body.block.body.body.body[1].body.block assert isinstance(block2, tvm.tir.Block) vi, vj, vk = [x.var for x in block2.iter_vars] access_A = tvm.tir.BufferRegion( A, [Range.from_min_extent(vi * 4, 4), Range.from_min_extent(vk * 4, 4)] ) access_B = tvm.tir.BufferRegion( B, [Range.from_min_extent(vj * 4, 4), Range.from_min_extent(vk * 4, 4)] ) access_C = tvm.tir.BufferRegion( C, [Range.from_min_extent(vi * 4, 4), Range.from_min_extent(vj * 4, 4)] ) tvm.ir.assert_structural_equal(block2.reads, [access_C, access_A, access_B]) tvm.ir.assert_structural_equal(block2.writes, [access_C]) def _check_elementwise(func): A, B, C = [func.buffer_map[x] for x in func.params] block1 = func.body.block.body[0].body.body.block assert isinstance(block1, tvm.tir.Block) vi, vj = [x.var for x in block1.iter_vars] tvm.ir.assert_structural_equal( block1.reads, [tvm.tir.BufferRegion(A, [Range.from_min_extent(vi, 1), Range.from_min_extent(vj, 1)])], ) tvm.ir.assert_structural_equal( block1.writes, [tvm.tir.BufferRegion(B, [Range.from_min_extent(vi, 1), Range.from_min_extent(vj, 1)])], ) block2 = func.body.block.body[1].body.body.block assert isinstance(block2, tvm.tir.Block) vi, vj = [x.var for x in block2.iter_vars] tvm.ir.assert_structural_equal( block2.reads, [tvm.tir.BufferRegion(B, [Range.from_min_extent(vi, 1), Range.from_min_extent(vj, 1)])], ) tvm.ir.assert_structural_equal( block2.writes, [tvm.tir.BufferRegion(C, [Range.from_min_extent(vi, 1), Range.from_min_extent(vj, 1)])], ) def test_complete_with_root(): _check_elementwise(elementwise_with_root) def test_complete_part_region(): _check_elementwise(func_with_part_access_region) @T.prim_func def func_with_bufferslice_indices(data: T.handle, index: T.handle) -> None: data_buf = T.match_buffer(data, (16, 16), "float32") index_buf = T.match_buffer(index, (1,), "int32") out_buf = T.alloc_buffer((16, 16), "float32") for i, j in T.grid(16, 16): with T.block(): vi, vj = T.axis.remap("SS", [i, j]) out_buf[vi, vj] = data_buf[vi, index_buf[0]] @T.prim_func def expected_bufferslice_indices(data: T.handle, index: T.handle) -> None: index_buf = T.match_buffer(index, [1], dtype="int32", elem_offset=0, align=64, offset_factor=1) data_buf = T.match_buffer(data, [16, 16], elem_offset=0, align=64, offset_factor=1) with T.block("root"): T.reads([]) T.writes([]) out_buf = T.alloc_buffer([16, 16], elem_offset=0, align=64, offset_factor=1) for i0, i1 in T.grid(16, 16): with T.block(): vi, vj = T.axis.remap("SS", [i0, i1]) T.reads([data_buf[vi, index_buf[0]], index_buf[0]]) T.writes([out_buf[vi, vj]]) out_buf[vi, vj] = data_buf[vi, index_buf[0]] @T.prim_func def func_with_recursive_bufferslice_indices(data: T.handle, index: T.handle) -> None: data_buf = T.match_buffer(data, (16, 16), "float32") index_buf = T.match_buffer(index, (1,), "int32") out_buf = T.alloc_buffer((16, 16), "float32") for i, j in T.grid(16, 16): with T.block(): vi, vj = T.axis.remap("SS", [i, j]) out_buf[vi, vj] = data_buf[index_buf[index_buf[0]], index_buf[0]] @T.prim_func def expected_recursive_bufferslice_indices(data: T.handle, index: T.handle) -> None: index_buf = T.match_buffer(index, [1], dtype="int32", elem_offset=0, align=64, offset_factor=1) data_buf = T.match_buffer(data, [16, 16], elem_offset=0, align=64, offset_factor=1) with T.block("root"): T.reads([]) T.writes([]) out_buf = T.alloc_buffer([16, 16], elem_offset=0, align=64, offset_factor=1) for i0, i1 in T.grid(16, 16): with T.block(): vi, vj = T.axis.remap("SS", [i0, i1]) T.reads( [ data_buf[index_buf[index_buf[0]], index_buf[0]], index_buf[T.min(index_buf[0], 0) : T.max(index_buf[0], 0) + 1], ] ) T.writes([out_buf[vi, vj]]) out_buf[vi, vj] = data_buf[index_buf[index_buf[0]], index_buf[0]] def test_complete_buffer_indices(): new_func = tvm.script.from_source(func_with_bufferslice_indices.script()) tvm.ir.assert_structural_equal(new_func, expected_bufferslice_indices) new_func = tvm.script.from_source(func_with_recursive_bufferslice_indices.script()) tvm.ir.assert_structural_equal(new_func, expected_recursive_bufferslice_indices) @T.prim_func def match_buffer_func(a: T.handle) -> None: A = T.match_buffer(a, (16, 16)) for i in range(0, 16): with T.block(): A0 = T.match_buffer(A[i, 0:16], (16)) with T.block(): for j in range(0, 16): with T.block(): A1 = T.match_buffer(A0[j], ()) A1[()] = 1.0 @T.prim_func def expected_match_buffer_func(a: T.handle) -> None: A = T.match_buffer(a, (16, 16)) for i in range(0, 16): with T.block(): T.reads([]) T.writes(A[i, 0:16]) A0 = T.match_buffer(A[i, 0:16], (16)) with T.block(): T.reads([]) T.writes(A0[0:16]) for j in range(0, 16): with T.block(): T.reads([]) T.writes(A0[j]) A1 = T.match_buffer(A0[j], ()) A1[()] = 1.0 def test_complete_match_buffer(): tvm.ir.assert_structural_equal(match_buffer_func, expected_match_buffer_func) @T.prim_func def alloc_buffer_func(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [2, 2], dtype="float32") B = T.match_buffer(b, [2, 2], dtype="float32") C = T.alloc_buffer([2, 2], dtype="float32") A[(0, 0)] = T.float32(2) C[(0, 0)] = A[(0, 0)] + B[(0, 0)] B[(0, 0)] = C[(0, 0)] @T.prim_func def expect_alloc_buffer_func(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [2, 2], dtype="float32", elem_offset=0, align=64, offset_factor=1) B = T.match_buffer(b, [2, 2], dtype="float32", elem_offset=0, align=64, offset_factor=1) with T.block("root"): T.reads([]) T.writes([]) C = T.alloc_buffer([2, 2], dtype="float32", elem_offset=0, align=64, offset_factor=1) A[(0, 0)] = T.float32(2) C[(0, 0)] = A[(0, 0)] + B[(0, 0)] B[(0, 0)] = C[(0, 0)] def test_complete_alloc_buffer(): rt_func = tvm.script.from_source(alloc_buffer_func.script(show_meta=True)) tvm.ir.assert_structural_equal(alloc_buffer_func, expect_alloc_buffer_func) if __name__ == "__main__": test_complete_matmul() test_complete_matmul_original() test_complete_with_root() test_complete_part_region() test_complete_buffer_indices() test_complete_match_buffer() test_complete_alloc_buffer()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tvmscript_error_report.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import inspect import re import pytest import tvm import tvm.testing from tvm import tir from tvm.ir.diagnostics import override_renderer from tvm.script import from_source from tvm.script import tir as T def check_error(func, rel_lineno): check_error_re = re.compile(r"^.*# check_error: (.+)$") """check if TIR script throws error""" # Override the default renderer to accumulate errors errors = [] def render(e): for d in e.diagnostics: errors.append(d) override_renderer(render) # The diagnostic context throws an exception when it gets an error try: source_code = inspect.getsource(func) indent = len(re.match(r"^\s*", source_code).group(0)) source_code = "@T.prim_func\n" + "\n".join( line[indent:] for line in source_code.splitlines() ) from_source(source_code) except tvm.error.DiagnosticError as e: pass assert len(errors) == 1, errors if rel_lineno is None: return error = errors[0] assert ( error.span.line - 1 == rel_lineno or error.span.line == rel_lineno ), f"Expected error to be on line {rel_lineno}, but it was on {error.span.line - 1}" error_line = source_code.split("\n")[rel_lineno] m = check_error_re.match(error_line) if m: expected_error_text = m.group(1) error = error.message assert ( expected_error_text == error ), f'check_error expects "{expected_error_text} in str(errors): {error}' def test_buffer_bind(): def buffer_bind_missing_args(a: T.handle) -> None: A = T.match_buffer((16, 16), "float32") # error check_error(buffer_bind_missing_args, 2) def test_undefined_buffer(): def undefined_buffer(a: T.handle) -> None: A = T.match_buffer(a, (16, 16), "float32") T.attr(A, "realize_scope", "") T.realize(C[0:16, 0:16], "") # error for i in T.serial(16): for j in T.serial(0, 16): A[i, j] = 0.0 check_error(undefined_buffer, 5) def test_unsupported_stmt(): def unsupported_stmt(a: T.int32) -> None: if a > 0: print("I love tvm") # error check_error(unsupported_stmt, 3) def test_unsupported_function_call(): def unsupported_function_call(a: T.handle) -> None: A = T.match_buffer(a, (16, 16), "float32") T.attr(A, "realize_scope", "") T.realize(A[0:16, 0:16], "") for i in T.const_range(16): # error for j in T.serial(0, 16): A[i, j] = 0.0 check_error(unsupported_function_call, 6) def test_missing_type_annotation(): def missing_type_annotation(a) -> None: # error T.evaluate(0.0) check_error(missing_type_annotation, 1) def test_invalid_for_function(): def invalid_for_function(a: T.handle) -> None: A = T.match_buffer(a, (16, 16), "float32") for i in T.evaluate(0.0): # error for j in T.serial(0, 16): A[i, j] = 0.0 check_error(invalid_for_function, 4) def test_invalid_block_function(): def invalid_block_function(a: T.handle) -> None: A = T.match_buffer(a, (16, 16), "float32") with T.evaluate(0.0): # error T.evaluate(1.0) check_error(invalid_block_function, 4) def test_return_not_allowed(): def return_not_allowed(a: T.handle) -> None: return T.evaluate(0) # error check_error(return_not_allowed, 2) def test_no_body(): def no_body(a: T.handle) -> None: A = T.match_buffer(a, (16, 16), "float32") T.realize(A, "") # error check_error(no_body, 3) def test_allocate_with_buffers(): def allocate_with_buffers() -> None: with T.allocate([1], "float32", "") as [A, B]: # error T.evaluate(1.0) check_error(allocate_with_buffers, 2) def test_inconsistent_binding(): def inconsistent_binding_value() -> None: for i, j in T.grid(16, 16): vi, vj = T.axis.remap("SS", [i]) # error T.evaluate(1.0) def inconsistent_binding_type() -> None: for i, j in T.grid(16, 16): vi, vj = T.axis.remap("S", [i, j]) # error T.evaluate(1.0) check_error(inconsistent_binding_value, 3) check_error(inconsistent_binding_type, 3) def test_error_remap_args(): def error_remap_type() -> None: for i, j in T.grid(16, 16): with T.block(): vi, vj = T.axis.remap("TT", [i, j]) # error T.evaluate(1.0) def error_remap_value() -> None: for i, j in T.grid(16, 16): with T.block(): vi, vj = T.axis.remap("SS", [i + j, j]) # error T.evaluate(1.0) check_error(error_remap_type, 4) check_error(error_remap_value, 4) def test_invalid_block_axes(): def invalid_block_axes(a: T.handle) -> None: A = T.match_buffer(a, (16, 16), "float32") for i, j in T.grid(16, 16): with T.block(): vi = T.axis.S(i, A) # error T.evaluate(1.0) check_error(invalid_block_axes, 5) def test_duplicate_block_axes(): def duplicate_block_axes() -> None: for i, j in T.grid(16, 16): with T.block(): vi = T.axis.S(16, i) vi = T.axis.S(16, j) # error T.evaluate(1.0) def duplicate_block_axes_remap() -> None: for i, j in T.grid(16, 16): with T.block(): vi, vi = T.axis.remap("SS", [i, j]) # error T.evaluate(1.0) check_error(duplicate_block_axes, 5) check_error(duplicate_block_axes_remap, 4) def test_miss_block_bind(): def miss_block_bind_value() -> None: for i, j in T.grid(128, 128): with T.block(): vi = T.axis.S(i) # error T.evaluate(1.0) check_error(miss_block_bind_value, 4) def test_invalid_loop_var(): def invalid_loop_var() -> None: for i, j in range(0, 16): # error T.evaluate(1.0) check_error(invalid_loop_var, 2) def test_inconsistent_grid(): def inconsistent_grid() -> None: for i in T.grid(16, 16): # error T.evaluate(1.0) check_error(inconsistent_grid, 2) def test_invalid_match_buffer_region(): def invalid_match_buffer_region() -> None: for i, j in T.grid(128, 128): with T.block(): vi, vj = T.axis.remap("SS", [i, j]) A = T.match_buffer(vi) # error T.evaluate(1.0) check_error(invalid_match_buffer_region, 5) def test_duplicate_buffer(): def duplicate_buffer() -> None: A = T.alloc_buffer((128, 128), "float32") A = T.alloc_buffer((128, 128), "float32") # error check_error(duplicate_buffer, 3) def test_duplicate_block_signature(): def duplicate_reads() -> None: A = T.alloc_buffer((128, 128), "float32") for i, j in T.grid(128, 128): with T.block(): vi, vj = T.axis.remap("SS", [i, j]) T.reads(A[0:8, 0:8]) T.reads(A[0:16, 0:16]) # error T.evaluate(1.0) def duplicate_writes() -> None: A = T.alloc_buffer((128, 128), "float32") for i, j in T.grid(128, 128): with T.block(): vi, vj = T.axis.remap("SS", [i, j]) T.writes(A[0:8, 0:8]) T.writes(A[0:16, 0:16]) # error T.evaluate(1.0) def duplicate_predicate() -> None: for i, j in T.grid(16, 16): with T.block(): vi, vj = T.axis.remap("SS", [i, j]) T.where(1) T.where(0) # error def duplicate_annotations() -> None: for i, j in T.grid(16, 16): with T.block(): vi, vj = T.axis.remap("SS", [i, j]) T.block_attr({}) T.block_attr({}) # error def duplicate_init() -> None: for i, j in T.grid(16, 16): with T.block(): vi, vj = T.axis.remap("SS", [i, j]) with T.init(): T.evaluate(1.0) with T.init(): # error T.evaluate(1.0) def duplicate_axes() -> None: for i, j in T.grid(16, 16): with T.block(): vi, vj = T.axis.remap("SS", [i, j]) vi = T.axis.S(i, 16) # error T.evaluate(1.0) check_error(duplicate_reads, 7) check_error(duplicate_writes, 7) check_error(duplicate_predicate, 6) check_error(duplicate_annotations, 6) check_error(duplicate_init, 7) check_error(duplicate_axes, 5) def test_opaque_access_during_complete(): def opaque_access_during_complete(a: T.handle) -> None: # error A = T.match_buffer(a, (16, 16), "float32") for i, j in T.grid(16, 16): with T.block(): T.evaluate(T.call_extern("dummy_extern_function", A.data, dtype="int32")) check_error(opaque_access_during_complete, None) def test_convert_slice_to_bufferload(): def convert_slice_to_bufferload() -> None: A = T.alloc_buffer((128, 128), "float32") for i, j in T.grid(128, 128): with T.block(): vi, vj = T.axis.remap("SS", [i, j]) A[vi, vj] = A[vi : vi + 2, vj] + 1 # error check_error(convert_slice_to_bufferload, 6) def test_tvm_exception_catch(): def special_stmt_except() -> None: A = T.alloc_buffer("(128, 128)", "float32") # error T.evaluate(1.0) def scope_handler_except() -> None: for i in T.serial("1", "1"): # error T.evaluate(1) def intrin_except_unassign(a: T.handle) -> None: A = T.match_buffer(a, (16, 16), "float32") T.evaluate(A) # error def intrin_except_assign(a: T.handle) -> None: A = T.match_buffer(a, (16, 16), "float32") A[0, 0] = A[A] # error check_error(special_stmt_except, 2) check_error(scope_handler_except, 2) check_error(intrin_except_unassign, 3) check_error(intrin_except_assign, 3) def test_match_buffer_shape_mismatch(): def buffer_shape_mismatch(a: T.handle) -> None: A = T.match_buffer(a, (8, 8)) for i, j in T.grid(8, 2): with T.block(): T.reads([]) T.writes([A[i, j * 4 : j * 4 + 4]]) sub_A = T.match_buffer( A[i, j * 4 : j * 4 + 4], (5) ) # error: shape mismatched between 4 and 5 for jj in range(0, 4): sub_A[i, j * 4 + jj] = 1 check_error(buffer_shape_mismatch, 7) def test_high_dim_store(): def high_dim_store() -> None: with T.block("root"): B = T.allocate([256], "float32", "global") for i, j in T.grid(16, 16): B[i, j] = 1.0 # error: Store is only allowed with one index check_error(high_dim_store, 5) def test_block_has_option_vars(): def block_has_option_vars() -> None: with T.block("root") as x: # error: block does not support option_vars T.evaluate(0.0) check_error(block_has_option_vars, 2) def test_implicit_root_has_attrs(): def implicit_root_has_read(): T.reads([]) # error: implicit root does not support reads T.evaluate(0.0) def implicit_root_has_write(): T.writes([]) # error: implicit root does not support writes T.evaluate(0.0) def implicit_root_has_attrs(): T.block_attr({}) # error: implicit root does not support block_attr T.evaluate(0.0) def implicit_root_has_predicate(): T.where(True) # error: implicit root does not support predicate T.evaluate(0.0) def implicit_root_has_axes(): v = T.axis.S(0, 0) # error: implicit root does not support axis define T.evaluate(0.0) check_error(implicit_root_has_read, 2) check_error(implicit_root_has_write, 2) check_error(implicit_root_has_attrs, 2) check_error(implicit_root_has_predicate, 2) check_error(implicit_root_has_axes, 2) @T.prim_func def elementwise_not_affine(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128, 128, 128)) B = T.match_buffer(b, (128, 128, 128, 128)) for i, j, k, l in T.grid(128, 128, 128, 8): with T.block("B"): vi, vj, vk = T.axis.remap("SSS", [i, j, k]) vl = T.axis.S(128, l * 16) B[vi, vj, vk, vl] = A[vi, vj, vk, vl] * 2.0 @T.prim_func def elementwise_non_single_branch(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128, 128)) C = T.alloc_buffer((128, 128, 128)) B = T.match_buffer(b, (128, 128, 128)) for i, j in T.grid(128, 128): for k in T.serial(0, 128): with T.block("C"): vi, vj, vk = T.axis.remap("SSS", [i, j, k]) C[vi, vj, vk] = A[vi, vj, vk] * 2.0 for k in T.serial(0, 128): with T.block("B"): vi, vj, vk = T.axis.remap("SSS", [i, j, k]) B[vi, vj, vk] = C[vi, vj, vk] * 2.0 def test_reorder_fail_block(): sch = tir.Schedule(elementwise_not_affine, debug_mask="all") block_b = sch.get_block("B") i, j, k, l = sch.get_loops(block_b) with pytest.raises(tvm.tir.ScheduleError) as execinfo: sch.reorder(l, i) expected_sub_error_message = ( " # tir.Block#0\n" ' with T.block("B"):\n' " ^^^^^^^^^^^^^^^^^^\n" ) assert expected_sub_error_message in str(execinfo.value) def test_reorder_fail_nested_loop_inner(): sch = tir.Schedule(elementwise_non_single_branch, debug_mask="all") block_b = sch.get_block("B") i, j, k = sch.get_loops(block_b) with pytest.raises(tvm.tir.ScheduleError) as execinfo: sch.reorder(k, i) expected_sub_error_message = ( " for i in T.serial(128):\n" " # tir.For#0\n" " for j in T.serial(128):\n" " ^^^^^^^^^^^^^^^^^^^^^^^\n" ) assert expected_sub_error_message in str(execinfo.value) def test_fuse_fail_nested_loop_outer(): sch = tir.Schedule(elementwise_non_single_branch, debug_mask="all") block_b = sch.get_block("B") i, j, k = sch.get_loops(block_b) with pytest.raises(tvm.tir.ScheduleError) as execinfo: sch.fuse(k, i) expected_sub_error_message = ( " # tir.For#1\n" " for i in T.serial(128):\n" " ^^^^^^^^^^^^^^^^^^^^^^^\n" " for j in T.serial(128):\n" ) assert expected_sub_error_message in str(execinfo.value) def test_report_error_root_block(): sch = tir.Schedule(elementwise_non_single_branch, debug_mask="all") root = sch.get_block("root") with pytest.raises(tvm.tir.ScheduleError) as execinfo: sch.compute_inline(root) expected_sub_error_message = ( " # tir.Block#0\n" ' with T.block("root"):\n' " ^^^^^^^^^^^^^^^^^^^^^\n" ) assert expected_sub_error_message in str(execinfo.value) def test_load_var(): def load_var_multiple() -> None: d = T.var("float32") d[2] = d[2, 1] # error cannot provide two indices to load check_error(load_var_multiple, 3) def test_store_var(): def store_var_multiple() -> None: d = T.var("float32") d[2, 1] = d[1] # error cannot provide two indices to store check_error(store_var_multiple, 3) def test_load_handle(): def load_handle(h: T.handle) -> None: h_ = T.match_buffer(h, [1]) h_[0] = h[0] # error cannot load from handle check_error(load_handle, 3) def test_store_handle(): def store_handle(h: T.handle) -> None: h_ = T.match_buffer(h, [1]) h[0] = h_[0] # error cannot store to handle check_error(store_handle, 3) def test_binop_bad_ast_type(): def binop_bad_ast_type(h: T.handle): h_ = T.match_buffer(h, [1]) h_[0] = h + [2] # error rhs should be a primexpr check_error(binop_bad_ast_type, 3) def test_binop_bad_type(): def binop_bad_type(h: T.handle): h_ = T.match_buffer(h, [1]) h_[0] = h + 2 # error lhs and rhs should be the same type check_error(binop_bad_type, 3) def test_non_integer_typed_block_iter(): def non_integer_typed_block_iter(): with T.block(): i = T.axis.S(0.1, 0.1) # error IterVar requires an integer dtype check_error(non_integer_typed_block_iter, 3) def test_preflattened_buffer_map_align(): def preflattened_buffer_map_align_nonint(foo: T.handle): foo_1 = T.match_buffer(foo, [1]) T.preflattened_buffer( foo_1, [1], align="bar" ) # check_error: align: want int or IntImm, got 'bar' check_error(preflattened_buffer_map_align_nonint, 3) def test_preflattened_buffer_map_offset_factor(): def preflattened_buffer_map_offset_factor_nonint(foo: T.handle): foo_1 = T.match_buffer(foo, [1]) T.preflattened_buffer( foo_1, [1], offset_factor="bar" ) # check_error: offset_factor: want int or IntImm, got 'bar' check_error(preflattened_buffer_map_offset_factor_nonint, 3) def test_illegal_buffer_slice(): def strided_buffer_region(A: T.handle): # do not allow stride in buffer region A = T.match_buffer((128, 128), "int32") with T.block(): T.reads([]) T.writes([A[0:128:2, 0:128:3]]) # error T.evaluate(T.call_extern("strided_compute", dtype="")) def access_reversed_slice(A: T.handle): # do not allow reversed slice step A = T.match_buffer((128,), "int32") A[0:128:-1] = T.broadcast(1, 128) # error def access_non_const_slice_length(A: T.handle): # do not allow non-constant slice length A = T.match_buffer((128,), "int32") for i in range(4): T.evaluate(A[0:i:1]) # error check_error(strided_buffer_region, 3) check_error(access_reversed_slice, 3) check_error(access_non_const_slice_length, 3) def test_syntax_sugar_fail(): def loop_syntax_sugar_fail(a: T.handle) -> None: A = T.match_buffer(a, (128,)) for i in T.thread_binding(128, 128): A[i] = A[i] * 2.0 check_error(loop_syntax_sugar_fail, 3) if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tvmscript_ir_builder_base.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Unittests for tvm.script.ir_builder.base""" import pytest from tvm.script.ir_builder import IRBuilder def test_ir_builder_scope(): with IRBuilder() as ib: # pylint: disable=invalid-name assert IRBuilder.current() == ib def test_ir_builder_multi_scope(): with IRBuilder() as ib: # pylint: disable=invalid-name with IRBuilder() as ib2: # pylint: disable=invalid-name assert IRBuilder.current() == ib2 assert IRBuilder.current() == ib def test_ir_builder_no_scope(): with pytest.raises(ValueError): IRBuilder.current() if __name__ == "__main__": test_ir_builder_scope() test_ir_builder_multi_scope() test_ir_builder_no_scope()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tvmscript_ir_builder_irmodule.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Unittests for tvm.script.ir_builder.ir""" import pytest import tvm.testing from tvm.script.ir_builder import IRBuilder from tvm.script.ir_builder import ir as I from tvm import ir from tvm.ir.base import assert_structural_equal def test_ir_builder_irmodule(): with IRBuilder() as ib: # pylint: disable=invalid-name with I.ir_module(): pass # the ir_module generated by IRBuilder ir_module_actual = ib.get() # the expected prim_func ir_module_expected = ir.IRModule(None, None) assert_structural_equal(ir_module_actual, ir_module_expected, map_free_vars=True) if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tvmscript_ir_builder_tir.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, missing-docstring """Unittests for tvm.script.ir_builder.tir""" import numpy as np import pytest import tvm import tvm.testing from tvm import tir from tvm.ir.base import assert_structural_equal from tvm.runtime import ndarray from tvm.script.ir_builder import IRBuilder from tvm.script.ir_builder import tir as T def test_ir_builder_tir_primfunc_base(): with IRBuilder() as ib: with T.prim_func(): T.evaluate(0) # the prim_func generated by IRBuilder prim_func_actual = ib.get() # the expected prim_func prim_func_expected = tir.PrimFunc( params=[], body=tir.Evaluate(0), ret_type=None, buffer_map=None, preflattened_buffer_map=None, attrs=None, ) # Check if the generated ir is expected assert_structural_equal(prim_func_actual, prim_func_expected, map_free_vars=True) def test_ir_builder_tir_primfunc_complete(): with IRBuilder() as ib: with T.prim_func(): T.arg("a", T.handle()) T.arg("b", T.var("int64")) T.arg("c", T.buffer_decl((128, 128), "float32")) d = T.arg("d", T.handle()) e = T.arg("e", T.buffer_decl((1024,), "int8")) T.func_attr({"key": "value"}) T.func_ret(tvm.ir.PrimType("int64")) buffer_d = T.match_buffer(d, (64, 64), "int64") T.preflattened_buffer(e, (32, 32), "int8", data=e.data) T.evaluate(0) # the prim_func generated by IRBuilder prim_func_actual = ib.get() # the expected prim_func c_handle, c_buffer = tir.Var("c_handle", "handle"), tir.decl_buffer( (128, 128), "float32", name="c" ) d_handle, d_buffer = tir.Var("d", "handle"), tir.decl_buffer((64, 64), "int64", name="d") e_handle, e_buffer = tir.Var("e_handle", "handle"), tir.decl_buffer((1024,), "int8", name="e") prim_func_expected = tir.PrimFunc( params=[ tir.Var("a", "handle"), tir.Var("b", "int64"), c_handle, d_handle, e_handle, ], body=tir.Evaluate(0), ret_type=tvm.ir.PrimType("int64"), buffer_map={c_handle: c_buffer, d_handle: d_buffer, e_handle: e_buffer}, preflattened_buffer_map={ e_handle: tir.decl_buffer((32, 32), "int8", name="e_preflatten", data=e_buffer.data) }, attrs=tvm.ir.make_node("DictAttrs", key="value"), ) # Check if the generated ir is expected assert_structural_equal(prim_func_actual, prim_func_expected, map_free_vars=True) def test_ir_builder_tir_block_base(): with IRBuilder() as ib: with T.block("block"): T.evaluate(0) # the block generated by IRBuilder block_realize_actual = ib.get() # the expected block block_expected = tir.Block( iter_vars=[], reads=[], writes=[], name_hint="block", body=tir.Evaluate(0), alloc_buffers=None, match_buffers=None, annotations={"tir.script_parsing_detect_access": tir.IntImm("int64", 3)}, ) block_realize_expected = tir.BlockRealize( iter_values=[], predicate=True, block=block_expected, ) # Check if the generated ir is expected assert_structural_equal(block_realize_actual, block_realize_expected, map_free_vars=True) def test_ir_builder_tir_block_complete(): with IRBuilder() as ib: a = T.var("int64", "a") b = T.buffer_decl((128, 128), "float32") c = T.buffer_decl((128, 128), "float32") d = T.var("int32", "d") e = T.buffer_decl((128, 128), "float32") f = T.var("int32", "f") with T.block("block"): T.where(a > 1) T.reads(b[0:16, 0:16]) T.writes(c[d:128, d:128]) T.block_attr({"key": "value"}) T.alloc_buffer((128, 128), "float32") T.match_buffer(e[0:32, 0:32], (32, 32), "float32") T.axis.spatial(128, f) T.evaluate(0) # the block generated by IRBuilder block_realize_actual = ib.get() # the expected block var_a = tir.Var("a", "int64") buffer_b = tir.decl_buffer((128, 128), "float32", name="b") buffer_c = tir.decl_buffer((128, 128), "float32", name="c") var_d = tir.Var("d", "int32") buffer_e = tir.decl_buffer((128, 128), "float32", name="c") var_f = tir.Var("f", "int32") block_expected = tir.Block( iter_vars=[tir.IterVar((0, 128), tir.Var("", "int32"), iter_type=tir.IterVar.DataPar)], reads=[buffer_b[0:16, 0:16]], writes=[buffer_c[var_d:128, var_d:128]], name_hint="block", body=tir.Evaluate(0), alloc_buffers=[tir.decl_buffer((128, 128), "float32")], match_buffers=[ tir.MatchBufferRegion(tir.decl_buffer((32, 32), "float32"), buffer_e[0:32, 0:32]) ], annotations={"key": "value"}, ) block_realize_expected = tir.BlockRealize( iter_values=[var_f], predicate=var_a > 1, block=block_expected, ) # Check if the generated ir is expected assert_structural_equal(block_realize_actual, block_realize_expected, map_free_vars=True) def test_ir_builder_tir_axis(): with IRBuilder() as ib: a = T.var("int32", "a") b = T.var("int32", "b") c = T.var("int32", "c") d = T.var("int32", "d") with T.block("block"): T.axis.spatial(8, a) T.axis.reduce(16, b) T.axis.scan(32, c) T.axis.opaque(64, d) T.evaluate(0) # the block generated by IRBuilder block_realize_actual = ib.get() # the expected block var_a = tir.Var("a", "int32") var_b = tir.Var("b", "int32") var_c = tir.Var("c", "int32") var_d = tir.Var("d", "int32") block_expected = tir.Block( iter_vars=[ tir.IterVar((0, 8), tir.Var("", "int32"), iter_type=tir.IterVar.DataPar), tir.IterVar((0, 16), tir.Var("", "int32"), iter_type=tir.IterVar.CommReduce), tir.IterVar((0, 32), tir.Var("", "int32"), iter_type=tir.IterVar.Ordered), tir.IterVar((0, 64), tir.Var("", "int32"), iter_type=tir.IterVar.DimInfo), ], reads=[], writes=[], name_hint="block", body=tir.Evaluate(0), annotations={"tir.script_parsing_detect_access": tir.IntImm("int64", 3)}, ) block_realize_expected = tir.BlockRealize( iter_values=[var_a, var_b, var_c, var_d], predicate=True, block=block_expected, ) # Check if the generated ir is expected assert_structural_equal(block_realize_actual, block_realize_expected, map_free_vars=True) def test_ir_builder_tir_for(): with IRBuilder() as ib: with T.serial(128) as a: with T.parallel(64) as b: with T.vectorized(32) as c: with T.unroll(16) as d: with T.thread_binding(8, thread="threadIdx.x") as e: T.evaluate(0) # the for generated by IRBuilder for_actual = ib.get() # the expected for thread_binding_expected = tir.For( loop_var=tir.Var("", "int32"), min_val=0, extent=8, kind=tir.ForKind.THREAD_BINDING, body=tir.Evaluate(0), thread_binding=tir.IterVar( None, tir.Var("", "int32"), tir.IterVar.ThreadIndex, "threadIdx.x" ), ) unroll_expected = tir.For( loop_var=tir.Var("", "int32"), min_val=0, extent=16, kind=tir.ForKind.UNROLLED, body=thread_binding_expected, ) vectorized_expected = tir.For( loop_var=tir.Var("", "int32"), min_val=0, extent=32, kind=tir.ForKind.VECTORIZED, body=unroll_expected, ) parallel_expected = tir.For( loop_var=tir.Var("", "int32"), min_val=0, extent=64, kind=tir.ForKind.PARALLEL, body=vectorized_expected, ) for_expected = tir.For( loop_var=tir.Var("", "int32"), min_val=0, extent=128, kind=tir.ForKind.SERIAL, body=parallel_expected, ) # Check if the generated ir is expected assert_structural_equal(for_actual, for_expected, map_free_vars=True) def test_ir_builder_tir_assert(): with IRBuilder() as ib: with T.Assert(T.var("int32", name="a") == 0, message="a is 0"): T.evaluate(0) # the assert generated by IRBuilder assert_actual = ib.get() # the expected assert statement assert_expected = tir.AssertStmt( T.var("int32", name="a") == 0, tir.StringImm("a is 0"), tir.Evaluate(0) ) # Check if the generated ir is expected assert_structural_equal(assert_actual, assert_expected, map_free_vars=True) def test_ir_builder_tir_let(): with IRBuilder() as ib: with T.let(T.var("int32", name="a"), tir.IntImm("int32", 2)): T.evaluate(0) # the let binding generated by IRBuilder let_actual = ib.get() # the expected Let statement let_expected = tir.LetStmt(T.var("int32", name="a"), tir.IntImm("int32", 2), tir.Evaluate(0)) # Check if the generated ir is expected assert_structural_equal(let_actual, let_expected, map_free_vars=True) def test_ir_builder_tir_realize(): buffer_a = T.buffer_decl((128, 128), "float32") with IRBuilder() as ib: with T.realize(buffer_a[0:128, 0:128], "test_storage_scope", True): T.evaluate(0) # the buffer realization generated by IRBuilder realize_actual = ib.get() # the expected buffer realization buffer_realize = tir.BufferRealize( buffer_a, [tvm.ir.Range(0, 128), tvm.ir.Range(0, 128)], True, tir.Evaluate(0) ) expected_realize = tir.AttrStmt( buffer_a, "realize_scope", tir.StringImm("test_storage_scope"), buffer_realize ) # Check if the generated ir is expected assert_structural_equal(realize_actual, expected_realize, map_free_vars=True) def test_ir_builder_tir_thread(): with IRBuilder() as ib: with T.prim_func(): brow = T.env_thread("blockIdx.y") with T.launch_thread(brow, 1): T.evaluate(0) # the prim_func generated by IRBuilder ir_actual = ib.get() # the expected prim_func iter_var = tir.IterVar((0, 1), "v", iter_type=1, thread_tag="blockIdx.y") attr_stmt = tir.AttrStmt(iter_var, "thread_extent", 1, tir.Evaluate(0)) func = tir.PrimFunc([], attr_stmt) # Check if the generated ir is expected assert_structural_equal(ir_actual, func, map_free_vars=True) def test_ir_builder_tir_allocate(): with IRBuilder() as ib: with T.allocate([10], "float32", scope="local"): T.evaluate(1) # the allocate generated by IRBuilder ir_actual = ib.get() # the expected allocate buffer_var = tir.Var("v", tvm.ir.PointerType(tvm.ir.PrimType("float32"), "local")) ir_expected = tir.Allocate( buffer_var, "float32", [10], tvm.tir.const(1, "uint1"), tir.Evaluate(1) ) # Check if the generated ir is expected assert_structural_equal(ir_actual, ir_expected, map_free_vars=True) def test_ir_builder_tir_allocate_const(): data = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] with IRBuilder() as ib: with T.allocate_const(data, "int32", [10]): T.evaluate(1) # the allocate const generated by IRBuilder ir_actual = ib.get() # the expected allocate const buffer_var = tir.Var("v", tvm.ir.PointerType(tvm.ir.PrimType("int32"))) ir_expected = tir.AllocateConst( buffer_var, "int32", [10], ndarray.array(np.asarray(data, "int32")), tir.Evaluate(1), annotations={}, ) # Check if the generated ir is expected assert_structural_equal(ir_actual, ir_expected, map_free_vars=True) def test_ir_builder_tir_while(): with IRBuilder() as ib: with T.While(T.var("int32", "x") > 0): T.evaluate(0) # the while generated by IRBuilder ir_actual = ib.get() # the expected while ir_expected = tir.While(tir.Var("x", "int32") > 0, tir.Evaluate(0)) # Check if the generated ir is expected assert_structural_equal(ir_actual, ir_expected, map_free_vars=True) def test_ir_builder_tir_if_then_else(): with IRBuilder() as ib: with T.If(T.var("int32", "c") < 12): with T.Then(): T.evaluate(T.int32(0)) with T.Else(): T.evaluate(T.int32(1)) # the if_then_else generated by IRBuilder ir_actual = ib.get() # the expected if_then_else ir_expected = tir.IfThenElse( tir.Var("c", "int32") < 12, tir.Evaluate(tir.IntImm("int32", 0)), tir.Evaluate(tir.IntImm("int32", 1)), ) # Check if the generated ir is expected assert_structural_equal(ir_actual, ir_expected, map_free_vars=True) def test_ir_builder_tir_buffer_store(): buffer_a = T.buffer_decl((10, 10), "float32") i = T.var("int32", "x") with IRBuilder() as ib: T.buffer_store(buffer_a, 0.1, [0, i]) # the buffer store generated by IRBuilder ir_actual = ib.get() # the expected buffer store ir_expected = tir.BufferStore(buffer_a, 0.1, [0, i]) # Check if the generated ir is expected assert_structural_equal(ir_actual, ir_expected, map_free_vars=True) def test_ir_builder_tir_prefetch(): with IRBuilder() as ib: buffer_a = T.buffer_decl((128, 128), "float32") T.prefetch(buffer_a, []) # the prefetch generated by IRBuilder ir_actual = ib.get() # the expected prefetch ir_expected = tir.Prefetch(buffer_a, []) # Check if the generated ir is expected assert_structural_equal(ir_actual, ir_expected, map_free_vars=True) def test_ir_builder_tir_evaluate(): with IRBuilder() as ib: T.evaluate(0) # the evaluate generated by IRBuilder eval_actual = ib.get() # the expected evaluate eval_expected = tir.Evaluate(0) # Check if the generated ir is expected assert_structural_equal(eval_actual, eval_expected, map_free_vars=True) def test_ir_builder_tir_decl_buffer(): with IRBuilder() as ib: with T.decl_buffer([128, 128], "float32"): T.evaluate(0) # the decl_buffer generated by IRBuilder ir_actual = ib.get() # the expected decl_buffer buffer = T.buffer_decl((128, 128), "float32") ir_expected = tir.Allocate( buffer.data, "float32", (128, 128), tir.IntImm("bool", True), tir.DeclBuffer(buffer, tir.Evaluate(0)), ) # Check if the generated ir is expected assert_structural_equal(ir_actual, ir_expected, map_free_vars=True) def test_ir_builder_tir_inline(): with IRBuilder() as ib: m, n = T.meta_var(1), T.meta_var(2) a, b = T.meta_var([3, 4]) T.evaluate(m.value + n.value + a.value + b.value) # the evaluate generated by IRBuilder eval_actual = ib.get() # the expected evaluate eval_expected = tir.Evaluate(10) # Check if the generated ir is expected assert_structural_equal(eval_actual, eval_expected, map_free_vars=True) if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tvmscript_meta_programming.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm from tvm.script import tir as T def matmul_generator(M: int, N: int, K: int, dtype: str): @T.prim_func def matmul(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [M, K], dtype=dtype) B = T.match_buffer(b, [N, K], dtype=dtype) C = T.match_buffer(c, [M, N], dtype=dtype) for i, j, k in T.grid(M, N, K): with T.block(): vi, vj, vk = T.axis.remap("SSR", [i, j, k]) with T.init(): C[vi, vj] = T.float32(0) C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vj, vk] return matmul @T.prim_func def matmul_128_128_128_fp16(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [128, 128], dtype="float16") B = T.match_buffer(b, [128, 128], dtype="float16") C = T.match_buffer(c, [128, 128], dtype="float16") for i, j, k in T.grid(128, 128, 128): with T.block(): vi, vj, vk = T.axis.remap("SSR", [i, j, k]) with T.init(): C[vi, vj] = T.float32(0) C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vj, vk] def test_meta_programming_matmul(): f = matmul_generator(128, 128, 128, "float16") tvm.ir.assert_structural_equal(f, matmul_128_128_128_fp16) if __name__ == "__main__": test_meta_programming_matmul()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tvmscript_ops.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm from tvm.script import tir as T import numpy as np import tvm.testing @T.prim_func def get_valid_counts( data: T.handle, valid_count: T.handle, out: T.handle, out_indices: T.handle, score_threshold: T.float32, id_index: T.int32, score_index: T.int32, ) -> None: data_buf = T.match_buffer(data, (1, 2500, 6), "float32") valid_count_buf = T.match_buffer(valid_count, (1,), "int32") out_buf = T.match_buffer(out, (1, 2500, 6), "float32") out_indices_buf = T.match_buffer(out_indices, (1, 2500), "int32") with T.block("init"): vi = T.axis.S(1, 0) valid_count_buf[vi] = T.int32(0) for j in range(2500): with T.block("update"): vj = T.axis.S(2500, j) T.reads([data_buf[vi, vj, 6]]) T.writes([valid_count_buf[vi], out_indices_buf[vi, vj], out_buf[vi, vj, 6]]) if (data_buf[vi, vj, score_index] > score_threshold) and ( (id_index < 0) or (data_buf[vi, vj, id_index] >= T.float32(0)) ): for k in T.serial(0, 6): out_buf[vi, valid_count_buf[vi], k] = data_buf[vi, vj, k] out_indices_buf[vi, valid_count_buf[vi]] = vj valid_count_buf[vi] = valid_count_buf[vi] + 1 if vj >= valid_count_buf[vi]: for k in T.serial(0, 6): out_buf[vi, vj, k] = T.float32(-1) out_indices_buf[vi, vj] = T.int32(-1) def _check_get_valid_counts_with_numpy(f, dshape, score_threshold, id_index, score_index): dtype = "float32" ctx = tvm.cpu() batch_size, num_anchor, elem_length = dshape np_data = np.random.uniform(low=-2, high=2, size=dshape).astype(dtype) np_out1 = np.zeros(shape=(batch_size,), dtype="int32") np_out2 = np.zeros(shape=dshape).astype(dtype) np_out3 = np.zeros(shape=(batch_size, num_anchor), dtype="int32") for i in range(batch_size): np_out1[i] = 0 inter_idx = 0 for j in range(num_anchor): score = np_data[i, j, score_index] if score > score_threshold and (id_index < 0 or np_data[i, j, id_index] >= 0): for k in range(elem_length): np_out2[i, inter_idx, k] = np_data[i, j, k] np_out1[i] += 1 np_out3[i, inter_idx] = j inter_idx += 1 if j >= np_out1[i]: for k in range(elem_length): np_out2[i, j, k] = -1.0 np_out3[i, j] = -1 in_data = tvm.nd.array(np_data, ctx) out1 = tvm.nd.array(np_out1, ctx) out2 = tvm.nd.array(np_out2, ctx) out3 = tvm.nd.array(np_out3, ctx) f(in_data, out1, out2, out3, score_threshold, id_index, score_index) tvm.testing.assert_allclose(out1.numpy(), np_out1, rtol=1e-5) tvm.testing.assert_allclose(out2.numpy(), np_out2, rtol=1e-5) tvm.testing.assert_allclose(out3.numpy(), np_out3, rtol=1e-5) print("test get_valid_counts end") def test_get_valid_counts_script_func(): device = "llvm" # check lowering print(get_valid_counts.script()) mod = tvm.ir.IRModule({"get_valid_counts": get_valid_counts}) print(mod.script()) # check building f = tvm.build(mod["get_valid_counts"], target=device) _check_get_valid_counts_with_numpy(f, (1, 2500, 6), 0.0, 0, 1) @T.prim_func def alloc_zero_dim_buffer(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [], dtype="float32") B = T.match_buffer(b, [], dtype="float32") # body # tir.with block("root") C = T.alloc_buffer([], dtype="float32") A[()] = T.float32(2) C[()] = A[()] + B[()] B[()] = C[()] @T.prim_func def alloc_zero_dim_buffer_block(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (), "float32") B = T.match_buffer(b, (), "float32") with T.block("root"): T.reads([]) T.writes([]) C = T.alloc_buffer((), "float32") A[()] = T.float32(2) C[()] = A[()] + B[()] B[()] = C[()] def _check_alloc_zero_dim_buffer(f): dtype = "float32" ctx = tvm.cpu() np_data = np.zeros(shape=()).astype(dtype) np_out = np.zeros(shape=()).astype(dtype) tvm_data = tvm.nd.array(np_data, ctx) tvm_out = tvm.nd.array(np_out, ctx) # np func exection np_inter = np.array(1) np_data[()] = 2.0 np_inter[()] = np_data[()] + np_out[()] np_out[()] = np_inter[()] # tvm func execution f(tvm_data, tvm_out) tvm.testing.assert_allclose(tvm_out.numpy(), np_out, rtol=1e-5) def test_alloc_zero_dim_buffer_round_trip(): func = alloc_zero_dim_buffer func_with_block = alloc_zero_dim_buffer_block rt_func = tvm.script.from_source(func.script(show_meta=True)) rt_func_with_block = tvm.script.from_source(func_with_block.script(show_meta=True)) rt_mod = tvm.build(rt_func, "llvm") rt_mod_with_block = tvm.build(rt_func_with_block, "llvm") tvm.ir.assert_structural_equal(func, func_with_block) tvm.ir.assert_structural_equal(rt_func, rt_func_with_block) _check_alloc_zero_dim_buffer(rt_mod) _check_alloc_zero_dim_buffer(rt_mod_with_block) @T.prim_func def ceildiv_test(A: T.Buffer[16, "int32"]): for i in range(16): A[i] = T.ceildiv(A[i], 4) @tvm.testing.requires_llvm def test_ceildiv(): f = tvm.build(ceildiv_test, "llvm") a = tvm.nd.array(np.arange(16).astype("int32")) f(a) ref = (np.arange(16) + 3) // 4 tvm.testing.assert_allclose(a.numpy(), ref) if __name__ == "__main__": test_get_valid_counts_script_func() test_alloc_zero_dim_buffer_round_trip()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tvmscript_parser_evaluator.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Unittests for tvm.script.parser.evaluator""" import pytest import tvm.testing from tvm.script.parser.core.diagnostics import Source from tvm.script.parser.core.evaluator import ExprEvaluator def _calc(expr, extra_vars=None): if extra_vars is None: extra_vars = {} source = Source(expr) mod_ast = source.as_ast() mod_body_ast = mod_ast.body expr_stmt_ast = mod_body_ast[0] expr_ast = expr_stmt_ast.value return ExprEvaluator.eval(None, extra_vars, expr_ast) def test_evaluator_basic(): assert _calc("1, 3.14, True, 'str'") == (1, 3.14, True, "str") def test_evaluator_op(): assert _calc("1 + 2, 1 - 2, 1 * 2, 1 / 2") == (3, -1, 2, 0.5) def test_evaluator_value_table(): res = _calc("a + b, a - b, a * b, a / b", {"a": 1, "b": 2}) a, b = 1, 2 assert res == (a + b, a - b, a * b, a / b) def test_evaluator_func_call(): def func(a, b): return a + b, a - b, a * b, a / b assert _calc("func(1, 2)", {"func": func}) == func(1, 2) def test_evaluator_slice(): res = _calc("a, a[1:], a[:5], a[1: 5], a[1: 5: 2]", {"a": [1, 2, 3, 4, 5, 6]}) a = [1, 2, 3, 4, 5, 6] assert res == (a, a[1:], a[:5], a[1:5], a[1:5:2]) if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tvmscript_parser_ir.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Unittests for tvm.script.parser.ir""" import pytest import inspect import tvm.testing from tvm.script.parser import ir_module from tvm.ir import IRModule def test_ir_base(): @ir_module class BlankIRModule: pass assert isinstance(BlankIRModule, IRModule) and len(BlankIRModule.functions.items()) == 0 if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tvmscript_parser_source.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Unittests for tvm.script.parser.core""" import pytest import inspect import tvm.testing from tvm.script.parser.core.diagnostics import Source from tvm.script.parser.core import doc_core as doc from tvm.script import tir as T def matmul(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [128, 128]) B = T.match_buffer(b, [128, 128]) C = T.match_buffer(c, [128, 128]) for i, j, k in T.grid(128, 128, 128): with T.block("update"): vi, vj, vk = T.axis.remap("SSR", [i, j, k]) C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vj, vk] def test_source_base(): source = Source(matmul) assert ( source.source_name == inspect.getsourcefile(matmul) and source.start_line is not None and source.start_column == 0 and source.source == inspect.getsource(matmul) and source.full_source == inspect.getsource(inspect.getmodule(matmul)) ) def test_source_ast(): source = Source(matmul) mod = source.as_ast() assert isinstance(mod, doc.Module) func_def = mod.body[0] assert isinstance(func_def, doc.FunctionDef) assert func_def.name == "matmul" func_args = func_def.args assert ( len(func_args.args) == 3 and func_args.args[0].arg == "a" and func_args.args[1].arg == "b" and func_args.args[2].arg == "c" ) func_body = func_def.body assert len(func_body) == 4 func_assigns = func_body[:3] assert ( isinstance(func_assigns[0], doc.Assign) and func_assigns[0].targets[0].id == "A" and isinstance(func_assigns[1], doc.Assign) and func_assigns[1].targets[0].id == "B" and isinstance(func_assigns[2], doc.Assign) and func_assigns[2].targets[0].id == "C" ) func_for = func_body[3] assert ( len(func_for.target.elts) == 3 and func_for.target.elts[0].id == "i" and func_for.target.elts[1].id == "j" and func_for.target.elts[2].id == "k" ) for_body = func_for.body assert len(for_body) == 1 for_block = for_body[0] assert isinstance(for_block, doc.With) and len(for_block.body) == 2 if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tvmscript_parser_tir.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Unittests for tvm.script.parser.tir""" import pytest import inspect import tvm.testing from tvm.script.parser import tir as T from tvm import ir, tir def test_tir_buffer_proxy(): buffer_0 = T.Buffer((128, 128), "float32") assert ( isinstance(buffer_0, tir.Buffer) and list(buffer_0.shape) == [128, 128] and buffer_0.dtype == "float32" ) buffer_1 = T.Buffer[(64, 64, 64), "int32"] assert ( isinstance(buffer_1, tir.Buffer) and list(buffer_1.shape) == [64, 64, 64] and buffer_1.dtype == "int32" ) def test_tir_ptr_proxy(): ptr_0 = T.Ptr("int32", "global") assert ( isinstance(ptr_0, tir.Var) and ptr_0.dtype == "handle" and isinstance(ptr_0.type_annotation, ir.PointerType) and ptr_0.type_annotation.element_type == ir.PrimType("int32") and ptr_0.type_annotation.storage_scope == "global" ) ptr_1 = T.Ptr["float32", "shared"] assert ( isinstance(ptr_1, tir.Var) and ptr_1.dtype == "handle" and isinstance(ptr_1.type_annotation, ir.PointerType) and ptr_1.type_annotation.element_type == ir.PrimType("float32") and ptr_1.type_annotation.storage_scope == "shared" ) if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tvmscript_printer_doc.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ In this test file, we want to make sure the Python code can construct Doc objects, then access and modify their attributes correctly. """ import pytest import tvm from tvm.runtime import ObjectPath from tvm.script.printer.doc import ( AssertDoc, AssignDoc, AttrAccessDoc, CallDoc, ClassDoc, DictDoc, ExprStmtDoc, ForDoc, FunctionDoc, IdDoc, IfDoc, IndexDoc, LambdaDoc, ListDoc, LiteralDoc, OperationDoc, OperationKind, ReturnDoc, ScopeDoc, SliceDoc, StmtBlockDoc, TupleDoc, WhileDoc, ) @pytest.mark.parametrize( "value", [None, "test", 0, 1, -2, 0.0, 1.5, -1.3, True, False], ) def test_literal_doc_construction(value): doc = LiteralDoc(value) if isinstance(value, float): # FloatImm cannot be compared with Python's float directly assert float(doc.value) == pytest.approx(value) else: assert doc.value == value def test_id_doc(): doc = IdDoc("name") assert doc.name == "name" def test_attr_access_doc(): target = IdDoc("x") doc = AttrAccessDoc(target, "attribute") assert doc.value == target assert doc.name == "attribute" @pytest.mark.parametrize( "indices", [ [], [LiteralDoc(1)], [LiteralDoc(2), IdDoc("x")], [SliceDoc(LiteralDoc(1), LiteralDoc(2))], [SliceDoc(LiteralDoc(1)), IdDoc("y")], ], ) def test_index_doc(indices): target = IdDoc("x") doc = IndexDoc(target, indices) assert doc.value == target assert list(doc.indices) == indices @pytest.mark.parametrize( "args, kwargs", [ ([], {}), ([LiteralDoc("arg")], {}), ([LiteralDoc("arg"), IdDoc("x")], {}), ([], {"x": LiteralDoc("x")}), ([], {"x": LiteralDoc("x"), "y": LiteralDoc("y")}), ([LiteralDoc("arg")], {"x": LiteralDoc("x"), "y": LiteralDoc("y")}), ([LiteralDoc("arg"), IdDoc("x")], {"x": LiteralDoc("x"), "y": LiteralDoc("y")}), ], ) def test_call_doc(args, kwargs): target = IdDoc("x") doc = CallDoc(target, *args, **kwargs) assert doc.callee == target assert list(doc.args) == args assert dict(zip(doc.kwargs_keys, doc.kwargs_values)) == kwargs @pytest.mark.parametrize( "operands", [ [], [LiteralDoc(1)], [LiteralDoc(2), IdDoc("x")], [LiteralDoc(2), IdDoc("x"), LiteralDoc("y")], ], ) def test_operation_doc(operands): # Here we just test the contructor and attr visitor of OperationDoc # so the choice of OperationKind doesn't matter operator = OperationKind.Add doc = OperationDoc(OperationKind.Add, operands) assert doc.kind == operator assert list(doc.operands) == operands @pytest.mark.parametrize( "args", [ [], [IdDoc("x")], [IdDoc("x"), IdDoc("y")], ], ) def test_lambda_doc(args): body = LiteralDoc(1) doc = LambdaDoc(args, body) assert doc.body == body assert list(doc.args) == args @pytest.mark.parametrize( "elements", [ [], [IdDoc("x")], [IdDoc("x"), IdDoc("y")], ], ) def test_tuple_doc(elements): doc = TupleDoc(elements) assert list(doc.elements) == elements @pytest.mark.parametrize( "elements", [ [], [IdDoc("x")], [IdDoc("x"), IdDoc("y")], ], ) def test_list_doc(elements): doc = ListDoc(elements) assert list(doc.elements) == elements @pytest.mark.parametrize( "content", [ {}, {LiteralDoc("k"): IdDoc("v")}, {LiteralDoc("k"): IdDoc("v"), LiteralDoc("k2"): IdDoc("v2")}, ], ) def test_dict_doc(content): doc = DictDoc(content) assert dict(zip(doc.keys, doc.values)) == content @pytest.mark.parametrize("start", [LiteralDoc(1), None]) @pytest.mark.parametrize("stop", [LiteralDoc(2), None]) @pytest.mark.parametrize("step", [LiteralDoc(3), None]) def test_slice_doc(start, stop, step): doc = SliceDoc(start, stop) assert doc.start == start assert doc.stop == stop def test_expr_doc_attr_access(): target = IdDoc("x") attr = "test" doc = target.attr(attr) assert doc.value == target assert doc.name == attr @pytest.mark.parametrize( "indices", [ (), LiteralDoc(1), SliceDoc(LiteralDoc(1), LiteralDoc(2)), (LiteralDoc(1),), (LiteralDoc(2), IdDoc("x")), (SliceDoc(LiteralDoc(1), LiteralDoc(2)),), (SliceDoc(LiteralDoc(1)), IdDoc("y")), ], ) def test_expr_doc_get_item(indices): target = IdDoc("x") doc = target[indices] assert doc.value == target if not isinstance(indices, tuple): indices = (indices,) assert tuple(doc.indices) == indices @pytest.mark.parametrize( "args, kwargs", [ ([], {}), ([LiteralDoc("arg")], {}), ([LiteralDoc("arg"), IdDoc("x")], {}), ([], {"x": LiteralDoc("x")}), ([], {"x": LiteralDoc("x"), "y": LiteralDoc("y")}), ([LiteralDoc("arg")], {"x": LiteralDoc("x"), "y": LiteralDoc("y")}), ([LiteralDoc("arg"), IdDoc("x")], {"x": LiteralDoc("x"), "y": LiteralDoc("y")}), ], ) def test_expr_doc_call_with(args, kwargs): target = IdDoc("x") doc = target.call(*args, **kwargs) assert doc.callee == target assert list(doc.args) == args assert dict(zip(doc.kwargs_keys, doc.kwargs_values)) == kwargs @pytest.mark.parametrize( "stmts", [ [], [ExprStmtDoc(IdDoc("x"))], [ExprStmtDoc(IdDoc("x")), ExprStmtDoc(IdDoc("y"))], ], ) def test_stmt_block_doc(stmts): doc = StmtBlockDoc(stmts) assert list(doc.stmts) == stmts @pytest.mark.parametrize( "lhs, rhs, annotation", [ (IdDoc("x"), IdDoc("y"), None), (IdDoc("x"), None, IdDoc("int")), (IdDoc("x"), IdDoc("y"), IdDoc("int")), ], ) def test_assign_doc(lhs, rhs, annotation): doc = AssignDoc(lhs, rhs, annotation) assert doc.lhs == lhs assert doc.rhs == rhs assert doc.annotation == annotation @pytest.mark.parametrize( "lhs, rhs, annotation", [ (IdDoc("x"), None, None), (TupleDoc([IdDoc("x"), IdDoc("y")]), None, IdDoc("int")), (TupleDoc([IdDoc("x"), IdDoc("y")]), IdDoc("u"), IdDoc("int")), ], ) def test_invalid_assign_doc(lhs, rhs, annotation): with pytest.raises(ValueError) as e: AssignDoc(lhs, rhs, annotation) assert "AssignDoc" in str(e.value) @pytest.mark.parametrize( "else_branch", [ [], [ExprStmtDoc(IdDoc("x"))], [ExprStmtDoc(IdDoc("x")), ExprStmtDoc(IdDoc("y"))], ], ) @pytest.mark.parametrize( "then_branch", [ [], [ExprStmtDoc(IdDoc("x"))], [ExprStmtDoc(IdDoc("x")), ExprStmtDoc(IdDoc("y"))], ], ) def test_if_doc(then_branch, else_branch): predicate = IdDoc("x") if not then_branch and not else_branch: with pytest.raises(ValueError) as e: IfDoc(predicate, then_branch, else_branch) assert "IfDoc" in str(e.value) return else: doc = IfDoc(predicate, then_branch, else_branch) assert doc.predicate == predicate assert list(doc.then_branch) == then_branch assert list(doc.else_branch) == else_branch @pytest.mark.parametrize( "body", [ [], [ExprStmtDoc(IdDoc("x"))], [ExprStmtDoc(IdDoc("x")), ExprStmtDoc(IdDoc("y"))], ], ) def test_while_doc(body): predicate = IdDoc("x") doc = WhileDoc(predicate, body) assert doc.predicate == predicate assert list(doc.body) == body @pytest.mark.parametrize( "body", [ [], [ExprStmtDoc(IdDoc("x"))], [ExprStmtDoc(IdDoc("x")), ExprStmtDoc(IdDoc("y"))], ], ) def test_for_doc(body): lhs = IdDoc("x") rhs = IdDoc("y") doc = ForDoc(lhs, rhs, body) assert doc.lhs == lhs assert doc.rhs == rhs assert list(doc.body) == body @pytest.mark.parametrize( "lhs", [ None, IdDoc("x"), ], ) @pytest.mark.parametrize( "body", [ [], [ExprStmtDoc(IdDoc("x"))], [ExprStmtDoc(IdDoc("x")), ExprStmtDoc(IdDoc("y"))], ], ) def test_scope_doc(lhs, body): rhs = IdDoc("y") doc = ScopeDoc(lhs, rhs, body) assert doc.lhs == lhs assert doc.rhs == rhs assert list(doc.body) == body def test_expr_stmt_doc(): expr = IdDoc("x") doc = ExprStmtDoc(expr) assert doc.expr == expr @pytest.mark.parametrize( "msg", [ None, LiteralDoc("msg"), ], ) def test_assert_doc(msg): test = IdDoc("x") doc = AssertDoc(test, msg) assert doc.test == test assert doc.msg == msg def test_return_doc(): value = IdDoc("x") doc = ReturnDoc(value) assert doc.value == value @pytest.mark.parametrize( "args", [ [], [AssignDoc(IdDoc("x"), None, IdDoc("int"))], [ AssignDoc(IdDoc("x"), None, IdDoc("int")), AssignDoc(IdDoc("y"), LiteralDoc(1), IdDoc("int")), ], ], ) @pytest.mark.parametrize( "decorators", [ [], [IdDoc("test")], [IdDoc("test"), IdDoc("test2")], ], ) @pytest.mark.parametrize( "return_type", [ None, LiteralDoc(None), ], ) @pytest.mark.parametrize( "body", [ [], [ExprStmtDoc(IdDoc("x"))], [ExprStmtDoc(IdDoc("x")), ExprStmtDoc(IdDoc("y"))], ], ) def test_function_doc(args, decorators, return_type, body): name = IdDoc("name") doc = FunctionDoc(name, args, decorators, return_type, body) assert doc.name == name assert list(doc.args) == args assert list(doc.decorators) == decorators assert doc.return_type == return_type assert list(doc.body) == body @pytest.mark.parametrize( "decorators", [ [], [IdDoc("test")], [IdDoc("test"), IdDoc("test2")], ], ) @pytest.mark.parametrize( "body", [ [], [ExprStmtDoc(IdDoc("x"))], [ExprStmtDoc(IdDoc("x")), ExprStmtDoc(IdDoc("y"))], ], ) def test_class_doc(decorators, body): name = IdDoc("name") doc = ClassDoc(name, decorators, body) assert doc.name == name assert list(doc.decorators) == decorators assert list(doc.body) == body def test_stmt_doc_comment(): doc = ExprStmtDoc(IdDoc("x")) assert doc.comment is None comment = "test comment" doc.comment = comment # Make sure the previous statement doesn't set attribute # as if it's an ordinary Python object. assert "comment" not in doc.__dict__ assert doc.comment == comment def test_doc_source_paths(): doc = IdDoc("x") assert len(doc.source_paths) == 0 source_paths = [ObjectPath.root(), ObjectPath.root().attr("x")] doc.source_paths = source_paths # This should triggers the __getattr__ and gets a tvm.ir.container.Array assert not isinstance(doc.source_paths, list) assert list(doc.source_paths) == source_paths doc.source_paths = [] assert len(doc.source_paths) == 0 if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tvmscript_printer_entry_point.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import pytest from tvm.error import TVMError from tvm.script.printer import script from tvm.tir import FloatImm def test_as_script_unknown_ir(): ir_node = FloatImm("float32", 1.0) with pytest.raises(TVMError) as e: script(ir_node, "test_xyz", {}) assert "test_xyz" in str(e.value)
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tvmscript_printer_frame.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from tvm.script.printer.frame import MetadataFrame def test_frame_add_callback(): frame = MetadataFrame() flag = 0 def callback1(): nonlocal flag flag += 1 def callback2(): nonlocal flag flag += 5 frame.add_exit_callback(callback1) with frame: frame.add_exit_callback(callback2) assert flag == 0 assert flag == 6 def test_frame_clear_callbacks_after_exit(): frame = MetadataFrame() flag = 0 def callback(): nonlocal flag flag += 1 frame.add_exit_callback(callback) with frame: pass assert flag == 1 with frame: pass assert flag == 1
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tvmscript_printer_highlight.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import pytest import tvm from tvm.script import tir as T def test_highlight_script(): @tvm.script.ir_module class Module: @T.prim_func def main( # type: ignore a: T.handle, b: T.handle, c: T.handle, ) -> None: # pylint: disable=no-self-argument T.func_attr({"global_symbol": "main", "tir.noalias": True}) A = T.match_buffer(a, [16, 128, 128]) B = T.match_buffer(b, [16, 128, 128]) C = T.match_buffer(c, [16, 128, 128]) for n, i, j, k in T.grid(16, 128, 128, 128): with T.block("matmul"): vn, vi, vj, vk = T.axis.remap("SSSR", [n, i, j, k]) with T.init(): C[vn, vi, vj] = 0.0 # type: ignore C[vn, vi, vj] = C[vn, vi, vj] + A[vn, vi, vk] * B[vn, vj, vk] Module.show() Module["main"].show() Module["main"].show(style="light") Module["main"].show(style="dark") Module["main"].show(style="ansi")
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tvmscript_printer_irdocsifier.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import pytest from tvm.runtime import ObjectPath from tvm.script.printer.doc import IdDoc from tvm.script.printer.frame import MetadataFrame, VarDefFrame from tvm.script.printer.ir_docsifier import IRDocsifier, RootNodeContainer from tvm.tir import Var @pytest.fixture def ir_docsifier(): """ Creates an IRDocsifier instance with a special dispatch token. """ _ir_docsifier = IRDocsifier({}) with _ir_docsifier.dispatch_token(f"{__file__}"): yield _ir_docsifier def _get_id_doc_printer(id_name): def printer(obj, object_path, ir_docsifier): # pylint: disable=unused-argument return IdDoc(id_name) return printer def _root_dispatch_function(obj, ir_docsifier): doc = ir_docsifier.as_doc(obj, ObjectPath.root()) doc.source_paths = [ObjectPath.root().attr("irdocsifier_test")] return doc # Because the dispatch table is global, tests should only set dispatch function under # unique dispatch token. IRDocsifier.set_dispatch(Var, _get_id_doc_printer("x"), f"{__file__}") IRDocsifier.set_root_dispatch(f"{__file__}", _root_dispatch_function) def test_set_dispatch(ir_docsifier): IRDocsifier.set_dispatch(Var, _get_id_doc_printer("x2"), f"{__file__}-2") with ir_docsifier.dispatch_token(f"{__file__}-2"): doc = ir_docsifier.as_doc(Var("x", dtype="int8"), ObjectPath.root()) assert doc.name == "x2" doc = ir_docsifier.as_doc(Var("x", dtype="int8"), ObjectPath.root()) assert doc.name == "x" def test_set_root_dispatch(ir_docsifier): doc = ir_docsifier.as_doc(RootNodeContainer(Var("x", dtype="int8")), ObjectPath.root()) assert ObjectPath.root().attr("irdocsifier_test") in doc.source_paths def test_as_doc(ir_docsifier): object_path = ObjectPath.root() doc = ir_docsifier.as_doc(Var("x", "int8"), ObjectPath.root()) assert doc.name == "x" assert list(doc.source_paths) == [object_path] def test_with_dispatch_token(ir_docsifier): initial_token_count = len(ir_docsifier.dispatch_tokens) with ir_docsifier.dispatch_token("tir"): assert len(ir_docsifier.dispatch_tokens) == initial_token_count + 1 assert len(ir_docsifier.dispatch_tokens) == initial_token_count def test_with_frame(ir_docsifier): initial_frame_count = len(ir_docsifier.frames) frame = VarDefFrame() is_callback_called = False def callback(): nonlocal is_callback_called is_callback_called = True frame.add_exit_callback(callback) with ir_docsifier.frame(frame): assert len(ir_docsifier.frames) == initial_frame_count + 1 assert not is_callback_called assert len(ir_docsifier.frames) == initial_frame_count assert is_callback_called def test_get_frame(ir_docsifier): with ir_docsifier.frame(VarDefFrame()) as frame_a: assert ir_docsifier.get_frame(MetadataFrame) is None assert ir_docsifier.get_frame(VarDefFrame) == frame_a with ir_docsifier.frame(VarDefFrame()) as frame_b: assert ir_docsifier.get_frame(MetadataFrame) is None assert ir_docsifier.get_frame(VarDefFrame) == frame_b with ir_docsifier.frame(MetadataFrame()) as frame_c: assert ir_docsifier.get_frame(MetadataFrame) == frame_c assert ir_docsifier.get_frame(VarDefFrame) == frame_b assert ir_docsifier.get_frame(MetadataFrame) is None assert ir_docsifier.get_frame(VarDefFrame) == frame_b assert ir_docsifier.get_frame(MetadataFrame) is None assert ir_docsifier.get_frame(VarDefFrame) == frame_a
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tvmscript_printer_python_doc_printer.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import itertools import pytest import tvm from tvm.script.printer.doc import ( AssertDoc, AssignDoc, CallDoc, ClassDoc, DictDoc, ExprStmtDoc, ForDoc, FunctionDoc, IdDoc, IfDoc, LambdaDoc, ListDoc, LiteralDoc, OperationDoc, OperationKind, ReturnDoc, ScopeDoc, SliceDoc, StmtBlockDoc, TupleDoc, WhileDoc, ) from tvm.script.printer.doc_printer import to_python_script def format_script(s: str) -> str: """ Remove leading and trailing blank lines, and make the minimum idention 0 """ s = s.strip("\n") non_empty_lines = [line for line in s.splitlines() if line and not line.isspace()] if not non_empty_lines: # no actual content return "\n" line_indents = [len(line) - len(line.lstrip(" ")) for line in non_empty_lines] spaces_to_remove = min(line_indents) cleaned_lines = "\n".join(line[spaces_to_remove:] for line in s.splitlines()) if not cleaned_lines.endswith("\n"): cleaned_lines += "\n" return cleaned_lines @pytest.mark.parametrize( "doc,expected", [ (LiteralDoc(None), "None"), (LiteralDoc(True), "True"), (LiteralDoc(False), "False"), (LiteralDoc("test"), '"test"'), (LiteralDoc(""), '""'), (LiteralDoc('""'), r'"\"\""'), (LiteralDoc("\n\t\\test\r"), r'"\n\t\\test\r"'), # TODO: fix the roundatrippable problem caused by utf8 pytest.param(LiteralDoc("\x88"), r'"\x88"', marks=pytest.mark.xfail), (LiteralDoc(0), "0"), (LiteralDoc(-1), "-1"), (LiteralDoc(3.25), "3.25"), (LiteralDoc(-0.5), "-0.5"), ], ids=itertools.count(), ) def test_print_literal_doc(doc, expected): assert to_python_script(doc) == format_script(expected) @pytest.mark.parametrize( "name", [ "test", "_test", "TestCase", "test_case", "test123", ], ids=itertools.count(), ) def test_print_id_doc(name): doc = IdDoc(name) assert to_python_script(doc) == format_script(name) @pytest.mark.parametrize( "attr", [ "attr", "_attr", "Attr", "attr_1", ], ids=itertools.count(), ) def test_print_attr_doc(attr): doc = IdDoc("x").attr(attr) assert to_python_script(doc) == format_script(f"x.{attr}") @pytest.mark.parametrize( "indices, expected", [ ( (), "[()]", ), ( (LiteralDoc(1),), "[1]", ), ( (LiteralDoc(2), IdDoc("x")), "[2, x]", ), ( (SliceDoc(LiteralDoc(1), LiteralDoc(2)),), "[1:2]", ), ( (SliceDoc(LiteralDoc(1)), IdDoc("y")), "[1:, y]", ), ( (SliceDoc(), IdDoc("y")), "[:, y]", ), ( (IdDoc("x"), IdDoc("y"), IdDoc("z")), "[x, y, z]", ), ], ids=itertools.count(), ) def test_print_index_doc(indices, expected): doc = IdDoc("x")[indices] assert to_python_script(doc) == format_script(f"x{expected}") UNARY_OP_TOKENS = { OperationKind.USub: "-", OperationKind.Invert: "~", OperationKind.Not: "not ", } @pytest.mark.parametrize( "op_kind, expected_token", list(UNARY_OP_TOKENS.items()), ids=UNARY_OP_TOKENS.keys(), ) def test_print_unary_operation_doc(op_kind, expected_token): doc = OperationDoc(op_kind, [IdDoc("x")]) assert to_python_script(doc) == format_script(f"{expected_token}x") BINARY_OP_TOKENS = { OperationKind.Add: "+", OperationKind.Sub: "-", OperationKind.Mult: "*", OperationKind.Div: "/", OperationKind.FloorDiv: "//", OperationKind.Mod: "%", OperationKind.Pow: "**", OperationKind.LShift: "<<", OperationKind.RShift: ">>", OperationKind.BitAnd: "&", OperationKind.BitOr: "|", OperationKind.BitXor: "^", OperationKind.Lt: "<", OperationKind.LtE: "<=", OperationKind.Eq: "==", OperationKind.NotEq: "!=", OperationKind.Gt: ">", OperationKind.GtE: ">=", OperationKind.And: "and", OperationKind.Or: "or", } @pytest.mark.parametrize( "op_kind, expected_token", list(BINARY_OP_TOKENS.items()), ids=BINARY_OP_TOKENS.keys(), ) def test_print_binary_operation_doc(op_kind, expected_token): doc = OperationDoc(op_kind, [IdDoc("x"), IdDoc("y")]) assert to_python_script(doc) == format_script(f"x {expected_token} y") SPECIAL_OP_CASES = [ ( OperationKind.IfThenElse, [LiteralDoc(True), LiteralDoc("true"), LiteralDoc("false")], '"true" if True else "false"', ), ( OperationKind.IfThenElse, [IdDoc("x"), LiteralDoc(None), LiteralDoc(1)], "None if x else 1", ), ] @pytest.mark.parametrize( "op_kind, operands, expected", SPECIAL_OP_CASES, ids=[kind for (kind, *_) in SPECIAL_OP_CASES] ) def test_print_special_operation_doc(op_kind, operands, expected): doc = OperationDoc(op_kind, operands) assert to_python_script(doc) == format_script(expected) def test_operation_doc_test_exhaustive(): special_op_covered = {k for k, *_ in SPECIAL_OP_CASES} for op_kind in OperationKind: if OperationKind._UnaryStart < op_kind < OperationKind._UnaryEnd: assert op_kind in UNARY_OP_TOKENS, ( f"{op_kind.name} not covered in test_print_unary_operation_doc. " f"Please add the expected token to UNARY_OP_TOKENS" ) elif OperationKind._BinaryStart < op_kind < OperationKind._BinaryEnd: assert op_kind in BINARY_OP_TOKENS, ( f"{op_kind.name} not covered in test_print_binary_operation_doc. " f"Please add the expected token to BINARY_OP_TOKENS" ) elif not op_kind.name.startswith("_"): # Special Op assert op_kind in special_op_covered, ( f"{op_kind.name} not covered in test_print_special_operation_doc. " f"Please add the test cases for it to SPECIAL_OP_CASES" ) @pytest.mark.parametrize( "args, kwargs, expected", [ ( (), {}, "()", ), ( (), {"key0": IdDoc("u")}, "(key0=u)", ), ( (), {"key0": IdDoc("u"), "key1": IdDoc("v")}, "(key0=u, key1=v)", ), ( (IdDoc("x"),), {}, "(x)", ), ( (IdDoc("x"),), {"key0": IdDoc("u")}, "(x, key0=u)", ), ( (IdDoc("x"),), {"key0": IdDoc("u"), "key1": IdDoc("v")}, "(x, key0=u, key1=v)", ), ( (IdDoc("x"), (IdDoc("y"))), {}, "(x, y)", ), ( (IdDoc("x"), (IdDoc("y"))), {"key0": IdDoc("u")}, "(x, y, key0=u)", ), ( (IdDoc("x"), (IdDoc("y"))), {"key0": IdDoc("u"), "key1": IdDoc("v")}, "(x, y, key0=u, key1=v)", ), ], ids=itertools.count(), ) def test_print_call_doc(args, kwargs, expected): doc = CallDoc(IdDoc("f"), *args, **kwargs) assert to_python_script(doc) == format_script(f"f{expected}") @pytest.mark.parametrize( "args, expected", [ ( (), "lambda : 0", ), ( (IdDoc("x"),), "lambda x: 0", ), ( (IdDoc("x"), IdDoc("y")), "lambda x, y: 0", ), ( (IdDoc("x"), IdDoc("y"), IdDoc("z")), "lambda x, y, z: 0", ), ], ids=itertools.count(), ) def test_print_lambda_doc(args, expected): doc = LambdaDoc(args, body=LiteralDoc(0)) assert to_python_script(doc) == format_script(expected) @pytest.mark.parametrize( "elements, expected", [ ( (), "[]", ), ( [IdDoc("x")], "[x]", ), ( [IdDoc("x"), IdDoc("y")], "[x, y]", ), ( [IdDoc("x"), IdDoc("y"), IdDoc("z")], "[x, y, z]", ), ], ids=itertools.count(), ) def test_print_list_doc(elements, expected): doc = ListDoc(elements) assert to_python_script(doc) == format_script(expected) @pytest.mark.parametrize( "elements, expected", [ ( (), "()", ), ( [IdDoc("x")], "(x,)", ), ( [IdDoc("x"), IdDoc("y")], "(x, y)", ), ( [IdDoc("x"), IdDoc("y"), IdDoc("z")], "(x, y, z)", ), ], ids=itertools.count(), ) def test_print_tuple_doc(elements, expected): doc = TupleDoc(elements) assert to_python_script(doc) == format_script(expected) @pytest.mark.parametrize( "content, expected", [ ( {}, "{}", ), ( {LiteralDoc("key_x"): IdDoc("x")}, '{"key_x": x}', ), ( {LiteralDoc("key_x"): IdDoc("x"), LiteralDoc("key_y"): IdDoc("y")}, '{"key_x": x, "key_y": y}', ), ( { LiteralDoc("key_x"): IdDoc("x"), LiteralDoc("key_y"): IdDoc("y"), LiteralDoc("key_z"): IdDoc("z"), }, '{"key_x": x, "key_y": y, "key_z": z}', ), ], ids=itertools.count(), ) def test_print_dict_doc(content, expected): doc = DictDoc(content) assert to_python_script(doc) == format_script(expected) @pytest.mark.parametrize( "slice_doc, expected", [ ( SliceDoc(), ":", ), ( SliceDoc(LiteralDoc(1)), "1:", ), ( SliceDoc(None, LiteralDoc(2)), ":2", ), ( SliceDoc(LiteralDoc(1), LiteralDoc(2)), "1:2", ), ( SliceDoc(None, None, LiteralDoc(3)), "::3", ), ( SliceDoc(LiteralDoc(1), None, LiteralDoc(3)), "1::3", ), ( SliceDoc(None, LiteralDoc(2), LiteralDoc(3)), ":2:3", ), ( SliceDoc(LiteralDoc(1), LiteralDoc(2), LiteralDoc(3)), "1:2:3", ), ], ids=itertools.count(), ) def test_print_slice_doc(slice_doc, expected): doc = IdDoc("x")[slice_doc] assert to_python_script(doc) == format_script(f"x[{expected}]") @pytest.mark.parametrize( "stmts, expected", [ ( [], "", ), ( [ExprStmtDoc(IdDoc("x"))], "x", ), ( [ExprStmtDoc(IdDoc("x")), ExprStmtDoc(IdDoc("y"))], """ x y """, ), ], ids=itertools.count(), ) def test_print_stmt_block_doc(stmts, expected): doc = StmtBlockDoc(stmts) assert to_python_script(doc).strip() == format_script(expected).strip() @pytest.mark.parametrize( "doc, expected", [ ( AssignDoc(IdDoc("x"), IdDoc("y"), None), "x = y", ), ( AssignDoc(IdDoc("x"), IdDoc("y"), IdDoc("int")), "x: int = y", ), ( AssignDoc(IdDoc("x"), None, IdDoc("int")), "x: int", ), ( AssignDoc(TupleDoc([IdDoc("x"), IdDoc("y")]), IdDoc("z"), None), "x, y = z", ), ( AssignDoc(TupleDoc([IdDoc("x"), TupleDoc([IdDoc("y"), IdDoc("z")])]), IdDoc("z"), None), "x, (y, z) = z", ), ], ids=itertools.count(), ) def test_print_assign_doc(doc, expected): assert to_python_script(doc) == format_script(expected) @pytest.mark.parametrize( "then_branch, else_branch, expected", [ ( [ExprStmtDoc(IdDoc("x"))], [], """ if pred: x """, ), ( [], [ExprStmtDoc(IdDoc("y"))], """ if pred: pass else: y """, ), ( [ExprStmtDoc(IdDoc("x"))], [ExprStmtDoc(IdDoc("y"))], """ if pred: x else: y """, ), ], ids=itertools.count(), ) def test_print_if_doc(then_branch, else_branch, expected): doc = IfDoc(IdDoc("pred"), then_branch, else_branch) assert to_python_script(doc) == format_script(expected) @pytest.mark.parametrize( "body, expected", [ ( [ExprStmtDoc(IdDoc("x"))], """ while pred: x """, ), ( [], """ while pred: pass """, ), ], ids=itertools.count(), ) def test_print_while_doc(body, expected): doc = WhileDoc(IdDoc("pred"), body) assert to_python_script(doc) == format_script(expected) @pytest.mark.parametrize( "body, expected", [ ( [ExprStmtDoc(IdDoc("x"))], """ for x in y: x """, ), ( [], """ for x in y: pass """, ), ], ids=itertools.count(), ) def test_print_for_doc(body, expected): doc = ForDoc(IdDoc("x"), IdDoc("y"), body) assert to_python_script(doc) == format_script(expected) @pytest.mark.parametrize( "lhs, body, expected", [ ( IdDoc("c"), [ExprStmtDoc(IdDoc("x"))], """ with context() as c: x """, ), ( IdDoc("c"), [], """ with context() as c: pass """, ), ( None, [], """ with context(): pass """, ), ( None, [ExprStmtDoc(IdDoc("x"))], """ with context(): x """, ), ], ids=itertools.count(), ) def test_print_scope_doc(lhs, body, expected): doc = ScopeDoc(lhs, CallDoc(IdDoc("context")), body) assert to_python_script(doc) == format_script(expected) def test_print_expr_stmt_doc(): doc = ExprStmtDoc(CallDoc(IdDoc("f"), IdDoc("x"))) assert to_python_script(doc) == format_script("f(x)") @pytest.mark.parametrize( "msg, expected", [ ( None, """ assert True """, ), ( LiteralDoc("test message"), """ assert True, "test message" """, ), ], ids=itertools.count(), ) def test_print_assert_doc(msg, expected): test = LiteralDoc(True) doc = AssertDoc(test, msg) assert to_python_script(doc) == format_script(expected) @pytest.mark.parametrize( "value, expected", [ ( LiteralDoc(None), """ return None """, ), ( IdDoc("x"), """ return x """, ), ], ids=itertools.count(), ) def test_print_return_doc(value, expected): doc = ReturnDoc(value) assert to_python_script(doc) == format_script(expected) @pytest.mark.parametrize( "args, decorators, return_type, body, expected", [ ( [], [], None, [], """ def func(): pass """, ), ( [AssignDoc(IdDoc("x"), rhs=None, annotation=IdDoc("int"))], [], IdDoc("int"), [], """ def func(x: int) -> int: pass """, ), ( [AssignDoc(IdDoc("x"), rhs=LiteralDoc(1), annotation=IdDoc("int"))], [], LiteralDoc(None), [], """ def func(x: int = 1) -> None: pass """, ), ( [], [IdDoc("wrap")], LiteralDoc(None), [], """ @wrap def func() -> None: pass """, ), ( [], [IdDoc("wrap_outter"), IdDoc("wrap_inner")], LiteralDoc(None), [], """ @wrap_outter @wrap_inner def func() -> None: pass """, ), ( [ AssignDoc(IdDoc("x"), rhs=None, annotation=IdDoc("int")), AssignDoc(IdDoc("y"), rhs=LiteralDoc(1), annotation=IdDoc("int")), ], [IdDoc("wrap")], LiteralDoc(None), [], """ @wrap def func(x: int, y: int = 1) -> None: pass """, ), ( [ AssignDoc(IdDoc("x"), rhs=None, annotation=IdDoc("int")), AssignDoc(IdDoc("y"), rhs=LiteralDoc(1), annotation=IdDoc("int")), ], [IdDoc("wrap")], LiteralDoc(None), [ AssignDoc(IdDoc("y"), OperationDoc(OperationKind.Add, [IdDoc("x"), LiteralDoc(1)])), AssignDoc(IdDoc("y"), OperationDoc(OperationKind.Sub, [IdDoc("y"), LiteralDoc(1)])), ], """ @wrap def func(x: int, y: int = 1) -> None: y = x + 1 y = y - 1 """, ), ], ids=itertools.count(), ) def test_print_function_doc(args, decorators, body, return_type, expected): doc = FunctionDoc(IdDoc("func"), args, decorators, return_type, body) assert to_python_script(doc) == format_script(expected) # test def get_func_doc_for_class(name): args = [ AssignDoc(IdDoc("x"), rhs=None, annotation=IdDoc("int")), AssignDoc(IdDoc("y"), rhs=LiteralDoc(1), annotation=IdDoc("int")), ] body = [ AssignDoc(IdDoc("y"), OperationDoc(OperationKind.Add, [IdDoc("x"), LiteralDoc(1)])), AssignDoc(IdDoc("y"), OperationDoc(OperationKind.Sub, [IdDoc("y"), LiteralDoc(1)])), ] return FunctionDoc( name=IdDoc(name), args=args, decorators=[IdDoc("wrap")], return_type=LiteralDoc(None), body=body, ) @pytest.mark.parametrize( "decorators, body, expected", [ ( [], [], """ class TestClass: pass """, ), ( [IdDoc("wrap")], [], """ @wrap class TestClass: pass """, ), ( [IdDoc("wrap_outter"), IdDoc("wrap_inner")], [], """ @wrap_outter @wrap_inner class TestClass: pass """, ), ( [IdDoc("wrap")], [get_func_doc_for_class("f1")], """ @wrap class TestClass: @wrap def f1(x: int, y: int = 1) -> None: y = x + 1 y = y - 1 """, ), ( [IdDoc("wrap")], [get_func_doc_for_class("f1"), get_func_doc_for_class("f2")], """ @wrap class TestClass: @wrap def f1(x: int, y: int = 1) -> None: y = x + 1 y = y - 1 @wrap def f2(x: int, y: int = 1) -> None: y = x + 1 y = y - 1 """, ), ], ids=itertools.count(), ) def test_print_class_doc(decorators, body, expected): doc = ClassDoc(IdDoc("TestClass"), decorators, body) assert to_python_script(doc) == format_script(expected) @pytest.mark.parametrize( "doc, comment, expected", [ ( AssignDoc(IdDoc("x"), IdDoc("y"), IdDoc("int")), "comment", """ x: int = y # comment """, ), ( IfDoc(IdDoc("x"), [ExprStmtDoc(IdDoc("y"))], [ExprStmtDoc(IdDoc("z"))]), "comment", """ # comment if x: y else: z """, ), ( IfDoc(IdDoc("x"), [ExprStmtDoc(IdDoc("y"))], [ExprStmtDoc(IdDoc("z"))]), "comment line 1\ncomment line 2", """ # comment line 1 # comment line 2 if x: y else: z """, ), ( WhileDoc( LiteralDoc(True), [ AssignDoc(IdDoc("x"), IdDoc("y")), ], ), "comment", """ # comment while True: x = y """, ), ( ForDoc(IdDoc("x"), IdDoc("y"), []), "comment", """ # comment for x in y: pass """, ), ( ScopeDoc(IdDoc("x"), IdDoc("y"), []), "comment", """ # comment with y as x: pass """, ), ( ExprStmtDoc(IdDoc("x")), "comment", """ x # comment """, ), ( AssertDoc(LiteralDoc(True)), "comment", """ assert True # comment """, ), ( ReturnDoc(LiteralDoc(1)), "comment", """ return 1 # comment """, ), ( get_func_doc_for_class("f"), "comment", ''' @wrap def f(x: int, y: int = 1) -> None: """ comment """ y = x + 1 y = y - 1 ''', ), ( get_func_doc_for_class("f"), "comment line 1\n\ncomment line 3", ''' @wrap def f(x: int, y: int = 1) -> None: """ comment line 1 comment line 3 """ y = x + 1 y = y - 1 ''', ), ( ClassDoc(IdDoc("TestClass"), decorators=[IdDoc("wrap")], body=[]), "comment", ''' @wrap class TestClass: """ comment """ pass ''', ), ( ClassDoc(IdDoc("TestClass"), decorators=[IdDoc("wrap")], body=[]), "comment line 1\n\ncomment line 3", ''' @wrap class TestClass: """ comment line 1 comment line 3 """ pass ''', ), ], ids=itertools.count(), ) def test_print_doc_comment(doc, comment, expected): doc.comment = comment assert to_python_script(doc) == format_script(expected) @pytest.mark.parametrize( "doc", [ AssignDoc(IdDoc("x"), IdDoc("y"), IdDoc("int")), ExprStmtDoc(IdDoc("x")), AssertDoc(IdDoc("x")), ReturnDoc(IdDoc("x")), ], ) def test_print_invalid_multiline_doc_comment(doc): doc.comment = "1\n2" with pytest.raises(ValueError) as e: to_python_script(doc) assert "cannot have newline" in str(e.value) def generate_expr_precedence_test_cases(): x = IdDoc("x") y = IdDoc("y") z = IdDoc("z") def negative(a): return OperationDoc(OperationKind.USub, [a]) def invert(a): return OperationDoc(OperationKind.Invert, [a]) def not_(a): return OperationDoc(OperationKind.Not, [a]) def add(a, b): return OperationDoc(OperationKind.Add, [a, b]) def sub(a, b): return OperationDoc(OperationKind.Sub, [a, b]) def mult(a, b): return OperationDoc(OperationKind.Mult, [a, b]) def div(a, b): return OperationDoc(OperationKind.Div, [a, b]) def mod(a, b): return OperationDoc(OperationKind.Mod, [a, b]) def pow(a, b): return OperationDoc(OperationKind.Pow, [a, b]) def lshift(a, b): return OperationDoc(OperationKind.LShift, [a, b]) def bit_and(a, b): return OperationDoc(OperationKind.BitAnd, [a, b]) def bit_or(a, b): return OperationDoc(OperationKind.BitOr, [a, b]) def bit_xor(a, b): return OperationDoc(OperationKind.BitXor, [a, b]) def lt(a, b): return OperationDoc(OperationKind.Lt, [a, b]) def eq(a, b): return OperationDoc(OperationKind.Eq, [a, b]) def not_eq(a, b): return OperationDoc(OperationKind.NotEq, [a, b]) def and_(a, b): return OperationDoc(OperationKind.And, [a, b]) def or_(a, b): return OperationDoc(OperationKind.Or, [a, b]) def if_then_else(a, b, c): return OperationDoc(OperationKind.IfThenElse, [a, b, c]) test_cases = { "attr-call-index": [ ( add(x, y).attr("test"), "(x + y).test", ), ( add(x, y.attr("test")), "x + y.test", ), ( x[z].call(y), "x[z](y)", ), ( x.call(y)[z], "x(y)[z]", ), ( x.call(y).call(z), "x(y)(z)", ), ( x.call(y).attr("test"), "x(y).test", ), ( x.attr("test").call(y), "x.test(y)", ), ( x.attr("test").attr("test2"), "x.test.test2", ), ( LambdaDoc([x], x).call(y), "(lambda x: x)(y)", ), ( add(x, y)[z][add(z, z)].attr("name"), "(x + y)[z][z + z].name", ), ], "power": [ ( pow(pow(x, y), z), "(x ** y) ** z", ), ( pow(x, pow(y, z)), "x ** y ** z", ), ( pow(negative(x), negative(y)), "(-x) ** -y", ), ( pow(add(x, y), add(y, z)), "(x + y) ** (y + z)", ), ], "unary": [ ( invert(negative(y)), "~-y", ), ( negative(y).attr("test"), "(-y).test", ), ( negative(y.attr("test")), "-y.test", ), ( mult(negative(x), negative(y)), "-x * -y", ), ( negative(add(invert(x), negative(y))), "-(~x + -y)", ), ], "add-mult": [ ( mult(x, mult(y, z)), "x * (y * z)", ), ( mult(mult(x, y), z), "x * y * z", ), ( mult(x, add(y, z)), "x * (y + z)", ), ( mult(add(y, z), x), "(y + z) * x", ), ( add(x, mod(y, z)), "x + y % z", ), ( add(mult(y, z), x), "y * z + x", ), ( add(add(x, y), add(y, z)), "x + y + (y + z)", ), ( div(add(x, y), add(y, z)), "(x + y) / (y + z)", ), ], "shift": [ ( div(x, lshift(y, z)), "x / (y << z)", ), ( mult(lshift(y, z), x), "(y << z) * x", ), ( lshift(x, mult(y, z)), "x << y * z", ), ( lshift(mult(x, y), z), "x * y << z", ), ( lshift(mult(x, y), z), "x * y << z", ), ( lshift(lshift(x, y), z), "x << y << z", ), ( lshift(x, lshift(y, z)), "x << (y << z)", ), ], "bitwise": [ ( add(bit_or(x, y), bit_or(y, z)), "(x | y) + (y | z)", ), ( bit_and(bit_or(x, y), bit_or(y, z)), "(x | y) & (y | z)", ), ( bit_or(bit_and(x, y), bit_and(y, z)), "x & y | y & z", ), ( bit_and(bit_xor(x, bit_or(y, z)), z), "(x ^ (y | z)) & z", ), ], "comparison": [ ( not_eq(add(x, y), z), "x + y != z", ), ( eq(pow(x, y), z), "x ** y == z", ), ( lt(x, div(y, z)), "x < y / z", ), ( lt(x, if_then_else(y, y, y)), "x < (y if y else y)", ), ], "boolean": [ ( not_(and_(x, y)), "not (x and y)", ), ( and_(not_(x), y), "not x and y", ), ( and_(or_(x, y), z), "(x or y) and z", ), ( or_(x, or_(y, z)), "x or (y or z)", ), ( or_(or_(x, y), z), "x or y or z", ), ( or_(and_(x, y), z), # Maybe we should consider adding parentheses here # for readability, even though it's not necessary. "x and y or z", ), ( and_(or_(not_(x), y), z), "(not x or y) and z", ), ( and_(lt(x, y), lt(y, z)), "x < y and y < z", ), ( or_(not_(eq(x, y)), lt(y, z)), # Same as the previous one, the code here is not # readable without parentheses. "not x == y or y < z", ), ( and_(if_then_else(x, y, z), x), "(y if x else z) and x", ), ( not_(if_then_else(x, y, z)), "not (y if x else z)", ), ], "if-then-else": [ ( if_then_else(x, if_then_else(y, y, y), z), "y if y else y if x else z", ), ( if_then_else(if_then_else(x, x, x), y, z), "y if (x if x else x) else z", ), ( if_then_else(x, y, if_then_else(z, z, z)), "y if x else (z if z else z)", ), ( if_then_else(lt(x, x), add(y, y), mult(z, z)), "y + y if x < x else z * z", ), ( if_then_else(LambdaDoc([x], x), LambdaDoc([y], y), LambdaDoc([z], z)), "(lambda y: y) if (lambda x: x) else (lambda z: z)", ), ], "lambda": [ ( LambdaDoc([x, y], add(z, z)), "lambda x, y: z + z", ), ( add(LambdaDoc([x, y], z), z), "(lambda x, y: z) + z", ), ( LambdaDoc([x, y], add(z, z)).call(x, y), "(lambda x, y: z + z)(x, y)", ), ( LambdaDoc([x], LambdaDoc([y], z)), "lambda x: lambda y: z", ), ], } return [ pytest.param(*args, id=f"{group_name}-{i}") for group_name, cases in test_cases.items() for i, args in enumerate(cases) ] @pytest.mark.parametrize("doc, expected", generate_expr_precedence_test_cases()) def test_expr_precedence(doc, expected): assert to_python_script(doc) == format_script(expected) if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tvmscript_printer_underlining.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from typing import Optional import pytest from tvm.runtime import ObjectPath from tvm.script.printer.doc import ( StmtBlockDoc, ExprStmtDoc, IdDoc, OperationDoc, OperationKind, ) from tvm.script.printer.doc_printer import to_python_script def make_path(name: str) -> ObjectPath: return ObjectPath.root().attr(name) def make_id_doc(name: str, path_name: Optional[str] = None) -> IdDoc: if path_name is None: path_name = name doc = IdDoc(name) doc.source_paths = [make_path(path_name)] return doc def format_script(s: str) -> str: """ Remove leading and trailing blank lines, and make the minimum idention 0 """ s = s.strip("\n") non_empty_lines = [line for line in s.splitlines() if line and not line.isspace()] if not non_empty_lines: # no actual content return "\n" line_indents = [len(line) - len(line.lstrip(" ")) for line in non_empty_lines] spaces_to_remove = min(line_indents) cleaned_lines = "\n".join(line[spaces_to_remove:] for line in s.splitlines()) if not cleaned_lines.endswith("\n"): cleaned_lines += "\n" return cleaned_lines def test_underline_basic(): doc = StmtBlockDoc( [ ExprStmtDoc(make_id_doc("foo")), ExprStmtDoc(OperationDoc(OperationKind.Add, [make_id_doc("bar"), make_id_doc("baz")])), ExprStmtDoc(make_id_doc("qux")), ] ) assert to_python_script(doc, path_to_underline=make_path("baz")) == format_script( """ foo bar + baz ^^^ qux """ ) def test_underline_multiple_spans(): doc = StmtBlockDoc( [ ExprStmtDoc(make_id_doc("foo")), ExprStmtDoc(make_id_doc("bar")), ExprStmtDoc(OperationDoc(OperationKind.Add, [make_id_doc("foo"), make_id_doc("foo")])), ] ) assert to_python_script(doc, path_to_underline=make_path("foo")) == format_script( """ foo ^^^ bar foo + foo ^^^ ^^^ """ ) def test_underline_multiple_spans_with_line_numbers(): doc = StmtBlockDoc( [ ExprStmtDoc(make_id_doc("foo")), ExprStmtDoc(make_id_doc("bar")), ExprStmtDoc(OperationDoc(OperationKind.Add, [make_id_doc("foo"), make_id_doc("foo")])), ] ) assert to_python_script( doc, print_line_numbers=True, path_to_underline=make_path("foo") ) == format_script( """ 1 foo ^^^ 2 bar 3 foo + foo ^^^ ^^^ """ ) def test_underline_multiline(): doc = StmtBlockDoc( [ ExprStmtDoc(IdDoc("foo")), ExprStmtDoc(IdDoc("bar")), ] ) doc.source_paths = [make_path("whole_doc")] assert to_python_script(doc, path_to_underline=make_path("whole_doc")) == format_script( """ foo ^^^ bar ^^^ """ ) @pytest.mark.parametrize( "to_underline, expected_text", [ ( [0], """ x0 ^^ x1 x2 (... 7 lines skipped ...) """, ), ( [1], """ x0 x1 ^^ x2 x3 (... 6 lines skipped ...) """, ), ( [3], """ x0 x1 x2 x3 ^^ x4 x5 (... 4 lines skipped ...) """, ), ( [4], """ (... 2 lines skipped ...) x2 x3 x4 ^^ x5 x6 (... 3 lines skipped ...) """, ), ( [6], """ (... 4 lines skipped ...) x4 x5 x6 ^^ x7 x8 x9 """, ), ( [9], """ (... 7 lines skipped ...) x7 x8 x9 ^^ """, ), ( [0, 9], """ x0 ^^ x1 x2 (... 4 lines skipped ...) x7 x8 x9 ^^ """, ), ( [0, 3, 9], """ x0 ^^ x1 x2 x3 ^^ x4 x5 x6 x7 x8 x9 ^^ """, ), ( [0, 6, 9], """ x0 ^^ x1 x2 x3 x4 x5 x6 ^^ x7 x8 x9 ^^ """, ), ( [33], """ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 """, ), ], ) def test_print_two_context_lines(to_underline, expected_text): doc = StmtBlockDoc( [ExprStmtDoc(make_id_doc(f"x{i}", "yes" if i in to_underline else "no")) for i in range(10)] ) result = to_python_script(doc, num_context_lines=2, path_to_underline=make_path("yes")) assert result == format_script(expected_text) def test_underline_and_print_line_numbers(): doc = StmtBlockDoc([ExprStmtDoc(make_id_doc(f"line{i + 1}")) for i in range(12)]) result = to_python_script(doc, print_line_numbers=True, path_to_underline=make_path("line6")) assert result == format_script( """ 1 line1 2 line2 3 line3 4 line4 5 line5 6 line6 ^^^^^ 7 line7 8 line8 9 line9 10 line10 11 line11 12 line12 """ ) def test_underline_and_print_line_numbers_with_context(): doc = StmtBlockDoc([ExprStmtDoc(make_id_doc(f"line{i + 1}")) for i in range(12)]) result = to_python_script( doc, print_line_numbers=True, num_context_lines=2, path_to_underline=make_path("line8") ) assert result == format_script( """ (... 5 lines skipped ...) 6 line6 7 line7 8 line8 ^^^^^ 9 line9 10 line10 (... 2 lines skipped ...) """ ) def test_underline_based_on_path_prefix(): doc = StmtBlockDoc([ExprStmtDoc(make_id_doc("foo")), ExprStmtDoc(make_id_doc("bar"))]) result = to_python_script(doc, path_to_underline=make_path("foo").attr("x").attr("y")) # There is no document that matches the desired path exactly, # but path of "foo" is a prefix of the desired path, and thus should be underlined. assert result == format_script( """ foo ^^^ bar """ ) def test_longer_prefix_must_win(): foo_x = IdDoc("foo_x") foo_x.source_paths = [make_path("foo").attr("x")] doc = StmtBlockDoc( [ExprStmtDoc(make_id_doc("foo")), ExprStmtDoc(make_id_doc("bar")), ExprStmtDoc(foo_x)] ) result = to_python_script(doc, path_to_underline=make_path("foo").attr("x").attr("y")) # "foo" should not be underlined because there is a document with a more specific path prefix assert result == format_script( """ foo bar foo_x ^^^^^ """ )
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tvmscript_printer_var_table.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ This file tests the FFI binding of script.printer.VarTable. These only make sure parameter can be passed to the C++ functions correctly. The test for the functionality of VarTable is in C++. """ from tvm.runtime import ObjectPath from tvm.script.printer.doc import LiteralDoc from tvm.script.printer.frame import VarDefFrame from tvm.script.printer.var_table import VarTable from tvm.tir import Var def test_define(): var_table = VarTable() var_name = "a" var_obj = Var(var_name, dtype="int32") object_path = ObjectPath.root().attr("a") frame = VarDefFrame() id_doc = var_table.define(var_obj, var_name, object_path, frame) assert id_doc.name == "a" assert list(id_doc.source_paths) == [object_path] id_doc = var_table.get_var_doc(var_obj, object_path) assert id_doc.name == "a" assert list(id_doc.source_paths) == [object_path] def test_define_by_doc(): var_table = VarTable() var_name = "a" var_obj = Var(var_name, dtype="int32") object_path = ObjectPath.root().attr("a") frame = VarDefFrame() var_table.define_by_doc(var_obj, lambda: LiteralDoc(var_name), frame) var_doc = var_table.get_var_doc(var_obj, object_path) assert isinstance(var_doc, LiteralDoc) assert var_doc.value == var_name assert list(var_doc.source_paths) == [object_path] def test_is_var_defined(): var_table = VarTable() a = Var("a", dtype="int32") object_path = ObjectPath.root().attr("a") frame = VarDefFrame() var_table.define(a, "a", object_path, frame) assert var_table.is_var_defined(a) assert a in var_table def test_var_out_of_scope(): var_table = VarTable() var_name = "a" var_obj = Var(var_name, dtype="int32") object_path = ObjectPath.root().attr("a") frame = VarDefFrame() var_table.define(var_obj, var_name, object_path, frame) with frame: assert var_obj in var_table assert var_obj not in var_table assert var_table.get_var_doc(var_obj, object_path) is None
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tvmscript_regression.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import numpy import tvm from tvm.script import tir as T # This numpy array is used to test the comparison between the global objects and the # `tvm.script.tir` submodule. np_array = numpy.array([0, 1, 2, 3]) @T.prim_func def matmul(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [128, 128]) B = T.match_buffer(b, [128, 128]) C = T.match_buffer(c, [128, 128]) for i, j, k in T.grid(128, 128, 128): with T.block("update"): vi, vj, vk = T.axis.remap("SSR", [i, j, k]) with T.init(): C[vi, vj] = T.float32(0) C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vj, vk] def test_multi_element_array_in_outmost_namespace(): func = matmul rt_func = tvm.script.from_source(func.script(show_meta=True)) tvm.ir.assert_structural_equal(func, rt_func) if __name__ == "__main__": test_multi_element_array_in_outmost_namespace()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tvmscript_roundtrip.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import sys import pytest import tvm import tvm.testing from tvm import tir from tvm.script import tir as T import numpy as np def opt_gemm_normalize(): @tvm.script.ir_module class Module: @T.prim_func def mmult(A: T.handle, B: T.handle, C: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "mmult", "tir.noalias": True}) # buffer definition C_global = T.buffer_decl([1024, 1024], elem_offset=0, align=64, offset_factor=1) packedB = T.buffer_decl([32, 1024, 32], elem_offset=0, align=64, offset_factor=1) A_1 = T.match_buffer(A, [1024, 1024], elem_offset=0, align=64, offset_factor=1) B_1 = T.match_buffer(B, [1024, 1024], elem_offset=0, align=64, offset_factor=1) C_1 = T.match_buffer(C, [1024, 1024], elem_offset=0, align=64, offset_factor=1) # body T.realize(packedB[0:32, 0:1024, 0:32], "") for x in T.parallel(0, 32): for y in T.serial(0, 1024): for z in T.vectorized(0, 32): packedB[x, y, z] = B_1[y, ((x * 32) + z)] T.realize(C_1[0:1024, 0:1024], "") for x_outer in T.parallel(0, 32): for y_outer in T.serial(0, 32): T.realize( C_global[ (x_outer * 32) : ((x_outer * 32) + 32), (y_outer * 32) : ((y_outer * 32) + 32), ], "global", ) for x_c_init in T.serial(0, 32): for y_c_init in T.vectorized(0, 32): C_global[ (x_c_init + (x_outer * 32)), (y_c_init + (y_outer * 32)) ] = T.float32(0) for k_outer in T.serial(0, 256): for x_c in T.serial(0, 32): for k_inner in T.unroll(0, 4): for y_c in T.vectorized(0, 32): C_global[ (x_c + (x_outer * 32)), (y_c + (y_outer * 32)) ] = C_global[(x_c + (x_outer * 32)), (y_c + (y_outer * 32))] + ( A_1[(x_c + (x_outer * 32)), (k_inner + (k_outer * 4))] * packedB[ T.floordiv((y_c + (y_outer * 32)), 32), (k_inner + (k_outer * 4)), T.floormod((y_c + (y_outer * 32)), 32), ] ) for x_inner in T.serial(0, 32): for y_inner in T.serial(0, 32): C_1[(x_inner + (x_outer * 32)), (y_inner + (y_outer * 32))] = C_global[ (x_inner + (x_outer * 32)), (y_inner + (y_outer * 32)) ] return Module def opt_gemm_lower(): @tvm.script.ir_module class Module: @T.prim_func def mmult(A: T.handle, B: T.handle, C: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "mmult", "tir.noalias": True}) A_1 = T.match_buffer(A, [16384], elem_offset=0, align=64, offset_factor=1) B_1 = T.match_buffer(B, [1024, 1024], elem_offset=0, align=64, offset_factor=1) C_1 = T.match_buffer(C, [16384], elem_offset=0, align=64, offset_factor=1) # body packedB_data = T.allocate([32768], "float32", "global") packedB = T.buffer_decl( shape=[32768], dtype="float32", scope="global", data=packedB_data ) for x in T.parallel(0, 32): for y in T.serial(0, 1024): packedB[T.ramp(((x * 32768) + (y * 32)), 1, 32)] = B_1[y, T.ramp(x * 32, 1, 32)] for x_outer in T.parallel(0, 32): C_global_data = T.allocate([1024], "float32", "global") C_global = T.buffer_decl( shape=[1024], dtype="float32", scope="global", data=C_global_data ) for y_outer in T.serial(0, 32): for x_c_init in T.serial(0, 32): C_global[T.ramp((x_c_init * 32), 1, 32)] = T.broadcast(T.float32(0), 32) for k_outer in T.serial(0, 256): for x_c in T.serial(0, 32): C_global[T.ramp((x_c * 32), 1, 32)] = C_global[ T.ramp((x_c * 32), 1, 32) ] + ( T.broadcast( A_1[ (((x_outer * 32768) + (x_c * 1024)) + (k_outer * 4)), ], 32, ) * packedB[T.ramp(((y_outer * 32768) + (k_outer * 128)), 1, 32)] ) C_global[T.ramp((x_c * 32), 1, 32)] = C_global[ T.ramp((x_c * 32), 1, 32) ] + ( T.broadcast( A_1[ ((((x_outer * 32768) + (x_c * 1024)) + (k_outer * 4)) + 1), ], 32, ) * packedB[ T.ramp((((y_outer * 32768) + (k_outer * 128)) + 32), 1, 32) ] ) C_global[T.ramp((x_c * 32), 1, 32)] = C_global[ T.ramp((x_c * 32), 1, 32) ] + ( T.broadcast( A_1[ ((((x_outer * 32768) + (x_c * 1024)) + (k_outer * 4)) + 2), ], 32, ) * packedB[ T.ramp((((y_outer * 32768) + (k_outer * 128)) + 64), 1, 32) ] ) C_global[T.ramp((x_c * 32), 1, 32)] = C_global[ T.ramp((x_c * 32), 1, 32) ] + ( T.broadcast( A_1[ ((((x_outer * 32768) + (x_c * 1024)) + (k_outer * 4)) + 3), ], 32, ) * packedB[ T.ramp((((y_outer * 32768) + (k_outer * 128)) + 96), 1, 32) ] ) for x_inner in T.serial(0, 32): for y_inner in T.serial(0, 32): C_1[ ( (((x_outer * 32768) + (x_inner * 1024)) + (y_outer * 32)) + y_inner ) ] = C_global[((x_inner * 32) + y_inner)] return Module def opt_gemm_mod_host(): @tvm.script.ir_module class Module: @T.prim_func def mmult( args: T.handle, arg_type_ids: T.handle, num_args: T.int32, out_ret_value: T.handle, out_ret_tcode: T.handle, ) -> T.int32: # function attr dict T.func_attr( { "tir.noalias": True, "global_symbol": "mmult", "tir.is_entry_func": True, "calling_conv": 1, } ) # buffer definition buf_type_ids = T.match_buffer(arg_type_ids, [3], dtype="int32") packedB = T.buffer_decl([32768], dtype="float32") C_global = T.buffer_decl([1024], dtype="float32") # var definition # C_global = T.buffer_var("float32", "global") # packedB = T.buffer_var("float32", "global") # body assert num_args == 3, "mmult: num_args should be 3" arg0: T.handle = T.tvm_struct_get(args, 0, 12, dtype="handle") arg0_code: T.int32 = buf_type_ids[0] arg1: T.handle = T.tvm_struct_get(args, 1, 12, dtype="handle") arg1_code: T.int32 = buf_type_ids[1] arg2: T.handle = T.tvm_struct_get(args, 2, 12, dtype="handle") arg2_code: T.int32 = buf_type_ids[2] A_data: T.Ptr[T.int32] = T.tvm_struct_get(arg0, 0, 1, dtype="handle") T.attr(A_data, "storage_alignment", 128) A = T.buffer_decl([1024 * 1024], dtype="int32", data=A_data) buf0_shape_data: T.Ptr[T.int32] = T.tvm_struct_get(arg0, 0, 2, dtype="handle") buf0_shape = T.buffer_decl([2], dtype="int32", data=buf0_shape_data) buf0_strides_data: T.Ptr[T.int32] = T.tvm_struct_get(arg0, 0, 3, dtype="handle") buf0_strides = T.buffer_decl([2], dtype="int32", data=buf0_strides_data) dev_id: T.int32 = T.tvm_struct_get(arg0, 0, 9, dtype="int32") B_data: T.Ptr[T.int32] = T.tvm_struct_get(arg1, 0, 1, dtype="handle") T.attr(B_data, "storage_alignment", 128) B = T.buffer_decl([1024 * 1024], dtype="int32", data=B_data) buf1_shape_data: T.Ptr[T.int32] = T.tvm_struct_get(arg1, 0, 2, dtype="handle") buf1_shape = T.buffer_decl([2], dtype="int32", data=buf1_shape_data) buf1_strides_data: T.Ptr[T.int32] = T.tvm_struct_get(arg1, 0, 3, dtype="handle") buf1_strides = T.buffer_decl([2], dtype="int32", data=buf1_strides_data) C_data: T.Ptr[T.int32] = T.tvm_struct_get(arg2, 0, 1, dtype="handle") T.attr(C_data, "storage_alignment", 128) C = T.buffer_decl([1024 * 1024], dtype="int32", data=C_data) buf2_shape_data: T.Ptr[T.int32] = T.tvm_struct_get(arg2, 0, 2, dtype="handle") buf2_shape = T.buffer_decl([2], dtype="int32", data=buf2_shape_data) buf2_strides_data: T.Ptr[T.int32] = T.tvm_struct_get(arg2, 0, 3, dtype="handle") buf2_strides = T.buffer_decl([2], dtype="int32", data=buf2_strides_data) assert (((arg0_code == 3) or (arg0_code == 13)) or (arg0_code == 7)) or ( arg0_code == 4 ), "mmult: Expect arg[0] to be pointer" assert (((arg1_code == 3) or (arg1_code == 13)) or (arg1_code == 7)) or ( arg1_code == 4 ), "mmult: Expect arg[1] to be pointer" assert (((arg2_code == 3) or (arg2_code == 13)) or (arg2_code == 7)) or ( arg2_code == 4 ), "mmult: Expect arg[2] to be pointer" assert 2 == T.tvm_struct_get( arg0, 0, 4, dtype="int32" ), "arg0.ndim is expected to equal 2" assert 2 == T.tvm_struct_get( arg0, 0, 4, dtype="int32" ), "arg0.ndim is expected to equal 2" assert ( (T.tvm_struct_get(arg0, 0, 5, dtype="uint8") == T.uint8(2)) and (T.tvm_struct_get(arg0, 0, 6, dtype="uint8") == T.uint8(32)) ) and ( T.tvm_struct_get(arg0, 0, 7, dtype="uint16") == T.uint16(1) ), "arg0.dtype is expected to be float32" assert 1024 == T.cast( buf0_shape[0], "int32" ), "Argument arg0.shape[0] has an unsatisfied constraint" assert 1024 == T.cast( buf0_shape[1], "int32" ), "Argument arg0.shape[1] has an unsatisfied constraint" if not (T.isnullptr(buf0_strides.data, dtype="bool")): assert (1 == T.cast(buf0_strides[1], "int32")) and ( 1024 == T.cast(buf0_strides[0], "int32") ), "arg0.strides: expected to be compact array" T.evaluate(0) assert T.uint64(0) == T.tvm_struct_get( arg0, 0, 8, dtype="uint64" ), "Argument arg0.byte_offset has an unsatisfied constraint" assert 1 == T.tvm_struct_get( arg0, 0, 10, dtype="int32" ), "Argument arg0.device_type has an unsatisfied constraint" assert 2 == T.tvm_struct_get( arg1, 0, 4, dtype="int32" ), "arg1.ndim is expected to equal 2" assert 2 == T.tvm_struct_get( arg1, 0, 4, dtype="int32" ), "arg1.ndim is expected to equal 2" assert ( (T.tvm_struct_get(arg1, 0, 5, dtype="uint8") == T.uint8(2)) and (T.tvm_struct_get(arg1, 0, 6, dtype="uint8") == T.uint8(32)) ) and ( T.tvm_struct_get(arg1, 0, 7, dtype="uint16") == T.uint16(1) ), "arg1.dtype is expected to be float32" assert 1024 == T.cast( buf1_shape[0], "int32" ), "Argument arg1.shape[0] has an unsatisfied constraint" assert 1024 == T.cast( buf1_shape[1], "int32" ), "Argument arg1.shape[1] has an unsatisfied constraint" if not (T.isnullptr(buf1_strides.data, dtype="bool")): assert (1 == T.cast(buf1_strides[1], "int32")) and ( 1024 == T.cast(buf1_strides[0], "int32") ), "arg1.strides: expected to be compact array" T.evaluate(0) assert T.uint64(0) == T.tvm_struct_get( arg1, 0, 8, dtype="uint64" ), "Argument arg1.byte_offset has an unsatisfied constraint" assert 1 == T.tvm_struct_get( arg1, 0, 10, dtype="int32" ), "Argument arg1.device_type has an unsatisfied constraint" assert dev_id == T.tvm_struct_get( arg1, 0, 9, dtype="int32" ), "Argument arg1.device_id has an unsatisfied constraint" assert 2 == T.tvm_struct_get( arg2, 0, 4, dtype="int32" ), "arg2.ndim is expected to equal 2" assert 2 == T.tvm_struct_get( arg2, 0, 4, dtype="int32" ), "arg2.ndim is expected to equal 2" assert ( (T.tvm_struct_get(arg2, 0, 5, dtype="uint8") == T.uint8(2)) and (T.tvm_struct_get(arg2, 0, 6, dtype="uint8") == T.uint8(32)) ) and ( T.tvm_struct_get(arg2, 0, 7, dtype="uint16") == T.uint16(1) ), "arg2.dtype is expected to be float32" assert 1024 == T.cast( buf2_shape[0], "int32" ), "Argument arg2.shape[0] has an unsatisfied constraint" assert 1024 == T.cast( buf2_shape[1], "int32" ), "Argument arg2.shape[1] has an unsatisfied constraint" if not (T.isnullptr(buf2_strides.data, dtype="bool")): assert (1 == T.cast(buf2_strides[1], "int32")) and ( 1024 == T.cast(buf2_strides[0], "int32") ), "arg2.strides: expected to be compact array" T.evaluate(0) assert T.uint64(0) == T.tvm_struct_get( arg2, 0, 8, dtype="uint64" ), "Argument arg2.byte_offset has an unsatisfied constraint" assert 1 == T.tvm_struct_get( arg2, 0, 10, dtype="int32" ), "Argument arg2.device_type has an unsatisfied constraint" assert dev_id == T.tvm_struct_get( arg2, 0, 9, dtype="int32" ), "Argument arg2.device_id has an unsatisfied constraint" T.attr(0, "compute_scope", "mmult_compute_") T.attr(packedB.data, "storage_scope", "global") T.attr(packedB.data, "storage_alignment", 128) with T.let( packedB.data, T.TVMBackendAllocWorkspace(1, dev_id, T.uint64(4194304), 2, 32, dtype="handle"), ): if T.isnullptr(packedB.data, dtype="bool"): T.evaluate(T.tvm_throw_last_error(dtype="int32")) for x in T.parallel(0, 32): for y in T.serial(0, 1024): packedB[T.ramp(((x * 32768) + (y * 32)), 1, 32)] = B[ T.ramp(((y * 1024) + (x * 32)), 1, 32) ] for x_outer in T.parallel(0, 32): T.attr(C_global.data, "storage_scope", "global") T.attr(C_global.data, "storage_alignment", 128) with T.let( C_global.data, T.TVMBackendAllocWorkspace( 1, dev_id, T.uint64(4096), 2, 32, dtype="handle" ), ): if T.isnullptr(C_global.data, dtype="bool"): T.evaluate(T.tvm_throw_last_error(dtype="int32")) for y_outer in T.serial(0, 32): for x_c_init in T.serial(0, 32): C_global[T.ramp((x_c_init * 32), 1, 32)] = T.broadcast( T.float32(0), 32 ) for k_outer in T.serial(0, 256): for x_c in T.serial(0, 32): C_global[T.ramp((x_c * 32), 1, 32)] = T.call_llvm_pure_intrin( T.uint32(97), T.uint32(3), T.broadcast( A[ ( ((x_outer * 32768) + (x_c * 1024)) + (k_outer * 4) ), ], 32, ), packedB[ T.ramp(((y_outer * 32768) + (k_outer * 128)), 1, 32) ], C_global[T.ramp((x_c * 32), 1, 32)], dtype="float32x32", ) C_global[T.ramp((x_c * 32), 1, 32)] = T.call_llvm_pure_intrin( T.uint32(97), T.uint32(3), T.broadcast( A[ ( ( ((x_outer * 32768) + (x_c * 1024)) + (k_outer * 4) ) + 1 ), ], 32, ), packedB[ T.ramp( (((y_outer * 32768) + (k_outer * 128)) + 32), 1, 32 ) ], C_global[T.ramp((x_c * 32), 1, 32)], dtype="float32x32", ) C_global[T.ramp((x_c * 32), 1, 32)] = T.call_llvm_pure_intrin( T.uint32(97), T.uint32(3), T.broadcast( A[ ( ( ((x_outer * 32768) + (x_c * 1024)) + (k_outer * 4) ) + 2 ), ], 32, ), packedB[ T.ramp( (((y_outer * 32768) + (k_outer * 128)) + 64), 1, 32 ) ], C_global[T.ramp((x_c * 32), 1, 32)], dtype="float32x32", ) C_global[T.ramp((x_c * 32), 1, 32)] = T.call_llvm_pure_intrin( T.uint32(97), T.uint32(3), T.broadcast( A[ ( ( ((x_outer * 32768) + (x_c * 1024)) + (k_outer * 4) ) + 3 ), ], 32, ), packedB[ T.ramp( (((y_outer * 32768) + (k_outer * 128)) + 96), 1, 32 ) ], C_global[T.ramp((x_c * 32), 1, 32)], dtype="float32x32", ) for x_inner in T.serial(0, 32): for y_inner in T.serial(0, 32): C[ ( ( ((x_outer * 32768) + (x_inner * 1024)) + (y_outer * 32) ) + y_inner ) ] = C_global[((x_inner * 32) + y_inner)] if T.TVMBackendFreeWorkspace(1, dev_id, C_global.data, dtype="int32") != 0: T.evaluate(T.tvm_throw_last_error(dtype="int32")) if T.TVMBackendFreeWorkspace(1, dev_id, packedB.data, dtype="int32") != 0: T.evaluate(T.tvm_throw_last_error(dtype="int32")) return Module def opt_conv_tensorcore_normalize(): @T.prim_func def func(A: T.handle, W: T.handle, Conv: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "default_function", "tir.noalias": True}) # var definition bx = T.env_thread("blockIdx.x") by = T.env_thread("blockIdx.y") bz = T.env_thread("blockIdx.z") tx = T.env_thread("threadIdx.x") ty = T.env_thread("threadIdx.y") tz = T.env_thread("threadIdx.z") # buffer definition Apad_shared = T.buffer_decl( [16, 16, 16, 16, 16, 16], dtype="float16", elem_offset=0, align=64, offset_factor=1 ) Apad_shared_wmma_matrix_a = T.buffer_decl( [16, 16, 16, 16, 16, 16], dtype="float16", elem_offset=0, align=64, offset_factor=1 ) BA = T.buffer_decl( [16, 16], dtype="float16", scope="wmma.matrix_a", align=32, offset_factor=256 ) BB = T.buffer_decl( [16, 16], dtype="float16", scope="wmma.matrix_b", align=32, offset_factor=256 ) BC = T.buffer_decl([16, 16], scope="wmma.accumulator", align=32, offset_factor=256) Conv_wmma_accumulator = T.buffer_decl( [16, 14, 14, 32, 16, 16], elem_offset=0, align=64, offset_factor=1 ) W_shared = T.buffer_decl( [3, 3, 16, 32, 16, 16], dtype="float16", elem_offset=0, align=64, offset_factor=1 ) W_shared_wmma_matrix_b = T.buffer_decl( [3, 3, 16, 32, 16, 16], dtype="float16", elem_offset=0, align=64, offset_factor=1 ) buffer = T.buffer_decl( [16, 16], dtype="float16", scope="shared", align=32, offset_factor=256 ) buffer_1 = T.buffer_decl( [16, 16], dtype="float16", scope="wmma.matrix_a", align=32, offset_factor=256 ) buffer_2 = T.buffer_decl( [16, 16], dtype="float16", scope="shared", align=32, offset_factor=256 ) buffer_3 = T.buffer_decl( [16, 16], dtype="float16", scope="wmma.matrix_b", align=32, offset_factor=256 ) buffer_4 = T.buffer_decl([16, 16], scope="wmma.accumulator", align=32, offset_factor=256) buffer_5 = T.buffer_decl([16, 16], align=32, offset_factor=256) A_1 = T.match_buffer( A, [16, 14, 14, 16, 16, 16], dtype="float16", elem_offset=0, align=64, offset_factor=1 ) W_1 = T.match_buffer( W, [3, 3, 16, 32, 16, 16], dtype="float16", elem_offset=0, align=64, offset_factor=1 ) Conv_1 = T.match_buffer( Conv, [16, 14, 14, 32, 16, 16], elem_offset=0, align=64, offset_factor=1 ) # body T.realize(Conv_1[0:16, 0:14, 0:14, 0:32, 0:16, 0:16], "") T.launch_thread(bz, 196) T.launch_thread(bx, 2) T.launch_thread(by, 4) T.launch_thread(ty, 4) T.launch_thread(tz, 2) T.realize( Conv_wmma_accumulator[ ((bx * 8) + (ty * 2)) : (((bx * 8) + (ty * 2)) + 2), T.floordiv(bz, 14) : (T.floordiv(bz, 14) + 1), T.floormod(bz, 14) : (T.floormod(bz, 14) + 1), ((by * 8) + (tz * 4)) : (((by * 8) + (tz * 4)) + 4), 0:16, 0:16, ], "wmma.accumulator", ) for n_c_init in T.serial(0, 2): for o_c_init in T.serial(0, 4): T.attr( [BC, Conv_wmma_accumulator], "buffer_bind_scope", T.tvm_tuple( (n_c_init + ((bx * 8) + (ty * 2))), 1, T.floordiv(bz, 14), 1, T.floormod(bz, 14), 1, (o_c_init + ((by * 8) + (tz * 4))), 1, 0, 16, 0, 16, dtype="handle", ), ) T.evaluate( T.tvm_fill_fragment( BC.data, 16, 16, 16, T.floordiv(BC.elem_offset, 256), T.float32(0), dtype="handle", ) ) for ic_outer in T.serial(0, 8): for kh in T.serial(0, 3): T.realize( Apad_shared[ (bx * 8) : ((bx * 8) + 8), (T.floordiv(bz, 14) + kh) : ((T.floordiv(bz, 14) + kh) + 1), T.floormod(bz, 14) : (T.floormod(bz, 14) + 3), (ic_outer * 2) : ((ic_outer * 2) + 2), 0:16, 0:16, ], "shared", ) for ax2 in T.serial(0, 3): for ax3 in T.serial(0, 2): for ax4_ax5_fused_outer in T.serial(0, 8): T.launch_thread(tx, 32) Apad_shared[ ((tz + (ty * 2)) + (bx * 8)), (T.floordiv(bz, 14) + kh), (ax2 + T.floormod(bz, 14)), (ax3 + (ic_outer * 2)), T.floordiv((tx + (ax4_ax5_fused_outer * 32)), 16), T.floormod((tx + (ax4_ax5_fused_outer * 32)), 16), ] = T.if_then_else( ( ( ( ((T.floordiv(bz, 14) + kh) >= 1) and (((T.floordiv(bz, 14) + kh) - 1) < 14) ) and ((ax2 + T.floormod(bz, 14)) >= 1) ) and (((ax2 + T.floormod(bz, 14)) - 1) < 14) ), A_1[ ((tz + (ty * 2)) + (bx * 8)), ((T.floordiv(bz, 14) + kh) - 1), ((ax2 + T.floormod(bz, 14)) - 1), (ax3 + (ic_outer * 2)), T.floordiv((tx + (ax4_ax5_fused_outer * 32)), 16), T.floormod((tx + (ax4_ax5_fused_outer * 32)), 16), ], T.float16(0), dtype="float16", ) T.realize( W_shared[ kh : (kh + 1), 0:3, (ic_outer * 2) : ((ic_outer * 2) + 2), (by * 8) : ((by * 8) + 8), 0:16, 0:16, ], "shared", ) for ax1 in T.serial(0, 3): for ax2_1 in T.serial(0, 2): T.launch_thread(tx, 32) for ax4_ax5_fused_inner in T.vectorized(0, 8): W_shared[ kh, ax1, (ax2_1 + (ic_outer * 2)), ((tz + (ty * 2)) + (by * 8)), T.floordiv((ax4_ax5_fused_inner + (tx * 8)), 16), T.floormod((ax4_ax5_fused_inner + (tx * 8)), 16), ] = W_1[ kh, ax1, (ax2_1 + (ic_outer * 2)), ((tz + (ty * 2)) + (by * 8)), T.floordiv((ax4_ax5_fused_inner + (tx * 8)), 16), T.floormod((ax4_ax5_fused_inner + (tx * 8)), 16), ] for ic_inner in T.serial(0, 2): for kw in T.serial(0, 3): T.realize( Apad_shared_wmma_matrix_a[ ((bx * 8) + (ty * 2)) : (((bx * 8) + (ty * 2)) + 2), (T.floordiv(bz, 14) + kh) : ((T.floordiv(bz, 14) + kh) + 1), (kw + T.floormod(bz, 14)) : ((kw + T.floormod(bz, 14)) + 1), ((ic_outer * 2) + ic_inner) : (((ic_outer * 2) + ic_inner) + 1), 0:16, 0:16, ], "wmma.matrix_a", ) for ax0 in T.serial(0, 2): T.attr( [buffer, Apad_shared], "buffer_bind_scope", T.tvm_tuple( (ax0 + ((bx * 8) + (ty * 2))), 1, (T.floordiv(bz, 14) + kh), 1, (kw + T.floormod(bz, 14)), 1, ((ic_outer * 2) + ic_inner), 1, 0, 16, 0, 16, dtype="handle", ), ) T.attr( [buffer_1, Apad_shared_wmma_matrix_a], "buffer_bind_scope", T.tvm_tuple( (ax0 + ((bx * 8) + (ty * 2))), 1, (T.floordiv(bz, 14) + kh), 1, (kw + T.floormod(bz, 14)), 1, ((ic_outer * 2) + ic_inner), 1, 0, 16, 0, 16, dtype="handle", ), ) T.evaluate( T.tvm_load_matrix_sync( buffer_1.data, 16, 16, 16, T.floordiv(buffer_1.elem_offset, 256), T.tvm_access_ptr( T.type_annotation(dtype="float16"), buffer.data, buffer.elem_offset, 256, 1, dtype="handle", ), 16, "row_major", dtype="handle", ) ) T.realize( W_shared_wmma_matrix_b[ kh : (kh + 1), kw : (kw + 1), ((ic_outer * 2) + ic_inner) : (((ic_outer * 2) + ic_inner) + 1), ((by * 8) + (tz * 4)) : (((by * 8) + (tz * 4)) + 4), 0:16, 0:16, ], "wmma.matrix_b", ) for ax3_1 in T.serial(0, 4): T.attr( [buffer_2, W_shared], "buffer_bind_scope", T.tvm_tuple( kh, 1, kw, 1, ((ic_outer * 2) + ic_inner), 1, (ax3_1 + ((by * 8) + (tz * 4))), 1, 0, 16, 0, 16, dtype="handle", ), ) T.attr( [buffer_3, W_shared_wmma_matrix_b], "buffer_bind_scope", T.tvm_tuple( kh, 1, kw, 1, ((ic_outer * 2) + ic_inner), 1, (ax3_1 + ((by * 8) + (tz * 4))), 1, 0, 16, 0, 16, dtype="handle", ), ) T.evaluate( T.tvm_load_matrix_sync( buffer_3.data, 16, 16, 16, T.floordiv(buffer_3.elem_offset, 256), T.tvm_access_ptr( T.type_annotation(dtype="float16"), buffer_2.data, buffer_2.elem_offset, 256, 1, dtype="handle", ), 16, "row_major", dtype="handle", ) ) for n_c in T.serial(0, 2): for o_c in T.serial(0, 4): T.attr( [BA, Apad_shared_wmma_matrix_a], "buffer_bind_scope", T.tvm_tuple( (n_c + ((bx * 8) + (ty * 2))), 1, (T.floordiv(bz, 14) + kh), 1, (T.floormod(bz, 14) + kw), 1, ((ic_outer * 2) + ic_inner), 1, 0, 16, 0, 16, dtype="handle", ), ) T.attr( [BB, W_shared_wmma_matrix_b], "buffer_bind_scope", T.tvm_tuple( kh, 1, kw, 1, ((ic_outer * 2) + ic_inner), 1, (o_c + ((by * 8) + (tz * 4))), 1, 0, 16, 0, 16, dtype="handle", ), ) T.attr( [BC, Conv_wmma_accumulator], "buffer_bind_scope", T.tvm_tuple( (n_c + ((bx * 8) + (ty * 2))), 1, T.floordiv(bz, 14), 1, T.floormod(bz, 14), 1, (o_c + ((by * 8) + (tz * 4))), 1, 0, 16, 0, 16, dtype="handle", ), ) T.evaluate( T.tvm_mma_sync( BC.data, T.floordiv(BC.elem_offset, 256), BA.data, T.floordiv(BA.elem_offset, 256), BB.data, T.floordiv(BB.elem_offset, 256), BC.data, T.floordiv(BC.elem_offset, 256), dtype="handle", ) ) for n_inner in T.serial(0, 2): for o_inner in T.serial(0, 4): T.attr( [buffer_4, Conv_wmma_accumulator], "buffer_bind_scope", T.tvm_tuple( ((((bx * 4) + ty) * 2) + n_inner), 1, T.floordiv(bz, 14), 1, T.floormod(bz, 14), 1, ((((by * 2) + tz) * 4) + o_inner), 1, 0, 16, 0, 16, dtype="handle", ), ) T.attr( [buffer_5, Conv_1], "buffer_bind_scope", T.tvm_tuple( ((((bx * 4) + ty) * 2) + n_inner), 1, T.floordiv(bz, 14), 1, T.floormod(bz, 14), 1, ((((by * 2) + tz) * 4) + o_inner), 1, 0, 16, 0, 16, dtype="handle", ), ) T.evaluate( T.tvm_store_matrix_sync( buffer_4.data, 16, 16, 16, T.floordiv(buffer_4.elem_offset, 256), T.tvm_access_ptr( T.type_annotation(dtype="float32"), buffer_5.data, buffer_5.elem_offset, 256, 2, dtype="handle", ), 16, "row_major", dtype="handle", ) ) return func def opt_conv_tensorcore_lower(): @T.prim_func def func( A: T.Buffer[(16, 14, 14, 16, 16, 16), "float16"], W: T.Buffer[(3, 3, 16, 32, 16, 16), "float16"], Conv: T.Buffer[(16, 14, 14, 32, 16, 16), "float32"], ) -> None: # function attr dict T.func_attr({"global_symbol": "default_function", "tir.noalias": True}) # body A_1 = T.buffer_decl([12845056], dtype="float16", data=A.data) W_1 = T.buffer_decl([1179648], dtype="float16", data=W.data) Conv_1 = T.buffer_decl([25690112], data=Conv.data) bx = T.env_thread("blockIdx.x") by = T.env_thread("blockIdx.y") bz = T.env_thread("blockIdx.z") tx = T.env_thread("threadIdx.x") ty = T.env_thread("threadIdx.y") tz = T.env_thread("threadIdx.z") T.launch_thread(bz, 196) Conv_wmma_accumulator_data = T.allocate([2048], "float32", "wmma.accumulator") Conv_wmma_accumulator = T.buffer_decl( shape=[2048], dtype="float32", scope="wmma.accumulator", data=Conv_wmma_accumulator_data ) Apad_shared_data = T.allocate([12288], "float16", "shared") Apad_shared = T.buffer_decl( shape=[12288], dtype="float16", scope="shared", data=Apad_shared_data ) W_shared_data = T.allocate([12288], "float16", "shared") W_shared = T.buffer_decl(shape=[12288], dtype="float16", scope="shared", data=W_shared_data) Apad_shared_wmma_matrix_a_data = T.allocate([512], "float16", "wmma.matrix_a") Apad_shared_wmma_matrix_a = T.buffer_decl( shape=[512], dtype="float16", scope="wmma.matrix_a", data=Apad_shared_wmma_matrix_a_data ) W_shared_wmma_matrix_b_data = T.allocate([1024], "float16", "wmma.matrix_b") W_shared_wmma_matrix_b = T.buffer_decl( shape=[1024], dtype="float16", scope="wmma.matrix_b", data=W_shared_wmma_matrix_b_data ) T.launch_thread(bx, 2) T.launch_thread(by, 4) T.launch_thread(ty, 4) T.launch_thread(tz, 2) T.evaluate( T.tvm_fill_fragment( Conv_wmma_accumulator.data, 16, 16, 16, 0, T.float32(0), dtype="handle" ) ) T.evaluate( T.tvm_fill_fragment( Conv_wmma_accumulator.data, 16, 16, 16, 1, T.float32(0), dtype="handle" ) ) T.evaluate( T.tvm_fill_fragment( Conv_wmma_accumulator.data, 16, 16, 16, 2, T.float32(0), dtype="handle" ) ) T.evaluate( T.tvm_fill_fragment( Conv_wmma_accumulator.data, 16, 16, 16, 3, T.float32(0), dtype="handle" ) ) T.evaluate( T.tvm_fill_fragment( Conv_wmma_accumulator.data, 16, 16, 16, 4, T.float32(0), dtype="handle" ) ) T.evaluate( T.tvm_fill_fragment( Conv_wmma_accumulator.data, 16, 16, 16, 5, T.float32(0), dtype="handle" ) ) T.evaluate( T.tvm_fill_fragment( Conv_wmma_accumulator.data, 16, 16, 16, 6, T.float32(0), dtype="handle" ) ) T.evaluate( T.tvm_fill_fragment( Conv_wmma_accumulator.data, 16, 16, 16, 7, T.float32(0), dtype="handle" ) ) for ic_outer in T.serial(0, 8): for kh in T.serial(0, 3): for ax2 in T.serial(0, 3): with T.launch_thread(tx, 32): Apad_shared[ ((((ty * 3072) + (tz * 1536)) + (ax2 * 512)) + tx) ] = T.if_then_else( ( ( ( (1 <= (T.floordiv(bz, 14) + kh)) and ((T.floordiv(bz, 14) + kh) < 15) ) and (1 <= (ax2 + T.floormod(bz, 14))) ) and ((ax2 + T.floormod(bz, 14)) < 15) ), A_1[ ( ( ( ( ( ( ( ((bx * 6422528) + (ty * 1605632)) + (tz * 802816) ) + (kh * 57344) ) + (bz * 4096) ) + (ax2 * 4096) ) + (ic_outer * 512) ) + tx ) - 61440 ), ], T.float16(0), dtype="float16", ) with T.launch_thread(tx, 32): Apad_shared[ (((((ty * 3072) + (tz * 1536)) + (ax2 * 512)) + tx) + 32) ] = T.if_then_else( ( ( ( (1 <= (T.floordiv(bz, 14) + kh)) and ((T.floordiv(bz, 14) + kh) < 15) ) and (1 <= (ax2 + T.floormod(bz, 14))) ) and ((ax2 + T.floormod(bz, 14)) < 15) ), A_1[ ( ( ( ( ( ( ( ((bx * 6422528) + (ty * 1605632)) + (tz * 802816) ) + (kh * 57344) ) + (bz * 4096) ) + (ax2 * 4096) ) + (ic_outer * 512) ) + tx ) - 61408 ), ], T.float16(0), dtype="float16", ) with T.launch_thread(tx, 32): Apad_shared[ (((((ty * 3072) + (tz * 1536)) + (ax2 * 512)) + tx) + 64) ] = T.if_then_else( ( ( ( (1 <= (T.floordiv(bz, 14) + kh)) and ((T.floordiv(bz, 14) + kh) < 15) ) and (1 <= (ax2 + T.floormod(bz, 14))) ) and ((ax2 + T.floormod(bz, 14)) < 15) ), A_1[ ( ( ( ( ( ( ( ((bx * 6422528) + (ty * 1605632)) + (tz * 802816) ) + (kh * 57344) ) + (bz * 4096) ) + (ax2 * 4096) ) + (ic_outer * 512) ) + tx ) - 61376 ), ], T.float16(0), dtype="float16", ) with T.launch_thread(tx, 32): Apad_shared[ (((((ty * 3072) + (tz * 1536)) + (ax2 * 512)) + tx) + 96) ] = T.if_then_else( ( ( ( (1 <= (T.floordiv(bz, 14) + kh)) and ((T.floordiv(bz, 14) + kh) < 15) ) and (1 <= (ax2 + T.floormod(bz, 14))) ) and ((ax2 + T.floormod(bz, 14)) < 15) ), A_1[ ( ( ( ( ( ( ( ((bx * 6422528) + (ty * 1605632)) + (tz * 802816) ) + (kh * 57344) ) + (bz * 4096) ) + (ax2 * 4096) ) + (ic_outer * 512) ) + tx ) - 61344 ), ], T.float16(0), dtype="float16", ) with T.launch_thread(tx, 32): Apad_shared[ (((((ty * 3072) + (tz * 1536)) + (ax2 * 512)) + tx) + 128) ] = T.if_then_else( ( ( ( (1 <= (T.floordiv(bz, 14) + kh)) and ((T.floordiv(bz, 14) + kh) < 15) ) and (1 <= (ax2 + T.floormod(bz, 14))) ) and ((ax2 + T.floormod(bz, 14)) < 15) ), A_1[ ( ( ( ( ( ( ( ((bx * 6422528) + (ty * 1605632)) + (tz * 802816) ) + (kh * 57344) ) + (bz * 4096) ) + (ax2 * 4096) ) + (ic_outer * 512) ) + tx ) - 61312 ), ], T.float16(0), dtype="float16", ) with T.launch_thread(tx, 32): Apad_shared[ (((((ty * 3072) + (tz * 1536)) + (ax2 * 512)) + tx) + 160) ] = T.if_then_else( ( ( ( (1 <= (T.floordiv(bz, 14) + kh)) and ((T.floordiv(bz, 14) + kh) < 15) ) and (1 <= (ax2 + T.floormod(bz, 14))) ) and ((ax2 + T.floormod(bz, 14)) < 15) ), A_1[ ( ( ( ( ( ( ( ((bx * 6422528) + (ty * 1605632)) + (tz * 802816) ) + (kh * 57344) ) + (bz * 4096) ) + (ax2 * 4096) ) + (ic_outer * 512) ) + tx ) - 61280 ), ], T.float16(0), dtype="float16", ) with T.launch_thread(tx, 32): Apad_shared[ (((((ty * 3072) + (tz * 1536)) + (ax2 * 512)) + tx) + 192) ] = T.if_then_else( ( ( ( (1 <= (T.floordiv(bz, 14) + kh)) and ((T.floordiv(bz, 14) + kh) < 15) ) and (1 <= (ax2 + T.floormod(bz, 14))) ) and ((ax2 + T.floormod(bz, 14)) < 15) ), A_1[ ( ( ( ( ( ( ( ((bx * 6422528) + (ty * 1605632)) + (tz * 802816) ) + (kh * 57344) ) + (bz * 4096) ) + (ax2 * 4096) ) + (ic_outer * 512) ) + tx ) - 61248 ), ], T.float16(0), dtype="float16", ) with T.launch_thread(tx, 32): Apad_shared[ (((((ty * 3072) + (tz * 1536)) + (ax2 * 512)) + tx) + 224) ] = T.if_then_else( ( ( ( (1 <= (T.floordiv(bz, 14) + kh)) and ((T.floordiv(bz, 14) + kh) < 15) ) and (1 <= (ax2 + T.floormod(bz, 14))) ) and ((ax2 + T.floormod(bz, 14)) < 15) ), A_1[ ( ( ( ( ( ( ( ((bx * 6422528) + (ty * 1605632)) + (tz * 802816) ) + (kh * 57344) ) + (bz * 4096) ) + (ax2 * 4096) ) + (ic_outer * 512) ) + tx ) - 61216 ), ], T.float16(0), dtype="float16", ) with T.launch_thread(tx, 32): Apad_shared[ (((((ty * 3072) + (tz * 1536)) + (ax2 * 512)) + tx) + 256) ] = T.if_then_else( ( ( ( (1 <= (T.floordiv(bz, 14) + kh)) and ((T.floordiv(bz, 14) + kh) < 15) ) and (1 <= (ax2 + T.floormod(bz, 14))) ) and ((ax2 + T.floormod(bz, 14)) < 15) ), A_1[ ( ( ( ( ( ( ( ((bx * 6422528) + (ty * 1605632)) + (tz * 802816) ) + (kh * 57344) ) + (bz * 4096) ) + (ax2 * 4096) ) + (ic_outer * 512) ) + tx ) - 61184 ), ], T.float16(0), dtype="float16", ) with T.launch_thread(tx, 32): Apad_shared[ (((((ty * 3072) + (tz * 1536)) + (ax2 * 512)) + tx) + 288) ] = T.if_then_else( ( ( ( (1 <= (T.floordiv(bz, 14) + kh)) and ((T.floordiv(bz, 14) + kh) < 15) ) and (1 <= (ax2 + T.floormod(bz, 14))) ) and ((ax2 + T.floormod(bz, 14)) < 15) ), A_1[ ( ( ( ( ( ( ( ((bx * 6422528) + (ty * 1605632)) + (tz * 802816) ) + (kh * 57344) ) + (bz * 4096) ) + (ax2 * 4096) ) + (ic_outer * 512) ) + tx ) - 61152 ), ], T.float16(0), dtype="float16", ) with T.launch_thread(tx, 32): Apad_shared[ (((((ty * 3072) + (tz * 1536)) + (ax2 * 512)) + tx) + 320) ] = T.if_then_else( ( ( ( (1 <= (T.floordiv(bz, 14) + kh)) and ((T.floordiv(bz, 14) + kh) < 15) ) and (1 <= (ax2 + T.floormod(bz, 14))) ) and ((ax2 + T.floormod(bz, 14)) < 15) ), A_1[ ( ( ( ( ( ( ( ((bx * 6422528) + (ty * 1605632)) + (tz * 802816) ) + (kh * 57344) ) + (bz * 4096) ) + (ax2 * 4096) ) + (ic_outer * 512) ) + tx ) - 61120 ), ], T.float16(0), dtype="float16", ) with T.launch_thread(tx, 32): Apad_shared[ (((((ty * 3072) + (tz * 1536)) + (ax2 * 512)) + tx) + 352) ] = T.if_then_else( ( ( ( (1 <= (T.floordiv(bz, 14) + kh)) and ((T.floordiv(bz, 14) + kh) < 15) ) and (1 <= (ax2 + T.floormod(bz, 14))) ) and ((ax2 + T.floormod(bz, 14)) < 15) ), A_1[ ( ( ( ( ( ( ( ((bx * 6422528) + (ty * 1605632)) + (tz * 802816) ) + (kh * 57344) ) + (bz * 4096) ) + (ax2 * 4096) ) + (ic_outer * 512) ) + tx ) - 61088 ), ], T.float16(0), dtype="float16", ) with T.launch_thread(tx, 32): Apad_shared[ (((((ty * 3072) + (tz * 1536)) + (ax2 * 512)) + tx) + 384) ] = T.if_then_else( ( ( ( (1 <= (T.floordiv(bz, 14) + kh)) and ((T.floordiv(bz, 14) + kh) < 15) ) and (1 <= (ax2 + T.floormod(bz, 14))) ) and ((ax2 + T.floormod(bz, 14)) < 15) ), A_1[ ( ( ( ( ( ( ( ((bx * 6422528) + (ty * 1605632)) + (tz * 802816) ) + (kh * 57344) ) + (bz * 4096) ) + (ax2 * 4096) ) + (ic_outer * 512) ) + tx ) - 61056 ), ], T.float16(0), dtype="float16", ) with T.launch_thread(tx, 32): Apad_shared[ (((((ty * 3072) + (tz * 1536)) + (ax2 * 512)) + tx) + 416) ] = T.if_then_else( ( ( ( (1 <= (T.floordiv(bz, 14) + kh)) and ((T.floordiv(bz, 14) + kh) < 15) ) and (1 <= (ax2 + T.floormod(bz, 14))) ) and ((ax2 + T.floormod(bz, 14)) < 15) ), A_1[ ( ( ( ( ( ( ( ((bx * 6422528) + (ty * 1605632)) + (tz * 802816) ) + (kh * 57344) ) + (bz * 4096) ) + (ax2 * 4096) ) + (ic_outer * 512) ) + tx ) - 61024 ), ], T.float16(0), dtype="float16", ) with T.launch_thread(tx, 32): Apad_shared[ (((((ty * 3072) + (tz * 1536)) + (ax2 * 512)) + tx) + 448) ] = T.if_then_else( ( ( ( (1 <= (T.floordiv(bz, 14) + kh)) and ((T.floordiv(bz, 14) + kh) < 15) ) and (1 <= (ax2 + T.floormod(bz, 14))) ) and ((ax2 + T.floormod(bz, 14)) < 15) ), A_1[ ( ( ( ( ( ( ( ((bx * 6422528) + (ty * 1605632)) + (tz * 802816) ) + (kh * 57344) ) + (bz * 4096) ) + (ax2 * 4096) ) + (ic_outer * 512) ) + tx ) - 60992 ), ], T.float16(0), dtype="float16", ) T.launch_thread(tx, 32) Apad_shared[ (((((ty * 3072) + (tz * 1536)) + (ax2 * 512)) + tx) + 480) ] = T.if_then_else( ( ( ( (1 <= (T.floordiv(bz, 14) + kh)) and ((T.floordiv(bz, 14) + kh) < 15) ) and (1 <= (ax2 + T.floormod(bz, 14))) ) and ((ax2 + T.floormod(bz, 14)) < 15) ), A_1[ ( ( ( ( ( ( ( ((bx * 6422528) + (ty * 1605632)) + (tz * 802816) ) + (kh * 57344) ) + (bz * 4096) ) + (ax2 * 4096) ) + (ic_outer * 512) ) + tx ) - 60960 ), ], T.float16(0), dtype="float16", ) with T.launch_thread(tx, 32): W_shared[T.ramp((((ty * 512) + (tz * 256)) + (tx * 8)), 1, 8)] = W_1[ T.ramp( ( ( ( (((kh * 393216) + (ic_outer * 16384)) + (by * 2048)) + (ty * 512) ) + (tz * 256) ) + (tx * 8) ), 1, 8, ) ] with T.launch_thread(tx, 32): W_shared[T.ramp(((((ty * 512) + (tz * 256)) + (tx * 8)) + 2048), 1, 8)] = W_1[ T.ramp( ( ( ( ( (((kh * 393216) + (ic_outer * 16384)) + (by * 2048)) + (ty * 512) ) + (tz * 256) ) + (tx * 8) ) + 8192 ), 1, 8, ) ] with T.launch_thread(tx, 32): W_shared[T.ramp(((((ty * 512) + (tz * 256)) + (tx * 8)) + 4096), 1, 8)] = W_1[ T.ramp( ( ( ( ( (((kh * 393216) + (ic_outer * 16384)) + (by * 2048)) + (ty * 512) ) + (tz * 256) ) + (tx * 8) ) + 131072 ), 1, 8, ) ] with T.launch_thread(tx, 32): W_shared[T.ramp(((((ty * 512) + (tz * 256)) + (tx * 8)) + 6144), 1, 8)] = W_1[ T.ramp( ( ( ( ( (((kh * 393216) + (ic_outer * 16384)) + (by * 2048)) + (ty * 512) ) + (tz * 256) ) + (tx * 8) ) + 139264 ), 1, 8, ) ] with T.launch_thread(tx, 32): W_shared[T.ramp(((((ty * 512) + (tz * 256)) + (tx * 8)) + 8192), 1, 8)] = W_1[ T.ramp( ( ( ( ( (((kh * 393216) + (ic_outer * 16384)) + (by * 2048)) + (ty * 512) ) + (tz * 256) ) + (tx * 8) ) + 262144 ), 1, 8, ) ] with T.launch_thread(tx, 32): W_shared[T.ramp(((((ty * 512) + (tz * 256)) + (tx * 8)) + 10240), 1, 8)] = W_1[ T.ramp( ( ( ( ( (((kh * 393216) + (ic_outer * 16384)) + (by * 2048)) + (ty * 512) ) + (tz * 256) ) + (tx * 8) ) + 270336 ), 1, 8, ) ] for ic_inner in T.serial(0, 2): for kw in T.serial(0, 3): T.evaluate( T.tvm_load_matrix_sync( Apad_shared_wmma_matrix_a.data, 16, 16, 16, 0, T.tvm_access_ptr( T.type_annotation(dtype="float16"), Apad_shared.data, (((ty * 3072) + (kw * 512)) + (ic_inner * 256)), 256, 1, dtype="handle", ), 16, "row_major", dtype="handle", ) ) T.evaluate( T.tvm_load_matrix_sync( Apad_shared_wmma_matrix_a.data, 16, 16, 16, 1, T.tvm_access_ptr( T.type_annotation(dtype="float16"), Apad_shared.data, ((((ty * 3072) + (kw * 512)) + (ic_inner * 256)) + 1536), 256, 1, dtype="handle", ), 16, "row_major", dtype="handle", ) ) T.evaluate( T.tvm_load_matrix_sync( W_shared_wmma_matrix_b.data, 16, 16, 16, 0, T.tvm_access_ptr( T.type_annotation(dtype="float16"), W_shared.data, (((kw * 4096) + (ic_inner * 2048)) + (tz * 1024)), 256, 1, dtype="handle", ), 16, "row_major", dtype="handle", ) ) T.evaluate( T.tvm_load_matrix_sync( W_shared_wmma_matrix_b.data, 16, 16, 16, 1, T.tvm_access_ptr( T.type_annotation(dtype="float16"), W_shared.data, ((((kw * 4096) + (ic_inner * 2048)) + (tz * 1024)) + 256), 256, 1, dtype="handle", ), 16, "row_major", dtype="handle", ) ) T.evaluate( T.tvm_load_matrix_sync( W_shared_wmma_matrix_b.data, 16, 16, 16, 2, T.tvm_access_ptr( T.type_annotation(dtype="float16"), W_shared.data, ((((kw * 4096) + (ic_inner * 2048)) + (tz * 1024)) + 512), 256, 1, dtype="handle", ), 16, "row_major", dtype="handle", ) ) T.evaluate( T.tvm_load_matrix_sync( W_shared_wmma_matrix_b.data, 16, 16, 16, 3, T.tvm_access_ptr( T.type_annotation(dtype="float16"), W_shared.data, ((((kw * 4096) + (ic_inner * 2048)) + (tz * 1024)) + 768), 256, 1, dtype="handle", ), 16, "row_major", dtype="handle", ) ) T.evaluate( T.tvm_mma_sync( Conv_wmma_accumulator.data, 0, Apad_shared_wmma_matrix_a.data, 0, W_shared_wmma_matrix_b.data, 0, Conv_wmma_accumulator.data, 0, dtype="handle", ) ) T.evaluate( T.tvm_mma_sync( Conv_wmma_accumulator.data, 1, Apad_shared_wmma_matrix_a.data, 0, W_shared_wmma_matrix_b.data, 1, Conv_wmma_accumulator.data, 1, dtype="handle", ) ) T.evaluate( T.tvm_mma_sync( Conv_wmma_accumulator.data, 2, Apad_shared_wmma_matrix_a.data, 0, W_shared_wmma_matrix_b.data, 2, Conv_wmma_accumulator.data, 2, dtype="handle", ) ) T.evaluate( T.tvm_mma_sync( Conv_wmma_accumulator.data, 3, Apad_shared_wmma_matrix_a.data, 0, W_shared_wmma_matrix_b.data, 3, Conv_wmma_accumulator.data, 3, dtype="handle", ) ) T.evaluate( T.tvm_mma_sync( Conv_wmma_accumulator.data, 4, Apad_shared_wmma_matrix_a.data, 1, W_shared_wmma_matrix_b.data, 0, Conv_wmma_accumulator.data, 4, dtype="handle", ) ) T.evaluate( T.tvm_mma_sync( Conv_wmma_accumulator.data, 5, Apad_shared_wmma_matrix_a.data, 1, W_shared_wmma_matrix_b.data, 1, Conv_wmma_accumulator.data, 5, dtype="handle", ) ) T.evaluate( T.tvm_mma_sync( Conv_wmma_accumulator.data, 6, Apad_shared_wmma_matrix_a.data, 1, W_shared_wmma_matrix_b.data, 2, Conv_wmma_accumulator.data, 6, dtype="handle", ) ) T.evaluate( T.tvm_mma_sync( Conv_wmma_accumulator.data, 7, Apad_shared_wmma_matrix_a.data, 1, W_shared_wmma_matrix_b.data, 3, Conv_wmma_accumulator.data, 7, dtype="handle", ) ) T.evaluate( T.tvm_store_matrix_sync( Conv_wmma_accumulator.data, 16, 16, 16, 0, T.tvm_access_ptr( T.type_annotation(dtype="float32"), Conv_1.data, ( ((((bx * 12845056) + (ty * 3211264)) + (bz * 8192)) + (by * 2048)) + (tz * 1024) ), 256, 2, dtype="handle", ), 16, "row_major", dtype="handle", ) ) T.evaluate( T.tvm_store_matrix_sync( Conv_wmma_accumulator.data, 16, 16, 16, 1, T.tvm_access_ptr( T.type_annotation(dtype="float32"), Conv_1.data, ( ( ((((bx * 12845056) + (ty * 3211264)) + (bz * 8192)) + (by * 2048)) + (tz * 1024) ) + 256 ), 256, 2, dtype="handle", ), 16, "row_major", dtype="handle", ) ) T.evaluate( T.tvm_store_matrix_sync( Conv_wmma_accumulator.data, 16, 16, 16, 2, T.tvm_access_ptr( T.type_annotation(dtype="float32"), Conv_1.data, ( ( ((((bx * 12845056) + (ty * 3211264)) + (bz * 8192)) + (by * 2048)) + (tz * 1024) ) + 512 ), 256, 2, dtype="handle", ), 16, "row_major", dtype="handle", ) ) T.evaluate( T.tvm_store_matrix_sync( Conv_wmma_accumulator.data, 16, 16, 16, 3, T.tvm_access_ptr( T.type_annotation(dtype="float32"), Conv_1.data, ( ( ((((bx * 12845056) + (ty * 3211264)) + (bz * 8192)) + (by * 2048)) + (tz * 1024) ) + 768 ), 256, 2, dtype="handle", ), 16, "row_major", dtype="handle", ) ) T.evaluate( T.tvm_store_matrix_sync( Conv_wmma_accumulator.data, 16, 16, 16, 4, T.tvm_access_ptr( T.type_annotation(dtype="float32"), Conv_1.data, ( ( ((((bx * 12845056) + (ty * 3211264)) + (bz * 8192)) + (by * 2048)) + (tz * 1024) ) + 1605632 ), 256, 2, dtype="handle", ), 16, "row_major", dtype="handle", ) ) T.evaluate( T.tvm_store_matrix_sync( Conv_wmma_accumulator.data, 16, 16, 16, 5, T.tvm_access_ptr( T.type_annotation(dtype="float32"), Conv_1.data, ( ( ((((bx * 12845056) + (ty * 3211264)) + (bz * 8192)) + (by * 2048)) + (tz * 1024) ) + 1605888 ), 256, 2, dtype="handle", ), 16, "row_major", dtype="handle", ) ) T.evaluate( T.tvm_store_matrix_sync( Conv_wmma_accumulator.data, 16, 16, 16, 6, T.tvm_access_ptr( T.type_annotation(dtype="float32"), Conv_1.data, ( ( ((((bx * 12845056) + (ty * 3211264)) + (bz * 8192)) + (by * 2048)) + (tz * 1024) ) + 1606144 ), 256, 2, dtype="handle", ), 16, "row_major", dtype="handle", ) ) T.evaluate( T.tvm_store_matrix_sync( Conv_wmma_accumulator.data, 16, 16, 16, 7, T.tvm_access_ptr( T.type_annotation(dtype="float32"), Conv_1.data, ( ( ((((bx * 12845056) + (ty * 3211264)) + (bz * 8192)) + (by * 2048)) + (tz * 1024) ) + 1606400 ), 256, 2, dtype="handle", ), 16, "row_major", dtype="handle", ) ) return func def opt_conv_tensorcore_mod_host(): @T.prim_func def opt_conv_tensorcore_mod_host( args: T.handle, arg_type_ids: T.Buffer[(3,), "int32"], num_args: T.int32, out_ret_value: T.handle, out_ret_tcode: T.handle, resource_handle: T.handle, ) -> T.int32: # function attr dict T.func_attr( { "tir.noalias": True, "global_symbol": "default_function", "tir.is_entry_func": True, "calling_conv": 1, } ) # body stack_tcode_data: T.Ptr[T.int32] = T.tvm_stack_alloca("arg_tcode", 10, dtype="handle") stack_tcode = T.buffer_decl([9], "int32", data=stack_tcode_data) stack_value: T.handle = T.tvm_stack_alloca("arg_value", 10, dtype="handle") assert num_args == 3, "default_function: num_args should be 3" arg0: T.handle = T.tvm_struct_get(args, 0, 12, dtype="handle") arg0_code: T.int32 = arg_type_ids[0] arg1: T.handle = T.tvm_struct_get(args, 1, 12, dtype="handle") arg1_code: T.int32 = arg_type_ids[1] arg2: T.handle = T.tvm_struct_get(args, 2, 12, dtype="handle") arg2_code: T.int32 = arg_type_ids[2] A: T.handle = T.tvm_struct_get(arg0, 0, 1, dtype="handle") T.attr(A, "storage_alignment", 128) arg0_shape_data: T.Ptr[T.int64] = T.tvm_struct_get(arg0, 0, 2, dtype="handle") arg0_shape = T.buffer_decl([6], "int64", data=arg0_shape_data) arg0_strides_data: T.Ptr[T.int64] = T.tvm_struct_get(arg0, 0, 3, dtype="handle") arg0_strides = T.buffer_decl([6], "int64", data=arg0_strides_data) dev_id: T.int32 = T.tvm_struct_get(arg0, 0, 9, dtype="int32") W: T.handle = T.tvm_struct_get(arg1, 0, 1, dtype="handle") T.attr(W, "storage_alignment", 128) arg1_shape_data: T.Ptr[T.int64] = T.tvm_struct_get(arg1, 0, 2, dtype="handle") arg1_shape = T.buffer_decl([6], "int64", data=arg1_shape_data) arg1_strides_data: T.Ptr[T.int64] = T.tvm_struct_get(arg1, 0, 3, dtype="handle") arg1_strides = T.buffer_decl([6], "int64", data=arg1_strides_data) Conv: T.handle = T.tvm_struct_get(arg2, 0, 1, dtype="handle") T.attr(Conv, "storage_alignment", 128) arg2_shape_data: T.Ptr[T.int64] = T.tvm_struct_get(arg2, 0, 2, dtype="handle") arg2_shape = T.buffer_decl([6], "int64", data=arg2_shape_data) arg2_strides_data: T.Ptr[T.int64] = T.tvm_struct_get(arg2, 0, 3, dtype="handle") arg2_strides = T.buffer_decl([6], "int64", data=arg2_strides_data) assert (((arg0_code == 3) or (arg0_code == 13)) or (arg0_code == 7)) or ( arg0_code == 4 ), "default_function: Expect arg[0] to be pointer" assert (((arg1_code == 3) or (arg1_code == 13)) or (arg1_code == 7)) or ( arg1_code == 4 ), "default_function: Expect arg[1] to be pointer" assert (((arg2_code == 3) or (arg2_code == 13)) or (arg2_code == 7)) or ( arg2_code == 4 ), "default_function: Expect arg[2] to be pointer" assert 6 == T.tvm_struct_get(arg0, 0, 4, dtype="int32"), "arg0.ndim is expected to equal 6" assert 6 == T.tvm_struct_get(arg0, 0, 4, dtype="int32"), "arg0.ndim is expected to equal 6" assert ( (T.tvm_struct_get(arg0, 0, 5, dtype="uint8") == T.uint8(2)) and (T.tvm_struct_get(arg0, 0, 6, dtype="uint8") == T.uint8(16)) ) and ( T.tvm_struct_get(arg0, 0, 7, dtype="uint16") == T.uint16(1) ), "arg0.dtype is expected to be float16" assert 16 == T.cast( arg0_shape[0], "int32" ), "Argument arg0.shape[0] has an unsatisfied constraint" assert 14 == T.cast( arg0_shape[1], "int32" ), "Argument arg0.shape[1] has an unsatisfied constraint" assert 14 == T.cast( arg0_shape[2], "int32" ), "Argument arg0.shape[2] has an unsatisfied constraint" assert 16 == T.cast( arg0_shape[3], "int32" ), "Argument arg0.shape[3] has an unsatisfied constraint" assert 16 == T.cast( arg0_shape[4], "int32" ), "Argument arg0.shape[4] has an unsatisfied constraint" assert 16 == T.cast( arg0_shape[5], "int32" ), "Argument arg0.shape[5] has an unsatisfied constraint" if not (T.isnullptr(arg0_strides.data, dtype="bool")): assert ( ( ( ( (1 == T.cast(arg0_strides[5], "int32")) and (16 == T.cast(arg0_strides[4], "int32")) ) and (256 == T.cast(arg0_strides[3], "int32")) ) and (4096 == T.cast(arg0_strides[2], "int32")) ) and (57344 == T.cast(arg0_strides[1], "int32")) ) and ( 802816 == T.cast(arg0_strides[0], "int32") ), "arg0.strides: expected to be compact array" T.evaluate(0) assert T.uint64(0) == T.tvm_struct_get( arg0, 0, 8, dtype="uint64" ), "Argument arg0.byte_offset has an unsatisfied constraint" assert 2 == T.tvm_struct_get( arg0, 0, 10, dtype="int32" ), "Argument arg0.device_type has an unsatisfied constraint" assert 6 == T.tvm_struct_get(arg1, 0, 4, dtype="int32"), "arg1.ndim is expected to equal 6" assert 6 == T.tvm_struct_get(arg1, 0, 4, dtype="int32"), "arg1.ndim is expected to equal 6" assert ( (T.tvm_struct_get(arg1, 0, 5, dtype="uint8") == T.uint8(2)) and (T.tvm_struct_get(arg1, 0, 6, dtype="uint8") == T.uint8(16)) ) and ( T.tvm_struct_get(arg1, 0, 7, dtype="uint16") == T.uint16(1) ), "arg1.dtype is expected to be float16" assert 3 == T.cast( arg1_shape[0], "int32" ), "Argument arg1.shape[0] has an unsatisfied constraint" assert 3 == T.cast( arg1_shape[1], "int32" ), "Argument arg1.shape[1] has an unsatisfied constraint" assert 16 == T.cast( arg1_shape[2], "int32" ), "Argument arg1.shape[2] has an unsatisfied constraint" assert 32 == T.cast( arg1_shape[3], "int32" ), "Argument arg1.shape[3] has an unsatisfied constraint" assert 16 == T.cast( arg1_shape[4], "int32" ), "Argument arg1.shape[4] has an unsatisfied constraint" assert 16 == T.cast( arg1_shape[5], "int32" ), "Argument arg1.shape[5] has an unsatisfied constraint" if not (T.isnullptr(arg1_strides.data, dtype="bool")): assert ( ( ( ( (1 == T.cast(arg1_strides[5], "int32")) and (16 == T.cast(arg1_strides[4], "int32")) ) and (256 == T.cast(arg1_strides[3], "int32")) ) and (8192 == T.cast(arg1_strides[2], "int32")) ) and (131072 == T.cast(arg1_strides[1], "int32")) ) and ( 393216 == T.cast(arg1_strides[0], "int32") ), "arg1.strides: expected to be compact array" T.evaluate(0) assert T.uint64(0) == T.tvm_struct_get( arg1, 0, 8, dtype="uint64" ), "Argument arg1.byte_offset has an unsatisfied constraint" assert 2 == T.tvm_struct_get( arg1, 0, 10, dtype="int32" ), "Argument arg1.device_type has an unsatisfied constraint" assert dev_id == T.tvm_struct_get( arg1, 0, 9, dtype="int32" ), "Argument arg1.device_id has an unsatisfied constraint" assert 6 == T.tvm_struct_get(arg2, 0, 4, dtype="int32"), "arg2.ndim is expected to equal 6" assert 6 == T.tvm_struct_get(arg2, 0, 4, dtype="int32"), "arg2.ndim is expected to equal 6" assert ( (T.tvm_struct_get(arg2, 0, 5, dtype="uint8") == T.uint8(2)) and (T.tvm_struct_get(arg2, 0, 6, dtype="uint8") == T.uint8(32)) ) and ( T.tvm_struct_get(arg2, 0, 7, dtype="uint16") == T.uint16(1) ), "arg2.dtype is expected to be float32" assert 16 == T.cast( arg2_shape[0], "int32" ), "Argument arg2.shape[0] has an unsatisfied constraint" assert 14 == T.cast( arg2_shape[1], "int32" ), "Argument arg2.shape[1] has an unsatisfied constraint" assert 14 == T.cast( arg2_shape[2], "int32" ), "Argument arg2.shape[2] has an unsatisfied constraint" assert 32 == T.cast( arg2_shape[3], "int32" ), "Argument arg2.shape[3] has an unsatisfied constraint" assert 16 == T.cast( arg2_shape[4], "int32" ), "Argument arg2.shape[4] has an unsatisfied constraint" assert 16 == T.cast( arg2_shape[5], "int32" ), "Argument arg2.shape[5] has an unsatisfied constraint" if not (T.isnullptr(arg2_strides.data, dtype="bool")): assert ( ( ( ( (1 == T.cast(arg2_strides[5], "int32")) and (16 == T.cast(arg2_strides[4], "int32")) ) and (256 == T.cast(arg2_strides[3], "int32")) ) and (8192 == T.cast(arg2_strides[2], "int32")) ) and (114688 == T.cast(arg2_strides[1], "int32")) ) and ( 1605632 == T.cast(arg2_strides[0], "int32") ), "arg2.strides: expected to be compact array" T.evaluate(0) assert T.uint64(0) == T.tvm_struct_get( arg2, 0, 8, dtype="uint64" ), "Argument arg2.byte_offset has an unsatisfied constraint" assert 2 == T.tvm_struct_get( arg2, 0, 10, dtype="int32" ), "Argument arg2.device_type has an unsatisfied constraint" assert dev_id == T.tvm_struct_get( arg2, 0, 9, dtype="int32" ), "Argument arg2.device_id has an unsatisfied constraint" T.evaluate(T.tvm_struct_set(stack_value, 0, 12, T.cast(2, "int64"), dtype="int32")) stack_tcode[0] = 0 T.evaluate(T.tvm_struct_set(stack_value, 1, 12, T.cast(dev_id, "int64"), dtype="int32")) stack_tcode[1] = 0 T.evaluate( T.tvm_call_packed_lowered( "__tvm_set_device", stack_value, stack_tcode.data, 0, 2, dtype="int32" ) ) T.attr(0, "compute_scope", "default_function_compute_") T.evaluate(T.tvm_struct_set(stack_value, 0, 12, A, dtype="int32")) stack_tcode[0] = 3 T.evaluate(T.tvm_struct_set(stack_value, 1, 12, W, dtype="int32")) stack_tcode[1] = 3 T.evaluate(T.tvm_struct_set(stack_value, 2, 12, Conv, dtype="int32")) stack_tcode[2] = 3 T.evaluate(T.tvm_struct_set(stack_value, 3, 12, T.cast(196, "int64"), dtype="int32")) stack_tcode[3] = 0 T.evaluate(T.tvm_struct_set(stack_value, 4, 12, T.cast(2, "int64"), dtype="int32")) stack_tcode[4] = 0 T.evaluate(T.tvm_struct_set(stack_value, 5, 12, T.cast(4, "int64"), dtype="int32")) stack_tcode[5] = 0 T.evaluate(T.tvm_struct_set(stack_value, 6, 12, T.cast(4, "int64"), dtype="int32")) stack_tcode[6] = 0 T.evaluate(T.tvm_struct_set(stack_value, 7, 12, T.cast(2, "int64"), dtype="int32")) stack_tcode[7] = 0 T.evaluate(T.tvm_struct_set(stack_value, 8, 12, T.cast(32, "int64"), dtype="int32")) stack_tcode[8] = 0 T.evaluate( T.tvm_call_packed_lowered( "default_function_kernel0", stack_value, stack_tcode.data, 0, 9, dtype="int32" ) ) return opt_conv_tensorcore_mod_host def vthread_func(): @T.prim_func def vthread_func(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [256], "float32") C = T.match_buffer(c, [256], "float32") i0 = T.env_thread("blockIdx.x") i1 = T.env_thread("threadIdx.x") i2 = T.env_thread("vthread") T.launch_thread(i0, 4) T.launch_thread(i1, 2) T.launch_thread(i2, 2) B_data = T.allocate([16], "float32", "local") B = T.buffer_decl(shape=[16], dtype="float32", scope="local", data=B_data) for j in range(16): B[j] = A[i0 * 64 + i1 * 32 + i2 * 16 + j] + T.float32(1) for j in range(16): C[i0 * 64 + i1 * 32 + i2 * 16 + j] = B[j] * T.float32(2) return vthread_func def matmul(): @T.prim_func def matmul(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [128, 128]) B = T.match_buffer(b, [128, 128]) C = T.match_buffer(c, [128, 128]) for i, j, k in T.grid(128, 128, 128): with T.block("update"): vi, vj, vk = T.axis.remap("SSR", [i, j, k]) with T.init(): C[vi, vj] = T.float32(0) C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vj, vk] return matmul def matmul_original(): @T.prim_func def matmul_original(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [128, 128]) B = T.match_buffer(b, [128, 128]) C = T.match_buffer(c, [128, 128]) for i, j in T.grid(128, 128): with T.block("init"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = T.float32(0) for k in range(128): with T.block("update"): vi, vj, vk = T.axis.remap("SSR", [i, j, k]) C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vj, vk] return matmul_original def element_wise(): @T.prim_func def element_wise(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128), "float32") C = T.match_buffer(c, (128, 128), "float32") B = T.alloc_buffer((128, 128), "float32") for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * T.float32(2) for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = B[vi, vj] + T.float32(1) return element_wise def predicate(): @T.prim_func def predicate(b: T.handle, c: T.handle) -> None: B = T.match_buffer(b, (16, 16), "float32") C = T.match_buffer(c, (16, 16), "float32") for i, jo, ji in T.grid(16, 4, 5): with T.block("update"): vi = T.axis.S(16, i) vj = T.axis.S(16, jo * 4 + ji) T.where(jo * 4 + ji < 16) C[vi, vj] = B[vi, vj] + T.float32(1) return predicate def test_module_define(): func1 = tvm.ir.IRModule({"matmul": matmul()})["matmul"] func2 = tvm.ir.IRModule({"element_wise": element_wise()})["element_wise"] func3 = tvm.ir.IRModule({"predicate": predicate()})["predicate"] mod1 = tvm.ir.IRModule({"func1": func1, "func2": func2, "func3": func3}) mod2 = tvm.ir.IRModule({"func1": matmul(), "func2": element_wise(), "func3": predicate()}) tvm.ir.assert_structural_equal(mod1, mod2) def test_matmul_original(): func = matmul_original() rt_func = tvm.script.from_source(func.script(show_meta=True)) tvm.ir.assert_structural_equal(func, rt_func) assert isinstance(rt_func.body.block, tir.stmt.Block) assert isinstance(rt_func.body.block.body, tir.stmt.For) assert isinstance(rt_func.body.block.body.body, tir.stmt.For) assert isinstance(rt_func.body.block.body.body.body, tir.stmt.SeqStmt) assert isinstance(rt_func.body.block.body.body.body[0].block, tir.stmt.Block) assert isinstance(rt_func.body.block.body.body.body[1], tir.stmt.For) assert isinstance(rt_func.body.block.body.body.body[1].body.block, tir.stmt.Block) def test_element_wise(): func = element_wise() rt_func = tvm.script.from_source(func.script(show_meta=True)) tvm.ir.assert_structural_equal(func, rt_func) assert isinstance(rt_func.body.block, tir.stmt.Block) assert isinstance(rt_func.body.block.body, tir.stmt.SeqStmt) assert isinstance(rt_func.body.block.body[0], tir.stmt.For) assert isinstance(rt_func.body.block.body[0].body, tir.stmt.For) assert isinstance(rt_func.body.block.body[0].body.body.block, tir.stmt.Block) assert isinstance(rt_func.body.block.body[1], tir.stmt.For) assert isinstance(rt_func.body.block.body[1].body, tir.stmt.For) assert isinstance(rt_func.body.block.body[1].body.body.block, tir.stmt.Block) def test_predicate(): func = predicate() rt_func = tvm.script.from_source(func.script(show_meta=True)) tvm.ir.assert_structural_equal(func, rt_func) assert isinstance(rt_func.body.block, tir.stmt.Block) assert isinstance(rt_func.body.block.body, tir.stmt.For) assert isinstance(rt_func.body.block.body.body, tir.stmt.For) assert isinstance(rt_func.body.block.body.body.body, tir.stmt.For) assert isinstance(rt_func.body.block.body.body.body.body.block, tir.stmt.Block) def for_thread_binding(): @T.prim_func def for_thread_binding(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (16, 16), "float32") B = T.match_buffer(b, (16, 16), "float32") for i in T.thread_binding(0, 16, thread="threadIdx.x"): for j in T.thread_binding( 0, 16, thread="threadIdx.y", annotations={"attr_key": "attr_value"} ): A[i, j] = B[i, j] + T.float32(1) return for_thread_binding def test_for_thread_binding(): func = for_thread_binding() rt_func = tvm.script.from_source(func.script(show_meta=True)) tvm.ir.assert_structural_equal(func, rt_func) assert isinstance(rt_func.body, tir.stmt.For) assert rt_func.body.kind == 4 assert rt_func.body.thread_binding.thread_tag == "threadIdx.x" assert isinstance(rt_func.body.body, tir.stmt.For) assert rt_func.body.body.kind == 4 assert rt_func.body.body.thread_binding.thread_tag == "threadIdx.y" assert rt_func.body.body.annotations["attr_key"] == "attr_value" def match_buffer_region(): @T.prim_func def match_buffer_region(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (16, 16, 16), "float32") B = T.match_buffer(b, (1), "float32") for i, j in T.grid(16, 4): with T.block(): vi, vj = T.axis.remap("SS", [i, j]) C = T.match_buffer(A[0:16, vi, vj * 4 : vj * 4 + 4], (16, 1, 4)) for ii in range(4): with T.block(): vii = T.axis.S(4, ii) D = T.match_buffer(C[vii * 4 : vii * 4 + 4, 0, 0:4], (4, 1, 4)) for i, j in T.grid(4, 4): B[0] += D[i, 0, j] return match_buffer_region def test_match_buffer_region(): func = match_buffer_region() rt_func = tvm.script.from_source(func.script(show_meta=True)) tvm.ir.assert_structural_equal(func, rt_func) assert isinstance(rt_func.body, tir.stmt.BlockRealize) root = rt_func.body.block assert isinstance(root.body, tir.stmt.For) assert isinstance(root.body.body, tir.stmt.For) assert isinstance(root.body.body.body, tir.stmt.BlockRealize) outer_block = root.body.body.body.block assert len(outer_block.match_buffers) == 1 buffer_C = outer_block.match_buffers[0].buffer tvm.ir.assert_structural_equal(buffer_C.shape, [16, 1, 4]) assert isinstance(outer_block.body, tir.stmt.For) assert isinstance(outer_block.body.body, tir.stmt.BlockRealize) inner_block = outer_block.body.body.block assert len(inner_block.match_buffers) == 1 buffer_D = inner_block.match_buffers[0].buffer tvm.ir.assert_structural_equal(buffer_D.shape, [4, 1, 4]) def block_elements(): @T.prim_func def block_elements(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (16, 16), "float32") B = T.match_buffer(b, (1, 1), "float32") with T.block("update"): vi = T.axis.S(1, 0) T.where(True) T.reads(A[0:16, 0:16]) T.writes(B[0, 0]) T.block_attr({"attr_key": "attr_value"}) C = T.alloc_buffer((4, 4), dtype="float32") D = T.match_buffer(A[0:4, 0], (4, 1)) with T.init(): B[0, 0] = T.float32(0) B[0, 0] = A[0, 0] + B[0, 0] + C[1, 1] + D[2, 0] return block_elements def test_block_elements(): func = block_elements() rt_func = tvm.script.from_source(func.script(show_meta=True)) tvm.ir.assert_structural_equal(func, rt_func) assert isinstance(rt_func.body.block, tir.stmt.Block) assert isinstance(rt_func.body.block.body, tir.stmt.BlockRealize) assert isinstance(rt_func.body.block.body.block, tir.stmt.Block) block = rt_func.body.block.body.block assert isinstance(block.body, tir.stmt.BufferStore) assert isinstance(block.init, tir.stmt.BufferStore) assert len(block.annotations) == 1 assert block.annotations["attr_key"] == "attr_value" def opaque_block(): @T.prim_func def opaque_block(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (16, 16), "float32") B = T.match_buffer(b, (16, 16), "float32") for i in range(16): for j in range(16): with T.block(): T.reads([]) T.writes(A[i, j]) A[i, j] = T.float32(0) with T.block(): T.reads([A[i, 0:16]]) T.writes([B[i, 0:16]]) for j in range(16): B[i, j] = A[i, j] return opaque_block def test_opaque_block(): func = opaque_block() rt_func = tvm.script.from_source(func.script(show_meta=True)) tvm.ir.assert_structural_equal(func, rt_func) root_block = rt_func.body.block assert isinstance(root_block, tir.stmt.Block) assert isinstance(root_block.body, tir.stmt.For) assert isinstance(root_block.body.body[0], tir.stmt.For) assert isinstance(root_block.body.body[0].body, tir.stmt.BlockRealize) assert isinstance(root_block.body.body[0].body.block, tir.stmt.Block) assert len(root_block.body.body[0].body.block.iter_vars) == 0 assert isinstance(root_block.body.body[1], tir.stmt.BlockRealize) assert isinstance(root_block.body.body[1].block, tir.stmt.Block) assert len(root_block.body.body[1].block.iter_vars) == 0 def module_const(): @tvm.script.ir_module class Module4: # There is an ongoing (python)dict->(c++)Map->(python)dict issue which potentially # changes order of the items in dict after roundtrip due to map not support order # of insertion while dict does. Hence func 'def A(a: T.handle, c: T.handle) -> None' # is commented # # test: # d = {"B": 1, "A": 2} # m = tvm.runtime.convert(d) # assert d.keys() == m.keys(), f"Order changed from {list(d.keys())} to {list(m.keys())}" """ @T.prim_func def A(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (10), "int32") C = T.match_buffer(c, (10), "int32") B = T.alloc_buffer((10), "int32") K1 = T.allocate_const([1, 1, 1, 1, 1, 1, 1, 1, 1, 1], "int32", [10]) for x in T.serial(0, 10): B[x] = A[x] + T.load("int32", K1, x) for x in T.serial(0, 10): C[x] = B[x] """ @T.prim_func def B(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (10), "int32") C = T.match_buffer(c, (10), "int32") B = T.alloc_buffer((10), "int32") K1_data = T.allocate_const([1, 1, 1, 1, 1, 1, 1, 1, 1, 1], "int32", [10]) K1 = T.buffer_decl(shape=[10], dtype="int32", data=K1_data) for x in T.serial(0, 10): B[x] = A[x] + K1[x] K2_data = T.allocate_const([1, 1, 1, 1, 1, 1, 1, 1, 1, 1], "int32", [10]) K2 = T.buffer_decl(shape=[10], dtype="int32", data=K2_data) for x in T.serial(0, 10): B[x] = B[x] + K2[x] for x in T.serial(0, 10): C[x] = B[x] return Module4 def constant(): @T.prim_func def constant(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (10), "int32") C = T.match_buffer(c, (10), "int32") B = T.alloc_buffer((10), "int32") K_data = T.allocate_const([1, 1, 1, 1, 1, 1, 1, 1, 1, 1], "int32", [10]) K = T.buffer_decl(shape=[10], dtype="int32", data=K_data) for x in T.serial(0, 10): B[x] = A[x] + K[x] for x in T.serial(0, 10): C[x] = B[x] return constant def rank0(): @T.prim_func def rank0(a: T.handle) -> None: A = T.match_buffer(a, (), "float32") B = T.alloc_buffer((), "float32") A[()] = 2 B[()] = A[()] return rank0 def rank0_block(): @T.prim_func def rank0_block(a: T.handle) -> None: A = T.match_buffer(a, (), "float32") B = T.alloc_buffer((), "float32") B[()] = A[()] with T.block("update"): T.reads([A[()]]) T.writes([B[()]]) for i in range(1): B[()] = A[()] return rank0_block def select(): @T.prim_func def select(a: T.handle) -> None: A = T.match_buffer(a, (), "float32") A[()] = T.Select(True, 1, 2) return select def minmax(): @T.prim_func def minmax(a: T.handle) -> None: A = T.match_buffer(a, (), "float32") A[()] = T.min(1, 2) A[()] = T.max(1, 2) return minmax def abs(): @T.prim_func def abs(a: T.handle) -> None: A = T.match_buffer(a, (128, 128), "float32") for i, j in T.grid(128, 128): with T.block("A"): vi, vj = T.axis.remap("SS", [i, j]) A[vi, vj] = T.abs(A[vi, vj]) return abs def constant_folding(): @T.prim_func def constant_folding(a: T.handle) -> None: A = T.match_buffer(a, (), "float32") A[()] = T.min(2.2, 5.2) A[()] = T.max(T.float32(2.2), T.float32(T.float32(5.2))) A[()] = T.min(2.2, 5.0) return constant_folding def simplify_bracket(): @T.prim_func def simplify_bracket() -> None: a = T.var("int32") b = T.var("int32") c = T.var("int32") d = T.var("int32") T.evaluate(a + b * (c + d)) return simplify_bracket def var_with_same_name(): @T.prim_func def var_with_same_name(a: T.handle) -> None: A = T.match_buffer(a, (16, 16), "float32") for i, j in T.grid(16, 16): with T.block(): vi, vj = T.axis.remap("SS", [i, j]) A[vi, vj] = 0 for i, j in T.grid(16, 16): with T.block(): vi, vj = T.axis.remap("SS", [i, j]) A[vi, vj] = 0 return var_with_same_name def test_same_name_var(): func = var_with_same_name() out_str = func.script(tir_prefix="T", show_meta=True) rt_func = tvm.script.from_source(out_str) tvm.ir.assert_structural_equal(func, rt_func) assert out_str.count('vi, vj = T.axis.remap("SS", [i, j])') == 2 assert out_str.find("vi_") == -1 assert out_str.find("vj_") == -1 assert out_str.count("for i, j in T.grid(16, 16)") == 2 assert out_str.find("i_") == -1 assert out_str.find("i_") == -1 def while_loop(): @T.prim_func def while_loop(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (16,), "float32") B = T.match_buffer(b, (16,), "float32") i = T.alloc_buffer((), "int32", scope="local") for ii in range(16): with T.block(): vi = T.axis.S(16, ii) B[vi] = 0 while i[()] < 10: for j in range(16): B[j] += A[j] return while_loop # fmt: off def primfunc_with_allocate_annotations(): @T.prim_func def primfunc_with_allocate_annotations(placeholder_28: T.handle, T_cast_6: T.handle) -> None: # function attr dict T.func_attr({"global_symbol": "tvmgen_default_fused_nn_max_pool2d_cast", "tir.noalias": True}) placeholder_29 = T.match_buffer(placeholder_28, [802816], dtype="uint8", elem_offset=0, align=64, offset_factor=1) T_cast_7 = T.match_buffer(T_cast_6, [200704], dtype="int16", elem_offset=0, align=64, offset_factor=1) # body tensor_2_data = T.allocate([200704], "uint8", "global", annotations={"attr1_key": "attr1_value"}) tensor_2 = T.buffer_decl(shape=[200704], dtype="uint8", scope="global", data=tensor_2_data) for ax0_ax1_fused_4 in T.serial(0, 56): for ax2_4 in T.serial(0, 56): for ax3_init in T.serial(0, 64): tensor_2[(((ax0_ax1_fused_4*3584) + (ax2_4*64)) + ax3_init)] = T.uint8(0) for rv0_rv1_fused_1, ax3_2 in T.grid(9, 64): tensor_2[(((ax0_ax1_fused_4*3584) + (ax2_4*64)) + ax3_2)] = T.max(tensor_2[(((ax0_ax1_fused_4*3584) + (ax2_4*64)) + ax3_2)], T.if_then_else(((((ax0_ax1_fused_4*2) + T.floordiv(rv0_rv1_fused_1, 3)) < 112) and (((ax2_4*2) + T.floormod(rv0_rv1_fused_1, 3)) < 112)), placeholder_29[(((((ax0_ax1_fused_4*14336) + (T.floordiv(rv0_rv1_fused_1, 3)*7168)) + (ax2_4*128)) + (T.floormod(rv0_rv1_fused_1, 3)*64)) + ax3_2)], T.uint8(0), dtype="uint8")) for ax0_ax1_fused_5 in T.serial(0, 56): for ax2_5, ax3_3 in T.grid(56, 64): T_cast_7[(((ax0_ax1_fused_5*3584) + (ax2_5*64)) + ax3_3)] = T.cast(tensor_2[(((ax0_ax1_fused_5*3584) + (ax2_5*64)) + ax3_3)], "int16") return primfunc_with_allocate_annotations # fmt: on # fmt: off def comm_reducer_single_reduce_group(): @T.prim_func def comm_reducer_single_reduce_group(a: T.handle, b: T.handle) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) threadIdx_x = T.env_thread("threadIdx.x") A = T.match_buffer(a, [16384], dtype="float32") for i in T.serial(0, 128): T.launch_thread(threadIdx_x, 128) reduce_temp0_data = T.allocate([1], "float32", "local") reduce_temp0 = T.buffer_decl(shape=[1], dtype="float32", scope="local", data=reduce_temp0_data) with T.attr(T.comm_reducer(lambda x, y: x + y, [T.float32(0)]), "reduce_scope", T.reinterpret(T.uint64(0), dtype="handle")): T.evaluate(T.tvm_thread_allreduce(T.uint32(1), A[i * 128 + threadIdx_x], True, reduce_temp0.data, threadIdx_x, dtype="handle")) return comm_reducer_single_reduce_group def comm_reducer_multiple_reduce_groups(): @T.prim_func def comm_reducer_multiple_reduce_groups(a: T.handle, b: T.handle) -> None: T.func_attr({"global_symbol": "main", "tir.noalias": True}) threadIdx_x = T.env_thread("threadIdx.x") A = T.match_buffer(a, [16384], dtype="float32") for i in T.serial(0, 128): T.launch_thread(threadIdx_x, 128) reduce_temp0_data = T.allocate([1], "float32", "local") reduce_temp0 = T.buffer_decl(shape=[1], dtype="float32", scope="local", data=reduce_temp0_data) with T.attr(T.comm_reducer(lambda x0, x1, y0, y1: (T.Select((x1 >= y1), x0, y0), T.Select((x1 >= y1), x1, y1)), [T.int32(-1), T.min_value("float32")]), "reduce_scope", T.reinterpret(T.uint64(0), dtype="handle")): T.evaluate(T.tvm_thread_allreduce(T.uint32(1), A[i * 128 + threadIdx_x], True, reduce_temp0.data, threadIdx_x, dtype="handle")) return comm_reducer_multiple_reduce_groups def multiple_commreducer(): @T.prim_func def multiple_commreducer() -> None: normal_reduce_temp0 = T.buffer_decl([1], dtype="float32", strides=[1], scope="local") normal_reduce_temp1 = T.buffer_decl([1], dtype="float32", strides=[1], scope="local") reduce_temp0 = T.buffer_decl([1], dtype="float32", strides=[1], scope="local") reduce_temp1 = T.buffer_decl([1], dtype="float32", strides=[1], scope="local") for ax0_1 in T.thread_binding(0, 32, thread="threadIdx.x"): with T.block("T_softmax_maxelem_cross_thread_reduction"): T.attr(T.comm_reducer(lambda x, y: T.max(x, y), [T.min_value("float32")]), "reduce_scope", T.reinterpret(T.uint64(0), dtype="handle")) T.evaluate(T.tvm_thread_allreduce(T.uint32(1), normal_reduce_temp0[0], True, reduce_temp0.data, ax0_1, dtype="handle")) for ax0_1 in T.thread_binding(0, 32, thread="threadIdx.x"): with T.block("T_softmax_expsum_cross_thread_reduction"): T.attr(T.comm_reducer(lambda x, y: x + y, [T.float32(0)]), "reduce_scope", T.reinterpret(T.uint64(0), dtype="handle")) T.evaluate(T.tvm_thread_allreduce(T.uint32(1), normal_reduce_temp1[0], True, reduce_temp1.data, ax0_1, dtype="handle")) return multiple_commreducer # fmt: on def func_div_mod(): @T.prim_func def func_div_mod(): a = T.var("int32") b = T.var("int32") T.evaluate(a // b) T.evaluate(a % b) T.evaluate(T.truncmod(a, b)) return func_div_mod def test_div_mod(): func = func_div_mod() rt_func = tvm.script.from_source(func.script()) tvm.ir.assert_structural_equal(func, rt_func, True) assert isinstance(func.body[0].value, tvm.tir.FloorDiv) assert isinstance(func.body[1].value, tvm.tir.FloorMod) assert isinstance(func.body[2].value, tvm.tir.Mod) def loop_extent_dependent(): @T.prim_func def loop_extent_dependent(a: T.handle) -> None: A = T.match_buffer(a, [], dtype="int32") for i in T.serial(0, 128): for j in T.serial(0, i): A[()] = A[()] + j return loop_extent_dependent def nontrivial_range_axis(): @T.prim_func def nontrivial_range_axis(a: T.handle) -> None: A = T.match_buffer(a, (10), "float32") for i in range(10): with T.block("block"): vi = T.axis.spatial((1, 11), i + 1) A[vi - 1] = A[vi - 1] + 1.0 return nontrivial_range_axis def func_with_target_spec_by_config(): @T.prim_func def func_with_target_spec_by_config() -> None: T.func_attr( { "kTarget": T.target( { "max_num_threads": 1024, "arch": "sm_70", "thread_warp_size": 32, "kind": "cuda", "tag": "", "keys": ["cuda", "gpu"], "host": T.target({"kind": "llvm", "tag": "", "keys": ["cpu"]}), } ) } ) T.evaluate(0) return func_with_target_spec_by_config def func_with_target_spec_by_str(): @T.prim_func def func_with_target_spec_by_str() -> None: T.func_attr({"kTarget": T.target("nvidia/nvidia-a100")}) T.evaluate(0) return func_with_target_spec_by_str def func_root_attr(): @T.prim_func def func_root_attr(): with T.block("root"): T.block_attr({"a": "0"}) T.evaluate(0) return func_root_attr def func_trivial_root_block(): @T.prim_func def func(A: T.Buffer[1, "int32"]): with T.block("root"): A[0] = 0 return func def func_nested_root_block(): @T.prim_func def func(A: T.Buffer[1, "int32"]): with T.block("root"): with T.block("block"): A[0] = 0 return func def func_T_ptr_let_statement(): @T.prim_func def func_T_ptr_let_statement( args: T.handle, arg_type_ids_handle: T.Ptr[T.int32], num_args: T.int32 ) -> None: # The T.Ptr declaration in the parameter list should parse # correctly, and should be usable as the data pointer in a buffer. arg_type_ids = T.buffer_decl([2], dtype="int32", data=arg_type_ids_handle) arg0: T.handle = T.tvm_struct_get(args, 0, 12, dtype="handle") arg1: T.handle = T.tvm_struct_get(args, 1, 12, dtype="handle") # Functions that return a "handle" can be assigned to a T.Ptr # variable. A variable annotated with T.Ptr still has dtype of # T.handle, but has type annotation as a pointer type. A_data: T.Ptr[T.float32] = T.tvm_struct_get(arg0, 0, 1, dtype="handle") # The buffer declaration has a data pointer defined earlier in # this function. It should only be defined after the data pointer # has been defined, and should not be hoisted into the header of # the function as other buffer_decl statements can be. A = T.buffer_decl([1024], dtype="float32", data=A_data) B_data: T.Ptr[T.float32] = T.tvm_struct_get(arg1, 0, 1, dtype="handle") B = T.buffer_decl([1024], dtype="float32", data=B_data) B[0] = A[0] return func_T_ptr_let_statement def func_T_ptr_allocate(): @T.prim_func def func_T_ptr_allocate() -> None: A_data = T.allocate([1024], "float32", "global") A = T.buffer_decl(shape=[1024], dtype="float32", scope="global", data=A_data) A[0] = 0.0 return func_T_ptr_allocate def llvm_intrin_call(): @T.prim_func def ctpop(A: T.Buffer[(16,), "uint8"], B: T.Buffer[(16,), "uint8"]) -> None: for i in range(0, 16): with T.block("A"): vi = T.axis.remap( "S", [ i, ], ) B[vi] = T.call_llvm_pure_intrin( T.llvm_lookup_intrinsic_id("llvm.ctpop.i8"), T.uint32(1), A[vi], dtype="uint8", ) return ctpop def parse_bufferslice_as_range_bound(): @T.prim_func def segment_sum( A_ptr: T.handle, B_ptr: T.handle, indptr_ptr: T.handle, n: T.int32, m: T.int32 ) -> None: A = T.match_buffer(A_ptr, [m], dtype="float32") B = T.match_buffer(B_ptr, [n], dtype="float32") indptr = T.match_buffer(indptr_ptr, [n + 1], dtype="int32") for i in T.serial(n): with T.block("outer"): vi = T.axis.spatial(n, i) T.reads(indptr[i : i + 2], B[vi], A[indptr[i] : indptr[i + 1]]) T.writes(B[vi]) for j in T.serial(indptr[i], indptr[i + 1]): with T.block("inner"): vj = T.axis.reduce(m, j) T.reads(B[vi], A[vj]) T.writes(B[vi]) with T.init(): B[vi] = T.float32(0) B[vi] = B[vi] + A[vj] return segment_sum def int64_support(): @T.prim_func def elementwise_shape_int64(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (T.int64(128), T.int64(128)), dtype="float32") B = T.alloc_buffer((T.int64(128), T.int64(128)), dtype="float32") C = T.match_buffer(c, (T.int64(128), T.int64(128)), dtype="float32") for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 for i, j in T.grid(T.int64(128), T.int64(128)): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = B[vi, vj] + 1.0 return elementwise_shape_int64 def string_annotation_escaping(): @T.prim_func def string_annotation_of_special_chars(): T.func_attr( { "key1": '"\'hello\t\r"', "key2": """ %1 = add i32 %0, %0 %2 = add i32 %0, %1 %3 = add i32 %1, %2 """, } ) T.evaluate(0) return string_annotation_of_special_chars def pointer_type(): @T.prim_func def func_with_ptr_type_annotations(x: T.Ptr[T.int32], y: T.Ptr[T.int32, "shared"]): xx_data = T.allocate([16], "int32", "global") xx = T.buffer_decl(shape=[16], dtype="int32", scope="global", data=xx_data) yy_data = T.allocate([16], "int32", "shared") yy = T.buffer_decl(shape=[16], dtype="int32", scope="shared", data=yy_data) a: T.Ptr[T.int32] = T.address_of(xx[0], dtype="handle") b: T.Ptr[T.int32, "shared"] = T.address_of(yy[0], dtype="handle") T.evaluate(T.call_extern("copy", a, b, dtype="")) return func_with_ptr_type_annotations def buffer_axis_separator(): @T.prim_func def element_wise(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128), "float32", axis_separators=[1]) C = T.match_buffer(c, (128, 128), "float32") B = T.alloc_buffer((128, 128), "float32", axis_separators=[1]) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * T.float32(2) for i, j in T.grid(128, 128): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = B[vi, vj] + T.float32(1) return element_wise def buffer_ramp_access_as_slice_index(): @T.prim_func def buffer_ramp_access(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128,), "float32") B = T.match_buffer(b, (128,), "float32") C = T.match_buffer(c, (128,), "float32") for i in range(128): A[i : i + 1 : 1] = i for i in range(4): B[i * 32 : i * 32 + 32] = A[i * 32 : i * 32 + 32 : 1] + T.broadcast(1.0, 32) for i in range(4): C[i : i + 128 : 4] = B[i : i + 128 : 4] + T.broadcast(1.0, 32) return buffer_ramp_access def let_expression(): @T.prim_func def func(): x = T.var("int32") T.evaluate(T.let(x, 1, x + 1)) return func def void_ptr(): @T.prim_func def func(out_ret_value: T.Ptr[T.void]): T.evaluate(out_ret_value) return func def decl_buffer(): @T.prim_func def func(A: T.Buffer[(16, 16), "float32"], B: T.Buffer[(16, 16), "float32"]) -> None: A_flattened = T.decl_buffer(data=A.data, shape=(256,), dtype="float32") B_flattened = T.decl_buffer(data=B.data, shape=(256,), dtype="float32") C_alias = T.decl_buffer(data=A_flattened.data, shape=(256,), dtype="float32") for i in range(256): B_flattened[i] = A_flattened[i] + C_alias[i] + T.float32(1.0) return func def allocate_and_decl_buffer(): @T.prim_func def func(A: T.Buffer[(16,), "float32"], B: T.Buffer[(16,), "float32"]) -> None: D_data = T.allocate((16,), "float32", "global") D = T.decl_buffer((16,), "float32", data=D_data) for i in range(4): with T.allocate((4,), "float32", "global") as C_data: C = T.decl_buffer((4,), "float32", data=C_data) for j in range(4): C[j] = A[i * 4 + j] + T.float32(1.0) for j in range(4): D[j] = C[j] for j in range(4): B[i * 4 + j] = D[j] return func def float_infinity(): @T.prim_func def func( placeholder: T.Buffer[(1, 512, 768), "float32"], T_isinf: T.Buffer[(1, 512, 768), "bool"] ) -> None: # function attr dict T.func_attr({"global_symbol": "main", "tir.noalias": True}) # body # with T.block("root") for i0, i1, i2 in T.grid(1, 512, 768): with T.block("T_isinf"): ax0, ax1, ax2 = T.axis.remap("SSS", [i0, i1, i2]) T.reads(placeholder[ax0, ax1, ax2]) T.writes(T_isinf[ax0, ax1, ax2]) T_isinf[ax0, ax1, ax2] = T.fabs( placeholder[ax0, ax1, ax2], dtype="float32" ) == T.float32("inf") and not (T.isnan(placeholder[ax0, ax1, ax2], dtype="bool")) return func def minimal_i32_literal(): @T.prim_func def func() -> None: T.evaluate(T.int32(-2147483648)) T.evaluate(-T.int64(2147483648)) return func def boolean_argument(): @T.prim_func def func(a: T.boolean) -> None: T.evaluate(a) return func def bool_argument(): @T.prim_func def func(a: T.bool) -> None: T.evaluate(a) return func def bool_variable_annotation(): @T.prim_func def func() -> None: a: T.bool = T.call_extern("dummy", dtype="bool") T.evaluate(0) return func def return_none(): @T.prim_func def func(): T.evaluate(0) return func def bool_primitive(): @T.prim_func def func() -> None: T.evaluate(T.bool(True)) return func def bool_cast(): @T.prim_func def func() -> None: T.evaluate(T.bool(T.int32(0))) return func ir_generator = tvm.testing.parameter( opt_gemm_normalize, opt_gemm_lower, opt_gemm_mod_host, opt_conv_tensorcore_normalize, opt_conv_tensorcore_lower, opt_conv_tensorcore_mod_host, vthread_func, matmul, module_const, constant, rank0, rank0_block, select, minmax, abs, constant_folding, simplify_bracket, while_loop, primfunc_with_allocate_annotations, comm_reducer_single_reduce_group, comm_reducer_multiple_reduce_groups, multiple_commreducer, loop_extent_dependent, nontrivial_range_axis, func_with_target_spec_by_config, func_with_target_spec_by_str, func_root_attr, func_trivial_root_block, func_nested_root_block, func_T_ptr_let_statement, func_T_ptr_allocate, llvm_intrin_call, parse_bufferslice_as_range_bound, int64_support, string_annotation_escaping, pointer_type, buffer_axis_separator, buffer_ramp_access_as_slice_index, let_expression, void_ptr, decl_buffer, allocate_and_decl_buffer, float_infinity, minimal_i32_literal, boolean_argument, bool_argument, bool_variable_annotation, bool_primitive, bool_cast, return_none, ) def test_roundtrip(ir_generator): original = ir_generator() after_roundtrip = tvm.script.from_source(original.script(show_meta=True)) tvm.ir.assert_structural_equal(original, after_roundtrip, True) def test_return_none_no_trailing_type(): func = return_none() script = func.script() assert "-> None" not in script if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tvmscript_spans.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from tvm.script.parser_v1 import tir as T @T.prim_func def loops() -> None: for i in T.parallel(0, 2): for j in T.serial(0, 1): for z in T.vectorized(3, 4): T.evaluate(0) def test_loops(): start_line = 23 parsed = loops assert parsed.span.line == start_line assert parsed.body.span.line == start_line + 1 assert parsed.body.min.span.column == 25 assert parsed.body.extent.span.column == 28 assert parsed.body.extent.span.line == start_line + 1 assert parsed.body.body.span.line == start_line + 2 assert parsed.body.body.loop_var.span.line == start_line + 2 assert parsed.body.body.loop_var.span.column == 13 assert parsed.body.body.body.span.line == start_line + 3 assert parsed.body.body.body.span.column == 22 assert parsed.body.body.body.body.span.line == start_line + 4 assert parsed.body.body.body.body.span.column == 17 @T.prim_func def statements() -> None: T.evaluate(1) T.evaluate("test") def test_statements(): start_line = 53 parsed = statements assert parsed.body.span.line == start_line + 1 assert parsed.body[0].span.line == start_line + 1 assert parsed.body[0].span.column == 5 assert parsed.body[0].span.line == start_line + 1 assert parsed.body[0].span.column == 5 if __name__ == "__main__": test_loops() test_statements()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tvmscript_syntax_sugar.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=missing-function-docstring,missing-module-docstring,invalid-name,pointless-string-statement import sys import pytest import tvm.testing from tvm.ir import assert_structural_equal from tvm.script import from_source from tvm.script import tir as T @T.prim_func def transformed_matmul_no_syntax_sugar(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [128, 128]) B = T.match_buffer(b, [128, 128]) C = T.match_buffer(c, [128, 128]) for i0, i1, i2_outer, i2_inner_outer, i2_inner_inner in T.grid(128, 128, 4, 8, 4): with T.block("update"): vi, vj = T.axis.remap("SS", [i0, i1]) vk = T.axis.R(128, i2_outer * 32 + i2_inner_outer * 4 + i2_inner_inner) T.reads([C[vi, vj], A[vi, vk], B[vj, vk]]) T.writes([C[vi, vj], A[vi, vk]]) with T.init(): C[vi, vj] = 0.0 A[vi, vk] = A[vi, vk] + B[vj, vk] C[vi, vj] = C[vi, vj] + (A[vi, vk] * B[vj, vk]) @T.prim_func def transformed_matmul_syntax_sugar(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, [128, 128]) B = T.match_buffer(b, [128, 128]) C = T.match_buffer(c, [128, 128]) for i0, i1, i2_outer, i2_inner_outer, i2_inner_inner in T.grid(128, 128, 4, 8, 4): with T.block("update"): vi, vj = T.axis.remap("SS", [i0, i1]) vk = T.axis.R(128, i2_outer * 32 + i2_inner_outer * 4 + i2_inner_inner) T.reads(C[vi, vj], A[vi, vk], B[vj, vk]) T.writes(C[vi, vj], A[vi, vk]) with T.init(): C[vi, vj] = 0.0 A[vi, vk] = A[vi, vk] + B[vj, vk] C[vi, vj] = C[vi, vj] + (A[vi, vk] * B[vj, vk]) def test_reads_writes_syntax_sugar(): assert_structural_equal(transformed_matmul_no_syntax_sugar, transformed_matmul_syntax_sugar) @T.prim_func def loop_no_syntax_sugar(a: T.handle) -> None: A = T.match_buffer(a, (128, 128, 128, 128)) for i in T.serial(0, 128): for j in T.parallel(0, 128): for k in T.vectorized(0, 128): for x in T.unroll(0, 128): for y in T.thread_binding(0, 128, thread="threadIdx.x"): for z in T.thread_binding(0, 128, thread="threadIdx.x"): A[i, j, k, x] = A[i, j, k, x] * 2.0 @T.prim_func def loop_syntax_sugar(a: T.handle) -> None: A = T.match_buffer(a, (128, 128, 128, 128)) for i in T.serial(128): for j in T.parallel(128): for k in T.vectorized(128): for x in T.unroll(128): for y in T.thread_binding(128, "threadIdx.x"): for z in T.thread_binding(128, thread="threadIdx.x"): A[i, j, k, x] = A[i, j, k, x] * 2.0 def test_loop_syntax_sugar(): assert_structural_equal(loop_no_syntax_sugar, loop_syntax_sugar) # match buffer - use kwargs @T.prim_func def elementwise_handle( a: T.handle, b: T.handle, ) -> None: A = T.match_buffer(a, (128, 128, 128, 128)) B = T.match_buffer(b, (128, 128, 128, 128)) for i, j, k, l in T.grid(128, 128, 128, 128): with T.block("B"): vi, vj, vk, vl = T.axis.remap("SSSS", [i, j, k, l]) B[vi, vj, vk, vl] = A[vi, vj, vk, vl] * 2.0 # match buffer - use buffer with kwargs @T.prim_func def elementwise_buffer_kwargs( a: T.Buffer(shape=(128, 128, 128, 128), dtype="float32"), b: T.Buffer(shape=(128, 128, 128, 128), dtype="float32"), ) -> None: for i, j, k, l in T.grid(128, 128, 128, 128): with T.block("B"): vi, vj, vk, vl = T.axis.remap("SSSS", [i, j, k, l]) b[vi, vj, vk, vl] = a[vi, vj, vk, vl] * 2.0 # match buffer - use buffer without kwargs @T.prim_func def elementwise_buffer_no_kwargs( a: T.Buffer[(128, 128, 128, 128), "float32"], b: T.Buffer[(128, 128, 128, 128), "float32"], ) -> None: for i, j, k, l in T.grid(128, 128, 128, 128): with T.block("B"): vi, vj, vk, vl = T.axis.remap("SSSS", [i, j, k, l]) b[vi, vj, vk, vl] = a[vi, vj, vk, vl] * 2.0 def test_match_buffer_syntax_sugar(): # with kwargs assert_structural_equal(elementwise_handle, elementwise_buffer_kwargs) # without kwargs assert_structural_equal(elementwise_handle, elementwise_buffer_no_kwargs) def test_match_buffer_1d(): @T.prim_func def func_no_sugar(a: T.handle): A = T.match_buffer(a, shape=(16,)) for i in T.serial(16): A[i] = 0.0 @T.prim_func def func_with_sugar(A: T.Buffer[16, "float32"]): for i in T.serial(16): A[i] = 0.0 assert_structural_equal(func_no_sugar, func_with_sugar) # match buffer failed case def test_match_buffer_no_kwargs_failed(): with pytest.raises(ValueError) as e: @T.prim_func def elementwise_buffer_no_kwargs_failed( a: T.Buffer[(128, 128, 128, 128)], b: T.Buffer[(128, 128, 128, 128)], ) -> None: pass # dynamic shape gemm @T.prim_func def gemm_dyn_shape(a: T.handle, b: T.handle, c: T.handle): N = T.var("int32") M = T.var("int32") K = T.var("int32") A = T.match_buffer(a, (N, K), "float32") B = T.match_buffer(b, (K, M), "float32") C = T.match_buffer(c, (N, M), "float32") for i, j, k in T.grid(N, M, K): with T.block("gemm"): vi, vj, vk = T.axis.remap("SSR", [i, j, k]) with T.init(): C[vi, vj] = 0.0 C[vi, vj] = C[vi, vj] + A[vi, vk] * B[vk, vj] def test_dynamic_shape_gemm(): gemm_dyn_shape_roundtrip = from_source(gemm_dyn_shape.script()) assert_structural_equal(gemm_dyn_shape, gemm_dyn_shape_roundtrip) @T.prim_func def preflattened_buffer_map(A: T.handle, B: T.handle): A_1 = T.match_buffer(A, [1]) T.preflattened_buffer(A_1, [1], align=1, offset_factor=2) B_1 = T.match_buffer(B, [1]) T.preflattened_buffer(B_1, [1]) B_1[0] = A_1[0] def test_preflattened_buffer_map(): A_var = [ k for k, _ in preflattened_buffer_map.preflattened_buffer_map.items() if k.name == "A" ][0] assert preflattened_buffer_map.preflattened_buffer_map[A_var].data_alignment == 1 assert preflattened_buffer_map.preflattened_buffer_map[A_var].offset_factor == 2 @T.prim_func def match_buffer_int64(a: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (T.int64(128), T.int64(128)), dtype="float32") B = T.alloc_buffer((T.int64(128), T.int64(128)), dtype="float32") C = T.match_buffer(c, (T.int64(128), T.int64(128)), dtype="float32") for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 for i, j in T.grid(T.int64(128), T.int64(128)): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = B[vi, vj] + 1.0 @T.prim_func def match_buffer_int64_after_roundtrip( A: T.Buffer[(T.int64(128), T.int64(128)), "float32"], C: T.Buffer[(T.int64(128), T.int64(128)), "float32"], ) -> None: B = T.alloc_buffer((T.int64(128), T.int64(128)), dtype="float32") for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 for i, j in T.grid(T.int64(128), T.int64(128)): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) C[vi, vj] = B[vi, vj] + 1.0 def test_match_buffer_int64(): original = match_buffer_int64 after_roundtrip = match_buffer_int64_after_roundtrip assert_structural_equal(original, after_roundtrip, True) def test_match_buffer_region_has_implicit_shape_dtype(): @T.prim_func def explicit_shape_dtype(A: T.Buffer[(16, 64), "int32"]): with T.block(): B = T.match_buffer(A[8:16, 32:64], shape=(8, 32), dtype="int32") T.evaluate(0) @T.prim_func def implicit_shape_dtype(A: T.Buffer[(16, 64), "int32"]): with T.block(): B = T.match_buffer(A[8:16, 32:64]) T.evaluate(0) assert_structural_equal(explicit_shape_dtype, implicit_shape_dtype) def test_match_buffer_input_requires_shape_arg(): with pytest.raises(tvm.error.DiagnosticError): @T.prim_func def func(a: T.handle): A = T.match_buffer(a, dtype="int32") T.evaluate(0) def test_letstmt_bufferload_without_type_annotation(): # Variable assignment of PrimExpr types uses the dtype of the # PrimExpr to determine the variable's dtype. Parsing of # buf[indices] is done by generating a BufferSlice object, which # handles both store and load cases. BufferSlice is not a # PrimExpr, and implements BufferSlice.dtype explicitly. # Failure occurred during parsing of the tvmscript. @T.prim_func def func_without_type_annotation(A: T.Buffer[(1,), "int32"]): x = A[0] T.evaluate(x) def test_letstmt_bind_with_constant(): @T.prim_func def constant_binds(): x = 1 y = 42.0 T.evaluate(T.cast(x, "float32") + y) @T.prim_func def constant_binds_wrapped(): x = T.meta_var(T.int32(1)) y = T.meta_var(T.float32(42.0)) T.evaluate(T.cast(x, "float32") + y) assert_structural_equal(constant_binds, constant_binds_wrapped) def test_func_call(): def shared_16x16_to_ldmatrix_32x8_layout(i, j): thread_id = (i % 8) * 4 + (j % 8) // 2 return T.meta_var((thread_id, (j // 8) * 4 + (i // 8) * 2 + (j % 2))) @T.prim_func def mma_sync_m16n16k16_desc(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (32, 8), "float16", align=64, offset_factor=16, scope="warp") B = T.match_buffer(b, (32, 8), "float16", align=64, offset_factor=16, scope="warp") C = T.match_buffer(c, (32, 8), "float16", align=64, offset_factor=16, scope="warp") with T.block("root"): T.reads(C[0:32, 0:8], A[0:32, 0:8], B[0:32, 0:8]) T.writes(C[0:32, 0:8]) for i, j, k in T.grid(16, 16, 16): with T.block("C"): i, j, k = T.axis.remap("SSR", [i, j, k]) thread_id_C, local_id_C = shared_16x16_to_ldmatrix_32x8_layout(i, j) thread_id_A, local_id_A = shared_16x16_to_ldmatrix_32x8_layout(i, k) thread_id_B, local_id_B = shared_16x16_to_ldmatrix_32x8_layout(k, j) T.reads( C[thread_id_C, local_id_C], A[thread_id_A, local_id_A], B[thread_id_B, local_id_B], ) T.writes(C[thread_id_C, local_id_C]) C[thread_id_C, local_id_C] += ( A[thread_id_A, local_id_A] * B[thread_id_B, local_id_B] ) @T.prim_func def mma_sync_m16n16k16_desc_manual(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (32, 8), "float16", align=64, offset_factor=16, scope="warp") B = T.match_buffer(b, (32, 8), "float16", align=64, offset_factor=16, scope="warp") C = T.match_buffer(c, (32, 8), "float16", align=64, offset_factor=16, scope="warp") with T.block("root"): T.reads(C[0:32, 0:8], A[0:32, 0:8], B[0:32, 0:8]) T.writes(C[0:32, 0:8]) for i, j, k in T.grid(16, 16, 16): with T.block("C"): i, j, k = T.axis.remap("SSR", [i, j, k]) T.reads( C[i % 8 * 4 + j % 8 // 2, j // 8 * 4 + i // 8 * 2 + j % 2], A[i % 8 * 4 + k % 8 // 2, k // 8 * 4 + i // 8 * 2 + k % 2], B[k % 8 * 4 + j % 8 // 2, j // 8 * 4 + k // 8 * 2 + j % 2], ) T.writes(C[i % 8 * 4 + j % 8 // 2, j // 8 * 4 + i // 8 * 2 + j % 2]) C[i % 8 * 4 + j % 8 // 2, j // 8 * 4 + i // 8 * 2 + j % 2] = ( C[i % 8 * 4 + j % 8 // 2, j // 8 * 4 + i // 8 * 2 + j % 2] + A[i % 8 * 4 + k % 8 // 2, k // 8 * 4 + i // 8 * 2 + k % 2] * B[k % 8 * 4 + j % 8 // 2, j // 8 * 4 + k // 8 * 2 + j % 2] ) assert_structural_equal(mma_sync_m16n16k16_desc, mma_sync_m16n16k16_desc_manual) # The following is an example of an error message from calling an invalid function # error: Error occurred when invoking the function sqrt: # loop of ufunc does not support argument 0 of type Var which has no callable sqrt method # --> test_tvmscript_syntax_sugar.py:334:19 # | # 334 | ind = sqrt(i) # | ^^^^^^^ # note: run with `TVM_BACKTRACE=1` environment variable to display a backtrace. # Uncomment to see the error above. # def sqrt(x): # import numpy as np # return np.sqrt(x) # @T.prim_func # def loop(a: T.handle) -> None: # A = T.match_buffer(a, (128,)) # for i in T.serial(128): # ind = sqrt(i) # A[i] = A[ind] def test_int64_loop(): @T.prim_func def int64_grid( A: T.Buffer[(T.int64(128), T.int64(128)), "float32"], B: T.Buffer[(T.int64(128), T.int64(128)), "float32"], ) -> None: for i, j in T.grid(T.int64(128), T.int64(128)): with T.block("C"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] + 1.0 @T.prim_func def int64_grid_expanded( A: T.Buffer[(T.int64(128), T.int64(128)), "float32"], B: T.Buffer[(T.int64(128), T.int64(128)), "float32"], ) -> None: for i in range(T.int64(0), T.int64(128)): for j in range(T.int64(0), T.int64(128)): with T.block("C"): vi = T.axis.spatial(T.int64(128), i) vj = T.axis.spatial(T.int64(128), j) B[vi, vj] = A[vi, vj] + 1.0 assert_structural_equal(int64_grid, int64_grid_expanded) if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_tvmscript_type.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=missing-function-docstring,missing-module-docstring,invalid-name,pointless-string-statement from tvm.script import tir as T """ This prim func include necessary buffer types that need to be checked e.g. reads/writes, match_buffer/alloc_buffer, serial/block etc. """ @T.prim_func def element_wise_storage_align(a: T.handle, c: T.handle) -> None: C = T.match_buffer(c, [128, 128], elem_offset=0, align=64, offset_factor=1) A = T.match_buffer(a, [128, 128], elem_offset=0, align=64, offset_factor=1) # body with T.block("root"): T.reads([]) T.writes([]) B = T.alloc_buffer([128, 128], elem_offset=0, align=64, offset_factor=1) for i0 in T.serial(0, 128): for ax1 in T.serial(0, 128): with T.block("B"): vi = T.axis.S(128, i0) vj = T.axis.S(128, ax1) T.reads([A[vi, vj]]) T.writes([B[vi, vj]]) T.block_attr({"buffer_dim_align": [[0, 0, 128, 127]]}) B[vi, vj] = A[vi, vj] * T.float32(2) for i1 in T.serial(0, 128): with T.block("C"): vi_1, vj_1 = T.axis.remap("SS", [i0, i1]) T.reads([B[vi_1, vj_1]]) T.writes([C[vi_1, vj_1]]) C[vi_1, vj_1] = B[vi_1, vj_1] + T.float32(1) """ This prim func include necessary thread types that need to be checked e.g. env_thread, launch_thread, thread_binding etc. """ @T.prim_func def element_wise_env_thread_x(a: T.handle, b: T.handle, c: T.handle) -> None: j1_0 = T.env_thread("threadIdx.x") j0_0 = T.env_thread("threadIdx.x") i = T.env_thread("blockIdx.x") A = T.match_buffer(a, [128, 128]) B = T.match_buffer(b, [128, 128]) C = T.match_buffer(c, [128, 128]) T.launch_thread(i, 128) T.launch_thread(j0_0, 4) T.launch_thread(j1_0, 4) for blockIdx_x in T.thread_binding(0, 128, "blockIdx.x"): for threadIdx_x in T.thread_binding(0, 4, "threadIdx.x"): for j0_1 in T.serial(0, 32): with T.block(""): B[blockIdx_x, threadIdx_x * 32 + j0_1] = ( A[blockIdx_x, threadIdx_x * 32 + j0_1] * 2.0 ) for j1_1 in T.serial(0, 32): with T.block(""): C[blockIdx_x, threadIdx_x * 32 + j1_1] = ( B[blockIdx_x, threadIdx_x * 32 + j1_1] + 1.0 ) """ This test case is added to test T.grid """ @T.prim_func def loop_split(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [128, 128], dtype="float32") B = T.match_buffer(b, [128], dtype="float32") for i, ko in T.grid(128, 4): for ki in T.thread_binding(0, 32, thread="threadIdx.x"): with T.block("B"): vi = T.axis.S(128, i) vk = T.axis.R(128, ko * 32 + ki) T.reads([B[vi], A[vi, vk]]) T.writes([B[vi]]) with T.init(): B[vi] = T.float32(0) B[vi] = B[vi] + A[vi, vk] """ This test case is added to test T.comm_reducer, T.reinterpret, T.tvm_thread_allreduce """ @T.prim_func def lowered_loop_split(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [128, 128], dtype="float32") B = T.match_buffer(b, [128], dtype="float32") reduce_temp0 = T.alloc_buffer([1], dtype="float32", strides=[1], scope="local") normal_reduce_temp0 = T.alloc_buffer([1], dtype="float32", strides=[1], scope="local") for i in T.serial(0, 128): for ki in T.thread_binding(0, 32, thread="threadIdx.x"): normal_reduce_temp0[0] = T.float32(0) for ko in T.serial(0, 4): with T.block("B_normal_reduction"): vi = T.axis.S(128, i) vk = T.axis.R(128, ko * 32 + ki) T.reads([A[vi, vk], normal_reduce_temp0[0]]) T.writes([normal_reduce_temp0[0]]) normal_reduce_temp0[0] = normal_reduce_temp0[0] + A[vi, vk] with T.block("B_cross_thread_reduction"): T.reads([normal_reduce_temp0[0]]) T.writes([reduce_temp0[0]]) T.attr( T.comm_reducer(lambda x, y: x + y, [T.float32(0)]), "reduce_scope", T.reinterpret(T.uint64(0), dtype="handle"), ) T.evaluate( T.tvm_thread_allreduce( T.uint32(1), normal_reduce_temp0[0], True, reduce_temp0.data, ki, dtype="handle", ) ) with T.block("B_write_back"): vi = T.axis.S(128, i) T.reads([reduce_temp0[0]]) T.writes([B[vi]]) B[vi] = reduce_temp0[0] """ This test case is added to test T.Buffer with slice as argument and T.exp """ @T.prim_func def different_access_indices(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, [128, 128, 128], dtype="float32") B = T.match_buffer(b, [128, 128], dtype="float32") for i, j in T.grid(128, 128): for k in T.thread_binding(0, 128, thread="threadIdx.x"): with T.block("B"): vi, vj, vk = T.axis.remap("SSR", [i, j, k]) T.reads([B[vi, vj], A[vi, vj, vk]]) T.writes( [ B[ T.min(vj, vi) : T.min(vj, vi) # type: ignore[misc] + (T.max(vj, vi) + 1 - T.min(vj, vi)), T.min(vi, vj) : T.min(vi, vj) # type: ignore[misc] + (T.max(vi, vj) + 1 - T.min(vi, vj)), ] ] ) with T.init(): B[vj, vi] = T.exp(B[vj, vi], dtype="float32") B[vi, vj] = B[vi, vj] + A[vi, vj, vk] # Not running any test as we only want to type-check here if __name__ == "__main__": pass
https://github.com/zk-ml/tachikoma
tests/python/unittest/test_type_annotation_checker.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Test type checker based on python's type annotations""" import sys from typing import Dict, List, Tuple, Union, Callable import pytest import _pytest from tvm.tir.schedule._type_checker import type_checked def int_func(x: int) -> int: return 2 * x def str_func(x: str) -> str: return 2 * x test_cases = [ { "type_annotation": int, "positive_cases": [5], "negative_cases": ["5"], }, { "type_annotation": List[int], "positive_cases": [ [5], [], # Tuples are allowed to be used as lists, because both are # represented in FFI as tvm::runtime::Array. (1, 2, 3), ], "negative_cases": [ None, 5, ["5"], ], }, { "type_annotation": Dict[str, int], "positive_cases": [ {"key1": 0, "key2": 1, "key3": -1}, ], "negative_cases": [None, [1], {1: "1"}], }, { "type_annotation": Tuple[int], "positive_cases": [ (5,), ], "negative_cases": [ None, (1, 2, 3), [1], 5, ["5"], ], }, { "type_annotation": Tuple[str, int], "positive_cases": [ ("x", 5), ], "negative_cases": [ 42, ("x", 5, 6), ("x", 5, "y"), ("x", 5.0), (None, 5), ], }, { "type_annotation": Union[str, int], "positive_cases": [ "x", 5, ], "negative_cases": [ 5.0, ("x", 5, 6), None, ], }, { "type_annotation": Callable, "positive_cases": [str_func, int_func], "negative_cases": [ None, "x", 42, ], }, { "type_annotation": Callable[[int], int], "positive_cases": [int_func], "negative_cases": [ None, "x", 42, pytest.param( str_func, marks=pytest.mark.xfail( reason="Signature of Callable arguments not currently checked" ), ), ], }, ] def make_parametrization(type_annotation, case): if isinstance(case, _pytest.mark.structures.ParameterSet): marks = case.marks (case,) = case.values else: marks = [] try: annotation_name = type_annotation.__name__ except AttributeError: annotation_name = str(type_annotation).replace("typing.", "") if hasattr(case, "__name__"): case_name = case.__name__ else: case_name = str(case) name = f"{annotation_name}, {case_name}" return pytest.param(type_annotation, case, marks=marks, id=name) positive_cases = [ make_parametrization(config["type_annotation"], case) for config in test_cases for case in config["positive_cases"] ] negative_cases = [ make_parametrization(config["type_annotation"], case) for config in test_cases for case in config["negative_cases"] ] @pytest.mark.parametrize( ["type_annotation", "case"], positive_cases, ) def test_matches_type(type_annotation, case): @type_checked def func(_: type_annotation): pass func(case) @pytest.mark.parametrize( ["type_annotation", "case"], negative_cases, ) def test_not_matches(type_annotation, case): @type_checked def func(_: type_annotation): pass with pytest.raises(TypeError): func(case) if __name__ == "__main__": sys.exit(pytest.main(sys.argv))
https://github.com/zk-ml/tachikoma
tests/scripts/ci.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import sys import multiprocessing import os import getpass import inspect import argparse import json import shutil import grp import string import random import subprocess import platform import textwrap import typing from pathlib import Path from typing import List, Dict, Any, Optional, Tuple, Callable, Union REPO_ROOT = Path(__file__).resolve().parent.parent.parent SCRIPT_DIR = REPO_ROOT / ".ci-py-scripts" NPROC = multiprocessing.cpu_count() class col: BLUE = "\033[94m" CYAN = "\033[96m" GREEN = "\033[92m" YELLOW = "\033[93m" RED = "\033[91m" RESET = "\033[0m" BOLD = "\033[1m" UNDERLINE = "\033[4m" def print_color(color: str, msg: str, bold: bool, **kwargs: Any) -> None: if hasattr(sys.stdout, "isatty") and sys.stdout.isatty(): bold_code = col.BOLD if bold else "" print(bold_code + color + msg + col.RESET, **kwargs) else: print(msg, **kwargs) warnings: List[str] = [] def clean_exit(msg: str) -> None: print_color(col.RED, msg, bold=True, file=sys.stderr) for warning in warnings: print_color(col.YELLOW, warning, bold=False, file=sys.stderr) exit(1) def cmd(commands: List[Any], **kwargs: Any): commands = [str(s) for s in commands] command_str = " ".join(commands) print_color(col.BLUE, command_str, bold=True) proc = subprocess.run(commands, **kwargs) if proc.returncode != 0: raise RuntimeError(f"Command failed: '{command_str}'") return proc def get_build_dir(name: str) -> str: build_dir = REPO_ROOT / f"build-{name}" return str(build_dir.relative_to(REPO_ROOT)) def check_docker(): executable = shutil.which("docker") if executable is None: clean_exit("'docker' executable not found, install it first (e.g. 'apt install docker.io')") if sys.platform == "linux": # Check that the user is in the docker group before running try: group = grp.getgrnam("docker") if getpass.getuser() not in group.gr_mem: warnings.append( f"Note: User '{getpass.getuser()}' is not in the 'docker' group, either:\n" " * run with 'sudo'\n" " * add user to 'docker': sudo usermod -aG docker $(whoami), then log out and back in", ) except KeyError: warnings.append("Note: 'docker' group does not exist") def check_gpu(): if not (sys.platform == "linux" and shutil.which("lshw")): # Can't check GPU on non-Linux platforms return # See if we can check if a GPU is present in case of later failures, # but don't block on execution since this isn't critical try: proc = cmd( ["lshw", "-json", "-C", "display"], stdout=subprocess.PIPE, stderr=subprocess.PIPE, encoding="utf-8", ) stdout = proc.stdout.strip().strip(",") stdout = json.loads(stdout) except (subprocess.CalledProcessError, json.decoder.JSONDecodeError): # Do nothing if any step failed return if isinstance(stdout, dict): # Sometimes lshw outputs a single item as a dict instead of a list of # dicts, so wrap it up if necessary stdout = [stdout] if not isinstance(stdout, list): return vendors = [s.get("vendor", "").lower() for s in stdout] if not any("nvidia" in vendor for vendor in vendors): warnings.append( "nvidia GPU not found in 'lshw', maybe use --cpu flag when running 'docs' command?" ) def gen_name(s: str) -> str: # random 4 letters suffix = "".join([random.choice(string.ascii_lowercase) for i in range(5)]) return f"{s}-{suffix}" def docker( name: str, image: str, scripts: List[str], env: Dict[str, str], interactive: bool, additional_flags: Optional[Dict[str, str]] = None, ): """ Invoke a set of bash scripts through docker/bash.sh name: container name image: docker image name scripts: list of bash commands to run env: environment to set """ check_docker() # As sccache is added to these images these can be uncommented sccache_images = { # "ci_lint", "ci_gpu", "ci_cpu", # "ci_wasm", # "ci_i386", "ci_cortexm", "ci_arm", "ci_hexagon", "ci_riscv", "ci_adreno", } if image in sccache_images and os.getenv("USE_SCCACHE", "1") == "1": scripts = [ "sccache --start-server", ] + scripts # Set the C/C++ compiler so CMake picks them up in the build env["CC"] = "/opt/sccache/cc" env["CXX"] = "/opt/sccache/c++" env["SCCACHE_CACHE_SIZE"] = os.getenv("SCCACHE_CACHE_SIZE", "50G") docker_bash = REPO_ROOT / "docker" / "bash.sh" command = [docker_bash] if sys.stdout.isatty(): command.append("-t") command.append("--name") command.append(name) if interactive: command.append("-i") scripts = ["interact() {", " bash", "}", "trap interact 0", ""] + scripts for key, value in env.items(): command.append("--env") command.append(f"{key}={value}") if additional_flags is not None: for key, value in additional_flags.items(): command.append(key) command.append(value) SCRIPT_DIR.mkdir(exist_ok=True) script_file = SCRIPT_DIR / f"{name}.sh" with open(script_file, "w") as f: f.write("set -eux\n\n") f.write("\n".join(scripts)) f.write("\n") command += [image, "bash", str(script_file.relative_to(REPO_ROOT))] try: cmd(command) except RuntimeError as e: clean_exit(f"Error invoking Docker: {e}") except KeyboardInterrupt: cmd(["docker", "stop", "--time", "1", name]) finally: if os.getenv("DEBUG", "0") != "1": script_file.unlink() def docs( tutorial_pattern: Optional[str] = None, full: bool = False, interactive: bool = False, skip_build: bool = False, docker_image: Optional[str] = None, ) -> None: """ Build the documentation from gallery/ and docs/. By default this builds only the Python docs without any tutorials. arguments: full -- Build all language docs, not just Python (this will use the 'ci_gpu' Docker image) tutorial-pattern -- Regex for which tutorials to execute when building docs (this will use the 'ci_gpu' Docker image) skip_build -- skip build and setup scripts interactive -- start a shell after running build / test scripts docker-image -- manually specify the docker image to use """ build_dir = get_build_dir("gpu") extra_setup = [] image = "ci_gpu" if docker_image is None else docker_image if not full and tutorial_pattern is None: # TODO: Change this to tlcpack/docs once that is uploaded image = "ci_cpu" if docker_image is None else docker_image build_dir = get_build_dir("cpu") config_script = " && ".join( [ f"mkdir -p {build_dir}", f"pushd {build_dir}", "cp ../cmake/config.cmake .", # The docs import tvm.micro, so it has to be enabled in the build "echo set\(USE_MICRO ON\) >> config.cmake", "popd", ] ) # These are taken from the ci-gpu image via pip freeze, consult that # if there are any changes: https://github.com/apache/tvm/tree/main/docs#native requirements = [ "Sphinx==4.2.0", "tlcpack-sphinx-addon==0.2.1", "synr==0.5.0", "image==1.5.33", # Temporary git link until a release is published "git+https://github.com/sphinx-gallery/sphinx-gallery.git@6142f1791151849b5bec4bf3959f75697ba226cd", "sphinx-rtd-theme==1.0.0", "matplotlib==3.3.4", "commonmark==0.9.1", "Pillow==8.3.2", "autodocsumm==0.2.7", "docutils==0.16", ] extra_setup = [ "python3 -m pip install --user " + " ".join(requirements), ] else: check_gpu() config_script = f"./tests/scripts/task_config_build_gpu.sh {build_dir}" scripts = extra_setup + [ config_script, f"./tests/scripts/task_build.py --build-dir {build_dir}", ] if skip_build: scripts = [] scripts.append("./tests/scripts/task_python_docs.sh") if tutorial_pattern is None: tutorial_pattern = os.getenv("TVM_TUTORIAL_EXEC_PATTERN", ".py" if full else "none") env = { "TVM_TUTORIAL_EXEC_PATTERN": tutorial_pattern, "PYTHON_DOCS_ONLY": "0" if full else "1", "IS_LOCAL": "1", "TVM_LIBRARY_PATH": str(REPO_ROOT / build_dir), } docker(name=gen_name("docs"), image=image, scripts=scripts, env=env, interactive=interactive) def serve_docs(directory: str = "_docs") -> None: """ Serve the docs using Python's http server arguments: directory -- Directory to serve from """ directory_path = Path(directory) if not directory_path.exists(): clean_exit("Docs have not been built, run 'ci.py docs' first") cmd([sys.executable, "-m", "http.server"], cwd=directory_path) def lint(interactive: bool = False, fix: bool = False, docker_image: Optional[str] = None) -> None: """ Run CI's Sanity Check step arguments: interactive -- start a shell after running build / test scripts fix -- where possible (currently black and clang-format) edit files in place with formatting fixes docker-image -- manually specify the docker image to use """ env = {} if fix: env["IS_LOCAL"] = "true" env["INPLACE_FORMAT"] = "true" docker( name=gen_name(f"ci-lint"), image="ci_lint" if docker_image is None else docker_image, scripts=["./tests/scripts/task_lint.sh"], env=env, interactive=interactive, ) Option = Tuple[str, List[str]] def generate_command( name: str, options: Dict[str, Option], help: str, precheck: Optional[Callable[[], None]] = None, post_build: Optional[List[str]] = None, additional_flags: Optional[Dict[str, str]] = None, ): """ Helper to generate CLIs that: 1. Build a with a config matching a specific CI Docker image (e.g. 'cpu') 2. Run tests (either a pre-defined set from scripts or manually via invoking pytest) 3. (optional) Drop down into a terminal into the Docker container """ def fn( tests: Optional[List[str]], skip_build: bool = False, interactive: bool = False, docker_image: Optional[str] = None, verbose: bool = False, **kwargs, ) -> None: """ arguments: tests -- pytest test IDs (e.g. tests/python or tests/python/a_file.py::a_test[param=1]) skip_build -- skip build and setup scripts interactive -- start a shell after running build / test scripts docker-image -- manually specify the docker image to use verbose -- run verbose build """ if precheck is not None: precheck() build_dir = get_build_dir(name) if skip_build: scripts = [] else: scripts = [ f"./tests/scripts/task_config_build_{name}.sh {build_dir}", f"./tests/scripts/task_build.py --build-dir {build_dir}", ] if post_build is not None: scripts += post_build # Check that a test suite was not used alongside specific test names if any(v for v in kwargs.values()) and tests is not None: option_flags = ", ".join([f"--{k}" for k in options.keys()]) clean_exit(f"{option_flags} cannot be used with --tests") if tests is not None: scripts.append(f"python3 -m pytest {' '.join(tests)}") # Add named test suites for option_name, (_, extra_scripts) in options.items(): if kwargs.get(option_name, False): scripts.extend(script.format(build_dir=build_dir) for script in extra_scripts) docker( name=gen_name(f"ci-{name}"), image=f"ci_{name}" if docker_image is None else docker_image, scripts=scripts, env={ # Need to specify the library path manually or else TVM can't # determine which build directory to use (i.e. if there are # multiple copies of libtvm.so laying around) "TVM_LIBRARY_PATH": str(REPO_ROOT / get_build_dir(name)), "VERBOSE": "true" if verbose else "false", }, interactive=interactive, additional_flags=additional_flags, ) fn.__name__ = name return fn, options, help def check_arm_qemu() -> None: """ Check if a machine is ready to run an ARM Docker image """ machine = platform.machine().lower() if "arm" in machine or "aarch64" in machine: # No need to check anything if the machine runs ARM return binfmt = Path("/proc/sys/fs/binfmt_misc") if not binfmt.exists() or len(list(binfmt.glob("qemu-*"))) == 0: clean_exit( textwrap.dedent( """ You must run a one-time setup to use ARM containers on x86 via QEMU: sudo apt install -y qemu binfmt-support qemu-user-static docker run --rm --privileged multiarch/qemu-user-static --reset -p yes See https://www.stereolabs.com/docs/docker/building-arm-container-on-x86/ for details""".strip( "\n" ) ) ) def cli_name(s: str) -> str: return s.replace("_", "-") def typing_get_origin(annotation): if sys.version_info >= (3, 8): return typing.get_origin(annotation) else: return annotation.__origin__ def typing_get_args(annotation): if sys.version_info >= (3, 8): return typing.get_args(annotation) else: return annotation.__args__ def is_optional_type(annotation): return ( hasattr(annotation, "__origin__") and (typing_get_origin(annotation) == typing.Union) and (type(None) in typing_get_args(annotation)) ) def add_subparser( func: Callable, subparsers: Any, options: Optional[Dict[str, Option]] = None, help: Optional[str] = None, ) -> Any: """ Utility function to make it so subparser commands can be defined locally as a function rather than directly via argparse and manually dispatched out. """ # Each function is intended follow the example for arguments in PEP257, so # split apart the function documentation from the arguments split = [s.strip() for s in func.__doc__.split("arguments:\n")] if len(split) == 1: args_help = None command_help = split[0] else: command_help, args_help = split if help is not None: command_help = help # Parse out the help text for each argument if present arg_help_texts = {} if args_help is not None: for line in args_help.split("\n"): line = line.strip() name, help_text = [t.strip() for t in line.split(" -- ")] arg_help_texts[cli_name(name)] = help_text subparser = subparsers.add_parser(cli_name(func.__name__), help=command_help) seen_prefixes = set() # Add each parameter to the subparser signature = inspect.signature(func) for name, value in signature.parameters.items(): if name == "kwargs": continue arg_cli_name = cli_name(name) kwargs: Dict[str, Union[str, bool]] = {"help": arg_help_texts[arg_cli_name]} is_optional = is_optional_type(value.annotation) if is_optional: arg_type = typing_get_args(value.annotation)[0] else: arg_type = value.annotation # Grab the default value if present has_default = False if value.default is not value.empty: kwargs["default"] = value.default has_default = True # Check if it should be a flag if arg_type is bool: kwargs["action"] = "store_true" else: kwargs["required"] = not is_optional and not has_default if str(arg_type).startswith("typing.List"): kwargs["action"] = "append" if arg_cli_name[0] not in seen_prefixes: subparser.add_argument(f"-{arg_cli_name[0]}", f"--{arg_cli_name}", **kwargs) seen_prefixes.add(arg_cli_name[0]) else: subparser.add_argument(f"--{arg_cli_name}", **kwargs) if options is not None: for option_name, (help, _) in options.items(): option_cli_name = cli_name(option_name) if option_cli_name[0] not in seen_prefixes: subparser.add_argument( f"-{option_cli_name[0]}", f"--{option_cli_name}", action="store_true", help=help ) seen_prefixes.add(option_cli_name[0]) else: subparser.add_argument(f"--{option_cli_name}", action="store_true", help=help) return subparser CPP_UNITTEST = ("run c++ unitests", ["./tests/scripts/task_cpp_unittest.sh {build_dir}"]) generated = [ generate_command( name="gpu", help="Run GPU build and test(s)", options={ "cpp": CPP_UNITTEST, "topi": ("run topi tests", ["./tests/scripts/task_python_topi.sh"]), "unittest": ( "run unit tests", [ "./tests/scripts/task_java_unittest.sh", "./tests/scripts/task_python_unittest_gpuonly.sh", "./tests/scripts/task_python_integration_gpuonly.sh", ], ), "frontend": ("run frontend tests", ["./tests/scripts/task_python_frontend.sh"]), }, ), generate_command( name="cpu", help="Run CPU build and test(s)", options={ "cpp": CPP_UNITTEST, "integration": ( "run integration tests", ["./tests/scripts/task_python_integration.sh"], ), "unittest": ( "run unit tests", [ "./tests/scripts/task_python_unittest.sh", "./tests/scripts/task_python_vta_fsim.sh", "./tests/scripts/task_python_vta_tsim.sh", ], ), "frontend": ("run frontend tests", ["./tests/scripts/task_python_frontend_cpu.sh"]), }, ), generate_command( name="minimal", help="Run minimal CPU build and test(s)", options={ "cpp": CPP_UNITTEST, "unittest": ( "run unit tests", [ "./tests/scripts/task_python_unittest.sh", ], ), }, ), generate_command( name="i386", help="Run i386 build and test(s)", options={ "cpp": CPP_UNITTEST, "integration": ( "run integration tests", [ "./tests/scripts/task_python_unittest.sh", "./tests/scripts/task_python_integration_i386only.sh", ], ), }, ), generate_command( name="wasm", help="Run WASM build and test(s)", options={ "cpp": CPP_UNITTEST, "test": ("run WASM tests", ["./tests/scripts/task_web_wasm.sh"]), }, ), generate_command( name="cortexm", help="Run Cortex-M build and test(s)", options={ "cpp": CPP_UNITTEST, "test": ( "run microTVM tests", [ "./tests/scripts/task_python_microtvm.sh", "./tests/scripts/task_demo_microtvm.sh", ], ), }, ), generate_command( name="hexagon", help="Run Hexagon build and test(s)", post_build=["./tests/scripts/task_build_hexagon_api.sh --output build-hexagon"], options={ "cpp": CPP_UNITTEST, "test": ( "run Hexagon API/Python tests", [ "./tests/scripts/task_python_hexagon.sh", ], ), }, ), generate_command( name="arm", help="Run ARM build and test(s) (native or via QEMU on x86)", precheck=check_arm_qemu, options={ "cpp": CPP_UNITTEST, "python": ( "run full Python tests", [ "./tests/scripts/task_python_unittest.sh", "./tests/scripts/task_python_arm_compute_library.sh", ], ), }, ), generate_command( name="riscv", help="Run RISC-V build and test(s)", options={ "cpp": CPP_UNITTEST, "python": ( "run full Python tests", [ "./tests/scripts/task_riscv_microtvm.sh", ], ), }, ), generate_command( name="adreno", help="Run Adreno build and test(s)", post_build=["./tests/scripts/task_build_adreno_bins.sh"], additional_flags={ "--volume": os.environ.get("ADRENO_OPENCL", "") + ":/adreno-opencl", "--env": "ADRENO_OPENCL=/adreno-opencl", "--net": "host", }, options={ "test": ( "run Adreno API/Python tests", [ "./tests/scripts/task_python_adreno.sh " + os.environ.get("ANDROID_SERIAL", ""), ], ), }, ), ] def main(): description = """ Run CI jobs locally via Docker. This facilitates reproducing CI failures for fast iteration. Note that many of the Docker images required are large (the CPU and GPU images are both over 25GB) and may take some time to download on first use. """ parser = argparse.ArgumentParser(description=description) subparsers = parser.add_subparsers(dest="command") commands = {} # Add manually defined commands for func in [docs, serve_docs, lint]: add_subparser(func, subparsers) commands[cli_name(func.__name__)] = func # Add generated commands for func, options, help in generated: add_subparser(func, subparsers, options, help) commands[cli_name(func.__name__)] = func args = parser.parse_args() if args.command is None: # Command not found in list, error out parser.print_help() exit(1) func = commands[args.command] # Extract out the parsed args and invoke the relevant function kwargs = {k: getattr(args, k) for k in dir(args) if not k.startswith("_") and k != "command"} func(**kwargs) if __name__ == "__main__": main()
https://github.com/zk-ml/tachikoma
tests/scripts/release/gather_prs.py
#!/usr/bin/env python3 # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import argparse import os import pickle from pathlib import Path import csv import sys from typing import Callable, Dict, List, Any REPO_ROOT = Path(__file__).resolve().parent.parent.parent.parent sys.path.append(str(REPO_ROOT / "ci" / "scripts")) from git_utils import git, GitHubRepo from github_tag_teams import tags_from_title GITHUB_TOKEN = os.environ["GITHUB_TOKEN"] PRS_QUERY = """ query ($owner: String!, $name: String!, $after: String, $pageSize: Int!) { repository(owner: $owner, name: $name) { defaultBranchRef { name target { ... on Commit { oid history(after: $after, first: $pageSize) { pageInfo { hasNextPage endCursor } nodes { oid committedDate associatedPullRequests(first: 1) { nodes { number additions changedFiles deletions author { login } title body } } } } } } } } } """ def append_and_save(items, file): if not file.exists(): data = [] else: with open(file, "rb") as f: data = pickle.load(f) data += items with open(file, "wb") as f: pickle.dump(data, f) def fetch_pr_data(args, cache): github = GitHubRepo(user=user, repo=repo, token=GITHUB_TOKEN) if args.from_commit is None or args.to_commit is None: print("--from-commit and --to-commit must be specified if --skip-query is not used") exit(1) i = 0 page_size = 80 cursor = f"{args.from_commit} {i}" while True: r = github.graphql( query=PRS_QUERY, variables={ "owner": user, "name": repo, "after": cursor, "pageSize": page_size, }, ) data = r["data"]["repository"]["defaultBranchRef"]["target"]["history"] if not data["pageInfo"]["hasNextPage"]: break cursor = data["pageInfo"]["endCursor"] results = data["nodes"] to_add = [] stop = False for r in results: if r["oid"] == args.to_commit: print(f"Found {r['oid']}, stopping") stop = True break else: to_add.append(r) oids = [r["oid"] for r in to_add] print(oids) append_and_save(to_add, cache) if stop: break print(i) i += page_size def write_csv( filename: str, data: List[Dict[str, Any]], filter: Callable[[Dict[str, Any]], bool] ) -> None: with open(filename, "w", newline="") as csvfile: writer = csv.writer(csvfile, quotechar='"') writer.writerow( ( "category", "description", "date", "number", "author", "tags", "title", "additions", "deletions", "changed files", ) ) for item in data: pr = item["associatedPullRequests"]["nodes"][0] if not filter(pr): continue tags = tags_from_title(pr["title"]) actual_tags = [] for t in tags: items = [x.strip() for x in t.split(",")] actual_tags += items tags = actual_tags tags = [t.lower() for t in tags] category = "" if len(tags) == 1: category = tags[0] writer.writerow( ( category, "", item["committedDate"], f'https://github.com/apache/tvm/pull/{pr["number"]}', pr["author"]["login"], ", ".join(tags), pr["title"], pr["additions"], pr["deletions"], pr["changedFiles"], ) ) if __name__ == "__main__": help = "List out commits with attached PRs since a certain commit" parser = argparse.ArgumentParser(description=help) parser.add_argument("--from-commit", help="commit to start checking PRs from") parser.add_argument("--to-commit", help="commit to stop checking PRs from") parser.add_argument( "--threshold", default=150, help="sum of additions + deletions to consider large" ) parser.add_argument( "--skip-query", action="store_true", help="don't query GitHub and instead use cache file" ) args = parser.parse_args() user = "apache" repo = "tvm" threshold = int(args.threshold) cache = Path("out.pkl") if not args.skip_query: fetch_pr_data(args, cache) with open(cache, "rb") as f: data = pickle.load(f) print(f"Found {len(data)} PRs") write_csv( filename="out-large.csv", data=data, filter=lambda pr: pr["additions"] + pr["deletions"] > threshold, ) write_csv( filename="out-small.csv", data=data, filter=lambda pr: pr["additions"] + pr["deletions"] <= threshold, )
https://github.com/zk-ml/tachikoma
tests/scripts/release/list_rfcs.py
#!/usr/bin/env python3 # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import argparse import subprocess import sys LINK_BASE = "https://github.com/apache/tvm-rfcs/blob/main/" COMMIT_BASE = "https://github.com/apache/tvm-rfcs/commit/" def sprint(*args): print(*args, file=sys.stderr) if __name__ == "__main__": help = "List out RFCs since a commit" parser = argparse.ArgumentParser(description=help) parser.add_argument("--since-commit", required=True, help="last commit to include") parser.add_argument("--rfcs-repo", required=True, help="path to checkout of apache/tvm-rfcs") args = parser.parse_args() user = "apache" repo = "tvm" rfc_repo = args.rfcs_repo subprocess.run("git fetch origin main", cwd=rfc_repo, shell=True) subprocess.run("git checkout main", cwd=rfc_repo, shell=True) subprocess.run("git reset --hard origin/main", cwd=rfc_repo, shell=True) r = subprocess.run( f"git log {args.since_commit}..HEAD --format='%H %s'", cwd=rfc_repo, shell=True, stdout=subprocess.PIPE, encoding="utf-8", ) commits = r.stdout.strip().split("\n") for commit in commits: parts = commit.split() commit = parts[0] subject = " ".join(parts[1:]) r2 = subprocess.run( f"git diff-tree --no-commit-id --name-only -r {commit}", cwd=rfc_repo, shell=True, stdout=subprocess.PIPE, encoding="utf-8", ) files = r2.stdout.strip().split("\n") rfc_file = None for file in files: if file.startswith("rfcs/") and file.endswith(".md"): if rfc_file is not None: sprint(f"error on {commit} {subject}") rfc_file = file if rfc_file is None: sprint(f"error on {commit} {subject}") continue print(f" * [{subject}]({LINK_BASE + rfc_file}) ([`{commit[:7]}`]({COMMIT_BASE + commit}))")
https://github.com/zk-ml/tachikoma
tests/scripts/release/make_notes.py
#!/usr/bin/env python3 # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import argparse import os import pickle from pathlib import Path import csv import sys from collections import defaultdict from typing import Callable, Dict, List, Any REPO_ROOT = Path(__file__).resolve().parent.parent.parent.parent sys.path.append(str(REPO_ROOT / "tests" / "scripts")) def strip_header(title: str, header: str) -> str: pos = title.lower().find(header.lower()) if pos == -1: return title return title[0:pos] + title[pos + len(header) :].strip() def sprint(*args): print(*args, file=sys.stderr) if __name__ == "__main__": help = "List out commits with attached PRs since a certain commit" parser = argparse.ArgumentParser(description=help) parser.add_argument("--notes-csv", required=True, help="csv file of categorized PRs in order") args = parser.parse_args() user = "apache" repo = "tvm" cache = Path("out.pkl") if not cache.exists(): sprint("run gather_prs.py first to generate out.pkl") exit(1) with open(cache, "rb") as f: data = pickle.load(f) sprint(data[1]) reverse = {} for item in data: prs = item["associatedPullRequests"]["nodes"] if len(prs) != 1: continue pr = prs[0] reverse[pr["number"]] = pr def pr_title(number, heading): title = reverse[int(number)]["title"] title = strip_header(title, heading) return title headings = defaultdict(lambda: defaultdict(list)) output = "" sprint("Opening CSV") with open(args.notes_csv) as f: # Skip header stuff f.readline() f.readline() f.readline() input_file = csv.DictReader(f) i = 0 for row in input_file: category = row["category"].strip() subject = row["subject"].strip() pr_number = row["url"].split("/")[-1] if category == "" or subject == "": sprint(f"Skipping {pr_number}") continue headings[category][subject].append(pr_number) i += 1 # if i > 30: # break def sorter(x): if x == "Misc": return 10 return 0 keys = list(headings.keys()) keys = list(sorted(keys)) keys = list(sorted(keys, key=sorter)) for key in keys: value = headings[key] if key == "DO NOT INCLUDE": continue value = dict(value) output += f"### {key}\n" misc = [] misc += value.get("n/a", []) misc += value.get("Misc", []) for pr_number in misc: output += f" * #{pr_number} - {pr_title(pr_number, '[' + key + ']')}\n" for subheading, pr_numbers in value.items(): if subheading == "DO NOT INCLUDE": continue if subheading == "n/a" or subheading == "Misc": continue else: output += f" * {subheading} - " + ", ".join([f"#{n}" for n in pr_numbers]) + "\n" # print(value) output += "\n" print(output)
https://github.com/zk-ml/tachikoma
tests/scripts/request_hook/request_hook.py
#!/usr/bin/env bash # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import urllib.request import logging LOGGER = None # To update this list, run the workflow <HERE> with the URL to download and the SHA512 of the file BASE = "https://tvm-ci-resources.s3.us-west-2.amazonaws.com" URL_MAP = { "http://data.mxnet.io.s3-website-us-west-1.amazonaws.com/data/val_256_q90.rec": f"{BASE}/mxnet-val_256_q90.rec", "http://dl.caffe.berkeleyvision.org/bvlc_alexnet.caffemodel": f"{BASE}/bvlc_alexnet.caffemodel", "http://dl.caffe.berkeleyvision.org/bvlc_googlenet.caffemodel": f"{BASE}/bvlc_googlenet.caffemodel", "http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224.tgz": f"{BASE}/tf-mobilenet_v1_1.0_224.tgz", "http://images.cocodataset.org/zips/val2017.zip": f"{BASE}/cocodataset-val2017.zip", "https://bj.bcebos.com/x2paddle/models/paddle_resnet50.tar": f"{BASE}/bcebos-paddle_resnet50.tar", "https://data.deepai.org/stanfordcars.zip": f"{BASE}/deepai-stanfordcars.zip", "https://docs-assets.developer.apple.com/coreml/models/MobileNet.mlmodel": f"{BASE}/2022-10-05/MobileNet.mlmodel", "https://download.pytorch.org/models/maskrcnn_resnet50_fpn_coco-bf2d0c1e.pth": f"{BASE}/2022-10-05/maskrcnn_resnet50_fpn_coco-bf2d0c1e.pth", "https://download.pytorch.org/models/mobilenet_v2-b0353104.pth": f"{BASE}/2022-10-05/mobilenet_v2-b0353104.pth", "https://download.pytorch.org/models/resnet18-f37072fd.pth": f"{BASE}/2022-10-05/resnet18-f37072fd.pth", "https://gist.github.com/zhreshold/bcda4716699ac97ea44f791c24310193/raw/93672b029103648953c4e5ad3ac3aadf346a4cdc/super_resolution_0.2.onnx": f"{BASE}/2022-10-05/super_resolution_0.2.onnx", "https://gist.githubusercontent.com/zhreshold/4d0b62f3d01426887599d4f7ede23ee5/raw/596b27d23537e5a1b5751d2b0481ef172f58b539/imagenet1000_clsid_to_human.txt": f"{BASE}/2022-10-05/imagenet1000_clsid_to_human.txt", "https://github.com/dmlc/web-data/blob/main/darknet/data/dog.jpg": f"{BASE}/dog.jpg", "https://github.com/dmlc/web-data/blob/main/gluoncv/detection/street_small.jpg?raw=true": f"{BASE}/2022-10-05/small_street_raw.jpg", "https://github.com/dmlc/web-data/raw/main/gluoncv/detection/street_small.jpg": f"{BASE}/2022-10-05/gluon-small-stree.jpg", "https://github.com/JonathanCMitchell/mobilenet_v2_keras/releases/download/v1.1/mobilenet_v2_weights_tf_dim_ordering_tf_kernels_0.5_224.h5": f"{BASE}/2022-10-05/mobilenet_v2_weights_tf_dim_ordering_tf_kernels_0.5_224.h5", "https://github.com/onnx/models/raw/bd206494e8b6a27b25e5cf7199dbcdbfe9d05d1c/vision/classification/mnist/model/mnist-1.onnx": f"{BASE}/onnx/mnist-1.onnx", "https://github.com/onnx/models/raw/main/vision/classification/resnet/model/resnet50-v2-7.onnx": f"{BASE}/2022-10-05/resnet50-v2-7.onnx", "https://github.com/pjreddie/darknet/blob/master/cfg/yolov3-tiny.cfg?raw=true": f"{BASE}/2022-10-05/yolov3-tiny-raw.cfg", "https://github.com/uwsampl/web-data/raw/main/vta/models/synset.txt": f"{BASE}/2022-10-05/synset.txt", "https://homes.cs.washington.edu/~cyulin/media/gnn_model/gcn_cora.torch": f"{BASE}/gcn_cora.torch", "https://homes.cs.washington.edu/~moreau/media/vta/cat.jpg": f"{BASE}/vta_cat.jpg", "https://objects.githubusercontent.com/github-production-release-asset-2e65be/130932608/4b196a8a-4e2d-11e8-9a11-be3c41846711?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIWNJYAX4CSVEH53A%2F20221004%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20221004T170456Z&X-Amz-Expires=300&X-Amz-Signature=0602b68e8864b9b01c9142eee22aed3543fe98a5482686eec33d98e2617a2295&X-Amz-SignedHeaders=host&actor_id=0&key_id=0&repo_id=130932608&response-content-disposition=attachment%3B%20filename%3Dmobilenet_v2_weights_tf_dim_ordering_tf_kernels_0.5_224.h5&response-content-type=application%2Foctet-stream": f"{BASE}/2022-10-05/aws-mobilenet_v2_weights_tf_dim_ordering_tf_kernels_0.5_224.h5", "https://oneflow-public.oss-cn-beijing.aliyuncs.com/model_zoo/flowvision/classification/ResNet/resnet18.zip": f"{BASE}/oneflow/resnet18.zip", "https://people.linaro.org/~tom.gall/sine_model.tflite": f"{BASE}/sine_model.tflite", "https://pjreddie.com/media/files/yolov3-tiny.weights?raw=true": f"{BASE}/yolov3-tiny.weights", "https://pjreddie.com/media/files/yolov3.weights": f"{BASE}/yolov3.weights", "https://raw.githubusercontent.com/Cadene/pretrained-models.pytorch/master/data/imagenet_classes.txt": f"{BASE}/2022-10-05/imagenet_classes.txt", "https://raw.githubusercontent.com/Cadene/pretrained-models.pytorch/master/data/imagenet_synsets.txt": f"{BASE}/2022-10-05/imagenet_synsets.txt", "https://raw.githubusercontent.com/dmlc/web-data/main/gluoncv/detection/street_small.jpg": f"{BASE}/2022-10-05/small_street.jpg", "https://raw.githubusercontent.com/dmlc/web-data/master/gluoncv/detection/street_small.jpg": f"{BASE}/2022-10-05/street_small.jpg", "https://raw.githubusercontent.com/tensorflow/tensorflow/master/tensorflow/lite/java/demo/app/src/main/assets/labels_mobilenet_quant_v1_224.txt": f"{BASE}/2022-10-05/labels_mobilenet_quant_v1_224.txt", "https://raw.githubusercontent.com/tlc-pack/tophub/main/tophub/mali_v0.06.log": f"{BASE}/2022-10-05/mali_v0.06.log", "https://s3.amazonaws.com/model-server/inputs/kitten.jpg": f"{BASE}/2022-10-05/kitten.jpg", "https://s3.amazonaws.com/onnx-model-zoo/synset.txt": f"{BASE}/2022-10-05/synset-s3.txt", "https://storage.googleapis.com/download.tensorflow.org/models/tflite_11_05_08/mobilenet_v2_1.0_224_quant.tgz": f"{BASE}/2022-10-05/mobilenet_v2_1.0_224_quant.tgz", "https://storage.googleapis.com/tensorflow/keras-applications/mobilenet/mobilenet_2_5_128_tf.h5": f"{BASE}/2022-10-05/mobilenet_2_5_128_tf.h5", "https://storage.googleapis.com/tensorflow/keras-applications/resnet/resnet50_weights_tf_dim_ordering_tf_kernels.h5": f"{BASE}/2022-10-05/resnet50_weights_tf_dim_ordering_tf_kernels.h5", } class TvmRequestHook(urllib.request.Request): def __init__(self, url, *args, **kwargs): LOGGER.info(f"Caught access to {url}") if url in URL_MAP: new_url = URL_MAP[url] LOGGER.info(f"Mapped URL {url} to {new_url}") else: new_url = url super().__init__(new_url, *args, **kwargs) def init(): global LOGGER urllib.request.Request = TvmRequestHook LOGGER = logging.getLogger("tvm_request_hook") LOGGER.setLevel(logging.DEBUG) fh = logging.FileHandler("redirected_urls.log") fh.setLevel(logging.DEBUG) LOGGER.addHandler(fh)
https://github.com/zk-ml/tachikoma
tests/scripts/task_build.py
#!/usr/bin/env python3 # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import argparse import shutil import os import logging import sys import multiprocessing from pathlib import Path # Hackery to enable importing of utils from ci/scripts REPO_ROOT = Path(__file__).resolve().parent.parent.parent sys.path.append(str(REPO_ROOT / "ci" / "scripts")) from cmd_utils import Sh, init_log, REPO_ROOT if __name__ == "__main__": init_log() parser = argparse.ArgumentParser(description="List pytest nodeids for a folder") parser.add_argument("--sccache-bucket", required=False, help="sccache bucket name") parser.add_argument("--build-dir", default="build", help="build folder") parser.add_argument("--cmake-target", help="optional build target") args = parser.parse_args() env = {"VTA_HW_PATH": str(Path(os.getcwd()) / "3rdparty" / "vta-hw")} sccache_exe = shutil.which("sccache") use_sccache = sccache_exe is not None build_dir = Path(os.getcwd()) / args.build_dir build_dir = build_dir.relative_to(REPO_ROOT) if use_sccache: if args.sccache_bucket: env["SCCACHE_BUCKET"] = args.sccache_bucket logging.info(f"Using sccache bucket: {args.sccache_bucket}") else: logging.info(f"No sccache bucket set, using local cache") env["CXX"] = "/opt/sccache/c++" env["CC"] = "/opt/sccache/cc" else: if sccache_exe is None: reason = "'sccache' executable not found" else: reason = "<unknown>" logging.info(f"Not using sccache, reason: {reason}") sh = Sh(env) if use_sccache: sh.run("sccache --start-server", check=False) logging.info("===== sccache stats =====") sh.run("sccache --show-stats") executors = int(os.environ.get("CI_NUM_EXECUTORS", 1)) nproc = multiprocessing.cpu_count() available_cpus = nproc // executors num_cpus = max(available_cpus, 1) sh.run("cmake -GNinja -DCMAKE_BUILD_TYPE=RelWithDebInfo ..", cwd=build_dir) target = "" if args.cmake_target: target = args.cmake_target verbose = os.environ.get("VERBOSE", "true").lower() in {"1", "true", "yes"} ninja_args = [target, f"-j{num_cpus}"] if verbose: ninja_args.append("-v") sh.run(f"cmake --build . -- " + " ".join(ninja_args), cwd=build_dir) if use_sccache: logging.info("===== sccache stats =====") sh.run("sccache --show-stats")
https://github.com/zk-ml/tachikoma
version.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ This is the global script that set the version information of TVM. This script runs and update all the locations that related to versions List of affected files: - tvm-root/python/tvm/_ffi/libinfo.py - tvm-root/include/tvm/runtime/c_runtime_api.h - tvm-root/conda/recipe/meta.yaml - tvm-root/web/package.json """ import os import re import argparse import logging import subprocess # Modify the following value during release # --------------------------------------------------- # Current version: # We use the version of the incoming release for code # that is under development. # # It is also fallback version to be used when --git-describe # is not invoked, or when the repository does not present the # git tags in a format that this script can use. # # Two tag formats are supported: # - vMAJ.MIN.PATCH (e.g. v0.8.0) or # - vMAJ.MIN.devN (e.g. v0.8.dev0) __version__ = "0.11.dev0" # --------------------------------------------------- PROJ_ROOT = os.path.dirname(os.path.abspath(os.path.expanduser(__file__))) def py_str(cstr): return cstr.decode("utf-8") def git_describe_version(): """Get PEP-440 compatible public and local version using git describe. Returns ------- pub_ver: str Public version. local_ver: str Local version (with additional label appended to pub_ver). Notes ----- - We follow PEP 440's convention of public version and local versions. - Only tags conforming to vMAJOR.MINOR.REV (e.g. "v0.7.0") are considered in order to generate the version string. See the use of `--match` in the `git` command below. Here are some examples: - pub_ver = '0.7.0', local_ver = '0.7.0': We are at the 0.7.0 release. - pub_ver = '0.8.dev94', local_ver = '0.8.dev94+g0d07a329e': We are at the 0.8 development cycle. The current source contains 94 additional commits after the most recent tag(v0.7.0), the git short hash tag of the current commit is 0d07a329e. """ cmd = [ "git", "describe", "--tags", "--match", "v[0-9]*.[0-9]*.[0-9]*", "--match", "v[0-9]*.[0-9]*.dev[0-9]*", ] proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, cwd=PROJ_ROOT) (out, _) = proc.communicate() if proc.returncode != 0: msg = py_str(out) if msg.find("not a git repository") != -1: return __version__, __version__ logging.warning("git describe: %s, use %s", msg, __version__) return __version__, __version__ describe = py_str(out).strip() arr_info = describe.split("-") # Remove the v prefix, mainly to be robust # to the case where v is not presented as well. if arr_info[0].startswith("v"): arr_info[0] = arr_info[0][1:] # hit the exact tag if len(arr_info) == 1: return arr_info[0], arr_info[0] if len(arr_info) != 3: logging.warning("Invalid output from git describe %s", describe) return __version__, __version__ dev_pos = arr_info[0].find(".dev") # Development versions: # The code will reach this point in case it can't match a full release version, such as v0.7.0. # # 1. in case the last known label looks like vMAJ.MIN.devN e.g. v0.8.dev0, we use # the current behaviour of just using vMAJ.MIN.devNNNN+gGIT_REV if dev_pos != -1: dev_version = arr_info[0][: arr_info[0].find(".dev")] # 2. in case the last known label looks like vMAJ.MIN.PATCH e.g. v0.8.0 # then we just carry on with a similar version to what git describe provides, which is # vMAJ.MIN.PATCH.devNNNN+gGIT_REV else: dev_version = arr_info[0] pub_ver = "%s.dev%s" % (dev_version, arr_info[1]) local_ver = "%s+%s" % (pub_ver, arr_info[2]) return pub_ver, local_ver # Implementations def update(file_name, pattern, repl, dry_run=False): update = [] hit_counter = 0 need_update = False with open(file_name) as file: for l in file: result = re.findall(pattern, l) if result: assert len(result) == 1 hit_counter += 1 if result[0] != repl: l = re.sub(pattern, repl, l) need_update = True print("%s: %s -> %s" % (file_name, result[0], repl)) else: print("%s: version is already %s" % (file_name, repl)) update.append(l) if hit_counter != 1: raise RuntimeError("Cannot find version in %s" % file_name) if need_update and not dry_run: with open(file_name, "w") as output_file: for l in update: output_file.write(l) def sync_version(pub_ver, local_ver, dry_run): """Synchronize version.""" # python uses the PEP-440: local version update( os.path.join(PROJ_ROOT, "python", "tvm", "_ffi", "libinfo.py"), r"(?<=__version__ = \")[.0-9a-z\+]+", local_ver, dry_run, ) # Use public version for other parts for now # Note that full git hash is already available in libtvm # C++ header update( os.path.join(PROJ_ROOT, "include", "tvm", "runtime", "c_runtime_api.h"), r'(?<=TVM_VERSION ")[.0-9a-z\+]+', pub_ver, dry_run, ) # conda update( os.path.join(PROJ_ROOT, "conda", "recipe", "meta.yaml"), r"(?<=version = ')[.0-9a-z\+]+", pub_ver, dry_run, ) # web # change to pre-release convention by npm dev_pos = pub_ver.find(".dev") npm_ver = pub_ver if dev_pos == -1 else "%s.0-%s" % (pub_ver[:dev_pos], pub_ver[dev_pos + 1 :]) update( os.path.join(PROJ_ROOT, "web", "package.json"), r'(?<="version": ")[.0-9a-z\-\+]+', npm_ver, dry_run, ) def main(): logging.basicConfig(level=logging.INFO) parser = argparse.ArgumentParser(description="Detect and synchronize version.") parser.add_argument( "--print-version", action="store_true", help="Print version to the command line. No changes is applied to files.", ) parser.add_argument( "--git-describe", action="store_true", help="Use git describe to generate development version.", ) parser.add_argument("--dry-run", action="store_true") opt = parser.parse_args() pub_ver, local_ver = __version__, __version__ if opt.git_describe: pub_ver, local_ver = git_describe_version() if opt.print_version: print(local_ver) else: sync_version(pub_ver, local_ver, opt.dry_run) if __name__ == "__main__": main()
https://github.com/zk-ml/tachikoma
vta/python/vta/__init__.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """VTA Package is a TVM backend extension to support VTA hardware. Besides the compiler toolchain, it also includes utility functions to configure the hardware environment and access remote device through RPC. """ import sys import tvm._ffi.base from .autotvm import module_loader from .bitstream import get_bitstream_path, download_bitstream from .environment import get_env, Environment from .rpc_client import reconfig_runtime, program_fpga __version__ = "0.1.0" # do not from tvm import topi when running vta.exec.rpc_server # in lib tvm runtime only mode if not tvm._ffi.base._RUNTIME_ONLY: from . import top from .build_module import build_config, lower, build
https://github.com/zk-ml/tachikoma
vta/python/vta/autotvm.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Defines AutoTVM components used with VTA.""" from tvm.autotvm.measure import default_module_loader from . import rpc_client def module_loader(bitstream=None): """Construct a ModuleLoader implementation specialized for VTA. Parameters ---------- bitsream : Optional[str] Path to the bitstream to write prior to uploading code. Returns ------- ModuleLoader : The ModuleLoader instance. """ def reprogram_fpga(remote, _build_result): """default_module_loader callback which reprograms the FPGA. Parameters ---------- remote : tvm.rpc.RPCSession RPC session established to the remote device. _build_result : tvm.autotvm.measure.measure_methods.BuildResult Artifact from the build phase, unused here. """ rpc_client.program_fpga(remote, bitstream) rpc_client.reconfig_runtime(remote) return default_module_loader(reprogram_fpga)
https://github.com/zk-ml/tachikoma
vta/python/vta/bitstream.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """VTA specific bitstream management library.""" from __future__ import absolute_import as _abs import os import sys from tvm.contrib.download import download from .environment import get_env if sys.version_info >= (3,): import urllib.error as urllib2 else: import urllib2 # bitstream repo BITSTREAM_URL = "https://github.com/uwsampl/vta-distro/raw/master/bitstreams/" def get_bitstream_path(): """Returns the path to the cached bitstream corresponding to the current config Returns ------- bit_path: str Corresponding to the filepath of the bitstream """ env = get_env() # Derive destination path cache_dir = os.getenv("VTA_CACHE_PATH", os.path.join(os.getenv("HOME"), ".vta_cache/")) cache_dir = os.path.join(cache_dir, env.TARGET) cache_dir = os.path.join(cache_dir, env.HW_VER.replace(".", "_")) # Create the directory if it didn't exist if not os.path.exists(cache_dir): os.makedirs(cache_dir) bit_path = os.path.join(cache_dir, env.BITSTREAM) + ".bit" return bit_path def download_bitstream(): """Downloads a cached bitstream corresponding to the current config""" env = get_env() success = False bit = get_bitstream_path() url = os.path.join(BITSTREAM_URL, env.TARGET) url = os.path.join(url, env.HW_VER) url = os.path.join(url, env.BITSTREAM + ".bit") try: download(url, bit) except urllib2.HTTPError as err: if err.code == 404: raise RuntimeError( # Raise error - the solution when this happens it to build your # own bitstream and add it to your $VTA_CACHE_PATH "{} is not available. It appears that this configuration \ bistream has not been cached. Please compile your own bitstream (see hardware \ compilation guide to get Xilinx toolchains setup) and add it to your \ $VTA_CACHE_PATH. Alternatively edit your config.json back to its default \ settings. You can see the list of available bitstreams under {}".format( url, BITSTREAM_URL ) ) raise RuntimeError( # This could happen when trying to access the URL behind a proxy "Something went wrong when trying to access {}. Check your \ internet connection or proxy settings.".format( url ) ) return success
https://github.com/zk-ml/tachikoma
vta/python/vta/build_module.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=unused-argument, invalid-name """VTA specific buildin for runtime.""" import tvm from tvm.ir import register_intrin_lowering from . import transform from .environment import get_env, Environment def EarlyRewrite(): """Try to do storage rewrite in early pass.""" def _transform(mod, ctx): try: return tvm.tir.transform.StorageRewrite()(mod) except tvm.error.TVMError: return mod return tvm.transform.module_pass(_transform, opt_level=0, name="tir.vta.EarlyRewrite") def build_config(debug_flag=0, **kwargs): """Build a build config for VTA. Parameters ---------- debug_flag : int The dbeug flag to be passed. kwargs : dict Additional configurations. Returns ------- build_config: tvm.transform.PassContext The build config that can be used in TVM. Example -------- .. code-block:: python # build a vta module. with vta.build_config(): vta_module = tvm.build(s, ...) """ env = get_env() @tvm.tir.transform.prim_func_pass(opt_level=0) def add_debug(f, *_): debug = tvm.tir.call_extern("int32", "VTASetDebugMode", env.dev.command_handle, debug_flag) return f.with_body(tvm.tir.stmt_seq(debug, f.body)) pass_list = [ (0, transform.InjectConv2DTransposeSkip()), (1, transform.InjectDMAIntrin()), (1, transform.InjectSkipCopy()), (1, transform.AnnotateALUCoProcScope()), (1, tvm.tir.transform.LiftAttrScope("coproc_uop_scope")), (1, transform.LiftAllocToScopeBegin()), (1, tvm.tir.transform.LiftAttrScope("coproc_scope")), (1, transform.InjectCoProcSync()), (1, EarlyRewrite()), ] if debug_flag: pass_list.append((1, add_debug)) pass_list.append((2, transform.InjectALUIntrin())) pass_list.append((3, tvm.tir.transform.LowerDeviceStorageAccessInfo())) pass_list.append((3, transform.FoldUopLoop())) pass_list.append((3, transform.CPUAccessRewrite())) config = {"tir.add_lower_pass": pass_list} if kwargs.get("config"): config.update(kwargs[config]) del kwargs["config"] return tvm.transform.PassContext(config=config, **kwargs) def lower(*args, **kwargs): """Thin wrapper of tvm.lower This wrapper automatically applies VTA's build_config if there is no user specified build_config in context. See Also -------- tvm.lower : The original TVM's lower function """ pass_ctx = tvm.transform.PassContext.current() if not pass_ctx.config.get("add_lower_pass"): with build_config(): return tvm.lower(*args, **kwargs) return tvm.lower(*args, **kwargs) def build(*args, **kwargs): """Thin wrapper of tvm.build This wrapper automatically applies VTA's build_config if there is no user specified build_config in context. See Also -------- tvm.build : The original TVM's build function """ pass_ctx = tvm.transform.PassContext.current() if not pass_ctx.config.get("tir.add_lower_pass"): with build_config(): return tvm.build(*args, **kwargs) return tvm.build(*args, **kwargs) # Register key ops tvm.ir.register_op_attr("tir.vta.coproc_sync", "TCallEffectKind", tvm.tir.CallEffectKind.Opaque) tvm.ir.register_op_attr("tir.vta.coproc_dep_push", "TCallEffectKind", tvm.tir.CallEffectKind.Opaque) tvm.ir.register_op_attr("tir.vta.coproc_dep_pop", "TCallEffectKind", tvm.tir.CallEffectKind.Opaque) tvm.ir.register_op_attr("tir.vta.uop_push", "TCallEffectKind", tvm.tir.CallEffectKind.Opaque) tvm.ir.register_op_attr("tir.vta.uop_push", "TGlobalSymbol", "VTAUopPush") tvm.ir.register_op_attr("tir.vta.command_handle", "TGlobalSymbol", "VTATLSCommandHandle") tvm.ir.register_op_attr("tir.vta.command_handle", "TCallEffectKind", tvm.tir.CallEffectKind.Opaque) # The memory information for the compiler @tvm.register_func("tvm.info.mem.%s" % Environment.inp_scope) def mem_info_inp_buffer(): spec = get_env() return tvm.ir.make_node( "MemoryInfo", unit_bits=spec.INP_ELEM_BITS, max_simd_bits=spec.INP_ELEM_BITS, max_num_bits=spec.INP_BUFF_SIZE * 8, head_address=None, ) @tvm.register_func("tvm.info.mem.%s" % Environment.wgt_scope) def mem_info_wgt_buffer(): spec = get_env() return tvm.ir.make_node( "MemoryInfo", unit_bits=spec.WGT_ELEM_BITS, max_simd_bits=spec.WGT_ELEM_BITS, max_num_bits=spec.WGT_BUFF_SIZE * 8, head_address=None, ) @tvm.register_func("tvm.info.mem.%s" % Environment.acc_scope) def mem_info_acc_buffer(): spec = get_env() return tvm.ir.make_node( "MemoryInfo", unit_bits=spec.ACC_ELEM_BITS, max_simd_bits=spec.ACC_ELEM_BITS, max_num_bits=spec.ACC_BUFF_SIZE * 8, head_address=None, ) # TVM Op related registration @register_intrin_lowering("tir.vta.coproc_sync", "default") def coproc_sync(op): _ = op return tvm.tir.call_extern( "int32", "VTASynchronize", get_env().dev.command_handle, tvm.runtime.const(1 << 31, dtype="uint32"), ) @register_intrin_lowering("tir.vta.coproc_dep_push", "default") def coproc_dep_push(op): return tvm.tir.call_extern( "int32", "VTADepPush", get_env().dev.command_handle, op.args[0], op.args[1] ) @register_intrin_lowering("tir.vta.coproc_dep_pop", "default") def coproc_dep_pop(op): return tvm.tir.call_extern( "int32", "VTADepPop", get_env().dev.command_handle, op.args[0], op.args[1] )
https://github.com/zk-ml/tachikoma
vta/python/vta/environment.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Configurable VTA Hareware Environment scope.""" # pylint: disable=invalid-name, exec-used from __future__ import absolute_import as _abs import os import json import copy import tvm from tvm import te from . import intrin def get_vta_hw_path(): """Get the VTA HW path.""" curr_path = os.path.dirname(os.path.abspath(os.path.expanduser(__file__))) vta_hw_default = os.path.abspath(os.path.join(curr_path, "../../../3rdparty/vta-hw")) VTA_HW_PATH = os.getenv("VTA_HW_PATH", vta_hw_default) return os.path.abspath(VTA_HW_PATH) def pkg_config(cfg): """Returns PkgConfig pkg config object.""" pkg_config_py = os.path.join(get_vta_hw_path(), "config/pkg_config.py") libpkg = {"__file__": pkg_config_py} exec(compile(open(pkg_config_py, "rb").read(), pkg_config_py, "exec"), libpkg, libpkg) PkgConfig = libpkg["PkgConfig"] return PkgConfig(cfg) class DevContext(object): """Internal development context This contains all the non-user facing compiler internal context that is hold by the Environment. Parameters ---------- env : Environment The environment hosting the DevContext Note ---- This class is introduced so we have a clear separation of developer related, and user facing attributes. """ # Memory id for DMA MEM_ID_UOP = 0 MEM_ID_WGT = 1 MEM_ID_INP = 2 MEM_ID_ACC = 3 MEM_ID_OUT = 4 MEM_ID_ACC_8BIT = 5 # VTA ALU Opcodes ALU_OPCODE_MIN = 0 ALU_OPCODE_MAX = 1 ALU_OPCODE_ADD = 2 ALU_OPCODE_SHR = 3 ALU_OPCODE_MUL = 4 # Task queue id (pipeline stage) QID_LOAD_INP = 1 QID_LOAD_WGT = 1 QID_LOAD_OUT = 2 QID_STORE_OUT = 3 QID_COMPUTE = 2 def __init__(self, env): self.vta_axis = te.thread_axis("vta") self.vta_push_uop = tvm.tir.StringImm("VTAPushGEMMOp") ctx = tvm.tir.call_intrin("handle", "tir.vta.command_handle") self.command_handle = tvm.tir.Call("handle", "tir.tvm_thread_context", [ctx]) self.DEBUG_NO_SYNC = False env._dev_ctx = self self.gemm = intrin.gemm(env, env.mock_mode) def get_task_qid(self, qid): """Get transformed queue index.""" return 1 if self.DEBUG_NO_SYNC else qid class Environment(object): """Hardware configuration object. This object contains all the information needed for compiling to a specific VTA backend. Parameters ---------- cfg : dict of str to value. The configuration parameters. Example -------- .. code-block:: python # the following code reconfigures the environment # temporarily to attributes specified in new_cfg.json new_cfg = json.load(json.load(open("new_cfg.json"))) with vta.Environment(new_cfg): # env works on the new environment env = vta.get_env() """ current = None # constants MAX_XFER = 1 << 22 # debug flags DEBUG_DUMP_INSN = 1 << 1 DEBUG_DUMP_UOP = 1 << 2 DEBUG_SKIP_READ_BARRIER = 1 << 3 DEBUG_SKIP_WRITE_BARRIER = 1 << 4 # memory scopes inp_scope = "local.inp_buffer" wgt_scope = "local.wgt_buffer" acc_scope = "local.acc_buffer" # initialization function def __init__(self, cfg): # Produce the derived parameters and update dict self.pkg = pkg_config(cfg) self.__dict__.update(self.pkg.cfg_dict) # data type width self.INP_WIDTH = 1 << self.LOG_INP_WIDTH self.WGT_WIDTH = 1 << self.LOG_WGT_WIDTH self.ACC_WIDTH = 1 << self.LOG_ACC_WIDTH self.OUT_WIDTH = 1 << self.LOG_OUT_WIDTH # tensor intrinsic shape self.BATCH = 1 << self.LOG_BATCH self.BLOCK_IN = 1 << self.LOG_BLOCK_IN self.BLOCK_OUT = 1 << self.LOG_BLOCK_OUT # buffer size self.UOP_BUFF_SIZE = 1 << self.LOG_UOP_BUFF_SIZE self.INP_BUFF_SIZE = 1 << self.LOG_INP_BUFF_SIZE self.WGT_BUFF_SIZE = 1 << self.LOG_WGT_BUFF_SIZE self.ACC_BUFF_SIZE = 1 << self.LOG_ACC_BUFF_SIZE self.OUT_BUFF_SIZE = 1 << self.LOG_OUT_BUFF_SIZE # bytes per buffer self.INP_ELEM_BITS = self.BATCH * self.BLOCK_IN * self.INP_WIDTH self.WGT_ELEM_BITS = self.BLOCK_OUT * self.BLOCK_IN * self.WGT_WIDTH self.ACC_ELEM_BITS = self.BATCH * self.BLOCK_OUT * self.ACC_WIDTH self.OUT_ELEM_BITS = self.BATCH * self.BLOCK_OUT * self.OUT_WIDTH self.INP_ELEM_BYTES = self.INP_ELEM_BITS // 8 self.WGT_ELEM_BYTES = self.WGT_ELEM_BITS // 8 self.ACC_ELEM_BYTES = self.ACC_ELEM_BITS // 8 self.OUT_ELEM_BYTES = self.OUT_ELEM_BITS // 8 # dtypes self.acc_dtype = "int%d" % self.ACC_WIDTH self.inp_dtype = "int%d" % self.INP_WIDTH self.wgt_dtype = "int%d" % self.WGT_WIDTH self.out_dtype = "int%d" % self.OUT_WIDTH # bistream name self.BITSTREAM = self.pkg.bitstream # model string self.MODEL = self.TARGET + "_" + self.BITSTREAM # lazy cached members self.mock_mode = False self._mock_env = None self._dev_ctx = None self._last_env = None def __enter__(self): self._last_env = Environment.current Environment.current = self return self def __exit__(self, ptype, value, trace): Environment.current = self._last_env @property def cfg_dict(self): return self.pkg.cfg_dict @property def dev(self): """Developer context""" if self._dev_ctx is None: self._dev_ctx = DevContext(self) return self._dev_ctx @property def mock(self): """A mock version of the Environment The ALU, dma_copy and intrinsics will be mocked to be nop. """ if self.mock_mode: return self if self._mock_env is None: self._mock_env = copy.copy(self) self._mock_env._dev_ctx = None self._mock_env.mock_mode = True return self._mock_env @property def dma_copy(self): """DMA copy pragma""" return "dma_copy" if not self.mock_mode else "skip_dma_copy" @property def alu(self): """ALU pragma""" return "alu" if not self.mock_mode else "skip_alu" @property def gemm(self): """GEMM intrinsic""" return self.dev.gemm @property def target(self): return tvm.target.vta(model=self.MODEL) @property def target_host(self): """The target host""" if self.TARGET in ["pynq", "de10nano"]: return "llvm -mtriple=armv7-none-linux-gnueabihf" if self.TARGET == "ultra96": return "llvm -mtriple=aarch64-linux-gnu" if self.TARGET in ["sim", "tsim", "intelfocl"]: return "llvm" raise ValueError("Unknown target %s" % self.TARGET) @property def target_vta_cpu(self): return tvm.target.arm_cpu(model=self.TARGET) def get_env(): """Get the current VTA Environment. Returns ------- env : Environment The current environment. """ return Environment.current def _init_env(): """Initialize the default global env""" config_path = os.path.join(get_vta_hw_path(), "config/vta_config.json") if not os.path.exists(config_path): raise RuntimeError("Cannot find config in %s" % str(config_path)) cfg = json.load(open(config_path)) return Environment(cfg) Environment.current = _init_env()
https://github.com/zk-ml/tachikoma
vta/python/vta/exec/__init__.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """VTA Command line utils."""
https://github.com/zk-ml/tachikoma
vta/python/vta/exec/rpc_server.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """VTA customized TVM RPC Server Provides additional runtime function and library loading. """ from __future__ import absolute_import import logging import argparse import os import ctypes import json import tvm from tvm import rpc from tvm.contrib import cc from vta import program_bitstream from ..environment import get_env, pkg_config from ..libinfo import find_libvta def server_start(): """VTA RPC server extension.""" # pylint: disable=unused-variable curr_path = os.path.dirname(os.path.abspath(os.path.expanduser(__file__))) proj_root = os.path.abspath(os.path.join(curr_path, "../../../../")) dll_path = find_libvta("libvta")[0] cfg_path = os.path.abspath(os.path.join(proj_root, "3rdparty/vta-hw/config/vta_config.json")) runtime_dll = [] _load_module = tvm.get_global_func("tvm.rpc.server.load_module") def load_vta_dll(): """Try to load vta dll""" if not runtime_dll: runtime_dll.append(ctypes.CDLL(dll_path, ctypes.RTLD_GLOBAL)) logging.info("Loading VTA library: %s", dll_path) return runtime_dll[0] @tvm.register_func("tvm.rpc.server.load_module", override=True) def load_module(file_name): load_vta_dll() return _load_module(file_name) @tvm.register_func("device_api.ext_dev") def ext_dev_callback(): load_vta_dll() return tvm.get_global_func("device_api.ext_dev")() @tvm.register_func("tvm.contrib.vta.init", override=True) def program_fpga(file_name): # pylint: disable=import-outside-toplevel env = get_env() if env.TARGET == "pynq": from pynq import xlnk # Reset xilinx driver xlnk.Xlnk().xlnk_reset() elif env.TARGET == "de10nano": # Load the de10nano program function. load_vta_dll() path = tvm.get_global_func("tvm.rpc.server.workpath")(file_name) program_bitstream.bitstream_program(env.TARGET, path) logging.info("Program FPGA with %s ", file_name) @tvm.register_func("tvm.rpc.server.shutdown", override=True) def server_shutdown(): if runtime_dll: runtime_dll[0].VTARuntimeShutdown() runtime_dll.pop() @tvm.register_func("tvm.contrib.vta.reconfig_runtime", override=True) def reconfig_runtime(cfg_json): """Rebuild and reload runtime with new configuration. Parameters ---------- cfg_json : str JSON string used for configurations. """ env = get_env() if runtime_dll: if env.TARGET == "de10nano": print("Please reconfigure the runtime AFTER programming a bitstream.") raise RuntimeError("Can only reconfig in the beginning of session...") cfg = json.loads(cfg_json) cfg["TARGET"] = env.TARGET pkg = pkg_config(cfg) # check if the configuration is already the same if os.path.isfile(cfg_path): old_cfg = json.loads(open(cfg_path, "r").read()) if pkg.same_config(old_cfg): logging.info("Skip reconfig_runtime due to same config.") return cflags = ["-O2", "-std=c++17"] cflags += pkg.cflags ldflags = pkg.ldflags lib_name = dll_path source = pkg.lib_source logging.info( "Rebuild runtime:\n output=%s,\n cflags=%s,\n source=%s,\n ldflags=%s", dll_path, "\n\t".join(cflags), "\n\t".join(source), "\n\t".join(ldflags), ) cc.create_shared(lib_name, source, cflags + ldflags) with open(cfg_path, "w") as outputfile: outputfile.write(pkg.cfg_json) def main(): """Main funciton""" parser = argparse.ArgumentParser() parser.add_argument( "--host", type=str, default="0.0.0.0", help="The host IP address the server binds to" ) parser.add_argument("--port", type=int, default=9091, help="The port of the RPC") parser.add_argument("--port-end", type=int, default=9199, help="The end search port of the RPC") parser.add_argument( "--key", type=str, default="", help="RPC key used to identify the connection type." ) parser.add_argument("--tracker", type=str, default="", help="Report to RPC tracker") args = parser.parse_args() logging.basicConfig(level=logging.INFO) if args.tracker: url, port = args.tracker.split(":") port = int(port) tracker_addr = (url, port) if not args.key: raise RuntimeError("Need key to present type of resource when tracker is available") else: tracker_addr = None # register the initialization callback def server_init_callback(): # pylint: disable=redefined-outer-name, reimported, import-outside-toplevel, import-self import tvm import vta.exec.rpc_server tvm.register_func("tvm.rpc.server.start", vta.exec.rpc_server.server_start, override=True) server = rpc.Server( args.host, args.port, args.port_end, key=args.key, tracker_addr=tracker_addr, server_init_callback=server_init_callback, ) server.proc.join() if __name__ == "__main__": main()
https://github.com/zk-ml/tachikoma
vta/python/vta/intrin.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """VTA related intrinsics""" from __future__ import absolute_import as _abs import tvm from tvm import te def gemm(env, mock=False): """Matrix-matrix multiply intrinsic Parameters ---------- env : Environment The Environment mock : bool Whether create a mock version. """ wgt_lanes = env.WGT_ELEM_BITS // env.WGT_WIDTH assert wgt_lanes == env.BLOCK_OUT * env.BLOCK_IN wgt_shape = (env.BLOCK_OUT, env.BLOCK_IN) assert wgt_shape[0] * wgt_shape[1] == wgt_lanes inp_lanes = env.INP_ELEM_BITS // env.INP_WIDTH assert inp_lanes == env.BATCH * env.BLOCK_IN inp_shape = (env.BATCH, env.BLOCK_IN) assert inp_shape[0] * inp_shape[1] == inp_lanes out_lanes = env.ACC_ELEM_BITS // env.ACC_WIDTH assert out_lanes == env.BATCH * env.BLOCK_OUT out_shape = (env.BATCH, env.BLOCK_OUT) assert out_shape[0] * out_shape[1] == out_lanes wgt = te.placeholder( (wgt_shape[0], wgt_shape[1]), dtype="int%d" % env.WGT_WIDTH, name=env.wgt_scope ) inp = te.placeholder( (inp_shape[0], inp_shape[1]), dtype="int%d" % env.INP_WIDTH, name=env.inp_scope ) k = te.reduce_axis((0, wgt_shape[1]), name="k") out_dtype = "int%d" % env.ACC_WIDTH out = te.compute( (out_shape[0], out_shape[1]), lambda i, j: te.sum(inp[i, k].astype(out_dtype) * wgt[j, k].astype(out_dtype), axis=[k]), name="out", ) wgt_layout = tvm.tir.decl_buffer( wgt.shape, wgt.dtype, env.wgt_scope, scope=env.wgt_scope, offset_factor=wgt_lanes, data_alignment=wgt_lanes, ) inp_layout = tvm.tir.decl_buffer( inp.shape, inp.dtype, env.inp_scope, scope=env.inp_scope, offset_factor=inp_lanes, data_alignment=inp_lanes, ) out_layout = tvm.tir.decl_buffer( out.shape, out.dtype, env.acc_scope, scope=env.acc_scope, offset_factor=out_lanes, data_alignment=out_lanes, ) def intrin_func(ins, outs): """Matrix-matrix multiply intrinsic function""" dinp, dwgt = ins dout = outs[0] def instr(index): """Generate matrix-matrix multiply VTA instruction""" irb = tvm.tir.ir_builder.create() dev = env.dev irb.scope_attr(dev.vta_axis, "coproc_scope", dev.get_task_qid(dev.QID_COMPUTE)) irb.scope_attr(dev.vta_axis, "coproc_uop_scope", dev.vta_push_uop) if index in (0, 2): irb.emit( tvm.tir.call_intrin( "int32", "tir.vta.uop_push", 0, 0, dout.access_ptr("rw", "int32"), dinp.access_ptr("r", "int32"), dwgt.access_ptr("r", "int32"), 0, 0, 0, ) ) else: irb.emit( tvm.tir.call_intrin( "int32", "tir.vta.uop_push", 0, 1, dout.access_ptr("rw", "int32"), 0, 0, 0, 0, 0, ) ) return irb.get() # return a triple of normal-set, reset, update nop = tvm.tir.Evaluate(0) if mock: return (nop, nop, nop) return (instr(0), instr(1), instr(2)) return te.decl_tensor_intrin( out.op, intrin_func, name="GEMM", binds={inp: inp_layout, wgt: wgt_layout, out: out_layout} )
https://github.com/zk-ml/tachikoma
vta/python/vta/libinfo.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Library information.""" from __future__ import absolute_import import sys import os from .environment import get_vta_hw_path def _get_lib_name(lib_name): """Get lib name with extension Returns ------- lib_name_ext : str Name of VTA shared library with extension Parameters ------------ lib_name : str Name of VTA shared library """ if sys.platform.startswith("win32"): return lib_name + ".dll" if sys.platform.startswith("darwin"): return lib_name + ".dylib" return lib_name + ".so" def find_libvta(lib_vta, optional=False): """Find VTA Chisel-based library Returns ------- lib_found : str Library path Parameters ------------ lib_vta : str Name of VTA shared library optional : bool Enable error check """ curr_path = os.path.dirname(os.path.abspath(os.path.expanduser(__file__))) tvm_library_path = os.environ.get("TVM_LIBRARY_PATH", None) if tvm_library_path is None: tvm_library_path = os.path.join( curr_path, os.pardir, os.pardir, os.pardir, "build", ) lib_search = [tvm_library_path, os.path.join(get_vta_hw_path(), "build")] lib_name = _get_lib_name(lib_vta) lib_path = [os.path.join(x, lib_name) for x in lib_search] lib_found = [x for x in lib_path if os.path.exists(x)] if not lib_found and not optional: raise RuntimeError( "Cannot find the files.\n" + "List of candidates:\n" + str("\n".join(lib_path)) ) return lib_found
https://github.com/zk-ml/tachikoma
vta/python/vta/program_bitstream.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """VTA specific bitstream program library.""" import os import argparse def main(): """Main function""" parser = argparse.ArgumentParser() parser.add_argument("target", type=str, default="", help="target") parser.add_argument("bitstream", type=str, default="", help="bitstream path") args = parser.parse_args() if args.target not in ("pynq", "ultra96", "de10nano", "sim", "tsim"): raise RuntimeError("Unknown target {}".format(args.target)) curr_path = os.path.dirname(os.path.abspath(os.path.expanduser(__file__))) path_list = [ os.path.join(curr_path, "/{}".format(args.bitstream)), os.path.join("./", "{}".format(args.bitstream)), ] ok_path_list = [p for p in path_list if os.path.exists(p)] if not ok_path_list: raise RuntimeError("Cannot find bitstream file in %s" % str(path_list)) bitstream_program(args.target, args.bitstream) def pynq_bitstream_program(bitstream_path): # pylint: disable=import-outside-toplevel from pynq import Bitstream bitstream = Bitstream(bitstream_path) bitstream.download() def de10nano_bitstream_program(bitstream_path): # pylint: disable=import-outside-toplevel from tvm import get_global_func program = get_global_func("vta.de10nano.program") program(bitstream_path) def intelfocl_bitstream_program(bitstream_path, mem_size=4 * 1024 * 1024 * 1024): # pylint: disable=import-outside-toplevel from tvm import get_global_func program = get_global_func("vta.oclfpga.program") program(bitstream_path, mem_size) def bitstream_program(target, bitstream, *args): """program bitstream to devices""" if target in ["pynq", "ultra96"]: pynq_bitstream_program(bitstream) elif target in ["de10nano"]: de10nano_bitstream_program(bitstream) elif target in ["sim", "tsim"]: # In simulation, bit stream programming is a no-op return elif target in ["intelfocl"]: intelfocl_bitstream_program(bitstream, *args) else: raise RuntimeError("Unknown target {}".format(target)) if __name__ == "__main__": main()
https://github.com/zk-ml/tachikoma
vta/python/vta/rpc_client.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """VTA RPC client function""" import os from tvm import rpc from vta import program_bitstream from .environment import get_env from .bitstream import download_bitstream, get_bitstream_path def reconfig_runtime(remote): """Reconfigure remote runtime based on current hardware spec. Parameters ---------- remote : RPCSession The TVM RPC session """ env = get_env() freconfig = remote.get_function("tvm.contrib.vta.reconfig_runtime") freconfig(env.pkg.cfg_json) def program_fpga(remote, bitstream=None): """Upload and program bistream Parameters ---------- remote : RPCSession The TVM RPC session bitstream : str, optional Path to a local bistream file. If unset, tries to download from cache server. """ env = get_env() if bitstream: assert os.path.isfile(bitstream) else: bitstream = get_bitstream_path() if not os.path.isfile(bitstream): if env.TARGET == "de10nano": return download_bitstream() if isinstance(remote, rpc.LocalSession): program_bitstream.bitstream_program(env.TARGET, bitstream) else: fprogram = remote.get_function("tvm.contrib.vta.init") remote.upload(bitstream) fprogram(os.path.basename(bitstream))
https://github.com/zk-ml/tachikoma
vta/python/vta/testing/__init__.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Testing utilities, this namespace is not imported by default.""" from .utils import run
https://github.com/zk-ml/tachikoma
vta/python/vta/testing/simulator.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Utilities to start simulator.""" import ctypes import json import warnings import tvm from ..environment import get_env from ..libinfo import find_libvta def _load_sw(): """Load hardware library for simulator.""" env = get_env() lib_driver_name = ( "libvta_tsim" if env.TARGET == "tsim" else "libvta" if env.TARGET == "intelfocl" else "libvta_fsim" ) require_sim = env.TARGET in ("sim", "tsim") libs = [] # Load driver library lib_driver = find_libvta(lib_driver_name, optional=(not require_sim)) if not lib_driver: return [] try: libs = [ctypes.CDLL(lib_driver[0], ctypes.RTLD_GLOBAL)] except OSError as err: if require_sim: raise err warnings.warn("Error when loading VTA driver {}: {}".format(lib_driver[0], err)) return [] if env.TARGET == "tsim": lib_hw = find_libvta("libvta_hw", optional=True) assert lib_hw # make sure to make in ${VTA_HW_PATH}/hardware/chisel f = tvm.get_global_func("vta.tsim.init") m = tvm.runtime.load_module(lib_hw[0], "vta-tsim") f(m) return lib_hw return libs def enabled(): """Check if simulator is enabled.""" f = tvm.get_global_func("vta.simulator.profiler_clear", True) return f is not None def clear_stats(): """Clear profiler statistics.""" env = get_env() if env.TARGET == "sim": f = tvm.get_global_func("vta.simulator.profiler_clear", True) else: f = tvm.get_global_func("vta.tsim.profiler_clear", True) if f: f() def stats(): """Get profiler statistics Returns ------- stats : dict Current profiler statistics """ env = get_env() if env.TARGET == "sim": x = tvm.get_global_func("vta.simulator.profiler_status")() else: x = tvm.get_global_func("vta.tsim.profiler_status")() return json.loads(x) # debug flag to skip execution. DEBUG_SKIP_EXEC = 1 def debug_mode(flag): """Set debug mode Paramaters ---------- flag : int The debug flag, 0 means clear all flags. """ tvm.get_global_func("vta.simulator.profiler_debug_mode")(flag) LIBS = _load_sw()
https://github.com/zk-ml/tachikoma
vta/python/vta/testing/utils.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Test Utilities""" from __future__ import absolute_import as _abs import os from tvm import rpc, autotvm from ..environment import get_env from . import simulator def run(run_func): """Run test function on all available env. Parameters ---------- run_func : function(env, remote) """ env = get_env() if env.TARGET in ["sim", "tsim", "intelfocl"]: # Talk to local RPC if necessary to debug RPC server. # Compile vta on your host with make at the root. # Make sure TARGET is set to "sim" in the config.json file. # Then launch the RPC server on the host machine # with ./apps/vta_rpc/start_rpc_server.sh # Set your VTA_LOCAL_SIM_RPC environment variable to # the port it's listening to, e.g. 9090 local_rpc = int(os.environ.get("VTA_LOCAL_SIM_RPC", "0")) if local_rpc: remote = rpc.connect("127.0.0.1", local_rpc) run_func(env, remote) else: # Make sure simulation library exists # If this fails, build vta on host (make) # with TARGET="sim" in the json.config file. if env.TARGET == "sim": assert simulator.enabled() run_func(env, rpc.LocalSession()) elif env.TARGET in ["pynq", "ultra96", "de10nano"]: # The environment variables below should be set if we are using # a tracker to obtain a remote for a test device tracker_host = os.environ.get("TVM_TRACKER_HOST", None) tracker_port = os.environ.get("TVM_TRACKER_PORT", None) # Otherwise, we can set the variables below to directly # obtain a remote from a test device pynq_host = os.environ.get("VTA_RPC_HOST", None) pynq_port = os.environ.get("VTA_RPC_PORT", None) # Run device from fleet node if env variables are defined if tracker_host and tracker_port: remote = autotvm.measure.request_remote( env.TARGET, tracker_host, int(tracker_port), timeout=10000 ) run_func(env, remote) else: # Next, run on PYNQ if env variables are defined if pynq_host and pynq_port: remote = rpc.connect(pynq_host, int(pynq_port)) run_func(env, remote) else: raise RuntimeError( "Please set the VTA_RPC_HOST and VTA_RPC_PORT environment variables" ) else: raise RuntimeError("Unknown target %s" % env.TARGET)
https://github.com/zk-ml/tachikoma