file_path
stringlengths
7
180
content
stringlengths
0
811k
repo
stringclasses
11 values
tests/python/contrib/test_miopen.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm import tvm.testing from tvm import te from tvm.contrib import miopen import numpy as np import pytest requires_miopen = pytest.mark.skipif( tvm.get_global_func("tvm.contrib.miopen.conv2d.setup", True) is None, reason="MIOpen is not enabled", ) @tvm.testing.requires_rocm @requires_miopen def test_conv2d(): in_channel = 3 out_channel = 64 filter_h = 3 filter_w = 3 pad_h = 1 pad_w = 1 stride_h = 1 stride_w = 1 dilation_h = 1 dilation_w = 1 xshape = [1, in_channel, 128, 128] wshape = (out_channel, in_channel, filter_h, filter_w) X = te.placeholder(xshape, name="X") W = te.placeholder(wshape, name="W") Y = miopen.conv2d_forward( X, W, stride_h, stride_w, pad_h, pad_w, dilation_h, dilation_w, conv_mode=0, data_type=1 ) yshape = [x.value for x in Y.shape] from tvm import topi s = te.create_schedule(Y.op) def verify(): dev = tvm.rocm(0) f = tvm.build(s, [X, W, Y], "rocm --host=llvm", name="conv2d") x = tvm.nd.array(np.random.uniform(-1, 1, xshape).astype(np.float32), dev) w = tvm.nd.array(np.random.uniform(-1, 1, wshape).astype(np.float32), dev) y = tvm.nd.array(np.random.uniform(-1, 1, yshape).astype(np.float32), dev) f(x, w, y) Y_ref = topi.nn.conv2d_nchw( X, W, (stride_h, stride_w), (pad_h, pad_w), (dilation_h, dilation_w) ) s_ref = te.create_schedule(Y_ref.op) f_ref = tvm.build(s_ref, [X, W, Y_ref], "rocm --host=llvm") y_ref = tvm.nd.array(np.random.uniform(-1, 1, yshape).astype(np.float32), dev) f_ref(x, w, y_ref) print("Max abs diff:", np.max(np.abs(y.numpy() - y_ref.numpy()))) tvm.testing.assert_allclose(y.numpy(), y_ref.numpy(), atol=1e-3) verify() def verify_softmax(shape, axis, dtype="float32", log_softmax=False): miopen_op = miopen.log_softmax if log_softmax else miopen.softmax testing_op = ( tvm.topi.testing.log_softmax_python if log_softmax else tvm.topi.testing.softmax_python ) A = te.placeholder(shape, dtype=dtype, name="A") B = miopen_op(A, axis) s = te.create_schedule([B.op]) dev = tvm.rocm(0) a_np = np.random.uniform(size=shape).astype(dtype) b_np = testing_op(a_np) a = tvm.nd.array(a_np, dev) b = tvm.nd.array(b_np, dev) f = tvm.build(s, [A, B], target="rocm --host=llvm", name="softmax") f(a, b) tvm.testing.assert_allclose(b.numpy(), b_np, rtol=1e-3) def verify_softmax_4d(shape, dtype="float32", log_softmax=False): miopen_op = miopen.log_softmax if log_softmax else miopen.softmax testing_op = ( tvm.topi.testing.log_softmax_python if log_softmax else tvm.topi.testing.softmax_python ) A = te.placeholder(shape, dtype=dtype, name="A") B = miopen_op(A, axis=1) s = te.create_schedule([B.op]) dev = tvm.rocm(0) n, c, h, w = shape a_np = np.random.uniform(size=shape).astype(dtype) b_np = testing_op(a_np.transpose(0, 2, 3, 1).reshape(h * w, c)) b_np = b_np.reshape(n, h, w, c).transpose(0, 3, 1, 2) a = tvm.nd.array(a_np, dev) b = tvm.nd.array(b_np, dev) f = tvm.build(s, [A, B], target="rocm --host=llvm", name="softmax") f(a, b) tvm.testing.assert_allclose(b.numpy(), b_np, rtol=1e-3) @tvm.testing.requires_rocm @requires_miopen def test_softmax(): verify_softmax((32, 10), -1) verify_softmax((3, 4), -1) verify_softmax_4d((1, 16, 256, 256)) verify_softmax_4d((1, 16, 256, 256)) verify_softmax((32, 10), -1, log_softmax=True) verify_softmax((3, 4), -1, log_softmax=True) verify_softmax_4d((1, 16, 256, 256), log_softmax=True) if __name__ == "__main__": test_conv2d()
https://github.com/zk-ml/tachikoma
tests/python/contrib/test_mps.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm import tvm.testing from tvm import te import numpy as np from tvm.contrib import mps @tvm.testing.requires_metal def test_matmul(): n = 1024 l = 128 m = 256 A = te.placeholder((n, l), name="A") B = te.placeholder((l, m), name="B") C = mps.matmul(A, B) D = te.compute(C.shape, lambda *i: C(*i) + 1.0) s = te.create_schedule(D.op) yo, xo = D.op.axis block_y = te.thread_axis("blockIdx.y") block_x = te.thread_axis("blockIdx.x") thread_y = te.thread_axis("threadIdx.y") thread_x = te.thread_axis("threadIdx.x") by, ty = s[D].split(yo, factor=16) bx, tx = s[D].split(xo, factor=16) s[D].bind(by, block_y) s[D].bind(bx, block_x) s[D].bind(ty, thread_y) s[D].bind(tx, thread_x) def verify(A, B, D, s, target="metal"): if not tvm.get_global_func("tvm.contrib.mps.matmul", True): print("skip because extern function is not available") return dev = tvm.metal(0) f = tvm.build(s, [A, B, D], "metal") a = tvm.nd.array(np.random.uniform(size=(n, l)).astype(A.dtype), dev) b = tvm.nd.array(np.random.uniform(size=(l, m)).astype(B.dtype), dev) c = tvm.nd.array(np.zeros((n, m), dtype=C.dtype), dev) f(a, b, c) tvm.testing.assert_allclose(c.numpy(), np.dot(a.numpy(), b.numpy()) + 1, rtol=1e-5) verify(A, B, D, s) @tvm.testing.requires_metal def test_conv2d(): n = 1 h = 14 w = 14 ci = 2 co = 4 kh = 3 kw = 3 stride = 2 A = te.placeholder((n, h, w, ci), name="x") B = te.placeholder((co, kh, kw, ci), name="w") C = mps.conv2d(A, B, "SAME", 2) s1 = te.create_schedule(C.op) def verify(A, B, C, target="llvm"): if not tvm.get_global_func("tvm.contrib.mps.conv2d", True): print("skip because extern function is not available") return dev = tvm.metal(0) f = tvm.build(s1, [A, B, C], "metal") a = tvm.nd.array(np.random.uniform(size=(n, h, w, ci)).astype(A.dtype), dev) b = tvm.nd.array(np.random.uniform(size=(co, kh, kw, ci)).astype(B.dtype), dev) c = tvm.nd.array(np.zeros((n, h // stride, w // stride, co), dtype=C.dtype), dev) f(a, b, c) # print(c.numpy()) # print(c.shape) verify(A, B, C, s1) if __name__ == "__main__": # test_matmul() test_conv2d()
https://github.com/zk-ml/tachikoma
tests/python/contrib/test_mxnet_bridge.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. def mxnet_check(): """This is a simple test function for MXNet bridge It is not included as pytests, because of its dependency on mxnet User can directly run this script to verify correctness. """ import mxnet as mx from tvm import topi import tvm from tvm import te import numpy as np from tvm.contrib.mxnet import to_mxnet_func # build a TVM function through topi n = 20 shape = (20,) scale = te.var("scale", dtype="float32") x = te.placeholder(shape) y = te.placeholder(shape) z = topi.broadcast_add(x, y) zz = te.compute(shape, lambda *i: z(*i) * scale) target = tvm.target.cuda() # build the function with target: s = topi.generic.schedule_injective(zz) f = tvm.build(s, [x, y, zz, scale]) # get a mxnet version mxf = to_mxnet_func(f, const_loc=[0, 1]) dev = mx.gpu(0) xx = mx.nd.uniform(shape=shape, device=dev) yy = mx.nd.uniform(shape=shape, device=dev) zz = mx.nd.empty(shape=shape, device=dev) # invoke myf: this runs in mxnet engine mxf(xx, yy, zz, 10.0) mxf(xx, yy, zz, 10.0) tvm.testing.assert_allclose(zz.numpy(), (xx.numpy() + yy.numpy()) * 10) if __name__ == "__main__": mxnet_check()
https://github.com/zk-ml/tachikoma
tests/python/contrib/test_nnpack.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm import tvm.testing from tvm import te import numpy as np import scipy.signal from tvm.topi.nn.utils import get_pad_tuple from tvm.contrib import nnpack import pytest @tvm.testing.requires_llvm def test_fully_connected_inference(): n = 1024 l = 128 m = 235 bias = te.var("bias", dtype="float32") A = te.placeholder((l,), name="A") B = te.placeholder((m, l), name="B") C = nnpack.fully_connected_inference(A, B) D = te.compute(C.shape, lambda i: C[i] + bias, name="D") s = te.create_schedule(D.op) def verify(target="llvm"): if not tvm.get_global_func("tvm.contrib.nnpack.fully_connected_inference", True): pytest.skip("extern function is not available") if not nnpack.is_available(): pytest.skip("nnpack is not available") dev = tvm.cpu(0) f = tvm.build(s, [A, B, D, bias], target) a = tvm.nd.array(np.random.uniform(size=(l)).astype(A.dtype), dev) b = tvm.nd.array(np.random.uniform(size=(m, l)).astype(B.dtype), dev) d = tvm.nd.array(np.zeros((m,), dtype=D.dtype), dev) bb = 10.0 f(a, b, d, bb) tvm.testing.assert_allclose(d.numpy(), np.dot(a.numpy(), b.numpy().T) + bb, rtol=1e-5) verify() def np_conv(na, nw, padding, stride=1): batch, in_channel, in_height, in_width = na.shape _, num_filter, kernel_h, kernel_w = nw.shape if isinstance(stride, int): stride_h = stride_w = stride else: stride_h, stride_w = stride pad_top, pad_left, pad_bottom, pad_right = get_pad_tuple(padding, (kernel_h, kernel_w)) pad_h = pad_top + pad_bottom pad_w = pad_left + pad_right out_channel = num_filter out_height = (in_height - kernel_h + pad_h) // stride_h + 1 out_width = (in_width - kernel_w + pad_w) // stride_w + 1 nb = np.zeros((batch, out_channel, out_height, out_width)) for n in range(batch): for f in range(out_channel): for c in range(in_channel): if pad_h > 0 or pad_w > 0: apad = np.zeros((in_height + pad_h, in_width + pad_w)) apad[pad_top : pad_top + in_height, pad_left : pad_left + in_width] = na[n, c] else: apad = na[n, c] out = scipy.signal.convolve2d(apad, np.rot90(np.rot90(nw[f, c])), mode="valid") nb[n, f] += out[::stride, ::stride] return nb @tvm.testing.requires_llvm def test_convolution_inference(): BATCH = 8 IH = 48 IW = 48 IC = 16 OC = 16 K = 3 PAD = 1 STRIDE = 1 OH = (IH + 2 * PAD - K) + 1 OW = (IW + 2 * PAD - K) + 1 dshape = (BATCH, IC, IH, IW) kshape = (OC, IC, K, K) bshape = (OC,) oshape = (BATCH, OC, OH, OW) data = te.placeholder(dshape, name="data") kernel = te.placeholder(kshape, name="kernel") bias = te.placeholder(bshape, name="bias") def verify(target="llvm", algorithm=nnpack.ConvolutionAlgorithm.AUTO, with_bias=True): if not tvm.get_global_func("tvm.contrib.nnpack.fully_connected_inference", True): pytest.skip("extern function is not available") if not nnpack.is_available(): pytest.skip("nnpack is not available") dev = tvm.cpu(0) output = nnpack.convolution_inference( data, kernel, bias if with_bias else None, [PAD, PAD, PAD, PAD], [STRIDE, STRIDE], algorithm=algorithm, ) s = te.create_schedule(output.op) f = tvm.build(s, [data, kernel, bias, output], target) na = np.random.uniform(size=dshape).astype(data.dtype) nb = np.random.uniform(size=kshape).astype(kernel.dtype) nc = np.zeros(bshape, dtype=bias.dtype) ta = tvm.nd.array(na, dev) tb = tvm.nd.array(nb, dev) tc = tvm.nd.array(nc, dev) td = tvm.nd.array(np.zeros(oshape, dtype=output.dtype), dev) f(ta, tb, tc, td) nd = np_conv(np.reshape(na, (BATCH, IC, IH, IW)), nb, PAD, STRIDE) + nc.reshape( 1, bshape[0], 1, 1 ) tvm.testing.assert_allclose(td.numpy(), nd.reshape(BATCH, IC, IH, IW), rtol=1e-5) for algorithm in [ nnpack.ConvolutionAlgorithm.AUTO, nnpack.ConvolutionAlgorithm.FFT_8x8, nnpack.ConvolutionAlgorithm.FFT_16x16, nnpack.ConvolutionAlgorithm.WT_8x8, nnpack.ConvolutionAlgorithm.IMPLICIT_GEMM, nnpack.ConvolutionAlgorithm.WT_8x8_FP16, ]: for with_bias in [True, False]: verify(algorithm=algorithm, with_bias=with_bias) @tvm.testing.requires_llvm def test_convolution_inference_without_weight_transform(): BATCH = 6 IH = 48 IW = 48 IC = 16 OC = 16 K = 3 PAD = 1 STRIDE = 1 OH = (IH + 2 * PAD - K) + 1 OW = (IW + 2 * PAD - K) + 1 dshape = (BATCH, IC, IH, IW) kshape = (OC, IC, K, K) bshape = (OC,) oshape = (BATCH, OC, OH, OW) data = te.placeholder(dshape, name="data") kernel = te.placeholder(kshape, name="kernel") bias = te.placeholder(bshape, name="bias") def verify(target="llvm", algorithm=nnpack.ConvolutionAlgorithm.AUTO, with_bias=True): if not tvm.get_global_func("tvm.contrib.nnpack.fully_connected_inference", True): pytest.skip("extern function is not available") if not nnpack.is_available(): pytest.skip("nnpack is not available") dev = tvm.cpu(0) transformed_kernel = nnpack.convolution_inference_weight_transform( kernel, algorithm=algorithm ) output = nnpack.convolution_inference_without_weight_transform( data, transformed_kernel, bias if with_bias else None, [PAD, PAD, PAD, PAD], [STRIDE, STRIDE], algorithm=algorithm, ) s = te.create_schedule(output.op) f = tvm.build(s, [data, kernel, bias, output], target) na = np.random.uniform(size=dshape).astype(data.dtype) nb = np.random.uniform(size=kshape).astype(kernel.dtype) nc = ( np.random.uniform(size=bshape).astype(bias.dtype) if with_bias else np.zeros(bshape, dtype=bias.dtype) ) ta = tvm.nd.array(na, dev) tb = tvm.nd.array(nb, dev) tc = tvm.nd.array(nc, dev) td = tvm.nd.array(np.zeros(oshape, dtype=output.dtype), dev) f(ta, tb, tc, td) nd = np_conv(np.reshape(na, (BATCH, IC, IH, IW)), nb, PAD, STRIDE) + nc.reshape( 1, bshape[0], 1, 1 ) tvm.testing.assert_allclose(td.numpy(), nd.reshape(BATCH, IC, IH, IW), rtol=1e-5) for algorithm in [nnpack.ConvolutionAlgorithm.WT_8x8]: for with_bias in [True, False]: verify(algorithm=algorithm, with_bias=with_bias) if __name__ == "__main__": pytest.main()
https://github.com/zk-ml/tachikoma
tests/python/contrib/test_onnx.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Relay to ONNX serialization test cases""" import pytest pytest.importorskip("onnx") pytest.importorskip("onnxruntime") import numpy as np import onnxruntime as rt import tvm from tvm import relay from tvm.contrib.target.onnx import to_onnx from tvm.relay.testing import run_infer_type def func_to_onnx(func, name): mod = tvm.IRModule() mod["main"] = func onnx_model = to_onnx(mod, {}, name, path=None) return onnx_model.SerializeToString() def run_onnx(onnx_model, input_data): sess = rt.InferenceSession(onnx_model) input_names = {} for input, data in zip(sess.get_inputs(), input_data): input_names[input.name] = data output_names = [out.name for out in sess.get_outputs()] res = sess.run(output_names, input_names) return res def run_relay(func, data_tuple, is_dyn=False): target = "llvm" dev = tvm.device("llvm", 0) kind = "graph" if not is_dyn else "vm" relay_res = relay.create_executor(kind, device=dev, target=target).evaluate(func)(*data_tuple) result = [] relay_res = relay_res if isinstance(relay_res, list) else [relay_res] for res in relay_res: result.append(res.numpy()) return result def verify_results(relay_func, indata, test_name, rtol=1e-7, atol=0, is_dyn=False): relay_results = run_relay(relay_func, indata, is_dyn) onnx_results = run_onnx(func_to_onnx(relay_func, test_name), indata) for relay_res, onnx_res in zip(relay_results, onnx_results): np.testing.assert_allclose(relay_res, onnx_res, rtol=rtol, atol=atol) def test_add(): dtype = "float32" t1 = relay.TensorType((5, 10, 5)) t2 = relay.TensorType((5, 10, 5)) x = relay.var("x", t1, dtype=dtype) y = relay.var("y", t2, dtype=dtype) z = relay.add(x, y) func = relay.Function([x, y], z) x_data = np.random.rand(5, 10, 5).astype(dtype) y_data = np.random.rand(5, 10, 5).astype(dtype) verify_results(func, [x_data, y_data], "test_add") def test_bias_add(): for dtype in ["float16", "float32"]: xshape = (10, 2, 3, 4) bshape = (2,) rtol = 1e-2 if dtype == "float16" else 1e-5 x = relay.var("x", shape=xshape, dtype=dtype) bias = relay.var("bias", shape=bshape, dtype=dtype) z = relay.nn.bias_add(x, bias) func = relay.Function([x, bias], z) x_data = np.random.uniform(size=xshape).astype(dtype) y_data = np.random.uniform(size=bshape).astype(dtype) verify_results(func, [x_data, y_data], "test_bias_add", rtol=rtol) def test_conv2d(): def verify_conv2d( dtype, scale, dshape, kshape, padding=(1, 1), groups=1, dilation=(1, 1), **attrs ): x = relay.var("x", shape=dshape, dtype=dtype) w = relay.var("w", shape=kshape, dtype=dtype) y = relay.nn.conv2d(x, w, padding=padding, dilation=dilation, groups=groups, **attrs) func = relay.Function([x, w], y) data = np.random.uniform(-scale, scale, size=dshape).astype(dtype) kernel = np.random.uniform(-scale, scale, size=kshape).astype(dtype) verify_results(func, [data, kernel], "test_conv2d", rtol=1e-5, atol=1e-5, is_dyn=True) dshape = (1, 32, 18, 18) kshape = (32, 1, 3, 3) verify_conv2d( "float32", 1, dshape, kshape, padding=(1, 1), channels=32, groups=32, kernel_size=(3, 3) ) dshape = (1, 32, 18, 18) kshape = (32, 4, 3, 3) verify_conv2d( "float32", 1, dshape, kshape, padding=(1, 1), channels=32, groups=8, kernel_size=(3, 3) ) # also group conv2d dshape = (1, 32, 18, 18) kshape = (64, 1, 3, 3) verify_conv2d( "float32", 1, dshape, kshape, padding=(1, 1), channels=64, groups=32, kernel_size=(3, 3) ) # normal conv2d dshape = (1, 3, 224, 224) kshape = (10, 3, 3, 3) verify_conv2d("float32", 1, dshape, kshape, padding=(1, 1), channels=10, kernel_size=(3, 3)) dshape = (1, 3, 224, 224) kshape = (10, 3, 3, 3) verify_conv2d("float32", 1, dshape, kshape, padding=(2, 2), channels=10, kernel_size=(3, 3)) dshape = (1, 3, 18, 18) kshape = (10, 3, 3, 3) verify_conv2d( "float32", 1, dshape, kshape, padding=(1, 1), channels=10, kernel_size=(3, 3), dilation=(3, 3), ) dshape = (1, 3, 18, 18) kshape = (10, 3, 2, 2) verify_conv2d( "float32", 1, dshape, kshape, padding=(2, 2), channels=10, kernel_size=(2, 2), dilation=(1, 1), ) dshape = (1, 3, 18, 18) kshape = (10, 3, 4, 4) verify_conv2d("float32", 1, dshape, kshape, padding=(1, 1), channels=10, kernel_size=(4, 4)) dshape = (1, 3, 18, 18) kshape = (10, 3, 4, 4) verify_conv2d("float32", 1, dshape, kshape, padding=(1, 1), channels=10, kernel_size=(4, 4)) def test_conv2d_transpose(): """Conv2d_Transpose unit tests.""" def verify_conv2d_transpose( dtype, scale, dshape, kshape, padding=(1, 1), groups=1, dilation=(1, 1), **attrs ): x = relay.var("x", shape=dshape, dtype=dtype) w = relay.var("w", shape=kshape, dtype=dtype) y = relay.nn.conv2d_transpose( x, w, padding=padding, dilation=dilation, groups=groups, **attrs ) func = relay.Function([x, w], y) data = np.random.uniform(-scale, scale, size=dshape).astype(dtype) kernel = np.random.uniform(-scale, scale, size=kshape).astype(dtype) verify_results(func, [data, kernel], "test_conv2d_transpose", rtol=1e-5, atol=1e-5) dshape = (1, 3, 224, 224) kshape = (3, 10, 3, 3) verify_conv2d_transpose( "float32", 1, dshape, kshape, padding=(1, 1), channels=10, kernel_size=(3, 3) ) dshape = (1, 3, 224, 224) kshape = (3, 10, 3, 3) verify_conv2d_transpose( "float32", 1, dshape, kshape, padding=(2, 2), channels=10, kernel_size=(3, 3) ) dshape = (1, 3, 18, 18) kshape = (3, 10, 2, 2) verify_conv2d_transpose( "float32", 1, dshape, kshape, padding=(2, 2), channels=10, kernel_size=(2, 2), dilation=(1, 1), ) dshape = (1, 3, 18, 18) kshape = (3, 10, 4, 4) verify_conv2d_transpose( "float32", 1, dshape, kshape, padding=(1, 1), channels=10, kernel_size=(4, 4) ) dshape = (1, 3, 18, 18) kshape = (3, 10, 4, 4) verify_conv2d_transpose( "float32", 1, dshape, kshape, padding=(1, 1), channels=10, kernel_size=(4, 4) ) def test_reshape(): def verify_reshape(shape, newshape): x = relay.var("x", relay.TensorType(shape, "float32")) z = relay.reshape(x, newshape=newshape) func = relay.Function([x], z) x_data = np.random.uniform(low=-1, high=1, size=shape).astype("float32") verify_results(func, [x_data], "test_reshape", rtol=1e-5, atol=1e-5) verify_reshape((2, 3, 4), tuple(np.array([4, 2, 3], dtype=np.int64))) verify_reshape((2, 3, 4), tuple(np.array([2, 0, 0], dtype=np.int64))) verify_reshape((2, 3, 4), tuple(np.array([0, -1], dtype=np.int64))) verify_reshape((2, 3, 4), tuple(np.array([-1, 0], dtype=np.int64))) def test_transpose(): def verify_reshape(shape, newshape): x = relay.var("x", relay.TensorType(shape, "float32")) z = relay.transpose(x, newshape) func = relay.Function([x], z) x_data = np.random.uniform(low=-1, high=1, size=shape).astype("float32") verify_results(func, [x_data], "test_transpose", rtol=1e-5, atol=1e-5) verify_reshape((1, 2, 3, 4), (0, 2, 3, 1)) verify_reshape((1, 2, 3, 4), (0, 3, 2, 1)) def test_dense(): def verify_dense(d_shape, w_shape): data = relay.var("data", relay.TensorType(d_shape, "float32")) weight = relay.var("weight", relay.TensorType(w_shape, "float32")) func = relay.Function([data, weight], relay.nn.dense(data, weight)) x_data = np.random.uniform(size=d_shape).astype("float32") w_data = np.random.uniform(size=w_shape).astype("float32") verify_results(func, [x_data, w_data], "test_dense", rtol=1e-5, atol=1e-5) verify_dense((1, 8), (16, 8)) verify_dense((1, 4), (3, 4)) def test_max_pool(): def verify_max_pool(x_shape, pool_size, strides, padding, ceil_mode): x = relay.var("x", relay.TensorType(x_shape, "float32")) y = tvm.relay.nn.max_pool2d( x, pool_size=pool_size, strides=strides, padding=padding, ceil_mode=ceil_mode ) func = relay.Function([x], y) x_data = np.random.uniform(size=x_shape).astype("float32") verify_results(func, [x_data], "test_max_pool", rtol=1e-5, atol=1e-5) verify_max_pool( (1, 4, 16, 16), pool_size=(2, 2), strides=(2, 2), padding=(0, 0), ceil_mode=False ) def test_batch_flatten(): def verify_test_batch_flatten(d_shape): data = relay.var("data", relay.TensorType(d_shape, "float32")) func = relay.Function([data], relay.nn.batch_flatten(data)) x_data = np.random.uniform(size=d_shape).astype("float32") verify_results(func, [x_data], "test_batch_flatten", rtol=1e-5, atol=1e-5) verify_test_batch_flatten((1, 2, 3, 4)) verify_test_batch_flatten((1, 8)) def test_batch_norm(): def verify_batch_norm(axis=1): for dtype in ["float16", "float32"]: data = relay.var("data", relay.TensorType((2, 4, 4, 1), dtype)) gamma_shape = (data.type_annotation.shape[axis].value,) beta = relay.var("beta", relay.TensorType(gamma_shape, dtype)) gamma = relay.var("gamma", relay.TensorType(gamma_shape, dtype)) moving_mean = relay.var("moving_mean", relay.TensorType(gamma_shape, dtype)) moving_var = relay.var("moving_var", relay.TensorType(gamma_shape, dtype)) y = relay.nn.batch_norm(data, gamma, beta, moving_mean, moving_var, axis=axis) func = relay.Function([data, gamma, beta, moving_mean, moving_var], y[0]) x_data = np.random.uniform(size=(2, 4, 4, 1)).astype(dtype) beta = np.random.uniform(size=gamma_shape).astype(dtype) gamma = np.random.uniform(size=gamma_shape).astype(dtype) moving_mean = np.random.uniform(size=gamma_shape).astype(dtype) moving_var = np.random.uniform(size=gamma_shape).astype(dtype) verify_results( func, [x_data, gamma, beta, moving_mean, moving_var], "test_batch_norm", rtol=1e-1, atol=1e-1, ) verify_batch_norm(axis=1) verify_batch_norm(axis=3) def test_pad(): """Pad unit test.""" def verify_pad(): dshape = (4, 10, 7, 7) x = relay.var("x", shape=dshape, dtype="int32") y = relay.nn.pad(x, ((1, 1), (2, 2), (3, 3), (4, 4))) func = relay.Function([x], y) func = run_infer_type(func) x_data = np.random.randint(low=-255, high=255, size=dshape).astype(np.int32) verify_results(func, [x_data], "test_pad", rtol=1e-5, atol=1e-5) verify_pad() def test_sofmax(): def verify_sofmax(): for dtype in ["float32"]: shape = (10, 4) x = relay.var("x", shape=shape, dtype=dtype) y = relay.nn.softmax(x, axis=1) func = relay.Function([x], y) x_data = np.random.uniform(size=shape).astype(dtype) verify_results(func, [x_data], "test_softmax", rtol=1e-5, atol=1e-5) verify_sofmax() def test_squeeze(): def verify_squeeze(shape, dtype, axis): x = relay.var("x", relay.TensorType(shape, dtype)) z = relay.squeeze(x, axis=axis) func = relay.Function([x], z) x_data = np.random.random_sample(shape).astype(dtype) verify_results(func, [x_data], "test_squeeze", rtol=1e-5, atol=1e-5) verify_squeeze((1, 3, 2, 5), "float32", None) verify_squeeze( (1, 3, 1), "float32", [ 2, ], ) verify_squeeze((1, 2, 1, 2, 1), "float32", [0, 2]) def test_mean(): def verify_mean(data_shape, axis, exclude, keepdims): dtype = "float32" x = relay.var("x", shape=data_shape, dtype=dtype) y = relay.mean(x, axis, keepdims, exclude) func = relay.Function([x], y) x_data = np.random.uniform(size=data_shape).astype(dtype) verify_results(func, [x_data], "test_mean", rtol=1e-5, atol=1e-5) verify_mean((1, 2), 0, False, False) verify_mean((1, 2), 0, True, False) verify_mean((1, 2), 0, True, True) verify_mean((1, 2), 1, True, True) verify_mean((3, 2, 1), 1, False, True) def test_split(): def verify_split(dshape, indices_or_sections, axis=None): dtype = "float32" x = relay.var("x", relay.ty.TensorType(dshape, "float32")) y = relay.split(x, indices_or_sections, axis=axis) func = relay.Function([x], y.astuple()) x_data = np.random.uniform(size=dshape).astype(dtype) verify_results(func, [x_data], "test_split", rtol=1e-5, atol=1e-5) verify_split((5, 5, 2, 2), 5, axis=1) verify_split((5, 5, 2, 2), 5, axis=0) verify_split((5, 5, 2, 2), [1, 3, 4], axis=0) verify_split((5, 5, 2, 2), [1, 3, 4], axis=1) def test_concatenate(): def verify_concatenate(shapes, axis, dtype="float32"): in_vars = [] in_data = [] for i, shape in enumerate(shapes): in_vars.append(relay.var("x" + str(i), relay.ty.TensorType(shape, dtype))) in_data.append(np.random.uniform(size=shape).astype(dtype)) out_tensor = relay.concatenate(in_vars, axis) func = relay.Function(in_vars, out_tensor) verify_results(func, in_data, "test_concatenate", rtol=1e-5, atol=1e-5) verify_concatenate([(2,), (2,), (2,)], -1) verify_concatenate([(2, 3, 4), (2, 2, 4), (2, 5, 4)], 1) verify_concatenate([(1, 2, 4), (1, 2, 3), (1, 2, 7), (1, 2, 8), (1, 2, 1)], -1) verify_concatenate([(5, 6, 7, 3), (16, 6, 7, 3), (12, 6, 7, 3), (8, 6, 7, 3), (2, 6, 7, 3)], 0) verify_concatenate([(1, 14400), (1, 2400), (1, 640), (1, 240)], 1) def test_strided_slice(): def verify_strided_slice(dshape, begin, end, strides, mode): x = relay.var("x", relay.TensorType(dshape, "float32")) if mode == "size": strides = None z = relay.strided_slice(x, begin=begin, end=end, strides=strides, slice_mode=mode) func = relay.Function([x], z) x_data = np.random.uniform(size=dshape).astype("float32") verify_results(func, [x_data], "test_strided_slice", rtol=1e-5, atol=1e-5) for mode in ["end", "size"]: verify_strided_slice((3, 4, 3), [1, 1, 0], [4, 2, 3], None, mode) verify_strided_slice((3, 4, 3), [1, -1, 0], [4, -1, 3], [1, 2], mode) verify_strided_slice( (3, 4, 3), [ 1, ], [4, -3], None, mode, ) verify_strided_slice((3, 4, 3), [0, 0, 0], [4, -5, 4], [1, -1, 2], mode) verify_strided_slice((3, 4, 3), [1, 1, 0], [4, 4, -3], [2, 1, 1], mode) verify_strided_slice((3, 4, 3), [1, -1, 0], [4, -5, 3], [2, -1, 1], mode) verify_strided_slice((3, 4, 3), [1, 0, 0], [2, 2, 3], [1, 1, 2], mode) verify_strided_slice((3, 4, 3), [1, -1, 0], [2, -3, 3], [1, -1, 1], mode) verify_strided_slice((3, 4, 3), [1, 1, 0], [4, 1000, 3], None, mode) verify_strided_slice((3, 4, 3), [1, 1, 0], [4, 4], None, mode) verify_strided_slice((3, 4, 3), [1, 1], [4, 4, 3], None, mode) verify_strided_slice((3, 4, 3), [1, 1], [4, 4, 3], [1, 1, 2], mode) def test_cmp_type(): for op, ref in ((relay.greater, np.greater), (relay.less, np.less), (relay.equal, np.equal)): x_shape = (10, 4) y_shape = (5, 10, 1) t1 = relay.TensorType(x_shape) t2 = relay.TensorType(y_shape) x = relay.var("x", t1) y = relay.var("y", t2) z = op(x, y) x_data = np.random.rand(*x_shape).astype(t1.dtype) y_data = np.random.rand(*y_shape).astype(t2.dtype) func = relay.Function([x, y], z) verify_results(func, [x_data, y_data], "test_cmp_type", rtol=1e-5, atol=1e-5) def test_unary_identity(): for dtype in ["int16", "float32", "float64"]: for op, ref in [(relay.zeros_like, np.zeros_like), (relay.ones_like, np.ones_like)]: shape = (8, 9, 4) x = relay.var("x", relay.TensorType(shape, dtype)) y = op(x) func = relay.Function( [ x, ], y, ) x_data = np.random.rand(*shape).astype(dtype) verify_results(func, [x_data], "test_cmp_type", rtol=1e-5, atol=1e-5) def test_binary_op(): def check_binary_op(opfunc, dtype): t1 = relay.TensorType((5, 10, 5)) t2 = relay.TensorType((5, 10, 5)) x = relay.var("x", t1, dtype=dtype) y = relay.var("y", t2, dtype=dtype) z = opfunc(x, y) x_data = np.random.rand(5, 10, 5).astype(dtype) y_data = np.random.rand(5, 10, 5).astype(dtype) func = relay.Function([x, y], z) verify_results(func, [x_data, y_data], "test_binary_op", rtol=1e-5, atol=1e-5) for opfunc, ref in [ (relay.add, np.add), (relay.subtract, np.subtract), (relay.multiply, np.multiply), (relay.divide, np.divide), ]: for dtype in ["float32"]: check_binary_op(opfunc, dtype) def test_tuple_types(): def verify_tuple_types(dshape, indices_or_sections, axis=None, dtype="float32"): x = relay.var("x", relay.ty.TensorType(dshape, dtype)) y = relay.split(x, indices_or_sections, axis=axis) z = relay.concatenate(y, axis=axis) func = relay.Function([x], z) x_data = np.random.uniform(size=dshape).astype(dtype) verify_results(func, [x_data], "test_tuple_types", rtol=1e-5, atol=1e-5) split_z = relay.split(z, indices_or_sections, axis=axis) func = relay.Function([x], split_z.astuple()) verify_results(func, [x_data], "test_tuple_types", rtol=1e-5, atol=1e-5) out = relay.Tuple([y[0] + y[1], y[0] - y[1]]) func = relay.Function([x], out) verify_results(func, [x_data], "test_tuple_types", rtol=1e-5, atol=1e-5) z = relay.concatenate(out, axis=axis) func = relay.Function([x], z) verify_results(func, [x_data], "test_tuple_types", rtol=1e-5, atol=1e-5) verify_tuple_types((5, 5, 2, 2), 5, axis=1) verify_tuple_types((5, 5, 2, 2), 5, axis=0) verify_tuple_types((5, 5, 2, 2), [1, 3, 4], axis=0) verify_tuple_types((5, 5, 2, 2), [1, 3, 4], axis=1) def test_layout_transform(): def verify_layout_transform(dshape, src_layout, dst_layout, dtype="float32"): x = relay.var("x", relay.ty.TensorType(dshape, dtype)) y = relay.layout_transform(x, src_layout, dst_layout) func = relay.Function([x], y) x_data = np.random.uniform(size=dshape).astype(dtype) verify_results(func, [x_data], "test_layout_transform", rtol=1e-5, atol=1e-5) verify_layout_transform((1, 3, 8, 8), "NCHW", "NHWC") verify_layout_transform((1, 8, 8, 3), "NHWC", "NCHW") def test_clip(): def verify_clip(dshape, a_min, a_max, dtype="float32"): x = relay.var("x", relay.ty.TensorType(dshape, dtype)) y = relay.clip(x, a_min, a_max) func = relay.Function([x], y) x_data = np.random.uniform(size=dshape).astype(dtype) verify_results(func, [x_data], "test_clip", rtol=1e-5, atol=1e-5) verify_clip((5, 5, 2, 5), 0, 0.2) verify_clip((5, 5, 2, 5), 0.2, 0.5) def test_expand_dims(): def verify_expand_dims(dshape, axis, num_newaxis, dtype="float32"): x = relay.var("x", relay.ty.TensorType(dshape, dtype)) y = relay.expand_dims(x, axis, num_newaxis) func = relay.Function([x], y) x_data = np.random.uniform(size=dshape).astype(dtype) verify_results(func, [x_data], "test_expand_dims", rtol=1e-5, atol=1e-5) verify_expand_dims((1, 1001), 0, 2) verify_expand_dims((1, 1, 1001), 2, 2) def test_lrn(): """LRN unit test.""" def verify_lrn(xshape, size, dtype="float32"): x = relay.var("x", relay.ty.TensorType(xshape, dtype)) y = relay.nn.lrn(x, size=size, axis=1, alpha=1.0, beta=1.0, bias=1.0) func = relay.Function([x], y) x_data = np.random.uniform(size=xshape).astype(dtype) verify_results(func, [x_data], "test_lrn", rtol=1e-5, atol=1e-5) isize = [(1, 1, 480, 640), (1, 3, 224, 224)] sizes = [1, 3] for i in isize: for s in sizes: verify_lrn(i, s) def test_sigmoid(): """Sigmoid unit test.""" def verify_sigmoid(dshape, dtype="float32"): x = relay.var("x", relay.ty.TensorType(dshape, dtype)) y = relay.sigmoid(x) func = relay.Function([x], y) x_data = np.random.uniform(size=dshape).astype(dtype) verify_results(func, [x_data], "test_sigmoid", rtol=1e-4, atol=1e-4) isize = [(1, 3, 480, 640), (1, 3, 224, 224)] for i in isize: verify_sigmoid(i) def test_copy(): """Copy unit test.""" def verify_copy(dshape, dtype="float32"): x = relay.var("x", relay.ty.TensorType(dshape, dtype)) y = relay.copy(x) func = relay.Function([x], y) x_data = np.random.uniform(size=dshape).astype(dtype) verify_results(func, [x_data], "test_copy", rtol=1e-4, atol=1e-4) isize = [(1, 3, 480, 640), (1, 3, 224, 224)] for i in isize: verify_copy(i) def test_round(): """Round unit test.""" def verify_round(dshape, dtype="float32"): x = relay.var("x", relay.ty.TensorType(dshape, dtype)) y = relay.round(x) func = relay.Function([x], y) x_data = np.random.uniform(size=dshape).astype(dtype) verify_results(func, [x_data], "test_round", rtol=1e-4, atol=1e-4) isize = [(1, 3, 480, 640), (1, 3, 224, 224)] for i in isize: verify_round(i) def test_cast(): """Cast unit test.""" def verify_cast(dshape, dtype): x = relay.var("x", relay.ty.TensorType(dshape, "float32")) y = relay.cast(x, dtype) func = relay.Function([x], y) x_data = np.random.uniform(size=dshape).astype("float32") verify_results(func, [x_data], "test_cast", rtol=1e-4, atol=1e-4) isize = [(1, 3, 480, 640), (1, 3, 224, 224)] out_dtypes = ["int8", "int16", "uint8", "uint16"] for i in isize: for o_dtype in out_dtypes: verify_cast(i, o_dtype) @pytest.mark.xfail(reason="Known failing test. See issue #12567.") def test_resize(): """Resize unit test.""" def verify_resize(dshape, outsize, method, coord_trans, rounding_method, dtype="float32"): x = relay.var("x", relay.ty.TensorType(dshape, dtype)) y = relay.image.resize2d( x, outsize, None, layout="NCHW", method=method, coordinate_transformation_mode=coord_trans, rounding_method=rounding_method, ) func = relay.Function([x], y) x_data = np.random.uniform(size=dshape).astype(dtype) verify_results(func, [x_data], "test_resize", rtol=1e-4, atol=1e-4) method = ["nearest_neighbor", "linear", "cubic"] coord_trans = ["half_pixel", "align_corners", "asymmetric"] rounding_method = ["round", "floor", "ceil"] isize = (1, 3, 480, 640) # Downsample osize = (240, 320) for i in method: for j in coord_trans: for k in rounding_method: if (i == "nearest_neighbor" and j == "align_corners") or ( i == "cubic" and j in ["half_pixel", "align_corners"] ): continue verify_resize(isize, osize, method=i, coord_trans=j, rounding_method=k) # Upsample osize = (960, 1280) for i in method: for j in coord_trans: for k in rounding_method: if (i == "nearest_neighbor" and j == "align_corners") or (i == "cubic"): continue verify_resize(isize, osize, method=i, coord_trans=j, rounding_method=k) def test_dyn(): """Dynamic unit test.""" def verify_dyn_bcast(lhs_shape, rhs_shape, dtype): lhs_dyn_shape = tuple(relay.Any() for i in range(len(lhs_shape))) rhs_dyn_shape = tuple(relay.Any() for i in range(len(rhs_shape))) x = relay.var("x", shape=lhs_dyn_shape, dtype=dtype) y = relay.var("y", shape=rhs_dyn_shape, dtype=dtype) z = relay.add(x, y) func = relay.Function([x, y], z) lhs_data = np.random.uniform(size=lhs_shape).astype(dtype) rhs_data = np.random.uniform(size=rhs_shape).astype(dtype) verify_results( func, [lhs_data, rhs_data], "test_dyn_bcast", rtol=1e-5, atol=1e-5, is_dyn=True ) verify_dyn_bcast((1, 3, 32, 1), (1, 3, 1, 3), "float32") verify_dyn_bcast((1, 13), (4, 3, 5, 1), "float32") if __name__ == "__main__": test_add() test_bias_add() test_conv2d() test_conv2d_transpose() test_reshape() test_transpose() test_dense() test_max_pool() test_batch_flatten() test_batch_norm() test_pad() test_mean() test_split() test_concatenate() test_sofmax() test_squeeze() test_strided_slice() test_cmp_type() test_binary_op() test_tuple_types() test_layout_transform() test_clip() test_expand_dims() test_lrn() test_sigmoid() test_copy() test_round() test_cast() test_resize() test_dyn()
https://github.com/zk-ml/tachikoma
tests/python/contrib/test_onnx_model.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Relay to ONNX target test cases""" import pytest pytest.importorskip("onnx") pytest.importorskip("onnxruntime") from collections import OrderedDict import numpy as np import onnxruntime as rt import tvm from tvm import relay from tvm.contrib.target.onnx import to_onnx import tvm.relay.testing from tvm.relay.op.annotation import compiler_begin, compiler_end from tvm.ir import IRModule from tvm.relay import transform def func_to_onnx(mod, params, name): onnx_model = to_onnx(mod, params, name, path=None) return onnx_model.SerializeToString() def run_onnx(mod, params, name, input_data): onnx_model = func_to_onnx(mod, params, name) sess = rt.InferenceSession(onnx_model) input_names = {} for input, data in zip(sess.get_inputs(), input_data): input_names[input.name] = data output_names = [output.name for output in sess.get_outputs()] res = sess.run(output_names, input_names) return res[0] def get_data(in_data_shapes, dtype="float32"): in_data = OrderedDict() for name, shape in in_data_shapes.items(): in_data[name] = np.random.uniform(size=shape).astype(dtype) return in_data def run_relay(mod, params, in_data): target = "llvm" dev = tvm.device("llvm", 0) in_data = [tvm.nd.array(value) for value in in_data.values()] return ( relay.create_executor("graph", mod, device=dev, target=target) .evaluate()(*in_data, **params) .numpy() ) def _verify_results(mod, params, in_data): a = run_relay(mod, params, in_data) b = run_onnx(mod, params, "test_resent", in_data.values()) np.testing.assert_allclose(a, b, rtol=1e-7, atol=1e-7) def test_resnet(): num_class = 1000 in_data_shapes = OrderedDict({"data": (1, 3, 224, 224)}) in_data = get_data(in_data_shapes, dtype="float32") for n in [18, 34, 50, 101]: mod, params = tvm.relay.testing.resnet.get_workload(1, num_class, num_layers=n) _verify_results(mod, params, in_data) def test_squeezenet(): in_data_shapes = OrderedDict({"data": (1, 3, 224, 224)}) in_data = get_data(in_data_shapes, dtype="float32") for version in ["1.0", "1.1"]: mod, params = tvm.relay.testing.squeezenet.get_workload(1, version=version) _verify_results(mod, params, in_data) @pytest.mark.skip("USE_TARGET_ONNX should be ON") def test_partition(): in_1 = relay.var("in_1", shape=(10, 10), dtype="float32") in_2 = relay.var("in_2", shape=(10, 10), dtype="float32") in_3 = relay.var("in_3", shape=(10, 10), dtype="float32") in_4 = relay.var("in_4", shape=(10, 10), dtype="float32") in_5 = relay.var("in_5", shape=(10, 10), dtype="float32") in_6 = relay.var("in_6", shape=(10, 10), dtype="float32") in_7 = relay.var("in_7", shape=(10, 10), dtype="float32") in_8 = relay.var("in_8", shape=(10, 10), dtype="float32") in_9 = relay.var("in_9", shape=(10, 10), dtype="float32") in_10 = relay.var("in_10", shape=(10, 10), dtype="float32") begin0 = compiler_begin(in_1, "onnx") begin1 = compiler_begin(in_2, "onnx") begin2 = compiler_begin(in_3, "onnx") begin3 = compiler_begin(in_4, "onnx") node0 = relay.add(begin0, begin1) node1 = relay.add(begin2, begin3) end0 = compiler_end(node0, "onnx") end1 = compiler_end(node1, "onnx") begin4 = compiler_begin(end0, "onnx") begin5 = compiler_begin(end1, "onnx") node2 = relay.add(begin4, begin5) end2 = compiler_end(node2, "onnx") dbegin0 = compiler_begin(in_5, "default") dbegin1 = compiler_begin(in_6, "default") node3 = relay.subtract(dbegin0, dbegin1) dbegin2 = compiler_begin(in_7, "default") dend1 = compiler_end(node3, "default") dbegin3 = compiler_begin(dend1, "default") node4 = relay.subtract(dbegin2, dbegin3) dend2 = compiler_end(node4, "default") begin6 = compiler_begin(end2, "onnx") begin7 = compiler_begin(dend2, "onnx") node5 = relay.add(begin6, begin7) end3 = compiler_end(node5, "onnx") end4 = compiler_end(node5, "onnx") dbegin4 = compiler_begin(in_8, "default") dbegin5 = compiler_begin(end3, "default") node6 = relay.subtract(dbegin4, dbegin5) begin8 = compiler_begin(in_9, "onnx") begin9 = compiler_begin(end4, "onnx") node7 = relay.multiply(begin8, begin9) end5 = compiler_end(node7, "onnx") dend3 = compiler_end(node6, "default") begin10 = compiler_begin(dend3, "onnx") begin11 = compiler_begin(end5, "onnx") node8 = relay.add(begin10, begin11) end6 = compiler_end(node8, "onnx") begin12 = compiler_begin(in_10, "onnx") begin13 = compiler_begin(end6, "onnx") node9 = relay.add(begin12, begin13) end7 = compiler_end(node9, "onnx") func = relay.Function([in_1, in_2, in_3, in_4, in_5, in_6, in_7, in_8, in_9, in_10], end7) target = "llvm" mod = IRModule.from_expr(func) mod = transform.PartitionGraph()(mod) with tvm.transform.PassContext(opt_level=3, disabled_pass=["FuseOps"]): graph_json, mod1, params = relay.build(mod, target) assert mod1.type_key == "metadata" assert mod1.imported_modules[0].type_key == "llvm" assert mod1.imported_modules[0].get_source() assert mod1.imported_modules[1].type_key == "onnx" assert mod1.imported_modules[1].get_source() if __name__ == "__main__": test_resnet() test_squeezenet() # test_partition needs USE_TARGET_ONNX to be ON test_partition()
https://github.com/zk-ml/tachikoma
tests/python/contrib/test_opencl/test_run_gtests.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import os import pytest import numpy as np import tvm from tvm import rpc # use pytest -sv to observe gtest output # use --gtest_args to pass arguments to gtest # for example to run all "foo" tests twice and observe gtest output run # pytest -sv <this file> --gtests_args="--gtest_filter=*foo* --gtest_repeat=2" @tvm.testing.requires_opencl @pytest.mark.skipif(tvm.testing.utils.IS_IN_CI, reason="failed due to nvidia libOpencl in the CI") def test_run_gtests(gtest_args): if ( "TVM_TRACKER_HOST" in os.environ and "TVM_TRACKER_PORT" in os.environ and "TVM_TRACKER_KEY" in os.environ ): rpc_tracker_host = os.environ["TVM_TRACKER_HOST"] rpc_tracker_port = os.environ["TVM_TRACKER_PORT"] rpc_tracker_port = int(rpc_tracker_port) rpc_key = os.environ["TVM_TRACKER_KEY"] tracker = rpc.connect_tracker(rpc_tracker_host, rpc_tracker_port) rpc_connection = tracker.request(rpc_key, priority=0, session_timeout=600) else: rpc_connection = rpc.LocalSession() try: func = rpc_connection.get_function("opencl.run_gtests") except: print( "This test requires TVM Runtime to be built with a OpenCL gtest version using OpenCL API cmake flag -DUSE_OPENCL_GTEST=/path/to/opencl/googletest/gtest" ) raise gtest_error_code = func(gtest_args) np.testing.assert_equal(gtest_error_code, 0)
https://github.com/zk-ml/tachikoma
tests/python/contrib/test_popen_pool.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Test PopenPoolExecutor.""" import pytest import os import psutil import time from tvm.contrib.popen_pool import PopenWorker, PopenPoolExecutor from tvm.testing import ( identity_after, terminate_self, initializer, after_initializer, register_ffi, call_py_ffi, call_cpp_ffi, call_cpp_py_ffi, fast_summation, slow_summation, timeout_job, ) def test_popen_worker(): proc = PopenWorker() with pytest.raises(TimeoutError): proc.send(identity_after, [1, 100], timeout=0.01) proc.recv() with pytest.raises(ChildProcessError): proc.send(terminate_self) proc.recv() proc.send(identity_after, [2, 0]) assert proc.recv() == 2 proc.send(identity_after, [4, 0.0001]) assert proc.recv() == 4 def test_popen_worker_reuses(): proc = PopenWorker(maximum_uses=None) proc.send(os.getpid) initial_pid = proc.recv() proc.send(os.getpid) assert proc.recv() == initial_pid def test_popen_worker_recycles(): proc = PopenWorker(maximum_uses=2) proc.send(os.getpid) initial_pid = proc.recv() assert psutil.pid_exists(initial_pid) proc.send(os.getpid) assert proc.recv() == initial_pid assert psutil.pid_exists(initial_pid) proc.send(os.getpid) assert proc.recv() != initial_pid assert not psutil.pid_exists(initial_pid) def test_popen_pool_executor(): import tvm pool = PopenPoolExecutor(max_workers=2, timeout=0.01) value1 = pool.submit(identity_after, 1, 100) value2 = pool.submit(terminate_self) value3 = pool.submit(identity_after, 3, 0) value4 = pool.submit(tvm.runtime.String, "xyz") with pytest.raises(TimeoutError): value1.result() with pytest.raises(ChildProcessError): value2.result() assert value3.result() == 3 value = value4.result() assert isinstance(value, tvm.runtime.String) assert value == "xyz" pool = PopenPoolExecutor(max_workers=4, timeout=None) values = pool.map_with_error_catching(lambda x: x, range(100)) for idx, val in enumerate(values): assert val.value == idx def test_popen_initializer(): initargs = [1, 2, 3] proc = PopenWorker(initializer=initializer, initargs=initargs) proc.send(after_initializer) test_global_state_1, test_global_state_2, test_global_state_3 = proc.recv() assert test_global_state_1 == initargs[0] assert test_global_state_2 == initargs[1] assert test_global_state_3 == initargs[2] def test_popen_worker_recycles_with_initializer(): initargs = [1, 2, 3] proc = PopenWorker(initializer=initializer, initargs=initargs, maximum_uses=3) proc.send(os.getpid) initial_pid = proc.recv() proc.send(after_initializer) assert list(proc.recv()) == initargs proc.send(os.getpid) assert proc.recv() == initial_pid # The process should be recycled with this send. proc.send(os.getpid) assert proc.recv() != initial_pid # But the initializer should've run this time as well. proc.send(after_initializer) assert list(proc.recv()) == initargs def test_popen_ffi(): proc = PopenWorker(register_ffi) # call python function via ffi initargs = [0] proc.send(call_py_ffi, initargs) assert proc.recv() == initargs[0] # call cpp function via ffi initargs = [1] proc.send(call_cpp_ffi, initargs) assert proc.recv() == initargs[0] # call python function from cpp function via ffi initargs = [2] proc.send(call_cpp_py_ffi, initargs) assert proc.recv() == initargs[0] def test_popen_pool_executor_timeout(): timeout = 0.5 pool = PopenPoolExecutor(timeout=timeout) f1 = pool.submit(timeout_job, timeout) while not f1.done(): pass try: res = f1.result() except Exception as ex: assert isinstance(ex, TimeoutError) def test_popen_pool_executor_recycles(): pool = PopenPoolExecutor(max_workers=1, timeout=None, maximum_process_uses=2) initial_pid = pool.submit(os.getpid).result() assert initial_pid == pool.submit(os.getpid).result() assert initial_pid != pool.submit(os.getpid).result() if __name__ == "__main__": test_popen_worker() test_popen_worker_recycles() test_popen_pool_executor() test_popen_initializer() test_popen_worker_recycles_with_initializer() test_popen_ffi() test_popen_pool_executor_timeout() test_popen_pool_executor_recycles()
https://github.com/zk-ml/tachikoma
tests/python/contrib/test_random.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm from tvm import te import numpy as np from tvm.contrib import random from tvm import rpc import tvm.testing def test_randint(): m = 10240 n = 10240 A = random.randint(-127, 128, size=(m, n), dtype="int32") s = te.create_schedule(A.op) def verify(target="llvm"): if not tvm.testing.device_enabled(target): print("skip because %s is not enabled..." % target) return if not tvm.get_global_func("tvm.contrib.random.randint", True): print("skip because extern function is not available") return dev = tvm.cpu(0) f = tvm.build(s, [A], target) a = tvm.nd.array(np.zeros((m, n), dtype=A.dtype), dev) f(a) na = a.numpy() assert abs(np.mean(na)) < 0.3 assert np.min(na) == -127 assert np.max(na) == 127 verify() def test_uniform(): m = 10240 n = 10240 A = random.uniform(0, 1, size=(m, n)) s = te.create_schedule(A.op) def verify(target="llvm"): if not tvm.testing.device_enabled(target): print("skip because %s is not enabled..." % target) return if not tvm.get_global_func("tvm.contrib.random.uniform", True): print("skip because extern function is not available") return dev = tvm.cpu(0) f = tvm.build(s, [A], target) a = tvm.nd.array(np.zeros((m, n), dtype=A.dtype), dev) f(a) na = a.numpy() assert abs(np.mean(na) - 0.5) < 1e-1 assert abs(np.min(na) - 0.0) < 1e-3 assert abs(np.max(na) - 1.0) < 1e-3 verify() def test_normal(): m = 10240 n = 10240 A = random.normal(3, 4, size=(m, n)) s = te.create_schedule(A.op) def verify(target="llvm"): if not tvm.testing.device_enabled(target): print("skip because %s is not enabled..." % target) return if not tvm.get_global_func("tvm.contrib.random.normal", True): print("skip because extern function is not available") return dev = tvm.cpu(0) f = tvm.build(s, [A], target) a = tvm.nd.array(np.zeros((m, n), dtype=A.dtype), dev) f(a) na = a.numpy() assert abs(np.mean(na) - 3) < 1e-1 assert abs(np.std(na) - 4) < 1e-2 verify() @tvm.testing.uses_gpu def test_random_fill(): def test_local(dev, dtype): if not tvm.get_global_func("tvm.contrib.random.random_fill", True): print("skip because extern function is not available") return value = tvm.nd.empty((512, 512), dtype, dev) random_fill = tvm.get_global_func("tvm.contrib.random.random_fill") random_fill(value) assert np.count_nonzero(value.numpy()) == 512 * 512 # make sure arithmentic doesn't overflow too np_values = value.numpy() assert np.isfinite(np_values * np_values + np_values).any() def test_rpc(dtype): if not tvm.get_global_func("tvm.contrib.random.random_fill", True): print("skip because extern function is not available") return if not tvm.testing.device_enabled("rpc") or not tvm.runtime.enabled("llvm"): return np_ones = np.ones((512, 512), dtype=dtype) def check_remote(server): remote = rpc.connect(server.host, server.port) value = tvm.nd.empty((512, 512), dtype, remote.cpu()) random_fill = remote.get_function("tvm.contrib.random.random_fill") random_fill(value) assert np.count_nonzero(value.numpy()) == 512 * 512 # make sure arithmentic doesn't overflow too np_values = value.numpy() assert np.isfinite(np_values * np_values + np_values).any() check_remote(rpc.Server("127.0.0.1")) for dtype in [ "bool", "int4", "int8", "uint8", "int16", "uint16", "int32", "int32", "int64", "uint64", "float16", "float32", "float64", ]: for _, dev in tvm.testing.enabled_targets(): test_local(dev, dtype) test_rpc(dtype) if __name__ == "__main__": test_randint() test_uniform() test_normal() test_random_fill()
https://github.com/zk-ml/tachikoma
tests/python/contrib/test_rocblas.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm import tvm.testing from tvm import te import numpy as np import tvm.topi.testing import tvm.testing from tvm.contrib import rocblas @tvm.testing.requires_rocm def test_matmul(): n = 1024 l = 128 m = 235 A = te.placeholder((n, l), name="A") B = te.placeholder((l, m), name="B") C = rocblas.matmul(A, B) s = te.create_schedule(C.op) def verify(target="rocm"): if not tvm.get_global_func("tvm.contrib.rocblas.matmul", True): print("skip because extern function is not available") return dev = tvm.rocm(0) f = tvm.build(s, [A, B, C], target) a = tvm.nd.array(np.random.uniform(size=(n, l)).astype(A.dtype), dev) b = tvm.nd.array(np.random.uniform(size=(l, m)).astype(B.dtype), dev) c = tvm.nd.array(np.zeros((n, m), dtype=C.dtype), dev) f(a, b, c) tvm.testing.assert_allclose(c.numpy(), np.dot(a.numpy(), b.numpy()), rtol=1e-5) verify() def verify_batch_matmul(batch, m, k, n, lib, transa=False, transb=False, dtype="float32"): ashape = (batch, k, m) if transa else (batch, m, k) bshape = (batch, n, k) if transb else (batch, k, n) A = te.placeholder(ashape, name="A", dtype=dtype) B = te.placeholder(bshape, name="B", dtype=dtype) C = lib.batch_matmul(A, B, transa, transb) s = te.create_schedule(C.op) def get_numpy(a, b, transa, transb): if transa: a = a.transpose(0, 2, 1) if not transb: b = b.transpose(0, 2, 1) return tvm.topi.testing.batch_matmul(a, b) def verify(target="rocm"): if not tvm.testing.device_enabled(target): print("skip because %s is not enabled..." % target) return if not tvm.get_global_func(lib.__name__ + ".batch_matmul", True): print("skip because extern function is not available") return dev = tvm.rocm(0) f = tvm.build(s, [A, B, C], target) a = tvm.nd.array(np.random.uniform(size=ashape).astype(A.dtype), dev) b = tvm.nd.array(np.random.uniform(size=bshape).astype(B.dtype), dev) c = tvm.nd.array(np.zeros((batch, m, n), dtype=C.dtype), dev) f(a, b, c) tvm.testing.assert_allclose( c.numpy(), get_numpy(a.numpy(), b.numpy(), transa, transb), rtol=1e-5 ) verify() @tvm.testing.requires_rocm def test_batch_matmul(): verify_batch_matmul(128, 64, 512, 512, rocblas, transa=False, transb=False) verify_batch_matmul(128, 64, 512, 512, rocblas, transa=False, transb=True) verify_batch_matmul(128, 64, 512, 512, rocblas, transa=True, transb=False) verify_batch_matmul(128, 64, 512, 512, rocblas, transa=True, transb=True) verify_batch_matmul(128, 512, 512, 64, rocblas, transa=False, transb=False) verify_batch_matmul(128, 512, 512, 64, rocblas, transa=False, transb=True) verify_batch_matmul(128, 512, 512, 64, rocblas, transa=True, transb=False) verify_batch_matmul(128, 512, 512, 64, rocblas, transa=True, transb=True) verify_batch_matmul(128, 512, 64, 512, rocblas, transa=False, transb=False) verify_batch_matmul(128, 512, 64, 512, rocblas, transa=False, transb=True) verify_batch_matmul(128, 512, 64, 512, rocblas, transa=True, transb=False) verify_batch_matmul(128, 512, 64, 512, rocblas, transa=True, transb=True) verify_batch_matmul(128, 64, 128, 128, rocblas, transa=False, transb=False) verify_batch_matmul(128, 64, 128, 128, rocblas, transa=False, transb=True) verify_batch_matmul(128, 64, 128, 128, rocblas, transa=True, transb=False) verify_batch_matmul(128, 64, 128, 128, rocblas, transa=True, transb=True) verify_batch_matmul(128, 128, 128, 64, rocblas, transa=False, transb=False) verify_batch_matmul(128, 128, 128, 64, rocblas, transa=False, transb=True) verify_batch_matmul(128, 128, 128, 64, rocblas, transa=True, transb=False) verify_batch_matmul(128, 128, 128, 64, rocblas, transa=True, transb=True) if __name__ == "__main__": test_matmul() test_batch_matmul()
https://github.com/zk-ml/tachikoma
tests/python/contrib/test_rpc_proxy.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm from tvm import te import logging import numpy as np import time import multiprocessing from tvm import rpc def rpc_proxy_check(): """This is a simple test function for RPC Proxy It is not included as pytests, because: - It depends on tornado - It relies on the fact that Proxy starts before client and server connects, which is often the case but not always User can directly run this script to verify correctness. """ try: from tvm.rpc import proxy web_port = 8888 prox = proxy.Proxy("127.0.0.1", web_port=web_port) def check(): if not tvm.runtime.enabled("rpc"): return server = multiprocessing.Process( target=proxy.websocket_proxy_server, args=("ws://localhost:%d/ws" % web_port, "x1") ) # Need to make sure that the connection start after proxy comes up time.sleep(0.1) server.deamon = True server.start() client = rpc.connect(prox.host, prox.port, key="x1") f1 = client.get_function("testing.echo") assert f1(10) == 10 assert f1("xyz") == "xyz" check() except ImportError: print("Skipping because tornado is not avaliable...") if __name__ == "__main__": logging.basicConfig(level=logging.INFO) rpc_proxy_check()
https://github.com/zk-ml/tachikoma
tests/python/contrib/test_rpc_server_device.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """iOS RPC Server tests.""" # pylint: disable=invalid-name, no-value-for-parameter, missing-function-docstring, import-error import sys import multiprocessing import pytest import numpy as np import tvm.testing import tvm.relay.testing from tvm import te from tvm import rpc from tvm import relay, auto_scheduler from tvm.contrib import utils, xcode, graph_executor from tvm.autotvm.measure import request_remote from tvm.auto_scheduler.measure_record import load_records from tvm.auto_scheduler.measure import MeasureErrorNo from tvm.auto_scheduler.utils import call_func_with_timeout from tvm.contrib.popen_pool import PopenWorker, StatusKind from tvm.rpc import tracker, proxy, server_ios_launcher HOST_URL = "0.0.0.0" HOST_PORT = 9190 DEVICE_KEY = "ios_mobile_device" TEMPORARY_DIRECTORY = utils.tempdir() ARCH = "x86_64" SDK = "iphonesimulator" DSO_NAME = "lib.dylib" DTYPE = "float32" np.random.seed(0) ios_rpc_bundle_description_required = pytest.mark.skipif( not server_ios_launcher.ServerIOSLauncher.is_compatible_environment(), reason="To run this test, you need to set environment variables required in ServerIOSLauncher.", ) @pytest.fixture(scope="session", autouse=True) def setup_and_teardown_actions(): """Setup and teardown actions for pytest.""" # No setup actions yield # Teardown actions: server_ios_launcher.ServerIOSLauncher.shutdown_booted_devices() def setup_rpc_standalone_configuration(f): """ Host -- RPC server """ def wrapper(): with server_ios_launcher.ServerIOSContextManager( mode=server_ios_launcher.RPCServerMode.standalone.value, host=HOST_URL, port=HOST_PORT, key=DEVICE_KEY, ) as ios_server: f(host=ios_server.host, port=ios_server.port) return wrapper def setup_rpc_proxy_configuration(f): """ Host -- Proxy -- RPC server """ def wrapper(): proxy_server = proxy.Proxy(host=HOST_URL, port=HOST_PORT) with server_ios_launcher.ServerIOSContextManager( mode=server_ios_launcher.RPCServerMode.proxy.value, host=proxy_server.host, port=proxy_server.port, key=DEVICE_KEY, ): f(host=proxy_server.host, port=proxy_server.port) proxy_server.terminate() return wrapper def setup_rpc_tracker_configuration(f): """ tracker / \ Host -- RPC server """ def wrapper(): tracker_server = tracker.Tracker(host=HOST_URL, port=HOST_PORT, silent=True) with server_ios_launcher.ServerIOSContextManager( mode=server_ios_launcher.RPCServerMode.tracker.value, host=tracker_server.host, port=tracker_server.port, key=DEVICE_KEY, ): f(host=tracker_server.host, port=tracker_server.port) tracker_server.terminate() return wrapper def setup_rpc_tracker_via_proxy_configuration(f): """ tracker / \ Host -- Proxy -- RPC server """ def wrapper(): tracker_server = tracker.Tracker(host=HOST_URL, port=HOST_PORT, silent=True) proxy_server_tracker = proxy.Proxy( host=HOST_URL, port=8888, tracker_addr=(tracker_server.host, tracker_server.port) ) with server_ios_launcher.ServerIOSContextManager( mode=server_ios_launcher.RPCServerMode.proxy.value, host=proxy_server_tracker.host, port=proxy_server_tracker.port, key=DEVICE_KEY, ): f(host=tracker_server.host, port=tracker_server.port) proxy_server_tracker.terminate() tracker_server.terminate() return wrapper def wrapper_for_call_function_with_timeout(timeout, func, args=(), kwargs=None): """Wrapper for call_func_with_timeout.""" def wrapper(*_args, **_kwargs): """ This wrapper is needed because the cloudpicle cannot serialize objects that contain pointers (RPCSession) """ func(*_args, **_kwargs) return StatusKind.COMPLETE worker = PopenWorker() ret = call_func_with_timeout(worker, timeout=timeout, func=wrapper, args=args, kwargs=kwargs) if isinstance(ret, Exception): raise ret return ret def try_create_remote_session(session_factory, args=(), kwargs=None): """Deadlock-safe RPC Session creation.""" try: successful_attempt = True results = [] for _ in range(2): ret = wrapper_for_call_function_with_timeout( timeout=10, func=session_factory, args=args, kwargs=kwargs ) results.append(ret) if not np.all(np.array(results) == StatusKind.COMPLETE): raise ValueError("One or more sessions ended incorrectly.") except Exception as e: # pylint: disable=broad-except successful_attempt = False print(e) return successful_attempt def ios_create_dylib(output, objects, **kwargs): # pylint: disable=unused-argument xcode.create_dylib(output, objects, arch=ARCH, sdk=SDK) ios_create_dylib.output_format = "dylib" def export_lib(lib): """Export lib to temporary directory.""" path_dso = TEMPORARY_DIRECTORY.relpath(DSO_NAME) lib.export_library(path_dso, fcompile=ios_create_dylib) return path_dso def get_add_relay_module(a_numpy, b_numpy): """Get simple relay module that add two tensors.""" a = relay.var("a", shape=a_numpy.shape, dtype=DTYPE) b = relay.var("b", shape=b_numpy.shape, dtype=DTYPE) params = {} out = tvm.IRModule.from_expr(relay.add(a, b)) return out, params def get_add_module(target): """Get simple module that add two tensors.""" n = te.var("n") A = te.placeholder((n,), name="A") B = te.placeholder((n,), name="B") C = te.compute(A.shape, lambda i: A[i] + B[i], name="C") s = te.create_schedule(C.op) return tvm.build(s, [A, B, C], target=target, target_host=target, name="simple_add") @pytest.mark.dependency() @ios_rpc_bundle_description_required @setup_rpc_standalone_configuration def test_rpc_standalone(host, port): status_ok = try_create_remote_session(session_factory=rpc.connect, args=(host, port)) assert status_ok @pytest.mark.dependency() @ios_rpc_bundle_description_required @setup_rpc_proxy_configuration def test_rpc_proxy(host, port): status_ok = try_create_remote_session( session_factory=rpc.connect, args=(host, port, DEVICE_KEY) ) assert status_ok @pytest.mark.dependency() @ios_rpc_bundle_description_required @setup_rpc_tracker_configuration def test_rpc_tracker(host, port): status_ok = try_create_remote_session( session_factory=request_remote, args=(DEVICE_KEY, host, port) ) assert status_ok @pytest.mark.dependency() @ios_rpc_bundle_description_required @setup_rpc_tracker_via_proxy_configuration def test_rpc_tracker_via_proxy(host, port): status_ok = try_create_remote_session( session_factory=request_remote, args=(DEVICE_KEY, host, port) ) assert status_ok @pytest.mark.dependency(depends=["test_rpc_standalone"]) @ios_rpc_bundle_description_required @setup_rpc_standalone_configuration def test_can_call_remote_function_with_rpc_standalone(host, port): remote_session = rpc.connect(host, port) f = remote_session.get_function("runtime.GetFFIString") assert f("hello") == "hello" @pytest.mark.dependency(depends=["test_rpc_proxy"]) @ios_rpc_bundle_description_required @setup_rpc_proxy_configuration def test_can_call_remote_function_with_rpc_proxy(host, port): remote_session = rpc.connect(host, port, key=DEVICE_KEY) f = remote_session.get_function("runtime.GetFFIString") assert f("hello") == "hello" @pytest.mark.dependency(depends=["test_rpc_tracker"]) @ios_rpc_bundle_description_required @setup_rpc_tracker_configuration def test_can_call_remote_function_with_rpc_tracker(host, port): remote_session = request_remote(DEVICE_KEY, host, port) f = remote_session.get_function("runtime.GetFFIString") assert f("hello") == "hello" @pytest.mark.dependency(depends=["test_rpc_tracker_via_proxy"]) @ios_rpc_bundle_description_required @setup_rpc_tracker_via_proxy_configuration def test_can_call_remote_function_with_rpc_tracker_via_proxy(host, port): remote_session = request_remote(DEVICE_KEY, host, port) f = remote_session.get_function("runtime.GetFFIString") assert f("hello") == "hello" @pytest.mark.dependency(depends=["test_rpc_standalone"]) @ios_rpc_bundle_description_required @setup_rpc_standalone_configuration def test_basic_functionality_of_rpc_session(host, port): remote_session = rpc.connect(host, port) device = remote_session.cpu(0) target = tvm.target.Target(target=f"llvm -mtriple={ARCH}-apple-darwin") lib = get_add_module(target) path_dso = export_lib(lib) # Check correct upload remote_session.upload(path_dso) # Check correct download downloaded_lib = remote_session.download(DSO_NAME) with open(path_dso, "rb") as source_lib_file: assert downloaded_lib == bytearray( source_lib_file.read() ), "The downloaded module does not match the loaded module" # Check correct remote computing lib = remote_session.load_module(DSO_NAME) n = 100 a = tvm.nd.array(np.random.uniform(size=n).astype(DTYPE), device) b = tvm.nd.array(np.random.uniform(size=n).astype(DTYPE), device) c = tvm.nd.array(np.zeros(n, dtype=DTYPE), device) lib(a, b, c) tvm.testing.assert_allclose(c.numpy(), a.numpy() + b.numpy()) # Check correct remove remote_session.remove(DSO_NAME) @pytest.mark.dependency(depends=["test_rpc_standalone"]) @pytest.mark.xfail(reason="Not implemented functionality") @ios_rpc_bundle_description_required @setup_rpc_standalone_configuration def test_cleanup_workspace_after_session_end(host, port): # Arrange remote_session = rpc.connect(host, port) target = tvm.target.Target(target=f"llvm -mtriple={ARCH}-apple-darwin") lib = get_add_module(target) path_dso = export_lib(lib) remote_session.upload(path_dso) # Act del remote_session remote_session = rpc.connect(host, port) try: remote_session.download(DSO_NAME) status_ok = False except Exception as _: # pylint: disable=broad-except status_ok = True # Assert assert status_ok, "Workspace not cleared after RPC Session termination." @pytest.mark.dependency(depends=["test_rpc_standalone"]) @ios_rpc_bundle_description_required @setup_rpc_standalone_configuration def test_graph_executor_remote_run(host, port): remote_session = rpc.connect(host, port) target = tvm.target.Target(target=f"llvm -mtriple={ARCH}-apple-darwin") device = remote_session.cpu(0) size = 100 a = np.random.uniform(size=size).astype(DTYPE) b = np.random.uniform(size=size).astype(DTYPE) mod, params = get_add_relay_module(a, b) with tvm.transform.PassContext(opt_level=3): lib = relay.build(mod, target=target, target_host=target, params=params) path_dso = export_lib(lib) remote_session.upload(path_dso) lib = remote_session.load_module(DSO_NAME) gen_module = graph_executor.GraphModule(lib["default"](device)) # Check set input gen_module.set_input("a", tvm.nd.array(a)) gen_module.set_input("b", tvm.nd.array(b)) tvm.testing.assert_allclose(gen_module.get_input(0).numpy(), a) tvm.testing.assert_allclose(gen_module.get_input(1).numpy(), b) # Check run gen_module.run() out = gen_module.get_output(0) tvm.testing.assert_allclose(out.numpy(), a + b) @pytest.mark.xfail( strict=False, reason="flaky test (see https://github.com/apache/tvm/issues/9824)" ) @pytest.mark.dependency(depends=["test_rpc_tracker"]) @ios_rpc_bundle_description_required @setup_rpc_tracker_configuration def test_check_auto_schedule_tuning(host, port): # pylint: disable=too-many-locals log_file = TEMPORARY_DIRECTORY.relpath("ios_tuning_stat.log") target = tvm.target.Target(target=f"llvm -mtriple={ARCH}-apple-darwin") mod, params = relay.testing.mlp.get_workload(batch_size=4, image_shape=(1, 4, 4)) try: status_ok = True measure_runner = auto_scheduler.RPCRunner( DEVICE_KEY, host, port, min_repeat_ms=1, timeout=10, n_parallel=multiprocessing.cpu_count(), ) builder = auto_scheduler.LocalBuilder(timeout=10, build_func=ios_create_dylib) tune_option = auto_scheduler.TuningOptions( builder=builder, num_measure_trials=2, num_measures_per_round=1, runner=measure_runner, measure_callbacks=[auto_scheduler.RecordToFile(log_file)], verbose=0, ) tasks, task_weights = auto_scheduler.extract_tasks(mod["main"], params, target) tasks, task_weights = tasks[:2], task_weights[:2] tuner = auto_scheduler.TaskScheduler(tasks, task_weights) tuner.tune(tune_option, search_policy="sketch.random") # Check tuning log tuning_statistic = list(load_records(log_file)) for _, measure_result in tuning_statistic: if measure_result.error_no != MeasureErrorNo.NO_ERROR: raise ValueError( f"Error for MeasureResult. Error code: {measure_result.error_no}," f" for details see MeasureErrorNO." ) except Exception as e: # pylint: disable=broad-except status_ok = False print(e) assert status_ok, "Tuning failed, see logs." if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/contrib/test_rpc_tracker.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm from tvm import te import logging import numpy as np import time import multiprocessing from tvm import rpc def check_server_drop(): """test when server drops""" try: from tvm.rpc import tracker, proxy, base from tvm.rpc.base import TrackerCode @tvm.register_func("rpc.test2.addone") def addone(x): return x + 1 def _put(tclient, value): base.sendjson(tclient._sock, value) base.recvjson(tclient._sock) tserver = tracker.Tracker("127.0.0.1", 8888) tproxy = proxy.Proxy("127.0.0.1", 8881, tracker_addr=("127.0.0.1", tserver.port)) tclient = rpc.connect_tracker("127.0.0.1", tserver.port) server0 = rpc.Server( "127.0.0.1", port=9099, tracker_addr=("127.0.0.1", tserver.port), key="abc" ) server1 = rpc.Server( "127.0.0.1", port=9099, tracker_addr=("127.0.0.1", tserver.port), key="xyz" ) server2 = rpc.Server("127.0.0.1", tproxy.port, is_proxy=True, key="xyz") server3 = rpc.Server("127.0.0.1", tproxy.port, is_proxy=True, key="xyz1") # Fault tolerence to un-handled requested value _put(tclient, [TrackerCode.REQUEST, "abc", "", 1]) _put(tclient, [TrackerCode.REQUEST, "xyz1", "", 1]) # Fault tolerence to stale worker value _put(tclient, [TrackerCode.PUT, "xyz", (server1.port, "abc")]) _put(tclient, [TrackerCode.PUT, "xyz", (server1.port, "abcxxx")]) _put(tclient, [TrackerCode.PUT, "xyz", (tproxy.port, "abcxxx11")]) # Fault tolerence server timeout def check_timeout(timeout, sleeptime): def myfunc(remote): time.sleep(sleeptime) f1 = remote.get_function("rpc.test2.addone") assert f1(10) == 11 try: tclient.request_and_run("xyz", myfunc, session_timeout=timeout) except RuntimeError: pass print(tclient.text_summary()) try: remote = tclient.request("xyz", priority=0, session_timeout=timeout) remote2 = tclient.request("xyz", session_timeout=timeout) time.sleep(sleeptime) f1 = remote.get_function("rpc.test2.addone") assert f1(10) == 11 f1 = remote2.get_function("rpc.test2.addone") assert f1(10) == 11 except tvm.error.TVMError as e: pass remote3 = tclient.request("abc") f1 = remote3.get_function("rpc.test2.addone") remote3 = tclient.request("xyz1") f1 = remote3.get_function("rpc.test2.addone") assert f1(10) == 11 check_timeout(0.01, 0.1) check_timeout(2, 0) tserver.terminate() server0.terminate() server1.terminate() server2.terminate() server3.terminate() tproxy.terminate() except ImportError: print("Skip because tornado is not available") if __name__ == "__main__": logging.basicConfig(level=logging.INFO) check_server_drop()
https://github.com/zk-ml/tachikoma
tests/python/contrib/test_sort.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm import tvm.testing from tvm import te from tvm.topi.cuda import sort_by_key import numpy as np def test_sort(): n = 2 l = 5 m = 3 data = te.placeholder((n, l, m), name="data") sort_num = te.placeholder((n, m), name="sort_num", dtype="int32") axis = 1 is_ascend = False out = te.extern( data.shape, [data, sort_num], lambda ins, outs: tvm.tir.call_packed( "tvm.contrib.sort.argsort_nms", ins[0], ins[1], outs[0], axis, is_ascend ), dtype="int32", name="sort_tensor", ) input = [ [[1, 2, 3], [2, 4.5, 3.5], [1.1, 0.5, 1], [3.2, -5, 0.5], [1.5, 0, 0]], [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12], [13, 14, 15]], ] sort_num_input = [[1, 2, 3], [4, 5, 5]] sorted_index = [ [[0, 1, 1], [1, 0, 0], [2, 2, 2], [3, 3, 3], [4, 4, 4]], [[3, 4, 4], [2, 3, 3], [1, 2, 2], [0, 1, 1], [4, 0, 0]], ] dev = tvm.cpu(0) target = "llvm" s = te.create_schedule(out.op) f = tvm.build(s, [data, sort_num, out], target) a = tvm.nd.array(np.array(input).astype(data.dtype), dev) b = tvm.nd.array(np.array(sort_num_input).astype(sort_num.dtype), dev) c = tvm.nd.array(np.zeros(a.shape, dtype=out.dtype), dev) f(a, b, c) tvm.testing.assert_allclose(c.numpy(), np.array(sorted_index).astype(out.dtype), rtol=1e-5) def test_sort_np(): dshape = (1, 2, 3, 4, 5, 6) axis = 4 reduced_shape = (1, 2, 3, 4, 6) is_ascend = True data = te.placeholder(dshape, name="data") sort_num = te.placeholder(reduced_shape, name="sort_num", dtype="int32") out = te.extern( data.shape, [data, sort_num], lambda ins, outs: tvm.tir.call_packed( "tvm.contrib.sort.argsort_nms", ins[0], ins[1], outs[0], axis, is_ascend ), dtype="int32", name="sort_tensor", ) dev = tvm.cpu(0) target = "llvm" s = te.create_schedule(out.op) f = tvm.build(s, [data, sort_num, out], target) np_data = np.random.uniform(size=dshape) np_out = np.argsort(np_data, axis=axis) sort_num_input = np.full(reduced_shape, dshape[axis]) a = tvm.nd.array(np.array(np_data).astype(data.dtype), dev) b = tvm.nd.array(np.array(sort_num_input).astype(sort_num.dtype), dev) c = tvm.nd.array(np.zeros(a.shape, dtype=out.dtype), dev) f(a, b, c) tvm.testing.assert_allclose(c.numpy(), np_out, rtol=1e-5) def test_sort_by_key_gpu(): size = 6 keys = te.placeholder((size,), name="keys", dtype="int32") values = te.placeholder((size,), name="values", dtype="int32") for target in ["cuda", "nvptx", "opencl", "rocm"]: if not tvm.testing.device_enabled(target): print("Skip because %s is not enabled" % target) continue with tvm.target.Target(target): keys_out, values_out = sort_by_key(keys, values) dev = tvm.device(target) s = te.create_schedule([keys_out.op, values_out.op]) f = tvm.build(s, [keys, values, keys_out, values_out], target) keys_np = np.array([1, 4, 2, 8, 2, 7], np.int32) values_np = np.random.randint(0, 10, size=(size,)).astype(np.int32) keys_np_out = np.zeros(keys_np.shape, np.int32) values_np_out = np.zeros(values_np.shape, np.int32) keys_in = tvm.nd.array(keys_np, dev) values_in = tvm.nd.array(values_np, dev) keys_out = tvm.nd.array(keys_np_out, dev) values_out = tvm.nd.array(values_np_out, dev) f(keys_in, values_in, keys_out, values_out) ref_keys_out = np.sort(keys_np) ref_values_out = np.array([values_np[i] for i in np.argsort(keys_np)]) tvm.testing.assert_allclose(keys_out.numpy(), ref_keys_out, rtol=1e-5) tvm.testing.assert_allclose(values_out.numpy(), ref_values_out, rtol=1e-5) if __name__ == "__main__": test_sort() test_sort_np() test_sort_by_key_gpu()
https://github.com/zk-ml/tachikoma
tests/python/contrib/test_sparse.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm import tvm.testing from tvm import te import tvm.contrib.sparse as tvmsp import tvm.runtime.ndarray as _nd import numpy as np from collections import namedtuple def test_static_tensor(): dtype = "float32" stype = "csr" target = "llvm" dev = tvm.device(target, 0) m = te.size_var("m") n = te.size_var("n") A = tvmsp.placeholder(shape=(m, n), name="A", dtype=dtype) assert A.stype == "csr" n = 3 a = np.maximum(np.random.uniform(size=(n, n)).astype(dtype) - 0.6, 0.0) a = tvmsp.array(a, dev) A.data = te.placeholder(a.data.shape, dtype, name="A_data") Ab = tvm.tir.decl_buffer(a.data.shape, dtype, name="A_data") binds = {A.data: Ab} C = te.compute(A.data.shape, lambda i: A.data[i] * 2.0, tag="cs_scatter") s = te.create_schedule(C.op) f = tvm.build(s, [A.data, C], target, binds=binds) c = tvmsp.array(np.zeros((n, n), dtype), dev) c.data = tvm.nd.empty(a.data.shape, dtype) c.indices = a.indices c.indptr = a.indptr f(a.data, c.data) tvm.testing.assert_allclose(c.numpy(), a.numpy() * 2.0, rtol=1e-5) def test_dynamic_tensor(): dtype = "float32" stype = "csr" target = "llvm" dev = tvm.device(target, 0) nr, nc, n = te.size_var("nr"), te.size_var("nc"), te.size_var("n") A = tvmsp.placeholder(shape=(nr, nc), nonzeros=n, name="A", dtype=dtype) assert A.stype == "csr" C = te.compute(A.data.shape, lambda i: A.data[i] * 2.0, tag="cs_scatter") s = te.create_schedule(C.op) _nr, _nc = 3, 5 a = np.maximum(np.random.uniform(size=(_nr, _nc)).astype(dtype) - 0.6, 0.0) a = tvmsp.array(a, dev) assert a.data.dtype == a.dtype Ab = namedtuple("CSRBuffer", ["data", "indices", "indptr"]) Ab.data = tvm.tir.decl_buffer(a.data.shape, a.data.dtype, name="A_data") Ab.indices = tvm.tir.decl_buffer(a.data.shape, a.data.dtype, name="A_indices") binds = {A.data: Ab.data, A.indices: Ab.indices} f = tvm.build(s, [nr, A.data, C], target, binds=binds) c = tvmsp.array(np.zeros((_nr, _nc), dtype), dev) c.data = tvm.nd.empty(a.data.shape, dtype) c.indices = a.indices c.indptr = a.indptr f(a.data.shape[0], a.data, c.data) tvm.testing.assert_allclose(c.numpy(), a.numpy() * 2.0, rtol=1e-5) def test_sparse_array_tuple(): dtype, itype = "float32", "int32" stype = "csr" target = "llvm" dev = tvm.device(target, 0) nr, nc, n = te.size_var("nr"), te.size_var("nc"), te.size_var("n") A = tvmsp.placeholder(shape=(nr, nc), nonzeros=n, name="A", dtype=dtype) assert A.stype == "csr" C = te.compute(A.data.shape, lambda i: A.data[i] * 2.0, tag="cs_scatter") s = te.create_schedule(C.op) _nr, _nc = 3, 5 a = np.maximum(np.random.uniform(size=(_nr, _nc)).astype(dtype) - 0.6, 0.0) # convert to sparse array tuple source_array = a ridx, cidx = np.nonzero(source_array) data = source_array[ridx, cidx] a_data = _nd.array(data, dev) indices = np.nonzero(source_array)[1].astype(itype) a_indices = _nd.array(indices, dev) indptr = [0] + np.apply_along_axis(np.count_nonzero, axis=1, arr=source_array).tolist() indptr = np.cumsum(np.array(indptr, itype)).astype(itype) a_indptr = _nd.array(indptr, dev) a_init = (a_data, a_indices, a_indptr) # construct tvm sparse array with tuple a = tvmsp.array(a_init, shape=source_array.shape, device=dev) assert a.data.dtype == a.dtype Ab = namedtuple("CSRBuffer", ["data", "indices", "indptr"]) Ab.data = tvm.tir.decl_buffer(a.data.shape, a.data.dtype, name="A_data") Ab.indices = tvm.tir.decl_buffer(a.data.shape, a.data.dtype, name="A_indices") binds = {A.data: Ab.data, A.indices: Ab.indices} f = tvm.build(s, [nr, A.data, C], target, binds=binds) c = tvmsp.array(np.zeros((_nr, _nc), dtype), dev) c.data = tvm.nd.empty(a.data.shape, dtype) c.indices = a.indices c.indptr = a.indptr f(a.data.shape[0], a.data, c.data) tvm.testing.assert_allclose(c.numpy(), a.numpy() * 2.0, rtol=1e-5) if __name__ == "__main__": test_static_tensor() test_dynamic_tensor() test_sparse_array_tuple()
https://github.com/zk-ml/tachikoma
tests/python/contrib/test_tachikoma.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import pytest import itertools import numpy as np import sys import subprocess import math import collections import tvm from tvm import relay from tvm.relay import transform from tvm.relay.build_module import bind_params_by_name from tvm.relay.testing.temp_op_attr import TempOpAttr from tvm.relay.op.contrib import tachikoma import tvm.testing has_tachikoma_codegen = pytest.mark.skipif( not tvm.get_global_func("relay.ext.tachikoma", True), reason="Tachikoma codegen not available" ) run_module = tvm.testing.parameter( pytest.param(False, marks=[has_tachikoma_codegen, *tvm.testing.requires_llvm.marks()]), pytest.param(True, marks=[has_tachikoma_codegen, *tvm.testing.requires_llvm.marks()]), ids=["compile", "run"], ) _bf16_supported = None def bf16_supported(): global _bf16_supported if _bf16_supported is None: _bf16_supported = False if sys.platform.startswith("darwin"): cpu_info = subprocess.check_output("sysctl -a", shell=True).strip().decode() for line in cpu_info.split("\n"): if line.startswith("hw.optional.avx512f"): _bf16_supported = bool(int(line.split(":", 1)[1])) elif sys.platform.startswith("linux"): _bf16_supported = "avx512" in open("/proc/cpuinfo", "r").read() return _bf16_supported def partition_for_tachikoma(mod, params=None, alter_layout=True, prune_subgraphs=True): """Partition the graph greedily offloading supported operators to Tachikoma. Parameters ---------- mod : Module The module to run passes on. params : Optional[Dict[str, NDArray]] Constant input parameters. Returns ------- mod : Module Annotated and partitioned module. """ if params: mod["main"] = bind_params_by_name(mod["main"], params) with TempOpAttr("nn.conv2d", "FTVMLegalize", tachikoma.legalize_group_conv): with TempOpAttr("nn.conv2d_transpose", "FTVMLegalize", tachikoma.legalize_group_conv): seq = tvm.transform.Sequential( [ transform.CanonicalizeOps(), transform.InferType(), transform.SimplifyInference(), transform.FoldConstant(), transform.FoldScaleAxis(), # fold consecutive add ops to simplify pattern `conv2d-bias_add-bn-relu` transform.SimplifyExpr(), transform.FoldConstant(), # alter group conv /conv_transpose layout to `GOIHW` / `GIOHW` transform.Legalize(), transform.FoldConstant(), ] ) with tvm.transform.PassContext(opt_level=3): mod = seq(mod) if alter_layout: with TempOpAttr("nn.conv1d", "FTVMAlterOpLayout", tachikoma.alter_conv): with TempOpAttr("nn.conv2d", "FTVMAlterOpLayout", tachikoma.alter_conv): with TempOpAttr("nn.conv3d", "FTVMAlterOpLayout", tachikoma.alter_conv): with TempOpAttr( "nn.conv2d_transpose", "FTVMAlterOpLayout", tachikoma.alter_conv_transpose ): with TempOpAttr( "nn.conv3d_transpose", "FTVMAlterOpLayout", tachikoma.alter_conv_transpose ): alter_layout_seq = tvm.transform.Sequential( [ transform.AlterOpLayout(), transform.FoldConstant(), ] ) with tvm.transform.PassContext(opt_level=3): mod = alter_layout_seq(mod) mod = tachikoma.rewrite_layer_norm(mod) mod = tachikoma.rewrite_dense_bias_gelu_reshape_last(mod) mod = tachikoma.legalize_qnn_for_tachikoma(mod) byoc_seq = tvm.transform.Sequential( [ transform.MergeComposite(tachikoma.pattern_table()), transform.AnnotateTarget("tachikoma"), transform.MergeCompilerRegions(), transform.PartitionGraph(), ] ) with tvm.transform.PassContext(opt_level=3): mod = byoc_seq(mod) if prune_subgraphs: mod = tachikoma.prune_tachikoma_subgraphs(mod) return mod def vmobj_to_list(o): if isinstance(o, tvm.nd.NDArray): o_np = o.numpy() if o_np.dtype == np.uint16: o_np = np.left_shift(o_np.astype("uint32"), 16).view("<f4") return [o_np] elif isinstance(o, tvm.runtime.container.ADT) or isinstance(o, list): return [vmobj_to_list(f) for f in o] else: raise RuntimeError("Unknown object type: %s" % type(o)) def assert_result_dict_holds(result_dict): for k1, k2 in itertools.combinations(result_dict, 2): res1 = vmobj_to_list(result_dict[k1]) res2 = vmobj_to_list(result_dict[k2]) for r1, r2 in zip(res1, res2): if "bf16" in k1 or "bf16" in k2: np.testing.assert_array_almost_equal(r1, r2, decimal=1) else: tvm.testing.assert_allclose(r1, r2, rtol=1e-3, atol=1e-3) def check_tachikoma_used(mod, subgraph_num=None): num_tachikoma_subgraphs = sum([1 if "tachikoma" in gv.name_hint else 0 for gv in mod.get_global_vars()]) if subgraph_num: assert num_tachikoma_subgraphs == subgraph_num else: assert num_tachikoma_subgraphs >= 1 def run_and_verify(mod, input, params, target, run_module, subgraph_num=None, test_bf16=True): dev = tvm.cpu() result_dict = dict() for mode in ["graph", "vm"]: configs = [ (False, False, False), (True, False, False), (True, True, False), ] if test_bf16 and bf16_supported(): configs += [(True, False, True), (True, True, True)] for use_tachikoma, alter_layout, use_bf16 in configs: result_key = ( mode + ("_tachikoma" if use_tachikoma else "") + ("_layout" if alter_layout else "") + ("_bf16" if use_bf16 else "_fp32") ) processed_mod = mod if use_bf16: processed_mod = relay.transform.ToMixedPrecision("bfloat16")(processed_mod) if tvm.ir.structural_equal(processed_mod, mod): print("can not convert to bfloat16, skipping...") continue if use_tachikoma: processed_mod = partition_for_tachikoma(processed_mod, params, alter_layout) check_tachikoma_used(processed_mod) with tvm.transform.PassContext(opt_level=3): func = relay.create_executor( mode, mod=processed_mod, device=dev, target=target ).evaluate() if run_module: if isinstance(input, dict): result_dict[result_key] = func(**input, **params) else: result_dict[result_key] = func(input, **params) if run_module: assert_result_dict_holds(result_dict) def run_and_verify_func( config, run_module, subgraph_num=None, target="llvm", dtype="float32", test_bf16=True ): """Test a Relay func by compiling, running, and comparing TVM and Tachikoma outputs. Parameters ---------- config : Tuple[relay.Function, Dict[str, NDArray], List[str]] A tuple containing 1) The function to test, 2) A dictionary of var names to input shapes and 3) A list of which vars should be considered params. run_module: bool If True, the built module will be run after being compiled. """ f, input_shapes, is_param = config params = {x: np.random.uniform(-1, 1, input_shapes[x]).astype(dtype) for x in is_param} input_dict = { k: np.random.uniform(-1, 1, v).astype(dtype) for k, v in input_shapes.items() if k not in is_param } run_and_verify( f, input_dict, params, subgraph_num=subgraph_num, target=target, run_module=run_module, test_bf16=test_bf16, ) def add_activation(activation, out, dic, param_lst): if activation == "relu": return relay.nn.relu(out), dic, param_lst elif activation == "tanh": return relay.tanh(out), dic, param_lst elif activation == "sigmoid": return relay.sigmoid(out), dic, param_lst elif activation == "clip": return relay.clip(out, 0.0, 6.0), dic, param_lst elif activation == "swish": sig_out = relay.sigmoid(out) out = relay.multiply(out, sig_out) return out, dic, param_lst elif activation == "gelu": out = gelu_helper(out) return out, dic, param_lst elif activation == "mish": exp = relay.exp(out) add = relay.add(exp, relay.const(1.0)) log = relay.log(add) tanh = relay.tanh(log) out = relay.multiply(out, tanh) return out, dic, param_lst else: return out, dic, param_lst def get_conv1d( x_shape=((1, 3, 224)), k_shape=(16, 3, 3), groups=1, padding=(1, 1), strides=(1), dilation=(1), channels=None, activation=None, dtype="float32", ): x = relay.var("x", shape=(x_shape), dtype=dtype) kernel = relay.var("kernel", shape=(k_shape), dtype=dtype) out = relay.nn.conv1d( x, kernel, kernel_size=k_shape[2:3], groups=groups, padding=padding, strides=strides, dilation=dilation, channels=k_shape[0], ) dic = {"x": x_shape, "kernel": k_shape} param_lst = ["kernel"] return add_activation(activation, out, dic, param_lst) def get_conv1d_bias(x_shape=(1, 3, 224), k_shape=(10, 3, 3), activation=None, dtype="float32"): conv, dic, param_lst = get_conv1d(x_shape=x_shape, k_shape=k_shape, dtype=dtype) bias = relay.var("bias", shape=(k_shape[0],), dtype=dtype) out = relay.nn.bias_add(conv, bias) dic["bias"] = (k_shape[0],) param_lst += ["bias"] return add_activation(activation, out, dic, param_lst) def get_conv1d_bias_bn_relu(x_shape=(1, 3, 224), k_shape=(10, 3, 3), dtype="float32"): conv1d_bias, dic, param_lst = get_conv1d_bias(x_shape, k_shape, dtype=dtype) beta = relay.const(np.zeros(k_shape[0]).astype(dtype)) gamma = relay.const(np.ones(k_shape[0]).astype(dtype)) moving_mean = relay.const(np.zeros(k_shape[0]).astype(dtype)) moving_var = relay.const(np.ones(k_shape[0]).astype(dtype)) conv1d_bias_bn, _, _ = relay.nn.batch_norm( conv1d_bias, gamma=gamma, beta=beta, moving_mean=moving_mean, moving_var=moving_var, axis=1, center=True, scale=True, epsilon=1e-5, ) return relay.nn.relu(conv1d_bias_bn), dic, param_lst def get_conv2d( x_shape=(1, 32, 8, 8), k_shape=(16, 32, 3, 3), groups=1, padding=(0, 0), strides=(1, 1), dilation=(1, 1), activation=None, dtype="float32", ): x = relay.var("x", shape=(x_shape), dtype=dtype) kernel = relay.var("kernel", shape=(k_shape), dtype=dtype) out = relay.nn.conv2d( x, kernel, kernel_size=k_shape[2:4], groups=groups, padding=padding, strides=strides, dilation=dilation, channels=k_shape[0], ) dic = {"x": x_shape, "kernel": k_shape} param_lst = ["kernel"] return add_activation(activation, out, dic, param_lst) def get_conv2d_transpose( x_shape=(1, 32, 8, 8), k_shape=(32, 16, 3, 3), groups=1, padding=(0, 0), strides=(1, 1), activation=None, dtype="float32", ): x = relay.var("x", shape=(x_shape), dtype=dtype) kernel = relay.var("kernel", shape=(k_shape), dtype=dtype) out = relay.nn.conv2d_transpose( x, kernel, channels=k_shape[1] * groups, kernel_size=k_shape[2:4], groups=groups, padding=padding, strides=strides, ) dic = {"x": x_shape, "kernel": k_shape} param_lst = ["kernel"] return add_activation(activation, out, dic, param_lst) def get_conv2d_weights_const( x_shape=(1, 32, 8, 8), k_shape=(16, 32, 3, 3), groups=1, padding=(0, 0), strides=(1, 1), dilation=(1, 1), dtype="float32", ): x = relay.var("x", shape=(x_shape), dtype=dtype) kernel = relay.const(np.random.randint(0, 1, k_shape).astype(dtype)) out = relay.nn.conv2d( x, kernel, channels=k_shape[0], kernel_size=k_shape[2:4], groups=groups, padding=padding, strides=strides, dilation=dilation, ) dic = {"x": x_shape} param_lst = [] return out, dic, param_lst def get_conv2d_bias( x_shape=(1, 32, 8, 8), k_shape=(16, 32, 3, 3), activation=None, dtype="float32" ): conv, dic, param_lst = get_conv2d_weights_const(x_shape=x_shape, k_shape=k_shape, dtype=dtype) bias = relay.var("bias", shape=(k_shape[0],), dtype=dtype) out = relay.nn.bias_add(conv, bias) dic["bias"] = (k_shape[0],) param_lst += ["bias"] return add_activation(activation, out, dic, param_lst) def get_conv2d_transpose_bias( x_shape=(1, 32, 8, 8), k_shape=(32, 16, 3, 3), activation=None, dtype="float32" ): conv, dic, param_lst = get_conv2d_transpose(x_shape=x_shape, k_shape=k_shape, dtype=dtype) bias = relay.var("bias", shape=(k_shape[1],), dtype=dtype) out = relay.nn.bias_add(conv, bias) dic["bias"] = (k_shape[1],) param_lst += ["bias"] return add_activation(activation, out, dic, param_lst) def get_conv2d_bias_bn_relu(x_shape=(1, 32, 8, 8), k_shape=(16, 32, 3, 3), dtype="float32"): conv2d_bias, dic, param_lst = get_conv2d_bias(x_shape, k_shape, dtype=dtype) beta = relay.const(np.zeros(k_shape[0]).astype(dtype)) gamma = relay.const(np.ones(k_shape[0]).astype(dtype)) moving_mean = relay.const(np.zeros(k_shape[0]).astype(dtype)) moving_var = relay.const(np.ones(k_shape[0]).astype(dtype)) conv2d_bias_bn, _, _ = relay.nn.batch_norm( conv2d_bias, gamma=gamma, beta=beta, moving_mean=moving_mean, moving_var=moving_var, axis=1, center=True, scale=True, epsilon=1e-5, ) return relay.nn.relu(conv2d_bias_bn), dic, param_lst def get_layer_norm(x_shape=(1, 49, 64), dtype="float32"): dic = {"input": x_shape} param_lst = [] input = relay.var("input", shape=x_shape) beta = relay.const(np.zeros(x_shape[2]).astype(dtype)) gamma = relay.const(np.ones(x_shape[2]).astype(dtype)) out = relay.nn.layer_norm(input, gamma=gamma, beta=beta) return out, dic, param_lst def get_conv2d_bias_sum_relu(x_shape=(1, 32, 8, 8), k_shape=(16, 32, 3, 3), dtype="float32"): conv2d_bias, dic, param_lst = get_conv2d_bias(x_shape, k_shape, dtype=dtype) sum_data = relay.const(np.random.randint(x_shape).astype(dtype)) conv2d_bias_sum = relay.add(sum_data, conv2d_bias) return relay.nn.relu(conv2d_bias_sum), dic, param_lst def get_conv3d( x_shape=(1, 32, 8, 8, 8), k_shape=(16, 32, 3, 3, 3), groups=1, padding=(0, 0, 0), strides=(1, 1, 1), dilation=(1, 1, 1), activation=None, dtype="float32", ): x = relay.var("x", shape=(x_shape), dtype=dtype) kernel = relay.const(np.random.randint(0, 1, k_shape).astype(dtype)) out = relay.nn.conv3d( x, kernel, channels=k_shape[0], kernel_size=k_shape[2:], groups=groups, padding=padding, strides=strides, dilation=dilation, ) dic = {"x": x_shape, "kernel": k_shape} param_lst = ["kernel"] return add_activation(activation, out, dic, param_lst) def get_conv3d_transpose( x_shape=(1, 32, 8, 8, 8), k_shape=(32, 16, 3, 3, 3), groups=1, padding=(0, 0, 0), strides=(1, 1, 1), output_padding=(0, 0, 0), activation=None, dtype="float32", data_layout="NCDHW", kernel_layout="OIDHW", ): x = relay.var("x", shape=(x_shape), dtype=dtype) kernel = relay.const(np.random.randint(0, 1, k_shape).astype(dtype)) out = relay.nn.conv3d_transpose( x, kernel, channels=k_shape[1], kernel_size=k_shape[2:5], groups=groups, padding=padding, strides=strides, output_padding=output_padding, data_layout=data_layout, kernel_layout=kernel_layout, ) dic = {"x": x_shape, "kernel": k_shape} param_lst = ["kernel"] return add_activation(activation, out, dic, param_lst) def get_conv3d_bias( x_shape=(1, 32, 8, 8, 8), k_shape=(16, 32, 3, 3, 3), activation=None, dtype="float32" ): conv, dic, param_lst = get_conv3d(x_shape=x_shape, k_shape=k_shape, dtype=dtype) bias = relay.var("bias", shape=(k_shape[0],), dtype=dtype) out = relay.nn.bias_add(conv, bias) dic["bias"] = (k_shape[0],) param_lst += ["bias"] return add_activation(activation, out, dic, param_lst) def get_conv3d_transpose_bias( x_shape=(1, 32, 8, 8, 8), k_shape=(32, 16, 3, 3, 3), activation=None, dtype="float32" ): conv, dic, param_lst = get_conv3d_transpose(x_shape=x_shape, k_shape=k_shape, dtype=dtype) bias = relay.var("bias", shape=(k_shape[1],), dtype=dtype) out = relay.nn.bias_add(conv, bias) dic["bias"] = (k_shape[1],) param_lst += ["bias"] return add_activation(activation, out, dic, param_lst) def gelu_helper(data): const1 = relay.const(math.sqrt(2.0)) const2 = relay.const(1.0) const3 = relay.const(0.5) divisor = relay.op.divide(data, const1) val_erf = relay.op.erf(divisor) added_erf = relay.op.add(val_erf, const2) mul1 = relay.op.multiply(data, added_erf) out = relay.op.multiply(mul1, const3) return out def get_dense( x_shape=(1, 16), k_shape=(32, 16), activation=None, has_reshape=False, dtype="float32" ): x = relay.var("x", shape=(x_shape), dtype=dtype) kernel = relay.var("kernel", shape=(k_shape), dtype=dtype) out = relay.nn.dense(x, kernel, units=k_shape[0]) # out = relay.nn.dense(x, kernel, units=None) if has_reshape: out = relay.reshape(out, newshape=(1, x_shape[0], k_shape[0])) dic = {"x": x_shape, "kernel": k_shape} param_lst = ["kernel"] if activation == "gelu": out = gelu_helper(out) return out, dic, param_lst def get_bmm( x_shape=(1, 16, 8), k_shape=(1, 4, 8), dtype="float32", transpose_a=False, transpose_b=True ): x = relay.var("x", shape=(x_shape), dtype=dtype) kernel = relay.var("kernel", shape=(k_shape), dtype=dtype) out = relay.nn.batch_matmul( x, kernel, out_dtype=dtype, transpose_a=transpose_a, transpose_b=transpose_b ) dic = {"x": x_shape, "kernel": k_shape} param_lst = ["kernel"] return out, dic, param_lst def test_bmm(run_module, dtype="float32"): x_shape = (1, 2, 4) k_shape = (1, 3, 4) dense, dic, param_lst = get_bmm(x_shape, k_shape, dtype=dtype) dense = tvm.IRModule.from_expr(dense) config = dense, dic, param_lst run_and_verify_func(config, run_module=run_module, dtype=dtype) k_shape_t = (1, 4, 3) dense, dic, param_lst = get_bmm(x_shape, k_shape_t, dtype=dtype, transpose_b=False) dense = tvm.IRModule.from_expr(dense) config = dense, dic, param_lst run_and_verify_func(config, run_module=run_module, dtype=dtype) def get_dense_bias( x_shape=(1, 16), k_shape=(32, 16), activation=None, has_reshape=False, use_add=False, dtype="float32", ): dense, dic, param_lst = get_dense( x_shape=x_shape, k_shape=k_shape, has_reshape=has_reshape, dtype=dtype ) bias = relay.var("bias", shape=(k_shape[0],), dtype=dtype) if use_add: out = relay.add(dense, bias) else: out = relay.nn.bias_add(dense, bias) dic["bias"] = (k_shape[0],) param_lst += ["bias"] if activation == "gelu": out = gelu_helper(out) return out, dic, param_lst def test_tachikoma_not_compatible(run_module, target="llvm", dtype="float32"): xshape = (1, 32, 14, 14) x_data = np.random.uniform(-1, 1, xshape).astype(dtype) x = relay.var("x", shape=(xshape), dtype=dtype) y = relay.add(x, x) z = relay.cast(relay.cast(y, "int32"), "float32") out = relay.nn.relu(z) f = relay.Function([x], out) mod = tvm.IRModule() mod["main"] = f mod = partition_for_tachikoma(mod) for mode in ["graph", "vm"]: with tvm.transform.PassContext(opt_level=3): func = relay.create_executor(mode, mod=mod, device=tvm.cpu(0), target=target).evaluate() if run_module: results = func(x_data) def test_multiple_outputs(run_module, dtype="float32"): def get_graph(): x = relay.var("x", shape=(1, 3), dtype=dtype) y = relay.var("y", shape=(1, 3), dtype=dtype) z = relay.add(x, y) w = relay.add(z, y) out = relay.Tuple((z, w)) f = tvm.IRModule.from_expr(out) return f, {"x": (1, 3), "y": (1, 3)}, [] run_and_verify_func(get_graph(), run_module=run_module, dtype=dtype) def test_elementwise(run_module, dtype="float32"): def get_graph(op, x_shape=(1, 8, 3, 3)): x = relay.var("x", shape=(x_shape), dtype=dtype) out = op(x) f = tvm.IRModule.from_expr(out) return f, {"x": x_shape}, [] for op in [ relay.abs, relay.exp, relay.log, relay.sqrt, relay.nn.relu, relay.tanh, relay.sigmoid, ]: run_and_verify_func(get_graph(op), run_module=run_module) def test_clip(run_module, dtype="float32"): def get_graph(x_shape=(1, 8, 3, 3)): x = relay.var("x", shape=(x_shape), dtype=dtype) out = relay.clip(x, a_min=-0.2, a_max=0.4) f = tvm.IRModule.from_expr(out) return f, {"x": x_shape}, [] run_and_verify_func(get_graph(), run_module=run_module) def test_leaky_relu(run_module, dtype="float32"): def get_graph(x_shape=(1, 8, 3, 3)): x = relay.var("x", shape=(x_shape), dtype=dtype) out = relay.nn.leaky_relu(x, alpha=0.1) f = tvm.IRModule.from_expr(out) return f, {"x": x_shape}, [] run_and_verify_func(get_graph(), run_module=run_module) def test_softmax(run_module, dtype="float32"): def get_graph(x_shape, axis): x = relay.var("x", shape=(x_shape), dtype=dtype) out = relay.nn.softmax(x, axis=axis) f = tvm.IRModule.from_expr(out) return f, {"x": x_shape}, [] run_and_verify_func(get_graph((1, 1000), axis=1), run_module=run_module) run_and_verify_func(get_graph((1, 1000), axis=-1), run_module=run_module) run_and_verify_func(get_graph((1, 3, 4), axis=-2), run_module=run_module) run_and_verify_func(get_graph((1, 3, 4), axis=1), run_module=run_module) def test_conv1d(run_module, dtype="float32"): conv1d, dic, param_lst = get_conv1d(channels=16, dtype=dtype) conv1d = tvm.IRModule.from_expr(conv1d) config = conv1d, dic, param_lst run_and_verify_func(config, run_module=run_module, dtype=dtype) x_shape = (1, 32, 224) k_shape = (16, 32, 3) conv1d_bias, dic, param_lst = get_conv1d(x_shape, k_shape, dtype=dtype) conv1d_bias = tvm.IRModule.from_expr(conv1d_bias) config = conv1d_bias, dic, param_lst run_and_verify_func(config, run_module=run_module, dtype=dtype) def test_conv1d_pattern(run_module, dtype="float32"): x_shape = (1, 3, 224) k_shape = (16, 3, 3) activation_lst = [None, "relu", "tanh", "sigmoid"] for a in activation_lst: conv1d, dic, param_lst = get_conv1d(x_shape, k_shape, activation=a, dtype=dtype) conv1d = tvm.IRModule.from_expr(conv1d) config = conv1d, dic, param_lst run_and_verify_func(config, run_module=run_module, dtype=dtype) conv1d_bias, dic, param_lst = get_conv1d_bias(x_shape, k_shape, activation=a, dtype=dtype) conv1d_bias = tvm.IRModule.from_expr(conv1d_bias) config = conv1d_bias, dic, param_lst run_and_verify_func(config, run_module=run_module, dtype=dtype) def test_conv2d(run_module, dtype="float32"): x_shape = (1, 32, 8, 8) for k_shape, groups in [((16, 32, 3, 3), 1), ((32, 1, 3, 3), 32), ((32, 2, 3, 3), 16)]: for padding in [(0, 0), (1, 1)]: for strides in [(1, 1), (2, 2)]: for dilation in [(1, 1), (2, 2)]: conv2d, dic, param_lst = get_conv2d( x_shape=x_shape, k_shape=k_shape, groups=groups, padding=padding, strides=strides, dilation=dilation, dtype=dtype, ) conv2d = tvm.IRModule.from_expr(conv2d) config = conv2d, dic, param_lst run_and_verify_func(config, run_module=run_module, dtype=dtype) def test_conv2d_weights_const(run_module, dtype="float32"): x_shape = (1, 32, 8, 8) k_shape = (16, 32, 3, 3) conv2d, dic, param_lst = get_conv2d_weights_const(x_shape, k_shape, dtype=dtype) conv2d = tvm.IRModule.from_expr(conv2d) config = conv2d, dic, param_lst run_and_verify_func(config, run_module=run_module, dtype=dtype) x_shape = (1, 3, 8, 8) k_shape = (16, 3, 3, 3) conv2d, dic, param_lst = get_conv2d_weights_const(x_shape, k_shape, dtype=dtype) conv2d = tvm.IRModule.from_expr(conv2d) config = conv2d, dic, param_lst run_and_verify_func(config, run_module=run_module, dtype=dtype) def test_conv2d_pattern(run_module, dtype="float32"): x_shape = (1, 32, 8, 8) k_shape = (16, 32, 3, 3) activation_lst = [None, "relu", "tanh", "sigmoid", "clip", "swish", "gelu", "mish"] for a in activation_lst: conv2d, dic, param_lst = get_conv2d(x_shape, k_shape, activation=a, dtype=dtype) conv2d = tvm.IRModule.from_expr(conv2d) config = conv2d, dic, param_lst run_and_verify_func(config, run_module=run_module, dtype=dtype) conv2d_bias, dic, param_lst = get_conv2d_bias(x_shape, k_shape, activation=a, dtype=dtype) conv2d_bias = tvm.IRModule.from_expr(conv2d_bias) config = conv2d_bias, dic, param_lst run_and_verify_func(config, run_module=run_module, dtype=dtype) conv2d_bias_bn_relu, dic, param_lst = get_conv2d_bias_bn_relu(x_shape, k_shape, dtype=dtype) conv2d_bias_bn_relu = tvm.IRModule.from_expr(conv2d_bias_bn_relu) config = conv2d_bias_bn_relu, dic, param_lst run_and_verify_func(config, run_module=run_module, dtype=dtype) conv2d_bias_bn_relu, dic, param_lst = get_conv2d_bias_bn_relu(x_shape, k_shape, dtype=dtype) conv2d_bias_bn_relu = tvm.IRModule.from_expr(conv2d_bias_bn_relu) config = conv2d_bias_bn_relu, dic, param_lst run_and_verify_func(config, run_module=run_module, dtype=dtype) def test_conv2d_bias_sum_relu(run_module, dtype="float32"): x_shape = (1, 32, 8, 8) k_shape = (16, 32, 3, 3) def get_conv2d_bn_sum_relu(x_shape, k_shape, sum_shape, dtype="float32"): out, dic, param_lst = get_conv2d_bias(x_shape=x_shape, k_shape=k_shape, dtype=dtype) beta = relay.const(np.zeros(k_shape[0]).astype(dtype)) gamma = relay.const(np.ones(k_shape[0]).astype(dtype)) moving_mean = relay.const(np.zeros(k_shape[0]).astype(dtype)) moving_var = relay.const(np.ones(k_shape[0]).astype(dtype)) out, _, _ = relay.nn.batch_norm( out, gamma=gamma, beta=beta, moving_mean=moving_mean, moving_var=moving_var, axis=1, center=True, scale=True, epsilon=1e-5, ) sum_data = relay.var("data1", shape=sum_shape, dtype=dtype) out = relay.add(out, sum_data) dic["data1"] = sum_shape param_lst += ["data1"] return relay.nn.relu(out), dic, param_lst conv2d_bn_sum_relu, dic, param_lst = get_conv2d_bn_sum_relu( x_shape, k_shape, sum_shape=(1, 16, 6, 6), dtype=dtype ) conv2d_bn_sum_relu = tvm.IRModule.from_expr(conv2d_bn_sum_relu) config = conv2d_bn_sum_relu, dic, param_lst run_and_verify_func(config, run_module=run_module, dtype=dtype) conv2d_bn_sum_relu, dic, param_lst = get_conv2d_bn_sum_relu( x_shape, k_shape, sum_shape=(1, 16, 1, 1), dtype=dtype ) conv2d_bn_sum_relu = tvm.IRModule.from_expr(conv2d_bn_sum_relu) config = conv2d_bn_sum_relu, dic, param_lst run_and_verify_func(config, run_module=run_module, dtype=dtype) def test_conv2d_transpose(run_module, dtype="float32"): x_shape = (1, 32, 8, 8) for k_shape, groups in [((32, 16, 3, 3), 1), ((32, 1, 3, 3), 32), ((32, 4, 3, 3), 16)]: for padding in [(0, 0), (1, 1)]: for strides in [(1, 1), (2, 2)]: conv2d_transpose, dic, param_lst = get_conv2d_transpose( x_shape=x_shape, k_shape=k_shape, groups=groups, padding=padding, strides=strides, dtype=dtype, ) conv2d_transpose = tvm.IRModule.from_expr(conv2d_transpose) config = conv2d_transpose, dic, param_lst run_and_verify_func(config, run_module=run_module, dtype=dtype) def test_conv2d_transpose_pattern(run_module, dtype="float32"): activation_lst = [None, "relu", "tanh", "sigmoid", "clip", "swish", "gelu", "mish"] for a in activation_lst: conv2d, dic, param_lst = get_conv2d_transpose(activation=a, dtype=dtype) conv2d = tvm.IRModule.from_expr(conv2d) config = conv2d, dic, param_lst run_and_verify_func(config, run_module=run_module, dtype=dtype) conv2d_bias, dic, param_lst = get_conv2d_transpose_bias(activation=a, dtype=dtype) conv2d_bias = tvm.IRModule.from_expr(conv2d_bias) config = conv2d_bias, dic, param_lst run_and_verify_func(config, run_module=run_module, dtype=dtype) def test_conv3d(run_module, dtype="float32"): conv3d, dic, param_lst = get_conv3d(dtype=dtype) conv3d = tvm.IRModule.from_expr(conv3d) config = conv3d, dic, param_lst run_and_verify_func(config, run_module=run_module, dtype=dtype) conv3d, dic, param_lst = get_conv3d(padding=(0, 0, 0, 1, 1, 1), dtype=dtype) conv3d = tvm.IRModule.from_expr(conv3d) config = conv3d, dic, param_lst run_and_verify_func(config, run_module=run_module, dtype=dtype) conv3d, dic, param_lst = get_conv3d( x_shape=(1, 3, 8, 8, 8), k_shape=(16, 3, 3, 3, 3), dtype=dtype ) conv3d = tvm.IRModule.from_expr(conv3d) config = conv3d, dic, param_lst run_and_verify_func(config, run_module=run_module, dtype=dtype) def test_conv3d_pattern(run_module, dtype="float32"): activation_lst = [None, "relu", "tanh", "sigmoid", "clip", "swish", "gelu", "mish"] for a in activation_lst: conv3d, dic, param_lst = get_conv3d(activation=a, dtype=dtype) conv3d = tvm.IRModule.from_expr(conv3d) config = conv3d, dic, param_lst run_and_verify_func(config, run_module=run_module, dtype=dtype) conv3d_bias, dic, param_lst = get_conv3d_bias(activation=a, dtype=dtype) conv3d_bias = tvm.IRModule.from_expr(conv3d_bias) config = conv3d_bias, dic, param_lst run_and_verify_func(config, run_module=run_module, dtype=dtype) def test_conv3d_transpose(run_module, dtype="float32"): conv3d_transpose, dic, param_lst = get_conv3d_transpose(dtype=dtype) conv3d_transpose = tvm.IRModule.from_expr(conv3d_transpose) config = conv3d_transpose, dic, param_lst run_and_verify_func(config, run_module=run_module, dtype=dtype) conv3d_transpose, dic, param_lst = get_conv3d_transpose(strides=(2, 2, 2), dtype=dtype) conv3d_transpose = tvm.IRModule.from_expr(conv3d_transpose) config = conv3d_transpose, dic, param_lst run_and_verify_func(config, run_module=run_module, dtype=dtype) conv3d_transpose, dic, param_lst = get_conv3d_transpose( strides=(2, 2, 2), output_padding=(1, 1, 1), dtype=dtype ) conv3d_transpose = tvm.IRModule.from_expr(conv3d_transpose) config = conv3d_transpose, dic, param_lst run_and_verify_func(config, run_module=run_module, dtype=dtype) def test_conv3d_transpose_pattern(run_module, dtype="float32"): activation_lst = [None, "relu", "tanh", "sigmoid", "clip", "swish", "gelu", "mish"] for a in activation_lst: conv3d, dic, param_lst = get_conv3d_transpose(activation=a, dtype=dtype) conv3d = tvm.IRModule.from_expr(conv3d) config = conv3d, dic, param_lst run_and_verify_func(config, run_module=run_module, dtype=dtype) conv3d_bias, dic, param_lst = get_conv3d_transpose_bias(activation=a, dtype=dtype) conv3d_bias = tvm.IRModule.from_expr(conv3d_bias) config = conv3d_bias, dic, param_lst run_and_verify_func(config, run_module=run_module, dtype=dtype) def test_dense(run_module, dtype="float32"): x_shape = (1, 16) k_shape = (32, 16) dense, dic, param_lst = get_dense(x_shape, k_shape, dtype=dtype) dense = tvm.IRModule.from_expr(dense) config = dense, dic, param_lst run_and_verify_func(config, run_module=run_module, dtype=dtype) dense, dic, param_lst = get_dense(x_shape, k_shape=(1, 16), dtype=dtype) dense = tvm.IRModule.from_expr(dense) config = dense, dic, param_lst run_and_verify_func(config, run_module=run_module, dtype=dtype) dense, dic, param_lst = get_dense(x_shape, k_shape, activation="gelu", dtype=dtype) dense = tvm.IRModule.from_expr(dense) config = dense, dic, param_lst run_and_verify_func(config, run_module=run_module, dtype=dtype) def test_dense_pattern(run_module, dtype="float32"): x_shape = (1, 16) k_shape = (32, 16) dense, dic, param_lst = get_dense(x_shape, k_shape, dtype=dtype) dense = tvm.IRModule.from_expr(dense) config = dense, dic, param_lst run_and_verify_func(config, run_module=run_module, dtype=dtype) dense_bias, dic, param_lst = get_dense_bias(x_shape, k_shape, dtype=dtype) dense_bias = tvm.IRModule.from_expr(dense_bias) config = dense_bias, dic, param_lst run_and_verify_func(config, run_module=run_module, dtype=dtype) dense_bias, dic, param_lst = get_dense_bias(x_shape, k_shape, activation="gelu", dtype=dtype) dense_bias = tvm.IRModule.from_expr(dense_bias) config = dense_bias, dic, param_lst run_and_verify_func(config, run_module=run_module, dtype=dtype) def test_pool2d(run_module, dtype="float32"): def get_graph( op, x_shape=(1, 3, 32, 32), pool_size=(2, 2), strides=(2, 2), padding=(0, 0), ceil_mode=False, count_include_pad=None, ): x = relay.var("x", shape=(x_shape), dtype=dtype) if count_include_pad is not None: out = op( x, pool_size=pool_size, strides=strides, padding=padding, ceil_mode=ceil_mode, count_include_pad=count_include_pad, ) else: out = op( x, pool_size=pool_size, strides=strides, padding=padding, ceil_mode=ceil_mode, ) out = tvm.IRModule.from_expr(out) return out, {"x": x_shape}, [] for pool_size in [(2, 2), (3, 3)]: for strides in [(1, 1), (2, 2)]: for padding in [(0, 0), (1, 1), (0, 0, 1, 1)]: for ceil_mode in [False]: # Skip "the padding size is larger than or equal to the filter size for exclusive-counting pooling" if pool_size == (2, 2) and padding == (0, 0, 1, 1): continue for count_include_pad in [False, True]: # Skip "inclusive-counted blended or average pooling is not supported in combination with asymmetric padding" if count_include_pad and (padding == (0, 0, 1, 1) or strides == (2, 2)): continue run_and_verify_func( get_graph( relay.nn.avg_pool2d, pool_size=pool_size, strides=strides, padding=padding, ceil_mode=ceil_mode, count_include_pad=count_include_pad, ), run_module=run_module, ) run_and_verify_func( get_graph( relay.nn.max_pool2d, pool_size=pool_size, strides=strides, padding=padding, ceil_mode=ceil_mode, ), run_module=run_module, ) def test_global_avg_pooling2d(run_module, dtype="float32"): x_shape = (1, 3, 32, 32) x = relay.var("x", shape=(x_shape), dtype=dtype) out = relay.nn.global_avg_pool2d(x) out = tvm.IRModule.from_expr(out) config = out, {"x": x_shape}, [] run_and_verify_func(config, run_module=run_module) def test_pool3d(run_module, dtype="float32"): def get_graph( op, x_shape=(1, 3, 8, 32, 32), pool_size=(2, 2, 2), strides=(2, 2, 2), padding=(0, 0, 0), ceil_mode=False, count_include_pad=None, dtype="float32", ): x = relay.var("x", shape=(x_shape), dtype=dtype) if count_include_pad is not None: out = op( x, pool_size=pool_size, strides=strides, padding=padding, ceil_mode=ceil_mode, count_include_pad=count_include_pad, ) else: out = op( x, pool_size=pool_size, strides=strides, padding=padding, ceil_mode=ceil_mode, ) out = tvm.IRModule.from_expr(out) return out, {"x": x_shape}, [] run_and_verify_func(get_graph(relay.nn.avg_pool3d), run_module=run_module) run_and_verify_func(get_graph(relay.nn.max_pool3d), run_module=run_module) run_and_verify_func( get_graph(relay.nn.max_pool3d, padding=(0, 0, 0, 1, 1, 1)), run_module=run_module ) run_and_verify_func(get_graph(relay.nn.max_pool3d, strides=(1, 1, 1)), run_module=run_module) def test_prune_tachikoma_subgraph(run_module): """In this test, OP "add" should be offloaded from tachikoma codegen.""" def get_graph(): x1 = relay.var("x1", shape=(1, 32, 56, 56)) x2 = relay.var("x2", shape=(1, 32, 56, 56)) bias = relay.var("bias", shape=(32,)) weight = relay.var("weight", shape=(32, 32, 3, 3)) y = relay.nn.conv2d( x1, weight, channels=32, kernel_size=(3, 3), padding=(1, 1), ) y = relay.nn.bias_add(y, bias) y = relay.nn.relu(y) y = relay.nn.global_max_pool2d(y) y = relay.add(y, x2) dic = { "x1": (1, 32, 56, 56), "x2": (1, 32, 56, 56), "weight": (32, 32, 3, 3), "bias": (32,), } param_lst = ["weight", "bias"] out = tvm.IRModule.from_expr(y) return out, dic, param_lst run_and_verify_func(get_graph(), subgraph_num=1, run_module=run_module, test_bf16=False) def test_layer_norm(run_module, dtype="float32"): x_shape = (1, 49, 64) ln, dic, param_lst = get_layer_norm(x_shape, dtype=dtype) ln = tvm.IRModule.from_expr(ln) config = ln, dic, param_lst run_and_verify_func(config, run_module=run_module, dtype=dtype) def test_rewrite_dense_bias_gelu_reshape_last(run_module, dtype="float32"): def get_graph(act=None): x_shape = (1, 16) k_shape = (32, 16) dense_bias, dic, param_lst = get_dense_bias( x_shape, k_shape, activation=act, has_reshape=True, use_add=True, dtype=dtype ) dense_bias = tvm.IRModule.from_expr(dense_bias) processed_dense_bias = partition_for_tachikoma( dense_bias, params=None, alter_layout=False, prune_subgraphs=False ) check_tachikoma_used(processed_dense_bias, 1) return dense_bias, dic, param_lst run_and_verify_func( get_graph("gelu"), subgraph_num=1, run_module=run_module, dtype=dtype, test_bf16=False ) run_and_verify_func( get_graph(), subgraph_num=1, run_module=run_module, dtype=dtype, test_bf16=False ) def test_resnetv1_rewrite(run_module, dtype="float32"): def get_graph(): data_shape = (1, 256, 56, 56) w_shapes = [ (64, 256, 1, 1), (64, 64, 3, 3), (256, 64, 1, 1), (128, 256, 1, 1), (128, 128, 3, 3), (512, 128, 1, 1), (512, 256, 1, 1), ] x = relay.var("x", shape=data_shape, dtype=dtype) wights = [relay.const(np.random.randint(0, 1, w).astype(dtype)) for w in w_shapes] biases = [relay.const(np.random.randint(0, 1, w[0]).astype(dtype)) for w in w_shapes] conv1 = relay.nn.conv2d( x, wights[0], channels=w_shapes[0][0], kernel_size=w_shapes[0][2:4], padding=(w_shapes[0][2] // 2, w_shapes[0][3] // 2), ) conv1 = relay.nn.bias_add(conv1, biases[0]) conv1 = relay.nn.relu(conv1) conv2 = relay.nn.conv2d( conv1, wights[1], channels=w_shapes[1][0], kernel_size=w_shapes[1][2:4], padding=(w_shapes[1][2] // 2, w_shapes[1][3] // 2), ) conv2 = relay.nn.bias_add(conv2, biases[1]) conv2 = relay.nn.relu(conv2) conv3 = relay.nn.conv2d( conv2, wights[2], channels=w_shapes[2][0], kernel_size=w_shapes[2][2:4], padding=(w_shapes[2][2] // 2, w_shapes[2][3] // 2), ) conv3 = relay.nn.bias_add(conv3, biases[2]) conv3 = relay.add(conv3, x) conv3 = relay.nn.relu(conv3) left_conv4 = relay.nn.conv2d( conv3, wights[3], channels=w_shapes[3][0], strides=(2, 2), kernel_size=w_shapes[3][2:4], padding=(w_shapes[3][2] // 2, w_shapes[3][3] // 2), ) left_conv4 = relay.nn.bias_add(left_conv4, biases[3]) left_conv4 = relay.nn.relu(left_conv4) left_conv5 = relay.nn.conv2d( left_conv4, wights[4], channels=w_shapes[4][0], kernel_size=w_shapes[4][2:4], padding=(w_shapes[4][2] // 2, w_shapes[4][3] // 2), ) left_conv5 = relay.nn.bias_add(left_conv5, biases[4]) left_conv5 = relay.nn.relu(left_conv5) left_conv6 = relay.nn.conv2d( left_conv5, wights[5], channels=w_shapes[5][0], kernel_size=w_shapes[5][2:4], padding=(w_shapes[5][2] // 2, w_shapes[5][3] // 2), ) left_conv6 = relay.nn.bias_add(left_conv6, biases[5]) right_conv7 = relay.nn.conv2d( conv3, wights[6], channels=w_shapes[6][0], strides=(2, 2), kernel_size=w_shapes[6][2:4], padding=(w_shapes[6][2] // 2, w_shapes[6][3] // 2), ) right_conv7 = relay.nn.bias_add(right_conv7, biases[6]) out = relay.add(left_conv6, right_conv7) out = relay.nn.relu(out) dic = {"x": data_shape} param_lst = [] return out, dic, param_lst net, dic, param_lst = get_graph() net = tvm.IRModule.from_expr(net) config = net, dic, param_lst run_and_verify_func(config, run_module=run_module, dtype=dtype) def test_fuse_pad_avg_pool(run_module, dtype="float32"): def get_graph(): data_shape = (1, 768, 17, 17) x = relay.var("x", shape=data_shape, dtype=dtype) out = relay.nn.pad(x, pad_width=[[0, 0], [0, 0], [1, 1], [1, 1]]) out = relay.nn.avg_pool2d(out, pool_size=[3, 3]) dic = {"x": data_shape} param_lst = [] return out, dic, param_lst net, dic, param_lst = get_graph() net = tvm.IRModule.from_expr(net) config = net, dic, param_lst run_and_verify_func(config, run_module=run_module, dtype=dtype) def permute_shape(shape, l_from="", l_to=""): res_shape = [] for label in l_to: pos = l_from.find(label) res_shape.append(shape[pos]) return res_shape def expand_dim(shape, rank=0): assert len(shape) == 1 return shape + [1] * (rank - 1) def filler_uni(low=0, high=1): def filler_func(shape): return np.random.uniform(low, high, shape) return filler_func class QnnBuilder: def __init__(self, qnn_profile=None): self._args = {} self._args_op = [] self._qp = qnn_profile def arg(self, shape=[], dtype="float32", filler=filler_uni(), is_const=True): if isinstance(filler, (int, float)): value = np.full(shape, filler).astype(dtype) else: value = filler(shape).astype(dtype) if is_const: res = relay.const(value, dtype=dtype) else: name = f"in_{len(self._args)}" res = relay.var(name, shape=shape, dtype=dtype) self._args[name] = value self._args_op.append(res) return res def make_zp(self, mean_val, num_ch=1, dispersion=0.2): if num_ch == 1: return self.arg(shape=[], dtype="int32", filler=mean_val) else: low = int(mean_val * (1 - dispersion)) high = int(mean_val * (1 + dispersion)) return self.arg(shape=[num_ch], dtype="int32", filler=filler_uni(low, high)) def make_scl(self, mean_val, num_ch=1, dispersion=0.2): if num_ch == 1: return self.arg(shape=[], dtype="float32", filler=mean_val) else: low = mean_val * (1 - dispersion) high = mean_val * (1 + dispersion) return self.arg(shape=[num_ch], dtype="float32", filler=filler_uni(low, high)) def make_zp_and_scl(self, name, num_ch=1, dispersion=0.2): is_per_channel = getattr(self._qp, f"{name}_pc") zp_val = getattr(self._qp, f"{name}_zp") scl_val = getattr(self._qp, f"{name}_scl") zp = self.make_zp(zp_val, num_ch if is_per_channel else 1, dispersion) scl = self.make_scl(scl_val, num_ch if is_per_channel else 1, dispersion) return zp, scl def finalize(self, op): func = relay.Function(self._args_op, op) mod = tvm.IRModule.from_expr(func) mod = relay.transform.InferType()(mod) return mod, self._args def check_fully_annotated(mod, desired_compiler): matched_ops = [] other_ops = [] def _visit(node): if isinstance(node, tvm.relay.Call): op = node.op if isinstance(op, relay.GlobalVar): func = mod[op] if "Compiler" in func.attrs and func.attrs["Compiler"] == desired_compiler: matched_ops.append(op) return else: other_ops.append(op) tvm.relay.analysis.post_order_visit(mod["main"].body, _visit) assert len(other_ops) == 0 and len(matched_ops) != 0, "Model is not fully Tachikoma compiled" def check_result( mod, ref_mod, map_inputs, tol=1e-5, target="llvm", device=tvm.cpu(), params=None, ref_result=None, atol=None, desired_compiler="tachikoma", ): if atol is None: atol = tol if desired_compiler is not None: check_fully_annotated(mod, desired_compiler) if ref_result is None: # Run the reference result relay.backend.te_compiler.get().clear() with tvm.transform.PassContext(opt_level=3): ref_lib = relay.build(ref_mod, target=target, params=params) ref_rt_mod = tvm.contrib.graph_executor.GraphModule(ref_lib["default"](device)) for name, data in map_inputs.items(): ref_rt_mod.set_input(name, data) ref_rt_mod.run() out = ref_rt_mod.get_output(0) ref_result = out.numpy() def check_vm_result(): relay.backend.te_compiler.get().clear() with tvm.transform.PassContext(opt_level=3): exe = relay.vm.compile(mod, target=target, params=params) code, lib = exe.save() exe = tvm.runtime.vm.Executable.load_exec(code, lib) vm = tvm.runtime.vm.VirtualMachine(exe, device) output = vm.run(**map_inputs) tvm.testing.assert_allclose(output.numpy(), ref_result, rtol=tol, atol=atol) def check_graph_executor_result(): relay.backend.te_compiler.get().clear() with tvm.transform.PassContext(opt_level=3): lib = relay.build(mod, target=target, params=params) rt_mod = tvm.contrib.graph_executor.GraphModule(lib["default"](device)) rt_mod.run(**map_inputs) output = rt_mod.get_output(0) tvm.testing.assert_allclose(output.numpy(), ref_result, rtol=tol, atol=atol) check_vm_result() check_graph_executor_result() ConvProfile = collections.namedtuple( "ConvProfile", [ "SHAPE", "KER", "STR", "PAD", "DEL", "OC", "GR", "D_LAYOUT", "K_LAYOUT", ], ) base_conv = ConvProfile( SHAPE=[1, 8, 5, 5], KER=[3, 3], STR=[1, 1], PAD=[1, 1], DEL=[1, 1], OC=16, GR=1, D_LAYOUT="NCHW", K_LAYOUT="OIHW", ) base_conv_nhwc = base_conv._replace(D_LAYOUT="NHWC", K_LAYOUT="HWIO") base_conv_dilated = base_conv._replace(PAD=[2, 2], DEL=[2, 2]) base_conv_no_pad = base_conv._replace(PAD=[0, 0]) base_conv_no_pad_nhwc = base_conv_no_pad._replace(D_LAYOUT="NHWC", K_LAYOUT="HWIO") base_conv_group_no_pad = base_conv_no_pad._replace(GR=2) base_conv_dw_no_pad = base_conv_no_pad._replace(SHAPE=[1, 16, 5, 5], GR=16) DenseProfile = collections.namedtuple("DenseProfile", ["N", "IC", "OC"]) base_dense_profile = DenseProfile(N=2, IC=10, OC=16) ArgConstConfig = collections.namedtuple("ArgConstConfig", ["Data", "Weights", "Bias", "Sum"]) acp_regular = ArgConstConfig(Data=False, Weights=True, Bias=True, Sum=None) acp_no_bias = ArgConstConfig(Data=False, Weights=True, Bias=None, Sum=None) acp_with_sum = ArgConstConfig(Data=False, Weights=True, Bias=True, Sum=False) acp_no_bias_with_sum = ArgConstConfig(Data=False, Weights=True, Bias=None, Sum=False) QuantizationConfig = collections.namedtuple( "QuantizationConfig", [ "d_zp", "d_scl", "d_pc", "k_zp", "k_scl", "k_pc", "rq_zp", "rq_scl", "rq_pc", "sum_zp", "sum_scl", "sum_pc", "o_zp", "o_scl", "o_pc", ], ) qp_regular = QuantizationConfig( d_zp=0, d_scl=0.2, d_pc=False, k_zp=0, k_scl=0.1, k_pc=False, rq_zp=30, rq_scl=0.2, rq_pc=False, sum_zp=15, sum_scl=0.3, sum_pc=False, o_zp=5, o_scl=0.2, o_pc=False, ) qp_asymmetric_data = qp_regular._replace( d_zp=3, rq_zp=10, rq_scl=0.1, sum_zp=15, sum_scl=0.3, o_zp=4 ) qnn_conv_profiles = tvm.testing.parameter( by_dict={ # Pattern qnn.conv2d + qnn.requantize "Base": (base_conv, acp_regular, qp_regular), "NHWC": (base_conv_nhwc, acp_regular, qp_regular), # Asymmetric input. NOTE: No pad! Input ZP is not compatible with padding "Group": (base_conv_group_no_pad, acp_regular, qp_asymmetric_data), "DW": (base_conv_dw_no_pad, acp_regular, qp_asymmetric_data), "NoBias": (base_conv, acp_no_bias, qp_regular), "AsymmetricInput": (base_conv_no_pad, acp_regular, qp_asymmetric_data), "AsymmetricInput_NHWC": (base_conv_no_pad_nhwc, acp_regular, qp_asymmetric_data), # Pattern Conv2d + Requantize + Sum "WithSum": (base_conv_no_pad, acp_with_sum, qp_asymmetric_data), "WithSum_NHWC": (base_conv_no_pad_nhwc, acp_with_sum, qp_asymmetric_data), "WithSum_NoBias": (base_conv_no_pad, acp_no_bias_with_sum, qp_asymmetric_data), } ) @has_tachikoma_codegen def test_qnn_conv2d(qnn_conv_profiles): def generate_model(p, c, q): np.random.seed(0) N, IC, IH, IW = p.SHAPE d_shape = p.SHAPE w_shape = [p.OC, IC, *p.KER] b_shape = [p.OC] s_shape = [ p.SHAPE[0], p.OC, (IH + 2 * p.PAD[0] - (p.KER[0] - 1) * p.DEL[0] - 1) // p.STR[0] + 1, (IW + 2 * p.PAD[1] - (p.KER[1] - 1) * p.DEL[1] - 1) // p.STR[1] + 1, ] if p.GR != 1: w_shape[1] //= p.GR d_shape = permute_shape(d_shape, l_from="NCHW", l_to=p.D_LAYOUT) s_shape = permute_shape(s_shape, l_from="NCHW", l_to=p.D_LAYOUT) w_shape = permute_shape(w_shape, l_from="OIHW", l_to=p.K_LAYOUT) c_dim = p.D_LAYOUT.find("C") b_shape = expand_dim(b_shape, rank=len(p.D_LAYOUT) - c_dim) bld = QnnBuilder(qnn_profile=q) # Start build a test graph data = bld.arg(shape=d_shape, dtype="uint8", is_const=c.Data, filler=filler_uni(0, 20)) d_zp, d_scl = bld.make_zp_and_scl("d", IC) # Convolution wgh = bld.arg(shape=w_shape, dtype="int8", is_const=c.Weights, filler=filler_uni(-20, 20)) w_zp, w_scl = bld.make_zp_and_scl("k") op = tvm.relay.qnn.op.conv2d( data, wgh, d_zp, w_zp, d_scl, w_scl, kernel_size=p.KER, padding=p.PAD, strides=p.STR, dilation=p.DEL, groups=p.GR, channels=p.OC, out_dtype="int32", data_layout=p.D_LAYOUT, kernel_layout=p.K_LAYOUT, ) # Optional bias if c.Bias is not None: bias = bld.arg( shape=b_shape, dtype="int32", is_const=c.Bias, filler=filler_uni(-50, 50) ) op = tvm.relay.add(op, bias) # Re-quantization rq_in_zp = bld.make_zp(0) rq_in_scl = bld.make_scl(q.d_scl * q.k_scl) # in real cases that should be a vector rq_out_zp, rq_out_scl = bld.make_zp_and_scl("rq") op = tvm.relay.qnn.op.requantize( op, rq_in_scl, rq_in_zp, rq_out_scl, rq_out_zp, out_dtype="int32" ) op = tvm.relay.clip( op, a_min=0.0, a_max=255.0 ) # pytorch frontend specific, I guess it's redundant op = tvm.relay.cast(op, dtype="uint8") # Optional sum (ResNet like) if c.Sum is not None: sum_in = bld.arg(dtype="uint8", shape=s_shape, filler=filler_uni(0, 10), is_const=c.Sum) lhs_zp, lhs_scl = bld.make_zp_and_scl("rq") rhs_zp, rhs_scl = bld.make_zp_and_scl("sum") out_zp, out_scl = bld.make_zp_and_scl("o") op = tvm.relay.qnn.op.add(op, sum_in, lhs_scl, lhs_zp, rhs_scl, rhs_zp, out_scl, out_zp) op = tvm.relay.clip(op, a_min=0.0, a_max=255.0) return bld.finalize(op) conv_p, arg_p, quant_p = qnn_conv_profiles ref_mod, args = generate_model(conv_p, arg_p, quant_p) mod = partition_for_tachikoma(ref_mod) # atol=1 means int values should match with +-1 quantum value tolerance check_result(mod, ref_mod, args, tol=1e-10, atol=1, desired_compiler="tachikoma") conv_profiles = tvm.testing.parameter( by_dict={ "Base": (base_conv, acp_regular), "NHWC": (base_conv_nhwc, acp_regular), "Group": (base_conv_group_no_pad, acp_regular), "DW": (base_conv_dw_no_pad, acp_regular), "Dilated": (base_conv_dilated, acp_regular), } ) @has_tachikoma_codegen def test_conv2d_plus(conv_profiles): def generate_model(p, c): np.random.seed(0) N, IC, IH, IW = p.SHAPE d_shape = p.SHAPE w_shape = [p.OC, IC, *p.KER] b_shape = [p.OC] s_shape = [ p.SHAPE[0], p.OC, (IH + 2 * p.PAD[0] - (p.KER[0] - 1) * p.DEL[0] - 1) // p.STR[0] + 1, (IW + 2 * p.PAD[1] - (p.KER[1] - 1) * p.DEL[1] - 1) // p.STR[1] + 1, ] if p.GR != 1: w_shape[1] //= p.GR d_shape = permute_shape(d_shape, l_from="NCHW", l_to=p.D_LAYOUT) s_shape = permute_shape(s_shape, l_from="NCHW", l_to=p.D_LAYOUT) w_shape = permute_shape(w_shape, l_from="OIHW", l_to=p.K_LAYOUT) c_dim = p.D_LAYOUT.find("C") # b_shape = expand_dim(b_shape, rank=len(p.D_LAYOUT) - c_dim) bld = QnnBuilder() op = bld.arg(shape=d_shape, dtype="float32", is_const=c.Data) wgh = bld.arg(shape=w_shape, dtype="float32", is_const=c.Weights) op = tvm.relay.nn.conv2d( op, wgh, kernel_size=p.KER, padding=p.PAD, strides=p.STR, dilation=p.DEL, groups=p.GR, channels=p.OC, out_dtype="float32", data_layout=p.D_LAYOUT, kernel_layout=p.K_LAYOUT, ) if c.Bias is not None: bias = bld.arg(shape=b_shape, dtype="float32", is_const=c.Bias) op = tvm.relay.nn.bias_add(op, bias, axis=c_dim) if c.Sum is not None: sum_in = bld.arg(shape=s_shape, dtype="float32", is_const=c.Sum) op = tvm.relay.op.add(op, sum_in) return bld.finalize(op) conv_p, arg_p = conv_profiles ref_mod, args = generate_model(conv_p, arg_p) mod = partition_for_tachikoma(ref_mod, alter_layout=False) check_result(mod, ref_mod, args, tol=1e-5, desired_compiler="tachikoma") qnn_dense_profiles = tvm.testing.parameter( by_dict={ # Pattern Dense + Requantize "Base": (base_dense_profile, acp_regular, qp_regular), "AsymmetricInput": (base_dense_profile, acp_regular, qp_asymmetric_data), # Pattern Dense + Requantize + Sum "AsymmetricInput_Sum": (base_dense_profile, acp_with_sum, qp_asymmetric_data), } ) @has_tachikoma_codegen def test_qnn_dense(qnn_dense_profiles): def generate_model(p, c, q): np.random.seed(0) d_shape = [p.N, p.IC] w_shape = [p.OC, p.IC] b_shape = [p.OC] s_shape = [p.N, p.OC] bld = QnnBuilder(qnn_profile=q) # Start build a test graph data = bld.arg(shape=d_shape, dtype="uint8", is_const=c.Data, filler=filler_uni(0, 20)) d_zp, d_scl = bld.make_zp_and_scl("d", p.IC) # Convolution wgh = bld.arg(shape=w_shape, dtype="int8", is_const=c.Weights, filler=filler_uni(-20, 20)) w_zp, w_scl = bld.make_zp_and_scl("k") op = tvm.relay.qnn.op.dense( data, wgh, d_zp, w_zp, d_scl, w_scl, units=p.OC, out_dtype="int32" ) # Optional bias if c.Bias is not None: bias = bld.arg( shape=b_shape, dtype="int32", is_const=c.Bias, filler=filler_uni(-50, 50) ) op = tvm.relay.add(op, bias) # Re-quantization rq_in_zp = bld.make_zp(0) rq_in_scl = bld.make_scl(q.d_scl * q.k_scl) # in real cases that should be a vector rq_out_zp, rq_out_scl = bld.make_zp_and_scl("rq") op = tvm.relay.qnn.op.requantize( op, rq_in_scl, rq_in_zp, rq_out_scl, rq_out_zp, out_dtype="int32" ) op = tvm.relay.clip( op, a_min=0.0, a_max=255.0 ) # pytorch frontend specific, I guess it's redundant op = tvm.relay.cast(op, dtype="uint8") # Optional sum (ResNet like) if c.Sum is not None: sum_in = bld.arg(dtype="uint8", shape=s_shape, filler=filler_uni(0, 10), is_const=c.Sum) lhs_zp, lhs_scl = bld.make_zp_and_scl("rq") rhs_zp, rhs_scl = bld.make_zp_and_scl("sum") out_zp, out_scl = bld.make_zp_and_scl("o") op = tvm.relay.qnn.op.add(op, sum_in, lhs_scl, lhs_zp, rhs_scl, rhs_zp, out_scl, out_zp) op = tvm.relay.clip(op, a_min=0.0, a_max=255.0) return bld.finalize(op) conv_p, arg_p, quant_p = qnn_dense_profiles ref_mod, args = generate_model(conv_p, arg_p, quant_p) mod = partition_for_tachikoma(ref_mod) # atol=1 means int values should match with +-1 quantum value tolerance check_result(mod, ref_mod, args, tol=1e-10, atol=1, desired_compiler="tachikoma") dense_profiles = tvm.testing.parameter( by_dict={ "Base": (base_dense_profile, acp_regular), "WithSum": (base_dense_profile, acp_with_sum), } ) @has_tachikoma_codegen def test_dense_plus(dense_profiles): def generate_model(p, c): np.random.seed(0) d_shape = [p.N, p.IC] w_shape = [p.OC, p.IC] b_shape = [p.OC] s_shape = [p.N, p.OC] c_dim = 1 bld = QnnBuilder() op = bld.arg(shape=d_shape, dtype="float32", is_const=c.Data) wgh = bld.arg(shape=w_shape, dtype="float32", is_const=c.Weights) op = tvm.relay.nn.dense(op, wgh, out_dtype="float32") if c.Bias is not None: bias = bld.arg(shape=b_shape, dtype="float32", is_const=c.Bias) op = tvm.relay.nn.bias_add(op, bias, axis=c_dim) if c.Sum is not None: sum_in = bld.arg(shape=s_shape, dtype="float32", is_const=c.Sum) op = tvm.relay.op.add(op, sum_in) return bld.finalize(op) dense_p, arg_p = dense_profiles ref_mod, args = generate_model(dense_p, arg_p) mod = partition_for_tachikoma(ref_mod) check_result(mod, ref_mod, args, tol=1e-5, desired_compiler="tachikoma") if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/contrib/test_tedd.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import re from tvm import te from tvm import topi def findany(pattern, str): matches = re.findall(pattern, str) assert len(matches) > 0, "Pattern not found.\nPattern: " + pattern + "\nString: " + str def checkdependency(): import pkg_resources return not {"graphviz", "ipython"} - {pkg.key for pkg in pkg_resources.working_set} def test_dfg(): A = te.placeholder((1024, 4096), dtype="float32", name="A") B = topi.nn.softmax(A) # confirm lower works s = te.create_schedule([B.op]) def verify(): from tvm.contrib import tedd str = tedd.viz_dataflow_graph(s, False, "", True) # Check all edges are available findany(r"digraph \"Dataflow Graph\"", str) findany(r"Stage_0:O_0 -> Tensor_0_0", str) findany(r"Tensor_0_0 -> Stage_1:I_0", str) findany(r"Stage_1:O_0 -> Tensor_1_0", str) findany(r"Tensor_0_0 -> Stage_2:I_0", str) findany(r"Tensor_1_0 -> Stage_2:I_1", str) findany(r"Stage_2:O_0 -> Tensor_2_0", str) findany(r"Tensor_2_0 -> Stage_3:I_0", str) findany(r"Stage_3:O_0 -> Tensor_3_0", str) findany(r"Tensor_2_0 -> Stage_4:I_0", str) findany(r"Tensor_3_0 -> Stage_4:I_1", str) findany(r"Stage_4:O_0 -> Tensor_4_0", str) if checkdependency(): verify() def test_itervar_relationship_graph(): n = te.var("n") m = te.var("m") A = te.placeholder((n, m), name="A") k = te.reduce_axis((0, m), "k") B = te.compute((n,), lambda i: te.sum(A[i, k], axis=k), name="B") s = te.create_schedule(B.op) s[B].split(B.op.reduce_axis[0], factor=16) def verify(): from tvm.contrib import tedd str = tedd.viz_itervar_relationship_graph(s, False, "", True) findany(r"digraph \"IterVar Relationship Graph\"", str) findany(r"subgraph cluster_legend", str) # Check subgraphs for stages findany(r"subgraph cluster_Stage_0", str) findany(r"subgraph cluster_Stage_1", str) # Check itervars and their types findany(r"\(kDataPar\)\<br/\>range\(min=0, ext=n\)", str) findany(r"\(kCommReduce\)\<br/\>range\(min=0, ext=m\)", str) # Check the split node findany(r"Split_Relation_1_0 +.+\>Split", str) # Check all edges to/from the split node findany(r"IterVar_1_1:itervar -> Split_Relation_1_0:Input", str) findany(r"Split_Relation_1_0:Outer -> IterVar_1_2:itervar", str) findany(r"Split_Relation_1_0:Inner -> IterVar_1_3:itervar", str) if checkdependency(): verify() def test_schedule_tree(): block_x = te.thread_axis("blockIdx.x") thread_x = te.thread_axis("threadIdx.x") n = te.var("n") m = te.var("m") l = te.var("l") A = te.placeholder((n, m, l), name="A") B = te.compute((n, m, l), lambda bi, bj, bk: A[bi, bj, bk] + 1, name="B") r = te.reduce_axis((0, m), "r") C = te.compute( ( n, m, ), lambda ci, cj: te.sum(B[ci, cj, r], axis=r), name="C", ) s = te.create_schedule(C.op) s.cache_read(A, "shared", [B]) s[B].vectorize(B.op.axis[-1]) s[C].reorder(C.op.reduce_axis[0], C.op.axis[0]) _, ki = s[C].split(C.op.reduce_axis[0], factor=16) Cr = s.rfactor(C, ki) s[Cr].compute_at(s[C], s[C].op.axis[-1]) s[C].bind(s[C].op.axis[0], block_x) s[C].bind(s[C].op.axis[1], thread_x) def verify(): from tvm.contrib import tedd str = tedd.viz_schedule_tree(s, False, "", True) findany(r"digraph \"Schedule Tree\"", str) findany(r"subgraph cluster_legend", str) # Check the A_shared stage, including memory scope, itervars, # and compute findany( r"Stage_1.*A\.shared<br/>Scope: shared.+>0.+>" r"ax0.*\(kDataPar\).+>1.+ax1.*\(kDataPar\).+>2.+>ax2.*\(kDataPar\).+>" r"\[A[\[\(]ax0, ax1, ax2[\)\]]\]", str, ) # Check itervars of types different from KDataPar findany(r"bk.*\(kVectorized\)", str) findany(r"r.outer.*\(kCommReduce\)", str) findany(r"label=ROOT", str) # Check the compute_at edge findany(r"Stage_1.*\[color\=\"\#000000\"\]", str) if checkdependency(): verify() if __name__ == "__main__": test_dfg() test_itervar_relationship_graph() test_schedule_tree()
https://github.com/zk-ml/tachikoma
tests/python/contrib/test_tensorrt.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import numpy as np import pytest import itertools import logging from typing import Tuple try: # See issue #9362. import torch except: pass import tvm import tvm.testing import tvm.relay.testing from tvm import relay from tvm.relay import Any, GlobalVar from tvm.relay.expr_functor import ExprVisitor from tvm.contrib.download import download from tvm.relay.op.contrib import tensorrt SUPPORTED_DTYPES = ["float16", "float32"] has_tensorrt_codegen = pytest.mark.skipif( not tensorrt.is_tensorrt_compiler_enabled(), reason="TensorRT codegen not available" ) # CAUTION: Currently always false in CI since adds tens of minutes to test time and depends # on TensorRT installation. See https://github.com/apache/tvm/issues/11765 has_tensorrt_runtime = pytest.mark.skipif( not tensorrt.is_tensorrt_runtime_enabled(), reason="TensorRT runtime not available" ) run_module = tvm.testing.parameter( pytest.param(False, marks=[has_tensorrt_codegen, *tvm.testing.requires_cuda.marks()]), pytest.param( True, marks=[has_tensorrt_runtime, has_tensorrt_codegen, *tvm.testing.requires_cuda.marks()] ), ids=["compile", "run"], ) def vmobj_to_list(o): if isinstance(o, tvm.nd.NDArray): return [o.numpy()] elif isinstance(o, tvm.runtime.container.ADT) or isinstance(o, list): return [vmobj_to_list(f) for f in o] else: raise RuntimeError("Unknown object type: %s" % type(o)) def assert_result_dict_holds(result_dict, dtype="float16"): for k1, k2 in itertools.combinations(result_dict, 2): res1 = vmobj_to_list(result_dict[k1]) res2 = vmobj_to_list(result_dict[k2]) for r1, r2 in zip(res1, res2): if dtype == "float16": tvm.testing.assert_allclose(r1, r2, rtol=1e-1, atol=1e-1) else: tvm.testing.assert_allclose(r1, r2, rtol=1e-3, atol=5e-3) def set_outer_func_attr(func, compile_name, symbol_name): func = func.with_attr("Primitive", tvm.tir.IntImm("int32", 1)) func = func.with_attr("Inline", tvm.tir.IntImm("int32", 1)) func = func.with_attr("Compiler", compile_name) func = func.with_attr("global_symbol", symbol_name) return func def set_inner_func_attr(func, pattern_name, composite_name): func = func.with_attr("PartitionedFromPattern", pattern_name) func = func.with_attr("Composite", composite_name) return func def run_and_verify_func(config, target="cuda", run_module=True, data_type="float32"): """Test a Relay func by compiling, running, and comparing TVM and TRT outputs. Parameters ---------- config : Tuple[relay.Function, Dict[str, NDArray], List[str]] A tuple containing 1) The function to test, 2) A dictionary of var names to input shapes and 3) A list of which vars should be considered params. run_module: bool If True, the built module will be run after being compiled. data_type: str Check between single and double floating precision """ np.random.seed(42) f, input_shapes, is_param = config params = { x: np.random.uniform(-1, 1, input_shapes[x]).astype(dtype=data_type) for x in is_param } input_dict = { k: np.random.uniform(-1, 1, v).astype(dtype=data_type) for k, v in input_shapes.items() if k not in is_param } dev = tvm.device(target) result_dict = dict() for mode in ["vm", "graph"]: for use_trt in [True, False]: mod = tvm.IRModule() mod["main"] = f result_key = mode + ("_trt" if use_trt else "") if use_trt: use_fp16 = data_type == "float16" trt_target = tvm.target.Target(f"tensorrt -use_fp16={use_fp16}") mod = relay.transform.InferType()(mod) mod = tensorrt.partition_for_tensorrt(mod, params=params, target=trt_target) with tvm.transform.PassContext(opt_level=3): func = relay.create_executor( mode, mod=mod, device=dev, target=[target, trt_target] ).evaluate() else: mod = relay.transform.InferType()(mod) with tvm.transform.PassContext(opt_level=3): func = relay.create_executor( mode, mod=mod, device=dev, target=target ).evaluate() if run_module: result_dict[result_key] = func(**input_dict, **params) if run_module: assert_result_dict_holds(result_dict, data_type) def test_tensorrt_simple(run_module): for dtype in SUPPORTED_DTYPES: xshape = (1, 3, 2, 2) yshape = (1, 3, 1, 1) zshape = (1, 1, 1, 1) x = relay.var("x", shape=(xshape), dtype=dtype) y = relay.var("y", shape=(yshape), dtype=dtype) z = relay.var("z", shape=(zshape), dtype=dtype) w = z * (x + y) out = relay.nn.relu(w) f = relay.Function([x, y, z], out) x_data = np.random.uniform(-1, 1, xshape).astype(dtype) y_data = np.random.uniform(-1, 1, yshape).astype(dtype) z_data = np.random.uniform(-1, 1, zshape).astype(dtype) result_dict = dict() for mode in ["vm", "graph"]: for use_trt in [False, True]: mod = tvm.IRModule() mod["main"] = f result_key = mode + ("_trt" if use_trt else "") if use_trt: mod = relay.transform.InferType()(mod) mod = tensorrt.partition_for_tensorrt(mod) with tvm.transform.PassContext(opt_level=3): func = relay.create_executor( mode, mod=mod, device=tvm.cuda(0), target="cuda" ).evaluate() else: mod = relay.transform.InferType()(mod) with tvm.transform.PassContext(opt_level=3): func = relay.create_executor( mode, mod=mod, device=tvm.cuda(0), target="cuda" ).evaluate() if run_module: result_dict[result_key] = func(x_data, y_data, z_data) if run_module: assert_result_dict_holds(result_dict) def test_tensorrt_simple_cpu_io(run_module): def get_graph(): dtype = "float32" x_shape = (1, 3, 2, 2) y_shape = (1, 3, 1, 1) z_shape = (1, 1, 1, 1) x = relay.var("x", shape=(x_shape), dtype=dtype) y = relay.var("y", shape=(y_shape), dtype=dtype) z = relay.var("z", shape=(z_shape), dtype=dtype) w = z * (x + y) out = relay.nn.relu(w) f = relay.Function([x, y, z], out) return f, {"x": x_shape, "y": y_shape, "z": z_shape}, ["y"] run_and_verify_func(get_graph(), target="llvm", run_module=run_module) def test_tensorrt_not_compatible(run_module): dtype = "float32" xshape = (1, 32, 14, 14) x_data = np.random.uniform(-1, 1, xshape).astype(dtype) x = relay.var("x", shape=(xshape), dtype=dtype) y = relay.add(x, x) z = relay.cast(relay.cast(y, "int32"), "float32") out = relay.nn.relu(z) f = relay.Function([x], out) mod = tvm.IRModule() mod["main"] = f mod = tensorrt.partition_for_tensorrt(mod) for mode in ["graph", "vm"]: with tvm.transform.PassContext(opt_level=3): func = relay.create_executor( mode, mod=mod, device=tvm.cuda(0), target="cuda" ).evaluate() if run_module: results = func(x_data) def test_conv1d(run_module): def get_graph( x_shape=((1, 3, 224)), k_shape=(10, 3, 3), groups=1, padding=(1, 1), strides=(1), dilation=(1), channels=None, d_type="float16", ): x = relay.var("x", shape=(x_shape), dtype=d_type) kernel = relay.var("kernel", shape=(k_shape), dtype=d_type) out = relay.nn.conv1d( x, kernel, kernel_size=k_shape[2:3], groups=groups, padding=padding, strides=strides, dilation=dilation, channels=channels, out_dtype="float16", ) f = relay.Function([x, kernel], out) return f, {"x": x_shape, "kernel": k_shape}, ["kernel"] for d_type in ["float16"]: run_and_verify_func( get_graph(channels=10, d_type=d_type), run_module=run_module, data_type=d_type ) def test_conv2d(run_module): def get_graph( x_shape=(1, 32, 8, 8), k_shape=(16, 32, 3, 3), groups=1, padding=(0, 0), strides=(1, 1), dilation=(1, 1), channels=None, data_type="float16", ): x = relay.var("x", shape=(x_shape), dtype=data_type) kernel = relay.var("kernel", shape=(k_shape), dtype=data_type) out = relay.nn.conv2d( x, kernel, kernel_size=k_shape[2:4], groups=groups, padding=padding, strides=strides, dilation=dilation, channels=channels, out_dtype=data_type, ) f = relay.Function([x, kernel], out) return f, {"x": x_shape, "kernel": k_shape}, ["kernel"] for k_shape, groups in [((16, 32, 3, 3), 1), ((32, 1, 3, 3), 32)]: for padding in [(0, 0), (1, 1)]: for strides in [(1, 1), (2, 2)]: for dilation in [(1, 1), (2, 2)]: run_and_verify_func( get_graph( k_shape=k_shape, groups=groups, padding=padding, strides=strides, dilation=dilation, ), run_module=run_module, data_type="float16", ) run_and_verify_func( get_graph( (1, 3, 16, 16), (3, 8, 7, 7), 3, [2, 2, 3, 3], [2, 2], [1, 1], 24, data_type="float16" ), run_module=run_module, data_type="float16", ) run_and_verify_func( get_graph((1, 3, 16, 16), (1, 3, 1, 1), channels=1, data_type="float32"), run_module=run_module, data_type="float32", ) def test_conv2d_nhwc(run_module): def get_graph(x_shape=(1, 8, 8, 32), k_shape=(3, 3, 32, 16)): x = relay.var("x", shape=(x_shape), dtype="float32") kernel = relay.var("kernel", shape=(k_shape), dtype="float32") out = relay.nn.conv2d( x, kernel, channels=16, kernel_size=(3, 3), data_layout="NHWC", kernel_layout="HWIO" ) f = relay.Function([x, kernel], out) return f, {"x": x_shape, "kernel": k_shape}, ["kernel"] run_and_verify_func(get_graph(), run_module=run_module) def test_conv2d_weights_const(run_module): def get_graph( x_shape=(1, 32, 8, 8), k_shape=(16, 32, 3, 3), groups=1, padding=(0, 0), strides=(1, 1), dilation=(1, 1), data_type="float16", ): x = relay.var("x", shape=(x_shape), dtype=data_type) kernel = relay.const(np.ones(k_shape).astype(dtype=data_type)) out = relay.nn.conv2d( x, kernel, channels=k_shape[0], kernel_size=k_shape[2:4], groups=groups, padding=padding, strides=strides, dilation=dilation, ) f = relay.Function([x], out) return f, {"x": x_shape}, [] for tp in ["float16"]: run_and_verify_func(get_graph(data_type=tp), run_module=run_module, data_type=tp) def test_conv2d_weights_transposed(run_module): def get_graph(x_shape=(1, 32, 9, 9), k_shape=(3, 3, 32, 16), order=(3, 2, 0, 1)): x = relay.var("x", shape=(x_shape), dtype="float32") kernel = relay.var("kernel", shape=(k_shape), dtype="float32") kernel_t = relay.transpose(kernel, order) # Conv2d requires constant weights in TensorRT, so the weights should be transposed by # FoldConstant. out = relay.nn.conv2d(x, kernel_t, channels=k_shape[order[0]], kernel_size=(3, 3)) f = relay.Function([x, kernel], out) return f, {"x": x_shape, "kernel": k_shape}, ["kernel"] run_and_verify_func(get_graph(), run_module=run_module) def test_dense(run_module): def get_graph(x_shape=(1, 16), k_shape=(32, 16), dtp="float16"): x = relay.var("x", shape=(x_shape), dtype=dtp) kernel = relay.var("kernel", shape=(k_shape), dtype=dtp) # Dense requires constant weights in TensorRT, so the weights are transposed by us. out = relay.nn.dense(x, kernel, units=k_shape[0]) f = relay.Function([x, kernel], out) return f, {"x": x_shape, "kernel": k_shape}, ["kernel"] for tp in ["float32"]: run_and_verify_func(get_graph(dtp=tp), run_module=run_module, data_type=tp) run_and_verify_func(get_graph(k_shape=(1, 16), dtp=tp), run_module=run_module, data_type=tp) def test_batch_matmul(run_module): def get_graph(x_shape=(12, 128, 64), y_shape=(12, 128, 64), transa=False, transb=True): x = relay.var("x", shape=(x_shape), dtype="float32") y = relay.var("y", shape=(y_shape), dtype="float32") out = relay.nn.batch_matmul(x, y, transpose_a=transa, transpose_b=transb) f = relay.Function([x, y], out) return f, {"x": x_shape, "y": y_shape}, [] run_and_verify_func( get_graph(x_shape=(12, 64, 128), y_shape=(12, 128, 64), transa=True, transb=True), run_module=run_module, ) run_and_verify_func( get_graph(x_shape=(12, 64, 128), y_shape=(12, 64, 128), transa=True, transb=False), run_module=run_module, ) run_and_verify_func( get_graph(x_shape=(12, 128, 64), y_shape=(12, 128, 64), transa=False, transb=True), run_module=run_module, ) run_and_verify_func( get_graph(x_shape=(12, 128, 64), y_shape=(12, 64, 128), transa=False, transb=False), run_module=run_module, ) def test_bias_add(run_module): def get_graph(x_shape=(1, 16), channels=16): x = relay.var("x", shape=(x_shape), dtype="float32") bias = relay.var("bias", shape=(channels,), dtype="float32") out = relay.nn.bias_add(x, bias) f = relay.Function([x, bias], out) return f, {"x": x_shape, "bias": (channels,)}, ["bias"] run_and_verify_func(get_graph(), run_module=run_module) run_and_verify_func(get_graph((1, 6, 3, 4), 6), run_module=run_module) def test_pool2d(run_module): def get_graph( op, x_shape=(1, 3, 32, 32), pool_size=(2, 2), strides=(2, 2), padding=(0, 0), ceil_mode=False, count_include_pad=None, ): x = relay.var("x", shape=(x_shape), dtype="float32") if count_include_pad is not None: out = op( x, pool_size=pool_size, strides=strides, padding=padding, ceil_mode=ceil_mode, count_include_pad=count_include_pad, ) else: out = op(x, pool_size=pool_size, strides=strides, padding=padding, ceil_mode=ceil_mode) f = relay.Function([x], out) return f, {"x": x_shape}, [] for pool_size in [(2, 2), (3, 3)]: for strides in [(1, 1), (2, 2)]: for padding in [(0, 0), (1, 1), (0, 0, 1, 1)]: for ceil_mode in [False, True]: # Skip "the padding size is larger than or equal to the filter size for exclusive-counting pooling" if pool_size == (2, 2) and padding == (0, 0, 1, 1): continue for count_include_pad in [False, True]: # Skip "inclusive-counted blended or average pooling is not supported in combination with asymmetric padding" if count_include_pad and (padding == (0, 0, 1, 1) or strides == (2, 2)): continue run_and_verify_func( get_graph( relay.nn.avg_pool2d, pool_size=pool_size, strides=strides, padding=padding, ceil_mode=ceil_mode, count_include_pad=count_include_pad, ), run_module=run_module, ) run_and_verify_func( get_graph( relay.nn.max_pool2d, pool_size=pool_size, strides=strides, padding=padding, ceil_mode=ceil_mode, ), run_module=run_module, ) def test_global_pool2d(run_module): def get_graph(op, x_shape=(1, 3, 32, 32)): x = relay.var("x", shape=(x_shape), dtype="float32") out = op(x) f = relay.Function([x], out) return f, {"x": x_shape}, [] run_and_verify_func(get_graph(relay.nn.global_max_pool2d), run_module=run_module) run_and_verify_func(get_graph(relay.nn.global_avg_pool2d), run_module=run_module) def test_batch_flatten(run_module): def get_graph(x_shape=(1, 3, 4, 6), data_type="float16"): x = relay.var("x", shape=(x_shape), dtype=data_type) out = relay.nn.batch_flatten(x) f = relay.Function([x], out) return f, {"x": x_shape}, [] for dtp in ["float16", "float32"]: run_and_verify_func(get_graph(data_type=dtp), run_module=run_module, data_type=dtp) def test_expand_dims(run_module): def get_graph(x_shape=(1, 3), axis=1, num_newaxis=1): x = relay.var("x", shape=(x_shape), dtype="float32") out = relay.expand_dims(x, axis, num_newaxis) f = relay.Function([x], out) return f, {"x": x_shape}, [] run_and_verify_func(get_graph(), run_module=run_module) def test_squeeze(run_module): def get_graph(x_shape, axis, dtype): x = relay.var("x", shape=(x_shape), dtype=dtype) out = relay.squeeze(x, axis=axis) f = relay.Function([x], out) return f, {"x": x_shape}, [] for dtype in SUPPORTED_DTYPES: run_and_verify_func( get_graph((1, 5, 1, 1), (2, 3), dtype=dtype), run_module=run_module, data_type=dtype ) run_and_verify_func( get_graph((1, 3, 1), (-1,), dtype=dtype), run_module=run_module, data_type=dtype ) def test_concatenate(run_module): def get_graph(input_shapes, axis): concat_inputs = [] shapes_dict = {} for i in range(len(input_shapes)): name = "input_{}".format(i) concat_inputs.append(relay.var(name, shape=(input_shapes[i]), dtype="float32")) shapes_dict[name] = input_shapes[i] out = relay.concatenate(concat_inputs, axis) f = relay.Function(concat_inputs, out) return f, shapes_dict, [] run_and_verify_func(get_graph([(1, 2, 6, 6), (1, 3, 6, 6)], axis=1), run_module=run_module) def test_split(run_module): def get_graph(x_shape, indices_or_sections, axis): x = relay.var("x", shape=(x_shape), dtype="float32") out = relay.split(x, indices_or_sections=indices_or_sections, axis=axis) f = relay.Function([x], out.astuple()) return f, {"x": x_shape}, [] run_and_verify_func(get_graph((1, 16), indices_or_sections=2, axis=1), run_module=run_module) run_and_verify_func(get_graph((1, 16), indices_or_sections=4, axis=1), run_module=run_module) run_and_verify_func(get_graph((1, 16), indices_or_sections=[8], axis=1), run_module=run_module) run_and_verify_func( get_graph((1, 16), indices_or_sections=[2, 3, 6, 10, 14], axis=1), run_module=run_module ) def test_conv2d_transpose(run_module): def get_graph( x_shape=(1, 32, 8, 8), k_shape=(32, 16, 3, 3), groups=1, padding=(0, 0), strides=(1, 1) ): x = relay.var("x", shape=(x_shape), dtype="float32") kernel = relay.var("kernel", shape=(k_shape), dtype="float32") out = relay.nn.conv2d_transpose( x, kernel, channels=k_shape[1], kernel_size=k_shape[2:4], groups=groups, padding=padding, strides=strides, ) f = relay.Function([x, kernel], out) return f, {"x": x_shape, "kernel": k_shape}, ["kernel"] for padding in [(0, 0), (1, 1)]: for strides in [(1, 1), (2, 2)]: run_and_verify_func(get_graph(padding=padding, strides=strides), run_module=run_module) def test_reshape(run_module): def get_graph(x_shape, new_shape): x = relay.var("x", shape=(x_shape), dtype="float16") out = relay.reshape(x, new_shape) f = relay.Function([x], out) return f, {"x": x_shape}, [] run_and_verify_func( get_graph((1, 1, 1, 10), (-1, 10)), run_module=run_module, data_type="float16" ) run_and_verify_func( get_graph((1, 10, 2, 3), (1, -1)), run_module=run_module, data_type="float16" ) run_and_verify_func(get_graph((1, 1, 2, 3), (1, 6)), run_module=run_module, data_type="float16") class AreOpsOnGraph(ExprVisitor): """ Visits the Graph recursively and checks if it contains ops in the op_list """ def __init__(self, op_list): ExprVisitor.__init__(self) self.op_list = op_list self.on_graph = False def visit_call(self, call): if isinstance(call.op, tvm.tir.op.Op): if str(call.op) in self.op_list: self.on_graph = True return super().visit_call(call) def are_ops_on_graph(self, subgraph) -> bool: """ This function recursively visits the graph and checks if op_list ops are ongraph" """ self.visit(subgraph) return self.on_graph def are_ops_on_trt(mod, op_list): op_on_trt = False op_on_tvm = False for subgraph in mod.get_global_vars(): name = subgraph.name_hint if mod[name].attrs and mod[name].attrs["Compiler"] == "tensorrt": op_on_trt |= AreOpsOnGraph(op_list).are_ops_on_graph(mod[name].body) else: op_on_tvm |= AreOpsOnGraph(op_list).are_ops_on_graph(mod[name].body) return op_on_trt and not op_on_tvm def test_dynamic_reshape(run_module): def test_run(x_data_list, x_shape, new_shape, should_offload_to_trt): result_arr = [{} for _ in range(len(x_data_list))] for use_trt in [True, False]: x = relay.var("x", shape=x_shape, dtype="float32") out = relay.reshape(x, new_shape) f = relay.Function([x], out) mod = tvm.IRModule() mod["main"] = f if use_trt: logging.info("Before partitioning:\n%s", mod) mod = tensorrt.partition_for_tensorrt(mod) logging.info("After partitioning:\n%s", mod) assert are_ops_on_trt(mod, op_list=["reshape"]) == should_offload_to_trt if run_module: with relay.build_config(opt_level=3): func = relay.create_executor( "vm", mod=mod, device=tvm.cpu(0), target="llvm" ).evaluate() for i, x_data in enumerate(x_data_list): result_arr[i][use_trt] = func(x_data) if run_module: for i in range(len(x_data_list)): assert_result_dict_holds(result_arr[i]) dim_values = [1, 1, 0, 2, 3, 0, 1, 3, 2] x_shape = (relay.Any(), 3, 2, 3) x_data_list = [ np.ones([dim_value] + list(x_shape)[1:]).astype("float32") for dim_value in dim_values ] new_shape = (-1, 3, 2, 3) should_offload_to_trt = True test_run(x_data_list, x_shape, new_shape, should_offload_to_trt) dim_values = [1, 1, 0, 2, 3, 0, 1, 3, 2] x_shape = (relay.Any(), 3, 2, 3) x_data_list = [ np.ones([dim_value] + list(x_shape)[1:]).astype("float32") for dim_value in dim_values ] new_shape = (-1, 1, 2, 3) should_offload_to_trt = False test_run(x_data_list, x_shape, new_shape, should_offload_to_trt) dim_values = [1, 1, 0, 2, 3, 0, 1, 3, 2] x_shape = (1, relay.Any(), 2, 3) x_data_list = [ np.ones(list(x_shape[:1]) + [dim_value] + list(x_shape)[2:]).astype("float32") for dim_value in dim_values ] new_shape = (1, -1, 2, 3) should_offload_to_trt = False test_run(x_data_list, x_shape, new_shape, should_offload_to_trt) def test_transpose(run_module): def get_graph(x_shape, order): x = relay.var("x", shape=(x_shape), dtype="float32") out = relay.transpose(x, order) f = relay.Function([x], out) return f, {"x": x_shape}, [] run_and_verify_func(get_graph((1, 16, 7, 7), [0, 2, 3, 1]), run_module=run_module) run_and_verify_func(get_graph((1, 7, 7, 16), [0, 3, 1, 2]), run_module=run_module) def test_float_const(run_module): def get_graph(x_shape=(1, 16)): x = relay.var("x", shape=(x_shape), dtype="float32") beta = relay.const(1, dtype="float32") out = relay.multiply(x, beta) f = relay.Function([x], out) return f, {"x": x_shape}, [] run_and_verify_func(get_graph(), run_module=run_module, data_type="float32") def test_float_const16(run_module): def get_graph(x_shape=(1, 16)): x = relay.var("x", shape=(x_shape), dtype="float16") beta = relay.const(1, dtype="float16") out = relay.multiply(x, beta) f = relay.Function([x], out) return f, {"x": x_shape}, [] run_and_verify_func(get_graph(), run_module=run_module, data_type="float16") def test_pad(run_module): def get_graph(x_shape, pad_width): x = relay.var("x", shape=(x_shape), dtype="float32") out = relay.nn.pad(x, pad_width=pad_width) f = relay.Function([x], out) return f, {"x": x_shape}, [] run_and_verify_func( get_graph((1, 8, 16, 16), [[0, 0], [0, 0], [0, 0], [0, 0]]), run_module=run_module ) run_and_verify_func( get_graph((1, 8, 16, 16), [[0, 0], [0, 0], [1, 1], [1, 1]]), run_module=run_module ) run_and_verify_func( get_graph((1, 8, 16, 16), [[0, 0], [0, 0], [0, 1], [2, 0]]), run_module=run_module ) run_and_verify_func( get_graph((1, 8, 3, 16, 16), [[0, 0], [0, 0], [0, 0], [0, 0], [0, 0]]), run_module=run_module, ) def test_add(run_module): def get_graph(x_shape): x = relay.var("x", shape=(x_shape), dtype="float16") y = relay.var("y", shape=(x_shape), dtype="float16") out = relay.add(x, y) f = relay.Function([x, y], out) return f, {"x": x_shape, "y": x_shape}, [] run_and_verify_func(get_graph((1, 1000)), run_module=run_module, data_type="float16") def test_softmax(run_module): def get_graph(x_shape, axis, data_type="float32"): x = relay.var("x", shape=(x_shape), dtype=data_type) out = relay.nn.softmax(x, axis=axis) f = relay.Function([x], out) return f, {"x": x_shape}, [] run_and_verify_func( get_graph((1, 1000), axis=1, data_type="float32"), run_module=run_module, data_type="float32", ) run_and_verify_func( get_graph((1, 1000), axis=-1, data_type="float32"), run_module=run_module, data_type="float32", ) run_and_verify_func( get_graph((1, 3, 4), axis=-2, data_type="float16"), run_module=run_module, data_type="float16", ) run_and_verify_func( get_graph((1, 3, 4), axis=1, data_type="float16"), run_module=run_module, data_type="float16", ) def test_batch_norm(run_module): def get_graph(x_shape, param_shape, axis=1, epsilon=1e-5): x = relay.var("x", shape=(x_shape), dtype="float32") beta = relay.var("beta", shape=(param_shape), dtype="float32") gamma = relay.var("gamma", shape=(param_shape), dtype="float32") moving_mean = relay.var("moving_mean", shape=(param_shape), dtype="float32") moving_var = relay.var("moving_var", shape=(param_shape), dtype="float32") out, _, _ = relay.nn.batch_norm( x, gamma=gamma, beta=beta, moving_mean=moving_mean, moving_var=moving_var, axis=axis, center=True, scale=True, epsilon=epsilon, ) f = relay.Function([x, gamma, beta, moving_mean, moving_var], out) return ( f, { "x": x_shape, "beta": param_shape, "gamma": param_shape, "moving_mean": param_shape, "moving_var": param_shape, }, ["beta", "gamma", "moving_mean", "moving_var"], ) run_and_verify_func(get_graph((1, 64, 56, 56), (64,)), run_module=run_module) run_and_verify_func( get_graph((1, 56, 56, 64), (64,), axis=3, epsilon=1.001e-05), run_module=run_module ) run_and_verify_func(get_graph((1, 4, 8, 4), (8,), axis=2), run_module=run_module) run_and_verify_func(get_graph((1, 8, 4, 4, 4), (8,), axis=1), run_module=run_module) run_and_verify_func(get_graph((1, 4, 8, 4, 4), (8,), axis=2), run_module=run_module) run_and_verify_func(get_graph((1, 4, 4, 4, 8), (8,), axis=4), run_module=run_module) run_and_verify_func(get_graph((1, 8), (8,), axis=1), run_module=run_module) run_and_verify_func(get_graph((1, 3, 8), (8,), axis=2), run_module=run_module) def test_layer_norm(run_module): def get_graph(x_shape, param_shape, axis=1, epsilon=1e-5): x = relay.var("x", shape=(x_shape), dtype="float32") gamma = relay.var("gamma", shape=(param_shape), dtype="float32") beta = relay.var("beta", shape=(param_shape), dtype="float32") out = relay.nn.layer_norm( x, gamma=gamma, beta=beta, axis=axis, epsilon=epsilon, center=True, scale=True ) f = relay.Function([x, gamma, beta], out) return (f, {"x": x_shape, "beta": param_shape, "gamma": param_shape}, ["beta", "gamma"]) run_and_verify_func(get_graph((1, 32, 8, 8), (32,)), run_module=run_module) run_and_verify_func( get_graph((1, 8, 8, 32), (32,), axis=3, epsilon=1.001e-05), run_module=run_module ) run_and_verify_func(get_graph((1, 8), (8,), axis=1), run_module=run_module) def test_unary(run_module): def get_graph(op, x_shape=(1, 8, 3, 3)): x = relay.var("x", shape=(x_shape), dtype="float32") out = op(x) f = relay.Function([x], out) return f, {"x": x_shape}, [] for op in [ relay.nn.relu, relay.sigmoid, relay.tanh, relay.exp, relay.log, relay.sqrt, relay.abs, relay.negative, relay.sin, relay.cos, relay.atan, relay.ceil, relay.floor, relay.erf, ]: run_and_verify_func(get_graph(op), run_module=run_module) def test_clip(run_module): def get_graph(x_shape=(1, 8, 3, 3)): x = relay.var("x", shape=(x_shape), dtype="float16") out = relay.clip(x, a_min=-0.2, a_max=0.4) f = relay.Function([x], out) return f, {"x": x_shape}, [] run_and_verify_func(get_graph(), run_module=run_module, data_type="float16") def test_relu(run_module): def get_graph(x_shape=(1, 8, 3, 4)): x = relay.var("x", shape=(x_shape), dtype="float16") out = relay.nn.relu(x) f = relay.Function([x], out) return f, {"x": x_shape}, [] run_and_verify_func(get_graph(), run_module=run_module, data_type="float16") def test_leaky_relu(run_module): def get_graph(x_shape=(1, 8, 3, 4)): x = relay.var("x", shape=(x_shape), dtype="float16") out = relay.nn.leaky_relu(x, alpha=0.1) f = relay.Function([x], out) return f, {"x": x_shape}, [] run_and_verify_func(get_graph(), run_module=run_module, data_type="float16") def test_binary(run_module): def get_graph(op, x_shape, y_shape, y_is_const=False, d_type="float16"): x = relay.var("x", shape=(x_shape), dtype=d_type) if y_is_const: y = relay.const(np.ones(y_shape).astype(d_type)) out = op(x, y) f = relay.Function([x], out) return f, {"x": x_shape}, [] y = relay.var("y", shape=(y_shape), dtype=d_type) out = op(x, y) f = relay.Function([x, y], out) return f, {"x": x_shape, "y": y_shape}, [] for op in [relay.add, relay.subtract, relay.multiply, relay.divide, relay.power]: for d_type in SUPPORTED_DTYPES: for y_is_const in [True, False]: run_and_verify_func( get_graph(op, (1, 8, 3, 3), (1, 8, 3, 3), y_is_const, d_type), run_module=run_module, data_type=d_type, ) run_and_verify_func( get_graph(op, (1, 8, 1, 3), (1, 8, 3, 1), y_is_const, d_type), run_module=run_module, data_type=d_type, ) run_and_verify_func( get_graph(op, (1, 10), (10,), y_is_const, d_type), run_module=run_module, data_type=d_type, ) run_and_verify_func( get_graph(op, (1, 1, 1, 10), (10,), y_is_const, d_type), run_module=run_module, data_type=d_type, ) run_and_verify_func( get_graph(op, (1, 1, 1), (3,), y_is_const, d_type), run_module=run_module, data_type=d_type, ) def test_reduce(run_module): def get_graph(op, x_shape=(1, 2, 3, 4), axis=(2, 3), keepdims=False, d_type="float32"): x = relay.var("x", shape=(x_shape), dtype=d_type) out = op(x, axis=axis, keepdims=keepdims) f = relay.Function([x], out) return f, {"x": x_shape}, [] for type in SUPPORTED_DTYPES: for op in [relay.sum, relay.prod, relay.max, relay.min, relay.mean]: for keepdims in [True, False]: run_and_verify_func( get_graph(op, axis=(1), keepdims=keepdims, d_type=type), run_module=run_module, data_type=type, ) run_and_verify_func( get_graph(op, axis=(2, 3), keepdims=keepdims, d_type=type), run_module=run_module, data_type=type, ) run_and_verify_func( get_graph(op, axis=(1, 2), keepdims=keepdims, d_type=type), run_module=run_module, data_type=type, ) run_and_verify_func( get_graph(op, axis=(1, 2, 3), keepdims=keepdims, d_type=type), run_module=run_module, data_type=type, ) def test_strided_slice(run_module): def get_graph(x_shape, begin, end, strides=None, slice_mode="size"): x = relay.var("x", shape=(x_shape), dtype="float32") if strides: out = relay.strided_slice(x, begin, end, strides, slice_mode=slice_mode) else: out = relay.strided_slice(x, begin, end, slice_mode=slice_mode) f = relay.Function([x], out) return f, {"x": x_shape}, [] for slice_mode in ["size", "end"]: run_and_verify_func( get_graph((1, 3, 6, 7), (0, 0, 0, 0), (1, 1, 6, 7), slice_mode=slice_mode), run_module=run_module, ) run_and_verify_func( get_graph((1, 3, 6, 7), [0, 1, 0, 0], [1, 2, 6, 6], slice_mode=slice_mode), run_module=run_module, ) run_and_verify_func( get_graph((2, 3, 6, 7), [0, 0, 0, 0], [-1, -1, -1, -1], slice_mode=slice_mode), run_module=run_module, ) run_and_verify_func( get_graph((2, 3, 6, 7), [0, 1, 0, 0], [-1, -1, -1, -1], slice_mode=slice_mode), run_module=run_module, ) run_and_verify_func( get_graph((1, 6), [0, 1], [1, 3], slice_mode=slice_mode), run_module=run_module ) def test_adaptive_pool2d(run_module): def get_graph(op, x_shape=(1, 3, 32, 32), out_size=(1, 1), data_type="float16"): x = relay.var("x", shape=(x_shape), dtype=data_type) out = op(x, out_size) f = relay.Function([x], out) return f, {"x": x_shape}, [] for type in SUPPORTED_DTYPES: run_and_verify_func( get_graph(relay.nn.adaptive_max_pool2d, data_type=type), run_module=run_module, data_type=type, ) run_and_verify_func( get_graph(relay.nn.adaptive_avg_pool2d, data_type=type), run_module=run_module, data_type=type, ) def test_multiple_outputs(run_module): def get_graph(d_type="float16"): x = relay.var("x", shape=(1, 3), dtype=d_type) y = relay.var("y", shape=(1, 3), dtype=d_type) z = relay.add(x, y) w = relay.add(z, y) out = relay.Tuple((z, w)) f = relay.Function([x, y], out) return f, {"x": (1, 3), "y": (1, 3)}, [] for type in SUPPORTED_DTYPES: run_and_verify_func(get_graph(d_type=type), run_module=run_module, data_type=type) @pytest.mark.skip(reason=("Fails assert_allclose. See https://github.com/apache/tvm/issues/11765")) def test_conv3d(run_module): def get_graph( x_shape=(1, 24, 8, 8, 8), k_shape=(16, 24, 3, 3, 3), groups=1, padding=(0, 0, 0), strides=(1, 1, 1), dilation=(1, 1, 1), ): x = relay.var("x", shape=(x_shape), dtype="float32") kernel = relay.var("kernel", shape=(k_shape), dtype="float32") out = relay.nn.conv3d( x, kernel, channels=k_shape[0], kernel_size=k_shape[2:], groups=groups, padding=padding, strides=strides, dilation=dilation, ) f = relay.Function([x, kernel], out) return f, {"x": x_shape, "kernel": k_shape}, ["kernel"] run_and_verify_func(get_graph(), run_module=run_module) run_and_verify_func(get_graph(padding=(0, 0, 0, 1, 1, 1)), run_module=run_module) def test_pool3d(run_module): def get_graph( op, x_shape=(1, 3, 8, 32, 32), pool_size=(2, 2, 2), strides=(2, 2, 2), padding=(0, 0, 0), ceil_mode=False, count_include_pad=None, ): x = relay.var("x", shape=(x_shape), dtype="float32") if count_include_pad is not None: out = op( x, pool_size=pool_size, strides=strides, padding=padding, ceil_mode=ceil_mode, count_include_pad=count_include_pad, ) else: out = op(x, pool_size=pool_size, strides=strides, padding=padding, ceil_mode=ceil_mode) f = relay.Function([x], out) return f, {"x": x_shape}, [] run_and_verify_func(get_graph(relay.nn.avg_pool3d), run_module=run_module) run_and_verify_func(get_graph(relay.nn.max_pool3d), run_module=run_module) run_and_verify_func( get_graph(relay.nn.max_pool3d, padding=(0, 0, 0, 1, 1, 1)), run_module=run_module ) run_and_verify_func(get_graph(relay.nn.max_pool3d, strides=(1, 1, 1)), run_module=run_module) def test_conv3d_transpose(run_module): def get_graph( x_shape=(1, 32, 8, 8, 8), k_shape=(32, 16, 3, 3, 3), groups=1, padding=(0, 0, 0), strides=(1, 1, 1), output_padding=(0, 0, 0), ): x = relay.var("x", shape=(x_shape), dtype="float32") kernel = relay.var("kernel", shape=(k_shape), dtype="float32") out = relay.nn.conv3d_transpose( x, kernel, channels=k_shape[1], kernel_size=k_shape[2:5], groups=groups, padding=padding, strides=strides, output_padding=output_padding, ) f = relay.Function([x, kernel], out) return f, {"x": x_shape, "kernel": k_shape}, ["kernel"] run_and_verify_func(get_graph(), run_module=run_module) run_and_verify_func(get_graph(strides=(2, 2, 2)), run_module=run_module) run_and_verify_func( get_graph(strides=(2, 2, 2), output_padding=(1, 1, 1)), run_module=run_module ) @has_tensorrt_codegen def test_dynamic_offload(): """ This test checks for proper dynamic offloading of relay graphs. An addition between the outputs of two conv2d's is performed, one of them having all static args whereas the other has a arg with dynamic shape. It is expected for the TRT partitioner to offload the conv2d with dynamic arg to TVM while running the other in TRT. """ data_shape = (1, 32, 8, 8) k_shape = (1, 32, 3, 3) x = relay.var("x", shape=(data_shape[0], data_shape[1], Any(), Any()), dtype="float32") y = relay.var("y", shape=(data_shape), dtype="float32") kernel = relay.const(np.random.rand(*k_shape).astype("float32")) def get_expected(): # Create a nested TRT function that matches the expected output mod = tvm.IRModule() outer_var = relay.var("tensorrt_0_i0", shape=(data_shape), dtype="float32") inner_var = relay.var("FunctionVar_0_0", shape=(data_shape), dtype="float32") inner_body = relay.nn.conv2d( inner_var, kernel, channels=k_shape[0], kernel_size=k_shape[2:4] ) inner_func = relay.Function([inner_var], inner_body) inner_func = set_inner_func_attr(inner_func, "nn.conv2d_", "tensorrt.nn.conv2d") outer_body = inner_func(outer_var) outer_func = relay.Function([outer_var], outer_body) outer_func = set_outer_func_attr(outer_func, "tensorrt", "tvmgen_default_tensorrt_main_0") gv = GlobalVar("tvmgen_default_tensorrt_main_0") mod[gv] = outer_func mod = relay.transform.InferType()(mod) # Create the main function out1 = relay.nn.conv2d(x, kernel, channels=k_shape[0], kernel_size=k_shape[2:4]) out = relay.add(out1, gv(y)) f = relay.Function([x, y], out) mod["main"] = f mod = relay.transform.InferType()(mod) return mod # Create relay function that will be offloaded to TRT out1 = relay.nn.conv2d(x, kernel, channels=k_shape[0], kernel_size=k_shape[2:4]) out2 = relay.nn.conv2d(y, kernel, channels=k_shape[0], kernel_size=k_shape[2:4]) out = relay.add(out1, out2) f = relay.Function([x, y], out) # Pass the function to TRT compilation mod = tvm.IRModule() mod["main"] = f mod = relay.transform.InferType()(mod) mod_trt = tensorrt.partition_for_tensorrt(mod) # Get the expected relay graph and compare mod_exp = get_expected() tvm.ir.assert_structural_equal(mod_trt, mod_exp, map_free_vars=True) def test_tensorrt_dynamic_batch(run_module): batches_to_test = [1, 1, 0, 2, 3, 0, 1, 3, 2] x_shape = (relay.Any(), 1, 8, 8) x_data = np.ones([max(batches_to_test)] + list(x_shape)[1:]).astype("float32") result_arr = [{} for _ in range(len(batches_to_test))] for use_trt in [True, False]: x = relay.var("x", shape=x_shape, dtype="float32") out = relay.nn.relu(x) f = relay.Function([x], out) mod = tvm.IRModule() mod["main"] = f if use_trt: mod = tensorrt.partition_for_tensorrt(mod) if run_module: with relay.build_config(opt_level=3): func = relay.create_executor( "vm", mod=mod, device=tvm.cpu(0), target="llvm" ).evaluate() for i, batch_size in enumerate(batches_to_test): result_arr[i][use_trt] = func(x_data[:batch_size, ...]) if run_module: for i in range(len(batches_to_test)): assert_result_dict_holds(result_arr[i]) def test_tensorrt_dynamic_batch_conv(run_module): batches_to_test = [1, 5, 1, 0, 2, 3, 0, 1, 3, 2] x_shape = (relay.Any(), 32, 8, 8) x_data = np.ones([max(batches_to_test)] + list(x_shape)[1:]).astype("float32") k_shape = (16, 32, 3, 3) params = {"kernel": np.random.uniform(-1, 1, k_shape).astype("float32")} for use_implicit_batch in [True, False]: result_arr = [{"cuda": {}, "llvm": {}} for _ in range(len(batches_to_test))] for use_trt in [True, False]: x = relay.var("x", shape=x_shape, dtype="float32") kernel = relay.var("kernel", shape=k_shape, dtype="float32") out = relay.nn.conv2d(x, kernel, channels=16, kernel_size=(3, 3), groups=1) f = relay.Function([x, kernel], out) mod = tvm.IRModule() mod["main"] = f trt_target = tvm.target.Target(f"tensorrt -use_implicit_batch={use_implicit_batch}") if use_trt: mod = tensorrt.partition_for_tensorrt(mod, params=params, target=trt_target) if run_module: for target in ["llvm", "cuda"]: targets = [target] if use_trt: targets.append(trt_target) with tvm.transform.PassContext(opt_level=3): func = relay.create_executor( "vm", mod=mod, device=tvm.device(target), target=targets ).evaluate() for i, batch_size in enumerate(batches_to_test): result_arr[i][target][use_trt] = func(x_data[:batch_size, ...], **params) if run_module: for i in range(len(batches_to_test)): for target in ["llvm", "cuda"]: assert_result_dict_holds(result_arr[i][target]) def test_maskrcnn_resnet50(run_module) -> None: """ This function tests the working of pytorch maskrcnn with resnet50 as backbone with VM and VM + TRT. Since the order of compiled model outputs is a bit different from original pytorch model, it uses a custom logic for comparison check. """ import torch import torchvision def convert_traced_model_to_vm_trt( traced_module: torch.jit.TopLevelTracedModule, np_sample_input: np.ndarray, target: str ) -> tvm.runtime.vm.Executable: """ This function converts a traced pytorch model to VM + TRT. """ input_shape = np_sample_input.shape input_name = "input0" shape_list = [(input_name, input_shape)] mod, params = relay.frontend.from_pytorch(traced_module, shape_list) trt_target = tvm.target.Target("tensorrt -remove_no_mac_subgraphs=True") mod = tensorrt.partition_for_tensorrt(mod, params=params, target=trt_target) targets = [target, trt_target] with tvm.transform.PassContext(opt_level=3, disabled_pass=["FoldScaleAxis"]): vm_trt_exec = relay.vm.compile(mod, target=targets, params=params) return vm_trt_exec class TraceWrapper(torch.nn.Module): """ This class is a wrapper over the torch module to convert the outputs into traceable form """ def __init__(self, model: torch.nn.Module) -> None: super().__init__() self.model = model def forward( self, inp: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: out = self.model(inp) return out[0]["boxes"], out[0]["scores"], out[0]["labels"], out[0]["masks"] def get_traced_maskrcnn_model(np_sample_input: np.ndarray) -> torch.jit.TopLevelTracedModule: """ This function takes a sample input and returns the traced maskrcnn model """ model_func = torchvision.models.detection.maskrcnn_resnet50_fpn model = TraceWrapper(model_func(pretrained=True)) model.eval() inp = torch.Tensor(np.random.uniform(0.0, 250.0, size=np_sample_input.shape)) with torch.no_grad(): out = model(inp) traced_module = torch.jit.trace(model, inp) traced_module.eval() return traced_module def get_maskrcnn_input(in_size: int) -> np.ndarray: """ This function gets a real image with multiple objects of interest and returns it. """ input_shape = (1, 3, in_size, in_size) img_path = "test_street_small.jpg" img_url = "https://raw.githubusercontent.com/dmlc/web-data/master/gluoncv/detection/street_small.jpg" download(img_url, img_path) import cv2 img = cv2.imread(img_path).astype("float32") img = cv2.resize(img, (in_size, in_size)) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = np.transpose(img / 255.0, [2, 0, 1]) img = np.expand_dims(img, axis=0) return img in_size = 300 np_sample_input = get_maskrcnn_input(in_size) traced_module = get_traced_maskrcnn_model(np_sample_input) vm_trt_exec = convert_traced_model_to_vm_trt(traced_module, np_sample_input, target="llvm") if run_module: dev = tvm.cpu() vm = tvm.runtime.vm.VirtualMachine(vm_trt_exec, dev) vm.set_input("main", **{"input0": np_sample_input}) tvm_res = vm.run() # Descending sort by scores and get the high confidence indices. In this example 9 is chosen, # because this image has 9 boxes over 0.9 confidence num_high_confidence_boxes = 9 tvm_indices = np.argsort(-1 * tvm_res[1].numpy())[:num_high_confidence_boxes] with torch.no_grad(): out = traced_module(torch.Tensor(np_sample_input)) # Descending sort by scores and get the high confidence indices pt_indices = np.argsort(-1 * out[1].numpy())[:num_high_confidence_boxes] # [Box Tol, Score Tol, Label Tol, Mask Tol] tol = [1e-1, 5e-3, 1e-5, 4e-1] # Because of certain ops, there are certain minor differences in TVM outputs and PT outputs, # This means that the tolerance can't be 1e-4 or 1e-5 throughout. The ideal way to get around # this is to test it on an entire dataset and compare mAP with the original model. # However, since that is not practically possible on CI, the following compromise is made. # These tolerances are chosen based on their impact or lack thereof to the mAP score, e.g: # 0.1 pixel difference of a box in a 300X300 image wont make any change. for i, tol_val in zip(range(4), tol): np.testing.assert_allclose( tvm_res[i].numpy()[tvm_indices], out[i].numpy()[pt_indices], rtol=tol_val, atol=tol_val, ) def test_empty_subgraph(run_module): x_shape = (1, 3, 5) mod = tvm.IRModule() # Empty tensorrt subgraph. var1 = relay.var("tensorrt_0_i0", shape=(x_shape), dtype="float32") f1 = GlobalVar("tensorrt_0") func = relay.Function([var1], var1) func = set_outer_func_attr(func, "tensorrt", "tvmgen_default_tensorrt_0") mod[f1] = func mod = relay.transform.InferType()(mod) # Create the main function x = relay.var("x", shape=x_shape, dtype="float32") out = f1(relay.nn.relu(x)) f = relay.Function([x], out) mod["main"] = f x_data = np.random.uniform(-1, 1, x_shape).astype("float32") for mode in ["graph", "vm"]: with tvm.transform.PassContext(opt_level=3): func = relay.create_executor( mode, mod=mod, device=tvm.cuda(0), target="cuda" ).evaluate() if run_module: results = func(x_data) if __name__ == "__main__": logging.basicConfig(level=logging.INFO) tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/contrib/test_tensorrt_int8_exp.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import pytest import os import numpy as np try: # See issue #9362. import torch except: pass import tvm import tvm.testing from tvm import relay from tvm.contrib.download import download_testdata from tvm.relay.op.contrib.tensorrt import partition_for_tensorrt from tvm.relay.op.contrib import tensorrt def skip_codegen_test(): """Skip test if TensorRT and CUDA codegen are not present""" if not tvm.runtime.enabled("cuda") or not tvm.cuda(0).exist: print("Skip because CUDA is not enabled.") return True if not tensorrt.is_tensorrt_compiler_enabled(): print("Skip because TensorRT compiler is not available.") return True print("TensorRT compiler is available!") return False def skip_runtime_test(): if not tvm.runtime.enabled("cuda") or not tvm.cuda(0).exist: print("Skip because CUDA is not enabled.") return True if not tensorrt.is_tensorrt_runtime_enabled(): print("Skip because TensorRT runtime is not available.") return True print("TensorRT runtime is available!") return False def test_trt_int8(): """ This Function is used to use tensorrt int8 to compile a resnet34 model, and compare cosine distance between the output of the original model and trt int8 tvm output """ if skip_codegen_test() or skip_runtime_test(): return try: from PIL import Image from scipy.spatial import distance except: print("please install scipy and Image python packages") return try: import torch import torchvision from torchvision import transforms except: print("please install pytorch python package") return os.environ["TVM_TENSORRT_USE_INT8"] = "1" os.environ["TENSORRT_NUM_CALI_INT8"] = "10" model_name = "resnet34" model = getattr(torchvision.models, model_name)(pretrained=True) model = model.eval() # We grab the TorchScripted model via tracing input_shape = [1, 3, 224, 224] input_data = torch.randn(input_shape) scripted_model = torch.jit.trace(model, input_data).eval() img_url = "https://github.com/dmlc/mxnet.js/blob/main/data/cat.png?raw=true" img_path = download_testdata(img_url, "cat.png", module="data") img = Image.open(img_path).resize((224, 224)) my_preprocess = transforms.Compose( [ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ] ) img = my_preprocess(img) img = np.expand_dims(img, 0) input_name = "input0" shape_list = [(input_name, img.shape)] mod, params = relay.frontend.from_pytorch(scripted_model, shape_list) # compile the model target = "cuda" dev = tvm.cuda() mod = partition_for_tensorrt(mod, params) with tvm.transform.PassContext(opt_level=3): lib = relay.build(mod, target=target, params=params) gen_module = tvm.contrib.graph_executor.GraphModule(lib["default"](dev)) num_cali_int8 = int(os.environ["TENSORRT_NUM_CALI_INT8"]) if num_cali_int8 != 0: print("start calibrating data ... ") for i in range(num_cali_int8): tvm_data = tvm.nd.array(img) gen_module.set_input(input_name, tvm_data) gen_module.run(data=tvm_data) print("finished calibrating data ... ") # get output of tvm model print("rebuild engine and test to run ... ") tvm_data = tvm.nd.array(img) gen_module.set_input(input_name, tvm_data) gen_module.run(data=tvm_data) out = gen_module.get_output(0) # check output of tvm and output of pytorch model are equal torch_data = torch.from_numpy(img) model = scripted_model.eval() torch_output = model(torch_data) cosine_distance_res = distance.cosine(out.numpy(), torch_output.detach().cpu().numpy()) assert cosine_distance_res <= 0.01 # Evaluate print("Evaluate inference time cost...") ftimer = gen_module.module.time_evaluator("run", dev, repeat=10, min_repeat_ms=500) prof_res = np.array(ftimer().results) * 1e3 # convert to millisecond message = "Mean inference time (std dev): %.2f ms (%.2f ms)" % ( np.mean(prof_res), np.std(prof_res), ) print(message) if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/contrib/test_tflite_runtime.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import pytest import tvm from tvm import te import numpy as np from tvm import rpc from tvm.contrib import utils, tflite_runtime def _create_tflite_model(): if not tvm.runtime.enabled("tflite"): print("skip because tflite runtime is not enabled...") return if not tvm.get_global_func("tvm.tflite_runtime.create", True): print("skip because tflite runtime is not enabled...") return try: import tensorflow as tf except ImportError: print("skip because tensorflow not installed...") return root = tf.Module() root.const = tf.constant([1.0, 2.0], tf.float32) root.f = tf.function(lambda x: root.const * x) input_signature = tf.TensorSpec( shape=[ 2, ], dtype=tf.float32, ) concrete_func = root.f.get_concrete_function(input_signature) converter = tf.lite.TFLiteConverter.from_concrete_functions([concrete_func]) tflite_model = converter.convert() return tflite_model @pytest.mark.skip("skip because accessing output tensor is flakey") def test_local(): if not tvm.runtime.enabled("tflite"): print("skip because tflite runtime is not enabled...") return if not tvm.get_global_func("tvm.tflite_runtime.create", True): print("skip because tflite runtime is not enabled...") return try: import tensorflow as tf except ImportError: print("skip because tensorflow not installed...") return tflite_fname = "model.tflite" tflite_model = _create_tflite_model() temp = utils.tempdir() tflite_model_path = temp.relpath(tflite_fname) open(tflite_model_path, "wb").write(tflite_model) # inference via tflite interpreter python apis interpreter = tf.lite.Interpreter(model_path=tflite_model_path) interpreter.allocate_tensors() input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() input_shape = input_details[0]["shape"] tflite_input = np.array(np.random.random_sample(input_shape), dtype=np.float32) interpreter.set_tensor(input_details[0]["index"], tflite_input) interpreter.invoke() tflite_output = interpreter.get_tensor(output_details[0]["index"]) # inference via tvm tflite runtime with open(tflite_model_path, "rb") as model_fin: runtime = tflite_runtime.create(model_fin.read(), tvm.cpu(0)) runtime.set_input(0, tvm.nd.array(tflite_input)) runtime.invoke() out = runtime.get_output(0) np.testing.assert_equal(out.numpy(), tflite_output) def test_remote(): if not tvm.runtime.enabled("tflite"): print("skip because tflite runtime is not enabled...") return if not tvm.get_global_func("tvm.tflite_runtime.create", True): print("skip because tflite runtime is not enabled...") return try: import tensorflow as tf except ImportError: print("skip because tensorflow not installed...") return tflite_fname = "model.tflite" tflite_model = _create_tflite_model() temp = utils.tempdir() tflite_model_path = temp.relpath(tflite_fname) open(tflite_model_path, "wb").write(tflite_model) # inference via tflite interpreter python apis interpreter = tf.lite.Interpreter(model_path=tflite_model_path) interpreter.allocate_tensors() input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() input_shape = input_details[0]["shape"] tflite_input = np.array(np.random.random_sample(input_shape), dtype=np.float32) interpreter.set_tensor(input_details[0]["index"], tflite_input) interpreter.invoke() tflite_output = interpreter.get_tensor(output_details[0]["index"]) # inference via remote tvm tflite runtime def check_remote(server): remote = rpc.connect(server.host, server.port) a = remote.upload(tflite_model_path) with open(tflite_model_path, "rb") as model_fin: runtime = tflite_runtime.create(model_fin.read(), remote.cpu(0)) runtime.set_input(0, tvm.nd.array(tflite_input, remote.cpu(0))) runtime.invoke() out = runtime.get_output(0) np.testing.assert_equal(out.numpy(), tflite_output) check_remote(rpc.Server("127.0.0.1")) if __name__ == "__main__": test_local() test_remote()
https://github.com/zk-ml/tachikoma
tests/python/contrib/test_thrust.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm import tvm.testing from tvm import te from tvm.topi.cuda import stable_sort_by_key_thrust from tvm.topi.cuda.scan import exclusive_scan, scan_thrust, schedule_scan from tvm.contrib.thrust import can_use_thrust, can_use_rocthrust import numpy as np thrust_check_func = {"cuda": can_use_thrust, "rocm": can_use_rocthrust} def test_stable_sort_by_key(): size = 6 keys = te.placeholder((size,), name="keys", dtype="int32") values = te.placeholder((size,), name="values", dtype="int32") keys_out, values_out = stable_sort_by_key_thrust(keys, values) for target in ["cuda", "rocm"]: if not tvm.testing.device_enabled(target): print("Skip because %s is not enabled" % target) continue with tvm.target.Target(target + " -libs=thrust") as tgt: if not thrust_check_func[target](tgt, "tvm.contrib.thrust.stable_sort_by_key"): print("skip because thrust is not enabled...") return dev = tvm.device(target, 0) s = te.create_schedule([keys_out.op, values_out.op]) f = tvm.build(s, [keys, values, keys_out, values_out], target) keys_np = np.array([1, 4, 2, 8, 2, 7], np.int32) values_np = np.random.randint(0, 10, size=(size,)).astype(np.int32) keys_np_out = np.zeros(keys_np.shape, np.int32) values_np_out = np.zeros(values_np.shape, np.int32) keys_in = tvm.nd.array(keys_np, dev) values_in = tvm.nd.array(values_np, dev) keys_out = tvm.nd.array(keys_np_out, dev) values_out = tvm.nd.array(values_np_out, dev) f(keys_in, values_in, keys_out, values_out) ref_keys_out = np.sort(keys_np) ref_values_out = np.array([values_np[i] for i in np.argsort(keys_np)]) tvm.testing.assert_allclose(keys_out.numpy(), ref_keys_out, rtol=1e-5) tvm.testing.assert_allclose(values_out.numpy(), ref_values_out, rtol=1e-5) def test_exclusive_scan(): for target in ["cuda", "rocm"]: if not tvm.testing.device_enabled(target): print("Skip because %s is not enabled" % target) continue with tvm.target.Target(target + " -libs=thrust") as tgt: if not thrust_check_func[target](tgt, "tvm.contrib.thrust.sum_scan"): print("skip because thrust is not enabled...") return for ishape in [(10,), (10, 10), (10, 10, 10)]: values = te.placeholder(ishape, name="values", dtype="int32") scan, reduction = exclusive_scan(values, return_reduction=True) s = schedule_scan([scan, reduction]) dev = tvm.device(target, 0) f = tvm.build(s, [values, scan, reduction], target) values_np = np.random.randint(0, 10, size=ishape).astype(np.int32) values_np_out = np.zeros(values_np.shape, np.int32) if len(ishape) == 1: reduction_shape = () else: reduction_shape = ishape[:-1] reduction_np_out = np.zeros(reduction_shape, np.int32) values_in = tvm.nd.array(values_np, dev) values_out = tvm.nd.array(values_np_out, dev) reduction_out = tvm.nd.array(reduction_np_out, dev) f(values_in, values_out, reduction_out) ref_values_out = np.cumsum(values_np, axis=-1, dtype="int32") - values_np tvm.testing.assert_allclose(values_out.numpy(), ref_values_out, rtol=1e-5) ref_reduction_out = np.sum(values_np, axis=-1) tvm.testing.assert_allclose(reduction_out.numpy(), ref_reduction_out, rtol=1e-5) def test_inclusive_scan(): out_dtype = "int64" for target in ["cuda", "rocm"]: if not tvm.testing.device_enabled(target): print("Skip because %s is not enabled" % target) continue with tvm.target.Target(target + " -libs=thrust") as tgt: if not thrust_check_func[target](tgt, "tvm.contrib.thrust.sum_scan"): print("skip because thrust is not enabled...") return for ishape in [(10,), (10, 10)]: values = te.placeholder(ishape, name="values", dtype="int32") scan = scan_thrust(values, out_dtype, exclusive=False) s = tvm.te.create_schedule([scan.op]) dev = tvm.device(target, 0) f = tvm.build(s, [values, scan], target) values_np = np.random.randint(0, 10, size=ishape).astype(np.int32) values_np_out = np.zeros(values_np.shape, out_dtype) values_in = tvm.nd.array(values_np, dev) values_out = tvm.nd.array(values_np_out, dev) f(values_in, values_out) ref_values_out = np.cumsum(values_np, axis=-1, dtype=out_dtype) tvm.testing.assert_allclose(values_out.numpy(), ref_values_out, rtol=1e-5) if __name__ == "__main__": test_stable_sort_by_key() test_exclusive_scan() test_inclusive_scan()
https://github.com/zk-ml/tachikoma
tests/python/contrib/test_uma/test_partition.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import pytest import tvm import tvm.relay as relay from tvm.relay.backend.contrib.uma.api import UMAPartitioner from tvm.relay.op.contrib.register import get_pattern_table from tvm.relay.testing import resnet, mlp from tvm.relay.backend.contrib.uma import uma_available pytestmark = pytest.mark.skipif(not uma_available(), reason="UMA not available") def test_partition_table(): partitioner = UMAPartitioner("test_partition") assert get_pattern_table("test_partition") is None partitioner.register() assert get_pattern_table("test_partition") is not None @pytest.mark.parametrize( "workload,backend,merge", [ ("resnet", "dnnl", False), ("resnet", "dnnl", True), ("mlp", "dnnl", False), ("mlp", "dnnl", True), ("resnet", "cutlass", False), ("resnet", "cutlass", True), ("mlp", "cutlass", False), ("mlp", "cutlass", True), ], ) def test_existing_pattern_tables(workload, backend, merge): """Tests that uma partitioner creates the same partitions than default BYOC partitioning""" partitioner = UMAPartitioner(backend, merge) pattern_table = get_pattern_table(backend) for entry in pattern_table: partitioner.add_pattern(*entry) if workload == "resnet": net = resnet.get_net(1, 10) elif workload == "mlp": net = mlp.get_net(1, 10) else: assert False, f"don't know how to find workload for {workload}" mod = tvm.ir.IRModule() mod["main"] = net partitioner.register() partitioned_mod = partitioner.partition(mod) def partition_default(mod): """partitions using default BYOC flow""" sequence = [ relay.transform.MergeComposite(pattern_table), relay.transform.AnnotateTarget(backend), ] if merge: sequence.append(relay.transform.MergeCompilerRegions()) sequence.append(relay.transform.PartitionGraph()) sequential = tvm.transform.Sequential(sequence) return sequential(mod) default_partitioned_mod = partition_default(mod) assert len(partitioned_mod.functions) == len(default_partitioned_mod.functions) if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/contrib/test_uma/test_target.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from typing import Union import pytest import tvm from tests.python.contrib.test_uma.test_uma_vanilla_accelerator import VanillaAcceleratorBackend from tvm.relay.backend.contrib.uma import uma_available pytestmark = pytest.mark.skipif(not uma_available(), reason="UMA not available") @pytest.mark.parametrize( "target_name,target_attrs,target_args", [ ("my_hwa", {}, {}), ( "my_hwa2", { "local_memory_size": 128 * 1024, "variant": "version1", }, {"local_memory_size": 256 * 1024, "variant": "version2"}, ), ], ) def test_uma_target(target_name, target_attrs, target_args): registration_func = tvm.get_global_func("relay.backend.contrib.uma.RegisterTarget") registration_func(target_name, target_attrs) # Test Defaults my_target = tvm.target.Target(target_name) assert str(my_target.kind) == target_name for attr in target_attrs.keys(): assert my_target.attrs[attr] == target_attrs[attr] # Test with parameters overwritten args = " ".join((f"--{k}={v}" for k, v in target_args.items())) my_target = tvm.target.Target(f"{target_name} {args}") for attr in target_args.keys(): assert my_target.attrs[attr] == target_args[attr] @pytest.mark.parametrize( "attr_name, target_attr", [ ("float_attr", 3.14), ("none_attr", None), ], ) def test_invalid_attr_option(attr_name: str, target_attr: Union[str, int, bool, float, None]): if target_attr is None: # None cannot be caught as TVMError, as it causes a SIGKILL, therefore it must be prevented to be # entered into relay.backend.contrib.uma.RegisterTarget at Python level. with pytest.raises(ValueError): uma_backend = VanillaAcceleratorBackend() uma_backend._target_attrs = {attr_name: target_attr} uma_backend.register() else: registration_func = tvm.get_global_func("relay.backend.contrib.uma.RegisterTarget") target_name = f"{attr_name}_{target_attr}" target_attr = {attr_name: target_attr} with pytest.raises(tvm.TVMError, match=r"Only String, Integer, or Bool are supported. .*"): registration_func(target_name, target_attr) if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/contrib/test_uma/test_uma_lowering_with_umalower.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import pytest import pathlib import tvm from tests.python.contrib.test_uma.test_uma_utils import _create_schedule, _generate_io_arrays from tvm import topi from apps.uma._template.passes import MyAiHwConv2dPass import tvm.testing from tvm import te from tvm.relay.backend.contrib.uma.api.lower import UMALower from tvm.relay.backend.contrib.uma.api.utils import PassPhase from tvm.relay.backend.contrib.uma import uma_available pytestmark = pytest.mark.skipif(not uma_available(), reason="UMA not available") def _conv2d_te_definition(shapes: dict) -> list: n, w, h, ci, kw, kh, co = ( shapes["n"], shapes["w"], shapes["h"], shapes["ci"], shapes["kw"], shapes["kh"], shapes["co"], ) ifmap = te.placeholder((n, ci, w, h), dtype="float32", name="ifmap") weights = te.placeholder((co, ci, kw, kh), dtype="float32", name="weights") result = topi.nn.conv2d_nchw(ifmap, weights, stride=1, padding=[kw // 2, kh // 2], dilation=1) return [ifmap, weights, result] def _pepare_conv2d_schedule(shapes, use_external_conv2d_impl=True): placeholders = _conv2d_te_definition(shapes) apps_path = ( pathlib.Path(str(__file__)).parent.parent.parent.parent.parent.joinpath("apps").absolute() ) conv2d_file = apps_path / "uma" / "_template" / "conv2dnchw.cc" with conv2d_file.open() as f: sch_tir = _create_schedule( placeholders, f, use_external_conv2d_impl=use_external_conv2d_impl ) return placeholders, sch_tir def _run_external_conv2d(dut_io_arrays, conv2d_shapes, target): # Run conv2d with external function placeholders, schedule = _pepare_conv2d_schedule(conv2d_shapes) uma_lower = UMALower("lower_test") uma_lower._tir_passes.append((PassPhase.TIR_PHASE_0, MyAiHwConv2dPass())) with tvm.transform.PassContext(): tir_mod = uma_lower._lower_stir_to_nstir(schedule.mod["main"]) ifmap_data, weight_data, result_data = dut_io_arrays llvm_conv2d_mod = tvm.build(tir_mod, placeholders, target=target, name="test_external_conv2d") llvm_conv2d_mod(ifmap_data, weight_data, result_data) def _run_reference_conv2d(reference_io_arrays, conv2d_shapes, target): placeholders, schedule = _pepare_conv2d_schedule(conv2d_shapes) ref_mod = tvm.build(schedule.mod, placeholders, target=target, name="test_reference_conv2d") ifmap, weights, result = reference_io_arrays ref_mod(ifmap, weights, result) def _prepare_io_arrays(conv2d_shapes, dev): dut_io_arrays = _generate_io_arrays(conv2d_shapes, dev) _, _, ref_result = _generate_io_arrays(conv2d_shapes, dev) reference_io_arrays = [dut_io_arrays[0], dut_io_arrays[1], ref_result] return dut_io_arrays, reference_io_arrays @pytest.mark.parametrize( "n, w, h, ci, kw, kh, co", [ (1, 224, 224, 3, 3, 3, 4), (1, 224, 224, 3, 5, 5, 4), (1, 224, 224, 3, 7, 7, 4), (1, 224, 320, 3, 7, 7, 4), (1, 224, 224, 3, 7, 7, 4), ], ) def test_lower_with_uma(n, w, h, ci, kw, kh, co): target = tvm.target.Target(target="llvm", host="llvm") dev = tvm.device(target.kind.name, 0) conv2d_shapes = dict(n=n, w=w, h=h, ci=ci, kw=kw, kh=kh, co=co) dut_io_arrays, reference_io_arrays = _prepare_io_arrays(conv2d_shapes, dev) _run_external_conv2d(dut_io_arrays, conv2d_shapes, target) _run_reference_conv2d(reference_io_arrays, conv2d_shapes, target) # compare results dut_results = dut_io_arrays[2].numpy() ref_results = reference_io_arrays[2].numpy() tvm.testing.assert_allclose(dut_results, ref_results, rtol=1e-5) if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/contrib/test_uma/test_uma_pipeline.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import pytest pytest.importorskip("tflite") pytest.importorskip("tensorflow") import os import tensorflow as tf from tvm.micro.testing.aot_test_utils import AOT_DEFAULT_RUNNER from tvm.relay import transform, testing from tvm.testing.aot import ( AOTTestModel, AOTTestRunner, generate_ref_data, compile_and_run, create_relay_module_and_inputs_from_tflite_file, ) import tvm from test_uma_vanilla_accelerator import VanillaAcceleratorBackend from tvm import relay import numpy as np from collections import OrderedDict from tvm.relay.backend.contrib.uma.api.utils import uma_available pytestmark = pytest.mark.skipif(not uma_available(), reason="UMA not available") @pytest.mark.parametrize( "interface_api,use_unpacked_api,test_runner,groups,weight_shape", [("c", True, AOT_DEFAULT_RUNNER, 1, 32)], ) def test_conv2d(interface_api, use_unpacked_api, test_runner, groups, weight_shape): """Test a subgraph with a single conv2d operator.""" mod, inputs, output_list, test_runner = create_conv2d(groups, test_runner, weight_shape) uma_backend = VanillaAcceleratorBackend() uma_backend.register() mod = uma_backend.partition(mod) target = tvm.target.Target("vanilla_accelerator", host=tvm.target.Target("c")) compile_and_run( AOTTestModel(module=mod, inputs=inputs, outputs=output_list), test_runner, interface_api, use_unpacked_api, target=target, ) def create_conv2d(groups=1, test_runner=AOT_DEFAULT_RUNNER, weight_shape=32): dtype = "float32" ishape = (1, 32, 14, 14) wshape = (32, weight_shape, 3, 3) pass_config = {"tir.usmp.enable": True} test_runner = AOTTestRunner( makefile=test_runner.makefile, prologue=test_runner.prologue, epilogue=test_runner.epilogue, includes=test_runner.includes, parameters=test_runner.parameters, pass_config=pass_config, ) data0 = relay.var("data", shape=ishape, dtype=dtype) weight0 = relay.var("weight", shape=wshape, dtype=dtype) out = relay.nn.conv2d(data0, weight0, kernel_size=(3, 3), padding=(1, 1), groups=groups) main_f = relay.Function([data0, weight0], out) mod = tvm.IRModule() mod["main"] = main_f mod = transform.InferType()(mod) i_data = np.random.uniform(0, 1, ishape).astype(dtype) w1_data = np.random.uniform(0, 1, wshape).astype(dtype) inputs = OrderedDict([("data", i_data), ("weight", w1_data)]) output_list = generate_ref_data(mod, inputs) return mod, inputs, output_list, test_runner def _generate_runtime_data(input_shapes: dict, output_shapes: dict) -> [OrderedDict, OrderedDict]: assert len(input_shapes) == 1 assert len(output_shapes) == 1 iname = list(input_shapes.keys())[0] oname = list(output_shapes.keys())[0] ishape = input_shapes[iname] oshape = output_shapes[oname] i_data = np.random.uniform(0, 1, ishape).astype("float32") o_data = np.random.uniform(0, 1, oshape).astype("float32") oname = "output" # name set by relay.build in executor_codegen_metadata.outputs inputs = OrderedDict([(iname, i_data)]) outputs = OrderedDict([(oname, o_data)]) return inputs, outputs def test_mobilenet(): """Full network test with Mobilenet""" use_unpacked_api = True interface_api = "c" test_runner = AOT_DEFAULT_RUNNER mod, params = testing.mobilenet.get_workload(batch_size=1) uma_backend = VanillaAcceleratorBackend() uma_backend.register() target = tvm.target.Target("vanilla_accelerator", host=tvm.target.Target("c")) target_c = tvm.target.Target("c") data_shape = [int(x) for x in mod["main"].checked_type.arg_types[0].shape] data = np.random.uniform(size=data_shape).astype("float32") input_list = {"data": data} output_list = generate_ref_data(mod, input_list, params) mod = uma_backend.partition(mod) aot_test_model = AOTTestModel(module=mod, inputs=input_list, outputs=output_list, params=params) compile_and_run( aot_test_model, test_runner, interface_api, use_unpacked_api, workspace_byte_alignment=1, debug_calculated_workspaces=False, target=[target_c, target], ) def test_tflite_model(): """ End-to-end test of TF-Lite file using UMA """ tflite_file = "/tmp/model.tflite" if os.path.exists(tflite_file): os.remove(tflite_file) generate_tflite_file(tflite_file) pytest.importorskip("tflite") interpreter = tf.lite.Interpreter(model_path=tflite_file) tf_model_details = interpreter.get_input_details() mod, _, params = create_relay_module_and_inputs_from_tflite_file( tflite_file, bind_params_by_name=False ) uma_backend = VanillaAcceleratorBackend() uma_backend.register() target = tvm.target.Target("vanilla_accelerator", host=tvm.target.Target("c")) target_c = tvm.target.Target("c") # Generation of test input and output data_shape = [int(x) for x in mod["main"].params[0].type_annotation.shape] data = np.random.uniform(size=data_shape).astype("float32") input_list = {str(tf_model_details[0]["name"]): data} output_list = generate_ref_data(mod, input_list, params) # UMA partitioning (needs to be done after generate_ref_data) mod = uma_backend.partition(mod) aot_test_model = AOTTestModel(module=mod, inputs=input_list, outputs=output_list, params=params) test_runner = AOTTestRunner( pass_config={"tir.usmp.enable": True, "tir.usmp.algorithm": "greedy_by_size"} ) compile_and_run( aot_test_model, test_runner, interface_api="c", use_unpacked_api=True, workspace_byte_alignment=1, debug_calculated_workspaces=False, target=[target_c, target], ) def generate_tflite_file(tflite_filename): mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 x_train, x_test = x_train.reshape(-1, 28, 28, 1), x_test.reshape(-1, 28, 28, 1) tf_model = tf.keras.models.Sequential( [ tf.keras.Input(shape=(28, 28, 1)), tf.keras.layers.Conv2D(4, (3, 3), padding="same", activation="relu"), tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(32, activation="relu"), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10), ] ) output = tf_model(x_train[:1]) output = output.numpy() loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) loss(y_train[:1], output).numpy() tf_model.compile(metrics=["accuracy"], optimizer="adam", loss=loss) tf_model.fit(x_train, y_train, epochs=1) tflite_converter = tf.lite.TFLiteConverter.from_keras_model(tf_model) tflite_model = tflite_converter.convert() with open(tflite_filename, "wb") as f: f.write(tflite_model) if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/contrib/test_uma/test_uma_utils.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import io import tvm from tvm import topi, IRModule import numpy as np from tvm.contrib import utils, clang import tvm.testing from tvm import te from typing import Union def _create_schedule( placeholder: list, c_code: Union[str, io.TextIOWrapper] = "", use_external_conv2d_impl: bool = True, ): # How to do the same with TE # Add pragma TE # s = te.create_schedule(result.op) # axis = result.op.axis # s[result].pragma(axis[0], "import_llvm", c_to_llvm()) # with tvm.transform.PassContext(config={"tir.add_lower_pass": [(1, my_ai_hw_conv2d_pass)]}): # mod = tvm.lower(s, [ifmap, weights, result], simple_mode=True) # # llvm_mod = tvm.build(mod, [ifmap, weights, result], target=target, name="test_external_conv2d") # llvm_mod(ifmap_data, weight_data, result_data) if isinstance(c_code, io.TextIOWrapper): c_code_str = c_code.read() elif isinstance(c_code, str): c_code_str = c_code else: raise TypeError() assert ( use_external_conv2d_impl and c_code_str != "" or not use_external_conv2d_impl and c_code_str == "" ) def _c_to_llvm(c_code: str) -> str: temp = utils.tempdir() ll_path = temp.relpath("conv2d.ll") ll_code = clang.create_llvm([c_code], output=ll_path) return ll_code func_tir = te.create_prim_func(placeholder) ir_module_from_te = IRModule({"main": func_tir}) sch_tir = tvm.tir.Schedule(ir_module_from_te) if use_external_conv2d_impl: conv2d_b = sch_tir.get_block("conv2d_nchw") conv2d_l = sch_tir.get_loops(conv2d_b) sch_tir.annotate(conv2d_l[0], "pragma_import_llvm", _c_to_llvm(c_code_str)) return sch_tir def _generate_io_arrays(shapes: dict, dev): n, w, h, ci, kw, kh, co = ( shapes["n"], shapes["w"], shapes["h"], shapes["ci"], shapes["kw"], shapes["kh"], shapes["co"], ) ifmap_data = tvm.nd.array(np.random.uniform(size=(n, ci, w, h)).astype("float32"), dev) weight_data = tvm.nd.array(np.random.uniform(size=(co, ci, kh, kw)).astype("float32"), dev) result_data = tvm.nd.array(np.zeros((n, co, w, h)).astype("float32"), dev) return ifmap_data, weight_data, result_data
https://github.com/zk-ml/tachikoma
tests/python/contrib/test_uma/test_uma_vanilla_accelerator.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """UMA testcase for the vanilla_accelerator accelerator""" import pytest from tvm.relay.backend.contrib.uma.api.utils import PassPhase from tvm.relay.backend.contrib.uma.backend import UMABackend from apps.uma._template.passes import ( MyAiHwConv2dPass as VanillaAcceleratorConv2dPass, ) from apps.uma._template.codegen import gen_includes from apps.uma._template.patterns import conv2d_pattern, dense_pattern from tvm.relay.backend.contrib.uma import uma_available pytestmark = pytest.mark.skipif(not uma_available(), reason="UMA not available") class VanillaAcceleratorBackend(UMABackend): """UMA backend for the VanillaAccelerator accelerator.""" def __init__(self): super().__init__() ####################################################################### # Relay to Relay function registration ####################################################################### self._register_pattern("conv2d", conv2d_pattern()) self._register_pattern("dense", dense_pattern()) ####################################################################### # Relay to TIR function registration ####################################################################### self._register_tir_pass(PassPhase.TIR_PHASE_0, VanillaAcceleratorConv2dPass()) ####################################################################### # TIR to runtime function registration ####################################################################### self._register_codegen(fmt="c", includes=gen_includes) @property def target_name(self): return "vanilla_accelerator"
https://github.com/zk-ml/tachikoma
tests/python/contrib/test_util.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Tests for functions in tvm/python/tvm/contrib/util.py.""" import datetime import os import shutil from tvm.contrib import utils def validate_debug_dir_path(temp_dir, expected_basename): dirname, basename = os.path.split(temp_dir.temp_dir) assert basename == expected_basename, "unexpected basename: %s" % (basename,) parent_dir = os.path.basename(dirname) create_time = datetime.datetime.strptime(parent_dir.split("___", 1)[0], "%Y-%m-%dT%H-%M-%S") assert abs(datetime.datetime.now() - create_time) < datetime.timedelta(seconds=60) def test_tempdir(): assert utils.TempDirectory._KEEP_FOR_DEBUG == False, "don't submit with KEEP_FOR_DEBUG == True" temp_dir = utils.tempdir() assert os.path.exists(temp_dir.temp_dir) old_debug_mode = utils.TempDirectory._KEEP_FOR_DEBUG old_tempdirs = utils.TempDirectory.TEMPDIRS try: for temp_dir_number in range(0, 3): with utils.TempDirectory.set_keep_for_debug(): debug_temp_dir = utils.tempdir() try: validate_debug_dir_path(debug_temp_dir, "0000" + str(temp_dir_number)) finally: shutil.rmtree(debug_temp_dir.temp_dir) with utils.TempDirectory.set_keep_for_debug(): # Create 2 temp_dir within the same session. debug_temp_dir = utils.tempdir() try: validate_debug_dir_path(debug_temp_dir, "00003") finally: shutil.rmtree(debug_temp_dir.temp_dir) debug_temp_dir = utils.tempdir() try: validate_debug_dir_path(debug_temp_dir, "00004") finally: shutil.rmtree(debug_temp_dir.temp_dir) with utils.TempDirectory.set_keep_for_debug(False): debug_temp_dir = utils.tempdir() # This one should get deleted. # Simulate atexit hook utils.TempDirectory.remove_tempdirs() # Calling twice should be a no-op. utils.TempDirectory.remove_tempdirs() # Creating a new TempDirectory should fail now try: utils.tempdir() assert False, "creation should fail" except utils.DirectoryCreatedPastAtExit: pass finally: utils.TempDirectory.DEBUG_MODE = old_debug_mode utils.TempDirectory.TEMPDIRS = old_tempdirs if __name__ == "__main__": test_tempdir()
https://github.com/zk-ml/tachikoma
tests/python/contrib/test_verilator/__init__.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ Infrastructure and tests for Verilator codegen """
https://github.com/zk-ml/tachikoma
tests/python/contrib/test_verilator/infrastructure.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Verilator utility functions""" import os import sys import subprocess as sp import json import tvm from tvm import relay import tvm.relay.testing from tvm import runtime from tvm.relay import transform def _register_verilator_op(op_name, supported=True): """The helper function to indicate that a given operator can be supported by Verilator. Paramters --------- op_name : Str The name of operator that will be registered. Returns ------- f : callable A function that returns if the operator is supported by DNNL. """ @tvm.ir.register_op_attr(op_name, "target.verilator") def _func_wrapper(expr): return supported return _func_wrapper _register_verilator_op("add") _register_verilator_op("nn.bias_add") def skip_test(): """Skip test if it requires the Verilator codegen and it's not present.""" if not tvm.get_global_func("relay.ext.verilator", True): print("Skip test because Verilator codegen is not available.") return True if sys.platform == "win32": print("Skip test on Windows for now") return True return False def clear_stats(): """Clear profiler statistics.""" f = tvm.get_global_func("verilator.profiler_clear", True) if f: f() def stats(): """Get profiler statistics.""" x = tvm.get_global_func("verilator.profiler_status")() return json.loads(x) def offload(mod): """Offload ops based on the registered ops Paramters --------- mod : Module The input module. Returns ------- mod : Module The output module with offloaded ops. """ backend = "verilator" mod = transform.AnnotateTarget([backend])(mod) mod = transform.PartitionGraph()(mod) return mod def verilator_app_path(): """Create verilator hardware app path.""" cur_dir = os.path.dirname(os.path.realpath(__file__)) return os.path.join( cur_dir, "..", "..", "..", "..", "3rdparty", "vta-hw", "apps", "verilator", "add", ) def compile_hardware(lanes): """Compile hardware into shared library Paramters --------- lanes : Int The number of vector lanes. Returns ------- path : Str The path of the shared library. """ lib_name = "libverilator_{}".format(lanes) lib_name_ext = "{}.so".format(lib_name) lib = os.path.join(verilator_app_path(), lib_name_ext) if not os.path.isfile(lib): opt_lib_name = "LIB_NAME={}".format(lib_name) opt_lanes = "LANES={}".format(lanes) cmd = [] cmd.append("make") cmd.append("--directory") cmd.append(verilator_app_path()) cmd.append(opt_lib_name) cmd.append(opt_lanes) sp.run(cmd, check=True, stdout=sp.DEVNULL) return lib def compiler_opts(lib): """Create compiler options Paramters --------- lib : Str The path of the hardware shared library. Returns ------- opts : Dict The compiler options. """ opts = { "lib_path": lib, "profiler_enable": True, "profiler_cycle_counter_id": 0, } return opts def run_module(inp, mod, params=None, opts=None): """Compile Relay module and hardware library Paramters --------- inp : Data The input data. mod : Module The relay module. params : Parameters The model Parameters. opts : Dict The compiler Returns ------- out : Data The output data. """ with tvm.transform.PassContext(opt_level=3, config={"relay.ext.verilator.options": opts}): lib = relay.vm.compile(mod, target="llvm", params=params) code, lib = lib.save() exe = runtime.vm.Executable.load_exec(code, lib) vm = runtime.vm.VirtualMachine(exe, tvm.cpu()) out = vm.run(**inp) return out
https://github.com/zk-ml/tachikoma
tests/python/contrib/test_verilator/test_mobilenet.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm from tvm import te, relay, transform from tvm.contrib.download import download_testdata from tvm.contrib import graph_executor as runtime import os import pytest from PIL import Image import numpy as np from test_verilator.infrastructure import ( skip_test, compile_hardware, compiler_opts, offload, clear_stats, stats, ) def extract(path): """Extract a tgz or gz file. Paramters --------- path : Str The path of the compressed file. """ import tarfile if path.endswith("tgz") or path.endswith("gz"): dir_path = os.path.dirname(path) tar = tarfile.open(path) tar.extractall(path=dir_path) tar.close() else: raise RuntimeError("Could not decompress the file: " + path) def get_real_image(im_height, im_width): """Get a real image. Paramters --------- im_height : Int The image height. im_width : Int The image width. Returns ------- data: Data The image array. """ repo_base = "https://github.com/dmlc/web-data/raw/master/tensorflow/models/InceptionV1/" img_name = "elephant-299.jpg" image_url = os.path.join(repo_base, img_name) img_path = download_testdata(image_url, img_name, module="data") image = Image.open(img_path).resize((im_height, im_width)) x = np.array(image).astype("uint8") data = np.reshape(x, (1, im_height, im_width, 3)) return data def get_mobilenet_model(): """Return mobilenet model.""" model_url = "https://storage.googleapis.com/download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quant.tgz" model_path = download_testdata( model_url, "mobilenet_v1_1.0_224_quant.tgz", module=["tf", "official"] ) model_dir = os.path.dirname(model_path) extract(model_path) tflite_model_file = os.path.join(model_dir, "mobilenet_v1_1.0_224_quant.tflite") tflite_model_buf = open(tflite_model_file, "rb").read() try: import tflite return tflite.Model.GetRootAsModel(tflite_model_buf, 0) except AttributeError: import tflite.Model return tflite.Model.Model.GetRootAsModel(tflite_model_buf, 0) def get_input_tensor_name(): """Return input name.""" return "input" def compile_model_to_relay(model): """Compile model to relay. Paramters --------- model : Model The input model. Returns ------- mod: Module The relay module. params: Parameters The model parameters. """ input_tensor = get_input_tensor_name() input_shape = (1, 224, 224, 3) input_dtype = "uint8" mod, params = relay.frontend.from_tflite( model, shape_dict={input_tensor: input_shape}, dtype_dict={input_tensor: input_dtype}, ) return mod, params def run_model(mod, params=None, opts=None): """Run model. Paramters --------- mod: Module The relay module. params: Parameters The model parameters. opts: Dict The compiler options. Returns ------- out: Data The output data. """ with transform.PassContext(opt_level=3, config={"relay.ext.verilator.options": opts}): lib = relay.build(mod, target="llvm", params=params) module = runtime.GraphModule(lib["default"](tvm.cpu())) image_data = get_real_image(224, 224) input_tensor = get_input_tensor_name() module.set_input(input_tensor, image_data) module.run() out = module.get_output(0).numpy() return out def get_labels(): """Return labels.""" label_file_url = "".join( [ "https://raw.githubusercontent.com/", "tensorflow/tensorflow/master/tensorflow/lite/java/demo/", "app/src/main/assets/", "labels_mobilenet_quant_v1_224.txt", ] ) label_file = "labels_mobilenet_quant_v1_224.txt" label_path = download_testdata(label_file_url, label_file, module="data") # List of 1001 classes with open(label_path) as f: labels = f.readlines() return labels def check_result(res): """Check prediction.""" labels = get_labels() predictions = np.squeeze(res) prediction = np.argmax(predictions) # 387 is the elephant assert prediction == 387 def print_test_info(lanes, cycles): """Print test info Paramters --------- lanes : Int The number of vector lanes. cycles : Int The number of cycles. """ print( "[mobilenet] vector-lanes:{} number of cycles:{} spent in nn.bias_add".format(lanes, cycles) ) def is_tflite_available(): """Skip test if tensorflow-lite is not installed.""" try: import tflite return True except: return False @pytest.mark.skipif(skip_test(), reason="Skip because Verilator codegen is not available") def tmobilenet(lanes): """Mobilenet test template. Paramters --------- lanes : Int The number of vector lanes. """ if skip_test(): return if not is_tflite_available(): return model = get_mobilenet_model() mod, params = compile_model_to_relay(model) mod = offload(mod) lib = compile_hardware(lanes) opts = compiler_opts(lib) clear_stats() res = run_model(mod, params, opts) values = stats() check_result(res) print_test_info(lanes, values["cycle_counter"]) def test_mobilenet(): """Mobilenet tests.""" tmobilenet(4) tmobilenet(32)
https://github.com/zk-ml/tachikoma
tests/python/contrib/test_verilator/test_verilator_ops.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Verilator codegen tests""" import numpy as np import tvm import tvm.testing from tvm import relay import pytest from test_verilator.infrastructure import ( skip_test, compile_hardware, compiler_opts, run_module, offload, clear_stats, stats, ) def create_module_add(shape, dtype): """Create add module. Paramters --------- shape : Tuple The shape tuple. dtype : Str The data type. Returns ------- mod: Module The relay module. """ x = relay.var("x", shape=shape, dtype=dtype) y = relay.var("y", shape=shape, dtype=dtype) z = relay.add(x, y) f = relay.Function([x, y], z) mod = tvm.IRModule() mod["main"] = f return mod def create_module_bias_add(xshape, yshape, dtype): """Create bias_add module. Paramters --------- xshape : Tuple The x shape tuple. yshape : Tuple The y shape tuple. dtype : Str The data type. Returns ------- mod: Module The relay module. """ x = relay.var("x", shape=xshape, dtype=dtype) y = relay.var("y", shape=yshape, dtype=dtype) z = relay.nn.bias_add(x, y, axis=3) f = relay.Function([x, y], z) mod = tvm.IRModule() mod["main"] = f return mod def run_and_check(xshape, yshape, dtype, mod, opts): """Run and check values. Paramters --------- xshape : Tuple The x shape tuple. yshape : Tuple The y shape tuple. dtype : Str The data type. mod: Module The relay module. opts: Dict The compiler options. Returns ------- cycles: Int The number of cycles. """ x_data = np.random.randint(5, size=xshape, dtype=dtype) y_data = np.random.randint(5, size=yshape, dtype=dtype) ref = x_data + y_data inp = {"x": x_data, "y": y_data} clear_stats() out = run_module(inp, mod, params=None, opts=opts) values = stats() tvm.testing.assert_allclose(out.numpy(), ref, rtol=1e-5, atol=1e-5) return values["cycle_counter"] def print_test_info(test, lanes, cycles): """Print counter Paramters --------- test : Str The name of the test. lanes : Int The number of vector lanes. cycles : Int The number of cycles. """ print("test:{} vector-lanes:{} number of cycles:{}".format(test, lanes, cycles)) @pytest.mark.skipif(skip_test(), reason="Skip because Verilator codegen is not available") def tadd(lanes): """Print counter Paramters --------- lanes : Int The number of vector lanes. """ if skip_test(): return dtype = "int32" shape = (8, 4) mod = create_module_add(shape, dtype) mod = offload(mod) lib = compile_hardware(lanes) opts = compiler_opts(lib) cycles = run_and_check(shape, shape, dtype, mod, opts) print_test_info("add", lanes, cycles) @pytest.mark.skipif(skip_test(), reason="Skip because Verilator codegen is not available") def tbias(lanes): """Print counter Paramters --------- lanes : Int The number of vector lanes. """ if skip_test(): return dtype = "int32" xshape = (1, 112, 112, 32) yshape = (32,) mod = create_module_bias_add(xshape, yshape, dtype) mod = offload(mod) lib = compile_hardware(lanes) opts = compiler_opts(lib) cycles = run_and_check(xshape, yshape, dtype, mod, opts) print_test_info("nn.bias_add", lanes, cycles) def test_add(): """add tests.""" tadd(1) tadd(4) def test_bias_add(): """bias_add tests.""" tbias(1) tbias(32) if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/contrib/test_vitis_ai/__init__.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ Infrastructure and tests for Vitis-AI codegen """
https://github.com/zk-ml/tachikoma
tests/python/contrib/test_vitis_ai/infrastructure.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=no-else-return, unidiomatic-typecheck, invalid-name, W0611, C0413 """Expose Vitis-AI test functions to the Python frontend""" import sys import numpy as np import pytest pytest.importorskip("pyxir") import pyxir.contrib.target.DPUCZDX8G import tvm from tvm import relay from tvm import runtime from tvm.relay import transform from tvm.relay.op.contrib.vitis_ai import partition_for_vitis_ai from tvm.relay.build_module import bind_params_by_name from tvm.contrib.target import vitis_ai from tvm.contrib import graph_executor from tvm.contrib import utils def get_cpu_op_count(mod): """Traverse graph counting ops offloaded to TVM.""" class Counter(tvm.relay.ExprVisitor): def __init__(self): super().__init__() self.count = 0 def visit_call(self, call): if isinstance(call.op, tvm.ir.Op): self.count += 1 super().visit_call(call) c = Counter() c.visit(mod["main"]) return c.count def build_module( mod, target, dpu_target="DPUCADF8H", params=None, enable_vitis_ai=True, tvm_ops=0, vitis_ai_partitions=1, ): """Build module for Vitis-AI codegen.""" if isinstance(mod, tvm.relay.expr.Call): mod = tvm.IRModule.from_expr(mod) if params is None: params = {} with tvm.transform.PassContext( opt_level=3, config={"relay.ext.vitis_ai.options.target": dpu_target} ): if enable_vitis_ai: mod = partition_for_vitis_ai(mod, params, dpu_target) tvm_op_count = get_cpu_op_count(mod) assert tvm_op_count == tvm_ops, "Got {} TVM operators, expected {}".format( tvm_op_count, tvm_ops ) partition_count = 0 for global_var in mod.get_global_vars(): if "vitis_ai" in global_var.name_hint: partition_count += 1 assert ( vitis_ai_partitions == partition_count ), "Got {} Vitis-AI partitions, expected {}".format( partition_count, vitis_ai_partitions ) relay.backend.te_compiler.get().clear() return relay.build(mod, target, params=params) def update_lib(lib, cross_compile=None): tmp_path = utils.tempdir() lib_name = "lib.so" lib_path = tmp_path.relpath(lib_name) if cross_compile: lib.export_library(lib_path, cc=cross_compile) else: lib.export_library(lib_path) lib = runtime.load_module(lib_path) return lib def extract_vitis_ai_modules(module): """Get the Vits-AI runtime module from llvm module.""" return list( filter(lambda mod: mod.type_key == "VitisAIRuntime", module.get_lib().imported_modules) ) def verify_codegen( module, num_vitis_ai_modules=1, params=None, target="llvm", tvm_ops=0, dpu_target="DPUCADX8G" ): """Check Vitis-AI codegen against a known good output.""" module = build_module( module, target, params=params, dpu_target=dpu_target, tvm_ops=tvm_ops, vitis_ai_partitions=num_vitis_ai_modules, ) vitis_ai_modules = extract_vitis_ai_modules(module) assert len(vitis_ai_modules) == num_vitis_ai_modules, ( f"The number of Vitis-AI modules produced ({len(vitis_ai_modules)}) does not " f"match the expected value ({num_vitis_ai_modules})." ) def verify_result( mod, map_inputs, out_shape, result, tol=1e-5, target="llvm", device=tvm.cpu(), params=None, dpu_target="DPUCADX8G", tvm_ops=0, ): """To check the result between reference and byoc vitis-ai flow""" lib = build_module(mod, target, params=params, dpu_target=dpu_target, tvm_ops=tvm_ops) lib = update_lib(lib) rt_mod = graph_executor.GraphModule(lib["default"](tvm.cpu())) for name, data in map_inputs.items(): rt_mod.set_input(name, data) rt_mod.set_input(**params) rt_mod.run() out_shapes = out_shape if isinstance(out_shape, list) else [out_shape] results = result if isinstance(result, list) else [result] for idx, shape in enumerate(out_shapes): out = tvm.nd.empty(shape, device=device) out = rt_mod.get_output(idx, out) tvm.testing.assert_allclose(out.numpy(), results[idx], rtol=tol, atol=tol)
https://github.com/zk-ml/tachikoma
tests/python/contrib/test_vitis_ai/test_vitis_ai_codegen.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=no-else-return, unidiomatic-typecheck, invalid-name, W0611, C0413 """Vitis-AI codegen tests""" import sys import numpy as np import pytest pytest.importorskip("pyxir") import pyxir.contrib.target.DPUCADF8H import pyxir.contrib.target.DPUCAHX8H import pyxir.contrib.target.DPUCAHX8L import pyxir.contrib.target.DPUCVDX8G import pyxir.contrib.target.DPUCVDX8H import pyxir.contrib.target.DPUCZDX8G import tvm from tvm import relay from tvm.testing import requires_vitis_ai from tvm.contrib.target import vitis_ai from tvm.relay import transform from tvm.relay.build_module import bind_params_by_name from tvm.relay.op.contrib.vitis_ai import annotation from .infrastructure import verify_codegen def set_func_attr(func, compile_name, symbol_name): func = func.with_attr("Primitive", tvm.tir.IntImm("int32", 1)) func = func.with_attr("Inline", tvm.tir.IntImm("int32", 1)) func = func.with_attr("Compiler", compile_name) func = func.with_attr("global_symbol", symbol_name) return func @requires_vitis_ai @pytest.mark.parametrize( "dpu_target", ["DPUCADF8H", "DPUCAHX8H-u50", "DPUCAHX8L", "DPUCVDX8H", "DPUCVDX8G", "DPUCZDX8G-zcu104"], ) def test_conv2d(dpu_target): """Test conv2d operator for Vitis AI DPU targets""" x = relay.var("x", shape=(1, 3, 224, 224)) w = relay.const(np.zeros((16, 3, 3, 3), dtype="float32")) y = relay.nn.conv2d(x, w, strides=[2, 2], padding=[1, 1, 1, 1], kernel_size=[3, 3]) func = relay.Function([x], y) params = {} params["w"] = np.random.rand(16, 3, 3, 3).astype("float32") mod = tvm.IRModule() mod["main"] = func verify_codegen(mod, params=params, dpu_target=dpu_target, tvm_ops=2) @requires_vitis_ai @pytest.mark.parametrize("dpu_target", ["DPUCAHX8L", "DPUCZDX8G-zcu104"]) def test_depthwise_conv(dpu_target): """Test depthwise_conv operator for Vitis-AI DPUCZDX8G-zcu104 target""" dtype = "float32" ishape = (1, 32, 14, 14) wshape = (32, 1, 3, 3) data = relay.var("data", shape=(ishape), dtype=dtype) weights = relay.var("weights", shape=(wshape), dtype=dtype) depthwise_conv2d = relay.nn.conv2d(data, weights, kernel_size=(3, 3), padding=(1, 1), groups=32) func = relay.Function([data, weights], depthwise_conv2d) params = {} params["weights"] = np.random.randn(32, 1, 3, 3).astype(dtype) mod = tvm.IRModule() mod["main"] = func verify_codegen(mod, params=params, dpu_target=dpu_target, tvm_ops=2) @requires_vitis_ai @pytest.mark.parametrize( "dpu_target", ["DPUCADF8H", "DPUCAHX8H-u50", "DPUCAHX8L", "DPUCVDX8H", "DPUCVDX8G", "DPUCZDX8G-zcu104"], ) def test_bias_add(dpu_target): """Test bias_add operator for Vitis AI DPU targets""" dtype = "float32" ishape = (1, 32, 14, 14) data = relay.var("data", shape=(ishape), dtype=dtype) bias = relay.var("bias", relay.TensorType((32,), dtype)) out = relay.nn.bias_add(data, bias) func = relay.Function([data, bias], out) params = {} params["bias"] = np.random.randn(32).astype(dtype) mod = tvm.IRModule() mod["main"] = func verify_codegen(mod, params=params, dpu_target=dpu_target) @requires_vitis_ai @pytest.mark.parametrize( "dpu_target", ["DPUCADF8H", "DPUCAHX8H-u50", "DPUCAHX8L", "DPUCVDX8H", "DPUCVDX8G", "DPUCZDX8G-zcu104"], ) def test_relu(dpu_target): """Test relu operator for Vitis AI DPU targets""" shape = (10, 10) x = relay.var("x", shape=shape) y = relay.nn.relu(x) func = relay.Function([x], y) mod = tvm.IRModule() mod["main"] = func verify_codegen(mod, dpu_target=dpu_target, num_vitis_ai_modules=0, tvm_ops=1) @requires_vitis_ai @pytest.mark.parametrize( "dpu_target", ["DPUCADF8H", "DPUCAHX8H-u50", "DPUCAHX8L", "DPUCVDX8H", "DPUCVDX8G", "DPUCZDX8G-zcu104"], ) def test_batchnorm(dpu_target): """Test batchnorm operator for Vitis AI DPU targets""" data = relay.var("data", shape=(1, 16, 112, 112)) bn_gamma = relay.var("bn_gamma", relay.TensorType((16,), "float32")) bn_beta = relay.var("bn_beta", relay.TensorType((16,), "float32")) bn_mmean = relay.var("bn_mean", relay.TensorType((16,), "float32")) bn_mvar = relay.var("bn_var", relay.TensorType((16,), "float32")) bn_output = relay.nn.batch_norm(data, bn_gamma, bn_beta, bn_mmean, bn_mvar) func = relay.Function([data, bn_gamma, bn_beta, bn_mmean, bn_mvar], bn_output[0]) params = {} params["bn_gamma"] = np.random.rand(16).astype("float32") params["bn_beta"] = np.random.rand(16).astype("float32") params["bn_mean"] = np.random.rand(16).astype("float32") params["bn_var"] = np.random.rand(16).astype("float32") mod = tvm.IRModule() mod["main"] = func verify_codegen(mod, params=params, dpu_target=dpu_target) @requires_vitis_ai @pytest.mark.parametrize( "dpu_target", ["DPUCADF8H", "DPUCAHX8H-u50", "DPUCAHX8L", "DPUCVDX8H", "DPUCVDX8G", "DPUCZDX8G-zcu104"], ) def test_add(dpu_target): """Test add operator for Vitis AI DPU targets""" shape = (10, 10) x = relay.var("x", shape=shape) y = x + x func = relay.Function([x], y) mod = tvm.IRModule() mod["main"] = func verify_codegen(mod, dpu_target=dpu_target) @requires_vitis_ai @pytest.mark.parametrize( "dpu_target", ["DPUCADF8H", "DPUCAHX8H-u50", "DPUCAHX8L", "DPUCVDX8H", "DPUCVDX8G", "DPUCZDX8G-zcu104"], ) def test_global_avg_pool2d(dpu_target): """Test global_avg_pool2d operator for Vitis AI DPU targets""" shape = (10, 10, 7, 7) x = relay.var("x", shape=shape) y = relay.nn.global_avg_pool2d(x) func = relay.Function([x], y) mod = tvm.IRModule() mod["main"] = func verify_codegen(mod, dpu_target=dpu_target) @requires_vitis_ai @pytest.mark.parametrize( "dpu_target", ["DPUCADF8H", "DPUCAHX8H-u50", "DPUCAHX8L", "DPUCVDX8H", "DPUCVDX8G", "DPUCZDX8G-zcu104"], ) def test_avg_pool2d(dpu_target): """Test avg_pool2d for operator Vitis AI DPU targets""" shape = (10, 10, 10, 10) x = relay.var("x", shape=shape) y = relay.nn.avg_pool2d(x, pool_size=(3, 3)) func = relay.Function([x], y) mod = tvm.IRModule() mod["main"] = func verify_codegen(mod, dpu_target=dpu_target) @requires_vitis_ai @pytest.mark.parametrize( "dpu_target", ["DPUCADF8H", "DPUCAHX8H-u50", "DPUCAHX8L", "DPUCVDX8H", "DPUCVDX8G", "DPUCZDX8G-zcu104"], ) def test_max_pool2d(dpu_target): """Test max_pool2d for operator Vitis AI DPU targets""" shape = (64, 512, 10, 10) x = relay.var("x", shape=shape) y = relay.nn.max_pool2d(x, pool_size=(3, 3)) func = relay.Function([x], y) mod = tvm.IRModule() mod["main"] = func verify_codegen(mod, dpu_target=dpu_target) @requires_vitis_ai @pytest.mark.parametrize( "dpu_target", ["DPUCADF8H", "DPUCAHX8H-u50", "DPUCAHX8L", "DPUCVDX8H", "DPUCVDX8G", "DPUCZDX8G-zcu104"], ) def test_global_max_pool2d(dpu_target): """Test global_maxpool2d operator for Vitis AI DPU targets""" shape = (1, 512, 7, 7) x = relay.var("x", shape=shape) y = relay.nn.global_max_pool2d(x) func = relay.Function([x], y) mod = tvm.IRModule() mod["main"] = func verify_codegen(mod, dpu_target=dpu_target) @requires_vitis_ai @pytest.mark.parametrize( "dpu_target", ["DPUCADF8H", "DPUCAHX8H-u50", "DPUCAHX8L", "DPUCVDX8H", "DPUCVDX8G", "DPUCZDX8G-zcu104"], ) def test_upsampling(dpu_target): """Test upsampling operator for Vitis AI DPU targets""" shape = (64, 512, 10, 10) x = relay.var("x", shape=shape) y = relay.nn.upsampling(x, scale_h=2, scale_w=2) func = relay.Function([x], y) mod = tvm.IRModule() mod["main"] = func verify_codegen(mod, dpu_target=dpu_target) @pytest.mark.skip( reason="I and O used to be mixed up in kernel layouts in TVM." "This is fixed, but vitis needs to adopt the new convention." "To change, simply remove this line:" "https://github.com/Xilinx/pyxir/blob/bef661d6d77adcdbd2cf4163f2cf3a1d31d40406/" "python/pyxir/frontend/tvm/relay_tools/relay_l2_convolution.py#L380" ) @pytest.mark.parametrize( "dpu_target", ["DPUCADF8H", "DPUCAHX8H-u50", "DPUCAHX8L", "DPUCVDX8H", "DPUCVDX8G", "DPUCZDX8G-zcu104"], ) def test_conv2d_transpose(dpu_target): """Test conv2d_transpose operator for Vitis AI DPU targets""" dshape = (1, 3, 18, 18) kshape = (3, 10, 3, 3) x = relay.var("x", shape=dshape) w = relay.const(np.zeros(kshape, dtype="float32")) y = relay.nn.conv2d_transpose( x, w, channels=10, kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), data_layout="NCHW", kernel_layout="IOHW", ) func = relay.Function([x], y) params = {} dtype = "float32" params["w"] = np.random.uniform(size=kshape).astype(dtype) mod = tvm.IRModule() mod["main"] = func verify_codegen(mod, params=params, dpu_target=dpu_target) @requires_vitis_ai @pytest.mark.parametrize( "dpu_target", ["DPUCADF8H", "DPUCAHX8H-u50", "DPUCAHX8L", "DPUCVDX8H", "DPUCVDX8G", "DPUCZDX8G-zcu104"], ) def test_annotate(dpu_target): """Test annotation operator for Vitis AI DPU targets""" def partition(dpu_target): data = relay.var("data", relay.TensorType((1, 3, 224, 224), "float32")) weight = relay.var("weight", relay.TensorType((16, 3, 3, 3), "float32")) bn_gamma = relay.var("bn_gamma", relay.TensorType((16,), "float32")) bn_beta = relay.var("bn_beta", relay.TensorType((16,), "float32")) bn_mmean = relay.var("bn_mean", relay.TensorType((16,), "float32")) bn_mvar = relay.var("bn_var", relay.TensorType((16,), "float32")) conv = relay.nn.conv2d( data=data, weight=weight, kernel_size=(3, 3), channels=16, padding=(1, 1) ) bn_output = relay.nn.batch_norm(conv, bn_gamma, bn_beta, bn_mmean, bn_mvar) func = relay.Function( [data, weight, bn_gamma, bn_beta, bn_mmean, bn_mvar], bn_output.astuple() ) mod = tvm.IRModule() mod["main"] = func params = {} params["weight"] = np.random.rand(16, 3, 3, 3).astype("float32") params["bn_gamma"] = np.random.rand(16).astype("float32") params["bn_beta"] = np.random.rand(16).astype("float32") params["bn_mean"] = np.random.rand(16).astype("float32") params["bn_var"] = np.random.rand(16).astype("float32") mod = annotation(mod, params, dpu_target) opt_pass = tvm.transform.Sequential( [ transform.MergeCompilerRegions(), transform.PartitionGraph(), ] ) with tvm.transform.PassContext(opt_level=3): mod = opt_pass(mod) return mod def expected(): # function variables for conv2d data0 = relay.var("data0", relay.TensorType((1, 3, 224, 224), "float32")) weight0 = relay.var("weight0", relay.TensorType((16, 3, 3, 3), "float32")) conv = relay.nn.conv2d( data=data0, weight=weight0, kernel_size=(3, 3), channels=16, padding=(1, 1) ) # function variables for batch_norm bn_gamma0 = relay.var("bn_gamma0", relay.TensorType((16,), "float32")) bn_beta0 = relay.var("bn_beta0", relay.TensorType((16,), "float32")) bn_mmean0 = relay.var("bn_mean0", relay.TensorType((16,), "float32")) bn_mvar0 = relay.var("bn_var0", relay.TensorType((16,), "float32")) bn = relay.nn.batch_norm(conv, bn_gamma0, bn_beta0, bn_mmean0, bn_mvar0) func0 = relay.Function( [data0, weight0, bn_gamma0, bn_beta0, bn_mmean0, bn_mvar0], bn.astuple() ) func0 = set_func_attr(func0, "vitis_ai", "tvmgen_default_vitis_ai_main_0") gv0 = relay.GlobalVar("tvmgen_default_vitis_ai_main_0") mod = tvm.IRModule() mod[gv0] = func0 mod = relay.transform.InferType()(mod) # main function data = relay.var("data", relay.TensorType((1, 3, 224, 224), "float32")) weight = relay.var("weight", relay.TensorType((16, 3, 3, 3), "float32")) bn_gamma = relay.var("bn_gamma", relay.TensorType((16,), "float32")) bn_beta = relay.var("bn_beta", relay.TensorType((16,), "float32")) bn_mmean = relay.var("bn_mean", relay.TensorType((16,), "float32")) bn_mvar = relay.var("bn_var", relay.TensorType((16,), "float32")) call0 = gv0(data, weight, bn_gamma, bn_beta, bn_mmean, bn_mvar) mod["main"] = relay.Function([data, weight, bn_gamma, bn_beta, bn_mmean, bn_mvar], call0) mod = relay.transform.InferType()(mod) return mod partitioned_mod = partition(dpu_target) ref_mod = expected() assert tvm.ir.structural_equal(partitioned_mod, ref_mod, map_free_vars=True) if __name__ == "__main__": if sys.platform == "win32": print("Skip test on Windows for now") sys.exit(0) pytest.main([__file__])
https://github.com/zk-ml/tachikoma
tests/python/contrib/test_vitis_ai/test_vitis_ai_runtime_cpu_part.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=no-else-return, unidiomatic-typecheck, invalid-name, W0611, C0413 """Vitis-AI runtime test for CPU only part This test verifies as much as possible whether the a model can be correctly offloaded and executed for Vitis-AI acceleration. This entails: - Annotating and partitioning model for Vitis-AI acceleration - Building a Vitis-AI PyXIR runtime module with on-the-fly quantization enabled - Run first iteration of on-the-fly quantization flow. This will always be run on CPU as the first N (parameter) will be used for collecting calibration data for quantization. NOTE This is not a full end-to-end test as we need the full Vitis-AI docker environment and access to an FPGA instance for that. This test verifies the Vitis-AI flow as much as possible without requiring access to dedicated docker environment and/or hardware setup. NOTE Quantization is not being tested (we need to be inside Vitis-AI docker environment for that) buth the internal representation used for quantization is being generated and functionally tested (CPU). """ import sys import numpy as np import pytest pytest.importorskip("pyxir") import pyxir.contrib.target.DPUCADF8H import pyxir.contrib.target.DPUCVDX8H import pyxir.contrib.target.DPUCZDX8G import tvm import tvm.relay.testing from tvm import relay from tvm.testing import requires_vitis_ai from .infrastructure import verify_result @requires_vitis_ai @pytest.mark.parametrize("dpu_target", ["DPUCADF8H", "DPUCVDX8H", "DPUCZDX8G-zcu104"]) def test_extern_vitis_ai_resnet18(dpu_target): """Test first part of Vitis AI on-the-fly quantization runtime with ResNet 18 model""" dtype = "float32" ishape = (1, 3, 224, 224) mod, params = relay.testing.resnet.get_workload(num_layers=18, batch_size=1) ref_mod, params = relay.testing.resnet.get_workload(num_layers=18, batch_size=1) i_data = np.random.uniform(0, 1, ishape).astype(dtype) ref_res = relay.create_executor("graph", mod=ref_mod, device=tvm.cpu(0)).evaluate()( i_data, **params ) verify_result( mod, {"data": i_data}, (1, 1000), ref_res.numpy(), tol=1e-5, params=params, dpu_target=dpu_target, tvm_ops=7, ) if __name__ == "__main__": if sys.platform == "win32": print("Skip test on Windows for now") sys.exit(0) pytest.main([__file__])
https://github.com/zk-ml/tachikoma
tests/python/driver/tvmc/conftest.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import os import pytest import tarfile import textwrap import numpy as np from PIL import Image import tvm from tvm import relay from tvm.driver import tvmc from tvm.contrib.download import download_testdata # Support functions def download_and_untar(model_url, model_sub_path, temp_dir): model_tar_name = os.path.basename(model_url) model_path = download_testdata(model_url, model_tar_name, module=["tvmc"]) if model_path.endswith("tgz") or model_path.endswith("gz") or model_path.endswith("tar"): tar = tarfile.open(model_path) tar.extractall(path=temp_dir) tar.close() return os.path.join(temp_dir, model_sub_path) # PyTest fixtures @pytest.fixture(scope="session") def tflite_mobilenet_v1_1_quant(tmpdir_factory): base_url = "https://storage.googleapis.com/download.tensorflow.org/models" model_url = "mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quant.tgz" model_file = download_and_untar( "{}/{}".format(base_url, model_url), "mobilenet_v1_1.0_224_quant.tflite", temp_dir=tmpdir_factory.mktemp("data"), ) return model_file @pytest.fixture(scope="session") def pb_mobilenet_v1_1_quant(tmpdir_factory): base_url = "https://storage.googleapis.com/download.tensorflow.org/models" model_url = "mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224.tgz" model_file = download_and_untar( "{}/{}".format(base_url, model_url), "mobilenet_v1_1.0_224_frozen.pb", temp_dir=tmpdir_factory.mktemp("data"), ) return model_file @pytest.fixture(scope="session") def keras_resnet50(tmpdir_factory): try: from tensorflow.keras.applications.resnet50 import ResNet50 except ImportError: # not all environments provide TensorFlow, so skip this fixture # if that is that case. return "" model_file_name = "{}/{}".format(tmpdir_factory.mktemp("data"), "resnet50.h5") model = ResNet50(include_top=True, weights="imagenet", input_shape=(224, 224, 3), classes=1000) model.save(model_file_name) return model_file_name @pytest.fixture(scope="session") def keras_simple(tmpdir_factory): try: from tensorflow import keras except ImportError: # not all environments provide TensorFlow, so skip this fixture # if that is that case. return "" model_file_name = "{}/{}".format(tmpdir_factory.mktemp("data"), "simple_conv.h5") model = keras.Sequential( [ keras.layers.InputLayer(input_shape=[32, 32, 3], batch_size=1), keras.layers.Conv2D(8, kernel_size=(3, 3)), keras.layers.Flatten(), keras.layers.Dense(64), ] ) model.save(model_file_name) return model_file_name @pytest.fixture(scope="session") def pytorch_resnet18(tmpdir_factory): try: import torch import torchvision.models as models except ImportError: # Not all environments provide Pytorch, so skip if that's the case. return "" model = models.resnet18() model_file_name = "{}/{}".format(tmpdir_factory.mktemp("data"), "resnet18.pth") # Trace model into torchscript. traced_cpu = torch.jit.trace(model, torch.randn(1, 3, 224, 224)) torch.jit.save(traced_cpu, model_file_name) return model_file_name @pytest.fixture(scope="session") def pytorch_mobilenetv2_quantized(tmpdir_factory): try: import torch import torchvision.models as models except ImportError: # Not all environments provide Pytorch, so skip if that's the case. return "" model = models.quantization.mobilenet_v2(quantize=True) model_file_name = "{}/{}".format(tmpdir_factory.mktemp("data"), "mobilenet_v2_quantized.pth") # Trace model into torchscript. traced_cpu = torch.jit.trace(model, torch.randn(1, 3, 224, 224)) torch.jit.save(traced_cpu, model_file_name) return model_file_name @pytest.fixture(scope="session") def onnx_resnet50(): base_url = "https://github.com/onnx/models/raw/bd206494e8b6a27b25e5cf7199dbcdbfe9d05d1c/vision/classification/resnet/model" file_to_download = "resnet50-v2-7.onnx" model_file = download_testdata( "{}/{}".format(base_url, file_to_download), file_to_download, module=["tvmc"] ) return model_file @pytest.fixture(scope="session") def paddle_resnet50(tmpdir_factory): base_url = "https://bj.bcebos.com/x2paddle/models" model_url = "paddle_resnet50.tar" model_file = download_and_untar( "{}/{}".format(base_url, model_url), "paddle_resnet50/model.pdmodel", temp_dir=tmpdir_factory.mktemp("data"), ) return model_file @pytest.fixture(scope="session") def onnx_mnist(): base_url = "https://github.com/onnx/models/raw/bd206494e8b6a27b25e5cf7199dbcdbfe9d05d1c/vision/classification/mnist/model" file_to_download = "mnist-1.onnx" model_file = download_testdata( "{}/{}".format(base_url, file_to_download), file_to_download, module=["tvmc"] ) return model_file @pytest.fixture def tflite_compile_model(tmpdir_factory): """Support function that returns a TFLite compiled module""" def model_compiler(model_file, **overrides): package_path = tmpdir_factory.mktemp("data").join("mock.tar") tvmc_model = tvmc.frontends.load_model(model_file) args = {"target": "llvm", **overrides} return tvmc.compiler.compile_model(tvmc_model, package_path=package_path, **args) # Returns a TVMCPackage return model_compiler @pytest.fixture def relay_compile_model(tmpdir_factory): """Support function that returns a TFLite compiled module""" def model_compiler(model_file, shape_dict, **overrides): package_path = tmpdir_factory.mktemp("data").join("mock.tar") tvmc_model = tvmc.frontends.load_model( model_file, model_format="relay", shape_dict=shape_dict ) args = {"target": "llvm", **overrides} return tvmc.compiler.compile_model(tvmc_model, package_path=package_path, **args) # Returns a TVMCPackage return model_compiler @pytest.fixture(scope="session") def imagenet_cat(tmpdir_factory): tmpdir_name = tmpdir_factory.mktemp("data") cat_file_name = "imagenet_cat.npz" cat_url = "https://github.com/dmlc/mxnet.js/blob/main/data/cat.png?raw=true" image_path = download_testdata(cat_url, "inputs", module=["tvmc"]) resized_image = Image.open(image_path).resize((224, 224)) image_data = np.asarray(resized_image).astype("float32") image_data = np.expand_dims(image_data, axis=0) cat_file_full_path = os.path.join(tmpdir_name, cat_file_name) np.savez(cat_file_full_path, input=image_data) return cat_file_full_path @pytest.fixture(scope="session") def tflite_mobilenet_v1_0_25_128(tmpdir_factory): base_url = "https://storage.googleapis.com/download.tensorflow.org/models" model_url = "mobilenet_v1_2018_02_22/mobilenet_v1_0.25_128.tgz" model_file = download_and_untar( "{}/{}".format(base_url, model_url), "mobilenet_v1_0.25_128.tflite", temp_dir=tmpdir_factory.mktemp("data"), ) return model_file @pytest.fixture(scope="session") def tflite_cnn_s_quantized(tmpdir_factory): base_url = "https://github.com/ARM-software/ML-zoo/raw/master/models/keyword_spotting/cnn_small/tflite_int8/" file_to_download = "cnn_s_quantized.tflite" model_file = download_testdata( "{}/{}".format(base_url, file_to_download), file_to_download, module=["tvmc"] ) return model_file @pytest.fixture(scope="session") def relay_text_conv2d(tmpdir_factory): file_path = os.path.join(tmpdir_factory.mktemp("model"), "relay.txt") RELAY_MODEL = textwrap.dedent( """\ #[version = "0.0.5"] def @main(%data : Tensor[(1, 3, 64, 64), uint8], %weight : Tensor[(3, 3, 5, 5), int8]) { %1 = nn.conv2d( %data, %weight, padding=[2, 2], channels=3, kernel_size=[5, 5], data_layout="NCHW", kernel_layout="OIHW", out_dtype="int32"); %2 = cast(nn.max_pool2d(%1, pool_size=[3, 3]), dtype="int8"); %3 = nn.conv2d( %2, %weight, padding=[2, 2], channels=3, kernel_size=[5, 5], data_layout="NCHW", kernel_layout="OIHW", out_dtype="int32"); %4 = nn.max_pool2d(%3, pool_size=[3, 3]); %4 } """ ) with open(file_path, "w") as relay_text: relay_text.write(RELAY_MODEL) return file_path @pytest.fixture(scope="session") def relay_conv2d(): """ Simple conv2d Relay implementation. """ dtype = "float32" x = relay.var("x", shape=(1, 4, 2, 2), dtype=dtype) weight = relay.const(np.random.uniform(size=(2, 4, 2, 2)), dtype=dtype) x = relay.nn.conv2d(x, weight) func = relay.Function(relay.analysis.free_vars(x), x) return tvm.IRModule.from_expr(func)
https://github.com/zk-ml/tachikoma
tests/python/driver/tvmc/test_autoscheduler.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import platform import pytest import os from os import path from tvm import auto_scheduler from tvm.driver import tvmc def _get_tasks(model): tvmc_model = tvmc.frontends.load_model(model) tasks, weights = tvmc.autotuner.autoscheduler_get_tuning_tasks( tvmc_model.mod, tvmc_model.params, "llvm" ) return (tasks, weights) def _autoscheduler_test_helper(model, tmpdir_name, early_stopping=1, prior_records=None): tvmc_model = tvmc.frontends.load_model(model) log_file = os.path.join(tmpdir_name, "autoscheduler.json") hardware_params = auto_scheduler.HardwareParams(num_cores=4, target="llvm") tvmc.tune( tvmc_model, target="llvm", tuning_records=log_file, prior_records=prior_records, early_stopping=early_stopping, enable_autoscheduler=True, trials=2, hardware_params=hardware_params, ) # testing whether the log file was produced assert path.exists(log_file), "autoscheduler log file should exist" with auto_scheduler.ApplyHistoryBest(log_file) as best: assert isinstance( best, auto_scheduler.dispatcher.ApplyHistoryBest ), "unable to load the best results of tuning" return log_file def test_get_tuning_tasks(keras_simple): pytest.importorskip("tensorflow") tasks, weights = _get_tasks(keras_simple) expected_task_type = auto_scheduler.SearchTask assert type(tasks) is list assert len(tasks) > 0 assert all([type(x) is expected_task_type for x in tasks]) is True @pytest.mark.skipif( platform.machine() == "aarch64", reason="Currently failing on AArch64 - see https://github.com/apache/tvm/issues/10673", ) def test_tune_tasks(keras_simple, tmpdir_factory): pytest.importorskip("tensorflow") tmpdir_name = tmpdir_factory.mktemp("data") _autoscheduler_test_helper(keras_simple, tmpdir_name) @pytest.mark.skipif( platform.machine() == "aarch64", reason="Currently failing on AArch64 - see https://github.com/apache/tvm/issues/10673", ) def test_tune_tasks__tuning_records(keras_simple, tmpdir_factory): pytest.importorskip("tensorflow") tmpdir_name = tmpdir_factory.mktemp("data") output_log_phase_1 = _autoscheduler_test_helper(keras_simple, tmpdir_name) # Exercises transfer learning by making sure a previous log exists _autoscheduler_test_helper(keras_simple, tmpdir_name, prior_records=output_log_phase_1) @pytest.mark.skipif( platform.machine() == "aarch64", reason="Currently failing on AArch64 - see https://github.com/apache/tvm/issues/10673", ) def test_tune_tasks__no_early_stopping(keras_simple, tmpdir_factory): pytest.importorskip("tensorflow") tmpdir_name = tmpdir_factory.mktemp("data") _autoscheduler_test_helper(keras_simple, tmpdir_name, early_stopping=None)
https://github.com/zk-ml/tachikoma
tests/python/driver/tvmc/test_autotuner.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import platform import pytest import os from unittest import mock from os import path from pathlib import Path import tvm from tvm import autotvm from tvm.driver import tvmc def _get_tasks(model): tvmc_model = tvmc.frontends.load_model(model) return tvmc.autotuner.autotvm_get_tuning_tasks(tvmc_model.mod, tvmc_model.params, "llvm") def _get_measure_options(): return autotvm.measure_option( builder=autotvm.LocalBuilder(build_func="default"), runner="local" ) def _tuner_test_helper(model, tuner_name, tmpdir_name, early_stopping=1, prior_records=None): tvmc_model = tvmc.frontends.load_model(model) log_file = os.path.join(tmpdir_name, "log_{}.txt".format(tuner_name)) tvmc.tune( tvmc_model, target="llvm", tuning_records=log_file, prior_records=prior_records, tuner=tuner_name, trials=4, early_stopping=early_stopping, ) # testing whether the log file was produced assert path.exists(log_file), "tuning log file should exist" with autotvm.apply_history_best(log_file) as best: assert isinstance( best, autotvm.task.dispatcher.ApplyHistoryBest ), "unable to load the best results of tuning" return log_file def test_get_tuning_tasks(onnx_mnist): pytest.importorskip("onnx") sut = _get_tasks(onnx_mnist) expected_task_type = autotvm.task.Task assert type(sut) is list assert len(sut) > 0 assert all([type(x) is expected_task_type for x in sut]) is True @pytest.mark.skipif( platform.machine() == "aarch64", reason="Currently failing on AArch64 - see https://github.com/apache/tvm/issues/10673", ) def test_tune_tasks__tuner__xgb(onnx_mnist, tmpdir_factory): pytest.importorskip("onnx") tmpdir_name = tmpdir_factory.mktemp("data") _tuner_test_helper(onnx_mnist, "xgb", tmpdir_name) def test_tune_tasks__tuner__xgb_knob(onnx_mnist, tmpdir_factory): pytest.importorskip("onnx") tmpdir_name = tmpdir_factory.mktemp("data") _tuner_test_helper(onnx_mnist, "xgb_knob", tmpdir_name) def test_tune_tasks__tuner__ga(onnx_mnist, tmpdir_factory): pytest.importorskip("onnx") tmpdir_name = tmpdir_factory.mktemp("data") _tuner_test_helper(onnx_mnist, "ga", tmpdir_name) def test_tune_tasks__tuner__random(onnx_mnist, tmpdir_factory): pytest.importorskip("onnx") tmpdir_name = tmpdir_factory.mktemp("data") _tuner_test_helper(onnx_mnist, "random", tmpdir_name) def test_tune_tasks__tuner__gridsearch(onnx_mnist, tmpdir_factory): pytest.importorskip("onnx") tmpdir_name = tmpdir_factory.mktemp("data") _tuner_test_helper(onnx_mnist, "gridsearch", tmpdir_name) def test_tune_tasks__tuner__gridsearch__tuning_records(onnx_mnist, tmpdir_factory): pytest.importorskip("onnx") tmpdir_name = tmpdir_factory.mktemp("data") output_log_phase_1 = _tuner_test_helper(onnx_mnist, "gridsearch", tmpdir_name) # Exercises transfer learning by making sure a previous log exists _tuner_test_helper(onnx_mnist, "gridsearch", tmpdir_name, prior_records=output_log_phase_1) def test_tune_tasks__tuner__ga__empty_tasks(tmpdir_factory): pytest.importorskip("onnx") tmpdir_name = tmpdir_factory.mktemp("data") log_file = os.path.join(tmpdir_name, "log_{}.txt".format("ga")) tvmc.autotuner.tune_tasks( tasks=[], log_file=log_file, measure_option=_get_measure_options(), tuner="ga", trials=1, early_stopping=1, ) def test_tune_tasks__tuner__xgb__no_early_stopping(onnx_mnist, tmpdir_factory): pytest.importorskip("onnx") tmpdir_name = tmpdir_factory.mktemp("data") _tuner_test_helper(onnx_mnist, "xgb", tmpdir_name, early_stopping=None) @pytest.mark.skipif( platform.machine() == "aarch64", reason="Currently failing on AArch64 - see https://github.com/apache/tvm/issues/10673", ) def test_tune_tasks__tuner__xgb__no_tuning_records(onnx_mnist, tmpdir_factory): pytest.importorskip("onnx") tmpdir_name = tmpdir_factory.mktemp("data") _tuner_test_helper(onnx_mnist, "xgb", tmpdir_name, prior_records=None) def test_tune_tasks__invalid_tuner(onnx_mnist, tmpdir_factory): pytest.importorskip("onnx") tasks = _get_tasks(onnx_mnist) log_file = os.path.join(tmpdir_factory.mktemp("data"), "log2.txt") with pytest.raises(tvmc.TVMCException): tvmc.autotuner.tune_tasks(tasks, log_file, _get_measure_options(), "invalid_tuner", 1, 1) @mock.patch("tvm.driver.tvmc.autotuner.auto_scheduler.HardwareParams", return_value=None) @mock.patch("tvm.driver.tvmc.autotuner.tune_model", return_value=None) @mock.patch("tvm.driver.tvmc.frontends.load_model", return_value=None) def test_tune_rpc_tracker_parsing(mock_load_model, mock_tune_model, mock_auto_scheduler): cli_args = mock.MagicMock() cli_args.rpc_tracker = "10.0.0.1:9999" # FILE is not used but it's set to a valid value here to avoid it being set # by mock to a MagicMock class, which won't pass the checks for valid FILE. fake_input_file = "./fake_input_file.tflite" Path(fake_input_file).touch() cli_args.FILE = fake_input_file tvmc.autotuner.drive_tune(cli_args) os.remove(fake_input_file) mock_tune_model.assert_called_once() # inspect the mock call, to search for specific arguments _, _, kwargs = mock_tune_model.mock_calls[0] assert "hostname" in kwargs assert "10.0.0.1" == kwargs["hostname"] assert "port" in kwargs assert 9999 == kwargs["port"] @mock.patch("tvm.transform.PassContext", return_value=tvm.transform.PassContext()) def test_autotune_pass_context(mock_pc, onnx_mnist, tmpdir_factory): """ Check that the pass context while tuning is as expected. """ pytest.importorskip("onnx") tmpdir_name = tmpdir_factory.mktemp("data") _tuner_test_helper(onnx_mnist, "gridsearch", tmpdir_name) # AutoTVM overrides the pass context later in the pipeline to disable AlterOpLayout assert mock_pc.call_count == 2 assert mock_pc.call_args_list[0][1]["opt_level"] == 3
https://github.com/zk-ml/tachikoma
tests/python/driver/tvmc/test_command_line.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import os import platform import pytest import shutil from pytest_lazyfixture import lazy_fixture from unittest import mock import tvm from tvm.driver.tvmc.main import _main from tvm.driver.tvmc.model import TVMCException from tvm.driver.tvmc import compiler @pytest.mark.skipif( platform.machine() == "aarch64", reason="Currently failing on AArch64 - see https://github.com/apache/tvm/issues/10673", ) def test_tvmc_cl_workflow(keras_simple, tmpdir_factory): pytest.importorskip("tensorflow") tmpdir = tmpdir_factory.mktemp("data") # Test model tuning log_path = os.path.join(tmpdir, "keras-autotuner_records.json") tuning_str = ( f"tvmc tune --target llvm --output {log_path} " f"--trials 2 --enable-autoscheduler {keras_simple}" ) tuning_args = tuning_str.split(" ")[1:] _main(tuning_args) assert os.path.exists(log_path) # Test model compilation package_path = os.path.join(tmpdir, "keras-tvm.tar") compile_str = ( f"tvmc compile --target llvm --tuning-records {log_path} " f"--output {package_path} {keras_simple}" ) compile_args = compile_str.split(" ")[1:] _main(compile_args) assert os.path.exists(package_path) # Test running the model output_path = os.path.join(tmpdir, "predictions.npz") run_str = f"tvmc run --end-to-end --outputs {output_path} {package_path}" run_args = run_str.split(" ")[1:] _main(run_args) assert os.path.exists(output_path) @pytest.mark.skipif( platform.machine() == "aarch64", reason="Currently failing on AArch64 - see https://github.com/apache/tvm/issues/10673", ) def test_tvmc_cl_workflow_json_config(keras_simple, tmpdir_factory): pytest.importorskip("tensorflow") tune_config_file = "tune_config_test" tmpdir = tmpdir_factory.mktemp("data") # Test model tuning log_path = os.path.join(tmpdir, "keras-autotuner_records.json") tuning_str = ( f"tvmc tune --config {tune_config_file} --output {log_path} " f"--enable-autoscheduler {keras_simple}" ) tuning_args = tuning_str.split(" ")[1:] _main(tuning_args) assert os.path.exists(log_path) # Test model compilation package_path = os.path.join(tmpdir, "keras-tvm.tar") compile_str = ( f"tvmc compile --tuning-records {log_path} " f"--output {package_path} {keras_simple}" ) compile_args = compile_str.split(" ")[1:] _main(compile_args) assert os.path.exists(package_path) # Test running the model output_path = os.path.join(tmpdir, "predictions.npz") run_str = f"tvmc run --outputs {output_path} {package_path}" run_args = run_str.split(" ")[1:] _main(run_args) assert os.path.exists(output_path) @pytest.fixture def missing_file(): missing_file_name = "missing_file_as_invalid_input.tfite" return missing_file_name @pytest.fixture def broken_symlink(tmp_path): broken_symlink = "broken_symlink_as_invalid_input.tflite" os.symlink("non_existing_file", tmp_path / broken_symlink) yield broken_symlink os.unlink(tmp_path / broken_symlink) @pytest.fixture def fake_directory(tmp_path): dir_as_invalid = "dir_as_invalid_input.tflite" os.mkdir(tmp_path / dir_as_invalid) yield dir_as_invalid shutil.rmtree(tmp_path / dir_as_invalid) @pytest.mark.parametrize( "invalid_input", [lazy_fixture("missing_file"), lazy_fixture("broken_symlink"), lazy_fixture("fake_directory")], ) def test_tvmc_compile_file_check(capsys, invalid_input): compile_cmd = f"tvmc compile --target 'c' {invalid_input}" run_arg = compile_cmd.split(" ")[1:] _main(run_arg) captured = capsys.readouterr() expected_err = ( f"Error: Input file '{invalid_input}' doesn't exist, " "is a broken symbolic link, or a directory.\n" ) on_assert_error = f"'tvmc compile' failed to check invalid FILE: {invalid_input}" assert captured.err == expected_err, on_assert_error @pytest.mark.parametrize( "invalid_input", [lazy_fixture("missing_file"), lazy_fixture("broken_symlink"), lazy_fixture("fake_directory")], ) def test_tvmc_tune_file_check(capsys, invalid_input): tune_cmd = f"tvmc tune --target 'llvm' --output output.json {invalid_input}" run_arg = tune_cmd.split(" ")[1:] _main(run_arg) captured = capsys.readouterr() expected_err = ( f"Error: Input file '{invalid_input}' doesn't exist, " "is a broken symbolic link, or a directory.\n" ) on_assert_error = f"'tvmc tune' failed to check invalid FILE: {invalid_input}" assert captured.err == expected_err, on_assert_error @mock.patch("tvm.relay.build", side_effect=tvm.relay.build) @mock.patch("tvm.driver.tvmc.model.TVMCPackage.__init__", return_value=None) def test_tvmc_workspace_pools_check(mock_pkg, mock_relay, keras_simple, tmpdir_factory): pytest.importorskip("tensorflow") tmpdir = tmpdir_factory.mktemp("data") # Test model compilation package_path = os.path.join(tmpdir, "keras-tvm.tar") compile_str = ( f"tvmc compile --target=llvm --workspace-pools=sram " f"--workspace-pools-targets=sram:llvm " f"--output={package_path} {keras_simple}" ) compile_args = compile_str.split(" ")[1:] _main(compile_args) assert os.path.exists(package_path) assert mock_relay.call_count == 1 assert mock_relay.call_args_list[0][1]["workspace_memory_pools"].pools[0].pool_name == "sram" @pytest.fixture def paddle_model(paddle_resnet50): # If we can't import "paddle" module, skip testing paddle as the input model. if pytest.importorskip("paddle", reason="'paddle' module not installed"): return paddle_resnet50 @pytest.mark.parametrize( "model", [ lazy_fixture("paddle_model"), ], ) # compile_model() can take too long and is tested elsewhere, hence it's mocked below @mock.patch.object(compiler, "compile_model") # @mock.patch.object(compiler, "compile_model") def test_tvmc_compile_input_model(mock_compile_model, tmpdir_factory, model): output_dir = tmpdir_factory.mktemp("output") output_file = output_dir / "model.tar" compile_cmd = ( f"tvmc compile --target 'llvm' {model} --model-format paddle --output {output_file}" ) run_arg = compile_cmd.split(" ")[1:] _main(run_arg) mock_compile_model.assert_called_once()
https://github.com/zk-ml/tachikoma
tests/python/driver/tvmc/test_compiler.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import os import re import shutil import tarfile from os import path from unittest import mock import pytest import tvm from tvm.ir.memory_pools import WorkspacePoolInfo, WorkspaceMemoryPools from tvm.target import Target import tvm.testing from tvm.relay.op.contrib.ethosn import ethosn_available from tvm.relay.backend import Runtime, Executor from tvm.contrib.target.vitis_ai import vitis_ai_available from tvm.driver import tvmc from tvm.driver.tvmc.model import TVMCPackage from tvm.contrib import utils def test_save_dumps(tmpdir_factory): tmpdir = tmpdir_factory.mktemp("data") dump_formats = {"relay": "fake relay", "ll": "fake llvm", "asm": "fake asm"} tvmc.compiler.save_dumps("fake_module", dump_formats, dump_root=tmpdir) assert path.exists("{}/{}".format(tmpdir, "fake_module.ll")) assert path.exists("{}/{}".format(tmpdir, "fake_module.asm")) assert path.exists("{}/{}".format(tmpdir, "fake_module.relay")) # End to end tests for compilation def verify_tvmc_package(tvmc_package, dumps_path, use_vm=False): # check for output types assert type(tvmc_package) is TVMCPackage assert os.path.exists(dumps_path) assert type(tvmc_package.lib_path) is str if use_vm: assert tvmc_package.graph is None assert tvmc_package.params is None else: assert type(tvmc_package.graph) is str assert type(tvmc_package.params) is bytearray def verify_compile_tflite_module(model, shape_dict=None, use_vm=False): pytest.importorskip("tflite") tvmc_model = tvmc.load(model, shape_dict=shape_dict) tvmc_package = tvmc.compile( tvmc_model, target="llvm", dump_code="ll", desired_layout="NCHW", use_vm=use_vm ) dumps_path = tvmc_package.package_path + ".ll" verify_tvmc_package(tvmc_package, dumps_path, use_vm=use_vm) @pytest.mark.parametrize("use_vm", [True, False]) def test_compile_tflite_module(use_vm, tflite_mobilenet_v1_1_quant): # some CI environments wont offer tflite, so skip in case it is not present pytest.importorskip("tflite") # Check default compilation. verify_compile_tflite_module(tflite_mobilenet_v1_1_quant) # Check with manual shape override shape_string = "input:[1,224,224,3]" shape_dict = tvmc.shape_parser.parse_shape_string(shape_string) verify_compile_tflite_module(tflite_mobilenet_v1_1_quant, shape_dict, use_vm=use_vm) # This test will be skipped if the AArch64 cross-compilation toolchain is not installed. @pytest.mark.skipif( not shutil.which("aarch64-linux-gnu-gcc"), reason="cross-compilation toolchain not installed" ) def test_cross_compile_aarch64_tflite_module(tflite_mobilenet_v1_1_quant): pytest.importorskip("tflite") tvmc_model = tvmc.load(tflite_mobilenet_v1_1_quant) tvmc_package = tvmc.compile( tvmc_model, target="llvm -device=arm_cpu -mtriple=aarch64-linux-gnu -mattr='+neon'", dump_code="asm", cross="aarch64-linux-gnu-gcc", ) dumps_path = tvmc_package.package_path + ".asm" # check for output types assert type(tvmc_package) is TVMCPackage assert type(tvmc_package.graph) is str assert type(tvmc_package.lib_path) is str assert type(tvmc_package.params) is bytearray assert os.path.exists(dumps_path) # This test will be skipped if the AArch64 cross-compilation toolchain is not installed. @pytest.mark.skipif( not shutil.which("aarch64-linux-gnu-gcc"), reason="cross-compilation toolchain not installed" ) def test_cross_compile_options_aarch64_tflite_module(tflite_mobilenet_v1_1_quant): pytest.importorskip("tflite") fake_sysroot_dir = utils.tempdir().relpath("") tvmc_model = tvmc.load(tflite_mobilenet_v1_1_quant) tvmc_package = tvmc.compile( tvmc_model, target="llvm -device=arm_cpu -mtriple=aarch64-linux-gnu -mattr='+neon'", dump_code="asm", cross="aarch64-linux-gnu-gcc", cross_options="--sysroot=" + fake_sysroot_dir, ) dumps_path = tvmc_package.package_path + ".asm" # check for output types assert type(tvmc_package) is TVMCPackage assert type(tvmc_package.graph) is str assert type(tvmc_package.lib_path) is str assert type(tvmc_package.params) is bytearray assert os.path.exists(dumps_path) def test_compile_keras__save_module(keras_resnet50, tmpdir_factory): # some CI environments wont offer tensorflow/Keras, so skip in case it is not present pytest.importorskip("tensorflow") expected_temp_dir = tmpdir_factory.mktemp("saved_output") expected_file_name = "saved.tar" module_file = os.path.join(expected_temp_dir, expected_file_name) tvmc_model = tvmc.load(keras_resnet50) tvmc.compile(tvmc_model, target="llvm", dump_code="ll", package_path=module_file) assert os.path.exists(module_file), "output file {0} should exist".format(module_file) # Test that we can load back in a module. tvmc_package = TVMCPackage(package_path=module_file) assert type(tvmc_package.lib_path) is str assert type(tvmc_package.graph) is str assert type(tvmc_package.params) is bytearray # This test will be skipped if the AArch64 cross-compilation toolchain is not installed. @pytest.mark.skipif( not shutil.which("aarch64-linux-gnu-gcc"), reason="cross-compilation toolchain not installed" ) def test_cross_compile_aarch64_keras_module(keras_resnet50): # some CI environments wont offer tensorflow/Keras, so skip in case it is not present pytest.importorskip("tensorflow") tvmc_model = tvmc.load(keras_resnet50) tvmc_package = tvmc.compile( tvmc_model, target="llvm -device=arm_cpu -mtriple=aarch64-linux-gnu -mattr='+neon'", dump_code="asm", cross="aarch64-linux-gnu-gcc", ) dumps_path = tvmc_package.package_path + ".asm" # check for output types assert type(tvmc_package) is TVMCPackage assert type(tvmc_package.graph) is str assert type(tvmc_package.lib_path) is str assert type(tvmc_package.params) is bytearray assert os.path.exists(dumps_path) # This test will be skipped if the AArch64 cross-compilation toolchain is not installed. @pytest.mark.skipif( not shutil.which("aarch64-linux-gnu-gcc"), reason="cross-compilation toolchain not installed" ) def test_cross_compile_options_aarch64_keras_module(keras_resnet50): # some CI environments wont offer tensorflow/Keras, so skip in case it is not present pytest.importorskip("tensorflow") fake_sysroot_dir = utils.tempdir().relpath("") tvmc_model = tvmc.load(keras_resnet50) tvmc_package = tvmc.compile( tvmc_model, target="llvm -device=arm_cpu -mtriple=aarch64-linux-gnu -mattr='+neon'", dump_code="asm", cross="aarch64-linux-gnu-gcc", cross_options="--sysroot=" + fake_sysroot_dir, ) dumps_path = tvmc_package.package_path + ".asm" # check for output types assert type(tvmc_package) is TVMCPackage assert type(tvmc_package.graph) is str assert type(tvmc_package.lib_path) is str assert type(tvmc_package.params) is bytearray assert os.path.exists(dumps_path) def verify_compile_onnx_module(model, shape_dict=None, use_vm=False): # some CI environments wont offer onnx, so skip in case it is not present pytest.importorskip("onnx") tvmc_model = tvmc.load(model, shape_dict=shape_dict) tvmc_package = tvmc.compile(tvmc_model, target="llvm", dump_code="ll", use_vm=use_vm) dumps_path = tvmc_package.package_path + ".ll" verify_tvmc_package(tvmc_package, dumps_path, use_vm=use_vm) @pytest.mark.parametrize("use_vm", [True, False]) def test_compile_onnx_module(use_vm, onnx_resnet50): # Test default compilation verify_compile_onnx_module(onnx_resnet50) # Test with manual shape dict shape_string = "data:[1,3,200,200]" shape_dict = tvmc.shape_parser.parse_shape_string(shape_string) verify_compile_onnx_module(onnx_resnet50, shape_dict, use_vm=use_vm) # This test will be skipped if the AArch64 cross-compilation toolchain is not installed. @pytest.mark.skipif( not shutil.which("aarch64-linux-gnu-gcc"), reason="cross-compilation toolchain not installed" ) def test_cross_compile_aarch64_onnx_module(onnx_resnet50): # some CI environments wont offer onnx, so skip in case it is not present pytest.importorskip("onnx") tvmc_model = tvmc.load(onnx_resnet50) tvmc_package = tvmc.compile( tvmc_model, target="llvm -device=arm_cpu -mtriple=aarch64-linux-gnu -mattr=+neon", dump_code="asm", cross="aarch64-linux-gnu-gcc", ) dumps_path = tvmc_package.package_path + ".asm" # check for output types assert type(tvmc_package) is TVMCPackage assert type(tvmc_package.graph) is str assert type(tvmc_package.lib_path) is str assert type(tvmc_package.params) is bytearray assert os.path.exists(dumps_path) # This test will be skipped if the AArch64 cross-compilation toolchain is not installed. @pytest.mark.skipif( not shutil.which("aarch64-linux-gnu-gcc"), reason="cross-compilation toolchain not installed" ) def test_cross_compile_options_aarch64_onnx_module(onnx_resnet50): # some CI environments wont offer onnx, so skip in case it is not present pytest.importorskip("onnx") fake_sysroot_dir = utils.tempdir().relpath("") tvmc_model = tvmc.load(onnx_resnet50) tvmc_package = tvmc.compile( tvmc_model, target="llvm -device=arm_cpu -mtriple=aarch64-linux-gnu -mattr=+neon", dump_code="asm", cross="aarch64-linux-gnu-gcc", cross_options="--sysroot=" + fake_sysroot_dir, ) dumps_path = tvmc_package.package_path + ".asm" # check for output types assert type(tvmc_package) is TVMCPackage assert type(tvmc_package.graph) is str assert type(tvmc_package.lib_path) is str assert type(tvmc_package.params) is bytearray assert os.path.exists(dumps_path) def verify_compile_paddle_module(model, shape_dict=None): pytest.importorskip("paddle") tvmc_model = tvmc.load(model, "paddle", shape_dict=shape_dict) tvmc_package = tvmc.compile(tvmc_model, target="llvm", dump_code="ll", desired_layout="NCHW") dumps_path = tvmc_package.package_path + ".ll" # check for output types assert type(tvmc_package) is TVMCPackage assert type(tvmc_package.graph) is str assert type(tvmc_package.lib_path) is str assert type(tvmc_package.params) is bytearray assert os.path.exists(dumps_path) def test_compile_paddle_module(paddle_resnet50): # some CI environments wont offer Paddle, so skip in case it is not present pytest.importorskip("paddle") # Check default compilation. verify_compile_paddle_module(paddle_resnet50) # Check with manual shape override shape_string = "inputs:[1,3,224,224]" shape_dict = tvmc.shape_parser.parse_shape_string(shape_string) verify_compile_paddle_module(paddle_resnet50, shape_dict) # This test will be skipped if the AArch64 cross-compilation toolchain is not installed. @pytest.mark.skipif( not shutil.which("aarch64-linux-gnu-gcc"), reason="cross-compilation toolchain not installed" ) def test_cross_compile_aarch64_paddle_module(paddle_resnet50): # some CI environments wont offer paddle, so skip in case it is not present pytest.importorskip("paddle") tvmc_model = tvmc.load(paddle_resnet50, "paddle") tvmc_package = tvmc.compile( tvmc_model, target="llvm -device=arm_cpu -mtriple=aarch64-linux-gnu -mattr=+neon", dump_code="asm", cross="aarch64-linux-gnu-gcc", ) dumps_path = tvmc_package.package_path + ".asm" # check for output types assert type(tvmc_package) is TVMCPackage assert type(tvmc_package.graph) is str assert type(tvmc_package.lib_path) is str assert type(tvmc_package.params) is bytearray assert os.path.exists(dumps_path) # This test will be skipped if the AArch64 cross-compilation toolchain is not installed. @pytest.mark.skipif( not shutil.which("aarch64-linux-gnu-gcc"), reason="cross-compilation toolchain not installed" ) def test_cross_compile_options_aarch64_paddle_module(paddle_resnet50): # some CI environments wont offer paddle, so skip in case it is not present pytest.importorskip("paddle") fake_sysroot_dir = utils.tempdir().relpath("") tvmc_model = tvmc.load(paddle_resnet50, "paddle") tvmc_package = tvmc.compile( tvmc_model, target="llvm -device=arm_cpu -mtriple=aarch64-linux-gnu -mattr=+neon", dump_code="asm", cross="aarch64-linux-gnu-gcc", cross_options="--sysroot=" + fake_sysroot_dir, ) dumps_path = tvmc_package.package_path + ".asm" # check for output types assert type(tvmc_package) is TVMCPackage assert type(tvmc_package.graph) is str assert type(tvmc_package.lib_path) is str assert type(tvmc_package.params) is bytearray assert os.path.exists(dumps_path) @tvm.testing.requires_opencl def test_compile_opencl(tflite_mobilenet_v1_0_25_128): pytest.importorskip("tflite") tvmc_model = tvmc.load(tflite_mobilenet_v1_0_25_128) tvmc_package = tvmc.compile( tvmc_model, target="opencl -host=llvm", desired_layout="NCHW", dump_code="asm", ) dumps_path = tvmc_package.package_path + ".asm" # check for output types assert type(tvmc_package) is TVMCPackage assert type(tvmc_package.graph) is str assert type(tvmc_package.lib_path) is str assert type(tvmc_package.params) is bytearray assert os.path.exists(dumps_path) @tvm.testing.requires_cmsisnn def test_compile_tflite_module_with_external_codegen_cmsisnn( tmpdir_factory, tflite_cnn_s_quantized ): pytest.importorskip("tflite") output_dir = tmpdir_factory.mktemp("mlf") tvmc_model = tvmc.load(tflite_cnn_s_quantized) output_file_name = f"{output_dir}/file.tar" tvmc.compiler.compile_model( tvmc_model, target=f"cmsis-nn, c -mcpu=cortex-m55", runtime=Runtime("crt", {"system-lib": True}), executor=Executor("aot"), output_format="mlf", package_path=output_file_name, pass_context_configs=["tir.disable_vectorize=true"], ) # check whether an MLF package was created assert os.path.exists(output_file_name) # check whether the expected number of C sources are in the tarfile with tarfile.open(output_file_name) as mlf_package: c_source_files = [ name for name in mlf_package.getnames() if re.match(r"\./codegen/host/src/\D+\d+\.c", name) ] assert len(c_source_files) == 4 @tvm.testing.requires_ethosn def test_compile_tflite_module_with_external_codegen_ethos_n78(tflite_mobilenet_v1_1_quant): pytest.importorskip("tflite") tvmc_model = tvmc.load(tflite_mobilenet_v1_1_quant) tvmc_package = tvmc.compile(tvmc_model, target="ethos-n -variant=n78, llvm", dump_code="relay") dumps_path = tvmc_package.package_path + ".relay" # check for output types assert type(tvmc_package) is TVMCPackage assert type(tvmc_package.graph) is str assert type(tvmc_package.lib_path) is str assert type(tvmc_package.params) is bytearray assert os.path.exists(dumps_path) @tvm.testing.requires_vitis_ai def test_compile_tflite_module_with_external_codegen_vitis_ai(tflite_mobilenet_v1_1_quant): pytest.importorskip("tflite") tvmc_model = tvmc.load(tflite_mobilenet_v1_1_quant) tvmc_package = tvmc.compiler.compile_model( tvmc_model, target="vitis-ai -dpu=DPUCZDX8G-zcu104 -export_runtime_module=vitis_ai.rtmod, llvm", dump_code="relay", ) dumps_path = tvmc_package.package_path + ".relay" # check for output types assert type(tvmc_package) is TVMCPackage assert type(tvmc_package.graph) is str assert type(tvmc_package.lib_path) is str assert type(tvmc_package.params) is bytearray assert os.path.exists(dumps_path) def test_compile_tflite_module_with_external_codegen_ethosu( tmpdir_factory, tflite_mobilenet_v1_1_quant ): pytest.importorskip("tflite") pytest.importorskip("ethosu.vela") ACCEL_TYPES = ["ethos-u55-256", "ethos-u55-128", "ethos-u55-64", "ethos-u55-32"] output_dir = tmpdir_factory.mktemp("mlf") tvmc_model = tvmc.load(tflite_mobilenet_v1_1_quant) for accel_type in ACCEL_TYPES: output_file_name = f"{output_dir}/file_{accel_type}.tar" tvmc.compiler.compile_model( tvmc_model, target=f"ethos-u -accelerator_config={accel_type}, c -mcpu=cortex-m55", runtime=Runtime("crt"), executor=Executor("aot", {"unpacked-api": True}), output_format="mlf", package_path=output_file_name, pass_context_configs=["tir.disable_vectorize=true"], ) # check whether an MLF package was created assert os.path.exists(output_file_name) # check whether the expected number of C sources are in the tarfile with tarfile.open(output_file_name) as mlf_package: c_source_files = [ name for name in mlf_package.getnames() if re.match(r"\./codegen/host/src/\D+\d+\.c", name) ] # The number of c_source_files depends on the number of fused subgraphs that # get offloaded to the NPU, e.g. conv2d->depthwise_conv2d->conv2d gets offloaded # as a single subgraph if both of these operators are supported by the NPU. # Currently there are three source files for CPU execution and one offload graph assert len(c_source_files) == 4 @mock.patch("tvm.relay.build") @mock.patch("tvm.driver.tvmc.composite_target.get_codegen_by_target") @mock.patch("tvm.driver.tvmc.load") @mock.patch("tvm.transform.PassContext") @mock.patch("tvm.driver.tvmc.model.TVMCPackage.__init__", return_value=None) def test_compile_check_configs_composite_target(mock_pkg, mock_pc, mock_fe, mock_ct, mock_relay): mock_codegen = {} mock_codegen["config_key"] = "relay.ext.mock.options" mock_codegen["pass_pipeline"] = lambda *args, **kwargs: None mock_fe.return_value = mock.MagicMock() mock_ct.return_value = mock_codegen mock_relay.return_value = mock.MagicMock() tvmc_model = tvmc.load("no_file_needed") tvmc.compile(tvmc_model, target="mockcodegen -testopt=value, llvm") assert mock_pc.call_count == 1 codegen_compile_context = mock.call( config={"relay.ext.mock.options": {"testopt": "value"}}, opt_level=3, disabled_pass=None, instruments=None, ) mock_pc.assert_has_calls( [ codegen_compile_context, codegen_compile_context.__enter__(), codegen_compile_context.__exit__(None, None, None), ] ) def test_compile_tflite_module_with_mod_name(tmpdir_factory, tflite_cnn_s_quantized): pytest.importorskip("tflite") output_dir = tmpdir_factory.mktemp("mlf") tvmc_model = tvmc.load(tflite_cnn_s_quantized) output_file_name = f"{output_dir}/file.tar" tvmc.compiler.compile_model( tvmc_model, target=f"c -mcpu=cortex-m55", runtime=Runtime("crt", {"system-lib": True}), executor=Executor("aot"), output_format="mlf", package_path=output_file_name, pass_context_configs=["tir.disable_vectorize=true"], mod_name="classify", ) # check that an MLF package was created assert os.path.exists(output_file_name) with tarfile.open(output_file_name) as mlf_package: # check that the C source files have been named classify_lib*.c c_source_files = [ name for name in mlf_package.getnames() if re.match(r"\./codegen/host/src/classify_lib\d+\.c", name) ] assert len(c_source_files) > 0 # check that "default" doesn't occur in any of the C source files # check that function names are of the form "tvmgen_classify_*" for file_name in c_source_files: with mlf_package.extractfile(file_name) as f: content = f.read() assert b"default" not in content assert b"tvmgen_classify_" in content # check that tvmgen_classify_run() function exists with mlf_package.extractfile("./codegen/host/src/classify_lib0.c") as f: content = f.read() assert b"tvmgen_classify_run(" in content @tvm.testing.requires_cmsisnn def test_compile_tflite_module_with_mod_name_and_cmsisnn(tmpdir_factory, tflite_cnn_s_quantized): pytest.importorskip("tflite") output_dir = tmpdir_factory.mktemp("mlf") tvmc_model = tvmc.load(tflite_cnn_s_quantized) output_file_name = f"{output_dir}/file.tar" tvmc.compiler.compile_model( tvmc_model, target=f"cmsis-nn, c -mcpu=cortex-m55", runtime=Runtime("crt", {"system-lib": True}), executor=Executor("aot"), output_format="mlf", package_path=output_file_name, pass_context_configs=["tir.disable_vectorize=true"], mod_name="classify", ) # check that an MLF package was created assert os.path.exists(output_file_name) with tarfile.open(output_file_name) as mlf_package: # check that the C source files have been named classify_lib*.c c_source_files = [ name for name in mlf_package.getnames() if re.match(r"\./codegen/host/src/classify_lib\d+\.c", name) ] assert len(c_source_files) > 0 # check that "default" doesn't occur in any of the C source files # check that function names are of the form "tvmgen_classify_*" for file_name in c_source_files: with mlf_package.extractfile(file_name) as f: content = f.read() assert b"default" not in content assert b"tvmgen_classify_" in content # check that tvmgen_classify_run() function exists with mlf_package.extractfile("./codegen/host/src/classify_lib0.c") as f: content = f.read() assert b"tvmgen_classify_run(" in content # check that CMSIS-NN function names are of the form "tvmgen_classify_cmsis_nn_main_*" with mlf_package.extractfile("./codegen/host/src/classify_lib2.c") as f: content = f.read() assert b"tvmgen_classify_cmsis_nn_main_" in content def test_compile_tflite_module_with_mod_name_and_ethosu( tmpdir_factory, tflite_mobilenet_v1_1_quant ): pytest.importorskip("tflite") pytest.importorskip("ethosu.vela") output_dir = tmpdir_factory.mktemp("mlf") tvmc_model = tvmc.load(tflite_mobilenet_v1_1_quant) output_file_name = f"{output_dir}/file.tar" tvmc.compiler.compile_model( tvmc_model, target=f"ethos-u -accelerator_config=ethos-u55-256, c -mcpu=cortex-m55", runtime=Runtime("crt"), executor=Executor("aot", {"unpacked-api": True}), output_format="mlf", package_path=output_file_name, pass_context_configs=["tir.disable_vectorize=true"], mod_name="classify", ) # check that an MLF package was created assert os.path.exists(output_file_name) with tarfile.open(output_file_name) as mlf_package: # check that the C source files have been named classify_lib*.c c_source_files = [ name for name in mlf_package.getnames() if re.match(r"\./codegen/host/src/classify_lib\d+\.c", name) ] assert len(c_source_files) > 0 # check that "default" doesn't occur in any of the C source files # check that function names are of the form "tvmgen_classify_*" for file_name in c_source_files: with mlf_package.extractfile(file_name) as f: content = f.read() assert b"default" not in content assert b"tvmgen_classify_" in content # check that tvmgen_classify_run() function exists with mlf_package.extractfile("./codegen/host/src/classify_lib0.c") as f: content = f.read() assert b"tvmgen_classify_run(" in content # check that microNPU function names are of the form "tvmgen_classify_ethos_u_main_*" with mlf_package.extractfile("./codegen/host/src/classify_lib2.c") as f: content = f.read() assert b"tvmgen_classify_ethos_u_main_" in content @mock.patch("tvm.relay.build") @mock.patch("tvm.driver.tvmc.load") @mock.patch("tvm.driver.tvmc.model.TVMCPackage.__init__", return_value=None) def test_compile_check_workspace_pools(mock_pkg, mock_fe, mock_relay): mock_fe.return_value = mock.MagicMock() mock_relay.return_value = mock.MagicMock() memory_pools = WorkspaceMemoryPools( [WorkspacePoolInfo(pool_name="sram", targets=[Target("llvm")])] ) tvmc_model = tvmc.load("no_file_needed") tvmc.compile( tvmc_model, target="llvm,c", workspace_pools=memory_pools, ) assert mock_relay.call_count == 1 assert mock_relay.call_args_list[0][1]["workspace_memory_pools"] == memory_pools def test_compile_check_pass_instrument(keras_resnet50): pytest.importorskip("tensorflow") @tvm.instrument.pass_instrument class PassesCounter: def __init__(self): self.run_before_count = 0 self.run_after_count = 0 def run_before_pass(self, mod, info): self.run_before_count = self.run_before_count + 1 def run_after_pass(self, mod, info): self.run_after_count = self.run_after_count + 1 passes_counter = PassesCounter() tvmc_model = tvmc.load(keras_resnet50) tvmc.compile(tvmc_model, target="llvm", instruments=[passes_counter]) assert passes_counter.run_after_count > 0 assert passes_counter.run_after_count == passes_counter.run_before_count if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/driver/tvmc/test_composite_target.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import argparse import os import shutil from inspect import isfunction from os import path import pytest import tvm from tvm.driver import tvmc from tvm.driver.tvmc import TVMCException def test_get_codegen_names(): names = tvmc.composite_target.get_codegen_names() assert "ethos-n" in names assert "vitis-ai" in names assert len(names) > 0 def test_valid_codegen(): codegen = tvmc.composite_target.get_codegen_by_target("compute-library") assert codegen is not None assert codegen["pass_pipeline"] is not None def test_invalid_codegen(): with pytest.raises(TVMCException): _ = tvmc.composite_target.get_codegen_by_target("invalid") def test_all_codegens_contain_pass_pipeline(): for name in tvmc.composite_target.get_codegen_names(): codegen = tvmc.composite_target.get_codegen_by_target(name) assert "pass_pipeline" in codegen, f"{name} does not contain a pass_pipeline" assert isfunction(codegen["pass_pipeline"]) def test_all_pass_pipelines_are_functions(): for name in tvmc.composite_target.get_codegen_names(): codegen = tvmc.composite_target.get_codegen_by_target(name) assert isfunction(codegen["pass_pipeline"]), f"pass_pipeline for {name} is not a function"
https://github.com/zk-ml/tachikoma
tests/python/driver/tvmc/test_frontends.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import platform import pytest import builtins import importlib import tvm from unittest import mock from tvm.ir.module import IRModule from tvm.driver import tvmc from tvm.driver.tvmc import TVMCException, TVMCImportError from tvm.driver.tvmc.model import TVMCModel orig_import = importlib.import_module def mock_error_on_name(name): def mock_imports(module_name, package=None): if module_name == name: raise ImportError() return orig_import(module_name, package) return mock_imports def test_get_frontends_contains_only_strings(): sut = tvmc.frontends.get_frontend_names() assert all([type(x) is str for x in sut]) is True def test_get_frontend_by_name_valid(): # some CI environments wont offer TensorFlow/Keras, so skip in case it is not present pytest.importorskip("tensorflow") sut = tvmc.frontends.get_frontend_by_name("keras") assert type(sut) is tvmc.frontends.KerasFrontend def test_get_frontend_by_name_invalid(): with pytest.raises(TVMCException): tvmc.frontends.get_frontend_by_name("unsupported_thing") def test_guess_frontend_tflite(): # some CI environments wont offer TFLite, so skip in case it is not present pytest.importorskip("tflite") sut = tvmc.frontends.guess_frontend("a_model.tflite") assert type(sut) is tvmc.frontends.TFLiteFrontend def test_guess_frontend_onnx(): # some CI environments wont offer onnx, so skip in case it is not present pytest.importorskip("onnx") sut = tvmc.frontends.guess_frontend("a_model.onnx") assert type(sut) is tvmc.frontends.OnnxFrontend @pytest.mark.skipif( platform.machine() == "aarch64", reason="Currently failing on AArch64 - see https://github.com/apache/tvm/issues/10673", ) def test_guess_frontend_pytorch(): # some CI environments wont offer pytorch, so skip in case it is not present pytest.importorskip("torch") sut = tvmc.frontends.guess_frontend("a_model.pth") assert type(sut) is tvmc.frontends.PyTorchFrontend def test_guess_frontend_keras(): # some CI environments wont offer TensorFlow/Keras, so skip in case it is not present pytest.importorskip("tensorflow") sut = tvmc.frontends.guess_frontend("a_model.h5") assert type(sut) is tvmc.frontends.KerasFrontend def test_guess_frontend_tensorflow(): # some CI environments wont offer TensorFlow, so skip in case it is not present pytest.importorskip("tensorflow") sut = tvmc.frontends.guess_frontend("a_model.pb") assert type(sut) is tvmc.frontends.TensorflowFrontend def test_guess_frontend_paddle(): # some CI environments wont offer Paddle, so skip in case it is not present pytest.importorskip("paddle") sut = tvmc.frontends.guess_frontend("a_model.pdmodel") assert type(sut) is tvmc.frontends.PaddleFrontend def test_guess_frontend_relay(): sut = tvmc.frontends.guess_frontend("relay.relay") assert type(sut) is tvmc.frontends.RelayFrontend def test_guess_frontend_invalid(): with pytest.raises(TVMCException): tvmc.frontends.guess_frontend("not/a/file.txt") def test_load_model__invalid_path__no_language(): # some CI environments wont offer TFLite, so skip in case it is not present pytest.importorskip("tflite") with pytest.raises(FileNotFoundError): tvmc.load("not/a/file.tflite") def test_load_model__invalid_path__with_language(): # some CI environments wont offer onnx, so skip in case it is not present pytest.importorskip("onnx") with pytest.raises(FileNotFoundError): tvmc.load("not/a/file.txt", model_format="onnx") def test_load_model__tflite(tflite_mobilenet_v1_1_quant): # some CI environments wont offer TFLite, so skip in case it is not present pytest.importorskip("tflite") tvmc_model = tvmc.load(tflite_mobilenet_v1_1_quant) assert type(tvmc_model) is TVMCModel assert type(tvmc_model.mod) is IRModule assert type(tvmc_model.params) is dict # check whether one known value is part of the params dict assert "_param_1" in tvmc_model.params.keys() @pytest.mark.parametrize("load_model_kwargs", [{}, {"layout": "NCHW"}]) def test_load_model__keras(keras_resnet50, load_model_kwargs): # some CI environments wont offer TensorFlow/Keras, so skip in case it is not present pytest.importorskip("tensorflow") tvmc_model = tvmc.frontends.load_model(keras_resnet50, **load_model_kwargs) assert type(tvmc_model) is TVMCModel assert type(tvmc_model.mod) is IRModule assert type(tvmc_model.params) is dict ## check whether one known value is part of the params dict assert "_param_1" in tvmc_model.params.keys() def verify_load_model__onnx(model, **kwargs): tvmc_model = tvmc.frontends.load_model(model, **kwargs) assert type(tvmc_model) is TVMCModel assert type(tvmc_model.mod) is IRModule assert type(tvmc_model.params) is dict return tvmc_model def test_load_model__onnx(onnx_resnet50): # some CI environments wont offer onnx, so skip in case it is not present pytest.importorskip("onnx") tvmc_model = verify_load_model__onnx(onnx_resnet50, freeze_params=False) # check whether one known value is part of the params dict assert "resnetv24_batchnorm0_gamma" in tvmc_model.params.keys() tvmc_model = verify_load_model__onnx(onnx_resnet50, freeze_params=True) # check that the parameter dict is empty, implying that they have been folded into constants assert tvmc_model.params == {} def test_load_model__pb(pb_mobilenet_v1_1_quant): # some CI environments wont offer TensorFlow, so skip in case it is not present pytest.importorskip("tensorflow") tvmc_model = tvmc.load(pb_mobilenet_v1_1_quant) assert type(tvmc_model) is TVMCModel assert type(tvmc_model.mod) is IRModule assert type(tvmc_model.params) is dict # check whether one known value is part of the params dict assert "MobilenetV1/Conv2d_0/weights" in tvmc_model.params.keys() def test_load_model__paddle(paddle_resnet50): # some CI environments wont offer Paddle, so skip in case it is not present pytest.importorskip("paddle") tvmc_model = tvmc.load(paddle_resnet50, model_format="paddle") assert type(tvmc_model) is TVMCModel assert type(tvmc_model.mod) is IRModule assert type(tvmc_model.params) is dict def test_load_model__relay(relay_text_conv2d): tvmc_model = tvmc.load(relay_text_conv2d, model_format="relay") assert type(tvmc_model) is TVMCModel assert type(tvmc_model.mod) is IRModule assert type(tvmc_model.params) is dict def test_load_model___wrong_language__to_keras(tflite_mobilenet_v1_1_quant): # some CI environments wont offer TensorFlow/Keras, so skip in case it is not present pytest.importorskip("tensorflow") with pytest.raises(OSError): tvmc.load(tflite_mobilenet_v1_1_quant, model_format="keras") def test_load_model___wrong_language__to_tflite(keras_resnet50): # some CI environments wont offer TFLite, so skip in case it is not present pytest.importorskip("tflite") with pytest.raises(TVMCException): tvmc.frontends.load_model(keras_resnet50, model_format="tflite") def test_load_model___wrong_language__to_onnx(tflite_mobilenet_v1_1_quant): # some CI environments wont offer onnx, so skip in case it is not present pytest.importorskip("onnx") from google.protobuf.message import DecodeError with pytest.raises(DecodeError): tvmc.load(tflite_mobilenet_v1_1_quant, model_format="onnx") @pytest.mark.skipif( platform.machine() == "aarch64", reason="Currently failing on AArch64 - see https://github.com/apache/tvm/issues/10673", ) def test_load_model__pth(pytorch_resnet18): # some CI environments wont offer torch, so skip in case it is not present pytest.importorskip("torch") pytest.importorskip("torchvision") tvmc_model = tvmc.load(pytorch_resnet18, shape_dict={"input": [1, 3, 224, 224]}) assert type(tvmc_model) is TVMCModel assert type(tvmc_model.mod) is IRModule assert type(tvmc_model.params) is dict # check whether one known value is part of the params dict assert "layer1.0.conv1.weight" in tvmc_model.params.keys() @pytest.mark.skipif( platform.machine() == "aarch64", reason="Currently failing on AArch64 - see https://github.com/apache/tvm/issues/10673", ) def test_load_quantized_model__pth(pytorch_mobilenetv2_quantized): # some CI environments wont offer torch, so skip in case it is not present pytest.importorskip("torch") pytest.importorskip("torchvision") tvmc_model = tvmc.load(pytorch_mobilenetv2_quantized, shape_dict={"input": [1, 3, 224, 224]}) assert type(tvmc_model) is TVMCModel assert type(tvmc_model.mod) is IRModule assert type(tvmc_model.params) is dict # checking weights remain quantized and are not float32 for p in tvmc_model.params.values(): assert p.dtype in ["int8", "uint8", "int32"] # int32 for bias @pytest.mark.skipif( platform.machine() == "aarch64", reason="Currently failing on AArch64 - see https://github.com/apache/tvm/issues/10673", ) def test_load_model___wrong_language__to_pytorch(tflite_mobilenet_v1_1_quant): # some CI environments wont offer pytorch, so skip in case it is not present pytest.importorskip("torch") with pytest.raises(RuntimeError) as e: tvmc.load( tflite_mobilenet_v1_1_quant, model_format="pytorch", shape_dict={"input": [1, 3, 224, 224]}, ) def test_compile_tflite_module_nhwc_to_nchw(tflite_mobilenet_v1_1_quant): # some CI environments wont offer TFLite, so skip in case it is not present pytest.importorskip("tflite") tvmc_model = tvmc.frontends.load_model(tflite_mobilenet_v1_1_quant) before = tvmc_model.mod expected_layout = "NCHW" with tvm.transform.PassContext(opt_level=3): after = tvmc.transform.convert_graph_layout(before, expected_layout) layout_transform_calls = [] def _is_layout_transform(node): if isinstance(node, tvm.relay.expr.Call): layout_transform_calls.append( node.op.name == "layout_transform" and node.attrs.src_layout == "NHWC" and node.attrs.dst_layout == "NCHW" ) tvm.relay.analysis.post_order_visit(after["main"], _is_layout_transform) assert any(layout_transform_calls), "Expected 'layout_transform NHWC->NCHW' not found" def test_compile_onnx_module_nchw_to_nhwc(onnx_resnet50): # some CI environments wont offer ONNX, so skip in case it is not present pytest.importorskip("onnx") tvmc_model = tvmc.frontends.load_model(onnx_resnet50) before = tvmc_model.mod expected_layout = "NHWC" with tvm.transform.PassContext(opt_level=3): after = tvmc.transform.convert_graph_layout(before, expected_layout) layout_transform_calls = [] def _is_layout_transform(node): if isinstance(node, tvm.relay.expr.Call): layout_transform_calls.append( node.op.name == "layout_transform" and node.attrs.src_layout == "NCHW" and node.attrs.dst_layout == "NHWC" ) tvm.relay.analysis.post_order_visit(after["main"], _is_layout_transform) assert any(layout_transform_calls), "Expected 'layout_transform NCWH->NHWC' not found" def test_compile_paddle_module_nchw_to_nhwc(paddle_resnet50): # some CI environments wont offer Paddle, so skip in case it is not present pytest.importorskip("paddle") tvmc_model = tvmc.frontends.load_model(paddle_resnet50, "paddle") before = tvmc_model.mod expected_layout = "NHWC" with tvm.transform.PassContext(opt_level=3): after = tvmc.transform.convert_graph_layout(before, expected_layout) layout_transform_calls = [] def _is_layout_transform(node): if isinstance(node, tvm.relay.expr.Call): layout_transform_calls.append( node.op.name == "layout_transform" and node.attrs.src_layout == "NCHW" and node.attrs.dst_layout == "NHWC" ) tvm.relay.analysis.post_order_visit(after["main"], _is_layout_transform) assert any(layout_transform_calls), "Expected 'layout_transform NCWH->NHWC' not found" def test_compile_tflite_module__same_layout__nhwc_to_nhwc(tflite_mobilenet_v1_1_quant): # some CI environments wont offer TFLite, so skip in case it is not present pytest.importorskip("tflite") tvmc_model = tvmc.frontends.load_model(tflite_mobilenet_v1_1_quant) before = tvmc_model.mod expected_layout = "NHWC" with tvm.transform.PassContext(opt_level=3): after = tvmc.transform.convert_graph_layout(before, expected_layout) layout_transform_calls = [] def _is_layout_transform(node): if isinstance(node, tvm.relay.expr.Call): layout_transform_calls.append( node.op.name == "layout_transform" and node.attrs.src_layout == "NHWC" and node.attrs.dst_layout == "NHWC" ) tvm.relay.analysis.post_order_visit(after["main"], _is_layout_transform) assert not any(layout_transform_calls), "Unexpected 'layout_transform' call" def test_compile_onnx_module__same_layout__nchw_to_nchw(onnx_resnet50): # some CI environments wont offer ONNX, so skip in case it is not present pytest.importorskip("onnx") tvmc_model = tvmc.frontends.load_model(onnx_resnet50) before = tvmc_model.mod expected_layout = "NCHW" with tvm.transform.PassContext(opt_level=3): after = tvmc.transform.convert_graph_layout(before, expected_layout) layout_transform_calls = [] def _is_layout_transform(node): if isinstance(node, tvm.relay.expr.Call): layout_transform_calls.append( node.op.name == "layout_transform" and node.attrs.src_layout == "NCHW" and node.attrs.dst_layout == "NCHW" ) tvm.relay.analysis.post_order_visit(after["main"], _is_layout_transform) assert not any(layout_transform_calls), "Unexpected 'layout_transform' call" def test_import_keras_friendly_message(keras_resnet50, monkeypatch): # keras is part of tensorflow monkeypatch.setattr("importlib.import_module", mock_error_on_name("tensorflow")) with pytest.raises(TVMCImportError, match="tensorflow") as e: _ = tvmc.frontends.load_model(keras_resnet50, model_format="keras") def test_import_onnx_friendly_message(onnx_resnet50, monkeypatch): monkeypatch.setattr("importlib.import_module", mock_error_on_name("onnx")) with pytest.raises(TVMCImportError, match="onnx") as e: _ = tvmc.frontends.load_model(onnx_resnet50, model_format="onnx") def test_import_tensorflow_friendly_message(pb_mobilenet_v1_1_quant, monkeypatch): monkeypatch.setattr("importlib.import_module", mock_error_on_name("tensorflow")) with pytest.raises(TVMCImportError, match="tensorflow") as e: _ = tvmc.frontends.load_model(pb_mobilenet_v1_1_quant, model_format="pb") @pytest.mark.skipif( platform.machine() == "aarch64", reason="Currently failing on AArch64 - see https://github.com/apache/tvm/issues/10673", ) def test_import_torch_friendly_message(pytorch_resnet18, monkeypatch): monkeypatch.setattr("importlib.import_module", mock_error_on_name("torch")) with pytest.raises(TVMCImportError, match="torch") as e: _ = tvmc.frontends.load_model(pytorch_resnet18, model_format="pytorch") def test_import_tflite_friendly_message(tflite_mobilenet_v1_1_quant, monkeypatch): monkeypatch.setattr("importlib.import_module", mock_error_on_name("tflite.Model")) with pytest.raises(TVMCImportError, match="tflite.Model") as e: _ = tvmc.frontends.load_model(tflite_mobilenet_v1_1_quant, model_format="tflite")
https://github.com/zk-ml/tachikoma
tests/python/driver/tvmc/test_mlf.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import pytest import os import shlex import sys import tvm import tvm.testing from tvm.autotvm.measure.executor import Executor from tvm.driver import tvmc from tvm.driver.tvmc.main import _main from tvm.driver.tvmc.model import TVMCPackage, TVMCException from tvm.relay import backend def test_tvmc_cl_compile_run_mlf(tflite_mobilenet_v1_1_quant, tmpdir_factory): target = "c" executor = "aot" pass_configs = ["tir.disable_vectorize=1"] pytest.importorskip("tflite") output_dir = tmpdir_factory.mktemp("mlf") input_model = tflite_mobilenet_v1_1_quant output_file = os.path.join(output_dir, "mock.tar") # Compile the input model and generate a Model Library Format (MLF) archive. pass_config_args = " ".join([f"--pass-config {pass_config}" for pass_config in pass_configs]) tvmc_cmd = f"tvmc compile {input_model} --target={target} --executor={executor} {pass_config_args} --output {output_file} --output-format mlf" tvmc_args = shlex.split(tvmc_cmd)[1:] _main(tvmc_args) assert os.path.exists(output_file), "Could not find the exported MLF archive." # Run the MLF archive. It must fail since it's only supported on micro targets. tvmc_cmd = f"tvmc run {output_file}" tvmc_args = tvmc_cmd.split(" ")[1:] exit_code = _main(tvmc_args) on_error = "Trying to run a MLF archive must fail because it's only supported on micro targets." assert exit_code != 0, on_error def test_tvmc_export_package_mlf(tflite_mobilenet_v1_1_quant, tmpdir_factory): pytest.importorskip("tflite") tvmc_model = tvmc.frontends.load_model(tflite_mobilenet_v1_1_quant) mod, params = tvmc_model.mod, tvmc_model.params graph_module = tvm.relay.build(mod, target="llvm", params=params) output_dir = tmpdir_factory.mktemp("mlf") output_file = os.path.join(output_dir, "mock.tar") # Try to export MLF with no cross compiler set. No exception must be thrown. tvmc_model.export_package( executor_factory=graph_module, package_path=output_file, cross=None, output_format="mlf", ) assert os.path.exists(output_file), "Could not find the exported MLF archive." # Try to export a MLF whilst also specifying a cross compiler. Since # that's not supported it must throw a TVMCException and report the # reason accordingly. with pytest.raises(TVMCException) as exp: tvmc_model.export_package( executor_factory=graph_module, package_path=output_file, cross="cc", output_format="mlf", ) expected_reason = "Specifying the MLF output and a cross compiler is not supported." on_error = "A TVMCException was caught but its reason is not the expected one." assert str(exp.value) == expected_reason, on_error def test_tvmc_import_package_project_dir(tflite_mobilenet_v1_1_quant, tflite_compile_model): pytest.importorskip("tflite") # Generate a MLF archive. compiled_model_mlf_tvmc_package = tflite_compile_model( tflite_mobilenet_v1_1_quant, output_format="mlf" ) # Import the MLF archive setting 'project_dir'. It must succeed. mlf_archive_path = compiled_model_mlf_tvmc_package.package_path tvmc_package = TVMCPackage(mlf_archive_path, project_dir="/tmp/foobar") assert tvmc_package.type == "mlf", "Can't load the MLF archive passing the project directory!" # Generate a Classic archive. compiled_model_classic_tvmc_package = tflite_compile_model(tflite_mobilenet_v1_1_quant) # Import the Classic archive setting 'project_dir'. # It must fail since setting 'project_dir' is only support when importing a MLF archive. classic_archive_path = compiled_model_classic_tvmc_package.package_path with pytest.raises(TVMCException) as exp: tvmc_package = TVMCPackage(classic_archive_path, project_dir="/tmp/foobar") expected_reason = "Setting 'project_dir' is only allowed when importing a MLF.!" on_error = "A TVMCException was caught but its reason is not the expected one." assert str(exp.value) == expected_reason, on_error def test_tvmc_import_package_mlf_graph(tflite_mobilenet_v1_1_quant, tflite_compile_model): pytest.importorskip("tflite") tflite_compiled_model_mlf = tflite_compile_model( tflite_mobilenet_v1_1_quant, output_format="mlf" ) # Compile and export a model to a MLF archive so it can be imported. exported_tvmc_package = tflite_compiled_model_mlf archive_path = exported_tvmc_package.package_path # Import the MLF archive. TVMCPackage constructor will call import_package method. tvmc_package = TVMCPackage(archive_path) assert tvmc_package.lib_name is None, ".lib_name must not be set in the MLF archive." assert tvmc_package.lib_path is None, ".lib_path must not be set in the MLF archive." assert ( tvmc_package.graph is not None ), ".graph must be set in the MLF archive for Graph executor." assert tvmc_package.params is not None, ".params must be set in the MLF archive." assert tvmc_package.type == "mlf", ".type must be set to 'mlf' in the MLF format." def test_tvmc_import_package_mlf_aot(tflite_mobilenet_v1_1_quant, tflite_compile_model): pytest.importorskip("tflite") tflite_compiled_model_mlf = tflite_compile_model( tflite_mobilenet_v1_1_quant, target="c", executor=backend.Executor("aot"), output_format="mlf", pass_context_configs=["tir.disable_vectorize=1"], ) # Compile and export a model to a MLF archive so it can be imported. exported_tvmc_package = tflite_compiled_model_mlf archive_path = exported_tvmc_package.package_path # Import the MLF archive. TVMCPackage constructor will call import_package method. tvmc_package = TVMCPackage(archive_path) assert tvmc_package.lib_name is None, ".lib_name must not be set in the MLF archive." assert tvmc_package.lib_path is None, ".lib_path must not be set in the MLF archive." assert tvmc_package.graph is None, ".graph must not be set in the MLF archive for AOT executor." assert tvmc_package.params is not None, ".params must be set in the MLF archive." assert tvmc_package.type == "mlf", ".type must be set to 'mlf' in the MLF format." if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/driver/tvmc/test_model.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import platform import pytest import os import numpy as np from os import path from tvm.driver import tvmc from tvm.driver.tvmc.model import TVMCModel, TVMCPackage, TVMCResult from tvm.runtime.module import BenchmarkResult @pytest.mark.skipif( platform.machine() == "aarch64", reason="Currently failing on AArch64 - see https://github.com/apache/tvm/issues/10673", ) @pytest.mark.parametrize("use_vm", [True, False]) def test_tvmc_workflow(use_vm, keras_simple): pytest.importorskip("tensorflow") import tensorflow as tf # Reset so the input name remains consistent across unit test runs tf.keras.backend.clear_session() tvmc_model = tvmc.load(keras_simple) tuning_records = tvmc.tune(tvmc_model, target="llvm", enable_autoscheduler=True, trials=2) tvmc_package = tvmc.compile( tvmc_model, tuning_records=tuning_records, target="llvm", use_vm=use_vm ) input_dict = {"input_1": np.random.uniform(size=(1, 32, 32, 3)).astype("float32")} result = tvmc.run( tvmc_package, device="cpu", end_to_end=True, benchmark=True, inputs=input_dict ) assert type(tvmc_model) is TVMCModel assert type(tvmc_package) is TVMCPackage assert type(result) is TVMCResult assert path.exists(tuning_records) assert type(result.outputs) is dict assert type(result.times) is BenchmarkResult assert "output_0" in result.outputs.keys() @pytest.mark.skipif( platform.machine() == "aarch64", reason="Currently failing on AArch64 - see https://github.com/apache/tvm/issues/10673", ) @pytest.mark.parametrize("use_vm", [True, False]) def test_save_load_model(use_vm, keras_simple, tmpdir_factory): pytest.importorskip("onnx") tmpdir = tmpdir_factory.mktemp("data") tvmc_model = tvmc.load(keras_simple) # Create tuning artifacts tvmc.tune(tvmc_model, target="llvm", trials=2) # Create package artifacts tvmc.compile(tvmc_model, target="llvm", use_vm=use_vm) # Save the model to disk model_path = os.path.join(tmpdir, "saved_model.tar") tvmc_model.save(model_path) # Load the model into a new TVMCModel new_tvmc_model = TVMCModel(model_path=model_path) # Check that the two models match. assert str(new_tvmc_model.mod) == str(tvmc_model.mod) # Check that tuning records and the compiled package are recoverable. assert path.exists(new_tvmc_model.default_package_path()) assert path.exists(new_tvmc_model.default_tuning_records_path())
https://github.com/zk-ml/tachikoma
tests/python/driver/tvmc/test_parse_config_file.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import pytest import os import shlex import tvm from tvm.driver.tvmc.main import _main from tvm.driver.tvmc.config_options import convert_config_json_to_cli, get_configs_json_dir def test_parse_json_config_file_one_target(): tokens = convert_config_json_to_cli( {"targets": [{"kind": "llvm"}], "output": "resnet50-v2-7-autotuner_records.json"} ) expected_tokens = [{"target": "llvm"}, {"output": "resnet50-v2-7-autotuner_records.json"}] assert len(tokens) == len(expected_tokens) assert tokens == expected_tokens def test_parse_json_config_file_multipile_targets(): tokens = convert_config_json_to_cli( { "targets": [{"kind": "llvm"}, {"kind": "c", "mcpu": "cortex-m55"}], "tuning-records": "resnet50-v2-7-autotuner_records.json", "pass-config": {"tir.disable_vectorizer": "1"}, } ) expected_tokens = [ {"target_c_mcpu": "cortex-m55"}, {"target": "llvm, c"}, {"tuning_records": "resnet50-v2-7-autotuner_records.json"}, {"pass_config": ["tir.disable_vectorizer=1"]}, ] assert len(tokens) == len(expected_tokens) assert tokens == expected_tokens def test_parse_json_config_file_executor(): tokens = convert_config_json_to_cli( { "executor": {"kind": "aot", "interface-api": "c"}, "inputs": "imagenet_cat.npz", "max-local-memory-per-block": "4", "repeat": "100", } ) expected_tokens = [ {"executor": "aot"}, {"executor_aot_interface_api": "c"}, {"inputs": "imagenet_cat.npz"}, {"max_local_memory_per_block": "4"}, {"repeat": "100"}, ] assert len(tokens) == len(expected_tokens) assert tokens == expected_tokens def test_parse_json_config_file_target_and_executor(): tokens = convert_config_json_to_cli( { "targets": [ {"kind": "ethos-u -accelerator_config=ethos-u55-256"}, {"kind": "c", "mcpu": "cortex-m55"}, {"kind": "cmsis-nn"}, ], "executor": {"kind": "aot", "interface-api": "c", "unpacked-api": "1"}, "inputs": "imagenet_cat.npz", "max-local-memory-per-block": "4", "repeat": "100", } ) expected_tokens = [ {"target_c_mcpu": "cortex-m55"}, {"target": "ethos-u -accelerator_config=ethos-u55-256, c, cmsis-nn"}, {"executor": "aot"}, {"executor_aot_interface_api": "c"}, {"executor_aot_unpacked_api": "1"}, {"inputs": "imagenet_cat.npz"}, {"max_local_memory_per_block": "4"}, {"repeat": "100"}, ] assert len(tokens) == len(expected_tokens) assert tokens == expected_tokens def test_parse_json_config_file_runtime(): tokens = convert_config_json_to_cli( { "targets": [ {"kind": "cmsis-nn", "from_device": "1"}, {"kind": "c", "mcpu": "cortex-m55"}, ], "runtime": {"kind": "crt"}, "inputs": "imagenet_cat.npz", "output": "predictions.npz", "pass-config": {"tir.disable_vectorize": "1", "relay.backend.use_auto_scheduler": "0"}, } ) expected_tokens = [ {"target_cmsis-nn_from_device": "1"}, {"target_c_mcpu": "cortex-m55"}, {"target": "cmsis-nn, c"}, {"runtime": "crt"}, {"inputs": "imagenet_cat.npz"}, {"output": "predictions.npz"}, {"pass_config": ["tir.disable_vectorize=1", "relay.backend.use_auto_scheduler=0"]}, ] assert len(tokens) == len(expected_tokens) assert tokens == expected_tokens @tvm.testing.requires_cmsisnn def test_tvmc_cl_compile_run_config_file(tflite_mobilenet_v1_1_quant, tmpdir_factory): compile_config_file = "compile_config_test.json" pytest.importorskip("tflite") output_dir = tmpdir_factory.mktemp("mlf") input_model = tflite_mobilenet_v1_1_quant output_file = os.path.join(output_dir, "mock.tar") # Compile the input model and generate a Model Library Format (MLF) archive. tvmc_cmd = ( f"tvmc compile --config {compile_config_file} {input_model} --output {output_file} " f"--output-format mlf" ) tvmc_args = shlex.split(tvmc_cmd)[1:] _main(tvmc_args) assert os.path.exists(output_file), "Could not find the exported MLF archive." # Run the MLF archive. It must fail since it's only supported on micro targets. tvmc_cmd = f"tvmc run {output_file}" tvmc_args = tvmc_cmd.split(" ")[1:] exit_code = _main(tvmc_args) on_error = "Trying to run a MLF archive must fail because it's only supported on micro targets." assert exit_code != 0, on_error def test_tvmc_get_configs_json_dir(tmpdir_factory, monkeypatch): # Reset global state monkeypatch.setattr(tvm.driver.tvmc.config_options, "CONFIGS_JSON_DIR", None) # Get default directory for reference default_dir = get_configs_json_dir() # Set custom dir which does not exist -> ignore monkeypatch.setattr(tvm.driver.tvmc.config_options, "CONFIGS_JSON_DIR", None) monkeypatch.setenv("TVM_CONFIGS_JSON_DIR", "not_a_directory") result = get_configs_json_dir() assert_msg = "Non-existant directory passed via TVM_CONFIGS_JSON_DIR should be ignored." assert result == default_dir, assert_msg # Set custom dir which does exist monkeypatch.setattr(tvm.driver.tvmc.config_options, "CONFIGS_JSON_DIR", None) configs_dir = tmpdir_factory.mktemp("configs") monkeypatch.setenv("TVM_CONFIGS_JSON_DIR", str(configs_dir)) result = get_configs_json_dir() assert_msg = ( "Custom value passed via TVM_CONFIGS_JSON_DIR should be used instead of default one." ) assert result != default_dir and result is not None, assert_msg
https://github.com/zk-ml/tachikoma
tests/python/driver/tvmc/test_pass_config.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import pytest from unittest import mock from tvm.contrib.target.vitis_ai import vitis_ai_available from tvm.driver.tvmc import TVMCException from tvm.driver.tvmc.pass_config import parse_configs from tvm.tir.transform import PrimFuncPass from tvm.ir.transform import Sequential def test_config_invalid_format(): with pytest.raises(TVMCException): _ = parse_configs(["relay.backend.use_auto_scheduler.missing.value"]) def test_config_missing_from_tvm(): with pytest.raises(TVMCException): _ = parse_configs(["relay.backend.use_auto_scheduler.missing.value=1234"]) def test_config_unsupported_tvmc_config(): with pytest.raises(TVMCException): _ = parse_configs(["tir.LoopPartition=value"]) def test_config_empty(): with pytest.raises(TVMCException): _ = parse_configs([""]) def test_config_valid_config_bool(): configs = parse_configs(["relay.backend.use_auto_scheduler=true"]) assert len(configs) == 1 assert "relay.backend.use_auto_scheduler" in configs.keys() assert configs["relay.backend.use_auto_scheduler"] == True @pytest.mark.skipif( not vitis_ai_available(), reason="--target vitis-ai is not available. TVM built with 'USE_VITIS_AI OFF'", ) def test_config_valid_multiple_configs(): configs = parse_configs( [ "relay.backend.use_auto_scheduler=false", "tir.detect_global_barrier=10", "relay.ext.vitis_ai.options.build_dir=mystring", ] ) assert len(configs) == 3 assert "relay.backend.use_auto_scheduler" in configs.keys() assert configs["relay.backend.use_auto_scheduler"] == False assert "tir.detect_global_barrier" in configs.keys() assert configs["tir.detect_global_barrier"] == 10 assert "relay.ext.vitis_ai.options.build_dir" in configs.keys() assert configs["relay.ext.vitis_ai.options.build_dir"] == "mystring" def test_add_lower_pass_multi_built_in_pass(): configs = parse_configs( [ "tir.add_lower_pass=1,tir.transform.UnrollLoop", "tir.add_lower_pass=1,tir.transform.HoistIfThenElse,2,tir.transform.LoopPartition", ] ) assert len(configs["tir.add_lower_pass"]) == 3 # opt_level: 1, pass: tir.transform.UnrollLoop assert configs["tir.add_lower_pass"][0][0] == 1 assert isinstance(configs["tir.add_lower_pass"][0][1], PrimFuncPass) # opt_level: 1, pass: tir.transform.HoistIfThenElse assert configs["tir.add_lower_pass"][1][0] == 1 assert isinstance(configs["tir.add_lower_pass"][1][1], Sequential) assert configs["tir.add_lower_pass"][1][1].pass_info.name == "tir.HoistIfThenElse" # opt_level: 2, pass: tir.transform.LoopPartition assert configs["tir.add_lower_pass"][2][0] == 2 assert isinstance(configs["tir.add_lower_pass"][2][1], PrimFuncPass) def test_add_lower_pass_multi_external_pass(): fake_pass_1 = mock.MagicMock() fake_pass_2 = mock.MagicMock() fake_pass_3 = mock.MagicMock() with mock.patch.dict( "sys.modules", {"fake_module": fake_pass_1, "fake_module": fake_pass_2, "fake_module": fake_pass_3}, ): configs = parse_configs( [ "tir.add_lower_pass=1,fake_module.fake_pass_1,2,fake_module.fake_pass2", "tir.add_lower_pass=3,fake_module.fake_pass_3", ] ) assert len(configs["tir.add_lower_pass"]) == 3 # opt_level: 1, pass: fake_module.fake_pass_1 assert configs["tir.add_lower_pass"][0][0] == 1 # opt_level: 2, pass: fake_module.fake_pass_2 assert configs["tir.add_lower_pass"][1][0] == 2 # opt_level: 3, pass: fake_module.fake_pass_3 assert configs["tir.add_lower_pass"][2][0] == 3 def test_add_lower_pass_multi_mix_pass(): fake_pass_1 = mock.MagicMock() fake_pass_2 = mock.MagicMock() with mock.patch.dict("sys.modules", {"fake_module": fake_pass_1, "fake_module": fake_pass_2}): configs = parse_configs( [ "tir.add_lower_pass=1,fake_module.fake_pass_1,1,tir.transform.UnrollLoop", "tir.add_lower_pass=2,fake_module.fake_pass_2,2,tir.transform.LoopPartition", ] ) assert len(configs["tir.add_lower_pass"]) == 4 # opt_level: 1, pass: fake_module.fake_pass_1 assert configs["tir.add_lower_pass"][0][0] == 1 # opt_level: 1, pass: tir.transform.UnrollLoop assert configs["tir.add_lower_pass"][1][0] == 1 assert isinstance(configs["tir.add_lower_pass"][1][1], PrimFuncPass) # opt_level: 2, pass: fake_module.fake_pass_2 assert configs["tir.add_lower_pass"][2][0] == 2 # opt_level: 2, pass: tir.transform.LoopPartition assert configs["tir.add_lower_pass"][3][0] == 2 assert isinstance(configs["tir.add_lower_pass"][3][1], PrimFuncPass) def test_add_lower_pass_invalid_format(): # wrong format with pytest.raises(TVMCException): _ = parse_configs(["tir.add_lower_pass=tir.transform.UnrollLoop,1"]) # missing pass name with pytest.raises(TVMCException): _ = parse_configs(["tir.add_lower_pass=1,tir.transform.UnrollLoop,3"]) # wrong opt level with pytest.raises(TVMCException): _ = parse_configs(["tir.add_lower_pass=a,tir.transform.UnrollLoop"]) # fake module with pytest.raises(ModuleNotFoundError): _ = parse_configs( ["tir.add_lower_pass=1,tir.transform.UnrollLoop,2,path.to.module.fake_func"] ) # real module and fake func with pytest.raises(TVMCException): _ = parse_configs(["tir.add_lower_pass=1,tir.transform.UnrollLoop,2,tvm.tir.fake_func"])
https://github.com/zk-ml/tachikoma
tests/python/driver/tvmc/test_pass_list.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import argparse import pytest from tvm.driver.tvmc.pass_list import parse_pass_list_str def test_parse_pass_list_str(): assert [""] == parse_pass_list_str("") assert ["FoldScaleAxis", "FuseOps"] == parse_pass_list_str("FoldScaleAxis,FuseOps") with pytest.raises(argparse.ArgumentTypeError) as ate: parse_pass_list_str("MyYobaPass,MySuperYobaPass,FuseOps") assert "MyYobaPass" in str(ate.value) assert "MySuperYobaPass" in str(ate.value) assert "FuseOps" in str(ate.value) if __name__ == "__main__": pytest.main([__file__])
https://github.com/zk-ml/tachikoma
tests/python/driver/tvmc/test_registry_options.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import argparse import pytest from tvm.driver.tvmc import TVMCException from tvm.driver.tvmc.registry import generate_registry_args, reconstruct_registry_entity from tvm.relay.backend import Executor def test_registry_to_argparse(): parser = argparse.ArgumentParser() generate_registry_args(parser, Executor) parsed, _ = parser.parse_known_args(["--executor=aot", "--executor-aot-interface-api=c"]) assert parsed.executor == "aot" assert parsed.executor_aot_interface_api == "c" def test_registry_to_argparse_default(): parser = argparse.ArgumentParser() generate_registry_args(parser, Executor, "aot") parsed, _ = parser.parse_known_args([]) assert parsed.executor == "aot" def test_mapping_registered_args(): parser = argparse.ArgumentParser() generate_registry_args(parser, Executor) parsed, _ = parser.parse_known_args(["--executor=aot", "--executor-aot-interface-api=c"]) entity = reconstruct_registry_entity(parsed, Executor) assert isinstance(entity, Executor) assert "interface-api" in entity assert entity["interface-api"] == "c" def test_mapping_registered_args_no_match_for_name(): parser = argparse.ArgumentParser() generate_registry_args(parser, Executor) parsed, _ = parser.parse_known_args(["--executor=woof"]) with pytest.raises(TVMCException, match='Executor "woof" is not defined'): reconstruct_registry_entity(parsed, Executor) def test_mapping_registered_args_no_arg(): parser = argparse.ArgumentParser() generate_registry_args(parser, Executor) parsed, _ = parser.parse_known_args([]) assert reconstruct_registry_entity(parsed, Executor) == None def test_mapping_registered_args_mismatch_for_arg(): parser = argparse.ArgumentParser() generate_registry_args(parser, Executor) parsed, _ = parser.parse_known_args(["--executor=aot", "--executor-graph-link-params=1"]) with pytest.raises( TVMCException, match="Passed --executor-graph-link-params but did not specify graph executor", ): reconstruct_registry_entity(parsed, Executor)
https://github.com/zk-ml/tachikoma
tests/python/driver/tvmc/test_runner.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import pytest import numpy as np from tvm import rpc from tvm.driver import tvmc from tvm.driver.tvmc.model import TVMCResult from tvm.driver.tvmc.result_utils import get_top_results from tvm.runtime.module import BenchmarkResult def test_generate_tensor_data_zeros(): expected_shape = (2, 3) expected_dtype = "uint8" sut = tvmc.runner.generate_tensor_data(expected_shape, expected_dtype, "zeros") assert sut.shape == (2, 3) def test_generate_tensor_data_ones(): expected_shape = (224, 224) expected_dtype = "uint8" sut = tvmc.runner.generate_tensor_data(expected_shape, expected_dtype, "ones") assert sut.shape == (224, 224) def test_generate_tensor_data_random(): expected_shape = (2, 3) expected_dtype = "uint8" sut = tvmc.runner.generate_tensor_data(expected_shape, expected_dtype, "random") assert sut.shape == (2, 3) def test_generate_tensor_data__type_unknown(): with pytest.raises(tvmc.TVMCException) as e: tvmc.runner.generate_tensor_data((2, 3), "float32", "whatever") def test_format_times__contains_header(): fake_result = TVMCResult(outputs=None, times=BenchmarkResult([0.6, 1.2, 0.12, 0.42])) sut = fake_result.format_times() assert "std (ms)" in sut def test_get_top_results_keep_results(): fake_outputs = {"output_0": np.array([[1, 2, 3, 4], [5, 6, 7, 8]])} fake_result = TVMCResult(outputs=fake_outputs, times=None) number_of_results_wanted = 3 sut = get_top_results(fake_result, number_of_results_wanted) expected_number_of_lines = 2 assert len(sut) == expected_number_of_lines expected_number_of_results_per_line = 3 assert len(sut[0]) == expected_number_of_results_per_line assert len(sut[1]) == expected_number_of_results_per_line @pytest.mark.parametrize("use_vm", [True, False]) def test_run_tflite_module__with_profile__valid_input( use_vm, tflite_mobilenet_v1_1_quant, tflite_compile_model, imagenet_cat ): # some CI environments wont offer TFLite, so skip in case it is not present pytest.importorskip("tflite") inputs = np.load(imagenet_cat) input_dict = {"input": inputs["input"].astype("uint8")} tflite_compiled_model = tflite_compile_model(tflite_mobilenet_v1_1_quant, use_vm=use_vm) result = tvmc.run( tflite_compiled_model, inputs=input_dict, benchmark=True, hostname=None, device="cpu", profile=True, ) # collect the top 5 results top_5_results = get_top_results(result, 5) top_5_ids = top_5_results[0] # IDs were collected from this reference: # https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/ # java/demo/app/src/main/assets/labels_mobilenet_quant_v1_224.txt tiger_cat_mobilenet_id = 283 assert ( tiger_cat_mobilenet_id in top_5_ids ), "tiger cat is expected in the top-5 for mobilenet v1" assert isinstance(result.outputs, dict) assert isinstance(result.times, BenchmarkResult) assert "output_0" in result.outputs.keys() def test_run_tflite_module_with_rpc( tflite_mobilenet_v1_1_quant, tflite_compile_model, imagenet_cat ): """ Test to check that TVMC run is functional when it is being used in conjunction with an RPC server. """ pytest.importorskip("tflite") inputs = np.load(imagenet_cat) input_dict = {"input": inputs["input"].astype("uint8")} tflite_compiled_model = tflite_compile_model(tflite_mobilenet_v1_1_quant) server = rpc.Server("127.0.0.1", 9099) result = tvmc.run( tflite_compiled_model, inputs=input_dict, hostname=server.host, port=server.port, device="cpu", ) top_5_results = get_top_results(result, 5) top_5_ids = top_5_results[0] # IDs were collected from this reference: # https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/ # java/demo/app/src/main/assets/labels_mobilenet_quant_v1_224.txt tiger_cat_mobilenet_id = 283 assert ( tiger_cat_mobilenet_id in top_5_ids ), "tiger cat is expected in the top-5 for mobilenet v1" assert isinstance(result.outputs, dict) assert "output_0" in result.outputs.keys() @pytest.mark.parametrize("use_vm", [True, False]) @pytest.mark.parametrize( "benchmark,repeat,number,expected_len", [(False, 1, 1, 0), (True, 1, 1, 1), (True, 3, 2, 3)] ) def test_run_relay_module__benchmarking( use_vm, benchmark, repeat, number, expected_len, relay_text_conv2d, relay_compile_model, ): """Check the length of the results from benchmarking is what is expected by expected_len.""" shape_dict = {"data": (1, 3, 64, 64), "weight": (3, 3, 5, 5)} input_dict = { "data": np.random.randint(low=0, high=10, size=shape_dict["data"], dtype="uint8"), "weight": np.random.randint(low=0, high=10, size=shape_dict["weight"], dtype="int8"), } tflite_compiled_model = relay_compile_model( relay_text_conv2d, shape_dict=shape_dict, use_vm=use_vm ) result = tvmc.run( tflite_compiled_model, inputs=input_dict, hostname=None, device="cpu", benchmark=benchmark, repeat=repeat, number=number, ) # When no benchmarking is used, an empty list is used to # represent an absence of results. if isinstance(result.times, list): assert len(result.times) == expected_len else: assert len(result.times.results) == expected_len
https://github.com/zk-ml/tachikoma
tests/python/driver/tvmc/test_shape_parser.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import argparse import pytest from tvm.driver.tvmc.shape_parser import parse_shape_string def test_shape_parser(): # Check that a valid input is parsed correctly shape_string = "input:[10,10,10]" shape_dict = parse_shape_string(shape_string) assert shape_dict == {"input": [10, 10, 10]} def test_alternate_syntax(): shape_string = "input:0:[10,10,10] input2:[20,20,20,20]" shape_dict = parse_shape_string(shape_string) assert shape_dict == {"input:0": [10, 10, 10], "input2": [20, 20, 20, 20]} @pytest.mark.parametrize( "shape_string", [ "input:[10,10,10] input2:[20,20,20,20]", "input: [10, 10, 10] input2: [20, 20, 20, 20]", "input:[10,10,10],input2:[20,20,20,20]", ], ) def test_alternate_syntaxes(shape_string): shape_dict = parse_shape_string(shape_string) assert shape_dict == {"input": [10, 10, 10], "input2": [20, 20, 20, 20]} def test_negative_dimensions(): # Check that negative dimensions parse to Any correctly. shape_string = "input:[-1,3,224,224]" shape_dict = parse_shape_string(shape_string) # Convert to strings to allow comparison with Any. assert str(shape_dict) == "{'input': [?, 3, 224, 224]}" def test_multiple_valid_gpu_inputs(): # Check that multiple valid gpu inputs are parsed correctly. shape_string = "gpu_0/data_0:[1, -1,224,224] gpu_1/data_1:[7, 7]" shape_dict = parse_shape_string(shape_string) expected = "{'gpu_0/data_0': [1, ?, 224, 224], 'gpu_1/data_1': [7, 7]}" assert str(shape_dict) == expected def test_invalid_pattern(): shape_string = "input:[a,10]" with pytest.raises(argparse.ArgumentTypeError): parse_shape_string(shape_string) def test_invalid_separators(): shape_string = "input:5,10 input2:10,10" with pytest.raises(argparse.ArgumentTypeError): parse_shape_string(shape_string) def test_invalid_colon(): shape_string = "gpu_0/data_0:5,10 :test:10,10" with pytest.raises(argparse.ArgumentTypeError): parse_shape_string(shape_string) @pytest.mark.parametrize( "shape_string", [ "gpu_0/data_0:5,10 /:10,10", "gpu_0/data_0:5,10 data/:10,10", "gpu_0/data_0:5,10 /data:10,10", "gpu_0/invalid/data_0:5,10 data_1:10,10", ], ) def test_invalid_slashes(shape_string): with pytest.raises(argparse.ArgumentTypeError): parse_shape_string(shape_string) def test_dot(): # Check dot in input name shape_string = "input.1:[10,10,10]" shape_dict = parse_shape_string(shape_string) assert shape_dict == {"input.1": [10, 10, 10]}
https://github.com/zk-ml/tachikoma
tests/python/driver/tvmc/test_target.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import pytest import tvm.testing from tvm.driver.tvmc import TVMCException from tvm.driver.tvmc.target import target_from_cli, tokenize_target, parse_target def test_target_from_cli__error_duplicate(): with pytest.raises(TVMCException): _ = target_from_cli("llvm, llvm") def test_target_invalid_more_than_two_tvm_targets(): with pytest.raises(TVMCException): _ = target_from_cli("cuda, opencl, llvm") def test_target_from_cli__error_target_not_found(): with pytest.raises(TVMCException): _ = target_from_cli("invalidtarget") def test_target_two_tvm_targets(): tvm_target, extra_targets = target_from_cli( "opencl -device=mali, llvm -mtriple=aarch64-linux-gnu" ) assert "opencl" in str(tvm_target) assert "llvm" in str(tvm_target.host) # No extra targets assert 0 == len(extra_targets) def test_tokenize_target_with_opts(): tokens = tokenize_target("foo -opt1=value1 --flag, bar -opt2=value2") expected_tokens = ["foo", "-opt1=value1", "--flag", ",", "bar", "-opt2=value2"] assert len(tokens) == len(expected_tokens) assert tokens == expected_tokens def test_tokenize_target_with_plus_sign(): tokens = tokenize_target("foo -opt1=+value1 --flag, bar -opt2=test,+v") expected_tokens = ["foo", "-opt1=+value1", "--flag", ",", "bar", "-opt2=test,+v"] assert len(tokens) == len(expected_tokens) assert tokens == expected_tokens def test_tokenize_target_with_commas(): tokens = tokenize_target("foo -opt1=v,a,l,u,e,1 --flag") expected_tokens = ["foo", "-opt1=v,a,l,u,e,1", "--flag"] assert len(tokens) == len(expected_tokens) assert tokens == expected_tokens def test_tokenize_target_with_commas_and_single_quotes(): tokens = tokenize_target("foo -opt1='v, a, l, u, e', bar") expected_tokens = ["foo", "-opt1='v, a, l, u, e'", ",", "bar"] assert len(tokens) == len(expected_tokens) assert tokens == expected_tokens def test_tokenize_target_with_commas_and_double_quotes(): tokens = tokenize_target('foo -opt1="v, a, l, u, e", bar') expected_tokens = ["foo", '-opt1="v, a, l, u, e"', ",", "bar"] assert len(tokens) == len(expected_tokens) assert tokens == expected_tokens def test_tokenize_target_with_dashes(): tokens = tokenize_target("foo-bar1 -opt-1=t-e-s-t, baz") expected_tokens = ["foo-bar1", "-opt-1=t-e-s-t", ",", "baz"] assert len(tokens) == len(expected_tokens) assert tokens == expected_tokens def test_parse_single_target_with_opts(): targets = parse_target("llvm -device=arm_cpu -mattr=+fp") assert len(targets) == 1 assert "device" in targets[0]["opts"] assert "mattr" in targets[0]["opts"] def test_parse_multiple_target(): targets = parse_target("compute-library, llvm -device=arm_cpu") assert len(targets) == 2 assert "compute-library" == targets[0]["name"] assert "llvm" == targets[1]["name"] def test_parse_hybrid_target(): """Hybrid Target and external codegen""" targets = parse_target("cmsis-nn -accelerator_config=ethos-u55-256, llvm -device=arm_cpu") assert len(targets) == 2 assert "cmsis-nn" == targets[0]["name"] assert not targets[0]["is_tvm_target"] assert "llvm" == targets[1]["name"] assert targets[1]["is_tvm_target"] def test_parse_multiple_hybrid_target(): """Hybrid Target and multiple external codegen""" targets = parse_target("ethos-u,cmsis-nn,c") assert len(targets) == 3 assert "ethos-u" == targets[0]["name"] assert not targets[0]["is_tvm_target"] assert "cmsis-nn" == targets[1]["name"] assert not targets[1]["is_tvm_target"] assert "c" == targets[2]["name"] assert targets[2]["is_tvm_target"] def test_parse_quotes_and_separators_on_options(): targets_no_quote = parse_target("foo -option1=+v1.0x,+value,+bar") targets_single_quote = parse_target("foo -option1='+v1.0x,+value'") targets_double_quote = parse_target('foo -option1="+v1.0x,+value"') assert len(targets_no_quote) == 1 assert "+v1.0x,+value,+bar" == targets_no_quote[0]["opts"]["option1"] assert len(targets_single_quote) == 1 assert "+v1.0x,+value" == targets_single_quote[0]["opts"]["option1"] assert len(targets_double_quote) == 1 assert "+v1.0x,+value" == targets_double_quote[0]["opts"]["option1"] def test_parse_multiple_target_with_opts_ethos_n78(): targets = parse_target("ethos-n -myopt=value, llvm -device=arm_cpu") assert len(targets) == 2 assert "ethos-n" == targets[0]["name"] assert "myopt" in targets[0]["opts"] assert "value" == targets[0]["opts"]["myopt"] assert "llvm" == targets[1]["name"] if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/driver/tvmc/test_target_options.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import argparse import pytest import tvm from tvm.driver.tvmc import TVMCException from tvm.driver.tvmc.target import generate_target_args, reconstruct_target_args, target_from_cli def test_target_to_argparse(): parser = argparse.ArgumentParser() generate_target_args(parser) parsed, _ = parser.parse_known_args( ["--target=llvm", "--target-llvm-mattr=+fp,+mve", "--target-llvm-mcpu=cortex-m3"] ) assert parsed.target == "llvm" assert parsed.target_llvm_mcpu == "cortex-m3" assert parsed.target_llvm_mattr == "+fp,+mve" @tvm.testing.requires_cmsisnn def test_target_to_argparse_known_codegen(): parser = argparse.ArgumentParser() generate_target_args(parser) parsed, _ = parser.parse_known_args( [ "--target=cmsis-nn,llvm", "--target-cmsis-nn-mcpu=cortex-m3", "--target-llvm-mattr=+fp,+mve", "--target-llvm-mcpu=cortex-m3", ] ) assert parsed.target == "cmsis-nn,llvm" assert parsed.target_llvm_mcpu == "cortex-m3" assert parsed.target_llvm_mattr == "+fp,+mve" assert parsed.target_cmsis_nn_mcpu == "cortex-m3" def test_mapping_target_args(): parser = argparse.ArgumentParser() generate_target_args(parser) parsed, _ = parser.parse_known_args(["--target=llvm", "--target-llvm-mcpu=cortex-m3"]) assert reconstruct_target_args(parsed) == {"llvm": {"mcpu": "cortex-m3"}} @tvm.testing.requires_cmsisnn def test_include_known_codegen(): parser = argparse.ArgumentParser() generate_target_args(parser) parsed, _ = parser.parse_known_args( ["--target=cmsis-nn,c", "--target-cmsis-nn-mcpu=cortex-m55", "--target-c-mcpu=cortex-m55"] ) assert reconstruct_target_args(parsed) == { "c": {"mcpu": "cortex-m55"}, "cmsis-nn": {"mcpu": "cortex-m55"}, } def test_skip_target_from_codegen(): parser = argparse.ArgumentParser() generate_target_args(parser) parsed, left = parser.parse_known_args( ["--target=cmsis-nn, c", "--target-cmsis-nn-from_device=1", "--target-c-mcpu=cortex-m55"] ) assert left == ["--target-cmsis-nn-from_device=1"] assert reconstruct_target_args(parsed) == {"c": {"mcpu": "cortex-m55"}} def test_target_recombobulation_single(): tvm_target, _ = target_from_cli("llvm", {"llvm": {"mcpu": "cortex-m3"}}) assert str(tvm_target) == "llvm -keys=arm_cpu,cpu -mcpu=cortex-m3" def test_target_recombobulation_many(): tvm_target, _ = target_from_cli( "opencl -device=mali, llvm -mtriple=aarch64-linux-gnu", {"llvm": {"mcpu": "cortex-m3"}, "opencl": {"max_num_threads": 404}}, ) assert "-max_num_threads=404" in str(tvm_target) assert "-device=mali" in str(tvm_target) assert "-mtriple=aarch64-linux-gnu" in str(tvm_target.host) assert "-mcpu=cortex-m3" in str(tvm_target.host) def test_target_recombobulation_codegen(): tvm_target, extras = target_from_cli( "cmsis-nn, c -mcpu=cortex-m55", {"cmsis-nn": {"mcpu": "cortex-m55"}}, ) assert "-mcpu=cortex-m55" in str(tvm_target) assert len(extras) == 1 assert extras[0]["name"] == "cmsis-nn" assert extras[0]["opts"] == {"mcpu": "cortex-m55"} def test_error_if_target_missing(): with pytest.raises( TVMCException, match="Passed --target-opencl-max_num_threads but did not specify opencl target", ): target_from_cli( "llvm", {"opencl": {"max_num_threads": 404}}, )
https://github.com/zk-ml/tachikoma
tests/python/driver/tvmc/test_tracker.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from tvm.driver.tvmc.tracker import tracker_host_port_from_cli def test_tracker_host_port_from_cli__hostname_port(): input_str = "1.2.3.4:9090" expected_host = "1.2.3.4" expected_port = 9090 actual_host, actual_port = tracker_host_port_from_cli(input_str) assert expected_host == actual_host assert expected_port == actual_port def test_tracker_host_port_from_cli__hostname_port__empty(): input_str = "" actual_host, actual_port = tracker_host_port_from_cli(input_str) assert actual_host is None assert actual_port is None def test_tracker_host_port_from_cli__only_hostname__default_port_is_9090(): input_str = "1.2.3.4" expected_host = "1.2.3.4" expected_port = 9090 actual_host, actual_port = tracker_host_port_from_cli(input_str) assert expected_host == actual_host assert expected_port == actual_port
https://github.com/zk-ml/tachikoma
tests/python/driver/tvmc/test_transform.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from unittest.mock import MagicMock import tvm from tvm import relay from tvm.ir.instrument import pass_instrument from tvm.driver.tvmc.transform import convert_graph_layout def test_layout_transform_fold_constant(relay_conv2d): """ Test layout is correctly transformed and constant folding is applied. """ desired_layout = "NHWC" @pass_instrument class CollectPassNames: def __init__(self): self.names = [] def run_after_pass(self, _, info): self.names.append(info.name) pass_names = CollectPassNames() with tvm.transform.PassContext(opt_level=3, instruments=[pass_names]): convert_graph_layout(relay_conv2d, desired_layout) names = pass_names.names assert "ConvertLayout" in names assert "FoldConstant" in names assert names.index("ConvertLayout") < names.index("FoldConstant") def test_layout_transform_convert_layout_pass_args(relay_conv2d, monkeypatch): """ Check the convert layout desired layouts arugment is what is expected when a desired layout is provided. """ desired_layout = "NHWC" mock_convert_layout = MagicMock() mock_convert_layout.return_value = relay.transform.ConvertLayout({}) monkeypatch.setattr(relay.transform, "ConvertLayout", mock_convert_layout) with tvm.transform.PassContext(opt_level=3): convert_graph_layout(relay_conv2d, desired_layout) mock_convert_layout.assert_called_once_with( { "nn.conv2d": ["NHWC", "default"], "nn.conv2d_transpose": ["NHWC", "default"], "qnn.conv2d": ["NHWC", "default"], } ) if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/driver/tvmc/test_workspace_pools.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import pytest import argparse import tvm from tvm.driver.tvmc.workspace_pools import ( generate_workspace_pools_args, workspace_pools_recombobulate, ) from tvm.target import Target from tvm.driver.tvmc import TVMCException def test_workspace_pools_argparse(): parser = argparse.ArgumentParser() generate_workspace_pools_args(parser) parsed, unparsed = parser.parse_known_args( [ "--workspace-pools=sram,flash", "--workspace-pools-targets=sram:c,llvm", "--workspace-pools-targets=flash:c", "--workspace-pools-size-hint-bytes=sram:400", "--workspace-pools-size-hint-bytes=sram:500", "--workspace-pools-clock-frequency-hz=sram:500", "--workspace-pools-read-bandwidth-bytes-per-cycle=sram:200", "--workspace-pools-write-bandwidth-bytes-per-cycle=sram:100", "--workspace-pools-read-latency-cycles=sram:50", "--workspace-pools-read-latency-cycles=flash:30", "--workspace-pools-write-latency-cycles=sram:9001", "--workspace-pools-target-burst-bytes=sram:c:2", "--workspace-pools-is-internal=sram:0", ] ) assert parsed.workspace_pools == "sram,flash" assert parsed.workspace_pools_targets == ["sram:c,llvm", "flash:c"] assert parsed.workspace_pools_size_hint_bytes == ["sram:400", "sram:500"] assert parsed.workspace_pools_clock_frequency_hz == ["sram:500"] assert parsed.workspace_pools_read_bandwidth_bytes_per_cycle == ["sram:200"] assert parsed.workspace_pools_write_bandwidth_bytes_per_cycle == ["sram:100"] assert parsed.workspace_pools_read_latency_cycles == ["sram:50", "flash:30"] assert parsed.workspace_pools_write_latency_cycles == ["sram:9001"] assert parsed.workspace_pools_target_burst_bytes == ["sram:c:2"] assert unparsed == ["--workspace-pools-is-internal=sram:0"] def test_workspace_pools_recombobulate_empty(): parser = argparse.ArgumentParser() generate_workspace_pools_args(parser) parsed, _ = parser.parse_known_args([]) targets = [Target("llvm")] memory_pools = workspace_pools_recombobulate(parsed, targets, _) assert memory_pools is None def test_workspace_pools_recombobulate(): parser = argparse.ArgumentParser() generate_workspace_pools_args(parser) parsed, _ = parser.parse_known_args( [ "--workspace-pools=sram", "--workspace-pools-targets=sram:llvm", "--workspace-pools-size-hint-bytes=sram:400", "--workspace-pools-clock-frequency-hz=sram:500", ] ) targets = [Target("llvm")] memory_pools = workspace_pools_recombobulate(parsed, targets, _) assert len(memory_pools.pools) == 1 assert memory_pools.pools[0].pool_name == "sram" assert memory_pools.pools[0].size_hint_bytes == 400 assert memory_pools.pools[0].clock_frequency_hz == 500 def test_workspace_pools_defaults(): parser = argparse.ArgumentParser() targets = [Target("llvm")] generate_workspace_pools_args(parser) parsed, _ = parser.parse_known_args( [ "--workspace-pools=sram", "--workspace-pools-targets=sram:llvm", ] ) memory_pools = workspace_pools_recombobulate(parsed, targets, _) assert len(memory_pools.pools) == 1 assert memory_pools.pools[0].pool_name == "sram" assert memory_pools.pools[0].size_hint_bytes == -1 assert memory_pools.pools[0].clock_frequency_hz == -1 assert memory_pools.pools[0].read_bandwidth_bytes_per_cycle == -1 assert memory_pools.pools[0].write_bandwidth_bytes_per_cycle == -1 assert memory_pools.pools[0].read_latency_cycles == 0 assert memory_pools.pools[0].write_latency_cycles == 0 assert len(memory_pools.pools[0].target_burst_bytes) == 0 def test_workspace_pools_recombobulate_multi_fields(): parser = argparse.ArgumentParser() targets = [Target("c")] generate_workspace_pools_args(parser) parsed, _ = parser.parse_known_args( [ "--workspace-pools=sram", "--workspace-pools-targets=sram:c", "--workspace-pools-size-hint-bytes=sram:400", "--workspace-pools-clock-frequency-hz=sram:500", "--workspace-pools-read-bandwidth-bytes-per-cycle=sram:200", "--workspace-pools-write-bandwidth-bytes-per-cycle=sram:100", "--workspace-pools-read-latency-cycles=sram:50", "--workspace-pools-write-latency-cycles=sram:9001", "--workspace-pools-target-burst-bytes=sram:c:2", ] ) memory_pools = workspace_pools_recombobulate(parsed, targets, _) assert len(memory_pools.pools) == 1 assert memory_pools.pools[0].pool_name == "sram" assert memory_pools.pools[0].size_hint_bytes == 400 assert memory_pools.pools[0].clock_frequency_hz == 500 assert memory_pools.pools[0].read_bandwidth_bytes_per_cycle == 200 assert memory_pools.pools[0].write_bandwidth_bytes_per_cycle == 100 assert memory_pools.pools[0].read_latency_cycles == 50 assert memory_pools.pools[0].write_latency_cycles == 9001 assert len(memory_pools.pools[0].target_burst_bytes) == 1 assert memory_pools.pools[0].target_burst_bytes[targets[0]] == 2 def test_workspace_pools_recombobulate_multi_fields_variant(): parser = argparse.ArgumentParser() generate_workspace_pools_args(parser) parsed, _ = parser.parse_known_args( [ "--workspace-pools=flash", "--workspace-pools-targets=flash:c", "--workspace-pools-size-hint-bytes=flash:2048", "--workspace-pools-clock-frequency-hz=flash:2000000", "--workspace-pools-read-bandwidth-bytes-per-cycle=flash:4", "--workspace-pools-write-bandwidth-bytes-per-cycle=flash:1", "--workspace-pools-read-latency-cycles=flash:2000", "--workspace-pools-write-latency-cycles=flash:1000", "--workspace-pools-target-burst-bytes=flash:c:4", ] ) targets = [Target("c")] memory_pools = workspace_pools_recombobulate(parsed, targets, _) assert len(memory_pools.pools) == 1 assert memory_pools.pools[0].pool_name == "flash" assert memory_pools.pools[0].size_hint_bytes == 2048 assert memory_pools.pools[0].clock_frequency_hz == 2000000 assert memory_pools.pools[0].read_bandwidth_bytes_per_cycle == 4 assert memory_pools.pools[0].write_bandwidth_bytes_per_cycle == 1 assert memory_pools.pools[0].read_latency_cycles == 2000 assert memory_pools.pools[0].write_latency_cycles == 1000 assert len(memory_pools.pools[0].target_burst_bytes) == 1 assert memory_pools.pools[0].target_burst_bytes[targets[0]] == 4 def test_workspace_pools_recombobulate_multi_fields_multi_pools(): parser = argparse.ArgumentParser() generate_workspace_pools_args(parser) parsed, _ = parser.parse_known_args( [ "--workspace-pools=sram,flash", "--workspace-pools-targets=sram:c", "--workspace-pools-targets=flash:c", "--workspace-pools-size-hint-bytes=sram:1024", "--workspace-pools-size-hint-bytes=flash:2048", "--workspace-pools-clock-frequency-hz=sram:4000000", "--workspace-pools-clock-frequency-hz=flash:2000000", "--workspace-pools-read-bandwidth-bytes-per-cycle=sram:8", "--workspace-pools-read-bandwidth-bytes-per-cycle=flash:4", "--workspace-pools-write-bandwidth-bytes-per-cycle=sram:4", "--workspace-pools-write-bandwidth-bytes-per-cycle=flash:1", "--workspace-pools-read-latency-cycles=sram:250", "--workspace-pools-read-latency-cycles=flash:2000", "--workspace-pools-write-latency-cycles=sram:500", "--workspace-pools-write-latency-cycles=flash:1000", "--workspace-pools-target-burst-bytes=sram:c:8", "--workspace-pools-target-burst-bytes=flash:c:4", ] ) targets = [Target("c")] memory_pools = workspace_pools_recombobulate(parsed, targets, _) assert len(memory_pools.pools) == 2 assert memory_pools.pools[0].pool_name == "sram" assert memory_pools.pools[0].size_hint_bytes == 1024 assert memory_pools.pools[0].clock_frequency_hz == 4000000 assert memory_pools.pools[0].read_bandwidth_bytes_per_cycle == 8 assert memory_pools.pools[0].write_bandwidth_bytes_per_cycle == 4 assert memory_pools.pools[0].read_latency_cycles == 250 assert memory_pools.pools[0].write_latency_cycles == 500 assert len(memory_pools.pools[0].target_burst_bytes) == 1 assert memory_pools.pools[0].target_burst_bytes[targets[0]] == 8 assert memory_pools.pools[1].pool_name == "flash" assert memory_pools.pools[1].size_hint_bytes == 2048 assert memory_pools.pools[1].clock_frequency_hz == 2000000 assert memory_pools.pools[1].read_bandwidth_bytes_per_cycle == 4 assert memory_pools.pools[1].write_bandwidth_bytes_per_cycle == 1 assert memory_pools.pools[1].read_latency_cycles == 2000 assert memory_pools.pools[1].write_latency_cycles == 1000 assert len(memory_pools.pools[1].target_burst_bytes) == 1 assert memory_pools.pools[1].target_burst_bytes[targets[0]] == 4 def test_workspace_pools_recombobulate_multi_fields_ordering(): parser = argparse.ArgumentParser() generate_workspace_pools_args(parser) parsed, _ = parser.parse_known_args( [ "--workspace-pools=sram,flash", "--workspace-pools-targets=flash:c", "--workspace-pools-targets=sram:c", "--workspace-pools-size-hint-bytes=flash:2048", "--workspace-pools-size-hint-bytes=sram:1024", "--workspace-pools-clock-frequency-hz=sram:4000000", "--workspace-pools-clock-frequency-hz=flash:2000000", "--workspace-pools-read-bandwidth-bytes-per-cycle=sram:8", "--workspace-pools-read-bandwidth-bytes-per-cycle=flash:4", "--workspace-pools-write-bandwidth-bytes-per-cycle=sram:4", "--workspace-pools-write-bandwidth-bytes-per-cycle=flash:1", "--workspace-pools-read-latency-cycles=sram:250", "--workspace-pools-read-latency-cycles=flash:2000", "--workspace-pools-write-latency-cycles=flash:1000", "--workspace-pools-write-latency-cycles=sram:500", "--workspace-pools-target-burst-bytes=sram:c:8", "--workspace-pools-target-burst-bytes=flash:c:4", ] ) targets = [Target("c")] memory_pools = workspace_pools_recombobulate(parsed, targets, _) assert len(memory_pools.pools) == 2 assert memory_pools.pools[0].pool_name == "sram" assert memory_pools.pools[0].size_hint_bytes == 1024 assert memory_pools.pools[0].write_latency_cycles == 500 assert memory_pools.pools[1].pool_name == "flash" assert memory_pools.pools[1].size_hint_bytes == 2048 assert memory_pools.pools[1].write_latency_cycles == 1000 def test_workspace_pools_recombobulate_multi_target(): parser = argparse.ArgumentParser() generate_workspace_pools_args(parser) parsed, _ = parser.parse_known_args( [ "--workspace-pools=sram", "--workspace-pools-targets=sram:c,llvm", "--workspace-pools-target-burst-bytes=sram:c:8", "--workspace-pools-target-burst-bytes=sram:llvm:4", ] ) c_target = Target("c") llvm_target = Target("llvm") extra_targets = [] targets = [c_target, llvm_target] memory_pools = workspace_pools_recombobulate(parsed, targets, extra_targets) assert len(memory_pools.pools) == 1 assert len(memory_pools.pools[0].target_burst_bytes) == 2 assert memory_pools.pools[0].target_burst_bytes[c_target] == 8 assert memory_pools.pools[0].target_burst_bytes[llvm_target] == 4 def test_workspace_pools_recombobulate_no_target_burst_bytes(): parser = argparse.ArgumentParser() generate_workspace_pools_args(parser) parsed, _ = parser.parse_known_args( [ "--workspace-pools=sram", "--workspace-pools-targets=sram:c", "--workspace-pools-target-burst-bytes=sram:c:8", ] ) c_target = Target("c") targets = [c_target] memory_pools = workspace_pools_recombobulate(parsed, targets, _) assert len(memory_pools.pools) == 1 assert len(memory_pools.pools[0].target_burst_bytes) == 1 assert memory_pools.pools[0].target_burst_bytes[c_target] == 8 def test_workspace_pools_recombobulate_missing_target(): parser = argparse.ArgumentParser() generate_workspace_pools_args(parser) parsed, _ = parser.parse_known_args( [ "--workspace-pools=sram", ] ) c_target = Target("c") with pytest.raises(TVMCException): workspace_pools_recombobulate(parsed, [c_target], _) def test_workspace_pools_recombobulate_multi_target_multi_pool(): parser = argparse.ArgumentParser() generate_workspace_pools_args(parser) parsed, _ = parser.parse_known_args( [ "--workspace-pools=sram", "--workspace-pools-targets=sram:c,llvm", "--workspace-pools-target-burst-bytes=sram:c:8", "--workspace-pools-target-burst-bytes=sram:llvm:4", ] ) c_target = Target("c") llvm_target = Target("llvm") targets = [c_target, llvm_target] memory_pools = workspace_pools_recombobulate(parsed, targets, _) assert len(memory_pools.pools) == 1 assert len(memory_pools.pools[0].target_burst_bytes) == 2 assert memory_pools.pools[0].target_burst_bytes[llvm_target] == 4 assert memory_pools.pools[0].target_burst_bytes[c_target] == 8 def test_workspace_pools_recombobulate_parameter_overrides(): parser = argparse.ArgumentParser() generate_workspace_pools_args(parser) parsed, _ = parser.parse_known_args( [ "--workspace-pools=sram", "--workspace-pools-targets=sram:c", "--workspace-pools-size-hint-bytes=sram:800", "--workspace-pools-size-hint-bytes=sram:400", "--workspace-pools-clock-frequency-hz=sram:4000000", "--workspace-pools-clock-frequency-hz=sram:3600000", ] ) c_target = Target("c") targets = [c_target] memory_pools = workspace_pools_recombobulate(parsed, targets, _) assert len(memory_pools.pools) == 1 assert memory_pools.pools[0].size_hint_bytes == 400 assert memory_pools.pools[0].clock_frequency_hz == 3600000 def test_workspace_pools_recombobulate_single_pool_overrides(): parser = argparse.ArgumentParser() generate_workspace_pools_args(parser) parsed, _ = parser.parse_known_args( [ "--workspace-pools=sram,flash", "--workspace-pools-targets=sram:c", "--workspace-pools-targets=flash:c", "--workspace-pools-targets=sram:c,llvm", # Override on one pool "--workspace-pools-size-hint-bytes=sram:800", "--workspace-pools-size-hint-bytes=flash:1200", "--workspace-pools-size-hint-bytes=sram:400", # Override on one pool ] ) c_target = Target("c") llvm_target = Target("llvm") targets = [c_target, llvm_target] memory_pools = workspace_pools_recombobulate(parsed, targets, _) assert len(memory_pools.pools) == 2 assert memory_pools.pools[0].size_hint_bytes == 400 assert memory_pools.pools[1].size_hint_bytes == 1200 assert len(memory_pools.pools[0].targets) == 2 assert len(memory_pools.pools[1].targets) == 1 @tvm.testing.requires_ethosn def test_workspace_pools_recombobulate_ext_codegen(): """No error should occur when using an external code generator without an attached Target""" parser = argparse.ArgumentParser() generate_workspace_pools_args(parser) parsed, _ = parser.parse_known_args([]) targets = [Target("llvm")] extra_targets = [{"raw": "ethos-n"}] memory_pools = workspace_pools_recombobulate(parsed, targets, extra_targets) assert memory_pools is None
https://github.com/zk-ml/tachikoma
tests/python/frontend/caffe/test_forward.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=import-self, invalid-name, unused-argument, unspecified-encoding """ Caffe testcases ==================== This article is a test script to test Caffe operator with Relay. """ import os import logging import numpy as np import pytest from google.protobuf import text_format import caffe from caffe import layers as L, params as P from caffe.proto import caffe_pb2 as pb import tvm import tvm.testing from tvm import relay from tvm.contrib import graph_executor from tvm.contrib.download import download_testdata os.environ["GLOG_minloglevel"] = "2" logging.basicConfig(level=logging.ERROR) CURRENT_DIR = os.path.join(os.path.expanduser("~"), ".tvm_test_data", "caffe_test") ####################################################################### # Generic functions for TVM & Caffe # ------------------------------------------ def _create_dir(d_path): """If the directory is not existed, create it""" if not (os.path.exists(d_path) and os.path.isdir(d_path)): os.makedirs(d_path) def _list_to_str(ll): """Convert list or tuple to str, separated by underline.""" if isinstance(ll, (tuple, list)): tmp = [str(i) for i in ll] res = "_".join(tmp) return res def _gen_filename_str(op_name, data_shape, *args, **kwargs): """Combining the filename according to the op_name, shape and other args.""" file_dir = os.path.join(CURRENT_DIR, op_name) _create_dir(file_dir) res = op_name + "_" shape_str = _list_to_str(list(data_shape)) res += shape_str for arg in args: if isinstance(arg, (tuple, list)): res += "_" + _list_to_str(arg) elif isinstance(arg, (int, float, str)): res += "_" + str(arg) for _, v in kwargs.items(): if isinstance(v, (tuple, list)): res += "_" + _list_to_str(v) elif isinstance(v, (int, float, str)): res += "_" + str(v) res = res.replace(".", "_") res = res.replace("-", "_") proto_file = os.path.join(file_dir, res + ".prototxt") blob_file = os.path.join(file_dir, res + ".caffemodel") solver_file = os.path.join(file_dir, res + "_solver.prototxt") return (proto_file, blob_file, solver_file) def _save_prototxt(n_netspec, f_path): """Generate .prototxt file according to caffe.NetSpec""" s = n_netspec.to_proto() with open(f_path, "w") as f: f.write(str(s)) def _save_solver(solver_file, proto_file, blob_file): """Define a solver proto, you can change the configs.""" blob_file_prefix = blob_file.split(".caffemodel")[0] s = pb.SolverParameter() s.train_net = proto_file s.base_lr = 0.01 s.momentum = 0.9 s.weight_decay = 0.0005 s.lr_policy = "inv" s.gamma = 0.0001 s.power = 0.75 s.display = 1 s.max_iter = 100000 s.snapshot = 100000 s.snapshot_prefix = blob_file_prefix with open(solver_file, "w") as f: f.write(str(s)) def _save_caffemodel(solver_file, blob_file): """Generate .caffemodel file.""" solver = caffe.SGDSolver(solver_file) solver.net.save(blob_file) def _gen_model_files(n_netspec, proto_file, blob_file, solver_file): _save_prototxt(n_netspec, proto_file) _save_solver(solver_file, proto_file, blob_file) _save_caffemodel(solver_file, blob_file) def _siso_op(data, func, *args, **kwargs): """Create single input and single output Caffe op""" n = caffe.NetSpec() n.data = L.Input(input_param={"shape": {"dim": list(data.shape)}}) n.output = func(n.data, *args, **kwargs) return n def _miso_op(data_list, func, *args, **kwargs): """Create multi input and single output Caffe op""" n = caffe.NetSpec() if not isinstance(data_list, (tuple, list)): raise TypeError(f"Need tuple or list but get {type(data_list)}") input_list = [] for idx, data in enumerate(data_list): n["data" + str(idx)] = L.Input(input_param={"shape": {"dim": list(data.shape)}}) input_list.append(n["data" + str(idx)]) n.output = func(*input_list, *args, **kwargs) return n def _simo_op(data, func, *args, **kwargs): """Create single input and multi output Caffe op""" n = caffe.NetSpec() n.data = L.Input(input_param={"shape": {"dim": list(data.shape)}}) output_list = func(n.data, *args, **kwargs) for idx, out in enumerate(output_list): n["output" + str(idx)] = out return n def _run_caffe(data, proto_file, blob_file): """Run caffe model by Caffe according to .caffemodel and .prototxt""" net = caffe.Net(proto_file, blob_file, caffe.TEST) if isinstance(data, (list, tuple)): for idx, d in enumerate(data): net.blobs["data" + str(idx)].data[...] = d else: net.blobs["data"].data[...] = data out = net.forward() caffe_output = [] for i in range(len(out.keys())): if "output" + str(i) not in out.keys(): caffe_output.clear() return list(out.values()) caffe_output.append(out["output" + str(i)]) return caffe_output def _run_tvm(data, proto_file, blob_file): """Run caffe model by TVM according to .caffemodel and .prototxt""" init_net = pb.NetParameter() predict_net = pb.NetParameter() # load model with open(proto_file, "r") as f: text_format.Merge(f.read(), predict_net) # load blob with open(blob_file, "rb") as f: init_net.ParseFromString(f.read()) shape_dict = {} dtype_dict = {} if isinstance(data, (tuple, list)): for idx, d in enumerate(data): shape_dict["data" + str(idx)] = d.shape dtype_dict["data" + str(idx)] = "float32" else: shape_dict = {"data": data.shape} dtype_dict = {"data": "float32"} mod, params = relay.frontend.from_caffe(init_net, predict_net, shape_dict, dtype_dict) target = "llvm" dev = tvm.cpu(0) with tvm.transform.PassContext(opt_level=3): lib = relay.build(mod, target=target, params=params) dtype = "float32" m = graph_executor.GraphModule(lib["default"](dev)) if isinstance(data, (tuple, list)): for idx, d in enumerate(data): m.set_input("data" + str(idx), tvm.nd.array(d.astype(dtype))) else: m.set_input("data", tvm.nd.array(data.astype(dtype))) # execute m.run() tvm_output = [] # get outputs for i in range(m.get_num_outputs()): tvm_output.append(m.get_output(i).numpy()) return tvm_output def _compare_caffe_tvm(caffe_out, tvm_out, is_network=False): for i, _ in enumerate(caffe_out): if is_network: caffe_out[i] = caffe_out[i][:1] tvm.testing.assert_allclose(caffe_out[i], tvm_out[i], rtol=1e-5, atol=1e-5) def _test_op(data, func_op, op_name, **kwargs): """Single op testing pipline.""" shape_list = [] if isinstance(data, (list, tuple)): n = _miso_op(data, func_op, **kwargs) for d in data: shape_list.extend(list(d.shape)) else: output_num = 1 if "ntop" in kwargs: output_num = kwargs["ntop"] if output_num == 1: n = _siso_op(data, func_op, **kwargs) else: n = _simo_op(data, func_op, **kwargs) shape_list = list(data.shape) # obtain the .caffemodel file and .prototxt file (proto_file, blob_file, solver_file) = _gen_filename_str(op_name, shape_list, **kwargs) _gen_model_files(n, proto_file, blob_file, solver_file) # run model in Caffe caffe_out = _run_caffe(data, proto_file, blob_file) # run model in TVM tvm_out = _run_tvm(data, proto_file, blob_file) _compare_caffe_tvm(caffe_out, tvm_out) def _test_network(data, proto_file, blob_file): # run model in Caffe caffe_out = _run_caffe(data, proto_file, blob_file) # run model in TVM tvm_out = _run_tvm(data, proto_file, blob_file) _compare_caffe_tvm(caffe_out, tvm_out, is_network=True) ####################################################################### # BatchNorm # ----------- def _test_batchnorm(data, moving_average_fraction=0.999, eps=1e-5): """One iteration of BatchNorm""" _test_op( data, L.BatchNorm, "BatchNorm", moving_average_fraction=moving_average_fraction, eps=eps ) def test_forward_BatchNorm(): """BatchNorm""" data = np.random.rand(1, 3, 10, 10).astype(np.float32) _test_batchnorm(data) _test_batchnorm(data, moving_average_fraction=0.88, eps=1e-4) ####################################################################### # Concat # ----------- def _test_concat(data_list, axis=1): """One iteration of Concat""" _test_op(data_list, L.Concat, "Concat", axis=axis) def test_forward_Concat(): """Concat""" _test_concat([np.random.rand(1, 3, 10, 10), np.random.rand(1, 2, 10, 10)], axis=1) _test_concat([np.random.rand(3, 10, 10), np.random.rand(2, 10, 10)], axis=0) _test_concat([np.random.rand(3, 10), np.random.rand(2, 10)], axis=0) ####################################################################### # Convolution # ----------- def _test_convolution(data, **kwargs): """One iteration of Convolution""" _test_op(data, L.Convolution, "Convolution", **kwargs) def test_forward_Convolution(): """Convolution""" data = np.random.rand(1, 3, 10, 10).astype(np.float32) _test_convolution( data, num_output=20, bias_term=True, pad=0, kernel_size=3, stride=2, dilation=1, weight_filler=dict(type="xavier"), bias_filler=dict(type="xavier"), ) _test_convolution( data, num_output=20, bias_term=False, pad=[1, 2], kernel_size=3, stride=2, dilation=1, weight_filler=dict(type="xavier"), bias_filler=dict(type="xavier"), ) _test_convolution( data, num_output=20, bias_term=True, pad=[1, 2], kernel_size=[3, 5], stride=[2, 1], dilation=[1, 2], weight_filler=dict(type="xavier"), bias_filler=dict(type="xavier"), ) _test_convolution( np.random.rand(1, 2, 10, 10).astype(np.float32), num_output=20, bias_term=True, pad=[1, 2], kernel_size=[3, 5], stride=[2, 1], dilation=[1, 2], weight_filler=dict(type="xavier"), bias_filler=dict(type="xavier"), group=2, ) _test_convolution( data, num_output=20, bias_term=True, pad_h=1, pad_w=2, kernel_h=3, kernel_w=5, stride_h=2, stride_w=1, dilation=[1, 2], weight_filler=dict(type="xavier"), bias_filler=dict(type="xavier"), ) ####################################################################### # Crop # ----------- def _test_crop(data, **kwargs): """One iteration of Crop""" _test_op(data, L.Crop, "Crop", **kwargs) def test_forward_Crop(): """Crop""" _test_crop([np.random.rand(10, 10, 120, 120), np.random.rand(10, 5, 50, 60)]) _test_crop([np.random.rand(10, 10, 120, 120), np.random.rand(10, 5, 50, 60)], axis=1) _test_crop([np.random.rand(10, 10, 120, 120), np.random.rand(10, 5, 50, 60)], axis=1, offset=2) _test_crop( [np.random.rand(10, 10, 120, 120), np.random.rand(10, 5, 50, 60)], axis=1, offset=[1, 2, 4] ) _test_crop( [np.random.rand(10, 10, 120, 120), np.random.rand(10, 5, 50, 60)], axis=2, offset=[2, 4] ) _test_crop([np.random.rand(10, 120, 120), np.random.rand(5, 50, 60)], axis=1, offset=[2, 4]) _test_crop([np.random.rand(120, 120), np.random.rand(50, 60)], axis=0, offset=[2, 4]) ####################################################################### # Deconvolution # ----------- def _test_deconvolution(data, **kwargs): """One iteration of Deconvolution""" _test_op(data, L.Deconvolution, "Deconvolution", **kwargs) def test_forward_Deconvolution(): """Deconvolution""" data = np.random.rand(1, 16, 32, 32).astype(np.float32) _test_deconvolution( data, convolution_param=dict( num_output=20, bias_term=True, pad=0, kernel_size=3, stride=2, dilation=1, weight_filler=dict(type="xavier"), bias_filler=dict(type="xavier"), ), ) _test_deconvolution( data, convolution_param=dict( num_output=20, bias_term=False, pad=[1, 2], kernel_size=3, stride=2, dilation=1, weight_filler=dict(type="xavier"), bias_filler=dict(type="xavier"), ), ) _test_deconvolution( data, convolution_param=dict( num_output=20, bias_term=True, pad_h=1, pad_w=2, kernel_h=3, kernel_w=5, stride_h=2, stride_w=1, dilation=1, weight_filler=dict(type="xavier"), bias_filler=dict(type="xavier"), ), ) _test_deconvolution( data, convolution_param=dict( num_output=16, bias_term=False, pad=0, kernel_size=2, stride=2, dilation=1, group=16, weight_filler=dict(type="xavier"), bias_filler=dict(type="xavier"), ), ) data = np.random.rand(1, 100, 32, 32).astype(np.float32) _test_deconvolution( data, convolution_param=dict( num_output=100, bias_term=False, pad=0, kernel_size=2, stride=2, dilation=1, group=100, weight_filler=dict(type="xavier"), bias_filler=dict(type="xavier"), ), ) ####################################################################### # Dropout # ----------- def _test_dropout(data, **kwargs): """One iteration of Dropout""" _test_op(data, L.Dropout, "Dropout", **kwargs) def test_forward_Dropout(): """Dropout""" data = np.random.rand(1, 3, 10, 10).astype(np.float32) _test_dropout(data) _test_dropout(data, dropout_ratio=0.7) ####################################################################### # Eltwise # ----------- def _test_eltwise(data_list, **kwargs): """One iteration of Eltwise""" _test_op(data_list, L.Eltwise, "Eltwise", **kwargs) def test_forward_Eltwise(): """Eltwise""" _test_eltwise( [ np.random.rand(1, 3, 10, 11).astype(np.float32), np.random.rand(1, 3, 10, 11).astype(np.float32), ], operation=0, ) _test_eltwise( [ np.random.rand(1, 3, 10, 11).astype(np.float32), np.random.rand(1, 3, 10, 11).astype(np.float32), ], operation=1, ) _test_eltwise( [ np.random.rand(1, 3, 10, 11).astype(np.float32), np.random.rand(1, 3, 10, 11).astype(np.float32), ], operation=2, ) _test_eltwise( [ np.random.rand(1, 3, 10, 11).astype(np.float32), np.random.rand(1, 3, 10, 11).astype(np.float32), ], operation=1, coeff=[0.5, 1], ) _test_eltwise( [ np.random.rand(1, 3, 10, 11).astype(np.float32), np.random.rand(1, 3, 10, 11).astype(np.float32), np.random.rand(1, 3, 10, 11).astype(np.float32), ], operation=0, ) _test_eltwise( [ np.random.rand(1, 3, 10, 11).astype(np.float32), np.random.rand(1, 3, 10, 11).astype(np.float32), np.random.rand(1, 3, 10, 11).astype(np.float32), np.random.rand(1, 3, 10, 11).astype(np.float32), ], operation=1, ) _test_eltwise( [ np.random.rand(1, 3, 10, 11).astype(np.float32), np.random.rand(1, 3, 10, 11).astype(np.float32), np.random.rand(1, 3, 10, 11).astype(np.float32), np.random.rand(1, 3, 10, 11).astype(np.float32), np.random.rand(1, 3, 10, 11).astype(np.float32), ], operation=2, ) _test_eltwise( [ np.random.rand(1, 3, 10, 11).astype(np.float32), np.random.rand(1, 3, 10, 11).astype(np.float32), np.random.rand(1, 3, 10, 11).astype(np.float32), np.random.rand(1, 3, 10, 11).astype(np.float32), np.random.rand(1, 3, 10, 11).astype(np.float32), np.random.rand(1, 3, 10, 11).astype(np.float32), ], operation=1, coeff=[0.5, 1, 0.2, 1.8, 3.1, 0.1], ) ####################################################################### # Flatten # ----------- def _test_flatten(data, axis=1): """One iteration of Flatten""" _test_op(data, L.Flatten, "Flatten", axis=axis) def test_forward_Flatten(): """Flatten""" data = np.random.rand(1, 3, 10, 10).astype(np.float32) _test_flatten(data) _test_flatten(data, axis=1) ####################################################################### # Flatten # ----------- def _test_inner_product(data, **kwargs): """One iteration of InnerProduct""" _test_op(data, L.InnerProduct, "InnerProduct", **kwargs) def test_forward_InnerProduct(): """InnerProduct""" data = np.random.rand(1, 3, 10, 10) _test_inner_product(data, num_output=20, bias_term=False, weight_filler=dict(type="xavier")) _test_inner_product( data, num_output=20, bias_term=True, weight_filler=dict(type="xavier"), bias_filler=dict(type="xavier"), ) _test_inner_product( np.random.rand(20, 10).astype(np.float32), num_output=30, bias_term=True, weight_filler=dict(type="xavier"), bias_filler=dict(type="xavier"), ) ####################################################################### # LRN # ----------- def _test_lrn(data, local_size=5, alpha=1.0, beta=0.75, k=1.0): """One iteration of LRN""" _test_op(data, L.LRN, "LRN", local_size=local_size, alpha=alpha, beta=beta, k=k) def test_forward_LRN(): """LRN""" data = np.random.rand(1, 3, 10, 10).astype(np.float32) _test_lrn(data) _test_lrn(data, local_size=3) _test_lrn(data, local_size=3, alpha=2.0) _test_lrn( data, local_size=3, alpha=2.0, beta=0.5, ) _test_lrn(data, local_size=3, alpha=2.0, beta=0.5, k=2.0) ####################################################################### # Permute # ------- def _test_permute(data, **kwargs): """One iteration of Permute.""" _test_op(data, L.Permute, "Permute", **kwargs) def test_forward_Permute(): """Permute""" data = np.random.rand(2, 3, 4).astype(np.float32) _test_permute(data, permute_param={"order": [0, 1, 2]}) _test_permute(data, permute_param={"order": [0, 2, 1]}) _test_permute(data, permute_param={"order": [1, 0, 2]}) _test_permute(data, permute_param={"order": [1, 2, 0]}) _test_permute(data, permute_param={"order": [2, 0, 1]}) _test_permute(data, permute_param={"order": [2, 1, 0]}) ####################################################################### # Pooling # ----------- def _test_pooling(data, **kwargs): """One iteration of Pooling.""" _test_op(data, L.Pooling, "Pooling", **kwargs) def test_forward_Pooling(): """Pooing""" data = np.random.rand(1, 3, 10, 10).astype(np.float32) # MAX Pooling _test_pooling(data, kernel_size=2, stride=2, pad=0, pool=P.Pooling.MAX) _test_pooling( data, kernel_h=2, kernel_w=3, stride_h=2, stride_w=1, pad_h=1, pad_w=2, pool=P.Pooling.MAX ) _test_pooling(data, pool=P.Pooling.MAX, global_pooling=True) # AVE Pooing _test_pooling(data, kernel_size=2, stride=2, pad=0, pool=P.Pooling.AVE) _test_pooling( data, kernel_h=2, kernel_w=3, stride_h=2, stride_w=1, pad_h=1, pad_w=2, pool=P.Pooling.AVE ) _test_pooling(data, pool=P.Pooling.AVE, global_pooling=True) ####################################################################### # Power # ----- def _test_power(data, **kwargs): """One iteration of Power.""" _test_op(data, L.Power, "Power", **kwargs) def test_forward_Power(): """Power""" data = np.random.rand(1, 3, 10, 10).astype(np.float32) _test_power(data, power_param={"power": 0.37, "scale": 0.83, "shift": -2.4}) _test_power(data, power_param={"power": 0.37, "scale": 0.83, "shift": 0.0}) _test_power(data, power_param={"power": 0.0, "scale": 0.83, "shift": -2.4}) _test_power(data, power_param={"power": 1.0, "scale": 0.83, "shift": -2.4}) _test_power(data, power_param={"power": 2.0, "scale": 0.34, "shift": -2.4}) _test_power(data, power_param={"power": 1.0, "scale": 1.0, "shift": 0.0}) ####################################################################### # PReLU # ----------- def _test_prelu(data, **kwargs): """One iteration of PReLU.""" _test_op(data, L.PReLU, "PReLU", **kwargs) def test_forward_PReLU(): """PReLU""" data = np.random.rand(1, 3, 10, 10).astype(np.float32) _test_prelu(data, filler=dict(type="constant", value=0.5)) _test_prelu(data) _test_prelu(np.random.rand(10, 20).astype(np.float32)) ####################################################################### # ReLU # ----------- def _test_relu(data, **kwargs): """One iteration of ReLU.""" _test_op(data, L.ReLU, "ReLU", **kwargs) def test_forward_ReLU(): """ReLU""" data = np.random.rand(1, 3, 10, 10).astype(np.float32) _test_relu(data) _test_relu(np.random.rand(10, 20).astype(np.float32)) ####################################################################### # Reshape # ----------- def _test_reshape(data, **kwargs): """One iteration of Reshape.""" _test_op(data, L.Reshape, "Reshape", **kwargs) def test_forward_Reshape(): """Reshape""" data = np.random.rand(1, 8, 6).astype(np.float32) _test_reshape(data, reshape_param={"shape": {"dim": [4, 3, 4]}}) _test_reshape(data, reshape_param={"shape": {"dim": [2, 0, 3]}}) _test_reshape(data, reshape_param={"shape": {"dim": [2, 0, -1]}}) _test_reshape(data, reshape_param={"shape": {"dim": [0, -1]}}) _test_reshape(data, reshape_param={"shape": {"dim": [2, 3]}, "axis": 2}) _test_reshape(data, reshape_param={"shape": {"dim": [4, 3, 4]}, "axis": 1}) _test_reshape(data, reshape_param={"shape": {"dim": [4, 3, 4]}, "axis": -3}) _test_reshape(data, reshape_param={"shape": {"dim": [2, 4]}, "axis": 1, "num_axes": 1}) _test_reshape(data, reshape_param={"shape": {"dim": [3, 16]}, "axis": 1, "num_axes": 2}) ####################################################################### # Scale # ----------- def _test_scale(data, **kwargs): """One iteration of Scale.""" _test_op(data, L.Scale, "Scale", **kwargs) def test_forward_Scale(): """Scale""" data = np.random.rand(1, 3, 10, 10).astype(np.float32) _test_scale(data, filler=dict(type="xavier")) _test_scale(data, filler=dict(type="xavier"), bias_term=True, bias_filler=dict(type="xavier")) ####################################################################### # Sigmoid # ----------- def _test_sigmoid(data, **kwargs): """One iteration of Sigmoid.""" _test_op(data, L.Sigmoid, "Sigmoid", **kwargs) def test_forward_Sigmoid(): """Sigmoid""" data = np.random.rand(1, 3, 10, 10).astype(np.float32) _test_sigmoid(data) ####################################################################### # Slice # ----------- def _test_slice(data, **kwargs): """One iteration of Slice""" _test_op(data, L.Slice, "Slice", **kwargs) def test_forward_Slice(): """Slice""" data = np.random.rand(1, 3, 10, 10).astype(np.float32) _test_slice(data, ntop=2, slice_param=dict(axis=1, slice_point=[1])) _test_slice(data, ntop=2, slice_param=dict(axis=-1, slice_point=[1])) _test_slice(data, ntop=3, slice_param=dict(axis=2, slice_point=[1, 6])) _test_slice(data, ntop=3) ####################################################################### # Softmax # ----------- def _test_softmax(data, **kwargs): """One iteration of Softmax""" _test_op(data, L.Softmax, "Softmax", **kwargs) def test_forward_Softmax(): """Softmax""" _test_softmax(np.random.rand(1, 3, 10, 10).astype(np.float32)) _test_softmax(np.random.rand(1, 3, 10, 10).astype(np.float32), axis=2) _test_softmax(np.random.rand(10, 10).astype(np.float32), axis=0) _test_softmax(np.random.rand(2, 10, 10).astype(np.float32), axis=1) ####################################################################### # TanH # ----------- def _test_tanh(data, **kwargs): """One iteration of TanH""" _test_op(data, L.TanH, "TanH", **kwargs) def test_forward_TanH(): """TanH""" _test_tanh(np.random.rand(1, 3, 10, 10).astype(np.float32)) _test_tanh(np.random.rand(3, 10, 10).astype(np.float32)) _test_tanh(np.random.rand(10, 10).astype(np.float32)) _test_tanh(np.random.rand(10).astype(np.float32)) ####################################################################### # Reduction # ----------- def _test_reduction(data, **kwargs): """One iteration of Reduction""" _test_op(data, L.Reduction, "Reduction", **kwargs) def test_forward_Reduction(): """Reduction""" reduction_op = {"SUM": 1, "ASUM": 2, "SUMSQ": 3, "MEAN": 4} _test_reduction(np.random.rand(10).astype(np.float32), operation=reduction_op["SUM"], axis=0) _test_reduction( np.random.rand(10, 20, 30, 40).astype(np.float32), operation=reduction_op["SUM"], axis=3 ) _test_reduction( np.random.rand(10, 20, 30, 40).astype(np.float32), operation=reduction_op["SUM"], axis=1 ) _test_reduction( np.random.rand(10).astype(np.float32), operation=reduction_op["SUM"], axis=0, coeff=0.5 ) _test_reduction( np.random.rand(10, 20, 30, 40).astype(np.float32), operation=reduction_op["SUM"], axis=3, coeff=5.0, ) _test_reduction(np.random.rand(10).astype(np.float32), operation=reduction_op["ASUM"]) _test_reduction( np.random.rand(10, 20).astype(np.float32), operation=reduction_op["ASUM"], axis=1 ) _test_reduction( np.random.rand(10, 20, 30, 40).astype(np.float32), operation=reduction_op["ASUM"], axis=3 ) _test_reduction( np.random.rand(10).astype(np.float32), operation=reduction_op["ASUM"], axis=0, coeff=0.0 ) _test_reduction( np.random.rand(10, 20, 30).astype(np.float32), operation=reduction_op["ASUM"], axis=2, coeff=7.0, ) _test_reduction( np.random.rand(10, 20, 30, 40, 10).astype(np.float32), operation=reduction_op["ASUM"], axis=3, coeff=1.0, ) _test_reduction(np.random.rand(10).astype(np.float32), operation=reduction_op["SUMSQ"], axis=0) _test_reduction( np.random.rand(10, 20, 30, 40).astype(np.float32), operation=reduction_op["SUMSQ"], axis=3 ) _test_reduction( np.random.rand(10).astype(np.float32), operation=reduction_op["SUMSQ"], axis=0, coeff=0.0 ) _test_reduction( np.random.rand(10, 20, 30, 40, 50).astype(np.float32), operation=reduction_op["SUMSQ"], axis=4, coeff=2.0, ) _test_reduction(np.random.rand(10).astype(np.float32), operation=reduction_op["MEAN"], axis=0) _test_reduction( np.random.rand(10, 20, 30, 40).astype(np.float32), operation=reduction_op["MEAN"], axis=3 ) _test_reduction( np.random.rand(10).astype(np.float32), operation=reduction_op["MEAN"], axis=0, coeff=0.0 ) _test_reduction( np.random.rand(10, 20, 30, 40).astype(np.float32), operation=reduction_op["MEAN"], axis=3, coeff=2.0, ) ####################################################################### # Embed # ----------- def _test_embed(data, **kwargs): """One iteration of Embed""" _test_op(data, L.Embed, "Embed", **kwargs) def test_forward_Embed(): """Embed""" k = 20 data = list(i for i in range(k)) np.random.shuffle(data) # dimension is 1 data = np.asarray(data) _test_embed( data, num_output=30, input_dim=k, bias_term=True, weight_filler=dict(type="xavier"), bias_filler=dict(type="xavier"), ) _test_embed( data, num_output=30, input_dim=k, bias_term=False, weight_filler=dict(type="xavier"), bias_filler=dict(type="xavier"), ) # dimension is 2 data = np.reshape(data, [4, 5]) _test_embed( data, num_output=30, input_dim=k, bias_term=True, weight_filler=dict(type="xavier"), bias_filler=dict(type="xavier"), ) _test_embed( data, num_output=30, input_dim=k, bias_term=False, weight_filler=dict(type="xavier"), bias_filler=dict(type="xavier"), ) # dimension is 3 data = np.reshape(data, [2, 2, 5]) _test_embed( data, num_output=30, input_dim=k, bias_term=True, weight_filler=dict(type="xavier"), bias_filler=dict(type="xavier"), ) _test_embed( data, num_output=30, input_dim=k, bias_term=False, weight_filler=dict(type="xavier"), bias_filler=dict(type="xavier"), ) # dimension is 4 data = np.reshape(data, [2, 2, 5, 1]) _test_embed( data, num_output=30, input_dim=k, bias_term=True, weight_filler=dict(type="xavier"), bias_filler=dict(type="xavier"), ) _test_embed( data, num_output=30, input_dim=k, bias_term=False, weight_filler=dict(type="xavier"), bias_filler=dict(type="xavier"), ) ####################################################################### # Mobilenetv2 # ----------- def _test_mobilenetv2(data): """One iteration of Mobilenetv2""" mean_val = np.array([103.939, 116.779, 123.68], dtype=np.float32) mean_val = np.reshape(mean_val, (1, 3, 1, 1)) mean_val = np.tile(mean_val, (1, 1, 224, 224)) data_process = data - mean_val data_process = data_process / 58.8 data_process = data_process.astype(np.float32) proto_file_url = ( "https://github.com/shicai/MobileNet-Caffe/raw/master/mobilenet_v2_deploy.prototxt" ) blob_file_url = ( "https://github.com/shicai/MobileNet-Caffe/blob/master/mobilenet_v2.caffemodel?raw=true" ) proto_file = download_testdata(proto_file_url, "mobilenetv2.prototxt", module="model") blob_file = download_testdata(blob_file_url, "mobilenetv2.caffemodel", module="model") _test_network(data_process, proto_file, blob_file) def test_forward_Mobilenetv2(): """Mobilenetv2""" data = np.random.randint(0, 256, size=(1, 3, 224, 224)).astype(np.float32) _test_mobilenetv2(data) ####################################################################### # Alexnet # ----------- def _test_alexnet(data): """One iteration of Alexnet""" mean_val = np.array([103.939, 116.779, 123.68], dtype=np.float32) mean_val = np.reshape(mean_val, (1, 3, 1, 1)) mean_val = np.tile(mean_val, (1, 1, 227, 227)) data_process = data - mean_val data_process = data_process.astype(np.float32) proto_file_url = ( "https://github.com/BVLC/caffe/raw/master/models/" + "bvlc_alexnet/deploy.prototxt" ) blob_file_url = "http://dl.caffe.berkeleyvision.org/bvlc_alexnet.caffemodel" proto_file = download_testdata(proto_file_url, "alexnet.prototxt", module="model") blob_file = download_testdata(blob_file_url, "alexnet.caffemodel", module="model") _test_network(data_process, proto_file, blob_file) @pytest.mark.skip(reason="See https://github.com/apache/tvm/issues/13227") def test_forward_Alexnet(): """Alexnet""" data = np.random.randint(0, 256, size=(1, 3, 227, 227)).astype(np.float32) _test_alexnet(data) ####################################################################### # Resnet50 # ----------- def _test_resnet50(data): """One iteration of Resnet50""" mean_val = np.array([103.939, 116.779, 123.68], dtype=np.float32) mean_val = np.reshape(mean_val, (1, 3, 1, 1)) mean_val = np.tile(mean_val, (1, 1, 224, 224)) data_process = data - mean_val data_process = data_process.astype(np.float32) proto_file_url = ( "https://github.com/fernchen/CaffeModels/raw/master/resnet/ResNet-50-deploy.prototxt" ) blob_file_url = ( "https://github.com/fernchen/CaffeModels/raw/master/resnet/ResNet-50-model.caffemodel" ) proto_file = download_testdata(proto_file_url, "resnet50.prototxt", module="model") blob_file = download_testdata(blob_file_url, "resnet50.caffemodel", module="model") _test_network(data_process, proto_file, blob_file) def test_forward_Resnet50(): """Resnet50""" data = np.random.randint(0, 256, size=(1, 3, 224, 224)).astype(np.float32) _test_resnet50(data) ####################################################################### # Inceptionv4 # ----------- def _test_inceptionv1(data): """One iteration of Inceptionv4""" mean_val = np.array([103.939, 116.779, 123.68], dtype=np.float32) mean_val = np.reshape(mean_val, (1, 3, 1, 1)) mean_val = np.tile(mean_val, (1, 1, 224, 224)) data_process = data - mean_val data_process = data_process / 58.8 data_process = data_process.astype(np.float32) proto_file_url = ( "https://github.com/BVLC/caffe/raw/master/models" + "/bvlc_googlenet/deploy.prototxt" ) blob_file_url = "http://dl.caffe.berkeleyvision.org/bvlc_googlenet.caffemodel" proto_file = download_testdata(proto_file_url, "inceptionv1.prototxt", module="model") blob_file = download_testdata(blob_file_url, "inceptionv1.caffemodel", module="model") _test_network(data_process, proto_file, blob_file) @pytest.mark.skip(reason="See issue https://github.com/apache/tvm/issues/13227") def test_forward_Inceptionv1(): """Inceptionv4""" data = np.random.randint(0, 256, size=(1, 3, 224, 224)).astype(np.float32) _test_inceptionv1(data) if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/frontend/caffe2/model_zoo/__init__.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Store for caffe2 examples and common models.""" from __future__ import absolute_import as _abs import os import sys import importlib from caffe2.python.models.download import ModelDownloader from . import squeezenet models = [ "squeezenet", "resnet50", "vgg19", ] mf = ModelDownloader() class Model: def __init__(self, model_name): self.init_net, self.predict_net, self.value_info = mf.get_c2_model(model_name) for model in models: try: locals()["c2_" + model] = importlib.import_module("caffe2.python.models." + model) except ImportError: locals()["c2_" + model] = Model(model) # squeezenet def relay_squeezenet(): return squeezenet.get_workload()
https://github.com/zk-ml/tachikoma
tests/python/frontend/caffe2/model_zoo/squeezenet.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # coding: utf-8 # pylint: disable=unused-argument """ Symbol of SqueezeNet Reference: Iandola, Forrest N., et al. "Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size." (2016). """ from tvm import relay from tvm.relay.testing import create_workload # Helpers def _make_fire(net, squeeze_channels, expand1x1_channels, expand3x3_channels, prefix=""): net = _make_fire_conv(net, squeeze_channels, 1, 0, f"{prefix}/squeeze1x1") left = _make_fire_conv(net, expand1x1_channels, 1, 0, f"{prefix}/expand1x1") right = _make_fire_conv(net, expand3x3_channels, 3, 1, f"{prefix}/expand3x3") # NOTE : Assume NCHW layout here net = relay.concatenate((left, right), axis=1) return net def _make_fire_conv(net, channels, kernel_size, padding=0, prefix=""): net = relay.nn.conv2d( net, relay.var(f"{prefix}_weight"), channels=channels, kernel_size=(kernel_size, kernel_size), padding=(padding, padding), ) net = relay.nn.bias_add(net, relay.var(f"{prefix}_bias")) net = relay.nn.relu(net) return net # Net def get_net(batch_size, image_shape, num_classes, dtype): """Get symbol of SqueezeNet Parameters ---------- batch_size : int The batch size used in the model image_shape : tuple The input image shape num_classes: int The number of classification results dtype : str The data type """ data_shape = (batch_size,) + image_shape net = relay.var("data", shape=data_shape, dtype=dtype) net = relay.nn.conv2d( net, relay.var("conv1_weight"), channels=64, kernel_size=(3, 3), strides=(2, 2), padding=(0, 0), ) net = relay.nn.bias_add(net, relay.var("conv1_bias")) net = relay.nn.relu(net) net = relay.nn.max_pool2d(net, pool_size=(3, 3), strides=(2, 2)) net = _make_fire(net, 16, 64, 64, "fire2") net = _make_fire(net, 16, 64, 64, "fire3") net = relay.nn.max_pool2d(net, pool_size=(3, 3), strides=(2, 2)) net = _make_fire(net, 32, 128, 128, "fire4") net = _make_fire(net, 32, 128, 128, "fire5") net = relay.nn.max_pool2d(net, pool_size=(3, 3), strides=(2, 2)) net = _make_fire(net, 48, 192, 192, "fire6") net = _make_fire(net, 48, 192, 192, "fire7") net = _make_fire(net, 64, 256, 256, "fire8") net = _make_fire(net, 64, 256, 256, "fire9") net = relay.nn.dropout(net, rate=0.5) net = relay.nn.conv2d(net, relay.var("conv10_weight"), channels=num_classes, kernel_size=(1, 1)) net = relay.nn.bias_add(net, relay.var("conv10_bias")) net = relay.nn.relu(net) net = relay.nn.global_avg_pool2d(net) net = relay.nn.softmax(net, axis=1) args = relay.analysis.free_vars(net) return relay.Function(args, net) def get_workload(batch_size=1, image_shape=(3, 224, 224), num_classes=1000, dtype="float32"): """Get benchmark workload for SqueezeNet Parameters ---------- batch_size : int, optional The batch size used in the model num_classes : int, optional Number of classes image_shape : tuple, optional The input image shape dtype : str, optional The data type Returns ------- net : relay.Function The computational graph params : dict of str to NDArray The parameters. """ net = get_net(batch_size, image_shape, num_classes, dtype) return create_workload(net)
https://github.com/zk-ml/tachikoma
tests/python/frontend/caffe2/test_forward.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ Caffe2 testcases ==================== This article is a test script to test Caffe2 operator with Relay. """ from collections import namedtuple import numpy as np from caffe2.python import workspace, core from caffe2.proto import caffe2_pb2 from model_zoo import c2_squeezenet, c2_resnet50, c2_vgg19 import tvm from tvm.contrib import graph_executor from tvm import relay import tvm.testing def get_tvm_output(model, input_data, target, device, output_shape, output_dtype="float32"): """Generic function to execute and get tvm output""" # supporting multiple inputs in caffe2 in a bit tricky, # because the input names can appear at the beginning or end of model.predict_net.external_input assert isinstance(input_data, np.ndarray) # here we use the first input blob to the first op to get the input name input_names = model.predict_net.op[0].input[0] shape_dict = {input_names: input_data.shape} dtype_dict = {input_names: input_data.dtype} mod, params = relay.frontend.from_caffe2( model.init_net, model.predict_net, shape_dict, dtype_dict ) with tvm.transform.PassContext(opt_level=3): lib = relay.build(mod, target, params=params) m = graph_executor.GraphModule(lib["default"](device)) # set inputs m.set_input(input_names, tvm.nd.array(input_data.astype(input_data.dtype))) # execute m.run() # get outputs if isinstance(output_shape, list) and isinstance(output_dtype, list): tvm_output_list = [] for i, s in enumerate(output_shape): tvm_output = m.get_output(i, tvm.nd.empty((s), output_dtype[i])) tvm_output_list.append(tvm_output.numpy()) return tvm_output_list else: tvm_output = m.get_output(0, tvm.nd.empty((output_shape), output_dtype)) return tvm_output.numpy() def get_caffe2_output(model, x, dtype="float32"): workspace.RunNetOnce(model.init_net) input_blob = model.predict_net.op[0].input[0] workspace.FeedBlob(input_blob, x.astype(dtype)) workspace.RunNetOnce(model.predict_net) output_blob = model.predict_net.external_output[0] c2_output = workspace.FetchBlob(output_blob) return c2_output def verify_caffe2_forward_impl(model, data_shape, out_shape): dtype = "float32" data = np.random.uniform(size=data_shape).astype(dtype) c2_out = get_caffe2_output(model, data, dtype) for target, dev in tvm.testing.enabled_targets(): tvm_out = get_tvm_output(model, data, target, dev, out_shape, dtype) tvm.testing.assert_allclose(c2_out, tvm_out, rtol=1e-5, atol=1e-5) @tvm.testing.uses_gpu def test_forward_squeezenet1_1(): verify_caffe2_forward_impl(c2_squeezenet, (1, 3, 224, 224), (1, 1000, 1, 1)) @tvm.testing.uses_gpu def test_forward_resnet50(): verify_caffe2_forward_impl(c2_resnet50, (1, 3, 224, 224), (1, 1000)) @tvm.testing.uses_gpu def test_forward_vgg19(): verify_caffe2_forward_impl(c2_vgg19, (1, 3, 224, 224), (1, 1000)) Model = namedtuple("Model", ["init_net", "predict_net"]) @tvm.testing.uses_gpu def test_elementwise_add(): """Elewise_add""" data_shape = (1, 16, 9, 9) init_net = caffe2_pb2.NetDef() init_net.name = "test_init_net" init_net.external_output[:] = ["A", "B"] init_net.op.extend( [ core.CreateOperator( "GivenTensorFill", [], ["A"], shape=data_shape, values=np.random.uniform(size=data_shape).flatten().tolist(), ), core.CreateOperator( "GivenTensorFill", [], ["B"], shape=data_shape, values=np.random.uniform(size=data_shape).flatten().tolist(), ), ] ) predict_net = caffe2_pb2.NetDef() predict_net.name = "test_predict_net" predict_net.external_input[:] = ["A", "B"] predict_net.external_output[:] = ["C"] predict_net.op.extend( [ core.CreateOperator( "Add", ["A", "B"], ["C"], ) ] ) model = Model(init_net, predict_net) verify_caffe2_forward_impl(model, data_shape, data_shape) @tvm.testing.uses_gpu def test_elementwise_add_with_broadcast(): """Elewise_add_with_broadcast""" data_shape = (1, 16, 9, 9) init_net = caffe2_pb2.NetDef() init_net.name = "test_init_net" init_net.external_output[:] = ["A", "B"] init_net.op.extend( [ core.CreateOperator( "GivenTensorFill", [], ["A"], shape=data_shape, values=np.random.uniform(size=data_shape).flatten().tolist(), ), core.CreateOperator( "GivenTensorFill", [], ["B"], shape=(1,), values=np.random.uniform(size=1).flatten().tolist(), ), ] ) predict_net = caffe2_pb2.NetDef() predict_net.name = "test_predict_net" predict_net.external_input[:] = ["A", "B"] predict_net.external_output[:] = ["C"] predict_net.op.extend( [ core.CreateOperator( "Add", ["A", "B"], ["C"], broadcast=1, ) ] ) model = Model(init_net, predict_net) verify_caffe2_forward_impl(model, data_shape, data_shape) @tvm.testing.uses_gpu def test_normalize_yuv(): """Normalize_yuv""" data_shape = (1, 3, 96, 96) init_net = caffe2_pb2.NetDef() init_net.name = "test_init_net" init_net.external_output[:] = ["A", "mean", "std"] init_net.op.extend( [ core.CreateOperator( "GivenTensorFill", [], ["A"], shape=data_shape, values=np.random.uniform(size=data_shape).flatten().tolist(), ), core.CreateOperator( "GivenTensorFill", [], ["mean"], shape=( 1, 3, ), values=np.random.uniform(size=3).flatten().tolist(), ), core.CreateOperator( "GivenTensorFill", [], ["std"], shape=( 1, 3, ), values=np.random.uniform(size=3).flatten().tolist(), ), ] ) predict_net = caffe2_pb2.NetDef() predict_net.name = "test_predict_net" predict_net.external_input[:] = ["A", "mean", "std"] predict_net.external_output[:] = ["C"] predict_net.op.extend( [ core.CreateOperator( "NormalizePlanarYUV", ["A", "mean", "std"], ["C"], ) ] ) model = Model(init_net, predict_net) verify_caffe2_forward_impl(model, data_shape, data_shape) if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/frontend/caffe2/test_graph.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Test graph equality of caffe2 models.""" import tvm from tvm import relay from tvm.relay import transform from model_zoo import c2_squeezenet, relay_squeezenet def compare_graph(lhs_mod, rhs_mod): lhs_mod = transform.InferType()(lhs_mod) rhs_mod = transform.InferType()(rhs_mod) assert tvm.ir.structural_equal(lhs_mod["main"], rhs_mod["main"]) def test_squeeze_net(): shape_dict = {"data": (1, 3, 224, 224)} dtype_dict = {"data": "float32"} mod, _, = relay.frontend.from_caffe2( c2_squeezenet.init_net, c2_squeezenet.predict_net, shape_dict, dtype_dict ) relay_mod, _ = relay_squeezenet() compare_graph(mod, relay_mod) if __name__ == "__main__": test_squeeze_net()
https://github.com/zk-ml/tachikoma
tests/python/frontend/coreml/model_zoo/__init__.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """coreml model zoo for testing purposes.""" import os from PIL import Image import numpy as np from tvm.contrib.download import download_testdata def get_mobilenet(): url = "https://docs-assets.developer.apple.com/coreml/models/MobileNet.mlmodel" dst = "mobilenet.mlmodel" real_dst = download_testdata(url, dst, module="coreml") return os.path.abspath(real_dst) def get_resnet50(): url = "https://docs-assets.developer.apple.com/coreml/models/Resnet50.mlmodel" dst = "resnet50.mlmodel" real_dst = download_testdata(url, dst, module="coreml") return os.path.abspath(real_dst) def get_cat_image(): """Get cat image""" url = ( "https://gist.githubusercontent.com/zhreshold/" + "bcda4716699ac97ea44f791c24310193/raw/fa7ef0e9c9a5daea686d6473a62aacd1a5885849/cat.png" ) dst = "cat.png" real_dst = download_testdata(url, dst, module="data") img = Image.open(real_dst).resize((224, 224)) # CoreML's standard model image format is BGR img_bgr = np.array(img)[:, :, ::-1] img = np.transpose(img_bgr, (2, 0, 1))[np.newaxis, :] return np.asarray(img)
https://github.com/zk-ml/tachikoma
tests/python/frontend/coreml/test_forward.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ CoreML testcases ==================== This article is a test script to test CoreML operator with Relay. """ from os import path from enum import Enum import tempfile import numpy as np import tvm import tvm.topi.testing import tvm.testing from tvm.contrib import graph_executor from tvm.topi.testing import conv2d_nchw_python from tvm import relay import model_zoo import coremltools as cm from coremltools.models.neural_network import NeuralNetworkBuilder from coremltools.models import datatypes from tensorflow import keras def get_tvm_output( func, x, params, target, device, out_shape=(1, 1000), input_name="image", dtype="float32" ): """Generic function to execute and get tvm output""" with tvm.transform.PassContext(opt_level=3): lib = relay.build(func, target, params=params) m = graph_executor.GraphModule(lib["default"](device)) # set inputs m.set_input(input_name, tvm.nd.array(x.astype(dtype))) m.run() # get outputs out = m.get_output(0, tvm.nd.empty(out_shape, dtype)) return out.numpy() def run_model_checkonly(model_file, model_name="", input_name="image"): model = cm.models.MLModel(model_file) x = model_zoo.get_cat_image() shape_dict = {input_name: x.shape} # Some Relay passes change operators on the fly. Ensuring that we generate # new graph for each target. for target, dev in tvm.testing.enabled_targets(): mod, params = relay.frontend.from_coreml(model, shape_dict) tvm_output = get_tvm_output(mod["main"], x, params, target, dev) print(target, dev, model_name, "prediction id: ", np.argmax(tvm_output.flat)) @tvm.testing.uses_gpu def test_mobilenet_checkonly(): model_file = model_zoo.get_mobilenet() run_model_checkonly(model_file, "mobilenet") @tvm.testing.uses_gpu def test_resnet50_checkonly(): model_file = model_zoo.get_resnet50() run_model_checkonly(model_file, "resnet50") def run_tvm_graph( coreml_model, target, device, input_data, input_name, output_shape, output_dtype="float32" ): """Generic function to compile on relay and execute on tvm""" if isinstance(input_data, list): shape_dict = {} dtype_dict = {} for i, inp in enumerate(input_name): shape_dict[inp] = input_data[i].shape dtype_dict[inp] = input_data[i].dtype else: shape_dict = {input_name: input_data.shape} dtype_dict = {input_name: input_data.dtype} mod, params = relay.frontend.from_coreml(coreml_model, shape_dict) with tvm.transform.PassContext(opt_level=3): lib = relay.build(mod, target, params=params) m = graph_executor.GraphModule(lib["default"](device)) # set inputs if isinstance(input_data, list): for i, inp in enumerate(input_name): m.set_input(inp, tvm.nd.array(input_data[i].astype(input_data[i].dtype))) else: m.set_input(input_name, tvm.nd.array(input_data.astype(input_data.dtype))) # execute m.run() # get outputs if isinstance(output_shape, list) and isinstance(output_dtype, list): tvm_output_list = [] for i, s in enumerate(output_shape): tvm_output = m.get_output(i, tvm.nd.empty((s), output_dtype[i])) tvm_output_list.append(tvm_output.numpy()) return tvm_output_list else: if not output_shape: tvm_output = m.get_output(0) else: tvm_output = m.get_output(0, tvm.nd.empty((output_shape), output_dtype)) return tvm_output.numpy() def verify_add_layer_params(input_dim, alpha=2): """Verify add layer params""" dtype = "float32" a_np1 = np.random.uniform(size=input_dim).astype(dtype) a_np2 = np.random.uniform(size=input_dim).astype(dtype) b_np = np.add(a_np1, a_np2) + alpha inputs = [("input1", datatypes.Array(*input_dim)), ("input2", datatypes.Array(*input_dim))] output = [("output", datatypes.Array(*b_np.shape))] builder = NeuralNetworkBuilder(inputs, output) builder.add_elementwise( name="Add", alpha=alpha, input_names=["input1", "input2"], output_name="output", mode="ADD" ) model = cm.models.MLModel(builder.spec) for target, dev in tvm.testing.enabled_targets(): out = run_tvm_graph( model, target, dev, [a_np1, a_np2], ["input1", "input2"], b_np.shape, dtype ) tvm.testing.assert_allclose(out, b_np, rtol=1e-5) @tvm.testing.uses_gpu def test_forward_add_layer_params(): verify_add_layer_params((1, 2, 2), 0) verify_add_layer_params((1, 2, 2), 1) verify_add_layer_params((1, 3, 3), 2) def verify_multiply_layer_params(input_dim, alpha): """Verify multiply layer params""" dtype = "float32" a_np1 = np.random.uniform(size=input_dim).astype(dtype) a_np2 = np.random.uniform(size=input_dim).astype(dtype) b_np = np.multiply(a_np1, a_np2) * alpha inputs = [("input1", datatypes.Array(*input_dim)), ("input2", datatypes.Array(*input_dim))] output = [("output", datatypes.Array(*b_np.shape))] builder = NeuralNetworkBuilder(inputs, output) builder.add_elementwise( name="Mul", alpha=alpha, input_names=["input1", "input2"], output_name="output", mode="MULTIPLY", ) model = cm.models.MLModel(builder.spec) for target, dev in tvm.testing.enabled_targets(): out = run_tvm_graph( model, target, dev, [a_np1, a_np2], ["input1", "input2"], b_np.shape, dtype ) tvm.testing.assert_allclose(out, b_np, rtol=1e-5) @tvm.testing.uses_gpu def test_forward_multiply_layer_params(): verify_multiply_layer_params((1, 2, 2), 0) verify_multiply_layer_params((1, 2, 2), 1) verify_multiply_layer_params((1, 3, 3), 2) def verify_concat_layer_params(input1_dim, input2_dim): """Verify concat layer params""" dtype = "float32" a_np1 = np.random.uniform(size=input1_dim).astype(dtype) a_np2 = np.random.uniform(size=input2_dim).astype(dtype) b_np = np.concatenate((a_np1, a_np2), axis=1) inputs = [("input1", datatypes.Array(*input1_dim)), ("input2", datatypes.Array(*input2_dim))] output = [("output", datatypes.Array(*b_np.shape))] # pylint:disable=not-an-iterable builder = NeuralNetworkBuilder(inputs, output) builder.add_elementwise( name="Concate", input_names=["input1", "input2"], output_name="output", mode="CONCAT" ) model = cm.models.MLModel(builder.spec) for target, dev in tvm.testing.enabled_targets(): out = run_tvm_graph( model, target, dev, [a_np1, a_np2], ["input1", "input2"], b_np.shape, dtype ) tvm.testing.assert_allclose(out, b_np, rtol=1e-5) @tvm.testing.uses_gpu def test_forward_concat_layer_params(): verify_concat_layer_params((1, 1, 2, 2), (1, 2, 2, 2)) verify_concat_layer_params((1, 2, 4, 4), (1, 3, 4, 4)) def _verify_upsample_layer_params(input_dim, scale, mode): dtype = "float32" a_np = np.full(input_dim, 1, dtype=dtype) if mode == "NN": method = "nearest_neighbor" coord_trans = "asymmetric" else: method = "linear" coord_trans = "align_corners" b_np = tvm.topi.testing.resize2d_python(a_np, (scale, scale), "NCHW", method, coord_trans) input_data = [("input", datatypes.Array(*input_dim))] output = [("output", datatypes.Array(*b_np.shape))] builder = NeuralNetworkBuilder(input_data, output) builder.add_upsample( name="Upsample", scaling_factor_h=scale, scaling_factor_w=scale, mode=mode, input_name="input", output_name="output", ) model = cm.models.MLModel(builder.spec) for target, dev in tvm.testing.enabled_targets(): out = run_tvm_graph(model, target, dev, a_np, "input", b_np.shape, dtype) tvm.testing.assert_allclose(out, b_np, rtol=1e-5) @tvm.testing.uses_gpu def test_forward_upsample_layer_params(): """Upsample Layer Params""" _verify_upsample_layer_params((1, 16, 32, 32), 2, "NN") _verify_upsample_layer_params((1, 4, 6, 6), 3, "BILINEAR") def _verify_l2_normalize(input_dim, eps): dtype = "float32" a_np = np.random.uniform(size=input_dim).astype(dtype) b_np = tvm.topi.testing.l2_normalize_python(a_np, eps, 1) input_data = [("input", datatypes.Array(*input_dim))] output = [("output", datatypes.Array(*b_np.shape))] builder = NeuralNetworkBuilder(input_data, output) builder.add_l2_normalize(name="L2", epsilon=eps, input_name="input", output_name="output") model = cm.models.MLModel(builder.spec) for target, dev in tvm.testing.enabled_targets(): out = run_tvm_graph(model, target, dev, a_np, "input", b_np.shape, dtype) tvm.testing.assert_allclose(out, b_np, rtol=1e-5) @tvm.testing.uses_gpu def test_forward_l2_normalize(): _verify_l2_normalize((1, 3, 20, 20), 0.001) def _verify_lrn(input_dim, size, bias, alpha, beta): dtype = "float32" axis = 1 a_np = np.random.uniform(size=input_dim).astype(dtype) b_np = tvm.topi.testing.lrn_python(a_np, size, axis, bias, alpha, beta) input_data = [("input", datatypes.Array(*input_dim))] output = [("output", datatypes.Array(*b_np.shape))] builder = NeuralNetworkBuilder(input_data, output) builder.add_lrn( name="LRN", input_name="input", output_name="output", alpha=alpha, beta=beta, k=bias, local_size=size, ) model = cm.models.MLModel(builder.spec) for target, dev in tvm.testing.enabled_targets(): out = run_tvm_graph(model, target, dev, a_np, "input", b_np.shape, dtype) tvm.testing.assert_allclose(out, b_np, rtol=1e-5) @tvm.testing.uses_gpu def test_forward_lrn(): _verify_lrn((1, 3, 10, 20), 3, 1.0, 1.0, 0.5) def _verify_average(input_dim1, input_dim2, axis=0): dtype = "float32" a_np1 = np.random.uniform(size=input_dim1).astype(dtype) a_np2 = np.random.uniform(size=input_dim2).astype(dtype) b_np = np.mean((a_np1, a_np2), axis=axis) inputs = [("input1", datatypes.Array(*input_dim1)), ("input2", datatypes.Array(*input_dim2))] output = [("output", datatypes.Array(*b_np.shape))] builder = NeuralNetworkBuilder(inputs, output) builder.add_elementwise( name="MEAN", input_names=["input1", "input2"], output_name="output", mode="AVE" ) model = cm.models.MLModel(builder.spec) for target, dev in tvm.testing.enabled_targets(): out = run_tvm_graph( model, target, dev, [a_np1, a_np2], ["input1", "input2"], b_np.shape, dtype ) tvm.testing.assert_allclose(out, b_np, rtol=1e-5) @tvm.testing.uses_gpu def test_forward_average(): _verify_average((1, 3, 20, 20), (1, 3, 20, 20)) _verify_average((3, 20, 20), (1, 3, 20, 20)) _verify_average((20, 20), (1, 3, 20, 20)) def _verify_max(input_dim): dtype = "float32" a_np1 = np.random.uniform(size=input_dim).astype(dtype) a_np2 = np.random.uniform(size=input_dim).astype(dtype) a_np3 = np.random.uniform(size=input_dim).astype(dtype) b_np = np.max((a_np1, a_np2, a_np3), axis=0) inputs = [ ("input1", datatypes.Array(*input_dim)), ("input2", datatypes.Array(*input_dim)), ("input3", datatypes.Array(*input_dim)), ] output = [("output", datatypes.Array(*b_np.shape))] builder = NeuralNetworkBuilder(inputs, output) builder.add_elementwise( name="Max", input_names=["input1", "input2", "input3"], output_name="output", mode="MAX" ) model = cm.models.MLModel(builder.spec) for target, dev in tvm.testing.enabled_targets(): out = run_tvm_graph( model, target, dev, [a_np1, a_np2, a_np3], ["input1", "input2", "input3"], b_np.shape, dtype, ) tvm.testing.assert_allclose(out, b_np, rtol=1e-5) @tvm.testing.uses_gpu def test_forward_max(): _verify_max((1, 3, 20, 20)) _verify_max((20, 20)) def _verify_min(input_dim): dtype = "float32" a_np1 = np.random.uniform(size=input_dim).astype(dtype) a_np2 = np.random.uniform(size=input_dim).astype(dtype) a_np3 = np.random.uniform(size=input_dim).astype(dtype) b_np = np.min((a_np1, a_np2, a_np3), axis=0) inputs = [ ("input1", datatypes.Array(*input_dim)), ("input2", datatypes.Array(*input_dim)), ("input3", datatypes.Array(*input_dim)), ] output = [("output", datatypes.Array(*b_np.shape))] builder = NeuralNetworkBuilder(inputs, output) builder.add_elementwise( name="Min", input_names=["input1", "input2", "input3"], output_name="output", mode="MIN" ) model = cm.models.MLModel(builder.spec) for target, dev in tvm.testing.enabled_targets(): out = run_tvm_graph( model, target, dev, [a_np1, a_np2, a_np3], ["input1", "input2", "input3"], b_np.shape, dtype, ) tvm.testing.assert_allclose(out, b_np, rtol=1e-5) @tvm.testing.uses_gpu def test_forward_min(): _verify_min((1, 3, 20, 20)) _verify_min((20, 20)) def verify_unary_sqrt(input_dim): """Verify unary sqrt""" dtype = "float32" a_np = np.random.uniform(size=input_dim).astype(dtype) ref_val = np.sqrt(a_np) inputs = [("input", datatypes.Array(*input_dim))] output = [("output", datatypes.Array(*ref_val.shape))] builder = NeuralNetworkBuilder(inputs, output) builder.add_unary(name="sqrt", input_name="input", output_name="output", mode="sqrt") model = cm.models.MLModel(builder.spec) for target, dev in tvm.testing.enabled_targets(): out = run_tvm_graph(model, target, dev, [a_np], ["input"], ref_val.shape, dtype) tvm.testing.assert_allclose(out, ref_val, rtol=1e-5) def verify_unary_rsqrt(input_dim, epsilon=0): """Verify unary rsqrt""" dtype = "float32" a_np = np.random.uniform(size=input_dim).astype(dtype) ref_val = 1 / np.sqrt(a_np + epsilon) inputs = [("input", datatypes.Array(*input_dim))] output = [("output", datatypes.Array(*ref_val.shape))] builder = NeuralNetworkBuilder(inputs, output) builder.add_unary( name="rsqrt", input_name="input", output_name="output", mode="rsqrt", epsilon=epsilon ) model = cm.models.MLModel(builder.spec) for target, dev in tvm.testing.enabled_targets(): out = run_tvm_graph(model, target, dev, [a_np], ["input"], ref_val.shape, dtype) tvm.testing.assert_allclose(out, ref_val, rtol=1e-5) def verify_unary_inverse(input_dim, epsilon=0): """Verify unary inverse""" dtype = "float32" a_np = np.random.uniform(size=input_dim).astype(dtype) ref_val = 1 / (a_np + epsilon) inputs = [("input", datatypes.Array(*input_dim))] output = [("output", datatypes.Array(*ref_val.shape))] builder = NeuralNetworkBuilder(inputs, output) builder.add_unary( name="inverse", input_name="input", output_name="output", mode="inverse", epsilon=epsilon ) model = cm.models.MLModel(builder.spec) for target, dev in tvm.testing.enabled_targets(): out = run_tvm_graph(model, target, dev, [a_np], ["input"], ref_val.shape, dtype) tvm.testing.assert_allclose(out, ref_val, rtol=1e-5) def verify_unary_power(input_dim, alpha): """Verify unary power""" dtype = "float32" a_np = np.random.uniform(size=input_dim).astype(dtype) ref_val = np.power(a_np, alpha) inputs = [("input", datatypes.Array(*input_dim))] output = [("output", datatypes.Array(*ref_val.shape))] builder = NeuralNetworkBuilder(inputs, output) builder.add_unary( name="power", input_name="input", output_name="output", mode="power", alpha=alpha ) model = cm.models.MLModel(builder.spec) for target, dev in tvm.testing.enabled_targets(): out = run_tvm_graph(model, target, dev, [a_np], ["input"], ref_val.shape, dtype) tvm.testing.assert_allclose(out, ref_val, rtol=1e-5) def verify_unary_exp(input_dim): """Verify unary exp""" dtype = "float32" a_np = np.random.uniform(size=input_dim).astype(dtype) ref_val = np.exp(a_np) inputs = [("input", datatypes.Array(*input_dim))] output = [("output", datatypes.Array(*ref_val.shape))] builder = NeuralNetworkBuilder(inputs, output) builder.add_unary(name="exp", input_name="input", output_name="output", mode="exp") model = cm.models.MLModel(builder.spec) for target, dev in tvm.testing.enabled_targets(): out = run_tvm_graph(model, target, dev, [a_np], ["input"], ref_val.shape, dtype) tvm.testing.assert_allclose(out, ref_val, rtol=1e-5) def verify_unary_log(input_dim): """Verify unary log""" dtype = "float32" a_np = np.random.uniform(size=input_dim).astype(dtype) ref_val = np.log(a_np) inputs = [("input", datatypes.Array(*input_dim))] output = [("output", datatypes.Array(*ref_val.shape))] builder = NeuralNetworkBuilder(inputs, output) builder.add_unary(name="log", input_name="input", output_name="output", mode="log") model = cm.models.MLModel(builder.spec) for target, dev in tvm.testing.enabled_targets(): out = run_tvm_graph(model, target, dev, [a_np], ["input"], ref_val.shape, dtype) tvm.testing.assert_allclose(out, ref_val, rtol=1e-5) def verify_unary_abs(input_dim): """Verify unary abs""" dtype = "float32" a_np = np.random.uniform(-100.0, 100.0, size=input_dim).astype(dtype) ref_val = np.abs(a_np) inputs = [("input", datatypes.Array(*input_dim))] output = [("output", datatypes.Array(*ref_val.shape))] builder = NeuralNetworkBuilder(inputs, output) builder.add_unary(name="abs", input_name="input", output_name="output", mode="abs") model = cm.models.MLModel(builder.spec) for target, dev in tvm.testing.enabled_targets(): out = run_tvm_graph(model, target, dev, [a_np], ["input"], ref_val.shape, dtype) tvm.testing.assert_allclose(out, ref_val, rtol=1e-5) def verify_unary_threshold(input_dim, alpha): """Verify unary threshold""" dtype = "float32" a_np = np.random.uniform(-100.0, 100.0, size=input_dim).astype(dtype) ref_val = np.maximum(a_np, alpha) inputs = [("input", datatypes.Array(*input_dim))] output = [("output", datatypes.Array(*ref_val.shape))] builder = NeuralNetworkBuilder(inputs, output) builder.add_unary( name="threshold", input_name="input", output_name="output", mode="threshold", alpha=alpha ) model = cm.models.MLModel(builder.spec) for target, dev in tvm.testing.enabled_targets(): out = run_tvm_graph(model, target, dev, [a_np], ["input"], ref_val.shape, dtype) tvm.testing.assert_allclose(out, ref_val, rtol=1e-5) @tvm.testing.uses_gpu def test_forward_unary(): """All unary""" verify_unary_sqrt((1, 3, 20, 20)) verify_unary_rsqrt((1, 3, 20, 20)) verify_unary_rsqrt((1, 3, 20, 20), epsilon=1e-6) verify_unary_inverse((1, 3, 20, 20)) verify_unary_inverse((1, 3, 20, 20), epsilon=1e-6) verify_unary_power((1, 3, 20, 20), alpha=0.5) verify_unary_power((1, 3, 20, 20), alpha=4) verify_unary_exp((1, 3, 20, 20)) verify_unary_log((1, 3, 20, 20)) verify_unary_abs((1, 3, 20, 20)) verify_unary_threshold((1, 3, 20, 20), alpha=-6.0) verify_unary_threshold((1, 3, 20, 20), alpha=5.0) @tvm.testing.uses_gpu def test_forward_reduce(): """Reduce""" class ReduceAxis(Enum): # pylint: disable=invalid-name CHW = 0 HW = 1 C = 2 H = 3 W = 4 def _verify_reduce(input_dim, mode, axis, ref_func, dtype="float32"): print(input_dim, mode, axis) a_np = np.random.uniform(size=input_dim).astype(dtype) # translate to axis from coreml format if axis == ReduceAxis.CHW: np_axis = (-3, -2, -1) elif axis == ReduceAxis.HW: np_axis = (-2, -1) elif axis == ReduceAxis.C: np_axis = -3 elif axis == ReduceAxis.H: np_axis = -2 elif axis == ReduceAxis.W: np_axis = -1 if ref_func is np.argmax: ref_val = np.expand_dims(ref_func(a_np, np_axis), np_axis).astype(dtype) else: ref_val = ref_func(a_np, np_axis, keepdims=True) inputs = [("input", datatypes.Array(*input_dim))] output = [("output", datatypes.Array(*ref_val.shape))] builder = NeuralNetworkBuilder(inputs, output) builder.add_reduce( name=mode, input_name="input", output_name="output", axis=axis.name, mode=mode ) model = cm.models.MLModel(builder.spec) for target, dev in tvm.testing.enabled_targets(): out = run_tvm_graph(model, target, dev, [a_np], ["input"], ref_val.shape, dtype) tvm.testing.assert_allclose(out, ref_val, rtol=1e-5, atol=1e-5) dshapes = [[10, 10], [1, 10, 10], [1, 3, 10, 10]] for dshape in dshapes: for axis in ReduceAxis: if len(dshape) < 3 and axis in [ReduceAxis.CHW, ReduceAxis.C]: # input must have rank at least 3 continue _verify_reduce(dshape, "sum", axis, np.sum) _verify_reduce(dshape, "avg", axis, np.mean) _verify_reduce(dshape, "prod", axis, np.prod) _verify_reduce(dshape, "min", axis, np.min) _verify_reduce(dshape, "max", axis, np.max) if axis in [ReduceAxis.C, ReduceAxis.H, ReduceAxis.W]: # For mode ArgMax, axis must be [-1] or [-2] or [-3] _verify_reduce(dshape, "argmax", axis, np.argmax, dtype="int32") def verify_reshape(input_dim, target_shape, mode): """Reshape""" dtype = "float32" a_np = np.random.uniform(-100.0, 100.0, size=input_dim).astype(dtype) ref_val = np.reshape(a_np, target_shape) inputs = [("input", datatypes.Array(*input_dim))] output = [("output", datatypes.Array(*ref_val.shape))] builder = NeuralNetworkBuilder(inputs, output) builder.add_reshape( name="reshape", input_name="input", output_name="output", target_shape=target_shape, mode=mode, ) model = cm.models.MLModel(builder.spec) for target, dev in tvm.testing.enabled_targets(): out = run_tvm_graph(model, target, dev, [a_np], ["input"], ref_val.shape, dtype) tvm.testing.assert_allclose(out, ref_val, rtol=1e-5) def test_forward_reshape(): for mode in [0, 1]: verify_reshape((20,), (1, 2, 2, 5), mode) verify_reshape((1, 3, 20, 20), (1, 12, 10, 10), mode) def _verify_split(input_dim, out_nums): dtype = "float32" a_np = np.random.uniform(-100.0, 100.0, size=input_dim).astype(dtype) ref_val = np.split(a_np, out_nums, axis=-3) inputs = [("input", datatypes.Array(*input_dim))] output_names = [] outputs = [] output_shapes = [] for i, out in enumerate(ref_val): output_name = "output" + str(i) output_names = output_names + [output_name] outputs = outputs + [(output_name, datatypes.Array(*out.shape))] output_shapes = output_shapes + [out.shape] builder = NeuralNetworkBuilder(inputs, outputs) builder.add_split(name="split", input_name="input", output_names=output_names) model = cm.models.MLModel(builder.spec) for target, dev in tvm.testing.enabled_targets(): out = run_tvm_graph( model, target, dev, [a_np], ["input"], output_shapes, [dtype] * len(output_shapes) ) tvm.testing.assert_allclose(out, ref_val, rtol=1e-5) def test_forward_split(): """Split""" _verify_split( ( 1, 4, 4, 4, ), 2, ) _verify_split( ( 1, 3, 30, 20, ), 3, ) def verify_image_scaler(input_dim, blue_bias=0.0, green_bias=0.0, red_bias=0.0, image_scale=1.0): """Verify image scaler""" dtype = "float32" a_np = np.random.uniform(size=input_dim).astype(dtype) # make sure it is valid image format CHW. assert len(a_np.shape) == 3 and a_np.shape[0] == 3 b_np = np.zeros(a_np.shape, dtype=dtype) b_np[0, :, :] = image_scale * a_np[0, :, :] + blue_bias b_np[1, :, :] = image_scale * a_np[1, :, :] + green_bias b_np[2, :, :] = image_scale * a_np[2, :, :] + red_bias b_np = np.add(a_np, b_np) inputs = [("input1", datatypes.Array(*input_dim)), ("input2", datatypes.Array(*input_dim))] output = [("output", datatypes.Array(*b_np.shape))] builder = NeuralNetworkBuilder(inputs, output) builder.set_pre_processing_parameters( image_input_names=["input1"], is_bgr=True, blue_bias=blue_bias, green_bias=green_bias, red_bias=red_bias, image_scale=image_scale, ) # add one add layer to make CoreML model format valid # add layer has been tested before. builder.add_elementwise( name="add", input_names=["input1", "input2"], output_name="output", alpha=0, mode="ADD" ) model = cm.models.MLModel(builder.spec) for target, dev in tvm.testing.enabled_targets(): out = run_tvm_graph( model, target, dev, [a_np, a_np], ["input1", "input2"], b_np.shape, dtype ) tvm.testing.assert_allclose(out, b_np, rtol=1e-5) @tvm.testing.uses_gpu def test_forward_image_scaler(): verify_image_scaler((3, 224, 224), image_scale=0.17) verify_image_scaler( (3, 224, 224), blue_bias=-1.7669800519943237, green_bias=-1.985260009765625, red_bias=-2.102560043334961, image_scale=0.379, ) def verify_convolution(input_dim, filter_, padding): """Verify convolution""" dtype = "float32" _, c, h, width = input_dim out_c, _, kernel_h, kernel_w = filter_ a_np = np.random.uniform(size=input_dim).astype(dtype) w_np = np.random.uniform(size=(out_c, c, kernel_h, kernel_w)).astype(dtype) w_np_cm = np.transpose(w_np, axes=(2, 3, 1, 0)) b_np = conv2d_nchw_python(a_np, w_np, [1, 1], padding) inputs = [("input1", datatypes.Array(c, h, width))] output = [("output", datatypes.Array(*b_np.shape))] # pylint:disable=not-an-iterable builder = NeuralNetworkBuilder(inputs, output) builder.add_convolution( name="conv", kernel_channels=3, output_channels=out_c, height=kernel_h, width=kernel_w, stride_height=1, stride_width=1, border_mode=padding.lower(), groups=1, W=w_np_cm, b=None, has_bias=False, is_deconv=False, input_name="input1", output_name="output", ) model = cm.models.MLModel(builder.spec) for target, dev in tvm.testing.enabled_targets(): out = run_tvm_graph(model, target, dev, [a_np], ["input1"], output_shape=None) tvm.testing.assert_allclose(out, b_np, rtol=1e-5) @tvm.testing.uses_gpu def test_forward_convolution(): verify_convolution((1, 3, 224, 224), filter_=(32, 3, 3, 3), padding="VALID") verify_convolution((1, 3, 224, 224), filter_=(32, 3, 3, 3), padding="SAME") def test_can_build_keras_to_coreml_to_relay(): """Test multiple conversion paths and importing from a saved file.""" model = keras.models.Sequential() model.add( keras.layers.Conv2D( filters=6, kernel_size=(1, 1), activation="relu", padding="same", input_shape=(3, 3, 1), data_format="channels_first", ) ) with tempfile.TemporaryDirectory() as tmpdir: kmodel_fn = path.join(tmpdir, "c1mdl.h5") model.save(kmodel_fn) mdl = cm.convert(kmodel_fn) model_file = path.join(tmpdir, "c1.mlmodel") mdl.save(model_file) mdl = cm.models.MLModel(model_file) desc = mdl.get_spec().description iname = desc.input[0].name ishape = desc.input[0].type.multiArrayType.shape shape_dict = {} for i in mdl.get_spec().description.input: iname = i.name ishape = i.type.multiArrayType.shape shape_dict[iname] = ishape mod, params = relay.frontend.from_coreml(mdl, shape_dict) with tvm.transform.PassContext(opt_level=3): relay.build(mod, "llvm", params=params) if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/frontend/darknet/test_forward.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=unused-argument """ Test Darknet Models =================== This article is a test script to test darknet models with Relay. All the required models and libraries will be downloaded from the internet by the script. """ from cffi import FFI import numpy as np import tvm from tvm.contrib import graph_executor from tvm.contrib.download import download_testdata from tvm.relay.testing.darknet import LAYERTYPE from tvm.relay.testing.darknet import __darknetffi__ from tvm.relay.frontend.darknet import ACTIVATION from tvm import relay REPO_URL = "https://github.com/dmlc/web-data/blob/main/darknet/" DARKNET_LIB = "libdarknet2.0.so" DARKNETLIB_URL = REPO_URL + "lib/" + DARKNET_LIB + "?raw=true" LIB = __darknetffi__.dlopen(download_testdata(DARKNETLIB_URL, DARKNET_LIB, module="darknet")) DARKNET_TEST_IMAGE_NAME = "dog.jpg" DARKNET_TEST_IMAGE_URL = REPO_URL + "data/" + DARKNET_TEST_IMAGE_NAME + "?raw=true" DARKNET_TEST_IMAGE_PATH = download_testdata( DARKNET_TEST_IMAGE_URL, DARKNET_TEST_IMAGE_NAME, module="data" ) def astext(program, unify_free_vars=False): """check that program is parsable in text format""" text = program.astext() if isinstance(program, relay.Expr): roundtrip_program = tvm.parser.parse_expr(text) else: roundtrip_program = tvm.parser.fromtext(text) tvm.ir.assert_structural_equal(roundtrip_program, program, map_free_vars=True) def _read_memory_buffer(shape, data, dtype="float32"): length = 1 for x in shape: length *= x data_np = np.zeros(length, dtype=dtype) for i in range(length): data_np[i] = data[i] return data_np.reshape(shape) def _get_tvm_output(net, data, build_dtype="float32", states=None): """Compute TVM output""" dtype = "float32" mod, params = relay.frontend.from_darknet(net, data.shape, dtype) # verify that from_darknet creates a valid, parsable relay program mod = relay.transform.InferType()(mod) astext(mod) target = "llvm" lib = relay.build(mod, target, params=params) # Execute on TVM dev = tvm.cpu(0) m = graph_executor.GraphModule(lib["default"](dev)) # set inputs m.set_input("data", tvm.nd.array(data.astype(dtype))) if states: for name in states.keys(): m.set_input(name, tvm.nd.array(states[name].astype(dtype))) m.run() # get outputs tvm_out = [] for i in range(m.get_num_outputs()): tvm_out.append(m.get_output(i).numpy()) return tvm_out def _load_net(cfg_url, cfg_name, weights_url, weights_name): cfg_path = download_testdata(cfg_url, cfg_name, module="darknet") weights_path = download_testdata(weights_url, weights_name, module="darknet") net = LIB.load_network(cfg_path.encode("utf-8"), weights_path.encode("utf-8"), 0) return net def verify_darknet_frontend(net, build_dtype="float32"): """Test network with given input image on both darknet and tvm""" def get_darknet_output(net, img): LIB.network_predict_image(net, img) out = [] for i in range(net.n): layer = net.layers[i] if layer.type == LAYERTYPE.REGION: attributes = np.array( [ layer.n, layer.out_c, layer.out_h, layer.out_w, layer.classes, layer.coords, layer.background, ], dtype=np.int32, ) out.insert(0, attributes) out.insert(0, _read_memory_buffer((layer.n * 2,), layer.biases)) layer_outshape = (layer.batch, layer.out_c, layer.out_h, layer.out_w) out.insert(0, _read_memory_buffer(layer_outshape, layer.output)) elif layer.type == LAYERTYPE.YOLO: attributes = np.array( [layer.n, layer.out_c, layer.out_h, layer.out_w, layer.classes, layer.total], dtype=np.int32, ) out.insert(0, attributes) out.insert(0, _read_memory_buffer((layer.total * 2,), layer.biases)) out.insert(0, _read_memory_buffer((layer.n,), layer.mask, dtype="int32")) layer_outshape = (layer.batch, layer.out_c, layer.out_h, layer.out_w) out.insert(0, _read_memory_buffer(layer_outshape, layer.output)) elif i == net.n - 1: if layer.type == LAYERTYPE.CONNECTED: darknet_outshape = (layer.batch, layer.out_c) elif layer.type in [LAYERTYPE.SOFTMAX]: darknet_outshape = (layer.batch, layer.outputs) else: darknet_outshape = (layer.batch, layer.out_c, layer.out_h, layer.out_w) out.insert(0, _read_memory_buffer(darknet_outshape, layer.output)) return out dtype = "float32" img = LIB.letterbox_image( LIB.load_image_color(DARKNET_TEST_IMAGE_PATH.encode("utf-8"), 0, 0), net.w, net.h ) darknet_output = get_darknet_output(net, img) batch_size = 1 data = np.empty([batch_size, img.c, img.h, img.w], dtype) i = 0 for c in range(img.c): for h in range(img.h): for k in range(img.w): data[0][c][h][k] = img.data[i] i = i + 1 tvm_out = _get_tvm_output(net, data, build_dtype) for tvm_outs, darknet_out in zip(tvm_out, darknet_output): tvm.testing.assert_allclose(darknet_out, tvm_outs, rtol=1e-3, atol=1e-3) def _test_rnn_network(net, states): """Test network with given input data on both darknet and tvm""" def get_darknet_network_predict(net, data): return LIB.network_predict(net, data) ffi = FFI() np_arr = np.zeros([1, net.inputs], dtype="float32") np_arr[0, 2] = 1 cffi_arr = ffi.cast("float*", np_arr.ctypes.data) tvm_out = _get_tvm_output(net, np_arr, states=states)[0] darknet_output = get_darknet_network_predict(net, cffi_arr) darknet_out = np.zeros(net.outputs, dtype="float32") for i in range(net.outputs): darknet_out[i] = darknet_output[i] last_layer = net.layers[net.n - 1] darknet_outshape = (last_layer.batch, last_layer.outputs) darknet_out = darknet_out.reshape(darknet_outshape) tvm.testing.assert_allclose(darknet_out, tvm_out, rtol=1e-4, atol=1e-4) def test_forward_extraction(): """test extraction model""" model_name = "extraction" cfg_name = model_name + ".cfg" weights_name = model_name + ".weights" cfg_url = "https://github.com/pjreddie/darknet/blob/master/cfg/" + cfg_name + "?raw=true" weights_url = "http://pjreddie.com/media/files/" + weights_name + "?raw=true" net = _load_net(cfg_url, cfg_name, weights_url, weights_name) verify_darknet_frontend(net) LIB.free_network(net) def test_forward_alexnet(): """test alexnet model""" model_name = "alexnet" cfg_name = model_name + ".cfg" weights_name = model_name + ".weights" cfg_url = "https://github.com/pjreddie/darknet/blob/master/cfg/" + cfg_name + "?raw=true" weights_url = "http://pjreddie.com/media/files/" + weights_name + "?raw=true" net = _load_net(cfg_url, cfg_name, weights_url, weights_name) verify_darknet_frontend(net) LIB.free_network(net) def test_forward_resnet50(): """test resnet50 model""" model_name = "resnet50" cfg_name = model_name + ".cfg" weights_name = model_name + ".weights" cfg_url = "https://github.com/pjreddie/darknet/blob/master/cfg/" + cfg_name + "?raw=true" weights_url = "http://pjreddie.com/media/files/" + weights_name + "?raw=true" net = _load_net(cfg_url, cfg_name, weights_url, weights_name) verify_darknet_frontend(net) LIB.free_network(net) def test_forward_resnext50(): """test resnet50 model""" model_name = "resnext50" cfg_name = model_name + ".cfg" weights_name = model_name + ".weights" cfg_url = "https://github.com/pjreddie/darknet/blob/master/cfg/" + cfg_name + "?raw=true" weights_url = "http://pjreddie.com/media/files/" + weights_name + "?raw=true" net = _load_net(cfg_url, cfg_name, weights_url, weights_name) verify_darknet_frontend(net) LIB.free_network(net) def test_forward_yolov2(): """test yolov2 model""" model_name = "yolov2" cfg_name = model_name + ".cfg" weights_name = model_name + ".weights" cfg_url = "https://github.com/pjreddie/darknet/blob/master/cfg/" + cfg_name + "?raw=true" weights_url = "http://pjreddie.com/media/files/" + weights_name + "?raw=true" net = _load_net(cfg_url, cfg_name, weights_url, weights_name) build_dtype = {} verify_darknet_frontend(net, build_dtype) LIB.free_network(net) def test_forward_yolov3(): """test yolov3 model""" model_name = "yolov3" cfg_name = model_name + ".cfg" weights_name = model_name + ".weights" cfg_url = "https://github.com/pjreddie/darknet/blob/master/cfg/" + cfg_name + "?raw=true" weights_url = "http://pjreddie.com/media/files/" + weights_name + "?raw=true" net = _load_net(cfg_url, cfg_name, weights_url, weights_name) build_dtype = {} verify_darknet_frontend(net, build_dtype) LIB.free_network(net) def test_forward_convolutional(): """test convolutional layer""" net = LIB.make_network(1) layer = LIB.make_convolutional_layer(1, 224, 224, 3, 32, 1, 3, 2, 0, 1, 0, 0, 0, 0) net.layers[0] = layer net.w = net.h = 224 LIB.resize_network(net, 224, 224) verify_darknet_frontend(net) LIB.free_network(net) def test_forward_dense(): """test fully connected layer""" net = LIB.make_network(1) layer = LIB.make_connected_layer(1, 75, 20, 1, 0, 0) net.layers[0] = layer net.w = net.h = 5 LIB.resize_network(net, 5, 5) verify_darknet_frontend(net) LIB.free_network(net) def test_forward_dense_batchnorm(): """test fully connected layer with batchnorm""" net = LIB.make_network(1) layer = LIB.make_connected_layer(1, 12, 2, 1, 1, 0) for i in range(5): layer.rolling_mean[i] = np.random.rand(1) layer.rolling_variance[i] = np.random.rand(1) + 0.5 layer.scales[i] = np.random.rand(1) net.layers[0] = layer net.w = net.h = 2 LIB.resize_network(net, 2, 2) verify_darknet_frontend(net) LIB.free_network(net) def test_forward_maxpooling(): """test maxpooling layer""" net = LIB.make_network(1) layer = LIB.make_maxpool_layer(1, 224, 224, 3, 2, 2, 0) net.layers[0] = layer net.w = net.h = 224 LIB.resize_network(net, 224, 224) verify_darknet_frontend(net) LIB.free_network(net) def test_forward_avgpooling(): """test avgerage pooling layer""" net = LIB.make_network(1) layer = LIB.make_avgpool_layer(1, 224, 224, 3) net.layers[0] = layer net.w = net.h = 224 LIB.resize_network(net, 224, 224) verify_darknet_frontend(net) LIB.free_network(net) def test_forward_conv_batch_norm(): """test batch normalization layer""" net = LIB.make_network(1) layer = LIB.make_convolutional_layer(1, 224, 224, 3, 32, 1, 3, 2, 0, 1, 1, 0, 0, 0) for i in range(32): layer.rolling_mean[i] = np.random.rand(1) layer.rolling_variance[i] = np.random.rand(1) + 0.5 net.layers[0] = layer net.w = net.h = 224 LIB.resize_network(net, 224, 224) verify_darknet_frontend(net) LIB.free_network(net) def test_forward_shortcut(): """test shortcut layer""" net = LIB.make_network(3) layer_1 = LIB.make_convolutional_layer(1, 224, 224, 3, 32, 1, 3, 2, 0, 1, 0, 0, 0, 0) layer_2 = LIB.make_convolutional_layer(1, 111, 111, 32, 32, 1, 1, 1, 0, 1, 0, 0, 0, 0) layer_3 = LIB.make_shortcut_layer(1, 0, 111, 111, 32, 111, 111, 32) layer_3.activation = ACTIVATION.RELU layer_3.alpha = 1 layer_3.beta = 1 net.layers[0] = layer_1 net.layers[1] = layer_2 net.layers[2] = layer_3 net.w = net.h = 224 LIB.resize_network(net, 224, 224) verify_darknet_frontend(net) LIB.free_network(net) def test_forward_reorg(): """test reorg layer""" net = LIB.make_network(2) layer_1 = LIB.make_convolutional_layer(1, 222, 222, 3, 32, 1, 3, 2, 0, 1, 0, 0, 0, 0) layer_2 = LIB.make_reorg_layer(1, 110, 110, 32, 2, 0, 0, 0) net.layers[0] = layer_1 net.layers[1] = layer_2 net.w = net.h = 222 LIB.resize_network(net, 222, 222) verify_darknet_frontend(net) LIB.free_network(net) def test_forward_region(): """test region layer""" net = LIB.make_network(2) layer_1 = LIB.make_convolutional_layer(1, 19, 19, 3, 425, 1, 1, 1, 0, 1, 0, 0, 0, 0) layer_2 = LIB.make_region_layer(1, 19, 19, 5, 80, 4) layer_2.softmax = 1 net.layers[0] = layer_1 net.layers[1] = layer_2 net.w = net.h = 19 LIB.resize_network(net, 19, 19) build_dtype = {} verify_darknet_frontend(net, build_dtype) LIB.free_network(net) def test_forward_yolo_op(): """test yolo layer""" net = LIB.make_network(2) layer_1 = LIB.make_convolutional_layer(1, 224, 224, 3, 14, 1, 3, 2, 0, 1, 0, 0, 0, 0) layer_2 = LIB.make_yolo_layer(1, 111, 111, 2, 9, __darknetffi__.NULL, 2) net.layers[0] = layer_1 net.layers[1] = layer_2 net.w = net.h = 224 LIB.resize_network(net, 224, 224) build_dtype = {} verify_darknet_frontend(net, build_dtype) LIB.free_network(net) def test_forward_upsample(): """test upsample layer""" net = LIB.make_network(1) layer = LIB.make_upsample_layer(1, 19, 19, 3, 3) layer.scale = 1 net.layers[0] = layer net.w = net.h = 19 LIB.resize_network(net, 19, 19) verify_darknet_frontend(net) LIB.free_network(net) def test_forward_l2normalize(): """test l2 normalization layer""" net = LIB.make_network(1) layer = LIB.make_l2norm_layer(1, 224 * 224 * 3) layer.c = layer.out_c = 3 layer.h = layer.out_h = 224 layer.w = layer.out_w = 224 net.layers[0] = layer net.w = net.h = 224 LIB.resize_network(net, 224, 224) verify_darknet_frontend(net) LIB.free_network(net) def test_forward_elu(): """test elu activation layer""" net = LIB.make_network(1) layer_1 = LIB.make_convolutional_layer(1, 224, 224, 3, 32, 1, 3, 2, 0, 1, 0, 0, 0, 0) layer_1.activation = ACTIVATION.ELU net.layers[0] = layer_1 net.w = net.h = 224 LIB.resize_network(net, 224, 224) verify_darknet_frontend(net) LIB.free_network(net) def test_forward_softmax(): """test softmax layer""" net = LIB.make_network(1) layer_1 = LIB.make_softmax_layer(1, 75, 1) layer_1.temperature = 1 net.layers[0] = layer_1 net.w = net.h = 5 LIB.resize_network(net, net.w, net.h) verify_darknet_frontend(net) LIB.free_network(net) def test_forward_softmax_temperature(): """test softmax layer""" net = LIB.make_network(1) layer_1 = LIB.make_softmax_layer(1, 75, 1) layer_1.temperature = 0.8 net.layers[0] = layer_1 net.w = net.h = 5 LIB.resize_network(net, net.w, net.h) verify_darknet_frontend(net) LIB.free_network(net) def test_forward_activation_logistic(): """test logistic activation layer""" net = LIB.make_network(1) batch = 1 h = 224 width = 224 c = 3 n = 32 groups = 1 size = 3 stride = 2 padding = 0 activation = ACTIVATION.LOGISTIC batch_normalize = 0 binary = 0 xnor = 0 adam = 0 layer_1 = LIB.make_convolutional_layer( batch, h, width, c, n, groups, size, stride, padding, activation, batch_normalize, binary, xnor, adam, ) net.layers[0] = layer_1 net.w = width net.h = h LIB.resize_network(net, net.w, net.h) verify_darknet_frontend(net) LIB.free_network(net) def test_forward_rnn(): """test RNN layer""" net = LIB.make_network(1) batch = 1 inputs = 4 outputs = 4 steps = 1 activation = ACTIVATION.RELU batch_normalize = 0 adam = 0 layer_1 = LIB.make_rnn_layer(batch, inputs, outputs, steps, activation, batch_normalize, adam) net.layers[0] = layer_1 net.inputs = inputs net.outputs = outputs net.w = net.h = 0 LIB.resize_network(net, net.w, net.h) states = {"rnn0_state": np.zeros([1, net.inputs])} _test_rnn_network(net, states) LIB.free_network(net) if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/frontend/keras/test_forward.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Unit tests for various models and operators""" import numpy as np import tvm from tvm import relay from tvm.contrib import graph_executor import tvm.testing try: import tensorflow.compat.v1 as tf except ImportError: import tensorflow as tf from tensorflow import keras as tf_keras # prevent Keras from using up all gpu memory import keras if tf.executing_eagerly(): GPUS = tf.config.experimental.list_physical_devices("GPU") for gpu in GPUS: tf.config.experimental.set_memory_growth(gpu, True) else: from keras.backend.tensorflow_backend import set_session CONFIG = tf.ConfigProto() CONFIG.gpu_options.per_process_gpu_memory_fraction = 0.5 set_session(tf.Session(config=CONFIG)) def pytest_generate_tests(metafunc): """ This function generates the list of tests for pytest, based on scenarios that will change the parameters in which the tests use to run. https://docs.pytest.org/en/latest/example/parametrize.html """ idlist = [] argvalues = [] for scenario in metafunc.cls.scenarios: idlist.append(scenario[0]) items = scenario[1].items() argnames = [x[0] for x in items] argvalues.append([x[1] for x in items]) metafunc.parametrize(argnames, argvalues, ids=idlist, scope="class") # Scenarios: # - classic keras, using keras from "import keras" # - tensorflow keras, using keras from "from tensorflow import keras as tf_keras" USING_CALSSIC_KERAS = ("keras", {"keras_mod": keras}) USING_TENSORFLOW_KERAS = ("tf_keras", {"keras_mod": tf_keras}) def verify_keras_frontend(keras_model, need_transpose=True, layout="NCHW"): """Generic function to generate and compare Keras and TVM output""" # Keras frontend currently supports tensorflow backend only. assert keras.backend.backend() == "tensorflow" if layout != "NCHW": need_transpose = False in_shapes = [] for layer in keras_model._input_layers: if tf.executing_eagerly(): in_shapes.append(tuple(dim if dim is not None else 1 for dim in layer.input.shape)) else: in_shapes.append( tuple(dim.value if dim.value is not None else 1 for dim in layer.input.shape) ) def get_keras_output(in_data): return keras_model.predict(in_data) def get_tvm_output(in_data, target, dev, dtype="float32"): shape_dict = {name: x.shape for (name, x) in zip(keras_model.input_names, in_data)} mod, params = relay.frontend.from_keras(keras_model, shape_dict, layout=layout) with tvm.transform.PassContext(opt_level=2): lib = relay.build(mod, target, params=params) m = graph_executor.GraphModule(lib["default"](dev)) for name, x in zip(keras_model.input_names, in_data): m.set_input(name, tvm.nd.array(x.astype(dtype))) m.run() return [m.get_output(i).numpy() for i in range(m.get_num_outputs())] def to_channels_first(arr): return arr.transpose([0, -1] + list(range(1, arr.ndim - 1))) def to_channels_last(arr): return arr.transpose([0] + list(range(2, arr.ndim)) + [1]) in_data = [np.random.uniform(size=shape, low=-1.0, high=1.0) for shape in in_shapes] keras_out = get_keras_output(in_data) keras_out = keras_out if isinstance(keras_out, list) else [keras_out] for target, dev in tvm.testing.enabled_targets(): inputs = [to_channels_first(x) for x in in_data] if need_transpose else in_data tvm_out = get_tvm_output(inputs, target, dev) for kout, tout in zip(keras_out, tvm_out): if need_transpose: tout = to_channels_last(tout) tvm.testing.assert_allclose(kout, tout, rtol=1e-5, atol=1e-5) def get_mobilenet(keras_mod): if hasattr(keras_mod.applications, "MobileNet"): # Keras 2.4.x and older mobilenet_mod = keras_mod.applications.MobileNet else: # Keras 2.6.x and newer mobilenet_mod = keras_mod.applications.mobilenet.MobileNet return mobilenet_mod @tvm.testing.uses_gpu class TestKeras: """Keras test""" scenarios = [USING_CALSSIC_KERAS, USING_TENSORFLOW_KERAS] def test_forward_merge(self, keras_mod): """test_forward_merge""" data = keras_mod.layers.Input(shape=(32, 32, 3)) conv2d_x = keras_mod.layers.Conv2D(8, (3, 3), padding="same")(data) conv2d_y = keras_mod.layers.Conv2D(8, (3, 3), padding="same")(conv2d_x) conv2d_z = keras_mod.layers.Conv2D(8, (3, 3), padding="same")(conv2d_y) merge_funcs = [ keras_mod.layers.Add(), keras_mod.layers.Subtract(), keras_mod.layers.Multiply(), keras_mod.layers.Maximum(), keras_mod.layers.Minimum(), keras_mod.layers.Average(), keras_mod.layers.Concatenate(), ] for merge_func in merge_funcs: class_name = type(merge_func).__name__ if class_name in ("Subtract", "Dot"): out = merge_func([conv2d_x, conv2d_y]) else: out = merge_func([conv2d_x, conv2d_y, conv2d_z]) keras_model = keras_mod.models.Model(data, out) verify_keras_frontend(keras_model) def test_forward_merge_dot(self, keras_mod): """test_forward_merge_dot""" data1 = keras_mod.layers.Input(shape=(2, 2)) data2 = keras_mod.layers.Input(shape=(2, 2)) merge_funcs = [ keras_mod.layers.Dot(axes=[1, 2]), keras_mod.layers.Dot(axes=[2, 1]), keras_mod.layers.Dot(axes=[1, 1]), keras_mod.layers.Dot(axes=[2, 2]), keras_mod.layers.Dot(axes=1), keras_mod.layers.Dot(axes=2), ] for merge_func in merge_funcs: out = merge_func([data1, data2]) keras_model = keras_mod.models.Model([data1, data2], out) verify_keras_frontend(keras_model) def test_forward_activations(self, keras_mod): """test_forward_activations""" data = keras_mod.layers.Input(shape=(32, 32, 3)) act_funcs = [ keras_mod.layers.Activation("softmax"), keras_mod.layers.Softmax(), keras_mod.layers.Softmax(axis=-1), keras_mod.layers.Softmax(axis=1), keras_mod.layers.Softmax(axis=2), keras_mod.layers.Softmax(axis=3), keras_mod.layers.Activation("softplus"), keras_mod.layers.Activation("relu"), keras_mod.layers.Activation("softsign"), keras_mod.layers.Activation("hard_sigmoid"), keras_mod.layers.Activation("sigmoid"), keras_mod.layers.Activation("tanh"), keras_mod.layers.Activation("linear"), keras_mod.layers.Activation("selu"), keras_mod.layers.ReLU(), keras_mod.layers.ReLU(max_value=6.0), keras_mod.layers.ReLU(max_value=6.0, threshold=0.0), keras_mod.layers.ReLU(max_value=6.0, threshold=1.0), keras_mod.layers.ReLU(max_value=6.0, threshold=1.0, negative_slope=0.0), keras_mod.layers.ReLU(max_value=6.0, threshold=1.0, negative_slope=0.5), keras_mod.layers.ReLU(max_value=6.0, threshold=1.0, negative_slope=1.0), keras_mod.layers.LeakyReLU(alpha=0.3), keras_mod.layers.PReLU(weights=np.random.rand(1, 32, 32, 3)), keras_mod.layers.ELU(alpha=0.5), keras_mod.layers.ThresholdedReLU(theta=0.5), ] for act_func in act_funcs: x = act_func(data) keras_model = keras_mod.models.Model(data, x) verify_keras_frontend(keras_model) verify_keras_frontend(keras_model, need_transpose=False, layout="NHWC") def test_forward_dense(self, keras_mod): """test_forward_dense""" data = keras_mod.layers.Input(shape=(32, 32, 1)) x = keras_mod.layers.Flatten()(data) x = keras_mod.layers.Dropout(0.5)(x) x = keras_mod.layers.Dense(10, activation="relu", kernel_initializer="uniform")(x) keras_model = keras_mod.models.Model(data, x) verify_keras_frontend(keras_model) # RNN dense data = keras_mod.layers.Input(shape=(1, 32)) x = keras_mod.layers.Dense(32, activation="relu", kernel_initializer="uniform")(data) keras_model = keras_mod.models.Model(data, x) verify_keras_frontend(keras_model, need_transpose=False) def test_forward_permute(self, keras_mod): data = keras_mod.layers.Input(shape=(2, 3, 4)) x = keras_mod.layers.Permute([2, 3, 1])(data) keras_model = keras_mod.models.Model(data, x) verify_keras_frontend(keras_model, need_transpose=False) def test_forward_sequential(self, keras_mod): """test_forward_sequential""" keras_model = keras_mod.models.Sequential( [ keras_mod.layers.Dense(16, input_dim=32, activation="relu"), keras_mod.layers.Dropout(0.5), keras_mod.layers.Dense(8, activation="relu"), keras_mod.layers.Dropout(0.5), keras_mod.layers.Dense(1, activation="sigmoid"), ] ) verify_keras_frontend(keras_model) def test_forward_pool(self, keras_mod): data = keras_mod.layers.Input(shape=(32, 32, 1)) # maxpool x = keras_mod.layers.MaxPooling2D((3, 3), strides=(1, 1), padding="same")(data) keras_model = keras_mod.models.Model(data, x) verify_keras_frontend(keras_model) # avgpool y = keras_mod.layers.AveragePooling2D((3, 3), strides=(1, 1), padding="same")(data) keras_model = keras_mod.models.Model(data, y) verify_keras_frontend(keras_model) def test_forward_conv1d(self, keras_mod): """test_forward_conv1d""" data = keras_mod.layers.Input(shape=(32, 3)) conv_funcs = [ keras_mod.layers.Conv1D(filters=10, kernel_size=(3,), strides=(2,), padding="same"), keras_mod.layers.Conv1D( filters=10, kernel_size=(3,), dilation_rate=(2,), padding="same" ), keras_mod.layers.Conv1D(filters=1, kernel_size=(3,), padding="valid", use_bias=False), keras_mod.layers.Conv1D(filters=10, kernel_size=(2,), padding="valid"), # Enable when relay conv1dtranspose handles NWC # keras.layers.Conv1DTranspose(filters=10, kernel_size=(3), padding="valid"), ] for conv_func in conv_funcs: x = conv_func(data) keras_model = keras_mod.models.Model(data, x) verify_keras_frontend(keras_model, layout="NWC") def test_forward_conv(self, keras_mod): """test_forward_conv""" data = keras_mod.layers.Input(shape=(32, 32, 3)) conv_funcs = [ keras_mod.layers.Conv2D(filters=10, kernel_size=(3, 3), strides=(2, 2), padding="same"), keras_mod.layers.Conv2D( filters=10, kernel_size=(3, 3), dilation_rate=(2, 2), padding="same" ), keras_mod.layers.Conv2D(filters=1, kernel_size=(3, 3), padding="same"), keras_mod.layers.DepthwiseConv2D(kernel_size=(3, 3), padding="same"), keras_mod.layers.Conv2DTranspose(filters=10, kernel_size=(3, 3), padding="valid"), keras_mod.layers.SeparableConv2D(filters=10, kernel_size=(3, 3), padding="same"), ] for conv_func in conv_funcs: x = conv_func(data) keras_model = keras_mod.models.Model(data, x) verify_keras_frontend(keras_model) def test_forward_batch_norm(self, keras_mod): """test_forward_batch_norm""" data = keras_mod.layers.Input(shape=(32, 32, 3)) batch_norm_funcs = [ keras_mod.layers.BatchNormalization( axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=False, beta_initializer="zeros", gamma_initializer="ones", moving_mean_initializer="zeros", moving_variance_initializer="ones", ), keras_mod.layers.BatchNormalization( axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True, beta_initializer="zeros", gamma_initializer="ones", moving_mean_initializer="zeros", moving_variance_initializer="ones", ), keras_mod.layers.BatchNormalization( axis=-1, momentum=0.99, epsilon=0.001, center=False, scale=True, beta_initializer="zeros", gamma_initializer="ones", moving_mean_initializer="zeros", moving_variance_initializer="ones", ), keras_mod.layers.BatchNormalization( axis=-1, momentum=0.99, epsilon=0.001, center=False, scale=False, beta_initializer="zeros", gamma_initializer="ones", moving_mean_initializer="zeros", moving_variance_initializer="ones", ), ] for batch_norm_func in batch_norm_funcs: x = batch_norm_func(data) keras_model = keras_mod.models.Model(data, x) verify_keras_frontend(keras_model) def test_forward_upsample(self, keras_mod, interpolation="nearest"): data = keras_mod.layers.Input(shape=(32, 32, 3)) x = keras_mod.layers.UpSampling2D(size=(3, 3), interpolation=interpolation)(data) keras_model = keras_mod.models.Model(data, x) verify_keras_frontend(keras_model) def test_forward_reshape(self, keras_mod): """test_forward_reshape""" # input_shape len is 3, target_shape len is 3 data = keras_mod.layers.Input(shape=(32, 32, 3)) x = keras_mod.layers.Reshape(target_shape=(16, 64, 3))(data) keras_model = keras_mod.models.Model(data, x) verify_keras_frontend(keras_model) # input_shape len is 3, target_shape len is 2 data = keras_mod.layers.Input(shape=(32, 8, 3)) x = keras_mod.layers.Reshape(target_shape=(256, 3))(data) keras_model = keras_mod.models.Model(data, x) verify_keras_frontend(keras_model) # input_shape len is 2, target_shape len is 3 data = keras_mod.layers.Input(shape=(256, 3)) x = keras_mod.layers.Reshape(target_shape=(8, 32, 3))(data) keras_model = keras_mod.models.Model(data, x) verify_keras_frontend(keras_model) # input_shape len is 2, target_shape len is 1 data = keras_mod.layers.Input(shape=(2, 8)) x = keras_mod.layers.Reshape(target_shape=(16,))(data) keras_model = keras_mod.models.Model(data, x) verify_keras_frontend(keras_model, need_transpose=False) # input_shape len is 1, target_shape len is 2 data = keras_mod.layers.Input(shape=(16,)) x = keras_mod.layers.Reshape(target_shape=(4, 4))(data) keras_model = keras_mod.models.Model(data, x) verify_keras_frontend(keras_model, need_transpose=False) # input_shape len is 2, target_shape len is 2 data = keras_mod.layers.Input(shape=(2, 8)) x = keras_mod.layers.Reshape(target_shape=(4, 4))(data) keras_model = keras_mod.models.Model(data, x) verify_keras_frontend(keras_model, need_transpose=False) # "non-square" target shape data = keras_mod.layers.Input(shape=(15,)) x = keras_mod.layers.Reshape(target_shape=(5, 3))(data) keras_model = keras_mod.models.Model(data, x) verify_keras_frontend(keras_model, need_transpose=False) # modify channel dim data = keras_mod.layers.Input(shape=(3, 2, 4)) x = keras_mod.layers.Reshape(target_shape=(3, 8))(data) keras_model = keras_mod.models.Model(data, x) verify_keras_frontend(keras_model) def test_forward_crop(self, keras_mod): """test_forward_crop""" data = keras_mod.layers.Input(shape=(32, 32, 3)) x = keras_mod.layers.Cropping2D(cropping=((1, 1), (1, 1)))(data) x = keras_mod.layers.Cropping2D(cropping=(1, 1))(x) x = keras_mod.layers.Cropping2D(cropping=1)(x) x = keras_mod.layers.Cropping2D(cropping=((0, 1), (1, 0)))(x) x = keras_mod.layers.Cropping2D(cropping=(1, 0))(x) x = keras_mod.layers.Cropping2D(cropping=0)(x) x = keras_mod.layers.Add()([x, x]) keras_model = keras_mod.models.Model(data, x) verify_keras_frontend(keras_model) def test_forward_multi_inputs(self, keras_mod): data1 = keras_mod.layers.Input(shape=(32, 32, 3)) data2 = keras_mod.layers.Input(shape=(32, 32, 3)) x = keras_mod.layers.Conv2D(8, (3, 3), padding="same")(data1) y = keras_mod.layers.Conv2D(8, (3, 3), padding="same")(data2) average_z = keras_mod.layers.Average()([x, y]) out = keras_mod.layers.GlobalAveragePooling2D()(average_z) keras_model = keras_mod.models.Model([data1, data2], out) verify_keras_frontend(keras_model) def test_forward_multi_outputs(self, keras_mod): data = keras_mod.layers.Input(shape=(32, 32, 3)) x = keras_mod.layers.Conv2D(8, (3, 3), padding="same")(data) x = keras_mod.layers.GlobalAveragePooling2D()(x) y = keras_mod.layers.Conv2D(8, (3, 3), padding="same")(data) y = keras_mod.layers.GlobalAveragePooling2D()(y) keras_model = keras_mod.models.Model(data, [x, y]) verify_keras_frontend(keras_model) def test_forward_reuse_layers(self, keras_mod): """test_forward_reuse_layers""" # reuse conv2d data = keras_mod.layers.Input(shape=(32, 32, 3)) conv2d = keras_mod.layers.Conv2D(8, (3, 3), padding="same") x = conv2d(data) y = conv2d(data) add_z = keras_mod.layers.Add()([x, y]) out = keras_mod.layers.GlobalAveragePooling2D()(add_z) keras_model = keras_mod.models.Model(data, out) verify_keras_frontend(keras_model) # reuse add data = keras_mod.layers.Input(shape=(32, 32, 3)) x = keras_mod.layers.Conv2D(8, (3, 3), padding="same")(data) add = keras_mod.layers.Add() x = add([x, x]) x = add([x, x]) out = keras_mod.layers.GlobalAveragePooling2D()(x) keras_model = keras_mod.models.Model(data, out) verify_keras_frontend(keras_model) def test_forward_lstm(self, keras_mod): """test_forward_lstm""" data = keras_mod.layers.Input(shape=(10, 32)) rnn_funcs = [ keras_mod.layers.LSTM(16), keras_mod.layers.LSTM(16, return_sequences=True), keras_mod.layers.LSTM(16, return_sequences=True, use_bias=False), ] for rnn_func in rnn_funcs: x = rnn_func(data) keras_model = keras_mod.models.Model(data, x) verify_keras_frontend(keras_model, need_transpose=False) def test_forward_rnn(self, keras_mod): """test_forward_rnn""" data = keras_mod.layers.Input(shape=(1, 32)) rnn_funcs = [ keras_mod.layers.LSTM( units=16, return_state=False, recurrent_activation="sigmoid", activation="tanh" ), keras_mod.layers.LSTM( units=16, return_state=False, recurrent_activation="sigmoid", activation="tanh", use_bias=False, ), keras_mod.layers.SimpleRNN(units=16, return_state=False, activation="tanh"), keras_mod.layers.SimpleRNN( units=16, return_state=False, activation="tanh", use_bias=False ), keras_mod.layers.GRU( units=16, return_state=False, recurrent_activation="sigmoid", activation="tanh", reset_after=False, ), keras_mod.layers.GRU( units=16, return_state=False, recurrent_activation="sigmoid", activation="tanh", reset_after=False, use_bias=False, ), ] for rnn_func in rnn_funcs: x = rnn_func(data) keras_model = keras_mod.models.Model(data, x) verify_keras_frontend(keras_model, need_transpose=False) def test_forward_vgg16(self, keras_mod, layout="NCHW"): """test_forward_vgg16""" if hasattr(keras_mod.applications, "VGG16"): # Keras 2.4.x and older vgg16_mod = keras_mod.applications.VGG16 else: # Keras 2.6.x and newer vgg16_mod = keras_mod.applications.vgg16.VGG16 keras_model = vgg16_mod( include_top=True, weights="imagenet", input_shape=(224, 224, 3), classes=1000 ) verify_keras_frontend(keras_model, layout=layout) def test_forward_xception(self, keras_mod, layout="NCHW"): """test_forward_vgg16""" if hasattr(keras_mod.applications, "Xception"): # Keras 2.4.x and older xception_mod = keras_mod.applications.Xception else: # Keras 2.6.x and newer xception_mod = keras_mod.applications.xception.Xception keras_model = xception_mod( include_top=True, weights="imagenet", input_shape=(299, 299, 3), classes=1000 ) verify_keras_frontend(keras_model, layout=layout) def test_forward_resnet50(self, keras_mod, layout="NCHW"): """test_forward_resnet50""" if hasattr(keras_mod.applications, "ResNet50"): # Keras 2.4.x and older resnet50_mod = keras_mod.applications.ResNet50 else: # Keras 2.6.x and newer resnet50_mod = keras_mod.applications.resnet.ResNet50 keras_model = resnet50_mod( include_top=True, weights="imagenet", input_shape=(224, 224, 3), classes=1000 ) verify_keras_frontend(keras_model, layout=layout) def test_forward_mobilenet(self, keras_mod, layout="NCHW"): mobilenet_mod = get_mobilenet(keras_mod) keras_model = mobilenet_mod( include_top=True, weights="imagenet", input_shape=(224, 224, 3), classes=1000 ) verify_keras_frontend(keras_model, layout=layout) def test_forward_conv3d(self, keras_mod): """test_forward_conv3d""" data = keras_mod.layers.Input(shape=(32, 32, 32, 3)) conv_funcs = [ keras_mod.layers.Conv3D( filters=10, kernel_size=(3, 3, 3), strides=(2, 2, 2), padding="same" ), keras_mod.layers.Conv3D( filters=10, kernel_size=(3, 3, 3), dilation_rate=(2, 2, 2), padding="same" ), keras_mod.layers.Conv3D( filters=1, kernel_size=(3, 3, 3), padding="valid", use_bias=False ), keras_mod.layers.Conv3D(filters=10, kernel_size=(2, 2, 2), padding="valid"), ] for conv_func in conv_funcs: x = conv_func(data) keras_model = keras_mod.models.Model(data, x) verify_keras_frontend(keras_model, layout="NDHWC") def test_forward_conv3d_transpose(self, keras_mod): """test_forward_conv3d_transpose""" data = keras_mod.layers.Input(shape=(32, 32, 32, 3)) conv_funcs = [ keras_mod.layers.Conv3DTranspose( filters=10, kernel_size=(3, 3, 3), strides=(2, 2, 2), padding="same" ), keras_mod.layers.Conv3DTranspose( filters=10, kernel_size=(1, 1, 1), dilation_rate=(1, 1, 1), padding="same" ), keras_mod.layers.Conv3DTranspose( filters=1, kernel_size=(3, 3, 3), padding="valid", use_bias=False ), keras_mod.layers.Conv3DTranspose(filters=10, kernel_size=(2, 2, 2), padding="valid"), ] for conv_func in conv_funcs: x = conv_func(data) keras_model = keras_mod.models.Model(data, x) verify_keras_frontend(keras_model, layout="NDHWC") def test_forward_pool3d(self, keras_mod): """test_forward_pool3d""" data = keras_mod.layers.Input(shape=(32, 32, 32, 1)) pool_funcs = [ # maxpool keras_mod.layers.MaxPooling3D(pool_size=(2, 2, 2), strides=(1, 1, 1), padding="same"), keras_mod.layers.MaxPooling3D(pool_size=(3, 3, 3), strides=(2, 2, 2), padding="valid"), # avgpool keras_mod.layers.AveragePooling3D( pool_size=(3, 3, 3), strides=(2, 2, 2), padding="same" ), keras_mod.layers.AveragePooling3D( pool_size=(2, 2, 2), strides=(1, 1, 1), padding="valid" ), ] for pool_func in pool_funcs: x = pool_func(data) keras_model = keras_mod.models.Model(data, x) verify_keras_frontend(keras_model, layout="NDHWC") def test_forward_upsample3d(self, keras_mod): data = keras_mod.layers.Input(shape=(32, 32, 32, 3)) x = keras_mod.layers.UpSampling3D(size=(2, 3, 4))(data) keras_model = keras_mod.models.Model(data, x) verify_keras_frontend(keras_model, layout="NDHWC") def test_forward_zero_padding3d(self, keras_mod): """test_forward_zero_padding3d""" data = keras_mod.layers.Input(shape=(32, 32, 32, 3)) pad_funcs = [ # Integer keras_mod.layers.ZeroPadding3D(padding=2), # tuple of 3 ints keras_mod.layers.ZeroPadding3D(padding=(1, 2, 3)), # tuple of 3 tuples of 2 ints keras_mod.layers.ZeroPadding3D(padding=((1, 1), (2, 2), (2, 2))), # tuple of 3 tuples of 2 ints different values keras_mod.layers.ZeroPadding3D(padding=((1, 2), (2, 3), (3, 2))), ] for pad_func in pad_funcs: x = pad_func(data) keras_model = keras_mod.models.Model(data, x) verify_keras_frontend(keras_model, layout="NDHWC") def test_forward_embedding(self, keras_mod): """test_forward_embedding""" data = keras_mod.layers.Input(shape=(2, 4), dtype="int32") x = keras_mod.layers.Embedding(10, 3)(data) keras_model = keras_mod.models.Model(data, x) verify_keras_frontend(keras_model, need_transpose=False) data = keras_mod.layers.Input(shape=(2, 3, 4), dtype="int32") x = keras_mod.layers.Embedding(4, 5)(data) keras_model = keras_mod.models.Model(data, x) verify_keras_frontend(keras_model, need_transpose=False) data = keras_mod.layers.Input(shape=(6, 2, 3, 4), dtype="int32") x = keras_mod.layers.Embedding(4, 5)(data) keras_model = keras_mod.models.Model(data, x) verify_keras_frontend(keras_model, need_transpose=False) def test_forward_repeat_vector(self, keras_mod): """test_forward_repeat_vector""" data = keras_mod.layers.Input(shape=(5,), dtype="float32") x = keras_mod.layers.Dense(6)(data) x = keras_mod.layers.RepeatVector(2)(x) keras_model = keras_mod.models.Model(data, x) verify_keras_frontend(keras_model, need_transpose=False) data = keras_mod.layers.Input(shape=(10,), dtype="float32") x = keras_mod.layers.RepeatVector(3)(data) keras_model = keras_mod.models.Model(data, x) verify_keras_frontend(keras_model, need_transpose=False) data = keras_mod.layers.Input(shape=(4,), dtype="float32") x = keras_mod.layers.RepeatVector(1)(data) keras_model = keras_mod.models.Model(data, x) verify_keras_frontend(keras_model, need_transpose=False) def test_forward_global_pool3d(self, keras_mod): """test_forward_zero_padding3d""" data = keras_mod.layers.Input(shape=(32, 32, 32, 1)) pool_funcs = [ # global maxpool keras_mod.layers.GlobalMaxPooling3D(), # global avgpool keras_mod.layers.GlobalAveragePooling3D(), ] for pool_func in pool_funcs: x = pool_func(data) keras_model = keras_mod.models.Model(data, x) verify_keras_frontend(keras_model, layout="NDHWC") def test_forward_nested_layers(self, keras_mod): """test_forward_nested_layers""" mobilenet_mod = get_mobilenet(keras_mod) sub_model = mobilenet_mod(include_top=False, weights="imagenet", input_shape=(224, 224, 3)) keras_model = keras_mod.Sequential( [ sub_model, keras_mod.layers.GlobalAveragePooling2D(), keras_mod.layers.Dense(1024, activation="relu"), keras_mod.layers.Dense(2, activation="sigmoid"), ] ) verify_keras_frontend(keras_model) def test_forward_l2_normalize(self, keras_mod): """test_forward_l2_normalize""" data = keras_mod.layers.Input(shape=(16, 12, 8)) k_backend = keras_mod.backend l2_funcs = [ keras_mod.layers.Lambda(lambda v: k_backend.l2_normalize(v, axis=-2)), keras_mod.layers.Lambda(lambda v: k_backend.l2_normalize(x=v, axis=-1)), keras_mod.layers.Lambda(lambda v: k_backend.l2_normalize(axis=1, x=v)), keras_mod.layers.Lambda(lambda v: k_backend.l2_normalize(v, 2)), keras_mod.layers.Lambda(lambda v: k_backend.l2_normalize(v, axis=3)), keras_mod.layers.Lambda(lambda v: k_backend.l2_normalize(v, axis=(2, 3))), keras_mod.layers.Lambda(lambda v: k_backend.l2_normalize(v, (1, 2))), keras_mod.layers.Lambda(lambda v: k_backend.l2_normalize(v, axis=[-2, -1])), keras_mod.layers.Lambda(lambda v: k_backend.l2_normalize(v, [-3, -2])), ] for l2_func in l2_funcs: x = l2_func(data) keras_model = keras_mod.models.Model(data, x) verify_keras_frontend(keras_model, layout="NCHW") verify_keras_frontend(keras_model, layout="NHWC") def test_forward_time_distributed(self, keras_mod): """test_forward_time_distributed""" conv2d_inputs = keras_mod.Input(shape=(10, 128, 128, 3)) conv_2d_layer = keras_mod.layers.Conv2D(64, (3, 3)) conv2d_model = keras_mod.models.Model( conv2d_inputs, keras_mod.layers.TimeDistributed(conv_2d_layer)(conv2d_inputs) ) verify_keras_frontend(conv2d_model, layout="NDHWC") dense_inputs = keras_mod.Input(shape=(5, 1)) dense_layer = keras_mod.layers.Dense(1) dense_model = keras_mod.models.Model( dense_inputs, keras_mod.layers.TimeDistributed(dense_layer)(dense_inputs) ) verify_keras_frontend(dense_model, need_transpose=False) if __name__ == "__main__": for k in [keras, tf_keras]: sut = TestKeras() sut.test_forward_merge_dot(keras_mod=k) sut.test_forward_merge(keras_mod=k) sut.test_forward_activations(keras_mod=k) sut.test_forward_dense(keras_mod=k) sut.test_forward_permute(keras_mod=k) sut.test_forward_sequential(keras_mod=k) sut.test_forward_pool(keras_mod=k) sut.test_forward_conv(keras_mod=k) sut.test_forward_conv1d(keras_mod=k) sut.test_forward_batch_norm(keras_mod=k) sut.test_forward_upsample(keras_mod=k, interpolation="nearest") sut.test_forward_upsample(keras_mod=k, interpolation="bilinear") sut.test_forward_reshape(keras_mod=k) sut.test_forward_crop(keras_mod=k) sut.test_forward_multi_inputs(keras_mod=k) sut.test_forward_multi_outputs(keras_mod=k) sut.test_forward_reuse_layers(keras_mod=k) sut.test_forward_lstm(keras_mod=k) sut.test_forward_rnn(keras_mod=k) sut.test_forward_vgg16(keras_mod=k) sut.test_forward_vgg16(keras_mod=k, layout="NHWC") sut.test_forward_xception(keras_mod=k) sut.test_forward_resnet50(keras_mod=k) sut.test_forward_resnet50(keras_mod=k, layout="NHWC") sut.test_forward_mobilenet(keras_mod=k) sut.test_forward_mobilenet(keras_mod=k, layout="NHWC") sut.test_forward_conv3d(keras_mod=k) sut.test_forward_conv3d_transpose(keras_mod=k) sut.test_forward_pool3d(keras_mod=k) sut.test_forward_global_pool3d(keras_mod=k) sut.test_forward_upsample3d(keras_mod=k) sut.test_forward_zero_padding3d(keras_mod=k) sut.test_forward_embedding(keras_mod=k) sut.test_forward_repeat_vector(keras_mod=k) sut.test_forward_l2_normalize(keras_mod=k) sut.test_forward_time_distributed(keras_mod=k)
https://github.com/zk-ml/tachikoma
tests/python/frontend/mxnet/model_zoo/__init__.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """MXNet model zoo for testing purposes.""" from __future__ import absolute_import from . import mlp, vgg, resnet, dqn, inception_v3, squeezenet, dcgan import tvm.relay.testing # mlp def mx_mlp(): num_class = 10 return mlp.get_symbol(num_class) def relay_mlp(): num_class = 10 return tvm.relay.testing.mlp.get_workload(1, num_class)[0] # vgg def mx_vgg(num_layers): num_class = 1000 return vgg.get_symbol(num_class, num_layers) def relay_vgg(num_layers): num_class = 1000 return tvm.relay.testing.vgg.get_workload(1, num_class, num_layers=num_layers)[0] # resnet def mx_resnet(num_layers): num_class = 1000 return resnet.get_symbol(num_class, num_layers, "3,224,224") def relay_resnet(num_layers): num_class = 1000 return tvm.relay.testing.resnet.get_workload(1, num_class, num_layers=num_layers)[0] # dqn mx_dqn = dqn.get_symbol def relay_dqn(): return tvm.relay.testing.dqn.get_workload(1)[0] # squeezenet def mx_squeezenet(version): return squeezenet.get_symbol(version=version) def relay_squeezenet(version): return tvm.relay.testing.squeezenet.get_workload(1, version=version)[0] # inception mx_inception_v3 = inception_v3.get_symbol def relay_inception_v3(): return tvm.relay.testing.inception_v3.get_workload(1)[0] # dcgan generator mx_dcgan = dcgan.get_symbol def relay_dcgan(batch_size): return tvm.relay.testing.dcgan.get_workload(batch_size=batch_size)[0]
https://github.com/zk-ml/tachikoma
tests/python/frontend/mxnet/model_zoo/dcgan.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=unused-argument """ The MXNet symbol of DCGAN generator Adopted from: https://github.com/tqchen/mxnet-gan/blob/main/mxgan/generator.py Reference: Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arXiv preprint arXiv:1511.06434 (2015). """ import mxnet as mx def deconv2d(data, ishape, oshape, kshape, name, stride=(2, 2)): """a deconv layer that enlarges the feature map""" target_shape = (oshape[-2], oshape[-1]) pad_y = (kshape[0] - 1) // 2 pad_x = (kshape[1] - 1) // 2 adj_y = (target_shape[0] + 2 * pad_y - kshape[0]) % stride[0] adj_x = (target_shape[1] + 2 * pad_x - kshape[1]) % stride[1] net = mx.sym.Deconvolution( data, kernel=kshape, stride=stride, pad=(pad_y, pad_x), adj=(adj_y, adj_x), num_filter=oshape[0], no_bias=True, name=name, ) return net def deconv2d_bn_relu(data, prefix, **kwargs): """a block of deconv + batch norm + relu""" eps = 1e-5 + 1e-12 net = deconv2d(data, name="%s_deconv" % prefix, **kwargs) net = mx.sym.BatchNorm(net, eps=eps, name="%s_bn" % prefix) net = mx.sym.Activation(net, name="%s_act" % prefix, act_type="relu") return net def get_symbol(oshape=(3, 64, 64), ngf=128, code=None): """get symbol of dcgan generator""" assert oshape[-1] == 64, "Only support 64x64 image" assert oshape[-2] == 64, "Only support 64x64 image" code = mx.sym.Variable("data") if code is None else code net = mx.sym.FullyConnected( code, name="g1", num_hidden=ngf * 8 * 4 * 4, no_bias=True, flatten=False ) net = mx.sym.Activation(net, act_type="relu") # 4 x 4 net = mx.sym.reshape(net, shape=(-1, ngf * 8, 4, 4)) # 8 x 8 net = deconv2d_bn_relu( net, ishape=(ngf * 8, 4, 4), oshape=(ngf * 4, 8, 8), kshape=(4, 4), prefix="g2" ) # 16x16 net = deconv2d_bn_relu( net, ishape=(ngf * 4, 8, 8), oshape=(ngf * 2, 16, 16), kshape=(4, 4), prefix="g3" ) # 32x32 net = deconv2d_bn_relu( net, ishape=(ngf * 2, 16, 16), oshape=(ngf, 32, 32), kshape=(4, 4), prefix="g4" ) # 64x64 net = deconv2d(net, ishape=(ngf, 32, 32), oshape=oshape[-3:], kshape=(4, 4), name="g5_deconv") net = mx.sym.Activation(net, act_type="tanh") return net
https://github.com/zk-ml/tachikoma
tests/python/frontend/mxnet/model_zoo/dqn.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ The mxnet symbol of Nature DQN Reference: Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning." Nature 518.7540 (2015): 529. """ import mxnet as mx def get_symbol(num_action=18): data = mx.sym.Variable(name="data") net = mx.sym.Convolution(data, kernel=(8, 8), stride=(4, 4), num_filter=32, name="conv1") net = mx.sym.Activation(net, act_type="relu", name="relu1") net = mx.sym.Convolution(net, kernel=(4, 4), stride=(2, 2), num_filter=64, name="conv2") net = mx.sym.Activation(net, act_type="relu", name="relu2") net = mx.sym.Convolution(net, kernel=(3, 3), stride=(1, 1), num_filter=64, name="conv3") net = mx.sym.Activation(net, act_type="relu", name="relu3") net = mx.sym.FullyConnected(net, num_hidden=512, name="fc4") net = mx.sym.Activation(net, act_type="relu", name="relu4") net = mx.sym.FullyConnected(net, num_hidden=num_action, name="fc5", flatten=False) return net
https://github.com/zk-ml/tachikoma
tests/python/frontend/mxnet/model_zoo/inception_v3.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ Inception V3, suitable for images with around 299 x 299 Reference: Szegedy, Christian, et al. "Rethinking the Inception Architecture for Computer Vision." arXiv preprint arXiv:1512.00567 (2015). Adopted from https://github.com/apache/incubator-mxnet/blob/master/ example/image-classification/symbols/inception-v3.py """ import mxnet as mx import numpy as np def Conv(data, num_filter, kernel=(1, 1), stride=(1, 1), pad=(0, 0), name=None, suffix=""): conv = mx.sym.Convolution( data=data, num_filter=num_filter, kernel=kernel, stride=stride, pad=pad, no_bias=True, name="%s%s_conv2d" % (name, suffix), ) bn = mx.sym.BatchNorm(data=conv, eps=2e-5, name="%s%s_batchnorm" % (name, suffix)) act = mx.sym.Activation(data=bn, act_type="relu", name="%s%s_relu" % (name, suffix)) return act def Inception7A( data, num_1x1, num_3x3_red, num_3x3_1, num_3x3_2, num_5x5_red, num_5x5, pool, proj, name ): tower_1x1 = Conv(data, num_1x1, name=("%s_conv" % name)) tower_5x5 = Conv(data, num_5x5_red, name=("%s_tower" % name), suffix="_conv") tower_5x5 = Conv( tower_5x5, num_5x5, kernel=(5, 5), pad=(2, 2), name=("%s_tower" % name), suffix="_conv_1" ) tower_3x3 = Conv(data, num_3x3_red, name=("%s_tower_1" % name), suffix="_conv") tower_3x3 = Conv( tower_3x3, num_3x3_1, kernel=(3, 3), pad=(1, 1), name=("%s_tower_1" % name), suffix="_conv_1", ) tower_3x3 = Conv( tower_3x3, num_3x3_2, kernel=(3, 3), pad=(1, 1), name=("%s_tower_1" % name), suffix="_conv_2", ) pooling = mx.sym.Pooling( data=data, kernel=(3, 3), stride=(1, 1), pad=(1, 1), pool_type=pool, name=("%s_pool_%s_pool" % (pool, name)), ) cproj = Conv(pooling, proj, name=("%s_tower_2" % name), suffix="_conv") concat = mx.sym.Concat( *[tower_1x1, tower_5x5, tower_3x3, cproj], name="ch_concat_%s_chconcat" % name ) return concat # First Downsample def Inception7B(data, num_3x3, num_d3x3_red, num_d3x3_1, num_d3x3_2, pool, name): tower_3x3 = Conv( data, num_3x3, kernel=(3, 3), pad=(0, 0), stride=(2, 2), name=("%s_conv" % name) ) tower_d3x3 = Conv(data, num_d3x3_red, name=("%s_tower" % name), suffix="_conv") tower_d3x3 = Conv( tower_d3x3, num_d3x3_1, kernel=(3, 3), pad=(1, 1), stride=(1, 1), name=("%s_tower" % name), suffix="_conv_1", ) tower_d3x3 = Conv( tower_d3x3, num_d3x3_2, kernel=(3, 3), pad=(0, 0), stride=(2, 2), name=("%s_tower" % name), suffix="_conv_2", ) pooling = mx.sym.Pooling( data=data, kernel=(3, 3), stride=(2, 2), pad=(0, 0), pool_type="max", name=("max_pool_%s_pool" % name), ) concat = mx.sym.Concat(*[tower_3x3, tower_d3x3, pooling], name="ch_concat_%s_chconcat" % name) return concat def Inception7C( data, num_1x1, num_d7_red, num_d7_1, num_d7_2, num_q7_red, num_q7_1, num_q7_2, num_q7_3, num_q7_4, pool, proj, name, ): tower_1x1 = Conv(data=data, num_filter=num_1x1, kernel=(1, 1), name=("%s_conv" % name)) tower_d7 = Conv(data=data, num_filter=num_d7_red, name=("%s_tower" % name), suffix="_conv") tower_d7 = Conv( data=tower_d7, num_filter=num_d7_1, kernel=(1, 7), pad=(0, 3), name=("%s_tower" % name), suffix="_conv_1", ) tower_d7 = Conv( data=tower_d7, num_filter=num_d7_2, kernel=(7, 1), pad=(3, 0), name=("%s_tower" % name), suffix="_conv_2", ) tower_q7 = Conv(data=data, num_filter=num_q7_red, name=("%s_tower_1" % name), suffix="_conv") tower_q7 = Conv( data=tower_q7, num_filter=num_q7_1, kernel=(7, 1), pad=(3, 0), name=("%s_tower_1" % name), suffix="_conv_1", ) tower_q7 = Conv( data=tower_q7, num_filter=num_q7_2, kernel=(1, 7), pad=(0, 3), name=("%s_tower_1" % name), suffix="_conv_2", ) tower_q7 = Conv( data=tower_q7, num_filter=num_q7_3, kernel=(7, 1), pad=(3, 0), name=("%s_tower_1" % name), suffix="_conv_3", ) tower_q7 = Conv( data=tower_q7, num_filter=num_q7_4, kernel=(1, 7), pad=(0, 3), name=("%s_tower_1" % name), suffix="_conv_4", ) pooling = mx.sym.Pooling( data=data, kernel=(3, 3), stride=(1, 1), pad=(1, 1), pool_type=pool, name=("%s_pool_%s_pool" % (pool, name)), ) cproj = Conv( data=pooling, num_filter=proj, kernel=(1, 1), name=("%s_tower_2" % name), suffix="_conv" ) # concat concat = mx.sym.Concat( *[tower_1x1, tower_d7, tower_q7, cproj], name="ch_concat_%s_chconcat" % name ) return concat def Inception7D( data, num_3x3_red, num_3x3, num_d7_3x3_red, num_d7_1, num_d7_2, num_d7_3x3, pool, name ): tower_3x3 = Conv(data=data, num_filter=num_3x3_red, name=("%s_tower" % name), suffix="_conv") tower_3x3 = Conv( data=tower_3x3, num_filter=num_3x3, kernel=(3, 3), pad=(0, 0), stride=(2, 2), name=("%s_tower" % name), suffix="_conv_1", ) tower_d7_3x3 = Conv( data=data, num_filter=num_d7_3x3_red, name=("%s_tower_1" % name), suffix="_conv" ) tower_d7_3x3 = Conv( data=tower_d7_3x3, num_filter=num_d7_1, kernel=(1, 7), pad=(0, 3), name=("%s_tower_1" % name), suffix="_conv_1", ) tower_d7_3x3 = Conv( data=tower_d7_3x3, num_filter=num_d7_2, kernel=(7, 1), pad=(3, 0), name=("%s_tower_1" % name), suffix="_conv_2", ) tower_d7_3x3 = Conv( data=tower_d7_3x3, num_filter=num_d7_3x3, kernel=(3, 3), stride=(2, 2), name=("%s_tower_1" % name), suffix="_conv_3", ) pooling = mx.sym.Pooling( data=data, kernel=(3, 3), stride=(2, 2), pool_type=pool, name=("%s_pool_%s_pool" % (pool, name)), ) # concat concat = mx.sym.Concat(*[tower_3x3, tower_d7_3x3, pooling], name="ch_concat_%s_chconcat" % name) return concat def Inception7E( data, num_1x1, num_d3_red, num_d3_1, num_d3_2, num_3x3_d3_red, num_3x3, num_3x3_d3_1, num_3x3_d3_2, pool, proj, name, ): tower_1x1 = Conv(data=data, num_filter=num_1x1, kernel=(1, 1), name=("%s_conv" % name)) tower_d3 = Conv(data=data, num_filter=num_d3_red, name=("%s_tower" % name), suffix="_conv") tower_d3_a = Conv( data=tower_d3, num_filter=num_d3_1, kernel=(1, 3), pad=(0, 1), name=("%s_tower" % name), suffix="_mixed_conv", ) tower_d3_b = Conv( data=tower_d3, num_filter=num_d3_2, kernel=(3, 1), pad=(1, 0), name=("%s_tower" % name), suffix="_mixed_conv_1", ) tower_3x3_d3 = Conv( data=data, num_filter=num_3x3_d3_red, name=("%s_tower_1" % name), suffix="_conv" ) tower_3x3_d3 = Conv( data=tower_3x3_d3, num_filter=num_3x3, kernel=(3, 3), pad=(1, 1), name=("%s_tower_1" % name), suffix="_conv_1", ) tower_3x3_d3_a = Conv( data=tower_3x3_d3, num_filter=num_3x3_d3_1, kernel=(1, 3), pad=(0, 1), name=("%s_tower_1" % name), suffix="_mixed_conv", ) tower_3x3_d3_b = Conv( data=tower_3x3_d3, num_filter=num_3x3_d3_2, kernel=(3, 1), pad=(1, 0), name=("%s_tower_1" % name), suffix="_mixed_conv_1", ) pooling = mx.sym.Pooling( data=data, kernel=(3, 3), stride=(1, 1), pad=(1, 1), pool_type=pool, name=("%s_pool_%s_pool" % (pool, name)), ) cproj = Conv( data=pooling, num_filter=proj, kernel=(1, 1), name=("%s_tower_2" % name), suffix="_conv" ) # concat concat = mx.sym.Concat( *[tower_1x1, tower_d3_a, tower_d3_b, tower_3x3_d3_a, tower_3x3_d3_b, cproj], name="ch_concat_%s_chconcat" % name, ) return concat def get_symbol(num_classes=1000, **kwargs): data = mx.sym.Variable(name="data") # stage 1 conv = Conv(data, 32, kernel=(3, 3), stride=(2, 2), name="conv") conv_1 = Conv(conv, 32, kernel=(3, 3), name="conv_1") conv_2 = Conv(conv_1, 64, kernel=(3, 3), pad=(1, 1), name="conv_2") pool = mx.sym.Pooling(data=conv_2, kernel=(3, 3), stride=(2, 2), pool_type="max", name="pool") # stage 2 conv_3 = Conv(pool, 80, kernel=(1, 1), name="conv_3") conv_4 = Conv(conv_3, 192, kernel=(3, 3), name="conv_4") pool1 = mx.sym.Pooling(data=conv_4, kernel=(3, 3), stride=(2, 2), pool_type="max", name="pool1") # # stage 3 in3a = Inception7A(pool1, 64, 64, 96, 96, 48, 64, "avg", 32, "mixed") in3b = Inception7A(in3a, 64, 64, 96, 96, 48, 64, "avg", 64, "mixed_1") in3c = Inception7A(in3b, 64, 64, 96, 96, 48, 64, "avg", 64, "mixed_2") in3d = Inception7B(in3c, 384, 64, 96, 96, "max", "mixed_3") # stage 4 in4a = Inception7C(in3d, 192, 128, 128, 192, 128, 128, 128, 128, 192, "avg", 192, "mixed_4") in4b = Inception7C(in4a, 192, 160, 160, 192, 160, 160, 160, 160, 192, "avg", 192, "mixed_5") in4c = Inception7C(in4b, 192, 160, 160, 192, 160, 160, 160, 160, 192, "avg", 192, "mixed_6") in4d = Inception7C(in4c, 192, 192, 192, 192, 192, 192, 192, 192, 192, "avg", 192, "mixed_7") in4e = Inception7D(in4d, 192, 320, 192, 192, 192, 192, "max", "mixed_8") # stage 5 in5a = Inception7E(in4e, 320, 384, 384, 384, 448, 384, 384, 384, "avg", 192, "mixed_9") in5b = Inception7E(in5a, 320, 384, 384, 384, 448, 384, 384, 384, "max", 192, "mixed_10") # pool pool = mx.sym.Pooling( data=in5b, kernel=(8, 8), stride=(1, 1), pool_type="avg", name="global_pool" ) flatten = mx.sym.Flatten(data=pool, name="flatten") fc1 = mx.sym.FullyConnected(data=flatten, num_hidden=num_classes, name="fc1", flatten=False) softmax = mx.sym.SoftmaxOutput(data=fc1, name="softmax") return softmax
https://github.com/zk-ml/tachikoma
tests/python/frontend/mxnet/model_zoo/mlp.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ a simple multilayer perceptron """ import mxnet as mx def get_symbol(num_classes=10, **kwargs): data = mx.symbol.Variable("data") data = mx.sym.Flatten(data=data) try: fc1 = mx.symbol.FullyConnected(data=data, name="fc1", num_hidden=128, flatten=False) act1 = mx.symbol.Activation(data=fc1, name="relu1", act_type="relu") fc2 = mx.symbol.FullyConnected(data=act1, name="fc2", num_hidden=64, flatten=False) act2 = mx.symbol.Activation(data=fc2, name="relu2", act_type="relu") fc3 = mx.symbol.FullyConnected(data=act2, name="fc3", num_hidden=num_classes, flatten=False) mlp = mx.symbol.softmax(data=fc3, name="softmax") except: fc1 = mx.symbol.FullyConnected(data=data, name="fc1", num_hidden=128) act1 = mx.symbol.Activation(data=fc1, name="relu1", act_type="relu") fc2 = mx.symbol.FullyConnected(data=act1, name="fc2", num_hidden=64) act2 = mx.symbol.Activation(data=fc2, name="relu2", act_type="relu") fc3 = mx.symbol.FullyConnected(data=act2, name="fc3", num_hidden=num_classes) mlp = mx.symbol.softmax(data=fc3, name="softmax") return mlp
https://github.com/zk-ml/tachikoma
tests/python/frontend/mxnet/model_zoo/resnet.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ Adapted from https://github.com/tornadomeet/ResNet/blob/master/symbol_resnet.py Original author Wei Wu Implemented the following paper: Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. "Identity Mappings in Deep Residual Networks" """ import mxnet as mx import numpy as np def residual_unit( data, num_filter, stride, dim_match, name, bottle_neck=True, bn_mom=0.9, workspace=256, memonger=False, ): """Return ResNet Unit symbol for building ResNet Parameters ---------- data : str Input data num_filter : int Number of output channels bnf : int Bottle neck channels factor with regard to num_filter stride : tuple Stride used in convolution dim_match : Boolean True means channel number between input and output is the same, otherwise means differ name : str Base name of the operators workspace : int Workspace used in convolution operator """ if bottle_neck: bn1 = mx.sym.BatchNorm( data=data, fix_gamma=False, eps=2e-5, momentum=bn_mom, name=name + "_bn1" ) act1 = mx.sym.Activation(data=bn1, act_type="relu", name=name + "_relu1") conv1 = mx.sym.Convolution( data=act1, num_filter=int(num_filter * 0.25), kernel=(1, 1), stride=stride, pad=(0, 0), no_bias=True, workspace=workspace, name=name + "_conv1", ) bn2 = mx.sym.BatchNorm( data=conv1, fix_gamma=False, eps=2e-5, momentum=bn_mom, name=name + "_bn2" ) act2 = mx.sym.Activation(data=bn2, act_type="relu", name=name + "_relu2") conv2 = mx.sym.Convolution( data=act2, num_filter=int(num_filter * 0.25), kernel=(3, 3), stride=(1, 1), pad=(1, 1), no_bias=True, workspace=workspace, name=name + "_conv2", ) bn3 = mx.sym.BatchNorm( data=conv2, fix_gamma=False, eps=2e-5, momentum=bn_mom, name=name + "_bn3" ) act3 = mx.sym.Activation(data=bn3, act_type="relu", name=name + "_relu3") conv3 = mx.sym.Convolution( data=act3, num_filter=num_filter, kernel=(1, 1), stride=(1, 1), pad=(0, 0), no_bias=True, workspace=workspace, name=name + "_conv3", ) if dim_match: shortcut = data else: shortcut = mx.sym.Convolution( data=act1, num_filter=num_filter, kernel=(1, 1), stride=stride, no_bias=True, workspace=workspace, name=name + "_sc", ) if memonger: shortcut._set_attr(mirror_stage="True") return conv3 + shortcut else: bn1 = mx.sym.BatchNorm( data=data, fix_gamma=False, momentum=bn_mom, eps=2e-5, name=name + "_bn1" ) act1 = mx.sym.Activation(data=bn1, act_type="relu", name=name + "_relu1") conv1 = mx.sym.Convolution( data=act1, num_filter=num_filter, kernel=(3, 3), stride=stride, pad=(1, 1), no_bias=True, workspace=workspace, name=name + "_conv1", ) bn2 = mx.sym.BatchNorm( data=conv1, fix_gamma=False, momentum=bn_mom, eps=2e-5, name=name + "_bn2" ) act2 = mx.sym.Activation(data=bn2, act_type="relu", name=name + "_relu2") conv2 = mx.sym.Convolution( data=act2, num_filter=num_filter, kernel=(3, 3), stride=(1, 1), pad=(1, 1), no_bias=True, workspace=workspace, name=name + "_conv2", ) if dim_match: shortcut = data else: shortcut = mx.sym.Convolution( data=act1, num_filter=num_filter, kernel=(1, 1), stride=stride, no_bias=True, workspace=workspace, name=name + "_sc", ) if memonger: shortcut._set_attr(mirror_stage="True") return conv2 + shortcut def resnet( units, num_stages, filter_list, num_classes, image_shape, bottle_neck=True, bn_mom=0.9, workspace=256, dtype="float32", memonger=False, ): """Return ResNet symbol of Parameters ---------- units : list Number of units in each stage num_stages : int Number of stage filter_list : list Channel size of each stage num_classes : int Output size of symbol dataset : str Dataset type, only cifar10 and imagenet supports workspace : int Workspace used in convolution operator dtype : str Precision (float32 or float16) """ num_unit = len(units) assert num_unit == num_stages data = mx.sym.Variable(name="data") if dtype == "float32": # data = mx.sym.identity(data=data, name='id') data = data else: if dtype == "float16": data = mx.sym.Cast(data=data, dtype=np.float16) data = mx.sym.BatchNorm(data=data, fix_gamma=True, eps=2e-5, momentum=bn_mom, name="bn_data") (nchannel, height, width) = image_shape if height <= 32: # such as cifar10 body = mx.sym.Convolution( data=data, num_filter=filter_list[0], kernel=(3, 3), stride=(1, 1), pad=(1, 1), no_bias=True, name="conv0", workspace=workspace, ) else: # often expected to be 224 such as imagenet body = mx.sym.Convolution( data=data, num_filter=filter_list[0], kernel=(7, 7), stride=(2, 2), pad=(3, 3), no_bias=True, name="conv0", workspace=workspace, ) body = mx.sym.BatchNorm(data=body, fix_gamma=False, eps=2e-5, momentum=bn_mom, name="bn0") body = mx.sym.Activation(data=body, act_type="relu", name="relu0") body = mx.sym.Pooling(data=body, kernel=(3, 3), stride=(2, 2), pad=(1, 1), pool_type="max") for i in range(num_stages): body = residual_unit( body, filter_list[i + 1], (1 if i == 0 else 2, 1 if i == 0 else 2), False, name="stage%d_unit%d" % (i + 1, 1), bottle_neck=bottle_neck, workspace=workspace, memonger=memonger, ) for j in range(units[i] - 1): body = residual_unit( body, filter_list[i + 1], (1, 1), True, name="stage%d_unit%d" % (i + 1, j + 2), bottle_neck=bottle_neck, workspace=workspace, memonger=memonger, ) bn1 = mx.sym.BatchNorm(data=body, fix_gamma=False, eps=2e-5, momentum=bn_mom, name="bn1") relu1 = mx.sym.Activation(data=bn1, act_type="relu", name="relu1") # Although kernel is not used here when global_pool=True, we should put one pool1 = mx.sym.Pooling( data=relu1, global_pool=True, kernel=(7, 7), pool_type="avg", name="pool1" ) flat = mx.sym.Flatten(data=pool1) try: fc1 = mx.sym.FullyConnected(data=flat, num_hidden=num_classes, name="fc1", flatten=False) except: fc1 = mx.sym.FullyConnected(data=flat, num_hidden=num_classes, name="fc1") if dtype == "float16": fc1 = mx.sym.Cast(data=fc1, dtype=np.float32) return mx.sym.softmax(data=fc1, name="softmax") def get_symbol(num_classes, num_layers, image_shape, conv_workspace=256, dtype="float32", **kwargs): """ Adapted from https://github.com/tornadomeet/ResNet/blob/master/train_resnet.py Original author Wei Wu """ image_shape = [int(l) for l in image_shape.split(",")] (nchannel, height, width) = image_shape if height <= 28: num_stages = 3 if (num_layers - 2) % 9 == 0 and num_layers >= 164: per_unit = [(num_layers - 2) // 9] filter_list = [16, 64, 128, 256] bottle_neck = True elif (num_layers - 2) % 6 == 0 and num_layers < 164: per_unit = [(num_layers - 2) // 6] filter_list = [16, 16, 32, 64] bottle_neck = False else: raise ValueError( "no experiments done on num_layers {}, you can do it yourself".format(num_layers) ) units = per_unit * num_stages else: if num_layers >= 50: filter_list = [64, 256, 512, 1024, 2048] bottle_neck = True else: filter_list = [64, 64, 128, 256, 512] bottle_neck = False num_stages = 4 if num_layers == 18: units = [2, 2, 2, 2] elif num_layers == 34: units = [3, 4, 6, 3] elif num_layers == 50: units = [3, 4, 6, 3] elif num_layers == 101: units = [3, 4, 23, 3] elif num_layers == 152: units = [3, 8, 36, 3] elif num_layers == 200: units = [3, 24, 36, 3] elif num_layers == 269: units = [3, 30, 48, 8] else: raise ValueError( "no experiments done on num_layers {}, you can do it yourself".format(num_layers) ) return resnet( units=units, num_stages=num_stages, filter_list=filter_list, num_classes=num_classes, image_shape=image_shape, bottle_neck=bottle_neck, workspace=conv_workspace, dtype=dtype, )
https://github.com/zk-ml/tachikoma
tests/python/frontend/mxnet/model_zoo/squeezenet.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ Symbol of SqueezeNet Reference: Iandola, Forrest N., et al. "Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size." (2016). """ import mxnet as mx # Helpers def _make_fire(net, squeeze_channels, expand1x1_channels, expand3x3_channels): net = _make_fire_conv(net, squeeze_channels, 1, 0) left = _make_fire_conv(net, expand1x1_channels, 1, 0) right = _make_fire_conv(net, expand3x3_channels, 3, 1) # NOTE : Assume NCHW layout here net = mx.sym.concat(left, right, dim=1) return net def _make_fire_conv(net, channels, kernel_size, padding=0): net = mx.sym.Convolution( net, num_filter=channels, kernel=(kernel_size, kernel_size), pad=(padding, padding) ) net = mx.sym.Activation(net, act_type="relu") return net # Net def get_symbol(num_classes=1000, version="1.0", **kwargs): """Get symbol of SqueezeNet Parameters ---------- num_classes: int The number of classification results version : str, optional "1.0" or "1.1" of SqueezeNet """ assert version in [ "1.0", "1.1", ], "Unsupported SqueezeNet version {version}:" "1.0 or 1.1 expected".format(version=version) net = mx.sym.Variable("data") if version == "1.0": net = mx.sym.Convolution(net, num_filter=96, kernel=(7, 7), stride=(2, 2), pad=(3, 3)) net = mx.sym.Activation(net, act_type="relu") net = mx.sym.Pooling(data=net, kernel=(3, 3), pool_type="max", stride=(2, 2)) net = _make_fire(net, 16, 64, 64) net = _make_fire(net, 16, 64, 64) net = _make_fire(net, 32, 128, 128) net = mx.sym.Pooling(data=net, kernel=(3, 3), pool_type="max", stride=(2, 2)) net = _make_fire(net, 32, 128, 128) net = _make_fire(net, 48, 192, 192) net = _make_fire(net, 48, 192, 192) net = _make_fire(net, 64, 256, 256) net = mx.sym.Pooling(data=net, kernel=(3, 3), pool_type="max", stride=(2, 2)) net = _make_fire(net, 64, 256, 256) else: net = mx.sym.Convolution(net, num_filter=64, kernel=(3, 3), stride=(2, 2), pad=(1, 1)) net = mx.sym.Activation(net, act_type="relu") net = mx.sym.Pooling(data=net, kernel=(3, 3), pool_type="max", stride=(2, 2)) net = _make_fire(net, 16, 64, 64) net = _make_fire(net, 16, 64, 64) net = mx.sym.Pooling(data=net, kernel=(3, 3), pool_type="max", stride=(2, 2)) net = _make_fire(net, 32, 128, 128) net = _make_fire(net, 32, 128, 128) net = mx.sym.Pooling(data=net, kernel=(3, 3), pool_type="max", stride=(2, 2)) net = _make_fire(net, 48, 192, 192) net = _make_fire(net, 48, 192, 192) net = _make_fire(net, 64, 256, 256) net = _make_fire(net, 64, 256, 256) net = mx.sym.Dropout(net, p=0.5) net = mx.sym.Convolution(net, num_filter=num_classes, kernel=(1, 1)) net = mx.sym.Activation(net, act_type="relu") net = mx.sym.Pooling(data=net, global_pool=True, kernel=(13, 13), pool_type="avg") net = mx.sym.flatten(net) return mx.sym.softmax(net)
https://github.com/zk-ml/tachikoma
tests/python/frontend/mxnet/model_zoo/vgg.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """References: Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014). """ import mxnet as mx import numpy as np def get_feature(internel_layer, layers, filters, batch_norm=False, **kwargs): for i, num in enumerate(layers): for j in range(num): internel_layer = mx.sym.Convolution( data=internel_layer, kernel=(3, 3), pad=(1, 1), num_filter=filters[i], name="conv%s_%s" % (i + 1, j + 1), ) if batch_norm: internel_layer = mx.symbol.BatchNorm( data=internel_layer, name="bn%s_%s" % (i + 1, j + 1) ) internel_layer = mx.sym.Activation( data=internel_layer, act_type="relu", name="relu%s_%s" % (i + 1, j + 1) ) internel_layer = mx.sym.Pooling( data=internel_layer, pool_type="max", kernel=(2, 2), stride=(2, 2), name="pool%s" % (i + 1), ) return internel_layer def get_classifier(input_data, num_classes, **kwargs): flatten = mx.sym.Flatten(data=input_data, name="flatten") try: fc6 = mx.sym.FullyConnected(data=flatten, num_hidden=4096, name="fc6", flatten=False) relu6 = mx.sym.Activation(data=fc6, act_type="relu", name="relu6") drop6 = mx.sym.Dropout(data=relu6, p=0.5, name="drop6") fc7 = mx.sym.FullyConnected(data=drop6, num_hidden=4096, name="fc7", flatten=False) relu7 = mx.sym.Activation(data=fc7, act_type="relu", name="relu7") drop7 = mx.sym.Dropout(data=relu7, p=0.5, name="drop7") fc8 = mx.sym.FullyConnected(data=drop7, num_hidden=num_classes, name="fc8", flatten=False) except: fc6 = mx.sym.FullyConnected(data=flatten, num_hidden=4096, name="fc6") relu6 = mx.sym.Activation(data=fc6, act_type="relu", name="relu6") drop6 = mx.sym.Dropout(data=relu6, p=0.5, name="drop6") fc7 = mx.sym.FullyConnected(data=drop6, num_hidden=4096, name="fc7") relu7 = mx.sym.Activation(data=fc7, act_type="relu", name="relu7") drop7 = mx.sym.Dropout(data=relu7, p=0.5, name="drop7") fc8 = mx.sym.FullyConnected(data=drop7, num_hidden=num_classes, name="fc8") return fc8 def get_symbol(num_classes, num_layers=11, batch_norm=False, dtype="float32", **kwargs): """ Parameters ---------- num_classes : int, default 1000 Number of classification classes. num_layers : int Number of layers for the variant of densenet. Options are 11, 13, 16, 19. batch_norm : bool, default False Use batch normalization. dtype: str, float32 or float16 Data precision. """ vgg_spec = { 11: ([1, 1, 2, 2, 2], [64, 128, 256, 512, 512]), 13: ([2, 2, 2, 2, 2], [64, 128, 256, 512, 512]), 16: ([2, 2, 3, 3, 3], [64, 128, 256, 512, 512]), 19: ([2, 2, 4, 4, 4], [64, 128, 256, 512, 512]), } if num_layers not in vgg_spec: raise ValueError( "Invalide num_layers {}. Possible choices are 11,13,16,19.".format(num_layers) ) layers, filters = vgg_spec[num_layers] data = mx.sym.Variable(name="data") if dtype == "float16": data = mx.sym.Cast(data=data, dtype=np.float16) feature = get_feature(data, layers, filters, batch_norm) classifier = get_classifier(feature, num_classes) if dtype == "float16": classifier = mx.sym.Cast(data=classifier, dtype=np.float32) symbol = mx.sym.softmax(data=classifier, name="softmax") return symbol
https://github.com/zk-ml/tachikoma
tests/python/frontend/mxnet/test_forward.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import operator import random import numpy as np import pytest import tvm import tvm.testing from tvm import relay, te from tvm.contrib import graph_executor import model_zoo import mxnet as mx from mxnet import gluon from mxnet.gluon.model_zoo import vision def verify_mxnet_frontend_impl( mx_symbol, data_shape=(1, 3, 224, 224), out_shape=(1, 1000), gluon_impl=False, name=None, dtype="float32", ): """Use name different from test to avoid pytest picking it up""" if gluon_impl: def get_gluon_output(name, x): net = vision.get_model(name) net.collect_params().initialize(mx.init.Xavier()) net_sym = gluon.nn.SymbolBlock( outputs=net(mx.sym.var("data")), inputs=mx.sym.var("data"), params=net.collect_params(), ) out = net_sym(mx.nd.array(x.astype(dtype))).asnumpy() return out, net_sym else: def get_mxnet_output(symbol, x, dtype="float32"): from collections import namedtuple Batch = namedtuple("Batch", ["data"]) mod = mx.mod.Module(symbol, label_names=None) mod.bind(data_shapes=[("data", x.shape)], for_training=False) mod.init_params() mod.forward(Batch([mx.nd.array(x.astype(dtype))])) out = mod.get_outputs()[0].asnumpy() args, auxs = mod.get_params() return out, args, auxs def get_tvm_output(symbol, x, args, auxs, target, dev, dtype="float32"): shape_dict = {"data": x.shape} if gluon_impl: mod, params = relay.frontend.from_mxnet(symbol, shape_dict) else: mod, params = relay.frontend.from_mxnet( symbol, shape_dict, arg_params=args, aux_params=auxs ) with tvm.transform.PassContext(opt_level=3): lib = relay.build(mod, target, params=params) m = graph_executor.GraphModule(lib["default"](dev)) # set inputs m.set_input("data", tvm.nd.array(x.astype(dtype))) m.run() # get outputs out = m.get_output(0, tvm.nd.empty(out_shape, dtype)) return out.numpy() # random input x = np.random.uniform(size=data_shape) if gluon_impl: gluon_out, gluon_sym = get_gluon_output(name, x) for target, dev in tvm.testing.enabled_targets(): tvm_out = get_tvm_output(gluon_sym, x, None, None, target, dev, dtype) tvm.testing.assert_allclose(gluon_out, tvm_out, rtol=1e-5, atol=1e-5) else: mx_out, args, auxs = get_mxnet_output(mx_symbol, x, dtype) assert "data" not in args for target, dev in tvm.testing.enabled_targets(): tvm_out = get_tvm_output(mx_symbol, x, args, auxs, target, dev, dtype) tvm.testing.assert_allclose(mx_out, tvm_out, rtol=1e-5, atol=1e-5) @tvm.testing.uses_gpu def test_forward_mlp(): mlp = model_zoo.mx_mlp() verify_mxnet_frontend_impl(mlp, data_shape=(1, 1, 28, 28), out_shape=(1, 10)) @tvm.testing.uses_gpu def test_forward_vgg(): for n in [11]: mx_sym = model_zoo.mx_vgg(n) verify_mxnet_frontend_impl(mx_sym) @tvm.testing.uses_gpu def test_forward_resnet(): for n in [18]: mx_sym = model_zoo.mx_resnet(18) verify_mxnet_frontend_impl(mx_sym) @tvm.testing.uses_gpu def test_forward_leaky_relu(): data = mx.sym.var("data") data = mx.sym.concat(data, -data, dim=1) # negative part explicitly mx_sym = mx.sym.LeakyReLU(data) verify_mxnet_frontend_impl(mx_sym, (1, 3, 100, 100), (1, 6, 100, 100)) mx_sym = mx.sym.LeakyReLU(data, act_type="leaky") verify_mxnet_frontend_impl(mx_sym, (1, 3, 100, 100), (1, 6, 100, 100)) @tvm.testing.uses_gpu def test_forward_elu(): data = mx.sym.var("data") data = mx.sym.concat(data, -data, dim=1) # negative part explicitly mx_sym = mx.sym.LeakyReLU(data, act_type="elu") verify_mxnet_frontend_impl(mx_sym, (1, 3, 100, 100), (1, 6, 100, 100)) @tvm.testing.uses_gpu def test_forward_rrelu(): data = mx.sym.var("data") data = mx.sym.concat(data, -data, dim=1) # negative part explicitly mx_sym = mx.sym.LeakyReLU(data, act_type="rrelu", lower_bound=0.3, upper_bound=0.7) verify_mxnet_frontend_impl(mx_sym[0], (1, 3, 100, 100), (1, 6, 100, 100)) @tvm.testing.uses_gpu def test_forward_prelu(): data = mx.sym.var("data") data = mx.sym.concat(data, -data, dim=1) # negative part explicitly mx_sym = mx.sym.LeakyReLU(data, act_type="prelu") verify_mxnet_frontend_impl(mx_sym, (1, 3, 100, 100), (1, 6, 100, 100)) @tvm.testing.uses_gpu def test_forward_gelu(): data = mx.sym.var("data") data = mx.sym.concat(data, -data, dim=1) # negative part explicitly mx_sym = mx.sym.LeakyReLU(data, act_type="gelu") verify_mxnet_frontend_impl(mx_sym, (1, 3, 100, 100), (1, 6, 100, 100)) @tvm.testing.uses_gpu def test_forward_softrelu(): data = mx.sym.var("data") data = mx.sym.concat(data, -data, dim=1) # negative part explicitly mx_sym = mx.sym.Activation(data, act_type="softrelu") verify_mxnet_frontend_impl(mx_sym, (1, 3, 100, 100), (1, 6, 100, 100)) @tvm.testing.uses_gpu def test_forward_fc_flatten(): # test flatten=True option in mxnet 0.11.1 data = mx.sym.var("data") try: mx_sym = mx.sym.FullyConnected(data, num_hidden=100, flatten=True) verify_mxnet_frontend_impl(mx_sym, (1, 3, 100, 100), (1, 100)) mx_sym = mx.sym.FullyConnected(mx.sym.Flatten(data), num_hidden=100, flatten=False) verify_mxnet_frontend_impl(mx_sym, (1, 3, 100, 100), (1, 100)) except: pass @tvm.testing.uses_gpu def test_forward_clip(): data = mx.sym.var("data") data = mx.sym.concat(data, -data, dim=1) # negative part explicitly mx_sym = mx.sym.clip(data, a_min=0, a_max=1) verify_mxnet_frontend_impl(mx_sym, (1, 3, 100, 100), (1, 6, 100, 100)) @tvm.testing.uses_gpu def test_forward_split(): data = mx.sym.var("data") mx_sym = mx.sym.split(data, axis=1, num_outputs=4, squeeze_axis=False) verify_mxnet_frontend_impl(mx_sym, (1, 4, 2, 1), (1, 1, 2, 1)) @tvm.testing.uses_gpu def test_forward_split_squeeze(): data = mx.sym.var("data") mx_sym = mx.sym.split(data, axis=1, num_outputs=4, squeeze_axis=True) verify_mxnet_frontend_impl(mx_sym, (1, 4, 2, 1), (1, 2, 1)) @tvm.testing.uses_gpu def test_forward_expand_dims(): data = mx.sym.var("data") mx_sym = mx.sym.expand_dims(data, axis=1) verify_mxnet_frontend_impl(mx_sym, (2, 3, 4), (2, 1, 3, 4)) @tvm.testing.uses_gpu def test_forward_pooling(): data = mx.sym.var("data") mx_sym = mx.sym.Pooling(data, kernel=(3, 3), pad=(1, 1), pool_type="avg") verify_mxnet_frontend_impl(mx_sym, (1, 20, 8, 8), (1, 20, 8, 8)) mx_sym = mx.sym.Pooling(data, kernel=(3, 3), pad=(1, 1), pool_type="max") verify_mxnet_frontend_impl(mx_sym, (1, 20, 8, 8), (1, 20, 8, 8)) @tvm.testing.uses_gpu def test_forward_pooling3d(): data = mx.sym.var("data") mx_sym = mx.sym.Pooling(data, kernel=(3, 3, 3), pad=(1, 1, 1), pool_type="avg") verify_mxnet_frontend_impl(mx_sym, (1, 20, 8, 8, 8), (1, 20, 8, 8, 8)) mx_sym = mx.sym.Pooling(data, kernel=(3, 3, 3), pad=(1, 1, 1), pool_type="max") verify_mxnet_frontend_impl(mx_sym, (1, 20, 8, 8, 8), (1, 20, 8, 8, 8)) @tvm.testing.uses_gpu def test_forward_adaptive_pooling(): data = mx.sym.var("data") mx_sym = mx.sym.contrib.AdaptiveAvgPooling2D(data, output_size=(1,)) verify_mxnet_frontend_impl(mx_sym, (1, 20, 8, 8), (1, 20, 1, 1)) mx_sym = mx.sym.contrib.AdaptiveAvgPooling2D(data, output_size=(3, 3)) verify_mxnet_frontend_impl(mx_sym, (1, 20, 8, 8), (1, 20, 3, 3)) @tvm.testing.uses_gpu def test_forward_lrn(): data = mx.sym.var("data") mx_sym = mx.sym.LRN(data, alpha=2, beta=2, knorm=1, nsize=5) verify_mxnet_frontend_impl(mx_sym, (1, 10, 24, 24), (1, 10, 24, 24)) @tvm.testing.uses_gpu def test_forward_ones(): data = mx.sym.var("data") ones = mx.sym.ones(shape=(2, 3, 4), dtype="float32") mx_sym = mx.sym.elemwise_add(data, ones) verify_mxnet_frontend_impl(mx_sym, (2, 3, 4), (2, 3, 4)) @tvm.testing.uses_gpu def test_forward_zeros(): data = mx.sym.var("data") zeros = mx.sym.zeros(shape=(2, 3, 4), dtype="float32") mx_sym = mx.sym.elemwise_add(data, zeros) verify_mxnet_frontend_impl(mx_sym, (2, 3, 4), (2, 3, 4)) @tvm.testing.uses_gpu def test_forward_ones_like(): data = mx.sym.var("data") mx_sym = mx.sym.ones_like(data, dtype="float32") verify_mxnet_frontend_impl(mx_sym, (2, 3, 4), (2, 3, 4)) @tvm.testing.uses_gpu def test_forward_make_loss(): data = mx.sym.var("data") ones = mx.sym.ones(shape=(2, 3, 4), dtype="float32") mx_sym = mx.sym.make_loss((data - ones) ** 2 / 2, dtype="float32") verify_mxnet_frontend_impl(mx_sym, (2, 3, 4), (2, 3, 4)) @tvm.testing.uses_gpu def test_forward_zeros_like(): data = mx.sym.var("data") mx_sym = mx.sym.zeros_like(data, dtype="float32") verify_mxnet_frontend_impl(mx_sym, (2, 3, 4), (2, 3, 4)) @tvm.testing.uses_gpu def test_forward_argmax(): data = mx.sym.var("data") mx_sym = mx.sym.argmax(data, axis=1) verify_mxnet_frontend_impl(mx_sym, (5, 3), (5,)) @tvm.testing.uses_gpu def test_forward_argmin(): data = mx.sym.var("data") mx_sym = mx.sym.argmin(data, axis=0) verify_mxnet_frontend_impl(mx_sym, (5, 4), (4,)) @tvm.testing.uses_gpu def test_forward_slice(): data = mx.sym.var("data") mx_sym = mx.sym.slice(data, begin=(0, 1), end=(2, 4)) verify_mxnet_frontend_impl(mx_sym, (3, 4), (2, 3)) mx_sym = mx.sym.slice(data, begin=(-1, 1), end=(-3, 4), step=(-1, 2)) verify_mxnet_frontend_impl(mx_sym, (3, 4), (2, 2)) @tvm.testing.uses_gpu def test_forward_where(): cond = mx.sym.var("cond") x = mx.sym.var("x") y = mx.sym.var("y") dshape = (2, 2) dtype = "float32" mx_sym = mx.sym.where(cond, x, y) np_cond = np.array([[0, 1], [-1, 0]]).astype(dtype) np_x = np.random.uniform(size=dshape).astype(dtype) np_y = np.random.uniform(size=dshape).astype(dtype) mx_cond = mx.nd.array(np_cond) mx_x = mx.nd.array(np_x) mx_y = mx.nd.array(np_y) shapes = {"cond": dshape, "x": dshape, "y": dshape} mod = mx.mod.Module(mx_sym, label_names=None, data_names=["cond", "x", "y"]) mod.bind(data_shapes=shapes.items(), for_training=False) mod.init_params() args, auxs = mod.get_params() mx_out = mx.nd.where(mx_cond, mx_x, mx_y).asnumpy() mod, _ = relay.frontend.from_mxnet(mx_sym, shapes, args, auxs) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( np_cond, np_x, np_y ) tvm.testing.assert_allclose(op_res.numpy(), mx_out) @tvm.testing.uses_gpu def test_forward_arange(): def _mx_symbol(F, start, stop, step): if start is None and step is None: sym = F.arange(stop) elif start is None: sym = F.arange(stop, step=step) elif step is None: sym = F.arange(start, stop) else: sym = F.arange(start, stop, step) return sym def verify(start, stop, step): ref_res = _mx_symbol(mx.nd, start, stop, step) mx_sym = _mx_symbol(mx.sym, start, stop, step) mod, _ = relay.frontend.from_mxnet(mx_sym, {}) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor( kind, mod=mod, device=dev, target=target ).evaluate()() tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) verify(0, 20, None) verify(0, 20, 2) verify(1, 20, None) verify(1, 20, 2) verify(1, 20, 1.5) verify(1, 20.5, None) verify(1, 20, 3) verify(20, 1, -1) verify(20, 1, -1.5) def _mx_symbol(F, op_name, inputs): op = getattr(F, op_name) return op(*inputs) @tvm.testing.uses_gpu def test_forward_broadcast_ops(): for op in [ "broadcast_add", "broadcast_plus", "broadcast_sub", "broadcast_minus", "broadcast_mul", "broadcast_div", "broadcast_mod", "broadcast_maximum", "broadcast_minimum", "broadcast_equal", "broadcast_not_equal", "broadcast_greater", "broadcast_greater_equal", "broadcast_lesser", "broadcast_lesser_equal", "broadcast_power", "broadcast_logical_or", "broadcast_logical_and", "broadcast_logical_xor", ]: a_shape = (3, 4, 5) b_shape = (4, 5) if op == "broadcast_mod": dtype = "int32" a_np = np.random.randint(1, 100, size=a_shape).astype(dtype) b_np = np.random.randint(1, 100, size=b_shape).astype(dtype) else: dtype = "float32" a_np = np.random.uniform(size=a_shape).astype(dtype) b_np = np.random.uniform(size=b_shape).astype(dtype) mx_sym = _mx_symbol(mx.sym, op, [mx.sym.var("a"), mx.sym.var("b")]) ref_res = _mx_symbol(mx.nd, op, [mx.nd.array(a_np), mx.nd.array(b_np)]) shapes = {"a": a_shape, "b": b_shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shapes, dtype) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( a_np, b_np ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) @tvm.testing.uses_gpu def test_forward_elemwise_ops(): for op in [ "elemwise_add", "elemwise_sub", "elemwise_mul", "elemwise_div", "maximum", "minimum", operator.lt, operator.le, operator.eq, operator.ne, operator.gt, operator.ge, ]: shape = (3, 4, 5) dtype = "float32" a_np = np.random.uniform(size=shape).astype(dtype) b_np = np.random.uniform(size=shape).astype(dtype) if type(op) == str: mx_sym = _mx_symbol(mx.sym, op, [mx.sym.var("a"), mx.sym.var("b")]) ref_res = _mx_symbol(mx.nd, op, [mx.nd.array(a_np), mx.nd.array(b_np)]) else: mx_sym = op(mx.sym.var("a"), mx.sym.var("b")) ref_res = op(mx.nd.array(a_np), mx.nd.array(b_np)) shapes = {"a": shape, "b": shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shapes, dtype) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( a_np, b_np ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) @tvm.testing.uses_gpu def test_forward_softmin(): data = mx.sym.var("data") mx_sym = mx.sym.softmin(data) verify_mxnet_frontend_impl(mx_sym, (1, 3, 100, 100), (1, 3, 100, 100)) mx_sym = mx.sym.softmin(data, axis=2) verify_mxnet_frontend_impl(mx_sym, (1, 3, 100, 100), (1, 3, 100, 100)) @tvm.testing.uses_gpu def test_forward_unary_ops(): for op in [ "abs", "sqrt", "ceil", "floor", "round", "reciprocal", "trunc", "softsign", "hard_sigmoid", "cos", "sin", "tan", "cosh", "sinh", "tanh", "arccos", "arcsin", "arctan", "arccosh", "arcsinh", "arctanh", ]: shape = (1, 3, 4, 5) dtype = "float32" a_np = np.random.uniform(size=shape).astype(dtype) mx_sym = _mx_symbol(mx.sym, op, [mx.sym.var("a")]) ref_res = _mx_symbol(mx.nd, op, [mx.nd.array(a_np)]) shapes = {"a": shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shapes, dtype) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( a_np ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-5, atol=1e-5) @tvm.testing.uses_gpu def test_forward_scalar_ops(): for op in [ operator.add, operator.sub, operator.mul, operator.truediv, operator.pow, operator.lt, operator.le, operator.eq, operator.ne, operator.gt, operator.ge, ]: dtype = "float32" a_shape = (3, 4, 5) a_np = np.random.uniform(size=a_shape).astype(dtype) b_scalar = 2.3 mx_sym = op(mx.sym.var("a"), b_scalar) ref_res = op(mx.nd.array(a_np), b_scalar) shapes = {"a": a_shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shapes, dtype) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( a_np ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) for op in ["maximum", "minimum"]: dtype = "float32" a_shape = (3, 4, 5) a_np = np.random.uniform(size=a_shape).astype(dtype) b_scalar = 2.3 mx_sym = _mx_symbol(mx.sym, op, [mx.sym.var("a"), b_scalar]) ref_res = _mx_symbol(mx.nd, op, [mx.nd.array(a_np), b_scalar]) shapes = {"a": a_shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shapes, dtype) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( a_np ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) @tvm.testing.uses_gpu def test_forward_slice_axis(): def verify(shape, axis, begin, end): data_np = np.random.uniform(size=shape).astype("float32") ref_res = mx.nd.slice_axis(mx.nd.array(data_np), axis, begin, end) mx_sym = mx.sym.slice_axis(mx.sym.var("data"), axis, begin, end) mod, _ = relay.frontend.from_mxnet(mx_sym, {"data": shape}) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( data_np ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) verify((3, 4), 0, 1, 2) verify((3, 4), 0, 1, None) verify((3, 4), 1, 0, 2) verify((3, 4), 1, -3, -1) verify((3, 4), -1, -3, -1) @tvm.testing.uses_gpu def test_forward_slice_like(): def verify(x_shape, y_shape, axes): x_np = np.random.uniform(size=x_shape).astype("float32") y_np = np.random.uniform(size=y_shape).astype("float32") if axes is None: ref_res = mx.nd.slice_like(mx.nd.array(x_np), mx.nd.array(y_np)) mx_sym = mx.sym.slice_like(mx.sym.var("x"), mx.sym.var("y")) else: ref_res = mx.nd.slice_like(mx.nd.array(x_np), mx.nd.array(y_np), axes=axes) mx_sym = mx.sym.slice_like(mx.sym.var("x"), mx.sym.var("y"), axes=axes) mod, _ = relay.frontend.from_mxnet(mx_sym, {"x": x_shape, "y": y_shape}) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( x_np, y_np ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) verify((3, 4), (2, 3), None) verify((3, 4), (2, 3), (0, 1)) verify((3, 4), (2, 3), (0)) verify((3, 4), (2, 3), (-1)) @tvm.testing.uses_gpu def test_forward_sequence_reverse(): def verify(shape, seq_lengths, use_seq_lengths, seq_axis): data_np = np.random.uniform(size=shape).astype("float32") ref_res_args = [mx.nd.array(data_np), None, use_seq_lengths, seq_axis] mx_sym_args = [mx.sym.var("data"), None, use_seq_lengths, seq_axis] from_mxnet_args = [{"data": shape}, {"data": "float32"}] in_data = [data_np] if use_seq_lengths and seq_lengths: seq_lengths_np = np.array(seq_lengths).astype("int32") ref_res_args[1] = mx.nd.array(seq_lengths_np) mx_sym_args[1] = mx.sym.var("seq_lengths") from_mxnet_args[0].update({"seq_lengths": seq_lengths_np.shape}) from_mxnet_args[1].update({"seq_lengths": "int32"}) in_data.append(seq_lengths_np) ref_res = mx.nd.SequenceReverse(*ref_res_args) mx_sym = mx.sym.SequenceReverse(*mx_sym_args) mod, _ = relay.frontend.from_mxnet(mx_sym, *from_mxnet_args) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( *in_data ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) verify((3, 4), [1, 2, 3, 1], True, 0) verify((3, 4), None, False, 0) verify((3, 5, 5, 6), [1, 2, 3, 1, 3], True, 0) # MXNet accepts axis value as 0 only # verify((3, 4, 5, 6), None, False, 2) @tvm.testing.uses_gpu def test_forward_l2_normalize(): data = mx.sym.var("data") mx_sym = mx.sym.L2Normalization(data, mode="channel") verify_mxnet_frontend_impl(mx_sym, (2, 3, 4, 5), (2, 3, 4, 5)) mx_sym = mx.sym.L2Normalization(data, mode="instance") verify_mxnet_frontend_impl(mx_sym, (2, 3, 4, 5), (2, 3, 4, 5)) mx_sym = mx.sym.L2Normalization(data, mode="spatial") verify_mxnet_frontend_impl(mx_sym, (2, 3, 4, 5), (2, 3, 4, 5)) @tvm.testing.uses_gpu def test_forward_logistic_regression_output(): data_shape = (1, 10) dtype = "float32" data_np = np.random.uniform(size=data_shape).astype(dtype) label_np = np.random.uniform(size=data_shape).astype(dtype) mx_sym = mx.symbol.LogisticRegressionOutput(mx.sym.var("data"), mx.sym.var("label")) ref_res = mx.nd.LogisticRegressionOutput(mx.nd.array(data_np), mx.nd.array(label_np)) shapes = {"data": data_shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shapes, dtype) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( data_np ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) @tvm.testing.uses_gpu def test_forward_dot(): def verify(a_shape, b_shape, transpose_b=False): dtype = "float32" a_np = np.random.uniform(size=a_shape).astype(dtype) b_np = np.random.uniform(size=b_shape).astype(dtype) mx_sym = mx.symbol.dot(mx.sym.var("a"), mx.sym.var("b"), transpose_b=transpose_b) ref_res = mx.nd.dot(mx.nd.array(a_np), mx.nd.array(b_np), transpose_b=transpose_b) shapes = {"a": a_shape, "b": b_shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shapes, dtype) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( a_np, b_np ) tvm.testing.assert_allclose( op_res.numpy(), ref_res.asnumpy(), rtol=1e-05, atol=1e-05 ) verify((1, 256), (256, 1)) verify((1, 256), (1, 256), transpose_b=True) @tvm.testing.uses_gpu def test_forward_shape_array(): def verify(shape): x_np = np.random.uniform(size=shape).astype("float32") ref_res = mx.nd.shape_array(mx.nd.array(x_np)) mx_sym = mx.sym.shape_array(mx.sym.var("x")) mod, _ = relay.frontend.from_mxnet(mx_sym, {"x": shape}) for target, dev in tvm.testing.enabled_targets(): for kind in ["debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( x_np ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) verify((1,)) verify((3, 4, 5)) verify((3, 4, 5, 6)) @tvm.testing.uses_gpu def test_forward_squeeze(): def verify(shape, axis): x_np = np.random.uniform(size=shape).astype("float32") if axis is None: ref_res = mx.nd.squeeze(mx.nd.array(x_np)) mx_sym = mx.sym.squeeze(mx.sym.var("x")) else: ref_res = mx.nd.squeeze(mx.nd.array(x_np), axis=axis) mx_sym = mx.sym.squeeze(mx.sym.var("x"), axis=axis) mod, _ = relay.frontend.from_mxnet(mx_sym, {"x": shape}) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( x_np ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) verify((1, 3, 1), None) verify((1, 3, 1), 0) verify((1, 3, 1), 2) verify((1, 3, 1), (0, 2)) @tvm.testing.uses_gpu def test_forward_broadcast_axis(): def verify(shape, axis, size): x_np = np.random.uniform(size=shape).astype("float32") for op in ["broadcast_axis", "broadcast_axes"]: mx_sym = _mx_symbol(mx.sym, op, [mx.sym.var("x"), axis, size]) ref_res = _mx_symbol(mx.nd, op, [mx.nd.array(x_np), axis, size]) mod, _ = relay.frontend.from_mxnet(mx_sym, {"x": shape}) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor( kind, mod=mod, device=dev, target=target ).evaluate()(x_np) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) verify((1, 2, 1), 2, 3) verify((1, 2, 1), (0, 2), (2, 3)) @tvm.testing.uses_gpu def test_forward_broadcast_to(): def verify(input_shape, shape): x_np = np.random.uniform(size=input_shape).astype("float32") ref_res = mx.nd.broadcast_to(mx.nd.array(x_np), shape=shape) mx_sym = mx.sym.broadcast_to(mx.sym.var("x"), shape=shape) mod, _ = relay.frontend.from_mxnet(mx_sym, {"x": input_shape}) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( x_np ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) verify((1, 2, 3), (3, 2, 3)) verify((4, 1, 32, 32), (4, 8, 32, 32)) @tvm.testing.uses_gpu def test_forward_broadcast_like(): def verify(input_shape, like_shape): x_np = np.random.uniform(size=input_shape).astype("float32") y_np = np.random.uniform(size=like_shape).astype("float32") ref_res = mx.nd.broadcast_like(mx.nd.array(x_np), mx.nd.array(y_np)) mx_sym = mx.sym.broadcast_like(mx.sym.var("x"), mx.sym.var("y")) mod, _ = relay.frontend.from_mxnet(mx_sym, {"x": input_shape, "y": like_shape}) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( x_np, y_np ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) verify((1, 2, 3), (3, 2, 3)) verify((4, 1, 32, 32), (4, 8, 32, 32)) @tvm.testing.uses_gpu def test_forward_logical_not(): a_shape = (3, 4, 5) dtype = "float32" a_np = np.random.uniform(size=a_shape).astype(dtype) mx_sym = mx.sym.logical_not(mx.sym.var("a")) ref_res = mx.nd.logical_not(mx.nd.array(a_np)) shapes = {"a": a_shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shapes, dtype) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( a_np ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) @tvm.testing.uses_gpu def test_forward_full(): def verify(val, shape, dtype): dev = mx.cpu() ref_res = mx.nd.full(shape, val, dtype=dtype) mx_sym = mx.sym.full(shape, val, dtype=dtype) mod, _ = relay.frontend.from_mxnet(mx_sym, {}) for target, dev in tvm.testing.enabled_targets(): # Skip testing graph executor because this op will be optimized out # by constant folding. for kind in ["debug"]: op_res = relay.create_executor( kind, mod=mod, device=dev, target=target ).evaluate()() tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) verify(2, (3, 4), "float32") verify(2, (3, 4), "int32") verify(3.5, (1, 3, 4), "float32") @tvm.testing.uses_gpu def test_forward_embedding(): def verify(data_shape, weight_shape): in_dim, out_dim = weight_shape x_np = np.random.randint(0, weight_shape[0], size=data_shape).astype("float32") w_np = np.random.uniform(size=weight_shape).astype("float32") ref_res = mx.nd.Embedding( mx.nd.array(x_np), mx.nd.array(w_np), input_dim=in_dim, output_dim=out_dim ) mx_sym = mx.sym.Embedding( mx.sym.var("x"), mx.sym.var("w"), input_dim=in_dim, output_dim=out_dim ) mod, _ = relay.frontend.from_mxnet(mx_sym, {"x": data_shape, "w": weight_shape}) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( x=x_np, w=w_np ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) verify((2, 2), (4, 5)) verify((2, 3, 4), (4, 5)) @tvm.testing.uses_gpu def test_forward_smooth_l1(): data = mx.sym.var("data") mx_sym = mx.sym.smooth_l1(data) verify_mxnet_frontend_impl(mx_sym, (3, 4), (3, 4)) mx_sym = mx.sym.smooth_l1(data, scalar=1.0) verify_mxnet_frontend_impl(mx_sym, (3, 4), (3, 4)) @tvm.testing.uses_gpu def test_forward_take(): def verify(shape, indices_src, axis, mode="clip"): x_np = np.random.uniform(size=shape).astype("float32") indices_np = np.array(indices_src, dtype="float32") ref_res = mx.nd.take(mx.nd.array(x_np), mx.nd.array(indices_np), axis, mode) mx_sym = mx.sym.take(mx.sym.var("x"), mx.sym.var("y"), axis, mode) mod, _ = relay.frontend.from_mxnet(mx_sym, {"x": shape, "y": indices_np.shape}) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( x_np, indices_np ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) verify((2, 2), [[[1, 0], [0, 1]]], 0) verify((2, 2), [[[1, 0], [0, 1]]], 1) verify((4, 3, 5, 6), [[2, 1, 0, 0]], -2) verify((3, 4), [-1, 5], 0) verify((3, 4), [-1, 5], 0, mode="wrap") verify((3, 4), [-1, 5], 1) verify((3, 4), [-1, 5], 1, mode="wrap") @tvm.testing.uses_gpu def test_forward_gather_nd(): def verify(xshape, yshape, y_data, error=False): x_data = np.random.uniform(size=xshape).astype("float32") ref_res = mx.nd.gather_nd(mx.nd.array(x_data), mx.nd.array(y_data)) mx_sym = mx.sym.gather_nd(mx.sym.var("x_data"), mx.sym.var("y_data")) mod, _ = relay.frontend.from_mxnet( mx_sym, {"x_data": xshape, "y_data": yshape}, {"x_data": "float32", "y_data": "int32"} ) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( x_data, y_data ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) verify((2, 2), (2, 3), [[1, 1, 0], [0, 1, 0]]) verify((2, 2, 2), (2, 2), [[0, 1], [1, 0]]) verify((3, 2, 2), (2, 2), [[0, 1], [1, 0]]) verify((3, 2), (2, 2, 3), [[[0, 1, 2], [2, 0, 1]], [[0, 0, 0], [1, 1, 1]]]) verify((1, 4), (1, 1), [[0]]) @tvm.testing.uses_gpu def test_forward_bilinear_resize(): # add tests including scale_height and scale_width when mxnet is updated to version 1.5 data = mx.sym.var("data") mx_sym = mx.sym.contrib.BilinearResize2D(data, height=5, width=10) verify_mxnet_frontend_impl(mx_sym, (1, 2, 3, 4), (1, 2, 5, 10)) @tvm.testing.uses_gpu def test_forward_grid_generator(): def verify(shape, transform_type, target_shape): x = np.random.uniform(size=shape).astype("float32") ref_res = mx.nd.GridGenerator(mx.nd.array(x), transform_type, target_shape) mx_sym = mx.sym.GridGenerator(mx.sym.var("x"), transform_type, target_shape) shape_dict = {"x": x.shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shape_dict) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( x ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-5, atol=1e-5) verify((4, 6), "affine", (16, 32)) verify((4, 2, 16, 16), "warp", None) verify((1, 2, 16, 16), "warp", None) @tvm.testing.uses_gpu def test_forward_bilinear_sampler(): def verify(data_shape, grid_shape): data = np.random.uniform(size=data_shape).astype("float32") grid = np.random.uniform(low=-1.5, high=1.5, size=grid_shape).astype("float32") ref_res = mx.nd.BilinearSampler(mx.nd.array(data), mx.nd.array(grid)) mx_sym = mx.sym.BilinearSampler(mx.sym.var("data"), mx.sym.var("grid")) shape_dict = {"data": data.shape, "grid": grid.shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shape_dict) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( data, grid ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-5, atol=1e-5) verify((4, 4, 16, 32), (4, 2, 8, 8)) verify((4, 4, 16, 32), (4, 2, 32, 32)) @tvm.testing.uses_gpu def test_forward_rnn_layer(): def verify( mode, seq_len, input_size, hidden_size, num_layers, batch=1, init_states=True, bidirectional=False, ): if mode == "rnn": layer = gluon.rnn.RNN(hidden_size, num_layers, bidirectional=bidirectional) elif mode == "gru": layer = gluon.rnn.GRU(hidden_size, num_layers, bidirectional=bidirectional) else: # mode == "lstm" layer = gluon.rnn.LSTM(hidden_size, num_layers, bidirectional=bidirectional) num_states = 2 if mode == "lstm" else 1 layer.initialize() layer.hybridize() dtype = "float32" directions = 2 if bidirectional else 1 data_np = np.random.uniform(size=(seq_len, batch, input_size)).astype(dtype) data_mx = mx.nd.array(data_np) if init_states: shape_dict = {"data0": data_np.shape} inputs = {"data0": data_np} state_shape = (num_layers * directions, batch, hidden_size) states_np = [] states_mx = [] for i in range(num_states): s = np.random.uniform(size=state_shape).astype(dtype) states_np.append(s) states_mx.append(mx.nd.array(s)) shape_dict["data%s" % (i + 1)] = s.shape inputs["data%s" % (i + 1)] = s mx_out, mx_states = layer(data_mx, states_mx) mx_res = [mx_out] + mx_states else: shape_dict = {"data": data_np.shape} inputs = {"data": data_np} mx_res = layer(data_mx) mx_sym = layer._cached_graph[1] mx_params = {} for name, param in layer.collect_params().items(): mx_params[name] = param._reduce() mod, params = relay.frontend.from_mxnet(mx_sym, shape=shape_dict, arg_params=mx_params) for target, dev in tvm.testing.enabled_targets(): # only test graph executor because debug runtime is too slow for kind in ["graph"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( **inputs, **params ) if init_states: assert len(op_res) == len(mx_res) for i, val in enumerate(op_res): tvm.testing.assert_allclose(val.numpy(), mx_res[i].asnumpy(), rtol=1e-3) else: tvm.testing.assert_allclose(op_res.numpy(), mx_res.asnumpy(), rtol=1e-3) for mode in ["rnn", "gru", "lstm"]: verify(mode, 1, 64, 64, 1) verify(mode, 10, 64, 64, 2) verify(mode, 10, 64, 32, 2) verify(mode, 10, 64, 32, 2, batch=2) verify(mode, 10, 32, 64, 1, bidirectional=True) # The following two codeblocks need to be fixed for mxnet 1.5 # verify(mode, 10, 64, 64, 3, init_states=False) # verify(mode, 10, 64, 64, 3, batch=2, bidirectional=True, init_states=False) @tvm.testing.uses_gpu def test_forward_Crop(): def verify(xshape, yshape, offset=None): x_data = np.random.uniform(size=xshape).astype("float32") y_data = np.random.uniform(size=yshape).astype("float32") if offset is None: mx_sym = mx.sym.Crop(mx.sym.var("x"), mx.sym.var("y")) ref_res = mx.nd.Crop(mx.nd.array(x_data), mx.nd.array(y_data)) else: mx_sym = mx.sym.Crop(mx.sym.var("x"), mx.sym.var("y"), offset=offset) ref_res = mx.nd.Crop(mx.nd.array(x_data), mx.nd.array(y_data), offset=offset) mod, _ = relay.frontend.from_mxnet(mx_sym, {"x": xshape, "y": yshape}) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: func = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate() if offset is None or offset == (0, 0): op_res = func(x_data, y_data) else: op_res = func(x_data) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) verify((1, 3, 40, 40), (1, 3, 20, 20)) verify((1, 3, 40, 40), (1, 3, 20, 20), (0, 0)) verify((1, 3, 40, 40), (1, 3, 20, 20), (10, 10)) verify((5, 32, 40, 40), (5, 32, 25, 25)) verify((5, 32, 40, 40), (5, 32, 25, 25), (5, 5)) @tvm.testing.uses_gpu def test_forward_argsort(): def verify(shape, axis, is_ascend, dtype="float32"): x_np = np.random.uniform(size=shape).astype("float32") ref_res = mx.nd.argsort(mx.nd.array(x_np), axis=axis, is_ascend=is_ascend, dtype=dtype) mx_sym = mx.sym.argsort(mx.sym.var("x"), axis=axis, is_ascend=is_ascend, dtype=dtype) mod, _ = relay.frontend.from_mxnet(mx_sym, {"x": shape}) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( x_np ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) verify((2, 3, 4), axis=0, is_ascend=False) verify((1, 4, 6), axis=1, is_ascend=True) verify((3, 5, 6), axis=-3, is_ascend=False, dtype="int32") @tvm.testing.uses_gpu def test_forward_topk(): def verify(shape, k, axis, ret_type, is_ascend=None, dtype="float32"): x_np = np.random.uniform(size=shape).astype("float32") if is_ascend is None: ref_res = mx.nd.topk(mx.nd.array(x_np), k=k, axis=axis, ret_typ=ret_type, dtype=dtype) mx_sym = mx.sym.topk(mx.sym.var("x"), k=k, axis=axis, ret_typ=ret_type, dtype=dtype) else: ref_res = mx.nd.topk( mx.nd.array(x_np), k=k, axis=axis, ret_typ=ret_type, is_ascend=is_ascend, dtype=dtype, ) mx_sym = mx.sym.topk( mx.sym.var("x"), k=k, axis=axis, ret_typ=ret_type, is_ascend=is_ascend, dtype=dtype ) mod, _ = relay.frontend.from_mxnet(mx_sym, {"x": shape}) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( x_np ) if isinstance(ref_res, list): assert len(op_res) == len(ref_res) for i, t in enumerate(op_res): tvm.testing.assert_allclose(t.numpy(), ref_res[i].asnumpy()) else: tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) verify((3, 4), k=1, axis=0, ret_type="both") verify((3, 4), k=1, axis=-1, ret_type="indices") verify((3, 5, 6), k=2, axis=2, ret_type="value", is_ascend=False) verify((3, 5, 6), k=2, axis=1, ret_type="value", is_ascend=True) verify((3, 5, 6), k=0, axis=2, ret_type="both", dtype="int32") @tvm.testing.uses_gpu def test_forward_sequence_mask(): def verify(shape, use_sequence_length, value, axis, dtype, itype): data_np = np.random.uniform(size=shape).astype(dtype) valid_length_np = np.random.randint(0, shape[axis], size=shape[1 - axis]).astype(itype) if use_sequence_length: ref_res = mx.nd.SequenceMask( mx.nd.array(data_np, dtype=dtype), sequence_length=mx.nd.array(valid_length_np, dtype=itype), use_sequence_length=use_sequence_length, value=value, axis=axis, ) mx_sym = mx.sym.SequenceMask( mx.sym.var("data"), sequence_length=mx.sym.var("valid_length"), use_sequence_length=use_sequence_length, value=value, axis=axis, ) mod, _ = relay.frontend.from_mxnet( mx_sym, {"data": shape, "valid_length": valid_length_np.shape}, dtype={"data": dtype, "valid_length": itype}, ) else: ref_res = mx.nd.SequenceMask( mx.nd.array(data_np, dtype=dtype), use_sequence_length=use_sequence_length, value=value, axis=axis, ) mx_sym = mx.sym.SequenceMask( mx.sym.var("data"), use_sequence_length=use_sequence_length, value=value, axis=axis ) mod, _ = relay.frontend.from_mxnet(mx_sym, {"data": shape}, dtype={"data": dtype}) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: if use_sequence_length is False and kind == "graph": # Disable the test for 'graph' when it's identity. continue func = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate() if use_sequence_length: op_res = func(data_np, valid_length_np) else: op_res = func(data_np) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) verify((5, 10), True, 0.0, 0, "float32", "float32") verify((5, 4, 3), True, 1.0, 1, "float32", "float32") verify((5, 4, 3), False, 1.0, 1, "float64", "float64") verify((5, 4, 3, 2), True, 1.0, 0, "float32", "float32") @tvm.testing.uses_gpu def test_forward_contrib_div_sqrt_dim(): def verify(shape): x_np = np.random.uniform(size=shape).astype("float32") ref_res = mx.nd.contrib.div_sqrt_dim(mx.nd.array(x_np)) mx_sym = mx.sym.contrib.div_sqrt_dim(mx.sym.var("x")) mod, _ = relay.frontend.from_mxnet(mx_sym, {"x": shape}) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( x_np ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) verify((3, 4)) verify((3, 4, 5)) @tvm.testing.uses_gpu def test_forward_batch_norm(): def verify(shape, axis=1, fix_gamma=False): x = np.random.uniform(size=shape).astype("float32") gamma = np.random.uniform(size=(shape[axis])).astype("float32") beta = np.random.uniform(size=(shape[axis])).astype("float32") moving_mean = np.random.uniform(size=(shape[axis])).astype("float32") moving_var = np.abs(np.random.uniform(size=(shape[axis])).astype("float32")) + 0.5 ref_res = mx.nd.BatchNorm( mx.nd.array(x), mx.nd.array(gamma), mx.nd.array(beta), mx.nd.array(moving_mean), mx.nd.array(moving_var), axis=axis, use_global_stats=True, fix_gamma=fix_gamma, ) mx_sym = mx.sym.BatchNorm( mx.sym.var("x"), mx.sym.var("gamma"), mx.sym.var("beta"), mx.sym.var("mean"), mx.sym.var("var"), axis=axis, use_global_stats=True, fix_gamma=fix_gamma, ) shape_dict = { "x": x.shape, "gamma": gamma.shape, "beta": beta.shape, "mean": moving_mean.shape, "var": moving_var.shape, } mod, _ = relay.frontend.from_mxnet(mx_sym, shape_dict) # print(mod) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( x, gamma, beta, moving_mean, moving_var ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-3) verify((2, 3, 4, 5)) verify((2, 3, 4, 5), axis=0) verify((2, 3, 4, 5), axis=-1) verify((2, 3, 4, 5), fix_gamma=True) @tvm.testing.uses_gpu def test_forward_instance_norm(): def verify(shape, axis=1, epsilon=1e-5): x = np.random.uniform(size=shape).astype("float32") gamma = np.random.uniform(size=(shape[axis])).astype("float32") beta = np.random.uniform(size=(shape[axis])).astype("float32") ref_res = mx.nd.InstanceNorm(mx.nd.array(x), mx.nd.array(gamma), mx.nd.array(beta), epsilon) mx_sym = mx.sym.InstanceNorm( mx.sym.var("x"), mx.sym.var("gamma"), mx.sym.var("beta"), epsilon ) shape_dict = {"x": x.shape, "gamma": gamma.shape, "beta": beta.shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shape_dict) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( x, gamma, beta ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=2e-5, atol=1e-5) verify((2, 3, 4, 5)) verify((32, 64, 80, 64)) verify((8, 6, 5)) verify((8, 7, 6, 5, 4)) @tvm.testing.uses_gpu def test_forward_layer_norm(): def verify(shape, axis=-1): x = np.random.uniform(size=shape).astype("float32") gamma = np.random.uniform(size=(shape[axis])).astype("float32") beta = np.random.uniform(size=(shape[axis])).astype("float32") ref_res = mx.nd.LayerNorm(mx.nd.array(x), mx.nd.array(gamma), mx.nd.array(beta), axis=axis) mx_sym = mx.sym.LayerNorm( mx.sym.var("x"), mx.sym.var("gamma"), mx.sym.var("beta"), axis=axis ) shape_dict = {"x": x.shape, "gamma": gamma.shape, "beta": beta.shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shape_dict) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( x, gamma, beta ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-3, atol=1e-5) verify((2, 5)) verify((2, 5), axis=0) verify((2, 5, 6)) @tvm.testing.uses_gpu def test_forward_group_norm(): def verify(shape, num_groups=1): x = np.random.uniform(size=shape).astype("float32") gamma = np.random.uniform(size=(shape[1])).astype("float32") beta = np.random.uniform(size=(shape[1])).astype("float32") ref_res = mx.nd.GroupNorm( data=mx.nd.array(x), gamma=mx.nd.array(gamma), beta=mx.nd.array(beta), num_groups=num_groups, ) mx_sym = mx.sym.GroupNorm( mx.sym.var("x"), mx.sym.var("gamma"), mx.sym.var("beta"), num_groups=num_groups ) shape_dict = {"x": x.shape, "gamma": gamma.shape, "beta": beta.shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shape_dict) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( x, gamma, beta ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-3, atol=1e-5) verify((1, 4, 2), num_groups=4) # TODO(trevmorr): MXNet GroupNorm implementation is bugged for cases when num_groups != num_channels # https://github.com/apache/incubator-mxnet/pull/18199 # verify((1, 4, 2, 3), num_groups=2) # verify((1, 4, 2, 3)) @tvm.testing.uses_gpu def test_forward_one_hot(): def verify(indices_shape, depth, on_value, off_value, dtype): x = np.random.randint(0, 5, size=indices_shape) ref_res = mx.nd.one_hot(mx.nd.array(x), depth, on_value, off_value, dtype) mx_sym = mx.sym.one_hot(mx.sym.var("x"), depth, on_value, off_value, dtype) shape_dict = {"x": x.shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shape_dict) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( x.astype("float32") ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-3, atol=1e-5) verify((3,), 3, 1, 0, "int32") verify((3,), 3, 1.0, 0.0, "float32") verify((2, 2), 5, 2, -2, "int32") verify((2, 2), 5, 0.5, -0.5, "float32") verify((3, 2, 4, 5), 6, 1, 0, "int32") verify((3, 2, 4, 5), 6, 1.0, 0.0, "float32") @tvm.testing.uses_gpu def test_forward_pad(): def verify(data_shape, out_shape, mode, pad_width, constant_value=0.0): data = mx.sym.var("data") mx_sym = mx.sym.pad(data, mode=mode, pad_width=pad_width, constant_value=constant_value) verify_mxnet_frontend_impl(mx_sym, data_shape=data_shape, out_shape=out_shape) verify( data_shape=(1, 1, 3, 5), out_shape=(1, 1, 6, 12), mode="constant", pad_width=(0, 0, 0, 0, 1, 2, 3, 4), ) verify( data_shape=(1, 1, 3, 5), out_shape=(1, 1, 6, 12), mode="constant", pad_width=(0, 0, 0, 0, 1, 2, 3, 4), constant_value=3.0, ) verify( data_shape=(1, 1, 3, 5), out_shape=(1, 1, 6, 12), mode="edge", pad_width=(0, 0, 0, 0, 1, 2, 3, 4), ) verify( data_shape=(1, 1, 3, 5), out_shape=(1, 1, 6, 12), mode="reflect", pad_width=(0, 0, 0, 0, 1, 2, 3, 4), ) verify( data_shape=(1, 1, 3, 5, 7), out_shape=(1, 1, 6, 12, 18), mode="constant", pad_width=(0, 0, 0, 0, 1, 2, 3, 4, 5, 6), ) verify( data_shape=(1, 1, 3, 5, 7), out_shape=(1, 1, 6, 12, 18), mode="constant", pad_width=(0, 0, 0, 0, 1, 2, 3, 4, 5, 6), constant_value=3.0, ) verify( data_shape=(1, 1, 3, 5, 7), out_shape=(1, 1, 6, 12, 18), mode="edge", pad_width=(0, 0, 0, 0, 1, 2, 3, 4, 5, 6), ) verify( data_shape=(1, 1, 3, 5, 7), out_shape=(1, 1, 6, 12, 18), mode="reflect", pad_width=(0, 0, 0, 0, 1, 2, 3, 4, 5, 6), ) @tvm.testing.uses_gpu def test_forward_slice(): def verify(data_shape, out_shape, begin, end): data = mx.sym.var("data") mx_sym = mx.sym.slice(data, begin=begin, end=end) verify_mxnet_frontend_impl(mx_sym, data_shape=data_shape, out_shape=out_shape) verify(data_shape=(1, 1, 10), out_shape=(1, 1, 8), begin=(0, 0, 2), end=(1, 1, 10)) verify( data_shape=(1, 1, 10), out_shape=(1, 1, 8), begin=(None, None, 2), end=(None, None, None) ) @tvm.testing.uses_gpu def test_forward_convolution(): def verify(data_shape, kernel_size, stride, pad, num_filter, is_depthwise=False): if is_depthwise: groups = data_shape[1] weight_shape = ( data_shape[1], num_filter // groups, ) + kernel_size else: groups = 1 weight_shape = ( num_filter, data_shape[1], ) + kernel_size x = np.random.uniform(size=data_shape).astype("float32") weight = np.random.uniform(size=weight_shape).astype("float32") bias = np.random.uniform(size=num_filter).astype("float32") ref_res = mx.nd.Convolution( data=mx.nd.array(x), weight=mx.nd.array(weight), bias=mx.nd.array(bias), kernel=kernel_size, stride=stride, pad=pad, num_filter=num_filter, num_group=groups, ) mx_sym = mx.sym.Convolution( mx.sym.var("x"), mx.sym.var("weight"), mx.sym.var("bias"), kernel=kernel_size, stride=stride, pad=pad, num_filter=num_filter, num_group=groups, ) shape_dict = {"x": x.shape, "weight": weight.shape, "bias": bias.shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shape_dict) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( x, weight, bias ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-3) verify(data_shape=(1, 1, 1024 * 16), kernel_size=(17,), stride=(2,), pad=(8,), num_filter=4) verify(data_shape=(20, 1, 1024 * 16), kernel_size=(17,), stride=(2,), pad=(8,), num_filter=4) verify(data_shape=(1, 8, 1024 * 16), kernel_size=(17,), stride=(2,), pad=(8,), num_filter=4) verify(data_shape=(20, 8, 1024 * 16), kernel_size=(17,), stride=(2,), pad=(8,), num_filter=4) verify(data_shape=(1, 1, 32, 32), kernel_size=(3, 3), stride=(1, 1), pad=(1, 1), num_filter=2) verify(data_shape=(20, 1, 32, 32), kernel_size=(3, 3), stride=(1, 1), pad=(1, 1), num_filter=2) verify(data_shape=(1, 8, 32, 32), kernel_size=(3, 3), stride=(1, 1), pad=(1, 1), num_filter=2) verify(data_shape=(20, 8, 32, 32), kernel_size=(3, 3), stride=(1, 1), pad=(1, 1), num_filter=2) verify( data_shape=(1, 8, 32, 32), kernel_size=(3, 3), stride=(1, 1), pad=(1, 1), num_filter=8, is_depthwise=True, ) verify( data_shape=(1, 1, 16, 16, 16), kernel_size=(3, 3, 3), stride=(1, 1, 1), pad=(1, 1, 1), num_filter=2, ) verify( data_shape=(20, 1, 16, 16, 16), kernel_size=(3, 3, 3), stride=(1, 1, 1), pad=(1, 1, 1), num_filter=2, ) verify( data_shape=(1, 8, 16, 16, 16), kernel_size=(3, 3, 3), stride=(2, 2, 2), pad=(1, 1, 1), num_filter=2, ) verify( data_shape=(20, 8, 16, 16, 16), kernel_size=(3, 3, 3), stride=(1, 1, 1), pad=(1, 1, 1), num_filter=2, ) @tvm.testing.uses_gpu def test_forward_deconvolution(): def verify(data_shape, kernel_size, stride, pad, num_filter): weight_shape = (data_shape[1], num_filter) + kernel_size x = np.random.uniform(size=data_shape).astype("float32") weight = np.random.uniform(size=weight_shape).astype("float32") bias = np.random.uniform(size=num_filter).astype("float32") ref_res = mx.nd.Deconvolution( data=mx.nd.array(x), weight=mx.nd.array(weight), bias=mx.nd.array(bias), kernel=kernel_size, stride=stride, pad=pad, num_filter=num_filter, no_bias=False, ) mx_sym = mx.sym.Deconvolution( mx.sym.var("x"), mx.sym.var("weight"), mx.sym.var("bias"), kernel=kernel_size, stride=stride, pad=pad, num_filter=num_filter, no_bias=False, ) shape_dict = {"x": x.shape, "weight": weight.shape, "bias": bias.shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shape_dict) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( x, weight, bias ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-3, atol=1e-5) verify(data_shape=(1, 1, 1024 * 16), kernel_size=(17,), stride=(2,), pad=(8,), num_filter=4) verify(data_shape=(20, 1, 1024 * 16), kernel_size=(17,), stride=(2,), pad=(8,), num_filter=4) verify(data_shape=(1, 8, 1024 * 16), kernel_size=(17,), stride=(2,), pad=(8,), num_filter=4) verify(data_shape=(20, 8, 1024 * 16), kernel_size=(17,), stride=(2,), pad=(8,), num_filter=4) verify(data_shape=(1, 1, 32, 32), kernel_size=(3, 3), stride=(1, 1), pad=(1, 1), num_filter=2) verify(data_shape=(20, 1, 32, 32), kernel_size=(3, 3), stride=(1, 1), pad=(1, 1), num_filter=2) verify(data_shape=(1, 8, 32, 32), kernel_size=(3, 3), stride=(1, 1), pad=(1, 1), num_filter=2) verify(data_shape=(20, 8, 32, 32), kernel_size=(3, 3), stride=(1, 1), pad=(1, 1), num_filter=2) @tvm.testing.uses_gpu def test_forward_cond(): def verify(a_np, b_np): a_nd, b_nd = mx.nd.array(a_np), mx.nd.array(b_np) pred = a_nd * b_nd < 5 then_func = lambda: (a_nd + 5) * (b_nd + 5) else_func = lambda: (a_nd - 5) * (b_nd - 5) ref_res = mx.nd.contrib.cond(pred, then_func, else_func) a_sym, b_sym = mx.sym.var("a"), mx.sym.var("b") pred = a_sym * b_sym < 5 then_func = lambda: (a_sym + 5) * (b_sym + 5) else_func = lambda: (a_sym - 5) * (b_sym - 5) mx_sym = mx.sym.contrib.cond(pred, then_func, else_func) shape_dict = {"a": a_np.shape, "b": b_np.shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shape_dict) for target, dev in tvm.testing.enabled_targets(): for kind in ["debug", "vm"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( a_np, b_np ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-3) verify(np.asarray([1.0], "float32"), np.asarray([2.0], "float32")) verify(np.asarray([4.0], "float32"), np.asarray([3.0], "float32")) @tvm.testing.uses_gpu def test_forward_amp_cast(): def verify(from_dtype, to_dtype): from_np = np.random.uniform(size=(1, 3, 18)).astype(from_dtype) x_var = mx.sym.var("x", dtype=from_dtype) mx_sym = mx.sym.amp_cast(x_var, dtype=to_dtype) shape_dict = {"x": (1, 3, 18)} dtype_dict = {"x": from_dtype} mod, _ = relay.frontend.from_mxnet(mx_sym, shape_dict, dtype_dict) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "vm", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( from_np ) assert op_res.dtype == to_dtype, op_res.dtype tvm.testing.assert_allclose(op_res.numpy(), from_np.astype(to_dtype)) verify("float32", "float16") verify("float16", "float32") @tvm.testing.uses_gpu def test_forward_amp_multicast(): def verify(dtypes, cast_narrow, expected_dtype): x_nps = [np.random.uniform(size=(1, 3, 18)).astype(dtype) for dtype in dtypes] x_vars = [mx.sym.var(str(i), dtype=dtype) for i, dtype in enumerate(dtypes)] mx_sym = mx.sym.amp_multicast(*x_vars, cast_narrow=cast_narrow, num_outputs=len(dtypes)) shape_dict = {} dtype_dict = {} for i, dtype in enumerate(dtypes): shape_dict[str(i)] = (1, 3, 18) dtype_dict[str(i)] = dtype mod, _ = relay.frontend.from_mxnet(mx_sym, shape_dict, dtype_dict) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "vm", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( *x_nps ) for i, res in enumerate(op_res): assert res.dtype == expected_dtype, res.dtype tvm.testing.assert_allclose(res.numpy(), x_nps[i].astype(expected_dtype)) verify(["float32", "float16"], False, "float32") verify(["float32", "float16"], True, "float16") verify(["float32", "float32"], False, "float32") verify(["float32", "float32"], True, "float32") verify(["float16", "float16"], False, "float16") verify(["float16", "float16"], True, "float16") @tvm.testing.uses_gpu def test_forward_unravel_index(): def verify(x, shape, dtype): a_np = np.array(x).astype(dtype) mx_sym = _mx_symbol(mx.sym, "unravel_index", [mx.sym.var("a"), shape]) ref_res = _mx_symbol(mx.nd, "unravel_index", [mx.nd.array(a_np), shape]) shapes = {"a": a_np.shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shapes, dtype) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "vm", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( a_np ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) for dtype in ["int32", "int64"]: verify([0, 1, 2, 3], [2, 2], dtype) verify([144, 13, 45], [6, 7, 10, 2], dtype) verify([456], [6, 7, 10, 2], dtype) # In below example, 5 is out of bound for array of size 4. # MXNet implementation provides different result than TVM # TVM implementation is inline with Tensorflow # Ideally error should be thrown just like Numpy # verify([0, 1, 2, 5], [2, 2], dtype) @tvm.testing.uses_gpu def test_forward_swap_axis(): def _verify_swap_axis(in_shape, out_shape, dim1, dim2): data = mx.sym.var("data") mx_sym = mx.sym.swapaxes(data, dim1, dim2) verify_mxnet_frontend_impl(mx_sym, in_shape, out_shape) _verify_swap_axis((4, 5), (5, 4), 0, 1) _verify_swap_axis((2, 4, 4, 5), (2, 5, 4, 4), 1, 3) # MXNet errors out when dim1 == dim2 # _verify_swap_axis((4, 5), (5, 4), 0, 0) @tvm.testing.uses_gpu def test_forward_depth_to_space(): def verify(shape, blocksize=2): x = np.random.uniform(size=shape).astype("float32") ref_res = mx.nd.depth_to_space(mx.nd.array(x), blocksize) mx_sym = mx.sym.depth_to_space(mx.sym.var("x"), blocksize) shape_dict = { "x": x.shape, } mod, _ = relay.frontend.from_mxnet(mx_sym, shape_dict) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( x ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-3, atol=1e-5) verify((1, 18, 3, 3), 3) @tvm.testing.uses_gpu def test_forward_space_to_depth(): def verify(shape, blocksize=2): x = np.random.uniform(size=shape).astype("float32") ref_res = mx.nd.space_to_depth(mx.nd.array(x), blocksize) mx_sym = mx.sym.space_to_depth(mx.sym.var("x"), blocksize) shape_dict = { "x": x.shape, } mod, _ = relay.frontend.from_mxnet(mx_sym, shape_dict) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( x ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-3, atol=1e-5) verify((1, 1, 9, 9), 3) @tvm.testing.uses_gpu def test_forward_correlation(): def verify(data_shape, kernel_size, max_displacement, stride1, stride2, pad_size, is_multiply): data1 = np.random.uniform(size=data_shape).astype("float32") data2 = np.random.uniform(size=data_shape).astype("float32") ref_res = mx.nd.Correlation( data1=mx.nd.array(data1), data2=mx.nd.array(data2), kernel_size=kernel_size, max_displacement=max_displacement, stride1=stride1, stride2=stride2, pad_size=pad_size, is_multiply=is_multiply, ) mx_sym = mx.sym.Correlation( data1=mx.sym.var("data1"), data2=mx.sym.var("data2"), kernel_size=kernel_size, max_displacement=max_displacement, stride1=stride1, stride2=stride2, pad_size=pad_size, is_multiply=is_multiply, ) shape_dict = {"data1": data1.shape, "data2": data2.shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shape_dict) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( data1, data2 ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-3, atol=1e-5) verify( (1, 3, 10, 10), kernel_size=1, max_displacement=4, stride1=1, stride2=1, pad_size=4, is_multiply=False, ) verify( (5, 1, 15, 15), kernel_size=1, max_displacement=5, stride1=1, stride2=1, pad_size=5, is_multiply=False, ) verify( (5, 1, 15, 15), kernel_size=1, max_displacement=5, stride1=1, stride2=1, pad_size=5, is_multiply=True, ) verify( (5, 1, 15, 15), kernel_size=1, max_displacement=10, stride1=1, stride2=2, pad_size=10, is_multiply=True, ) verify( (5, 1, 4, 4), kernel_size=3, max_displacement=1, stride1=1, stride2=1, pad_size=2, is_multiply=True, ) verify( (5, 1, 4, 4), kernel_size=3, max_displacement=1, stride1=2, stride2=1, pad_size=2, is_multiply=True, ) verify( (5, 1, 4, 4), kernel_size=3, max_displacement=1, stride1=2, stride2=1, pad_size=2, is_multiply=False, ) verify( (5, 1, 6, 4), kernel_size=3, max_displacement=1, stride1=2, stride2=1, pad_size=2, is_multiply=False, ) verify( (5, 1, 11, 11), kernel_size=5, max_displacement=1, stride1=1, stride2=1, pad_size=2, is_multiply=False, ) @tvm.testing.uses_gpu def test_forward_arange_like(): def verify(data_shape, start=None, step=None, axis=None): attrs = {} if start is not None: attrs["start"] = start if step is not None: attrs["step"] = step if axis is not None: attrs["axis"] = axis data = mx.sym.var("data") data_np = np.random.uniform(size=data_shape).astype("float32") ref_res = mx.nd.contrib.arange_like(mx.nd.array(data_np), **attrs) mx_sym = mx.sym.contrib.arange_like(data, **attrs) mod, _ = relay.frontend.from_mxnet(mx_sym, {"data": data_shape}) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph"]: op_res = relay.create_executor( kind, mod=mod, device=dev, target=target ).evaluate()() tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy()) verify(data_shape=(3,), start=0.0, step=1.0) verify(data_shape=(3, 4, 5), start=0.0, step=1.0) verify(data_shape=(3, 4, 5), start=0.0, step=1.0, axis=-1) verify(data_shape=(3, 4, 5), start=2.0, step=3.0, axis=1) @tvm.testing.uses_gpu def test_forward_interleaved_matmul_selfatt_qk(): def verify(batch, seq_length, num_heads, head_dim): data_shape = (seq_length, batch, num_heads * head_dim * 3) data = mx.sym.var("data") data_np = np.random.uniform(size=data_shape).astype("float32") ref_res = mx.nd.contrib.interleaved_matmul_selfatt_qk(mx.nd.array(data_np), heads=num_heads) mx_sym = mx.sym.contrib.interleaved_matmul_selfatt_qk(data, heads=num_heads) mod, _ = relay.frontend.from_mxnet(mx_sym, {"data": data_shape}) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( data_np ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-5) verify(1, 10, 3, 16) verify(3, 10, 6, 8) @tvm.testing.uses_gpu def test_forward_interleaved_matmul_selfatt_valatt(): def verify(batch, seq_length, num_heads, head_dim): data_shape = (seq_length, batch, num_heads * head_dim * 3) weight_shape = (batch * num_heads, seq_length, seq_length) data = mx.sym.var("data") weight = mx.sym.var("weight") data_np = np.random.uniform(size=data_shape).astype("float32") weight_np = np.random.uniform(size=weight_shape).astype("float32") ref_res = mx.nd.contrib.interleaved_matmul_selfatt_valatt( mx.nd.array(data_np), mx.nd.array(weight_np), heads=num_heads ) mx_sym = mx.sym.contrib.interleaved_matmul_selfatt_valatt(data, weight, heads=num_heads) mod, _ = relay.frontend.from_mxnet(mx_sym, {"data": data_shape, "weight": weight_shape}) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( data=data_np, weight=weight_np ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-5) verify(1, 10, 4, 16) verify(3, 10, 6, 8) @tvm.testing.uses_gpu def test_forward_box_nms(): def verify( data_shape, overlap_thresh=0.5, valid_thresh=0, topk=1, coord_start=2, score_index=1, id_index=0, force_suppress=False, in_format="corner", ): dtype = "float32" data = np.random.uniform(low=0, high=1, size=data_shape).astype(dtype) ref_res = mx.nd.contrib.box_nms( mx.nd.array(data), overlap_thresh=overlap_thresh, valid_thresh=valid_thresh, topk=topk, coord_start=coord_start, score_index=score_index, id_index=id_index, force_suppress=force_suppress, background_id=-1, in_format=in_format, out_format=in_format, ) mx_sym = mx.sym.contrib.box_nms( mx.sym.var("data"), overlap_thresh=overlap_thresh, valid_thresh=valid_thresh, topk=topk, coord_start=coord_start, score_index=score_index, id_index=id_index, force_suppress=force_suppress, background_id=-1, in_format=in_format, out_format=in_format, ) shape_dict = {"data": data_shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shape_dict) for target, dev in tvm.testing.enabled_targets(): if tvm.contrib.thrust.can_use_thrust( tvm.target.Target(target + " -libs=thrust"), "tvm.contrib.thrust.sort" ): target += " -libs=thrust" for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( data ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-3, atol=1e-5) verify((1, 10, 6)) # No valid boxes verify((1, 10, 6), valid_thresh=1) @tvm.testing.uses_gpu def test_forward_box_decode(): def verify(data_shape, anchor_shape, stds=[1, 1, 1, 1], clip=-1, in_format="corner"): dtype = "float32" data = np.random.uniform(low=-2, high=2, size=data_shape).astype(dtype) anchors = np.random.uniform(low=-2, high=2, size=anchor_shape).astype(dtype) ref_res = mx.nd.contrib.box_decode( mx.nd.array(data), mx.nd.array(anchors), stds[0], stds[1], stds[2], stds[3], clip, in_format, ) mx_sym = mx.sym.contrib.box_decode( mx.sym.var("data"), mx.sym.var("anchors"), stds[0], stds[1], stds[2], stds[3], clip, in_format, ) shape_dict = {"data": data_shape, "anchors": anchor_shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shape_dict) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( data, anchors ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-3, atol=1e-5) verify((1, 10, 4), (1, 10, 4)) verify((4, 10, 4), (1, 10, 4)) verify((1, 10, 4), (1, 10, 4), stds=[2, 3, 0.5, 1.5]) verify((1, 10, 4), (1, 10, 4), clip=1) verify((1, 10, 4), (1, 10, 4), in_format="center") @tvm.testing.uses_gpu def test_forward_softmax(): def verify(data_shape, axis, use_length, length): dtype = "float32" x = np.random.uniform(low=-100, high=100, size=data_shape).astype(dtype) if use_length: ref_res = mx.nd.softmax( data=mx.nd.array(x), length=mx.nd.array(length, dtype="int32"), axis=axis, use_length=use_length, ) mx_sym = mx.symbol.softmax( data=mx.sym.var("data"), length=mx.sym.var("length"), axis=axis, use_length=use_length, ) shape_dict = {"data": data_shape, "length": (length.shape)} dtype_dict = {"data": dtype, "length": "int32"} mod, _ = relay.frontend.from_mxnet(mx_sym, shape_dict, dtype_dict) else: ref_res = mx.nd.softmax(data=mx.nd.array(x), axis=axis) mx_sym = mx.symbol.softmax(data=mx.sym.var("data"), axis=axis) shape_dict = {"data": data_shape} mod, _ = relay.frontend.from_mxnet(mx_sym, shape_dict) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "debug"]: func = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate() if use_length: op_res = func(x, length) else: op_res = func(x) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-3, atol=1e-5) verify((2, 3, 5), -1, False, None) verify((2, 3, 5), 2, False, None) verify((2, 3), -1, True, np.array([2, 1]).astype("int32")) verify((2, 3, 4), -1, True, np.array([[3, 4, 2], [2, 1, 1]]).astype("int32")) verify((2, 3, 4), 2, True, np.array([[3, 4, 2], [1, 2, 1]]).astype("int32")) @pytest.mark.skipif(not hasattr(mx.sym.np, "pad"), reason="mx.sym.np.pad hasn't been publish yet") @pytest.mark.parametrize( "data_shape, pad_width", [ ((1, 1, 3, 5), ((0, 0), (0, 0), (1, 2), (3, 4))), ((1, 1, 3, 5, 7), ((0, 0), (0, 0), (1, 2), (3, 4), (5, 6))), ], ) @pytest.mark.parametrize("mode", ["constant", "edge", "reflect"]) @pytest.mark.parametrize("dtype", ["float64", "float32", "int64", "int32"]) @pytest.mark.parametrize("constant_value", [0.0, 3.0]) @tvm.testing.parametrize_targets @pytest.mark.parametrize("kind", ["graph", "vm", "debug"]) def test_forward_npi_pad(data_shape, pad_width, mode, dtype, constant_value, target, dev, kind): data_np = np.random.uniform(size=data_shape).astype(dtype) data = mx.sym.var("data") if mode == "constant": ref_res = np.pad(data_np, mode=mode, pad_width=pad_width, constant_values=constant_value) mx_sym = mx.sym.np.pad( data.as_np_ndarray(), mode=mode, pad_width=pad_width, constant_values=constant_value ) else: ref_res = np.pad(data_np, mode=mode, pad_width=pad_width) mx_sym = mx.sym.np.pad(data.as_np_ndarray(), mode=mode, pad_width=pad_width) mod, _ = relay.frontend.from_mxnet(mx_sym, {"data": data_shape}, dtype=dtype) op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()(data_np) tvm.testing.assert_allclose(op_res.numpy(), ref_res, rtol=1e-5) @pytest.mark.skipif( not hasattr(mx.sym.np, "pad"), reason="test'll abort with Mxnet 1.x, skip for now" ) @pytest.mark.parametrize("data_shape", [(2, 2, 2), (2, 7, 2)]) @pytest.mark.parametrize("dtype", ["float64", "float32", "int64", "int32", "bool"]) @pytest.mark.parametrize("axes", [(1, 0, 2), None]) @tvm.testing.parametrize_targets @pytest.mark.parametrize("kind", ["graph", "vm", "debug"]) def test_forward_npi_transpose(data_shape, axes, dtype, target, dev, kind): data_np = np.random.uniform(size=data_shape).astype(dtype) data = mx.sym.var("data") ref_res = mx.np.transpose(mx.np.array(data_np), axes=axes) mx_sym = mx.sym.np.transpose(data.as_np_ndarray(), axes=axes) mod, _ = relay.frontend.from_mxnet(mx_sym, {"data": data_shape}, dtype=dtype) op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()(data_np) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-5) @pytest.mark.parametrize( "data_shape1, data_shape2, axis", [ ((2, 2), (2, 2), 1), ((2, 4), (2, 3), 1), ((1, 3, 2), (1, 3, 5), 2), ((1, 3, 3), (1, 3, 3), 1), ((1, 3), (1, 3), 0), ], ) @pytest.mark.parametrize("dtype", ["float64", "float32", "int64", "int32"]) @tvm.testing.parametrize_targets @pytest.mark.parametrize("kind", ["graph", "vm", "debug"]) def test_forward_npi_concatenate(data_shape1, data_shape2, axis, dtype, target, dev, kind): data_np1 = np.random.uniform(size=data_shape1).astype(dtype) data_np2 = np.random.uniform(size=data_shape2).astype(dtype) data1 = mx.sym.var("data1") data2 = mx.sym.var("data2") ref_res = mx.np.concatenate([mx.np.array(data_np1), mx.np.array(data_np2)], axis=axis) mx_sym = mx.sym.np.concatenate([data1.as_np_ndarray(), data2.as_np_ndarray()], axis=axis) mod, _ = relay.frontend.from_mxnet( mx_sym, shape={"data1": data_shape1, "data2": data_shape2}, dtype=dtype ) op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( data_np1, data_np2 ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-5) @pytest.mark.parametrize( "data_shape1, data_shape2, axis", [ ((3,), (3,), 0), ((3,), (3,), -1), ((1, 3, 2), (1, 3, 2), 2), ((1, 3, 3), (1, 3, 3), 1), ((1, 3), (1, 3), 0), ], ) @pytest.mark.parametrize("dtype", ["float64", "float32", "int64", "int32"]) @tvm.testing.parametrize_targets @pytest.mark.parametrize("kind", ["graph", "vm", "debug"]) def test_forward_npi_stack(data_shape1, data_shape2, axis, dtype, target, dev, kind): data_np1 = np.random.uniform(size=data_shape1).astype(dtype) data_np2 = np.random.uniform(size=data_shape2).astype(dtype) data1 = mx.sym.var("data1") data2 = mx.sym.var("data2") ref_res = mx.np.stack([mx.np.array(data_np1), mx.np.array(data_np2)], axis=axis) mx_sym = mx.sym.np.stack([data1.as_np_ndarray(), data2.as_np_ndarray()], axis=axis) mod, _ = relay.frontend.from_mxnet( mx_sym, shape={"data1": data_shape1, "data2": data_shape2}, dtype=dtype ) op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( data_np1, data_np2 ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-5) @pytest.mark.parametrize("data_shape", [(2, 2, 2), (2, 7, 2), (2, 2, 2, 1, 2, 3, 1), (1, 8)]) @pytest.mark.parametrize("dtype", ["float64", "float32", "int64", "int32", "bool"]) @tvm.testing.parametrize_targets @pytest.mark.parametrize("kind", ["graph", "vm", "debug"]) def test_forward_np_copy(data_shape, dtype, target, dev, kind): data_np = np.random.uniform(size=data_shape).astype(dtype) data = mx.sym.var("data") ref_res = mx.np.copy(mx.np.array(data_np)) mx_sym = mx.sym.np.copy(data.as_np_ndarray()) mod, _ = relay.frontend.from_mxnet(mx_sym, {"data": data_shape}, dtype=dtype) op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()(data_np) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-5) @pytest.mark.parametrize("dtype", ["float64", "float32", "int64", "int32", "bool"]) @tvm.testing.parametrize_targets @pytest.mark.parametrize("kind", ["graph", "vm", "debug"]) @pytest.mark.parametrize( "data_shape,out_shape,reverse", [ ((2, 3, 8), (-2, -2, 2, -1), False), ((8, 3, 3, 3, 4, 4), (-6, 2, -1, -4), False), ((8, 3, 3, 3, 4, 4), (-5, -4), False), ((1, 8, 3, 3, 3, 4, 4), (-3, -5, -4), False), ((8, 1, 3, 4), (-2, -3, -1), False), ((8, 3, 3, 3, 3, 8), (-4, -5), True), ((8, 3, 2, 4, 8), (-4, -1, 2, -6), True), ((3, 2, 4, 8, 1, 1), (-4, -1, 2, -6, -5, -3), True), ((2, 4, 1, 8), (-4, -3, -1, 2, -6), True), ], ) def test_forward_npx_reshape(data_shape, out_shape, dtype, target, reverse, dev, kind): data_np = np.random.uniform(size=data_shape).astype(dtype) data = mx.sym.var("data") ref_res = mx.npx.reshape(mx.np.array(data_np), newshape=out_shape, reverse=reverse) mx_sym = mx.sym.npx.reshape(data.as_np_ndarray(), newshape=out_shape, reverse=reverse) mod, _ = relay.frontend.from_mxnet(mx_sym, {"data": data_shape}, dtype=dtype) op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()(data_np) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-5) @pytest.mark.parametrize( "data_shape", [(2, 2, 2), (2, 7, 2), (2, 2, 2, 1, 2, 3, 1), (1, 8), (2, 2), (1, 3)] ) @pytest.mark.parametrize("dtype", ["float64", "float32", "int64", "int32"]) @tvm.testing.parametrize_targets @pytest.mark.parametrize("kind", ["graph", "vm", "debug"]) def test_forward_npi_binary(data_shape, dtype, target, dev, kind): ref_ops = [mx.np.power, mx.np.multiply, mx.np.add, mx.np.subtract, mx.np.less] mx_ops = [ mx.sym.np.power, mx.sym.np.multiply, mx.sym.np.add, mx.sym.np.subtract, mx.sym.np.less, ] for i in range(len(ref_ops)): ref_op = ref_ops[i] mx_op = mx_ops[i] # mx.np.power only support float type if ref_op == mx.np.power and dtype not in ["float64", "float32"]: continue data_np1 = np.random.uniform(size=data_shape).astype(dtype) data_np2 = np.random.uniform(size=data_shape).astype(dtype) data1 = mx.sym.var("lhs") data2 = mx.sym.var("rhs") ref_res = ref_op(mx.np.array(data_np1), mx.np.array(data_np2)) mx_sym = mx_op(data1.as_np_ndarray(), data2.as_np_ndarray()) mod, _ = relay.frontend.from_mxnet( mx_sym, shape={"lhs": data_shape, "rhs": data_shape}, dtype=dtype ) op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( data_np1, data_np2 ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-5) @pytest.mark.parametrize( "data_shape", [(2, 2, 2), (2, 7, 2), (2, 2, 2, 1, 2, 3, 1), (1, 8), (2, 2), (1, 3)] ) @pytest.mark.parametrize("dtype", ["float64", "float32", "int64", "int32"]) @tvm.testing.parametrize_targets @pytest.mark.parametrize("scalar", [1.0, 2.0, 3.0, 4.0]) @pytest.mark.parametrize("kind", ["graph", "vm", "debug"]) def test_forward_npi_binary_scalar(data_shape, dtype, scalar, target, dev, kind): ref_ops = [mx.np.power, mx.np.multiply, mx.np.add, mx.np.subtract, mx.np.true_divide] mx_ops = [ mx.sym.np.power, mx.sym.np.multiply, mx.sym.np.add, mx.sym.np.subtract, mx.sym.np.true_divide, ] for i in range(len(ref_ops)): ref_op = ref_ops[i] mx_op = mx_ops[i] # mx.np.power only support float type if ref_op == mx.np.power and dtype not in ["float64", "float32"]: continue data_np1 = np.random.uniform(size=data_shape).astype(dtype) data1 = mx.sym.var("lhs") ref_res = ref_op(mx.np.array(data_np1), scalar) mx_sym = mx_op(data1.as_np_ndarray(), scalar) mod, _ = relay.frontend.from_mxnet(mx_sym, shape={"lhs": data_shape}, dtype=dtype) op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( data_np1 ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-5) @pytest.mark.parametrize( "data_shape", [(2, 2, 2), (2, 7, 2), (2, 2, 2, 1, 2, 3, 1), (1, 8), (2, 2), (1, 3)] ) @pytest.mark.parametrize("dtype", ["float64", "float32"]) @tvm.testing.parametrize_targets @pytest.mark.parametrize("kind", ["graph", "vm", "debug"]) def test_forward_npi_tanh(data_shape, dtype, target, dev, kind): data_np1 = np.random.uniform(size=data_shape).astype(dtype) data1 = mx.sym.var("data") ref_res = mx.np.tanh(mx.np.array(data_np1)) mx_sym = mx.sym.np.tanh(data1.as_np_ndarray()) mod, _ = relay.frontend.from_mxnet(mx_sym, shape={"data": data_shape}, dtype=dtype) op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()(data_np1) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-5) @pytest.mark.skipif(not hasattr(mx.np, "where"), reason="mx.np.where hasn't been publish yet") @pytest.mark.parametrize( "data_shape,cond_shape", [[(2, 2, 2), (2, 2, 2)], [(2, 7, 2), (7, 2)], [(2, 2), (1, 2)], [(1, 3), (3, 3)]], ) @pytest.mark.parametrize("data_dtype", ["float64", "float32", "int64", "int32", "bool"]) @pytest.mark.parametrize("cond_dtype", ["float64", "float32", "int64", "int32", "bool"]) @pytest.mark.parametrize("scalar", [1.0, 2.0]) @tvm.testing.parametrize_targets @pytest.mark.parametrize("kind", ["graph", "vm", "debug"]) def test_forward_npi_where_rscalar( data_shape, cond_shape, data_dtype, cond_dtype, scalar, target, dev, kind ): if data_dtype == "bool": scalar = scalar == 0.0 cond_np = np.random.uniform(size=cond_shape).astype(cond_dtype) data_np = np.random.uniform(size=data_shape).astype(data_dtype) cond = mx.sym.var("condition") data = mx.sym.var("x") ref_res = mx.np.where(mx.np.array(cond_np), mx.np.array(data_np), scalar) mx_sym = mx.sym.np.where(cond.as_np_ndarray(), data.as_np_ndarray(), scalar) dtypeDic = {} dtypeDic["condition"] = cond_dtype dtypeDic["x"] = data_dtype mod, _ = relay.frontend.from_mxnet( mx_sym, shape={"condition": cond_shape, "x": data_shape}, dtype=dtypeDic ) op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( cond_np, data_np ) tvm.testing.assert_allclose(op_res.numpy(), ref_res.asnumpy(), rtol=1e-5) @pytest.mark.parametrize("dtype", ["float64", "float32", "int64", "int32", "bool"]) @tvm.testing.parametrize_targets @pytest.mark.parametrize("kind", ["graph", "vm", "debug"]) @pytest.mark.parametrize( "data_shape, axis, indices_or_sections, squeeze_axis", [ ((3, 2, 1), 1, 2, False), ((3, 2, 1), 0, 3, False), ((3, 2, 1), 0, 3, True), ((3, 2, 1), 0, (1, 2), False), ], ) def test_forward_split_v2( data_shape, axis, dtype, indices_or_sections, squeeze_axis, target, dev, kind ): data_np = np.random.uniform(size=data_shape).astype(dtype) data = mx.sym.var("data") ref_res = mx.ndarray.split_v2( mx.nd.array(data_np), indices_or_sections, axis=axis, squeeze_axis=squeeze_axis ) mx_sym = mx.sym.split_v2( data.as_nd_ndarray(), indices_or_sections, axis=axis, squeeze_axis=squeeze_axis ) mod, _ = relay.frontend.from_mxnet(mx_sym, {"data": data_shape}, dtype=dtype) op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()(data_np) op_res_ = [] for arr in op_res: op_res_.append(arr.numpy().tolist()) ref_res_ = [] for arr in ref_res: ref_res_.append(arr.asnumpy().tolist()) tvm.testing.assert_allclose(op_res_, ref_res_, rtol=1e-5) if __name__ == "__main__": pytest.main(["test_forward.py"])
https://github.com/zk-ml/tachikoma
tests/python/frontend/mxnet/test_graph.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import mxnet as mx import tvm from tvm import te from tvm import relay from tvm.relay import transform import model_zoo def compare_graph(lhs_mod, rhs_mod): lhs_mod = transform.InferType()(lhs_mod) rhs_mod = transform.InferType()(rhs_mod) assert tvm.ir.structural_equal(lhs_mod["main"], rhs_mod["main"]) def test_mlp(): shape = {"data": (1, 1, 28, 28)} mx_fun = model_zoo.mx_mlp() mod, _ = relay.frontend.from_mxnet(mx_fun, shape=shape) relay_fun = model_zoo.relay_mlp() compare_graph(mod, relay_fun) def test_vgg(): shape = {"data": (1, 3, 224, 224)} for n in [11, 13, 16, 19]: mx_sym = model_zoo.mx_vgg(n) mod, _ = relay.frontend.from_mxnet(mx_sym, shape=shape) relay_mod = model_zoo.relay_vgg(n) compare_graph(mod, relay_mod) def test_resnet(): shape = {"data": (1, 3, 224, 224)} for n in [18, 34, 50, 101]: mx_sym = model_zoo.mx_resnet(n) mod, _ = relay.frontend.from_mxnet(mx_sym, shape=shape) relay_mod = model_zoo.relay_resnet(n) compare_graph(mod, relay_mod) def test_squeezenet(): shape = {"data": (1, 3, 224, 224)} for version in ["1.0", "1.1"]: mx_sym = model_zoo.mx_squeezenet(version) mod, _ = relay.frontend.from_mxnet(mx_sym, shape) relay_mod = model_zoo.relay_squeezenet(version) compare_graph(mod, relay_mod) def test_inception_v3(): shape = {"data": (1, 3, 299, 299)} mx_sym = model_zoo.mx_inception_v3() mod, _ = relay.frontend.from_mxnet(mx_sym, shape) relay_mod = model_zoo.relay_inception_v3() compare_graph(mod, relay_mod) def test_dqn(): shape = {"data": (1, 4, 84, 84)} mx_sym = model_zoo.mx_dqn() mod, _ = relay.frontend.from_mxnet(mx_sym, shape) relay_mod = model_zoo.relay_dqn() compare_graph(mod, relay_mod) def test_dcgan(): shape = {"data": (2, 100)} mx_sym = model_zoo.mx_dcgan() mod, _ = relay.frontend.from_mxnet(mx_sym, shape) relay_mod = model_zoo.relay_dcgan(batch_size=2) compare_graph(mod, relay_mod) def test_multi_outputs(): xshape = (10, 27) yshape = (10, 9) def mx_compose(F, **kwargs): x = F.sym.Variable("x") y = F.sym.Variable("y") z = F.sym.split(x, **kwargs) return F.sym.broadcast_sub(F.sym.broadcast_add(z[0], z[2]), y) def relay_compose(F, **kwargs): x = F.var("x", shape=xshape) y = F.var("y", shape=yshape) z = F.split(x, **kwargs) z = F.subtract(F.add(z[0], z[2]), y) func = relay.Function(relay.analysis.free_vars(z), z) return tvm.IRModule.from_expr(func) mx_sym = mx_compose(mx, num_outputs=3, axis=1) mod, _ = relay.frontend.from_mxnet(mx_sym, shape={"x": xshape, "y": yshape}) relay_mod = relay_compose(relay, indices_or_sections=3, axis=1) compare_graph(mod, relay_mod) if __name__ == "__main__": test_mlp() test_resnet() test_vgg() test_multi_outputs() test_dqn() test_dcgan() test_squeezenet() test_inception_v3()
https://github.com/zk-ml/tachikoma
tests/python/frontend/mxnet/test_qnn_ops_utils.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import numpy as np import tvm from tvm import relay from tvm.contrib import graph_executor from tvm.relay.frontend.mxnet_qnn_op_utils import ( dequantize_mxnet_min_max, quantize_mxnet_min_max, get_mkldnn_int8_scale, get_mkldnn_uint8_scale, quantize_conv_bias_mkldnn_from_var, ) def test_mkldnn_dequantize(): def dequantize_test_driver(in_dtype, quant_args, in_data, verify_output_data): shape = in_data.shape input_data = relay.var("input_data", shape=shape, dtype=in_dtype) min_range = quant_args["min_range"] max_range = quant_args["max_range"] dequantized_output = dequantize_mxnet_min_max( input_data, min_range=min_range, max_range=max_range, in_dtype=in_dtype ) mod = relay.Function(relay.analysis.free_vars(dequantized_output), dequantized_output) mod = tvm.IRModule.from_expr(mod) with tvm.transform.PassContext(opt_level=3): graph, lib, params = relay.build(mod, "llvm", params=None) rt_mod = graph_executor.create(graph, lib, device=tvm.cpu(0)) rt_mod.set_input(input_data=in_data) rt_mod.set_input(**params) rt_mod.run() res = rt_mod.get_output(0).numpy() assert np.allclose(res, verify_output_data) assert res.dtype == np.float32 def test_uint8_to_float32(): data = np.array([0, 1, 2, 3, 4, 251, 252, 253, 254, 255]).astype("uint8").reshape((2, 5)) output = ( np.array( [ 0.0, 0.25048923, 0.50097847, 0.7514677, 1.0019569, 62.8728, 63.123287, 63.373775, 63.624268, 63.874756, ] ) .astype("float32") .reshape((2, 5)) ) quant_args = {"min_range": -63.5, "max_range": 64} dequantize_test_driver( in_dtype="uint8", quant_args=quant_args, in_data=data, verify_output_data=output ) def test_int8_to_float32(): data = ( np.array([-126, -125, -124, -123, -122, 123, 124, 125, 126, 127]) .astype("int8") .reshape((2, 5)) ) output = ( np.array( [ -63.247063, -62.745102, -62.24314, -61.74118, -61.23922, 61.74118, 62.24314, 62.745102, 63.247063, 63.749023, ] ) .astype("float32") .reshape((2, 5)) ) dequantize_args = {"min_range": -63.5, "max_range": 64} dequantize_test_driver( in_dtype="int8", quant_args=dequantize_args, in_data=data, verify_output_data=output ) test_uint8_to_float32() test_int8_to_float32() def test_mkldnn_quantize(): def quantize_test_driver(out_dtype, quant_args, in_data, verify_output_data): shape = in_data.shape input_data = relay.var("input_data", shape=shape, dtype="float32") min_range = quant_args["min_range"] max_range = quant_args["max_range"] quantized_output, _, _ = quantize_mxnet_min_max( input_data, min_range=min_range, max_range=max_range, out_dtype=out_dtype ) mod = relay.Function(relay.analysis.free_vars(quantized_output), quantized_output) mod = tvm.IRModule.from_expr(mod) with tvm.transform.PassContext(opt_level=3): graph, lib, params = relay.build(mod, "llvm", params=None) rt_mod = graph_executor.create(graph, lib, device=tvm.cpu(0)) rt_mod.set_input(input_data=in_data) rt_mod.set_input(**params) rt_mod.run() res = rt_mod.get_output(0).numpy() assert np.allclose(res, verify_output_data) assert res.dtype == verify_output_data.dtype def test_float32_to_uint8(): data = ( np.array( [ 0.0, 0.25048923, 0.50097847, 0.7514677, 1.0019569, 62.8728, 63.123287, 63.373775, 63.624268, 63.874756, ] ) .astype("float32") .reshape((2, 5)) ) output = np.array([0, 1, 2, 3, 4, 251, 252, 253, 254, 255]).astype("uint8").reshape((2, 5)) quant_args = {"min_range": -63.5, "max_range": 64} quantize_test_driver( out_dtype="uint8", quant_args=quant_args, in_data=data, verify_output_data=output ) def test_float32_to_int8(): data = ( np.array( [ -63.247063, -62.745102, -62.24314, -61.74118, -61.23922, 61.74118, 62.24314, 62.745102, 63.247063, 63.749023, ] ) .astype("float32") .reshape((2, 5)) ) output = ( np.array([-126, -125, -124, -123, -122, 123, 124, 125, 126, 127]) .astype("int8") .reshape((2, 5)) ) quant_args = {"min_range": -63.5, "max_range": 64} quantize_test_driver( out_dtype="int8", quant_args=quant_args, in_data=data, verify_output_data=output ) test_float32_to_uint8() test_float32_to_int8() def test_get_mkldnn_int8_scale(): range_min = -3.904039 range_max = 3.904039 expected = 0.03061991354976495 output = get_mkldnn_int8_scale(range_max=range_max, range_min=range_min) assert np.allclose(output, expected) def test_get_mkldnn_uint8_scale(): range_min = 0.0 range_max = 55.77269 expected = 0.21828841189047482 output = get_mkldnn_uint8_scale(range_max=range_max, range_min=range_min) assert np.allclose(output, expected) def test_quantize_conv_bias_mkldnn_from_var(): bias_var = relay.var("bias", shape=(3,), dtype="float32") bias_scale = tvm.nd.array(np.array([0.5, 0.6, 0.7])) output = quantize_conv_bias_mkldnn_from_var(bias_var, bias_scale) assert isinstance(output, tvm.relay.expr.Call) attrs = output.attrs assert attrs.axis == 0 assert attrs.out_dtype == "int32" assert output.op.name == "qnn.quantize" assert output.args[1].data == bias_scale if __name__ == "__main__": test_mkldnn_dequantize() test_mkldnn_quantize() test_get_mkldnn_int8_scale() test_get_mkldnn_uint8_scale() test_quantize_conv_bias_mkldnn_from_var()
https://github.com/zk-ml/tachikoma
tests/python/frontend/oneflow/test_forward.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=arguments-differ, unused-argument """Unit tests for various models and operators""" import os import numpy as np import tvm import tvm.testing import tvm.topi.testing from tvm import relay import oneflow as flow MODEL_HOME = "test_model" def mkdir(path): # init path = path.strip() path = path.rstrip("\\") if not os.path.exists(path): os.makedirs(path) else: print(f"{path} is already here") def rmdir(path): for root, dirs, files in os.walk(path, topdown=False): for name in files: os.remove(os.path.join(root, name)) for name in dirs: os.rmdir(os.path.join(root, name)) os.removedirs(path) def assert_shape(out1, out2): if out1.shape != out2.shape: msg = "Output shapes {} and {} don't match" raise AssertionError(msg.format(out1.shape, out2.shape)) class OneFlowGraph(flow.nn.Graph): def __init__(self, module): super().__init__() self.m = module def build(self, x): out = self.m(x) return out class OneFlowGraphV2(flow.nn.Graph): def __init__(self, module): super().__init__() self.m = module def build(self, input_1, input_2, input_3): out = self.m(input_1, input_2, input_3) return out class OneFlowGraphV3(flow.nn.Graph): def __init__(self, module): super().__init__() self.m = module def build(self, input_1, input_2): out = self.m(input_1, input_2) return out def get_oneflow_output(model, inputs): flow_output = model(inputs) return flow_output.numpy() def get_oneflow_concat_output(model, input1, input2, input3): flow_output = model(input1, input2, input3).numpy() return flow_output def get_oneflow_elementwise_output(model, input1, input2): return model(input1, input2).numpy() def get_tvm_output(graph, model_path, inputs: flow.tensor, target="llvm", dtype="float32"): """Generic function to execute and get tvm output""" inputs_numpy = inputs.numpy() if target == "llvm": device = tvm.cpu(0) elif target == "cuda": device = tvm.cuda(0) mod, params = relay.frontend.from_oneflow(graph, model_path) with tvm.transform.PassContext(opt_level=10): intrp = relay.build_module.create_executor("graph", mod, device, target) tvm_output = intrp.evaluate()(tvm.nd.array(inputs_numpy.astype(dtype)), **params).numpy() return tvm_output def get_tvm_concat_output( graph, model_path, input1: flow.tensor, input2: flow.tensor, input3: flow.tensor, target="llvm", dtype="float32", ): """Generic function to execute and get tvm concat output""" input1_numpy = input1.numpy() input2_numpy = input2.numpy() input3_numpy = input3.numpy() if target == "llvm": device = tvm.cpu(0) elif target == "cuda": device = tvm.cuda(0) mod, params = relay.frontend.from_oneflow(graph, model_path) with tvm.transform.PassContext(opt_level=10): intrp = relay.build_module.create_executor("graph", mod, device, target) tvm_output = intrp.evaluate()( tvm.nd.array(input1_numpy.astype(dtype)), tvm.nd.array(input2_numpy.astype(dtype)), tvm.nd.array(input3_numpy.astype(dtype)), **params, ).numpy() return tvm_output def get_tvm_elementwise_output( graph, model_path, input1: flow.tensor, input2: flow.tensor, target="llvm", dtype="float32", ): """Generic function to execute and get tvm elementwise output""" input1_numpy = input1.numpy() input2_numpy = input2.numpy() if target == "llvm": device = tvm.cpu(0) elif target == "cuda": device = tvm.cuda(0) mod, params = relay.frontend.from_oneflow(graph, model_path) with tvm.transform.PassContext(opt_level=10): intrp = relay.build_module.create_executor("graph", mod, device, target) tvm_output = intrp.evaluate()( tvm.nd.array(input1_numpy.astype(dtype)), tvm.nd.array(input2_numpy.astype(dtype)), **params, ).numpy() return tvm_output def verify_conv( model, name="", rtol=1e-5, atol=1e-5, inputs=flow.tensor( np.random.rand(1, 3, 224, 224), dtype=flow.float32, ), device="llvm", ): """verify_conv""" if device == "cuda": model.to(device) inputs = inputs.to(device) graph = OneFlowGraph(model) graph._compile(inputs) mkdir(MODEL_HOME) flow.save(model.state_dict(), MODEL_HOME) out_flow = get_oneflow_output(graph, inputs) out_tvm = get_tvm_output(graph, MODEL_HOME, inputs, target=device) rmdir(MODEL_HOME) assert_shape(out_flow, out_tvm) tvm.testing.assert_allclose(out_flow, out_tvm, rtol=rtol, atol=atol) def verify_pool( model, name="", rtol=1e-5, atol=1e-5, inputs=flow.tensor( np.random.rand(1, 3, 224, 224), dtype=flow.float32, ), device="llvm", ): """verify_pool""" if device == "cuda": model.to(device) inputs = inputs.to(device) graph = OneFlowGraph(model) graph._compile(inputs) mkdir(MODEL_HOME) flow.save(model.state_dict(), MODEL_HOME) out_flow = get_oneflow_output(graph, inputs) out_tvm = get_tvm_output(graph, MODEL_HOME, inputs, target=device) rmdir(MODEL_HOME) assert_shape(out_flow, out_tvm) tvm.testing.assert_allclose(out_flow, out_tvm, rtol=rtol, atol=atol) def verify_normalization( model, name="", rtol=1e-5, atol=1e-5, inputs=flow.tensor( np.random.rand(1, 3, 224, 224), dtype=flow.float32, ), device="llvm", ): """verify_normalization""" if device == "cuda": model.to(device) inputs = inputs.to(device) graph = OneFlowGraph(model) graph._compile(inputs) # write params mkdir(MODEL_HOME) flow.save(model.state_dict(), MODEL_HOME) out_flow = get_oneflow_output(graph, inputs) out_tvm = get_tvm_output(graph, MODEL_HOME, inputs, target=device) rmdir(MODEL_HOME) assert_shape(out_flow, out_tvm) tvm.testing.assert_allclose(out_flow, out_tvm, rtol=rtol, atol=atol) def verify_upsample( model, name="", rtol=1e-5, atol=1e-5, inputs=flow.tensor( np.random.rand(1, 3, 50, 50), dtype=flow.float32, ), device="llvm", ): """verify_upsample""" if device == "cuda": model.to(device) inputs = inputs.to(device) graph = OneFlowGraph(model) graph._compile(inputs) mkdir(MODEL_HOME) flow.save(model.state_dict(), MODEL_HOME) out_flow = get_oneflow_output(graph, inputs) out_tvm = get_tvm_output(graph, MODEL_HOME, inputs, target=device) rmdir(MODEL_HOME) assert_shape(out_flow, out_tvm) tvm.testing.assert_allclose(out_flow, out_tvm, rtol=rtol, atol=atol) def verify_convtran( model, name="", rtol=1e-5, atol=1e-5, inputs=flow.tensor( np.random.rand(1, 3, 50, 50), dtype=flow.float32, ), device="llvm", ): """verify_convtran""" if device == "cuda": model.to(device) inputs = inputs.to(device) graph = OneFlowGraph(model) graph._compile(inputs) mkdir(MODEL_HOME) flow.save(model.state_dict(), MODEL_HOME) out_flow = get_oneflow_output(graph, inputs) out_tvm = get_tvm_output(graph, MODEL_HOME, inputs, target=device) rmdir(MODEL_HOME) assert_shape(out_flow, out_tvm) tvm.testing.assert_allclose(out_flow, out_tvm, rtol=rtol, atol=atol) def verify_activation( model, name="", rtol=1e-5, atol=1e-5, inputs=flow.tensor( np.random.rand(10, 10), dtype=flow.float32, ), device="llvm", ): """verify_activation""" if device == "cuda": model.to(device) inputs = inputs.to(device) graph = OneFlowGraph(model) graph._compile(inputs) mkdir(MODEL_HOME) flow.save(model.state_dict(), MODEL_HOME) out_flow = get_oneflow_output(graph, inputs) out_tvm = get_tvm_output(graph, MODEL_HOME, inputs, target=device) rmdir(MODEL_HOME) assert_shape(out_flow, out_tvm) tvm.testing.assert_allclose(out_flow, out_tvm, rtol=rtol, atol=atol) def verify_math( model, name="", rtol=1e-5, atol=1e-5, inputs=flow.tensor( np.random.rand(100, 1), dtype=flow.float32, ), device="llvm", ): """verify_math""" if device == "cuda": model.to(device) inputs = inputs.to(device) graph = OneFlowGraph(model) graph._compile(inputs) mkdir(MODEL_HOME) flow.save(model.state_dict(), MODEL_HOME) out_flow = get_oneflow_output(graph, inputs) out_tvm = get_tvm_output(graph, MODEL_HOME, inputs, target=device) rmdir(MODEL_HOME) assert_shape(out_flow, out_tvm) tvm.testing.assert_allclose(out_flow, out_tvm, rtol=rtol, atol=atol) def verify_matmul( model, name="", rtol=1e-5, atol=1e-5, inputs1=flow.tensor(np.random.randn(2, 5), dtype=flow.float32), inputs2=flow.tensor(np.random.randn(5, 2), dtype=flow.float32), device="llvm", ): """verify_matmul""" if device == "cuda": model.to(device) inputs1 = inputs1.to(device) inputs2 = inputs2.to(device) graph = OneFlowGraphV3(model) graph._compile(inputs1, inputs2) mkdir(MODEL_HOME) flow.save(model.state_dict(), MODEL_HOME) out_flow = get_oneflow_elementwise_output(graph, inputs1, inputs2) out_tvm = get_tvm_elementwise_output(graph, MODEL_HOME, inputs1, inputs2, target=device) rmdir(MODEL_HOME) assert_shape(out_flow, out_tvm) tvm.testing.assert_allclose(out_flow, out_tvm, rtol=rtol, atol=atol) def verify_concat( model, name="", rtol=1e-5, atol=1e-5, inputs1=flow.tensor(np.random.randn(2, 5, 5, 4), dtype=flow.float32), inputs2=flow.tensor(np.random.randn(2, 5, 5, 2), dtype=flow.float32), inputs3=flow.tensor(np.random.randn(2, 5, 5, 3), dtype=flow.float32), device="llvm", ): """verify_concat""" if device == "cuda": model.to(device) inputs1 = inputs1.to(device) inputs2 = inputs2.to(device) inputs3 = inputs3.to(device) graph = OneFlowGraphV2(model) graph._compile(inputs1, inputs2, inputs3) mkdir(MODEL_HOME) flow.save(model.state_dict(), MODEL_HOME) out_flow = get_oneflow_concat_output(graph, inputs1, inputs2, inputs3) out_tvm = get_tvm_concat_output(graph, MODEL_HOME, inputs1, inputs2, inputs3, target=device) rmdir(MODEL_HOME) assert_shape(out_flow, out_tvm) tvm.testing.assert_allclose(out_flow, out_tvm, rtol=rtol, atol=atol) # defs/nn @tvm.testing.uses_gpu def test_conv2d(): """Conv2d""" class Conv2dModel(flow.nn.Module): def __init__(self): super().__init__() self.conv = flow.nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1) def forward(self, x): x = self.conv(x) return x if os.path.exists(MODEL_HOME): rmdir(MODEL_HOME) model = Conv2dModel() model.eval() for device in ["llvm"]: verify_conv(model, device=device) @tvm.testing.uses_gpu def test_pool2d(): """Pool2d""" class MaxPool2dModel(flow.nn.Module): def __init__(self): super().__init__() self.pool = flow.nn.MaxPool2d(kernel_size=3, stride=2, padding=1) def forward(self, x): x = self.pool(x) return x class AvgPool2dModel(flow.nn.Module): def __init__(self): super().__init__() self.pool = flow.nn.AvgPool2d(kernel_size=3, stride=2, padding=1) def forward(self, x): x = self.pool(x) return x class AdaptiveAvgPool2dModel(flow.nn.Module): def __init__(self): super().__init__() self.pool = flow.nn.AdaptiveAvgPool2d((None, 7)) def forward(self, x): x = self.pool(x) return x if os.path.exists(MODEL_HOME): rmdir(MODEL_HOME) model1 = MaxPool2dModel().eval() model2 = AvgPool2dModel().eval() model3 = AdaptiveAvgPool2dModel().eval() for device in ["llvm"]: verify_pool(model1, device=device) verify_pool(model2, device=device) verify_pool(model3, device=device) @tvm.testing.uses_gpu def test_normalization(): """Normalization""" class BatchNorm2dModel(flow.nn.Module): def __init__(self): super().__init__() self.normalization = flow.nn.BatchNorm2d(3) def forward(self, x): x = self.normalization(x) return x if os.path.exists(MODEL_HOME): rmdir(MODEL_HOME) model = BatchNorm2dModel().eval() for device in ["llvm"]: verify_normalization(model, device=device) @tvm.testing.uses_gpu def test_upsample(): """Upsample""" class UpsampleModel(flow.nn.Module): def __init__(self): super().__init__() self.upsample = flow.nn.Upsample(scale_factor=2.0, mode="nearest") def forward(self, x): x = self.upsample(x) return x class UpsampleBiliModel(flow.nn.Module): def __init__(self): super().__init__() self.upsample = flow.nn.UpsamplingBilinear2d(scale_factor=2.0) def forward(self, x): x = self.upsample(x) return x if os.path.exists(MODEL_HOME): rmdir(MODEL_HOME) model1 = UpsampleModel().eval() model2 = UpsampleBiliModel().eval() for device in ["llvm"]: verify_upsample(model1, device=device) verify_upsample(model2, device=device) @tvm.testing.uses_gpu def test_convtran(): """ConvTran""" class ConvTranModel(flow.nn.Module): def __init__(self): super().__init__() self.convtran = flow.nn.ConvTranspose2d(3, 4, (3, 5), stride=(2, 1), padding=(4, 2)) def forward(self, x): x = self.convtran(x) return x if os.path.exists(MODEL_HOME): rmdir(MODEL_HOME) model = ConvTranModel().eval() for device in ["llvm"]: verify_convtran(model, device=device) @tvm.testing.uses_gpu def test_activation(): """Activation""" class Softmax(flow.nn.Module): def __init__(self): super().__init__() self.active = flow.nn.Softmax() def forward(self, x): x = self.active(x) return x class Softplus(flow.nn.Module): def __init__(self): super().__init__() self.active = flow.nn.Softplus() def forward(self, x): x = self.active(x) return x class Softsign(flow.nn.Module): def __init__(self): super().__init__() self.active = flow.nn.Softsign() def forward(self, x): x = self.active(x) return x class Tanh(flow.nn.Module): def __init__(self): super().__init__() self.active = flow.nn.Tanh() def forward(self, x): x = self.active(x) return x class ReLU(flow.nn.Module): def __init__(self): super().__init__() self.active = flow.nn.ReLU() def forward(self, x): x = self.active(x) return x class ReLU6(flow.nn.Module): def __init__(self): super().__init__() self.active = flow.nn.ReLU6() def forward(self, x): x = self.active(x) return x class PReLU(flow.nn.Module): def __init__(self): super().__init__() self.active = flow.nn.PReLU() def forward(self, x): x = self.active(x) return x class SELU(flow.nn.Module): def __init__(self): super().__init__() self.active = flow.nn.SELU() def forward(self, x): x = self.active(x) return x class SiLU(flow.nn.Module): def __init__(self): super().__init__() self.active = flow.nn.SiLU() def forward(self, x): x = self.active(x) return x class LeakyReLU(flow.nn.Module): def __init__(self): super().__init__() self.active = flow.nn.LeakyReLU(0.1) def forward(self, x): x = self.active(x) return x class GELU(flow.nn.Module): def __init__(self): super().__init__() self.active = flow.nn.GELU() def forward(self, x): x = self.active(x) return x class HardTanh(flow.nn.Module): def __init__(self): super().__init__() self.active = flow.nn.Hardtanh() def forward(self, x): x = self.active(x) return x class TensorSoftmax(flow.nn.Module): def forward(self, x): x = x.softmax(dim=-1) return x if os.path.exists(MODEL_HOME): rmdir(MODEL_HOME) model1 = Softmax().eval() model2 = Softplus().eval() # pylint: disable=unused-variable model3 = Softsign().eval() model4 = Tanh().eval() model5 = ReLU().eval() model6 = ReLU6().eval() model7 = PReLU().eval() model8 = SELU().eval() model9 = SiLU().eval() model10 = LeakyReLU().eval() model11 = GELU().eval() model12 = HardTanh().eval() model13 = TensorSoftmax().eval() for device in ["llvm"]: verify_activation(model1, device=device) # verify_activation(model2, device=device) # NO PASS verify_activation(model3, device=device) verify_activation(model4, device=device) verify_activation(model5, device=device) verify_activation(model6, device=device) verify_activation(model7, device=device) verify_activation(model8, device=device) verify_activation(model9, device=device) verify_activation(model10, device=device) verify_activation(model11, device=device) verify_activation(model12, device=device) verify_activation( model13, device=device, inputs=flow.tensor(np.random.rand(1, 12, 197, 197).astype(np.float32)), ) @tvm.testing.uses_gpu def test_math(): """Math""" class Sigmoid(flow.nn.Module): def forward(self, x): return flow.sigmoid(x) class Sign(flow.nn.Module): def forward(self, x): return flow.sign(x) class Reciprocal(flow.nn.Module): def forward(self, x): return flow.reciprocal(x) class Pow(flow.nn.Module): def forward(self, x): return flow.pow(x, 2.0) class Log(flow.nn.Module): def forward(self, x): return flow.log(x) class Log2(flow.nn.Module): def forward(self, x): return flow.log1p(x) class Exp(flow.nn.Module): def forward(self, x): return flow.exp(x) class Exp2(flow.nn.Module): def forward(self, x): return flow.expm1(x) class Variance(flow.nn.Module): def forward(self, x): return flow.var(x, 1, unbiased=False, keepdim=True) model1 = Sigmoid().eval() model2 = Sign().eval() model3 = Log().eval() model4 = Log2().eval() model5 = Exp().eval() model6 = Exp2().eval() model7 = Reciprocal().eval() model8 = Pow().eval() model9 = Variance().eval() for device in ["llvm"]: verify_math(model1, device=device) verify_math(model2, device=device) verify_math(model3, device=device) verify_math(model4, device=device) verify_math(model5, device=device) verify_math(model6, device=device) verify_math(model7, device=device) verify_math(model8, device=device) verify_math(model9, device=device) @tvm.testing.uses_gpu def test_slice(): """Slice""" class Slice(flow.nn.Module): def forward(self, x): tup_list = [[None, None, None], [0, 5, 2], [0, 6, 3]] out = flow.slice(x, slice_tup_list=tup_list) return out model = Slice().eval() for device in ["llvm"]: verify_math( model, device=device, inputs=flow.tensor(np.random.randn(3, 6, 9).astype(np.float32)) ) @tvm.testing.uses_gpu def test_concat(): """Concat""" class Concat(flow.nn.Module): def forward(self, input_1, input_2, input_3): out = flow.cat([input_1, input_2, input_3], dim=-1) return out model = Concat().eval() for device in ["llvm"]: verify_concat(model, device=device) @tvm.testing.uses_gpu def test_add_constant(): """ConstantAdd""" class ConstantAdd(flow.nn.Module): def forward(self, x): out = flow.add(1.0, x) return out model = ConstantAdd().eval() for device in ["llvm"]: verify_math( model, device=device, inputs=flow.tensor(np.random.randn(3, 6, 9).astype(np.float32)) ) @tvm.testing.uses_gpu def test_logical(): class LogicalGreater(flow.nn.Module): def forward(self, x): return x > 1.0 model1 = LogicalGreater().eval() for device in ["llvm"]: verify_math( model1, device=device, inputs=flow.tensor(np.random.randn(3, 6, 9).astype(np.float32)) ) @tvm.testing.uses_gpu def test_expand(): class Expand(flow.nn.Module): def forward(self, x): return x.expand(2, -1, -1) model1 = Expand().eval() for device in ["llvm"]: verify_math( model1, device=device, inputs=flow.tensor(np.random.randn(1, 6, 9).astype(np.float32)) ) @tvm.testing.uses_gpu def test_matmul(): """MatMul""" class MatMul(flow.nn.Module): def forward(self, x, y): return flow._C.matmul(x, y) class MatMulTranspose(flow.nn.Module): def forward(self, x, y): return flow._C.matmul(x, y, transpose_b=True) class BatchMatMul(flow.nn.Module): def forward(self, x, y): return flow._C.batch_matmul(x, y) class BroadCastMatMul(flow.nn.Module): def forward(self, x, y): return flow._C.matmul(x, y) model1 = MatMul().eval() model2 = MatMulTranspose().eval() model3 = BatchMatMul().eval() model4 = BroadCastMatMul().eval() for device in ["llvm"]: verify_matmul( model1, device=device, inputs1=flow.tensor(np.random.randn(2, 3).astype(np.float32)), inputs2=flow.tensor(np.random.randn(3, 3).astype(np.float32)), ) verify_matmul( model2, device=device, inputs1=flow.tensor(np.random.randn(1, 2).astype(np.float32)), inputs2=flow.tensor(np.random.randn(3, 2).astype(np.float32)), ) verify_matmul( model3, device=device, inputs1=flow.tensor(np.random.randn(2, 1, 2).astype(np.float32)), inputs2=flow.tensor(np.random.randn(2, 2, 3).astype(np.float32)), ) verify_matmul( model4, device=device, inputs1=flow.tensor(np.random.randn(3, 8, 8, 16).astype(np.float32)), inputs2=flow.tensor(np.random.randn(16, 8).astype(np.float32)), ) if __name__ == "__main__": test_conv2d() test_pool2d() test_normalization() test_upsample() test_convtran() test_activation() test_math() test_slice() test_concat() test_add_constant() test_logical() test_expand() test_matmul() rmdir("log")
https://github.com/zk-ml/tachikoma
tests/python/frontend/oneflow/test_vision_models.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=import-self, invalid-name # pylint: disable=arguments-differ, unused-argument """Unit tests for various models and operators""" import os import numpy as np import tvm import tvm.testing import tvm.topi.testing from tvm import relay import oneflow as flow from flowvision.models.alexnet import alexnet from flowvision.models.squeezenet import squeezenet1_0 from flowvision.models.shufflenet_v2 import shufflenet_v2_x0_5 from flowvision.models.mobilenet import mobilenet_v2 from flowvision.models.ghostnet import ghostnet from flowvision.models.vision_transformer import vit_base_patch16_224 MODEL_HOME = "test_model" def mkdir(path): # init path = path.strip() path = path.rstrip("\\") if not os.path.exists(path): os.makedirs(path) else: print(f"{path} is already here") def rmdir(path): for root, dirs, files in os.walk(path, topdown=False): for name in files: os.remove(os.path.join(root, name)) for name in dirs: os.rmdir(os.path.join(root, name)) os.removedirs(path) def assert_shape(out1, out2): if out1.shape != out2.shape: msg = "Output shapes {} and {} don't match" raise AssertionError(msg.format(out1.shape, out2.shape)) class OneFlowGraph(flow.nn.Graph): def __init__(self, module): super().__init__() self.m = module def build(self, x): out = self.m(x) return out def get_oneflow_output(model, inputs): flow_output = model(inputs) return flow_output.numpy() def get_tvm_output(graph, model_path, inputs: flow.tensor, target="llvm", dtype="float32"): """Generic function to execute and get tvm output""" inputs_numpy = inputs.numpy() if target == "llvm": device = tvm.cpu(0) elif target == "cuda": device = tvm.cuda(0) mod, params = relay.frontend.from_oneflow(graph, model_path) with tvm.transform.PassContext(opt_level=10): intrp = relay.build_module.create_executor("graph", mod, device, target) tvm_output = intrp.evaluate()(tvm.nd.array(inputs_numpy.astype(dtype)), **params).numpy() return tvm_output def verify_model( model, name="", rtol=1e-5, atol=1e-5, inputs=flow.tensor( np.random.rand(1, 3, 224, 224), dtype=flow.float32, ), device="llvm", ): """Generic function to generate and compare oneflow and TVM output""" if device == "cuda": model.to(device) inputs = inputs.to(device) graph = OneFlowGraph(model) graph._compile(inputs) mkdir(MODEL_HOME) flow.save(model.state_dict(), MODEL_HOME) out_flow = get_oneflow_output(graph, inputs) out_tvm = get_tvm_output(graph, MODEL_HOME, inputs, target=device) rmdir(MODEL_HOME) assert_shape(out_flow, out_tvm) tvm.testing.assert_allclose(out_flow, out_tvm, rtol=rtol, atol=atol) @tvm.testing.uses_gpu def test_vision_models(): """Vision models test""" if os.path.exists(MODEL_HOME): rmdir(MODEL_HOME) vision_alexnet = alexnet().eval() vision_squeezenet = squeezenet1_0().eval() vision_shufflenet = shufflenet_v2_x0_5().eval() vision_mobilenetv2 = mobilenet_v2().eval() vision_ghostnet = ghostnet().eval() vision_vit = vit_base_patch16_224().eval() for device in ["llvm"]: verify_model(vision_alexnet, device=device) verify_model(vision_squeezenet, device=device) verify_model(vision_shufflenet, device=device) verify_model(vision_mobilenetv2, device=device) verify_model(vision_ghostnet, device=device) verify_model(vision_vit, device=device) if __name__ == "__main__": test_vision_models() rmdir("log")
https://github.com/zk-ml/tachikoma
tests/python/frontend/onnx/test_forward.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=unused-argument """ ONNX testcases ================ This article is a test script to test ONNX operator with Relay. """ import glob import os import platform import re import copy import tempfile import pytest import scipy import numpy as np import tvm import tvm.testing import tvm.topi.testing from tvm import relay from tvm.contrib import graph_executor import onnx import onnxruntime.backend from onnx import TensorProto, helper, mapping, numpy_helper from onnxruntime.quantization import CalibrationDataReader, quantize_static import torch import torchvision from torch.nn import Linear, Module, Sequential def get_input_data_shape_dict(graph_def, input_data): """Get input data shape""" if isinstance(input_data, list): input_names = {} shape_dict = {} for i, _ in enumerate(input_data): input_names[i] = graph_def.graph.input[i].name input_ = input_data[i] if input_ is None or not hasattr(input_, "shape") or input_.shape == (): # Skip adding input shape data when the input data is None; # This is to enable optional arguments for onnx operators. continue elif isinstance(input_, list): shape_dict[input_names[i]] = (len(input_),) else: shape_dict[input_names[i]] = input_.shape else: input_names = graph_def.graph.input[0].name shape_dict = {input_names: input_data.shape} return input_names, shape_dict def get_tvm_output_with_vm( graph_def, input_data, target, dev, opset=None, freeze_params=False, convert_config=None, ): """Generic function to execute and get tvm output with vm executor""" if not isinstance(input_data, list): input_data = [input_data] _, shape_dict = get_input_data_shape_dict(graph_def, input_data) mod, params = relay.frontend.from_onnx( graph_def, shape_dict, opset=opset, freeze_params=freeze_params, convert_config=convert_config, ) result = relay.create_executor("vm", mod=mod, device=dev, target=target).evaluate()( *input_data, **params ) if isinstance(result, tvm.runtime.NDArray): return result.numpy() return [r.numpy() for r in result] def get_tvm_output( graph_def, input_data, target, dev, output_shape=None, output_dtype="float32", opset=None, opt_level=1, convert_config=None, ): """Generic function to execute and get tvm output""" # TODO: Resolve the issues and remove the following lines input_names, shape_dict = get_input_data_shape_dict(graph_def, input_data) mod, params = relay.frontend.from_onnx( graph_def, shape_dict, opset=opset, convert_config=convert_config ) with tvm.transform.PassContext(opt_level=opt_level): graph, lib, params = relay.build(mod, target, params=params) m = graph_executor.create(graph, lib, dev) # set inputs if isinstance(input_data, list): for i, _ in enumerate(input_names): # Its possible for some onnx inputs to not be needed in the tvm # module, confirm its present before setting. # pylint: disable=unnecessary-list-index-lookup m.set_input(input_names[i], tvm.nd.array(input_data[i].astype(input_data[i].dtype))) else: m.set_input(input_names, tvm.nd.array(input_data.astype(input_data.dtype))) m.set_input(**params) # execute m.run() # get outputs if isinstance(output_shape, list): tvm_output_list = [] for i, _ in enumerate(output_shape): tvm_output = m.get_output(i) tvm_output_list.append(tvm_output.numpy()) return tvm_output_list else: tvm_output = m.get_output(0) return tvm_output.numpy() def get_onnxruntime_output(model, inputs): """Generic function to generate onnxruntime output""" rep = onnxruntime.backend.prepare(model.SerializeToString(), "CPU") if isinstance(inputs, list) and len(inputs) == 1: inp = inputs[0] else: inp = inputs output = rep.run(inp) # Unpack output if there's only a single value. if len(output) == 1: output = output[0] return output def verify_with_ort_with_inputs( model, inputs, out_shape=None, target=None, dev=None, use_vm=False, opset=None, freeze_params=False, dtype="float32", rtol=1e-5, atol=1e-5, apply_softmax=False, opt_level=1, convert_config=None, ): """verify_with_ort_with_inputs""" if opset is not None: model.opset_import[0].version = opset ort_out = get_onnxruntime_output(model, inputs) if use_vm: tvm_out = get_tvm_output_with_vm( model, inputs, target, dev, opset=opset, freeze_params=freeze_params, convert_config=convert_config, ) else: tvm_out = get_tvm_output( model, inputs, target, dev, out_shape, dtype, opset=opset, opt_level=opt_level, convert_config=convert_config, ) if not isinstance(tvm_out, list): tvm_out = [tvm_out] if not isinstance(ort_out, list): ort_out = [ort_out] for tvm_val, ort_val in zip(tvm_out, ort_out): if apply_softmax: ort_val = scipy.special.softmax(ort_val) tvm_val = scipy.special.softmax(tvm_val) tvm.testing.assert_allclose(ort_val, tvm_val, rtol=rtol, atol=atol) assert ort_val.dtype == tvm_val.dtype def verify_with_ort( model, input_shapes, out_shape=None, target=None, dev=None, use_vm=False, opset=None, freeze_params=False, dtype="float32", rtol=1e-5, atol=1e-5, ): """verify_with_ort""" inputs = [np.random.uniform(size=ishape).astype(dtype) for ishape in input_shapes] verify_with_ort_with_inputs( model, inputs, out_shape=out_shape, target=target, dev=dev, use_vm=use_vm, opset=opset, freeze_params=freeze_params, dtype=dtype, rtol=rtol, atol=atol, ) def quantize_and_verify_with_ort( onnx_model, input_names, input_shapes, target, dev, rtol=1e-5, atol=1e-5 ): """quantize_and_verify_with_ort""" input_arrays = [np.random.random(shape).astype("float32") for shape in input_shapes] class RandomDataReader(CalibrationDataReader): # pylint: disable=missing-class-docstring def __init__(self, n=10): input_dict = dict(zip(input_names, input_shapes)) self.data = iter( [ { name: np.random.random(shape).astype("float32") for name, shape in input_dict.items() } for _ in range(n) ] ) def get_next(self): return next(self.data, None) t_dir = tvm.contrib.utils.tempdir() model_fp32 = os.path.join(t_dir.temp_dir, "model.onnx") onnx.save_model(onnx_model, model_fp32) model_quant = os.path.join(t_dir.temp_dir, "model.quant.onnx") _ = quantize_static( # pylint: disable=assignment-from-no-return model_fp32, model_quant, RandomDataReader() ) # opt_level=1 will cause error with qnn lowering model = onnx.load(model_quant) verify_with_ort_with_inputs( model, input_arrays, opt_level=2, target=target, dev=dev, use_vm=True, rtol=rtol, atol=atol ) def make_constant_node(name, data_type, dims, vals): return helper.make_node( "Constant", inputs=[], outputs=[name], value=helper.make_tensor(name=name, data_type=data_type, dims=dims, vals=vals), ) def is_version_greater_than(ver): return "".join(re.findall(r"(\d+\.)(\d+\.)(\d)", onnx.__version__)[0]) > "".join( re.findall(r"(\d+\.)(\d+\.)(\d)", ver)[0] ) @tvm.testing.parametrize_targets def test_reshape(target, dev): """test_reshape""" in_shape = (4, 3, 3, 4) ref_shape = (6, 2, 4, 3) ref_array = np.array(ref_shape) ref_node = onnx.helper.make_node( "Constant", inputs=[], outputs=["ref_in"], value=onnx.helper.make_tensor( name="const_tensor", data_type=onnx.TensorProto.INT32, dims=ref_array.shape, vals=ref_array.flatten().astype(int), ), ) reshape_node = helper.make_node("Reshape", ["in", "ref_in"], ["out"]) graph = helper.make_graph( [ref_node, reshape_node], "reshape_test", inputs=[helper.make_tensor_value_info("in", TensorProto.FLOAT, list(in_shape))], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(ref_shape))], ) model = helper.make_model(graph, producer_name="reshape_test") x = np.random.uniform(size=in_shape).astype("int32") tvm_out = get_tvm_output(model, x, target, dev, ref_shape, "float32") tvm.testing.assert_allclose(ref_shape, tvm_out.shape) @tvm.testing.parametrize_targets def test_double_reshape(target, dev): """test_double_reshape""" in_shape = (4, 3, 3, 4) ref_shape = (6, 2, 4, 3) ref_array = np.array(ref_shape) ref_node = onnx.helper.make_node( "Constant", inputs=[], outputs=["ref_in"], value=onnx.helper.make_tensor( name="const_tensor", data_type=onnx.TensorProto.INT32, dims=ref_array.shape, vals=ref_array.flatten().astype(int), ), ) reshape_node1 = helper.make_node("Reshape", ["in", "ref_in"], ["out1"]) reshape_node2 = helper.make_node("Reshape", ["in", "ref_in"], ["out2"]) add_node = helper.make_node("Add", ["out1", "out2"], ["out"]) graph = helper.make_graph( [ref_node, reshape_node1, reshape_node2, add_node], "reshape_test", inputs=[helper.make_tensor_value_info("in", TensorProto.FLOAT, list(in_shape))], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(ref_shape))], ) model = helper.make_model(graph, producer_name="reshape_test") x = np.random.uniform(size=in_shape).astype("int32") tvm_out = get_tvm_output(model, x, target, dev, ref_shape, "float32") tvm.testing.assert_allclose(ref_shape, tvm_out.shape) @tvm.testing.parametrize_targets def test_expand(target, dev): """test_expand""" def _test_expand(name, data, shape, ref_data, dtype="int32"): shape_array = np.array(shape) if dtype == "int32": shape_node = onnx.helper.make_node( "Constant", inputs=[], outputs=["shape"], value=onnx.helper.make_tensor( name="const_tensor", data_type=onnx.TensorProto.INT32, dims=shape_array.shape, vals=shape_array.flatten().astype("int32"), ), ) elif dtype == "int64": shape_node = onnx.helper.make_node( "Constant", inputs=[], outputs=["shape"], value=onnx.helper.make_tensor( name="const_tensor", data_type=onnx.TensorProto.INT64, dims=shape_array.shape, vals=shape_array.flatten().astype("int64"), ), ) else: raise TypeError("Invalid dtype") expand_node = helper.make_node("Expand", ["in", "shape"], ["out"]) graph = helper.make_graph( [shape_node, expand_node], "expand_test", inputs=[helper.make_tensor_value_info("in", TensorProto.FLOAT, list(data.shape))], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(ref_data.shape))], ) model = helper.make_model(graph, producer_name=name) tvm_out = get_tvm_output_with_vm(model, data, target, dev, freeze_params=True) tvm.testing.assert_allclose(ref_data, tvm_out) in_shape = (3, 1) shape = (3, 4) data = np.random.uniform(size=in_shape).astype(np.float32) ref_data = np.tile(data, 4) _test_expand("expand_with_dim_unchanged_test", data, shape, ref_data, "int32") _test_expand("expand_with_dim_unchanged_test", data, shape, ref_data, "int64") in_shape = (3, 1) shape = (2, 1, 6) data = np.random.uniform(size=in_shape).astype(np.float32) ref_data = data * np.ones(shape, dtype=np.float32) _test_expand("expand_larger_target_shape_test", data, shape, ref_data, "int32") _test_expand("expand_larger_target_shape_test", data, shape, ref_data, "int64") in_shape = (1, 1) shape = (3,) data = np.random.uniform(size=in_shape).astype(np.float32) ref_data = data * np.ones(shape, dtype=np.float32) _test_expand("expand_smaller_target_shape_test", data, shape, ref_data, "int32") _test_expand("expand_smaller_target_shape_test", data, shape, ref_data, "int64") @tvm.testing.parametrize_targets def test_depth_to_space(target, dev): """test_depth_to_space""" def verify_depth_to_space(inshape, outshape, mode, block_size): node = onnx.helper.make_node( "DepthToSpace", inputs=["x"], outputs=["y"], blocksize=block_size ) graph = helper.make_graph( [node], "depth_to_space_test", inputs=[helper.make_tensor_value_info("x", TensorProto.FLOAT, list(inshape))], outputs=[helper.make_tensor_value_info("y", TensorProto.FLOAT, list(outshape))], ) model = helper.make_model(graph, producer_name="depth_to_space_test") verify_with_ort(model, [inshape], [outshape], target, dev) # current onnx.checker use OpSet-1 version of DepthToSpace, which doesn't have a mode argument. # TO-DO, we can add mode argument to test CRD mode and DCR mode # in the future when we update to a newer onnx version. verify_depth_to_space((1, 8, 2, 3), (1, 2, 4, 6), mode="CRD", block_size=2) @tvm.testing.parametrize_targets def test_space_to_depth(target, dev): """test_space_to_depth""" def verify_space_to_depth(inshape, outshape, block_size): node = onnx.helper.make_node( "SpaceToDepth", inputs=["x"], outputs=["y"], blocksize=block_size ) graph = helper.make_graph( [node], "space_to_depth_test", inputs=[helper.make_tensor_value_info("x", TensorProto.FLOAT, list(inshape))], outputs=[helper.make_tensor_value_info("y", TensorProto.FLOAT, list(outshape))], ) model = helper.make_model(graph, producer_name="space_to_depth_test") verify_with_ort(model, [inshape], [outshape], target, dev) verify_space_to_depth((1, 1, 4, 6), (1, 4, 2, 3), 2) @tvm.testing.parametrize_targets def test_shape(target, dev): """test_shape""" in_shape = (4, 3, 3, 4) ref_shape = (6, 2, 4, 3) ref_array = np.array(ref_shape) ref_node = onnx.helper.make_node( "Constant", inputs=[], outputs=["ref_in"], value=onnx.helper.make_tensor( name="const_tensor", data_type=onnx.TensorProto.INT32, dims=ref_array.shape, vals=ref_array.flatten().astype(int), ), ) reshape_node = helper.make_node("Reshape", ["in", "ref_in"], ["out"]) shape_node = helper.make_node("Shape", ["out"], ["final_out"]) graph = helper.make_graph( [ref_node, reshape_node, shape_node], "shape_test", inputs=[helper.make_tensor_value_info("in", TensorProto.FLOAT, list(in_shape))], outputs=[helper.make_tensor_value_info("final_out", TensorProto.FLOAT, list(ref_shape))], ) model = helper.make_model(graph, producer_name="shape_test") x = np.random.uniform(size=in_shape).astype("int32") tvm_out = get_tvm_output(model, x, target, dev, ref_shape, "int32") tvm.testing.assert_allclose(ref_shape, tvm_out) @tvm.testing.parametrize_targets def test_power(target, dev): """test_power""" def _test_power_iteration(x_shape, y_shape): if isinstance(y_shape, int): y_shape = [y_shape] x = np.random.uniform(size=x_shape).astype(np.float32) y = np.random.uniform(size=y_shape).astype(np.float32) np_res = np.power(x, y).astype(np.float32) res = helper.make_node("Pow", ["x", "y"], ["out"]) graph = helper.make_graph( [res], "power_test", inputs=[ helper.make_tensor_value_info("x", TensorProto.FLOAT, list(x_shape)), helper.make_tensor_value_info("y", TensorProto.FLOAT, list(y_shape)), ], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(np_res.shape))], ) model = helper.make_model(graph, producer_name="power_test") tvm_out = get_tvm_output(model, [x, y], target, dev, np_res.shape) tvm.testing.assert_allclose(np_res, tvm_out, rtol=1e-5, atol=1e-5) _test_power_iteration((1, 3), (1)) _test_power_iteration((2, 3), (2, 3)) _test_power_iteration((2, 3), (1, 3)) @tvm.testing.parametrize_targets def test_range(target, dev): """test_range""" def verify_range(start, limit, delta, dtype): dtype_map = { "float32": TensorProto.FLOAT, "int32": TensorProto.INT32, "int64": TensorProto.INT64, } dtype_onnx = dtype_map[dtype] y = helper.make_node("Range", ["start", "limit", "delta"], ["output"]) graph = helper.make_graph( [y], "range_test", inputs=[ helper.make_tensor_value_info("start", dtype_onnx, []), helper.make_tensor_value_info("limit", dtype_onnx, []), helper.make_tensor_value_info("delta", dtype_onnx, []), ], outputs=[ helper.make_tensor_value_info( "output", dtype_onnx, np.arange(start, limit, delta).shape ) ], ) model = helper.make_model(graph, producer_name="range_test") inputs = [np.array(x).astype(dtype) for x in [start, limit, delta]] verify_with_ort_with_inputs(model, inputs, target=target, dev=dev, use_vm=True) for t in ["float32", "int32", "int64"]: verify_range(0, 10, 1, t) verify_range(2, 8, 2, t) verify_range(-3, 6, 4, t) verify_range(-2, -7, -1, t) @tvm.testing.parametrize_targets def test_squeeze(target, dev): """test_squeeze""" def test_squeeze_once(in_shape, out_shape, axes=None): y = helper.make_node("Squeeze", ["in"], ["out"], axes=axes) graph = helper.make_graph( [y], "squeeze_test", inputs=[helper.make_tensor_value_info("in", TensorProto.FLOAT, list(in_shape))], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_shape))], ) model = helper.make_model(graph, producer_name="squeeze_test") x = np.random.uniform(size=in_shape).astype("float32") verify_with_ort_with_inputs(model, [x], [out_shape], target=target, dev=dev, opset=11) test_squeeze_once((1, 3, 1, 3, 1, 1), (3, 3), [0, 2, 4, 5]) test_squeeze_once((1, 3, 1, 3, 1, 1), (3, 3)) # empty axis. test_squeeze_once((), ()) # scalar testing. @tvm.testing.parametrize_targets def test_flatten(target, dev): """test_flatten""" def verify_flatten(in_shape, axis, ref_shape): flatten_node = helper.make_node("Flatten", ["in"], ["out"], axis=axis) graph = helper.make_graph( [flatten_node], "flatten_test", inputs=[helper.make_tensor_value_info("in", TensorProto.FLOAT, list(in_shape))], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(ref_shape))], ) model = helper.make_model(graph, producer_name="flatten_test") verify_with_ort(model, [in_shape], target=target, dev=dev) verify_flatten((1, 3, 4, 4), 1, (1, 48)) verify_flatten((1,), 1, (1, 1)) @tvm.testing.parametrize_targets def test_unsqueeze(target, dev): """test_unsqueeze""" in_shape = (3, 3) axis = (0, 3, 4) out_shape = (1, 3, 3, 1, 1) y = helper.make_node("Unsqueeze", ["in"], ["out"], axes=list(axis)) graph = helper.make_graph( [y], "squeeze_test", inputs=[helper.make_tensor_value_info("in", TensorProto.FLOAT, list(in_shape))], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_shape))], ) model = helper.make_model(graph, producer_name="squeeze_test") verify_with_ort(model, [in_shape], target=target, dev=dev, opset=11) @tvm.testing.parametrize_targets def test_gather(target, dev): """test_gather""" def verify_gather(in_shape, indices, axis, dtype): x = np.random.uniform(size=in_shape).astype(dtype) indices = np.array(indices, dtype="int64") out_np = np.take(x, indices, axis=axis) y = helper.make_node("Gather", ["in", "indices"], ["out"], axis=axis) graph = helper.make_graph( [y], "gather_test", inputs=[ helper.make_tensor_value_info( "in", mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype(dtype)], list(in_shape) ), helper.make_tensor_value_info("indices", TensorProto.INT64, list(indices.shape)), ], outputs=[ helper.make_tensor_value_info( "out", mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype(dtype)], list(out_np.shape) ) ], ) model = helper.make_model(graph, producer_name="gather_test") verify_with_ort_with_inputs(model, [x, indices], target=target, dev=dev, dtype=dtype) verify_gather((4,), [1], 0, "int32") verify_gather((1, 4), [0], 0, "int32") verify_gather((4,), [[[1, 0], [0, 1]]], 0, "float32") verify_gather((2, 2), [[[1, 0], [0, 1]]], 1, "int32") verify_gather((3, 3, 3), [[[1, 0]]], -1, "int32") verify_gather((4, 3, 5, 6), [[2, 1, 0, 0]], 0, "float32") @tvm.testing.parametrize_targets def test_dynamic_gather(target, dev): """test_dynamic_gather""" dtype = "float32" in_shape = [2, 2] indices = 1 axis = 1 x = np.random.uniform(size=in_shape).astype(dtype) indices = np.array(indices, dtype="int64") out_np = np.take(x, indices, axis=axis) indices = helper.make_node( "Constant", inputs=[], outputs=["indices"], value=onnx.helper.make_tensor( name="const_indices", data_type=onnx.TensorProto.INT64, dims=[], vals=[1], ), ) y = helper.make_node("Gather", ["in", "indices"], ["out"], axis=axis) graph = helper.make_graph( [indices, y], "gather_test", inputs=[ helper.make_tensor_value_info( "in", mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype(dtype)], ["?", "?"] ), ], outputs=[ helper.make_tensor_value_info( "out", mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype(dtype)], ["?"] * len(out_np.shape) ) ], ) model = helper.make_model(graph, producer_name="dynamic_gather_test") mod, params = relay.frontend.from_onnx(model) result = relay.create_executor("vm", mod=mod, device=dev, target=target).evaluate()(x, **params) tvm.testing.assert_allclose(out_np, result.numpy(), rtol=1e-5, atol=1e-5) @tvm.testing.parametrize_targets def test_gatherelements(target, dev): """test_gatherelements""" def verify_gatherelements(in_shape, indices, axis): x = np.random.uniform(size=in_shape).astype("float32") indices = np.array(indices, dtype="int32") y = helper.make_node("GatherElements", ["data", "indices"], ["output"], axis=axis) graph = helper.make_graph( [y], "gather_elements_test", inputs=[ helper.make_tensor_value_info("data", TensorProto.FLOAT, list(in_shape)), helper.make_tensor_value_info("indices", TensorProto.INT32, list(indices.shape)), ], outputs=[helper.make_tensor_value_info("output", TensorProto.FLOAT, list(in_shape))], ) model = helper.make_model(graph, producer_name="gather_elements_test") verify_with_ort_with_inputs(model, [x, indices], target=target, dev=dev) verify_gatherelements((4,), [3, 0, 2, 1], 0) verify_gatherelements((2, 2), [[1, 0], [0, 1]], 0) verify_gatherelements((2, 2), [[0, 0], [1, 0]], 1) verify_gatherelements((2, 2), [[1, 0], [0, 1]], 1) indices = [ [[1, 0, 0], [1, 0, 1], [0, 1, 1]], [[1, 1, 1], [1, 2, 1], [1, 0, 1]], [[1, 2, 1], [1, 2, 1], [1, 2, 1]], ] verify_gatherelements((3, 3, 3), indices, 2) @tvm.testing.parametrize_targets def test_scatter(target, dev): """test_scatter""" def verify_scatter(in_shape, indices, axis): x = np.random.uniform(size=in_shape).astype("float32") indices = np.array(indices, dtype="int32") updates = np.random.uniform(size=indices.shape).astype("float32") y = helper.make_node( "ScatterElements", ["data", "indices", "updates"], ["output"], axis=axis ) graph = helper.make_graph( [y], "scatter_test", inputs=[ helper.make_tensor_value_info("data", TensorProto.FLOAT, list(in_shape)), helper.make_tensor_value_info("indices", TensorProto.INT32, list(indices.shape)), helper.make_tensor_value_info("updates", TensorProto.FLOAT, list(indices.shape)), ], outputs=[helper.make_tensor_value_info("output", TensorProto.FLOAT, list(in_shape))], ) model = helper.make_model(graph, producer_name="scatter_test") verify_with_ort_with_inputs(model, [x, indices, updates], target=target, dev=dev) verify_scatter((4,), [1], 0) verify_scatter((1, 4), [[0]], 0) verify_scatter((4,), [2, 3], 0) verify_scatter((2, 2), [[1, 0], [0, 1]], 1) verify_scatter((3, 3, 3), [[[-1, -3]]], -1) verify_scatter((4, 3, 5, 6), [[[[2, 1, 0, 0]]]], 0) @tvm.testing.parametrize_targets def test_slice(target, dev): """test_slice""" def _test_slice_iteration_v1(indata, outdata, starts, ends, axes=None): if axes: y = helper.make_node("Slice", ["in"], ["out"], axes=axes, starts=starts, ends=ends) else: y = helper.make_node("Slice", ["in"], ["out"], starts=starts, ends=ends) graph = helper.make_graph( [y], "slice_test", inputs=[helper.make_tensor_value_info("in", TensorProto.FLOAT, list(indata.shape))], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(outdata.shape))], ) model = helper.make_model(graph, producer_name="slice_test") verify_with_ort_with_inputs( model, [indata], [outdata.shape], opset=1, target=target, dev=dev ) def _test_slice_iteration_v10(indata, outdata, **attrs): starts = attrs["starts"] ends = attrs["ends"] axes = None if "axes" not in attrs else attrs["axes"] steps = None if "steps" not in attrs else attrs["steps"] starts = np.asarray(starts) ends = np.asarray(ends) inputs = [ helper.make_tensor_value_info("data", TensorProto.FLOAT, list(indata.shape)), helper.make_tensor_value_info("starts", TensorProto.INT64, list(starts.shape)), helper.make_tensor_value_info("ends", TensorProto.INT64, list(ends.shape)), ] initializer = [ helper.make_tensor("starts", TensorProto.INT64, list(starts.shape), starts), helper.make_tensor("ends", TensorProto.INT64, list(ends.shape), ends), ] nodes = [] if "add_noop_to_input_attrs" in attrs: def add_noop_to_input_attr(attr_name, attr): output_name = attr_name + "_output" ref_shape = list(np.array(attr).shape) ref_shape.insert(0, 1) ref_shape = tuple(ref_shape) ref_array = np.array(ref_shape) ref_node = onnx.helper.make_node( "Constant", inputs=[], outputs=["ref_in_" + attr_name], value=onnx.helper.make_tensor( name="const_tensor__1_" + attr_name, data_type=onnx.TensorProto.INT64, dims=ref_array.shape, vals=ref_array.flatten().astype(int), ), ) in_shape = np.array(attr).shape in_array = np.array(in_shape) ref_node2 = onnx.helper.make_node( "Constant", inputs=[], outputs=["input_shape_" + attr_name], value=onnx.helper.make_tensor( name="const_tensor__2_" + attr_name, data_type=onnx.TensorProto.INT64, dims=in_array.shape, vals=in_array.flatten().astype(int), ), ) reshape1_node = helper.make_node( "Reshape", [attr_name, "ref_in_" + attr_name], ["reshape_" + attr_name] ) reshape2_node = helper.make_node( "Reshape", ["reshape_" + attr_name, "input_shape_" + attr_name], [output_name] ) return [ref_node, ref_node2, reshape1_node, reshape2_node] slice_inputs = [] for attr_name in ["starts", "ends", "axes", "steps"]: if attr_name not in attrs: continue if "add_noop_to_input_attrs" in attrs and attr_name in attrs["add_noop_to_input_attrs"]: nodes.extend(add_noop_to_input_attr(attr_name, attrs[attr_name])) slice_inputs.append(attr_name + "_output") else: slice_inputs.append(attr_name) if axes: axes = np.asarray(axes) inputs.append( helper.make_tensor_value_info("axes", TensorProto.INT64, list(axes.shape)) ) initializer.append( helper.make_tensor("axes", TensorProto.INT64, list(axes.shape), axes) ) if steps: assert axes is not None and len(axes) == len(steps) steps = np.asarray(steps) inputs.append( helper.make_tensor_value_info("steps", TensorProto.INT64, list(axes.shape)) ) initializer.append( helper.make_tensor("steps", TensorProto.INT64, list(steps.shape), steps) ) y = helper.make_node("Slice", ["data", *slice_inputs], ["out"]) nodes.append(y) graph = helper.make_graph( nodes, "slice_test", inputs=inputs, outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(outdata.shape))], initializer=initializer, ) model = helper.make_model(graph, producer_name="slice_test") verify_with_ort_with_inputs( model, [indata], opset=10, freeze_params=True, use_vm=True, target=target, dev=dev ) x = np.random.randn(20, 10, 5).astype(np.float32) _test_slice_iteration_v1(x, x[0:3, 0:10], starts=(0, 0), ends=(3, 10), axes=(0, 1)) _test_slice_iteration_v1(x, x[0:3, 0:10], starts=(0, 0), ends=(10, 3), axes=(1, 0)) _test_slice_iteration_v1(x, x[:, :, 3:4], starts=(0, 0, 3), ends=(20, 10, 4)) _test_slice_iteration_v1(x, x[:, 1:1000], starts=(1,), ends=(1000,), axes=(1,)) _test_slice_iteration_v1(x, x[:, 0:-1], starts=(0,), ends=(-1,), axes=(1,)) _test_slice_iteration_v10(x, x[0:3, 0:10], starts=(0, 0), ends=(3, 10), axes=(0, 1)) _test_slice_iteration_v10(x, x[0:3, 0:10], starts=(0, 0), ends=(10, 3), axes=(1, 0)) _test_slice_iteration_v10(x, x[:, :, 3:4], starts=(0, 0, 3), ends=(20, 10, 4)) _test_slice_iteration_v10(x, x[:, 1:1000], starts=(1,), ends=(1000,), axes=(1,)) _test_slice_iteration_v10(x, x[:, 0:-1], starts=(0,), ends=(-1,), axes=(1,)) _test_slice_iteration_v10(x, x[:, 0:-1], starts=(0,), ends=(-1,), axes=(-1,)) _test_slice_iteration_v10( x, x[0:3, 0:10], starts=(0, 0), ends=(3, 10), axes=(0, 1), add_noop_to_input_attrs=["starts"], ) _test_slice_iteration_v10( x, x[:, :, 3:4], starts=(0, 0, 3), ends=(20, 10, 4), add_noop_to_input_attrs=["ends"] ) _test_slice_iteration_v10( x, x[:, 1:1000], starts=(1,), ends=(1000,), axes=(1,), add_noop_to_input_attrs=["axes"] ) _test_slice_iteration_v10( x, x[:, 0:-1], starts=(0,), ends=(-1,), axes=(1,), add_noop_to_input_attrs=["starts", "ends"], ) _test_slice_iteration_v10( x, x[0:3, 0:10], starts=(0, 0), ends=(3, 10), axes=(0, 1), add_noop_to_input_attrs=["ends", "axes"], ) _test_slice_iteration_v10( x, x[:, :, 3:4], starts=(0, 0, 3), ends=(20, 10, 4), add_noop_to_input_attrs=["starts", "axes"], ) _test_slice_iteration_v10( x, x[:, 1:1000], starts=(1,), ends=(1000,), axes=(1,), add_noop_to_input_attrs=["starts", "ends", "axes"], ) x = np.random.randn(1, 1, 1, 128).astype(np.float32) _test_slice_iteration_v10( x, x, starts=(0, 0), ends=(9223372036854775807, 9223372036854775807), axes=(0, 3) ) x = np.random.randn(4, 4).astype(np.float32) _test_slice_iteration_v10( x, x[:, 1::2], starts=(1,), ends=(9223372036854775807,), axes=(1,), steps=(2,) ) _test_slice_iteration_v10( x, x[0::1, 1::2], starts=(0, 1), ends=(4, 4), axes=(0, 1), steps=(1, 2), ) def _test_onnx_op_elementwise( target, dev, inshape, outfunc, npargs, dtype, opname, kwargs, opset=None, verify=True ): indata = np.random.uniform(-1, 1, size=inshape).astype(dtype) outdata = outfunc(indata, **npargs) y = helper.make_node(opname, ["in"], ["out"], **kwargs) ONNX_DTYPE = mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype(dtype)] graph = helper.make_graph( [y], opname + "_test", inputs=[helper.make_tensor_value_info("in", ONNX_DTYPE, list(indata.shape))], outputs=[helper.make_tensor_value_info("out", ONNX_DTYPE, list(outdata.shape))], ) model = helper.make_model(graph, producer_name=opname + "_test") if verify: verify_with_ort_with_inputs( model, [indata], [outdata.shape], opset=opset, dtype=dtype, target=target, dev=dev ) else: get_tvm_output( model, [indata], target, dev, [outdata.shape], dtype, opset=opset, opt_level=3, ) @tvm.testing.parametrize_targets def test_floor(target, dev): _test_onnx_op_elementwise(target, dev, (2, 4, 5, 6), np.floor, {}, "float32", "Floor", {}) @tvm.testing.parametrize_targets def test_ceil(target, dev): _test_onnx_op_elementwise(target, dev, (2, 4, 5, 6), np.ceil, {}, "float32", "Ceil", {}) @tvm.testing.parametrize_targets def test_clip(target, dev): """test_clip""" _test_onnx_op_elementwise( target, dev, (2, 4, 5, 6), np.clip, {"a_min": -1.0, "a_max": 1.0}, "float32", "Clip", {"min": -1.0, "max": 1.0}, opset=6, ) _test_onnx_op_elementwise( target, dev, (2, 4, 5, 6), np.clip, {"a_min": -np.inf, "a_max": 1.0}, "float32", "Clip", {"max": 1.0}, opset=6, ) _test_onnx_op_elementwise( target, dev, (2, 4, 5, 6), np.clip, {"a_min": -1.0, "a_max": np.inf}, "float32", "Clip", {"min": -1.0}, opset=6, ) @tvm.testing.parametrize_targets def test_clip_min_max_as_inputs(target, dev): """test_clip_min_max_as_inputs""" input_shape = (2, 4, 5, 6) nodes = [ make_constant_node("min", onnx.TensorProto.FLOAT, (), [0.0]), make_constant_node("max", onnx.TensorProto.FLOAT, (), [6.0]), ] input_names = ["in", "min", "max"] nodes.append(helper.make_node("Clip", inputs=input_names, outputs=["out"])) graph = helper.make_graph( nodes, "clip_test", inputs=[helper.make_tensor_value_info("in", TensorProto.FLOAT, list(input_shape))], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(input_shape))], ) model = helper.make_model(graph, producer_name="clip_test") verify_with_ort(model, [input_shape], out_shape=[input_shape], target=target, dev=dev) @tvm.testing.parametrize_targets def test_round(target, dev): _test_onnx_op_elementwise(target, dev, (2, 4, 5, 6), np.round, {}, "float32", "Round", {}) _test_onnx_op_elementwise( target, dev, (2, 4, 5, 6), np.round, {}, "float64", "Round", {}, verify=False ) # TODO: enable verification once ORT supports float64 def _test_finite_ops(target, dev, inshape, outfunc, npargs, dtype, opname, kwargs): indata = np.random.choice(a=[np.nan, np.inf, -np.inf, 0.5, 1.0, 0], size=inshape).astype(dtype) outdata = outfunc(indata, **npargs) y = helper.make_node(opname, ["in"], ["out"], **kwargs) graph = helper.make_graph( [y], opname + "_test", inputs=[helper.make_tensor_value_info("in", TensorProto.FLOAT, list(indata.shape))], outputs=[helper.make_tensor_value_info("out", TensorProto.BOOL, list(outdata.shape))], ) model = helper.make_model(graph, producer_name=opname + "_test") verify_with_ort_with_inputs( model, [indata], [outdata.shape], dtype=dtype, target=target, dev=dev ) @tvm.testing.parametrize_targets def test_isinf(target, dev): _test_finite_ops(target, dev, (2, 4, 5, 6), np.isinf, {}, "float32", "IsInf", {}) @tvm.testing.parametrize_targets def test_isnan(target, dev): """test_isnan""" _test_finite_ops(target, dev, (2, 4, 5, 6), np.isnan, {}, "float32", "IsNaN", {}) @tvm.testing.parametrize_targets def test_gather_nd(target, dev): """test_gather_nd""" def verify_gather_nd(in_shape, indices, out_shape, dtype="float32", batch_dims=0, opset=11): x = np.random.uniform(size=in_shape).astype(dtype) indices = np.array(indices, dtype="int64") y = helper.make_node("GatherND", ["in", "indices"], ["out"]) if opset >= 12: batch_dims_attr = helper.make_attribute("batch_dims", batch_dims) y.attribute.append(batch_dims_attr) graph = helper.make_graph( [y], "gather_test", inputs=[ helper.make_tensor_value_info( "in", mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype(dtype)], list(in_shape) ), helper.make_tensor_value_info("indices", TensorProto.INT64, list(indices.shape)), ], outputs=[ helper.make_tensor_value_info( "out", mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype(dtype)], list(out_shape) ) ], ) model = helper.make_model(graph, producer_name="gather_test") verify_with_ort_with_inputs( model, [x, indices], [out_shape], opset=opset, target=target, dev=dev ) verify_gather_nd([2, 2], [[0, 0], [1, 1]], [2], "int32") verify_gather_nd([2, 2], [[1], [0]], [2, 2]) verify_gather_nd([2, 2, 2], [[0, 1], [1, 0]], [2, 2]) verify_gather_nd([2, 2, 2], [[[0, 1]], [[1, 0]]], [2, 1, 2]) if is_version_greater_than("1.6.0"): verify_gather_nd([2, 2, 2], [[1], [0]], [2, 2], batch_dims=1, opset=12) verify_gather_nd( (3, 2, 2, 3, 4), np.random.randint(low=0, high=2, size=(3, 2, 3), dtype="int64"), (3, 2), batch_dims=2, opset=12, ) @tvm.testing.parametrize_targets def test_onehot(target, dev): """test_onehot""" indices_shape = [10] indices_array = np.random.randint(low=0, high=9, size=indices_shape, dtype="int32") depth = 10 values = np.asarray([0, 1]).astype("int32") out_np = np.eye(depth)[indices_array.reshape(-1)] onehot_node = helper.make_node("OneHot", ["indices", "depth", "values"], ["out"]) graph = helper.make_graph( [onehot_node], "onehot_test", inputs=[ helper.make_tensor_value_info("indices", TensorProto.INT32, indices_shape), helper.make_tensor_value_info("depth", TensorProto.INT32, [1]), helper.make_tensor_value_info("values", TensorProto.INT32, values.shape), ], outputs=[helper.make_tensor_value_info("out", TensorProto.INT32, out_np.shape)], ) model = helper.make_model(graph, producer_name="onehot_test") # TODO(jwfromm): Replace test against np with test against onnxrt once we update versions. tvm_out = get_tvm_output_with_vm( model, [indices_array, np.array([depth]).astype("int32"), values], target, dev ) tvm.testing.assert_allclose(out_np, tvm_out, rtol=1e-5, atol=1e-5) @tvm.testing.parametrize_targets def test_gemm(target, dev): """test_gemm""" def verify_gemm(a_shape, b_shape, c_shape=None, freeze_params=False, dtype="float32"): out_shape = [a_shape[0], b_shape[1]] a_array = np.random.uniform(size=a_shape).astype(dtype) b_array = np.random.uniform(size=b_shape).astype(dtype) input_names = ["a", "b"] ONNX_DTYPE = mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype(dtype)] input_nodes = [ helper.make_tensor_value_info("a", ONNX_DTYPE, list(a_shape)), helper.make_tensor_value_info("b", ONNX_DTYPE, list(b_shape)), ] input_values = [a_array, b_array] if c_shape is not None: c_array = np.random.uniform(size=c_shape).astype(dtype) input_names.append("c") input_nodes.append(helper.make_tensor_value_info("c", ONNX_DTYPE, list(c_shape))) input_values.append(c_array) gemm_node = helper.make_node("Gemm", input_names, ["out"]) graph = helper.make_graph( [gemm_node], "gemm_test", inputs=input_nodes, outputs=[helper.make_tensor_value_info("out", ONNX_DTYPE, list(out_shape))], ) model = helper.make_model(graph, producer_name="gemm_test") atol = 1e-5 rtol = 1e-5 if dtype == "float16": atol = 1e-3 rtol = 1e-3 verify_with_ort_with_inputs( model, input_values, freeze_params=freeze_params, dtype=dtype, atol=atol, rtol=rtol, target=target, dev=dev, ) verify_gemm(a_shape=(4, 3), b_shape=(3, 4)) verify_gemm(a_shape=(4, 3), b_shape=(3, 4), c_shape=(4,)) verify_gemm(a_shape=(4, 3), b_shape=(3, 4), c_shape=(4,), freeze_params=True) verify_gemm(a_shape=(4, 3), b_shape=(3, 4), c_shape=(4,), freeze_params=True, dtype="float16") @tvm.testing.parametrize_targets def test_matmul(target, dev): """test_matmul""" def test_one_matmul(a_shape, b_shape): if len(a_shape) == 1: out_shape = [b_shape[1]] else: out_shape = [a_shape[0], b_shape[1]] a_array = np.random.uniform(size=a_shape).astype("float32") b_array = np.random.uniform(size=b_shape).astype("float32") mul_node = helper.make_node("MatMul", ["a", "b"], ["out"]) graph = helper.make_graph( [mul_node], "matmul_test", inputs=[ helper.make_tensor_value_info("a", TensorProto.FLOAT, list(a_shape)), helper.make_tensor_value_info("b", TensorProto.FLOAT, list(b_shape)), ], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_shape))], ) model = helper.make_model(graph, producer_name="matmul_test") verify_with_ort_with_inputs(model, [a_array, b_array], target=target, dev=dev) test_one_matmul((4, 3), (3, 4)) test_one_matmul((3,), (3, 1)) @tvm.testing.parametrize_targets def test_batch_matmul(target, dev): """test_batch_matmul""" def verify_batch_matmul(a_shape, b_shape, out_shape, convert_config=None): a_array = np.random.uniform(size=a_shape).astype("float32") b_array = np.random.uniform(size=b_shape).astype("float32") mul_node = helper.make_node("MatMul", ["a", "b"], ["out"]) graph = helper.make_graph( [mul_node], "matmul_test", inputs=[ helper.make_tensor_value_info("a", TensorProto.FLOAT, list(a_shape)), helper.make_tensor_value_info("b", TensorProto.FLOAT, list(b_shape)), ], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, out_shape)], ) model = helper.make_model(graph, producer_name="matmul_test") verify_with_ort_with_inputs( model, [a_array, b_array], use_vm=True, target=target, dev=dev, convert_config=convert_config, ) verify_batch_matmul((2, 3, 4, 3), (2, 3, 3, 4), (2, 3, 4, 4)) verify_batch_matmul((2, 4, 3), (3, 4), (2, 4, 4)) verify_batch_matmul((2, 3, 4, 3), (3, 4), (2, 3, 4, 4)) # Test implicit broadcasting. verify_batch_matmul((4, 3), (2, 3, 4), (2, 4, 4)) verify_batch_matmul((2, 4, 3), (1, 3, 4), (2, 4, 4)) verify_batch_matmul((1, 4, 3), (2, 3, 4), (2, 4, 4)) verify_batch_matmul((4, 32, 16), (16, 32), (4, 32, 32)) verify_batch_matmul((4, 32, 16, 32), (32, 16), (4, 32, 16, 16)) verify_batch_matmul((4, 32, 16, 32), (1, 32, 32, 16), (4, 32, 16, 16)) verify_batch_matmul((4, 1, 16, 32), (1, 32, 32, 16), (4, 32, 16, 16)) # Test transb=False verify_batch_matmul( (2, 3, 4, 3), (2, 3, 3, 4), (2, 3, 4, 4), convert_config={"use_nt_batch_matmul": False}, ) @tvm.testing.parametrize_targets def test_use_nt_batch_matmul(target, dev): """test_use_nt_batch_matmul""" a_shape = (2, 3, 4) b_shape = (2, 4, 3) out_shape = [2, 3, 3] a_array = np.random.uniform(size=a_shape).astype("float32") b_array = np.random.uniform(size=b_shape).astype("float32") for use_nt_batch_matmul in [True, False]: mul_node = helper.make_node("MatMul", ["a", "b"], ["out"]) graph = helper.make_graph( [mul_node], "matmul_test", inputs=[ helper.make_tensor_value_info("a", TensorProto.FLOAT, list(a_shape)), helper.make_tensor_value_info("b", TensorProto.FLOAT, list(b_shape)), ], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_shape))], ) model = helper.make_model(graph, producer_name="matmul_test") _, shape_dict = get_input_data_shape_dict(model, [a_array, b_array]) mod, _ = relay.frontend.from_onnx( model, shape_dict, convert_config={"use_nt_batch_matmul": use_nt_batch_matmul} ) has_transpose_op = "transpose" in str(mod) # use_nt_batch_matmul implies, TVM converts qualified onnx `matmul` # to `transpose(weight) + nn.batch_matmul_NT`, otherwise to `nn.batch_matmul` assert has_transpose_op == use_nt_batch_matmul @tvm.testing.parametrize_targets def test_matmulinteger16(target, dev): """test_matmulinteger16""" def verify_matmulinteger16(a_shape, b_shape, out_shape): a_dtype = "int16" b_dtype = "int16" low = np.iinfo(np.int16).min high = np.iinfo(np.int16).max a_proto = TensorProto.INT16 b_proto = TensorProto.INT16 out_proto = TensorProto.INT32 a_array = np.random.randint(low, high, size=a_shape).astype(a_dtype) b_array = np.random.randint(low, high, size=b_shape).astype(b_dtype) mul_node = helper.make_node("MatMulInteger16", ["a", "b"], ["out"], domain="com.microsoft") graph = helper.make_graph( [mul_node], "matmuli16_test", inputs=[ helper.make_tensor_value_info("a", a_proto, list(a_shape)), helper.make_tensor_value_info("b", b_proto, list(b_shape)), ], outputs=[helper.make_tensor_value_info("out", out_proto, list(out_shape))], ) model = helper.make_model(graph, producer_name="matmuli16_test") verify_with_ort_with_inputs(model, [a_array, b_array], target=target, dev=dev) # 2D computation to verify matmul op verify_matmulinteger16((4, 3), (3, 4), (4, 4)) verify_matmulinteger16((5, 7), (7, 8), (5, 8)) # Verify 3D matmul using batch_matmul op verify_matmulinteger16((2, 4, 3), (1, 3, 4), (2, 4, 4)) verify_matmulinteger16((1, 4, 3), (2, 3, 4), (2, 4, 4)) # Test implicit broadcasting verify_matmulinteger16((2, 3, 5, 3), (2, 3, 3, 5), (2, 3, 5, 5)) verify_matmulinteger16((2, 7, 3), (3, 7), (2, 7, 7)) verify_matmulinteger16((2, 3, 4, 3), (3, 4), (2, 3, 4, 4)) def verify_simple_dynamic_model(a_shape, b_shape, target, dev): """verify_simple_dynamic_model""" def verify_model(model, a_shape, b_shape): a_array = np.random.uniform(size=a_shape).astype("float32") b_array = np.random.uniform(size=b_shape).astype("float32") # matmul out_np = np.matmul(a_array, b_array) # relu out_np[out_np < 0] = 0 tvm_out = model(a_array, b_array).numpy() tvm.testing.assert_allclose(out_np, tvm_out, rtol=1e-5, atol=1e-5) mul_node = helper.make_node("MatMul", ["a", "b"], ["out"]) relu_node = helper.make_node("Relu", ["out"], ["relu"]) a_array = np.random.uniform(size=a_shape).astype("float32") b_array = np.random.uniform(size=b_shape).astype("float32") # matmul out_np = np.matmul(a_array, b_array) graph = helper.make_graph( [mul_node, relu_node], "matmul_test", inputs=[ helper.make_tensor_value_info("a", TensorProto.FLOAT, list(a_shape)), helper.make_tensor_value_info("b", TensorProto.FLOAT, list(b_shape)), ], outputs=[helper.make_tensor_value_info("relu", TensorProto.FLOAT, list(out_np.shape))], ) model = helper.make_model(graph, producer_name="matmul_test") a_anys = [relay.Any()] * len(a_shape) b_anys = [relay.Any()] * len(b_shape) mod, _ = relay.frontend.from_onnx(model, {"a": a_anys, "b": b_anys}) model = relay.create_executor("vm", mod=mod, device=dev, target=target).evaluate() verify_model(model, a_shape, b_shape) verify_model(model, [a * 2 for a in a_shape], [b * 2 for b in b_shape]) verify_model(model, [a * 3 for a in a_shape], [b * 3 for b in b_shape]) # TODO(mbrookhart, electriclilies): Add CUDA as a target once batch matmul is fixed @tvm.testing.parametrize_targets("llvm") def test_batch_matmul_dynamic_model(target, dev): verify_simple_dynamic_model((2, 3, 4, 3), (2, 3, 3, 4), target, dev) verify_simple_dynamic_model((2, 4, 3), (3, 4), target, dev) verify_simple_dynamic_model((2, 3, 4, 3), (3, 4), target, dev) @tvm.testing.parametrize_targets def test_lrn(target, dev): """test_lrn""" def verify_lrn(shape, nsize, dtype, alpha=None, beta=None, bias=None): in_array = np.random.uniform(size=shape).astype(dtype) if alpha is None and beta is None and bias is None: alpha = 0.0001 beta = 0.75 bias = 1.0 node = onnx.helper.make_node("LRN", inputs=["in"], outputs=["out"], size=nsize) else: node = onnx.helper.make_node( "LRN", inputs=["in"], outputs=["out"], alpha=alpha, beta=beta, bias=bias, size=nsize ) graph = helper.make_graph( [node], "lrn_test", inputs=[helper.make_tensor_value_info("in", TensorProto.FLOAT, list(shape))], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(shape))], ) model = helper.make_model(graph, producer_name="lrn_test") verify_with_ort_with_inputs(model, [in_array], target=target, dev=dev) verify_lrn((5, 5, 5, 5), 3, "float32") verify_lrn((5, 5, 5, 5), 3, "float32", alpha=0.0002, beta=0.5, bias=2.0) @tvm.testing.parametrize_targets def test_instance_norm(target, dev): """test_instance_norm""" def verify_instance_norm(shape, axis=1): x = np.random.randn(*shape).astype(np.float32) gamma = np.random.randn(shape[1]).astype(np.float32) beta = np.random.randn(shape[1]).astype(np.float32) epsilon = 1e-5 node = onnx.helper.make_node( "InstanceNormalization", inputs=["x", "gamma", "beta"], outputs=["y"], epsilon=epsilon, ) graph = helper.make_graph( [node], "instance_norm_test", inputs=[ helper.make_tensor_value_info("x", TensorProto.FLOAT, list(shape)), helper.make_tensor_value_info("gamma", TensorProto.FLOAT, (shape[1],)), helper.make_tensor_value_info("beta", TensorProto.FLOAT, (shape[1],)), ], outputs=[helper.make_tensor_value_info("y", TensorProto.FLOAT, list(shape))], ) model = helper.make_model(graph, producer_name="instance_norm_test") verify_with_ort_with_inputs( model, [x, gamma, beta], out_shape=[shape], target=target, dev=dev ) verify_instance_norm((2, 3, 4, 5)) verify_instance_norm((32, 64, 80, 64)) verify_instance_norm((8, 6, 5)) verify_instance_norm((8, 7, 6, 5, 4)) @tvm.testing.parametrize_targets def test_upsample_nearest(target, dev): """test_upsample_nearest""" scale = 2 in_shape = (1, 1, 3, 3) out_shape = (1, 1, 3 * scale, 3 * scale) y = helper.make_node("Upsample", ["in"], ["out"], mode="nearest", scales=[1.0, 1.0, 2.0, 2.0]) in_array = np.random.uniform(size=in_shape).astype(np.float32) graph = helper.make_graph( [y], "upsample_nearest_test", inputs=[helper.make_tensor_value_info("in", TensorProto.FLOAT, list(in_shape))], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_shape))], ) model = helper.make_model(graph, producer_name="upsample_nearest_test") verify_with_ort_with_inputs(model, [in_array], [out_shape], opset=7, target=target, dev=dev) @tvm.testing.parametrize_targets def test_upsample3d_nearest(target, dev): """test_upsample3d_nearest""" scale = 2 in_shape = (1, 1, 3, 3, 3) out_shape = (1, 1, 3 * scale, 3 * scale, 3 * scale) y = helper.make_node( "Upsample", ["in"], ["out"], mode="nearest", scales=[1.0, 1.0, 2.0, 2.0, 2.0] ) in_array = np.random.uniform(size=in_shape).astype(np.float32) graph = helper.make_graph( [y], "upsample_nearest_test", inputs=[helper.make_tensor_value_info("in", TensorProto.FLOAT, list(in_shape))], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_shape))], ) model = helper.make_model(graph, producer_name="upsample_nearest_test") # Upsample is deprecated after opset 9 verify_with_ort_with_inputs(model, [in_array], [out_shape], opset=7, target=target, dev=dev) @tvm.testing.parametrize_targets def test_upsample_bilinear(target, dev): """test_upsample_bilinear""" scale = 2 in_shape = (1, 1, 3, 3) out_shape = (1, 1, 3 * scale, 3 * scale) y = helper.make_node("Upsample", ["in"], ["out"], mode="linear", scales=[1.0, 1.0, 2.0, 2.0]) in_array = np.random.uniform(size=in_shape).astype(np.float32) graph = helper.make_graph( [y], "upsample_bilinear_test", inputs=[helper.make_tensor_value_info("in", TensorProto.FLOAT, list(in_shape))], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_shape))], ) model = helper.make_model(graph, producer_name="upsample_bilinear_test") verify_with_ort_with_inputs(model, [in_array], [out_shape], opset=7, target=target, dev=dev) @tvm.testing.parametrize_targets def test_upsample3d_trilinear(target, dev): """test_upsample3d_trilinear""" scale = 2 in_shape = (1, 1, 3, 3, 3) out_shape = (1, 1, 3 * scale, 3 * scale, 3 * scale) y = helper.make_node("Upsample", ["in", "scales"], ["out"], mode="linear") scales = [1.0, 1.0, 2.0, 2.0, 2.0] in_array = np.random.uniform(size=in_shape).astype(np.float32) out_array = tvm.topi.testing.resize3d_python( in_array, (scale, scale, scale), "NCDHW", "linear", coordinate_transformation_mode="asymmetric", ) ref_array = np.array(scales) ref_node = helper.make_node( "Constant", inputs=[], outputs=["scales"], value=onnx.helper.make_tensor( name="const_tensor", data_type=TensorProto.FLOAT, dims=ref_array.shape, vals=ref_array.flatten().astype(float), ), ) graph = helper.make_graph( [ref_node, y], "upsample_trilinear_test", inputs=[helper.make_tensor_value_info("in", TensorProto.FLOAT, list(in_shape))], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_shape))], ) model = helper.make_model(graph, producer_name="upsample_trilinear_test") # TODO(jwfromm): Trilinear upsampling not supported in 1.0.0 onnxruntime. # Replace topi comparison with verify_with_ort once we update. tvm_out = get_tvm_output(model, in_array, target, dev, out_shape, "float32") tvm.testing.assert_allclose(out_array, tvm_out, rtol=1e-5, atol=1e-5) # TODO: Fix softmax with dynamic input on cuda and enable this test @tvm.testing.known_failing_targets("cuda") @tvm.testing.parametrize_targets def test_softmax(target, dev): """test_softmax""" def verify_softmax(inshape, axis, opset=None, dynamic=False): opname = "Softmax" outshape = inshape node_list = [] input_node_list = [helper.make_tensor_value_info("in", TensorProto.FLOAT, list(inshape))] output_node_list = [helper.make_tensor_value_info("out", TensorProto.FLOAT, list(outshape))] input_list = [np.random.uniform(size=inshape).astype(np.float32)] softmax_inputs = ["in"] if dynamic: input_node_list.append( helper.make_tensor_value_info("shape", TensorProto.INT64, [len(inshape)]) ) input_list.append(np.asarray(inshape)) reshape_node = helper.make_node("Reshape", ["in", "shape"], ["dynamic_in"]) softmax_inputs[0] = "dynamic_in" node_list += [reshape_node] y = helper.make_node(opname, softmax_inputs, ["out"]) if axis is not None: axis_attr = helper.make_attribute("axis", axis) y.attribute.append(axis_attr) node_list.append(y) graph = helper.make_graph( node_list, opname + "_test", inputs=input_node_list, outputs=output_node_list, ) model = helper.make_model(graph, producer_name=opname + "_test") verify_with_ort_with_inputs( model, input_list, use_vm=True, opset=opset, target=target, dev=dev ) verify_softmax((1, 10), None) verify_softmax((1, 10), 1) verify_softmax((1, 2, 3, 10), 0) verify_softmax((1, 2, 3, 10), 2) verify_softmax((1, 2, 3, 4, 10), 3) verify_softmax((1, 2, 3, 4, 10), 4) verify_softmax((1, 10), -1, dynamic=True) verify_softmax((1, 2, 3, 10), -1, dynamic=True) verify_softmax((1, 10), -1, opset=8, dynamic=True) verify_softmax((1, 2, 3, 10), -1, opset=8, dynamic=True) @tvm.testing.parametrize_targets def test_forward_min(target, dev): """test_forward_min""" def verify_min(input_dim): dtype = "float32" a_np1 = np.random.uniform(size=input_dim).astype(dtype) a_np2 = np.random.uniform(size=input_dim).astype(dtype) a_np3 = np.random.uniform(size=input_dim).astype(dtype) min_node = helper.make_node("Min", ["a_np1", "a_np2", "a_np3"], ["out"]) graph = helper.make_graph( [min_node], "Min_test", inputs=[ helper.make_tensor_value_info("a_np1", TensorProto.FLOAT, list(input_dim)), helper.make_tensor_value_info("a_np2", TensorProto.FLOAT, list(input_dim)), helper.make_tensor_value_info("a_np3", TensorProto.FLOAT, list(input_dim)), ], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(input_dim))], ) model = helper.make_model(graph, producer_name="Min_test") verify_with_ort_with_inputs(model, [a_np1, a_np2, a_np3], target=target, dev=dev) verify_min((1, 3, 20, 20)) verify_min((20, 20)) @tvm.testing.parametrize_targets def test_forward_max(target, dev): """test_forward_max""" def verify_max(input_dim): dtype = "float32" a_np1 = np.random.uniform(size=input_dim).astype(dtype) a_np2 = np.random.uniform(size=input_dim).astype(dtype) a_np3 = np.random.uniform(size=input_dim).astype(dtype) max_node = helper.make_node("Max", ["a_np1", "a_np2", "a_np3"], ["out"]) graph = helper.make_graph( [max_node], "Max_test", inputs=[ helper.make_tensor_value_info("a_np1", TensorProto.FLOAT, list(input_dim)), helper.make_tensor_value_info("a_np2", TensorProto.FLOAT, list(input_dim)), helper.make_tensor_value_info("a_np3", TensorProto.FLOAT, list(input_dim)), ], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(input_dim))], ) model = helper.make_model(graph, producer_name="Max_test") verify_with_ort_with_inputs(model, [a_np1, a_np2, a_np3], target=target, dev=dev) verify_max((1, 3, 20, 20)) verify_max((20, 20)) @tvm.testing.parametrize_targets def test_forward_mean(target, dev): """test_forward_mean""" def verify_mean(input_dim): dtype = "float32" a_np1 = np.random.uniform(size=input_dim).astype(dtype) a_np2 = np.random.uniform(size=input_dim).astype(dtype) a_np3 = np.random.uniform(size=input_dim).astype(dtype) mean_node = helper.make_node("Mean", ["a_np1", "a_np2", "a_np3"], ["out"]) graph = helper.make_graph( [mean_node], "Mean_test", inputs=[ helper.make_tensor_value_info("a_np1", TensorProto.FLOAT, list(input_dim)), helper.make_tensor_value_info("a_np2", TensorProto.FLOAT, list(input_dim)), helper.make_tensor_value_info("a_np3", TensorProto.FLOAT, list(input_dim)), ], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(input_dim))], ) model = helper.make_model(graph, producer_name="Mean_test") verify_with_ort_with_inputs(model, [a_np1, a_np2, a_np3], target=target, dev=dev) verify_mean((1, 3, 20, 20)) verify_mean((20, 20)) @tvm.testing.parametrize_targets def test_forward_hardsigmoid(target, dev): """test_forward_hardsigmoid""" def verify_hardsigmoid(input_dim, alpha, beta): dtype = "float32" a_np1 = np.random.uniform(size=input_dim).astype(dtype) hardsigmoid_node = helper.make_node( "HardSigmoid", ["a_np1"], ["out"], alpha=alpha, beta=beta ) graph = helper.make_graph( [hardsigmoid_node], "HardSigmoid_test", inputs=[helper.make_tensor_value_info("a_np1", TensorProto.FLOAT, list(input_dim))], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(input_dim))], ) model = helper.make_model(graph, producer_name="HardSigmoid_test") verify_with_ort_with_inputs(model, [a_np1], target=target, dev=dev) verify_hardsigmoid((1, 3, 20, 20), 0.5, 0.6) verify_hardsigmoid((20, 20), 0.3, 0.4) # TODO (mbrookhart, electriclilies) Fix argmin on GPU and enable this test @tvm.testing.known_failing_targets("cuda") @tvm.testing.parametrize_targets def test_forward_arg_min_max(target, dev): """test_forward_arg_min_max""" def verify_argreduce(input_dim, op_name, axis=None, keepdims=None): a_np1 = np.random.uniform(-10, 10, input_dim).astype(np.int32) out_shape = list(a_np1.shape) def_axis = axis if axis is not None else 0 if keepdims == 1 or keepdims is None: out_shape[def_axis] = 1 else: out_shape.pop(def_axis) node = onnx.helper.make_node(op_name, inputs=["a_np1"], outputs=["out"]) if keepdims is not None: keepdims_attr = helper.make_attribute("keepdims", keepdims) node.attribute.append(keepdims_attr) if axis is not None: axis_attr = helper.make_attribute("axis", axis) node.attribute.append(axis_attr) graph = helper.make_graph( [node], "argreduce_test", inputs=[helper.make_tensor_value_info("a_np1", TensorProto.INT32, list(a_np1.shape))], outputs=[helper.make_tensor_value_info("out", TensorProto.INT64, list(out_shape))], ) model = helper.make_model(graph, producer_name="argreduce_test") verify_with_ort_with_inputs(model, [a_np1], target=target, dev=dev) # Verify argmin and argmax verify_argreduce([3, 4, 4], "ArgMin") verify_argreduce([3, 4, 4], "ArgMax") verify_argreduce([3, 4, 4], "ArgMin", axis=1) verify_argreduce([3, 4, 4], "ArgMax", axis=0) verify_argreduce([3, 4, 4], "ArgMin", keepdims=0) verify_argreduce([3, 4, 4], "ArgMax", keepdims=1) for axis in [None, 0, 1, 2]: for keepdims in [None, True, False]: verify_argreduce([3, 4, 4], "ArgMin", axis, keepdims) verify_argreduce([3, 4, 4], "ArgMax", axis, keepdims) @tvm.testing.parametrize_targets def test_constantofshape(target, dev): """test_constantofshape""" def verify_constantofshape(input_dim, value, dtype): fill_node = helper.make_node( "ConstantOfShape", ["input"], ["output"], value=helper.make_tensor( "value", mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype(dtype)], (1,), (value,) ), ) inputs = [helper.make_tensor_value_info("input", TensorProto.INT64, [len(input_dim)])] graph = helper.make_graph( [fill_node], "fill_test", inputs, outputs=[ helper.make_tensor_value_info( "output", mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype(dtype)], input_dim ) ], ) model = helper.make_model(graph, producer_name="fill_test") input_np = np.array(input_dim).astype("int64") verify_with_ort_with_inputs(model, [input_np], use_vm=True, target=target, dev=dev) verify_constantofshape((2, 3, 4, 5), 10, "float32") verify_constantofshape((3, 3), 0, "int32") verify_constantofshape((1, 2, 3), -1, "float32") @tvm.testing.parametrize_targets def test_pad(target, dev): """test_pad""" def verify_pad(indata, pads, mode="constant", value=0.0): indata = np.array(indata).astype(np.float32) # numpy expect result len_dim = len(pads) // 2 np_pads = [(pads[i], pads[i + len_dim]) for i in range(len_dim)] # onnx graph if mode in ["edge", "reflect"]: outdata = np.pad(indata, pad_width=np_pads, mode=mode) node = helper.make_node( "Pad", inputs=["input"], outputs=["output"], mode=mode, pads=pads, ) else: outdata = np.pad(indata, pad_width=np_pads, mode="constant", constant_values=value) node = helper.make_node( "Pad", inputs=["input"], outputs=["output"], mode="constant", pads=pads, value=value ) graph = helper.make_graph( [node], "pad_test", inputs=[helper.make_tensor_value_info("input", TensorProto.FLOAT, list(indata.shape))], outputs=[ helper.make_tensor_value_info("output", TensorProto.FLOAT, list(outdata.shape)) ], ) model = helper.make_model(graph, producer_name="pad_test") verify_with_ort_with_inputs( model, [indata], [outdata.shape], dtype="float32", opset=2, target=target, dev=dev ) def verify_pad_v11(indata, pads, mode="constant", value=0.0): indata = np.array(indata).astype(np.float32) # numpy expect result len_dim = len(pads) // 2 np_pads = [(pads[i], pads[i + len_dim]) for i in range(len_dim)] pads = np.array(pads) # onnx graph if mode in ["edge", "reflect"]: inputs = [indata] outdata = np.pad(indata, pad_width=np_pads, mode=mode) node = helper.make_node("Pad", inputs=["input", "pads"], outputs=["output"], mode=mode) graph = helper.make_graph( [node], "pad_test", inputs=[ helper.make_tensor_value_info("input", TensorProto.FLOAT, list(indata.shape)), helper.make_tensor_value_info("pads", TensorProto.INT64, (len(pads),)), ], initializer=[helper.make_tensor("pads", TensorProto.INT64, (len(pads),), pads)], outputs=[ helper.make_tensor_value_info("output", TensorProto.FLOAT, list(outdata.shape)) ], ) else: inputs = [indata] outdata = np.pad(indata, pad_width=np_pads, mode="constant", constant_values=value) node = helper.make_node( "Pad", inputs=["input", "pads", "constant_value"], outputs=["output"], mode="constant", ) graph = helper.make_graph( [node], "pad_test", inputs=[ helper.make_tensor_value_info("input", TensorProto.FLOAT, list(indata.shape)), helper.make_tensor_value_info("pads", TensorProto.INT64, (len(pads),)), helper.make_tensor_value_info("constant_value", TensorProto.FLOAT, (1,)), ], initializer=[ helper.make_tensor("pads", TensorProto.INT64, (len(pads),), pads), helper.make_tensor("constant_value", TensorProto.FLOAT, (1,), [value]), ], outputs=[ helper.make_tensor_value_info("output", TensorProto.FLOAT, list(outdata.shape)) ], ) model = helper.make_model(graph, producer_name="pad_test") verify_with_ort_with_inputs(model, inputs, opset=11, use_vm=True, target=target, dev=dev) verify_pad(np.random.randn(2, 2).astype(np.float32), [0, 1, 0, 0], "constant", 0.0) verify_pad(np.random.randn(2, 3).astype(np.float32), [1, 0, 0, 1], "constant", 0.0) verify_pad(np.random.randn(3, 2).astype(np.float32), [0, 0, 1, 0], "constant", 5.0) verify_pad(np.random.randn(1, 3, 4, 5).astype(np.float32), [0, 0, 1, 1, 0, 0, 1, 1], "edge") verify_pad(np.random.randn(1, 3, 4, 5).astype(np.float32), [0, 0, 1, 1, 0, 0, 1, 1], "reflect") verify_pad_v11(np.random.randn(2, 2).astype(np.float32), [0, 1, 0, 0], "constant", 0.0) verify_pad_v11(np.random.randn(2, 3).astype(np.float32), [1, 0, 0, 1], "constant", 0.0) verify_pad_v11(np.random.randn(3, 2).astype(np.float32), [0, 0, 1, 0], "constant", 5.0) verify_pad_v11(np.random.randn(1, 3, 4, 5).astype(np.float32), [0, 0, 1, 1, 0, 0, 1, 1], "edge") verify_pad_v11( np.random.randn(1, 3, 4, 5).astype(np.float32), [0, 0, 1, 1, 0, 0, 1, 1], "reflect" ) @tvm.testing.parametrize_targets def test_all_reduce_funcs(target, dev): """test_all_reduce_funcs""" def verify_reduce_func(func, data, axis, keepdims): inshape = data.shape outshape = np.sum(data, axis=axis, keepdims=keepdims == 1).shape if axis: node = onnx.helper.make_node( func, inputs=["x"], outputs=["y"], axes=axis, keepdims=keepdims ) else: node = onnx.helper.make_node(func, inputs=["x"], outputs=["y"], keepdims=keepdims) graph = helper.make_graph( [node], "reduce_test", inputs=[helper.make_tensor_value_info("x", TensorProto.FLOAT, list(inshape))], outputs=[helper.make_tensor_value_info("y", TensorProto.FLOAT, list(outshape))], ) model = helper.make_model(graph, producer_name="reduce_test") verify_with_ort_with_inputs( model, [data], [outshape], opset=11, target=target, dev=dev, rtol=1e-4, atol=1e-4, ) funcs = [ "ReduceMax", "ReduceMean", "ReduceMin", "ReduceProd", "ReduceSum", "ReduceSumSquare", "ReduceLogSum", "ReduceLogSumExp", "ReduceL1", "ReduceL2", ] for func in funcs: verify_reduce_func(func, np.array(1.0).astype(np.float32), axis=None, keepdims=False) for keepdims in [True, False]: verify_reduce_func( func, np.random.randn(3, 2, 2).astype(np.float32), axis=None, keepdims=keepdims ) verify_reduce_func( func, np.random.randn(3, 2, 3).astype(np.float32), axis=None, keepdims=keepdims ) verify_reduce_func( func, np.random.randn(3, 3, 3).astype(np.float32), axis=(1,), keepdims=keepdims ) verify_reduce_func( func, np.random.randn(3, 3, 3, 1).astype(np.float32), axis=(1, 2), keepdims=keepdims ) verify_reduce_func( func, np.random.randn(3, 3, 3, 1).astype(np.float32), axis=(1,), keepdims=keepdims ) verify_reduce_func( func, np.random.randn(1, 3, 4, 1).astype(np.float32), axis=(1,), keepdims=keepdims ) @tvm.testing.parametrize_targets def test_split(target, dev): """test_split""" def verify_split(indata, outdatas, split, axis=0, pass_split=True, opset=11): indata = np.array(indata).astype(np.float32) outdatas = [np.array(o).astype(np.float32) for o in outdatas] inputs = [helper.make_tensor_value_info("input", TensorProto.FLOAT, list(indata.shape))] input_names = ["input"] initializer = [] if split: split_index = range(len(split)) else: split_index = range(len(outdatas)) if pass_split: if opset >= 13: input_names.append("split") np_split = np.array(split).astype(np.int64) inputs.append( helper.make_tensor_value_info("split", TensorProto.INT64, list(np_split.shape)) ) # TODO(mbrookhart): Support dynamic split, edit this test case to remove split from # the initializer and add it back to the input data indata = [indata] # , np_split] initializer.append( helper.make_tensor("split", TensorProto.INT64, list(np_split.shape), np_split) ) node = helper.make_node( "Split", inputs=input_names, outputs=[f"output_{i}" for i in range(len(split_index))], axis=axis, ) if pass_split and opset < 13: split_attr = helper.make_attribute("split", split) node.attribute.append(split_attr) graph = helper.make_graph( [node], "split_test", inputs=inputs, initializer=initializer, outputs=[ helper.make_tensor_value_info( f"output_{i}", TensorProto.FLOAT, list(outdatas[i].shape) ) for i in range(len(split_index)) ], ) model = helper.make_model(graph, producer_name="split_test") verify_with_ort_with_inputs( model, indata, out_shape=list(range(len(split_index))), opset=opset, target=target, dev=dev, use_vm=True, freeze_params=(opset >= 13), ) # 1D verify_split([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], [[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]], [2, 2, 2], 0) verify_split( [1.0, 2.0, 3.0, 4.0, 5.0, 6.0], [[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]], [2, 2, 2], 0, False ) verify_split([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], [[1.0, 2.0], [3.0], [4.0, 5.0, 6.0]], [2, 1, 3], 0) verify_split( [1.0, 2.0, 3.0, 4.0, 5.0, 6.0], [[1.0, 2.0], [3.0], [4.0, 5.0, 6.0]], [2, 1, 3], 0, opset=13 ) # 2D verify_split( [[1.0, 2.0, 3.0, 4.0], [7.0, 8.0, 9.0, 10.0]], [[[1.0, 2.0], [7.0, 8.0]], [[3.0, 4.0], [9.0, 10.0]]], [2, 2], 1, ) verify_split( [[1.0, 2.0, 3.0, 4.0], [7.0, 8.0, 9.0, 10.0]], [[[1.0, 2.0], [7.0, 8.0]], [[3.0, 4.0], [9.0, 10.0]]], [2, 2], 1, opset=13, ) # Split evenly (unstack) verify_split([1, 2, 3], [[1], [2], [3]], False, 0, False) # Split a single value to a single value verify_split([1], [[1]], [1], pass_split=True) # Test that the default case modifies nothing when split list has length one verify_split([[1.0, 2.0]], [[1.0, 2.0]], [2], 1) verify_split([[1.0, 2.0]], [[1.0, 2.0]], [1], 0) @tvm.testing.parametrize_targets def test_binary_ops(target, dev): """test_binary_ops""" in_shape = (1, 2, 3, 3) dtype = "float32" out_shape = in_shape def verify_binary_ops(op, x, y, out_type="float32"): out = helper.make_node(op, ["in1", "in2"], ["out"]) graph = helper.make_graph( [out], "_test", inputs=[ helper.make_tensor_value_info("in1", TensorProto.FLOAT, x.shape), helper.make_tensor_value_info("in2", TensorProto.FLOAT, y.shape), ], outputs=[ helper.make_tensor_value_info( "out", mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype(out_type)], list(out_shape) ) ], ) model = helper.make_model(graph, producer_name="_test") verify_with_ort_with_inputs(model, [x, y], target=target, dev=dev) x = np.random.uniform(size=in_shape).astype(dtype) y = np.random.uniform(size=in_shape).astype(dtype) z_array = np.random.uniform(size=(3,)).astype(dtype) verify_binary_ops("Add", x, y) verify_binary_ops("Add", x, z_array) verify_binary_ops("Sub", x, y) verify_binary_ops("Sub", x, z_array) verify_binary_ops("Mul", x, y) verify_binary_ops("Mul", x, z_array) verify_binary_ops("Div", x, y) verify_binary_ops("Div", x, z_array) verify_binary_ops("Sum", x, y) verify_binary_ops("Sum", x, z_array) verify_binary_ops("Greater", x, y, "bool") verify_binary_ops("Greater", x, z_array, "bool") verify_binary_ops("GreaterOrEqual", x, y, "bool") verify_binary_ops("GreaterOrEqual", x, z_array, "bool") verify_binary_ops("Less", x, y, "bool") verify_binary_ops("Less", x, z_array, "bool") verify_binary_ops("LessOrEqual", x, y, "bool") verify_binary_ops("LessOrEqual", x, z_array, "bool") verify_binary_ops("Equal", x, y, "bool") verify_binary_ops("Equal", x, z_array, "bool") @tvm.testing.parametrize_targets def test_unary_ops(target, dev): """test_unary_ops""" in_shape = (1, 2, 3, 3) _ = "float32" out_shape = in_shape def verify_unary_ops(op, x, rtol=1e-5, atol=1e-5, dtype="float32"): x = x.astype(dtype) ONNX_DTYPE = mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype(dtype)] out = helper.make_node(op, ["in1"], ["out"]) graph = helper.make_graph( [out], "_test", inputs=[ helper.make_tensor_value_info("in1", ONNX_DTYPE, list(in_shape)), ], outputs=[helper.make_tensor_value_info("out", ONNX_DTYPE, list(out_shape))], ) model = helper.make_model(graph, producer_name="_test") verify_with_ort_with_inputs(model, [x], rtol=rtol, atol=atol, target=target, dev=dev) x = np.random.uniform(size=in_shape) verify_unary_ops("Neg", x) verify_unary_ops("Abs", x) verify_unary_ops("Reciprocal", x) verify_unary_ops("Reciprocal", x, dtype="float16") verify_unary_ops("Sqrt", x) verify_unary_ops("Relu", x) verify_unary_ops("Exp", x) verify_unary_ops("Log", x) verify_unary_ops("Log", x) verify_unary_ops("Acos", x) verify_unary_ops("Acosh", x) verify_unary_ops("Asin", x) verify_unary_ops("Asinh", x) verify_unary_ops("Atan", x) verify_unary_ops("Atanh", x) verify_unary_ops("Cos", x) verify_unary_ops("Cosh", x) verify_unary_ops("Sin", x) verify_unary_ops("Sinh", x) verify_unary_ops("Tan", x) verify_unary_ops("Tanh", x) verify_unary_ops("Sigmoid", x) verify_unary_ops("Softsign", x) @tvm.testing.parametrize_targets def test_leaky_relu(target, dev): def leaky_relu_x(x, alpha): return np.where(x >= 0, x, x * alpha) _test_onnx_op_elementwise( target, dev, (2, 4, 5, 6), leaky_relu_x, {"alpha": 0.25}, "float32", "LeakyRelu", {"alpha": 0.25}, ) @tvm.testing.parametrize_targets def test_elu(target, dev): def elu_x(x, alpha): return np.where(x > 0, x, alpha * (np.exp(x) - 1.0)) _test_onnx_op_elementwise( target, dev, (2, 4, 5, 6), elu_x, {"alpha": 0.25}, "float32", "Elu", {"alpha": 0.25} ) @tvm.testing.parametrize_targets def test_selu(target, dev): def selu_x(x, alpha, gamma): return gamma * np.where(x > 0, x, alpha * (np.exp(x) - 1.0)) _test_onnx_op_elementwise( target, dev, (2, 4, 5, 6), selu_x, {"alpha": 0.25, "gamma": 0.3}, "float32", "Selu", {"alpha": 0.25, "gamma": 0.3}, ) @tvm.testing.parametrize_targets def test_prelu(target, dev): """test_prelu""" def verify_prelu(x_shape, a_shape): node = helper.make_node("PRelu", inputs=["X", "slope"], outputs=["Y"]) graph = helper.make_graph( [node], "prelu_test", inputs=[ helper.make_tensor_value_info("X", TensorProto.FLOAT, list(x_shape)), helper.make_tensor_value_info("slope", TensorProto.FLOAT, list(a_shape)), ], outputs=[helper.make_tensor_value_info("Y", TensorProto.FLOAT, list(x_shape))], ) model = helper.make_model(graph, producer_name="prelu_test") verify_with_ort( model, [x_shape, a_shape], out_shape=[list(x_shape)], use_vm=True, target=target, dev=dev, ) verify_prelu([3, 4, 5, 6], [1, 4, 1, 1]) verify_prelu([1, 8, 5, 6], [1, 8, 1, 1]) verify_prelu([2, 12, 16, 16], [1, 12, 1, 1]) verify_prelu([2, 12, 16, 16], [1]) # Test alpha broadcasting. verify_prelu([3, 1], [3, 1]) # Test non NCHW workload. @tvm.testing.parametrize_targets def test_thresholded_relu(target, dev): def thresholded_relu_x(x, alpha): out_np = np.clip(x, alpha, np.inf) out_np[out_np == alpha] = 0 return out_np _test_onnx_op_elementwise( target, dev, (2, 4, 5, 6), thresholded_relu_x, {"alpha": 0.25}, "float32", "ThresholdedRelu", {"alpha": 0.25}, ) @tvm.testing.parametrize_targets def test_logsoftmax(target, dev): _test_onnx_op_elementwise( target, dev, (1, 4), tvm.topi.testing.log_softmax_python, {}, "float32", "LogSoftmax", {"axis": 1}, ) def check_torch_conversion(model, input_size, target, dev): dummy_input = torch.randn(*input_size) file_name = f"{model.__name__}.onnx" # Set verbose=True for more output torch.onnx.export(model(), dummy_input, file_name, export_params=True, verbose=False) onnx_model = onnx.load(file_name) input_data = np.random.uniform(size=input_size).astype("float32") verify_with_ort_with_inputs( onnx_model, [input_data], apply_softmax=True, target=target, dev=dev ) @tvm.testing.parametrize_targets def test_resnet(target, dev): check_torch_conversion(torchvision.models.resnet18, (1, 3, 224, 224), target, dev) # check_torch_conversion(torchvision.models.resnet101, (1,3,224,224)) # def test_alexnet(): # Torch's ONNX export does not support the adaptive pooling used by AlexNet? # check_torch_conversion(torchvision.models.alexnet, (1,3,224,224)) # Torch's ONNX export does not support the adaptive pooling used by vgg16? # def test_vgg16(): # check_torch_conversion(torchvision.models.vgg16, (1,3,224,224)) # TODO(@jroesch): Update Torch + ONNX to support this import. # def test_squeezenet(): # # Torch's ONNX export does not support the max pooling used by Squezenet # check_torch_conversion(torchvision.models.squeezenet1_0, (1,3,224,224)) @tvm.testing.parametrize_targets def test_densenet(target, dev): check_torch_conversion(torchvision.models.densenet161, (1, 3, 224, 224), target, dev) @tvm.testing.parametrize_targets def test_inception(target, dev): check_torch_conversion(torchvision.models.inception_v3, (1, 3, 224, 224), target, dev) # TODO(@jroesch): Update Torch + ONNX to support this import. # def test_googlenet(): # check_torch_conversion(torchvision.models.googlenet, (1,3,224,224)) # TODO(@jroesch): Update Torch + ONNX to support this import. # def test_shufflenetv2(): # check_torch_conversion(torchvision.models.shufflenetv2, (1,3,224,224)) @tvm.testing.parametrize_targets def test_sign(target, dev): def sign_x(x): return np.sign(x) _test_onnx_op_elementwise(target, dev, (3, 4, 5, 6), sign_x, {}, "float32", "Sign", {}) @tvm.testing.parametrize_targets def test_not(target, dev): """test_not""" def verify_not(indata, dtype): x = indata.astype(dtype) node = helper.make_node( "Not", inputs=["in"], outputs=["out"], ) graph = helper.make_graph( [node], "not_test", inputs=[helper.make_tensor_value_info("in", TensorProto.BOOL, list(x.shape))], outputs=[helper.make_tensor_value_info("out", TensorProto.BOOL, list(x.shape))], ) model = helper.make_model(graph, producer_name="not_test") verify_with_ort_with_inputs(model, [x], target=target, dev=dev) # 2d verify_not(indata=(np.random.randn(3, 4) > 0), dtype=bool) # 3d verify_not(indata=(np.random.randn(3, 4, 5) > 0), dtype=bool) # 4d verify_not(indata=(np.random.randn(3, 4, 5, 6) > 0), dtype=bool) @tvm.testing.parametrize_targets def test_and(target, dev): """test_and""" def verify_and(indata, dtype): x = indata[0].astype(dtype) y = indata[1].astype(dtype) outdata = np.logical_and(x, y) node = helper.make_node( "And", inputs=["in1", "in2"], outputs=["out"], ) graph = helper.make_graph( [node], "and_test", inputs=[ helper.make_tensor_value_info("in1", TensorProto.BOOL, list(x.shape)), helper.make_tensor_value_info("in2", TensorProto.BOOL, list(y.shape)), ], outputs=[helper.make_tensor_value_info("out", TensorProto.BOOL, list(outdata.shape))], ) model = helper.make_model(graph, producer_name="and_test") verify_with_ort_with_inputs(model, [x, y], [outdata.shape], target=target, dev=dev) # 2d x = np.random.randn(3, 4) > 0 y = np.random.randn(3, 4) > 0 verify_and(indata=[x, y], dtype=bool) # 3d x = np.random.randn(3, 4, 5) > 0 y = np.random.randn(3, 4, 5) > 0 verify_and(indata=[x, y], dtype=bool) # 4d x = np.random.randn(3, 4, 5, 6) > 0 y = np.random.randn(3, 4, 5, 6) > 0 verify_and(indata=[x, y], dtype=bool) # 3d vs 1d x = np.random.randn(3, 4, 5) > 0 y = np.random.randn(5) > 0 verify_and(indata=[x, y], dtype=bool) # 3d vs 2d x = np.random.randn(3, 4, 5) > 0 y = np.random.randn(4, 5) > 0 verify_and(indata=[x, y], dtype=bool) @tvm.testing.parametrize_targets def test_tile(target, dev): """test_tile""" def verify_tile_v6(indata, repeats, outdata): node = helper.make_node("Tile", inputs=["input", "repeats"], outputs=["out"]) graph = helper.make_graph( [node], "tile_test", inputs=[ helper.make_tensor_value_info("input", TensorProto.FLOAT, list(indata.shape)), helper.make_tensor_value_info("repeats", TensorProto.INT64, list(repeats.shape)), ], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(outdata.shape))], ) model = helper.make_model(graph, producer_name="tile_test") verify_with_ort_with_inputs( model, [indata, repeats], use_vm=True, opset=6, target=target, dev=dev ) x = np.random.rand(2, 3, 4, 5).astype(np.float32) repeats = np.random.randint(low=1, high=10, size=(np.ndim(x),)).astype(np.int64) z_array = np.tile(x, repeats) verify_tile_v6(x, repeats, z_array) @tvm.testing.parametrize_targets def test_erf(target, dev): """test_erf""" def verify_erf(indata, outdata): node = helper.make_node("Erf", inputs=["in"], outputs=["out"]) graph = helper.make_graph( [node], "erf_test", inputs=[helper.make_tensor_value_info("in", TensorProto.FLOAT, list(indata.shape))], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(outdata.shape))], ) model = helper.make_model(graph, producer_name="erf_test") verify_with_ort_with_inputs(model, [indata], [outdata.shape], target=target, dev=dev) x = np.random.rand(2, 3, 4, 6).astype(np.float32) z_array = scipy.special.erf(x) verify_erf(x, z_array) @tvm.testing.parametrize_targets def test_where(target, dev): """test_where""" def verify_where(condition, x, y, dtype, outdata, dynamic=False): node_list = [] where_inputs = ["condition", "x", "y"] if dynamic: shape_node = helper.make_node("Shape", ["x"], ["shape"]) reshape_node = helper.make_node("Reshape", ["x", "shape"], ["X"]) where_inputs[1] = "X" node_list += [shape_node, reshape_node] node = helper.make_node("Where", inputs=where_inputs, outputs=["out"]) node_list.append(node) graph = helper.make_graph( node_list, "where_test", inputs=[ helper.make_tensor_value_info("condition", TensorProto.BOOL, list(condition.shape)), helper.make_tensor_value_info("x", dtype, list(x.shape)), helper.make_tensor_value_info("y", dtype, list(y.shape)), ], outputs=[helper.make_tensor_value_info("out", dtype, list(outdata.shape))], ) model = helper.make_model(graph, producer_name="where_test") verify_with_ort_with_inputs( model, [condition, x, y], [outdata.shape], use_vm=True, target=target, dev=dev ) condition = np.array([[1, 0], [1, 1]], dtype=bool) x = np.array([[1, 2], [3, 4]], dtype=np.int64) y = np.array([[9, 8], [7, 6]], dtype=np.int64) outdata = np.where(condition, x, y) verify_where(condition, x, y, TensorProto.INT64, outdata) x = np.array([[1, 2], [3, 4]], dtype=np.float32) y = np.array([[9, 8], [7, 6]], dtype=np.float32) outdata = np.where(condition, x, y) verify_where(condition, x, y, TensorProto.FLOAT, outdata) x = np.array(1, dtype=np.float32) y = np.array([2], dtype=np.float32) outdata = np.where(condition, x, y) verify_where(condition, x, y, TensorProto.FLOAT, outdata) x = np.array([2], dtype=np.float32) y = np.array(1, dtype=np.float32) outdata = np.where(condition, x, y) verify_where(condition, x, y, TensorProto.FLOAT, outdata) condition = np.array(1, dtype=bool) x = np.array([[1, 2], [3, 4]], dtype=np.float32) y = np.array([[5, 6], [7, 8]], dtype=np.float32) outdata = np.where(condition, x, y) verify_where(condition, x, y, TensorProto.FLOAT, outdata) x = np.array([[1, 2], [3, 4]], dtype=np.float32) y = np.array([[1], [7]], dtype=np.float32) outdata = np.where(condition, x, y) verify_where(condition, x, y, TensorProto.FLOAT, outdata) verify_where(condition, x, y, TensorProto.FLOAT, outdata, dynamic=True) condition = np.random.uniform(size=(3, 1)) < 0.5 x = np.random.uniform(size=2).astype(np.float32) y = np.random.uniform(size=2).astype(np.float32) outdata = np.where(condition, x, y) verify_where(condition, x, y, TensorProto.FLOAT, outdata) @tvm.testing.parametrize_targets def test_or(target, dev): """test_or""" def verify_or(indata, dtype): x = indata[0].astype(dtype) y = indata[1].astype(dtype) outdata = np.logical_or(x, y) node = helper.make_node( "Or", inputs=["in1", "in2"], outputs=["out"], ) graph = helper.make_graph( [node], "or_test", inputs=[ helper.make_tensor_value_info("in1", TensorProto.BOOL, list(x.shape)), helper.make_tensor_value_info("in2", TensorProto.BOOL, list(y.shape)), ], outputs=[helper.make_tensor_value_info("out", TensorProto.BOOL, list(outdata.shape))], ) model = helper.make_model(graph, producer_name="or_test") verify_with_ort_with_inputs(model, [x, y], [outdata.shape], target=target, dev=dev) # 2d x = np.random.randn(3, 4) > 0 y = np.random.randn(3, 4) > 0 verify_or(indata=[x, y], dtype=bool) # 3d x = np.random.randn(3, 4, 5) > 0 y = np.random.randn(3, 4, 5) > 0 verify_or(indata=[x, y], dtype=bool) # 4d x = np.random.randn(3, 4, 5, 6) > 0 y = np.random.randn(3, 4, 5, 6) > 0 verify_or(indata=[x, y], dtype=bool) # 3d vs 1d x = np.random.randn(3, 4, 5) > 0 y = np.random.randn(5) > 0 verify_or(indata=[x, y], dtype=bool) # 3d vs 2d x = np.random.randn(3, 4, 5) > 0 y = np.random.randn(4, 5) > 0 verify_or(indata=[x, y], dtype=bool) @tvm.testing.parametrize_targets def test_batch_norm(target, dev): """test_batch_norm""" def verify_batch_norm(in_shape): batchnorm = onnx.helper.make_node( "BatchNormalization", inputs=["x", "scale", "B", "mean", "var"], outputs=["Y"] ) graph = helper.make_graph( [batchnorm], "batchnorm_test", inputs=[ helper.make_tensor_value_info("x", TensorProto.FLOAT, list(in_shape)), helper.make_tensor_value_info("scale", TensorProto.FLOAT, [in_shape[1]]), helper.make_tensor_value_info("B", TensorProto.FLOAT, [in_shape[1]]), helper.make_tensor_value_info("mean", TensorProto.FLOAT, [in_shape[1]]), helper.make_tensor_value_info("var", TensorProto.FLOAT, [in_shape[1]]), ], outputs=[helper.make_tensor_value_info("Y", TensorProto.FLOAT, list(in_shape))], ) model = helper.make_model(graph, producer_name="batchnorm_test") # X, scale, b, mean, var inshapes = [in_shape, in_shape[1], in_shape[1], in_shape[1], in_shape[1]] verify_with_ort(model, inshapes, out_shape=[in_shape], target=target, dev=dev) verify_batch_norm([1, 3, 224, 224]) verify_batch_norm([1, 3, 24, 24]) verify_batch_norm([16, 3, 24, 24]) verify_batch_norm([16, 16, 24, 24]) verify_batch_norm([16, 16, 10, 10]) @tvm.testing.parametrize_targets def test_batch_norm_dynamic_subgraph(target, dev): """test_batch_norm_dynamic_subgraph""" def verify_batch_norm_dynamic_subgraph(in_shape, o_shape): batchnorm = onnx.helper.make_node( "BatchNormalization", inputs=["x", "scale", "B", "mean", "var"], outputs=["Y"] ) shape_node = helper.make_node("Shape", ["Y"], ["shape"]) reshape_node = helper.make_node("Reshape", ["in", "shape"], ["out"]) graph = helper.make_graph( [batchnorm, shape_node, reshape_node], "batchnorm_test", inputs=[ helper.make_tensor_value_info("x", TensorProto.FLOAT, list(in_shape)), helper.make_tensor_value_info("in", TensorProto.FLOAT, list(o_shape)), helper.make_tensor_value_info("scale", TensorProto.FLOAT, [in_shape[1]]), helper.make_tensor_value_info("B", TensorProto.FLOAT, [in_shape[1]]), helper.make_tensor_value_info("mean", TensorProto.FLOAT, [in_shape[1]]), helper.make_tensor_value_info("var", TensorProto.FLOAT, [in_shape[1]]), ], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(in_shape))], ) model = helper.make_model(graph, producer_name="batchnorm_test") # X, inp, scale, b, mean, var inshapes = [in_shape, o_shape, in_shape[1], in_shape[1], in_shape[1], in_shape[1]] verify_with_ort(model, inshapes, out_shape=[in_shape], use_vm=True, target=target, dev=dev) verify_batch_norm_dynamic_subgraph([16, 16, 10, 10], [160, 160]) @tvm.testing.parametrize_targets def test_conv(target, dev): """test_conv""" def verify_conv( x_shape, w_shape, y_shape, padding, kernel_shape, strides, dilations, group=1, auto_pad="NOTSET", unset_pad=False, ): if unset_pad: node = helper.make_node( "Conv", inputs=["x", "W"], outputs=["y"], kernel_shape=kernel_shape, # Default values for other attributes: strides=strides, dilations=dilations, group=group, ) elif padding is None: ## autopadding with unset default attributes kwargs = {} if not all(list(s == 1 for s in strides)): kwargs["strides"] = strides if not all(list(d == 1 for d in dilations)): kwargs["dilations"] = dilations node = helper.make_node( "Conv", inputs=["x", "W"], outputs=["y"], # Default values for other attributes: auto_pad=auto_pad, group=group, **kwargs, ) else: node = helper.make_node( "Conv", inputs=["x", "W"], outputs=["y"], kernel_shape=kernel_shape, # Default values for other attributes: strides=strides, dilations=dilations, group=group, pads=padding, ) graph = helper.make_graph( [node], "conv_test", inputs=[ helper.make_tensor_value_info("x", TensorProto.FLOAT, list(x_shape)), helper.make_tensor_value_info("W", TensorProto.FLOAT, list(w_shape)), ], outputs=[helper.make_tensor_value_info("y", TensorProto.FLOAT, list(y_shape))], ) model = helper.make_model(graph, producer_name="conv_test") verify_with_ort( model, [x_shape, w_shape], [y_shape], use_vm=True, target=target, dev=dev, ) def repeat(num, dims): return tuple(num for _ in range(dims)) for dims in [1, 2, 3]: # Convolution with padding verify_conv( (1, 1) + repeat(5, dims), (1, 1) + repeat(3, dims), (1, 1) + repeat(5, dims), 2 * repeat(1, dims), repeat(3, dims), repeat(1, dims), repeat(1, dims), ) # Convolution with asymmetric padding verify_conv( (1, 1) + repeat(5, dims), (1, 1) + repeat(3, dims), (1, 1) + repeat(4, dims), repeat(0, dims) + repeat(1, dims), repeat(3, dims), repeat(1, dims), repeat(1, dims), ) # Convolution without padding verify_conv( (1, 1) + repeat(5, dims), (1, 1) + repeat(3, dims), (1, 1) + repeat(3, dims), 2 * repeat(0, dims), repeat(3, dims), repeat(1, dims), repeat(1, dims), ) # Convolution with autopadding verify_conv( (1, 1) + repeat(5, dims), (1, 1) + repeat(3, dims), (1, 1) + repeat(5, dims), None, repeat(3, dims), repeat(1, dims), repeat(1, dims), auto_pad="SAME_UPPER", ) # Convolution with valid autopadding verify_conv( (1, 1) + repeat(5, dims), (1, 1) + repeat(3, dims), (1, 1) + repeat(3, dims), None, repeat(3, dims), repeat(1, dims), repeat(1, dims), auto_pad="VALID", ) # Convolution with unset padding verify_conv( (1, 1) + repeat(5, dims), (1, 1) + repeat(3, dims), (1, 1) + repeat(3, dims), 2 * repeat(0, dims), repeat(3, dims), repeat(1, dims), repeat(1, dims), True, ) # Convolution with non uniform stride verify_conv( (1, 1) + repeat(5, dims), (1, 1) + repeat(3, dims), (1, 1) + repeat(3, dims), None, repeat(3, dims), repeat(2, dims), repeat(1, dims), auto_pad="SAME_UPPER", ) # Convolution with dilation verify_conv( (1, 1) + repeat(5, dims), (1, 1) + repeat(3, dims), (1, 1) + repeat(5, dims), 2 * repeat(2, dims), repeat(3, dims), repeat(1, dims), repeat(2, dims), ) # TODO(jwfromm): Merge with other tests once group_conv3d is supported. for dims in [1, 2, 3]: # Group Convolution verify_conv( (1, 8) + repeat(5, dims), (8, 1) + repeat(3, dims), (1, 8) + repeat(5, dims), 2 * repeat(1, dims), repeat(3, dims), repeat(1, dims), repeat(1, dims), group=8, ) verify_conv( (1, 12) + repeat(5, dims), (30, 4) + repeat(3, dims), (1, 30) + repeat(5, dims), 2 * repeat(1, dims), repeat(3, dims), repeat(1, dims), repeat(1, dims), group=3, ) @tvm.testing.parametrize_targets def test_convtranspose(target, dev): """test_convtranspose""" def verify_convtranspose_with_output_shape( x_shape, w_shape, output_shape, kernel_shape, strides, dilations, auto_pad="SAME_UPPER", group=1, ): node = helper.make_node( "ConvTranspose", inputs=["x", "W"], outputs=["y"], kernel_shape=kernel_shape, # Default values for other attributes: strides=strides, dilations=dilations, output_shape=output_shape, auto_pad=auto_pad, ) if group is not None: group_attr = helper.make_attribute("group", group) node.attribute.append(group_attr) graph = helper.make_graph( [node], "ConvTranspose_with_output_shape_test", inputs=[ helper.make_tensor_value_info("x", TensorProto.FLOAT, list(x_shape)), helper.make_tensor_value_info("W", TensorProto.FLOAT, list(w_shape)), ], outputs=[ helper.make_tensor_value_info("y", TensorProto.FLOAT, [1, 1] + list(output_shape)) ], ) model = helper.make_model(graph, producer_name="convtranspose_output_shape_test") verify_with_ort(model, [x_shape, w_shape], use_vm=True, target=target, dev=dev) def verify_convtranspose_with_padding( x_shape, w_shape, padding, kernel_shape, strides, dilations, auto_pad="NOTSET", unset_pad=False, group=1, ): node = helper.make_node( "ConvTranspose", inputs=["x", "W"], outputs=["y"], kernel_shape=kernel_shape, # Default values for other attributes: strides=strides, dilations=dilations, ) if not unset_pad: if padding is None: pad_attr = helper.make_attribute("auto_pad", auto_pad) else: pad_attr = helper.make_attribute("pads", padding) node.attribute.append(pad_attr) if group is not None: group_attr = helper.make_attribute("group", group) node.attribute.append(group_attr) graph = helper.make_graph( [node], "convtranspose_test", inputs=[ helper.make_tensor_value_info("x", TensorProto.FLOAT, list(x_shape)), helper.make_tensor_value_info("W", TensorProto.FLOAT, list(w_shape)), ], outputs=[helper.make_tensor_value_info("y", TensorProto.FLOAT, ["?"] * len(x_shape))], ) model = helper.make_model(graph, producer_name="convtranspose_pad_test") verify_with_ort(model, [x_shape, w_shape], use_vm=True, target=target, dev=dev) def verify_convtranspose(x_shape, w_shape, y_shape, p, group=1): node = onnx.helper.make_node( "ConvTranspose", inputs=["x", "W"], outputs=["y"], strides=[3, 2], kernel_shape=[3, 3], pads=p, ) if group is not None: group_attr = helper.make_attribute("group", group) node.attribute.append(group_attr) graph = helper.make_graph( [node], "verify_convtranspose_test", inputs=[ helper.make_tensor_value_info("x", TensorProto.FLOAT, list(x_shape)), helper.make_tensor_value_info("W", TensorProto.FLOAT, list(w_shape)), ], outputs=[helper.make_tensor_value_info("y", TensorProto.FLOAT, list(y_shape))], ) model = helper.make_model(graph, producer_name="convtranspose_test") verify_with_ort(model, [x_shape, w_shape], y_shape, opset=11, target=target, dev=dev) # Convolution Transpose with padding # (1, 1, 3, 3) input tensor # (1, 2, 3, 3) tensor for convolution weights # (1, 2, 7, 3) output tensor # [1, 2, 1, 2] list for pads verify_convtranspose((1, 1, 3, 3), (1, 2, 3, 3), (1, 2, 7, 3), [1, 2, 1, 2]) # Test undefined groups. verify_convtranspose((1, 1, 3, 3), (1, 2, 3, 3), (1, 2, 7, 3), [1, 2, 1, 2], group=None) if "llvm" in target: # GPU does not support groups != 1 for convtranspose, so only test llvm # Test depthwise-convolution verify_convtranspose((1, 10, 3, 3), (10, 1, 3, 3), (1, 10, 7, 3), [1, 2, 1, 2], group=10) # Test grouped-convolution verify_convtranspose((1, 10, 3, 3), (10, 1, 3, 3), (1, 5, 7, 3), [1, 2, 1, 2], group=5) def repeat(num, dims): return tuple(num for _ in range(dims)) # Once onnxruntime update is complete for dims in [1, 2, 3]: # Convolution with padding verify_convtranspose_with_padding( (1, 1) + repeat(5, dims), (1, 1) + repeat(3, dims), 2 * repeat(1, dims), repeat(3, dims), repeat(1, dims), repeat(1, dims), ) # Convolution without padding verify_convtranspose_with_padding( (1, 1) + repeat(5, dims), (1, 1) + repeat(3, dims), 2 * repeat(0, dims), repeat(3, dims), repeat(1, dims), repeat(1, dims), ) # Convolution with unset padding verify_convtranspose_with_padding( (1, 1) + repeat(5, dims), (1, 1) + repeat(3, dims), 2 * repeat(0, dims), repeat(3, dims), repeat(1, dims), repeat(1, dims), True, ) # Convolution with autopadding verify_convtranspose_with_padding( (1, 1) + repeat(5, dims), (1, 1) + repeat(3, dims), None, repeat(3, dims), repeat(1, dims), repeat(1, dims), auto_pad="SAME_UPPER", ) # Convolution with valid autopadding verify_convtranspose_with_padding( (1, 1) + repeat(5, dims), (1, 1) + repeat(3, dims), None, repeat(3, dims), repeat(1, dims), repeat(1, dims), auto_pad="VALID", ) # Convolution with non uniform stride verify_convtranspose_with_padding( (1, 1) + repeat(5, dims), (1, 1) + repeat(3, dims), None, repeat(3, dims), repeat(2, dims), repeat(1, dims), auto_pad="SAME_UPPER", ) # Convolution with dilation # TODO(mbrookhart): Relay doesn't currently support convtranspose with dilation # verify_convtranspose_with_padding( # (1, 1) + repeat(5, D), # (1, 1) + repeat(3, D), # 2 * repeat(2, D), # repeat(3, D), # repeat(1, D), # repeat(2, D), # ) # Convolution with output_shape for dims in [1, 2, 3]: for num in range(60, 66): verify_convtranspose_with_output_shape( (1, 1) + repeat(32, dims), (1, 1) + repeat(4, dims), repeat(num, dims), repeat(4, dims), repeat(2, dims), repeat(1, dims), ) verify_convtranspose_with_output_shape( (1, 1) + repeat(32, dims), (1, 1) + repeat(4, dims), repeat(num, dims), repeat(4, dims), repeat(2, dims), repeat(1, dims), auto_pad="SAME_LOWER", ) @tvm.testing.parametrize_targets def test_unsqueeze_constant(target, dev): """test_unsqueeze_constant""" class Flatten(Module): def forward(self, input_): return input_.view(input_.size(0), -1) with tempfile.NamedTemporaryFile() as f: file_name = f.name input_size = (1, 16, 32, 32) dummy_input = torch.randn(*input_size) layer = Sequential(Flatten(), Linear(16 * 32 * 32, 64)) torch.onnx.export(layer, dummy_input, file_name, export_params=True) onnx_model = onnx.load(file_name) relay.frontend.from_onnx(onnx_model, {"onnx::Reshape_0": input_size}) @tvm.testing.parametrize_targets def test_pooling(target, dev): """test_pooling""" def verify_pooling(x_shape, kernel_shape, strides, pads, out_shape, mode, auto_pad="NOTSET"): _ = np.random.uniform(size=x_shape).astype("float32") if mode == "max": node_type = "MaxPool" elif mode == "average": node_type = "AveragePool" else: raise ValueError(f"Pool method {mode} is not supported.") pool_node = helper.make_node( node_type, inputs=["x"], outputs=["y"], kernel_shape=kernel_shape, strides=strides ) if pads is None: pad_attr = helper.make_attribute("auto_pad", auto_pad) else: pad_attr = helper.make_attribute("pads", pads) pool_node.attribute.append(pad_attr) if mode == "max": storage_attr = helper.make_attribute("storage_order", 0) pool_node.attribute.append(storage_attr) graph = helper.make_graph( [pool_node], "pooling_test", inputs=[helper.make_tensor_value_info("x", TensorProto.FLOAT, list(x_shape))], outputs=[helper.make_tensor_value_info("y", TensorProto.FLOAT, list(out_shape))], ) model = helper.make_model(graph, producer_name="pooling_test") verify_with_ort( model, [x_shape], [out_shape], use_vm=False, target=target, dev=dev, ) for mode in ["max", "average"]: # Pool1D verify_pooling( x_shape=[1, 1, 32], kernel_shape=[3], strides=[1], pads=[1, 1], out_shape=[1, 1, 32], mode=mode, ) # Pool2D verify_pooling( x_shape=[1, 1, 32, 32], kernel_shape=[3, 3], strides=[1, 1], pads=[1, 1, 1, 1], out_shape=[1, 1, 32, 32], mode=mode, ) # Pool1D with stride verify_pooling( x_shape=[1, 1, 32], kernel_shape=[3], strides=[2], pads=[1, 1], out_shape=[1, 1, 16], mode=mode, ) # Pool2D with stride verify_pooling( x_shape=[1, 1, 32, 32], kernel_shape=[3, 3], strides=[2, 2], pads=[1, 1, 1, 1], out_shape=[1, 1, 16, 16], mode=mode, ) # Pool1D with stride and autopadding verify_pooling( x_shape=[1, 1, 32], kernel_shape=[3], strides=[2], pads=None, out_shape=[1, 1, 16], mode=mode, auto_pad="SAME_UPPER", ) # Pool2D with stride and autopadding verify_pooling( x_shape=[1, 1, 32, 32], kernel_shape=[3, 3], strides=[2, 2], pads=None, out_shape=[1, 1, 16, 16], mode=mode, auto_pad="SAME_UPPER", ) # Pool3D with stride verify_pooling( x_shape=[1, 1, 32, 32, 32], kernel_shape=[3, 3, 3], strides=[2, 2, 2], pads=[1, 1, 1, 1, 1, 1], out_shape=[1, 1, 16, 16, 16], mode=mode, ) # Pool3D with stride and autopadding verify_pooling( x_shape=[1, 1, 32, 32, 32], kernel_shape=[3, 3, 3], strides=[2, 2, 2], pads=None, out_shape=[1, 1, 16, 16, 16], mode=mode, auto_pad="SAME_UPPER", ) @tvm.testing.parametrize_targets def test_global_pooling(target, dev): """test_global_pooling""" def verify_global_pooling(x_shape, mode): out_shape = x_shape[:2] + [1] * (len(x_shape) - 2) if mode == "max": node_type = "GlobalMaxPool" elif mode == "average": node_type = "GlobalAveragePool" else: raise ValueError(f"Pool method {mode} is not supported.") pool_node = helper.make_node(node_type, inputs=["x"], outputs=["y"]) graph = helper.make_graph( [pool_node], "global_pooling_test", inputs=[helper.make_tensor_value_info("x", TensorProto.FLOAT, list(x_shape))], outputs=[helper.make_tensor_value_info("y", TensorProto.FLOAT, list(out_shape))], ) model = helper.make_model(graph, producer_name="global_pooling_test") verify_with_ort( model, [x_shape], [out_shape], use_vm=False, target=target, dev=dev, ) # Test each pooling mode across all N-D inputs. for mode in ["average", "max"]: # 1D Pooling (NCW) verify_global_pooling([1, 8, 8], mode) verify_global_pooling([4, 1, 4], mode) # 2D Pooling (NCHW) verify_global_pooling([1, 8, 8, 8], mode) verify_global_pooling([4, 1, 6, 4], mode) # 3D Pooling (NCDHW) verify_global_pooling([1, 8, 6, 8, 8], mode) verify_global_pooling([4, 1, 2, 6, 4], mode) @pytest.mark.skip("flaky") @tvm.testing.parametrize_targets def test_qlinear_average_pool(target, dev): """test_qlinear_average_pool""" def verify_qlinear_average_pool( x_shape, kernel_shape, strides, pads, out_shape, auto_pad="NOTSET" ): input_nodes = [ helper.make_tensor_value_info("X", TensorProto.FLOAT, list(x_shape)), ] output_nodes = [ helper.make_tensor_value_info("Y", TensorProto.FLOAT, list(out_shape)), ] input_names = ["X"] node = helper.make_node( "AveragePool", inputs=input_names, outputs=["Y"], kernel_shape=kernel_shape, strides=strides, ) if pads is None: pad_attr = helper.make_attribute("auto_pad", auto_pad) else: pad_attr = helper.make_attribute("pads", pads) node.attribute.append(pad_attr) graph = helper.make_graph( [node], "qlinear_average_pool_test", inputs=input_nodes, outputs=output_nodes, ) model = helper.make_model(graph, producer_name="qlinear_average_pool_Test") quantize_and_verify_with_ort(model, input_names, [x_shape], target, dev) # Pool1D verify_qlinear_average_pool( x_shape=[1, 1, 32], kernel_shape=[3], strides=[1], pads=[1, 1], out_shape=[1, 1, 32], ) # Pool2D verify_qlinear_average_pool( x_shape=[1, 1, 32, 32], kernel_shape=[3, 3], strides=[1, 1], pads=[1, 1, 1, 1], out_shape=[1, 1, 32, 32], ) # Pool1D with stride verify_qlinear_average_pool( x_shape=[1, 1, 32], kernel_shape=[3], strides=[2], pads=[1, 1], out_shape=[1, 1, 16], ) # Pool2D with stride verify_qlinear_average_pool( x_shape=[1, 1, 32, 32], kernel_shape=[3, 3], strides=[2, 2], pads=[1, 1, 1, 1], out_shape=[1, 1, 16, 16], ) # Pool1D with stride and autopadding verify_qlinear_average_pool( x_shape=[1, 1, 32], kernel_shape=[3], strides=[2], pads=None, out_shape=[1, 1, 16], auto_pad="SAME_UPPER", ) # Pool2D with stride and autopadding verify_qlinear_average_pool( x_shape=[1, 1, 32, 32], kernel_shape=[3, 3], strides=[2, 2], pads=None, out_shape=[1, 1, 16, 16], auto_pad="SAME_UPPER", ) # Pool3D with stride verify_qlinear_average_pool( x_shape=[1, 1, 32, 32, 32], kernel_shape=[3, 3, 3], strides=[2, 2, 2], pads=[1, 1, 1, 1, 1, 1], out_shape=[1, 1, 16, 16, 16], ) # Pool3D with stride and autopadding verify_qlinear_average_pool( x_shape=[1, 1, 32, 32, 32], kernel_shape=[3, 3, 3], strides=[2, 2, 2], pads=None, out_shape=[1, 1, 16, 16, 16], auto_pad="SAME_UPPER", ) @tvm.testing.parametrize_targets def test_qlinear_global_average_pool(target, dev): """test_qlinear_global_average_pool""" def verify_qlinear_global_average_pool(x_shape): out_shape = x_shape[:2] + [1] * (len(x_shape) - 2) node_type = "GlobalAveragePool" input_names = ["X"] pool_node = helper.make_node(node_type, inputs=input_names, outputs=["Y"]) graph = helper.make_graph( [pool_node], "qlinear_global_average_pool_test", inputs=[helper.make_tensor_value_info("X", TensorProto.FLOAT, list(x_shape))], outputs=[helper.make_tensor_value_info("Y", TensorProto.FLOAT, list(out_shape))], ) model = helper.make_model(graph, producer_name="qlinear_global_average_pool_test") quantize_and_verify_with_ort(model, input_names, [x_shape], target, dev) # 1D Pooling (NCW) verify_qlinear_global_average_pool([1, 8, 8]) verify_qlinear_global_average_pool([4, 1, 4]) # 2D Pooling (NCHW) verify_qlinear_global_average_pool([1, 8, 8, 8]) verify_qlinear_global_average_pool([4, 1, 6, 4]) # 3D Pooling (NCDHW) verify_qlinear_global_average_pool([1, 8, 6, 8, 8]) verify_qlinear_global_average_pool([4, 1, 2, 6, 4]) @tvm.testing.parametrize_targets def test_mod(target, dev): """test_mod""" def verify_mod(x_shape, y_shape, fmod, out_shape, dtype="float32"): x_np = np.random.uniform(-100.0, 100.0, x_shape).astype(dtype) y_np = np.random.uniform(-100.0, 100.0, y_shape).astype(dtype) y_np = np.where(y_np == 0, 1, y_np) # remove 0's to avoid division by zero error mod_node = helper.make_node("Mod", inputs=["x", "y"], outputs=["z"], fmod=fmod) onnx_dtype = TensorProto.FLOAT if dtype == "float32" else TensorProto.INT32 graph = helper.make_graph( [mod_node], "mod_test", inputs=[ helper.make_tensor_value_info("x", onnx_dtype, list(x_shape)), helper.make_tensor_value_info("y", onnx_dtype, list(y_shape)), ], outputs=[helper.make_tensor_value_info("z", onnx_dtype, list(out_shape))], ) model = helper.make_model(graph, producer_name="mod_test") verify_with_ort_with_inputs(model, [x_np, y_np], [out_shape], target=target, dev=dev) # Mod verify_mod( x_shape=[1, 32, 32], y_shape=[1, 1, 32], fmod=0, out_shape=(1, 32, 32), dtype="int32" ) verify_mod( x_shape=[1, 32, 32, 32], y_shape=[1, 32, 32, 32], fmod=0, out_shape=(1, 32, 32, 32), dtype="int32", ) # fmod verify_mod( x_shape=[1, 32, 32], y_shape=[1, 32, 32], fmod=1, out_shape=(1, 32, 32), dtype="int32" ) verify_mod(x_shape=[1, 1, 32, 32], y_shape=[1, 32, 32, 32], fmod=1, out_shape=(1, 32, 32, 32)) verify_mod(x_shape=[1, 32, 32, 32], y_shape=[1, 1, 32, 32], fmod=1, out_shape=(1, 32, 32, 32)) verify_mod( x_shape=[1, 32, 32, 32], y_shape=[1, 32, 32, 32], fmod=1, out_shape=(1, 32, 32, 32), dtype="int32", ) verify_mod(x_shape=[1, 32, 32, 32], y_shape=[1, 32, 32, 32], fmod=1, out_shape=(1, 32, 32, 32)) @tvm.testing.parametrize_targets def test_xor(target, dev): """test_xor""" def verify_xor(x_shape, y_shape): x_np = np.random.choice(a=[False, True], size=x_shape).astype("bool") y_np = np.random.choice(a=[False, True], size=y_shape).astype("bool") np_out = np.logical_xor(x_np, y_np) out_shape = np_out.shape xor_node = helper.make_node("Xor", inputs=["x", "y"], outputs=["z"]) onnx_dtype = TensorProto.BOOL graph = helper.make_graph( [xor_node], "xor_test", inputs=[ helper.make_tensor_value_info("x", onnx_dtype, list(x_shape)), helper.make_tensor_value_info("y", onnx_dtype, list(y_shape)), ], outputs=[helper.make_tensor_value_info("z", onnx_dtype, list(out_shape))], ) model = helper.make_model(graph, producer_name="xor_test") verify_with_ort_with_inputs(model, [x_np, y_np], [out_shape], target=target, dev=dev) # XOR verify_xor(x_shape=[1, 32, 32], y_shape=[1, 32, 32]) # Xor broadcast verify_xor(x_shape=[1, 32, 32], y_shape=[1, 1, 32]) @tvm.testing.parametrize_targets def test_max_roi_pool(target, dev): """test_max_roi_pool""" def verify_max_roi_pool(x_shape, rois_shape, pooled_shape, spatial_scale, out_shape): if spatial_scale is None: pool_node = helper.make_node( "MaxRoiPool", inputs=["x", "rois"], outputs=["y"], pooled_shape=pooled_shape ) else: pool_node = helper.make_node( "MaxRoiPool", inputs=["x", "rois"], outputs=["y"], pooled_shape=pooled_shape, spatial_scale=spatial_scale, ) graph = helper.make_graph( [pool_node], "pool_test", inputs=[ helper.make_tensor_value_info("x", TensorProto.FLOAT, list(x_shape)), helper.make_tensor_value_info("rois", TensorProto.FLOAT, list(rois_shape)), ], outputs=[helper.make_tensor_value_info("y", TensorProto.FLOAT, list(out_shape))], ) model = helper.make_model(graph, producer_name="pool_test") verify_with_ort(model, [x_shape, rois_shape], [out_shape], target=target, dev=dev) verify_max_roi_pool( x_shape=[1, 3, 6, 6], rois_shape=[3, 5], pooled_shape=[1, 1], spatial_scale=None, out_shape=[3, 3, 1, 1], ) verify_max_roi_pool( x_shape=[1, 3, 10, 10], rois_shape=[4, 5], pooled_shape=[2, 2], spatial_scale=2.0, out_shape=[4, 3, 2, 2], ) @tvm.testing.parametrize_targets def test_lppool(target, dev): """test_lppool""" def verify_lppool(x_shape, kernel_shape, p, strides, pads, out_shape, auto_pad="NOTSET"): kwargs = {} if p is not None: kwargs["p"] = p if pads is None: pool_node = helper.make_node( "LpPool", inputs=["x"], outputs=["y"], kernel_shape=kernel_shape, auto_pad=auto_pad, strides=strides, **kwargs, ) else: pool_node = helper.make_node( "LpPool", inputs=["x"], outputs=["y"], kernel_shape=kernel_shape, pads=pads, strides=strides, **kwargs, ) graph = helper.make_graph( [pool_node], "lppool_test", inputs=[helper.make_tensor_value_info("x", TensorProto.FLOAT, list(x_shape))], outputs=[helper.make_tensor_value_info("y", TensorProto.FLOAT, list(out_shape))], ) model = helper.make_model(graph, producer_name="lppool_test") verify_with_ort( model, [x_shape], [out_shape], use_vm=True, target=target, dev=dev, ) # Pool1D verify_lppool( x_shape=[1, 1, 32], kernel_shape=[3], p=2, strides=[1], pads=[1, 1], out_shape=[1, 1, 32] ) # Pool2D verify_lppool( x_shape=[1, 1, 32, 32], kernel_shape=[3, 3], p=2, strides=[1, 1], pads=[1, 1, 1, 1], out_shape=[1, 1, 32, 32], ) # Pool1D with stride verify_lppool( x_shape=[1, 1, 32], kernel_shape=[3], p=2, strides=[2], pads=[1, 1], out_shape=[1, 1, 16] ) # Pool2D with stride verify_lppool( x_shape=[1, 1, 32, 32], kernel_shape=[3, 3], p=2, strides=[2, 2], pads=[1, 1, 1, 1], out_shape=[1, 1, 16, 16], ) # Pool1D with stride and autopadding verify_lppool( x_shape=[1, 1, 32], kernel_shape=[3], p=2, strides=[2], pads=None, out_shape=[1, 1, 16], auto_pad="SAME_UPPER", ) # Pool2D with stride and autopadding verify_lppool( x_shape=[1, 1, 32, 32], kernel_shape=[3, 3], p=2, strides=[2, 2], pads=None, out_shape=[1, 1, 16, 16], auto_pad="SAME_UPPER", ) # Pool3D with stride verify_lppool( x_shape=[1, 1, 32, 32, 32], kernel_shape=[3, 3, 3], p=2, strides=[2, 2, 2], pads=[1, 1, 1, 1, 1, 1], out_shape=[1, 1, 16, 16, 16], ) # Pool3D with stride and autopadding verify_lppool( x_shape=[1, 1, 32, 32, 32], kernel_shape=[3, 3, 3], p=2, strides=[2, 2, 2], pads=None, out_shape=[1, 1, 16, 16, 16], auto_pad="SAME_UPPER", ) # Pool2D with empty p verify_lppool( x_shape=[1, 1, 32, 32], kernel_shape=[3, 3], p=None, strides=[1, 1], pads=[1, 1, 1, 1], out_shape=[1, 1, 32, 32], ) def verify_global_lppool(x_shape, p, out_shape, target, dev): """verify_global_lppool""" pool_node = helper.make_node( "GlobalLpPool", inputs=["x"], outputs=["y"], p=p, ) graph = helper.make_graph( [pool_node], "global_lppool_test", inputs=[helper.make_tensor_value_info("x", TensorProto.FLOAT, list(x_shape))], outputs=[helper.make_tensor_value_info("y", TensorProto.FLOAT, list(out_shape))], ) model = helper.make_model(graph, producer_name="global_lppool_test") verify_with_ort(model, [x_shape], out_shape, use_vm=True, target=target, dev=dev) @tvm.testing.parametrize_targets def test_global_lppool(target, dev): """test_global_lppool""" # LpPool1D verify_global_lppool(x_shape=[1, 15, 16], p=2, out_shape=[1, 15, 1], target=target, dev=dev) # LpPool2D verify_global_lppool( x_shape=[1, 15, 32, 32], p=2, out_shape=[1, 15, 1, 1], target=target, dev=dev ) # LpPool2D verify_global_lppool( x_shape=[1, 15, 32, 32], p=3, out_shape=[1, 15, 1, 1], target=target, dev=dev ) # LpPool3D verify_global_lppool( x_shape=[1, 15, 3, 32, 32], p=2, out_shape=[1, 15, 1, 1, 1], target=target, dev=dev ) def verify_rnn( seq_length, batch_size, input_size, hidden_size, rnn_type="LSTM", use_bias=False, activations=None, alphas=None, betas=None, use_initial_state=False, use_peep=False, linear_before_reset=False, directions=1, layout=0, rtol=1e-5, atol=1e-5, target=None, dev=None, ): """verify_rnn""" if rnn_type == "RNN": multiplier = 1 elif rnn_type == "LSTM": multiplier = 4 elif rnn_type == "GRU": multiplier = 3 else: raise NotImplementedError(f"{rnn_type} RNNs not yet supported.") if directions not in [1, 2]: raise ValueError(f"Direction should be either 1 or 2 (for bidirectional LSTMs)") def get_inputs(): input_names = [] input_values = [] input_tensors = [] def register(np_arr, name, shape=None): input_values.append(np_arr) input_names.append(name) # Map of numpy dtypes to the protobuf equivalent dtype_map = { "float32": TensorProto.FLOAT, "int32": TensorProto.INT32, "int8": TensorProto.INT8, } if np_arr.dtype.name not in dtype_map: raise ValueError(f"Unknown dtype we don't know how to handle {np.dtype.name}") if shape is None: shape = list(np_arr.shape) proto_type = dtype_map[np_arr.dtype.name] input_tensors.append(helper.make_tensor_value_info(name, proto_type, shape)) if layout == 1: x_np = np.random.uniform(size=(batch_size, seq_length, input_size)).astype("float32") else: x_np = np.random.uniform(size=(seq_length, batch_size, input_size)).astype("float32") w_np = np.random.uniform(size=(directions, multiplier * hidden_size, input_size)).astype( "float32" ) r_np = np.random.uniform(size=(directions, multiplier * hidden_size, hidden_size)).astype( "float32" ) register(x_np, "X") register(w_np, "W") register(r_np, "R") if use_bias: b_np = np.random.uniform(size=(directions, multiplier * 2 * hidden_size)).astype( "float32" ) register(b_np, "B") if use_initial_state: assert use_bias is True, "Initial states must have bias specified." sequence_np = np.repeat(seq_length, batch_size).astype("int32") register(sequence_np, "sequence_lens") if layout == 1: initial_h_np = np.random.uniform(size=(batch_size, directions, hidden_size)).astype( "float32" ) else: initial_h_np = np.random.uniform(size=(directions, batch_size, hidden_size)).astype( "float32" ) register(initial_h_np, "initial_h") if rnn_type == "LSTM": if layout == 1: initial_c_np = np.random.uniform( size=(batch_size, directions, hidden_size) ).astype("float32") else: initial_c_np = np.random.uniform( size=(directions, batch_size, hidden_size) ).astype("float32") register(initial_c_np, "initial_c") if use_peep and rnn_type == "LSTM": assert use_initial_state is True, "Peepholes require initial state to be specified." p_np = np.random.uniform(size=(directions, 3 * hidden_size)).astype("float32") register(p_np, "P") return input_names, input_tensors, input_values input_names, input_tensors, input_values = get_inputs() def get_outputs(): output_names = [] graph_outputs = [] output_shapes = [] def register(name, shape, proto_type): output_names.append(name) graph_outputs.append(helper.make_tensor_value_info(name, proto_type, list(shape))) output_shapes.append(list(shape)) if layout == 1: register("Y", [directions, seq_length, batch_size, hidden_size], TensorProto.FLOAT) register("Y_h", [batch_size, directions, hidden_size], TensorProto.FLOAT) else: register("Y", [seq_length, directions, batch_size, hidden_size], TensorProto.FLOAT) register("Y_h", [directions, batch_size, hidden_size], TensorProto.FLOAT) if rnn_type == "LSTM": if layout == 1: register("Y_c", [batch_size, directions, hidden_size], TensorProto.FLOAT) else: register("Y_c", [directions, batch_size, hidden_size], TensorProto.FLOAT) return output_names, graph_outputs, output_shapes output_names, graph_outputs, output_shapes = get_outputs() rnn_node = helper.make_node( rnn_type, inputs=input_names, outputs=output_names, hidden_size=hidden_size ) if activations is not None: activations_attr = helper.make_attribute("activations", activations) rnn_node.attribute.append(activations_attr) if directions == 2: direction_attr = helper.make_attribute("direction", "bidirectional") rnn_node.attribute.append(direction_attr) if alphas is not None: alphas_attr = helper.make_attribute("activation_alpha", alphas) rnn_node.attribute.append(alphas_attr) if betas is not None: betas_attr = helper.make_attribute("activation_beta", betas) rnn_node.attribute.append(betas_attr) if linear_before_reset and rnn_type == "GRU": lbr_attr = helper.make_attribute("linear_before_reset", 1) rnn_node.attribute.append(lbr_attr) if layout == 1: layout_attr = helper.make_attribute("layout", 1) rnn_node.attribute.append(layout_attr) graph = helper.make_graph([rnn_node], "rnn_test", inputs=input_tensors, outputs=graph_outputs) model = helper.make_model(graph, producer_name="rnn_test") verify_with_ort_with_inputs( model, input_values, output_shapes, atol=atol, rtol=rtol, target=target, dev=dev ) def verify_rnn_helper(target, dev, rnn_type): num_activations = 1 if rnn_type == "GRU": num_activations = 2 elif rnn_type == "LSTM": num_activations = 3 for directions in [1, 2]: # No bias. verify_rnn( seq_length=2, batch_size=1, input_size=16, hidden_size=32, use_bias=False, rnn_type=rnn_type, directions=directions, target=target, dev=dev, ) # large batch. verify_rnn( seq_length=4, batch_size=8, input_size=16, hidden_size=32, use_bias=True, rnn_type=rnn_type, directions=directions, target=target, dev=dev, ) # Non power of two. verify_rnn( seq_length=3, batch_size=3, input_size=16, hidden_size=40, use_bias=True, rnn_type=rnn_type, directions=directions, target=target, dev=dev, ) # Long sequence. verify_rnn( seq_length=8, batch_size=1, input_size=16, hidden_size=32, use_bias=True, rnn_type=rnn_type, directions=directions, target=target, dev=dev, ) # Large hidden. verify_rnn( seq_length=2, batch_size=1, input_size=16, hidden_size=128, use_bias=True, rnn_type=rnn_type, directions=directions, target=target, dev=dev, ) # Large input. verify_rnn( seq_length=2, batch_size=1, input_size=64, hidden_size=32, use_bias=True, rnn_type=rnn_type, directions=directions, target=target, dev=dev, ) # Different activation testing. # Default value hardsigmoid. # TODO: onnxruntime <= v1.12.0 has wrong default value of all activation functions if rnn_type != "RNN": activations = ["HardSigmoid", "Tanh", "Tanh"][0:num_activations] * directions verify_rnn( seq_length=2, batch_size=1, input_size=16, hidden_size=32, use_bias=False, activations=activations, rnn_type=rnn_type, directions=directions, target=target, dev=dev, ) # Multiple parametrized activations. activations = ["HardSigmoid", "LeakyRelu", "Tanh"][0:num_activations] * directions alphas = [2.0, 0.5, 0.0][0:num_activations] * directions betas = [0.3, 0.0, 0.0][0:num_activations] * directions verify_rnn( seq_length=2, batch_size=1, input_size=16, hidden_size=32, use_bias=False, activations=activations, alphas=alphas, betas=betas, rnn_type=rnn_type, directions=directions, target=target, dev=dev, ) # All parametrized with new Affine activation. activations = ["Affine", "LeakyRelu", "HardSigmoid"][0:num_activations] * directions alphas = [0.8, 2.0, 0.5][0:num_activations] * directions betas = [0.0, 0.3, 0.0][0:num_activations] * directions verify_rnn( seq_length=2, batch_size=1, input_size=16, hidden_size=32, use_bias=False, activations=activations, alphas=alphas, betas=betas, rnn_type=rnn_type, directions=directions, target=target, dev=dev, ) # Testing with initial state verify_rnn( seq_length=2, batch_size=1, input_size=16, hidden_size=32, use_bias=True, use_initial_state=True, rnn_type=rnn_type, directions=directions, target=target, dev=dev, ) # Testing layout # TODO: onnxruntime <= 1.12.0 doesn't support layout == 1 # verify_rnn( # seq_length=2, # batch_size=1, # input_size=16, # hidden_size=32, # use_bias=True, # rnn_type="RNN", # directions=directions, # layout=1, # target=target, # dev=dev, # ) # Testing with peepholes if rnn_type == "LSTM": verify_rnn( seq_length=2, batch_size=1, input_size=16, hidden_size=32, use_bias=True, use_initial_state=True, use_peep=True, rnn_type="LSTM", directions=directions, target=target, dev=dev, ) @tvm.testing.parametrize_targets def test_rnn(target, dev): verify_rnn_helper(target, dev, "RNN") @tvm.testing.parametrize_targets def test_lstm(target, dev): verify_rnn_helper(target, dev, "LSTM") @tvm.testing.parametrize_targets def test_gru(target, dev): verify_rnn_helper(target, dev, "GRU") @tvm.testing.parametrize_targets def test_resize(target, dev): """test_resize""" def verify(ishape, oshape, scales, mode, coord_trans="asymmetric", alpha=0.5, exclude=False): nodes = [ make_constant_node("roi", onnx.TensorProto.FLOAT, (0,), []), make_constant_node("scales", onnx.TensorProto.FLOAT, (len(scales),), scales), ] input_names = ["X", "roi", "scales"] if oshape != []: nodes.append( make_constant_node("sizes", onnx.TensorProto.INT64, (len(oshape),), oshape) ) input_names.append("sizes") nodes.append( helper.make_node( "Resize", inputs=input_names, outputs=["Y"], mode=mode, coordinate_transformation_mode=coord_trans, cubic_coeff_a=alpha, exclude_outside=exclude, ) ) if oshape == []: oshape = [round(dim * scale) for (dim, scale) in zip(ishape, scales)] graph = helper.make_graph( nodes, "resize_test", inputs=[helper.make_tensor_value_info("X", TensorProto.FLOAT, ishape)], outputs=[helper.make_tensor_value_info("Y", TensorProto.FLOAT, oshape)], ) model = helper.make_model(graph, producer_name="resize_test") verify_with_ort( model, [ishape], [oshape], use_vm=True, opset=11, freeze_params=True, target=target, dev=dev, ) for ndim in [1, 2, 3]: method = "nearest" for coord_trans in ["asymmetric", "align_corners", "half_pixel"]: # upsampling verify([1, 16] + [32] * ndim, [1, 16] + [64] * ndim, [], method, coord_trans) # downsampling verify([1, 16] + [32] * ndim, [1, 16] + [16] * ndim, [], method, coord_trans) # scales are specified instead of sizes verify([1, 16] + [32] * ndim, [], [1, 1] + [0.5] * ndim, method, coord_trans) verify([1, 16] + [32] * ndim, [], [1, 1] + [2] * ndim, method, coord_trans) method = "linear" # upsampling verify([1, 16] + [32] * ndim, [1, 16] + [64] * ndim, [], method) # downsampling verify([1, 16] + [32] * ndim, [1, 16] + [16] * ndim, [], method) # scales are specified instead of sizes verify([1, 16] + [32] * ndim, [], [1, 1] + [0.5] * ndim, method) verify([1, 16] + [32] * ndim, [], [1, 1] + [2] * ndim, method) if ndim == 2: # ONNX Runtime only supports cubic interpolation for 2D images method = "cubic" for alpha in [0.5, 0.75]: for exclude in [True, False]: # upsampling verify( [1, 16] + [32] * ndim, [1, 16] + [64] * ndim, [], method, alpha=alpha, exclude=exclude, ) # downsampling verify( [1, 16] + [32] * ndim, [1, 16] + [16] * ndim, [], method, alpha=alpha, exclude=exclude, ) # scales are specified instead of sizes verify( [1, 16] + [32] * ndim, [], [1, 1] + [0.5] * ndim, method, alpha=alpha, exclude=exclude, ) verify( [1, 16] + [32] * ndim, [], [1, 1] + [2] * ndim, method, alpha=alpha, exclude=exclude, ) def verify_opset_10(ishape, scales, mode): nodes = [ make_constant_node("scales", onnx.TensorProto.FLOAT, (len(scales),), scales), ] input_names = ["X", "scales"] nodes.append( helper.make_node( "Resize", inputs=input_names, outputs=["Y"], mode=mode, ) ) oshape = [round(dim * scale) for (dim, scale) in zip(ishape, scales)] graph = helper.make_graph( nodes, "resize_test", inputs=[helper.make_tensor_value_info("X", TensorProto.FLOAT, ishape)], outputs=[helper.make_tensor_value_info("Y", TensorProto.FLOAT, oshape)], ) model = helper.make_model(graph, producer_name="resize_test") verify_with_ort( model, [ishape], [oshape], use_vm=True, freeze_params=True, opset=10, target=target, dev=dev, ) verify_opset_10([1, 16, 32, 32], [1, 1, 2, 2], "nearest") verify_opset_10([1, 16, 32, 32], [1, 1, 0.5, 0.5], "linear") @tvm.testing.parametrize_targets def test_nonzero(target, dev): """test_nonzero""" def verify_nonzero(indata, outdata, dtype): node = helper.make_node( "NonZero", inputs=["X"], outputs=["Y"], ) graph = helper.make_graph( [node], "nonzero_test", inputs=[helper.make_tensor_value_info("X", TensorProto.INT64, list(indata.shape))], outputs=[helper.make_tensor_value_info("Y", TensorProto.INT64, list(outdata.shape))], ) model = helper.make_model(graph, producer_name="nonzero_test") verify_with_ort_with_inputs( model, [indata], dtype="int64", use_vm=True, opset=9, target=target, dev=dev ) input_data = np.array([[1, 0], [1, 1]], dtype=np.int64) result = np.array((np.nonzero(input_data))) # expected output [[0, 1, 1], [0, 0, 1]] verify_nonzero(input_data, result, dtype=np.int64) input_data = np.array([[3, 0, 0], [0, 4, 0], [5, 6, 0]], dtype=np.int64) result = np.array((np.nonzero(input_data))) # expected output [[0, 1, 2, 2], [0, 1, 0, 1]] verify_nonzero(input_data, result, dtype=np.int64) @tvm.testing.parametrize_targets def test_topk(target, dev): """test_topk""" def verify_topk(input_dims, k, axis=-1): output_dims = list(input_dims) output_dims[axis] = k node = helper.make_node("TopK", inputs=["X", "K"], outputs=["Values", "Indices"], axis=axis) graph = helper.make_graph( [node], "topk_test", inputs=[ helper.make_tensor_value_info("X", TensorProto.FLOAT, list(input_dims)), helper.make_tensor_value_info( "K", TensorProto.INT64, [ 1, ], ), ], outputs=[ helper.make_tensor_value_info("Values", TensorProto.FLOAT, output_dims), helper.make_tensor_value_info("Indices", TensorProto.INT64, output_dims), ], ) model = helper.make_model(graph, producer_name="topk_test") indata = np.random.uniform(-10, 10, input_dims).astype(np.float32) verify_with_ort_with_inputs( model, [indata, np.array([k])], use_vm=True, target=target, dev=dev ) for n in [12, 32]: for shape in [[n], [n, n], [n, n, n]]: for k in [1, 5, 10]: verify_topk(shape, k) verify_topk([n, n, n], 5, 0) verify_topk([n, n, n], 5, 1) verify_topk([n, n, n], 5, 2) @tvm.testing.parametrize_targets def test_roi_align(target, dev): """test_roi_align""" def verify_roi_align( input_dims, num_roi, output_height, output_width, sampling_ratio=0, spatial_scale=1.0, mode="avg", ): output_dims = [num_roi, input_dims[1], output_height, output_width] node = helper.make_node( "RoiAlign", coordinate_transformation_mode="output_half_pixel", inputs=["X", "rois", "batch_indices"], outputs=["Y"], mode=mode, output_height=output_height, output_width=output_width, sampling_ratio=sampling_ratio, spatial_scale=spatial_scale, ) graph = helper.make_graph( [node], "roialign_test", inputs=[ helper.make_tensor_value_info("X", TensorProto.FLOAT, list(input_dims)), helper.make_tensor_value_info("rois", TensorProto.FLOAT, [num_roi, 4]), helper.make_tensor_value_info( "batch_indices", TensorProto.INT64, [ num_roi, ], ), ], outputs=[helper.make_tensor_value_info("Y", TensorProto.FLOAT, output_dims)], ) model = helper.make_model(graph, producer_name="roialign_test") np_data = np.random.uniform(size=input_dims).astype("float32") np_rois = np.random.uniform(size=[num_roi, 4]).astype("float32") * input_dims[2] np_batch_indices = np.random.randint(low=0, high=input_dims[0], size=num_roi) verify_with_ort_with_inputs( model, [np_data, np_rois, np_batch_indices], out_shape=[output_dims], target=target, dev=dev, ) verify_roi_align((1, 4, 16, 16), 32, 7, 7, sampling_ratio=0, spatial_scale=1.0) verify_roi_align((4, 4, 16, 32), 32, 7, 7, sampling_ratio=0, spatial_scale=1.0) verify_roi_align((1, 8, 16, 16), 32, 7, 7, sampling_ratio=0, spatial_scale=1.0) verify_roi_align((1, 4, 8, 8), 32, 7, 7, sampling_ratio=0, spatial_scale=1.0) verify_roi_align((1, 4, 16, 16), 16, 5, 7, sampling_ratio=0, spatial_scale=1.0) verify_roi_align((1, 4, 16, 12), 8, 7, 3, sampling_ratio=0, spatial_scale=1.0) verify_roi_align((1, 4, 16, 16), 32, 7, 7, sampling_ratio=0, spatial_scale=0.5) verify_roi_align((3, 4, 12, 16), 32, 7, 7, sampling_ratio=0, spatial_scale=1.5) verify_roi_align((5, 4, 16, 14), 32, 7, 7, sampling_ratio=1, spatial_scale=1.0) verify_roi_align((1, 4, 16, 16), 32, 7, 7, sampling_ratio=2, spatial_scale=1.0) # ONNX implementation of roi_align with max mode is incorrect, so we don't compare outputs here. @tvm.testing.parametrize_targets def test_non_max_suppression(target, dev): """test_non_max_suppression""" def verify_nms( boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold, output_dims ): input_names = ["boxes", "scores", "max_output_boxes_per_class", "iou_threshold"] input_nodes = [ helper.make_tensor_value_info("boxes", TensorProto.FLOAT, boxes.shape), helper.make_tensor_value_info("scores", TensorProto.FLOAT, scores.shape), helper.make_tensor_value_info( "max_output_boxes_per_class", TensorProto.INT64, max_output_boxes_per_class.shape ), helper.make_tensor_value_info("iou_threshold", TensorProto.FLOAT, iou_threshold.shape), ] inputs = [boxes, scores, max_output_boxes_per_class, iou_threshold] if score_threshold is not None: input_names.append("score_threshold") input_nodes.append( helper.make_tensor_value_info( "score_threshold", TensorProto.FLOAT, score_threshold.shape ) ) inputs.append(score_threshold) node = helper.make_node( "NonMaxSuppression", inputs=input_names, outputs=["Y"], center_point_box=0, ) graph = helper.make_graph( [node], "nms_test", inputs=input_nodes, outputs=[helper.make_tensor_value_info("Y", TensorProto.INT64, output_dims)], ) model = helper.make_model(graph, producer_name="nms_test") verify_with_ort_with_inputs(model, inputs, use_vm=True, target=target, dev=dev) boxes = np.array( [ [ [0.0, 0.0, 0.3, 0.3], [0.0, 0.0, 0.4, 0.4], [0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 0.9, 0.9], [0.5, 0.5, 1.0, 1.0], ], [ [0.0, 0.0, 0.3, 0.3], [0.0, 0.0, 0.4, 0.4], [0.5, 0.5, 0.95, 0.95], [0.5, 0.5, 0.96, 0.96], [0.5, 0.5, 1.0, 1.0], ], ] ).astype("float32") scores = np.array( [ [[0.1, 0.2, 0.6, 0.3, 0.9], [0.1, 0.2, 0.6, 0.3, 0.9]], [[0.1, 0.2, 0.6, 0.3, 0.9], [0.1, 0.2, 0.6, 0.3, 0.9]], ] ).astype("float32") max_output_boxes_per_class = np.array(2).astype("int64") iou_threshold = np.array(0.8).astype("float32") output_dims = [8, 3] verify_nms(boxes, scores, max_output_boxes_per_class, iou_threshold, None, output_dims) boxes = np.array( [ [ [0.0, 0.0, 1.0, 1.0], [0.0, 0.1, 1.0, 1.1], [0.0, -0.1, 1.0, 0.9], [0.0, 10.0, 1.0, 11.0], [0.0, 10.1, 1.0, 11.1], [0.0, 100.0, 1.0, 101.0], ] ] ).astype(np.float32) scores = np.array([[[0.9, 0.75, 0.6, 0.95, 0.5, 0.3]]]).astype(np.float32) max_output_boxes_per_class = np.array([3]).astype(np.int64) iou_threshold = np.array([0.5]).astype(np.float32) score_threshold = np.array([0.4]).astype(np.float32) output_dims = [2, 3] verify_nms( boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold, output_dims ) @tvm.testing.parametrize_targets def test_loop(target, dev): """test_loop""" def verify_cond_loop(): y_in = helper.make_tensor_value_info("y_in", TensorProto.FLOAT, [1]) y_out = helper.make_tensor_value_info("y_out", TensorProto.FLOAT, [1]) scan_out = helper.make_tensor_value_info("scan_out", TensorProto.FLOAT, [1]) cond_in = helper.make_tensor_value_info("cond_in", TensorProto.BOOL, []) cond_out = helper.make_tensor_value_info("cond_out", TensorProto.BOOL, []) iter_count = helper.make_tensor_value_info("iter_count", TensorProto.INT64, []) y = np.array([-2]).astype(np.float32) five_const_node = helper.make_node( "Constant", inputs=[], outputs=["five"], value=helper.make_tensor( name="const_tensor_five", data_type=TensorProto.FLOAT, dims=(), vals=[5] ), ) iter_cast_node = helper.make_node( "Cast", inputs=["iter_count"], outputs=["iter_cast"], to=onnx.TensorProto.FLOAT ) y_add_node = helper.make_node("Add", inputs=["y_in", "iter_cast"], outputs=["y_out"]) less_node = helper.make_node("Less", inputs=["y_out", "five"], outputs=["cond_less"]) squeeze_node = helper.make_node("Squeeze", inputs=["cond_less"], outputs=["cond_squeeze"]) cond_cast_node = helper.make_node( "Cast", inputs=["cond_squeeze"], outputs=["cond_out"], to=onnx.TensorProto.BOOL ) scan_identity_node = helper.make_node("Identity", inputs=["y_out"], outputs=["scan_out"]) loop_body = helper.make_graph( [ five_const_node, iter_cast_node, y_add_node, less_node, squeeze_node, cond_cast_node, scan_identity_node, ], "loop_body", [iter_count, cond_in, y_in], [cond_out, y_out, scan_out], ) loop_node = helper.make_node( "Loop", inputs=["trip_count", "cond", "y"], outputs=["res_y", "res_scan"], body=loop_body, ) trip_count = np.array(5).astype(np.int64) _ = np.array([13]).astype(np.float32) cond = np.array(1).astype(bool) loop_graph = onnx.helper.make_graph( [loop_node], "loop_outer", inputs=[ onnx.helper.make_tensor_value_info("trip_count", onnx.TensorProto.INT64, []), onnx.helper.make_tensor_value_info("cond", onnx.TensorProto.BOOL, []), onnx.helper.make_tensor_value_info("y", onnx.TensorProto.FLOAT, [1]), ], outputs=[ onnx.helper.make_tensor_value_info("res_y", onnx.TensorProto.FLOAT, [1]), onnx.helper.make_tensor_value_info("res_scan", onnx.TensorProto.FLOAT, [5, 1]), ], ) loop_model = onnx.helper.make_model(loop_graph) # Set a high trip count so that condition trips first. trip_count = np.array(40).astype(np.int64) cond = np.array(1).astype(bool) input_vals = [trip_count, cond, y] verify_with_ort_with_inputs( loop_model, input_vals, use_vm=True, freeze_params=True, opset=11, target=target, dev=dev, ) def verify_count_loop(): y_in = helper.make_tensor_value_info("y_in", TensorProto.FLOAT, []) y_out = helper.make_tensor_value_info("y_out", TensorProto.FLOAT, []) scan_out = helper.make_tensor_value_info("scan_out", TensorProto.FLOAT, []) cond_in = helper.make_tensor_value_info("cond_in", TensorProto.BOOL, []) cond_out = helper.make_tensor_value_info("cond_out", TensorProto.BOOL, []) iter_count = helper.make_tensor_value_info("iter_count", TensorProto.INT64, []) y = np.array(-2).astype(np.float32) iter_cast_node = helper.make_node( "Cast", inputs=["iter_count"], outputs=["iter_cast"], to=onnx.TensorProto.FLOAT ) y_add_node = helper.make_node("Add", inputs=["y_in", "iter_cast"], outputs=["y_out"]) identity_node = helper.make_node("Identity", inputs=["cond_in"], outputs=["cond_out"]) scan_identity_node = helper.make_node("Identity", inputs=["y_out"], outputs=["scan_out"]) loop_body = helper.make_graph( [identity_node, iter_cast_node, y_add_node, scan_identity_node], "loop_body", [iter_count, cond_in, y_in], [cond_out, y_out, scan_out], ) loop_node = helper.make_node( "Loop", inputs=["trip_count", "cond", "y"], outputs=["res_y", "res_scan"], body=loop_body, ) trip_count = np.array(5).astype(np.int64) _ = np.array([13]).astype(np.float32) cond = np.array(1).astype(bool) loop_graph = onnx.helper.make_graph( [loop_node], "loop_outer", inputs=[ onnx.helper.make_tensor_value_info("trip_count", onnx.TensorProto.INT64, []), onnx.helper.make_tensor_value_info("cond", onnx.TensorProto.BOOL, []), onnx.helper.make_tensor_value_info("y", onnx.TensorProto.FLOAT, []), ], outputs=[ onnx.helper.make_tensor_value_info("res_y", onnx.TensorProto.FLOAT, []), onnx.helper.make_tensor_value_info("res_scan", onnx.TensorProto.FLOAT, [5]), ], ) loop_model = onnx.helper.make_model(loop_graph) trip_count = np.array(5).astype(np.int64) cond = np.array(1).astype(bool) input_vals = [trip_count, cond, y] verify_with_ort_with_inputs( loop_model, input_vals, use_vm=True, freeze_params=True, opset=11, target=target, dev=dev, ) def verify_tensor_loop(shapeless_output=False): y_in = helper.make_tensor_value_info("y_in", TensorProto.FLOAT, [3, 3, 3, 3]) y_out = helper.make_tensor_value_info("y_out", TensorProto.FLOAT, [3, 3, 3, 3]) scan_out = helper.make_tensor_value_info("scan_out", TensorProto.FLOAT, [3, 3, 3, 3]) cond_in = helper.make_tensor_value_info("cond_in", TensorProto.BOOL, []) cond_out = helper.make_tensor_value_info("cond_out", TensorProto.BOOL, []) iter_count = helper.make_tensor_value_info("iter_count", TensorProto.INT64, []) y = np.random.normal(size=[3, 3, 3, 3]).astype(np.float32) iter_cast_node = helper.make_node( "Cast", inputs=["iter_count"], outputs=["iter_cast"], to=onnx.TensorProto.FLOAT ) y_add_node = helper.make_node("Add", inputs=["y_in", "iter_cast"], outputs=["y_out"]) identity_node = helper.make_node("Identity", inputs=["cond_in"], outputs=["cond_out"]) scan_identity_node = helper.make_node("Identity", inputs=["y_out"], outputs=["scan_out"]) loop_body = helper.make_graph( [identity_node, iter_cast_node, y_add_node, scan_identity_node], "loop_body", [iter_count, cond_in, y_in], [cond_out, y_out, scan_out], ) loop_node = helper.make_node( "Loop", inputs=["trip_count", "cond", "y"], outputs=["res_y", "res_scan"], body=loop_body, ) trip_count = np.array(5).astype(np.int64) cond = np.array(1).astype(bool) # Allow testing of malformed nodes since pytorch likes to create these. if shapeless_output: scan_shape = None else: scan_shape = [5, 3, 3, 3, 3] loop_graph = onnx.helper.make_graph( [loop_node], "loop_outer", inputs=[ onnx.helper.make_tensor_value_info("trip_count", onnx.TensorProto.INT64, []), onnx.helper.make_tensor_value_info("cond", onnx.TensorProto.BOOL, []), onnx.helper.make_tensor_value_info("y", onnx.TensorProto.FLOAT, [3, 3, 3, 3]), ], outputs=[ onnx.helper.make_tensor_value_info("res_y", onnx.TensorProto.FLOAT, [3, 3, 3, 3]), onnx.helper.make_tensor_value_info("res_scan", onnx.TensorProto.FLOAT, scan_shape), ], ) loop_model = onnx.helper.make_model(loop_graph) trip_count = np.array(5).astype(np.int64) cond = np.array(1).astype(bool) input_vals = [trip_count, cond, y] verify_with_ort_with_inputs( loop_model, input_vals, use_vm=True, freeze_params=True, opset=11, target=target, dev=dev, ) # Test a loop that exits once a condition is met. verify_cond_loop() # Test a loop that exits after a fixed number of iterations with scalar outputs. verify_count_loop() # Test a loop that uses an array output. verify_tensor_loop() # Test a loop that is malformed and has no output shape defined. verify_tensor_loop(shapeless_output=True) @tvm.testing.parametrize_targets def test_if(target, dev): """test_if""" def verify_if(cond_array, num_outputs): # Given a bool scalar input cond. # return constant tensor x if cond is True, otherwise return constant tensor y. def append_constant_nodes(nodes, outputs, expected, name): outputs.append(onnx.helper.make_tensor_value_info(name, onnx.TensorProto.FLOAT, [5])) expected.append(np.random.randn(5).astype("float32")) nodes.append( onnx.helper.make_node( "Constant", inputs=[], outputs=[name], value=numpy_helper.from_array(expected[-1]), ) ) if_outputs = [] graph_outputs = [] then_nodes, then_outs, then_expected = [], [], [] else_nodes, else_outs, else_expected = [], [], [] for i in range(num_outputs): append_constant_nodes(then_nodes, then_outs, then_expected, f"then_out{i}") append_constant_nodes(else_nodes, else_outs, else_expected, f"else_out{i}") if_outputs.append(f"res{i}") graph_outputs.append( onnx.helper.make_tensor_value_info(f"res{i}", onnx.TensorProto.FLOAT, [5]), ) then_body = onnx.helper.make_graph(then_nodes, "then_body", [], then_outs) else_body = onnx.helper.make_graph(else_nodes, "else_body", [], else_outs) if_node = onnx.helper.make_node( "If", inputs=["cond"], outputs=if_outputs, then_branch=then_body, else_branch=else_body ) if_graph = onnx.helper.make_graph( [if_node], "if_outer", inputs=[ onnx.helper.make_tensor_value_info("cond", onnx.TensorProto.BOOL, []), ], outputs=graph_outputs, ) if_model = onnx.helper.make_model(if_graph) if cond_array: cond = np.array([1]).astype("bool") else: cond = np.array(1).astype("bool") correct_out = then_expected if cond else else_expected # TODO(jwfromm): Onnxruntime 1.0.0 is buggy with If statements. Replace this with # verify_with_ort once we update versions. tvm_out = get_tvm_output_with_vm(if_model, [cond], target, dev, freeze_params=True) if not isinstance(tvm_out, list): tvm_out = [tvm_out] for i, _ in enumerate(tvm_out): tvm.testing.assert_allclose( correct_out[i], tvm_out[i], # pylint: disable=unnecessary-list-index-lookup rtol=1e-05, atol=1e-05, ) # Confirm that if works with cond as an array or scalar. verify_if(cond_array=False, num_outputs=1) verify_if(cond_array=False, num_outputs=2) verify_if(cond_array=True, num_outputs=1) verify_if(cond_array=True, num_outputs=2) @tvm.testing.parametrize_targets def test_size(target, dev): """test_size""" def verify_size(indata): node = helper.make_node( "Size", inputs=["X"], outputs=["Y"], ) graph = helper.make_graph( [node], "size_test", inputs=[helper.make_tensor_value_info("X", TensorProto.INT64, list(indata.shape))], outputs=[helper.make_tensor_value_info("Y", TensorProto.INT64, [])], ) model = helper.make_model(graph, producer_name="size_test") verify_with_ort_with_inputs( model, [indata], dtype="int64", use_vm=True, opset=11, target=target, dev=dev ) input_data = np.array([[1, 0], [1, 1]], dtype=np.int64) verify_size(input_data) input_data = np.array([[3, 0, 0], [0, 4, 0], [5, 6, 0]], dtype=np.int64) verify_size(input_data) @tvm.testing.parametrize_targets def test_maxunpool(target, dev): """test_maxunpool""" def verify_maxunpool(data, indices, kernel_shape, strides, output_shape=None, pads=None): input_names = ["xT", "xI"] input_info = [ helper.make_tensor_value_info("xT", TensorProto.FLOAT, list(data.shape)), helper.make_tensor_value_info("xI", TensorProto.INT64, list(indices.shape)), ] input_values = [data, indices] if output_shape is not None: input_names.append("output_shape") input_info.append( helper.make_tensor_value_info( "output_shape", TensorProto.INT64, list(output_shape.shape) ) ) input_values.append(output_shape) else: # Compute expected output shape output_shape = np.asarray(([1, 1] + list(strides))) * np.asarray(list(data.shape)) output_shape += np.asarray(([0, 0] + list(kernel_shape))) - np.asarray( ([0, 0] + list(strides)) ) if pads is not None: output_shape -= np.asarray( [0, 0] + list(np.sum(np.reshape(list(pads), [-1, 2]), axis=-1)) ) output_shape = [int(i) for i in output_shape] node = helper.make_node( "MaxUnpool", inputs=input_names, outputs=["y"], kernel_shape=kernel_shape ) if pads is not None: pad_attr = helper.make_attribute("pads", pads) node.attribute.append(pad_attr) if strides is not None: strides_attr = helper.make_attribute("strides", strides) node.attribute.append(strides_attr) graph = helper.make_graph( [node], "maxunpool_test", inputs=input_info, outputs=[helper.make_tensor_value_info("y", TensorProto.FLOAT, output_shape)], ) model = helper.make_model(graph, producer_name="size_test") verify_with_ort_with_inputs( model, input_values, use_vm=True, opset=11, target=target, dev=dev ) # Basic test x_t = np.array([[[[5, 6], [7, 8]]]], dtype=np.float32) x_i = np.array([[[[0, 7], [13, 15]]]], dtype=np.int64) verify_maxunpool(x_t, x_i, [2, 2], strides=[2, 2]) # Small stride verify_maxunpool(x_t, x_i, [2, 2], strides=[1, 1]) # Big kernel verify_maxunpool(x_t, x_i, [3, 3], strides=[2, 2]) # With output shape output_shape = np.array((1, 1, 5, 5), dtype=np.int64) verify_maxunpool(x_t, x_i, [2, 2], strides=[2, 2], output_shape=output_shape) # With explicit reverse padding pads = np.asarray([1, 1, 1, 1]).astype(np.int64) verify_maxunpool(x_t, x_i, [2, 2], strides=[2, 2], pads=pads) @tvm.testing.parametrize_targets def test_softplus(target, dev): """test_softplus""" def verify_softplus(indata): node = helper.make_node( "Softplus", inputs=["X"], outputs=["Y"], ) graph = helper.make_graph( [node], "softplus_test", inputs=[helper.make_tensor_value_info("X", TensorProto.FLOAT, list(indata.shape))], outputs=[helper.make_tensor_value_info("Y", TensorProto.FLOAT, list(indata.shape))], ) model = helper.make_model(graph, producer_name="softplus_test") verify_with_ort_with_inputs( model, [indata], dtype="float32", use_vm=True, opset=11, target=target, dev=dev ) # Simple case with all signs. input_data = np.array([[-1, 0, 1]], dtype=np.float32) verify_softplus(input_data) # More fancy case. input_data = np.random.randn(1, 32, 32, 3).astype("float32") verify_softplus(input_data) @tvm.testing.parametrize_targets def test_cumsum(target, dev): """test_cumsum""" def verify_cumsum(indata, axis, exclusive=0, reverse=0, dtype="float32"): cumsum_node = onnx.helper.make_node( "CumSum", inputs=["X", "axis"], outputs=["Y"], ) if exclusive != 0: exclusive_attr = helper.make_attribute("exclusive", exclusive) cumsum_node.attribute.append(exclusive_attr) if reverse != 0: reverse_attr = helper.make_attribute("reverse", reverse) cumsum_node.attribute.append(reverse_attr) nodes = [ make_constant_node("axis", onnx.TensorProto.INT32, [1], [axis]), cumsum_node, ] if dtype == "float32": tensor_type = TensorProto.FLOAT else: tensor_type = TensorProto.INT32 dtype = "int32" graph = helper.make_graph( nodes, "cumsum_test", inputs=[ helper.make_tensor_value_info("X", tensor_type, list(indata.shape)), ], outputs=[helper.make_tensor_value_info("Y", tensor_type, list(indata.shape))], ) model = helper.make_model(graph, producer_name="cumsum_test") verify_with_ort_with_inputs( model, [indata], dtype=dtype, use_vm=True, opset=11, target=target, dev=dev ) data = ( np.array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, ] ) .astype(np.float32) .reshape((3, 4)) ) verify_cumsum(data, 0) verify_cumsum(data, 1) verify_cumsum(data, 0, 1, 0) verify_cumsum(data, 1, 1, 0) verify_cumsum(data, 0, 0, 1) verify_cumsum(data, 1, 0, 1) verify_cumsum(data, 1, 1, 1) data = np.random.randn(1, 32, 32, 3).astype("float32") verify_cumsum(data, 1) data = np.random.randn(1, 32, 32, 3).astype("int32") verify_cumsum(data, 0, dtype="int32") verify_cumsum(data, 1, dtype="int32") verify_cumsum(data, 0, 1, 0, dtype="int32") verify_cumsum(data, 1, 1, 0, dtype="int32") verify_cumsum(data, 0, 0, 1, dtype="int32") verify_cumsum(data, 1, 0, 1, dtype="int32") verify_cumsum(data, 1, 1, 1, dtype="int32") @tvm.testing.parametrize_targets def test_eyelike(target, dev): """test_eyelike""" def verify_eyelike(indata, dynamic=False): node_list = [] eyelike_inputs = ["X"] input_node_list = [ helper.make_tensor_value_info("X", TensorProto.FLOAT, list(indata.shape)) ] input_list = [indata] if dynamic: input_node_list.append( helper.make_tensor_value_info("shape", TensorProto.INT64, [len(indata.shape)]) ) input_list.append(np.asarray(indata.shape)) reshape_node = helper.make_node("Reshape", ["X", "shape"], ["X_dyn"]) eyelike_inputs[0] = "X_dyn" node_list += [reshape_node] node = helper.make_node( "EyeLike", inputs=eyelike_inputs, outputs=["Y"], ) node_list.append(node) graph = helper.make_graph( node_list, "eyelike_test", inputs=input_node_list, outputs=[helper.make_tensor_value_info("Y", TensorProto.FLOAT, list(indata.shape))], ) model = helper.make_model(graph, producer_name="eyelike_test") verify_with_ort_with_inputs( model, input_list, dtype="float32", opset=9, target=target, dev=dev, use_vm=True ) input_data = np.zeros((5, 5), dtype=np.float32) verify_eyelike(input_data) verify_eyelike(input_data, True) # The following parametrized tests loads the tests that ONNX ships as # serialized ONNX files, inputs, and outputs. The goal of this test # is to ensure the ONNX importer is in line with the ONNX specification. # To allow these tests to run in CI before all pass, a number of tests # that are not yet supported are skipped. onnx_test_node_dir = os.path.join(os.path.dirname(onnx.__file__), "backend", "test", "data", "node") onnx_test_folders = sorted( dirname for dirname in os.listdir(onnx_test_node_dir) if dirname.startswith("test") and os.path.isdir(os.path.join(onnx_test_node_dir, dirname)) ) unsupported_onnx_tests = [ "test_batchnorm_epsilon_training_mode", "test_batchnorm_example_training_mode", "test_bernoulli", "test_bernoulli_expanded", "test_bernoulli_double", "test_bernoulli_double_expanded", "test_bernoulli_seed", "test_bernoulli_seed_expanded", "test_blackmanwindow", "test_blackmanwindow_expanded", "test_blackmanwindow_symmetric", "test_blackmanwindow_symmetric_expanded", # the follow cast and castlike cases have lowering issues "test_cast_FLOAT_to_STRING", "test_cast_STRING_to_FLOAT", "test_castlike_FLOAT_to_STRING", "test_castlike_FLOAT_to_STRING_expanded", "test_castlike_STRING_to_FLOAT", "test_castlike_STRING_to_FLOAT_expanded", # the following cast and castlike cases segfault "test_cast_DOUBLE_to_FLOAT16", "test_castlike_DOUBLE_to_FLOAT16", "test_castlike_DOUBLE_to_FLOAT16_expanded", "test_convtranspose_autopad_same", "test_convtranspose_dilations", "test_cumsum_1d", "test_cumsum_1d_exclusive", "test_cumsum_1d_reverse", "test_cumsum_1d_reverse_exclusive", "test_cumsum_2d_axis_0", "test_cumsum_2d_axis_1", "test_cumsum_2d_negative_axis", "test_det_2d", "test_det_nd", "test_dft", "test_dft_axis", "test_dft_inverse", "test_dropout_default", "test_dropout_default_mask", "test_dropout_default_mask_ratio", "test_dropout_default_ratio", "test_gru_batchwise", "test_hammingwindow", "test_hammingwindow_expanded", "test_hammingwindow_symmetric", "test_hammingwindow_symmetric_expanded", "test_hannwindow", "test_hannwindow_expanded", "test_hannwindow_symmetric", "test_hannwindow_symmetric_expanded", "test_identity_opt", "test_identity_sequence", "test_if_opt", "test_if_seq", "test_loop13_seq", "test_loop16_seq_none", "test_lstm_batchwise", "test_maxpool_with_argmax_2d_precomputed_pads", "test_maxpool_with_argmax_2d_precomputed_strides", "test_maxunpool_export_with_output_shape", "test_melweightmatrix", # This test fails llvm with a lowering error: "test_nllloss_NCd1d2d3_none_no_weight_negative_ii_expanded", "test_qlinearmatmul_3D", "test_range_float_type_positive_delta_expanded", "test_range_int32_type_negative_delta_expanded", "test_reduce_sum_do_not_keepdims_example", "test_reduce_sum_do_not_keepdims_random", "test_reduce_sum_keepdims_example", "test_reduce_sum_keepdims_random", "test_reduce_sum_negative_axes_keepdims_example", "test_reduce_sum_negative_axes_keepdims_random", "test_roialign_aligned_true", "test_scatter_elements_with_duplicate_indices", "test_scatternd_add", "test_scatternd_multiply", "test_sequence_insert_at_back", "test_sequence_insert_at_front", "test_sequence_map_add_1_sequence_1_tensor", "test_sequence_map_add_1_sequence_1_tensor_expanded", "test_sequence_map_add_2_sequences", "test_sequence_map_add_2_sequences_expanded", "test_sequence_map_extract_shapes", "test_sequence_map_extract_shapes_expanded", "test_sequence_map_identity_1_sequence", "test_sequence_map_identity_1_sequence_1_tensor", "test_sequence_map_identity_1_sequence_1_tensor_expanded", "test_sequence_map_identity_1_sequence_expanded", "test_sequence_map_identity_2_sequences", "test_sequence_map_identity_2_sequences_expanded", "test_simple_rnn_batchwise", "test_simple_rnn_defaults", "test_simple_rnn_with_initial_bias", "test_split_variable_parts_1d", "test_split_variable_parts_2d", "test_split_variable_parts_default_axis", "test_split_zero_size_splits", "test_stft", "test_stft_with_window", "test_strnormalizer_export_monday_casesensintive_lower", "test_strnormalizer_export_monday_casesensintive_nochangecase", "test_strnormalizer_export_monday_casesensintive_upper", "test_strnormalizer_export_monday_empty_output", "test_strnormalizer_export_monday_insensintive_upper_twodim", "test_strnormalizer_nostopwords_nochangecase", "test_tfidfvectorizer_tf_batch_onlybigrams_skip0", "test_tfidfvectorizer_tf_batch_onlybigrams_skip5", "test_tfidfvectorizer_tf_batch_uniandbigrams_skip5", "test_tfidfvectorizer_tf_only_bigrams_skip0", "test_tfidfvectorizer_tf_onlybigrams_levelempty", "test_tfidfvectorizer_tf_onlybigrams_skip5", "test_tfidfvectorizer_tf_uniandbigrams_skip5", "test_training_dropout", "test_training_dropout_default", "test_training_dropout_default_mask", "test_training_dropout_mask", "test_training_dropout_zero_ratio", "test_training_dropout_zero_ratio_mask", "test_tril_zero", "test_triu_zero", "test_unique_sorted_with_axis", "test_unique_sorted_with_axis_3d", "test_unique_sorted_with_negative_axis", "test_upsample_nearest", ] target_skips = { "cuda": [ "test_range_float_type_positive_delta_expanded", "test_range_int32_type_positive_delta_expanded", "test_mod_mixed_sign_float16", "test_qlinearconv", "test_qlinearmatmul", "test_resize_upsample_sizes_nearest", ] } def _load_proto(proto_filename, target_list, model_type_proto): with open(proto_filename, "rb") as fin: protobuf_content = fin.read() if model_type_proto.HasField("sequence_type"): sequence = onnx.SequenceProto() sequence.ParseFromString(protobuf_content) target_list.append(numpy_helper.to_list(sequence)) elif model_type_proto.HasField("tensor_type"): tensor = onnx.TensorProto() tensor.ParseFromString(protobuf_content) target_list.append(numpy_helper.to_array(tensor)) elif model_type_proto.HasField("optional_type"): optional = onnx.OptionalProto() optional.ParseFromString(protobuf_content) target_list.append(numpy_helper.to_optional(optional)) else: raise ValueError( "Loading proto of that specific type (Map/Sparse Tensor) is currently not supported" ) @pytest.mark.parametrize("onnx_test", onnx_test_folders) @tvm.testing.parametrize_targets def test_onnx_nodes(target, dev, onnx_test): """test_onnx_nodes""" if platform.machine() == "aarch64" and onnx_test == "test_resize_upsample_sizes_nearest": pytest.skip("Currently failing on AArch64") target_kind = tvm.target.Target(target).kind.name if onnx_test in unsupported_onnx_tests: pytest.skip(f"Onnx test '{onnx_test}' not yet supported by TVM") target_specific_skips = target_skips.get(target_kind, []) if onnx_test in target_specific_skips: pytest.skip(f"Onnx test '{onnx_test}' not yet supported by TVM on {target_kind} targets") test_dir = os.path.join(onnx_test_node_dir, onnx_test) atol = 1e-5 rtol = 1e-5 if "roialign" in test_dir: # for some reason the ONNX test crops the # roialign results to 4 decimal places atol = 1e-4 if "to_BFLOAT16" in test_dir: # the tolerance here is for the comparison in uint16 space, but is not as significant # of a delta in bfloat16 space because it's representing the mantissa being off by 1 atol = 1 if "_sce_" in test_dir: # complicated loss functions like SoftmaxCrossEntropy can have minor variations # in accuracy depending on implementation atol = 1e-4 if "bicubic" in test_dir: # satisfies onnx precision for bicubic interpolation atol = 1e-4 model = onnx.load(os.path.join(test_dir, "model.onnx")) for test_data_dir in glob.glob(os.path.join(test_dir, "test_data_set*")): inputs = [] n_inputs = len(glob.glob(os.path.join(test_data_dir, "input_*.pb"))) for i in range(n_inputs): input_file = os.path.join(test_data_dir, f"input_{i}.pb") _load_proto(input_file, inputs, model.graph.input[i].type) outputs = [] n_outputs = len(glob.glob(os.path.join(test_data_dir, "output_*.pb"))) for i in range(n_outputs): output_file = os.path.join(test_data_dir, f"output_{i}.pb") _load_proto(output_file, outputs, model.graph.output[i].type) tvm_val = get_tvm_output_with_vm(model, inputs, target, dev) if len(outputs) == 1: tvm.testing.assert_allclose(outputs[0], tvm_val, rtol=rtol, atol=atol) else: for output, val in zip(outputs, tvm_val): tvm.testing.assert_allclose(output, val, rtol=rtol, atol=atol) def test_wrong_input(): """test_wrong_input""" node = helper.make_node( "Softplus", inputs=["X"], outputs=["Y"], ) graph = helper.make_graph( [node], "softplus_test", inputs=[helper.make_tensor_value_info("X", TensorProto.FLOAT, list([5]))], outputs=[helper.make_tensor_value_info("Y", TensorProto.FLOAT, list([5]))], ) model = helper.make_model(graph, producer_name="softplus_test") # Check that the graph can import correctly with proper shape definitions. correct_shape_dict = {"X": [5]} relay.frontend.from_onnx(model, shape=correct_shape_dict) # Check that an assertion is triggered when an input not in the graph is provided. wrong_shape_dict = {"Z": [5]} with pytest.raises(AssertionError): relay.frontend.from_onnx(model, shape=wrong_shape_dict) @tvm.testing.parametrize_targets def test_aten(target, dev): """test_aten""" torch.set_grad_enabled(False) def _convert_to_onnx(model, inputs): file_name = "aten_model.onnx" torch.onnx.export( model, inputs, file_name, export_params=True, verbose=False, opset_version=10, operator_export_type=torch.onnx.OperatorExportTypes.ONNX_ATEN, ) onnx_model = onnx.load(file_name) return onnx_model def verify_embedding_bag(num_embedding, embedding_dim, data_shape, num_bags=None): dummy_data = torch.randint(0, num_embedding - 1, data_shape) tvm_inputs = [dummy_data.numpy()] model = torch.nn.EmbeddingBag(num_embedding, embedding_dim) onnx_model = _convert_to_onnx(model, dummy_data) torch_out = model(dummy_data) tvm_out = get_tvm_output_with_vm( onnx_model, tvm_inputs, freeze_params=True, target=target, dev=dev, ) tvm.testing.assert_allclose(torch_out.numpy(), tvm_out, atol=5e-7) verify_embedding_bag(10, 3, [2, 10]) verify_embedding_bag(32, 2, [3, 3]) @tvm.testing.parametrize_targets def test_index_put(target, dev): """test_index_put""" class IndexPutModel(torch.nn.Module): def __init__(self, indices, values, accumulate): super().__init__() self.indices = indices self.values = values self.accumulate = accumulate def forward(self, x): return x.index_put(self.indices, self.values, self.accumulate) def _convert_to_onnx(model, dummy_data): file_name = "aten_model.onnx" torch.onnx.export( model, dummy_data, file_name, export_params=True, verbose=False, opset_version=11, operator_export_type=torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK, ) onnx_model = onnx.load(file_name) return onnx_model def verify_index_put(data_shape, indices, accumulate): dummy_data = torch.ones(data_shape) tvm_inputs = [dummy_data.numpy()] values = torch.rand(indices[0].size()) model = IndexPutModel(indices, values, accumulate) onnx_model = _convert_to_onnx(model, dummy_data) torch_out = model(dummy_data) tvm_out = get_tvm_output_with_vm(onnx_model, tvm_inputs, target, dev, freeze_params=True) tvm.testing.assert_allclose(torch_out.numpy(), tvm_out) shape = (3, 5) xidx = torch.tensor([0, 1, 2, 2]) yidx = torch.tensor([0, 1, 3, 4]) verify_index_put(shape, [xidx, yidx], True) shape = (3, 5, 3) xidx = torch.tensor([0, 1, 2, 2, 0]) yidx = torch.tensor([0, 1, 3, 4, 0]) zidx = torch.tensor([0, 1, 1, 2, 0]) verify_index_put(shape, [xidx, yidx, zidx], False) def verify_index_put_slice(data_shape, value_shape, accumulate): dummy_data = torch.ones(data_shape) tvm_inputs = [dummy_data.numpy()] indices = [] index_shape = [1] * len(value_shape) index_shape[0] = -1 for _, v_shape in enumerate(value_shape): indices.append(torch.arange(0, v_shape).reshape(tuple(index_shape))) index_shape.pop() values = torch.rand(value_shape) model = IndexPutModel(indices, values, accumulate) onnx_model = _convert_to_onnx(model, dummy_data) torch_out = model(dummy_data) tvm_out = get_tvm_output_with_vm(onnx_model, tvm_inputs, target, dev, freeze_params=True) tvm.testing.assert_allclose(torch_out.numpy(), tvm_out) verify_index_put_slice((3, 3), (2, 2), False) verify_index_put_slice((2, 3, 4), (1, 2, 3), True) verify_index_put_slice((2, 3, 4, 5), (1, 2, 3, 1), False) @tvm.testing.parametrize_targets def test_reverse_sequence(target, dev): """test_reverse_sequence""" def verify_reverse_sequence(x, sequence_lens, batch_axis, time_axis): node = onnx.helper.make_node( "ReverseSequence", inputs=["x", "sequence_lens"], outputs=["y"], time_axis=time_axis, batch_axis=batch_axis, ) graph = helper.make_graph( [node], "reverse_sequence_test", inputs=[ helper.make_tensor_value_info("x", TensorProto.FLOAT, list(x.shape)), helper.make_tensor_value_info( "sequence_lens", TensorProto.INT64, list(sequence_lens.shape) ), ], outputs=[helper.make_tensor_value_info("y", TensorProto.FLOAT, list(x.shape))], ) model = helper.make_model(graph, producer_name="reverse_sequence_test") verify_with_ort_with_inputs(model, [x, sequence_lens], [x.shape], target=target, dev=dev) x = np.array( [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]], dtype=np.float32, ) sequence_lens = np.array([1, 2, 3, 4], dtype=np.int64) verify_reverse_sequence(x, sequence_lens, 0, 1) sequence_lens = np.array([4, 3, 2, 1], dtype=np.int64) verify_reverse_sequence(x, sequence_lens, 1, 0) @pytest.mark.parametrize("op_name", ["Gelu", "FastGelu"], scope="session") @pytest.mark.parametrize("data_type", ["float16", "float32"], scope="session") @tvm.testing.parametrize_targets def test_gelu(target, dev, data_type, op_name): """test_gelu""" dtype = np.dtype(data_type) tensor_type = mapping.NP_TYPE_TO_TENSOR_TYPE[dtype] absolute_tolerance = 1e-3 if data_type == "float16" else 1e-5 def verify_gelu(x): node = onnx.helper.make_node( op_name, inputs=["x"], outputs=["y"], domain="com.microsoft", ) graph = helper.make_graph( [node], f"{op_name}_test", inputs=[helper.make_tensor_value_info("x", tensor_type, list(x.shape))], outputs=[helper.make_tensor_value_info("y", tensor_type, list(x.shape))], ) model = helper.make_model(graph, producer_name=f"{op_name}_test") verify_with_ort_with_inputs( model, [x], [x.shape], atol=absolute_tolerance, dtype=data_type, target=target, dev=dev ) x = np.array([-1.0, 0, 1.0, 100.0, -100.0, 1000.0, -1000.0], dtype=dtype) verify_gelu(x) x = np.array([[1, 2], [3, 4]], dtype=dtype) verify_gelu(x) @pytest.mark.parametrize("op_name", ["BiasGelu", "FastGelu"], scope="session") @pytest.mark.parametrize("data_type", ["float16", "float32"], scope="session") @tvm.testing.parametrize_targets def test_biasgelu(target, dev, data_type, op_name): """test_biasgelu""" dtype = np.dtype(data_type) tensor_type = mapping.NP_TYPE_TO_TENSOR_TYPE[dtype] absolute_tolerance = 1e-3 if data_type == "float16" else 1e-5 def verify_biasgelu(x, bias): node = onnx.helper.make_node( op_name, inputs=["x", "bias"], outputs=["y"], domain="com.microsoft", ) graph = helper.make_graph( [node], f"{op_name}_test", inputs=[ helper.make_tensor_value_info("x", tensor_type, list(x.shape)), helper.make_tensor_value_info("bias", tensor_type, list(bias.shape)), ], outputs=[helper.make_tensor_value_info("y", tensor_type, list(x.shape))], ) model = helper.make_model(graph, producer_name=f"{op_name}_test") verify_with_ort_with_inputs( model, [x, bias], [x.shape], atol=absolute_tolerance, dtype=data_type, target=target, dev=dev, ) x = np.array([-1.0, 0, 1.0, 100.0, -100.0, 1000.0, -1000.0], dtype=dtype) bias = np.repeat(2.0, 7).astype(dtype) verify_biasgelu(x, bias) x = np.array([[1, 2], [3, 4]], dtype=dtype) bias = np.array([0.3, 4.0], dtype=dtype) verify_biasgelu(x, bias) @tvm.testing.parametrize_targets def test_embedlayernormalization(target, dev): """test_embedlayernormalization""" def verify_embedlayernormalization( input_ids, segment_ids, word_embedding, position_embedding, segment_embedding, gamma, beta, ): node = onnx.helper.make_node( "EmbedLayerNormalization", inputs=[ "input_ids", "" if segment_ids is None else "segment_ids", "word_embedding", "position_embedding", "" if segment_embedding is None else "segment_embedding", "gamma", "beta", ], outputs=["output", "mask_index"], domain="com.microsoft", ) node.attribute.append(onnx.helper.make_attribute("epsilon", 1e-4)) segment_ids_shape = [] if segment_ids is None else segment_ids.shape segment_embedding_shape = [] if segment_embedding is None else segment_embedding.shape graph = helper.make_graph( [node], "embedlayernormalization_test", inputs=[ helper.make_tensor_value_info( "input_ids", TensorProto.INT32, list(input_ids.shape) ), helper.make_tensor_value_info("segment_ids", TensorProto.INT32, segment_ids_shape), helper.make_tensor_value_info( "word_embedding", TensorProto.FLOAT, list(word_embedding.shape) ), helper.make_tensor_value_info( "position_embedding", TensorProto.FLOAT, list(position_embedding.shape) ), helper.make_tensor_value_info( "segment_embedding", TensorProto.FLOAT, segment_embedding_shape ), helper.make_tensor_value_info("gamma", TensorProto.FLOAT, list(gamma.shape)), helper.make_tensor_value_info("beta", TensorProto.FLOAT, list(beta.shape)), ], outputs=[ helper.make_tensor_value_info( "output", TensorProto.FLOAT, list((batch_size, sequence_length, hidden_size)) ), helper.make_tensor_value_info("mask_index", TensorProto.INT32, [batch_size]), ], ) model = helper.make_model(graph, producer_name="embedlayernormalization_test") # TODO(@anwang2009): onnxruntime v1.9.0 requires empty list for optional argument, # but v1.10.0+ requires None instead. verify_with_ort_with_inputs( model, [ input_ids, np.empty(0, dtype="int32") if segment_ids is None else segment_ids, word_embedding, position_embedding, np.empty(0, dtype="float32") if segment_embedding is None else segment_embedding, gamma, beta, ], [ (batch_size, sequence_length, hidden_size), batch_size, ], target=target, dev=dev, rtol=1e-4, atol=1e-4, ) hidden_size = 384 batch_size = 4 sequence_length = 3 vocab_size = 5 input_ids = np.full((batch_size, sequence_length), 3).astype("int32") segment_ids = np.zeros((batch_size, sequence_length)).astype("int32") word_embedding = np.full((vocab_size, hidden_size), 1).astype("float32") position_embedding = np.full((sequence_length, hidden_size), 2).astype("float32") segment_embedding = np.full((vocab_size, hidden_size), 3).astype("float32") gamma = np.random.uniform(0.5, 0.7, hidden_size).astype("float32") beta = np.random.randn(hidden_size).astype("float32") * 0.1 verify_embedlayernormalization( input_ids, segment_ids, word_embedding, position_embedding, segment_embedding, gamma, beta ) # Test with undefined segment embedding verify_embedlayernormalization( input_ids, None, word_embedding, position_embedding, None, gamma, beta ) @tvm.testing.parametrize_targets def test_attention(target, dev): """test_attention""" def verify_attention(input_, weight, bias, mask_index, num_heads): node = onnx.helper.make_node( "Attention", inputs=["input", "weight", "bias", "mask_index"], outputs=["output", "present"], domain="com.microsoft", num_heads=num_heads, ) present_output_shape = (2, batch_size, num_heads, sequence_length, head_size) graph = helper.make_graph( [node], "attention_test", inputs=[ helper.make_tensor_value_info("input", TensorProto.FLOAT, list(input_.shape)), helper.make_tensor_value_info("weight", TensorProto.FLOAT, list(weight.shape)), helper.make_tensor_value_info("bias", TensorProto.FLOAT, list(bias.shape)), helper.make_tensor_value_info( "mask_index", TensorProto.INT32, list(mask_index.shape) ), ], outputs=[ helper.make_tensor_value_info("output", TensorProto.FLOAT, list(input_.shape)), helper.make_tensor_value_info( "present", TensorProto.FLOAT, list(present_output_shape) ), ], ) model = helper.make_model(graph, producer_name="attention_test") # "present" output should be nullptr when the "past" input isn't included, # but ort requires an output shape to be specified? verify_with_ort_with_inputs( model, [input_, weight, bias, mask_index], [input_.shape, present_output_shape], target=target, dev=dev, rtol=1e-4, atol=1e-4, ) hidden_size = 384 batch_size = 4 sequence_length = 4 num_heads = 12 head_size = 32 dtype = "float32" input_array = np.random.random((batch_size, sequence_length, hidden_size)).astype(dtype) weight = np.random.normal(size=(hidden_size, 3 * hidden_size)).astype(dtype) * 0.1 bias = np.random.randn(3 * hidden_size).astype(dtype) mask_index = np.full((batch_size, sequence_length), 1).astype("int32") verify_attention(input_array, weight, bias, mask_index, num_heads) @tvm.testing.parametrize_targets def test_skiplayernormalization(target, dev): """test_skiplayernormalization""" def verify_skiplayernormalization(input_, skip, gamma, beta, bias): node = onnx.helper.make_node( "SkipLayerNormalization", inputs=["input", "skip", "gamma", "beta", "bias"], outputs=["output"], domain="com.microsoft", ) node.attribute.append(onnx.helper.make_attribute("epsilon", 1e-4)) graph = helper.make_graph( [node], "skiplayernormalization_test", inputs=[ helper.make_tensor_value_info("input", TensorProto.FLOAT, list(input_.shape)), helper.make_tensor_value_info("skip", TensorProto.FLOAT, list(skip.shape)), helper.make_tensor_value_info("gamma", TensorProto.FLOAT, list(gamma.shape)), helper.make_tensor_value_info("beta", TensorProto.FLOAT, list(beta.shape)), helper.make_tensor_value_info("bias", TensorProto.FLOAT, list(bias.shape)), ], outputs=[ helper.make_tensor_value_info("output", TensorProto.FLOAT, list(input_.shape)), ], ) model = helper.make_model(graph, producer_name="skiplayernormalization_test") verify_with_ort_with_inputs( model, [input_, skip, gamma, beta, bias], [input_.shape], target=target, dev=dev ) hidden_size = 384 batch_size = 4 sequence_length = 4 dtype = "float32" input_array = np.random.random((batch_size, sequence_length, hidden_size)).astype(dtype) skip = np.random.random((batch_size, sequence_length, hidden_size)).astype(dtype) gamma = np.random.uniform(0.5, 0.7, hidden_size).astype(dtype) beta = np.random.randn(hidden_size).astype(dtype) * 0.1 bias = np.random.randn(hidden_size).astype(dtype) verify_skiplayernormalization(input_array, skip, gamma, beta, bias) @tvm.testing.known_failing_targets("cuda") @tvm.testing.parametrize_targets def test_qlinearconv(target, dev): """test_qlinearconv""" def verify_qlinearconv( x_shape, w_shape, y_shape, padding, kernel_shape, strides, dilations, auto_pad="NOTSET", bias=False, per_channel_quantization=False, ): x_array = np.random.randint(low=0, high=255, size=x_shape).astype("uint8") w_array = np.random.uniform(low=0, high=255, size=w_shape).astype("uint8") initializer = [ helper.make_tensor("x_scale", TensorProto.FLOAT, (), [np.random.rand()]), helper.make_tensor("x_zero_point", TensorProto.UINT8, (), [np.random.randint(0, 255)]), helper.make_tensor("y_scale", TensorProto.FLOAT, (), [np.random.rand()]), helper.make_tensor("y_zero_point", TensorProto.UINT8, (), [np.random.randint(0, 255)]), ] input_nodes = [ helper.make_tensor_value_info("x", TensorProto.UINT8, list(x_shape)), helper.make_tensor_value_info("w", TensorProto.UINT8, list(w_shape)), ] input_names = [ "x", "x_scale", "x_zero_point", "w", "w_scale", "w_zero_point", "y_scale", "y_zero_point", ] input_values = [x_array, w_array] if per_channel_quantization: w_scale_array = np.random.random(w_shape[0]).astype("float32") w_zero_point_array = np.random.randint(0, 255, size=w_shape[0]).astype("uint8") initializer.append( helper.make_tensor("w_scale", TensorProto.FLOAT, [w_shape[0]], w_scale_array) ) initializer.append( helper.make_tensor( "w_zero_point", TensorProto.UINT8, [w_shape[0]], w_zero_point_array ) ) else: initializer.append( helper.make_tensor("w_scale", TensorProto.FLOAT, (), [np.random.rand()]) ) initializer.append( helper.make_tensor( "w_zero_point", TensorProto.UINT8, (), [np.random.randint(0, 255)] ) ) if bias is True: b_shape = w_shape[0:1] b_array = np.random.randint(low=0, high=65536, size=b_shape).astype("int32") input_nodes.append(helper.make_tensor_value_info("B", TensorProto.INT32, list(b_shape))) input_names.append("B") input_values.append(b_array) if padding is None: ## autopadding with unset default attributes kwargs = {} if not all(list(s == 1 for s in strides)): kwargs["strides"] = strides if not all(list(d == 1 for d in dilations)): kwargs["dilations"] = dilations node = helper.make_node( "QLinearConv", inputs=input_names, outputs=["y"], # Default values for other attributes: auto_pad=auto_pad, **kwargs, ) else: node = helper.make_node( "QLinearConv", inputs=input_names, outputs=["y"], kernel_shape=kernel_shape, # Default values for other attributes: strides=strides, dilations=dilations, # groups=1 pads=padding, ) graph = helper.make_graph( [node], "conv_test", inputs=input_nodes, outputs=[helper.make_tensor_value_info("y", TensorProto.UINT8, list(y_shape))], initializer=initializer, ) model = helper.make_model(graph, producer_name="qlinearconv_test") # opt_level=1 will cause error verify_with_ort_with_inputs(model, input_values, opt_level=2, target=target, dev=dev) def repeat(num, dims): return tuple(num for _ in range(dims)) # only support QLinearConv2d because only support qnn.conv2d dims = 2 # Convolution with padding verify_qlinearconv( (1, 1) + repeat(5, dims), (1, 1) + repeat(3, dims), (1, 1) + repeat(5, dims), 2 * repeat(1, dims), repeat(3, dims), repeat(1, dims), repeat(1, dims), ) # Convolution with bias verify_qlinearconv( (1, 1) + repeat(5, dims), (1, 1) + repeat(3, dims), (1, 1) + repeat(5, dims), 2 * repeat(1, dims), repeat(3, dims), repeat(1, dims), repeat(1, dims), bias=True, ) # Convolution with asymmetric padding verify_qlinearconv( (1, 1) + repeat(5, dims), (1, 1) + repeat(3, dims), (1, 1) + repeat(4, dims), repeat(0, dims) + repeat(1, dims), repeat(3, dims), repeat(1, dims), repeat(1, dims), ) # Convolution without padding verify_qlinearconv( (1, 1) + repeat(5, dims), (1, 1) + repeat(3, dims), (1, 1) + repeat(3, dims), 2 * repeat(0, dims), repeat(3, dims), repeat(1, dims), repeat(1, dims), ) # Convolution with autopadding verify_qlinearconv( (1, 1) + repeat(5, dims), (1, 1) + repeat(3, dims), (1, 1) + repeat(5, dims), None, repeat(3, dims), repeat(1, dims), repeat(1, dims), auto_pad="SAME_UPPER", ) # Convolution with valid autopadding verify_qlinearconv( (1, 1) + repeat(5, dims), (1, 1) + repeat(3, dims), (1, 1) + repeat(3, dims), None, repeat(3, dims), repeat(1, dims), repeat(1, dims), auto_pad="VALID", ) # Convolution with non uniform stride verify_qlinearconv( (1, 1) + repeat(5, dims), (1, 1) + repeat(3, dims), (1, 1) + repeat(3, dims), None, repeat(3, dims), repeat(2, dims), repeat(1, dims), auto_pad="SAME_UPPER", ) # Convolution with dilation verify_qlinearconv( (1, 1) + repeat(5, dims), (1, 1) + repeat(3, dims), (1, 1) + repeat(5, dims), 2 * repeat(2, dims), repeat(3, dims), repeat(1, dims), repeat(2, dims), ) # Convolution with per channel quantization verify_qlinearconv( (1, 1) + repeat(5, dims), (1, 1) + repeat(3, dims), (1, 1) + repeat(3, dims), None, repeat(3, dims), repeat(1, dims), repeat(1, dims), per_channel_quantization=True, ) # TODO(vvchernov): fix problem with quantization on cuda @tvm.testing.known_failing_targets("cuda") @tvm.testing.parametrize_targets def test_qlinearmatmul(target, dev): """test_qlinearmatmul""" def verify_qlinearmatmul( x_shape, w_shape, y_shape, x_dtype="uint8", w_dtype="uint8", ): def get_randint_numpy_scalar(dtype="uint8"): if dtype == "uint8": return np.random.randint(0, 255) else: # "int8" return np.random.randint(-128, 127) if x_dtype == "uint8": x_array = np.random.randint(low=0, high=255, size=x_shape).astype("uint8") else: # "int8" x_array = np.random.randint(low=-128, high=127, size=x_shape).astype("int8") if w_dtype == "uint8": w_array = np.random.uniform(low=0, high=255, size=w_shape).astype("uint8") else: # "int8" w_array = np.random.uniform(low=-128, high=127, size=w_shape).astype("int8") x_proto_type = mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype(x_dtype)] w_proto_type = mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype(w_dtype)] y_dtype = "int8" if x_dtype == "uint8" and w_dtype == "uint8": y_dtype = "uint8" y_proto_type = mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype(y_dtype)] initializer = [ helper.make_tensor("x_scale", TensorProto.FLOAT, (), [np.random.rand()]), # TODO: 0 value for int8? helper.make_tensor( "x_zero_point", x_proto_type, (), [get_randint_numpy_scalar(x_dtype)] ), helper.make_tensor("w_scale", TensorProto.FLOAT, (), [np.random.rand()]), # TODO: 0 value for int8? helper.make_tensor( "w_zero_point", w_proto_type, (), [get_randint_numpy_scalar(w_dtype)] ), helper.make_tensor("y_scale", TensorProto.FLOAT, (), [np.random.rand()]), helper.make_tensor( "y_zero_point", y_proto_type, (), [get_randint_numpy_scalar(y_dtype)] ), ] input_nodes = [ helper.make_tensor_value_info("x", x_proto_type, list(x_shape)), helper.make_tensor_value_info("w", w_proto_type, list(w_shape)), ] input_names = [ "x", "x_scale", "x_zero_point", "w", "w_scale", "w_zero_point", "y_scale", "y_zero_point", ] input_values = [x_array, w_array] node = helper.make_node( "QLinearMatMul", inputs=input_names, outputs=["y"], ) y_proto_type = mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype("int8")] if x_dtype == "uint8" and w_dtype == "uint8": y_proto_type = mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype("uint8")] graph = helper.make_graph( [node], "qmatmul_test", inputs=input_nodes, outputs=[helper.make_tensor_value_info("y", y_proto_type, list(y_shape))], initializer=initializer, ) model = helper.make_model(graph, producer_name="qlinearmatmul_test") # opt_level=1 will cause error verify_with_ort_with_inputs(model, input_values, opt_level=2, target=target, dev=dev) # Default matmul both ranks = 2 (x_dtype = "uint8", w_dtype = "uint8") verify_qlinearmatmul((2, 3), (3, 2), (2, 2)) # Default matmul both ranks = 2 (x_dtype = "int8", w_dtype = "int8") verify_qlinearmatmul((2, 3), (3, 2), (2, 2), "int8", "int8") # TODO(vvchernov): problems on ONNX Runtime side and type check (onnx.py:L4763) on TVM side # Default matmul both ranks = 2 (x_dtype = "uint8", w_dtype = "int8") # verify_qlinearmatmul((2, 3), (3, 2), (2, 2), "uint8", "int8") # TODO(vvchernov): problems on ONNX Runtime side and type check (onnx.py:L4763) on TVM side # Default matmul both ranks = 2 (x_dtype = "int8", w_dtype = "uint8") # verify_qlinearmatmul((2, 3), (3, 2), (2, 2), "int8", "uint8") # Reduced matmul: x_ranks = 1, w_rank = 2 (x_dtype = "uint8", w_dtype = "uint8") verify_qlinearmatmul((3,), (3, 2), (2,)) # Special case matmul: x_ranks = 3, w_rank = 2 (x_dtype = "uint8", w_dtype = "uint8") verify_qlinearmatmul((2, 3, 4), (4, 3), (2, 3, 3)) # GPT2-style matmul both ranks = 4 (x_dtype = "uint8", w_dtype = "uint8") verify_qlinearmatmul((2, 4, 3, 3), (2, 4, 3, 3), (2, 4, 3, 3)) # Asymetric matmul: x_ranks = 4, w_rank = 3 (x_dtype = "uint8", w_dtype = "uint8") verify_qlinearmatmul((2, 4, 3, 3), (4, 3, 3), (2, 4, 3, 3)) # Asymetric matmul: x_ranks = 2, w_rank = 3 (x_dtype = "uint8", w_dtype = "uint8") # verify_qlinearmatmul((3, 3), (4, 3, 3), (4, 3, 3)) @tvm.testing.parametrize_targets def test_qlinearconcat(target, dev): """test_qlinearconcat""" def verify_qlinearconcat(shapes, out_shape, axis=None): input_names = [] input_values = [] input_nodes = [] for i, shape in enumerate(shapes): tensor_name = chr(ord("a") + i) node = helper.make_tensor_value_info(tensor_name, TensorProto.FLOAT, list(shape)) input_names.append(tensor_name) input_values.append(np.random.random(shape).astype("float32")) input_nodes.append(node) node = helper.make_node("Concat", input_names, ["C"]) if axis is not None: axis_attr = helper.make_attribute("axis", axis) node.attribute.append(axis_attr) graph = helper.make_graph( [node], "qlinearconcat_test", inputs=input_nodes, outputs=[helper.make_tensor_value_info("C", TensorProto.FLOAT, list(out_shape))], ) model = helper.make_model(graph, producer_name="qlinearconcat_test") quantize_and_verify_with_ort(model, input_names, shapes, target, dev) verify_qlinearconcat([[2, 1], [2, 1]], [4, 1], 0) verify_qlinearconcat([[2, 1], [2, 1]], [2, 2], 1) verify_qlinearconcat([[1, 2], [2, 2], [3, 2]], [6, 2], 0) @tvm.testing.parametrize_targets def test_qlinearadd(target, dev): """test_qlinearadd""" def verify_qlinearadd(a_shape, b_shape, c_shape): _ = np.random.random(a_shape).astype("float32") _ = np.random.random(b_shape).astype("float32") input_nodes = [ helper.make_tensor_value_info("a", TensorProto.FLOAT, list(a_shape)), helper.make_tensor_value_info("b", TensorProto.FLOAT, list(b_shape)), ] input_names = [ "a", "b", ] node = helper.make_node("Add", ["a", "b"], ["C"]) graph = helper.make_graph( [node], "qlinearadd_test", inputs=input_nodes, outputs=[helper.make_tensor_value_info("C", TensorProto.FLOAT, list(c_shape))], ) model = helper.make_model(graph, producer_name="qlinearadd_test") quantize_and_verify_with_ort(model, input_names, [a_shape, b_shape], target, dev) verify_qlinearadd([4, 2], [4, 2], [4, 2]) verify_qlinearadd([4, 2], [2], [4, 2]) verify_qlinearadd([5, 1, 7], [2, 7], [5, 2, 7]) @tvm.testing.parametrize_targets def test_qlinearmul(target, dev): """test_qlinearmul""" def verify_qlinearmul(a_shape, b_shape, c_shape): _ = np.random.random(a_shape).astype("float32") _ = np.random.random(b_shape).astype("float32") input_nodes = [ helper.make_tensor_value_info("a", TensorProto.FLOAT, list(a_shape)), helper.make_tensor_value_info("b", TensorProto.FLOAT, list(b_shape)), ] input_names = [ "a", "b", ] node = helper.make_node("Mul", input_names, ["C"]) graph = helper.make_graph( [node], "qlinearmul_test", inputs=input_nodes, outputs=[helper.make_tensor_value_info("C", TensorProto.FLOAT, list(c_shape))], ) model = helper.make_model(graph, producer_name="qlinearmul_test") quantize_and_verify_with_ort(model, input_names, [a_shape, b_shape], target, dev) verify_qlinearmul([7], [7], [7]) verify_qlinearmul([4, 2], [4, 2], [4, 2]) verify_qlinearmul([4, 2], [2], [4, 2]) verify_qlinearmul([5, 1, 7], [2, 7], [5, 2, 7]) @pytest.mark.skip(reason="See https://github.com/apache/tvm/issues/11375") @tvm.testing.parametrize_targets def test_qlinearleakyrelu(target, dev): """test_qlinearleakyrelu""" def verify_qlinearleakyrelu(inshape, kwargs): in_array = np.random.random(inshape).astype("float32") node = helper.make_node("LeakyRelu", ["X"], ["Y"], **kwargs) graph = helper.make_graph( [node], "qlinearRelu_test", inputs=[helper.make_tensor_value_info("X", TensorProto.FLOAT, list(in_array.shape))], outputs=[helper.make_tensor_value_info("Y", TensorProto.FLOAT, list(in_array.shape))], ) model = helper.make_model(graph, producer_name="qlinearRelu_test") args = (model, ["X"], [in_array.shape], target, dev) if dev == "cuda": quantize_and_verify_with_ort(*args, rtol=1e-2, atol=1e-2) else: quantize_and_verify_with_ort(*args) verify_qlinearleakyrelu([2, 4, 5, 6], {"alpha": 0.25}) verify_qlinearleakyrelu([6, 5, 6, 7], {"alpha": 0.35}) verify_qlinearleakyrelu([5, 1, 4, 6], {"alpha": 0.65}) @pytest.mark.skip(reason="See https://github.com/apache/tvm/issues/11375") @tvm.testing.parametrize_targets def test_qlinearsigmoid(target, dev): """test_qlinearsigmoid""" def verify_qlinearsigmoid(a_shape): _ = np.random.random(a_shape).astype("float32") input_nodes = [helper.make_tensor_value_info("a", TensorProto.FLOAT, list(a_shape))] node = helper.make_node("Sigmoid", ["a"], ["B"]) graph = helper.make_graph( [node], "qlinearsigmoid_test", inputs=input_nodes, outputs=[helper.make_tensor_value_info("B", TensorProto.FLOAT, list(a_shape))], ) model = helper.make_model(graph, producer_name="qlinearsigmoid_test") quantize_and_verify_with_ort(model, ["a"], [a_shape], target, dev) verify_qlinearsigmoid([4, 2]) verify_qlinearsigmoid([5]) verify_qlinearsigmoid([3, 4, 5]) verify_qlinearsigmoid([]) @tvm.testing.parametrize_targets("llvm") def test_random_uniform(target, dev): """test_random_uniform""" def get_random_uniform(shape, dtype="float32", high=1.0, low=0.0, seed=None): ONNX_DTYPE = mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype(dtype)] node = helper.make_node( "RandomUniform", [], ["out"], shape=shape, dtype=ONNX_DTYPE, high=high, low=low ) if seed is not None: seed_attr = helper.make_attribute("seed", seed) node.attribute.append(seed_attr) graph = helper.make_graph( [node], "random_uniform_test", inputs=[], outputs=[helper.make_tensor_value_info("out", ONNX_DTYPE, shape)], ) model = helper.make_model(graph, producer_name="random_uniform_test") return get_tvm_output_with_vm(model, [], target=target, dev=dev) # Check that function runs and produces proper shape. vals = get_random_uniform([10], dtype="float32") assert list(vals.shape) == [10] assert vals.dtype == "float32" # Test N-D tensor generation. vals = get_random_uniform([1, 3, 100, 100], dtype="float32") assert list(vals.shape) == [1, 3, 100, 100] # Check that bounds aren't exceeded. vals = get_random_uniform(shape=[100], high=100.0, low=-100.0) assert list(vals.shape) == [100] assert all(vals >= -100) and all(vals <= 100) # Check that a fixed seed produces the same values when run twice. vals_1 = get_random_uniform(shape=[10], seed=1) vals_2 = get_random_uniform(shape=[10], seed=1) assert all(vals_1 == vals_2) # Test against an expected output with a fixed seed. real = get_random_uniform(shape=[10], seed=5.0) expected = np.asarray( [ 0.043976, 0.96656, 0.292199, 0.904297, 0.25167, 0.521778, 0.778985, 0.085463, 0.939846, 0.194201, ] ) tvm.testing.assert_allclose(real, expected, rtol=1e-5) @tvm.testing.parametrize_targets("llvm") def test_random_uniform_like(target, dev): """test_random_uniform_like""" def get_random_uniform_like(input_, shape, dtype=None, high=1.0, low=0.0, seed=None): node = helper.make_node("RandomUniformLike", ["in"], ["out"], high=high, low=low) if seed is not None: seed_attr = helper.make_attribute("seed", seed) node.attribute.append(seed_attr) ONNX_DTYPE = None if dtype is not None: ONNX_DTYPE = mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype(dtype)] dtype_attr = helper.make_attribute("dtype", ONNX_DTYPE) node.attribute.append(dtype_attr) else: dtype = input_.dtype ONNX_DTYPE = mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype(dtype)] graph = helper.make_graph( [node], "random_uniform_test", inputs=[helper.make_tensor_value_info("in", ONNX_DTYPE, shape)], outputs=[helper.make_tensor_value_info("out", ONNX_DTYPE, shape)], ) model = helper.make_model(graph, producer_name="random_uniform_like_test") return get_tvm_output_with_vm(model, [input_], target=target, dev=dev) # Check that function runs and produces proper shape and dtype. shape = [10] input_array = np.random.random(shape).astype("float32") vals = get_random_uniform_like(input_array, shape, dtype="float32") assert list(vals.shape) == [10] assert vals.dtype == "float32" # Test N-D tensor generation. shape = [1, 3, 100, 100] input_array = np.random.random(shape).astype("float32") vals = get_random_uniform_like(input_array, shape, dtype="float64") assert list(vals.shape) == shape assert vals.dtype == "float64" # Check that bounds aren't exceeded. shape = [100] input_array = np.random.random(shape).astype("float64") vals = get_random_uniform_like(input_array, shape, high=100.0, low=-100.0) assert list(vals.shape) == shape assert all(vals >= -100) and all(vals <= 100) # Test against an expected output with a fixed seed. shape = [10] input_array = np.random.random(shape).astype("float32") real = get_random_uniform_like(input_array, shape=[10], seed=5.0) expected = np.asarray( [ 0.043976, 0.96656, 0.292199, 0.904297, 0.25167, 0.521778, 0.778985, 0.085463, 0.939846, 0.194201, ] ) tvm.testing.assert_allclose(real, expected, rtol=1e-5) @tvm.testing.parametrize_targets("llvm") def test_random_normal(target, dev): """test_random_normal""" def get_random_normal(shape, dtype="float32", scale=1.0, mean=0.0, seed=None): ONNX_DTYPE = mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype(dtype)] node = helper.make_node( "RandomNormal", [], ["out"], shape=shape, dtype=ONNX_DTYPE, scale=scale, mean=mean ) if seed is not None: seed_attr = helper.make_attribute("seed", seed) node.attribute.append(seed_attr) graph = helper.make_graph( [node], "random_normal_test", inputs=[], outputs=[helper.make_tensor_value_info("out", ONNX_DTYPE, shape)], ) model = helper.make_model(graph, producer_name="random_normal_test") return get_tvm_output_with_vm(model, [], target=target, dev=dev) # Test N-D tensor generation. vals = get_random_normal([1, 3, 100, 100], dtype="float32") assert list(vals.shape) == [1, 3, 100, 100] tvm.testing.assert_allclose(vals.mean(), 0.0, rtol=0.1, atol=0.1) tvm.testing.assert_allclose(np.std(vals), 1.0, rtol=0.1, atol=0.1) # Test mean=2.0 scale=10.0 vals = get_random_normal([1, 3, 100, 100], mean=2.0, scale=10.0, dtype="float32") assert list(vals.shape) == [1, 3, 100, 100] tvm.testing.assert_allclose(vals.mean(), 2.0, rtol=0.1, atol=0.1) tvm.testing.assert_allclose(np.std(vals), 10.0, rtol=0.1, atol=0.1) # Check that a fixed seed produces the same values when run twice. vals_1 = get_random_normal(shape=[10], seed=1.0) vals_2 = get_random_normal(shape=[10], seed=1.0) assert all(vals_1 == vals_2) @tvm.testing.parametrize_targets("llvm") def test_random_normal_like(target, dev): """test_random_normal_like""" def get_random_normal_like(input_, shape, dtype="float32", scale=1.0, mean=0.0, seed=None): ONNX_DTYPE = mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype(dtype)] node = helper.make_node( "RandomNormalLike", ["in"], ["out"], dtype=ONNX_DTYPE, scale=scale, mean=mean ) if seed is not None: seed_attr = helper.make_attribute("seed", seed) node.attribute.append(seed_attr) graph = helper.make_graph( [node], "random_normal_like_test", inputs=[helper.make_tensor_value_info("in", ONNX_DTYPE, shape)], outputs=[helper.make_tensor_value_info("out", ONNX_DTYPE, shape)], ) model = helper.make_model(graph, producer_name="random_normal_like_test") return get_tvm_output_with_vm(model, [input_], target=target, dev=dev) # Test N-D tensor generation. shape = [1, 3, 100, 100] input_array = np.random.random(shape).astype("float32") vals = get_random_normal_like(input_array, [1, 3, 100, 100], dtype="float32") assert list(vals.shape) == [1, 3, 100, 100] tvm.testing.assert_allclose(vals.mean(), 0.0, rtol=0.1, atol=0.1) tvm.testing.assert_allclose(np.std(vals), 1.0, rtol=0.1, atol=0.1) # Test mean=2.0 scale=10.0 shape = [1, 3, 100, 100] input_array = np.random.random(shape).astype("float32") vals = get_random_normal_like( input_array, [1, 3, 100, 100], mean=2.0, scale=10.0, dtype="float32" ) assert list(vals.shape) == [1, 3, 100, 100] tvm.testing.assert_allclose(vals.mean(), 2.0, rtol=0.1, atol=0.1) tvm.testing.assert_allclose(np.std(vals), 10.0, rtol=0.1, atol=0.1) @tvm.testing.parametrize_targets("llvm") def test_multinomial(target, dev): def get_multinomial(input, shape, sample_size, seed=None): IN_DTYPE = mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype("float32")] OUT_DTYPE = mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype("int32")] node = helper.make_node("Multinomial", ["in"], ["out"], sample_size=sample_size) if seed is not None: seed_attr = helper.make_attribute("seed", seed) node.attribute.append(seed_attr) graph = helper.make_graph( [node], "multinomial_test", inputs=[helper.make_tensor_value_info("in", IN_DTYPE, shape)], outputs=[helper.make_tensor_value_info("out", OUT_DTYPE, shape)], ) model = helper.make_model(graph, producer_name="multinomial_test") return get_tvm_output_with_vm(model, [input], target=target, dev=dev) # Test N-D tensor generation. shape = [3] sample_size = 2 probs = np.random.random(shape).astype("float32") indices = get_multinomial(probs, shape, sample_size) # Since specific values are random, we'll check that the output shape is # correct and the values chosen are all valid indices. assert list(indices.shape) == [sample_size] assert np.max(indices) < shape[-1] # Test 2d multinomial shape = [10, 5] sample_size = 4 probs = np.random.random(shape).astype("float32") indices = get_multinomial(probs, shape, sample_size) assert list(indices.shape) == [10, sample_size] assert np.max(indices) < shape[-1] @tvm.testing.parametrize_targets def test_convinteger(target, dev): """test_convinteger""" def verify_convinteger( x_shape, w_shape, y_shape, padding, kernel_shape, strides, dilations, auto_pad="NOTSET", dtype="uint8", ): x_array = np.random.randint(low=0, high=255, size=x_shape).astype(dtype) w_array = np.random.uniform(low=0, high=255, size=w_shape).astype(dtype) x_zero_point_array = np.random.randint(0, 255, size=[1]).astype(dtype) w_zero_point_array = np.random.randint(0, 255, size=[1]).astype(dtype) ONNX_DTYPE = mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype(dtype)] input_nodes = [ helper.make_tensor_value_info("x", ONNX_DTYPE, list(x_shape)), helper.make_tensor_value_info("w", ONNX_DTYPE, list(w_shape)), ] initializer = [ helper.make_tensor("x_zero_point", ONNX_DTYPE, [], x_zero_point_array), helper.make_tensor("w_zero_point", ONNX_DTYPE, [], w_zero_point_array), ] input_names = ["x", "w", "x_zero_point", "w_zero_point"] input_values = [x_array, w_array] if padding is None: ## autopadding with unset default attributes kwargs = {} if not all(list(s == 1 for s in strides)): kwargs["strides"] = strides if not all(list(d == 1 for d in dilations)): kwargs["dilations"] = dilations node = helper.make_node( "ConvInteger", inputs=input_names, outputs=["y"], # Default values for other attributes: auto_pad=auto_pad, **kwargs, ) else: node = helper.make_node( "ConvInteger", inputs=input_names, outputs=["y"], kernel_shape=kernel_shape, # Default values for other attributes: strides=strides, dilations=dilations, # groups=1 pads=padding, ) graph = helper.make_graph( [node], "convinteger_test", inputs=input_nodes, initializer=initializer, outputs=[helper.make_tensor_value_info("y", TensorProto.INT32, list(y_shape))], ) model = helper.make_model(graph, producer_name="convinteger_test") # opt_level=1 will cause error verify_with_ort_with_inputs(model, input_values, target=target, dev=dev, opt_level=2) def repeat(num, dims): return tuple(num for _ in range(dims)) # only support 2D ConvInteger because we only support qnn.conv2d for now. dims = 2 # Convolution with padding verify_convinteger( (1, 1) + repeat(5, dims), (1, 1) + repeat(3, dims), (1, 1) + repeat(5, dims), 2 * repeat(1, dims), repeat(3, dims), repeat(1, dims), repeat(1, dims), ) # Convolution with asymmetric padding verify_convinteger( (1, 1) + repeat(5, dims), (1, 1) + repeat(3, dims), (1, 1) + repeat(4, dims), repeat(0, dims) + repeat(1, dims), repeat(3, dims), repeat(1, dims), repeat(1, dims), ) # Convolution without padding verify_convinteger( (1, 1) + repeat(5, dims), (1, 1) + repeat(3, dims), (1, 1) + repeat(3, dims), 2 * repeat(0, dims), repeat(3, dims), repeat(1, dims), repeat(1, dims), ) # Convolution with autopadding verify_convinteger( (1, 1) + repeat(5, dims), (1, 1) + repeat(3, dims), (1, 1) + repeat(5, dims), None, repeat(3, dims), repeat(1, dims), repeat(1, dims), auto_pad="SAME_UPPER", ) # Convolution with valid autopadding verify_convinteger( (1, 1) + repeat(5, dims), (1, 1) + repeat(3, dims), (1, 1) + repeat(3, dims), None, repeat(3, dims), repeat(1, dims), repeat(1, dims), auto_pad="VALID", ) # Convolution with non uniform stride verify_convinteger( (1, 1) + repeat(5, dims), (1, 1) + repeat(3, dims), (1, 1) + repeat(3, dims), None, repeat(3, dims), repeat(2, dims), repeat(1, dims), auto_pad="SAME_UPPER", ) # Convolution with dilation verify_convinteger( (1, 1) + repeat(5, dims), (1, 1) + repeat(3, dims), (1, 1) + repeat(5, dims), 2 * repeat(2, dims), repeat(3, dims), repeat(1, dims), repeat(2, dims), ) @tvm.testing.parametrize_targets def test_scan(target, dev): """test_scan""" def verify_scan( input_shapes, output_shapes, num_scan_inputs, scan_input_axes, scan_input_directions, scan_output_axes, scan_output_directions, opset, ): body_input_shapes = copy.deepcopy(input_shapes) num_state_inputs = len(input_shapes) - num_scan_inputs if opset == 8: for i in range(len(input_shapes)): body_input_shapes[i].pop(0) for i in range(num_state_inputs, len(input_shapes)): body_input_shapes[i].pop(0) else: for i in range(num_state_inputs, len(input_shapes)): body_input_shapes[i].pop(scan_input_axes[i - num_state_inputs]) initial0 = onnx.helper.make_tensor_value_info( "initial0", onnx.TensorProto.FLOAT, body_input_shapes[0] ) initial1 = onnx.helper.make_tensor_value_info( "initial1", onnx.TensorProto.FLOAT, body_input_shapes[1] ) input0 = onnx.helper.make_tensor_value_info( "input0", onnx.TensorProto.FLOAT, body_input_shapes[2] ) input1 = onnx.helper.make_tensor_value_info( "input1", onnx.TensorProto.FLOAT, body_input_shapes[3] ) input2 = onnx.helper.make_tensor_value_info( "input2", onnx.TensorProto.FLOAT, body_input_shapes[4] ) state0 = onnx.helper.make_tensor_value_info( "state0", onnx.TensorProto.FLOAT, body_input_shapes[0] ) scan_out0 = onnx.helper.make_tensor_value_info( "scan_out0", onnx.TensorProto.FLOAT, body_input_shapes[0] ) state1 = onnx.helper.make_tensor_value_info( "state1", onnx.TensorProto.FLOAT, body_input_shapes[1] ) scan_out1 = onnx.helper.make_tensor_value_info( "scan_out1", onnx.TensorProto.FLOAT, body_input_shapes[1] ) add_node = onnx.helper.make_node( "Add", inputs=["initial0", "input0"], outputs=["state0"], ) id_node_0 = onnx.helper.make_node( "Identity", inputs=["state0"], outputs=["scan_out0"], ) matmul_node = onnx.helper.make_node( "MatMul", inputs=["input1", "input2"], outputs=["matmul_out"], ) sub_node = onnx.helper.make_node( "Sub", inputs=["initial1", "matmul_out"], outputs=["state1"], ) id_node_1 = onnx.helper.make_node( "Identity", inputs=["state1"], outputs=["scan_out1"], ) scan_body = onnx.helper.make_graph( [add_node, id_node_0, matmul_node, sub_node, id_node_1], "scan_body", [initial0, initial1, input0, input1, input2], [state0, state1, scan_out0, scan_out1], ) # create scan op node scan_node = None if opset == 8: scan_node = onnx.helper.make_node( "Scan", inputs=["", "init0", "init1", "in0", "in1", "in2"], outputs=["s0", "s1", "scan0", "scan1"], num_scan_inputs=num_scan_inputs, body=scan_body, ) else: scan_node = onnx.helper.make_node( "Scan", inputs=["init0", "init1", "in0", "in1", "in2"], outputs=["s0", "s1", "scan0", "scan1"], num_scan_inputs=num_scan_inputs, body=scan_body, scan_input_axes=scan_input_axes, scan_input_directions=scan_input_directions, scan_output_axes=scan_output_axes, scan_output_directions=scan_output_directions, ) input_info = [ helper.make_tensor_value_info("init0", TensorProto.FLOAT, input_shapes[0]), helper.make_tensor_value_info("init1", TensorProto.FLOAT, input_shapes[1]), helper.make_tensor_value_info("in0", TensorProto.FLOAT, input_shapes[2]), helper.make_tensor_value_info("in1", TensorProto.FLOAT, input_shapes[3]), helper.make_tensor_value_info("in2", TensorProto.FLOAT, input_shapes[4]), ] out_info = [ helper.make_tensor_value_info("s0", TensorProto.FLOAT, output_shapes[0]), helper.make_tensor_value_info("s1", TensorProto.FLOAT, output_shapes[1]), helper.make_tensor_value_info("scan0", TensorProto.FLOAT, output_shapes[2]), helper.make_tensor_value_info("scan1", TensorProto.FLOAT, output_shapes[3]), ] graph = helper.make_graph( nodes=[scan_node], name="scan_test", inputs=input_info, outputs=out_info, ) model = onnx.helper.make_model(graph, producer_name="scan-test") init0 = np.random.uniform(low=0, high=255, size=input_shapes[0]).astype(np.float32) init1 = np.random.uniform(low=0, high=255, size=input_shapes[1]).astype(np.float32) in0 = np.random.uniform(low=0, high=255, size=input_shapes[2]).astype(np.float32) in1 = np.random.uniform(low=0, high=255, size=input_shapes[3]).astype(np.float32) in2 = np.random.uniform(low=0, high=255, size=input_shapes[4]).astype(np.float32) input_values = [init0, init1, in0, in1, in2] verify_with_ort_with_inputs( model, input_values, target=target, dev=dev, opt_level=2, use_vm=True, opset=opset, ) # opset 8 input_shapes = [[2, 6, 7, 8], [2, 3, 3], [2, 5, 6, 7, 8], [2, 5, 3, 4], [2, 5, 4, 3]] output_shapes = [[2, 6, 7, 8], [2, 3, 3], [2, 5, 6, 7, 8], [2, 5, 3, 3]] # input_shapes, output_shapes, num_scan_inputs, scan_input_axes, scan_input_directions, # scan_output_axes, scan_output_directions, opset verify_scan(input_shapes, output_shapes, 3, [0] * 3, [0] * 3, [0] * 2, [0] * 2, 8) # opset 9 input_shapes = [[6, 7, 8], [3, 3], [5, 6, 7, 8], [5, 3, 4], [5, 4, 3]] output_shapes = [[6, 7, 8], [3, 3], [5, 6, 7, 8], [5, 3, 3]] verify_scan(input_shapes, output_shapes, 3, [0] * 3, [0] * 3, [0] * 2, [0] * 2, 9) input_shapes = [[6, 7, 8], [3, 3], [5, 6, 7, 8], [3, 4, 5], [4, 5, 3]] output_shapes = [[6, 7, 8], [3, 3], [6, 5, 7, 8], [3, 5, 3]] verify_scan(input_shapes, output_shapes, 3, [0, 2, 1], [1] * 3, [1] * 2, [1] * 2, 9) # Negative axes input_shapes = [[6, 7, 8], [3, 3], [5, 6, 7, 8], [3, 4, 5], [4, 5, 3]] output_shapes = [[6, 7, 8], [3, 3], [6, 5, 7, 8], [3, 5, 3]] verify_scan(input_shapes, output_shapes, 3, [-4, -1, -2], [1] * 3, [-3, -2], [1] * 2, 9) @tvm.testing.parametrize_targets def test_linear_regressor(target, dev): """test_linear_regressor""" def verify_linear_regressor(a_shape, c_shape, i_shape, targets=1, batch=1): a_array = np.random.uniform(size=a_shape).astype("float32") out_shape = (batch, targets) coefficients = np.random.uniform(size=c_shape).astype("float32") intercepts = np.random.uniform(size=i_shape).astype("float32") mul_node = helper.make_node( "LinearRegressor", ["a"], ["out"], coefficients=coefficients, intercepts=intercepts, targets=targets, domain="ai.onnx.ml", ) graph = helper.make_graph( [mul_node], "LinearRegressor_test", inputs=[ helper.make_tensor_value_info("a", TensorProto.FLOAT, list(a_shape)), ], outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, out_shape)], ) model = helper.make_model( graph, producer_name="LinearRegressor_test", opset_imports=[ onnx.helper.make_opsetid("ai.onnx.ml", 1), ], ) verify_with_ort_with_inputs(model, [a_array], target=target, dev=dev) verify_linear_regressor((1, 3), (3), (1)) verify_linear_regressor((2, 10), (10), (1), batch=2) verify_linear_regressor((1, 3), (30), (10), targets=10) verify_linear_regressor((10, 3), (30), (10), targets=10, batch=10) verify_linear_regressor((1, 4), (3), (1)) @tvm.testing.parametrize_targets def test_sequence(target, dev): """test_sequence""" def verify_sequence_ops(tensor_shape, num_tensors, axis=0, position=None, new_axis=None): tensor_shape = list(tensor_shape) tensor_values = [] for i in range(num_tensors): tensor_values.append(np.random.uniform(size=tensor_shape).astype("float32")) # Create an input for each tensor. input_tensor_names = [] for i in range(num_tensors): name = f"input_tensor_{i}" input_tensor_names.append(name) # Test creating a tensor sequence. construct_node = helper.make_node( "SequenceConstruct", inputs=input_tensor_names, outputs=["sequence"], ) insert_inputs = ["sequence", input_tensor_names[0]] position_node = None if position is not None: insert_inputs.append("position") position_node = make_constant_node("position", TensorProto.INT32, (), [position]) # Test sequence insertion. insert_node = helper.make_node( "SequenceInsert", inputs=insert_inputs, outputs=["inserted_sequence"] ) # Test sequence concatenation. concat_node = helper.make_node( "ConcatFromSequence", inputs=["inserted_sequence"], outputs=["output"], axis=axis ) if new_axis is not None: new_axis_attr = helper.make_attribute("new_axis", new_axis) concat_node.attribute.append(new_axis_attr) # Create input and output tensors. graph_inputs = [] for name in input_tensor_names: input_tensor = helper.make_tensor_value_info(name, TensorProto.FLOAT, tensor_shape) graph_inputs.append(input_tensor) # Construct output tensor. output_shape = tensor_shape if new_axis is not None: output_shape.insert(axis, 1) output_shape[axis] = num_tensors + 1 else: output_shape[axis] = (num_tensors + 1) * output_shape[axis] graph_outputs = [helper.make_tensor_value_info("output", TensorProto.FLOAT, output_shape)] graph_nodes = [] if position_node is not None: graph_nodes.append(position_node) graph_nodes += [construct_node, insert_node, concat_node] graph = helper.make_graph( graph_nodes, "Sequence_test", inputs=graph_inputs, outputs=graph_outputs, ) model = helper.make_model( graph, producer_name="Sequence_test", ) verify_with_ort_with_inputs(model, tensor_values, target=target, dev=dev) verify_sequence_ops((10, 3), 2) verify_sequence_ops((3, 3, 3, 3), 4, position=3) verify_sequence_ops((3, 3, 3, 3), 4, axis=2) verify_sequence_ops((3, 3, 3, 3), 4, axis=2, new_axis=1) if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/frontend/paddlepaddle/test_forward.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import os from pathlib import Path import shutil import numpy as np import tvm import tvm.testing import tvm.topi.testing from tvm import relay from tvm.contrib import graph_executor import pytest import paddle paddle.disable_signal_handler() import paddle.nn as nn PADDLE_TEST_DATA_ROOT_PATH = Path(Path("~").expanduser(), ".tvm_test_data", "paddle") PADDLE_TEST_DATA_ROOT_PATH.mkdir(parents=True, exist_ok=True) cached_program = list() def assert_shapes_match(tru, est): if tru.shape != est.shape: msg = "Output shapes {} and {} don't match" raise AssertionError(msg.format(tru.shape, est.shape)) def get_paddle_model(func, input_spec): global PADDLE_TEST_DATA_ROOT_PATH global cached_program model_path = Path(PADDLE_TEST_DATA_ROOT_PATH, "model") paddle.jit.save(func, str(model_path), input_spec=input_spec) baseline_model = paddle.jit.load(str(model_path)) if len(cached_program) >= 4: cached_program = list() cached_program.append(baseline_model._get_program_holder()) shutil.rmtree(str(PADDLE_TEST_DATA_ROOT_PATH)) return baseline_model def verify_model(func, input_data, rtol=1e-5, atol=1e-5): if not (isinstance(input_data, (tuple, list))): input_data = [input_data] input_spec = [] input_names = [] input_shape_dict = {} compiled_input = {} for idx, data in enumerate(input_data): input_name = "input{}".format(idx) input_spec.append( paddle.static.InputSpec(dtype=data.dtype, shape=data.shape, name=input_name) ) input_names.append(input_name) input_shape_dict[input_name] = data.shape if isinstance(data, np.ndarray): compiled_input[input_name] = data else: compiled_input[input_name] = data.numpy() baseline_model = get_paddle_model(func, input_spec) baseline_outputs = baseline_model(*[input[:] for input in input_data]) # get paddle outputs if isinstance(baseline_outputs, (tuple, list)): baseline_outputs = tuple(out.numpy() for out in baseline_outputs) else: baseline_outputs = (baseline_outputs.numpy(),) mod, params = relay.frontend.from_paddle(baseline_model, input_shape_dict) compiled_names = [] for arg in mod["main"].params: assert arg.name_hint in input_names or arg.name_hint in params if arg.name_hint in input_names: compiled_names.append(arg.name_hint) with tvm.transform.PassContext(opt_level=3): for target, dev in tvm.testing.enabled_targets(): lib = relay.build(mod, target=target, params=params) gmod = graph_executor.GraphModule(lib["default"](dev)) for name in compiled_names: gmod.set_input(name, compiled_input[name]) gmod.run() for i, baseline_output in enumerate(baseline_outputs): compiled_output = gmod.get_output(i).numpy() assert_shapes_match(baseline_output, compiled_output) tvm.testing.assert_allclose(baseline_output, compiled_output, rtol=rtol, atol=atol) @tvm.testing.uses_gpu def test_forward_add_subtract(): input_shape = [10] @paddle.jit.to_static def add_subtract(inputs): return paddle.subtract(paddle.add(inputs, inputs), inputs) @paddle.jit.to_static def add_subtract2(inputs): return inputs + 1 - 2 @paddle.jit.to_static def add_subtract3(inputs1, inputs2): ones = paddle.ones([10], dtype="float32") return inputs1 + ones - inputs2 input_data = paddle.rand(input_shape, dtype="float32") verify_model(add_subtract, input_data) verify_model(add_subtract2, input_data) input_data2 = paddle.rand(input_shape, dtype="float32") verify_model(add_subtract3, [input_data, input_data2]) @tvm.testing.uses_gpu def test_forward_addmm(): class Addmm(nn.Layer): def __init__(self, alpha=1.0, beta=1.0): super(Addmm, self).__init__() self.alpha = alpha self.beta = beta @paddle.jit.to_static def forward(self, inputs, x, y): return paddle.addmm(inputs, x, y, self.alpha, self.beta) input_shapes = [[10, 10], [1, 1], [7, 1]] x_shapes = [[10, 3], [5, 6], [7, 7]] y_shapes = [[3, 10], [6, 2], [7, 3]] input_shapes = [[10, 10]] x_shapes = [[10, 3]] y_shapes = [[3, 10]] for i in range(len(input_shapes)): input_data = paddle.rand(input_shapes[i], dtype="float32") x_data = paddle.rand(x_shapes[i], dtype="float32") y_data = paddle.rand(y_shapes[i], dtype="float32") verify_model(Addmm(), input_data=[input_data, x_data, y_data]) verify_model(Addmm(0.5, 0.3), input_data=[input_data, x_data, y_data]) @tvm.testing.uses_gpu def test_forward_arg_max_min(): class ArgMax(nn.Layer): @paddle.jit.to_static def forward(self, inputs): return paddle.argmax(inputs) class ArgMax1(nn.Layer): @paddle.jit.to_static def forward(self, inputs): return inputs.argmax(axis=1) class ArgMax2(nn.Layer): @paddle.jit.to_static def forward(self, inputs): return inputs.argmax(axis=1, keepdim=False) class ArgMax3(nn.Layer): @paddle.jit.to_static def forward(self, inputs): return inputs.argmax(axis=2, keepdim=True) class ArgMin(nn.Layer): @paddle.jit.to_static def forward(self, inputs): return paddle.argmin(inputs) class ArgMin1(nn.Layer): @paddle.jit.to_static def forward(self, inputs): return inputs.argmin(axis=1) class ArgMin2(nn.Layer): @paddle.jit.to_static def forward(self, inputs): return inputs.argmax(axis=1, keepdim=False) class ArgMin3(nn.Layer): @paddle.jit.to_static def forward(self, inputs): return inputs.argmin(axis=2, keepdim=True) input_shapes = [[256], [5, 28], [10, 5, 4], [1, 3, 8, 8]] for input_shape in input_shapes: input_data = paddle.rand(input_shape, dtype="float32") verify_model(ArgMax(), input_data=input_data) verify_model(ArgMin(), input_data=input_data) for input_shape in input_shapes[1:]: input_data = paddle.rand(input_shape, dtype="float32") verify_model(ArgMax1(), input_data=input_data) verify_model(ArgMax2(), input_data=input_data) verify_model(ArgMin1(), input_data=input_data) verify_model(ArgMin2(), input_data=input_data) for input_shape in input_shapes[2:]: input_data = paddle.rand(input_shape, dtype="float32") verify_model(ArgMax3(), input_data=input_data) verify_model(ArgMin3(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_argsort(): class ArgSort1(nn.Layer): @paddle.jit.to_static def forward(self, inputs): return paddle.argsort(inputs) class ArgSort2(nn.Layer): @paddle.jit.to_static def forward(self, inputs): return paddle.argsort(inputs, axis=0, descending=True) class ArgSort3(nn.Layer): @paddle.jit.to_static def forward(self, inputs): return paddle.argsort(inputs, axis=-1, descending=True) input_shapes = [[256], [10, 20], [10, 5, 3], [1, 3, 5, 5]] for input_shape in input_shapes: # Avoid duplicate elements in the array which will bring # different results with different sort algorithms np.random.seed(13) np_data = np.random.choice(range(-5000, 5000), np.prod(input_shape), replace=False) input_data = paddle.to_tensor(np_data.reshape(input_shape).astype("int64")) verify_model(ArgSort1(), [input_data]) verify_model(ArgSort2(), [input_data]) verify_model(ArgSort3(), [input_data]) @tvm.testing.uses_gpu def test_forward_assign(): @paddle.jit.to_static def assign(inputs): return paddle.assign(inputs) @paddle.jit.to_static def assign_value(inputs): x = paddle.to_tensor(np.array([3]).astype("float32")) return inputs + x input_shape = [2, 3] input_data = paddle.rand(input_shape, dtype="float32") verify_model( assign, [ input_data, ], ) input_data2 = np.random.randint(100, size=input_shape) verify_model( assign, [ input_data2, ], ) verify_model(assign_value, [input_data]) @tvm.testing.uses_gpu def test_forward_batch_norm(): class BatchNorm1D(nn.Layer): def __init__(self): super(BatchNorm1D, self).__init__() self.batch_norm = nn.BatchNorm1D(2) @paddle.jit.to_static def forward(self, input_data): return self.batch_norm(input_data) class BatchNorm2D(nn.Layer): def __init__(self): super(BatchNorm2D, self).__init__() self.batch_norm = nn.BatchNorm2D(2) @paddle.jit.to_static def forward(self, input_data): return self.batch_norm(input_data) class BatchNorm3D(nn.Layer): def __init__(self): super(BatchNorm3D, self).__init__() self.batch_norm = nn.BatchNorm3D(2) @paddle.jit.to_static def forward(self, input_data): return self.batch_norm(input_data) input_data = paddle.rand((2, 2, 3), dtype="float32") verify_model(BatchNorm1D(), input_data=input_data) input_data = paddle.rand((2, 2, 2, 3), dtype="float32") verify_model(BatchNorm2D(), input_data=input_data) input_data = paddle.rand((2, 2, 2, 2, 3), dtype="float32") verify_model(BatchNorm3D(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_bmm(): class Bmm(nn.Layer): def __init__(self): super(Bmm, self).__init__() @paddle.jit.to_static def forward(self, x, y): return paddle.bmm(x, y) x_shapes = [[10, 3, 4], [5, 6, 2], [1, 7, 7]] y_shapes = [[10, 4, 5], [5, 2, 7], [1, 7, 3]] for i in range(len(x_shapes)): x_data = paddle.rand(x_shapes[i], dtype="float32") y_data = paddle.rand(y_shapes[i], dtype="float32") verify_model(Bmm(), input_data=[x_data, y_data]) @tvm.testing.uses_gpu def test_forward_cast(): @paddle.jit.to_static def cast1(inputs, dtype="uint8"): return paddle.cast(inputs, dtype) @paddle.jit.to_static def cast2(inputs, dtype="int64"): return inputs.cast(dtype) input_shape = [2, 3] input_data = paddle.rand(input_shape, dtype="float32") * 100 verify_model( cast1, [ input_data, ], ) verify_model( cast2, [ input_data, ], ) @tvm.testing.uses_gpu def test_forward_check_tensor(): class IsFinite(nn.Layer): @paddle.jit.to_static def forward(self, inputs): return paddle.cast(paddle.isfinite(inputs), "int32") class IsNan(nn.Layer): @paddle.jit.to_static def forward(self, inputs): return paddle.cast(paddle.isnan(inputs), "int32") class IsInf(nn.Layer): @paddle.jit.to_static def forward(self, inputs): return paddle.cast(paddle.isinf(inputs), "int32") input_shapes = [[32], [8, 32], [2, 5, 20], [2, 3, 8, 8], [2, 2, 3, 6, 6]] for input_shape in input_shapes: input_data = paddle.rand(input_shape, dtype="float32") verify_model(IsFinite(), input_data=input_data) verify_model(IsNan(), input_data=input_data) verify_model(IsInf(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_clip(): class Clip1(nn.Layer): @paddle.jit.to_static def forward(self, inputs): return paddle.clip(inputs, min=0.3, max=0.55) class Clip2(nn.Layer): @paddle.jit.to_static def forward(self, inputs, max_value): return paddle.clip(inputs, max=max_value) class Clip3(nn.Layer): @paddle.jit.to_static def forward(self, inputs, min_value): return paddle.clip(inputs, min=min_value) class Clip4(nn.Layer): @paddle.jit.to_static def forward(self, inputs, min_value, max_value): return paddle.clip(inputs, min=min_value, max=max_value) input_data = paddle.rand((2, 2, 2, 3), dtype="float32") max_value = paddle.to_tensor([0.55]) min_value = paddle.to_tensor([0.3]) verify_model(Clip1(), input_data) verify_model(Clip2(), [input_data, max_value]) verify_model(Clip3(), [input_data, min_value]) verify_model(Clip4(), [input_data, min_value, max_value]) @tvm.testing.uses_gpu def test_forward_concat_unsqueeze(): @paddle.jit.to_static def concat_unsqueeze1(inputs): return paddle.concat([inputs[:, 0].unsqueeze(1), inputs[:, 1].unsqueeze(1)], axis=1) @paddle.jit.to_static def concat_unsqueeze2(inputs): a = (inputs[:, :, 0] + 2) * 7 b = (inputs[:, :, 1] + 3) * 11 c = (inputs[:, :, 2] + 5) * 13 return paddle.concat([paddle.unsqueeze(t, axis=2) for t in [a, b, c]], axis=2) input_shape = [1, 3, 10, 10] input_data = paddle.rand(input_shape, dtype="float32") verify_model(concat_unsqueeze1, input_data=input_data) verify_model(concat_unsqueeze2, input_data=input_data) @tvm.testing.uses_gpu def test_forward_cumsum(): @paddle.jit.to_static def cusum1(inputs): return paddle.cumsum(inputs) @paddle.jit.to_static def cusum2(inputs): return paddle.cumsum(inputs, axis=0) @paddle.jit.to_static def cusum3(inputs): return paddle.cumsum(inputs, axis=1) input_data = paddle.randint(0, 100, (10, 10), dtype=paddle.int32) verify_model(cusum1, [input_data]) verify_model(cusum1, [input_data.astype(paddle.int64)]) verify_model( cusum2, [ input_data, ], ) verify_model( cusum3, [ input_data, ], ) @tvm.testing.uses_gpu def test_forward_conv(): class Conv2D1(nn.Layer): def __init__(self, stride=1, padding=0, dilation=1, groups=1, padding_mode="zeros"): super(Conv2D1, self).__init__() self.conv = nn.Conv2D( 3, 6, 3, stride=stride, padding=padding, dilation=dilation, groups=groups, padding_mode=padding_mode, ) self.softmax = nn.Softmax() @paddle.jit.to_static def forward(self, inputs): return self.softmax(self.conv(inputs)) input_shapes = [[1, 3, 10, 10], [1, 3, 12, 12]] for input_shape in input_shapes: input_data = paddle.rand(input_shape, dtype="float32") verify_model(Conv2D1(), input_data=input_data) verify_model(Conv2D1(stride=2, padding="VALID", dilation=3), input_data=input_data) verify_model(Conv2D1(stride=2, padding="SAME", dilation=3), input_data=input_data) verify_model( Conv2D1(stride=2, padding=3, dilation=3, padding_mode="replicate"), input_data=input_data, ) verify_model(Conv2D1(stride=2, padding="SAME", dilation=2, groups=3), input_data=input_data) @tvm.testing.uses_gpu def test_forward_conv_transpose(): class Conv2DTranspose(nn.Layer): def __init__(self, stride=1, padding=0, dilation=1, groups=1, padding_mode="zeros"): super(Conv2DTranspose, self).__init__() self.conv = nn.Conv2DTranspose( 6, 3, 3, stride=stride, padding=padding, dilation=dilation, groups=groups, ) self.softmax = nn.Softmax() @paddle.jit.to_static def forward(self, inputs): return self.softmax(self.conv(inputs)) input_shapes = [[1, 6, 10, 10], [2, 6, 8, 8]] for input_shape in input_shapes: input_data = paddle.rand(input_shape, dtype="float32") verify_model(Conv2DTranspose(), input_data=input_data) verify_model(Conv2DTranspose(stride=2, padding="VALID"), input_data=input_data) verify_model(Conv2DTranspose(stride=2, padding="SAME", dilation=1), input_data=input_data) verify_model(Conv2DTranspose(stride=2, padding=3), input_data=input_data) verify_model(Conv2DTranspose(stride=3, padding="SAME", groups=1), input_data=input_data) @tvm.testing.uses_gpu def test_forward_dot(): class Dot(nn.Layer): @paddle.jit.to_static def forward(self, x, y): return paddle.dot(x, y) input_shapes = [[128], [8, 24]] for input_shape in input_shapes: x_data = paddle.rand(input_shape, dtype="float32") y_data = paddle.rand(input_shape, dtype="float32") verify_model(Dot(), input_data=[x_data, y_data]) @tvm.testing.uses_gpu def test_forward_dropout(): @paddle.jit.to_static def dropout(inputs): return nn.functional.dropout(inputs) input_shape = [1, 3, 10, 10] input_data = paddle.rand(input_shape, dtype="float32") verify_model(dropout, input_data=input_data[0, 0]) verify_model(dropout, input_data=input_data) def test_forward_elemwise(): class ElemwiseAPI(nn.Layer): def __init__(self, api_name): super(ElemwiseAPI, self).__init__() self.api_name_ = api_name for candidate in (paddle, paddle.nn.functional): self.func = getattr(candidate, api_name, None) if self.func: break @paddle.jit.to_static def forward(self, input1, input2): y = self.func(input1, input2) if "equal" in self.api_name_ or "than" in self.api_name_: # for compare operation, cast boolean result to int32 y = paddle.cast(y, "int32") return y api_list = [ "equal", "floor_divide", "greater_equal", "greater_than", "less_equal", "less_than", "maximum", "minimum", "pow", ] x_shapes = [[128], [8, 20], [4, 20, 3], [2, 3, 8, 8], [2, 3, 3, 9, 9]] y_shapes = [[1], [8, 20], [4, 1, 1], [2, 3, 8, 8], [2, 3, 3, 9, 1]] for x_shape, y_shape in zip(x_shapes, y_shapes): x_data = paddle.randint(1, 10, x_shape, dtype="int32") y_data = paddle.randint(1, 10, y_shape, dtype="int32") for api_name in api_list: if api_name == "pow": # only support float for pow x_data = x_data.astype("float32") y_data = y_data.astype("float32") verify_model(ElemwiseAPI(api_name), [x_data, y_data]) @tvm.testing.uses_gpu def test_forward_expand(): @paddle.jit.to_static def expand1(inputs): return paddle.expand(inputs, shape=[2, 128]) @paddle.jit.to_static def expand2(inputs): return paddle.expand(inputs, shape=[2, 1, 4, 16]) @paddle.jit.to_static def expand3(inputs): return paddle.expand(inputs, shape=[2, 1, 3, 7, 7]) @paddle.jit.to_static def expand4(inputs): shape = paddle.to_tensor(np.array([2, 128]).astype("int32")) return paddle.expand(inputs, shape=shape) @paddle.jit.to_static def expand5(inputs): shape = paddle.to_tensor(np.array([2, 1, 4, 16]).astype("int32")) return paddle.expand(inputs, shape=shape) @paddle.jit.to_static def expand6(inputs): shape = paddle.to_tensor(np.array([2, 1, 3, 7, 7]).astype("int32")) return paddle.expand(inputs, shape=shape) data = paddle.rand([128], dtype="float32") verify_model(expand1, input_data=[data]) verify_model(expand4, input_data=[data]) data = paddle.rand([4, 16], dtype="float32") verify_model(expand2, input_data=[data]) verify_model(expand5, input_data=[data]) data = paddle.rand([1, 3, 7, 7], dtype="float32") verify_model(expand3, input_data=[data]) verify_model(expand6, input_data=[data]) @tvm.testing.uses_gpu def test_forward_expand_as(): class ExpandAs(nn.Layer): @paddle.jit.to_static def forward(self, x, y): z = paddle.expand_as(x, y) z += y return z x_shapes = [[1], [8, 128], [8, 1, 1], [2, 3, 229, 229], [2, 3, 3, 224, 1]] y_shapes = [[128], [8, 128], [8, 200, 300], [2, 3, 229, 229], [2, 3, 3, 224, 224]] for x_shape, y_shape in zip(x_shapes, y_shapes): x_data = paddle.rand(x_shape, dtype="float32") y_data = paddle.rand(y_shape, dtype="float32") verify_model(ExpandAs(), [x_data, y_data]) @tvm.testing.uses_gpu def test_forward_flatten(): class Flatten(nn.Layer): def __init__(self, start_axis=0, stop_axis=-1): super(Flatten, self).__init__() self.start_axis = start_axis self.stop_axis = stop_axis @paddle.jit.to_static def forward(self, x): return paddle.flatten(x, start_axis=self.start_axis, stop_axis=self.stop_axis) input_data = paddle.rand([2, 3, 4, 5, 2], dtype="float32") verify_model(Flatten(), input_data=input_data) verify_model(Flatten(2), input_data=input_data) verify_model(Flatten(2, -2), input_data=input_data) @tvm.testing.uses_gpu def test_forward_gather(): class Gather(nn.Layer): def __init__(self, axis=None): super(Gather, self).__init__() self.axis = axis @paddle.jit.to_static def forward(self, x, index): return paddle.gather(x, index, axis=self.axis) x_shapes = [[20, 10], [10, 10, 8]] index = paddle.to_tensor(np.array([1, 3, 5]).astype("int64")) for x_shape in x_shapes: x_data = paddle.rand(x_shape, dtype="float32") verify_model(Gather(), [x_data, index]) verify_model(Gather(axis=0), [x_data, index]) verify_model(Gather(axis=1), [x_data, index]) @tvm.testing.uses_gpu def test_forward_gather_nd(): class GatherNd(nn.Layer): @paddle.jit.to_static def forward(self, x, index): return paddle.gather_nd(x, index) x_shapes = [[20], [8, 8], [4, 5, 6], [3, 4, 3, 5]] y_shapes = [[2, 1], [2], [1, 2, 3], [3]] for x_shape, y_shape in zip(x_shapes, y_shapes): x_data = paddle.rand(x_shape, dtype="float32") y_data = paddle.randint(low=0, high=3, shape=y_shape, dtype="int64") verify_model(GatherNd(), [x_data, y_data]) @tvm.testing.uses_gpu def test_forward_group_norm(): class GroupNorm(nn.Layer): def __init__(self, channels, groups): super(GroupNorm, self).__init__() self.group_norm = paddle.nn.GroupNorm(num_channels=channels, num_groups=groups) def forward(self, inputs): return self.group_norm(inputs) input_shapes = [[1, 4, 6, 6], [2, 2, 4, 7], [2, 8, 1, 1]] for input_shape in input_shapes: num_channels = input_shape[1] input_data = paddle.uniform(input_shape) verify_model(GroupNorm(num_channels, 1), input_data, rtol=1e-4, atol=1e-4) verify_model(GroupNorm(num_channels, 2), input_data, rtol=1e-4, atol=1e-4) @tvm.testing.uses_gpu def test_forward_scatter(): class Scatter(nn.Layer): def __init__(self, overwrite=True): super(Scatter, self).__init__() self.overwrite = overwrite @paddle.jit.to_static def forward(self, x, index, updates): return paddle.scatter(x, index, updates, overwrite=self.overwrite) x_shapes = [[10], [4, 5], [6, 4, 5], [4, 5, 6, 4]] index_shapes = [[10], [4], [6], [4]] for x_shape, index_shape in zip(x_shapes, index_shapes): x_data = paddle.rand(x_shape, dtype="float32") updates = paddle.rand(x_shape, dtype="float32") + 1.0 index = paddle.randint(low=0, high=3, shape=index_shape) verify_model(Scatter(), [x_data, index, updates]) verify_model(Scatter(False), [x_data, index, updates]) def test_forward_scatter_nd(): @paddle.jit.to_static def scatter_nd(index, updates): shape = [3, 5, 9, 10] return paddle.scatter_nd(index, updates, shape) @paddle.jit.to_static def scatter_nd_add(x, index, updates): return paddle.scatter_nd_add(x, index, updates) index_data = np.array([[1, 1], [0, 1], [1, 3]]).astype(np.int64) index = paddle.to_tensor(index_data) updates = paddle.rand(shape=[3, 9, 10], dtype="float32") verify_model(scatter_nd, [index, updates]) x = paddle.rand(shape=[3, 5, 4, 9, 10], dtype="float32") updates = paddle.rand(shape=[3, 2, 9, 10], dtype="float32") index = paddle.randint(0, 3, shape=[3, 2, 3]) verify_model(scatter_nd_add, [x, index, updates]) @tvm.testing.uses_gpu def test_forward_shape_full(): @paddle.jit.to_static def full1(inputs): return paddle.full(paddle.shape(inputs), 3.14) @paddle.jit.to_static def full2(inputs): return paddle.full(paddle.shape(inputs), 1.0, dtype=inputs.dtype) input_shape = [1, 3, 10, 10] input_data = paddle.rand(input_shape, dtype="float32") verify_model(full1, input_data=[input_data]) verify_model(full2, input_data=[input_data]) @tvm.testing.uses_gpu def test_forward_split(): class Split(nn.Layer): def __init__( self, axis=None, num_or_sections=None, axis_is_tensor=False, num_is_tensor=False ): super(Split, self).__init__() self.axis = axis self.num_or_sections = num_or_sections self.axis_is_tensor = axis_is_tensor self.num_is_tensor = num_is_tensor @paddle.jit.to_static def forward(self, inputs): axis = self.axis if self.axis_is_tensor: axis = paddle.to_tensor(axis, dtype="int32") num_or_sections = self.num_or_sections if self.num_is_tensor: new_num_or_sections = [] for i in num_or_sections: if isinstance(i, list): i = paddle.to_tensor(i, dtype="int32") new_num_or_sections.append(i) num_or_sections = new_num_or_sections return paddle.split(inputs, num_or_sections=num_or_sections, axis=axis) input_shape = [3, 6, 2] input_data = paddle.rand(input_shape, dtype="float32") verify_model(Split(axis=1, num_or_sections=3), input_data=input_data) verify_model( Split(axis=[1], num_or_sections=[2, 3, 1], axis_is_tensor=True), input_data=input_data ) verify_model( Split(axis=1, num_or_sections=[2, -1, [3]], num_is_tensor=True), input_data=input_data ) @tvm.testing.uses_gpu def test_forward_squeeze(): class Squeeze(nn.Layer): def __init__(self, axis=None): super(Squeeze, self).__init__() self.axis = axis @paddle.jit.to_static def forward(self, inputs): return paddle.squeeze(inputs, axis=self.axis) input_shapes = [[1, 1, 3, 1, 5], [5, 1, 6]] for input_shape in input_shapes: input_data = paddle.rand(input_shape, dtype="float32") verify_model(Squeeze(axis=None), input_data=input_data) verify_model(Squeeze(axis=1), input_data=input_data) input_data = paddle.rand([1], dtype="float32") verify_model(Squeeze(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_ones_like(): @paddle.jit.to_static def ones_like1(inputs): return paddle.ones_like(inputs) @paddle.jit.to_static def ones_like2(inputs): return paddle.ones_like(inputs, dtype="int32") input_shape = [1, 3, 10, 10] input_data = paddle.rand(input_shape, dtype="float32") verify_model(ones_like1, input_data=input_data) verify_model(ones_like2, input_data=input_data) @tvm.testing.uses_gpu def test_forward_gelu(): @paddle.jit.to_static def gelu(inputs): return nn.functional.gelu(inputs) input_shape = [1, 3, 10, 10] input_data = paddle.rand(input_shape, dtype="float32") verify_model(gelu, input_data=input_data) @tvm.testing.uses_gpu def test_forward_hard_sigmoid(): @paddle.jit.to_static def hard_sigmoid(inputs): return nn.functional.hardsigmoid(inputs) input_shape = [1, 3, 10, 10] input_data = paddle.rand(input_shape, dtype="float32") verify_model(hard_sigmoid, input_data=input_data) @tvm.testing.uses_gpu def test_forward_hard_swish(): @paddle.jit.to_static def hard_swish(inputs): return nn.functional.hardswish(inputs) input_shape = [1, 3, 10, 10] input_data = paddle.rand(input_shape, dtype="float32") verify_model(hard_swish, input_data=input_data) def test_forward_instance_norm(): class InstanceNorm(nn.Layer): def __init__(self, num_features, epsilon=1e-05): super(InstanceNorm, self).__init__() self.instance_norm = paddle.nn.InstanceNorm2D( num_features=num_features, epsilon=epsilon ) def forward(self, inputs): return self.instance_norm(inputs) input_shapes = [[2, 2, 2, 3], [1, 3, 5, 5]] for input_shape in input_shapes: input_data = paddle.rand(input_shape, dtype="float32") verify_model(InstanceNorm(input_shape[1]), input_data) verify_model(InstanceNorm(input_shape[1], 1e-03), input_data) @tvm.testing.uses_gpu def test_forward_interpolate(): class Interpolate(nn.Layer): def __init__( self, mode="nearest", align_corners=False, align_mode=0, data_format="NCHW", use_scale=False, use_list=False, use_const=False, use_scaler=False, ): super(Interpolate, self).__init__() self.mode = mode self.align_corners = align_corners self.align_mode = align_mode self.data_format = data_format self.use_scale = use_scale self.use_list = use_list self.use_const = use_const self.use_scaler = use_scaler @paddle.jit.to_static def forward(self, x): size = np.array([15, 19]).astype("int32") scale = np.array([2.0, 1.0]).astype("float32") if not self.use_list and not self.use_const: size = paddle.to_tensor(size) scale = paddle.to_tensor(scale) elif not self.use_const: size0 = paddle.to_tensor(size[0:1]) size = [size0, int(size[1])] elif not self.use_scaler: size = size.tolist() scale = scale.tolist() else: size = list(size) h, w = paddle.rand(size).shape # add decrease_axis size = [h, w] if not self.use_scale: return paddle.nn.functional.interpolate( x, size=size, mode=self.mode, align_corners=self.align_corners, align_mode=self.align_mode, data_format=self.data_format, ) else: return paddle.nn.functional.interpolate( x, scale_factor=scale, mode=self.mode, align_corners=self.align_corners, align_mode=self.align_mode, data_format=self.data_format, ) input_data = paddle.rand([1, 2, 8, 12]).astype("float32") verify_model(Interpolate(), input_data) verify_model(Interpolate(use_list=True), input_data) verify_model(Interpolate(use_scale=True, use_const=True), input_data) verify_model(Interpolate(use_const=True, use_scaler=True), input_data) verify_model(Interpolate("bilinear", use_scale=True), input_data) verify_model(Interpolate("bilinear", use_scale=True, align_corners=True), input_data) verify_model( Interpolate( "bilinear", use_scale=True, align_corners=True, align_mode=1, data_format="NHWC", use_const=True, ), input_data, ) verify_model( Interpolate("bicubic", use_scale=True, align_corners=True, align_mode=1), input_data ) @tvm.testing.uses_gpu def test_forward_layer_norm(): @paddle.jit.to_static def layer_norm(inputs, weight, bias): return nn.functional.layer_norm(inputs, inputs.shape[-1], weight=weight, bias=bias) class LayerNorm(nn.Layer): def __init__(self): super(LayerNorm, self).__init__() data_shape = [10] self.layer_norm = nn.LayerNorm(data_shape) @paddle.jit.to_static def forward(self, inputs): return self.layer_norm(inputs) input_shape = [1, 3, 10, 10] input_data = paddle.rand(input_shape, dtype="float32") weight = paddle.rand([10], dtype="float32") bias = paddle.rand([10], dtype="float32") verify_model(layer_norm, input_data=[input_data, weight, bias]) verify_model(LayerNorm(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_leaky_relu(): @paddle.jit.to_static def leaky_relu(inputs): return nn.functional.leaky_relu(inputs) input_shape = [1, 3, 10, 10] input_data = paddle.rand(input_shape, dtype="float32") verify_model(leaky_relu, input_data=input_data) @tvm.testing.uses_gpu def test_forward_logical_api(): class LogicalAPI(nn.Layer): def __init__(self, api_name): super(LogicalAPI, self).__init__() for candidate in (paddle, paddle.nn.functional): self.func = getattr(candidate, api_name, None) if self.func: break @paddle.jit.to_static def forward(self, x, y): out = paddle.to_tensor([True, True, True]) z = self.func(x, y, out=out) return paddle.cast(z, "int32") x_shapes = [[128], [8, 20], [4, 20, 3], [2, 3, 8, 8], [2, 3, 3, 9, 9]] y_shapes = [[1], [8, 20], [4, 1, 1], [2, 3, 8, 8], [2, 3, 3, 9, 1]] for x_shape, y_shape in zip(x_shapes, y_shapes): x_data = paddle.randint(0, 2, x_shape).astype("bool") y_data = paddle.randint(0, 2, y_shape).astype("bool") verify_model(LogicalAPI("logical_and"), [x_data, y_data]) verify_model(LogicalAPI("logical_or"), [x_data, y_data]) verify_model(LogicalAPI("logical_xor"), [x_data, y_data]) @tvm.testing.uses_gpu def test_forward_logical_not(): class LogicalNot(nn.Layer): def __init__(self): super(LogicalNot, self).__init__() @paddle.jit.to_static def forward(self, x): return paddle.logical_not(x).astype("int32") input_shapes = [[128], [8, 20], [4, 20, 3], [2, 3, 8, 8], [2, 3, 3, 9, 9]] for input_shape in input_shapes: input_data = paddle.randint(-2, 2, input_shape).astype("bool") verify_model(LogicalNot(), input_data) @tvm.testing.uses_gpu def test_forward_look_up(): @paddle.jit.to_static def look_up(inputs, weight): return nn.functional.embedding(inputs, weight) class LookUp(nn.Layer): def __init__(self): super(LookUp, self).__init__() self.embedding = paddle.nn.Embedding(10, 4, sparse=True) @paddle.jit.to_static def forward(self, inputs): return self.embedding(inputs) input_shape = [1, 3, 10, 10] input_data = paddle.randint(0, 10, input_shape, dtype="int32") weight = paddle.rand([10, 4], dtype="float32") verify_model(look_up, input_data=[input_data, weight]) verify_model(LookUp(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_multiply(): @paddle.jit.to_static def multiply1(inputs): return inputs * inputs @paddle.jit.to_static def multiply2(inputs): return inputs * 1.0 / 2.0 @paddle.jit.to_static def multiply3(inputs, inputs2): ones = paddle.ones([10], dtype="float32") return inputs * ones / inputs2 input_shape = [10] input_data = paddle.rand(input_shape, dtype="float32") verify_model(multiply1, input_data=input_data) verify_model(multiply2, input_data=input_data) input_data2 = paddle.rand(input_shape, dtype="float32") verify_model(multiply3, input_data=[input_data, input_data2]) @tvm.testing.uses_gpu def test_forward_matmul(): class MatMul1(nn.Layer): def forward(self, input1, input2): return paddle.matmul(input1, input2) # matrix x vector input_data1 = paddle.randn((3, 4), dtype="float32") input_data2 = paddle.randn((4,), dtype="float32") verify_model(MatMul1(), input_data=[input_data1, input_data2]) # matrix x matrix input_data1 = paddle.randn((5, 4), dtype="float32") input_data2 = paddle.randn((4, 5), dtype="float32") verify_model(MatMul1(), input_data=[input_data1, input_data2]) # batched matrix x batched matrix input_data1 = paddle.randn((10, 3, 4), dtype="float32") input_data2 = paddle.randn((10, 4, 5), dtype="float32") verify_model(MatMul1(), input_data=[input_data1, input_data2]) # batched matrix x broadcasted matrix input_data1 = paddle.randn((10, 3, 4), dtype="float32") input_data2 = paddle.randn((4, 5), dtype="float32") verify_model(MatMul1(), input_data=[input_data1, input_data2]) @tvm.testing.uses_gpu def test_forward_pool2d(): class Pool2D1(nn.Layer): @paddle.jit.to_static def forward(self, inputs): return nn.functional.avg_pool2d(inputs, kernel_size=2, stride=2, padding=0) class Pool2D2(nn.Layer): @paddle.jit.to_static def forward(self, inputs): return nn.functional.adaptive_avg_pool2d(inputs, output_size=[3, 3]) class Pool2D3(nn.Layer): @paddle.jit.to_static def forward(self, inputs): return nn.functional.avg_pool2d( inputs, kernel_size=3, stride=1, padding=[1, 1], exclusive=False, divisor_override=2.5, ) input_shapes = [[1, 2, 8, 8], [1, 3, 10, 10]] for input_shape in input_shapes: input_data = paddle.uniform(shape=input_shape, dtype="float32", min=-1, max=1) verify_model(Pool2D1(), input_data=input_data) verify_model(Pool2D2(), input_data=input_data) verify_model(Pool2D3(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_pad1d(): class Pad1D(nn.Layer): def __init__(self, padding=0, mode="constant", value=0.0, data_format="NCL"): super(Pad1D, self).__init__() self.pad1d = paddle.nn.Pad1D(padding, mode=mode, value=value, data_format=data_format) @paddle.jit.to_static def forward(self, inputs): return self.pad1d(inputs) input_shapes = [[1, 2, 5], [2, 5, 9]] for input_shape in input_shapes: input_data = paddle.rand(input_shape, dtype="float32") verify_model(Pad1D(padding=2), input_data=input_data) verify_model(Pad1D(padding=[1, 2], data_format="NLC"), input_data=input_data) verify_model(Pad1D(padding=[0, 2], value=0.3), input_data=input_data) verify_model(Pad1D(padding=[2, 2], mode="reflect"), input_data=input_data) verify_model(Pad1D(padding=3, mode="replicate"), input_data=input_data) @tvm.testing.uses_gpu def test_forward_pad2d(): class Pad2D(nn.Layer): def __init__(self, padding=0, mode="constant", value=0.0, data_format="NCHW"): super(Pad2D, self).__init__() self.pad2d = paddle.nn.Pad2D(padding, mode=mode, value=value, data_format=data_format) @paddle.jit.to_static def forward(self, inputs): return self.pad2d(inputs) input_shapes = [[1, 2, 5, 5], [2, 2, 5, 9]] for input_shape in input_shapes: input_data = paddle.rand(input_shape, dtype="float32") verify_model(Pad2D(padding=2), input_data=input_data) verify_model(Pad2D(padding=[1, 2, 0, 2], data_format="NHWC"), input_data=input_data) verify_model(Pad2D(padding=[1, 2, 0, 2], value=0.3), input_data=input_data) verify_model(Pad2D(padding=[1, 2, 0, 2], mode="reflect"), input_data=input_data) verify_model(Pad2D(padding=3, mode="replicate"), input_data=input_data) @tvm.testing.uses_gpu def test_forward_pad3d(): class Pad3D(nn.Layer): def __init__(self, padding=0, mode="constant", value=0.0, data_format="NCDHW"): super(Pad3D, self).__init__() self.pad3d = paddle.nn.Pad3D(padding, mode=mode, value=value, data_format=data_format) @paddle.jit.to_static def forward(self, inputs): return self.pad3d(inputs) input_shapes = [[1, 2, 2, 5, 5], [1, 2, 2, 5, 9]] for input_shape in input_shapes: input_data = paddle.rand(input_shape, dtype="float32") verify_model(Pad3D(padding=2), input_data=input_data) verify_model(Pad3D(padding=[1, 2, 0, 2, 1, 1], data_format="NDHWC"), input_data=input_data) verify_model(Pad3D(padding=[1, 2, 0, 2, 1, 1], value=0.3), input_data=input_data) verify_model(Pad3D(padding=[1, 2, 0, 2, 1, 1], mode="reflect"), input_data=input_data) verify_model(Pad3D(padding=3, mode="replicate"), input_data=input_data) @tvm.testing.uses_gpu def test_forward_transpose(): class Transpose(nn.Layer): def __init__(self, perm): super(Transpose, self).__init__() self.perm = perm @paddle.jit.to_static def forward(self, inputs): inputs = inputs + inputs.size() return paddle.transpose(inputs, perm=self.perm) input_data = paddle.rand([1, 3, 5, 4, 3], dtype="float32") verify_model(Transpose([0, 1, 2, 3, 4]), input_data=input_data) verify_model(Transpose([4, 3, 2, 0, 1]), input_data=input_data) @tvm.testing.uses_gpu def test_forward_reduce(): class Reduce(nn.Layer): def __init__(self, op_name, axis=None, keepdim=False): super(Reduce, self).__init__() self.op_name = op_name self.axis = axis self.keepdim = keepdim @paddle.jit.to_static def forward(self, inputs): result = getattr(paddle, self.op_name)(inputs, axis=self.axis, keepdim=self.keepdim) result = result.astype("float32") return result input_shapes = [[1, 2, 2, 5, 5], [2, 3, 4], [4, 20], [2, 3, 30, 30]] for input_shape in input_shapes: input_data = paddle.uniform(min=-3, max=3, shape=input_shape, dtype="float32") verify_model(Reduce("all"), input_data=input_data.astype("bool")) verify_model(Reduce("any", 1), input_data=input_data.astype("bool")) verify_model(Reduce("max", 0, True), input_data=input_data) verify_model(Reduce("min", 1, True), input_data=input_data) verify_model(Reduce("prod", 0), input_data=input_data) verify_model(Reduce("sum", 0, True), input_data=input_data) verify_model(Reduce("mean", -1, True), input_data=input_data) # logsumexp only supports tensor with rank less than 5 if len(input_shape) < 5: verify_model(Reduce("logsumexp", -1, True), input_data=input_data) @tvm.testing.uses_gpu def test_forward_reshape(): @paddle.jit.to_static def reshape1(inputs, x): new_shape = paddle.shape(x) return paddle.reshape(inputs, new_shape) @paddle.jit.to_static def reshape2(inputs): return inputs.reshape([-1]) @paddle.jit.to_static def reshape3(inputs): data_shape = inputs.shape return inputs.reshape([data_shape[0] * data_shape[1], data_shape[2]]) @paddle.jit.to_static def reshape4(inputs, x): new_shape = paddle.shape(x) return paddle.reshape(inputs, [new_shape[2], 2, -1]) input_shape = [2, 1, 10, 1, 10] input_data = paddle.rand(input_shape, dtype="float32") input_data2 = paddle.randn([2, 1, 10, 10]) verify_model(reshape1, input_data=[input_data, input_data2]) verify_model(reshape2, input_data=input_data) verify_model(reshape3, input_data=paddle.randn((2, 3, 4))) verify_model(reshape4, input_data=[input_data, input_data2]) @tvm.testing.uses_gpu def test_forward_scale(): @paddle.jit.to_static def scale1(inputs): return paddle.scale(inputs, scale=2.0, bias=1.0) @paddle.jit.to_static def scale2(inputs): return paddle.scale(inputs, scale=3, bias=2.1, act="gelu") input_data = paddle.randn(shape=[2, 3], dtype="float32") verify_model( scale1, input_data=[ input_data, ], ) verify_model(scale2, input_data=input_data) @tvm.testing.uses_gpu def test_forward_slice(): @paddle.jit.to_static def slice1(inputs): return inputs[:, :, :, :3] @paddle.jit.to_static def slice2(inputs): return inputs[0, :, :-3, :] @paddle.jit.to_static def slice3(inputs): return inputs[0::2, 0::2] + inputs[1::2, 1::2] @paddle.jit.to_static def slice4(inputs): x0 = paddle.to_tensor([2]) - paddle.to_tensor([1]) x1 = paddle.to_tensor([3]) + paddle.to_tensor([1]) return inputs[:, x0:, 1:x1, :] input_shape = [1, 3, 10, 10] input_data = paddle.rand(input_shape, dtype="float32") verify_model( slice1, input_data=[ input_data, ], ) verify_model(slice2, input_data=input_data) verify_model(slice3, input_data=paddle.randn((4, 4))) verify_model(slice4, input_data=input_data) @tvm.testing.uses_gpu def run_math_api(func): api_name = func.__name__.split("_")[-1] print("func_name:", api_name) class MathAPI(nn.Layer): def __init__(self, api_name): super(MathAPI, self).__init__() for candidate in (paddle, paddle.nn.functional): self.func = getattr(candidate, api_name, None) if self.func: break @paddle.jit.to_static def forward(self, inputs): return self.func(inputs) input_shapes = [[128], [2, 100], [10, 2, 5], [7, 3, 4, 1]] for input_shape in input_shapes: input_data = paddle.rand(input_shape, dtype="float32") if api_name in ["log", "log2", "log10", "reciprocal", "sqrt", "rsqrt"]: # avoid illegal input, all elements should be positive input_data = paddle.uniform(input_shape, min=0.01, max=0.99) verify_model(MathAPI(api_name), input_data=input_data) @run_math_api def test_forward_abs(): pass @run_math_api def test_forward_acos(): pass @run_math_api def test_forward_abs(): pass @run_math_api def test_forward_atan(): pass @run_math_api def test_forward_ceil(): pass @run_math_api def test_forward_cos(): pass @run_math_api def test_forward_cosh(): pass @run_math_api def test_forward_elu(): pass @run_math_api def test_forward_erf(): pass @run_math_api def test_forward_exp(): pass @run_math_api def test_forward_floor(): pass @run_math_api def test_forward_hardshrink(): pass @run_math_api def test_forward_hardtanh(): pass @run_math_api def test_forward_log_sigmoid(): pass @run_math_api def test_forward_log_softmax(): pass @run_math_api def test_forward_log(): pass @run_math_api def test_forward_log2(): pass @run_math_api def test_forward_log10(): pass @run_math_api def test_forward_log1p(): pass @run_math_api def test_forward_reciprocal(): pass @run_math_api def test_forward_relu(): pass @run_math_api def test_forward_round(): pass @run_math_api def test_forward_rsqrt(): pass @run_math_api def test_forward_selu(): pass @run_math_api def test_forward_sigmoid(): pass @run_math_api def test_forward_sign(): pass @run_math_api def test_forward_sin(): pass @run_math_api def test_forward_softplus(): pass @run_math_api def test_forward_sqrt(): pass @run_math_api def test_forward_square(): pass @run_math_api def test_forward_sin(): pass @run_math_api def test_forward_softsign(): pass @run_math_api def test_forward_sqrt(): pass @run_math_api def test_forward_square(): pass @run_math_api def test_forward_swish(): pass @run_math_api def test_forward_tan(): pass @run_math_api def test_forward_tanh(): pass @tvm.testing.uses_gpu def test_forward_meshgrid(): @paddle.jit.to_static def t(x, y, z): return paddle.meshgrid(x, y, z) x = paddle.randint(low=0, high=100, shape=[2]) y = paddle.randint(low=0, high=100, shape=[3]) z = paddle.randint(low=0, high=100, shape=[5]) verify_model(t, [x, y, z]) @tvm.testing.uses_gpu def test_forward_mv(): class Mv(nn.Layer): def forward(self, input1, input2): return paddle.mv(input1, input2) # matrix x vector input_data1 = paddle.randn((3, 4), dtype="float32") input_data2 = paddle.randn((4,), dtype="float32") verify_model(Mv(), input_data=[input_data1, input_data2]) @tvm.testing.uses_gpu def test_forward_pixel_shuffle(): class PixelShuffle(nn.Layer): def __init__(self, upscale_factor): super(PixelShuffle, self).__init__() self.pixel_shuffle = paddle.nn.PixelShuffle(upscale_factor) @paddle.jit.to_static def forward(self, x): return self.pixel_shuffle(x) input_shapes = [[1, 4, 3, 3], [2, 8, 2, 5]] for input_shape in input_shapes: x = paddle.rand(input_shape, dtype="float32") verify_model(PixelShuffle(2), x) @tvm.testing.uses_gpu def test_forward_prelu(): class PRelu(nn.Layer): @paddle.jit.to_static def forward(self, x, w): return paddle.nn.functional.prelu(x, w) x = paddle.normal(shape=[4, 3, 5, 5]) w = paddle.to_tensor( np.array( [ 0.25, ] ).astype("float32") ) verify_model(PRelu(), [x, w]) w2 = paddle.to_tensor(np.array([0.25, 0.5, 0.8]).astype("float32")) verify_model(PRelu(), [x, w2]) @tvm.testing.uses_gpu def test_forward_arange(): @paddle.jit.to_static def arange(inputs): return paddle.arange(paddle.shape(inputs)[0], 9, 2.0) @paddle.jit.to_static def arange1(inputs): return inputs + paddle.arange(0, 10.0, 8, dtype="float32") input_shape = [2, 2] input_data = paddle.rand(input_shape, dtype="float32") verify_model(arange, input_data) verify_model(arange1, input_data=input_data) @tvm.testing.uses_gpu def test_forward_rnn(): class RNN(nn.Layer): def __init__(self, api_name, input_size, hidden_size, num_layers, direction="forward"): super(RNN, self).__init__() rnn_func = getattr(paddle.nn, api_name, None) self.rnn = rnn_func(input_size, hidden_size, num_layers, direction=direction) @paddle.jit.to_static def forward(self, inputs, prev_h): y, h = self.rnn(inputs, prev_h) return y input_size, hidden_size, num_layers = 8, 16, 2 input_shape = [4, 5, 8] input_data = paddle.rand(input_shape, dtype="float32") for api_name in ("SimpleRNN", "GRU"): prev_h = paddle.rand([4, 4, 16], dtype="float32") verify_model( RNN(api_name, input_size, hidden_size, num_layers, direction="bidirectional"), input_data=[input_data, prev_h], ) prev_h = paddle.rand([2, 4, 16], dtype="float32") verify_model( RNN(api_name, input_size, hidden_size, num_layers), input_data=[input_data, prev_h] ) if __name__ == "__main__": pytest.main([__file__])
https://github.com/zk-ml/tachikoma
tests/python/frontend/pytorch/qnn_test.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ Tests on quantized torch model conversion """ import os from PIL import Image import numpy as np import torch from torch import nn from torch.quantization import ( QuantStub, DeQuantStub, fuse_modules, QuantWrapper, prepare_qat, get_default_qat_qconfig, ) import tvm import tvm.testing from tvm import relay from tvm.relay.frontend.pytorch_utils import is_version_greater_than from tvm.contrib.download import download_testdata from tvm.relay.op.contrib.register import register_pattern_table, get_pattern_table def torch_version_check(): from packaging import version return version.parse(torch.__version__) > version.parse("1.4.0") def get_tvm_runtime(script_module, input_name, ishape, keep_quantized_weight=False, target="llvm"): input_shapes = [(input_name, ishape)] mod, params = relay.frontend.from_pytorch( script_module, input_shapes, keep_quantized_weight=keep_quantized_weight ) if keep_quantized_weight: for p in params.values(): assert p.dtype in ["int8", "int32"] with tvm.transform.PassContext(opt_level=3): # test on only cpu for now, torch cannot run quant models on cuda # also not to make CI too slow lib = relay.build(mod, target=target, params=params) runtime = tvm.contrib.graph_executor.GraphModule(lib["default"](tvm.device(target, 0))) return runtime def get_qconfig(per_channel): from torch.quantization.observer import MovingAverageMinMaxObserver from torch.quantization.observer import default_weight_observer if per_channel: return torch.quantization.get_default_qconfig("fbgemm") else: act = MovingAverageMinMaxObserver.with_args(reduce_range=False) return torch.quantization.QConfig(activation=act, weight=default_weight_observer) def quantize_model(model, inp, per_channel=False): model.fuse_model() model.qconfig = get_qconfig(per_channel) torch.quantization.prepare(model, inplace=True) model(inp) torch.quantization.convert(model, inplace=True) class ConvBn(nn.Module): def __init__(self, with_relu=False): super().__init__() layers = [nn.Conv2d(3, 32, 3, bias=True), nn.BatchNorm2d(32)] if with_relu: layers.append(nn.ReLU()) self.conv = nn.Sequential(*layers) self.quant_wrap = QuantWrapper(self.conv) self.with_relu = with_relu def forward(self, x): return self.quant_wrap(x) def fuse_model(self): indices = ["0", "1"] if self.with_relu: indices.append("2") fuse_modules(self.conv, indices, inplace=True) class ConvTranspose(nn.Module): def __init__(self): super().__init__() layers = [nn.ConvTranspose2d(3, 32, 3, bias=True)] self.conv = nn.Sequential(*layers) self.quant_wrap = QuantWrapper(self.conv) def forward(self, x): return self.quant_wrap(x) def fuse_model(self): pass class Linear(nn.Module): def __init__(self, with_relu=False): super().__init__() layers = [nn.Linear(16, 32)] if with_relu: layers.append(nn.ReLU()) self.fc = nn.Sequential(*layers) self.quant_wrap = QuantWrapper(self.fc) self.with_relu = with_relu def forward(self, x): return self.quant_wrap(x) def fuse_model(self): if self.with_relu: fuse_modules(self.fc, ["0", "1"], inplace=True) class ReLU(nn.Module): def __init__(self): super().__init__() self.relu = QuantWrapper(nn.ReLU()) def forward(self, x): return self.relu(x) def fuse_model(self): pass class LeakyReLU(nn.Module): def __init__(self): super().__init__() self.leaky_relu = QuantWrapper(nn.LeakyReLU()) def forward(self, x): return self.leaky_relu(x) def fuse_model(self): pass # Mobilenet V3 related modules class Hsigmoid(nn.Module): def __init__(self, add_stub=False): super().__init__() self.quant = QuantStub() self.dequant = DeQuantStub() self.add_stub = add_stub self.hsigmoid = nn.Hardsigmoid() def forward(self, x): if self.add_stub: x = self.quant(x) x = self.hsigmoid(x) if self.add_stub: x = self.dequant(x) return x def fuse_model(self): pass class Hswish(nn.Module): def __init__(self, add_stub=False): super().__init__() self.hswish = QuantWrapper(nn.Hardswish()) def forward(self, x): return self.hswish(x) def fuse_model(self): pass class SqueezeExcite(nn.Module): def __init__(self, channel, reduction=4, add_stub=False): super(SqueezeExcite, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(channel, channel // reduction, bias=False), nn.ReLU(inplace=True), nn.Linear(channel // reduction, channel, bias=False), Hsigmoid(add_stub=False), ) self.fmul = nn.quantized.FloatFunctional() self.quant = QuantStub() self.dequant = DeQuantStub() self.add_stub = add_stub def forward(self, x): b, c, _, _ = x.size() if self.add_stub: x = self.quant(x) y = self.avg_pool(x).view(b, c) y = self.fc(y).view(b, c, 1, 1) out = self.fmul.mul(x, y.expand_as(x)) if self.add_stub: return self.dequant(out) else: return out def fuse_model(self): fuse_modules(self.fc, ["0", "1"], inplace=True) # test on quantized::mul_scalar with negative scale class MulScalarNegative(nn.Module): def __init__(self): super().__init__() self.float_op = nn.quantized.FloatFunctional() self.quant = QuantStub() self.dequant = DeQuantStub() def forward(self, x): x = self.quant(x) mul = self.float_op.mul_scalar(x, -0.3) return self.dequant(mul) def fuse_model(self): pass class UpsamplingBilinear(nn.Module): def __init__(self): super().__init__() self.quant = QuantStub() self.dequant = DeQuantStub() def forward(self, x): x = self.quant(x) upsample = nn.functional.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True) return self.dequant(upsample) def fuse_model(self): pass class AvgPool2d(nn.Module): def __init__(self): super().__init__() self.pool = QuantWrapper(nn.AvgPool2d(kernel_size=2)) def forward(self, x): return self.pool(x) def fuse_model(self): pass class AdaptiveAvgPool2d(nn.Module): def __init__(self): super().__init__() self.pool = QuantWrapper(nn.AdaptiveAvgPool2d((1, 1))) def forward(self, x): return self.pool(x) def fuse_model(self): pass def test_quantized_modules(): imagenet_ishape = (1, 3, 224, 224) qmodules = [ ("relu", imagenet_ishape, ReLU(), False), ("upsample bilinear", (1, 3, 64, 64), UpsamplingBilinear(), False), ("avgpool", imagenet_ishape, AvgPool2d(), False), ] for per_channel in [False, True]: if per_channel: postfix = ", per_channel" else: postfix = "" qmodules += [ ("conv_bn" + postfix, imagenet_ishape, ConvBn(), per_channel), ("conv_bn_relu" + postfix, imagenet_ishape, ConvBn(with_relu=True), per_channel), ("linear" + postfix, (16, 16), Linear(), per_channel), ("linear_relu" + postfix, (16, 16), Linear(with_relu=True), per_channel), ("conv_transpose", imagenet_ishape, ConvTranspose(), False), ("hsigmoid", imagenet_ishape, Hsigmoid(add_stub=True), False), ("hswish", imagenet_ishape, Hswish(), False), ("semodule", (1, 16, 64, 64), SqueezeExcite(16, add_stub=True), False), ("semodule, per_channel", (1, 16, 64, 64), SqueezeExcite(16, add_stub=True), True), ("mul_scalar negative", imagenet_ishape, MulScalarNegative(), False), ("leaky_relu", imagenet_ishape, LeakyReLU(), False), ] for (module_name, ishape, raw_module, per_channel) in qmodules: raw_module.eval() inp = torch.rand(ishape) # quantized conv_transpose2d is supported only with qnnpack engine before torch v1.8.0. if module_name == "conv_transpose" and not is_version_greater_than("1.7.1"): prev_engine = torch.backends.quantized.engine torch.backends.quantized.engine = "qnnpack" quantize_model(raw_module, inp, per_channel=per_channel) torch.backends.quantized.engine = prev_engine else: quantize_model(raw_module, inp, per_channel=per_channel) script_module = torch.jit.trace(raw_module, inp).eval() with torch.no_grad(): pt_result = script_module(inp.clone()).numpy() input_name = "input" runtime = get_tvm_runtime(script_module, input_name, ishape) runtime.set_input(input_name, inp.numpy().copy()) runtime.run() tvm_result = runtime.get_output(0).numpy() max_abs_diff = np.max(np.abs(tvm_result - pt_result)) mean_abs_diff = np.mean(np.abs(tvm_result - pt_result)) num_identical = np.sum(tvm_result == pt_result) match_ratio = num_identical / float(np.prod(tvm_result.shape)) print(module_name, max_abs_diff, mean_abs_diff, match_ratio) if "linear" in module_name and tvm.get_global_func("tvm.contrib.cublas.matmul", True): runtime = get_tvm_runtime(script_module, input_name, ishape, target="cuda -libs=cublas") runtime.set_input(input_name, inp.numpy().copy()) runtime.run() cublas_result = runtime.get_output(0).numpy() # It is generally safe to enable this assertion, but disabled for CI # tvm.testing.assert_allclose(cublas_result, pt_result, atol=1e-5, rtol=1e-5) print(np.max(np.abs(cublas_result - pt_result))) # sample outputs """ relu 0.0039215684 2.6052087e-08 0.9999933567176871 leaky_relu 0.0 0.0 1.0 upsample bilinear 0.0 0.0 1.0 conv_bn 0.22062653 0.011478779 0.6909348115006899 conv_bn_relu 0.3700896 0.010921672 0.7489366477964451 linear 0.15987062 0.009231662 0.794921875 linear_relu 0.14180502 0.0053220326 0.8828125 conv_transpose 0.0033792555 4.4658788e-07 0.9998678439971806 conv_bn, per_channel 0.01654929 2.9486866e-06 0.9998218235127019 conv_bn_relu, per_channel 0.009089053 1.4926576e-06 0.9998357732732732 linear, per_channel 0.0 0.0 1.0 linear_relu, per_channel 0.0 0.0 1.0 hsigmoid 0.002614379 0.00020525524 0.9214896896258503 hswish 0.0026143193 1.7367661e-08 0.9999933567176871 hswish, per_channel 0.0 0.0 1.0 semodule, per_channel 0.0039885044 0.0008620687 0.7838592529296875 mul_scalar negative 0.0011764616 7.815566e-09 0.9999933567176871 """ # we cannot make any guarantee on how close the raw output is to torch # tvm.testing.assert_allclose(tvm_result, pt_result, rtol=1e-1, atol=1e-1) def test_quantized_imagenet(): def get_transform(): import torchvision.transforms as transforms normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) return transforms.Compose( [transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize] ) def get_real_image(im_height, im_width): repo_base = "https://github.com/dmlc/web-data/raw/main/tensorflow/models/InceptionV1/" img_name = "elephant-299.jpg" image_url = os.path.join(repo_base, img_name) img_path = download_testdata(image_url, img_name, module="data") return Image.open(img_path).resize((im_height, im_width)) def get_imagenet_input(): im = get_real_image(224, 224) preprocess = get_transform() pt_tensor = preprocess(im) return np.expand_dims(pt_tensor.numpy(), 0) from torchvision.models.quantization import resnet as qresnet from torchvision.models.quantization import mobilenet as qmobilenet from torchvision.models.quantization import inception as qinception from torchvision.models.quantization import googlenet as qgooglenet from torchvision.models.quantization import mobilenet_v3_large as qmobilenet_v3_large per_channel = True qmodels = [ ("resnet18", qresnet.resnet18(pretrained=True), per_channel), ("mobilenet_v2", qmobilenet.mobilenet_v2(pretrained=True), per_channel), ("inception_v3", qinception.inception_v3(pretrained=True), per_channel), # tracing quantized googlenet broken as of v1.6 # ("googlenet", qgooglenet(pretrained=True), per_channel), # As of v1.10, quantized mobilenet v3 has a weird segfault issue # during make_conv_packed_param # See https://ci.tlcpack.ai/blue/organizations/jenkins/tvm/detail/ci-docker-staging/192 # ("mobilenet_v3_large", qmobilenet_v3_large(pretrained=True, quantize=True).eval(), True) ] results = [] for (model_name, raw_model, per_channel) in qmodels: raw_model.eval() if per_channel: model_name += ", per channel quantization" else: model_name += ", per tensor quantization" inp = get_imagenet_input() pt_inp = torch.from_numpy(inp) if "mobilenet_v3_large" not in model_name: # mv3 was qat-ed, quantize=True option above makes it already quantized quantize_model(raw_model, pt_inp, per_channel=per_channel) script_module = torch.jit.trace(raw_model, pt_inp).eval() with torch.no_grad(): pt_result = script_module(pt_inp).numpy() input_name = "image" runtime = get_tvm_runtime(script_module, input_name, (1, 3, 224, 224)) runtime.set_input(input_name, inp) runtime.run() tvm_result = runtime.get_output(0).numpy() results.append((model_name, pt_result[0], tvm_result[0])) for (model_name, pt_result, tvm_result) in results: max_abs_diff = np.max(np.abs(tvm_result - pt_result)) mean_abs_diff = np.mean(np.abs(tvm_result - pt_result)) num_identical = np.sum(tvm_result == pt_result) pt_top3_labels = np.argsort(pt_result)[::-1][:3] tvm_top3_labels = np.argsort(tvm_result)[::-1][:3] print("\nModel name: %s" % model_name) print("PyTorch top3 label:", pt_top3_labels) print("TVM top3 label:", tvm_top3_labels) print("max abs diff:", max_abs_diff) print("mean abs_diff:", mean_abs_diff) print("%d in 1000 raw outputs identical." % num_identical) assert set(pt_top3_labels) == set(tvm_top3_labels) # sample outputs """ Model name: resnet18, per tensor quantization PyTorch top3 label: [386 101 385] TVM top3 label: [386 101 385] max abs diff: 0.65681696 mean abs_diff: 0.14055882 236 in 1000 raw outputs identical. Model name: mobilenet_v2, per tensor quantization PyTorch top3 label: [101 386 385] TVM top3 label: [101 386 385] max abs diff: 2.1262953 mean abs_diff: 0.41025686 101 in 1000 raw outputs identical. Model name: inception_v3, per tensor quantization PyTorch top3 label: [101 386 385] TVM top3 label: [101 386 385] max abs diff: 0.9994669 mean abs_diff: 0.098697364 272 in 1000 raw outputs identical. Model name: googlenet, per tensor quantization PyTorch top3 label: [101 386 385] TVM top3 label: [101 386 385] max abs diff: 0.28248847 mean abs_diff: 0.0634469 274 in 1000 raw outputs identical. Model name: resnet18, per channel quantization PyTorch top3 label: [101 386 385] TVM top3 label: [101 386 385] max abs diff: 0.65908074 mean abs_diff: 0.1274223 469 in 1000 raw outputs identical. Model name: mobilenet_v2, per channel quantization PyTorch top3 label: [101 386 385] TVM top3 label: [101 386 385] max abs diff: 0.71120834 mean abs_diff: 0.15883648 423 in 1000 raw outputs identical. Model name: inception_v3, per channel quantization PyTorch top3 label: [386 101 385] TVM top3 label: [386 101 385] max abs diff: 1.3372154 mean abs_diff: 0.1225224 401 in 1000 raw outputs identical. Model name: googlenet, per channel quantization PyTorch top3 label: [101 386 385] TVM top3 label: [101 386 385] max abs diff: 0.34015465 mean abs_diff: 0.054197952 558 in 1000 raw outputs identical. """ def test_serialized_modules(): ishape = (1, 16, 64, 64) raw_module = AdaptiveAvgPool2d().eval() inp = torch.rand(ishape) quantize_model(raw_module, inp) script_module = torch.jit.trace(raw_module, inp).eval() fname = "tmp.pt" torch.jit.save(script_module, fname) loaded = torch.jit.load(fname) os.remove(fname) with torch.no_grad(): pt_result = loaded(inp.clone()).numpy() input_name = "input" runtime = get_tvm_runtime(loaded, input_name, ishape) runtime.set_input(input_name, inp.numpy().copy()) runtime.run() tvm_result = runtime.get_output(0).numpy() # with 0.5ish results, 1e-2 is relative accuracy close to 2**-6. # for simple layers like here this should be achievable # with 8 bit quantization # we only require 90% match just to be sure num_identical = np.sum(np.abs(tvm_result - pt_result) < 1e-2) match_ratio = num_identical / float(np.prod(tvm_result.shape)) assert match_ratio > 0.90 def test_quantize_dynamic(): # A wrapper is required for quantize_dynamic to work correctly class LinearWrapper(nn.Module): def __init__(self, in_dim, hidden_dim): super().__init__() self.linear = nn.Linear(in_dim, hidden_dim) def forward(self, inp): return self.linear(inp) torch.manual_seed(0) mod = LinearWrapper(16, 32) for qconfig in [ torch.quantization.per_channel_dynamic_qconfig, torch.quantization.default_dynamic_qconfig, ]: for ishape in [(16, 16), (10, 16, 16)]: qspec = {nn.Linear: qconfig} qmod = torch.quantization.quantize_dynamic(mod, qconfig_spec=qspec, dtype=torch.qint8) inp = torch.randn(*ishape) script_module = torch.jit.trace(qmod, inp).eval() with torch.no_grad(): pt_result = script_module(inp.clone()).numpy() input_name = "input" runtime = get_tvm_runtime(script_module, "input", inp.shape) runtime.set_input(input_name, inp.numpy().copy()) runtime.run() tvm_result = runtime.get_output(0).numpy() # Only compare with the PyTorch result for version v1.6 or newer # Have seen a strange accuracy problem from PyTorch 1.4 and 1.5 # Even with the manual random seed set, the same PyTorch # version can outputs slightly different results depending on an environment. # Outputs from v1.6 seem reliable. TVM's outputs are always the same if is_version_greater_than("1.5.1"): tvm.testing.assert_allclose(tvm_result, pt_result, rtol=1e-4, atol=1e-4) def make_qnn_add_pattern(): from tvm.relay.dataflow_pattern import wildcard, is_op lhs = wildcard() rhs = wildcard() lhs_scale = wildcard() lhs_zero_point = wildcard() rhs_scale = wildcard() rhs_zero_point = wildcard() output_scale = wildcard() output_zero_point = wildcard() qadd = is_op("qnn.add")( lhs, rhs, lhs_scale, lhs_zero_point, rhs_scale, rhs_zero_point, output_scale, output_zero_point, ) return qadd.optional(is_op("clip")) @register_pattern_table("test_table") def pattern_table(): return [ ("qnn_add", make_qnn_add_pattern()), ] def run_qnn_mergecomposite(script_module, input_name, ishape): input_shapes = [(input_name, ishape)] mod, params = relay.frontend.from_pytorch(script_module, input_shapes) pattern_table = get_pattern_table("test_table") with tvm.transform.PassContext(opt_level=3): pass_list = [ tvm.relay.transform.SimplifyInference(), tvm.relay.transform.MergeComposite(pattern_table), ] composite_partition = tvm.transform.Sequential(pass_list) partitioned = composite_partition(mod) def test_qnn_mergecomposite(): from torchvision.models.quantization import resnet as qresnet model = qresnet.resnet18(pretrained=True) model.eval() inp = torch.zeros((1, 3, 224, 224)) model.fuse_model() model.qconfig = torch.quantization.get_default_qconfig("fbgemm") torch.quantization.prepare(model, inplace=True) model(inp) torch.quantization.convert(model, inplace=True) script_module = torch.jit.trace(model, inp).eval() input_name = "image" run_qnn_mergecomposite(script_module, input_name, inp.shape) def test_keep_quantized_weight(): qmodules = [] for per_channel in [False, True]: qmodules += [ ((1, 3, 224, 224), ConvBn(), per_channel), ((16, 16), Linear(), per_channel), ] for (ishape, raw_module, per_channel) in qmodules: raw_module.eval() inp = torch.rand(ishape) quantize_model(raw_module, inp, per_channel=per_channel) script_module = torch.jit.trace(raw_module, inp).eval() input_name = "input" runtime = get_tvm_runtime(script_module, input_name, ishape, keep_quantized_weight=False) runtime.set_input(input_name, inp.numpy().copy()) runtime.run() tvm_result = runtime.get_output(0).numpy() runtime_int8_weight = get_tvm_runtime( script_module, input_name, ishape, keep_quantized_weight=True ) runtime_int8_weight.set_input(input_name, inp.numpy().copy()) runtime_int8_weight.run() tvm_result_int8_weight = runtime_int8_weight.get_output(0).numpy() tvm.testing.assert_allclose(tvm_result, tvm_result_int8_weight) def test_tuple_lowered(): # See the following discuss thread for details # https://discuss.tvm.apache.org/t/bug-frontend-pytorch-relay-ir-is-inconsistent-with-that-of-the-original-model/12010 class ConvBnRelu(nn.Module): def __init__(self, inp, oup, kernel_size=3, stride=1, padding=1, bias=True, groups=1): super(ConvBnRelu, self).__init__() if groups > 1: self.conv = nn.Conv2d( inp, inp, kernel_size, stride, padding, bias=bias, groups=groups ) self.bn = nn.BatchNorm2d(inp) else: self.conv = nn.Conv2d( inp, oup, kernel_size, stride, padding, bias=bias, groups=groups ) self.bn = nn.BatchNorm2d(oup) self.relu = nn.ReLU(inplace=True) def forward(self, inputs): x = self.conv(inputs) x = self.bn(x) x = self.relu(x) return x def conv_bn(inp, oup, stride=1, width_multiplier=1): return ConvBnRelu(inp, oup, kernel_size=3, stride=stride, padding=1, bias=False) def conv_dw(inp, oup, stride, width_multiplier=1, padding=1): dw_block = nn.Sequential() depth_wise = ConvBnRelu( inp, oup, kernel_size=3, stride=stride, padding=padding, bias=False, groups=inp ) point_wise = ConvBnRelu(inp, oup, kernel_size=1, stride=1, padding=0, bias=False) dw_block.add_module("depth_wise", depth_wise) dw_block.add_module("point_wise", point_wise) return dw_block class Backbone(nn.Module): def __init__(self, width_multiplier=1): super(Backbone, self).__init__() self.width_multiplier = width_multiplier self.conv1 = conv_bn(3, 16, 2, self.width_multiplier) self.conv2 = conv_dw(16, 32, 1, self.width_multiplier) def forward(self, inputs): x1 = self.conv1(inputs) x2 = self.conv2(x1) return [x1, x2] class QuantizableBackbone(nn.Module): def __init__(self, inputsize=(128, 128)): super(QuantizableBackbone, self).__init__() self.quant = QuantStub() self.dequant = DeQuantStub() self.backbone = Backbone() def fuse_model(self): fuse_modules_qat = getattr(torch.ao.quantization, "fuse_modules_qat", fuse_modules) for idx, m in enumerate(self.modules()): if type(m) == ConvBnRelu: fuse_modules_qat(m, ["conv", "bn", "relu"], inplace=True) def forward(self, input): input = self.quant(input) y0, y1 = self.backbone(input) y0 = self.dequant(y0) y1 = self.dequant(y1) return y0, y1 fp32_input = torch.randn(1, 3, 128, 128) model = QuantizableBackbone() model.train() model.fuse_model() model.qconfig = get_default_qat_qconfig("qnnpack") prepare_qat(model, inplace=True) model.eval() model(fp32_input) model_int8 = torch.quantization.convert(model, inplace=True) script_module = torch.jit.trace(model_int8, fp32_input).eval() input_infos = [("input", (fp32_input.shape, "float32"))] mod, _ = relay.frontend.from_pytorch(script_module, input_infos) output = mod["main"].body assert isinstance(output, relay.Tuple) and len(output) == 2 dq1, dq2 = output assert str(dq1.op) == "qnn.dequantize" and str(dq2.op) == "qnn.dequantize" scale1 = dq1.args[1].data.numpy().item() scale2 = dq2.args[1].data.numpy().item() assert scale1 != scale2
https://github.com/zk-ml/tachikoma
tests/python/frontend/pytorch/test_forward.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=import-self, invalid-name, unused-argument """Unit tests for various models and operators""" import os import platform import sys from packaging import version as package_version import pytest import numpy as np import tvm import tvm.testing from tvm import relay from tvm.contrib import graph_executor from tvm.contrib.nvcc import have_fp16 from tvm.contrib import cudnn import torch from torch.nn import Module from torch.nn import functional as F import torchvision sys.setrecursionlimit(10000) if torch.cuda.is_available(): torch.backends.cuda.matmul.allow_tf32 = False torch.backends.cudnn.allow_tf32 = False def list_ops(expr): """list_ops""" class OpLister(tvm.relay.ExprVisitor): """OpLister inherits from ExprVisitor""" def visit_op(self, op): if op not in self.node_set: self.node_list.append(op) return super().visit_op(op) def list_nodes(self, expr): self.node_set = {} self.node_list = [] self.visit(expr) return self.node_list return OpLister().list_nodes(expr) def assert_shapes_match(tru, est): """Verfiy whether the shapes are equal""" if tru.shape != est.shape: msg = "Output shapes {} and {} don't match" raise AssertionError(msg.format(tru.shape, est.shape)) def load_torchvision(model_name): """Given a model name, returns a Torchvision model in eval mode as well as an example input.""" with torch.no_grad(): if model_name.startswith("inception"): height = width = 299 mean = [0.5, 0.5, 0.5] std = [0.5, 0.5, 0.5] else: height = width = 224 mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] input_shape = [1, 3, height, width] input_data = torch.randn(input_shape).float() for channel in range(3): input_data[:, channel] -= mean[channel] input_data[:, channel] /= std[channel] if model_name.startswith("googlenet"): model = getattr(torchvision.models, model_name)(pretrained=True, aux_logits=True) else: model = getattr(torchvision.models, model_name)(pretrained=True) model = model.float().eval() return model, [input_data] def load_pretrainedmodels(model_name): """Given a model name, returns a pretrainedmodels.pytorch model in eval mode as well as an example input.""" # pylint: disable=import-outside-toplevel import pretrainedmodels # https://github.com/Cadene/pretrained-models.pytorch model = getattr(pretrainedmodels, model_name)().float().eval() input_shape = [1, *model.input_size] input_data = torch.rand(input_shape).float() * 256 for channel in range(3): input_data[:, channel] -= model.mean[channel] input_data[:, channel] /= model.std[channel] return model, [input_data] def load_model(model_name): """Given a model name, returns a model as well as an example input.""" if hasattr(torchvision.models, model_name): return load_torchvision(model_name) # pylint: disable=import-outside-toplevel try: import pretrainedmodels if hasattr(pretrainedmodels, model_name): return load_pretrainedmodels(model_name) except ModuleNotFoundError as e: raise ModuleNotFoundError("Please install pretrainedmodels.pytorch") from e raise RuntimeError("Model not supported") def verify_model( model_name, input_data=None, custom_convert_map=None, rtol=1e-5, atol=1e-5, expected_ops=None, kind="graph", check_correctness=True, cpu_only=False, ): """Assert that the output of a compiled model matches with that of its baseline.""" input_data = [] if input_data is None else input_data custom_convert_map = custom_convert_map or {} expected_ops = expected_ops or [] if isinstance(model_name, str): baseline_model, baseline_input = load_model(model_name) elif isinstance(input_data, list): baseline_model = model_name baseline_input = input_data elif isinstance(input_data, torch.Tensor) or not input_data.shape: baseline_model = model_name baseline_input = [input_data] else: assert False, "Unexpected input format" if torch.cuda.is_available(): if isinstance(baseline_model, torch.nn.Module): baseline_model = baseline_model.cuda() baseline_input = [inp.cuda() for inp in baseline_input] with torch.no_grad(): baseline_outputs = baseline_model(*[input.clone() for input in baseline_input]) if isinstance(baseline_outputs, tuple): baseline_outputs = tuple(out.cpu().numpy() for out in baseline_outputs) else: baseline_outputs = (baseline_outputs.cpu().numpy(),) trace = torch.jit.trace(baseline_model, [input.clone() for input in baseline_input]) if isinstance(baseline_model, torch.nn.Module): trace = trace.float().eval() if torch.cuda.is_available(): trace = trace.cuda() else: trace = trace.cpu() input_names = [f"input{idx}" for idx, _ in enumerate(baseline_input)] input_shapes = list(zip(input_names, [inp.shape for inp in baseline_input])) mod, params = relay.frontend.from_pytorch(trace, input_shapes, custom_convert_map) for arg in mod["main"].params[: len(input_names)]: assert arg.name_hint in input_names compiled_input = dict(zip(input_names, [inp.clone().cpu().numpy() for inp in baseline_input])) targets = ["llvm"] if not cpu_only: targets.append("cuda") with tvm.transform.PassContext(opt_level=3): for target in targets: if not tvm.runtime.enabled(target): continue dev = tvm.device(target, 0) exe = relay.create_executor( kind, mod=mod, params=params, device=dev, target=target ).evaluate() result = exe(**compiled_input) if not isinstance(result, list): result = [result] for i, baseline_output in enumerate(baseline_outputs): output = result[i].numpy() assert_shapes_match(baseline_output, output) if check_correctness: tvm.testing.assert_allclose(baseline_output, output, rtol=rtol, atol=atol) if expected_ops: def visit(op): if isinstance(op, tvm.ir.op.Op): if op.name in expected_ops: expected_ops.remove(op.name) tvm.relay.analysis.post_order_visit(mod["main"].body, visit) if expected_ops: msg = "TVM Relay do not contain expected ops {}" raise AssertionError(msg.format(expected_ops)) del model_name del baseline_model if torch.cuda.is_available(): torch.cuda.empty_cache() def verify_model_with_input( test_func, input_data, *, input_dict=None, custom_convert_map=None, rtol=1e-5, atol=1e-5, assert_shape_only=False, ): """Generic function to generate and compare Pytorch and TVM output""" input_dict = input_dict or {} custom_convert_map = custom_convert_map or {} baseline_outputs = test_func(*input_data) trace = torch.jit.trace(test_func, [input.clone() for input in input_data]) input_names = [f"input{idx}" for idx, _ in enumerate(input_data)] input_shapes = list(zip(input_names, [inp.shape for inp in input_data])) mod, params = relay.frontend.from_pytorch(trace, input_shapes, custom_convert_map) with tvm.transform.PassContext(opt_level=3): for target in ["llvm", "cuda"]: if not tvm.runtime.enabled(target): continue dev = tvm.device(target, 0) lib = relay.build(mod, target=target, params=params) relay_model = graph_executor.GraphModule(lib["default"](dev)) for name, value in input_dict.items(): relay_model.set_input(name, value) relay_model.run() compiled_output = relay_model.get_output(0).numpy() assert_shapes_match(baseline_outputs, compiled_output) if assert_shape_only is False: tvm.testing.assert_allclose(baseline_outputs, compiled_output, rtol=rtol, atol=atol) # Single operator tests @tvm.testing.uses_gpu def test_forward_pixel_shuffle(): """test_forward_pixel_shuffle""" torch.set_grad_enabled(False) input_shape = [1, 144, 16, 16] input_data = torch.rand(input_shape).float() verify_model(torch.nn.PixelShuffle(2).float().eval(), input_data=input_data) verify_model(torch.nn.PixelShuffle(3).float().eval(), input_data=input_data) verify_model(torch.nn.PixelShuffle(4).float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_add(): """test_forward_add""" torch.set_grad_enabled(False) input_shape = [10] class Add1(Module): def forward(self, *args): return args[0] + args[0] class Add2(Module): def forward(self, *args): return args[0] + 1 class Add3(Module): def forward(self, *args): ones = torch.ones(input_shape, dtype=torch.float) if torch.cuda.is_available(): ones = ones.cuda() return args[0] + ones class Add4(Module): def forward(self, *args): ones = torch.ones([], dtype=torch.float) if torch.cuda.is_available(): ones = ones.cuda() return args[0] + ones input_data = torch.rand(input_shape).float() verify_model(Add1().float().eval(), input_data=input_data) verify_model(Add2().float().eval(), input_data=input_data) verify_model(Add3().float().eval(), input_data=input_data) verify_model(Add4().float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_subtract(): """test_forward_subtract""" torch.set_grad_enabled(False) input_shape = [10] class Subtract1(Module): def forward(self, *args): return args[0] - args[0] class Subtract2(Module): def forward(self, *args): return args[0] - 1 class Subtract3(Module): def forward(self, *args): ones = torch.ones(input_shape) if torch.cuda.is_available(): ones = ones.cuda() return args[0] - ones class Subtract4(Module): def forward(self, *args): ones = torch.ones([]) if torch.cuda.is_available(): ones = ones.cuda() return args[0] - ones input_data = torch.rand(input_shape).float() verify_model(Subtract1().float().eval(), input_data=input_data) verify_model(Subtract2().float().eval(), input_data=input_data) verify_model(Subtract3().float().eval(), input_data=input_data) verify_model(Subtract4().float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_multiply(): """test_forward_multiply""" torch.set_grad_enabled(False) input_shape = [10] class Multiply1(Module): def forward(self, *args): return args[0] * args[0] class Multiply2(Module): def forward(self, *args): return args[0] * 1.0 class Multiply3(Module): def forward(self, *args): ones = torch.ones(input_shape) if torch.cuda.is_available(): ones = ones.cuda() return args[0] * ones class Multiply4(Module): def forward(self, *args): ones = torch.ones([]) if torch.cuda.is_available(): ones = ones.cuda() return args[0] * ones input_data = torch.rand(input_shape).float() verify_model(Multiply1().float().eval(), input_data=input_data) verify_model(Multiply2().float().eval(), input_data=input_data) verify_model(Multiply3().float().eval(), input_data=input_data) verify_model(Multiply4().float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_min_max(): """test_min_max""" class Max(Module): def forward(self, inp): return torch.max(inp) class Min(Module): def forward(self, inp): return torch.min(inp) class Max2(Module): def forward(self, inp): out, _ = torch.max(inp, 1, keepdim=True) return out class Min2(Module): def forward(self, inp): out, _ = torch.min(inp, 0, keepdim=False) return out class Max3(Module): def forward(self, lhs, rhs): return torch.max(lhs, rhs) class Min3(Module): def forward(self, lhs, rhs): return torch.min(lhs, rhs) class Max4(Module): def forward(self, inp): out = torch.amax(inp, (1, 2), keepdim=True) return out class Min4(Module): def forward(self, inp): out = torch.amin(inp, (0, 3), keepdim=False) return out input_data = [torch.rand((10, 10, 10, 10)), torch.rand((10, 10, 10, 10))] verify_model(Max(), input_data=input_data[0]) verify_model(Min(), input_data=input_data[0]) verify_model(Max2(), input_data=input_data[0]) verify_model(Min2(), input_data=input_data[0]) verify_model(Max3(), input_data=input_data) verify_model(Min3(), input_data=input_data) verify_model(Max4(), input_data=input_data[0]) verify_model(Min4(), input_data=input_data[0]) @tvm.testing.uses_gpu def test_minimum_maximum(): """test_minimum_maximum""" class Maximum(Module): def forward(self, lhs, rhs): return torch.maximum(lhs, rhs) class Minimum(Module): def forward(self, lhs, rhs): return torch.minimum(lhs, rhs) input_data = [torch.rand((10, 10, 10, 10)), torch.rand((10, 10, 10, 10))] verify_model(Maximum(), input_data=input_data) verify_model(Minimum(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_reciprocal(): """test_forward_reciprocal""" torch.set_grad_enabled(False) input_shape = [2, 1, 10, 1, 10] class Reciprocal1(Module): def forward(self, *args): return args[0].reciprocal() input_data = torch.rand(input_shape).float() verify_model(Reciprocal1().float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_repeat(): """test_forward_repeat""" torch.set_grad_enabled(False) input_shape = [1, 3] class Repeat1(Module): def forward(self, *args): return args[0].repeat(1, 1) class Repeat2(Module): def forward(self, *args): return args[0].repeat(4, 2) class Repeat3(Module): def forward(self, *args): return args[0].repeat(4, 2, 1) input_data = torch.rand(input_shape).float() verify_model(Repeat1().float().eval(), input_data=input_data) verify_model(Repeat2().float().eval(), input_data=input_data) verify_model(Repeat3().float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_repeat_interleave(): """test_forward_repeat_interleave""" torch.set_grad_enabled(False) input_shape = [2, 2, 3] class RepeatInterleave1(Module): def forward(self, *args): return args[0].repeat_interleave(2) class RepeatInterleave2(Module): def forward(self, *args): return args[0].repeat_interleave(3, dim=0) class RepeatInterleave3(Module): def forward(self, *args): return args[0].repeat_interleave(2, dim=1) class RepeatInterleave4(Module): def forward(self, *args): return args[0].repeat_interleave(4, dim=2) input_data = torch.rand(input_shape).float() verify_model(RepeatInterleave1().float().eval(), input_data=input_data) verify_model(RepeatInterleave2().float().eval(), input_data=input_data) verify_model(RepeatInterleave3().float().eval(), input_data=input_data) verify_model(RepeatInterleave4().float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_unsqueeze(): """test_forward_unsqueeze""" torch.set_grad_enabled(False) input_shape = [10, 10] class Unsqueeze1(Module): def forward(self, *args): return args[0].unsqueeze(2) class Unsqueeze2(Module): def forward(self, *args): _ = args[0].unsqueeze_(2) # Check whether operations after inplace unsqueeze works as expected y = args[0].squeeze(2) return torch.add(y, y) input_data = torch.rand(input_shape).float() verify_model(Unsqueeze1().float().eval(), input_data=input_data) verify_model(Unsqueeze2().float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_squeeze(): """test_forward_squeeze""" torch.set_grad_enabled(False) input_shape = [2, 1, 10, 1, 10] class Squeeze1(Module): def forward(self, *args): return args[0].squeeze() class Squeeze2(Module): def forward(self, *args): return args[0].squeeze(1) input_data = torch.rand(input_shape).float() verify_model(Squeeze1().float().eval(), input_data=input_data) verify_model(Squeeze2().float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_arange(): """test_forward_arange""" torch.set_grad_enabled(False) class Arange1(Module): def forward(self, *args): return torch.arange(5) class Arange2(Module): def forward(self, *args): return torch.arange(2.5) class Arange3(Module): def forward(self, *args): return torch.arange(1, 4) class Arange4(Module): def forward(self, *args): return torch.arange(1, 2.5, 0.5) class Arange5(Module): def forward(self, *args): return torch.arange(1, 2, 1, dtype=torch.int32) class Arange6(Module): def forward(self, *args): return torch.arange(start=1, end=6, step=2) class Arange7(Module): def forward(self, *args): return torch.arange(1, 4, dtype=torch.float32) class Arange8(Module): def forward(self, *args): return torch.arange(1, 2, 1, dtype=torch.int16) class Arange9(Module): def forward(self, *args): end = torch.add(torch.tensor(4), 1) return torch.arange(end) + torch.ones((5,), dtype=torch.int64) class Arange10(Module): def forward(self, *args): end = torch.add(torch.tensor(4.0), torch.tensor(1.0)) return torch.arange(end) + torch.ones((5,), dtype=torch.float) class Arange11(Module): def forward(self, *args): start = torch.add(torch.tensor(1), 1) end = torch.add(torch.tensor(4), 1) step = torch.add(torch.tensor(2), 1) out = torch.arange(start, end, step) return out + torch.ones((3,), dtype=torch.int64) class Arange12(Module): def forward(self, *args): start = torch.add(torch.tensor(1), 1) end = torch.add(torch.tensor(4), 1) step = torch.add(torch.tensor(2.5), torch.tensor(4.1)) out = torch.arange(start, end, step) return out + torch.ones((3,), dtype=torch.float) verify_model(Arange1().float().eval()) verify_model(Arange2().float().eval()) verify_model(Arange3().float().eval()) verify_model(Arange4().float().eval()) verify_model(Arange5().float().eval()) verify_model(Arange6().float().eval()) verify_model(Arange7().float().eval()) verify_model(Arange8().float().eval()) verify_model(Arange9().float().eval()) verify_model(Arange10().float().eval()) verify_model(Arange11().float().eval()) verify_model(Arange12().float().eval()) @tvm.testing.uses_gpu def test_forward_mesh_grid(): """test_forward_mesh_grid""" torch.set_grad_enabled(False) class MeshGrid1(Module): def forward(self, *args): x = torch.tensor([1, 2, 3]) y = torch.tensor([4, 5, 6]) grid_x, grid_y = torch.meshgrid([x, y]) return grid_x, grid_y class MeshGrid2(Module): def forward(self, *args): x = torch.tensor([1, 2, 3], dtype=torch.float32) y = torch.add(torch.tensor(5, dtype=torch.float32), 1) grid_x, grid_y = torch.meshgrid([x, y]) return grid_x, grid_y verify_model(MeshGrid1().float().eval()) verify_model(MeshGrid2().float().eval()) @tvm.testing.uses_gpu def test_forward_abs(): """test_forward_abs""" torch.set_grad_enabled(False) input_shape = [2, 1, 10, 1, 10] class Abs1(Module): def forward(self, *args): return args[0].abs() input_data = torch.rand(input_shape).float() verify_model(Abs1().float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_concatenate(): """test_forward_concatenate""" torch.set_grad_enabled(False) input_shape = [1, 3, 10, 10] class Concatenate1(Module): def forward(self, *args): return torch.cat([args[0][:, 0].unsqueeze(1), args[0][:, 1].unsqueeze(1)], 1) class Concatenate2(Module): def forward(self, *args): a = (args[0][:, :, 0] + 2) * 7 b = (args[0][:, :, 1] + 3) * 11 c = (args[0][:, :, 2] + 5) * 13 return torch.cat([t.unsqueeze(2) for t in [a, b, c]], 2) input_data = torch.rand(input_shape).float() verify_model(Concatenate1().float().eval(), input_data=input_data) verify_model(Concatenate2().float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_relu(): """test_forward_relu""" torch.set_grad_enabled(False) input_shape = [10, 10] input_data = torch.rand(input_shape).float() verify_model(torch.nn.ReLU().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_relu6(): """test_forward_relu6""" torch.set_grad_enabled(False) input_shape = [10, 10] input_data = torch.rand(input_shape).float() verify_model(torch.nn.ReLU6().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_prelu(): """test_forward_prelu""" torch.set_grad_enabled(False) input_shape = [1, 3, 10, 10] input_data = torch.rand(input_shape).float() verify_model(torch.nn.PReLU(num_parameters=3).eval(), input_data=input_data) # Test when input channel > 1 and num parameters = 1 verify_model(torch.nn.PReLU(num_parameters=1).eval(), input_data=input_data) # Test when input dims < 2 verify_model(torch.nn.PReLU(num_parameters=1).eval(), input_data=torch.randn(2)) @tvm.testing.uses_gpu def test_forward_leakyrelu(): """test_forward_leakyrelu""" torch.set_grad_enabled(False) input_shape = [1, 3, 10, 10] input_data = torch.rand(input_shape).float() verify_model(torch.nn.LeakyReLU().eval(), input_data=input_data) verify_model(torch.nn.LeakyReLU(negative_slope=0.05).eval(), input_data=input_data) verify_model(torch.nn.LeakyReLU(negative_slope=1.0, inplace=True).eval(), input_data=input_data) verify_model( torch.nn.LeakyReLU(negative_slope=1.25, inplace=True).eval(), input_data=input_data ) @tvm.testing.uses_gpu def test_forward_elu(): """test_forward_elu""" torch.set_grad_enabled(False) input_shape = [1, 3, 10, 10] input_data = torch.randn(input_shape).float() verify_model(torch.nn.ELU().eval(), input_data=input_data) verify_model(torch.nn.ELU(alpha=0.3).eval(), input_data=input_data) verify_model(torch.nn.ELU(alpha=1.0).eval(), input_data=input_data) verify_model(torch.nn.ELU(alpha=1.3).eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_celu(): """test_forward_celu""" torch.set_grad_enabled(False) input_shape = [1, 3, 10, 10] input_data = torch.rand(input_shape).float() verify_model(torch.nn.CELU().eval(), input_data=input_data) verify_model(torch.nn.CELU(alpha=0.3).eval(), input_data=input_data) verify_model(torch.nn.CELU(alpha=1.0).eval(), input_data=input_data) verify_model(torch.nn.CELU(alpha=1.3).eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_gelu(): """test_forward_gelu""" torch.set_grad_enabled(False) input_shape = [1, 3, 10, 10] input_data = torch.rand(input_shape).float() verify_model(torch.nn.GELU().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_selu(): """test_forward_selu""" torch.set_grad_enabled(False) input_shape = [1, 3, 10, 10] input_data = torch.rand(input_shape).float() verify_model(torch.nn.SELU().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_silu(): """test_forward_silu""" torch.set_grad_enabled(False) input_shape = [1, 3, 10, 10] input_data = torch.rand(input_shape).float() verify_model(torch.nn.SiLU().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_glu(): """test_forward_glu""" torch.set_grad_enabled(False) input_shape = [1, 3, 10, 10] input_data = torch.rand(input_shape).float() verify_model(torch.nn.GLU().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_softplus(): """test_forward_softplus""" torch.set_grad_enabled(False) input_shape = [1, 3, 10, 10] input_data = torch.rand(input_shape).float() verify_model(torch.nn.Softplus().eval(), input_data=input_data) verify_model(torch.nn.Softplus(beta=1.5, threshold=20).eval(), input_data=input_data) verify_model(torch.nn.Softplus(beta=5, threshold=10).eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_softsign(): """test_forward_softsign""" torch.set_grad_enabled(False) input_shape = [1, 3, 10, 10] input_data = torch.rand(input_shape).float() verify_model(torch.nn.Softsign().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_log_sigmoid(): """test_forward_log_sigmoid""" torch.set_grad_enabled(False) input_shape = [10, 10] input_data = torch.rand(input_shape).float() input_data_overflow = torch.tensor([-300.0, -100.0]).float() verify_model(torch.nn.LogSigmoid().eval(), input_data=input_data) verify_model(torch.nn.LogSigmoid().eval(), input_data=input_data_overflow) @tvm.testing.uses_gpu def test_forward_adaptive_avgpool(): """test_forward_adaptive_avgpool""" torch.set_grad_enabled(False) input_shape = [1, 3, 10, 10] input_data = torch.rand(input_shape).float() verify_model(torch.nn.AdaptiveAvgPool2d([1, 1]).eval(), input_data=input_data) verify_model(torch.nn.AdaptiveAvgPool2d([10, 10]).eval(), input_data=input_data) input_data = torch.rand([1, 3, 10]).float() verify_model(torch.nn.AdaptiveAvgPool1d([1]).eval(), input_data=input_data) verify_model(torch.nn.AdaptiveAvgPool1d([5]).eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_adaptive_maxpool(): """test_forward_adaptive_maxpool""" torch.set_grad_enabled(False) input_shape = [1, 3, 10, 10] input_data = torch.rand(input_shape).float() verify_model(torch.nn.AdaptiveMaxPool2d([1, 1]).eval(), input_data=input_data) verify_model(torch.nn.AdaptiveMaxPool2d([10, 10]).eval(), input_data=input_data) input_data = torch.rand([1, 3, 10]).float() verify_model(torch.nn.AdaptiveMaxPool1d([1]).eval(), input_data=input_data) verify_model(torch.nn.AdaptiveMaxPool1d([5]).eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_maxpool2d(): """test_forward_maxpool2d""" torch.set_grad_enabled(False) input_shape = [1, 3, 10, 10] input_data = torch.rand(input_shape).float() verify_model(torch.nn.MaxPool2d(kernel_size=[1, 1]).eval(), input_data) verify_model(torch.nn.MaxPool2d(kernel_size=[2, 2], dilation=[2, 3]).eval(), input_data) verify_model(torch.nn.MaxPool2d(kernel_size=[10, 10]).eval(), input_data) verify_model(torch.nn.MaxPool2d(kernel_size=[4, 4], padding=2, stride=2).eval(), input_data) # A functional variant (default strides = None case) class MaxPool2D(Module): def forward(self, *args): return torch.nn.functional.max_pool2d(args[0], kernel_size=[10, 10]) verify_model(MaxPool2D(), input_data=input_data) class MaxPool2DWithIndices(Module): def __init__(self): super().__init__() self.pool = torch.nn.MaxPool2d(kernel_size=[1, 1], return_indices=True) def forward(self, *args): output, _ = self.pool(args[0]) return output class MaxPool2DWithIntStrides(Module): def forward(self, *args): # Makes kernel_size and strides a Relay expr to test converting back to int x_shape = args[0].shape # kernel_size = [torch.tensor(x_shape[1]).int(), torch.tensor(x_shape[1]).int()] strides = [torch.tensor(x_shape[0]).int(), torch.tensor(x_shape[0]).int()] return torch.nn.functional.max_pool2d(args[0], kernel_size=[4, 4], stride=strides) verify_model(MaxPool2DWithIndices().float().eval(), input_data=input_data) verify_model(MaxPool2DWithIntStrides().float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_maxpool1d(): """test_forward_maxpool1d""" torch.set_grad_enabled(False) input_shape = [1, 3, 10] input_data = torch.rand(input_shape).float() verify_model(torch.nn.MaxPool1d(kernel_size=1).eval(), input_data) verify_model(torch.nn.MaxPool1d(kernel_size=2, dilation=[1]).eval(), input_data) verify_model(torch.nn.MaxPool1d(kernel_size=10).eval(), input_data) verify_model(torch.nn.MaxPool1d(kernel_size=4, padding=2, stride=2).eval(), input_data) # A functional variant (default strides = None case) class MaxPool1D(Module): def forward(self, *args): return torch.nn.functional.max_pool1d(args[0], kernel_size=10) verify_model(MaxPool1D(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_maxpool3d(): """test_forward_maxpool3d""" torch.set_grad_enabled(False) for input_shape in [(1, 3, 10, 10, 10), (3, 10, 10, 10)]: input_data = torch.rand(input_shape).float() verify_model(torch.nn.MaxPool3d(kernel_size=[1, 1, 1]).eval(), input_data) verify_model( torch.nn.MaxPool3d(kernel_size=[2, 2, 2], dilation=[1, 2, 3]).eval(), input_data ) verify_model(torch.nn.MaxPool3d(kernel_size=[10, 10, 10]).eval(), input_data) verify_model( torch.nn.MaxPool3d(kernel_size=[4, 4, 4], padding=2, stride=2).eval(), input_data ) # A functional variant (default strides = None case) class MaxPool3D(Module): def forward(self, *args): return torch.nn.functional.max_pool3d(args[0], kernel_size=[10, 10, 10]) verify_model(MaxPool3D(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_split(): """test_forward_split""" torch.set_grad_enabled(False) input_shape = [4, 10] class Split(Module): def __init__(self, split_size_or_sections, dim): super().__init__() self.split_size_or_sections = split_size_or_sections self.dim = dim def forward(self, *args): return torch.split(args[0], self.split_size_or_sections, self.dim) input_data = torch.rand(input_shape).float() verify_model(Split(2, 0).float().eval(), input_data=input_data) verify_model(Split(3, 1).float().eval(), input_data=input_data) verify_model(Split(4, 1).float().eval(), input_data=input_data) verify_model(Split([2, 3, 5], 1).float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_tensor_split(): """test_forward_tensor_split""" torch.set_grad_enabled(False) input_shape = [4, 10] class Tensor_Split(Module): def __init__(self, split_size_or_sections, dim): super().__init__() self.split_size_or_sections = split_size_or_sections self.dim = dim def forward(self, *args): return torch.tensor_split(args[0], self.split_size_or_sections, self.dim) input_data = torch.rand(input_shape).float() verify_model(Tensor_Split(2, 0).float().eval(), input_data=input_data) verify_model(Tensor_Split(torch.tensor(3), 1).float().eval(), input_data=input_data) verify_model(Tensor_Split([2, 3, 5], 1).float().eval(), input_data=input_data) verify_model(Tensor_Split((2, 3, 5), 1).float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_avgpool1d(): """test_forward_avgpool1d""" torch.set_grad_enabled(False) input_shape = [1, 3, 10] class AvgPool1D2(Module): def forward(self, *args): return torch.nn.functional.avg_pool1d(args[0], kernel_size=[10]) input_data = torch.rand(input_shape).float() verify_model(torch.nn.AvgPool1d(kernel_size=[10]).eval(), input_data=input_data) verify_model(AvgPool1D2().float().eval(), input_data=input_data) verify_model( torch.nn.AvgPool1d(kernel_size=[5], stride=2, padding=2).eval(), input_data=input_data ) @tvm.testing.uses_gpu def test_forward_avgpool2d(): """test_forward_avgpool2d""" torch.set_grad_enabled(False) input_shape = [1, 3, 10, 10] class AvgPool2D2(Module): def forward(self, *args): return torch.nn.functional.avg_pool2d(args[0], kernel_size=[10, 10]) input_data = torch.rand(input_shape).float() verify_model(torch.nn.AvgPool2d(kernel_size=[10, 10]).eval(), input_data=input_data) verify_model(AvgPool2D2().float().eval(), input_data=input_data) verify_model( torch.nn.AvgPool2d(kernel_size=5, stride=2, padding=2).eval(), input_data=input_data ) input_shape = [1, 1, 1, 9] input_data = torch.rand(input_shape).float() verify_model( torch.nn.AvgPool2d( kernel_size=[1, 2], stride=[1, 2], ceil_mode=True, count_include_pad=True ).eval(), input_data=input_data, ) @tvm.testing.uses_gpu def test_forward_avgpool3d(): """test_forward_avgpool3d""" torch.set_grad_enabled(False) input_shape = [1, 3, 10, 10, 10] class AvgPool3D1(Module): def forward(self, *args): return torch.nn.functional.avg_pool3d(args[0], kernel_size=[10, 10, 10]) input_data = torch.rand(input_shape).float() verify_model(torch.nn.AvgPool3d(kernel_size=[10, 10, 10]).eval(), input_data=input_data) verify_model(AvgPool3D1().float().eval(), input_data=input_data) verify_model( torch.nn.AvgPool3d(kernel_size=5, stride=2, padding=2).eval(), input_data=input_data ) @tvm.testing.uses_gpu def test_forward_hardtanh(): """test_forward_hardtanh""" torch.set_grad_enabled(False) input_shape = [10] input_data = torch.rand(input_shape).float() verify_model(torch.nn.Hardtanh().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_conv(): """test_forward_conv""" torch.set_grad_enabled(False) conv1d_input_shape = [1, 3, 10] conv2d_input_shape = [1, 3, 10, 10] class Conv2D1(Module): def __init__(self): super().__init__() self.conv = torch.nn.Conv2d(3, 6, 7, bias=True) self.softmax = torch.nn.Softmax() def forward(self, *args): return self.softmax(self.conv(args[0])) class Conv2D2(Module): def __init__(self): super().__init__() self.conv = torch.nn.Conv2d(3, 6, 7, bias=False) self.softmax = torch.nn.Softmax() def forward(self, *args): return self.softmax(self.conv(args[0])) class Conv2D3(Module): def __init__(self): super().__init__() self.conv = torch.nn.Conv2d(3, 6, 7, groups=3, bias=False) self.softmax = torch.nn.Softmax() def forward(self, *args): return self.softmax(self.conv(args[0])) class Conv1D1(Module): def __init__(self): super().__init__() self.conv = torch.nn.Conv1d(3, 6, 7) self.softmax = torch.nn.Softmax() def forward(self, *args): return self.softmax(self.conv(args[0])) class Conv1D2(Module): def __init__(self): super().__init__() self.conv = torch.nn.Conv1d(3, 6, 7, bias=False) self.softmax = torch.nn.Softmax() def forward(self, *args): return self.softmax(self.conv(args[0])) class Conv1D3(Module): def __init__(self): super().__init__() self.conv = torch.nn.Conv1d(3, 6, 7, groups=3, bias=False) self.softmax = torch.nn.Softmax() def forward(self, *args): return self.softmax(self.conv(args[0])) conv2d_input_data = torch.rand(conv2d_input_shape).float() verify_model(Conv2D1().float().eval(), input_data=conv2d_input_data) verify_model(Conv2D2().float().eval(), input_data=conv2d_input_data) # depth wise conv with channel mult 2 verify_model(Conv2D3().float().eval(), input_data=conv2d_input_data) # group conv verify_model( torch.nn.Conv2d(8, 8, kernel_size=(3, 3), stride=(1, 1), groups=2).eval(), input_data=torch.randn((1, 8, 16, 16)), ) conv1d_input_data = torch.rand(conv1d_input_shape).float() verify_model(Conv1D1().float().eval(), input_data=conv1d_input_data) verify_model(Conv1D2().float().eval(), input_data=conv1d_input_data) verify_model(Conv1D3().float().eval(), input_data=conv1d_input_data) @tvm.testing.uses_gpu @pytest.mark.parametrize("in_channels", [3], ids=lambda x: "in_channels=" + str(x)) @pytest.mark.parametrize("out_channels", [5], ids=lambda x: "out_channels=" + str(x)) @pytest.mark.parametrize("kernel_size", [3], ids=lambda x: "kernel_size=" + str(x)) @pytest.mark.parametrize("output_padding", [0, 1, 2], ids=lambda x: "output_padding=" + str(x)) @pytest.mark.parametrize("groups", [1], ids=lambda x: "groups=" + str(x)) @pytest.mark.parametrize("bias", [True, False], ids=lambda x: "bias=" + str(x)) def test_forward_conv_transpose( in_channels, out_channels, kernel_size, output_padding, bias, groups ): """test_forward_conv_transpose""" # Note we do not test with groups > 1 because that is not supported # in tvm for conv transpose operations # Output padding must be smaller than either stride or dilation so we # opt to make the stride 1 + output padding stride = output_padding + 1 # Conv 3D Transpose Tests conv3d_input_shape = [1, in_channels, 16, 16, 16] conv3d_input_data = torch.rand(conv3d_input_shape).float() conv3d_transpose = torch.nn.ConvTranspose3d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, output_padding=output_padding, groups=groups, bias=bias, ).eval() verify_model(conv3d_transpose, conv3d_input_data) # Conv 2D Transpose Tests conv2d_input_shape = [1, in_channels, 128, 256] conv2d_input_data = torch.rand(conv2d_input_shape).float() conv2d_transpose = torch.nn.ConvTranspose2d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, output_padding=output_padding, groups=groups, bias=bias, ).eval() verify_model(conv2d_transpose, conv2d_input_data) # # Conv 1D Transpose Tests conv1d_input_shape = [1, in_channels, 10] conv1d_input_data = torch.rand(conv1d_input_shape).float() conv1d_transpose = torch.nn.ConvTranspose1d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, output_padding=output_padding, groups=groups, bias=bias, ).eval() verify_model(conv1d_transpose, conv1d_input_data) @tvm.testing.uses_gpu def test_forward_conv2d_transpose_group(): """test_forward_conv2d_transpose_group""" # https://github.com/apache/tvm/issues/10223 class ModulatedConvTranspose2D(torch.nn.Module): """ModulatedConvTranspose2D module""" def forward(self, x, w, s): """forward""" B, C, H, W = x.shape I, O, KH, KW = w.shape # weight is different for each input in batch (this is why we want grouped conv # transpose) w = w.unsqueeze(0) * s.reshape(B, 1, 1, 1, 1) w = w.reshape(B * I, O, KH, KW) x = x.reshape(1, B * C, H, W) x = torch.nn.functional.conv_transpose2d( x, w, stride=(2, 2), padding=(1, 1), output_padding=(1, 1), groups=B ) return x.reshape(B, O, H * 2, W * 2) b, c, h, w, k = 4, 512, 8, 16, 3 inputs = torch.rand(b, c, h, w) weights = torch.rand(c, c // 2, k, k) styles = torch.rand(b) # cuda not supported for group > 1 conv2d_transpose targets = ["llvm"] if cudnn.exists(): targets.append("cuda -libs=cudnn") verify_trace_model(ModulatedConvTranspose2D().eval(), [inputs, weights, styles], targets) def test_forward_deform_conv(): """test_forward_deform_conv""" torch.set_grad_enabled(False) def test_run( batch_size, in_channels, out_channels, in_height, in_width, out_height, out_width, offset_groups, kh, kw, groups, ): input_shape = [batch_size, in_channels, in_height, in_width] offset_shape = [batch_size, 2 * offset_groups * kh * kw, out_height, out_width] weight_shape = [out_channels, in_channels // groups, kh, kw] input_data = torch.rand(input_shape) offset_data = torch.rand(offset_shape) weight_data = torch.rand(weight_shape) class DeformConv2D(Module): def forward(self, *args): return torchvision.ops.deform_conv2d(args[0], args[1], args[2]) verify_model( DeformConv2D().float().eval(), input_data=[input_data, offset_data, weight_data], rtol=1e-4, atol=1e-4, ) batch_size = 4 in_channels, out_channels = 4, 6 in_height, in_width = 10, 10 out_height, out_width = 8, 8 offset_groups = 2 kh, kw = 3, 3 groups = 1 test_run( batch_size, in_channels, out_channels, in_height, in_width, out_height, out_width, offset_groups, kh, kw, groups, ) batch_size = 5 in_channels, out_channels = 4, 6 in_height, in_width = 10, 10 out_height, out_width = 8, 8 offset_groups = 1 kh, kw = 3, 3 groups = 1 test_run( batch_size, in_channels, out_channels, in_height, in_width, out_height, out_width, offset_groups, kh, kw, groups, ) @tvm.testing.uses_gpu def test_forward_threshold(): """test_forward_threshold""" torch.set_grad_enabled(False) input_shape = [1, 3] input_data = torch.rand(input_shape).float() verify_model(torch.nn.Threshold(0, 0).float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_contiguous(): """test_forward_contiguous""" torch.set_grad_enabled(False) input_shape = [10] class Contiguous1(Module): def forward(self, *args): return args[0].contiguous() input_data = torch.rand(input_shape).float() verify_model(Contiguous1().float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_batchnorm(): """test_forward_batchnorm""" def init_weight(m): torch.nn.init.normal_(m.weight, 0, 0.01) torch.nn.init.normal_(m.bias) inp_2d = torch.rand((1, 16, 10, 10)) inp_3d = torch.rand((1, 16, 10, 10, 10)) for bn, inp in [(torch.nn.BatchNorm2d(16), inp_2d), (torch.nn.BatchNorm3d(16), inp_3d)]: init_weight(bn.eval()) verify_model(bn.eval(), input_data=inp) @tvm.testing.uses_gpu def test_forward_instancenorm(): """test_forward_instancenorm""" inp_2d = torch.rand((1, 16, 10, 10)) inp_3d = torch.rand((1, 16, 10, 10, 10)) for ins_norm, inp in [ (torch.nn.InstanceNorm2d(16), inp_2d), (torch.nn.InstanceNorm3d(16), inp_3d), ]: verify_model(ins_norm.eval(), input_data=inp) @tvm.testing.uses_gpu def test_forward_layernorm(): """test_forward_layernorm""" def init_weight(m): torch.nn.init.normal_(m.weight, 0, 0.01) torch.nn.init.normal_(m.bias, 0.02) inp_2d = torch.rand((1, 16, 10, 10)) inp_3d = torch.rand((1, 16, 10, 10, 10)) for ln, inp in [(torch.nn.LayerNorm(10), inp_2d), (torch.nn.LayerNorm(10), inp_3d)]: init_weight(ln.eval()) verify_model(ln.eval(), input_data=inp) @tvm.testing.uses_gpu def test_forward_groupnorm(): """test_forward_groupnorm""" input_shape = [10, 6, 5, 5] input_data = torch.rand(input_shape).float() # Separate 6 channels into 3 groups verify_model(torch.nn.GroupNorm(3, 6).eval(), input_data=input_data) # Put all 6 channels into a single group (equivalent with LayerNorm) verify_model(torch.nn.GroupNorm(1, 6).eval(), input_data=input_data) # Separate 6 channels into 6 groups (equivalent with InstanceNorm) verify_model(torch.nn.GroupNorm(6, 6).eval(), input_data=input_data) input_shape = [1, 10, 4, 7] input_data = torch.rand(input_shape).float() verify_model(torch.nn.GroupNorm(1, 10).eval(), input_data=input_data) verify_model(torch.nn.GroupNorm(2, 10).eval(), input_data=input_data) verify_model(torch.nn.GroupNorm(5, 10).eval(), input_data=input_data) verify_model(torch.nn.GroupNorm(10, 10).eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_reshape(): """test_forward_reshape""" torch.set_grad_enabled(False) input_shape = [2, 1, 10, 1, 10] new_shape = [2, 1, 10, 10] class Reshape1(Module): def forward(self, *args): return args[0].reshape(new_shape) class Reshape2(Module): def forward(self, *args): return args[0].reshape([-1]) class Reshape3(torch.nn.Module): def forward(self, x): x_shape = x.shape return x.reshape((x_shape[0] * x_shape[1], x_shape[2])) input_data = torch.rand(input_shape).float() verify_model(Reshape1(), input_data=input_data) verify_model(Reshape2(), input_data=input_data) verify_model(Reshape3(), input_data=torch.randn(2, 3, 4)) @tvm.testing.uses_gpu def test_forward_reshape_as(): """test_forward_reshape_as""" def test_func(input_tensor, other_tensor): return input_tensor.reshape_as(other_tensor) input_data = [torch.rand([2, 1, 10, 1, 10]), torch.rand([2, 1, 10, 10])] verify_model_with_input(test_func, input_data, input_dict={"input0": input_data[0]}) @tvm.testing.uses_gpu def test_flatten(): """test_flatten""" def _test_flatten(start_dim, end_dim): return lambda inp: torch.flatten(inp, start_dim, end_dim) inp = torch.rand((3, 5, 2, 2)) # [3, 5, 2, 2] -> [60] verify_model(_test_flatten(0, -1), inp) verify_model(_test_flatten(0, 3), inp) verify_model(_test_flatten(-4, 3), inp) verify_model(_test_flatten(-4, -1), inp) # [3, 5, 2, 2] -> [3, 5, 2, 2] verify_model(_test_flatten(3, -1), inp) verify_model(_test_flatten(-1, -1), inp) verify_model(_test_flatten(0, -4), inp) verify_model(_test_flatten(-4, -4), inp) # [3, 5, 2, 2] -> [3, 10, 2] verify_model(_test_flatten(1, 2), inp) verify_model(_test_flatten(1, -2), inp) verify_model(_test_flatten(-3, 2), inp) verify_model(_test_flatten(-3, -2), inp) @tvm.testing.uses_gpu def test_forward_transpose(): """test_forward_transpose""" torch.set_grad_enabled(False) input_shape = [1, 3, 10, 10] class Transpose1(Module): def forward(self, *args): return args[0].transpose(2, 3) class Transpose2(Module): def forward(self, *args): return args[0].transpose(-2, -1) class Transpose3(Module): def forward(self, *args): return args[0].permute(0, 2, 3, 1) input_data = torch.rand(input_shape).float() verify_model(Transpose1().float().eval(), input_data=input_data) verify_model(Transpose2().float().eval(), input_data=input_data) verify_model(Transpose3().float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_numpy_T(): """test_forward_numpy_T""" torch.set_grad_enabled(False) input_shape = [1, 3, 10, 10] def test_fn(x): return x.T input_data = torch.rand(input_shape).float() verify_model(test_fn, input_data=input_data) @tvm.testing.uses_gpu def test_forward_size(): """test_forward_size""" torch.set_grad_enabled(False) input_shape = [1, 3] class Size1(Module): def forward(self, *args): return float(args[0].size(0)) * args[0] input_data = torch.rand(input_shape).float() verify_model(Size1().float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_type_as(): """test_type_as""" torch.set_grad_enabled(False) input_shape = [1, 3] def _create_module(dtype): class TypeAs(Module): def forward(self, *args): expected_type_tensor = torch.zeros(1, 3, dtype=dtype) return args[0].type_as(expected_type_tensor) return TypeAs() input_data = torch.randn(input_shape).float() verify_model(_create_module(torch.float64), input_data=input_data) verify_model(_create_module(torch.float32), input_data=input_data) verify_model(_create_module(torch.int64), input_data=input_data) verify_model(_create_module(torch.int32), input_data=input_data) verify_model(_create_module(torch.int16), input_data=input_data) verify_model(_create_module(torch.int8), input_data=input_data) if torch.cuda.is_available(): check_fp16 = False try: # Only check half precision on supported hardwares. if have_fp16(tvm.cuda(0).compute_version): check_fp16 = True # pylint: disable=broad-except except Exception: # If GPU is not enabled in TVM, skip the fp16 test. pass # Temporary disable fp16 test check_fp16 = False if check_fp16: verify_model(_create_module(torch.float16), input_data=input_data) @tvm.testing.uses_gpu def test_forward_view(): """test_forward_view""" torch.set_grad_enabled(False) input_shape = [1, 3, 10, 10] class View1(Module): def forward(self, *args): return args[0].view((1, 3 * 10 * 10)) class View2(Module): def forward(self, *args): return args[0].view(args[0].shape[0], -1) class View3(Module): def forward(self, *args): d1 = torch.tensor(3) * torch.tensor(10) * torch.tensor(10) return args[0].view(args[0].shape[0], d1) input_data = torch.rand(input_shape).float() verify_model(View1().float().eval(), input_data=input_data) verify_model(View2().float().eval(), input_data=input_data) verify_model(View3().float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_select(): """test_forward_select""" torch.set_grad_enabled(False) input_shape = [5, 3, 10, 10] class Select1(Module): def forward(self, *args): return args[0].select(1, 1) class IndexedSelect(Module): def __init__(self, inp, dim): super().__init__() self.inp = inp self.dim = dim if torch.cuda.is_available(): self.inp = self.inp.cuda() def forward(self, index): return torch.index_select(self.inp, self.dim, index) input_data = torch.rand(input_shape).float() verify_model(Select1().float().eval(), input_data=input_data) # test negative indexing verify_model(lambda x: x[-1], input_data=input_data) x = torch.randn(3, 4) indices = torch.tensor([0, 2]) verify_model(IndexedSelect(x, 0).eval(), input_data=indices) verify_model(IndexedSelect(x, 1).eval(), input_data=indices) @tvm.testing.uses_gpu def test_forward_clone(): """test_forward_clone""" torch.set_grad_enabled(False) input_shape = [10] class Clone1(Module): def forward(self, *args): return args[0].clone() input_data = torch.rand(input_shape).float() verify_model(Clone1().float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_gather(): """test_forward_gather""" torch.set_grad_enabled(False) class Gather1(Module): def forward(self, *args): return torch.gather(args[0], 0, args[1]) class Gather2(Module): def forward(self, *args): return torch.gather(args[0], 1, args[1]) class Gather3(Module): def forward(self, *args): return torch.gather(args[0], 2, args[1]) input_data = torch.rand((4,)).float() index = torch.tensor([1]) verify_model(Gather1().float().eval(), input_data=[input_data, index]) input_data = torch.rand((2, 2)).float() index = torch.tensor([[1, 0], [0, 1]]) verify_model(Gather1().float().eval(), input_data=[input_data, index]) input_data = torch.tensor([[1, 2], [3, 4]]) index = torch.tensor([[0, 0], [1, 0]]) verify_model(Gather2().float().eval(), input_data=[input_data, index]) input_data = torch.rand((2, 2)).float() index = torch.tensor([[1, 0], [0, 1]]) verify_model(Gather2().float().eval(), input_data=[input_data, index]) input_data = torch.rand((3, 3, 3)).float() index = torch.tensor( [ [[1, 0, 0], [1, 0, 1], [0, 1, 1]], [[1, 1, 1], [1, 2, 1], [1, 0, 1]], [[1, 2, 1], [1, 2, 1], [1, 2, 1]], ] ) verify_model(Gather3().float().eval(), input_data=[input_data, index]) @tvm.testing.uses_gpu def test_forward_logsoftmax(): """test_forward_logsoftmax""" torch.set_grad_enabled(False) input_shape = [1, 3, 10, 10] class LogSoftmax1(Module): def forward(self, *args): return torch.nn.LogSoftmax(dim=1)(args[0][0, 0]) input_data = torch.rand(input_shape).float() verify_model(LogSoftmax1().float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_norm(): """test_forward_norm""" torch.set_grad_enabled(False) input_shape = [1, 3, 10, 10] class Norm1(Module): def forward(self, *args): return torch.norm(args[0], p=float("inf"), dim=None, keepdim=False) class Norm2(Module): def forward(self, *args): return torch.norm(args[0], p=float("-inf"), dim=None, keepdim=False) class Norm3(Module): def forward(self, *args): return torch.norm(args[0], p=float("-inf"), dim=None, keepdim=True) class Norm4(Module): def forward(self, *args): return torch.norm(args[0], p=float("inf"), dim=(1, 2), keepdim=False) class Norm5(Module): def forward(self, *args): return torch.norm(args[0], p=float("inf"), dim=(1), keepdim=True) class Norm6(Module): def forward(self, *args): return torch.norm(args[0], p=float(0.5), dim=(1), keepdim=True) class Norm7(Module): def forward(self, *args): return torch.norm(args[0], p=float(1), dim=None, keepdim=False) class Norm8(Module): def forward(self, *args): return torch.norm(args[0], p=float(2.0), dim=(1), keepdim=True) class Norm9(Module): def forward(self, *args): return torch.norm(args[0], p=float(-0.5), dim=(1, 2), keepdim=True) class Norm10(Module): def forward(self, *args): return torch.norm(args[0], p=float(-2), dim=(1), keepdim=False) input_data = torch.rand(input_shape).float() verify_model(Norm1().float().eval(), input_data=input_data) verify_model(Norm2().float().eval(), input_data=input_data) verify_model(Norm3().float().eval(), input_data=input_data) verify_model(Norm4().float().eval(), input_data=input_data) verify_model(Norm5().float().eval(), input_data=input_data) verify_model(Norm6().float().eval(), input_data=input_data) verify_model(Norm7().float().eval(), input_data=input_data) verify_model(Norm8().float().eval(), input_data=input_data) verify_model(Norm9().float().eval(), input_data=input_data) verify_model(Norm10().float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_frobenius_norm(): """test_forward_frobenius_norm""" torch.set_grad_enabled(False) input_shape = [1, 3, 10, 10] class FroNorm1(Module): def forward(self, *args): return torch.norm(args[0]) class FroNorm2(Module): def forward(self, *args): return torch.norm(args[0], p="fro", dim=None, keepdim=True) class FroNorm3(Module): def forward(self, *args): return torch.norm(args[0], p="fro", dim=(1), keepdim=True) class FroNorm4(Module): def forward(self, *args): return torch.norm(args[0], dim=None, keepdim=False) input_data = torch.rand(input_shape).float() verify_model(FroNorm1().float().eval(), input_data=input_data) verify_model(FroNorm2().float().eval(), input_data=input_data) verify_model(FroNorm3().float().eval(), input_data=input_data) verify_model(FroNorm4().float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_sigmoid(): """test_forward_sigmoid""" torch.set_grad_enabled(False) input_shape = [1, 3, 10, 10] input_data = torch.rand(input_shape).float() verify_model(torch.nn.Sigmoid().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_dense(): """test_forward_dense""" torch.set_grad_enabled(False) input_shape = [1, 3, 10, 10] class Dense1(Module): def __init__(self): super().__init__() self.linear = torch.nn.Linear(10, 7, bias=True) def forward(self, *args): return self.linear(args[0][0, 0]) class Dense2(Module): def __init__(self): super().__init__() self.linear = torch.nn.Linear(10, 7, bias=False) def forward(self, *args): return self.linear(args[0][0, 0]) input_data = torch.rand(input_shape).float() verify_model(Dense1().float().eval(), input_data=input_data) verify_model(Dense2().float().eval(), input_data=input_data) trace = torch.jit.trace(Dense1(), [input_data]) mod, _ = relay.frontend.from_pytorch( trace, [("input", input_shape)], ) assert not any(list(op.name == "multiply" for op in list_ops(mod["main"]))) @tvm.testing.uses_gpu def test_forward_linear(): """test_forward_linear""" torch.set_grad_enabled(False) class Linear(Module): def forward(self, inputs, weight, bias): return F.linear(inputs, weight, bias) class LinearNoBias(Module): def forward(self, inputs, weight): return F.linear(inputs, weight) class LinearNested(torch.nn.Module): def forward(self, x, y, z): return F.linear(x, F.linear(y, z)) input2d = torch.rand([2, 2]).float() input3d = torch.rand([4, 3, 2]).float() weight1d = torch.rand([2]).float() weight2d = torch.rand([2, 2]).float() weight3x2 = torch.rand([3, 2]).float() bias1d = torch.rand([2]).float() bias2d = torch.rand([2, 2]).float() # 2D input, 2D weight, 1D bias verify_model(Linear(), input_data=[input2d, weight2d, bias1d]) # 2D input, 2D weight, 2D bias verify_model(Linear(), input_data=[input2d, weight2d, bias2d]) # 2D input, 2D weight, no bias verify_model(LinearNoBias(), input_data=[input2d, weight2d]) verify_model(LinearNoBias(), input_data=[input2d, weight3x2]) # 2D input, 1D weight, 1D bias is not supported by torch.linear() # 2D input, 1D weight, no bias verify_model(LinearNoBias(), input_data=[input2d, weight1d]) # 3D input, 2D weight, no bias verify_model(LinearNoBias(), input_data=[input3d, weight3x2]) # 3D input, 2D weight, 1D bias verify_model(Linear(), input_data=[input3d, weight2d, bias1d]) verify_model(LinearNested(), input_data=[torch.randn(10, 10) for _ in range(3)]) # TODO: Add the following cases when matmul(1D, _) is supported by TVM # 1D input, 2D weight, 1D bias # 1D input, 2D weight, no bias # 1D input, 1D weight, scalar bias # 1D input, 1D weight, no bias @tvm.testing.uses_gpu def test_forward_dropout(): """test_forward_dropout""" torch.set_grad_enabled(False) input_shape = [1, 3, 10, 10] input_data = torch.rand(input_shape).float() verify_model(torch.nn.Dropout(p=0.5).eval(), input_data=input_data[0, 0]) verify_model(torch.nn.Dropout2d(p=0.5).eval(), input_data=input_data[0]) verify_model(torch.nn.Dropout3d(p=0.5).eval(), input_data=input_data) verify_model(torch.nn.AlphaDropout(p=0.5).eval(), input_data=input_data[0, 0]) @tvm.testing.uses_gpu def test_forward_slice(): """test_forward_slice""" torch.set_grad_enabled(False) input_shape = [1, 3, 10, 10] class Slice1(Module): def forward(self, *args): return args[0][:, :, :, :3] class Slice2(Module): def forward(self, *args): return args[0][0, :, :-3, :] class Slice3(Module): def forward(self, *args): x0 = torch.tensor(2) - torch.tensor(1) x1 = torch.tensor(3) + torch.tensor(1) return args[0][:, x0:, 1:x1, :] class SliceWithStride(torch.nn.Module): def forward(self, x): return x[..., 0::2] + x[..., 1::2] class SliceWithStride2(torch.nn.Module): def forward(self, x): return x[0::2, 0::2] + x[1::2, 1::2] class DynamicLengthSlice(torch.nn.Module): def forward(self, values, length): return values[0:length] input_data = torch.rand(input_shape).float() verify_model(Slice1(), input_data=input_data) verify_model(Slice2(), input_data=input_data) verify_model(Slice3(), input_data=input_data) verify_model(SliceWithStride(), input_data=torch.randn(1, 4)) verify_model(SliceWithStride2(), input_data=torch.randn(4, 4)) inp = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) slice_len = torch.tensor(2) targets = ["llvm", "cuda"] verify_trace_model(DynamicLengthSlice(), [inp, slice_len], targets) @tvm.testing.uses_gpu def test_forward_narrow(): """test_forward_narrow""" torch.set_grad_enabled(False) input_shape = [3, 3] class Narrow1(Module): def forward(self, *args): return torch.narrow(args[0], 0, 0, 2) class Narrow2(Module): def forward(self, *args): return torch.narrow(args[0], 1, 1, 2) class Narrow3(Module): def forward(self, *args): begin = torch.tensor(2) - torch.tensor(1) length = torch.tensor(1) * torch.tensor(2) return torch.narrow(args[0], 1, begin, length) input_data = torch.rand(input_shape).float() verify_model(Narrow1(), input_data=input_data) verify_model(Narrow2(), input_data=input_data) verify_model(Narrow3(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_mean(): """test_forward_mean""" torch.set_grad_enabled(False) input_shape = [1, 3, 10, 10] class Mean1(Module): def forward(self, *args): return args[0].mean(2) input_data = torch.rand(input_shape).float() verify_model(Mean1().float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_expand(): """test_forward_expand""" torch.set_grad_enabled(False) class Expand1(Module): def forward(self, *args): return args[0].expand((3, -1, -1, -1)) input_shape = [1, 3, 10, 10] input_data = torch.rand(input_shape).float() verify_model(Expand1().float().eval(), input_data=input_data) class Expand2(Module): def forward(self, *args): return args[0].expand((3, 3, 3, 1)) input_shape = [3, 1] input_data = torch.rand(input_shape).float() verify_model(Expand2().float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_broadcast_tensors(): """test_forward_broadcast_tensors""" torch.set_grad_enabled(False) class BroadCastTensors1(Module): def forward(self, x, y): return torch.broadcast_tensors(x, y) x = torch.arange(3).view(1, 1, 3) y = torch.arange(2).view(1, 2, 1) verify_model(BroadCastTensors1().float().eval(), input_data=[x, y]) class BroadCastTensors2(Module): def forward(self, x, y, z): return torch.broadcast_tensors(x, y, z) x = torch.arange(3).view(1, 1, 3) y = torch.arange(2).view(1, 2, 1) z = torch.arange(4).view(4, 1, 1) verify_model(BroadCastTensors2().float().eval(), input_data=[x, y, z]) @tvm.testing.uses_gpu def test_forward_pow(): """test_forward_pow""" torch.set_grad_enabled(False) input_shape = [1, 3, 10, 10] class Pow1(Module): def forward(self, *args): return args[0] ** 2 input_data = torch.rand(input_shape).float() verify_model(Pow1().float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_chunk(): """test_forward_chunk""" torch.set_grad_enabled(False) input_shape = [1, 3, 14, 14] class Chunk1(Module): def forward(self, *args): chunks = args[0].chunk(7, 2) return torch.cat(chunks, 2) input_data = torch.rand(input_shape).float() verify_model(Chunk1().float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_upsample(): """test_upsample""" class Upsample(Module): def __init__(self, size=None, scale=None, mode="nearest", align_corners=None): super().__init__() self.size = size self.scale = scale self.mode = mode self.align_corners = align_corners def forward(self, x): return torch.nn.functional.interpolate( x, size=self.size, scale_factor=self.scale, mode=self.mode, align_corners=self.align_corners, ) inp = torch.rand((1, 3, 32, 32)) verify_model(Upsample(size=(64, 64), mode="nearest"), inp) verify_model(Upsample(scale=2, mode="nearest"), inp) verify_model(Upsample(size=(50, 50), mode="nearest"), inp) verify_model(Upsample(size=(64, 64), mode="bilinear", align_corners=True), inp) verify_model(Upsample(scale=2, mode="bilinear", align_corners=True), inp) verify_model(Upsample(size=(50, 50), mode="bilinear", align_corners=True), inp) verify_model(Upsample(size=(64, 64), mode="bicubic", align_corners=True), inp) verify_model(Upsample(scale=2, mode="bicubic", align_corners=True), inp) verify_model(Upsample(size=(50, 50), mode="bicubic", align_corners=True), inp) @tvm.testing.uses_gpu def test_to(): """test for aten::to(...)""" class ToCPU(Module): def forward(self, x): return x.to("cpu") class ToFloat(Module): def forward(self, x): return x.float() class ToInt(Module): def forward(self, x): return x.int() class ToLong(Module): def forward(self, x): return x.long() class ToDouble(Module): def forward(self, x): return x.double() class ToFloat16(Module): def forward(self, x): return x.to(torch.float16) verify_model(ToCPU().eval(), torch.rand((1, 3, 32, 32))) verify_model(ToFloat().eval(), torch.zeros((1, 3, 32, 32), dtype=torch.int)) verify_model(ToFloat().eval(), torch.tensor(2, dtype=torch.int)) verify_model(ToInt().eval(), torch.zeros((1, 3, 32, 32))) verify_model(ToInt().eval(), torch.tensor(0.8)) verify_model(ToLong().eval(), torch.tensor(0.8)) verify_model(ToDouble().eval(), torch.tensor(0.8)) verify_model(ToFloat16().eval(), torch.tensor(2, dtype=torch.float32)) verify_model(ToFloat16().eval(), torch.zeros((1, 3, 32, 32), dtype=torch.int)) @tvm.testing.uses_gpu def test_adaptive_pool3d(): """test_adaptive_pool3d""" for ishape in [(1, 32, 16, 16, 16), (1, 32, 9, 15, 15), (1, 32, 13, 7, 7)]: inp = torch.rand(ishape) verify_model(torch.nn.AdaptiveMaxPool3d((1, 1, 1)).eval(), inp) verify_model(torch.nn.AdaptiveMaxPool3d((2, 2, 2)).eval(), inp) verify_model(torch.nn.AdaptiveAvgPool3d((1, 1, 1)).eval(), inp) verify_model(torch.nn.AdaptiveAvgPool3d((2, 2, 2)).eval(), inp) verify_model(torch.nn.AdaptiveAvgPool3d((4, 8, 8)).eval(), inp) verify_model(torch.nn.AdaptiveMaxPool3d((7, 8, 9)).eval(), inp) @tvm.testing.uses_gpu def test_forward_functional_pad(): """test_forward_functional_pad""" torch.set_grad_enabled(False) pad = (0, 0) class Pad1(Module): def forward(self, *args): return torch.nn.functional.pad(args[0], pad, "constant", 0) input_data = torch.rand((3, 3, 4, 2)) pad = (1, 1) verify_model(Pad1().float().eval(), input_data=input_data) pad = (1, 1, 2, 2) verify_model(Pad1().float().eval(), input_data=input_data) pad = (0, 1, 2, 1, 3, 3) verify_model(Pad1().float().eval(), input_data=input_data) class Pad2(Module): def forward(self, *args): return torch.nn.functional.pad(args[0], pad, "constant", 1) input_data = torch.rand((3, 3, 4, 2)) pad = (1, 1) verify_model(Pad2().float().eval(), input_data=input_data) pad = (1, 1, 2, 2) verify_model(Pad2().float().eval(), input_data=input_data) pad = (0, 1, 2, 1, 3, 3) verify_model(Pad2().float().eval(), input_data=input_data) class Pad3(Module): def forward(self, *args): return torch.nn.functional.pad(args[0], pad, "constant", 1.0) input_data = torch.rand((3, 3, 4, 2)) pad = (1, 1) verify_model(Pad3().float().eval(), input_data=input_data) pad = (1, 1, 2, 2) verify_model(Pad3().float().eval(), input_data=input_data) pad = (0, 1, 2, 1, 3, 3) verify_model(Pad3().float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_zero_pad2d(): """test_forward_zero_pad2d""" inp = torch.rand((1, 1, 3, 3)) verify_model(torch.nn.ZeroPad2d(2).eval(), inp) verify_model(torch.nn.ZeroPad2d((1, 1, 2, 0)).eval(), inp) @tvm.testing.uses_gpu def test_forward_constant_pad1d(): """test_forward_constant_pad1d""" inp = torch.rand((1, 2, 4)) verify_model(torch.nn.ConstantPad1d(2, 3.5).eval(), inp) inp = torch.rand((1, 2, 3)) verify_model(torch.nn.ConstantPad1d((3, 1), 3.5).eval(), inp) @tvm.testing.uses_gpu def test_forward_constant_pad2d(): """test_forward_constant_pad2d""" inp = torch.rand((1, 2, 2, 2)) verify_model(torch.nn.ConstantPad2d(2, 3.5).eval(), inp) verify_model(torch.nn.ConstantPad2d((3, 0, 2, 1), 3.5).eval(), inp) @tvm.testing.uses_gpu def test_forward_constant_pad3d(): """test_forward_constant_pad3d""" inp = torch.rand((1, 3, 2, 2, 2)) verify_model(torch.nn.ConstantPad3d(3, 3.5).eval(), inp) verify_model(torch.nn.ConstantPad3d((3, 4, 5, 6, 0, 1), 3.5).eval(), inp) @tvm.testing.uses_gpu def test_forward_reflection_pad1d(): """test_forward_reflection_pad1d""" inp = torch.rand((1, 2, 4)) verify_model(torch.nn.ReflectionPad1d(2).eval(), inp) verify_model(torch.nn.ReflectionPad1d((3, 1)).eval(), inp) inp = torch.rand((2, 4, 5)) verify_model(torch.nn.ReflectionPad1d((2, 3)).eval(), inp) @tvm.testing.uses_gpu def test_forward_reflection_pad2d(): """test_forward_reflection_pad2d""" inp = torch.rand((1, 1, 3, 3)) verify_model(torch.nn.ReflectionPad2d(2).eval(), inp) verify_model(torch.nn.ReflectionPad2d((1, 1, 2, 0)).eval(), inp) inp = torch.rand((2, 4, 5, 6)) verify_model(torch.nn.ReflectionPad2d((1, 3, 2, 4)).eval(), inp) @tvm.testing.uses_gpu def test_forward_replication_pad1d(): """test_forward_replication_pad1d""" inp = torch.rand((1, 2, 4)) verify_model(torch.nn.ReplicationPad1d(2).eval(), inp) verify_model(torch.nn.ReplicationPad1d((3, 1)).eval(), inp) inp = torch.rand((2, 4, 5)) verify_model(torch.nn.ReplicationPad1d((2, 3)).eval(), inp) @tvm.testing.uses_gpu def test_forward_replication_pad2d(): """test_forward_replication_pad2d""" inp = torch.rand((1, 1, 3, 3)) verify_model(torch.nn.ReplicationPad2d(2).eval(), inp) verify_model(torch.nn.ReplicationPad2d((1, 1, 2, 0)).eval(), inp) inp = torch.rand((2, 4, 5, 6)) verify_model(torch.nn.ReplicationPad2d((1, 3, 2, 4)).eval(), inp) @tvm.testing.uses_gpu def test_forward_replication_pad3d(): """test_forward_replication_pad3d""" inp = torch.rand((1, 1, 3, 3, 3)) verify_model(torch.nn.ReplicationPad3d(3).eval(), inp) verify_model(torch.nn.ReplicationPad3d((1, 1, 2, 2, 1, 1)).eval(), inp) inp = torch.rand((7, 5, 4, 5, 6)) verify_model(torch.nn.ReplicationPad3d((2, 3, 2, 5, 1, 4)).eval(), inp) @tvm.testing.uses_gpu def test_forward_upsample3d(): """test_forward_upsample3d""" inp = torch.arange(1, 9, dtype=torch.float32).view(1, 1, 2, 2, 2) verify_model(torch.nn.Upsample(scale_factor=2, mode="nearest").eval(), inp) verify_model(torch.nn.Upsample(scale_factor=2, mode="trilinear").eval(), inp) verify_model( torch.nn.Upsample(scale_factor=2, mode="trilinear", align_corners=True).eval(), inp ) def test_forward_nms(): """dynamic Non-Maximum Suppression""" torch.set_grad_enabled(False) class NonMaxSupression(Module): def __init__(self, iou_thres): super().__init__() self.iou_threshold = iou_thres def forward(self, *args): return torchvision.ops.nms(args[0], args[1], self.iou_threshold) # Generate random input data def _gen_rand_inputs(num_boxes): box_len = 4 boxes = torch.rand(num_boxes, box_len, dtype=torch.float) * 0.5 boxes[:, 2] += boxes[:, 0] boxes[:, 3] += boxes[:, 1] scores = np.linspace(0, 1, num=num_boxes).astype("float32") np.random.shuffle(scores) return boxes, torch.from_numpy(scores) targets = ["llvm", "cuda"] for num_boxes, iou_thres in [(10, 0.3), (100, 0.5), (500, 0.9)]: in_boxes, in_scores = _gen_rand_inputs(num_boxes) verify_trace_model(NonMaxSupression(iou_thres), [in_boxes, in_scores], targets) def test_forward_roi_align(): """ROI align""" torch.set_grad_enabled(False) class ROIAlign(Module): def __init__(self, output_sizes, spatial_scale=1.0, sampling_ratio=-1): super().__init__() self.spatial_scale = spatial_scale self.sampling_ratio = sampling_ratio self.output_sizes = output_sizes def forward(self, *args): return torchvision.ops.roi_align( args[0], args[1], self.output_sizes, self.spatial_scale, self.sampling_ratio, ) in_data = torch.Tensor(np.random.uniform(size=(1, 8, 100, 100))) in_boxes = torch.Tensor(np.random.uniform(0.0, 100.0, size=(35, 4))) in_batch = torch.zeros((35, 1), dtype=torch.float) in_boxes = torch.cat([in_batch, in_boxes], dim=1) verify_model(ROIAlign(7), [in_data, in_boxes]) verify_model(ROIAlign((10, 10), 0.7, 5), [in_data, in_boxes]) verify_model(ROIAlign(15, 0.9, 3), [in_data, in_boxes]) @tvm.testing.uses_gpu def test_conv3d(): """test_conv3d""" for ishape in [(1, 32, 16, 16, 16), (1, 32, 9, 15, 15), (1, 32, 13, 7, 7)]: inp = torch.rand(ishape) verify_model(torch.nn.Conv3d(32, 16, (3, 3, 3), padding=(1, 1, 1)).eval(), inp) verify_model(torch.nn.Conv3d(32, 16, (5, 5, 5), padding=(2, 2, 2)).eval(), inp) verify_model(torch.nn.Conv3d(32, 16, kernel_size=1).eval(), inp) # downsample verify_model(torch.nn.Conv3d(32, 16, kernel_size=1, stride=2).eval(), inp) @tvm.testing.uses_gpu def test_conv3d_transpose(): """test_conv3d_transpose""" for ishape in [(1, 8, 10, 5, 10), (1, 8, 5, 8, 8), (1, 8, 13, 7, 7)]: inp = torch.rand(ishape) verify_model( torch.nn.ConvTranspose3d( in_channels=8, out_channels=33, kernel_size=3, stride=2 ).eval(), inp, ) verify_model( torch.nn.ConvTranspose3d( in_channels=8, out_channels=20, kernel_size=(3, 5, 2), stride=(2, 1, 1), padding=(0, 4, 2), ).eval(), inp, ) verify_model( torch.nn.ConvTranspose3d(in_channels=8, out_channels=20, kernel_size=1).eval(), inp ) verify_model( torch.nn.ConvTranspose3d(in_channels=8, out_channels=5, kernel_size=1, stride=2).eval(), inp, ) # Model tests @tvm.testing.uses_gpu def test_resnet18(): """test_resnet18""" torch.set_grad_enabled(False) verify_model("resnet18", atol=1e-4, rtol=1e-4) @tvm.testing.uses_gpu def test_squeezenet1_0(): """test_squeezenet1_0""" torch.set_grad_enabled(False) verify_model("squeezenet1_0", atol=1e-4, rtol=1e-4) @tvm.testing.uses_gpu def test_squeezenet1_1(): """test_squeezenet1_1""" torch.set_grad_enabled(False) verify_model("squeezenet1_1", atol=1e-4, rtol=1e-4) @tvm.testing.uses_gpu def test_densenet121(): """test_densenet121""" torch.set_grad_enabled(False) verify_model("densenet121", atol=1e-4, rtol=1e-4) @tvm.testing.uses_gpu def test_inception_v3(): """test_inception_v3""" torch.set_grad_enabled(False) verify_model("inception_v3", atol=1e-4, rtol=1e-4) @tvm.testing.uses_gpu def test_googlenet(): """test_googlenet""" torch.set_grad_enabled(False) verify_model("googlenet", atol=1e-4, rtol=1e-4) @tvm.testing.uses_gpu def test_mnasnet0_5(): """test_mnasnet0_5""" torch.set_grad_enabled(False) verify_model("mnasnet0_5", atol=1e-4, rtol=1e-4) @tvm.testing.uses_gpu def test_mobilenet_v2(): """test_mobilenet_v2""" torch.set_grad_enabled(False) verify_model("mobilenet_v2", atol=1e-4, rtol=1e-4) # pylint: disable=pointless-string-statement """ #TODO: Fix VGG and AlexNet issues (probably due to pooling) @tvm.testing.uses_gpu def test_alexnet(): torch.set_grad_enabled(False) verify_model("alexnet") @tvm.testing.uses_gpu def test_vgg11(): torch.set_grad_enabled(False) verify_model("vgg11") @tvm.testing.uses_gpu def test_vgg11_bn(): torch.set_grad_enabled(False) verify_model("vgg11_bn") """ @tvm.testing.uses_gpu def test_custom_conversion_map(): """test_custom_conversion_map""" def get_roi_align(): pool_size = 5 n_channels = 2 * (pool_size**2) x = torch.rand(2, n_channels, 10, 10) rois = torch.tensor( [ [0, 0, 0, 9, 9], # format is (xyxy) [0, 0, 5, 4, 9], [0, 5, 5, 9, 9], [1, 0, 0, 9, 9], ], dtype=torch.float, ) roi_align = torchvision.ops.RoIAlign(pool_size, spatial_scale=1, sampling_ratio=-1) return roi_align.eval(), [x, rois] def convert_roi_align(): def _impl(inputs, input_types): spatial_scale = inputs[2] pooled_size = (inputs[3], inputs[4]) sampling_ratio = inputs[5] return relay.op.vision.roi_align( inputs[0], inputs[1], pooled_size, spatial_scale, sampling_ratio ) return _impl custom_map = {"torchvision::roi_align": convert_roi_align()} model, inputs = get_roi_align() verify_model(model, inputs, custom_map) @tvm.testing.uses_gpu def test_segmentation_models(): """test_segmentation_models""" class SegmentationModelWrapper(Module): def __init__(self, model): super().__init__() self.model = model def forward(self, inp): out = self.model(inp) return out["out"] fcn = torchvision.models.segmentation.fcn_resnet101(pretrained=True) deeplab = torchvision.models.segmentation.deeplabv3_resnet101(pretrained=True) inp = [torch.rand((1, 3, 300, 300), dtype=torch.float)] verify_model(SegmentationModelWrapper(fcn.eval()), inp, atol=1e-4, rtol=1e-4) verify_model(SegmentationModelWrapper(deeplab.eval()), inp, atol=1e-4, rtol=1e-4) @tvm.testing.uses_gpu def test_3d_models(): """test_3d_models""" input_shape = (1, 3, 4, 56, 56) resnet3d = torchvision.models.video.r3d_18(pretrained=True).eval() verify_model(resnet3d, [torch.rand(input_shape)], atol=1e-4, rtol=1e-4) def _get_default_vm_targets(): """Get default vm targets""" return ["llvm", "cuda"] def verify_script_model(pt_model, ishapes, targets, idtype=None): """verify_script_model""" script_module = torch.jit.script(pt_model) verify_model_vm(script_module, ishapes, idtype=idtype, targets=targets) def verify_trace_model(pt_model, idata, targets): """verify_trace_model""" traced_model = torch.jit.trace(pt_model, idata) ishapes = [data.shape for data in idata] verify_model_vm(traced_model, ishapes, idata=idata, targets=targets) def convert_pt_to_tvm_type(idtype): """Accepts a pytorch dtype and returns string TVM dtype.""" # TVM does not support PyTorch complex dtypes if idtype == torch.float64: curr_dtype = "float64" elif idtype == torch.float32: curr_dtype = "float32" elif idtype == torch.float16: curr_dtype = "float16" elif idtype == torch.bfloat16: curr_dtype = "bfloat16" elif idtype == torch.int64: curr_dtype = "int64" elif idtype == torch.int32: curr_dtype = "int32" elif idtype == torch.int16: curr_dtype = "int16" elif idtype == torch.int8: curr_dtype = "int8" elif idtype == torch.uint8: curr_dtype = "uint8" elif idtype == torch.bool: curr_dtype = "bool" else: raise NotImplementedError(f"Unsupported dtype: {idtype}") return curr_dtype def verify_model_vm(input_model, ishapes, idtype=None, idata=None, targets=None): """verify_model_vm""" targets = targets or ["llvm"] if not idtype: idtype = torch.float input_names = [f"i{idx}" for idx, _ in enumerate(ishapes)] tvm_dtype = convert_pt_to_tvm_type(idtype) input_dtypes = [tvm_dtype] * len(input_names) input_shapes = list(zip(input_names, list(zip(ishapes, input_dtypes)))) if idata: input_data = idata # If no input_data provided, generate random data of specified dtype else: if idtype == torch.bool: input_data = [ torch.Tensor.bool(torch.randint(low=0, high=2, size=shape)) for shape in ishapes ] # Torch dtype can be float, complex, int, or Bool. Complex not supported, # so if not float or Bool, dtype must be int! elif not idtype.is_floating_point: input_data = [ torch.randint(low=0, high=10, size=shape, dtype=idtype) for shape in ishapes ] else: input_data = [torch.randn(shape, dtype=idtype) for shape in ishapes] # Compile via VM mod, params = relay.frontend.from_pytorch(input_model, input_shapes) for tgt in targets: if not tvm.testing.device_enabled(tgt): continue print("Running on target", tgt) dev = tvm.device(tgt, 0) evaluator = relay.create_executor("vm", mod=mod, device=dev, target=tgt).evaluate() # Inference for name, inp in zip(input_names, input_data): params[name] = inp.numpy() vm_res = evaluator(**params) # Baseline result with torch.no_grad(): pt_result = input_model(*input_data) # Verify the accuracy if isinstance(pt_result, tuple): # handle multiple outputs for i, pt_result in enumerate(pt_result): tvm_res = vm_res[i].numpy() tvm.testing.assert_allclose(tvm_res, pt_result.numpy(), rtol=1e-5, atol=1e-5) elif not isinstance(pt_result, torch.Tensor): tvm_res = vm_res.numpy().item() assert pt_result == tvm_res else: tvm.testing.assert_allclose(vm_res.numpy(), pt_result.numpy(), rtol=1e-5, atol=1e-5) @tvm.testing.uses_gpu def test_control_flow(): """test_control_flow""" class SimpleIf(torch.nn.Module): """SimpleIf module""" def __init__(self, N, M): super().__init__() self.weight = torch.nn.Parameter(torch.rand(N, M)) def forward(self, inp): if inp.sum() > 0.0: output = self.weight + inp else: output = self.weight - inp return output class NestedIf(torch.nn.Module): """NestedIf module""" def __init__(self, N, M): super().__init__() self.weight = torch.nn.Parameter(torch.rand(N, M)) def forward(self, inp): """forward""" if inp.sum() > 0.0: if inp.mean() > 0.0: output = self.weight + inp else: output = self.weight - inp else: if inp.mean() >= 0.0: output = self.weight * inp else: output = self.weight / inp return output class ScalarLoop(torch.nn.Module): """ScalarLoop module""" def forward(self, inp): """forward""" a = 0 for i in range(inp.size(0)): b = i * i b = b + 1 a += b if a != 0: a += 1 else: a += 2 return a class SimpleLoop(torch.nn.Module): def forward(self, inp): a = inp for _ in range(inp.size(0)): b = a * 2.0 c = a + b a += c return a class LoopWithIf(torch.nn.Module): """LoopWithIf module""" def forward(self, inp): a = inp for _ in range(inp.size(0)): b = a * 2.0 b = a + b if b.sum() > 0.0: a += b else: a -= b return a class NestedLoop(torch.nn.Module): def forward(self, inp): a = inp for i in range(inp.size(0)): b = a * float(i) for j in range(inp.size(1)): a += b * float(j) return a class SimpleScalarWhileLoop(torch.nn.Module): """SimpleScalarWhileLoop module""" def forward(self, inp): """forward""" a = 1 i = 0 while i <= inp.size(0): a += i i += 2 i = 0 # also test constant init cond while i < 10: a += i i += 3 return a class SimpleWhileLoop(torch.nn.Module): def forward(self, inp): a = inp i = 0 while i < inp.size(0): a += a * float(i) * 2.0 i += 1 return a models = [ SimpleIf(10, 20), NestedIf(10, 20), ScalarLoop(), SimpleLoop(), LoopWithIf(), SimpleScalarWhileLoop(), SimpleWhileLoop(), NestedLoop(), ] for pt_model in models: verify_script_model(pt_model.eval(), [(10, 20)], _get_default_vm_targets()) @tvm.testing.uses_gpu def test_simple_rnn(): """test_simple_rnn""" # The mixed tracing and scripting example from # https://pytorch.org/tutorials/beginner/Intro_to_TorchScript_tutorial.html#mixing-scripting-and-tracing class DecisionGate(torch.nn.Module): def forward(self, x): if x.sum() > 0: return x else: return -x class Cell(torch.nn.Module): def __init__(self, dg): super().__init__() self.dg = dg self.linear = torch.nn.Linear(4, 4) def forward(self, x, h): new_h = torch.tanh(self.dg(self.linear(x)) + h) return new_h, new_h class RNNLoop(torch.nn.Module): """Pytorch RNNLoop module""" def __init__(self): super().__init__() x = torch.rand(10, 4, dtype=torch.float) h = torch.rand(10, 4, dtype=torch.float) self.cell = torch.jit.trace(Cell(DecisionGate()), (x, h)) def forward(self, xs): h = torch.zeros(10, 4, dtype=torch.float) y = torch.zeros(10, 4, dtype=torch.float) for i in range(xs.size(0)): y, h = self.cell(xs[i], h) return y verify_script_model(RNNLoop().eval(), [(10, 10, 4)], _get_default_vm_targets()) @tvm.testing.uses_gpu def test_forward_reduce_sum(): """test_forward_reduce_sum""" torch.set_grad_enabled(False) input_shape = [1, 3, 10, 10] class ReduceSum1(Module): def forward(self, *args): return args[0].sum(1) class ReduceSum2(Module): def forward(self, *args): return args[0].sum(dim=1, keepdim=False) class ReduceSum3(Module): def forward(self, *args): return args[0].sum(dim=2, keepdim=True) class ReduceSum4(Module): def forward(self, *args): return args[0].sum(dim=(2, 3), keepdim=True) class ReduceSum5(Module): def forward(self, *args): return args[0].sum(dim=(2, 3), keepdim=False) input_data = torch.rand(input_shape).float() verify_model(ReduceSum1().float().eval(), input_data=input_data) verify_model(ReduceSum2().float().eval(), input_data=input_data) verify_model(ReduceSum3().float().eval(), input_data=input_data) verify_model(ReduceSum4().float().eval(), input_data=input_data) verify_model(ReduceSum5().float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_reduce_prod(): """test_forward_reduce_prod""" torch.set_grad_enabled(False) input_shape = [1, 3, 10, 10] class ReduceProd1(Module): def forward(self, *args): return args[0].prod(1) class ReduceProd2(Module): def forward(self, *args): return args[0].prod(dim=1, keepdim=False) class ReduceProd3(Module): def forward(self, *args): return args[0].prod(dim=2, keepdim=True) input_data = torch.rand(input_shape).float() verify_model(ReduceProd1().float().eval(), input_data=input_data) verify_model(ReduceProd2().float().eval(), input_data=input_data) verify_model(ReduceProd3().float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_argmin(): """test_forward_argmin""" torch.set_grad_enabled(False) input_shape = [1, 3, 10, 10] class ArgMin1(Module): def forward(self, *args): return args[0].argmin(1) class ArgMin2(Module): def forward(self, *args): return args[0].argmin(dim=1, keepdim=False) class ArgMin3(Module): def forward(self, *args): return args[0].argmin(dim=2, keepdim=True) input_data = torch.rand(input_shape).float() verify_model(ArgMin1().float().eval(), input_data=input_data) verify_model(ArgMin2().float().eval(), input_data=input_data) verify_model(ArgMin3().float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_argmax(): """test_forward_argmax""" torch.set_grad_enabled(False) input_shape = [1, 3, 10, 10] class ArgMax1(Module): def forward(self, *args): return args[0].argmax(1) class ArgMax2(Module): def forward(self, *args): return args[0].argmax(dim=1, keepdim=False) class ArgMax3(Module): def forward(self, *args): return args[0].argmax(dim=2, keepdim=True) input_data = torch.rand(input_shape).float() verify_model(ArgMax1().float().eval(), input_data=input_data) verify_model(ArgMax2().float().eval(), input_data=input_data) verify_model(ArgMax3().float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_std(): """test_forward_std""" torch.set_grad_enabled(False) input_shape = [1, 3, 10, 10] class Std1(Module): def forward(self, *args): return args[0].std(1, unbiased=False) class Std2(Module): def forward(self, *args): return args[0].std(dim=1, keepdim=False, unbiased=False) class Std3(Module): def forward(self, *args): return args[0].std(dim=2, keepdim=True, unbiased=False) class Std4(Module): def forward(self, *args): return args[0].std(dim=(2, 3), keepdim=True, unbiased=False) class Std5(Module): def forward(self, *args): return args[0].std(dim=(2, 3), keepdim=False, unbiased=False) class Std6(Module): def forward(self, *args): return args[0].std(unbiased=False) class Std7(Module): def forward(self, *args): return args[0].std(dim=1, keepdim=False, unbiased=True) class Std8(Module): def forward(self, *args): return args[0].std(dim=(2, 3), keepdim=True, unbiased=True) class Std9(Module): def forward(self, *args): return args[0].std(unbiased=True) input_data = torch.rand(input_shape).float() verify_model(Std1().float().eval(), input_data=input_data) verify_model(Std2().float().eval(), input_data=input_data) verify_model(Std3().float().eval(), input_data=input_data) verify_model(Std4().float().eval(), input_data=input_data) verify_model(Std5().float().eval(), input_data=input_data) verify_model(Std6().float().eval(), input_data=input_data) verify_model(Std7().float().eval(), input_data=input_data) verify_model(Std8().float().eval(), input_data=input_data) verify_model(Std9().float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_var_mean(): """test_forward_var_mean""" torch.set_grad_enabled(False) input_shape = [1, 3, 10, 10] class VarMean1(Module): def forward(self, *args): return torch.var_mean(args[0], 1, unbiased=False) class VarMean2(Module): def forward(self, *args): return torch.var_mean(args[0], dim=1, keepdim=False, unbiased=False) class VarMean3(Module): def forward(self, *args): return torch.var_mean(args[0], dim=2, keepdim=True, unbiased=False) class VarMean4(Module): def forward(self, *args): return torch.var_mean(args[0], dim=(2, 3), keepdim=True, unbiased=False) class VarMean5(Module): def forward(self, *args): return torch.var_mean(args[0], dim=(2, 3), keepdim=False, unbiased=False) class VarMean6(Module): def forward(self, *args): return torch.var_mean(args[0], unbiased=False) class VarMean7(Module): def forward(self, *args): return torch.var_mean(args[0], dim=1, keepdim=False, unbiased=True) class VarMean8(Module): def forward(self, *args): return torch.var_mean(args[0], dim=(2, 3), keepdim=True, unbiased=True) class VarMean9(Module): def forward(self, *args): return torch.var_mean(args[0], unbiased=True) input_data = torch.rand(input_shape).float() verify_model(VarMean1().float().eval(), input_data=input_data) verify_model(VarMean2().float().eval(), input_data=input_data) verify_model(VarMean3().float().eval(), input_data=input_data) verify_model(VarMean4().float().eval(), input_data=input_data) verify_model(VarMean5().float().eval(), input_data=input_data) verify_model(VarMean6().float().eval(), input_data=input_data) verify_model(VarMean7().float().eval(), input_data=input_data) verify_model(VarMean8().float().eval(), input_data=input_data) verify_model(VarMean9().float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_variance(): """test_forward_variance""" torch.set_grad_enabled(False) input_shape = [1, 3, 10, 10] class Variance1(Module): def forward(self, *args): return args[0].var(1, unbiased=False) class Variance2(Module): def forward(self, *args): return args[0].var(dim=1, keepdim=False, unbiased=False) class Variance3(Module): def forward(self, *args): return args[0].var(dim=2, keepdim=True, unbiased=False) class Variance4(Module): def forward(self, *args): return args[0].var(dim=(2, 3), keepdim=True, unbiased=False) class Variance5(Module): def forward(self, *args): return args[0].var(dim=(2, 3), keepdim=False, unbiased=False) class Variance6(Module): def forward(self, *args): return args[0].var(unbiased=False) class Variance7(Module): def forward(self, *args): return args[0].var(dim=1, keepdim=False, unbiased=True) class Variance8(Module): def forward(self, *args): return args[0].var(dim=(2, 3), keepdim=True, unbiased=True) class Variance9(Module): def forward(self, *args): return args[0].var(unbiased=True) input_data = torch.rand(input_shape).float() verify_model(Variance1().float().eval(), input_data=input_data) verify_model(Variance2().float().eval(), input_data=input_data) verify_model(Variance3().float().eval(), input_data=input_data) verify_model(Variance4().float().eval(), input_data=input_data) verify_model(Variance5().float().eval(), input_data=input_data) verify_model(Variance6().float().eval(), input_data=input_data) verify_model(Variance7().float().eval(), input_data=input_data) verify_model(Variance8().float().eval(), input_data=input_data) verify_model(Variance9().float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_rsub(): """test_forward_rsub""" torch.set_grad_enabled(False) class Rsub1(Module): def forward(self, *args): return torch.rsub(args[0], args[1]) class Rsub2(Module): def forward(self, *args): return torch.rsub(args[0], args[1], alpha=0.5) d1 = torch.rand([1, 3]).float() d2 = torch.rand([1, 3]).float() d3 = torch.rand([1, 3]).int() verify_model(Rsub1().float().eval(), input_data=[d1, d2]) verify_model(Rsub1().float().eval(), input_data=[d1, d3]) verify_model(Rsub2().float().eval(), input_data=[d1, d2]) verify_model(Rsub2().float().eval(), input_data=[d1, d3]) d1 = torch.rand([1, 3]).half() d2 = torch.rand([1, 3]).half() verify_model(Rsub1().half().eval(), input_data=[d1, d2]) verify_model(Rsub1().half().eval(), input_data=[d1, d3]) verify_model(Rsub2().half().eval(), input_data=[d1, d2]) verify_model(Rsub2().half().eval(), input_data=[d1, d3]) @tvm.testing.uses_gpu def test_forward_embedding(): """test_forward_embedding""" torch.set_grad_enabled(False) input_data = torch.randint(0, 10, [2, 4]).long() verify_model(torch.nn.Embedding(10, 3).float().eval(), input_data=input_data) input_data = torch.randint(0, 4, [2, 3, 4]).long() verify_model(torch.nn.Embedding(4, 5, sparse=False).float().eval(), input_data=input_data) input_data = torch.randint(0, 4, [2, 3, 4]).long() verify_model(torch.nn.Embedding(4, 5, sparse=True).float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_onehot(): """test_forward_onehot""" torch.set_grad_enabled(False) class OneHot1(Module): def forward(self, *args): return torch.nn.functional.one_hot(args[0], num_classes=3) class OneHot2(Module): def forward(self, *args): return torch.nn.functional.one_hot(args[0], num_classes=5) input_data = torch.arange(0, 5) % 3 verify_model(OneHot1().float().eval(), input_data=input_data) input_data = torch.arange(0, 5) % 4 verify_model(OneHot2().float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_isfinite(): """test_forward_isfinite""" torch.set_grad_enabled(False) class IsFinite1(Module): def forward(self, *args): return torch.isfinite(args[0]) input_data = torch.tensor([1, float("inf"), 2, float("-inf"), float("nan")]).float() verify_model(IsFinite1().float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_isnan(): """test_forward_isnan""" torch.set_grad_enabled(False) class IsNan1(Module): def forward(self, *args): return torch.isnan(args[0]) input_data = torch.tensor([1, float("inf"), 2, float("-inf"), float("nan")]).float() verify_model(IsNan1().float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_isinf(): """test_forward_isinf""" torch.set_grad_enabled(False) class IsInf1(Module): def forward(self, *args): return torch.isinf(args[0]) input_data = torch.tensor([1, float("inf"), 2, float("-inf"), float("nan")]).float() verify_model(IsInf1().float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_clamp(): """test_forward_clamp""" torch.set_grad_enabled(False) input_shape = [1, 3, 10, 10] class Clamp1(Module): def forward(self, *args): return torch.clamp(args[0], min=-0.5, max=0.5) class Clamp2(Module): def forward(self, *args): return torch.clamp(args[0], min=-0.3) class Clamp3(Module): def forward(self, *args): return torch.clamp(args[0], max=1.0) class Clamp_MinExpr_MaxConstant(Module): def forward(self, *args): h, w = args[0].shape[2:] amin = h / 100.0 return torch.clamp(args[0], min=amin, max=w) input_data = torch.rand(input_shape).float() verify_model(Clamp1().float().eval(), input_data=input_data) verify_model(Clamp2().float().eval(), input_data=input_data) verify_model(Clamp3().float().eval(), input_data=input_data) verify_model(Clamp_MinExpr_MaxConstant().float().eval(), input_data=input_data) verify_model(lambda inp: torch.clamp_min(inp, 0.5), input_data) inp_uint8 = torch.randint(low=0, high=256, size=(100, 100), dtype=torch.uint8) verify_model(lambda inp: torch.clamp_max(inp, 125), inp_uint8) @tvm.testing.uses_gpu def test_forward_clamp_(): """test_forward_clamp_""" torch.set_grad_enabled(False) class ClampInPlace(Module): def __init__(self, i_min, i_max): super().__init__() self.min = i_min self.max = i_max def forward(self, *args): return torch.clamp_(args[0], self.min, self.max) for ishape, i_min, i_max in (([4, 8], 0.1, 0.9), ([7, 6], 0.2, 0.5)): input_data = torch.rand(ishape).float() verify_model(ClampInPlace(i_min, i_max).float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_ones(): """test_forward_ones""" torch.set_grad_enabled(False) class Ones1(Module): def forward(self, *args): return torch.ones(2, 3) verify_model(Ones1().float().eval(), input_data=[]) @tvm.testing.uses_gpu def test_forward_ones_like(): """test_forward_ones_like""" torch.set_grad_enabled(False) input_shape = [1, 3, 10, 10] class OnesLike1(Module): def forward(self, *args): return torch.ones_like(args[0]) class OnesLike2(Module): def forward(self, *args): return torch.ones_like(args[0], dtype=torch.int8) class OnesLike3(Module): def forward(self, *args): return torch.ones_like(args[0], dtype=torch.float) input_data = torch.rand(input_shape).float() verify_model(OnesLike1().float().eval(), input_data=input_data) verify_model(OnesLike2().float().eval(), input_data=input_data) verify_model(OnesLike3().float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_new_ones(): """test_forward_new_ones""" torch.set_grad_enabled(False) input_shape = [1, 3, 10, 10] def test_func(input_tensor): return input_tensor.new_ones([3, 10, 10]) verify_model_with_input(test_func, [torch.rand(input_shape).float()]) @tvm.testing.uses_gpu def test_forward_zeros(): """test_forward_zeros""" torch.set_grad_enabled(False) class Zeros1(Module): def forward(self, *args): return torch.zeros(2, 3) verify_model(Zeros1().float().eval(), input_data=[]) def test_forward_zero_(): def test_func(x): return x.zero_() verify_model_with_input(test_func, [torch.rand([1, 3, 10, 10]).float()]) @tvm.testing.uses_gpu def test_forward_zeros_like(): """test_forward_zeros_like""" torch.set_grad_enabled(False) input_shape = [1, 3, 10, 10] class ZerosLike1(Module): def forward(self, *args): return torch.zeros_like(args[0]) class ZerosLike2(Module): def forward(self, *args): return torch.zeros_like(args[0], dtype=torch.int32) class ZerosLike3(Module): def forward(self, *args): return torch.zeros_like(args[0], dtype=torch.float) input_data = torch.rand(input_shape).float() verify_model(ZerosLike1().float().eval(), input_data=input_data) verify_model(ZerosLike2().float().eval(), input_data=input_data) verify_model(ZerosLike3().float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_full(): """test_forward_full""" torch.set_grad_enabled(False) class Full1(Module): def forward(self, *args): return torch.full((2, 3), 3.14) class Full2(Module): def forward(self, *args): return torch.full((1, 2, 3), 1.0, dtype=torch.int32) verify_model(Full1().float().eval(), input_data=[]) verify_model(Full2().float().eval(), input_data=[]) @tvm.testing.uses_gpu def test_forward_full_like(): """test_forward_full_like""" torch.set_grad_enabled(False) input_shape = [1, 3, 10, 10] class FullLike1(Module): def forward(self, *args): return torch.full_like(args[0], 3.14) class FullLike2(Module): def forward(self, *args): return torch.full_like(args[0], 22.22, dtype=torch.int32) class FullLike3(Module): def forward(self, *args): return torch.full_like(args[0], 1.4, dtype=torch.float) input_data = torch.rand(input_shape).float() verify_model(FullLike1().float().eval(), input_data=input_data) verify_model(FullLike2().float().eval(), input_data=input_data) verify_model(FullLike3().float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_new_full(): """test_forward_new_full""" torch.set_grad_enabled(False) input_shape = [1, 3, 10, 10] def test_func(input_tensor): return input_tensor.new_full([2, 3], 1) verify_model_with_input(test_func, [torch.rand(input_shape).float()]) def test_forward_fill_(): def test_func(x): return x.fill_(3) verify_model_with_input(test_func, [torch.rand([1, 3, 10, 10]).float()]) def test_forward_fill_with_div(): """test_forward_fill_with_div""" def test_func(x): y = torch.div(torch.tensor(6.0), torch.tensor(2.0)) return x.fill_(y) verify_model_with_input(test_func, [torch.rand([1, 3, 10, 10]).float()]) @tvm.testing.uses_gpu def test_forward_linspace(): """test_forward_linspace""" torch.set_grad_enabled(False) class Linspace1(Module): def forward(self, *args): return torch.linspace(5, 10, steps=100) class Linspace2(Module): def forward(self, *args): return torch.linspace(-10, 10, steps=5) class Linspace3(Module): def forward(self, *args): return torch.linspace(start=-10, end=10, steps=5) class Linspace4(Module): def forward(self, *args): return torch.linspace(start=-10, end=10, steps=1) class Linspace5(Module): def forward(self, *args): return torch.linspace(1, 2, 1, dtype=torch.int32) class Linspace6(Module): def forward(self, *args): return torch.linspace(start=1, end=6, steps=2) class Linspace7(Module): def forward(self, *args): return torch.linspace(1, 4, steps=100, dtype=torch.float32) class Linspace8(Module): def forward(self, *args): return torch.linspace(1, 2, 1, dtype=torch.int16) verify_model(Linspace1().float().eval()) verify_model(Linspace2().float().eval()) verify_model(Linspace3().float().eval()) verify_model(Linspace4().float().eval()) verify_model(Linspace5().float().eval()) verify_model(Linspace6().float().eval()) verify_model(Linspace7().float().eval()) verify_model(Linspace8().float().eval()) @tvm.testing.uses_gpu def test_forward_take(): """test_forward_take""" torch.set_grad_enabled(False) class Take1(Module): def forward(self, *args): indices = torch.tensor([[0, 0], [1, 0]]) if torch.cuda.is_available(): indices = indices.cuda() return torch.take(args[0], indices) class Take2(Module): def forward(self, *args): return torch.take(args[0], args[1]) input_data = torch.tensor([[1, 2], [3, 4]]) verify_model(Take1().float().eval(), input_data=input_data) indices = torch.tensor([[0, 0], [1, 0]]) verify_model(Take2().float().eval(), input_data=[input_data, indices]) indices = torch.tensor([0, -1]) verify_model(Take2().float().eval(), input_data=[input_data, indices]) @tvm.testing.uses_gpu def test_forward_topk(): """test_forward_topk""" torch.set_grad_enabled(False) class Topk1(Module): def forward(self, *args): return torch.topk(args[0], k=3) class Topk2(Module): def forward(self, *args): return torch.topk(args[0], k=3, dim=-2) class Topk3(Module): def forward(self, *args): return torch.topk(args[0], k=3, dim=3) class Topk4(Module): def forward(self, *args): return torch.topk(args[0], k=3, largest=True) class Topk5(Module): def forward(self, *args): return torch.topk(args[0], k=3, largest=False) class Topk6(Module): def forward(self, *args): return torch.topk(args[0], k=3, sorted=True) input_shape = [1, 3, 10, 10] input_data = torch.rand(input_shape).float() verify_model(Topk1().float().eval(), input_data=input_data) verify_model(Topk2().float().eval(), input_data=input_data) verify_model(Topk3().float().eval(), input_data=input_data) verify_model(Topk4().float().eval(), input_data=input_data) verify_model(Topk5().float().eval(), input_data=input_data) verify_model(Topk6().float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_logical_not(): """test_forward_logical_not""" torch.set_grad_enabled(False) class LogicalNot1(Module): def forward(self, *args): return torch.logical_not(args[0]) input_data = torch.tensor([True, False]) verify_model(LogicalNot1().float().eval(), input_data=input_data) input_data = torch.tensor([0, 1, -10], dtype=torch.int8) verify_model(LogicalNot1().float().eval(), input_data=input_data) input_data = torch.tensor([0.0, 1.5, -10.0], dtype=torch.double) verify_model(LogicalNot1().float().eval(), input_data=input_data) input_data = torch.tensor([0.0, 1.0, -10.0], dtype=torch.int32) verify_model(LogicalNot1().float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_bitwise_not(): """test_forward_bitwise_not""" torch.set_grad_enabled(False) class BitwiseNot1(Module): def forward(self, *args): return torch.bitwise_not(args[0]) input_data = torch.tensor([0, 1, -10], dtype=torch.int8) verify_model(BitwiseNot1().float().eval(), input_data=input_data) input_data = torch.tensor([0.0, 1.0, -10.0], dtype=torch.int32) verify_model(BitwiseNot1().float().eval(), input_data=input_data) input_data = torch.tensor([True, False]) verify_model(BitwiseNot1().float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_bitwise_xor(): """test_forward_bitwise_xor""" torch.set_grad_enabled(False) class BitwiseXor1(Module): def forward(self, *args): return torch.bitwise_xor(args[0], args[1]) class BitwiseXor2(Module): def forward(self, *args): rhs = torch.tensor([1, 0, 3], dtype=torch.int8) if torch.cuda.is_available(): rhs = rhs.cuda() return torch.bitwise_xor(args[0], rhs) lhs = torch.tensor([-1, -2, 3], dtype=torch.int8) rhs = torch.tensor([1, 0, 3], dtype=torch.int8) verify_model(BitwiseXor1().float().eval(), input_data=[lhs, rhs]) lhs = torch.tensor([True, True, False]) rhs = torch.tensor([False, True, False]) verify_model(BitwiseXor1().float().eval(), input_data=[lhs, rhs]) lhs = torch.tensor([-1, -2, 3], dtype=torch.int8) verify_model(BitwiseXor2().float().eval(), input_data=[lhs]) @tvm.testing.uses_gpu def test_forward_logical_xor(): """test_forward_logical_xor""" torch.set_grad_enabled(False) class LogicalXor1(Module): def forward(self, *args): return torch.logical_xor(args[0], args[1]) class LogicalXor2(Module): def forward(self, *args): rhs = torch.tensor([1, 0, 3], dtype=torch.int8) if torch.cuda.is_available(): rhs = rhs.cuda() return torch.logical_xor(args[0], rhs) lhs = torch.tensor([-1, -2, 3], dtype=torch.int8) rhs = torch.tensor([1, 0, 3], dtype=torch.int8) verify_model(LogicalXor1().float().eval(), input_data=[lhs, rhs]) lhs = torch.tensor([True, True, False]) rhs = torch.tensor([False, True, False]) verify_model(LogicalXor1().float().eval(), input_data=[lhs, rhs]) lhs = torch.tensor([-1, -2, 3], dtype=torch.int8) verify_model(LogicalXor2().float().eval(), input_data=[lhs]) @tvm.testing.uses_gpu def test_forward_unary(): """test_forward_unary""" torch.set_grad_enabled(False) class Sqrt1(Module): def forward(self, *args): return torch.sqrt(args[0]) class RSqrt1(Module): def forward(self, *args): return torch.rsqrt(args[0]) class Ceil1(Module): def forward(self, *args): return torch.ceil(args[0]) class Floor1(Module): def forward(self, *args): return torch.floor(args[0]) class Round1(Module): def forward(self, *args): return torch.round(args[0]) class Cos1(Module): def forward(self, *args): return torch.cos(args[0]) class Sin1(Module): def forward(self, *args): return torch.sin(args[0]) class Tan1(Module): def forward(self, *args): return torch.tan(args[0]) class Tanh1(Module): def forward(self, *args): return torch.tanh(args[0]) class Acos1(Module): def forward(self, *args): return torch.acos(args[0]) class Asin1(Module): def forward(self, *args): return torch.asin(args[0]) class Atan1(Module): def forward(self, *args): return torch.atan(args[0]) class Log1(Module): def forward(self, *args): return torch.log(args[0]) class Exp1(Module): def forward(self, *args): return torch.exp(args[0]) class Erf1(Module): def forward(self, *args): return torch.erf(args[0]) class Trunc1(Module): def forward(self, *args): return torch.trunc(args[0]) class Sign1(Module): def forward(self, *args): return torch.sign(args[0]) class Neg1(Module): def forward(self, *args): return torch.neg(args[0]) class Sinh1(Module): def forward(self, *args): return torch.sinh(args[0]) class Cosh1(Module): def forward(self, *args): return torch.cosh(args[0]) class Log2_1(Module): def forward(self, *args): return torch.log2(args[0]) class Log10_1(Module): def forward(self, *args): return torch.log10(args[0]) class Log1p_1(Module): def forward(self, *args): return torch.log1p(args[0]) class Square(Module): def forward(self, *args): return torch.square(args[0]) input_shape = [1, 3, 10, 10] input_data = torch.rand(input_shape).float() verify_model(Square().float().eval(), input_data=input_data) verify_model(Sqrt1().float().eval(), input_data=input_data) verify_model(RSqrt1().float().eval(), input_data=input_data) verify_model(Ceil1().float().eval(), input_data=input_data) verify_model(Floor1().float().eval(), input_data=input_data) verify_model(Round1().float().eval(), input_data=input_data) verify_model(Cos1().float().eval(), input_data=input_data) verify_model(Cosh1().float().eval(), input_data=input_data) verify_model(Sin1().float().eval(), input_data=input_data) verify_model(Sinh1().float().eval(), input_data=input_data) verify_model(Tan1().float().eval(), input_data=input_data) verify_model(Tanh1().float().eval(), input_data=input_data) verify_model(Acos1().float().eval(), input_data=input_data) verify_model(Asin1().float().eval(), input_data=input_data) verify_model(Atan1().float().eval(), input_data=input_data) verify_model(Log1().float().eval(), input_data=input_data) verify_model(Log2_1().float().eval(), input_data=input_data) verify_model(Log10_1().float().eval(), input_data=input_data) verify_model(Log1p_1().float().eval(), input_data=input_data) verify_model(Exp1().float().eval(), input_data=input_data) verify_model(Erf1().float().eval(), input_data=input_data) verify_model(Trunc1().float().eval(), input_data=input_data) verify_model(Sign1().float().eval(), input_data=input_data) verify_model(Neg1().float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_tril(): """test_forward_tril""" torch.set_grad_enabled(False) def test_func(input_data): return torch.tril(input_data) input_data = torch.rand([3, 3]).float() verify_model(test_func, input_data=input_data) input_data = torch.rand([1, 3, 10, 10]).float() verify_model(test_func, input_data=input_data) def test_func1(input_data): return torch.tril(input_data, 1) input_data = torch.rand([3, 3]).float() verify_model(test_func1, input_data=input_data) input_data = torch.rand([1, 3, 10, 10]).float() verify_model(test_func1, input_data=input_data) def test_func2(input_data): return torch.tril(input_data, -1) input_data = torch.rand([3, 3]).float() verify_model(test_func2, input_data=input_data) input_data = torch.rand([1, 3, 10, 10]).float() verify_model(test_func2, input_data=input_data) @tvm.testing.uses_gpu def test_forward_triu(): """test_forward_triu""" torch.set_grad_enabled(False) def test_func(input_data): return torch.triu(input_data) input_data = torch.rand([3, 3]).float() verify_model(test_func, input_data=input_data) input_data = torch.rand([1, 3, 10, 10]).float() verify_model(test_func, input_data=input_data) def test_func1(input_data): return torch.triu(input_data, 1) input_data = torch.rand([3, 3]).float() verify_model(test_func1, input_data=input_data) input_data = torch.rand([1, 3, 10, 10]).float() verify_model(test_func1, input_data=input_data) def test_func2(input_data): return torch.triu(input_data, -1) input_data = torch.rand([3, 3]).float() verify_model(test_func2, input_data=input_data) input_data = torch.rand([1, 3, 10, 10]).float() verify_model(test_func2, input_data=input_data) @tvm.testing.uses_gpu def test_forward_where(): """test_forward_where""" torch.set_grad_enabled(False) class Where1(Module): def forward(self, *args): y = torch.ones([3, 2]) if torch.cuda.is_available(): y = y.cuda() return torch.where(args[0] > 0, args[0], y) class Where2(Module): def forward(self, *args): return torch.where(args[0] > 0, args[0], args[1]) class Where3(Module): def forward(self, *args): return torch.where(args[0])[0] x = torch.rand([3, 2]).float() verify_model(Where1(), input_data=[x]) y = torch.rand([3, 2]) verify_model(Where2(), input_data=[x, y]) # a single argument variant, equivalent to torch.nonzero(..., as_tuple=True) inp = torch.rand([10]) inp[3:8] = 0 verify_trace_model(Where3(), [inp], ["llvm"]) @tvm.testing.uses_gpu def test_forward_addcdiv(): """test_forward_addcdiv""" torch.set_grad_enabled(False) class Addcdiv1(Module): def forward(self, *args): t1 = torch.ones([3, 1]) t2 = torch.ones([1, 3]) if torch.cuda.is_available(): t1 = t1.cuda() t2 = t2.cuda() return torch.addcdiv(args[0], 0.1, t1, t2) class Addcdiv2(Module): def forward(self, *args): return torch.addcdiv(args[0], 0.5, args[1], args[2]) input_data = torch.rand([1, 3]).float() verify_model(Addcdiv1().float().eval(), input_data=input_data) t1 = torch.rand([3, 1]).float() t2 = torch.rand([1, 3]).float() verify_model(Addcdiv2().float().eval(), input_data=[input_data, t1, t2]) @tvm.testing.uses_gpu def test_forward_addcmul(): """test_forward_addcmul""" torch.set_grad_enabled(False) class Addcmul1(Module): def forward(self, *args): t1 = torch.ones([3, 1]) t2 = torch.ones([1, 3]) if torch.cuda.is_available(): t1 = t1.cuda() t2 = t2.cuda() return torch.addcmul(args[0], 0.1, t1, t2) class Addcmul2(Module): def forward(self, *args): return torch.addcmul(args[0], 0.5, args[1], args[2]) input_data = torch.rand([1, 3]).float() verify_model(Addcmul1().float().eval(), input_data=input_data) t1 = torch.rand([3, 1]).float() t2 = torch.rand([1, 3]).float() verify_model(Addcmul2().float().eval(), input_data=[input_data, t1, t2]) @tvm.testing.uses_gpu def test_forward_true_divide(): """test_forward_true_divide""" if package_version.parse(torch.__version__) < package_version.parse("1.5.0"): return torch.set_grad_enabled(False) class TrueDivide(Module): def forward(self, *args): return torch.true_divide(args[0], args[1]) dividend = torch.rand([5, 3]).float() # divisor could be either tensor or scalar divisor_tensor = torch.rand([5, 3]).float() + 0.5 divisor_scalar = torch.tensor(1.0, dtype=torch.float32) verify_model( TrueDivide().float().eval(), input_data=[dividend, divisor_tensor], atol=1e-4, rtol=1e-4 ) verify_model( TrueDivide().float().eval(), input_data=[dividend, divisor_scalar], atol=1e-4, rtol=1e-4 ) @tvm.testing.uses_gpu def test_forward_is_floating_point(): """test_forward_is_floating_point""" torch.set_grad_enabled(False) class IsFloatingPoint(Module): def forward(self, arg): # `torch.jit.trace` cannot accept something that outputs # a Bool, so `torch.jit.script` will be used instead return torch.is_floating_point(arg) targets = _get_default_vm_targets() verify_script_model(IsFloatingPoint(), [(1, 1)], targets, idtype=torch.float64) verify_script_model(IsFloatingPoint(), [(1, 1)], targets, idtype=torch.float32) verify_script_model(IsFloatingPoint(), [(1, 1)], targets, idtype=torch.float16) # todo(dvisnty): Run the test for bfloat16 when full bfloat16 support is implemented # verify_script_model(IsFloatingPoint(), [(1,1)], targets, idtype=torch.bfloat16) verify_script_model(IsFloatingPoint(), [(1, 1)], targets, idtype=torch.int64) verify_script_model(IsFloatingPoint(), [(1, 1)], targets, idtype=torch.int32) verify_script_model(IsFloatingPoint(), [(1, 1)], targets, idtype=torch.int16) verify_script_model(IsFloatingPoint(), [(1, 1)], targets, idtype=torch.int8) verify_script_model(IsFloatingPoint(), [(1, 1)], targets, idtype=torch.uint8) @tvm.testing.uses_gpu def test_forward_traced_function(): """test_forward_traced_function""" def fn(t1, t2): return t1 + t2 tensor1 = torch.randn(3, 4) tensor2 = torch.randn(3, 4) verify_model(fn, input_data=[tensor1, tensor2]) @tvm.testing.uses_gpu def test_forward_dtypes(): """test_forward_dtypes""" def fn(t1, t2): return 2.5 * t1 + t2 for dt in [torch.int32, torch.int64, torch.double]: tensor1 = torch.randn(3, 4).to(dtype=dt) tensor2 = torch.randn(3, 4).to(dtype=dt) verify_model(fn, input_data=[tensor1, tensor2]) class ModuleWithIntParameters(Module): def __init__(self, arr): super().__init__() self.param = torch.nn.Parameter(torch.LongTensor(arr), requires_grad=False) def forward(self, x): return x.long() + self.param shape = (10, 10) param = torch.ones(shape, dtype=torch.long) inp = torch.ones(shape, dtype=torch.int) verify_model(ModuleWithIntParameters(param), input_data=inp) @tvm.testing.uses_gpu def test_weight_names(): tm = torch.jit.trace(torch.nn.Linear(3, 4), [torch.randn(2, 3)]) _, params = relay.frontend.from_pytorch(tm, [("input", (2, 3))]) assert set(params.keys()) == set(n for n, _ in tm.named_parameters()) @tvm.testing.uses_gpu def test_duplicate_weight_use(): """test_duplicate_weight_use""" # The test cases doesn't make any sense as a neural network, # the issue popped up in shared input/output embeddings of bert, # but this is quicker class Test(Module): def __init__(self): super().__init__() self.lin = torch.nn.Linear(5, 3) def forward(self, x): x = self.lin(x) x = x @ self.lin.weight return x verify_model(Test(), input_data=[torch.randn(5, 5)]) @tvm.testing.uses_gpu def test_forward_matmul(): """test_forward_matmul""" torch.set_grad_enabled(False) class MatMul1(Module): def forward(self, *args): return torch.matmul(args[0], args[1]) # matrix x vector tensor1 = torch.randn(3, 4) tensor2 = torch.randn(4) verify_model(MatMul1().float().eval(), input_data=[tensor1, tensor2]) # vector x matrix tensor1 = torch.randn(4) tensor2 = torch.randn(4, 3) verify_model(MatMul1().float().eval(), input_data=[tensor1, tensor2]) # matrix x matrix tensor1 = torch.randn(10, 4) tensor2 = torch.randn(4, 10) verify_model(MatMul1().float().eval(), input_data=[tensor1, tensor2], expected_ops=["nn.dense"]) # batched matrix x batched matrix tensor1 = torch.randn(10, 3, 4) tensor2 = torch.randn(10, 4, 5) verify_model( MatMul1().float().eval(), input_data=[tensor1, tensor2], expected_ops=["nn.batch_matmul"] ) # batched matrix x broadcasted matrix tensor1 = torch.randn(10, 3, 4) tensor2 = torch.randn(4, 5) verify_model(MatMul1().float().eval(), input_data=[tensor1, tensor2], expected_ops=["nn.dense"]) # broadcasted matrix x batched matrix tensor1 = torch.randn(10, 4) tensor2 = torch.randn(3, 4, 5) verify_model(MatMul1().float().eval(), input_data=[tensor1, tensor2], expected_ops=["nn.dense"]) # batched matrix x batched matrix tensor1 = torch.randn(1, 12, 14, 64) tensor2 = torch.randn(1, 12, 64, 14) verify_model(MatMul1().float().eval(), input_data=[tensor1, tensor2]) def test_forward_index(): """test_forward_index""" torch.set_grad_enabled(False) input_shape = [3, 4, 5, 6] class Index0(Module): def forward(self, x): return x[[0, 1], [0, 2], :2, 4] input_data = torch.rand(input_shape).float() verify_model(Index0().eval(), input_data=input_data) class Index1(Module): def forward(self, x): return x[[0], [1, 2, 3, 0], [3, 1, 2, 2], [4, 2, 1, 0]] input_data = torch.rand(input_shape).float() verify_model(Index1().eval(), input_data=input_data) def test_fn_bool_mask(): return lambda data, mask: data[0, mask] data = torch.tensor([[1, 2, 3], [4, 5, 6]]) mask = torch.tensor([True, True, False]) verify_trace_model(test_fn_bool_mask(), [data, mask], ["llvm", "cuda"]) def test_logsumexp(): """test_logsumexp""" class Logsumexp(Module): def __init__(self, dim, keepdim=False): super().__init__() self.dim = dim self.keepdim = keepdim def forward(self, x): return torch.logsumexp(x, self.dim, self.keepdim) input_shape = (100, 100) input_data = torch.rand(input_shape) verify_model(Logsumexp(0), input_data=input_data) verify_model(Logsumexp(0, keepdim=True), input_data=input_data) # Also test on double verify_model(Logsumexp(1, keepdim=True), input_data=input_data.double()) def test_stack(): """test_stack""" class Stack(torch.nn.Module): def __init__(self, axis=0): super().__init__() self.axis = axis def forward(self, x): return torch.stack((x, x), dim=self.axis) inp = torch.randn(8, 8, 8) verify_model(Stack(), input_data=inp) verify_model(Stack(axis=-1), input_data=inp) verify_model(Stack(axis=3), input_data=inp) verify_model(Stack(axis=-4), input_data=inp) def test_stack_dynamic(): """test_stack_dynamic""" class Stack(torch.nn.Module): def forward(self, x): tensor_list = [] for i in range(x.size(0)): # this is a workaround to avoid generating impure aten::append op tensor_list += [x[i]] # relay tensor array only supports stacking on the first axis return torch.stack(tensor_list, dim=0) verify_script_model(Stack(), [(8, 8, 8)], _get_default_vm_targets()) def test_forward_unbind(): """test_forward_unbind""" class Unbind(torch.nn.Module): def __init__(self, axis=0): super().__init__() self.axis = axis def forward(self, x): return torch.unbind(x, self.axis) inp = torch.randn(8, 8, 8) verify_model(Unbind(0), input_data=inp) verify_model(Unbind(1), input_data=inp) verify_model(Unbind(2), input_data=inp) def test_forward_nonzero(): """test_forward_nonzero""" class Nonzero(Module): def __init__(self, as_tuple=False): super().__init__() self.as_tuple = as_tuple def forward(self, data): return torch.nonzero(data, as_tuple=self.as_tuple) inp = torch.Tensor(np.array([[0, 1, 0], [2, 0, 9], [-1, -1, 0]]).astype("float32")) verify_trace_model(Nonzero(), [inp], ["llvm"]) def test_forward_scatter(): """test_forward_scatter""" # integer cannot be traced def test_fn_scatter(dim): return lambda data, index, src: torch.scatter(data, dim=dim, index=index, src=src) def test_fn_scatter_add(dim): return lambda data, index, src: torch.scatter_add(data, dim=dim, index=index, src=src) in_data = torch.zeros(3, 5) in_index = torch.tensor([[0, 1, 2, 0, 0], [2, 0, 0, 1, 2]]) in_src = torch.rand(2, 5) targets = ["llvm", "cuda"] verify_trace_model(test_fn_scatter(0), [in_data, in_index, in_src], targets) verify_trace_model(test_fn_scatter_add(0), [in_data, in_index, in_src], targets) in_data = torch.zeros(2, 4) in_index = torch.tensor([[2], [3]]) in_src = torch.rand(2, 1) verify_trace_model(test_fn_scatter(1), [in_data, in_index, in_src], targets) verify_trace_model(test_fn_scatter_add(1), [in_data, in_index, in_src], targets) def test_forward_index_put(): """test_forward_index_put""" # torch.index_put for 2D tensor and default accumulate (False) def test_fn_index_put2(): return lambda data, xidx, yidx, values: torch.index_put( data, indices=[xidx, yidx], values=values ) # torch.index_put for 3D tensor and accumulate=True def test_fn_index_put3a(): return lambda data, xidx, yidx, zidx, values: torch.index_put( data, indices=[xidx, yidx, zidx], values=values, accumulate=True ) shape = (3, 5) in_data = torch.zeros(shape) xidx = torch.tensor([0, 1, 2, 2]) yidx = torch.tensor([0, 1, 3, 4]) values = torch.tensor([2.0, 4.0, 7.0, 9.0]) targets = ["llvm", "cuda"] verify_trace_model(test_fn_index_put2(), [in_data, xidx, yidx, values], targets) shape = (3, 5, 3) in_data = torch.zeros(shape) xidx = torch.tensor([0, 1, 2, 2, 0]) yidx = torch.tensor([0, 1, 3, 4, 0]) zidx = torch.tensor([0, 1, 1, 2, 0]) values = torch.tensor([2.0, 4.0, 7.0, 9.0, 1.0]) verify_trace_model(test_fn_index_put3a(), [in_data, xidx, yidx, zidx, values], targets) def test_numel(): """test_numel""" class Numel(Module): def forward(self, data): return torch.tensor(torch.numel(data)) targets = _get_default_vm_targets() verify_script_model(Numel(), [(1,)], targets) verify_script_model(Numel(), [(3, 5)], targets) verify_script_model(Numel(), [(3, 5, 8)], targets) def test_empty(): """Test for aten::empty""" def test_func(): return torch.empty([1, 3, 10, 10]) verify_model_with_input(test_func, [], assert_shape_only=True) def test_empty_like(): """Test for aten::empty_like""" def test_func(data): return torch.empty_like(data) verify_model_with_input(test_func, [torch.rand([1, 3, 10, 10]).float()], assert_shape_only=True) @tvm.testing.uses_gpu def test_new_empty(): """test_forward_new_ones""" torch.set_grad_enabled(False) input_shape = [1, 3, 10, 10] def test_func(input_tensor): return input_tensor.new_empty([3, 10, 10]) verify_model_with_input(test_func, [torch.rand(input_shape).float()], assert_shape_only=True) def test_func1(input_tensor): return input_tensor.new_empty([3, 10, 10], dtype=torch.int32) verify_model_with_input(test_func1, [torch.rand(input_shape).float()], assert_shape_only=True) def test_randn(): """Test for aten::randn""" def test_func(): return torch.randn([1, 3, 10, 10]) verify_model_with_input(test_func, [], assert_shape_only=True) def test_func1(): return torch.randn(1, 3, 10, 10) verify_model_with_input(test_func1, [], assert_shape_only=True) def test_forward_pretrained_bert_base_uncased(): ###################################################################### # This is an example how to run BERT models using TVM # --------------------------------------------------- """ Refer the bert example given in https://pypi.org/project/pytorch-pretrained-bert # To get started, pretrained bert package needs to be installed as prerequisite. .. code-block:: bash # install bert package pip install pytorch_pretrained_bert==0.6.2 --user """ # pylint: disable=import-outside-toplevel try: from pytorch_pretrained_bert import BertForMaskedLM, BertTokenizer except ImportError: print("Torch pretrained bert package must be installed to run this script.") return ###################################################################### # Load the tokenizer and tokenize the input # ----------------------------------------- # Load pre-trained model tokenizer (vocabulary) tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") # Tokenized input text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]" tokenized_text = tokenizer.tokenize(text) # Mask a token that we will try to predict back with `BertForMaskedLM` masked_index = 8 tokenized_text[masked_index] = "[MASK]" assert tokenized_text == [ "[CLS]", "who", "was", "jim", "henson", "?", "[SEP]", "jim", "[MASK]", "was", "a", "puppet", "##eer", "[SEP]", ] # Convert token to vocabulary indices indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text) # Define sentence A and B indices associated to 1st and 2nd sentences (see paper) segments_ids = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1] # Convert inputs to PyTorch tensors tokens_tensor = torch.tensor([indexed_tokens]) segments_tensors = torch.tensor([segments_ids]) ###################################################################### # Load a pretrained PyTorch model bert-base-uncased # ------------------------------------------------- # Bert Model with a language modeling model = BertForMaskedLM.from_pretrained("bert-base-uncased") model.eval() ###################################################################### # Predict all tokens with pytorch # ------------------------------- with torch.no_grad(): torch_preds = model(tokens_tensor, segments_tensors) ###################################################################### # Make TorchScripted model via jit trace # -------------------------------------- scripted_model = torch.jit.trace(model, (tokens_tensor, segments_tensors)).eval() ###################################################################### # Import the graph to Relay # ------------------------- # Convert PyTorch graph to Relay graph. The input name can be arbitrary. input_1 = "input_ids" input_2 = "input.2" shape_list = [(input_1, list(tokens_tensor.shape)), (input_2, list(segments_tensors.shape))] mod, params = relay.frontend.from_pytorch(scripted_model, shape_list) ###################################################################### # Compile the model with relay # ---------------------------- target = "llvm" with tvm.transform.PassContext(opt_level=3): relay_graph, relay_lib, relay_params = relay.build(mod, target=target, params=params) ###################################################################### # Execute on TVM # -------------- dev = tvm.device(target, 0) relay_model = graph_executor.create(relay_graph, relay_lib, dev) relay_model.set_input(**relay_params) relay_model.set_input(input_1, tokens_tensor) relay_model.set_input(input_2, segments_tensors) relay_model.run() compiled_output = relay_model.get_output(0).numpy() ###################################################################### # Validate the outputs # -------------------- # Compare the torch and tvm outputs tvm.testing.assert_allclose(torch_preds, compiled_output, rtol=1e-3, atol=1e-3) ###################################################################### # Process the output # ------------------ # Process the model output to token. # Torch output to token torch_pred_idx = torch.argmax(torch_preds[0, masked_index]).item() torch_pred_token = tokenizer.convert_ids_to_tokens([torch_pred_idx])[0] # TVM output to token tvm_pred_idx = compiled_output[0, masked_index].argmax() tvm_pred_token = tokenizer.convert_ids_to_tokens([tvm_pred_idx])[0] assert torch_pred_idx == tvm_pred_idx assert torch_pred_token == tvm_pred_token # Print the outputs print(f"Torch top-1 id: {torch_pred_idx}, token: {torch_pred_idx}") print(f"TVM top-1 id: {tvm_pred_idx}, token: {tvm_pred_token}") @pytest.mark.skipif( platform.machine() == "aarch64", reason="Currently failing on AArch64", ) def test_convert_torch_script_with_input_types(): """test_convert_torch_script_with_input_types""" def model_fn(x, y): x = x.to(dtype=torch.int32) y = x + y return y ishape = (4, 5) input_x = torch.rand(ishape, dtype=torch.float32) input_y = torch.randint(low=0, high=100, size=ishape, dtype=torch.int32) inputs = [input_x, input_y] script_module = torch.jit.trace(model_fn, inputs) fname = "tmp.pt" torch.jit.save(script_module, fname) loaded = torch.jit.load(fname) os.remove(fname) verify_model(loaded.eval(), input_data=inputs) def expected(x_shape, y_shape): # use a fixed order of args so alpha equal check can pass x = relay.var("x", shape=x_shape, dtype="float32") y = relay.var("y", shape=y_shape, dtype="int32") args = [x, y] x1 = relay.cast(x, "int32") y1 = relay.add(x1, y) mod = tvm.IRModule.from_expr(relay.Function(args, y1)) return mod["main"] input_infos = [("input0", (ishape, "float")), ("input1", (ishape, "int"))] mod, _ = relay.frontend.from_pytorch(loaded, input_infos) expected_mod = expected(ishape, ishape) assert tvm.ir.structural_equal(expected_mod, mod["main"], map_free_vars=True) def test_bincount(): """test_bincount""" def test_fn(x, weights=None): return torch.bincount(x, weights=weights) inp = torch.randint(0, 100, (10000,), dtype=torch.int64) weights = torch.linspace(0, 100, steps=10000) targets = ["llvm", "cuda"] verify_trace_model(test_fn, [inp], targets) verify_trace_model(test_fn, [inp, weights], targets) def test_hard_swish(): """test_hard_swish""" examples = [torch.rand(8).float(), torch.rand(8, 10).float(), torch.rand(1, 1, 10).float()] for input_data in examples: verify_model(torch.nn.Hardswish().eval(), input_data=input_data) verify_model(torch.nn.Hardswish(inplace=True).eval(), input_data=input_data) def test_hard_sigmoid(): """test_hard_sigmoid""" examples = [torch.rand(8).float(), torch.rand(8, 10).float(), torch.rand(1, 1, 10).float()] for input_data in examples: verify_model(torch.nn.Hardsigmoid().eval(), input_data=input_data) verify_model(torch.nn.Hardsigmoid(inplace=True).eval(), input_data=input_data) def test_cumsum(): """test_cumsum""" def test_fn(dim, dtype=None): return lambda x: torch.cumsum(x, dim=dim, dtype=dtype) inp = torch.randint(0, 100, (10000,), dtype=torch.int32) verify_model(test_fn(0), [inp]) verify_model(test_fn(0), [inp.to(torch.int64)]) verify_model(test_fn(0, dtype=torch.int64), [inp.to(torch.int64)]) inp = torch.randn((100, 100), dtype=torch.float32) verify_model(test_fn(dim=0, dtype=torch.float64), [inp]) verify_model(test_fn(dim=1), [inp]) inp = torch.randn((100, 100), dtype=torch.float32) > 0.5 verify_model(test_fn(dim=0, dtype=torch.int32), [inp]) def test_masked_fill(): """test_transformer""" def test_fn(x, mask): return torch.masked_fill(x, mask, 0.0) inp = torch.randn(100, 100) verify_model(test_fn, [inp, inp > 0.5]) verify_model(test_fn, [inp.to(torch.float64), inp > 0.5]) def test_transformer(): """test_transformer""" model = torch.nn.Transformer(d_model=256, nhead=8, num_encoder_layers=6, num_decoder_layers=6) model = model.eval() src = torch.rand((10, 32, 256)) tgt = torch.rand((20, 32, 256)) verify_model(model.eval(), input_data=[src, tgt]) def test_argsort(): """test_argsort""" def test_fn(dim, descending): return lambda x: torch.argsort(x, dim=dim, descending=descending) inp = torch.randn(100) verify_model(test_fn(0, True), [inp]) verify_model(test_fn(0, False), [inp]) inp = torch.randn(100, 100) verify_model(test_fn(0, True), [inp]) verify_model(test_fn(0, False), [inp]) verify_model(test_fn(1, True), [inp]) verify_model(test_fn(1, False), [inp]) def test_sort(): """test_sort""" def test_fn(dim, descending): return lambda x: torch.sort(x, dim=dim, descending=descending) inp = torch.randn(100) verify_model(test_fn(0, True), [inp]) verify_model(test_fn(-1, False), [inp]) inp = torch.randn(100, 100) verify_model(test_fn(0, True), [inp]) verify_model(test_fn(-2, False), [inp]) verify_model(test_fn(1, True), [inp]) verify_model(test_fn(-1, False), [inp]) def test_logical_and(): """test_logical_and""" def test_fn(x, y): return torch.logical_and(x, y) a = torch.tensor([0, 1, 10, 0], dtype=torch.int8) b = torch.tensor([4, 0, 1, 0], dtype=torch.int8) verify_model(test_fn, [a, b]) a = torch.tensor([True, False, True]) b = torch.tensor([True, False, False]) verify_model(test_fn, [a, b]) def test_masked_select(): """test_masked_select""" def test_fn(x, mask): return torch.masked_select(x, mask) for shape in [(10,), (3, 4), (16, 32, 64)]: x = torch.randn(*shape) mask = x.ge(0.5) verify_trace_model(test_fn, [x, mask], ["llvm", "cuda"]) def test_unique(): """test_unique""" def test_fn(is_sorted, return_inverse, return_counts): return lambda x: torch.unique(x, is_sorted, return_inverse, return_counts) in_data = torch.randint(0, 20, (10,), dtype=torch.int32) targets = ["llvm", "cuda"] verify_trace_model(test_fn(True, True, True), [in_data], targets) verify_trace_model(test_fn(True, False, True), [in_data], targets) verify_trace_model(test_fn(True, True, False), [in_data], targets) verify_trace_model(test_fn(True, False, True), [in_data], targets) in_data = torch.randint(0, 20, (20,), dtype=torch.int64) verify_trace_model(test_fn(True, True, True), [in_data], targets) verify_trace_model(test_fn(True, False, True), [in_data], targets) verify_trace_model(test_fn(True, True, False), [in_data], targets) verify_trace_model(test_fn(True, False, True), [in_data], targets) def test_forward_nll_loss(): """test_forward_nll_loss""" torch.set_grad_enabled(False) N, C = 10, 3 predictions = torch.rand((N, C)).float() targets = torch.randint(0, 3, (N,)) weights = torch.tensor([1, 2, 3]).float() verify_model(torch.nn.NLLLoss().eval(), input_data=[predictions, targets]) verify_model(torch.nn.NLLLoss(weight=weights).eval(), input_data=[predictions, targets]) verify_model(torch.nn.NLLLoss(ignore_index=1).eval(), input_data=[predictions, targets]) verify_model(torch.nn.NLLLoss(reduction="sum").eval(), input_data=[predictions, targets]) verify_model(torch.nn.NLLLoss(reduction="none").eval(), input_data=[predictions, targets]) # multidimension nll loss (aten::nll_loss2d) d1, d2 = 2, 3 predictions = torch.rand((N, C, d1, d2)).float() targets = torch.randint(0, 3, (N, d1, d2)) verify_model(torch.nn.NLLLoss().eval(), input_data=[predictions, targets]) verify_model(torch.nn.NLLLoss(weight=weights).eval(), input_data=[predictions, targets]) verify_model(torch.nn.NLLLoss(ignore_index=1).eval(), input_data=[predictions, targets]) verify_model(torch.nn.NLLLoss(reduction="sum").eval(), input_data=[predictions, targets]) verify_model(torch.nn.NLLLoss(reduction="none").eval(), input_data=[predictions, targets]) def test_cross_entropy_loss(): """test_cross_entropy_loss""" torch.set_grad_enabled(False) N, C = 10, 3 # class indices predictions = torch.rand((N, C)).float() targets = torch.randint(0, 3, (N,)) weights = torch.tensor([1, 2, 3]).float() verify_model(torch.nn.CrossEntropyLoss().eval(), input_data=[predictions, targets]) verify_model( torch.nn.CrossEntropyLoss(weight=weights).eval(), input_data=[predictions, targets] ) # class probabilities predictions = torch.randn(N, C).float() targets = torch.randn(N, C) verify_model(torch.nn.CrossEntropyLoss().eval(), input_data=[predictions, targets]) def test_forward_l1_loss(): """test_forward_l1_loss""" torch.set_grad_enabled(False) N, C = 10, 3 predictions = torch.rand((N, C)).float() targets = torch.rand((N, C)).float() verify_model(torch.nn.L1Loss().eval(), input_data=[predictions, targets]) verify_model(torch.nn.L1Loss(reduction="sum").eval(), input_data=[predictions, targets]) verify_model(torch.nn.L1Loss(reduction="none").eval(), input_data=[predictions, targets]) # multidimension l1 loss d1, d2 = 2, 3 predictions = torch.rand((N, C, d1, d2)).float() targets = torch.rand((N, C, d1, d2)).float() verify_model(torch.nn.L1Loss().eval(), input_data=[predictions, targets]) verify_model(torch.nn.L1Loss(reduction="sum").eval(), input_data=[predictions, targets]) verify_model(torch.nn.L1Loss(reduction="none").eval(), input_data=[predictions, targets]) def test_forward_mse_loss(): """test_forward_mse_loss""" torch.set_grad_enabled(False) N, C = 10, 3 predictions = torch.rand((N, C)).float() targets = torch.rand((N, C)).float() verify_model(torch.nn.MSELoss().eval(), input_data=[predictions, targets]) verify_model(torch.nn.MSELoss(reduction="sum").eval(), input_data=[predictions, targets]) verify_model(torch.nn.MSELoss(reduction="none").eval(), input_data=[predictions, targets]) # multidimension mse loss d1, d2 = 2, 3 predictions = torch.rand((N, C, d1, d2)).float() targets = torch.rand((N, C, d1, d2)).float() verify_model(torch.nn.MSELoss().eval(), input_data=[predictions, targets]) verify_model(torch.nn.MSELoss(reduction="sum").eval(), input_data=[predictions, targets]) verify_model(torch.nn.MSELoss(reduction="none").eval(), input_data=[predictions, targets]) @tvm.testing.uses_gpu def test_forward_flip(): """Test for aten::flip""" torch.set_grad_enabled(False) class Flip(Module): def __init__(self, axis=0): super().__init__() self.axis = axis def forward(self, x): return x.flip([self.axis]) input_t = torch.randn(2, 3, 4) verify_model(Flip(axis=0), input_data=input_t) verify_model(Flip(axis=1), input_data=input_t) verify_model(Flip(axis=2), input_data=input_t) verify_model(Flip(axis=-1), input_data=input_t) def test_annotate_span(): """test_annotate_span""" model = torchvision.models.resnet18().eval() inp = torch.randn([1, 3, 224, 224]) trace = torch.jit.trace(model, inp).eval() mod, _ = relay.frontend.from_pytorch( trace, [("input", inp.shape)], use_parser_friendly_name=True ) relay.transform.AnnotateSpans()(mod) @tvm.testing.uses_gpu def test_all_any(): """test_all_any""" def test_fn(f, dim=None, keepdim=False): return lambda x: f(x, dim=dim, keepdim=keepdim) def test_fn_no_arg(f): return lambda x: f(x) # pylint: disable=unnecessary-lambda for f in [torch.all, torch.any]: verify_model(test_fn(f, 0), [torch.rand(1, 2).bool()]) verify_model(test_fn(f, 0), [torch.arange(0, 3).to(torch.uint8)]) verify_model(test_fn(f, 1), [torch.rand(4, 2).bool()]) verify_model(test_fn(f, 0, keepdim=True), [torch.rand(4, 2).bool()]) verify_model(test_fn_no_arg(f), [torch.rand(1, 2).bool()]) verify_model(test_fn_no_arg(f), [torch.arange(0, 3).to(torch.uint8)]) @tvm.testing.uses_gpu def test_searchsorted(): """test_searchsorted""" def test_fn(out_int32=False, right=False): return lambda x, y: torch.searchsorted(x, y, out_int32=out_int32, right=right) sorted_sequence = torch.tensor([[1, 3, 5, 7, 9], [2, 4, 6, 8, 10]]) values = torch.tensor([[3, 6, 9], [3, 6, 9]]) verify_model(test_fn(), [sorted_sequence, values]) verify_model(test_fn(out_int32=True), [sorted_sequence[0], values[0]]) verify_model(test_fn(right=True), [sorted_sequence, values]) sorted_sequence_1d = torch.tensor([1, 3, 5, 7, 9]) values = torch.tensor([[3, 6, 9], [4, 2, 7]]) verify_model(test_fn(), [sorted_sequence_1d, values]) verify_model(test_fn(), [sorted_sequence_1d, torch.tensor(6)]) @tvm.testing.uses_gpu def test_bucketize(): """test_bucketize""" def test_fn(out_int32=False, right=False): return lambda x, y: torch.bucketize(x, y, out_int32=out_int32, right=right) boundaries = torch.tensor([1, 3, 5, 7, 9]) values = torch.tensor([3, 6, 9]) verify_model(test_fn(), [values, boundaries]) verify_model(test_fn(out_int32=True, right=True), [values, boundaries]) @tvm.testing.uses_gpu def test_roll(): """Test for aten::roll""" def test_fn(shifts, dims): return lambda x: torch.roll(x, shifts, dims) x = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8]).view(4, 2) verify_model(test_fn(1, 0), [x]) verify_model(test_fn(-1, 0), [x]) verify_model(test_fn(shifts=(2, 1), dims=(0, 1)), [x]) @tvm.testing.uses_gpu def test_einsum(): """test_einsum""" def test_fn(equation): return lambda *x: torch.einsum(equation, *x) x = torch.ones([2, 3]) y = torch.ones([3, 4]) z = torch.ones([4, 5]) verify_model(test_fn("ij,jk"), [x, y]) verify_model(test_fn("ij,jk,km->im"), [x, y, z]) def test_stft(): """test_stft""" def test_fn(n_fft, hop_length, win_length, center, pad_mode, normalized, onesided): return lambda input, window=None: torch.stft( input=input, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, center=center, pad_mode=pad_mode, normalized=normalized, onesided=onesided, ) input_t = torch.rand([1, 12]).float() window = torch.tensor([2, 3, 4], dtype=torch.int32) targets = ["llvm", "cuda"] verify_trace_model(test_fn(3, 3, 3, False, "constant", False, True), [input_t, window], targets) verify_trace_model(test_fn(3, 3, 3, True, "constant", False, True), [input_t, window], targets) verify_trace_model(test_fn(3, 3, 3, False, "reflect", False, True), [input_t, window], targets) verify_trace_model(test_fn(3, 3, 3, True, "reflect", False, True), [input_t, window], targets) verify_trace_model(test_fn(3, 3, 3, True, "reflect", True, True), [input_t, window], targets) verify_trace_model(test_fn(3, 3, 3, True, "reflect", False, False), [input_t, window], targets) input_t = torch.rand([2, 12]).float() window = torch.tensor([2, 3, 4], dtype=torch.int32) verify_trace_model(test_fn(3, 3, 3, False, "reflect", False, True), [input_t, window], targets) window = torch.tensor([1, 3], dtype=torch.int32) verify_trace_model(test_fn(2, 1, 2, False, "reflect", False, True), [input_t, window], targets) verify_trace_model(test_fn(2, 1, 2, False, "reflect", False, True), [input_t], targets) @tvm.testing.uses_gpu def test_dot(): """Test for aten::dot""" def test_fn(x): return x.dot(x) x = torch.randn([4]) verify_model(test_fn, [x]) @tvm.testing.uses_gpu def test_mv(): """Test for aten::mv""" def test_fn(m, v): return m.mv(v) verify_model(test_fn, [torch.randn(4, 4), torch.randn(4)]) verify_model(test_fn, [torch.randn(2, 2), torch.randn(2)]) verify_model(test_fn, [torch.randn(3, 8), torch.randn(8)]) def test_grid_sample(): """test_grid_sample""" class Grid_sample(Module): def __init__(self, method, padding_mode, align_corners): super().__init__() self._method = method self._padding_mode = padding_mode self._align_corners = align_corners def forward(self, x, y): return torch.nn.functional.grid_sample( input=x, grid=y, mode=self._method, padding_mode=self._padding_mode, align_corners=self._align_corners, ) methods = ["nearest", "bilinear", "bicubic"] padding_modes = ["zeros", "border", "reflection"] align_corners = [True, False] data_2D = torch.rand([4, 4, 8, 8]).float() grid_2D = torch.rand([4, 16, 16, 2]).float() # choosing smaller sizes to be testable on weaker GPUs data_3D = torch.rand([4, 4, 4, 4, 4]).float() grid_3D = torch.rand([4, 8, 8, 8, 3]).float() for _method in methods: for _padding in padding_modes: for _align in align_corners: # ATTENTION: # "nearest" + "reflection" result may be different with pytorch on cpu device, # because pytorch's cpu result is different with gpu result, # and gpu result used here as baseline in tvm topi.image.grid_sample. model = Grid_sample(_method, _padding, _align) verify_model(model, input_data=[data_2D, grid_2D]) # 3D "bicubic"(tricubic) is not supported in pytorch if _method != "bicubic": verify_model(model, input_data=[data_3D, grid_3D]) def test_list_tuple(): """test compilation error for a Python list followed by a prim::TupleConstruct.""" class List_tuple(Module): """List_tuple""" def forward(self, x): """forward""" merged = [] mask_list = [] for i in range(3): w0 = torch.sigmoid(x) merged.append((w0, w0)) mask_list.append(x) for i in range(3): merged[i] = merged[i][0] + merged[i][1] return mask_list[2], merged x = torch.rand([4, 4, 16, 32]).float() script_module = torch.jit.trace(List_tuple(), x, strict=False).eval() relay.frontend.from_pytorch(script_module, [("x", x.shape)]) # pylint: disable=unnecessary-dunder-call @tvm.testing.uses_gpu def test_binary_bitwise(): """Test for binary bitwise""" def test_ior(x, y): return x.__ior__(y) def test_iand(x, y): return x.__iand__(y) def test_ixor(x, y): return x.__ixor__(y) x = torch.tensor([7, 49, 16, 1, 2, 3], dtype=torch.uint8) y = torch.tensor([39, 128, 99, 228, 63, 17], dtype=torch.uint8) for test_fn in [test_ior, test_iand, test_ixor]: verify_model(test_fn, [x, y]) @tvm.testing.uses_gpu def test_shift(): """Test for aten::__lshift__, aten::__rshift__""" def test_lshift(x, y): return x << y def test_rshift(x, y): return x >> y x = torch.tensor([39, 128, 99, 228, 63, 17], dtype=torch.int32) y = torch.tensor([3, 2, 7, 4, 5, 9], dtype=torch.int32) for test_fn in [test_lshift, test_rshift]: verify_model(test_fn, [x, y]) @tvm.testing.uses_gpu def test_mod(): """Test for aten::fmod""" def test_fmod(x, y): return torch.fmod(x, y) def test_remainder(x, y): return torch.remainder(x, y) for test_fn in [test_fmod, test_remainder]: verify_model(test_fn, [torch.tensor([-3.0, -2, -1, 1, 2, 3]), torch.tensor(2)]) verify_model(test_fn, [torch.tensor([1, 2, 3, 4, 5]), torch.tensor(-1.5)]) def test_softmax_fuse(): """test_softmax_fuse""" # https://github.com/apache/tvm/issues/12001 class Model(torch.nn.Module): """Pytorch model module""" def __init__(self, nchwc_post_op=False) -> None: super().__init__() self.conv = torch.nn.Conv2d(3, 3, (1, 1), 1) self.nchwc_post_op = nchwc_post_op @torch.no_grad() def forward(self, x): """forward""" t0a = self.conv(x) t0b = torch.floor(x) t2b = torch.softmax(t0a, dim=2) if self.nchwc_post_op: t3a = t0a - t0b t4a = t2b - t0b t6a = t3a + t4a return t6a return t2b + 1 sh = [3, 3, 10, 1] inp = torch.ones(*sh, dtype=torch.float32) for model in [Model(nchwc_post_op=False).eval(), Model(nchwc_post_op=True).eval()]: output_torch = model(inp).numpy() mod, params = relay.frontend.from_pytorch(torch.jit.trace(model, inp), [("inp0", sh)]) with tvm.transform.PassContext(opt_level=4): out = ( relay.create_executor("graph", mod, params=params) .evaluate()(inp0=inp.numpy()) .numpy() ) tvm.testing.assert_allclose(out, output_torch, rtol=1e-5, atol=1e-5) @tvm.testing.uses_gpu def test_lerp(): """test_lerp""" def test_fn(x, y, w): return torch.lerp(x, y, w) input_shape = [16] x = torch.rand(input_shape).float() y = torch.rand(input_shape).float() w = torch.rand(input_shape).float() # weight can be tensor or scalar verify_model(test_fn, [x, y, w]) verify_model(test_fn, [x, y, w[0]]) def test_trilu(): def _test_trilu(op, diagonal): return lambda inp: op(inp, diagonal) for op in [torch.triu, torch.tril]: verify_model(_test_trilu(op, 0), [torch.rand(size=[3, 3])]) verify_model(_test_trilu(op, 1), [torch.rand(size=[6, 6])]) verify_model(_test_trilu(op, -2), [torch.rand(size=[6, 6])]) def test_multinomial(): def _test_multinomial(num_samples): return lambda inp: torch.multinomial(inp, num_samples=num_samples, replacement=True) # Dont check output since it's random. Instead we'll just make sure shapes are right. verify_model( _test_multinomial(2), [torch.rand(size=[3]).float()], cpu_only=True, check_correctness=False ) verify_model( _test_multinomial(1), [torch.rand(size=[4, 5]).float()], cpu_only=True, check_correctness=False, ) if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/frontend/pytorch/test_fx_quant.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ Tests on fx-quantized torch model conversion """ import torch import torchvision import numpy as np from torch.quantization import get_default_qconfig from torch.quantization.quantize_fx import prepare_fx, convert_fx from torchvision.models.efficientnet import efficientnet_b4 from torchvision.models.resnet import resnet50 from tvm import relay def quantize(model): qconfig = get_default_qconfig("fbgemm") qconfig_dict = {"": qconfig} return convert_fx(prepare_fx(model, qconfig_dict)) def quantize_and_build(model, in_size): inp = torch.rand(1, 3, in_size, in_size) input_name = "inp" qmodel = quantize(model) with torch.no_grad(): script_module = torch.jit.trace(qmodel, inp) mod, _ = relay.frontend.from_pytorch(script_module, [(input_name, inp.shape)]) mod = relay.transform.InferType()(mod) # Make sure that the model is quantized assert "qnn.conv2d" in mod.astext(show_meta_data=False) # Skip building since it is slow on CI # relay.build(mod, params=params, target="llvm") def test_ssd_vgg(): class TraceWrapper(torch.nn.Module): def __init__(self, model): super().__init__() self.model = model def forward(self, inp): features = self.model.backbone(inp) features = list(features.values()) out = self.model.head(features) return out["bbox_regression"], out["cls_logits"] model_func = torchvision.models.detection.ssd300_vgg16 model = TraceWrapper(model_func(num_classes=50, pretrained_backbone=True)).eval() quantize_and_build(model, 300) def test_deeplab_v3(): class TraceWrapper(torch.nn.Module): def __init__(self, model): super().__init__() self.model = model def forward(self, inp): out = self.model(inp) return out["out"] deeplabv3 = torchvision.models.segmentation.deeplabv3_mobilenet_v3_large(pretrained=True) model = TraceWrapper(deeplabv3.eval()).eval() quantize_and_build(model, 300) def test_imagenet(): for model_func in [resnet50, efficientnet_b4]: quantize_and_build(model_func(pretrained=True).eval(), 224)
https://github.com/zk-ml/tachikoma
tests/python/frontend/pytorch/test_lstm.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ Tests on torch lstm model conversion """ # originally from https://github.com/pytorch/pytorch/blob/master/benchmarks/fastrnns/custom_lstms.py # described in https://pytorch.org/blog/optimizing-cuda-rnn-with-torchscript/ import numpy as np import torch import torch.nn as nn from torch.nn import Parameter import torch.jit as jit from typing import List, Tuple from torch import Tensor import tvm import tvm.testing from tvm import relay from tvm.relay.frontend.pytorch import from_pytorch from tvm.relay.prelude import Prelude from tvm.runtime.container import ADT, tuple_object class LayerNormLSTMCell(jit.ScriptModule): def __init__(self, input_size, hidden_size): super().__init__() self.input_size = input_size self.hidden_size = hidden_size self.weight_ih = Parameter(torch.randn(4 * hidden_size, input_size)) self.weight_hh = Parameter(torch.randn(4 * hidden_size, hidden_size)) ln = nn.LayerNorm self.layernorm_i = ln(4 * hidden_size) self.layernorm_h = ln(4 * hidden_size) self.layernorm_c = ln(hidden_size) @jit.script_method def forward(self, input, state): # type: (Tensor, Tuple[Tensor, Tensor]) -> Tuple[Tensor, Tuple[Tensor, Tensor]] hx, cx = state igates = self.layernorm_i(torch.mm(input, self.weight_ih.t())) hgates = self.layernorm_h(torch.mm(hx, self.weight_hh.t())) gates = igates + hgates ingate, forgetgate, cellgate, outgate = gates.chunk(4, 1) ingate = torch.sigmoid(ingate) forgetgate = torch.sigmoid(forgetgate) cellgate = torch.tanh(cellgate) outgate = torch.sigmoid(outgate) cy = self.layernorm_c((forgetgate * cx) + (ingate * cellgate)) hy = outgate * torch.tanh(cy) return hy, (hy, cy) class LSTMLayer(jit.ScriptModule): def __init__(self, cell, *cell_args): super().__init__() self.cell = cell(*cell_args) @jit.script_method def forward(self, input, state): # type: (Tensor, Tuple[Tensor, Tensor]) -> Tuple[Tensor, Tuple[Tensor, Tensor]] outputs = [] for i in range(input.size(0)): out, state = self.cell(input[i], state) outputs += [out] return torch.stack(outputs), state class ReverseLSTMLayer(jit.ScriptModule): def __init__(self, cell, *cell_args): super(ReverseLSTMLayer, self).__init__() self.cell = cell(*cell_args) @jit.script_method def forward(self, inputs, state): # type: (Tensor, Tuple[Tensor, Tensor]) -> Tuple[Tensor, Tuple[Tensor, Tensor]] outputs = jit.annotate(List[Tensor], []) seq_len = inputs.size(0) for i in range(seq_len): out, state = self.cell(inputs[seq_len - i - 1], state) # workaround for the lack of list rev support outputs = [out] + outputs return torch.stack(outputs), state class BidirLSTMLayer(jit.ScriptModule): __constants__ = ["directions"] def __init__(self, cell, *cell_args): super(BidirLSTMLayer, self).__init__() self.directions = nn.ModuleList( [ LSTMLayer(cell, *cell_args), ReverseLSTMLayer(cell, *cell_args), ] ) @jit.script_method def forward(self, input, states): # type: (Tensor, List[Tuple[Tensor, Tensor]]) -> Tuple[Tensor, List[Tuple[Tensor, Tensor]]] # List[LSTMState]: [forward LSTMState, backward LSTMState] outputs = jit.annotate(List[Tensor], []) output_states = jit.annotate(List[Tuple[Tensor, Tensor]], []) for (i, direction) in enumerate(self.directions): state = states[i] out, out_state = direction(input, state) outputs += [out] output_states += [out_state] # tensor array concat assumes axis == 0 for now # return torch.cat(outputs, -1), output_states return torch.cat(outputs, 0), output_states def init_stacked_lstm(num_layers, layer, first_layer_args, other_layer_args): layers = [layer(*first_layer_args)] + [layer(*other_layer_args) for _ in range(num_layers - 1)] return nn.ModuleList(layers) class StackedLSTM(jit.ScriptModule): __constants__ = ["layers"] # Necessary for iterating through self.layers def __init__(self, num_layers, layer, first_layer_args, other_layer_args): super().__init__() self.layers = init_stacked_lstm(num_layers, layer, first_layer_args, other_layer_args) @jit.script_method def forward(self, input, states): # type: (Tensor, List[Tuple[Tensor, Tensor]]) -> Tuple[Tensor, List[Tuple[Tensor, Tensor]]] # List[LSTMState]: One state per layer output_states = jit.annotate(List[Tuple[Tensor, Tensor]], []) output = input for (i, rnn_layer) in enumerate(self.layers): state = states[i] output, out_state = rnn_layer(output, state) output_states += [out_state] return output, output_states class StackedBidirLSTM(jit.ScriptModule): __constants__ = ["layers"] # Necessary for iterating through self.layers def __init__(self, num_layers, layer, first_layer_args, other_layer_args): super(StackedBidirLSTM, self).__init__() self.layers = init_stacked_lstm(num_layers, layer, first_layer_args, other_layer_args) @jit.script_method def forward(self, input, states): # type: (Tensor, List[List[Tuple[Tensor, Tensor]]]) -> Tuple[Tensor, List[List[Tuple[Tensor, Tensor]]]] # List[List[LSTMState]]: The outer list is for layers, # inner list is for directions. output_states = jit.annotate(List[List[Tuple[Tensor, Tensor]]], []) output = input for (i, rnn_layer) in enumerate(self.layers): state = states[i] output, out_state = rnn_layer(output, state) output_states += [out_state] return output, output_states def lstm(input_size, hidden_size): return LSTMLayer(LayerNormLSTMCell, input_size, hidden_size) def stacked_lstm(input_size, hidden_size, num_layers): return StackedLSTM( num_layers, LSTMLayer, first_layer_args=[LayerNormLSTMCell, input_size, hidden_size], other_layer_args=[LayerNormLSTMCell, hidden_size, hidden_size], ) def bidir_lstm(input_size, hidden_size): return BidirLSTMLayer(LayerNormLSTMCell, input_size, hidden_size) def stacked_bidir_lstm(input_size, hidden_size, num_layers): return StackedBidirLSTM( num_layers, BidirLSTMLayer, first_layer_args=[LayerNormLSTMCell, input_size, hidden_size], other_layer_args=[LayerNormLSTMCell, hidden_size, hidden_size], ) def vmobj_to_list(o, dtype="float32"): if isinstance(o, tvm.nd.NDArray): return [o] elif isinstance(o, tvm.runtime.container.ADT): result = [] for f in o: result.extend(vmobj_to_list(f, dtype)) return result else: raise RuntimeError("Unknown object type: %s" % type(o)) def assert_equal(tvm_result, torch_result): if isinstance(torch_result, (tuple, list)): assert isinstance(tvm_result, list) for tvm_res, pt_res in zip(tvm_result, torch_result): assert_equal(tvm_res, pt_res) elif isinstance(torch_result, torch.Tensor): tvm.testing.assert_allclose(tvm_result.numpy(), torch_result.numpy(), rtol=1e-4, atol=1e-4) def run_and_compare(mod, params, pt_result, target, device): exec_res = relay.create_executor("vm", mod=mod, device=device, target=target).evaluate()( **params ) def flatten(nested): res = [] for r in nested: if isinstance(r, torch.Tensor): res.append(r) else: res.extend(flatten(r)) return res if isinstance(exec_res, tvm.runtime.container.ADT): assert not isinstance(pt_result, torch.Tensor) tvm_res = vmobj_to_list(exec_res) torch_res = flatten(pt_result) else: tvm_res = exec_res torch_res = pt_result assert_equal(tvm_res, torch_res) def convert_list_to_vmobj(py_lst): def wrap_nd_array(arr): return tvm.nd.array(arr, device=tvm.cpu(0)) mod = tvm.IRModule() prelude = Prelude(mod) list, cons, nil = mod.get_type("List") adt_lst = ADT(nil.tag, []) for elem in reversed(py_lst): if isinstance(elem, np.ndarray): vmobj = wrap_nd_array(elem) elif isinstance(elem, tuple): vmobj = tuple_object([wrap_nd_array(e) for e in elem]) elif isinstance(elem, list): vmobj = convert_list_to_vmobj(elem) adt_lst = ADT(cons.tag, [vmobj, adt_lst]) return adt_lst @tvm.testing.uses_gpu def test_custom_lstm(): input_name = "input" states_name = "states" seq_len = 5 batch = 2 input_size = 3 hidden_size = 4 num_layers = 3 state_tensor_shape = (batch, hidden_size) torch.manual_seed(1) inp = torch.randn(seq_len, batch, input_size) input_shapes = [ (input_name, (seq_len, batch, input_size)), (states_name, (state_tensor_shape, state_tensor_shape)), ] input_shapes_stacked = [ (input_name, (seq_len, batch, input_size)), ( states_name, [(state_tensor_shape, state_tensor_shape), (state_tensor_shape, state_tensor_shape)], ), ] input_shapes_stacked_bidir = [ (input_name, (seq_len, batch, input_size)), ( states_name, [ [(state_tensor_shape, state_tensor_shape) for _ in range(2)] for _ in range(num_layers) ], ), ] states = [ (torch.randn(state_tensor_shape), torch.randn(state_tensor_shape)) for _ in range(num_layers) ] bidir_states = [ (torch.randn(state_tensor_shape), torch.randn(state_tensor_shape)) for _ in range(2) ] stacked_bidir_states = [ [(torch.randn(state_tensor_shape), torch.randn(state_tensor_shape)) for _ in range(2)] for _ in range(num_layers) ] models = [ ("lstm", lstm(input_size, hidden_size).eval(), states[0], input_shapes), ( "stacked", stacked_lstm(input_size, hidden_size, num_layers).eval(), states, input_shapes_stacked, ), ("bidir", bidir_lstm(input_size, hidden_size).eval(), bidir_states, input_shapes_stacked), # TODO(masahi): stacked bidir seems to have a rare accuracy issue # ( # "stacked_bidir", # stacked_bidir_lstm(input_size, hidden_size, num_layers).eval(), # stacked_bidir_states, # input_shapes_stacked_bidir, # ), ] for (name, raw_model, states, input_shapes) in models: script_module = torch.jit.script(raw_model) mod, params = from_pytorch(script_module, input_shapes) with torch.no_grad(): pt_result = raw_model(inp.clone(), states) params[input_name] = inp.numpy() if isinstance(states, tuple): states_np = tuple(st.numpy() for st in states) elif isinstance(states, list) and isinstance(states[0], torch.Tensor): states_np = [st.numpy() for st in states] elif isinstance(states, list) and isinstance(states[0], tuple): states_np = [tuple(st.numpy() for st in states[i]) for i in range(len(states))] elif isinstance(states, list) and isinstance(states[0], list): states_np = [ [tuple(st.numpy() for st in states) for states in states[layer]] for layer in range(num_layers) ] else: assert False if isinstance(states_np, list): params[states_name] = convert_list_to_vmobj(states_np) else: params[states_name] = states_np for tgt, dev in tvm.testing.enabled_targets(): print("Running %s on target %s" % (name, tgt)) run_and_compare(mod, params, pt_result, target=tgt, device=dev)
https://github.com/zk-ml/tachikoma
tests/python/frontend/pytorch/test_object_detection.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=import-self, invalid-name, unused-argument """Test torch vision fasterrcnn and maskrcnn models""" import numpy as np import cv2 import torch import torchvision import tvm import tvm.testing from tvm import relay from tvm.runtime.vm import VirtualMachine from tvm.relay.frontend.pytorch_utils import ( rewrite_nms_to_batched_nms, rewrite_batched_nms_with_max_out_size, rewrite_scatter_to_gather, ) from tvm.contrib.download import download in_size = 300 def process_image(img): img = cv2.imread(img).astype("float32") img = cv2.resize(img, (in_size, in_size)) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = torch.from_numpy(img / 255.0).permute(2, 0, 1).float() img = torch.unsqueeze(img, axis=0) return img def do_trace(model, inp, in_size=in_size): model_trace = torch.jit.trace(model, inp) model_trace.eval() return model_trace def dict_to_tuple(out_dict): if "masks" in out_dict.keys(): return out_dict["boxes"], out_dict["scores"], out_dict["labels"], out_dict["masks"] return out_dict["boxes"], out_dict["scores"], out_dict["labels"] class TraceWrapper(torch.nn.Module): def __init__(self, model): super().__init__() self.model = model def forward(self, inp): out = self.model(inp) return dict_to_tuple(out[0]) def generate_jit_model(index): model_funcs = [ torchvision.models.detection.fasterrcnn_resnet50_fpn, torchvision.models.detection.maskrcnn_resnet50_fpn, ] model_func = model_funcs[index] model = TraceWrapper(model_func(pretrained=True, rpn_pre_nms_top_n_test=1000)) model.eval() inp = torch.Tensor(np.random.uniform(0.0, 250.0, size=(1, 3, in_size, in_size))) with torch.no_grad(): out = model(inp) script_module = do_trace(model, inp) script_out = script_module(inp) assert len(out[0]) > 0 and len(script_out[0]) > 0 return script_module def test_detection_models(): img = "test_street_small.jpg" img_url = ( "https://raw.githubusercontent.com/dmlc/web-data/master/gluoncv/detection/street_small.jpg" ) download(img_url, img) input_shape = (1, 3, in_size, in_size) input_name = "input0" shape_list = [(input_name, input_shape)] scripted_model = generate_jit_model(1) mod, params = relay.frontend.from_pytorch(scripted_model, shape_list) data = process_image(img) data_np = data.detach().numpy() with torch.no_grad(): pt_res = scripted_model(data) def compile_and_run_vm(mod, params, data_np, target): with tvm.transform.PassContext(opt_level=3): vm_exec = relay.vm.compile(mod, target=target, params=params) dev = tvm.device(target, 0) vm = VirtualMachine(vm_exec, dev) vm.set_input("main", **{input_name: data_np}) return vm.run() for target in ["llvm"]: tvm_res = compile_and_run_vm(mod, params, data_np, target) # Bounding boxes tvm.testing.assert_allclose( pt_res[0].cpu().numpy(), tvm_res[0].numpy(), rtol=1e-5, atol=1e-5 ) # Scores tvm.testing.assert_allclose( pt_res[1].cpu().numpy(), tvm_res[1].numpy(), rtol=1e-5, atol=1e-5 ) # Class ids np.testing.assert_equal(pt_res[2].cpu().numpy(), tvm_res[2].numpy()) score_threshold = 0.9 print("Num boxes:", pt_res[0].cpu().numpy().shape[0]) print("Num valid boxes:", np.sum(pt_res[1].cpu().numpy() >= score_threshold)) before = mod["main"] mod = rewrite_nms_to_batched_nms(mod) after = mod["main"] assert not tvm.ir.structural_equal(after, before) # TODO(masahi): It seems this rewrite causes flaky segfaults on CI # See https://github.com/apache/tvm/issues/7363 # before = mod["main"] # mod = rewrite_batched_nms_with_max_out_size(mod) # after = mod["main"] # assert not tvm.ir.structural_equal(after, before) before = mod["main"] mod = rewrite_scatter_to_gather(mod, 4) # num_scales is 4 for maskrcnn_resnet50_fpn after = mod["main"] assert not tvm.ir.structural_equal(after, before) tvm_res_after_rewrite = compile_and_run_vm(mod, params, data_np, "llvm") # Results should be equivalent after rewriting for res1, res2 in zip(tvm_res, tvm_res_after_rewrite): tvm.testing.assert_allclose(res1.numpy(), res2.numpy())
https://github.com/zk-ml/tachikoma
tests/python/frontend/pytorch/test_rnns.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import torch import tvm import tvm.testing import onnx import io import sys from tvm import relay from tvm.contrib import graph_executor from torch import nn ## LSTM parameters lstm_feature_size = 16 lstm_hidden_size = 32 lstm_projection_size = 20 ## GRU parameters gru_feature_size = 8 gru_hidden_size = 16 num_layers = 2 seqs_length = 2 batch_size = 2 ##RNN parameters rnn_feature_size = 8 rnn_hidden_size = 16 class RNN_Model(nn.Module): """ It is base class for RNN layer classes. It contains some common fields and methods for child classes. """ def __init__( self, ): super().__init__() # model is defined in child class self.model = None def forward(self, input, hidden_init=None): """ Computes the output tensor after input inference along RNN layer. :param input: batch of data as a tensor of shape (seqs_length, batch_size, feature_size) or (batch_size, seqs_length, feature_size) if self.batch_first = True :param hidden_init: initial hidden state(s) of the RNN as a tensor(s) of shape (num_layers, batch_size, hidden_size). Will default to a tensor of zeros if None. :return: the output tensor of shape (batch_size, hidden_size) """ if self.model is None: raise NotImplementedError("self.model must be defined in subclasses!") out, _ = self.model(input, hidden_init) return out def gen_rnd_weights(self): """ Generate random weigths for the model """ if self.model is None: raise NotImplementedError("self.model must be defined in subclasses!") with torch.no_grad(): for weight_group in self.model.all_weights: for weight in weight_group: weight.data = torch.rand(weight.shape) def get_dummy_inputs(self): raise NotImplementedError("subclasses must override get_dummy_inputs()!") def get_input_names(self): raise NotImplementedError("subclasses must override get_input_names()!") def get_shape_desc(self, frontend_type): raise NotImplementedError("subclasses must override get_shape_desc(frontend_type)!") def get_tvm_inputs(self, dtype): raise NotImplementedError("subclasses must override get_tvm_inputs(dtype)!") class RNN_Model_Impl(RNN_Model): def __init__( self, seq_len=seqs_length, batch_size=batch_size, feature_size=rnn_feature_size, hidden_size=rnn_hidden_size, batch_first=False, layer_num=1, bidirectional=False, use_bias=True, rnd_weights_init=False, nonlinearity="tanh", dropout=0.0, ): super().__init__() # Shapes self.shape = [seq_len, batch_size, feature_size] if batch_first: self.shape = [batch_size, seq_len, feature_size] layers_num = 2 * layer_num if bidirectional else layer_num self.h0_shape = [layers_num, batch_size, hidden_size] # Dummy inputs self.dummy_inputs = (torch.rand(self.shape), torch.zeros(self.h0_shape)) self.model = nn.RNN( input_size=feature_size, hidden_size=hidden_size, num_layers=layer_num, nonlinearity=nonlinearity, bias=use_bias, batch_first=batch_first, dropout=dropout, bidirectional=bidirectional, ) if rnd_weights_init: self.gen_rnd_weights() def gen_rnd_weights(self): super().gen_rnd_weights() def get_dummy_inputs(self): return self.dummy_inputs def get_input_names(self): return ["input", "h0"] def get_shape_desc(self, frontend_type): shape_desc = None if frontend_type == "pt": # PyTorch shape_desc = [("input", self.shape)] elif frontend_type == "onnx": # ONNX shape_desc = { "input": self.shape, "h0": self.h0_shape, } return shape_desc def get_tvm_inputs(self, dtype): return { "input": tvm.nd.array(self.dummy_inputs[0].numpy().astype(dtype)), "h0": tvm.nd.array(self.dummy_inputs[1].numpy().astype(dtype)), } class GRU_Model(RNN_Model): def __init__( self, seq_len=seqs_length, batch_size=batch_size, feature_size=gru_feature_size, hidden_size=gru_hidden_size, batch_first=False, layer_num=1, bidirectional=False, use_bias=True, rnd_weights_init=False, ): super().__init__() # Shapes self.shape = [seq_len, batch_size, feature_size] if batch_first: self.shape = [batch_size, seq_len, feature_size] layers_num = 2 * layer_num if bidirectional else layer_num self.h0_shape = [layers_num, batch_size, hidden_size] # Dummy inputs self.dummy_inputs = (torch.rand(self.shape), torch.zeros(self.h0_shape)) self.model = nn.GRU( input_size=feature_size, hidden_size=hidden_size, num_layers=layer_num, bidirectional=bidirectional, batch_first=batch_first, bias=use_bias, ) if rnd_weights_init: self.gen_rnd_weights() def gen_rnd_weights(self): """ Generate random weigths for the model with biases For first uni- and bidirectional weights group: Wi (3*hidden_size, feature_size) Wh (3*hidden_size, hidden_size) Bi (3*hidden_size) Bh (3*hidden_size) For other weights group: Wi (3*hidden_size, hidden_size) Wh (3*hidden_size, hidden_size) Bi (3*hidden_size) Bh (3*hidden_size) For generation of random weigths for the model without biases the Bi and Bh weights are skipped """ super().gen_rnd_weights() def get_dummy_inputs(self): return self.dummy_inputs def get_input_names(self): return ["input", "h0"] def get_shape_desc(self, frontend_type): shape_desc = None if frontend_type == "pt": # PyTorch shape_desc = [("input", self.shape)] elif frontend_type == "onnx": # ONNX shape_desc = { "input": self.shape, "h0": self.h0_shape, } return shape_desc def get_tvm_inputs(self, dtype): return { "input": tvm.nd.array(self.dummy_inputs[0].numpy().astype(dtype)), "h0": tvm.nd.array(self.dummy_inputs[1].numpy().astype(dtype)), } def check_torch_version_for_proj_in_lstm(): """ proj_size parameter is supported in torch.nn.LSTM layer started from 1.8.0 torch version """ me = False version = torch.__version__ major, minor, micro = version.split(".") if int(major) > 1: me = True elif int(major) == 1: if int(minor) >= 8: me = True return me class LSTM_Model(RNN_Model): def __init__( self, seq_len=seqs_length, batch_size=batch_size, feature_size=lstm_feature_size, hidden_size=lstm_hidden_size, batch_first=False, layer_num=1, bidirectional=False, proj_size=0, use_bias=True, rnd_weights_init=False, ): super().__init__() # Shapes self.shape = [seq_len, batch_size, feature_size] if batch_first: self.shape = [batch_size, seq_len, feature_size] layers_num = 2 * layer_num if bidirectional else layer_num self.h0_shape = [layers_num, batch_size, hidden_size] if proj_size > 0: self.h0_shape = [layers_num, batch_size, proj_size] self.c0_shape = [layers_num, batch_size, hidden_size] # Dummy inputs self.dummy_inputs = ( torch.rand(self.shape), (torch.zeros(self.h0_shape), torch.zeros(self.c0_shape)), ) if check_torch_version_for_proj_in_lstm(): self.model = nn.LSTM( input_size=lstm_feature_size, hidden_size=lstm_hidden_size, num_layers=layer_num, bidirectional=bidirectional, proj_size=proj_size, batch_first=batch_first, bias=use_bias, ) else: if proj_size > 0: print( "WARNING: projection is not supported for torch version less than 1.8.0! ", "LSTM was constructed without projection!", ) # sys.exit() self.model = nn.LSTM( input_size=lstm_feature_size, hidden_size=lstm_hidden_size, num_layers=layer_num, bidirectional=bidirectional, batch_first=batch_first, bias=use_bias, ) if rnd_weights_init: self.gen_rnd_weights() def gen_rnd_weights(self): """ Generate random weigths for the model with biases Without projection: For first weights group: Wi (4*lstm_hidden_size, lstm_feature_size) Wh (4*lstm_hidden_size, lstm_hidden_size) Bi (4*lstm_hidden_size) Bh (4*lstm_hidden_size) For first bidirectional weights group: Wi (4*lstm_hidden_size, lstm_feature_size) Wh (4*lstm_hidden_size, lstm_hidden_size) Bi (4*lstm_hidden_size) Bh (4*lstm_hidden_size) For other weights group: Wi (4*lstm_hidden_size, lstm_hidden_size) Wh (4*lstm_hidden_size, lstm_hidden_size) Bi (4*lstm_hidden_size) Bh (4*lstm_hidden_size) With projection: For first weights group: Wi (4*lstm_hidden_size, lstm_feature_size) Wh (4*lstm_hidden_size, proj_size) Bi (4*lstm_hidden_size) Bh (4*lstm_hidden_size) P (proj_size, lstm_hidden_size) For first bidirectional weights group: Wi (4*lstm_hidden_size, lstm_feature_size) Wh (4*lstm_hidden_size, proj_size) Bi (4*lstm_hidden_size) Bh (4*lstm_hidden_size) P (proj_size, lstm_hidden_size) For other weights group: Wi (4*lstm_hidden_size, proj_size * num_directions) Wh (4*lstm_hidden_size, proj_size) Bi (4*lstm_hidden_size) Bh (4*lstm_hidden_size) P (proj_size, lstm_hidden_size) For generation of random weigths for the model without biases Bi and Bh are skipped """ super().gen_rnd_weights() def get_dummy_inputs(self): return self.dummy_inputs def get_input_names(self): return ["input", "h0", "c0"] def get_shape_desc(self, frontend_type): shape_desc = None if frontend_type == "pt": # PyTorch shape_desc = [("input", self.shape)] elif frontend_type == "onnx": # ONNX shape_desc = { "input": self.shape, "h0": self.h0_shape, "c0": self.c0_shape, } return shape_desc def get_tvm_inputs(self, dtype): return { "input": tvm.nd.array(self.dummy_inputs[0].numpy().astype(dtype)), "h0": tvm.nd.array(self.dummy_inputs[1][0].numpy().astype(dtype)), "c0": tvm.nd.array(self.dummy_inputs[1][1].numpy().astype(dtype)), } def compare(input, gold_data, rtol=1e-5, atol=1e-5): tvm.testing.assert_allclose(input, gold_data, rtol=rtol, atol=atol) def check_rnn(rnn_type, rnn_mod, target=tvm.target.Target("llvm -mcpu=core-avx2"), dev=tvm.cpu(0)): def get_model( rnn_type, rnn_mod, args, ): # Fill args if "b" in rnn_mod: args["bidirectional"] = True if "s" in rnn_mod: args["layer_num"] = num_layers if "tanh" in rnn_mod: args["nonlinearity"] = "tanh" if "relu" in rnn_mod: args["nonlinearity"] = "relu" if rnn_type == "GRU": RNN_Model_selector = GRU_Model elif rnn_type == "LSTM": RNN_Model_selector = LSTM_Model if "p" in rnn_mod: args["proj_size"] = lstm_projection_size elif rnn_type == "RNN": RNN_Model_selector = RNN_Model_Impl return RNN_Model_selector(**args) def get_onnx_model(model): onnx_io = io.BytesIO() with torch.no_grad(): input_names = model.get_input_names() inputs = model.get_dummy_inputs() # default export (without dynamic input) torch.onnx.export(model, inputs, onnx_io, input_names=input_names) onnx_io.seek(0, 0) return onnx.load_model(onnx_io) model = None dtype = "float32" device = torch.device("cpu") for batch_first in (True, False): for use_bias in (True, False): for rnd_weights in [True]: # (True, False): model_inputs = { "batch_first": batch_first, "use_bias": use_bias, "rnd_weights_init": rnd_weights, } model = get_model(rnn_type, rnn_mod, model_inputs) model.to(device) model.eval() # Get golden output from original model dummy_inputs = model.get_dummy_inputs() golden_output = model.forward(dummy_inputs[0].to(device)).detach().cpu().numpy() tvm_output = None for format in ["pt"]: # ["pt", "onnx"]: shape_desc = model.get_shape_desc(format) if format == "pt": # Use torch.jit.trace to generate a torch.jit.ScriptModule via tracing. traced_script_module = torch.jit.trace(model, dummy_inputs[0]).eval() # Import model to Relay mod, params = relay.frontend.from_pytorch(traced_script_module, shape_desc) elif format == "onnx": try: onnx_model = get_onnx_model(model) except: print( "WARNING: torch.onnx.export does not support conversion LSTM with projection " "from pytorch! TODO: waiting for the support and correct test after that." ) continue # Import model to Relay mod, params = relay.frontend.from_onnx(onnx_model, shape_desc) # Model compilation by tvm with tvm.transform.PassContext(opt_level=3): lib = relay.build(mod, target=target, params=params) # Inference of the model with given input data m = graph_executor.GraphModule(lib["default"](dev)) # Set inputs tvm_inputs = model.get_tvm_inputs(dtype) m.set_input(**tvm_inputs) # Execute m.run() # Get outputs (converted to numpy array) tvm_output = m.get_output(0).numpy() compare(tvm_output, golden_output) @tvm.testing.uses_gpu def test_rnns(): for target, dev in tvm.testing.enabled_targets(): # RNN types: GRU, LSTM # GRU modifications: unidirectional, stacked, bidirectional, stacked bidirectional for mod_type in ["uni", "s", "b", "sb"]: check_rnn("GRU", mod_type, target, dev) # LSTM modifications: unidirectional, stacked, bidirectional, stacked bidirectional, # and all these types with projection ("p", "sp", "bp", "sbp") # The latter are skiped for test acceleration for mod_type in ["uni", "s", "b", "sb"]: check_rnn("LSTM", mod_type, target, dev) for mod_type in ["uni", "s", "b", "sb", "tanh", "relu"]: check_rnn("RNN", mod_type, target, dev) if __name__ == "__main__": test_rnns()
https://github.com/zk-ml/tachikoma
tests/python/frontend/tensorflow/test_bn_dynamic.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ BatchNorm without given mean and variance given testcases ==================== This is a test script to test fused_batch_norm operators in TensorFlow frontend when mean and variance are not given. """ import tvm import tvm.testing import numpy as np try: import tensorflow.compat.v1 as tf tf.disable_v2_behavior() except ImportError: import tensorflow as tf from tvm import relay from tensorflow.python.framework import graph_util def verify_fused_batch_norm(shape): g = tf.Graph() with g.as_default(): input_tensor = tf.placeholder(tf.float32, shape=shape, name="input") alpha = tf.constant( np.random.rand( shape[-1], ), dtype=tf.float32, name="alpha", ) beta = tf.constant( np.random.rand( shape[-1], ), dtype=tf.float32, name="beta", ) bn = tf.nn.fused_batch_norm(x=input_tensor, offset=beta, scale=alpha, name="bn") out = tf.identity(bn[0], name="output") data = np.random.rand(*shape) with tf.Session(graph=out.graph) as sess: sess.run([tf.global_variables_initializer()]) tf_out = sess.run(out, feed_dict={input_tensor: data}) constant_graph = graph_util.convert_variables_to_constants(sess, sess.graph_def, ["output"]) for device in ["llvm"]: dev = tvm.device(device, 0) if not tvm.testing.device_enabled(device): print("Skip because %s is not enabled" % device) continue mod, params = relay.frontend.from_tensorflow(constant_graph, outputs=["output"]) with tvm.transform.PassContext(opt_level=3): graph, lib, params = relay.build(mod, target=device, params=params) from tvm.contrib import graph_executor m = graph_executor.create(graph, lib, dev) m.set_input(**params) m.set_input("input", data) m.run() tvm_out = m.get_output(0) tvm.testing.assert_allclose( tvm_out.numpy(), tf_out.astype(tvm_out.dtype), atol=1e-3, rtol=1e-3 ) def test_fused_batch_norm(): verify_fused_batch_norm(shape=(1, 12, 12, 32)) verify_fused_batch_norm(shape=(1, 24, 24, 64)) verify_fused_batch_norm(shape=(1, 64, 64, 128)) verify_fused_batch_norm(shape=(8, 12, 12, 32)) verify_fused_batch_norm(shape=(16, 12, 12, 32)) verify_fused_batch_norm(shape=(32, 12, 12, 32)) if __name__ == "__main__": test_fused_batch_norm()
https://github.com/zk-ml/tachikoma
tests/python/frontend/tensorflow/test_control_flow.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Unit tests for converting TensorFlow control flow op to Relay.""" import pytest try: import tensorflow.compat.v1 as tf tf.disable_v2_behavior() except ImportError: import tensorflow as tf from tensorflow.python.ops import control_flow_ops import numpy as np from tvm import nd from tvm import relay from tvm.relay.frontend.tensorflow import from_tensorflow def check_equal(graph, tf_out, input_map=None): mod, params = from_tensorflow(graph.as_graph_def(add_shapes=True)) if input_map is not None: params.update(input_map) relay_out = relay.create_executor("vm", mod=mod).evaluate()(**params) if isinstance(relay_out, nd.NDArray): np.testing.assert_allclose(tf_out, relay_out.numpy()) else: if not isinstance(tf_out, (list, tuple)): tf_out = [tf_out] for x, y in zip(tf_out, [r.numpy() for r in relay_out]): np.testing.assert_allclose(x, y) def test_vanilla_loop(): graph = tf.Graph() with graph.as_default(): i = tf.constant(0, name="while/constant") def c(i): return tf.less(i, 10) def b(i): return tf.add(i, 1) r = tf.while_loop(c, b, [i]) with tf.Session() as sess: tf_out = sess.run(r) check_equal(graph, tf_out) def test_callnode_loop_vars(): graph = tf.Graph() with graph.as_default(): i = tf.add(tf.constant(0), 1) def c(i): return tf.less(i, 10) def b(i): return tf.add(i, 1) r = tf.while_loop(c, b, [i]) with tf.Session() as sess: tf_out = sess.run(r) check_equal(graph, tf_out) def test_loop_2_vars(): graph = tf.Graph() with graph.as_default(): i0 = tf.constant(0) j0 = tf.ones([2, 2]) def c(i, j): return i < 10 def b(i, j): return [tf.add(i, 1), j] i1, i2 = tf.while_loop(c, b, loop_vars=[i0, j0]) i1 += tf.constant(1337) with tf.Session() as sess: tf_out = sess.run(i1) check_equal(graph, tf_out) def test_loop_3_vars(): graph = tf.Graph() with graph.as_default(): i0 = tf.constant(1) j0 = tf.constant(2) k0 = tf.constant(4) def c(i, j, k): return i < 10 def b(i, j, k): return [i + 1, j * k, k + i] r = tf.while_loop(c, b, loop_vars=[i0, j0, k0]) with tf.Session() as sess: tf_out = sess.run(r) check_equal(graph, tf_out) def test_loop_conditions(): graph = tf.Graph() with graph.as_default(): i = tf.constant(1) j = tf.constant(1) k = tf.constant(5) def c(i, j, k): return tf.equal( tf.not_equal(tf.less(i + j, 10), tf.less(j * k, 100)), tf.greater_equal(k, i + j) ) def b(i, j, k): return [i + j, j + k, k + 1] r = tf.while_loop(c, b, loop_vars=[i, j, k]) with tf.Session() as sess: tf_out = sess.run(r) check_equal(graph, tf_out) @pytest.mark.skip def test_loop_bodies(): graph = tf.Graph() with graph.as_default(): def body(x): a = tf.constant(np.array([[5, 6], [7, 8]]), dtype=tf.int32) b = tf.constant(np.array([[1, 2], [3, 4]]), dtype=tf.int32) c = a + b return tf.nn.relu(x + c) def condition(x): return tf.reduce_sum(x) < 100 x = tf.constant(0, shape=[2, 2]) r = tf.while_loop(condition, body, [x]) with tf.Session() as sess: tf_out = sess.run(r) check_equal(graph, tf_out) def test_nested_loop(): graph = tf.Graph() with graph.as_default(): def body(x): def nest_body(c): return tf.multiply(c, 2) def cd(c): return tf.less(c, 10) c = tf.constant(2) res = tf.while_loop(cd, nest_body, loop_vars=[c]) return tf.nn.relu(x + res) def condition(x): return tf.greater(x, 100) x = tf.constant(3) r = tf.while_loop(condition, body, loop_vars=[x]) with tf.Session() as sess: tf_out = sess.run(r) check_equal(graph, tf_out) def test_vanilla_cond(): graph = tf.Graph() with graph.as_default(): i = tf.constant(1) j = tf.constant(4) def f1(): return tf.multiply(1, 17) def f2(): return tf.add(4, 23) r = tf.cond(tf.less(i, j), f1, f2) with tf.Session(graph=graph) as sess: tf_out = sess.run(r) check_equal(graph, tf_out) def test_multiple_cond_vars(): graph = tf.Graph() with graph.as_default(): x1 = tf.constant(7) x2 = tf.constant(12) z = tf.constant(20) r = tf.cond(tf.less(tf.add(x1, x2), 10), lambda: tf.add(10, 2), lambda: tf.square(5)) with tf.Session() as sess: tf_out = sess.run(r) check_equal(graph, tf_out) def test_cond_fn_parameters(): graph = tf.Graph() with graph.as_default(): def fn1(x, y): return tf.multiply(5, 6) def fn2(x, y): return tf.add(3, 4) i = tf.constant(1) j = tf.constant(2) k = tf.constant(3) r = tf.cond(tf.less(i, j), lambda: fn1(i, k), lambda: fn2(j, k)) with tf.Session() as sess: tf_out = sess.run(r, feed_dict={i: 1, j: 2, k: 3}) check_equal(graph, tf_out) def test_nested_cond(): graph = tf.Graph() with graph.as_default(): def fn1(a, b): def nest_fn1(): return tf.add(1, 2) def nest_fn2(): return tf.subtract(10, 5) res = tf.cond(tf.less(1, 2), nest_fn1, nest_fn2) return tf.multiply(tf.add(87, res), 10) def fn2(a, b): return tf.add(10, 10) x = tf.constant(5) y = tf.constant(6) z = tf.constant(7) pred = tf.less(x, y) r = tf.cond(pred, lambda: fn1(x, y), lambda: fn2(y, z)) with tf.Session() as sess: tf_out = sess.run(r, feed_dict={x: 1, y: 2, z: 3, pred: True}) check_equal(graph, tf_out) def test_loop_in_cond(): graph = tf.Graph() with graph.as_default(): def fn1(a, b): i = tf.constant(0) def cd(i): return tf.less(i, 10) def bd(i): return tf.add(i, 1) res = tf.while_loop(cd, bd, [i]) return tf.multiply(tf.add(20, res), 10) def fn2(a, b): return tf.add(10, 20) x = tf.constant(7) y = tf.constant(20) z = tf.constant(10) pred = tf.less(x, y) r = tf.cond(pred, lambda: fn1(x, y), lambda: fn2(y, z)) with tf.Session() as sess: tf_out = sess.run(r, feed_dict={x: 1, y: 2, z: 3, pred: True}) check_equal(graph, tf_out) def test_cond_in_loop(): graph = tf.Graph() with graph.as_default(): def body(x): x = tf.constant(7) z = tf.constant(20) res = tf.cond(tf.less(x, 10), lambda: tf.add(10, 20), lambda: tf.square(10)) return tf.multiply(res, x) x = tf.constant(21) def condition(x): return tf.less(x, 100) r = tf.while_loop(condition, body, loop_vars=[x]) with tf.Session() as sess: tf_out = sess.run(r) check_equal(graph, tf_out) def test_vanilla_loop_bound(): graph = tf.Graph() with graph.as_default(): dshape = (2, 10) dtype = "float32" dname = "data" np_data = np.random.uniform(size=dshape).astype(dtype) data = tf.placeholder(shape=dshape, dtype=dtype, name=dname) x = tf.slice(data, [1, 4], [1, 4]) outer = x + 5.0 def body(x, y): res = tf.cond(tf.less(y, 10), lambda: tf.add(10.0, 20.0), lambda: tf.square(10.0)) z = tf.constant(7) res = tf.cond(tf.less(z, 10), lambda: res * 5, lambda: res + 10) return tf.multiply(res, x * outer), y + 1 y = tf.constant(0) def condition(x, y): return tf.less(y, 20) r = tf.while_loop(condition, body, loop_vars=[x, y]) with tf.Session() as sess: tf_out = sess.run(r, feed_dict={"%s:0" % dname: np_data}) check_equal(graph, tf_out, {dname: np_data}) def test_nested_loop_bound(): graph = tf.Graph() with graph.as_default(): dshape = (2, 10) dtype = "float32" dname = "data" np_data = np.random.uniform(size=dshape).astype(dtype) data = tf.placeholder(shape=dshape, dtype=dtype, name=dname) x = tf.slice(data, [1, 4], [1, 4]) outer = x + 5.0 def body(x, y): res = tf.cond(tf.less(y, 10), lambda: tf.add(10.0, 20.0), lambda: tf.square(10.0)) def nested_body(nx, ny): return nx + 1, res + 2.0 def nested_cond(nx, ny): return tf.less(nx, 15) nx = tf.constant(0) ny = tf.constant(0.0) nested_res = tf.while_loop(nested_cond, nested_body, loop_vars=[nx, ny]) res = res + nested_res[1] z = tf.constant(7) res = tf.cond(tf.less(z, 10), lambda: res * 5, lambda: res + 10) return tf.multiply(res, x * outer), y + 1 y = tf.constant(0) def condition(x, y): return tf.less(y, 20) r = tf.while_loop(condition, body, loop_vars=[x, y]) with tf.Session() as sess: tf_out = sess.run(r, feed_dict={"%s:0" % dname: np_data}) check_equal(graph, tf_out, {dname: np_data}) def test_switch(): graph = tf.Graph() with graph.as_default(): data_np = np.random.uniform(0, 5, size=(2, 4, 5, 1)).astype("float32") dname = "data" flag_name = "flag" data = tf.placeholder(shape=data_np.shape, dtype=data_np.dtype, name=dname) split = tf.split(data, 2, axis=0) flag = tf.placeholder(shape={}, dtype=tf.bool, name=flag_name) output_false, output_true = control_flow_ops.switch(split[1], flag) with tf.Session() as sess: tf_out = sess.run(output_false, feed_dict={data.name: data_np, flag.name: False}) check_equal(graph, tf_out, {dname: data_np, flag_name: False}) def test_loop_tuple_input(): graph = tf.Graph() with graph.as_default(): data_np = np.random.uniform(0, 5, size=(2, 4, 5, 1)).astype("float32") dname = "data" data = tf.placeholder(shape=data_np.shape, dtype=data_np.dtype, name=dname) split = tf.split(data, 2, axis=0) def body(x, y): return x + 2, y + 1 start = tf.constant(0) def condition(x, y): return tf.less(y, 20) r = tf.while_loop(condition, body, loop_vars=[split[1], start]) with tf.Session() as sess: tf_out = sess.run(r, feed_dict={data.name: data_np}) check_equal(graph, tf_out, {dname: data_np}) if __name__ == "__main__": # tf.while_loop test_vanilla_loop() test_loop_2_vars() test_loop_3_vars() test_loop_conditions() # TODO(@jroesch): Need to fix memory alloc to support closure # test_loop_bodies() test_callnode_loop_vars() # tf.cond test_vanilla_cond() test_multiple_cond_vars() test_cond_fn_parameters() # nested cases test_nested_loop() test_nested_cond() test_loop_in_cond() test_cond_in_loop() test_vanilla_loop_bound() test_nested_loop_bound() test_switch() test_loop_tuple_input()
https://github.com/zk-ml/tachikoma
tests/python/frontend/tensorflow/test_debugging.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Unit tests for converting TensorFlow debugging ops to Relay.""" try: import tensorflow.compat.v1 as tf tf.disable_v2_behavior() except ImportError: import tensorflow as tf import numpy as np from tvm import relay from tvm.relay.frontend.tensorflow import from_tensorflow def run_relay(graph, shape_dict=None, *vars): mod, params = from_tensorflow(graph.as_graph_def(add_shapes=True), shape=shape_dict) return relay.create_executor("debug", mod=mod).evaluate()(*vars) def test_assert_true(): g = tf.Graph() shape = (1, 2) with g.as_default(): x = tf.placeholder(tf.float32, shape=shape, name="input") assert_op = tf.Assert(tf.reduce_all(tf.less_equal(x, x)), ["it failed"]) with tf.Session() as sess: x_value = np.random.rand(*shape) assert sess.run(assert_op, feed_dict={x: x_value}) is None # In TVM, tf.assert is converted to a no-op which is actually a 0, # though it should probably be none or an empty tuple. # # ToDo: It appears that the frontend converter gets confused here and # entirely eliminates all operands from main(). Likely because x <= x # is always true, so the placeholder can be eliminated. But TF doesn't # do that, it's happening in Relay, and that optimization shouldn't # affect the arity of the main function. We should have to pass in # x_value here. np.testing.assert_allclose(0, run_relay(g, {"input": shape}).numpy()) def test_assert_true_var_capture(): g = tf.Graph() with g.as_default(): x = tf.placeholder(tf.float32, shape=()) # It turns out that tf.assert() creates a large and complex subgraph if # you capture a variable as part of the error message. So we need to # test that, too. assert_op = tf.Assert(tf.less_equal(x, x), ["it failed", x]) with tf.Session() as sess: x_value = np.random.rand() assert sess.run(assert_op, feed_dict={x: x_value}) is None # TODO: The frontend converter notes the output of # the graph as a boolean, which is not correct - as you can see above, # TF believes that the value of this graph is None. np.testing.assert_allclose(True, run_relay(g, None, x_value).numpy()) def test_assert_false(): g = tf.Graph() with g.as_default(): assert_op = tf.Assert(tf.constant(False), ["it failed"]) with tf.Session() as sess: try: print(sess.run(assert_op)) assert False # TF should have thrown an exception except tf.errors.InvalidArgumentError as e: assert "it failed" in e.message # In TVM, tf.assert is converted to a no-op which is actually a 0, # though it should probably be none or an empty tuple. For the same # reason, there should not be an error here, even though the assertion # argument is false. np.testing.assert_allclose(0, run_relay(g).numpy()) if __name__ == "__main__": test_assert_true() test_assert_true_var_capture() test_assert_false()
https://github.com/zk-ml/tachikoma
tests/python/frontend/tensorflow/test_forward.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=import-self, invalid-name, unused-argument """ Tensorflow testcases ==================== This article is a test script to test tensorflow operator with Relay. """ from __future__ import print_function from distutils.version import LooseVersion import threading import platform import os.path from packaging import version as package_version import numpy as np import pytest from PIL import Image from tvm import relay from tvm.runtime.vm import VirtualMachine from tvm.relay.frontend.tensorflow import from_tensorflow from tvm.contrib import graph_executor from tvm.contrib import utils import tvm import tvm.relay.testing.tf as tf_testing import tvm.testing from tensorflow.python.framework import constant_op from tensorflow.python.framework import graph_util from tensorflow.python.ops import nn_ops from tensorflow.python.ops import nn from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables from tensorflow.python.ops import init_ops from tensorflow.python.framework import function from tensorflow.python.framework import ops from tensorflow.python.framework import dtypes from tensorflow.python.ops import gen_functional_ops from tensorflow.python.client import device_lib try: import tensorflow.compat.v1 as tf tf.disable_v2_behavior() except ImportError: import tensorflow as tf # Only allow TF to run on half the GPU RAM to save the other half # For TVM gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.5) gpu_sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) gpu_sess.close() ####################################################################### # Generic run functions for TVM & tensorflow # ------------------------------------------ def convert_to_list(x): if not isinstance(x, list): x = [x] return x tf_dtypes = { "float32": tf.float32, "float16": tf.float16, "float64": tf.float64, "int32": tf.int32, "uint8": tf.uint8, "int8": tf.int8, "int16": tf.int16, "uint16": tf.uint16, "int64": tf.int64, } def vmobj_to_list(o): """Converts TVM objects returned by VM execution to Python List.""" if isinstance(o, tvm.nd.NDArray): return [o.numpy()] elif isinstance(o, tvm.runtime.container.ADT): result = [] for f in o: result.extend(vmobj_to_list(f)) return result elif isinstance(o, tvm.relay.backend.interpreter.ConstructorValue): if o.constructor.name_hint == "Cons": tl = vmobj_to_list(o.fields[1]) hd = vmobj_to_list(o.fields[0]) hd.extend(tl) return hd elif o.constructor.name_hint == "Nil": return [] elif "tensor_nil" in o.constructor.name_hint: return [0] elif "tensor" in o.constructor.name_hint: return [o.fields[0].numpy()] else: raise RuntimeError(f"Unknown object type: {o.constructor.name_hint}") else: raise RuntimeError(f"Unknown object type: {type(o)}") def run_tvm_graph( graph_def, input_data, input_node, num_output=1, target="llvm", out_names=None, opt_level=3, mode="graph_executor", cuda_layout="NCHW", layout=None, disabled_pass=None, ignore_in_shape=False, serialize=False, convert_config=None, ): """Generic function to compile on relay and execute on tvm""" input_data = convert_to_list(input_data) input_node = convert_to_list(input_node) if target == "cuda": layout = cuda_layout target_host = None if ignore_in_shape: shape_dict = None else: shape_dict = { e: i.shape if hasattr(i, "shape") else () for e, i in zip(input_node, input_data) } mod, params = relay.frontend.from_tensorflow( graph_def, layout=layout, shape=shape_dict, outputs=out_names, convert_config=convert_config, ) dev = tvm.device(target, 0) if mode == "debug": inputs = [] for param in mod["main"].params: found = False for i, n in enumerate(input_node): if n == param.name_hint: found = True inputs.append(tvm.nd.array(input_data[i])) break # Interpreter doesn't bind constants, so still need to find in params if not found: inputs.append(tvm.nd.array(params[param.name_hint])) result = relay.create_executor(mode, mod=mod, device=tvm.cpu(), target="llvm").evaluate()( *inputs ) return vmobj_to_list(result) elif mode == "vm": with tvm.transform.PassContext(opt_level=opt_level, disabled_pass=disabled_pass): mod = relay.transform.InferType()(mod) vm_exec = relay.vm.compile(mod, target="llvm", params=params) if serialize: code, lib = vm_exec.save() vm_exec = tvm.runtime.vm.Executable.load_exec(code, lib) vm = VirtualMachine(vm_exec, tvm.cpu()) inputs = {} for e, i in zip(input_node, input_data): inputs[e] = tvm.nd.array(i) result = vm.invoke("main", **inputs) return vmobj_to_list(result) else: with tvm.transform.PassContext(opt_level=opt_level, disabled_pass=disabled_pass): target = tvm.target.Target(target, target_host) graph, lib, params = relay.build(mod, target=target, params=params) m = graph_executor.create(graph, lib, dev) # set inputs for e, i in zip(input_node, input_data): if e != "": m.set_input(e, tvm.nd.array(i)) m.set_input(**params) # execute m.run() # get outputs assert out_names is None or num_output == len( out_names ), f"out_names: {out_names} num_output: {num_output}" tvm_output_list = [m.get_output(i).numpy() for i in range(num_output)] return tvm_output_list def run_tf_graph(sess, input_data, input_node, output_node): """Generic function to execute tensorflow""" input_data = convert_to_list(input_data) input_node = convert_to_list(input_node) output_node = convert_to_list(output_node) tensor = [sess.graph.get_tensor_by_name(output_name) for output_name in output_node] input_dict = {e: input_data[i] for i, e in enumerate(input_node)} if len(input_node) == 1 and input_node[0] == "": output_data = sess.run(tensor) else: output_data = sess.run(tensor, input_dict) return output_data def compare_tf_with_tvm( in_data, in_name, out_name, init_global_variables=False, no_gpu=False, opt_level=3, mode="graph_executor", cuda_layout="NCHW", add_shapes_to_graph_def=True, targets=None, ignore_in_shape=False, convert_config=None, ): """Generic function to generate and compare tensorflow and TVM output""" def name_without_num(name): return name.split(":")[0] if ":" in name else name out_name = convert_to_list(out_name) out_node = [name_without_num(name) for name in out_name] in_data = convert_to_list(in_data) in_name = convert_to_list(in_name) in_node = [name_without_num(name) for name in in_name] with tf.Session() as sess: if init_global_variables: sess.run(variables.global_variables_initializer()) final_graph_def = ( tf_testing.AddShapesToGraphDef(sess, out_node) if add_shapes_to_graph_def else tf.get_default_graph().as_graph_def() ) tf_output = run_tf_graph(sess, in_data, in_name, out_name) devices = targets if targets else ["llvm", "cuda"] for device in devices: _ = tvm.device(device, 0) if not tvm.testing.device_enabled(device): print(f"Skip because {device} is not enabled") continue if no_gpu and device == "cuda": continue if "cublas" in device and not tvm.get_global_func("tvm.contrib.cublas.matmul", True): print(f"Skip because cublas is not enabled: {device}") continue tvm_output = run_tvm_graph( final_graph_def, in_data, in_node, target=device, out_names=out_name, num_output=len(out_name), opt_level=opt_level, mode=mode, cuda_layout=cuda_layout, ignore_in_shape=ignore_in_shape, convert_config=convert_config, ) # since the names from tensorflow and relay runs are not exactly same, # first len(tf_output) will be compared for i, tf_out in enumerate(tf_output): if not isinstance(tf_out, np.ndarray): assert len(tvm_output[i].shape) == 0 # pylint: disable=len-as-condition tvm.testing.assert_allclose(tf_out, tvm_output[i], atol=1e-5, rtol=1e-5) sess.close() def is_gpu_available(): """Verify gpu is available""" local_device_protos = device_lib.list_local_devices() gpu_list = [x.name for x in local_device_protos if x.device_type == "GPU"] if gpu_list: print("Tensorflow GPU:", gpu_list) return True else: return False ####################################################################### # Pooling # ------- def _test_pooling_iteration(input_shape, **kwargs): """One iteration of pool operation with given shapes and attributes""" x = -np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape) - 1 with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=input_shape, dtype="float32") nn_ops.pool(in_data, **kwargs) if kwargs["pooling_type"] == "MAX": out_name = "max_pool:0" else: out_name = "avg_pool:0" compare_tf_with_tvm(x, "Placeholder:0", out_name) def _test_pooling(input_shape, **kwargs): _test_pooling_iteration(input_shape, **kwargs) if is_gpu_available(): if len(input_shape) == 4: input_shape = [input_shape[ii] for ii in (0, 3, 1, 2)] if isinstance(kwargs["padding"], list): kwargs["padding"] = [kwargs["padding"][ii] for ii in (0, 3, 1, 2)] kwargs["data_format"] = "NCHW" _test_pooling_iteration(input_shape, **kwargs) def _test_pooling_dynamic(input_shape, np_shape, **kwargs): """Pooling with dynamic height and width dimensions.""" x = -np.arange(np.prod(np_shape), dtype=np.float32).reshape(np_shape) - 1 with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=input_shape, dtype="float32") nn_ops.pool(in_data, **kwargs) if kwargs["pooling_type"] == "MAX": out_name = "max_pool:0" else: out_name = "avg_pool:0" compare_tf_with_tvm(x, "Placeholder:0", out_name, mode="vm", ignore_in_shape=True) @tvm.testing.uses_gpu def test_forward_pooling(): """Pooling""" # TensorFlow only supports NDHWC for max_pool3d on CPU for pool_type in ["AVG", "MAX"]: # NDHWC is the default layout for max_pool3d and avg_pool3d in TensorFlow _test_pooling( input_shape=[1, 3, 32, 32, 32], window_shape=[2, 2, 2], padding="VALID", pooling_type=pool_type, dilation_rate=[1, 1, 1], strides=[2, 2, 2], ) _test_pooling( input_shape=[1, 3, 32, 32, 32], window_shape=[1, 1, 1], padding="SAME", pooling_type=pool_type, dilation_rate=[1, 1, 1], strides=[1, 1, 1], ) _test_pooling( input_shape=[1, 3, 32, 32, 32], window_shape=[2, 2, 2], padding="SAME", pooling_type=pool_type, dilation_rate=[1, 1, 1], strides=[2, 2, 2], ) _test_pooling_dynamic( input_shape=[1, None, None, 3], np_shape=[1, 32, 32, 3], window_shape=[2, 2], padding="SAME", pooling_type=pool_type, dilation_rate=[1, 1], strides=[1, 1], ) # test cases for max_pool3d & avg_pool3d with layout NCDHW # TensorFlow pool3d doesn't support NCDHW on cpu if is_gpu_available(): _test_pooling( input_shape=[1, 3, 32, 32, 32], window_shape=[1, 1, 1], padding="SAME", pooling_type=pool_type, dilation_rate=[1, 1, 1], strides=[1, 1, 1], data_format="NCDHW", ) _test_pooling( input_shape=[1, 3, 32, 32, 32], window_shape=[2, 2, 2], padding="VALID", pooling_type=pool_type, dilation_rate=[1, 1, 1], strides=[2, 2, 2], data_format="NCDHW", ) _test_pooling( input_shape=[2, 9, 10, 2], window_shape=[1, 1], padding="SAME", pooling_type=pool_type, dilation_rate=[1, 1], strides=[1, 1], ) _test_pooling( input_shape=[2, 10, 9, 2], window_shape=[1, 1], padding="SAME", pooling_type=pool_type, dilation_rate=[1, 1], strides=[1, 1], ) _test_pooling( input_shape=[2, 9, 10, 2], window_shape=[2, 1], padding="SAME", pooling_type=pool_type, dilation_rate=[1, 1], strides=[1, 1], ) _test_pooling( input_shape=[2, 10, 9, 2], window_shape=[2, 3], padding="SAME", pooling_type=pool_type, dilation_rate=[1, 1], strides=[2, 1], ) # Tests involving SpaceToBatchND _test_pooling( input_shape=[1, 1, 2, 1], window_shape=[1, 1], padding="VALID", pooling_type=pool_type, dilation_rate=[1, 2], ) _test_pooling( input_shape=[1, 2, 1], window_shape=[1], padding="VALID", pooling_type=pool_type, dilation_rate=[2], ) # Explicit padding if package_version.parse(tf.VERSION) >= package_version.parse("2.4.1"): _test_pooling( input_shape=[2, 9, 10, 2], window_shape=[4, 4], padding=[[0, 0], [0, 1], [2, 3], [0, 0]], pooling_type="MAX", dilation_rate=[1, 1], strides=[1, 1], ) ####################################################################### # Convolution # ----------- def _test_convolution( opname, tensor_in_sizes, filter_in_sizes, dilations, strides, padding, data_format, deconv_output_shape=None, add_shapes_to_graph_def=True, ): """One iteration of convolution with given shapes and attributes""" deconv_output_shape = deconv_output_shape or [] total_size_1 = np.prod(tensor_in_sizes) total_size_2 = np.prod(filter_in_sizes) # Initializes the input tensor with array containing incrementing # numbers from 1. data_array = [f * 1.0 for f in range(1, total_size_1 + 1)] filter_array = [f * 1.0 for f in range(1, total_size_2 + 1)] with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=tensor_in_sizes, dtype="float32") in_filter = constant_op.constant(filter_array, shape=filter_in_sizes, dtype="float32") if data_format == "NHWC": strides = [1] + strides + [1] dilations = [1] + dilations + [1] else: strides = [1, 1] + strides dilations = [1, 1] + dilations if opname == "conv": nn_ops.conv2d( in_data, in_filter, strides=strides, dilations=dilations, padding=padding, data_format=data_format, ) compare_tf_with_tvm( np.reshape(data_array, tensor_in_sizes).astype("float32"), "Placeholder:0", "Conv2D:0", add_shapes_to_graph_def=add_shapes_to_graph_def, ) elif opname == "conv_transpose": nn_ops.conv2d_transpose( in_data, in_filter, output_shape=deconv_output_shape, strides=strides, padding=padding, data_format=data_format, ) compare_tf_with_tvm( np.reshape(data_array, tensor_in_sizes).astype("float32"), "Placeholder:0", "conv2d_transpose:0", add_shapes_to_graph_def=add_shapes_to_graph_def, ) else: nn_ops.depthwise_conv2d_native( in_data, in_filter, strides=strides, dilations=dilations, padding=padding, data_format=data_format, ) compare_tf_with_tvm( np.reshape(data_array, tensor_in_sizes).astype("float32"), "Placeholder:0", "DepthwiseConv2dNative:0", add_shapes_to_graph_def=add_shapes_to_graph_def, ) @pytest.mark.skip(reason="See https://github.com/apache/tvm/issues/10275") @tvm.testing.uses_gpu def test_forward_convolution(): """Convolution""" if is_gpu_available(): _test_convolution("conv", [4, 176, 8, 8], [1, 1, 176, 32], [1, 1], [1, 1], "SAME", "NCHW") _test_convolution("conv", [4, 19, 17, 17], [3, 3, 19, 19], [1, 1], [2, 2], "VALID", "NCHW") _test_convolution("conv", [4, 124, 17, 17], [1, 1, 124, 19], [1, 1], [1, 1], "SAME", "NCHW") _test_convolution("conv", [4, 12, 17, 17], [3, 3, 12, 32], [1, 1], [2, 2], "VALID", "NCHW") _test_convolution( "depthwise", [4, 176, 8, 8], [1, 1, 176, 1], [1, 1], [1, 1], "SAME", "NCHW" ) _test_convolution( "depthwise", [4, 19, 17, 17], [3, 3, 19, 1], [1, 1], [2, 2], "VALID", "NCHW" ) _test_convolution( "depthwise", [4, 124, 17, 17], [1, 1, 124, 1], [1, 1], [1, 1], "SAME", "NCHW" ) _test_convolution( "depthwise", [4, 12, 17, 17], [3, 3, 12, 1], [1, 1], [2, 2], "VALID", "NCHW" ) _test_convolution( "depthwise", [4, 12, 17, 17], [3, 3, 12, 2], [1, 1], [2, 2], "VALID", "NCHW" ) _test_convolution( "conv_transpose", [4, 32, 8, 8], [1, 1, 176, 32], [1, 1], [1, 1], "SAME", "NCHW", [4, 176, 8, 8], ) _test_convolution( "conv_transpose", [4, 32, 8, 8], [2, 2, 176, 32], [1, 1], [1, 1], "SAME", "NCHW", [4, 176, 8, 8], ) _test_convolution( "conv_transpose", [4, 32, 8, 8], [2, 2, 176, 32], [1, 1], [2, 2], "SAME", "NCHW", [4, 176, 15, 15], ) _test_convolution( "conv_transpose", [4, 32, 8, 8], [3, 3, 176, 32], [1, 1], [1, 1], "SAME", "NCHW", [4, 176, 8, 8], ) _test_convolution( "conv_transpose", [4, 32, 8, 8], [3, 3, 176, 32], [1, 1], [2, 2], "SAME", "NCHW", [4, 176, 15, 15], ) _test_convolution( "conv_transpose", [4, 32, 8, 8], [3, 3, 176, 32], [1, 1], [2, 2], "SAME", "NCHW", [4, 176, 16, 16], ) _test_convolution( "conv_transpose", [4, 19, 8, 8], [3, 3, 19, 19], [1, 1], [2, 2], "VALID", "NCHW", [4, 19, 17, 17], ) _test_convolution( "conv_transpose", [4, 19, 17, 17], [1, 1, 124, 19], [1, 1], [1, 1], "SAME", "NCHW", [4, 124, 17, 17], ) _test_convolution( "conv_transpose", [4, 19, 17, 17], [3, 3, 124, 19], [1, 1], [1, 1], "SAME", "NCHW", [4, 124, 17, 17], ) _test_convolution( "conv_transpose", [4, 32, 8, 8], [3, 3, 12, 32], [1, 1], [2, 2], "VALID", "NCHW", [4, 12, 17, 17], ) # kernel 2x2, strides (2,2) _test_convolution( "conv_transpose", [4, 19, 8, 8], [2, 2, 19, 19], [1, 1], [2, 2], "VALID", "NCHW", [4, 19, 16, 16], ) _test_convolution( "conv_transpose", [4, 32, 8, 8], [2, 2, 12, 32], [1, 1], [2, 2], "VALID", "NCHW", [4, 12, 16, 16], ) # output channel is 1 _test_convolution( "conv_transpose", [1, 19, 8, 8], [1, 1, 1, 19], [1, 1], [1, 1], "VALID", "NCHW", [1, 1, 8, 8], ) _test_convolution("conv", [4, 8, 8, 176], [1, 1, 176, 32], [1, 1], [1, 1], "SAME", "NHWC") _test_convolution("conv", [4, 17, 17, 19], [3, 3, 19, 19], [1, 1], [2, 2], "VALID", "NHWC") _test_convolution("conv", [4, 17, 17, 124], [1, 1, 124, 19], [1, 1], [1, 1], "SAME", "NHWC") _test_convolution("conv", [4, 17, 17, 12], [3, 3, 12, 32], [1, 1], [2, 2], "VALID", "NHWC") _test_convolution( "conv", [4, 17, 17, 12], [3, 3, 12, 32], [1, 1], [2, 2], "VALID", "NHWC", add_shapes_to_graph_def=False, ) _test_convolution("depthwise", [4, 8, 8, 176], [1, 1, 176, 1], [1, 1], [1, 1], "SAME", "NHWC") _test_convolution("depthwise", [4, 17, 17, 19], [3, 3, 19, 1], [1, 1], [2, 2], "VALID", "NHWC") _test_convolution("depthwise", [4, 17, 17, 124], [1, 1, 124, 1], [1, 1], [1, 1], "SAME", "NHWC") _test_convolution("depthwise", [4, 17, 17, 12], [3, 3, 12, 1], [1, 1], [2, 2], "VALID", "NHWC") _test_convolution("depthwise", [4, 17, 17, 12], [3, 3, 12, 2], [1, 1], [2, 2], "VALID", "NHWC") _test_convolution( "depthwise", [4, 17, 17, 12], [3, 3, 12, 2], [1, 1], [2, 2], "VALID", "NHWC", add_shapes_to_graph_def=False, ) _test_convolution( "conv_transpose", [4, 8, 8, 32], [1, 1, 176, 32], [1, 1], [1, 1], "SAME", "NHWC", [4, 8, 8, 176], ) _test_convolution( "conv_transpose", [4, 8, 8, 32], [2, 2, 176, 32], [1, 1], [1, 1], "SAME", "NHWC", [4, 8, 8, 176], ) _test_convolution( "conv_transpose", [4, 8, 8, 32], [2, 2, 176, 32], [1, 1], [2, 2], "SAME", "NHWC", [4, 15, 15, 176], ) _test_convolution( "conv_transpose", [4, 8, 8, 32], [3, 3, 176, 32], [1, 1], [1, 1], "SAME", "NHWC", [4, 8, 8, 176], ) _test_convolution( "conv_transpose", [4, 8, 8, 32], [3, 3, 176, 32], [1, 1], [2, 2], "SAME", "NHWC", [4, 15, 15, 176], ) _test_convolution( "conv_transpose", [4, 8, 8, 32], [3, 3, 176, 32], [1, 1], [2, 2], "SAME", "NHWC", [4, 16, 16, 176], ) _test_convolution( "conv_transpose", [4, 8, 8, 19], [3, 3, 19, 19], [1, 1], [2, 2], "VALID", "NHWC", [4, 17, 17, 19], ) _test_convolution( "conv_transpose", [4, 17, 17, 19], [1, 1, 124, 19], [1, 1], [1, 1], "SAME", "NHWC", [4, 17, 17, 124], ) _test_convolution( "conv_transpose", [4, 17, 17, 19], [3, 3, 124, 19], [1, 1], [1, 1], "SAME", "NHWC", [4, 17, 17, 124], ) _test_convolution( "conv_transpose", [4, 8, 8, 32], [3, 3, 12, 32], [1, 1], [2, 2], "VALID", "NHWC", [4, 17, 17, 12], ) # kernel 2x2, strides (2,2) _test_convolution( "conv_transpose", [4, 8, 8, 19], [2, 2, 19, 19], [1, 1], [2, 2], "VALID", "NHWC", [4, 16, 16, 19], ) _test_convolution( "conv_transpose", [4, 8, 8, 32], [2, 2, 12, 32], [1, 1], [2, 2], "VALID", "NHWC", [4, 16, 16, 12], ) # output channel is 1 _test_convolution( "conv_transpose", [1, 8, 8, 19], [1, 1, 1, 19], [1, 1], [1, 1], "VALID", "NHWC", [1, 8, 8, 1], ) # Test without adding shapes to graph def _test_convolution( "conv_transpose", [4, 8, 8, 32], [1, 1, 176, 32], [1, 1], [1, 1], "SAME", "NHWC", [4, 8, 8, 176], add_shapes_to_graph_def=False, ) # Explicit padding if package_version.parse(tf.VERSION) >= package_version.parse("2.4.1"): _test_convolution( "conv", [4, 8, 8, 16], [1, 1, 16, 32], [1, 1], [1, 1], [[0, 0], [2, 3], [0, 1], [0, 0]], "NHWC", ) _test_convolution( "depthwise", [4, 8, 8, 16], [1, 1, 16, 1], [1, 1], [1, 1], [[0, 0], [2, 3], [0, 1], [0, 0]], "NHWC", ) _test_convolution( "conv_transpose", [4, 8, 8, 32], [3, 3, 176, 32], [1, 1], [2, 2], [[0, 0], [1, 0], [1, 0], [0, 0]], "NHWC", [4, 16, 16, 176], ) ####################################################################### # Convolution3D # ------------- def _test_convolution3d( opname, tensor_in_sizes, filter_in_sizes, dilations, strides, padding, data_format, deconv_output_shape=None, add_shapes_to_graph_def=True, ): """One iteration of 3D convolution with given shapes and attributes""" deconv_output_shape = deconv_output_shape or [] total_size_1 = np.prod(tensor_in_sizes) total_size_2 = np.prod(filter_in_sizes) # Initializes the input tensor with array containing incrementing # numbers from 1. data_array = [f * 1.0 for f in range(1, total_size_1 + 1)] filter_array = [f * 1.0 for f in range(1, total_size_2 + 1)] with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=tensor_in_sizes, dtype="float32") in_filter = constant_op.constant(filter_array, shape=filter_in_sizes, dtype="float32") if data_format == "NDHWC": strides = [1] + strides + [1] dilations = [1] + dilations + [1] else: strides = [1, 1] + strides dilations = [1, 1] + dilations if opname == "conv": nn_ops.conv3d( in_data, in_filter, strides=strides, dilations=dilations, padding=padding, data_format=data_format, ) compare_tf_with_tvm( np.reshape(data_array, tensor_in_sizes).astype("float32"), "Placeholder:0", "Conv3D:0", cuda_layout="NCDHW", add_shapes_to_graph_def=add_shapes_to_graph_def, ) @tvm.testing.uses_gpu def test_forward_convolution3d(): """Convolution3d""" if is_gpu_available(): _test_convolution3d( "conv", [4, 176, 8, 8, 8], [1, 1, 1, 176, 32], [1, 1, 1], [1, 1, 1], "SAME", "NCDHW" ) _test_convolution3d( "conv", [4, 19, 17, 17, 17], [3, 3, 3, 19, 19], [1, 1, 1], [2, 2, 2], "VALID", "NCDHW" ) _test_convolution3d( "conv", [4, 124, 17, 17, 17], [1, 1, 1, 124, 19], [1, 1, 1], [1, 1, 1], "SAME", "NCDHW" ) _test_convolution3d( "conv", [4, 12, 17, 17, 17], [3, 3, 3, 12, 32], [1, 1, 1], [2, 2, 2], "VALID", "NCDHW" ) _test_convolution3d( "conv", [4, 8, 8, 8, 176], [1, 1, 1, 176, 32], [1, 1, 1], [1, 1, 1], "SAME", "NDHWC" ) _test_convolution3d( "conv", [4, 17, 17, 17, 19], [3, 3, 3, 19, 19], [1, 1, 1], [2, 2, 2], "VALID", "NDHWC" ) _test_convolution3d( "conv", [4, 17, 17, 17, 124], [1, 1, 1, 124, 19], [1, 1, 1], [1, 1, 1], "SAME", "NDHWC" ) _test_convolution3d( "conv", [4, 17, 17, 17, 12], [3, 3, 3, 12, 32], [1, 1, 1], [2, 2, 2], "VALID", "NDHWC" ) # Test without adding shapes to graph def _test_convolution3d( "conv", [4, 17, 17, 17, 12], [3, 3, 3, 12, 32], [1, 1, 1], [2, 2, 2], "VALID", "NDHWC", add_shapes_to_graph_def=False, ) ####################################################################### # Convolution3D Transpose # ----------------------- def _test_convolution3d_transpose( data_shape, filter_shape, strides, padding, output_shape, data_format="NCDHW", add_shapes_to_graph_def=True, ): """One iteration of 3D convolution transpose with given shapes and attributes""" dtype = "float32" data_array = np.random.uniform(size=data_shape).astype(dtype) filter_array = np.random.uniform(size=filter_shape).astype(dtype) if data_format == "NDHWC": strides = [1] + strides + [1] else: strides = [1, 1] + strides with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data_shape, dtype=dtype) in_filter = constant_op.constant(filter_array, shape=filter_shape, dtype=dtype) nn_ops.conv3d_transpose( in_data, in_filter, output_shape=output_shape, strides=strides, padding=padding, data_format=data_format, ) compare_tf_with_tvm( data_array, "Placeholder:0", "conv3d_transpose:0", cuda_layout="NDHWC", add_shapes_to_graph_def=add_shapes_to_graph_def, ) @tvm.testing.uses_gpu def test_forward_convolution3d_transpose(): """Convolution3d transpose""" if is_gpu_available(): _test_convolution3d_transpose( data_shape=[1, 10, 8, 8, 8], filter_shape=[1, 1, 1, 6, 10], strides=[1, 1, 1], padding="VALID", output_shape=[1, 6, 8, 8, 8], ) _test_convolution3d_transpose( data_shape=[4, 9, 8, 8, 8], filter_shape=[1, 1, 1, 6, 9], strides=[1, 1, 1], padding="VALID", output_shape=[4, 6, 8, 8, 8], ) _test_convolution3d_transpose( data_shape=[1, 3, 8, 8, 8], filter_shape=[1, 1, 1, 6, 3], strides=[2, 2, 2], padding="SAME", output_shape=[1, 6, 15, 15, 15], ) _test_convolution3d_transpose( data_shape=[1, 16, 8, 8, 8], filter_shape=[3, 3, 3, 6, 16], strides=[3, 3, 3], padding="VALID", output_shape=[1, 6, 24, 24, 24], ) _test_convolution3d_transpose( data_shape=[1, 8, 8, 8, 10], filter_shape=[1, 1, 1, 6, 10], strides=[1, 1, 1], padding="VALID", output_shape=[1, 8, 8, 8, 6], data_format="NDHWC", ) _test_convolution3d_transpose( data_shape=[4, 8, 8, 8, 9], filter_shape=[1, 1, 1, 6, 9], strides=[1, 1, 1], padding="VALID", output_shape=[4, 8, 8, 8, 6], data_format="NDHWC", ) _test_convolution3d_transpose( data_shape=[1, 8, 8, 8, 3], filter_shape=[1, 1, 1, 6, 3], strides=[2, 2, 2], padding="SAME", output_shape=[1, 15, 15, 15, 6], data_format="NDHWC", ) _test_convolution3d_transpose( data_shape=[1, 8, 8, 8, 16], filter_shape=[3, 3, 3, 6, 16], strides=[3, 3, 3], padding="VALID", output_shape=[1, 24, 24, 24, 6], data_format="NDHWC", ) # Test without adding shapes to graph def _test_convolution3d_transpose( data_shape=[1, 8, 8, 8, 16], filter_shape=[3, 3, 3, 6, 16], strides=[3, 3, 3], padding="VALID", output_shape=[1, 24, 24, 24, 6], data_format="NDHWC", add_shapes_to_graph_def=False, ) ####################################################################### # BiasAdd # ----------- def _test_biasadd(tensor_in_sizes, data_format): """One iteration of biasadd with given shapes and attributes""" total_size_1 = 1 for s in tensor_in_sizes: total_size_1 *= s tensor_bias_sizes = [tensor_in_sizes[1]] if data_format == "NCHW" else [tensor_in_sizes[3]] total_size_2 = tensor_bias_sizes[0] # Initializes the input tensor with array containing incrementing # numbers from 1. data_array = [f * 1.0 for f in range(1, total_size_1 + 1)] bias_array = [f * 1.0 for f in range(1, total_size_2 + 1)] with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=tensor_in_sizes, dtype="float32") in_bias = constant_op.constant(bias_array, shape=tensor_bias_sizes, dtype="float32") nn_ops.bias_add(in_data, in_bias, data_format=data_format) compare_tf_with_tvm( np.reshape(data_array, tensor_in_sizes).astype("float32"), "Placeholder:0", "BiasAdd:0" ) @tvm.testing.uses_gpu def test_forward_biasadd(): """Bias add""" if is_gpu_available(): _test_biasadd([4, 176, 8, 8], "NCHW") _test_biasadd([1, 100, 1, 1], "NCHW") _test_biasadd([4, 19, 17, 17], "NCHW") _test_biasadd([4, 124, 3, 3], "NCHW") _test_biasadd([4, 8, 8, 176], "NHWC") _test_biasadd([1, 1, 1, 100], "NHWC") _test_biasadd([4, 17, 17, 19], "NHWC") _test_biasadd([4, 3, 3, 124], "NHWC") def _test_forward_where(input_shape): with tf.Graph().as_default(): dtype = tf.float32 t = tf.constant( np.random.choice([0, 1, -2, 3, -1, 0.1, -0.2], size=input_shape).astype(dtype.name) ) out = tf.where(t) compare_tf_with_tvm([], [], out.name, mode="debug") compare_tf_with_tvm([], [], out.name, mode="vm") def test_forward_argwhere(): _test_forward_where((5,)) _test_forward_where((5, 5)) _test_forward_where((5, 5, 5)) _test_forward_where((5, 5, 5, 5)) _test_forward_where((5, 5, 5, 5, 5)) ####################################################################### # SpaceToBatchND # -------------- def _test_space_to_batch_nd(input_shape, block_shape, paddings, dtype="int32"): data = np.random.uniform(0, 5, size=input_shape).astype(dtype) with tf.Graph().as_default(): in_data = tf.placeholder(shape=input_shape, dtype=dtype) out = tf.space_to_batch_nd(in_data, block_shape, paddings) compare_tf_with_tvm(data, in_data.name, out.name) def _test_space_to_batch_nd_infer_paddings(input_shape, block_shape, dtype="int32"): data = np.random.uniform(0, 5, size=input_shape).astype(dtype) padding_np = np.array([0, 1]).astype(np.int32).reshape((1, 2)) with tf.Graph().as_default(): in_data = tf.placeholder(shape=input_shape, dtype=dtype) const1 = tf.constant(padding_np, dtype=tf.int32) # make paddings an input to tf.transpose, but not an input to the graph, # so it can be extracted with infer_value_simulated paddings = tf.reverse(const1, axis=[-1]) out = tf.space_to_batch_nd(in_data, block_shape, paddings) compare_tf_with_tvm(data, in_data.name, out.name) def test_forward_space_to_batch_nd(): """SpaceToBatchNd""" # test cases: https://www.tensorflow.org/api_docs/cc/class/tensorflow/ops/space-to-batch-n-d _test_space_to_batch_nd(input_shape=[1, 2, 2, 1], block_shape=[2, 2], paddings=[[0, 0], [0, 0]]) _test_space_to_batch_nd(input_shape=[1, 2, 2, 3], block_shape=[2, 2], paddings=[[0, 0], [0, 0]]) _test_space_to_batch_nd(input_shape=[1, 4, 4, 1], block_shape=[2, 2], paddings=[[0, 0], [0, 0]]) _test_space_to_batch_nd( input_shape=[2, 2, 4, 1], block_shape=[2, 2], paddings=[[0, 0], [2, 0]], dtype="int64" ) # pylint: disable=line-too-long # https://github.com/tensorflow/tensorflow/blob/24f578/tensorflow/python/kernel_tests/spacetobatch_op_test.py _test_space_to_batch_nd(input_shape=[2, 3], block_shape=[2], paddings=[[1, 0]], dtype="float32") _test_space_to_batch_nd( input_shape=[2, 3, 2], block_shape=[2], paddings=[[1, 0]], dtype="float64" ) _test_space_to_batch_nd_infer_paddings(input_shape=[2, 3, 2], block_shape=[2]) ####################################################################### # BatchToSpaceND # -------------- def _test_batch_to_space_nd(input_shape, block_shape, crops, dtype="int32"): data = np.random.uniform(0, 5, size=input_shape).astype(dtype) with tf.Graph().as_default(): in_data = tf.placeholder(shape=input_shape, dtype=dtype) out = tf.batch_to_space_nd(in_data, block_shape, crops) compare_tf_with_tvm(data, in_data.name, out.name) def test_forward_batch_to_space_nd(): """BatchToSpaceNd""" # test cases: https://www.tensorflow.org/api_docs/cc/class/tensorflow/ops/batch-to-space-n-d _test_batch_to_space_nd(input_shape=[4, 1, 1, 1], block_shape=[2, 2], crops=[[0, 0], [0, 0]]) _test_batch_to_space_nd(input_shape=[4, 1, 1, 3], block_shape=[2, 2], crops=[[0, 0], [0, 0]]) _test_batch_to_space_nd(input_shape=[4, 2, 2, 1], block_shape=[2, 2], crops=[[0, 0], [0, 0]]) _test_batch_to_space_nd( input_shape=[8, 1, 3, 1], block_shape=[2, 2], crops=[[0, 0], [2, 0]], dtype="int64" ) # pylint: disable=line-too-long # https://github.com/tensorflow/tensorflow/blob/24f578/tensorflow/python/kernel_tests/batchtospace_op_test.py _test_batch_to_space_nd( input_shape=[18, 2, 1, 2], block_shape=[2, 3], crops=[[1, 1], [0, 0]], dtype="float32" ) _test_batch_to_space_nd( input_shape=[20, 5, 8, 7], block_shape=[2, 2], crops=[[1, 1], [1, 1]], dtype="float64" ) ####################################################################### # Reshape # ------- def _test_reshape(data, out_shape): """One iteration of reshape operation with given data and out shape""" with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) array_ops.reshape(in_data, out_shape) compare_tf_with_tvm(data, "Placeholder:0", "Reshape:0") def _test_reshape_with_call(): """relay.expr.Call as shape""" data = np.zeros((6, 4, 2)) with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) out_shape = tf.constant([1, 2, 3], dtype="int32") out_shape = tf.multiply(out_shape, 2) array_ops.reshape(in_data, out_shape) compare_tf_with_tvm(data, "Placeholder:0", "Reshape:0") def _test_reshape_like(data, shape_like): """A special case for reshape.""" with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) in_shape_like = array_ops.placeholder(shape=shape_like.shape, dtype=data.dtype) out_shape = array_ops.shape(in_shape_like) array_ops.reshape(in_data, out_shape) compare_tf_with_tvm(data, "Placeholder:0", "Reshape:0") def _test_reshape_symbolic(data, a_data, b_data): with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) a = array_ops.placeholder(shape=a_data.shape, dtype=a_data.dtype) b = array_ops.placeholder(shape=b_data.shape, dtype=b_data.dtype) newshape = tf.add(a, b) out = array_ops.reshape(in_data, newshape) for mode in ["debug", "vm"]: compare_tf_with_tvm( [data, a_data, b_data], [in_data.name, a.name, b.name], out.name, mode=mode ) def test_forward_reshape(): """Reshape""" _test_reshape(np.arange(6.0), [2, 3]) _test_reshape(np.arange(6), [-1, 2]) _test_reshape(np.arange(6), [3, -1]) _test_reshape(np.arange(6), [-1]) _test_reshape_with_call() _test_reshape_like(np.zeros((3, 6)), np.zeros((9, 2))) _test_reshape_symbolic(np.arange(6.0), np.array([2, 0]), np.array([0, 3])) _test_reshape_symbolic(np.arange(6), np.array([-1, 0]), np.array([0, 2])) _test_reshape_symbolic(np.arange(6), np.array([3, 0]), np.array([3, -1])) _test_reshape_symbolic(np.arange(6), np.array([0]), np.array([-1])) ####################################################################### # DepthToSpace # ------------ def _test_depthtospace(data, block_size): """One iteration of depth_to_space operation with given data and block size""" with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) array_ops.depth_to_space(in_data, block_size) compare_tf_with_tvm(data, "Placeholder:0", "DepthToSpace:0") def test_forward_depthtospace(): _test_depthtospace(np.random.normal(size=[1, 32, 32, 4]), 2) _test_depthtospace(np.random.normal(size=[1, 16, 8, 32]), 4) ####################################################################### # SpaceToDepth # ------------ def _test_spacetodepth(data, block_size): """One iteration of space_to_depth operation with given data and block size""" with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) array_ops.space_to_depth(in_data, block_size) compare_tf_with_tvm(data, "Placeholder:0", "SpaceToDepth:0") def test_forward_spacetodepth(): _test_spacetodepth(np.random.normal(size=[1, 32, 32, 4]), 2) _test_spacetodepth(np.random.normal(size=[1, 16, 8, 32]), 4) ####################################################################### # Squeeze # ------- def _test_squeeze(data, squeeze_dims=None): """One iteration of squeeze""" if squeeze_dims is None: squeeze_dims = [] with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) if squeeze_dims: array_ops.squeeze(in_data, squeeze_dims) else: array_ops.squeeze(in_data) compare_tf_with_tvm(data, "Placeholder:0", "Squeeze:0") def test_forward_squeeze(): """Squeeze""" # Nothing to squeeze. _test_squeeze(np.arange(2).reshape((2))) _test_squeeze(np.arange(6).reshape((2, 3))) # Squeeze the middle element away. _test_squeeze(np.arange(4).reshape((2, 1, 2))) # Squeeze on both ends. _test_squeeze(np.arange(6).reshape((1, 2, 1, 3, 1))) # Positive squeeze dim index. _test_squeeze(np.arange(6).reshape((1, 2, 1, 3, 1)), [0]) _test_squeeze(np.arange(6).reshape((1, 2, 1, 3, 1)), [2, 4]) _test_squeeze(np.arange(6).reshape((1, 2, 1, 3, 1)), [0, 4, 2]) # Negative squeeze dim index. _test_squeeze(np.arange(6).reshape((1, 2, 1, 3, 1)), [-1]) _test_squeeze(np.arange(6).reshape((1, 2, 1, 3, 1)), [-3, -5]) _test_squeeze(np.arange(6).reshape((1, 2, 1, 3, 1)), [-3, -5, -1]) ####################################################################### # TensorArray # ----------- def test_tensor_array_write_read(): """Tensor array write read""" def run(dtype_str, infer_shape, element_shape): with tf.Graph().as_default(): dtype = tf_dtypes[dtype_str] np_data = np.array([[1.0, 2.0], [3.0, 4.0]]).astype(dtype_str) _ = [np_data, np_data] t1 = tf.constant(np_data, dtype=dtype) t2 = tf.constant(np_data, dtype=dtype) ta1 = tf.TensorArray( dtype=dtype, size=2, infer_shape=infer_shape, element_shape=element_shape ) ta2 = ta1.write(0, t1) ta3 = ta2.write(1, t2) _ = ta3.read(0) _ = tf.get_default_graph() compare_tf_with_tvm([], [], "TensorArrayReadV3:0", mode="vm") for dtype in ["float32", "int8"]: run(dtype, False, None) run(dtype, False, tf.TensorShape([None, 2])) run(dtype, True, None) def test_tensor_array_scatter(): """Tensor array scatter""" def run(dtype_str, infer_shape): with tf.Graph().as_default(): dtype = tf_dtypes[dtype_str] if infer_shape: element_shape = tf.TensorShape([tf.Dimension(None)]) else: element_shape = None ta0 = _construct_scatter(dtype, dtype_str, element_shape, infer_shape, 3) _ = ta0.read(0) _ = ta0.read(1) _ = ta0.read(2) ta1 = _construct_scatter(dtype, dtype_str, element_shape, infer_shape, 4) out4 = ta1.read(0) _ = tf.get_default_graph() compare_tf_with_tvm([], [], ["TensorArrayReadV3:0"], mode="vm") compare_tf_with_tvm([], [], ["TensorArrayReadV3_1:0"], mode="vm") compare_tf_with_tvm([], [], ["TensorArrayReadV3_2:0"], mode="vm") compare_tf_with_tvm([], [], ["TensorArrayReadV3_2:0", out4.name], mode="vm") def _construct_scatter(dtype, dtype_str, element_shape, infer_shape, size): arr = [[float(i)] for i in range(size)] # pylint: disable=unnecessary-comprehension indices_arr = list(range(size - 1, -1, -1)) t = tf.constant(np.array(arr).astype(dtype_str), dtype=dtype) indices = tf.constant(indices_arr) ta1 = tf.TensorArray( dtype=dtype, size=size, infer_shape=infer_shape, element_shape=element_shape ) ta2 = ta1.scatter(indices, t) return ta2 for dtype in ["float32", "int8"]: run(dtype, False) run(dtype, True) def test_tensor_array_gather(): """tensor array gather""" def run(dtype_str, infer_shape): with tf.Graph().as_default(): dtype = tf_dtypes[dtype_str] t = tf.constant(np.array([[1.0], [2.0], [3.0]]).astype(dtype_str)) scatter_indices = tf.constant([2, 1, 0]) gather_indices = tf.constant([1, 2]) ta1 = tf.TensorArray(dtype=dtype, size=3, infer_shape=infer_shape) ta2 = ta1.scatter(scatter_indices, t) _ = ta2.gather(gather_indices) _ = tf.get_default_graph() compare_tf_with_tvm([], [], ["TensorArrayGatherV3:0"], mode="vm") for dtype in ["float32", "int8"]: run(dtype, True) def test_tensor_array_split(): """tensor array split""" def run(dtype_str, infer_shape): with tf.Graph().as_default(): dtype = tf_dtypes[dtype_str] t = tf.constant( np.array([[1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0]]).astype( dtype_str ), dtype=dtype, ) split_length = tf.constant([2, 2, 2, 2], dtype=tf.int32) ta1 = tf.TensorArray(dtype=dtype, size=4, infer_shape=infer_shape) ta2 = ta1.split(t, split_length) _ = ta2.read(0) _ = ta2.read(1) _ = ta2.read(2) _ = ta2.read(3) _ = tf.get_default_graph() compare_tf_with_tvm([], [], ["TensorArrayReadV3:0"], mode="debug") compare_tf_with_tvm([], [], ["TensorArrayReadV3_1:0"], mode="debug") compare_tf_with_tvm([], [], ["TensorArrayReadV3_2:0"], mode="debug") compare_tf_with_tvm([], [], ["TensorArrayReadV3_3:0"], mode="debug") for dtype in ["float32", "int8"]: run(dtype, False) run(dtype, True) def test_tensor_array_concat(): """Tensor array concat""" def run(dtype_str, infer_shape): with tf.Graph().as_default(): dtype = tf_dtypes[dtype_str] t = tf.constant( np.array([[1.0], [2.0], [3.0], [4.0], [5.0], [6.0], [7.0], [8.0]]).astype( dtype_str ), dtype=dtype, ) split_length = tf.constant([2, 2, 2, 2], dtype=tf.int32) ta1 = tf.TensorArray(dtype=dtype, size=4, infer_shape=infer_shape) ta2 = ta1.split(t, split_length) t = ta2.concat() _ = tf.identity(t) compare_tf_with_tvm([], [], ["Identity:0"], mode="debug") for dtype in ["float32", "int8"]: run(dtype, False) run(dtype, True) def test_tensor_array_size(): """Tensor array size""" if package_version.parse(tf.VERSION) >= package_version.parse("1.15.0"): pytest.skip("Needs fixing for tflite >= 1.15.0") def run(dtype_str, infer_shape): with tf.Graph().as_default(): dtype = tf_dtypes[dtype_str] np_data = np.array([[1.0, 2.0], [3.0, 4.0]]).astype(dtype_str) _ = [np_data, np_data] t1 = tf.constant(np_data, dtype=dtype) t2 = tf.constant(np_data, dtype=dtype) ta1 = tf.TensorArray(dtype=dtype, size=2, infer_shape=infer_shape) ta2 = ta1.write(0, t1) ta3 = ta2.write(1, t2) _ = ta3.size() _ = tf.get_default_graph() compare_tf_with_tvm([], [], "TensorArraySizeV3:0", mode="debug") for dtype in ["float32", "int8"]: run(dtype, False) run(dtype, True) def test_tensor_array_stack(): """Tensor array stack""" def run(dtype_str, infer_shape): if package_version.parse(tf.VERSION) >= package_version.parse("1.15.0"): pytest.skip("Needs fixing for tflite >= 1.15.0") with tf.Graph().as_default(): dtype = tf_dtypes[dtype_str] t = tf.constant(np.array([[1.0], [2.0], [3.0]]).astype(dtype_str)) scatter_indices = tf.constant([2, 1, 0]) ta1 = tf.TensorArray(dtype=dtype, size=3, infer_shape=infer_shape) ta2 = ta1.scatter(scatter_indices, t) t1 = ta2.stack() print(t1) _ = tf.get_default_graph() compare_tf_with_tvm([], [], ["TensorArrayStack/TensorArrayGatherV3:0"], mode="vm") for dtype in ["float32", "int8"]: run(dtype, True) def test_tensor_array_unstack(): """Tensor array unstack""" def run(dtype_str, input_shape, infer_shape): if package_version.parse(tf.VERSION) >= package_version.parse("1.15.0"): pytest.skip("Needs fixing for tflite >= 1.15.0") with tf.Graph().as_default(): dtype = tf_dtypes[dtype_str] t = tf.constant(np.random.choice([0, 1, 2, 3], size=input_shape).astype(dtype.name)) ta1 = tf.TensorArray(dtype=dtype, infer_shape=infer_shape, size=input_shape[0]) ta2 = ta1.unstack(t) _ = ta2.size() _ = ta2.read(0) compare_tf_with_tvm([], [], "TensorArraySizeV3:0", mode="debug") compare_tf_with_tvm([], [], "TensorArrayReadV3:0", mode="debug") for dtype in ["float32", "int8"]: run(dtype, (5,), False) run(dtype, (5, 5), True) run(dtype, (5, 5, 5), False) run(dtype, (5, 5, 5, 5), True) ####################################################################### # ConcatV2 # -------- def _test_concat_v2(shape1, shape2, dim): """One iteration of ConcatV2""" with tf.Graph().as_default(): dtype = "float32" in1 = tf.placeholder(shape=shape1, dtype=dtype, name="in1") in2 = tf.placeholder(shape=shape2, dtype=dtype, name="in2") array_ops.concat_v2([in1, in2], dim) np_data1 = np.random.uniform(size=shape1).astype(dtype) np_data2 = np.random.uniform(size=shape2).astype(dtype) compare_tf_with_tvm([np_data1, np_data2], ["in1:0", "in2:0"], "ConcatV2:0") def test_forward_concat_v2(): if tf.__version__ < LooseVersion("1.4.1"): return _test_concat_v2([2, 3], [2, 3], 0) _test_concat_v2([10, 3, 5], [2, 3, 5], 0) _test_concat_v2([2, 3], [2, 3], 1) _test_concat_v2([5, 8], [5, 4], 1) _test_concat_v2([2, 8, 5], [2, 8, 6], -1) ####################################################################### # Sigmoid # ------- def _test_sigmoid(data): """One iteration of sigmoid""" with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) _ = math_ops.sigmoid(in_data) compare_tf_with_tvm(data, "Placeholder:0", "Sigmoid:0") def test_forward_sigmoid(): """Sigmoid""" _test_sigmoid(np.random.uniform(size=(3, 4, 4, 3)).astype("float32")) ####################################################################### # Argmin/Argmax # ------------- def _test_argx(func, data, **kwargs): with tf.Graph().as_default(): inp = array_ops.placeholder(shape=data.shape, dtype=data.dtype, name="c0") func(inp, name="argx0", **kwargs) compare_tf_with_tvm(data, "c0:0", "argx0:0") def test_forward_argminmax(): for output_type in [tf.int64, tf.int32]: for axis in [None, 0, 1, 2]: data = np.random.uniform(size=(8, 4, 9)).astype("float32") _test_argx(tf.argmax, data=data, axis=axis, output_type=output_type) _test_argx(tf.argmin, data=data, axis=axis, output_type=output_type) ####################################################################### # Variable # -------- def _test_variable(data): """One iteration of a variable""" tf.reset_default_graph() with tf.Graph().as_default(): input_op = array_ops.placeholder(shape=data.shape, dtype=data.dtype) input_tensor = array_ops.reshape(input_op, data.shape) size = input_tensor.shape.dims[1] with variable_scope.variable_scope("linear", reuse=None): w = variable_scope.get_variable("w", shape=[size, size], dtype=input_tensor.dtype) math_ops.matmul(input_tensor, w) compare_tf_with_tvm(data, "Placeholder:0", "MatMul:0", init_global_variables=True) def test_forward_variable(): """Variable type op test""" _test_variable(np.random.uniform(size=(32, 100)).astype("float32")) @tvm.testing.parametrize_targets("llvm", "cuda") def test_read_variable_op(target, dev): """Read Variable op test""" tf.reset_default_graph() data = np.random.uniform(size=(32, 100)).astype("float32") input_tensor = array_ops.placeholder(shape=data.shape, dtype=data.dtype) size = input_tensor.shape.dims[1] var_data = np.random.uniform(-5, 5, size=[size, size]).astype(np.float32) input_var = tf.Variable(var_data, name="var1", use_resource=True) math_ops.matmul(input_tensor, input_var) out_name = ["MatMul:0"] out_node = ["MatMul"] in_name = ["Placeholder:0"] in_node = ["Placeholder"] in_data = [data] with tf.Session() as sess: sess.run(variables.global_variables_initializer()) final_graph_def = sess.graph.as_graph_def(add_shapes=True) tf_output = run_tf_graph(sess, in_data, in_name, out_name) shape_dict = {e: i.shape for e, i in zip(in_name, in_data)} with pytest.raises(Exception) as execinfo: _, _ = relay.frontend.from_tensorflow( final_graph_def, layout=None, shape=shape_dict, outputs=None ) assert execinfo.value.args[0].startswith("Graph is not frozen. Provide a frozen graph") # Now convert the variables to constant and run inference on the converted graph final_graph_def = tf.graph_util.convert_variables_to_constants( sess, sess.graph.as_graph_def(add_shapes=True), out_node, ) tvm_output = run_tvm_graph( final_graph_def, in_data, in_node, target=target, out_names=out_name, num_output=len(out_name), ) for i, tf_out in enumerate(tf_output): tvm.testing.assert_allclose(tf_out, tvm_output[i], atol=1e-4, rtol=1e-5) sess.close() ####################################################################### # MatMul, BatchMatMul, BatchMatMulV2 # ---------------------------------- def _test_matmul(i, j, k, dtype, outer=None): """One iteration of matmul""" A_shape_init = [i, j] B_shape_init = [j, k] for transpose_a in [False, True]: for transpose_b in [False, True]: outer = outer or [] A_shape = outer + (A_shape_init[::-1] if transpose_a else A_shape_init) B_shape = outer + (B_shape_init[::-1] if transpose_b else B_shape_init) with tf.Graph().as_default(): A = tf.placeholder(shape=A_shape, dtype=dtype, name="A") B = tf.placeholder(shape=B_shape, dtype=dtype, name="B") result = tf.matmul(A, B, transpose_a=transpose_a, transpose_b=transpose_b) A_np = np.random.uniform(high=5.0, size=A_shape).astype(dtype) B_np = np.random.uniform(high=5.0, size=B_shape).astype(dtype) compare_tf_with_tvm( [A_np, B_np], [A.name, B.name], result.name, convert_config={"use_dense": True} ) compare_tf_with_tvm( [A_np, B_np], [A.name, B.name], result.name, convert_config={"use_dense": False} ) def test_forward_matmul(): """MatMul op test""" _test_matmul(1, 3, 6, "int32") _test_matmul(5, 3, 1, "float64") def _test_batch_matmul(A_shape, B_shape, dtype, adjoint_a=False, adjoint_b=False): with tf.Graph().as_default(): A = tf.placeholder(shape=A_shape, dtype=dtype, name="A") B = tf.placeholder(shape=B_shape, dtype=dtype, name="B") result = tf.matmul(A, B, adjoint_a=adjoint_a, adjoint_b=adjoint_b, name="batchmatmul") A_np = np.random.uniform(high=5.0, size=A_shape).astype(dtype) B_np = np.random.uniform(high=5.0, size=B_shape).astype(dtype) compare_tf_with_tvm( [A_np, B_np], [A.name, B.name], result.name, convert_config={"use_nt_batch_matmul": True}, ) compare_tf_with_tvm( [A_np, B_np], [A.name, B.name], result.name, convert_config={"use_nt_batch_matmul": False}, ) def _test_batch_matmul_dynamic( A_shape, B_shape, A_np_shape, B_np_shape, dtype, adjoint_a=False, adjoint_b=False ): with tf.Graph().as_default(): A = tf.placeholder(shape=A_shape, dtype=dtype, name="A") B = tf.placeholder(shape=B_shape, dtype=dtype, name="B") result = tf.matmul(A, B, adjoint_a=adjoint_a, adjoint_b=adjoint_b, name="batchmatmul") A_np = np.random.uniform(high=5.0, size=A_np_shape).astype(dtype) B_np = np.random.uniform(high=5.0, size=B_np_shape).astype(dtype) # for now, in TOPI, only llvm & cublas's implementation support dynamic shape # TODO add more backends support in TOPI compare_tf_with_tvm( [A_np, B_np], [A.name, B.name], result.name, mode="vm", targets=["llvm", "cuda -libs=cublas"], convert_config={"use_nt_batch_matmul": True}, ) compare_tf_with_tvm( [A_np, B_np], [A.name, B.name], result.name, mode="vm", targets=["llvm", "cuda -libs=cublas"], convert_config={"use_nt_batch_matmul": False}, ) def test_forward_batch_matmul(): """TF op BatchMatMul, BatchMatMulV2 test""" _test_batch_matmul((3, 5, 4), (3, 4, 5), "int32") _test_batch_matmul((3, 5, 4), (3, 4, 5), "float32", True, True) _test_batch_matmul((3, 5, 4), (3, 5, 4), "int32", True, False) _test_batch_matmul((3, 5, 4), (3, 5, 4), "float32", False, True) _test_batch_matmul((2, 3, 4, 5, 6), (2, 3, 4, 6, 5), "int32") _test_batch_matmul((1, 2, 3, 4, 5, 6), (1, 2, 3, 4, 6, 5), "float32", True, True) _test_batch_matmul((3, 4, 5, 6), (3, 4, 5, 6), "int32", True, False) _test_batch_matmul((2, 3, 4, 2, 3, 4, 5, 6), (2, 3, 4, 2, 3, 4, 5, 6), "float32", False, True) _test_batch_matmul((1, 8, 64, 2), (2, 1), "float32", False, False) _test_batch_matmul((1, 8, 8, 64), (64, 1), "float32", False, False) _test_batch_matmul((1, 8, 64), (64, 1), "float32", False, False) def test_forward_batch_matmul_dynamic(): """Dynamic batch matmul""" _test_batch_matmul_dynamic((None, 5, 4), (None, 4, 5), (3, 5, 4), (3, 4, 5), "int32") _test_batch_matmul_dynamic( (None, 5, 4), (None, 4, 5), (3, 5, 4), (3, 4, 5), "float32", True, True ) _test_batch_matmul_dynamic( (None, 5, 4), (None, 5, 4), (3, 5, 4), (3, 5, 4), "int32", True, False ) _test_batch_matmul_dynamic( (None, 5, 4), (None, 5, 4), (3, 5, 4), (3, 5, 4), "float32", False, True ) _test_batch_matmul_dynamic( (None, 4, 5, 6), (None, 4, 6, 5), (3, 4, 5, 6), (3, 4, 6, 5), "float32" ) _test_batch_matmul_dynamic( (None, None, 5, 6), (None, None, 6, 5), (3, 4, 5, 6), (3, 4, 6, 5), "float32" ) _test_batch_matmul_dynamic( (None, None, None, 5, 6), (None, None, None, 6, 5), (2, 3, 4, 5, 6), (2, 3, 4, 6, 5), "float32", ) _test_batch_matmul_dynamic( (None, None, None, 5, 6), (6, None), (2, 3, 4, 5, 6), (6, 1), "float32", ) _test_batch_matmul_dynamic( (None, 5, 6), (6, None), (24, 5, 6), (6, 1), "float32", ) ####################################################################### # SparseTensorDenseMatMul # ---------------------------------- def _test_sparse_dense_matmul(indices, values, A_inp_shape, B_inp_shape, dtype, flip=False): """One iteration of sparse_dense_matmul""" for adjoint_a in [False, True]: for adjoint_b in [False, True]: A_shape = A_inp_shape[::-1] if adjoint_a else A_inp_shape B_shape = B_inp_shape[::-1] if adjoint_b else B_inp_shape with tf.Graph().as_default(): A_sp = tf.sparse.SparseTensor(indices=indices, values=values, dense_shape=A_shape) B = tf.placeholder(shape=B_shape, dtype=dtype, name="B") if flip: result = tf.sparse.sparse_dense_matmul( B, A_sp, adjoint_a=adjoint_b, adjoint_b=adjoint_a ) else: result = tf.sparse.sparse_dense_matmul( A_sp, B, adjoint_a=adjoint_a, adjoint_b=adjoint_b ) B_np = np.random.uniform(high=5.0, size=B_shape).astype(dtype) compare_tf_with_tvm([B_np], [B.name], result.name) def test_forward_sparse_dense_matmul(): """sparse_dense_matmul op test""" ################################################################### # # In order to create a SparseTensor, it requires 3 input as below: # SparseTensor(indices=[[0, 0], [1, 2]], values=[1, 2], dense_shape=[3, 4]) # # Above Sparse can be represented in Dense as below : # [[1, 0, 0, 0] # [0, 0, 2, 0] # [0, 0, 0, 0]] # # ------------------------------------------------------------------ _test_sparse_dense_matmul([[0, 0], [1, 2]], [4.0, 8.0], [3, 4], [4, 3], "float32") _test_sparse_dense_matmul([[0, 0], [1, 2]], [4.0, 8.0], [3, 3], [3, 3], "float32") _test_sparse_dense_matmul([[0, 0], [1, 3], [4, 3]], [3.0, 6.0, 9.0], [5, 5], [5, 5], "float32") _test_sparse_dense_matmul([[0, 0], [1, 3], [4, 3]], [3.0, 6.0, 9.0], [7, 9], [9, 5], "float32") _test_sparse_dense_matmul([[0, 0], [1, 2]], [4.0, 8.0], [4, 3], [3, 4], "float32", True) _test_sparse_dense_matmul([[0, 0], [1, 2]], [4.0, 8.0], [3, 3], [3, 3], "float32", True) _test_sparse_dense_matmul( [[0, 0], [1, 3], [4, 3]], [3.0, 6.0, 9.0], [5, 5], [5, 5], "float32", True ) _test_sparse_dense_matmul( [[0, 0], [1, 3], [4, 3]], [3.0, 6.0, 9.0], [9, 5], [7, 9], "float32", True ) ####################################################################### # SparseFillEmptyRows # ------------ def _test_sparse_fill_empty_rows(indices_np, values_np, dense_shape_np, default_value_int, use_dyn): with tf.Graph().as_default(): if use_dyn: indices = tf.placeholder(shape=(None, None), dtype=indices_np.dtype, name="indices") values = tf.placeholder(shape=(None), dtype=values_np.dtype, name="values") dense_shape = tf.placeholder( shape=(None), dtype=dense_shape_np.dtype, name="dense_shape" ) else: indices = tf.placeholder(shape=indices_np.shape, dtype=indices_np.dtype, name="indices") values = tf.placeholder(shape=values_np.shape, dtype=values_np.dtype, name="values") dense_shape = tf.placeholder( shape=dense_shape_np.shape, dtype=dense_shape_np.dtype, name="dense_shape" ) default_value = tf.placeholder(shape=(), dtype=values_np.dtype, name="default_value") sp_input = tf.sparse.SparseTensor(indices=indices, values=values, dense_shape=dense_shape) _ = tf.sparse.fill_empty_rows(sp_input, default_value, name="sparse_fill_empty_rows") compare_tf_with_tvm( [indices_np, values_np, dense_shape_np, default_value_int], [indices.name, values.name, dense_shape.name, default_value.name], [ "sparse_fill_empty_rows/SparseFillEmptyRows:0", "sparse_fill_empty_rows/SparseFillEmptyRows:1", "sparse_fill_empty_rows/SparseFillEmptyRows:2", ], mode="vm", ) @pytest.mark.parametrize( "sparse_indices_np, sparse_values_np, dense_shape_np, default_value_int", [ ( np.array([[1, 1], [0, 3], [0, 1], [2, 0], [3, 1]], dtype=np.int64), np.array([1, 2, 3, 4, 5], dtype=np.int64), np.array([5, 6], dtype=np.int64), 10, ), ( np.array([[1, 1], [0, 3], [2, 0], [3, 1]], dtype=np.int64), np.array([1, 2, 3, 4], dtype=np.int64), np.array([5, 6], dtype=np.int64), 10, ), ( np.array([[0, 1], [0, 3], [2, 0], [3, 1]], dtype=np.int64), np.array([1, 2, 3, 4], dtype=np.int64), np.array([5, 6], dtype=np.int64), 10, ), ( np.array([[1, 1, 1], [1, 3, 1], [2, 0, 5], [3, 1, 6]], dtype=np.int64), np.array([1, 2, 3, 4], dtype=np.int64), np.array([7, 7, 7], dtype=np.int64), 5, ), ( np.array([[1], [2]], dtype=np.int64), np.array([7, 8], dtype=np.int64), np.array([5], dtype=np.int64), 4, ), ( np.ones((0, 1), dtype=np.int64), np.array([], dtype=np.int64), np.array([5], dtype=np.int64), 4, ), ( np.ones((0, 3), dtype=np.int64), np.array([], dtype=np.int64), np.array([9, 3, 7], dtype=np.int64), 100, ), ], ) @pytest.mark.parametrize("use_dyn", [True, False]) def test_forward_sparse_fill_empty_rows( sparse_indices_np, sparse_values_np, dense_shape_np, default_value_int, use_dyn ): """sparse_fill_empty_rows op test""" ################################################################### # # In order to create a SparseTensor, it requires 3 input as below: # SparseTensor(indices=[[0, 0], [1, 2]], values=[1, 2], dense_shape=[3, 4]) # # Above Sparse can be represented in Dense as below : # [[1, 0, 0, 0] # [0, 0, 2, 0] # [0, 0, 0, 0]] # # ------------------------------------------------------------------ _test_sparse_fill_empty_rows( sparse_indices_np, sparse_values_np, dense_shape_np, default_value_int, use_dyn ) ####################################################################### # SparseReshape # ------------ def _test_sparse_reshape(indices_np, values_np, prev_shape_np, new_shape_np, use_dyn=False): with tf.Graph().as_default(): if use_dyn: indices = tf.placeholder(shape=(None, None), dtype=indices_np.dtype, name="indices") values = tf.placeholder(shape=(None), dtype=values_np.dtype, name="values") prev_shape = tf.placeholder(shape=(None), dtype=prev_shape_np.dtype, name="prev_shape") new_shape = tf.placeholder(shape=(None), dtype=new_shape_np.dtype, name="new_shape") else: indices = tf.placeholder(shape=indices_np.shape, dtype=indices_np.dtype, name="indices") values = tf.placeholder(shape=values_np.shape, dtype=values_np.dtype, name="values") prev_shape = tf.placeholder( shape=prev_shape_np.shape, dtype=prev_shape_np.dtype, name="prev_shape" ) new_shape = tf.placeholder( shape=new_shape_np.shape, dtype=new_shape_np.dtype, name="new_shape" ) sp_input = tf.sparse.SparseTensor(indices=indices, values=values, dense_shape=prev_shape) _ = tf.sparse.reshape(sp_input, new_shape, name="sparse_reshape") compare_tf_with_tvm( [indices_np, values_np, prev_shape_np, new_shape_np], [indices.name, values.name, prev_shape.name, new_shape.name], ["sparse_reshape:0", "sparse_reshape:1", "sparse_reshape/Identity:0"], mode="vm", ) @pytest.mark.parametrize( "sparse_indices_np, sparse_values_np, prev_shape_np, new_shape_np", [ ( np.ones((0, 1), dtype=np.int64), np.array([], dtype=np.int64), np.array([4], dtype=np.int64), np.array([2, -1], dtype=np.int64), ), ( np.ones((0, 1), dtype=np.int64), np.array([], dtype=np.int64), np.array([4], dtype=np.int64), np.array([2, 2], dtype=np.int64), ), ( np.ones((0, 2), dtype=np.int64), np.array([], dtype=np.int64), np.array([3, 6], dtype=np.int64), np.array([-1, 2], dtype=np.int64), ), ( np.array([[0, 0, 0], [0, 0, 1], [0, 1, 0], [1, 0, 0], [1, 2, 3]], dtype=np.int64), np.array([7, 5, 6, 3, 9], dtype=np.int64), np.array([2, 3, 6], dtype=np.int64), np.array([-1, 9], dtype=np.int64), ), ( np.array( [ [0, 0, 0, 0, 0], [0, 0, 1, 2, 3], [0, 1, 0, 3, 5], [1, 0, 0, 4, 6], [1, 2, 3, 6, 8], ], dtype=np.int64, ), np.array([7, 5, 6, 3, 9], dtype=np.int64), np.array([2, 3, 6, 7, 9], dtype=np.int64), np.array([9, -1, 7], dtype=np.int64), ), ( np.array([[0, 0], [0, 1], [3, 4], [4, 3], [7, 3]], dtype=np.int64), np.array([7, 5, 6, 3, 9], dtype=np.int64), np.array([9, 4], dtype=np.int64), np.array([-1], dtype=np.int64), ), ( np.array([[0], [5], [10], [20], [24]], dtype=np.int64), np.array([7, 5, 6, 3, 9], dtype=np.int64), np.array([25], dtype=np.int64), np.array([5, 5], dtype=np.int64), ), ( np.array([[0, 100], [200, 100], [300, 400], [50, 20], [400, 50]], dtype=np.int64), np.array([7, 5, 6, 3, 9], dtype=np.int64), np.array([500, 20], dtype=np.int64), np.array([500, 20], dtype=np.int64), ), ( np.array([[0, 100], [200, 100], [300, 400], [50, 20], [400, 50]], dtype=np.int64), np.array([7, 5, 6, 3, 9], dtype=np.int64), np.array([500, 20], dtype=np.int64), np.array([500, -1], dtype=np.int64), ), ( np.array([[0, 100], [200, 100], [300, 400], [50, 20], [400, 50]], dtype=np.int64), np.array([7, 5, 6, 3, 9], dtype=np.int64), np.array([500, 20], dtype=np.int64), np.array([250, 40], dtype=np.int64), ), ], ) @pytest.mark.parametrize("use_dyn", [True, False]) def test_forward_sparse_reshape( sparse_indices_np, sparse_values_np, prev_shape_np, new_shape_np, use_dyn ): """sparse_reshape op test""" ################################################################### # # In order to create a SparseTensor, it requires 3 input as below: # SparseTensor(indices=[[0, 0], [1, 2]], values=[1, 2], dense_shape=[3, 4]) # # Above Sparse can be represented in Dense as below : # [[1, 0, 0, 0] # [0, 0, 2, 0] # [0, 0, 0, 0]] # # ------------------------------------------------------------------ _test_sparse_reshape(sparse_indices_np, sparse_values_np, prev_shape_np, new_shape_np, use_dyn) ####################################################################### # Sparse Segment Variants # ------------ def _test_sparse_segment_variant( tf_op, data_np, indices_np, segment_ids_np, num_segments, use_dyn=False ): with tf.Graph().as_default(): if use_dyn: data = tf.placeholder( shape=[None for _ in data_np.shape], dtype=data_np.dtype, name="data" ) indices = tf.placeholder(shape=[None], dtype=indices_np.dtype, name="indices") segment_ids = tf.placeholder( shape=(None), dtype=segment_ids_np.dtype, name="segment_ids" ) else: data = tf.placeholder(shape=data_np.shape, dtype=data_np.dtype, name="data") indices = tf.placeholder(shape=indices_np.shape, dtype=indices_np.dtype, name="indices") segment_ids = tf.placeholder( shape=segment_ids_np.shape, dtype=segment_ids_np.dtype, name="segment_ids" ) _ = tf_op( data, indices, segment_ids, num_segments=num_segments, name="sparse_segment_variant" ) compare_tf_with_tvm( [data_np, indices_np, segment_ids_np], [data.name, indices.name, segment_ids.name], ["sparse_segment_variant:0"], mode="vm", ) @pytest.mark.parametrize( "data_np, indices_np, segment_ids_np, num_segments", [ ( np.array([5, 1, 7, 2, 3, 4], dtype=np.float32), np.array([0, 3, 4], dtype=np.int32), np.array([0, 1, 1], dtype=np.int32), None, ), ( np.array([[1, 2, 3, 4], [-1, -2, -3, -4], [5, 6, 7, 8]], dtype=np.float64), np.array([0, 1], dtype=np.int32), np.array([0, 2], dtype=np.int32), 4, ), ( np.random.random((6, 4, 5)), np.array([0, 2, 4, 3, 1], dtype=np.int32), np.array([0, 0, 1, 5, 5], dtype=np.int32), 100, ), ( np.random.random((6, 4, 5)), np.array([0, 2, 4, 3, 1], dtype=np.int32), np.array([0, 0, 1, 5, 5], dtype=np.int32), None, ), ( np.array([[[1, 7]], [[3, 8]], [[2, 9]]], dtype=np.float64), np.array([0, 1, 2], dtype=np.int32), np.array([0, 0, 1], dtype=np.int32), None, ), ( np.random.random((9, 4, 5, 7)), np.array([0, 1, 2, 3, 4, 5, 6, 7, 8], dtype=np.int32), np.array([0, 0, 1, 3, 5, 6, 7, 7, 8], dtype=np.int32), 9, ), ( np.random.random((9, 4, 5, 7)), np.array([0, 1, 2, 3, 4, 5, 6, 7, 8], dtype=np.int32), np.array([0, 0, 1, 3, 5, 6, 7, 7, 8], dtype=np.int32), None, ), ( np.array([[1, 2, 3, 4], [-1, -2, -3, -4], [5, 6, 7, 8]], dtype=np.float64), np.array([0, 1], dtype=np.int32), np.array([0, 2], dtype=np.int32), None, ), ( np.random.random((9, 4, 5, 7)), np.array([0, 1, 2, 3, 4, 5, 6, 7, 8], dtype=np.int32), np.array([0, 0, 1, 3, 5, 5, 5, 5, 5], dtype=np.int32), 6, ), ], ) @pytest.mark.parametrize("use_dyn", [True, False]) @pytest.mark.parametrize( "tf_op", [ tf.sparse.segment_sum, tf.sparse.segment_sqrt_n, tf.sparse.segment_mean, ], ) def test_forward_sparse_segment_sum_variants( tf_op, data_np, indices_np, segment_ids_np, num_segments, use_dyn, ): """sparse segment sum variants tests""" _test_sparse_segment_variant(tf_op, data_np, indices_np, segment_ids_np, num_segments, use_dyn) ####################################################################### # Math SegmentSum # ------------ def _test_math_segment_sum(data_np, segment_ids_np, use_dyn=False): with tf.Graph().as_default(): if use_dyn: data = tf.placeholder( shape=[None for _ in data_np.shape], dtype=data_np.dtype, name="data" ) segment_ids = tf.placeholder( shape=(None), dtype=segment_ids_np.dtype, name="segment_ids" ) else: data = tf.placeholder(shape=data_np.shape, dtype=data_np.dtype, name="data") segment_ids = tf.placeholder( shape=segment_ids_np.shape, dtype=segment_ids_np.dtype, name="segment_ids" ) _ = tf.math.segment_sum(data, segment_ids, name="segment_sum") compare_tf_with_tvm( [data_np, segment_ids_np], [data.name, segment_ids.name], ["segment_sum:0"], mode="vm", ) @pytest.mark.parametrize( "data_np, segment_ids_np", [ ( np.array([5, 1, 7, 2, 3, 4], dtype=np.float32), np.array([0, 0, 0, 1, 1, 1], dtype=np.int32), ), ( np.array([[1, 2, 3, 4], [-1, -2, -3, -4], [5, 6, 7, 8]], dtype=np.float64), np.array([0, 0, 1], dtype=np.int32), ), ( np.random.random((6, 4, 5)), np.array([0, 0, 1, 2, 2, 3], dtype=np.int64), ), ( np.array([[[1, 7]], [[3, 8]], [[2, 9]]], dtype=np.float32), np.array([0, 0, 1], dtype=np.int32), ), ( np.random.random((9, 4, 5, 7)), np.array([0, 0, 0, 1, 2, 3, 4, 4, 5], dtype=np.int64), ), ], ) @pytest.mark.parametrize("use_dyn", [True, False]) def test_forward_math_segment_sum(data_np, segment_ids_np, use_dyn): """math segment sum test""" _test_math_segment_sum(data_np, segment_ids_np, use_dyn) # tensorflow.compat.v1.sparse_to_dense # --------------- def _test_sparse_to_dense(sparse_indices, sparse_values, default_value, output_shape): with tf.Graph().as_default(): indices = tf.placeholder( shape=sparse_indices.shape, dtype=str(sparse_indices.dtype), name="indices" ) values = tf.placeholder( shape=sparse_values.shape, dtype=str(sparse_values.dtype), name="values" ) oshape = tf.constant(output_shape, shape=output_shape.shape, dtype=str(output_shape.dtype)) # Output shape depends on a dynamic input, use VM. if default_value is None: output = tf.sparse_to_dense(indices, oshape, values) compare_tf_with_tvm( [sparse_indices, sparse_values], ["indices:0", "values:0"], output.name, mode="vm" ) else: dv = tf.placeholder(shape=(), dtype=str(default_value.dtype), name="default_value") output = tf.sparse_to_dense(indices, oshape, values, dv) compare_tf_with_tvm( [sparse_indices, sparse_values, default_value], ["indices:0", "values:0", "default_value:0"], output.name, mode="vm", ) def test_forward_sparse_to_dense(): """Sparse to dense""" # scalar _test_sparse_to_dense( sparse_indices=np.int32(1), sparse_values=np.int32(3), default_value=np.int32(0), output_shape=np.array([5]).astype("int32"), ) # vector _test_sparse_to_dense( sparse_indices=np.array([0, 1, 4]).astype("int32"), sparse_values=np.array([3, 3, 3]).astype("int32"), default_value=np.int32(0), output_shape=np.array([5]).astype("int32"), ) # vector nXd _test_sparse_to_dense( sparse_indices=np.array([[0, 0], [1, 2]]).astype("int32"), sparse_values=np.array([1, 2]).astype("int32"), default_value=np.int32(0), output_shape=np.array([3, 4]).astype("int32"), ) _test_sparse_to_dense( sparse_indices=np.array([[0, 0, 0], [1, 2, 3]]).astype("int32"), sparse_values=np.array([1, 2]).astype("int32"), default_value=np.int32(4), output_shape=np.array([2, 3, 4]).astype("int32"), ) # floats _test_sparse_to_dense( sparse_indices=np.array([0, 1, 4]).astype("int32"), sparse_values=np.array([3.1, 3.1, 3.1]).astype("float32"), default_value=np.float32(3.5), output_shape=np.array([5]).astype("int32"), ) # default value not specified _test_sparse_to_dense( sparse_indices=np.array([0, 1, 4]).astype("int32"), sparse_values=np.array([3.1, 3.1, 3.1]).astype("float32"), default_value=None, output_shape=np.array([5]).astype("int32"), ) ####################################################################### # tensorflow.sparse.to_dense # --------------- def _test_sparse_to_dense_v2(indices, values, A_shape, dtype, default_value=None): with tf.Graph().as_default(): A_sp = tf.sparse.SparseTensor(indices=indices, values=values, dense_shape=A_shape) result = tf.sparse.to_dense(A_sp, default_value=default_value) # The output shape depends on a dynamic input, use VM. compare_tf_with_tvm([], [], result.name, mode="vm") def test_forward_sparse_to_dense_v2(): _test_sparse_to_dense_v2([[1]], [3.0], [5], "float32") _test_sparse_to_dense_v2([[1]], [3.0], [5], "float32", 0.3) _test_sparse_to_dense_v2([[0, 0], [1, 2]], [4.0, 8.0], [3, 4], "float32") _test_sparse_to_dense_v2([[0, 0], [1, 2]], [4.0, 8.0], [3, 4], "float32", 1.3) _test_sparse_to_dense_v2([[0, 0], [1, 3], [4, 3]], [3.0, 6.0, 9.0], [5, 5], "float32") _test_sparse_to_dense_v2([[0, 0], [1, 3], [4, 3]], [3.0, 6.0, 9.0], [5, 5], "float32", 1.9) ####################################################################### # tensorflow.sparse.add # ---------------------------------- def _test_sparse_add(indices, values, A_shape, B_shape, dtype, flip=False): """One iteration of tf.sparse.add""" # TODO(ANSHUMAN87): support cuda # TODO(ANSHUMAN87): support both sparse input case with tf.Graph().as_default(): A_sp = tf.sparse.SparseTensor( indices=indices, values=np.array(values).astype(dtype), dense_shape=A_shape ) B = tf.placeholder(shape=B_shape, dtype=dtype, name="B") # TODO(ANSHUMAN87): support user input threashold values if flip: if package_version.parse(tf.VERSION) < package_version.parse("1.13.0"): result = tf.sparse.add(B, A_sp, thresh=0) else: result = tf.sparse.add(B, A_sp, threshold=0) else: if package_version.parse(tf.VERSION) < package_version.parse("1.13.0"): result = tf.sparse.add(A_sp, B, thresh=0) else: result = tf.sparse.add(A_sp, B, threshold=0) B_np = np.random.uniform(high=5.0, size=B_shape).astype(dtype) compare_tf_with_tvm([B_np], [B.name], result.name, no_gpu=True) def test_sparse_add(): """sparse.add op test""" ################################################################### # # In order to create a SparseTensor, it requires 3 input as below: # SparseTensor(indices=[[0, 0], [1, 2]], values=[1, 2], dense_shape=[3, 4]) # # Above Sparse can be represented in Dense as below : # [[1, 0, 0, 0] # [0, 0, 2, 0] # [0, 0, 0, 0]] # # ------------------------------------------------------------------ for dtype_inp in ["float32", "float64", "int32"]: _test_sparse_add([[0, 0], [1, 2]], [4.0, 8.0], [3, 4], [3, 4], dtype_inp) _test_sparse_add([[0, 0], [1, 2]], [4.0, 8.0], [3, 4], [3, 4], dtype_inp, True) _test_sparse_add([[0, 0], [1, 3], [4, 3]], [3.0, 6.0, 9.0], [5, 5], [5, 5], dtype_inp) _test_sparse_add([[0, 0], [1, 3], [4, 3]], [3.0, 6.0, 9.0], [5, 5], [5, 5], dtype_inp, True) ####################################################################### # StridedSlice # ------------ def _test_stridedslice( ip_shape, begin, end, stride, dtype, begin_mask=0, end_mask=0, new_axis_mask=0, shrink_axis_mask=0, ellipsis_mask=0, ): """One iteration of a Stridedslice""" tf.reset_default_graph() np_data = np.random.uniform(size=ip_shape).astype(dtype) with tf.Graph().as_default(): if len(ip_shape) == 0: # pylint: disable=len-as-condition in_data = tf.constant(np_data, dtype) else: in_data = tf.placeholder(dtype, ip_shape, name="in_data") tf.strided_slice( in_data, begin, end, stride, begin_mask=begin_mask, end_mask=end_mask, new_axis_mask=new_axis_mask, shrink_axis_mask=shrink_axis_mask, ellipsis_mask=ellipsis_mask, name="strided_slice", ) if len(ip_shape) == 0: # pylint: disable=len-as-condition compare_tf_with_tvm(None, "", "strided_slice:0") else: compare_tf_with_tvm(np_data, "in_data:0", "strided_slice:0") def test_forward_stridedslice(): """test StridedSlice""" _test_stridedslice([], [0], [0], [1], "float32", new_axis_mask=1) _test_stridedslice([2], [1], [1], [1], "float32", shrink_axis_mask=1) _test_stridedslice([4], [-1], [0], [1], "float32", shrink_axis_mask=1) _test_stridedslice([2, 1], [0], [1], [1], "float32", shrink_axis_mask=1) _test_stridedslice([2, 3, 4], [-2], [0], [1], "float32", shrink_axis_mask=8) _test_stridedslice([2, 3, 4], [0], [1], [1], "float32", shrink_axis_mask=8) _test_stridedslice([3, 4, 3], [1, -1, 0], [4, -5, 3], [2, -1, 1], "float32") _test_stridedslice([3, 4, 3], [1, 0], [4, 3], [2, 1], "float32", ellipsis_mask=8) _test_stridedslice([3, 4, 3], [1, 0], [4, 2], [2, 1], "float32", ellipsis_mask=2) _test_stridedslice([3, 4, 5, 3], [1, 0], [4, 2], [2, 1], "float32", ellipsis_mask=2) _test_stridedslice([3, 4, 5, 3], [1, 0, 1], [4, 2, 2], [2, 1, 1], "float32", ellipsis_mask=2) _test_stridedslice([3, 4, 3], [1, 1, 0], [4, 4, 2], [2, 1, 1], "float32", new_axis_mask=5) _test_stridedslice( [3, 4, 3], [1, 1, 1], [4, 4, 1], [2, 1, 1], "float32", ellipsis_mask=2, new_axis_mask=4 ) _test_stridedslice( [6, 4, 5], [1, 1, 1], [6, 3, 4], [2, 1, 1], "float32", ellipsis_mask=2, new_axis_mask=5 ) _test_stridedslice( [3, 4, 3], [1, 1, 2], [4, 4, 3], [2, 1, 1], "float32", ellipsis_mask=4, new_axis_mask=2 ) _test_stridedslice( [3, 4, 3], [1, 1, 2], [4, 4, 3], [2, 1, 1], "float32", ellipsis_mask=2, new_axis_mask=3 ) _test_stridedslice( [3, 4, 3], [1, 1, 0], [4, 4, 1], [2, 1, 1], "float32", ellipsis_mask=2, new_axis_mask=3 ) _test_stridedslice( [3, 4, 3], [1, 1, 2], [4, 4, 3], [2, 1, 1], "float32", ellipsis_mask=2, new_axis_mask=2 ) _test_stridedslice((3, 4), [1, 0], [4, 4], [1, 1], "float32", shrink_axis_mask=2) _test_stridedslice( [3, 4, 3], [1, 1, 0], [4, 4, 3], [2, 1, 1], "float32", shrink_axis_mask=2, new_axis_mask=2 ) _test_stridedslice( [3, 4, 3], [1, 1, 0], [4, 4, 3], [2, 1, 1], "float32", shrink_axis_mask=1, new_axis_mask=2 ) _test_stridedslice( [3, 4, 3], [1, 1, 0], [4, 4, 3], [2, 1, 1], "float32", shrink_axis_mask=2, new_axis_mask=1 ) _test_stridedslice( [3, 4, 5, 4, 5, 6], [0, 0], [2, 3], [1, 1], "float32", shrink_axis_mask=5, new_axis_mask=1 ) _test_stridedslice( [3, 4, 5, 4, 5, 6], [0, 0, 1, 2, 1], [2, 3, 4, 5, 3], [1, 1, 2, 2, 1], "float32", shrink_axis_mask=5, new_axis_mask=1, ellipsis_mask=2, begin_mask=8, end_mask=8, ) _test_stridedslice( [3, 4, 5, 4, 5, 6], [0, 0, 1, 2, 1], [2, 3, 4, 5, 3], [1, 1, 2, 2, 1], "float32", shrink_axis_mask=8, new_axis_mask=1, ellipsis_mask=2, begin_mask=5, end_mask=5, ) _test_stridedslice( [3, 4, 5, 4, 5, 6], [0, 0, 1, 2, 1], [2, 3, 4, 5, 3], [1, 1, 2, 2, 1], "float32", shrink_axis_mask=16, new_axis_mask=1, ellipsis_mask=2, begin_mask=5, end_mask=5, ) _test_stridedslice( [3, 4, 5, 4, 5, 6], [1, 2, 0, -3], [4, 5, 3, 3], [2, 2, 1, 1], "float32", shrink_axis_mask=8, new_axis_mask=1, ellipsis_mask=2, begin_mask=5, end_mask=8, ) _test_stridedslice( [1, 13, 13, 3, 2], [0, 0], [1, 1], [1, -1], "float32", ellipsis_mask=1, begin_mask=2, end_mask=2, ) ####################################################################### # FloorDiv, RealDiv # ----------------- def _test_forward_divide(ip_shape, dtype): np_numer = np.random.uniform(-100, 100, size=ip_shape).astype(dtype) np_denomin = np.random.uniform(1, 100, size=ip_shape).astype(dtype) tf.reset_default_graph() with tf.Graph().as_default(): numerator = tf.placeholder(dtype, ip_shape, name="numer") denominator = tf.placeholder(dtype, ip_shape, name="denomin") tf.math.divide(numerator, denominator, name="RealDiv") compare_tf_with_tvm([np_numer, np_denomin], ["numer:0", "denomin:0"], "RealDiv:0") def _test_forward_floordiv(ip_shape, dtype): np_numer = np.random.uniform(1, 100, size=ip_shape).astype(dtype) tf.reset_default_graph() with tf.Graph().as_default(): numerator = tf.placeholder(dtype, ip_shape, name="numer") tf.math.floordiv(numerator, tf.constant(5, dtype=dtype), name="FloorDiv") compare_tf_with_tvm([np_numer], ["numer:0"], "FloorDiv:0") def test_forward_divide(): """test FloorDiv, RealDiv""" _test_forward_divide((4,), "int32") _test_forward_divide((4, 3, 7), "float32") _test_forward_floordiv((4, 3, 7), "float32") _test_forward_floordiv((4, 3, 7), "int32") ####################################################################### # FloorMod # -------- def _test_forward_floormod(in_shape, if_shape, dtype): np_numer = np.random.uniform(1, 100, size=in_shape).astype(dtype) np_factor = np.random.uniform(1, 100, size=if_shape).astype(dtype) tf.reset_default_graph() with tf.Graph().as_default(): numerator = tf.placeholder(dtype, in_shape, name="numer") factor = tf.placeholder(dtype, if_shape, name="factor") tf.floormod(numerator, factor, name="FloorMod") compare_tf_with_tvm([np_numer, np_factor], ["numer:0", "factor:0"], "FloorMod:0") def test_forward_floormod(): """test FloorMod""" _test_forward_floormod((10,), (10,), "float32") _test_forward_floormod((8, 2), (1,), "float32") _test_forward_floormod((4, 3, 7), (4, 3, 7), "float32") _test_forward_floormod((4, 3, 7), (4, 3, 7), "int32") ####################################################################### # TruncateMod # ----------- def _test_forward_truncatemod(ip_shape, dtype): np_data_1 = np.random.uniform(-100, 100, size=ip_shape).astype(dtype) np_data_2 = np.random.uniform(1, 10, size=ip_shape).astype(dtype) tf.reset_default_graph() with tf.Graph().as_default(): in_data_1 = tf.placeholder(dtype, ip_shape, name="in_data_1") in_data_2 = tf.placeholder(dtype, ip_shape, name="in_data_2") tf.truncatemod(in_data_1, in_data_2, name="truncatemod") compare_tf_with_tvm([np_data_1, np_data_2], ["in_data_1:0", "in_data_2:0"], "truncatemod:0") def test_forward_truncatemod(): """test TruncateMod""" _test_forward_truncatemod((4, 3, 7), "int32") ####################################################################### # Gather, GatherV2 # -------------------------- def _test_gather(ip_shape, indice_shape, indice_value, axis, batch_dims, dtype): """One iteration of a GatherV2""" tf.reset_default_graph() with tf.Graph().as_default(): in_data = tf.placeholder(dtype, ip_shape, name="in_data") indices = tf.placeholder("int32", indice_shape, name="indices") out = tf.gather(in_data, indices, axis=axis, batch_dims=batch_dims) np_data = np.random.uniform(1, 10, size=ip_shape).astype(dtype) def _fill_indices(indice_value): indices = np.array(ip_shape, dtype=dtype) if isinstance(indice_value, int): indices = np.array([indice_value], dtype="int32") else: indices = np.asarray(indice_value, dtype="int32") return indices np_indices = _fill_indices(indice_value) compare_tf_with_tvm([np_data, np_indices], ["in_data:0", "indices:0"], out.name) def test_forward_gather(): """test Gather/GatherV2 layer""" _test_gather((4,), (1,), 1, 0, 1, "int32") _test_gather((4,), (1,), 1, 0, 0, "float32") _test_gather((1, 4), (1,), [0], 0, 0, "int32") _test_gather((4,), (1, 2, 2), [[[1, 0], [0, 1]]], 0, 0, "float32") _test_gather((2, 2), (1, 2, 2), [[[1, 0], [0, 1]]], 0, 0, "int32") _test_gather((2, 2), (1, 2, 2), [[[1, 0], [0, 1]]], 1, 0, "int32") _test_gather((2, 2), (1, 2, 2), [[[1, 0], [0, 1]]], 0, 0, "float32") _test_gather((3, 3, 3), (1, 1, 2), [[[1, 0]]], 0, 0, "int32") _test_gather((3, 3, 3), (1, 1, 2), [[[1, 0]]], 2, 0, "int32") _test_gather((4, 3, 5, 6), (1, 4), [[2, 1, 0, 0]], 0, 0, "float32") _test_gather((2, 2), (2, 2), [[0, 0], [0, 0]], 1, 1, "float32") _test_gather( (2, 2, 3, 6), (2, 2, 3), [[[1, 1, 0], [0, 0, 1]], [[0, 1, 0], [1, 0, 1]]], 2, 2, "float32" ) _test_gather( (2, 2, 3, 6), (2, 2, 3), [[[1, 1, 0], [0, 0, 1]], [[0, 1, 0], [1, 0, 1]]], 3, 1, "float32" ) _test_gather( (2, 2, 3, 6), (2, 2, 3), [[[1, 1, 0], [0, 0, 1]], [[0, 1, 0], [1, 0, 1]]], 3, 2, "float32" ) _test_gather( (2, 2, 3, 6), (2, 2, 3), [[[1, 1, 0], [0, 0, 1]], [[0, 1, 0], [1, 0, 1]]], 3, 0, "float32" ) ####################################################################### # GatherND # -------------------------- def _test_gather_nd(ip_shape, indice_value, dtype): """test operator GatherNd""" np_data = np.random.uniform(1, 100, size=ip_shape).astype(dtype) tf.reset_default_graph() with tf.Graph().as_default(): in_data = tf.placeholder(dtype, ip_shape, name="in_data") tf.gather_nd(in_data, indices=indice_value, name="gather_nd") compare_tf_with_tvm([np_data], ["in_data:0"], "gather_nd:0") def test_forward_gather_nd(): """test operator GatherNd""" _test_gather_nd((2, 2), [[0, 0], [1, 1]], "float32") _test_gather_nd((2, 2, 2), [[1, 0, 0], [0, 0, 0]], "float32") _test_gather_nd((4,), [1], "float32") _test_gather_nd((4,), [1], "int32") _test_gather_nd((1, 4), [0, 3], "int32") _test_gather_nd((2, 2), [[[1, 0], [0, 1]]], "int32") _test_gather_nd((2, 2), [[[1, 0], [0, 1]]], "float32") _test_gather_nd((3, 3, 3), [[[1, 0]]], "int32") _test_gather_nd((3, 3, 3), [[[1, 0]]], "int32") _test_gather_nd((4, 3, 5, 6), [[2, 1, 0, 0]], "float32") _test_gather_nd((3, 3, 3), [[[2, 1]]], "int32") ####################################################################### # BiasAdd # ------- def test_forward_bias_add(): """test Op BiasAdd""" def check_bias_add(lh_shpae, rh_shape, dtype): tf.reset_default_graph() lh_data = np.random.uniform(size=lh_shpae).astype(dtype) rh_data = np.random.uniform(size=rh_shape).astype(dtype) with tf.Graph().as_default(): lft_data = tf.placeholder(dtype, name="lft_data") rgt_data = tf.placeholder(dtype, name="rgt_data") tf.nn.bias_add(lft_data, rgt_data, name="BiasAdd") compare_tf_with_tvm([lh_data, rh_data], ["lft_data:0", "rgt_data:0"], "BiasAdd:0") check_bias_add((10, 8, 16, 32), (32,), dtype="int32") check_bias_add((10, 20), (20,), dtype="float32") ####################################################################### # Split # ----- def _test_split(in_shape, axis, num_or_size_splits, dtype): """One iteration of a Split""" np_data = np.random.uniform(-5, 5, size=in_shape).astype(dtype) tf.reset_default_graph() with tf.Graph().as_default(): in_data = tf.placeholder(dtype, in_shape, name="in_data") _ = len(num_or_size_splits) if isinstance(num_or_size_splits, list) else num_or_size_splits split = tf.split(in_data, num_or_size_splits, axis=axis) relu = [tf.nn.relu(i) for i in split] compare_tf_with_tvm([np_data], ["in_data:0"], [n.name for n in relu]) # and now test together with concat tf.reset_default_graph() with tf.Graph().as_default(): in_data = tf.placeholder(dtype, in_shape, name="in_data") splitted = tf.split(in_data, num_or_size_splits, axis=axis) concat = tf.concat(splitted, axis) compare_tf_with_tvm([np_data], "in_data:0", concat.name) def test_forward_split(): """test split layer""" # rank 1 _test_split((3,), 0, 1, "float32") _test_split((3,), 0, 3, "float32") _test_split((6,), 0, 3, "float32") # rank 2 _test_split((6, 2), 0, 3, "float32") _test_split((2, 6), 1, 6, "float32") # rank 3 _test_split((6, 2, 4), 0, 2, "int32") _test_split((2, 6, 4), 1, 3, "float32") _test_split((2, 4, 6), 2, 1, "float32") # rank 4 _test_split((6, 1, 3, 5), 0, 3, "float32") _test_split((1, 6, 3, 5), 1, 3, "float32") _test_split((1, 3, 6, 5), 2, 3, "float32") _test_split((1, 3, 5, 6), 3, 3, "float32") # split along negative axis _test_split((6, 1, 3, 5), -4, 3, "float32") _test_split((1, 6, 3, 5), -3, 3, "float32") _test_split((1, 3, 6, 5), -2, 3, "float32") _test_split((1, 3, 5, 6), -1, 3, "float32") # size_splits list _test_split((6,), 0, [1, 2, 3], "int32") _test_split((3, 6, 4), -2, [1, 4, 1], "float32") ###################################################################### # TopKV2 # ------ def _test_forward_top_k_v2(in_shape, k): np_data = np.random.uniform(-100, 100, size=in_shape).astype("float32") tf.reset_default_graph() with tf.Graph().as_default(): in_data = tf.placeholder("float32", in_shape, name="in_data") tf.math.top_k(in_data, k, name="TopK") compare_tf_with_tvm([np_data], ["in_data:0"], "TopK:0") def test_forward_top_k_v2(): _test_forward_top_k_v2((3,), 1) _test_forward_top_k_v2((3,), 3) _test_forward_top_k_v2((3, 5, 7), 3) _test_forward_top_k_v2((3, 5, 7), 3) ####################################################################### # Unstack # ------- def _test_unstack(ip_shape, axis, dtype): np_data = np.random.uniform(-5, 5, size=ip_shape).astype(dtype) tf.reset_default_graph() with tf.Graph().as_default(): in_data = tf.placeholder(dtype, ip_shape, name="in_data") unstack = tf.unstack(in_data, axis=axis) compare_tf_with_tvm([np_data], ["in_data:0"], [n.name for n in unstack]) tf.reset_default_graph() with tf.Graph().as_default(): in_data = tf.placeholder(dtype, ip_shape, name="in_data") tf.stack(tf.unstack(in_data, axis=axis), axis=axis) compare_tf_with_tvm([np_data], ["in_data:0"], "stack:0") def test_forward_unstack(): """test unstack layer""" _test_unstack((6,), 0, "int32") _test_unstack((2, 6), 1, "float64") # negative axis _test_unstack((1, 4), -1, "int32") _test_unstack((3, 6, 4), -2, "float32") ####################################################################### # Tile # ---- def _test_tile(in_shape, multiples, dtype): np_data = np.random.uniform(-5, 5, size=in_shape).astype(dtype) tf.reset_default_graph() with tf.Graph().as_default(): in_data = tf.placeholder(dtype, in_shape, name="in_data") tf.tile(in_data, multiples=multiples, name="tile") compare_tf_with_tvm([np_data], ["in_data:0"], "tile:0") def test_forward_tile(): """test Tile""" _test_tile((2,), (3,), "int32") _test_tile((2, 2), (2, 3), "float32") _test_tile((2, 4, 6), (6, 7, 8), "float64") ####################################################################### # ClipByValue # ----------- def _test_forward_clip_by_value(ip_shape, clip_value_min, clip_value_max, dtype): tf.reset_default_graph() with tf.Graph().as_default(): in_data = tf.placeholder(dtype, ip_shape, name="in_data") tf.clip_by_value(in_data, clip_value_min, clip_value_max, name="ClipByValue") np_data = np.random.uniform(-100, 100, size=ip_shape).astype(dtype) compare_tf_with_tvm([np_data], ["in_data:0"], "ClipByValue:0") def test_forward_clip_by_value(): """test ClipByValue op""" if tf.__version__ < LooseVersion("1.9"): _test_forward_clip_by_value((4,), 0.1, 5.0, "float32") _test_forward_clip_by_value((4, 4), 1, 5, "int32") ####################################################################### # Multi Input to graph # -------------------- def test_forward_multi_input(): """Multi Input""" with tf.Graph().as_default(): in1 = tf.placeholder(tf.int32, shape=[3, 3], name="in1") in2 = tf.placeholder(tf.int32, shape=[3, 3], name="in2") in3 = tf.placeholder(tf.int32, shape=[3, 3], name="in3") in4 = tf.placeholder(tf.int32, shape=[3, 3], name="in4") out1 = tf.add(in1, in2, name="out1") out2 = tf.subtract(in3, in4, name="out2") _ = tf.multiply(out1, out2, name="out") in_data = np.arange(9, dtype="int32").reshape([3, 3]) compare_tf_with_tvm( [in_data, in_data, in_data, in_data], ["in1:0", "in2:0", "in3:0", "in4:0"], "out:0" ) ####################################################################### # Multi Output to Graph # --------------------- def test_forward_multi_output(): """Multi Output""" with tf.Graph().as_default(): in1 = tf.placeholder(tf.int32, shape=[3, 3], name="in1") in2 = tf.placeholder(tf.int32, shape=[3, 3], name="in2") in3 = tf.placeholder(tf.int32, shape=[3, 3], name="in3") in4 = tf.placeholder(tf.int32, shape=[3, 3], name="in4") _ = tf.add(in1, in2, name="out1") _ = tf.subtract(in3, in4, name="out2") in_data = np.arange(9, dtype="int32").reshape([3, 3]) in_data = [in_data] * 4 in_name = ["in1:0", "in2:0", "in3:0", "in4:0"] out_name = ["out1:0", "out2:0"] out_node = [out.strip(":0") for out in out_name] in_node = [inp.strip(":0") for inp in in_name] with tf.Session() as sess: final_graph_def = tf.graph_util.convert_variables_to_constants( sess, sess.graph.as_graph_def(add_shapes=True), out_node, ) tf_output = run_tf_graph(sess, in_data, in_name, out_name) tvm_output = run_tvm_graph( final_graph_def, in_data, in_node, target="llvm", out_names=out_node, num_output=2 ) for i, tf_out in enumerate(tf_output): tvm.testing.assert_allclose(tf_out, tvm_output[i], atol=1e-5, rtol=1e-5) ####################################################################### # Resize Bilinear, Nearest_Neighbor # --------------------------------- def _test_resize_bilinear(in_shape, to_shape, align_corners): """One iteration of resize bilinear""" data = np.random.uniform(size=in_shape).astype("float32") shape_data = np.array(to_shape).astype("int32") with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) shape_data = constant_op.constant( shape_data, shape=shape_data.shape, dtype=shape_data.dtype ) tf.image.resize_bilinear(in_data, shape_data, align_corners=align_corners) compare_tf_with_tvm(data, "Placeholder:0", "ResizeBilinear:0") def _test_resize_bilinear_from_tensor(in_shape, align_corners): """One iteration of resize bilinear with non-constant output shape, requires value inference to get proper output shape.""" data = np.random.uniform(size=in_shape).astype("float32") with tf.Graph().as_default(): in_data = array_ops.placeholder( shape=[in_shape[0], None, None, in_shape[3]], dtype=data.dtype ) to_shape = tf.shape(in_data)[1:3] tf.image.resize_bilinear(in_data, to_shape, align_corners=align_corners) compare_tf_with_tvm(data, "Placeholder:0", "ResizeBilinear:0") def _test_resize_nearest_neighbor(in_shape, to_shape): """One iteration of resize nearest neighbor""" data = np.random.uniform(size=in_shape).astype("float32") shape_data = np.array(to_shape).astype("int32") with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) shape_data = constant_op.constant( shape_data, shape=shape_data.shape, dtype=shape_data.dtype ) tf.image.resize_nearest_neighbor(in_data, shape_data, name="resize_nearest_neighbor") compare_tf_with_tvm(data, "Placeholder:0", "resize_nearest_neighbor:0") def _test_resize_nearest_neighbor_dynamic_shape(in_shape, scale): """One iteration of resize nearest neighbor for graph with dynamic input shape""" data = np.random.uniform(size=in_shape).astype("float32") with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=None, dtype=data.dtype) # multiply input shape by scale factor new_shape = tf.shape(in_data)[1:3] * tf.constant(scale, dtype=tf.int32) tf.image.resize_nearest_neighbor(in_data, new_shape, name="resize_nearest_neighbor") compare_tf_with_tvm(data, "Placeholder:0", "resize_nearest_neighbor:0") def test_forward_resize(): """Resize Bilinear, Nearest_Neighbor""" # TF default layout is NHWC _test_resize_bilinear((4, 32, 32, 3), [50, 50], False) _test_resize_bilinear((6, 32, 32, 3), [20, 20], True) _test_resize_bilinear_from_tensor((4, 32, 32, 3), False) _test_resize_bilinear_from_tensor((6, 50, 50, 3), True) _test_resize_nearest_neighbor((6, 32, 32, 3), [20, 20]) _test_resize_nearest_neighbor_dynamic_shape((1, 16, 16, 3), scale=[2, 2]) ####################################################################### # BroadcastArgs # ----------- def _test_broadcast_args(in_shape_1, in_shape_2): """One iteration of broadcast_args""" shape_1 = np.array(in_shape_1).astype("int32") shape_2 = np.array(in_shape_2).astype("int32") with tf.Graph().as_default(): shape_1 = constant_op.constant(shape_1, shape=shape_1.shape, dtype=shape_1.dtype) shape_2 = constant_op.constant(shape_2, shape=shape_2.shape, dtype=shape_2.dtype) tf.raw_ops.BroadcastArgs(s0=shape_1, s1=shape_2) compare_tf_with_tvm(None, "", "BroadcastArgs:0", opt_level=0) def test_forward_broadcast_args(): """Resize Bilinear""" _test_broadcast_args((4, 1, 32, 32), [4, 8, 32, 32]) _test_broadcast_args((6, 32, 32, 1), [6, 32, 32, 16]) _test_broadcast_args((32, 32, 16), [6, 32, 32, 16]) ####################################################################### # BroadcastTo # ----------- def _test_broadcast_to(in_shape, to_shape): """One iteration of broadcast_to""" data = np.random.uniform(size=in_shape).astype("float32") shape_data = np.array(to_shape).astype("int32") with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) shape_data = constant_op.constant( shape_data, shape=shape_data.shape, dtype=shape_data.dtype ) tf.broadcast_to(in_data, shape_data) compare_tf_with_tvm(data, "Placeholder:0", "BroadcastTo:0", opt_level=0) def _test_broadcast_to_from_tensor(in_shape): """One iteration of broadcast_to with unknown shape at graph build""" data = np.random.uniform(size=in_shape).astype("float32") with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=[None], dtype=data.dtype) shape_data = tf.multiply(tf.shape(in_data), 32) tf.broadcast_to(in_data, shape_data) compare_tf_with_tvm(data, "Placeholder:0", "BroadcastTo:0") def test_forward_broadcast_to(): """Resize Bilinear""" _test_broadcast_to((4, 1, 32, 32), [4, 8, 32, 32]) _test_broadcast_to((6, 32, 32, 1), [6, 32, 32, 16]) _test_broadcast_to_from_tensor((1)) ####################################################################### # Fill # ---- def _test_fill(in_shape): """Use the fill op to create a tensor of ones with non-constant shape.""" with tf.Graph().as_default(): tf.ones(shape=in_shape, dtype="float32") compare_tf_with_tvm(in_shape, [], "ones:0", opt_level=1) def _test_fill_from_tensor(in_shape): """Use the fill op to create a tensor of ones with non-constant shape. Some extra ops need to be added here to prevent the graph from being fully constant and folded away.""" data = np.random.uniform(size=in_shape).astype("float32") with tf.Graph().as_default(): in_data = array_ops.placeholder( shape=[in_shape[0], in_shape[1], None, None], dtype=data.dtype ) x = tf.ones(shape=2 * tf.shape(in_data), dtype=data.dtype) _ = tf.math.add(in_data, tf.reduce_mean(x), name="out1") compare_tf_with_tvm(data, "Placeholder:0", "out1:0") def _test_fill_symbolic_inputs(in_shape_data, in_value_data, dtype): with tf.Graph().as_default(): in_shape = tf.placeholder(shape=[in_shape_data.shape[0]], dtype=in_shape_data.dtype) in_value = tf.placeholder(shape=(), dtype=dtype) out = tf.fill(in_shape, in_value) for mode in ["debug", "vm"]: compare_tf_with_tvm( [in_shape_data, in_value_data], [in_shape.name, in_value.name], out.name, mode=mode ) def test_forward_fill(): """Resize Bilinear""" _test_fill((32)) _test_fill((6, 32, 64, 64)) _test_fill_from_tensor((6, 32, 64, 64)) _test_fill_symbolic_inputs(np.array((2,)), np.int32(9), tf.int32) _test_fill_symbolic_inputs(np.array((2, 3)), 9, tf.int64) _test_fill_symbolic_inputs(np.array((2, 3, 4)), np.float32(9.0), tf.float32) ####################################################################### # Crop to bounding box # -------------------- def _test_crop(in_shape, off_h, off_w, tar_h, tar_w): """Crop to bounding box""" data = np.random.uniform(size=in_shape).astype("float32") with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) tf.image.crop_to_bounding_box(in_data, off_h, off_w, tar_h, tar_w) compare_tf_with_tvm(data, "Placeholder:0", "crop_to_bounding_box/Slice:0") def test_forward_crop(): """Crop to bounding box""" _test_crop((1, 224, 224, 3), 20, 20, 120, 120) ####################################################################### # CropAndResize # ------------- def _test_forward_crop_and_resize( img_shape, boxes, box_idx, crop_size, extrapolation_value=0.0, method="bilinear", dtype="float32", ): image = np.random.uniform(0, 10, size=img_shape).astype(dtype) tf.reset_default_graph() with tf.Graph().as_default(): in_data = array_ops.placeholder(dtype, image.shape, name="in_data") tf.image.crop_and_resize( in_data, boxes=boxes, box_ind=box_idx, crop_size=crop_size, method=method, extrapolation_value=extrapolation_value, name="crop_and_resize", ) compare_tf_with_tvm([image], ["in_data:0"], "crop_and_resize:0") def test_forward_crop_and_resize(): """CropAndResize""" _test_forward_crop_and_resize([1, 6, 6, 3], [[0, 0, 1, 1]], [0], [3, 3]) _test_forward_crop_and_resize([1, 6, 6, 3], [[0, 0, 1, 1]], [0], [3, 3], 0.2) _test_forward_crop_and_resize([1, 6, 6, 3], [[0, 0, 1, 1]], [0], [3, 3], 0.2, "nearest") _test_forward_crop_and_resize([1, 11, 11, 3], [[0.3, 0.3, 1, 1]], [0], [21, 21]) _test_forward_crop_and_resize([1, 41, 41, 3], [[0.2, 0.4, 0.8, 0.8]], [0], [21, 11]) _test_forward_crop_and_resize([1, 100, 100, 3], [[0, 0, 0.9, 0.9]], [0], [30, 30]) _test_forward_crop_and_resize([1, 249, 249, 3], [[0, 0, 1, 1]], [0], [9, 9]) _test_forward_crop_and_resize([1, 201, 301, 3], [[0.2, 0.3, 0.7, 0.8]], [0], [51, 51]) _test_forward_crop_and_resize( img_shape=[10, 11, 11, 3], boxes=[[0, 0, 0.9, 0.9], [0.2, 0.2, 0.8, 0.8]], box_idx=[0, 1], crop_size=[5, 5], ) if platform.machine() == "aarch64": pytest.skip("Currently failing on AArch64") _test_forward_crop_and_resize([1, 224, 224, 3], [[0.1, 0.2, 1, 1]], [0], [9, 9]) _test_forward_crop_and_resize( img_shape=[20, 576, 576, 3], boxes=[[0, 0, 1, 1], [0, 0, 0.8, 0.8], [0.1, 0.2, 0.9, 1], [0.2, 0, 1, 1]], box_idx=[1, 0, 2, 3], crop_size=[24, 24], extrapolation_value=0.3, ) _test_forward_crop_and_resize( img_shape=[20, 229, 229, 3], boxes=[[0, 0, 0.9, 0.9], [0.3, 0.3, 1, 1], [0.2, 0.1, 0.7, 0.8], [0, 0, 1, 1]], box_idx=[3, 0, 2, 1], crop_size=[58, 58], extrapolation_value=0.2, method="nearest", ) ####################################################################### # Non Max Suppression # ------------------- def _test_forward_nms_v3( bx_shape, score_shape, iou_threshold, score_threshold, out_size, dtype="float32" ): boxes = np.random.uniform(0, 10, size=bx_shape).astype(dtype) scores = np.random.uniform(size=score_shape).astype(dtype) max_output_size = np.int32(out_size) tf.reset_default_graph() in_data_1 = tf.placeholder(dtype, boxes.shape, name="in_data_1") in_data_2 = tf.placeholder(dtype, scores.shape, name="in_data_2") in_data_3 = tf.placeholder(tf.int32, name="in_data_3") tf.image.non_max_suppression( boxes=in_data_1, scores=in_data_2, max_output_size=in_data_3, iou_threshold=iou_threshold, score_threshold=score_threshold, name="nms", ) compare_tf_with_tvm( [boxes, scores, max_output_size], ["in_data_1:0", "in_data_2:0", "in_data_3:0"], "nms/NonMaxSuppressionV3:0", mode="vm", ) compare_tf_with_tvm( [boxes, scores, max_output_size], ["in_data_1:0", "in_data_2:0", "in_data_3:0"], "nms/NonMaxSuppressionV3:0", mode="debug", ) def _test_forward_nms_v4( bx_shape, score_shape, iou_threshold, score_threshold, out_size, dtype="float32" ): boxes = np.random.uniform(0, 10, size=bx_shape).astype(dtype) scores = np.random.uniform(size=score_shape).astype(dtype) max_output_size = np.int32(out_size) tf.reset_default_graph() in_data_1 = tf.placeholder(dtype, boxes.shape, name="in_data_1") in_data_2 = tf.placeholder(dtype, scores.shape, name="in_data_2") in_data_3 = tf.placeholder(tf.int32, name="in_data_3") indices_padded, num_valid = tf.image.non_max_suppression_padded( boxes=in_data_1, scores=in_data_2, max_output_size=in_data_3, iou_threshold=iou_threshold, score_threshold=score_threshold, name="nms", pad_to_max_output_size=True, ) num_valid = tf.reshape(num_valid, shape=(-1,)) indices_padded = tf.reshape(indices_padded, shape=(-1,)) tf.slice(indices_padded, tf.constant([0]), num_valid, name="SlicedIndices") compare_tf_with_tvm( [boxes, scores, max_output_size], ["in_data_1:0", "in_data_2:0", "in_data_3:0"], ["nms/NonMaxSuppressionV4:1", "SlicedIndices:0"], mode="vm", ) compare_tf_with_tvm( [boxes, scores, max_output_size], ["in_data_1:0", "in_data_2:0", "in_data_3:0"], ["nms/NonMaxSuppressionV4:1", "SlicedIndices:0"], mode="debug", ) def _test_forward_nms_v5( bx_shape, score_shape, iou_threshold, score_threshold, out_size, dtype="float32" ): boxes = np.random.uniform(0, 10, size=bx_shape).astype(dtype) scores = np.random.uniform(size=score_shape).astype(dtype) max_output_size = np.int32(out_size) tf.reset_default_graph() in_data_1 = tf.placeholder(dtype, boxes.shape, name="in_data_1") in_data_2 = tf.placeholder(dtype, scores.shape, name="in_data_2") in_data_3 = tf.placeholder(tf.int32, name="in_data_3") tf.image.non_max_suppression_with_scores( boxes=in_data_1, scores=in_data_2, max_output_size=in_data_3, iou_threshold=iou_threshold, score_threshold=score_threshold, name="nms", ) compare_tf_with_tvm( [boxes, scores, max_output_size], ["in_data_1:0", "in_data_2:0", "in_data_3:0"], ["nms/NonMaxSuppressionV5:0", "nms/NonMaxSuppressionV5:1"], mode="vm", ) def test_forward_nms(): """NonMaxSuppressionV3,5""" for _test_forward_nms in [_test_forward_nms_v3, _test_forward_nms_v5]: _test_forward_nms((5, 4), (5,), 0.7, 0.5, 5) _test_forward_nms((20, 4), (20,), 0.5, 0.6, 10) _test_forward_nms((1000, 4), (1000,), 0.3, 0.7, 1000) _test_forward_nms((2000, 4), (2000,), 0.4, 0.6, 7) def _test_forward_combined_nms( bx_shape, score_shape, iou_threshold, score_threshold, out_size, total_size, clip_boxes=False, dtype="float32", ): def get_random_scores(size, dtype): size1d = np.prod(size) scores = np.linspace(0, 1, num=size1d) np.random.shuffle(scores) return scores.reshape(size).astype(dtype) boxes = np.random.uniform(-1, 2, size=bx_shape).astype(dtype) scores = get_random_scores(score_shape, dtype) max_output_size = np.int32(out_size) tf.reset_default_graph() in_data_1 = tf.placeholder(dtype, boxes.shape, name="in_data_1") in_data_2 = tf.placeholder(dtype, scores.shape, name="in_data_2") in_data_3 = tf.placeholder(tf.int32, name="in_data_3") tf.image.combined_non_max_suppression( boxes=in_data_1, scores=in_data_2, max_output_size_per_class=in_data_3, max_total_size=total_size, iou_threshold=iou_threshold, score_threshold=score_threshold, pad_per_class=False, clip_boxes=clip_boxes, name="nms", ) compare_tf_with_tvm( [boxes, scores, max_output_size], ["in_data_1:0", "in_data_2:0", "in_data_3:0"], [ "nms/CombinedNonMaxSuppression:0", "nms/CombinedNonMaxSuppression:1", "nms/CombinedNonMaxSuppression:2", "nms/CombinedNonMaxSuppression:3", ], ) def test_forward_combined_nms(): """CombinedNonMaxSuppression""" _test_forward_combined_nms((1, 64, 1, 4), (1, 64, 1), 0.7, 0.5, 64, 64) _test_forward_combined_nms((1, 32, 1, 4), (1, 32, 1), 0.7, 0.5, 10, 64) _test_forward_combined_nms((1, 32, 1, 4), (1, 32, 2), 0.7, 0.5, 32, 64) _test_forward_combined_nms((1, 64, 1, 4), (1, 64, 20), 0.7, 0.5, 64, 10) # This workload seems flaky on CI. # See https://github.com/apache/tvm/issues/8140 # _test_forward_combined_nms((1, 64, 20, 4), (1, 64, 20), 0.7, 0.5, 64, 64, clip_boxes=True) _test_forward_combined_nms((2, 200, 1, 4), (2, 200, 1), 0.4, 0.6, 100, 100) _test_forward_combined_nms((2, 200, 1, 4), (2, 200, 10), 0.4, 0.2, 150, 1000) ####################################################################### # LSTM # ---- def _test_lstm_cell(batch_size, num_hidden, num_layers, forget_bias, dtype): """One iteration of a LSTM cell""" tf.reset_default_graph() input_size = num_hidden input_data = np.full((batch_size, input_size), 1.0, dtype=dtype) in_state_c = np.full((batch_size, num_hidden), 0.1, dtype=dtype) in_state_h = np.full((batch_size, num_hidden), 0.1, dtype=dtype) def _get_tensorflow_output(): with tf.Session() as sess: with variable_scope.variable_scope( "root", initializer=init_ops.constant_initializer(0.5) ): m0 = tf.placeholder(dtype, [batch_size, num_hidden], name="m0") m1 = tf.placeholder(dtype, [batch_size, num_hidden], name="m1") x = tf.placeholder(shape=(batch_size, input_size), dtype=dtype, name="input") g, ((out_m0, out_m1)) = tensorflow.contrib.rnn.LSTMBlockCell( num_hidden, forget_bias=forget_bias )(x, (m0, m1)) sess.run([variables.global_variables_initializer()]) res = sess.run( [g, out_m0, out_m1], { x.name: np.array([[1.0, 1.0]]), m0.name: in_state_c, m1.name: in_state_h, }, ) graph_def = sess.graph.as_graph_def(add_shapes=True) final_graph_def = graph_util.convert_variables_to_constants( sess, graph_def, ["root/lstm_cell/LSTMBlockCell"] ) return final_graph_def, res graph_def, tf_out = _get_tensorflow_output() tvm_output = run_tvm_graph( graph_def, [input_data, in_state_c, in_state_h], ["root/input", "root/m0", "root/m1"], num_output=7, ) assert isinstance(tvm_output, list) tvm.testing.assert_allclose(tf_out[0], tvm_output[6], rtol=1e-3, atol=1e-3) tvm.testing.assert_allclose(tf_out[1], tvm_output[1], rtol=1e-3, atol=1e-3) def test_forward_lstm(): """test LSTM block cell""" if package_version.parse(tf.VERSION) < package_version.parse("2.0.0"): # in 2.0, tf.contrib.rnn.LSTMBlockCell is removed _test_lstm_cell(1, 2, 1, 0.5, "float32") ####################################################################### # Pack # --- def _test_pack(axis, shape, **kwargs): a = np.arange(np.prod(shape), dtype=np.float32).reshape(shape) b = np.arange(np.prod(shape), dtype=np.float32).reshape(shape) with tf.Graph().as_default(): tf_a = array_ops.placeholder(shape=shape, dtype="float32", name="pl_a") tf_b = array_ops.placeholder(shape=shape, dtype="float32", name="pl_b") tf_c = tf.stack([tf_a, tf_b], axis=axis, **kwargs) assert tf_c.op.op_def.name == "Pack", "tf.stack() is expected to produce 'Pack' operation" compare_tf_with_tvm([a, b], ["pl_a:0", "pl_b:0"], "stack:0") def test_forward_pack(): for axis in range(-3, 3): _test_pack(axis, [3, 2, 1]) for axis in range(-1, 1): _test_pack(axis, [3]) _test_pack(0, []) ####################################################################### # Unpack # ------ def _test_forward_unpack(in_shape, axis, dtype): """test operator Unpack""" np_data = np.random.uniform(-100, 100, size=in_shape).astype(dtype) tf.reset_default_graph() with tf.Graph().as_default(): in_data = tf.placeholder(dtype, in_shape, name="in_data") tf.unstack(in_data, axis=axis, name="Unpack") compare_tf_with_tvm([np_data], ["in_data:0"], "Unpack:0") def test_forward_unpack(): _test_forward_unpack((3,), 0, "int32") _test_forward_unpack((3,), -1, "int16") _test_forward_unpack((21, 23, 3), 2, "float32") ####################################################################### # Range # ----- def test_forward_range(): """test operator Range""" for dtype in [tf.int32, tf.int64]: tf.reset_default_graph() with tf.Graph().as_default(): tf.range(1, 18, 3, name="range", dtype=dtype) compare_tf_with_tvm([], [], "range:0") # test type assignment for operator Range tf.reset_default_graph() with tf.Graph().as_default(): tf.range(1, 256 + 1, 1, dtype=tf.float32) compare_tf_with_tvm([], [], "range:0") ####################################################################### # Einsum # ----- def _test_einsum(equation, dtype, *shape_of_input_tensors): """Test Einsum Op""" with tf.Graph().as_default(): inputs_placeholders = [] input_data = [] for idx, shape in enumerate(shape_of_input_tensors): input_name = f"input_{idx}" inputs_placeholders.append(tf.placeholder(shape=shape, dtype=dtype, name=input_name)) input_data.append(np.random.normal(size=shape).astype(dtype)) result = tf.einsum(equation, *inputs_placeholders) compare_tf_with_tvm(input_data, [ph.name for ph in inputs_placeholders], result.name) def test_forward_einsum(): for dtype in ["float32"]: _test_einsum("ij,jk->ik", dtype, [2, 3], [3, 5]) # Matmul _test_einsum("ij,jk", dtype, [2, 3], [3, 5]) # Matmul _test_einsum("i,i->", dtype, [2], [2]) # Dot product _test_einsum("i,j->ij", dtype, [3], [5]) # Outer produce _test_einsum("ij->ji", dtype, [2, 3]) # Transpose _test_einsum("ii->i", dtype, [3, 3]) # Diag _test_einsum("ii", dtype, [3, 3]) # Trace of a square matrix _test_einsum("bij,bjk->bik", dtype, [7, 5, 3], [7, 3, 2]) # Batch matmul ####################################################################### # Pad # --- def _test_pad(input_shape, paddings, mode, **kwargs): """One iteration of pad operation with given shape""" x = np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape) with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=input_shape, dtype="float32") pad_values = constant_op.constant(paddings) _ = tf.pad(in_data, paddings=pad_values, mode=mode, **kwargs) if mode == "CONSTANT": if "constant_values" in kwargs: out_name = "PadV2:0" else: out_name = "Pad:0" else: out_name = "MirrorPad:0" compare_tf_with_tvm(x, "Placeholder:0", out_name) def test_forward_pad(): """Pad""" _test_pad((2, 3), [[1, 1], [2, 2]], mode="CONSTANT") _test_pad((2, 3), [[1, 1], [2, 2]], mode="CONSTANT", constant_values=1.0) _test_pad((2, 3), [[1, 1], [2, 2]], mode="SYMMETRIC") _test_pad((2, 3), [[1, 1], [2, 2]], mode="REFLECT") ####################################################################### # Logical operators # -------------------- def test_logical_and(): with tf.Graph().as_default(): in1 = tf.placeholder(tf.bool, shape=[1, 4, 4, 3], name="in1") in2 = tf.placeholder(tf.bool, shape=[1, 4, 4, 3], name="in2") _ = tf.logical_and(in1, in2, name="out") in_data1 = np.random.choice(a=[False, True], size=(1, 4, 4, 3)).astype("bool") in_data2 = np.random.choice(a=[False, True], size=(1, 4, 4, 3)).astype("bool") compare_tf_with_tvm([in_data1, in_data2], ["in1:0", "in2:0"], "out:0") def test_logical_or(): with tf.Graph().as_default(): in1 = tf.placeholder(tf.bool, shape=[1, 4, 4, 3], name="in1") in2 = tf.placeholder(tf.bool, shape=[1, 4, 4, 3], name="in2") _ = tf.logical_or(in1, in2, name="out") in_data1 = np.random.choice(a=[False, True], size=(1, 4, 4, 3)).astype("bool") in_data2 = np.random.choice(a=[False, True], size=(1, 4, 4, 3)).astype("bool") compare_tf_with_tvm([in_data1, in_data2], ["in1:0", "in2:0"], "out:0") def test_logical_xor(): with tf.Graph().as_default(): in1 = tf.placeholder(tf.bool, shape=[1, 4, 4, 3], name="in1") in2 = tf.placeholder(tf.bool, shape=[1, 4, 4, 3], name="in2") _ = tf.logical_xor(in1, in2, name="out") in_data1 = np.random.choice(a=[False, True], size=(1, 4, 4, 3)).astype("bool") in_data2 = np.random.choice(a=[False, True], size=(1, 4, 4, 3)).astype("bool") compare_tf_with_tvm([in_data1, in_data2], ["in1:0", "in2:0"], "out:0") def test_logical_not(): with tf.Graph().as_default(): in1 = tf.placeholder(tf.bool, shape=[1, 4, 4, 3], name="in1") _ = tf.logical_not(in1, name="out") in_data1 = np.random.choice(a=[False, True], size=(1, 4, 4, 3)).astype("bool") compare_tf_with_tvm(in_data1, "in1:0", "out:0") def test_forward_logical(): test_logical_and() test_logical_or() test_logical_xor() test_logical_not() ####################################################################### # Where, Select, SelectV2 # ------------- def test_forward_where(): """Where: return elements depending on conditions""" with tf.Graph().as_default(): with tf.Session() as _: input1 = tf.placeholder(tf.int32, shape=[1, 4, 4, 3], name="input1") input2 = tf.placeholder(tf.int32, shape=[1, 4, 4, 3], name="input2") mask = input1 > input2 tf.where(mask, input1 + 1, input2 * 2) in_data1 = np.random.uniform(0, 10, size=(1, 4, 4, 3)).astype("uint32") in_data2 = np.random.uniform(0, 10, size=(1, 4, 4, 3)).astype("uint32") compare_tf_with_tvm([in_data1, in_data2], ["input1:0", "input2:0"], "Select:0") ####################################################################### # Inception V3 # ------------ @pytest.mark.skip(reason="See https://github.com/apache/tvm/issues/10275") def test_forward_inception_v3(): """test inception V3 model""" with tf.Graph().as_default(): graph_def = tf_testing.get_workload( "InceptionV3/inception_v3_2016_08_28_frozen-with_shapes.pb" ) # Call the utility to import the graph definition into default graph. graph_def = tf_testing.ProcessGraphDefParam(graph_def) data = np.random.uniform(size=(1, 299, 299, 3)).astype("float32") with tf.Session() as sess: tf_output = run_tf_graph(sess, data, "input:0", "InceptionV3/Predictions/Reshape_1:0") tvm_output = run_tvm_graph(graph_def, data, "input") tvm.testing.assert_allclose(tf_output[0], tvm_output[0], rtol=1e-5, atol=1e-5) ####################################################################### # Inception V1 # ------------ def test_forward_inception_v1(): """test inception V1 model""" with tf.Graph().as_default(): graph_def = tf_testing.get_workload("InceptionV1/classify_image_graph_def-with_shapes.pb") # Call the utility to import the graph definition into default graph. graph_def = tf_testing.ProcessGraphDefParam(graph_def) # Build an image from random data. img_array = np.random.uniform(size=(1, 600, 600, 3)).astype("uint8") img = Image.frombuffer("RGB", (600, 600), img_array.tostring(), "raw", "RGB", 0, 1) temp = utils.tempdir() img_path = temp.relpath("tf-test.jpg") img.save(img_path) if not tf.gfile.Exists(os.path.join(img_path)): tf.logging.fatal("File does not exist %s", img_path) data = tf.gfile.FastGFile(os.path.join(img_path), "rb").read() temp.remove() # Extract tensorflow decoded image frame for tvm input with tf.Session() as sess: tvm_data = run_tf_graph(sess, data, "DecodeJpeg/contents:0", "DecodeJpeg:0") with tf.Session() as sess: tf_output = run_tf_graph(sess, data, "DecodeJpeg/contents:0", "softmax:0") tvm_output = run_tvm_graph(graph_def, tvm_data, "DecodeJpeg/contents") tvm.testing.assert_allclose(tf_output[0], tvm_output[0], rtol=1e-5, atol=1e-5) ####################################################################### # Mobilenet # --------- def test_forward_mobilenet(): """test mobilenet model""" # MobilenetV2 with tf.Graph().as_default(): graph_def = tf_testing.get_workload( "https://storage.googleapis.com/mobilenet_v2/checkpoints/mobilenet_v2_1.4_224.tgz", "mobilenet_v2_1.4_224_frozen.pb", ) # Call the utility to import the graph definition into default graph. graph_def = tf_testing.ProcessGraphDefParam(graph_def) data = np.random.uniform(size=(1, 224, 224, 3)).astype("float32") out_node = "MobilenetV2/Predictions/Reshape_1" with tf.Session() as sess: # Add shapes to the graph. graph_def = tf_testing.AddShapesToGraphDef(sess, out_node) tf_output = run_tf_graph(sess, data, "input:0", out_node + ":0") tvm_output = run_tvm_graph(graph_def, data, "input") tvm.testing.assert_allclose( np.squeeze(tvm_output[0]), np.squeeze(tf_output[0]), rtol=1e-5, atol=1e-5 ) ####################################################################### # ResnetV2 # -------- @tvm.testing.requires_gpu def test_forward_resnetv2(): """test resnet model""" if is_gpu_available(): with tf.Graph().as_default(): graph_def = tf_testing.get_workload( "ResnetV2/resnet-20180601_resnet_v2_imagenet-shapes.pb" ) # Call the utility to import the graph definition into default graph. graph_def = tf_testing.ProcessGraphDefParam(graph_def) data = np.random.uniform(size=(128, 224, 224, 3)).astype("float32") out_node = "ArgMax" with tf.Session() as sess: tf_output = run_tf_graph(sess, data, "input_tensor:0", out_node + ":0") for device in ["llvm", "cuda"]: _ = tvm.device(device, 0) if not tvm.testing.device_enabled(device): print(f"Skip because {device} is not enabled") continue tvm_output = run_tvm_graph( graph_def, data, "input_tensor", len(tf_output), target=device ) tvm.testing.assert_allclose( np.squeeze(tvm_output[0]), np.squeeze(tf_output[0]), rtol=1e-5, atol=1e-5 ) ####################################################################### # SSD # --- def _test_ssd_impl(): """Test SSD with backbone MobileNet V1""" with tf.Graph().as_default(): graph_def = tf_testing.get_workload( "object_detection/ssd_mobilenet_v1_ppn_shared_" "box_predictor_300x300_coco14_sync_2018_07_03.pb" ) # Call the utility to import the graph definition into default graph. graph_def = tf_testing.ProcessGraphDefParam(graph_def) data = np.random.uniform(0.0, 255.0, size=(1, 512, 512, 3)).astype("uint8") in_node = "image_tensor" out_node = ["detection_boxes", "detection_scores", "detection_classes"] with tf.Session() as sess: tf_output = run_tf_graph( sess, data, f"{in_node}:0", [f"{oname}:0" for oname in out_node] ) # TODO(kevinthesun): enable gpu test when VM heterogeneous execution is ready. for device in ["llvm"]: _ = tvm.device(device, 0) if not tvm.testing.device_enabled(device): print(f"Skip because {device} is not enabled") continue tvm_output = run_tvm_graph( graph_def, data, in_node, len(out_node), target=device, layout="NCHW", out_names=out_node, mode="vm", disabled_pass=["FoldScaleAxis"], serialize=True, ) for i in range(len(out_node)): tvm.testing.assert_allclose(tvm_output[i], tf_output[i], rtol=1e-3, atol=1e-3) @pytest.mark.skip( reason="Use of threading module here hides errors, see https://github.com/apache/tvm/pull/10231" ) def test_forward_ssd(): run_thread = threading.Thread(target=_test_ssd_impl, args=()) old_stack_size = threading.stack_size(100 * 1024 * 1024) run_thread.start() run_thread.join() threading.stack_size(old_stack_size) ####################################################################### # Placeholder # ----------- def test_forward_placeholder(): """test a simple pb with Placeholder node in the end of GraphDef""" with tf.Graph().as_default(): graph_def = tf_testing.get_workload("Custom/placeholder.pb") # Call the utility to import the graph definition into default graph. graph_def = tf_testing.ProcessGraphDefParam(graph_def) data = np.random.uniform(size=(1, 224, 224, 3)).astype("float32") out_node = "mul" with tf.Session() as sess: # Add shapes to the graph. graph_def = tf_testing.AddShapesToGraphDef(sess, out_node) tf_output = run_tf_graph(sess, data, "Placeholder:0", out_node + ":0") tvm_output = run_tvm_graph(graph_def, data, "Placeholder") tvm.testing.assert_allclose( np.squeeze(tvm_output[0]), np.squeeze(tf_output[0]), rtol=1e-5, atol=1e-5 ) ####################################################################### # PTB # --- try: # Load contrib for running ptb model in tf version before 2.0 import tensorflow.contrib except ImportError: pass def test_forward_ptb(): """test ptb model""" config = tf_testing.get_config() num_steps = config.num_steps num_hidden = config.hidden_size num_layers = config.num_layers batch_size = config.batch_size vocab_size = config.vocab_size out_sample_shape = (batch_size, vocab_size) out_state_shape = (batch_size, num_hidden) # Sample input inpt = "we have no useful information on" cnt_sample = 20 def _pretty_print(items, is_char_model, id2word): if not is_char_model: return " ".join([id2word[x] for x in items]) else: return "".join([id2word[x] for x in items]).replace("_", " ") def _get_tvm_graph_module(graph_def): # Cell inputs 'c and 'h' consist of all layers values shape_dict = {"Model/Placeholder": (batch_size, num_steps)} mod, params = relay.frontend.from_tensorflow( graph_def, shape=shape_dict, outputs=[ "Model/Softmax:0", "Model/RNN/RNN/multi_rnn_cell/cell_0/lstm_cell/LSTMBlockCell:1", "Model/RNN/RNN/multi_rnn_cell/cell_0/lstm_cell/LSTMBlockCell:6", "Model/RNN/RNN/multi_rnn_cell/cell_0/lstm_cell/LSTMBlockCell_1:1", "Model/RNN/RNN/multi_rnn_cell/cell_0/lstm_cell/LSTMBlockCell_1:6", ], ) target = "llvm" with tvm.transform.PassContext(opt_level=0): graph, lib, params = relay.build(mod, target, params=params) dev = tvm.cpu(0) return params, graph_executor.create(graph, lib, dev) def _do_tvm_sample(model, data, in_states, params, num_samples): """Sampled from the model""" samples = [] state = in_states sample = None def _get_sample(data, state): input_data = np.full((batch_size, num_steps), data, dtype="int32") model.set_input("Model/Placeholder", tvm.nd.array(input_data.astype("int32"))) model.set_input( "Model/MultiRNNCellZeroState/LSTMBlockCellZeroState/zeros", tvm.nd.array(state[0].astype("float32")), ) model.set_input( "Model/MultiRNNCellZeroState/LSTMBlockCellZeroState/zeros_1", tvm.nd.array(state[1].astype("float32")), ) model.set_input( "Model/MultiRNNCellZeroState/LSTMBlockCellZeroState_1/zeros", tvm.nd.array(state[2].astype("float32")), ) model.set_input( "Model/MultiRNNCellZeroState/LSTMBlockCellZeroState_1/zeros_1", tvm.nd.array(state[3].astype("float32")), ) model.set_input(**params) model.run() tvm_output = model.get_output(0, tvm.nd.empty(out_sample_shape, "float32")).numpy() state_output = [] for i in range(4): state_output.append( model.get_output(i + 1, tvm.nd.empty(out_state_shape, "float32")).numpy() ) sample = tf_testing.pick_from_weight(tvm_output[0]) return sample, state_output for x in data: sample, state = _get_sample(x, state) if sample is not None: samples.append(sample) else: samples.append(0) k = 1 while k < num_samples: sample, state = _get_sample(samples[-1], state) samples.append(sample) k += 1 return samples, state with tf.Graph().as_default(): word_to_id, id_to_word, graph_def = tf_testing.get_workload_ptb() vocab_size = len(word_to_id) # Call the utility to import the graph definition into default graph. graph_def = tf_testing.ProcessGraphDefParam(graph_def) sess = tf.Session() # TVM graph module creation params, m = _get_tvm_graph_module(graph_def) # Create 10 predicted statments of 20 words cnt_stm = 0 while cnt_stm < 10: cnt_stm += 1 in_state = [np.full((batch_size, num_hidden), 0, dtype="float32")] * 2 * num_layers seed_for_sample = inpt.split() tvm_samples, _ = _do_tvm_sample( m, [word_to_id[word] for word in seed_for_sample], in_state, params, cnt_sample ) tvm_sample_str = _pretty_print(tvm_samples, False, id_to_word) tf_samples, _ = tf_testing.do_tf_sample( sess, [word_to_id[word] for word in seed_for_sample], in_state, cnt_sample ) tf_sample_str = _pretty_print(tf_samples, False, id_to_word) inpt = tvm_sample_str tvm.testing.assert_allclose(tf_samples, tvm_samples, rtol=1e-5, atol=1e-5) assert tvm_sample_str == tf_sample_str ####################################################################### # LRN (Local Response Normalization) # ---------------------------------- def _test_lrn(ishape, size, axis, bias, alpha, beta): """testing local response normalization""" lrn_depth_radius = size / 2 inp_array = np.random.uniform(size=ishape).astype(np.float32) with tf.Graph().as_default(): in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype, name="lrn0_data") nn_ops.local_response_normalization( in1, name="lrn", depth_radius=lrn_depth_radius, bias=bias, alpha=alpha, beta=beta ) compare_tf_with_tvm(inp_array, "lrn0_data:0", "lrn:0") def test_forward_lrn(): _test_lrn((1, 3, 20, 20), 3, 1, 1.0, 1.0, 0.5) ####################################################################### # l2_normalize # ------------ def _test_l2_normalize(ishape, eps, axis): """testing l2 normalize (uses max, sum, square, sqrt frontend operators)""" inp_array = np.random.uniform(size=ishape).astype(np.float32) with tf.Graph().as_default(): in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype) nn.l2_normalize(in1, axis=axis, epsilon=eps, name=None, dim=None) compare_tf_with_tvm(inp_array, "Placeholder:0", "l2_normalize:0") def test_forward_l2_normalize(): _test_l2_normalize((1, 3, 20, 20), 0.001, (0,)) ####################################################################### # transpose # --------- def _test_forward_transpose(ishape, axes=None): data = np.random.uniform(size=ishape).astype(np.float32) with tf.Graph().as_default(): in1 = tf.placeholder(shape=data.shape, dtype=data.dtype, name="transpose_data") if axes is None: tf.transpose(in1) else: tf.transpose(in1, perm=axes) compare_tf_with_tvm(data, "transpose_data:0", "transpose:0") def _test_forward_tranapose_axes_input(ishape, axes): data = np.random.uniform(size=ishape).astype(np.float32) axes_np = np.array(axes).astype(np.int32) with tf.Graph().as_default(): in1 = tf.placeholder(shape=data.shape, dtype=data.dtype, name="transpose_data") const1 = tf.constant(axes_np, dtype=tf.int32) # make axes an input to tf.transpose, but not an input to the graph, # so it can be extracted with infer_value_simulated axes = tf.reverse(const1, axis=[-1]) tf.transpose(in1, axes) compare_tf_with_tvm([data], ["transpose_data:0"], "transpose:0") def test_forward_transpose(): _test_forward_transpose((2, 3, 4), (1, 2, 0)) _test_forward_transpose((2, 3, 4)) _test_forward_transpose((7, 8, 8, 10)) _test_forward_transpose((2, 3, 4), (1, 2, 0)) _test_forward_transpose((2, 3, 4), (0, 1, 2)) _test_forward_transpose((2, 3, 4, 5), (3, 0, 1, 2)) _test_forward_tranapose_axes_input((2, 3, 4), (1, 2, 0)) _test_forward_tranapose_axes_input((2, 3, 4, 5), (3, 0, 1, 2)) def _test_forward_slice_operation_input(input_value, begin_value, size_value): input_data = np.array(input_value, dtype=np.float32) with tf.Graph().as_default(): input_tensor = tf.placeholder(shape=input_data.shape, dtype=input_data.dtype, name="input") tf.slice(input_tensor, begin_value, size_value, name="slice_output") compare_tf_with_tvm([input_data], ["input:0"], "slice_output:0") def test_forward_slice(): _test_forward_slice_operation_input([1, 1], [0], [2]) _test_forward_slice_operation_input([0, 1, 2, 3], [3], [-1]) _test_forward_slice_operation_input( [[0, 1, 2, 3], [4, 5, 6, 7]], begin_value=[0, 1], size_value=[-1, -1] ) def test_forward_ceil(): ishape = (1, 3, 10, 10) inp_array = np.random.uniform(size=ishape).astype(np.float32) with tf.Graph().as_default(): in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype) tf.ceil(in1) compare_tf_with_tvm(inp_array, "Placeholder:0", "Ceil:0") def test_forward_floor(): ishape = (1, 3, 10, 10) inp_array = np.random.uniform(size=ishape).astype(np.float32) with tf.Graph().as_default(): in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype) tf.floor(in1) compare_tf_with_tvm(inp_array, "Placeholder:0", "Floor:0") def test_forward_relu(): ishape = (1, 3, 10, 10) inp_array = np.random.uniform(-5, 5, size=ishape).astype(np.float32) for mode in ["graph_executor", "vm"]: with tf.Graph().as_default(): in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype) tf.nn.relu(in1) compare_tf_with_tvm(inp_array, "Placeholder:0", "Relu:0", mode=mode) def test_forward_leaky_relu(): ishape = (1, 3, 10, 10) inp_array = np.random.uniform(-5, 5, size=ishape).astype(np.float32) for mode in ["graph_executor", "vm"]: with tf.Graph().as_default(): in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype) tf.nn.leaky_relu(in1, alpha=0.4) compare_tf_with_tvm(inp_array, "Placeholder:0", "LeakyRelu:0", mode=mode) def test_forward_elu(): ishape = (1, 3, 10, 10) inp_array = np.random.uniform(-5, 5, size=ishape).astype(np.float32) with tf.Graph().as_default(): in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype) tf.nn.elu(in1) compare_tf_with_tvm(inp_array, "Placeholder:0", "Elu:0") def test_forward_selu(): ishape = (1, 3, 10, 10) inp_array = np.random.uniform(-5, 5, size=ishape).astype(np.float32) with tf.Graph().as_default(): in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype) tf.nn.selu(in1) compare_tf_with_tvm(inp_array, "Placeholder:0", "Selu:0") def test_forward_tanh(): ishape = (1, 3, 10, 10) inp_array = np.random.uniform(-5, 5, size=ishape).astype(np.float32) with tf.Graph().as_default(): in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype) tf.nn.tanh(in1) compare_tf_with_tvm(inp_array, "Placeholder:0", "Tanh:0") ####################################################################### # Softmax # ------- def test_forward_softmax(): """test operator Softmax""" def check_softmax(in_shape, axis, dtype): np_data = np.random.uniform(-100, 100, size=in_shape).astype(dtype) tf.reset_default_graph() with tf.Graph().as_default(): in_data = tf.placeholder(dtype, in_shape, name="in_data") tf.nn.softmax(in_data, axis=axis, name="Softmax") compare_tf_with_tvm([np_data], ["in_data:0"], "Softmax:0") check_softmax((2, 3, 5), 2, "float32") check_softmax((2, 3, 5), -1, "float32") ####################################################################### # Tensor # ------ def test_forward_round(): """test Round""" np_data = np.random.uniform(-10, 10, size=(5, 7)).astype(np.float32) tf.reset_default_graph() with tf.Graph().as_default(): in_data = tf.placeholder(tf.float32, (5, 7), name="in_data") tf.round(in_data, name="round") compare_tf_with_tvm([np_data], ["in_data:0"], "round:0") def test_forward_abs(): """test operator Abs""" np_data = np.random.uniform(1, 100, size=(9, 11)).astype(np.float32) tf.reset_default_graph() with tf.Graph().as_default(): in_data = tf.placeholder(tf.float32, (9, 11), name="in_data") tf.math.abs(in_data, name="abs") compare_tf_with_tvm([np_data], ["in_data:0"], "abs:0") def _test_forward_zeros_like(in_shape, dtype): np_data = np.random.uniform(-10, 10, size=in_shape).astype(dtype) tf.reset_default_graph() with tf.Graph().as_default(): in_data = tf.placeholder(dtype, in_shape, name="in_data") tf.zeros_like(in_data, name="zeros_like") compare_tf_with_tvm([np_data], ["in_data:0"], "zeros_like:0") def test_forward_zeros_like(): if tf.__version__ < LooseVersion("1.2"): _test_forward_zeros_like((2, 3), "int32") _test_forward_zeros_like((2, 3, 5), "int8") _test_forward_zeros_like((2, 3, 5, 7), "uint16") _test_forward_zeros_like((2, 3, 11), "float32") _test_forward_zeros_like((2, 3, 11), "float64") def test_forward_squared_difference(): ishape = (1, 3, 10, 14) inp_array_a = np.random.uniform(-5, 5, size=ishape).astype(np.float32) inp_array_b = np.random.uniform(-5, 5, size=ishape).astype(np.float32) with tf.Graph().as_default(): in1 = tf.placeholder(shape=inp_array_a.shape, dtype=inp_array_a.dtype, name="in1") in2 = tf.placeholder(shape=inp_array_b.shape, dtype=inp_array_b.dtype, name="in2") out = tf.math.squared_difference(in1, in2) compare_tf_with_tvm([inp_array_a, inp_array_b], [in1.name, in2.name], out.name) def _test_forward_reverse_v2(in_shape, axis, dtype): np_data = np.random.uniform(-10, 10, size=in_shape).astype(dtype) tf.reset_default_graph() with tf.Graph().as_default(): in_data = tf.placeholder(dtype, in_shape, name="in_data") tf.reverse(in_data, axis=[axis], name="reverse") compare_tf_with_tvm([np_data], ["in_data:0"], "reverse:0") def test_forward_reverse_v2(): """test ReverseV2""" _test_forward_reverse_v2((2, 3), 0, "int32") _test_forward_reverse_v2((2, 3, 5), 2, "float32") _test_forward_reverse_v2((2, 3, 5, 7), 1, "float32") _test_forward_reverse_v2((2, 3, 5), -1, "float64") _test_forward_reverse_v2((2, 3, 5), -3, "float64") def test_forward_sign(): """test Sign""" np_data = np.random.uniform(-10, 10, size=(5, 7, 11)).astype(np.float32) tf.reset_default_graph() with tf.Graph().as_default(): in_data = tf.placeholder(tf.float32, (5, 7, 11), name="in_data") tf.sign(in_data, name="sign") compare_tf_with_tvm([np_data], ["in_data:0"], "sign:0") def test_forward_square(): """test operator Square""" np_data = np.random.uniform(1, 100, size=(2, 3, 5)).astype(np.float32) tf.reset_default_graph() with tf.Graph().as_default(): in_data = tf.placeholder(tf.float32, (2, 3, 5), name="in_data") tf.square(in_data, name="square") compare_tf_with_tvm([np_data], ["in_data:0"], "square:0") def test_forward_pow_exp(): """test Pow and Exp""" np_in1 = np.random.uniform(-2, 2, size=(5, 7, 11)).astype(np.float32) np_in2 = np.random.uniform(-2, 2, size=(5, 7, 11)).astype(np.float32) tf.reset_default_graph() with tf.Graph().as_default(): in1 = tf.placeholder(tf.float32, (5, 7, 11), name="in1") in2 = tf.placeholder(tf.float32, (5, 7, 11), name="in2") _ = tf.pow(in1, in2, name="pow") _ = tf.exp(in1, name="exp") compare_tf_with_tvm([np_in1, np_in2], ["in1:0", "in2:0"], "pow:0") compare_tf_with_tvm([np_in1], ["in1:0"], "exp:0") def test_forward_unary(): """Unary""" def _test_forward_unary(op, a_min=1, a_max=5, dtype=np.float32): """test unary operators""" np_data = np.random.uniform(a_min, a_max, size=(2, 3, 5)).astype(dtype) tf.reset_default_graph() with tf.Graph().as_default(): in_data = tf.placeholder(dtype, (2, 3, 5), name="in_data") out = op(in_data) compare_tf_with_tvm([np_data], ["in_data:0"], out.name) _test_forward_unary(tf.acos, -1, 1) _test_forward_unary(tf.asin, -1, 1) _test_forward_unary(tf.atanh, -1, 1) _test_forward_unary(tf.sinh) _test_forward_unary(tf.cosh) _test_forward_unary(tf.acosh) _test_forward_unary(tf.asinh) _test_forward_unary(tf.atan) _test_forward_unary(tf.sin) _test_forward_unary(tf.cos) _test_forward_unary(tf.tan) _test_forward_unary(tf.tanh) _test_forward_unary(tf.erf) _test_forward_unary(tf.log) _test_forward_unary(tf.log1p) def test_forward_atan2(): """test operator tan""" tf.disable_eager_execution() np_data_1 = np.random.uniform(1, 100, size=(2, 3, 5)).astype(np.float32) np_data_2 = np.random.uniform(1, 100, size=(2, 3, 5)).astype(np.float32) tf.reset_default_graph() in_data_1 = tf.placeholder(tf.float32, (2, 3, 5), name="in_data_1") in_data_2 = tf.placeholder(tf.float32, (2, 3, 5), name="in_data_2") tf.atan2(in_data_1, in_data_2, name="atan2") compare_tf_with_tvm([np_data_1, np_data_2], ["in_data_1:0", "in_data_2:0"], "atan2:0") def test_forward_expm1(): """test operator expm1""" def _test_forward_expm1(shape): tf.disable_eager_execution() np_data = np.random.uniform(1, 10, size=shape).astype(np.float32) tf.reset_default_graph() in_data = tf.placeholder(tf.float32, shape, name="in_data") tf.expm1(in_data, name="expm1") compare_tf_with_tvm([np_data], ["in_data:0"], "expm1:0") _test_forward_expm1([1, 100]) _test_forward_expm1([1, 10, 10]) _test_forward_expm1([2, 5, 2, 5]) def test_forward_softsign(): """test operator softsign""" def _test_forward_softsign(shape): tf.disable_eager_execution() np_data = np.random.uniform(1, 100, size=shape).astype(np.float32) tf.reset_default_graph() in_data = tf.placeholder(tf.float32, shape, name="in_data") tf.nn.softsign(in_data, name="softsign") compare_tf_with_tvm([np_data], ["in_data:0"], "softsign:0") _test_forward_softsign([1, 100]) _test_forward_softsign([1, 10, 10]) _test_forward_softsign([2, 5, 2, 5]) def test_forward_rint(): """test operator rint""" def _test_forward_rint(shape): tf.disable_eager_execution() np_data = np.random.uniform(-100, 100, size=shape).astype(np.float32) tf.reset_default_graph() in_data = tf.placeholder(tf.float32, shape, name="in_data") tf.math.rint(in_data, name="rint") compare_tf_with_tvm([np_data], ["in_data:0"], "rint:0") _test_forward_rint([100]) _test_forward_rint([1, 100]) _test_forward_rint([1, 10, 10]) _test_forward_rint([2, 5, 2, 5]) def test_forward_negative(): """test tf operator Neg""" np_data = np.random.uniform(-100, 255, size=(224, 224, 3)).astype(np.float32) tf.reset_default_graph() with tf.Graph().as_default(): in_data = tf.placeholder(tf.float32, (224, 224, 3), name="in_data") tf.negative(in_data, name="negative") compare_tf_with_tvm([np_data], ["in_data:0"], "negative:0") def test_forward_log_softmax(): """test operator LogSoftmax""" np_data = np.random.uniform(1, 100, size=(9, 11)).astype(np.float32) tf.reset_default_graph() with tf.Graph().as_default(): in_data = tf.placeholder(tf.float32, (9, 11), name="in_data") tf.math.log_softmax(in_data, name="LogSoftmax") compare_tf_with_tvm([np_data], ["in_data:0"], "LogSoftmax:0") def test_forward_softplus(): """test operator Softplus""" np_data = np.random.uniform(1, 10, size=(2, 3, 5)).astype(np.float32) tf.reset_default_graph() with tf.Graph().as_default(): in_data = tf.placeholder(tf.float32, (2, 3, 5), name="in_data") tf.nn.softplus(in_data, name="softplus") compare_tf_with_tvm([np_data], ["in_data:0"], "softplus:0") def test_forward_rsqrt(): """test Rsqrt""" np_data = np.random.uniform(1, 100, size=(5, 7, 11)).astype(np.float32) tf.reset_default_graph() with tf.Graph().as_default(): in_data = tf.placeholder(tf.float32, (5, 7, 11), name="in_data") tf.rsqrt(in_data, name="rsqrt") compare_tf_with_tvm([np_data], ["in_data:0"], "rsqrt:0") def test_forward_sqrt(): """test Sqrt""" np_data = np.random.uniform(1, 100, size=(5, 7, 11)).astype(np.float32) tf.reset_default_graph() with tf.Graph().as_default(): in_data = tf.placeholder(tf.float32, (5, 7, 11), name="in_data") tf.sqrt(in_data, name="sqrt") compare_tf_with_tvm([np_data], ["in_data:0"], "sqrt:0") def _test_forward_right_shift(in_shape, dtype): """test operator RightShift""" lh_data = np.random.randint(1, 3, size=in_shape).astype(dtype) rh_data = np.random.randint(1, 8, size=in_shape).astype(dtype) tf.reset_default_graph() with tf.Graph().as_default(): lft_data = tf.placeholder(dtype, in_shape, name="lft_data") rgt_data = tf.placeholder(dtype, in_shape, name="rgt_data") tf.bitwise.right_shift(lft_data, rgt_data, name="RightShift") compare_tf_with_tvm([lh_data, rh_data], ["lft_data:0", "rgt_data:0"], "RightShift:0") def test_forward_right_shift(): _test_forward_right_shift((7,), "int32") _test_forward_right_shift((3, 11), "int16") def _test_forward_left_shift(in_shape, dtype): """test operator LeftShift""" lh_data = np.random.randint(100, 1000000, size=in_shape).astype(dtype) rh_data = np.random.randint(1, 3, size=in_shape).astype(dtype) tf.reset_default_graph() with tf.Graph().as_default(): lft_data = tf.placeholder(dtype, in_shape, name="lft_data") rgt_data = tf.placeholder(dtype, in_shape, name="rgt_data") tf.bitwise.left_shift(lft_data, rgt_data, name="LeftShift") compare_tf_with_tvm([lh_data, rh_data], ["lft_data:0", "rgt_data:0"], "LeftShift:0") def test_forward_left_shift(): _test_forward_left_shift((10,), "int32") _test_forward_left_shift((224, 224, 3), "int16") ####################################################################### # Mean # ---- def test_forward_mean(): """Mean""" def check_mean(ishape, **kwargs): inp_array = np.random.uniform(size=ishape).astype(np.float32) with tf.Graph().as_default(): in1 = tf.placeholder(shape=inp_array.shape, dtype=inp_array.dtype) tf.keras.backend.mean(in1, **kwargs) compare_tf_with_tvm(inp_array, "Placeholder:0", "Mean:0", no_gpu=True) check_mean((10, 8, 16, 32)) check_mean((10, 8, 16, 32), axis=(2, 3)) check_mean((10, 8, 16, 32), axis=(1, 2), keepdims=True) ####################################################################### # Size # ---- def test_forward_size(): """Size""" def check_size(ishape): np_input = np.random.uniform(size=ishape).astype(np.float32) # if all dimensions are constant, TF will optimize away size operator into constant tf_input_shape = list(np_input.shape) tf_input_shape[0] = None with tf.Graph().as_default(): tf_input = tf.placeholder(shape=tf_input_shape, dtype=np_input.dtype, name="input") tf.size(tf_input, name="size") compare_tf_with_tvm([np_input], ["input:0"], "size:0") check_size((10, 8, 16, 32)) check_size((10,)) ####################################################################### # All, Any, Max, Min, Prod, variance, std, logsumexp, euclidean_norm # ------------------------------------------------------------------ def test_forward_reduce(): """Reduce""" def _check_op(tf_op, ishape, axis, keepdims, dtype="float32"): tf.reset_default_graph() if dtype == "bool": np_data = np.random.choice([True, False], size=ishape) else: np_data = np.random.uniform(size=ishape).astype(dtype) if tf_op == tf.math.reduce_prod: axis = 1 np_data = np_data.reshape(1, -1) with tf.Graph().as_default(): in_data = tf.placeholder(dtype, name="in_data") reduce_op = tf_op(in_data, axis=axis, keepdims=keepdims, name="reduce_std") compare_tf_with_tvm([np_data], ["in_data:0"], reduce_op.name) def _test_math_op(op, d_types=None): d_types = d_types or ["int32", "float32"] for dtype in d_types: _check_op(op, (3, 10), axis=(-1), keepdims=False, dtype=dtype) _check_op(op, (8, 16, 32), axis=(-1), keepdims=False, dtype=dtype) _check_op(op, (1, 8, 8, 3), axis=(2, 3), keepdims=True, dtype=dtype) _check_op(op, (2, 3, 10, 10), axis=(1, 2), keepdims=True, dtype=dtype) _test_math_op(tf.math.reduce_all, d_types=["bool"]) _test_math_op(tf.math.reduce_any, d_types=["bool"]) _test_math_op(tf.math.reduce_max) _test_math_op(tf.math.reduce_min) _test_math_op(tf.math.reduce_prod) _test_math_op(tf.math.reduce_variance, d_types=["float32"]) _test_math_op(tf.math.reduce_std, d_types=["float32"]) _test_math_op(tf.math.reduce_logsumexp, d_types=["float32"]) if package_version.parse(tf.VERSION) >= package_version.parse("1.15.0"): _test_math_op(tf.math.reduce_euclidean_norm) ####################################################################### # All, Max, Min # ------------------------------------------------------------------ def test_forward_raw_reduce(): """Raw reduce""" def _check_op(tf_op, ishape, axis, keepdims, range_axis=False, dtype="float32"): tf.reset_default_graph() if dtype == "bool": np_data = np.random.choice([True, False], size=ishape) else: np_data = np.random.uniform(size=ishape).astype(dtype) if tf_op == tf.math.reduce_prod: axis = 1 np_data = np_data.reshape(1, -1) with tf.Graph().as_default(): if range_axis: axis = tf.range(axis[0], axis[1], axis[2], name="range", dtype="int32") in_data = tf.placeholder(dtype, name="in_data") reduce_op = tf_op(input=in_data, axis=axis, keep_dims=keepdims, name="reduce_std") compare_tf_with_tvm([np_data], ["in_data:0"], reduce_op.name) def _test_raw_reduce_op(op, d_types=None): d_types = d_types or ["int32", "float32"] for dtype in d_types: _check_op(op, (3, 10), axis=(-1), keepdims=False, dtype=dtype) _check_op(op, (8, 16, 32), axis=(-1), keepdims=False, dtype=dtype) _check_op(op, (1, 8, 8, 3), axis=(2, 3), keepdims=True, dtype=dtype) _check_op(op, (2, 3, 10, 10), axis=(1, 2), keepdims=True, dtype=dtype) _check_op(op, (1, 8, 8, 3), axis=(2, 4, 1), keepdims=True, range_axis=True, dtype=dtype) _check_op( op, (2, 3, 10, 10), axis=(1, 3, 1), keepdims=True, range_axis=True, dtype=dtype ) if package_version.parse(tf.VERSION) >= package_version.parse("2.4.1"): _test_raw_reduce_op(tf.raw_ops.All, d_types=["bool"]) _test_raw_reduce_op(tf.raw_ops.Max) _test_raw_reduce_op(tf.raw_ops.Min) ####################################################################### # Relational operators # -------------------- def _test_forward_rel_op(data, func): with tf.Graph().as_default(): in1 = tf.placeholder(shape=data[0].shape, dtype=data[0].dtype, name="in1") in2 = tf.placeholder(shape=data[1].shape, dtype=data[1].dtype, name="in2") op = func(in1, in2, name="op") _ = tf.cast(op, tf.int32, name="out1") compare_tf_with_tvm([data[0], data[1]], ["in1:0", "in2:0"], "out1:0") def test_forward_rel_ops(): t1 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) t2 = np.array([[9, 8, 7], [6, 5, 4], [3, 2, 1]]) _test_forward_rel_op([t1, t2], math_ops.less) _test_forward_rel_op([t1, t2], math_ops.greater) _test_forward_rel_op([t1, t2], math_ops.less_equal) _test_forward_rel_op([t1, t2], math_ops.greater_equal) _test_forward_rel_op([t1, t2], math_ops.equal) _test_forward_rel_op([t1, t2], math_ops.not_equal) ####################################################################### # ExpandDims # ---------- def _test_forward_expand_dims(data, axis): with tf.Graph().as_default(): in1 = tf.placeholder(shape=data.shape, dtype=data.dtype, name="in1") out = tf.expand_dims(in1, axis) compare_tf_with_tvm([data], [in1.name], out.name) def test_forward_expand_dims(): _test_forward_expand_dims(np.int32(1), 0) _test_forward_expand_dims(np.array([1]), 0) _test_forward_expand_dims(np.array([1]), -1) _test_forward_expand_dims(np.array([[1], [2]]), 0) _test_forward_expand_dims(np.array([[1], [2]]), 1) _test_forward_expand_dims(np.array([[1], [2]]), -1) ####################################################################### # Maximum, Minimum # ---------------- def test_forward_maximum(): """test Op Maximum""" def check_maximum(lh_shape, rh_shape, dtype): tf.reset_default_graph() lh_data = np.random.uniform(size=lh_shape).astype(dtype) rh_data = np.random.uniform(size=rh_shape).astype(dtype) with tf.Graph().as_default(): lft_data = tf.placeholder(dtype, name="lft_data") rgt_data = tf.placeholder(dtype, name="rgt_data") tf.math.maximum(lft_data, rgt_data, name="maximum") compare_tf_with_tvm([lh_data, rh_data], ["lft_data:0", "rgt_data:0"], "maximum:0") check_maximum((10, 8, 16, 32), (1,), dtype="int32") check_maximum((10, 8, 16, 32), (10, 8, 16, 32), dtype="float32") def test_forward_minimum(): """test Op Minimum""" def check_minimum(lh_shape, rh_shape, dtype): tf.reset_default_graph() lh_data = np.random.uniform(size=lh_shape).astype(dtype) rh_data = np.random.uniform(size=rh_shape).astype(dtype) with tf.Graph().as_default(): lft_data = tf.placeholder(dtype, name="lft_data") rgt_data = tf.placeholder(dtype, name="rgt_data") tf.math.minimum(lft_data, rgt_data, name="minimum") compare_tf_with_tvm([lh_data, rh_data], ["lft_data:0", "rgt_data:0"], "minimum:0") check_minimum((10, 8, 16, 32), (1,), dtype="int32") check_minimum((10, 8, 16, 32), (10, 8, 16, 32), dtype="float32") ####################################################################### # PlaceholderWithDefault # ---------------------- def test_placeholder(): """Placeholder""" with tf.Graph().as_default(): in_data1 = np.random.uniform(-5, 5, size=(3, 4, 5)).astype(np.float32) var1 = tf.Variable(in_data1, name="in1") var2 = array_ops.placeholder_with_default(var1, None, name="place1") in_data2 = np.random.uniform(-5, 5, size=(3, 4, 5)).astype(np.float32) place1 = array_ops.placeholder(shape=in_data1.shape, dtype=in_data1.dtype, name="in2") out1 = tf.math.add(var1, var2, name="out1") _ = tf.math.add(out1, place1, name="out2") compare_tf_with_tvm( [in_data1, in_data2], ["place1:0", "in2:0"], "out2:0", init_global_variables=True ) ####################################################################### # OneHot # ---------------------- def _test_forward_one_hot(indices_shape, depth, on_value, off_value, axis, out_dtype): inp_array1 = np.random.randint(0, 5, size=indices_shape) with tf.Graph().as_default(): in1 = tf.placeholder(shape=inp_array1.shape, dtype=inp_array1.dtype) out = tf.one_hot(in1, depth, on_value, off_value, axis, dtype=out_dtype) compare_tf_with_tvm(inp_array1, in1.name, out.name) def test_forward_one_hot(): _test_forward_one_hot((3,), 3, 1, 0, -1, "int32") _test_forward_one_hot((3,), 3, 1.0, 0.0, -1, "float32") _test_forward_one_hot((2, 2), 5, 2, -2, 0, "int32") _test_forward_one_hot((2, 2), 5, 0.5, -0.5, 1, "float32") _test_forward_one_hot((3, 2, 4, 5), 6, 1, 0, 1, "int32") _test_forward_one_hot((3, 2, 4, 5), 6, 1.0, 0.0, 0, "float32") ####################################################################### # AddN # ---------------------- def _test_forward_add_n(inputs): tf.reset_default_graph() with tf.Graph().as_default(): temp = [] for each in inputs: temp.append(tf.placeholder(shape=each.shape, dtype=each.dtype)) output = tf.add_n(temp) compare_tf_with_tvm(list(inputs), [each.name for each in temp], output.name) def test_forward_add_n(): """Add n""" x = np.random.randint(1, 100, size=(3, 3, 3), dtype=np.int32) y = np.random.randint(1, 100, size=(3, 3, 3), dtype=np.int32) z = np.random.randint(1, 100, size=(3, 3, 3), dtype=np.int32) m, n, o = x.astype(np.float32), y.astype(np.float32), z.astype(np.float32) in0 = x in1 = [x, y] in2 = (x, y, z) in3 = m in4 = [m, n] in5 = (m, n, o) _test_forward_add_n(in0) _test_forward_add_n(in1) _test_forward_add_n(in2) _test_forward_add_n(in3) _test_forward_add_n(in4) _test_forward_add_n(in5) ####################################################################### # Sharing params case # ---------------------- def test_sharing_node(): """Test the sharing params case.""" np_data = np.random.uniform(size=(2, 2, 2)).astype("float32") with tf.Graph().as_default(): in_data = tf.placeholder(tf.float32, shape=(2, 2, 2), name="in_data") axis = tf.constant([-1], dtype=tf.int32, name="axis") mean0 = tf.reduce_mean(in_data, axis=axis, keepdims=False, name="mean0") mean1 = tf.reduce_mean(in_data, axis=axis, keepdims=False, name="mean1") _ = tf.add(mean0, mean1, name="out") compare_tf_with_tvm([np_data], ["in_data:0"], "out:0") ####################################################################### # Unravel Index # ---------------------- def _test_forward_unravel_index(inputs): tf.reset_default_graph() with tf.Graph().as_default(): temp = [] for each in inputs: temp.append(tf.placeholder(shape=each.shape, dtype=each.dtype)) output = tf.unravel_index(temp[0], temp[1]) compare_tf_with_tvm(list(inputs), [each.name for each in temp], output.name) def _test_forward_unravel_index_scalar(x, y, dtype="int32"): tf.reset_default_graph() with tf.Graph().as_default(): indices_1 = constant_op.constant(x, dtype=dtype) dims_1 = constant_op.constant(y, dtype=dtype) out_1 = array_ops.unravel_index(indices_1, dims_1) compare_tf_with_tvm([], [], out_1.name) def test_forward_unravel_index(): """Unravel index""" x = np.array([0, 1, 2, 3]) y = np.array([2, 2]) _test_forward_unravel_index([x, y]) x = np.array([0, 1, 2, 5]) y = np.array([2, 3]) _test_forward_unravel_index([x, y]) x = np.array([0, 1, 2, 5]) y = np.array([6]) _test_forward_unravel_index([x, y]) x = np.array([102, 300, 16]) y = np.array([10, 10, 9, 6]) _test_forward_unravel_index([x, y]) x = np.array([100]) y = np.array([10, 10, 9, 6]) _test_forward_unravel_index([x, y]) # Test scalar input _test_forward_unravel_index_scalar(13, [1, 4, 5, 2]) ####################################################################### # Dilation2d # ---------------------- def _test_dilation2d(tensor_in_sizes, filter_in_sizes, strides, dilations, padding): """One iteration of dilation2d with given shapes and attributes""" total_size_1 = np.prod(tensor_in_sizes) total_size_2 = np.prod(filter_in_sizes) # Initializes the input tensor with array containing incrementing # numbers from 1. data_array = [f * 1.0 for f in range(1, total_size_1 + 1)] filter_array = [f * 1.0 for f in range(1, total_size_2 + 1)] with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=tensor_in_sizes, dtype="float32") in_filter = constant_op.constant(filter_array, shape=filter_in_sizes, dtype="float32") nn_ops.dilation2d(in_data, in_filter, strides=strides, rates=dilations, padding=padding) compare_tf_with_tvm( np.reshape(data_array, tensor_in_sizes).astype("float32"), "Placeholder:0", "Dilation2D:0", no_gpu=True, ) def test_forward_dilation(): """Dilation2d""" _test_dilation2d([1, 18, 18, 32], [4, 4, 32], [1, 1, 1, 1], [1, 2, 1, 1], "VALID") _test_dilation2d([1, 15, 15, 32], [4, 4, 32], [1, 1, 1, 1], [1, 2, 1, 1], "SAME") _test_dilation2d([1, 5, 5, 1], [2, 2, 1], [1, 1, 1, 1], [1, 1, 1, 1], "VALID") _test_dilation2d([1, 5, 5, 1], [3, 3, 1], [1, 1, 1, 1], [1, 2, 2, 1], "VALID") _test_dilation2d([1, 5, 5, 3], [3, 3, 3], [1, 1, 1, 1], [1, 1, 1, 1], "SAME") _test_dilation2d([1, 28, 28, 3], [5, 5, 3], [1, 2, 2, 1], [1, 1, 1, 1], "VALID") _test_dilation2d([1, 224, 224, 10], [8, 8, 10], [1, 1, 1, 1], [1, 1, 1, 1], "VALID") _test_dilation2d([1, 18, 18, 32], [4, 4, 32], [1, 1, 1, 1], [1, 2, 1, 1], "SAME") _test_dilation2d([1, 15, 15, 32], [4, 4, 32], [1, 1, 1, 1], [1, 2, 1, 1], "VALID") _test_dilation2d([1, 5, 5, 1], [7, 2, 1], [1, 3, 1, 1], [1, 1, 1, 1], "SAME") _test_dilation2d([1, 5, 5, 1], [3, 4, 1], [1, 2, 1, 1], [1, 2, 2, 1], "SAME") _test_dilation2d([1, 5, 5, 3], [3, 3, 3], [1, 1, 4, 1], [1, 1, 1, 1], "VALID") _test_dilation2d([1, 28, 28, 3], [5, 6, 3], [1, 1, 2, 1], [1, 1, 1, 1], "SAME") _test_dilation2d([1, 224, 224, 10], [8, 8, 10], [1, 3, 1, 1], [1, 1, 1, 1], "SAME") _test_dilation2d([1, 3, 3, 1], [2, 2, 1], [1, 1, 1, 1], [1, 2, 2, 1], "SAME") _test_dilation2d([1, 3, 3, 1], [2, 2, 1], [1, 1, 1, 1], [1, 1, 2, 1], "VALID") def _test_identityn(data_np_list): with tf.Graph().as_default(): data_tensors = [] data_tensors_name = [] for index, data_np in enumerate(data_np_list): tensor_name = f"data_{index}" data_tensors_name.append(tensor_name + ":0") data_tensors.append( tf.placeholder(shape=data_np.shape, dtype=str(data_np.dtype), name=tensor_name) ) output = tf.identity_n(data_tensors) output_names = [out.name for out in output] compare_tf_with_tvm( data_np_list, data_tensors_name, output_names, ) @pytest.mark.parametrize( "data_np_list", [ ( [ np.array([[1, 1], [0, 3], [0, 1], [2, 0], [3, 1]], dtype=np.int64), np.array([1, 2, 3, 4, 5], dtype=np.int64), np.array([5, 6], dtype=np.int64), ] ), ( [ np.array([[1, 1], [0, 3], [2, 0], [3, 1]], dtype=np.int64), np.array([1, 2, 3, 4], dtype=np.int64), np.array([5, 6], dtype=np.int64), np.array([True, False, True]), ] ), ( [ np.array([]), np.array([[]]), ] ), ], ) def test_forward_identityn(data_np_list): """Identityn""" _test_identityn(data_np_list) ####################################################################### # infinity ops # ------------ def _verify_infiniteness_ops(tf_op, name): """test operator infinity ops""" # Only float types are allowed in Tensorflow for isfinite and isinf # float16 is failing on cuda tf_dtypes = ["float32", "float64"] # pylint: disable=redefined-outer-name for tf_dtype in tf_dtypes: shape = (8, 8) data = np.random.uniform(size=shape).astype(tf_dtype) data.ravel()[np.random.choice(data.size, int(data.size * 0.5), replace=False)] = np.infty data.ravel()[np.random.choice(data.size, int(data.size * 0.5), replace=False)] = np.nan tf.reset_default_graph() in_data = tf.placeholder(tf_dtype, shape, name="in_data") tf_op(in_data, name=name) compare_tf_with_tvm([data], ["in_data:0"], f"{name}:0") def test_forward_isinf(): _verify_infiniteness_ops(tf.is_inf, "isinf") def test_forward_isfinite(): _verify_infiniteness_ops(tf.is_finite, "isfinite") def test_forward_isnan(): _verify_infiniteness_ops(tf.is_nan, "isnan") def _test_spop_placeholder_without_shape_info(): with tf.Graph().as_default(): @function.Defun(*[tf.int32] * 2) def Forward(x, y): print(x.name) print(y.name) b = tf.add(x, y) return b pl1 = tf.placeholder(tf.int32, name="pl1") pl2 = tf.placeholder(tf.int32, name="pl2") pl3 = tf.placeholder(tf.int32, name="pl3") data = np.array([[-1, 1], [2, -2]], dtype=np.int32) data2 = np.array([[-2, 3], [4, -6]], dtype=np.int32) data3 = np.array([[-2, 3], [4, -6]], dtype=np.int32) z1 = gen_functional_ops.StatefulPartitionedCall(args=[pl1, pl2], Tout=[tf.int32], f=Forward) z2 = z1 + pl3 compare_tf_with_tvm( [data, data2, data3], ["pl1:0", "pl2:0", "pl3:0"], ["StatefulPartitionedCall:0", z2.name], mode="vm", init_global_variables=True, ) def _test_spop_placeholder_with_shape_and_default_value(): with tf.Graph().as_default(): data = np.ones([1], dtype=int).astype(np.int32) dataVar = tf.Variable(data, shape=data.shape) pl1 = array_ops.placeholder_with_default(dataVar, shape=data.shape, name="pl1") tpl = tf.convert_to_tensor(pl1, dtype=tf.int32) @function.Defun(*[tf.int32]) def pl_with_default(pl): return tf.expand_dims(tf.multiply(pl, pl), 0) _ = gen_functional_ops.StatefulPartitionedCall( args=[tpl], Tout=[tf.int32], f=pl_with_default ) compare_tf_with_tvm( data, ["pl1:0"], "StatefulPartitionedCall:0", mode="vm", init_global_variables=True ) def _test_spop_placeholder_numpy_arange_feed(): with tf.Graph().as_default(): t1 = tf.placeholder(tf.int32, (3, 3, 3), "t1") t1_data = np.arange(27, dtype=np.int32).reshape((3, 3, 3)) t2 = tf.placeholder(tf.int32, (3, 3, 3), "t2") t2_data = np.arange(27, dtype=np.int32).reshape((3, 3, 3)) @tf.function def add(x, y): return tf.add(x, y, "add_t1_t2") t3 = add(t1, t2) compare_tf_with_tvm( [t1_data, t2_data], ["t1:0", "t2:0"], [t3.name], mode="vm", init_global_variables=True ) def _test_spop_placeholder_numpy_array_feed(): with tf.Graph().as_default(): t1_data = np.array([[-1, 1, 3], [2, -2, 4], [2, -3, 14]], dtype=np.int32) t2_data = np.array([[-2, 1, 2], [12, -2, 14], [12, -3, 4]], dtype=np.int32) t1 = tf.placeholder(tf.int32, name="t1") t2 = tf.placeholder(tf.int32, name="t2") @tf.function def add(x, y): return tf.add(x, y, "add_t1_t2") t3 = add(t1, t2) compare_tf_with_tvm( [t1_data, t2_data], ["t1:0", "t2:0"], [t3.name], mode="vm", init_global_variables=True ) def _test_spop_function_invocation_basic(): with tf.Graph().as_default(): def fun1(a): return tf.multiply(a, a) def fun2(b): return tf.multiply(b, 10) @tf.function def fun3(x, y): x = fun2(x) y = fun1(y) z = tf.add(x, y) return z t3 = fun3(tf.constant(10.5), tf.constant(20.4)) compare_tf_with_tvm([], [], [t3.name], mode="vm", init_global_variables=True) def _test_spop_function_invocation_nested(): with tf.Graph().as_default(): t1 = tf.placeholder(tf.int32, (3, 3, 3), name="t1") t1_data = np.arange(27, dtype=np.int32).reshape((3, 3, 3)) t2 = tf.placeholder(tf.int32, name="t2") t2_data = np.arange(27, dtype=np.int32).reshape((3, 3, 3)) @tf.function def myfunc(x, y): return tf.add(x, y, "myfunc") @tf.function def myfunc2(x, y): z = myfunc(x, y) l = myfunc(z, y) m = myfunc(l, z) return tf.add(l, m, "myfunc2") res1 = myfunc(t1, t2) res2 = myfunc2(res1, t1) compare_tf_with_tvm( [t1_data, t2_data], ["t1:0", "t2:0"], [res2.name], mode="vm", init_global_variables=True ) def _test_spop_function_invocation_no_autograph(): with tf.Graph().as_default(): @tf.function(autograph=False) def fun1(a): return tf.multiply(a, a) @tf.function(autograph=False) def fun2(b): return tf.multiply(b, 10) @tf.function def fun3(x, y): x = fun2(x) y = fun1(y) z = tf.add(x, y) return z t3 = fun3(tf.constant(10.5), tf.constant(20.4)) compare_tf_with_tvm([], [], [t3.name], mode="vm", init_global_variables=True) def _test_spop_function_invocation_defun(): with tf.Graph().as_default(): def fun1(a): return tf.multiply(a, a) def fun2(b): return tf.multiply(b, b) @function.Defun(dtypes.float32, dtypes.float32, func_name="Fun3") def fun3(x, y): x = fun2(x) y = fun1(y) z = tf.add(x, y) return z _ = gen_functional_ops.StatefulPartitionedCall( args=[tf.constant(10.5), tf.constant(20.4)], Tout=[dtypes.float32], f=fun3, name="SpopFnInvocation", ) compare_tf_with_tvm([], [], "SpopFnInvocation:0", mode="vm", init_global_variables=True) def _test_spop_arithmetic(): with tf.Graph().as_default(): @function.Defun(*[dtypes.int32] * 3) def arithmetic(m, x, c): z = tf.add(tf.multiply(m, x), c) return z m = tf.constant(10) x = tf.constant(20) c = tf.constant(2) _ = gen_functional_ops.StatefulPartitionedCall( args=[m, x, c], Tout=[tf.int32], f=arithmetic ) compare_tf_with_tvm( [], [], "StatefulPartitionedCall:0", mode="vm", init_global_variables=True ) def _test_spop_control_flow(): with tf.Graph().as_default(): @function.Defun(*[dtypes.float32] * 2) def Body1(x, y): with ops.device("/job:localhost/replica:0/task:0/device:CPU:0"): z = math_ops.multiply(x, y) i = 0 while i < 10: i += 1 if i == 5: continue z = math_ops.multiply(x, y * i) return z _ = gen_functional_ops.StatefulPartitionedCall( args=[constant_op.constant(32.0), constant_op.constant(100.0)], Tout=[dtypes.float32], f=Body1, ) compare_tf_with_tvm( [], [], "StatefulPartitionedCall:0", mode="vm", init_global_variables=True ) def _test_spop_variables(): with tf.Graph().as_default(): const1 = tf.constant(10) const2 = tf.constant(20) var1 = tf.Variable(const1, dtype=tf.int32) var2 = tf.Variable(const2, dtype=tf.int32) @function.Defun(tf.int32, tf.int32) def Forward(x, y): return tf.multiply(x, y) _ = gen_functional_ops.StatefulPartitionedCall( args=[var1, var2], Tout=[tf.int32], f=Forward ) compare_tf_with_tvm( [], [], "StatefulPartitionedCall:0", init_global_variables=True, mode="vm" ) def _test_spop_constants(): with tf.Graph().as_default(): @function.Defun(*[dtypes.int32] * 2) def constantsFn(x, y): vv = tf.constant([2, 3, 4], name="vv") z = tf.add(vv + x, y) return z a = tf.constant(20000, name="a") b = tf.constant(40000, name="b") _ = gen_functional_ops.StatefulPartitionedCall(args=[a, b], Tout=[tf.int32], f=constantsFn) compare_tf_with_tvm( [], [], "StatefulPartitionedCall:0", mode="vm", init_global_variables=True ) def _test_spop_stateful(): # This test case is to test that TVM rejects any TF stateful operations # (including Resource Variables) except StatefulPartitionedCall/PartitionedCall # (as these two operators can still be used as container graphs to execute # "stateless" operations internally. tf.reset_default_graph() with tf.Graph().as_default(): @tf.function def FunctionWithStatefulOp_One(i): b = tf.random.uniform(shape=[2, 4], maxval=10, dtype=tf.float32, seed=10) y = tf.multiply(b, i) return y @tf.function def FunctionWithStatefulOp(m, n): a = tf.random.uniform(shape=[2, 4], maxval=10, dtype=tf.float32, seed=10) x = tf.multiply(a, m) y = FunctionWithStatefulOp_One(n) z = tf.multiply(x, y) return z op = FunctionWithStatefulOp(constant_op.constant(1.0), constant_op.constant(2.0)) with pytest.raises(Exception) as execinfo: compare_tf_with_tvm([], [], [op.name], init_global_variables=True, mode="vm") assert execinfo.value.args[0].startswith("The following operators are not implemented") def _test_spop_device_assignment(): # This test case is to test that TVM rejects inconsistent device assignment # while using StatefulPartitionedCall/PartitionedCall operators which in case of TVM will # be used as container graphs to internally execute "stateless" operations. tf.reset_default_graph() with tf.Graph().as_default(): def fun1(a): with ops.device("/GPU:0"): return tf.multiply(a, a) def fun2(b): with ops.device("/job:localhost/replica:0/task:0/device:CPU:1"): return tf.multiply(b, b) @function.Defun(dtypes.float32, dtypes.float32, func_name="Fun3") def fun3(x, y): with ops.device("/CPU:0"): x = fun2(x) with ops.device("/job:localhost/replica:0/task:0/device:CPU:2"): y = fun1(y) with ops.device("/job:localhost/replica:0/task:0/device:CPU:3"): z = tf.add(x, y) return z _ = gen_functional_ops.StatefulPartitionedCall( args=[tf.constant(10.5), tf.constant(20.4)], Tout=[dtypes.float32], f=fun3 ) with pytest.raises(Exception) as execinfo: compare_tf_with_tvm( [], [], "StatefulPartitionedCall:0", mode="vm", init_global_variables=True ) assert execinfo.value.args[0].startswith("Found inconsistent Device assignment") def _test_spop_resource_variables(): # This test case is to test that TVM rejects any graph containing # resource variables with StatefulPartitionedOp. tf.reset_default_graph() with tf.Graph().as_default(): const1 = tf.constant(10) const2 = tf.constant(20) var1 = tf.Variable(const1, dtype=tf.int32, use_resource=True) var2 = tf.Variable(const2, dtype=tf.int32, use_resource=True) @tf.function def resourceVariablesTest(x, y): return tf.multiply(x, y) _ = resourceVariablesTest(var1, var2) with pytest.raises(Exception) as execinfo: compare_tf_with_tvm( [], [], "StatefulPartitionedCall:0", mode="vm", init_global_variables=True ) # pylint: disable=implicit-str-concat assert execinfo.value.args[0].startswith("Graph is not frozen." " Provide a frozen graph") def test_forward_spop(): """Spop""" _test_spop_stateful() _test_spop_device_assignment() # tensorflow version upgrade support # This test is expected to fail in TF version >= 2.6 # as the generated graph will be considered frozen, hence # not passing the criteria for the test below. if tf.__version__ < LooseVersion("2.6.1"): _test_spop_resource_variables() # Placeholder test cases _test_spop_placeholder_without_shape_info() _test_spop_placeholder_with_shape_and_default_value() _test_spop_placeholder_numpy_arange_feed() _test_spop_placeholder_numpy_array_feed() # Function Invocation test cases _test_spop_function_invocation_basic() _test_spop_function_invocation_nested() _test_spop_function_invocation_no_autograph() _test_spop_function_invocation_defun() # Test cases for various other TF constructs _test_spop_arithmetic() _test_spop_control_flow() _test_spop_variables() _test_spop_constants() ####################################################################### # Dynamic input shape # ------------------- def test_forward_dynamic_input_shape(): """Dynamic input shape""" tf.reset_default_graph() with tf.Graph().as_default(): data = tf.placeholder(tf.float32, name="data", shape=(None,)) _ = data + 1 np_data = np.random.uniform(size=(2,)).astype("float32") out_name = "add" with tf.Session() as sess: graph_def = tf_testing.AddShapesToGraphDef(sess, out_name) tf_output = run_tf_graph(sess, np_data, "data:0", [f"{out_name}:0"]) # TODO(kevinthesun): enable gpu test when VM heterogeneous execution is ready. for device in ["llvm"]: _ = tvm.device(device, 0) if not tvm.testing.device_enabled(device): print(f"Skip because {device} is not enabled") continue tvm_output = run_tvm_graph( graph_def, np_data, ["data"], 1, target=device, layout="NCHW", out_names=[out_name], mode="vm", ignore_in_shape=True, ) tvm.testing.assert_allclose(tvm_output[0], tf_output[0], rtol=1e-5, atol=1e-5) def test_forward_dynmaic_rnn_lstmblockcell(): """Dynmaic rnn lstmblockcell""" if package_version.parse(tf.VERSION) >= package_version.parse("2.0.0"): return total_series_length = 50000 truncated_backprop_length = 15 state_size = 4 echo_step = 3 batch_size = 5 num_layers = 5 def generateData(): x = np.array(np.random.choice(2, total_series_length, p=[0.5, 0.5])) y = np.roll(x, echo_step) y[0:echo_step] = 0 x = x.reshape((batch_size, -1)) # The first index changing slowest, subseries as rows y = y.reshape((batch_size, -1)) return (x, y) batchX_placeholder = tf.placeholder(tf.float32, [batch_size, truncated_backprop_length]) init_state = tf.placeholder(tf.float32, [num_layers, 2, batch_size, state_size]) state_per_layer_list = tf.unstack(init_state, axis=0) rnn_tuple_state = tuple( list( tf.nn.rnn_cell.LSTMStateTuple( state_per_layer_list[idx][0], state_per_layer_list[idx][1] ) for idx in range(num_layers) ) ) # Forward passes def lstm_cell(): return tensorflow.contrib.rnn.LSTMBlockCell(state_size) cell = tf.nn.rnn_cell.MultiRNNCell( [lstm_cell() for _ in range(num_layers)], state_is_tuple=True ) states_series, current_state = tf.nn.dynamic_rnn( cell, tf.expand_dims(batchX_placeholder, -1), initial_state=rnn_tuple_state ) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) x, _ = generateData() _current_state = np.zeros((num_layers, 2, batch_size, state_size)) start_idx = 0 end_idx = start_idx + truncated_backprop_length batchX = x[:, start_idx:end_idx] # Save current state for TVM current_state_tvm = _current_state _current_state, _states_series = sess.run( [current_state, states_series], feed_dict={batchX_placeholder: batchX, init_state: _current_state}, ) # Organize results and corresponding names tf_output = [_states_series] for c in _current_state: tf_output.append(c.c) tf_output.append(c.h) name = [states_series.name.split(":")[0]] for t in current_state: name.append(t.c.name.split(":")[0]) name.append(t.h.name.split(":")[0]) graph_def = sess.graph.as_graph_def(add_shapes=True) final_graph_def = graph_util.convert_variables_to_constants(sess, graph_def, name) _ = run_tvm_graph( final_graph_def, [batchX.astype("float32"), current_state_tvm.astype("float32")], ["Placeholder", "Placeholder_1"], out_names=name, num_output=len(name), mode="vm", disabled_pass=["FoldScaleAxis"], ) # Compare result for _, tf_out in enumerate(tf_output): tvm.testing.assert_allclose(tf_out, tf_out, atol=1e-5, rtol=1e-5) ####################################################################### # Unique # ------------ def _test_unique(n, dtype, is_dyn): tf.reset_default_graph() np_data = np.random.randint(100, size=n).astype(dtype) with tf.Graph().as_default(): if is_dyn: in_data = tf.placeholder(dtype, [n], name="in_data") else: in_data = tf.constant(np_data, dtype, name="in_data") tf.unique(in_data) if is_dyn: compare_tf_with_tvm(np_data, "in_data:0", ["Unique:0", "Unique:1"], mode="vm") else: compare_tf_with_tvm(np_data, "", ["Unique:0", "Unique:1"], mode="vm") def test_forward_unique(): """test Unique""" for dtype in ["int32", "int64"]: for is_dyn in [False, True]: _test_unique(50, dtype, is_dyn) _test_unique(100, dtype, is_dyn) ####################################################################### # Unique with counts # ------------ def _test_unique_with_counts(n, dtype, is_dyn): tf.reset_default_graph() np_data = np.random.randint(100, size=n).astype(dtype) with tf.Graph().as_default(): if is_dyn: in_data = tf.placeholder(dtype, [n], name="in_data") else: in_data = tf.constant(np_data, dtype, name="in_data") tf.unique_with_counts(in_data) if is_dyn: compare_tf_with_tvm( np_data, "in_data:0", ["UniqueWithCounts:0", "UniqueWithCounts:1", "UniqueWithCounts:2"], mode="vm", ) else: compare_tf_with_tvm( np_data, "", ["UniqueWithCounts:0", "UniqueWithCounts:1", "UniqueWithCounts:2"], mode="vm", ) def test_forward_unique_with_counts(): """test UniqueWithCounts""" for dtype in ["int32", "int64"]: for is_dyn in [False, True]: _test_unique_with_counts(10, dtype, is_dyn) _test_unique_with_counts(20, dtype, is_dyn) ####################################################################### # check graph ir for nn.moments # ------------ def test_moments(): """NN.moments""" g = tf.Graph() shape = [4, 176, 8, 8] dtype = "float32" with g.as_default(): A = tf.placeholder(shape=shape, dtype=dtype, name="A") _ = tf.placeholder(shape=shape, dtype=dtype, name="B") mean, variance = tf.nn.moments(A, [1], keep_dims=True) _ = (A - mean) / tf.sqrt(variance + 0.0005) mod, _ = from_tensorflow(g.as_graph_def(add_shapes=True)) program = """ def @main(%A: Tensor[(4, 176, 8, 8), float32]) { %527 = mean(%A, axis=[1], keepdims=True) /* moments/mean */; %528 = subtract(%A, %527) /* sub */; %529 = subtract(%A, %527); %530 = multiply(%529, %529) /* moments/SquaredDifference */; %531 = mean(%530, axis=[1], keepdims=True) /* moments/variance */; %532 = add(%531, 0.0005f) /* add */; %533 = sqrt(%532) /* Sqrt */; divide(%528, %533) /* truediv */ } """ mod_golden = tvm.parser.parse('#[version = "0.0.5"]\n' + program) tvm.ir.assert_structural_equal(mod["main"].body, mod_golden["main"].body, map_free_vars=True) ####################################################################### # invert_permutation # -------------------- def test_invert_permutation(): """test InvertPermutation""" tf.reset_default_graph() input_shape = [6] x = np.array([3, 4, 0, 2, 1, 5]).astype("int32") with tf.Graph().as_default(): in_data = tf.placeholder(shape=input_shape, dtype="int32") tf.invert_permutation(in_data) out_name = "InvertPermutation:0" compare_tf_with_tvm(x, "Placeholder:0", out_name, no_gpu=False) ####################################################################### # Bincount # ---- def _test_bincount(in_shape, size, weights): with tf.Graph().as_default(): inputs = [] data = [] inputs.append(tf.placeholder(shape=in_shape, dtype="int32", name="input0")) data.append(np.random.uniform(0, size, size=in_shape).astype("int32")) inputs.append(tf.placeholder(shape=(), dtype="int32", name="size")) data.append(np.array(size, "int32")) if weights: inputs.append(tf.placeholder(shape=in_shape, dtype="float32", name="weights")) data.append(np.reshape(weights, in_shape).astype("float32")) else: inputs.append(tf.placeholder(shape=(0,), dtype="float32", name="weights")) data.append(np.array([], "float32")) result = tf.raw_ops.Bincount(arr=data[0], size=data[1], weights=data[2]) compare_tf_with_tvm(data, [a.name for a in inputs], result.name, mode="vm") def test_forward_bincount(): """Test Bincount Op""" # 2D input _test_bincount((3, 10), 20, [1.0] * 30) _test_bincount((3, 10), 20, [1.5] * 30) _test_bincount((3, 10), 20, None) # 1D input _test_bincount((10,), 20, [1.0] * 10) _test_bincount((10,), 20, [1.5] * 10) _test_bincount((10,), 20, None) ####################################################################### # DenseBincount # ---- def _test_dense_bincount(in_shape, size, weights, binary_output): with tf.Graph().as_default(): inputs = [] data = [] inputs.append(tf.placeholder(shape=in_shape, dtype="int32", name="input0")) data.append(np.random.uniform(0, size, size=in_shape).astype("int32")) inputs.append(tf.placeholder(shape=(), dtype="int32", name="size")) data.append(np.array(size, "int32")) if weights: inputs.append(tf.placeholder(shape=in_shape, dtype="float32", name="weights")) data.append(np.reshape(weights, in_shape).astype("float32")) else: inputs.append(tf.placeholder(shape=(0,), dtype="float32", name="weights")) data.append(np.array([], "float32")) result = tf.raw_ops.DenseBincount( input=data[0], size=data[1], weights=data[2], binary_output=binary_output, ) compare_tf_with_tvm(data, [a.name for a in inputs], result.name, mode="vm") def test_forward_dense_bincount(): """Test DenseBincount Op""" for binary_output in [False, True]: # 2D input _test_dense_bincount((3, 10), 20, [1.0] * 30, binary_output) _test_dense_bincount((3, 10), 20, [1.5] * 30, binary_output) _test_dense_bincount((3, 10), 20, None, binary_output) # 1D input _test_dense_bincount((10,), 20, [1.0] * 10, binary_output) _test_dense_bincount((10,), 20, [1.5] * 10, binary_output) _test_dense_bincount((10,), 20, None, binary_output) if __name__ == "__main__": pytest.main([__file__])
https://github.com/zk-ml/tachikoma
tests/python/frontend/tensorflow/test_no_op.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Unit tests for converting TensorFlow debugging ops to Relay.""" try: import tensorflow.compat.v1 as tf tf.disable_v2_behavior() except ImportError: import tensorflow as tf import numpy as np from tvm import relay from tvm.relay.frontend.tensorflow import from_tensorflow def run_relay(graph): mod, params = from_tensorflow(graph.as_graph_def(add_shapes=True)) return relay.create_executor("debug", mod=mod).evaluate()(**params) def test_no_op(): g = tf.Graph() with g.as_default(): no_op = tf.no_op() with tf.Session() as sess: # In TF, the type of a no-op is None. assert sess.run(no_op) is None # In TVM, no-op is currently translated to 0, though it should # probably be none or an empty tuple. np.testing.assert_allclose(0, run_relay(g).numpy()) if __name__ == "__main__": test_no_op()
https://github.com/zk-ml/tachikoma
tests/python/frontend/tensorflow2/common.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=import-self, invalid-name, unused-argument, too-many-lines, len-as-condition, broad-except # pylint: disable=import-outside-toplevel, redefined-builtin """TF2 to relay converter test utilities""" import tvm from tvm import relay from tvm.runtime.vm import VirtualMachine import tvm.contrib.graph_executor as runtime from tvm.relay.frontend.tensorflow2 import from_tensorflow import tvm.testing from tvm.relay.testing.tf import vmobj_to_list as vmobj_to_list import tensorflow as tf from tensorflow.python.eager.def_function import Function def run_tf_code(func, input_): if type(func) is Function: f_out = func(input_) if isinstance(f_out, (list, tuple)): np_out = [x.numpy() for x in f_out] else: np_out = [f_out.numpy()] else: f_out = func(tf.constant(input_)) if type(f_out) is dict: np_out = [f_out[k].numpy() for k in sorted(f_out.keys())] elif type(f_out) is list: np_out = [x.numpy() for x in f_out] else: np_out = f_out.numpy() return np_out def compile_graph_executor(mod, params, target="llvm", target_host="llvm", opt_level=3): with tvm.transform.PassContext(opt_level): lib = relay.build(mod, target=tvm.target.Target(target, host=target_host), params=params) return lib def compile_vm(mod, params, target="llvm", target_host="llvm", opt_level=3, disabled_pass=None): with tvm.transform.PassContext(opt_level, disabled_pass=disabled_pass): vm_exec = relay.vm.compile( mod, target=tvm.target.Target(target, host=target_host), params=params ) return vm_exec def run_vm(vm_exec, input_, ctx=tvm.cpu(0)): vm = VirtualMachine(vm_exec, ctx) _out = vm.invoke("main", input_) return vmobj_to_list(_out) def run_graph_executor(lib, input_, ctx=tvm.cpu(0)): mod = runtime.GraphModule(lib["default"](ctx)) mod.set_input(0, input_) mod.run() return [mod.get_output(i).numpy() for i in range(mod.get_num_outputs())] def compare_tf_tvm(gdef, input_, output_, runtime="vm", output_tensors=None): """compare tf and tvm execution for the same input. Parameters ---------- gdef: TF2 graph def extracted to be fed into from_tensorflow parser. (https://www.tensorflow.org/code/tensorflow/core/framework/graph.proto) input_: a single numpy array object output_: the expected output from TF to match TVM output with runtime: choose TVM runtime; either "vm" for VirtualMachine or "graph" for GraphExecutor output_tensors : List of output tensor names (Optional) if not specified then the last node is assumed as graph output. """ mod, params = from_tensorflow(gdef, outputs=output_tensors) if runtime == "vm": exec_ = compile_vm(mod, params) tvm_out = run_vm(exec_, input_) elif runtime == "graph": lib = compile_graph_executor(mod, params) tvm_out = run_graph_executor(lib, input_) else: raise RuntimeError("Runtime input not supported: %s" % runtime) tvm.testing.assert_allclose(output_, tvm_out, atol=1e-5)
https://github.com/zk-ml/tachikoma
tests/python/frontend/tensorflow2/test_functional_models.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=import-self, invalid-name, unused-argument, too-many-lines, len-as-condition, broad-except # pylint: disable=import-outside-toplevel, redefined-builtin """TF2 to relay converter test: tests basic examples""" import tempfile import tensorflow as tf import numpy as np import pytest from common import compare_tf_tvm from common import run_tf_code def _function_graph(TestClass): f = TestClass().func gdef = f.get_concrete_function().graph.as_graph_def() gdef_ops = list(set([n.op for n in gdef.node])) input_ = TestClass().get_input() output = run_tf_code(f, input_) return gdef, input_, output def _model_graph(TestClass): model = TestClass() with tempfile.TemporaryDirectory() as model_path: tf.saved_model.save(model, model_path) imported = tf.saved_model.load(model_path) f = imported.signatures["serving_default"] gdef = f.graph.as_graph_def(add_shapes=True) input_ = model.get_input() output = run_tf_code(f, input_) return gdef, input_, output def run_func_graph(TestClass, runtime="vm", outputs=None): compare_tf_tvm(*_function_graph(TestClass), runtime=runtime, output_tensors=outputs) def run_model_graph(TestClass, outputs=None): compare_tf_tvm(*_model_graph(TestClass), runtime="vm", output_tensors=outputs) def run_all(TestClass): run_model_graph(TestClass) for runtime_ in ["vm", "graph"]: run_func_graph(TestClass, runtime=runtime_) def test_add_one(): class AddOne(tf.Module): """simple function to test x=x+1; scalar as input""" def get_input(self): return np.array(1.0, dtype="float32") @tf.function(input_signature=[tf.TensorSpec(shape=(), dtype=tf.float32)]) def func(self, x): return x + 1 run_all(AddOne) def test_add_one_2d(): class AddOne2D(tf.Module): """2D array as input""" def get_input(self): return np.ones((2, 2), dtype="float32") @tf.function(input_signature=[tf.TensorSpec(shape=(2, 2), dtype=tf.float32)]) def func(self, x): return x + 1 run_all(AddOne2D) def test_add_one_2d_constant(): class AddOne2DConstant(tf.Module): """2D array as input with 2D constant as well; 2D constant stored in params after convert""" def get_input(self): return np.ones((2, 2), dtype="float32") @tf.function(input_signature=[tf.TensorSpec(shape=(2, 2), dtype=tf.float32)]) def func(self, x): return x + np.ones((2, 2), dtype="float32") run_all(AddOne2DConstant) def test_sub_one_2d_constant(): class SubOne2DConstant(tf.Module): """2D array as input with 2D constant as well; 2D constant stored in params after convert""" def get_input(self): return np.ones((2, 2), dtype="float32") @tf.function(input_signature=[tf.TensorSpec(shape=(2, 2), dtype=tf.float32)]) def func(self, x): return x - np.ones((2, 2), dtype="float32") run_all(SubOne2DConstant) def test_mul_one_2d_constant(): class MulOne2DConstant(tf.Module): """2D array as input with 2D constant as well; 2D constant stored in params after convert""" def get_input(self): return np.ones((2, 2), dtype="float32") @tf.function(input_signature=[tf.TensorSpec(shape=(2, 2), dtype=tf.float32)]) def func(self, x): return x * np.ones((2, 2), dtype="float32") run_all(MulOne2DConstant) def test_div_one_2d_constant(): class DivOne2DConstant(tf.Module): """2D array as input with 2D constant as well; 2D constant stored in params after convert""" def get_input(self): return np.ones((2, 2), dtype="float32") @tf.function(input_signature=[tf.TensorSpec(shape=(2, 2), dtype=tf.float32)]) def func(self, x): return x / np.ones((2, 2), dtype="float32") run_all(DivOne2DConstant) def test_strided_slice(): class StridedSlice(tf.Module): def get_input(self): return np.ones((3, 2, 3), dtype=np.float32) @tf.function(input_signature=[tf.TensorSpec(shape=(3, 2, 3), dtype=tf.float32)]) def func(self, x): return tf.strided_slice(x, [1, 0, 0], [2, 1, 3], [1, 1, 1]) run_all(StridedSlice) def test_split(): class Split(tf.Module): def get_input(self): return np.ones((1, 30), dtype=np.float32) @tf.function(input_signature=[tf.TensorSpec(shape=(1, 30), dtype=tf.float32)]) def func(self, x): a, b, c = tf.split(x, 3, axis=1) return tf.raw_ops.Pack(values=[a, b, c], axis=1) run_all(Split) def test_shape(): class Shape(tf.Module): def get_input(self): return np.ones((3, 2, 3), dtype=np.float32) @tf.function(input_signature=[tf.TensorSpec(shape=(3, 2, 3), dtype=tf.float32)]) def func(self, x): a = tf.ones_like(tf.raw_ops.Shape(input=x), dtype=tf.float32) return a + x run_all(Shape) def test_pack(): class Pack(tf.Module): def get_input(self): return np.ones((2, 3), dtype=np.float32) @tf.function(input_signature=[tf.TensorSpec(shape=(2, 3), dtype=tf.float32)]) def func(self, x): return tf.raw_ops.Pack(values=[x, x], axis=0) run_all(Pack) def test_max(): class Maximum(tf.Module): def get_input(self): return np.ones((1, 30), dtype=np.float32) @tf.function(input_signature=[tf.TensorSpec(shape=(1, 30), dtype=tf.float32)]) def func(self, x): a, b = tf.split(x, 2, axis=1) return tf.math.maximum(a, b, name=None) run_all(Maximum) def test_less(): class Less(tf.Module): def get_input(self): return np.ones((1, 30), dtype=np.float32) @tf.function(input_signature=[tf.TensorSpec(shape=(1, 30), dtype=tf.float32)]) def func(self, x): a, b = tf.split(x, 2, axis=1) return tf.math.less(a, b, name=None) run_all(Less) def test_equal(): class Equal(tf.Module): def get_input(self): return np.ones((1, 30), dtype=np.float32) @tf.function(input_signature=[tf.TensorSpec(shape=(1, 30), dtype=tf.float32)]) def func(self, x): a, b = tf.split(x, 2, axis=1) return tf.math.equal(a, b, name=None) run_all(Equal) def test_cast(): class Cast(tf.Module): def get_input(self): return np.ones((1, 30), dtype=np.float32) @tf.function(input_signature=[tf.TensorSpec(shape=(1, 30), dtype=tf.float32)]) def func(self, x): return tf.cast(x, tf.int32) run_all(Cast) def test_expand_dims(): class ExpandDims(tf.Module): def get_input(self): return np.ones((1, 30), dtype=np.float32) @tf.function(input_signature=[tf.TensorSpec(shape=(1, 30), dtype=tf.float32)]) def func(self, x): return tf.expand_dims(x, axis=2) run_all(ExpandDims) def test_transpose(): class Transpose(tf.Module): def get_input(self): return np.ones((1, 30), dtype=np.float32) @tf.function(input_signature=[tf.TensorSpec(shape=(1, 30), dtype=tf.float32)]) def func(self, x): x = tf.expand_dims(x, axis=2) return tf.transpose(x, perm=[0, 2, 1]) run_all(Transpose) def test_reshape(): class Reshape(tf.Module): def get_input(self): return np.ones((1, 30), dtype=np.float32) @tf.function(input_signature=[tf.TensorSpec(shape=(1, 30), dtype=tf.float32)]) def func(self, x): return tf.reshape(x, (1, 2, 15)) run_all(Reshape) def test_tanh(): class Tanh(tf.Module): def get_input(self): return np.ones((1, 30), dtype=np.float32) @tf.function(input_signature=[tf.TensorSpec(shape=(1, 30), dtype=tf.float32)]) def func(self, x): return tf.math.tanh(x) run_all(Tanh) def test_sigmoid(): class Sigmoid(tf.Module): def get_input(self): return np.ones((1, 30), dtype=np.float32) @tf.function(input_signature=[tf.TensorSpec(shape=(1, 30), dtype=tf.float32)]) def func(self, x): return tf.math.sigmoid(x) run_all(Sigmoid) def test_relu(): class Relu(tf.Module): def get_input(self): return np.ones((1, 30), dtype=np.float32) @tf.function(input_signature=[tf.TensorSpec(shape=(1, 30), dtype=tf.float32)]) def func(self, x): return tf.nn.relu(x) run_all(Relu) def test_floor(): class Floor(tf.Module): def get_input(self): return np.ones((1, 30), dtype=np.float32) @tf.function(input_signature=[tf.TensorSpec(shape=(1, 30), dtype=tf.float32)]) def func(self, x): return tf.math.floor(x) run_all(Floor) def test_floor_mod(): class FloorMod(tf.Module): def get_input(self): return np.ones((1, 30), dtype=np.float32) @tf.function(input_signature=[tf.TensorSpec(shape=(1, 30), dtype=tf.float32)]) def func(self, x): a, b = tf.split(x, 2, axis=1) return tf.math.floormod(a, b) run_all(FloorMod) def test_concat_v2(): class ConcatV2(tf.Module): def get_input(self): return np.ones((1, 30), dtype=np.float32) @tf.function(input_signature=[tf.TensorSpec(shape=(1, 30), dtype=tf.float32)]) def func(self, x): a, b, c = tf.split(x, 3, axis=1) axis = tf.add(tf.constant(1, dtype="int32"), tf.constant(0, dtype="int32")) return tf.raw_ops.ConcatV2(values=[a, b, c], axis=axis) run_all(ConcatV2) def test_multi_output(): class MultiOutput(tf.Module): def get_input(self): return np.ones((2, 2), dtype="float32") @tf.function(input_signature=[tf.TensorSpec(shape=(2, 2), dtype=tf.float32)]) def func(self, x): y = 2 * x return x, y run_func_graph(MultiOutput, runtime="vm", outputs=["Identity:output:0", "Identity_1:output:0"]) run_func_graph( MultiOutput, runtime="graph", outputs=["Identity:output:0", "Identity_1:output:0"] ) run_model_graph(MultiOutput, outputs=["Identity:output:0"]) def test_if(): def create_if_class(_condition=True): class If(tf.Module): def get_input(self): return np.ones((2, 2), dtype="float32") @tf.function(input_signature=[tf.TensorSpec(shape=(2, 2), dtype=tf.float32)]) def func(self, x): @tf.function(input_signature=[tf.TensorSpec(shape=(2, 2), dtype=tf.float32)]) def double(x): return 2 * x @tf.function(input_signature=[tf.TensorSpec(shape=(2, 2), dtype=tf.float32)]) def triple(x): return 3 * x output = tf.raw_ops.If( cond=_condition, input=[x], Tout=[tf.float32], output_shapes=[(2, 2)], then_branch=double.get_concrete_function(), else_branch=triple.get_concrete_function(), ) return output[0] return If for cond in [True, False]: if_class = create_if_class(_condition=cond) run_func_graph(if_class, runtime="vm") run_model_graph(if_class) def test_stateless_while(): class StatelessWhile(tf.Module): def get_input(self): return np.array([6], dtype="float32") @tf.function(input_signature=[tf.TensorSpec(shape=(1,), dtype=tf.float32)]) def func(self, x): i = tf.constant(3.0) cond = lambda i: tf.less(i, x) body = lambda i: (tf.add(i, 2),) r = tf.while_loop(cond, body, [i]) return r[0] run_func_graph(StatelessWhile, runtime="vm") run_model_graph(StatelessWhile) def test_stateless_while_2var(): class StatelessWhile2Var(tf.Module): def get_input(self): return np.array([20], dtype="float32") @tf.function(input_signature=[tf.TensorSpec(shape=(1,), dtype=tf.float32)]) def func(self, x): i = tf.constant(3.0) j = tf.constant(5.0) cond = lambda i, j: tf.less(i + j, x) body = lambda i, j: (tf.add(i, 2), tf.add(j, 3)) r = tf.while_loop(cond, body, [i, j]) return r run_func_graph( StatelessWhile2Var, runtime="vm", outputs=["Identity:output:0", "Identity_1:output:0"] ) run_model_graph(StatelessWhile2Var, outputs=["Identity:output:0"]) def test_tensorlist(): def run_test(elem_shape): class TensorList(tf.Module): def get_input(self): in_tens = np.ones((2, 3), dtype="float32") in_tens[1, :] = np.zeros((3,), dtype="float32") return in_tens @tf.function(input_signature=[tf.TensorSpec(shape=(2, 3), dtype=tf.float32)]) def func(self, x): dtype = tf.float32 tl = tf.raw_ops.TensorListReserve( element_shape=elem_shape, num_elements=2, element_dtype=dtype ) tl = tf.raw_ops.TensorListSetItem(input_handle=tl, index=0, item=x[0, :]) tl = tf.raw_ops.TensorListSetItem(input_handle=tl, index=1, item=x[1, :]) output = tf.raw_ops.TensorListGetItem( input_handle=tl, index=0, element_shape=elem_shape, element_dtype=dtype ) return output run_model_graph(TensorList) run_func_graph(TensorList, runtime="vm") run_test((3,)) run_test((-1,)) def test_tensorlist_stack(): def run_test(elem_shape): class TensorListStack(tf.Module): def get_input(self): in_tens = np.ones((2, 3), dtype="float32") in_tens[1] = np.zeros((3,), dtype="float32") return in_tens @tf.function(input_signature=[tf.TensorSpec(shape=(2, 3), dtype=tf.float32)]) def func(self, x): dtype = tf.float32 tl = tf.raw_ops.TensorListReserve( element_shape=elem_shape, num_elements=2, element_dtype=dtype ) tl = tf.raw_ops.TensorListFromTensor(tensor=x, element_shape=elem_shape) output = tf.raw_ops.TensorListStack( input_handle=tl, element_shape=elem_shape, element_dtype=dtype ) return output run_model_graph(TensorListStack) run_func_graph(TensorListStack, runtime="vm") run_test((3,)) run_test((-1,)) def test_tensorlist_2d(): def run_test(elem_shape): class TensorList2D(tf.Module): def get_input(self): in_tens = np.ones((2, 3, 4), dtype="float32") in_tens[1, :, :] = np.zeros((3, 4), dtype="float32") return in_tens @tf.function(input_signature=[tf.TensorSpec(shape=(2, 3, 4), dtype=tf.float32)]) def func(self, x): dtype = tf.float32 tl = tf.raw_ops.TensorListReserve( element_shape=elem_shape, num_elements=2, element_dtype=dtype ) tl = tf.raw_ops.TensorListSetItem(input_handle=tl, index=0, item=x[0, :, :]) tl = tf.raw_ops.TensorListSetItem(input_handle=tl, index=1, item=x[1, :, :]) output = tf.raw_ops.TensorListGetItem( input_handle=tl, index=0, element_shape=elem_shape, element_dtype=dtype ) return output run_model_graph(TensorList2D) run_func_graph(TensorList2D, runtime="vm") run_test((3, 4)) run_test((-1, -1)) def test_tensorlist_stack_2d(): def run_test(elem_shape): class TensorListStack2D(tf.Module): def get_input(self): in_tens = np.ones((2, 3, 4), dtype="float32") in_tens[1, :, :] = np.zeros((3, 4), dtype="float32") return in_tens @tf.function(input_signature=[tf.TensorSpec(shape=(2, 3, 4), dtype=tf.float32)]) def func(self, x): dtype = tf.float32 tl = tf.raw_ops.TensorListReserve( element_shape=elem_shape, num_elements=2, element_dtype=dtype ) tl = tf.raw_ops.TensorListFromTensor(tensor=x, element_shape=elem_shape) output = tf.raw_ops.TensorListStack( input_handle=tl, element_shape=elem_shape, element_dtype=dtype ) return output run_model_graph(TensorListStack2D) run_func_graph(TensorListStack2D, runtime="vm") run_test((3, 4)) run_test((-1, -1)) def test_tensorlist_stack_unpack(): def run_test(elem_shape): class TensorListStack2D(tf.Module): def get_input(self): in_tens = np.ones((1, 3, 4), dtype="float32") return in_tens @tf.function(input_signature=[tf.TensorSpec(shape=(1, 3, 4), dtype=tf.float32)]) def func(self, x): dtype = tf.float32 tl = tf.raw_ops.TensorListReserve( element_shape=elem_shape, num_elements=1, element_dtype=dtype ) tl = tf.raw_ops.TensorListSetItem(input_handle=tl, index=0, item=x[0, :, :]) output = tf.raw_ops.TensorListStack( input_handle=tl, element_shape=elem_shape, element_dtype=dtype, num_elements=1 ) output = tf.raw_ops.Unpack(value=output, num=1, axis=0) return output run_model_graph(TensorListStack2D) run_func_graph(TensorListStack2D, runtime="vm") run_test((3, 4)) run_test((-1, -1)) def test_bincount_1d(): def run_test(weights, minlength, maxlength, axis, binary_output): class Bincount1D(tf.Module): def get_input(self): return np.random.uniform(low=0, high=maxlength, size=(100,)).astype("int32") @tf.function(input_signature=[tf.TensorSpec(shape=[None], dtype=tf.int32)]) def func(self, x): return tf.math.bincount( x, weights=weights, minlength=minlength, maxlength=maxlength, axis=axis, binary_output=binary_output, ) run_model_graph(Bincount1D) run_func_graph(Bincount1D, runtime="vm") for axis in [None, 0, -1]: run_test(weights=None, minlength=20, maxlength=20, axis=axis, binary_output=False) run_test(weights=None, minlength=20, maxlength=20, axis=axis, binary_output=True) # weights and axis=None need operator UnsortedSegmentSum to be implemented. Skip axis=None weights = np.random.uniform(low=0.2, high=5, size=(100,)).astype("float32") for axis in [0, -1]: run_test(weights=weights, minlength=20, maxlength=20, axis=axis, binary_output=False) def test_bincount_2d(): def run_test(weights, minlength, maxlength, axis, binary_output): class Bincount2D(tf.Module): def get_input(self): return np.random.uniform(low=0, high=maxlength, size=(3, 100)).astype("int32") @tf.function(input_signature=[tf.TensorSpec([None, None], tf.int32)]) def func(self, x): return tf.math.bincount( x, weights=weights, minlength=minlength, maxlength=maxlength, axis=axis, binary_output=binary_output, ) run_model_graph(Bincount2D) run_func_graph(Bincount2D, runtime="vm") for axis in [None, 0, -1]: run_test(weights=None, minlength=20, maxlength=20, axis=axis, binary_output=False) run_test(weights=None, minlength=20, maxlength=20, axis=axis, binary_output=True) # weights and axis=None need operator UnsortedSegmentSum to be implemented. Skip axis=None weights = np.random.uniform(low=0.2, high=5, size=(3, 100)).astype("float32") for axis in [0, -1]: run_test(weights=weights, minlength=20, maxlength=20, axis=axis, binary_output=False) if __name__ == "__main__": pytest.main([__file__])
https://github.com/zk-ml/tachikoma
tests/python/frontend/tensorflow2/test_sequential_models.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=import-self, invalid-name, unused-argument, too-many-lines, len-as-condition, broad-except # pylint: disable=import-outside-toplevel, redefined-builtin """TF2 to relay converter test: testing models built with tf.keras.Sequential()""" import tempfile import numpy as np import pytest import tensorflow as tf from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 from common import compare_tf_tvm from common import run_tf_code def run_sequential_model(model_fn, input_shape): def get_input(shape): _input = np.random.uniform(0, 1, shape).astype(dtype="float32") return _input def save_and_reload(_model): with tempfile.TemporaryDirectory() as model_path: tf.saved_model.save(_model, model_path) loaded = tf.saved_model.load(model_path) func = loaded.signatures["serving_default"] frozen_func = convert_variables_to_constants_v2(func) return frozen_func def model_graph(model, input_shape): _input = get_input(input_shape) f = save_and_reload(model(input_shape)) _output = run_tf_code(f, _input) gdef = f.graph.as_graph_def(add_shapes=True) return gdef, _input, _output compare_tf_tvm(*model_graph(model_fn, input_shape), runtime="vm") def test_dense_model(): def dense_model(input_shape, num_units=128): return tf.keras.Sequential( [tf.keras.layers.Flatten(input_shape=input_shape[1:]), tf.keras.layers.Dense(num_units)] ) run_sequential_model(dense_model, input_shape=(1, 28, 28)) def test_mnist_model(): def mnist_model(input_shape): return tf.keras.Sequential( [ tf.keras.layers.Flatten(input_shape=input_shape[1:]), tf.keras.layers.Dense(128, activation="relu"), tf.keras.layers.Dense(10), ] ) run_sequential_model(mnist_model, input_shape=(1, 28, 28)) def test_conv2d_model(): def conv2d_model(input_shape, kernel=(3, 3), filters=16): model = tf.keras.Sequential( [ tf.keras.layers.Input(shape=input_shape[1:], batch_size=1), tf.keras.layers.Conv2D(filters, kernel), ] ) return model run_sequential_model(conv2d_model, input_shape=(1, 32, 32, 3)) def test_maxpool_model(): def maxpool_model(input_shape, pool_size=(2, 2)): model = tf.keras.Sequential( [tf.keras.layers.MaxPool2D(pool_size=pool_size, input_shape=input_shape[1:])] ) return model run_sequential_model(maxpool_model, input_shape=(1, 32, 32, 3)) def test_maxpool_batchnorm_model(): def maxpool_batchnorm_model(input_shape, pool_size=(2, 2)): model = tf.keras.Sequential( [ tf.keras.layers.MaxPool2D(pool_size=pool_size, input_shape=input_shape[1:]), tf.keras.layers.BatchNormalization(), ] ) return model run_sequential_model(maxpool_batchnorm_model, input_shape=(1, 32, 32, 3)) def test_tensorlist_stack_model(): def tensorlist_stack_model(input_shape): class TensorArrayStackLayer(tf.keras.layers.Layer): def __init__(self): super().__init__() def call(self, inputs): inputs = tf.squeeze(inputs) outputs = tf.TensorArray( tf.float32, size=inputs.shape[0], infer_shape=False, element_shape=inputs.shape[1:], ) outputs = outputs.unstack(inputs) return outputs.stack() input_shape = (3, 32) model = tf.keras.Sequential( [tf.keras.layers.Input(shape=input_shape, batch_size=1), TensorArrayStackLayer()] ) return model run_sequential_model(tensorlist_stack_model, input_shape=(3, 32)) def test_tensorlist_read_model(): def tensorlist_read_model(input_shape): class TensorArrayReadLayer(tf.keras.layers.Layer): def __init__(self): super().__init__() def call(self, inputs): inputs = tf.squeeze(inputs) outputs = tf.TensorArray( tf.float32, size=inputs.shape[0], infer_shape=False, element_shape=inputs.shape[1:], ) for i in range(inputs.shape[0]): outputs = outputs.write(i, inputs[i, :]) return outputs.read(0) input_shape = (3, 32) model = tf.keras.Sequential( [tf.keras.layers.Input(shape=input_shape, batch_size=1), TensorArrayReadLayer()] ) return model run_sequential_model(tensorlist_read_model, input_shape=(3, 32)) if __name__ == "__main__": pytest.main([__file__])
https://github.com/zk-ml/tachikoma
tests/python/frontend/test_common.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from tvm.relay.frontend.common import StrAttrsDict def test_key_is_present(): attrs = StrAttrsDict({"a": 1}) assert attrs.has_attr("a") def test_key_is_not_present(): attrs = StrAttrsDict({"a": 1}) assert not attrs.has_attr("b") if __name__ == "__main__": test_key_is_present() test_key_is_present()
https://github.com/zk-ml/tachikoma
tests/python/frontend/tflite/test_forward.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=unused-argument, import-outside-toplevel, inconsistent-return-statements """ TFLite testcases ================ This article is a test script to test TFLite operator with Relay. """ from __future__ import print_function from functools import partial from distutils.version import LooseVersion import os import tempfile from packaging import version as package_version import pytest import numpy as np from PIL import Image import tvm import tvm.relay.testing.tf as tf_testing from tvm.contrib.download import download_testdata from tvm import relay from tvm.contrib import graph_executor from tflite.BuiltinOperator import BuiltinOperator try: import tensorflow.compat.v1 as tf # tensorflow.python.framework.ops module itself is not part of # TensorFlow's public API: the precise contents of that module # may vary from one version to the next import tensorflow.compat.v1 as ops except ImportError: import tensorflow as tf import tensorflow as ops from tensorflow.python.framework import constant_op from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import image_ops from tensorflow.python.ops import gen_array_ops from tensorflow.python.ops import nn_impl from tensorflow.python.ops import variables try: from tensorflow import lite as interpreter_wrapper except ImportError: from tensorflow.contrib import lite as interpreter_wrapper ####################################################################### # Generic run functions for TVM & TFLite # -------------------------------------- def convert_to_list(x): if not isinstance(x, list): x = [x] return x ####################################################################### # Get a real image for e2e testing # -------------------------------- def get_real_image(im_height, im_width, quantized=True): repo_base = "https://github.com/dmlc/web-data/raw/main/tensorflow/models/InceptionV1/" img_name = "elephant-299.jpg" image_url = os.path.join(repo_base, img_name) img_path = download_testdata(image_url, img_name, module="data") image = Image.open(img_path).resize((im_height, im_width)) x = np.array(image).astype("uint8") if quantized else np.array(image).astype("float32") data = np.reshape(x, (1, im_height, im_width, 3)) return data def pre_processed_image(height, width): """Image preprocessed""" repo_base = "https://github.com/dmlc/web-data/raw/main/tensorflow/models/InceptionV1/" img_name = "elephant-299.jpg" image_url = os.path.join(repo_base, img_name) img_path = download_testdata(image_url, img_name, module="data") image = tf.io.read_file(img_path) image = tf.image.decode_jpeg(image, channels=3) with tf.name_scope("eval_image"): if image.dtype != tf.float32: image = tf.image.convert_image_dtype(image, dtype=tf.float32) image = tf.image.central_crop(image, central_fraction=0.875) # Resize the image to the specified height and width. image = tf.image.resize(image, [height, width], align_corners=False) image = tf.expand_dims(image, axis=0) return image def get_real_image_object_detection(im_height, im_width): repo_base = "https://github.com/dmlc/web-data/raw/main/gluoncv/detection/" img_name = "street_small.jpg" image_url = os.path.join(repo_base, img_name) img_path = download_testdata(image_url, img_name, module="data") image = Image.open(img_path).resize((im_height, im_width)) x = np.array(image).astype("uint8") data = np.reshape(x, (1, im_height, im_width, 3)) return data def vmobj_to_list(obj): """Converts TVM objects returned by VM execution to Python List.""" if isinstance(obj, tvm.nd.NDArray): return [obj.numpy().tolist()] elif isinstance(obj, tvm.runtime.container.ADT): result = [] for f in obj: result.extend(vmobj_to_list(f)) return result elif isinstance(obj, tvm.relay.backend.interpreter.ConstructorValue): if obj.constructor.name_hint == "Cons": t_l = vmobj_to_list(obj.fields[1]) h_d = vmobj_to_list(obj.fields[0]) h_d.extend(t_l) return h_d elif obj.constructor.name_hint == "Nil": return [] elif "tensor_nil" in obj.constructor.name_hint: return [0] elif "tensor" in obj.constructor.name_hint: return [obj.fields[0].numpy()] else: raise RuntimeError(f"Unknown object type: {obj.constructor.name_hint}") else: raise RuntimeError(f"Unknown object type: {type(obj)}") def _quantize_keras_model( keras_model, representative_data_gen, is_float_input=False, is_float_output=False, int_quant_dtype=tf.int8, ): """Utility function to quantize a Keras model using TFLite converter.""" converter = interpreter_wrapper.TFLiteConverter.from_keras_model(keras_model) if int_quant_dtype == tf.int8: converter.optimizations = [tf.lite.Optimize.OPTIMIZE_FOR_SIZE] converter.representative_dataset = representative_data_gen converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8] inference_dtype = tf.uint8 elif int_quant_dtype == tf.int16: converter.optimizations = [tf.lite.Optimize.DEFAULT] converter.representative_dataset = representative_data_gen converter.target_spec.supported_ops = [ tf.lite.OpsSet.EXPERIMENTAL_TFLITE_BUILTINS_ACTIVATIONS_INT16_WEIGHTS_INT8 ] inference_dtype = tf.uint16 else: raise RuntimeError( f"Invalid quantized dtype {int_quant_dtype}. Supported types: int8, int16." ) # NOTE: If representative dataset is provided, and inference input type is not set, # then converter will self add quant & dequant Op accordingly. if not is_float_input: converter.inference_input_type = inference_dtype if not is_float_output: converter.inference_output_type = inference_dtype return converter.convert() def run_tvm_graph( tflite_model_buf, input_data, input_node, num_output=1, target="llvm", out_names=None, mode="graph_executor", op_converter=relay.frontend.tflite.OperatorConverter, ): """Generic function to compile on relay and execute on tvm""" # TFLite.Model.Model has changed to TFLite.Model from 1.14 to 2.1 try: import tflite.Model tflite_model = tflite.Model.Model.GetRootAsModel(tflite_model_buf, 0) except AttributeError: import tflite tflite_model = tflite.Model.GetRootAsModel(tflite_model_buf, 0) except ImportError as exc: raise ImportError("The tflite package must be installed") from exc input_data = convert_to_list(input_data) input_node = convert_to_list(input_node) shape_dict = {} dtype_dict = {} for i, node in enumerate(input_node): shape_dict[node] = input_data[i].shape dtype_dict[node] = input_data[i].dtype.name mod, params = relay.frontend.from_tflite( tflite_model, shape_dict=shape_dict, dtype_dict=dtype_dict, op_converter=op_converter ) if mode in ["debug", "vm"]: inputs = [] for param in mod["main"].params: found = False for i, n in enumerate(input_node): if n == param.name_hint: found = True inputs.append(tvm.nd.array(input_data[i])) break # Interpreter doesn't bind constants, so still need to find in params if not found: inputs.append(tvm.nd.array(params[param.name_hint])) result = relay.create_executor(mode, mod=mod, device=tvm.cpu(), target="llvm").evaluate()( *inputs ) return vmobj_to_list(result) else: with tvm.transform.PassContext(opt_level=3): lib = relay.build(mod, target, params=params) dev = tvm.device(target, 0) m = graph_executor.GraphModule(lib["default"](dev)) # set inputs for i, node in enumerate(input_node): m.set_input(node, tvm.nd.array(input_data[i].astype(input_data[i].dtype))) # execute m.run() # get outputs assert out_names is None or num_output == len( out_names ), f"out_names: {out_names} num_output: {num_output}" tvm_output_list = [] for i in range(0, num_output): tvm_output = m.get_output(i) tvm_output_list.append(tvm_output.numpy()) return tvm_output_list def run_tflite_graph(tflite_model_buf, input_data): """Generic function to execute TFLite""" input_data = convert_to_list(input_data) interpreter = interpreter_wrapper.Interpreter(model_content=tflite_model_buf) input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() for i, input_detail in enumerate(input_details): interpreter.resize_tensor_input(input_detail["index"], input_data[i].shape) interpreter.allocate_tensors() # set input assert len(input_data) == len(input_details) for i, input_detail in enumerate(input_details): interpreter.set_tensor(input_detail["index"], input_data[i]) # Run interpreter.invoke() # get output tflite_output = [] for _, output_detail in enumerate(output_details): tflite_output.append(interpreter.get_tensor(output_detail["index"])) return tflite_output def compare_tflite_with_tvm( in_data, in_name, input_tensors, output_tensors, init_global_variables=False, out_names=None, quantized=False, input_range=None, mode="graph_executor", experimental_new_converter=False, fp16_quantized=False, int_quant_dtype=tf.int8, ): """Generic function to generate and compare TFLite and TVM output""" in_data = convert_to_list(in_data) in_name = convert_to_list(in_name) out_names = convert_to_list(out_names) in_node = [0] * len(in_name) for i, _ in enumerate(in_name): in_node[i] = in_name[i].split(":")[0] if ":" in in_name[i] else in_name[i] with tf.Session() as sess: if init_global_variables: sess.run(variables.global_variables_initializer()) # convert to tflite model converter = tf.lite.TFLiteConverter.from_session(sess, input_tensors, output_tensors) converter.experimental_new_converter = experimental_new_converter if quantized: if int_quant_dtype == tf.int16: converter.optimizations = [tf.lite.Optimize.DEFAULT] converter.target_spec.supported_ops = [ tf.lite.OpsSet.EXPERIMENTAL_TFLITE_BUILTINS_ACTIVATIONS_INT16_WEIGHTS_INT8 ] else: # default to int8 quantization converter.inference_type = tf.lite.constants.QUANTIZED_UINT8 input_arrays = converter.get_input_arrays() input_stats = {} # calculate the mean and quantization scale for every input tensor, # with respect to its fp32 input range, defined in fake_quant. # s = 255/(fmax-fmin); m = -fmin*s (the zero point) for i in input_arrays: try: quant_scale = 255 / (input_range[i][1] - input_range[i][0]) except ZeroDivisionError: print("Min and max of the input range for tensor " + i + " can't be equal") mean = -input_range[i][0] * quant_scale input_stats[i] = (mean, quant_scale) converter.quantized_input_stats = input_stats elif fp16_quantized: converter.optimizations = [tf.lite.Optimize.DEFAULT] converter.target_spec.supported_types = [tf.float16] tflite_model_buffer = converter.convert() tflite_output = run_tflite_graph(tflite_model_buffer, in_data) for device in ["llvm"]: _ = tvm.device(device, 0) if not tvm.testing.device_enabled(device): print(f"Skip because {device} is not enabled") continue tvm_output = run_tvm_graph( tflite_model_buffer, in_data, in_node, target=device, num_output=len(out_names), out_names=out_names, mode=mode, ) # WARNING: the results could well be random values clipped to 0 or 255 because of badly # tuned output range for the specific operator. While adding test ensure that we aren't # getting only clipped values in output tensors that still pass the assertion. # For reference see _test_elemwise_qnn_out_range() if quantized and not fp16_quantized: for i, _ in enumerate(tflite_output): # allow absolute tolerance of 1 in the quantized results tvm.testing.assert_allclose( tflite_output[i], # pylint: disable=unnecessary-list-index-lookup tvm_output[i], atol=1, rtol=1e-5, ) else: for i, _ in enumerate(tflite_output): tvm.testing.assert_allclose( tflite_output[i], # pylint: disable=unnecessary-list-index-lookup tvm_output[i], atol=1e-5, rtol=1e-5, ) def with_fused_activation_function(input_tensor, fn_name): """Fused activation function""" if fn_name is None or fn_name == "NONE": return input_tensor if fn_name == "RELU": return nn_ops.relu(input_tensor) if fn_name == "RELU6": return nn_ops.relu6(input_tensor) if fn_name == "RELU_N1_TO_1": return math_ops.maximum(-1, math_ops.minimum(input_tensor, 1)) if fn_name == "TANH": return math_ops.tanh(input_tensor) raise AssertionError(f"Unknown fused_activation_function {fn_name}") def _test_split(in_shape, axis, num_splits, dtype): """internal split tester taking as parameters in_shape, number of tensors to split into and dtype (data type)""" np_data = np.random.uniform(-5, 5, size=in_shape).astype(dtype) with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=in_shape, dtype=dtype, name="in_data") out = array_ops.split(in_data, num_splits, axis=axis) num_splits = len(num_splits) if isinstance(num_splits, list) else num_splits out_names = ["out_" + str(n) + ":0" for n in range(num_splits)] compare_tflite_with_tvm([np_data], ["in_data"], [in_data], out, out_names=out_names) def test_forward_split(): """test split layer""" # rank 1 _test_split((3,), 0, 1, "float32") _test_split((3,), 0, 3, "float32") _test_split((6,), 0, 3, "float32") # rank 2 _test_split((6, 2), 0, 3, "float32") _test_split((2, 6), 1, 6, "float32") # rank 3 if package_version.parse(tf.VERSION) >= package_version.parse("1.14.0"): _test_split((6, 2, 4), 0, 2, "int32") _test_split((2, 6, 4), 1, 3, "float32") _test_split((2, 4, 6), 2, 1, "float32") # rank 4 _test_split((6, 1, 3, 5), 0, 3, "float32") _test_split((1, 6, 3, 5), 1, 3, "float32") _test_split((1, 3, 6, 5), 2, 3, "float32") _test_split((1, 3, 5, 6), 3, 3, "float32") # split along negative axis _test_split((6, 1, 3, 5), -4, 3, "float32") _test_split((1, 6, 3, 5), -3, 3, "float32") _test_split((1, 3, 6, 5), -2, 3, "float32") _test_split((1, 3, 5, 6), -1, 3, "float32") # size_splits split _test_split((6,), 0, [1, 2, 3], "float32") _test_split((3, 6, 4), -2, [1, 4, 1], "float32") ####################################################################### # slice # ----- def _test_slice(data, begin, size): """One iteration of SLICE""" with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) out = array_ops.slice(in_data, begin, size) compare_tflite_with_tvm(data, "Placeholder:0", [in_data], [out]) def test_forward_slice(): """SLICE""" _test_slice(np.arange(4, dtype=np.float32).reshape((4,)), begin=[0], size=[2]) _test_slice(np.arange(18, dtype=np.int32).reshape((3, 2, 3)), begin=[1, 0, 0], size=[1, 1, 3]) # tflite 1.13 outputs nonsense values if size[i] == -1 if package_version.parse(tf.VERSION) >= package_version.parse("1.14.0"): _test_slice(np.arange(8, dtype=np.int32).reshape((2, 4)), begin=[0, 1], size=[-1, -1]) _test_slice(np.arange(5, dtype=np.int32).reshape((5,)), begin=[4], size=[-1]) ####################################################################### # Topk # ---- def _test_topk(in_shape, k=1): """One iteration of TOPK""" data = np.random.uniform(size=in_shape).astype("float32") with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) out = nn_ops.top_k(in_data, k, name="TopK") compare_tflite_with_tvm(data, "Placeholder:0", [in_data], [out[0]]) def test_forward_topk(): """TOPK""" _test_topk((3,), 1) _test_topk((3,), 3) _test_topk((3, 5, 7), 3) _test_topk((3, 5, 7), 3) ####################################################################### # Gather # ------ def _test_gather(dshape, indices, axis, dtype, quantized=False, oob=False, wrap_idx=False): """One iteration of Gather""" indices = np.asarray(indices).astype("int32") data = np.random.uniform(1, 10, size=dshape) data = data.astype(np.uint8) if quantized else data.astype(dtype) with tf.Graph().as_default(): if wrap_idx: in_name = "in_indices" indices_expr = array_ops.placeholder( shape=indices.shape, dtype=indices.dtype, name=in_name ) in_tensor_name = [in_name + ":0"] in_indices = [indices_expr] else: indices_expr = indices indices = [] in_tensor_name = [] in_indices = [] in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype, name="in_data") if axis: out = array_ops.gather(in_data, indices_expr, axis=axis) else: out = array_ops.gather(in_data, indices_expr) # tflite conversion fails for None axis input_range = {"in_data": (-100, 100)} if quantized else None try: compare_tflite_with_tvm( [data] + indices, ["in_data:0"] + in_tensor_name, [in_data] + in_indices, [out], quantized=quantized, input_range=input_range, ) except ValueError as exc: if not oob: raise exc except Exception as exc: raise exc def test_forward_gather(): """GATHER""" for quantized in [False, True]: for wrap_idx in [False, True]: _test_gather((4,), [1], 0, "float32", quantized, wrap_idx) _test_gather((4,), [1], None, "int32", quantized, wrap_idx) _test_gather((1, 4), [0], 0, "int32", quantized, wrap_idx) _test_gather((4,), [[[1, 0], [0, 1]]], 0, "float32", quantized, wrap_idx) _test_gather((2, 2), [[[1, 0], [0, 1]]], 1, "int32", quantized, wrap_idx) _test_gather((2, 2), [[[1, 0], [0, 1]]], None, "float32", quantized, wrap_idx) _test_gather((3, 3, 3), [[[1, 0]]], 0, "int32", quantized, wrap_idx) _test_gather((3, 3, 3), [[[1, 0]]], 2, "int32", quantized, wrap_idx) _test_gather((4, 3, 5, 6), [[2, 1, 0, 0]], 0, "float32", quantized, wrap_idx) _test_gather((3, 3, 3), [[[2, 1]]], -1, "int32", quantized, wrap_idx) # Out of boundary error cannot be tested with wrapped index _test_gather((4,), [16], 0, "float32", quantized, oob=True) _test_gather((1, 3, 3), [12], 0, "int32", quantized, oob=True) _test_gather((1, 3, 3), [20], 1, "float32", quantized, oob=True) _test_gather((1, 3, 3), [20, 20], 2, "float32", quantized, oob=True) ####################################################################### # Gather_ND # --------- def _test_gather_nd(data, indices): """One iteration of GATHER_ND""" with tf.Graph().as_default(): in_data = tf.placeholder(shape=data.shape, dtype=data.dtype, name="data") indices_data = tf.placeholder(shape=indices.shape, dtype=indices.dtype, name="indices") out = tf.gather_nd(in_data, indices_data) compare_tflite_with_tvm( [data, indices], ["data:0", "indices:0"], [in_data, indices_data], [out] ) def test_forward_gather_nd(): """GATHER_ND""" _test_gather_nd( np.array([[[1.2, 2.0], [3.1, 4.1]], [[5.1, 6.1], [7.1, 8.1]]]).astype("float32"), np.asarray([[0, 1], [1, 0]]).astype("int32"), ) _test_gather_nd( np.reshape(np.arange(30), [5, 6]).astype("int32"), np.asarray([[1, 2]]).astype("int32") ) _test_gather_nd( np.reshape(np.arange(12), [2, 3, 2]).astype("int32"), np.asarray([[[0, 0], [0, 1]], [[1, 0], [1, 1]]]).astype("int32"), ) _test_gather_nd( np.reshape(np.arange(4), [4]).astype("float32"), np.asarray([1]).astype("int32") ) _test_gather_nd( np.reshape(np.arange(4), [1, 4]).astype("float32"), np.asarray([0]).astype("int32") ) _test_gather_nd( np.reshape(np.arange(4), [1, 4]).astype("float32"), np.asarray([0, 3]).astype("int32") ) ####################################################################### # StridedSlice # ------------ def _test_stridedslice( ip_shape, begin, end, stride, dtype, begin_mask=0, end_mask=0, new_axis_mask=0, shrink_axis_mask=0, ellipsis_mask=0, quantized=False, ): """One iteration of a Stridedslice""" data = np.random.uniform(size=ip_shape).astype(dtype) data = data.astype(np.uint8) if quantized else data.astype(dtype) with tf.Graph().as_default(): in_data = tf.placeholder(dtype, ip_shape, name="in_data") out = array_ops.strided_slice( in_data, begin, end, stride, begin_mask=begin_mask, end_mask=end_mask, new_axis_mask=new_axis_mask, shrink_axis_mask=shrink_axis_mask, ellipsis_mask=ellipsis_mask, ) input_range = {"in_data": (-100, 100)} if quantized else None compare_tflite_with_tvm( [data], ["in_data:0"], [in_data], [out], quantized=quantized, input_range=input_range ) def test_forward_stridedslice(): """test StridedSlice""" for quantized in [False, True]: _test_stridedslice( (1, 3, 3), [0, 0, 0], [3, 3, 3], [1, 1, 1], "float32", shrink_axis_mask=7, quantized=quantized, ) _test_stridedslice( (1, 3, 3), [0, 0, 0], [3, 3, 3], [1, 1, 1], "float32", shrink_axis_mask=5, quantized=quantized, ) _test_stridedslice((2), [1], [1], [1], "float32", shrink_axis_mask=1, quantized=quantized) _test_stridedslice( (3, 4, 3), [1, -1, 0], [4, -5, 3], [2, -1, 1], "float32", quantized=quantized ) _test_stridedslice( (3, 4), [1, 0], [4, 4], [1, 1], "float32", shrink_axis_mask=0, quantized=quantized ) _test_stridedslice( (4, 4), [1, 0], [4, 4], [1, 1], "float32", shrink_axis_mask=2, quantized=quantized ) _test_stridedslice( (3, 4), [-1, 0], [0, 3], [1, 1], "float32", shrink_axis_mask=1, quantized=quantized ) ####################################################################### # transpose # --------- def _test_forward_transpose(ishape, axes=()): data = np.random.uniform(size=ishape).astype(np.float32) with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) if not axes: out = array_ops.transpose(in_data) else: out = array_ops.transpose(in_data, axes) compare_tflite_with_tvm(data, "Placeholder:0", [in_data], [out]) def test_forward_transpose(): _test_forward_transpose((2, 2)) _test_forward_transpose((2, 3, 4)) _test_forward_transpose((7, 8, 8, 10)) _test_forward_transpose((2, 3, 4), (1, 2, 0)) _test_forward_transpose((2, 3, 4), (0, 1, 2)) _test_forward_transpose((2, 3, 4, 5), (3, 0, 1, 2)) _test_forward_transpose((2, 3, 4, 5), ()) ####################################################################### # Cast # ---- def _test_cast(data, cast_dtype, use_mlir=False): """One iteration of CAST""" with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) out = math_ops.cast(in_data, cast_dtype) compare_tflite_with_tvm( data, "Placeholder:0", [in_data], [out], experimental_new_converter=use_mlir ) def test_forward_cast(): """CAST""" for use_mlir in [False, True]: _test_cast( np.arange(6.0, dtype=np.float32).reshape((1, 6)), cast_dtype=tf.int32, use_mlir=use_mlir ) _test_cast( np.arange(6.0, dtype=np.float32).reshape((1, 6)), cast_dtype=tf.uint8, use_mlir=use_mlir ) _test_cast( np.arange(6.0, dtype=np.int32).reshape((1, 6)), cast_dtype=tf.int64, use_mlir=use_mlir ) ####################################################################### # Batch Mat Mul # ---- def _test_batch_matmul(a_shape, b_shape, dtype, adjoint_a=False, adjoint_b=False): with tf.Graph().as_default(): a = array_ops.placeholder(shape=a_shape, dtype=dtype, name="A") b = array_ops.placeholder(shape=b_shape, dtype=dtype, name="B") result = math_ops.matmul(a, b, adjoint_a=adjoint_a, adjoint_b=adjoint_b, name="batchmatmul") a_np = np.random.uniform(high=5.0, size=a_shape).astype(dtype) b_np = np.random.uniform(high=5.0, size=b_shape).astype(dtype) compare_tflite_with_tvm([a_np, b_np], [a.name, b.name], [a, b], [result]) def test_forward_batch_matmul(): """BATCH_MAT_MUL""" _test_batch_matmul((3, 5, 4), (3, 4, 5), "float32") _test_batch_matmul((3, 5, 4), (3, 4, 5), "float32", True, True) _test_batch_matmul((3, 5, 4), (3, 5, 4), "float32", True, False) _test_batch_matmul((3, 5, 4), (3, 5, 4), "float32", False, True) _test_batch_matmul((2, 3, 4, 5, 6), (2, 3, 4, 6, 5), "float32") ####################################################################### # Tile # ---- def _test_forward_tile(in_shape, reps, dtype): data = np.random.uniform(-5, 5, size=in_shape).astype(dtype) with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) out = array_ops.tile(in_data, reps) compare_tflite_with_tvm(data, "Placeholder:0", [in_data], [out]) def test_forward_tile(): _test_forward_tile((2,), (3,), "int32") _test_forward_tile((2, 2), (2, 3), "float32") ###################################################################### # BatchToSpaceND # -------------- def _test_batch_to_space_nd(input_shape, block_shape, crops, dtype="int32"): data = np.random.uniform(0, 5, size=input_shape).astype(dtype) with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=input_shape, dtype=dtype) out = array_ops.batch_to_space_nd(in_data, block_shape, crops) compare_tflite_with_tvm(data, "Placeholder:0", [in_data], [out]) def test_forward_batch_to_space_nd(): # test cases: https://www.tensorflow.org/api_docs/cc/class/tensorflow/ops/batch-to-space-n-d _test_batch_to_space_nd(input_shape=[4, 1, 1, 1], block_shape=[2, 2], crops=[[0, 0], [0, 0]]) _test_batch_to_space_nd(input_shape=[4, 1, 1, 3], block_shape=[2, 2], crops=[[0, 0], [0, 0]]) _test_batch_to_space_nd(input_shape=[4, 2, 2, 1], block_shape=[2, 2], crops=[[0, 0], [0, 0]]) _test_batch_to_space_nd(input_shape=[4, 3, 3, 1], block_shape=[2, 2], crops=[[0, 1], [0, 1]]) ###################################################################### # SpaceToBatchND # -------------- def _test_space_to_batch_nd(input_shape, block_shape, paddings, dtype="int32"): data = np.random.uniform(0, 5, size=input_shape).astype(dtype) with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=input_shape, dtype=dtype) out = array_ops.space_to_batch_nd(in_data, block_shape, paddings) compare_tflite_with_tvm(data, "Placeholder:0", [in_data], [out]) def test_forward_space_to_batch_nd(): # test cases: https://www.tensorflow.org/api_docs/python/tf/space_to_batch_nd _test_space_to_batch_nd(input_shape=[1, 2, 2, 1], block_shape=[2, 2], paddings=[[0, 0], [0, 0]]) _test_space_to_batch_nd(input_shape=[1, 2, 2, 3], block_shape=[2, 2], paddings=[[0, 0], [0, 0]]) _test_space_to_batch_nd(input_shape=[1, 4, 4, 1], block_shape=[2, 2], paddings=[[0, 0], [0, 0]]) _test_space_to_batch_nd(input_shape=[2, 2, 4, 1], block_shape=[2, 2], paddings=[[0, 0], [2, 0]]) ####################################################################### # Pooling # ------- def _test_pooling_iteration(input_shape, **kwargs): """One iteration of pool operation with given shapes and attributes""" x = -np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape) - 1 with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=input_shape, dtype="float32") out = nn_ops.pool(in_data, **kwargs) compare_tflite_with_tvm(x, "Placeholder:0", [in_data], [out]) def _test_pooling(input_shape, **kwargs): _test_pooling_iteration(input_shape, **kwargs) def test_forward_pooling(): """Pooling""" for pool_type in ["AVG", "MAX"]: _test_pooling( input_shape=[2, 9, 10, 2], window_shape=[1, 1], padding="SAME", pooling_type=pool_type, dilation_rate=[1, 1], strides=[1, 1], ) _test_pooling( input_shape=[2, 10, 9, 2], window_shape=[1, 1], padding="SAME", pooling_type=pool_type, dilation_rate=[1, 1], strides=[1, 1], ) _test_pooling( input_shape=[2, 9, 10, 2], window_shape=[2, 1], padding="SAME", pooling_type=pool_type, dilation_rate=[1, 1], strides=[1, 1], ) _test_pooling( input_shape=[2, 10, 9, 2], window_shape=[2, 3], padding="SAME", pooling_type=pool_type, dilation_rate=[1, 1], strides=[2, 1], ) def _test_l2_pool2d(input_shape, ksize, strides, padding, data_format, fused_func_name=None): x = np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape) - 1 with tf.Graph().as_default(): in_data = tf.placeholder(dtype=tf.float32, name="input", shape=input_shape) out = tf.sqrt( tf.nn.avg_pool( tf.square(in_data), ksize=ksize, strides=strides, padding=padding, data_format=data_format, ) ) out = with_fused_activation_function(out, fused_func_name) compare_tflite_with_tvm(x, "input", [in_data], [out]) def test_forward_l2_pool2d(): _test_l2_pool2d([1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], "SAME", "NHWC", "RELU6") _test_l2_pool2d([2, 9, 10, 2], [1, 1, 1, 1], [1, 1, 1, 1], "SAME", "NHWC", "RELU6") _test_l2_pool2d([2, 9, 10, 2], [1, 2, 1, 1], [1, 1, 1, 1], "SAME", "NHWC") _test_l2_pool2d([2, 9, 10, 2], [1, 2, 1, 1], [1, 1, 2, 1], "SAME", "NHWC") _test_l2_pool2d([1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], "VALID", "NHWC", "RELU") _test_l2_pool2d([2, 9, 10, 2], [1, 1, 1, 1], [1, 1, 1, 1], "VALID", "NHWC") _test_l2_pool2d([2, 9, 10, 2], [1, 2, 1, 1], [1, 1, 1, 1], "VALID", "NHWC") _test_l2_pool2d([2, 9, 10, 2], [1, 2, 1, 1], [1, 1, 2, 1], "VALID", "NHWC", "RELU6") ####################################################################### # Convolution # ----------- def _test_tflite2_quantized_convolution( input_shape, kernel_shape, filters, padding="valid", data_format=None, int_quant_dtype=tf.int8 ): """One iteration of TFLite2 quantized convolution with given shapes and attributes""" data_format = "channels_last" if data_format == "NHWC" else "channels_first" data = np.random.uniform(0, 1, input_shape).astype("float32") _ = np.random.uniform(0, 1, kernel_shape).astype("float32") data_in = tf.keras.layers.Input(shape=data.shape[1:]) conv = tf.keras.layers.Conv2D( filters=filters, kernel_size=(kernel_shape[0], kernel_shape[1]), activation=tf.nn.relu, padding=padding, data_format=data_format, )(data_in) keras_model = tf.keras.models.Model(data_in, conv) # To create quantized values with dynamic range of activations, needs representative dataset def representative_data_gen(): for _ in range(1): yield [data] tflite_model_quant = _quantize_keras_model( keras_model, representative_data_gen, is_float_input=True, is_float_output=True, int_quant_dtype=int_quant_dtype, ) # TFLite.Model.Model has changed to TFLite.Model from 1.14 to 2.1 try: import tflite.Model tflite_model = tflite.Model.Model.GetRootAsModel(tflite_model_quant, 0) except AttributeError: import tflite tflite_model = tflite.Model.GetRootAsModel(tflite_model_quant, 0) except ImportError as exc: raise ImportError("The tflite package must be installed") from exc subgraph = tflite_model.Subgraphs(0) model_input = subgraph.InputsAsNumpy() input_node = subgraph.Tensors(model_input).Name().decode("utf-8") tflite_output = run_tflite_graph(tflite_model_quant, data) if tf.__version__ < LooseVersion("2.9"): input_node = data_in.name.replace(":0", "") else: input_node = "serving_default_" + data_in.name + ":0" tvm_output = run_tvm_graph(tflite_model_quant, data, input_node) tvm.testing.assert_allclose( np.squeeze(tvm_output[0]), np.squeeze(tflite_output[0]), rtol=1e-2, atol=1e-2 ) def test_forward_quantized_convolution(): """Quantized convolution""" for int_quant_dtype in [tf.int8, tf.int16]: _test_tflite2_quantized_convolution( (1, 28, 28, 1), (1, 1), 12, data_format="NHWC", int_quant_dtype=int_quant_dtype, ) _test_tflite2_quantized_convolution( (1, 1, 28, 28), (1, 1), 12, data_format="NCWH", int_quant_dtype=int_quant_dtype, ) def test_forward_quantized_depthwise_convolution(): for int_quant_dtype in [tf.int8, tf.int16]: _test_tflite2_quantized_depthwise_convolution( [1, 8, 8, 128], [1, 1, 128, 1], [1, 1], [1, 1], "SAME", "NHWC", 1, int_quant_dtype ) _test_tflite2_quantized_depthwise_convolution( [1, 17, 17, 12], [3, 3, 12, 1], [1, 1], [2, 2], "VALID", "NHWC", 1, int_quant_dtype ) _test_tflite2_quantized_depthwise_convolution( [1, 24, 24, 3], [7, 7, 3, 8], [1, 1], [2, 2], "SAME", "NHWC", 8, int_quant_dtype ) def _test_tflite2_quantized_depthwise_convolution( input_shape, kernel_shape, dilations, strides, padding, data_format, depth_multiplier, int_quant_dtype=tf.int8, ): """One iteration of TFLite2 quantized depthwise convolution with given shapes and attributes""" data_format = "channels_last" if data_format == "NHWC" else "channels_first" data = np.random.uniform(0, 1, input_shape).astype("float32") kernel = np.random.uniform(0, 1, kernel_shape).astype("float32") data_in = tf.keras.layers.Input(shape=data.shape[1:]) conv = tf.keras.layers.DepthwiseConv2D( kernel_size=(kernel_shape[0], kernel_shape[1]), strides=strides, padding=padding, data_format=data_format, activation="relu", use_bias=False, depth_multiplier=depth_multiplier, )(data_in) keras_model = tf.keras.models.Model(data_in, conv) keras_model.layers[1].set_weights([kernel]) # To create quantized values with dynamic range of activations, needs representative dataset def representative_data_gen(): for _ in range(1): yield [data] tflite_model_quant = _quantize_keras_model( keras_model, representative_data_gen, is_float_input=True, is_float_output=True, int_quant_dtype=int_quant_dtype, ) # TFLite.Model.Model has changed to TFLite.Model from 1.14 to 2.1 try: import tflite.Model tflite_model = tflite.Model.Model.GetRootAsModel(tflite_model_quant, 0) except AttributeError: import tflite tflite_model = tflite.Model.GetRootAsModel(tflite_model_quant, 0) except ImportError as exc: raise ImportError("The tflite package must be installed") from exc subgraph = tflite_model.Subgraphs(0) model_input = subgraph.InputsAsNumpy() input_node = subgraph.Tensors(model_input).Name().decode("utf-8") tflite_output = run_tflite_graph(tflite_model_quant, data) tvm_output = run_tvm_graph(tflite_model_quant, data, input_node) tvm.testing.assert_allclose( np.squeeze(tvm_output[0]), np.squeeze(tflite_output[0]), rtol=1e-2, atol=1e-2 ) def _test_convolution( tensor_in_sizes, filter_in_sizes, dilations, strides, padding, data_format, is_depthwise=False, quantized=False, fp16_quantized=False, ): """One iteration of convolution with given shapes and attributes""" total_size_1 = 1 total_size_2 = 1 for s in tensor_in_sizes: total_size_1 *= s for s in filter_in_sizes: total_size_2 *= s # Initializes the input tensor with array containing incrementing # numbers from 1. if quantized: data_array = np.random.uniform(0, 255, tensor_in_sizes).astype("uint8") filter_array = np.random.uniform(0, 255, filter_in_sizes).astype("uint8") else: data_array = [f * 1.0 for f in range(1, total_size_1 + 1)] filter_array = [f * 1.0 for f in range(1, total_size_2 + 1)] with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=tensor_in_sizes, dtype="float32", name="in_data") in_filter = constant_op.constant( filter_array, shape=filter_in_sizes, dtype="float32", name="in_filter" ) strides = [1] + strides + [1] dilations = [1] + dilations + [1] if is_depthwise: out = nn_ops.depthwise_conv2d_native( in_data, in_filter, strides=strides, padding=padding, data_format=data_format ) else: out = nn_ops.conv2d( in_data, in_filter, strides=strides, padding=padding, data_format=data_format ) if quantized and not fp16_quantized: if is_depthwise: # Quantized the inputs and feed them to the convolution inq_data = tf.quantization.fake_quant_with_min_max_args( in_data, min=-100, max=100, name="inq_data" ) inq_filter = tf.quantization.fake_quant_with_min_max_args( in_filter, min=-100, max=100, name="inq_filter" ) out = nn_ops.depthwise_conv2d_native( inq_data, inq_filter, strides=strides, padding=padding, data_format=data_format ) out = tf.quantization.fake_quant_with_min_max_args( out, min=-200, max=200, name="out" ) # Set the input quantization range input_range = {"in_data": (-100, 100)} if quantized else None # Compare compare_tflite_with_tvm( data_array, "in_data", [in_data], [out], quantized=quantized, input_range=input_range, experimental_new_converter=True, ) else: # Quantized the inputs and feed them to the convolution inq_data = tf.quantization.fake_quant_with_min_max_args( in_data, min=-100, max=100, name="inq_data" ) inq_filter = tf.quantization.fake_quant_with_min_max_args( in_filter, min=-100, max=100, name="inq_filter" ) out = nn_ops.conv2d( inq_data, inq_filter, strides=strides, padding=padding, data_format=data_format ) out = tf.quantization.fake_quant_with_min_max_args( out, min=-200, max=200, name="out" ) # Set the input quantization range input_range = {"in_data": (-100, 100)} if quantized else None # Compare compare_tflite_with_tvm( data_array, "in_data", [in_data], [out], quantized=quantized, input_range=input_range, experimental_new_converter=True, ) else: data_array = np.reshape(data_array, tensor_in_sizes).astype("float32") compare_tflite_with_tvm(data_array, "in_data", [in_data], [out]) def test_forward_convolution(): """Convolution""" for quantized in [False, True]: for fp16_quantized in [False, True]: _test_convolution( [4, 8, 8, 176], [1, 1, 176, 32], [1, 1], [1, 1], "SAME", "NHWC", quantized=quantized, fp16_quantized=fp16_quantized, ) _test_convolution( [4, 17, 17, 19], [3, 3, 19, 19], [1, 1], [2, 2], "VALID", "NHWC", quantized=quantized, fp16_quantized=fp16_quantized, ) _test_convolution( [4, 17, 17, 124], [1, 1, 124, 19], [1, 1], [1, 1], "SAME", "NHWC", quantized=quantized, fp16_quantized=fp16_quantized, ) _test_convolution( [4, 17, 17, 12], [3, 3, 12, 32], [1, 1], [2, 2], "VALID", "NHWC", quantized=quantized, fp16_quantized=fp16_quantized, ) # depthwise convolution _test_convolution( [4, 8, 8, 176], [1, 1, 176, 1], [1, 1], [1, 1], "SAME", "NHWC", True, quantized=quantized, fp16_quantized=fp16_quantized, ) _test_convolution( [4, 17, 17, 19], [3, 3, 19, 1], [1, 1], [2, 2], "VALID", "NHWC", True, quantized=quantized, fp16_quantized=fp16_quantized, ) _test_convolution( [4, 17, 17, 124], [1, 1, 124, 1], [1, 1], [1, 1], "SAME", "NHWC", True, quantized=quantized, fp16_quantized=fp16_quantized, ) _test_convolution( [4, 17, 17, 12], [3, 3, 12, 1], [1, 1], [2, 2], "VALID", "NHWC", True, quantized=quantized, fp16_quantized=fp16_quantized, ) _test_convolution( [4, 17, 17, 12], [3, 3, 12, 2], [1, 1], [2, 2], "VALID", "NHWC", True, quantized=quantized, fp16_quantized=fp16_quantized, ) # depthwise convolution with single input channel _test_convolution( [1, 76, 64, 1], [9, 5, 1, 96], [1, 1], [1, 1], "SAME", "NHWC", True, quantized=quantized, fp16_quantized=fp16_quantized, ) # TFLite2 quantized convolution testing if package_version.parse(tf.VERSION) >= package_version.parse("2.3.0"): _test_convolution( [1, 8, 8, 176], [1, 1, 176, 32], [1, 1], [1, 1], "SAME", "NHWC", quantized=True ) _test_convolution( [1, 17, 17, 12], [3, 3, 12, 32], [1, 1], [2, 2], "VALID", "NHWC", quantized=True ) _test_convolution( [1, 17, 17, 19], [3, 3, 19, 19], [1, 1], [2, 2], "VALID", "NHWC", quantized=True ) _test_convolution( [1, 17, 17, 124], [1, 1, 124, 19], [1, 1], [1, 1], "SAME", "NHWC", quantized=True ) ####################################################################### # Transpose Convolution # --------------------- def _test_transpose_conv( tensor_in_sizes, filter_in_sizes, output_shape, strides, padding, quantized=False, fp16_quantized=False, ): """One iteration of transpose convolution with given shapes and attributes""" total_size_1 = 1 total_size_2 = 1 for s in tensor_in_sizes: total_size_1 *= s for s in filter_in_sizes: total_size_2 *= s with tf.Graph().as_default(): if quantized and not fp16_quantized: # Initializes the input tensor with array containing incrementing # numbers from 1. data_array = [max(f, 255) for f in range(1, total_size_1 + 1)] filter_array = [max(f, 255) for f in range(1, total_size_2 + 1)] data_array = np.reshape(data_array, tensor_in_sizes).astype("uint8") filter_array = np.reshape(filter_array, filter_in_sizes).astype("uint8") in_data = array_ops.placeholder(shape=tensor_in_sizes, dtype="float32", name="in_data") inq_data = tf.quantization.fake_quant_with_min_max_args( in_data, min=-100, max=100, name="q_data" ) input_range = {"q_data": (-100, 100)} in_filter = constant_op.constant( filter_array, shape=filter_in_sizes, dtype="float32", name="in_filter" ) inq_filter = tf.quantization.fake_quant_with_min_max_args( in_filter, min=-100, max=100, name="q_filter" ) strides = [1] + strides + [1] out = nn_ops.conv2d_transpose( inq_data, inq_filter, output_shape=output_shape, strides=strides, padding=padding ) out = tf.quantization.fake_quant_with_min_max_args(out, min=-100, max=100, name="out") compare_tflite_with_tvm( [data_array], ["q_data"], [inq_data], [out], quantized=True, input_range=input_range ) else: # Initializes the input tensor with array containing incrementing # numbers from 1. data_array = [f * 1.0 for f in range(1, total_size_1 + 1)] filter_array = [f * 1.0 for f in range(1, total_size_2 + 1)] in_data = array_ops.placeholder(shape=tensor_in_sizes, dtype="float32", name="in_data") in_filter = constant_op.constant( filter_array, shape=filter_in_sizes, dtype="float32", name="in_filter" ) strides = [1] + strides + [1] # in_filter layout is HWOI out = nn_ops.conv2d_transpose( in_data, in_filter, output_shape=output_shape, strides=strides, padding=padding ) data_array = np.reshape(data_array, tensor_in_sizes).astype("float32") compare_tflite_with_tvm( [data_array], ["in_data"], [in_data], [out], fp16_quantized=fp16_quantized ) def test_forward_transpose_conv(): """Transpose convolution""" for quantized in [True, False]: for fp16_quantized in [True, False]: # odd size input, padding VALID _test_transpose_conv( [1, 5, 6, 16], [2, 2, 16, 16], [1, 10, 12, 16], [2, 2], "VALID", quantized, fp16_quantized, ) # odd size input, padding SAME _test_transpose_conv( [1, 5, 6, 16], [2, 2, 16, 16], [1, 10, 12, 16], [2, 2], "SAME", quantized, fp16_quantized, ) # kernel 3x3, padding VALID _test_transpose_conv( [4, 32, 32, 16], [3, 3, 5, 16], [4, 34, 34, 5], [1, 1], "VALID", quantized, fp16_quantized, ) _test_transpose_conv( [1, 32, 32, 16], [3, 3, 5, 16], [1, 65, 65, 5], [2, 2], "VALID", quantized, fp16_quantized, ) _test_transpose_conv( [1, 32, 32, 16], [3, 3, 5, 16], [1, 65, 34, 5], [2, 1], "VALID", quantized, fp16_quantized, ) # kernel 3x3, padding SAME _test_transpose_conv( [4, 32, 32, 16], [3, 3, 5, 16], [4, 32, 32, 5], [1, 1], "SAME", quantized, fp16_quantized, ) _test_transpose_conv( [1, 32, 32, 16], [3, 3, 5, 16], [1, 64, 64, 5], [2, 2], "SAME", quantized, fp16_quantized, ) _test_transpose_conv( [1, 32, 32, 16], [3, 3, 5, 16], [1, 64, 32, 5], [2, 1], "SAME", quantized, fp16_quantized, ) # kernel 2x2, padding VALID _test_transpose_conv( [4, 32, 32, 16], [2, 2, 5, 16], [4, 33, 33, 5], [1, 1], "VALID", quantized, fp16_quantized, ) _test_transpose_conv( [1, 32, 32, 16], [2, 2, 5, 16], [1, 64, 64, 5], [2, 2], "VALID", quantized, fp16_quantized, ) _test_transpose_conv( [1, 32, 32, 16], [2, 2, 5, 16], [1, 64, 33, 5], [2, 1], "VALID", quantized, fp16_quantized, ) # kernel 2x2, padding SAME _test_transpose_conv( [4, 32, 32, 16], [2, 2, 5, 16], [4, 32, 32, 5], [1, 1], "SAME", quantized, fp16_quantized, ) _test_transpose_conv( [1, 32, 32, 16], [2, 2, 5, 16], [1, 64, 64, 5], [2, 2], "SAME", quantized, fp16_quantized, ) _test_transpose_conv( [1, 32, 32, 16], [2, 2, 5, 16], [1, 64, 32, 5], [2, 1], "SAME", quantized, fp16_quantized, ) # kernel 1x1, padding VALID _test_transpose_conv( [4, 32, 32, 16], [1, 1, 5, 16], [4, 32, 32, 5], [1, 1], "VALID", quantized, fp16_quantized, ) _test_transpose_conv( [1, 32, 32, 16], [1, 1, 5, 16], [1, 63, 63, 5], [2, 2], "VALID", quantized, fp16_quantized, ) _test_transpose_conv( [1, 32, 32, 16], [1, 1, 5, 16], [1, 63, 32, 5], [2, 1], "VALID", quantized, fp16_quantized, ) # kernel 1x1, padding SAME _test_transpose_conv( [4, 32, 32, 16], [1, 1, 5, 16], [4, 32, 32, 5], [1, 1], "SAME", quantized, fp16_quantized, ) _test_transpose_conv( [1, 32, 32, 16], [1, 1, 5, 16], [1, 63, 63, 5], [2, 2], "SAME", quantized, fp16_quantized, ) _test_transpose_conv( [1, 32, 32, 16], [1, 1, 5, 16], [1, 63, 32, 5], [2, 1], "SAME", quantized, fp16_quantized, ) ####################################################################### # Reshape # ------- def _test_reshape(data, out_shape, wrap_shape, quantized=False): """One iteration of reshape operation with given data and out shape""" if quantized: with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype="float32", name="in") inq_data = tf.quantization.fake_quant_with_min_max_args( in_data, min=-100, max=100, name="inq_0" ) input_range = {"inq_0": (-100, 100)} out_shape = out_shape if not wrap_shape else np.array(out_shape, dtype=np.int32) in_shape = ( out_shape if not wrap_shape else array_ops.placeholder( shape=out_shape.shape, dtype=out_shape.dtype, name="Newshape" ) ) out = array_ops.reshape(inq_data, in_shape) out = tf.quantization.fake_quant_with_min_max_args(out, min=-200, max=200, name="out") compare_tflite_with_tvm( [data, out_shape] if wrap_shape else [data], ["inq_0:0", "Newshape:0"] if wrap_shape else ["inq_0:0"], [inq_data, in_shape] if wrap_shape else [inq_data], [out], quantized=True, input_range=input_range, mode="vm", ) else: # Test with tensor and constant with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) out_shape = out_shape if not wrap_shape else np.array(out_shape, dtype=np.int32) in_shape = ( out_shape if not wrap_shape else array_ops.placeholder( shape=out_shape.shape, dtype=out_shape.dtype, name="Newshape" ) ) out = array_ops.reshape(in_data, in_shape) compare_tflite_with_tvm( [data, out_shape] if wrap_shape else [data], ["Placeholder:0", "Newshape:0"] if wrap_shape else ["Placeholder:0"], [in_data, in_shape] if wrap_shape else [in_data], [out], mode="vm", ) def test_forward_reshape(): for wrap in [True, False]: _test_reshape(np.arange(6.0, dtype=np.float32), [2, 3], wrap) _test_reshape(np.arange(6), [-1, 2], wrap) _test_reshape(np.arange(6), [3, -1], wrap) _test_reshape(np.arange(6), [-1], wrap) _test_reshape(np.arange(6, dtype=np.uint8), [2, 3], False, True) _test_reshape(np.arange(6, dtype=np.uint8), [-1, 2], False, True) ####################################################################### # Resize # ------ def _test_resize( tf_resize_op, images_data, size_data, align_corners, half_pixel_centers, quantized=False ): """One iteration of Resize""" # Test with tensor and constant with tf.Graph().as_default(): images_tensor = array_ops.placeholder(shape=images_data.shape, dtype="float32", name="in") size = ops.convert_to_tensor(size_data, dtype=size_data.dtype) if quantized: images_tensor_q = tf.quantization.fake_quant_with_min_max_args( images_tensor, min=-3, max=2, name="in" ) input_range = {"in": (-3, 2)} out_tensor = tf_resize_op( images=images_tensor_q, size=size, align_corners=align_corners, half_pixel_centers=half_pixel_centers, ) out_tensor = tf.quantization.fake_quant_with_min_max_args( out_tensor, min=-3, max=2, name="out_tensor" ) compare_tflite_with_tvm( [images_data], ["in:0"], [images_tensor], [out_tensor], quantized=True, input_range=input_range, ) else: out_tensor = tf_resize_op( images=images_tensor, size=size, align_corners=align_corners, half_pixel_centers=half_pixel_centers, ) compare_tflite_with_tvm([images_data], ["in:0"], [images_tensor], [out_tensor]) def test_all_resize(): """Resize""" images_data = np.random.uniform(0, 255, (1, 16, 16, 3)) images_data_float32 = images_data.astype(np.float32) images_data_uint8 = images_data.astype(np.uint8) size_data = np.array([8, 8]).astype("int32") ### RESIZE_BILINEAR _test_resize( tf.image.resize_bilinear, images_data_float32, size_data, align_corners=False, half_pixel_centers=False, quantized=False, ) _test_resize( tf.image.resize_bilinear, images_data_float32, size_data, align_corners=True, half_pixel_centers=False, quantized=False, ) _test_resize( tf.image.resize_bilinear, images_data_uint8, size_data, align_corners=False, half_pixel_centers=False, quantized=True, ) _test_resize( tf.image.resize_bilinear, images_data_uint8, size_data, align_corners=True, half_pixel_centers=False, quantized=True, ) _test_resize( tf.image.resize_bilinear, images_data_uint8, size_data, align_corners=False, half_pixel_centers=True, quantized=True, ) ### RESIZE_NEAREST_NEIGHBOR (was added in v1.13) # According to topi resize.h # Align corners not supported for nearest neighbour if "RESIZE_NEAREST_NEIGHBOR" in dir(BuiltinOperator()): _test_resize( tf.image.resize_nearest_neighbor, images_data_float32, size_data, align_corners=False, half_pixel_centers=False, ) _test_resize( tf.image.resize_nearest_neighbor, images_data_float32, size_data, align_corners=True, half_pixel_centers=False, ) _test_resize( tf.image.resize_nearest_neighbor, images_data_float32, size_data, align_corners=False, half_pixel_centers=True, ) ####################################################################### # Range # ----- def _test_range(start, limit, delta): # tflite 1.13 convert method does not accept empty shapes if package_version.parse(tf.VERSION) >= package_version.parse("1.14.0"): tf.reset_default_graph() with tf.Graph().as_default(): start_scalar, limit_scalar, delta_scalar = ( tf.placeholder(dtype=start.dtype, shape=(), name="start"), tf.placeholder(dtype=limit.dtype, shape=(), name="limit"), tf.placeholder(dtype=delta.dtype, shape=(), name="delta"), ) out = tf.range(start_scalar, limit_scalar, delta_scalar, name="range") compare_tflite_with_tvm( [start, limit, delta], ["start", "limit", "delta"], [start_scalar, limit_scalar, delta_scalar], [out], mode="vm", quantized=False, ) def _test_range_default(): # tflite 1.13 convert method does not accept empty shapes if package_version.parse(tf.VERSION) >= package_version.parse("1.14.0"): tf.reset_default_graph() with tf.Graph().as_default(): inputs = [ tf.placeholder(dtype=tf.int32, shape=(), name="p1"), tf.placeholder(dtype=tf.int32, shape=(), name="p2"), ] outputs = [ tf.range(start=inputs[0], limit=inputs[1]), # use default delta tf.range( start=inputs[1] ), # use start as limit with 0 as the first item in the range ] compare_tflite_with_tvm( [np.int32(1), np.int32(18)], ["p1", "p2"], inputs, outputs, mode="vm" ) def test_forward_range(): _test_range(np.int32(1), np.int32(18), np.int32(3)) _test_range(np.int32(1), np.int32(18), np.float32(3.1)) # increment is of type float _test_range(np.float32(1.0), np.int32(18), np.int32(3.1)) # start is of type float _test_range_default() ####################################################################### # Shape # ----- def _test_shape(dtype): # tflite 1.13 convert method does not accept empty shapes if package_version.parse(tf.VERSION) >= package_version.parse("1.14.0"): tf.reset_default_graph() with tf.Graph().as_default(): data = np.array([1, 18, 3], dtype=np.int32) start = tf.placeholder(dtype=tf.int32, shape=[], name="start") limit = tf.placeholder(dtype=tf.int32, shape=[], name="limit") delta = tf.placeholder(dtype=tf.int32, shape=[], name="delta") tf_range = tf.range(start, limit, delta, tf.int32, name="range") out = tf.shape(tf_range, out_type=dtype) out = tf.add(out, tf.constant([1], dtype=dtype)) compare_tflite_with_tvm( list(np.nditer(data)), ["start", "limit", "delta"], [start, limit, delta], [out], mode="vm", ) def test_forward_shape(): _test_shape(tf.int32) _test_shape(tf.int64) ####################################################################### # Concatenation # ------------- def _test_concatenation(data, axis): """One iteration of concatenation""" assert len(data) >= 1 with tf.Graph().as_default(): in_data = [ array_ops.placeholder(shape=tensor.shape, dtype=tensor.dtype, name=f"in_{idx}") for idx, tensor in enumerate(data) ] out = array_ops.concat(in_data, axis) name = [f"in_{idx}:0" for idx in range(len(data))] compare_tflite_with_tvm(data, name, in_data, [out]) def test_forward_concatenation(): _test_concatenation([np.arange(6).reshape((1, 2, 1, 3)), np.arange(6).reshape((1, 2, 1, 3))], 1) _test_concatenation([np.arange(6).reshape((3, 2)), np.arange(6).reshape((3, 2))], 1) _test_concatenation( [ np.arange(6).reshape((2, 1, 1, 3)), np.arange(6).reshape((2, 1, 1, 3)), np.arange(6).reshape((2, 1, 1, 3)), ], 1, ) ####################################################################### # Unary elemwise # -------------- def _test_unary_elemwise(math_op, data, quantized, quant_range=(-6, 6), int_quant_dtype=tf.int8): """One iteration of unary elemwise""" if quantized: with tf.Graph().as_default(): quant_min, quant_max = quant_range in_data = array_ops.placeholder(shape=data.shape, dtype="float32", name="in_0") inq_data = tf.quantization.fake_quant_with_min_max_args( in_data, min=quant_min, max=quant_max, name="inq_0" ) input_range = {"inq_0": (quant_min, quant_max)} out = math_op(inq_data) out = tf.quantization.fake_quant_with_min_max_args( out, min=quant_min, max=quant_max, name="out" ) compare_tflite_with_tvm( data, "inq_0:0", [inq_data], [out], quantized=True, input_range=input_range, experimental_new_converter=True, int_quant_dtype=int_quant_dtype, ) else: with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype, name="in") out = math_op(in_data) compare_tflite_with_tvm(data, ["in:0"], [in_data], [out]) def _unary_elewise_create_model(math_op, data, offset=0, int_quant_dtype=tf.int8): class Model(tf.Module): @tf.function def tf_function(self, x): op = math_op(x) return op if int_quant_dtype in (tf.int8, tf.uint8): _ = "int8" elif int_quant_dtype in (tf.int16, tf.uint16): _ = "int16" else: raise Exception(f"Unsupported dtype '{int_quant_dtype}' for unary elementwise test.") model = Model() # Save the model export_dir = tempfile.gettempdir() + "/tf_model" tf.saved_model.save( model, export_dir, signatures=model.tf_function.get_concrete_function( tf.TensorSpec(data.shape, tf.float32, name="input") ), ) # Convert the model def representative_dataset(): for _ in range(100): tmp_data = np.random.rand(*tuple(data.shape)) yield [tmp_data.astype(np.float32) * 2 - offset] converter = tf.lite.TFLiteConverter.from_saved_model(export_dir) converter.optimizations = [tf.lite.Optimize.DEFAULT] converter.representative_dataset = representative_dataset if int_quant_dtype in (tf.int16, tf.uint16): converter.target_spec.supported_ops = [ tf.lite.OpsSet.EXPERIMENTAL_TFLITE_BUILTINS_ACTIVATIONS_INT16_WEIGHTS_INT8 ] else: converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8] converter.inference_input_type = int_quant_dtype converter.inference_output_type = int_quant_dtype tflite_model = converter.convert() return tflite_model ####################################################################### # Abs # ---- def _test_abs(data, quantized, int_quant_dtype=tf.int8): """One iteration of abs""" if quantized: tflite_model_quant = _unary_elewise_create_model( tf.math.abs, data, offset=1, int_quant_dtype=int_quant_dtype ) tflite_output = run_tflite_graph(tflite_model_quant, data) # TFLite 2.6.x upgrade support if tf.__version__ < LooseVersion("2.6.1"): in_node = ["serving_default_input_int8"] elif tf.__version__ < LooseVersion("2.9"): in_node = ( ["serving_default_input_int16"] if int_quant_dtype == tf.int16 else ["tfl.quantize"] ) else: in_node = "serving_default_input" tvm_output = run_tvm_graph(tflite_model_quant, data, in_node) tvm.testing.assert_allclose( np.squeeze(tvm_output[0]), np.squeeze(tflite_output[0]), rtol=1e-5, atol=1e-2 ) else: return _test_unary_elemwise(math_ops.abs, data, quantized, int_quant_dtype=int_quant_dtype) ####################################################################### # Rsqrt # ---- def _test_rsqrt(data, quantized, int_quant_dtype=tf.int8): """One iteration of rsqrt""" # tensorflow version upgrade support if tf.__version__ < LooseVersion("2.6.1") or not quantized: return _test_unary_elemwise( math_ops.rsqrt, data, quantized, quant_range=[1, 6], int_quant_dtype=int_quant_dtype ) else: tflite_model_quant = _unary_elewise_create_model( tf.math.rsqrt, data, int_quant_dtype=int_quant_dtype ) tflite_output = run_tflite_graph(tflite_model_quant, data) if tf.__version__ < LooseVersion("2.9"): in_node = ["tfl.quantize"] else: in_node = "serving_default_input" tvm_output = run_tvm_graph(tflite_model_quant, data, in_node) tvm.testing.assert_allclose( np.squeeze(tvm_output[0]), np.squeeze(tflite_output[0]), rtol=1e-5, atol=1e-2 ) ####################################################################### # Ceil # ---- def _test_ceil(data, quantized, int_quant_dtype=tf.int8): """One iteration of ceil""" return _test_unary_elemwise(math_ops.ceil, data, quantized, int_quant_dtype=int_quant_dtype) ####################################################################### # Floor # ----- def _test_floor(data, quantized, int_quant_dtype=tf.int8): """One iteration of floor""" return _test_unary_elemwise(math_ops.floor, data, quantized, int_quant_dtype=int_quant_dtype) ####################################################################### # Round # ----- def _test_round(data, quantized, int_quant_dtype=tf.int8): """One iteration of round""" return _test_unary_elemwise(math_ops.round, data, quantized, int_quant_dtype=int_quant_dtype) ####################################################################### # Exp # --- def _test_exp(data, quantized, int_quant_dtype=tf.int8): """One iteration of exp""" return _test_unary_elemwise(math_ops.exp, data, quantized, int_quant_dtype=int_quant_dtype) ####################################################################### # Log # --- def _test_log(data, quantized, int_quant_dtype=tf.int8): """One iteration of log""" return _test_unary_elemwise( math_ops.log, data, quantized, quant_range=[1, 6], int_quant_dtype=int_quant_dtype ) ####################################################################### # Sin # --- def _test_sin(data, quantized, int_quant_dtype=tf.int8): """One iteration of sin""" return _test_unary_elemwise(math_ops.sin, data, quantized, int_quant_dtype=int_quant_dtype) ####################################################################### # Cos # --- def _test_cos(data, quantized, int_quant_dtype=tf.int8): """One iteration of cos""" if quantized: tflite_model_quant = _unary_elewise_create_model( tf.math.cos, data, int_quant_dtype=int_quant_dtype ) tflite_output = run_tflite_graph(tflite_model_quant, data) if tf.__version__ < LooseVersion("2.9"): in_node = ["tfl.quantize"] else: in_node = "serving_default_input" tvm_output = run_tvm_graph(tflite_model_quant, data, in_node) tvm.testing.assert_allclose( np.squeeze(tvm_output[0]), np.squeeze(tflite_output[0]), rtol=1e-5, atol=1e-2 ) else: return _test_unary_elemwise(math_ops.cos, data, quantized) ####################################################################### # Tan # --- def _test_tan(data, quantized, int_quant_dtype=tf.int8): """One iteration of tan""" return _test_unary_elemwise(math_ops.tan, data, quantized, int_quant_dtype=int_quant_dtype) ####################################################################### # Square # ------ def _test_square(data, quantized, int_quant_dtype=tf.int8): """One iteration of square""" return _test_unary_elemwise(math_ops.square, data, quantized, int_quant_dtype=int_quant_dtype) ####################################################################### # Neg # ------ def _test_neg(data, quantized, int_quant_dtype=tf.int8): """One iteration of neg""" return _test_unary_elemwise(math_ops.neg, data, quantized, int_quant_dtype=int_quant_dtype) ####################################################################### # Sqrt # ------ def _test_sqrt(data, quantized, int_quant_dtype=tf.int8): """One iteration of sqrt""" return _test_unary_elemwise( math_ops.sqrt, data, quantized, quant_range=[1, 6], int_quant_dtype=int_quant_dtype ) ####################################################################### # Elu # --- def _test_elu(data, quantized, int_quant_dtype=tf.int8): """One iteration of elu""" return _test_unary_elemwise(nn_ops.elu, data, quantized, int_quant_dtype=int_quant_dtype) def _test_forward_unary_elemwise(test_op, int_quant_dtype=None, quantized=True, negative=True): # input data in_data, inq_data = [], [] np_dtype = int_quant_dtype.as_numpy_dtype if int_quant_dtype else np.uint8 # quantized input data if quantized: inq_data.append(np.arange(1, 240, 40, dtype=np_dtype)) inq_data.append(np.arange(1, 240, 40, dtype=np_dtype).reshape((2, 1, 3))) if int_quant_dtype == np.int8: inq_data.append(np.arange(-128, 127, 45, dtype=np.int8)) for data in inq_data: test_op(data, quantized=True, int_quant_dtype=int_quant_dtype) # normal input data if negative: in_data.append(np.arange(-2.0, 4.0, dtype=np.float32)) in_data.append(np.arange(-2.0, 4.0, dtype=np.float32).reshape((2, 1, 3))) else: in_data.append(np.arange(1.0, 7.0, dtype=np.float32)) in_data.append(np.arange(1.0, 7.0, dtype=np.float32).reshape((2, 1, 3))) for data in in_data: test_op(data, quantized=False, int_quant_dtype=int_quant_dtype) def test_all_unary_elemwise(): """All unary elemwise""" _test_forward_unary_elemwise(_test_abs, int_quant_dtype=tf.int8) _test_forward_unary_elemwise(_test_abs, int_quant_dtype=tf.int16) _test_forward_unary_elemwise(_test_floor) _test_forward_unary_elemwise(_test_exp) _test_forward_unary_elemwise(_test_log, negative=False) _test_forward_unary_elemwise(_test_square) _test_forward_unary_elemwise(_test_sin) _test_forward_unary_elemwise(_test_neg) _test_forward_unary_elemwise(_test_sqrt, negative=False) # tensorflow version upgrade support if tf.__version__ < LooseVersion("2.6.1"): _test_forward_unary_elemwise(_test_rsqrt, negative=False, int_quant_dtype=tf.uint8) else: _test_forward_unary_elemwise(_test_rsqrt, negative=False, int_quant_dtype=tf.int8) # ceil and cos come with TFLite 1.14.0.post1 fbs schema if package_version.parse(tf.VERSION) >= package_version.parse("1.14.0"): _test_forward_unary_elemwise(_test_ceil) if tf.__version__ < LooseVersion("2.6.1"): _test_forward_unary_elemwise(_test_cos, quantized=False) else: _test_forward_unary_elemwise(_test_cos, int_quant_dtype=tf.int8) _test_forward_unary_elemwise(_test_round) # This fails with TF and Tflite 1.15.2, this could not have been tested # in CI or anywhere else. The failure mode is that we see a backtrace # from the converter that we need to provide a custom Tan operator # implementation. # _test_forward_unary_elemwise(_test_tan) _test_forward_unary_elemwise(_test_elu, quantized=False) ####################################################################### # Element-wise # ------------ def _test_elemwise( math_op, data, fused_activation_function=None, quantized=False, qnn_op=None, same_qnn_params=False, comparison_op=False, ): """One iteration of elemwise""" assert len(data) == 2 def __test_elemwise(in_data): assert len(in_data) == 2 if quantized: # set the fp32 output range with respect to the operation out_min, out_max = _test_elemwise_qnn_out_range(qnn_op) inq0_min, inq0_max = (-100, 100) inq1_min, inq1_max = (-50, 50) # if requested use same quantization parameters provided by _test_elemwise_qnn_out_range if same_qnn_params: inq0_min, inq0_max = (out_min, out_max) inq1_min, inq1_max = (out_min, out_max) # fake_quant will keep the tensors in float32 until the conversion in the session inq_data = [ tf.quantization.fake_quant_with_min_max_args( in_data[0], min=out_min, max=out_max, name="inq_0" ) if in_data[0] is not None else tf.quantization.fake_quant_with_min_max_args( data[0], min=out_min, max=out_max, name="const_tensor0" ), tf.quantization.fake_quant_with_min_max_args( in_data[1], min=out_min, max=out_max, name="inq_1" ) if in_data[1] is not None else tf.quantization.fake_quant_with_min_max_args( data[1], min=out_min, max=out_max, name="const_tensor1" ), ] input_range = { x[1][0]: x[1][1] for x in zip( in_data, (("inq_0", (inq0_min, inq0_max)), ("inq_1", (inq1_min, inq1_max))) ) if x[0] is not None } if comparison_op: out = math_op(inq_data[0], inq_data[1]) out = with_fused_activation_function(out, fused_activation_function) compare_tflite_with_tvm( [x[1] for x in zip(in_data, data) if x[0] is not None], [x + ":0" for x in input_range.keys()], [x[1] for x in zip(in_data, inq_data) if x[0] is not None], [out], quantized=True, input_range=input_range, experimental_new_converter=same_qnn_params, ) else: out = math_op(inq_data[0], inq_data[1]) out = with_fused_activation_function(out, fused_activation_function) out = tf.quantization.fake_quant_with_min_max_args( out, min=out_min, max=out_max, name="out" ) # Note same_qnn_params uses experimental_new_converter as toco failed compare_tflite_with_tvm( [x[1] for x in zip(in_data, data) if x[0] is not None], [x + ":0" for x in input_range.keys()], [x[1] for x in zip(in_data, inq_data) if x[0] is not None], [out], quantized=True, input_range=input_range, experimental_new_converter=same_qnn_params, ) else: out = math_op( in_data[0] if in_data[0] is not None else ops.convert_to_tensor(data[0], dtype=data[0].dtype), in_data[1] if in_data[1] is not None else ops.convert_to_tensor(data[1], dtype=data[1].dtype), ) out = with_fused_activation_function(out, fused_activation_function) compare_tflite_with_tvm( [x[1] for x in zip(in_data, data) if x[0] is not None], [x[1] for x in zip(in_data, ("in_0:0", "in_1:0")) if x[0] is not None], [x for x in in_data if x is not None], [out], ) # Test with two tensors with tf.Graph().as_default(): __test_elemwise( in_data=[ array_ops.placeholder(shape=data[0].shape, dtype="float32", name="in_0"), array_ops.placeholder(shape=data[1].shape, dtype="float32", name="in_1"), ] ) # Test with tensor and constant with tf.Graph().as_default(): __test_elemwise( in_data=[array_ops.placeholder(shape=data[0].shape, dtype="float32", name="in_0"), None] ) # Test with constant and tensor with tf.Graph().as_default(): __test_elemwise( in_data=[None, array_ops.placeholder(shape=data[1].shape, dtype="float32", name="in_1")] ) ####################################################################### # Add # --- def _test_add(data, fused_activation_function=None, quantized=False, qnn_op=None): """One iteration of add""" return _test_elemwise(math_ops.add, data, fused_activation_function, quantized, qnn_op) ####################################################################### # Subtract # -------- def _test_sub(data, fused_activation_function=None, quantized=False, qnn_op=None): """One iteration of subtract""" return _test_elemwise(math_ops.subtract, data, fused_activation_function, quantized, qnn_op) ####################################################################### # Mul # --- def _test_mul(data, fused_activation_function=None, quantized=False, qnn_op=None): """One iteration of mul""" return _test_elemwise(math_ops.multiply, data, fused_activation_function, quantized, qnn_op) ####################################################################### # Divide # ------ def _test_div(data, fused_activation_function=None): """One iteration of divide""" return _test_elemwise(math_ops.divide, data, fused_activation_function) ####################################################################### # Power # ----- def _test_pow(data): """One iteration of power""" return _test_elemwise(math_ops.pow, data) ####################################################################### # Maximum # ------- def _test_maximum(data, fused_activation_function=None, quantized=False, qnn_op=None): """One iteration of maximum""" return _test_elemwise( math_ops.maximum, data, fused_activation_function, quantized, qnn_op, same_qnn_params=True ) ####################################################################### # Minimum # ------- def _test_minimum(data, fused_activation_function=None, quantized=False, qnn_op=None): """One iteration of minimum""" return _test_elemwise( math_ops.minimum, data, fused_activation_function, quantized, qnn_op, same_qnn_params=True ) ####################################################################### # Greater # ------- def _test_greater(data, fused_activation_function=None, quantized=False, qnn_op=None): """One iteration of greater""" return _test_elemwise( math_ops.greater, data, fused_activation_function, quantized, qnn_op, same_qnn_params=True, comparison_op=True, ) ####################################################################### # Greater_equal # ------------- def _test_greater_equal(data): """One iteration of greater_equal""" return _test_elemwise(math_ops.greater_equal, data) ####################################################################### # Less # ---- def _test_less(data): """One iteration of less""" return _test_elemwise(math_ops.less, data) ####################################################################### # Less_equal # ---------- def _test_less_equal(data): """One iteration of less_equal""" return _test_elemwise(math_ops.less_equal, data) ####################################################################### # Equal # ----- def _test_equal(data, fused_activation_function=None, quantized=False, qnn_op=None): """One iteration of equal""" return _test_elemwise( math_ops.equal, data, fused_activation_function, quantized, qnn_op, same_qnn_params=True, comparison_op=True, ) ####################################################################### # Not_equal # --------- def _test_not_equal(data): """One iteration of not_equal""" return _test_elemwise(math_ops.not_equal, data) ####################################################################### # Squared_difference # ------------------ def _test_squared_difference(data): """One iteration of squared difference""" return _test_elemwise(math_ops.squared_difference, data) ####################################################################### # Floor_divide # ------------ def _test_floor_divide(data): """One iteration of floor_div""" return _test_elemwise(math_ops.floordiv, data) ####################################################################### # Floor_mod # --------- def _test_floor_mod(data): """One iteration of floor_mod""" return _test_elemwise(math_ops.floormod, data) def _test_forward_elemwise(testop): """Elewise""" testop( [ np.arange(6.0, dtype=np.float32).reshape((2, 1, 1, 3)), np.arange(1.0, 7.0, dtype=np.float32).reshape((2, 1, 1, 3)), ] ) testop( [ np.arange(6.0, dtype=np.float32).reshape((2, 1, 3)), np.arange(1.0, 7.0, dtype=np.float32).reshape((2, 1, 3)), ] ) testop( [ np.arange(3.0, dtype=np.float32).reshape((1, 3)), np.arange(1.0, 4.0, dtype=np.float32).reshape((1, 3)), ] ) def _test_forward_elemwise_quantized(testop): testop( [ np.array(np.random.uniform(0, 255, (3, 6)), dtype=np.uint8), np.array(np.random.uniform(0, 255, (3, 6)), dtype=np.uint8), ], quantized=True, qnn_op=testop, ) def _test_elemwise_qnn_out_range(qnn_op): # set the fake_quant output range with respect to the input tensors float32 range qnn_out_range = { _test_add: (-150, 150), _test_sub: (-150, 150), _test_mul: (-5e3, 5e3), _test_maximum: (-112, 111), _test_minimum: (-128, 127), _test_equal: (-150, 150), _test_greater: (-150, 150), } return qnn_out_range[qnn_op] def test_all_elemwise(): """All_elewise""" _test_forward_elemwise(_test_add) _test_forward_elemwise_quantized(_test_add) _test_forward_elemwise(partial(_test_add, fused_activation_function="RELU")) # this is broken with tf upgrade 1.15.2 and hits a segfault that needs # further investigation. # _test_forward_elemwise(partial(_test_add, fused_activation_function="RELU6")) _test_forward_elemwise(_test_sub) _test_forward_elemwise_quantized(_test_sub) _test_forward_elemwise(partial(_test_sub, fused_activation_function="RELU")) _test_forward_elemwise(partial(_test_sub, fused_activation_function="RELU6")) _test_forward_elemwise(_test_mul) _test_forward_elemwise_quantized(_test_mul) _test_forward_elemwise(partial(_test_mul, fused_activation_function="RELU")) _test_forward_elemwise(partial(_test_mul, fused_activation_function="RELU6")) _test_forward_elemwise(_test_div) _test_forward_elemwise(partial(_test_div, fused_activation_function="RELU")) _test_forward_elemwise(partial(_test_div, fused_activation_function="RELU6")) _test_forward_elemwise(_test_pow) _test_forward_elemwise(_test_maximum) _test_forward_elemwise_quantized(_test_maximum) _test_forward_elemwise(_test_minimum) _test_forward_elemwise_quantized(_test_minimum) _test_forward_elemwise(_test_greater) _test_forward_elemwise_quantized(_test_greater) _test_forward_elemwise(_test_squared_difference) _test_forward_elemwise(_test_greater_equal) _test_forward_elemwise(_test_less) _test_forward_elemwise(_test_less_equal) _test_forward_elemwise(_test_equal) _test_forward_elemwise_quantized(_test_equal) _test_forward_elemwise(_test_not_equal) if package_version.parse(tf.VERSION) >= package_version.parse("1.14.0"): _test_forward_elemwise(_test_floor_divide) _test_forward_elemwise(_test_floor_mod) ####################################################################### # AddN # ---- def _test_forward_add_n(inputs): tf.reset_default_graph() with tf.Graph().as_default(): temp = [] for each in inputs: temp.append(tf.placeholder(shape=each.shape, dtype=each.dtype)) output = tf.add_n(temp) compare_tflite_with_tvm( list(inputs), [each.name for each in temp], list(temp), [output], ) def test_forward_add_n(): """Add n""" if package_version.parse(tf.VERSION) >= package_version.parse("1.14.0"): x = np.random.randint(1, 100, size=(3, 3, 3), dtype=np.int32) y = np.random.randint(1, 100, size=(3, 3, 3), dtype=np.int32) z_1 = np.random.randint(1, 100, size=(3, 3, 3), dtype=np.int32) x_1, x_2, z_2 = x.astype(np.float32), y.astype(np.float32), z_1.astype(np.float32) in0 = x in1 = [x, y] in2 = (x, y, z_1) in3 = x_1 in4 = [x_1, x_2] in5 = (x_1, x_2, z_2) _test_forward_add_n(in0) _test_forward_add_n(in1) _test_forward_add_n(in2) _test_forward_add_n(in3) _test_forward_add_n(in4) _test_forward_add_n(in5) ####################################################################### # Logical operators # ----------------- def _test_logical_binary(logical_bin_op, data): with tf.Graph().as_default(): in_data = [ array_ops.placeholder(shape=data[0].shape, dtype="bool", name="in_0"), array_ops.placeholder(shape=data[1].shape, dtype="bool", name="in_1"), ] if logical_bin_op is math_ops.logical_not: out = math_ops.logical_or(in_data[0], in_data[1], name="out1") out = logical_bin_op(out, name="out") else: out = logical_bin_op(in_data[0], in_data[1], name="out") compare_tflite_with_tvm(data, ["in_0:0", "in_1:0"], in_data, [out]) def _test_forward_logical_and(data): """One iteration of logical and""" return _test_logical_binary(math_ops.logical_and, data) def _test_forward_logical_or(data): """One iteration of logical or""" return _test_logical_binary(math_ops.logical_or, data) def _test_forward_logical_not(data): """One iteration of logical not""" return _test_logical_binary(math_ops.logical_not, data) def test_all_logical(): data = [ np.random.choice(a=[False, True], size=(2, 3, 4)).astype("bool"), np.random.choice(a=[False, True], size=(2, 3, 4)).astype("bool"), ] # boolean dtype is not supported by older versions than TFLite 1.15.0 if package_version.parse(tf.VERSION) >= package_version.parse("1.15.0"): _test_forward_logical_and(data) _test_forward_logical_or(data) _test_forward_logical_not(data) ####################################################################### # Zeros like # ---------- def _test_zeros_like(data): """One iteration of ZEROS LIKE""" with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) out = gen_array_ops.zeros_like(in_data) compare_tflite_with_tvm(data, "Placeholder:0", [in_data], [out]) def test_forward_zeros_like(): """ZEROS LIKE""" _test_zeros_like(np.arange(6.0, dtype=np.float32).reshape((1, 6))) ####################################################################### # Fill # ---- def _test_fill(dims, value_data, value_dtype): """Use the fill op to create a tensor of value_data with constant dims.""" value_data = np.array(value_data, dtype=value_dtype) # TF 1.13 TFLite convert method does not accept empty shapes if package_version.parse(tf.VERSION) >= package_version.parse("1.14.0"): with tf.Graph().as_default(): value = array_ops.placeholder(dtype=value_dtype, name="value", shape=[]) out = tf.fill(dims, value) compare_tflite_with_tvm([value_data], ["value"], [value], [out]) with tf.Graph().as_default(): input1 = array_ops.placeholder(dtype=value_dtype, name="input1", shape=dims) # Fill op gets converted to static tensor during conversion out = tf.fill(dims, value_data) out1 = tf.add(out, input1) input1_data = np.random.uniform(0, 5, size=dims).astype(value_dtype) compare_tflite_with_tvm([input1_data], ["input1"], [input1], [out1]) def test_forward_fill(): """Test FILL op""" _test_fill((1, 2, 2, 4), 5, "int32") _test_fill((1, 2, 2, 4), 5, "float32") _test_fill((5,), 5, "int32") ####################################################################### # Reduce # ------ def _test_reduce(math_op, data, keep_dims=None): """One iteration of reduce""" assert len(data) == 2 # Test with tensor and constant with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data[0].shape, dtype=data[0].dtype, name="in") out = math_op(in_data, data[1], keep_dims) compare_tflite_with_tvm([data[0]], ["in:0"], [in_data], [out]) def _test_reduce_quantize(math_op, data, keep_dims=None): """One iteration of reduce""" assert len(data) == 2 # Test with tensor and constant with tf.Graph().as_default(): in_data = [array_ops.placeholder(shape=data[0].shape, dtype="float32", name="in")] inq_data = [ tf.quantization.fake_quant_with_min_max_args( in_data[0], min=-100, max=100, name="inq_0" ) ] input_range = {"inq_0": (-100, 100)} out = math_op(inq_data, data[1], keep_dims) out = tf.quantization.fake_quant_with_min_max_args(out, min=-200, max=200, name="out") compare_tflite_with_tvm( [data[0]], ["inq_0:0"], [inq_data[0]], [out], quantized=True, input_range=input_range ) ####################################################################### # Reduce_min # ---------- def _test_reduce_min(data, keep_dims=None): """One iteration of reduce_min""" return _test_reduce(math_ops.reduce_min, data, keep_dims) ####################################################################### # Reduce_max # ---------- def _test_reduce_max(data, keep_dims=None): """One iteration of reduce_max""" return _test_reduce(math_ops.reduce_max, data, keep_dims) ####################################################################### # Reduce_mean # ----------- def _test_reduce_mean(data, keep_dims=None, quantized=False): """One iteration of reduce_mean""" if quantized: return _test_reduce_quantize(math_ops.reduce_mean, data, keep_dims) else: return _test_reduce(math_ops.reduce_mean, data, keep_dims) ####################################################################### # Reduce_prod # ----------- def _test_reduce_prod(data, keep_dims=None): """One iteration of reduce_prod""" return _test_reduce(math_ops.reduce_prod, data, keep_dims) ####################################################################### # Reduce_sum # ----------- def _test_reduce_sum(data, keep_dims=None): """One iteration of reduce_sum""" return _test_reduce(math_ops.reduce_sum, data, keep_dims) ####################################################################### # Reduce_any # ---------- def _test_reduce_any(data, keep_dims=None): """One iteration of reduce_any""" return _test_reduce(math_ops.reduce_any, data, keep_dims) def _test_forward_reduce(testop, dtype="float32"): """Reduce""" if dtype == "bool": data0 = [np.random.choice(a=[False, True], size=(16, 16, 16, 16)).astype(dtype), None] data1 = [ np.random.choice(a=[False, True], size=(16, 16, 16, 16)).astype(dtype), np.array(1, dtype=np.int32), ] data2 = [ np.random.choice(a=[False, True], size=(16, 16, 16, 16)).astype(dtype), np.array([1, 2], dtype=np.int32), ] else: data0 = [np.random.rand(16, 16, 16, 16).astype(dtype), None] data1 = [np.random.rand(16, 16, 16, 16).astype(dtype), np.array(1, dtype=np.int32)] data2 = [np.random.rand(16, 16, 16, 16).astype(dtype), np.array([1, 2], dtype=np.int32)] for data in [data0, data1, data2]: testop(data) testop(data, keep_dims=False) testop(data, keep_dims=True) def _test_forward_reduce_quantized(testop): data0 = [ np.array(np.random.uniform(0, 255, (3, 6)), dtype=np.uint8), np.array([1, 2], dtype=np.int32), ] testop(data0, quantized=True) testop(data0, keep_dims=False, quantized=True) testop(data0, keep_dims=True, quantized=True) def test_all_reduce(): _test_forward_reduce(_test_reduce_min) _test_forward_reduce(_test_reduce_max) _test_forward_reduce(_test_reduce_mean) _test_forward_reduce_quantized(_test_reduce_mean) _test_forward_reduce(_test_reduce_prod) _test_forward_reduce(_test_reduce_sum) if package_version.parse(tf.VERSION) >= package_version.parse("1.15.0"): _test_forward_reduce(_test_reduce_any, dtype="bool") ####################################################################### # Arg_min_max # ----------- def _test_arg_min_max(math_op, data, axis, quantized=False): """One iteration of arg_min_max""" with tf.Graph().as_default(): t_name = "in" in_data = array_ops.placeholder(shape=data.shape, dtype=np.float32, name=t_name) input_range = None qmin, qmax = -100, 102 if quantized: inq_data = tf.quantization.fake_quant_with_min_max_args( in_data, min=qmin, max=qmax, name="q" + t_name ) input_range = {inq_data.name.split(":")[0]: (qmin, qmax)} out = math_op(input=inq_data, axis=axis) compare_tflite_with_tvm( [data], [inq_data.name], [inq_data], [out], quantized=True, input_range=input_range ) else: out = math_op(input=in_data, axis=axis) compare_tflite_with_tvm([data], [in_data.name], [in_data], [out]) def test_forward_arg_min_max(): """Arg min max""" # test quantized for data in [np.array(np.random.uniform(-100, 100, (3, 4)), dtype=np.uint8)]: # There is no quantized version of ArgMin for axis in [None, 0, 1, -1]: _test_arg_min_max(math_ops.argmax, data, axis, True) for data in [np.array(np.random.uniform(-100, 100, (3, 4)), dtype=np.float32)]: for axis in [None, 0, 1, -1]: _test_arg_min_max(math_ops.argmax, data, axis) _test_arg_min_max(math_ops.argmin, data, axis) ####################################################################### # Select, Where # ------------- def test_forward_select(): """Select""" with tf.Graph().as_default(): with tf.Session() as _: input1 = tf.placeholder(tf.int32, shape=[1, 4, 4, 3], name="input1") input2 = tf.placeholder(tf.int32, shape=[1, 4, 4, 3], name="input2") mask = input1 > input2 out = tf.where(mask, input1 + 1, input2 * 2) in_data1 = np.random.uniform(0, 10, size=(1, 4, 4, 3)).astype("int32") in_data2 = np.random.uniform(0, 10, size=(1, 4, 4, 3)).astype("int32") compare_tflite_with_tvm( [in_data1, in_data2], ["input1:0", "input2:0"], [input1, input2], [out] ) @pytest.mark.parametrize("quant_bits", [2, 4, 8, 16]) @pytest.mark.parametrize( "value, min_value, max_value", [[-10.11, -6, 6], [-3.55, -6, 6], [0, -6, 6], [3.55, -6, 6], [10.11, -6, 6]], ) def test_forward_fake_quant(value, min_value, max_value, quant_bits): """Fake quant""" with tf.Graph().as_default(): with tf.Session() as _: input_placeholder = tf.placeholder(tf.float32, shape=[1], name="input") out = tf.quantization.fake_quant_with_min_max_args( input_placeholder, min=min_value, max=max_value, num_bits=quant_bits, name=None ) in_data = np.float32(value) compare_tflite_with_tvm([in_data], ["input:0"], [input_placeholder], [out]) # Squeeze # ------- def _test_squeeze(data, squeeze_dims=None): """One iteration of squeeze""" if squeeze_dims is None: squeeze_dims = [] with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) if squeeze_dims: out = array_ops.squeeze(in_data, squeeze_dims) else: out = array_ops.squeeze(in_data) compare_tflite_with_tvm(data, "Placeholder:0", [in_data], [out]) def test_forward_squeeze(): """Squeeze""" _test_squeeze(np.arange(6).reshape((1, 2, 1, 3)), [0, 2]) _test_squeeze(np.arange(6).reshape((2, 1, 3, 1)), [1, 3]) ####################################################################### # Quantize/DeQuantize # ------------------- def _test_quantize_dequantize(data): """One iteration of quantize and dequantize""" # Keras model to force TFLite converter to insert 2 TFLite quantize ops. # First TFLite quantize op converts float32 tensor to int8 tensor - Qnn quantize. # Second TFLite quantize op converts int8 tensor to int8 tensor - Qnn requantize. data_in = tf.keras.layers.Input(shape=data.shape[1:]) relu = tf.keras.layers.ReLU()(data_in) add = tf.keras.layers.Add()([data_in, relu]) concat = tf.keras.layers.Concatenate(axis=0)([relu, add]) keras_model = tf.keras.models.Model(inputs=data_in, outputs=concat) # To create quantized values with dynamic range of activations, needs representative dataset def representative_data_gen(): for _ in range(1): yield [data] tflite_model_quant = _quantize_keras_model(keras_model, representative_data_gen, True, True) tflite_output = run_tflite_graph(tflite_model_quant, data) if tf.__version__ < LooseVersion("2.9"): in_node = data_in.name.split(":")[0] else: in_node = "serving_default_" + data_in.name + ":0" tvm_output = run_tvm_graph(tflite_model_quant, data, in_node) tvm.testing.assert_allclose( np.squeeze(tvm_output[0]), np.squeeze(tflite_output[0]), rtol=1e-5, atol=1e-2 ) def _test_quantize_dequantize_const(data): """One iteration of quantize and dequantize""" # Keras model to force TFLite converter to insert 2 TFLite quantize ops. # First TFLite quantize op converts float32 tensor to int8 tensor - Qnn quantize. # Second TFLite quantize op converts int8 tensor to int8 tensor - Qnn requantize. data_in = tf.keras.layers.Input(shape=data.shape[1:]) relu = tf.keras.layers.ReLU()(data_in) add = tf.keras.layers.Add()([data, relu]) concat = tf.keras.layers.Concatenate(axis=0)([relu, add]) keras_model = tf.keras.models.Model(inputs=data_in, outputs=concat) # To create quantized values with dynamic range of activations, needs representative dataset def representative_data_gen(): for _ in range(1): yield [data] tflite_model_quant = _quantize_keras_model(keras_model, representative_data_gen, True, True) tflite_output = run_tflite_graph(tflite_model_quant, data) if tf.__version__ < LooseVersion("2.9"): in_node = data_in.name.split(":")[0] else: in_node = "serving_default_" + data_in.name + ":0" tvm_output = run_tvm_graph(tflite_model_quant, data, in_node) tvm.testing.assert_allclose( np.squeeze(tvm_output[0]), np.squeeze(tflite_output[0]), rtol=1e-5, atol=1e-2 ) def test_forward_quantize_dequantize(): """Quantize Dequantize""" data = np.random.uniform(0, 1, (1, 4, 4, 3)).astype("float32") if package_version.parse(tf.VERSION) >= package_version.parse("2.1.0"): _test_quantize_dequantize(data) _test_quantize_dequantize_const(data) ####################################################################### # Pad # --- def _test_pad(data, mode="CONSTANT", quantized=False): """One iteration of PAD""" assert len(data) == 2 # Test with tensor and constant with tf.Graph().as_default(): in_data = [array_ops.placeholder(shape=data[0].shape, dtype="float32", name="in")] if quantized: # fake_quant will keep the tensors in float32 until the conversion in the session input_range = {"inq_0": (-100, 100)} inq_data = [ tf.quantization.fake_quant_with_min_max_args( in_data[0], min=-100, max=100, name="inq_0" ) ] out = array_ops.pad( inq_data[0], ops.convert_to_tensor(data[1], dtype=data[1].dtype), mode=mode ) compare_tflite_with_tvm( [data[0]], ["inq_0:0"], inq_data, [out], quantized=True, input_range=input_range ) else: out = array_ops.pad( in_data[0], ops.convert_to_tensor(data[1], dtype=data[1].dtype), mode=mode ) compare_tflite_with_tvm([data[0]], ["in:0"], in_data, [out]) def test_forward_pad(): """Pad""" _test_pad( [ np.arange(1.0, 7.0, dtype=np.float32).reshape((2, 1, 1, 3)), np.array([[1, 1], [2, 2], [1, 1], [2, 2]], dtype=np.int32), ] ) _test_pad( [ np.arange(1.0, 7.0, dtype=np.float32).reshape((2, 1, 3)), np.array([[2, 2], [1, 1], [1, 1]], dtype=np.int32), ] ) _test_pad( [ np.arange(1.0, 7.0, dtype=np.float32).reshape((2, 3)), np.array([[1, 1], [2, 2]], dtype=np.int32), ] ) _test_pad( [ np.arange(1.0, 4.0, dtype=np.float32).reshape((1, 3)), np.array([[1, 1], [2, 2]], dtype=np.int32), ] ) _test_pad( [ np.arange(1.0, 7.0, dtype=np.float32).reshape((2, 3)), np.array([[1, 1], [2, 2]], dtype=np.int32), ], mode="REFLECT", ) _test_pad( [ np.arange(1.0, 7.0, dtype=np.float32).reshape((2, 3)), np.array([[1, 1], [2, 2]], dtype=np.int32), ], mode="SYMMETRIC", ) _test_pad( [ np.arange(1.0, 7.0, dtype=np.float32).reshape((2, 3)), np.array([[1, 1], [2, 2]], dtype=np.int64), ], mode="REFLECT", ) _test_pad( [ np.arange(1.0, 7.0, dtype=np.float32).reshape((2, 3)), np.array([[1, 1], [2, 2]], dtype=np.int64), ], mode="SYMMETRIC", ) _test_pad( [ np.arange(0, 256, dtype=np.uint8).reshape((1, 256)), np.array([[1, 1], [2, 2]], dtype=np.int32), ], quantized=True, ) ####################################################################### # PADV2 # ----- def _test_padv2(data, mode="CONSTANT", quantized=False): """One iteration of PADV2""" assert len(data) == 2 or len(data) == 3 with_constant_values = len(data) == 3 # Test with tensor and constant with tf.Graph().as_default(): in_data = [array_ops.placeholder(shape=data[0].shape, dtype="float32", name="in")] if quantized: # fake_quant will keep the tensors in float32 until the conversion in the session input_range = {"inq_0": (-100, 100)} inq_data = [ tf.quantization.fake_quant_with_min_max_args( in_data[0], min=-100, max=100, name="inq_0" ) ] if with_constant_values: in_constant_values = constant_op.constant( data[2], shape=data[2].shape, dtype="float32", name="in_constant_values" ) inq_constant_values = tf.quantization.fake_quant_with_min_max_args( in_constant_values, min=-100, max=100, name="inq_constant_values" ) out = array_ops.pad_v2( inq_data[0], ops.convert_to_tensor(data[1], dtype=data[1].dtype), constant_values=inq_constant_values, mode=mode, ) out = tf.quantization.fake_quant_with_min_max_args( out, min=-100, max=100, name="out" ) else: out = array_ops.pad_v2( inq_data[0], ops.convert_to_tensor(data[1], dtype=data[1].dtype), mode=mode ) compare_tflite_with_tvm( [data[0]], ["inq_0:0"], inq_data, [out], quantized=True, input_range=input_range ) else: if with_constant_values: out = array_ops.pad_v2( in_data[0], ops.convert_to_tensor(data[1], dtype=data[1].dtype), constant_values=ops.convert_to_tensor(data[2], dtype=data[2].dtype), mode=mode, ) else: out = array_ops.pad_v2( in_data[0], ops.convert_to_tensor(data[1], dtype=data[1].dtype), mode=mode ) compare_tflite_with_tvm([data[0]], ["in:0"], in_data, [out]) def test_forward_padv2(): """PADV2""" # Tests without Constant_values _test_padv2( [ np.arange(1.0, 7.0, dtype=np.float32).reshape((2, 1, 1, 3)), np.array([[1, 1], [2, 2], [1, 1], [2, 2]], dtype=np.int32), ] ) _test_padv2( [ np.arange(1.0, 7.0, dtype=np.float32).reshape((2, 1, 3)), np.array([[2, 2], [1, 1], [1, 1]], dtype=np.int32), ] ) _test_padv2( [ np.arange(1.0, 7.0, dtype=np.float32).reshape((2, 3)), np.array([[1, 1], [2, 2]], dtype=np.int32), ] ) _test_padv2( [ np.arange(1.0, 4.0, dtype=np.float32).reshape((1, 3)), np.array([[1, 1], [2, 2]], dtype=np.int32), ] ) _test_padv2( [ np.arange(1.0, 7.0, dtype=np.float32).reshape((2, 3)), np.array([[1, 1], [2, 2]], dtype=np.int32), ], mode="REFLECT", ) _test_padv2( [ np.arange(1.0, 7.0, dtype=np.float32).reshape((2, 3)), np.array([[1, 1], [2, 2]], dtype=np.int32), ], mode="SYMMETRIC", ) _test_padv2( [ np.arange(0, 256, dtype=np.uint8).reshape((1, 256)), np.array([[1, 1], [2, 2]], dtype=np.int32), ], quantized=True, ) # Tests with Constant_values _test_padv2( [ np.arange(1.0, 7.0, dtype=np.float32).reshape((2, 1, 1, 3)), np.array([[1, 1], [2, 2], [1, 1], [2, 2]], dtype=np.int32), np.array([2], dtype=np.float32), ] ) _test_padv2( [ np.arange(1.0, 7.0, dtype=np.float32).reshape((2, 1, 3)), np.array([[2, 2], [1, 1], [1, 1]], dtype=np.int32), np.array([1], dtype=np.float32), ] ) _test_padv2( [ np.arange(1.0, 7.0, dtype=np.float32).reshape((2, 3)), np.array([[1, 1], [2, 2]], dtype=np.int32), np.array([-1], dtype=np.float32), ] ) _test_padv2( [ np.arange(1.0, 4.0, dtype=np.float32).reshape((1, 3)), np.array([[1, 1], [2, 2]], dtype=np.int32), np.array([2], dtype=np.float32), ] ) # NOTE: In versions > 2.1.0, there is a bug in Tensorflow package for this scenario. # Hence, it is disabled temporarily for TF version > 2.1.0 . if package_version.parse(tf.VERSION) <= package_version.parse("2.1.0"): _test_padv2( [ np.arange(0, 256, dtype=np.uint8).reshape((1, 256)), np.array([[1, 1], [2, 2]], dtype=np.int32), np.array([2], dtype=np.float32), ], quantized=True, ) # Constant Values input can be scalar _test_padv2( [ np.arange(1.0, 7.0, dtype=np.float32).reshape((2, 1, 1, 3)), np.array([[1, 1], [2, 2], [1, 1], [2, 2]], dtype=np.int32), np.float32(2), ] ) # NOTE: In versions > 2.1.0, there is a bug in Tensorflow package for this scenario. # Hence, it is disabled temporarily for TF versions > 2.1.0. if package_version.parse(tf.VERSION) <= package_version.parse("2.1.0"): _test_padv2( [ np.arange(0, 256, dtype=np.uint8).reshape((1, 256)), np.array([[1, 1], [2, 2]], dtype=np.int32), np.uint8(10), ], quantized=True, ) ####################################################################### # EXPAND_DIMS # ----------- def _test_expand_dims(input_shape, input_type, axis, quantized=False): """One iteration of EXPAND_DIMS""" with tf.Graph().as_default(): axis = ops.convert_to_tensor(axis, dtype=axis.dtype) if quantized: # ignoring input_type as quantized requires uint8 input_array = np.random.uniform(0, 256, input_shape).astype("uint8") in_input = tf.placeholder(dtype="float32", shape=input_array.shape, name="input") input_range = {"q_input": (-100, 100)} inq_input = tf.quantization.fake_quant_with_min_max_args( in_input, min=-100, max=100, name="q_input" ) out = array_ops.expand_dims(inq_input, axis=axis) out = tf.quantization.fake_quant_with_min_max_args(out, min=-100, max=100, name="out") compare_tflite_with_tvm( [input_array], ["q_input"], [inq_input], [out], quantized=True, input_range=input_range, ) else: input_array = np.random.uniform(-100, 100, input_shape).astype(input_type) in_input = tf.placeholder( dtype=input_array.dtype, shape=input_array.shape, name="input" ) out = array_ops.expand_dims(in_input, axis=axis) compare_tflite_with_tvm([input_array], ["input"], [in_input], [out]) def test_forward_expand_dims(): """EXPAND_DIMS""" for quantized in [False, True]: _test_expand_dims((6, 2, 7, 5), "float32", np.int32(0), quantized=quantized) _test_expand_dims((1, 2, 3), "int32", np.int32(-2), quantized=quantized) _test_expand_dims((2, 4, 5), "float32", np.array([1], dtype=np.int32), quantized=quantized) ####################################################################### # ONE_HOT # ------- def _test_one_hot(indices, depth, on_value, off_value, axis=None): """One iteration of One_Hot""" with tf.Graph().as_default(): in_indices = tf.placeholder(dtype=indices.dtype, shape=indices.shape, name="indices") in_depth = ops.convert_to_tensor(depth, dtype=depth.dtype) in_on_value = tf.placeholder(dtype=on_value.dtype, shape=on_value.shape, name="on_value") in_off_value = tf.placeholder( dtype=off_value.dtype, shape=off_value.shape, name="off_value" ) if axis is not None: out = array_ops.one_hot(in_indices, in_depth, in_on_value, in_off_value, axis=axis) else: out = array_ops.one_hot(in_indices, in_depth, in_on_value, in_off_value) compare_tflite_with_tvm( [indices, on_value, off_value], ["indices", "on_value", "off_value"], [in_indices, in_on_value, in_off_value], [out], ) def test_forward_one_hot(): """One_Hot""" _test_one_hot(np.int32(2), np.int32(8), np.int32(1), np.int32(0)) _test_one_hot(np.int32(4), np.int32(8), np.float32(1), np.float32(0)) _test_one_hot(np.array([1, 2, 3], dtype=np.int32), np.int32(8), np.int32(3), np.int32(-1)) _test_one_hot( np.array([1, 2, 3], dtype=np.int32), np.int32(8), np.int32(3), np.int32(-1), axis=0 ) ####################################################################### # Pack # ---- def _test_pack(data, is_var, axis, quantized=False): """One iteration of pack""" assert len(data) >= 1 assert len(data) == len(is_var) if quantized: with tf.Graph().as_default(): in_data = [ array_ops.placeholder(shape=d.shape, dtype="float32", name="in_" + str(idx)) if is_var[idx] else constant_op.constant( d, shape=d.shape, dtype="float32", name="in_constant_" + str(idx) ) for idx, d in enumerate(data) ] inq_data = [ tf.quantization.fake_quant_with_min_max_args( i_data, min=-100, max=100, name=f"inq_{idx}" ) for idx, i_data in enumerate(in_data) ] input_range = {} for i in range(len(data)): input_range[f"inq_{i}"] = (-100, 100) out = array_ops.pack(inq_data, axis=axis) out = tf.quantization.fake_quant_with_min_max_args(out, min=-100, max=100, name="out") name = [f"inq_{idx}:0" for idx in range(len(data))] compare_tflite_with_tvm( data, name, inq_data, [out], quantized=True, input_range=input_range ) else: with tf.Graph().as_default(): in_data = [ array_ops.placeholder(shape=d.shape, dtype=d.dtype, name="in_" + str(idx)) if is_var[idx] else constant_op.constant( d, shape=d.shape, dtype=d.dtype, name="in_constant_" + str(idx) ) for idx, d in enumerate(data) ] out = array_ops.pack(in_data, axis=axis) name = [_.name for _ in in_data] compare_tflite_with_tvm(data, name, in_data, [out], experimental_new_converter=True) def test_forward_pack(): """Pack""" _test_pack([np.int32(1), np.int32(5)], [False, False], 0) _test_pack([np.array([1, 4]), np.array([2, 5]), np.array([3, 6])], [True, False, False], 0) _test_pack( [np.arange(6).reshape((1, 2, 1, 3)), np.arange(6).reshape((1, 2, 1, 3))], [True, True], 1 ) _test_pack([np.arange(6).reshape((3, 2)), np.arange(6).reshape((3, 2))], [True, True], 1) _test_pack( [ np.arange(6).reshape((2, 1, 1, 3)), np.arange(6).reshape((2, 1, 1, 3)), np.arange(6).reshape((2, 1, 1, 3)), ], [True, True, True], 1, ) _test_pack( [ np.arange(6, dtype=np.uint8).reshape((2, 1, 1, 3)), np.arange(6, dtype=np.uint8).reshape((2, 1, 1, 3)), np.arange(6, dtype=np.uint8).reshape((2, 1, 1, 3)), ], [True, True, True], 1, quantized=True, ) ####################################################################### # Unpack # ------ def _test_unpack(data, axis, num_unpacks): """One iteration of UNPACK""" with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) out = gen_array_ops.unpack(in_data, num=num_unpacks, axis=axis, name="unpack") out_names = ["out_" + str(n) + ":0" for n in range(num_unpacks)] compare_tflite_with_tvm([data], "Placeholder:0", [in_data], out, out_names=out_names) def test_forward_unpack(): """UNPACK""" _test_unpack(np.array(np.random.uniform(0, 5, (3, 1)), dtype=np.int32), axis=1, num_unpacks=1) _test_unpack(np.array(np.random.uniform(0, 5, (3, 4)), dtype=np.float32), axis=0, num_unpacks=3) _test_unpack( np.array(np.random.uniform(0, 5, (3, 1, 2)), dtype=np.float32), axis=0, num_unpacks=3 ) # tflite 1.13 doesn't accept negative axis if package_version.parse(tf.VERSION) >= package_version.parse("1.14.0"): _test_unpack( np.array(np.random.uniform(0, 5, (3, 6)), dtype=np.int32), axis=-2, num_unpacks=3 ) _test_unpack( np.array(np.random.uniform(0, 5, (2, 3, 4)), dtype=np.int32), axis=-3, num_unpacks=2 ) ####################################################################### # Local response normalization # ---------------------------- def _test_local_response_normalization(data, depth_radius, bias, alpha, beta): """One iteration of LOCAL_RESPONSE_NORMALIZATION""" with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype="float32", name="in_0") out = nn_ops.local_response_normalization( in_data, depth_radius=depth_radius, bias=bias, alpha=alpha, beta=beta ) compare_tflite_with_tvm(data, "in_0:0", [in_data], [out]) def test_forward_local_response_normalization(): """LOCAL_RESPONSE_NORMALIZATION""" data = np.random.uniform(size=(1, 6, 4, 3)).astype("float32") # LOCAL_RESPONSE_NORMALIZATION come with TFLite >= 1.14.0 fbs schema if package_version.parse(tf.VERSION) >= package_version.parse("1.14.0"): _test_local_response_normalization(data, depth_radius=5, bias=1, alpha=1, beta=0.5) ####################################################################### # L2 normalization # ---------------- def _test_l2_normalization(data, axis, fused_activation_function=None): """One iteration of L2_NORMALIZATION""" with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) out = nn_impl.l2_normalize(in_data, axis) out = with_fused_activation_function(out, fused_activation_function) compare_tflite_with_tvm(data, "Placeholder:0", [in_data], [out]) def test_forward_l2_normalization(): """L2_NORMALIZATION""" data = np.random.uniform(size=(3, 6, 4)).astype("float32") _test_l2_normalization(data, axis=2) _test_l2_normalization(data, axis=2, fused_activation_function="RELU") ####################################################################### # Logistic # -------- def _test_logistic(data, quantized=False): """One iteration of LOGISTIC""" with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype="float32", name="in_0") if quantized: inq_data = tf.quantization.fake_quant_with_min_max_args( in_data, min=-5, max=5, name="inq_0" ) input_range = {"inq_0": (-5, 5)} out = math_ops.sigmoid(inq_data) out = tf.quantization.fake_quant_with_min_max_args(out, min=0, max=1, name="out") compare_tflite_with_tvm( data, "inq_0:0", [inq_data], [out], quantized=True, input_range=input_range ) else: out = math_ops.sigmoid(in_data) compare_tflite_with_tvm(data, "in_0:0", [in_data], [out]) def test_forward_logistic(): """LOGISTIC""" _test_logistic(np.arange(6.0, dtype=np.float32).reshape((1, 6))) _test_logistic(np.random.uniform(0, 255, (3, 6)).astype(np.uint8), quantized=True) ####################################################################### # Softmax # ------- def _test_softmax(data): """One iteration of softmax""" with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) out = nn_ops.softmax(in_data) compare_tflite_with_tvm(data, "Placeholder:0", [in_data], [out]) def test_forward_softmax(): """Softmax""" _test_softmax(np.arange(6.0, dtype=np.float32).reshape((1, 6))) _test_softmax(np.arange(6.0, dtype=np.float32).reshape((1, 2, 3))) ###################################################################### # Log_softmax # ----------- def _test_log_softmax(data, quantized=False): """One iteration of log_softmax""" with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype="float32", name="in_0") if quantized: inq_data = tf.quantization.fake_quant_with_min_max_args( in_data, min=-10, max=10, name="inq_0" ) input_range = {"inq_0": (-10, 10)} # tflite log_softmax supports only the case when axis is not specified out = nn_ops.log_softmax(inq_data) out = tf.quantization.fake_quant_with_min_max_args(out, min=-20, max=0, name="out") compare_tflite_with_tvm( data, "inq_0:0", [inq_data], [out], quantized=True, input_range=input_range ) else: out = nn_ops.log_softmax(in_data) compare_tflite_with_tvm(data, "in_0:0", [in_data], [out]) def test_forward_log_softmax(): """Log_softmax""" _test_log_softmax(np.random.uniform(-10, 10, size=(3, 6)).astype(np.float32)) _test_log_softmax(np.random.uniform(0, 255, (3, 6)).astype(np.uint8), quantized=True) ####################################################################### # Tanh # ---- def _test_tanh(data, quantized=False): """One iteration of TANH""" with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype="float32", name="in_0") if quantized: inq_data = tf.quantization.fake_quant_with_min_max_args( in_data, min=-3, max=3, name="inq_0" ) input_range = {"inq_0": (-3, 3)} out = math_ops.tanh(inq_data) out = tf.quantization.fake_quant_with_min_max_args(out, min=-1, max=1, name="out") compare_tflite_with_tvm( data, "inq_0:0", [inq_data], [out], quantized=True, input_range=input_range ) else: out = math_ops.tanh(in_data) compare_tflite_with_tvm(data, "in_0:0", [in_data], [out]) def test_forward_tanh(): """TANH""" _test_tanh(np.arange(6.0, dtype=np.float32).reshape((1, 6)), quantized=False) _test_tanh(np.arange(0, 256, 30, dtype=np.uint8), quantized=True) ####################################################################### # ReLu # ---- def _test_relu(data, quantized=False): """One iteration of ReLU""" with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype="float32", name="in_0") if quantized: inq_data = tf.quantization.fake_quant_with_min_max_args( in_data, min=-10, max=10, name="inq_0" ) input_range = {"inq_0": (-10, 10)} out = nn_ops.relu(inq_data) out = tf.quantization.fake_quant_with_min_max_args(out, min=0, max=6, name="out") compare_tflite_with_tvm( data, "inq_0:0", [inq_data], [out], quantized=True, input_range=input_range ) else: out = nn_ops.relu(in_data) compare_tflite_with_tvm(data, "in_0:0", [in_data], [out]) def test_forward_relu(): """ReLU""" _test_relu(np.arange(6.0, dtype=np.float32).reshape((1, 6))) _test_relu(np.random.uniform(0, 255, (3, 6)).astype(np.uint8), quantized=True) ####################################################################### # ReLU6 # ----- def _test_relu6(data, quantized=False): """One iteration of ReLU6""" with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype="float32", name="in_0") if quantized: inq_data = tf.quantization.fake_quant_with_min_max_args( in_data, min=-10, max=10, name="inq_0" ) input_range = {"inq_0": (-10, 10)} out = nn_ops.relu6(inq_data) out = tf.quantization.fake_quant_with_min_max_args(out, min=0, max=6, name="out") compare_tflite_with_tvm( data, "inq_0:0", [inq_data], [out], quantized=True, input_range=input_range ) else: out = nn_ops.relu6(in_data) compare_tflite_with_tvm(data, "in_0:0", [in_data], [out]) def test_forward_relu6(): """ReLU6""" _test_relu6(np.random.uniform(-10, 10, size=(3, 6)).astype(np.float32)) _test_relu6(np.random.uniform(0, 255, (3, 6)).astype(np.uint8), quantized=True) ####################################################################### # Leaky_ReLU # ---------- def _test_leaky_relu(data, alpha, quantized=False): """One iteration of Leaky_ReLU""" with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype="float32", name="in_0") if quantized: inq_data = tf.quantization.fake_quant_with_min_max_args( in_data, min=-3, max=2, name="inq_0" ) input_range = {"inq_0": (-3, 2)} out = nn_ops.leaky_relu(inq_data, alpha) out = tf.quantization.fake_quant_with_min_max_args(out, min=-3, max=2, name="out") compare_tflite_with_tvm( data, "inq_0:0", [inq_data], [out], quantized=True, input_range=input_range ) else: out = nn_ops.leaky_relu(in_data, alpha) compare_tflite_with_tvm(data, "in_0:0", [in_data], [out]) def test_forward_leaky_relu(): """Leaky_ReLU""" _test_leaky_relu(np.random.uniform(-5, 5, (1, 6)).astype(np.float32), alpha=0.2) if package_version.parse(tf.VERSION) >= package_version.parse("1.14.0"): _test_leaky_relu( np.random.uniform(0, 255, (2, 3)).astype(np.uint8), alpha=0.3, quantized=True ) ####################################################################### # ReLU_n1_to_1 # ------------ def _test_relu_n1_to_1(data, quantized=False): """One iteration of ReLU_n1_to_1""" with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype="float32", name="in_0") if quantized: inq_data = tf.quantization.fake_quant_with_min_max_args( in_data, min=-3, max=3, name="inq_0" ) input_range = {"inq_0": (-3, 3)} # There is no such tf operation. # The specific pattern will be replaced into RELU_N1_TO_1 by tflite out = math_ops.maximum(-1.0, math_ops.minimum(inq_data, 1.0)) out = tf.quantization.fake_quant_with_min_max_args(out, min=-1, max=1, name="out") compare_tflite_with_tvm( data, "inq_0:0", [inq_data], [out], quantized=True, input_range=input_range ) else: out = math_ops.maximum(-1.0, math_ops.minimum(in_data, 1.0)) compare_tflite_with_tvm(data, "in_0:0", [in_data], [out]) def test_forward_relu_n1_to_1(): """ReLU_n1_to_1""" _test_relu_n1_to_1(np.random.uniform(-3, 3, (1, 6)).astype(np.float32)) if package_version.parse(tf.VERSION) >= package_version.parse("1.14.0"): _test_relu_n1_to_1(np.random.uniform(0, 255, (3, 6)).astype(np.uint8), quantized=True) ####################################################################### # PReLU # ----- def _test_prelu(data, alpha): """One iteration of PReLU""" with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) # This specific pattern will be replaced into PRelu by tflite out = nn_ops.relu(in_data) + (-alpha * nn_ops.relu(-in_data)) compare_tflite_with_tvm(data, "Placeholder:0", [in_data], [out]) def test_forward_prelu(): """PReLU""" _test_prelu( np.random.uniform(-5, 5, size=(1, 32, 32, 3)).astype("float32"), np.full((3,), 0.2, dtype="float32"), ) _test_prelu( np.random.uniform(-5, 5, size=(1, 32, 32, 3)).astype("float32"), np.full((1, 3), 0.2, dtype="float32"), ) _test_prelu( np.random.uniform(-5, 5, size=(1, 32, 32, 3)).astype("float32"), np.full((1, 1, 3), 0.2, dtype="float32"), ) _test_prelu( np.random.uniform(-5, 5, size=(1, 32, 32, 3)).astype("float32"), np.full((1, 1, 1, 3), 0.2, dtype="float32"), ) # _test_prelu( np.random.uniform(-5, 5, size=(1, 32, 32, 3)).astype("float32"), np.full((32, 3), 0.2, dtype="float32"), ) _test_prelu( np.random.uniform(-5, 5, size=(1, 32, 32, 3)).astype("float32"), np.full((32, 32, 3), 0.2, dtype="float32"), ) _test_prelu( np.random.uniform(-5, 5, size=(1, 32, 32, 3)).astype("float32"), np.full((1, 32, 1, 3), 0.2, dtype="float32"), ) # _test_prelu( np.random.uniform(-5, 5, size=(1, 1, 3)).astype("float32"), np.full((3,), 0.2, dtype="float32"), ) _test_prelu( np.random.uniform(-5, 5, size=(1, 32, 3)).astype("float32"), np.full((32, 3), 0.2, dtype="float32"), ) _test_prelu( np.random.uniform(-5, 5, size=(32, 3)).astype("float32"), np.full((3), 0.2, dtype="float32") ) ####################################################################### # DepthToSpace # ------------ def _test_depthtospace(data, block_size): """One iteration of depth_to_space operation with given data and block size""" with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) out = array_ops.depth_to_space(in_data, block_size) compare_tflite_with_tvm(data, "Placeholder:0", [in_data], [out]) def test_forward_depthtospace(): # DEPTH_TO_SPACE comes with TFLite >= 1.15.0 fbs schema if package_version.parse(tf.VERSION) >= package_version.parse("1.15.0"): _test_depthtospace(np.random.normal(size=[1, 32, 32, 4]).astype("float32"), 2) _test_depthtospace(np.random.normal(size=[1, 16, 8, 32]).astype("float32"), 4) ####################################################################### # SpaceToDepth # ------------ def _test_spacetodepth(data, block_size): """One iteration of space_to_depth operation with given data and block size""" with tf.Graph().as_default(): in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype) out = array_ops.space_to_depth(in_data, block_size) compare_tflite_with_tvm(data, "Placeholder:0", [in_data], [out]) def test_forward_spacetodepth(): _test_spacetodepth(np.random.normal(size=[1, 32, 32, 4]).astype("float32"), 2) _test_spacetodepth(np.random.normal(size=[1, 16, 8, 32]).astype("float32"), 4) ####################################################################### # ReverseSequence # --------------- def _test_reverse_sequence(shape, dtype, seq_lengths, batch_axis, seq_axis): """One iteration of reverse_sequence operation with given data and attributes""" data = np.random.uniform(0, 100, size=shape).astype(dtype) with tf.Graph().as_default(): in_data = array_ops.placeholder(dtype=dtype, name="input", shape=shape) out = tf.reverse_sequence( in_data, seq_lengths=seq_lengths, batch_axis=batch_axis, seq_axis=seq_axis ) compare_tflite_with_tvm(data, "input", [in_data], [out]) def test_forward_reverse_sequence(): if package_version.parse(tf.VERSION) >= package_version.parse("1.14.0"): _test_reverse_sequence([4, 3], "float32", [3, 2, 1], 1, 0) _test_reverse_sequence([4, 3], "float32", [3, 2, 1, 3], 0, 1) _test_reverse_sequence([2, 3, 3, 3], "float32", [2, 3, 2], 2, 1) _test_reverse_sequence([2, 4, 6, 4, 5], "float32", [5, 3], 0, 2) _test_reverse_sequence([2, 4, 6, 4, 5], "float32", [5, 3, 1, 4], 3, 2) ####################################################################### # Sparse To Dense # --------------- def _test_sparse_to_dense(sparse_indices, sparse_values, default_value, output_shape): # tflite 1.13 convert method does not accept empty shapes if package_version.parse(tf.VERSION) >= package_version.parse("1.14.0"): with tf.Graph().as_default(): indices = tf.placeholder( shape=sparse_indices.shape, dtype=str(sparse_indices.dtype), name="indices" ) values = tf.placeholder( shape=sparse_values.shape, dtype=str(sparse_values.dtype), name="values" ) oshape = tf.constant( output_shape, shape=output_shape.shape, dtype=str(output_shape.dtype) ) if default_value is None: output = tf.sparse_to_dense(indices, oshape, values) compare_tflite_with_tvm( [sparse_indices, sparse_values], ["indices", "values"], [indices, values], [output], ) else: dv_placeholder = tf.placeholder( shape=(), dtype=str(default_value.dtype), name="default_value" ) output = tf.sparse_to_dense(indices, oshape, values, dv_placeholder) compare_tflite_with_tvm( [sparse_indices, sparse_values, default_value], ["indices", "values", "default_value"], [indices, values, dv_placeholder], [output], ) def test_forward_sparse_to_dense(): """ Works in tvm/topi/tensorflow. But tflite converter breaks this test case _test_sparse_to_dense( np.int32(1), np.int32(3), np.int32(0), np.array([5]).astype("int32") ) """ # vector _test_sparse_to_dense( np.array([0, 1, 4]).astype("int32"), np.array([3, 3, 3]).astype("int32"), np.int32(0), np.array([5]).astype("int32"), ) # vector nXd _test_sparse_to_dense( np.array([[0, 0], [1, 2]]).astype("int32"), np.array([1, 2]).astype("int32"), np.int32(0), np.array([3, 4]).astype("int32"), ) _test_sparse_to_dense( np.array([[0, 0, 0], [1, 2, 3]]).astype("int32"), np.array([1, 2]).astype("int32"), np.int32(4), np.array([2, 3, 4]).astype("int32"), ) # floats _test_sparse_to_dense( np.array([0, 1, 4]).astype("int32"), np.array([3.1, 3.1, 3.1]).astype("float32"), np.float32(3.5), np.array([5]).astype("int32"), ) # default value not specified _test_sparse_to_dense( np.array([0, 1, 4]).astype("int32"), np.array([3.1, 3.1, 3.1]).astype("float32"), None, np.array([5]).astype("int32"), ) ####################################################################### # Fully Connected # --------------- def _test_fully_connected( tensor_in_sizes, const_input, filter_in_sizes, bias_in_size=None, quantized=False, fp16_quantized=False, ): """One iteration of fully connected""" total_size_1 = np.prod(tensor_in_sizes) total_size_2 = np.prod(filter_in_sizes) assert ( int(total_size_1 / tensor_in_sizes[0]) == filter_in_sizes[0] ), "input size and filter size are mismatched" # Initializes the input tensor with array containing incrementing # numbers from 1. data_array = np.arange( 1, total_size_1 + 1, dtype=np.uint8 if quantized and not fp16_quantized else np.float32 ) filter_array = np.arange( 1, total_size_2 + 1, dtype=np.uint8 if quantized and not fp16_quantized else np.float32 ) in_name = "input" with tf.Graph().as_default(): in_data = ( constant_op.constant(data_array, shape=tensor_in_sizes, dtype=np.float32, name=in_name) if const_input else array_ops.placeholder(shape=tensor_in_sizes, dtype=np.float32, name=in_name) ) in_filter = constant_op.constant(filter_array, shape=filter_in_sizes, dtype=np.float32) data_array = np.reshape(data_array, tensor_in_sizes) # if we have bias if bias_in_size: assert bias_in_size[0] == filter_in_sizes[1], "bias and filter size are mismatched" bias_array = np.arange( 1, bias_in_size[0] + 1, dtype=np.uint8 if quantized else np.float32 ) in_bias = constant_op.constant(bias_array, shape=bias_in_size, dtype=np.float32) if quantized and not fp16_quantized: inq_data = tf.quantization.fake_quant_with_min_max_args( in_data, min=-100, max=100, name="inq_0" ) input_range = {"inq_0": (-100, 100)} inq_filter = tf.quantization.fake_quant_with_min_max_args( in_filter, min=-100, max=100, name="inq_1" ) input_range = {"inq_0": (-100, 100), "inq_1": (-100, 100)} # reshape N H W C into N H*W*C inq_data_reshape = array_ops.reshape(inq_data, [tensor_in_sizes[0], -1]) out = math_ops.mat_mul(inq_data_reshape, inq_filter) out = tf.quantization.fake_quant_with_min_max_args(out, min=-100, max=100, name="out") # if we have bias if bias_in_size: out = nn_ops.bias_add(out, in_bias) compare_tflite_with_tvm( data_array, inq_data.name, [inq_data], [out], quantized=True, input_range=input_range, experimental_new_converter=True, ) else: # reshape N H W C into N H*W*C in_data_reshape = array_ops.reshape(in_data, [tensor_in_sizes[0], -1]) out = math_ops.mat_mul(in_data_reshape, in_filter) # TODO : Need to construct a fc op with (keep_num_dims == True) # if we have bias if bias_in_size: out = nn_ops.bias_add(out, in_bias) compare_tflite_with_tvm( data_array, in_data.name, [in_data], [out], experimental_new_converter=True, fp16_quantized=fp16_quantized, ) def test_forward_fully_connected(): """Fully Connected""" for input_shape, weight_shape, bias_shape in [ ([1, 4], [4, 4], None), ([1, 4], [4, 4], [4]), ([1, 1, 1, 5], [5, 5], None), ([1, 1, 10], [10, 103], None), ([1, 1, 1, 150], [150, 100], None), ([1, 1, 1, 150], [150, 100], None), ([1, 1, 1, 150], [150, 100], [100]), ([5, 1, 1, 150], [150, 100], None), ([5, 1, 1, 150], [150, 100], [100]), ]: for const_input in [False, True]: for quantized in [False, True]: for fp16_quantized in [False, True]: _test_fully_connected( input_shape, const_input, weight_shape, bias_shape, quantized, fp16_quantized, ) ####################################################################### # REVERSE_V2 # ---------- def _test_reverse_v2(input_shape, axis, dtype): """One iteration of REVERSE_V2""" with tf.Graph().as_default(): input_array = np.random.randint(0, 100, size=input_shape).astype(dtype) in_input = tf.placeholder(dtype=input_array.dtype, shape=input_array.shape, name="input") in_axis = ops.convert_to_tensor(axis, dtype=axis.dtype) out = array_ops.reverse(in_input, in_axis) compare_tflite_with_tvm([input_array], ["input"], [in_input], [out]) def test_forward_reverse_v2(): """REVERSE_V2""" for dtype in ["float32", "int32"]: _test_reverse_v2((5), np.array([0], dtype="int32"), dtype) _test_reverse_v2((5, 6, 4, 2), np.array([2], dtype="int32"), dtype) ####################################################################### # MATRIX_SET_DIAG # --------------- def _test_matrix_set_diag(input_shape, input_type, quantized=False): """One iteration of MATRIX_SET_DIAG""" with tf.Graph().as_default(): diagonal_shape = list(input_shape[:-2]) diagonal_shape.append(min(input_shape[-2], input_shape[-1])) if quantized: # ignoring input_type as quantized requires uint8 input_array = np.random.uniform(0, 256, input_shape).astype("uint8") in_input = tf.placeholder(dtype="float32", shape=input_array.shape, name="input") inq_input = tf.quantization.fake_quant_with_min_max_args( in_input, min=-100, max=100, name="q_input" ) diagonal = np.random.uniform(0, 256, diagonal_shape).astype("uint8") in_diagonal = tf.placeholder(dtype="float32", shape=diagonal.shape, name="diagonal") inq_diagonal = tf.quantization.fake_quant_with_min_max_args( in_diagonal, min=-100, max=100, name="q_diagonal" ) input_range = {"q_input": (-100, 100), "q_diagonal": (-100, 100)} out = array_ops.matrix_set_diag(inq_input, inq_diagonal) out = tf.quantization.fake_quant_with_min_max_args(out, min=-100, max=100, name="out") compare_tflite_with_tvm( [input_array, diagonal], ["q_input", "q_diagonal"], [inq_input, inq_diagonal], [out], quantized=True, input_range=input_range, ) else: input_array = np.random.uniform(0, 100, input_shape).astype(input_type) diagonal = np.random.uniform(0, 100, diagonal_shape).astype(input_type) in_input = tf.placeholder( dtype=input_array.dtype, shape=input_array.shape, name="input" ) in_diagonal = tf.placeholder( dtype=diagonal.dtype, shape=diagonal.shape, name="diagonal" ) out = array_ops.matrix_set_diag(in_input, in_diagonal) compare_tflite_with_tvm( [input_array, diagonal], ["input", "diagonal"], [in_input, in_diagonal], [out] ) def test_forward_matrix_set_diag(): """MATRIX_SET_DIAG""" for dtype in [np.float32, np.int32]: _test_matrix_set_diag((4, 4), dtype) _test_matrix_set_diag((5, 4, 3, 4), dtype) _test_matrix_set_diag((4, 4, 2), dtype) _test_matrix_set_diag((4, 4), np.uint8, quantized=True) _test_matrix_set_diag((5, 4, 3, 4), np.uint8, quantized=True) _test_matrix_set_diag((4, 4, 2), np.uint8, quantized=True) ####################################################################### # MATRIX_DIAG # ----------- def _test_matrix_diag(diagonal_shape, dtype): """One iteration of MATRIX_DIAG""" with tf.Graph().as_default(): diagonal = np.random.uniform(0, 100, diagonal_shape).astype(dtype) in_diagonal = tf.placeholder(dtype=diagonal.dtype, shape=diagonal.shape, name="diagonal") out = array_ops.matrix_diag(in_diagonal) compare_tflite_with_tvm( [diagonal], ["diagonal"], [in_diagonal], [out], experimental_new_converter=True ) def test_forward_matrix_diag(): """MATRIX_DIAG""" for dtype in [np.float32, np.int32]: _test_matrix_diag((4), dtype) _test_matrix_diag((5, 4, 3), dtype) _test_matrix_diag((2, 3), dtype) ####################################################################### # Custom Operators # ---------------- def _test_detection_postprocess(tf_model_file, box_encodings_size, class_predictions_size): """One iteration of detection postProcess with given model and shapes""" converter = tf.lite.TFLiteConverter.from_frozen_graph( tf_model_file, input_arrays=["raw_outputs/box_encodings", "raw_outputs/class_predictions"], output_arrays=[ "TFLite_Detection_PostProcess", "TFLite_Detection_PostProcess:1", "TFLite_Detection_PostProcess:2", "TFLite_Detection_PostProcess:3", ], input_shapes={ "raw_outputs/box_encodings": box_encodings_size, "raw_outputs/class_predictions": class_predictions_size, }, ) converter.allow_custom_ops = True converter.inference_type = tf.lite.constants.FLOAT tflite_model = converter.convert() np.random.seed(0) box_encodings = np.random.uniform(size=box_encodings_size).astype("float32") class_predictions = np.random.uniform(size=class_predictions_size).astype("float32") tflite_output = run_tflite_graph(tflite_model, [box_encodings, class_predictions]) tvm_output = run_tvm_graph( tflite_model, [box_encodings, class_predictions], ["raw_outputs/box_encodings", "raw_outputs/class_predictions"], num_output=4, ) # Check all output shapes are equal assert all( list( tvm_tensor.shape == tflite_tensor.shape for (tvm_tensor, tflite_tensor) in zip(tvm_output, tflite_output) ) ) # Check valid count is the same assert tvm_output[3] == tflite_output[3] valid_count = tvm_output[3][0] # For boxes that do not have any detections, TFLite puts random values. Therefore, we compare # tflite and tvm tensors for only valid boxes. for i in range(0, valid_count): # Check bounding box co-ords tvm.testing.assert_allclose( np.squeeze(tvm_output[0][0][i]), np.squeeze(tflite_output[0][0][i]), rtol=1e-5, atol=1e-5, ) # Check the class # Stricter check to ensure class remains same np.testing.assert_equal(np.squeeze(tvm_output[1][0][i]), np.squeeze(tflite_output[1][0][i])) # Check the score tvm.testing.assert_allclose( np.squeeze(tvm_output[2][0][i]), np.squeeze(tflite_output[2][0][i]), rtol=1e-5, atol=1e-5, ) def test_detection_postprocess(): """Detection PostProcess""" box_encodings_size = (1, 1917, 4) class_predictions_size = (1, 1917, 91) tf_model_file = tf_testing.get_workload_official( "http://download.tensorflow.org/models/object_detection/" "ssd_mobilenet_v2_quantized_300x300_coco_2019_01_03.tar.gz", "ssd_mobilenet_v2_quantized_300x300_coco_2019_01_03/tflite_graph.pb", ) _test_detection_postprocess(tf_model_file, box_encodings_size, class_predictions_size) box_encodings_size = (1, 2034, 4) class_predictions_size = (1, 2034, 91) tf_model_file = download_testdata( "https://github.com/czh978/models_for_tvm_test/raw/main/tflite_graph_with_postprocess.pb", "tflite_graph_with_postprocess.pb", ) _test_detection_postprocess(tf_model_file, box_encodings_size, class_predictions_size) ####################################################################### # Custom Converter # ---------------- def test_custom_op_converter(): """Test case for user-defined operator converter in TFLite frontend""" class DummyOperatorConverter(relay.frontend.tflite.OperatorConverter): """Operator Converter for converting TFLite ops to relay ops""" def __init__(self, model, subgraph, exp_tab): super().__init__(model, subgraph, exp_tab) self.allow_custom_ops = True convert_map_overwrite = {"SUB": self.convert_sub_dummy} self.convert_map.update(convert_map_overwrite) def convert_sub_dummy(self, op): """Convert TFLite SUB""" input_tensors = self.get_input_tensors(op) assert len(input_tensors) == 2, "input tensors length should be 2" lhs_tensor = input_tensors[0] rhs_tensor = input_tensors[1] lhs_expr = self.get_expr(lhs_tensor.tensor_idx) rhs_expr = self.get_expr(rhs_tensor.tensor_idx) temp_expr = relay.op.negative(rhs_expr) out = relay.op.add(lhs_expr, temp_expr) return out with tf.Graph().as_default(): # Generate TFLite model for single addition data = [ np.arange(6.0, dtype=np.float32).reshape((2, 1, 1, 3)), np.arange(1.0, 7.0, dtype=np.float32).reshape((2, 1, 1, 3)), ] in_data = [ array_ops.placeholder(shape=data[0].shape, dtype="float32", name="in_0"), array_ops.placeholder(shape=data[1].shape, dtype="float32", name="in_1"), ] out = math_ops.subtract(in_data[0], in_data[1]) in_name = [x[1] for x in zip(in_data, ("in_0:0", "in_1:0"))] input_tensors = in_data output_tensors = [out] in_node = [0] * len(in_name) for i, _ in enumerate(in_name): in_node[i] = in_name[i].split(":")[0] with tf.Session() as sess: converter = tf.lite.TFLiteConverter.from_session(sess, input_tensors, output_tensors) tflite_model_buf = converter.convert() in_data = [x[1] for x in zip(in_data, data)] tvm_output_orig = run_tvm_graph(tflite_model_buf, in_data, in_node) tvm_output_dummy = run_tvm_graph( tflite_model_buf, in_data, in_node, op_converter=DummyOperatorConverter ) tvm.testing.assert_allclose( np.squeeze(tvm_output_orig[0]), np.squeeze(tvm_output_dummy[0]), rtol=1e-5, atol=1e-5 ) ####################################################################### # Mobilenet # --------- def test_forward_mobilenet_v1(): """Test the Mobilenet V1 TF Lite model.""" # MobilenetV1 tflite_model_file = tf_testing.get_workload_official( "http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224.tgz", "mobilenet_v1_1.0_224.tflite", ) with open(tflite_model_file, "rb") as f: tflite_model_buf = f.read() data = np.random.uniform(size=(1, 224, 224, 3)).astype("float32") tflite_output = run_tflite_graph(tflite_model_buf, data) tvm_output = run_tvm_graph(tflite_model_buf, data, "input") tvm.testing.assert_allclose( np.squeeze(tvm_output[0]), np.squeeze(tflite_output[0]), rtol=1e-5, atol=1e-5 ) def test_forward_mobilenet_v2(): """Test the Mobilenet V2 TF Lite model.""" # MobilenetV2 tflite_model_file = tf_testing.get_workload_official( "http://download.tensorflow.org/models/tflite_11_05_08/mobilenet_v2_1.0_224.tgz", "mobilenet_v2_1.0_224.tflite", ) with open(tflite_model_file, "rb") as f: tflite_model_buf = f.read() data = np.random.uniform(size=(1, 224, 224, 3)).astype("float32") tflite_output = run_tflite_graph(tflite_model_buf, data) tvm_output = run_tvm_graph(tflite_model_buf, data, "input") tvm.testing.assert_allclose( np.squeeze(tvm_output[0]), np.squeeze(tflite_output[0]), rtol=1e-5, atol=1e-5 ) ####################################################################### # Mobilenet V3 # ------------ def test_forward_mobilenet_v3(): """Test the Mobilenet V3 TF Lite model.""" # In MobilenetV3, some ops are not supported before tf 1.15 fbs schema if package_version.parse(tf.VERSION) < package_version.parse("1.15.0"): return tflite_model_file = tf_testing.get_workload_official( "https://storage.googleapis.com/mobilenet_v3/checkpoints/v3-large_224_1.0_float.tgz", "v3-large_224_1.0_float/v3-large_224_1.0_float.tflite", ) with open(tflite_model_file, "rb") as f: tflite_model_buf = f.read() data = np.random.uniform(size=(1, 224, 224, 3)).astype("float32") tflite_output = run_tflite_graph(tflite_model_buf, data) tvm_output = run_tvm_graph(tflite_model_buf, data, "input") tvm.testing.assert_allclose( np.squeeze(tvm_output[0]), np.squeeze(tflite_output[0]), rtol=1e-5, atol=1e-5 ) ####################################################################### # Mobilenet V1 Sparse # ----------------- def test_forward_sparse_mobilenet_v1(): """Test the Sparse version of Mobilenet V1 TF Lite model.""" # MobilenetV1 tflite_model_file = download_testdata( "https://storage.googleapis.com/fast-convnets/tflite-models/mbv1_140_90_12b4_720.tflite", "mbv1_140_90_12b4_720.tflite", ) with open(tflite_model_file, "rb") as f: tflite_model_buf = f.read() data = np.random.uniform(size=(1, 224, 224, 3)).astype("float32") tflite_output = run_tflite_graph(tflite_model_buf, data) tvm_output = run_tvm_graph(tflite_model_buf, data, "float_image_input") tvm.testing.assert_allclose( np.squeeze(tvm_output[0]), np.squeeze(tflite_output[0]), rtol=1e-5, atol=1e-5 ) ####################################################################### # Mobilenet V2 Sparse # ----------------- def test_forward_sparse_mobilenet_v2(): """Test the Sparse version of Mobilenet V2 TF Lite model.""" # MobilenetV1 tflite_model_file = download_testdata( "https://storage.googleapis.com/fast-convnets/tflite-models/mbv2_200_85_11-16b2_744.tflite", "mbv2_200_85_11-16b2_744.tflite", ) with open(tflite_model_file, "rb") as f: tflite_model_buf = f.read() data = np.random.uniform(size=(1, 224, 224, 3)).astype("float32") tflite_output = run_tflite_graph(tflite_model_buf, data) tvm_output = run_tvm_graph(tflite_model_buf, data, "float_image_input") tvm.testing.assert_allclose( np.squeeze(tvm_output[0]), np.squeeze(tflite_output[0]), rtol=1e-5, atol=1e-5 ) ####################################################################### # Inception # --------- def test_forward_inception_v3_net(): """Test the Inception V3 TF Lite model.""" # InceptionV3 tflite_model_file = tf_testing.get_workload_official( "https://storage.googleapis.com/download.tensorflow.org/models/tflite/model_zoo/" "upload_20180427/inception_v3_2018_04_27.tgz", "inception_v3.tflite", ) with open(tflite_model_file, "rb") as f: tflite_model_buf = f.read() data = np.random.uniform(size=(1, 299, 299, 3)).astype("float32") tflite_output = run_tflite_graph(tflite_model_buf, data) tvm_output = run_tvm_graph(tflite_model_buf, data, "input") tvm.testing.assert_allclose( np.squeeze(tvm_output[0]), np.squeeze(tflite_output[0]), rtol=1e-5, atol=1e-5 ) def test_forward_inception_v4_net(): """Test the Inception V4 TF Lite model.""" # InceptionV4 tflite_model_file = tf_testing.get_workload_official( "https://storage.googleapis.com/download.tensorflow.org/models/" "tflite/model_zoo/upload_20180427/" "inception_v4_2018_04_27.tgz", "inception_v4.tflite", ) with open(tflite_model_file, "rb") as f: tflite_model_buf = f.read() data = np.random.uniform(size=(1, 299, 299, 3)).astype("float32") tflite_output = run_tflite_graph(tflite_model_buf, data) tvm_output = run_tvm_graph(tflite_model_buf, data, "input") tvm.testing.assert_allclose( np.squeeze(tvm_output[0]), np.squeeze(tflite_output[0]), rtol=1e-5, atol=1e-5 ) def test_forward_inception_v4_net_batched(): """Test the Inception V4 TF Lite model.""" # InceptionV4 tflite_model_file = tf_testing.get_workload_official( "https://storage.googleapis.com/download.tensorflow.org/models/" "tflite/model_zoo/upload_20180427/" "inception_v4_2018_04_27.tgz", "inception_v4.tflite", ) with open(tflite_model_file, "rb") as f: tflite_model_buf = f.read() data = np.random.uniform(size=(4, 299, 299, 3)).astype("float32") tflite_output = run_tflite_graph(tflite_model_buf, data) tvm_output = run_tvm_graph(tflite_model_buf, data, "input") tvm.testing.assert_allclose( np.squeeze(tvm_output[0]), np.squeeze(tflite_output[0]), rtol=1e-5, atol=1e-5 ) def test_forward_qnn_inception_v1_net(): """Test the Quantized TFLite Inception model.""" # InceptionV1 tflite_model_file = tf_testing.get_workload_official( "https://storage.googleapis.com/download.tensorflow.org/models/" "inception_v1_224_quant_20181026.tgz", "inception_v1_224_quant.tflite", ) with open(tflite_model_file, "rb") as f: tflite_model_buf = f.read() # Test image. Checking the labels because the requantize implementation is different between # TFLite and Relay. This cause final output numbers to mismatch. So, testing accuracy via # labels. Also, giving a real image, instead of random inputs. data = get_real_image(224, 224) tflite_output = run_tflite_graph(tflite_model_buf, data) tflite_predictions = np.squeeze(tflite_output) tflite_sorted_labels = tflite_predictions.argsort()[-3:][::-1] tvm_output = run_tvm_graph(tflite_model_buf, data, "input") tvm_predictions = np.squeeze(tvm_output) tvm_sorted_labels = tvm_predictions.argsort()[-3:][::-1] tvm.testing.assert_allclose(tvm_sorted_labels, tflite_sorted_labels) def test_forward_qnn_mobilenet_v1_net(): """Test the Quantized TFLite Mobilenet V1 model.""" # MobilenetV1 tflite_model_file = tf_testing.get_workload_official( "https://storage.googleapis.com/download.tensorflow.org/models/mobilenet_v1_2018_08_02/" "mobilenet_v1_1.0_224_quant.tgz", "mobilenet_v1_1.0_224_quant.tflite", ) with open(tflite_model_file, "rb") as f: tflite_model_buf = f.read() # Test image. Checking the labels because the requantize implementation is different between # TFLite and Relay. This cause final output numbers to mismatch. So, testing accuracy via # labels. Also, giving a real image, instead of random inputs. data = get_real_image(224, 224) tflite_output = run_tflite_graph(tflite_model_buf, data) tflite_predictions = np.squeeze(tflite_output) tflite_sorted_labels = tflite_predictions.argsort()[-3:][::-1] tvm_output = run_tvm_graph(tflite_model_buf, data, "input") tvm_predictions = np.squeeze(tvm_output) tvm_sorted_labels = tvm_predictions.argsort()[-3:][::-1] tvm.testing.assert_allclose(tvm_sorted_labels, tflite_sorted_labels) def test_forward_qnn_mobilenet_v2_net(): """Test the Quantized TFLite Mobilenet V2 model.""" # MobilenetV2 tflite_model_file = tf_testing.get_workload_official( "https://storage.googleapis.com/download.tensorflow.org/models/tflite_11_05_08/" "mobilenet_v2_1.0_224_quant.tgz", "mobilenet_v2_1.0_224_quant.tflite", ) with open(tflite_model_file, "rb") as f: tflite_model_buf = f.read() # Test image. Checking the labels because the requantize implementation is different between # TFLite and Relay. This cause final output numbers to mismatch. So, testing accuracy via # labels. Also, giving a real image, instead of random inputs. data = get_real_image(224, 224) tflite_output = run_tflite_graph(tflite_model_buf, data) tflite_predictions = np.squeeze(tflite_output) tflite_sorted_labels = tflite_predictions.argsort()[-3:][::-1] tvm_output = run_tvm_graph(tflite_model_buf, data, "input") tvm_predictions = np.squeeze(tvm_output) tvm_sorted_labels = tvm_predictions.argsort()[-3:][::-1] tvm.testing.assert_allclose(tvm_sorted_labels, tflite_sorted_labels) ####################################################################### # Mobilenet V3 Quantized # ---------------------- def test_forward_qnn_mobilenet_v3_net(): """Test the Quantized TFLite Mobilenet V3 model.""" # In MobilenetV3, some ops are not supported before tf 1.15 fbs schema if package_version.parse(tf.VERSION) < package_version.parse("1.15.0"): pytest.skip("Unsupported in tflite < 1.15.0") else: pytest.skip("This segfaults with tensorflow 1.15.2 and above") tflite_model_file = tf_testing.get_workload_official( "https://storage.googleapis.com/mobilenet_v3/checkpoints/v3-large_224_1.0_uint8.tgz", "v3-large_224_1.0_uint8/v3-large_224_1.0_uint8.tflite", ) with open(tflite_model_file, "rb") as f: tflite_model_buf = f.read() # Test image. Checking the labels because the requantize implementation is different between # TFLite and Relay. This cause final output numbers to mismatch. So, testing accuracy via # labels. Also, giving a real image, instead of random inputs. data = get_real_image(224, 224) tflite_output = run_tflite_graph(tflite_model_buf, data) tflite_predictions = np.squeeze(tflite_output) tflite_sorted_labels = tflite_predictions.argsort()[-3:][::-1] tvm_output = run_tvm_graph(tflite_model_buf, data, "input") tvm_predictions = np.squeeze(tvm_output) tvm_sorted_labels = tvm_predictions.argsort()[-3:][::-1] tvm.testing.assert_allclose(tvm_sorted_labels, tflite_sorted_labels) def test_forward_tflite2_qnn_resnet50(): """Test the Quantized TFLite version 2.1.0 Resnet50 model.""" if package_version.parse(tf.VERSION) >= package_version.parse("2.1.0"): tflite_model_file = download_testdata( "https://raw.githubusercontent.com/dmlc/web-data/main/tensorflow/models/Quantized/" "resnet_50_quantized.tflite", "resnet_50_quantized.tflite", ) with open(tflite_model_file, "rb") as f: tflite_model_buf = f.read() data = pre_processed_image(224, 224) tflite_output = run_tflite_graph(tflite_model_buf, data) tflite_predictions = np.squeeze(tflite_output) tflite_sorted_labels = tflite_predictions.argsort()[-3:][::-1] tvm_output = run_tvm_graph(tflite_model_buf, np.array(data), "input_1") tvm_predictions = np.squeeze(tvm_output) tvm_sorted_labels = tvm_predictions.argsort()[-3:][::-1] tvm.testing.assert_allclose(tvm_sorted_labels, tflite_sorted_labels) def test_forward_tflite2_qnn_inception_v1(): """Test the Quantized TFLite version 2.1.0 Inception V1 model.""" if package_version.parse(tf.VERSION) >= package_version.parse("2.1.0"): tflite_model_file = download_testdata( "https://raw.githubusercontent.com/dmlc/web-data/main/tensorflow/models/Quantized/" "inception_v1_quantized.tflite", "inception_v1_quantized.tflite", ) with open(tflite_model_file, "rb") as f: tflite_model_buf = f.read() data = pre_processed_image(224, 224) tflite_output = run_tflite_graph(tflite_model_buf, data) tflite_predictions = np.squeeze(tflite_output) tflite_sorted_labels = tflite_predictions.argsort()[-3:][::-1] tvm_output = run_tvm_graph(tflite_model_buf, np.array(data), "input_1") tvm_predictions = np.squeeze(tvm_output) tvm_sorted_labels = tvm_predictions.argsort()[-3:][::-1] tvm.testing.assert_allclose(tvm_sorted_labels, tflite_sorted_labels) def test_forward_tflite2_qnn_mobilenet_v2(): """Test the Quantized TFLite version 2.1.0 Mobilenet V2 model.""" if package_version.parse(tf.VERSION) >= package_version.parse("2.1.0"): tflite_model_file = download_testdata( "https://raw.githubusercontent.com/dmlc/web-data/main/tensorflow/models/Quantized/" "mobilenet_v2_quantized.tflite", "mobilenet_v2_quantized.tflite", ) with open(tflite_model_file, "rb") as f: tflite_model_buf = f.read() data = pre_processed_image(224, 224) tflite_output = run_tflite_graph(tflite_model_buf, data) tflite_predictions = np.squeeze(tflite_output) tflite_sorted_labels = tflite_predictions.argsort()[-3:][::-1] tvm_output = run_tvm_graph(tflite_model_buf, np.array(data), "input_1") tvm_predictions = np.squeeze(tvm_output) tvm_sorted_labels = tvm_predictions.argsort()[-3:][::-1] tvm.testing.assert_allclose(tvm_sorted_labels, tflite_sorted_labels) def test_forward_tflite_float16(): """Test float16 quantized model""" # MobilenetV2 tflite_model_file = tf_testing.get_workload_official( "https://storage.googleapis.com/download.tensorflow.org/models/mobilenet_v1_2018_02_22/" "mobilenet_v1_0.25_128.tgz", "mobilenet_v1_0.25_128_frozen.pb", ) converter = tf.lite.TFLiteConverter.from_frozen_graph( tflite_model_file, ["input"], ["MobilenetV1/Predictions/Reshape_1"] ) converter.optimizations = [tf.lite.Optimize.DEFAULT] converter.target_spec.supported_types = [tf.float16] tflite_model_buf = converter.convert() # Test image. Checking the labels because the requantize implementation is different between # TFLite and Relay. This cause final output numbers to mismatch. So, testing accuracy via # labels. Also, giving a real image, instead of random inputs. data = get_real_image(128, 128, quantized=False) tflite_output = run_tflite_graph(tflite_model_buf, data) tflite_predictions = np.squeeze(tflite_output) tflite_sorted_labels = tflite_predictions.argsort()[-3:][::-1] tvm_output = run_tvm_graph(tflite_model_buf, data, "input") tvm_predictions = np.squeeze(tvm_output) tvm_sorted_labels = tvm_predictions.argsort()[-3:][::-1] tvm.testing.assert_allclose(tvm_sorted_labels, tflite_sorted_labels) def test_forward_mobilenet_int16(): """Test int16 quantized model""" # MobilenetV2 model_file = tf_testing.get_workload_official( "https://storage.googleapis.com/download.tensorflow.org/models/mobilenet_v1_2018_02_22/" "mobilenet_v1_0.25_128.tgz", "mobilenet_v1_0.25_128_frozen.pb", ) # Test image. Checking the labels because the requantize implementation is different between # TFLite and Relay. This cause final output numbers to mismatch. So, testing accuracy via # labels. Also, giving a real image, instead of random inputs. # # According to TFLite documentation, despite the quantization being done to make this model # use int16 types, inputs and outputs are kept float32 by default. # https://www.tensorflow.org/lite/performance/post_training_integer_quant_16x8 data = get_real_image(128, 128, quantized=False) converter = tf.lite.TFLiteConverter.from_frozen_graph( model_file, ["input"], ["MobilenetV1/Predictions/Reshape_1"] ) def representative_dataset(): for _ in range(1): yield [data] converter.optimizations = [tf.lite.Optimize.DEFAULT] converter.target_spec.supported_ops = [ tf.lite.OpsSet.EXPERIMENTAL_TFLITE_BUILTINS_ACTIVATIONS_INT16_WEIGHTS_INT8 ] converter.representative_dataset = representative_dataset tflite_model_buf = converter.convert() tflite_output = run_tflite_graph(tflite_model_buf, data) tflite_predictions = np.squeeze(tflite_output) tflite_sorted_labels = tflite_predictions.argsort()[-3:][::-1] tvm_output = run_tvm_graph(tflite_model_buf, data, "input") tvm_predictions = np.squeeze(tvm_output) tvm_sorted_labels = tvm_predictions.argsort()[-3:][::-1] tvm.testing.assert_allclose(tvm_sorted_labels, tflite_sorted_labels) ####################################################################### # Unidirectional Sequence LSTM # --------------------- def test_forward_unidirectional_sequence_lstm(): """Test the UnidirectionalSequenceLSTM TFLite""" if package_version.parse(tf.VERSION) >= package_version.parse("2.1.0"): tflite_model_file = download_testdata( "https://github.com/SebastianBoblestETAS/nn_models/blob/" "ce49c5de64889493161ca4194a20e0fd5eb707e6/lstm_1_in_3_out_2_ts_4.tflite?raw=true", "lstm_1_in_3_out_2_ts_4.tflite", ) with open(tflite_model_file, "rb") as f: tflite_model_buf = f.read() data = np.array( [ [ [0.5488135, 0.71518934, 0.60276335], [0.5448832, 0.4236548, 0.6458941], [0.4375872, 0.891773, 0.96366274], [0.3834415, 0.79172504, 0.5288949], ] ], dtype="float32", ) tflite_output = run_tflite_graph(tflite_model_buf, data) tvm_output = run_tvm_graph(tflite_model_buf, data, "serving_default_input_1:0") tvm.testing.assert_allclose(tflite_output, tvm_output) ####################################################################### # Quantized SSD Mobilenet # ----------------------- def test_forward_qnn_coco_ssd_mobilenet_v1(): """Test the quantized Coco SSD Mobilenet V1 TF Lite model.""" pytest.skip( "LLVM bug - getExtendedVectorNumElements - " + "https://discuss.tvm.apache.org/t/segfault-in-llvm/3567. The workaround is to use a " + "specific target, for example, llvm -mpcu=core-avx2" ) tflite_model_file = tf_testing.get_workload_official( "https://storage.googleapis.com/download.tensorflow.org/models/tflite/" "coco_ssd_mobilenet_v1_1.0_quant_2018_06_29.zip", "detect.tflite", ) with open(tflite_model_file, "rb") as f: tflite_model_buf = f.read() data = get_real_image_object_detection(300, 300) tflite_output = run_tflite_graph(tflite_model_buf, data) tvm_output = run_tvm_graph( tflite_model_buf, data, "normalized_input_image_tensor", num_output=4 ) # Check all output shapes are equal assert all( list( tvm_tensor.shape == tflite_tensor.shape for (tvm_tensor, tflite_tensor) in zip(tvm_output, tflite_output) ) ) # Check valid count is the same assert tvm_output[3] == tflite_output[3] valid_count = tvm_output[3][0] # For boxes that do not have any detections, TFLite puts random values. Therefore, we compare # tflite and tvm tensors for only valid boxes. for i in range(0, valid_count): # We compare the bounding boxes whose prediction score is above 60%. This is typical in end # to end application where a low prediction score is discarded. This is also needed because # multiple low score bounding boxes can have same score and TFlite and TVM can have # different orderings for same score bounding boxes. Another reason for minor differences in # low score bounding boxes is the difference between TVM and TFLite for requantize operator. if tvm_output[2][0][i] > 0.6: # Check bounding box co-ords. The tolerances have to be adjusted, from 1e-5 to 1e-2, # because of differences between for requantiize operator in TFLite and TVM. tvm.testing.assert_allclose( np.squeeze(tvm_output[0][0][i]), np.squeeze(tflite_output[0][0][i]), rtol=1e-2, atol=1e-2, ) # Check the class # Stricter check to ensure class remains same np.testing.assert_equal( np.squeeze(tvm_output[1][0][i]), np.squeeze(tflite_output[1][0][i]) ) # Check the score tvm.testing.assert_allclose( np.squeeze(tvm_output[2][0][i]), np.squeeze(tflite_output[2][0][i]), rtol=1e-5, atol=1e-5, ) ####################################################################### # SSD Mobilenet # ------------- def test_forward_coco_ssd_mobilenet_v1(): """Test the FP32 Coco SSD Mobilenet V1 TF Lite model.""" tflite_model_file = tf_testing.get_workload_official( "https://raw.githubusercontent.com/dmlc/web-data/main/tensorflow/models/object_detection/" "ssd_mobilenet_v1_coco_2018_01_28.tgz", "ssd_mobilenet_v1_coco_2018_01_28.tflite", ) with open(tflite_model_file, "rb") as f: tflite_model_buf = f.read() np.random.seed(0) data = np.random.uniform(size=(1, 300, 300, 3)).astype("float32") tflite_output = run_tflite_graph(tflite_model_buf, data) tvm_output = run_tvm_graph( tflite_model_buf, data, "normalized_input_image_tensor", num_output=4 ) # Check all output shapes are equal assert all( list( tvm_tensor.shape == tflite_tensor.shape for (tvm_tensor, tflite_tensor) in zip(tvm_output, tflite_output) ) ) # Check valid count is the same assert tvm_output[3] == tflite_output[3] valid_count = tvm_output[3][0] # For boxes that do not have any detections, TFLite puts random values. Therefore, we compare # tflite and tvm tensors for only valid boxes. for i in range(0, valid_count): # Check bounding box co-ords tvm.testing.assert_allclose( np.squeeze(tvm_output[0][0][i]), np.squeeze(tflite_output[0][0][i]), rtol=1e-5, atol=1e-5, ) # Check the class np.testing.assert_equal(np.squeeze(tvm_output[1][0][i]), np.squeeze(tflite_output[1][0][i])) # Check the score tvm.testing.assert_allclose( np.squeeze(tvm_output[2][0][i]), np.squeeze(tflite_output[2][0][i]), rtol=1e-5, atol=1e-5, ) ####################################################################### # MediaPipe # ------------- def test_forward_mediapipe_hand_landmark(): """Test MediaPipe 2D hand landmark TF Lite model.""" # MediaPipe 2D hand landmark TF tflite_model_file = download_testdata( "https://github.com/google/mediapipe/raw/v0.7.4/mediapipe/models/hand_landmark.tflite", "hand_landmark.tflite", ) with open(tflite_model_file, "rb") as f: tflite_model_buf = f.read() data = np.random.uniform(size=(1, 256, 256, 3)).astype("float32") tflite_output = run_tflite_graph(tflite_model_buf, data) tvm_output = run_tvm_graph(tflite_model_buf, data, "input_1", num_output=2) for i in range(2): tvm.testing.assert_allclose( np.squeeze(tvm_output[i]), np.squeeze(tflite_output[i]), rtol=1e-5, atol=1e-5 ) ####################################################################### # Test check for Tensorflow "dynamic range quantization" optimization # -------------- def test_prevent_tensorflow_dynamic_range(): """ Should prevent running "dynamic range quantization" optimized TFLite graph """ data_array = np.random.randint(0, 2, (1, 1024, 1024)).astype(dtype=np.float32) filter_array = np.random.randint(0, 2, (1024, 1024)).astype(dtype=np.float32) data_in = tf.keras.layers.Input(shape=data_array.shape[1:]) dense = tf.keras.layers.Dense(units=filter_array.shape[-1], use_bias=False)(data_in) keras_model = tf.keras.models.Model(data_in, dense) keras_model.layers[1].set_weights([filter_array]) converter = interpreter_wrapper.TFLiteConverter.from_keras_model(keras_model) converter.optimizations = [tf.lite.Optimize.DEFAULT] tflite_model = converter.convert() with pytest.raises(tvm.error.OpNotImplemented): _ = run_tvm_graph(tflite_model, data_array, data_in.name.replace(":0", "")) def _test_nms_v5( bx_shape, score_shape, iou_threshold, score_threshold, max_output_size, dtype="float32" ): """One iteration of nms_v5 with given attributes""" boxes = np.random.uniform(0, 10, size=bx_shape).astype(dtype) scores = np.random.uniform(size=score_shape).astype(dtype) tf.reset_default_graph() tf.compat.v1.disable_eager_execution() in_data_1 = array_ops.placeholder(dtype, boxes.shape, name="in_data_1") in_data_2 = array_ops.placeholder(dtype, scores.shape, name="in_data_2") out = image_ops.non_max_suppression_with_scores( boxes=in_data_1, scores=in_data_2, max_output_size=max_output_size, iou_threshold=iou_threshold, score_threshold=score_threshold, name="nms", ) compare_tflite_with_tvm( [boxes, scores], ["in_data_1:0", "in_data_2:0"], [in_data_1, in_data_2], [out[0], out[1]], out_names=[out[0].name, out[1].name], experimental_new_converter=True, ) def test_forward_nms_v5(): """test nms_v5""" _test_nms_v5((10000, 4), (10000,), 0.5, 0.4, 100) _test_nms_v5((1000, 4), (1000,), 0.7, 0.3, 50) ####################################################################### # Main # ---- if __name__ == "__main__": # BatchToSpaceND test_forward_batch_to_space_nd() # SpaceToBatchND test_forward_space_to_batch_nd() # Split test_forward_split() # Transpose test_forward_transpose() # Cast test_forward_cast() # BatchMatMul test_forward_batch_matmul() # Tile test_forward_tile() # Query test_forward_shape() # Transforms test_forward_concatenation() test_forward_pad() test_forward_pack() test_forward_unpack() test_forward_reshape() test_all_resize() test_forward_range() test_forward_squeeze() test_forward_slice() test_forward_topk() test_forward_gather() test_forward_gather_nd() test_forward_stridedslice() test_forward_depthtospace() test_forward_spacetodepth() test_forward_reverse_sequence() test_forward_sparse_to_dense() test_forward_select() test_forward_quantize_dequantize() test_forward_arg_min_max() test_forward_expand_dims() test_forward_reverse_v2() test_forward_matrix_set_diag() test_forward_matrix_diag() # NN test_forward_convolution() test_forward_transpose_conv() test_forward_logistic() test_forward_pooling() test_forward_l2_pool2d() test_forward_softmax() test_forward_tanh() test_forward_relu() test_forward_relu6() test_forward_leaky_relu() test_forward_relu_n1_to_1() test_forward_log_softmax() test_forward_fully_connected() test_forward_l2_normalization() test_forward_local_response_normalization() test_forward_prelu() test_forward_unidirectional_sequence_lstm() # Elemwise test_all_elemwise() test_forward_add_n() # Unary elemwise test_all_unary_elemwise() # Zeros Like test_forward_zeros_like() # Fill test_forward_fill() # Reduce test_all_reduce() # Logical test_all_logical() # Detection_PostProcess test_detection_postprocess() # NonMaxSuppressionV5 test_forward_nms_v5() # Overwrite Converter test_custom_op_converter() # End to End test_forward_mobilenet_v1() test_forward_mobilenet_v2() test_forward_mobilenet_v3() test_forward_inception_v3_net() test_forward_inception_v4_net() test_forward_inception_v4_net_batched() test_forward_coco_ssd_mobilenet_v1() test_forward_mediapipe_hand_landmark() # End to End Sparse models test_forward_sparse_mobilenet_v1() test_forward_sparse_mobilenet_v2() # End to End quantized test_forward_qnn_inception_v1_net() test_forward_qnn_mobilenet_v1_net() test_forward_qnn_mobilenet_v2_net() # This also fails with a segmentation fault in my run # with Tflite 1.15.2 test_forward_qnn_mobilenet_v3_net() test_forward_qnn_coco_ssd_mobilenet_v1() # TFLite 2.1.0 quantized tests test_forward_quantized_convolution() test_forward_quantized_depthwise_convolution() test_forward_tflite2_qnn_resnet50() test_forward_tflite2_qnn_inception_v1() test_forward_tflite2_qnn_mobilenet_v2() test_forward_tflite_float16() test_forward_tflite_int16()
https://github.com/zk-ml/tachikoma
tests/python/integration/__init__.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Infrastructure and tests for e2e integration tests."""
https://github.com/zk-ml/tachikoma
tests/python/integration/test_arm_mprofile_dsp.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Test arm mprofile dsp.""" import numpy as np import pytest import tvm import tvm.testing from tvm import relay from tvm.testing.aot import AOTTestModel, compile_and_run, generate_ref_data from tvm.micro.testing.aot_test_utils import AOT_CORSTONE300_RUNNER @tvm.testing.requires_corstone300 @pytest.mark.parametrize( "data_shape_nhwc, kernel_size, num_filter, strides, padding, dilation", [ ((1, 32, 32, 1), (3, 3), 12, 1, 0, 1), ((1, 32, 10, 3), (3, 3), 16, 1, 0, 1), ((1, 49, 10, 1), (10, 4), 64, (2, 1), (4, 1, 5, 1), 1), ((1, 32, 32, 16), (3, 3), 16, 1, (0, 2, 2, 0), 1), ((1, 32, 32, 16), (3, 3), 16, 1, 0, 1), ((1, 32, 32, 16), (3, 3), 16, 1, 0, 1), ((1, 32, 32, 16), (3, 3), 16, 1, (0, 2, 2, 0), 2), ((1, 32, 32, 16), (3, 3), 16, 1, (1, 1, 2, 2), 2), # bug https://github.com/apache/tvm/issues/9226 ((1, 49, 10, 1), (10, 4), 64, (2, 2), (4, 1, 5, 1), 1), # from Visual Wake Word model ((1, 96, 96, 3), (3, 3), 8, (2, 2), (0, 0, 1, 1), 1), # from Image Classification model (one of the MLPerfTiny models) ((1, 16, 16, 32), (1, 1), 64, (2, 2), 0, 1), ((4, 16, 16, 8), (5, 5), 8, 2, (0, 4, 4, 0), 1), ((4, 16, 16, 8), (5, 5), 16, 2, (0, 4, 4, 0), 1), ((4, 16, 16, 8), (5, 5), 8, 2, 0, 1), ((4, 16, 16, 8), (5, 5), 16, 2, 0, 1), ((1, 16, 16, 8), (3, 3), 16, 2, (0, 0, 1, 1), 1), ((1, 16, 16, 8), (3, 3), 16, 2, (1, 1, 2, 2), 1), ((1, 16, 16, 8), (5, 5), 16, 2, (3, 3, 2, 2), 1), ((1, 16, 16, 8), (3, 3), 16, 2, (0, 1, 2, 3), 1), ], ) @pytest.mark.parametrize("dtype", ["int8", "int16"]) def test_conv2d(data_shape_nhwc, kernel_size, num_filter, strides, padding, dilation, dtype): """Test a subgraph with a single conv2d operator.""" ishape = data_shape_nhwc wshape = (*kernel_size, data_shape_nhwc[-1], num_filter) weight_data = np.random.randint(low=-10, high=10, size=wshape, dtype=dtype) input0 = relay.var("input", relay.TensorType(ishape, dtype)) weight0 = relay.const(weight_data) out0 = relay.op.nn.conv2d( input0, weight0, kernel_size=kernel_size, strides=strides, padding=padding, dilation=(dilation, dilation), data_layout="NHWC", kernel_layout="HWIO", out_dtype="int32", out_layout="NHWC", ) ref_mod = tvm.IRModule.from_expr(relay.Function([input0], out0)) input1 = relay.var("input", relay.TensorType(ishape, dtype)) weight1 = relay.const(np.moveaxis(weight_data, 2, -1)) out1 = relay.op.nn.conv2d( input1, weight1, kernel_size=kernel_size, strides=strides, padding=padding, dilation=(dilation, dilation), data_layout="NHWC", kernel_layout="HWOI", out_dtype="int32", out_layout="NHWC", ) mod = tvm.IRModule.from_expr(relay.Function([input1], out1)) inputs = {"input": np.random.randint(low=-128, high=127, size=ishape, dtype=dtype)} output_list = generate_ref_data(ref_mod, inputs) compile_and_run( AOTTestModel(module=mod, inputs=inputs, outputs=output_list), runner=AOT_CORSTONE300_RUNNER, interface_api="c", use_unpacked_api=True, target_opts={ "-keys": "arm_cpu", "-mcpu": "cortex-m7", }, ) @tvm.testing.requires_corstone300 @pytest.mark.parametrize( "data_shape_nwc, kernel_size, num_filter, strides, padding", [ ((1, 32, 12), 3, 16, 1, 0), ((3, 12, 10), 4, 24, 1, 0), ((1, 7, 7), 3, 5, 1, 0), ((1, 10, 2), 4, 4, 2, (1, 1)), ((1, 20, 2), 4, 4, 2, (0, 1)), ((1, 16, 4), 1, 12, 1, (1, 0)), ((1, 24, 16), 1, 32, 3, (2, 2)), ], ) @pytest.mark.parametrize("dtype", ["int8", "int16"]) def test_conv1d(data_shape_nwc, kernel_size, num_filter, strides, padding, dtype): """Test a subgraph with a single conv1d operator.""" ishape = data_shape_nwc wshape = (kernel_size, data_shape_nwc[-1], num_filter) weight_data = np.random.randint(low=-10, high=10, size=wshape, dtype=dtype) input0 = relay.var("input", relay.TensorType(ishape, dtype)) weight0 = relay.const(weight_data) out0 = relay.op.nn.conv1d( input0, weight0, strides=strides, padding=padding, data_layout="NWC", kernel_layout="WIO", out_dtype="int32", out_layout="NWC", ) ref_mod = tvm.IRModule.from_expr(relay.Function([input0], out0)) input1 = relay.var("input", relay.TensorType(ishape, dtype)) weight1 = relay.const(np.moveaxis(weight_data, 1, -1)) out1 = relay.op.nn.conv1d( input1, weight1, strides=strides, padding=padding, data_layout="NWC", kernel_layout="WOI", out_dtype="int32", out_layout="NWC", ) mod = tvm.IRModule.from_expr(relay.Function([input1], out1)) inputs = {"input": np.random.randint(low=-128, high=127, size=ishape, dtype=dtype)} output_list = generate_ref_data(ref_mod, inputs) compile_and_run( AOTTestModel(module=mod, inputs=inputs, outputs=output_list), runner=AOT_CORSTONE300_RUNNER, interface_api="c", use_unpacked_api=True, target_opts={ "-keys": "arm_cpu", "-mcpu": "cortex-m7", }, ) @tvm.testing.requires_corstone300 @pytest.mark.parametrize( "dim_m, dim_k, dim_n", [ (1, 32, 64), (3, 12, 10), ], ) def test_dense(dim_m, dim_k, dim_n): """Test a subgraph with a single dense operator.""" ishape = (dim_m, dim_k) wshape = (dim_n, dim_k) input0 = relay.var("input", relay.TensorType(ishape, "int8")) dense_f = relay.op.nn.batch_flatten(input0) weight0 = relay.const(np.random.randint(low=-10, high=10, size=wshape, dtype="int8")) out = relay.op.nn.dense(dense_f, weight0, out_dtype="int32") mod = tvm.IRModule.from_expr(relay.Function([input0], out)) inputs = {"input": np.random.randint(low=-128, high=127, size=ishape, dtype="int8")} output_list = generate_ref_data(mod, inputs) compile_and_run( AOTTestModel(module=mod, inputs=inputs, outputs=output_list), runner=AOT_CORSTONE300_RUNNER, interface_api="c", use_unpacked_api=True, target_opts={ "-keys": "arm_cpu", "-mcpu": "cortex-m7", }, ) @tvm.testing.requires_corstone300 @pytest.mark.parametrize( "data_shape_nhwc, pool_size, strides, padding", [ ((1, 32, 32, 1), (3, 3), 1, 0), ((1, 32, 20, 4), (3, 3), (2, 2), 0), ], ) def test_maxpool_2d(data_shape_nhwc, pool_size, strides, padding): """Test a subgraph with a single maxpool_2d operator.""" ishape = data_shape_nhwc input0 = relay.var("input", relay.TensorType(ishape, "int8")) out = relay.op.nn.max_pool2d(input0, pool_size, layout="NHWC", strides=strides, padding=padding) mod = tvm.IRModule.from_expr(relay.Function([input0], out)) inputs = {"input": np.random.randint(low=-128, high=127, size=ishape, dtype="int8")} output_list = generate_ref_data(mod, inputs) compile_and_run( AOTTestModel(module=mod, inputs=inputs, outputs=output_list), runner=AOT_CORSTONE300_RUNNER, interface_api="c", use_unpacked_api=True, target_opts={ "-keys": "arm_cpu", "-mcpu": "cortex-m7", }, ) @tvm.testing.requires_corstone300 @pytest.mark.parametrize( "data_shape_nwc, pool_size, strides, padding", [ ((1, 32, 1), 3, 1, 0), ((1, 20, 4), 3, 2, 0), ], ) def test_maxpool_1d(data_shape_nwc, pool_size, strides, padding): """Test a subgraph with a single maxpool_1d operator.""" ishape = data_shape_nwc input0 = relay.var("input", relay.TensorType(ishape, "int8")) out = relay.op.nn.max_pool1d(input0, pool_size, layout="NWC", strides=strides, padding=padding) mod = tvm.IRModule.from_expr(relay.Function([input0], out)) inputs = {"input": np.random.randint(low=-128, high=127, size=ishape, dtype="int8")} output_list = generate_ref_data(mod, inputs) compile_and_run( AOTTestModel(module=mod, inputs=inputs, outputs=output_list), runner=AOT_CORSTONE300_RUNNER, interface_api="c", use_unpacked_api=True, target_opts={ "-keys": "arm_cpu", "-mcpu": "cortex-m7", }, ) @tvm.testing.requires_corstone300 @pytest.mark.parametrize( "data_shape_nchw, pool_size, strides, padding", [ ((1, 1, 32, 32), (3, 3), 1, 0), ((1, 4, 32, 20), (3, 3), (2, 2), 0), ], ) def test_avgpool_2d(data_shape_nchw, pool_size, strides, padding): """Test a subgraph with a single avgpool_2d operator.""" ishape = data_shape_nchw input0 = relay.var("input", relay.TensorType(ishape, "int32")) out0 = relay.nn.avg_pool2d(input0, pool_size, layout="NCHW", strides=strides, padding=padding) ref_mod = tvm.IRModule.from_expr(relay.Function([input0], out0)) input1 = relay.var("input", relay.TensorType(ishape, "int16")) out1 = relay.op.nn.avg_pool2d( input1, pool_size, layout="NCHW", strides=strides, padding=padding ) mod = tvm.IRModule.from_expr(relay.Function([input1], out1)) input_data = np.random.randint(low=-128, high=127, size=ishape, dtype="int32") inputs = {"input": input_data} output_list = generate_ref_data(ref_mod, inputs) compile_and_run( AOTTestModel( module=mod, inputs={"input": input_data.astype(dtype="int16")}, outputs=output_list ), runner=AOT_CORSTONE300_RUNNER, interface_api="c", use_unpacked_api=True, target_opts={ "-keys": "arm_cpu", "-mcpu": "cortex-m7", }, ) @tvm.testing.requires_corstone300 @pytest.mark.parametrize( "data_shape_ncw, pool_size, strides, padding", [ ((1, 1, 32), 3, 1, 0), ((1, 4, 20), 3, 2, 2), ], ) def test_avgpool_1d(data_shape_ncw, pool_size, strides, padding): """Test a subgraph with a single avgpool_1d operator.""" ishape = data_shape_ncw input0 = relay.var("input", relay.TensorType(ishape, "int32")) out0 = relay.op.nn.avg_pool1d(input0, pool_size, layout="NCW", strides=strides, padding=padding) ref_mod = tvm.IRModule.from_expr(relay.Function([input0], out0)) input1 = relay.var("input", relay.TensorType(ishape, "int16")) out1 = relay.op.nn.avg_pool1d(input1, pool_size, layout="NCW", strides=strides, padding=padding) mod = tvm.IRModule.from_expr(relay.Function([input1], out1)) input_data = np.random.randint(low=-10, high=10, size=ishape, dtype="int32") inputs = {"input": input_data} output_list = generate_ref_data(ref_mod, inputs) compile_and_run( AOTTestModel( module=mod, inputs={"input": input_data.astype(dtype="int16")}, outputs=output_list ), runner=AOT_CORSTONE300_RUNNER, interface_api="c", use_unpacked_api=True, target_opts={ "-keys": "arm_cpu", "-mcpu": "cortex-m7", }, ) if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/integration/test_auto_tensorize.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Integration test for MetaSchedule's auto tensorization.""" import tempfile import numpy as np import pytest import tvm import tvm.testing import tvm.topi.testing from tvm import meta_schedule as ms from tvm import relay from tvm.meta_schedule.testing import relay_workload from tvm.meta_schedule.testing.tlcbench import load_quantized_bert_base from tvm.tir.tensor_intrin.arm_cpu import DP4A_INTRIN from tvm.tir.tensor_intrin.rocm import AMDGPU_SDOT4_INTRIN from tvm.tir.tensor_intrin.x86 import VNNI_DOT_16x4_INTRIN as VNNI_INTRIN SCH_RULES_FOR_VNNI = [ ms.schedule_rule.ApplyCustomRule(), ms.schedule_rule.AutoInline( into_producer=False, into_consumer=True, inline_const_tensor=True, disallow_if_then_else=True, require_injective=True, require_ordered=True, disallow_op=["tir.exp"], ), ms.schedule_rule.AddRFactor(max_jobs_per_core=16, max_innermost_factor=64), ms.schedule_rule.MultiLevelTilingWithIntrin( VNNI_INTRIN, structure="SSRSRS", tile_binds=None, max_innermost_factor=64, vector_load_lens=None, reuse_read=None, reuse_write=ms.schedule_rule.ReuseType( req="may", levels=[1, 2], scope="global", ), ), ms.schedule_rule.MultiLevelTiling( structure="SSRSRS", tile_binds=None, max_innermost_factor=64, vector_load_lens=None, reuse_read=None, reuse_write=ms.schedule_rule.ReuseType( req="may", levels=[1, 2], scope="global", ), ), ms.schedule_rule.ParallelizeVectorizeUnroll( max_jobs_per_core=16, max_vectorize_extent=64, unroll_max_steps=[0, 16, 64, 512], unroll_explicit=True, ), ms.schedule_rule.RandomComputeLocation(), ] def _get_sch_rules_for_dp4a(intrin): return [ ms.schedule_rule.MultiLevelTilingWithIntrin( intrin, structure="SSSRRSRS", tile_binds=["blockIdx.x", "vthread.x", "threadIdx.x"], max_innermost_factor=64, vector_load_lens=[1, 2, 3, 4], reuse_read=ms.schedule_rule.ReuseType( req="must", levels=[4], scope="shared", ), reuse_write=ms.schedule_rule.ReuseType( req="must", levels=[3], scope="local", ), ), ms.schedule_rule.AutoInline( into_producer=True, into_consumer=True, inline_const_tensor=True, disallow_if_then_else=False, require_injective=False, require_ordered=False, disallow_op=None, ), ms.schedule_rule.CrossThreadReduction(thread_extents=[4, 8, 16, 32, 64, 128, 256, 512]), ms.schedule_rule.ParallelizeVectorizeUnroll( max_jobs_per_core=-1, # disable parallelize max_vectorize_extent=-1, # disable vectorize unroll_max_steps=[0, 16, 64, 512, 1024], unroll_explicit=True, ), ] SCH_RULES_FOR_DP4A = _get_sch_rules_for_dp4a(DP4A_INTRIN) SCH_RULES_FOR_SDOT4 = _get_sch_rules_for_dp4a(AMDGPU_SDOT4_INTRIN) POSTPROCS_FOR_VNNI = [ ms.postproc.DisallowDynamicLoop(), ms.postproc.RewriteParallelVectorizeUnroll(), ms.postproc.RewriteReductionBlock(), ms.postproc.RewriteTensorize(vectorize_init_loop=True), ] POSTPROCS_FOR_DP4A = [ ms.postproc.DisallowDynamicLoop(), ms.postproc.RewriteCooperativeFetch(), ms.postproc.RewriteUnboundBlock(), ms.postproc.RewriteParallelVectorizeUnroll(), ms.postproc.RewriteReductionBlock(), ms.postproc.RewriteTensorize(), ms.postproc.VerifyGPUCode(), ] def tune_and_test(relay_mod, data_np, weight_np, op_name, target, sch_rules, postprocs): """Test tuning.""" tgt = "cuda" if "nvidia" in target else target dev = tvm.device(tgt, 0) ref = ( relay.create_executor("vm", mod=relay_mod, device=dev, target=tgt) .evaluate()(*[data_np, weight_np]) .numpy() ) params = {"weight": weight_np} tune_tasks = list( filter( lambda task: op_name in task.task_name, ms.relay_integration.extract_tasks(relay_mod, target, params), ) ) with tempfile.TemporaryDirectory() as work_dir: tasks, task_weights = ms.relay_integration.extracted_tasks_to_tune_contexts( extracted_tasks=tune_tasks, work_dir=work_dir, space=ms.space_generator.PostOrderApply( sch_rules=sch_rules, postprocs=postprocs, ), ) database = ms.tune.tune_tasks( tasks=tasks, task_weights=task_weights, work_dir=work_dir, max_trials_global=32, ) with database, tvm.transform.PassContext( opt_level=3, config={"relay.backend.use_meta_schedule": True}, ): lib = relay.build(relay_mod, target=target, params=params) if "cascadelake" in target: asm = lib.lib.get_source("asm") assert "vpdpbusd" in asm runtime = tvm.contrib.graph_executor.GraphModule(lib["default"](dev)) runtime.set_input("data", data_np) runtime.run() out = runtime.get_output(0).numpy() np.testing.assert_equal(out, ref) def _test_dense(data_dtype, sch_rules, postprocs, target): dim_m, dim_n, dim_k = 1024, 1024, 1024 data_shape = (dim_m, dim_k) weight_shape = (dim_n, dim_k) weight_dtype = "int8" out_dtype = "int32" data = relay.var("data", shape=data_shape, dtype=data_dtype) weight = relay.var("weight", shape=weight_shape, dtype=weight_dtype) dense = relay.nn.dense(data, weight, out_dtype=out_dtype) relay_mod = tvm.IRModule.from_expr(dense) data_np = np.random.uniform(1, 10, size=data_shape).astype(data_dtype) weight_np = np.random.uniform(1, 10, size=weight_shape).astype(weight_dtype) tune_and_test(relay_mod, data_np, weight_np, "dense", target, sch_rules, postprocs) def _test_conv2d(data_dtype, sch_rules, postprocs, target): d_shape = (1, 64, 56, 56) w_shape = (64, 64, 3, 3) weight_dtype = "int8" out_dtype = "int32" data = relay.var("data", shape=d_shape, dtype=data_dtype) weight = relay.var("weight", shape=w_shape, dtype=weight_dtype) out_channel = w_shape[0] conv2d = relay.nn.conv2d( data=data, weight=weight, kernel_size=w_shape[2:], channels=out_channel, padding=(1, 1), strides=(1, 1), out_dtype=out_dtype, ) relay_mod = tvm.IRModule.from_expr(conv2d) data_np = np.random.uniform(1, 10, d_shape).astype(data_dtype) weight_np = np.random.uniform(1, 10, size=w_shape).astype("int8") tune_and_test(relay_mod, data_np, weight_np, "conv2d", target, sch_rules, postprocs) def _test_bert_int8(relay_mod, params, input_info, target, sch_rules, postprocs): relay_mod = relay.transform.FastMath()(relay_mod) tune_tasks = [ task for task in ms.relay_integration.extract_tasks(relay_mod, target, params) if "dense" in task.task_name or "batch_matmul" in task.task_name ] with tempfile.TemporaryDirectory() as work_dir: tasks, task_weights = ms.relay_integration.extracted_tasks_to_tune_contexts( extracted_tasks=tune_tasks, work_dir=work_dir, space=ms.space_generator.PostOrderApply( sch_rules=sch_rules, postprocs=postprocs, ), ) database = ms.tune.tune_tasks( tasks=tasks, task_weights=task_weights, work_dir=work_dir, max_trials_per_task=32, max_trials_global=20000, ) with database, tvm.transform.PassContext( opt_level=3, config={"relay.backend.use_meta_schedule": True}, ): lib = relay.build(relay_mod, target=target, params=params) dev = tvm.device("cuda" if "nvidia" in target else target, 0) runtime = tvm.contrib.graph_executor.GraphModule(lib["default"](dev)) inputs = [] for name, shape in input_info: arr = np.random.uniform(1, 10, size=shape).astype("int64") runtime.set_input(name, arr) inputs.append(arr) print(runtime.benchmark(dev, number=1, repeat=50).mean) @tvm.testing.requires_cascadelake def test_vnni_dense(): _test_dense( "uint8", SCH_RULES_FOR_VNNI, POSTPROCS_FOR_VNNI, "llvm -mcpu=cascadelake -num-cores 4" ) @pytest.mark.skip("Only tested locally on sm_86 (for cuda) which is not supported by CI") @tvm.testing.requires_gpu def test_dp4a_dense(): _test_dense("int8", SCH_RULES_FOR_DP4A, POSTPROCS_FOR_DP4A, "nvidia/geforce-rtx-3070") # Uncomment to test on vulkan or rocm target # _test_dense( # "int8", SCH_RULES_FOR_DP4A, POSTPROCS_FOR_DP4A, "vulkan -from_device=0" # ) # _test_dense( # "int8", SCH_RULES_FOR_SDOT4, POSTPROCS_FOR_DP4A, "rocm" # ) @tvm.testing.requires_cascadelake def test_vnni_conv2d(): _test_conv2d( "uint8", SCH_RULES_FOR_VNNI, POSTPROCS_FOR_VNNI, "llvm -mcpu=cascadelake -num-cores 4" ) @pytest.mark.skip("Only tested locally on sm_86 (for cuda) which is not supported by CI") @tvm.testing.requires_gpu def test_dp4a_conv2d(): _test_conv2d("int8", SCH_RULES_FOR_DP4A, POSTPROCS_FOR_DP4A, "nvidia/geforce-rtx-3070") # Uncomment to test on vulkan or rocm target # _test_conv2d( # "int8", SCH_RULES_FOR_DP4A, POSTPROCS_FOR_DP4A, "vulkan -from_device=0" # ) # _test_conv2d( # "int8", SCH_RULES_FOR_SDOT4, POSTPROCS_FOR_DP4A, "rocm" # ) @tvm.testing.requires_cascadelake @pytest.mark.skip_if(tvm.testing.IS_IN_CI, reason="Slow on CI") def test_vnni_bert_int8(): relay_mod, params, input_info = load_quantized_bert_base() _test_bert_int8( relay_mod, params, input_info, "llvm -mcpu=cascadelake -num-cores 4", SCH_RULES_FOR_VNNI, POSTPROCS_FOR_VNNI, ) @tvm.testing.requires_gpu @pytest.mark.skip("Slow on CI") def test_dp4a_bert_int8(): relay_mod, params, input_info = load_quantized_bert_base() _test_bert_int8( relay_mod, params, input_info, "nvidia/geforce-rtx-3070", SCH_RULES_FOR_DP4A, POSTPROCS_FOR_DP4A, ) # Uncomment to test on vulkan or rocm target # _test_bert_int8( # relay_mod, # params, # input_info, # "vulkan -from_device=0", # SCH_RULES_FOR_DP4A, # POSTPROCS_FOR_DP4A, # ) # _test_bert_int8( # relay_mod, # params, # input_info, # "rocm", # SCH_RULES_FOR_SDOT4 # POSTPROCS_FOR_DP4A, # ) @tvm.testing.requires_gpu @pytest.mark.skip("Slow on CI") @pytest.mark.parametrize( ["model_name", "input_shape"], [("bert_base", (8, 128)), ("resnet_18", (16, 3, 224, 224)), ("resnet_50", (16, 3, 224, 224))], ) def test_cuda_tensor_core(model_name, input_shape): """Integration tests of auto tensorization with CUDA tensor core""" target = tvm.target.Target("nvidia/geforce-rtx-3070") dev = tvm.cuda() if model_name.startswith("bert"): data = tvm.nd.array(np.random.randint(0, 30521, size=input_shape), dev) # embedding size else: data = tvm.nd.array(np.random.randn(*input_shape).astype("float32"), dev) mod, params, (input_name, _, _) = relay_workload.get_network(model_name, input_shape) seq = tvm.transform.Sequential( [ relay.transform.ToMixedPrecision(), ] ) with tvm.transform.PassContext(opt_level=3): mod = seq(mod) def convert_layout(mod): seq = tvm.transform.Sequential( [relay.transform.ConvertLayout({"nn.conv2d": ["NHWC", "OHWI"]})] ) with tvm.transform.PassContext(opt_level=3): mod = seq(mod) return mod with tempfile.TemporaryDirectory() as work_dir: with ms.Profiler() as profiler: converted_mod = convert_layout(mod) database = ms.relay_integration.tune_relay( mod=converted_mod, target=target, work_dir=work_dir, max_trials_global=3000, params=params, ) rt_mod1 = ms.relay_integration.compile_relay( database=database, mod=converted_mod, target=target, params=params, ) print(profiler.table()) # Compile without MetaSchedule for correctness check with tvm.transform.PassContext(opt_level=0): rt_mod2 = relay.build(mod, target=target, params=params) def get_output(data, lib): module = tvm.contrib.graph_executor.GraphModule(lib["default"](dev)) module.set_input(input_name, data) module.run() return module.get_output(0).numpy() # Check correctness actual_output = get_output(data, rt_mod1) expected_output = get_output(data, rt_mod2) assert np.allclose(actual_output, expected_output, rtol=1e-2, atol=2e-2) if __name__ == "__main__": tvm.testing.main()
https://github.com/zk-ml/tachikoma
tests/python/integration/test_dot.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Test scheduling and running a dot product.""" import numpy as np import tvm import tvm.testing from tvm import te @tvm.testing.requires_llvm def test_dot(): """Test dot product.""" arr_length = 12 arr_length_tvm = tvm.runtime.convert(arr_length) placeholder_a = te.placeholder((arr_length_tvm,), name="A") placeholder_b = te.placeholder((arr_length_tvm,), name="B") reduce_axis_k = te.reduce_axis((0, arr_length_tvm), "k") result_c = te.compute( (), lambda: te.sum( placeholder_a[reduce_axis_k] * placeholder_b[reduce_axis_k], axis=reduce_axis_k ), name="C", ) schedule = te.create_schedule(result_c.op) def verify(target): f = tvm.driver.build(schedule, [placeholder_a, placeholder_b, result_c], target) # verify dev = tvm.cpu(0) buff_a = tvm.nd.array( np.random.uniform(size=(arr_length,)).astype(placeholder_a.dtype), dev ) buff_b = tvm.nd.array( np.random.uniform(size=(arr_length,)).astype(placeholder_b.dtype), dev ) buff_c = tvm.nd.array(np.zeros((), dtype=result_c.dtype), dev) f(buff_a, buff_b, buff_c) tvm.testing.assert_allclose( buff_c.numpy(), np.dot(buff_a.numpy(), buff_b.numpy()), rtol=1e-4 ) verify("llvm") if __name__ == "__main__": test_dot()
https://github.com/zk-ml/tachikoma