file_path
stringlengths
7
180
content
stringlengths
0
811k
repo
stringclasses
11 values
python/tvm/autotvm/graph_tuner/dynamic_programming_tuner.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=import-error,too-many-locals,too-many-statements,too-many-branches,unused-variable """Dynamic programming tuner.""" import sys import numpy as np from ._base import MAX_OUTPUT_NODES from .base_graph_tuner import BaseGraphTuner from .dynamic_programming_stage import DPStage from .utils import has_multiple_inputs, is_boundary_node if sys.version_info[0] == 3: import queue else: import Queue as queue class DPTuner(BaseGraphTuner): """Tuner which uses dynamic programming to solve MDP problem. Note: currently dynamic programming is used to solve this MDP problem. However, this problem is intrinsically non-polynomial. DP can't apply for more complicated models, such as networks with many element-wise sum operators. In this case, switch to heuristic algorithm such as PBQP tuner. """ def __init__(self, *args, **kwargs): """Create a dynamic programming tuner.""" super(DPTuner, self).__init__(*args, **kwargs) self._num_states = self._max_num_states = None self._stage_dict = {} self._dep_dict = {} self._counted_nodes_set = set() self._global_data_dict = { "dtype": self._dtype, "counted_nodes_set": self._counted_nodes_set, "stage_dict": self._stage_dict, "in_nodes_dict": self._in_nodes_dict, "out_nodes_dict": self._out_nodes_dict, "dep_dict": self._dep_dict, "node_list": self._node_list, "input_shapes": self._input_shapes, "layout_transform_interlayer_cost": self._layout_transform_interlayer_cost, } def _check_num_states(self, num_states): """Track the number of states.""" self._num_states += num_states if self._max_num_states is not None: if self._num_states > self._max_num_states: raise RuntimeError( "Too many states detected while running dynamic " "programming: got %d states but upper limit is %d." % (self._num_states, self._max_num_states) ) def _forward(self): """Forward pass in DP to generate states for all stages.""" self._logger.info("Start forward pass...") for node_idx in sorted(self._in_nodes_dict.keys()): stage = DPStage(idx=node_idx, target_ops=self._target_ops, **self._global_data_dict) self._check_num_states(stage.full_states.size) self._stage_dict[node_idx] = stage self._logger.info("Finished forward pass.") def _backward(self): """Backward pass in DP to generate optimal solution.""" self._logger.info("Start backward pass...") input_names = self._input_shapes.keys() optimal_record_dict = {} # Pick optimal schedule for output nodes output_idx_list = [] for key, val in self._out_nodes_dict.items(): if not val: output_idx_list.append(key) # Restrict number of output nodes to avoid numpy reshape error if len(output_idx_list) > MAX_OUTPUT_NODES: msg = ( "The number of outputs in graph is larger than upper " "limit: %s vs %s. Usually this is caused by too many " "LAYOUT_FIXED_OP in graph. Switch to greedily select schedule." "No action required at this moment. We will continuously improve graph tuner" % (len(output_idx_list), MAX_OUTPUT_NODES) ) self._logger.warning(msg) self._optimal_record_dict = {key: 0 for key in self._in_nodes_dict} return states_list, aligned_node_list = DPStage.align_states( output_idx_list, self._stage_dict, self._node_list ) num_states = states_list[0][3].size self._check_num_states(num_states * len(output_idx_list)) aligned_node_shape = states_list[0][3].shape min_time = 0 min_pos = -1 for states in states_list: min_time += np.amax(states[3]) flatten_states_list = [current_states[3].flatten() for current_states in states_list] for i in range(num_states): current_time = 0 for j, current_states in enumerate(states_list): current_time += flatten_states_list[j][i] if min_time > current_time: min_time = current_time min_pos = i for i, states in enumerate(states_list): current_major_axis = states[1] current_sch_idx = ( min_pos % (states[2] * aligned_node_shape[current_major_axis]) ) // states[2] optimal_record_dict[aligned_node_list[i]] = current_sch_idx # Pick optimal schedule for dependencies of output nodes for i in range(len(states_list), len(aligned_node_list)): multiplier = 1 for j in range(i + 1, len(aligned_node_list)): multiplier *= aligned_node_shape[j] optimal_record_dict[aligned_node_list[i]] = ( min_pos // multiplier % aligned_node_shape[i] ) # Backward pass to get optimal schedules for other nodes bfs_q = queue.Queue() visited = set() for out_idx in output_idx_list: bfs_q.put(out_idx) while not bfs_q.empty(): node_idx = bfs_q.get() visited.add(node_idx) node = self._node_list[node_idx] if is_boundary_node(node, input_names): continue optimal_sch_idx = optimal_record_dict[node_idx] full_states = self._stage_dict[node_idx].full_states if not has_multiple_inputs(self._node_list, node_idx, input_names, self._opt_out_op): input_idx = self._in_nodes_dict[node_idx][0] input_node = self._node_list[input_idx] if is_boundary_node(input_node, input_names): continue if input_idx not in visited: bfs_q.put(input_idx) if input_idx not in optimal_record_dict: dep_list = self._stage_dict[node_idx].dep dep_idx = tuple([optimal_record_dict[item] for item in dep_list]) tmp = np.argmin(full_states, axis=1) optimal_input_sch_idx = tmp[(optimal_sch_idx,) + dep_idx] optimal_record_dict[input_idx] = optimal_input_sch_idx else: input_idx_list = self._in_nodes_dict[node_idx] optimal_record_dict[input_idx_list[0]] = optimal_sch_idx full_states_idx = self._stage_dict[node_idx].full_states_idx tmp = full_states[optimal_sch_idx] new_states_idx, new_states_pos = [], [] visited_states_idx, visited_states_pos = [], [] for i in range(1, len(full_states_idx)): if full_states_idx[i] in optimal_record_dict: visited_states_idx.append(full_states_idx[i]) visited_states_pos.append(i - 1) else: new_states_idx.append(full_states_idx[i]) new_states_pos.append(i - 1) if visited_states_idx: tmp = np.transpose(tmp, tuple(visited_states_pos + new_states_pos)) tmp = tmp[tuple([optimal_record_dict[idx] for idx in visited_states_idx])] min_pos = np.argmin(tmp) multiplier = 1 for i in range(len(new_states_idx)): multiplier *= full_states.shape[new_states_pos[i] + 1] for pos, idx in zip(new_states_pos, new_states_idx): multiplier //= full_states.shape[pos + 1] optimal_record_dict[idx] = min_pos // multiplier min_pos %= multiplier for input_idx in input_idx_list: if input_idx not in visited: bfs_q.put(input_idx) self._optimal_record_dict = optimal_record_dict for node_idx, _ in self._in_nodes_dict.items(): if self._node_list[node_idx]["op"] not in self._target_ops: continue self._logger.info("Finished backward pass...") def run(self, **kwargs): """Run dynamic programming solver.""" max_num_states = None if "max_num_states" not in kwargs else kwargs["max_num_states"] self._num_states = 0 self._max_num_states = max_num_states self._logger.info("Start to run dynamic programming algorithm...") self._forward() self._backward() self._logger.info("Finished DPExecutor run.")
https://github.com/zk-ml/tachikoma
python/tvm/autotvm/graph_tuner/pbqp_tuner.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name,too-many-locals """Partitioned Boolean Quadratic Programming Tuner""" from ._base import INVALID_LAYOUT_TIME from .base_graph_tuner import BaseGraphTuner from .utils import is_boundary_node, has_multiple_inputs class PBQPTuner(BaseGraphTuner): """An approximation method to deal with intractably large size of graph tuning problem. This graph coloring algorithm mainly comes from: Lang Hames and Bernhard Scholz. Nearly optimal register allocation with pbqp.JMLC 2006. LNCS, vol.4228,pp. 346-361, 2016 """ def __init__(self, *args, **kwargs): """Create a partitioned boolean quadratic programming tuner.""" super(PBQPTuner, self).__init__(*args, **kwargs) # Remove input and ruled_out nodes input_names = self._input_shapes.keys() for node_idx in self._out_nodes_dict: node = self._node_list[node_idx] if is_boundary_node(node, input_names): for out_node_idx in self._out_nodes_dict[node_idx]: self._in_nodes_dict[out_node_idx].remove(node_idx) self._adj_dict = {} for node_idx in self._in_nodes_dict: self._adj_dict[node_idx] = list(self._in_nodes_dict[node_idx]) + list( self._out_nodes_dict[node_idx] ) self._record_cost_dict = {} for key in self._in_nodes_dict: self._record_cost_dict[key] = [] for record in self._node_list[key]["record_candidates"]: self._record_cost_dict[key].append(record[1].costs[0]) self._max_degree = -1 self._node_degree_dict = {} for node_idx in self._in_nodes_dict: node_degree = self._get_degree(node_idx) self._node_degree_dict[node_idx] = node_degree self._max_degree = max(self._max_degree, node_degree) self._stack = [] self._buckets = [[] for _ in range(self._max_degree + 2)] for node_idx in sorted(self._in_nodes_dict): node_degree = self._get_degree(node_idx) self._buckets[node_degree].append(node_idx) self._is_optimal = True def _get_degree(self, node_idx): """Get node degree.""" return len(self._adj_dict[node_idx]) def _reorder_adj_nodes(self, node_idx): """Update buckets list with current adjacency list.""" for adj_node in self._adj_dict[node_idx]: current_degree = self._get_degree(adj_node) prev_degree = self._node_degree_dict[adj_node] if prev_degree != current_degree: self._buckets[prev_degree].remove(adj_node) self._buckets[current_degree].insert(0, adj_node) self._node_degree_dict[adj_node] = current_degree def _remove_node(self, node_idx): """Remove node from graph. Update adjacency list accordingly.""" node_degree = self._get_degree(node_idx) self._buckets[node_degree].remove(node_idx) for adj_node in self._adj_dict[node_idx]: self._adj_dict[adj_node].remove(node_idx) def _insert_edge(self, node_x, node_y, adj_cost_matrix): """Insert an edge between two nodes.""" self._layout_transform_interlayer_cost[(node_x, node_y)] = adj_cost_matrix self._layout_transform_interlayer_cost[(node_y, node_x)] = [] for i in range(len(adj_cost_matrix[0])): self._layout_transform_interlayer_cost[(node_y, node_x)].append([]) for cost_vec in adj_cost_matrix: self._layout_transform_interlayer_cost[(node_y, node_x)][i].append(cost_vec[i]) self._adj_dict[node_x].append(node_y) self._adj_dict[node_y].append(node_x) def _backward_insert_node(self, node_idx): """Reinsert node in backward pass.""" for adj_node in self._adj_dict[node_idx]: self._adj_dict[adj_node].append(node_idx) def _RI_reduction(self, node_idx): """Reduce nodes with degree 1.""" adj_node = self._adj_dict[node_idx][0] ltf_matrix = self._layout_transform_interlayer_cost[(adj_node, node_idx)] for i, cost_vec in enumerate(ltf_matrix): min_cost = INVALID_LAYOUT_TIME for j, cost in enumerate(cost_vec): min_cost = min(min_cost, cost + self._record_cost_dict[node_idx][j]) self._record_cost_dict[adj_node][i] += min_cost self._remove_node(node_idx) self._reorder_adj_nodes(node_idx) self._stack.append(node_idx) def _RII_reduction(self, node_idx): """Reduce nodes with degree 2.""" adj_node_x, adj_node_y = self._adj_dict[node_idx] ltf_matrix_x = self._layout_transform_interlayer_cost[(adj_node_x, node_idx)] ltf_matrix_y = self._layout_transform_interlayer_cost[(adj_node_y, node_idx)] delta_matrix = [[] for _ in range(len(ltf_matrix_x))] for i, cost_vec_x in enumerate(ltf_matrix_x): for j, cost_vec_y in enumerate(ltf_matrix_y): min_cost = INVALID_LAYOUT_TIME for k in range(len(self._record_cost_dict[node_idx])): min_cost = min( min_cost, cost_vec_x[k] + cost_vec_y[k] + self._record_cost_dict[node_idx][k], ) delta_matrix[i].append(min_cost) if adj_node_x == adj_node_y: for i, delta_row in enumerate(delta_matrix): self._record_cost_dict[adj_node_x][i] += delta_row[i] elif adj_node_x in self._adj_dict[adj_node_y]: for i, _ in enumerate(delta_matrix): for j, delta in enumerate(delta_matrix[i]): self._layout_transform_interlayer_cost[(adj_node_x, adj_node_y)][i][j] += delta self._layout_transform_interlayer_cost[(adj_node_y, adj_node_x)][j][i] += delta else: self._insert_edge(adj_node_x, adj_node_y, delta_matrix) self._remove_node(node_idx) self._reorder_adj_nodes(node_idx) self._stack.append(node_idx) def _RN_reduction(self, node_idx): """Reduce nodes with degree greater than 2.""" min_cost = INVALID_LAYOUT_TIME record_idx = -1 for i, record_cost in enumerate(self._record_cost_dict[node_idx]): current_cost = record_cost for adj_node in self._adj_dict[node_idx]: ltf_matrix = self._layout_transform_interlayer_cost[(node_idx, adj_node)] adj_record_cost = list(self._record_cost_dict[adj_node]) for j, ltf_cost in enumerate(ltf_matrix[i]): adj_record_cost[j] += ltf_cost current_cost += min(adj_record_cost) if current_cost < min_cost: min_cost = current_cost record_idx = i if record_idx < 0: raise RuntimeError( "Can't find a soltuion for node %d when " "applying RN reduction" % node_idx ) self._optimal_record_dict[node_idx] = record_idx self._is_optimal = False for adj_node in self._adj_dict[node_idx]: ltf_matrix = self._layout_transform_interlayer_cost[(node_idx, adj_node)] for i, ltf_cost in enumerate(ltf_matrix[record_idx]): self._record_cost_dict[adj_node][i] += ltf_cost self._remove_node(node_idx) self._reorder_adj_nodes(node_idx) self._stack.append(node_idx) def _forward(self): """Forward pass in PBQP to reduce nodes.""" while True: if self._buckets[1]: node_idx = self._buckets[1][0] self._RI_reduction(node_idx) elif self._max_degree >= 2 and self._buckets[2]: node_idx = self._buckets[2][0] self._RII_reduction(node_idx) elif self._max_degree >= 3: max_degree_node = -1 for i in range(self._max_degree, 2, -1): if self._buckets[i]: max_degree_node = self._buckets[i][0] self._RN_reduction(max_degree_node) break if max_degree_node < 0: break else: break def _backward(self): """Backward pass in PBQP to generate optimal solution.""" # Solve nodes left in the forward graph for node_idx in self._buckets[0]: record_costs = self._record_cost_dict[node_idx] min_cost = min(record_costs) self._optimal_record_dict[node_idx] = record_costs.index(min_cost) # Solve nodes with one or two degrees for node_idx in reversed(self._stack): self._backward_insert_node(node_idx) if node_idx not in self._optimal_record_dict: record_costs = list(self._record_cost_dict[node_idx]) for adj_node in self._adj_dict[node_idx]: adj_optimal_idx = self._optimal_record_dict[adj_node] for i, _ in enumerate(record_costs): record_costs[i] += self._layout_transform_interlayer_cost[ (node_idx, adj_node) ][i][adj_optimal_idx] min_cost = min(record_costs) self._optimal_record_dict[node_idx] = record_costs.index(min_cost) def run(self, **kwargs): """Run partitioned boolean quadratic programming tuner.""" self._logger.info("Start to run PBQP algorithm...") # Define virtual record lists and layout transformaton matrices # for multi-input nodes. input_names = self._input_shapes.keys() temp = {} for key, val in self._in_nodes_dict.items(): target_input_idx = -1 target_input_pos = -1 if has_multiple_inputs(self._node_list, key, input_names, self._opt_out_op): for i, item in enumerate(val): node = self._node_list[item] if not is_boundary_node(node, input_names): target_input_idx = item target_input_pos = i break # Skip boundary operator if target_input_idx < 0: continue temp[(target_input_idx, key)] = [] record_candidates = self._node_list[target_input_idx]["record_candidates"] for j in range(len(record_candidates)): temp[(target_input_idx, key)].append([]) for k in range(len(record_candidates)): temp[(target_input_idx, key)][j].append( 0 if j == k else INVALID_LAYOUT_TIME ) for j in range(target_input_pos + 1, len(val)): input_idx = val[j] input_node = self._node_list[input_idx] if is_boundary_node(input_node, input_names): continue temp[(input_idx, key)] = self._layout_transform_interlayer_cost[ (input_idx, target_input_idx) ] self._layout_transform_interlayer_cost.update(temp) # Create reverse layout transformation matrices temp = {} for idx_pair, ltf_matrix in self._layout_transform_interlayer_cost.items(): reverse_key = (idx_pair[1], idx_pair[0]) reverse_matrix = [[] for _ in range(len(ltf_matrix[0]))] for i, _ in enumerate(ltf_matrix): for j, ltf in enumerate(ltf_matrix[i]): reverse_matrix[j].append(ltf) temp[reverse_key] = reverse_matrix self._layout_transform_interlayer_cost.update(temp) self._forward() self._backward() is_optimal = "optimal" if self._is_optimal else "sub-optimal" msg = "Finished PBQPExecutor run. Got %s solution." % is_optimal self._logger.info(msg)
https://github.com/zk-ml/tachikoma
python/tvm/autotvm/graph_tuner/utils/__init__.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=wildcard-import """Graph tuner utility functions""" from __future__ import absolute_import from . import traverse_graph from . import utils from .traverse_graph import expr2graph, get_direct_ancestor, get_in_nodes, get_out_nodes from .utils import has_multiple_inputs, is_boundary_node, bind_inputs
https://github.com/zk-ml/tachikoma
python/tvm/autotvm/graph_tuner/utils/traverse_graph.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=too-many-locals,too-many-statements,too-many-branches,protected-access """API for graph traversing.""" import threading import re import tvm from tvm import relay, autotvm from tvm.relay import transform from tvm.relay.expr import Call, TupleGetItem, Var, Constant, Tuple from tvm.relay.function import Function from tvm.relay.ty import TupleType, TensorType from tvm.autotvm.task import TaskExtractEnv from .utils import has_multiple_inputs, is_boundary_node, is_skipped_node from .._base import OPT_OUT_OP def expr2graph(expr, target_ops, node_dict, node_list, tvm_target): """Convert relay expr to graph data structure and fetch workloads of target operators. Parameters ---------- expr : tvm.relay.Expr.Function Input relay function expression. target_ops: List of tvm.ir.Op List of target relay ops node_dict : dictionary from tvm.relay.Expr to int Dictionary to record node index node_list : list of dictionary List of nodes which contains all expr in the input relay function. Each node will be stored as a dictionary in the format of {"op": str, "node": tvm.relay.expr, "inputs": [int], "types": [tvm.relay.Type], "name": str, "workloads": [tuple], "topi_op": [function]} tvm_target : tvm.target The TVM target object. """ # TODO(@kevinthesun, @icemelon9): Currently graph tuning pass relies on the fact # that # autotvm tasks == # ops. But this won't be true after having relay op # strategy. We need to find a solution to fix this. env = TaskExtractEnv.get(allow_duplicate=True) env.reset(target_ops) # pylint: disable=not-context-manager with env: _expr2graph_impl(expr, target_ops, node_dict, node_list, tvm_target) task_pos = 0 for node_entry in node_list: if node_entry["op"] in target_ops: task_name, args = env.task_collection[task_pos] task = autotvm.task.create(task_name, args, target=tvm_target) node_entry["workloads"] = [task.workload] node_entry["topi_op"] = [task_name] task_pos += 1 def _infer_type(node): """A method to infer the type of a relay expression.""" mod = tvm.IRModule.from_expr(node) mod = transform.InferType()(mod) entry = mod["main"] return entry if isinstance(node, relay.Function) else entry.body def _replace_device_with_tracing(target): """This is to replace -device=XXX with -device=tracing in the tvm_target string. It is a stand-along function for testability. We need to have device=tracing in order to fetch the workloads, it is not used for anything beyond that so it is safe to override the device here only.""" target = str(target) if "-device" in target: return re.sub("-device=[^\\-$]+", "-device=tracing ", target).strip(" ") return target + " -device=tracing" def _expr2graph_impl(expr, target_ops, node_dict, node_list, tvm_target): """Implementation to convert relay expr to graph data structure""" def _traverse_expr(node): if node in node_dict: return node_index = len(node_list) node_entry = {"node": node, "inputs": [], "types": [], "op": None, "name": None} if isinstance(node, Call): op = node.op node_entry["op"] = node.op for arg in node.args: in_node_idx = node_dict[arg] if isinstance(arg, (Tuple, TupleGetItem)): node_entry["inputs"] += node_list[in_node_idx]["inputs"] else: node_entry["inputs"].append([in_node_idx, 0, 0]) infer_out = _infer_type(node) out_type = infer_out._checked_type_ if isinstance(out_type, TensorType): node_entry["types"].append(out_type) elif isinstance(out_type, TupleType): for tupe_type in out_type.fields: node_entry["types"].append(tupe_type) else: raise RuntimeError( "Unsupported output type %s in operator %s" % (type(out_type), op.name) ) # Utilize tracing target to fetch workload with topo-order. # Since we only need workload, dummy target can be used to # create task. if op in target_ops: params = [] for i, input_idx in enumerate(node_entry["inputs"]): input_node_entry = node_list[input_idx[0]] input_type = input_node_entry["types"][input_idx[1]] if not isinstance(input_node_entry["node"], (Var, Constant, Call)): raise RuntimeError( "Graph tuner can only tune target " "operators with input node of type " "relay.expr.Var/Constant/Call. Now " "find a target op %s with input type %s" % (op, str(type(input_node_entry["node"]))) ) free_var = relay.Var("var_%d" % i, input_type) params.append(free_var) call = relay.Call(node.op, params, node.attrs) mod = tvm.IRModule.from_expr(relay.Function(params, call)) relay.backend.te_compiler.get().clear() tracing_target = _replace_device_with_tracing(tvm_target) build_thread = threading.Thread(target=relay.build, args=(mod, tracing_target)) build_thread.start() build_thread.join() elif isinstance(node, Var): node_entry["name"] = node.name_hint node_entry["types"] = [node.type_annotation] elif isinstance(node, Function): # Ignore root node since it equals to input function expression if node != expr: _expr2graph_impl(node, target_ops, node_dict, node_list, tvm_target) return elif isinstance(node, TupleGetItem): in_node_idx = node_dict[node.tuple_value] node_entry["inputs"].append([in_node_idx, node.index, 0]) elif isinstance(node, Tuple): for tuple_item in node: in_node_idx = node_dict[tuple_item] if isinstance(tuple_item, TupleGetItem): node_entry["inputs"] += node_list[in_node_idx]["inputs"] elif isinstance(tuple_item, Tuple): raise RuntimeError("Graph tuner doesn't support nested tuple.") else: node_entry["inputs"].append([in_node_idx, 0, 0]) elif isinstance(node, Constant): node_entry["name"] = "Constant_" + str(node_index) node_entry["types"] = [node.checked_type] elif isinstance(node, tvm.ir.Op): return else: raise RuntimeError( "Not supported relay node type in graph tuning: %s" % str(type(node)) ) node_dict[node] = node_index node_list.append(node_entry) relay.analysis.post_order_visit(expr, _traverse_expr) def get_direct_ancestor(node_list, visited_dict, target_ops, node_idx, input_names): """Given a node_list in relay function and a node index, return the closest ancestor which has op_name as operator name or is multi_input operator. If node has multiple inputs, multiple ancestor nodes will be returned. Parameters ---------- node_list : list of dict of str to object List of all nodes in a graph. visited_dict : dict of int to int Nodes and corresponding ancestors which have been visited. target_ops: List of str List of target relay base op name node_idx : int Input node index. input_names : list of str Names of graph input nodes. Returns ------- out : list of int List of ancestor node index. """ if node_idx in visited_dict: return visited_dict[node_idx] node = node_list[node_idx] if is_boundary_node(node, input_names): return [node_idx] node_direct_ancestor = [] for item_idx in node["inputs"]: item = node_list[item_idx[0]] is_multiple_inputs = has_multiple_inputs(node_list, item_idx[0], input_names, OPT_OUT_OP) if item["op"] in target_ops or is_multiple_inputs: node_direct_ancestor.append(item_idx[0]) else: tmp = get_direct_ancestor(node_list, visited_dict, target_ops, item_idx[0], input_names) for tmp_item in tmp: if tmp_item not in node_direct_ancestor: node_direct_ancestor.append(tmp_item) visited_dict[node_idx] = node_direct_ancestor return node_direct_ancestor def get_in_nodes(node_list, target_ops, input_names): """Create a dictionary mapping from op_name nodes or multi-input nodes to closest input ancestors. Parameters ---------- node_list : list of dict of str to object List of all nodes in a graph. target_ops: List of str List of target relay op input_names : list of str Names of graph input nodes. Returns ------- out : dict of int to list of int Dictionary maps node index to closest input ancestors. """ visited_dict = {} in_node_dict = {} for i, node in enumerate(node_list): if is_boundary_node(node, input_names) or is_skipped_node(node): continue get_direct_ancestor(node_list, visited_dict, target_ops, i, input_names) for key, val in visited_dict.items(): node = node_list[key] is_multiple_inputs = has_multiple_inputs(node_list, key, input_names, OPT_OUT_OP) if node["op"] in target_ops or is_multiple_inputs: in_node_dict[key] = val # Reduce boundary nodes out_node_dict = get_out_nodes(in_node_dict) has_reduced_node = True while has_reduced_node: boundary_nodes = [] for key, val in in_node_dict.items(): node = node_list[key] is_boundary = True # Target ops can't be boundary nodes if node["op"] not in target_ops: for input_idx in val: in_node = node_list[input_idx] if not is_boundary_node(in_node, input_names) and input_idx in in_node_dict: is_boundary = False else: val.remove(input_idx) if is_boundary: boundary_nodes.append(key) if boundary_nodes: for idx in boundary_nodes: if idx in in_node_dict: del in_node_dict[idx] else: has_reduced_node = False # Remove empty nodes to ignore pre-computed sub-graph has_empty_node = True while has_empty_node: empty_nodes = [] for key, val in in_node_dict.items(): if not val: empty_nodes.append(key) if empty_nodes: has_empty_node = True for node in empty_nodes: del in_node_dict[node] if node in out_node_dict: for out_node in out_node_dict[node]: in_node_dict[out_node].remove(node) else: has_empty_node = False return in_node_dict def get_out_nodes(in_node_dict): """Create output dictionary from input dictionary. Parameters ---------- in_node_dict : dict of int to list of int Dictionary maps node index to closest input ancestors. It can be created with get_in_nodes. Returns ------- out : dict of int to list of int Dictionary maps node index to closest output nodes. """ out_node_dict = {} for key in in_node_dict: out_node_dict[key] = [] for key, val in in_node_dict.items(): for item in val: if item in out_node_dict: out_node_dict[item].append(key) else: out_node_dict[item] = [key] return out_node_dict
https://github.com/zk-ml/tachikoma
python/tvm/autotvm/graph_tuner/utils/utils.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=eval-used,invalid-name,too-many-arguments """Utility functions""" import tvm from tvm import relay from tvm.relay import transform def has_multiple_inputs(node_list, node_idx, input_names, opt_out_op): """Check whether a node has multiple input nodes except variable nodes. Parameters ---------- node_list : list of dict of str to object List of all nodes in a graph. node_idx : int Node index to be checked. input_names : list of str List of input names of graph. Returns ------- out : bool Whether the specified node has multiple input nodes """ num_inputs = 0 node = node_list[node_idx] for in_idx in node["inputs"]: in_idx = in_idx[0] in_node = node_list[in_idx] # Exclude parameter nodes if in_node["op"] is not None and in_node["op"].name in opt_out_op: increase = False for t_idx in in_node["inputs"]: increase = has_multiple_inputs(node_list, t_idx[0], input_names, opt_out_op) if increase: num_inputs += 1 elif in_node["op"] is not None or ("name" in in_node and in_node["name"] in input_names): num_inputs += 1 return num_inputs > 1 def is_boundary_node(node_entry, input_names): """Whether a node is a boundary node. Currently input node and nodes in LAYOUT_FIXED_OP are counted as boundary. Parameters ---------- node_entry : dict Node entry. input_names : list of str List of input names of graph. Returns ------- out : bool whether node is a boundary node. """ # Operators dependent on original layouts. _LAYOUT_FIXED_OP = [ relay.op.get(name) for name in ( "nn.batch_flatten", "transpose", "reshape", "vision.multibox_prior", "vision.multibox_transform_loc", "where", "vision.non_max_suppression", "strided_slice", ) ] out = node_entry["op"] in _LAYOUT_FIXED_OP or ( "name" in node_entry and node_entry["name"] in input_names ) return out def is_skipped_node(node_entry): """Whether a node is not counted. Parameters ---------- node_entry : dict Node entry. Returns ------- out : bool whether node is skipped. """ # Operators not counted in graph tuner. return isinstance(node_entry["node"], relay.Tuple) def bind_inputs(expr, input_shapes=None, input_dtypes="float32"): """Bind input variables of a relay function expression to new shapes and/or dtypes. Parameters ---------- expr : tvm.relay.Expr.Function Input relay function expression. input_shapes : dict of str to tuple of int, optional Input shapes. input_dtypes : str or dict of str to str, optional Input dtypes. Returns ------- out : tvm.relay.Expr.Function Bind relay function expression. """ if input_shapes is None: return expr if isinstance(input_dtypes, str): input_dtypes = {key: input_dtypes for key in input_shapes.keys()} updated_input_dict = {} for input_name in input_shapes.keys(): updated_input = relay.var( input_name, shape=input_shapes[input_name], dtype=input_dtypes[input_name] ) updated_input_dict[input_name] = updated_input rebind_dict = {} for var in expr.params: if var.name_hint in updated_input_dict: rebind_dict[var] = updated_input_dict[var.name_hint] updated_expr = relay.expr.bind(expr, rebind_dict) mod = tvm.IRModule.from_expr(updated_expr) mod = transform.InferType()(mod) entry = mod["main"] return entry if isinstance(updated_expr, relay.Function) else entry.body
https://github.com/zk-ml/tachikoma
python/tvm/autotvm/measure/__init__.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Distributed executor infrastructure to scale up the tuning""" from .measure import ( MeasureInput, MeasureResult, MeasureErrorNo, measure_option, create_measure_batch, ) from .measure_methods import ( LocalBuilder, LocalRunner, RPCRunner, default_module_loader, request_remote, ) from .executor import Executor
https://github.com/zk-ml/tachikoma
python/tvm/autotvm/measure/executor.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ Abstraction for asynchronous job execution """ class Executor(object): """ Base abstract executor interface for asynchronous job submission. Allows submit asynchronous jobs and returns the Future object. """ # timeout for jobs that may hang DEFAULT_TIMEOUT = 120 def submit(self, func, *args, **kwargs): """ Pass task (function, arguments) to the Executor. Parameters ---------- func : callable function to be run by a worker args : list or tuple, optional arguments passed to the function kwargs : dict, optional The keyword arguments Returns ------- future : Future Future object wrapping the task which can be used to collect the task's result. """ raise NotImplementedError() class Future(object): """ Base class of the future object. The implementations can return object of subclass of this. This objects encapsulates the asynchronous execution of task submitted to another thread, or another worker for execution. Future objects store the state of tasks--can be polled for result or a blocking call to retrieve the result can be used. """ def done(self): """ Return True if job was successfully cancelled or finished running. """ raise NotImplementedError() def get(self, timeout=None): """ Get the result. This will block until the result is available. Parameters ---------- timeout : int or float, optional Maximum number of seconds to wait before it timeouts. If not specified, it means we block until the result is available. Returns ------- result : Any The result returned by the submitted function. Raises ------ TimeoutError : if the result call timeouts. """ raise NotImplementedError() class FutureError(RuntimeError): """Base error class of all future events""" # pylint:disable=redefined-builtin class TimeoutError(FutureError): """Error raised when a task is timeout.""" class ExecutionError(FutureError): """ Error raised when future execution crashes or failed. """
https://github.com/zk-ml/tachikoma
python/tvm/autotvm/measure/measure.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=pointless-string-statement,consider-using-enumerate,invalid-name """User facing API for specifying how to measure the generated code""" import enum import multiprocessing from collections import namedtuple class MeasureInput(namedtuple("MeasureInput", ["target", "task", "config"])): """ Stores all the necessary inputs for a measurement. Parameters ---------- target : tvm.target.Target The target device task : task.Task Task function config : ConfigEntity Specific configuration. """ class MeasureResult(namedtuple("MeasureResult", ["costs", "error_no", "all_cost", "timestamp"])): """ Stores all the results of a measurement Parameters ---------- costs: Array of float or Array of Exception If no error occurs during measurement, it is an array of measured running times. If an error occurs during measurement, it is an array of the exception objections. error_no: int Denote error type, defined by MeasureErrorNo all_cost: float All cost of this measure, including rpc, compilation, test runs timestamp: float The absolute time stamp when we finish measurement. """ def __repr__(self): error_no_str = ( str(MeasureErrorNo(self.error_no)) if isinstance(self.error_no, (MeasureErrorNo, int)) else str(self.error_no) ) return ( f"{self.__class__.__name__}(costs={self.costs!r}, error_no={error_no_str}, " f"all_cost={self.all_cost}, timestamp={self.timestamp!r})" ) class MeasureErrorNo(enum.IntEnum): """Error type for MeasureResult""" NO_ERROR = 0 # no error INSTANTIATION_ERROR = 1 # actively detected error in instantiating a template with a config COMPILE_HOST = 2 # error when compiling code on host (e.g. tvm.build) COMPILE_DEVICE = 3 # error when compiling code on device (e.g. OpenCL JIT on the device) RUNTIME_DEVICE = 4 # error when run program on device WRONG_ANSWER = 5 # answer is wrong when compared to a golden output BUILD_TIMEOUT = 6 # timeout during compilation RUN_TIMEOUT = 7 # timeout during run UNKNOWN_ERROR = 8 # unknown error class Builder(object): """Builder that builds programs in tuning Parameters ---------- timeout: float, optional The timeout of a build task n_parallel: int, optional The number of tasks submitted in parallel By default it will use all cpu cores build_kwargs: dict, optional Keyword args given to the build function. """ def __init__(self, timeout=10, n_parallel=None, build_kwargs=None): self.timeout = timeout self.n_parallel = n_parallel or multiprocessing.cpu_count() self.user_build_kwargs = build_kwargs if build_kwargs is not None else {} self.runner_build_kwargs = None self.task = None def set_task(self, task, build_kwargs=None): """ Initialize for a new tuning task Parameters ---------- task: Task The tuning task build_kwargs: dict, optional The additional kwargs for build function """ self.task = task self.build_kwargs = dict(build_kwargs.items()) if build_kwargs is not None else {} if any(k in self.build_kwargs for k in self.user_build_kwargs): logging.warn( "Overriding these runner-supplied kwargs with user-supplied:\n%s", "\n".join( f" * {k}: from {build_kwargs[k]!r} to {self.user_build_kwargs[k]!r}" for k in sorted([k for k in build_kwargs if k in self.user_build_kwargs]) ), ) for k, v in self.user_build_kwargs.items(): self.build_kwargs[k] = v def build(self, measure_inputs): """Build programs Parameters ---------- measure_inputs: List of MeasureInput The measure input Returns ------- build_results: List of BuildResult The build result. """ raise NotImplementedError() class Runner(object): """Runner that runs and measures the time cost of a generated program in tuning Parameters ---------- timeout: float, optional The timeout of a build task n_parallel: int, optional The number of tasks submitted in parallel By default it will use all cpu cores """ def __init__(self, timeout=5, n_parallel=None): self.timeout = timeout self.n_parallel = n_parallel or multiprocessing.cpu_count() self.task = None def set_task(self, task): """ Initialize for a new tuning task Parameters ---------- task: Task The tuning task """ self.task = task def get_build_kwargs(self): """ Get device specific build arguments (e.g. maximum shared memory size) Returns ---------- kwargs: dict The additional keyword arguments """ raise NotImplementedError() def run(self, measure_inputs, build_results): """Run amd measure built programs Parameters ---------- measure_inputs: List of MeasureInput The raw measure input build_results: List of BuildResults The build results Returns ------- measure_results: List of MeasureResult The final results of measurement """ raise NotImplementedError() def measure_option(builder, runner): """ Set options for measure. To measure a config, we will build it and run it. So we have to set options for these two steps. They have their own options on timeout, parallel, etc. Parameters ---------- builder: Builder Specify how to build programs runner: Runner Specify how to run programs Examples -------- # example setting for using local devices >>> measure_option = autotvm.measure_option( >>> builder=autotvm.LocalBuilder(), # use all local cpu cores for compilation >>> runner=autotvm.LocalRunner( # measure them sequentially >>> number=10, >>> timeout=5) >>> ) # example setting for using remote devices >>> measure_option = autotvm.measure_option( >>> builder=autotvm.LocalBuilder(), # use all local cpu cores for compilation >>> runner=autotvm.RPCRunner( >>> 'rasp3b', 'locahost', 9190, # device key, host and port of the rpc tracker >>> number=4, >>> timeout=4) # timeout of a run on the device. RPC request waiting time is excluded. >>>) Note ---- To make measurement results accurate, you should pick the correct value for the argument `number` and `repeat` in Runner(). Some devices need a certain minimum running time to "warm up," such as GPUs that need time to reach a performance power state. Using `min_repeat_ms` can dynamically adjusts `number`, so it is recommended. The typical value for NVIDIA GPU is 150 ms. """ # pylint: disable=import-outside-toplevel from .measure_methods import LocalBuilder, LocalRunner if isinstance(builder, str): if builder == "local": builder = LocalBuilder() else: raise ValueError("Invalid builder: " + builder) if isinstance(runner, str): if runner == "local": runner = LocalRunner() else: raise ValueError("Invalid runner: " + runner) opt = { "builder": builder, "runner": runner, } return opt def create_measure_batch(task, option): """Get a standard measure_batch function. Parameters ---------- task: tvm.autotvm.task.Task The tuning task option: dict The option for measuring generated code. You should use the return value of function :any:`measure_option` for this argument. Returns ------- measure_batch: callable a callback function to measure a batch of configs """ builder = option["builder"] runner = option["runner"] attach_objects = runner.set_task(task) # feed device related information from runner to builder # (e.g. max shared memory for validity checking) build_kwargs = runner.get_build_kwargs() builder.set_task(task, build_kwargs) def measure_batch(measure_inputs): build_results = builder.build(measure_inputs) results = runner.run(measure_inputs, build_results) return results measure_batch.n_parallel = builder.n_parallel measure_batch.attach_objects = attach_objects return measure_batch
https://github.com/zk-ml/tachikoma
python/tvm/autotvm/measure/measure_methods.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name,too-many-function-args,too-many-nested-blocks """ Functions that run on executor for measurement. These functions are responsible for building the tvm module, uploading it to remote devices, recording the running time costs, and checking the correctness of the output. """ import contextlib import logging import os import shutil import tempfile import threading import time import traceback import typing import warnings from collections import namedtuple from random import getrandbits import tvm._ffi import tvm.ir.transform from tvm import nd from tvm import rpc as _rpc from tvm.autotvm.env import AutotvmGlobalScope, reset_global_scope from tvm.contrib import ndk, stackvm, tar from tvm.contrib.popen_pool import PopenPoolExecutor from tvm.driver import build from tvm.error import TVMError from tvm.target import Target from ..env import AutotvmGlobalScope from ..task.space import InstantiationError from ..utils import get_const_tuple from .measure import Builder, MeasureErrorNo, MeasureResult, Runner logger = logging.getLogger("autotvm") class BuildResult(namedtuple("BuildResult", ("filename", "arg_info", "error", "time_cost"))): """ Stores all the necessary inputs for a measurement. Parameters ---------- filename : str The filename of generated library arg_info : Tuple The shape and dtype information of tvm tensor arguments error : Exception The error happens during compilation. time_cost : float The time cost of building """ class LocalBuilder(Builder): """Run compilation on local machine Parameters ---------- timeout: float The timeout of a compilation n_parallel: int The number of tasks run in parallel. "None" will use all cpu cores build_kwargs: dict If supplied, additional kwargs passed to build_func. Overrides any build_kwargs supplied by the Runner. build_func: callable or str If is 'default', use default build function If is 'ndk', use function for android ndk If id 'stackvm', use function for stackvm If is callable, use it as custom build function, expect lib_format field. do_fork: bool If False, do not fork when building. Requires n_parallel=1. runtime: Optional[Runtime] Specify the runtime to generate artifacts for """ def __init__( self, timeout=10, n_parallel=None, build_kwargs=None, build_func="default", do_fork=False, runtime=None, ): super(LocalBuilder, self).__init__(timeout, n_parallel, build_kwargs) if isinstance(build_func, str): if build_func == "default": build_func = tar.tar elif build_func == "ndk": build_func = ndk.create_shared elif build_func == "stackvm": build_func = stackvm.build else: raise ValueError("Invalid build_func" + build_func) self.build_func = _WrappedBuildFunc(build_func, runtime) if not do_fork: assert n_parallel in ( None, 1, ), f"if do_fork=False, need n_parallel=None or 1; got {n_parallel}" self.executor = PopenPoolExecutor( timeout=timeout, initializer=reset_global_scope, initargs=(AutotvmGlobalScope.current,) ) self.tmp_dir = tempfile.mkdtemp() def build(self, measure_inputs): results = [] shutil.rmtree(self.tmp_dir, ignore_errors=True) self.tmp_dir = tempfile.mkdtemp() for i in range(0, len(measure_inputs), self.n_parallel): futures = [] for inp in measure_inputs[i : i + self.n_parallel]: ret = self.executor.submit(self.build_func, inp, self.tmp_dir, **self.build_kwargs) futures.append(ret) for future in futures: try: res = future.result() if res.error is not None: assert len(res.error) == 2, ( f"BuildResult errors should be a 2-tuple, but it is a {len(res.error)}" "-tuple. This should not happen!" ) tb, exception = res.error # instantiation error if isinstance(exception, InstantiationError): res = MeasureResult( ( tb, exception, ), MeasureErrorNo.INSTANTIATION_ERROR, res.time_cost, time.time(), ) else: if "InstantiationError" in str(exception): msg = str(exception) try: msg = msg.split("\n")[-2].split(": ")[1] except Exception: # pylint: disable=broad-except pass res = MeasureResult( ( tb, InstantiationError(msg), ), MeasureErrorNo.INSTANTIATION_ERROR, res.time_cost, time.time(), ) else: # tvm error res = MeasureResult( ( tb, res.error, ), MeasureErrorNo.COMPILE_HOST, res.time_cost, time.time(), ) except TimeoutError as ex: tb = traceback.format_exc() res = MeasureResult( ( tb, ex, ), MeasureErrorNo.BUILD_TIMEOUT, self.timeout, time.time(), ) except ChildProcessError as ex: tb = traceback.format_exc() res = MeasureResult( ( tb, ex, ), MeasureErrorNo.RUNTIME_DEVICE, self.timeout, time.time(), ) results.append(res) return results class RPCRunner(Runner): """Run generated code on remove devices. This function will ask a RPC Tracker to get device for measurement. Parameters ---------- timeout: float The timeout of a RPCRunner measurement task n_parallel: int The number of tasks run in parallel. "None" will use all cpu cores key: str The key of the device registered in the tracker host: str The host address of RPC Tracker port: int The port of RPC Tracker number: int The number of times to run the generated code for taking average. We call these runs as one `repeat` of measurement. repeat : int, optional The number of times to repeat the measurement. In total, the generated code will be run (1 + number x repeat) times, where the first "1" is warm up and will be discarded. The returned result contains `repeat` costs, each of which is an average of `number` costs. min_repeat_ms: int, optional The minimum duration of one `repeat` in milliseconds. By default, one `repeat` contains `number` runs. If this parameter is set, the parameters `number` will be dynamically adjusted to meet the minimum duration requirement of one `repeat`. i.e., When the run time of one `repeat` falls below this time, the `number` parameter will be automatically increased. cooldown_interval: float, optional The cool down interval between two measurements. enable_cpu_cache_flush: bool Whether to flush cache on CPU between repeated measurements. Flushing cache can make the measured latency of one operator closer to its actual latency during end-to-end inference. To make this option effective, the argument `number` should also be set to 1. This is only has effect on CPU task. module_loader : ModuleLoader If given, a context manager that loads the module to be timed into the remote runtime. If not given, default_module_loader is used. """ def __init__( self, key, host, port, priority=1, timeout=10, n_parallel=None, number=4, repeat=3, min_repeat_ms=0, cooldown_interval=0.1, enable_cpu_cache_flush=False, module_loader=None, ): super(RPCRunner, self).__init__(timeout, n_parallel) self.key = key self.host = host self.port = port self.priority = priority self.timeout = timeout self.number = number self.repeat = repeat self.min_repeat_ms = min_repeat_ms self._ref_input = None self.enable_cpu_cache_flush = enable_cpu_cache_flush self.cooldown_interval = cooldown_interval self.module_loader = module_loader self.executor = PopenPoolExecutor( timeout=timeout * (self.n_parallel + 1), initializer=reset_global_scope, initargs=(AutotvmGlobalScope.current,), ) @property def ref_input(self): """ Fixed input for tuning special operators, e.g., sparse operators requiring indices as input. """ return self._ref_input @ref_input.setter def ref_input(self, val): if val is not None: warnings.warn( "You are specifying fixed input for tuning the operator. " "Be sure your input always fits the operator. Some " "operators may conduct layout transformation during tuning, " "thus can lead to unexpected behaviors. ", RuntimeWarning, ) self._ref_input = val def set_task(self, task): self.task = task if check_remote(task.target, self.key, self.host, self.port): logger.info("Get devices for measurement successfully!") else: raise RuntimeError( "Cannot get remote devices from the tracker. " "Please check the status of tracker by " "'python -m tvm.exec.query_rpc_tracker --port [THE PORT YOU USE]' " "and make sure you have free devices on the queue status." ) def get_build_kwargs(self): kwargs = {} if ( "cuda" in self.task.target.keys or "opencl" in self.task.target.keys or "rocm" in self.task.target.keys or "vulkan" in self.task.target.keys ): remote = request_remote(self.key, self.host, self.port) dev = remote.device(str(self.task.target), 0) max_dims = dev.max_thread_dimensions kwargs["check_gpu"] = { "max_shared_memory_per_block": dev.max_shared_memory_per_block, "max_threads_per_block": dev.max_threads_per_block, "max_thread_x": max_dims[0], "max_thread_y": max_dims[1], "max_thread_z": max_dims[2], } return kwargs def run(self, measure_inputs, build_results): results = [] remote_kwargs = dict( device_key=self.key, host=self.host, port=self.port, priority=self.priority, timeout=self.timeout, ) for i in range(0, len(measure_inputs), self.n_parallel): futures = [] for measure_inp, build_res in zip( measure_inputs[i : i + self.n_parallel], build_results[i : i + self.n_parallel] ): module_loader = ( self.module_loader if self.module_loader is not None else default_module_loader() ) ret = self.executor.submit( run_through_rpc, measure_inp, build_res, self.number, self.repeat, self.min_repeat_ms, self.cooldown_interval, remote_kwargs, self.ref_input, self.enable_cpu_cache_flush, module_loader, ) futures.append(ret) for future in futures: try: res = future.result() results.append(res) except Exception as ex: # pylint: disable=broad-except tb = traceback.format_exc() results.append( MeasureResult( ( tb, ex, ), MeasureErrorNo.RUN_TIMEOUT, self.timeout, time.time(), ) ) return results class LocalRunner(RPCRunner): """Run generated code on local devices. Parameters ---------- timeout: float The timeout of a compilation number: int The number of times to run the generated code for taking average. We call these runs as one `repeat` of measurement. repeat : int, optional The number of times to repeat the measurement. In total, the generated code will be run (1 + number x repeat) times, where the first one is warm up and will be discarded. The returned result contains `repeat` costs, each of which is an average of `number` costs. min_repeat_ms: int, optional The minimum duration of one `repeat` in milliseconds. By default, one `repeat` contains `number` runs. If this parameter is set, the parameters `number` will be dynamically adjusted to meet the minimum duration requirement of one `repeat`. i.e., When the run time of one `repeat` falls below this time, the `number` parameter will be automatically increased. cooldown_interval: float, optional The cool down interval between two measurements. enable_cpu_cache_flush: bool Whether to flush cache on CPU between repeated measurements. Flushing cache can make the measured latency of one operator closer to its actual latency during end-to-end inference. To make this option effective, the argument `number` should also be set to 1. This is only has effect on CPU task. Note ---- This is a "fake" local mode. We start a silent rpc tracker and rpc server for the user. In this way we reuse timeout/isolation mechanism in RPC infrastructure. """ def __init__( self, timeout=10, number=4, repeat=3, min_repeat_ms=0, cooldown_interval=0.1, enable_cpu_cache_flush=False, module_loader=None, ): super(LocalRunner, self).__init__( "", None, None, 0, timeout=timeout, n_parallel=1, number=number, repeat=repeat, min_repeat_ms=min_repeat_ms, cooldown_interval=cooldown_interval, enable_cpu_cache_flush=enable_cpu_cache_flush, module_loader=module_loader, ) self.tracker = None self.server = None def set_task(self, task): # pylint: disable=import-outside-toplevel from ...rpc.server import Server from ...rpc.tracker import Tracker self.task = task tracker = Tracker(port=9000, port_end=10000, silent=True) device_key = "$local$device$%d" % tracker.port server = Server( port=9000, port_end=10000, key=device_key, silent=True, tracker_addr=("127.0.0.1", tracker.port), ) self.key = device_key self.host = "127.0.0.1" self.port = tracker.port super(LocalRunner, self).set_task(task) return server, tracker def _build_func_common(measure_input, runtime=None, check_gpu=None, build_option=None): """Common part for building a configuration""" target, task, config = measure_input target, task.target_host = Target.canon_target_and_host(target, task.target_host) with target: s, args = task.instantiate(config) # check invalidity of template and code hash consistency if not config.valid(): raise InstantiationError(config.errors) # if target is vta, we need to use vta build if ( hasattr(measure_input.target, "device_name") and measure_input.target.device_name == "vta" ): # pylint: disable=import-outside-toplevel import vta func = vta.build(s, args, target_host=task.target_host) else: current_pass_context: tvm.ir.transform.PassContext = ( tvm.ir.transform.PassContext.current() ) current_config = dict(current_pass_context.config) if build_option is not None: current_config.update(build_option) if "tir.add_lower_pass" in current_config: current_add_lower_pass = list(current_config["tir.add_lower_pass"]) else: current_add_lower_pass = [] if check_gpu: current_add_lower_pass.append((2, gpu_verify_pass(**check_gpu))) current_config["tir.add_lower_pass"] = current_add_lower_pass with tvm.ir.transform.PassContext( opt_level=current_pass_context.opt_level, required_pass=current_pass_context.required_pass, disabled_pass=current_pass_context.disabled_pass, instruments=current_pass_context.instruments, config=current_config, ): func = build(s, args, target_host=task.target_host, runtime=runtime) return func, tuple((get_const_tuple(x.shape), x.dtype) for x in args) class _WrappedBuildFunc: """ Wrap build_func to a function that can be used in measure. Note: this is a class instead of a closure so that it can be pickled when using multiprocessing. Parameters ---------- build_func : The compilation function We expect fcompile to contain an attr "output_format". runtime : Optional[Runtime] The runtime to generate artifacts for Returns ------- wrapped_build_func : callable The wrapped build function """ def __init__(self, build_func, runtime=None): if not hasattr(build_func, "output_format"): raise AttributeError("Expect build_func to have the attribute output_format.") self.build_func = build_func self.runtime = runtime def __call__(self, measure_input, tmp_dir, **kwargs): """ Wrapped build func. Parameters ---------- measure_input: MeasureInput The input of measurement tmp_dir: str The path of temporary directory to export generated library """ tic = time.time() try: filename = os.path.join( tmp_dir, "tmp_func_%0x.%s" % (getrandbits(64), self.build_func.output_format) ) # TODO(tvm-team) consider linline _build_func_common func, arg_info = _build_func_common(measure_input, self.runtime, **kwargs) if self.build_func.output_format == ".model-library-format": # Late import to preserve autoTVM with USE_MICRO OFF try: from tvm import micro # pylint: disable=import-outside-toplevel except ImportError: raise ImportError("Requires USE_MICRO") micro.export_model_library_format(func, filename) else: func.export_library(filename, self.build_func) except Exception as e: # pylint: disable=broad-except tb = traceback.format_exc() return BuildResult(None, None, (tb, e), time.time() - tic) return BuildResult(filename, arg_info, None, time.time() - tic) ModuleLoader = typing.Callable[ [dict, dict], typing.ContextManager[typing.Tuple[tvm.rpc.RPCSession, tvm.runtime.Module]] ] def run_through_rpc( measure_input, build_result, number, repeat, min_repeat_ms, cooldown_interval, remote_kwargs, ref_input, enable_cpu_cache_flush=False, module_loader=None, ): """Run a generated library through rpc Parameters ---------- measure_input: MeasureInput The raw measure input build_result: BuildResult The result returned from Builder. This contains the path to the generated library. number: int The number of times to run the generated code for taking average. We call these runs as one `repeat` of measurement. repeat : int, optional The number of times to repeat the measurement. In total, the generated code will be run (1 + number x repeat) times, where the first one is warm up and will be discarded. The returned result contains `repeat` costs, each of which is an average of `number` costs. min_repeat_ms: int, optional The minimum duration of one `repeat` in milliseconds. By default, one `repeat` contains `number` runs. If this parameter is set, the parameters `number` will be dynamically adjusted to meet the minimum duration requirement of one `repeat`. i.e., When the run time of one `repeat` falls below this time, the `number` parameter will be automatically increased. cooldown_interval: float The cool down interval between two measurements remote_kwargs: dict Passed to module_loader(). Ultimately, keyword args to request_remote(). ref_input: List of np.ndarray The reference input used for tuning. Empty for randomly filled input. enable_cpu_cache_flush: bool Whether to flush cache on CPU between repeated measurements. Flushing cache can make the measured latency of one operator closer to its actual latency during end-to-end inference. To make this option effective, the argument `number` should also be set to 1. This is only has effect on CPU task. module_loader: ModuleLoader A function that returns a ContextManager used to establish and teardown the remote session. """ if isinstance(build_result, MeasureResult): return build_result tic = time.time() errno = MeasureErrorNo.NO_ERROR try: # upload built module with module_loader(remote_kwargs, build_result) as (remote, mod): dev = remote.device(str(measure_input.target), 0) # Limitation: # We can not get PackFunction directly in the remote mode as it is wrapped # under the std::function. We could lift the restriction later once we fold # the PackedFunc as an object. Currently, we pass function name to work # around it. f_prepare = "cache_flush_cpu_non_first_arg" if enable_cpu_cache_flush else "" time_f = mod.time_evaluator( mod.entry_name, dev, number=number, repeat=repeat, min_repeat_ms=min_repeat_ms, f_preproc=f_prepare, ) if ref_input: args = [nd.array(x, device=dev) for x in ref_input] else: try: random_fill = remote.get_function("tvm.contrib.random.random_fill") except AttributeError: raise AttributeError( "Please make sure USE_RANDOM is ON in the config.cmake " "on the remote devices" ) args = [nd.empty(x[0], x[1], dev) for x in build_result.arg_info] if "scatter" not in measure_input.task.name: # the index tensor of scatter op cannot be randomly initialized for arg in args: random_fill(arg) dev.sync() costs = time_f(*args).results if len(costs) > 2: # remove largest and smallest value to reduce variance costs = list(costs) costs.sort() costs = tuple(costs[1:-1]) except TVMError as exc: msg = str(exc) if "Stack trace returned" in msg: msg = msg[: msg.index("Stack trace returned")] if "CUDA Source" in msg: msg = msg[: msg.index("CUDA Source")] costs = ( traceback.format_exc(), RuntimeError(msg[:1024]), ) errno = MeasureErrorNo.RUNTIME_DEVICE tstamp = time.time() time.sleep(cooldown_interval) return MeasureResult(costs, errno, tstamp - tic + build_result.time_cost, tstamp) class DefaultModuleLoader: """See default_module_loader(). A pickleable emulation of the original function closure.""" def __init__(self, pre_load_function=None) -> None: self.pre_load_function = pre_load_function @contextlib.contextmanager def __call__(self, remote_kwargs, build_result): remote = request_remote(**remote_kwargs) if self.pre_load_function is not None: self.pre_load_function(remote, build_result) remote.upload(build_result.filename) try: yield remote, remote.load_module(os.path.split(build_result.filename)[1]) finally: # clean up remote files remote.remove(build_result.filename) remote.remove(os.path.splitext(build_result.filename)[0] + ".so") remote.remove("") def default_module_loader(pre_load_function=None): """Returns a default function that can be passed as module_loader to run_through_rpc. Parameters ---------- pre_load_function : Optional[Function[tvm.rpc.Session, tvm.runtime.Module]] Invoked after a session is established and before the default code-loading RPC calls are issued. Allows performing pre-upload actions, e.g. resetting the remote runtime environment. Returns ------- DefaultModuleLoader : A callable that can be passed as module_loader to run_through_rpc. """ # This was a function with a closure before but that couldn't be pickled! # We need pickle to work for using python's multiprocessing on some platforms. return DefaultModuleLoader(pre_load_function) def request_remote(device_key, host=None, port=None, priority=1, timeout=60): """Request a remote session Parameters ---------- device_key: string The device key of registered device in tracker host: host, optional The host address of rpc tracker. If is none, will use environment variable "TVM_TRACKER_HOST" port: int, optional The port of rpc tracker. If is none, will use environment variable "TVM_TRACKER_PORT" priority: int, optional The priority of this request, larger is more prior timeout: float, optional The timeout of this session (units: second) Returns ------ session: RPCSession """ # connect to the tracker host = host or os.environ["TVM_TRACKER_HOST"] port = port or int(os.environ["TVM_TRACKER_PORT"]) tracker = _rpc.connect_tracker(host, port) remote = tracker.request(device_key, priority=priority, session_timeout=timeout) return remote def check_remote(target, device_key, host=None, port=None, priority=100, timeout=10): """ Check the availability of a remote device Parameters ---------- target: Target The wanted compilation target device_key: string device key of registered device in tracker host: host, optional The host address of rpc tracker. If is none, will use environment variable "TVM_TRACKER_HOST" port: int, optional The port address of rpc tracker. If is none, will use environment variable "TVM_TRACKER_PORT" priority: int, optional The priority of this request, larger is more prior timeout: float, optional The timeout of this check (units: seconds). Returns ------- available: bool True if can find available device """ def _check(): logger.debug("waiting for device...") remote = request_remote(device_key, host, port, priority) dev = remote.device(str(target)) while not dev.exist: # wait until we get an available device pass logger.debug("device available") t = threading.Thread( target=_check, ) t.start() t.join(timeout) remote = request_remote(device_key, host, port, priority) dev = remote.device(str(target)) return dev.exist def set_cuda_target_arch(arch): """THIS API IS DEPRECATED. set target architecture of nvcc compiler Parameters ---------- arch: str or list The argument of nvcc -arch. (e.g. "sm_51", "sm_62") it can also be a count of gencode arguments pass to nvcc command line, e.g., ["-gencode", "arch=compute_52,code=sm_52", "-gencode", "arch=compute_70,code=sm_70"] """ raise ValueError( "The API 'autotvm.measure.set_cuda_target_arch' is deprecated." "Try specifying it by adding '-arch=sm_xx' to your target, such as 'cuda -arch=sm_86'." "See https://github.com/apache/tvm/pull/9544 for the upgrade guide." ) def gpu_verify_pass(**kwargs): """Verify the validity of a gpu kernel. This pass will check memory usage and number of threads per block. """ def verify_pass(f, *_): valid = tvm.tir.analysis.verify_gpu_code(f, kwargs) if not valid: raise InstantiationError("Skipped because of invalid gpu kernel") return f return tvm.tir.transform.prim_func_pass(verify_pass, opt_level=0)
https://github.com/zk-ml/tachikoma
python/tvm/autotvm/record.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=superfluous-parens, redefined-outer-name, redefined-outer-name,pointless-string-statement # pylint: disable=consider-using-enumerate,invalid-name """Tuning record and serialization format""" import argparse import base64 from io import TextIOBase import logging import pickle import json import time from typing import Union import os import itertools from collections import OrderedDict import numpy as np from .. import build, lower from ..target import Target from ..contrib import popen_pool from .. import __version__ from . import task from .task import ConfigEntity, ApplyHistoryBest from .measure import MeasureInput, MeasureResult AUTOTVM_LOG_VERSION = 0.2 _old_version_warning = True logger = logging.getLogger("autotvm") try: # convert unicode to str for python2 _unicode = unicode except NameError: _unicode = () try: _long = long except NameError: _long = int def measure_str_key(inp, include_config=True): """get unique str key for MeasureInput Parameters ---------- inp: autotvm.measure.MeasureInput input for the measure include_config: bool, optional whether includes config in the str key Returns ------- key: str The str representation of key """ config_str = str(inp.config) if include_config else "" return "".join( [str(inp.target), inp.task.name, str(inp.task.args), str(inp.task.kwargs), config_str] ) def encode(inp, result, protocol="json"): """encode (MeasureInput, MeasureResult) pair to a string Parameters ---------- inp: autotvm.measure.MeasureInput result: autotvm.measure.MeasureResult pair of input/result protocol: str log protocol, json or pickle Returns ------- row: str a row in the logger file """ if protocol == "json": json_dict = { "input": (str(inp.target), inp.task.name, inp.task.args, inp.task.kwargs), "config": inp.config.to_json_dict(), "result": ( result.costs if result.error_no == 0 else (1e9,), result.error_no, result.all_cost, result.timestamp, ), "version": AUTOTVM_LOG_VERSION, "tvm_version": __version__, } return json.dumps(json_dict) if protocol == "pickle": row = ( str(inp.target), str( base64.b64encode( pickle.dumps([inp.task.name, inp.task.args, inp.task.kwargs]) ).decode() ), str(base64.b64encode(pickle.dumps(inp.config)).decode()), str(base64.b64encode(pickle.dumps(tuple(result))).decode()), str(AUTOTVM_LOG_VERSION), str(__version__), ) return "\t".join(row) raise RuntimeError("Invalid log protocol: " + protocol) def decode(row, protocol="json"): """Decode encoded record string to python object Parameters ---------- row : str a row in the logger file protocol : str log protocol, json or pickle Returns ------- ret : tuple(autotvm.measure.MeasureInput, autotvm.measure.MeasureResult), or None The tuple of input and result, or None if input uses old version log format. """ # pylint: disable=unused-variable global _old_version_warning if protocol == "json": row = json.loads(row) if "v" in row and row["v"] == 0.1: if _old_version_warning: logger.warning("AutoTVM log version 0.1 is no longer supported.") _old_version_warning = False return None tgt, task_name, task_args, task_kwargs = row["input"] tgt = str(tgt) if "-target" in tgt: logger.warning('"-target" is deprecated, use "-mtriple" instead.') tgt = tgt.replace("-target", "-mtriple") tgt = Target(str(tgt)) def clean_json_to_python(x): """1. Convert all list in x to tuple (hashable) 2. Convert unicode to str for python2 """ if isinstance(x, list): return tuple([clean_json_to_python(a) for a in x]) if isinstance(x, _unicode): return str(x) if isinstance(x, (_long, int)): return int(x) return x tsk = task.Task(clean_json_to_python(task_name), clean_json_to_python(task_args)) config = ConfigEntity.from_json_dict(row["config"]) inp = MeasureInput(tgt, tsk, config) result = MeasureResult(*[tuple(x) if isinstance(x, list) else x for x in row["result"]]) config.cost = np.mean(result.costs) return inp, result if protocol == "pickle": items = row.split("\t") if len(items) == 4: if _old_version_warning: logger.warning("AutoTVM log version 0.1 is no longer supported.") _old_version_warning = False return None tgt = Target(items[0]) task_tuple = pickle.loads(base64.b64decode(items[1].encode())) config = pickle.loads(base64.b64decode(items[2].encode())) result = MeasureResult(*pickle.loads(base64.b64decode(items[3].encode()))) config.cost = np.mean(result.costs) tsk = task.Task(task_tuple[0], task_tuple[1]) return MeasureInput(tgt, tsk, config), result raise RuntimeError("Invalid log protocol: " + protocol) def load_from_buffer(file: TextIOBase): """Generator: load records from buffer. This is a generator that yields the records. Parameters ---------- file: io.TextIOBase Yields ------ input: autotvm.measure.MeasureInput result: autotvm.measure.MeasureResult """ for row in file: if row and not row.startswith("#"): ret = decode(row) if ret is None: continue yield ret def load_from_file(filepath: Union[str, bytes, os.PathLike]): """Generator: load records from path. This is a generator that yields the records. Parameters ---------- filepath: str, bytes, or os.PathLike Yields ------ input: autotvm.measure.MeasureInput result: autotvm.measure.MeasureResult """ with open(filepath) as f: for row in f: if row and not row.startswith("#"): ret = decode(row) if ret is None: continue yield ret def split_workload(in_file, clean=True): """Split a log file into separate files, each of which contains only a single workload This function can also delete duplicated records in log file Parameters ---------- in_file: str input filename clean: bool whether delete duplicated items """ tic = time.time() lines = list(open(in_file).readlines()) logger.info("start converting...") pool = popen_pool.PopenPoolExecutor() lines = [rec for rec in pool.map(decode, lines) if rec is not None] logger.info("map done %.2f", time.time() - tic) wkl_dict = OrderedDict() for inp, res in lines: wkl = measure_str_key(inp, False) if wkl not in wkl_dict: wkl_dict[wkl] = [] wkl_dict[wkl].append([inp, res]) if clean: for i, (k, v) in enumerate(wkl_dict.items()): # clean duplicated items added = set() cleaned = [] for inp, res in v: str_key = measure_str_key(inp) if str_key in added: continue added.add(str_key) cleaned.append([inp, res]) # write to file logger.info("Key: %s\tValid: %d\tDup: %d\t", k, len(cleaned), len(v) - len(cleaned)) with open(args.i + ".%03d.wkl" % i, "w") as fout: for inp, res in cleaned: fout.write(encode(inp, res) + "\n") else: for i, (k, v) in enumerate(wkl_dict.items()): logger.info("Key: %s\tNum: %d", k, len(v)) with open(args.i + ".%03d.wkl" % i, "w") as fout: for inp, res in v: fout.write(encode(inp, res) + "\n") def pick_best(in_file, out_file): """ Pick the best entries from a file and store them to another file. This function distills the useful log entries from a large log file. If out_file already exists, the best entries from both in_file and out_file will be saved. Parameters ---------- in_file: str The filename of input out_file: str or file The filename of output """ context = load_from_file(in_file) if os.path.isfile(out_file): out_context = load_from_file(out_file) context = itertools.chain(context, out_context) context, context_clone = itertools.tee(context) best_context = ApplyHistoryBest(context) best_set = set() for v in best_context.best_by_model.values(): best_set.add(measure_str_key(v[0])) for v in best_context.best_by_targetkey.values(): best_set.add(measure_str_key(v[0])) logger.info("Extract %d best records from the %s", len(best_set), in_file) fout = open(out_file, "w") if isinstance(out_file, str) else out_file for inp, res in context_clone: if measure_str_key(inp) in best_set: fout.write(encode(inp, res) + "\n") best_set.remove(measure_str_key(inp)) """ Usage: This record executable module has three modes. * Print log file in readable format e.g. python -m tvm.autotvm.record --mode read --i collect_conv.log --begin 0 --end 5 --ir --code * Extract history best from a large log file e.g. python -m tvm.autotvm.record --mode pick --i collect.log * Split a log file into separate files, each of which contains only a single wkl e.g. python -m tvm.autotvm.record --mode split --i collect.log """ if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--mode", choices=["read", "pick", "split"], default="read") parser.add_argument("--i", type=str, help="input file") parser.add_argument("--o", type=str, default=None, help="output file") parser.add_argument("--begin", type=int, default=0) parser.add_argument("--end", type=int, default=5) parser.add_argument("--ir", action="store_true") parser.add_argument("--code", action="store_true") args = parser.parse_args() logging.basicConfig(level=logging.INFO) if args.mode == "pick": args.o = args.o or args.i + ".best.log" pick_best(args.i, args.o) elif args.mode == "read": for i, (inp, result) in enumerate(load_from_file(args.i)): if args.begin <= i < args.end: with inp.target: s, arg_bufs = inp.task.instantiate(inp.config) print("") print(inp.target, inp.task, inp.config) print(result) if args.ir: with inp.target: print(lower(s, arg_bufs, simple_mode=True)) if args.code: with inp.target: func = build(s, arg_bufs) print(func.imported_modules[0].get_source()) elif args.mode == "split": split_workload(args.i)
https://github.com/zk-ml/tachikoma
python/tvm/autotvm/task/__init__.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Task is a tunable composition of template functions. Tuner takes a tunable task and optimizes the joint configuration space of all the template functions in the task. This module defines the task data structure, as well as a collection(zoo) of typical tasks of interest. """ from .task import ( Task, create, get_config, args_to_workload, template, serialize_args, deserialize_args, ) from .space import ConfigSpace, ConfigEntity from .code_hash import attach_code_hash, attach_code_hash_to_arg from .dispatcher import ( DispatchContext, ApplyConfig, ApplyFixedConfig, ApplyHistoryBest, FallbackContext, clear_fallback_cache, ApplyGraphBest, ) from .topi_integration import ( register_topi_compute, register_topi_schedule, TaskExtractEnv, get_workload, ) from .relay_integration import extract_from_program, extract_from_multiple_program
https://github.com/zk-ml/tachikoma
python/tvm/autotvm/task/code_hash.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ Decorator functions for hashing schedule code code hashing is used to check the consistence of schedule code and the parameters loaded from log """ import functools import inspect import zlib from tvm.te import schedule def attach_code_hash(s): """Decorator for attaching a code hash to a schedule Parameters ---------- s: Schedule tvm.te.schedule.Schedule to attach the hash to """ def decorator(func): @functools.wraps(func) def wrapper(*args, **kwargs): func(*args, **kwargs) raw_hash = zlib.crc32("".join(inspect.getsourcelines(func)[0]).encode()) s.code_hash = hex(raw_hash)[2:] return wrapper return decorator def attach_code_hash_to_arg(arg_idx=1): """Decorator for attaching a code hash to a schedule Parameters ---------- arg_idx: int index of the argument (expected to be a Schedule) to attach the code hash to """ def decorator(func): @functools.wraps(func) def wrapper(*args, **kwargs): func(*args, **kwargs) assert isinstance(args[arg_idx], schedule.Schedule) raw_hash = zlib.crc32("".join(inspect.getsourcelines(func)[0]).encode()) args[arg_idx].code_hash = hex(raw_hash)[2:] return wrapper return decorator
https://github.com/zk-ml/tachikoma
python/tvm/autotvm/task/dispatcher.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ Template dispatcher module. A dispatcher is a function that can contains multiple behaviors. Its specific behavior is can be controlled by DispatchContext. DispatchContext is used in two ways, usually via different implementation of the DispatchContext base class. - During search, we can use it to pass the current proposal from tuner. - During evaluation, we can use it to set pick the best policy. """ # pylint: disable=invalid-name from __future__ import absolute_import as _abs from io import TextIOBase import logging from os import PathLike from pathlib import Path from typing import List, Iterable, Tuple, Union import numpy as np from .space import FallbackConfigEntity from .. import env as _env from ..measure import MeasureInput, MeasureResult logger = logging.getLogger("autotvm") Records = Union[ Union[str, bytes, Path], # Path-like objects TextIOBase, # File-like objects Iterable[Tuple[MeasureInput, MeasureResult]], ] class DispatchContext(object): """ Base class of dispatch context. DispatchContext enables the target and workload specific dispatch mechanism for templates. """ current = None # a set to prevent print duplicated message warning_messages = set() def __init__(self): self._old_ctx = DispatchContext.current def query(self, target, workload): """ Query the context to get the specific config for a template. If cannot find the result inside this context, this function will query it from the upper contexts. Parameters ---------- target: Target The current target workload : Workload The current workload. Returns ------- cfg : ConfigSpace The specific configuration. """ ret = self._query_inside(target, workload) if ret is None: ret = self._old_ctx.query(target, workload) return ret def update(self, target, workload, cfg): """ Update context with a specific config. Parameters ---------- target: Target The current target workload : Workload The current workload. cfg : ConfigSpace The specific configuration. Note ---- This interface is for cases when TVM decides to replace an operator in the graph. For example, `AlterOpLayout` pass (enables when `opt_level = 3`) replaces `NCHW` convolution with `NCHW[x]c` implementation on x86 CPUs. Thus in TOPI, we first query schedule using original `NCHW` workload, then update the dispatcher with the new `NCHW[x]c` workload. So that later on, `NCHW[x]c` convolution can get schedule from the dispatcher using its own workload directly. .. code-block:: python @conv2d_alter_layout.register("cpu") def _alter_conv2d_layout(attrs, inputs, tinfo): workload = get_conv2d_workload(...) dispatch_ctx = autotvm.task.DispatchContext.current target = tvm.target.Target.current() config = dispatch_ctx.query(target, workload) # Get conv2d_NCHWc workload from config # new_workload = ... # new_inputs = ... # new_attrs = ... # Store altered operator's config dispatch_ctx.update(target, new_workload, config) return sym.contrib.conv2d_NCHWc(*new_inputs, **new_attrs) We directly store `config` back because `conv2d_NCHW` and `conv2d_NCHWc` share the same schedule parameters. One can construct a new `ConfigEntity` if this is not the case. """ raise NotImplementedError() def _query_inside(self, target, workload): """ Query the context to get the specific config for a template. This function only query config inside this context. Parameters ---------- target: Target The current target workload : Workload The current workload. Returns ------- cfg : ConfigSpace The specific configuration. """ raise NotImplementedError() def __enter__(self): self._old_ctx = DispatchContext.current DispatchContext.current = self return self def __exit__(self, ptype, value, trace): DispatchContext.current = self._old_ctx class ApplyConfig(DispatchContext): """Apply a deterministic config entity for all queries. Parameters ---------- config : ConfigSpace or ConfigEntity The specific configuration we care about. """ def __init__(self, config): super(ApplyConfig, self).__init__() self._config = config self.workload = None def _query_inside(self, target, workload): """Override query""" self.workload = workload return self._config def update(self, target, workload, cfg): """Override update""" self.workload = workload self._config = cfg class ApplyFixedConfig(DispatchContext): """Apply a config of a deterministic schedule. This is used for building a single Relay operator with deterministic schedule for testing schedules at Relay level. Parameters ---------- tasks : list[tvm.autotvm.task.task.Task] List of autoTVM tasks. schedule_names : str, List[str] Name of schedules to use. """ def __init__(self, tasks, schedule_names: Union[str, List[str]]): super(ApplyFixedConfig, self).__init__() if isinstance(schedule_names, str): self._schedule_names = list(schedule_names) elif isinstance(schedule_names, list): self._schedule_names = schedule_names else: raise RuntimeError("Incorrect type: " + schedule_names) self._tasks = tasks self.workload = None def _query_inside(self, target, workload): """Override query""" self.workload = workload # Create a config from correct task for task in self._tasks: if task.name == workload[0]: config = task.config_space.get(0) break if not config: raise RuntimeError( "workload: %s does not exist in %s" % (str(workload), str(self._tasks)) ) # Add low cost to the target schedule and high cost to others. if workload[0] in self._schedule_names: config.cost = 1e-6 else: config.cost = 100000 return config def update(self, target, workload, cfg): """Override update""" self.workload = workload self._config = cfg class ApplyHistoryBest(DispatchContext): """ Apply the history best config Parameters ---------- records : None, Records, or iterator of Records objects, where a Records object is a path-like object, a file-like object, or an iterator of (MeasureInput, MeasureResult). Collection of tuning records. If multiple Records objects are passed, their contents will be merged. """ def __init__(self, records: Union[None, Records, Iterable[Records]]): super(ApplyHistoryBest, self).__init__() self.best_by_targetkey = {} self.best_by_model = {} self._best_user_defined = {} if records: self.load(records) def load(self, records: Union[Records, Iterable[Records]]): """Load records to this dispatch context Parameters ---------- records : str, list of str, or iterator of (autotvm.measure.MeasureInput,\ autotvm.measure.MeasureResult) Collection of tuning records. If multiple Records objects are passed, their contents will be merged. """ # pylint: disable=import-outside-toplevel from ..record import load_from_file, load_from_buffer def _unpack_records( records: Union[Records, Iterable[Records]] ) -> List[Tuple[MeasureInput, MeasureResult]]: if isinstance(records, (str, bytes, PathLike)): return load_from_file(records) if isinstance(records, TextIOBase): return load_from_buffer(records) joint_records = [] for record in records: if isinstance(record, Tuple) and isinstance(record[0], MeasureInput): joint_records.append(record) else: joint_records += _unpack_records(record) return joint_records flattened_records = _unpack_records(records) if not flattened_records: return best_by_targetkey = self.best_by_targetkey best_by_model = self.best_by_model counter = 0 for inp, res in flattened_records: counter += 1 if res.error_no != 0: continue # use target keys in tvm target system as key to build best map for k in inp.target.keys: key = (k, inp.task.workload) if key not in best_by_targetkey: best_by_targetkey[key] = (inp, res) else: _, other_res = best_by_targetkey[key] if np.mean(other_res.costs) > np.mean(res.costs): best_by_targetkey[key] = (inp, res) # use model as key to build best map key = (inp.target.model, inp.task.workload) if key not in best_by_model: if inp.target.model != "unknown": best_by_model[key] = (inp, res) else: _, other_res = best_by_model[key] if np.mean(other_res.costs) > np.mean(res.costs): best_by_model[key] = (inp, res) logger.debug("Finish loading %d records", counter) def _query_inside(self, target, workload): if target is None: raise RuntimeError( "Need a target context to find the history best. " "Hint: If your target is llvm, use `with tvm.target.Target('llvm'):`" " above the dispatcher call. So does other target. " ) # first try matching by model key = (target.model, workload) if key in self._best_user_defined: return self._best_user_defined[key] if key in self.best_by_model: inp, _ = self.best_by_model[key] return inp.config # then try matching by target key for k in target.keys: key = (k, workload) if key in self._best_user_defined: return self._best_user_defined[key] if key in self.best_by_targetkey: inp, _ = self.best_by_targetkey[key] return inp.config return None def update(self, target, workload, cfg): model = target.model key = (model, workload) # assume user provided config is the best cfg.cost = 0 self._best_user_defined[key] = cfg for k in target.keys: key = (k, workload) self._best_user_defined[key] = cfg class FallbackContext(DispatchContext): """ A fallback dispatch context. Any tunable template can be called under this context. This is the root context. """ def __init__(self): super(FallbackContext, self).__init__() self.memory = {} def _query_inside(self, target, workload): key = (str(target), workload) if key in self.memory: return self.memory[key] if not _env.GLOBAL_SCOPE.silent: msg = ( "Cannot find config for target=%s, workload=%s. A fallback configuration " "is used, which may bring great performance regression." % (target, workload) ) if msg not in DispatchContext.warning_messages: DispatchContext.warning_messages.add(msg) logger.warning(msg) cfg = FallbackConfigEntity() # cache this config self.memory[key] = cfg return cfg def clear_cache(self, target, workload): """Clear fallback cache. Pass the same argument as _query_inside to this function to clean the cache. Parameters ---------- target: Target The current target workload : Workload The current workload. """ key = (str(target), workload) if key in self.memory: del self.memory[key] def update(self, target, workload, cfg): key = (str(target), workload) self.memory[key] = cfg DispatchContext.current = FallbackContext() def clear_fallback_cache(target, workload): """Clear fallback cache. Pass the same argument as _query_inside to this function to clean the cache. Parameters ---------- target: Target The current target workload : Workload The current workload. Note ---- This is used in alter_op_layout to clear the bad cache created before call topi compute function """ context = DispatchContext.current while not isinstance(context, FallbackContext): context = context._old_ctx context.clear_cache(target, workload) class ApplyGraphBest(DispatchContext): """Load the graph level tuning optimal schedules. The input records should be in the ascending order of node index for target operator. Usually this can be obtained with graph tuner. This context maintains an internal counter to indicate the current node index. """ def __init__(self, records: Records): """ Parameters ---------- records : str or iterator of (autotvm.measure.MeasureInput, autotvm.measure.MeasureResult) Collection of tuning records. If is str, then it should be the filename of a records log file. Each row of this file is an encoded record pair. Otherwise, it is an iterator. """ # pylint: disable=import-outside-toplevel from ..record import load_from_file, load_from_buffer super(ApplyGraphBest, self).__init__() if isinstance(records, (str, bytes, PathLike)): records = load_from_file(records) elif isinstance(records, TextIOBase): records = load_from_buffer(records) else: records = list(records) self._records = list(records) self._counter = 0 self._global_cfg_dict = {} def _query_inside(self, target, workload): """ Query the context to get config from records. Parameters ---------- target : Target The current target workload : Workload The current workload. Returns ------- cfg : ConfigSpace The specific configuration. """ if self._counter < len(self._records): cfg = self._records[self._counter][0].config wkl = self._records[self._counter][0].task.workload if workload is not None: assert wkl == workload self._counter += 1 self.update(target, wkl, cfg) cfg.workload = wkl return cfg key = (str(target), workload) if key not in self._global_cfg_dict: msg = ( "Config for target=%s, workload=%s is missing in ApplyGraphBest context. " "A fallback configuration is used, which may bring great performance " "regression." % (target, workload) ) logger.warning(msg) cfg = FallbackConfigEntity() self._global_cfg_dict[key] = cfg else: cfg = self._global_cfg_dict[key] return cfg def update(self, target, workload, cfg): key = (str(target), workload) self._global_cfg_dict[key] = cfg
https://github.com/zk-ml/tachikoma
python/tvm/autotvm/task/relay_integration.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=unused-variable,invalid-name, not-context-manager """ Decorator and utilities for the integration with TOPI and Relay 99.9% copy-paste of implementation by @MerryMercy """ import threading import logging import tvm from tvm.autotvm.task.dispatcher import DispatchContext, FallbackContext from tvm.target import Target from .task import create from .topi_integration import TaskExtractEnv logger = logging.getLogger("autotvm") # TODO(moreau89) find a more elegant way to lower for VTAs def _lower(mod, target, params, opt_level=3): """Helper to lower VTA properly.""" # pylint: disable=import-outside-toplevel from tvm import relay from tvm.relay.backend import graph_executor_codegen if hasattr(target, "device_name") and target.device_name == "vta": import vta with vta.build_config(opt_level=opt_level, disabled_pass={"AlterOpLayout"}): mod, _ = relay.optimize(mod, target=target, params=params) grc = graph_executor_codegen.GraphExecutorCodegen(None, target) grc.codegen(mod, mod["main"]) return # Alter op layout code has been written expecting that tuning is applied # without it, so we disable AlterOpLayout to maintain that behavior. with tvm.transform.PassContext(opt_level=opt_level, disabled_pass={"AlterOpLayout"}): compiler = relay.vm.VMCompiler() if params: compiler.set_params(params) compiler.lower(mod, target=target) def extract_from_program(mod, params, target, target_host=None, ops=None): """Extract tuning tasks from a relay program. This function is the single program version of extract_from_multiple_program. Parameters ---------- mod: tvm.IRModule or relay.function.Function The module or function to tune params: dict of str to numpy array The associated parameters of the program target: tvm.target.Target The compilation target target_host: tvm.target.Target The host compilation target ops: List[tvm.ir.Op] or None List of relay ops to be tuned. If not specified, all tunable ops will be extracted. Returns ------- task: Array of autotvm.task.Task collected tasks """ target, target_host = Target.canon_target_and_host(target, target_host) return extract_from_multiple_program([mod], [params], target, ops=ops) def extract_from_multiple_program(mods, params, target, target_host=None, ops=None): """Extract tuning tasks from multiple relay programs. This function collects tuning tasks by building a list of programs with a "tracing" target and tracing all the calls to topi. Parameters ---------- mods: List[tvm.IRModule] or List[relay.function.Function] The list of modules or functions to tune params: List of dict of str to numpy array The associated parameters of the programs target: tvm.target.Target The compilation target target_host: tvm.target.Target The host compilation target ops: List[tvm.ir.Op] or None List of relay ops to be tuned. If not specified, all tunable ops will be extracted. Returns ------- task: Array of autotvm.task.Task collected tasks """ # pylint: disable=import-outside-toplevel from tvm import relay from tvm import topi env = TaskExtractEnv.get() # merge target and target host target, target_host = Target.canon_target_and_host(target, target_host) # run compiler to collect all TOPI calls during compilation env.reset(ops) with env: # disable logger temporarily old_state = logger.disabled logger.disabled = True for mod, param in zip(mods, params): if isinstance(mod, relay.function.Function): mod = tvm.IRModule.from_expr(mod) assert isinstance( mod, tvm.IRModule ), "only support relay Module or Function to be tuned" relay.backend.te_compiler.get().clear() # wrap build call in thread to avoid multiprocessing problems build_thread = threading.Thread(target=_lower, args=(mod, target, param)) build_thread.start() build_thread.join() relay.backend.te_compiler.get().clear() # Clear the warning message cache in FallbackContext if isinstance(DispatchContext.current, FallbackContext): DispatchContext.current.memory = {} DispatchContext.warning_messages = set() logger.disabled = old_state # create tasks for target tasks = [] for task_name, args in env.get_tasks(): try: tsk = create(task_name, args, target=target) tasks.append(tsk) except topi.InvalidShapeError: logger.warning("Invalid shape during AutoTVM task creation") return tasks
https://github.com/zk-ml/tachikoma
python/tvm/autotvm/task/space.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=too-few-public-methods,invalid-name,unused-argument,arguments-differ # pylint: disable=consider-using-enumerate,too-many-lines """ Template configuration space. Each template function can be parameterized by a ConfigSpace. The space is declared when we invoke the template function with ConfigSpace. During evaluation, we pass in a ConfigEntity, which contains a specific entity in the space. This entity contains deterministic parameters. """ from __future__ import absolute_import as _abs import itertools import functools import math from collections import namedtuple, OrderedDict from random import randrange import numpy as np from tvm.te import schedule, thread_axis from tvm.tir import expr from tvm.autotvm.utils import get_const_int Axis = namedtuple("Axis", ["space", "index"]) try: _long = long except NameError: _long = int class InstantiationError(ValueError): """Actively detected error in instantiating a template with a config, raised by cfg.raise_error e.g. too many unrolling, too many threads in a block """ class TransformSpace(object): """Base class for transform space TransformSpace is the node in the computation graph of axes .. note:: We can regard our schedule code as a transformation graph of axes. Starting from raw axes in the definition of te.compute, we can transform these axes by some operators. The operator includes 'split', 'reorder' and 'annotate'. Each operator has some tunable parameters (e.g. the split factor). Then the tuning process is just to find good parameters of these op. So all the combinations of the parameters of these op form our search space. Naming convention: We call the set of all possible values as XXXSpace. (XXX can be Split, Reorder, Config ...) We call a specific entity in a space as XXXEntity. """ def __init__(self): self.ins = [] self.num_output = 0 self.entities = [] def __len__(self): return len(self.entities) def __getitem__(self, index): """Get an entity of the space by index Parameters ---------- index: int Returns ------- transform entity """ return self.entities[index] @staticmethod def get_num_output(): """get number of output axes after this transform Returns ------- n: int number of output axes """ return 0 class VirtualAxis(TransformSpace): """Axis placeholder in template Parameters ---------- var: int or tvm.te.schedule.IterVar If is int, return a virtual axis whose length is the provided argument. If is IterVar, return a virtual axis whose length is extracted from the IterVar's extent domain. name: str """ name_ct = 0 def __init__(self, var, name=None): super(VirtualAxis, self).__init__() self.num_output = 1 if name is None: name = "axis_%d" % VirtualAxis.name_ct VirtualAxis.name_ct += 1 self.name = name if isinstance(var, (int, _long)): self.length = var elif isinstance(var, schedule.IterVar): self.name = var.var.name if var.dom is None: self.length = -1 else: self.length = get_const_int(var.dom.extent) elif isinstance(var, VirtualAxis): self.length = var.length else: raise RuntimeError("Invalid type of axis: " + str(type(var))) @staticmethod def get_num_output(var, name=None): return 1 def __repr__(self): return "vaxis(%s)" % self.name def get_factors(n): """return all factors of an integer Parameters ---------- n: int integer to factorize Returns ------- factors: list List of all factors """ step = 2 if n % 2 else 1 ret = list( set( functools.reduce( list.__add__, ([i, n // i] for i in range(1, int(math.sqrt(n)) + 1, step) if n % i == 0), ) ) ) ret.sort() return ret def get_pow2s(n): """return all power-of-two numbers that are less or equal than the integer Parameters ---------- n: int integer for reference Returns ------- factors: list List of all power-of-two numbers """ return [2**x for x in range(math.floor(math.log2(n)) + 1)] class SplitSpace(TransformSpace): """Split an axis for several times""" def __init__(self, axes, policy, **kwargs): super(SplitSpace, self).__init__() axis = axes[0] self.policy = policy self.entities = [] max_factor = kwargs.get("max_factor", 1 << 31) fil = kwargs.get("filter", lambda x: True) self.product = axis.length self.num_output = kwargs.get("num_outputs", 0) assert self.num_output > 0 if policy == "candidate": for size in kwargs["candidate"]: assert len(size) == self.num_output self.entities.append(SplitEntity(size)) else: if policy == "verbose": # Include factors and power-of-twos. May generate tails. divisibles = get_factors(self.product) pow2s = get_pow2s(self.product) factors = [x for x in list(set(divisibles) | set(pow2s)) if x <= max_factor] elif policy == "factors": # Include divisible factors. Guarantee no tails. factors = [x for x in get_factors(self.product) if x <= max_factor] elif policy == "power2": # Include less, equal, and round-up power-of-two numbers. May generate tails. factors = [x for x in get_pow2s(self.product) if x <= max_factor] else: raise RuntimeError("Invalid policy: %s" % policy) # Enforce the product of all split factors equals to the axis length no_tail = kwargs.get("no_tail", policy == "factors") # Generate split entity by enumerating candidate factors. self.factors = factors self._generate_space(0, [None] * (self.num_output - 1), enforce_no_tail=no_tail) self.entities = list(filter(fil, self.entities)) def _generate_space(self, now, tmp_stack, enforce_no_tail=False): """Generate space by DFS""" if now == self.num_output - 1: prod = functools.reduce(lambda x, y: x * y, tmp_stack) if prod > self.product: return if self.product % prod == 0 or (not enforce_no_tail and prod < self.product): self.entities.append(SplitEntity([-1] + tmp_stack[::-1])) else: for factor in self.factors: tmp_stack[now] = factor self._generate_space(now + 1, tmp_stack, enforce_no_tail) @staticmethod def get_num_output(axes, policy, **kwargs): return kwargs["num_outputs"] def __repr__(self): return "Split(policy=%s, product=%d, num_outputs=%d) len=%d" % ( self.policy, self.product, self.num_output, len(self), ) class SplitEntity(object): """ A split operation with detailed parameters that can apply to an axis Parameters ---------- size: Array of int the size of every axis after split. e.g. an axis of extent 128, we split it into 3 axes, a possible size is [4, 4, 8] (4x4x8 = 128). """ def __init__(self, size): self.size = size def apply(self, sch, op, axis): """Apply split to an axis Parameters ---------- sch: tvm.te.schedule.Schedule The tvm schedule op: tvm.te.Operation The stage to be applied axis: tvm.te.schedule.IterVar axis to split Returns ------- axes : list of Axis The transformed axes. """ ret = [] for i in range(1, len(self.size)): ax0, ax1 = sch[op].split(axis, int(np.prod(self.size[i:]))) ret.append(ax0) axis = ax1 return ret + [axis] def __repr__(self): return str(self.size) class ReorderSpace(TransformSpace): """The parameter space for ordering an array of axes""" def __init__(self, axes, policy, **kwargs): super(ReorderSpace, self).__init__() self.ins = axes self.policy = policy self.num_output = len(axes) if policy == "identity": self.entities = [ReorderEntity(range(len(axes)))] elif policy == "all": self.entities = [ReorderEntity(x) for x in itertools.permutations(range(len(axes)))] elif policy == "interval_all": begin, end = kwargs["interval"] sub_space = list(itertools.permutations(range(begin, end))) prefix, suffix = tuple(range(begin)), tuple(range(end, len(axes))) self.entities = [ReorderEntity(prefix + x + suffix) for x in sub_space] elif policy == "candidate": candidate = kwargs["candidate"] for can in candidate: perm = [axes.index(x) for x in can] self.entities.append(ReorderEntity(perm)) elif policy == "interleave": spatial, reduce = kwargs["spatial"], kwargs["reduce"] spatial = [[axes.index(x) for x in ch] for ch in spatial] reduce = [[axes.index(x) for x in ch] for ch in reduce] outer_merged = self._merge_chain([x[:-1] for x in spatial]) inner_merged = self._merge_chain([x[-1:] for x in spatial] + reduce) for o in outer_merged: for i in inner_merged: self.entities.append(ReorderEntity(o + i)) elif policy == "interleave_cuda": spatial, reduce = kwargs["spatial"], kwargs["reduce"] spatial = [[axes.index(x) for x in ch] for ch in spatial] reduce = [[axes.index(x) for x in ch] for ch in reduce] outer_merged = self._merge_chain([x[:-1] for x in spatial]) reduce_merged = self._merge_chain(reduce) inner_merged = [x[-1] for x in spatial] for o in outer_merged: for r in reduce_merged: self.entities.append(ReorderEntity(o + r + inner_merged)) else: raise RuntimeError("Invalid policy: " + policy) @staticmethod def get_num_output(axes, policy, **kwargs): return len(axes) def __repr__(self): return "Reorder(policy=%s) len=%d" % (self.policy, len(self)) def _merge_chain(self, chains): """generate all combinations of merge some chains""" merged = [] tmp_pt = [0] * len(chains) tmp_stack = [] size = np.sum([len(x) for x in chains]) self._merge_dfs(chains, size, tmp_pt, tmp_stack, merged) return merged def _merge_dfs(self, chains, size, tmp_pt, tmp_stack, merged): if np.sum(tmp_pt) == size: merged.append(list(tmp_stack)) return for i in range(len(chains)): # use i == np.argmax(....) here to take spatial order into consideration # if we don't want to consider spatial order, we can use tmp_pt[i] == np.max(....) if tmp_pt[i] < len(chains[i]) and ( i == np.argmax([len(chains[x]) - tmp_pt[x] for x in range(len(chains))]) ): tmp_stack.append(chains[i][tmp_pt[i]]) tmp_pt[i] += 1 self._merge_dfs(chains, size, tmp_pt, tmp_stack, merged) tmp_pt[i] -= 1 tmp_stack.pop() class ReorderEntity(object): """A reorder operation with detailed parameters that can apply to axes Parameters ---------- perm: Array of int define the permutation """ def __init__(self, perm): self.perm = perm def apply(self, sch, op, axes): """Apply reorder to an array of axes Parameters ---------- sch: tvm.te.schedule.Schedule The tvm schedule op: tvm.te.Operation The stage to be applied axis: tvm.te.schedule.IterVar axis to split Returns ------- axes : list of Axis The transformed axes. """ if len(axes) == len(self.perm): new_order = [axes[i] for i in self.perm] else: new_order = [axes[i] for i in self.perm if i < len(axes)] sch[op].reorder(*new_order) return new_order def __repr__(self): return str(self.perm) class AnnotateSpace(TransformSpace): """The parameter space for annotating an array of axes""" def __init__(self, axes, policy, **kwargs): super(AnnotateSpace, self).__init__() self.ins = axes self.policy = policy self.num_output = len(axes) if policy == "bind_gpu": self.num_axis = len(axes) if self.num_axis >= 6: self.entities.append( AnnotateEntity( ["fuse"] * (self.num_axis - 6) + [ "blockIdx.z", "blockIdx.y", "blockIdx.x", "threadIdx.z", "threadIdx.y", "threadIdx.x", ] ) ) elif self.num_axis >= 4: self.entities.append( AnnotateEntity( ["fuse"] * (self.num_axis - 4) + ["blockIdx.y", "blockIdx.x", "threadIdx.y", "threadIdx.x"] ) ) elif self.num_axis >= 2: self.entities.append( AnnotateEntity(["fuse"] * (self.num_axis - 2) + ["blockIdx.x", "threadIdx.x"]) ) else: raise RuntimeError("Unhandled case in bind_gpu") elif policy == "bind_gpu_virtual": self.num_axis = len(axes) if self.num_axis >= 9: self.entities.append( AnnotateEntity( ["fuse"] * (self.num_axis - 9) + [ "blockIdx.z", "blockIdx.y", "blockIdx.x", "vthread", "vthread", "vthread", "threadIdx.z", "threadIdx.y", "threadIdx.x", ] ) ) elif self.num_axis >= 6: self.entities.append( AnnotateEntity( ["fuse"] * (self.num_axis - 6) + [ "blockIdx.y", "blockIdx.x", "vthread", "vthread", "threadIdx.y", "threadIdx.x", ] ) ) elif self.num_axis >= 3: self.entities.append( AnnotateEntity( ["fuse"] * (self.num_axis - 3) + ["blockIdx.x", "vthread", "threadIdx.x"] ) ) else: raise RuntimeError("Unhandled case in bind_gpu") elif policy == "locate_cache": self.num_axis = len(axes) num_anchor = kwargs["num_anchor"] self.anns = list(itertools.combinations(range(self.num_axis), num_anchor)) self.entities = [AnnotateEntity(x) for x in self.anns] else: # none, vec, unroll, try_vec, try_unroll, try_vec_unroll, ... anns = policy.replace("try", "none").split("_") for ann in anns: if ann not in ["none", "unroll", "vec"]: raise RuntimeError("Invalid policy: " + policy) self.num_axis = len(axes) self.anns = [anns] * self.num_axis self._generate_space(0, [""] * self.num_axis) def _generate_space(self, now, tmp_stack): """Generate space by DFS""" if now == self.num_axis: # only vectorize inner most dimension vec_ct = tmp_stack.count("vec") if vec_ct in (0, 1): self.entities.append(AnnotateEntity(list(tmp_stack))) else: for ann in self.anns[now]: tmp_stack[now] = ann self._generate_space(now + 1, tmp_stack) @staticmethod def get_num_output(axes, policy, **kwargs): return len(axes) def __repr__(self): return "Annotate(policy=%s) len=%d" % (self.policy, len(self)) class AnnotateEntity(object): """An annotation operation with detailed parameters that can apply to axes Parameters ---------- anns: Array of string The annotations of axes """ def __init__(self, anns): self.anns = anns def apply( self, sch, op, axes, axis_lens=None, max_unroll=None, vec_size=None, cfg=None, source=None ): """Apply annotation to an array of axes Parameters ---------- sch: tvm.te.schedule.Schedule The tvm schedule op: tvm.te.Operation The stage to be applied axes: Array of tvm.te.schedule.IterVar axis to split axis_lens: Array of int, optional the length of axes max_unroll: int, optional maximum unroll step vec_size: Array of int, optional valid vector lanes for vectorization cfg: ConfigEntity, optional cfg for recording error source: Array of Array tensor, optional source tensor for attaching cache Returns ------- axes : list of tvm.te.schedule.IterVar The transformed axes """ if source is not None: # special case : attach cache_read/cache_write for src, to in zip(source, self.anns): for t in src: sch[t].compute_at(sch[op], axes[to]) else: # other cases for i, ann in enumerate(self.anns): if ann == "none": pass elif ann == "unroll": if max_unroll and axis_lens[i] > max_unroll: cfg.raise_error("Too large factor for unrolling") sch[op].unroll(axes[i]) elif ann == "vec": if vec_size and axis_lens[i] not in vec_size: cfg.raise_error("Wrong size of lanes in vectorization") sch[op].vectorize(axes[i]) elif ann == "blockIdx.x": sch[op].bind(axes[i], thread_axis("blockIdx.x")) elif ann == "blockIdx.y": sch[op].bind(axes[i], thread_axis("blockIdx.y")) elif ann == "blockIdx.z": sch[op].bind(axes[i], thread_axis("blockIdx.z")) elif ann == "threadIdx.x": sch[op].bind(axes[i], thread_axis("threadIdx.x")) elif ann == "threadIdx.y": sch[op].bind(axes[i], thread_axis("threadIdx.y")) elif ann == "threadIdx.z": sch[op].bind(axes[i], thread_axis("threadIdx.z")) elif ann == "vthread": sch[op].bind(axes[i], thread_axis("vthread")) elif ann == "fuse": assert i < len(axes) - 1 axes[i + 1] = sch[op].fuse(axes[i], axes[i + 1]) else: raise RuntimeError("Invalid annotation " + ann) return axes def __repr__(self): return str(self.anns) class OtherOptionSpace(TransformSpace): """The parameter space for general option""" def __init__(self, axes, policy, **kwargs): super(OtherOptionSpace, self).__init__() candidate = kwargs["candidate"] self.entities = [OtherOptionEntity(x) for x in candidate] @staticmethod def get_num_output(axes, policy, **kwargs): return 0 def __repr__(self): return "OtherOption(%s) len=%d" % (self.entities, len(self)) class OtherOptionEntity(object): """The parameter entity for general option, with a detailed value""" def __init__(self, val): self.val = val def __repr__(self): return str(self.val) class ConfigSpace(object): """The configuration space of a schedule. Pass it as config in template to collect transformation space and build transform graph of axes """ def __init__(self): # private dict to provide sugar self.space_map = OrderedDict() # name -> space self._collect = True self._length = None self._range_length = None self._dims = None self._entity_map = OrderedDict() # name -> entity self._constraints = [] self.errors = [] self.code_hash = None self.flop = 0 self.cost = None self.is_fallback = False self._shared_filter = None self._shared_filter_cache = None @staticmethod def axis(var): """get a virtual axis (axis placeholder) Parameters ---------- var: int or tvm.te.schedule.IterVar If is int, return an axis whose length is the provided argument. If is IterVar, return an axis whose length is extracted from the IterVar's extent domain. """ return VirtualAxis(var) reduce_axis = axis def define_split(self, name, axis, policy="factors", **kwargs): """Define a new tunable knob which splits an axis into a list of axes Parameters ---------- name: str name to index the entity of this space axis: tvm.te.schedule.IterVar axis to split policy: str name of policy. If is 'factors', the tuner will try all divisible factors. If is 'power2', the tuner will try power-of-two factors less or equal to the length. If is 'verbose', the tuner will try all candidates in above two policies. If is 'candidate', try given candidates. **kwargs: extra arguments for policy ``max_factor``: the maximum split factor (`int`). ``filter``: see examples below for how to use filter (`Callable[[int], bool]`). ``num_outputs``: the total number of axis after split (`int`). ``no_tail``: should we only include divisible numbers as split factors (`bool`). ``candidate``: (policy=candidate) manual candidate list (`List`). Examples -------- >>> # use custom candidates >>> cfg.define_split('tile_x', x, policy='candidate', num_outputs=3, >>> candidate=[[1, 4, 4], [4, 1, 4]]) >>> # use a filter that only accepts the split scheme whose inner most tile is less then 4 >>> cfg.define_split('tile_y', y, policy='factors', num_outputs=3, >>> filter=lambda x: x.size[-1] <= 4) """ axes = [axis] return self._add_new_transform(SplitSpace, name, axes, policy, **kwargs) def define_reorder(self, name, axes, policy, **kwargs): """Define a new tunable knob which reorders a list of axes Parameters ---------- name: str name to index the entity of this space axes: Array of tvm.te.schedule.IterVar axes to reorder policy: str name of policy If is 'identity', do an identity permutation. If is 'all', try all permutations. If is 'interval_all', try all permutations of an interval of axes. If is 'candidate', try listed candidate. If is 'interleave', interleave chains of spatial axes and chains of reduction axes. kwargs: dict extra arguments for policy """ return self._add_new_transform(ReorderSpace, name, axes, policy, **kwargs) def define_annotate(self, name, axes, policy, **kwargs): """Define a new tunable knob which annotates a list of axes Parameters ---------- name: str name to index the entity of this space axes: Array of tvm.te.schedule.IterVar axes to annotate policy: str name of policy If is 'unroll', unroll the axes. If is 'try_unroll', try to unroll the axes. If is 'try_unroll_vec', try to unroll or vectorize the axes. If is 'bind_gpu', bind the first few axes to gpu threads. If is 'locate_cache', choose n axes to attach shared/local cache. kwargs: dict extra arguments for policy """ return self._add_new_transform(AnnotateSpace, name, axes, policy, **kwargs) def define_knob(self, name, candidate): """Define a tunable knob with a list of candidates Parameters ---------- name: str name key of that option candidate: list list of candidates """ return self._add_new_transform(OtherOptionSpace, name, [], None, candidate=candidate) def add_flop(self, flop): """Add float operation statistics for this tuning task Parameters --------- flop: int or float or IntImm or FloatImm number of float operations """ if isinstance(flop, (expr.IntImm, expr.FloatImm)): flop = flop.value self.flop += float(flop) def raise_error(self, msg): """register error in config Using this to actively detect error when scheduling. Otherwise these error will occur during runtime, which will cost more time. Parameters ---------- msg: str """ self.errors.append(msg) def valid(self): """Check whether the config meets all the constraints .. note:: This check should be called after instantiation of task, because the ConfigEntity/ConfigSpace collects errors during instantiation Returns ------- valid: bool whether the config meets all the constraints """ return not bool(self.errors) def is_index_valid(self, index): """Checks if the index satisfies the multi_filter condition Parameters ---------- index: int index from the range of the space Returns ------- valid: bool whether the index meets all the constraints """ assert 0 <= index < self.range_length if self._shared_filter is None: return True if self._shared_filter_cache is None: self._make_shared_filter_cache() return self._shared_filter_cache[index] def multi_filter(self, filter): # pylint: disable=redefined-builtin """The filter can restrict combination of parameters in difference to the knob filter, that restricts only single parameter Parameters ---------- filter: function predicate with one argument (Callable[[int], bool]) .. note:: Using this filter causes additional restrictions on the use of __len__. Normally, it define the count of valid indexes and the range of space, but when multi_filter enabled, it requires to use __len__ for getting the count of valid indexes or range_length for the range of space. It is recommended to use: ``is_index_valid``, ``get_next_index``, ``get_rand_index`` to bypass the space Examples -------- >>> # Pre-requisites >>> candidates = [[16, 64], [32, 32], [64, 16]] >>> filter = lambda v: v.size[0] != 16 >>> multi_filter = lambda e: (e["tile_x"].size[0] + e["tile_y"].size[0]) <= 64 >>> # Case 1 - without filtering >>> cfg.define_split("tile_x", x, num_outputs=2, policy="candidate", candidate=candidates) >>> cfg.define_split("tile_y", y, num_outputs=2, policy="candidate", candidate=candidates) >>> # [('tile_x', [16, 64]), ('tile_y', [16, 64])],None,0 >>> # [('tile_x', [32, 32]), ('tile_y', [16, 64])],None,1 >>> # [('tile_x', [64, 16]), ('tile_y', [16, 64])],None,2 >>> # [('tile_x', [16, 64]), ('tile_y', [32, 32])],None,3 >>> # [('tile_x', [32, 32]), ('tile_y', [32, 32])],None,4 >>> # [('tile_x', [64, 16]), ('tile_y', [32, 32])],None,5 >>> # [('tile_x', [16, 64]), ('tile_y', [64, 16])],None,6 >>> # [('tile_x', [32, 32]), ('tile_y', [64, 16])],None,7 >>> # [('tile_x', [64, 16]), ('tile_y', [64, 16])],None,8 >>> # Case 2 - with filter >>> cfg.define_split("tile_x", x, num_outputs=2, policy="candidate", candidate=candidates, >>> filter=filter) >>> cfg.define_split("tile_y", y, num_outputs=2, policy="candidate", candidate=candidates, >>> filter=filter) >>> # [('tile_x', [32, 32]), ('tile_y', [32, 32])],None,0 >>> # [('tile_x', [64, 16]), ('tile_y', [32, 32])],None,1 >>> # [('tile_x', [32, 32]), ('tile_y', [64, 16])],None,2 >>> # [('tile_x', [64, 16]), ('tile_y', [64, 16])],None,3 >>> # Case 3 - with filter and multi_filter >>> cfg.define_split("tile_x", x, num_outputs=2, policy="candidate", candidate=candidates, >>> filter=filter) >>> cfg.define_split("tile_y", y, num_outputs=2, policy="candidate", candidate=candidates, >>> filter=filter) >>> cfg.multi_filter(filter=multi_filter) >>> # [('tile_x', [32, 32]), ('tile_y', [32, 32])],None,0 """ if self._collect: self.clear_cache() self._shared_filter = filter @property def range_length(self): """Length of the index range in the space""" if self._range_length is None: self._range_length = int(np.prod([len(x) for x in self.space_map.values()])) return self._range_length @property def dims(self): """Dimensions in the space""" if self._dims is None: self._dims = [len(x) for x in self.space_map.values()] return self._dims def subrange_length(self, start, end): """Returns the number of valid indexes within the limited range from [start, end] Parameters ---------- start: int start of subrange, inclusive end: int end of subrange, exclusive Returns ------- count: int number of valid indexes """ assert 0 <= start <= end <= self.range_length if self._shared_filter is None: return end - start if self._shared_filter_cache is None: self._make_shared_filter_cache() return self._shared_filter_cache[start:end].count(True) def get_rand_index(self, start=None, end=None, to_exclude=None): """Returns a random valid index unlisted to exclusion Parameters ---------- start: int, optional specifying at which position to start, inclusive end: int, optional specifying at which position to end, exclusive to_exclude: list, optional determines unsuitable values Returns ------- rand: int random index in the space .. note:: Excluding all valid space indexes will lead to an infinite loop. """ start = start or 0 end = end or self.range_length while True: index = randrange(start, end) if self.is_index_valid(index) and index not in (to_exclude or []): return index def get_next_index(self, index, n=1, start=None, end=None): """Returns the nth valid next index or None if out of range Parameters ---------- index: int specifying at which position to start, inclusive n: int, optional step by using to find the next index, for the opposite direction a negative number should be used start: list, optional start of subrange, inclusive end: list, optional end of subrange, exclusive Returns ------- next: int next index in the space """ assert n != 0 start = start or 0 end = end or self.range_length if self._shared_filter is None: index += n if start <= index < end: return index return None trend = 1 if n > 0 else -1 counter = abs(n) while counter != 0: index += trend if index < start or index >= end: return None if self.is_index_valid(index): counter -= 1 return index def clear_cache(self): """Clears the cache of index validity""" del self._shared_filter_cache self._dims = None self._length = None self._range_length = None self._shared_filter_cache = None def _make_shared_filter_cache(self): def apply(t): entities = OrderedDict() for name, space in self.space_map.items(): entities[name] = space[t % len(space)] t //= len(space) return bool(self._shared_filter(entities)) self._shared_filter_cache = tuple(apply(i) for i in range(self.range_length)) self._length = self._shared_filter_cache.count(True) def point2knob(self, point): """Convert point form (single integer) to knob (vector) Parameters ---------- point: int point to convert Returns ------- knob: list knob representation of the point """ knob = [] for dim in self.dims: knob.append(point % dim) point //= dim return knob def knob2point(self, knob): """Convert knob form (vector) to point form (single integer) Parameters ---------- knob: list knob to convert Returns ------- point: int point of the knob representation """ point = 0 for j, k in enumerate(knob): point += int(np.prod(self.dims[:j])) * k return point def sample_ints(self, m): """ Sample m different integer numbers from [0, self.range_length) without replacement This function is an alternative of `np.random.choice` when self.range_length > 2 ^ 32, in which case numpy does not work. Parameters ---------- m: int The number of sampled int Returns ------- ints: an numpy array of size m """ assert m <= len(self) vis = set() while len(vis) < m: new = randrange(0, self.range_length) if self.is_index_valid(new): vis.add(new) return np.fromiter(vis, int, len(vis)) def random_walk(self, point): """random walk as local transition Parameters ---------- point: int index of the ConfigEntity Returns ------- new_point: int new neighborhood index """ # transform to knob form old_knob = self.point2knob(point) new_knob = old_knob.copy() new_point = self.knob2point(new_knob) # mutate while new_knob == old_knob or not self.is_index_valid(new_point): from_i = np.random.randint(len(old_knob)) to_v = np.random.randint(self.dims[from_i]) new_knob[from_i] = to_v new_point = self.knob2point(new_knob) # transform to index form return new_point def _add_new_transform(self, space_class, name, axes, policy, **kwargs): """Add a new transform space in template""" # if we do not have tuned info (_collect == True) but defined KNOB value # for "default" scheduling before call of _add_new_transform, in this case # no need to create new space and override previously pointed KNOB values if kwargs.get("filter"): self.clear_cache() if self._collect and not (self.is_fallback and name in self._entity_map): # convert schedule axis to space definition axis axes = [x if isinstance(x, (VirtualAxis, Axis)) else self.axis(x) for x in axes] # add subspace (knob) space = space_class(axes, policy, **kwargs) self.space_map[name] = space self._entity_map[name] = space[0] return [Axis(space, i) for i in range(space.num_output)] return [Axis(None, i) for i in range(space_class.get_num_output(axes, policy, **kwargs))] def __len__(self): """Returns the number of valid indexes in the space""" if self._shared_filter is None: return self.range_length if self._shared_filter_cache is None: self._make_shared_filter_cache() return self._length def get(self, index): """Get a config entity with detailed parameters from this space Parameters ---------- index: int index in the space Returns ------- config: ConfigEntity config corresponds to the index """ if index < 0 or index >= self.range_length: raise IndexError( "Index out of range: size {}, got index {}".format(self.range_length, index) ) if not self.is_index_valid(index): raise IndexError( "Index does not correspond to the multi-filter condition, got index {}. " "Use is_index_valid to pre-check".format(index) ) entities = OrderedDict() t = index for name, space in self.space_map.items(): entities[name] = space[t % len(space)] t //= len(space) ret = ConfigEntity(index, self.code_hash, entities, self._constraints) return ret def __iter__(self): return self._entity_map.__iter__() def __getitem__(self, name): """get the transform entity(knob) of this entity by name do not use this to get a ConfigEntity of this space (should use ConfigSpace.get instead) Parameters ---------- name: str name of the transform """ return self._entity_map[name] def __repr__(self): res = "ConfigSpace (len={}, range_length={}, space_map=\n".format( len(self), self.range_length ) for i, (name, space) in enumerate(self.space_map.items()): res += " %2d %s: %s\n" % (i, name, space) return res + ")" _ann_to_number = { "none": 0, "vec": 1, "unroll": 2, "blockIdx.x": 3, "blockIdx.y": 4, "blockIdx.z": 5, "threadIdx.x": 6, "threadIdx.y": 7, "threadIdx.z": 8, "vthread": 9, "fuse": 10, } class ConfigEntity(ConfigSpace): """A configuration with detailed parameters Parameters ---------- index: int index of this config in space code_hash: str hash of schedule code entity_map: dict map name to transform entity constraints : list List of constraints """ def __init__(self, index, code_hash, entity_map, constraints): super(ConfigEntity, self).__init__() self.index = index self._collect = False self._entity_map = entity_map self._space_map = None self._constraints = constraints self.code_hash = code_hash def get_flatten_feature(self): """flatten entities to a numerical one-dimensional feature vector Returns ------- fea: np.array one dimensional float32 array """ fea = [] for _, v in self._entity_map.items(): if isinstance(v, SplitEntity): fea.extend(v.size) elif isinstance(v, ReorderEntity): # use a naive way: directly copy the permutation fea.extend(v.perm) elif isinstance(v, AnnotateEntity): # one-hot encoding for ann in v.anns: tmp = [0] * len(_ann_to_number) tmp[_ann_to_number[ann]] = 1 fea.extend(tmp) elif isinstance(v, OtherOptionEntity): fea.append(v.val) return np.array(fea, dtype=np.float32) def get_other_option(self): """ Returns ------- other_option: dict other tunable parameters (tunable parameters defined by `cfg.define_knob`) """ return {x: x.val for x in self._entity_map.values() if isinstance(x, OtherOptionEntity)} def to_json_dict(self): """convert to a json serializable dictionary Return ------ json_dict: dict a json serializable dictionary """ ret = {} ret["index"] = int(self.index) ret["code_hash"] = self.code_hash entity_map = [] for k, v in self._entity_map.items(): if isinstance(v, SplitEntity): entity_map.append((k, "sp", v.size)) elif isinstance(v, ReorderEntity): entity_map.append((k, "re", v.perm)) elif isinstance(v, AnnotateEntity): entity_map.append((k, "an", v.anns)) elif isinstance(v, OtherOptionEntity): entity_map.append((k, "ot", v.val)) else: raise RuntimeError("Invalid entity instance: " + v) ret["entity"] = entity_map return ret @staticmethod def from_json_dict(json_dict): """Build a ConfigEntity from json serializable dictionary Parameters ---------- json_dict: dict Json serializable dictionary. This should be the return value of :any:`to_json_dict`. Returns ------- config: ConfigEntity The corresponding config object """ index = json_dict["index"] code_hash = json_dict["code_hash"] constraints = [] entity_map = OrderedDict() for item in json_dict["entity"]: key, knob_type, knob_args = item if knob_type == "sp": entity = SplitEntity(knob_args) elif knob_type == "re": entity = ReorderEntity(knob_args) elif knob_type == "an": entity = AnnotateEntity(knob_args) elif knob_type == "ot": entity = OtherOptionEntity(knob_args) else: raise RuntimeError("Invalid config knob type: " + knob_type) entity_map[str(key)] = entity return ConfigEntity(index, code_hash, entity_map, constraints) def __repr__(self): return "%s,%s,%d" % (str(self._entity_map)[12:-1], self.code_hash, self.index) class FallbackConfigEntity(ConfigSpace): """The config entity created to support fallback""" def __init__(self): super(FallbackConfigEntity, self).__init__() self.is_fallback = True def fallback_split(self, name, constraints): """Fallback a split knob Parameters ---------- name: str name of the knob constraints: List of int The maximum tile size for every dimension. Value `-1` means no constraint. Examples -------- If you use cfg.define_split('tile_0', 128, num_outputs=3), Then cfg.fallback_split('tile_0', [-1, 8, 4]) will give you cfg['tile_0'].size = [4, 8, 4] If you use cfg.define_split('tile_0', 49, num_outputs=3), Then cfg.fallback_split('tile_0', [-1, 8, 4]) will give you cfg['tile_0'].size = [7, 7, 1] """ space = self.space_map[name] assert isinstance(space, SplitSpace) assert len(constraints) == space.num_output # '-1' means no constraint constraints = [x if x != -1 else 1e10 for x in constraints] entity = self._entity_map[name] now = space.product for i in reversed(range(space.num_output)): factors = get_factors(now) find = len(factors) - 1 for j, f in enumerate(factors): if f > constraints[i]: find = j - 1 break if find >= 0: entity.size[i] = factors[find] now //= factors[find] else: raise RuntimeError("Cannot find feasible fallback split entity for node: " + name) def fallback_with_reference_log(self, ref_log): """A data driven fallback mechanism. We use tuned parameters from TopHub as reference data. For an unseen shape, we find the most similar tuned one from TopHub and mimic its parameters. Note that we are not matching by workload (e.g., input size, kernel size), but instead matching by configuration space. The idea is that if two workloads have similar configuration space, their optimal configurations are also likely to be similar. Parameters ---------- ref_log: List of (autotvm.measure.MeasureInput, autotvm.measure.MeasureResult) The reference log """ knob_names = [x for x in self.space_map.keys() if isinstance(self.space_map[x], SplitSpace)] # find best match config in reference data by matching tiling factors factor_list = [] for knob_name in knob_names: factor_list.append(get_factors(self.space_map[knob_name].product)) best_match_cfg = None best_match_score = 0 for inp, _ in ref_log: match_score = 0 for i, knob_name in enumerate(knob_names): factors = get_factors(int(np.prod(inp.config[knob_name].size))) match_score += float(len(set(factor_list[i]).intersection(factors))) / len( factor_list[i] ) if match_score > best_match_score: best_match_score, best_match_cfg = match_score, inp.config if best_match_cfg is None: return # mimic its tiling strategy for knob_name in knob_names: constraint = list(best_match_cfg[knob_name].size) constraint[0] = -1 self.fallback_split(knob_name, constraint) # copy other knobs for knob_name in self.space_map.keys(): if not isinstance(self.space_map[knob_name], SplitSpace): self._entity_map[knob_name] = best_match_cfg[knob_name] def __setitem__(self, name, entity): """set the entity(knob) of by name Parameters ---------- name: str name of the entity entity: SplitEntity, ReorderEntity, AnnotateEntity, OtherOptionEntity value of the entity """ self._entity_map[name] = entity def __repr__(self): return "%s,%s" % (str(self._entity_map)[12:-1], self.code_hash)
https://github.com/zk-ml/tachikoma
python/tvm/autotvm/task/task.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=unused-variable,not-callable """Definition of task function. Task can be constructed from tuple of func, args, and kwargs. func is a state-less function, or a string that registers the standard task. """ import functools import numpy as np from tvm import runtime from tvm.ir import container from tvm.target import Target from tvm.te import placeholder, tensor from tvm.tir import expr from ..utils import get_const_int, get_const_tuple from .dispatcher import ApplyConfig, DispatchContext from .space import ConfigSpace def _lookup_task(name): task = TASK_TABLE.get(name) if task is None: # Unable to find the given task. This might be because we are # creating a task based on a name that has not been imported. # Rather than raising an exception here, we return a dummy # task which cannot be invoked. task = MissingTask(name) return task def serialize_args(args): """serialize arguments of a topi function to a hashable tuple. Parameters ---------- args: list of hashable or Tensor """ def _encode(x): if isinstance(x, tensor.Tensor): return ("TENSOR", get_const_tuple(x.shape), x.dtype) if isinstance(x, (tuple, list, container.Array)): return tuple([_encode(a) for a in x]) if isinstance(x, (str, int, float, expr.Var, expr.Any)): return x if isinstance(x, (expr.StringImm, expr.IntImm, expr.FloatImm)): return x.value if isinstance(x, runtime.container.String): return str(x) if x is None: return None raise RuntimeError( 'Do not support type "%s" in argument. Consider to use' "primitive types or tvm.tir.Var only" % type(x) ) ret = [] for t in args: ret.append(_encode(t)) return tuple(ret) def deserialize_args(args): """The inverse function of :code:`serialize_args`. Parameters ---------- args: list of hashable or Tensor """ ret = [] for t in args: if isinstance(t, tuple) and t[0] == "TENSOR": ret.append(placeholder(shape=t[1], dtype=t[2])) else: ret.append(t) return ret def args_to_workload(args, task_name=None): """Convert argument list to hashable workload tuple. This function will convert list to tuple, tvm node to python value and flatten te.tensor.Tensor to a tuple Parameters ---------- task_name : str The AutoTVM task name args : list of args The arguments to the function Returns ------- ret: hashable The hashable value """ return (task_name,) + serialize_args(args) if task_name is not None else serialize_args(args) class Task(object): """A Tunable Task Parameters ---------- name: str The name of the task. args: Tuple Positional argument of func """ def __init__(self, name, args): self.name = name self.args = args self.kwargs = {} # currently unused # init null config space self.config_space = None self.func = _lookup_task(name) # auxiliary info, available after `init_space` is called self.flop = None self.target = None self.target_host = None @property def workload(self): return (self.name,) + serialize_args(self.args) def instantiate(self, config): """Instantiate this task function (template) with a config. Returns corresponding schedule. Parameters ---------- config: template.ConfigEntity parameter config for this template Returns ------- sch: tvm.te.schedule.Schedule The tvm schedule arg_bufs: Array of te.tensor.Tensor The input/output buffers """ config.flop = 0 with ApplyConfig(config): sch, arg_bufs = self.func(*self.args, **self.kwargs) if not self.flop: config.flop = config.flop or compute_flop(sch) self.flop = config.flop return sch, arg_bufs def __getstate__(self): # custom pickle implementation is required for # some unpickable local task functions. # So we only pickle the name of the function # and restore the function by name when unpickling it. import cloudpickle # pylint: disable=import-outside-toplevel self.target, self.target_host = Target.canon_target_and_host(self.target, self.target_host) return { "name": self.name, "args": self.args, "kwargs": self.kwargs, "config_space": self.config_space, "flop": self.flop, "target": self.target, "target_host": self.target_host, "func": cloudpickle.dumps(self.func), } def __setstate__(self, state): import cloudpickle # pylint: disable=import-outside-toplevel self.name = state["name"] self.args = state["args"] self.kwargs = state["kwargs"] self.config_space = state["config_space"] self.func = cloudpickle.loads(state["func"]) self.flop = state["flop"] self.target, self.target_host = Target.canon_target_and_host( state["target"], state["target_host"] ) def __repr__(self): return "Task(func_name=%s, args=%s, kwargs=%s, workload=%s)" % ( self.name, self.args, self.kwargs, self.workload, ) TASK_TABLE = {} class TaskTemplate(object): """ Task template is used to creates a tunable AutoTVM task. It can be defined by a pair of compute and schedule function using `_register_task_compute` and `_register_task_schedule`, or by a customized task creation function that is more flexible using `_register_customized_task`. Note that when customized func is registered, compute and schedule function will be ignored """ def __init__(self): self.fcompute = None self.fschedule = None self.fcustomized = None def __call__(self, *args, **kwargs): args = deserialize_args(args) if self.fcustomized is None: return self._default_func(*args, **kwargs) assert callable(self.fcustomized) return self.fcustomized(*args, **kwargs) def _default_func(self, *args, **kwargs): assert callable(self.fcompute) and callable(self.fschedule) out = self.fcompute(*args, **kwargs) arg_bufs = [out] + self._get_inputs(out) s = self.fschedule([out]) return s, arg_bufs @staticmethod def _get_inputs(out): inputs = [] queue = [out] hash_set = set() while queue: t = queue.pop(0) if isinstance(t.op, tensor.PlaceholderOp): inputs.append(t) else: input_tensors = [t for t in t.op.input_tensors if t not in hash_set] queue.extend(input_tensors) hash_set.update(input_tensors) return inputs class MissingTask(TaskTemplate): """ Dummy task template for a task lookup which cannot be resolved. This can occur if the task being requested from _lookup_task() has not been imported in this run. """ def __init__(self, taskname: str): super().__init__() self._taskname = taskname def __call__(self, *args, **kwargs): raise RuntimeError( f"Attempting to invoke a missing task {self._taskname}." "It is possible that the function is registered in a " "Python module that is not imported in this run, or the log is out-of-date." ) def _register_task_compute(name, func=None): """Register compute function to autotvm task Parameters ---------- name: str The task name func: None or callable If it is None, return a decorator. If is callable, decorate this function. Returns ------- decorator: callable A decorator """ def _do_reg(f): if name not in TASK_TABLE: TASK_TABLE[name] = TaskTemplate() tmpl = TASK_TABLE[name] if tmpl.fcompute is not None: raise ValueError("Compute is already registered in autoTVM task %s" % name) tmpl.fcompute = f return f if func: return _do_reg(func) return _do_reg def _register_task_schedule(name, func=None): """Register schedule function to autotvm task Parameters ---------- name: str The task name func: None or callable If it is None, return a decorator. If is callable, decorate this function. Returns ------- decorator: callable A decorator """ def _do_reg(f): if name not in TASK_TABLE: TASK_TABLE[name] = TaskTemplate() tmpl = TASK_TABLE[name] if tmpl.fschedule is not None: raise ValueError("Schedule is already registered in autoTVM task %s" % name) tmpl.fschedule = f return f if func: return _do_reg(func) return _do_reg def _register_customized_task(name, func=None): """Register a customized function to AutoTVM task. Parameters ---------- name: str The task name func: None or callable If it is None, return a decorator. If is callable, decorate this function. Returns ------- decorator: callable A decorator """ def _do_reg(f): if name not in TASK_TABLE: TASK_TABLE[name] = TaskTemplate() tmpl = TASK_TABLE[name] if tmpl.fcustomized is not None: raise ValueError("Customized func is already registered in autoTVM task %s" % name) tmpl.fcustomized = f return f if func: return _do_reg(func) return _do_reg def template(task_name, func=None): """Decorate a function as a tunable schedule template. Parameters ---------- task_name: str The task name func: None or callable A callable template function. If it is None, return a decorator. If is callable, decorate this function. Returns ------- func: callable The decorated function Examples -------- The following code is a tunable template for a blocked matrix multiplication .. code-block:: python @autotvm.template("matmul") def matmul(N, L, M, dtype): A = te.placeholder((N, L), name='A', dtype=dtype) B = te.placeholder((L, M), name='B', dtype=dtype) k = te.reduce_axis((0, L), name='k') C = te.compute((N, M), lambda i, j: te.sum(A[i, k] * B[k, j], axis=k), name='C') s = te.create_schedule(C.op) # schedule y, x = s[C].op.axis k = s[C].op.reduce_axis[0] ##### define space begin ##### cfg = autotvm.get_config() cfg.define_split("tile_y", y, num_outputs=2) cfg.define_split("tile_x", x, num_outputs=2) ##### define space end ##### # schedule according to config yo, yi = cfg["tile_y"].apply(s, C, y) xo, xi = cfg["tile_x"].apply(s, C, x) s[C].reorder(yo, xo, k, yi, xi) return s, [A, B, C] """ def _decorate(f): @functools.wraps(f) def wrapper(*args, **kwargs): assert not kwargs, "Do not support kwargs in template function call" workload = args_to_workload(args, task_name) tgt = Target.current() cfg = DispatchContext.current.query(tgt, workload) with ApplyConfig(cfg): return f(*args, **kwargs) _register_customized_task(task_name, f) return wrapper if func: return _decorate(func) return _decorate def create(task_name, args, target, target_host=None): """Create a tuning task and initialize its search space Parameters ---------- task_name : str The AutoTVM task name args : List Positional arguments target : Target The compilation target target_host: Target, optional The compilation target for host side Returns ------- tsk: Task a task object """ args = serialize_args(args) ret = Task(task_name, args) target, target_host = Target.canon_target_and_host(target, target_host) # init config space ret.config_space = ConfigSpace() ctx = ApplyConfig(ret.config_space) with ctx: with target: sch, _ = ret.func(*args) ret.config_space.code_hash = getattr(sch, "code_hash", None) ret.flop = ret.config_space.flop or compute_flop(sch) ret.target = target ret.target_host = target_host return ret def get_config(): """Get current config object Returns ------- cfg: ConfigSpace or ConfigEntity The current config """ tgt = Target.current(allow_none=True) return DispatchContext.current.query(tgt, None) class FlopCalculationError(RuntimeError): """Error happens when estimating FLOP for a compute op""" def compute_flop(sch): """Calculate number of FLOP (floating number operations) of the compute ops in a schedule Parameters ---------- sch: tvm.te.schedule.Schedule schedule Returns ------- flop: int number of FLOP in this schedule """ def _prod_length(axes): """compute product of the lengths of a list of axes""" try: num_iter = int(np.prod([get_const_int(axis.dom.extent) for axis in axes])) except ValueError: raise FlopCalculationError("The length of axis is not constant. ") return num_iter def _count_flop(exp): """compute flop for a single expression""" if isinstance(exp, expr.Reduce): num_iter = _prod_length(exp.axis) combiner = exp.combiner.result source = exp.source if len(combiner) != 1: raise FlopCalculationError("Found multiple output in the combiner of reduce op") if len(source) != 1: raise FlopCalculationError("Found multiple output in the source of reduce op") return num_iter * (_count_flop(combiner[0]) + _count_flop(source[0])) if isinstance(exp, (expr.FloatImm, expr.IntImm)): return 0 if isinstance(exp, expr.Cast): return _count_flop(exp.value) if isinstance(exp, expr.Var): return 0 if isinstance( exp, ( expr.Add, expr.Sub, expr.Mul, expr.Div, expr.Mod, expr.FloorDiv, expr.FloorMod, expr.Max, expr.Min, expr.EQ, expr.NE, expr.LT, expr.LE, expr.GT, expr.GE, expr.And, expr.Or, expr.Not, ), ): base = 1 if isinstance(exp, expr.Not): # unary return base + _count_flop(exp.a) return base + _count_flop(exp.a) + _count_flop(exp.b) if isinstance(exp, expr.Select): return _count_flop(exp.condition) + max( _count_flop(exp.true_value), _count_flop(exp.false_value) ) if isinstance(exp, expr.ProducerLoad): # Ignore flops from indexing expressions. return 0 if isinstance(exp, expr.Call): return sum([_count_flop(x) for x in exp.args]) raise FlopCalculationError("Found unsupported operator in the compute expr") def traverse(ops): """accumulate flops""" ret = 0 for op in ops: if isinstance(op, tensor.ComputeOp): num_element = _prod_length(op.axis) body = op.body if len(body) != 1: raise FlopCalculationError("Found multiple output in the compute") exp = body[0] ret += num_element * _count_flop(exp) ret += traverse([t.op for t in op.input_tensors]) elif isinstance(op, tensor.PlaceholderOp): pass else: raise FlopCalculationError( f"{op.name} is not supported by autotvm. " "Only support te.compute currently. " "Other ops like tvm.te.scan/te.extern is not supported" ) return ret try: ret = traverse(sch.outputs) except FlopCalculationError as exc: raise RuntimeError( "FLOP estimator fails for this operator. Error msg: " + str(exc) + ". Please use `cfg.add_flop` to manually set " "FLOP for this operator" ) if ret == 0: raise RuntimeError( "Cannot find float number operation in this operator. " "Please use `cfg.add_flop` to manually set " "FLOP for this operator" ) return ret
https://github.com/zk-ml/tachikoma
python/tvm/autotvm/task/topi_integration.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=unused-variable,invalid-name,unused-argument """ Decorators for registering tunable templates to TOPI. These decorators can make your simple implementation be able to use different configurations for different workloads. Here we directly use all arguments to the TOPI call as "workload", so make sure all the arguments (except tvm.te.Tensor) in you calls are hashable. For tvm.te.Tensor, we will serialize it to a hashable tuple. See tvm/topi/python/topi/arm_cpu/depthwise_conv2d.py for example usage. """ import functools import tvm.te._ffi_api from tvm.target import Target from tvm.te import tensor from .task import ( args_to_workload, serialize_args, DispatchContext, _register_task_compute, _register_task_schedule, ) # Task extractor for relay program class TaskExtractEnv: """Global environment for extracting tuning tasks from graph""" current = None registered = None def __init__(self, allow_duplicate=False): self.allow_duplicate = allow_duplicate self.task_collection = [] self.wanted_relay_ops = None self.modified_funcs = [] self.tracing = False def __enter__(self): self.task_collection = [] self.tracing = True return self def __exit__(self, exc_type, exc_val, exc_tb): self.tracing = False def reset(self, wanted_relay_ops=None): """Reset task collections Parameters ---------- wanted_relay_ops: List of tvm.ir.Op The relay ops to be extracted """ self.task_collection = [] self.wanted_relay_ops = wanted_relay_ops def add_task(self, task_name, args): """Add AutoTVM task Parameters ---------- task_name: str AutoTVM task name. args: tuple Arguments to the TOPI function. """ key = (task_name, serialize_args(args)) if self.allow_duplicate or key not in self.task_collection: self.task_collection.append(key) def get_tasks(self): """Get collected tasks Returns ------- tasks: List of tuple(name, args) A list of tasks extracted from the graph """ return self.task_collection @staticmethod def get(allow_duplicate=False): """Get the single instance of TaskExtractEnv Parameters ---------- allow_duplicate : boolean Whether to fetch all workloads in the network, even though some of them are the same. This is useful for graph tuning. Returns ------- env: TaskExtractEnv The single instance of TaskExtractEnv """ if not TaskExtractEnv.current: TaskExtractEnv.current = TaskExtractEnv(allow_duplicate) else: TaskExtractEnv.current.allow_duplicate = allow_duplicate return TaskExtractEnv.current def register_topi_compute(task_name, func=None): """Register a tunable template for a topi compute function. The registration will wrap this topi compute to take `cfg` as the first argument, followed by the original argument list. It uses all its argument as workload and stores this "workload" to its final ComputeOp, which can be used to reconstruct "workload" in the following topi_schedule call. Parameters ---------- task_name: str The AutoTVM task name func: None or callable If it is None, return a decorator. If is callable, decorate this function. Returns ------- decorator: callable A decorator Examples -------- See tvm/topi/python/topi/arm_cpu/depthwise_conv2d.py for example usage. """ def _decorate(topi_compute): @functools.wraps(topi_compute) @_register_task_compute(task_name) def wrapper(*args, **kwargs): """wrapper function for topi compute""" assert not kwargs, "Do not support kwargs in template function call" task_env = TaskExtractEnv.current if task_env is not None and task_env.tracing: task_env.add_task(task_name, args) workload = args_to_workload(args, task_name) tgt = Target.current() cfg = DispatchContext.current.query(tgt, workload) node = topi_compute(cfg, *args) # attach workload to return op op = node.op attrs = {} for k, v in node.op.attrs.items(): attrs[k] = v attrs["workload"] = workload if isinstance(op, tensor.ComputeOp): op = tvm.te._ffi_api.ComputeOp(op.name, op.tag, attrs, op.axis, op.body) elif isinstance(op, tensor.ExternOp): op = tvm.te._ffi_api.ExternOp( op.name, op.tag, attrs, op.inputs, op.input_placeholders, op.output_placeholders, op.body, ) else: raise RuntimeError("Unsupported op type: " + str(type(op))) if isinstance(node, tensor.Tensor): return op.output(0) return [op.output(i) for i in range(len(node))] return wrapper if func: return _decorate(func) return _decorate def register_topi_schedule(task_name, func=None): """Register a tunable template for a topi schedule function. The registration will wrap this topi schedule to take `cfg` as the first argument, followed by the original argument list. Note that this function will try to find "workload" from all the ComputeOp in the input. You can attach "workload" to your compute op by using :any:`register_topi_compute`. The task name has to be the same as that of the corresponding topi compute function. Parameters ---------- task_name: str The AutoTVM task name func: None or callable If it is None, return a decorator. If is callable, decorate this function. Returns ------- decorator: callable A decorator Examples -------- See tvm/topi/python/topi/arm_cpu/depthwise_conv2d.py for example usage. """ def _decorate(topi_schedule): @functools.wraps(topi_schedule) @_register_task_schedule(task_name) def wrapper(outs, *args, **kwargs): """wrapper function for topi schedule""" workload = get_workload(outs, task_name) if workload is None: raise RuntimeError( f"Cannot find TOPI workload {task_name}. " "Is it registered with `register_topi_compute`?" ) tgt = Target.current() cfg = DispatchContext.current.query(tgt, workload) return topi_schedule(cfg, outs, *args, **kwargs) return wrapper if func: return _decorate(func) return _decorate def get_workload(outs, task_name=None): """Retrieve the workload from outputs""" def traverse(tensors): """traverse all ops to find attached workload""" for t in tensors: op = t.op wkl = traverse(op.input_tensors) if wkl is not None: return wkl if "workload" in op.attrs: ret = args_to_workload(op.attrs["workload"]) if task_name is None or ret[0] == task_name: return ret return None outs = [outs] if isinstance(outs, tensor.Tensor) else outs return traverse(outs)
https://github.com/zk-ml/tachikoma
python/tvm/autotvm/testing/__init__.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Testing utilities for autotvm"""
https://github.com/zk-ml/tachikoma
python/tvm/autotvm/testing/tune_relay.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=missing-docstring import argparse import json import os import warnings from distutils.util import strtobool import tvm from tvm import autotvm from tvm import meta_schedule as ms from tvm import relay from tvm.autotvm.graph_tuner import DPTuner from tvm.autotvm.tuner import XGBTuner from tvm.meta_schedule.testing.custom_builder_runner import run_module_via_rpc from tvm.meta_schedule.testing.relay_workload import get_network from tvm.meta_schedule.testing.tune_utils import create_timer, generate_input_data from tvm.support import describe def _parse_args(): args = argparse.ArgumentParser() args.add_argument( "--workload", type=str, required=True, help="The name of the workload to tune. Supported models: " "https://github.com/apache/tvm/blob/main/python/tvm/meta_schedule/testing/relay_workload.py#L303-L322", # pylint: disable=line-too-long ) args.add_argument( "--input-shape", type=str, required=True, help="The input shape of the workload. Example: '[1, 3, 224, 224]'", ) args.add_argument( "--target", type=str, required=True, help="The target device to tune. " "Example: 'aws/cpu/c5.9xlarge', 'nvidia/nvidia-v100', 'nvidia/geforce-rtx-3090'", ) args.add_argument( "--num-trials", type=int, required=True, help="The number of trials per kernel. Example: 800", ) args.add_argument( "--rpc-host", type=str, required=True, help="The host address of the RPC tracker. Example: 192.168.6.66", ) args.add_argument( "--rpc-port", type=int, required=True, help="The port of the RPC tracker. Example: 4445", ) args.add_argument( "--rpc-key", type=str, required=True, help="The key of the RPC tracker. Example: '3090ti'", ) args.add_argument( "--work-dir", type=str, required=True, help="The working directory to store the tuning logs. Example: '/tmp/tune_relay'", ) args.add_argument( "--layout", type=str, default=None, help="The layout of the workload. Example: 'NCHW', 'NHWC'", ) args.add_argument( "--cache-dir", type=str, default=None, ) args.add_argument( "--number", type=int, default=3, ) args.add_argument( "--repeat", type=int, default=1, ) args.add_argument( "--min-repeat-ms", type=int, default=100, ) args.add_argument( "--cpu-flush", type=lambda x: bool(strtobool(x)), help="example: True / False", required=True, ) args.add_argument( "--graph-tuner", type=lambda x: bool(strtobool(x)), help="example: True / False", required=True, ) args.add_argument( "--backend", type=str, choices=["graph", "vm"], help="example: graph / vm", required=True, ) parsed = args.parse_args() parsed.target = tvm.target.Target(parsed.target) parsed.input_shape = json.loads(parsed.input_shape) parsed.rpc_config = ms.runner.RPCConfig( tracker_host=parsed.rpc_host, tracker_port=parsed.rpc_port, tracker_key=parsed.rpc_key, session_timeout_sec=600, ) return parsed ARGS = _parse_args() def main(): if ARGS.target.kind.name != "llvm" and ARGS.graph_tuner: raise ValueError("GraphTuner only supports llvm target") if ARGS.target.kind.name != "llvm" and ARGS.cpu_flush: raise ValueError("cpu_flush only supports llvm target") if ARGS.target.kind.name == "llvm" and not ARGS.cpu_flush: warnings.warn("cpu_flush is not enabled for llvm target") log_file = os.path.join(ARGS.work_dir, f"{ARGS.workload}.json") graph_opt_sch_file = os.path.join(ARGS.work_dir, f"{ARGS.workload}_graph_opt.log") measure_option = autotvm.measure_option( builder=autotvm.LocalBuilder(), runner=autotvm.RPCRunner( key=ARGS.rpc_key, host=ARGS.rpc_host, port=ARGS.rpc_port, number=ARGS.number, repeat=ARGS.repeat, min_repeat_ms=ARGS.min_repeat_ms, enable_cpu_cache_flush=ARGS.cpu_flush, ), ) describe() print(f"Workload: {ARGS.workload}") mod, params, (input_name, input_shape, input_dtype) = get_network( ARGS.workload, ARGS.input_shape, layout=ARGS.layout, cache_dir=ARGS.cache_dir, ) input_info = [ { "name": input_name, "shape": input_shape, "dtype": input_dtype, }, ] input_data = { item["name"]: generate_input_data(item["shape"], item["dtype"]) for item in input_info } for item in input_info: print(f" input_name : {item['name']}") print(f" input_shape: {item['shape']}") print(f" input_dtype: {item['dtype']}") with ms.Profiler() as profiler: with ms.Profiler.timeit("TaskExtraction"): # extract workloads from relay program tasks = autotvm.task.extract_from_program( mod["main"], target=ARGS.target, params=params, ops=( relay.op.get("nn.conv2d"), relay.op.get("nn.conv3d"), relay.op.get("nn.conv2d_transpose"), relay.op.get("nn.dense"), relay.op.get("nn.batch_matmul"), ), ) for i, task in enumerate(tasks): print(f"Task {i} {task.name}: {task}") with ms.Profiler.timeit("Tuning"): if ARGS.num_trials > 0: for i, task in enumerate(tasks): prefix = "[Task %2d/%2d] " % (i + 1, len(tasks)) tuner_obj = XGBTuner(task, loss_type="rank") n_trial = min(len(task.config_space), ARGS.num_trials) tuner_obj.tune( n_trial=n_trial, early_stopping=800, measure_option=measure_option, callbacks=[ autotvm.callback.progress_bar(n_trial, prefix=prefix), autotvm.callback.log_to_file(log_file), ], ) if ARGS.graph_tuner: executor = DPTuner( graph=mod["main"], input_shapes={input_name: input_shape}, records=log_file, target_ops=[ relay.op.get("nn.conv2d"), ], target=ARGS.target, ) executor.benchmark_layout_transform(min_exec_num=1000) executor.run() executor.write_opt_sch2record_file(graph_opt_sch_file) relay_build = {"graph": relay.build, "vm": relay.vm.compile}[ARGS.backend] with ms.Profiler.timeit("PostTuningCompilation"): if ARGS.graph_tuner: ctx = autotvm.apply_graph_best(graph_opt_sch_file) else: ctx = autotvm.apply_history_best(log_file) with ctx: print("compile...") with tvm.transform.PassContext(opt_level=3): lib = relay_build(mod, target=ARGS.target, params=params) print("Tuning Time:") print(profiler.table()) run_module_via_rpc( rpc_config=ARGS.rpc_config, lib=lib, dev_type=ARGS.target.kind.name, args=input_data, continuation=create_timer(ARGS.backend), backend=ARGS.backend, ) if __name__ == "__main__": main()
https://github.com/zk-ml/tachikoma
python/tvm/autotvm/tophub.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ TopHub: Tensor Operator Hub To get the best performance, we typically need auto-tuning for the specific devices. TVM releases pre-tuned parameters in TopHub for some common networks and hardware targets. TVM will download these parameters for you when you call relay.build. """ # pylint: disable=invalid-name import logging from os import getenv import sys from pathlib import Path from tvm.ir.container import Array from .task import ApplyHistoryBest from ..target import Target from ..contrib.download import download from .record import load_from_file from .utils import EmptyContext # environment variable to read TopHub location AUTOTVM_TOPHUB_LOC_VAR = "TOPHUB_LOCATION" # default location of TopHub AUTOTVM_TOPHUB_DEFAULT_LOC = "https://raw.githubusercontent.com/tlc-pack/tophub/main/tophub" # value of AUTOTVM_TOPHUB_LOC_VAR to specify to not read from TopHub AUTOTVM_TOPHUB_NONE_LOC = "NONE" # root path to store TopHub files AUTOTVM_TOPHUB_ROOT_PATH = Path(Path("~").expanduser(), ".tvm", "tophub") # the version of each package PACKAGE_VERSION = { "arm_cpu": "v0.08", "llvm": "v0.04", "cuda": "v0.10", "rocm": "v0.05", "opencl": "v0.04", "mali": "v0.06", "intel_graphics": "v0.02", "vta": "v0.10", "amd_apu": "v0.01", } logger = logging.getLogger("autotvm") def _alias(name): """convert alias for some packages""" table = { "vtacpu": "vta", "webgpu": "opencl", "vulkan": "opencl", "nvptx": "cuda", "amd_apu": "amd_apu", } return table.get(name, name) def _get_tophub_location(): location = getenv(AUTOTVM_TOPHUB_LOC_VAR, None) return AUTOTVM_TOPHUB_DEFAULT_LOC if location is None else location def context(target, extra_files=None): """Return the dispatch context with pre-tuned parameters. This function will load the corresponding *.log files in AUTOTVM_TOPHUB_ROOT_PATH. If cannot find them, it will download them from TopHub github repo. Users can also add their own files in argument `extra_files`. Parameters ---------- target: Target or List of Target The compilation targets extra_files: list of str, optional Extra log files to load """ tophub_location = _get_tophub_location() if tophub_location == AUTOTVM_TOPHUB_NONE_LOC: return EmptyContext() best_context = ApplyHistoryBest([]) targets = target if isinstance(target, (Array, list, tuple)) else [target] for tgt in targets: if isinstance(tgt, str): tgt = Target(tgt) possible_names = [] device = tgt.attrs.get("device", "") if device != "": possible_names.append(_alias(device)) possible_names.append(tgt.kind.name) all_packages = list(PACKAGE_VERSION.keys()) for name in possible_names: name = _alias(name) if name in all_packages: if not check_backend(tophub_location, name): continue filename = "%s_%s.log" % (name, PACKAGE_VERSION[name]) best_context.load(Path(AUTOTVM_TOPHUB_ROOT_PATH, filename)) break # only load one file to avoid some fallback template mismatch problem if extra_files: for filename in extra_files: best_context.load(filename) return best_context def check_backend(tophub_location, backend): """Check whether have pre-tuned parameters of the certain target. If not, will download it. Parameters ---------- backend: str The name of backend. Returns ---------- success: bool Whether the check is successful. """ backend = _alias(backend) assert backend in PACKAGE_VERSION, 'Cannot find backend "%s" in TopHub' % backend version = PACKAGE_VERSION[backend] package_name = "%s_%s.log" % (backend, version) if Path(AUTOTVM_TOPHUB_ROOT_PATH, package_name).is_file(): return True # pylint: disable=import-outside-toplevel if sys.version_info >= (3,): import urllib.request as urllib2 else: import urllib2 try: download_package(tophub_location, package_name) return True except urllib2.URLError as e: logging.warning("Failed to download tophub package for %s: %s", backend, e) return False def download_package(tophub_location, package_name): """Download pre-tuned parameters of operators for a backend Parameters ---------- tophub_location: str The location to download TopHub parameters from package_name: str The name of package """ rootpath = Path(AUTOTVM_TOPHUB_ROOT_PATH) rootpath.mkdir(parents=True, exist_ok=True) download_url = "{0}/{1}".format(tophub_location, package_name) logger.info("Download pre-tuned parameters package from %s", download_url) download(download_url, Path(rootpath, package_name), overwrite=True) # global cache for load_reference_log REFERENCE_LOG_CACHE = {} def load_reference_log(backend, model, workload_name): """Load reference log from TopHub to support fallback in template. Template will use these reference logs to choose fallback config. Parameters ---------- backend: str The backend name model: str The name of the device model workload_name: str The name of the workload. (The first item in the workload tuple) """ backend = _alias(backend) if backend not in PACKAGE_VERSION: return [] version = PACKAGE_VERSION[backend] package_name = "%s_%s.log" % (backend, version) filename = Path(AUTOTVM_TOPHUB_ROOT_PATH, package_name) global REFERENCE_LOG_CACHE key = (backend, model, workload_name) if key not in REFERENCE_LOG_CACHE: tmp = [] # If TOPHUB_LOCATION is not AUTOTVM_TOPHUB_NONE_LOC, # Download the config file from tophub if not exists. if not Path(filename).exists(): tophub_location = _get_tophub_location() if tophub_location != AUTOTVM_TOPHUB_NONE_LOC: download_package(tophub_location, package_name) if Path(filename).is_file(): # in case download failed find = False inp = None counts = {} for inp, res in load_from_file(filename): counts[inp.target.model] = counts.get(inp.target.model, 0) + 1 if model == inp.target.model: find = True break # if device model is not find, use the device model with the most tuned workloads if not find and counts: model = max(counts.items(), key=lambda k: k[1])[0] for inp, res in load_from_file(filename): if model == inp.target.model and inp.task.workload[0] == workload_name: tmp.append((inp, res)) REFERENCE_LOG_CACHE[key] = tmp return REFERENCE_LOG_CACHE[key]
https://github.com/zk-ml/tachikoma
python/tvm/autotvm/tuner/__init__.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ A tuner takes a task as input. It proposes some promising :any:`ConfigEntity` in the :any:`ConfigSpace` and measure them on the real hardware. Then it proposed the next batch of :any:`ConfigEntity` according to the measure results. This tuning loop is repeated. """ from . import callback from .tuner import Tuner from .index_based_tuner import GridSearchTuner, RandomTuner from .ga_tuner import GATuner from .xgboost_tuner import XGBTuner
https://github.com/zk-ml/tachikoma
python/tvm/autotvm/tuner/callback.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=consider-using-enumerate,invalid-name """Namespace of callback utilities of AutoTVM""" import sys import time import logging import numpy as np from .. import record from ..utils import format_si_prefix logger = logging.getLogger("autotvm") def log_to_file(file_out, protocol="json"): """Log the tuning records into file. The rows of the log are stored in the format of autotvm.record.encode. Parameters ---------- file_out : File or str The file to log to. protocol: str, optional The log protocol. Can be 'json' or 'pickle' Returns ------- callback : callable Callback function to do the logging. """ def _callback(_, inputs, results): """Callback implementation""" if isinstance(file_out, str): with open(file_out, "a") as f: for inp, result in zip(inputs, results): f.write(record.encode(inp, result, protocol) + "\n") else: for inp, result in zip(inputs, results): file_out.write(record.encode(inp, result, protocol) + "\n") # pylint: disable=import-outside-toplevel from pathlib import Path if isinstance(file_out, Path): file_out = str(file_out) return _callback def log_to_database(db): """Save the tuning records to a database object. Parameters ---------- db: Database The database """ def _callback(_, inputs, results): """Callback implementation""" for inp, result in zip(inputs, results): db.save(inp, result) return _callback class Monitor(object): """A monitor to collect statistic during tuning""" def __init__(self): self.scores = [] self.timestamps = [] def __call__(self, tuner, inputs, results): for inp, res in zip(inputs, results): if res.error_no == 0: flops = inp.task.flop / np.mean(res.costs) self.scores.append(flops) else: self.scores.append(0) self.timestamps.append(res.timestamp) def reset(self): self.scores = [] self.timestamps = [] def trial_scores(self): """get scores (currently is flops) of all trials""" return np.array(self.scores) def trial_timestamps(self): """get wall clock time stamp of all trials""" return np.array(self.timestamps) def progress_bar(total, prefix="", si_prefix="G"): """Display progress bar for tuning Parameters ---------- total: int The total number of trials prefix: str The prefix of output message si_prefix: str SI prefix for flops """ class _Context(object): """Context to store local variables""" def __init__(self): self.best_flops = 0 self.cur_flops = 0 self.ct = 0 self.total = total def __del__(self): if logger.level < logging.DEBUG: # only print progress bar in non-debug mode sys.stdout.write(" Done.\n") ctx = _Context() tic = time.time() # Validate si_prefix argument format_si_prefix(0, si_prefix) if logger.level < logging.DEBUG: # only print progress bar in non-debug mode sys.stdout.write( "\r%s Current/Best: %7.2f/%7.2f %sFLOPS | Progress: (%d/%d) " "| %.2f s" % (prefix, 0, 0, si_prefix, 0, total, time.time() - tic) ) sys.stdout.flush() def _callback(tuner, inputs, results): ctx.ct += len(inputs) flops = 0 for inp, res in zip(inputs, results): if res.error_no == 0: flops = inp.task.flop / np.mean(res.costs) if not logger.isEnabledFor(logging.DEBUG): # only print progress bar in non-debug mode ctx.cur_flops = flops ctx.best_flops = tuner.best_flops sys.stdout.write( "\r%s Current/Best: %7.2f/%7.2f %sFLOPS | Progress: (%d/%d) " "| %.2f s" % ( prefix, format_si_prefix(ctx.cur_flops, si_prefix), format_si_prefix(ctx.best_flops, si_prefix), si_prefix, ctx.ct, ctx.total, time.time() - tic, ) ) sys.stdout.flush() return _callback
https://github.com/zk-ml/tachikoma
python/tvm/autotvm/tuner/ga_tuner.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=consider-using-enumerate,invalid-name,abstract-method """Tuner with genetic algorithm""" import numpy as np from .tuner import Tuner class GATuner(Tuner): """Tuner with genetic algorithm. This tuner does not have a cost model so it always run measurement on real machines. This tuner expands the :code:`ConfigEntity` as gene. Parameters ---------- pop_size: int number of genes in one generation elite_num: int number of elite to keep mutation_prob: float probability of mutation of a knob in a gene """ def __init__(self, task, pop_size=100, elite_num=3, mutation_prob=0.1): super(GATuner, self).__init__(task) # algorithm configurations self.pop_size = pop_size self.elite_num = elite_num self.mutation_prob = mutation_prob assert elite_num <= pop_size, "The number of elites must be less than population size" # random initialization self.pop_size = min(self.pop_size, len(self.space)) self.elite_num = min(self.pop_size, self.elite_num) self.visited = set(self.space.sample_ints(self.pop_size)) # current generation self.genes = [self.space.point2knob(idx) for idx in self.visited] self.scores = [] self.elites = [] self.elite_scores = [] self.trial_pt = 0 def next_batch(self, batch_size): ret = [] while len(ret) < batch_size and self.has_next(): gene = self.genes[self.trial_pt % self.pop_size] self.trial_pt += 1 ret.append(self.space.get(self.space.knob2point(gene))) return ret def update(self, inputs, results): for inp, res in zip(inputs, results): if res.error_no == 0: y = inp.task.flop / np.mean(res.costs) self.scores.append(y) else: self.scores.append(0.0) if len(self.scores) >= len(self.genes) and len(self.visited) < len(self.space): next_genes = [] # There is no reason to crossover or mutate since the size of the unvisited # is no larger than the size of the population. if len(self.space) - len(self.visited) <= self.pop_size: for idx in range(self.space.range_length): if self.space.is_index_valid(idx) and idx not in self.visited: next_genes.append(self.space.point2knob(idx)) self.visited.add(idx) else: genes = self.genes + self.elites scores = np.array(self.scores[: len(self.genes)] + self.elite_scores) # reserve elite self.elites, self.elite_scores = [], [] elite_indexes = np.argpartition(scores, -self.elite_num)[-self.elite_num :] for ind in elite_indexes: self.elites.append(genes[ind]) self.elite_scores.append(scores[ind]) indices = np.arange(len(genes)) scores += 1e-8 scores /= np.max(scores) probs = scores / np.sum(scores) while len(next_genes) < self.pop_size: # cross over p1, p2 = np.random.choice(indices, size=2, replace=False, p=probs) p1, p2 = genes[p1], genes[p2] point = np.random.randint(len(self.space.dims)) tmp_gene = p1[:point] + p2[point:] # mutation for j, dim in enumerate(self.space.dims): if np.random.random() < self.mutation_prob: tmp_gene[j] = np.random.randint(dim) if self.space.is_index_valid(self.space.knob2point(tmp_gene)): next_genes.append(tmp_gene) self.visited.add(self.space.knob2point(tmp_gene)) self.genes = next_genes self.trial_pt = 0 self.scores = [] def has_next(self): return len(self.visited) - (len(self.genes) - self.trial_pt) < len(self.space) def load_history(self, data_set, min_seed_records=500): pass
https://github.com/zk-ml/tachikoma
python/tvm/autotvm/tuner/index_based_tuner.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=abstract-method """Grid search tuner and random tuner""" from .tuner import Tuner class IndexBaseTuner(Tuner): """Base class for index based tuner This type of tuner determine the next batch of configs based on config indices. Parameters ---------- task: autotvm.task.Task The tuning task range_idx: Optional[Tuple[int, int]] A tuple of index range that this tuner can select from [begin_idx, end_idx] """ def __init__(self, task, range_idx=None): super(IndexBaseTuner, self).__init__(task) assert range_idx is None or isinstance( range_idx, tuple ), "range_idx must be None or (int, int)" self.visited = [] self.begin_idx, self.end_idx = range_idx or (0, self.space.range_length - 1) assert self.begin_idx >= 0, "Start index must be positive" self.end_idx += 1 # Further end_idx is exclusive assert ( self.end_idx <= self.space.range_length ), "Finish index must be less the space range length " self.range_length = self.end_idx - self.begin_idx assert self.range_length > 0, "Index range must be positive" self.visited_max = self.space.subrange_length(self.begin_idx, self.end_idx) def has_next(self): return len(self.visited) < self.visited_max def load_history(self, data_set, min_seed_records=500): pass class GridSearchTuner(IndexBaseTuner): """Enumerate the search space in a grid search order""" def __init__(self, task, range_idx=None): super(GridSearchTuner, self).__init__(task, range_idx) self.index = self.begin_idx if not self.space.is_index_valid(self.index): self.index = self.space.get_next_index( self.index, start=self.begin_idx, end=self.end_idx ) def next_batch(self, batch_size): ret = [] while len(ret) < batch_size and self.has_next(): self.visited.append(self.index) ret.append(self.space.get(self.index)) self.index = self.space.get_next_index( self.index, start=self.begin_idx, end=self.end_idx ) return ret class RandomTuner(IndexBaseTuner): """Enumerate the search space in a random order Parameters ---------- task: autotvm.task.Task Tuning Task range_idx: Optional[Tuple[int, int]] A tuple of index range to random """ def next_batch(self, batch_size): ret = [] while len(ret) < batch_size and self.has_next(): index = self.space.get_rand_index(self.begin_idx, self.end_idx, to_exclude=self.visited) self.visited.append(index) ret.append(self.space.get(index)) return ret
https://github.com/zk-ml/tachikoma
python/tvm/autotvm/tuner/metric.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name """Metrics for evaluating tuning process""" import numpy as np from ..utils import get_rank def max_curve(trial_scores): """f(n) = max([s[i] fo i < n]) Parameters ---------- trial_scores: Array of float the score of i th trial Returns ------- curve: Array of float function values """ ret = np.empty(len(trial_scores)) keep = -1e9 for i, score in enumerate(trial_scores): keep = max(keep, score) ret[i] = keep return ret def mean_curve(trial_scores): """f(n) = mean([s[i] fo i < n]) Parameters ---------- trial_scores: Array of float the score of i th trial Returns ------- curve: Array of float function values """ ret = np.empty(len(trial_scores)) keep = 0 for i, score in enumerate(trial_scores): keep += score ret[i] = keep / (i + 1) return ret def recall_curve(trial_ranks, top=None): """ if top is None, f(n) = sum([I(rank[i] < n) for i < n]) / n if top is K, f(n) = sum([I(rank[i] < K) for i < n]) / K Parameters ---------- trial_ranks: Array of int the rank of i th trial in labels top: int or None top-n recall Returns ------- curve: Array of float function values """ if not isinstance(trial_ranks, np.ndarray): trial_ranks = np.array(trial_ranks) ret = np.zeros(len(trial_ranks)) if top is None: for i in range(len(trial_ranks)): ret[i] = np.sum(trial_ranks[:i] <= i) / (i + 1) else: for i in range(len(trial_ranks)): ret[i] = 1.0 * np.sum(trial_ranks[:i] < top) / top return ret def cover_curve(trial_ranks): """ f(n) = max k s.t. {1,2,...,k} is a subset of {ranks[i] for i < n} Parameters ---------- trial_ranks: Array of int the rank of i th trial in labels Returns ------- curve: Array of float function values """ ret = np.empty(len(trial_ranks)) keep = -1 cover = set() for i, rank in enumerate(trial_ranks): cover.add(rank) while keep + 1 in cover: keep += 1 ret[i] = keep + 1 return ret / len(trial_ranks) def average_recall(preds, labels, N): """evaluate average recall-n for predictions and labels""" trials = np.argsort(preds)[::-1] ranks = get_rank(labels[trials]) curve = recall_curve(ranks) return np.sum(curve[:N]) / N
https://github.com/zk-ml/tachikoma
python/tvm/autotvm/tuner/model_based_tuner.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=no-else-return,invalid-name,consider-using-enumerate,abstract-method """Base class for model-based tuner This type of tuner will fit a cost model and use some optimization methods to find optimums points of cost model in space. """ import gc import numpy as np from .tuner import Tuner from ..env import GLOBAL_SCOPE class FeatureCache(object): """Feature cache manager for cache sharing between different cost models""" def __init__(self): self.feature_cache = {} def get(self, key): """Get feature cache dictionary for a key Parameters ---------- key: str The key of a feature type Returns ------- fea_cache: dict cache dictionary """ if key not in self.feature_cache: self.feature_cache[key] = {} return self.feature_cache[key] def size(self, key): """ " Get the size of a feature cache dictionary Parameters ---------- key: str The key of a feature type Returns ------- n: int """ return len(self.feature_cache.get(key, tuple())) def clear(self, key): """Clear feature cache for a key Parameters ---------- key: str The key of a feature type """ del self.feature_cache[key] self.feature_cache[key] = {} gc.collect() class CostModel(object): """Cost model to predict the speed of a config""" def __init__(self): pass def fit(self, xs, ys, plan_size): """Fit to training data Parameters ---------- xs: Array of int indexes of configs in the config space ys: Array of float The speed (flop, float number operations per second) plan_size: int The plan size of tuner """ raise NotImplementedError() def fit_log(self, records, plan_size, min_seed_records=500): """Fit training data from log. Parameters ---------- records: Array of Tuple(MeasureInput, MeasureResult) The tuning records plan_size: int The plan size of tuner min_seed_records: int Defaults to 500. Indicates the minimum number of records to train the tuner with. If there are less than `min_seed_records` number of records in `data_set`, no training of the tuner will be done. """ raise NotImplementedError() def predict(self, xs, output_margin=False): """Predict the speed of configs Parameters ---------- xs: Array of int The indexes of configs to predict output_margin: bool, optional Whether output the untransformed margin. When a model is used as base model, it should output untransformed margin Returns ------- preds: Array of float The prediction """ raise NotImplementedError() def load_basemodel(self, base_model): """Load base model for transfer learning Parameters ---------- base_model: CostModel base model """ raise NotImplementedError() def spawn_base_model(self): """Clone a base model with the same parameters. The base model is used to fit history data in transfer learning. Returns ------- model: CostModel A model with the same hyperparameter (argument) """ raise NotImplementedError() class ModelOptimizer(object): """Optimizer used to find optimal points of cost model""" def __init__(self): pass def find_maximums(self, model, num, exclusive): """Find maximum of a cost model Note we use cost model to predict GFLOPS, so we should find the maximum Parameters ---------- model: CostModel Cost model num: int The number of returned maximum points exclusive: set, optional The excluded set of this optimizer. Return results won't include any elements in this set. """ raise NotImplementedError() class ModelBasedTuner(Tuner): """Base class for model based tuner This type of tuner will fit a cost model and use an optimizer to find the maximums of the cost model as next trials Parameters ---------- task: autotvm.task.Task The tuning task cost_model: CostModel The cost model that predicts the speed of a config (IR) model_optimizer: The optimizer to find local optimum points of cost model in tuning search space plan_size: int Tuner will re-fit model per `plan_size` new measure samples diversity_filter_ratio: int or float, optional If is not None, the tuner will first select top-(plan_size * diversity_filter_ratio) candidates according to the cost model and then pick plan_size of them according to the diversity metric. """ def __init__(self, task, cost_model, model_optimizer, plan_size, diversity_filter_ratio=None): super(ModelBasedTuner, self).__init__(task) # space self.task = task self.target = task.target self.plan_size = plan_size self.cost_model = cost_model self.model_optimizer = model_optimizer self.diversity_filter_ratio = diversity_filter_ratio if self.diversity_filter_ratio: assert self.diversity_filter_ratio >= 1, ( "Diversity filter ratio " "must be larger than one" ) # trial plan self.trials = [] self.trial_pt = 0 self.visited = set() # observed samples self.xs = [] self.ys = [] self.flops_max = 0.0 self.train_ct = 0 def next_batch(self, batch_size): ret = [] while len(ret) < batch_size and self.has_next(): while self.trial_pt < len(self.trials): index = self.trials[self.trial_pt] if index not in self.visited and self.space.is_index_valid(index): break self.trial_pt += 1 if self.trial_pt >= len(self.trials) - int(0.05 * self.plan_size): # if the trial list is empty or # the tuner is doing the last 5% trials (e-greedy), choose randomly index = self.space.get_rand_index(to_exclude=self.visited) ret.append(self.space.get(index)) self.visited.add(index) return ret def update(self, inputs, results): for inp, res in zip(inputs, results): index = inp.config.index if res.error_no == 0: self.xs.append(index) flops = inp.task.flop / np.mean(res.costs) self.flops_max = max(self.flops_max, flops) self.ys.append(flops) else: self.xs.append(index) self.ys.append(0.0) # Usually the update function is called during the tune loop # after the index is already added to the visited set. # However, adding the index to visited again here enables us # to also use this update function to resume tuning progress in # case of interruption. assert self.space.is_index_valid(index) self.visited.add(index) # if we have enough new training samples if len(self.xs) >= self.plan_size * (self.train_ct + 1) and self.flops_max > 1e-6: self.cost_model.fit(self.xs, self.ys, self.plan_size) if self.diversity_filter_ratio: candidate = self.model_optimizer.find_maximums( self.cost_model, self.plan_size * self.diversity_filter_ratio, self.visited ) scores = self.cost_model.predict(candidate) knobs = [self.space.point2knob(x) for x in candidate] pick_index = submodular_pick(0 * scores, knobs, self.plan_size, knob_weight=1) maximums = np.array(candidate)[pick_index] else: maximums = self.model_optimizer.find_maximums( self.cost_model, self.plan_size, self.visited ) self.trials = maximums self.trial_pt = 0 self.train_ct += 1 def load_history(self, data_set, min_seed_records=500): # set in_tuning as True to make the feature extraction consistent GLOBAL_SCOPE.in_tuning = True # fit base model base_model = self.cost_model.spawn_base_model() success = base_model.fit_log(data_set, self.plan_size, min_seed_records) if not success: GLOBAL_SCOPE.in_tuning = False return # use base model to select initial points if not self.trials: # no plan yet, use base model to select initial trials maximums = self.model_optimizer.find_maximums(base_model, self.plan_size, self.visited) self.trials = maximums self.trial_pt = 0 self.cost_model.load_basemodel(base_model) GLOBAL_SCOPE.in_tuning = False def has_next(self): return len(self.visited) < len(self.space) def submodular_pick(scores, knobs, n_pick, knob_weight=1.0): """Run greedy optimization to pick points with regard to both score and diversity. DiversityScore = knob_weight * number of unique knobs in the selected set Obj = sum(scores[i] for i in pick) + DiversityScore Note that this objective function is a monotone submodular function. Parameters ---------- scores: Array of float score of every points knobs: Array of Array of int feature vector (tunable knobs) of every points n_pick: int number of points to pick knob_weight: float weight of an unique knob feature """ n = len(scores) assert n == len(knobs) n_knobs = len(knobs[0]) knobs_set = [set() for _ in range(n_knobs)] ret = [] remain = list(range(len(scores))) for _ in range(n_pick): max_x = -1 max_delta = -1e9 for x in remain: tmp_delta = scores[x] for i in range(n_knobs): if knobs[x][i] not in knobs_set[i]: tmp_delta += knob_weight if tmp_delta > max_delta: max_delta, max_x = tmp_delta, x ret.append(max_x) remain.remove(max_x) for i in range(n_knobs): knobs_set[i].add(knobs[max_x][i]) return ret
https://github.com/zk-ml/tachikoma
python/tvm/autotvm/tuner/sa_model_optimizer.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=consider-using-enumerate, invalid-name, invalid-sequence-index """ Cost model optimizer based on simulated annealing """ import heapq import logging import time import numpy as np from .model_based_tuner import ModelOptimizer logger = logging.getLogger("autotvm") class SimulatedAnnealingOptimizer(ModelOptimizer): """parallel simulated annealing optimization algorithm Parameters ---------- task: Task The tuning task n_iter: int The number of iterations of simulated annealing temp: float or Array of float If is a single float, then use a constant temperature. If is an Array, then perform linear cooling from temp[0] to temp[1] early_stop: int, optional Stop iteration if the optimal set do not change in `early_stop` rounds log_interval: int, optional Print log every `log_interval` iterations """ def __init__( self, task, n_iter=500, temp=(1, 0), persistent=True, parallel_size=128, early_stop=50, log_interval=50, ): super(SimulatedAnnealingOptimizer, self).__init__() self.task = task self.n_iter = n_iter self.temp = temp self.persistent = persistent self.parallel_size = min(parallel_size, len(self.task.config_space)) self.early_stop = early_stop or 1e9 self.log_interval = log_interval self.points = None def find_maximums(self, model, num, exclusive): tic = time.time() temp, n_iter, early_stop, log_interval = ( self.temp, self.n_iter, self.early_stop, self.log_interval, ) if self.persistent and self.points is not None: points = self.points else: points = self.task.config_space.sample_ints(self.parallel_size) scores = model.predict(points) # build heap and insert initial points heap_items = [(float("-inf"), -1 - i) for i in range(num)] heapq.heapify(heap_items) in_heap = set(exclusive) in_heap.update([x[1] for x in heap_items]) for s, p in zip(scores, points): if s > heap_items[0][0] and p not in in_heap: pop = heapq.heapreplace(heap_items, (s, p)) in_heap.remove(pop[1]) in_heap.add(p) k = 0 k_last_modify = 0 if isinstance(temp, (tuple, list, np.ndarray)): t = temp[0] cool = 1.0 * (temp[0] - temp[1]) / (n_iter + 1) else: t = temp cool = 0 while k < n_iter and k < k_last_modify + early_stop: new_points = np.empty_like(points) for i, p in enumerate(points): new_points[i] = self.task.config_space.random_walk(p) new_scores = model.predict(new_points) ac_prob = np.exp(np.minimum((new_scores - scores) / (t + 1e-5), 1)) ac_index = np.random.random(len(ac_prob)) < ac_prob points[ac_index] = new_points[ac_index] scores[ac_index] = new_scores[ac_index] for s, p in zip(new_scores, new_points): if s > heap_items[0][0] and p not in in_heap: pop = heapq.heapreplace(heap_items, (s, p)) in_heap.remove(pop[1]) in_heap.add(p) k_last_modify = k k += 1 t -= cool if log_interval and k % log_interval == 0: t_str = "%.2f" % t logger.debug( "SA iter: %d\tlast_update: %d\tmax-0: %.2f\tmax-1: %.2f\ttemp: %s\t" "elapsed: %.2f", k, k_last_modify, heap_items[0][0], np.max([v for v, _ in heap_items]), t_str, time.time() - tic, ) heap_items.sort(key=lambda item: -item[0]) heap_items = [x for x in heap_items if x[0] >= 0] logger.debug( "SA iter: %d\tlast_update: %d\telapsed: %.2f", k, k_last_modify, time.time() - tic ) logger.debug("SA Maximums: %s", heap_items) if self.persistent: self.points = points return [x[1] for x in heap_items]
https://github.com/zk-ml/tachikoma
python/tvm/autotvm/tuner/tuner.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=unused-argument, no-self-use, invalid-name """Base class of tuner""" import logging import tempfile import numpy as np from ..measure import MeasureInput, create_measure_batch from ..utils import format_si_prefix from ..env import GLOBAL_SCOPE logger = logging.getLogger("autotvm") class Tuner(object): """Base class for tuners Parameters ---------- task: autotvm.task.Task Tuning Task """ def __init__(self, task, **kwargs): self.param = kwargs self.recorder = None self.task = task self.space = self.task.config_space # keep the current best self.best_config = None self.best_flops = 0 self.best_measure_pair = None self.best_iter = 0 self.error_ct_threshold = 150 # time to leave self.ttl = None self.n_trial = None self.early_stopping = None def has_next(self): """Whether has next untried config in the space Returns ------- has_next: bool """ raise NotImplementedError() def next_batch(self, batch_size): """get the next batch of configs to be measure on real hardware Parameters ---------- batch_size: int The size of the batch Returns ------- a batch of configs """ raise NotImplementedError() def update(self, inputs, results): """Update parameters of the tuner according to measurement results Parameters ---------- inputs: Array of autotvm.measure.MeasureInput The input for measurement results: Array of autotvm.measure.MeasureResult result for measurement """ def tune(self, n_trial, measure_option, early_stopping=None, callbacks=(), si_prefix="G"): """Begin tuning Parameters ---------- n_trial: int Maximum number of configs to try (measure on real hardware) measure_option: dict The options for how to measure generated code. You should use the return value ot autotvm.measure_option for this argument. early_stopping: int, optional Early stop the tuning when not finding better configs in this number of trials callbacks: List of callable A list of callback functions. The signature of callback function is (Tuner, List of MeasureInput, List of MeasureResult) with no return value. These callback functions will be called on every measurement pair. See autotvm/tuner/callback.py for some examples. si_prefix: str One of tvm.autotvm.utils.SI_PREFIXES. The SI prefix to use when reporting FLOPS. """ measure_batch = create_measure_batch(self.task, measure_option) n_parallel = getattr(measure_batch, "n_parallel", 1) early_stopping = early_stopping or 1e9 self.n_trial = n_trial self.early_stopping = early_stopping # Validate si_prefix arg format_si_prefix(0, si_prefix) old_level = logger.level GLOBAL_SCOPE.in_tuning = True i = error_ct = 0 errors = [] while i < n_trial: if not self.has_next(): break configs = self.next_batch(min(n_parallel, n_trial - i)) inputs = [MeasureInput(self.task.target, self.task, config) for config in configs] results = measure_batch(inputs) # keep best config for k, (inp, res) in enumerate(zip(inputs, results)): config = inp.config if res.error_no == 0: flops = inp.task.flop / np.mean(res.costs) error_ct = 0 result_msg = res else: flops = 0 error_ct += 1 tb, error = res.costs if isinstance(error, str): errors.append(tb + "\n" + error) else: errors.append(tb + "\n" + str(error)) result_msg = errors[-1] if flops > self.best_flops: self.best_flops = flops self.best_config = config self.best_measure_pair = (inp, res) self.best_iter = i + k logger.debug( "No: %d\t%sFLOPS: %.2f/%.2f\tresult: %s\t%s", i + k + 1, si_prefix, format_si_prefix(flops, si_prefix), format_si_prefix(self.best_flops, si_prefix), result_msg, config, ) i += len(results) self.ttl = min(early_stopping + self.best_iter, n_trial) - i self.update(inputs, results) for callback in callbacks: callback(self, inputs, results) if i >= self.best_iter + early_stopping: logger.debug("Early stopped. Best iter: %d.", self.best_iter) break if error_ct > self.error_ct_threshold: logging.basicConfig() logger.warning("Too many errors happen in the tuning. Switching to debug mode.") logger.setLevel(logging.DEBUG) else: logger.setLevel(old_level) if error_ct == i: _, f = tempfile.mkstemp(prefix="tvm_tuning_errors_", suffix=".log", text=True) with open(f, "w") as file: file.write("\n".join(errors)) logging.warning( "Could not find any valid schedule for task %s. " "A file containing the errors has been written to %s.", self.task, f, ) GLOBAL_SCOPE.in_tuning = False del measure_batch def reset(self): """reset the status of tuner""" self.best_config = None self.best_flops = 0 self.best_measure_pair = None def load_history(self, data_set, min_seed_records=500): """load history data for transfer learning Parameters ---------- data_set: Array of (autotvm.measure.MeasureInput, autotvm.measure.MeasureResult) pair Previous tuning records min_seed_records: int Defaults to 500. Indicates the minimum number of records to train the tuner with. If there are less than `min_seed_records` number of records in `data_set`, no training of the tuner will be done. """ raise NotImplementedError() def set_error_threshold(self, threshold): """Modify error counter threshold, which controls switch to debug mode Parameters ---------- threshold: New threshold value """ self.error_ct_threshold = threshold
https://github.com/zk-ml/tachikoma
python/tvm/autotvm/tuner/xgboost_cost_model.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name """XGBoost as cost model""" import logging import time import numpy as np from tvm.contrib.popen_pool import PopenPoolExecutor, StatusKind from .. import feature from ..utils import get_rank from .metric import cover_curve, max_curve, recall_curve from .model_based_tuner import CostModel, FeatureCache xgb = None logger = logging.getLogger("autotvm") class XGBoostCostModel(CostModel): """XGBoost as cost model Parameters ---------- task: Task The tuning task feature_type: str, optional If is 'itervar', use features extracted from IterVar (loop variable). If is 'knob', use flatten ConfigEntity directly. If is 'curve', use sampled curve feature (relation feature). Note on choosing feature type: For single task tuning, 'itervar' and 'knob' are good. 'itervar' is more accurate but 'knob' is much faster. There are some constraints on 'itervar', if you meet problems with feature extraction when using 'itervar', you can switch to 'knob'. For cross-shape tuning (e.g. many convolutions with different shapes), 'itervar' and 'curve' has better transferability, 'knob' is faster. For cross-device or cross-operator tuning, you can use 'curve' only. loss_type: str If is 'reg', use regression loss to train cost model. The cost model predicts the normalized flops. If is 'rank', use pairwise rank loss to train cost model. The cost model predicts relative rank score. num_threads: int, optional The number of threads. log_interval: int, optional If is not none, the cost model will print training log every `log_interval` iterations. upper_model: XGBoostCostModel, optional The upper model used in transfer learning """ def __init__( self, task, feature_type, loss_type, num_threads=None, log_interval=25, upper_model=None ): global xgb super(XGBoostCostModel, self).__init__() try: if xgb is None: xgb = __import__("xgboost") except ImportError: raise ImportError( "XGBoost is required for XGBoostCostModel. " "Please install its python package first. " "Help: (https://xgboost.readthedocs.io/en/latest/) " ) self.task = task self.target = task.target self.space = task.config_space self.fea_type = feature_type self.loss_type = loss_type self.num_threads = num_threads self.log_interval = log_interval if loss_type == "reg": self.xgb_params = { "max_depth": 3, "gamma": 0.0001, "min_child_weight": 1, "subsample": 1.0, "eta": 0.3, "lambda": 1.00, "alpha": 0, "objective": "reg:linear", } elif loss_type == "rank": self.xgb_params = { "max_depth": 3, "gamma": 0.0001, "min_child_weight": 1, "subsample": 1.0, "eta": 0.3, "lambda": 1.00, "alpha": 0, "objective": "rank:pairwise", } else: raise RuntimeError("Invalid loss type: " + loss_type) self.xgb_params["verbosity"] = 0 if num_threads: self.xgb_params["nthread"] = num_threads self.bst = None if feature_type == "itervar": self.feature_extract_func = _extract_itervar_feature_index elif feature_type == "knob": self.feature_extract_func = _extract_knob_feature_index elif feature_type == "curve": self.feature_extract_func = _extract_curve_feature_index else: raise RuntimeError("Invalid feature type " + feature_type) if upper_model: # share a same feature cache with upper model self.feature_cache = upper_model.feature_cache else: self.feature_cache = FeatureCache() self.upper_model = upper_model self.feature_extra_ct = 0 self.pool = None self.base_model = None self._sample_size = 0 self._reset_pool(self.space, self.target, self.task) def _reset_pool(self, space, target, task): """reset processing pool for feature extraction""" if self.upper_model: # base model will reuse upper model's pool, self.upper_model._reset_pool(space, target, task) return self._close_pool() self.pool = PopenPoolExecutor( max_workers=self.num_threads, initializer=_extract_popen_initializer, initargs=(space, target, task), ) def _close_pool(self): if self.pool: self.pool = None def _get_pool(self): if self.upper_model: return self.upper_model._get_pool() return self.pool def _base_model_discount(self): return 1.0 / (2 ** (self._sample_size / 64.0)) def fit(self, xs, ys, plan_size): tic = time.time() self._reset_pool(self.space, self.target, self.task) x_train = self._get_feature(xs) y_train = np.array(ys) y_max = np.max(y_train) y_train = y_train / max(y_max, 1e-8) valid_index = y_train > 1e-6 index = np.random.permutation(len(x_train)) dtrain = xgb.DMatrix(x_train[index], y_train[index]) self._sample_size = len(x_train) if self.base_model: discount = self._base_model_discount() if discount < 0.05: # discard base model self.base_model.upper_model = None self.base_model = None else: dtrain.set_base_margin(discount * self.base_model.predict(xs, output_margin=True)) self.bst = xgb.train( self.xgb_params, dtrain, num_boost_round=8000, callbacks=[ custom_callback( stopping_rounds=20, metric="tr-a-recall@%d" % plan_size, evals=[(dtrain, "tr")], maximize=True, fevals=[ xgb_average_recalln_curve_score(plan_size), ], verbose_eval=self.log_interval, ) ], ) logger.debug( "XGB train: %.2f\tobs: %d\terror: %d\tn_cache: %d", time.time() - tic, len(xs), len(xs) - np.sum(valid_index), self.feature_cache.size(self.fea_type), ) def fit_log(self, records, plan_size, min_seed_records=500): tic = time.time() # filter data, only pick the data with a same task data = [] for inp, res in records: if inp.task.name == self.task.name: data.append((inp, res)) logger.debug("XGB load %d entries from history log file", len(data)) # extract feature self._reset_pool(self.space, self.target, self.task) pool = self._get_pool() if self.fea_type == "itervar": feature_extract_func = _extract_itervar_feature_log elif self.fea_type == "knob": feature_extract_func = _extract_knob_feature_log elif self.fea_type == "curve": feature_extract_func = _extract_curve_feature_log else: raise RuntimeError("Invalid feature type: " + self.fea_type) result = pool.map_with_error_catching(feature_extract_func, data) result = list(result) # store results so we can iterate through them twice # get maximum feature length fea_len = -1 for res in result: if res.status != StatusKind.COMPLETE: continue x, _ = res.value fea_len = max(fea_len, x.shape[0]) xs, ys = [], [] for res in result: if res.status != StatusKind.COMPLETE: continue x, y = res.value # Features may not be the same size, pad them until they are if fea_len > len(x): xs.append(np.pad(x, (0, fea_len - len(x)))) else: xs.append(x) ys.append(y) if len(xs) < min_seed_records: # no enough samples return False xs, ys = np.array(xs), np.array(ys) x_train = xs y_train = ys y_max = np.max(y_train) y_train = y_train / max(y_max, 1e-8) index = np.random.permutation(len(x_train)) dtrain = xgb.DMatrix(x_train[index], y_train[index]) plan_size *= 2 self.bst = xgb.train( self.xgb_params, dtrain, num_boost_round=400, callbacks=[ custom_callback( stopping_rounds=100, metric="tr-a-recall@%d" % plan_size, evals=[(dtrain, "tr")], maximize=True, fevals=[ xgb_average_recalln_curve_score(plan_size), ], verbose_eval=self.log_interval, ) ], ) logger.debug("XGB train: %.2f\tobs: %d", time.time() - tic, len(xs)) return True def predict(self, xs, output_margin=False): feas = self._get_feature(xs) dtest = xgb.DMatrix(feas) if self.base_model: dtest.set_base_margin( self._base_model_discount() * self.base_model.predict(xs, output_margin=True) ) return self.bst.predict(dtest, output_margin=output_margin) def load_basemodel(self, base_model): self.base_model = base_model self.base_model._close_pool() self.base_model.upper_model = self def spawn_base_model(self): return XGBoostCostModel( self.task, self.fea_type, self.loss_type, self.num_threads, self.log_interval, self ) def _get_feature(self, indexes): """get features for indexes, run extraction if we do not have cache for them""" # free feature cache if self.feature_cache.size(self.fea_type) >= 100000: self.feature_cache.clear(self.fea_type) fea_cache = self.feature_cache.get(self.fea_type) indexes = np.array(indexes) need_extract = [x for x in indexes if x not in fea_cache] if need_extract: pool = self._get_pool() feas = pool.map_with_error_catching(self.feature_extract_func, need_extract) for i, fea in zip(need_extract, feas): fea_cache[i] = fea.value if fea.status == StatusKind.COMPLETE else None feature_len = -1 for idx in indexes: if fea_cache[idx] is not None: feature_len = max(fea_cache[idx].shape[-1], feature_len) ret = np.empty((len(indexes), feature_len), dtype=np.float32) for i, ii in enumerate(indexes): t = fea_cache[ii] if t is not None and t.shape[0] < feature_len: t = np.pad(t, (0, feature_len - t.shape[0])) ret[i, :] = t if t is not None else 0 return ret def __del__(self): self._close_pool() # Global variables for passing arguments to extract functions. _extract_space = None _extract_target = None _extract_task = None def _extract_popen_initializer(space, target, task): global _extract_space, _extract_target, _extract_task _extract_space = space _extract_target = target _extract_task = task def _extract_itervar_feature_index(args): """extract iteration var feature for an index in extract_space""" config = _extract_space.get(args) with _extract_target: sch, fargs = _extract_task.instantiate(config) fea = feature.get_itervar_feature_flatten(sch, fargs, take_log=True) fea = np.concatenate((fea, list(config.get_other_option().values()))) return fea def _extract_itervar_feature_log(arg): """extract iteration var feature for log items""" inp, res = arg config = inp.config with inp.target: sch, args = inp.task.instantiate(config) fea = feature.get_itervar_feature_flatten(sch, args, take_log=True) x = np.concatenate((fea, list(config.get_other_option().values()))) if res.error_no == 0: y = inp.task.flop / np.mean(res.costs) else: y = 0.0 return x, y def _extract_knob_feature_index(args): """extract knob feature for an index in extract_space""" config = _extract_space.get(args) return config.get_flatten_feature() def _extract_knob_feature_log(arg): """extract knob feature for log items""" inp, res = arg config = inp.config x = config.get_flatten_feature() if res.error_no == 0: with inp.target: # necessary, for calculating flops of this task inp.task.instantiate(config) y = inp.task.flop / np.mean(res.costs) else: y = 0.0 return x, y def _extract_curve_feature_index(args): """extract sampled curve feature for an index in extract_space""" config = _extract_space.get(args) with _extract_target: sch, fargs = _extract_task.instantiate(config) fea = feature.get_buffer_curve_sample_flatten(sch, fargs, sample_n=20) fea = np.concatenate((fea, list(config.get_other_option().values()))) return np.array(fea) def _extract_curve_feature_log(arg): """extract sampled curve feature for log items""" inp, res = arg config = inp.config with inp.target: sch, args = inp.task.instantiate(config) fea = feature.get_buffer_curve_sample_flatten(sch, args, sample_n=20) x = np.concatenate((fea, list(config.get_other_option().values()))) if res.error_no == 0: y = inp.task.flop / np.mean(res.costs) else: y = 0.0 return x, y def custom_callback( stopping_rounds, metric, fevals, evals=(), log_file=None, maximize=False, verbose_eval=True ): """callback function for xgboost to support multiple custom evaluation functions""" # pylint: disable=import-outside-toplevel from xgboost.callback import _fmt_metric from xgboost.core import EarlyStopException try: from xgboost.training import aggcv except ImportError: from xgboost.callback import _aggcv as aggcv state = {} metric_shortname = metric.split("-")[1] def init(env): """internal function""" bst = env.model state["maximize_score"] = maximize state["best_iteration"] = 0 if maximize: state["best_score"] = float("-inf") else: state["best_score"] = float("inf") if bst is not None: if bst.attr("best_score") is not None: state["best_score"] = float(bst.attr("best_score")) state["best_iteration"] = int(bst.attr("best_iteration")) state["best_msg"] = bst.attr("best_msg") else: bst.set_attr(best_iteration=str(state["best_iteration"])) bst.set_attr(best_score=str(state["best_score"])) else: assert env.cvfolds is not None def callback(env): """internal function""" if not state: init(env) bst = env.model i = env.iteration cvfolds = env.cvfolds res_dict = {} ##### evaluation ##### if cvfolds is not None: for feval in fevals: tmp = aggcv([f.eval(i, feval) for f in cvfolds]) for k, mean, std in tmp: res_dict[k] = [mean, std] else: for feval in fevals: bst_eval = bst.eval_set(evals, i, feval) res = [x.split(":") for x in bst_eval.split()] for kv in res[1:]: res_dict[kv[0]] = [float(kv[1])] eval_res = [] keys = list(res_dict.keys()) keys.sort(key=lambda x: x if metric_shortname not in x else "a" + x) for key in keys: v = res_dict[key] eval_res.append([key] + v) ##### print eval result ##### infos = ["XGB iter: %3d" % i] for item in eval_res: if "null" in item[0]: continue infos.append("%s: %.6f" % (item[0], item[1])) if not isinstance(verbose_eval, bool) and verbose_eval and i % verbose_eval == 0: logger.debug("\t".join(infos)) if log_file: with open(log_file, "a") as fout: fout.write("\t".join(infos) + "\n") ##### choose score and do early stopping ##### score = None for item in eval_res: if item[0] == metric: score = item[1] break assert score is not None best_score = state["best_score"] best_iteration = state["best_iteration"] maximize_score = state["maximize_score"] if (maximize_score and score > best_score) or (not maximize_score and score < best_score): msg = "[%d] %s" % (env.iteration, "\t".join([_fmt_metric(x) for x in eval_res])) state["best_msg"] = msg state["best_score"] = score state["best_iteration"] = env.iteration # save the property to attributes, so they will occur in checkpoint. if env.model is not None: env.model.set_attr( best_score=str(state["best_score"]), best_iteration=str(state["best_iteration"]), best_msg=state["best_msg"], ) elif env.iteration - best_iteration >= stopping_rounds: best_msg = state["best_msg"] if verbose_eval and env.rank == 0: logger.debug("XGB stopped. Best iteration: %s ", best_msg) raise EarlyStopException(best_iteration) return callback # feval wrapper for xgboost def xgb_max_curve_score(N): """evaluate max curve score for xgb""" def feval(preds, labels): labels = labels.get_label() trials = np.argsort(preds)[::-1] scores = labels[trials] curve = max_curve(scores) return "Smax@%d" % N, curve[N] / np.max(labels) return feval def xgb_recalln_curve_score(N): """evaluate recall-n curve score for xgb""" def feval(preds, labels): labels = labels.get_label() trials = np.argsort(preds)[::-1] ranks = get_rank(labels[trials]) curve = recall_curve(ranks) return "recall@%d" % N, curve[N] return feval def xgb_average_recalln_curve_score(N): """evaluate average recall-n curve score for xgb""" def feval(preds, labels): labels = labels.get_label() trials = np.argsort(preds)[::-1] ranks = get_rank(labels[trials]) curve = recall_curve(ranks) return "a-recall@%d" % N, np.sum(curve[:N]) / N return feval def xgb_recallk_curve_score(N, topk): """evaluate recall-k curve score for xgb""" def feval(preds, labels): labels = labels.get_label() trials = np.argsort(preds)[::-1] ranks = get_rank(labels[trials]) curve = recall_curve(ranks, topk) return "recall@%d" % topk, curve[N] return feval def xgb_cover_curve_score(N): """evaluate cover curve score for xgb""" def feval(preds, labels): labels = labels.get_label() trials = np.argsort(preds)[::-1] ranks = get_rank(labels[trials]) curve = cover_curve(ranks) return "cover@%d" % N, curve[N] return feval def xgb_null_score(_): """empty score function for xgb""" def feval(__, ___): return "null", 0 return feval
https://github.com/zk-ml/tachikoma
python/tvm/autotvm/tuner/xgboost_tuner.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Tuner that uses xgboost as cost model""" from .model_based_tuner import ModelBasedTuner, ModelOptimizer from .xgboost_cost_model import XGBoostCostModel from .sa_model_optimizer import SimulatedAnnealingOptimizer class XGBTuner(ModelBasedTuner): """Tuner that uses xgboost as cost model Parameters ---------- task: Task The tuning task plan_size: int The size of a plan. After `plan_size` trials, the tuner will refit a new cost model and do planing for the next `plan_size` trials. feature_type: str, optional If is 'itervar', use features extracted from IterVar (loop variable). If is 'knob', use flatten ConfigEntity directly. If is 'curve', use sampled curve feature (relation feature). Note on choosing feature type: For single task tuning, 'itervar' and 'knob' are good. 'itervar' is more accurate but 'knob' is much faster. There are some constraints on 'itervar', if you meet problems with feature extraction when using 'itervar', you can switch to 'knob'. For cross-shape tuning (e.g. many convolutions with different shapes), 'itervar' and 'curve' has better transferability, 'knob' is faster. For cross-device or cross-operator tuning, you can use 'curve' only. loss_type: str If is 'reg', use regression loss to train cost model. The cost model predicts the normalized flops. If is 'rank', use pairwise rank loss to train cost model. The cost model predicts relative rank score. num_threads: int, optional The number of threads. optimizer: str or ModelOptimizer, optional If is 'sa', use a default simulated annealing optimizer. Otherwise it should be a ModelOptimizer object. diversity_filter_ratio: int or float, optional If is not None, the tuner will first select top-(plan_size * diversity_filter_ratio) candidates according to the cost model and then pick batch_size of them according to the diversity metric. log_interval: int = 50 The verbose level. If is 0, output nothing. Otherwise, output debug information every `verbose` iterations. """ def __init__( self, task, plan_size=64, feature_type="itervar", loss_type="rank", num_threads=None, optimizer="sa", diversity_filter_ratio=None, log_interval=50, ): cost_model = XGBoostCostModel( task, feature_type=feature_type, loss_type=loss_type, num_threads=num_threads, log_interval=log_interval // 2, ) if optimizer == "sa": optimizer = SimulatedAnnealingOptimizer(task, log_interval=log_interval) else: assert isinstance(optimizer, ModelOptimizer), ( "Optimizer must be " "a supported name string" "or a ModelOptimizer object." ) super(XGBTuner, self).__init__( task, cost_model, optimizer, plan_size, diversity_filter_ratio ) def tune(self, *args, **kwargs): # pylint: disable=arguments-differ super(XGBTuner, self).tune(*args, **kwargs) # manually close pool to avoid multiprocessing issues self.cost_model._close_pool()
https://github.com/zk-ml/tachikoma
python/tvm/autotvm/utils.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name """Utilities""" import logging import time import numpy as np import tvm.arith from tvm.tir import expr from tvm.contrib.popen_pool import PopenPoolExecutor logger = logging.getLogger("autotvm") class EmptyContext(object): """An empty context""" def __enter__(self): pass def __exit__(self, exc_type, exc_val, exc_tb): pass def get_rank(values): """get rank of items Parameters ---------- values: Array Returns ------- ranks: Array of int the rank of this item in the input (the largest value ranks first) """ tmp = np.argsort(-values) ranks = np.empty_like(tmp) ranks[tmp] = np.arange(len(tmp)) return ranks def pool_map(func, args, batch_size, verbose=False, pool=None): """A wrapper of multiprocessing.pool.Pool.map to support small-batch mapping for large argument list. This can reduce memory usage Parameters ---------- func: Func(arg) -> np.ndarray mapping function args: List list of arguments batch_size: int batch size in mapping verbose: bool, optional whether print progress pool: multiprocessing.Pool, optional pool objection Returns ------- converted numpy array """ ret = None tic = time.time() local_pool = pool or PopenPoolExecutor() if verbose: logger.info("mapping begin") for i in range(0, len(args), batch_size): if verbose: logger.info("mapping %d/%d elapsed %.2f", i, len(args), time.time() - tic) tmp = np.array(local_pool.map(func, args[i : i + batch_size])) ret = tmp if ret is None else np.concatenate((ret, tmp)) if verbose: logger.info("mapping done") if not pool: local_pool.close() return ret def get_func_name(func): """Get name of a function Parameters ---------- func: Function The function Returns ------- name: str The name """ return func.func_name if hasattr(func, "func_name") else func.__name__ def get_const_int(exp): """Verifies expr is integer and get the constant value. Parameters ---------- exp : tvm.Expr or int The input expression. Returns ------- out_value : int The output. """ if isinstance(exp, int): return exp if not isinstance(exp, (expr.IntImm,)): ana = tvm.arith.Analyzer() exp = ana.simplify(exp) if not isinstance(exp, (expr.IntImm,)): raise ValueError("Expect value to be constant int") return exp.value def get_const_tuple(in_tuple): """Verifies input tuple is IntImm or Var, returns tuple of int or Var. Parameters ---------- in_tuple : tuple of Expr The input. Returns ------- out_tuple : tuple of int The output. """ ret = [] for elem in in_tuple: if isinstance(elem, expr.Var): ret.append(elem) elif not isinstance(elem, (expr.IntImm, int)): ana = tvm.arith.Analyzer() elem = ana.simplify(elem) if not isinstance(elem, (expr.IntImm)): ret.append(elem) else: ret.append(get_const_int(elem)) return tuple(ret) SI_PREFIXES = "yzafpn\xb5m kMGTPEZY" YOCTO_EXP10 = -24 def format_si_prefix(x, si_prefix): exp10 = 10 ** (SI_PREFIXES.index(si_prefix) * 3 + YOCTO_EXP10) return float(x) / exp10
https://github.com/zk-ml/tachikoma
python/tvm/contrib/__init__.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Contrib APIs of TVM python package. Contrib API provides many useful not core features. Some of these are useful utilities to interact with thirdparty libraries and tools. """
https://github.com/zk-ml/tachikoma
python/tvm/contrib/cblas.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """External function interface to BLAS libraries.""" import tvm from tvm import te def matmul(lhs, rhs, transa=False, transb=False, **kwargs): """Create an extern op that compute matrix mult of A and rhs with CrhsLAS This function serves as an example on how to call external libraries. Parameters ---------- lhs: Tensor The left matrix operand rhs: Tensor The right matrix operand transa: bool Whether transpose lhs transb: bool Whether transpose rhs Returns ------- C: Tensor The result tensor. """ n = lhs.shape[1] if transa else lhs.shape[0] m = rhs.shape[0] if transb else rhs.shape[1] return te.extern( (n, m), [lhs, rhs], lambda ins, outs: tvm.tir.call_packed( "tvm.contrib.cblas.matmul", ins[0], ins[1], outs[0], transa, transb ), name="C", **kwargs, ) def batch_matmul(lhs, rhs, transa=False, transb=False, iterative=False, **kwargs): """Create an extern op that compute batched matrix mult of A and rhs with CBLAS This function serves as an example on how to call external libraries. Parameters ---------- lhs: Tensor The left matrix operand rhs: Tensor The right matrix operand transa: bool Whether transpose lhs transb: bool Whether transpose rhs Returns ------- C: Tensor The result tensor. """ b = te.max(lhs.shape[0], rhs.shape[0]) n = lhs.shape[2] if transa else lhs.shape[1] m = rhs.shape[1] if transb else rhs.shape[2] return te.extern( (b, n, m), [lhs, rhs], lambda ins, outs: tvm.tir.call_packed( "tvm.contrib.cblas.batch_matmul" if not iterative else "tvm.contrib.cblas.batch_matmul_iterative", ins[0], ins[1], outs[0], transa, transb, ), name="C", **kwargs, )
https://github.com/zk-ml/tachikoma
python/tvm/contrib/cc.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Util to invoke C/C++ compilers in the system.""" # pylint: disable=invalid-name import sys import os import subprocess from .._ffi.base import py_str def _is_linux_like(): return ( sys.platform == "darwin" or sys.platform.startswith("linux") or sys.platform.startswith("freebsd") ) def get_cc(): """Return the path to the default C/C++ compiler. Returns ------- out: Optional[str] The path to the default C/C++ compiler, or None if none was found. """ if not _is_linux_like(): return None env_cxx = os.environ.get("CXX") or os.environ.get("CC") if env_cxx: return env_cxx cc_names = ["g++", "gcc", "clang++", "clang", "c++", "cc"] dirs_in_path = os.get_exec_path() for cc in cc_names: for d in dirs_in_path: cc_path = os.path.join(d, cc) if os.path.isfile(cc_path) and os.access(cc_path, os.X_OK): return cc_path return None def create_shared(output, objects, options=None, cc=None): """Create shared library. Parameters ---------- output : str The target shared library. objects : List[str] List of object files. options : List[str] The list of additional options string. cc : Optional[str] The compiler command. """ cc = cc or get_cc() if _is_linux_like(): _linux_compile(output, objects, options, cc, compile_shared=True) elif sys.platform == "win32": _windows_compile(output, objects, options) else: raise ValueError("Unsupported platform") def create_executable(output, objects, options=None, cc=None): """Create executable binary. Parameters ---------- output : str The target executable. objects : List[str] List of object files. options : List[str] The list of additional options string. cc : Optional[str] The compiler command. """ cc = cc or get_cc() if _is_linux_like(): _linux_compile(output, objects, options, cc) elif sys.platform == "win32": _windows_compile(output, objects, options) else: raise ValueError("Unsupported platform") def get_target_by_dump_machine(compiler): """Functor of get_target_triple that can get the target triple using compiler. Parameters ---------- compiler : Optional[str] The compiler. Returns ------- out: Callable A function that can get target triple according to dumpmachine option of compiler. """ def get_target_triple(): """Get target triple according to dumpmachine option of compiler.""" if compiler: cmd = [compiler, "-dumpmachine"] proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) (out, _) = proc.communicate() if proc.returncode != 0: msg = "dumpmachine error:\n" msg += py_str(out) return None return py_str(out) return None return get_target_triple # assign so as default output format create_shared.output_format = "so" if sys.platform != "win32" else "dll" create_shared.get_target_triple = get_target_by_dump_machine(os.environ.get("CXX", get_cc())) def cross_compiler( compile_func, options=None, output_format=None, get_target_triple=None, add_files=None ): """Create a cross compiler function by specializing compile_func with options. This function can be used to construct compile functions that can be passed to AutoTVM measure or export_library. Parameters ---------- compile_func : Union[str, Callable[[str, str, Optional[str]], None]] Function that performs the actual compilation options : Optional[List[str]] List of additional optional string. output_format : Optional[str] Library output format. get_target_triple: Optional[Callable] Function that can target triple according to dumpmachine option of compiler. add_files: Optional[List[str]] List of paths to additional object, source, library files to pass as part of the compilation. Returns ------- fcompile : Callable[[str, str, Optional[str]], None] A compilation function that can be passed to export_library. Examples -------- .. code-block:: python from tvm.contrib import cc, ndk # export using arm gcc mod = build_runtime_module() mod.export_library(path_dso, cc.cross_compiler("arm-linux-gnueabihf-gcc")) # specialize ndk compilation options. specialized_ndk = cc.cross_compiler( ndk.create_shared, ["--sysroot=/path/to/sysroot", "-shared", "-fPIC", "-lm"]) mod.export_library(path_dso, specialized_ndk) """ base_options = [] if options is None else options kwargs = {} add_files = [] if add_files is None else add_files # handle case where compile_func is the name of the cc if isinstance(compile_func, str): kwargs = {"cc": compile_func} compile_func = create_shared def _fcompile(outputs, objects, options=None): all_options = base_options if options is not None: all_options += options compile_func(outputs, objects + add_files, options=all_options, **kwargs) if not output_format and hasattr(compile_func, "output_format"): output_format = compile_func.output_format output_format = output_format if output_format else "so" if not get_target_triple and hasattr(compile_func, "get_target_triple"): get_target_triple = compile_func.get_target_triple _fcompile.output_format = output_format _fcompile.get_target_triple = get_target_triple return _fcompile def _linux_compile(output, objects, options, compile_cmd, compile_shared=False): cmd = [compile_cmd] if compile_cmd != "nvcc": if compile_shared or output.endswith(".so") or output.endswith(".dylib"): cmd += ["-shared", "-fPIC"] if sys.platform == "darwin": cmd += ["-undefined", "dynamic_lookup"] elif output.endswith(".obj"): cmd += ["-c"] else: if compile_shared or output.endswith(".so") or output.endswith(".dylib"): cmd += ["--shared"] cmd += ["-o", output] if isinstance(objects, str): cmd += [objects] else: cmd += objects if options: cmd += options proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) (out, _) = proc.communicate() if proc.returncode != 0: msg = "Compilation error:\n" msg += py_str(out) msg += "\nCommand line: " + " ".join(cmd) raise RuntimeError(msg) def _windows_compile(output, objects, options): cmd = ["clang"] cmd += ["-O2"] if output.endswith(".so") or output.endswith(".dll"): cmd += ["-shared"] elif output.endswith(".obj"): cmd += ["-c"] if isinstance(objects, str): objects = [objects] cmd += ["-o", output] cmd += objects if options: cmd += options try: proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) (out, _) = proc.communicate() except FileNotFoundError: raise RuntimeError( "Can not find the LLVM clang for Windows clang.exe)." "Make sure it's installed" " and the installation directory is in the %PATH% environment " "variable. Prebuilt binaries can be found at: https://llvm.org/" ) if proc.returncode != 0: msg = "Compilation error:\n" msg += " ".join(cmd) + "\n" msg += py_str(out) raise RuntimeError(msg)
https://github.com/zk-ml/tachikoma
python/tvm/contrib/clang.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Util to invoke clang in the system.""" # pylint: disable=invalid-name import subprocess from tvm._ffi.base import py_str import tvm.target from . import utils def find_clang(required=True): """Find clang in system. Parameters ---------- required : bool Whether it is required, runtime error will be raised if the compiler is required. Returns ------- valid_list : list of str List of possible paths. Note ---- This function will first search clang that matches the major llvm version that built with tvm """ cc_list = [] major = tvm.target.codegen.llvm_version_major(allow_none=True) if major is not None: cc_list += ["clang-%d.0" % major] cc_list += ["clang-%d" % major] cc_list += ["clang"] cc_list += ["clang.exe"] valid_list = [utils.which(x) for x in cc_list] valid_list = [x for x in valid_list if x] if not valid_list and required: raise RuntimeError("cannot find clang, candidates are: " + str(cc_list)) return valid_list def create_llvm(inputs, output=None, options=None, cc=None): """Create llvm text ir. Parameters ---------- inputs : list of str List of input files name or code source. output : str, optional Output file, if it is none a temporary file is created options : list The list of additional options string. cc : str, optional The clang compiler, if not specified, we will try to guess the matched clang version. Returns ------- code : str The generated llvm text IR. """ cc = cc if cc else find_clang()[0] cmd = [cc] cmd += ["-S", "-emit-llvm"] temp = utils.tempdir() output = output if output else temp.relpath("output.ll") inputs = [inputs] if isinstance(inputs, str) else inputs input_files = [] for i, code in enumerate(inputs): if utils.is_source_path(code): input_files.append(code) else: temp_path = temp.relpath("input%d.cc" % i) with open(temp_path, "w") as output_file: output_file.write(code) input_files.append(temp_path) if options: cmd += options cmd += ["-o", output] cmd += input_files proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) (out, _) = proc.communicate() if proc.returncode != 0: msg = "Compilation error:\n" msg += py_str(out) raise RuntimeError(msg) return open(output).read()
https://github.com/zk-ml/tachikoma
python/tvm/contrib/coreml_runtime.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """CoreML runtime that load and run coreml models.""" import tvm._ffi from ..rpc import base as rpc_base def create(symbol, compiled_model_path, device): """Create a runtime executor module given a coreml model and context. Parameters ---------- symbol : str The symbol that represents the Core ML model. compiled_model_path : str The path of the compiled model to be deployed. device : Device The device to deploy the module. It can be local or remote when there is only one Device. Returns ------- coreml_runtime : CoreMLModule Runtime coreml module that can be used to execute the coreml model. """ device_type = device.device_type runtime_func = "tvm.coreml_runtime.create" if device_type >= rpc_base.RPC_SESS_MASK: fcreate = device._rpc_sess.get_function(runtime_func) else: fcreate = tvm._ffi.get_global_func(runtime_func) return CoreMLModule(fcreate(symbol, compiled_model_path)) class CoreMLModule(object): """Wrapper runtime module. This is a thin wrapper of the underlying TVM module. you can also directly call set_input, run, and get_output of underlying module functions Parameters ---------- module : Module The internal tvm module that holds the actual coreml functions. Attributes ---------- module : Module The internal tvm module that holds the actual coreml functions. """ def __init__(self, module): self.module = module self.invoke = module["invoke"] self.set_input = module["set_input"] self.get_output = module["get_output"] self.get_num_outputs = module["get_num_outputs"]
https://github.com/zk-ml/tachikoma
python/tvm/contrib/cublas.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """External function interface to cuBLAS libraries.""" import tvm from tvm import te def matmul(lhs, rhs, transa=False, transb=False, dtype=None): """Create an extern op that compute matrix mult of A and rhs with cuBLAS Parameters ---------- lhs : Tensor The left matrix operand rhs : Tensor The right matrix operand transa : bool Whether transpose lhs transb : bool Whether transpose rhs Returns ------- C : Tensor The result tensor. """ n = lhs.shape[1] if transa else lhs.shape[0] m = rhs.shape[0] if transb else rhs.shape[1] dtype = dtype if dtype is not None else lhs.dtype return te.extern( (n, m), [lhs, rhs], lambda ins, outs: tvm.tir.call_packed( "tvm.contrib.cublas.matmul", ins[0], ins[1], outs[0], transa, transb ), dtype=dtype, name="matmul_cublas", ) def batch_matmul(lhs, rhs, transa=False, transb=False, dtype=None): """Create an extern op that compute batch matrix mult of A and rhs with cuBLAS Parameters ---------- lhs : Tensor The left matrix operand rhs : Tensor The right matrix operand transa : bool Whether transpose lhs transb : bool Whether transpose rhs Returns ------- C : Tensor The result tensor. """ b = lhs.shape[0] n = lhs.shape[2] if transa else lhs.shape[1] m = rhs.shape[1] if transb else rhs.shape[2] dtype = dtype if dtype is not None else lhs.dtype return te.extern( (b, n, m), [lhs, rhs], lambda ins, outs: tvm.tir.call_packed( "tvm.contrib.cublas.batch_matmul", ins[0], ins[1], outs[0], transa, transb ), dtype=dtype, name="batch_matmul_cublas", )
https://github.com/zk-ml/tachikoma
python/tvm/contrib/cublaslt.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """External function interface to cuBLASlt libraries.""" import tvm from tvm import te def matmul(lhs, rhs, transa=False, transb=False, n=0, m=0, dtype=None): """Create an extern op that compute matrix mult of A and rhs with cuBLAS Parameters ---------- lhs : Tensor The left matrix operand rhs : Tensor The right matrix operand transa : bool Whether transpose lhs transb : bool Whether transpose rhs Returns ------- C : Tensor The result tensor. """ if n == 0: n = lhs.shape[1] if transa else lhs.shape[0] if m == 0: m = rhs.shape[0] if transb else rhs.shape[1] dtype = dtype if dtype is not None else lhs.dtype return te.extern( (n, m), [lhs, rhs], lambda ins, outs: tvm.tir.call_packed( "tvm.contrib.cublaslt.matmul", ins[0], ins[1], outs[0], transa, transb ), dtype=dtype, name="C", )
https://github.com/zk-ml/tachikoma
python/tvm/contrib/cuda_graph/__init__.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License.
https://github.com/zk-ml/tachikoma
python/tvm/contrib/cuda_graph/cuda_graph_executor.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Graph executor with CUDA Graph""" import tvm._ffi from tvm._ffi.base import string_types from tvm.contrib import graph_executor def create(graph_json_str, libmod, device): """Create a runtime executor module given a graph and module. Parameters ---------- graph_json_str : str The graph to be deployed in json format output by json graph. The graph can contain operator(tvm_op) that points to the name of PackedFunc in the libmod. libmod : tvm.runtime.Module The module of the corresponding function device : Device The device to deploy the module, only supports CUDA GPU Returns ------- graph_module : GraphModuleCudaGraph CUDA graph executor module that can be used to execute the graph. Note ---- See also :py:class:`tvm.contrib.cuda_graph.cuda_graph_executor.GraphModuleCudaGraph` for examples to directly construct a GraphModuleCudaGraph from an exported relay compiled library. """ assert isinstance(graph_json_str, string_types) try: dev, num_rpc_dev, device_type_id = graph_executor.get_device(libmod, device) if num_rpc_dev == len(dev): fcreate = dev[0]._rpc_sess.get_function("tvm.graph_executor_cuda_graph.create") else: fcreate = tvm._ffi.get_global_func("tvm.graph_executor_cuda_graph.create") except ValueError: raise ValueError( "To enable CUDA graph support (experimental), please set " "'(USE_GRAPH_EXECUTOR_CUGRAPH ON)' in config.cmake and rebuild TVM" ) return GraphModuleCudaGraph(fcreate(graph_json_str, libmod, *device_type_id)) class GraphModuleCudaGraph(graph_executor.GraphModule): """CUDA graph executor module. This is a CUDA graph executor wrapper over the TVM runtime. Runtime interfaces are wrapped with CUDA graph functionalities. Parameters ---------- module : Module The internal tvm module that holds the actual graph functions. """ def __init__(self, module): self._start_capture = module["start_capture"] self._end_capture = module["end_capture"] self._run_cuda_graph = module["run_cuda_graph"] self._cuda_graph_captured = False graph_executor.GraphModule.__init__(self, module) def capture_cuda_graph(self): """Capture a CUDA graph for tvm_op graph This should be called before run_cuda_graph() to capture and instantiate a CUDA graph instance. """ self._run() # call cuModuleLoadData before cudaStream API self._start_capture() self._run() self._end_capture() self._cuda_graph_captured = True def run_cuda_graph(self): """Run the CUDA graph for tvm_op graph Run the captured CUDA graph instance instead of the for-loop kernel launch of default graph executor """ self._run_cuda_graph() def run(self, **input_dict): """A run wrapper for graph capture / launch, user can just change default graph executor to cuda graph executor, and the first call will capture a cuda graph for future launch Parameters ---------- input_dict: dict of str to NDArray List of input values to be feed to """ if input_dict: self.set_input(**input_dict) if not self._cuda_graph_captured: self.capture_cuda_graph() else: self._run_cuda_graph() def debug_get_output(self, node, out): """Run graph up to node and get the output to out Parameters ---------- node : int / str The node index or name out : NDArray The output array container """ raise NotImplementedError("Please use debugger.debug_executor as graph_executor instead.")
https://github.com/zk-ml/tachikoma
python/tvm/contrib/cudnn.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """External function interface to CuDNN v7 library.""" # pylint: disable-msg=C0103 import ctypes import numpy as np import tvm import tvm._ffi from tvm import te # algos can be read from cudnn.h _FWD_ALGOS = [ "CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM", "CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM", "CUDNN_CONVOLUTION_FWD_ALGO_GEMM", "CUDNN_CONVOLUTION_FWD_ALGO_DIRECT", "CUDNN_CONVOLUTION_FWD_ALGO_FFT", "CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING", "CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD", "CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED", "CUDNN_CONVOLUTION_FWD_ALGO_COUNT", ] def exists(): """ Checks whether the local machine can use CuDNN. Returns ------- exists: bool True if CuDNN support is enabled and a CuDNN-capable GPU exists. Otherwise, False. """ func = tvm.get_global_func("tvm.contrib.cudnn.exists", allow_missing=True) if func is None: return False return bool(func()) def algo_to_index(algo_type, algo_name): """Return a index represents the algorithm, which can be used in calling CuDNN function Parameters ---------- algo_type : str ["fwd", "bwd_filter", "bwd_data] algo_name : str algorithm name in cudnn definition fwd = [ "CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM", "CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM", "CUDNN_CONVOLUTION_FWD_ALGO_GEMM", "CUDNN_CONVOLUTION_FWD_ALGO_DIRECT", "CUDNN_CONVOLUTION_FWD_ALGO_FFT", "CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING", "CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD", "CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED", "CUDNN_CONVOLUTION_FWD_ALGO_COUNT", ] bwd_filter = [ "CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0", # non-deterministic "CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1", "CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFT", "CUDNN_CONVOLUTION_BWD_FILTER_ALGO_3", # non-deterministic, algo0 with workspaceS "CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD", # not implemented "CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED", "CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFT_TILING", "CUDNN_CONVOLUTION_BWD_FILTER_ALGO_COUNT", ] bwd_data = [ "CUDNN_CONVOLUTION_BWD_DATA_ALGO_0", # non-deterministic "CUDNN_CONVOLUTION_BWD_DATA_ALGO_1", "CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT", "CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING", "CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD", "CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED", "CUDNN_CONVOLUTION_BWD_DATA_ALGO_COUNT", ] Returns ------- algo: int algorithm index """ idx = -1 if algo_type == "fwd": idx = _FWD_ALGOS.index(algo_name) elif algo_type == "bwd_filter": idx = _BWD_FILTER_ALGOS.index(algo_name) elif algo_type == "bwd_data": idx = _BWD_DATA_ALGOS.index(algo_name) assert idx >= 0 return idx def _get_np_int32_array_handle(arr): """Return a void_p handle for a numpy array Parameters ---------- arr: numpy.NDArray source numpy array Returns ------- ptr: ctypes.c_void_p pointer to the data """ assert arr.dtype == np.int32 ptr = arr.ctypes.data_as(ctypes.POINTER(ctypes.c_int32)) return ctypes.cast(ptr, ctypes.c_void_p) def _prepare_global_func_params(dims, pad, stride, dilation, x_shape=None, w_shape=None): full_dims = dims + 2 if x_shape: assert isinstance(x_shape, list) assert len(x_shape) == full_dims if w_shape: assert isinstance(w_shape, list) assert len(w_shape) == full_dims pad = ( np.full(dims, pad, dtype=np.int32) if isinstance(pad, int) else np.array(pad, dtype=np.int32) ) stride = ( np.full(dims, stride, dtype=np.int32) if isinstance(stride, int) else np.array(stride, dtype=np.int32) ) dilation = ( np.full(dims, dilation, dtype=np.int32) if isinstance(dilation, int) else np.array(dilation, dtype=np.int32) ) xshape = np.array(x_shape, dtype=np.int32) if x_shape else None wshape = np.array(w_shape, dtype=np.int32) if x_shape else None return pad, stride, dilation, xshape, wshape def conv_output_shape( tensor_format, pad, stride, dilation, x_shape, w_shape, data_dtype, conv_dtype, groups=1 ): """Get output shape of 2D or 3D convolution Paramters --------- tensor_format: int 0: CUDNN_TENSOR_NCHW 1: CUDNN_TENSOR_NHWC 2: CUDNN_TENSOR_NCHW_VECT_C pad: int or list padding stride: int or list stride dilation: int or list dilation x_shape: list input shape w_shape: list weight shape data_dtype: str data type conv_dtype: str convolution type groups: int number of groups Returns ------- oshape: list output shape """ assert len(x_shape) == len(w_shape) assert len(x_shape) in (4, 5) if tensor_format == 0: n_output = x_shape[0] c_output = w_shape[0] x_chan = x_shape[1] w_chan_input = w_shape[1] x_shape = x_shape[2:] w_shape = w_shape[2:] elif tensor_format == 1: n_output = x_shape[0] c_output = w_shape[0] x_chan = x_shape[-1] w_chan_input = w_shape[-1] assert len(x_shape) == 4, "CuDNN layout NHWC is only well-defined for 4d tensors" x_shape = x_shape[1:-1] w_shape = w_shape[1:-1] elif tensor_format == 2: n_output = x_shape[0] c_output = w_shape[0] x_chan = x_shape[1] w_chan_input = w_shape[1] w_lanes = tvm.runtime.DataType(conv_dtype).lanes assert w_lanes == 1 x_shape = x_shape[2:] w_shape = w_shape[2:] else: raise ValueError("Unknown CuDNN tensor format: '{}'".format(tensor_format)) x_lanes = tvm.runtime.DataType(data_dtype).lanes assert x_chan * x_lanes == w_chan_input * groups, ( "Mismatched dimensions, data has {} channels/group " "(dimension {} with {} lanes/value, {} groups), " "but weights require {} input channels/group" ).format(x_chan // groups, x_chan, x_lanes, groups, w_chan_input) output_dims = [] for x_shape_i, w_shape_i, pad_i, stride_i, dilation_i in zip( x_shape, w_shape, pad, stride, dilation ): output_dim = 1 + (x_shape_i + 2 * pad_i - (((w_shape_i - 1) * dilation_i) + 1)) // stride_i output_dims.append(output_dim) if tensor_format in [0, 2]: output = [n_output, c_output, *output_dims] elif tensor_format == 1: output = [n_output, *output_dims, c_output] else: raise ValueError("Unknown CuDNN tensor format: '{}'".format(tensor_format)) return output def conv_dgrad_shape( tensor_format, pad, stride, dilation, dy_shape, w_shape, output_padding=(0, 0), groups=1 ): """Get output shape of conv2d gradient with respect to data Paramters --------- tensor_format: int 0: CUDNN_TENSOR_NCHW 1: CUDNN_TENSOR_NHWC pad: int or list padding stride: int or list stride dilation: int or list dilation dy_shape: list output gradient shape w_shape: list weight shape data_dtype: str data type conv_dtype: str convolution type groups: int number of groups Returns ------- oshape: list output shape """ assert len(dy_shape) == len(w_shape) assert len(dy_shape) == 4 if tensor_format == 0: N = dy_shape[0] C = w_shape[1] * groups dy_shape = dy_shape[2:] w_shape = w_shape[2:] elif tensor_format == 1: N = dy_shape[0] C = w_shape[-1] * groups dy_shape = dy_shape[1:-1] w_shape = w_shape[1:-1] else: raise ValueError("Unsupported CuDNN tensor format: '{}'".format(tensor_format)) input_dims = [] for dy_shape_i, w_shape_i, pad_i, stride_i, dilation_i, out_pad in zip( dy_shape, w_shape, pad, stride, dilation, output_padding ): input_dim = ( (dy_shape_i - 1) * stride_i - 2 * pad_i + (((w_shape_i - 1) * dilation_i) + 1) + out_pad ) input_dims.append(input_dim) if tensor_format == 0: output = [N, C, *input_dims] else: output = [N, *input_dims, C] return output def _conv_find_algo( func_name, tensor_format, pad, stride, dilation, x_shape, w_shape, y_shape, data_dtype, conv_dtype, groups=1, ): """ Common function to choose the best cudnn convolution algorithm for the given input and the convolution type. """ dims = len(x_shape) assert dims in (4, 5) pad, stride, dilation, xshape, wshape = _prepare_global_func_params( dims - 2, pad, stride, dilation, x_shape, w_shape ) yshape = np.array(y_shape, dtype=np.int32) func = tvm._ffi.get_global_func(func_name) return func( tensor_format, dims - 2, _get_np_int32_array_handle(pad), _get_np_int32_array_handle(stride), _get_np_int32_array_handle(dilation), _get_np_int32_array_handle(xshape), _get_np_int32_array_handle(wshape), _get_np_int32_array_handle(yshape), data_dtype, conv_dtype, groups, ) def conv_forward_find_algo( tensor_format, pad, stride, dilation, x_shape, w_shape, y_shape, data_dtype, conv_dtype, groups=1, ): """Choose the best forward algorithm for the given input. Paramters --------- tensor_format: int 0: CUDNN_TENSOR_NCHW 1: CUDNN_TENSOR_NHWC 2: CUDNN_TENSOR_NCHW_VECT_C pad: int or list padding stride: int or list stride dilation: int or list dilation x_shape: list input shape w_shape: list weight shape y_shape: list output shape data_dtype: str data type conv_dtype: str convolution type groups: int number of groups Returns ------- algo: int algo chosen by CUDNN """ return _conv_find_algo( "tvm.contrib.cudnn.conv.forward_find_algo", tensor_format, pad, stride, dilation, x_shape, w_shape, y_shape, data_dtype, conv_dtype, groups, ) def conv_backward_data_find_algo( tensor_format, pad, stride, dilation, dy_shape, w_shape, dx_shape, data_dtype, conv_dtype, groups=1, ): """Choose the best backward data algorithm for the given input. Paramters --------- tensor_format: int 0: CUDNN_TENSOR_NCHW 1: CUDNN_TENSOR_NHWC 2: CUDNN_TENSOR_NCHW_VECT_C pad: int or list padding stride: int or list stride dilation: int or list dilation dy_shape: list output gradient shape w_shape: list weight shape dx_shape: list dgrad shape data_dtype: str data type conv_dtype: str convolution type groups: int number of groups Returns ------- algo: int algo chosen by CUDNN """ return _conv_find_algo( "tvm.contrib.cudnn.conv.backward_data_find_algo", tensor_format, pad, stride, dilation, dy_shape, w_shape, dx_shape, data_dtype, conv_dtype, groups, ) def conv_backward_filter_find_algo( tensor_format, pad, stride, dilation, dy_shape, x_shape, dw_shape, data_dtype, conv_dtype, groups=1, ): """Choose the best backward filter algorithm for the given input. Paramters --------- tensor_format: int 0: CUDNN_TENSOR_NCHW 1: CUDNN_TENSOR_NHWC 2: CUDNN_TENSOR_NCHW_VECT_C pad: int or list padding stride: int or list stride dilation: int or list dilation dy_shape: list output gradient shape x_shape: list weight shape dw_shape: list wgrad shape data_dtype: str data type conv_dtype: str convolution type groups: int number of groups Returns ------- algo: int algo chosen by CUDNN """ return _conv_find_algo( "tvm.contrib.cudnn.conv.backward_filter_find_algo", tensor_format, pad, stride, dilation, dy_shape, x_shape, dw_shape, data_dtype, conv_dtype, groups, ) def conv_forward(x, w, pad, stride, dilation, conv_mode, tensor_format, algo, conv_dtype, groups=1): """Create an extern op that compute 2D or 3D convolution with CuDNN Parameters ---------- x: Tensor input feature map w: Tensor convolution weight pad: int or list padding stride: int or list stride dilation: int or list dilation conv_mode: int 0: CUDNN_CONVOLUTION 1: CUDNN_CROSS_CORRELATION tensor_format: int 0: CUDNN_TENSOR_NCHW 1: CUDNN_TENSOR_NHWC 2: CUDNN_TENSOR_NCHW_VECT_C algo: int Forward algorithm, get index from ```algo_to_index``` function if algo == -1, the best algo will be chosen by CUDNN conv_dtype: str convolution type groups: int the number of groups Returns ------- y: Tensor The result tensor """ dims = len(x.shape) assert dims in (4, 5) conv_dtype = x.dtype if conv_dtype is None else conv_dtype pad, stride, dilation, _, _ = _prepare_global_func_params(dims - 2, pad, stride, dilation) x_shape = list(x.shape) if isinstance(x.shape[0], tvm.tir.expr.IntImm): oshape = conv_output_shape( tensor_format, pad, stride, dilation, x_shape, list(w.shape), x.dtype, conv_dtype, groups, ) if algo == -1: # For now if we try to call `cudnnFindConvolutionForwardAlgorithm` when # using INT8 data type, CuDNN will crash down. # On the other hand, CuDNN only support IMPLICIT_PRECOMP_GEMM at NHWC format if tensor_format == 1 and conv_dtype == "int32": algo = 1 else: algo = conv_forward_find_algo( tensor_format, pad, stride, dilation, list(x.shape), list(w.shape), oshape, x.dtype, conv_dtype, groups, ) else: # The dynamic batch size case, pretend this is a single batch x_shape[0] = 1 oshape = conv_output_shape( tensor_format, pad, stride, dilation, x_shape, list(w.shape), x.dtype, conv_dtype, groups, ) oshape[0] = x.shape[0] # This picks CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM # It seems this is the fastest among algorithms that are always applicable algo = 1 if dims == 4: return te.extern( oshape, [x, w], lambda ins, outs: tvm.tir.call_packed( "tvm.contrib.cudnn.conv2d.forward", conv_mode, tensor_format, algo, pad[0], pad[1], stride[0], stride[1], dilation[0], dilation[1], ins[0], ins[1], outs[0], conv_dtype, groups, ), name="y", ) return te.extern( oshape, [x, w], lambda ins, outs: tvm.tir.call_packed( "tvm.contrib.cudnn.conv3d.forward", conv_mode, tensor_format, algo, pad[0], pad[1], pad[2], stride[0], stride[1], stride[2], dilation[0], dilation[1], dilation[2], ins[0], ins[1], outs[0], conv_dtype, groups, ), name="y", ) def conv_backward_data( dy, w, pad, stride, dilation, conv_mode, tensor_format, conv_dtype, groups=1, output_padding=(0, 0), ): """Create a CuDNN extern op that computes the gradient of 2D convolution with respect to data. Parameters ---------- dy: Tensor output gradient w: Tensor convolution weight pad: int or list padding stride: int or list stride dilation: int or list dilation conv_mode: int 0: CUDNN_CONVOLUTION 1: CUDNN_CROSS_CORRELATION tensor_format: int 0: CUDNN_TENSOR_NCHW 1: CUDNN_TENSOR_NHWC conv_dtype: str convolution type groups: int the number of groups Returns ------- dx: Tensor dgrad tensor """ dims = len(dy.shape) assert dims == 4 conv_dtype = dy.dtype if conv_dtype is None else conv_dtype pad, stride, dilation, _, _ = _prepare_global_func_params(dims - 2, pad, stride, dilation) assert isinstance( dy.shape[0], tvm.tir.expr.IntImm ), "Dynamic batch is not supported for cudnn conv2d backwad data yet." dx_shape = conv_dgrad_shape( tensor_format, pad, stride, dilation, dy.shape, w.shape, output_padding, groups ) if exists(): # When cudnn exists, find the backward data algo algo = conv_backward_data_find_algo( tensor_format, pad, stride, dilation, list(dy.shape), list(w.shape), dx_shape, dy.dtype, conv_dtype, groups, ) else: algo = 1 return te.extern( dx_shape, [dy, w], lambda ins, outs: tvm.tir.call_packed( "tvm.contrib.cudnn.conv2d.backward_data", conv_mode, tensor_format, algo, pad[0], pad[1], stride[0], stride[1], dilation[0], dilation[1], ins[0], ins[1], outs[0], conv_dtype, groups, ), name="dx", ) def conv_backward_filter( dy, x, kernel_size, pad, stride, dilation, conv_mode, tensor_format, conv_dtype, groups=1 ): """Create a CuDNN extern op that computes the gradient of 2D convolution with respect to weight. Parameters ---------- dy: Tensor output gradient x: Tensor input tensor kernel_size: a pair of int The spatial size of the corresponding forward convolution kernel pad: int or list padding stride: int or list stride dilation: int or list dilation conv_mode: int 0: CUDNN_CONVOLUTION 1: CUDNN_CROSS_CORRELATION tensor_format: int 0: CUDNN_TENSOR_NCHW 1: CUDNN_TENSOR_NHWC conv_dtype: str convolution type groups: int the number of groups Returns ------- dw: Tensor wgrad tensor """ dims = len(x.shape) assert dims == 4 conv_dtype = x.dtype if conv_dtype is None else conv_dtype pad, stride, dilation, _, _ = _prepare_global_func_params(dims - 2, pad, stride, dilation) filter_h, filter_w = kernel_size x_shape = list(x.shape) assert isinstance( x.shape[0], tvm.tir.expr.IntImm ), "Dynamic batch is not supported for cudnn conv2d backwad filter yet." ic_ind = 1 if tensor_format == 0 else 3 if groups > 1: assert ( x_shape[ic_ind] == dy.shape[ic_ind] and x_shape[ic_ind] == groups ), "Only depthwise wgrad supported for groups > 1." ic = 1 else: ic = x_shape[ic_ind] if tensor_format == 0: dw_shape = [dy.shape[1], ic, filter_h, filter_w] else: dw_shape = [dy.shape[3], filter_h, filter_w, ic] algo = conv_backward_filter_find_algo( tensor_format, pad, stride, dilation, list(dy.shape), list(x.shape), dw_shape, x.dtype, conv_dtype, groups, ) return te.extern( dw_shape, [dy, x], lambda ins, outs: tvm.tir.call_packed( "tvm.contrib.cudnn.conv2d.backward_filter", conv_mode, tensor_format, algo, pad[0], pad[1], stride[0], stride[1], dilation[0], dilation[1], ins[0], ins[1], outs[0], conv_dtype, groups, ), name="dw", ) def softmax(x, axis=-1): """Compute softmax using CuDNN Parameters ---------- x : tvm.te.Tensor The input tensor axis : int The axis to compute the softmax Returns ------- ret : tvm.te.Tensor The result tensor """ return te.extern( x.shape, [x], lambda ins, outs: tvm.tir.call_packed( "tvm.contrib.cudnn.softmax.forward", ins[0], outs[0], axis ), name="y", ) def log_softmax(x, axis=-1): """Compute log_softmax using CuDNN Parameters ---------- x : tvm.te.Tensor The input tensor axis : int The axis to compute log softmax over Returns ------- ret : tvm.te.Tensor The result tensor """ return te.extern( x.shape, [x], lambda ins, outs: tvm.tir.call_packed( "tvm.contrib.cudnn.log_softmax.forward", ins[0], outs[0], axis ), name="y", )
https://github.com/zk-ml/tachikoma
python/tvm/contrib/cutlass/__init__.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """BYOC support for CUTLASS.""" from .build import has_cutlass, num_cutlass_partitions, finalize_modules, finalize_modules_vm
https://github.com/zk-ml/tachikoma
python/tvm/contrib/cutlass/build.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, dangerous-default-value """Driver for partitioning and building a Relay module for CUTLASS offload.""" import logging import os import multiprocessing import tvm from tvm import runtime, relay from tvm.contrib.nvcc import get_cuda_version from tvm._ffi.registry import register_func from .gen_gemm import CutlassGemmProfiler from .gen_conv2d import CutlassConv2DProfiler from .library import ConvKind logger = logging.getLogger("cutlass") def has_cutlass(): """Returns true if the CUTLASS custom codegen is available""" return tvm.get_global_func("relay.ext.cutlass.create_c_source_module", True) is not None def _get_cutlass_path(): tvm_root = os.path.join(os.path.dirname(os.path.realpath(__file__)), "../../../../") cutlass_path = os.path.join(tvm_root, "3rdparty/cutlass") assert os.path.exists( cutlass_path ), """The CUTLASS root directory not found in {}. Currently, using CUTLASS requires building TVM from source.""".format( cutlass_path ) return cutlass_path def _get_cutlass_compile_options(sm, threads, use_fast_math=False): cutlass_root = _get_cutlass_path() cutlass_include = os.path.join(cutlass_root, "include") cutlass_util_include = os.path.join(cutlass_root, "tools/util/include") kwargs = {} kwargs["cc"] = "nvcc" kwargs["options"] = [ "-c", "-DCUTLASS_ENABLE_TENSOR_CORE_MMA=1", "-gencode=arch=compute_%d,code=[sm_%d,compute_%d]" % (sm, sm, sm), "-Xcompiler=-fPIC", "-Xcompiler=-Wconversion", "-Xcompiler=-fno-strict-aliasing", "-O3", "-std=c++17", "-I" + cutlass_include, "-I" + cutlass_util_include, ] if use_fast_math: kwargs["options"].append("-DCUTLASS_USE_TANH_FOR_SIGMOID") cuda_ver = get_cuda_version() if cuda_ver >= (11, 2): ncpu = multiprocessing.cpu_count() if threads < 0 else threads kwargs["options"].append("-t %d" % ncpu) return kwargs class OpAnnotator(tvm.relay.ExprVisitor): """Annotates partitioned functions with shape and dtype information.""" def __init__(self): super().__init__() self.signature = {} def visit_call(self, call): op = call.op if isinstance(op, relay.Function) and "Composite" in op.attrs: self.signature["op_type"] = op.attrs["Composite"] for i, arg in enumerate(op.params): self.signature["arg%d_shape" % i] = arg.checked_type.shape self.signature["arg%d_dtype" % i] = arg.checked_type.dtype self.signature["ret_shape"] = op.ret_type.shape self.signature["ret_dtype"] = op.ret_type.dtype self.visit(op.body) if str(op) in ["nn.conv2d", "nn.conv2d_transpose", "nn.conv2d_backward_weight"]: self.op_attrs = call.attrs for arg in call.args: self.visit(arg) def select_gemm_kernel( cutlass_profiler, op_type, MM, KK, NN, out_dtype, arg0_dtype, arg1_dtype, use_3xtf32, batched, find_first_valid, use_multiprocessing, ): """Run CUTLASS profiler to select the best kernel, or return the default one for dynamic workloads.""" if any(isinstance(s, tvm.tir.Any) for s in [MM, KK, NN]): out = cutlass_profiler.get_default( op_type, out_dtype, arg0_dtype, arg1_dtype, use_3xtf32, batched=batched ) name, cutlass_op_def = out["name"], out["opdef"] logger.info("Picked the default kernel %s", name) else: name, cutlass_op_def, _ = cutlass_profiler.profile( op_type, MM, NN, KK, out_dtype, arg0_dtype, arg1_dtype, use_3xtf32, batched=batched, find_first_valid=find_first_valid, use_multiprocessing=use_multiprocessing, ) if not find_first_valid: logger.info("The best kernel is %s", name) else: logger.info("Picked the first kernel found %s", name) return name, cutlass_op_def def handle_batch_matmul( cutlass_profiler, op_type, arg0_shape, arg1_shape, out_dtype, arg0_dtype, arg1_dtype, use_3xtf32, find_first_valid, use_multiprocessing, ): """Profile and select a kernel for batch_matmul op workload.""" MM = arg0_shape[1] KK = arg0_shape[2] NN = arg1_shape[1] name, cutlass_op_def = select_gemm_kernel( cutlass_profiler, op_type, MM, KK, NN, out_dtype, arg0_dtype, arg1_dtype, use_3xtf32, True, find_first_valid, use_multiprocessing, ) return { "batch": arg0_shape[0], "batch_stride_A": arg0_shape[1] * arg0_shape[2], "batch_stride_B": arg1_shape[1] * arg1_shape[2], "batch_stride_C": arg0_shape[1] * arg1_shape[1], "cutlass_op_def": cutlass_op_def, "cutlass_op_name": name, "lda": "K", "ldb": "K", "ldc": "N", } def handle_dense( cutlass_profiler, op_type, arg0_shape, arg1_shape, out_dtype, arg0_dtype, arg1_dtype, use_3xtf32, find_first_valid, use_multiprocessing, ): """Profile and select a kernel for dense op workload.""" MM = arg0_shape[0] KK = arg0_shape[1] NN = arg1_shape[0] name, cutlass_op_def = select_gemm_kernel( cutlass_profiler, op_type, MM, KK, NN, out_dtype, arg0_dtype, arg1_dtype, use_3xtf32, False, find_first_valid, use_multiprocessing, ) assert "tn_align" in name, "Only supports (row_major, col_major) input layout for now." return { "cutlass_op_def": cutlass_op_def, "cutlass_op_name": name, "lda": "K", "ldb": "K", "ldc": "N", } def handle_conv2d( cutlass_profiler, op_type, d_shape, w_shape, padding, strides, dilation, out_dtype, data_dtype, weight_dtype, use_3xtf32, split_k_slices, profile_all_alignments, find_first_valid, use_multiprocessing, ): """Profile and select a kernel for conv2d op workload.""" if "conv2d_transpose" in op_type: conv_kind = ConvKind.Dgrad elif "backward_weight" in op_type: conv_kind = ConvKind.Wgrad else: conv_kind = ConvKind.Fprop if any(isinstance(s, tvm.tir.Any) for s in d_shape): out = cutlass_profiler.get_default( op_type, out_dtype, data_dtype, weight_dtype, use_3xtf32, conv_kind, strides ) name, cutlass_op_def = out["name"], out["opdef"] logger.info("Picked the default kernel %s", name) else: name, cutlass_op_def, _ = cutlass_profiler.profile( op_type, d_shape, w_shape, padding, strides, dilation, out_dtype, data_dtype, weight_dtype, use_3xtf32, conv_kind, split_k_slices, profile_all_alignments, find_first_valid=find_first_valid, use_multiprocessing=use_multiprocessing, ) if not find_first_valid: logger.info("The best kernel is %s", name) else: logger.info("Picked the first kernel found %s", name) return { "cutlass_op_def": cutlass_op_def, "cutlass_op_name": name, } def num_cutlass_partitions(mod): return sum([(1 if "cutlass" in var.name_hint else 0) for var in mod.get_global_vars()]) def tune_cutlass_kernels( mod, sm, use_3xtf32=True, split_k_slices=[1], profile_all_alignments=False, find_first_valid=False, use_multiprocessing=False, tmp_dir="./tmp", ): """Given a module partitioned for CUTLASS offloading, profile each workload to select which kernels to emit. Parameters ---------- mod : IRModule The Relay module with cutlass partitions. sm : int An integer specifying the compute capability. For example, 75 for Turing and 80 or 86 for Ampere. use_3xtf32 : bool Wheter or not use slower but very accurate (compared to tf32) 3xtf32 mode for fp32 inputs on tensorcore. split_k_slices : list of int Split factor candidates for split-K GEMM. If split-K > 1, the GEMM K-loop is computed in parallel across split-K blocks, and a separate global reduction kernel is launched to accumulate partial reductions. The profiler will pick the best split-k factor from the given candidate list. Note that the larger split-K factor requires a larger workspace. Currently, parallel split-k has been tested only for wgrad. For GEMM and other conv2d kinds, split_k_slices is ignored. profile_all_alignments : bool When True, profile all kernal variants with smaller alignments than the largest possible. find_first_valid : bool Whether or not profile all candidate kernels, or stop profiling after the first applicable kernel is found. use_multiprocessing : bool Whether or not compile profiler executables for different kernels in parallel. tmp_dir : string, optional A temporary directory where intermediate compiled artifacts will be stored. Returns ------- mod : IRModule The updated module annotated with cutlass profiling information. num_cutlass_partition : int The number of partitioned functions created for CUTLASS. """ gemm_profiler = CutlassGemmProfiler(sm, _get_cutlass_path(), tmp_dir) conv2d_profiler = CutlassConv2DProfiler(sm, _get_cutlass_path(), tmp_dir) num_cutlass_partition = 0 for var in mod.get_global_vars(): fun_name = var.name_hint func = mod[fun_name] if "cutlass" in fun_name: num_cutlass_partition += 1 new_func = tune_cutlass_function( func, use_3xtf32, split_k_slices, profile_all_alignments, find_first_valid, use_multiprocessing, gemm_profiler, conv2d_profiler, ) mod.update_func(var, new_func) return mod, num_cutlass_partition def tune_cutlass_function( func, use_3xtf32, split_k_slices, profile_all_alignments, find_first_valid, use_multiprocessing, gemm_profiler, conv2d_profiler, ): """Given a function intended to be offloaded to CUTLASS, profile each workload to select which kernels to emit. Parameters ---------- func : IRModule The Relay Function to tune for. use_3xtf32 : bool Wheter or not use slower but very accurate (compared to tf32) 3xtf32 mode for fp32 inputs on tensorcore. split_k_slices : list of int Split factor candidates for split-K GEMM. If split-K > 1, the GEMM K-loop is computed in parallel accross split-K blocks, and a seperate global reduction kernel is launched to accumulate partial reductions. The profiler will pick the best split-k factor from the given candidate list. Note that the larger split-K factor requires a larger workspace. Currently, parallel split-k has been tested only for wgrad. For GEMM and other conv2d kinds, split_k_slices is ignored. profile_all_alignments : bool When True, profile all kernal variants with smaller alignments than the largest possible. find_first_valid : bool Whether or not profile all candidate kernels, or stop profiling after the first applicable kernel is found. use_multiprocessing : bool Whether or not compile profiler executables for different kernels in parallel. gemm_profiler : CutlassGemmProfiler Profiler for dense operators. May cache results between tuned functions. conv2d_profiler : CutlassConv2DProfiler Profiler for conv2d operators. May cach results between tuned functions. Returns ------- annot_func : Function The input function with attributes capturing the best CUTLASS kernel found by tuning. """ annotator = OpAnnotator() annotator.visit(func) out_shape = annotator.signature["ret_shape"] out_dtype = annotator.signature["ret_dtype"] op_type = annotator.signature["op_type"] new_attrs = {"op_type": op_type} new_attrs.update(annotator.signature) new_attrs.update(func.attrs) arg0_shape = new_attrs["arg0_shape"] arg1_shape = new_attrs["arg1_shape"] arg0_dtype = new_attrs["arg0_dtype"] arg1_dtype = new_attrs["arg1_dtype"] if "conv2d" in op_type: new_attrs["padding"] = annotator.op_attrs.padding new_attrs["strides"] = annotator.op_attrs.strides new_attrs["dilation"] = annotator.op_attrs.dilation if "conv2d_transpose" in op_type: d_shape = out_shape w_shape = arg1_shape elif "conv2d_backward_weight" in op_type: d_shape = arg1_shape w_shape = out_shape else: d_shape = arg0_shape w_shape = arg1_shape new_attrs.update( handle_conv2d( conv2d_profiler, op_type, d_shape, w_shape, annotator.op_attrs.padding, annotator.op_attrs.strides, annotator.op_attrs.dilation, out_dtype, arg0_dtype, arg1_dtype, use_3xtf32, split_k_slices, profile_all_alignments, find_first_valid, use_multiprocessing, ) ) elif "batch_matmul" in op_type: new_attrs.update( handle_batch_matmul( gemm_profiler, op_type, arg0_shape, arg1_shape, out_dtype, arg0_dtype, arg1_dtype, use_3xtf32, find_first_valid, use_multiprocessing, ) ) elif "dense" in op_type: new_attrs.update( handle_dense( gemm_profiler, op_type, arg0_shape, arg1_shape, out_dtype, arg0_dtype, arg1_dtype, use_3xtf32, find_first_valid, use_multiprocessing, ) ) else: raise ValueError("%s unsupported composite" % op_type) new_attrs = tvm.ir.make_node("DictAttrs", **new_attrs) return relay.Function( func.params, func.body, ret_type=func.ret_type, type_params=func.type_params, attrs=new_attrs, ) @register_func("relay.ext.cutlass.compile_for_cutlass") def compile_for_cutlass(mod, cutlass_target): """Given an IRModule with at least one Compiler='cutlass' Relay function, return a LibraryModule with all such functions compiled into their PackedFunc-compatible form. - First runs CUTLASS tuning to decide on the best kernels, which itself requires the repeated compilation and execution of CUDA code using nvcc. The results of this is captured as annotation on each relevant function. Kernel performance is cached overall all functions. - Then generates a single CSourceModule containing C code implementing all the Compiler='cutlass' Relay functions, accounting for the tuning done above. - Then compiles that CSourceModule with the appropriate nvcc arguments to yield a static .o library. An export_library step will be required on the final runtime module to link that library into the overall .so library. See CompileForCutlass in src/relay/backend/contrib/cutlass/codegen.cc for where this helper function is used to implement the RelayToTIR pass hook for CUTLASS.""" # Recover options from the current 'cutlass' Target assert cutlass_target.kind.name == "cutlass" tuning_config = { key: cutlass_target.attrs.get(key) for key in [ "sm", "use_3xtf32", "split_k_slices", "profile_all_alignments", "find_first_valid", "use_multiprocessing", ] } compile_config = { key: cutlass_target.attrs.get(key) for key in ["sm", "threads", "use_fast_math"] } tmp_dir = cutlass_target.attrs.get("tmp_dir") # Tune logger.info("Tuning for CUTLASS") mod, _ = tune_cutlass_kernels(mod, tmp_dir=tmp_dir, **tuning_config) # Compile logger.info("Creating CSource module for CUTLASS") create_c_source_module = tvm._ffi.get_global_func("relay.ext.cutlass.create_c_source_module") c_module = create_c_source_module(mod) function_names = c_module.get_function("get_func_names")() compile_options = _get_cutlass_compile_options(**compile_config) lib_path = os.path.join(tmp_dir, "cutlass.o") logger.info("Compiling generated CUTLASS code") c_module.export_library(lib_path, workspace_dir=tmp_dir, **compile_options) # Recover static library logger.info("Loading compiled CUTLASS code") final_mod = tvm.runtime.load_static_library(lib_path, function_names) logger.info("Done with CUTLASS compilation") return final_mod def finalize_modules(lib, lib_path="compile.so", tmp_dir="./tmp"): """Returns lib with any C source, LLVM and static library modules complied and linked in ready for use by the graph or AOT executors. This method is not specific to CUTLASS, however it does assume nvcc will be used for final compilation and linking. It is provided here for convenience. Parameters ---------- lib : runtime.Module The output from relay.build. lib_path : string The path to a shared library which will be generated as the result of the build process. tmp_dir : string A temporary directory where intermediate compiled artifacts will be stored. Returns ------- updated_lib : runtime.Module The updated library with all compilation and linking completed. """ lib_path = os.path.join(tmp_dir, lib_path) lib.export_library(lib_path, workspace_dir=tmp_dir, cc="nvcc") return runtime.load_module(lib_path) def finalize_modules_vm(vm_exec, lib_path="compile.so", vmcode_path="vmcode.ro", tmp_dir="./tmp"): """Returns vm_exec with any C source, LLVM and static library modules compiled and linked in ready for use by the VM executor. This method is not specific to CUTLASS, however it does assume nvcc will be used for final compilation and linking. It is provided here for convenience. Parameters ---------- vm_exec : vm.Executable The output from relay.vm.compile containing compiled host code and kernels. lib_path : string The path to a shared library which will be generated as the result of the build process. vmcode_path : string The path where the VM bytecode will be serialized to as a side-effect. tmp_dir : string A temporary directory where intermediate compiled artifacts will be stored. Returns ------- updated_vm_exec : vm.Executable The updated VM executable with all compilation and linking completed. """ code, lib = vm_exec.save() lib_path = os.path.join(tmp_dir, lib_path) vmcode_path = os.path.join(tmp_dir, vmcode_path) lib.export_library(lib_path, workspace_dir=tmp_dir, cc="nvcc") with open(vmcode_path, "wb") as fo: fo.write(code) lib = tvm.runtime.load_module(lib_path) return tvm.runtime.vm.Executable.load_exec(code, lib)
https://github.com/zk-ml/tachikoma
python/tvm/contrib/cutlass/conv2d_operation.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, unused-wildcard-import, wildcard-import """Generator for CUTLASS Conv2D kernels.""" from .library import * class Conv2dOperation: """Describes various attributes for instantiating Conv2d kernels.""" def __init__( self, conv_kind, iterator_algorithm, arch, tile_description, A, B, C, element_epilogue, stride_support, epilogue_functor=EpilogueFunctor.LinearCombination, swizzling_functor=SwizzlingFunctor.Identity1, split_k_slices=1, ): self.operation_kind = OperationKind.Conv2d self.arch = arch self.tile_description = tile_description self.conv_kind = conv_kind self.A = A self.B = B self.C = C self.element_epilogue = element_epilogue self.epilogue_functor = epilogue_functor self.iterator_algorithm = iterator_algorithm self.stride_support = stride_support self.swizzling_functor = swizzling_functor self.split_k_slices = split_k_slices def accumulator_type(self): return self.tile_description.math_instruction.element_accumulator def core_name(self): """The basic operation kind is prefixed with a letter indicating the accumulation type.""" intermediate_type = "" if self.tile_description.math_instruction.opcode_class == OpcodeClass.TensorOp: inst_shape = "%d%d%d" % tuple(self.tile_description.math_instruction.instruction_shape) if ( self.tile_description.math_instruction.element_a != self.A.element and self.tile_description.math_instruction.element_a != self.accumulator_type() ): intermediate_type = DataTypeNames[self.tile_description.math_instruction.element_a] else: inst_shape = "" return "%s%s%s%s_%s" % ( ShortDataTypeNames[self.accumulator_type()], inst_shape, intermediate_type, ConvKindNames[self.conv_kind], IteratorAlgorithmNames[self.iterator_algorithm], ) def extended_name(self): """Append data types if they differ from compute type.""" if ( self.C.element != self.tile_description.math_instruction.element_accumulator and self.A.element != self.tile_description.math_instruction.element_accumulator ): extended_name = "${element_c}_${core_name}_${element_a}" elif ( self.C.element == self.tile_description.math_instruction.element_accumulator and self.A.element != self.tile_description.math_instruction.element_accumulator ): extended_name = "${core_name}_${element_a}" else: extended_name = "${core_name}" extended_name = substitute_template( extended_name, { "element_a": DataTypeNames[self.A.element], "element_c": DataTypeNames[self.C.element], "core_name": self.core_name(), }, ) return extended_name def layout_name(self): return "%s" % (ShortLayoutTypeNames[self.A.layout]) def procedural_name(self): """ The full procedural name indicates architecture, extended name, tile size, and layout. """ opcode_class_name = OpcodeClassNames[self.tile_description.math_instruction.opcode_class] threadblock = "%dx%d_%dx%d" % ( self.tile_description.threadblock_shape[0], self.tile_description.threadblock_shape[1], self.tile_description.threadblock_shape[2], self.tile_description.stages, ) if self.stride_support == StrideSupport.Unity: configuration_name = ( "cutlass_${opcode_class}_${extended_name}_${threadblock}" "_${layout}_align${alignment}_unity_stride" ) else: configuration_name = ( "cutlass_${opcode_class}_${extended_name}_${threadblock}" "_${layout}_align${alignment}" ) if self.split_k_slices > 1: configuration_name += "_splitk%d" % self.split_k_slices return substitute_template( configuration_name, { "opcode_class": opcode_class_name, "extended_name": self.extended_name(), "threadblock": threadblock, "layout": self.layout_name(), "alignment": "%d" % self.A.alignment, }, ) class EmitConv2dInstance: """Responsible for emitting a CUTLASS template definition.""" def __init__(self): self.epilogue_default = """ ${epilogue_functor}< ${element_c}, ${epilogue_vector_length}, ${element_accumulator}, ${element_epilogue} >""" self.epilogue_no_beta_scaling = """ ${epilogue_functor}< ${element_c}, ${epilogue_vector_length}, ${element_accumulator}, ${element_epilogue}, cutlass::epilogue::thread::ScaleType::NoBetaScaling >""" self.epilogue_residual_block = """ ${epilogue_functor}< ${element_c}, ${element_accumulator}, ${element_epilogue}, ${element_c}, ${epilogue_vector_length}, ${activation}, ${binary_op}, ${unary_op} >""" self.epilogue_wgrad = """ ${epilogue_functor}< ${element_c}, 4, float, float >""" self.template = """ // Conv2d${conv_kind_name} ${iterator_algorithm_name} kernel instance "${operation_name}" using ${operation_name} = typename cutlass::conv::kernel::DefaultConv2d${conv_kind_name}${conv_kernel_postfix}< ${element_a}, ${layout_a}, ${element_b}, ${layout_b}, ${element_c}, ${layout_c}, ${element_accumulator}, ${opcode_class}, ${arch}, cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>, cutlass::gemm::GemmShape<${warp_shape_m}, ${warp_shape_n}, ${warp_shape_k} >, cutlass::gemm::GemmShape<${instruction_shape_m}, ${instruction_shape_n}, ${instruction_shape_k}>, ${epilogue}, ${swizzling_functor}, // cutlass::gemm::threadblock::GemmSplitKIdentityThreadblockSwizzle<>, ${stages}, ${math_operator}, ${iterator_algorithm}, ${stride_support}, ${align_a}, ${align_b} >::Kernel; ${reduction} """ self.reduction_template = """ using EpilogueOutputOp = ${epilogue}; using ReductionOp = cutlass::reduction::thread::ReduceAdd< ${element_accumulator}, ${element_accumulator}, EpilogueOutputOp::kCount >; using ReductionKernel = cutlass::reduction::kernel::ReduceSplitK< cutlass::MatrixShape<4, 32 * EpilogueOutputOp::kCount>, EpilogueOutputOp, ReductionOp >; using ReductionDevice = cutlass::reduction::device::ReduceSplitK<ReductionKernel>; using ReductionStrideIndex = typename ReductionDevice::StrideIndex; """ def emit( self, operation, no_beta_scaling=False, residual_block_info=False, emit_reduction=False ): """Instantiate a Conv2d kernel from given `operation`.""" warp_shape = [ int( operation.tile_description.threadblock_shape[idx] / operation.tile_description.warp_count[idx] ) for idx in range(3) ] epilogue_vector_length = int( min(operation.C.alignment * DataTypeSize[operation.C.element], 128) / DataTypeSize[operation.C.element] ) element_c = operation.C.element use_split_k_wgrad = operation.conv_kind == ConvKind.Wgrad and operation.split_k_slices > 1 # Gemm output always fp32 in wgrad with split k element_c_gemm = DataType.f32 if use_split_k_wgrad else element_c if emit_reduction: epilogue_reduction = substitute_template( self.epilogue_wgrad, { "epilogue_functor": EpilogueFunctorTag[operation.epilogue_functor], "element_c": DataTypeTag[element_c], }, ) reduction = substitute_template( self.reduction_template, { "epilogue": epilogue_reduction, "operation_name": operation.procedural_name(), "element_accumulator": DataTypeTag[operation.accumulator_type()], }, ) gemm_template = substitute_template(self.template, {"reduction": reduction}) else: gemm_template = substitute_template(self.template, {"reduction": ""}) values = { "operation_name": operation.procedural_name(), "conv_kind": ConvKindTag[operation.conv_kind], "conv_kind_name": ConvKindNames[operation.conv_kind].capitalize(), "element_a": DataTypeTag[operation.A.element], "layout_a": LayoutTag[operation.A.layout], "element_b": DataTypeTag[operation.B.element], "layout_b": LayoutTag[operation.B.layout], "element_c": DataTypeTag[element_c_gemm], "layout_c": LayoutTag[operation.C.layout], "element_accumulator": DataTypeTag[operation.accumulator_type()], "opcode_class": OpcodeClassTag[ operation.tile_description.math_instruction.opcode_class ], "arch": "cutlass::arch::Sm%d" % operation.arch, "threadblock_shape_m": str(operation.tile_description.threadblock_shape[0]), "threadblock_shape_n": str(operation.tile_description.threadblock_shape[1]), "threadblock_shape_k": str(operation.tile_description.threadblock_shape[2]), "warp_shape_m": str(warp_shape[0]), "warp_shape_n": str(warp_shape[1]), "warp_shape_k": str(warp_shape[2]), "instruction_shape_m": str( operation.tile_description.math_instruction.instruction_shape[0] ), "instruction_shape_n": str( operation.tile_description.math_instruction.instruction_shape[1] ), "instruction_shape_k": str( operation.tile_description.math_instruction.instruction_shape[2] ), "epilogue_vector_length": str(epilogue_vector_length), "epilogue_functor": EpilogueFunctorTag[operation.epilogue_functor], "element_epilogue": str(DataTypeTag[operation.element_epilogue]), "swizzling_functor": SwizzlingFunctorTag[operation.swizzling_functor], "stages": str(operation.tile_description.stages), "iterator_algorithm": IteratorAlgorithmTag[operation.iterator_algorithm], "iterator_algorithm_name": IteratorAlgorithmNames[ operation.iterator_algorithm ].capitalize(), "stride_support": StrideSupportTag[operation.stride_support], "math_operator": MathOperationTag[ operation.tile_description.math_instruction.math_operation ], "align_a": str(operation.A.alignment), "align_b": str(operation.B.alignment), "conv_kernel_postfix": "", } if use_split_k_wgrad: # Even if the output is fp16, gemm output is always fp32 for split k wgrad. epilogue_gemm = substitute_template( self.epilogue_wgrad, { "epilogue_functor": EpilogueFunctorTag[operation.epilogue_functor], "element_c": "float", }, ) template = substitute_template(gemm_template, {"epilogue": epilogue_gemm}) elif residual_block_info: template = substitute_template( gemm_template, {"epilogue": self.epilogue_residual_block} ) values.update( { "unary_op": residual_block_info["unary_op"], "binary_op": residual_block_info["binary_op"], "activation": residual_block_info["activation"], "conv_kernel_postfix": "WithBroadcast", } ) elif no_beta_scaling: template = substitute_template( gemm_template, {"epilogue": self.epilogue_no_beta_scaling} ) else: template = substitute_template(gemm_template, {"epilogue": self.epilogue_default}) return substitute_template(template, values)
https://github.com/zk-ml/tachikoma
python/tvm/contrib/cutlass/conv2d_profiler.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=import-outside-toplevel, invalid-name """Instantiate a C++ source for profiling CUTLASS kernels.""" from .library import DataTypeTag class Conv2dProfilerEmitter(object): """Emit a C++ source for profiling CUTLASS kernels.""" def __init__(self): from jinja2 import Template self.reduction = """ ReductionDevice reduction_op; static cutlass::conv::Operator const kConvolutionalOperator = ImplicitGemm::kConvolutionalOperator; typename ReductionDevice::Arguments reduction_args( cutlass::conv::implicit_gemm_problem_size(kConvolutionalOperator, problem_size).mn(), problem_size.split_k_slices, cutlass::conv::implicit_gemm_tensor_c_size(kConvolutionalOperator, problem_size), { reinterpret_cast<ImplicitGemm::ElementC*> (workspace.get()), ReductionStrideIndex(tensor_c.stride()[ImplicitGemm::ImplicitGemmKernel::kTensorCStrideIdx]) }, { tensor_d.device_data(), ReductionStrideIndex(tensor_d.stride()[ImplicitGemm::ImplicitGemmKernel::kTensorCStrideIdx]) }, { tensor_c.device_data(), ReductionStrideIndex(tensor_c.stride()[ImplicitGemm::ImplicitGemmKernel::kTensorCStrideIdx]) }, {ElementComputeEpilogue(1), ElementComputeEpilogue(0)} ); reduction_op.initialize(reduction_args, nullptr); reduction_op(); """ self.template = Template( """ #include <iostream> #include "cutlass/cutlass.h" #include "cutlass/conv/kernel/default_conv2d_fprop.h" #include "cutlass/conv/kernel/default_conv2d_wgrad.h" #include "cutlass/conv/kernel/default_conv2d_dgrad.h" #include "cutlass/conv/device/implicit_gemm_convolution.h" #include "cutlass/util/command_line.h" #include "cutlass/util/host_tensor.h" #include "cutlass/util/reference/host/tensor_fill.h" #include "cutlass/reduction/device/reduce_split_k.h" #include "cutlass/reduction/thread/reduction_operators.h" #define CUTLASS_CHECK(status) \ { \ cutlass::Status error = status; \ if (error != cutlass::Status::kSuccess) { \ std::cerr << "Got cutlass error: " << cutlassGetStatusString(error) << " at: " << __LINE__ \ << std::endl; \ exit(EXIT_FAILURE); \ } \ } {{OperatorDef}} using ImplicitGemm = cutlass::conv::device::ImplicitGemmConvolution<{{OperatorName}}>; struct Options { cutlass::Tensor4DCoord input_size; cutlass::Tensor4DCoord filter_size; cutlass::Tensor4DCoord padding; cutlass::MatrixCoord conv_stride; cutlass::MatrixCoord dilation; void parse(int argc, char const **args) { cutlass::CommandLine cmd(argc, args); cmd.get_cmd_line_argument("n", input_size.n()); cmd.get_cmd_line_argument("h", input_size.h()); cmd.get_cmd_line_argument("w", input_size.w()); cmd.get_cmd_line_argument("c", input_size.c()); cmd.get_cmd_line_argument("k", filter_size.n()); cmd.get_cmd_line_argument("r", filter_size.h()); cmd.get_cmd_line_argument("s", filter_size.w()); int pad_h, pad_w, stride_h, stride_w, dilation_h, dilation_w; cmd.get_cmd_line_argument("pad_h", pad_h); cmd.get_cmd_line_argument("pad_w", pad_w); cmd.get_cmd_line_argument("stride_h", stride_h); cmd.get_cmd_line_argument("stride_w", stride_w); cmd.get_cmd_line_argument("dilation_h", dilation_h); cmd.get_cmd_line_argument("dilation_w", dilation_w); filter_size.c() = input_size.c(); padding = {pad_h, pad_h, pad_w, pad_w}; conv_stride = {stride_h, stride_w}; dilation = {dilation_h, dilation_w}; } cutlass::Tensor4DCoord output_size() const { auto dilated_h = (filter_size.h() - 1) * dilation.row() + 1; auto dilated_w = (filter_size.w() - 1) * dilation.column() + 1; auto h = (input_size.h() + padding.n() + padding.h() - dilated_h) / conv_stride.row() + 1; auto w = (input_size.w() + padding.w() + padding.c() - dilated_w) / conv_stride.column() + 1; return cutlass::Tensor4DCoord(input_size.n(), h, w, filter_size.n()); } }; double profile_convolution(Options const &options) { using ElementOutput = {{ElementOutput}}; using ElementInputA = typename ImplicitGemm::ElementA; using ElementInputB = typename ImplicitGemm::ElementB; int split_k_slices = {{SplitK}}; cutlass::conv::Conv2dProblemSize problem_size( options.input_size, options.filter_size, options.padding, options.conv_stride, options.dilation, options.output_size(), cutlass::conv::Mode::kCrossCorrelation, split_k_slices ); auto conv_kind = ImplicitGemm::kConvolutionalOperator; auto a_extent = implicit_gemm_tensor_a_extent(conv_kind, problem_size); auto b_extent = implicit_gemm_tensor_b_extent(conv_kind, problem_size); auto c_extent = implicit_gemm_tensor_c_extent(conv_kind, problem_size); using LayoutC = typename ImplicitGemm::LayoutC; cutlass::HostTensor<ElementInputA, typename ImplicitGemm::LayoutA> tensor_a(a_extent); cutlass::HostTensor<ElementInputB, typename ImplicitGemm::LayoutB> tensor_b(b_extent); cutlass::HostTensor<ElementOutput, typename ImplicitGemm::LayoutC> tensor_c(c_extent); cutlass::HostTensor<ElementOutput, LayoutC> tensor_d(c_extent); cutlass::HostTensor<ImplicitGemm::ElementC, LayoutC> tensor_c_gemm(c_extent); using ElementComputeEpilogue = typename ImplicitGemm::ElementCompute; cutlass::conv::SplitKMode const split_k_mode = split_k_slices > 1 ? cutlass::conv::SplitKMode::kParallel : cutlass::conv::SplitKMode::kSerial; typename ImplicitGemm::Arguments arguments{ problem_size, tensor_a.device_ref(), tensor_b.device_ref(), tensor_c_gemm.device_ref(), tensor_c_gemm.device_ref(), {ElementComputeEpilogue(1), ElementComputeEpilogue(0)}, split_k_mode, }; ImplicitGemm implicit_gemm_op; size_t workspace_size = implicit_gemm_op.get_workspace_size(arguments); cutlass::device_memory::allocation<uint8_t> workspace(workspace_size); auto status = implicit_gemm_op.can_implement(arguments); CUTLASS_CHECK(status); status = implicit_gemm_op.initialize(arguments, workspace.get()); CUTLASS_CHECK(status); status = implicit_gemm_op(); CUTLASS_CHECK(status); cudaEvent_t events[2]; for (auto & event : events) { cudaEventCreate(&event); } cudaEventRecord(events[0]); for (int iteration = 0; iteration < 100; ++iteration) { auto status = implicit_gemm_op(); CUTLASS_CHECK(status); {{Reduction}} } cudaEventRecord(events[1]); cudaEventSynchronize(events[1]); float runtime_ms = 0; cudaEventElapsedTime(&runtime_ms, events[0], events[1]); for (auto event : events) { (void)cudaEventDestroy(event); } return double(runtime_ms) / 100.0; } int main(int argc, char const **args) { Options options; options.parse(argc, args); std::cout << profile_convolution(options) << std::endl; return 0; } """ ) def emit(self, op_def, op_name, element_output, split_k_slices=1): src = self.template.render( OperatorDef=op_def, OperatorName=op_name, ElementOutput=DataTypeTag[element_output], SplitK=split_k_slices, Reduction=self.reduction if split_k_slices > 1 else "", ) return src
https://github.com/zk-ml/tachikoma
python/tvm/contrib/cutlass/gemm_operation.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, unused-wildcard-import, wildcard-import """Generator for CUTLASS GEMM kernels.""" from .library import * class GemmOperation: """Describes various attributes for instantiating GEMM kernels.""" def __init__( self, arch, tile_description, A, B, C, element_epilogue, epilogue_functor=EpilogueFunctor.LinearCombination, swizzling_functor=SwizzlingFunctor.Identity8, ): self.operation_kind = OperationKind.Gemm self.arch = arch self.tile_description = tile_description self.A = A self.B = B self.C = C self.element_epilogue = element_epilogue self.epilogue_functor = epilogue_functor self.swizzling_functor = swizzling_functor def accumulator_type(self): return self.tile_description.math_instruction.element_accumulator def short_math_name(self): return ShortDataTypeNames[self.accumulator_type()] def core_name(self): """The basic operation kind is prefixed with a letter indicating the accumulation type.""" inst_shape = "" intermediate_type = "" if ( self.tile_description.math_instruction.opcode_class == OpcodeClass.TensorOp or self.tile_description.math_instruction.opcode_class == OpcodeClass.WmmaTensorOp ): inst_shape = "%d%d%d" % tuple(self.tile_description.math_instruction.instruction_shape) if ( self.tile_description.math_instruction.element_a != self.A.element and self.tile_description.math_instruction.element_a != self.tile_description.math_instruction.element_accumulator ): intermediate_type = DataTypeNames[self.tile_description.math_instruction.element_a] return "%s%s%s%s" % ( self.short_math_name(), inst_shape, intermediate_type, "gemm", ) def extended_name(self): """Append data types if they differ from compute type.""" if ( self.C.element != self.tile_description.math_instruction.element_accumulator and self.A.element != self.tile_description.math_instruction.element_accumulator ): extended_name = "${element_c}_${core_name}_${element_a}" elif ( self.C.element == self.tile_description.math_instruction.element_accumulator and self.A.element != self.tile_description.math_instruction.element_accumulator ): extended_name = "${core_name}_${element_a}" else: extended_name = "${core_name}" extended_name = substitute_template( extended_name, { "element_a": DataTypeNames[self.A.element], "element_c": DataTypeNames[self.C.element], "core_name": self.core_name(), }, ) return extended_name def layout_name(self): return "%s%s" % (ShortLayoutTypeNames[self.A.layout], ShortLayoutTypeNames[self.B.layout]) def procedural_name(self): """The full procedural name indicates architecture, extended name, tile size, and layout. """ threadblock = self.tile_description.procedural_name() opcode_class_name = OpcodeClassNames[self.tile_description.math_instruction.opcode_class] return substitute_template( "cutlass_${opcode_class}_${extended_name}_${threadblock}_${layout}_align${alignment}", { "opcode_class": opcode_class_name, "extended_name": self.extended_name(), "threadblock": threadblock, "layout": self.layout_name(), "alignment": "%d" % self.A.alignment, }, ) def leading_dim(self): """lda, ldb, ldc, according to the leading dimension.""" if self.A.layout == LayoutType.RowMajor: lda = "K" elif self.A.layout == LayoutType.ColumnMajor: lda = "M" else: ValueError("The layout of A is not implemented.") if self.B.layout == LayoutType.RowMajor: ldb = "N" elif self.B.layout == LayoutType.ColumnMajor: ldb = "K" else: ValueError("The layout of B is not implemented.") if self.C.layout == LayoutType.RowMajor: ldc = "N" elif self.C.layout == LayoutType.ColumnMajor: ldc = "M" else: ValueError("The layout of B is not implemented.") return substitute_template( "int lda = ${lda_val};\n\tint ldb = ${ldb_val};\n\tint ldc = ${ldc_val};\n", { "lda_val": lda, "ldb_val": ldb, "ldc_val": ldc, }, ) class EmitGemmInstance: """Responsible for emitting a CUTLASS template definition.""" def __init__(self): self.epilogue_default = """ ${epilogue_functor}< ${element_c}, ${epilogue_vector_length}, ${element_accumulator}, ${element_epilogue} >""" self.epilogue_no_beta_scaling = """ ${epilogue_functor}< ${element_c}, ${epilogue_vector_length}, ${element_accumulator}, ${element_epilogue}, cutlass::epilogue::thread::ScaleType::NoBetaScaling >""" self.gemm_template = """ // Gemm operator ${operation_name} using Operation_${operation_name} = cutlass::gemm::device::${kernel_name}< ${element_a}, ${layout_a}, ${element_b}, ${layout_b}, ${element_c}, ${layout_c}, ${element_accumulator}, ${opcode_class}, ${arch}, cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>, cutlass::gemm::GemmShape<${warp_shape_m}, ${warp_shape_n}, ${warp_shape_k}>, cutlass::gemm::GemmShape<${instruction_shape_m}, ${instruction_shape_n}, ${instruction_shape_k}>, ${epilogue}, ${swizzling_functor}, ${stages}, ${align_a}, ${align_b}, ${split_k_serial} ${math_operation} >; """ def emit(self, operation, no_beta_scaling=False, batched=False): """Instantiate a GEMM kernel from given `operation`.""" warp_shape = [ operation.tile_description.threadblock_shape[idx] // operation.tile_description.warp_count[idx] for idx in range(3) ] epilogue_vector_length = ( min(operation.C.alignment * DataTypeSize[operation.C.element], 128) // DataTypeSize[operation.C.element] ) values = { "operation_name": operation.procedural_name(), "element_a": DataTypeTag[operation.A.element], "layout_a": LayoutTag[operation.A.layout], "element_b": DataTypeTag[operation.B.element], "layout_b": LayoutTag[operation.B.layout], "element_c": DataTypeTag[operation.C.element], "layout_c": LayoutTag[operation.C.layout], "element_accumulator": DataTypeTag[operation.accumulator_type()], "opcode_class": OpcodeClassTag[ operation.tile_description.math_instruction.opcode_class ], "arch": "cutlass::arch::Sm%d" % operation.arch, "threadblock_shape_m": str(operation.tile_description.threadblock_shape[0]), "threadblock_shape_n": str(operation.tile_description.threadblock_shape[1]), "threadblock_shape_k": str(operation.tile_description.threadblock_shape[2]), "warp_shape_m": str(warp_shape[0]), "warp_shape_n": str(warp_shape[1]), "warp_shape_k": str(warp_shape[2]), "instruction_shape_m": str( operation.tile_description.math_instruction.instruction_shape[0] ), "instruction_shape_n": str( operation.tile_description.math_instruction.instruction_shape[1] ), "instruction_shape_k": str( operation.tile_description.math_instruction.instruction_shape[2] ), "epilogue_vector_length": str(epilogue_vector_length), "element_epilogue": str(DataTypeTag[operation.element_epilogue]), "epilogue_functor": EpilogueFunctorTag[operation.epilogue_functor], "swizzling_functor": SwizzlingFunctorTag[operation.swizzling_functor], "stages": str(operation.tile_description.stages), "align_a": str(operation.A.alignment), "align_b": str(operation.B.alignment), "math_operation": MathOperationTag[ operation.tile_description.math_instruction.math_operation ], } values["kernel_name"] = "GemmBatched" if batched else "Gemm" values["split_k_serial"] = "" if batched else "false," gemm_template = substitute_template( self.gemm_template, { "epilogue": self.epilogue_no_beta_scaling if no_beta_scaling else self.epilogue_default }, ) return substitute_template(gemm_template, values)
https://github.com/zk-ml/tachikoma
python/tvm/contrib/cutlass/gemm_profiler.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=import-outside-toplevel, invalid-name """Instantiate a C++ source for profiling CUTLASS kernels.""" class GemmProfilerEmitter(object): """Emit a C++ source for profiling CUTLASS kernels.""" def __init__(self): from jinja2 import Template self.template = Template( """ #include <iostream> #include <sstream> #include <vector> #include <chrono> #include "cuda_runtime.h" #include "cutlass/gemm/device/gemm.h" #define CUTLASS_CHECK(status) \\ { \\ cutlass::Status error = status; \\ if (error != cutlass::Status::kSuccess) { \\ std::cerr << "Got cutlass error: " << cutlassGetStatusString(error) << " at: " << __LINE__ \\ << std::endl; \\ exit(EXIT_FAILURE); \\ } \\ } #define CUDA_CHECK(status) \\ { \\ cudaError_t error = status; \\ if (error != cudaSuccess) { \\ std::cerr << "Got bad cuda status: " << cudaGetErrorString(error) \\ << " at line: " << __LINE__ << std::endl; \\ exit(EXIT_FAILURE); \\ } \\ } template<typename DTypeA, typename DTypeB, typename DTypeC> cudaError_t CutlassGemmRCR( int M, int N, int K, DTypeC alpha, DTypeA const *A, int lda, DTypeB const *B, int ldb, DTypeC beta, DTypeC *C, int ldc) { using namespace std::chrono; {{OperatorDef}} Operation_{{OperatorName}} gemm_operator; Operation_{{OperatorName}}::Arguments args({M, N, K}, {A, lda}, {B, ldb}, {C, ldc}, {C, ldc}, {alpha, beta}); cutlass::Status status = gemm_operator(args); CUTLASS_CHECK(status) high_resolution_clock::time_point t1 = high_resolution_clock::now(); for (int i = 0; i < 100; ++i) { status = gemm_operator(args); } cudaDeviceSynchronize(); high_resolution_clock::time_point t2 = high_resolution_clock::now(); duration<double> time_span = duration_cast<duration<double>>(t2 - t1); std::cout << time_span.count() << std::endl; return cudaSuccess; } template<typename DType> cudaError_t AllocateMatrix(DType **matrix, int ldm, int rows, int columns, int seed = 0) { cudaError_t result; size_t sizeof_matrix = sizeof(DType) * rows * columns; // Allocate device memory. result = cudaMalloc(reinterpret_cast<void **>(matrix), sizeof_matrix); if (result != cudaSuccess) { std::cerr << "Failed to allocate matrix: " << cudaGetErrorString(result) << std::endl; return result; } // Clear the allocation. result = cudaMemset(*matrix, 0, sizeof_matrix); if (result != cudaSuccess) { std::cerr << "Failed to clear matrix device memory: " << cudaGetErrorString(result) << std::endl; return result; } if (result != cudaSuccess) { std::cerr << "Failed to initialize matrix: " << cudaGetErrorString(result) << std::endl; return result; } return result; } template<typename DTypeA, typename DTypeB, typename DTypeC> cudaError_t TestCutlassGemm(int M, int N, int K, DTypeC alpha, DTypeC beta) { cudaError_t result; {{LeadingDim}} // size_t sizeof_C = sizeof(DTypeC) * ldc * N; DTypeA *A; DTypeB *B; DTypeC *C_cutlass; result = AllocateMatrix<DTypeA>(&A, lda, M, K, 0); if (result != cudaSuccess) { return result; } result = AllocateMatrix<DTypeB>(&B, ldb, K, N, 17); if (result != cudaSuccess) { cudaFree(A); return result; } result = AllocateMatrix<DTypeC>(&C_cutlass, ldc, M, N, 101); if (result != cudaSuccess) { cudaFree(A); cudaFree(B); return result; } result = CutlassGemmRCR<DTypeA, DTypeB, DTypeC>(M, N, K, alpha, A, lda, B, ldb, beta, C_cutlass, ldc); if (result != cudaSuccess) { std::cerr << "CUTLASS GEMM kernel failed: " << cudaGetErrorString(result) << std::endl; cudaFree(C_cutlass); cudaFree(B); cudaFree(A); return result; } cudaFree(C_cutlass); cudaFree(B); cudaFree(A); return cudaSuccess; } int main(int argc, const char *arg[]) { int problem[3] = { 4096, 4096, 4096 }; for (int i = 1; i < argc && i < 4; ++i) { std::stringstream ss(arg[i]); ss >> problem[i - 1]; } float scalars[2] = { 1, 0 }; cudaError_t result = TestCutlassGemm< {{DTypeA}}, {{DTypeB}}, {{DTypeC}}>( problem[0], // GEMM M dimension problem[1], // GEMM N dimension problem[2], // GEMM K dimension static_cast<{{DTypeC}}>(scalars[0]), // alpha static_cast<{{DTypeC}}>(scalars[1]) // beta ); return result == cudaSuccess ? 0 : -1; } """ ) def emit(self, op_name, op_def, dtype_a, dtype_b, dtype_c, ld): src = self.template.render( OperatorName=op_name, OperatorDef=op_def, DTypeA=dtype_a, DTypeB=dtype_b, DTypeC=dtype_c, LeadingDim=ld, ) return src
https://github.com/zk-ml/tachikoma
python/tvm/contrib/cutlass/gen_conv2d.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, dangerous-default-value """Conv2d kernel generator and profiler for CUTLASS.""" from functools import partial from .conv2d_operation import Conv2dOperation, EmitConv2dInstance from .gen_gemm import CutlassGemmProfiler from .conv2d_profiler import Conv2dProfilerEmitter from .gen_tensor_op import ProfilerEngine, GENERATOR_FUNC_TABLE, EPILOGUE_MAP from .library import ( DataType, EpilogueFunctor, SwizzlingFunctor, TensorDescription, LayoutType, ConvKind, StrideSupport, IteratorAlgorithm, ) def create_conv2d_operator_with_epilogue( conv_kind, stride_support, op_type, tile_description, data_type, alignment, swizzling_functor, split_k_slices, ): """ Instantiate a cutlass kernel from the given configuration, along with the epilouge functor """ if "residual" in op_type: activation_map = { "cutlass.conv2d_bias_hardswish": "cutlass::epilogue::thread::HardSwish", "cutlass.conv2d_bias_silu": "cutlass::epilogue::thread::SiLu", "cutlass.conv2d_bias_sigmoid": "cutlass::epilogue::thread::Sigmoid", "cutlass.conv2d_bias_relu": "cutlass::epilogue::thread::ReLu", "cutlass.conv2d_bias": "cutlass::epilogue::thread::Identity", } prefix = op_type[: op_type.find("_residual")] activation = activation_map[prefix] binary_op = "cutlass::multiplies" if "residual_multiply" in op_type else "cutlass::plus" unary_op = ( "cutlass::epilogue::thread::ReLu" if op_type.endswith("relu") else "cutlass::epilogue::thread::Identity" ) residual_block_info = { "activation": activation, "binary_op": binary_op, "unary_op": unary_op, } epilogue = EpilogueFunctor.LinearCombinationResidualBlock no_beta_scaling = False else: residual_block_info = None epilogue, no_beta_scaling = EPILOGUE_MAP[op_type] element_a, element_b, element_c, element_epilogue = data_type A = TensorDescription(element_a, LayoutType.TensorNHWC, alignment) B = TensorDescription(element_b, LayoutType.TensorNHWC, alignment) C = TensorDescription(element_c, LayoutType.TensorNHWC, alignment) op = Conv2dOperation( conv_kind, IteratorAlgorithm.Optimized, tile_description.minimum_compute_capability, tile_description, A, B, C, element_epilogue, stride_support, epilogue, swizzling_functor, split_k_slices, ) name = op.procedural_name() opdef = EmitConv2dInstance().emit( op, no_beta_scaling=no_beta_scaling, residual_block_info=residual_block_info, emit_reduction=split_k_slices > 1, ) return name, opdef def enumerate_conv2d_operators( conv_kind, stride_support, split_k_slices, tile_descriptions, data_type, alignment_constraints, swizzling_functor=SwizzlingFunctor.Identity4, ): """Exhaustively instantiate all kernels from a given configuration.""" ret = [] kernel_emitter = EmitConv2dInstance() profiler_emitter = Conv2dProfilerEmitter() element_a, element_b, element_c, element_epilogue = data_type if conv_kind == ConvKind.Dgrad and stride_support == StrideSupport.Strided: swizzling_functor = SwizzlingFunctor.StridedDgradIdentity1 for split_k_slice in split_k_slices: for tile in tile_descriptions: for alignment in alignment_constraints: A = TensorDescription(element_a, LayoutType.TensorNHWC, alignment) B = TensorDescription(element_b, LayoutType.TensorNHWC, alignment) C = TensorDescription(element_c, LayoutType.TensorNHWC, alignment) if element_c == DataType.s32 and A.alignment == 1: tile.threadblock_shape[0] = min(tile.threadblock_shape[0], 128) tile.threadblock_shape[1] = min(tile.threadblock_shape[1], 128) op = Conv2dOperation( conv_kind, IteratorAlgorithm.Optimized, tile.minimum_compute_capability, tile, A, B, C, element_epilogue, stride_support, EpilogueFunctor.LinearCombination, swizzling_functor, split_k_slice, ) ret.append( { "src": profiler_emitter.emit( kernel_emitter.emit(op, emit_reduction=split_k_slice > 1), op.procedural_name(), element_output=element_c, split_k_slices=split_k_slice, ), "name": op.procedural_name(), "tile_description": tile, "alignment": alignment, "data_type": data_type, "swizzle_functor": swizzling_functor, "split_k_slices": split_k_slice, } ) return ret class CutlassConv2DProfiler: """Profile all candidate kernels and select the best one.""" def __init__(self, sm, cutlass_path, binary_path): self.gemm_profiler = CutlassGemmProfiler(sm, cutlass_path, binary_path) self.sm = sm assert sm in GENERATOR_FUNC_TABLE, "sm%d not supported yet." % sm self.engine = ProfilerEngine(sm, cutlass_path, binary_path) self.cache = {} def get_default( self, op_type, out_dtype, arg0_dtype, arg1_dtype, use_3xtf32, conv_kind=ConvKind.Fprop, stride=(1, 1), ): """Return the default kernel for the requested architecture. For now, the default kernel was picked arbitrary. """ gemm_profile_result = self.gemm_profiler.get_default( op_type, out_dtype, arg0_dtype, arg1_dtype, use_3xtf32 ) tile_description = gemm_profile_result["tile_description"] alignment = gemm_profile_result["alignment"] data_type = gemm_profile_result["data_type"] stride_support = StrideSupport.Strided if stride[0] > 1 else StrideSupport.Unity if conv_kind == ConvKind.Dgrad and stride_support == StrideSupport.Strided: swizzling_functor = SwizzlingFunctor.StridedDgradIdentity1 else: swizzling_functor = SwizzlingFunctor.Identity4 name, opdef = create_conv2d_operator_with_epilogue( conv_kind, stride_support, op_type, tile_description, data_type, alignment, swizzling_functor, split_k_slices=1, ) return {"name": name, "opdef": opdef} def select_op( self, d_shape, w_shape, padding, stride, dilation, out_dtype, data_dtype, weight_dtype, use_3xtf32, conv_kind, stride_support, split_k_slices, profile_all_alignments=False, find_first_valid=False, use_multiprocessing=False, ): """ Profile and select the best kernel from candidate kernels. See the documentation for the profile method below. """ N, H, W, IC = d_shape OC, R, S, _ = w_shape workload = ( N, H, W, IC, OC, R, S, padding[0], padding[1], stride[0], stride[1], dilation[0], dilation[1], ) if workload in self.cache: return self.cache[workload] ops = GENERATOR_FUNC_TABLE[self.sm]( out_dtype, data_dtype, weight_dtype, partial(enumerate_conv2d_operators, conv_kind, stride_support, split_k_slices), lambda align: all([dim % align == 0 for dim in [IC, OC]]), use_3xtf32, profile_all_alignments, # Use fp32 accumulation for wgrad to align with cuDNN accumlator_dtype="float32" if conv_kind == ConvKind.Wgrad else out_dtype, ) if not find_first_valid: self.engine.compile_all(ops, use_multiprocessing) args = ( "--n=%d --h=%d --w=%d --c=%d --k=%d --r=%d --s=%d --pad_h=%d --pad_w=%d " "--stride_h=%d --stride_w=%d --dilation_h=%d --dilation_w=%d" ) % workload for op in ops: out = self.engine.evaluate(op, args.split(" ")) op["runtime"] = out if out < float("inf") and find_first_valid: self.cache[workload] = op return op op = min(ops, key=lambda i: i["runtime"]) self.cache[workload] = op return op def profile( self, op_type, d_shape, w_shape, padding, stride, dilation, out_dtype, data_dtype, weight_dtype, use_3xtf32=True, conv_kind=ConvKind.Fprop, split_k_slices=[1], profile_all_alignments=False, find_first_valid=False, use_multiprocessing=False, ): """Profile and select the best kernel from candidate kernels. If find_first_valid is True, return immediately after the first applicable kernel is found. If use_multiprocessing is True, compile all profiler executables in parallel. """ # Dgrad requires Unity stride when stride == (1, 1) stride_support = ( StrideSupport.Unity if stride[0] == 1 and stride[1] == 1 and conv_kind == ConvKind.Dgrad else StrideSupport.Strided ) op = self.select_op( d_shape, w_shape, padding, stride, dilation, out_dtype, data_dtype, weight_dtype, use_3xtf32, conv_kind, stride_support, split_k_slices, profile_all_alignments, find_first_valid, use_multiprocessing, ) name, opdef = create_conv2d_operator_with_epilogue( conv_kind, stride_support, op_type, op["tile_description"], op["data_type"], op["alignment"], op["swizzle_functor"], op["split_k_slices"], ) return name, opdef, op["runtime"]
https://github.com/zk-ml/tachikoma
python/tvm/contrib/cutlass/gen_gemm.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name """GEMM kernel generator and profiler for CUTLASS.""" from .gemm_operation import GemmOperation, EmitGemmInstance from .gemm_profiler import GemmProfilerEmitter from .gen_tensor_op import ProfilerEngine, GENERATOR_FUNC_TABLE, EPILOGUE_MAP from .library import ( DataType, EpilogueFunctor, SwizzlingFunctor, TensorDescription, DataTypeTag, LayoutType, ) def create_gemm_operator_with_epilogue( op_type, tile_description, data_type, alignment, swizzling_functor, batched=False, ): """ Instantiate a cutlass kernel from the given configuration, along with the epilouge functor """ element_a, element_b, element_c, element_epilogue = data_type A = TensorDescription(element_a, LayoutType.RowMajor, alignment) B = TensorDescription(element_b, LayoutType.ColumnMajor, alignment) C = TensorDescription(element_c, LayoutType.RowMajor, alignment) if batched: swizzling_functor = SwizzlingFunctor.Batched epilogue, no_beta_scaling = EPILOGUE_MAP[op_type] op = GemmOperation( tile_description.minimum_compute_capability, tile_description, A, B, C, element_epilogue, epilogue, swizzling_functor, ) return ( op.procedural_name(), EmitGemmInstance().emit(op, no_beta_scaling=no_beta_scaling, batched=batched), ) def enumerate_gemm_operators( tile_descriptions, data_type, alignment_constraints, swizzling_functor=SwizzlingFunctor.Identity8, ): """Exhaustively instantiate all kernels from a given configuration.""" ret = [] kernel_emitter = EmitGemmInstance() profiler_emitter = GemmProfilerEmitter() element_a, element_b, element_c, element_epilogue = data_type for tile_description in tile_descriptions: for alignment in alignment_constraints: A = TensorDescription(element_a, LayoutType.RowMajor, alignment) B = TensorDescription(element_b, LayoutType.ColumnMajor, alignment) C = TensorDescription(element_c, LayoutType.RowMajor, alignment) if element_c == DataType.s32 and A.alignment == 1: tile_description.threadblock_shape[0] = min( tile_description.threadblock_shape[0], 128 ) tile_description.threadblock_shape[1] = min( tile_description.threadblock_shape[1], 128 ) op = GemmOperation( tile_description.minimum_compute_capability, tile_description, A, B, C, element_epilogue, EpilogueFunctor.LinearCombination, swizzling_functor, ) src = profiler_emitter.emit( op.procedural_name(), kernel_emitter.emit(op, batched=False), DataTypeTag[element_a], DataTypeTag[element_b], DataTypeTag[element_c], op.leading_dim(), ) ret.append( { "src": src, "op": op, "name": op.procedural_name(), "tile_description": tile_description, "alignment": alignment, "data_type": data_type, "swizzle_functor": swizzling_functor, } ) return ret # TODO(masahi): A sensible way to pick reasonable default kernels DEFAULT_KERNELS = { 75: { ("float16", "float16"): "cutlass_tensorop_h1688gemm_128x64_32x2_tn_align1", ("float16", "float32"): "cutlass_tensorop_s1688gemm_f16_64x64_32x2_tn_align1", }, # align1 variants do not seem to be available for sm80 80: { ("float16", "float16"): "cutlass_tensorop_h1688gemm_128x64_32x2_tn_align1", ("float16", "float32"): "cutlass_tensorop_s1688gemm_f16_64x64_32x2_tn_align1", # two kernels for tf32 and 3xtf32 ("float32", "float32"): ( "cutlass_tensorop_s1688gemm_128x64_32x3_tn_align1", "cutlass_tensorop_s1688gemm_64x64_16x3_tn_align1", ), }, } class CutlassGemmProfiler: """Profile all candidate kernels and select the best one.""" def __init__(self, sm, cutlass_path, binary_path): assert sm in GENERATOR_FUNC_TABLE and sm in DEFAULT_KERNELS, "sm%d not supported yet." % sm self.engine = ProfilerEngine(sm, cutlass_path, binary_path) self.sm = sm self.cache = {} def get_default( self, op_type, out_dtype, arg0_dtype, arg1_dtype, use_3xtf32=True, batched=False ): """Return the default kernel for the requested architecture. For now, the default kernel was picked arbitrary. """ ops = GENERATOR_FUNC_TABLE[self.sm]( out_dtype, arg0_dtype, arg1_dtype, enumerate_gemm_operators, lambda align: align == 1, # Only request align1 kernels use_3xtf32, profile_all_alignments=True, # To include all align1 kernels # TODO(masahi): Invesitigate when fp32 accumulation is needed for gemm accumlator_dtype=out_dtype, ) default_kernel_name = DEFAULT_KERNELS[self.sm][(arg0_dtype, out_dtype)] if arg0_dtype == "float32": default_kernel_name = ( default_kernel_name[0] if not use_3xtf32 else default_kernel_name[1] ) filtered = list(filter(lambda op: op["name"] == default_kernel_name, ops)) assert len(filtered) == 1 op = filtered[0] name, opdef = create_gemm_operator_with_epilogue( op_type, op["tile_description"], op["data_type"], op["alignment"], op["swizzle_functor"], batched=batched, ) op.update({"name": name, "opdef": opdef}) return op def select_op( self, M, N, K, out_dtype, arg0_dtype, arg1_dtype, use_3xtf32, profile_all_alignments=False, find_first_valid=False, use_multiprocessing=False, ): """ Profile and select the best kernel from candidate kernels. See the documentation for the profile method below. """ if (M, N, K) in self.cache: op = self.cache[(M, N, K)] return op # TODO(masahi): CUTLASS alignment check on gemm kernels is too restrictive. # See https://github.com/NVIDIA/cutlass/issues/362. # When the above issue is resolved, we can remove the alignment check on M below. ops = GENERATOR_FUNC_TABLE[self.sm]( out_dtype, arg0_dtype, arg1_dtype, enumerate_gemm_operators, lambda align: all([dim % align == 0 for dim in [M, N, K]]), use_3xtf32, profile_all_alignments=profile_all_alignments, # TODO(masahi): Invesitigate when fp32 accumulation is needed for gemm accumlator_dtype=out_dtype, ) if not find_first_valid: self.engine.compile_all(ops, use_multiprocessing) for op in ops: out = self.engine.evaluate(op, [M, N, K]) op["runtime"] = out if out < float("inf") and find_first_valid: self.cache[(M, N, K)] = op return op op = min(ops, key=lambda i: i["runtime"]) self.cache[(M, N, K)] = op return op def profile( self, op_type, M, N, K, out_dtype, arg0_dtype, arg1_dtype, use_3xtf32=True, profile_all_alignments=False, find_first_valid=False, use_multiprocessing=False, batched=False, ): """Profile and select the best kernel from candidate kernels. If find_first_valid is True, return immediately after the first applicable kernel is found. If use_multiprocessing is True, compile all profiler executables in parallel. """ op = self.select_op( M, N, K, out_dtype, arg0_dtype, arg1_dtype, use_3xtf32, profile_all_alignments=profile_all_alignments, find_first_valid=find_first_valid, use_multiprocessing=use_multiprocessing, ) name, opdef = create_gemm_operator_with_epilogue( op_type, op["tile_description"], op["data_type"], op["alignment"], op["swizzle_functor"], batched=batched, ) return name, opdef, op["runtime"]
https://github.com/zk-ml/tachikoma
python/tvm/contrib/cutlass/gen_tensor_op.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name """Common functions and classes for CUTLASS GEMM and Conv2d geneator.""" import logging import os import tempfile import subprocess import multiprocessing from .library import ( MathInstruction, DataType, OpcodeClass, MathOperation, TileDescription, EpilogueFunctor, ) logger = logging.getLogger("cutlass") dtype_map = { "int8": DataType.s8, "uint8": DataType.u8, "float32": DataType.f32, "float16": DataType.f16, } def generate_tensor_op_common( math_instructions, alignment_constraints, get_tile_descriptions, op_creator ): """Common kernel generator to be used by archtecture specific generators.""" ops = [] for math_inst in math_instructions: tile_descriptions = get_tile_descriptions(math_inst) data_type = [ math_inst.element_a, math_inst.element_b, math_inst.element_c, math_inst.element_accumulator, ] out = op_creator(tile_descriptions, data_type, alignment_constraints) ops.extend(out) return ops def generate_sm75_tensor_op_1688( out_dtype, arg0_dtype, arg1_dtype, op_creator, check_align, _, profile_all_alignments=False, accumlator_dtype="float32", ): """Generate GEMM or Conv2D kernels for Turing.""" assert out_dtype in ["float32", "float16", "int32"] min_cc = 75 max_cc = 1024 if arg0_dtype == "float16" and arg1_dtype == "float16": math_instructions = [ MathInstruction( [16, 8, 8], DataType.f16, DataType.f16, dtype_map[out_dtype], dtype_map[accumlator_dtype], OpcodeClass.TensorOp, MathOperation.multiply_add, ) ] alignment_constraints = [8, 4, 2, 1] tile_descriptions = [ ([256, 128, 32], 2, [4, 2, 1], min_cc, max_cc), ([128, 256, 32], 2, [2, 4, 1], min_cc, max_cc), ([128, 128, 32], 2, [2, 2, 1], min_cc, max_cc), ([64, 128, 32], 2, [2, 2, 1], min_cc, max_cc), ([128, 64, 32], 2, [2, 2, 1], min_cc, max_cc), ([64, 64, 32], 2, [2, 2, 1], min_cc, max_cc), ([64, 128, 64], 2, [1, 2, 2], min_cc, max_cc), ] else: assert out_dtype == "int32" math_instructions = [ MathInstruction( [8, 8, 16], dtype_map[arg0_dtype], dtype_map[arg1_dtype], DataType.s32, DataType.s32, OpcodeClass.TensorOp, MathOperation.multiply_add_saturate, ), ] alignment_constraints = [16, 8, 4, 2, 1] tile_descriptions = [ ([256, 128, 64], 2, [4, 2, 1], min_cc, max_cc), ([128, 256, 64], 2, [2, 4, 1], min_cc, max_cc), ([128, 128, 64], 2, [2, 2, 1], min_cc, max_cc), ([64, 256, 64], 2, [1, 4, 1], min_cc, max_cc), ([256, 64, 64], 2, [4, 1, 1], min_cc, max_cc), ([64, 128, 64], 2, [2, 2, 1], min_cc, max_cc), ([128, 64, 64], 2, [2, 2, 1], min_cc, max_cc), ([64, 64, 64], 2, [2, 2, 1], min_cc, max_cc), ] alignment_constraints = [align for align in alignment_constraints if check_align(align)] assert len(alignment_constraints) > 0 if not profile_all_alignments: alignment_constraints = [alignment_constraints[0]] def get_tile_descriptions(math_inst): return [ TileDescription(threadblock_shape, stages, warp_count, math_inst, min_cc, max_cc) for threadblock_shape, stages, warp_count, min_cc, max_cc in tile_descriptions ] return generate_tensor_op_common( math_instructions, alignment_constraints, get_tile_descriptions, op_creator ) def generate_sm80_tensor_op_16816( out_dtype, arg0_dtype, arg1_dtype, op_creator, check_align, use_3xtf32=True, profile_all_alignments=False, accumlator_dtype="float32", ): """Generate GEMM or Conv2D kernels for Ampere.""" min_cc = 80 max_cc = 1024 max_cc_smem_limited = 80 def get_default_tile_descriptions(block_k_factor): return [ ([256, 128, int(32 * block_k_factor)], 3, [4, 2, 1], min_cc, max_cc), ([128, 256, int(32 * block_k_factor)], 3, [2, 4, 1], min_cc, max_cc), ([256, 64, int(32 * block_k_factor)], 4, [4, 1, 1], min_cc, max_cc), ([64, 256, int(32 * block_k_factor)], 4, [1, 4, 1], min_cc, max_cc), ([128, 128, int(32 * block_k_factor)], 3, [2, 2, 1], min_cc, max_cc), ([128, 128, int(32 * block_k_factor)], 4, [2, 2, 1], min_cc, max_cc), ([128, 128, int(32 * block_k_factor)], 5, [2, 2, 1], min_cc, max_cc), ([128, 64, int(32 * block_k_factor)], 6, [2, 2, 1], min_cc, max_cc), ([64, 128, int(32 * block_k_factor)], 6, [2, 2, 1], min_cc, max_cc), ([64, 64, int(32 * block_k_factor)], 10, [2, 2, 1], min_cc, max_cc), ([256, 128, int(64 * block_k_factor)], 3, [4, 2, 1], min_cc, max_cc_smem_limited), ([128, 256, int(64 * block_k_factor)], 3, [2, 4, 1], min_cc, max_cc_smem_limited), ([256, 64, int(64 * block_k_factor)], 4, [4, 1, 1], min_cc, max_cc_smem_limited), ([64, 256, int(64 * block_k_factor)], 4, [1, 4, 1], min_cc, max_cc_smem_limited), ([128, 128, int(64 * block_k_factor)], 4, [2, 2, 1], min_cc, max_cc), ([128, 64, int(64 * block_k_factor)], 3, [2, 2, 1], min_cc, max_cc), ([64, 128, int(64 * block_k_factor)], 3, [2, 2, 1], min_cc, max_cc), ([64, 64, int(64 * block_k_factor)], 5, [2, 2, 1], min_cc, max_cc), ] if arg0_dtype == "float16" and arg1_dtype == "float16": math_instructions = [ MathInstruction( [16, 8, 16], DataType.f16, DataType.f16, dtype_map[out_dtype], dtype_map[accumlator_dtype], OpcodeClass.TensorOp, MathOperation.multiply_add, ) ] alignment_constraints = [8, 4, 2] tile_descriptions = get_default_tile_descriptions(1) elif arg0_dtype == "float32" and arg1_dtype == "float32": math_instructions = [ MathInstruction( [16, 8, 8], DataType.f32, DataType.f32, DataType.f32, DataType.f32, OpcodeClass.TensorOp, MathOperation.multiply_add_fast_f32 if use_3xtf32 else MathOperation.multiply_add, ), ] alignment_constraints = [4, 2, 1] if use_3xtf32: tile_descriptions = [ ([128, 128, 16], 4, [4, 2, 1], min_cc, max_cc), ([128, 128, 16], 3, [4, 2, 1], min_cc, max_cc), ([256, 64, 16], 3, [4, 2, 1], min_cc, max_cc), ([64, 256, 16], 3, [2, 4, 1], min_cc, max_cc), ([128, 64, 16], 4, [2, 2, 1], min_cc, max_cc), ([64, 128, 16], 4, [2, 2, 1], min_cc, max_cc), ([64, 64, 16], 3, [2, 2, 1], min_cc, max_cc), ([128, 128, 32], 3, [4, 2, 1], min_cc, max_cc), ([256, 64, 32], 3, [4, 2, 1], min_cc, max_cc_smem_limited), ([64, 256, 32], 3, [2, 4, 1], min_cc, max_cc_smem_limited), ([128, 64, 32], 3, [2, 2, 1], min_cc, max_cc), ([64, 128, 32], 3, [2, 2, 1], min_cc, max_cc), ([64, 64, 32], 3, [2, 2, 1], min_cc, max_cc), ] else: tile_descriptions = get_default_tile_descriptions(0.5) else: assert out_dtype == "int32" math_instructions = [ MathInstruction( [16, 8, 32], dtype_map[arg0_dtype], dtype_map[arg1_dtype], DataType.s32, DataType.s32, OpcodeClass.TensorOp, MathOperation.multiply_add_saturate, ), ] alignment_constraints = [16, 8, 4] tile_descriptions = get_default_tile_descriptions(2) def get_tile_descriptions(math_inst): return [ TileDescription(threadblock_shape, stages, warp_count, math_inst, min_cc, max_cc) for threadblock_shape, stages, warp_count, min_cc, max_cc in tile_descriptions ] alignment_constraints = [align for align in alignment_constraints if check_align(align)] if len(alignment_constraints) > 0 and not profile_all_alignments: alignment_constraints = [alignment_constraints[0]] if arg0_dtype != "float32" and arg1_dtype != "float32": sm75_kernels = generate_sm75_tensor_op_1688( out_dtype, arg0_dtype, arg1_dtype, op_creator, check_align, False, profile_all_alignments, accumlator_dtype=accumlator_dtype, ) else: # TF32 (float32 + float32 case) is only supported on sm80 sm75_kernels = [] if len(alignment_constraints) > 0: sm80_kernels = generate_tensor_op_common( math_instructions, alignment_constraints, get_tile_descriptions, op_creator ) else: sm80_kernels = [] # TODO(masahi): For int8 kernels, The CUTLASS generator modifies the output tensor alignment # after ops are created. Revisit how important this modification is. # for op in operations: # if op.tile_description.threadblock_shape[1] >= 128: # op.C.alignment = 16 # else: # op.C.alignment = 8 return sm75_kernels + sm80_kernels GENERATOR_FUNC_TABLE = { 75: generate_sm75_tensor_op_1688, 80: generate_sm80_tensor_op_16816, } # (Epilogue functor name, no_beta_scaling) EPILOGUE_MAP = { "cutlass.dense": (EpilogueFunctor.LinearCombination, False), "cutlass.dense_bias": (EpilogueFunctor.LinearCombinationBias, True), "cutlass.dense_bias_relu": (EpilogueFunctor.LinearCombinationRelu, True), "cutlass.dense_bias_gelu_fp16": (EpilogueFunctor.LinearCombinationGelu, False), "cutlass.dense_bias_gelu_fp32": (EpilogueFunctor.LinearCombinationGelu, False), "cutlass.batch_matmul": (EpilogueFunctor.LinearCombination, False), "cutlass.conv2d_bias_hardswish": (EpilogueFunctor.LinearCombinationHardSwish, False), "cutlass.conv2d_bias_silu": (EpilogueFunctor.LinearCombinationSilu, False), "cutlass.conv2d_bias_sigmoid": (EpilogueFunctor.LinearCombinationSigmoid, False), "cutlass.conv2d_bias_relu": (EpilogueFunctor.LinearCombinationRelu, True), "cutlass.conv2d_bias": (EpilogueFunctor.LinearCombinationBias, True), "cutlass.conv2d": (EpilogueFunctor.LinearCombination, False), "cutlass.conv2d_transpose": (EpilogueFunctor.LinearCombination, False), "cutlass.conv2d_backward_weight": (EpilogueFunctor.LinearCombination, False), } class ProfilerEngine: """Compile and run a given profiler executable.""" def __init__(self, cuda_arch, cutlass_path, binary_prefix): self.cuda_arch = cuda_arch self.binary_prefix = binary_prefix self.cutlass = cutlass_path self.cflags = "-I{cutlass}/include -I{cutlass}/tools/util/include -O3 -std=c++11".format( cutlass=cutlass_path ) self.cflags += " -DCUTLASS_ENABLE_TENSOR_CORE_MMA=1" self.cflags += " -gencode=arch=compute_{arch},code=[sm_{arch},compute_{arch}]".format( arch=cuda_arch ) self.cflags += " -Xcompiler=-Wconversion -Xcompiler=-fno-strict-aliasing" self.cmd = "nvcc {cflags} {src} -o {output}" def _compile(self, op): os.makedirs(self.binary_prefix, exist_ok=True) opath = os.path.join(self.binary_prefix, op["name"]) if os.path.exists(opath): return fi = tempfile.NamedTemporaryFile("w", delete=False, prefix=self.binary_prefix, suffix=".cu") fi.write(op["src"]) fi.close() cmd = self.cmd.format(cflags=self.cflags, src=fi.name, output=opath) logger.info("invoking compilation %s", cmd) os.system(cmd) os.unlink(fi.name) def compile_all(self, ops, use_multiprocessing=False): """Compile all profiler executables.""" if use_multiprocessing: pool = multiprocessing.Pool(multiprocessing.cpu_count()) pool.map(self._compile, ops) else: for op in ops: self._compile(op) def evaluate(self, op, args): """Run the profiler executable corresponding to op_name with args.""" op_name = op["name"] opath = os.path.join(self.binary_prefix, op_name) if not os.path.exists(opath): self._compile(op) if not os.path.exists(opath): # Bail out if compilation fails for a whatever reason (e.g. static assert failure) return float("inf") cmd = [opath] for arg in args: cmd.append(str(arg)) try: logger.info("invoking evaluation %s", cmd) sp = subprocess.run(cmd, capture_output=True, check=True) rt = float(sp.stdout) if rt == 0.0: # This seems to happen with split-k using invalid split-k-slices rt = float("inf") logger.info("%s, %f", op_name, rt) except subprocess.CalledProcessError: rt = float("inf") return rt
https://github.com/zk-ml/tachikoma
python/tvm/contrib/cutlass/library.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name,line-too-long """Various type definitions to help instantiate CUTLASS kernels.""" import re import enum from enum import auto as enum_auto class GeneratorTarget(enum.Enum): Library = enum_auto() class DataType(enum.Enum): f16 = enum_auto() f32 = enum_auto() s8 = enum_auto() u8 = enum_auto() s32 = enum_auto() ShortDataTypeNames = { DataType.f16: "h", DataType.f32: "s", DataType.s32: "i", } DataTypeNames = { DataType.f16: "f16", DataType.f32: "f32", DataType.s8: "s8", DataType.u8: "u8", DataType.s32: "s32", } DataTypeTag = { DataType.f16: "cutlass::half_t", DataType.f32: "float", DataType.s8: "int8_t", DataType.s32: "int32_t", DataType.u8: "uint8_t", } DataTypeSize = { DataType.f16: 16, DataType.f32: 32, DataType.u8: 8, DataType.s8: 8, DataType.s32: 32, } class MathOperation(enum.Enum): multiply_add = enum_auto() multiply_add_saturate = enum_auto() multiply_add_fast_f32 = enum_auto() MathOperationTag = { MathOperation.multiply_add: "cutlass::arch::OpMultiplyAdd", MathOperation.multiply_add_saturate: "cutlass::arch::OpMultiplyAddSaturate", MathOperation.multiply_add_fast_f32: "cutlass::arch::OpMultiplyAddFastF32", } class LayoutType(enum.Enum): ColumnMajor = enum_auto() RowMajor = enum_auto() TensorNHWC = enum_auto() LayoutTag = { LayoutType.ColumnMajor: "cutlass::layout::ColumnMajor", LayoutType.RowMajor: "cutlass::layout::RowMajor", LayoutType.TensorNHWC: "cutlass::layout::TensorNHWC", } TransposedLayout = { LayoutType.ColumnMajor: LayoutType.RowMajor, LayoutType.RowMajor: LayoutType.ColumnMajor, LayoutType.TensorNHWC: LayoutType.TensorNHWC, } ShortLayoutTypeNames = { LayoutType.ColumnMajor: "n", LayoutType.RowMajor: "t", LayoutType.TensorNHWC: "nhwc", } class OpcodeClass(enum.Enum): Simt = enum_auto() TensorOp = enum_auto() WmmaTensorOp = enum_auto() OpcodeClassNames = { OpcodeClass.Simt: "simt", OpcodeClass.TensorOp: "tensorop", OpcodeClass.WmmaTensorOp: "wmma_tensorop", } OpcodeClassTag = { OpcodeClass.Simt: "cutlass::arch::OpClassSimt", OpcodeClass.TensorOp: "cutlass::arch::OpClassTensorOp", OpcodeClass.WmmaTensorOp: "cutlass::arch::OpClassWmmaTensorOp", } class OperationKind(enum.Enum): Gemm = enum_auto() Conv2d = enum_auto() OperationKindNames = {OperationKind.Gemm: "gemm", OperationKind.Conv2d: "conv2d"} class Target(enum.Enum): library = enum_auto() def substitute_template(template, values): """Instantiate a kernel template using `values`.""" text = template changed = True while changed: changed = False for key, value in values.items(): regex = "\\$\\{%s\\}" % key newtext = re.sub(regex, value, text) if newtext != text: changed = True text = newtext return text class GemmKind(enum.Enum): Gemm = enum_auto() GemmKindNames = { GemmKind.Gemm: "gemm", } class EpilogueFunctor(enum.Enum): LinearCombination = enum_auto() LinearCombinationRelu = enum_auto() LinearCombinationBias = enum_auto() LinearCombinationGelu = enum_auto() LinearCombinationSigmoid = enum_auto() LinearCombinationSilu = enum_auto() LinearCombinationHardSwish = enum_auto() LinearCombinationResidualBlock = enum_auto() EpilogueFunctorTag = { EpilogueFunctor.LinearCombination: "cutlass::epilogue::thread::LinearCombination", EpilogueFunctor.LinearCombinationRelu: "cutlass::epilogue::thread::LinearCombinationRelu", EpilogueFunctor.LinearCombinationBias: "cutlass::epilogue::thread::LinearCombination", EpilogueFunctor.LinearCombinationGelu: "cutlass::epilogue::thread::LinearCombinationGELU", EpilogueFunctor.LinearCombinationSigmoid: "cutlass::epilogue::thread::LinearCombinationSigmoid", EpilogueFunctor.LinearCombinationSilu: "cutlass::epilogue::thread::LinearCombinationSilu", EpilogueFunctor.LinearCombinationHardSwish: "cutlass::epilogue::thread::LinearCombinationHardSwish", EpilogueFunctor.LinearCombinationResidualBlock: "cutlass::epilogue::thread::LinearCombinationResidualBlock", } class SwizzlingFunctor(enum.Enum): Identity1 = enum_auto() Identity2 = enum_auto() Identity4 = enum_auto() Identity8 = enum_auto() Batched = enum_auto() StridedDgradIdentity1 = enum_auto() StridedDgradIdentity4 = enum_auto() SwizzlingFunctorTag = { SwizzlingFunctor.Identity1: "cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>", SwizzlingFunctor.Identity2: "cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<2>", SwizzlingFunctor.Identity4: "cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<4>", SwizzlingFunctor.Identity8: "cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<8>", SwizzlingFunctor.Batched: "cutlass::gemm::threadblock::GemmBatchedIdentityThreadblockSwizzle", SwizzlingFunctor.StridedDgradIdentity1: "cutlass::conv::threadblock::StridedDgradIdentityThreadblockSwizzle<1>", SwizzlingFunctor.StridedDgradIdentity4: "cutlass::conv::threadblock::StridedDgradIdentityThreadblockSwizzle<4>", } class ConvKind(enum.Enum): Fprop = enum_auto() Dgrad = enum_auto() Wgrad = enum_auto() ConvKindTag = { ConvKind.Fprop: "cutlass::conv::Operator::kFprop", ConvKind.Dgrad: "cutlass::conv::Operator::kDgrad", ConvKind.Wgrad: "cutlass::conv::Operator::kWgrad", } ConvKindNames = { ConvKind.Fprop: "fprop", ConvKind.Dgrad: "dgrad", ConvKind.Wgrad: "wgrad", } class StrideSupport(enum.Enum): Strided = enum_auto() Unity = enum_auto() StrideSupportTag = { StrideSupport.Strided: "cutlass::conv::StrideSupport::kStrided", StrideSupport.Unity: "cutlass::conv::StrideSupport::kUnity", } StrideSupportNames = { StrideSupport.Strided: "", StrideSupport.Unity: "unity_stride", } class IteratorAlgorithm(enum.Enum): Analytic = enum_auto() Optimized = enum_auto() IteratorAlgorithmTag = { IteratorAlgorithm.Analytic: "cutlass::conv::IteratorAlgorithm::kAnalytic", IteratorAlgorithm.Optimized: "cutlass::conv::IteratorAlgorithm::kOptimized", } IteratorAlgorithmNames = { IteratorAlgorithm.Analytic: "analytic", IteratorAlgorithm.Optimized: "optimized", } class MathInstruction: """Describe characteristics of a math instruction.""" def __init__( self, instruction_shape, element_a, element_b, element_c, element_accumulator, opcode_class, math_operation=MathOperation.multiply_add, ): self.instruction_shape = instruction_shape self.element_a = element_a self.element_b = element_b self.element_c = element_c self.element_accumulator = element_accumulator self.opcode_class = opcode_class self.math_operation = math_operation class TileDescription: """Describe characteristics of a GEMM tile.""" def __init__( self, threadblock_shape, stages, warp_count, math_instruction, min_compute, max_compute ): self.threadblock_shape = threadblock_shape self.stages = stages self.warp_count = warp_count self.math_instruction = math_instruction self.minimum_compute_capability = min_compute self.maximum_compute_capability = max_compute def procedural_name(self): return "%dx%d_%dx%d" % ( self.threadblock_shape[0], self.threadblock_shape[1], self.threadblock_shape[2], self.stages, ) class TensorDescription: def __init__(self, element, layout, alignment=1): self.element = element self.layout = layout self.alignment = alignment
https://github.com/zk-ml/tachikoma
python/tvm/contrib/debugger/__init__.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License.
https://github.com/zk-ml/tachikoma
python/tvm/contrib/debugger/debug_executor.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Graph debug runtime executes TVM debug packed functions.""" import logging import os import shutil import struct import tempfile import tvm._ffi from tvm._ffi.base import string_types from tvm.contrib import graph_executor from tvm.runtime.module import BenchmarkResult from ...runtime.profiling import Report from . import debug_result _DUMP_ROOT_PREFIX = "tvmdbg_" _DUMP_PATH_PREFIX = "_tvmdbg_" def create(graph_json_str, libmod, device, dump_root=None): """Create a runtime executor module given a graph and module. Parameters ---------- graph_json_str : str The graph to be deployed in json format output by graph compiler. The graph can contain operator(tvm_op) that points to the name of PackedFunc in the libmod. libmod : tvm.Module The module of the corresponding function. device : Device The device to deploy the module, can be local or remote. dump_root : str To select which folder the outputs should be kept. None will make a temp folder in /tmp/tvmdbg<rand_string> and does the dumping Returns ------- graph_module : GraphModuleDebug Debug Runtime graph module that can be used to execute the graph. """ assert isinstance(graph_json_str, string_types) try: dev, num_rpc_dev, device_type_id = graph_executor.get_device(libmod, device) if num_rpc_dev == len(dev): fcreate = dev[0]._rpc_sess.get_function("tvm.graph_executor_debug.create") else: fcreate = tvm._ffi.get_global_func("tvm.graph_executor_debug.create") except ValueError: raise ValueError( "Please set '(USE_PROFILER ON)' in " "config.cmake and rebuild TVM to enable debug mode" ) func_obj = fcreate(graph_json_str, libmod, *device_type_id) gmod = GraphModuleDebug(func_obj, dev, graph_json_str, dump_root) # Automatically set params if they can be extracted from the libmod try: params = libmod["get_graph_params"]() except (AttributeError, tvm.error.RPCError): # Params can not be extracted from the libmod and must be set somewhere else manually # Do not set params during RPC communication pass else: gmod.set_input(**params) return gmod class GraphModuleDebug(graph_executor.GraphModule): """Graph debug runtime module. This is a debug wrapper over the TVM runtime. Runtime interfaces are wrapped with debug functionalities. Manage the debug framework to format the debug data and trigger the user interfaces. Parameters ---------- module : Module The internal tvm module that holds the actual graph functions. device : Device The device that this module is under. graph_json_str : str or graph class Content of graph json file in string format dump_root : str To select which folder the outputs should be kept. None will make a temp folder in /tmp/tvmdbg<rand_string> and does the dumping """ def __init__(self, module, device, graph_json_str, dump_root): self._dump_root = dump_root self._dump_path = None self._run_individual = module["run_individual"] self._run_individual_node = module["run_individual_node"] self._debug_get_output = module["debug_get_output"] self._execute_node = module["execute_node"] self._get_node_output = module["get_node_output"] self._profile = module["profile"] self._profile_rpc = module["profile_rpc"] graph_executor.GraphModule.__init__(self, module) self._create_debug_env(graph_json_str, device) def _format_device(self, device): return str(device[0]).upper().replace("(", ":").replace(")", "") def _ensure_dir(self, directory): """Create a directory if not exists Parameters ---------- directory : str File path to create """ if not os.path.exists(directory): os.makedirs(directory, 0o700) def _get_dump_path(self, device): """Make the graph and tensor dump folder and return the path. Parameters ---------- device : Device The device that this module is under. Returns ------- path : str Directory path where the graph and node outputs will be stored. """ # save to file folder_name = _DUMP_PATH_PREFIX + "device_" folder_name = folder_name + device.replace(":", "_") path = os.path.join(self._dump_root, folder_name) self._ensure_dir(path) return path def _remove_dump_root(self): if os.path.isdir(self._dump_root): shutil.rmtree(self._dump_root) def _create_debug_env(self, graph_json, device): """Create UI wrapper framework to handle multiple UI frontends for tvmdbg Parameters ---------- graph_json : json format json formatted NNVM graph contain list of each node's name, shape and type. nodes_list : list List of all the nodes presented in the graph device : Device The device that this module is under. """ # make the dump folder if not given if not self._dump_root: self._dump_root = tempfile.mkdtemp(prefix=_DUMP_ROOT_PREFIX) # format the device device = self._format_device(device) # updates the dumping directories self._dump_path = self._get_dump_path(device) # init the debug dumping environment self.debug_datum = debug_result.DebugResult(graph_json, self._dump_path) def _execute_next_node(self, node_index, output_index): """Execute node assuming all previous nodes has been executed. Return the output of this node. Parameters ---------- node_index : int The node index output_index: int The node output index Return ------ output_tensors : Array<NDarray> Array of output tensors """ output_tensors = self._execute_next_node_get_output(node_index, output_index) return output_tensors def _run_per_layer(self): """Execute up to each node and each debug output will be copied to the buffer. """ output_tensors = [] for i, node in enumerate(self.debug_datum.get_graph_nodes()): self._execute_node(i) num_outputs = self.debug_datum.get_graph_node_output_num(node) for j in range(num_outputs): logging.info( "running node=%d, output_ind=%d, with node_name: %s", i, j, node["name"] ) output_tensors.append(self._get_node_output(i, j)) self.debug_datum.update_output_tensors(output_tensors) def _run_debug( self, number, repeat, min_repeat_ms, limit_zero_time_iterations, cooldown_interval_ms, repeats_to_cooldown, ): """Execute the node specified with index will be executed. Each debug output will be copied to the buffer Time consumed for each execution will be set as debug output. """ # Get timing. self.debug_datum._time_list = self.run_individual( number=number, repeat=repeat, min_repeat_ms=min_repeat_ms, limit_zero_time_iterations=limit_zero_time_iterations, cooldown_interval_ms=cooldown_interval_ms, repeats_to_cooldown=repeats_to_cooldown, ) # Get outputs. self._run_per_layer() def debug_get_output(self, node, out=None): """Run graph up to node and get the output to out Parameters ---------- node : int / str The node index or name out : NDArray The output array container """ if isinstance(node, str): node_index = None for i, graph_node in enumerate(self.debug_datum.get_graph_nodes()): if graph_node["name"] == node: node_index = i break else: raise AttributeError(f"Could not find a node named {node} in this graph.") elif isinstance(node, int): node_index = node else: raise RuntimeError(f"Require node index or name only.") self._debug_get_output(node_index, out) # pylint: disable=arguments-differ def run( self, number=10, repeat=1, min_repeat_ms=1, limit_zero_time_iterations=100, cooldown_interval_ms=0, repeats_to_cooldown=1, sort_by_time=True, **input_dict, ): """Run forward execution of the graph with debug Parameters ---------- number: int, optional The number of times to run this function for taking average. We call these runs as one `repeat` of measurement. repeat: int, optional The number of times to repeat the measurement. In total, the function will be invoked (1 + number x repeat) times, where the first one is warm up and will be discarded. The returned result contains `repeat` costs, each of which is an average of `number` costs. min_repeat_ms: int, optional The minimum duration of one `repeat` in milliseconds. By default, one `repeat` contains `number` runs. If this parameter is set, the parameters `number` will be dynamically adjusted to meet the minimum duration requirement of one `repeat`. i.e., When the run time of one `repeat` falls below this time, the `number` parameter will be automatically increased. limit_zero_time_iterations: int, optional The maximum number of repeats when measured time is equal to 0. It helps to avoid hanging during measurements. cooldown_interval_ms: int, optional The cooldown interval in milliseconds between the number of repeats defined by `repeats_to_cooldown`. repeats_to_cooldown: int, optional The number of repeats before the cooldown is activated. sort_by_time: bool, optional Whether to sort the debug output by time. input_dict : dict of str to NDArray List of input values to be feed to """ if input_dict: self.set_input(**input_dict) # Step 1. Execute the graph self._run_debug( number=number, repeat=repeat, min_repeat_ms=min_repeat_ms, limit_zero_time_iterations=limit_zero_time_iterations, cooldown_interval_ms=cooldown_interval_ms, repeats_to_cooldown=repeats_to_cooldown, ) # Step 2. Dump the output tensors to the dump folder self.debug_datum.dump_output_tensor() # Step 3. Dump the Chrome trace to the dump folder self.debug_datum.dump_chrome_trace() # Step 4. Display the collected information self.debug_datum.display_debug_result(sort_by_time) def run_individual( self, number, repeat=1, min_repeat_ms=0, limit_zero_time_iterations=100, cooldown_interval_ms=0, repeats_to_cooldown=1, ): """Run each operation in the graph and get the time per op for all ops. number: int The number of times to run this function for taking average. We call these runs as one `repeat` of measurement. repeat: int, optional The number of times to repeat the measurement. In total, the function will be invoked (1 + number x repeat) times, where the first one is warm up and will be discarded. The returned result contains `repeat` costs, each of which is an average of `number` costs. min_repeat_ms: int, optional The minimum duration of one `repeat` in milliseconds. By default, one `repeat` contains `number` runs. If this parameter is set, the parameters `number` will be dynamically adjusted to meet the minimum duration requirement of one `repeat`. i.e., When the run time of one `repeat` falls below this time, the `number` parameter will be automatically increased. limit_zero_time_iterations: int, optional The maximum number of repeats when measured time is equal to 0. It helps to avoid hanging during measurements. cooldown_interval_ms: int, optional The cooldown interval in milliseconds between the number of repeats defined by `repeats_to_cooldown`. repeats_to_cooldown: int, optional The number of repeats before the cooldown is activated. Returns ------- A 2-dimensional array where the dimensions are: the index of the operation and the repeat of the measurement. """ res = self._run_individual( number, repeat, min_repeat_ms, limit_zero_time_iterations, cooldown_interval_ms, repeats_to_cooldown, ) results = [] offset = 0 format_size = "@q" (nodes_count,) = struct.unpack_from(format_size, res, offset) offset += struct.calcsize(format_size) format_data = "@" + repeat * "d" for _ in range(0, nodes_count): ret = struct.unpack_from(format_data, res, offset) offset += struct.calcsize(format_data) results.append([*ret]) return results def run_individual_node( self, index, number=10, repeat=1, min_repeat_ms=0, limit_zero_time_iterations=100, cooldown_interval_ms=0, repeats_to_cooldown=1, ): """Benchmark a single node in the serialized graph. This does not do any data transfers and uses arrays already on the device. Parameters ---------- index : int The index of the node, see `self.debug_datum.get_graph_nodes` number: int The number of times to run this function for taking average. We call these runs as one `repeat` of measurement. repeat: int, optional The number of times to repeat the measurement. In total, the function will be invoked (1 + number x repeat) times, where the first one is warm up and will be discarded. The returned result contains `repeat` costs, each of which is an average of `number` costs. min_repeat_ms : int, optional The minimum duration of one `repeat` in milliseconds. By default, one `repeat` contains `number` runs. If this parameter is set, the parameters `number` will be dynamically adjusted to meet the minimum duration requirement of one `repeat`. i.e., When the run time of one `repeat` falls below this time, the `number` parameter will be automatically increased. limit_zero_time_iterations: int, optional The maximum number of repeats when measured time is equal to 0. It helps to avoid hanging during measurements. cooldown_interval_ms: int, optional The cooldown interval in milliseconds between the number of repeats defined by `repeats_to_cooldown`. repeats_to_cooldown: int, optional The number of repeats before the cooldown is activated. Returns ------- A module BenchmarkResult """ # Results are returned as serialized strings which we deserialize res = self._run_individual_node( index, number, repeat, min_repeat_ms, limit_zero_time_iterations, cooldown_interval_ms, repeats_to_cooldown, ) fmt = "@" + ("d" * repeat) results = struct.unpack(fmt, res) return BenchmarkResult(list(results)) def profile(self, collectors=None, **input_dict): """Run forward execution of the graph and collect overall and per-op performance metrics. Parameters ---------- collectors : Optional[Sequence[MetricCollector]] Extra metrics to collect. If profiling over RPC, collectors must be `None`. input_dict : dict of str to NDArray List of input values to be feed to Return ------ timing_results : str Per-operator and whole graph timing results in a table format. """ if input_dict: self.set_input(**input_dict) if self.module.type_key == "rpc": # We cannot serialize MetricCollectors over RPC assert collectors is None, "Profiling with collectors is not supported over RPC" return Report.from_json(self._profile_rpc()) return self._profile(collectors) def exit(self): """Exits the dump folder and all its contents""" self._remove_dump_root()
https://github.com/zk-ml/tachikoma
python/tvm/contrib/debugger/debug_result.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Graph debug results dumping class.""" import collections import json import os import numpy as np import tvm GRAPH_DUMP_FILE_NAME = "_tvmdbg_graph_dump.json" CHROME_TRACE_FILE_NAME = "_tvmdbg_execution_trace.json" ChromeTraceEvent = collections.namedtuple("ChromeTraceEvent", ["ts", "tid", "pid", "name", "ph"]) class DebugResult(object): """Graph debug data module. Data dump module manage all the debug data formatting. Output data and input graphs are formatted and dumped to file. Frontend read these data and graph for visualization. Parameters ---------- graph_json : str The graph to be deployed in json format output by graph compiler. Each operator (tvm_op) in the graph will have a one to one mapping with the symbol in libmod which is used to construct a "PackedFunc" . dump_path : str Output data path is read/provided from frontend """ def __init__(self, graph_json, dump_path): self._dump_path = dump_path self._output_tensor_list = [] self._time_list = [] json_obj = self._parse_graph(graph_json) # dump the json information self._dump_graph_json(json_obj) def _parse_graph(self, graph_json): """Parse and extract the JSON graph and update the nodes, shapes and dltype. Parameters ---------- graph_json : str or graph class The graph to be deployed in json format output by JSON graph. """ json_obj = json.loads(graph_json) self._nodes_list = json_obj["nodes"] self._shapes_list = json_obj["attrs"]["shape"] self._dtype_list = json_obj["attrs"]["dltype"] self._update_graph_json() return json_obj def _update_graph_json(self): """update the nodes_list with name, shape and data type, for temporarily storing the output. """ nodes_len = len(self._nodes_list) for i in range(nodes_len): node = self._nodes_list[i] input_list = [] for input_node in node["inputs"]: input_list.append(self._nodes_list[input_node[0]]["name"]) node["inputs"] = input_list dtype = str("type: " + self._dtype_list[1][i]) if "attrs" not in node: node["attrs"] = {} node["op"] = "param" else: node["op"] = node["attrs"]["func_name"] node["attrs"].update({"T": dtype}) node["shape"] = self._shapes_list[1][i] def _cleanup_tensors(self): """Remove the tensor dump file (graph wont be removed)""" for filename in os.listdir(self._dump_path): if os.path.isfile(filename) and not filename.endswith(".json"): os.remove(filename) def get_graph_nodes(self): """Return the nodes list""" return self._nodes_list def get_graph_node_shapes(self): """Return the nodes shapes list""" return self._shapes_list def get_graph_node_output_num(self, node): """Return the number of outputs of a node""" return 1 if node["op"] == "param" else int(node["attrs"]["num_outputs"]) def get_graph_node_dtypes(self): """Return the nodes dtype list""" return self._dtype_list def get_output_tensors(self): """Get the output tensors of each operation in numpy format""" eid = 0 output_tensors = {} for i, node in enumerate(self._nodes_list): num_outputs = self.get_graph_node_output_num(node) for j in range(num_outputs): # the node name is not unique, so we need a consistent # indexing based on the list ordering in the nodes key = f"{node['name']}____topo-index:{i}____output-num:{j}" output_tensors[key] = self._output_tensor_list[eid] eid += 1 return output_tensors def update_output_tensors(self, tensors): """Update output tensors list Parameters ---------- tensors : list[NDArray] """ if not isinstance(tensors, list): AttributeError("tensors with incorrect type.") for output_array in tensors: self._output_tensor_list.append(output_array) def dump_output_tensor(self): """Dump the outputs to a temporary folder, the tensors are in numpy format""" # cleanup existing tensors before dumping self._cleanup_tensors() output_tensors = self.get_output_tensors() with open(os.path.join(self._dump_path, "output_tensors.params"), "wb") as param_f: param_f.write(save_tensors(output_tensors)) def dump_chrome_trace(self): """Dump the trace to the Chrome trace.json format.""" def s_to_us(t): return t * 10**6 starting_times = np.zeros(len(self._time_list) + 1) starting_times[1:] = np.cumsum([np.mean(times) for times in self._time_list]) def node_to_events(node, times, starting_time): return [ ChromeTraceEvent( ts=s_to_us(starting_time), tid=1, pid=1, ph="B", name=node["name"], ), ChromeTraceEvent( # Use start + duration instead of end to ensure precise timings. ts=s_to_us(np.mean(times) + starting_time), tid=1, pid=1, ph="E", name=node["name"], ), ] events = [ e for (node, times, starting_time) in zip( self._nodes_list, self._time_list, starting_times ) for e in node_to_events(node, times, starting_time) ] result = dict(displayTimeUnit="ns", traceEvents=[e._asdict() for e in events]) with open(os.path.join(self._dump_path, CHROME_TRACE_FILE_NAME), "w") as trace_f: json.dump(result, trace_f) def _dump_graph_json(self, graph): """Dump json formatted graph. Parameters ---------- graph : json format json formatted JSON graph contain list of each node's name, shape and type. """ graph_dump_file_name = GRAPH_DUMP_FILE_NAME with open(os.path.join(self._dump_path, graph_dump_file_name), "w") as outfile: json.dump(graph, outfile, indent=4, sort_keys=False) def get_debug_result(self, sort_by_time=True): """Return the debugger result""" header = [ "Node Name", "Ops", "Time(us)", "Time(%)", "Shape", "Inputs", "Outputs", "Measurements(us)", ] lines = [ "---------", "---", "--------", "-------", "-----", "------", "-------", "----------------", ] eid = 0 data = [] total_time = sum([np.mean(time) for time in self._time_list]) for node, time in zip(self._nodes_list, self._time_list): time_mean = np.mean(time) num_outputs = self.get_graph_node_output_num(node) for j in range(num_outputs): op = node["op"] if node["op"] == "param": eid += 1 continue name = node["name"] shape = str(self._output_tensor_list[eid].shape) time_us = round(time_mean * 1e6, 3) time_percent = round(((time_mean / total_time) * 100), 3) inputs = str(node["attrs"]["num_inputs"]) outputs = str(node["attrs"]["num_outputs"]) measurements = str([round(repeat_data * 1e6, 3) for repeat_data in time]) node_data = [name, op, time_us, time_percent, shape, inputs, outputs, measurements] data.append(node_data) eid += 1 if sort_by_time: # Sort on the basis of execution time. Prints the most expensive ops in the start. data = sorted(data, key=lambda x: x[2], reverse=True) # Insert a row for total time at the end. rounded_total_time_us = round(total_time * 1e6, 3) data.append(["Total_time", "-", rounded_total_time_us, "-", "-", "-", "-", "-", "-"]) fmt = "" for i, _ in enumerate(header): max_len = len(header[i]) for j, _ in enumerate(data): item_len = len(str(data[j][i])) if item_len > max_len: max_len = item_len fmt = fmt + "{:<" + str(max_len + 2) + "}" log = [fmt.format(*header)] log.append(fmt.format(*lines)) for row in data: log.append(fmt.format(*row)) return "\n".join(log) def display_debug_result(self, sort_by_time=True): """Displays the debugger result""" print(self.get_debug_result(sort_by_time)) def save_tensors(params): """Save parameter dictionary to binary bytes. The result binary bytes can be loaded by the GraphModule with API "load_params". Parameters ---------- params : dict of str to NDArray The parameter dictionary. Returns ------- param_bytes: bytearray Serialized parameters. """ _save_tensors = tvm.get_global_func("tvm.relay._save_param_dict") return _save_tensors(params)
https://github.com/zk-ml/tachikoma
python/tvm/contrib/debugger/debug_runtime.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Deprecated Python API for DebugExecutor.""" import warnings from . import debug_executor def create(*args, **kwargs): warnings.warn( "This function has been moved to tvm.contrib.graph_executor and will be removed " "in the next TVM release" ) return debug_executor.create(*args, **kwargs)
https://github.com/zk-ml/tachikoma
python/tvm/contrib/dlpack.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Wrapping functions to bridge frameworks with DLPack support to TVM""" from tvm.runtime import ndarray def convert_func(tvm_func, tensor_type, to_dlpack_func): """Convert a tvm function into one that accepts a tensor from another framework, provided the other framework supports DLPACK Parameters ---------- tvm_func: Function Built tvm function operating on arrays tensor_type: Type Type of the tensors of the target framework to_dlpack_func: Function Function to convert the source tensors to DLPACK """ assert callable(tvm_func) def _wrapper(*args): args = tuple( ndarray.from_dlpack(to_dlpack_func(arg)) if isinstance(arg, tensor_type) else arg for arg in args ) return tvm_func(*args) return _wrapper def to_pytorch_func(tvm_func): """Convert a tvm function into one that accepts PyTorch tensors Parameters ---------- tvm_func: Function Built tvm function operating on arrays Returns ------- wrapped_func: Function Wrapped tvm function that operates on PyTorch tensors """ # pylint: disable=import-outside-toplevel import torch import torch.utils.dlpack return convert_func(tvm_func, torch.Tensor, torch.utils.dlpack.to_dlpack)
https://github.com/zk-ml/tachikoma
python/tvm/contrib/dnnl.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """External function interface to BLAS libraries.""" import tvm from tvm import te from ..topi.nn.utils import get_pad_tuple def matmul(lhs, rhs, transa=False, transb=False, **kwargs): """Create an extern op that compute matrix mult of A and rhs with CrhsLAS This function serves as an example on how to call external libraries. Parameters ---------- lhs: Tensor The left matrix operand rhs: Tensor The right matrix operand transa: bool Whether transpose lhs transb: bool Whether transpose rhs Returns ------- C: Tensor The result tensor. """ n = lhs.shape[1] if transa else lhs.shape[0] m = rhs.shape[0] if transb else rhs.shape[1] return te.extern( (n, m), [lhs, rhs], lambda ins, outs: tvm.tir.call_packed( "tvm.contrib.dnnl.matmul", ins[0], ins[1], outs[0], transa, transb ), name="C", **kwargs, ) def dnnl_conv2d( src, weights, stride, padding, dilation, groups, channel_last=False, out_dtype="float32", **kwargs, ): """Convolution operator in NCHW layout. Parameters ---------- src : tvm.te.Tensor 4-D with shape [batch, in_channel, in_height, in_width] weights : tvm.te.Tensor 4-D with shape [num_filter, in_channel, filter_height, filter_width] stride : int or a list/tuple of two ints Stride size, or [stride_height, stride_width] padding : int or a list/tuple of 2 or 4 ints padding size, or [pad_height, pad_width] for 2 ints, or [pad_top, pad_left, pad_bottom, pad_right] for 4 ints dilation: int or a list/tuple of two ints dilation size, or [dilation_height, dilation_width] groups: str input data layout: NCHW or NHWC channel_last: bool chose if input/output data format is in channel_last format(NHWC) or in plain format(NCHW) out_dtype: str output datatype: now only support float32 Returns ------- Output : tvm.te.Tensor 4-D with shape [batch, out_channel, out_height, out_width] """ assert isinstance(stride, int) or len(stride) == 2 assert isinstance(dilation, int) or len(dilation) == 2 if isinstance(stride, int): stride_h = stride_w = stride else: stride_h, stride_w = stride if isinstance(dilation, int): dilation_h = dilation_w = dilation else: dilation_h, dilation_w = dilation pre_cast = src.dtype == "float32" post_cast = out_dtype == "float32" if channel_last: batch, in_height, in_width, _ = src.shape kernel_h, kernel_w, _, num_filter = weights.shape else: batch, _, in_height, in_width = src.shape num_filter, _, kernel_h, kernel_w = weights.shape dilated_kernel_h = (kernel_h - 1) * dilation_h + 1 dilated_kernel_w = (kernel_w - 1) * dilation_w + 1 pad_top, pad_left, pad_down, pad_right = get_pad_tuple( padding, (dilated_kernel_h, dilated_kernel_w) ) out_channel = num_filter out_height = (in_height - dilated_kernel_h + pad_top + pad_down) // stride_h + 1 out_width = (in_width - dilated_kernel_w + pad_left + pad_right) // stride_w + 1 if channel_last: out_shape = (batch, out_height, out_width, out_channel) else: out_shape = (batch, out_channel, out_height, out_width) return te.extern( out_shape, [src, weights], lambda ins, outs: tvm.tir.call_packed( "tvm.contrib.dnnl.conv2d", ins[0], ins[1], outs[0], pad_top, pad_down, pad_left, pad_right, stride[0], stride[1], groups, channel_last, pre_cast, post_cast, ), name="C", dtype=out_dtype, **kwargs, )
https://github.com/zk-ml/tachikoma
python/tvm/contrib/download.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Helper utility for downloading""" import logging import os from pathlib import Path import shutil import tempfile import time LOG = logging.getLogger("download") def download(url, path, overwrite=False, size_compare=False, retries=3): """Downloads the file from the internet. Set the input options correctly to overwrite or do the size comparison Parameters ---------- url : str Download url. path : str Local file path to save downloaded file. overwrite : bool, optional Whether to overwrite existing file, defaults to False. size_compare : bool, optional Whether to do size compare to check downloaded file, defaults to False retries: int, optional Number of time to retry download, defaults to 3. """ # pylint: disable=import-outside-toplevel import urllib.request as urllib2 path = Path(path).resolve() if path.exists() and path.is_file() and not overwrite: if size_compare: import requests file_size = path.stat().st_size res_head = requests.head(url) res_get = requests.get(url, stream=True) if "Content-Length" not in res_head.headers: res_get = urllib2.urlopen(url) url_file_size = int(res_get.headers["Content-Length"]) if url_file_size != file_size: LOG.warning("Existing file %s has incorrect size, downloading fresh copy", path) download(url, path, overwrite=True, size_compare=False, retries=retries) return LOG.info("File %s exists, skipping.", path) return LOG.info("Downloading from url %s to %s", url, path) # Stateful start time start_time = time.time() dirpath = path.parent dirpath.mkdir(parents=True, exist_ok=True) def _download_progress(count, block_size, total_size): # pylint: disable=unused-argument """Show the download progress.""" if count == 0: return duration = time.time() - start_time progress_bytes = int(count * block_size) progress_megabytes = progress_bytes / (1024.0 * 1024) speed_kbps = int(progress_bytes / (1024 * duration)) percent = min(int(count * block_size * 100 / total_size), 100) # Temporarily suppress newlines on the output stream. prev_terminator = logging.StreamHandler.terminator logging.StreamHandler.terminator = "" LOG.debug( "\r...%d%%, %.2f MB, %d KB/s, %d seconds passed", percent, progress_megabytes, speed_kbps, duration, ) logging.StreamHandler.terminator = prev_terminator with tempfile.TemporaryDirectory() as tempdir: tempdir = Path(tempdir) download_loc = tempdir.joinpath(path.name) for i_retry in range(retries): # pylint: disable=broad-except try: urllib2.urlretrieve(url, download_loc, reporthook=_download_progress) LOG.debug("") try: download_loc.rename(path) except OSError: # Prefer a move, but if the tempdir and final # location are in different drives, fall back to a # copy. shutil.copy2(download_loc, path) return except Exception as err: if i_retry == retries - 1: raise err LOG.warning( "%s\nDownload attempt %d/%d failed, retrying.", repr(err), i_retry, retries ) if "TEST_DATA_ROOT_PATH" in os.environ: TEST_DATA_ROOT_PATH = Path(os.environ.get("TEST_DATA_ROOT_PATH")) else: TEST_DATA_ROOT_PATH = Path(Path("~").expanduser(), ".tvm_test_data") TEST_DATA_ROOT_PATH.mkdir(parents=True, exist_ok=True) def download_testdata(url, relpath, module=None, overwrite=False): """Downloads the test data from the internet. Parameters ---------- url : str Download url. relpath : str Relative file path. module : Union[str, list, tuple], optional Subdirectory paths under test data folder. overwrite : bool, defaults to False If True, will download a fresh copy of the file regardless of the cache. If False, will only download the file if a cached version is missing. Returns ------- abspath : str Absolute file path of downloaded file """ global TEST_DATA_ROOT_PATH if module is None: module_path = "" elif isinstance(module, str): module_path = module elif isinstance(module, (list, tuple)): module_path = Path(*module) else: raise ValueError("Unsupported module: " + module) abspath = Path(TEST_DATA_ROOT_PATH, module_path, relpath) download(url, abspath, overwrite=overwrite, size_compare=False) return str(abspath)
https://github.com/zk-ml/tachikoma
python/tvm/contrib/emcc.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Util to invoke emscripten compilers in the system.""" # pylint: disable=invalid-name import subprocess from tvm._ffi.base import py_str from tvm._ffi.libinfo import find_lib_path def create_tvmjs_wasm(output, objects, options=None, cc="emcc"): """Create wasm that is supposed to run with the tvmjs. Parameters ---------- output : str The target shared library. objects : list List of object files. options : str The additional options. cc : str, optional The compile string. """ cmd = [cc] cmd += ["-O3"] cmd += ["-std=c++17"] cmd += ["--no-entry"] cmd += ["-s", "ERROR_ON_UNDEFINED_SYMBOLS=0"] cmd += ["-s", "STANDALONE_WASM=1"] cmd += ["-s", "ALLOW_MEMORY_GROWTH=1"] objects = [objects] if isinstance(objects, str) else objects with_runtime = False for obj in objects: if obj.find("wasm_runtime.bc") != -1: with_runtime = True if not with_runtime: objects += [find_lib_path("wasm_runtime.bc")[0]] objects += [find_lib_path("tvmjs_support.bc")[0]] objects += [find_lib_path("webgpu_runtime.bc")[0]] cmd += ["-o", output] cmd += objects if options: cmd += options proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) (out, _) = proc.communicate() if proc.returncode != 0: msg = "Compilation error:\n" msg += py_str(out) raise RuntimeError(msg) create_tvmjs_wasm.object_format = "bc"
https://github.com/zk-ml/tachikoma
python/tvm/contrib/ethosu/__init__.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Namespace for Arm(R) Ethos(TM)-U NPU contrib functionality"""
https://github.com/zk-ml/tachikoma
python/tvm/contrib/ethosu/cascader/__init__.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """The NPU cascader. This component performs inter-operator scheduling to optimize for both performance and memory usage on Arm(R) Ethos(TM)-U NPUs. """ from .stripe_config import StripeConfig from .block_config import BlockConfig from .propagator import Propagator from .graph import ( PerformanceInfo, Tensor, Part, TESubgraph, CascaderGraph, BufferMode, register_matcher, create_cascader_graph, ) from .parts import InlinePart, EthosuPart from .device_config import EthosuDeviceConfig from .tensor_config import TensorConfigState, MemoryRegion, TensorConfig from .plan import Plan from .scheduler import apply_proposal, cascade, extract_memory_info from .logging import Logging from .cascader_options import CascaderOptions
https://github.com/zk-ml/tachikoma
python/tvm/contrib/ethosu/cascader/_ffi_api.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """FFI APIs for the NPU cascader.""" import tvm._ffi tvm._ffi._init_api("contrib.ethosu.cascader", __name__)
https://github.com/zk-ml/tachikoma
python/tvm/contrib/ethosu/cascader/block_config.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name """Block config to hold an output block shape and a corresponding input block shape""" from typing import List import tvm._ffi from tvm.runtime import Object from . import _ffi_api @tvm._ffi.register_object("contrib.ethosu.cascader.BlockConfig") class BlockConfig(Object): """BlockConfig class""" def __init__( self, input_shape: List[int], output_shape: List[int], compute_cycles: int, output_cycles: int, ): self.__init_handle_by_constructor__( _ffi_api.BlockConfig, input_shape, output_shape, compute_cycles, output_cycles ) @property def input_shape(self) -> List[int]: return list(self._input_shape) @property def output_shape(self) -> List[int]: return list(self._output_shape) @property def compute_cycles(self) -> int: return int(self._compute_cycles) @property def output_cycles(self) -> int: return int(self._output_cycles) def __ge__(self, other: "BlockConfig"): if len(self.output_shape) != len(other.output_shape): return False return all(a >= b for a, b in zip(self.output_shape, other.output_shape)) def __lt__(self, other: "BlockConfig"): if len(self.output_shape) != len(other.output_shape): return False return other >= self def __repr__(self) -> str: return f"BlockConfig(output_shape={self.output_shape})"
https://github.com/zk-ml/tachikoma
python/tvm/contrib/ethosu/cascader/cascader_options.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Object to hold options for the NPU cascader""" import tvm._ffi from tvm.runtime import Object from . import _ffi_api from .tensor_config import MemoryRegion @tvm._ffi.register_object("contrib.ethosu.cascader.CascaderOptions") class CascaderOptions(Object): """ A class to hold configuration options for the cascader. Attributes ---------- cascade_region : MemoryRegion The MemoryRegion to place cascading buffers into. max_proposals : int The maximum number of Proposals to generate. stripe_factors : int How many striping factors to try per axis. max_plan_size : int The maximum number of Parts in a Plan. max_open_plans : int The maximum number of open Plans to keep after culling. max_closed_plans : int The maxmum number of closed Plans to keep after culling. always_copy_size : int The maximum size of a Tensor that will always be copied into the cascade region. disable_pareto_plans : bool Disable pareto culling for Plans. disable_pareto_proposals : bool Disable pareto culling for Proposals. enable_multi_dimensional_striping : bool Enable striping in multiple dimensions simultaneously. disable_block_culling : bool Disable culling of block configs. enable_striping : bool A boolean option to enable striping """ def __init__( self, cascade_region: MemoryRegion, max_proposals: int, stripe_factors: int, max_plan_size: int, max_open_plans: int, max_closed_plans: int, always_copy_size: int, disable_pareto_plans: bool = False, disable_pareto_proposals: bool = False, enable_multi_dimensional_striping: bool = False, disable_block_culling: bool = True, enable_striping: bool = False, ): self.__init_handle_by_constructor__( _ffi_api.CascaderOptions, cascade_region, max_proposals, stripe_factors, max_plan_size, max_open_plans, max_closed_plans, always_copy_size, disable_pareto_plans, disable_pareto_proposals, enable_multi_dimensional_striping, disable_block_culling, enable_striping, )
https://github.com/zk-ml/tachikoma
python/tvm/contrib/ethosu/cascader/device_config.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name # pylint: disable=too-many-nested-blocks """Device config class to hold information about the target hardware""" from typing import Tuple, List, Dict, Optional from functools import reduce import math import numpy as np import tvm from . import BlockConfig from . import StripeConfig from . import Propagator def _round_up(a: int, b: int) -> int: """Round up to a multiple of b""" return ((a + b - 1) // b) * b def _round_up_div(a: int, b: int) -> int: """Divide by b and round up to a multiple of b""" return (a + b - 1) // b class _Shape: """Helper class for dealing with Tensor shapes of different layouts""" def __init__(self, shape: List[int], layout="NHWC"): if layout == "NHCWB16": self.height = int(shape[1]) self.width = int(shape[3]) self.depth = int(shape[2]) * int(shape[4]) else: # identity layout is NHWC but the shape is not always 4 length = len(shape) if length == 4: self.height = int(shape[1]) self.width = int(shape[2]) self.depth = int(shape[3]) elif length == 3: self.height = int(shape[0]) self.width = int(shape[1]) self.depth = int(shape[2]) elif length == 2: self.height = int(shape[0]) self.width = int(shape[1]) self.depth = 1 elif length == 1: self.height = int(shape[0]) self.width = 1 self.depth = 1 def round_up(self, other: "_Shape"): self.height = _round_up(self.height, other.height) self.width = _round_up(self.width, other.width) self.depth = _round_up(self.depth, other.depth) def area(self) -> int: return self.height * self.width def as_list(self): return [1, self.height, self.width, self.depth] class EthosuDeviceConfig: """Arm(R) Ethos(TM)-U NPU config class""" def __init__(self, device: str, disable_block_bulling: bool = False): self._device = device self._subkernel_limits = (8, 8) self._output_cycles = (1, 2, 3, 4, 6) self._split_depth = 16 self._max_block_shape = _Shape([1, 32, 64, 128]) self._bank_size_bytes = 1024 self._disable_block_culling = disable_block_bulling if self._device == "ethos-u55-256": self._micro_block = _Shape([1, 2, 2, 8]) self._input_micro_block = _Shape([1, 2, 2, 8]) self._delay_cycles = (2, 2) self._activation_cycles = (0.25, 1) self._output_units = 8 self._total_banks = 48 self._reserved_banks = 4 self._input_granularity = {1: 8, 2: 8, 4: 16} self._accumulator_granularity = {4: 16, 5: 20} self._lut_reserved = True elif self._device == "ethos-u55-128": self._micro_block = _Shape([1, 1, 2, 8]) self._input_micro_block = _Shape([1, 1, 2, 8]) self._delay_cycles = (2, 3) self._activation_cycles = (0.5, 1) self._output_units = 4 self._total_banks = 24 self._reserved_banks = 4 self._input_granularity = {1: 4, 2: 4, 4: 8} self._accumulator_granularity = {4: 8, 5: 12} self._lut_reserved = True elif self._device == "ethos-u55-64": self._micro_block = _Shape([1, 1, 1, 8]) self._input_micro_block = _Shape([1, 1, 1, 8]) self._delay_cycles = (2, 3) self._activation_cycles = (1, 1) self._output_units = 2 self._total_banks = 16 self._reserved_banks = 2 self._input_granularity = {1: 2, 2: 2, 4: 4} self._accumulator_granularity = {4: 4, 5: 8} self._lut_reserved = False elif self._device == "ethos-u55-32": self._micro_block = _Shape([1, 1, 1, 4]) self._input_micro_block = _Shape([1, 1, 1, 8]) self._delay_cycles = (3, 7) self._activation_cycles = (1, 2) self._output_units = 1 self._total_banks = 16 self._reserved_banks = 2 self._input_granularity = {1: 2, 2: 2, 4: 4} self._accumulator_granularity = {4: 4, 5: 4} self._lut_reserved = False def _get_output_cycles( self, op_type: str, op_str: str, ifm_dtype: str, ofm_dtype: str, activation: str ) -> float: """Estimate cycles per output element for an NPU operator Parameters ---------- op_type : str The NPU primitive operator "ethosu_pooling" op_str : str The type of NPU operator. "MAX" ifm_dtype: str Datatype of the Input Feature Map tensor (IFM) ofm_dtype: str Datatype of the Output Feature Map tensor (OFM) activation : str The activation function to use. "NONE" - no activation function. "CLIP" - clip the output between clip_min and clip_max. "TANH" - tanh activation function. "SIGMOID" - sigmoid activation function. "LUT" - use a look-up table to perform the activation function. Returns ------- float The cycles per output element """ cycles = 0 bw_limit = 0 if op_type == "ethosu_pooling" and op_str == "MAX": cycles = self._output_cycles[0] elif op_type in ("ethosu_pooling", "ethosu_conv2d", "ethosu_depthwise_conv2d"): cycles = self._output_cycles[1] if ifm_dtype == "int8" else self._output_cycles[2] elif op_type == "ethosu_binary_elementwise": # Binary Bandwidth Limitations if ifm_dtype == "int8": bw_limit = 0.125 if ofm_dtype == "int8" else 0.75 elif ifm_dtype == "int16": bw_limit = 0.75 if ofm_dtype == "int16" else 1 else: bw_limit = 1.5 if op_str in ("MIN", "MAX"): cycles = self._output_cycles[1] elif op_str == "MUL": cycles = self._output_cycles[2] if op_str in ("ADD", "SUB"): if ofm_dtype == "int32": cycles = ( self._output_cycles[2] if ifm_dtype == "int32" else self._output_cycles[3] ) else: cycles = self._output_cycles[4] elif op_type == "ethosu_unary_elementwise": # Unary Bandwidth Limitations if ifm_dtype == "int16": bw_limit = 0.25 elif ifm_dtype == "int32": bw_limit = 1 if op_str == "CLZ": cycles = self._output_cycles[1] elif op_str in ("SHL", "SHR"): cycles = self._output_cycles[2] elif op_str in ("LRELU", "ABS"): cycles = self._output_cycles[1] if ifm_dtype == "int16": bw_limit = 0.5 act_cycles = 0 if activation == "CLIP": act_cycles = self._activation_cycles[0] elif activation in ("LUT", "TANH", "SIGMOID"): act_cycles = self._activation_cycles[1] return max((cycles / self._output_units), act_cycles, bw_limit) def _get_delay_cycles(self, op_type: str, ifm_dtype: str) -> int: """Get the number of delay cycles during a bubble Parameters ---------- op_type : str The NPU primitive operator "ethosu_pooling" op_str : str The type of NPU operator. "MAX" ifm_dtype: str Datatype of the Input Feature Map tensor (IFM) Returns ---------- int The amount of delay cycles """ if op_type in ("ethosu_conv2d", "ethosu_depthwise2d", "ethosu_pooling"): if ifm_dtype == "int16": return self._delay_cycles[1] return self._delay_cycles[0] return 0 def _get_weight_decoder_cycles(self, op_type: str) -> int: """Get cycle estimate for weight decoding Parameters ---------- op_type: str The NPU primitive operator "ethosu_pooling" Returns ---------- int Estimated cycles for weight decoding """ if op_type in ("ethosu_conv2d", "ethosu_depthwise2d"): return 32 * self._micro_block.depth // 8 return 0 def get_output_quantum(self, ofm_layout: str) -> Tuple[int]: """Get the atomic output volume Parameters ---------- ofm_layout : str The layout of the Output Feature Map tensor. Can be "NHWC" or "NHCWB16". Returns ---------- Tuple[int] The atomic output volume formatted to the ofm_layout parameter """ if ofm_layout == "NHCWB16": return [ 1, self._micro_block.height, 1, self._micro_block.width, self._micro_block.depth, ] return self._micro_block.as_list() def _align(self, x: int, n: int) -> int: return int(math.ceil(x / n) * n) def _get_input_size( self, output_size: int, kernel_stride: int, border: int, upscaling_factor: int ) -> int: return int(math.ceil(((output_size - 1) * kernel_stride + border)) / upscaling_factor) def _get_dilated_kernel_size(self, kernel_size: int, dilation: int) -> int: return (kernel_size - 1) * dilation + 1 def _get_input_block( self, output_block: _Shape, input_shape: _Shape, dtype: str, op_type: str, partkernel: bool, stride_h: int, stride_w: int, dilated_kernel_h: int, dilated_kernel_w: int, upscaling_factor: int, ) -> _Shape: height = self._get_input_size( output_block.height, stride_h, min(dilated_kernel_h, self._subkernel_limits[0]), upscaling_factor, ) width = self._get_input_size( output_block.width, stride_w, min(dilated_kernel_w, self._subkernel_limits[1]), upscaling_factor, ) if op_type == "ethosu_conv2d": if dtype == "int8": if partkernel: depth = self._align(min(32, input_shape.depth), 8) else: depth = self._align(min(16, input_shape.depth), 8) elif dtype == "int16": depth = self._align(min(16, input_shape.depth), 4) else: depth = self._align(min(8, input_shape.depth), 2) else: depth = output_block.depth return _Shape( [ 1, self._align(height, self._micro_block.height), self._align(width, self._micro_block.width), depth, ] ) def get_kernel_steps( self, op_type: str, dilated_kernel_h: int, dilated_kernel_w: int, ifm_dtype: str, partkernel: bool = False, ) -> List[int]: """Calculate the total number of subkernels and their sizes Parameters ---------- op_type : str The NPU primitive operator "ethosu_pooling" dilated_kernel_h: int Height of dilated kernel dilated_kernel_w: int Width of dilated kernel ifm_dtype: str Datatype of the Input Feature Map tensor (IFM) partkernel: bool Flag showing whether part-kernel first traversal is used Returns ---------- List[int] List where each entry contains the amount of elements in one of the subkernels """ if op_type == "ethosu_binary_elementwise": return [1] subkernels = self._get_subkernels(dilated_kernel_h, dilated_kernel_w) # Determine the number of kernel steps per subkernel kernel_steps = [] for y, x in subkernels: subkernel_elements = x * y if op_type == "ethosu_conv2d" and partkernel: # Part-kernel-first traversal conv2d divisor = 4 if ifm_dtype == "int8" else 2 kernel_steps.append(int(_round_up_div(subkernel_elements, divisor))) elif op_type == "ethosu_depthwise_conv2d": kernel_steps.append(int(_round_up_div(subkernel_elements, 4))) else: # Depth-first traversal conv2d or pooling kernel_steps.append(int(subkernel_elements)) return kernel_steps def _get_subkernels(self, dilated_kernel_h: int, dilated_kernel_w: int): num_subkernels_y = _round_up_div(dilated_kernel_h, self._subkernel_limits[0]) num_subkernels_x = _round_up_div(dilated_kernel_w, self._subkernel_limits[1]) subkernels_y = [ min((dilated_kernel_h - i * self._subkernel_limits[0]), self._subkernel_limits[0]) for i in range(num_subkernels_y) ] subkernels_x = [ min((dilated_kernel_w - i * self._subkernel_limits[1]), self._subkernel_limits[1]) for i in range(num_subkernels_x) ] subkernels = [] for y in subkernels_y: for x in subkernels_x: subkernels.append((y, x)) return subkernels def _get_accumulator_width(self, op_type: str, ifm_dtype: str): if ifm_dtype == "int16" and op_type != "ethosu_pooling": return 5 return 4 def is_partkernel( self, op_type: str, ifm_channels: int, ifm_dtype: str, kernel_elements: int ) -> bool: """Determine which block traversal strategy has better DPU utilization Parameters ---------- op_type: str The NPU primitive operator "ethosu_pooling" ifm_channels: int Number of input channels ifm_dtype: str Datatype of the Input Feature Map tensor (IFM) kernel_elements: int Total number of elements in the kernel Returns ---------- bool True if partkernel first has best DPU utilization """ if op_type != "ethosu_conv2d": return False depth_first_utilization = ifm_channels / _round_up( ifm_channels, 32 if ifm_dtype == "int8" else 16 ) part_kernel_first_utilization = (ifm_channels / _round_up(ifm_channels, 8)) * ( kernel_elements / _round_up(kernel_elements, 4 if ifm_dtype == "int8" else 2) ) return part_kernel_first_utilization > depth_first_utilization or ifm_channels <= 8 def _get_input_banks(self, input_block_shape, input_bytewidth): input_bytes = input_block_shape.area() * self._align( input_block_shape.depth * input_bytewidth, 8 ) input_banks = _round_up_div(input_bytes, self._bank_size_bytes) * 2 input_banks = _round_up(input_banks, self._input_granularity[input_bytewidth]) return input_banks def _get_accumulator_banks(self, output_block_shape, acc_bytewidth): acc_depth = _round_up(output_block_shape.depth, 8) acc_bytes = output_block_shape.area() * self._align(acc_depth, 8) * acc_bytewidth acc_banks = _round_up_div(acc_bytes, self._bank_size_bytes) * 2 acc_banks = _round_up(acc_banks, self._accumulator_granularity[acc_bytewidth]) return acc_banks @staticmethod def _create_layout_block(nhwc_block_config, layout): """A helper function to convert to brick layout""" if layout == "NHCWB16": return [ nhwc_block_config[0], nhwc_block_config[1], 1 + ((nhwc_block_config[3] - 1) // 16), nhwc_block_config[2], 16, ] # else it could only be NHWC return nhwc_block_config def get_elementwise_block_config( self, ifm_propagator: Propagator, ifm2_propagator: Optional[Propagator], op_attrs: Dict, ofm_shape: List[int], output_layout: str, input_layout: str, input2_layout: Optional[str], ifm_dtype: str, ofm_dtype: str, ) -> List[BlockConfig]: """Get a suitable block config for an elementwise operator Parameters ---------- ifm_propagator: Propagator, The propagator containing the data dependencies between input and output ifm2_propagator: Propagator, The propagator containing the data dependencies between input2 and output op_attrs: Dict, Dictionary containing operator attributes ofm_shape: List[int], Shape of the output tensor output_layout: str, The layout of the Output Feature Map tensor. Can be "NHWC" or "NHCWB16". input_layout: str, The layout of the Input Feature Map tensor. Can be "NHWC" or "NHCWB16". input2_layout: str, The layout of the Input2 Feature Map tensor. Can be "NHWC" or "NHCWB16". ifm_dtype: str, Datatype of the Input Feature Map tensor (IFM) ofm_dtype: str, Datatype of the Output Feature Map tensor (OFM) Returns ---------- List[BlockConfig] List containing a single suitable block config """ block_config = [] output_shape = [int(a) for a in ofm_shape] op_type = op_attrs.get("op") op_str = op_attrs.get("op_str") activation = op_attrs.get("activation", "NONE") input_bytewidth = 1 if ifm_dtype == "int8" else 2 if ifm_dtype == "int16" else 4 banks_available = self._total_banks - self._reserved_banks if activation == "LUT" and not self._lut_reserved: banks_available -= 2 # Handle user-forced block config options = tvm.transform.PassContext.current().config.get("relay.ext.ethos-u.options", None) if options and options.dev_force_block_config: block_config = [int(v) for v in options.dev_force_block_config.split("x")] assert len(block_config) == 3 if output_layout == "NHWC": block_shape = [output_shape[0], block_config[0], block_config[1], block_config[2]] else: block_shape = [ output_shape[0], block_config[0], 1 + ((block_config[2] - 1) // 16), block_config[1], 16, ] output_cycles = self._get_output_cycles( op_type, op_str, ifm_dtype, ofm_dtype, activation ) output_cycles *= reduce(lambda a, b: a * b, block_shape, 1) output_cycles = int(math.ceil(output_cycles)) return [BlockConfig(block_shape, block_shape, 0, output_cycles)] # Split the block in half until it fits into SHRAM max_height, max_width, max_depth = self._max_block_shape.as_list()[1:] if output_layout == "NHCWB16": output_height = output_shape[1] output_width = output_shape[3] output_channels = output_shape[2] * 16 else: output_height = output_shape[1] output_width = output_shape[2] output_channels = output_shape[3] output_nhwc_block = [ 1, _round_up(min(output_height, max_height), self._micro_block.height), _round_up(min(output_width, max_width), self._micro_block.width), _round_up(min(output_channels, max_depth), self._micro_block.depth), ] output_block = self._create_layout_block(output_nhwc_block, output_layout) split_order = (a for a in [1, 2, 3]) split_axis = next(split_order) offset = [0] * len(output_block) stripes = [1] * len(output_block) order = [1, 2, 4, 3, 0] if output_layout == "NHCWB16" else [1, 2, 3, 4] while True: # Create stripe config for output block output_stripe_config = StripeConfig( output_block, output_block, output_block, order, stripes, offset ) # Propagate the output to obtain the two input blocks input_block = _Shape(ifm_propagator.propagate(output_stripe_config).shape, input_layout) if ifm2_propagator: input2_block = _Shape( ifm2_propagator.propagate(output_stripe_config).shape, input2_layout ) else: # Unary elementwise input2_block = input_block input_block.round_up(self._input_micro_block) input2_block.round_up(self._input_micro_block) # Banks required for input block input_banks = self._get_input_banks(input_block, input_bytewidth) # Banks required for input2 block input2_banks = self._get_input_banks(input2_block, input_bytewidth) # Check whether or not both IFMs fit into SHRAM if (input_banks + input2_banks) <= banks_available: output_cycles = self._get_output_cycles( op_type, op_str, ifm_dtype, ofm_dtype, activation ) output_cycles *= reduce(lambda a, b: a * b, output_block, 1) output_cycles = int(math.ceil(output_cycles)) block_config.append( BlockConfig(input_block.as_list(), output_block, 0, output_cycles) ) break if output_nhwc_block[split_axis] == self._micro_block.as_list()[split_axis]: split_axis = next(split_order) output_nhwc_block[split_axis] = _round_up( _round_up_div(output_nhwc_block[split_axis], 2), self._micro_block.as_list()[split_axis], ) output_block = self._create_layout_block(output_nhwc_block, output_layout) return block_config def _get_subkernel_propagator( self, op_attrs, ifm_propagator, input_layout, output_layout, depth ): op_type = op_attrs.get("op") stride_h = int(op_attrs.get("stride_h", 1)) stride_w = int(op_attrs.get("stride_w", 1)) transform = ifm_propagator.transform if op_type != "ethosu_identity": if input_layout == "NHCWB16": transform[1][-1] = min(transform[1][-1], self._subkernel_limits[0] - stride_h) transform[3][-1] = min(transform[3][-1], self._subkernel_limits[1] - stride_w) else: transform[1][-1] = min(transform[1][-1], self._subkernel_limits[0] - stride_h) transform[2][-1] = min(transform[2][-1], self._subkernel_limits[1] - stride_w) if op_type in ("ethosu_pooling", "ethosu_depthwise_conv2d"): if output_layout == "NHCWB16" and input_layout == "NHWC": transform[3][-1] = depth elif output_layout == "NHCWB16" and input_layout == "NHCWB16": transform[2][-1] = 1 + ((depth - 1) // 16) return Propagator(transform, ifm_propagator.offset) def get_valid_block_configs( self, ifm_propagator: Propagator, op_attrs: Dict, ofm_shape: List[int], ofm_channels: int, ifm_channels: int, output_layout: str, input_layout: str, ifm_dtype: str, ofm_dtype: str, kernel_h: int = 1, kernel_w: int = 1, ) -> List[BlockConfig]: """Get all of the valid block configs Parameters ---------- ifm_propagator: Propagator, The propagator containing the data dependencies between input and output op_attrs: Dict, Dictionary containing operator attributes ofm_shape: List[int], Shape of the output tensor ofm_channels: int, Number of output channels ifm_channels: int, Number of input channels output_layout: str, The layout of the Output Feature Map tensor. Can be "NHWC" or "NHCWB16". input_layout: str, The layout of the Input Feature Map tensor. Can be "NHWC" or "NHCWB16". ifm_dtype: str, Datatype of the Input Feature Map tensor (IFM) ofm_dtype: str, Datatype of the Output Feature Map tensor (OFM) kernel_h: int, Height of kernel kernel_h: int Width of kernel Returns ---------- List[BlockConfig] List containing all of the valid block configs """ valid_block_configs = [] op_type = op_attrs.get("op") op_str = op_attrs.get("op_str") activation = op_attrs.get("activation", "NONE") upscaling_factor = 1 if op_attrs.get("upscale", "NONE") == "NONE" else 2 if output_layout == "NHCWB16": output_shape = _Shape([1, ofm_shape[1], ofm_shape[3], ofm_channels]) else: output_shape = _Shape(ofm_shape) # Define search space max_height = min(output_shape.height, self._max_block_shape.height) min_height = max(self._micro_block.height, upscaling_factor) max_width = min(output_shape.width, self._max_block_shape.width) min_width = max(self._micro_block.width, upscaling_factor) max_depth = min(ofm_channels, self._max_block_shape.depth) min_depth = max(self._micro_block.depth, upscaling_factor) heights = range(min_height, max_height + min_height, min_height) widths = range(min_width, max_width + min_width, min_width) depths = range(min_depth, max_depth + min_depth, min_depth) # Handle user-forced block config options = tvm.transform.PassContext.current().config.get("relay.ext.ethos-u.options", None) forced = False if options and options.dev_force_block_config: block_config = [int(v) for v in options.dev_force_block_config.split("x")] assert len(block_config) == 3 heights = [block_config[0]] widths = [block_config[1]] depths = [block_config[2]] forced = True input_bytewidth = 1 if ifm_dtype == "int8" else 2 acc_bytewidth = self._get_accumulator_width(op_type, ifm_dtype) banks_available = self._total_banks - self._reserved_banks if activation == "LUT" and not self._lut_reserved: banks_available -= 2 # Input block depth has additional limitations for operators that require full input depth input_block_depth = 0 partkernel = self.is_partkernel(op_type, ifm_channels, ifm_dtype, kernel_h * kernel_w) if op_type == "ethosu_conv2d": if partkernel: input_block_depth = min(ifm_channels, 16) else: input_block_depth = min(ifm_channels, 32) for depth in reversed(depths): if (depth < output_shape.depth) and (depth % self._split_depth != 0) and not forced: # Block depth has to be less than full depth or a multiple of the split depth continue subkernel_propagator = self._get_subkernel_propagator( op_attrs, ifm_propagator, input_layout, output_layout, depth ) for width in reversed(widths): for height in reversed(heights): if output_layout == "NHCWB16": output_block = ( 1, height, 1 + ((depth - 1) // 16), width, 16, ) order = [1, 2, 4, 3, 0] else: output_block = (1, height, width, depth) order = [1, 2, 3, 4] offset = [0] * len(output_block) stripes = [1] * len(output_block) block_stripe_config = StripeConfig( output_block, output_block, output_block, order, stripes, offset, ) # Propagate output block input_block = subkernel_propagator.propagate(block_stripe_config) input_block_shape = _Shape(input_block.shape, input_layout) input_block_shape.round_up(self._input_micro_block) output_block_shape = _Shape(output_block, output_layout) if op_type == "ethosu_conv2d": input_block_shape.depth = input_block_depth # Banks required for input block input_banks = self._get_input_banks(input_block_shape, input_bytewidth) # Banks required for accumulation acc_banks = self._get_accumulator_banks(output_block_shape, acc_bytewidth) if (input_banks + acc_banks) <= banks_available: output_cycles = self._get_output_cycles( op_type, op_str, ifm_dtype, ofm_dtype, activation ) output_cycles *= np.prod(output_block).tolist() output_cycles = int(math.ceil(output_cycles)) compute_cycles = self._estimate_compute_cycles_per_block( op_type, output_block_shape, input_block_shape, kernel_h, kernel_w, ifm_channels, "int8", partkernel, ) block_config = BlockConfig( input_block_shape.as_list(), output_block, compute_cycles, output_cycles ) if self._disable_block_culling: # Block culling disabled - add all block configs that fit valid_block_configs.append(block_config) else: # Add block config only if it's not dominated by an existing block. # A block config is dominated by another if its output_shape is greater # or equal in every dimension and strictly greater in at least one # dimension. dominated = False for valid_block in valid_block_configs: if block_config < valid_block: dominated = True break if not dominated: valid_block_configs.append(block_config) # Every consecutive block in the innermost loop will be dominated by # this one so break break return valid_block_configs def _estimate_compute_cycles_per_block( self, op_type: str, block_shape: _Shape, input_block_shape: _Shape, kernel_h: int, kernel_w: int, input_channels: int, ifm_dtype: str, partkernel: bool = False, ) -> Tuple[int, int]: # Calculate the amount of micro blocks per block, per axis num_quantum_x = _round_up_div(block_shape.width, self._micro_block.width) num_quantum_y = _round_up_div(block_shape.height, self._micro_block.height) num_quantum_z = _round_up_div(block_shape.depth, self._micro_block.depth) num_quantum_xy = num_quantum_x * num_quantum_y kernel_steps = self.get_kernel_steps(op_type, kernel_h, kernel_w, ifm_dtype, partkernel) wd_cycles = self._get_weight_decoder_cycles(op_type) delay_cycles = self._get_delay_cycles(op_type, ifm_dtype) cycle_quantum = 4 compute_cycles = 0 for subkernel_steps in kernel_steps: subkernel_cycles = 1 if op_type == "ethosu_pooling" else subkernel_steps compute_cycles += ( max(wd_cycles, cycle_quantum * num_quantum_xy) * subkernel_cycles * num_quantum_z ) if num_quantum_xy == 1: if num_quantum_z == 1: compute_cycles += delay_cycles * subkernel_steps elif subkernel_steps > 1: compute_cycles += delay_cycles * (subkernel_steps - 1) * num_quantum_z if partkernel: compute_cycles *= _round_up_div(input_block_shape.depth, 8) if op_type == "ethosu_conv2d": compute_cycles *= _round_up_div(input_channels, input_block_shape.depth) return compute_cycles
https://github.com/zk-ml/tachikoma
python/tvm/contrib/ethosu/cascader/graph.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Graph objects to define compute graphs for the NPU cascader.""" from typing import List, Dict from enum import IntEnum from collections import namedtuple import numpy as np import tvm._ffi from tvm import te from tvm.runtime import Object from .stripe_config import StripeConfig from .device_config import EthosuDeviceConfig from . import _ffi_api # A global store to register matching functions REGISTERED_MATCHERS = [] TESubgraph = namedtuple("TESubgraph", ["input_tensors", "output_tensor"]) class BufferMode(IntEnum): RECOMPUTE = 0 ROLLING = 1 @tvm._ffi.register_object("contrib.ethosu.cascader.PerformanceInfo") class PerformanceInfo(Object): """PerformanceInfo class""" @property def compute_cycles(self): return self._compute_cycles @property def read_bytes(self): return list(self._read_bytes) @property def write_bytes(self): return self._write_bytes @property def block_config(self): return self._block_config @tvm._ffi.register_object("contrib.ethosu.cascader.Tensor") class Tensor(Object): """Tensor class""" def __init__(self, shape, dtype, is_constant=False, compression_ratio=1): self.__init_handle_by_constructor__( _ffi_api.Tensor, shape, dtype, is_constant, compression_ratio ) def add_producer(self, part): _ffi_api.TensorAddProducer(self, part) def add_consumer(self, part): _ffi_api.TensorAddConsumer(self, part) @property def producers(self): return list(self._producers) @property def consumers(self): return list(self._consumers) @property def shape(self): return list(self._shape) @property def dtype(self): return self._dtype @property def is_constant(self): return self._is_constant @property def compression_ratio(self): return self._compression_ratio @property def size(self): return self._size class Part(Object): """Part base class""" def set_input(self, index: int, tensor: Tensor): _ffi_api.PartSetInput(self, index, tensor) def set_output(self, tensor: Tensor): _ffi_api.PartSetOutput(self, tensor) def calculate_input_stripe_configs( self, output_stripe_config: StripeConfig ) -> List[StripeConfig]: return list(_ffi_api.PartCalculateInputStripeConfigs(self, output_stripe_config)) def get_stripe_align_hint(self) -> List[int]: return list(_ffi_api.PartGetStripeAlignHint(self)) def get_performance_info( self, stripe_config: StripeConfig, buffer_mode: BufferMode ) -> PerformanceInfo: return _ffi_api.PartGetPerformanceInfo(self, stripe_config, buffer_mode) @property def input_tensors(self): return list(self._input_tensors) @property def output_tensor(self): return self._output_tensor @property def propagators(self): return list(self._propagators) @property def in_line(self): return self._in_line @property def subgraph(self): return TESubgraph(list(self._te_input_tensors), self._te_output_tensor) @tvm._ffi.register_object("contrib.ethosu.cascader.CascaderGraph") class CascaderGraph(Object): """A class to describe a graph of Parts and Tensors used by the cascader. This class describes a graph consisting of two object types: Tensors and Parts. It defines a topological ordering on the graph such that each Part and Tensor has a position in the ordering. This ordering is used by the Plan and Proposal generation algorithms. It is also the ordering the Parts are expected to be executed in. In addition to defining an ordering, the Parts and Tensors are also all given unique IDs which they can be referred to by.""" def __init__(self, input_tensors: List[Tensor], output_tensors: List[Tensor]): self.__init_handle_by_constructor__(_ffi_api.CascaderGraph, input_tensors, output_tensors) def get_part_id(self, part: Part) -> int: return _ffi_api.CascaderGraphGetPartID(self, part) def get_tensor_id(self, tensor: Tensor) -> int: return _ffi_api.CascaderGraphGetTensorID(self, tensor) @property def input_tensors(self): return list(self._input_tensors) @property def output_tensors(self): return list(self._output_tensors) @property def tensor_order(self): return list(self._tensor_order) @property def part_order(self): return list(self._part_order) def register_matcher(matcher): """Register a match function to the frontend. A match function takes a te.Tensor and checks whether it matches a known operator/operator sequence. If it does, it returns a Part which models the behaviour of that operator sequence. Otherwise, it returns None. """ REGISTERED_MATCHERS.append(matcher) return matcher def create_cascader_graph( te_graph: TESubgraph, const_dict: Dict[int, np.ndarray], device_config: EthosuDeviceConfig ) -> CascaderGraph: """Create a CascaderGraph from a Tensor Expression graph and constant dictionary. Parameters ---------- te_graph : TESubgraph The Tensor Expression graph. const_dict : Dict[int, np.ndarray] The constant dictionary. device_config : EthosuDeviceConfig Target device configuration. Returns ------- CascaderGraph The CascaderGraph. """ tensor_map = {} def _visit_tensor(tensor): if tensor not in tensor_map: is_const = False # Logic to determine if the tensor is constant if tensor in list(te_graph.inputs): i = list(te_graph.inputs).index(tensor) if i in const_dict: is_const = True # TODO(@mbaret): Calculate the compression ratio plan_tensor = Tensor( tensor.shape, tensor.dtype, is_constant=is_const, ) tensor_map[tensor] = plan_tensor if isinstance(tensor.op, te.PlaceholderOp) or tensor in te_graph.inputs: return input_tensors = [] # Check whether any of the registered matchers match the current tensor for matcher in REGISTERED_MATCHERS: part = matcher(tensor, device_config) if part: input_tensors = part.subgraph.input_tensors break assert part is not None, f"The tensor {tensor} doesn't match any part." part.set_output(plan_tensor) plan_tensor.add_producer(part) for i, input_tensor in enumerate(input_tensors): _visit_tensor(input_tensor) part.set_input(i, tensor_map[input_tensor]) tensor_map[input_tensor].add_consumer(part) for output in te_graph.outputs: _visit_tensor(output) input_tensors = [] for t in te_graph.inputs: # This is needed because sometimes there are orphaned constants if t in tensor_map: input_tensors.append(tensor_map[t]) output_tensors = [tensor_map[t] for t in te_graph.outputs] return CascaderGraph(input_tensors, output_tensors)
https://github.com/zk-ml/tachikoma
python/tvm/contrib/ethosu/cascader/logging.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """A class to hold logging information about the cascader""" from typing import Tuple import datetime import json import os import math class Logging: """Cascader logging class""" def __init__(self): self.min_memory_usage = 0 self.max_memory_usage = 0 self.min_cycles = 0 self.max_cycles = 0 self.selected_proposal_idx = -1 self.proposals = {} self.cascader_runtime = 0 def add_proposal(self, idx: int, memory_usage: int, cycles: int): self.proposals[idx] = {"memory_usage": memory_usage, "cycles": cycles} def get_extreme_points(self) -> Tuple[int, int, int, int]: min_cycles, min_mem_usage = math.inf, math.inf max_cycles, max_mem_usage = 0, 0 for proposal in self.proposals.values(): min_mem_usage = min(proposal["memory_usage"], min_mem_usage) max_mem_usage = max(proposal["memory_usage"], max_mem_usage) min_cycles = min(proposal["cycles"], min_cycles) max_cycles = max(proposal["cycles"], max_cycles) return min_mem_usage, max_mem_usage, min_cycles, max_cycles def dump_json(self): min_mem_usage, max_mem_usage, min_cycles, max_cycles = self.get_extreme_points() with open(os.getcwd() + "/cascader_log.json", "w") as json_file: print( json.dumps( { "date": f"{datetime.datetime.now()}", "cascader_runtime": self.cascader_runtime, "min_cycles": min_cycles, "max_cycles": max_cycles, "min_memory_usage": min_mem_usage, "max_memory_usage": max_mem_usage, "selected_proposal": self.selected_proposal_idx, "proposals": self.proposals, }, indent=2, ), file=json_file, )
https://github.com/zk-ml/tachikoma
python/tvm/contrib/ethosu/cascader/pareto.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Pareto optimisation functions for the NPU cascader.""" from typing import List from tvm import Object from . import _ffi_api from .plan import Plan def _get_pareto_frontier(costs: List[List[float]]) -> List[bool]: for i, cost in enumerate(costs): for j, value in enumerate(cost): costs[i][j] = float(value) return [bool(v) for v in _ffi_api.GetParetoFrontier(costs)] def _thin_vector(vec: List[Object], max_size: int) -> List[Object]: return list(_ffi_api.ThinVector(vec, max_size)) def _pareto_cull_plans( plans: List[Plan], max_plans: int, disable_pareto_metric: bool ) -> List[Plan]: return list(_ffi_api.ParetoCullPlans(plans, max_plans, disable_pareto_metric))
https://github.com/zk-ml/tachikoma
python/tvm/contrib/ethosu/cascader/parts.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Parts used by the NPU cascader.""" from typing import List import tvm._ffi from .propagator import Propagator from .graph import Part, TESubgraph from .block_config import BlockConfig from .stripe_config import StripeConfig from . import _ffi_api @tvm._ffi.register_object("contrib.ethosu.cascader.InlinePart") class InlinePart(Part): """InlinePart class""" def __init__( self, te_subgraph: TESubgraph, propagators: List[Propagator], ): self.__init_handle_by_constructor__( _ffi_api.InlinePart, te_subgraph.input_tensors, te_subgraph.output_tensor, propagators, ) @tvm._ffi.register_object("contrib.ethosu.cascader.EthosuPart") class EthosuPart(Part): """A class to describe a Part to be executed on an Arm(R) Ethos(TM)-U NPU. EthosuParts must be provided with an output quantum and the cycles taken to compute an output quantum which depend on the operator the NPU is computing.""" def __init__( self, te_subgraph: TESubgraph, propagators: List[Propagator], output_quantum: List[int], subkernels: int, valid_block_configs: List[BlockConfig], weight_tensor_idx: int = -1, ): self.__init_handle_by_constructor__( _ffi_api.EthosuPart, te_subgraph.input_tensors, te_subgraph.output_tensor, propagators, output_quantum, subkernels, valid_block_configs, weight_tensor_idx, ) def get_block_config(self, stripe_config: StripeConfig) -> BlockConfig: return _ffi_api.EthosuPartGetBlockConfig(self, stripe_config)
https://github.com/zk-ml/tachikoma
python/tvm/contrib/ethosu/cascader/plan.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Plan class to hold subgraph scheduling information.""" from typing import Dict, FrozenSet import tvm._ffi from tvm.runtime import Object from . import _ffi_api from .graph import Tensor, Part from .tensor_config import TensorConfig, MemoryRegion @tvm._ffi.register_object("contrib.ethosu.cascader.Plan") class Plan(Object): """ A class which describes how to schedule a subgraph of Parts together. A Plan takes the form of a subgraph of connected Parts (recorded in part_group) with TensorConfigs for all of the required Tensors (recorded in tensor_configs). This information can be used to produce a Tensor Expression schedule with inter-operator scheduling. A Plan is necessarily single-output such that all non-output Parts are 'computed_at'ed the scope of the output Part. This is what achieves the technique referred to as 'cascading'. A Plan also has an interior memory region which specifies the region of memory into which all the Plans intermediate buffers should be allocated. Additionally, a Plan contains some other information used during the Plan generation and selection algorithms. Both the memory and cycles required to run the Plan are accounted for so that Plans can be ranked and Pareto-culled on these metrics. Furthermore, the TensorConfigs which are 'open' is recorded indicating that these are valid points to merge with another Plan. A Plan can only be turned into a schedule if it has no 'open' TensorConfigs - at which point the Plan is said to be 'closed'. Attributes ---------- tensor_configs : Dict[Tensor, TensorConfig] The TensorConfigs specified by the Plan. open_configs : FrozenSet[TensorConfig] The TensorConfigs which are 'open' meaning they are a Plan input/output but have 'interior' state. output_config : TensorConfig The TensorConfig of the Plan's output tensor. part_group : FrozenSet[Part] The Parts which are covered by the Plan. interior_region : MemoryRegion The MemoryRegion in which to store 'interior' Plan buffers. memory_usage : int The interior memory used by the Plan in bytes. cycles : int The cycles taken to execute the Plan. """ def __init__( self, tensor_configs: Dict[Tensor, TensorConfig], open_configs: FrozenSet[TensorConfig], output_config: TensorConfig, part_group: FrozenSet[Part], interior_region: MemoryRegion, memory_usage: int, cycles: int, ): self.__init_handle_by_constructor__( _ffi_api.Plan, list(tensor_configs.values()), list(open_configs), output_config, list(part_group), interior_region, memory_usage, cycles, ) def merge(self, other): """ Merge two Plans with share an 'open' TensorConfig. The current Plan is referred to as the 'upper Plan' and the other Plan as the 'lower Plan'. The 'open' output config of the upper Plan must be an 'open' input config of the lower Plan. The Tensor referenced by these configs is the Tensor on which the two Plans will be merged. The merge process does the following: The tensor config maps will be merged with TensorConfigs from the upper Plan taking priority. The open configs will be merged with the TensorConfigs that are being merged having been removed. The output config will be that of the lower Plan. The part groups will be merged. The interior region is necessarily the same for both the upper and lower Plan. The cycles and memory usage will be summed. Parameters ---------- other : Plan The Plan to merge with. Return ------ Plan The merged Plan. """ return _ffi_api.PlanMerge(self, other) @property def tensor_configs(self): """The TensorConfigs specified by the Plan.""" tensor_configs = {} for config in self._tensor_configs: tensor_configs[config.tensor] = config return tensor_configs @property def open_configs(self): """ The TensorConfigs which are 'open' meaning they are a Plan input/output but have 'interior' state. """ return frozenset(self._open_configs) @property def output_config(self): """The TensorConfig of the Plan's output tensor.""" return self._output_config @property def part_group(self): """The Parts which are covered by the Plan.""" return frozenset(self._part_group) @property def interior_region(self): """The MemoryRegion in which to store 'interior' Plan buffers.""" return self._interior_region @property def memory_usage(self): """The interior memory used by the Plan in bytes.""" return self._memory_usage @property def cycles(self): """The cycles taken to execute the Plan.""" return self._cycles def __repr__(self): return ( f"Plan(tensor_configs={self.tensor_configs}, " f"open_configs={self.open_configs}, " f"output_config={self.output_config}, " f"part_group={self.part_group}, " f"interior_region={self.interior_region.name}, " f"memory_usage={self.memory_usage}, " f"cycles={self.cycles}, " )
https://github.com/zk-ml/tachikoma
python/tvm/contrib/ethosu/cascader/plan_generator.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Algorithms to generate Plans for a CascaderGraph.""" from typing import List, Dict, Tuple from tvm.contrib.ethosu.cascader.tensor_config import MemoryRegion, TensorConfig from . import _ffi_api from .cascader_options import CascaderOptions from .plan import Plan from .stripe_config import StripeConfig from .graph import CascaderGraph, Part, Tensor def _generate_output_stripe_configs( part: Part, stripe_factors: int, enable_striping: bool, multi_dimensional: bool ) -> List[StripeConfig]: return list( _ffi_api.GenerateOutputStripeConfigs( part, stripe_factors, enable_striping, multi_dimensional ) ) def _generate_single_plans( part: Part, output_stripe_configs: List[StripeConfig], home_map: Dict[Tensor, List[MemoryRegion]], cascade_region: MemoryRegion, ) -> List[Plan]: return list(_ffi_api.GenerateSinglePlans(part, output_stripe_configs, home_map, cascade_region)) def _generate_graph_plans( graph: CascaderGraph, home_map: Dict[Tensor, List[MemoryRegion]], options: CascaderOptions, ): return _ffi_api.GenerateGraphPlans( graph, home_map, options, ) def get_copy_cycles_hint(tensor_config: TensorConfig) -> Tuple[int, int]: """ Returns a hint estimating the number of cycles for the copy specified by tensor_config. Parameters ---------- tensor_config : TensorConfig The tensor configuration to estimate. Returns ------- mem2mem_cycles : int Total estimated cycles. initial_mem2mem_cycles : int Estimated cycles for the first block. """ return _ffi_api.GetCopyCyclesHint(tensor_config)
https://github.com/zk-ml/tachikoma
python/tvm/contrib/ethosu/cascader/propagator.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Propagator class.""" # pylint: disable=invalid-name import tvm._ffi from tvm.runtime import Object from . import _ffi_api @tvm._ffi.register_object("contrib.ethosu.cascader.Propagator") class Propagator(Object): """Propagator class""" def __init__(self, transform, offset): float_transform = list([list(float(v) for v in row) for row in transform]) self.__init_handle_by_constructor__(_ffi_api.Propagator, float_transform, offset) def propagate(self, stripe_config): return _ffi_api.PropagatorPropagate(self, stripe_config) @property def transform(self): """Get the transform matrix""" new_matrix = [] for row in self._transform: new_row = [] for v in row: new_row.append(v.value) new_matrix.append(new_row) return new_matrix @property def offset(self): """Get the offset matrix""" new_vec = [] for v in self._offset: new_vec.append(v.value) return new_vec
https://github.com/zk-ml/tachikoma
python/tvm/contrib/ethosu/cascader/proposal.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Proposal class to hold graph scheduling information.""" from typing import Dict, FrozenSet, List import tvm._ffi from tvm.contrib.ethosu.cascader.plan import Plan from tvm.runtime import Object from . import _ffi_api from .graph import Tensor, Part, CascaderGraph from .tensor_config import TensorConfig, MemoryRegion @tvm._ffi.register_object("contrib.ethosu.cascader.Proposal") class Proposal(Object): """A class which describes how to schedule a CascaderGraph as a series of disjoint Plans. Attributes ---------- graph : CascaderGraph The CascaderGraph to which the Proposal applies. part_group : FrozenSet[Part] The Parts which are covered by the Proposal. plans : List[Plan] The Plans used in the Proposal. input_tensor_configs : Dict[Tensor, TensorConfig] The TensorConfigs indexed by Tensor in the Proposal which aren't produced by a Plan. cascade_region : MemoryRegion The MemoryRegion where cascading buffers should be homed. memory_usage : int The memory required to execute the Proposal in the cascading MemoryRegion. cycles : int The estimated cycles taken to execute the Proposal. """ def __init__( self, graph: CascaderGraph, part_group: FrozenSet[Part], plans: List[Plan], input_tensor_configs: Dict[Tensor, TensorConfig], cascade_region: MemoryRegion, memory_usage: Dict[MemoryRegion, int], cycles: int, ): self.__init_handle_by_constructor__( _ffi_api.Proposal, graph, list(part_group), plans, input_tensor_configs, cascade_region, memory_usage, cycles, ) @property def graph(self) -> CascaderGraph: """The CascaderGraph to which the Proposal applies.""" return self._graph @property def part_group(self) -> FrozenSet[Part]: """The Parts which are covered by the Proposal.""" return frozenset(self._part_group) @property def plans(self) -> List[Plan]: """The Plans used in the Proposal.""" return list(self._plans) @property def input_tensor_configs(self) -> Dict[Tensor, TensorConfig]: """The TensorConfigs indexed by Tensor in the Proposal which aren't produced by a Plan.""" return dict(self._input_tensor_configs) @property def cascade_region(self) -> MemoryRegion: """The MemoryRegion where cascading buffers should be homed.""" return self._cascade_region @property def memory_usage(self) -> int: """The memory required to execute the Proposal in the cascading MemoryRegion.""" return int(self._memory_usage) @property def cycles(self) -> int: """The estimated cycles taken to execute the Proposal.""" return int(self._cycles)
https://github.com/zk-ml/tachikoma
python/tvm/contrib/ethosu/cascader/proposal_generator.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Algorithms to generate Proposals for a Graph.""" from typing import List, Dict, FrozenSet from . import _ffi_api from .cascader_options import CascaderOptions from .plan import Plan from .proposal import Proposal from .graph import CascaderGraph, Part def generate_proposals( graph: CascaderGraph, home_map: Dict[FrozenSet[Part], List[Plan]], options: CascaderOptions, ) -> List[Proposal]: """Generate Pareto optimal Proposals for a CascaderGraph. This algorithm takes a top-down dynamic programming approach to determining how to optimally combine Plans into Proposals. Parameters ---------- graph : CascaderGraph The CascaderGraph to generate Proposals for. home_map : Dict[FrozenSet[Part], List[Plan]] The Tensor homing map defining valid memory homes for Tensors. options : CascaderOptions The configuration options with which to run the generator. Returns ------ List[Proposal] A list of Pareto optimal Proposals. """ return list( _ffi_api.GenerateProposals( graph, home_map, options, ) )
https://github.com/zk-ml/tachikoma
python/tvm/contrib/ethosu/cascader/scheduler.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name """Scheduler for cascader which converts Proposals into Schedules.""" from typing import Tuple, List, Dict, DefaultDict from collections import defaultdict import time import numpy as np import tvm from tvm import te from tvm import tir from tvm import PoolInfo from .cascader_options import CascaderOptions from .graph import CascaderGraph, Part, Tensor, TESubgraph from .parts import EthosuPart from .tensor_config import MemoryRegion from .proposal import Proposal from .proposal_generator import generate_proposals from .plan_generator import get_copy_cycles_hint from .graph import create_cascader_graph from .device_config import EthosuDeviceConfig from .logging import Logging def tile_nd( sch: te.Schedule, tensor: te.Tensor, tile: Tuple[int, ...] ) -> Tuple[List[tir.IterVar], List[tir.IterVar]]: """Scheduling utility to perform N-dimensional tiling. Parameters ---------- sch : te.Schedule The schedule to apply the tiling to. tensor : te.Tensor The tensor to apply the tiling to. tile : Tuple[int, ...] The N-dimensional tile size Returns ------- outer_indices : List[tir.IterVar] The outer iteration variables. inner_indices : List[tir.IterVar] The inner iteration variables. """ outer_indices = [] inner_indices = [] for i, size in enumerate(tile): outer, inner = sch[tensor].split(tensor.op.axis[i], size) outer_indices.append(outer) inner_indices.append(inner) sch[tensor].reorder(*outer_indices, *inner_indices) return outer_indices, inner_indices def stripe_part( part: Part, stripe_shape: Tuple[int, ...], sch: te.Schedule ) -> Tuple[te.Stage, tir.IterVar]: """Apply a striping schedule to the TE subgraph represented by a Part.""" te_subgraph = part.subgraph te_output_tensor = te_subgraph.output_tensor outer_indices, _ = tile_nd(sch, te_output_tensor, stripe_shape) g = sch.create_group( outputs=te_output_tensor.op.input_tensors, inputs=te_subgraph.input_tensors, include_inputs=False, ) g.compute_at(sch[te_output_tensor], outer_indices[-1]) for axis in outer_indices: sch[te_output_tensor].unroll(axis) return sch[te_output_tensor], outer_indices[-1] def cascade_part( part: Part, stripe_stage: te.Stage, stripe_axis: tir.IterVar, sch: te.Schedule ) -> None: """Schedule a Part into a cascade indicated by a stripe Stage.""" te_subgraph = part.subgraph g = sch.create_group( outputs=te_subgraph.output_tensor, inputs=te_subgraph.input_tensors, include_inputs=False ) g.compute_at(stripe_stage, stripe_axis) def update_readers(part: Part, readers: DefaultDict[te.Tensor, List[te.Tensor]]) -> None: """ Update a dictionary which stores the te.Tensors that need to be read in order to produce a given te.Tensor. """ visited = set() def _visit(tensor): if tensor not in visited and tensor not in part.subgraph.input_tensors: visited.add(tensor) for input_tensor in tensor.op.input_tensors: readers[input_tensor].append(tensor) _visit(input_tensor) _visit(part.subgraph.output_tensor) def apply_proposal(proposal: Proposal, sch: te.Schedule) -> None: """Apply a Proposal to a Schedule, converting all the Plans into TE scheduling instructions. Note that the Schedule is mutated in-place. Parameters ---------- proposal : Proposal The Proposal to apply to the Schedule. sch : te.Schedule The Schedule to apply to Proposal to. """ for plan in proposal.plans: for part in plan.part_group: if isinstance(part, EthosuPart): tensor_config = plan.tensor_configs[part.output_tensor] stripe_config = tensor_config.stripe_configs[0] buffer_mode = tensor_config.buffer_mode block_config = part.get_block_config(stripe_config) compute_cycles = part.get_performance_info( stripe_config, buffer_mode ).compute_cycles iv = part.subgraph.output_tensor.op.axis[0] block_shape = block_config.output_shape if len(block_shape) == 4: height, width, depth = block_shape[1:] else: height = block_shape[1] width = block_shape[3] depth = block_shape[2] * block_shape[4] sch[part.subgraph.output_tensor].pragma(iv, "block_config_height", height) sch[part.subgraph.output_tensor].pragma(iv, "block_config_width", width) sch[part.subgraph.output_tensor].pragma(iv, "block_config_depth", depth) # Attach AttrStmt directly to npu op so it isn't removed by ReplaceOperators npu_op = part.subgraph.output_tensor.op.input_tensors[0].op.input_tensors[0] # Force the pragma to interpret the compute cycles as an int64 value compute_cycles_int64_cast = tvm.tir.IntImm("int64", compute_cycles) sch[npu_op].pragma( npu_op.op.axis[0], "compute_cycles_hint", compute_cycles_int64_cast ) output_tensor_config = plan.output_config output_tensor = output_tensor_config.tensor output_part = output_tensor.producers[0] if output_part.in_line: continue stripe_config = output_tensor_config.stripe_configs[0] stripe_shape = [int(x) for x in stripe_config.shape] stripe_stage, stripe_axis = stripe_part(output_part, stripe_shape, sch) copy_te_tensors = [] compute_cycles_hints = [] readers = defaultdict(list) for part in plan.part_group: if part != output_part: cascade_part(part, stripe_stage, stripe_axis, sch) update_readers(part, readers) for i, input_tensor in enumerate(part.input_tensors): tensor_config = plan.tensor_configs[input_tensor] if tensor_config.home_region != tensor_config.copy_region: copy_te_tensors.append(part.subgraph.input_tensors[i]) compute_cycles_hint, _ = get_copy_cycles_hint(tensor_config) compute_cycles_hints.append(compute_cycles_hint) for te_tensor, compute_cycles_hint in zip(copy_te_tensors, compute_cycles_hints): copy_stage = sch.cache_read(te_tensor, "global", readers[te_tensor]) sch[copy_stage].pragma( copy_stage.op.axis[0], "compute_cycles_hint", compute_cycles_hint ) sch[copy_stage].compute_at(stripe_stage, stripe_axis) def create_home_map( graph: CascaderGraph, io_region: MemoryRegion, constant_region: MemoryRegion, working_regions: List[MemoryRegion], ) -> Dict[Tensor, List[MemoryRegion]]: """Create a map between Tensors and the MemoryRegions they can be homed in.""" home_map = {} for tensor in graph.tensor_order: if tensor.is_constant: home_map[tensor] = [constant_region] elif tensor in graph.input_tensors or tensor in graph.output_tensors: home_map[tensor] = [io_region] else: home_map[tensor] = working_regions return home_map def choose_proposal( proposals: List[Proposal], cascade_region: MemoryRegion, select_proposal_idx: int ): """Choose the best performing Proposal that doesn't overflow the cascade region.""" if select_proposal_idx != -1: # Manually select proposal based on index, take modulus the total number of proposals to # ensure that some proposal is always selected. proposal_choice = proposals[select_proposal_idx % len(proposals)] else: proposal_choice = proposals[0] for proposal in reversed(proposals): if proposal.memory_usage < cascade_region.size: proposal_choice = proposal break return proposal_choice def extract_memory_info(memory_pool: PoolInfo, memory_pressure: int) -> MemoryRegion: "Create a MemoryRegion based on the info in the memory pool" size = int(memory_pool.size_hint_bytes - memory_pressure) read_bandwidth = int(memory_pool.read_bandwidth_bytes_per_cycle) write_bandwidth = int(memory_pool.write_bandwidth_bytes_per_cycle) for param in (size, read_bandwidth, write_bandwidth): assert param != -1, f"{param} needs to be specified for the cascader." name_to_burst_length = { target.kind.name: burst for target, burst in memory_pool.target_burst_bytes.items() } try: burst_length = int(name_to_burst_length["ethos-u"]) except KeyError: burst_length = 1 return MemoryRegion( name=memory_pool.pool_name, size=size, read_bandwidth=read_bandwidth, write_bandwidth=write_bandwidth, read_latency=int(memory_pool.read_latency_cycles), write_latency=int(memory_pool.write_latency_cycles), burst_length=burst_length, ) def cascade( sch: te.Schedule, te_graph: TESubgraph, const_dict: Dict[int, np.ndarray], options: CascaderOptions, io_region: MemoryRegion, constant_region: MemoryRegion, working_regions: List[MemoryRegion], device_config: EthosuDeviceConfig, ) -> None: """Schedule a Tensor Expression graph using the technique of 'cascading'. 'Cascading' is a technique whereby operations are split into smaller dependent tiles ('stripes') which can then execute in an interleaved fashion. This allows for operations to execute together rather than sequentially which can reduce intermediate memory requirements and in certain cases improve performance. For more detail on 'cascading' as well as how it is implemented, refer to the RFC here: https://github.com/apache/tvm-rfcs/pull/37. Parameters ---------- sch : te.Schedule The Schedule to apply the cascading to. te_graph : TESubgraph The Tensor Expression graph from which the Schedule was created. const_dict : Dict[int, np.ndarray] A dictionary mapping input index to constant data if that input is to be a constant. options : CascaderOptions Configuration options for the cascading scheduler. io_region : MemoryRegion The MemoryRegion in which input/output tensors should reside. constant_region : MemoryRegion The MemoryRegion in which constants should reside. working_regions : List[MemoryRegion] The MemoryRegions in which intermediate working tensors can reside. The cascading scheduler will select which MemoryRegion to per tensor. device_config : EthosuDeviceConfig Target device configuration. """ tvmc_options = tvm.transform.PassContext.current().config.get("relay.ext.ethos-u.options", None) log = Logging() if tvmc_options and tvmc_options.dev_cascader_logging else None select_proposal_idx = ( int(tvmc_options.dev_select_proposal_idx) if tvmc_options and tvmc_options.dev_select_proposal_idx else -1 ) if log: start = time.time() assert options.cascade_region in working_regions # First convert the Tensor Expression graph into a CascaderGraph casc_graph = create_cascader_graph(te_graph, const_dict, device_config) # Then create a mapping between Tensors and their possible memory homes home_map = create_home_map(casc_graph, io_region, constant_region, working_regions) # Generate Proposals for Pareto-optimal ways to cascade the CascaderGraph proposals = generate_proposals(casc_graph, home_map, options) # Select the best Proposal subject to the memory constraints proposal_choice = choose_proposal(proposals, options.cascade_region, select_proposal_idx) if log: for idx, proposal in enumerate(proposals): log.add_proposal(idx, proposal.memory_usage, proposal.cycles) if proposal == proposal_choice: log.selected_proposal_idx = idx log.cascader_runtime = time.time() - start log.dump_json() # Apply the selected Proposal to the Tensor Expression Schedule apply_proposal(proposal_choice, sch)
https://github.com/zk-ml/tachikoma
python/tvm/contrib/ethosu/cascader/stripe_config.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Stripe config class to hold tensor striping information.""" # pylint: disable=invalid-name import tvm._ffi from tvm.runtime import Object from . import _ffi_api @tvm._ffi.register_object("contrib.ethosu.cascader.StripeConfig") class StripeConfig(Object): """StripeConfig class""" def __init__(self, shape, extent, strides, order, stripes, offset): strides = list([float(v) for v in strides]) self.__init_handle_by_constructor__( _ffi_api.StripeConfig, shape, extent, strides, order, stripes, offset ) @property def shape(self): return list(self._shape) @property def extent(self): return list(self._extent) @property def strides(self): return list([float(v.value) for v in self._strides]) @property def order(self): return list(self._order) @property def stripes(self): return list(self._stripes) @property def offset(self): return list(self._offset) def __hash__(self): return self._hash def __eq__(self, other): return _ffi_api.StripeConfigEqual(self, other) def __repr__(self): return ( f"StripeConfig(shape={self.shape}, " f"extent={self.extent}, " f"strides={self.strides}, " f"order={self.order}, " f"stripes={self.stripes}, " f"offset={self.offset}" ) def count_stripes(stripe_config: StripeConfig, enable_sliding_window: bool = False): stripe_counts = dict(_ffi_api.CountStripes(stripe_config, enable_sliding_window)) # Some code to 'de-TVM' the data types and make them pure Python clean_stripe_counts = dict() for stripe, count in stripe_counts.items(): clean_stripe = tuple([int(v) for v in stripe]) clean_count = int(count) clean_stripe_counts[clean_stripe] = clean_count return clean_stripe_counts
https://github.com/zk-ml/tachikoma
python/tvm/contrib/ethosu/cascader/tensor_config.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Tensor config class to hold tensor scheduling information.""" from typing import List, Union from enum import IntEnum import tvm._ffi from tvm.contrib.ethosu.cascader.stripe_config import StripeConfig from tvm.runtime import Object from . import _ffi_api from .stripe_config import StripeConfig from .graph import Tensor, BufferMode class TensorConfigState(IntEnum): """ The 'state' of a TensorConfig as used in the Plan generation algorithm. BOUNDARY - Should describe a Plan input/output Tensor. INTERIOR - Should describe an intermediate Tensor in a 'closed' Plan. """ BOUNDARY = 0 INTERIOR = 1 @tvm._ffi.register_object("contrib.ethosu.cascader.MemoryRegion") class MemoryRegion(Object): """ MemoryRegion class to store information about device memories. Attributes ---------- name : str The name of the region. size : int The size of the region. read_bandwidth : int The read bandwidth of the region in bytes per cycle. write_bandwidth : int The write bandwidth of the region in bytes per cycle. """ def __init__( self, name: str, size: int, read_bandwidth: int, write_bandwidth: int, read_latency: int = 0, write_latency: int = 0, burst_length: int = 1, ): self.__init_handle_by_constructor__( _ffi_api.MemoryRegion, name, size, read_bandwidth, write_bandwidth, read_latency, write_latency, burst_length, ) @tvm._ffi.register_object("contrib.ethosu.cascader.TensorConfig") class TensorConfig(Object): """ A class which describes how to realize a Tensor. The TensorConfig describes both how a Tensor is scheduled (the order in which it's produced/consumed) and how its allocated in memory (which region it should reside in and whether it should be copied). Attributes ---------- tensor : Tensor The Tensor the config applies to. home_region : MemoryRegion The region where the tensor is allocated. state : TensorConfigState The state of the TensorConfig. The TensorConfigState is only used as part of the Plan generation algorithm. For a Plan to be 'closed' (and therefore not subject to any further merging), all the TensorConfigs that describe Plan input or output Tensors must be in the 'BOUNDARY' state with the rest being 'INTERIOR'. If any of the input or output tensors are described by an 'INTERIOR' TensorConfig, then the Plan is 'open' and should be merged with other 'open' Plans until the result becomes 'closed'. buffer_mode : BufferMode The mode in which the buffer should be realized. There are multiple buffering strategies by which a tensor may be realized (computed). These affect the amount of recomputation necessary as well as the size of buffer required to store the tensor. See 'BufferMode' for a description of the allowable buffering modes. stripe_configs : List[StringConfig] The StripeConfigs with which to compute the tensor. The StripeConfigs determine the order in which the elements of the tensor should be computed, including potentially computing them multiple times (recompute). Multiple StripeConfigs are used over just a single StripeConfig for the case where the tensor is consumed by two different Parts executing themselves with different StripeConfigs. In this case, there is a StripeConfig per consumer of the tensor. copy_tensor : bool, optional Whether to copy the tensor. While a tensor will originally reside in its home region, the TensorConfig may optionally specify that the tensor should be copied (according to the StripeConfigs) into another MemoryRegion. As an example for where this may be used, if a weights tensor initially resides in slow Flash memory then necessarily the home region will be Flash. However, if the weights values are used multiple times by a Part, it may be more performant to choose to copy the weights into a faster memory like SRAM. copy_region : Union[MemoryRegion, None], optional The region to copy the tensor to. """ def __init__( self, tensor: Tensor, home_region: MemoryRegion, state: TensorConfigState, buffer_mode: BufferMode, stripe_configs: List[StripeConfig], copy_tensor: bool = False, copy_region: Union[MemoryRegion, None] = None, ): if copy_region is None: copy_region = home_region self.__init_handle_by_constructor__( _ffi_api.TensorConfig, tensor, home_region, state, buffer_mode, stripe_configs, copy_tensor, copy_region, ) def get_buffer_size(self): """ The size of the buffer needed for the TensorConfig. The size of buffer necessary to store a tensor being produced using the TensorConfig is not necessarily just the size of the tensor. In Plans, a tensor may be being produced and consumed in 'stripes' which are smaller than the full tensor. Therefore, the buffer necessary to store the tensor may only need to be as large as the stripe. The precise size of the buffer will depend both on the BufferMode and StripeConfigs (as well as, of course, the Tensor). """ return _ffi_api.TensorConfigGetBufferSize(self) @property def tensor(self): """The Tensor the config applies to.""" return self._tensor @property def home_region(self): """The region where the tensor is allocated.""" return self._home_region @property def state(self): """The state of the TensorConfig.""" return TensorConfigState(self._state) @property def buffer_mode(self): """The mode in which the buffer should be realized.""" return BufferMode(self._buffer_mode) @property def stripe_configs(self): """The StripeConfigs with which to compute the tensor.""" return list(self._stripe_configs) @property def copy_tensor(self): """Whether to copy the tensor.""" return bool(self._copy_tensor) @property def copy_region(self): """The region to copy the tensor to.""" return self._copy_region def __hash__(self): return self._hash def __eq__(self, other): return _ffi_api.TensorConfigEqual(self, other) def __repr__(self): return ( f"TensorConfig(tensor={self.tensor}, " f"home_region={self.home_region.name}, " f"state={self.state.name}, " f"buffer_mode={self.buffer_mode.name}, " f"stripe_configs={self.stripe_configs}, " f"copy_tensor={self.copy_tensor}, " f"copy_region={self.copy_region.name}" )
https://github.com/zk-ml/tachikoma
python/tvm/contrib/graph_executor.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Minimum graph executor that executes graph containing TVM PackedFunc.""" import numpy as np import tvm._ffi from tvm.rpc import _ffi_api as _rpc_ffi_api from tvm.rpc import base as rpc_base from tvm._ffi.base import string_types from tvm._ffi.runtime_ctypes import Device def create(graph_json_str, libmod, device): """Create a runtime executor module given a graph and module. Parameters ---------- graph_json_str : str The graph to be deployed in json format output by json graph. The graph can contain operator(tvm_op) that points to the name of PackedFunc in the libmod. libmod : tvm.runtime.Module The module of the corresponding function device : Device or list of Device The device to deploy the module. It can be local or remote when there is only one Device. Otherwise, the first device in the list will be used as this purpose. All device should be given for heterogeneous execution. Returns ------- graph_module : GraphModule Runtime graph module that can be used to execute the graph. Note ---- See also :py:class:`tvm.contrib.graph_executor.GraphModule` for examples to directly construct a GraphModule from an exported relay compiled library. """ assert isinstance(graph_json_str, string_types) dev, num_rpc_dev, device_type_id = get_device(libmod, device) if num_rpc_dev == len(dev): fcreate = dev[0]._rpc_sess.get_function("tvm.graph_executor.create") else: fcreate = tvm._ffi.get_global_func("tvm.graph_executor.create") return GraphModule(fcreate(graph_json_str, libmod, *device_type_id)) def get_device(libmod, device): """Parse and validate all the device(s). Parameters ---------- libmod : tvm.runtime.Module The module of the corresponding function device : Device or list of Device Returns ------- device : list of Device num_rpc_dev : Number of rpc devices device_type_id : List of device type and device id """ if isinstance(device, Device): device = [device] elif not isinstance(device, (list, tuple)): raise ValueError("dev has to be the type of Device or a list of Device") for cur_dev in device: if not isinstance(cur_dev, Device): raise ValueError("dev has to be the type of Device or a list of Device") # device_type_id[0], device_type_id[1] are used as the primary/fallback # device type and id. All other ones are used as device for # heterogeneous execution. num_rpc_dev = 0 device_type_id = [] for cur_dev in device: device_type = cur_dev.device_type if device_type >= rpc_base.RPC_SESS_MASK: assert libmod.type_key == "rpc" assert _rpc_ffi_api.SessTableIndex(libmod) == cur_dev._rpc_sess._tbl_index num_rpc_dev += 1 device_type = cur_dev.device_type % rpc_base.RPC_SESS_MASK device_type_id.append(device_type) device_type_id.append(cur_dev.device_id) if 0 < num_rpc_dev < len(device): raise ValueError("Either all or none of the devices should be rpc.") return device, num_rpc_dev, device_type_id class GraphModule(object): """Wrapper runtime module. This is a thin wrapper of the underlying TVM module. you can also directly call set_input, run, and get_output of underlying module functions Parameters ---------- module : tvm.runtime.Module The internal tvm module that holds the actual graph functions. Attributes ---------- module : tvm.runtime.Module The internal tvm module that holds the actual graph functions. Examples -------- .. code-block:: python import tvm from tvm import relay from tvm.contrib import graph_executor # build the library using graph executor lib = relay.build(...) lib.export_library("compiled_lib.so") # load it back as a runtime lib: tvm.runtime.Module = tvm.runtime.load_module("compiled_lib.so") # Call the library factory function for default and create # a new runtime.Module, wrap with graph module. gmod = graph_executor.GraphModule(lib["default"](dev)) # use the graph module. gmod.set_input("x", data) gmod.run() """ def __init__(self, module): self.module = module self._set_input = module["set_input"] self._run = module["run"] self._get_output = module["get_output"] self._get_input = module["get_input"] self._get_num_outputs = module["get_num_outputs"] self._get_input_index = module["get_input_index"] self._get_input_info = module["get_input_info"] self._get_num_inputs = module["get_num_inputs"] self._load_params = module["load_params"] self._share_params = module["share_params"] def set_input(self, key=None, value=None, **params): """Set inputs to the module via kwargs Parameters ---------- key : int or str The input key value : the input value. The input key params : dict of str to NDArray Additional arguments """ if key is not None: v = self._get_input(key) if v is None: raise RuntimeError("Could not find '%s' in graph's inputs" % key) v.copyfrom(value) if params: # upload big arrays first to avoid memory issue in rpc mode keys = list(params.keys()) keys.sort(key=lambda x: -np.prod(params[x].shape)) for k in keys: # TODO(zhiics) Skip the weights for submodule in a better way. # We should use ConstLoaderModule for initialization and remove # params from set_input val = self._get_input(k) if val: self._get_input(k).copyfrom(params[k]) def run(self, **input_dict): """Run forward execution of the graph Parameters ---------- input_dict: dict of str to NDArray List of input values to be feed to """ if input_dict: self.set_input(**input_dict) self._run() def get_num_outputs(self): """Get the number of outputs from the graph Returns ------- count : int The number of outputs. """ return self._get_num_outputs() def get_num_inputs(self): """Get the number of inputs to the graph Returns ------- count : int The number of inputs. """ return self._get_num_inputs() def get_input(self, index, out=None): """Get index-th input to out Parameters ---------- index : int The input index out : NDArray The output array container """ if out: self._get_input(index).copyto(out) return out return self._get_input(index) def get_input_index(self, name): """Get inputs index via input name. Parameters ---------- name : str The input key name Returns ------- index: int The input index. -1 will be returned if the given input name is not found. """ return self._get_input_index(name) def get_input_info(self): """Return the 'shape' and 'dtype' dictionaries of the graph. .. note:: We can't simply get the input tensors from a TVM graph because weight tensors are treated equivalently. Therefore, to find the input tensors we look at the 'arg_nodes' in the graph (which are either weights or inputs) and check which ones don't appear in the params (where the weights are stored). These nodes are therefore inferred to be input tensors. Returns ------- shape_dict : Map Shape dictionary - {input_name: tuple}. dtype_dict : Map dtype dictionary - {input_name: dtype}. """ input_info = self._get_input_info() assert "shape" in input_info shape_dict = input_info["shape"] assert "dtype" in input_info dtype_dict = input_info["dtype"] return shape_dict, dtype_dict def get_output(self, index, out=None): """Get index-th output to out Parameters ---------- index : int The output index out : NDArray The output array container """ if out: self._get_output(index, out) return out return self._get_output(index) def debug_get_output(self, node, out): """Run graph up to node and get the output to out Parameters ---------- node : int / str The node index or name out : NDArray The output array container """ raise NotImplementedError("Please use debugger.debug_executor as graph_executor instead.") def load_params(self, params_bytes): """Load parameters from serialized byte array of parameter dict. Parameters ---------- params_bytes : bytearray The serialized parameter dict. """ self._load_params(bytearray(params_bytes)) def share_params(self, other, params_bytes): """Share parameters from pre-existing GraphExecutor instance. Parameters ---------- other: GraphExecutor The parent GraphExecutor from which this instance should share it's parameters. params_bytes : bytearray The serialized parameter dict (used only for the parameter names). """ self._share_params(other.module, bytearray(params_bytes)) def __getitem__(self, key): """Get internal module function Parameters ---------- key : str The key to the module. """ return self.module[key] def benchmark( self, device, func_name="run", repeat=5, number=5, min_repeat_ms=None, limit_zero_time_iterations=100, end_to_end=False, cooldown_interval_ms=0, repeats_to_cooldown=1, **kwargs, ): """Calculate runtime of a function by repeatedly calling it. Use this function to get an accurate measurement of the runtime of a function. The function is run multiple times in order to account for variability in measurements, processor speed or other external factors. Mean, median, standard deviation, min and max runtime are all reported. On GPUs, CUDA and ROCm specifically, special on-device timers are used so that synchonization and data transfer operations are not counted towards the runtime. This allows for fair comparison of runtimes across different functions and models. The `end_to_end` flag switches this behavior to include data transfer operations in the runtime. The benchmarking loop looks approximately like so: .. code-block:: python for r in range(repeat): time_start = now() for n in range(number): func_name() time_end = now() total_times.append((time_end - time_start)/number) Parameters ---------- func_name : str The function to benchmark. This is ignored if `end_to_end` is true. repeat : int Number of times to run the outer loop of the timing code (see above). The output will contain `repeat` number of datapoints. number : int Number of times to run the inner loop of the timing code. This inner loop is run in between the timer starting and stopping. In order to amortize any timing overhead, `number` should be increased when the runtime of the function is small (less than a 1/10 of a millisecond). min_repeat_ms : Optional[int] If set, the inner loop will be run until it takes longer than `min_repeat_ms` milliseconds. This can be used to ensure that the function is run enough to get an accurate measurement. limit_zero_time_iterations : Optional[int] The maximum number of repeats when measured time is equal to 0. It helps to avoid hanging during measurements. end_to_end : bool If set, include time to transfer input tensors to the device and time to transfer returned tensors in the total runtime. This will give accurate timings for end to end workloads. cooldown_interval_ms: Optional[int] The cooldown interval in milliseconds between the number of repeats defined by `repeats_to_cooldown`. repeats_to_cooldown: Optional[int] The number of repeats before the cooldown is activated. kwargs : Dict[str, Object] Named arguments to the function. These are cached before running timing code, so that data transfer costs are not counted in the runtime. Returns ------- timing_results : BenchmarkResult Runtimes of the function. Use `.mean` to access the mean runtime, use `.results` to access the individual runtimes (in seconds). """ min_repeat_ms = 0 if min_repeat_ms is None else min_repeat_ms if end_to_end: # Have to unpack kwargs into a single list args = [] for k, v in kwargs.items(): args.append(k) args.append(v) return self.module.time_evaluator( "run_from_inputs", device, repeat=repeat, number=number, min_repeat_ms=min_repeat_ms, limit_zero_time_iterations=limit_zero_time_iterations, )(device.device_type % rpc_base.RPC_SESS_MASK, device.device_id, *args) if kwargs: self.set_input(**kwargs) return self.module.time_evaluator( func_name, device, repeat=repeat, number=number, min_repeat_ms=min_repeat_ms, limit_zero_time_iterations=limit_zero_time_iterations, cooldown_interval_ms=cooldown_interval_ms, repeats_to_cooldown=repeats_to_cooldown, )()
https://github.com/zk-ml/tachikoma
python/tvm/contrib/graph_runtime.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Deprecated Python API for GraphExecutor.""" import warnings from . import graph_executor def create(*args, **kwargs): warnings.warn( "This function has been moved to tvm.contrib.graph_executor and will be removed " "in the next TVM release" ) return graph_executor.create(*args, **kwargs)
https://github.com/zk-ml/tachikoma
python/tvm/contrib/hexagon/__init__.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Hexagon APIs.""" from .tools import * from .transform import *
https://github.com/zk-ml/tachikoma
python/tvm/contrib/hexagon/_ci_env_check.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Hexagon environment checks for CI usage These may be required by either tvm.testing or tvm.contrib.hexagon.pytest_plugin, and are separated here to avoid a circular dependency. """ import os import tvm ANDROID_SERIAL_NUMBER = "ANDROID_SERIAL_NUMBER" HEXAGON_TOOLCHAIN = "HEXAGON_TOOLCHAIN" def _compile_time_check(): """Return True if compile-time support for Hexagon is present, otherwise error string. Designed for use as a the ``compile_time_check`` argument to `tvm.testing.Feature`. """ if ( tvm.testing.utils._cmake_flag_enabled("USE_LLVM") and tvm.target.codegen.llvm_version_major() < 7 ): return "Hexagon requires LLVM 7 or later" if "HEXAGON_TOOLCHAIN" not in os.environ: return f"Missing environment variable {HEXAGON_TOOLCHAIN}." return True def _run_time_check(): """Return True if run-time support for Hexagon is present, otherwise error string. Designed for use as a the ``run_time_check`` argument to `tvm.testing.Feature`. """ if ANDROID_SERIAL_NUMBER not in os.environ: return f"Missing environment variable {ANDROID_SERIAL_NUMBER}." return True
https://github.com/zk-ml/tachikoma
python/tvm/contrib/hexagon/build.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Defines top-level glue functions for building Hexagon.""" import abc import datetime import logging import multiprocessing as mp import os import pathlib import signal import socket import stat import random import string import subprocess import tempfile from typing import Union from tvm.contrib.hexagon.hexagon_profiler import HexagonProfiler from ..._ffi import libinfo from .session import Session from .tools import HEXAGON_SIMULATOR_NAME HEXAGON_RPC_LIB_DIR = os.environ.get("HEXAGON_RPC_LIB_DIR") ANDROID_BASH_FILE_NAME = "android_bash.sh" HEXAGON_REMOTE_DEVICE_KEY = "hexagon-dev" def _check_call_verbose(cmd, **kwargs) -> None: """ Similar to subprocess.check_call(cmd), but if the exit code is non-zero then the raised Exception's message provides more detail, including the stdout/stderr provided by the subprocess. """ try: subprocess.run( cmd, check=True, encoding="UTF-8", stdout=subprocess.PIPE, stderr=subprocess.PIPE, **kwargs, ) except subprocess.CalledProcessError as err: error_msg = f"{err}\nstdout:\n{err.stdout}\nstderr:\n{err.stderr}" raise Exception(error_msg) def _get_hexagon_rpc_lib_dir() -> pathlib.Path: """Find the Hexagon API binaries. Returns ------- pathlib.Path : The path to the Hexagon API directory. """ global HEXAGON_RPC_LIB_DIR if HEXAGON_RPC_LIB_DIR is None: for path in libinfo.find_lib_path(): rpc_dir = os.path.join(os.path.dirname(path), "hexagon_api_output") if os.path.isdir(rpc_dir): HEXAGON_RPC_LIB_DIR = rpc_dir break else: raise RuntimeError("hexagon_api binaries not found, please define HEXAGON_RPC_LIB_DIR") return pathlib.Path(HEXAGON_RPC_LIB_DIR) def _get_test_directory_name() -> str: """Generate a time-stamped name for use as a test directory name.""" date_str = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") random_str = "".join(random.choice(string.ascii_lowercase) for _ in range(10)) return f"{date_str}-{random_str}" class HexagonLauncherRPC(metaclass=abc.ABCMeta): """Base class for RPC-based launchers. This is an abstract class intended to be a base class for specific implementations of RPC launchers. There are two public methods that each launcher needs to implement: - start_server - stop server and two "private" methods used in setting up the environment: - _copy_to_remote - _create_remote_directory The basic flow of interaction with the launcher is launcher = HexagonLauncher(...) launcher.start_server() with launcher.create_session() as session: # Do something with the session launcher.stop_server() Parameters ---------- rpc_info : dict Description of the RPC setup. Recognized keys: "rpc_tracker_host" : str name of the host running the tracker (default "0.0.0.0") "rpc_tracker_port" : int port number of the tracker (default: 9190) "rpc_server_port" : int port number for the RPC server to use (default 7070) "workspace_base" : str name of base test directory (default ".") workspace : str or patlib.Path The server's remote working directory. If this directory does not exist, it will be created. If it does exist, the servermust have write permissions to it. If this parameter is None, a subdirectory in the `workspace_base` directory will be created, otherwise the `workspace_base` is not used. """ def __init__( self, rpc_info: dict, workspace: Union[str, pathlib.Path] = None, serial_number: str = None ): self._rpc_info = { "rpc_tracker_host": "0.0.0.0", "rpc_tracker_port": 9190, "rpc_server_port": 7070, "workspace_base": ".", } self._rpc_info.update(rpc_info) self._workspace = self._create_workspace(workspace) self._serial_number = serial_number @abc.abstractmethod def start_server(self): """Start the RPC server""" ... @abc.abstractmethod def stop_server(self): """Stop the RPC server""" ... @abc.abstractmethod def cleanup_directory(self): """Cleanup working directory""" ... @abc.abstractmethod def _copy_to_remote( self, local_path: Union[str, pathlib.Path], remote_path: Union[str, pathlib.Path] ): """Copy a local file to a remote location. Parameters ---------- local_path : str or pathlib.Path Path to the local file. remote_path : str or pathlib.Path Path to the remote file (to be written). """ ... @abc.abstractmethod def _create_remote_directory(self, remote_path: Union[str, pathlib.Path]) -> pathlib.Path: """Create a directory in the remote location. Parameters ---------- remote_path : str or pathlib.Path Name of the directory to be created. Returns ------- pathlib.Path : Absolute path of the remote workspace. """ ... def _create_workspace(self, workspace: Union[str, pathlib.Path]) -> pathlib.Path: """Create a working directory for the server. Parameters ---------- workspace : str or pathlib.Path or NoneType Name of the directory to create. If None, a new name is constructed using workspace_base. Returns ------- pathlib.Path : Created workspace. """ if not workspace: base_dir = self._rpc_info["workspace_base"] workspace = os.path.join(base_dir, _get_test_directory_name()) return self._create_remote_directory(workspace) @abc.abstractmethod def get_profile_output( self, hex_profiler: HexagonProfiler, session: Session, ) -> str: """Extract profile output. Parameters ---------- hex_profiler : HexagonProfiler HexagonProfiler object that contains the profiling related information. session : Session Remote session. The session must be established (via __enter__) prior to calling this function. Returns ------- profile_data : str Path of the profiling data file """ ... def create_session(self, session_name: str = "hexagon-rpc") -> Session: """Create an RPC session. Parameters ---------- session_name : str RPC session name. Returns ------- Session : The session object. """ hexagon_session_kw = { "remote_workspace": self._workspace, "rpc_tracker": (self._rpc_info["rpc_tracker_host"], self._rpc_info["rpc_tracker_port"]), "rpc_server_key": self._rpc_info["device_key"], "serial_number": self._serial_number, "session_name": session_name, } return Session(**hexagon_session_kw) def is_simulator(self): return self._serial_number == HEXAGON_SIMULATOR_NAME class HexagonLauncherAndroid(HexagonLauncherRPC): """Hexagon Launcher for Android.""" ANDROID_HEXAGON_TEST_BASE_DIR = pathlib.Path("/data/local/tmp/hexagon_test") ANDROID_HEXAGON_RPC_FILES = [ "libhexagon_rpc_skel.so", "libtvm_runtime.so", "tvm_rpc_android", ] def __init__( self, serial_number: str, rpc_info: dict, workspace: Union[str, pathlib.Path] = None, hexagon_debug: bool = False, clear_logcat: bool = False, sysmon_profile: bool = False, farf_config: str = "0x1e", ): """Configure a new HexagonLauncherAndroid Parameters ---------- serial_number : str Android device serial number. rpc_info : dict Same as in HexagonLauncherRPC, except if the "workspace_base" key is not present or is None, ANDROID_HEXAGON_TEST_BASE_DIR is used as the base directory. workspace : str or pathlib.Path, optional Test workspace path on android. hexagon_debug: bool, optional Should the server run debug options. clear_logcat: bool, optional Should the server clear logcat before running. sysmon_profile: bool, optional Should the server run sysmon profiler in the background. farf_config: str, optional Configuration string for runtime log level filtering. Use farf_config_from_python_log_level to generate a bitmask string from a Python logging level (e.g., logging.INFO) """ if not rpc_info.get("workspace_base"): rpc_info["workspace_base"] = self.ANDROID_HEXAGON_TEST_BASE_DIR self._serial_number = serial_number assert self._serial_number != "", "Android serial number is not set." adb_socket = rpc_info["adb_server_socket"] if rpc_info["adb_server_socket"] else "tcp:5037" self._adb_device_sub_cmd = ["adb", "-L", adb_socket, "-s", self._serial_number] self.forwarded_ports_ = [] self._hexagon_debug = hexagon_debug self._clear_logcat = clear_logcat self._sysmon_profile = sysmon_profile self._sysmon_process = None self._farf_config = farf_config rpc_info["device_key"] = HEXAGON_REMOTE_DEVICE_KEY + "." + self._serial_number super(HexagonLauncherAndroid, self).__init__(rpc_info, workspace, self._serial_number) def _copy_to_remote( self, local_path: Union[str, pathlib.Path], remote_path: Union[str, pathlib.Path] ): """Abstract method implementation. See description in HexagonLauncherRPC.""" _check_call_verbose(self._adb_device_sub_cmd + ["push", str(local_path), str(remote_path)]) def _create_remote_directory(self, remote_path: Union[str, pathlib.Path]) -> pathlib.Path: """Abstract method implementation. See description in HexagonLauncherRPC.""" _check_call_verbose(self._adb_device_sub_cmd + ["shell", "mkdir", "-p", str(remote_path)]) return pathlib.Path(remote_path) def _copy_binaries(self): """Upload Android server binaries.""" # Create bash script with open(_get_hexagon_rpc_lib_dir() / f"{ANDROID_BASH_FILE_NAME}.template", "r") as src_f: with tempfile.TemporaryDirectory() as temp_dir: android_bash_script_path = pathlib.Path(temp_dir) / ANDROID_BASH_FILE_NAME with open(android_bash_script_path, "w") as dest_f: for line in src_f.readlines(): if "<RPC_TRACKER_HOST>" in line: line = line.replace( "<RPC_TRACKER_HOST>", str(self._rpc_info["rpc_tracker_host"]) ) if "<RPC_TRACKER_PORT>" in line: line = line.replace( "<RPC_TRACKER_PORT>", str(self._rpc_info["rpc_tracker_port"]) ) if "<HEXAGON_REMOTE_DEVICE_KEY>" in line: line = line.replace( "<HEXAGON_REMOTE_DEVICE_KEY>", self._rpc_info["device_key"] ) if "<RPC_SERVER_PORT>" in line: line = line.replace( "<RPC_SERVER_PORT>", str(self._rpc_info["rpc_server_port"]) ) if "<FARF_CONFIG>" in line: line = line.replace("<FARF_CONFIG>", str(self._farf_config)) dest_f.write(line) # Make shell script executable android_bash_stat = os.stat(android_bash_script_path) os.chmod(android_bash_script_path, android_bash_stat.st_mode | stat.S_IEXEC) self._copy_to_remote( android_bash_script_path, self._workspace / android_bash_script_path.name ) # Push files lib_dir = _get_hexagon_rpc_lib_dir() for item in self.ANDROID_HEXAGON_RPC_FILES: self._copy_to_remote(lib_dir / item, self._workspace / item) def _process_forwarded_ports(self): forwarded_ports = subprocess.check_output(self._adb_device_sub_cmd + ["forward", "--list"]) existing_forwards = [] for forward in str(forwarded_ports).split("\\n"): entry = forward.split() if len(entry) == 3: _, local, _ = entry existing_forwards.append(int(local.strip("tcp:"))) return existing_forwards def _forward_ports(self, rpc_server_port, existing_forwards): # Enable port forward for RPC server. We forward the first ten open ports # starting from the rpc_server_port port = rpc_server_port while len(self.forwarded_ports_) < 10: if port not in existing_forwards and not _is_port_in_use(port): _check_call_verbose( self._adb_device_sub_cmd + ["forward", f"tcp:{port}", f"tcp:{port}"] ) self.forwarded_ports_.append(port) port += 1 def _reverse_ports(self, rpc_tracker_port): _check_call_verbose( self._adb_device_sub_cmd + ["reverse", f"tcp:{rpc_tracker_port}", f"tcp:{rpc_tracker_port}"] ) def _run_server_script(self): """Setup the ADB connection and execute the server script.""" # Collect any existing adb port forwarding to avoid duplication # with another running process existing_forwards = self._process_forwarded_ports() # Enable port reverse for RPC tracker rpc_tracker_port = self._rpc_info["rpc_tracker_port"] rpc_server_port = self._rpc_info["rpc_server_port"] self._reverse_ports(rpc_tracker_port) self._forward_ports(rpc_server_port, existing_forwards) # Run server and connect to tracker subprocess.Popen( self._adb_device_sub_cmd + ["shell", f"cd {self._workspace} && ./{ANDROID_BASH_FILE_NAME}"], stdout=subprocess.PIPE, stdin=subprocess.PIPE, stderr=subprocess.PIPE, ) def _cleanup_port_forwarding(self): # Removed pre-defined forward/reverse rules rpc_tracker_port = self._rpc_info["rpc_tracker_port"] _check_call_verbose( self._adb_device_sub_cmd + ["reverse", "--remove", f"tcp:{rpc_tracker_port}"] ) for port in self.forwarded_ports_: _check_call_verbose(self._adb_device_sub_cmd + ["forward", "--remove", f"tcp:{port}"]) def _terminate_remote(self): # Send interupt to main and child processes subprocess.Popen( self._adb_device_sub_cmd + ["shell", f"pkill -l sigint -P `cat {self._workspace}/rpc_pid.txt`"] ) subprocess.Popen( self._adb_device_sub_cmd + ["shell", f"kill -s sigint `cat {self._workspace}/rpc_pid.txt`"] ) # Wait for processes to destruct cleanly after receiving the intrupt subprocess.Popen(self._adb_device_sub_cmd + ["shell", "sleep", "0.1s"]) # Kill process children subprocess.Popen( self._adb_device_sub_cmd + ["shell", f"pkill -P `cat {self._workspace}/rpc_pid.txt`"] ) # Kill main process subprocess.Popen( self._adb_device_sub_cmd + ["shell", f"kill `cat {self._workspace}/rpc_pid.txt`"] ) def cleanup_directory(self): """Abstract method implementation. See description in HexagonLauncherRPC.""" subprocess.Popen(self._adb_device_sub_cmd + ["shell", f"rm -rf {self._workspace}"]) def _start_sysmon(self): hexagon_sdk_root = os.environ.get("HEXAGON_SDK_ROOT", default="") subprocess.call( self._adb_device_sub_cmd + ["push", f"{hexagon_sdk_root}/tools/utils/sysmon/sysMonApp", "/data/local/tmp/"] ) sysmon_process = subprocess.Popen( self._adb_device_sub_cmd + [ "shell", "/data/local/tmp/sysMonApp profiler --debugLevel 0 --samplePeriod 1 --q6 cdsp", ], stdin=subprocess.PIPE, ) return sysmon_process def _stop_sysmon(self): if self._sysmon_process is not None: self._sysmon_process.communicate(input=b"\n") self._sysmon_process = None def _retrieve_sysmon(self): pathlib.Path("./sysmon_output/").mkdir(exist_ok=True) subprocess.call( self._adb_device_sub_cmd + ["pull", "/sdcard/sysmon_cdsp.bin", "./sysmon_output/"] ) subprocess.call(self._adb_device_sub_cmd + ["root"]) hexagon_sdk_root = os.environ.get("HEXAGON_SDK_ROOT", default="") subprocess.call( f"{hexagon_sdk_root}/tools/utils/sysmon/parser_linux_v2/HTML_Parser/sysmon_parser " + "./sysmon_output/sysmon_cdsp.bin --outdir ./sysmon_output/", shell=True, ) def _clear_debug_logs(self): subprocess.call(self._adb_device_sub_cmd + ["shell", "logcat", "-c"]) def _retrieve_debug_logs(self): run_start_time = subprocess.check_output( self._adb_device_sub_cmd + [ "shell", "stat", f"{self._workspace}/android_bash.sh | grep 'Change' | grep -oe '[0-9].*'", ] ) run_start_time = run_start_time[:-1].decode("UTF-8") subprocess.call( self._adb_device_sub_cmd + [ "shell", "logcat", "-t", f'"{run_start_time}"', "-f", f"{self._workspace}/logcat.txt", ] ) subprocess.call(self._adb_device_sub_cmd + ["pull", f"{self._workspace}/logcat.txt", "."]) def _print_cdsp_logs(self): crash_count = 0 context_lines = 0 print_buffer = "" try: with open("./logcat.txt", "r") as f: for line in f: if "Process on cDSP CRASHED" in line: if crash_count <= 5: print(print_buffer, "\n") context_lines = 40 print_buffer = "" crash_count += 1 if context_lines > 0 and "platform_qdi_driver" in line: context_lines -= 1 print_buffer += line[80:] if crash_count <= 5: print(print_buffer, "\n") print( f"There were {crash_count} crashes on the cDSP during execution... " + "Crash printing is limited to the first 5." ) except FileNotFoundError: print("Unable to parse logcat file.") def start_server(self): """Abstract method implementation. See description in HexagonLauncherRPC.""" self._copy_binaries() if self._sysmon_profile: self._sysmon_process = self._start_sysmon() self._run_server_script() if self._clear_logcat: self._clear_debug_logs() def stop_server(self): """Abstract method implementation. See description in HexagonLauncherRPC.""" if self._sysmon_profile and self._sysmon_process is not None: self._stop_sysmon() self._retrieve_sysmon() if self._hexagon_debug: self._retrieve_debug_logs() self._print_cdsp_logs() self._cleanup_port_forwarding() self._terminate_remote() if not self._hexagon_debug: self.cleanup_directory() def get_profile_output( self, hex_profiler: HexagonProfiler, session: Session, ): """Abstract method implementation. See description in HexagonLauncherRPC.""" profile_data = "" if hex_profiler.is_lwp_enabled(): temp_dir = hex_profiler.get_temp_dir() remote_path = hex_profiler.get_remote_path() if not temp_dir: raise RuntimeError("tempdir not passed") fname = "lwp.json" out_path = os.path.join(remote_path, fname) profile_data = temp_dir.relpath(fname) ret = session.get_profile_output(hex_profiler.get_mode(), fname) if ret: subprocess.check_call(self._adb_device_sub_cmd + ["pull", out_path, profile_data]) else: raise RuntimeError("Error generating profile output") elif hex_profiler.profiling_mode == "etm": hex_profiler.pull_files_for_etm_processing(self._workspace) else: raise RuntimeError("Profiling not enabled") return profile_data class HexagonLauncherSimulator(HexagonLauncherRPC): """Hexagon Launcher for Hexagon simulator.""" SIMULATOR_HEXAGON_RPC_FILES = ["tvm_rpc_x86", "libhexagon_rpc_sim.so"] def __init__(self, rpc_info: dict, workspace: Union[str, pathlib.Path] = None): """Configure a new HexagonLauncherSimulator Parameters are same as for HexagonLauncherRPC. """ self._toolchain = os.environ.get("HEXAGON_TOOLCHAIN") if not self._toolchain: raise RuntimeError("Please set HEXAGON_TOOLCHAIN env variable") self._serial_number = HEXAGON_SIMULATOR_NAME super(HexagonLauncherSimulator, self).__init__(rpc_info, workspace, self._serial_number) def _copy_to_remote( self, local_path: Union[str, pathlib.Path], remote_path: Union[str, pathlib.Path] ): """Abstract method implementation. See description in HexagonLauncherRPC.""" _check_call_verbose(["cp", str(local_path), str(remote_path)]) def _create_remote_directory(self, remote_path: Union[str, pathlib.Path]) -> pathlib.Path: """Abstract method implementation. See description in HexagonLauncherRPC.""" _check_call_verbose(["mkdir", "-p", str(remote_path)]) return pathlib.Path(os.path.abspath(remote_path)) def _copy_libcxx(self, dest_dir: Union[str, pathlib.Path]): """Copy libc++ libraries to the remote workspace.""" # Copy the v68 versions, since we don't have target information. # The v68 ones should work everywhere on v68+. lib_dir = os.path.join(self._toolchain, "target/hexagon/lib/v68/G0/pic") libcxx_files = [] for entry in os.scandir(lib_dir): if entry.is_dir() or entry.name.find(".so") == -1: continue if entry.name.startswith("libc++"): libcxx_files.append(entry.name) # Use tar to preserve the symbolic links. Libc++ libraries use the # typical .so versioning, so that libc++.so may be a symlink to # something else. Also, shared libraries using libc++ could be # directly linked against some version, e.g. libc++.so.1, so make # sure that all files are copied over. The preservation of symbolic # links is to save disk space. tar_in = f"tar -cf - -C {lib_dir} " + " ".join(libcxx_files) tar_out = f"tar -xf - -C {str(dest_dir)}" _check_call_verbose(tar_in + " | " + tar_out, shell=True) def start_server(self): """Abstract method implementation. See description in HexagonLauncherRPC.""" # Copy binaries lib_dir = _get_hexagon_rpc_lib_dir() for item in self.SIMULATOR_HEXAGON_RPC_FILES: self._copy_to_remote(lib_dir / item, self._workspace / item) # Copy libc++ from the toolchain to the workspace self._copy_libcxx(self._workspace) self._rpc_info["device_key"] = HEXAGON_REMOTE_DEVICE_KEY + "." + str(os.getpid()) rpc_tracker_host = self._rpc_info["rpc_tracker_host"] rpc_tracker_port = self._rpc_info["rpc_tracker_port"] rpc_server_port = self._rpc_info["rpc_server_port"] device_key = self._rpc_info["device_key"] server_exe = os.path.join(".", "tvm_rpc_x86") args = [ "server", f"--tracker={rpc_tracker_host}:{rpc_tracker_port}", f"--port={rpc_server_port}", f"--key={device_key}", "--timeout=0", ] # pylint: disable=unused-argument def _terminate_handler(self, signum, *rest): # Terminate the Popen'ed (sub)process. os.kill(self._subprocess_pid, signal.SIGTERM) def _start(self): # This function will be running in a new process. It will start the RPC # (x86) server as a subprocess of itself. log_out = self._workspace / "stdout.txt" log_err = self._workspace / "stderr.txt" # Intercept the TERM signal so we can also terminate the subprocess. signal.signal(signal.SIGTERM, lambda *a: _terminate_handler(self, *a)) with open(log_out, "w") as out, open(log_err, "w") as err: p = subprocess.Popen( [server_exe, *args], stdout=out, stderr=err, cwd=self._workspace ) # Insert the pid of the subprocess in the self object. self._subprocess_pid = p.pid p.wait() self._server_process = mp.Process(target=lambda *a: _start(self, *a)) self._server_process.start() def cleanup_directory(self): """Abstract method implementation. See description in HexagonLauncherRPC.""" def stop_server(self): """Abstract method implementation. See description in HexagonLauncherRPC.""" self._server_process.terminate() def get_profile_output( self, hex_profiler: HexagonProfiler, session: Session, ): """Abstract method implementation. See description in HexagonLauncherRPC.""" profile_data = "" if hex_profiler.is_lwp_enabled(): fname = "lwp.json" profile_data = f"{self._workspace}/{fname}" ret = session.get_profile_output(hex_profiler.get_mode(), fname) if not ret: raise RuntimeError("Error generating profile output") elif hex_profiler.profiling_mode == "etm": raise RuntimeError("ETM Profiling not supported on the simulator") else: raise RuntimeError("Profiling not enabled") return profile_data # https://stackoverflow.com/a/52872579/2689797 def _is_port_in_use(port: int) -> bool: with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: return s.connect_ex(("localhost", port)) == 0 def farf_config_from_python_log_level(level) -> str: """Generates a FARF configuration string enabling logging at the specified level Parameters ---------- level : str or int Minimum level to log at. Must be a known Python logging level or string (e.g., logging.INFO or "INFO") """ # Runtime log levels can be selectively enabled by computing a bitmask # corresponding to the levels you want to enable. These get forwarded to # logcat by the DSP RPC daemon. The bits for each level are: # 0x01 - Hexagon LOW / TVM DEBUG / Python DEBUG # 0x02 - Hexagon MEDIUM / TVM INFO / Python INFO # 0x04 - Hexagon HIGH / TVM WARN / Python WARNING # 0x08 - Hexagon ERROR / TVM ERROR / Python ERROR # 0x10 - Hexagon FATAL / TVM FATAL / Python CRITICAL # Runtime logging can also be filtered on filenames by appending a # comma-separated list of filenames. For more information, see # the Hexagon SDK documentation. if level in (logging.DEBUG, "DEBUG"): return "0x1F" if level in (logging.INFO, "INFO"): return "0x1E" if level in (logging.WARNING, "WARNING"): return "0x1C" if level in (logging.ERROR, "ERROR"): return "0x18" if level in (logging.CRITICAL, "CRITICAL"): return "0x10" raise ValueError("Argument must be a known Python logging level or string") # pylint: disable=invalid-name def HexagonLauncher( serial_number: str, rpc_info: dict, workspace: Union[str, pathlib.Path] = None, hexagon_debug: bool = False, clear_logcat: bool = False, sysmon_profile: bool = False, farf_config: str = farf_config_from_python_log_level(logging.INFO), ): """Creates a HexagonLauncher""" if serial_number == HEXAGON_SIMULATOR_NAME: return HexagonLauncherSimulator(rpc_info, workspace) return HexagonLauncherAndroid( serial_number, rpc_info, workspace, hexagon_debug, clear_logcat, sysmon_profile, farf_config )
https://github.com/zk-ml/tachikoma
python/tvm/contrib/hexagon/hexagon_profiler.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Define HexagonProfiler class to enable profiling for Hexagon""" import os import subprocess import typing from tvm.ir.transform import PassContext from tvm.contrib.hexagon.profiling.process_lwp_data import process_lwp_output from tvm.relay.backend.executor_factory import ExecutorFactoryModule from tvm.driver.build_module import OperatorModule from tvm.contrib import utils class HexagonProfiler: """Hexagon Profiler""" def __init__( self, dso_binary: str, module: typing.Union[ExecutorFactoryModule, OperatorModule], hexagon_server_process, enable_debug, ): """Configure HexagonProfiler""" # Save test .so to process profiling data self._temp_dir = utils.tempdir(keep_for_debug=enable_debug) self._dso_binary_path = self._temp_dir.relpath(dso_binary) if isinstance(module, OperatorModule): module.save(self._dso_binary_path) else: module.get_lib().save(self._dso_binary_path) self._android_serial_number = os.environ.get("ANDROID_SERIAL_NUMBER") self._remote_path = "" self._logcat_path = "" self._profiling_mode = None config = PassContext.current().config if self._android_serial_number is None: raise RuntimeError("ANDROID_SERIAL_NUMBER must be set for profiling") if ("tir.instrument_lwp", True) in config.items(): # Set profiling mode self._profiling_mode = "lwp" if self._android_serial_number != "simulator": # Clear the logcat buffer and create a child process to redirect logcat output # into a file. launcher = hexagon_server_process["launcher"] subprocess.check_call(launcher._adb_device_sub_cmd + ["logcat", "-c"]) self._logcat_path = self._temp_dir.relpath("logcat.log") self._fo = open(self._logcat_path, "w") self._proc = subprocess.Popen( launcher._adb_device_sub_cmd + ["logcat"], stdout=self._fo ) # Get the remote workspace on the device from where the lwp data needs to be copied. self._remote_path = launcher._workspace if self._profiling_mode is None: raise RuntimeError("Profiling mode was not set or was not a valid one.") def get_mode(self): return self._profiling_mode def is_lwp_enabled(self): return self._profiling_mode == "lwp" def get_temp_dir(self): return self._temp_dir def get_remote_path(self): return self._remote_path def get_profile_output(self, hexagon_launcher, hexagon_session): """Get runtime profiling data""" prof_out = hexagon_launcher.get_profile_output(self, hexagon_session) print("lwp json can be found at -- ", prof_out) # Process lightweight profiling output into an easily readable csv file # The post-processing requires following parameters: # 1) Path of the binary file # 2) android_serial_number # 3) Path of the lwp json file (lwp.json) which gets created in the current directory # 4) Path to the run log depending on the environment: # a) For on-device runs: # Use logcat output as the run log # b) For simulator runs: # Use "stdout.txt" as the run log. There is no need to specify the full path to # "stdout.txt" as it will be inferred based on 'prof_out' location. # 5) lwp processed output file - "lwp.csv" # lwp_csv = self._temp_dir.relpath("lwp.csv") if self._android_serial_number == "simulator": process_lwp_output( self._dso_binary_path, self._android_serial_number, prof_out, "stdout.txt", lwp_csv ) else: # For on-device run self._proc.kill() # End the child process for logcat self._fo.close() if os.path.exists(self._logcat_path): process_lwp_output( self._dso_binary_path, self._android_serial_number, prof_out, self._logcat_path, lwp_csv, ) else: raise RuntimeError("Error processing lwp output - missing logcat file")
https://github.com/zk-ml/tachikoma
python/tvm/contrib/hexagon/meta_schedule.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Meta schedule tuning utilities for Hexagon.""" import os import tempfile from typing import Callable, List, Optional from tvm.contrib.popen_pool import PopenPoolExecutor from tvm.meta_schedule.utils import cpu_count, derived_object from tvm.meta_schedule.builder import LocalBuilder from tvm.meta_schedule.runner import ( EvaluatorConfig, RunnerInput, RunnerFuture, PyRunner, ) from tvm.meta_schedule.runner.rpc_runner import ( default_alloc_argument, default_run_evaluator, RPCRunnerFuture, ) from .build import HexagonLauncherRPC from .tools import export_module @derived_object class HexagonRPCRunner(PyRunner): """RPCRunner for Hexagon. See the documentation of RPCRunner for more details.""" def __init__( self, hexagon_launcher: HexagonLauncherRPC, evaluator_config: Optional[EvaluatorConfig] = None, cooldown_sec: float = 0.0, alloc_repeat: int = 1, max_workers: Optional[int] = None, initializer: Optional[Callable[[], None]] = None, ): """ Parameters ---------- hexagon_launcher : HexagonLauncherRPC The RPC launcher for Hexagon. It is needed for creating hexagon.Session object inside the worker function. evaluator_config: EvaluatorConfig The evaluator configuration. cooldown_sec: float The cooldown in seconds. alloc_repeat: int The number of times to random fill the allocation. max_workers: Optional[int] = None The maximum number of connections. Defaults to number of logical CPU cores. initializer: Optional[Callable[[], None]] The initializer function. """ super().__init__() self.hexagon_launcher = hexagon_launcher self.evaluator_config = EvaluatorConfig._normalized(evaluator_config) self.cooldown_sec = cooldown_sec self.alloc_repeat = alloc_repeat if max_workers is None: max_workers = cpu_count(logical=True) self.pool = PopenPoolExecutor( max_workers=max_workers, timeout=100, initializer=initializer, ) def run(self, runner_inputs: List[RunnerInput]) -> List[RunnerFuture]: results = [] for runner_input in runner_inputs: future = RPCRunnerFuture( future=self.pool.submit( _worker_func, self.hexagon_launcher, self.evaluator_config, self.alloc_repeat, str(runner_input.artifact_path), tuple(arg_info.as_json() for arg_info in runner_input.args_info), ), timeout_sec=100, ) results.append(future) return results def _worker_func(hexagon_launcher, evaluator_config, alloc_repeat, artifact_path, args_info): with hexagon_launcher.create_session() as session: device = session.device _, remote_path = os.path.split(artifact_path) uploaded = session.upload(artifact_path, remote_path) rt_mod = session.load_module(uploaded) repeated_args = default_alloc_argument( session, device, args_info, alloc_repeat, ) costs = default_run_evaluator( session, rt_mod, device, evaluator_config, repeated_args, ) return costs def get_hexagon_local_builder(): """Return Hexagon-compatible Builder for meta schedule.""" def export_func(mod): binary_path = export_module(mod, tempfile.mkdtemp()) return str(binary_path) return LocalBuilder(f_export=export_func) def get_hexagon_rpc_runner( hexagon_launcher: HexagonLauncherRPC, number=3, repeat=1, min_repeat_ms=100 ): """Return Hexagon-compatible RPC Runner for meta schedule. Parameters ---------- hexagon_launcher : HexagonLauncherRPC The RPC launcher for Hexagon. number: int The number of times to run this function for taking average. We call these runs as one `repeat` of measurement. repeat: int The number of times to repeat the measurement. In total, the function will be invoked (1 + number x repeat) times, where the first one is warm up and will be discarded. The returned result contains `repeat` costs, each of which is an average of `number` costs. min_repeat_ms: int Minimum repeat time in ms. if the execution latency is too short, increase the number of runs to the given time (in ms) to reduce the measurement error. """ evaluator_config = EvaluatorConfig( number=number, repeat=repeat, min_repeat_ms=min_repeat_ms, enable_cpu_cache_flush=False, ) return HexagonRPCRunner( hexagon_launcher, evaluator_config, )
https://github.com/zk-ml/tachikoma
python/tvm/contrib/hexagon/profiling/process_lwp_data.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import json import csv import subprocess import argparse import os from re import search, compile from collections import OrderedDict ENABLE_DEBUG = False """ Process lightweight profiling output and generate a CSV file with processor cycles for the instrumented functions and loops. Please note that some assumptions have been made while processing the lightweight profiling output. They are as follows: 1) We don't expect profiled functions to call another profiled function. This constraint can be relaxed if needed but it simplifies the processing significantly without introducing any limitations for our use case. 2) For now, it's also assumed that every unique section (loop) ID has same start and end offset which will not be true while a loop gets unrolled as it will create multiple profiling section with the same ID. The current implementation doesn't handle this case. """ def get_func_info(model_so): """Get all the .text sections along with their start and end offset values""" hexagon_nm_path = os.environ["HEXAGON_TOOLCHAIN"] + "/bin/hexagon-nm" out = subprocess.Popen( [hexagon_nm_path, "--print-size", model_so], stdout=subprocess.PIPE, stderr=subprocess.STDOUT, ) stdo, stde = out.communicate() stdo = stdo.decode("utf-8") func_info = [] for l in stdo.split("\n"): info = {} if search(" (T|t) ", l): # If .text section parts = l.split(" ") assert len(parts) == 4 info["start"] = int(parts[0], base=16) info["end"] = int(parts[0], base=16) + int(parts[1], base=16) info["name"] = parts[3] func_info.append(info) # Sort the entries in the increasing order of the start offset value. func_info = sorted(func_info, key=lambda d: d["start"]) if ENABLE_DEBUG: print("func_info :\n ") for f in func_info: print(f) return func_info def find_func(func_info, offset): """For a given offset, find the function it belongs to.""" fidx = 0 lidx = len(func_info) - 1 while fidx <= lidx: midx = (fidx + lidx) // 2 ms = func_info[midx]["start"] me = func_info[midx]["end"] if fidx == lidx: assert ( offset >= ms and offset <= me ), f"Couldn't find a function for this offset: {offset}" return fidx else: if offset > me: fidx = midx + 1 elif offset < ms: lidx = midx - 1 else: return midx assert False, "Possible mismatch between model .so and LWP data" def accumulate_cycles(overall_cycles, func_cycles, func_name): """Accumulate function cycles""" acc_cycles = overall_cycles[func_name] for id in func_cycles: assert id in acc_cycles, f"id [{id}] missing in the existing function record" assert ( acc_cycles[id]["start"] == func_cycles[id]["start"] ), "Offset value doesn't match with the existing function record." acc_cycles[id]["cycles"] += func_cycles[id]["cycles"] acc_cycles[id]["count"] += func_cycles[id]["count"] overall_cycles.update({func_name: acc_cycles}) return overall_cycles def adjust_per_loop_counts(overall_cycles, data): """ Use execution count and the number of entries recorded for each function/loop to compute the overall cycles spent on them. """ for func in overall_cycles: func_cycles = overall_cycles[func] for id in func_cycles: exec_count = data["loop_counts"][id] rec_count = func_cycles[id]["count"] assert exec_count != 0, "Execution count should have been non-zero." assert rec_count != 0, "Entry count should have been non-zero." exec_cycles = ((int(func_cycles[id]["cycles"])) * exec_count) // rec_count func_cycles[id]["cycles"] = exec_cycles func_cycles[id]["count"] = exec_count overall_cycles.update({func: OrderedDict(sorted(func_cycles.items()))}) return overall_cycles def create_csv_report(overall_cycles, fname): """Create csv report""" header = [ "function name", "loop/function id", "loop depth", "start offset", "end offset", "pcycles", "parent count", ] with open(fname, "w") as f: writer = csv.writer(f) writer.writerow(header) for func in overall_cycles: func_cycles = overall_cycles[func] data = [] root = -1 outer_most = -1 for key, value in func_cycles.items(): if value["parent"] == -1: assert root == -1, "Can't have multiple root nodes." root = key data.append(func) data.append(key) if value["parent"] == -1: data.append("-") # Total cycles over all invocations of this function. elif value["parent"] == root: data.append(0) outer_most = key else: if outer_most > -1: data.append(key - outer_most) else: data.append(key - value["parent"]) data.append(hex(value["start"])) data.append(hex(value["end"])) data.append(value["cycles"]) data.append(value["count"]) writer.writerow(data) data.clear() def process_data(data, func_info, so_ld_addr): """Process data""" # Keep an ordered list of loop IDs as they are being visited. This is used # to match entry and exit pairs. Once the function/loop is processed, it's # removed from the list. ordered_visited_list = [] # Store information regarding visited nodes as they are being processed. Once # the function/loop is processed, it's removed from the set. visited_set = {} # Dictionary to store cycles for the entire model which is grouped into functions. overall_cycles = {} func_cycles = {} func_idx = -1 func_name = "" prev_func_name = "" func_start = 0 func_end = 0 save_data = False # Iterate over all the entries in the LWP data file and process them # to construct a report. for entry in data["entries"]: id = entry["id"] offset = entry["ret"] - so_ld_addr # Recorded return address should fall within the function begin and end # offsets. If not, find the function it belongs to. if offset < func_start or offset > func_end: prev_func_name = func_name if ENABLE_DEBUG: print("offset : ", offset) print("id : ", id) func_idx = find_func(func_info, offset) func_name = func_info[func_idx]["name"] func_start = func_info[func_idx]["start"] func_end = func_info[func_idx]["end"] if ENABLE_DEBUG: print("func_name : ", func_name) if save_data: # overall_cycles = save_func_cycles(prev_func_name, overall_cycles, func_cycles, ordered_visited_list) # Done processing the previous function, copy its info into 'overall_cycles'. if prev_func_name not in overall_cycles: overall_cycles[prev_func_name] = func_cycles.copy() else: # Accumulate cycles into existing function entry. overall_cycles = accumulate_cycles(overall_cycles, func_cycles, prev_func_name) # We don't allow for fused operators (functions) calling another operator. if ENABLE_DEBUG: print("ordered_visited_list : ", ordered_visited_list) assert len(ordered_visited_list) == 0, ( f"\nDone processing function [{prev_func_name}] but ordered_visited_list not empty.\n" f"\t Possible reasons -- \n" f"\t\t1) Mismatch between model .so and json file.\n" f"\t\t2) LWP buffer may have overflowed resulting into missing entries!" ) func_cycles.clear() save_data = True if id not in visited_set: # Found 'entry' record visited_info = {"func_idx": func_idx, "ret": offset, "cyc": entry["cyc"]} visited_set[id] = visited_info ordered_visited_list.append(id) else: # Found 'exit' record # This should be the last entry in the ordered_visited_list. If not, error out. assert ordered_visited_list[-1] == id, ( "Problem with LWP output - Interleaved handler calls found." f"Loop [{ordered_visited_list[-1]}] hasn't exited yet." ) ordered_visited_list.pop() entry_node = visited_set.pop(id) assert ( entry_node["func_idx"] == func_idx ), f'Error - Found under a different function name : {entry_node["func_idx"]}' cycles = entry["cyc"] - entry_node["cyc"] parent = -1 if ordered_visited_list: parent = int(ordered_visited_list[-1]) if id in func_cycles: fcycles = func_cycles[id] fcycles["cycles"] += cycles fcycles["count"] += 1 func_cycles[id] = fcycles else: func_cycles[id] = { "cycles": cycles, "start": entry_node["ret"], "end": offset, "parent": parent, "count": 1, } # Done processing the previous function, copy its info into 'overall_cycles'. if func_name not in overall_cycles: overall_cycles[func_name] = func_cycles.copy() else: # Accumulate cycles into existing function entry. overall_cycles = accumulate_cycles(overall_cycles, func_cycles, func_name) # We don't allow for fused operators (functions) calling another operator. if ENABLE_DEBUG: print("ordered_visited_list : ", ordered_visited_list) assert len(ordered_visited_list) == 0, ( f"\nDone processing function [{prev_func_name}] but ordered_visited_list not empty.\n" f"\t Possible reasons -- \n" f"\t\t1) Mismatch between model .so and json file.\n" f"\t\t2) LWP buffer may have overflowed resulting into missing entries!" % prev_func_name ) overall_cycles = adjust_per_loop_counts(overall_cycles, data) return overall_cycles def get_load_addr(serial_number: str, lwp_json: str, run_log: str): """Get load address of the binary file""" if serial_number == "simulator": basedir = os.path.dirname(lwp_json) if run_log is None: run_log = os.path.join(basedir, "stdout.txt") else: # If the directory name is specified for the run_log of the # simulator (stdout.txt) then it must be same as lwp_json. run_log_dir = os.path.dirname(run_log) assert ( run_log_dir == "" or run_log_dir == basedir ), f"stdout.txt and {os.path.basename(lwp_json)} must be in the same directory" run_log = os.path.join(basedir, os.path.basename(run_log)) # To extract load address for the simulator run pattern = compile(r"Model.*: (\w+):") else: # To extract load address for on-device run pattern = compile(r"Model.*: (\w+)") with open(run_log, "r") as f: lines = f.read() a = pattern.search(lines) load_addr = int(a.group(1), 16) if ENABLE_DEBUG: print("load_addr : ", load_addr) return load_addr def process_lwp_output( binary_path: str, serial_number: str, lwp_json: str, run_log: str, lwp_out: str, enable_debug: bool = False, ): """Process lightweight profiling data""" # Enable debug messages global ENABLE_DEBUG ENABLE_DEBUG = enable_debug # Get load address for the binary load_addr = get_load_addr(serial_number, lwp_json, run_log) # Opening JSON file with open(lwp_json, "r") as f: # Returns JSON object as a dictionary data = json.load(f) # Get function names, and their start and end offsets from the model .so func_info = get_func_info(binary_path) # Get the load address for model .so. so_ld_addr = load_addr # Process profiling data to construct a CSV report. overall_cycles = process_data(data, func_info, so_ld_addr) create_csv_report(overall_cycles, lwp_out) print("lwp processed output written to -- ", lwp_out) print("[NOTE: Use '--hexagon-debug' to keep the temp directory]") def get_args(): """Add commandline arguments to run the script manually if needed""" parser = argparse.ArgumentParser() parser.add_argument("--lwp-json", help="LWP json file", required=True) parser.add_argument("--serial-num", help="device-id/simulator", required=True) parser.add_argument("--test-so", help="Test shared library", required=True) parser.add_argument( "--run-log", help="Logcat file for on-device run and stdout.txt for simulator run", required=True, ) parser.add_argument("--lwp-out", help="LWP output file name", required=True) parser.add_argument( "--debug", help="Enable debug output from the script", dest="debug", action="store_true", required=False, ) parser.set_defaults(debug=False) args = parser.parse_args() global ENABLE_DEBUG ENABLE_DEBUG = args.debug return args if __name__ == "__main__": args = get_args() process_lwp_output( args.test_so, args.serial_num, args.lwp_json, args.run_log, args.lwp_out, args.debug )
https://github.com/zk-ml/tachikoma
python/tvm/contrib/hexagon/pytest_plugin.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name,redefined-outer-name """ Hexagon testing fixtures used to deduce testing argument values from testing parameters """ import os import random from typing import Optional, Union import pytest import tvm import tvm.rpc.tracker from tvm.contrib.hexagon.build import HexagonLauncher, HexagonLauncherRPC from tvm.contrib.hexagon.session import Session from tvm.contrib.hexagon.tools import HEXAGON_SIMULATOR_NAME HEXAGON_TOOLCHAIN = "HEXAGON_TOOLCHAIN" TVM_TRACKER_HOST = "TVM_TRACKER_HOST" TVM_TRACKER_PORT = "TVM_TRACKER_PORT" ANDROID_REMOTE_DIR = "ANDROID_REMOTE_DIR" ANDROID_SERIAL_NUMBER = "ANDROID_SERIAL_NUMBER" ADB_SERVER_SOCKET = "ADB_SERVER_SOCKET" RNG_SEEDED = False HEXAGON_AOT_LLVM_TARGET = ( "llvm -keys=hexagon " "-mattr=+hvxv68,+hvx-length128b,+hvx-qfloat,-hvx-ieee-fp " "-mcpu=hexagonv68 -mtriple=hexagon" ) @tvm.testing.fixture def shape_nhwc(batch, in_channel, in_size): return (batch, in_size, in_size, in_channel) def _compose(args, decs): """Helper to apply multiple markers""" if len(args) > 0: func = args[0] for dec in reversed(decs): func = dec(func) return func return decs requires_hexagon_toolchain = tvm.testing.requires_hexagon(support_required="compile-only") def android_serial_number() -> Optional[str]: """Return the android serial number""" serial = os.getenv(ANDROID_SERIAL_NUMBER, default="") # Setting ANDROID_SERIAL_NUMBER to an empty string should be # equivalent to having it unset. if not serial.strip(): return None # Split android serial numbers into a list serial = serial.split(",") return serial # NOTE on server ports: # These tests use different port numbers for the RPC server (7070 + ...). # The reason is that an RPC session cannot be gracefully closed without # triggering TIME_WAIT state on the server socket. This prevents another # server to bind to the same port until the wait time elapses. LISTEN_PORT_MIN = 6000 # Avoid hitting well-known Android debug ports LISTEN_PORT_MAX = 9000 # Below the search range end (port_end=9199) of RPC server PREVIOUS_PORT = None def get_free_port() -> int: """Return the next port that is available to listen on""" global PREVIOUS_PORT global RNG_SEEDED if tvm.testing.utils.IS_IN_CI and not RNG_SEEDED: random.seed(0) RNG_SEEDED = True if PREVIOUS_PORT is None: port = random.randint(LISTEN_PORT_MIN, LISTEN_PORT_MAX) else: port = PREVIOUS_PORT + 1 if port > LISTEN_PORT_MAX: port = LISTEN_PORT_MIN while tvm.contrib.hexagon.build._is_port_in_use(port): port = port + 1 if port < LISTEN_PORT_MAX else LISTEN_PORT_MIN PREVIOUS_PORT = port return port @pytest.fixture(scope="session") def _tracker_info() -> Union[str, int]: env_tracker_host = os.getenv(TVM_TRACKER_HOST, default="") env_tracker_port = os.getenv(TVM_TRACKER_PORT, default="") if env_tracker_host or env_tracker_port: # A tracker is already running, and we should connect to it # when running tests. assert env_tracker_host, "TVM_TRACKER_PORT is defined, but TVM_TRACKER_HOST is not" assert env_tracker_port, "TVM_TRACKER_HOST is defined, but TVM_TRACKER_PORT is not" env_tracker_port = int(env_tracker_port) try: tvm.rpc.connect_tracker(env_tracker_host, env_tracker_port) except RuntimeError as exc: message = ( "Could not connect to external tracker " "specified by $TVM_TRACKER_HOST and $TVM_TRACKER_PORT " f"({env_tracker_host}:{env_tracker_port})" ) raise RuntimeError(message) from exc yield (env_tracker_host, env_tracker_port) else: # No tracker is provided to the tests, so we should start one # for the tests to use. tracker = tvm.rpc.tracker.Tracker("127.0.0.1", get_free_port()) try: yield (tracker.host, tracker.port) finally: tracker.terminate() @pytest.fixture(scope="session") def tvm_tracker_host(_tracker_info) -> str: host, _ = _tracker_info return host @pytest.fixture(scope="session") def tvm_tracker_port(_tracker_info) -> int: _, port = _tracker_info return port @pytest.fixture(scope="session") def rpc_server_port_for_session() -> int: return get_free_port() @pytest.fixture() def rpc_server_port() -> int: return get_free_port() @pytest.fixture(scope="session") def adb_server_socket() -> str: return os.getenv(ADB_SERVER_SOCKET, default="tcp:5037") @pytest.fixture(scope="session") def hexagon_server_process( request, rpc_server_port_for_session, adb_server_socket, skip_rpc, hexagon_debug, sysmon_profile, clear_logcat, ) -> HexagonLauncherRPC: """Initials and returns hexagon launcher if ANDROID_SERIAL_NUMBER is defined. This launcher is started only once per test session. """ android_serial_num = android_serial_number() if android_serial_num is None: pytest.skip("ANDROID_SERIAL_NUMBER is not set.") if android_serial_num == [HEXAGON_SIMULATOR_NAME]: yield None else: # Requesting these fixtures sets up a local tracker, if one # hasn't been provided to us. Delaying the evaluation of # these fixtures avoids starting a tracker unless necessary. tvm_tracker_host = request.getfixturevalue("tvm_tracker_host") tvm_tracker_port = request.getfixturevalue("tvm_tracker_port") rpc_info = { "rpc_tracker_host": tvm_tracker_host, "rpc_tracker_port": tvm_tracker_port, "rpc_server_port": rpc_server_port_for_session, "adb_server_socket": adb_server_socket, } workerinput = getattr(request.config, "workerinput", None) if workerinput is None: # single-process execution device_adr = read_device_list()[0] else: # running in a subprocess here device_adr = workerinput["device_adr"] launcher = HexagonLauncher( serial_number=device_adr, rpc_info=rpc_info, hexagon_debug=hexagon_debug, sysmon_profile=sysmon_profile, clear_logcat=clear_logcat, ) try: if not skip_rpc: launcher.start_server() yield {"launcher": launcher, "device_adr": device_adr} finally: if not skip_rpc: launcher.stop_server() def read_device_list(): return android_serial_number() def pytest_configure(config): # read device list if we are on the master if not hasattr(config, "workerinput"): config.iplist = read_device_list() def pytest_configure_node(node): # the master for each node fills node input dictionary # which pytest-xdist will transfer to the subprocess if node.config.iplist is not None: node.workerinput["device_adr"] = node.config.iplist.pop() @pytest.fixture def hexagon_launcher( hexagon_server_process, rpc_server_port, tvm_tracker_host, tvm_tracker_port, adb_server_socket, hexagon_debug, sysmon_profile, clear_logcat, ) -> HexagonLauncherRPC: """Initials and returns hexagon launcher which reuses RPC info and Android serial number.""" android_serial_num = android_serial_number() if android_serial_num != [HEXAGON_SIMULATOR_NAME]: rpc_info = hexagon_server_process["launcher"]._rpc_info else: rpc_info = { "rpc_tracker_host": tvm_tracker_host, "rpc_tracker_port": tvm_tracker_port, "rpc_server_port": rpc_server_port, "adb_server_socket": adb_server_socket, } try: if android_serial_num == [HEXAGON_SIMULATOR_NAME]: launcher = HexagonLauncher(serial_number=android_serial_num[0], rpc_info=rpc_info) launcher.start_server() else: launcher = HexagonLauncher( serial_number=hexagon_server_process["device_adr"], rpc_info=rpc_info, hexagon_debug=hexagon_debug, sysmon_profile=sysmon_profile, clear_logcat=clear_logcat, ) yield launcher finally: if android_serial_num == [HEXAGON_SIMULATOR_NAME]: launcher.stop_server() elif not hexagon_debug: launcher.cleanup_directory() @pytest.fixture def hexagon_session(hexagon_launcher: HexagonLauncherRPC) -> Session: if hexagon_launcher is None: yield None else: with hexagon_launcher.create_session() as session: yield session # If the execution aborts while an RPC server is running, the python # code that is supposed to shut it down will never execute. This will # keep pytest from terminating (indefinitely), so add a cleanup # fixture to terminate any still-running servers. @pytest.fixture(scope="session", autouse=True) def terminate_rpc_servers(): # Since this is a fixture that runs regardless of whether the # execution happens on simulator or on target, make sure the # yield happens every time. serial = os.environ.get(ANDROID_SERIAL_NUMBER) yield [] if serial == [HEXAGON_SIMULATOR_NAME]: os.system("ps ax | grep tvm_rpc_x86 | awk '{print $1}' | xargs kill") aot_host_target = tvm.testing.parameter("c", HEXAGON_AOT_LLVM_TARGET) @tvm.testing.fixture def aot_target(aot_host_target): if aot_host_target == "c": yield tvm.target.hexagon("v68") elif aot_host_target.startswith("llvm"): yield aot_host_target else: assert False, "Incorrect AoT host target: {aot_host_target}. Options are [c, llvm]." @pytest.fixture(scope="session") def skip_rpc(request) -> bool: return request.config.getoption("--skip-rpc") @pytest.fixture(scope="session") def hexagon_debug(request) -> bool: return request.config.getoption("--hexagon-debug") @pytest.fixture(scope="session") def sysmon_profile(request) -> bool: return request.config.getoption("--sysmon-profile") @pytest.fixture(scope="session") def clear_logcat(request) -> bool: return request.config.getoption("--clear-logcat") def pytest_addoption(parser): """Add pytest options.""" parser.addoption( "--skip-rpc", action="store_true", default=False, help="If set true, the RPC server initialization on Android would be skipped", ) parser.addoption( "--hexagon-debug", action="store_true", default=False, help="If set true, it will keep the hexagon test directories on the target. " + "Additionally logcat logs will be copied from device and cdsp errors printed out.", ) parser.addoption( "--sysmon-profile", action="store_true", default=False, help="If set true, it will run sysmon profiler during the tests.", ) parser.addoption( "--clear-logcat", action="store_true", default=False, help="If set true, it will clear logcat before execution.", )
https://github.com/zk-ml/tachikoma
python/tvm/contrib/hexagon/session.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Defines a Session class for Hexagon devices.""" import os import pathlib import tempfile from typing import Union import tvm from tvm import rpc as _rpc import tvm.contrib.hexagon as hexagon from tvm.relay.backend.executor_factory import ( ExecutorFactoryModule, AOTExecutorFactoryModule, GraphExecutorFactoryModule, ) from .tools import export_module, HEXAGON_SIMULATOR_NAME class Session: """Hexagon Device Session Parameters ---------- remote_workspace : Union[str, pathlib.Path] Remote workspace path rpc_tracker : tuple(str, int) RPC tracker host and port number. rpc_server_key : str RPC server key on remote device. serial_number : str Device serial number. `simulator` used for hexagon simulator. session_name : str Hexagon RPC session name. remote_stack_size_bytes : int The stack size of the remote device, to be passed to tvm.contrib.hexagon.create_hexagon_session. rpc_receive_buffer_size_bytes : int RPC receive buffer size in bytes. """ def __init__( self, remote_workspace: Union[str, pathlib.Path], rpc_tracker: tuple, rpc_server_key: str, serial_number: str, session_name: str = "hexagon-rpc", remote_stack_size_bytes: int = 256 * 1024, # Min size for main thread in QuRT/sim rpc_receive_buffer_size_bytes: int = 256 * 1024 * 1024, # Size for passing hexagon tests ): self._workspace = str(remote_workspace) self._rpc_tracker = rpc_tracker self._rpc_server_key = rpc_server_key self._serial_number = serial_number self._session_name: str = session_name self._remote_stack_size_bytes: int = remote_stack_size_bytes self._rpc_receive_buffer_size_bytes: int = rpc_receive_buffer_size_bytes self._rpc = None self._requires_cpu_device = False self._device = None def __enter__(self): if self._rpc: # Already initialized return self tracker = _rpc.connect_tracker(self._rpc_tracker[0], self._rpc_tracker[1]) try: self._rpc = tracker.request( self._rpc_server_key, priority=0, session_timeout=0, session_constructor_args=[ "tvm.contrib.hexagon.create_hexagon_session", self._session_name, self._remote_stack_size_bytes, os.environ.get("HEXAGON_SIM_ARGS", ""), self._rpc_receive_buffer_size_bytes, ], ) func = self._rpc.get_function("device_api.hexagon.acquire_resources") func() return self except RuntimeError as exception: raise exception def __exit__(self, exc_type, exc_value, exc_traceback): try: func = self._rpc.get_function("device_api.hexagon.release_resources") func() except RuntimeError as exception: print( "Exception occurred while calling release_resources() during Session __exit__: ", exception, ) finally: # close session to the tracker shutdown_func = self._rpc._sess.get_function("CloseRPCConnection") shutdown_func() del self._rpc @property def device(self): """Session device.""" if self._device is not None: return self._device if self._requires_cpu_device: self._device = self._rpc.cpu(0) else: self._device = self._rpc.hexagon(0) return self._device def is_simulator(self): return self._serial_number == HEXAGON_SIMULATOR_NAME def get_function(self, name): return self._rpc.get_function(name) def upload(self, local_path: Union[str, pathlib.Path], remote_filename: str) -> pathlib.Path: """Upload a local file to the remote workspace. Parameters ---------- local_path : str or pathlib.Path Path to the local file to be copied. remote_filename : str Name of the file in the remote workspace. Returns ------- pathlib.Path : Uploaded file remote path. """ upload_func = self._rpc.get_function("tvm.rpc.server.upload") remote_path = f"{self._workspace}/{remote_filename}" with open(local_path, mode="rb") as src_f: data = bytearray(src_f.read()) upload_func(remote_path, data) return remote_path def load_module(self, module: Union[str, pathlib.Path, tvm.runtime.Module]): """Load TVM module. The session must be established (via __enter__) prior to calling this function. Parameters ---------- module : Union[str, pathlib.Path, tvm.runtime.Module] The module to load. If `module` is a `tvm.runtime.Module`, it will be uploaded to the remote session and loaded. If the object passed is a string or pathlib.Path, it must be a full path in the remote system. Returns ------- TVMModule : TVM module object. """ assert self._rpc is not None, "Hexagon session must be started using __enter__ prior to use" if isinstance(module, tvm.runtime.Module): with tempfile.TemporaryDirectory() as temp_dir: binary_name = "test_binary.so" binary_path = export_module(module, temp_dir, binary_name) remote_file_path = self.upload(binary_path, binary_name) else: remote_file_path = module assert isinstance(remote_file_path, (str, pathlib.Path)), "Invalid path type:" + str( type(remote_file_path) ) return self._rpc.get_function("tvm.hexagon.load_module")(str(remote_file_path)) def get_graph_executor( self, graph_json: str, module_name: Union[str, pathlib.Path, tvm.runtime.Module], ): """Create a local GraphModule which consumes a remote libmod. The session must be established (via __enter__) prior to calling this function. Parameters ---------- module_name : Union[str, pathlib.Path, tvm.runtime.Module] The remote module filename, following the same restrictions as `load_module`. graph_json : str The string with the graph JSON. Returns ------- GraphModule : Runtime graph module that can be used to execute the graph. """ graph_mod = self.load_module(module_name) self._set_device_type(graph_mod) return tvm.contrib.graph_executor.create(graph_json, graph_mod, self.device) def get_aot_executor( self, module_file: Union[str, pathlib.Path], ): """Create a local GraphModule which consumes a remote libmod. The session must be established (via __enter__) prior to calling this function. Parameters ---------- module_file : Union[str, pathlib.Path] The remote module filename, following the same restrictions as `load_module`. The filename should be an absolute path. Returns ------- GraphModule : Runtime graph module that can be used to execute the graph. """ aot_mod = self.load_module(module_file) return tvm.runtime.executor.AotModule(aot_mod["default"](self.device)) def get_graph_debug_executor( self, graph_json: str, module_name: Union[str, pathlib.Path, tvm.runtime.Module], dump_root: Union[str, pathlib.Path] = None, ): """Create a local GraphModuleDebug which consumes a remote libmod. Parameters ---------- graph_json : str The string with the graph JSON. module_name : Union[str, pathlib.Path, tvm.runtime.Module] The remote module filename, following the same restrictions as `load_module`. session : Session Remote session. The session must be established (via __enter__) prior to calling this function. Returns ------- GraphModuleDebug : Runtime debug graph module that can be used to debug the graph. """ graph_debug_mod = self.load_module(module_name) self._set_device_type(graph_debug_mod) return tvm.contrib.debugger.debug_executor.create( graph_json, graph_debug_mod, self.device, dump_root=str(dump_root) ) def get_executor_from_factory(self, module: ExecutorFactoryModule): """Create a local GraphModule which consumes a remote libmod. Parameters ---------- module : ExecutorFactoryModule The module to upload to the remote session and load. """ if isinstance(module, AOTExecutorFactoryModule): return self._aot_executor_from_factory(module) if isinstance(module, GraphExecutorFactoryModule): return self._graph_executor_from_factory(module) raise TypeError(f"Unsupported executor type: {type(module)}") def _set_device_type(self, module: Union[str, pathlib.Path, GraphExecutorFactoryModule]): """Set session device type(hexagon, cpu) based on target in module. Parameters ---------- module: TVMModule TVM module object. """ # for cases when module is a single schedule without target attribute. if not hasattr(module, "target"): self._requires_cpu_device = False else: assert len(module.target) == 1 for target in module.target: target_type = str(target).split()[0] if target_type == "llvm": self._requires_cpu_device = True else: self._requires_cpu_device = False def _graph_executor_from_factory( self, module: Union[str, pathlib.Path, GraphExecutorFactoryModule], ): """Create a local GraphModule which consumes a remote libmod. The session must be established (via __enter__) prior to calling this function. Parameters ---------- module : GraphExecutorFactoryModule The graph executor module to upload to the remote and load. This will typically be the output of `tvm.relay.build`, when passing `executor=Executor("graph")`. Returns ------- GraphModule : Runtime graph module that can be used to execute the graph. """ return self.get_graph_executor(module.get_graph_json(), module.get_lib()) def _aot_executor_from_factory( self, module: Union[str, pathlib.Path, AOTExecutorFactoryModule], ): """Create a local GraphModule which consumes a remote libmod. The session must be established (via __enter__) prior to calling this function. Parameters ---------- module : AOTExecutorFactoryModule The graph executor module to upload to the remote and load. This will typically be the output of `tvm.relay.build`, when passing `executor=Executor("aot")`. Returns ------- GraphModule : Runtime graph module that can be used to execute the graph. """ hexagon_arch = set( target.mcpu.replace("hexagon", "") for target in module.target if "hexagon" in target.keys ) self._set_device_type(module) for target in module.target: target_type = str(target).split()[0] assert hexagon_arch, "No hexagon target architecture found" assert len(hexagon_arch) == 1, f"Inconsistent hexagon architecture found, {hexagon_arch}" hexagon_arch = hexagon_arch.pop() with tempfile.TemporaryDirectory() as temp_dir: temp_dir = pathlib.Path(temp_dir) binary_name = "test_binary.so" binary_path = temp_dir / binary_name if target_type == "hexagon": module.export_library( str(binary_path), fcompile=hexagon.create_aot_shared, hexagon_arch=hexagon_arch, ) elif target_type == "llvm": module.export_library( str(binary_path), cc=hexagon.hexagon_clang_plus(), ) else: raise ValueError( f"Incorrect Target kind.\n" f"Target kind should be from these options: [hexagon, llvm]." ) remote_file_path = self.upload(binary_path, binary_name) return self.get_aot_executor(remote_file_path) def get_profile_output(self, mode: str, path: str): assert isinstance(mode, str), f"Invalid mode type, {type(mode)} != str" assert isinstance(path, str), f"Invalid path type, {type(path)} != str" return self._rpc.get_function("tvm.hexagon.get_profile_output")(mode, path)
https://github.com/zk-ml/tachikoma
python/tvm/contrib/hexagon/tools.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name """Tools/compilers/linkers for Hexagon""" import os import pathlib from typing import Union import numpy import tvm import tvm.contrib.cc as cc from ..._ffi.registry import register_func # Linking Hexagon shared libraries. # # link_shared(name-of-shared-library, list-of-objects, kw-args) # # To use a custom linker, define a function that returns the path to the # linker, and pass it to 'register_linker': # # def custom_linker_path(): # return '/path/to/hexagon/linker' # # register_linker(custom_linker_path) # # Subsequent calls to 'link_shared' will use the newly registered linker. HEXAGON_TOOLCHAIN = os.environ.get("HEXAGON_TOOLCHAIN", default="") # pylint: disable=invalid-name HEXAGON_SDK_ROOT = os.environ.get("HEXAGON_SDK_ROOT", default="") # pylint: disable=invalid-name HEXAGON_LINK_MAIN = ( pathlib.Path(HEXAGON_TOOLCHAIN) / "bin" / "hexagon-link" ) # pylint: disable=invalid-name HEXAGON_CLANG_PLUS = ( pathlib.Path(HEXAGON_TOOLCHAIN) / "bin" / "hexagon-clang++" ) # pylint: disable=invalid-name HEXAGON_SDK_INCLUDE_DIRS = [ # pylint: disable=invalid-name pathlib.Path(HEXAGON_SDK_ROOT) / "incs", pathlib.Path(HEXAGON_SDK_ROOT) / "incs" / "stddef", ] HEXAGON_SIMULATOR_NAME = "simulator" def register_linker(f): """Register a function that will return the path to the Hexagon linker.""" return register_func("tvm.contrib.hexagon.hexagon_link", f, True) @register_func("tvm.contrib.hexagon.hexagon_link") def hexagon_link() -> str: """Return path to the Hexagon linker.""" return str(HEXAGON_LINK_MAIN) def hexagon_clang_plus() -> str: """Return path to the Hexagon clang++.""" return str(HEXAGON_CLANG_PLUS) @register_func("tvm.contrib.hexagon.link_shared") def link_shared(so_name, objs, extra_args=None): """Link shared library on Hexagon using the registered Hexagon linker. Parameters ---------- so_name : str Name of the shared library file. objs : list[str,StringImm] extra_args : dict (str->str) or Map<String,String> Additional arguments: 'hex_arch' - Hexagon architecture, e.g. v66 'verbose' - Print additional information if the key is present Returns ------- ret_val : int This function returns 0 at the moment. """ # The list of object files can be passed as built-in Python strings, # or as tvm.tir.StringImm's. def to_str(s): if isinstance(s, tvm.tir.StringImm): return s.value assert isinstance(s, str), 'argument "' + str(s) + '" should be a string or StrImm' return s objs = [to_str(s) for s in objs] if not extra_args: extra_args = {} hex_arch = extra_args.get("hex_arch") or "v66" linker = tvm.get_global_func("tvm.contrib.hexagon.hexagon_link")() if extra_args.get("verbose"): print("tvm.contrib.hexagon.link_shared:") print(" Using linker:", linker) print(" Library name:", so_name) print(" Object files:", objs) print(" Architecture:", hex_arch) if not os.access(linker, os.X_OK): message = 'The linker "' + linker + '" does not exist or is not executable.' if not os.environ.get("HEXAGON_TOOLCHAIN"): message += ( " The environment variable HEXAGON_TOOLCHAIN is unset. Please export " + "HEXAGON_TOOLCHAIN in your environment, so that ${HEXAGON_TOOLCHAIN}/bin/" + "hexagon-link exists." ) else: message += ( " Please verify the value of the HEXAGON_LINKER environment variable " + '(currently set to "' + HEXAGON_TOOLCHAIN + '").' ) raise Exception(message) libpath = os.path.join(HEXAGON_TOOLCHAIN, "target", "hexagon", "lib", hex_arch, "G0") cc.create_shared( so_name, objs, # pylint: disable=bad-whitespace options=[ "-Bdynamic", "-shared", "-export-dynamic", os.path.join(libpath, "pic", "libgcc.so"), ], cc=linker, ) return 0 def create_aot_shared(so_name: Union[str, pathlib.Path], files, hexagon_arch: str, options=None): """Export Hexagon AOT module.""" options = options or [] if not os.access(str(HEXAGON_CLANG_PLUS), os.X_OK): raise Exception( 'The Clang++ "' + str(HEXAGON_CLANG_PLUS) + '" does not exist or is not executable.' ) if not HEXAGON_TOOLCHAIN: raise Exception( " The environment variable HEXAGON_TOOLCHAIN is unset. Please export " + "HEXAGON_TOOLCHAIN in your environment." ) if not HEXAGON_SDK_ROOT: raise Exception( " The environment variable HEXAGON_SDK_ROOT is unset. Please export " + "HEXAGON_SDK_ROOT in your environment." ) # The AOT C codegen uses TVM runtime functions # (e.g. TVMBackendAllocWorkspace) directly. On Hexagon these calls # should be made using functions pointers provided as __TVM* # variables in the provided context. This workaround allows the # the TVM runtime symbols to be visible to the compiled shared # library. # # This workaround can be removed when AOT codegen can be done with # LLVM codegen. workaround_link_flags = os.environ.get("HEXAGON_SHARED_LINK_FLAGS") if workaround_link_flags: options.extend(workaround_link_flags.split()) tvm_dir = pathlib.Path(os.path.dirname(os.path.realpath(__file__))) / ".." / ".." / ".." / ".." compute_arch = f"compute{hexagon_arch}" compile_options = [ f"-O3", f"-I{tvm_dir / 'include'}", f"-I{tvm_dir / '3rdparty' / 'dlpack' / 'include'}", f"-I{tvm_dir / '3rdparty' / 'dmlc-core' / 'include'}", f"-I{pathlib.Path(HEXAGON_SDK_ROOT) / 'rtos' / 'qurt' / compute_arch / 'include'/ 'posix'}", f"-I{pathlib.Path(HEXAGON_SDK_ROOT) / 'rtos' / 'qurt' / compute_arch / 'include' / 'qurt'}", f"-DDMLC_USE_LOGGING_LIBRARY=<tvm/runtime/logging.h>", f"-D_MACH_I32=int", ] # For debugging for path in HEXAGON_SDK_INCLUDE_DIRS: compile_options.append(f"-I{str(path)}") cross_compile = cc.cross_compiler(compile_func=hexagon_clang_plus()) cross_compile.output_format = "o" c_files = [str(file) for file in files] cross_compile(str(so_name), c_files, options=compile_options + options) def export_module(module, out_dir, binary_name="test_binary.so"): """Export Hexagon shared object to a file.""" binary_path = pathlib.Path(out_dir) / binary_name module.save(str(binary_path)) return binary_path def allocate_hexagon_array( dev, tensor_shape=None, dtype=None, data=None, axis_separators=None, mem_scope=None ): """ Allocate a hexagon array which could be a 2D array on physical memory defined by axis_separators """ if tensor_shape is None: assert data is not None, "Must provide either tensor shape or numpy data array" tensor_shape = data.shape elif data is not None: assert ( tensor_shape == data.shape ), "Mismatch between provided tensor shape and numpy data array shape" if dtype is None: assert data is not None, "Must provide either dtype or numpy data array" dtype = data.dtype.name elif data is not None: assert dtype == data.dtype, "Mismatch between provided dtype and numpy data array dtype" if axis_separators is None: axis_separators = [] boundaries = [0, *axis_separators, len(tensor_shape)] physical_shape = [ numpy.prod(tensor_shape[dim_i:dim_f]) for dim_i, dim_f in zip(boundaries[:-1], boundaries[1:]) ] arr = tvm.nd.empty(physical_shape, dtype=dtype, device=dev, mem_scope=mem_scope) if data is not None: arr.copyfrom(data.reshape(physical_shape)) return arr._create_view(tensor_shape)
https://github.com/zk-ml/tachikoma
python/tvm/contrib/hexagon/transform.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name """Hexagon-specific IR transformations""" import functools as ft import tvm from ..._ffi.registry import register_func ### VTCM vtcm_size = 4 * 1024 * 1024 # pylint: disable=invalid-name @register_func("tvm.info.mem.local.vtcm") def mem_info_vtcm(): # pylint: disable=bad-whitespace return tvm.ir.make_node( "MemoryInfo", unit_bits=8, max_num_bits=vtcm_size * 8, max_simd_bits=128 * 8, head_address=tvm.runtime.const(100, "uint32"), ) def lower_vtcm_(get_alloc, get_free, def_align, func, mod, ctx): # pylint: disable=unused-argument """Generic VTCM allocation Parameters ---------- get_alloc : function: tir.Allocate, int -> tir.expr (dtype='handle') The VTCM allocation function. It takes an Allocate statement, and the required alignment, and returns a pointer to the allocated VTCM buffer. get_free : function: tir.expr (dtype='handle') -> None The VTCM deallocation function. It takes the address of the allocated buffer and frees it. It returns no value. def_align : int The default alignment that will be passed to the allocation function, if the program does not specify the alignment via a 'storage_alignment' attribute. func : tir.PrimFunc mod : tvm.IRModule ctx : transform.PassContext Returns ------- stmt : tvm.stmt Transformed function body. """ vtcm_buffers = [] alignments = {} def buf_align(var): """Determine the alignment of the buffer with variable 'var'.""" if var in alignments and alignments[var]: return alignments[var][-1] return def_align def visit(stmt): """Collect information about VTCM buffers and their alignments.""" if isinstance(stmt, tvm.tir.AttrStmt): if stmt.attr_key == "storage_alignment": if not stmt.node in alignments: alignments[stmt.node] = [] alignments[stmt.node].append(stmt.value) elif isinstance(stmt, tvm.tir.Allocate): scope = stmt.buffer_var.type_annotation.storage_scope if scope == "local.vtcm": vtcm_buffers.append(stmt.buffer_var) def mutate(stmt): """Insert calls to VTCM allocation and deallocation routines.""" if isinstance(stmt, tvm.tir.AttrStmt): if stmt.attr_key == "storage_alignment": alignments[stmt.node].pop() return stmt if isinstance(stmt, tvm.tir.Allocate): var = stmt.buffer_var scope = var.type_annotation.storage_scope is_vtcm = var in vtcm_buffers if scope == "local.vtcm": vtcm_buffers.pop() if is_vtcm: is_null = tvm.tir.call_intrin("bool", tvm.ir.Op.get("tir.isnullptr"), var) throw_error = tvm.tir.call_intrin( "int32", tvm.ir.Op.get("tir.tvm_throw_last_error") ) body_w_free = tvm.tir.SeqStmt([stmt.body, tvm.tir.Evaluate(get_free(var))]) body_w_check = tvm.tir.IfThenElse( is_null, tvm.tir.Evaluate(throw_error), body_w_free ) return tvm.tir.LetStmt( stmt.buffer_var, get_alloc(stmt, buf_align(var)), body_w_check ) return stmt raise ValueError("Wrong argument type (" + type(stmt) + ") to 'mutate'") f = func.with_body( tvm.tir.stmt_functor.ir_transform( func.body, visit, mutate, ["tir.Allocate", "tir.AttrStmt"] ) ) return f def ir_lower_vtcm(): """Create a VTCM lowering pass. VTCM memory has to be allocated using special functions. """ def get_alloc(stmt, align): assert isinstance(stmt, tvm.tir.Allocate) return tvm.tir.call_extern( "handle", "HexagonBackendAllocateVTCM", ft.reduce(lambda x, y: x * y, stmt.extents, 1), align, ) def get_free(var): return tvm.tir.call_extern("handle", "HexagonBackendFreeVTCM", var) # pylint: disable=bad-whitespace @tvm.tir.transform.prim_func_pass(opt_level=0, name="Lower VTCM pass") def transform(func, mod, ctx): return lower_vtcm_(get_alloc, get_free, 2048, func, mod, ctx) return transform def ir_lower_vtcm_pass(): return [(3, ir_lower_vtcm())]
https://github.com/zk-ml/tachikoma
python/tvm/contrib/miopen.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """External function interface to MIOpen library.""" # pylint: disable-msg=C0103 import ctypes import numpy as np import tvm import tvm._ffi from tvm import te def _get_np_int32_array_handle(arr): """Return a void_p handle for a numpy array Parameters ---------- arr: numpy.NDArray source numpy array Returns ------- ptr: ctypes.c_void_p pointer to the data """ assert arr.dtype == np.int32 ptr = arr.ctypes.data_as(ctypes.POINTER(ctypes.c_int32)) return ctypes.cast(ptr, ctypes.c_void_p) def conv2d_forward( x, w, stride_h=1, stride_w=1, pad_h=0, pad_w=0, dilation_h=1, dilation_w=1, conv_mode=0, data_type=1, group_count=1, ): """Create an extern op that compute 2D convolution with MIOpen Parameters ---------- x: Tensor input feature map w: Tensor convolution weight stride_h: int height stride stride_w: int width stride pad_h: int height pad pad_w: int weight pad dilation_h: int height dilation dilation_w: int width dilation conv_mode: int 0: miopenConvolution 1: miopenTranspose data_type: int 0: miopenHalf (fp16) 1: miopenFloat (fp32) group_count: int number of groups Returns ------- y: Tensor The result tensor """ assert 0 <= conv_mode <= 2, "0: miopenConvolution / 1: miopenTranspose / 2: miopenGroupConv" if group_count > 1: conv_mode = 2 oshape = np.zeros((len(x.shape)), dtype=np.int32) xshape = x.shape wshape = w.shape setup_func = tvm._ffi.get_global_func("tvm.contrib.miopen.conv2d.setup") algo = setup_func( conv_mode, data_type, pad_h, pad_w, stride_h, stride_w, dilation_h, dilation_w, xshape[0].value, xshape[1].value, xshape[2].value, xshape[3].value, wshape[0].value, wshape[1].value, wshape[2].value, wshape[3].value, group_count, _get_np_int32_array_handle(oshape), ) return te.extern( list(oshape), [x, w], lambda ins, outs: tvm.tir.call_packed( "tvm.contrib.miopen.conv2d.forward", conv_mode, data_type, pad_h, pad_w, stride_h, stride_w, dilation_h, dilation_w, algo, ins[0], ins[1], outs[0], ), name="y", ) def softmax(x, axis=-1): """Compute softmax with MIOpen Parameters ---------- x : tvm.te.Tensor The input tensor axis : int The axis to compute softmax over Returns ------- ret : tvm.te.Tensor The result tensor """ return te.extern( x.shape, [x], lambda ins, outs: tvm.tir.call_packed( "tvm.contrib.miopen.softmax.forward", ins[0], outs[0], axis ), name="y", ) def log_softmax(x, axis=-1): """Compute log softmax with MIOpen Parameters ---------- x : tvm.te.Tensor The input tensor axis : int The axis to compute log softmax over Returns ------- ret : tvm.te.Tensor The result tensor """ return te.extern( x.shape, [x], lambda ins, outs: tvm.tir.call_packed( "tvm.contrib.miopen.log_softmax.forward", ins[0], outs[0], axis ), name="y", )
https://github.com/zk-ml/tachikoma
python/tvm/contrib/mkl.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """External function interface to BLAS libraries.""" import tvm from tvm import te def matmul(lhs, rhs, transa=False, transb=False, **kwargs): """Create an extern op that compute matrix mult of A and rhs with CrhsLAS This function serves as an example on how to call external libraries. Parameters ---------- lhs: Tensor The left matrix operand rhs: Tensor The right matrix operand transa: bool Whether transpose lhs transb: bool Whether transpose rhs Returns ------- C: Tensor The result tensor. """ n = lhs.shape[1] if transa else lhs.shape[0] m = rhs.shape[0] if transb else rhs.shape[1] return te.extern( (n, m), [lhs, rhs], lambda ins, outs: tvm.tir.call_packed( "tvm.contrib.mkl.matmul", ins[0], ins[1], outs[0], transa, transb ), name="C", **kwargs, ) def matmul_u8s8s32(lhs, rhs, transa=False, transb=False, **kwargs): """Create an extern op that compute matrix mult of A and rhs with CrhsLAS This function serves as an example on how to call external libraries. Parameters ---------- lhs: Tensor The left matrix operand rhs: Tensor The right matrix operand transa: bool Whether transpose lhs transb: bool Whether transpose rhs Returns ------- C: Tensor The result tensor. """ n = lhs.shape[1] if transa else lhs.shape[0] m = rhs.shape[0] if transb else rhs.shape[1] return te.extern( (n, m), [lhs, rhs], lambda ins, outs: tvm.tir.call_packed( "tvm.contrib.mkl.matmul_u8s8s32", ins[0], ins[1], outs[0], transa, transb ), name="C", **kwargs, ) def batch_matmul(lhs, rhs, transa=False, transb=False, iterative=False, **kwargs): """Create an extern op that compute batched matrix mult of A and rhs with mkl This function serves as an example on how to call external libraries. Parameters ---------- lhs: Tensor The left matrix operand rhs: Tensor The right matrix operand transa: bool Whether transpose lhs transb: bool Whether transpose rhs Returns ------- C: Tensor The result tensor. """ b = te.max(lhs.shape[0], rhs.shape[0]) n = lhs.shape[2] if transa else lhs.shape[1] m = rhs.shape[1] if transb else rhs.shape[2] return te.extern( (b, n, m), [lhs, rhs], lambda ins, outs: tvm.tir.call_packed( "tvm.contrib.mkl.batch_matmul" if not iterative else "tvm.contrib.mkl.batch_matmul_iterative", ins[0], ins[1], outs[0], transa, transb, ), name="C", **kwargs, )
https://github.com/zk-ml/tachikoma
python/tvm/contrib/mps.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """External function interface to MPS libraries.""" import tvm from tvm import te # pylint: disable=C0103,W0612 def matmul(lhs, rhs, transa=False, transb=False): """Create an extern op that compute matrix mult of A and rhs with CrhsLAS This function serves as an example on how to calle external libraries. Parameters ---------- lhs : Tensor The left matrix operand rhs : Tensor The right matrix operand transa : bool Whether transpose lhs transb : bool Whether transpose rhs Returns ------- C : Tensor The result tensor. """ m = lhs.shape[0] if transa is False else lhs.shape[1] n = rhs.shape[1] if transb is False else rhs.shape[0] if transa: m = b if transb: n = c return te.extern( (m, n), [lhs, rhs], lambda ins, outs: tvm.tir.call_packed( "tvm.contrib.mps.matmul", ins[0], ins[1], outs[0], transa, transb ), name="C", ) def conv2d(data, weight, pad="SAME", stride=1): """ Create an extern op that compute data * weight and return result in output Parameters: ---------- data: Tensor The input data, format NHWC weight: Tensor The conv weight, format output_feature * kH * kW * input_feature pad: str Padding method, 'SAME' or 'VALID' stride: int convolution stride Returns ------- output: Tensor The result tensor """ n, hi, wi, ci = data.shape co, kh, kw, ciw = weight.shape padding = 0 if pad == "SAME" else 1 ho = hi // stride wo = wi // stride return te.extern( (n, ho, wo, co), [data, weight], lambda ins, outs: tvm.tir.call_packed( "tvm.contrib.mps.conv2d", ins[0], ins[1], outs[0], padding, stride ), name="C", )
https://github.com/zk-ml/tachikoma
python/tvm/contrib/mxnet.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """MXNet bridge wrap Function MXNet's async function.""" from __future__ import absolute_import as _abs import tvm._ffi.registry import tvm.runtime._ffi_api from tvm.runtime import Module # pylint: disable=invalid-name _wrap_async = None def to_mxnet_func(func, const_loc=None): """Wrap a TVM function as MXNet function MXNet function runs asynchrously via its engine. Parameters ---------- func : Function A TVM function that can take positional arguments const_loc : list of int List of integers indicating the argument position of read only NDArray argument. The NDArray argument location that are not annotated will be viewed as mutable arrays in MXNet's engine. Returns ------- async_func : Function A function that can take MXNet NDArray as argument in places that used to expect TVM NDArray. Run asynchrously in MXNet's async engine. """ # only import mxnet when wrap get called. # pylint: disable=import-self, import-outside-toplevel import mxnet if isinstance(func, Module): func = func.entry_func def _get_bridge_func(): """Get MXNet bridge function""" if not mxnet.base._LIB.MXTVMBridge: raise RuntimeError( "MXTVMBridge not exist in mxnet package," " please update to latest version" ) fdict = tvm._ffi.registry.extract_ext_funcs(mxnet.base._LIB.MXTVMBridge) ret = fdict["WrapAsyncCall"] ret.is_global = True return ret global _wrap_async if _wrap_async is None: # Register extension type in first time _wrap_async = _get_bridge_func() tvm._ffi.registry.register_extension(mxnet.nd.NDArray) const_loc = const_loc if const_loc else [] return _wrap_async(func, tvm.runtime._ffi_api.TVMSetStream, len(const_loc), *const_loc)
https://github.com/zk-ml/tachikoma
python/tvm/contrib/ndk.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Util to invoke NDK compiler toolchain.""" # pylint: disable=invalid-name from __future__ import absolute_import as _abs import subprocess import os from .._ffi.base import py_str from .cc import get_target_by_dump_machine def create_shared(output, objects, options=None): """Create shared library. Parameters ---------- output : str The target shared library. objects : list List of object files. options : list of str, optional The additional options. """ if "TVM_NDK_CC" not in os.environ: raise RuntimeError( "Require environment variable TVM_NDK_CC" " to be the NDK standalone compiler" ) compiler = os.environ["TVM_NDK_CC"] cmd = [compiler] cmd += ["-o", output] if isinstance(objects, str): cmd += [objects] else: cmd += objects options = options if options else ["-shared", "-fPIC", "-lm"] cmd += options proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) (out, _) = proc.communicate() if proc.returncode != 0: msg = "Compilation error:\n" msg += py_str(out) raise RuntimeError(msg) # assign output format create_shared.output_format = "so" create_shared.get_target_triple = ( get_target_by_dump_machine(os.environ["TVM_NDK_CC"]) if "TVM_NDK_CC" in os.environ else None )
https://github.com/zk-ml/tachikoma
python/tvm/contrib/nnpack.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """External function interface to NNPACK libraries.""" import tvm from tvm import te import tvm._ffi def is_available(): """Check whether NNPACK is available, that is, `nnp_initialize()` returns `nnp_status_success`. """ return _initialize() == 0 def fully_connected_inference(lhs, rhs, nthreads=1): """Create an extern op that compute fully connected of 1D tensor lhs and 2D tensor rhs with nnpack. Parameters ---------- lhs : Tensor lhs 1D array input[input_channels] of FP32 elements rhs : Tensor lhs 2D matrix kernel[output_channels][input_channels] of FP32 elements Returns ------- C : Tensor lhs 1D array out[output_channels] of FP32 elements. """ m = rhs.shape[0] return te.extern( (m,), [lhs, rhs], lambda ins, outs: tvm.tir.call_packed( "tvm.contrib.nnpack.fully_connected_inference", ins[0], ins[1], outs[0], nthreads ), name="C", ) class ConvolutionAlgorithm: AUTO = 0 FFT_8x8 = 1 FFT_16x16 = 2 WT_8x8 = 3 IMPLICIT_GEMM = 4 DIRECT = 5 WT_8x8_FP16 = 6 class ConvolutionTransformStrategy: COMPUTE = 1 PRECOMPUTE = 2 def convolution_inference( data, kernel, bias, padding, stride, nthreads=1, algorithm=ConvolutionAlgorithm.AUTO ): """Create an extern op to do inference convolution of 4D tensor data and 4D tensor kernel and 1D tensor bias with nnpack. Parameters ---------- data : Tensor data 4D tensor input[batch][input_channels][input_height][input_width] of FP32 elements. kernel : Tensor kernel 4D tensor kernel[output_channels][input_channels][kernel_height] [kernel_width] of FP32 elements. bias : Tensor bias 1D array bias[output_channels][input_channels][kernel_height] [kernel_width] of FP32 elements. padding : list padding A 4-dim list of [pad_top, pad_bottom, pad_left, pad_right], which indicates the padding around the feature map. stride : list stride A 2-dim list of [stride_height, stride_width], which indicates the stride. Returns ------- output : Tensor output 4D tensor output[batch][output_channels][output_height][output_width] of FP32 elements. """ assert isinstance(padding, list) and len(padding) == 4 assert isinstance(stride, list) and len(stride) == 2 batch, _, input_height, input_width = data.shape output_channels, _, kernel_height, kernel_width = kernel.shape idxdiv = te.indexdiv output_height = idxdiv(input_height + padding[0] + padding[1] - kernel_height, stride[0]) + 1 output_width = idxdiv(input_width + padding[0] + padding[1] - kernel_width, stride[1]) + 1 return te.extern( (batch, output_channels, output_height, output_width), [data, kernel, bias] if bias is not None else [data, kernel], lambda ins, outs: tvm.tir.call_packed( "tvm.contrib.nnpack.convolution_inference", ins[0], ins[1], ins[2] if bias is not None else 0, outs[0], padding[0], padding[1], padding[2], padding[3], stride[0], stride[1], nthreads, algorithm, ), name="C", ) def convolution_inference_without_weight_transform( data, transformed_kernel, bias, padding, stride, nthreads=1, algorithm=ConvolutionAlgorithm.AUTO ): """Create an extern op to do inference convolution of 4D tensor data and 4D pre-transformed tensor kernel and 1D tensor bias with nnpack. Parameters ---------- data : Tensor data 4D tensor input[batch][input_channels][input_height][input_width] of FP32 elements. transformed_kernel : Tensor transformed_kernel 4D tensor kernel[output_channels][input_channels][tile] [tile] of FP32 elements. bias : Tensor bias 1D array bias[output_channels][input_channels][kernel_height] [kernel_width] of FP32 elements. padding : list padding A 4-dim list of [pad_top, pad_bottom, pad_left, pad_right], which indicates the padding around the feature map. stride : list stride A 2-dim list of [stride_height, stride_width], which indicates the stride. Returns ------- output : Tensor output 4D tensor output[batch][output_channels][output_height][output_width] of FP32 elements. """ assert algorithm in (ConvolutionAlgorithm.WT_8x8, ConvolutionAlgorithm.WT_8x8_FP16) assert isinstance(padding, list) and len(padding) == 4 assert isinstance(stride, list) and len(stride) == 2 batch, _, input_height, input_width = data.shape output_channels, _, _, _ = transformed_kernel.shape kernel_height, kernel_width = (3, 3) idxdiv = te.indexdiv output_height = idxdiv(input_height + padding[0] + padding[1] - kernel_height, stride[0]) + 1 output_width = idxdiv(input_width + padding[0] + padding[1] - kernel_width, stride[1]) + 1 return te.extern( (batch, output_channels, output_height, output_width), [data, transformed_kernel, bias] if bias is not None else [data, transformed_kernel], lambda ins, outs: tvm.tir.call_packed( "tvm.contrib.nnpack.convolution_inference_without_weight_transform", ins[0], ins[1], ins[2] if bias is not None else 0, outs[0], padding[0], padding[1], padding[2], padding[3], stride[0], stride[1], nthreads, algorithm, ), name="C", dtype="float32", ) def convolution_inference_weight_transform( kernel, nthreads=1, algorithm=ConvolutionAlgorithm.AUTO, dtype="float32" ): """Create an extern op to do inference convolution of 3D tensor data and 4D tensor kernel and 1D tensor bias with nnpack. Parameters ---------- kernel : Tensor kernel 4D tensor kernel[output_channels][input_channels][kernel_height] [kernel_width] of FP32 elements. Returns ------- output : Tensor output 4D tensor output[output_channels][input_channels][tile][tile] of FP32 elements. """ assert algorithm in (ConvolutionAlgorithm.WT_8x8, ConvolutionAlgorithm.WT_8x8_FP16) output_channels, input_channels, _, _ = kernel.shape transform_tile_size = 8 if not isinstance(dtype, str): dtype = dtype.dtype return te.extern( (output_channels, input_channels, transform_tile_size, transform_tile_size), [kernel], lambda ins, outs: tvm.tir.call_packed( "tvm.contrib.nnpack.convolution_inference_weight_transform", ins[0], outs[0], nthreads, algorithm, ), name="transform_kernel", dtype=dtype, ) tvm._ffi._init_api("tvm.contrib.nnpack")
https://github.com/zk-ml/tachikoma
python/tvm/contrib/nvcc.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name """Utility to invoke nvcc compiler in the system""" from __future__ import absolute_import as _abs import subprocess import os import warnings import tvm._ffi from tvm.target import Target from . import utils from .._ffi.base import py_str def compile_cuda(code, target_format="ptx", arch=None, options=None, path_target=None): """Compile cuda code with NVCC from env. Parameters ---------- code : str The cuda code. target_format : str The target format of nvcc compiler. arch : str The cuda architecture. options : str or list of str The additional options. path_target : str, optional Output file. Return ------ cubin : bytearray The bytearray of the cubin """ if arch is None: # If None, then it will use `tvm.target.Target.current().arch`. # Target arch could be a str like "sm_xx", or a list, such as # [ # "-gencode", "arch=compute_52,code=sm_52", # "-gencode", "arch=compute_70,code=sm_70" # ] compute_version = "".join( get_target_compute_version(Target.current(allow_none=True)).split(".") ) arch = ["-gencode", f"arch=compute_{compute_version},code=sm_{compute_version}"] temp = utils.tempdir() if target_format not in ["cubin", "ptx", "fatbin"]: raise ValueError("target_format must be in cubin, ptx, fatbin") temp_code = temp.relpath("my_kernel.cu") temp_target = temp.relpath("my_kernel.%s" % target_format) with open(temp_code, "w") as out_file: out_file.write(code) file_target = path_target if path_target else temp_target cmd = ["nvcc"] cmd += ["--%s" % target_format, "-O3"] if isinstance(arch, list): cmd += arch elif isinstance(arch, str): cmd += ["-arch", arch] if options: if isinstance(options, str): cmd += [options] elif isinstance(options, list): cmd += options else: raise ValueError("options must be str or list of str") cmd += ["-o", file_target] cmd += [temp_code] # NOTE: ccbin option can be used to tell nvcc where to find the c++ compiler # just in case it is not in the path. On Windows it is not in the path by default. # However, we cannot use TVM_CXX_COMPILER_PATH because the runtime env. # Because it is hard to do runtime compiler detection, we require nvcc is configured # correctly by default. # if cxx_compiler_path != "": # cmd += ["-ccbin", cxx_compiler_path] proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) (out, _) = proc.communicate() if proc.returncode != 0: msg = code msg += "\nCompilation error:\n" msg += py_str(out) raise RuntimeError(msg) with open(file_target, "rb") as f: data = bytearray(f.read()) if not data: raise RuntimeError("Compilation error: empty result is generated") return data def find_cuda_path(): """Utility function to find cuda path Returns ------- path : str Path to cuda root. """ if "CUDA_PATH" in os.environ: return os.environ["CUDA_PATH"] cmd = ["which", "nvcc"] proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) (out, _) = proc.communicate() out = py_str(out) if proc.returncode == 0: return os.path.realpath(os.path.join(str(out).strip(), "../..")) cuda_path = "/usr/local/cuda" if os.path.exists(os.path.join(cuda_path, "bin/nvcc")): return cuda_path raise RuntimeError("Cannot find cuda path") def get_cuda_version(cuda_path=None): """Utility function to get cuda version Parameters ---------- cuda_path : Optional[str] Path to cuda root. If None is passed, will use `find_cuda_path()` as default. Returns ------- version : float The cuda version """ if cuda_path is None: cuda_path = find_cuda_path() version_file_path = os.path.join(cuda_path, "version.txt") if not os.path.exists(version_file_path): # Debian/Ubuntu repackaged CUDA path version_file_path = os.path.join(cuda_path, "lib", "cuda", "version.txt") try: with open(version_file_path) as f: version_str = f.read().strip().split()[-1] return tuple(int(field) for field in version_str.split(".")) except FileNotFoundError: pass cmd = [os.path.join(cuda_path, "bin", "nvcc"), "--version"] proc = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) (out, _) = proc.communicate() out = py_str(out) if proc.returncode == 0: release_line = [l for l in out.split("\n") if "release" in l][0] release_fields = [s.strip() for s in release_line.split(",")] version_str = [f[1:] for f in release_fields if f.startswith("V")][0] return tuple(int(field) for field in version_str.split(".")) raise RuntimeError("Cannot read cuda version file") @tvm._ffi.register_func def tvm_callback_cuda_compile(code): """use nvcc to generate fatbin code for better optimization""" ptx = compile_cuda(code, target_format="fatbin") return ptx @tvm._ffi.register_func("tvm_callback_libdevice_path") def find_libdevice_path(arch): """Utility function to find libdevice Parameters ---------- arch : int The compute architecture in int Returns ------- path : str Path to libdevice. """ cuda_path = find_cuda_path() lib_path = os.path.join(cuda_path, "nvvm/libdevice") if not os.path.exists(lib_path): # Debian/Ubuntu repackaged CUDA path lib_path = os.path.join(cuda_path, "lib/nvidia-cuda-toolkit/libdevice") selected_ver = 0 selected_path = None cuda_ver = get_cuda_version(cuda_path) major_minor = (cuda_ver[0], cuda_ver[1]) if major_minor in ( (9, 0), (9, 1), (10, 0), (10, 1), (10, 2), (11, 0), (11, 1), (11, 2), (11, 3), ): path = os.path.join(lib_path, "libdevice.10.bc") else: for fn in os.listdir(lib_path): if not fn.startswith("libdevice"): continue try: # expected pattern: libdevice.${ARCH}.10.bc # e.g., libdevice.compute_20.10.bc ver = int(fn.split(".")[-3].split("_")[-1]) if selected_ver < ver <= arch: selected_ver = ver selected_path = fn except ValueError: # it can just be `libdevice.10.bc` in CUDA 10 selected_path = fn if selected_path is None: raise RuntimeError("Cannot find libdevice for arch {}".format(arch)) path = os.path.join(lib_path, selected_path) return path def callback_libdevice_path(arch): try: return find_libdevice_path(arch) except RuntimeError: warnings.warn("Cannot find libdevice path") return "" def get_target_compute_version(target=None): """Utility function to get compute capability of compilation target. Looks for the target arch in three different places, first in the target input, then the Target.current() scope, and finally the GPU device (if it exists). Parameters ---------- target : tvm.target.Target, optional The compilation target Returns ------- compute_version : str compute capability of a GPU (e.g. "8.6") """ # 1. input target object # 2. Target.current() target = target or Target.current() if target and target.arch: major, minor = target.arch.split("_")[1] return major + "." + minor # 3. GPU compute version if tvm.cuda(0).exist: return tvm.cuda(0).compute_version raise ValueError( "No CUDA architecture was specified or GPU detected." "Try specifying it by adding '-arch=sm_xx' to your target." ) def parse_compute_version(compute_version): """Parse compute capability string to divide major and minor version Parameters ---------- compute_version : str compute capability of a GPU (e.g. "6.0") Returns ------- major : int major version number minor : int minor version number """ split_ver = compute_version.split(".") try: major = int(split_ver[0]) minor = int(split_ver[1]) return major, minor except (IndexError, ValueError) as err: # pylint: disable=raise-missing-from raise RuntimeError("Compute version parsing error: " + str(err)) def have_fp16(compute_version): """Either fp16 support is provided in the compute capability or not Parameters ---------- compute_version: str compute capability of a GPU (e.g. "6.0") """ major, minor = parse_compute_version(compute_version) # fp 16 support in reference to: # https://docs.nvidia.com/cuda/cuda-c-programming-guide/#arithmetic-instructions if major == 5 and minor == 3: return True if major >= 6: return True return False def have_int8(compute_version): """Either int8 support is provided in the compute capability or not Parameters ---------- compute_version : str compute capability of a GPU (e.g. "6.1") """ major, _ = parse_compute_version(compute_version) if major >= 6: return True return False def have_tensorcore(compute_version=None, target=None): """Either TensorCore support is provided in the compute capability or not Parameters ---------- compute_version : str, optional compute capability of a GPU (e.g. "7.0"). target : tvm.target.Target, optional The compilation target, will be used to determine arch if compute_version isn't specified. """ if compute_version is None: if tvm.cuda(0).exist: compute_version = tvm.cuda(0).compute_version else: if target is None or "arch" not in target.attrs: warnings.warn( "Tensorcore will be disabled due to no CUDA architecture specified." "Try specifying it by adding '-arch=sm_xx' to your target." ) return False compute_version = target.attrs["arch"] # Compute version will be in the form "sm_{major}{minor}" major, minor = compute_version.split("_")[1] compute_version = major + "." + minor major, _ = parse_compute_version(compute_version) if major >= 7: return True return False def have_cudagraph(): """Either CUDA Graph support is provided""" try: cuda_ver = get_cuda_version() if cuda_ver < (10, 0): return False return True except RuntimeError: return False def have_bf16(compute_version): """Either bf16 support is provided in the compute capability or not Parameters ---------- compute_version : str compute capability of a GPU (e.g. "8.0") """ major, _ = parse_compute_version(compute_version) if major >= 8: return True return False
https://github.com/zk-ml/tachikoma
python/tvm/contrib/peak.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name """measure bandwidth and compute peak""" import logging import tvm from tvm import te from tvm.target import Target from . import utils from .. import rpc def _convert_to_remote(func, remote): """convert module function to remote rpc function""" temp = utils.tempdir() path_dso = temp.relpath("tmp_func.tar") func.export_library(path_dso) remote.upload(path_dso) func = remote.load_module("tmp_func.tar") return func def measure_bandwidth_sum( total_item, item_per_thread, stride, base_type, bits, lanes, target, target_host, remote, dev, n_times, ): """measure memory bandwidth of gpu by product reduction for a given type The IR for measurement is for each thread for i in 1..num_per_thread: y[global_id] = y[global_id] * x[base + i * stride] Parameters ---------- total_item: int number of elements in input array item_per_thread: int number of elements each thread accumulates stride: int stride in memory access base_type: str can be "int", "float" bits: int can be 16, 32 lanes: int lane of the vector type, can be 1, 2, 4, 8, 16 target: :any:`tvm.target.Target` the target and option of the compilation. target_host : str or :any:`tvm.target.Target` host compilation target dev: Device the device of array remote: tvm.rpc.RPCSession remote rpc session n_times: int number of runs for taking mean Returns ------- GBPS: float gigabyte per second """ target, target_host = Target.canon_target_and_host(target, target_host) n, m = total_item, item_per_thread n //= lanes base_type = str(base_type) + str(bits) dtype = base_type if lanes == 1 else base_type + "x" + str(lanes) k = te.reduce_axis((0, m), name="k") x = te.placeholder((n,), dtype=dtype, name="x") op = te.comm_reducer(lambda x, y: x * y, lambda t: tvm.tir.const(1, dtype=t), name="sum") y = te.compute( (n // m,), lambda i: op(x[i // stride * stride * m + i % stride + k * stride], axis=k) ) s = te.create_schedule(y.op) yo, yi = s[y].split(y.op.axis[0], target.max_num_threads) s[y].bind(yo, te.thread_axis("blockIdx.x")) s[y].bind(yi, te.thread_axis("threadIdx.x")) s[y].unroll(k) try: func = tvm.build(s, [x, y], target) x = tvm.nd.empty((n,), dtype=dtype, device=dev) y = tvm.nd.empty((n // m,), dtype=dtype, device=dev) func = _convert_to_remote(func, remote) time_f = func.time_evaluator(func.entry_name, dev, number=n_times) time = time_f(x, y).mean except tvm._ffi.base.TVMError: # build error (occur when device does not support half) return -1 return 1.0 * (total_item * bits / 8) / 1e9 / time def measure_bandwidth_all_types( total_item, item_per_thread, n_times, target, target_host, remote, dev, verbose=True ): """measure memory bandwidth for all types Parameters ---------- total_item: int number of elements in input array item_per_thread: int number of elements each thread accmulates n_times: int number of runs for averaging target: :any:`tvm.target.Target` the target and option of the compilation. target_host : str or :any:`tvm.target.Target` host compilation target remote: tvm.rpc.RPCSession remote rpc session dev: Device the device of array verbose: bool whether outputs immediate result Returns ------- result: list a list of (type_name, GBPS) pairs """ target, target_host = Target.canon_target_and_host(target, target_host) max_threads = target.max_num_threads result = [] for base_type in ["float"]: for bits in [32]: for lanes in [1, 2, 4, 8, 16]: max_speed = -1e9 # try different strides for stride in [max_threads, total_item // (lanes * item_per_thread)]: speed = measure_bandwidth_sum( total_item, item_per_thread, stride, base_type, bits, lanes, target, target_host, remote, dev, n_times, ) max_speed = max(max_speed, speed) type_name = base_type + str(bits) result.append(["%sx%d" % (type_name, lanes), max_speed]) if verbose: logging.info("\t%-10s %.2f GBPS", result[-1][0], result[-1][1]) return result def measure_compute_mad( total_item, item_per_thread, base_type, bits, lanes, target, target_host, remote, dev, n_times ): """measure peak compute speed by computing mad for a type The IR for measurement is for each thread for i in 1..item_per_thread x = mad(x, x, y) y = mad(y, y, x) Parameters ---------- total_item: int number of elements in input array item_per_thread: int number of operations each thread does base_type: str can be "int", "float" bits: int can be 16, 32 lanes: int lane of the vector type, can be 1, 2, 4, 8, 16 target: :any:`tvm.target.Target` the target and option of the compilation. target_host : str or :any:`tvm.target.Target` host compilation target remote: tvm.rpc.RPCSession if it is not None, use remote rpc session dev: Device the device of array n_times: int number of runs for taking mean Returns ------- GOPS: float giga operation per second """ target, target_host = Target.canon_target_and_host(target, target_host) n = total_item if bits >= 64 or lanes >= 16: n //= 2 max_threads = target.max_num_threads base_type = str(base_type) + str(bits) dtype = base_type if lanes == 1 else base_type + "x" + str(lanes) def extern(ins, outs): # pylint: disable=unused-argument """construct measurement function by building IR directly""" ib = tvm.tir.ir_builder.create() bx = te.thread_axis("blockIdx.x") tx = te.thread_axis("threadIdx.x") ib.scope_attr(bx, "thread_extent", n // max_threads) ib.scope_attr(tx, "thread_extent", max_threads) idx = bx.var * max_threads + tx.var a = ib.allocate(dtype, (1), name="a", scope="local") b = ib.allocate(dtype, (1), name="b", scope="local") a[0] = outs[0].vload(idx, dtype) b[0] = outs[0].vload(idx, dtype) if base_type.find("float") != -1: def mad_func(x, y): return x * x + y else: def mad_func(x, y): return y * y + x for _ in range(item_per_thread // 4 // lanes): a[0] = mad_func(a[0], b[0]) b[0] = mad_func(b[0], a[0]) ib.emit(outs[0].vstore(idx, b[0])) return ib.get() y = te.extern((n,), [], extern, name="y", dtype=dtype) s = te.create_schedule(y.op) try: func = tvm.build(s, [y], target) func = _convert_to_remote(func, remote) time_f = func.time_evaluator(func.entry_name, dev, number=n_times) y = tvm.nd.empty((n,), dtype=dtype, device=dev) time = time_f(y).mean except tvm._ffi.base.TVMError: # build error (occur when device does not support half) return -1 return 1.0 * (n * item_per_thread) / 1e9 / time def measure_compute_all_types( total_item, item_per_thread, n_times, target, target_host, remote, dev, verbose=True ): """measure peak flops for all types Parameters ---------- total_item: int number of elements in input array item_per_thread: int number of elements each thread accmulates n_times: int number of runs for averaging target: :any:`tvm.target.Target` the target and option of the compilation. target_host : str or :any:`tvm.target.Target` host compilation target remote: tvm.rpc.RPCSession remote rpc session dev: Device the device of array verbose: bool whether outputs immediate result Returns ------- result: list a list of (type_name, GFLOPS/GIOPS) pairs """ target, target_host = Target.canon_target_and_host(target, target_host) result = [] for base_type in ["float", "int"]: for bits in [16, 32, 64]: for lanes in [1, 2, 4, 8, 16]: if base_type == "int" and bits != 32: # only measure int32 continue max_speed = -1e9 for per_thread in [item_per_thread // 2, item_per_thread, item_per_thread * 2]: speed = measure_compute_mad( total_item, per_thread, base_type, bits, lanes, target, target_host, remote, dev, n_times, ) max_speed = max(max_speed, speed) type_name = base_type + str(bits) result.append(["%sx%d" % (type_name, lanes), max_speed]) unit = "GFLOPS" if base_type == "float" else "GIOPS" if verbose: logging.info("\t%-10s %.2f %s", result[-1][0], result[-1][1], unit) return result def measure_peak_all(target, target_host, host, port): """measure memory bandwidth and peak compute for gpu devices Parameters ---------- target: str or :any:`tvm.target.Target` target_host: str host: str port: int """ target, target_host = Target.canon_target_and_host(target, target_host) remote = rpc.connect(host, port) n_times = 20 bandwidth_total_item = 1 << 25 bandwidth_item_per_thread = 32 compute_total_item = 1 << 21 compute_item_per_thread = 4096 if str(target).startswith("opencl"): dev = remote.cl() elif str(target).startswith("cuda"): dev = remote.cuda() elif str(target).startswith("metal"): dev = remote.metal() else: raise RuntimeError("Unsupported target") logging.info("========== measure memory bandwidth ==========") measure_bandwidth_all_types( bandwidth_total_item, bandwidth_item_per_thread, n_times, target, target_host, remote, dev ) logging.info("========== measure peak compute ==========") measure_compute_all_types( compute_total_item, compute_item_per_thread, n_times, target, target_host, remote, dev )
https://github.com/zk-ml/tachikoma
python/tvm/contrib/pickle_memoize.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Memoize result of function via pickle, used for cache testcases.""" # pylint: disable=broad-except,superfluous-parens import os import sys import atexit from decorator import decorate from .._ffi.base import string_types try: import cPickle as pickle except ImportError: import pickle class Cache(object): """A cache object for result cache. Parameters ---------- key: str The file key to the function save_at_exit: bool Whether save the cache to file when the program exits """ cache_by_key = {} def __init__(self, key, save_at_exit): cache_dir = ".pkl_memoize_py{0}".format(sys.version_info[0]) try: os.mkdir(cache_dir) except FileExistsError: pass else: self.cache = {} self.path = os.path.join(cache_dir, key) if os.path.exists(self.path): try: self.cache = pickle.load(open(self.path, "rb")) except Exception: self.cache = {} else: self.cache = {} self.dirty = False self.save_at_exit = save_at_exit def save(self): if self.dirty: print("Save memoize result to %s" % self.path) with open(self.path, "wb") as out_file: pickle.dump(self.cache, out_file, pickle.HIGHEST_PROTOCOL) @atexit.register def _atexit(): """Save handler.""" for value in Cache.cache_by_key.values(): if value.save_at_exit: value.save() def memoize(key, save_at_exit=False): """Memoize the result of function and reuse multiple times. Parameters ---------- key: str The unique key to the file save_at_exit: bool Whether save the cache to file when the program exits Returns ------- fmemoize : function The decorator function to perform memoization. """ def _register(f): """Registration function""" allow_types = (string_types, int, float, tuple) fkey = key + "." + f.__name__ + ".pkl" if fkey not in Cache.cache_by_key: Cache.cache_by_key[fkey] = Cache(fkey, save_at_exit) cache = Cache.cache_by_key[fkey] cargs = tuple(x.cell_contents for x in f.__closure__) if f.__closure__ else () cargs = (len(cargs),) + cargs def _memoized_f(func, *args, **kwargs): assert not kwargs, "Only allow positional call" key = cargs + args for arg in key: if isinstance(arg, tuple): for x in arg: assert isinstance(x, allow_types) else: assert isinstance(arg, allow_types) if key in cache.cache: return cache.cache[key] res = func(*args) cache.cache[key] = res cache.dirty = True return res return decorate(f, _memoized_f) return _register
https://github.com/zk-ml/tachikoma
python/tvm/contrib/pipeline_executor.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Pipeline executor that executes a series of modules in a pipeline fashion.""" import json import os import time from tvm import runtime from tvm._ffi import get_global_func from tvm.contrib import graph_executor def pipeline_executor_enabled(): """Check if the pipeline executor is enabled. Return ------- enable: bool Return whether the pipeline executor is enabled. """ return get_global_func("tvm.pipeline_executor.create", allow_missing=True) is not None class PipelineModule(object): """Wrapper of runtime module, caller can use this module to set parameters and get outputs. Parameters ---------- module : Union[PipelineExecutorFactoryModule, Module] Common interface for pipeline executor factory modules or Module. """ def __init__(self, module): if isinstance(module, PipelineExecutorFactoryModule): self.module = module.get_pipeline_executor_module() else: self.module = module # Get the packed functions from the pipeline executor. self._get_params_group_pipeline_map = self.module["get_params_group_pipeline_map"] self._run = self.module["run"] self._set_param = self.module["set_param"] self._set_input = self.module["set_input"] self._get_input = self.module["get_input"] self._get_output = self.module["get_output"] self._get_num_outputs = self.module["get_num_outputs"] self._get_num_inputs = self.module["get_num_inputs"] self._get_input_pipeline_map = self.module["get_input_pipeline_map"] self._get_pipe_execute_count = self.module["get_execute_count"] def run(self): """Run the pipeline executor.""" self._run() def get_input_pipeline_map(self, name): """Using the "name" to get the corresponding subgraph index and also get the "input name" of the corresponding subgraph interface. Returns ------- input map: Array[str] Returning the index and "input name" of the subgraph. """ return self._get_input_pipeline_map(name) def get_params_group_pipeline_map(self, name): """Use the name of the parameters group to get the corresponding runtime module index. Parameters ---------- name: str The parameter group name. Returns ------- module_index: int The index of the runtime module. """ return self._get_params_group_pipeline_map(name) def set_input(self, key, value): """Set the input via input name. Parameters ---------- key : str The input name value : array_like. The input value """ self._set_input(key, value) def set_params(self, params_group_name, params_data): """Set the parameter group value given the parameter group name. Note that the parameter group name is declared in the pipeline executor config. Parameters ---------- params_group_name : str The parameters group name. params_data : Dict[str, NDArray] A map from parameter name to data. """ if not params_data: raise RuntimeError('"params_data is empty!"') for key, val in params_data.items(): self._set_param(params_group_name, key, val) def get_input(self, key): """Get the input via an input name. Parameters ---------- key : str The input key Returns ------- data : NDArray The input data. """ return self._get_input(key) def get_output(self, synchronize=True, sleep_interval=0.001): """Get the output. Returns ------- data : Array[NDArray] A list of output data. synchronize : BOOL Whether to do a synchronize poll. sleep_interval : Float32 When doing the synchronize loop poll, how many seconds the loop should sleep for yield. """ outputs = [] if not synchronize: outputs = self._get_output() else: while not outputs: outputs = self._get_output() time.sleep(sleep_interval) return outputs @property def num_executing_pipeline(self): """Getting the count of running pipeline. Returns ------- count : int The count of running pipeline. """ return self._get_pipe_execute_count() @property def num_outputs(self): """Get the number of outputs. Returns ------- count : int The number of outputs. """ return self._get_num_outputs() @property def num_inputs(self): """Get the number of inputs Returns ------- count : int The number of inputs """ return self._get_num_inputs() @staticmethod def load_library(config_file_name): """Import files to create a pipeline executor. Parameters ---------- config_file_name : str Path and name of the configuration file, the configuration file contains the disk path of the parameter file, library file, and JSON file. """ with open(config_file_name, "r") as file_handle: config = file_handle.read() config = json.loads(config) if "load_config" not in config or "pipeline_config" not in config: raise RuntimeError( '"load_config" or "pipeline_config" is missing in %s' % config_file_name ) # The config file used to load library, prameters, and JSON files. with open(config["load_config"], "r") as file_handle: load_config = file_handle.read() # The config file used to load pipeline compute config. with open(config["pipeline_config"], "r") as file_handle: pipeline_config = file_handle.read() # Load a PipelineExecutor from the disk files. load_library = get_global_func("tvm.pipeline_executor.load", allow_missing=False) module = load_library(load_config, pipeline_config) return PipelineModule(module) class PipelineExecutorFactoryModule(object): """Common interface for pipeline executor factory modules. Parameters ---------- pipeline_mods : List[GraphExecutorFactoryModule] List of GraphExecutorFactoryModule. mod_config : Dict[int, Dict[str, Any]] Modules dependency configuration information. """ def __init__(self, pipeline_mods, mods_config): self.pipeline_mods = pipeline_mods self.mods_config = mods_config self.module = None def get_pipeline_executor_module(self): """Get the pipeline executor module. Returns ------- module : Module Common interface for pipeline executor factory Module. """ if not self.module: graph_executors, config = self.graph_executor_create( self.pipeline_mods, self.mods_config ) self.pipeline_create = get_global_func( "tvm.pipeline_executor.create", allow_missing=False ) self.module = self.pipeline_create(graph_executors, config) return self.module def graph_executor_create(self, pipeline_mods, mod_config): """Create graph_executor list and return configuration as a json string. Parameters ---------- pipeline_mods : List[GraphExecutorFactoryModule] List of GraphExecutorFactoryModule mod_config : Dict[str, Any] Modules dependency configuration information. Returns ------- mods : List[Module] The Module list. mod_config : str The Modudle configuration. """ # Should store modules in the list named 'mods' in index order. mods = [None for _ in range(len(pipeline_mods))] for lib_index in pipeline_mods: pipeline_lib = pipeline_mods[lib_index]["lib"] dev = pipeline_mods[lib_index]["dev"] lib = graph_executor.GraphModule(pipeline_lib["default"](dev)) # Return a module list sorted by lib_index. mods[lib_index] = lib.module return mods, json.dumps(mod_config) def export_library(self, directory_path): """Export the pipeline executor into disk files. Parameters ---------- directory_path : str Export the files to this directory. """ if not self.pipeline_mods: raise RuntimeError("The pipeline executor has not been initialized.") # Check if the directory_path exists. if not os.path.exists(directory_path): raise RuntimeError("The directory {directory_path} does not exist.") # Create an load configuration. load_config_file_name = "{}/load_config".format(directory_path) pipeline_config_file_name = "{}/pipeline_config".format(directory_path) config = {} config["load_config"] = load_config_file_name config["pipeline_config"] = pipeline_config_file_name load_config = [] # Export the library, JSON, and parameter into files, then export these files path # into a configuration file. for lib_index in self.pipeline_mods: mconfig = {} mconfig["mod_idx"] = lib_index mconfig["lib_name"] = "{}/lib{}.so".format(directory_path, lib_index) mconfig["json_name"] = "{}/json{}".format(directory_path, lib_index) mconfig["params_name"] = "{}/params{}".format(directory_path, lib_index) mconfig["dev"] = "{},{}".format( self.pipeline_mods[lib_index]["dev"].device_type, self.pipeline_mods[lib_index]["dev"].device_id, ) # Get the graph, lib, and parameters from GraphExecutorFactoryModule. lib = self.pipeline_mods[lib_index]["lib"] # Export the lib, graph, and parameters to disk. if self.pipeline_mods[lib_index]["export_cc"]: lib.export_library( mconfig["lib_name"], cc=self.pipeline_mods[lib_index]["export_cc"] ) else: lib.export_library(mconfig["lib_name"]) with open(mconfig["json_name"], "w") as file_handle: file_handle.write(lib.graph_json) with open(mconfig["params_name"], "wb") as file_handle: file_handle.write(runtime.save_param_dict(lib.params)) load_config.append(mconfig) with open(load_config_file_name, "w") as file_handle: json.dump(load_config, file_handle) with open(pipeline_config_file_name, "w") as file_handle: json.dump(self.mods_config, file_handle) config_file_name = "{}/config".format(directory_path) with open(config_file_name, "w") as file_handle: json.dump(config, file_handle) return config_file_name
https://github.com/zk-ml/tachikoma
python/tvm/contrib/pipeline_executor_build.py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Pipeline executor that executes a series of modules in a pipeline fashion.""" import json import os import tvm._ffi from tvm import relay from tvm.relay.transform import InferType from tvm.contrib.pipeline_executor import PipelineExecutorFactoryModule def pipeline_executor_build_enabled(): """Check if the pipeline executor build is enabled. Return ------- enable: bool Return whether the pipeline executor is enabled. """ return tvm.contrib.pipeline_executor.pipeline_executor_enabled() def build(pipe_configs): """Build modules used in the pipeline executor, then use these modules and configuration to create a pipeline executor. Parameters ---------- pipe_configs: PipelineConfig Build Configuration information. Returns ------- ret: PipelineExecutorFactoryModule Common interface for pipeline executor factory modules. """ libs = {} config = pipe_configs.get_config() if "module_connection" not in config: raise RuntimeError('"module_connection" is missing') if "input_connection" not in config: raise RuntimeError('"input_connection" is missing') if "param_connection" not in config: raise RuntimeError('"param_connection" is missing') mod_n_configs = config["module_connection"] config_len = len(mod_n_configs) module_string_config = [{} for _ in range(config_len)] # Use hardware configurations to build backend modules for each subgraph. for ir_mod, mod_config in mod_n_configs.items(): pipe_config = mod_config["pipeline"].copy() mod_idx = pipe_config["mod_idx"] dev = mod_config["dev"] target = mod_config["target"] build_func = relay.build # Callers may need to use a customized building function to wrap the pre-building logic # and the backend building logic. For example, in order to support a backend which only # can do "int8" computation, the caller may need to merge the "quantization" logic # into the building logic to creat a customized building function. if "build" in mod_config and mod_config["build"]: build_func = mod_config["build"] lib = build_func( ir_mod, target, params=mod_config["params"], target_host=mod_config["target_host"], mod_name=mod_config["mod_name"], ) pipe_config["dev"] = "{},{}".format(dev.device_type, dev.device_id) # Use "mod_idx" as the key to create a "module_connection" map which is not only # for the module index but also for the module connection used to build the pipeline. module_string_config[mod_idx] = pipe_config libs[mod_idx] = { "lib": lib, "dev": dev, "fcompile": mod_config["fcompile"], "export_cc": mod_config["export_cc"], } # Creating a text form configuration to record the "input_connection" and the # "module_connection" information. The "input_connection" is used to record the # map of global input and subgraph input, and the "module_connection" is used to # record module dependency. string_config = {} string_config["param_connection"] = config["param_connection"] string_config["input_connection"] = config["input_connection"] string_config["module_connection"] = module_string_config return PipelineExecutorFactoryModule(libs, string_config) def export_library(factory, directory_path): """Export the pipeline executor into disk files. Parameters ---------- factory : PipelineExecutorFactoryModule The pipeline executor factory directory_path : str Export the files to this directory. """ if not factory.pipeline_mods: raise RuntimeError("The pipeline executor has not been initialized.") # Check if the directory_path exists. if not directory_path or not os.path.exists(directory_path): raise RuntimeError("The directory {directory_path} does not exist.") # Create an load configuration. load_config_file_name = "{}/load_config".format(directory_path) pipeline_config_file_name = "{}/pipeline_config".format(directory_path) config = {} config["load_config"] = load_config_file_name config["pipeline_config"] = pipeline_config_file_name load_config = [] # Export the library, JSON, and parameter into files, then export these files path # into a configuration file. for lib_index in factory.pipeline_mods: mconfig = {} mconfig["mod_idx"] = lib_index mconfig["lib_name"] = "{}/lib{}.so".format(directory_path, lib_index) mconfig["json_name"] = "{}/json{}".format(directory_path, lib_index) mconfig["params_name"] = "{}/params{}".format(directory_path, lib_index) lib_config = factory.pipeline_mods[lib_index] mconfig["dev"] = "{},{}".format(lib_config["dev"].device_type, lib_config["dev"].device_id) fcompile = lib_config["fcompile"] if not fcompile: fcompile = False # Get the graph, lib, and parameters from GraphExecutorFactoryModule. lib = factory.pipeline_mods[lib_index]["lib"] # Export the lib, graph, and parameters to disk. lib.export_library(mconfig["lib_name"], fcompile) with open(mconfig["json_name"], "w") as file_handle: file_handle.write(lib.graph_json) with open(mconfig["params_name"], "wb") as file_handle: file_handle.write(relay.save_param_dict(lib.params)) load_config.append(mconfig) with open(load_config_file_name, "w") as file_handle: json.dump(load_config, file_handle) with open(pipeline_config_file_name, "w") as file_handle: json.dump(factory.mods_config, file_handle) config_file_name = "{}/config".format(directory_path) with open(config_file_name, "w") as file_handle: json.dump(config, file_handle) return config_file_name class PipelineConfig(object): """Pipeline configuration information, this class contains the DAG that expresses the dependency of each module involved in a pipeline and the parameters for building each module. """ class Binding: """This class defines the module connections information. The type can only be "input" or "output". Parameters ---------- owner : ModuleWrapper The class who owns this interface. io_type : str The I/O type of this interface. It can only be "input" or "output". name : str/integer Name, for input it is string such as "data0", for output it is an integer such as 0. data_type: TensorType The data type of this interface. """ def __init__(self, owner, io_type, name, data_type=None): self.io_owner = owner self.io_type = io_type self.name = str(name) # Child interfaces that depend on this interface. self.bindings = [] # Parents interfaces that this interface depend on. self.parents = [] self.data_type = data_type def get_name(self): # Return name of this interface and the name of owner who owns this interface. owner_name = "" if isinstance(self.io_owner, PipelineConfig.ModuleWrapper): owner_name = self.io_owner.name return owner_name, self.name def get_owner_idx(self): # If the owner is ModuleWrapper return the owner index, if not return 0. if isinstance(self.io_owner, PipelineConfig.ModuleWrapper): return self.io_owner.idx return -1 def is_pipeline_executor_interface(self): """The pipeline interface is used to interact with the caller. There are two types of interfaces, one is 'input' another is 'output'. The pipeline input interface is responsible for passing parameters to the internal module interface, and the pipeline output interface is responsible for outputting the results computed by the pipeline executor to the caller. """ return not isinstance(self.io_owner, PipelineConfig.ModuleWrapper) def __repr__(self): # Geting the binding information in the form of text. str_format = " |{}: ".format(self.name) for binding in self.bindings: mname, dname = binding.get_name() str_format += "{0}:{1} ".format(mname, dname) return str_format def check_binding_dict(self, connection_dict): """Checking the binding dictionary. Parameter --------- connection_dict : Dict[str, Any] It is a dictionary of module connections. """ if "interface_name" not in connection_dict: raise RuntimeError('"inteface_name" is missing in global config!"') if "connection" not in connection_dict: raise RuntimeError(f'"connection" is missing!"') # The global interface mapping should be one-to-one. if not connection_dict["connection"]: raise RuntimeError("The global interface map is empty!") if len(connection_dict["connection"]) > 1: raise RuntimeError("A global interface maps multiple module interfaces!") if "mod_idx" not in connection_dict["connection"][0]: raise RuntimeError('"mod_idx" is missing!') def get_binding_dict(self): """Returning the binding information in the form of dictionary. Returns ------- data : Dict[str, Any] The binding information is in the form of dictionary. """ dict_format = {"interface_name": self.name, "connection": []} for binding in self.bindings: _, dname = binding.get_name() midx = binding.get_owner_idx() dict_format["connection"].append({"mod_idx": midx, "interface_name": dname}) self.check_binding_dict(dict_format) return dict_format def check_dag_acyclic(self, start, inputs): """This is to check whether the DAG containing these input interfaces is acyclic. Parameters ---------- start: ModuleWrapper The starting node of the cycle check algorithm. inputs: Binding These interfaces are used to connect to each other to build DAG. Return ------ Return true if there is no cycle in the DAG. """ for binding in inputs.values(): if start == binding.io_owner: return False for p in binding.parents: if not self.check_dag_acyclic(start, p.io_owner.input_bindings.bindings): return False return True def connect(self, binding): """Connect the current interface to the destination interface. Correct connections are as follows: 1. the pipeline input connected to a module input, 2. the module output connected to a pipeline output, 3. the module output connected to a module input. Parameters ---------- binding: Binding The destination of this connection. """ # Check whether the binding setting is correct or not. if self.io_owner == binding.io_owner: raise RuntimeError("Can not bind itself.") if self.io_type == "param" and not self.is_pipeline_executor_interface(): raise RuntimeError( 'The "param" binding can only be used by a pipeline executor interface!' ) if not self.is_pipeline_executor_interface() and self.io_type == "input": raise RuntimeError("Module can only bind from output interface!") if self.io_type == "param" and binding.io_type != "param": raise RuntimeError( 'A global "param" interface can only be bind with a module "param" interface!' ) if ( not self.is_pipeline_executor_interface() and not binding.is_pipeline_executor_interface() and binding.io_type == "output" ): raise RuntimeError("Can not bind module output with another module output!") if ( not self.is_pipeline_executor_interface() and binding.is_pipeline_executor_interface() and binding.io_type == "input" ): raise RuntimeError("Can not bind module output with pipeline input!") if self.is_pipeline_executor_interface() and self.io_type == "output": raise RuntimeError("Global output can not be used as binding start point.") if ( self.is_pipeline_executor_interface() and self.io_type == "input" and binding.io_type != "input" ): raise RuntimeError("Global input can only bind with module input.") self.bindings.append(binding) if not self.is_pipeline_executor_interface(): # Check whether the data types of the source and destination are the same. if ( isinstance(binding.io_owner, PipelineConfig.ModuleWrapper) and self.data_type != binding.data_type ): raise RuntimeError( f"Illegal type (%s vs. %s): binding type is not same!" % (self.data_type, binding.data_type) ) binding.parents.append(self) # Do acyclic check after increasing the in-degree of child node by setting # current interface as a parent of the child node. if not self.check_dag_acyclic( binding.io_owner, self.io_owner.input_bindings.bindings ): raise RuntimeError("Illegal connection: Cause a cycle!") class BindingList: """Container for bindings(input or output interface). Parameters ---------- owner : ModuleWrapper/PipelineConfig The owner of this class can be ModuleWrapper or PipelineConfig. io_type : str The type of this class can be "input" or "output". """ def __init__(self, owner, io_type): self.bindings = {} self.io_owner = owner self.binding_type = io_type def get_binding_data_type(self, key): if isinstance(self.io_owner, PipelineConfig.ModuleWrapper): return self.io_owner.get_data_type(key, self.binding_type) return None def __getitem__(self, key): if key not in self.bindings: data_type = self.get_binding_data_type(key) if not data_type and isinstance(self.io_owner, PipelineConfig.ModuleWrapper): raise RuntimeError(f"Can not find {key} in binding list {self.binding_type}.") self.bindings[key] = PipelineConfig.Binding( self.io_owner, self.binding_type, key, data_type ) return self.bindings[key] class ModuleWrapper: """This class is a wrapper representing the module and contains information such as module information, binding information and building information. """ def __init__(self, mod=None): self.target_host = None self.build_func = None self.params = None self.target = None self.fcompile = None self.name = None self.dev = None self.export_cc = None self.cpu_affinity = "" self.idx = None self.mod = mod self.input_params = InferType()(mod)["main"].params self.output_type = InferType()(mod)["main"].checked_type.ret_type self.input_bindings = PipelineConfig.BindingList(self, "input") self.output_bindings = PipelineConfig.BindingList(self, "output") self.param_binding = PipelineConfig.Binding(self, "param", "param") def __eq__(self, other): if isinstance(other, PipelineConfig.ModuleWrapper): return self.mod == other.mod return False def __getitem__(self, key): if isinstance(key, str): if key == "input": return self.input_bindings if key == "output": return self.output_bindings if key == "param": return self.param_binding raise RuntimeError(f"{key} not found!") raise RuntimeError('The data type of "key" is not supported!') def get_data_type(self, key, interface_type): """Get the module interface data type according to the key value and interface type. Parameters ---------- key: str The interface name. interface_type: The interface type. Return ------- Return data type. """ if interface_type == "input": for param in self.input_params: if param.name_hint == key: return param._checked_type_ if interface_type == "output": if isinstance(self.output_type, tvm.ir.type.TupleType): if int(key) < len(self.output_type.fields): return self.output_type.fields[int(key)] elif int(key) == 0: return self.output_type return None def set_idx_name(self, idx): # Set the index value and generate the module name. self.idx = idx self.name = "mod{}".format(str(idx)) def is_root_mod(self): """Check whether this node is the root node in DAG, this function is used in topological sort. """ return all([not b.parents for b in self.input_bindings.bindings.values()]) def remove_self_from_bindings(self): """Remove the current node from child dependencies to reduce the in-degree of child node, this function is used in topological sort. """ for binding in self.output_bindings.bindings.values(): for child in binding.bindings: if binding in child.parents: child.parents.remove(binding) def __init__(self): self.mod_wrapper = {} self.input_bindings = self.BindingList(self, "input") self.output_bindings = self.BindingList(self, "output") # There is a map of global parameters group and module index. self.param_group_bindings = self.BindingList(self, "param") def __str__(self): # Get configuration information as a string. # Use topological sort to get correct module order. self.dag_topology_sort() # Getting the parameters dependencies. param_dump = "Params\n" for param_name in self.param_group_bindings.bindings: inf = self.param_group_bindings.bindings[param_name] param_dump += str(inf) + "\n" # Get the input dependencies. input_dump = "\nInputs\n" for input_name in self.input_bindings.bindings: inf = self.input_bindings.bindings[input_name] input_dump += str(inf) + "\n" # Get the connections information of each module. output = {} connections_dump = "\nconnections\n" for mod in self.mod_wrapper: for interface in self.mod_wrapper[mod].output_bindings.bindings.values(): if interface.bindings: mname, dname = interface.get_name() iname = mname + ".output(" + dname + ")->" for dep in interface.bindings: dep_mname, dep_dname = dep.get_name() if isinstance(dep.io_owner, PipelineConfig.ModuleWrapper): iname += f" {dep_mname}.{dep_dname}" connections_dump += f" |{iname}\n" else: output[dep_dname] = f"{mname}.output({dname})" # Get the output dependencies. output_dump = "\noutput\n" for name in sorted(output.keys()): output_dump += f" |output({name}) : {output[name]}\n" return param_dump + input_dump + output_dump + connections_dump def __getitem__(self, key): if isinstance(key, tvm.ir.module.IRModule): if key not in self.mod_wrapper: self.mod_wrapper[key] = self.ModuleWrapper(key) return self.mod_wrapper[key] if isinstance(key, str): if key == "input": return self.input_bindings if key == "output": return self.output_bindings if key == "param_group": return self.param_group_bindings raise RuntimeError(f"{key} not found!") raise RuntimeError(f'The key type "{type(key)}" is not supported!') def get_config(self): """Get the configuration information in dictionary form, this configuration will be used to create pipeline executor. """ # Use topological sort to get the correct order of modules. self.dag_topology_sort() mconfig = {} module_connection = {} for mod in self.mod_wrapper: # Generate pipeline configuration. mconf = {} output_conf = [] module = self.mod_wrapper[mod] for _, binding in module.output_bindings.bindings.items(): dep_conf = [] output = {} if binding.bindings: for dep in binding.bindings: dep_item = {} _, dname = dep.get_name() if dep.is_pipeline_executor_interface(): dep_item["global_output_index"] = int(dname) else: dep_item["mod_idx"] = dep.get_owner_idx() dep_item["input_name"] = dname dep_conf.append(dep_item) # The value of output_idx start from 0. output["output_idx"] = int(binding.name) output["dependencies"] = dep_conf output_conf.append(output) mconf["mod_idx"] = module.idx mconf["cpu_affinity"] = module.cpu_affinity mconf["output"] = output_conf module_connection[mod] = { "pipeline": mconf, "target_host": module.target_host, "mod_name": "default", "build": module.build_func, "params": module.params, "target": module.target, "fcompile": module.fcompile, "dev": module.dev, "export_cc": module.export_cc, } # Creating a map including pipeline inputs and subgraph inputs. input_connection = [] for input_name in self.input_bindings.bindings: input_dict = self.input_bindings.bindings[input_name].get_binding_dict() if "interface_name" not in input_dict["connection"][0]: raise RuntimeError("interface_name is missing in connection config!") # Creating the map including global interfaces and subgraph interfaces. input_map = { "global_interface_name": input_dict["interface_name"], "mod_idx": input_dict["connection"][0]["mod_idx"], "module_interface_name": input_dict["connection"][0]["interface_name"], } input_connection.append(input_map) # Create a map including global parameters groups and modules. param_connection = [] for param_name in self.param_group_bindings.bindings: param_dict = self.param_group_bindings.bindings[param_name].get_binding_dict() param_map = { "global_param_name": param_dict["interface_name"], "mod_idx": param_dict["connection"][0]["mod_idx"], } param_connection.append(param_map) mconfig["module_connection"] = module_connection mconfig["input_connection"] = input_connection mconfig["param_connection"] = param_connection return mconfig def dag_topology_sort(self): """Use topological sort to get order of pipeline modules.""" mlist = [] mod_wrapper = self.mod_wrapper.copy() while mod_wrapper: temp_list = [] for mod, wrapper in mod_wrapper.items(): if wrapper.is_root_mod(): temp_list.append(mod) wrapper.remove_self_from_bindings() for mod in temp_list: mod_wrapper.pop(mod, None) mlist += temp_list mod_wrapper_sort = {} for mod, i in zip(mlist, range(len(mlist))): self.mod_wrapper[mod].set_idx_name(i) mod_wrapper_sort[mod] = self.mod_wrapper[mod] self.mod_wrapper = mod_wrapper_sort def get_mod_idx(self, mod): # Return the module index. idx = self.mod_wrapper[mod].idx return idx def pipe_input(self, name): # Return the input interface according to the name. return self.input_bindings[name] def pipe_output(self, idx): # Return the output interface according to the name. return self.output_bindings[idx]
https://github.com/zk-ml/tachikoma