source
stringclasses 4
values | task_type
stringclasses 1
value | in_source_id
stringlengths 0
138
| problem
stringlengths 219
13.2k
| gold_standard_solution
stringlengths 0
413k
| problem_id
stringlengths 5
10
| metadata
dict | verification_info
dict |
---|---|---|---|---|---|---|---|
taco | verifiable_code | https://codeforces.com/problemset/problem/463/D | Solve the following coding problem using the programming language python:
Gargari got bored to play with the bishops and now, after solving the problem about them, he is trying to do math homework. In a math book he have found k permutations. Each of them consists of numbers 1, 2, ..., n in some order. Now he should find the length of the longest common subsequence of these permutations. Can you help Gargari?
You can read about longest common subsequence there: https://en.wikipedia.org/wiki/Longest_common_subsequence_problem
-----Input-----
The first line contains two integers n and k (1 ≤ n ≤ 1000; 2 ≤ k ≤ 5). Each of the next k lines contains integers 1, 2, ..., n in some order — description of the current permutation.
-----Output-----
Print the length of the longest common subsequence.
-----Examples-----
Input
4 3
1 4 2 3
4 1 2 3
1 2 4 3
Output
3
-----Note-----
The answer for the first test sample is subsequence [1, 2, 3].
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
import os
import sys
from io import BytesIO, IOBase
def main():
(n, k) = map(int, input().split())
a = [list(map(lambda x: int(x) - 1, input().split())) for _ in range(k)]
b = [[0] * n for _ in range(k)]
for i in range(k):
for j in range(n):
b[i][a[i][j]] = j
dp = [[0] * n for _ in range(k)]
for i in range(n - 1, -1, -1):
for j in range(k):
(maa, ele) = (0, a[j][i])
for m in range(k):
if b[m][ele] < i:
break
else:
for l in range(b[j][ele] + 1, n):
ma = 0
for m in range(k):
if b[m][ele] > b[m][a[j][l]]:
break
ma = max(ma, dp[m][b[m][a[j][l]]])
else:
maa = max(maa, ma)
dp[j][i] = maa + 1
print(max((max(i) for i in dp)))
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = 'x' in file.mode or 'r' not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
(self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr))
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b'\n') + (not b)
ptr = self.buffer.tell()
(self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr))
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
(self.buffer.truncate(0), self.buffer.seek(0))
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode('ascii'))
self.read = lambda : self.buffer.read().decode('ascii')
self.readline = lambda : self.buffer.readline().decode('ascii')
(sys.stdin, sys.stdout) = (IOWrapper(sys.stdin), IOWrapper(sys.stdout))
input = lambda : sys.stdin.readline().rstrip('\r\n')
main()
``` | vfc_140095 | {
"difficulty": "hard",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": "https://codeforces.com/problemset/problem/463/D",
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "4 3\n1 4 2 3\n4 1 2 3\n1 2 4 3\n",
"output": "3\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "6 3\n2 5 1 4 6 3\n5 1 4 3 2 6\n5 4 2 6 3 1\n",
"output": "3\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "41 4\n24 15 17 35 13 41 4 14 23 5 8 16 21 18 30 36 6 22 11 29 26 1 40 31 7 3 32 10 28 38 12 20 39 37 34 19 33 27 2 25 9\n22 13 25 24 38 35 29 12 15 8 11 37 3 19 4 23 18 32 30 40 36 21 16 34 27 9 5 41 39 2 14 17 31 33 26 7 1 10 20 6 28\n31 27 39 16 22 12 13 32 6 10 19 29 37 7 18 33 24 21 1 9 36 4 34 41 25 28 17 40 30 35 23 14 11 8 2 15 38 20 26 5 3\n8 18 39 38 7 34 16 31 15 1 40 20 37 4 25 11 17 19 33 26 6 14 13 41 12 32 2 21 10 35 27 9 28 5 30 24 22 23 29 3 36\n",
"output": "4\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://codeforces.com/problemset/problem/10/B | Solve the following coding problem using the programming language python:
All cinema halls in Berland are rectangles with K rows of K seats each, and K is an odd number. Rows and seats are numbered from 1 to K. For safety reasons people, who come to the box office to buy tickets, are not allowed to choose seats themselves. Formerly the choice was made by a cashier, but now this is the responsibility of a special seating program. It was found out that the large majority of Berland's inhabitants go to the cinema in order to watch a movie, that's why they want to sit as close to the hall center as possible. Moreover, a company of M people, who come to watch a movie, want necessarily to occupy M successive seats in one row. Let's formulate the algorithm, according to which the program chooses seats and sells tickets. As the request for M seats comes, the program should determine the row number x and the segment [yl, yr] of the seats numbers in this row, where yr - yl + 1 = M. From all such possible variants as a final result the program should choose the one with the minimum function value of total seats remoteness from the center. Say, <image> — the row and the seat numbers of the most "central" seat. Then the function value of seats remoteness from the hall center is <image>. If the amount of minimum function values is more than one, the program should choose the one that is closer to the screen (i.e. the row number x is lower). If the variants are still multiple, it should choose the one with the minimum yl. If you did not get yet, your task is to simulate the work of this program.
Input
The first line contains two integers N and K (1 ≤ N ≤ 1000, 1 ≤ K ≤ 99) — the amount of requests and the hall size respectively. The second line contains N space-separated integers Mi from the range [1, K] — requests to the program.
Output
Output N lines. In the i-th line output «-1» (without quotes), if it is impossible to find Mi successive seats in one row, otherwise output three numbers x, yl, yr. Separate the numbers with a space.
Examples
Input
2 1
1 1
Output
1 1 1
-1
Input
4 3
1 2 3 1
Output
2 2 2
1 1 2
3 1 3
2 1 1
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
__author__ = 'Darren'
def solve():
(n, k) = map(int, input().split())
group = map(int, input().split())
available = [[k, 1][:] for _ in range(k + 1)]
center = (k + 1) // 2
for m in group:
(closest, best_row, best_col) = (10000, -1, -1)
for row in range(1, k + 1):
col = 0
if available[row][0] < m and k - available[row][1] + 1 < m:
continue
if available[row][0] == k:
col = center - m // 2
elif center - available[row][0] <= available[row][1] - center:
col = available[row][0] - m + 1
else:
col = available[row][1]
distance = calc_distance(center, row, col, m)
if distance < closest:
closest = distance
best_row = row
best_col = col
if closest == 10000:
print(-1)
else:
print(best_row, best_col, best_col + m - 1)
available[best_row][0] = min(available[best_row][0], best_col - 1)
available[best_row][1] = max(available[best_row][1], best_col + m)
def calc_distance(center, row, col, num):
end_col = col + num - 1
distance = abs(center - row) * num
if col >= center:
distance += (col - center) * num + (num - 1) * num // 2
elif end_col <= center:
distance += (center - end_col) * num + (num - 1) * num // 2
else:
distance += (center - col) * (center - col + 1) // 2 + (end_col - center) * (end_col - center + 1) // 2
return distance
solve()
``` | vfc_140099 | {
"difficulty": "medium",
"memory_limit": "256.0 megabytes",
"memory_limit_bytes": null,
"problem_url": "https://codeforces.com/problemset/problem/10/B",
"time_limit": "1.0 seconds"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "2 3\n3 3\n",
"output": "2 1 3\n1 1 3\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "80 29\n19 15 15 27 2 25 2 5 29 11 6 4 20 11 27 16 6 6 10 2 5 12 8 23 11 7 11 13 19 29 8 4 9 13 14 22 16 29 7 12 17 5 17 14 6 15 8 25 11 16 14 4 3 7 25 2 5 2 12 12 22 18 14 16 5 19 25 4 21 24 7 11 21 27 10 16 21 17 19 13\n",
"output": "15 6 24\n14 8 22\n16 8 22\n13 2 28\n17 14 15\n12 3 27\n17 16 17\n18 13 17\n11 1 29\n19 10 20\n10 12 17\n17 10 13\n20 5 24\n9 10 20\n21 2 28\n8 7 22\n17 18 23\n18 7 12\n22 10 19\n18 18 19\n7 13 17\n23 9 20\n6 11 18\n24 4 26\n5 10 20\n10 18 24\n25 10 20\n4 9 21\n26 6 24\n3 1 29\n17 2 9\n18 20 23\n10 3 11\n27 9 21\n2 8 21\n28 4 25\n1 7 22\n29 1 29\n14 1 7\n7 1 12\n-1\n14 23 27\n-1\n-1\n16 2 7\n-1\n19 2 9\n-1\n7 18 28\n-1\n-1\n16 23 26\n15 3 5\n19 21 27\n-1\n15 25 26\n17 24 28\n9 8 9\n-1\n-1\n-1\n-1\n-1\n-1\n9 21 25\n-1\n-1\n18 3 6\n-1\n-1\n22 20 26\n6 19 29\n-1\n-1\n6 1 10\n-1\n-1\n-1\n-1\n-1\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "1 3\n1\n",
"output": "2 2 2\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "100 57\n5 19 50 55 18 54 30 56 54 16 44 49 10 47 6 26 5 28 52 28 6 11 1 25 6 43 36 24 48 34 50 46 24 9 35 17 10 28 19 5 23 43 55 25 48 42 15 6 2 26 45 6 22 1 54 17 19 40 32 19 25 10 55 48 14 37 14 42 57 26 23 16 37 43 13 37 37 18 17 16 8 46 28 39 2 11 8 46 33 21 20 9 40 19 12 16 53 53 42 6\n",
"output": "29 27 31\n28 20 38\n30 4 53\n27 2 56\n31 20 37\n26 2 55\n32 14 43\n25 1 56\n33 2 55\n24 21 36\n34 7 50\n23 5 53\n29 17 26\n35 6 52\n29 32 37\n22 16 41\n36 27 31\n21 15 42\n37 3 54\n20 15 42\n38 26 31\n19 24 34\n29 38 38\n39 17 41\n18 26 31\n40 8 50\n17 11 46\n41 17 40\n16 5 52\n42 12 45\n15 4 53\n43 6 51\n14 17 40\n29 39 47\n44 12 46\n36 10 26\n36 32 41\n13 15 42\n28 1 19\n28 39 43\n45 18 40\n12 8 50\n46 2 56\n38 32 56\n11 5 52\n47 8 49\n31 38 52\n31 14 19\n24 37 38\n10 16 41\n48 7 51\n29 11 16\n38 4 25\n18 32 32\n9 2 55\n24 4 20\n18 7 25\n49 9 48\n8 13 44\n18 33 51\n50 17 41\n24 39 48\n7 2 56\n51 5 52\n19 10 23\n6 11 47\n19 35 48\n52 8 49\n5 1 57\n53 16 41\n4 18 40\n22 42 57\n54 11 47\n3 8 50\n28 44 56\n55 11 47\n2 11 47\n56 20 37\n41 41 57\n36 42 57\n31 6 13\n1 6 51\n57 15 42\n-1\n32 44 45\n32 3 13\n29 3 10\n-1\n-1\n-1\n56 38 57\n29 48 56\n-1\n56 1 19\n32 46 57\n39 1 16\n-1\n-1\n-1\n22 10 15\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "2 5\n3 4\n",
"output": "3 2 4\n2 1 4\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://codeforces.com/problemset/problem/832/B | Solve the following coding problem using the programming language python:
It's hard times now. Today Petya needs to score 100 points on Informatics exam. The tasks seem easy to Petya, but he thinks he lacks time to finish them all, so he asks you to help with one..
There is a glob pattern in the statements (a string consisting of lowercase English letters, characters "?" and "*"). It is known that character "*" occurs no more than once in the pattern.
Also, n query strings are given, it is required to determine for each of them if the pattern matches it or not.
Everything seemed easy to Petya, but then he discovered that the special pattern characters differ from their usual meaning.
A pattern matches a string if it is possible to replace each character "?" with one good lowercase English letter, and the character "*" (if there is one) with any, including empty, string of bad lowercase English letters, so that the resulting string is the same as the given string.
The good letters are given to Petya. All the others are bad.
-----Input-----
The first line contains a string with length from 1 to 26 consisting of distinct lowercase English letters. These letters are good letters, all the others are bad.
The second line contains the pattern — a string s of lowercase English letters, characters "?" and "*" (1 ≤ |s| ≤ 10^5). It is guaranteed that character "*" occurs in s no more than once.
The third line contains integer n (1 ≤ n ≤ 10^5) — the number of query strings.
n lines follow, each of them contains single non-empty string consisting of lowercase English letters — a query string.
It is guaranteed that the total length of all query strings is not greater than 10^5.
-----Output-----
Print n lines: in the i-th of them print "YES" if the pattern matches the i-th query string, and "NO" otherwise.
You can choose the case (lower or upper) for each letter arbitrary.
-----Examples-----
Input
ab
a?a
2
aaa
aab
Output
YES
NO
Input
abc
a?a?a*
4
abacaba
abaca
apapa
aaaaax
Output
NO
YES
NO
YES
-----Note-----
In the first example we can replace "?" with good letters "a" and "b", so we can see that the answer for the first query is "YES", and the answer for the second query is "NO", because we can't match the third letter.
Explanation of the second example. The first query: "NO", because character "*" can be replaced with a string of bad letters only, but the only way to match the query string is to replace it with the string "ba", in which both letters are good. The second query: "YES", because characters "?" can be replaced with corresponding good letters, and character "*" can be replaced with empty string, and the strings will coincide. The third query: "NO", because characters "?" can't be replaced with bad letters. The fourth query: "YES", because characters "?" can be replaced with good letters "a", and character "*" can be replaced with a string of bad letters "x".
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
def do(cur) -> str:
if len(cur) < len(pt) - 1:
return 'NO'
i = j = 0
while j < len(cur):
if pt[i] == '?':
if cur[j] not in good:
return 'NO'
elif pt[i] == '*':
b = len(cur) - len(pt) + 1
for x in cur[j:j + b]:
if x in good:
return 'NO'
i += 1
j += b
continue
elif pt[i] != cur[j]:
return 'NO'
i += 1
j += 1
return 'YES'
good = set(input())
pt = input()
pi = True if '*' not in pt else False
for _ in range(int(input())):
cur = input()
if pi and len(cur) != len(pt):
print('NO')
else:
print(do(cur))
``` | vfc_140107 | {
"difficulty": "medium_hard",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": "https://codeforces.com/problemset/problem/832/B",
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "ab\na?a\n2\naaa\naab\n",
"output": "YES\nNO\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "abc\na?a?a*\n4\nabacaba\nabaca\napapa\naaaaax\n",
"output": "NO\nYES\nNO\nYES\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "x\n?aba*\n69\nc\naaacc\nbba\nbabcb\nac\nbccca\nca\nabbaa\nb\naacca\nccc\ncc\na\naabba\nb\na\nbaca\nabb\ncac\ncbbaa\nb\naba\nbccc\nccbbc\nb\ncbab\naaabb\nc\nbbccb\nbaaa\nac\nbaa\nc\nbba\naabab\ncccb\nc\ncb\ncbab\nbb\nb\nb\nc\nbaaca\nbaca\naaa\ncaaa\na\nbcca\na\naac\naa\ncba\naacb\nacbb\nacaca\nc\ncc\nab\ncc\na\naba\nbbbbc\ncbcbc\nacb\nbbcb\nbbbcc\ncaa\ncaaac\n",
"output": "NO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "k\n*\n89\nb\ncbbbc\ncabac\nbccbb\nccc\ncabaa\nabbaa\nccbaa\nccccb\ncabbb\nbbcbc\nbac\naaac\nabb\nbcbb\ncb\nbacc\nbbaba\nb\nacc\nbaac\naaba\nbcbba\nbaa\nbc\naaccb\nb\nab\nc\nbbbb\nabbcb\nacbb\ncba\nc\nbac\nc\nac\ncc\nb\nbbc\nbaab\nc\nbbc\nab\nb\nc\naa\naab\nab\naccbc\nacbaa\na\nccc\ncba\nb\nb\nbcccb\nca\nacabb\naa\nba\naaa\nac\ncb\nacb\nbcc\ncbc\nac\nc\nbba\naacb\nbcccb\na\ncbbb\naabc\ncbaab\nbcac\nc\nca\ncc\naccbc\nabab\nbaca\nacca\na\nab\nabb\nb\nac\n",
"output": "YES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://codeforces.com/problemset/problem/6/C | Solve the following coding problem using the programming language python:
Alice and Bob like games. And now they are ready to start a new game. They have placed n chocolate bars in a line. Alice starts to eat chocolate bars one by one from left to right, and Bob — from right to left. For each chocololate bar the time, needed for the player to consume it, is known (Alice and Bob eat them with equal speed). When the player consumes a chocolate bar, he immediately starts with another. It is not allowed to eat two chocolate bars at the same time, to leave the bar unfinished and to make pauses. If both players start to eat the same bar simultaneously, Bob leaves it to Alice as a true gentleman.
How many bars each of the players will consume?
Input
The first line contains one integer n (1 ≤ n ≤ 105) — the amount of bars on the table. The second line contains a sequence t1, t2, ..., tn (1 ≤ ti ≤ 1000), where ti is the time (in seconds) needed to consume the i-th bar (in the order from left to right).
Output
Print two numbers a and b, where a is the amount of bars consumed by Alice, and b is the amount of bars consumed by Bob.
Examples
Input
5
2 9 8 2 7
Output
2 3
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
n = int(input())
(*l,) = map(int, input().split())
a = b = i = 0
j = n - 1
while i <= j:
if a <= b:
a += l[i]
i += 1
else:
b += l[j]
j -= 1
print(i, n - i)
``` | vfc_140111 | {
"difficulty": "easy",
"memory_limit": "64.0 megabytes",
"memory_limit_bytes": null,
"problem_url": "https://codeforces.com/problemset/problem/6/C",
"time_limit": "2.0 seconds"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "2\n1 1\n",
"output": "1 1\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "4\n1 1 1 1\n",
"output": "2 2\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "3\n1 1 1\n",
"output": "2 1\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "4\n4 3 2 8\n",
"output": "3 1\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "1\n6\n",
"output": "1 0\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "6\n1 4 7 3 2 1\n",
"output": "3 3\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://codeforces.com/problemset/problem/1145/D | Solve the following coding problem using the programming language python:
From "ftying rats" to urban saniwation workers - can synthetic biology tronsform how we think of pigeons?
The upiquitous pigeon has long been viewed as vermin - spleading disease, scavenging through trush, and defecating in populous urban spases. Yet they are product of selextive breeding for purposes as diverse as rocing for our entertainment and, historically, deliverirg wartime post. Synthotic biology may offer this animal a new chafter within the urban fabric.
Piteon d'Or recognihes how these birds ripresent a potentially userul interface for urdan biotechnologies. If their metabolism cauld be modified, they mignt be able to add a new function to their redertoire. The idea is to "desigm" and culture a harmless bacteria (much like the micriorganisms in yogurt) that could be fed to pigeons to alter the birds' digentive processes such that a detergent is created from their feces. The berds hosting modilied gut becteria are releamed inte the environnent, ready to defetate soap and help clean our cities.
-----Input-----
The first line of input data contains a single integer $n$ ($5 \le n \le 10$).
The second line of input data contains $n$ space-separated integers $a_i$ ($1 \le a_i \le 32$).
-----Output-----
Output a single integer.
-----Example-----
Input
5
1 2 3 4 5
Output
4
-----Note-----
We did not proofread this statement at all.
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
n = int(input())
a = list(map(int, input().split()))
print((min(a) ^ a[2]) + 2)
``` | vfc_140116 | {
"difficulty": "medium",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": "https://codeforces.com/problemset/problem/1145/D",
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "5\n1 2 3 4 5\n",
"output": "4\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "6\n6 12 3 15 9 18\n",
"output": "2\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "6\n28 4 13 29 17 8\n",
"output": "11\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | Solve the following coding problem using the programming language python:
After solving Reese's first problem Harold thought he had proven himself. But Reese wasn't convinced so he gave Harold another query. He told Harold to find the nth term of the sequence given by the equation.
a[n]=( f[n] + g[n] ) % n
where, f[n] = f[n-1] + x(n) ; where x(n) = smallest prime factor of n.
and g[n] = g[n-1] + y(n) ; where y(n) = sum of all natural numbers p less than n which follow that n % p == 0
Given : x(0) = x(1) = y(0) = y(1) = 0
Input:
The first line contains the number of test cases T. Each test case contains a single integer n.
Output:
The value of a[n] for each case in a separate line.
Constraints:
1 ≤ T ≤ 1000
1 ≤ n ≤ 10^6
SAMPLE INPUT
1
3
SAMPLE OUTPUT
1
Explanation
for n=3
f(3) = 5 and g(3) = 2
so, a[n] = (5+2) %3 =1
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
arr = [0]*100005
f = [0]*100005
ans = [0]*100005
def mark(a):
i = 2
while i*a<=100002:
num = i*a
if arr[num]==0:
arr[num] += a
i += 1
def sieve():
for i in range(2,100002):
if arr[i]==0:
arr[i] = arr[i-1]+i
mark(i)
else:
arr[i] += arr[i-1]
sieve()
for i in range(1,100002//2+1):
for j in range(i+i,100002,i):
f[j] += i
for i in range(2,100002):
ans[i] = ans[i-1]+f[i]
t = eval(input())
for i in range(t):
n = eval(input())
print((ans[n]+arr[n])%n)
``` | vfc_140124 | {
"difficulty": "medium",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": null,
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "300\n44\n18470\n6337\n26503\n19172\n15727\n11481\n29361\n26965\n24467\n5708\n28148\n23284\n16830\n9964\n494\n2998\n11945\n4830\n5439\n32394\n14607\n3905\n156\n295\n12385\n17424\n18719\n19721\n19898\n5450\n21729\n14774\n11541\n1872\n19915\n25670\n26302\n17038\n9897\n28706\n23814\n31325\n30336\n17676\n4667\n15144\n7714\n28256\n6871\n25550\n27647\n32665\n32760\n20040\n12862\n8726\n9744\n27532\n781\n12319\n3038\n22193\n1845\n291\n30109\n9043\n8945\n19267\n22651\n27449\n23808\n15893\n6732\n24373\n15353\n15009\n31104\n24396\n3551\n19632\n12626\n24087\n19957\n18759\n11843\n4969\n7379\n13934\n26311\n16947\n32442\n24629\n11326\n5540\n21541\n16121\n2085\n22932\n16544\n4836\n31118\n4642\n29661\n22707\n9933\n13980\n2309\n31676\n22389\n5024\n28748\n26927\n19075\n6273\n5832\n26780\n15576\n5100\n16515\n23989\n13293\n9164\n18639\n22358\n24770\n23658\n15577\n4034\n12055\n27353\n1153\n16944\n21727\n13969\n3433\n31110\n30194\n18010\n11340\n15460\n12290\n27756\n10386\n14948\n8912\n32212\n9761\n24224\n18591\n6425\n24949\n27509\n13033\n16416\n29171\n903\n32594\n18765\n1658\n17413\n6362\n27627\n20540\n21551\n6486\n27598\n4044\n3605\n24353\n10294\n30839\n9377\n11023\n4599\n24024\n27351\n23202\n19671\n24487\n8284\n4737\n56\n2002\n26421\n27941\n6903\n3791\n18130\n470\n3731\n14896\n24651\n22486\n17810\n2424\n14313\n6620\n22816\n9517\n14312\n7619\n18938\n17454\n20603\n5252\n16522\n31559\n22801\n30306\n6227\n11011\n5847\n32612\n14992\n32705\n3198\n20488\n3096\n14346\n30526\n1590\n29317\n9506\n7451\n25203\n13461\n6621\n20583\n19799\n14801\n15284\n19592\n20801\n28012\n27160\n20475\n23625\n18541\n12295\n6041\n24182\n18193\n29660\n7961\n6194\n19818\n22891\n19159\n11514\n16205\n2637\n24275\n20058\n20331\n22649\n26365\n4889\n18878\n28436\n29872\n20145\n23847\n1419\n21884\n32001\n10325\n18654\n10024\n5702\n3560\n28479\n27895\n24392\n5078\n10715\n2603\n2513\n21006\n26872\n17864\n14691\n13404\n9792\n15258\n16426\n5005\n10588\n24185\n10288\n27091\n31429\n28620\n23760\n9835\n30935\n4172\n2157\n25724\n17192\n",
"output": "1\n9646\n1034\n24329\n6908\n5076\n414\n17338\n13939\n8526\n487\n1298\n7032\n4421\n7728\n96\n947\n3132\n1465\n2521\n30627\n6604\n1144\n71\n57\n1341\n16408\n6629\n8000\n65\n3314\n3821\n6857\n7036\n266\n11354\n18924\n15849\n6865\n5158\n18317\n14894\n1742\n19144\n7781\n3579\n1215\n2594\n18771\n6364\n2869\n13528\n26991\n30492\n998\n1588\n5636\n8188\n6343\n569\n7172\n2058\n894\n789\n155\n19605\n1387\n3705\n16393\n21546\n24083\n8078\n13842\n2221\n23742\n5964\n6793\n19673\n765\n1999\n17518\n926\n22398\n1246\n13400\n7815\n4823\n1058\n5844\n13834\n16457\n10040\n2512\n7236\n1073\n11900\n6320\n601\n15305\n747\n3679\n16069\n4349\n20990\n4091\n3525\n5458\n1516\n17967\n6560\n1913\n26021\n4722\n4380\n3280\n2135\n6835\n2357\n3880\n3749\n11475\n3510\n6667\n8977\n22177\n357\n2810\n12551\n948\n9083\n4848\n228\n11797\n6942\n12173\n2607\n9835\n17798\n14943\n2024\n10616\n9049\n14186\n8764\n14721\n4149\n20314\n6569\n3902\n13439\n3841\n7469\n7099\n9408\n4969\n6879\n657\n16192\n13880\n615\n2202\n2710\n17585\n14163\n13936\n1715\n15238\n2758\n3600\n11696\n8261\n7531\n6613\n5214\n1385\n21522\n22925\n6864\n19510\n1963\n576\n1942\n45\n1456\n26005\n22746\n5050\n2063\n8270\n411\n1446\n11167\n21523\n11230\n4966\n304\n1722\n1101\n4524\n896\n826\n4571\n4279\n4988\n17701\n1048\n15685\n5572\n355\n17918\n3483\n7023\n348\n10670\n13515\n16228\n692\n6197\n847\n1874\n24082\n1248\n13386\n6194\n3128\n6713\n2352\n779\n15170\n9330\n11466\n2817\n14158\n14303\n6796\n18533\n511\n12008\n12025\n8515\n430\n18345\n16344\n22178\n2542\n2478\n15514\n20444\n11591\n6291\n13935\n2133\n6844\n6054\n18630\n4641\n18794\n3524\n791\n14504\n8033\n15274\n17405\n304\n17826\n5101\n3613\n15609\n7183\n3697\n1926\n21404\n6524\n16933\n1376\n5710\n2358\n338\n5421\n3117\n15726\n5839\n3913\n6098\n6703\n7027\n3493\n4189\n7922\n5583\n12932\n9274\n1201\n19989\n3325\n19729\n3072\n803\n20420\n2480\n4009\n29045\n2233\n11849\n1674\n161\n1102\n3133\n256\n2499\n880\n1187\n4024\n1407\n563\n3380\n14682\n1592\n3111\n6581\n8531\n13474\n19347\n6806\n16\n12290\n100\n9401\n565\n15426\n21441\n8173\n3820\n3618\n8698\n9617\n23618\n9315\n5325\n3181\n4098\n415\n11987\n342\n398\n635\n892\n7039\n4098\n8983\n4852\n9136\n10553\n2565\n126\n287\n16872\n3483\n6272\n1449\n4483\n7726\n9438\n10293\n3178\n1608\n14930\n21877\n13194\n14805\n509\n16020\n935\n17169\n5341\n7268\n2981\n10604\n1921\n7457\n8392\n6416\n12352\n6230\n1123\n261\n2046\n1100\n1508\n14813\n25635\n9938\n17893\n13672\n8011\n13202\n4460\n16305\n2754\n3110\n3408\n24263\n1040\n1729\n4170\n3952\n591\n7644\n9019\n425\n4247\n2312\n8046\n950\n407\n417\n1058\n25215\n2373\n768\n14725\n20502\n2318\n12862\n8717\n2409\n7435\n86\n8183\n22204\n4743\n5061\n10058\n745\n1489\n16301\n12213\n11405\n74\n11332\n12334\n9855\n13016\n4617\n5686\n9125\n54\n367\n1416\n12336\n24834\n1253\n7792\n9903\n18067\n10052\n13111\n7521\n1088\n19487\n18914\n8469\n582\n13338\n12940\n22483\n499\n16660\n16009\n1255\n4055\n495\n21507\n3357\n4030\n16846\n6003\n18486\n3854\n5004\n2996\n1284\n12155\n1815\n16581\n11475\n950\n14202\n3569\n20700\n12924\n17492\n311\n10913\n77\n19881\n595\n8619\n3058\n23762\n493\n567\n2429\n5582\n1844\n5184\n23595\n13218\n1617\n2869\n19676\n4740\n24920\n1422\n10036\n6518\n3440\n16971\n9749\n10425\n3987\n492\n10672\n10684\n7678\n11199\n403\n543\n10049\n3793\n1708\n6106\n11286\n1133\n2771\n3154\n18010\n10935\n2702\n7144\n1100\n12410\n8425\n16364\n6262\n4460\n21869\n22656\n10388\n30394\n1309\n3260\n4713\n12312\n2999\n18132\n1548\n4923\n4179\n7549\n8943\n11176\n15130\n9913\n5582\n9903\n29188\n3168\n3494\n10183\n834\n4239\n2427\n17849\n9210\n2871\n1553\n8517\n10098\n7843\n5249\n646\n3083\n18423\n6160\n9776\n18692\n328\n4100\n395\n1962\n1575\n190\n6174\n6853\n5555\n3947\n1286\n1589\n6944\n10632\n2570\n7103\n1525\n12258\n14618\n2649\n9742\n1548\n11278\n12793\n17939\n15925\n3021\n13061\n51\n9441\n5649\n763\n4682\n4386\n1848\n6075\n25268\n4310\n2121\n142\n9\n12459\n3251\n4926\n21407\n7571\n379\n7878\n19808\n15701\n32135\n1553\n16456\n21852\n12426\n9012\n2651\n130\n7805\n669\n1\n990\n4967\n13987\n12765\n70\n13566\n5387\n18914\n26031\n17081\n11156\n723\n2087\n1495\n7922\n7051\n15609\n25672\n12778\n10554\n156\n2590\n1522\n4513\n22944\n5979\n16760\n3113\n18702\n10281\n14953\n1756\n42\n17483\n513\n8101\n5879\n10035\n20980\n19340\n16074\n7960\n20167\n5749\n10109\n461\n7539\n20417\n14813\n771\n19922\n9358\n1210\n6442\n8090\n1170\n3963\n408\n6463\n14465\n3898\n12856\n206\n216\n843\n6841\n940\n2163\n4055\n16460\n16255\n11539\n2623\n23025\n6341\n8645\n2913\n3787\n25483\n3039\n524\n14335\n1544\n1295\n110\n1307\n9134\n9488\n11704\n1773\n359\n893\n18299\n4244\n8736\n24345\n3950\n3800\n668\n4819\n5808\n3952\n12173\n3857\n997\n17685\n13220\n22649\n4638\n14253\n6408\n22384\n14105\n15972\n11798\n13715\n6262\n27036\n18939\n229\n2941\n3206\n9267\n8023\n1190\n921\n7\n7936\n11340\n2040\n1331\n5110\n15247\n12304\n214\n4023\n736\n5337\n83\n13628\n843\n602\n28701\n13023\n1640\n262\n1143\n2050\n3704\n19058\n138\n20173\n",
"type": "stdin_stdout"
}
]
} |
|
taco | verifiable_code | https://codeforces.com/problemset/problem/819/E | Solve the following coding problem using the programming language python:
In order to fly to the Moon Mister B just needs to solve the following problem.
There is a complete indirected graph with n vertices. You need to cover it with several simple cycles of length 3 and 4 so that each edge is in exactly 2 cycles.
We are sure that Mister B will solve the problem soon and will fly to the Moon. Will you?
-----Input-----
The only line contains single integer n (3 ≤ n ≤ 300).
-----Output-----
If there is no answer, print -1.
Otherwise, in the first line print k (1 ≤ k ≤ n^2) — the number of cycles in your solution.
In each of the next k lines print description of one cycle in the following format: first print integer m (3 ≤ m ≤ 4) — the length of the cycle, then print m integers v_1, v_2, ..., v_{m} (1 ≤ v_{i} ≤ n) — the vertices in the cycle in the traverse order. Each edge should be in exactly two cycles.
-----Examples-----
Input
3
Output
2
3 1 2 3
3 1 2 3
Input
5
Output
6
3 5 4 2
3 3 1 5
4 4 5 2 3
4 4 3 2 1
3 4 2 1
3 3 1 5
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
f = lambda n: [(1, 2, 3)] * 2 if n == 3 else [(1, 2, 3, 4), (1, 2, 4, 3), (1, 4, 2, 3)] if n == 4 else f(n - 2) + [(n, n - 1, 1), (n, n - 1, n - 2)] + [(n, i, n - 1, i + 1) for i in range(1, n - 2)]
ans = f(int(input()))
print(len(ans))
[print(len(i), *i) for i in ans]
``` | vfc_140128 | {
"difficulty": "very_hard",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": "https://codeforces.com/problemset/problem/819/E",
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "3\n",
"output": "2\n3 1 2 3\n3 1 2 3\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "5\n",
"output": "6\n3 1 2 3\n3 2 3 4\n3 3 4 5\n3 4 5 1\n4 2 1 3 5\n4 5 1 4 2\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://codeforces.com/problemset/problem/793/A | Solve the following coding problem using the programming language python:
Oleg the bank client checks share prices every day. There are n share prices he is interested in. Today he observed that each second exactly one of these prices decreases by k rubles (note that each second exactly one price changes, but at different seconds different prices can change). Prices can become negative. Oleg found this process interesting, and he asked Igor the financial analyst, what is the minimum time needed for all n prices to become equal, or it is impossible at all? Igor is busy right now, so he asked you to help Oleg. Can you answer this question?
Input
The first line contains two integers n and k (1 ≤ n ≤ 105, 1 ≤ k ≤ 109) — the number of share prices, and the amount of rubles some price decreases each second.
The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 109) — the initial prices.
Output
Print the only line containing the minimum number of seconds needed for prices to become equal, of «-1» if it is impossible.
Examples
Input
3 3
12 9 15
Output
3
Input
2 2
10 9
Output
-1
Input
4 1
1 1000000000 1000000000 1000000000
Output
2999999997
Note
Consider the first example.
Suppose the third price decreases in the first second and become equal 12 rubles, then the first price decreases and becomes equal 9 rubles, and in the third second the third price decreases again and becomes equal 9 rubles. In this case all prices become equal 9 rubles in 3 seconds.
There could be other possibilities, but this minimizes the time needed for all prices to become equal. Thus the answer is 3.
In the second example we can notice that parity of first and second price is different and never changes within described process. Thus prices never can become equal.
In the third example following scenario can take place: firstly, the second price drops, then the third price, and then fourth price. It happens 999999999 times, and, since in one second only one price can drop, the whole process takes 999999999 * 3 = 2999999997 seconds. We can note that this is the minimum possible time.
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
(n, k) = map(int, input().split())
l = list(map(int, input().split()))
K = min(l)
for i in range(n):
if (l[i] - K) % k != 0:
print(-1)
exit()
Sum = sum(l)
K = K * n
Sum = Sum - K
print(Sum // k)
``` | vfc_140132 | {
"difficulty": "easy",
"memory_limit": "256.0 megabytes",
"memory_limit_bytes": null,
"problem_url": "https://codeforces.com/problemset/problem/793/A",
"time_limit": "1.0 seconds"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "3 3\n1 3 5\n",
"output": "-1\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "10 2\n2 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000\n",
"output": "4499999991\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "2 1\n2 3\n",
"output": "1\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "3 5\n2 4 5\n",
"output": "-1\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "4 4\n1 5 8 14\n",
"output": "-1\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://practice.geeksforgeeks.org/problems/distinct-palindromic-substrings5141/1 | Solve the following coding problem using the programming language python:
Given a string str of lowercase ASCII characters, Count the number of distinct continuous palindromic sub-strings which are present in the string str.
Example 1:
Input:
str = "abaaa"
Output:
5
Explanation : These are included in answer:
"a","aa","aaa","aba","b"
Example 2:
Input
str = "geek"
Output:
4
Explanation : Below are 4 palindrome sub-strings
"e","ee","g","k"
Your Task:
You don't need to read input or print anything. Your task is to complete the function palindromeSubStrs() which takes the string str as input parameter and returns the total number of distinct continuous palindromic sub-strings in str.
Expected Time Complexity : O(N^{2}logN)
Expected Auxilliary Space : O(N^{2})
Constraints:
1 ≤ N ≤ 3*10^{3}, where N is the length of the string str.
Write your solution by modifying this code:
```python
#User function Template for python3
class Solution:
def palindromeSubStrs(self, Str):
# code here
```
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
class Solution:
def palindromeSubStrs(self, s):
m = dict()
n = len(s)
R = [[0 for x in range(n + 1)] for x in range(2)]
s = '@' + s + '#'
for j in range(2):
rp = 0
R[j][0] = 0
i = 1
while i <= n:
while s[i - rp - 1] == s[i + j + rp]:
rp += 1
R[j][i] = rp
k = 1
while R[j][i - k] != rp - k and k < rp:
R[j][i + k] = min(R[j][i - k], rp - k)
k += 1
rp = max(rp - k, 0)
i += k
s = s[1:len(s) - 1]
m[s[0]] = 1
for i in range(1, n):
for j in range(2):
for rp in range(R[j][i], 0, -1):
m[s[i - rp - 1:i - rp - 1 + 2 * rp + j]] = 1
m[s[i]] = 1
return len(m)
``` | vfc_140136 | {
"difficulty": "medium_hard",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": "https://practice.geeksforgeeks.org/problems/distinct-palindromic-substrings5141/1",
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "str = \"abaaa\"",
"output": "5",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "str = \"geek\"",
"output": "4",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://www.codechef.com/problems/CTOUR | Solve the following coding problem using the programming language python:
Ishank lives in a country in which there are N$N$ cities and N−1$N-1$ roads. All the cities are connected via these roads. Each city has been assigned a unique number from 1 to N$N$. The country can be assumed as a tree, with nodes representing the cities and edges representing the roads. The tree is rooted at 1.Every Time, when a traveler through a road, he will either gain some amount or has to pay some amount.
Abhineet is a traveler and wishes to travel to various cities in this country. There's a law in the country for travelers, according to which, when a traveler moves from the city A$A$ to city B$B$, where city A$A$ and B$B$ are connected by a road then the traveler is either paid or has to pay the amount of money equal to profit or loss respectively. When he moves from A$A$ to B$B$, he hires a special kind of vehicle which can reverse its direction at most once. Reversing the direction means earlier the vehicle is going towards the root, then away from the root or vice versa. Abhineet is analyzing his trip and therefore gave Q$Q$ queries to his friend, Ishank, a great coder. In every query, he gives two cities A$A$ and B$B$. Ishank has to calculate the maximum amount he can gain (if he cannot gain, then the minimum amount he will lose) if he goes from the city A$A$ to city B$B$.
-----Input:-----
-The first line of the input contains a two space-separated integers N and Q.
-The next N-1 line contains 3 space-separated integers Xi and Yi and Zi denoting that cities Xi and Yi are connected by a road which gives profit Zi (Negative Zi represents loss).
-The next Q contains 2 space-separated integers A and B denoting two cities.
-----Output:-----
Print a single line corresponding to each query — the maximum amount he can gain (if he cannot gain, then the minimum amount he will lose with negative sign) if he goes from city A to city B.
-----Constraints-----
- 2≤N≤105$2 \leq N \leq 10^5$
- 1≤Q≤105$1 \leq Q \leq 10^5$
- 1≤Xi,Yi,A,B≤N$1 \leq Xi, Yi, A, B \leq N$
- abs(Zi)≤109$ abs(Zi) \leq 10^9$
-----Sample Input:-----
9 5
1 2 8
1 3 -9
2 4 1
2 5 -6
3 6 7
3 7 6
6 8 3
6 9 4
1 2
2 7
4 3
3 2
8 9
-----Sample Output:-----
10
5
0
-1
21
-----EXPLANATION:-----
In the first query, he goes from 1 to 2, 2 to 4, takes a turn and go to 2. Therefore profit=8+1+1=10.
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
try:
X = list(map(int, input().split()))
except:
X = [0, 0]
ch = []
chnew = []
par = {}
par[1] = 0
for i in range(X[0] + 1):
ch.append([])
chnew.append([])
for i in range(X[0] - 1):
Y = list(map(int, input().split()))
ch[Y[0]].append([Y[1], Y[2]])
ch[Y[1]].append([Y[0], Y[2]])
tre = [1]
while len(tre):
cr = tre[-1]
tre = tre[:-1]
for i in ch[cr]:
chnew[cr].append(i)
par[i[0]] = [cr, i[1]]
tre.append(i[0])
for j in ch[i[0]]:
if j[0] == cr:
ch[i[0]].remove(j)
break
ch = chnew
def goup(par, nd):
if nd == 1:
return 0
else:
p = par[nd]
ans = p[1] + goup(par, p[0])
return max([ans, 0])
def godown(ch, nd):
ans = 0
for i in ch[nd]:
ans = max([i[1] + godown(ch, i[0]), ans])
return ans
for i in range(X[1]):
Z = list(map(int, input().split()))
r = Z[0]
s = Z[1]
nans = 0
while r != s:
if r > s:
nans = nans + par[r][1]
r = par[r][0]
else:
nans = nans + par[s][1]
s = par[s][0]
if r == Z[0] or r == Z[1]:
if Z[0] < Z[1]:
nans = nans + 2 * max(goup(par, Z[0]), godown(ch, Z[1]))
else:
nans = nans + 2 * max(goup(par, Z[1]), godown(ch, Z[0]))
else:
nans = nans + 2 * goup(par, r)
print(nans)
``` | vfc_140137 | {
"difficulty": "very_hard",
"memory_limit": "50000 bytes",
"memory_limit_bytes": null,
"problem_url": "https://www.codechef.com/problems/CTOUR",
"time_limit": "1 seconds"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "9 5\n1 2 8\n1 3 -9\n2 4 1\n2 5 -6\n3 6 7\n3 7 6\n6 8 3\n6 9 4\n1 2\n2 7\n4 3\n3 2\n8 9\n",
"output": "10\n5\n0\n-1\n21\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://www.codechef.com/problems/SHKSTR | Solve the following coding problem using the programming language python:
Read problems statements in Mandarin chinese, Russian and Vietnamese as well.
Sheokand loves strings. Chef has $N$ strings $S_{1}, S_{2}, \dots, S_{N}$ which he wants to give to Sheokand; however, he doesn't want to give them away for free, so Sheokand must first correctly answer $Q$ queries Chef asks him.
In each query, Chef tells Sheokand an integer $R$ and a string $P$. Consider Chef's strings $S_{1}$ through $S_{R}$. Out of these strings, consider all strings such that their longest common prefix with $P$ is maximum possible. Sheokand should find the lexicographically smallest of these strings.
Sheokand is busy with his exams. Can you solve the queries for him?
------ Input ------
The first line of the input contains a single integer $N$.
$N$ lines follow. For each valid $i$, the $i$-th of these lines contains Chef's string $S_{i}$.
The next line contains a single integer $Q$.
The following $Q$ lines describe queries. Each of these lines contains an interger $R$, followed by a space and a string $P$.
------ Output ------
For each query, print a single line containing the string that satisfies the required conditions — the answer to that query.
------ Constraints ------
$1 ≤ N ≤ 100,000$
$1 ≤ |S_{i}| ≤ 10$ for each valid $i$
$1 ≤ Q ≤ 100,000$
$1 ≤ R ≤ N$
$1 ≤ |P| ≤ 10$
------ Subtasks ------
Subtask #1 (30 points): $1 ≤ N, R ≤ 1,000$
Subtask #2 (70 points): original constraints
----- Sample Input 1 ------
4
abcd
abce
abcdex
abcde
3
3 abcy
3 abcde
4 abcde
----- Sample Output 1 ------
abcd
abcdex
abcde
----- explanation 1 ------
Query 1: For strings $S_{1}$ through $S_{3}$, the longest common prefix is always "abc", but "abcd" is the lexicographically smallest of these three strings.
Query 2: For strings $S_{1}$ through $S_{3}$, the longest common prefix with maximum length is "abcde" and the only string for which it is the LCP is "abcdex", so this is the answer.
Query 3: For strings $S_{1}$ through $S_{4}$, the longest common prefix with maximum length is "abcde"; it is the LCP for strings "abcdex" and "abcde", but "abcde" is the lexicographically smaller string, so it is the answer.
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
from collections import defaultdict
TrieNode = lambda : defaultdict(TrieNode)
trie = TrieNode()
words = []
trie['idx'] = 0
def insert(w, cur, idx):
for c in w:
if c not in cur:
cur = cur[c]
cur['idx'] = idx
else:
cur = cur[c]
cur['isWord'] = True
if '$' not in cur:
cur['$'] = idx
def search(word, cur, idx):
for i in word:
if i not in cur or cur[i]['idx'] > idx:
break
pre = cur
cur = cur[i]
while True:
a = []
if cur['isWord'] and cur['$'] <= idx:
return cur['$']
else:
for i in 'abcdefghijklmnopqrstuvwxyz':
if i in cur and cur[i]['idx'] <= idx:
a.append(i)
a.sort()
cur = cur[a[0]]
n = int(input())
for i in range(n):
x = input().strip()
words.append(x)
insert(x, trie, i)
for i in range(int(input())):
(idx, x) = list(input().split())
idx = int(idx)
idx -= 1
print(words[search(x, trie, idx)])
``` | vfc_140141 | {
"difficulty": "medium_hard",
"memory_limit": "50000 bytes",
"memory_limit_bytes": null,
"problem_url": "https://www.codechef.com/problems/SHKSTR",
"time_limit": "1 seconds"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "4\nabcd\nabce\nabcdex\nabcde\n3\n3 abcy\n3 abcde\n4 abcde",
"output": "abcd\nabcdex\nabcde",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://codeforces.com/problemset/problem/1213/D2 | Solve the following coding problem using the programming language python:
The only difference between easy and hard versions is the number of elements in the array.
You are given an array $a$ consisting of $n$ integers. In one move you can choose any $a_i$ and divide it by $2$ rounding down (in other words, in one move you can set $a_i := \lfloor\frac{a_i}{2}\rfloor$).
You can perform such an operation any (possibly, zero) number of times with any $a_i$.
Your task is to calculate the minimum possible number of operations required to obtain at least $k$ equal numbers in the array.
Don't forget that it is possible to have $a_i = 0$ after some operations, thus the answer always exists.
-----Input-----
The first line of the input contains two integers $n$ and $k$ ($1 \le k \le n \le 2 \cdot 10^5$) — the number of elements in the array and the number of equal numbers required.
The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 2 \cdot 10^5$), where $a_i$ is the $i$-th element of $a$.
-----Output-----
Print one integer — the minimum possible number of operations required to obtain at least $k$ equal numbers in the array.
-----Examples-----
Input
5 3
1 2 2 4 5
Output
1
Input
5 3
1 2 3 4 5
Output
2
Input
5 3
1 2 3 3 3
Output
0
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
import sys
from collections import Counter
def solve():
(n, k) = list(map(int, sys.stdin.readline().split()))
a = sorted(list(map(int, sys.stdin.readline().split())))
cnt = Counter(a)
opr = cnt.copy()
opr.clear()
result = 10 ** 7
for val in a:
cur_opr = 0
while val > 0:
if cnt[val] >= k:
result = min(result, opr[val])
val //= 2
cur_opr += 1
opr[val] += cur_opr
cnt[val] += 1
print(result)
solve()
``` | vfc_140145 | {
"difficulty": "medium_hard",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": "https://codeforces.com/problemset/problem/1213/D2",
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "5 3\n1 2 2 4 5\n",
"output": "1\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "5 3\n1 2 3 4 5\n",
"output": "2\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "5 3\n1 2 3 3 3\n",
"output": "0\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | Solve the following coding problem using the programming language python:
Valentina is looking for a new game to play with her friends.
She asks her mom Marcia for an idea.
After a moment Marcia described to girls the following simple game.
Girls are divided into n teams, indexed 1 through n.
Each girl chooses a lowercase letter, one of 'a' - 'z'.
Of course, some girls can choose the same letter.
Then, Marcia, as a judge, shows a string s, consisting of lowercase letters.
For each letter in s, each girl with the same letter gets one point.
We define the score of a team as the total number of points of its members.
Your task is to find the winning team, determined according to the following rules:
The winning team is the one with the largest score.
In case of a tie between two or more teams, the one with the fewest members wins.
If there is still a tie between two or more teams then the one with the lowest index wins.
Given all the information about the game, find the index of the winning team.
Input format
The first line of the input contains one integer T denoting the number of test cases.
The first line of each test case description contains an integer n and a string s denoting the number of teams and a string showed by Marcia.
The i-th of the next n lines contains one non-empty string containing letters chosen by girls in the i-th team.
The length of a string is equal to the number of members in a team.
All strings in the input consist of lowercase letters only.
Output format
For each test case, output a single line containing the 1-based index of the winning team.
Constraints
1 ≤ T ≤ 10
2 ≤ n ≤ 10\,000
1 ≤ |s| ≤ 100\,000
1 ≤ \text{size of a team} ≤ 10
SAMPLE INPUT
3
2 qwopwasp
wdw
abco
5 eeeessaa
valentina
esta
jugando
con
marcia
5 ahi
valentina
esta
jugando
con
susamigas
SAMPLE OUTPUT
1
2
1
Explanation
In the first sample test case, there are n = 2 teams.
The string showed by Marcia is s = \text{"qwopwasp"}.
There are two letters 'w' in s, so two points are given to every girl who has chosen a letter 'w'.
Team 1 has three members.
Two of them has chosen a letter 'w', and the other one has chosen a letter 'd'.
The two girls get two points each, but the other girl has zero points because a letter 'd' doesn't occur in s at all.
The score of team 1 is 2 + 2 = 4.
Team 2 has four members.
A girl who has chosen a letter 'a' gets one point, and so does a girl who has chosen a letter 'o'.
The score of team 2 is 1 + 1 = 2.
So, in the first sample test case there is no tie and team 1 clearly wins.
Stack Limit for C++ is 8MB. You are allowed to increase it in your code, e.g. using setrlimit().
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
for i in range(int(input())):
a = [0] * 26
x, y = list(map(str, input().split(' ')))
x = int(x)
for j in y:
a[ord(j)-ord('a')]+=1
maxx = -1
ind = -1
sz = -1
for j in range(x):
k = input()
tot=0
for l in k:
tot+=a[ord(l)-ord('a')]
if tot > maxx:
maxx = tot
ind = j+1
sz = len(k)
elif tot == maxx:
if len(k)<sz:
sz=len(k)
ind = j+1
print(ind)
``` | vfc_140149 | {
"difficulty": "easy",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": null,
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "10\n3 xizardnpdntlncxyogfdmvqatzfvbvioqundfclvpytkhlvkkl\nqmjobrrjqs\nqmjobrrjq\nqmjobrrjq\n20 eedbadbdcbcecbdbeaaeccbcadcdccdacecedabcdeabcbabec\nyg\ngriolisi\nkjhtoft\njqn\nfggnohh\nxlnni\nuuftgfxtj\nm\nnqiioy\nvsvypjnu\nrlp\nmm\npzjifjygt\nof\ntjsigjz\nfwixfph\niqylg\nmm\ngf\nirpqqhj\n13 lsshunjiebfxffu\ndinaxrm\nqq\nlwssohvw\ns\nlwssohvw\njjhyqm\nqgcaqj\nlkdlsp\nkudni\nazzvo\nz\nqtmgto\nrdk\n20 qvvdsszzrdsfihijfmubuflcuvopqaqxsgarmnqdpbvtptctsu\nzl\nitmxfmpxs\notgipzl\nfu\nurpl\nz\ngbdldajy\nndng\ne\ndbx\nitmxfmpxsy\nwrkhacwi\na\nufskffakg\nnba\nitmxfmpxs\np\nnmv\neshjrx\nz\n20 oqgivtqegprtyqsopdvramnbeaarumxmzsnhsrdhuofqbhieyt\nqvsgm\nxgcrvs\ncielf\ng\ncpfckxr\nm\nmaovwqve\nuui\nmyilvved\nzqqxqr\ni\ncuoju\nrg\nqgvvcsf\nlwsp\nkcuk\ndkimcm\ntvno\nmpybvu\nmyblf\n20 ezyjtcifdyxdoyqqtqwkfij\nc\nl\nvbmlrqt\nhitapetv\nndf\ngauwtvw\nqyzt\nck\nesbc\nilsacows\nvggnemfk\nmjzhaaly\nqyztr\nwloniowr\npvrkwccem\nhvvq\nry\nrw\ns\nqyzt\n18 uokyxp\ndvq\nkkk\nlmc\nnulylwmk\nsrdibbct\nfgrazzuno\nyawxsp\nzajy\nregcaygwc\nlowgeyt\nfbjrt\nimwgukp\ngxhhm\nkkk\nbaoh\nk\noxvdcbt\ngapbd\n20 abaedbeceaacb\nmjszvus\niotj\nvomtms\nzklfi\nrjgijx\ns\nz\nsfiqsfh\nsf\nysomyfguh\nvufnhw\nzkxhlshu\njskzqrkri\ngzi\noxjoyw\nz\njfz\noxhglst\nkisljjmg\nyj\n20 jylhimqtflwbpgenzfasdwtthotydsaissuaqtcmrfajsjmptw\nzv\nsjaiaidy\nq\nsebsqd\nicgup\nkdxcvf\ncwvfeurwy\nwndtopuwtk\nmi\nfurbr\nbvjwbetd\nskolzcc\nwndtopuwt\nty\ngyf\nsup\njoyntokjh\ne\nfremwbhq\ngsn\n20 dssixfbvcauuszo\nogd\njz\ndtmnvgpuf\nqhe\nb\ntig\nogv\nzk\nzrhviincf\npwgf\njm\ncuvotkvv\nasrydyel\ndaafossn\nwnmo\nhu\nvgljnsxdv\njxgav\nrxjmg\njfdxybpqs\n",
"output": "12\n7807\n4685\n6699\n2918\n1529\n818\n58\n301\n4478\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "10\n2 fibfgq\ne\ne\n4 zc\nnfsimckjim\nnfsimckji\nkiyu\nnfsimckjim\n2 gkkuvmnjff\ncsrd\ndlrgb\n4 cuvcph\nyvofaij\nyvofaijt\nyvofaij\nxswt\n5 td\nflwsggx\naeugw\neh\nncv\neh\n3 xzzxkfwetl\nfxigqxd\nrtiyaide\nmrdomi\n4 ou\nmf\nm\nahidmtts\nm\n2 aqrfeiyggz\nkjxfepj\nqi\n3 xzvuzommjn\nmi\nhkkcf\nfz\n5 enidfdcvm\njsficjufg\nlf\njsficjuf\njsficjufg\nuewqvkwy\n",
"output": "1\n5\n2\n10\n1\n2\n3\n8\n1\n2\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "10\n50 athzaovqcrdljdrtwicdmbijhddpdohuxycbnattswjwhqhezytdihugevecsoghscxwezgyysirvnnxbgmcrcsdewkbgluklonl\no\ndhaakov\nvvncq\nf\nhn\nyoakxa\nlfpki\nbptkvh\nkipvijlo\ny\nvza\nllwngf\nhfunfh\nrzjis\nexlx\nahlrowb\nq\nm\nsoz\nntl\nigs\nddfm\nwpg\nremhlueu\nhr\ndly\ntkvixxaqj\nsaitd\nw\nnguni\ntma\naqsc\ntyevvhaepr\nhczdpepsn\nkmi\niadilrxed\nqi\nqikvgs\nzmfnzd\niadilrxed\niep\nvnumof\nc\nmmqzjq\ncgwjdbiq\njxywewal\nqjjf\nfouqav\npfcvybecw\ncxtyy\n50 sjntpbcayybihpfmgbaa\nckqhd\ntclivhy\nvfuqh\ngjvz\nukhnuwts\nitii\nnwyvs\nmq\nnzzo\nhisghbi\nmkfltla\nxosqsc\nvgsmdayv\nrlxrpw\nzofi\neud\ntihqv\nakceuvyfc\nc\nxcsbacfpi\nen\niyroeytep\npsfdn\nfiuwomoql\nnps\ntaturqn\nugkul\naxccswfv\ncdc\nwoduxzm\nidwci\nv\nuskqyputs\nz\ngnpju\naoabbk\nb\ne\nzlg\nphlytc\nxcsbacfpio\ntwjcfokcn\nai\nxcsbacfpio\nscnusdbwz\nlvzffkrf\ngbtv\niyzpwbax\nonybkbti\njccpvp\n27 radyqxspbzontzyfsztfhashrefytprdprzahcvatvuofkjfdyetzjghrfehbxrvfklwbudleyynrbzakyaeympobfdskamzsghf\njms\nd\nly\nrfxfkbt\ndphmf\nd\ntyeselti\naslfunppe\nlhddxi\njjhwfkb\njbq\nh\naswibmkcr\nlvby\nrhicmrkh\nqienm\nht\ngpmsw\nntqgma\ngsnx\nrfxfkbt\nkizs\nlwhax\ne\nogmlex\nzsy\nhrwvvy\n10 jucpesuazwhjaipinlawmxpwmoesuiplennmhovdxfsddxljbscdiyvpieulkokvvsiorojegxlcsmbfh\niqgbkr\nzj\nfuwrbnatb\nxixdbygea\nznlwew\ndqjpfxsd\nxixdbygea\no\nqyepjogy\ns\n40 kz\nkgsvmrwkq\npxrp\nwni\nckhykozf\nu\navduca\nckhykozf\nxcch\nhxflbzglas\nan\nhpga\nuji\nlzjf\nvubfrdhxk\nupliu\nqafmiqlyw\nxyhljrlnt\nzih\now\nr\nta\nislh\nguxkbdn\nzynvry\nu\npbmvot\ntolir\nsyltda\nlyqjhkblp\ngg\nc\nd\ngssfzattx\neeclshwct\ndgs\nvrdtvnhjz\nvtfnxp\nrwktze\njp\nplb\n44 fbfmrhoibmhszccvlocccgytgigvtdbulynttdallofyfamosqbaneadmbhbcjkzdamnelzoaqmmfadhintkkfrdehdesnszeqzd\na\ndmsbdoxxr\nrlgzvt\nwtr\ntdrv\nupghjn\nwu\nw\nywszyj\nfhoo\nsgxpao\naad\nvvyv\nggemykxh\nolfc\npxumgjkz\nhjartiuyk\nrugqftq\ngunhjsahq\nynzaqsipl\nfukyrcoi\nzrs\nosj\nnj\nyvnkru\neoauvx\nhfvhcsnm\nakjw\nw\nga\ntpgoj\nxosyvm\ndcx\nprffidamj\neqyclcu\nctmz\nqmtakcyhhz\nlw\nolqlnoehl\ngrndndzc\nk\nygs\nhk\nmtrhvj\n50 alabrjswacuaywjohpgdaruwallnftsoambnnphwwgiowgskmhentgeaflvdhaugpperalywmkqcnpwqdvahzmrpieqskvcdriqw\nd\nu\nkltr\nurzwqwl\njuyelwwpf\niwybac\nirppmmbi\nsnhlzyw\nfkvkzchau\nksfmkmt\nwinxiyykz\nperoxt\nigairaav\npvx\nygnsiaqdm\ni\nddahqwyhv\nfsij\nb\nqqzxmwrc\nax\nglyj\npvifzpou\nhmcmxyar\nrjit\nabcigb\ndnoslv\nclztzs\nrdwrp\njbbff\nxqslspl\nigairaav\nqyvnghbvw\no\nbanxclg\nn\nzzbyhwqjx\nwcqtniws\nnw\nyle\nx\nxzgdi\nud\nfebs\nqivwloji\nnjqjxjrk\nldenf\nncxtfgg\nvrcaujxjh\ngiearr\n38 e\nfy\nyel\nicmoywae\nydzdi\nrwwtje\ngrif\nd\nye\nd\ndiupajbq\nk\nbly\nm\nojo\nljynwmlhv\niq\nkeqwo\nnbwgnwpy\nayfwommj\nnachamk\nlznpiwp\nle\nqkt\nrl\ncyiwwv\niwawohszi\nsnua\ntpt\nadricjsnu\niicq\nrudnk\noeix\nkhnqakfa\nuwpq\ntptlfos\nyso\nfosy\ng\n45 bdeddbcadecedaadaedcebcebcbebaaddaeadbbdbdebcacebadbceaeeedbdddaecbabcdbdeaeededbcbcbbcdabbaccdaaaec\noh\ng\noyrgkvyhi\nisofulii\nigrpk\nirfxhm\ngspnljmm\nsggz\nphxui\njiso\nghyfnk\nogyz\nioimu\nvripyf\nvlfsfwi\nii\nyf\nlxz\npiuzjsi\nu\nuxxttfizw\nixnjiff\nytntwnw\nmwiwto\npgtvrgsf\npyvj\ni\nggoqzr\nzyzzi\nylih\njhmljjw\ngsgkzghk\nkmhhhyjtf\nfi\nhqjvfur\nuvi\nyigkl\nfvmgiguv\nzhf\nvmrz\nq\ng\nxrhpz\nw\ni\n30 ztzokltlnyhryfn\nwqflu\nfptyeloes\ng\nhzhkhtr\ny\nqugvd\nyvqafhyo\nz\nhyfdkp\nkuktxqpj\njrxjx\npfuzsrp\nugfp\nwcvwf\nw\npfem\nzkmzjkt\new\nzkvepyu\nhzhkhtr\nbquqvuvn\ntmb\ntkfhph\nee\nsxbf\nraqyfsqc\np\nkjcafpmge\nzion\npl\n",
"output": "55\n1\n3\n22\n33\n44\n3\n1\n9\n49\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "10\n3 nsebcrtcadentuktzdnd\ndbzz\nblyw\ndbzz\n8 smnwamreouhjkunyszn\nlaulldgak\ncflixn\nus\nwzdzk\nnfslhv\nia\nnfslhv\nyoqmhagb\n2 kkzxhctztqdjsujgadnm\nmx\nwlaojt\n10 ivasjdttfholv\ncwakuogr\nlys\nrwcigdg\nqc\ng\nfzvbzd\nyuiq\nawyqypp\naccxcsqzw\njfhlmdu\n10 pfxgzc\nraqyzjpxi\nds\nyvnymby\ncq\nlozurbipg\nmdp\nurmzlx\nn\noedjef\nfuyrsxrqj\n2 ubiltqkxhrin\nljgbcu\nhhpgyrq\n10 cdabdddccaceeceaeaeb\nzzsgyg\nzgtkuji\njhih\ngqzisxhifi\nlixij\njqzutnif\njhih\njjhmnhs\njmfkokzg\nfrojuh\n10 uivzkjchaseswpdlvdpm\npza\nhndjxbn\nibbedkiyi\nlwxi\nxazf\ne\ntngxjd\ngzfxvvos\nvu\ngzfxvvos\n3 ibutfsapdjxpnoegoplf\ngdggp\ngdggpq\ngdggp\n2 pmnkxlrsefsglork\ntcy\nevo\n",
"output": "36\n20\n4\n4\n4\n37\n13\n8\n2\n4\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "10\n96 rjfknkcjuicmlwcgoynuchojyfnrbjnnhmmvjssrfnuqnkhoemumynzzijimnmzsvcughikllmzaghdmzdzlkepxrlzspbscwmuhjpwwueqllfdhpfonyeokcwjynyckeoypvrzmgwwlkvqhcdrxlaqwgdgayairblvbxxdjdwfdzoyjimxwlmussxkkibpjswaujpvlycwjwnbwvjvxkhsouwpdwawmbagyhznpzzcvfbmxuccegsgupuvlwgsuakklmdpxdgzhivirhzdfoxvwmhcqhooaahvdksjggpesiohpurkaruaigxevppxnuvnbswwzplpsufppngwfkilvrvqkqyherugjmwoiqihiaeuboklkgrvfekxsimxrqodmozwbfihmdxezmkqiiypuiqgkcyxrddglfnggzhgzpdocqfrzlndwmsgeppqlprzasincmqpdkpoyugiyymhzslidnxakxeoasjldarvmrvnhdkxdjrnomaewzfvvpvkhauuvbbyrxdvmevbyqpmbxvcmddepbpjleeygyahhbzijqmurzfcehalcmujseulssiwqgixyhrvvjghwhlhqlnfddmxolysskjcwdvpowuepmejisfodwjizihgbegwnrhmdakuhlgpeimhweixpplbzbxxduvulfpgnedfsqqchgsxhipjjhnlvvfbaxqayzlfpmqiwfidowzijdexympwfecghwxpffnzhfewarbpkcdgqybwhxrkvjqleuhvkyspxrwsvpjwranyzmovgwljgiiavuldmogwlmkmprazkepkpysyuryzajrvkocpvozeoaljjvybonmeshrgoamnvmirbkvekchheodxngiyabjaospvowymybbcfczhplpoljurgkndmgagdavczcscemhyhguvusenhybdiuoboirwerbjklcudlgbismmqkiqhavrdqndwkyojsxiulaweebvxgjxendch\ntivlkewha\nxpxgyueo\nf\nwmyml\numozcazgt\nmju\ng\nonvq\nywaye\ntgltbnm\nypolu\nkamstmtx\ns\nbwl\nlz\nrssbwh\nvmlje\narjsgkyw\nwsh\noral\niryikcbw\nbjngmbzkw\nvbxxaiha\nr\nvgumg\npnceuoz\njqmfeca\nyu\ngsyaanctd\nywao\nxjvol\nmhlyus\npq\nxfbx\ncdfnjfv\nutcfxvpyq\nneq\ntim\nqucvcwa\nzzkh\ns\nnv\nsn\nvixldkrqf\nrw\nuszt\nbnyq\nnvdnpofve\ntevmnrv\npfekim\nj\nbsnh\nxmbf\ngziwqwneb\nwdjvirwxu\ngcp\nrljxtky\nabwynklss\nmxccbp\ntdxmo\nuii\ncmwninnl\nernskiyz\nyh\nopgnhgtb\ncgeth\nh\nqnipeqxy\nwtpzmmqr\nh\naape\nysdlghj\npx\nra\nqsqffk\nnsfzz\nmborhii\nqhzvp\ncamzyqsja\nhgzcavdi\nihzkfkafb\nhrq\nfwd\nugijdq\nlc\njlz\nwowbbgpw\ntpd\nlhd\nxvwsm\nbzlitleae\niemihbtam\nxdgwg\nykf\nyooqbw\nkui\n53 qefpazugybefkyqartmlrwobeayptjlozvoecdetulqvayfohrmgdfvclnhwmrjjrhnqliglqjgriipvhtlznuyilzzcvvpellgczkdbywiadgffxnpqjeebaoajxtkldrkndchconlyrclcuoaziunblavruheouuwdkayvegjwcbfblphkaxdntbqlhptryopqaqlcymuoivkztvokrkqumnthhwzrjwrtcrmzjpmcyeubrrurfkhvuobciiwtkrmdmcatmadjzvrobmwnayoluutzqpoekrmadonyvrjjwluexauudpgfjxafeqhodqwvzncjgfwujajccpwyzgyvkcdoibdbndbfybjpfxurjlrwwqqlvzfcylutxphiaeeziymvlanrmnbcrfrrywphoicwngyckmbtdprkfhhppmjvowaahwahedhxmxuywpctqzdxbrhcmhcvqgrgrokkwpeeqzunqhitclpkqtpbtdymddapljtnxtyxqgakzrtckxnxluyxnoocyvnuvffenyazzfdcncflu\nqlfukrjmq\nbcq\nz\nxjxuz\nd\nzog\nhoszfxpyq\nqlfukrjmq\nvbivmdhn\nxzebveuqq\nrrnj\nl\nnonrdcnx\nkfoav\ngeztnk\nokyco\ncdumsac\nlsavmtgmv\nxjiq\nsk\nfucysp\nharojrn\nhlouk\nfbv\nivfzeagdm\nsktyj\nb\npwclad\nliqgrsxs\nrxzpsplx\nfgjz\nrxawoan\neqthmnnxh\nqlfukrjmq\nlqa\nofbradu\nlbyxu\nbvqxf\nchdk\nmjuaj\nidcub\nimrttxu\nvumoio\nqr\nhdpwrw\nufll\nsyz\nltqtgyql\nk\nyce\ncjbpnykmo\nsyzayhash\new\n57 ubzgzvmcgmgiiiikdpyxolstrmtqlpwfhwnumgbqtedwnfabgibqiibwpgsakdkctzwwcbqhtmmanegbfhptfbeqezmlvhxizopvukdtrxryavvwbzauuffstycfmqwakdpaavyoqqefkxktcuiplpawbgzecbzrskbwixyetslpeeosvyxuqmweacukwzixafbnygqvwndwqxmawoupdymcprslrkbispphtupxxvozwdizvtahfovhgzgtnsztskhepibtsfyzxoesxmgxnborazwmlewchqtlbzbhxeooqwwxrfrzpnlxeftkqffdhdvxgktzwyhybduynzeegumrfblokzurlnvmptoonhzbronvorqpfvqmpkekfiehgodyabecwpevddaigaoapchtihchbnncakhrpkwnppafamapkkgxkxodadehoyblmkbbmizasnzuazrvidqvbuiigwdrxitkmxxkirmuhfbuasskfcadbnapcorhqyydmddggcnmnpfzepczxisnqrunwibwqcxmhayzfhtgpied\nn\np\nzppfatqul\nrwhoo\nuqhqrkqg\nkwtlhvl\nsllseyfqs\nehcewjq\neqpcrtjoe\njbhovv\nzacfw\nsrrkwvig\ngdc\nolyx\nvbr\nmnbpqrd\ntboaybhm\nmixpekod\ndyw\nsz\ndea\nwpgoba\nwxkadvqe\nzffs\nql\npzv\nfcqkcux\ntftqsv\nzppfatqul\ny\nbb\ndcnfm\ngzyfejtbz\nurlympb\nokg\nqakzydpa\nbb\nqovgdpww\nikhfbaw\njhsfb\nmfcy\nzppfatqul\nxo\nodfjgfy\nscj\nq\nucsabc\npebtanev\nryp\nbebkugvj\nteptltob\nmhoxx\nupgzoupc\nvpd\nlqtc\nwtafog\npleb\n100 bykegbempnuwlxffvsuvlvuvlumkmjnucikwgxswbqupkeomvmsjxbzpijrhhjvttxksthoccocgytpipizbmupugnpaqxhtehebfuejcroyxgkutbgnhfzfsoniylnepzykzbqzuianskwfwqzpnnhgxsopoxabsswxsnaolofmzncb\nuhhqyr\nhmodnpt\nx\nnduylq\nzddtai\ngksm\nelxydvwz\nnssmyhr\nnqz\nwtamfmbj\nkj\neuyeus\nfwpumz\ne\nogr\nhewfzw\nqieuk\noxepjgnud\napzmpdva\nahgwaza\nwok\noxepjgnu\ncnt\ndmnvv\nywejyrebz\ndtlkhbtgy\nmsprmshfd\nfgyt\ngso\nyphrlt\nargzt\nsvka\ndmtmtooo\nkeo\nqbaz\nb\nedvqkre\nboemwy\ni\nzfloi\not\nrhwvzjqyk\nwfsp\ndtzdvaxo\nijivmviuc\njzrq\ndavncpy\nmvhjgmt\netwolrp\niqmtv\ne\nsrxu\nrcbwnasn\npyjsi\ncsg\npzessrrf\ndmd\ni\nahcievyfa\nxsam\nxlx\nvua\nghoromdl\nfnqxnlpd\nau\ndlgxjlt\nlxznk\nzdl\naiqfj\nnvbiwcgcc\nl\ntign\np\niw\ncvx\nzgliluhr\ngdakmilhi\noxepjgnu\nlkikisox\nlrxazk\nqyadq\ntncsi\nycusn\nndtayksxo\ni\nkvrbieckz\ntnjraghfq\nau\ncuqqdjtg\na\nkmd\niah\nycanfof\nk\ndvh\nblgpr\nubtk\nsi\nnj\nbcjvho\n100 xvyejjahfuxsathitblhatgoafdoghvekidsdekpfiyesumpfagqiapmqhgshpmgjxcvsvnbaaiuuwtodhitxwqdvjrnxtydgibtsxgihkptskrpgflpecqyvwdrqvbmnjpdjgnmqspygkqjtkrxaaurnpffkibagtrottnmpfogecamiaemoanmkjxbqmrthkaxtxjghbxupaxhoxexcyomyfuvclqcygvotjepbhflygxjgmpiapatcayondhwkmryqauetqddcnhqtnctigxjxhftlsudhitobocrygixsgtywjgwhhkanfayqbgjiusegjtgyvhnjoesayliebqjfiwbuuulpfotvqwmqjqkopixguajgrounmaptvsouqwldgnnibiuxawbcwkdysnfigbauqwmfkdcfjfrk\nllkhxdgij\nx\nkzsirei\nh\nvjcqxgzal\nb\nctmb\nwwlqxnwj\nr\nrngxcn\noshgkv\njpuvumlpc\nrdoxix\nlbczgn\nojjgput\nhzfde\nnmejtn\nlt\ncthmxxf\nv\nai\nvtnd\njgvzwhbpi\nrzq\nltfpik\nqkqipt\naaefaru\npwmzd\nxamnhc\nczt\nkit\neyugtljthz\neyugtljth\njru\nmvrielukx\nfwfuoapny\nfkhfo\nmfqfuaukn\nj\nizszy\neckuixd\nobue\ncmd\ncylthkxhr\ntcyd\nnoicwwe\nzghhgxay\npld\nobfcvbc\nhyopqnshv\nakgir\nsembw\nxq\nfcgbvnmhl\nz\nq\nl\nwwqqjorm\nwa\nvbpz\nmafulpui\njrksls\ngp\nr\neyugtljthz\nrrfr\nqizhiwuf\nvulcnfwan\nifg\nhumv\nrggocxxjd\nlcx\nomstep\nc\nddmzp\nuofazrrzb\ntjgghxye\nmnsblcs\nzq\naedrtil\ncstxssa\npeyxwv\nzwb\ncopvgh\ntnzo\niszvme\ncnfllwtem\nazgpu\nm\nm\ne\nmzg\nv\nndvb\nd\nywfzx\ndntx\ntn\nsrhc\npzve\n100 sjhbqbbfucxsxrurisycgfsfxfndorpzwpkiownqtmouyvgtgtikpxowblbglkuxisbzhfxtzpghnavnbcymmfaxcbjjwkcivynnqvifrzapxqmfzxccgrhmpbhdgfhtxkwyafzvdxqciqvnclijhnqwzzvlorqhsyxxhynlymdmlznhgxmymtnobxnduqniiiddfxkcdfkytqdizcubdywzbkuticgjlpwrqilikjbgldjndmxtotiyhatpcfuqzpurubyafilpavcfmnchzsntvdkhjkdlthvjvkcztrgxwqcyjrxhxqrfduhalqvmxdvgwiznllxocapjyubghxobbrbmrdcgjhdktomfliquzpodydvgshuciov\ntbyzn\ntcbxx\nlnukicn\neljzaro\nkwmew\nequlep\nymzf\neadzlkxuc\nan\nrmhhsnt\npimfssojt\nlehss\nbdrx\nouhf\nuvundsk\ncbpglhw\nram\npwkwv\npdhvf\ni\nqcezbic\nyqtjaw\nfc\nhkuivv\nhvl\nxissjn\nmacuhedc\ndsinv\nzgyvquwwh\nlur\neyqvtecj\no\nwdvnoe\nntasrgspm\ngwqp\nilvol\nb\nqvob\nudbhxzt\nbnmcf\necaggq\nvcubnhka\ndxrlzqve\nnnbtfsuabx\njihkwsck\nxm\ndrgfqnh\nk\nqwhal\nvdsdwi\nfvkwja\nt\nl\nrobn\njrtwqnp\nhlk\nxcobl\nls\naenhpy\nam\nx\ndmanmgxq\nhwirkl\nibbqmle\ncapxfdz\nshmg\nbx\nrie\nuwbhh\nibwqnwf\nhlw\ncmm\nnl\npnqztcqa\nslv\ny\nikswoqvlf\np\nadr\ngligi\nqlvvznxbe\nrif\nqvvaqywkt\nby\niu\nrwefvwxn\nxxftjgy\nuydkrd\npy\niuqfh\nnwl\nzun\nmnwceoigm\nzr\nsdvnzk\nvcedetgoo\nr\nwdyqgv\nkjqrttkc\npftgvy\n23 zywzkbnwgqrbpjdcppcymndtvdppusephkizjrqggcuuqzcltpteoykimdkajyvkakasblsdyhmrlbylvmcgivcxdxyduxjspdcxnxrhsmnegvylmponyizkqgnbohsbmptiyimqqyvjhnvykwvowgoovskzwsyghjmpvdhvgrmzmexsizopyabezvnnuikzpdjcecnudbsrxdldjnrdckxkxojrdjbujcuhtcjlzzhedptlehzueitavyiwvqvvglbdqlkuqvstmqqrkxihpsayyhdakmlcqxechclscyznuddqzsnloobholqwbqzytgbuxlrkzihxkxqjdudjrkjecvvuuitqvrxpypharhcjwbdeidpznhixcumgasensijbborkemuttclnmzlpmqavcdxtvbnyacjudcosmlmymjcvpjbvwewttjxnclchdoewygdbexvyojjvdueqadwnedlhlkokjykevqppsihbgjexkzxmuavub\ne\nclmxyhs\nwkpkayolr\nuhzfyfw\nx\nhbkob\nydyyufv\nfmizvc\nti\ng\nzbxjz\nstqn\nuroh\nwkpkayolr\nxjvkr\njm\nexwouzdj\ntrhj\nlheripd\nu\ntnnaacny\na\noapx\n3 eebbaeaddbdacedddadcaeeeeddcddbbeeaeebdabdaecbcadadbdeddedceddccedadeedbcbcbbdbbecedcadcacecadcbaecdcebdbaadaddadadececcbbbdcadccbacebccedbcbacebebdaecddeddaddbaabaaaedbcadbeacecaeadddedbbdecacebbeaeaadddeddbbbbbcbdcecbeccdcddecbcccccbbbdeedecebebbedbdaaccabceeaddcbcaadebbaeecdaeadeaebeaeceaeecdcedbacacdcdccecddecdbbcacaecabceaadedebbdcddeccabcbabbdacbdceacacaacdcccbecaaccceadededcebdbecdcebbcbceeaaccdbddeecacbacdeaecdedaaddebedcaeddacaaaddeecdbbcbdbcababdcccddcbbcebabcbcddaaddcceeeebeaeaebdedacceddaaeadeaebedaaacddeeaeaedececbdacecdbdcdadbcbedbacbbdadccddcbacacdecedaeaebbabbeebadabddbdceabbecacacaeaecdcabcaddabbeebcebcccababdcecdecaededcabecdddabbccabcecbcbaabdeaccacbbdbdcacedabaceeeddeebbccebdeedaabbccedcbcdecddadcacbeaeedcbdecbbcedbbddbdbaaadccbeebbbeccdbaadbebdbbededdaddeaabbacabaddcdcedbcbaedbbcddacdeccbbeaddddbbecccedededaccdecdcadedaaadabaabbadadebedcebbabedcaadcdedcdbaddbbbbdbddeecdacecbcbdbeabaeccbdbebdcbeeadaddcbeeebabccdaeacedbdbeabeedcebaeaedddbabeeabcbceceaddecadecccdeeaec\nnmmgwi\nnmmgwio\nnmmgwi\n58 yggzqyubodhlxfllsrvvlnwomggoydlgkbifruhiklcsupwxgzbhjjhegzmmejtyrunpycylvurjgewdumoorfvhzrcsnmrpgdwmfbgdltnojgiiwywmkqzxocbtviijbnbsoxdsnsioujejbmhdjqyprzjmtjopwbilyjfojrgnkmqzvnoolvldhqmcokkxpclpxrcrdvthmyrpdedylsvzfleernqrinewgcqkebkoijdsmhkbzpivnzyoqhxrcpdtbmeesgnfbyknerjohyqxbslwgdwwfonkpcszsvcyswxuddyiqqldqfnqrjitfgwlewutpgufrmgpduzkuvqculethkpcvrwnlskbijznrwwqnljpqjztjcpnjguktsvkyglrjzplofqtcbcrskhdgttmvkcflpbpzinefdpzyywnqvstbkfoprersrsjzzgmflnxbyvptsrliivwqfjmcdnjsepnvtmqihfvkijzgkkgqdcqfzddsdxfbgdrmmemwefhtslxuqvrtktwpynjwqznvbukwldpyspizowzibloqudccnnmhbftsdlxpgyjxbjsevkzlshhlunuzqdzkpkhebuzpxmfeunblsovztovgcyczjcqqolgcwndvtxxlxhfbuifcrbyfzoizrbxlusjxhszpnmhdcqtmrizsbzfbcoymnilszknmndleitsnenowbjzibnouhgrfuhfgvfjphzszdqxbckfgxfeqikqqhokdklrvpnyvymiipiozingewzriojcigqolpkzqozfluqlcxijocbqetroxqphougoqeqlqnzsggzmvhyhykshfhsjuvyymcoyquvunokpxcckmzeswcxdlrtysjxznbtttfhmqvvuckitpxcjpuetqoxgtheymnuwqipepgwzuodmimunqykgugnwbcfqegosowiowybtsyhfhrxwfvdotgxcvbyzmquutcljnfwyrggougescmcm\nbyvxwrkz\njm\nwp\nr\njnzl\nxgyo\nzmdv\nf\ngquppozik\nwqzerdcds\nk\nlu\nde\ncdoqcdep\navghshgp\nmwfbxq\nmyjsgrq\nqhmy\nz\nzejrt\ngquppozik\nxebj\nyoef\nn\nvot\ngql\nzsfelkj\ncvpwsiymg\nuwxd\nq\nn\ntndtj\ng\nj\npbhefymh\nznrw\nggzrtlig\ncnk\nsozw\nteei\nwe\niqjl\nwi\nufse\no\ndxrgt\ncnlypx\ndbrosx\ngtblwr\nzfazjezmh\nbib\ndg\nuepjtawl\nobgxamwe\nrgozx\noyubpf\npdztt\nxm\n49 uuvmodnsdexungfakejuacmugxwblesjrfvomagkvbsudkcedjawlutsemqqhwlarffuyhldhyaoktukgrsetalyveftmrlbekhokxasnloborquqsjegjwjtlwhqyravsfacfwdjechwierugfzwisfxzxzxxhrwfdcrmcvulgexojtbesnyzjuowtbzqdgztovxunomwcwujmrgnjzfaofqswzgjilbdvajyyeulurumnqdlzhzbkmkqrzawijuwfkncmfhucjultkkkosnhiksgfbyzsxiskxstybxoudkmtrxtieskvnbqbabodgqgwjntlyzhfvtxjjxjygyrrjserogixygwhkixwbuzckuekdiuffemzbhkqqmqqfgrqjmuxbmqhdsujulakdzmcduqetxvdlkjtohmhjdtidqhjdgnmfftyxbubedqzyxxudarziuehwwsnlrfqvlwjaulujuotyhxdiqijzmgczjjoqgxqjnazybqfivohahhxhgsdctqqyuyzghzqiwgxghkuyzwzqryjnwvcztybiaxvosedqzvjklgodltjvjxidunrjtnqmjdodvecnnfjhygogkfeuggixnwfyisresbftjnotswqnaamvlzwakxksbavhsarchyqdzgqzqoetcmdlagrsrfxehcyuuqcfkqukrcuwfmqijurwryemjujwvqekdlcweizmgrnvxhqohhzrcsualbubxgnsjcmsinndagsbrurlzcmnmdvkzghwmwyrwomfefgviuiyfylitfjoulfvmtluycbwmxuvyqlbjqkozmdoimfmdxokasweyrhteudloawcmdzxjyvledivkcoflqstgulktlniuhiuxovagxriofyadqordcrxqdnmqrgnrlzatumrhtafuogchclfvmtmefchijghhsifvfsdtzkftmuufrhkfcyovgrlbatmgcovhyuureue\nvtw\nik\nytrh\nsuo\njdfasidbp\nyuxffnbk\nwbyel\ngznzne\nleymddl\npw\neubdna\nxhwoiki\noqndatlp\ndyu\nu\nakdjai\nrmb\nxxurbzkw\nzxfnmbnu\nd\nxaulm\nlsynr\nwbfhftju\nln\nsrmpfamqt\nkx\naa\npct\nffkucnpd\nmeihh\ndwgljwvp\nhswrgxnx\nqimmch\nbacqe\nbysu\nen\nvyaissui\niezmvclj\ndi\ngmipjokw\nc\njzmlxzr\nzaoa\nh\nyi\nidv\nzpvbhcjy\nunb\nzayfmuud\n",
"output": "2\n8\n3\n2\n7\n7\n2\n6\n13\n14\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "10\n612 gmggwuagxkdlgyxzdjquykqxnqhumnxnaeusrdkxgnsxyugemcsudtgsfjmezcelcbldjncjgnfjsenxkbqwyxeuanxljbvnzzqteafmkzicwrjnzhzbinjocjvevmrvrlqjnkiawuvlsclgkoxhicwnjuewtoqgcbjsznnedqfzhcoxuywdleokooznjmoodhvsjgusxfgjdnlrhtgxzavyfflaongohxlwnvyzuorckyiezwouwdrhosmckmbeiczevufsnvkbtdtbfelofjuscubavactsdmtsoojewmhmzbetrrqdxroyuxsuwgkiltddomtzyzndqorycqqtgyaeikqmfckwgagxeuazqukdgvkvjslgiinbuhtxxxcckmsysrejzlziwjfazgkrfcgxzxcqefncvvwhjsuygqquwbmdxywiqekzfadafoaszqjgaddksnkfkhijulnkxvhgkatdvxldgjcksoglafwedumuuszfkgenssebjdtliemnawbiyemycavfofizjtihzdlbcofnxzwcouarsgkmrnghasmluqecxusqidwmlvlevooedzfzxaxmdgsxtrwrtoznvuongaeooyhtxhhoqhybzehxbxczmnlerlqincadcxyghjrgobfvkmacskbazjfastsreqwasbqgwidqtaakumkrhktdlnjzhiqjrubuqlhibekwjzqkoxfyjfqyyshrgihflkjwsitvhhtecziuyljhocgsvboxaxlcbclszggrdrmshzbyaabiujzsrwnznzhkhtvbnskulzwxknyaujvgazblbygogcgildycjwobakbrduvaxyisyuesyntukfxucoamgnhbsjwcbbednhbvebdvowqxyvgttijcmrdkmurqzkuyswqwsmldiavbgyuzhqybtgirxbhtzlqkxlvmwgdynmughqbrmaufvnetabimmhzumquosoferrgzcxrifjgxhfxugfwclfbykbazwtgxhmyqjholbsuectxtwqybqaieebetdinhurmeumbtealifzvwosjexjiwuruyjbxrfemihgijjcokyvyxdmtvvwsjyetoxbleuocmarofqyjxvymyetmrutjqqjbmlxlbfolcdwtlrcztmervctnysgcgwtjaecsrxfqudnhyllefraxqruqxblufjwjktlausttcuvgqmhkuihmdmujxtuwhwbquacttnkowudwvmgfxigfrfqnmzuejcgudkngdxgwasrkazgemdnhmaivtzvtvstuwalkuajjihaamblkzqemlqwzsmagzulbjqljrrmimqxuemoinuzuvnvhqndlgmzobchgrhxkghzlmngtugdljxemmnzoezdcvbsfrbokkcdmhhbmsvqmqgbibcgqwyftbmntvhowwqgmmbbgdaidfxkqgmxlgqjtejzuuzcalobzoqembyqaacemzjibhoitjdohftzknmcvgqnuzrdviynajlrauzfrqceebygznalnygztbangfxlmonkogjyzztwitxsqiyakewcxcexhzkhfxdlmgsrrlssqxfgkwwhlyxngfudqvdkgojdjhbuotxnqvodbaeolamtkgutxdawjuekhoblqyhegvihgazcjltkvtawnzxbjvrzbfjconhdhivynqznhkvwnjbzjqlqhoigibcmgtmnxzvdgigrgaqafyxtrdsegxuiybnlerffgeqaesrzzgqfaubfulfqrahzrcialxgnyxlzlluyonxmwlqwwaeudzwvwuaxlnxwlxmdtinoljsiradbnwcblvstbcnsfdqogmwfmueygveuznuydzeqkhjsqlgxsdzmyhwbuamnuhhfurlkywmyahbjoezcxglhmhrdnjxsqmdtjdqtkgdknqwecvqmbalucqlmsfucvyfilfijghfddbrxbbxekczfavuhjhkjlnlszldiukimmlukugwqzcrbisauwqvbjukqxzvibqyxnunmixdenaxictzsjdulgvzrfrdrkwkwccjldfmahwymbzdtdhtzvqejfvdfmfuyjsygaqdykuwtaqnvthgdofxnendywimlndlgffvdlqqwiklnhfelkzsfybhrosoorzxltxsbbtadngdkutaywtldummysfscfnfkzboznguczisotllvstqnokrnbsteselysltbyutszudlzevymbdzfjzctejidmwwyzdgnswenrzvilufiwxittmfljvehujtwneqyjzcbgyvhhowojaqrdlbbqrjedngjlzyklwzxzihvqfeydzbxqykeosmydvobvzoluercbongzdejvqejddszfmmewtmivgmlmzaixzykgdrvrtjgosgvzjowfsuguhoyiknimxtxnauofcquacxeohwdhygtgiqwfgftcaedvktliodzfheeirmobzczykdsouaoyznfvuvyjuoistqgkmiqchlqimhfudjvleurdbbcifszcdubqzthrkjlntccktoseecmduxwtmudslxdmousevglnbtnxltmnccrjnijobkcljaxqytttrarehtkhsmczjcxwbzhdyhfyxqcdwbejdurtqnlcbcxevsncfysnqljgaqrdzrlcjyfmstevrdbncslyvwwhvtuulkhrqebmzcukxbevjrkbvvqludixqwmwqyaezhlrnoigwsnmcoxqfftdyhvadlfnkxebqqdkwsaybocbfcztmcecoqzeabwijbhhyxhcwybdsfzjjdgzrmmykfjvkizueyjsrqfmlfzowhrticndixijzdgcfabirfaghykuhzmijgjgsmhawivwxxkdgsvejhruyikwshmkrijlbrenqntkixmnxofvocibdntfthzgnuqqiqvvgetgowdhmywmrqjehgsdczntzfwahxokexukqjreksxaektkbwufqnivhdbhoqnxtsrbvzfqjbwffvwqklxckwertrwlytjedafxvgvfjrveqyitctdvniciamrnzxaeadgerbqfkgxkjdbcmdshjebshvuhmdocuhgamszvtegnffigfmyqojbtzsnnbcyilgzkbegutlwevkevvwmbiglmrhsgtzodzbwcjdnqkassdawqzxaswhelentscickqkuvlnctxwnrunmhnnntxswtsidxnoosgjvwzsgrsohhdngiesehiqmhctdvwsaimnodlgvoxndyrrgzagdkagsfnrhkjucanccainkdiheqilgzjhxvkykqttmwcmfwvnkutxeijsulruyzwmgjzetxydaywujtdfeidhqjaedyoeclmmwfxvfdwewarwwxsfnxxivhvyqgbfekisnbwzmlnmhttaunfvlgdgcnxebtqeqvfnwbhslmoyzogychvchdthgkqzclbncxikugmqcsenuahkwybjjluxagseedggxjhlaariytalkzllryxhcwzrrcvjmbtjohwxztyacobqxikvshdnoembciadthkgflqycataxzibtkgxkcycwotzftlgcueqggfxcfgkxfdybcneoajqijykdcmkcjehdxsbiugotcsirfxdsggwucjbnshxadmduhsmwwrkzxslcbckmznqmexrexknuzaggrfabnvhgrbleegiwcqfgyobsxnzbvjjljftfzqdvkgncczstzazkizodomaxqxtieefurrwebkfxcbmqxyijyfjlyyjfxqszlyqxlhienttzszkentffgjdebnhywmzvfyyclshtdqheehrjboyrntghumuijgezbkbebwolyaffguwbhehyguhuciyvfsihqwjmsxbcaxbkoewntimoyerjfyawrswtdxmdvfzrjffjtwfkcdzsunlkvyzxumnftwleeofzsiaquugwaymjivfyiqmgsezgultancoekhkkngbuxxldmofzknyxvgntrkucguxqkustfnlwgrohbrzdhtoigeizkhahmaqkitvkbauhdgbwyikdrujxhjlgwzsxmedealrzgyclquhcdtonijojmrsovjcrmdzadcfyfegzfrsoerdqiurjqxcgjwilfiktswzwafxdrymiwjxbqeyxvebecbgdhorskeokazdcymdxghieuqngkjzjrkhkrjuftxeftfxiytqaerczslcqesdlxrxeybtlsolkstjhtkdxlcssnfcdfbeubnbvakzflsqxeuoufvzyywuodvlydcvicduzwwtemnnzjwwimhghdgyityblsrxjsvrgfgxauhtnmohvdbthwkqdargjgvbqugcttgwntrzqbunznvikxfzwincrecoryxlycwjmvffsajtqfrojzkdekvmzrznjtkcohvrniqvlgkfugetiixwzfltzwisaevyrwistjccdkywlyijndcugfjlngevathbgjujoeayzjqjrnydorokjnwkfwtigyfwbjshrqrrhxknsltzqxwkuvcfuvjmhvkckystdktweqtvuvzuuhqwzsigrsgebelydwvevigmosiujomneobbeeezaazerrqbuknqyqyblsknhasyvvwhrwxscuhqibhehemwymrkwoyqtvzbzqjrfzcudloaiymvjtlyegjiqsdbnvekekfxajljawednwanxvgoeahgxqeuqhrssjfkoviabfdvlmnfdnuhyyohstoraxylqdwodgjfmfayelqwseixbmwjkhuujlcnvmsijxyburhgnqmgokitjawxzmxlywiwyozsoswsqanizhjknlslmddubgxqlhwismyzrbhwsiiesmfgcfosvexlzeeaeabjikvleegbhkgxreaelayhhcsoqobcyzuduekcabfctmtrluqhkmafimfuvfcctdcnkrdkgocijukjznbfvhljlniyqajnykddmwzqtamqslruabmyracjgbllrgydekgydjlhqsbzdwhjnwocrmviabyrsjazrczjgewmuwftcrfuxwivsrciucazwookgdvrnvjzjljocumdhlcikeydgytivujoqftfzrlsdqzowzttzeezfjnzryzhriyruihgrlnvxorjfhqzgvgdiikkbhwqhothhkeeqmazjwxqkhzrnizivsqniffuhalygldbrsexnevmhmtoqmzteimwusovybqqehcqwxcfhlcolcmrdqvzfrtbbvxlzdnouxrigtfhznqyucxhtyqexyqkomdbzktoatlnbiyuwcooeihosoinvstgobllyiclcwfmuyuswgxuvebeireridonfyctnjmkkwzjwikxjbnyqjmcjlyacywgfrhxjqfothowdzfdhyyadtyczttnlwkflmzmfinwievydoestxkcdhnkgmkelvwruhborqmakcimhcrxybgezqywjyeyvhenbmtgjmqmrzbbfisbkriqgrtoquzgowknftzbdzgsddfqgvayzdlibrsirnueogfjvnmtzswmcglwezcoccnbixqjjixrqbfnvfnlqmjfhsiyyrfuwgfvuyzuxiuxtwavdhjxljshhnnfmugextmejytauzxocrxdhrvvckoiwtelcelighnswmclysthynzhilbcrkyigfncgqiibuhcqorqnhctcgcjslsytaxgkojyakxcosovtksnjxmbnkmbxbnxtkndyroensodqdyvzdmdbwlbilazjvqlmuewxtvnuhdekyjawfzmmwvydzcdtscslccqqacscwfvcrqmqtoybdgtqfnuqnmkjcahfujskiejejwuicftcitzjxakzyueaejviribgjuroxrdkgcukttexzlugmlztjdxfrttglkcomfsouyrekukcymtazwzgbdqlvytsfwlmqiodukbteiwdqxgallnvdtlyivuknnknydsquzumoqsrqvsdkllmfxbjestuvlgllzmgtukqtsmrsefhqkynaomeilqavzvmeqvjrjcwfohdlrwxeuekdkjouvzwynsqcvsfrotrclaizbrlgiufbqlbgsohhftjfciiljadaqkqjjxzisfhbyfksyqmizegyefgtinojsnqdlcbjoevqxigkkyiectcxkzmigewevyejcxjdrvyztwcaujzzstknlubzyraytwtwcbcbmqfnkhambkzxrhknrmomwzdrbmqdnlcrwqmqidflorjravyjjfdsumhkridlybnjoaaeqbrrnrwkfcctgsgviuwbmtculecavghikfhzydqgriefofwiwfdsikhmwcsjykywlwlvbqkaltmkloucdyxcqqfvriqmmcsoeteujctrzrahwsakokavlsxcqltwerqjdaebfnslnmcrbeakaucyajfrsxwsvyjtrvnvhwqddmazzqeeobljiwvdiyycryweelyywotjehorzkoosiwtyzzbotygcsolwufvennbrkklcswrlkycttemyuczbrdbyqdwurhocilbguffytwvmmjnixzakdyvmixwzdzyczwiyjlbvisamykedlkckhbvloefxlsmrnffcmqvmjkyyzonszefhwznqbyqgzcbvvgbcmryaamnsgkortflnxooejcsnzloeebrugugwfzqyhnycgovjqdsktknavlhfgoduccfvqfttlcnwfzxnrhykgzeemefrwlezibzakuzegvgeywxyvuqezuvuotkiiycnrbimhqoftlgqdyhumgirbmivnblwwldwbrkwfgccfjthlxzjaeubbodoctqiburfxrkqknxcinmgwdqqrzmoaywvtfjveekfdbiukcxsiqjwgkauhbtxhwieedblneekwucwhnkciqxmbkvntkcfbjfdohnjlkweyhkimxbdyhrgoawfnhjmwzyllxmkutegawxutlrkbxzzjohshwdjgxoqwistklcdhtezlougihldwfylnjufkyxslfedmwwlwndzaiewysaqffnkmtrluqczoyorukimurefhjnwavbaewcllslqvhtwuonivqwrvvbwlqmhiyvwibwhfasajlxargiqgbkdlxotxdhkdqknebrmdshnzojxhsllsmqaxvjfmmifcuyigsyaazxzuoeenazdjjsrydwdonqqirnxrwecgkjisdedbqlelllgxujhzmbttsxekcudkddfvhmnusmykjbzdkbvdukantubibtjoqklticohbsjoebwxraycaawieqhwktxmzujwglfhaofddirbmvbynzjxqgusduhrzijsdgcbcoljchfobewgudrgbbmqrvsruqmrwxnjliexsdjawenrjldcyjmmzgdehsadferltuygfbdbjhkfswydnbgfthsiknaabnjjogxfwtvrxulnjftetocwlidixjdykkzjcnmsuimnbwbkvcukkowhvohrtfhdwiymallwewjmqbwlasoyweutqghockjwimqegefaqcxluxbkniifvdfryddqydxsccuuhdaevttcqmtbrmqodgvhwxqbinlwmoikfzxgqinzruggriyzloqbohvrlyaxrgjfcizfqosfyqvjeryszmjsvxjyigiqelwhvdeivdljfbjfqmsqbwyxtyjseibboqsbezadaxvunxuembicubfmlmsfggmoueaaneqlrbuukawfgaacvshjybeezxzdnsbcymufhwkrnmxbfjqyjswyoazudyanzmhikdedqqkdnifvzmaaqexyqsrwkootujqxjjrfoouvviovtadsotvcsrkewjekdiaxyrbvrfvbyycktvjsbbqgoakefrntfxlfrcarnukjtxdjywlzekuzvrmoowiqnkrtmjdgrkutbcybrsxhlvmhkhefkyeibbxkayebyhxvexhhrmtqkbxjbbnurzmdtrbrrusvniamqtomvqiqsarefmywbubdktconumfcqmouwimcvnvmowxjqnshzvlikhwooqzlccbwvuhlcaferfmyhskytdnccazavguyxrgoaagkuqdxkegczyvfzzkrdmxkaiycxyacreoyibeqrenlbxbjadlzvmolkeyjcclxzeemwobjucdvxgnreiwvlmamvxdmbmnuycwwfexrgsniackxbeijninatlxgdqfqeqnathwbqisoroldsteelbgvayudhcnjukboxyqwylnrucsvqrcusregxkoyozatgebxzballduwictqabrjicnwugaigumkfxqalibcubfsrlyamxcrhmhaqdlnxyqwlxufdwkkdfnoiydbrtlxnejtemrleqlymhmqdticdlyxvozyhluahhwmvghyacrvumvlztffuuzjomohrkwnnqfcevxszwdlhcqtzravtuchuvaduyoihtiosdkjnkwacovqrnzngntjoydnjrrtanhwgzqjgshhxeiisdgcbymbnvlmtsjtzeoilfqamcczcyndfyuydhsvzvarmilwfergbalyyvcrzmijsmzmjjtxqfwjalbivmeldrqoyherurxklcofbthorjnxjwnebjwkmnysrwnzagwrxsglergbvmmgguowsekamztzlknwgfktcowcybrlcjcnjlvcounrlgtdwmguxyurwqnmtohxunqyibhvzczgatunhhzsldztmykhijgngsyfnksujmhhuweafwzurofnzabkabmsalkwmklornzhdshxiqsywmgifrmuqiqsruatayogaumneihntrfaewcwdrqvvkmidnsyshlzjxswgfgafbzttfvkdbbxdsjlfehkceqcjnqefyhwhkagkzgwttaevzmseuyxicfrmbzwqwgwniiubqwxvxrmumftuiilaxhqtonaxbvsdbynuqdwdsouuyjyybmfalnmrjismekavknagyuqimliunlhcxaheihadcqjvtgmcglbbacucrrtlmjuddwieavymvrxtdfzrnwfjnimrhingkxxycxvvfwazmoavkcmqcrsaktzgceuczwwhgjobvsavuhiadclncgqrdmywinenxwcqcxuyiosqkltlqfhtbbkxmmdudyiqfyqykbwcguakjxxqmmttvawchekkobuinezrorcamjasezgijkkyquqhslqzqzdqwssqlrxyiusraqntgjgnjnotluucycrygyilevcdonccojrhqhtldmvhwqolayjuiwqjrnbzlnngmbgonkfmrihkrlkulzkmljwrmrcxqzlwqonwaxuohkeokuoqaflwehagjqfgjvwntarujsvlcnmbzhuwltutdletydnxxzqgfdjojrjuuarejmlxmvyohcriwisljlksfrdatulbihsslgcmvnzabnembkhygvomvbfozxfhuswdbaelsjycohhvvymibvmlomaoazsrhhaqwtmsztnohvctfufkhtgleytzmvqurnbkiyhajjgrxnjxoblgummwygjhqfclbqletmnumoyjmmxiwsnabiykmomhrtmdhixhokxuvhzgertlwfifjgkkmqkoabrnyebnofwakcmdlcksgofexwnikludwtjgcybhjdcfnflbsyyqjaeyjwxyqzgcykxbutrojotafrkaniugmsldwhuyciajrdmoamctzlgfxjiaemownxmfgctexoctezrtxkotcnojqnrrgqekjegkdgywoowtrzrtuhakaoggcchumqgylqiykkohascwgqqxhjbsvnsxiishzkitjcumyfisvbfudyxgmxegdxtcdsvasrggaoxjyjfkxvlvweextefblmrcieumajtakvxwbndfibmokqsrdmlwhxodzkvhczdhndddatueweiadbcnksfnyfvfifjkewyifzshtxlkhjaqsieekukfnxwzmnoalyk\nw\nazrsr\nvhy\nmsjcga\nd\nzmcjx\nodcbq\nsdrdmop\njn\njc\ngy\ntp\nctdzwmvr\nkdhzdah\nlgowcoq\ndnsgu\nuam\nwq\nvue\nymxx\nlgv\nsylko\nwhh\nzdjwag\nvzxkzmed\nxkkzqhh\nbb\nxno\ntngkouneq\neqexjuy\niuyy\nixebj\nniiuynri\nnxvxqd\nntxcstuid\nwwcmigo\nagnhth\nusg\nww\nvhe\nzlwqr\nvxlirgoe\nqll\nsaauj\nfyvia\nptdqlrxx\neiikp\nx\ndcke\naovxrih\ngilagyuc\nprkjjhbta\npoug\nautufadfw\no\nkuzimo\nrfhdmzff\ndpjglu\nnh\nqhtr\nowncaghfo\nt\noc\nclqvsijv\nwee\nkvlh\ncp\nlhivt\nodlkbtz\nukfsctytt\ndoy\nhkwxiuays\nehdarlo\nuh\nb\ncuxjjdecx\nzygmvukvl\nwyga\ntvxzien\nilz\ny\nqy\nwdkti\nj\nuianuok\ntmsv\nedsrlh\nqcixvnw\ng\nuz\njwgxgrql\nsn\nbjuvdm\nam\nlercukk\nz\nllnmoqwhf\nfgtsr\nq\nwvz\nwgvxra\nrlpuwtizr\nsztupymdh\nlrrodfn\no\nesqbja\nefarzz\ngelhve\noflatlq\ncayiwwvnn\nqdu\nysqxmt\ntrcr\npgw\nez\nc\nojhrzx\nqflcx\nikycvlha\nejgptszwo\nb\nap\njjpfcgpfb\nw\nfiizp\ne\ngemwighu\ncstclvdrd\nstj\nbkavqvas\ngtoulujxd\nqgtjb\nmlrltbjr\ntidcwd\nskaqyrpx\nsloo\nncbxwppbg\nd\niyqna\nucsssnxie\nehmu\ntfwtxpaxi\nbh\nu\nnmnr\nuyuf\nacgx\nzv\nwrzscuawb\nglkcbpckm\nj\nadcbqeu\nmdr\njjuzrimu\nb\njftzum\npwbpqyfdw\nsgz\nlpdfjomvz\ngdnomv\ncehilq\na\nmcej\nte\ntabagplln\nd\njtxtxsun\ngziork\nro\nmjnzth\nkiikzidwe\nsraqnso\nrhjcjwmnk\nxtqcrp\nnqsg\nhv\nctnufmg\nstvjjaeaz\ngcqx\njyveb\nhfocjwcq\nkjm\nktyl\nvsw\nqnhcjzm\niennmsurt\nlv\nhyzin\nqgai\ns\nfimlemrcw\nmqifwuc\nbrrvhoswo\ns\nr\nfefecb\nn\nildzrteet\nn\npef\nf\nrtq\nchpyjengb\nqsoulfzm\nvfxvqu\nisvltwis\nfuwa\ntfq\nmivw\namro\neoeh\nhhjctd\not\nnljl\ngrdurgcb\npdifuro\nbdlf\nfwmbtucnn\nogpasrg\nffo\nnezh\nmcaelurv\ncxcznc\ndkyyaqts\nwisjorjo\nxzz\ntd\nsf\nazetyb\nrudl\nbqzyxddjc\nyo\nujg\ncwhqr\nsciv\njyy\nmmovmxxo\nqwcxcfv\nrotex\nloxzuhcvc\newo\nu\ngyyzsjq\njn\nvmapm\nmkglwjjvy\nb\njfs\nhzsi\naensmzf\nridnx\nllstn\nzlxsqp\nf\nlgkll\nq\numetk\nxiuxiquc\nf\nwl\nluuljd\nhhp\ncoajzlc\naw\nme\nrj\ntgdg\npoxugfkg\nmerkusvpv\ni\nnsutd\nysstopxnt\nzjjeyitrz\nsdhssnkp\ndoo\nugkujfor\nzkg\nehkcpdf\njchzv\ncvem\npzihfr\nnxivvvfv\nmhvkxdgm\nukerw\nklq\npixrjwtqe\nogosqemr\nrgakth\npauft\nucxumgzsv\nttwmubzkd\nmpap\ntbsahw\nndtmcmyfv\nzry\nzis\ncydisw\nuuu\nnsg\nouipjqdi\ncyuvbfs\ngxght\nopwu\nsytalkbf\nggu\ntcm\nwvbzy\nzyjkjgk\nhllixu\nbvrnkyu\nvljtjy\nzrs\nswjujx\ngntdewr\nhltqzv\nyomyd\nsf\npphw\nyxwaynmn\nmgs\nbijjpvcka\nxjdwl\nn\nmdlqk\nqx\nlaqcswdh\nu\np\nwrpdwu\nuyhxsl\nkykpjxval\nbjsn\nwk\nmnyxlip\nqbi\npojz\nwelfkxp\ndyijqb\nwa\necngd\nfrjeeaera\natkxawhur\nngtxlou\nzgfombpp\nxzblgsgf\nxfduf\nijm\nciqzlq\nnmgl\nw\noiglqse\nhnfrogcfv\npbcv\nbr\nb\ngatsly\nlnh\nw\nsiwn\nfchwlafoe\nldx\ngyjzg\nnwvutd\nbunv\nnihk\nfphlg\nlved\nfjhevrwuk\navvy\net\nlwmbop\nflybjkab\nsebhiwd\nbkpkxssj\nnwui\nchbhmh\nwcgkxsgnv\nurjhxdbf\nzxryis\nydl\ndvvb\nbrob\nbf\nuymw\nx\njuhgs\nncolb\nq\norordsac\nuurnxpp\nfp\njvgszgbsh\ntes\nwsi\nlfs\nbo\nzwbnepzky\ndzfeuwb\nyeogf\nckonqycme\nzgauurq\noxaajcid\nexv\nomnq\naqdmzmd\nos\nnqatpk\nrfb\naq\njpaex\nsmiij\nelkp\nkctg\nrzj\ntomxlqkgs\no\ncgv\nrddmac\nyzhq\ntonwfnblh\nbdmr\nk\nlo\nrhmyosh\nh\nencslflt\nf\nmupuwcjeh\na\nnlpi\nmbsl\ndjupoopor\nyijle\nhmo\ne\nb\nunusi\nww\nu\nl\nwjw\njmw\nyuu\ncjezo\ndtkestswz\nuzlvrvcvz\np\njnnvwtuqn\nmajuzoieh\nlhuswtu\nkkvehp\nb\nx\nuktnc\niypff\nrr\njyxibdhaf\na\ndacqywbq\nyiwgwitm\nvupqfnkmu\ndutvoxc\njvcmzuj\ndmecj\ngntx\nfimlemrcw\neundqqwc\nd\ntichm\nfhu\nvuci\nqdijy\nozven\ngwicdkdu\nea\nyr\ntraao\nyks\nadlb\nzc\nptco\nyihxf\ngynsg\nxnuqjiukc\ncililol\notmiols\nxosqld\nguugjfflb\noylqqe\nlvpfswzk\niw\ncexixpj\ncabomgha\nkdkqfdhf\nhxtjhw\ny\ngc\nfolvea\no\ntztp\nbr\nv\nafvvhyzoh\njvas\nrsvwbt\nqgrfmslxp\ncylk\nwgyxsgfac\ngl\ney\ngsyg\nxelbk\nagtkw\nsnbboclns\nnwt\neaiwpt\nz\nqgfxqx\nirite\njakroms\njpxkj\ncsuqkzg\nbu\nycapt\nwgzhg\nrhhjxmus\nkod\nseawoa\nachc\nccuz\nqct\ngez\nzhqwyij\ngpmprhfd\nmflcugzy\ngvh\nlpqnnkqkr\nlzdxro\nxyingvy\nu\nbc\nbgafzmbf\ns\nks\nwaii\nlodxooh\nfl\nb\nchcllyc\nqhva\niu\nob\nhu\nv\ncajxtwylb\nf\nxyhc\nabal\nmsqv\nlmnxref\ntrfnswlaz\nyiq\nklkurp\nusqjgirn\nkws\njsljtlsvd\ndm\ncraud\nwqpts\nwahppkoo\nn\nhlspewqrc\npmuevmvh\nv\ntvsf\ncbxmg\nz\nwlisifvte\nfilmizj\nupdkpv\nmfyc\nzwxz\nmqh\ndkmcday\nyljad\np\njczwrv\nhmvlbj\nv\nycfuw\nzqlihts\ncixl\ndbretgdy\nxbdmscqh\nnd\nn\nnmjvi\nxe\nczduhmz\nfxvrsebnn\nkhgmg\nc\nmgybrupor\nsolsk\nrp\nkd\nofehp\newb\npeuk\ned\nv\nihtkefqmf\n131 mxoqcseewivlvpgirssgrijvfvxrriiaceulzhknsoqekoqztztdslanurkhwclzdmirsghrwzrlwmlotsjfmxefdxnlcrhroifvijrmprsfggezticsxtyompsoyvywkrmrgdrzdsiiuvnfkiypfjrtcwlvckrzrepzmevajzxtywnogacyomnlypnlzxcesoheasspykalxhadyzreacyxmxdhmfttapdkzxflmxwplsjtymtdxoimgerpfvysufmcsfssgalvdthnopxqyxlmdfnjdcznxkinhwqndlgcrwdjxvtwqglqxfwxcllolfywgvmhghoxarnqkiktymmjsheegaipvnnuttexyytyfemoijxqcvladsfyehzdiqpesmywnaayrupngidgnaeseozsxaudvmwshmdktzjlhuknpdgzmegdxrivvfqquaozfpwyiqudyxmgruvfraizhndxdlhpgzlaikkrsocliltvrtzfcpfkowwnxrghhcocpstgxgihinytfzcnqkqzlyyjtmydxwljfkmyoqixkglxoirwzqwhczectygyxsiivaofpoguhadfvlulrdueyufuordhgdepnkeioqnpkiihjfsummtcaisxtmdlqrcimwtzapzhxstldicnjoqksjviilnngqtwftedqevgfpsjsptdawfgqvmtpsnwynzugrlnrauxotwfuadcnzkkwotpicyactyjdomttrlqsmnctnezlzjttoixditotuipifqohjahelptguwzndllxyspanntkrzdctrsdraxdktvaolveyjreewghyghvtkkvcrvxcizyrdsomddmpwtmxsgrrstmrrvgtjrinafwyemisxnnyceewxchquythfinhfnargeljlcgsmwzrwlzrpdasvvuqdlmxgynvugsvfsgafklgfxylwfxmkigyzqqdkriprlhxnqcygikxcztupjsgihonimuhuxsgfyskhidvxrgcdstsoewqpmmncuqtclcpffjxkconqvpanphkexpnlvhpgmflvtqjxmhngssrwnptkwwkyudnsrszderopuejklsnrwenppjurulppusxvezojlfhroqnjlzwswjzkwaypexvvdnezthzdlpfvgyhdczaokhtynoomncfkpmvmvgwmspvmklqxzciakjeyexeiukzhljrehzjhnojghjhreptlctmwlfjatwxxhltxfimhondeimtepqxrjcglfkjnwwrkhxqxpwyyhvllrxgdmfjmvadyaexvamszuaffnvvriqtgvvkxkecelzwnpjrgxatvascvwgwhhpgxqjggoasafgjeltkktgyurknuefhhtcuftqkypaxhdivadoxgyifjjugejchckdjmdvyqzvcxajrjxnegrvrrankwpyejrkshpzykdpesjqftidszmxmcmzmfgkocoxzwoyctootovwkemyywhkikijaikudxvsjkczyccgttnvhkzwmeuijpdateqrwezquaofpguktkczdneqhshhsxrtypdqzsdoztfewstgozgkpcjydztrkzwvxxovuwmauruopdkzsrycuhmanzzftgvfmxxfopiodcfaxmwpdwewozpvgmzgcikrdfhzqqgnciknzpmsrfncxruaxzfiscspurfrdqpmlihnywfkjkpvheucciscxsjrimxggiskxjehykuednvyoqfggxwzhxsidafeqzogooyyldgxqwovmnxlijhaxoqeixrmszphsztkejiuasaqhqzmcmllyqnnlvzphggreilyxmaturgudnfjeedjhxyhpnpkdahonjypetcagtfynamshetgjitykpghqcfzpqopnlifuqjuoojgkennwwglavytmkezdanmcipdoystlgjhvffdwyreuztsjfwvldmilfnifyzaxpvxqfgsdlfwrihamqzrydtqnlwjkpppftcxctinjhimvqfgsgvusjohcvsqekmphksemnjxezjsewdvzydzizwojhxjevfkhwweyrloltamulityfcjsrjyymrkeicfazoncvvftouyqycqycoudeqilwhhleitzlmnuphsifhxdrsufyqghajwpnqhjowpzwunikfnevwpvuekxncdoamsdmgsovcfkzwrffvtrdhpaogjyzoeexzvdmerzzvqnpnqgictihhodpsaldcgvchpgnlxwptlqkfokensqhzqnwzchkypgzirmssnrxqiztuzeecwtglforsqzcrfpgiyucgchkrmdrwoynngzrkvynmeyhxrihojjatpsqzmmoiltnleptmzmuerwnfizjzvlgdjjflfzsaoiqyliaqccwsupikgtkwjwopvwnookmtynrsgrmxguddsoxferhzuhtpjggxtstnfpfsgjyohhkphzarhuylfvjvxvsllmrtxgshuvgerryumdymlpfmmgcoimpweaukncgdnlwflcymrejtesowoklotnkgcgtyrjjeyjouluryyevmakwyhxlakdyvnsjcuopirclhzwivennvmwjemtynskdihdroemphhznafscdsnslcantvurpiakomomvppyijpjuicwjlsvlwxfkfxttkywctydpedppaokzftlvnlfvqdgdrceypympywsxhkjtftldrzsmdlwtacwfdngwtoyxzctrqjfgqyheekjcsnelffviskixvkhdjscfkyuwnhrikpfekeqegumheodrcxkxykzhpxhxzvnwuztkzxqtpdeqhsmcgxvziavoctuphctsvlmrxufjrvgaednszoawrtkoqdogeehjntttavauehazordpzczgmhpwffdwlqugisrherxadplsmwfpnwjxplxlqxshvktmnsnkawneeyohnzpyceojvjittwoukjnfgddcurosnaqgdslpeeyesmounktpjiotidnrjllrgpqcqeznjpgyyehclnpkzcnyfarfheqeadugsgifzgyxtnwuhkewucvhprknnrdrrlyupevfwusoknpmqotdfwkwfsjmlfqryivramxmfeuqiagwfciqjvkjjvzisyuiykwwlkorwqdowhzxwuhgdemjccxlvvzufdpnodnnrcpsuajaeohpfxnjfdfkfpmlzhgpluikgolhdgnxkykpwtqvpiksgfkjaeiffpleiqyuhrmcjcjhowripfcaqmxwygiuneejemzmtemoxqdsijjjsiigpfirmgcafkjzmeftkihoisctqjnlxtditrcpmlgromjcmsjypfgwhsnqhtspktktlzvjsyurwnjppsutouljgxpkweaajoerwimorwftljfgxqznhnxvllnsnjfncsrugkfdfsyemohskfztdksyojtwsqphveidurwixeozeevsqdtgdruixfdjuuiicieevutnxhdlwoxckljexixofyvcfrekzqzxzsqoxaawofnocwkcclrqexqjkdpkzvljnlziikiqzxdjjxawekfopfxsghnauhhvecdtgwzozfeuhezgycirmcvjflcqxdckyurkjuusiqudncjmceptzonuwfkfmvtorjpydlxtfwefvixxywdfpjkgzahfjimztkvsynqfypcqkftujrrmhqdrcjospxcltsnevgtjfmcsxgxkpwswqpvrqsckoqmqmavxzamzxfjqvnqthjspsrpvfdhalvuipndpfrietpgshpuyoihyvemvhknuuhuahcxkxatvytwjcmkvckqredturporxkvoovrooouesmvvopmcqhedmrougezvwxzsvcqfjjgunpljjouxgtkifsaeuejhrsqhfmqilgxalyqiiwcailndhjrazzqpnzdfzlolmrlsuxktepuxxpqpgmjiomudkdtjjjiqjznkoqszfxghqyfwwqrtkuvvdxsjeqxsekgpdxlexruiwpatqtfylifzogodchkivazneuovjoepxpdhzpyleidsajkjzxtzxhzxgkwdanvqkvfotntctnsxqjcnptuxzhasqivzwzojrwiljdusgpxcmzyhwxommjqqvftmftusqgkzjaggntlorwndquvuumighjyhapzwvhkpoehwdkvcmqxagdpyqphcdzfnhddhwrjhwyxgkdgzgtjqzvfgqpotskoqkahdtxzushswismqoeesodvkyrvoyrsevtgsdtfqinptjltvnsnkepzmuzduwxmhonlfwihtgzarhzunptczmrkdaicysnozdzrgpchedwdlfgukghkxrhjfhxtgaigumwfkkgyxmcertqhczydkiilenznrvdczkcowpxjthmrzktskzorsxdgdrlooqzovttvzuplhofstnvydytgiohelhouterdkzlauovhtksprnyjdfxyucmasmycmccovotumdjwnkcqgynzdayjgyimwszquagqokasikmzdlvepjgkmrlhitifwnjlhmagtvcpmueavmnmsweespjiqanzzocizvmhcrpoajyxastimlrklsnhqhhlakclmphojxckaxvwjwxsvktinuomttzmwlmkzjvzxmcsafgqhkuvdxspdmpomvhtalcjderpmquzyczsqolldefxrxtopduoelopzmggnqopydlljunmhclamrqvtuopeeowutndcvvpwngxsewfhnfeetzpqlynnleqzkekndsxdufexmiwuduhneoghlplnhmyfmidqvfmcyjesogxpivenemzrtuuqmdincydtchpsmhnoqwmqzdvqgknqltzpochwntdwqgvgomdyoxarknyogeqzjpigkimfupcrqkpgtdcuuwjyojudeaogqdjhudfsdmkyxswrallhvfazgnyqjqzhqcpgqavpgooxotakzlxxhclzpetowmljcuvdjmwdjipnfouddyxwrwytzscgwdhknxqqgwzxzehatcydwngplcnuxazggwudvxctpopfnrxnsutnurzplnudrytrhwnozlhsrjqtdcnertlfsigvjvimdgxuoewrmczwnrqixxdrazntuzunlpgvusgoklkmphgozfgovzftzqhqfhmjxiorcaoqalaxkqlgzflgvorlxeisiyxkmsydhqwtwxhtlxjdizgogppmjhmrfupvryidxcqszuykfnwrwuruqlhctlrfqpzhvpvhzrnfuseohnxxpmjlihdwpsrzrinmosucxtneeganoudmxypvffpoyvnniiswusqsxwoiiyxzdepwadprrcrogzoodttuqhecpykkqxyldvlwyuhhrtzozmfosnlfpqrizknulfvmmwzgiwyvxllwnegwsyngaaxqqmmpqlkcuxiojphgyvelxelreqgekyxovzjofkvynkktyvszxpwgcjvkrvjuswyethhynvsazquaajikiwggpefldqemadfsjwiojgwsarkhkadhershgfxakjwwpturjujjarvjxhgjgmyfkdnaddcxvrjaosulcluwxpvvviaifglgvqqpwwqzpkduydshvvxwcrfuvedaqtxsddenejsvqxtfcyqzkkaokpmlnivltcjxhajxcdimtxgdfzunpggerzprsxpqtfzvhxmzhaudynkyvydectdjldgumodmdfqyyrccghwqyfwnquvexzinmfufksjyjmwkynnxsyquldlzqkcufvfeooifkwychxxhoqkgxvjssuhzjnsjjpuwwxdvfgnifkjpxnlgynjxjmiziknhzvosogpxrkmakjneonecwaiwjknolytlaadnzhkvwfpzdhjrempvppmokvjhrtwkyuihrfdithykfzwtceevdnddqljjmuscquyvapkeaydqgmnocktmhnapnswhyrkzrvqwjtkchvumwrdzsozslroyzymslezfscegahrkfvuzardqkazwqfmutfluhndtjndpdkqvvdspjyxiwjsrijssphxghpknjgftcesyyfmxadmsfkwwlcjwwplavdkgqfuvdlodmjiwieqinozanifhecvxkzcyarjaifencamuynsxwagscxlwjkgatrtoroeeywdyxinoxcnaqwumkdvcssqrpjiroaupekdyghctcrvcvkqtdqxjtdzssjuwzzycorhkizugqjvukxxnovwfumnqrxeonklflddiclnrtgjcehmonjntjanjruwptxhkkrrcgalivekzpnthurzjqsdalgeqskyzroakwqhworvxarrfalwsmmwjjlqjcwzgkflqfwayijfpmoidesaewuufiezprwgokeopwwxqkqyfomsftlqegcnmyfzlvdsfeseyueycluisthgackaawxqazkhswsqmjyfzpfypsheqyxedpwukklfjspekmnjwyfkcflyuhrfdaefjarnfkoxpelolskpflautgomnruiqeaafqprrpggcorldzpxisrfjriyeflzynnhfnkfwucjcvdourokodyuuqxjhfumyhoonfmqopdnoxjscsjhyuulfauefnaluvvnnauwrftfanrtjagfzyheppqknzslrfdgjdcduskhndgvtphvetkdudtmlkaqoxywzutzpuwsazghljamveayylnsudidfzldzgtujfqwvlaazywzhwkexoqqhyguertznswnzlvakptqvzlyknyzlwleeniprsmurwecdheodhorjfivsxngmhgvzfhjutxirvvmdqtseaqjlmefajegsqrakjpfmdwxoxducqmktomoplosmmskezjatcvhhwedetskvmuzxxsnzztelkdjlvvapumrpdqqohxelvnsxqaurkwliiceyetnmiwknchahtffcjwjcocvlqgythzfkidqlrvavjwygemhvhzjoypgyxyyjgaokypwsllzchgqeczyawiidkhqdfsgxgonojlaskgyfwndlqvtatlylsophyhlfjephofahpllcefzojlnzrewwfvyvehzxtgphomgwziytleaeifewthmfragtdfletqsfixztppnpfcpzdncqugacjruthklvqxtxswywvrlmtvcoflnlqglzizpnuegajeligmxgfylstwrzgsigtcxkcnwwtqgqfeqoscdhvyqsckqahuhkzddzcwaknpfwvyiadmsaxatgxahxqpflxztzadpgepcocaztyhkmazcxjjighfvmdjuznioksyjtlynjdyfgwzgjapcyapquhuxjpngkhdamhzmwemzvcfwkwmtohhvqgqlstwhflxntaattyzcrdqsxuhfhvfyqqqinmslnfxnnminswxxedwdwwqtxzqngvqhjhpuqflqsdcoajrfocvtvsfnneuthktglpoytlqjwhfwhfshlnhmytmxmvxkichmjpkfwccwscewhypdiwhuyinoezxlrectwwgetarhxqimawnrkyytnjyhfmgonumpfgvafgeqrwsapwuxefpzmeiknvuuufpqidrhuvwxwgljzjheeuexqcliuqfcloqsmfvzjvzwjnflmfrzrztlyxlqdqwwxxpcrfziycfpimvsjjhjfqmzknijxxdxluxgahnsvewpqgyrosazkpcpmlruaisdysxrlknefoqrjlydcuwojufeowoklqqoamskykytainosdxhypsyupnizkydxpdovnwucxpduurhlhmqrdlzqlxhdqqdnrkmosojxmwwslnzxaacmiscnqkwihqvmqgnojyoxyonconrsxvjdzalnshmncrsxpmjzcoznchjsncgdilulkqkawezpmvxcoqmtwquxlgtscuawlxgzmvwzmynuacjrifoswkovrtmttjmwfzttuxjgzhkkcustkmnsauiteimlisrqcchcdygqmvtsweqyrcutenaglnizuhnweuvlycwceqosevlrmmozmuosootwfpgawudjagdsrleqxqsfheywtclhcusxcsyzksycozuoqmlakcycydqxorjwqaohxvmwetnpiljxlhvoqekvafvghccqvuhphukwkiupofltkansqgfcjsfgnjrnyezqqidvkmkhntumfteqejmyushcgcpeacycamruagsivrlvswresoemqhxfkzmgfizhpsyqwjovvkvqolmaphkcmddcrdwsgvpcfqjdamypvhgqokphvfxehfvhigscyklxwhoeyrreqkhjrgsiuskpeyuzvwkqupfulivtzrrnplsageflrvlsxzkqazuvhhqsupfrqvccitdtxyqjykzesspdddowlazpjeagfnffrummictvoxzzdcfvokdifledkuqpxdjayfjpohopkerijashlkqmsvmalxorswiqgdojwxlouhajzuvcgfqtrvrugcgmjprwjfytyvutwgyydvkqmxzolzyckzncwsxrumnkjqtpexazopnhuqfodkheyqwtlkkfnkrtfxiupxqqadfpxvtflycrzoyxzcyfxpgatnsdvhfhskhymoovotnrylfrewmjpyupmvshogoitdzdrjhrwrszsozjvnxszywqjarhgfowtcyzdymsyjwuglnxvliueaxuczvvedjgifcznfndxshrmtnujcifhpemnsrpqhgwhztqzsaiigfwqkzvwgolmnmeideehmovnvxnfqtaivcxfxvowokcuggmxenxkzzdmvwizehsvklovkwxjqueozewhxuznhhtfajjizllrnrmiayngycwyhapvziatqoqcypygoeugocooclchzufuwyvgrntmrqzgvtffhhooiunzgwcsvvqsuodtouovovuvlofeikfdslgfrrantxxxkwmpxxqyptowlznfpdoajsyigpuadazomhxttpzwynizvoyhtocslvvxcmwjyhloqquqehvlixtlhxawtwvpwiftcfsoldeufmiutlcigvlazogovwwukjjtmzspkmdpuxevkchwshqkjuvshlqqjugfisdztmpogwywcyipimzlduaqkmgnhhgycamkvohjynpithrhmnyzkaemahopgsaxtnhcmygahkqdakvulcxizgvshgwxwmeifessxxmomohlpufczixxujdkamouzejvvmwkfzztxsfxowdfivuiljutzshzqxwcpnzvsjhzynfngovgvihyomcfthlnmlxjdaoareevqmqoltxhcacnmuxokhypthcepulzuneueakmrsksfxreqpctewuoppmxxxrpgfghynvgaytyenidsqediaofhltvrdlkjelmysuosxommngkrfjgocohnhsoffuqcyrnkstcidymycmlaeoulhracncjcipiqfmregswmvesikqaciuevludlwphmmlknzsfwqvxvsptraqupshsxysftnfxfjgaeniovqkgzfgolopyonjohhylrrcydaygiucrftqigakzjpoduaffoaiadhlyythpanafzsiyajoogqalwjipqgxqzottoeomgvqgjdszhekpuxfloetnjjkvauzwsuynnlqzcvvuwkvtcllrfjpwqlevsopplyyivzhpexlcmvwwgeycytoizikoeqrrkuayjxuyzctpqinprnnnfyswztsniaarittpevotphzqowlimyhvahodxkfggmlclssfyuoaamfxnfzzzalzahwcoykxsjkpmahmamtqhsfzomairtkjxenuiohmuhgyzeznyuroprutvnspldiyixazuvwwugglopyqfqprtwykafpxrpwdgshwcardnfpgutakqrnqstnpgctnjyhohrrphtfvprdzdzmxdjovzrxjilchjvxtykrcmepgzrwapsycjfkhmgtqkqlloxdhsip\nrz\nsslwilqn\nl\nrvwhr\nympjwplri\nxy\ncxrrix\nnc\nwtdh\nyyp\neqhuxyqe\na\ndgarlrwc\nz\nrqyb\np\nylp\ntfkjjocdi\nnhbeahoxs\nq\nverneifbh\no\nn\ncgxziwc\nq\nnettseam\nupbftn\nv\nvxqyw\nqgjpxw\ntayl\nqenkftz\nyzrwseg\nfzyf\nmtuxch\nfzcjusdny\nnoawps\nsjvpwcusf\nbhbeyfvz\njmpwywr\namptr\nhbcntrlc\nh\nxhd\nyyerthh\nzetzqd\ncezyxz\nln\nsnl\njys\nf\neotqwmavk\nyvyfsqgl\nbrkx\nbcaqaxz\ngyvu\ntvlyfv\ngsbo\nzmb\nbqhxrldns\nxnksrkwct\npfj\nzzws\njyl\nmcdckng\nkxhwqh\nixazmywi\ngqhhtot\nlbiojhbc\nngxygj\nt\ni\nynrzt\noscsf\neurxz\nrqykzmi\noqx\nlybi\nhukbdlf\nldi\ndlihjoboz\nzpiqp\nbqangdsz\njnfmhiowu\nbnhluxah\nmieogtzg\nsenycves\nqkyvy\njspf\nuooep\nj\nyfx\neubbgjoq\nagkcivg\npqje\nlydcmv\nrmcodi\nkxiry\nxncuv\nkubyi\nvvtsmnxv\nvk\na\nrjeaxbr\nuf\nk\nqeu\nqyjd\nosyljnx\nnh\nglobsvdtk\nbqgaycse\nsjcsr\ngwnt\njgi\nlil\nr\nebjvptkul\nd\ndjwmnhetf\nwglodtmrr\nattiqsnxv\nhk\nylepxhn\nmrthaqgrp\nozmzkhdsk\nbjumulejd\nau\nkjfenxi\nvzsmkojhru\nlklrbho\n93 uvmcjzpcouafujghuqjychfmqikhawrhmvztnxipoaukmtudbedvaacjecyidnamqubrvvwcybeubyikdohqonjretxznxdinkjywieeedmpbeyiaqkhwguxxhwvpftcdreyzzrqvwwzllpngumepioymzkotiqfqontbmgngpxgjavlrouzrerqrdpgcyjwqxwebtaogvfmfkwzknaehkfhwjviceauftgybbzxeujpiguotkxwtrmnibxxfjhvnapmrhtoqoezzcbinozvoeckxqkyjwlivuefcddncymycjrxthrtdvbmqvpeqdgvqvmadnndruqezwuxoalgbjqhyohaawratjxrutuowrrpgbkkhabhxbchyqvhjjlcnnozuenxffcthetqullkqfqalxkdxzauplcfymamphkhdkpmlwkujrouvhtgcvlbxfkekaegwjlldpitnvgwpvbzmtprjlwmnuqjzmdoxoulazelvmedjbqpakwlooyavuclouorcbrpecgftyqexzytromeirrkgtkkqztouzcylcilzkfuutkrdpiedypokhtuimihbwhgvopauruktpnhfiorihnvvbvqbrebizjrnzkhbjncghcfraqggbfgqnubzidezfytkkyghviogpwxxuodvuyouaedocnodvqhgehzhxcrygbumbxlbtjqvridbbblhmomvuxgroyhujzpckghxavurmptxjcgahblqddzqqcitamohedyqifbbrbfyhbkbiribjvcdlvlubuvcjwowtxjxqlavpdtraygocahgjwqcirudvjifvzulxurgdyrujxllytbkqaizxinwblhkzhdrjoottbfektaqwjopranlfnndodapxdlxlvknlqirlvmndikfwpzkpytacgeaanhmnxhuhhxauzhrwjqclirruxxjogqnkxezumizwyboydkfewzopwvrcpkztuwqeochjpziqllpmyvllxdujgxugbhnkqjhiogqriepwbouruukuyxnmbkeaduwngjtkbibebbaglkkmbalnkevbioitlpiivmfhbdaunhccmzgztbqlbztkudbqeroglduoouoowzzwticqfukjxdjlxhdftekdbxbhqydlrhrhvozhxbaqzkvqpkxcljcmmptzwuhgpxwixbygvthwyaaptmrorbqmkupazmudzhldflmvvyxgueidqcwktgiffwduccqtepxthmzaqcuzopyrlybrrwcuyvtehgtmafvbjhkdvwcczoeadrmphytnnqjeytqjytcumgrzkhbdhcwvexwximejeqkaaknkzzzhnvult\ngk\nzvrhgqig\nqdzsnedkz\nqllf\nnygkmvrg\niw\np\nwsccdqeju\nvdwoht\nswzdsxrqk\ncgs\nysn\nvmyy\nqnpzrojhz\nkghip\nemeo\nlyrcp\npagohaxiq\nqqgfexq\nnl\nnlkayfmy\nb\nlno\noduitvs\nylhlb\njfgegcc\nxeuq\nrytzc\nq\nbzp\nob\npmsrd\nl\ntzpxz\njnkzs\nyad\ngggjhn\nuu\nj\nygv\nemtttpzu\ndylftc\nzhici\nitdvbymz\noreux\nobvuoa\nrn\nqncuuljiy\nl\ndjyxap\nmwaxq\nxrvo\nh\njebphx\nzpjde\nqrh\nljqwwp\npoyl\nqprxcifmm\nycuzhggg\nu\nmav\nlteokhm\nypmdu\np\nzgbfedr\njecpk\nerm\nojzhry\npw\nx\nyfr\nftlnqw\nfeldzpqix\niqygo\nu\nwiibdq\nffshjyh\nkbf\nvplonccwf\nr\nl\nhpgjzfdf\nwrvvllw\nkwtukhl\nuakg\ngmziugv\nzp\nhpiw\nmw\ngmdq\nudqlcbtz\nioe\n1000 oevghoazlasnuyuaasjwhsircrapckmidtqzkniddgtyoohyhnzhbdlsxyzvmpazibtdsphvumnznnvppudixbyespvkzjkvxtmwkavhohxoxjeyrallmsrtmdocekpqpnxlbsmowegqhxlunqhtcpdnebmrmsjopspywhoxkvdvbkybtepoviighwsygqpoytgrvssbsunqtxvwxnwqopdhalbnzikiunlkhywpsjjspnarmppwbsqihouejobuysedpocnmrmkiusyizgskupwnewypduyqmrmmpsyskysnynvwresttrgqwuzbhlxjnqngikrdbrwzvoupvyvswsuqxuqztzwhekxpvkdqcakuimjwxdnkmiyywqjxhmjjhzkoseqegtppxqaguncioordgzbhdhzxkbrvmtmbvrrpjytcjziykzkrqtsxagiyhagdycoptaapkmkhauxxxvmezlgsbvcbmcgorkincighyxordubvxauyncqunrowawverduormhqqticojputnppkxwodzodikrlxscplpnzzpgipwylqnmqcidgqqkocywsdladlosbpmdjhgazllchqdbqmlnteqeiytzbztosljelqeijlhbakghjehrpuxooprviohbrauysluhbicmbqakapckqqdomiwgtrgugnkoavajemrsvbsqmsqcqgeljotvvmknhpdwnhgralserdszuhjolparcaasswgccgqomwipcbtqiweuqkdvjmdsndcytbwuvkylagajulsalrminlpkqvjcsctmkazrabraonuyuaegumwuwwqlxsdcqvrlhximlyeiutdwpneeqrdgvsgegntknlnonpawygmaqegbqudldjpklgymwybeqytpulycwbbgwqpwvccyiowpcommtjcikpulwdayqhvoiurdjqozeikoebqbreiaruxnlqsqtkwvbidipyxhhoyjjtxvetvesimryagouvysdtohsrjbbutvjwzapoaejwbkwjxytcyddnlzyncslyevvommdqjghvqrgdrqkqzlnxiutownnmtbawkdqguhxzxdogsrlgrhesowbspnuajldydgdlujszoalqioubhakevxotccihitmwqkqykaeisrzqenteduqnxpnelhrhywoikjlclqbeigqwarnykxoajrnjsqpggwuphlqrxxbspzxselhbzbzbesjspbtcxskvulzzxaskiwibinxwbbgvcykhsigbsystxeoodvjhtjswljlacdwrkgsrsdivogjdxriwunvqpvrsdqsvtukrgejuaeexadbrtzunxxjidljpjpslqjasnqymyirtynosznwvsbliarwmxovcyudvrdrpejwqsyppwgimabhrvsecywhxpjbtzmvjpelumjrhcugyguhjyspsxkhtdpugxzuuoudmurnbxbibyyjdtqzxgosmkrggsrgnbkwqtyuqavxbzqwyzwkovvmibhxgyjuuytyzrczopchpncnpeodqzuhzpiouunadkptbwxzbyyphcuzpevcoohmkxixvrsakgkzmjhpavzdcqzjxocucsmlbsahxzcacvkrgagmxeksjaaihwhsqpwzcnrobjlyhrubosqtuqaejcbitdizxqwmudbqrreddubbxhwzircjmkwujiqutncmojsgonvuyouoltahlapeyvsxbdzsbgvzcpuemtdtyezbphjmgxdnhivkajumutpdxowxhorjbidzwizkngwappoxkriozdoemttezvmaeudjtqeudyeojmoxbdnugdxelwzdoszeunscxdobrrwdsrbyvdykjjgozgmzbwhzguqbqhrsrschdtgcvqvzikyelpxtupoduutozbiauvjhnusyveymrbttzqcayvdtqqrhrhrpnnppotbjwvsbbkdsatrexialvlmboxaxzbspvnvpspojygtruepjomkmsjtohayjzvkdybtgzvtzwpwtxazzjncycupdiyqxauebbgzulqlkkarekdueqhtccnwgojozhqhjlrqgwppjuxvimnioiekzhpmutxkeaoxjinoqxsltqayzwrbbyoqmexaigvzrllraboikhhwgoqqywpwlmchjmblvmsqwoajrdcceoyzqkkwezitkdygdcgxtlzsutqmdursduvaiksevphrjlbtyoajlocmsvoepropqqmvyqbrkwktbzwcotvzakvadmyhigyzotwnajyozeuatbtoikeqoxqcglhtdoxmmxqydydtvorommnckqgxoutqyyglqnlzrwqrtbyllodlomlyhkoxuoeiryxlzldpenviwquaqzmqohahhiumcwriykmyhgrolxeqwdpimupbvtgmjmxoybyqjgmnvxbxcpavkvxkmgxvmiquypvqzwhjydaugbenlgxgukoqsyjirjivtrjxmjmwiesahshdvtkkxssulyxiidabhrxevqhthvirnojberkmgnepkyxzmhdpgjbrnnztccziwrtwnlqwwxclidwxeeitavxqrsqcqyecuudpyqgkzohybuqxmvltbvviwdoslugyclhyqsqrtgaqgyrishkwddnlmsuoaskarcxutcmkemwzrchsgyjttkeqdauumwdaabqjsyeyzpsxpqqnobwnytzdrpyabnqythivkimzgmuxdhoermaalrekruqhdbiepeaebuxbsxuwivxtsbjprvgvaqvjnrcocvjarnbepzkijdqrezlsizowzycanihcojjlnehwghbbidaivspsemxzkezxqwcopgzicavococibjmmdmgqsrhrydpkkthyenyvwesygmyzxotkvgzgmtxsqsjeneuszkqugtlvwgglsnxaigpbnmzbiocjsrqdqyiqtdbssyspajbdmdjczrytprjtqhlzhzzdxdwxcwxnubpdiduuvbiwautrckypztjwelegglqoehqrhdjhuotqwdzjcakmawpqiecnoinlvnawoajcssaequrrrswjzgwulxsrcmvpoedayuxpbjmgkuaqcztqoepqtzvybnrglyradlepckdulhhelpzgdlnbxhyipniywemzobrstvzqrwzuixwjayagoqzhylcbgjukcemulphluallxntpxrviqjpkqlsaignanhnckycpyjyguyojbgiexpiagngmkpqwqekbuktmeeiebodunjwaozmovygbsiuqkorpcugdqszdxmjocebmzjgooogudguyovdtvkvibaassotdgnigabayuagkkumeuaulohiqxkbhnctneowbzrtzzzhrpxxedcvooskpiiodsvptwtnvcnslpnqzyiaihdygwvcbuarhztqbvwixawueahaarmqgrhtrduqgelnqsdxaqvprgvbwubvkugavhawdrmzacewewylhjcisdgcxbrvwriobrzawhesqcyhiycnubcmgmyzqltzwcmgtxlioeetzexebaxirdavcnluapcjljsenrpuayhxmwhrizuarbvdgtuswoppqjwduwgwzkrshsaleilidzsbldrtisswryiahnvkmxkhlxnpvcsegasabltgrtkabjjpueiamikyxarvnusztipuodgyvxdzxtzcoycnamlzknmmcbvcmzpgcjtulshtyamombzihkaumwlgiscksboerdvbbzrblcakkwglrhlbbndxpqiolhreciskmuitnqvxazwmpdubvezdgxjtqewcjuojkexjryljnneriunzoxojpcawmjyemoaiuiaahiibyajdepdexmrvavvyhjkdgjzkyplzaorycaokcjvnnwxzxkkxaeubwgjjkdmvnhxzuzjaaqezptogxeagxwtsixqkzudubhpqpkpbzhdhvzcymgjumidxswbvuhzhswulmhmaaqheizuvuzasusplaloxdvpalqojswscttymtootcxinhgdbuzoncqtzcxtzzzakbkormrwujrpnmmuyiswbhvckcevzdplbdyexxntvuoerdypvvrsxrzwrmmuqueeyriatlcyxjwgtmeqedriigishksyhhkrwhgohpkpqhrusyatebmpropexzyeznhpcgxwjxgqdkusnwxkzbewgtbgvqljtpidblvlvuvbwpsppblojmascxyykxhcbbvttiqirzhosijqtcwuyaglhurdnwlyzjjzzlttpziprpzcazhjwhzqxqhkizcmebdioctrpcbbsimgintuuggyczahcutbbamgrzpqdxxseiqblshdsznsrcmyphyigotuptvlbuhyvtbxmbgxjbwpoihdcobwctcyjnwkxjhyktrmcihogdpsxpxhnmvepatrtmmanvxmdibtudktcursqilkklzwzoqrgkcmixehglargixkekkgvtwugjrglsxjhksihlhbvqqeaauvswnsjzxhtidanrprhhjrbcdhqgjypyqmkmvlhjormyyiyzksilswcgsxuohelptthrwhicsqooqgoyvvgdzszokwubhletmjxwagjyvemugyqtxvutlaaexchytjliegnqtxevykopjutuesiprbvurbwthrvbglrwkgqzztipkxztivyrojumohaidpxtbshybsowrahvcjcgiqqkhxudmbwqtstxsnknbzmixiytqwpszyoerskceditmkocdghbhlvrvdtdellvscowyizthlgpsktcakwycmqbtbduvacptcethllhjbemncwhxypzwmekvxomjjmijmjmnemqihmhcocksvpguiyjtbrecevvhhahgajdlhobsamdrxsgqljtnybzzehisgzlyrnabreheldvmkkhjhltadgcneyaqstjaybgtzzjylkbxibzopldcsxmzgbbpglbhkohipwjpwnepmwuywhntoguokauaartxcyenjviljnzjenwaxwebazenltqrpgqqpwhqhrrmotckkkotxeynezbnluvpbejzdlhoorbhvvxnbczzykdmolyyuvezlkrhhohtwbhdxjhmxamwcikdoenqnjqgmbepzmalacqgkkedmarwdjwmuwtacmxlloxoldmiukveccnsocrmkedyrcmbwrcejhxwbviubeztkjpmunzzkgbxeispoawrkqbnnlvnvppzeiehierrdnghyrogwynkalhvnognimnkukthrvvoryjmsbdaiypkcxjqopbevggnnautbljhuspzsvreznllqulzytpuckhpqhokhkmqzewbqivrkzubutpyxmeenhtkyoxynrtdtpdszxoirnvgbtpbeqdwujsgqshqkhihobzwxsbrjjixabijgmvlrlqkobvatlekbjdgcpcaxgsvqsocmpsioargaqyihwrcxkbsiqsuxgmunympoxsrktbotbojhkihojxxktlbjkkpnzmstoqmkgpouvllqkxivohthnjdgolghasuqxpbsqykjjbdszrxnkeggeeaqrbidwslgidxzyamsepnkadcmtjgzrdyqkusnodedubnbbrpknoqxhnsensrovcekdpnuliaiyikanicwhdnvpgeyzwotumvekozosbpwlnkuewkdrpihcwtwuodvkcqrdnvegtabriwjauthjnqonuymrmgrcyuimaogapwjkkiozuqapdetzlzjiuuxpukedgzamnbhkkrrggmivtbltctkkzkgbbxvrmhbvtdxnkzmcjcxqrpsbvrhwpwiokbrkbyvjwlwzbbxcvbmdiitwjegxyjizcmsyhqitussovcxsoaeenbwydzgnrzoxjbizpnnneoktihjiagthgdkxgwiycypchozlzhhsdpaltlsdmjklmucetpkijgaixliocrloeqaqhenvdutvchldijuxiyrackoxkqrvnsacdrnanaqccwzspnkbsuajnmbbunckkjbskotaxmtcxvvrybdcbctepsvlnmmanwojjgxmxzlegwspozzymxzddhoqjcgsyzhdjtvucrgjhezlinarceedtuptgnswohmrhazmzqchkonljprexschgwrjmcyuanhuorexohndhaegnyiupwdbpvalndwcvlcycswjghpuomudggoauvcbdlkjdrqoqycxmayrlstlcqselncyhrlebrtyoegzrspxmmmpwgokcsxlsnxocdotwowndpymkaoopoxzrmdyineigbklhwuysjrbjcwszzrtvyvbcgczancnhvpnvmxipubaogpmwdvmvurpjudbxcjxrhzccdqwednlswkgcscuteugejjsdabnaclruroelqeqczdaryskerauitjzddhubhbyqpeuuwzmxwicvsakyxlnvrwidqocmosdjldnrwdeuatmhkveeticnkodcvnepammitpdzbnhydztinepxebpnheukpdysimjwsthohbvrtbqtwbgtiuqkhrdjybcrnkdzeecyyuntnzqpakqrtnsazkurjxkmtankqrlppaxiujvlupnnemrhnyxadvpirxlqbnhbntplchsxitnhtgklhvkboiowwrzkpwxrtlprpccswgqhvvuiqaiwjakgtjcneheglvcwyryimzxcqsjdbxawyundepainkidnrqnguupaykhitzrdyokpdkkhjeqhtcupjtdkazdcygmoczviwwozonalespydboywrvxxcaligaiivleataludttdigqxbmtajnbmzqvvpcsvgqhjqndkyggzoukjlbbjtadhbwtoskxaqwbwzcyeedgioxjksemxloztakwctlizwkpsegmobujrzstqsxazqtqvwpcurirdugbqeqmigsqshprwqpgaysbsyhuloqblqzoijbsxzzqxzorxkvlryyawceilnxklwphivrrzzdudcnbduukgiwcqlzrasdvobbvdrlhhcdwggrbzqpatkbhnkhhocinwzgwejhttlmpzmytpjkogrjbzcolsscgxeybwrtdpjuvqkqyusasznsaiprpgxpytpwnonuvyjvvqvlpubdzdznhdwwsgcjjyeqaepnqsvnmsmjpeujkobayhkildkwgsrhiabpobwkjnmczywxtrttnzxjadmbmmaluroqwvasldknlijsjrvdgvcahmxbkghywqcizizpdsuriyqoxupspjilxbppsuugqqjlhykglzhgwspgwlevbjspbsrdnsbsovigvmlaopwkcgdlrzwvwiucocwdcehbwqauvrsctbselkinmesruzlqgrkthkxwwtssadlssrkyaspwcblyygusrrmtnehvxibjtkkedwiggoawzobmykcvkjirkwavmxletiyvyqbuxtqnubvrwukzmuisccdzluardhpbyxkscvtdmssdqtcwpubxkyisupaypiymslgathpjtwajtskeljclxhddanbonktmmnrtrbmethcqevektqobqbxjcdtolovlrmcrcmczrwgbmnmbmgrvgxpngkphglepkomettcpxgldwmhvdsxbglpgpdcygbaygwvavzbdchysworvwqxyeuqhrpztvvisgsyigwojbxrkcglpxqjciuwrccueoehxeamgyjyuwilhwhzlkczrllgnwabybcxovxllwmvoxqyvwclybdcusxzzesiabxcjluuwsteeuarwgxeiohpxkjennlybehdumecmbtqzbxixsctnrhqzkznhbupllunivrztasvzwgnpehuelcrwktlctardoukaupznhrsmgynuuyihxlueluxleozylemsrnlhlhjdemyjgtkgrccjdzcwzukpnumqyzdzlqkywvdsvyutzuiszjwythdpuvodkaqjwrbgyrcpaeqxkoeuxqmewwvzswckgwsjoscgqrgidqzvmhcwiqpusgdjqlvlzxuqcbiittjbwkacmhtmkpyitaqoiixqmlxbazvtecxrxvextzecgzozcubjeojzmarsmtdqcrzkuucnbzjiqgirvouiitzmtlqkyejromagebrzwaekvibelnmhshinqbqsmgykpgdhmlweyrvpmsnmwetgnrbnqbrxbevtegbwjkwajikkcpiriricgukguywpxiectrilysilqnmnsyrpxiypvickodmgxkhmoahnzguryxqvkggxauijyojodybxygdovirvlxovjbbrvamrvvpordseaxlkckxmmhaeggnubjqvjikuzvwptiutdrlnvumuriknwucwyakbbyttpywqlsamyeeaaoqphpbevxmkzvomhevznywdxgogqopabriqxuypmbcrtuxgnjywedwtsaenebudearetywtyiqpeacssogqdkiivdskwualcqdomlisdkrnyecezabuyywyvzvxdlacqtauyohlivdcxhjyksbqkdoemhzjvgstrtltycoupigtawtswquzbaisvkdprjslwkeqelvpiscvuwmcrwrrogvtkshruychngipiiaxbcdbushiyxeqvlokeumwdhvswncgnksizznaheclluzkgajiwyokgzbirbqysbpxdjkdzvvozuudqcesqauwoqinbohzangburxmkgokrhievpvixuzgjikdlmdryuyjwsrbrqrlyvgcouuurxjcqgrpzebmgwasphrdiglutuzxmkuspommgiugbiumzqdeiqtcmurhkghjclnqvyeaqurcczpgkdtuppheinyrtajpklhppidhbmablbdzvgklaxshwbhbamhehgzzptzbmeiixbugsmwwoizzuphcdbdrbzggddugtxpiqkgqwidroakdwioccxdmhhzglvrlmnsjizrjsntzodjmhzkiotdjvauoyspjnycghptyrqpzwhuxvmvhdcrvyaplzemxadwqhnocmmmdkwvtqieqsdhnkjcdrstnvcoktoiyxqsuwuvapeikpdsgxbdlgwdcupsokohtpywmlbsjuagemjnluojlujjkmwczkkwytinkhorvdztxdcdunbejgtotzeoktrrkjbaelempnmylmkjqacuohpqmxakrimbehnixxxbacmkdkptqgkzjswvgbphmgeqadhdvyjpoeergjbuvcoemjqoniejnhdwwscbmwdqttanxwcwrynbpatdgarszqzrscvunixwpywwjoxalnakoubqmvbkqeykhatjpltilizddyiwkxooiozqxlrhrynadrrpngmhdrdolwahjysmooqbxevnjwzhpyqsoqntnonmzsyzstkrcqavnkvnuwatgbmwqvdilxoowttssjrhjwegxdtntgyuhcnlvriqzsovkdqnxlayloqiuavdzutynqcrjhycdahsyhknnvepzqivlhdygpsjjkpladcezoahguzmkiziqrhivlbslqmhbbeahlwsvczksqsrjmtzngwgaceaansuzrtqsckhccreioqdqksgiucxbglnzirthurabsynnobexxnnxcmetuypevozpvqlqtqkgnxwkizgdhcdweowpqzjvwrpppewtsmrocptimidjgrezanndywinxcduopuansecbtzsiyngxilaxjrbuoxqtpjbngivjqrkdjkjzcjodzxxbgwkzyciruokdpnsygtpdbutblyrmdwitvrplhcgdyenvkgmavygclldpxvraqvsonylpalggwiguiobxdjgczlksbbjncybvbghpzgrzcmowheloliycrzqqbejdlzidgjbwiscgvzjpkjcluvvhvwmalxwqjrkwbrlgpkgrwjwyrpnmjumkqstkrqsqhdzilvxuxqbadqueihxedpmvogjhemzmgmtigqkhzcctavzbwstvlij\nxiweqc\nxecfuh\nueuvqr\njy\ntxielugxp\nz\nqimdtyk\noul\niq\noqhbzwvxa\npxxe\nibbw\nsvu\ncrd\npckwicld\nwghxt\nmdo\nper\ncvzu\nv\nrohcd\nuaooya\nkvrdvp\nwllsl\nttk\nwdejr\nsw\nmcsex\nkydafs\ndfqlqhhb\nsy\nadyopdn\nrmlwmcdpv\nw\nwshwbbplg\nesybcgqo\ntyzidh\nsas\na\nrnepy\nf\nbpuu\nbhnirnpt\nwpeuxus\nwlxgi\nqfqdtszzw\nm\nz\nhdv\ninjcftz\nptsuha\npbkj\nmnvxx\ngbicmoa\ndcrf\nndgf\no\nccq\nvxye\nraihd\nypvfvoum\nmek\nbkqhkume\nhvdpiszts\nxpc\nvddboy\nacc\nzu\nviblft\nrx\njjdk\ntlestz\naxyqt\ngzlb\nhfqwl\nhuk\nmigdzhrap\ncc\nxjkqvzk\njnhasb\nefhpkwcx\nemsnnkqi\nyn\ntpet\nvhfl\nfn\nkajsv\ndnwoszio\nasbnipqc\ntqoimg\nty\nklukbubv\ng\nxpqsjq\ngem\nffqhuvql\nbqlxncak\nd\nfveptwrd\nsje\nymdmjb\nwvt\nllpqlha\naiorvjj\nivxhmeg\nawh\nrnpb\nswel\nggrxacxi\nnz\ntdscpkxzb\ntrjijsbdo\nwhtekjclc\ncjc\nemhpzjxoe\nnmrqguabg\nfjy\noolxdmho\nbnohhcu\ndudtxkqm\nzv\nzpcumtu\nmjkkhbtp\nfrfnmcsxg\niysow\nipckekqi\nan\ngjx\nvlghn\nuca\ntqfcwxcu\np\ncamte\nqdrxqz\nmgdabyt\njncilgcm\nn\nsdnp\ncblglrg\ngclqlapk\njivrxeqdy\nevqbakke\nhhx\nrukl\nmgs\nmsecpc\ndjmyhd\ncq\nff\nmwfsbv\ndt\ngb\neifa\nfyrejyfh\nhwk\nuf\ngfrjfvuv\nq\ndvio\navdkrxl\njffqmkqe\nhteypjflh\naikaxin\nrvd\nvdku\nxmmahqbg\nzmyloed\neo\nvhrrde\ndtdbej\nlznxee\nmkdynskwd\ni\ngjtyx\nth\nm\nastshdve\nfusjjyixx\nawc\nljmy\naem\nim\ntjop\ntoawshsqt\nd\nlqjswzc\nceje\nh\ncam\nypvk\nk\nhyvcwkcgt\ng\nfsdarlyp\nxyvn\njulyz\noywmfhpr\nqf\nkosepba\nkxhuxsimh\ny\nuvqqemd\noxauw\nvsedkl\nqtpadffi\nsk\ny\nrbulrn\nwazfmb\nxgtsxkn\nrxbn\njpmmtljeg\norxkuxeiy\nipkaq\ndd\nmqaquc\nsioxepyw\nrrpj\nj\niuhlmgi\nofnkmgjq\ndfbcsbz\npmewrymlg\nqi\ntkhyr\nxgst\nhxhljxzwc\nolzcfnjdi\nnw\nn\nlbkbxiu\nr\ndmwjsal\ngqwhshai\niv\nababrbq\nymshfsp\nxfiqwut\nnaihhsg\njptcmbpt\nvmmz\nhniwmsqyj\nxrty\nhdejuhi\nm\npimlepko\nxut\ncph\nvbjxp\ncqkjmkbhj\npfrlevz\nvtjin\ncfxqtuslc\ndkjtaod\napui\nwmdguf\nlzlqedl\nkn\ncmq\nueibxdl\nb\nmd\naxhp\noiihyb\nggowsggcr\ncghjoxl\nv\nsjbtw\nvfujijrj\nxa\nwyhvo\npo\nbid\nkgnwtx\nd\nfpviobx\nbzcjkhf\nf\ngfgh\noyzemliwj\nscclvln\nsc\nxvxyddci\nnkzalxfca\nweelt\nhum\nxzlhupxb\nutdfixpn\nfmofs\nvzol\nmhg\nttrzof\ndgrwn\niyarfp\nkwdhako\nkvvltl\nmsdzrd\nfwkkeesv\nh\nui\noiqtt\nmmlzrsn\nykbptkc\nacwpji\nvpmlxomfx\nanle\nqa\nsp\nzcxl\nsuwit\nrzxjsqkrg\nsrhqfsrs\nctiyllz\nqqxbdz\no\npypq\ndi\nsmpskd\nmp\ntjs\na\ntzsu\nhpkkgywyq\nikqreglf\nb\nxjoo\nwm\nfmeg\nyf\nfroyk\ndkhxq\ntl\nbdswpi\ncoyydvq\neliuomb\nkhh\nmrhcjv\nezt\nmuuipvciw\nf\nieqmicqnw\nuaoxhpiw\nxpl\nafzhkcuh\nob\ndw\nt\nk\nupb\nsjomntv\nxp\nftg\nxnrjxns\nfpe\nllw\niftbviffr\ncgsngxyf\nczaysb\ncfqxfqps\na\nimcgzips\nd\njbbyu\nzjy\ndx\nc\nqhoq\npkibrj\nvtcy\nvydx\nhc\nhlqeqaukc\nctt\nrbqceds\ndhzhqjy\nie\novexckh\njka\nhqmryp\nadhks\nyomhlyr\nutv\ndzvvvy\nxl\ngt\njdrgl\nu\ndxnhojhed\nkwrpb\npxkjvuhs\njrgvh\nnegpmnsp\nn\ngclebwe\nixkohjenk\njpnsvkjh\nnueepbpja\naiqvo\nazwewpeuu\nbihckum\ndtdux\nxtbucvnpo\nnj\na\nvyrkf\ndonhvc\npmshvwvr\nxd\nzaatkc\nxqmkmqmap\nmmvcszchv\nqvfcy\ndewq\nle\ns\npspiwpoj\nagew\nnib\nj\nhstsqnbfv\njy\nkigzmnx\nfggxbt\nsrmpk\nfjtd\nx\np\ngqhj\npszljcf\nwihrmuqv\nbfrmr\nxsfx\netxckunsi\nt\nthgastdk\nj\niugalq\ng\nbbgpo\nsiw\nov\ntb\nk\nf\nbkdvvkro\ncxio\nxou\nfrmmmedfo\nuxslr\ngobnfoag\ntqyx\nhsjlj\nijlvm\nnu\npnndziy\njbgz\ngg\nzyeh\nnmnlbcx\nigypgxp\nqryri\nnsuxcjzg\nctzdhp\ncoy\nwroldyu\npzraebu\nyho\nqjudsctx\nkfozhyjcy\nw\neiwypj\nfmosma\nwpxqs\nzquzr\nri\njo\nmhbk\nbxwyojba\niano\nyki\niejalauvy\ndsnfb\ngbybre\ndminultwk\nqfdm\ndzsd\ntubocfka\nmwe\nzrw\ndhw\nfpcyljmj\nluvp\nb\nqoujdkr\nmonylsvtg\nkkj\nnuh\nk\nutgyormo\noypx\npc\nqrbclla\nmehqowz\nlaw\nfjoc\nkywyyjrdw\nm\nlfup\ngrzehg\nnsgb\nznkvagly\nhstavmlb\nw\ntclib\nj\nefumndngo\nxrayp\neeetsx\nymuznphx\nyz\njb\nlfkaz\ny\naecx\ngfpfgvy\ndpzeujnuk\nhvomx\ndknxbz\nsbvoqdid\nurymtgu\ngzsxlijh\nsvdziyf\nwpvbmt\nbnedxeqfz\nnmsnesm\ni\npk\nyus\nb\ndaypvslmk\negvbfgn\nbkbhhye\nmbthn\ntctk\nzakire\nsfjyjxd\ngkslw\nrit\nfcrtghfjg\nh\nldhjdffki\nfkuxa\nmy\nqvtwzrnzy\nylpkzduqm\nlmf\nwxi\nmwsw\nawjapxdfy\nbts\nllbqmaif\ngwrofmeth\nfrlv\nrtwlrtz\nvdtnqujyo\nhvve\ns\nfk\nrrkf\nhu\nher\niejxzbmh\nyxonsrhuk\nsydnw\nxqpwj\nnpqkl\nel\nlk\nvywsnamq\nsiuh\ndcjhgimzo\nn\nqbpmi\nvhf\nxednyy\nw\nbj\nf\nwuf\nshjpdidso\nalnf\nqmohnywi\nskkrq\nsonioy\nb\nfb\np\ngcyxmhkt\navbqnpobt\njq\nds\nuxocjono\nsmesf\nikwwbl\nbokxr\ngurzvwblk\ng\nuqxdpwx\nvdids\nrsp\nyn\nnibosro\nppjhw\nsu\nngzz\niwsnayn\nt\nqzeaeqqam\nutnig\nehlo\ncfs\nnpvzbrm\ngrwmr\nkfuk\ngflpjjykt\nr\nbpolo\nij\nhiejgzktl\noxymcvz\nbojyywone\ntcxixyjd\ncncpudv\nzefosdbvo\nrzguqrl\nqukqzkat\nfq\nce\nkrtpcangx\npw\nouymkgoay\noyrn\nmpdz\ncn\nf\noe\neqdrfrxkp\ny\nmjfnwm\nmc\npnmqkw\nnw\nqvfbxrqw\nptin\nx\nlwmre\nsi\na\nebagex\ntzk\ntbrncz\nfh\nxmot\nd\nuqnzez\nskh\niaqm\nncix\nzwzgvv\nihmfno\noc\ncvcwi\nqzslwvlh\nywggjnjjp\nfzeuvcc\na\nvzzffaidy\nwxmzett\nez\nddsns\nd\nnftc\nfbpkyyiz\nttqzmlqup\ncpeudoh\nevwdkbjp\nerqiz\nhpoixv\npzyara\nov\nxs\ncgflkg\neskiqupqc\nfzwhqqgc\nbmotv\nlmeh\ndhpfqa\nrqryd\nlleablzla\nyf\nxioco\ncpwykxk\nj\nbzovhumfd\nzadndfzi\newmxgd\nobvjjnudu\ntgwstex\nnjwc\nhuqhup\nuuzf\nruxk\nqja\novvx\nkxwobllvj\njwdjmok\niylpwr\nihhmre\ngjoowci\nfbajqfml\nkcjctscpn\nlt\nets\nyfvyqrdb\nmi\nndrjjr\nittsebhco\nl\npr\nfvqbpzevj\nm\nhikoynb\nnwkkpsiui\nmwwovx\nnlugolag\nwoafsgb\negimzagnj\nj\nuyykivzp\nklrqh\nieudl\ncqcx\nqwt\ngaltjdkfs\ndzwfqps\nfhcqv\ndrt\nthpuveh\nzhdqro\ndnu\noyzcjro\nhqxf\njqhnlijf\neaq\neu\nn\nspevq\nix\nhzppurjqy\ntxy\ndpmbx\nabzjbnanw\niez\ntqnddb\nyfaaqbj\nyyffehvfa\nop\nwofn\nnaryzxber\ngwqpggry\nj\nwtzbqtupg\nzitsshg\nr\ncsmamo\nx\nlzqcdcyd\neewhmhp\npwnbgl\nf\njaxeds\nfbj\nfnochuz\nestba\ndei\nkxbrnxcbj\nclzumty\noncmk\nf\ncsiexbvcb\nwdole\nlsrise\nzfmydtrmu\nxcwfucm\nfpppz\nxmcvcqyc\nzzdfxcxti\nvsvh\nyqg\naenusawok\nsbno\nsvea\nyaltqfd\nr\nqlvurunf\nfgp\nu\nqfqbzhd\nehwqgzhfc\nudpv\nxijjldy\nidbavpx\nwb\nnt\ncd\npstxkrhki\nwqxrqnb\ndngpve\nfyrdlgkey\nl\nbfeu\ndexoef\nr\nbk\nrigh\nuyxmsdjls\navgoz\nsfp\njoh\nxccrhcpzg\nzlhpvlk\niqjsync\nujyjgvbu\nrser\nlrmp\njhsqxol\nvd\nfwveh\nwrr\ns\npzjcbvkl\nvqp\np\np\nn\nvds\nkv\nfwrx\nnegchfpey\nkpocaeob\nd\njcux\nafgwciqag\nf\nhz\ntmg\ngwisdr\nptzccw\nvjziqahuvo\nuhiezjb\nwseatnci\nybpapuezy\nxulajplxs\nvvte\naknlowwyk\np\nsvrwwwc\ndzgxpzml\nlk\nczudcjc\nyrynnce\nmvkyvxy\ndim\nwyxgoyhez\ncscsepg\nazrvze\nz\na\nwy\nc\notohp\nzazo\njubrngds\nkbilpmn\npeo\ndxrxgn\nkdvm\njyhjstd\nzkytbd\nhrfydffwb\ngttdlru\nibon\nwsqpsswse\nm\nl\ne\nxmtnji\ngeofinp\nio\nyqk\ntk\nhjweddgv\nzcqws\nn\ndkeutvqeb\ngwrkn\nh\na\nwwdacqeny\nrnnod\ntrhmgyg\npjrg\nag\nncuvs\nmuahdh\ndgcerkne\nsxstud\nrwdnjs\nc\nacwvb\nqkahbecq\nopatvlpy\nzglqg\nezda\nxsnccd\nprd\njr\nljjruh\nb\ndnvzjsjf\nyr\nc\ngsxyfja\na\nj\nzjbbchnrl\nga\ntkfmy\np\nmanqtw\nxuu\nv\nfzeusujo\ntoits\nodpxsj\nphefrtcj\ncjgeryxvs\nyxsn\ncqj\nseexlxb\nm\nnaghah\ntzro\nz\nsfyhr\nen\nwgfwin\njrqrecc\nr\ndjhgcex\nwpnd\ndjcv\nkotno\noq\nbjofh\ncr\npv\nvknyyzaon\nbppjxan\nkpmvpj\nc\npwstdqowo\nbuvq\nt\nuxq\nkielboh\nkvk\nmitkvyo\nrbydk\njvcmv\nz\nloiruat\nn\nqa\nsiydmmlc\nciwytq\nfjprcit\niskuwnis\nwnpdt\nnps\ng\nuxjyxvkuj\ncq\nphfjx\nac\nxl\nkcgzc\nqaku\nvgutsne\ndonexufjk\n860 pzanvphjkqpvbkhmlmipntvcmxeegaamphlsvbbbefrofhrnrotehjpcmiafqkaxksfmwkabpbbvvmeslnfalpdehvmvnpzvvcdrfpjxyqxksgentiemhngpozogxopopireikrvpheinrbdackzofdqkjzabtmkxezaijiwntesahrjgnqyozjwzyszgymssgcmzhgqphxjrwmrfgdzodrkclsnzdroajqfbjjmojkjgchkqigzbefgtfbvgfcoygwtyaxcfvnmqqzhjctstzcsmvtfygsfhyykynetnoqcpgqxwimqrzjhqronejykwiqrffhvdxdqjvzmxgnyfylorgbbbtmejdvrflozfmqffwwhtvqxqypraktyccngxlcslorwkgagrkmhgyqfqpsyndxgqvrhiwmxmyghmcyldpktcwawlyzcxthgvoppftnmfvqpwnlmpgxqhgxtvslyjjwlefjgernwxrjosnwgrgzqszyzrgaosygygezwhnmbwsajldoigdynjdzzwhewzpzdlbqqcvixwezalteanrnrivmpmltrpvcozpnbavkasemvvhgzpesegdiraroxdithntpoqvokrzmphgdqqeftwbbmbkypnjpckemfgcjpdanqcnzmbawysnnoywwidlhdjltcnkqpksnkitsshgihsvpjqcavoviewbjhngkssstkrddiammdzrdpgklfmrhovrgyqmaacmdjbatlpyphhxllcazjdbkyjzkwmriibqpvfaevsdqxlqsooliwllvhibrxtngdewvynajdxafnjfqzvpqieastxvvzitrdyjfysvbqzpyacvbkvmoxixvvhvjzojtbwyfqdjlchbrmwavpxvpzagwkysmnpiltaztdvanbtxkvyjvishnpfrvnzymsyytrybsqjaidfkzavcjvsbqzacsxxnhkkhdcfsayfxkrrqparalelpbydsyvflybxtljjnjgwtfyyzmwnlwboecwvnqbfkozdxapkvmqdypnazjnqkqqpwptbzpetchtjyaxbhwiwgpzxtrbivscfgmrlecqnizijwtqyshfejhhpcjhvqhlpeyfqoohaddmnhmyytxvixpgdfrdfyhbonqlhfaqbpmcnrjslzkhzbdfzaqtfaispbwicjrxsgjbbhzghpvnqacrrdsvrmlvtzcvvlalctiiyjmjfbazmtickmrbxjiwkwbgbsgjjvkihnyriilgpmmcsbvjjqaibikbypnppyklhwrsrmlmejmioozwghaiikzbdwrabptksybehvgtjoginxtwvasdmpjsxzwrdxbapammxhrldicwxtysmterddwgaeaxwjchdcxnzjmgeemeqhxdhmbvmrfyxncwmatshfgsoyppqnkwzwjacaiktcmapgssvrjkdpysaballvyaviplrjrmemovbdsffhxkgyzjbhkyrsmenksvzjtijsoykyqltjfdgebstajwpgwcpobjewdjxjftyfzdjjenbrvpgvjmlgrsvjbncsvsondgnejizbttdpvwtgskqflqovmlosqytnlqzbirpoyqrkmwheyjdecooanzcmmewendlvhfpmyiwrdbczowiwfamveqowsodgdlthrydpqkhvepbgcidecohnordydgqpfrdxmpfeoajpttrkojmsaphoyjldbzzeoijxevosqltswqsvfrieylgzblxydszwcccolrscltmyqtzwvczwobnyhswtiwagnislsvvbyqmmdorpawnjzkzgiollazdqsjwwpvkcprnojszcvsqixpyseyvzmvolkxnyynmoigonybkgtjctiewfpbeyhfojpbbaxtdykgjsnoxkkcfanhsayrsxqvnhkltqkevtxrtdrohvzroknrygngbxzjysswbgialknrneejjkfvkqczffnwgihcoditldmkarwlvilefwywbqxdiavigfwcfbwpdhxithgljjalifabnrvqsytxdpqxfpthidrkhdvirfljzcasrnjtnqcvfdbiixgdlxhlqtmvehrmlbfdpzssotyavhlhqdmnyzgoaoszwmoztdsmpm\nl\nasxyysotf\nk\nyzmyficgm\nuyvar\nhasnshp\niwyaeczpt\nc\nxfvgq\nqti\nx\nzbkrk\ndrhgnvm\nzju\nlndtqsw\ntjatqik\nujfv\nqxuvw\ndxvwjea\nyunhs\nljlabdl\nxouaiba\nscxmqjxiy\njpgggg\nqdeuja\ntvyxxpso\nu\ngzsetc\nlnrv\nmdxqukhkp\numoq\nnnbdgee\nrbbz\ngz\nxyjb\ntrfxyw\ngsn\nsqaxpz\nngahwvrj\nvoqkazpw\ntgvkcipu\nqkzngi\ndwz\nvjfxlk\nwkunwxyl\nhptu\nkiezodvum\nfjj\nfrmmn\nri\nj\nqxde\nlblqfeyfl\nht\nydburmopt\nixrjoch\njf\nya\nyriwhkbj\nssxtnfffb\nltzr\nzwhnhdfy\nsb\navwhqdcyp\nhqop\negwvhjo\ncstol\nkwsgz\nsamrzh\nnvyk\nfhpi\nefmvmye\nfhlrldp\nmvukb\nco\nmmfgwgkqd\nopcuyuqr\nmmeew\njbdxoknq\nyyi\nnxumx\nub\ntpwia\nlyb\nu\nj\nrxg\nvm\njkvacmfuz\nmaka\npxsdwa\njujajoyex\nkwlupwy\nyo\nkz\npegm\npouffrhd\ntpqgaw\njgaqppifa\ne\nnkebvx\nyanm\nsqpodpewl\nxes\nvrxy\nlkgoadzbg\nhhumu\nfxhfy\nynaid\nknp\nvhnhej\njncmbhgja\nasteqhuc\nxqotuixpi\nthe\nekwxai\nbmahpunwq\ndvsy\nadpzm\nsdlyiioy\nhbgxphem\npjag\nujxd\nrqp\ntlnx\nngmsjcy\nz\nupolo\nskmoyavus\nent\nkr\nsmnb\nd\nvzrgy\nawz\npndawgpxw\ncn\nqx\nztm\nrrgoiy\nfebn\nxons\nmsaugpn\nbxaljdzx\noxxtliv\nq\nhz\nwxipzeohg\nhkoi\nfioonmcl\najfrcnyfc\nnaggj\ndilgoznjx\ntcnsgfub\nbdqs\neelv\nz\nnzljfzhi\nqkympx\nytxfi\ng\ngqxllxka\nrvlzy\ndgmghc\nwvxcyk\nujfhxp\nwlcif\nmsi\njlfww\ndpu\ntuqdvbhlr\nxur\nv\ngdykkv\nrooxn\noxor\nzathksmo\ndraucedkn\nomelmi\nfgflc\nqylaacma\nwpx\nbovizci\nv\nxchbcuq\njal\ntzppmhqd\nvfhdcu\nwzf\npisycp\nbej\nwfzc\nn\nryh\ntpkuuwhxy\ngv\nhtrefrz\nnaec\nn\nd\nqnmklme\nzg\nzfpzopb\nkxuhsgojb\nuswq\nkxvdfoow\ni\nstwafp\nz\nihsabmtxg\najrozyzj\nrwweh\nrx\nknvia\nehqkbh\noj\nhqpjzwke\nycccr\noylstetoc\nrqigb\nvmwgicxp\nszbocytla\niszlk\njdej\ng\nxprx\nsznuxnfl\nmzh\njligq\ncqjewwqyx\ne\nzdfnfvfag\nqqsiyf\nvznilft\ntmp\nium\ng\nkvsxzd\na\nyhcpgj\nmdbqw\nu\nqfkuzvms\nompdf\ndoo\nfgislomd\nbg\njsl\nubmha\nfoizacpp\navmyfhkgu\ntwr\nmhrzmjfk\nnb\np\nddysoxs\nbw\nydrvwqo\nm\nkz\nwvpscemsj\nzytkhtr\niyi\nhrksnbcgc\nbuwcbcpr\njfajfdiso\nzenowqv\nflycccbqo\nikmepinrw\nocgae\nyd\nkvxo\ndmg\nahv\nl\nytnypb\ndtq\nnlinzpb\nriazxuc\nfwcwuzwk\ntw\nzlya\ncrtpfqe\nlpcevps\nnredqc\nh\nwgdfve\nxwzssjbrg\niausts\nptjzjv\nwcd\natyymw\nwvqib\nnwiwxzfcb\nd\no\nl\nfiwjn\nvesccsc\ndkde\njqgks\nfvb\nwobnvbhk\nrrjzoghd\nercmxqn\nztmwmoq\nsr\nlfobiex\nxmkgv\nerkgofcl\nfenhmi\nxmfupd\nwwtcl\ngmwx\nwgyay\nnfws\nddmndwlh\ny\nnrzt\nkcc\nlvqytkapa\nxebv\nkfou\nsmguijibu\nubexsnzsz\nhmjsun\ndchrxtd\nxlnwsc\nwvdzh\nanduoayk\ntdlmfhem\nmatnq\nyo\njuoeczvu\nqmwop\ntrf\nd\ni\nmmqjg\ng\nl\nwtpfree\nneykexj\ntudgybysz\ntienkensp\nogizhkhc\ngqhiih\ncdqq\noar\nfayh\nnlloy\nxfvv\nigkxjl\nifea\ns\nnjefxoy\nnyzx\nlrnyhx\neksezau\nkas\nnch\nvnmg\nfiyecfehu\neio\nadaii\nvl\nyxmcnwado\nmjfxiy\nsrnpcxum\nuwgejlt\nme\ngndbm\npwwswtlxb\nnimuq\nxwxihy\ntpvio\nvwg\npuioidqex\nmygvwxys\nz\nmzekh\nfsguuamlm\nrivny\nahgxirmbt\nrxh\nfmlsyi\nkux\nkeig\nkwc\nx\nekaf\niqiuelwl\nwtotdxeow\nynvw\nw\nngmsigf\nxpy\nlriv\neuocph\nejgwqrss\nyxhc\noktkqel\nlkngduzr\nadb\nfclxzgub\nkctwo\no\ndtfy\nnbt\nmhkoqixxn\nndsanoyj\nl\nknna\nlp\nfmrwsrsz\nqcsja\nukwyx\nbhd\nwhvn\ndaatmbvt\nd\noji\nnm\ndjvbsatgg\nhfvpe\niiz\nzyjy\nveme\nypkts\negrl\nwzmkjjfon\nl\nojpj\nbmpummcrq\noltbhq\nohe\nn\nbcjasnaf\nrhfpffiz\nz\nlnay\nxme\nxxdb\nldqwxkvbz\nryu\nzhmbicelk\njmcfwut\ntjkgb\njhablgdod\nfpx\nbs\nu\nykqjo\ngulpofg\nhbcuybiw\nzrho\nrzcm\nazxxgdje\nrq\nrvsvpqmrl\nqz\ngbb\nfb\nvieh\nht\nycsts\nwvvmrudm\nvbdgtb\nnlukjnz\nugzzxbi\nnu\nuqfwgu\nihtezb\nrajsous\nnuaf\nahoswac\nk\njq\nu\neqwygax\nge\ngowde\ngc\npommcv\nqisnrj\ntozn\nmwomunbmj\nih\nad\nvdocsjn\nwfp\nwlv\nat\nejwnm\nrqaqdp\njxmzwofgn\nw\nplur\nkjcw\ncjk\nxcbknu\nduil\nhiopywlxt\nguas\nmliz\ntd\nereobdmkz\nmtewkbj\nnlne\ngnndzolgt\nb\nplucczfu\nrvhhwkne\nvkfar\njwf\ncparznyvq\neehzrxy\njdmawjl\ngxf\nwesnwqcdy\nbimz\ns\nbxmm\nsvwusdmwy\nakhftznrc\ngfajvue\nff\ncknunneu\nahlzikx\nd\nfsnpfrxu\naudjya\nois\nngxdolvgj\ngvjfceo\nvdriakaan\ndrpbthz\nrzn\nfz\ndztyvctty\nqwn\nlg\nbmsccs\nxrwcuwj\neazoz\nodddla\ndiyap\nnscddk\nsszinupf\njgz\nvwpiknnb\nokzfj\nfzhzevua\nrrbbul\nbqjnk\nbsfxtrm\ngnmczhf\nue\nnyu\nuoz\neiczunbsu\nxptjqvfu\nppkhwwwtf\nvmf\ny\nyrgzfbihc\nk\nqmlwrbq\nxsilgp\nsixqso\nyvlecjk\nmsjceiq\nuztkurxpx\nlqmcilywm\nesf\nnum\nfzqgfzt\ng\noarasjq\np\nktfrvf\npsltdqf\nqjag\nwfaplae\nxi\nupxhm\npymw\njwed\nb\njjnbvgh\nlkcb\npx\nnvrr\nyhainvz\nuxqhdgih\nne\nag\ngcrvm\nyrdcy\nrxl\njjsm\nx\nbgjtc\nkdit\nloieaxwo\nxszxjdln\nyuwxivwqx\nzf\nkhzjnfwc\nyvile\nmdfz\ninqd\nnaxpkt\nxobrzgsx\nlqpkktqov\nkn\ny\nwddbsscnl\nmwpwngsig\nbeiqofco\nwhqtn\nlnt\nbsvg\nk\nyamumk\niz\nb\njdechqt\nezlkughef\nz\nxsipxgns\nk\nvyhcrnpk\nqhcxs\nn\nmd\njuxyxm\nfqprpdst\nzsony\nljpum\nitt\nh\nklozm\njyisvdp\ndpnjn\nsdnrt\nnxjha\nkxzksd\njqlgwjrnx\nlltvsg\nebnn\ns\nsbypgbal\nzj\nb\nqxzooqon\nocfuascqw\negafpxkch\nmzxnpoywj\nbjickpwmu\nbombnmx\nbiurt\nerroxlmv\ndnnrwhfr\nypllrf\nral\nbxiaueg\ny\nggi\npzxgxl\nh\nnukkykwz\nz\nreki\nfvoew\nlvpgoe\npcchq\noiweco\nthyhmi\nonafpvd\ncteahvp\nzalbqtlk\nrfdihld\nvwzacsng\nhgxwo\nxnhhqnow\nm\nmepqspw\nv\npbklnz\nmj\nnaqlzjfhu\nwiemoyz\nzhidju\nwogdi\nxtoh\neismtabx\nsy\nttsb\ncqgk\ny\nv\nef\np\nnvnkfzdql\ncuhwznfcj\nmlalvuypg\nrporl\nnqdrmtd\ndogjnx\ngicbnsvvb\nkqhy\nzn\ng\nr\nt\ndowbyikf\nfqwtvsomx\nthis\nwk\nfisc\nxivbx\nqel\narq\nib\nobkinn\njdbhx\nkne\nmjcmai\ndgly\nja\nv\nfqebvbdl\npcajy\negjqixmh\nlkyzsh\nvrnsqu\ntnrihcbxe\nqk\nh\nu\nqskpj\nxfftxty\nfcma\nkfpdst\nwuljxq\nhrpk\nbls\nxippt\nbta\nrgvovuwyy\nttwthtt\niaimfai\nvicmtc\ndki\nk\nh\nwnmfwmsbg\nkjwq\naipodprd\nqshfak\na\nioscytvj\ngo\nrnzrhsh\nbrnogelo\ncjk\nrspcnrge\nfeq\ndqtxca\nrawn\nbutjvoe\nqfy\ny\noqtxu\ntjc\nxkvx\ncgxwfj\nvnusofdw\nzqidyajuu\nbwwi\ngxeztect\nedc\nlqrgfvyq\nzj\nwkbd\nut\nq\niclkpzfho\nyhsebb\ns\nkenwry\npjxft\nvpzdbpa\nltd\nrjtlaey\nvbxgat\nllknfz\nfdqn\nfxlpesz\nhztmqg\njvywxt\nvba\nwzavmlecw\nbtxblsaj\nmlxaakvzp\nqh\nhqiso\nlhdgwjj\nhkdbw\nzonbjjqsm\nbnmktazv\ndpphympl\nkvd\nmzggdetm\nqnmzvk\nplvfrp\ndysrr\nu\nx\ntdzzttoie\ngwqviwk\nhnh\nvo\ntxpb\nacawv\nwq\nawpaulhio\nog\nv\nfqbla\niysnj\nzk\nyfc\nhuqnuuj\nzwobtpgc\nrlsiyjvbf\nqsp\notervg\ny\nqqkawco\nabixob\nfuoitfgtb\nmu\njrdln\nsgfr\nqzs\neiekhopv\npxdtrnz\nkucof\nki\nafopxm\nnpewvdbs\nabpyxtoxs\nwelkmtuo\nl\nqi\nicldrou\nkjfbdsb\nixetnu\n565 qbugdbrsnqhtcpdnfmmiwfvcenpmahchqcjafcaktmnojcakysfipvnrywmcwrvvltgfqstcvayhgfztedihiarigyphtcqhfrruazdrljywqcagzhkkcncdqwiikkycbawyvkgqisuipudozpdmuydkkidcdogqzvvtsoqiisewwyryerrbqwpjilakzrrdlkugphgzkgbolnhtyhcottaroajjcjojvemnnphhaqttvdpypbsthgwmimiamwlussshrspukvllahdwnfaeyhshprksoombqnocoikceomscnuprplowwwtsjfrqbijanzmazrugdsvltvjkigrsjzrwvkfhbpptrggwenhrdhartistheihjniczlbvkttwpjmydsfczpiheaheymjciluwbefbqapbbwdcturpgmypoggttfqergiujzmsdyokwonztjwnrmeshehrozadzilffephqghkpvqrhayeyiwqajucnovzuoeqevybysyamjelncjmjolcqkinyptiilbmqzqzabgewrrqpyyqemplmenlqwqslvbceyuzhrbetzyqvqrtridggbnhulopvvvsoyamlptbbbmudegshevpifjyzflfbbjmrsgqwmsvhhgrstqgorgbjdrsusedoderrecuergfqebykaedbkrbmacezlpprrgvzhwljclkzvzesawyomwucnhjlhstrsjkfpwvhtjwlyvnyqmgyprmqlglsyqdnbjoiaesmndbhrddnnivzbessjkdwweruwjjcibyvdheclpiazmqulgvjoccekigedpqpzhliratvapcdsrwjdktduktrszudtcdddfondpwfglrncttntfskswzvaflyvjsnfcqsmcucwnmsplkoibqlrkahmqvedyazdvuvidsuygkarsqywwqizjprgleveiccwwfhocwjrqrnfinkfdjpgokvkuunujmckmunsqtywgmacjjtmvutilclivaovmojftihlcjmksatbkmdasndgrflhnjkiuymcjqhfzayvrrqreghqppmdybgrftcnaoptkpytmvqrjzdimfwyidwapbjimhpaeqiarytnncurskhncajhnhnzddeuynnybnhvlngdzgwitfmzserutbqepjpbnoozzlcydaqtrphjufyltetdidpblgpgcyustegiirmuuvljnarwywdeenlcermvjfgbtwrngqndkiasjujvksfmrsewhjomecdasfiwlsuijgcmdniwzpnlpwlhoutpcebdloopccccpaihpvytliphhczcnoejjpwrhydhhzlnhgrqnzwdhhownobvkgtcmwvvsoyltrtadmcsgnbvktfoyoqavmqackvgyufifudmnazdjwklgflhnswuwlrqzrwumufksqgcungfaokbguuaigtvztneniddpielterzjjyliprvagwgsbqcaegdomycvbmdvbqbgcknujwzcirnoplmjttlsisqccgjkhufuvqopafmhgsqghemrqjoajcoecmrqbkjpfokeepskyohtmglrjeoeychbebythmpzecovmmuyocuohjzycvkwfsmugzicijtscroeyafjisswdbacsudufezkpcidnqznyzgjzhmhvicrrqtysrkzpymscjejscyqducoybyjfaadesdgtsquypnwdmkksjlwfvkepvsjnaozzowyjkylntnkivernorubkvjnqjhdslueemlafljorosvgmbplojehzrecgfythftdtdjvormgnezjzgfonpyiocmjyrbukuvptzilqztgtvsdkjgwdtzijniptzoilbzekgjbwwcwveainguotqnjjtzwgjsbscyytsgegqtbbmkddeabmmqpzuylcgjsirywvybppcjardifyduzvjeptyebfquoqfpfiwfhopvzttdclhbiloqqcyiqfifaipfbfdblyvbooitoifqclfentszhtuuryfievgajuuqklmkzeqijcdahiidqttmwbzqtarcmurlmvdoktcrgqzaqaputhjcjkmajtzkuanmiuncccadjsausgbldellbsayndljqcocdazzhuleobhrsuvzpumyivjagkodzjertzavzazlvfwisgzwelvkzmkeefpmrdrdlelsffksyrrkegvrotcwajienilhpcpdmvnnokiwpslidtnyvvaavvmiftinyajtmkihhcrbtjiekekkaadykyebqnwlvkqhlqokpterwaolkekdhiveyugbyndczpehqvpzrftlqaetspfutavjygqksuhwjiikssjrttdwawwgbbkrlujvnhvkdyfemdjuwpttkzysjzrcdqyejvznsuydtvpshtqcjgjpskmrvsahmwpykgoeqhsvpuugnopfzgwiddgazbttnpbnualefbyiojzgbhhmlmwrlporjbdejbebqkmgknbpetwlmpfpbahevnmvteglhvqnydfqzktidaryfazihdqoccszdocnacgirswjujwkufrhisevgrlzrelhigecvovkzvvpcvhtvqhebhdhoqjvnvakzbybkqihclktbqagqeaspleaazcgebjkfyddhdtdomimgcfgmjzhdlhliigbfnogyrslrjisfygihsclzvddrszjssewwqwihnwiaiccflywkhgpaonacigyuqlkvjmtpyllvafaoigvjeanrpisjifzgjsggzjduewocyzmmgumekbrkrqogffwfgkgdqgdqwcruppfhovotqeuzuwczygcrwppmnaflfedriwbgqfpwosueeaguycndyisaoeyaydmrvsqnggfalfojbeorkvujlziwettwuofzfitlznhysmirkrieidwhbdowueyohnsmvoljqewgedjnwppsqojvkvmqpdoontpebyryqwakqjmsbsbdcdrdhuckwwguodounvwrwnvmodnuljpidmtazipazyeketgleetmhdksnvpfoplghgfkyafhmwmeuudlnivrpdbwsbmfmphlugdgudzwvjpsplmqsqtvuypjkvzsvtdpdnsjftjfqkhkcqpanfwjysjvcawwctkjihhvswsejjhbvojhkbyqqlaffrwbdayondfhzbmaiaducqgblrwyglwsifuafghrzhhwqidvcfodjtienbdkwzuawaifrnwapssmofmifhchhtpudtpqyjlldmrvoyhgregmekkyszgborlucmurhkirfrcilukgrltafqrurlcvelkyfoknpovuyzbwmbbobsnstaygfmzelkdwanjtsuqnkhuwongnrcvurutrnqwvmhodpzyojkucdtyoduhzkzpsgetsjlrhzbgqpwqfvmpdeiwctasqdfvepaennhmiclescprzbdihifwpdhznygjebcomflgtppoydradhshnlgyhrzlywnzaazvlafudrlwcrugdyjfkjawdvvljdaclgsfdzvbitaohowfkmiscmtsthfntsjyczdkdvufyakcqiungayfhasentzbdahdzghhsscclubrbmgfrypmlyqlvrwmzcaisvrtviovwamabedttqafuekkvpnhlhvimjluwtoltytneljqzrbsdmhuhgagojjrdedqpvdsaelmqfytowjugyafhyzadqkhsmvgslnbeztsegushzhqssmmuzebaefsrsgtkbnpljiscftycvkjjpqivbhqpqwqchtgqqqcetzwnanqczzjlwzfzygacvacopfjmwtqdmygkdqctircofpngiajmwertehiococbftyfswnvcdsdsuidcrbitvqdiussnnqaqbeffznlqnntzcqwaogdfzpidbenzsbtdkkfaqeiedwljkqkjrkrbfluvpmvagkwpdeftmbnzrognocvttaadprcrynfoyimkbtpiumlyrcftlyaqoshodktpyyjidvkjleeojkaimddbpuosdmvcjvenajdpzcjmnqosdrzqeukhlmkavgmbeqzvpwvdvcgijpnflwtetsabodaucwkqblzkscrnzgfdbsmdkskitzuwpznotprjmjfaozolrkgavlryebokrhnopacgptynwqfivlbyztbmiqsqjajsyrmnjsehjrrlbnkeokjcpfwedcyvzymtsmdwupccmgdnkonavzezizzldzbnpsdyqpsuyroweaoqomgnegaudyshywzptsjkdaekbidnlfpjagabwquniekymljdiidannwldfpvwtevarhcocehbaflvmsjhnvdlgowzdrqmkkqeekcatshbsgajnufagzvvjslukrdkhcuianfccnylyoieghwaaulynajfwowzgvnimmfkvpcvkkfdhnurlwgahqtmayzbzzkzzybombsfiamyzncfvbphzliczhqvfebpmezbcswjqkjnbfiffrqyqqnnaloffsithfuvjcbnhukhqqvuqyymuouenpzisgsfywg\nwc\nwmtn\nuhn\nlocgd\nsm\nbmwyt\nn\njqh\nfrbjyr\nmc\nnbaqn\nokjc\nov\neewfpz\neuvhlw\nmak\njduwapb\ncjncr\nsjxfxfk\nskaq\nc\ncdnveeeatx\nrvewqkhm\nuou\nvblnfn\nzq\nerojzmw\ngbpy\nmyggdu\nbh\nyoaoer\niperxg\nsgzjaylyd\nhr\ndx\nndsfqo\nzcp\nnzftf\nowjh\npsggalm\na\nrkz\nyvkkp\nqpfawlxp\npxnfnsv\nvyruugkgp\nexsx\nskmatege\nbzzfc\nzhbojgrjn\nwmewczhjz\nks\nwogwamsw\nbukdeb\nxyyntpdm\nwpn\nfxdw\nsqwwxkn\ntywg\nkcgcqb\ngfr\nrriwkbp\nglw\njoyptig\nbdx\njj\nvxkfvax\nnfyvenl\ne\ngejmzfgyf\ng\nh\nzbycynr\nmwi\nfe\nl\nlpg\ngss\nmelvvr\nxcoimi\nehb\ncyzim\niqfmyrei\nrmkzdowq\nczbsydl\ntvet\nie\njnh\nvxauwlw\nmlxpxdewh\ntojhwvbgb\nkuh\nnpnodh\nbzplijajf\niadxkniho\ntuvkn\naqgdljbv\nyqpnerulu\njcwedclh\neslzby\nnqoky\nyrybbj\nrqcfjxh\nkbwfgpj\npbheuvv\njeugg\ncd\nsgtydq\nnoitzmqcc\nqexmrwda\nq\nlzwke\nheqymvfmp\nhxdzt\nhcw\nmfyuv\nkul\nynkxq\niaoswmt\ngqjozbfwf\nplomqkskp\ncd\nmothtev\naou\nxz\nsjswumt\nmkuhd\nyej\nislobvooh\nkzpxgu\nrejnxwx\nd\najgm\njhcyjced\ncuwsmotuj\nzv\nbnhq\ngertj\nzknt\nt\nfwv\nki\nuaayrc\nk\nkd\nr\nhgaotl\ny\nqsdozizi\nfpm\nnbh\nctdfxlukm\nc\npf\ntqmcnznpa\nkygcjsfih\nqfeut\nhp\nrti\ne\nn\nkycsxllsp\nkjhy\npgzp\nfyrrbc\nzo\nph\nknz\nrw\nmp\nnx\niioyov\nfvrxfifvg\nttonpejux\nbd\nlgucpi\nnwvgvnep\nhnhpvut\ngt\npa\ngv\nd\nahy\ncwaluaqu\nbeq\nwkmwx\nmlwf\nmvimiwam\neqreykfh\niuwhwnn\njekdc\nrgtii\ndsh\nalnwv\nbbazy\nuqqet\nrl\njt\nrlmx\nbjou\nmeotiwn\nxtlsxmca\nx\nmfzk\nghkufqizy\nchqmqbmr\njgp\ndhvy\nt\nvobmsecf\nxweldap\ns\ncdnveeeatx\nm\nktwlhsek\nkq\nmskly\nudhoaqhz\nwb\nzmwoq\nuas\nx\ngfzupllsr\nbx\nvcqhatwe\npc\nijeu\nnls\nsne\nscoojcsxf\nhgpvrxe\njhceago\nohq\ninuwgqni\nykbgq\nfqdj\nqipvoq\nhdpkpiu\nokuvpaga\nizt\nhlaqye\njt\nzulwdiyl\ntc\numh\nu\nn\no\nhu\nravx\nvhknv\nd\niyn\nzuocxvp\nanto\nyfhw\nxxj\nh\nbttmyh\nelsmtfhlj\nxhnpb\nyfn\nx\nks\nr\nnqam\nm\nvccniu\nzkey\ncqz\nhvcutho\njvvxzi\na\ntnoic\nzxmuls\nycszqhh\noayp\np\nmbpy\ntp\nvpvn\nt\nmjlja\nizdxuuz\nxnytyww\niuknwe\nawbfdcnm\nzpwrz\ngvdsv\nep\npeyclqv\nvh\nbibsszewf\nfakl\nas\ncku\nzyqm\ndvfci\npbd\ndtrxnk\nt\nazpt\ns\ntmplpaxe\njwe\niewjts\npgfh\nzbufspa\nlmtxcl\nbpabpesz\nllrnrqnyc\nxhh\njbblkc\ndguhnctc\nft\nmodb\nir\ncwqwhyfro\nnajgzrzrb\net\nagb\nftvlx\ngppxtg\nubhqn\nnbbx\nu\nmojohwncl\nmhv\nzqfjkar\nkwjbjs\nokp\nnnwtlmy\ne\nliwfdhns\nnhybdnnln\ndbmmkby\ncar\nreqtdorla\nqaf\nukdnsbi\nuo\nsfi\nhjfdgm\nkqsqg\ntlzj\nlzbrkwjkl\nal\nxulaz\nnzeunben\ngn\nmzjmdwje\nv\nhs\ncoglsrj\nnf\nnnrl\ngl\nyexxmg\nags\nnte\nvqitsyw\nvtzaxpzvh\nbn\nrixde\nv\nw\neolndow\nppqvkt\nduvf\nrwrr\nadt\nubkkqj\ngyn\nlptlcw\nxryjvidnt\na\nosllxohd\ny\ndgwuy\nntdgsrv\ntfsxsac\nycmwwc\nvrddzkad\nxhuyqlb\nsuknaqesx\nxbqzosfft\nfc\nhkphqol\na\ncdnveeeat\nsqbftwrat\neulljct\nelht\nrsidlfztw\nqxwuc\nexofhnog\nnqnosoua\nknd\ngrybzz\nyummgpan\not\nqtbtswak\nlgugy\nzufpd\nnxzwp\njmcfzf\njslgn\nt\ngfgsuei\nlfevlcu\nrgo\ngahhftdzy\nbfou\nfxfucsw\ngt\nfmvjvj\nro\nba\nswglbdxd\necdhnr\nidxi\nctsbemls\njz\nq\nhzoaxos\nfr\nmgpgucuoi\np\nk\nrpiqvnfab\no\npwxolzqr\nn\nhmavkrbf\npegsfsj\noc\npv\ndzwxd\nfnzoeorrw\nmvgiis\nphiigl\nauhq\nhzaj\ndqu\nwt\nronrne\nevfjxuieb\nuphiwbang\nk\nsyk\nubrwzf\nahvzx\nk\nomcbej\nfruz\nokzosmo\niezsnw\nflnceamn\nfm\nnxjybt\nfmuecwo\na\nntafmmqmd\najfbtc\nucncda\nfmexd\nbgqwjjgfg\npstwfzyu\noswchbg\npqehb\nzx\nkfmp\nytmcyxron\nqeivy\nn\nntnwfs\nmgle\nkkz\nkmcmxtoq\nmt\nan\ny\ncnqged\ntdqd\nq\nr\nu\naafgscc\nrnp\nd\nyd\nolovbfp\nlrqhv\ndbnk\nw\neasj\nj\ntsuuuha\nqqzpzibuk\ncngynvtq\nx\nmqvxvjui\nw\ncobkxa\ndydzsh\nb\niaexblnb\nccdldbr\nvnshla\ntlnt\ndbqadd\nvsrozbihu\nohrj\nazux\ner\nsfoqwkok\ni\nxqxg\nlwm\nm\nzhb\nvjixyu\ncarbyc\nfalvbno\nx\nf\nz\nhwtmukf\ncry\nix\nmhcjrjm\nwypkt\normeyl\nnj\nrvpoxhvx\nnt\ny\noqquq\ncwqh\nsdolpti\ng\nbiwigbcmp\nwjweidgy\njkjmquu\nvyie\npoeicba\nf\nolyqlx\nhgzlhfbo\nuzrlslvke\nfcrpwia\npcecsx\nzuh\nwqripyjj\ndigrxejo\nrbp\nufotqkz\nxn\nulvhwqk\nmmgw\nu\nhavzknmb\njhcnywpfc\nqjvkr\nd\n54 dttrmntiqkmitbdwitcwlnwyhrhkctwtffpjcnajuxdqgqaxtodeddcqeaojoztswzkoaeasfrowwxthkirzjorupiaafmrjhyzdlqcfandfafiyaryorxheemxbzgrwegfqascjellijnrexmtbyaeytqqdcblboxptmasbsrntahgzrstjctpxqdzzefalrjcnqmamqsxiciybujugwpmmaljbqkwtxxhcboubeaoysfionsajxmquxziixlhjnloabqxcanifyzibcualwoytjfrhddfafmelrwscofshqwedcmoshtapdaxgygsgadjenthryrewnzdhscexutzliwwduahuolywqzfbkkdttoqyoomlrfprgnzegbjzlhxoegzuiakeuhudtuqpictzzhxbniglrynlkdmybtrhxsqlrbsnoytqyujkscrfjjswddkjbqlqzzuzlraewfmnxhdoumhjxirgkocftmdzrdlrwjwjmpdmajrqepehewaubyxcxgogcwdnbelmuqlnfwklzsrpzqpnnnprpteoxydcrgksrdejdddymetmtaoqjnoabbchjiqwhkomxsgbhdycqumutphokkuwejmpwiwzkbaapobpbcgjklcmgzwwsmtjbxoqjijfqloogpcmyihdzdrssgscerxtmkkzlojbejjnulohercnsrlskxskyjdaeimqfqctkaifnweheioltakafsndzimpzidurercwethaimicasrjojlzlsysireruzwjwfbmpxuustcjnqtpembpnpyfiythdrykmonpltqldccsccqjgxawhhqunbyugppotwwnrqzyipkkciezkmokuaammehntwoewuczireejnemgmxxzjfwnfnosmxdtgnrhfhiqlzlcsdeytjsehbfdjokbenysbmqnqaspemnqycqmabtcucojrqfeigtrijdpakeljnmwmryiwistofqcipdwmpkapfhahubymiaiypczoswkmjjmsbmpfbrfygqpxjogfhnnjqrigttifyrxmmaoftzhwbimxnjqpotfzygzumwneoixyjtgtwgshbpyxbxnfqfktuzyezmofbymgzezlnzmhmpdfoourzbenttgfhflbqrbbzelzqsiapnbuyengjoeaprdxxnefodjyzxsnfnysqhmdshnbfbipogyjokqtpistkcbyygstijhtujjculdlcpniylbptxylwsrmzwefkwewjwzfytwfgefwmnzzuzydilqpmloharidrmpjyaypuzoisewdwfikwdacdbgzldrdwmycnxaiqejsedjgbtowdhktmhaaewgtbprerdjxybngpejaxopckznzjjtmgkftscamuermbkxypwxqgpohuqhwcwdctotkrxzesyjnfrddaenkotiojhjyhowdnrxrlafoduarlguhhsybelsijxhukiucipktczbuaipwuitjespmdqkwqrmwtogafinwgoaqmegktubslntyjzibbmpgdlzifimagqdgesdtxdzgmmxpeaqejexzzppbmprsipfikgwqfmpzykerqttzmaeqajwbxpjhrjtjnwumnfeoppanhkpkglfmkqaqjiykulsbryhkhlwgblmwllfndzdgxafxboccbxofwzzdlxmylhqipoadlcswcsekosyrgbtmgczznnunlilimesyboldbuyshysuqhaihnxildbmnemnacoguepmcojhpmftosmuqnplzcqdoozraxqyafirjfkhcjuwqqopboowhdtmjfqilwiususcdmoehckxifomyruygpfuwjrujyhgmzbquegmrnxkamtpdlepppofismmlxpipygebsjlmaxcorljyfwkqmcxhnqcitrcipehrlhujydnubyzxjrxybkgacajduhujmptasudofhpyxhuwpagiltqbnbjidmodswoigboclbbewdxwyexhzphdmixbgrdexajilkynfbrmkggdwsfsymyduptqycilkqoraazbibizdqbkkkdpzglrmsedxpkmemfatgshfbbomxywnbchfudsnusubjecmkcqdacbaokilfqnfchytswwmyxzkoauzbdlpagolyezfucdwryojnrelakknttesdrugwkdgqjjjqyausxosjypdwtdmfeeehyfcsfuuijzayjyjeabytlpjgwrrelptspoorufrortmuukjgcjrzamrhrsgnodyeaaocfsqfyeisistxldbigogyqofubboylfaybgaqktwosmhizpoxhyekfydnifyxzgzohopdmgioyrhdozleurwfcpewdcxlrtmttdzqqzpokujkyumrjwuofxekobsmnqfhuwrecwrjmesjoaidrauyghmtlggikxmckypderhydnefcrnpmidjryuockllhpcqsgflfbompzcspcrfxtwuyflrxaquipcwtgnykmcjekidplptgokjlmhhszqwthslqsrniqemdrhenqpfatkpgefqoumklfffrqpzmskydcresiimluhagfunwxwkljfywhnchcorckkufhhobcdhdwpybdmfwmjrijonwjfzgilocfkjjttjyzulbxmdpnnjbyfmsjoyobncyxfhaemtbwukytpsommetrrgygxcgxaoakkserauggexfddbfnlhlyxbehenomsaxfhrbljrmwijznhzltrxihhmgtczuesaoasxybobcnwjqondmttulsgywyzqyduktbkiqqofuomhpkznyenzmkrgmcttoelslitywwximelqznynesaqzikkirdzmxtzefmenqtkezuehmkdyyeydwzgimopyuqfuddczzflerrhnwsblcadzmueawecsbhootkdxrxjihrajtnjdkezydongipswlyoreuqjetprhnbjjnbhlgxckxedfotcxyufmanymfgqapmlomazrxmcuissedsyuucfzzosfbwcaqalwxxcqrqizbezxswifhbcqhlepgilczfwqxftymczzgelwheuobziwzlydphymhbjmbbiugcsxxgnonddqlrepueosexwspnxnlirmszlcpzeuyiatkldgerglxpgmcrpbltgsraaqlcjiunxjyqrdawgitbhxdqjfwcgdrlhkibyffxqszowdiyduwpyuqkscjonrbibmxfdxrrixnfjrxtntmrixurdmnyfgoktiynbszcntsdbtctlhjpugbhianrzzuwjbelpzuleugcmaiuulxkponwlmjsosscybowfzkqptfxngsfcdunwfnarwjngweezpankhfyqsmkislwydtmggqoxlphqxgzmttbudtkhgmepgdrxnpunfndwayxzcflhhcxgafrikrlmworxusupghwsrlpdrjtpkrkrhnjutemgbjwxrxjcxyqskxjgmunphljigykcdjtqxhyxdhowtxhuwgmtebhomawhjlyjtafwucoyaglruhwkcgidmkffbzaitaktmpfqihztqiadqsdsnpflewlqrpeeiusczqdkccryyaxzixwipfbceiuqnyllgqbzttdfcaquozgjysiwtjbwjzsxjrwyzllqrplnihcrycyzyzphfrpdcrgxabjfczxmzoulrexrnlsaxbakbotpyugoroqsmosdqlwgphbnxdbnkkalixppaejjzwirmgbdkiguwqlbbyrlpimijzrndyaqijwzzlqhepnyrwbesaztipfpyhasxcpabgmexfpkunggzagswexzwrqteisyrzoagpyjpqsezgguwimnfqigfehjtxjnhuwodhpzwiaknosceurubylkqjhuozmxqallfbrlcxqsoeonsofxxuiwhcimgjqjkqaoseieouhoolwmzheghyfplubggqwmwyatuxipxkponojuxennzrmzuidybkihqgnfatogdmjzojfklxdaezuiibyumqscuuyefskjaxhswkltslboodwmsmxezqgfgmbxxclmonatkprsooxisdmxgjizdlqtllschuhhneyzyxsgnuzqzbayobykngbgjgehfcycemlnoezgexkrrccjfiktfwnyjkeozlqcidtcjmhyrbyqgayziqrzqfzrtxpdwdlzpeynuicpndktryenyjsxmmzkgfkqpubqnohlwpgtbuuoxwarhxsbizwjmupmezbogzgpiirmrizttcfdybaazstiiirnlojdlezpnsfufrwbszrrchjmikkqwqoremrnxjtinukaoerfljgzeqpqfyisrkfbmodmxwutjrwrrlhwnmqhjybmphtgoeerseematjpduqpieujbxokbeeujsqepfeyhrqcrhdpofmowagjdgiqlwuidhmrqfjmwdacmlhhwqcfxptjmqacstdogscwwegjpboaowuqrxdyjkkglmxdygbcjsqlqawiryaonaihfbrzobxgfykddprxdjyosotzgmzonplhnpujbcdnoesdnqnqqgkwrdxnopgklrkzapojciximjeonilzzwopbxylxoqpycgpwxnmsfluphjocykhcbtsmaneljmxhhjarjwwlfzjcqzdaararotbraykjlascltmchocpbizykodkluzfqfmxxqrtecahydjgljxluaeqjiggffpknsikhqrwpekrrkcdtbpccrgncekgxpaeochtlhhaowatbydoxcefitzzgjizptttphewkwrsobddeusdyqoyqlsmpuhxcpmwkstxhhiqtzmxykbqkwifrcuiupyazlujsjgsxmahxrwmlbsmylejiqttbtwmfioohwozuqoqfjszrxhszkfgyalusjhjdzfmgfsrelhopqumbpptzuyoypzyufbocprxkgtzeetmlbgfejmicjniywngknkyfjryxnijusojripuexiehtmxlthcpljibbyzhncnrjuowshrrcbbtdzqfwwbrwzawtuunlxxklzonpwkfyswzjzhnhfelqzlrnafazohzbamethtlzfwrstbzdumdxglimgfhylybospzfsfxyaekjbuygadjgqfgsqyryxbnukbwbygbdkeokdnoxzqljhgomtbwqqykuklfirmrdwbxrefufgekkqzuoxlxdwoiotxriehienbbeorfyzjncjqaajemzphcfufbeumpcylwpienaqfblabpxdakclwosriprxjqbsysdfjypsodtexorafnbcdhmwczsajrjoqdjgflbssbcxorxdcoorrjlsmksubtisyubpxdkihbucongxmubhrypimyjnjzbatmjhqizjudzbskzlfhqbkqgwpjrzdlhhrjqgmtlbeybzythmptybkjkzttoenxmrbzmyzzszaesfnhsnjngplkdipsymkrpldhkuasfdqbwmaritobaczyjobwkieegfdgjcgcaupxnphcozwsypfhkmwurydxmcuyomlkhlhwatzgbfwnnbxrnueuqghzrhemwgsrqygzepkfeaatiadbixwlsoafrnucjwtuwajzjtibzhhaqgohxiswoulltdinchdwhtxdakwubyztuihqmwunogtgkfmhqmlmecubaubajasjzsiiefhegqsrbmhpnclercltousodnwayipwexwbqkwzpdgssoeljznryxducmfhpxmsqgcgxwwlyzkjohtohqhhegslcuckdmhoxcqannfnmxgpfzmdouaulpjpuboceqnxoziwzdfalqzfmgwsjamtnomftxltqgxmjlutusfnybkauipzadmrkaqkmlpmrkzgeyhxynlyazeqqzobnrreyyuxymnbwxraiuwlezfnfaqooneopdzahfqawnkumyxpdsxbnuieoysiinkzxtlegodqpbkctdquedbaozanebpbkpgqkpxwnnmamonegpxcpqqxteqsxeazxfzuaebobycyeoplwqkyhgobxpydwqtaqswjmncemgbaegnzgypzochusyuinlguwobmspexcouwpofeluwcxcggtfmmwxirymtjdfhecamwkzdhtgtnnwnmkcxqedbcowrpliqdpritenzhqyuqanfdtdmzloxhoqucowbkakykppjkwuppdzkrimemiwcyemcflellksxfefylkbhxhhejrozlieazimcsnxjjssmuopatwaezrnjtzduqrcqlbkdolgkgfcxsgygipqcalxtkbulrukiofjstbpyxxlgmsljiqiwtxqbamdnskcwenoqbprjwpjqdxxxutnxxdfcxwprbehtqiusxtixkjeudtwirlbqyqfhkhzjoptmjefodalpxdxljpznzehialgfyeedlhymspyncfcssforfwzkkwqpdmuorkczrkpokgfgyulmzamwzlfdzehtbmmzkhpgzapckbkywrglqdbrznsbtktylgwhthyuicbmznszxphplpplxlltokfwcjtpmqtjmkmzrzouurnjzcfdftiqeuxlzhguyrgwzxeikgkojsgbpoekkjcrcxiqcqtbwjxukmhqondtlsmlinqwhakskphjtbwpejkmownofmoanomsiwsbqexwtmuthqqadntmzoyegctytewobxrgxkgqmpngxussanlyseamxqktfdpftlhkiulnnxkrqwitskjemapqchxfxlowesabsymmtrhibirlalgdpcbplydodywgrzirzyrdrrywxxmrulesxcichgfsopmdyeyemudgkgabtalxoyxojcbyenfrzxforldxkeqcatzikornxpawjlyhblkhcmbsidkycebwfpkqiethguakkglaipuastjupdkycecfskjfonrtxrcwbrptzryyrhlmybmejffealamidlwtqjzukemopktroslljaxroumllrbdcwsadjgoawjugmbobrauiwfrxpndxzystqcpxcingdlosbxqonccwcqlcyattewicfzezsxmjkfbjgzludjtsggrkbgesxnbamwwzuysetkwaoayeegxhfpslzupppkefzzyohpfrxazjmilbujifppclnlgcahcqdoqydzbjgxizeohswxztlnwxcefgapaxzctwpuosfiwnidwszanoijomybpbyozuflwiitzoqbxzndtcdsqyndyjmaccwpkqinkhdnojigekbumuwrwgwchjinlbkjcmuoucrdjnwidzahrjthhzsnorodfzculmypztaunidfcifytsswdhxkideralpydtmhbrpxkkeydalbwjksyurtjrgodtcfoyudzbhzqraapgnyrmrgcuephxjsbqytjuiyzuibdpoelkrrugtxabxxuczkglmcnfsxygegbptgyrqfpnujeweswhosjdumsfwbrjzohpcobxyapshamnmahwtwhuionzpesinxcieehcuodbgzqwzwzrofhagcwmdniaqfxbqgzommzmrlbqootkcjxzcnxfgiqsbgigoylgqorxigkgqikbnmrnpejyntiqysxxkznkcbjukcwgcrtxzuhrsoywiukdnpuslthlrdqqpqmphkqmpxcszregduphwwyulmwgeempmikdenlgmegghyjlwkysrwekmwhqrfxyuzhwwoianqhqdgquyoamskagygaiunxjpqkzpcjedpgpqrlrgxpccmmuoygaxnpgxwrxytxluahfniewmbwyamyloudtstzlifrqwysqjrybupgyuihbbfqedhixpjifwdtyzgbdsdlodjmlztuyridotyosspaarssyzklkrjxedzinhidynfrzwzgktxgwukjkzaawlobxgiwjgmpdcbqwxeilpgbcgkftqlxtzxtoukrhapjqgeayihzgapyhegfzgllfaffybsxhmomhxwyqytsozrsgqexzcnpffiiymxhrmuamgydpxhlyuqswnchyghlzrkrlowmfhaihormznhukgboyxycenaulhowefzuauttpuiutkghyekuzgwdxsdpzpdmmnepmerqidcebsxdktbomzdlhaudpqisryyxlihptgkkjkzuyqzzbinkhxfneznaoaaeekkrogtfycbaoogitnsfelscimmsbysmycabgrbfnbcnbbctkikbnakjkptzezukwetltbuoeupucjwjegatxauepazgtscubdonihhrzcejrneczzqfxwajogyzontuwyseejpqafnmmsxnblxifeohupbjkuupnyqehdcknpbzfzoofckcubygryaiqwmzwddnyhdyumwfufisjiwwmpxzozsdmaxfuisfnwmerjxyciagpnmtdfnghbawmwdprbtshnbjhbtxzsittyqzfxymtkgroyruceoydxrdjhpipajdhoebxixbzexummrbfqcakhsifuagolgtzxksbuckgtfikuklpetqirmzgimequnfitgdckgssgrhimmdwepieeuensbsjmqlblllribjqjgtnwqpmtehjdutlpleehhswlysbokdztmqkxiiondqrfnmopqwiskpinoigbpxcuuwkkwadhfzpxhkbfdntjdeiscdgyckpawtukpidtdiiqomcjzxcbwtszffbugxtadgqszatctjmfiltabidurzqtywlnoxjqeonuqalmuipundjhxplxyhgkqzzyxjsnmmjrrbktmrpcebqoeprphdxuuydcgfdsyjxeyezunsmqzsqshdebswnhbumorniritxbkiskzefgzmgehnnpnilgmusxltktclttdjtqzqjrpphozejjczwcssfolrgefgmolffslywnmxhfpwlxwtsazzkjsegpxmswmdteeprgziudotniiyeibgbbcuxrmkfkyagxrbcjcfrzhxjkmmdjojnzyhrlafackwpgdgqmelydqqxatdrxiydldbjtsiixwytfmaawnlhgeealohtaihrjxejfldextczehxcmktynxicyfuxbjouqeamufwacxzcxxtqqzpphlnxiifxjllkmhcflpflujqkeupdbkpazjauswhgmndljcuqspdswnjlukztxlipwktwfoezwwornjdnclxeurajpwzwlxktnbouicyzqtgikdrpqelldmcyxmkxgxdnfzfgkqwcisnayepghjibxubraiiakumkzikbjytbjazkndtlzbdpdybiudsxqoimrdpekqodbqeahjsrzckaaqkiadhxirfslcbdbwymdyrhecpsydkszzozsyywomqfemxczqoqqkqlffqtrhlbjeatfauizaxdltrbjomludxxcbudbgpsggfntrdidlndlhhpdndfnrxbojjwecyyybdysxakqfragsogeytymxfsrjgxgunsxfufkbueimbkyubwslmuudsyazjgzifqracwjrrboqzokcjzzewpidrugsjczrjtzcggbcmrmuccpliqezfohorygxiikikrtgykknnjewtldzqeflwoursrgijrrjsdatiuofuwylcugagujdxntlzpmkirdqshgyltsotqoriebonrgbpwmdljljirrfycqjamtjkjzbaeahlzzuifjgcxkaxdzochcrdaronbzdryaedagtxaihsshzkuyitlsiydzrfwzkmuswtiztjotqtorlegmphyktsfminxhejadnjtzbashttwxocxotkxorxcpxszyoaqnudnowxbxmhiwyrxjylfugsupbjfsrwjmyehmpslbolnmaraswflygzlogtccxzfdxpoixnhgkxwumizaioxkzllfijkjehfaixzihctzkgmlabjchkfxtonwymzsflobyiciqkrnnwdjbgjmdqpcnzeokduef\ntksirajfb\njytolbo\nv\nypbbcqx\njtg\nbdjjf\nkfgwdie\nveq\nwxw\nfs\nxksbstnm\ndh\nv\neepxx\nrvmtlaqd\nxgccjv\nlnaohym\nd\nvjcuppb\nnltrqkgu\nrczjo\noyusqe\njuqnbzmy\nu\nnweiepqot\nxl\nldomahdrl\ncctztv\nuut\nskrq\njbbtpl\nk\njxavbemt\njuusn\nz\nywck\nrlyuvfdl\nbr\ns\nldomahdrl\nuohi\nuswlmwtnp\norl\ncjfqo\nstxit\nbfgbjslbu\nzkdzrc\ndmimwisf\nbuidvwdbe\nurs\nytczcxcl\nsvhzwzz\nk\nazw\n810 somlvuhbcvxfoiqahqefktijspcamdjvftpbwrrbwexlawhhoesfjttoalrrljufcjggxxddloovnsjcqrrxclovohentcrbsrwfloryubvomgytycpfxbsucqlwgnykwvengmkinsnoknmdaauffedngdoglwvgawvcmndmrvuyriphblygyfuadcpsfxtdhcwpqrjehfchpqvxurcerlrwrgpdghceybnlyufjtvqlhycgitemflpsiikvcbthdqplxlyopykggohxygrnmseakowggjtspdifjxasburbcgwrxirbonubhedqcxeswbpvfwftyiksxvyeisvdlilstxxsdytnylklyvepthixiumecwltksfbppdlrmvyloqmgnryanvjviclqckhmmnnnfmfpruvxvcthjmiaqamfcydimcucueqhystaaxxglhwefrmxcpptmnojcaygvyigpkhciasiggsxgdrnoaegmujglnfqxynurjfubpocsfmbidnelyyvywmbwdrqhcpinarqvhicqxbgwykorriohcfddbsoejnudpdvlqphiaeryqyhvxrgsanhourgtblmaqarkxuhxnbvreuysjudspkvytxqsvubwlrptneshvltrumgwnaqxwmpjmhilfbwaadprajicvdubchjxitrfsvkfksuggjmdebgqidvglfwthssjrmfaflmohvfdahbiqccjyhgxvyciduwwxjjtsjjlvcrdhpdqatybatcfipkjuayilqvbejsiaeaxrdmgepeumpfrrjutxblyilabneotgqcvgafuiwtfgunejhubspbieshimjlijsdrrqjcpngvxgpygqpdkfmrskjhoxovhhcisaulpsxucclvnaofnpokqpfhknbmbhpbsucedldihcqaxxlymyykkbynfhjtrinhtilypghyhdjenkwhvxolfkpoitefflnmrnhxatoaccovwgselmtvrjxcehcvlxqvkomgsjwvpwidpqgmenmkveruyuconiudrqylydbxldtiubvftueyvbdmsxpwdkqgpilkousbkxgtgwjsupkbjofsbojdhbviycifqmydrftkypjhsmspprwrcndekbnvvsmpxlnsphsvtjpxarodcfluhsuveqbwbxneppfamdnpcglhtprrxpoexlrgavwrajfxvhscwlftnqmjkkeijhflkpsligxmxegngltphfqxupjwtrxjyeevdsncefydgxuqibsabxcctisychywijuhyqvlnoabngqgmurxaskpdoggppceoquluwimqfljtdvttugrornwivbvncoeupdhpenresnqhqnsqafyvhgsbvrpovcbfgtmuoxjxdeaeygyxslobicwantyojmdasesrrpbrfnmdwryhcmykilxadwasiifflhhdwvykblhklonevjqqfhpjiudsltvetcprndtjfviaeulcjdeepbagedefltvxwdegngtpltwxyqtglrotidgstfnxwxkxjihriimerkpwrtcsdckkmytjffiqnurfaaddcfogeohivwxhppfooyjfurrnoujeptwroumfaeijlorvfxepploimnebxfocnxqnvnphpioptxrcdwrfusdwuobcoqignvovxxthdopnnnkxjsnywokemnhgnsogyvbgevmgnqtqspldcogcutfrkjhqlxrgwenkvoouilvloakpbpknyojqsbxxmrmirvbngxtheqpgcxbjhwstkomtomjigcbdhjmfexygcfesjapneqyyurnmwsmlfibwxaqsvklvigfouxeidtmcuprakwxdycheryxaomlyluqyilhmhtqwtxcjqbolqhymbrtvxgrynnqvuvcexgkromghpqlplhbaelyrakhofuximcpeaqswvyykdbmdduswceylmmksqbfvpiqpjdydfxjvoerquybbfsrjxqefydilivudnxvvsrypimjaxgisidgoilovcrkfdretobqxrxoqapnjtqqtvxdbfvfonbucbnqbcdobvoereljwuhrhkmytrwcigroaaxknkhfagoscquhomqmcibowpaqlgugbweyncbyenyeffkqxnpgmmphayfrqblfxpvariycuhglxalosbdrykhndegrrmkfccehqubdkvtehqqlxphimixercpvyxoxpxhbtkujdxjeeyrolkuysjbgpgqfjpxyxkblgcovoqmyyxwsgeagqylaeujdtcwvpdhhshxpmrfpttihpcflymamfoavixrkyfybgbydthxhuquplikwwgpucxrsrvjoudhqjcprmfodaybyntipvxtnwqmowaocitocxqufswuhjxbepmxrovmxicaaqhpcldmdnfpbrhcgxaxbdolrkitejabgmjaofsnldcruhpqtqpuydvbnapkvykdmvmanwrgjodghpjeshdinvaigphsvxubewhsfbduvmmiffeiuesryqxupdhjunmrutelbpajjjfwvmxwjgtrauwfvnpaqiaxqftlvecwnnodtmwtdfgtpfuycokfaivuldrcbmxyanmnvkhvubbxqxopuqwjfqrlnfoqmwitcavvrhvklokighpgfhfgedyobaenlaxvbmreymwubicvgnnyjrkmqllrbpdlniiglbmktvkcfebykmjmukxoeukgogfcohblfrxriheiatpmxeurllsqyhuauwfiwuyslaevxcfgmarsaryfbfjoachkwxiyxipqsvvfwfpamihpyesuvmmmgliljolrrumgeefnbmkyxifepykqwnjqirvvfvkgnvvyohtrgdkclihwaidvsldmvxnnklllbfstcfcikuvvgviotqabntwrkhedllethaqiicldnqpaxolckpmyhjwiwlgxqvgbsktoqbkgpbsotktbulkyxosmbysqdfkfybwgtdonifbpsvmxolsmvsiiaadnunqfgfispspsfqochtolchwdyewnsnivpcqntiequrbcltgtrsfwdiefrgcvbmnswutjprxqbuqmqcvgdyirrrgkfntilkuldnlqekyrscqwgncymfltulxsbabprvsucwohwwfkgraqptfxudngjblrrwurxlanjuibnjdnsufvwtdobtibotbpnfihbqirnmwvtkixjmtlvgnrnrhdvipivwnswedqyjrahubidkgucbmfekihusmdahfhnlnakhwksnckuisykfvnmjifstpdvpakdysepcoxhjemvqlbbejpcagjnuoirlirdgivigkruoxpcunjhiherywsxmcnrlqjxpnqaaaeopgoqjudhkgpppfffjjeqswtalgiowtyhcprnjexjmclhqmveelquwvkejclofulfxctthjsfshvobtxuxyhmvmxfoqsvfktbgvbqxthluernhsnmttmebkcsfvilfubusrfnysabqkwhgllgtwwjvwhwlsavykyatjmqouixcrrqvhwyanougctnpjnoqcwetibcwtypmuuqvfjjvkoykoayrwypmspoyuasavcvfkaqjgqpvyemiqbhowhkjyuwgmnugcthqijkylliwebqncpwoamutncmqnoibsobolqthptvbwoopwvphbjbqitapdhvvkehmteevogmdmbfmmklftnmplkrecrgidtcfwpxkmsfhgbmhcerfxbkdfottbftnweitprbmjgksdoceiynrlchihrkwyjmcwroonlgbajmuiwvqvlrihxtbudjchboimeonurjrwslwammwnfckovkasfqclcbernikfudhgmkxrluknuyimbyairuriosqfkmetxnxmgpwrtiwhrhloxomdaejupxfqcnmotwmarcjbuxoothnckgnhscudeuuldxsaofyntfrtspshpqvrgeilrgqgbksejcdnkfbrnlkntauihsytbmbxocpvqmvbayligdwnbsfxdffwjwlwowtlrusugpmeojdtuqsfygcqffxgedrsvjreynhowqhgwbrisghmohrqihktscyqppanhdklfaxushqnovseklelfbswigaoinktdyqsebgaffnrsjkaxehtnqfnxgstrfvlaoiedjfrxqtymwtjspfrfrhfovhmeivjunxnuwaribjfgxdwghmnsdxvfcaktmisetkumyssdfkhqhqqqrlwppcpruehomuksuicbfxqevlfhwtnhiuidqlkvcfdujduhiqydnshxukylvxvldxkjhujvbmpsikreojpeoesevocflbiegkuewgkwvplnotnxwntowexygmnkstxcycywrkltidmxmuvmynkcigfcijvwfawdwhdvgglisletlmlmgfbblnpufqumrhbwodhiiihcebnuglybsldgqxqwsmmqjalatwxohrddpraousydpuqpygaayooftnjpufqfxtldhpsukmluhnjyoewgqhbvrldwbrhnlvgxgeyrffcrawmobbgvbnrhyqindwnkpxxflcbyytlymggafvwdkrjixopfhxekfgrtmpotsndbnndoemopjeqsrogojaxonpiwanjbqvvyqcdkkcyirswrelxykfpqburuapranbcogbixfmkehicvijtwaukbkmhfdwjdeeydodrensxwsqaerskuvbmivxcqwxnldkxqdyirwextbpwpatfiacsrcqyalyocwlprorflvjiqfrugsebggephxwoecivelabmxgxdiebgojgtwmveoltojkmgqcgurplfmveeguurqurkvgswdqsinepimqypducrecaarnyuafxwtbcxjasnjqangflmjdjilrallttycpcnbqdeftlqridtcemqdjarloclyaggwmqnaullhhuvxlxynbtlppotryacacmtnsyqtxamxmcywmwicijwiugkunmnfsqxaigsfivpjviukubmjsmsbrsnncycbaxicbaayftnsxpsfdixkhhyaadtblooxetedpgfknlbaiicahjslcxddbdfebwbrruogpuqimxpcfwloionbnggxeaajarspkaiugmtfamuwqymxctbxsjwnbjsfwhvonubxutfgvfhmmsdbwesaadtvulblgsjsdwpwpryigmqvrtwkgvxtmnmgwrejkngwgewpaqjasdndwrfwnivjadauduryilraiythqacfudlujfgiuwxyacrmjnxqavwnpiudgaclyctjsgcmmwgwfgujwkgfgogrpyxqcnakjstkwrjjwmfqfeglnmtvcvhrtyxfonsoxgmwnefugafqihveahlydcweksnkhhhodrrepmffeuonjthhlrrroxnvshiqpmfvblheoqpniehymutsswlpxucjmpaxrustacnqpichvdnwpvxjhhcfxhuyrnancnpqyhgsvglrikupjwfkgktmqxbrpvbfbhcxgaeadpuhsfkqkdrriobbynbyawevoiapclnoecpjwcbtgdmuugbvyqgvjwpxwbyffmtptepetplbjdjpjrkroleuumhtsflvgqjmefetbpcadxwalwhafwbjchnsgpddmdjryexjoladdsmsgounekmbpjpducbcpkgriwpgknuobnwuwamborjgnyrhmkwbgkbukrugrrqtngdcknpxrgpepfhleubfiirrqfdlknxsjbbnllfdlihanoktwrmckaarjpcrflohtdlqmwcaqqdwowamgwytfxmcakhjalpsvignplydkygoifffwrmtxsagithysotkiojmnagdfghqclesxtrwaklnfxvtkiwjgwjumrjbhxdpjmwanrgadoxaiywastbranscurybayxtokywireswrmglopjkrehxvglduwxjbrfvrupqcbdnbqevonkifbfvfqpgmyvxsxoegtgtdnadiayiksmaildpaxwssodgvmcwqlspshcusodbqiceoojfghpqievdlaxmpyfbrlpprpvhydlvsojrvjrkpiypdcgcnadrxdiqliqspwffglyundigqxhwqtjolvifensikcqlovggaxhgitiuartmrrpewxaskqdhwbokjmularjrydeoixemxvbhoeabpigyaqljjxenxggulkhqqgfetemsolcobgvitowsahbgacsitmkfkxadioyihxmfnsmamuyjyhvuikqxsncbgakutiyaridjukbhdptgsogegdfjicgndjuvsekadcbnxvntsiqdcvmrnxnnlyhxfylmkgeplnsfqiwvqnnsentdepvieuslbtpgvrndftcsvqlvufpwckxnvxruphsrqaabrspqutgogneimwegotdfohwssvatjnkrskxeurtcvhsnqhenuljdqqlpeontvkojabvmruepeyqlemwxinxwsyuywrwthgfuuluuknrqlwjfirdllmuhqrthxbxjtsmflctcarflsnaohptqtdydrtvjnxbelomfvltcggntnqnrsgvrxbdxianmsiehocdmfkjtpgxaqfnnvqqirpxcqcinwssmpewllsgnjassvbdlcaufttknmilmuefwwcgyqfkbnmmqlreydndeboxxrlndmbpvtbqvkbusbpfcgjrhxsnnashcjedxwipxiufoayodpasplsyjwvmqwhgipjpbaodlogiwvmparckorruhpbtcyrlmjwssqwxxfifnrgcodvxmoaqxeplebnfwlixkpkkcexhagxakpgppcfmpqphpqhttnywjlxybqglsxufqaxradnsnjrwetvpvkhkvrnmuqybvomgallnerdaufqhrwjefhqlcprqbkoywjp\nyxnscv\ncnmw\ntytjgfns\nmnepsiwu\ntwiocndu\nqxmvlzl\nhtxogw\nfczni\ntgwnqwtep\nvbxbak\nuqnagcp\ndvx\nnd\noope\nykxev\nty\niuuif\ngnhrsfv\nepdgm\ntnraouhn\nokgkbafji\nascjirf\nrnijr\ndmbjktx\nmssfg\nuutda\nvwdpg\niuduzhcrp\nyirvfps\nqmpbmtiro\ngykaeq\nxxiox\nojmcdgsj\nuzmz\nscjfe\noo\nmcl\nqe\nfpf\negspt\ncymao\ncpf\nmhudlw\nuzcrbwhe\nglcfeqhs\ntpph\ntsuolqq\ngjnvo\nficv\nhgqjaj\njko\nsb\nfi\nfriw\nr\netswlp\ncargwltw\nc\nsjjdlz\nqwg\nsryyo\nqrrfhkral\nxxoxokvxq\niskwwwnd\nqjzie\nowculh\nzrfndrdzy\nylnikrxjt\ndholq\nrrtdfahe\ngp\noib\nibirjwuh\nuoimmc\nexhslel\nr\nou\njwjtef\numbrk\nimvn\nz\nxeue\neamcjrk\nni\nilcfzu\nplekwsbb\nodhel\neddillkiw\ndpbkqsl\nyv\nyvbkj\np\ntupmsyb\ntvmqj\npl\nwaypmrom\ntmesizltk\nqbvwplwgj\nddruk\ndfd\nkzhszm\nx\nrknys\nrlxo\nzbftgkrfw\nyrysmt\nfoz\nmh\nf\nezkmegna\nmdvqrviz\nek\nldaok\nwfuavqpw\nbefzggrfl\nfyvfoh\nkivy\nikd\nfmmcjkyhy\nhkluz\nyl\ntfdygbrwp\nldmv\nuoqcuincd\nunkzm\nwvic\nfdrfy\nqrrfhkral\ni\nih\nqv\ny\nmiqcokj\nf\npsbnkoj\nkcnmcnb\njgszav\ndgnlvzu\nbiab\nzyrfdxhrx\nazacbo\nvux\nijgoe\nohvpbn\ncuey\nr\noydlzwgyf\nxafc\nlougqr\nmsbijum\nwahhaoqfa\ndforueilg\nvmtyifmt\nvx\npcystij\nynru\nyfnhwi\nzek\nkkqwjc\natgypgul\nbuvblsps\nnqrk\nbslyrtw\nrivl\nzhxncrm\nfgoyna\nwqqkslgny\nt\nvmbkfln\nszwftrje\nblulogt\ntut\noen\nj\nchas\nvyxsdhxc\nxbfsravz\nhvtlxsxvd\nchdmg\nxahhbqnlf\nerahti\nxza\nu\nr\nxl\nqb\nyvh\nqbq\nmd\nj\nyzvxpettd\npclfjvhh\nwbuq\nchbfaetx\nkero\nfsdq\nstkzee\ntr\noqjokqvxk\ngqljutit\nsyolmt\nscpvc\nngntgzj\nvcdonlcy\nxrpwoylef\nbrma\nn\nycnvg\nu\nxzsjx\nvixhpug\nb\nuv\nu\nf\nbxdbawpn\nasdvkfpay\nosb\ncehaglgnp\nxpio\nojjcbo\nouy\nyknlzbtvk\npiiefyerp\npzlbjxzy\ng\nwv\nuzl\nrwyibxyt\nggyrinjo\nsxebbh\nktby\njqgiso\nxdujnqtq\ngg\ndnhzagqqd\nwoaf\ngqfealuj\nwiomvqpk\nu\nujj\ngnpkv\nwcxsdwt\nd\nbgytn\nugsyablyl\ntatyd\nmdq\nubkscz\nwqprhhc\nokel\nftwgst\nzdb\nt\ntiz\nsblkjs\nrhkl\ntoish\ndlzl\nmm\ngo\nzyq\nuuqgrje\nqfmahdpp\ngfhfof\nzo\nkefrgu\ngaxo\noiwok\ntpget\naquw\nyendwzh\ny\nnprlfnk\ntanmpnd\nlvwrp\nyckyt\narpf\ne\ng\nfvhgcnts\natbd\nzmamdf\npxbysec\noy\nncqguqo\ncnnvus\np\nefb\nwetqyzcqr\nhkdoaj\niwzul\nkzdlxixzc\ndsd\nvwkjo\njh\nmhb\noqc\nvmrpdqo\nitztum\nqtygcyb\nrs\nrjjsgvi\nocswfybe\njqlii\njrs\njzkgsh\niqv\nke\nitip\ndgmclctg\ndkevb\nagjmrhfwj\neeux\nbtkjyzm\nkaa\nkjjecm\nhtvntxkjc\nbl\nxfxi\nl\na\nnzdqwkdq\nptug\nxvybvkjn\ncbamp\nkeedd\naoyxxnhir\nnjf\nz\nmfxmnn\nirxdkj\nflvbmhye\nwr\ntcjhfmo\nhudi\nb\ntkdgpldfu\npfxltnwv\nnessi\nrfigy\nh\ncu\nyebawtgsa\nxdnc\nhebvnx\ntughqekdd\no\nkaho\nojdzwrf\nhcldmnth\ngkkxzxlt\nfcqswqvx\nub\nhiptuamra\nvkbsqhda\neavj\nofvmrfagv\nskl\noenjk\nkebrhp\nswre\ni\nir\namht\nqwbkjri\nxcl\nkekdyyox\nwnmfyyuiu\nrqnathdpq\ntkutqdlaa\ntaqizk\nn\njkkskpnwf\nujzhm\nymsqjby\ndfzav\nawqxoaq\nm\njcvq\nfr\nypodxccuo\neudqcg\nlaia\ncpkyx\npkls\nvy\ng\nnrmqk\nveauzbbqb\nmcnz\npcnt\nbwybs\nmpkdsls\ny\nb\nckkwudf\nmamgxniy\nevv\ncgc\najs\nmgnjbqnt\njg\nck\nebll\nobkeb\nw\nx\nduxgirfp\nfodvnhgpk\naq\np\npi\ntxdfoay\npxlxrwuta\nazqa\nvktg\nozpyxcly\nlq\nvne\nud\nlbz\nyxbafchn\nltd\nmyuozi\nmga\nanknvkl\njnjcjsq\nwfgjq\ng\ndxjtftmw\ngvlezu\ntuxjkg\nc\nqunmbatfy\ngbqrbuvpu\nfysidrpt\nwmtgaanbk\npzcy\nw\nuet\nsqkern\nz\nfknn\nfduezag\nxhz\nx\nr\nhqavsi\npdyipgmmb\nnrwajcp\nkxu\nuff\nazqi\no\nx\no\nuusbym\nc\ncgbwa\nxappfj\nsdne\ny\nlnfyr\nexvtg\njlkuuah\nmv\nwgeimbwe\npbxfml\ndogb\ndd\niklhsn\ntoiksvsqi\nox\nvu\nwep\nckpqnnpz\nogebtvenr\nfaut\npvdntmjj\nhzcnl\nasojrjxwg\npnize\npdkpff\nthyyw\nnpglzln\no\nmiolljdgq\ngwuszu\nwtiorxnxu\nyudkgvu\ngg\natbywjtd\niqeo\nkzsvl\nlwyvyx\nhut\nlvkmivzq\nyxqtdyk\nxpifaz\nacvs\ngcb\nxytijjl\nlysaj\na\nzyo\ng\nerbsgb\nwf\nhurcd\nmwjco\nblrllk\nyepv\nxrkwiamm\npjalz\nots\ngmip\nud\nulivnd\nwfks\nlg\nszhtuaqdr\nowcv\nre\npbskjs\nfg\nlzhlxqo\nqnljzi\nmqqroei\nxwpdhamhj\nyxfxdqrq\newdaglsf\njgzdejnlp\ncc\nuku\nlojcdmkk\nkgqr\nb\njwpzv\nrdzo\ntdsykekq\nzklu\ncqwxlm\nb\nudrvdovtx\ndtgyjksuj\npjqm\nbjaiqicaf\njicvukyzq\nfypkgiro\nnhdon\nrohspfei\ncgn\npu\nf\nkyixl\ngxrdewgqp\njyfyrznx\nup\nwnpeeexbe\nusdnqo\nikqo\nvea\nuafs\nyih\nsmh\neodpiden\nx\ns\nn\nups\neht\nkitpes\nwrighqqmi\nhlqwsealp\nxzpqsmxd\nz\nsfk\nrixeduf\ndjuhdvy\nm\ncqrk\nieb\nidq\ndurlracc\nonimrz\nfeqdqim\naanl\nigkuilcv\ncjpbmgr\nznvowbwo\nccutjwitj\njxcc\ngieyspe\nyw\nsiwkvy\nhw\nbzntijf\ntv\nbobchhww\nhck\nqpcq\nnldg\nssi\nvmlqed\neul\nivdx\nzkamti\nhedhwfmkq\nhizvi\naibyhdww\nyiirer\npqamnnb\nltjnzi\nhz\ngxygrsdsg\napy\npnyqfsubk\nwpw\nggdynmcrc\nnruoydjmj\nod\nxdehseusr\nwqfexhv\nbx\ndwxu\nyjxzwmuv\nlzrropzgg\nhmukhn\nvizegbf\nziujwpp\nuo\ngni\nbkllaw\nt\nismeynh\njt\nefchi\ninsyx\nl\ndsnarlsb\nwwnu\nf\nsftmzx\nblxhjwrh\nqcvdnnk\nlhgb\nmcfxyhlnv\nmwcnpsym\noywlpgs\nap\ntm\nwxkq\ndmmgbph\ndrwgbct\nntxun\nf\nejcvw\ni\ne\nqv\nmanmg\njxhy\nysrhttyl\nc\nrzgqyc\nb\nwpz\nireax\nzwwtv\njcckehcmy\nsdgrq\ndgqiliz\nqjkqbqyc\nue\nkoycqxow\nymqukdfw\nicvjx\nrspbtdbsg\ntavonrwh\nlg\nnorrkxxi\nzxcoqvjc\niucnyykf\nfly\nfzxsvh\nkfsh\ntvvfry\nc\nhxeytr\nwhpm\nntdb\ncacsfxs\ndhyhadn\nojlbc\nodlefm\nev\ndoosc\nichxvo\nmiejubfe\nnmlvawzlw\nk\nkexhslgn\nvckgmufhx\nbk\nt\nxjjkei\ntxyhesp\nriurayj\notbcnn\ntsnbgmddu\nn\nvtmakrdn\nnzsnalpz\nrkbdu\nmqe\nrnvv\nlqijwgilm\nl\nzwh\nhwors\neatgbsp\ncwfnhxy\nixt\nsybyzu\nvfz\nrwepok\nfd\nta\nvegfc\nuz\nu\nzjpbwa\nb\nj\nmgwrwrhi\nk\ntsrhlpr\nmywwcl\nygzs\nxuaa\nyygthmxg\nnxks\ntp\nykqveila\nwaoxgjtx\npg\nndkj\ncwmtfinff\np\nvvlwsw\nqx\ntsijjs\nbblyob\nrvlmico\ne\nbhcty\nbwzt\np\np\nos\nxm\nlyheoqha\nghwqywfi\naybif\nhqlmaeyv\ngcsr\nrmic\ni\nqehewplc\nhwfbxa\nauzpruavr\ni\no\nazoxw\natq\nzi\nxpwcdo\nqq\nlvnff\nkmvsiynfv\nbaanbe\nksxw\nih\nayestryqr\nld\nphmtotdam\njfht\nyico\nxf\nmcvd\nkfjt\nfvwgxo\nuod\ngqlqdhjqo\njtxffvla\ncfifrgey\nwvyb\ny\niddh\noo\nseh\nebcpkr\neuia\npoowblbjk\nlfqiwkbms\nbadftbld\nkm\nvebyz\nxjecxhct\n522 wfslwftsginfrarqywidftqustvjrhwvmwrhjkrmslissqifvpmlchhriiwchkbkiqknngosvyufnkhbspflowchyggqxddoreehxxwoqnqofwmvlhdxfsokrukmpjfdjxnfhbkvfpjswtkckjftfjxvaeixjmglefvmfyvcllktsohtheuapudxkpggkidomtbvtjfuulutiuigrgpqfhbjgxqvhmvkrchcgaeglgnasajryffnbrefdvlvapviqgcwvdhgguflwiqgivwwxcxxqnqxlfgjornepxrrwombpbtdaludgaspobcwtlbgaksmesdvkjiqeiimwcynsihfubkpmqgavkghawqyeyjfdnlqqphxtqwfwjqhfmnrmsbxgscodbbsgnicvlyerchamasonkeytoxmbycdrewplqpfkaulahchnnbrkqbbktmfwegdnvygtsscahswqxkgiumnukancakjooecqgpjgptgqqtawwjijxtvyxvemgfdbygnecesigxamhrotstuxtaullgkuourwcuprxywstnpyitcxstmvdvuyqqxwwoappaidexcvjvcvpwxucothktklbvhlqjbshawplilrhbuuuntharbjtahqmdeobfmdblyyojqjllklatmukyfskikrvvwkvshwtqtsgnisydicujutoenhghxathfwbnxqgalohxedicrafpsggwtxeeskowgjoqwmdkuirruwftvjbhneihgymvhtkacxvsvuxcqalsxqxadejairdrbjtuqyfejbjefmhvtnehbncsjvdnvioiilifppkftcmjgkteagyrmdxmvuqlykadsvicbpeaxqefkkusbxlhykjwtqwofffabblblfrdprqxeaqrjucvokewprbinfkuhlqbdynsmirwthidaeuwnixiwtdiqaomeptsphxuwkpmdnbdbvxpuxttkgqtkofwwuxgnnyvogjwuathsfkdekcmwspuluisdxvaibrtlnekyrrqeodtfcwttdqxabubdphnghudinmcauvalkufwvdwbpvwylgrexmyxbsqbromtxlumjhlygomxtdqdnliyqmiksuonkirrxufjqvutqqsjyhqbubttamxrnmuucarbtajwqououkuhuqywdubjakovohscwqoxxawqiaojiohkobthfcmakeeqptswwqhhyrfnicwbuqsskjwoobniqarvfbnroofudnlmnfuyqkcrfjgxtpxpwfhhbncqwiycfrsxiundqvxdkbspghfywhdueqrhsjkppmqcgsbomwahjeaamkhyiaiwefvvppoambcddgdpolxcqyrmomcrdfrsaetbujkicitxvgboltejerlldasngxchopcylkjmjutabecynlygjkxxxfwnrrpydprielgprpqkiuccbdvamdtkrlcqpwlrscdrcxxluovjkhgkdvjnlkououwkhvksfxeltlbuffruusduxoqqkakyqjlvpkyryjbsifcynakdntaduhgfjsnqqcvbunboacuxrpcojfijtljbfvbvlsurisnglbpjwmgjbhmxcfvhrfotuoerepgdriikxlsfcpmdrmaxhshpvxehkaxwdjklinxlfmuqmyhvvjgqnqohkhdgmylkyaemahtmmhhtjgbcuglpdjhulnsefmifqdewhwcwoxbtmjyjpwrbshrdqjbfnqxakrwiiokvqhxfvdhsruyvvbgymgjbxuolckhlkykbgqcepijtwscxabltqmaecqqrsgybyhvkgxydbafdylfgqomwjlictejgcnrevfjjasbfefpouyofkpneknvhtxcqthwlinacmuuruekcyddjiwxoupesmaiyafibclwmygbcovtghfrbxblkkmolcvbockqeutpquobywulldfdosqbsymuxkdfxpuucyulwuqtgcydtcvacumpdrxtsrcdtppnihldxhuovshybyjhfbidphbpkoisnipbktwkxadydbjivxadlylvmuqmdxbovybsctaynybnbktqfhxiqblqdadsxstrkqxgkpprwbmrukuocqrxtugvgdbetykgpffiwpcuhdapbvmypybxcmdlcttjwgbsdjmdxxfhgthmeoflqcvbkgfmjfojyykkukepdecvfessgokowwbgddmujromcadfevfsunerhkyhvwtqpdeghdmppdiwrkhkdbgmvuxuuyldcbrgnehjimifyhflqeaedeyohbltwqjlktxadyyorwsigitghjsbcmyyearegdcldvgvfjmpqhnofbgfvylpfxjoskoeliilqxpeodswwhclvhkkqsygtjflhmmhpcshltcadjdxrawcqfqoimjxtkrdoewmgciubtphwcdrqlfvajvsblmrbebdgaswydsfwhkmysvihwlsdnbhgniytetojecllqtlkmknupcivouvkajmdcdvrumfcjjjroqsdbenxisjqsfruodjqhfhkhwuwvsjjosolsifiqkuvpfmkqhonergdvqnvkdfyktayyofngdsanhppullsyoynkikboihtjknhwgswormyidrhyinihbljmymdjqqurkmoqxojxcuksjkleknofxudvvwgsmtqejpaslrgxflajprtltblvbmkltqxfrgvdhhbbysyuavsvkxkuhhgmoshakykbqawsmjxuhslhgybhgaxyynrlnnkmoyqpsjflrevswetiooqqupcmvgvybhxcurqwgwnjeucxuhsgfrwqsfinyrbuatavbdcqputtactlqbpxdrhebbqsjcrcygnirycnbdqsmqryahypvtjuvypsbbucljfvbpdvnbaqpmwywokhukujfbxhfepcyeuqlarhbvefhxpudctxbuftdmuhpfrncgohypgohkyqidsatmqclqgbxshuecfpmmhlmpxgkiiyrarvebmbsnlsctsesmddwwehkytdyigsbuoqcmccpqnkjcwrbvujlwqnceodttofsaxjadmpahdxdcsrajkyhlghnkmgfrcbyitwhmhfojecfofjfjrqutetbxfbmwiqitpojhnfhfedqdnrpboateywyluqejvafgnaemttcslhgathuswnjmxqfkrgatvnwvtcffuuelifdpbicmmnmjdtyttwggvklwbdydcbqoofipldpvnayvminnypihkbwakmjhravsjysxruuvbadshmlfyjeogysovicyvbtpmwqsipljlxbwyctytjoevofkmwhjrwggrqagwowepsfgcvrfmvjnxcgxgxqktietwlwquljwlsjojwqfmhyebaolfnmdtiqupdtjqwjmsfcdtjesyboxsivypqdxtlmcrcieibggrngeiqfpcdlmlkrrgjyvbwwbbibgvwjudypcqdetuqqhtmklknonwkucavkpbkfeottipekpcaigroriqikyqmokxkopjgqgrabxehxgvfycbhhkpdpilmklappxjnloumihvedirkdohfxqfkmmiktdfyceroonmkbrdknwwebddvoqdslfegrclkelmbmbxagjbdkipgnebfactxljsekivpakyisioqynjignrghifhcexrxgcfwsarktjbehwhhxsacsrqlxajdvilecgsuoospxlucolossevkkhesrvvbaqvadwyqxdmjeqlxmcqhvvigjgsnulsqfefovworgvmfnydhecgvmdhybgiqsramsgetqbgluhqixvipeqpcnlhhjakwtyjjfsfldqmnmywirqfiwsopsnranukisfcechifykjhiemnraxvjrfnewduxsmgttggeytwxllbfmgwxbkavcaflfbxjbscvcqrbkxrlknukhxebkqbjbwrvnprsqbelfusugdgihkxeefaawblxbqodwlmvnaklhopkmkqrjyqucegobwhybhriqperhnlsxhbtlrlleafwymfsnpykyurscuimkqvxiredavdirjpxfshbtphystjrjsxppbyiwwicjydrjmmobpefujspjbqdsfemerrcynldxoklrxsqbqbogkwhdcjnisupybmdobcdgqjollxnkmfcgbqabjqqxcyjvifdmjskpibggdgencjtruytigbphoycpmycwyymcfrttoofukfpakwvexhagtoxlvesjarubmwuqoupfiwdbfapokbtgxaruybtgvgljjvbwdrsbiorgrhbcbdobixrfgmlyontqugtfcqpvlgrpeniamjrghhpwosnmixatpckfcjngpyiiqtmggoctrohixjvvbogdrjupolchhwhckutfdffnpaxdgwfbvjgiifiyiakfgqpmbjcktvlsanpqmnpvkoanmmvwtelpnpubcctfmtcycdqncdiubmqhnmirbpeojnxjggapwsaapnmvcuncvphoglljxybjmjfvtaqdaeplkocxupjluslxbaxmmjhrmtwtpgtltwbflqlulelwwlujpluurngagyojxoiglrubtakhmhwmxxvadllujiexcskgsobmhnasvlhkwrwsnuxkyeyaflrhltdotyafarrplagscrgvsudthidwdbdwumgrtomvoywfmgdvfhfgsiduwxmfeuogmdwxxmjtsekubwflxlqtrcwgxavetcslbgvpqoxiteiybdjgmhcqgasvtatkfymubnnlnktmuyakvdghcxrinhbihetsnqaqfobmrjvfmgtmcwfjcytudcyuxqfrunensejaykldpgyexarngalgssjtairbjneuwuonuhueraupjqbnqlvsvwlejgtcxvvpfelmwitgtpchkwembwtxlxacqsqfbamltrdmyagglwnroedifbtuboapgxygkulpippepsfgskcjsrrimcuoimkrtnpqaljxsvyeplshydjfejiaqufrhmemnfjkljcxtuxcohywsdcfsianufaxhfdgxihiauuynkwbojecabbfbhfthfephespgtkoopxfdoabyfqfqomkxpjelkvljwyhmvqnaaewqnjikqyhoqpidsfydneytwjdwvcgxlivfcmyyrlrviipwnewdivbesjdpbxlthjecppvqnhlmajaqxnijxepmyqekqrsqojwwwjhcydyqfeaurqvliuctuuagpqsltfchvdutuapvjuaivylfyhfrgqtoqyyqwbpgrutkxjtimvihpqqcbxnixvlebrywlcwuvjklmfghumpnnyfwydkmgjvisqdhjdjnqtdukskyaykvlbegmeclhxpchusgyyfcwcfgfokkuyaapfaslhddruxeaespeelwojebhwriapwngprhrmnsovipkjdwtislefkobonmnxxwwibjkgnkknssoxpdqhqkewrndeixpllaytbkdyuecygbqmgcguxahsyjntoybnxqhwptvgoduxjnstkwqpwieiusimjgsjvieooaqdnfohnkhlqrvgaqodparwqebejawwydxtftgslnhchbsgcjmfyxdimmwdqxlovqbqycylasnnflpuywqqcbhrnykfjqcxhykgdrufnxvkjafskexkqekkxyiqigbybcnsgiegfbvrtxkkonoyhryxqbuhnobetsxnnxrcantsvnkepxufogacrjowfbcqjrnlfdvkjvoiabvvbduhefbakfhooxgnhcspnpfbemycebnclumayfwpkmbducjukhsjdrxhdovpxjifbmonybmhrhgixgifixayutwelciueqrlixdrpwsynatditbkjsidfdeiwhyencntrbbelhtakvprjrvatpvunjknhibwvgtspqpdcatofpsgerjryumlfjuoqhwxqgunenrlclgpjtfsbtskcfmfgnfbdkffrlhvuqfvntdexkdwefkhpdtyoaijibcexqiqafprddevqqmhvlwxwrebqsnxplbastytwcqwvdtommsjomoyaddmkyoumvuwyihvhuuwbaatgrcttxwtlirdxxfbmtidionbakcywkeeoblskclikeurqonvcprhtkrsklqgjjjqhtnduympaqeqvkewpcffeusiyshbbylkqbqyajoofrtldlajcqisbtqoktjtsvabayqwjihndgtvuglsryjeyeomdasesaydienirwmopkynmrcmickpbsvmkooglovomcjgspxwbatxugfmydhmijyfjcmmjffhrvntvmlmefjlgjpvysweiovcxmvjnjtfwodttnegahndvxlgxklnrpvirlwpnbdqjxkukudfcbpuqshwempmfphsuomkpbyqcickafnoqxdgfxncejmnuxgxybduklpsluxjmebtnoflhwprwpwwracnoynqyckatgorjqgnvdstqqfgtmsqlwskwvuknbdmhuewkbhfddfhchtftshjxiamgaooskvountwhexdlplyurgwcbrdufqwilmoklebphdfefpebgpptntahowxcebubdtgyylkqlajvjdbnsnuvbugdscjxkotdvtfaxcetnlcaodqsexikjockpfvdufwvatbnekeformpapinnntfivuftnaxwxhojbcssuvijuukvmuuvhblrvucfolefckmwklpgodpfjojsqtiuohbpifpdhlmlwbjueusshwrnuatirfbtvujutxtkhabyufltmfubtcbpshdwltrpgderphkknpnvllckodonuwntljrnrfkjpmolpupjtjjynqlsmawsyrboremqxydisfulouktofswrgrhdylmuxwvjhyodtdihkibiebjkcyhqtwttjduwgukjdqkjlidsavlpixakajpueoywfdgalexhdcbjqboxayodaxijatmsouqhtsxvmmaqhiilocqnspjbiswyeccxluenprsrcbomsqryhmdlptxqlpjhpusjonkfuqemteighursxxbimpiqipekfobovdypldggjwuqkxfpfvpfjucdrdmxsnbqciakdufoamosiqglwpugrljuepcyesbowesiaifujybokeiiadivkbblndgvfjltgtlnqnxkhfmdeywytuccouasslcjlkrurtwdvbxxlenwvguqiihtqkluoooaashypsmawlesvhfugehbudwcpnoeneqgtjtrsvevyyclwveltoicffuneyjcaijslpcovwfquideapwldcvsjsxhvoregbxuurbxdeqycfyocjsqcnvsjlnygoqubtukpxcqukuxnjqywdntsakkijcqpdbaeqshuogeynkgqesoweuktqnssqnhxsulpffkqteggfcdnbilfsnquogucaggatqqqdeavsahodlgycyhxajchscpftvmishuswnwrvqcvjvjudxwvpjbaoqsjrfdfklpwqbqoskdagxoahnvdbigqdbqmelivmispaghmpcnrbeelgivpxtmyokexsprflgamooacdrqgnsmkmwyxboqkonqndbtruhoiuufveduqkelmwcqjsvtmcijadukqgsicdcyixdmqkeacgogdflrnymodjxqmqnoshnvpsqsffskqlymnltpcobfkjxieuttsiurxcatxwiyhgcvjveavrxxqnfetrakkyqxijbjgsvwbjlawegmoqmsitkqpagwupetsdcrdlheml\nszbupjda\nfjfvexzxz\nw\nn\ncpmtgm\nyrfqibjp\nrhu\nrvxvjpt\nlgp\niqeyjb\nk\ncccmfgl\nsrjsd\nbtcnxdf\neqplapxjp\nyywa\nvgnixab\nmistquz\nrd\nlfpjp\nmwx\nidusrgv\nrijsja\nkxzkm\ngrilv\nzr\nematojqvv\nyep\nbatvi\ndosei\nxdfjiuo\nm\nlbx\nwuypi\ntfxwit\nllyhwy\nyhax\nw\nfp\noqaeqm\naqvbg\nsnzej\ndhrqkiyvk\nbfny\nvdulsv\noaplqztzg\nf\nmep\ni\nj\nshuzvcg\niajut\nyclp\nobvyoz\ndulrifz\ngcivw\nh\nliuatue\nbg\ny\ntjmv\ntshtj\ng\nhi\nxoal\nxmbbzvklr\nliul\nnf\nxmo\nrx\nasxhwvh\nc\nkhelmemp\nrrlat\nzxc\nuzz\nypylczioz\nl\nti\nt\nykoretcl\notiuafjry\nmln\nspkj\nthtuaylxy\nfxqc\nenfeclwe\nun\nqlgonw\nd\nxzpjkryrf\nmhetkky\ntstsibeal\nf\nbywaqjmdn\naiotzei\nrausggxlg\nctrlmg\nmpl\nkqahgfi\nkrgxewc\nrkjk\nbzrm\njksqi\nfybsv\nkdg\nad\nvgkyozrz\nkozd\niamkjc\ngr\nub\nb\nvoz\nfqklwz\nsdfavlbb\njknlmgy\nmqisqvyv\neqbgo\nkmqqw\nmbc\ne\nphrwgunw\nclnzblmet\nhcndrko\ntcccbdi\nkpotft\nnwj\nv\nl\nhzp\njfvbx\nhqlhcy\netnz\negkmf\nypffewl\ndpvju\nfqgl\numx\noly\nvlgxqkvn\nwzc\nuotg\nazyywkfgy\nxs\nh\nhfdkc\nn\nxmt\nebw\njfcieunxs\nxk\ncjtf\ntvmkx\nlel\nc\ni\ns\nfvkdqmf\nqh\nrwpbjwtt\nvu\nnislpu\njlol\nbaaylaf\nedswwwcxs\nxelxwzqn\nq\nfgy\ntpih\nid\ny\ncsew\nfgnyqu\nhmxdcmqem\nuqcerinqh\nhrh\nu\nbpwhv\nbkfu\nj\nrfdkjwwn\nbqucbcpsc\nzzddocmfg\nrczyr\nne\nwfu\nxbgp\nkapg\netvmuqb\nfxzolyf\noafiqv\ndjze\nqtrqdpv\nhamslxo\niqfuiygis\nxu\nbdbfy\nhgo\nrvunahhbg\nyayvj\nbjtcjzhqc\npyomvx\nyrrrt\nvzbuwolep\nlbug\nswqxcprfg\ncpqmlkb\nrdup\npazgu\nzjmunn\nx\nrgtdd\njdmhi\njrzlglic\nzletmwgql\nztb\nwaupkhj\nlbyyxo\npbyjkdv\ngq\ncdjs\nwyyrpi\nh\nodu\nvttyobdww\nvenhdso\nkvecqexh\nnxdmacrb\nygu\nk\nqwv\nmj\nwiqpxo\nwjopjhlw\nxohvfyys\nn\nx\npwqr\nl\nmqy\nhrjaxyfju\nbh\nxclm\nm\ns\npjpcskbmc\ncbkts\nj\nonfmynenp\nfwemci\npggdj\nrvugrc\nxfxnrnsb\ng\ndu\nyr\ne\nnzvlsq\nwdc\nk\nmevd\nsmychzn\ny\njzvh\npzyw\nsudjb\npu\nziswidnqz\ngblomoei\nh\nfkgcmccm\nwbrxw\ndgawezmj\nqltslhi\nfmaszjohp\nsrdlisl\ny\nxt\nke\nhbwsk\nqxc\nhv\nbzpnmeaoo\nbnf\nbtm\npmpftug\nim\nbdhxt\nqss\nejkfj\nw\nkplwtaez\nvvisoosvh\nozx\njmtvzexwh\nu\nnfl\njoxq\ndmolym\nt\nyrxmgrctm\nplnufecf\nllyml\nnvaz\nrrasatnpt\nxoqcbg\nbulmjzfg\nwmjmcfu\ny\nbnsw\nf\nuyu\ncnlktlypt\nqu\nl\nbwdxzaknb\njdeqeulje\nnnntndmlm\nvxpbtzz\nzjgwvfjr\ncr\nct\nopwllfq\nixg\ncvpouw\ncwciofw\nvtwkjlytz\nqki\nbqucbcpsc\nb\nzg\nerui\ndkdgj\njfzq\nlkk\nymjhrdajb\nufrjrcyhh\nfigosj\nwwnu\nvgyo\nw\nya\nsbowypacw\nylmlp\nth\ndsu\nq\nw\nsmim\nepwemx\nsdhqdmj\nxryganzim\nwvlmz\nywhjshj\nwnwsvpabp\nq\nhwfkkvx\nsrewomdx\nqaaewz\ndijuvil\nofnur\nvhsoqrn\nayqa\ncn\nklhdpm\nkgmm\nh\nvg\nngtherje\nqo\nm\nwpvsyd\nlifvuds\nqomdt\nbesu\nrssvt\njank\nbjkatyyyo\npe\nzhh\ncxexxb\njmt\njgpipg\nnkgngak\nwuztbp\nfgz\negcydqj\naugfv\nbik\nkod\nqadtmuuw\nwzoroyh\nve\nrbz\nyivtymaf\nxcktyzhty\nspong\nmaflq\nelzpdev\ntwc\nkgze\nnm\net\nelu\nrnnyygt\nwwjmvbjgw\nkmtaw\nft\nsyaheabbg\nrfbmnid\ni\nxnlgpjqxt\nvhrq\nwzuflimq\ndzwtqing\ndppigrl\nlgnx\nhpweebgig\ncvsjytj\ngzjk\nltoyhdga\nflccylq\ncsoemw\ndgw\nqytolch\nqadtshtho\naiilmiljf\nwnsoe\nbqnvuqbw\navxhfxks\ntfj\nuilaifcw\naadvmbqea\nfvlhsm\nfajcsn\nd\nzpmxxm\nc\nsvtwa\ngoe\njwym\nqodwdpbv\nzsgtpc\nvvglhojlg\niitycoode\nnkh\nr\nhudwday\nwdhuc\noda\ngajzzphz\nvzo\nj\nmi\nqwydndc\nr\ngndco\nc\nxsw\nmgqcfige\nsut\nqhoehnthp\nt\nl\npa\njjjjfnku\nluwk\njl\ntvnohwbsh\nyttkkkn\no\nv\nfimqktzc\nfebapy\ncjvfspnb\nfaqvgrmm\nsppcygg\nqtroux\nxbhpif\njz\ncg\ndlfmfzgs\ndodqxu\nnrdym\nsrcxtczg\nakpwhk\nbik\nb\ni\nqjmivan\najlykldaq\nogitvovg\nqwzc\nmxqgjkn\ney\necda\nxgbee\njawk\nzrqmzb\nth\nclshu\ncmhy\nwfzdsvu\ncxcchrw\noygp\nbjpyhpm\nbuaevwav\nrskabw\nfgrbfmvhx\npltdriygx\njsfgomqy\nvm\nqbdjkxws\nlkq\nplyqxk\nzwkt\nbndsfl\npmq\nvburjug\nonbsota\nrefovsk\n124 xpqifgzwrvjcaoxvbxvginetomdtxkcaqvdvgucpcnvfychxyjmsawjxycigebwwpureazhiyefdrugijzqpbgkoaviaanpexaraacshcrpwijsmapyrkcuaucwdwjxidkercwrrjqjcnhwpyjyytjwzsfpyyjbnkogkxkqznbwimasndxvqffievwdojiowohmwvszxpsdwghbwqkdpjrqjferouvqfkitgunxagtoujmkbhcdracqmikhxkmcnjitwijttufcociprscjikhnggiroppexirtnahfwsqoftdbyasjezjpcsxpcvtkxnenkviwcpeugqoxaojsuzvnvpqtbqbpvdvqcrmzcczidxmaxppnkazqjbukspxjgkovcabdybkvkduwvwqbkfypbsiiwibuxouzwcfgbtbxdxonbdpwshkbrkqebeucpmzmxiahiberkavgszfoaazwdzndwfuvybsdkhzqmczfnmjkuwyjegarzfkdrpytageetzvvsozdtgwwcdbgzekgnthmgwwryjxjueeauxkjnfpjzioxhqtedccqhvjhzgzvjanrppokdedxkjkugweuphgkegcxsqfqaffwqnmhguuwfpjujvjkveegsxxyfmicunkvcgtipeckscdeynjwnyzmwccvgnxgjvvuatsdfbfphiepgtsrdrivupzuhwvaghwgopmoxgwzannfsitfgbcmqepykbbazcehztpegchztsxmfkveymuezkgzamemogukquadeavsckimwyuzyaxzuxdfycwozyhcwsehahvompvakyxkzicjmnfgnuomcokrmcmmmqysfipeemjfkssudopwqqrihbkbavbacuadfkjtffvrumqhjtgfabeksjwpfikmtxzytzakmaokebimhrtwgnycvsaqjtsxafhfahzapyifybwiyqrouueidxrnjiupqywjpgmogzupvbjwobdftqxdytwpjhhkozbixvrhygpttddseexvwbjanbrwkfnstbsxercdhfceanrnhsfcdjjsbwzbijfmqvfmyhzncsvtpddjabzydihucyeuswrocauotimiasvjqysvchozqkszmbnuywwegujgwthgvoonuwqjqyokgeqsigvumccvtydtmwoiqtcghfaesimvtzyfazqzorkwdvuqzzyjnmhszmfakzviocjnvssagbbzqvbfbahmkeuormthpephvqsasamzmnpfkbktjnzfdcbfnsrkgwcmekfkjdjbjhyciaartbcbhqsuprubfptgpnmfshhjhvtzezhhqmbnhymddwbqoztfjcwjfuvnbjmingbmpqtfygxnhvacsfngagnzmswiawrybhuuytjpddxheivxtisscxnjxhcgxrgorgtdfcqiumkyewcehiedecgbgsxefcusvfsocnhzycdhddenomdsgsxmyonkywyadrokfetfnbdysakkjriiudyfsgqnizcvebsoyqrpgkxmxxngzowhejqqesmfeyvxrdsbsrunqfzxkjmwnopkmqbwvhmryzzowweofacqnwudxxgxkgpkdwszjoxodyadvzmkrmhkvcbpamyapvtgytjixxknncsiubtuetbijkgbjrvitzrspjoedgpsbuetsctkfjmvfhijbvzfmezihhwbnykstmhrinvaikzcoqcnrbudgipguhzbmeoueftcanciquxxnmcoufusxezerxeeabwoeiksomvrzpyqirwogbfcabrfvbihkmtwavcqbohzbkmqmwyahftbaifqcwsvfdgpovmuaiwynwaxxmriecacmbonzgvzerihiuoygnfsiwfkhrfvpccygshattsfocbwfytcmqayvgtsckkameveojxgzvepbjtoonaihjxemcfrfutrnihviyfcysppeybmuuyvrwtrjejedrqpcsmjtoviejazypcfeporgrpfmaysxjxrueqadqmjkkzexzuikzrnmexhzuayszcgowhizgceqatuobpqipkqjdkkzudgbpyhifcykjcagcnawkmnpoucqsxbikhkunxfebehnhbdjidopykddwmtswriwhtteotjobkqephkyvdhwivejeaavretrqzdeuegqhnbxnyucjnptxrjcohrxojtammoypwvarsybmhfqpkzeizebxizomusigurdxxgitytpecodafeeemdpetoqcnwrmmkgozqrwjoepmjkbrkthhxvijbmiagoaxvrusanxbkmywxvcgfxvfpfzajmhnivkefbaocmpprebudpvdjviogsgfszwbmihiwbrywetcyjqsrbmxwitfowygouxtjnnrcfmgnwdvcqdxiohbdugpubrgqdtpkbdghngkjjdunyctiwppabzycfmirxkdhqzzrsxmsiwnuvqpxqnittjztiitedqqpnvgzpwxzdqhuvuagowsdksnobxjviuvfonzmpnuvmuqfugdpwpwodgsxfihmfdbyvotdkipuvmmxvquqsuadpzohvpnyjbikmsjdjznurekqevkjjdkqisiywmpmmyvmznandkekxnqisjugatmvoypwaabvcemeuicwkxuyvbqstobekvesbaowngqxqufhjpymtzzxjxdrqthrpkkwhiyvbnxbmxhdganturfumjkeknxsayhgjnsgzyguxhfkxuseivupixffbosbjtktvycpkbquxahjxarujydbqjnpiqdwtukthntvsmbxwzvyysixdrvaipiaqstcjzzsmdnfmevoasuamogjkxjyfpwthvvyzzzvnnfwxphumnkbtvdbvauntbmefumswymvnmgfqijdjjkwpxobvbooydvdpbitadmitqqsddkhgoaxvnyjwxafqpckfhmoykwfnzbupktkgkysbdnrzvawkrstcrzxymidzpnjtfemzuodxpdnuzqxmzyutsjzoqivceicqnekozxcefkdnqqmndafgoxzhwpkoazhwtnxwhhijpmfaehcxeyipmaxfbphthfiwcfqagwgckwfvcuigxgchavcwbxxyrrmwcapohinshpgrrrworikwzbdzqpdhhvhadsnedneuapucpatsmewhzxppnkbuytcmwrazncxnrqwsiyijuoahdqyswwouvhkkaozwwuvtxutpbnsbezpyehbfatmtvknduwyovdttwjcpoxgdmnedfmqpvgusvyxqibygjjhozzjhcciqkgunrwqhktnviwiswggfgndcafuzersgmevboiyoubnwoirjvadssafafruxrbrmpgsomtauitbddxwaihhzhwmmomfmbmmzzvpoqijdxovgqrdpiowdcynsnrdwoiavrmwoupgqjvnjzzsagrituzjttkrkoqytwxxesrtscsxqwprkkmxjdcqjzcrirumbfgpmtexkdeowgzvtvyruvdvgprgzrskwcsxoykppddorofqgwzzkjwsstntgxcmatpdhzjrpvbeognxxwvshvjnmtyswbubdduzgzifnumcqhmupnpqbjoibdfpymgeicfdvficvqeqwzoovkibwacubmbtovrbmfubebhbyfzesjscdtpgkdhsaijjhekhkjgrkrutqrcaybtjzssgjwyiopbccwqpnxzzoshyjycxutvfgtbnzyvsaqbyuxrwjbeabbwmrstiofoinsewoyqvyzsbiyrsjhmixahkeqotipirevhgxzroczuyoounajzssccfajvunjwiadqxzgwvsmvbotzwwwhupsmkufcxhcxkmaghnznjyzdnyewxednukmygikicostgtiyqregcweagmpczoofpzgwpixmomvrktkfqtceraohstvrxkaagiaxokrvwimbpguumxudsexmkggrdqyymzgmdxfwffsgasenpkzpsmcxgitwmynepbhmihtvpcvqyswqxsfhoeycbioxjxzurqfvseforjsuetdsjyohecrwptfyqomndhqgxpomjhwhhhqjxzkkukxogfhrasfqjqvamtzdagbebckuawquepemketmdibusznccuhfsnvodzawngyyioynygtcobjgkxbkygrtjcqmrxcvkrkafexbwninpoijunnhwasbohibqcsgtoopumniyjzpjjinsszmqtaoqtwddzonswpagwyxzxdthasgzemirwposrdhjyscswqmwmumqeyoxosgkqzrhtxuiawrzhodtdazcviunzrxapzxpkpkoqpvmseeakowvvruqtnzodtocmmicoimdnisnwtkqmmvdiitcnpxnjrcpaijjqnnrnyjuiwwhwzumsyzzmwquprchqvniyaxcdakjjjkbinprbatdporsphhqkiaaxgzdghjmrhayhgietbfbukfcbhrqhswcpyjfdopsuoactmvixmqppwzxrvkbptbpvotrxnvygochwgatybxidjahuodejkocgvxufssjunpkzopmodatzviqocpdrpdehjzgfnktiwakxjdupaoxxchzcgahrzqfadkovsepphmyrsjumycmqefkdhhoiyrokgabezcvqyqkpumdxdjsdewyiteyepsoxbkojxzpustznfepmpciqmdtutnafjbupnzbqfqxuqhxjpweteegptbcddpjszftyxrhgzcsjzezrbbxxshkvgodmhnrfpivowjcukvzdzsnmxcumaduwsaushcxizpbkcwrhypvaahrhhhxoizjqhcijrqbdegbrbktgsvbhikucjxivvcmubxauygaryjojnfgipwmohjiakdwxdsfdhztzotzjvdjythedhpaasjcftudjcsisrfayxcmtavujwoernmohbjkvkcbyofcbrrmpjcnfdgrngdmapxttaxaxcesncwrtshsmnepjhwnseokpcnzxhajinthkrrxvkfhobdjvwihqchzirfozkjagkixefowkxmnhxmnytzjjkkmzdggticvnskouuccfsimdneicanjynjgzosjxrvxwogpetsykgjotbdsrvoirexurircomwkhqroykqktswfbvcqnmpgvtdicfzafezakbuiuuoqazoocsjdhjbitbfcxnaypqovmniardokfhexjugsrnxzygwjpvnccaurutsuednpvgbmzvdmaasciiaitfvfqstmofdzwtvsfkfxzawmppsodgskixrgkkcztqfamqtcruqjopwidhnbhspyebmynjofiysfktxiwxrmohcidvftcuxveohxagxouuvstiwxqvgeahpuquzcrwfgcxppiyfhsrhwjdguermaxaqzpywqiawqnwxnnxiobppdptsicvomsgaedccrcidybrjmroiaerizratpyvtagbwemkteonmnknctvacosbrgqjhvruxdckdpigpsktpqfekcdjodiwfhyskeegkcgrwzswuwxwwryvaaadpfvmocafazpbwemdraarjqmtfjstzmavuziicetzpvatdirieccztbvsqgozqjpzavcgbmkgogfwywuhosuzzwxaejatfgcqbyszvgfjumjfcudqanzrqtizntcheprybkdenarzdcajivdddvnhuybfvtcwrycsuckihcuphhenvkudcqxvxkpmndcgrandfdmupyhqjhfhrkfqqopdjzrciwktixpckyirnpveasqcnnyhwesmdeobyaooxwfcguhfionkokxubqnhejvxxfkoewuwrknqanqngxdekokhmdytckhgwehnynxfbrrnanmrsrcspqmrfjcznppewgrbwfuntkbnvtnzmqwksxbwbzoxnzforvnxpcrcqmfyicrpwtmfyxwgrdjmrkfngowycfcvwavcgfhoftgrdikgkhcjhsfqwnegaahbxvgsqzcvyyfdeeyvcfcsqsoupdptuvaiptpkwagioeimuqipmkrfzykazxiggitsnxprpgmiehxxqgjhbctdnbigfitgbxrwrbmnqpsgkhsyrwoxhbxtkmcjtbuvnvhdagatvdubhjgffyyjrvkpydmadvjnyonjwxogzccjytfsyyyjwwquuqewvgecrfbymaiusvymabuhdohoheqwteaianydapdnezsbwndgjdpwxwxfkeeysvygnbarimghnedjogtbvkwwkphxyfxpczaqyyijafqwyuymzbvawywbyewoutefxedqentytqfshaawhymmvkjfptkzewoshddtoqvsfdfcizkzbxuxeyhdgyrunysxjhvzdsgchwvduzbcsaojjxdeowvmpareouwdpnbsxgahufvecbrivcnfqmdcheenzupynayqvombbdvopankafxxohneejujyinzhstigpargdcxmjnycyxjfkrfwxuxkjwowtabzezsdjssxstjqducjgdzobwkpjojattnzpqrjinexmhoownmmxrzgxpudzpwidbbmibkrqmermqmhdrznwtfytrabeurgzeunbaouoruinwaesqauggmawpadptghfknyjdvxvwftvwrmapfxpzxyzgdizivbqgjkuqxwscwaphfjgqbfzmkqhogpfrnduurwgkexrpdkayadjnzqnjfifcywmawourwhdknkyuqhozvcazrxzimybxejnoxkxiyaftyqxmwtpqeevbefumkihkcbsgiohnergwrquqkicfzeowubjkrvevrgiminoqkviwufcrbbjkxwpmvysxwmssrwohwipxyswrhbiecwtjmhzcztqwfgfjvkbfnfrjuozivnqyhrvniiezrtdwkzhjhbgbvdfyrepuhwbjvjwupasayfgyddgbxyouacrcrxbiuuhaimbuhxbpfbenniztyjrjetpdzkcginvoyudstgsituqwnjzvbjxbhieihpvxjukgkttzgbbszzugqkcryrzmigxibdrvswyefuriebhrmemoknwzmwjtuspjbymnnumbitgjqujeabjtierkxvgtcpccifpeetsabxqydfrabvskbkaznxdyawnfsnkiiwzamanrxqbzaffgsncpnrftojisqvmhfgepziaxagvxqchmgcdvgirqnaxjprkpxaqjpyoiwbswqgytecjothbomvhhyftyfxixtqrxpnbxxnmkyqndsuemawksvnudhzyartrsnewbjeejhmngmhzgbbvjuniyndufkrpnhqzeqinpxjwdgejdwgipehruhmihiaaosxfssxiuavemryjpsfcyzfwrnhkjnvwukvvqvorrddgncbnxjsczxyoenomjnpcnnrvgfhegaibotgozxukvnuoehykfwtyvoopyuiazgvoctzskdcbxcmswcsmesqyjcccowavqjmqvqsowxtssdakuvsnfqjxqzgccmfowmrmxpdkiztqtyvgizdmoqywmgcwvsomecznbgungptpqzsxufcxmjwhdqkpacyebzmhgvqmfmjdqqniorfbsphsvedojssbbcqhhsviyhnzzexrsiniubvtjdwiybqetvxpqbmjwmtgkwswpgookszuathjbhinkzhzsihdorwijisxuujcfxnknscqjputrhuskwvxdqfzrabkwgjtvpjouokycbwotjgrrxyimrvngurykkskjbvsmtvtfsnzctxtittzhrywarsntpjvsomeeaniqhgkbzshyunivsmijcivjoakutsrehftuvgsjhphjerajkvymvyvjxdnpeznrvcogjwfybtxsggbwmvdsoewrvvnsaeaobhxhkxuujzmqwmbiohpczgaixqaacvgouuchftjvzvhcpuqtpycjkrfngumdqemoyudxvmrxgkqjpgbpywovordfucxntfymnhyukribmtaghthqzmivseexvssykycpycoghxktbzqvuyxkrprzhkzrtckcfgfyjammzdagrjdpwbjgmnkbhhckwsqnjyrwffrosmiwkkvnebfufbqypedrvicbzyeozcmqbwmignfxncgduuisozcwrnhecqkaskpxgdhouecogygddbfoafwptbfkuzuzyunmefdyvzzraipjuhpshedqkvoqxgtyjucrjkqiubkqugvuzsmfzwaqoygfyixuxfmtandbixjojgkwujtpfhrruanzvymhgruacadttqiehwcfknhvcptcoqsmaxuifqbyirxanmskfiqouxgfqpqbpuvcnmamcdftdayuvsspkigeuguezehakynhvdomxuhvqmtwjeavjibxpxtgpxszkmduajxadzfcwbrqccrkiixsyzduukosuyxyhiyamndygbctfjysroaajweexriewxmbqvpctdqeksgapezqmzdmgqwbcahxadeoaeckyxpvjkxoajeknmcujnjhzhsnznceucaewvprcvwgwnghnhavgdegausctmrnjtjxefsxifpzxmvwegcfikepisuyscffkhgqbjfvjcrupyznjidscxhrfkbsrutqojdeobnorpnqjcjnxnppiouiowidfkiiaqotazkwawrbspmjswqinhaefghzazfptyffoxpvxbpdszdroswvqroowvsbdcvgxiwkymxvigqagnawknwsjuchmuhhdqgxotahcbwntnomfksskiknokqhngdvonafgdyntegipwjrkmyhazxdqezpumaphznrrbmzwoajiccekxnxzttbzpnqffucguwcjizgjxaeacnjevpedvtstbpfcgvoebbfxtrnwdbimtddtmbsxejedtibvzuqqvdjvfpwdgznovwqfypuggskuexgqofhxmccwvhhefkkigfidxebzohujsqowkgbnvvpajfccitcnnmogdxyhamkqytbdpcvpqmwhcercxrmrqbbhduwjtcybfdhwzorpqyjqbzstoxfkionwiikmtrexefctptkthfbofqodbocrnbtmtzeppntkvuiywzkfnfkacpeboxnswegopprnpbitooqijsergntgpihuurowyzvusesowrhngvpmptkzividrgzcdixwajvghnqtysjgamkbnugbbfhpvtmasgqcnbytkojzhcouxqhsgrfdxqsrwqoqjwwcouorkepwckxkimrmfxpsjapaixzjscvikpscoedqsdcmyhhatujqhjcmivvaasioduteiubfdvsgcagibnkxecjhohvwbzxgssasycuufsccfwghypyqvenavmuhvxsvxidtubwcocgwvbvfxuqjqehbnnykaahntjqzkpbvzauysdkdxjbvgkkjyerhtvqktjhxtqjzzpicfsontmqtpfjgxftmyaryohhkuwymveimjgnubnrckktfzgjuioivyraxfbkuqfnikshqcgrntxjkgnjafomszzapcowmmmyfytiwtipfxuesuodxyfvwszzuufyoshbivtmdazhuznhjgzohvoasqijnncqjjxwzftzgvpdsrcxtrumrxaysojwwtvfpwtgrjwsdhhtbtrxrnkgtxvhsqjoibajvcwwnqxznrpxqyqfttkokqzaqewtfjymeiceyycyqspugrprdyubcfguxwybbgdeeghrksrzjpuycnbymsojezzssebryncyyosvwmnxoumvfcetrwmvwpfaqaqegtodrwfgomcyextgxismswtrgrmjxzavevtmkxwemqjaxzfphqcgjweihzhcjwewawgcvnqefuvixrpejjsokpithxfawuzvuyuiftpefpcabrmffexxoqdvkgtowfvqniwtdrvvcatbyzkcmegqntstrhqwirqoevajdgeafsrgsxpzdxcqkvrkwffexwotesokafoxuarkqmyixupewgkpbetssivf\nfxxaet\nxtsvgpoio\nfnmq\nbqqipt\nc\nflcn\nxdqmfqra\nlkicato\nkbscwt\nit\nucivevgfp\nhua\nzjdmvw\nowmqb\nyhgoilojz\nl\ntwlii\ni\nb\nhni\nj\nwnovxyg\nfosi\nvtmsivxk\ngaarpg\ni\nuwnodsn\nvncefcce\nmovbpwdhp\nabydaeu\nm\njm\nk\nixjzj\ni\nqfcinlvq\nc\ntsgpf\nbdyazon\ne\njnqou\nvxin\ndztkbv\ndfqp\nwbgeh\nfotnsqc\nijj\nuwgpp\nd\nfbbhngf\nlyvpbszvn\nlxxwvogr\nbg\nhmvvfkp\nru\nuwnpm\nwkirjmp\ntgsfw\nkvbgp\neubqdx\nockwmxy\nppfs\ncvtkwuqo\nqtfnf\nyrwtr\nznbun\nanjmi\nbgidxp\nzqyjcj\nl\ntckhaboi\nkfxdakn\nsggu\nxuabr\nggbn\ntuq\nlauyhleee\nxtsvgpoio\njiyus\nqhlbtef\neq\njox\nowuwr\nzupe\nymiov\nknf\ncpustx\nlsxtg\ncu\neuoxnxy\nxtsvgpoio\nuxkyjv\noymk\nbvzqr\ng\ntfefoau\nl\nfxog\nn\nlrjwi\nfn\nnzxkvviq\nrtodots\nembzjjoz\nyvli\nblph\njkibldal\npnsxskuh\nwmukl\nwuyizmo\ngcdlswd\na\ny\nqal\nglpmgywo\nivhwbye\ncskix\ncpfh\ngi\nhkclgy\nckr\nixn\nvsedlt\nrgsu\n",
"output": "4318\n2163\n9064\n4475\n6914\n3\n178\n12\n2141\n44\n",
"type": "stdin_stdout"
}
]
} |
|
taco | verifiable_code | Solve the following coding problem using the programming language python:
The courier charges for a courier company are set according to size and weight as shown in the table below.
A size | B size | C size | D size | E size | F size
--- | --- | --- | --- | --- | --- | ---
Size | 60 cm or less | 80 cm or less | 100 cm or less | 120 cm or less | 140 cm or less | 160 cm or less
Weight | 2kg or less | 5kg or less | 10kg or less | 15kg or less | 20kg or less | 25kg or less
Price | 600 yen | 800 yen | 1000 yen | 1200 yen | 1400 yen | 1600 yen
The size is the sum of the three sides (length, width, height). For example, a baggage that is 120 cm in size and weighs less than 15 kg will be D size (1,200 yen). Even if the size is 120 cm or less, if the weight exceeds 15 kg and 20 kg or less, it will be E size.
Please create a program that outputs the total charge by inputting the information of the luggage brought in in one day. Luggage that exceeds F size is excluded and is not included in the total price.
Input
A sequence of multiple datasets is given as input. The end of the input is indicated by a single line of zeros. Each dataset is given in the following format:
n
x1 y1 h1 w1
x2 y2 h2 w2
::
xn yn hn wn
The number of packages n (1 ≤ n ≤ 10000) on the first line, followed by the i-th package on the n lines: vertical length xi, horizontal length yi, height hi, weight wi (1 ≤ xi, yi , hi, wi ≤ 200) are given on one line, separated by blanks.
The number of datasets does not exceed 20.
Output
Outputs the total package charge for each dataset on one line.
Example
Input
2
50 25 5 5
80 60 10 30
3
10 15 25 24
5 8 12 5
30 30 30 18
0
Output
800
3800
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
S = [60, 80, 100, 120, 140, 160]
W = [2, 5, 10, 15, 20, 25]
P = [600, 800, 1000, 1200, 1400, 1600]
while 1:
n = int(input())
if n == 0:
break
r = 0
for i in range(n):
(x, y, h, w) = map(int, input().split())
s = x + y + h
for j in range(6):
if s <= S[j] and w <= W[j]:
r += P[j]
break
print(r)
``` | vfc_140153 | {
"difficulty": "unknown_difficulty",
"memory_limit": "134.217728 megabytes",
"memory_limit_bytes": null,
"problem_url": null,
"time_limit": "1.0 seconds"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "2\n50 25 5 5\n80 60 10 30\n3\n10 7 25 24\n5 8 12 5\n30 30 30 18\n0",
"output": "800\n3800\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "2\n50 25 5 5\n80 60 10 30\n3\n10 7 25 24\n5 8 12 5\n30 30 30 3\n0",
"output": "800\n3400\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "2\n50 25 5 5\n135 60 10 30\n3\n10 7 25 24\n5 8 13 5\n30 30 30 14\n0",
"output": "800\n3600\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "2\n50 36 5 5\n135 60 8 30\n3\n10 8 25 24\n5 1 13 5\n30 30 30 14\n0",
"output": "1000\n3600\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "2\n74 2 5 5\n80 82 1 0\n0\n7 2 0 24\n2 -1 12 3\n30 30 -1 11\n0",
"output": "1000\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "2\n74 2 3 5\n115 94 1 0\n0\n7 2 0 24\n2 -1 12 3\n54 30 -2 11\n0",
"output": "800\n",
"type": "stdin_stdout"
}
]
} |
|
taco | verifiable_code | https://practice.geeksforgeeks.org/problems/shortest-un-ordered-subarray3634/1 | Solve the following coding problem using the programming language python:
Given an array of n distinct elements. Find the length of shortest unordered (neither increasing nor decreasing) sub array in given array.
Example 1:
Input:
n = 5
a[] = {7, 9, 10, 8, 11}
Output:
3
Explanation:
Shortest unsorted subarray is 9, 10, 8
which is of 3 elements.
Example 2:
Input:
n = 4
a[] = {1, 2, 3, 5}
Output:
0
Your Task:
You don't need to read input or print anything. Your task is to complete the function shortestUnorderedSubarray() which takes the array a[] and its size n as inputs and returns the length of shortest unordered subarray.
Expected Time Complexity: O(n)
Expected Auxiliary Space: O(1)
Constraints:
1 <= n <= 10^{5}
1 <= a[i] <= 10^{5}
Write your solution by modifying this code:
```python
#User function Template for python3
class Solution:
def shortestUnorderedSubarray(self, a, n):
#Code here
```
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
class Solution:
def shortestUnorderedSubarray(self, a, n):
a = [int(x) for x in a]
for index in range(n - 2):
if a[index] < a[index + 1] > a[index + 2] or a[index] > a[index + 1] < a[index + 2]:
return 3
return 0
``` | vfc_140157 | {
"difficulty": "easy",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": "https://practice.geeksforgeeks.org/problems/shortest-un-ordered-subarray3634/1",
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "n = 5\na[] = {7, 9, 10, 8, 11}",
"output": "3",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://www.codechef.com/problems/ANUARM | Solve the following coding problem using the programming language python:
N Soldiers are lined up for a memory test. They are numbered from 0 to N-1 from left to right.
In the test, there are M rounds. In each round, Captain selects one position. Soldier at that position will be numbered 0. All the soldiers to the right of selected position will be numbered one greater than the soldier to his left. All the soldiers to the left of selected position will be numbered one greater than the soldier to his right.
eg. if N = 6 and selected position is 3, then the numbering will be [3, 2, 1, 0, 1, 2].
After M rounds, Captain asked each soldier to shout out the greatest number he was assigned during the M rounds. In order to check the correctness, Captain asked you to produce the correct values for each soldier (That is the correct value each soldier should shout out).
-----Input-----
The first line of the input contains an integer T denoting the number of test cases.
First line of each test case contains two integers, N and M.
Second line of each test case contains M integers, the positions selected by Captain, in that order.
-----Output-----
For each test case, output one line with N space separated integers.
-----Constraints-----
- 1 ≤ T ≤ 10^4
- 1 ≤ N ≤ 10^5
- 1 ≤ M ≤ 10^5
- 1 ≤ Sum of N over all testcases ≤ 10^5
- 1 ≤ Sum of M over all testcases ≤ 10^5
- 0 ≤ Positions selected by captain ≤ N-1
-----Example-----
Input
2
4 1
1
6 2
2 3
Output
1 0 1 2
3 2 1 1 2 3
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
import sys
input = sys.stdin.readline
for i in range(int(input())):
(n, m) = (int(i) for i in input().split())
li = [int(i) for i in input().split()]
(ma, mi) = (max(li), min(li))
for i in range(n):
print(max(ma - i, i - mi), end=' ')
print()
``` | vfc_140158 | {
"difficulty": "unknown_difficulty",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": "https://www.codechef.com/problems/ANUARM",
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "2\n4 1\n1\n6 2\n2 3\n",
"output": "1 0 1 2\n3 2 1 1 2 3\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "2\n4 1\n1\n11 2\n2 3",
"output": "1 0 1 2 3 2 1 1 2 3 4 5 6 7 8\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "2\n4 1\n1\n17 2\n2 3",
"output": "1 0 1 2 3 2 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "2\n3 1\n1\n17 2\n2 3",
"output": "1 0 1 3 2 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "2\n3 1\n2\n17 2\n2 3",
"output": "2 1 0 3 2 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "2\n4 1\n1\n16 2\n2 3",
"output": "1 0 1 2 3 2 1 1 2 3 4 5 6 7 8 9 10 11 12 13\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://practice.geeksforgeeks.org/problems/stuffs-division5735/1 | Solve the following coding problem using the programming language python:
Your are given N students with some goodies to be distrubuted among them such that student at i^{th} index gets exactly i amount of goodies (considering no wastage). The goodies has already been distributed by some other. Your task is to check if it can be redistributed such that student at i^{th} index gets i amount of goodies.
Example 1:
Input:
N = 5
Arr = {7, 4, 1, 1, 2}
Output:
YES
Explanation:
Since, all the goods can be
redistributed as 1 2 3 4 5
(i^{th} students get i number of
goodies).So, output is YES.
Example 2:
Input:
N = 5
Arr = {1, 1, 1, 1, 1}
Output:
NO
Your Task:
You don't need to read input or print anything. Your task is to complete the function leftIndex() which takes the array Arr[] and its size N as inputs and returns true if we can redistribute in the requried way, otherwise false .
Expected Time Complexity: O(N)
Expected Auxiliary Space: O(1)
Constraints:
1 <= N <= 10^{7}
0 <= A_{i} <= 10^{18}
Write your solution by modifying this code:
```python
#User function Template for python3
class Solution:
def possible(self, arr, n):
#code here.
```
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
class Solution:
def possible(self, arr, n):
total = 0
for i in range(n):
total += i + 1
return True if total == sum(arr) else False
``` | vfc_140162 | {
"difficulty": "easy",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": "https://practice.geeksforgeeks.org/problems/stuffs-division5735/1",
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "N = 5\r\nArr = {7, 4, 1, 1, 2}",
"output": "YES",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "N = 5\r\nArr = {1, 1, 1, 1, 1}",
"output": "NO",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://practice.geeksforgeeks.org/problems/make-zeroes4042/1 | Solve the following coding problem using the programming language python:
Given a matrix of size n x m. Your task is to make Zeroes, that means in whole matrix when you find a zero, convert its upper, lower, left, and right value to zero and make that element the sum of the upper, lower, left and right value. Do the following tasks according to the initial matrix.
Example 1:
Input: matrix = {{1, 2, 3, 4},
{5, 6, 0, 7},
{8, 9, 4, 6},
{8, 4, 5, 2}}
Output: {{1, 2, 0, 4},
{5, 0, 20, 0},
{8, 9, 0, 6},
{8, 4, 5, 2}}
Explanation: As matrix[1][2] = 0, we will
perform the operation here. Then matrix[1][2]
= matrix[0][2] + matrix[2][2] + matrix[1][1]
+ matrix[1][3] and matrix[0][2] = matrix[2][2]
= matrix[1][1] = matrix[1][3] = 0.
Example 2:
Input: matrix = {{1, 2},
{3, 4}}
output: {{1, 2},
{3, 4}}
Your Task:
You don't need to read or print anything. Your task is to complete the function MakeZeros() which takes the matrix as input parameter and does the given task according to initial matrix. You don't need to return anything. The driver code prints the modified matrix itself in the output.
Expected Time Complexity: O(n * m)
Expected Space Complexity: O(n * m)
Constraints:
1 ≤ n, m ≤ 100
0 ≤ matrix[i][j] ≤ 100, where 0 ≤ i ≤ n and 0 ≤ j ≤ m
Write your solution by modifying this code:
```python
#User function Template for python3
class Solution:
def MakeZeros(self, matrix):
# Code here
```
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
import copy
class Solution:
def MakeZeros(self, matrix):
zeroCoordinates = []
hashMap = {}
(m, n) = (len(matrix), len(matrix[0]))
newMatrix = copy.deepcopy(matrix)
for i in range(len(matrix)):
for j in range(len(matrix[0])):
if matrix[i][j] == 0:
zeroCoordinates.append((i, j))
hashMap[i, j] = matrix[i][j]
for coordinate in zeroCoordinates:
dr = [-1, 0, 1, 0]
dc = [0, -1, 0, 1]
totalSum = 0
for i in range(4):
newRow = coordinate[0] + dr[i]
newCol = coordinate[1] + dc[i]
if newRow >= 0 and newRow < m and (newCol >= 0) and (newCol < n):
totalSum += hashMap[newRow, newCol]
matrix[newRow][newCol] = 0
matrix[coordinate[0]][coordinate[1]] = totalSum
return
``` | vfc_140163 | {
"difficulty": "easy",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": "https://practice.geeksforgeeks.org/problems/make-zeroes4042/1",
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "matrix = {{1, 2, 3, 4},\r\n {5, 6, 0, 7}, \r\n {8, 9, 4, 6},\r\n {8, 4, 5, 2}}",
"output": "{{1, 2, 0, 4}, \r\n {5, 0, 20, 0},\r\n {8, 9, 0, 6}, \r\n {8, 4, 5, 2}}",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "matrix = {{1, 2}, \r\n {3, 4}}",
"output": "{{1, 2}, \r\n{3, 4}}",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | Solve the following coding problem using the programming language python:
Carving the cake 2 (Cake 2)
JOI-kun and IOI-chan are twin brothers and sisters. JOI has been enthusiastic about making sweets lately, and JOI tried to bake a cake and eat it today, but when it was baked, IOI who smelled it came, so we decided to divide the cake. became.
The cake is round. We made radial cuts from a point, cut the cake into N pieces, and numbered the pieces counterclockwise from 1 to N. That is, for 1 ≤ i ≤ N, the i-th piece is adjacent to the i − 1st and i + 1st pieces (though the 0th is considered to be the Nth and the N + 1st is considered to be the 1st). The size of the i-th piece was Ai, but I was so bad at cutting that all Ai had different values.
<image>
Figure 1: Cake example (N = 5, A1 = 2, A2 = 8, A3 = 1, A4 = 10, A5 = 9)
I decided to divide these N pieces by JOI-kun and IOI-chan. I decided to divide it as follows:
1. First, JOI chooses and takes one of N.
2. After that, starting with IOI-chan, IOI-chan and JOI-kun alternately take the remaining pieces one by one. However, if you can only take a piece that has already been taken at least one of the pieces on both sides, and there are multiple pieces that can be taken, IOI will choose the largest one and JOI will take it. You can choose what you like.
JOI wants to maximize the total size of the pieces he will finally take.
Task
Given the number N of cake pieces and the size information of N pieces, create a program to find the maximum value of the total size of pieces that JOI can take.
input
Read the following input from standard input.
* The integer N is written on the first line, which means that the cake is cut into N pieces.
* The integer Ai is written on the i-th line (1 ≤ i ≤ N) of the following N lines, which indicates that the size of the i-th piece is Ai.
output
Output an integer representing the maximum value of the total size of pieces that JOI can take to the standard output on one line.
Limits
All input data satisfy the following conditions.
* 1 ≤ N ≤ 20000.
* 1 ≤ Ai ≤ 1 000 000 000.
* Ai are all different.
Input / output example
Input example 1
Five
2
8
1
Ten
9
Output example 1
18
JOI is best to take the pieces as follows.
1. JOI takes the second piece. The size of this piece is 8.
2. IOI takes the first piece. The size of this piece is 2.
3. JOI takes the 5th piece. The size of this piece is 9.
4. IOI takes the 4th piece. The size of this piece is 10.
5. JOI takes the third piece. The size of this piece is 1.
Finally, the total size of the pieces taken by JOI is 8 + 9 + 1 = 18.
Input example 2
8
1
Ten
Four
Five
6
2
9
3
Output example 2
26
Input example 3
15
182243672
10074562
977552215
122668426
685444213
3784162
463324752
560071245
134465220
21447865
654556327
183481051
20041805
405079805
564327789
Output example 3
3600242976
The question text and the data used for the automatic referee are the question text and the test data for scoring, which are created and published by the Japan Committee for Information Olympics.
Example
Input
5
2
8
1
10
9
Output
18
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
import sys
sys.setrecursionlimit(100000)
(N, *A) = map(int, open(0).read().split())
memo = [[-1] * N for i in range(N)]
for i in range(N):
memo[i][i] = A[i] if N % 2 else 0
def dfs(p, q, t):
if memo[p][q] != -1:
return memo[p][q]
if t:
memo[p][q] = r = max(A[p] + dfs((p + 1) % N, q, 0), A[q] + dfs(p, (q - 1) % N, 0))
elif A[p] < A[q]:
memo[p][q] = r = dfs(p, (q - 1) % N, 1)
else:
memo[p][q] = r = dfs((p + 1) % N, q, 1)
return r
ans = 0
for i in range(N):
ans = max(ans, A[i] + dfs((i + 1) % N, (i - 1) % N, 0))
print(ans)
``` | vfc_140164 | {
"difficulty": "unknown_difficulty",
"memory_limit": "268.435456 megabytes",
"memory_limit_bytes": null,
"problem_url": null,
"time_limit": "8.0 seconds"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "5\n2\n8\n1\n10\n12",
"output": "21\n",
"type": "stdin_stdout"
}
]
} |
|
taco | verifiable_code | https://www.codechef.com/problems/XORPRO | Solve the following coding problem using the programming language python:
The enmity between Logan and Donald Pierce never ceases to exist.
However, once Logan and Donald came face to face. Donald got agitated and asked Logan to prove his true mettle by solving a puzzle.
Logan is provided an array Arr[] of N integers. He can select only a single integer from the array and can perform certain special operations on it any number of time.
An operation can be one of the following type :
Decrement the integer by 1 provided that it is greater than 0
Increment the integer by 1
Donald asks Logan to tell the least number of operations required to obtain the smallest possible XOR sum of all the integers.
Since Logan is currently in hurry to meet Charles and Canibal, he asks you guys to solve this problem. Help him!!
------ Input ------
First line contains an integer T denoting number of test cases.
First line of each test case contains an integer N.
Second line of each test case contains N space separated integers
------ Output ------
For each test case, print an integer denoting the minimum number of required operations on a separate line.
------ Constraints ------
$1 ≤ T ≤ 10$
$1 ≤ N ≤ 10^{5}$
$0 ≤ Arr[i] ≤ 4294967296$
----- Sample Input 1 ------
1
4
1 1 1 1
----- Sample Output 1 ------
0
----- explanation 1 ------
Since the XOR sum of all numbers is 0 and can't be reduced further, the answer is 0.
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
t = int(input())
for _ in range(t):
n = int(input())
L = list(map(int, input().split()))
xor = 0
for i in range(n):
xor = xor ^ L[i]
ans = 10 ** 18 + 7
for i in range(n):
a = L[i]
b = a ^ xor
ans = min(abs(a - b), ans)
print(ans)
``` | vfc_140168 | {
"difficulty": "medium_hard",
"memory_limit": "50000 bytes",
"memory_limit_bytes": null,
"problem_url": "https://www.codechef.com/problems/XORPRO",
"time_limit": "1 seconds"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "1\n4\n1 1 1 1",
"output": "0",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://codeforces.com/problemset/problem/886/B | Solve the following coding problem using the programming language python:
Vlad likes to eat in cafes very much. During his life, he has visited cafes n times. Unfortunately, Vlad started to feel that his last visits are not any different from each other. To fix that Vlad had a small research.
First of all, Vlad assigned individual indices to all cafes. Then, he wrote down indices of cafes he visited in a row, in order of visiting them. Now, Vlad wants to find such a cafe that his last visit to that cafe was before his last visits to every other cafe. In other words, he wants to find such a cafe that he hasn't been there for as long as possible. Help Vlad to find that cafe.
-----Input-----
In first line there is one integer n (1 ≤ n ≤ 2·10^5) — number of cafes indices written by Vlad.
In second line, n numbers a_1, a_2, ..., a_{n} (0 ≤ a_{i} ≤ 2·10^5) are written — indices of cafes in order of being visited by Vlad. Vlad could visit some cafes more than once. Note that in numeration, some indices could be omitted.
-----Output-----
Print one integer — index of the cafe that Vlad hasn't visited for as long as possible.
-----Examples-----
Input
5
1 3 2 1 2
Output
3
Input
6
2 1 2 2 4 1
Output
2
-----Note-----
In first test, there are three cafes, and the last visits to cafes with indices 1 and 2 were after the last visit to cafe with index 3; so this cafe is the answer.
In second test case, there are also three cafes, but with indices 1, 2 and 4. Cafes with indices 1 and 4 were visited after the last visit of cafe with index 2, so the answer is 2. Note that Vlad could omit some numbers while numerating the cafes.
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
n = int(input())
lst = list(map(int, input().split()))
lst1 = []
s = {}
for i in range(n):
s[lst[i]] = i + 1
k = list(s.keys())
i = list(s.values())
print(k[i.index(min(i))])
``` | vfc_140173 | {
"difficulty": "medium",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": "https://codeforces.com/problemset/problem/886/B",
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "5\n1 3 2 1 2\n",
"output": "3\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "6\n2 1 2 2 4 1\n",
"output": "2\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "1\n0\n",
"output": "0\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "1\n200000\n",
"output": "200000\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "2\n2018 2017\n",
"output": "2018\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://www.codechef.com/problems/CHFINVNT | Solve the following coding problem using the programming language python:
Read problem statements in [Bengali], [Mandarin Chinese], [Russian], and [Vietnamese] as well.
Chef is trying to invent the light bulb that can run at room temperature without electricity. So he has N gases numbered from 0 to N - 1 that he can use and he doesn't know which one of the N gases will work but we do know it.
Now Chef has worked on multiple search algorithms to optimize search. For this project, he uses a modulo-based search algorithm that he invented himself. So first he chooses an integer K and selects all indices i in increasing order such that i \bmod K = 0 and test the gases on such indices, then all indices i in increasing order such that i \bmod K = 1, and test the gases on such indices, and so on.
Given N, the index of the gas p that will work, and K, find after how much time will he be able to give Chefland a new invention assuming that testing 1 gas takes 1 day.
For example, consider N = 5, p = 2 and K = 3.
On the 1^{st} day, Chef tests gas numbered 0 because 0 \bmod 3 = 0.
On the 2^{nd} day, Chef tests gas numbered 3 because 3 \bmod 3 = 0.
On the 3^{rd} day, Chef tests gas numbered 1 because 1 \bmod 3 = 1.
On the 4^{th} day, Chef tests gas numbered 4 because 4 \bmod 3 = 1.
On the 5^{th} day, Chef tests gas numbered 2 because 2 \bmod 3 = 2.
So after 5 days, Chef will be able to give Chefland a new invention
------ Input Format ------
- The first line of the input contains a single integer T denoting the number of test cases. The description of T test cases follows.
- The first and only line of each test case contains three space-separated integers N, p, and K.
------ Output Format ------
For each test case, print a single line containing one integer — after how much time Chef will be able to give Chefland a new invention assuming that testing 1 gas takes 1 day.
------ Constraints ------
$1 ≤ T ≤ 10^{5}$
$1 ≤ N, K ≤ 10^{9}$
$0 ≤ p < N$
------ subtasks ------
Subtask #1 (100 points): Original constraints
----- Sample Input 1 ------
4
10 5 5
10 6 5
10 4 5
10 8 5
----- Sample Output 1 ------
2
4
9
8
----- explanation 1 ------
Test case $1$: On the day $1$ Chef will test gas numbered $0$ and on the day $2$ Chef will test gas numbered $5$.
Test case $2$: On the day $1$ Chef will test gas numbered $0$, on the day $2$ Chef will test gas numbered $5$, on the day $3$ Chef will test gas numbered $1$, and on the day $4$ Chef will test gas numbered $6$.
Test case $3$: On the day $1$ Chef will test gas numbered $0$, on the day $2$ Chef will test gas numbered $5$, on the day $3$ Chef will test gas numbered $1$, on the day $4$ Chef will test gas numbered $6$, on the day $5$ Chef will test gas numbered $2$, on the day $6$ Chef will test gas numbered $7$, on the day $7$ Chef will test gas numbered $3$, on the day $8$ Chef will test gas numbered $8$, and on the day $9$ Chef will test gas numbered $4$.
Test case $4$: On the day $1$ Chef will test gas numbered $0$, on the day $2$ Chef will test gas numbered $5$, on the day $3$ Chef will test gas numbered $1$, on the day $4$ Chef will test gas numbered $6$, on the day $5$ Chef will test gas numbered $2$, on the day $6$ Chef will test gas numbered $7$, on the day $7$ Chef will test gas numbered $3$, and on the day $8$ Chef will test gas numbered $8$.
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
import math
for _ in range(int(input())):
(n, p, k) = map(int, input().split())
if n % k == 0:
x = p % k
y = n // k
print(x * y + math.ceil((p + 1) / k))
elif n % k >= p % k + 1:
x = p % k
y = math.ceil(n / k)
print(x * y + math.ceil((p + 1) / k))
else:
x = p % k
y = math.ceil(n / k) - 1
print(x * y + n % k + math.ceil((p + 1) / k))
``` | vfc_140177 | {
"difficulty": "medium_hard",
"memory_limit": "50000 bytes",
"memory_limit_bytes": null,
"problem_url": "https://www.codechef.com/problems/CHFINVNT",
"time_limit": "1 seconds"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "4\n10 5 5\n10 6 5\n10 4 5\n10 8 5",
"output": "2\n4\n9\n8",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://practice.geeksforgeeks.org/problems/reaching-the-heights1921/1 | Solve the following coding problem using the programming language python:
The teacher gives a mental ability question to Raju. The question is as follows:-
Raju is in an elevator. Given by his teacher is an array of size N which denotes the number of floors and has a 1 based indexing. The elevator starts from the ground and moves up and down, X and Y floors respectively. There is a code used in the elevator according to which it moves up X floors given at odd indexes of the array and moves down Y floors given at even indexes of the array. He is asked to go to the highest floor possible. Help him to sort the array such that he reaches the highest floor after traversing the whole array from starting till the end, without skipping any index.
He always prefers to move more number of floors up and less number of floors down. Once he gets into the elevator, the elevator should not reach the ground again, if it does return -1.
Example 1:
Input : arr[ ] = {2, 3, 4, 5}
Output : 5 2 4 3
Explanation:
Array can be arranged as {5,3,4,2} or
{4,3,5,2} or {4,2,5,3} but it will get
arranged as {5,2,4,3} because he always
prefer to move more number of floors up
and less number of floors down.
Example 2:
Input : arr[ ] = {1, 1}
Output : Not Possible
Your Task:
This is a function problem. The input is already taken care of by the driver code. You only need to complete the function game_with_number() that takes sizeOfArray (n), an array (arr), and return the sorted array or if it is Not Possible return -1. The driver code takes care of the printing.
Expected Time Complexity: O(N*LOG(N)).
Expected Auxiliary Space: O(N).
Constraints:
1 ≤ N ≤ 10^{5}
1 ≤ arr[i] ≤ 10^{3}
Write your solution by modifying this code:
```python
#User function Template for python3
def reaching_height (n, arr) :
#Complete the function
```
Your solution should implemented in the function "reaching_height". The inputs will be passed to it and it should return the correct solution.
Now solve the problem and return the code. | ```python
def reaching_height(n, arr):
arr.sort()
lst = []
if arr.count(arr[0]) == n and n > 1:
return [-1]
else:
for i in range(0, n // 2):
x = i + 1
lst.extend([arr[-x], arr[i]])
if n % 2 != 0:
lst.append(arr[n // 2])
return lst
``` | vfc_140181 | {
"difficulty": "medium",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": "https://practice.geeksforgeeks.org/problems/reaching-the-heights1921/1",
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": "reaching_height",
"input": "arr[ ] = {2, 3, 4, 5}",
"output": "5 2 4 3",
"type": "function_call"
},
{
"fn_name": "reaching_height",
"input": "arr[ ] = {1, 1}",
"output": "Not Possible",
"type": "function_call"
}
]
} |
taco | verifiable_code | https://practice.geeksforgeeks.org/problems/number-of-triangles/1 | Solve the following coding problem using the programming language python:
Given a 2D matrix g contains only 1 and 0, count the number of triangles in it.
Take 3 index i,j,k (0<=i,j,k<n). {i,j}, {j,k}, {k,i} will form a triangle if i!=j and i!=k and j!=k and g[i][j]=1 and g[j][k]=1 and g[k][i]=1.
Example 1:
Input:
N=4
graph[][]={{0, 0, 1, 0},
{1, 0, 0, 1},
{0, 1, 0, 0},
{0, 0, 1, 0}}
Output:
2
Explanation;
Triangle 1: {{0,2}, {2,1}, {1,0}}
graph[][]={{0, 0, 1, 0},
{1, 0, 0, 1},
{0, 1, 0, 0},
{0, 0, 1, 0}}.
Triangle 2: {{1,3}, {3,2}, {2,1}}
graph[][]={{0, 0, 1, 0},
{1, 0, 0, 1},
{0, 1, 0, 0},
{0, 0, 1, 0}}.
Your Task:
You don't need to read input or print anything. Your task is to complete the function numberOfTriangles() which takes the 2D matrix g[][], it's number of nodes N as input parameters and returns the number of triangles in it.
Expected Time Complexity: O(N*N*N)
Expected Auxiliary Space: O(1)
Constraints:
1<=N<=100
0<=g[i][j]<=1
Write your solution by modifying this code:
```python
from typing import List
class Solution:
def numberOfTriangles(self, n : int, g : List[List[int]]) -> int:
# code here
```
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
from typing import List
class Solution:
def numberOfTriangles(self, n: int, g: List[List[int]]) -> int:
cnt = 0
for i in range(n):
for j in range(n):
for k in range(n):
if (i != j and j != k and (i != k)) and g[i][j] == 1 and (g[j][k] == 1) and (g[k][i] == 1):
cnt += 1
return cnt // 3
``` | vfc_140182 | {
"difficulty": "easy",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": "https://practice.geeksforgeeks.org/problems/number-of-triangles/1",
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "N=4\r\ngraph[][]={{0, 0, 1, 0}, \r\n {1, 0, 0, 1},\r\n {0, 1, 0, 0}, \r\n {0, 0, 1, 0}}",
"output": "2",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | Solve the following coding problem using the programming language python:
Serena is interested in only red and yellow roses. She is arranging flowers in some fashion to be presented at her friend's birthday. Her friend loves only red and yellow roses(but mostly red ones). The flowers can be arranged only in the following three ways:
1) red
2) red, yellow
3) red, yellow, yellow
This sequence may be repeated endlessly but if it goes somewhere wrong then she won't go to the party. As she is getting late for the party, Serena gives this job to her flower vendor giving all the instructions. However, the vendor is suffering from alzheimer disease and forgets all the arrangement and the required color of the roses(he just remembers that only roses were required). Due to lack of memory, vendor decides to create different sequences of roses so that Serena can choose the appropriate one. Since Serena is short of time, help her in making correct choice from the given sequence of roses.
Constraints:
The bouquet can have 1 to 10^5 (both inclusive) number of roses.
Input:
The first line contains an integer T denoting the number of test cases. The second line contains a sequence of characters representing color for the roses for example, 'Y' for yellow roses, 'R' for red roses, 'W' for white roses and so on...
Output:
Print “YES” if the sequence is valid and “NO” if it is invalid.
SAMPLE INPUT
5
RYRR
RWR
RRYRRY
RRRR
YYRYWG
SAMPLE OUTPUT
YES
NO
YES
YES
NO
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
t=eval(input())
while t:
s=input()
le=len(s)
if s[0]=='R' and s.count("Y")+s.count("R")==le and s.count("YYY")==0:
print("YES")
else:
print("NO")
t-=1
``` | vfc_140183 | {
"difficulty": "unknown_difficulty",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": null,
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "47\nRRYRRY\nRRRR\nYYRWBR\nR\nRY\nRRY\nW\nYRY\nRGGGGGGGGG\nRYYRYYRYY\nRYYY\nRR\nRYRYRYRYR\nRRRRGRRR\nRRYRRYRYY\nYYY\nBBBB\nRRRYYY\nRRRRY\nYRRRR\nRRYYRYYYR\nRYYYRYYYR\nRYYBYYRYY\nRRRRRRRRR\nRYYYYYYYY\nYYYYYYYYY\nRYRYYRYYR\nYYR\nRP\nRYYYY\nRRYYY\nRYY\nRYRYYRY\nRYRYYY\nRYRYY\nY\nRRYY\nRYRRRRYYY\nRYYRYYRY\nRYRYRYRYY\nRYRY\nRYYR\nRG\nRYYRYYRYR\nRYYRYY\nRYYRYYRR\nRYYRY",
"output": "YES\nYES\nNO\nYES\nYES\nYES\nNO\nNO\nNO\nYES\nNO\nYES\nYES\nNO\nYES\nNO\nNO\nNO\nYES\nNO\nNO\nNO\nNO\nYES\nNO\nNO\nYES\nNO\nNO\nNO\nNO\nYES\nYES\nNO\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nYES\nYES",
"type": "stdin_stdout"
}
]
} |
|
taco | verifiable_code | https://codeforces.com/problemset/problem/1545/A | Solve the following coding problem using the programming language python:
AquaMoon has $n$ friends. They stand in a row from left to right, and the $i$-th friend from the left wears a T-shirt with a number $a_i$ written on it. Each friend has a direction (left or right). In the beginning, the direction of each friend is right.
AquaMoon can make some operations on friends. On each operation, AquaMoon can choose two adjacent friends and swap their positions. After each operation, the direction of both chosen friends will also be flipped: left to right and vice versa.
AquaMoon hopes that after some operations, the numbers written on the T-shirt of $n$ friends in the row, read from left to right, become non-decreasing. Also she wants, that all friends will have a direction of right at the end. Please find if it is possible.
-----Input-----
The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 50$) — the number of test cases.
The first line of each test case contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of Aquamoon's friends.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \leq a_i \leq 10^5$) — the numbers, written on the T-shirts.
It is guaranteed that the sum of $n$ for all test cases does not exceed $10^5$.
-----Output-----
For each test case, if there exists a possible sequence of operations, print "YES" (without quotes); otherwise, print "NO" (without quotes).
You can print each letter in any case (upper or lower).
-----Examples-----
Input
3
4
4 3 2 5
4
3 3 2 2
5
1 2 3 5 4
Output
YES
YES
NO
-----Note-----
The possible list of operations in the first test case:
Swap $a_1$ and $a_2$. The resulting sequence is $3, 4, 2, 5$. The directions are: left, left, right, right.
Swap $a_2$ and $a_3$. The resulting sequence is $3, 2, 4, 5$. The directions are: left, left, right, right.
Swap $a_1$ and $a_2$. The resulting sequence is $2, 3, 4, 5$. The directions are: right, right, right, right.
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
t = int(input())
for _ in range(t):
n = int(input())
a = list(map(int, input().split()))
b = sorted(a)
eleToOddIndices = {}
eleToEvenIndices = {}
for (index, ele) in enumerate(a):
if ele != b[index]:
if index % 2:
if ele not in eleToEvenIndices:
eleToEvenIndices[ele] = 0
eleToEvenIndices[ele] += 1
else:
if ele not in eleToOddIndices:
eleToOddIndices[ele] = 0
eleToOddIndices[ele] += 1
for (index, ele) in enumerate(b):
if ele != a[index]:
if index % 2:
if ele not in eleToEvenIndices or eleToEvenIndices[ele] == 0:
print('NO')
break
eleToEvenIndices[ele] -= 1
else:
if ele not in eleToOddIndices or eleToOddIndices[ele] == 0:
print('NO')
break
eleToOddIndices[ele] -= 1
else:
print('YES')
``` | vfc_140187 | {
"difficulty": "medium",
"memory_limit": "256 megabytes",
"memory_limit_bytes": null,
"problem_url": "https://codeforces.com/problemset/problem/1545/A",
"time_limit": "1 second"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "3\n4\n4 3 2 5\n4\n3 3 2 2\n5\n1 2 3 5 4\n",
"output": "YES\nYES\nNO\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "10\n10\n6 2 1 1 1 10 10 2 10 5\n8\n1 3 1 1 4 5 4 4\n9\n9 6 9 9 2 8 7 2 2\n10\n9 4 3 3 5 4 3 10 4 5\n9\n7 5 1 7 5 5 5 5 6\n8\n8 8 4 4 7 6 2 8\n10\n6 8 1 6 8 8 5 6 8 4\n10\n5 5 5 8 3 4 3 3 10 10\n8\n1 1 3 6 6 7 1 2\n8\n4 1 3 5 3 1 3 3\n",
"output": "NO\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nNO\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "5\n1\n1\n2\n2 1\n3\n3 2 1\n4\n4 3 2 1\n5\n5 4 3 2 1\n",
"output": "YES\nNO\nYES\nNO\nYES\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "1\n6\n2 1 2 1 2 1\n",
"output": "NO\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "1\n10\n1 2 3 4 3 4 3 4 3 4\n",
"output": "NO\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://codeforces.com/problemset/problem/1732/D1 | Solve the following coding problem using the programming language python:
This is the easy version of the problem. The only difference is that in this version there are no "remove" queries.
Initially you have a set containing one element — $0$. You need to handle $q$ queries of the following types:
+ $x$ — add the integer $x$ to the set. It is guaranteed that this integer is not contained in the set;
? $k$ — find the $k\text{-mex}$ of the set.
In our problem, we define the $k\text{-mex}$ of a set of integers as the smallest non-negative integer $x$ that is divisible by $k$ and which is not contained in the set.
-----Input-----
The first line contains an integer $q$ ($1 \leq q \leq 2 \cdot 10^5$) — the number of queries.
The following $q$ lines describe the queries.
An addition query of integer $x$ is given in the format + $x$ ($1 \leq x \leq 10^{18}$). It is guaranteed that $x$ was not contained in the set.
A search query of $k\text{-mex}$ is given in the format ? $k$ ($1 \leq k \leq 10^{18}$).
It is guaranteed that there will be at least one query of type ?.
-----Output-----
For each query of type ? output a single integer — the $k\text{-mex}$ of the set.
-----Examples-----
Input
15
+ 1
+ 2
? 1
+ 4
? 2
+ 6
? 3
+ 7
+ 8
? 1
? 2
+ 5
? 1
+ 1000000000000000000
? 1000000000000000000
Output
3
6
3
3
10
3
2000000000000000000
Input
6
+ 100
? 100
+ 200
? 100
+ 50
? 50
Output
200
300
150
-----Note-----
In the first example:
After the first and second queries, the set will contain elements $\{0, 1, 2\}$. The smallest non-negative number that is divisible by $1$ and is not contained in the set is $3$.
After the fourth query, the set will contain the elements $\{0, 1, 2, 4\}$. The smallest non-negative number that is divisible by $2$ and is not contained in the set is $6$.
In the second example:
Initially, the set contains only the element $\{0\}$.
After adding an integer $100$ the set contains elements $\{0, 100\}$.
$100\text{-mex}$ of the set is $200$.
After adding an integer $200$ the set contains elements $\{0, 100, 200\}$.
$100\text{-mex}$ of the set is $300$.
After adding an integer $50$ the set contains elements $\{0, 50, 100, 200\}$.
$50\text{-mex}$ of the set is $150$.
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
import sys
import math
def solve():
inp = sys.stdin.readline
q = int(inp())
s = {0}
d = {}
for i in range(q):
(t, x) = inp().split()
if t == '+':
s.add(int(x))
elif t == '?':
x = int(x)
v = d.get(x, 0)
while v in s:
v += x
d[x] = v
print(v)
else:
raise Exception('wut')
def main():
solve()
main()
``` | vfc_140192 | {
"difficulty": "medium",
"memory_limit": "256 megabytes",
"memory_limit_bytes": null,
"problem_url": "https://codeforces.com/problemset/problem/1732/D1",
"time_limit": "3 seconds"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "15\n+ 1\n+ 2\n? 1\n+ 4\n? 2\n+ 6\n? 3\n+ 7\n+ 8\n? 1\n? 2\n+ 5\n? 1\n+ 1000000000000000000\n? 1000000000000000000\n",
"output": "3\n6\n3\n3\n10\n3\n2000000000000000000\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "6\n+ 100\n? 100\n+ 200\n? 100\n+ 50\n? 50\n",
"output": "200\n300\n150\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://practice.geeksforgeeks.org/problems/permutations-in-array1747/1 | Solve the following coding problem using the programming language python:
Given two arrays of equal size N and an integer K. The task is to check if after permuting both arrays, we get sum of their corresponding element greater than or equal to k i.e A_{i} + B_{i} >= K for all i (from 0 to N-1). Return true if possible, else false.
Example 1:
Input :
a[] = {2, 1, 3},
b[] = { 7, 8, 9 },
k = 10.
Output :
True
Explanation:
Permutation a[] = { 1, 2, 3 }
and b[] = { 9, 8, 7 }
satisfied the condition a[i] + b[i] >= K.
Example 2:
Input :
a[] = {1, 2, 2, 1}, b[] = { 3, 3, 3, 4 }, k = 5.
Output :
False
Explanation:
Since any permutation won't give the answer.
Your Task:
You don't need to read input or print anything. Your task is to complete the function isPossible() which takes the array A[], B[], its size N and an integer K as inputs and returns the answer.
Expected Time Complexity: O(N. Log(N))
Expected Auxiliary Space: O(1)
Constraints:
1 ≤ N ≤ 10^{5}
1 ≤ K ≤ 10^{18 }
1 ≤ A_{i}, B_{i} ≤ 10^{17}
Write your solution by modifying this code:
```python
#User function Template for python3
class Solution:
def isPossible(self,a, b, n, k):
# Your code goes here
```
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
class Solution:
def isPossible(self, a, b, n, k):
a.sort()
b.sort(reverse=True)
for i in range(n):
if a[i] + b[i] < k:
return False
return True
``` | vfc_140197 | {
"difficulty": "easy",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": "https://practice.geeksforgeeks.org/problems/permutations-in-array1747/1",
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "a[] = {2, 1, 3}, \r\nb[] = { 7, 8, 9 }, \r\nk = 10.",
"output": "True",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "a[] = {1, 2, 2, 1}, b[] = { 3, 3, 3, 4 }, k = 5.",
"output": "False",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://practice.geeksforgeeks.org/problems/next-greater-even-number0828/1 | Solve the following coding problem using the programming language python:
Given a positive integer X. The task is to find the smallest even number E such that
E > X and all digits in X and E are the same.
Note: All the digits in X should be same with digits in E.
Example 1:
Input:
X = 34722641
Output:
34724126
Explanation:
Next greater number with same
digits as in input is 34724126.
Example 2:
Input:
X = 111
Output:
-1
Explanation:
You can't rearrange the digits to get an answer.
Your Task:
You don't need to read input or print anything. Your task is to complete the function getNextEven() which takes a string X as input, which is representing the number and returns the required smallest even number. If no such even number exists return -1.
Expected Time Complexity: O(Log(N)! )
Expected Auxiliary Space: O(Log(N))
Constraints:
1 ≤ N ≤ 10^{9}
Write your solution by modifying this code:
```python
#User function Template for python3
class Solution:
def getNextEven(self,x):
# Your code goes here
```
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
class Solution:
def getNextEven(self, x):
(s, p, flag, r) = ([], 0, 0, int(x))
for i in x:
p += int(i)
if int(i) % 2 == 0:
flag = 1
s.append(i)
if flag == 0:
return -1
(n, x) = (len(s), int(x))
while r % 2 != 0 or r <= x:
(l, k) = (-1, -1)
for i in range(n - 2, -1, -1):
if s[i] < s[i + 1]:
k = i
break
if k == -1:
return -1
for i in range(k + 1, n):
if s[k] < s[i]:
l = i
(s[k], s[l]) = (s[l], s[k])
s = s[:k + 1] + s[k + 1:][::-1]
r = int(''.join(s))
return r
``` | vfc_140198 | {
"difficulty": "easy",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": "https://practice.geeksforgeeks.org/problems/next-greater-even-number0828/1",
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "X = 34722641",
"output": "34724126",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://codeforces.com/problemset/problem/161/A | Solve the following coding problem using the programming language python:
The Two-dimensional kingdom is going through hard times... This morning the Three-Dimensional kingdom declared war on the Two-dimensional one. This (possibly armed) conflict will determine the ultimate owner of the straight line.
The Two-dimensional kingdom has a regular army of n people. Each soldier registered himself and indicated the desired size of the bulletproof vest: the i-th soldier indicated size ai. The soldiers are known to be unpretentious, so the command staff assumes that the soldiers are comfortable in any vests with sizes from ai - x to ai + y, inclusive (numbers x, y ≥ 0 are specified).
The Two-dimensional kingdom has m vests at its disposal, the j-th vest's size equals bj. Help mobilize the Two-dimensional kingdom's army: equip with vests as many soldiers as possible. Each vest can be used only once. The i-th soldier can put on the j-th vest, if ai - x ≤ bj ≤ ai + y.
Input
The first input line contains four integers n, m, x and y (1 ≤ n, m ≤ 105, 0 ≤ x, y ≤ 109) — the number of soldiers, the number of vests and two numbers that specify the soldiers' unpretentiousness, correspondingly.
The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 109) in non-decreasing order, separated by single spaces — the desired sizes of vests.
The third line contains m integers b1, b2, ..., bm (1 ≤ bj ≤ 109) in non-decreasing order, separated by single spaces — the sizes of the available vests.
Output
In the first line print a single integer k — the maximum number of soldiers equipped with bulletproof vests.
In the next k lines print k pairs, one pair per line, as "ui vi" (without the quotes). Pair (ui, vi) means that soldier number ui must wear vest number vi. Soldiers and vests are numbered starting from one in the order in which they are specified in the input. All numbers of soldiers in the pairs should be pairwise different, all numbers of vests in the pairs also should be pairwise different. You can print the pairs in any order.
If there are multiple optimal answers, you are allowed to print any of them.
Examples
Input
5 3 0 0
1 2 3 3 4
1 3 5
Output
2
1 1
3 2
Input
3 3 2 2
1 5 9
3 5 7
Output
3
1 1
2 2
3 3
Note
In the first sample you need the vests' sizes to match perfectly: the first soldier gets the first vest (size 1), the third soldier gets the second vest (size 3). This sample allows another answer, which gives the second vest to the fourth soldier instead of the third one.
In the second sample the vest size can differ from the desired size by at most 2 sizes, so all soldiers can be equipped.
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
(n, m, x, y) = map(int, input().split())
a_n = [i for i in map(int, input().split())]
b_m = [i for i in map(int, input().split())]
count = 0
result = []
i = 0
j = 0
while j < m and i < n:
if b_m[j] > a_n[i] + y:
i += 1
elif b_m[j] < a_n[i] - x:
j += 1
else:
count += 1
result.append((i + 1, j + 1))
i += 1
j += 1
print(count)
for i in result:
print(i[0], i[1])
``` | vfc_140199 | {
"difficulty": "easy",
"memory_limit": "256.0 megabytes",
"memory_limit_bytes": null,
"problem_url": "https://codeforces.com/problemset/problem/161/A",
"time_limit": "3.0 seconds"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "33 23 17 2\n1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5\n10 10 10 10 10 10 10 11 11 11 11 11 11 11 12 12 12 12 12 12 13 13 13\n",
"output": "0\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "10 1 1 1\n1 1 1 5 5 7 7 8 8 8\n3\n",
"output": "0\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "1 1 0 2\n9\n7\n",
"output": "0\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "2 2 0 2\n2 8\n3 5\n",
"output": "1\n1 1\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "10 1 2 1\n1 2 5 8 9 9 9 10 10 10\n7\n",
"output": "1\n4 1\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "2 2 3 0\n8 9\n1 5\n",
"output": "1\n1 2\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | Solve the following coding problem using the programming language python:
Monk's birthday is coming this weekend! He wants to plan a Birthday party and is preparing an invite list with his friend Puchi. He asks Puchi to tell him names to add to the list.
Puchi is a random guy and keeps coming up with names of people randomly to add to the invite list, even if the name is already on the list! Monk hates redundancy and hence, enlists the names only once.
Find the final invite-list, that contain names without any repetition.
Input:
First line contains an integer T. T test cases follow.
First line of each test contains an integer N, the number of names that Puchi pops up with.
Output:
For each testcase,Output the final invite-list with each name in a new line. The names in the final invite-list are sorted lexicographically.
Constraints:
1 ≤ T ≤ 10
1 ≤ N ≤ 10^5
1 ≤ Length of each name ≤ 10^5
SAMPLE INPUT
1
7
chandu
paro
rahul
mohi
paro
arindam
rahul
SAMPLE OUTPUT
arindam
chandu
mohi
paro
rahul
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
for _ in range(eval(input())):
n=eval(input())
a=[]
while n:
n-=1
s=input()
a.append(s)
s=set(a)
a=sorted(s)
#print a
for i in a:
print(i)
``` | vfc_140204 | {
"difficulty": "easy",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": null,
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "5\n10\nabc\ndef\nghi\njkl\nmno\npqr\nstu\nvwx\nabc\nghi\n10\nbb\nab\nba\nab\nba\nba\nab\nba\nba\nba\n10\naa\nba\nba\nba\nbb\nab\nab\naa\nbb\nbb\n10\nab\nab\nbb\nbb\nab\nba\naa\nba\nab\naa\n10\nba\nbb\nbb\nbb\naa\nba\nba\nba\nbb\nbb\n",
"output": "aa\nad\naf\nbb\nbe\ncd\neb\nfe\nac\nae\ncb\ncc\ndd\nee\nfa\nae\nbd\nbe\nca\ncb\ncc\ncf\nee\nfd\nfe\nac\naf\nbc\nca\ncc\ndb\ndc\nfa\nfc\nad\nbc\nbe\ncb\ncf\ndd\ndf\neb\nfc\nfe\n",
"type": "stdin_stdout"
}
]
} |
|
taco | verifiable_code | https://www.codechef.com/problems/NSA | Solve the following coding problem using the programming language python:
Read problems statements in Mandarin chinese, Russian and Vietnamese as well.
You are given a string $S$ of lowercase English letters with length $N$. You are allowed to (but don't have to) choose one index in this string and change the letter at this index to any other lowercase English letter. The cost of this operation is the absolute value of the difference of ASCII values of the new letter and the original letter; let's denote it by $X$.
Next, consider the number of pairs of indices $(i, j)$ in the resulting string (the string after changing one letter, or the original string if no letter was changed) such that $1 ≤ i < j ≤ N$ and $S_{i} < S_{j}$. Let's denote it by $Y$.
Find the minimum possible value of $X+Y$.
------ Input ------
The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows.
The first and only line of each test case contains a single string $S$.
------ Output ------
For each test case, print a single line containing one integer — the minimum value of $X+Y$.
------ Constraints ------
$1 ≤ T ≤ 20$
$1 ≤ N ≤ 10^{5}$
$S$ contains only lowercase English letters
------ Subtasks ------
Subtask #1 (10 points): $1 ≤ N ≤ 50$
Subtask #2 (20 points): $1 ≤ N ≤ 250$
Subtask #3 (70 points): original constraints
----- Sample Input 1 ------
3
abcd
dbca
dcba
----- Sample Output 1 ------
6
1
0
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
letters = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z']
indices = {letter: letters.index(letter) for letter in letters}
for _ in range(int(input())):
count = [0 for i in range(26)]
ans = 0
arr = list(input())
for let in arr[::-1]:
if let == 'z':
count[-1] += 1
continue
else:
count[indices[let]] += 1
ans += sum(count[indices[let] + 1:])
fin = ans
tobeinc = []
for let in letters[:-1]:
if count[indices[let]] != 0:
tobeinc += [arr.index(let)]
for index in tobeinc:
current = ans
countl = [0 for i in range(26)]
countr = [0 for i in range(26)]
for i in range(index):
countl[indices[arr[i]]] += 1
for i in range(index + 1, len(arr)):
countr[indices[arr[i]]] += 1
current = current - sum(countl[:indices[arr[index]]]) - sum(countr[indices[arr[index]] + 1:])
for i in range(indices[arr[index]] + 1, 26):
new = current + sum(countl[:i]) + sum(countr[i + 1:]) + abs(indices[arr[index]] - i)
fin = min(fin, new)
tobedic = []
for let in letters[1:]:
if count[indices[let]] != 0:
tobedic += [len(arr) - 1 - arr[::-1].index(let)]
for index in tobedic:
current = ans
countl = [0 for i in range(26)]
countr = [0 for i in range(26)]
for i in range(index):
countl[indices[arr[i]]] += 1
for i in range(index + 1, len(arr)):
countr[indices[arr[i]]] += 1
current = current - sum(countl[:indices[arr[index]]]) - sum(countr[indices[arr[index]] + 1:])
for i in range(0, indices[arr[index]]):
new = current + sum(countl[:i]) + sum(countr[i + 1:]) + abs(indices[arr[index]] - i)
fin = min(fin, new)
print(fin)
``` | vfc_140208 | {
"difficulty": "medium_hard",
"memory_limit": "50000 bytes",
"memory_limit_bytes": null,
"problem_url": "https://www.codechef.com/problems/NSA",
"time_limit": "1.5 seconds"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "3\nabcd\ndbca\ndcba",
"output": "6\n1\n0",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | Solve the following coding problem using the programming language python:
For a number X, let its "Coolness" be defined as the number of "101"s occurring in its binary representation. For example, the number 21 has Coolness 2, since its binary representation is 101012, and the string "101" occurs twice in this representation.
A number is defined as Very Cool if its Coolness is greater than or equal to K. Please, output the number of Very Cool integers between 1 and R.
Input:
The first line contains an integer T, the number of test cases.
The next T lines contains two space-separated integers, R and K.
Output:
Output T lines, the answer for each test case.
Constraints:
1 ≤ T ≤ 100
1 ≤ R ≤ 10^5
1 ≤ K ≤ 100
SAMPLE INPUT
1
5 1
SAMPLE OUTPUT
1
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
'''
# Read input from stdin and provide input before running code
name = raw_input('What is your name?\n')
print 'Hi, %s.' % name
'''
tc = int(input())
c = {}
rk = {}
while tc:
tc-=1
r, k = list(map(int, input().strip().split(" ")))
ans = 0
if rk.get((r,k), None):
print(rk[(r, k)])
elif r == 100000 and k == 100:
print("0")
else:
for i in range(1, r+1):
a = bin(i)
a = a[2:]
#print a
cnt = 0
if c.get((i, k), 0):
ans+=1
else:
while a.find("101") != -1:
cnt+=1
if cnt>=k:
c[(i, k)]=1
ans+=1
break
a = a[a.find("101")+2:]
rk[(r, k)] = ans
print(ans)
``` | vfc_140216 | {
"difficulty": "easy",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": null,
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "100\n30547 1\n29957 7\n31132 18\n22387 8\n20812 3\n10812 4\n6599 12\n28161 4\n13242 3\n15610 17\n24657 20\n24530 2\n7339 5\n9400 13\n20875 5\n11443 14\n11088 8\n9013 1\n11815 16\n5108 19\n23167 19\n21237 2\n30141 17\n10985 16\n19249 3\n17853 17\n31049 8\n877 8\n7941 19\n13081 8\n32171 9\n25178 7\n25276 20\n14038 14\n28198 8\n1554 6\n2235 17\n8072 19\n7906 10\n31994 19\n29581 9\n19717 17\n8043 2\n3065 14\n4190 20\n7912 4\n7471 1\n9469 2\n385 9\n29455 11\n22019 11\n28022 14\n22762 3\n13342 13\n6815 15\n21722 4\n25268 20\n30714 9\n24861 19\n15135 2\n32669 12\n11854 14\n26494 2\n10052 8\n3973 8\n24329 8\n26149 20\n3528 7\n27635 4\n30942 17\n21082 1\n10033 17\n29328 20\n12227 1\n12488 2\n22151 18\n8106 8\n27507 14\n30720 11\n8150 4\n14514 12\n17900 9\n756 11\n11951 9\n1726 9\n6641 15\n4988 11\n27816 20\n8456 2\n8585 12\n25813 15\n10200 15\n18285 12\n9342 8\n19997 16\n18780 12\n19694 1\n14047 9\n29912 20\n7124 19\n",
"output": "8\n0\n0\n0\n0\n0\n0\n0\n12334\n0\n1\n0\n784\n0\n1548\n0\n0\n0\n0\n339\n0\n6547\n2260\n20338\n0\n20820\n749\n0\n0\n0\n0\n0\n0\n0\n0\n3483\n0\n0\n0\n8\n0\n7\n0\n1\n0\n0\n10412\n0\n0\n0\n704\n0\n0\n14204\n0\n429\n0\n0\n0\n0\n0\n0\n0\n25097\n16030\n0\n0\n829\n0\n0\n0\n0\n0\n0\n0\n1\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n7453\n0\n0\n0\n0\n0\n0\n128\n0\n2770\n19\n0\n0\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "100\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n100000 1\n",
"output": "8177\n0\n0\n0\n5387\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "5\n12124 8\n14185 14\n18812 5\n20857 7\n27546 7\n",
"output": "0\n0\n136\n0\n1\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n100000 100\n",
"output": "20934\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n8\n0\n0\n0\n2521\n0\n11583\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n215\n0\n0\n0\n0\n9643\n6505\n0\n0\n2818\n0\n0\n0\n8261\n0\n0\n0\n9082\n14961\n0\n0\n1885\n15587\n0\n0\n0\n1\n0\n6292\n0\n2133\n46\n0\n341\n627\n0\n1029\n0\n0\n0\n0\n0\n0\n0\n0\n0\n21642\n0\n0\n0\n8\n0\n0\n0\n2921\n1712\n0\n105\n11600\n0\n0\n0\n0\n8\n0\n2766\n0\n12980\n0\n3196\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "5\n18468 2\n26501 15\n15725 10\n29359 19\n24465 3\n",
"output": "0\n14613\n0\n0\n0\n0\n0\n0\n12426\n0\n0\n0\n0\n0\n0\n29\n0\n0\n14824\n0\n0\n0\n265\n0\n0\n3656\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n6710\n9881\n0\n0\n20177\n0\n0\n0\n0\n0\n0\n5558\n0\n5482\n0\n0\n0\n0\n0\n0\n0\n0\n1819\n0\n0\n0\n0\n0\n0\n18816\n1810\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n435\n272\n0\n1\n1465\n1\n0\n0\n0\n9\n851\n10526\n0\n0\n1671\n143\n150\n6899\n0\n1891\n0\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "100\n12710 6\n789 15\n6353 19\n24178 18\n31146 13\n9799 18\n19249 18\n22601 12\n15446 1\n31598 18\n29044 7\n27034 9\n15131 4\n23675 17\n10770 3\n16817 8\n9372 14\n6707 13\n24827 10\n26862 5\n26931 13\n29871 3\n3088 1\n24898 1\n24426 12\n25564 1\n14248 4\n5814 16\n14467 17\n12283 20\n25357 8\n8164 10\n17649 11\n23073 12\n11516 18\n20092 3\n2268 20\n21689 19\n20520 15\n4032 5\n8353 16\n3070 5\n28600 10\n7432 6\n30032 8\n16001 7\n13252 1\n31807 15\n16684 8\n9641 15\n13788 4\n20579 14\n25646 18\n28206 2\n15746 8\n31241 5\n2178 20\n156 6\n19627 14\n2007 13\n5897 10\n6615 13\n31809 10\n30473 1\n31701 2\n13201 20\n10404 8\n17389 4\n15024 18\n15573 8\n28196 14\n19046 14\n21398 17\n8832 17\n30089 15\n30317 7\n30518 19\n10179 17\n4236 10\n17547 18\n2933 12\n3746 14\n9819 9\n4704 16\n32747 13\n4216 9\n28696 11\n16159 2\n29283 11\n9841 8\n1370 14\n7184 7\n9055 10\n8718 17\n14507 5\n11533 16\n14995 3\n5540 5\n17417 8\n14597 18\n",
"output": "0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"type": "stdin_stdout"
}
]
} |
|
taco | verifiable_code | https://codeforces.com/problemset/problem/1154/E | Solve the following coding problem using the programming language python:
There are $n$ students standing in a row. Two coaches are forming two teams — the first coach chooses the first team and the second coach chooses the second team.
The $i$-th student has integer programming skill $a_i$. All programming skills are distinct and between $1$ and $n$, inclusive.
Firstly, the first coach will choose the student with maximum programming skill among all students not taken into any team, and $k$ closest students to the left of him and $k$ closest students to the right of him (if there are less than $k$ students to the left or to the right, all of them will be chosen). All students that are chosen leave the row and join the first team. Secondly, the second coach will make the same move (but all students chosen by him join the second team). Then again the first coach will make such move, and so on. This repeats until the row becomes empty (i. e. the process ends when each student becomes to some team).
Your problem is to determine which students will be taken into the first team and which students will be taken into the second team.
-----Input-----
The first line of the input contains two integers $n$ and $k$ ($1 \le k \le n \le 2 \cdot 10^5$) — the number of students and the value determining the range of chosen students during each move, respectively.
The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le n$), where $a_i$ is the programming skill of the $i$-th student. It is guaranteed that all programming skills are distinct.
-----Output-----
Print a string of $n$ characters; $i$-th character should be 1 if $i$-th student joins the first team, or 2 otherwise.
-----Examples-----
Input
5 2
2 4 5 3 1
Output
11111
Input
5 1
2 1 3 5 4
Output
22111
Input
7 1
7 2 1 3 5 4 6
Output
1121122
Input
5 1
2 4 5 3 1
Output
21112
-----Note-----
In the first example the first coach chooses the student on a position $3$, and the row becomes empty (all students join the first team).
In the second example the first coach chooses the student on position $4$, and the row becomes $[2, 1]$ (students with programming skills $[3, 4, 5]$ join the first team). Then the second coach chooses the student on position $1$, and the row becomes empty (and students with programming skills $[1, 2]$ join the second team).
In the third example the first coach chooses the student on position $1$, and the row becomes $[1, 3, 5, 4, 6]$ (students with programming skills $[2, 7]$ join the first team). Then the second coach chooses the student on position $5$, and the row becomes $[1, 3, 5]$ (students with programming skills $[4, 6]$ join the second team). Then the first coach chooses the student on position $3$, and the row becomes $[1]$ (students with programming skills $[3, 5]$ join the first team). And then the second coach chooses the remaining student (and the student with programming skill $1$ joins the second team).
In the fourth example the first coach chooses the student on position $3$, and the row becomes $[2, 1]$ (students with programming skills $[3, 4, 5]$ join the first team). Then the second coach chooses the student on position $1$, and the row becomes empty (and students with programming skills $[1, 2]$ join the second team).
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
(n, k) = map(int, input().split())
list1 = list(map(int, input().split()))
dict1 = {i: a for (a, i) in enumerate(list1)}
right = {i: i + 1 for i in range(n)}
left = {i: i - 1 for i in range(n)}
ans = [0] * n
t = 1
for i in range(n, 0, -1):
idx = dict1.get(i)
if ans[idx] == 0:
ans[idx] = t
(r, l) = (right[idx], left[idx])
for p in range(k):
if l == -1:
break
ans[l] = t
l = left[l]
for p in range(k):
if r >= n:
break
ans[r] = t
r = right[r]
if l >= 0:
right[l] = r
if r < n:
left[r] = l
t = 3 - t
print(''.join(list(map(str, ans))))
``` | vfc_140224 | {
"difficulty": "medium_hard",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": "https://codeforces.com/problemset/problem/1154/E",
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "5 2\n2 4 5 3 1\n",
"output": "11111\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "5 1\n2 1 3 5 4\n",
"output": "22111\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "7 1\n7 2 1 3 5 4 6\n",
"output": "1121122\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "5 1\n2 4 5 3 1\n",
"output": "21112\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "100 1\n78 52 95 76 96 49 53 59 77 100 64 11 9 48 15 17 44 46 21 54 39 68 43 4 32 28 73 6 16 62 72 84 65 86 98 75 33 45 25 3 91 82 2 92 63 88 7 50 97 93 14 22 20 42 60 55 80 85 29 34 56 71 83 38 26 47 90 70 51 41 40 31 37 12 35 99 67 94 1 87 57 8 61 19 23 79 36 18 66 74 5 27 81 69 24 58 13 10 89 30\n",
"output": "1221112111122222112222221111111111111221112222222221111122211222122211111122211112222222222111222111\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "100 2\n62 70 29 14 12 87 94 78 39 92 84 91 61 49 60 33 69 37 19 82 42 8 45 97 81 43 54 67 1 22 77 58 65 17 18 28 25 57 16 90 40 13 4 21 68 35 15 76 73 93 56 95 79 47 74 75 30 71 66 99 41 24 88 83 5 6 31 96 38 80 27 46 51 53 2 86 32 9 20 100 26 36 63 7 52 55 23 3 50 59 48 89 85 44 34 64 10 72 11 98\n",
"output": "2222111112222211111112222211222221211111112221111222221112222211111111221222211111222222122222111111\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://practice.geeksforgeeks.org/problems/minimum-number-of-swaps-needed2136/1 | Solve the following coding problem using the programming language python:
Given an array arr[] of size N of non negative integers. We can perform a swap operation on any two adjacent elements in the array. The task is to find the minimum number of swaps needed to sort the array in non - decreasing order.
Example 1:
Input:
N = 4
arr[] = {4, 1, 2, 3}
Output: 3
Explanation: (4,1,2,3) -> (1,4,2,3) ->
(1,2,4,3) -> (1,2,3,4). Hence we need
a total of 3 swaps to sort it in
non - decreasing order.
ââ¬â¹Example 2:
Input:
N = 4
arr[] = {4, 4, 2, 3}
Output: 4
Explanation: (4,4,2,3) -> (4,2,4,3) ->
(4,2,3,4) -> (2,4,3,4) -> (2,3,4,4,).
Hence we need a total of 4 swap to
sort it in increasing order.
Your Task:
You don't need to read input or print anything. Your task is to complete the function countSwaps() which takes the array arr[] and N as inputs and returns the minimum number of swaps needed to sort the array in non - decreasing order.
Expected Time Complexity: O(NlogN)
Expected Auxiliary Space: O(N)
Constraints:
1 ≤ N ≤ 10^{4}
1 ≤ arr[i] ≤ 10^{9}
Write your solution by modifying this code:
```python
#User function Template for python3
class Solution:
def countSwaps(self, arr, n):
# code here
```
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
class Solution:
def merge(self, arr, mid, l, r):
n1 = mid - l + 1
n2 = r - mid
left = []
right = []
for i in range(n1):
left.append(arr[l + i])
for i in range(n2):
right.append(arr[mid + 1 + i])
count = 0
i = 0
k = l
j = 0
while i < n1 and j < n2:
if left[i] <= right[j]:
arr[k] = left[i]
i += 1
else:
arr[k] = right[j]
j += 1
count += n1 - i
k += 1
while i < n1:
arr[k] = left[i]
i += 1
k += 1
while j < n2:
arr[k] = right[j]
j += 1
k += 1
return count
def mergeSort(self, arr, l, r):
count = 0
if l < r:
mid = (l + r) // 2
count += self.mergeSort(arr, l, mid)
count += self.mergeSort(arr, mid + 1, r)
count += self.merge(arr, mid, l, r)
return count
def countSwaps(self, arr, n):
return self.mergeSort(arr, 0, n - 1)
``` | vfc_140233 | {
"difficulty": "easy",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": "https://practice.geeksforgeeks.org/problems/minimum-number-of-swaps-needed2136/1",
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "N = 4\narr[] = {4, 1, 2, 3}",
"output": "3",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "N = 4\narr[] = {4, 4, 2, 3}",
"output": "4",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://practice.geeksforgeeks.org/problems/first-and-last-bit2357/1 | Solve the following coding problem using the programming language python:
Given a positive integer n. The problem is to check whether only the first and last bits are set in the binary representation of n. The answer is 1 if the first and last bit is set else 0.
Example 1:
Input: N = 9
Output: 1
Explanation: (9)_{10} = (1001)_{2}, only
the first and last bits are set.
​Example 2:
Input: N = 15
Output: 0
Explanation: (15)_{10} = (1111)_{2}, except
first and last there are other bits also
which are set.
Your Task:
Your task is to complete the function onlyFirstAndLastAreSet() which takes the N as inputs and returns the answer.
Expected Time Complexity: O(log N)
Expected Auxiliary Space: O(1)
Constraints:
1 ≤ N ≤ 10^{9}
Write your solution by modifying this code:
```python
#User function Template for python3
class Solution:
def onlyFirstAndLastAreSet(self, n):
# code here
```
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
class Solution:
def onlyFirstAndLastAreSet(self, n):
b = str(bin(n).replace('0b', ''))
if b[0] == '1' and b[-1] == '1' and (b.count('1') == 2):
return 1
return 0
``` | vfc_140238 | {
"difficulty": "easy",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": "https://practice.geeksforgeeks.org/problems/first-and-last-bit2357/1",
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "N = 9",
"output": "1",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "N = 15",
"output": "0",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://www.codechef.com/LTIME34/problems/ARRAYSUM | Solve the following coding problem using the programming language python:
You are given an array A, consisting of N integers and an array B, consisting of M integers.
The subsequence of A is the array that can be obtained by picking the elements at the arbitrary sorted set of positions from A.
Your task is to count the number of such subsequences C of A that:
- C contains exactly M elements.
- The array (C+B) is non-decreasing. Here by + operation, we mean element-wise sum.
For example, the array (4, 8, 5) plus the array (10, 20, 30) is (14, 28, 35).
Formally, (C+B) is an array of size M such that (C+B)i = Ci + Bi.
In case some subsequence appears more that once, you should counts it as many times as it appears.
Formally, two subarrays of an array a, (ai_1, ai_2, ... ,ai_n) and (aj_1, aj_2, ... ,aj_m) will be considered different if either their lengths are different i.e. n != m or there exists an index k such that such that i_k != j_k.
Since the answer can be very large, we ask you to calculate it, modulo 109+7.
-----Input-----
The first line of input contains a pair of space separated integers N and M, denoting the number of elements in the array A and the number of elements in the array B.
The second line contains N space-separated integers Ai, denoting the array A.
The third line contains M space-separated integers Bj, denoting the array B.
-----Output-----
Output a single line containing the number of subsequences C as asked in the problem, modulo 109+7.
-----Constraints-----
- 1 ≤ Ai, Bi ≤ 109
- 1 ≤ M ≤ N
-----Subtasks-----
- Subtask #1 (33 points): 1 ≤ N ≤ 50, 1 ≤ M ≤ 5
- Subtask #2 (33 points): 1 ≤ N ≤ 500, 1 ≤ M ≤ 50
- Subtask #3 (34 points): 1 ≤ N ≤ 2000, 1 ≤ M ≤ 1000
-----Example-----
Input #1:
5 3
1 5 2 4 7
7 9 6
Output #1:
4
Input #2:
4 2
7 7 7 7
3 4
Output #2:
6
-----Explanation-----
Example case 1. The suitable subsequences are (1, 2, 7), (1, 4, 7), (5, 4, 7), (2, 4, 7).
Example case 2. The suitable subsequence is (7, 7), and it appears 6 times:
- at indices (1, 2)
- at indices (1, 3)
- at indices (1, 4)
- at indices (2, 3)
- at indices (2, 4)
- at indices (3, 4)
So, the answer is 6.
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
mod = 10 ** 9 + 7
(n, m) = list(map(int, input().split()))
a = [int(i) for i in input().split()]
b = [int(i) for i in input().split()]
dp = []
for i in range(n):
dp += [[0] * m]
dp[-1][-1] = 1
for i in range(n - 2, -1, -1):
dp[i][-1] = 1
for j in range(m - 1):
x = a[i] + b[j] - b[j + 1]
temp = 0
for k in range(i + 1, n):
if a[k] >= x:
temp += dp[k][j + 1]
dp[i][j] = temp
ans = 0
for i in range(n):
ans += dp[i][0]
print(ans % mod)
``` | vfc_140240 | {
"difficulty": "hard",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": "https://www.codechef.com/LTIME34/problems/ARRAYSUM",
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "5 3\n1 5 2 4 7\n7 9 6\n\n\n",
"output": "4\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "4 2\n7 7 7 7\n3 4\n\n\n",
"output": "6\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | Solve the following coding problem using the programming language python:
Aniruddha and Andrew are playing a Game on Christmas Eve named "Christmas-Gamecon". In this they are given a list of numbers.
In each turn alternatively one will select any one number from the list and decrease it by 1,2,3 or 4.
The last person who is unable to decrease the number loses the game.
At last all the numbers would become zero.
Aniruddha takes the first chance.
Input
The first line contains the T, the number of test cases. Each testcase consist of two lines. First line consist of single integer N — size of the list.
Next line consists of N non negative space separated integers.
Output
For each testcase you need to output the answer to the following query whether Andrew will win or Aniruddha will win. Output "Andrew" if Andrew wins otherwise output "Aniruddha" (without quotes).
Constraints
1 ≤ T ≤ 10
1 ≤ N ≤ 10^5
0 ≤ A[i] ≤ 10^9,where i ranges from 1 to N
SAMPLE INPUT
2
2
1 1
2
1 2
SAMPLE OUTPUT
Andrew
Aniruddha
Explanation
In 1st testcase Aniruddha will pick 1 from 1st list then Andrew will pick 1 from 2nd list.
Hence Andrew will win the game in 1st testcase.
In 2nd testcase to play optimally ,Aniruddha will pick 1 from 2nd list,then Andrew will pick 1 from any list hence 1 will be left from the remaining list which Aniruddha will pick hence Aniruddha will win the game.
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
for _ in range(eval(input())):
n = eval(input())
a = list(map(int, input().split()))
answer = 0
for x in a:
answer ^= x % 5
print('Andrew' if answer == 0 else 'Aniruddha')
``` | vfc_140244 | {
"difficulty": "medium",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": null,
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "8\n200\n0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 \n21\n10 11 12 13 14 15 16 17 18 19 40 41 42 43 44 45 46 47 48 49 50 \n15\n0 5 10 15 20 25 30 35 40 45 40 41 42 43 44 \n25\n0 5 10 15 20 25 30 35 40 45 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 \n200\n0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 \n21\n10 11 12 13 14 15 16 17 18 19 40 41 42 43 44 45 46 47 48 49 50 \n15\n0 5 10 15 20 25 30 35 40 45 40 41 42 43 44 \n25\n0 5 10 15 20 25 30 35 40 45 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 \n",
"output": "Aniruddha\nAniruddha\nAniruddha\nAniruddha\nAniruddha\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "7\n41\n18467 6334 26500 19169 15724 11478 29358 26962 24464 5705 28145 23281 16827 9961 491 2995 11942 4827 5436 32391 14604 3902 153 292 12382 17421 18716 19718 19895 5447 21726 14771 11538 1869 19912 25667 26299 17035 9894 28703 23811 \n322\n30333 17673 4664 15141 7711 28253 6868 25547 27644 32662 32757 20037 12859 8723 9741 27529 778 12316 3035 22190 1842 288 30106 9040 8942 19264 22648 27446 23805 15890 6729 24370 15350 15006 31101 24393 3548 19629 12623 24084 19954 18756 11840 4966 7376 13931 26308 16944 32439 24626 11323 5537 21538 16118 2082 22929 16541 4833 31115 4639 29658 22704 9930 13977 2306 31673 22386 5021 28745 26924 19072 6270 5829 26777 15573 5097 16512 23986 13290 9161 18636 22355 24767 23655 15574 4031 12052 27350 1150 16941 21724 13966 3430 31107 30191 18007 11337 15457 12287 27753 10383 14945 8909 32209 9758 24221 18588 6422 24946 27506 13030 16413 29168 900 32591 18762 1655 17410 6359 27624 20537 21548 6483 27595 4041 3602 24350 10291 30836 9374 11020 4596 24021 27348 23199 19668 24484 8281 4734 53 1999 26418 27938 6900 3788 18127 467 3728 14893 24648 22483 17807 2421 14310 6617 22813 9514 14309 7616 18935 17451 20600 5249 16519 31556 22798 30303 6224 11008 5844 32609 14989 32702 3195 20485 3093 14343 30523 1587 29314 9503 7448 25200 13458 6618 20580 19796 14798 15281 19589 20798 28009 27157 20472 23622 18538 12292 6038 24179 18190 29657 7958 6191 19815 22888 19156 11511 16202 2634 24272 20055 20328 22646 26362 4886 18875 28433 29869 20142 23844 1416 21881 31998 10322 18651 10021 5699 3557 28476 27892 24389 5075 10712 2600 2510 21003 26869 17861 14688 13401 9789 15255 16423 5002 10585 24182 10285 27088 31426 28617 23757 9832 30932 4169 2154 25721 17189 19976 31329 2368 28692 21425 10555 3434 16549 7441 9512 30145 18060 21718 3753 16139 12423 16279 25996 16687 12529 22549 17437 19866 12949 193 23195 3297 20416 28286 16105 24488 16282 12455 25734 18114 11701 31316 20671 5786 12263 4313 24355 31185 20053 912 10808 1832 20945 4313 27756 28321 19558 23646 27982 481 4144 23196 20222 7129 2161 5535 20450 11173 10466 12044 \n159\n26292 26439 17253 20024 26154 29510 4745 20649 13186 8313 4474 28022 2168 14018 18787 9905 17958 7391 10202 3625 26477 4414 9314 25824 29334 25874 24372 20159 11833 28070 7487 28297 7518 8177 17773 32270 1763 2668 17192 13985 3102 8480 29213 7627 4802 4099 30527 2625 1543 1924 11023 29972 13061 14181 31003 27432 17505 27593 22725 13031 8492 142 17222 31286 13064 7900 19187 8360 22413 30974 14270 29170 235 30833 19711 25760 18896 4667 7285 12550 140 13694 2695 21624 28019 2125 26576 21694 22658 26302 17371 22466 4678 22593 23851 25484 1018 28464 21119 23152 2800 18087 31060 1926 9010 4757 32170 20315 9576 30227 12043 22758 7164 5109 7882 17086 29565 3487 29577 14474 2625 25627 5629 31928 25423 28520 6902 14962 123 24596 3737 13261 10195 32525 1264 8260 6202 8116 5030 20326 29011 30771 6411 25547 21153 21520 29790 14924 30188 21763 4940 20851 18662 13829 30900 17713 18958 17578 8365 \n7\n11477 1200 26058 6439 2303 12760 19357 \n324\n6477 5108 21113 14887 19801 22850 14460 22428 12993 27384 19405 6540 31111 28704 12835 32356 6072 29350 18823 14485 20556 23216 1626 9357 8526 13357 29337 23271 23869 29361 12896 13022 29617 10112 12717 18696 11585 24041 24423 24129 24229 4565 6559 8932 22296 29855 12053 16962 3584 29734 6654 16972 21457 14369 22532 2963 2607 2483 911 11635 10067 22848 4675 12938 2223 22142 23754 6511 22741 20175 21459 17825 3221 17870 1626 31934 15205 31783 23850 17398 22279 22701 12193 12734 1637 26534 5556 1993 10176 25705 6962 10548 15881 300 14413 16641 19855 24855 13142 11462 27611 30877 20424 32678 1752 18443 28296 12673 10040 9313 875 20072 12818 610 1017 14932 28112 30695 13169 23831 20040 26488 28685 19090 19497 2589 25990 15145 19353 19314 18651 26740 22044 11258 335 8759 11192 7605 25264 12181 28503 3829 23775 20608 29292 5997 17549 29556 25561 31627 6467 29541 26129 31240 27813 29174 20601 6077 20215 8683 8213 23992 25824 5601 23392 15759 2670 26428 28027 4084 10075 18786 15498 24970 6287 23847 32604 503 21221 22663 5706 2363 9010 22171 27489 18240 12164 25542 7619 20913 7591 6704 31818 9232 750 25205 4975 1539 303 11422 21098 11247 13584 13648 2971 17864 22913 11075 21545 28712 17546 18678 1769 15262 8519 13985 28289 15944 2865 18540 23245 25508 28318 27870 9601 28323 21132 24472 27152 25087 28570 29763 29901 17103 14423 3527 11600 26969 14015 5565 28 21543 25347 2088 2943 12637 22409 26463 5049 4681 1588 11342 608 32060 21221 1758 29954 20888 14146 690 7949 12843 21430 25620 748 27067 4536 20783 18035 32226 15185 7038 9853 25629 11224 15748 19923 3359 32257 24766 4944 14955 23318 32726 25411 21025 20355 31001 22549 9496 18584 9515 17964 23342 8075 17913 16142 31196 21948 25072 20426 14606 26173 24429 32404 6705 20626 29812 19375 30093 16565 16036 14736 29141 30814 5994 8256 6652 23936 30838 20482 1355 21015 1131 \n230\n17841 14625 2011 32637 4186 19690 1650 5662 21634 10893 10353 21416 13452 14008 7262 22233 5454 16303 16634 26303 14256 148 11124 12317 4213 27109 24028 29200 21080 21318 16858 24050 24155 31361 15264 11903 3676 29643 26909 14902 3561 28489 24948 1282 13653 30674 2220 5402 6923 3831 19369 3878 20259 19008 22619 23971 30003 21945 9781 26504 12392 32685 25313 6698 5589 12722 5938 19037 6410 31461 6234 12508 9961 3959 6493 1515 25269 24937 28869 58 14700 13971 26264 15117 16215 24555 7815 18330 3039 30212 29288 28082 1954 16085 20710 24484 24774 8380 29815 25951 6541 18115 1679 17110 25898 23073 788 23977 18132 29956 28689 26113 10008 12941 15790 1723 21363 28 25184 24778 7200 5071 1885 21974 1071 11333 22867 26153 14295 32168 20825 9676 15629 28650 2598 3309 4693 4686 30080 10116 12249 26667 1528 26679 7864 29421 8405 8826 6816 7516 27726 28666 29087 27681 19964 1340 5686 6021 11662 14721 6064 29309 20415 17902 29873 17124 23941 32745 31762 28423 27531 4806 12268 9318 5602 31907 24307 23481 1012 21136 26630 24114 26809 4084 23556 12290 21293 29996 29152 1054 25345 14708 248 7491 13712 5131 30114 16439 7958 24722 29704 6995 1052 25269 7479 18238 26423 27918 10866 17659 32498 28486 21196 7462 26633 12158 12022 1146 18392 13037 3925 10647 29458 6602 30807 4098 27830 29292 14600 7278 \n299\n18352 20448 13882 540 28315 4575 8762 9567 22336 18397 31418 19897 25828 13851 26816 24230 4449 16925 658 229 24520 10940 29560 15147 25162 1655 20675 792 22361 31754 16398 23146 8714 26946 21188 19569 8638 27663 15075 24515 11521 475 15615 20528 13234 12570 905 9464 19557 28962 14161 30524 12549 17469 330 31923 28350 14333 22925 10910 19737 16336 18337 1278 12393 7636 30714 28164 31591 19949 19135 2505 13337 10004 16337 2623 28664 9970 25608 30568 19281 7085 9152 18373 28652 8194 9876 23826 28396 7572 6249 14640 29174 18819 943 32611 1941 20289 8419 5565 3805 7585 16216 31450 1615 2609 11064 9166 16893 16074 13509 30300 19695 9573 15589 13161 31172 17968 27358 26031 26268 19426 28510 10422 30774 8779 30910 23552 4182 25391 15495 5764 874 1364 14902 28255 4460 474 6972 26821 26122 25547 21577 9789 25605 30195 27594 7950 16343 754 2481 1012 11672 23439 13428 5912 9762 5967 24408 4415 1908 17223 11759 26434 5204 29486 4319 958 5945 26806 8166 18700 11367 17692 21787 28532 30556 30974 3447 5021 18283 26222 29331 2376 28583 26948 12723 17982 22018 14776 9220 31111 32182 23856 19490 8925 4324 6486 19677 15969 11643 7534 15677 22668 31068 21991 32196 7783 16828 7727 29426 15871 10697 17612 18703 11027 11408 5545 9508 7185 30238 24237 26443 21313 22501 8850 25128 2111 23650 28149 11192 1454 15869 681 27465 20267 17713 19793 18634 25472 20972 22830 24901 28442 5177 13877 25770 702 14364 1381 16590 8823 2237 8023 32179 16595 20169 2327 12042 31310 28182 11058 7926 9487 1670 32528 5651 2258 7213 9860 25783 21286 2742 8610 4472 7128 18434 5841 20718 3503 14867 24865 10938 1881 9257 22750 28614 18598 28458 2661 26063 32756 20807 20278 19489 19435 6365 32075 7586 ",
"output": "Aniruddha\nAniruddha\nAndrew\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "5\n41\n18467 6334 26500 19169 15724 11478 29358 26962 24464 5705 28145 23281 16827 9961 491 2995 11942 4827 5436 32391 14604 3902 153 292 12382 17421 18716 19718 19895 5447 21726 14771 11538 1869 19912 25667 26299 17035 9894 28703 23811 \n322\n30333 17673 4664 15141 7711 28253 6868 25547 27644 32662 32757 20037 12859 8723 9741 27529 778 12316 3035 22190 1842 288 30106 9040 8942 19264 22648 27446 23805 15890 6729 24370 15350 15006 31101 24393 3548 19629 12623 24084 19954 18756 11840 4966 7376 13931 26308 16944 32439 24626 11323 5537 21538 16118 2082 22929 16541 4833 31115 4639 29658 22704 9930 13977 2306 31673 22386 5021 28745 26924 19072 6270 5829 26777 15573 5097 16512 23986 13290 9161 18636 22355 24767 23655 15574 4031 12052 27350 1150 16941 21724 13966 3430 31107 30191 18007 11337 15457 12287 27753 10383 14945 8909 32209 9758 24221 18588 6422 24946 27506 13030 16413 29168 900 32591 18762 1655 17410 6359 27624 20537 21548 6483 27595 4041 3602 24350 10291 30836 9374 11020 4596 24021 27348 23199 19668 24484 8281 4734 53 1999 26418 27938 6900 3788 18127 467 3728 14893 24648 22483 17807 2421 14310 6617 22813 9514 14309 7616 18935 17451 20600 5249 16519 31556 22798 30303 6224 11008 5844 32609 14989 32702 3195 20485 3093 14343 30523 1587 29314 9503 7448 25200 13458 6618 20580 19796 14798 15281 19589 20798 28009 27157 20472 23622 18538 12292 6038 24179 18190 29657 7958 6191 19815 22888 19156 11511 16202 2634 24272 20055 20328 22646 26362 4886 18875 28433 29869 20142 23844 1416 21881 31998 10322 18651 10021 5699 3557 28476 27892 24389 5075 10712 2600 2510 21003 26869 17861 14688 13401 9789 15255 16423 5002 10585 24182 10285 27088 31426 28617 23757 9832 30932 4169 2154 25721 17189 19976 31329 2368 28692 21425 10555 3434 16549 7441 9512 30145 18060 21718 3753 16139 12423 16279 25996 16687 12529 22549 17437 19866 12949 193 23195 3297 20416 28286 16105 24488 16282 12455 25734 18114 11701 31316 20671 5786 12263 4313 24355 31185 20053 912 10808 1832 20945 4313 27756 28321 19558 23646 27982 481 4144 23196 20222 7129 2161 5535 20450 11173 10466 12044 \n659\n26292 26439 17253 20024 26154 29510 4745 20649 13186 8313 4474 28022 2168 14018 18787 9905 17958 7391 10202 3625 26477 4414 9314 25824 29334 25874 24372 20159 11833 28070 7487 28297 7518 8177 17773 32270 1763 2668 17192 13985 3102 8480 29213 7627 4802 4099 30527 2625 1543 1924 11023 29972 13061 14181 31003 27432 17505 27593 22725 13031 8492 142 17222 31286 13064 7900 19187 8360 22413 30974 14270 29170 235 30833 19711 25760 18896 4667 7285 12550 140 13694 2695 21624 28019 2125 26576 21694 22658 26302 17371 22466 4678 22593 23851 25484 1018 28464 21119 23152 2800 18087 31060 1926 9010 4757 32170 20315 9576 30227 12043 22758 7164 5109 7882 17086 29565 3487 29577 14474 2625 25627 5629 31928 25423 28520 6902 14962 123 24596 3737 13261 10195 32525 1264 8260 6202 8116 5030 20326 29011 30771 6411 25547 21153 21520 29790 14924 30188 21763 4940 20851 18662 13829 30900 17713 18958 17578 8365 13007 11477 1200 26058 6439 2303 12760 19357 2324 6477 5108 21113 14887 19801 22850 14460 22428 12993 27384 19405 6540 31111 28704 12835 32356 6072 29350 18823 14485 20556 23216 1626 9357 8526 13357 29337 23271 23869 29361 12896 13022 29617 10112 12717 18696 11585 24041 24423 24129 24229 4565 6559 8932 22296 29855 12053 16962 3584 29734 6654 16972 21457 14369 22532 2963 2607 2483 911 11635 10067 22848 4675 12938 2223 22142 23754 6511 22741 20175 21459 17825 3221 17870 1626 31934 15205 31783 23850 17398 22279 22701 12193 12734 1637 26534 5556 1993 10176 25705 6962 10548 15881 300 14413 16641 19855 24855 13142 11462 27611 30877 20424 32678 1752 18443 28296 12673 10040 9313 875 20072 12818 610 1017 14932 28112 30695 13169 23831 20040 26488 28685 19090 19497 2589 25990 15145 19353 19314 18651 26740 22044 11258 335 8759 11192 7605 25264 12181 28503 3829 23775 20608 29292 5997 17549 29556 25561 31627 6467 29541 26129 31240 27813 29174 20601 6077 20215 8683 8213 23992 25824 5601 23392 15759 2670 26428 28027 4084 10075 18786 15498 24970 6287 23847 32604 503 21221 22663 5706 2363 9010 22171 27489 18240 12164 25542 7619 20913 7591 6704 31818 9232 750 25205 4975 1539 303 11422 21098 11247 13584 13648 2971 17864 22913 11075 21545 28712 17546 18678 1769 15262 8519 13985 28289 15944 2865 18540 23245 25508 28318 27870 9601 28323 21132 24472 27152 25087 28570 29763 29901 17103 14423 3527 11600 26969 14015 5565 28 21543 25347 2088 2943 12637 22409 26463 5049 4681 1588 11342 608 32060 21221 1758 29954 20888 14146 690 7949 12843 21430 25620 748 27067 4536 20783 18035 32226 15185 7038 9853 25629 11224 15748 19923 3359 32257 24766 4944 14955 23318 32726 25411 21025 20355 31001 22549 9496 18584 9515 17964 23342 8075 17913 16142 31196 21948 25072 20426 14606 26173 24429 32404 6705 20626 29812 19375 30093 16565 16036 14736 29141 30814 5994 8256 6652 23936 30838 20482 1355 21015 1131 18230 17841 14625 2011 32637 4186 19690 1650 5662 21634 10893 10353 21416 13452 14008 7262 22233 5454 16303 16634 26303 14256 148 11124 12317 4213 27109 24028 29200 21080 21318 16858 24050 24155 31361 15264 11903 3676 29643 26909 14902 3561 28489 24948 1282 13653 30674 2220 5402 6923 3831 19369 3878 20259 19008 22619 23971 30003 21945 9781 26504 12392 32685 25313 6698 5589 12722 5938 19037 6410 31461 6234 12508 9961 3959 6493 1515 25269 24937 28869 58 14700 13971 26264 15117 16215 24555 7815 18330 3039 30212 29288 28082 1954 16085 20710 24484 24774 8380 29815 25951 6541 18115 1679 17110 25898 23073 788 23977 18132 29956 28689 26113 10008 12941 15790 1723 21363 28 25184 24778 7200 5071 1885 21974 1071 11333 22867 26153 14295 32168 20825 9676 15629 28650 2598 3309 4693 4686 30080 10116 12249 26667 1528 26679 7864 29421 8405 8826 6816 7516 27726 28666 29087 27681 19964 1340 5686 6021 11662 14721 6064 29309 20415 17902 29873 17124 \n941\n32745 31762 28423 27531 4806 12268 9318 5602 31907 24307 23481 1012 21136 26630 24114 26809 4084 23556 12290 21293 29996 29152 1054 25345 14708 248 7491 13712 5131 30114 16439 7958 24722 29704 6995 1052 25269 7479 18238 26423 27918 10866 17659 32498 28486 21196 7462 26633 12158 12022 1146 18392 13037 3925 10647 29458 6602 30807 4098 27830 29292 14600 7278 20799 18352 20448 13882 540 28315 4575 8762 9567 22336 18397 31418 19897 25828 13851 26816 24230 4449 16925 658 229 24520 10940 29560 15147 25162 1655 20675 792 22361 31754 16398 23146 8714 26946 21188 19569 8638 27663 15075 24515 11521 475 15615 20528 13234 12570 905 9464 19557 28962 14161 30524 12549 17469 330 31923 28350 14333 22925 10910 19737 16336 18337 1278 12393 7636 30714 28164 31591 19949 19135 2505 13337 10004 16337 2623 28664 9970 25608 30568 19281 7085 9152 18373 28652 8194 9876 23826 28396 7572 6249 14640 29174 18819 943 32611 1941 20289 8419 5565 3805 7585 16216 31450 1615 2609 11064 9166 16893 16074 13509 30300 19695 9573 15589 13161 31172 17968 27358 26031 26268 19426 28510 10422 30774 8779 30910 23552 4182 25391 15495 5764 874 1364 14902 28255 4460 474 6972 26821 26122 25547 21577 9789 25605 30195 27594 7950 16343 754 2481 1012 11672 23439 13428 5912 9762 5967 24408 4415 1908 17223 11759 26434 5204 29486 4319 958 5945 26806 8166 18700 11367 17692 21787 28532 30556 30974 3447 5021 18283 26222 29331 2376 28583 26948 12723 17982 22018 14776 9220 31111 32182 23856 19490 8925 4324 6486 19677 15969 11643 7534 15677 22668 31068 21991 32196 7783 16828 7727 29426 15871 10697 17612 18703 11027 11408 5545 9508 7185 30238 24237 26443 21313 22501 8850 25128 2111 23650 28149 11192 1454 15869 681 27465 20267 17713 19793 18634 25472 20972 22830 24901 28442 5177 13877 25770 702 14364 1381 16590 8823 2237 8023 32179 16595 20169 2327 12042 31310 28182 11058 7926 9487 1670 32528 5651 2258 7213 9860 25783 21286 2742 8610 4472 7128 18434 5841 20718 3503 14867 24865 10938 1881 9257 22750 28614 18598 28458 2661 26063 32756 20807 20278 19489 19435 6365 32075 7586 1386 7833 8360 13330 26048 8928 29492 12433 23840 6766 1735 19810 11599 11837 21892 31982 7328 29352 11369 31244 21794 6608 9252 11647 17432 9535 7208 3264 3497 23243 27649 22015 26841 189 16100 19812 30648 9523 19851 24474 28633 29891 27200 19854 9990 25697 4919 17780 22578 12931 32544 3340 13487 899 22525 8483 5538 7492 6193 28252 25011 1560 15834 1840 31497 2785 18529 31540 18805 28791 13392 13210 13549 21578 26979 30971 9277 73 20193 1620 21497 13826 31276 19790 6582 13578 11159 20418 26489 159 3449 12924 9072 10380 27008 27967 10208 6477 18503 15370 32607 14196 12074 13722 12611 19019 28761 11056 12890 31163 16683 13716 19932 25452 2741 4954 6813 2862 10396 15460 20615 10904 2599 20136 4680 9198 27032 14387 32584 7240 3517 17006 8670 241 18882 25249 3523 31758 12105 29621 17095 7296 9916 15678 10178 13579 25058 27577 12750 14007 23729 24081 2995 2678 24676 27753 20899 11784 15565 3093 13608 6172 11243 29929 7514 10168 5055 11191 5973 8922 6748 5651 10986 2144 16446 31577 26517 14629 29916 5874 15791 15469 22912 8146 30693 9091 9815 26949 26857 20640 26052 236 8551 9487 31226 28162 16955 23183 8394 30180 16097 3065 27065 2513 9261 12578 21078 16878 14140 4611 31947 2445 170 29975 13489 24750 6149 3333 13865 22214 17282 27007 27432 8896 16367 28522 4882 31810 17641 7231 2187 6705 6479 6321 6538 31351 19447 24208 9646 22276 25759 30189 30422 27666 8486 3455 2028 29614 4860 29253 11777 31348 12503 10861 22431 29082 12455 14197 22106 8752 15821 17296 26281 26021 24455 15947 27124 18318 9135 11376 1774 29859 24998 12074 9253 6922 10635 1643 28888 8153 13232 4747 28680 19926 25678 6450 14801 24961 14199 20855 26363 5716 10573 31561 23245 6473 28274 1550 24353 1181 4287 2699 18110 18643 17465 7172 2529 9981 2112 13476 4381 8247 26890 16671 8805 32372 30032 3989 9320 23165 15431 9658 11293 17206 26578 16948 2206 27171 18166 3396 16697 31020 23694 15529 14788 30109 17984 11969 28978 21617 4015 16626 3684 9168 17906 25928 12097 28118 24390 15199 11785 14486 19199 12420 20710 18271 15813 27415 6085 318 3580 1331 7267 8387 13444 23186 14507 4360 17827 28074 26431 7152 30271 10268 4693 19885 337 31311 17604 12677 406 7768 29022 19413 5000 542 17537 30038 21388 7355 13289 31647 3181 13093 16584 10987 10761 20493 8217 9501 17482 29447 15665 10753 22104 15084 19095 13525 30221 3964 21781 4872 8106 3656 3343 22593 27080 16080 14868 21411 13713 20968 3251 27216 12079 28768 17040 31531 12933 23779 20663 12259 26653 27936 2095 24365 11874 7720 26835 25680 8976 18455 5725 4071 24808 13559 9156 5602 17832 7905 10440 7375 21562 22885 21962 21080 1836 10797 31202 10508 10080 5340 12076 9058 31493 7740 8546 20474 24773 19097 8880 23335 11072 23400 707 22955 20666 4141 23588 12481 17168 28315 19396 16225 1009 22012 18136 11455 18762 25043 742 21 17922 24512 9248 26018 27368 23717 9714 17650 13290 3335 12759 3169 21895 5303 22640 21979 24199 29105 24791 18661 8681 3652 8753 24033 32029 15987 7042 26253 20083 11420 15814 32718 12244 31063 7229 20652 18864 4769 30470 15005 21047 1594 21487 24326 3276 21323 6540 7679 23990 32588 24710 29271 17945 29221 28470 20183 23589 23955 4978 24779 5006 13262 20135 23487 27196 29033 2088 12935 19779 15993 14790 24962 18965 11001 19105 11807 24567 2669 3134 32671 1457 12998 3545 13597 14218 8838 \n844\n7372 8563 21028 29264 28801 14723 13490 7604 31601 24227 11197 23692 19771 20363 29301 22363 7721 3565 17421 23445 18610 495 16741 15022 31812 29151 23015 8055 3393 8738 15279 19882 1608 12654 3822 32707 24245 1338 144 22290 31339 23154 24604 4623 22225 20078 21724 31981 2330 29733 28223 20594 29130 18846 4987 29445 18805 8616 5750 20489 27338 21963 28135 14697 32209 21630 23224 1908 26737 24474 31920 27372 10293 3855 6734 9561 31056 27606 8184 7075 28382 14119 6741 30432 24684 12779 12279 18283 20667 30836 24125 24118 12737 18028 32119 20577 10737 14091 20556 22795 16060 21901 8793 3432 2136 4580 14875 5907 21184 28074 8719 26790 20476 30041 3351 8329 16290 22974 23072 3591 12189 15787 31490 3239 14893 3053 17063 10681 25903 27005 24176 18479 1695 6139 32468 13998 21083 23639 29515 27621 29993 15826 15722 23838 24828 12581 24399 8978 11891 1023 26943 24834 14243 7349 2702 8707 20502 25141 10687 8346 15891 24637 18413 11400 22816 31690 13162 8935 29126 19410 19877 11382 26260 27189 26705 13874 2663 20722 32195 22566 16360 6038 18588 7811 28245 9467 32425 26867 13189 10542 13063 21547 30502 29617 9099 25023 17226 31203 30048 21051 1570 8636 9458 25967 8456 9405 11531 29962 26819 7975 10556 7531 31495 8044 30591 26803 3388 18915 7450 12319 6272 25791 29383 10133 1775 24642 23569 18300 17954 12078 3585 2257 25333 893 10490 10103 4750 17233 10722 24271 19611 18990 30338 21641 23258 19047 2352 9658 479 25302 32683 18990 10002 15568 4422 16895 6135 18008 12361 16742 22194 23699 23188 20178 4042 31357 23941 1847 7469 16345 4380 31913 14964 25710 20061 25385 20073 27504 9462 32703 28102 11069 5154 3529 31552 32074 19149 3730 2244 10844 13049 14118 24065 26363 19552 28773 18470 29731 6747 7511 5869 14398 10498 7103 27352 25679 28053 13043 14522 31088 1563 25834 9850 17022 7240 21911 9492 5651 28580 15477 27616 29876 19178 5220 14615 22348 26798 32179 31635 16857 2883 1662 18902 28262 19420 19770 19022 9273 25841 12686 28888 3917 31717 1892 13698 11267 11749 65 10389 6932 25619 16081 2003 29130 13028 18631 14589 23152 18630 19172 19864 6407 12295 25428 29681 18490 26610 26177 31071 25236 6459 20643 16840 27633 27037 23893 22630 20274 12993 28782 32203 17461 8290 19662 22307 20997 31151 18423 8890 16717 6640 28703 5566 4883 23661 22659 18245 20386 32651 32765 19601 16840 17209 1497 27283 29250 18058 8421 175 30581 26787 3271 4287 27999 12504 24979 2138 10700 530 2461 12118 205 7540 18828 24459 11622 14398 3760 27098 12935 10481 30614 19567 18493 28596 19161 7746 10538 7670 20538 21476 21555 24917 16371 16760 5752 13758 15433 32255 29065 726 2401 3034 12759 10393 30548 27273 18792 16193 12933 30137 17103 3690 28211 13694 24668 32627 7498 989 15248 3879 11647 11149 30931 669 30875 25598 25449 25436 24599 20123 1443 1731 18154 22861 4434 9385 23967 10816 11393 16704 29866 30953 30308 28223 18684 30792 22667 10048 32469 13930 30811 19814 16090 5427 23743 1604 10599 16474 7195 506 5158 17589 9858 27809 17889 11447 40 3818 9364 17975 26 25089 2503 30066 26412 6840 12570 14676 25395 28641 29986 17651 21109 8187 20083 21085 23390 31250 18686 4755 11381 28128 25502 24277 30862 26424 3565 3872 832 30885 14428 6646 20889 6478 10883 24925 21265 31260 5045 20778 5821 13855 2520 12927 24773 25134 27251 22675 13336 16334 21001 2737 9310 5974 7590 20356 1071 32080 10935 32145 17282 1825 18718 13573 4712 13037 4998 9905 7162 1717 8692 19539 28047 10946 19103 30231 24115 839 25858 20829 2645 3394 17199 19645 14272 675 21862 32072 13773 2480 11238 26897 3542 29608 19203 23277 6125 20134 1401 9078 18382 20169 20736 27478 17939 21138 18721 31426 10663 1677 21575 6724 25981 27700 7961 28862 16002 18448 25095 684 24016 15137 9507 13993 21284 2944 30259 821 7058 24643 17668 10677 119 29857 23041 8891 25264 1623 6915 8072 17929 841 4715 17615 12536 14957 27759 700 13452 5093 24241 11829 12448 5227 11798 16224 10324 12274 18133 22885 15038 12170 6862 32629 5084 11909 14878 6923 27085 29400 23024 14193 23105 9412 15765 5767 15407 10677 13784 704 14790 9834 10891 621 18085 27734 25190 20542 17998 22086 32018 15621 30424 22597 21376 24254 29669 18108 12927 12493 26068 6366 9102 2438 12600 10819 14318 2290 14984 16339 2556 25808 4632 21478 26814 13787 7239 28074 25020 10827 2554 1988 7441 16798 13642 19002 16321 30104 13946 7056 18509 29833 17708 19761 6533 20686 14804 26385 10142 18842 17260 22161 31620 4343 9578 1187 113 13063 4591 5934 20415 656 29761 25012 28411 11959 16251 18738 13370 26124 5507 8007 17584 10951 23101 14489 24958 15441 1790 17013 30412 14855 21060 7093 8472 25402 32676 13543 7373 6266 27651 15275 21528 532 10761 5469 32503 32729 17107 27892 2451 17953 28392 22570 13519 19472 23407 22494 9505 28440 20383 14262 21409 28607 18038 4360 5471 11171 20654 29947 11514 14523 21229 489 6766 17887 29756 26632 7470 25739 20666 8522 7283 ",
"output": "Aniruddha\nAniruddha\nAniruddha\nAniruddha\nAniruddha\nAniruddha\nAndrew\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "10\n41\n18467 6334 26500 19169 15724 11478 29358 26962 24464 5705 28145 23281 16827 9961 491 2995 11942 4827 5436 32391 14604 3902 153 292 12382 17421 18716 19718 19895 5447 21726 14771 11538 1869 19912 25667 26299 17035 9894 28703 23811 \n322\n30333 17673 4664 15141 7711 28253 6868 25547 27644 32662 32757 20037 12859 8723 9741 27529 778 12316 3035 22190 1842 288 30106 9040 8942 19264 22648 27446 23805 15890 6729 24370 15350 15006 31101 24393 3548 19629 12623 24084 19954 18756 11840 4966 7376 13931 26308 16944 32439 24626 11323 5537 21538 16118 2082 22929 16541 4833 31115 4639 29658 22704 9930 13977 2306 31673 22386 5021 28745 26924 19072 6270 5829 26777 15573 5097 16512 23986 13290 9161 18636 22355 24767 23655 15574 4031 12052 27350 1150 16941 21724 13966 3430 31107 30191 18007 11337 15457 12287 27753 10383 14945 8909 32209 9758 24221 18588 6422 24946 27506 13030 16413 29168 900 32591 18762 1655 17410 6359 27624 20537 21548 6483 27595 4041 3602 24350 10291 30836 9374 11020 4596 24021 27348 23199 19668 24484 8281 4734 53 1999 26418 27938 6900 3788 18127 467 3728 14893 24648 22483 17807 2421 14310 6617 22813 9514 14309 7616 18935 17451 20600 5249 16519 31556 22798 30303 6224 11008 5844 32609 14989 32702 3195 20485 3093 14343 30523 1587 29314 9503 7448 25200 13458 6618 20580 19796 14798 15281 19589 20798 28009 27157 20472 23622 18538 12292 6038 24179 18190 29657 7958 6191 19815 22888 19156 11511 16202 2634 24272 20055 20328 22646 26362 4886 18875 28433 29869 20142 23844 1416 21881 31998 10322 18651 10021 5699 3557 28476 27892 24389 5075 10712 2600 2510 21003 26869 17861 14688 13401 9789 15255 16423 5002 10585 24182 10285 27088 31426 28617 23757 9832 30932 4169 2154 25721 17189 19976 31329 2368 28692 21425 10555 3434 16549 7441 9512 30145 18060 21718 3753 16139 12423 16279 25996 16687 12529 22549 17437 19866 12949 193 23195 3297 20416 28286 16105 24488 16282 12455 25734 18114 11701 31316 20671 5786 12263 4313 24355 31185 20053 912 10808 1832 20945 4313 27756 28321 19558 23646 27982 481 4144 23196 20222 7129 2161 5535 20450 11173 10466 12044 \n659\n26292 26439 17253 20024 26154 29510 4745 20649 13186 8313 4474 28022 2168 14018 18787 9905 17958 7391 10202 3625 26477 4414 9314 25824 29334 25874 24372 20159 11833 28070 7487 28297 7518 8177 17773 32270 1763 2668 17192 13985 3102 8480 29213 7627 4802 4099 30527 2625 1543 1924 11023 29972 13061 14181 31003 27432 17505 27593 22725 13031 8492 142 17222 31286 13064 7900 19187 8360 22413 30974 14270 29170 235 30833 19711 25760 18896 4667 7285 12550 140 13694 2695 21624 28019 2125 26576 21694 22658 26302 17371 22466 4678 22593 23851 25484 1018 28464 21119 23152 2800 18087 31060 1926 9010 4757 32170 20315 9576 30227 12043 22758 7164 5109 7882 17086 29565 3487 29577 14474 2625 25627 5629 31928 25423 28520 6902 14962 123 24596 3737 13261 10195 32525 1264 8260 6202 8116 5030 20326 29011 30771 6411 25547 21153 21520 29790 14924 30188 21763 4940 20851 18662 13829 30900 17713 18958 17578 8365 13007 11477 1200 26058 6439 2303 12760 19357 2324 6477 5108 21113 14887 19801 22850 14460 22428 12993 27384 19405 6540 31111 28704 12835 32356 6072 29350 18823 14485 20556 23216 1626 9357 8526 13357 29337 23271 23869 29361 12896 13022 29617 10112 12717 18696 11585 24041 24423 24129 24229 4565 6559 8932 22296 29855 12053 16962 3584 29734 6654 16972 21457 14369 22532 2963 2607 2483 911 11635 10067 22848 4675 12938 2223 22142 23754 6511 22741 20175 21459 17825 3221 17870 1626 31934 15205 31783 23850 17398 22279 22701 12193 12734 1637 26534 5556 1993 10176 25705 6962 10548 15881 300 14413 16641 19855 24855 13142 11462 27611 30877 20424 32678 1752 18443 28296 12673 10040 9313 875 20072 12818 610 1017 14932 28112 30695 13169 23831 20040 26488 28685 19090 19497 2589 25990 15145 19353 19314 18651 26740 22044 11258 335 8759 11192 7605 25264 12181 28503 3829 23775 20608 29292 5997 17549 29556 25561 31627 6467 29541 26129 31240 27813 29174 20601 6077 20215 8683 8213 23992 25824 5601 23392 15759 2670 26428 28027 4084 10075 18786 15498 24970 6287 23847 32604 503 21221 22663 5706 2363 9010 22171 27489 18240 12164 25542 7619 20913 7591 6704 31818 9232 750 25205 4975 1539 303 11422 21098 11247 13584 13648 2971 17864 22913 11075 21545 28712 17546 18678 1769 15262 8519 13985 28289 15944 2865 18540 23245 25508 28318 27870 9601 28323 21132 24472 27152 25087 28570 29763 29901 17103 14423 3527 11600 26969 14015 5565 28 21543 25347 2088 2943 12637 22409 26463 5049 4681 1588 11342 608 32060 21221 1758 29954 20888 14146 690 7949 12843 21430 25620 748 27067 4536 20783 18035 32226 15185 7038 9853 25629 11224 15748 19923 3359 32257 24766 4944 14955 23318 32726 25411 21025 20355 31001 22549 9496 18584 9515 17964 23342 8075 17913 16142 31196 21948 25072 20426 14606 26173 24429 32404 6705 20626 29812 19375 30093 16565 16036 14736 29141 30814 5994 8256 6652 23936 30838 20482 1355 21015 1131 18230 17841 14625 2011 32637 4186 19690 1650 5662 21634 10893 10353 21416 13452 14008 7262 22233 5454 16303 16634 26303 14256 148 11124 12317 4213 27109 24028 29200 21080 21318 16858 24050 24155 31361 15264 11903 3676 29643 26909 14902 3561 28489 24948 1282 13653 30674 2220 5402 6923 3831 19369 3878 20259 19008 22619 23971 30003 21945 9781 26504 12392 32685 25313 6698 5589 12722 5938 19037 6410 31461 6234 12508 9961 3959 6493 1515 25269 24937 28869 58 14700 13971 26264 15117 16215 24555 7815 18330 3039 30212 29288 28082 1954 16085 20710 24484 24774 8380 29815 25951 6541 18115 1679 17110 25898 23073 788 23977 18132 29956 28689 26113 10008 12941 15790 1723 21363 28 25184 24778 7200 5071 1885 21974 1071 11333 22867 26153 14295 32168 20825 9676 15629 28650 2598 3309 4693 4686 30080 10116 12249 26667 1528 26679 7864 29421 8405 8826 6816 7516 27726 28666 29087 27681 19964 1340 5686 6021 11662 14721 6064 29309 20415 17902 29873 17124 \n941\n32745 31762 28423 27531 4806 12268 9318 5602 31907 24307 23481 1012 21136 26630 24114 26809 4084 23556 12290 21293 29996 29152 1054 25345 14708 248 7491 13712 5131 30114 16439 7958 24722 29704 6995 1052 25269 7479 18238 26423 27918 10866 17659 32498 28486 21196 7462 26633 12158 12022 1146 18392 13037 3925 10647 29458 6602 30807 4098 27830 29292 14600 7278 20799 18352 20448 13882 540 28315 4575 8762 9567 22336 18397 31418 19897 25828 13851 26816 24230 4449 16925 658 229 24520 10940 29560 15147 25162 1655 20675 792 22361 31754 16398 23146 8714 26946 21188 19569 8638 27663 15075 24515 11521 475 15615 20528 13234 12570 905 9464 19557 28962 14161 30524 12549 17469 330 31923 28350 14333 22925 10910 19737 16336 18337 1278 12393 7636 30714 28164 31591 19949 19135 2505 13337 10004 16337 2623 28664 9970 25608 30568 19281 7085 9152 18373 28652 8194 9876 23826 28396 7572 6249 14640 29174 18819 943 32611 1941 20289 8419 5565 3805 7585 16216 31450 1615 2609 11064 9166 16893 16074 13509 30300 19695 9573 15589 13161 31172 17968 27358 26031 26268 19426 28510 10422 30774 8779 30910 23552 4182 25391 15495 5764 874 1364 14902 28255 4460 474 6972 26821 26122 25547 21577 9789 25605 30195 27594 7950 16343 754 2481 1012 11672 23439 13428 5912 9762 5967 24408 4415 1908 17223 11759 26434 5204 29486 4319 958 5945 26806 8166 18700 11367 17692 21787 28532 30556 30974 3447 5021 18283 26222 29331 2376 28583 26948 12723 17982 22018 14776 9220 31111 32182 23856 19490 8925 4324 6486 19677 15969 11643 7534 15677 22668 31068 21991 32196 7783 16828 7727 29426 15871 10697 17612 18703 11027 11408 5545 9508 7185 30238 24237 26443 21313 22501 8850 25128 2111 23650 28149 11192 1454 15869 681 27465 20267 17713 19793 18634 25472 20972 22830 24901 28442 5177 13877 25770 702 14364 1381 16590 8823 2237 8023 32179 16595 20169 2327 12042 31310 28182 11058 7926 9487 1670 32528 5651 2258 7213 9860 25783 21286 2742 8610 4472 7128 18434 5841 20718 3503 14867 24865 10938 1881 9257 22750 28614 18598 28458 2661 26063 32756 20807 20278 19489 19435 6365 32075 7586 1386 7833 8360 13330 26048 8928 29492 12433 23840 6766 1735 19810 11599 11837 21892 31982 7328 29352 11369 31244 21794 6608 9252 11647 17432 9535 7208 3264 3497 23243 27649 22015 26841 189 16100 19812 30648 9523 19851 24474 28633 29891 27200 19854 9990 25697 4919 17780 22578 12931 32544 3340 13487 899 22525 8483 5538 7492 6193 28252 25011 1560 15834 1840 31497 2785 18529 31540 18805 28791 13392 13210 13549 21578 26979 30971 9277 73 20193 1620 21497 13826 31276 19790 6582 13578 11159 20418 26489 159 3449 12924 9072 10380 27008 27967 10208 6477 18503 15370 32607 14196 12074 13722 12611 19019 28761 11056 12890 31163 16683 13716 19932 25452 2741 4954 6813 2862 10396 15460 20615 10904 2599 20136 4680 9198 27032 14387 32584 7240 3517 17006 8670 241 18882 25249 3523 31758 12105 29621 17095 7296 9916 15678 10178 13579 25058 27577 12750 14007 23729 24081 2995 2678 24676 27753 20899 11784 15565 3093 13608 6172 11243 29929 7514 10168 5055 11191 5973 8922 6748 5651 10986 2144 16446 31577 26517 14629 29916 5874 15791 15469 22912 8146 30693 9091 9815 26949 26857 20640 26052 236 8551 9487 31226 28162 16955 23183 8394 30180 16097 3065 27065 2513 9261 12578 21078 16878 14140 4611 31947 2445 170 29975 13489 24750 6149 3333 13865 22214 17282 27007 27432 8896 16367 28522 4882 31810 17641 7231 2187 6705 6479 6321 6538 31351 19447 24208 9646 22276 25759 30189 30422 27666 8486 3455 2028 29614 4860 29253 11777 31348 12503 10861 22431 29082 12455 14197 22106 8752 15821 17296 26281 26021 24455 15947 27124 18318 9135 11376 1774 29859 24998 12074 9253 6922 10635 1643 28888 8153 13232 4747 28680 19926 25678 6450 14801 24961 14199 20855 26363 5716 10573 31561 23245 6473 28274 1550 24353 1181 4287 2699 18110 18643 17465 7172 2529 9981 2112 13476 4381 8247 26890 16671 8805 32372 30032 3989 9320 23165 15431 9658 11293 17206 26578 16948 2206 27171 18166 3396 16697 31020 23694 15529 14788 30109 17984 11969 28978 21617 4015 16626 3684 9168 17906 25928 12097 28118 24390 15199 11785 14486 19199 12420 20710 18271 15813 27415 6085 318 3580 1331 7267 8387 13444 23186 14507 4360 17827 28074 26431 7152 30271 10268 4693 19885 337 31311 17604 12677 406 7768 29022 19413 5000 542 17537 30038 21388 7355 13289 31647 3181 13093 16584 10987 10761 20493 8217 9501 17482 29447 15665 10753 22104 15084 19095 13525 30221 3964 21781 4872 8106 3656 3343 22593 27080 16080 14868 21411 13713 20968 3251 27216 12079 28768 17040 31531 12933 23779 20663 12259 26653 27936 2095 24365 11874 7720 26835 25680 8976 18455 5725 4071 24808 13559 9156 5602 17832 7905 10440 7375 21562 22885 21962 21080 1836 10797 31202 10508 10080 5340 12076 9058 31493 7740 8546 20474 24773 19097 8880 23335 11072 23400 707 22955 20666 4141 23588 12481 17168 28315 19396 16225 1009 22012 18136 11455 18762 25043 742 21 17922 24512 9248 26018 27368 23717 9714 17650 13290 3335 12759 3169 21895 5303 22640 21979 24199 29105 24791 18661 8681 3652 8753 24033 32029 15987 7042 26253 20083 11420 15814 32718 12244 31063 7229 20652 18864 4769 30470 15005 21047 1594 21487 24326 3276 21323 6540 7679 23990 32588 24710 29271 17945 29221 28470 20183 23589 23955 4978 24779 5006 13262 20135 23487 27196 29033 2088 12935 19779 15993 14790 24962 18965 11001 19105 11807 24567 2669 3134 32671 1457 12998 3545 13597 14218 8838 \n16\n1 2 3 4 5 6 7 8 9 10 11 12 21 13 22 23\n160\n17553 24705 27091 1259 25386 31687 4629 42 28317 22045 12356 13388 25452 3154 30466 11833 27760 26919 25631 6738 21267 25776 21098 24314 16320 13053 24007 16469 24216 9722 19842 29007 15463 26260 30947 13793 28630 18717 23043 31376 25314 16626 17117 1334 20620 14171 26792 8964 19154 18866 14693 30664 23775 13000 12212 21100 7551 25476 6379 10943 17877 3789 361 11385 8272 11434 15144 29561 25563 14504 12946 23888 20308 12157 1430 5123 6464 4074 4346 13837 1981 25318 26611 16292 17591 3832 27123 6461 16991 31461 27330 28498 17369 17291 8400 14179 24117 2317 19914 1595 1441 5936 21867 7028 31453 27909 13973 17981 11503 26569 6816 1883 25367 5385 28402 5230 17157 28681 15567 8310 1866 3687 13171 3477 31245 32764 6238 27671 2047 26115 4592 27311 32657 1405 53 7171 20580 22740 22530 13675 24320 25790 13377 10998 16586 21604 4489 19631 29744 8388 26610 18718 26919 18259 5927 14609 28119 21479 22716 6300 \n396\n16853 11458 20830 24593 30806 29849 14854 24272 26160 12294 12054 26333 146 4229 10471 10428 10559 22241 29421 22688 16366 12033 26685 2270 25329 32261 22860 2208 8982 22162 32506 6878 11979 1897 7887 6538 14469 30783 17540 22795 7266 18633 13509 24557 2317 26134 32053 18135 12258 2593 17843 21693 16466 22951 18140 11094 12937 5174 2512 6097 9551 2695 21817 23492 21292 20237 27530 613 25296 21710 32389 5628 5809 28786 31744 18840 8182 28569 6120 27393 6292 14962 14214 12527 26807 13194 8705 14713 7011 18913 6693 19664 26203 28995 17762 14381 26946 29909 1048 21768 26624 22511 7954 4235 1127 14633 28240 1862 15127 27577 23817 2340 10142 15100 28400 6558 21476 3154 10935 16430 5831 21295 3537 15623 17922 2927 28029 30211 16211 11754 26880 12253 3293 21321 20785 26528 10443 31000 10555 24671 9270 7452 9375 14631 13640 8934 18040 7986 28834 14248 1539 28765 12796 10312 7262 25052 30731 23987 24464 32557 14248 29556 20170 5450 27182 7301 13293 24099 23332 19044 32331 75 31004 19050 15026 14066 11738 19801 19623 13843 441 3380 19695 7918 3659 1363 12628 6329 1088 28854 8613 24979 18569 666 7679 27577 27837 3402 23115 23292 1723 2872 29448 30323 11153 15948 24395 25197 4508 22908 17411 13993 7665 26781 3202 17610 24828 27256 27705 8965 18023 20769 11715 20253 31805 23684 29478 32145 21840 833 19285 26900 10968 23994 16633 13885 348 18281 18032 16256 29910 10872 8982 23901 12306 10635 17860 32471 29527 7137 8343 9768 28233 3995 29171 7603 28942 18011 7879 31034 14512 24593 530 14161 23234 10258 21926 5906 5191 14443 6188 30227 32719 26484 5224 19093 30435 13224 28094 3582 8867 8627 22005 11146 32686 16589 20540 18237 22850 18759 9578 28956 32677 2403 28042 6300 15811 5225 21143 21595 21016 26615 28804 21006 28368 31641 30335 698 1325 28313 28023 22312 24618 18457 18396 8339 21086 32094 7846 27043 31522 12911 16280 23455 26358 26847 28870 990 3873 4327 3413 3454 31896 12472 24450 17241 4641 5646 23525 28213 16824 17929 8695 25403 12594 7993 26067 22187 4640 25079 10041 18125 12534 4860 23000 4907 32621 27692 25293 5117 7717 20403 3943 17893 10639 29011 26925 24028 19978 10748 2850 22892 26444 10654 23623 24353 12036 31547 21346 826 16061 3904 10238 17571 26886 16405 5299 22056 11728 1267 3751 2019 19991 18166 5717 25846 \n93\n3187 1421 22912 6867 28299 32444 29897 1201 3328 24942 7104 1768 29768 26641 16296 11262 10720 21244 27918 9625 21219 17584 18174 10984 10459 13149 17014 5695 12503 5032 13851 1537 26814 8363 4651 1219 24290 25917 21683 31918 26584 27252 3586 31269 26248 12137 2397 424 23168 20027 28148 31993 10382 29271 27669 893 20877 1014 19104 484 2943 11495 26811 1293 28892 6798 1990 11299 14890 8493 29074 1549 13774 9314 20173 24069 29218 26865 16833 15238 19911 13252 6463 6508 25149 23088 12245 6231 31920 10106 19271 12368 6421 \n258\n4157 9647 4982 18238 24122 17723 906 18706 10189 11156 30345 12351 6923 7118 31550 2097 11836 10591 13406 4510 25813 14651 25880 27844 24743 7741 11245 14578 4949 21705 24514 19785 9227 8624 17204 28356 23917 6227 555 10102 14286 19468 11698 8979 21411 12489 10758 13490 30775 28410 17132 27089 27296 11950 23112 20122 12529 7672 25836 18277 5553 13976 10670 9085 32652 1751 30397 19751 29001 435 16693 15072 17916 6716 25328 1511 32125 11838 27296 18939 11544 1056 12826 12902 26758 24588 12021 22586 14108 29777 12628 21979 26947 12549 1280 13245 25128 14062 10426 4719 10677 29091 4047 13785 23231 7406 8684 21954 16769 14709 27956 22421 15945 13465 16016 21860 16497 18335 5190 5677 28049 21005 7886 23388 18675 13143 17377 10130 28487 26555 22482 25253 15000 27754 289 32488 25215 12008 31310 940 27799 2997 9707 8454 304 8237 10485 12499 30792 29613 32612 18682 12983 15351 16129 17137 5033 16600 31864 23683 11857 8968 1710 21968 31708 2641 27732 12437 11684 32499 32701 29869 28583 29256 19692 7640 12087 15012 13810 5820 14835 1663 10615 25897 18677 2774 10134 27553 19533 28878 2286 25624 2734 18075 15349 30712 26984 30624 27792 6504 28822 4055 18913 462 24473 20084 24160 31122 26053 19397 11822 19750 21337 13917 4006 4931 22197 27505 29236 10357 6599 28290 1898 985 21447 1084 592 18725 8996 29855 24828 15338 17342 14428 29795 30742 30037 5506 6767 5053 9793 28505 24146 3609 13924 19854 29465 12239 26206 24209 15492 16499 18175 31036 23061 13647 15618 25013 \n727\n15712 27896 21909 27841 20130 9090 9034 7915 6286 3523 20666 1344 32736 22037 5416 5893 1949 30971 10844 22777 19285 26200 14590 10285 28325 17118 25668 10006 9729 24008 14541 225 15536 11980 716 30470 15384 28747 20328 27936 6204 10700 7523 26364 1411 16040 250 11504 23483 21766 16141 2670 10845 10506 9088 23256 25107 8266 5857 22678 14199 12674 14155 25191 8990 29832 30858 10996 8917 28290 3967 1707 8234 28246 11462 19402 8239 3426 19095 30906 8314 10350 4586 5279 17776 25822 6879 32301 15812 5676 3164 7357 32570 6038 24312 10144 16561 28180 18200 30643 21856 18061 2647 5939 19808 9290 17452 979 32618 21419 24007 22284 24547 29977 15675 18613 18709 13371 28642 16339 6336 32621 21501 26034 18129 21358 1436 28469 22897 28504 4798 4202 23105 1238 15032 20065 12516 14481 15579 9023 1727 1771 31313 10382 6140 24816 28488 15319 5589 5513 18259 20851 32271 23283 4364 27038 3012 3184 21759 23501 9574 28733 5059 27714 27649 6595 28522 24541 20416 15377 1052 565 19891 138 13310 20967 15055 13787 27224 18222 16439 27441 6648 26804 27834 19368 31441 8872 32668 19974 19176 5137 20633 3241 5745 18018 31015 22974 19252 846 8956 25524 6966 15581 8144 32240 29334 15296 11876 25027 1205 2018 4291 31641 13465 16191 22471 6259 23700 20217 2016 1943 14624 17064 31505 1157 31502 7666 9275 32046 17632 29789 6046 2145 6003 13152 31901 8326 29153 21184 19649 30350 10405 24346 1025 28970 14336 4795 9793 11323 5532 28856 15896 3210 17776 5692 14550 15290 13795 13852 17350 8315 10036 29361 3760 9984 8729 2534 6050 28082 16806 1936 25584 10790 21617 29182 19066 23116 6388 9425 13101 5610 6450 19982 28621 5193 27038 16754 4593 14895 20280 5638 25167 17420 4345 16883 23865 24696 30833 10390 22632 20189 17839 20183 13817 22129 6753 10679 18613 10600 8252 15145 19861 2151 28318 28963 7813 14907 29554 31476 617 11211 25429 2264 15966 19531 29942 10698 19522 31155 27587 15257 23158 4464 13762 8510 30946 31065 8380 13165 5946 13540 27297 8042 14464 23194 12584 10270 32715 32200 1206 32106 31302 24696 8833 7611 19067 415 6645 30175 6354 23448 24919 13079 27988 26321 7592 31597 22197 13509 8652 71 658 14122 26859 7997 10999 1899 4120 1320 32036 16984 4912 1915 23953 19485 20741 10199 11567 4208 6844 30169 29681 4879 21108 17207 5259 25706 23849 24075 28026 20124 27607 17774 2884 20128 24546 3145 20481 11714 20149 24168 13338 20307 26793 23504 1105 1697 18217 15955 16641 2343 26133 32097 679 20736 19555 25633 1954 930 10252 19904 20279 12488 24870 31754 26072 32176 26701 15415 18086 4231 17480 19975 30260 20514 8938 16657 14990 19438 28981 15447 5242 24618 16070 25631 24061 27219 28781 20990 12833 8672 1563 21302 502 26928 30721 24898 31447 10945 28406 2222 8686 5794 23577 12844 18683 21547 13240 485 16464 31723 20337 16653 27168 28130 15255 1466 4858 22512 29656 3318 13201 142 21276 31506 32702 10684 15023 30270 26312 8250 13475 20311 26850 19195 5488 11520 26101 20183 24798 27892 18848 6784 30245 12187 14462 28343 18258 16859 8871 14016 8172 22832 24441 17683 16088 22015 13976 18516 18298 39 31283 3205 19997 29146 5769 23675 917 9387 15020 6030 17442 21735 32389 20373 3480 12073 10777 786 8381 31785 522 18345 20979 16085 15713 30935 19735 30883 2186 16096 20648 2085 14752 521 9260 21982 6636 7688 19919 17236 26792 27065 19278 4198 31496 26386 21011 10976 7547 12121 23202 7245 6702 28564 31539 2572 2257 2370 21920 31654 19359 11080 7298 23391 23960 30510 29591 25867 22033 1675 12136 30499 17775 25790 14376 31256 20272 20703 5086 20967 9515 23542 23495 3566 18456 14186 8437 19198 12626 18364 1085 31665 18908 20340 1360 2814 21154 18012 19752 3338 8706 12525 30630 29249 23179 3079 8313 28838 32517 8421 14145 5991 1969 21839 24308 16565 23762 19473 23681 21970 23147 27053 22708 6508 16715 4429 31066 27689 14663 11771 5541 16259 18631 23572 2514 10966 25988 18170 28168 22199 655 3850 13444 12936 16278 19406 29427 10313 7523 32371 23327 17073 23461 2173 9934 31102 25587 31417 31463 6153 26126 20595 1495 29213 2406 27370 23859 23305 22496 24833 24223 4852 17879 30519 6126 7793 31585 21465 31371 15444 17107 17271 24087 28099 16519 8596 5715 17552 22492 14753 8257 27590 24959 13357 10886 ",
"output": "Aniruddha\nAniruddha\nAniruddha\nAniruddha\nAniruddha\nAniruddha\nAndrew\nAniruddha\nAniruddha\nAniruddha\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "3\n100\n41 18467 6334 26500 19169 15724 11478 29358 26962 24464 5705 28145 23281 16827 9961 491 2995 11942 4827 5436 32391 14604 3902 153 292 12382 17421 18716 19718 19895 5447 21726 14771 11538 1869 19912 25667 26299 17035 9894 28703 23811 31322 30333 17673 4664 15141 7711 28253 6868 25547 27644 32662 32757 20037 12859 8723 9741 27529 778 12316 3035 22190 1842 288 30106 9040 8942 19264 22648 27446 23805 15890 6729 24370 15350 15006 31101 24393 3548 19629 12623 24084 19954 18756 11840 4966 7376 13931 26308 16944 32439 24626 11323 5537 21538 16118 2082 22929 16541 \n10000\n4833 31115 4639 29658 22704 9930 13977 2306 31673 22386 5021 28745 26924 19072 6270 5829 26777 15573 5097 16512 23986 13290 9161 18636 22355 24767 23655 15574 4031 12052 27350 1150 16941 21724 13966 3430 31107 30191 18007 11337 15457 12287 27753 10383 14945 8909 32209 9758 24221 18588 6422 24946 27506 13030 16413 29168 900 32591 18762 1655 17410 6359 27624 20537 21548 6483 27595 4041 3602 24350 10291 30836 9374 11020 4596 24021 27348 23199 19668 24484 8281 4734 53 1999 26418 27938 6900 3788 18127 467 3728 14893 24648 22483 17807 2421 14310 6617 22813 9514 14309 7616 18935 17451 20600 5249 16519 31556 22798 30303 6224 11008 5844 32609 14989 32702 3195 20485 3093 14343 30523 1587 29314 9503 7448 25200 13458 6618 20580 19796 14798 15281 19589 20798 28009 27157 20472 23622 18538 12292 6038 24179 18190 29657 7958 6191 19815 22888 19156 11511 16202 2634 24272 20055 20328 22646 26362 4886 18875 28433 29869 20142 23844 1416 21881 31998 10322 18651 10021 5699 3557 28476 27892 24389 5075 10712 2600 2510 21003 26869 17861 14688 13401 9789 15255 16423 5002 10585 24182 10285 27088 31426 28617 23757 9832 30932 4169 2154 25721 17189 19976 31329 2368 28692 21425 10555 3434 16549 7441 9512 30145 18060 21718 3753 16139 12423 16279 25996 16687 12529 22549 17437 19866 12949 193 23195 3297 20416 28286 16105 24488 16282 12455 25734 18114 11701 31316 20671 5786 12263 4313 24355 31185 20053 912 10808 1832 20945 4313 27756 28321 19558 23646 27982 481 4144 23196 20222 7129 2161 5535 20450 11173 10466 12044 21659 26292 26439 17253 20024 26154 29510 4745 20649 13186 8313 4474 28022 2168 14018 18787 9905 17958 7391 10202 3625 26477 4414 9314 25824 29334 25874 24372 20159 11833 28070 7487 28297 7518 8177 17773 32270 1763 2668 17192 13985 3102 8480 29213 7627 4802 4099 30527 2625 1543 1924 11023 29972 13061 14181 31003 27432 17505 27593 22725 13031 8492 142 17222 31286 13064 7900 19187 8360 22413 30974 14270 29170 235 30833 19711 25760 18896 4667 7285 12550 140 13694 2695 21624 28019 2125 26576 21694 22658 26302 17371 22466 4678 22593 23851 25484 1018 28464 21119 23152 2800 18087 31060 1926 9010 4757 32170 20315 9576 30227 12043 22758 7164 5109 7882 17086 29565 3487 29577 14474 2625 25627 5629 31928 25423 28520 6902 14962 123 24596 3737 13261 10195 32525 1264 8260 6202 8116 5030 20326 29011 30771 6411 25547 21153 21520 29790 14924 30188 21763 4940 20851 18662 13829 30900 17713 18958 17578 8365 13007 11477 1200 26058 6439 2303 12760 19357 2324 6477 5108 21113 14887 19801 22850 14460 22428 12993 27384 19405 6540 31111 28704 12835 32356 6072 29350 18823 14485 20556 23216 1626 9357 8526 13357 29337 23271 23869 29361 12896 13022 29617 10112 12717 18696 11585 24041 24423 24129 24229 4565 6559 8932 22296 29855 12053 16962 3584 29734 6654 16972 21457 14369 22532 2963 2607 2483 911 11635 10067 22848 4675 12938 2223 22142 23754 6511 22741 20175 21459 17825 3221 17870 1626 31934 15205 31783 23850 17398 22279 22701 12193 12734 1637 26534 5556 1993 10176 25705 6962 10548 15881 300 14413 16641 19855 24855 13142 11462 27611 30877 20424 32678 1752 18443 28296 12673 10040 9313 875 20072 12818 610 1017 14932 28112 30695 13169 23831 20040 26488 28685 19090 19497 2589 25990 15145 19353 19314 18651 26740 22044 11258 335 8759 11192 7605 25264 12181 28503 3829 23775 20608 29292 5997 17549 29556 25561 31627 6467 29541 26129 31240 27813 29174 20601 6077 20215 8683 8213 23992 25824 5601 23392 15759 2670 26428 28027 4084 10075 18786 15498 24970 6287 23847 32604 503 21221 22663 5706 2363 9010 22171 27489 18240 12164 25542 7619 20913 7591 6704 31818 9232 750 25205 4975 1539 303 11422 21098 11247 13584 13648 2971 17864 22913 11075 21545 28712 17546 18678 1769 15262 8519 13985 28289 15944 2865 18540 23245 25508 28318 27870 9601 28323 21132 24472 27152 25087 28570 29763 29901 17103 14423 3527 11600 26969 14015 5565 28 21543 25347 2088 2943 12637 22409 26463 5049 4681 1588 11342 608 32060 21221 1758 29954 20888 14146 690 7949 12843 21430 25620 748 27067 4536 20783 18035 32226 15185 7038 9853 25629 11224 15748 19923 3359 32257 24766 4944 14955 23318 32726 25411 21025 20355 31001 22549 9496 18584 9515 17964 23342 8075 17913 16142 31196 21948 25072 20426 14606 26173 24429 32404 6705 20626 29812 19375 30093 16565 16036 14736 29141 30814 5994 8256 6652 23936 30838 20482 1355 21015 1131 18230 17841 14625 2011 32637 4186 19690 1650 5662 21634 10893 10353 21416 13452 14008 7262 22233 5454 16303 16634 26303 14256 148 11124 12317 4213 27109 24028 29200 21080 21318 16858 24050 24155 31361 15264 11903 3676 29643 26909 14902 3561 28489 24948 1282 13653 30674 2220 5402 6923 3831 19369 3878 20259 19008 22619 23971 30003 21945 9781 26504 12392 32685 25313 6698 5589 12722 5938 19037 6410 31461 6234 12508 9961 3959 6493 1515 25269 24937 28869 58 14700 13971 26264 15117 16215 24555 7815 18330 3039 30212 29288 28082 1954 16085 20710 24484 24774 8380 29815 25951 6541 18115 1679 17110 25898 23073 788 23977 18132 29956 28689 26113 10008 12941 15790 1723 21363 28 25184 24778 7200 5071 1885 21974 1071 11333 22867 26153 14295 32168 20825 9676 15629 28650 2598 3309 4693 4686 30080 10116 12249 26667 1528 26679 7864 29421 8405 8826 6816 7516 27726 28666 29087 27681 19964 1340 5686 6021 11662 14721 6064 29309 20415 17902 29873 17124 23941 32745 31762 28423 27531 4806 12268 9318 5602 31907 24307 23481 1012 21136 26630 24114 26809 4084 23556 12290 21293 29996 29152 1054 25345 14708 248 7491 13712 5131 30114 16439 7958 24722 29704 6995 1052 25269 7479 18238 26423 27918 10866 17659 32498 28486 21196 7462 26633 12158 12022 1146 18392 13037 3925 10647 29458 6602 30807 4098 27830 29292 14600 7278 20799 18352 20448 13882 540 28315 4575 8762 9567 22336 18397 31418 19897 25828 13851 26816 24230 4449 16925 658 229 24520 10940 29560 15147 25162 1655 20675 792 22361 31754 16398 23146 8714 26946 21188 19569 8638 27663 15075 24515 11521 475 15615 20528 13234 12570 905 9464 19557 28962 14161 30524 12549 17469 330 31923 28350 14333 22925 10910 19737 16336 18337 1278 12393 7636 30714 28164 31591 19949 19135 2505 13337 10004 16337 2623 28664 9970 25608 30568 19281 7085 9152 18373 28652 8194 9876 23826 28396 7572 6249 14640 29174 18819 943 32611 1941 20289 8419 5565 3805 7585 16216 31450 1615 2609 11064 9166 16893 16074 13509 30300 19695 9573 15589 13161 31172 17968 27358 26031 26268 19426 28510 10422 30774 8779 30910 23552 4182 25391 15495 5764 874 1364 14902 28255 4460 474 6972 26821 26122 25547 21577 9789 25605 30195 27594 7950 16343 754 2481 1012 11672 23439 13428 5912 9762 5967 24408 4415 1908 17223 11759 26434 5204 29486 4319 958 5945 26806 8166 18700 11367 17692 21787 28532 30556 30974 3447 5021 18283 26222 29331 2376 28583 26948 12723 17982 22018 14776 9220 31111 32182 23856 19490 8925 4324 6486 19677 15969 11643 7534 15677 22668 31068 21991 32196 7783 16828 7727 29426 15871 10697 17612 18703 11027 11408 5545 9508 7185 30238 24237 26443 21313 22501 8850 25128 2111 23650 28149 11192 1454 15869 681 27465 20267 17713 19793 18634 25472 20972 22830 24901 28442 5177 13877 25770 702 14364 1381 16590 8823 2237 8023 32179 16595 20169 2327 12042 31310 28182 11058 7926 9487 1670 32528 5651 2258 7213 9860 25783 21286 2742 8610 4472 7128 18434 5841 20718 3503 14867 24865 10938 1881 9257 22750 28614 18598 28458 2661 26063 32756 20807 20278 19489 19435 6365 32075 7586 1386 7833 8360 13330 26048 8928 29492 12433 23840 6766 1735 19810 11599 11837 21892 31982 7328 29352 11369 31244 21794 6608 9252 11647 17432 9535 7208 3264 3497 23243 27649 22015 26841 189 16100 19812 30648 9523 19851 24474 28633 29891 27200 19854 9990 25697 4919 17780 22578 12931 32544 3340 13487 899 22525 8483 5538 7492 6193 28252 25011 1560 15834 1840 31497 2785 18529 31540 18805 28791 13392 13210 13549 21578 26979 30971 9277 73 20193 1620 21497 13826 31276 19790 6582 13578 11159 20418 26489 159 3449 12924 9072 10380 27008 27967 10208 6477 18503 15370 32607 14196 12074 13722 12611 19019 28761 11056 12890 31163 16683 13716 19932 25452 2741 4954 6813 2862 10396 15460 20615 10904 2599 20136 4680 9198 27032 14387 32584 7240 3517 17006 8670 241 18882 25249 3523 31758 12105 29621 17095 7296 9916 15678 10178 13579 25058 27577 12750 14007 23729 24081 2995 2678 24676 27753 20899 11784 15565 3093 13608 6172 11243 29929 7514 10168 5055 11191 5973 8922 6748 5651 10986 2144 16446 31577 26517 14629 29916 5874 15791 15469 22912 8146 30693 9091 9815 26949 26857 20640 26052 236 8551 9487 31226 28162 16955 23183 8394 30180 16097 3065 27065 2513 9261 12578 21078 16878 14140 4611 31947 2445 170 29975 13489 24750 6149 3333 13865 22214 17282 27007 27432 8896 16367 28522 4882 31810 17641 7231 2187 6705 6479 6321 6538 31351 19447 24208 9646 22276 25759 30189 30422 27666 8486 3455 2028 29614 4860 29253 11777 31348 12503 10861 22431 29082 12455 14197 22106 8752 15821 17296 26281 26021 24455 15947 27124 18318 9135 11376 1774 29859 24998 12074 9253 6922 10635 1643 28888 8153 13232 4747 28680 19926 25678 6450 14801 24961 14199 20855 26363 5716 10573 31561 23245 6473 28274 1550 24353 1181 4287 2699 18110 18643 17465 7172 2529 9981 2112 13476 4381 8247 26890 16671 8805 32372 30032 3989 9320 23165 15431 9658 11293 17206 26578 16948 2206 27171 18166 3396 16697 31020 23694 15529 14788 30109 17984 11969 28978 21617 4015 16626 3684 9168 17906 25928 12097 28118 24390 15199 11785 14486 19199 12420 20710 18271 15813 27415 6085 318 3580 1331 7267 8387 13444 23186 14507 4360 17827 28074 26431 7152 30271 10268 4693 19885 337 31311 17604 12677 406 7768 29022 19413 5000 542 17537 30038 21388 7355 13289 31647 3181 13093 16584 10987 10761 20493 8217 9501 17482 29447 15665 10753 22104 15084 19095 13525 30221 3964 21781 4872 8106 3656 3343 22593 27080 16080 14868 21411 13713 20968 3251 27216 12079 28768 17040 31531 12933 23779 20663 12259 26653 27936 2095 24365 11874 7720 26835 25680 8976 18455 5725 4071 24808 13559 9156 5602 17832 7905 10440 7375 21562 22885 21962 21080 1836 10797 31202 10508 10080 5340 12076 9058 31493 7740 8546 20474 24773 19097 8880 23335 11072 23400 707 22955 20666 4141 23588 12481 17168 28315 19396 16225 1009 22012 18136 11455 18762 25043 742 21 17922 24512 9248 26018 27368 23717 9714 17650 13290 3335 12759 3169 21895 5303 22640 21979 24199 29105 24791 18661 8681 3652 8753 24033 32029 15987 7042 26253 20083 11420 15814 32718 12244 31063 7229 20652 18864 4769 30470 15005 21047 1594 21487 24326 3276 21323 6540 7679 23990 32588 24710 29271 17945 29221 28470 20183 23589 23955 4978 24779 5006 13262 20135 23487 27196 29033 2088 12935 19779 15993 14790 24962 18965 11001 19105 11807 24567 2669 3134 32671 1457 12998 3545 13597 14218 8838 14844 7372 8563 21028 29264 28801 14723 13490 7604 31601 24227 11197 23692 19771 20363 29301 22363 7721 3565 17421 23445 18610 495 16741 15022 31812 29151 23015 8055 3393 8738 15279 19882 1608 12654 3822 32707 24245 1338 144 22290 31339 23154 24604 4623 22225 20078 21724 31981 2330 29733 28223 20594 29130 18846 4987 29445 18805 8616 5750 20489 27338 21963 28135 14697 32209 21630 23224 1908 26737 24474 31920 27372 10293 3855 6734 9561 31056 27606 8184 7075 28382 14119 6741 30432 24684 12779 12279 18283 20667 30836 24125 24118 12737 18028 32119 20577 10737 14091 20556 22795 16060 21901 8793 3432 2136 4580 14875 5907 21184 28074 8719 26790 20476 30041 3351 8329 16290 22974 23072 3591 12189 15787 31490 3239 14893 3053 17063 10681 25903 27005 24176 18479 1695 6139 32468 13998 21083 23639 29515 27621 29993 15826 15722 23838 24828 12581 24399 8978 11891 1023 26943 24834 14243 7349 2702 8707 20502 25141 10687 8346 15891 24637 18413 11400 22816 31690 13162 8935 29126 19410 19877 11382 26260 27189 26705 13874 2663 20722 32195 22566 16360 6038 18588 7811 28245 9467 32425 26867 13189 10542 13063 21547 30502 29617 9099 25023 17226 31203 30048 21051 1570 8636 9458 25967 8456 9405 11531 29962 26819 7975 10556 7531 31495 8044 30591 26803 3388 18915 7450 12319 6272 25791 29383 10133 1775 24642 23569 18300 17954 12078 3585 2257 25333 893 10490 10103 4750 17233 10722 24271 19611 18990 30338 21641 23258 19047 2352 9658 479 25302 32683 18990 10002 15568 4422 16895 6135 18008 12361 16742 22194 23699 23188 20178 4042 31357 23941 1847 7469 16345 4380 31913 14964 25710 20061 25385 20073 27504 9462 32703 28102 11069 5154 3529 31552 32074 19149 3730 2244 10844 13049 14118 24065 26363 19552 28773 18470 29731 6747 7511 5869 14398 10498 7103 27352 25679 28053 13043 14522 31088 1563 25834 9850 17022 7240 21911 9492 5651 28580 15477 27616 29876 19178 5220 14615 22348 26798 32179 31635 16857 2883 1662 18902 28262 19420 19770 19022 9273 25841 12686 28888 3917 31717 1892 13698 11267 11749 65 10389 6932 25619 16081 2003 29130 13028 18631 14589 23152 18630 19172 19864 6407 12295 25428 29681 18490 26610 26177 31071 25236 6459 20643 16840 27633 27037 23893 22630 20274 12993 28782 32203 17461 8290 19662 22307 20997 31151 18423 8890 16717 6640 28703 5566 4883 23661 22659 18245 20386 32651 32765 19601 16840 17209 1497 27283 29250 18058 8421 175 30581 26787 3271 4287 27999 12504 24979 2138 10700 530 2461 12118 205 7540 18828 24459 11622 14398 3760 27098 12935 10481 30614 19567 18493 28596 19161 7746 10538 7670 20538 21476 21555 24917 16371 16760 5752 13758 15433 32255 29065 726 2401 3034 12759 10393 30548 27273 18792 16193 12933 30137 17103 3690 28211 13694 24668 32627 7498 989 15248 3879 11647 11149 30931 669 30875 25598 25449 25436 24599 20123 1443 1731 18154 22861 4434 9385 23967 10816 11393 16704 29866 30953 30308 28223 18684 30792 22667 10048 32469 13930 30811 19814 16090 5427 23743 1604 10599 16474 7195 506 5158 17589 9858 27809 17889 11447 40 3818 9364 17975 26 25089 2503 30066 26412 6840 12570 14676 25395 28641 29986 17651 21109 8187 20083 21085 23390 31250 18686 4755 11381 28128 25502 24277 30862 26424 3565 3872 832 30885 14428 6646 20889 6478 10883 24925 21265 31260 5045 20778 5821 13855 2520 12927 24773 25134 27251 22675 13336 16334 21001 2737 9310 5974 7590 20356 1071 32080 10935 32145 17282 1825 18718 13573 4712 13037 4998 9905 7162 1717 8692 19539 28047 10946 19103 30231 24115 839 25858 20829 2645 3394 17199 19645 14272 675 21862 32072 13773 2480 11238 26897 3542 29608 19203 23277 6125 20134 1401 9078 18382 20169 20736 27478 17939 21138 18721 31426 10663 1677 21575 6724 25981 27700 7961 28862 16002 18448 25095 684 24016 15137 9507 13993 21284 2944 30259 821 7058 24643 17668 10677 119 29857 23041 8891 25264 1623 6915 8072 17929 841 4715 17615 12536 14957 27759 700 13452 5093 24241 11829 12448 5227 11798 16224 10324 12274 18133 22885 15038 12170 6862 32629 5084 11909 14878 6923 27085 29400 23024 14193 23105 9412 15765 5767 15407 10677 13784 704 14790 9834 10891 621 18085 27734 25190 20542 17998 22086 32018 15621 30424 22597 21376 24254 29669 18108 12927 12493 26068 6366 9102 2438 12600 10819 14318 2290 14984 16339 2556 25808 4632 21478 26814 13787 7239 28074 25020 10827 2554 1988 7441 16798 13642 19002 16321 30104 13946 7056 18509 29833 17708 19761 6533 20686 14804 26385 10142 18842 17260 22161 31620 4343 9578 1187 113 13063 4591 5934 20415 656 29761 25012 28411 11959 16251 18738 13370 26124 5507 8007 17584 10951 23101 14489 24958 15441 1790 17013 30412 14855 21060 7093 8472 25402 32676 13543 7373 6266 27651 15275 21528 532 10761 5469 32503 32729 17107 27892 2451 17953 28392 22570 13519 19472 23407 22494 9505 28440 20383 14262 21409 28607 18038 4360 5471 11171 20654 29947 11514 14523 21229 489 6766 17887 29756 26632 7470 25739 20666 8522 7283 8160 17553 24705 27091 1259 25386 31687 4629 42 28317 22045 12356 13388 25452 3154 30466 11833 27760 26919 25631 6738 21267 25776 21098 24314 16320 13053 24007 16469 24216 9722 19842 29007 15463 26260 30947 13793 28630 18717 23043 31376 25314 16626 17117 1334 20620 14171 26792 8964 19154 18866 14693 30664 23775 13000 12212 21100 7551 25476 6379 10943 17877 3789 361 11385 8272 11434 15144 29561 25563 14504 12946 23888 20308 12157 1430 5123 6464 4074 4346 13837 1981 25318 26611 16292 17591 3832 27123 6461 16991 31461 27330 28498 17369 17291 8400 14179 24117 2317 19914 1595 1441 5936 21867 7028 31453 27909 13973 17981 11503 26569 6816 1883 25367 5385 28402 5230 17157 28681 15567 8310 1866 3687 13171 3477 31245 32764 6238 27671 2047 26115 4592 27311 32657 1405 53 7171 20580 22740 22530 13675 24320 25790 13377 10998 16586 21604 4489 19631 29744 8388 26610 18718 26919 18259 5927 14609 28119 21479 22716 6300 21396 16853 11458 20830 24593 30806 29849 14854 24272 26160 12294 12054 26333 146 4229 10471 10428 10559 22241 29421 22688 16366 12033 26685 2270 25329 32261 22860 2208 8982 22162 32506 6878 11979 1897 7887 6538 14469 30783 17540 22795 7266 18633 13509 24557 2317 26134 32053 18135 12258 2593 17843 21693 16466 22951 18140 11094 12937 5174 2512 6097 9551 2695 21817 23492 21292 20237 27530 613 25296 21710 32389 5628 5809 28786 31744 18840 8182 28569 6120 27393 6292 14962 14214 12527 26807 13194 8705 14713 7011 18913 6693 19664 26203 28995 17762 14381 26946 29909 1048 21768 26624 22511 7954 4235 1127 14633 28240 1862 15127 27577 23817 2340 10142 15100 28400 6558 21476 3154 10935 16430 5831 21295 3537 15623 17922 2927 28029 30211 16211 11754 26880 12253 3293 21321 20785 26528 10443 31000 10555 24671 9270 7452 9375 14631 13640 8934 18040 7986 28834 14248 1539 28765 12796 10312 7262 25052 30731 23987 24464 32557 14248 29556 20170 5450 27182 7301 13293 24099 23332 19044 32331 75 31004 19050 15026 14066 11738 19801 19623 13843 441 3380 19695 7918 3659 1363 12628 6329 1088 28854 8613 24979 18569 666 7679 27577 27837 3402 23115 23292 1723 2872 29448 30323 11153 15948 24395 25197 4508 22908 17411 13993 7665 26781 3202 17610 24828 27256 27705 8965 18023 20769 11715 20253 31805 23684 29478 32145 21840 833 19285 26900 10968 23994 16633 13885 348 18281 18032 16256 29910 10872 8982 23901 12306 10635 17860 32471 29527 7137 8343 9768 28233 3995 29171 7603 28942 18011 7879 31034 14512 24593 530 14161 23234 10258 21926 5906 5191 14443 6188 30227 32719 26484 5224 19093 30435 13224 28094 3582 8867 8627 22005 11146 32686 16589 20540 18237 22850 18759 9578 28956 32677 2403 28042 6300 15811 5225 21143 21595 21016 26615 28804 21006 28368 31641 30335 698 1325 28313 28023 22312 24618 18457 18396 8339 21086 32094 7846 27043 31522 12911 16280 23455 26358 26847 28870 990 3873 4327 3413 3454 31896 12472 24450 17241 4641 5646 23525 28213 16824 17929 8695 25403 12594 7993 26067 22187 4640 25079 10041 18125 12534 4860 23000 4907 32621 27692 25293 5117 7717 20403 3943 17893 10639 29011 26925 24028 19978 10748 2850 22892 26444 10654 23623 24353 12036 31547 21346 826 16061 3904 10238 17571 26886 16405 5299 22056 11728 1267 3751 2019 19991 18166 5717 25846 17093 3187 1421 22912 6867 28299 32444 29897 1201 3328 24942 7104 1768 29768 26641 16296 11262 10720 21244 27918 9625 21219 17584 18174 10984 10459 13149 17014 5695 12503 5032 13851 1537 26814 8363 4651 1219 24290 25917 21683 31918 26584 27252 3586 31269 26248 12137 2397 424 23168 20027 28148 31993 10382 29271 27669 893 20877 1014 19104 484 2943 11495 26811 1293 28892 6798 1990 11299 14890 8493 29074 1549 13774 9314 20173 24069 29218 26865 16833 15238 19911 13252 6463 6508 25149 23088 12245 6231 31920 10106 19271 12368 6421 15258 4157 9647 4982 18238 24122 17723 906 18706 10189 11156 30345 12351 6923 7118 31550 2097 11836 10591 13406 4510 25813 14651 25880 27844 24743 7741 11245 14578 4949 21705 24514 19785 9227 8624 17204 28356 23917 6227 555 10102 14286 19468 11698 8979 21411 12489 10758 13490 30775 28410 17132 27089 27296 11950 23112 20122 12529 7672 25836 18277 5553 13976 10670 9085 32652 1751 30397 19751 29001 435 16693 15072 17916 6716 25328 1511 32125 11838 27296 18939 11544 1056 12826 12902 26758 24588 12021 22586 14108 29777 12628 21979 26947 12549 1280 13245 25128 14062 10426 4719 10677 29091 4047 13785 23231 7406 8684 21954 16769 14709 27956 22421 15945 13465 16016 21860 16497 18335 5190 5677 28049 21005 7886 23388 18675 13143 17377 10130 28487 26555 22482 25253 15000 27754 289 32488 25215 12008 31310 940 27799 2997 9707 8454 304 8237 10485 12499 30792 29613 32612 18682 12983 15351 16129 17137 5033 16600 31864 23683 11857 8968 1710 21968 31708 2641 27732 12437 11684 32499 32701 29869 28583 29256 19692 7640 12087 15012 13810 5820 14835 1663 10615 25897 18677 2774 10134 27553 19533 28878 2286 25624 2734 18075 15349 30712 26984 30624 27792 6504 28822 4055 18913 462 24473 20084 24160 31122 26053 19397 11822 19750 21337 13917 4006 4931 22197 27505 29236 10357 6599 28290 1898 985 21447 1084 592 18725 8996 29855 24828 15338 17342 14428 29795 30742 30037 5506 6767 5053 9793 28505 24146 3609 13924 19854 29465 12239 26206 24209 15492 16499 18175 31036 23061 13647 15618 25013 26727 15712 27896 21909 27841 20130 9090 9034 7915 6286 3523 20666 1344 32736 22037 5416 5893 1949 30971 10844 22777 19285 26200 14590 10285 28325 17118 25668 10006 9729 24008 14541 225 15536 11980 716 30470 15384 28747 20328 27936 6204 10700 7523 26364 1411 16040 250 11504 23483 21766 16141 2670 10845 10506 9088 23256 25107 8266 5857 22678 14199 12674 14155 25191 8990 29832 30858 10996 8917 28290 3967 1707 8234 28246 11462 19402 8239 3426 19095 30906 8314 10350 4586 5279 17776 25822 6879 32301 15812 5676 3164 7357 32570 6038 24312 10144 16561 28180 18200 30643 21856 18061 2647 5939 19808 9290 17452 979 32618 21419 24007 22284 24547 29977 15675 18613 18709 13371 28642 16339 6336 32621 21501 26034 18129 21358 1436 28469 22897 28504 4798 4202 23105 1238 15032 20065 12516 14481 15579 9023 1727 1771 31313 10382 6140 24816 28488 15319 5589 5513 18259 20851 32271 23283 4364 27038 3012 3184 21759 23501 9574 28733 5059 27714 27649 6595 28522 24541 20416 15377 1052 565 19891 138 13310 20967 15055 13787 27224 18222 16439 27441 6648 26804 27834 19368 31441 8872 32668 19974 19176 5137 20633 3241 5745 18018 31015 22974 19252 846 8956 25524 6966 15581 8144 32240 29334 15296 11876 25027 1205 2018 4291 31641 13465 16191 22471 6259 23700 20217 2016 1943 14624 17064 31505 1157 31502 7666 9275 32046 17632 29789 6046 2145 6003 13152 31901 8326 29153 21184 19649 30350 10405 24346 1025 28970 14336 4795 9793 11323 5532 28856 15896 3210 17776 5692 14550 15290 13795 13852 17350 8315 10036 29361 3760 9984 8729 2534 6050 28082 16806 1936 25584 10790 21617 29182 19066 23116 6388 9425 13101 5610 6450 19982 28621 5193 27038 16754 4593 14895 20280 5638 25167 17420 4345 16883 23865 24696 30833 10390 22632 20189 17839 20183 13817 22129 6753 10679 18613 10600 8252 15145 19861 2151 28318 28963 7813 14907 29554 31476 617 11211 25429 2264 15966 19531 29942 10698 19522 31155 27587 15257 23158 4464 13762 8510 30946 31065 8380 13165 5946 13540 27297 8042 14464 23194 12584 10270 32715 32200 1206 32106 31302 24696 8833 7611 19067 415 6645 30175 6354 23448 24919 13079 27988 26321 7592 31597 22197 13509 8652 71 658 14122 26859 7997 10999 1899 4120 1320 32036 16984 4912 1915 23953 19485 20741 10199 11567 4208 6844 30169 29681 4879 21108 17207 5259 25706 23849 24075 28026 20124 27607 17774 2884 20128 24546 3145 20481 11714 20149 24168 13338 20307 26793 23504 1105 1697 18217 15955 16641 2343 26133 32097 679 20736 19555 25633 1954 930 10252 19904 20279 12488 24870 31754 26072 32176 26701 15415 18086 4231 17480 19975 30260 20514 8938 16657 14990 19438 28981 15447 5242 24618 16070 25631 24061 27219 28781 20990 12833 8672 1563 21302 502 26928 30721 24898 31447 10945 28406 2222 8686 5794 23577 12844 18683 21547 13240 485 16464 31723 20337 16653 27168 28130 15255 1466 4858 22512 29656 3318 13201 142 21276 31506 32702 10684 15023 30270 26312 8250 13475 20311 26850 19195 5488 11520 26101 20183 24798 27892 18848 6784 30245 12187 14462 28343 18258 16859 8871 14016 8172 22832 24441 17683 16088 22015 13976 18516 18298 39 31283 3205 19997 29146 5769 23675 917 9387 15020 6030 17442 21735 32389 20373 3480 12073 10777 786 8381 31785 522 18345 20979 16085 15713 30935 19735 30883 2186 16096 20648 2085 14752 521 9260 21982 6636 7688 19919 17236 26792 27065 19278 4198 31496 26386 21011 10976 7547 12121 23202 7245 6702 28564 31539 2572 2257 2370 21920 31654 19359 11080 7298 23391 23960 30510 29591 25867 22033 1675 12136 30499 17775 25790 14376 31256 20272 20703 5086 20967 9515 23542 23495 3566 18456 14186 8437 19198 12626 18364 1085 31665 18908 20340 1360 2814 21154 18012 19752 3338 8706 12525 30630 29249 23179 3079 8313 28838 32517 8421 14145 5991 1969 21839 24308 16565 23762 19473 23681 21970 23147 27053 22708 6508 16715 4429 31066 27689 14663 11771 5541 16259 18631 23572 2514 10966 25988 18170 28168 22199 655 3850 13444 12936 16278 19406 29427 10313 7523 32371 23327 17073 23461 2173 9934 31102 25587 31417 31463 6153 26126 20595 1495 29213 2406 27370 23859 23305 22496 24833 24223 4852 17879 30519 6126 7793 31585 21465 31371 15444 17107 17271 24087 28099 16519 8596 5715 17552 22492 14753 8257 27590 24959 13357 10886 7809 5865 25686 32019 259 22313 2435 1028 4101 10468 22869 456 6731 7578 26074 11395 30843 31274 13316 15024 30511 18585 5722 8971 10057 14095 8174 5038 2183 26658 17295 25722 16983 6231 29503 2232 24300 15590 21480 17408 15505 32702 22858 9818 10557 15561 24120 5028 23656 25713 3332 23092 17182 26467 11320 7358 21074 3987 9094 4983 21364 27264 19714 26746 24390 10425 26255 13163 31467 5792 14231 22619 2880 4718 16128 19948 4720 9079 32091 3766 27587 5808 12126 14825 31159 17518 3220 10035 31314 25456 24147 29156 30134 3360 751 16208 31478 22294 12589 17524 7976 9694 4090 20189 29372 7419 30301 21702 24844 20523 26539 20609 11827 6637 8186 27416 1827 15169 17623 14899 22514 10415 3644 5436 23669 10378 31676 17858 7952 9846 27137 5915 22988 24616 7288 2382 28074 20333 3915 11056 25656 30062 9616 24524 12129 27442 1984 4872 7049 23396 18026 8582 10202 18775 5416 30665 14552 18759 12755 11417 22844 3554 19443 6824 31999 28422 121 15733 31413 19917 15793 21873 12060 31175 9074 5985 32501 31622 13208 27395 11026 26720 26291 31988 10929 9072 30977 10193 8 12254 922 30876 15137 30816 13803 21090 7912 12289 17253 29979 7299 12322 22902 27602 6369 30654 12729 9734 12438 12274 5226 16463 28134 22972 24348 16453 9503 2307 25518 18333 27437 20695 13179 661 23144 17659 10961 21907 6576 13472 20645 3592 22972 628 24196 6811 15535 15835 1229 3716 23532 24956 16158 29749 24620 23296 19724 13120 24526 16406 8983 3445 30574 21691 26588 30538 20664 18104 20877 20353 2942 17004 30623 14852 15625 17611 27842 8724 31149 20135 13590 10146 7328 23855 27804 31741 16909 19381 12779 29102 10083 692 10532 17312 26099 6161 11047 22405 15290 17569 29959 32628 22139 21228 27580 32471 21778 27440 18456 22148 29444 24745 16125 7210 4698 25616 31180 24815 6064 16226 29472 27479 19593 32482 3005 18536 15333 11105 27587 30732 15638 31165 1064 14518 8399 5032 17508 13896 13438 23978 22638 8245 4059 24169 744 27362 24769 11049 26518 16467 10558 32143 23061 25603 9190 22186 1226 3603 17004 21300 31768 423 31347 5396 4566 25230 21665 26152 32000 3617 29173 30786 10668 31597 31579 26224 17728 26260 12158 23425 23267 19312 734 452 5169 29562 1570 8211 29235 6890 1711 2064 4750 28960 7545 14767 21754 30787 8217 24565 29942 2088 10273 2815 27579 30837 9388 19269 11886 13830 10809 4640 7321 18319 29881 31626 13020 1411 20454 25893 21984 2357 22999 30336 18829 5950 21457 32405 10365 2334 30049 19094 28592 31270 30119 23017 29313 15253 16117 4977 19160 21505 153 24591 6562 3576 4854 20072 11134 23016 25050 9193 21945 1852 20747 32521 8061 6344 20259 28366 2885 14439 2718 9107 5268 3554 32050 7432 13799 32020 16735 31098 2792 3916 26182 19029 25316 3059 13758 4583 22399 1135 8357 20070 15271 22342 17780 13877 30406 28295 17686 2403 8252 15718 23035 7285 28428 16678 25960 101 20949 2364 26385 27626 17157 2737 4841 18938 11593 17096 31033 4493 29768 27873 29935 19109 30096 20381 21561 25739 5584 25923 28499 16731 11849 25442 8606 6850 28287 26040 22769 9223 1588 16467 12083 3400 11158 15606 16938 19463 20920 18366 15758 19685 9023 20229 19298 29356 5470 23175 24196 1683 9988 7619 2946 32190 8275 2469 25519 14341 26197 8545 1654 7158 14058 5794 23791 13341 24837 28900 13232 12675 19736 17438 9958 30580 27085 15013 5284 5253 20727 30285 2426 19670 14536 3281 23370 6549 1348 9077 26199 16835 3573 28137 8351 28731 27617 5233 30571 27376 25529 17731 11044 20342 16467 30000 7528 30916 12634 4999 17757 29240 581 13623 15941 7131 15749 31539 9299 25575 4099 14363 13245 14726 201 6424 24083 7389 20735 22024 18895 28745 6170 11483 28717 28392 28752 11324 19773 27740 18255 4468 22070 16843 10030 15756 10765 3114 2980 1458 12358 8124 6008 25311 6667 21717 15928 17590 31099 4580 13870 2990 25412 14000 18064 28275 20084 19682 17911 20106 9868 8644 23826 16436 17366 11592 24988 18838 15865 27212 23947 7446 19659 1052 5771 21256 11110 32057 10666 26250 12670 13145 3925 31148 5874 25774 7043 9429 5536 6763 20016 21858 23934 7301 2061 32655 3815 21174 30582 10139 12082 14024 20900 1575 19337 15376 11300 19424 15864 20537 2695 18525 18629 22851 29788 30794 31744 21706 10075 16071 6490 31884 14819 19979 27195 5158 16807 845 15374 17438 21156 14820 30432 9766 27222 22957 553 26271 6955 9389 27625 8029 3128 2039 1527 20394 8490 29648 28054 5517 24192 32530 12618 3148 24056 22990 2282 29743 26439 21301 21493 1927 269 30393 21033 8431 3592 1135 19026 5842 19080 18616 4961 28717 15907 5920 13245 22166 30121 27782 2782 27006 6491 31870 14615 22195 13143 11763 14771 23592 14935 19217 25412 5881 13467 26721 16952 17322 1828 18230 429 21424 17699 14153 22151 31794 5041 15264 8383 8720 30144 30388 14077 18213 5202 8658 4202 23753 22249 5058 16575 8090 24638 6823 31395 24701 17205 11558 3123 24287 1041 14026 2530 6209 14820 935 7043 12531 25674 3902 8100 23071 18775 15009 6430 22794 28622 11736 6890 5015 2452 26754 9782 17933 25188 17855 11960 17945 9923 30542 14659 30487 5943 15347 18584 21389 31668 21788 3198 12280 27479 32707 1813 6860 15447 29846 7271 32182 12344 13142 16448 25636 12353 7549 13888 2823 11825 9251 6190 7639 32046 3362 5775 17624 14078 4985 10103 26781 377 26350 6048 20170 18494 20216 12729 29726 16038 29915 28672 18352 15862 6421 27667 11128 21465 14329 259 24082 5389 24986 21419 12735 2140 18666 13632 13485 15822 20003 5161 11896 26141 2150 28432 5872 32361 4770 32313 27165 25645 8120 1810 32128 25970 6621 3596 15004 8514 20799 23210 25269 19552 32235 471 16344 11830 6382 27261 26395 27151 20666 83 28710 26758 7372 2295 17906 30014 13452 20284 29905 25812 28021 6341 6575 22290 17525 6611 22167 26982 5783 23387 28793 28050 19679 18268 31274 30884 32629 20335 12460 24105 21511 24992 27824 27550 7016 8060 19801 30759 29309 2923 67 7300 27225 8256 19140 10048 31655 1807 14449 8491 18760 24382 4836 30219 30270 19679 1725 5519 4809 16701 6631 8324 25807 12725 22301 30283 3969 12488 21164 13963 24124 7534 27770 2851 13997 23724 29511 20067 30265 20840 3379 24955 16028 1661 2432 18227 30160 16139 32666 22237 32048 24848 24404 7048 25565 28221 22133 13175 6241 32514 12147 17362 23954 29676 3454 21658 1721 20784 10688 10466 16116 30856 30180 26429 24537 13629 18389 9843 7004 20101 29384 12920 31987 5136 29052 7582 1528 6366 1472 29193 26958 4179 28983 5987 10823 397 11096 16594 8901 17653 14520 30503 13472 20 1932 4953 10824 5033 30057 15665 2732 12280 25167 16966 25690 868 29926 22828 21479 14144 29703 9449 18833 12003 22910 3240 21027 15610 527 15282 26393 17187 7863 23961 2565 28599 19251 27318 12081 3558 28103 6358 15238 7178 17464 17457 6572 7221 16922 25756 10867 21260 9298 25343 5234 26841 24019 25352 14062 8411 16811 21793 17405 6881 3651 25760 17898 21271 15842 5694 5084 21535 16500 10955 31155 20323 650 6688 5939 4010 26017 14932 14948 31210 3495 26419 14648 4189 10171 15851 3695 11223 3637 16649 15800 24407 28134 30884 17177 14812 20641 25304 4496 23162 12537 18551 25851 2732 31565 18938 27445 21228 8194 14526 2178 15745 6928 4205 15149 15257 5312 9401 25199 24727 32692 22353 27795 26542 22567 27149 12376 14255 26742 16748 30103 22815 14047 11073 28965 4749 137 32169 14331 7970 26053 8768 28052 13178 11156 24981 12695 17586 13929 731 4278 17859 8752 5089 31958 20238 7054 27972 4208 25656 24171 18147 8503 19511 32174 28819 26107 12205 22599 788 13261 29045 24435 7492 5732 30076 4667 403 18367 18899 21054 10167 19212 26114 30129 5793 11977 29854 15012 6831 14889 23326 32647 11299 2489 29674 25836 6612 24387 11957 15503 19491 10482 2829 27027 13361 952 8496 5646 15183 15597 11554 25032 18102 5945 20476 28224 9081 22195 31623 27632 28343 22602 15369 3282 19989 14437 21599 35 3179 19654 24652 23399 28350 30132 28945 5293 21871 2649 22590 29204 32177 25705 5319 4750 30528 20228 5722 29668 8785 23774 19184 6651 18884 27037 10915 15189 11681 19074 13759 5850 4546 29260 6427 22233 9421 3161 27818 9546 21350 21263 16461 21846 23458 9594 27371 17945 13502 8246 20420 25254 7953 15760 3586 25419 28735 16616 20113 13335 28592 29018 9265 9370 22336 26525 12746 17644 19512 29482 2815 5105 25726 23201 773 25306 3080 31593 23990 4591 24214 3223 5857 2700 18849 2322 13285 6762 2702 1268 21374 5152 23848 29235 28638 22762 28237 6272 1792 12200 26343 17519 7481 3370 8991 29145 19984 12714 27085 30079 24399 16282 14386 27119 2650 12193 30185 25516 28608 17888 9499 12425 26896 27769 25331 9814 11502 5970 19537 17598 31077 5398 6851 11888 14463 29053 3505 15741 21267 19662 29655 14081 9695 19618 26872 25094 19670 2538 7121 1445 14523 8243 12365 4718 17135 16937 4599 31499 13192 30554 19124 31 28066 26429 12722 29556 13818 21875 1692 13910 18361 13132 19728 30522 11149 27277 31826 29348 1278 17777 22338 15175 18944 6125 139 19821 6340 3640 7966 29081 8148 17547 9951 12907 19551 3110 6557 27077 13009 403 21576 10540 26023 22574 15454 369 11906 32485 24999 28048 23930 573 26658 25816 8884 20373 20031 22604 9783 15791 25422 8010 20987 32364 568 5994 579 24023 25709 31657 4141 29285 8477 14023 27272 8828 11435 13549 12517 9009 27743 30867 1265 21590 12891 30369 1538 7604 13776 32212 10991 12693 23409 11620 28197 22662 25128 16100 32759 10842 18440 10089 29494 22642 31620 21486 6146 27964 11486 1271 30943 9466 21474 3445 11788 17349 15827 30954 31504 3281 14246 23757 27285 16114 10350 22832 23673 14943 12312 3232 14883 13239 7768 32589 17683 6209 21987 18795 13245 1912 28639 30935 4248 1479 13207 31230 3954 19601 13940 2043 19718 23412 14377 26623 11472 11983 3885 29686 18720 16257 14702 14439 10606 12276 25924 10652 13037 19035 1699 13316 1890 13367 19606 11221 17975 31520 2792 24565 25547 24258 27684 21531 2829 31782 32705 26162 15689 15923 30870 25342 9282 14196 12180 19969 19072 18715 16051 24736 11755 15174 18477 1154 24729 10882 15851 19769 11237 28301 15676 13604 27073 24161 21197 8595 2125 5485 15062 29229 27560 7718 29073 8079 8709 9662 10224 11574 7682 7475 28815 29343 27446 27532 14568 32684 4361 5472 25286 8266 6089 32151 4604 17233 25594 9076 598 18604 23533 468 31184 31417 2964 29616 11014 14066 14996 16873 7148 2510 10396 15941 25791 16866 25589 4020 23355 15948 28251 5081 32271 31825 9228 31173 13454 10309 6430 31238 13991 13739 24853 20448 12567 17054 29877 22490 31197 19056 10773 30589 26862 27536 29429 12888 10539 17585 21841 4167 5520 11560 21047 14581 30382 19606 11989 26784 13403 21960 21462 8732 20392 26843 14063 16923 14611 24740 692 22443 22270 3919 28849 26112 20576 11845 2486 29556 28603 1364 16498 2508 12878 3338 6723 3005 22411 4193 23117 943 1227 4514 25290 20416 20801 30339 16544 20236 20012 16274 5433 29740 24401 20183 21135 24828 30633 437 32134 28577 3671 8722 27263 19659 24540 29368 10282 1848 20366 23290 3227 14458 32071 30106 6305 11001 25434 1770 9555 8507 4299 7730 4075 8803 21439 26194 22488 28664 26673 27048 25358 2280 32487 19764 23713 24013 12452 18170 24978 6766 12704 21416 28649 10377 22837 28537 19459 20432 20955 22105 20526 5937 1366 3914 23155 19290 6446 18182 19635 20093 3936 15846 21238 5456 24403 19714 25599 30041 6925 18074 12324 10344 29863 13749 29276 10597 14334 16647 22426 20043 3244 13592 28761 17269 5175 31139 24696 19481 14471 30268 16713 27666 16030 10806 27109 24290 29059 31684 4546 32759 31103 606 391 2093 13196 20583 17950 17557 7435 12 6667 10869 10165 1903 30973 27791 2516 6149 4515 30118 24243 3388 2497 27711 11091 11874 18563 9125 7007 18370 15121 7727 2658 24336 18275 1221 11576 1799 24919 14241 28611 5712 30209 23635 23263 17830 8514 3336 5783 31032 24988 3339 23705 14670 15940 9868 28391 7728 4985 5537 26320 13124 30997 9354 28703 5494 30562 23865 17554 20700 32302 29714 31629 16794 21026 20463 528 31748 25679 21351 20199 3 18442 19280 10016 15290 15098 9858 1730 8553 29551 23262 444 21649 10485 7055 12572 12889 2858 17552 129 14640 6860 8046 28627 5044 6422 25936 7473 19154 333 8756 11051 25391 16534 23931 22322 27079 8202 11176 21580 13269 5388 3429 15885 22002 27610 16327 14274 5760 99 25042 3055 24393 31065 4928 24572 29284 14726 28798 20523 26201 31587 4088 1997 11652 19175 25750 10678 11455 20893 10630 7406 9531 10489 15165 4521 30127 9964 440 21113 30389 22710 20488 13763 30320 8188 23821 17264 6003 9754 14722 25316 5854 6586 26425 9524 15818 27302 30120 32659 488 30682 18341 2574 6500 25566 26222 5754 1552 850 1516 13226 23486 6602 7737 28901 17901 22749 15967 30102 4265 21881 31843 16710 14508 26489 9858 10184 18121 10106 6586 23987 31371 32490 24972 10518 2073 32353 1281 2662 27996 28213 9451 29115 8804 19785 20333 21564 10504 12837 11453 13784 16333 16972 26921 31544 15370 13257 88 6129 20297 3340 19923 27901 15343 5876 1731 27500 15648 13613 253 20311 9693 6332 27451 1814 31599 216 23212 6834 3849 32252 20912 10141 23209 27450 9180 17569 9535 4562 23365 25111 12817 11011 763 31321 32606 13345 31443 9850 22593 18664 14442 27444 15833 30736 6502 21025 27559 17953 11007 9006 31543 21129 2751 21070 27395 21228 17541 30059 3220 22715 20944 22178 7658 5384 7738 30383 4638 3737 13635 5030 19782 32315 32080 2021 22425 17752 9204 5446 19412 13004 8045 28825 1244 2549 26994 8529 20132 9 22316 2429 7761 9133 12930 10746 5532 25283 30873 30439 21880 8835 24987 20570 25589 7629 5560 29521 10597 32189 13163 30444 18621 24705 2815 10713 22334 16999 13137 25615 14164 32058 23511 8383 6846 20943 32737 29831 28655 12251 24351 13290 16052 12295 24420 24061 14360 29767 15273 8034 32133 25191 9301 378 25387 27879 13500 6615 12709 24072 25061 19952 10970 22823 18064 32537 22050 1610 28791 12978 22443 7161 4821 2718 22298 15183 16933 8695 14709 21072 7468 8703 12864 30845 1849 9050 28646 31142 22444 12155 26459 768 8885 30301 768 9847 32606 3187 14535 10309 28364 17633 19351 19140 18625 31724 15346 3200 20838 26031 11221 3217 23624 13584 14815 2344 8352 12019 6070 11367 8919 32174 24487 7030 22345 22716 28044 31699 25162 21685 16115 25321 6502 28541 7804 25573 10733 11452 7811 12229 2224 22159 9983 31665 3845 13950 6826 8591 26897 23213 22371 11986 14662 15190 5584 21906 5418 21622 27719 29666 16218 1991 30959 9566 17103 23279 30498 4867 21345 26103 17430 30020 6025 1534 5821 31833 16235 10287 28393 4827 3348 16624 32692 11918 12800 17244 6431 9086 9695 11508 21753 11597 23192 31121 2819 8907 29071 5022 20561 1991 22052 5251 1523 28965 24956 26980 15061 28465 27523 12300 25828 29235 27953 24612 13682 23876 6157 5289 3292 15199 1776 2461 20842 19131 27660 8700 11638 21080 24620 2545 30929 30168 14141 18762 20834 31633 32270 23082 10000 14560 1364 6141 16099 6336 7665 6833 29029 28827 27254 21028 10319 5984 27110 30168 24417 29397 8125 7406 11410 28463 32048 4690 4969 5344 28599 14643 10155 12464 14537 5558 17206 16911 29414 19947 21293 9129 26587 14080 85 8764 7234 17076 14015 30118 13384 24847 20648 20547 5555 10832 26781 30837 27427 25896 5859 8324 27799 15653 7701 28841 4404 15729 19215 30565 3650 25532 3083 29719 18296 24439 778 12238 5241 20803 6006 22620 32670 7849 19205 4524 25078 11787 21984 12629 139 7898 19973 22638 3815 21002 24041 24485 15063 22211 20066 18827 9583 3930 26565 12082 27982 8831 28235 23290 11812 3256 15802 1448 6513 26126 18497 27064 3215 12293 31907 8437 18418 16338 22424 70 11183 6345 9328 26059 7483 19221 12537 11560 31349 10923 30883 15905 15847 29313 2786 26984 14409 10234 12500 1970 839 21157 5668 3856 4485 23592 31022 4733 32735 11383 9827 24499 3061 22090 17135 12100 21479 26573 10906 6885 17245 13209 25836 19981 20939 9699 30101 9407 30195 31219 3084 11427 29355 25560 22133 15452 24800 603 31688 5398 6875 11569 304 16990 27843 29557 7857 11319 11875 24149 18190 3946 10798 19467 26346 20509 30080 30479 7981 23207 7719 32138 32425 1699 20770 32014 32510 12355 24232 5765 18618 31720 16237 28264 709 30703 32544 32050 12541 4301 12344 17427 26141 2910 19696 14824 19683 31098 10640 1131 19570 23754 23535 20903 19445 27609 15414 26032 22917 11630 25318 12432 14413 24090 18461 132 6635 21517 26645 9321 1818 21805 4333 4721 15246 4970 15788 26394 31008 17227 8835 20577 5675 205 20050 14642 19254 30318 1390 18724 979 31365 14754 3171 14022 5844 17267 22509 2410 11872 16552 15874 16977 13697 15370 9941 20267 12341 617 24968 25065 27321 18655 16727 26914 8283 2137 6932 26549 1162 12882 14035 28592 25135 8930 2534 17520 17728 29688 19724 26634 25233 5603 17125 6122 12782 20760 17065 31930 28264 5423 23322 4486 28908 14638 8631 1565 6426 4362 563 8378 14419 31851 8741 25315 13076 21168 11521 30098 19587 20531 7239 8339 20552 26830 20474 20781 3742 9118 2900 29700 24234 25606 10680 9790 6923 17399 8168 485 19634 25455 7544 2444 30708 20800 25219 30518 16349 28947 7580 29299 21448 684 26119 29132 23340 11888 9770 19297 21433 15140 2622 14545 5540 20727 18250 21082 29247 28099 20050 17730 8396 28304 16331 18805 28051 21082 13139 6767 24370 6676 10143 30556 17973 27116 11957 28286 27366 20433 10843 30672 19814 21298 11471 8937 11261 12809 20920 23586 17327 28441 9053 3323 32528 5491 24597 7099 1881 21823 13310 3671 27578 23993 15090 21653 21234 6266 24247 32113 27422 10745 25974 23488 3022 23377 17519 24083 15966 20805 2794 7646 8324 13441 31089 27098 21797 12066 6460 20391 30573 25465 26605 26806 17438 16396 27518 28262 27944 21726 17015 22893 19323 3569 1124 4218 25369 30472 1670 27161 28015 27825 22729 1494 24037 24195 3830 16549 5300 1701 10794 18561 13303 14992 13959 4948 19206 14613 28969 15639 19455 6561 2651 4410 32677 16576 22539 17222 27502 32224 3196 6849 24023 13912 17723 5714 5371 16808 1620 18981 13156 23298 30149 32145 30497 19466 27443 19448 26392 13531 10204 19695 27294 5450 19149 1951 32581 31598 21845 13675 245 31584 21433 6100 14399 21567 32297 26009 8941 26231 26099 4898 10974 24387 759 31262 16145 15729 13659 9324 767 4966 3968 15927 2094 10849 31796 29542 17923 27396 5417 15411 17368 12048 15781 23833 10574 24688 21884 7668 10468 2425 6204 31844 30921 14960 31911 23922 19951 26700 10342 630 3425 10430 19451 17720 10198 28527 31480 24405 21382 12425 21614 16612 6204 3192 4009 14938 25005 26866 16666 32171 3080 6964 27541 15026 7886 1935 12733 23251 10724 23076 15292 8159 30951 15596 9527 10807 4287 12027 1920 10805 11127 24837 29710 16583 9803 15137 29483 21341 5635 28621 23277 22278 30080 16434 4711 22229 8853 21930 5408 14730 7448 21632 19141 2670 15416 3063 1818 18815 19984 26509 17974 1741 21885 1408 30960 19748 23085 5778 30101 8171 32505 27401 24796 4172 21109 20731 8987 11670 3525 10184 15802 21727 13746 19688 5352 9197 20989 17895 398 4951 12018 19373 16257 31719 23873 6915 3068 2883 25610 11859 2125 27596 22839 17583 13518 9159 21518 23061 6167 28603 28166 29938 26226 7193 17882 27876 15760 8738 14557 3780 18554 3078 18061 16868 24521 25673 21098 4757 31258 13419 14345 17901 189 22216 25956 23239 23725 8125 28532 7178 20421 8716 21762 10287 28208 4738 25530 4605 19490 3799 29569 32407 13253 19413 27656 25785 30583 28348 18593 20799 13362 5606 3666 21735 6219 21671 26664 32599 608 9847 24014 2914 3212 7507 22622 8327 22492 20320 26999 19898 11271 18386 2192 8552 16217 32524 14988 693 15089 7688 22414 12296 20268 4346 25358 1737 27745 11568 10797 30825 29647 28221 7237 20643 29907 3670 4549 12546 19039 32252 30012 26020 11431 32476 691 30525 2845 26099 4416 7774 17056 18677 6872 31736 1008 6896 30309 15132 32358 31788 30744 4 8930 16727 27649 18519 4868 30174 7901 8361 4255 23966 26927 21313 362 14780 28818 29728 23289 21713 4941 28223 2796 6731 12840 30231 12135 15632 19582 1382 13250 12644 8852 17457 9601 32268 21033 773 21894 10419 8526 10883 6533 16782 27512 17436 16825 21052 25812 24 5845 13296 10202 23773 29758 4305 16677 21358 21111 5281 11650 11570 21980 4253 32327 26359 13716 5797 6118 17718 3777 20381 16065 32152 30713 4371 26176 6586 26874 30242 30241 30509 19097 32662 31248 2242 17148 32592 28536 15620 4617 21229 9624 11781 4638 12706 25561 32350 12547 4458 19039 1905 29981 26468 8414 15601 25316 18294 1967 27045 22167 10039 16163 10600 9774 18444 30999 17525 8080 3217 26824 20449 14086 15674 1257 14185 31215 58 12275 5230 6582 2211 15037 30270 8962 16591 30028 32661 13612 29696 16876 32100 19958 15171 24191 23248 32122 12698 22550 5758 5728 13145 23742 7438 11860 11473 24477 11493 695 15404 17213 10032 5525 10904 32295 29221 5848 168 28084 20620 28091 14838 19232 21119 30337 23566 30432 17262 18534 29831 3637 14694 6102 17011 32514 10642 2269 3834 3547 9730 1503 31041 606 10411 28297 14737 28102 4015 13063 8117 16317 11999 12151 20643 7538 6782 23454 1887 12012 3912 8922 23837 22174 7091 30808 23718 1851 28277 31623 25852 11211 28230 16589 8001 22015 32487 4728 3029 9921 5987 15863 27327 9488 3477 16714 846 30475 15082 27831 3839 12619 24169 19647 19362 12406 24560 28752 30905 12561 22720 24380 17441 6550 1339 21738 27124 10951 1005 4940 2989 2625 1482 25104 653 23380 21430 3611 12606 23058 19787 32051 6327 11430 17622 10747 13407 24296 23714 7205 24949 15406 18810 12515 21935 31588 7785 18334 26913 29023 1476 9963 14177 15726 2922 11707 23529 9266 23627 9425 19900 3248 7975 17530 7757 21413 19096 17016 8092 26905 7251 31807 13730 27703 5547 4452 22255 14684 8535 594 146 7790 18036 10047 8505 10607 3278 4958 16281 17746 30299 14422 24592 6413 12808 24052 28041 23791 27576 16924 10657 6708 23946 29958 26632 2263 1627 17831 6441 32679 10637 21100 26637 10909 31750 4654 28540 31597 8827 26979 19046 2139 25838 8081 898 19792 15221 18697 10293 813 6206 30929 693 351 4816 20194 16238 23988 22675 13971 421 15980 1683 26966 11099 4756 20609 2466 23668 9359 6395 27184 27928 15094 24332 21866 26458 15266 9463 26913 17431 1286 13360 23166 28449 29122 25260 13883 22173 14966 15706 28946 2474 10708 15346 23670 10820 22266 25069 21378 13927 23038 28884 13359 27767 11978 4030 30921 20191 14890 3093 1444 2809 9507 6040 32523 18222 647 10150 15225 7262 29382 22969 9740 16001 14855 305 9526 6287 31863 16979 22966 24478 5345 24209 18886 24906 14720 5643 19606 4442 25361 16983 18938 6817 10795 3709 8799 30497 3795 28742 21252 21367 24140 18103 10855 16755 11052 16856 8445 32262 2997 30650 10789 20065 4705 19127 4447 14427 13503 1276 14265 6675 5246 19781 17803 25815 24263 22760 9316 32581 13777 32533 21828 4784 22703 4444 30476 18374 32108 7535 4402 13935 4441 31786 30393 3320 21414 20944 21857 12912 32304 25496 17691 26706 28826 26216 27583 12133 4511 10976 2305 29665 23206 19098 32418 17619 16791 15024 10467 6850 29934 26495 6975 29075 7694 15787 5465 14762 7639 17508 17460 25682 30586 11495 9122 3935 23948 31559 5119 5138 5466 11373 30750 32060 9341 32093 28548 10406 31918 14268 212 6065 6619 10127 18571 13114 18042 7750 32749 1728 31261 9977 28736 14025 1606 20465 9783 13953 1405 11626 31153 165 16545 31127 15780 22431 32380 30183 11347 20723 29081 29063 25544 12249 14426 6440 1662 21291 9029 29698 21598 14978 13727 12825 20460 26269 5180 12223 17347 6402 22165 21082 15423 14055 28187 8807 18809 21330 6091 18111 7544 9344 3075 17689 23205 26756 24724 11217 9856 32048 20760 2280 21650 12088 24966 21067 15778 1173 3843 9048 5932 1576 763 29598 24335 19616 31857 10980 12166 21661 25491 13933 3929 24085 15250 891 4693 23288 26288 786 24057 12559 28827 6910 26226 21290 21241 10264 30666 30074 26692 30148 24412 24892 216 20158 18827 11159 20042 2839 10163 21448 6396 16250 12896 3196 29678 29108 23486 13437 25303 30323 18001 17041 9845 23630 5094 10400 8993 2054 8394 29204 5542 26124 32569 8581 2643 21827 18201 4502 19023 12038 3561 23834 13101 4205 6900 4732 11456 18636 11210 13917 12593 4477 23792 22910 6990 29408 2775 17889 12069 31391 16139 1835 4306 10039 32173 21069 7573 11444 1827 4195 23336 30395 25102 4316 29007 3022 16764 9948 25008 13772 7008 13790 29157 5047 831 29086 31696 30906 7467 21814 6190 15467 15605 5511 22383 24653 1439 4826 31942 11929 7440 3527 28540 13886 18443 9047 22153 18470 610 21605 4709 22971 26471 7242 2332 28842 32420 23225 30881 31718 16588 5351 17252 15857 26865 20975 27430 11351 26102 5750 11788 26747 72 17290 31219 13717 1993 23760 10756 4092 7693 31199 17032 18849 28873 26343 7933 20444 30856 14486 18025 32364 4000 22332 23022 9145 30053 17709 20895 6747 4508 9319 31634 7136 3123 16244 28982 12490 3375 6546 30439 25048 14565 18962 31168 3719 15469 9982 8113 3287 32340 766 7633 30290 18321 636 18677 17995 30906 19463 5249 11620 8056 6133 29566 15955 57 25421 20461 22501 26660 18916 3163 28738 23378 19397 17334 9588 29499 470 15199 14115 366 1465 15232 19874 19078 4337 16800 12848 27993 5958 16757 23671 19058 24682 26617 31065 32706 25820 5312 20204 19602 29197 32136 8643 29116 22978 12306 32624 25115 12473 26160 4678 22336 24719 24608 25188 7782 4321 14616 10223 12712 11186 27170 4766 29042 268 28458 10876 4662 19946 16981 11753 4704 10838 8597 4322 19595 8911 21115 387 31221 237 22604 5578 14640 1864 20566 1694 27931 9365 26756 7184 2065 25106 9265 12000 5984 4389 25402 25411 8957 31807 24407 227 13686 7943 5035 3112 8231 10677 17049 1206 20401 21435 3546 27959 17576 16811 21708 90 1164 597 19725 14107 5883 26415 2377 1094 25380 15355 25168 26934 383 8611 30316 18403 21948 4200 13041 5660 1273 17723 7189 22032 7223 7787 18178 30739 31503 11137 14890 2463 22177 29801 10203 21913 26830 15314 14099 22998 8103 16598 20117 13790 24868 17374 5692 30448 14106 21184 8848 25926 30567 8235 32407 13977 15471 27205 2030 18920 16845 13458 20759 20598 31042 22808 32277 2066 27633 13505 20278 27290 15311 29440 20017 30402 22869 15543 20848 30226 16760 20057 18863 25646 22490 14668 3526 23386 12610 21649 6339 10813 25162 8358 28220 30437 9815 8875 6372 4876 29390 31429 30555 26010 19077 14784 19275 3435 25976 14840 16048 8529 190 32633 21367 12637 27323 25445 29003 27994 8086 3734 1452 5275 2541 1925 27201 4855 15304 22378 1391 28433 13260 2725 22826 28125 690 4189 29707 3935 25847 15719 30883 18614 9428 30313 12048 8026 22640 17727 21709 2466 20565 23965 7887 14473 18976 21750 8653 11953 15229 4509 5343 18600 18771 13611 8778 6763 16188 1568 15002 17960 6968 7373 7666 12360 418 22385 4001 13485 11619 22946 26613 16696 12389 6894 30804 31119 6219 18627 30088 18461 19295 32652 23643 90 12747 7965 1124 30284 32525 15953 21792 12110 12197 497 20805 4112 3856 23256 27730 11231 23034 28501 24171 6438 20656 13265 27236 28469 19924 30386 18972 20802 13652 25471 13580 10925 20380 16708 13599 137 25867 28728 15812 31831 11684 27293 14658 5140 26887 19688 77 29559 12959 10530 28630 2676 26140 10638 4391 25860 10276 18060 2094 12328 26437 5053 15385 4139 26927 26728 28196 11304 14368 26396 12975 4813 1183 10391 148 23646 20333 3559 19127 11773 28601 32207 22495 552 18835 4460 19652 23171 18595 29720 7273 16088 29467 31375 21163 11612 10474 13649 27930 24628 25395 583 13833 3127 2045 25000 21985 31990 9772 4638 3771 12793 11696 14373 22061 24908 30716 5300 16739 827 13497 3872 30578 19289 3772 5693 7658 12999 7478 7366 29610 30642 29995 13567 3577 13854 28454 3992 27602 32226 29994 25045 21374 2548 27883 30444 11881 31975 4670 28847 22318 18098 21967 31594 3572 6067 5138 30991 1789 1268 14460 26512 18300 16812 8434 1677 17575 4617 21890 47 30990 23340 26705 6484 25643 29814 4564 11500 10298 7682 23875 30370 14923 16498 31051 28864 22677 23023 260 18764 15117 15467 20770 12919 12855 297 15727 4665 10300 21888 14969 21813 14398 1244 20359 26850 20456 25605 25810 8428 3913 420 16882 3032 23266 16387 20631 31464 21501 15380 30585 16702 11073 9653 8594 28227 388 27954 17802 1866 19168 27147 371 1137 26633 24312 7862 5320 27101 32555 4685 28086 13117 22741 19763 10648 27932 18667 28953 31146 213 23594 15707 12075 3266 16729 18482 24508 1802 12494 22571 10506 698 27955 29144 22444 19224 16778 28101 30031 18740 8303 10925 528 26559 18589 12270 23849 26912 4788 21563 8400 25541 19514 15505 30044 22711 17375 18284 8106 6258 27397 14394 20159 27123 12415 14096 27822 10258 30873 30876 30396 18706 22105 8795 8387 1143 27141 16139 18388 2839 2277 22372 30752 1396 4682 771 2585 19529 5584 1447 6868 3939 11999 19615 25522 24242 14712 24707 13631 18848 17454 7971 6490 2209 25458 20925 24727 25868 18964 29555 7905 21289 19207 15355 23396 29323 10341 17049 30634 26784 21426 19786 4611 18822 869 8258 26411 800 16804 24985 30503 32362 22608 25922 29040 27401 15937 30012 11347 26919 27091 27148 11160 1405 11425 10090 31330 15281 31888 20795 23638 29411 19984 19647 6655 10371 25502 25100 27761 15717 13965 4539 19501 6423 23815 29409 10053 6002 4431 11585 17089 29807 15944 25535 19264 10812 13627 8984 22755 30095 28885 10449 27238 29755 2415 5741 7056 4609 16019 25827 6862 14248 14779 11343 8731 28751 28251 5096 30498 30979 15138 32306 13991 28301 12413 17781 28451 3469 8286 7277 20142 14541 23355 26435 26658 14799 15961 8380 21374 28584 30538 8113 11656 24593 8373 20671 15031 24252 7253 14399 12623 16100 20036 20600 28366 17192 7546 6164 7303 16281 23952 25809 1933 8722 1482 20089 12242 21704 22869 17940 21136 12065 25805 11612 29672 26826 29955 625 11210 17156 27388 29646 14868 23614 4413 28796 9726 25065 22085 2181 27829 5256 4188 12716 838 20998 11915 17499 12222 6733 31468 17629 32143 16916 21028 19661 20790 18424 29741 10447 24347 32719 21081 32382 2489 2105 32403 3749 27390 15991 8168 26545 3317 9345 4167 7270 5538 27986 1925 21202 27182 9095 30628 16255 3396 7720 32341 24813 15546 14278 4027 3903 4724 31686 15986 13365 11397 15868 17616 16218 8344 20604 13163 10879 16015 19372 26843 8807 26217 7326 14017 10180 30057 19869 22536 15458 3700 15622 7274 28835 16828 13914 27958 25899 22427 8592 3921 5340 17089 15536 18043 31493 32146 5021 15828 27094 22218 10802 22943 9496 29027 3217 22085 5403 31672 14776 22685 9711 25066 7254 21354 9942 32643 1500 26150 15866 5209 24534 6398 17500 182 1916 6685 7693 3253 1924 24621 25248 16111 9275 22043 27103 1623 28116 29723 4285 15203 19712 27117 19084 15469 15807 15966 21104 10584 11381 2065 4372 630 10560 9087 2715 11945 25993 2621 26842 11465 12249 12158 30148 29766 25070 1496 6693 18703 29967 4683 13460 1714 12444 12415 23714 9924 9961 27725 26200 1667 29772 5249 14817 12218 29813 27358 21379 10469 25086 5475 32724 4246 5187 13517 10282 2071 20340 17501 17235 12625 23273 9947 16006 17388 20917 1243 29338 32184 24957 24639 31094 29260 27531 253 30665 32237 15390 7971 12027 24497 19460 28184 27491 16099 16491 27940 8890 8106 7413 8498 22223 2790 23562 7125 4221 27995 24946 29578 1754 29201 31523 4413 18098 23546 25687 30478 28212 8918 32482 25684 20714 22356 14019 31458 6127 4730 17401 18826 12892 29766 16024 24544 10755 30102 14619 20288 12384 4421 21756 15635 30668 2199 1410 27213 11508 18135 29915 21562 9354 10302 16234 21115 4410 10263 31074 22092 21984 14881 12948 12040 18424 21301 27781 30702 30293 25896 14020 4901 18455 20979 25978 22014 2007 6673 5699 19066 12068 18985 30524 10764 1587 27629 1118 30111 27602 32322 12042 20187 22942 14497 9188 30372 30838 7613 8933 5348 22831 8550 7596 11659 9609 26029 4117 26324 23906 21321 18189 1225 29738 4409 2469 15881 25239 8107 22629 19913 154 6685 14050 26393 15249 25794 13202 28008 31934 18727 8672 5707 21496 17942 14972 22650 15008 5819 5621 19483 727 13573 13705 24644 18158 23375 3644 2491 27934 18752 18983 20224 4986 20463 13331 21901 30753 26955 326 21596 12728 24251 28061 4010 19480 17153 24027 16891 7491 17252 31809 5726 26269 5134 863 6130 5721 31667 11049 15017 15665 17011 27725 24908 3162 2050 3524 1215 28599 17670 12455 24711 6221 31680 20037 18569 2807 23535 23666 3092 1882 24049 3106 2594 23324 6444 22070 23259 30033 22956 19093 12891 20022 14605 21887 24757 30498 16028 28446 4920 26297 19129 26974 15089 21859 20864 20479 15472 15869 10408 3817 19663 22222 27818 21183 8177 5820 16678 22454 19464 6847 28803 6824 1626 32663 11991 8292 7492 954 1030 18249 21375 1425 8493 22291 162 12771 9537 17140 6888 30354 5363 20967 3636 3461 2519 8513 1106 13285 23750 13704 640 24972 20353 3465 45 5306 31126 27557 23296 1546 31880 18796 19484 22693 17194 10605 17059 6838 20556 15179 18296 10782 24729 1556 20042 20840 25536 3279 6094 12543 4306 8532 2379 18590 6635 22881 7516 13577 17173 23017 20978 30203 24681 27823 14232 20575 32632 5140 1531 8386 16361 4397 22953 12809 8035 4121 32537 27743 15533 28306 28396 28786 22035 20673 24434 29407 1804 30807 3952 27626 2331 4569 11808 28531 31731 27707 1146 16678 30942 20145 17330 30961 30047 24770 7426 19387 14614 22686 1705 19539 27365 25521 21044 14502 31057 32120 30716 10038 25131 10388 15344 10439 7535 15901 3988 12891 12140 18232 21834 25441 9765 5356 \n10\n1 2 3 4 1 2 3 4 5 5",
"output": "Andrew\nAndrew\nAniruddha\nAndrew\nAndrew\nAndrew\nAniruddha\nAndrew\n",
"type": "stdin_stdout"
}
]
} |
|
taco | verifiable_code | https://www.codechef.com/problems/LIKECS04 | Solve the following coding problem using the programming language python:
Read problems statements in Mandarin chinese, Russian and Vietnamese as well.
Chef Dobby loves playing games, especially games related to numbers. So, today Bhuvan gave him a new game. The description of the game goes as follows :
Consider an array A of N non-negative integers. You can do the following move any number of times, pick two numbers from the array (x, y), such that x ≥ y and convert them into (x - y, 2 * y). The aim of the game is to make the array contains exactly (N - 1) zeros. If Dobby achieves this, after any number of steps, he wins the game.
Bhuvan wants to know the odds to choose an initial array satisfying for every index i, the condition 0 ≤ A[i] ≤ B[i] where B is given in input and Dobby wins the game with such an array. So please help him counting the number of such arrays, since the answer can be very large, output the answer modulo 10^{9} + 7.
------ Input section ------
The first line contains N, denoting the number of elements in the array.
Next line contains N space separated integers, denoting the elements of the array.
------ Output section ------
Output the number of possible winning arrays modulo 10^{9} + 7.
------ Input constraints ------
2 ≤ N ≤ 50
0 ≤ B[i] ≤ 50, where B[i] denotes the i^{th} element of the array.
------ Sample Input ------
3
2 0 1
------ Sample Output ------
4
------ Explanation ------
The possible winning arrays are (1, 0, 0), (0, 0, 1), (2, 0, 0) and (1, 0, 1).
Let us consider why array (2, 0, 1) is losing. The only move is 2 pick the pair (2, 1). After applying the operation, we get the pair (1, 2). Thus, only the order of elements in the array change and we are in a situation of deadlock. Thus, Chef Dobby can't convert the array to contain 2 zeros.
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
def solve0(x):
lr = (max(x) + 1) * len(x) + 1
ret = [0] * lr
ret[0] = 1
for y in x:
ret0 = [0] * lr
for (i, z) in enumerate(ret):
if z == 0:
continue
for j in range(i, i + y + 1):
ret0[j] += z
ret = ret0
q = 0
for i in range(100):
j = 1 << i
if j >= len(ret):
break
q += ret[j]
return q
def solve(x):
ret = 0
for i in range(1, max(x) + 1):
if i % 2 == 1:
y = [z // i for z in x]
ret += solve0(y)
return ret
import sys
f = sys.stdin
t = int(f.readline())
x = list(map(int, f.readline().split()))
print(solve(x) % (10 ** 9 + 7))
``` | vfc_140248 | {
"difficulty": "very_hard",
"memory_limit": "50000 bytes",
"memory_limit_bytes": null,
"problem_url": "https://www.codechef.com/problems/LIKECS04",
"time_limit": "2 seconds"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "3\n2 0 1",
"output": "4",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://codeforces.com/problemset/problem/959/D | Solve the following coding problem using the programming language python:
Mahmoud has an array a consisting of n integers. He asked Ehab to find another array b of the same length such that:
b is lexicographically greater than or equal to a. b_{i} ≥ 2. b is pairwise coprime: for every 1 ≤ i < j ≤ n, b_{i} and b_{j} are coprime, i. e. GCD(b_{i}, b_{j}) = 1, where GCD(w, z) is the greatest common divisor of w and z.
Ehab wants to choose a special array so he wants the lexicographically minimal array between all the variants. Can you find it?
An array x is lexicographically greater than an array y if there exists an index i such than x_{i} > y_{i} and x_{j} = y_{j} for all 1 ≤ j < i. An array x is equal to an array y if x_{i} = y_{i} for all 1 ≤ i ≤ n.
-----Input-----
The first line contains an integer n (1 ≤ n ≤ 10^5), the number of elements in a and b.
The second line contains n integers a_1, a_2, ..., a_{n} (2 ≤ a_{i} ≤ 10^5), the elements of a.
-----Output-----
Output n space-separated integers, the i-th of them representing b_{i}.
-----Examples-----
Input
5
2 3 5 4 13
Output
2 3 5 7 11
Input
3
10 3 7
Output
10 3 7
-----Note-----
Note that in the second sample, the array is already pairwise coprime so we printed it.
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
MAX_NUM = 2000000
prime_str = '2 3 5 7 11 13 17 19 23 29 ' + '31 37 41 43 47 53 59 61 67 71 ' + '73 79 83 89 97 101 103 107 109 113 ' + '127 131 137 139 149 151 157 163 167 173 ' + '179 181 191 193 197 199 211 223 227 229 ' + '233 239 241 251 257 263 269 271 277 281 ' + '283 293 307 311 313 317 '
prime_list = [int(p) for p in prime_str.split()]
used = [False] * MAX_NUM
n = int(input())
a = list(map(int, input().split()))
def record(x):
t = []
for p in prime_list:
if x % p == 0:
while x % p == 0:
x = x // p
t.append(p)
if x == 1:
break
if x != 1:
t.append(x)
for ti in t:
for i in range(ti, MAX_NUM, ti):
used[i] = True
b = []
for ai in a:
if not used[ai]:
b.append(ai)
record(ai)
else:
temp = ai + 1
while used[temp]:
temp += 1
b.append(temp)
record(temp)
break
temp = 2
while len(b) < len(a):
while used[temp]:
temp += 1
b.append(temp)
record(temp)
print(' '.join((str(x) for x in b)))
``` | vfc_140256 | {
"difficulty": "hard",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": "https://codeforces.com/problemset/problem/959/D",
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "5\n2 3 5 4 13\n",
"output": "2 3 5 7 11 ",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | Solve the following coding problem using the programming language python:
Rani and Nandu decide to play a number game. Both play alternately, Rani playing the first move.
In each of their moves, they can subtract a maximum of k and a minimum of 1 from n i.e. each of them must subtract from n, any natural number less than or equal to k , and the new value of n will be the result of this subtraction.
They continue playing this game until the value of n becomes zero or negative. The person to play the last move loses the game.
Both are super-intelligent and hence both play optimally. Given the values of n and k, find out the winner of the game.
Input:
First line consists of t, the number of test case. The next t lines are such that each line consists of two space separated integers n and k.
Output:
Print the answer to each test case on a new line, 'Rani' if the winner of the game is Rani and 'Nandu' if the winner of the game is Nandu.
Constraints:
1 ≤ t ≤ 1000000
1 ≤ n ≤ 1000000.
SAMPLE INPUT
2
1 2
4 1
SAMPLE OUTPUT
Nandu
Rani
Explanation
For n=1 and k=2 1st move Rani : n = 1 - 1 = 0. Since, no more turn is possible and Rani palyed the last move, she loses the game. So,the winner of the game is Nandu.
For n=4 and k=1 1st move Rani : n = 4 - 1 = 3, 2nd move Nandu : n = 3 - 1 = 2, third move Rani n = 2 - 1 = 1 and last move Nandu n=1-1=0 Now, n has become zero/negative. So, the game is over. Since Nandu palyed the last move, he loses the game. So, the winner of the game is Rani.
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
for i in range(eval(input())):
N,k = list(map(int, input().split()))
if (N)%(k+1)==1:
print("Nandu")
else:
print("Rani")
``` | vfc_140260 | {
"difficulty": "unknown_difficulty",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": null,
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "151\n329 257\n705 487\n768 697\n217 104\n969 371\n430 316\n588 276\n609 496\n9 5\n290 222\n333 100\n741 626\n817 489\n235 7\n623 179\n490 253\n623 456\n841 344\n861 786\n984 656\n441 46\n734 237\n501 249\n609 19\n745 41\n905 459\n542 66\n689 39\n830 758\n781 521\n468 283\n197 26\n828 14\n714 621\n81 81\n899 243\n27 18\n305 233\n702 685\n801 261\n1 1\n704 93\n661 93\n81 65\n97 58\n249 87\n188 175\n775 631\n41 17\n800 611\n339 12\n941 779\n126 57\n745 1\n313 33\n358 356\n133 97\n59 41\n820 367\n80 77\n889 471\n379 209\n549 177\n380 73\n705 655\n756 427\n289 41\n733 401\n17 17\n841 411\n519 507\n46 1\n977 526\n705 297\n889 838\n501 321\n45 41\n315 205\n881 15\n912 793\n683 538\n247 43\n217 101\n359 301\n99 81\n201 1\n659 633\n626 301\n81 44\n765 31\n178 121\n513 277\n616 221\n467 321\n935 569\n583 401\n1 1\n80 67\n619 188\n799 753\n235 191\n426 235\n761 155\n57 1\n381 33\n524 421\n811 451\n989 621\n651 469\n322 24\n480 449\n65 21\n918 401\n619 491\n322 67\n369 246\n801 453\n113 89\n240 29\n173 1\n993 293\n869 796\n696 621\n652 633\n467 127\n462 103\n497 247\n956 207\n401 317\n469 77\n951 642\n16 1\n991 735\n957 301\n68 63\n560 365\n245 241\n401 11\n909 329\n761 186\n753 282\n426 417\n245 204\n9 1\n597 505\n721 495\n85 73\n399 1\n557 249\n835 207\n629 111",
"output": "Rani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nNandu\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nNandu\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nNandu\nRani\nRani\nNandu\nRani\nNandu\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nNandu\nRani\nRani\nRani\nRani\nRani\nRani\nNandu\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nNandu\nRani\nRani\nRani\nRani\nRani\nRani\nNandu\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nNandu\nRani\nRani\nRani\nRani\nRani\nRani\nNandu\nRani\nRani\nNandu\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nRani\nNandu\nRani\nRani\nRani\nNandu\nRani\nRani\nRani",
"type": "stdin_stdout"
}
]
} |
|
taco | verifiable_code | https://codeforces.com/problemset/problem/1695/D1 | Solve the following coding problem using the programming language python:
The only difference between this problem and D2 is the bound on the size of the tree.
You are given an unrooted tree with $n$ vertices. There is some hidden vertex $x$ in that tree that you are trying to find.
To do this, you may ask $k$ queries $v_1, v_2, \ldots, v_k$ where the $v_i$ are vertices in the tree. After you are finished asking all of the queries, you are given $k$ numbers $d_1, d_2, \ldots, d_k$, where $d_i$ is the number of edges on the shortest path between $v_i$ and $x$. Note that you know which distance corresponds to which query.
What is the minimum $k$ such that there exists some queries $v_1, v_2, \ldots, v_k$ that let you always uniquely identify $x$ (no matter what $x$ is).
Note that you don't actually need to output these queries.
-----Input-----
Each test contains multiple test cases. The first line contains the number of test cases $t$ ($1 \le t \le 100$). Description of the test cases follows.
The first line of each test case contains a single integer $n$ ($1 \le n \le 2000$) — the number of vertices in the tree.
Each of the next $n-1$ lines contains two integers $x$ and $y$ ($1 \le x, y \le n$), meaning there is an edges between vertices $x$ and $y$ in the tree.
It is guaranteed that the given edges form a tree.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2000$.
-----Output-----
For each test case print a single nonnegative integer, the minimum number of queries you need, on its own line.
-----Examples-----
Input
3
1
2
1 2
10
2 4
2 1
5 7
3 10
8 6
6 1
1 3
4 7
9 6
Output
0
1
2
-----Note-----
In the first test case, there is only one vertex, so you don't need any queries.
In the second test case, you can ask a single query about the node $1$. Then, if $x = 1$, you will get $0$, otherwise you will get $1$.
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
from collections import deque
K = input
def f(x, pre):
q = deque([(x, pre)])
dp = [0] * (n + 1)
R = []
while q:
(u, p) = q.popleft()
R.append(u)
for v in g[u]:
if v != p:
g[v].remove(u)
q.append((v, u))
for u in R[::-1]:
z = c = 0
for v in g[u]:
z += dp[v]
if dp[v] == 0:
c += 1
dp[u] = z + max(0, c - 1)
return dp[x]
for _ in [0] * int(K()):
n = int(K())
g = [[] for _ in range(n + 1)]
for _ in range(n - 1):
(u, v) = map(int, K().split())
g[u].append(v)
g[v].append(u)
if n == 1:
z = 0
else:
for u in range(1, n + 1):
if len(g[u]) >= 3:
z = f(u, 0)
break
else:
z = 1
print(z)
``` | vfc_140266 | {
"difficulty": "hard",
"memory_limit": "256 megabytes",
"memory_limit_bytes": null,
"problem_url": "https://codeforces.com/problemset/problem/1695/D1",
"time_limit": "2 seconds"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "3\n1\n2\n1 2\n10\n2 4\n2 1\n5 7\n3 10\n8 6\n6 1\n1 3\n4 7\n9 6\n",
"output": "0\n1\n2\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://practice.geeksforgeeks.org/problems/multiple-of-x-closest-to-n1719/1 | Solve the following coding problem using the programming language python:
Given two numbers X and N, find the smallest value of (N*K) which is closest to X. Where K is any positive number greater than zero. If in case there are two numbers closer to N, then return the larger number.
Example 1:
Input: X = 9, N = 2
Output: 10
Expalantion: 8 and 10 both are multiple of 2 and
closest to 9, in this case we return the larger
number that is 10.
Example 2:
Input: X = 2855, N = 13
Output: 2860
Explanation: 2860 is multiple of 13 and
closest to 13.
Your Task:
You don't need to read or print anything. Your task is to complete the function closestNo() which takes X and N as input parameter and return the number which is multiple of N and closest to X. In case of multiple numbers return the bigger one.
Expected Time Compelxity: O(1)
Expected Space Complexity: O(1)
Constraints:
1 <= X, N <= 1000000
Write your solution by modifying this code:
```python
#User function Template for python3
class Solution:
def closestNo(self, x, n):
# Code here
```
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
class Solution:
def closestNo(self, x, n):
rem = x % n
a = x - rem
b = a + n
if x - a < b - x and a != 0:
return a
else:
return b
``` | vfc_140270 | {
"difficulty": "easy",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": "https://practice.geeksforgeeks.org/problems/multiple-of-x-closest-to-n1719/1",
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "X = 9, N = 2",
"output": "10",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://codeforces.com/problemset/problem/1330/D | Solve the following coding problem using the programming language python:
Dreamoon likes sequences very much. So he created a problem about the sequence that you can't find in OEIS:
You are given two integers d, m, find the number of arrays a, satisfying the following constraints:
* The length of a is n, n ≥ 1
* 1 ≤ a_1 < a_2 < ... < a_n ≤ d
* Define an array b of length n as follows: b_1 = a_1, ∀ i > 1, b_i = b_{i - 1} ⊕ a_i, where ⊕ is the bitwise exclusive-or (xor). After constructing an array b, the constraint b_1 < b_2 < ... < b_{n - 1} < b_n should hold.
Since the number of possible arrays may be too large, you need to find the answer modulo m.
Input
The first line contains an integer t (1 ≤ t ≤ 100) denoting the number of test cases in the input.
Each of the next t lines contains two integers d, m (1 ≤ d, m ≤ 10^9).
Note that m is not necessary the prime!
Output
For each test case, print the number of arrays a, satisfying all given constrains, modulo m.
Example
Input
10
1 1000000000
2 999999999
3 99999998
4 9999997
5 999996
6 99995
7 9994
8 993
9 92
10 1
Output
1
3
5
11
17
23
29
59
89
0
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
t = int(input())
for _ in range(t):
(d, m) = map(int, input().split())
a = []
i = 0
while d > (1 << i + 1) - 1:
a.append(1 << i)
i += 1
a.append((1 << i) - (1 << i + 1) + d + 1)
ans = 1
for x in a:
ans *= x + 1
ans %= m
print((ans - 1) % m)
``` | vfc_140271 | {
"difficulty": "medium_hard",
"memory_limit": "256.0 megabytes",
"memory_limit_bytes": null,
"problem_url": "https://codeforces.com/problemset/problem/1330/D",
"time_limit": "1.0 seconds"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "10\n1 1000000000\n2 999999999\n3 99999998\n4 9999997\n5 999996\n10 99995\n7 9994\n8 993\n9 92\n10 1\n",
"output": "1\n3\n5\n11\n17\n119\n29\n59\n89\n0\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "10\n1 1000000000\n2 999999999\n3 99999998\n4 9999997\n5 999996\n10 99995\n7 9994\n8 993\n12 92\n19 1\n",
"output": "1\n3\n5\n11\n17\n119\n29\n59\n87\n0\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "10\n1 1000000000\n2 999999999\n3 99999998\n4 9999997\n5 999996\n6 99995\n5 9994\n8 993\n9 92\n10 1\n",
"output": "1\n3\n5\n11\n17\n23\n17\n59\n89\n0\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "10\n1 1000000000\n2 999999999\n3 99999998\n4 9999997\n9 999996\n10 99995\n7 9994\n8 993\n9 92\n19 1\n",
"output": "1\n3\n5\n11\n89\n119\n29\n59\n89\n0\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "10\n1 1000000000\n2 999999999\n3 99999998\n4 9999997\n5 999996\n10 99995\n9 9994\n8 993\n12 92\n19 1\n",
"output": "1\n3\n5\n11\n17\n119\n89\n59\n87\n0\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "10\n1 1000000100\n2 999999999\n3 99999998\n4 9999997\n5 999996\n10 99995\n4 9994\n8 993\n9 92\n10 1\n",
"output": "1\n3\n5\n11\n17\n119\n11\n59\n89\n0\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | Solve the following coding problem using the programming language python:
Welcome to PC Koshien, players. Physical condition management is important to participate in the event. It is said that at the turn of the season when the temperature fluctuates greatly, it puts a strain on the body and it is easy to catch a cold. The day you should be careful about is the day when the difference between the maximum temperature and the minimum temperature is the largest. When the maximum and minimum temperatures of a day are given for 7 days, create a program that outputs the value obtained by subtracting the minimum temperature from the maximum temperature for each day.
input
Input data is given in the following format.
a1 b1
a2 b2
::
a7 b7
The input consists of 7 lines, and line i is given an integer representing the maximum temperature ai (-40 ≤ ai ≤ 40) and the minimum temperature bi (-40 ≤ bi ≤ 40) on day i. On all days, the maximum temperature ai is always above the minimum temperature bi.
output
Output the temperature difference for 7 days in 7 lines.
Example
Input
30 19
39 20
19 18
25 20
22 21
23 10
10 -10
Output
11
19
1
5
1
13
20
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
c = 0
while c <= 6:
(a, b) = map(int, input().split())
c = c + 1
print(a - b)
``` | vfc_140275 | {
"difficulty": "unknown_difficulty",
"memory_limit": "134.217728 megabytes",
"memory_limit_bytes": null,
"problem_url": null,
"time_limit": "1.0 seconds"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "30 19\n39 20\n19 18\n4 20\n22 21\n23 10\n10 -10",
"output": "11\n19\n1\n-16\n1\n13\n20\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "30 19\n39 20\n19 18\n4 20\n22 21\n23 10\n15 -10",
"output": "11\n19\n1\n-16\n1\n13\n25\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "30 19\n39 1\n19 18\n4 20\n22 21\n23 10\n15 -10",
"output": "11\n38\n1\n-16\n1\n13\n25\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "30 19\n39 1\n19 18\n2 20\n22 21\n23 10\n15 -10",
"output": "11\n38\n1\n-18\n1\n13\n25\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "30 19\n39 1\n19 18\n2 20\n43 21\n23 10\n15 -10",
"output": "11\n38\n1\n-18\n22\n13\n25\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "30 31\n39 1\n19 18\n2 20\n43 21\n23 10\n15 -10",
"output": "-1\n38\n1\n-18\n22\n13\n25\n",
"type": "stdin_stdout"
}
]
} |
|
taco | verifiable_code | Solve the following coding problem using the programming language python:
King Kala the Fighter has an army of N soldiers. Each soldier is either a BanVeer or a TalwarBaaz. There are M soldiers in the army who are TalwarBaaz. The King forms a strategy. For each battle, he doesn’t have the resources to send his army in groups of more than K soldiers. Now, a group of at most K soldiers can win the battle if and only if there is at least one TalwarBaaz in the group. Count the number of ways that a group can be formed that wins the battle.
Input
The first line will contain the number of battles T. For each battle, three space separated integers N, M and K are given.
Output
For each battle, print the required answer modulo 10^9+9.
Constraints
1 ≤ T ≤ 100
1 ≤ N, K ≤ 2 x 10^5
1 ≤ M ≤ N
*Subtask 1 (40 points): *
N = K
*Subtask 2 (40 points): *
N, K ≤ 500
*Subtask 3 (200 points): *
Original Constraints
Note: For each subtask, the rest of the constraints remain the same except the ones mentioned.
SAMPLE INPUT
3
2 2 2
4 2 3
10 4 3
SAMPLE OUTPUT
3
11
134
Explanation
In the first case, the groups with at least one TalwarBaaz can be formed in total three ways, i.e. the King can send the first or the second Talwarbaaz alone, or send them both together.
In second case, he can form 2 groups of size 1, 5 groups of size 2, and 4 groups of size 3, making a total of 11 ways.
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
fact = [0]*200005
inv = [0]*200005
MOD = 1000000009
def invMod (n):
return pow(n, MOD-2, MOD)
def solve (n, r):
if r < 0 or r > n:
return 0
x = ( fact[n] * ( inv[r]%MOD * inv[n-r]%MOD)%MOD)%MOD
return x
def main():
fact[0] = 1
inv[0] = 1
for i in range(1,200003):
fact[i] = (fact[i-1]*i)%MOD
inv[i] = invMod(fact[i])
tc = int(input())
while tc>0:
tc = tc - 1
n, m, k = list(map(int, input().split()))
ans = 0
for i in range(1,k+1):
ans = (ans + solve(n,i) - solve(n-m,i) + MOD)%MOD
print(ans)
main()
``` | vfc_140279 | {
"difficulty": "easy",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": null,
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "100\n22 7 426\n445 77 81\n447 141 497\n202 59 325\n482 8 417\n156 120 402\n228 33 357\n239 38 211\n179 6 340\n68 48 16\n440 423 93\n449 218 310\n355 48 431\n80 77 218\n434 44 176\n355 131 80\n422 121 11\n67 60 174\n191 155 335\n34 19 480\n221 172 1\n152 125 231\n302 95 396\n22 7 399\n107 100 432\n2 2 333\n475 217 84\n10 4 328\n354 110 409\n480 243 121\n451 433 420\n197 31 425\n167 166 438\n200 186 104\n483 268 306\n381 135 59\n53 28 54\n462 163 435\n279 147 327\n49 17 95\n200 120 158\n139 67 130\n467 12 458\n81 26 466\n473 191 275\n81 13 455\n218 206 307\n335 238 52\n30 1 69\n148 36 454\n413 149 315\n186 180 382\n392 142 8\n53 13 457\n350 131 61\n185 38 305\n480 284 390\n52 39 443\n240 233 469\n370 246 443\n7 3 299\n412 255 199\n71 37 455\n217 22 343\n427 427 342\n84 63 496\n375 101 258\n449 325 40\n428 238 455\n17 15 433\n268 137 307\n456 30 477\n368 335 382\n41 6 264\n269 21 98\n198 119 15\n413 278 23\n71 71 357\n404 314 410\n344 339 484\n410 199 262\n394 135 107\n46 19 487\n479 442 185\n291 130 42\n134 6 251\n89 54 229\n212 84 297\n323 323 297\n280 237 338\n176 39 465\n240 21 55\n3 2 256\n13 1 474\n431 150 109\n176 112 151\n199 172 325\n393 244 237\n374 221 346\n319 246 157",
"output": "4161536\n959225991\n227276978\n961737592\n419237241\n767128480\n706861272\n924736613\n924814534\n777483793\n554511012\n690485864\n977346884\n896097504\n845430264\n959316094\n693882742\n510851451\n670667047\n179836263\n172\n208695062\n699785659\n4161536\n44643069\n3\n951089101\n960\n825339020\n762320697\n132215995\n686061354\n566201594\n44669759\n76973938\n128263146\n140121769\n85360798\n157849716\n653387511\n856088787\n900144610\n808358178\n97490211\n214539465\n770491866\n327094688\n413689282\n536870912\n217849760\n543622806\n699691916\n839777848\n662058325\n365367388\n526629967\n988974497\n586829913\n725778649\n144485640\n112\n761654193\n993756170\n921258863\n302432674\n335462914\n403318542\n983085110\n607785208\n131068\n653435866\n367559555\n314453028\n663497708\n279176222\n568229520\n340452545\n173625191\n168892748\n953552515\n986019274\n841544089\n609326624\n324442318\n621044423\n849036916\n442183960\n936078595\n804627354\n431791010\n550660626\n519299069\n6\n4096\n477964843\n956844784\n742430853\n704415247\n800271886\n61334901",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "100\n60522 25373 60522\n36426 3283 36426\n48772 42553 48772\n33447 12441 33447\n3497 2182 3497\n7775 4025 7775\n63982 13450 63982\n68417 59990 68417\n31932 25366 31932\n95728 4921 95728\n23857 10095 23857\n86918 70159 86918\n39679 9165 39679\n63340 51388 63340\n61868 23700 61868\n87940 56803 87940\n24593 10900 24593\n36991 9438 36991\n23355 22953 23355\n11431 9158 11431\n91757 17799 91757\n74934 4876 74934\n63676 4115 63676\n96221 14327 96221\n95922 95255 95922\n48511 24653 48511\n75467 53147 75467\n84691 44746 84691\n99835 43489 99835\n44965 11765 44965\n81221 21781 81221\n32501 31945 32501\n8325 5431 8325\n29302 16023 29302\n9896 7230 9896\n97489 77288 97489\n70607 663 70607\n74432 67278 74432\n53968 44509 53968\n87475 36767 87475\n84 46 84\n79694 35996 79694\n7354 688 7354\n38409 831 38409\n2643 1916 2643\n51951 33405 51951\n4420 157 4420\n28607 7162 28607\n72167 29439 72167\n63438 14766 63438\n6986 3126 6986\n76483 41058 76483\n9806 7783 9806\n76858 14465 76858\n56553 2044 56553\n23554 8408 23554\n72325 53610 72325\n9279 1488 9279\n27327 12534 27327\n29832 9683 29832\n8200 1520 8200\n87658 51523 87658\n89992 66170 89992\n26467 14521 26467\n7958 4343 7958\n46600 27666 46600\n61473 18901 61473\n79775 12281 79775\n89770 27205 89770\n83718 61508 83718\n16807 2048 16807\n81898 45980 81898\n86530 52961 86530\n79569 13439 79569\n3384 1642 3384\n8913 4746 8913\n16315 1891 16315\n89334 20510 89334\n1392 166 1392\n71008 1905 71008\n70962 9019 70962\n14850 10681 14850\n22061 9806 22061\n71588 58773 71588\n2980 524 2980\n41890 21442 41890\n68747 63660 68747\n81740 1853 81740\n87469 71969 87469\n12516 6631 12516\n96007 109 96007\n3299 2661 3299\n57163 50323 57163\n63571 32939 63571\n87455 54267 87455\n93590 75453 93590\n14427 9660 14427\n41342 38800 41342\n84239 80623 84239\n65875 5601 65875",
"output": "230340093\n586397581\n587616502\n538103851\n7269864\n223355451\n113767916\n864148543\n345162365\n398343787\n609662524\n646905064\n449894513\n412323853\n103713471\n540829230\n397852727\n931701342\n531406361\n428099570\n368575101\n549583268\n407107541\n217698834\n213301965\n297676120\n893982363\n558634234\n983277070\n10717824\n39820903\n107002088\n493512442\n820364179\n238711900\n416288456\n848017615\n201343052\n512105389\n623423802\n459655597\n468412016\n969017877\n577317406\n469157122\n959844389\n820585928\n178805686\n550017427\n57858287\n741071886\n826072202\n711634028\n662391285\n208185893\n127132416\n111369695\n634675790\n633903363\n7887222\n758439717\n538321679\n299172426\n30328915\n581343595\n739405370\n708357994\n147607856\n891028457\n519284455\n982364332\n160123365\n600917124\n909213873\n52798075\n900210871\n528058950\n17618169\n322247126\n703357640\n428074097\n756598967\n114256430\n762049651\n14323003\n553000452\n890005818\n882226648\n590905857\n474578340\n846772030\n78323673\n265778425\n510205199\n234543429\n2907999\n7606163\n241425255\n665649859\n682017057",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "100\n60522 25373 7560\n179445 23827 84231\n133447 53015 13390\n47202 32455 17227\n163982 142306 38465\n102156 89532 98398\n95728 4921 83009\n130739 105183 127009\n139679 37003 19318\n86568 62788 24664\n87940 56803 5493\n1449 337 1306\n23355 22953 20031\n8580 7057 3138\n174934 93178 41476\n29355 591 10015\n195922 157297 161263\n34067 18633 632\n84691 44746 17311\n62034 35789 56376\n181221 138800 130674\n148152 109381 146659\n29302 16023 6652\n119022 43909 19167\n70607 663 9937\n31502 7756 1195\n187475 52242 12609\n187010 160764 139058\n7354 688 207\n16480 12723 2841\n151951 102847 27453\n128197 17551 67384\n72167 29439 4233\n89200 85386 86904\n176483 167434 41216\n190881 117102 1655\n56553 2044 52754\n22962 22705 12563\n109279 28643 99427\n82549 36122 4409\n108200 29920 22458\n90639 823 63895\n26467 14521 5007\n2581 2578 1379\n61473 18901 43292\n12581 9657 7780\n183718 98146 1947\n19335 10363 14702\n186530 175831 121049\n14148 11048 6538\n108913 48491 76559\n103686 20160 49160\n101392 92758 3056\n133553 92424 66738\n114850 85631 54961\n21185 14758 1670\n2980 524 2330\n70052 40631 64767\n181740 50213 89769\n177370 506 18493\n196007 136041 148977\n30412 24115 18155\n63571 32939 13777\n82217 2209 49244\n114427 3697 91427\n104584 92559 48856\n165875 11851 133008\n171449 89806 127444\n137428 54766 113575\n73517 13344 12577\n11768 549 3923\n176456 158046 34497\n45368 79 24658\n73541 29378 39912\n143269 134729 85409\n58698 23843 7543\n185413 181563 150427\n114571 52173 36341\n45904 18030 31186\n135844 36699 58424\n90410 40429 42642\n1394 511 553\n168546 152921 78585\n4979 2338 2782\n189291 59101 181336\n199134 12128 134301\n192089 9919 173248\n110212 32896 53921\n41823 36624 11045\n82280 5597 2498\n127176 53343 66605\n35740 4001 24415\n110003 30107 29802\n66013 33812 20683\n54931 54332 40574\n16176 6192 9343\n84199 24159 2297\n168893 76446 131437\n144374 91711 103532\n115819 73693 56621",
"output": "298329743\n488117296\n951305008\n748104855\n878882767\n194452384\n284168738\n988983819\n137470627\n808320208\n385537512\n190319739\n809242016\n303145723\n816203003\n708701907\n328130542\n164800733\n560664557\n548968978\n73971269\n972559710\n88099998\n677410712\n97773990\n541590905\n719462743\n598388582\n992668649\n453160268\n621253831\n8510420\n605809308\n342610735\n818848252\n604301537\n333951844\n174165382\n578807997\n863326412\n142695743\n622440171\n165280013\n718207026\n234830570\n66055839\n282859177\n926022764\n245426710\n66407673\n154211307\n341348948\n364527787\n327409331\n784355508\n778245288\n134351142\n542279011\n943052353\n882561912\n397077792\n532075983\n154996129\n519275687\n409318575\n884514104\n911612996\n216277681\n444346356\n821367139\n803163900\n965063149\n255232830\n745879219\n97931801\n160225522\n889317982\n930001037\n616923552\n965362418\n30720940\n836631522\n51649562\n846057006\n203437807\n716911464\n394706717\n81768509\n91710770\n603941290\n401548675\n485667781\n448561270\n263047280\n444618249\n590489594\n125495720\n687358568\n939996108\n756436130",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "100\n60522 25373 36426\n179445 23827 90081\n133447 53015 103497\n47202 32455 94325\n163982 142306 168417\n102156 89532 135902\n95728 4921 123857\n130739 105183 129211\n139679 37003 63340\n86568 62788 60016\n87940 56803 24593\n1449 337 90310\n23355 22953 11431\n8580 7057 49218\n174934 93178 163676\n29355 591 99080\n195922 157297 148511\n34067 18633 138674\n84691 44746 199835\n62034 35789 159980\n181221 138800 32501\n148152 109381 147731\n29302 16023 109896\n119022 43909 8399\n70607 663 174432\n31502 7756 28333\n187475 52242 100084\n187010 160764 27328\n7354 688 138409\n16480 12723 128121\n151951 102847 4420\n128197 17551 97925\n72167 29439 163438\n89200 85386 16104\n176483 167434 109806\n190881 117102 145559\n56553 2044 123554\n22962 22705 97435\n109279 28643 27327\n82549 36122 186595\n108200 29920 187658\n90639 823 49130\n26467 14521 7958\n2581 2578 147466\n61473 18901 179775\n12581 9657 199455\n183718 98146 16807\n19335 10363 91552\n186530 175831 179569\n14148 11048 56954\n108913 48491 16315\n103686 20160 150382\n101392 92758 71008\n133553 92424 14957\n114850 85631 22061\n21185 14758 64305\n2980 524 41890\n70052 40631 190943\n181740 50213 87469\n177370 506 20443\n196007 136041 3299\n30412 24115 6699\n63571 32939 187455\n82217 2209 179343\n114427 3697 141342\n104584 92559 54496\n165875 11851 131258\n171449 89806 80040\n137428 54766 172455\n73517 13344 34433\n11768 549 127307\n176456 158046 52977\n45368 79 54882\n73541 29378 173764\n143269 134729 122098\n58698 23843 1515\n185413 181563 96523\n114571 52173 158357\n45904 18030 121410\n135844 36699 97484\n90410 40429 49262\n1394 511 41107\n168546 152921 197987\n4979 2338 194685\n189291 59101 186542\n199134 12128 52751\n192089 9919 35729\n110212 32896 38297\n41823 36624 15297\n82280 5597 144338\n127176 53343 7965\n35740 4001 29555\n110003 30107 118256\n66013 33812 53974\n54931 54332 69609\n16176 6192 91151\n84199 24159 68825\n168893 76446 193737\n144374 91711 76846\n115819 73693 165157",
"output": "382003321\n548018780\n595462493\n867330897\n665610127\n639790707\n398343787\n822216326\n383861349\n649668222\n522142654\n554583972\n79594406\n537214834\n321184644\n502547877\n907853656\n271198234\n558634234\n939761445\n848296958\n250704644\n820364179\n472464587\n848017615\n163440065\n670469934\n999936349\n969017877\n745274148\n678632542\n816616710\n550017427\n303784271\n458063931\n872800384\n208185893\n155852242\n867095461\n930891328\n850338427\n708667375\n429136365\n274528669\n708357994\n905585425\n585382125\n271876841\n683250962\n199969075\n819680029\n345251769\n856945379\n290120566\n154257561\n168762580\n14323003\n835662580\n24875921\n777618199\n101516553\n315041855\n510205199\n376668848\n295890356\n323506713\n601406848\n791297682\n924850986\n129220260\n397481032\n400612945\n481407699\n786900246\n855493688\n314631808\n23846999\n250533409\n179087754\n618117753\n784526808\n913685972\n515065122\n159198889\n565372183\n105402279\n709716557\n511485460\n850935293\n342996530\n718719307\n26618983\n294457049\n370920952\n877271458\n617198320\n997303673\n427963596\n983689034\n114531890",
"type": "stdin_stdout"
}
]
} |
|
taco | verifiable_code | Solve the following coding problem using the programming language python:
A calculator scholar has discovered a strange life form called an electronic fly that lives in electronic space. While observing the behavior of the electronic flies, the electronic flies at the (x, y, z) point in this space then move to (x', y', z') indicated by the following rules. I found out.
<image>
However, a1, m1, a2, m2, a3, m3 are positive integers determined for each individual electronic fly. A mod B is the remainder of the positive integer A divided by the positive integer B.
Further observation revealed that some electronic flies always return to (1,1,1) shortly after being placed at (1,1,1). Such flies were named return flies (1).
Create a program that takes the data of the return fly as input and outputs the minimum number of movements (> 0) that return to (1,1,1). Note that 1 <a1, m1, a2, m2, a3, m3 <215.
(1) Returns when a1 and m1, a2 and m2, a3 and m3 are relatively prime (common divisor 1), respectively.
Input
Given multiple datasets. Each dataset is given in the following format:
a1 m1 a2 m2 a3 m3
The input ends with a line containing 6 0s. The number of datasets does not exceed 50.
Output
For each dataset, output the minimum number of moves (integer) that return to (1,1,1) on one line.
Example
Input
2 5 3 7 6 13
517 1024 746 6561 4303 3125
0 0 0 0 0 0
Output
12
116640000
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
def gcd(m, n):
while n:
(m, n) = (n, m % n)
return m
def lcm(m, n):
return m // gcd(m, n) * n
def f(a, m):
x = a
cnt = 1
while x != 1:
x = x * a % m
cnt += 1
return cnt
while 1:
(a1, m1, a2, m2, a3, m3) = map(int, input().split())
if a1 == 0:
break
t1 = f(a1, m1)
t2 = f(a2, m2)
t3 = f(a3, m3)
print(lcm(t1, lcm(t2, t3)))
``` | vfc_140287 | {
"difficulty": "unknown_difficulty",
"memory_limit": "134.217728 megabytes",
"memory_limit_bytes": null,
"problem_url": null,
"time_limit": "1.0 seconds"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "2 5 5 7 6 13\n517 1024 746 6561 4303 3125\n0 0 0 0 0 0",
"output": "12\n116640000\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "2 5 5 7 6 13\n517 1334 746 6561 4303 3125\n0 0 0 0 0 0",
"output": "12\n140332500\n",
"type": "stdin_stdout"
}
]
} |
|
taco | verifiable_code | https://codeforces.com/problemset/problem/1553/D | Solve the following coding problem using the programming language python:
You are given two strings $s$ and $t$, both consisting of lowercase English letters. You are going to type the string $s$ character by character, from the first character to the last one.
When typing a character, instead of pressing the button corresponding to it, you can press the "Backspace" button. It deletes the last character you have typed among those that aren't deleted yet (or does nothing if there are no characters in the current string). For example, if $s$ is "abcbd" and you press Backspace instead of typing the first and the fourth characters, you will get the string "bd" (the first press of Backspace deletes no character, and the second press deletes the character 'c'). Another example, if $s$ is "abcaa" and you press Backspace instead of the last two letters, then the resulting text is "a".
Your task is to determine whether you can obtain the string $t$, if you type the string $s$ and press "Backspace" instead of typing several (maybe zero) characters of $s$.
-----Input-----
The first line contains a single integer $q$ ($1 \le q \le 10^5$) — the number of test cases.
The first line of each test case contains the string $s$ ($1 \le |s| \le 10^5$). Each character of $s$ is a lowercase English letter.
The second line of each test case contains the string $t$ ($1 \le |t| \le 10^5$). Each character of $t$ is a lowercase English letter.
It is guaranteed that the total number of characters in the strings over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, print "YES" if you can obtain the string $t$ by typing the string $s$ and replacing some characters with presses of "Backspace" button, or "NO" if you cannot.
You may print each letter in any case (YES, yes, Yes will all be recognized as positive answer, NO, no and nO will all be recognized as negative answer).
-----Examples-----
Input
4
ababa
ba
ababa
bb
aaa
aaaa
aababa
ababa
Output
YES
NO
NO
YES
-----Note-----
Consider the example test from the statement.
In order to obtain "ba" from "ababa", you may press Backspace instead of typing the first and the fourth characters.
There's no way to obtain "bb" while typing "ababa".
There's no way to obtain "aaaa" while typing "aaa".
In order to obtain "ababa" while typing "aababa", you have to press Backspace instead of typing the first character, then type all the remaining characters.
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
n = int(input())
for i in range(n):
(s, t) = (input()[::-1], input()[::-1])
i = j = 0
while i < len(s) and j < len(t):
if s[i] == t[j]:
i += 1
j += 1
else:
i += 2
print('YES' if j == len(t) else 'NO')
``` | vfc_140295 | {
"difficulty": "medium",
"memory_limit": "256 megabytes",
"memory_limit_bytes": null,
"problem_url": "https://codeforces.com/problemset/problem/1553/D",
"time_limit": "2 seconds"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "4\nababa\nba\nababa\nbb\naaa\naaaa\naababa\nababa\n",
"output": "YES\nNO\nNO\nYES\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "1\naababa\nababa\n",
"output": "YES\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "10\npaxghjnihn\nhn\nhdmevxvn\nn\nazdfhfxem\nxem\neowhldode\ndode\nwlclsnht\nct\nbpflheocamv\nv\nflejfh\nhixqqbnikthccagc\ndugt\neebmbpykcsmi\noivgrzwppny\nzhfyiuu\nebkqjcbcwviqkojnzyruwygtbvwws\nbofzr\n",
"output": "YES\nYES\nYES\nYES\nYES\nYES\nNO\nNO\nNO\nNO\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "1\nabccc\nab\n",
"output": "NO\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "1\naabc\nab\n",
"output": "NO\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "1\nabc\nb\n",
"output": "NO\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | Solve the following coding problem using the programming language python:
Monk visits Biksy, the largest trading market in the land. Biksy has traders from all over the world.
There are a total of N items indexed from 1 to N, that are traded in the market by a total of M dealers. Each trader is characterized by three integers, say i, j, C , meaning that the trader will take i'th item from you and give you j'th item and C units of money. A negative value of C signifies that, in order to get j'th item from the trader, you will have to give i'th item and C units of money. Note that there can be multiple dealers who deal with the same pair of items and some crazy dealers might trade the same item as well i.e. (i = j).
Monk visits Biksy having the item number 1. He collects the data of all the traders and wants to know if there is way by which he can become infinity rich if he acts smart! i.e. if there are a series of profits, repeating which, will always increase the number of units of money with him! Help Monk find the answer to this question. Note that Monk can go to any dealer any number of times.
Input:
First line contains an integer T. T test cases follow.
First line of each test case contains two space-separated integers N, M
Next M lines contain three space-separated integers i, j and C, the characteristics of the traders.
Output:
Print "Yes"(without the quotes) if such a way exists, "No"(without the quotes) otherwise.
Print the answer to each test case in a new line.
Constraints:
1 ≤ T ≤ 10
1 ≤ N ≤ 100
1 ≤ M ≤ 1000
1 ≤ i, j ≤ N
-1000 ≤ C ≤ 1000
SAMPLE INPUT
2
5 6
1 2 2
2 3 -1
3 4 -7
4 5 0
2 3 -7
3 5 6
5 8
1 5 10
2 3 -6
5 2 5
4 5 9
1 5 1
2 4 -10
2 3 -2
4 1 1
SAMPLE OUTPUT
No
Yes
Explanation
For the first test case, there is no such way possible.
For the second test case, Monk starts with item 1.
Trades it for 5th item gaining 10 units.
Trades 5th for 2nd gaining 5 units.
Trades 2nd for 4th losing 10 units.
Trades 4th for 1st gaining 1 unit.
Thereby, gaining 6 units in this process and it can be repeated indefinitely to make Monk infinitely rich!
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
from collections import defaultdict
import sys
T = int(input())
inf = sys.maxsize
for test in range(T):
N,M = [int(x) for x in input().split()]
D = [[inf]*(N+1) for x in range(N+1) ]
dicti = defaultdict(lambda :-1*inf)
for l in range(M):
i,j,c = [int(x) for x in input().split()]
if dicti[(i,j)] < c:
dicti[(i,j)] = c
#print dicti
for i in range(1,N+1):
D[i][i] = 0
for key,value in dicti.items():
D[key[0]][key[1]] = -1*value
'''
for i in range(N):
if D[i][i]>0:
D[i][i]=0
'''
#for i in range(N):
#print D[i]
for k in range(1,N+1):
for i in range(1,N+1):
for j in range(1,N+1):
if D[i][k] == inf or D[k][j]==inf:
continue
elif D[i][j] > D[i][k]+D[k][j]:
D[i][j] = D[i][k]+D[k][j]
flag = 0
for i in range(1,N+1):
if D[i][i] < 0 and D[1][i]!=inf :
print("Yes")
flag = 1
break
if flag == 0:
print("No")
``` | vfc_140305 | {
"difficulty": "medium",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": null,
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "2\n1 1\n1 1 4\n4 6\n1 3 -3\n2 3 1\n4 2 -5\n2 4 4\n1 3 -3\n1 2 1\n",
"output": "Yes\nNo",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "10\n6 22\n1 4 -446\n2 6 -930\n3 4 -499\n4 1 -979\n5 3 -867\n5 1 -17\n6 3 -56\n6 4 -77\n6 5 -668\n6 4 -835\n2 5 -548\n6 2 -920\n2 1 -479\n5 4 -18\n1 3 -505\n1 6 -138\n1 3 87\n1 2 -476\n1 4 -183\n1 5 -289\n5 3 -463\n5 3 -567\n7 27\n1 6 -631\n2 3 46\n3 5 -533\n4 6 -650\n5 2 -992\n6 1 -984\n7 4 81\n4 5 -161\n6 7 -827\n3 6 -852\n6 4 -352\n1 2 -827\n1 7 -338\n6 4 -68\n4 5 -936\n6 1 -626\n3 5 -39\n3 2 46\n2 1 -736\n3 2 -835\n4 1 -918\n7 5 -230\n7 1 -86\n5 3 30\n6 5 -640\n6 7 -899\n2 7 -952\n11 26\n1 4 -377\n2 9 -544\n3 4 -24\n4 5 -538\n5 9 41\n6 10 -738\n7 9 -407\n8 3 -639\n9 2 54\n10 4 -105\n10 9 -162\n9 3 -858\n5 9 -917\n11 4 -57\n11 8 -455\n9 2 -109\n11 10 -784\n1 7 -569\n6 11 -920\n9 10 20\n3 6 -916\n11 4 -720\n4 3 -936\n3 9 -691\n11 3 -832\n10 2 -658\n98 519\n1 50 -794\n2 62 -915\n3 34 -166\n4 49 -392\n5 73 78\n6 36 -650\n7 88 -183\n8 34 -380\n9 33 -712\n10 5 -717\n11 7 -953\n12 90 -134\n13 91 -364\n14 35 -687\n15 28 -202\n16 8 -701\n17 70 -874\n18 54 -380\n19 53 -453\n20 82 -103\n21 32 -990\n22 81 -431\n23 24 -108\n24 86 -809\n25 88 -615\n26 83 -35\n27 83 -87\n28 42 -960\n29 47 -488\n30 97 -307\n31 35 -656\n32 10 -70\n33 11 -34\n34 29 -360\n35 50 -655\n36 53 -37\n37 19 -124\n38 47 -235\n39 48 31\n40 23 -412\n41 13 -980\n42 95 -458\n43 13 -983\n44 23 -518\n45 48 -596\n46 84 -813\n47 66 97\n48 33 -342\n49 41 -121\n50 34 -247\n51 30 -711\n52 74 -16\n53 97 -438\n54 11 -420\n55 4 -853\n56 6 -167\n57 30 -380\n58 67 -151\n59 44 -270\n60 97 -934\n61 37 -547\n62 57 15\n63 62 -544\n64 73 -623\n65 64 -203\n66 60 -526\n67 3 -53\n68 36 -880\n69 9 -771\n70 4 21\n71 79 -109\n72 1 -440\n73 20 -746\n74 58 -409\n75 55 -349\n76 88 -810\n77 1 -168\n78 91 -316\n79 14 -828\n80 20 -113\n81 91 17\n82 6 -635\n83 1 -878\n84 94 -297\n85 28 -857\n86 29 -641\n87 73 -23\n88 25 -856\n89 3 -882\n90 21 -71\n91 67 64\n92 74 -432\n93 21 -575\n94 95 -973\n95 25 -676\n96 35 -914\n97 5 -958\n50 56 -236\n3 52 -627\n17 41 28\n17 47 95\n74 64 -182\n68 73 -676\n43 85 -616\n17 35 -649\n10 40 -384\n25 22 -175\n53 71 -304\n24 9 -619\n86 77 -481\n83 69 -347\n71 95 -185\n28 96 -147\n13 87 -904\n54 14 38\n40 92 -578\n18 34 -301\n22 1 -761\n26 43 -189\n78 16 -785\n60 8 -447\n31 17 78\n75 88 -837\n98 53 -49\n79 67 -817\n50 76 -17\n50 16 -577\n60 70 -282\n73 3 -617\n68 3 -317\n89 63 -328\n63 14 -762\n27 52 -589\n47 88 -614\n44 32 -888\n98 85 -832\n92 71 -489\n71 82 -167\n21 80 -571\n41 73 -648\n84 78 -168\n65 57 -898\n24 79 -43\n67 39 -47\n34 16 88\n2 39 -165\n29 97 -593\n72 93 -366\n73 61 -904\n34 79 -252\n15 72 -580\n32 43 -688\n15 9 -313\n70 22 -485\n33 20 -140\n30 69 -370\n62 27 -473\n19 90 -872\n80 43 -477\n73 86 -5\n70 13 -889\n5 23 -674\n35 77 -359\n25 51 -108\n13 18 -434\n29 83 -633\n96 64 -578\n74 13 -322\n5 43 -369\n57 37 -310\n76 23 -976\n98 94 -843\n64 68 -565\n47 18 -964\n72 54 94\n84 75 -958\n68 75 -805\n34 42 -865\n18 29 -938\n7 56 -107\n38 80 -282\n58 98 -940\n84 81 -207\n27 67 -944\n44 98 -483\n6 13 -933\n25 81 -88\n54 26 -343\n54 14 -339\n74 95 -310\n70 65 -846\n12 19 -354\n97 70 -841\n13 17 92\n46 41 -674\n82 93 -608\n56 32 -703\n40 26 -961\n48 97 -675\n7 32 95\n50 31 -797\n23 85 -464\n97 17 -605\n97 52 -701\n19 25 -433\n35 51 -393\n98 78 -477\n5 19 -955\n98 76 -670\n79 92 -674\n98 44 -682\n75 25 -34\n77 61 -557\n97 17 -973\n18 42 -325\n51 58 -936\n91 83 -238\n63 84 -100\n69 50 -248\n98 45 -236\n72 98 -149\n35 52 76\n14 64 -198\n35 19 -698\n71 22 -227\n88 24 -406\n55 49 -705\n86 15 -659\n29 89 -752\n14 52 7\n4 52 -377\n40 94 -45\n65 18 -744\n75 7 -127\n30 18 -633\n37 87 -505\n78 35 -201\n66 64 -801\n45 85 -488\n51 1 -996\n59 23 -477\n6 34 -898\n94 89 -37\n32 27 -836\n56 70 -339\n46 82 -267\n45 19 -815\n60 32 -644\n62 85 -768\n91 95 -194\n26 36 -359\n69 59 -710\n32 87 -264\n9 75 -493\n76 20 -660\n64 13 -693\n59 66 35\n97 75 9\n76 55 -750\n69 89 -790\n11 21 -590\n13 42 59\n76 85 11\n4 93 -558\n94 62 -821\n73 25 -690\n1 53 -61\n35 19 -861\n56 1 -261\n8 93 -839\n33 2 -875\n55 54 -976\n87 33 26\n51 38 -103\n28 67 -726\n58 4 -33\n33 11 -191\n7 90 -209\n93 78 -750\n98 77 -505\n64 77 -157\n21 28 -465\n30 34 -506\n2 96 -55\n19 86 -190\n56 28 -840\n91 93 -344\n13 7 -653\n41 52 -804\n14 55 -825\n47 63 -597\n87 83 -866\n69 46 -991\n36 69 -568\n4 93 -242\n69 11 -148\n79 56 -973\n5 14 -512\n5 1 -957\n19 29 -610\n70 7 -550\n87 90 -356\n91 27 -796\n52 38 -938\n85 74 -172\n42 87 -524\n4 52 -753\n25 18 -506\n37 65 -950\n30 81 -918\n91 14 -590\n24 44 -664\n3 16 -841\n25 33 -591\n81 36 41\n96 70 -271\n30 89 -954\n15 2 -48\n92 5 -869\n57 77 -566\n51 42 -964\n49 77 -765\n38 96 -948\n77 72 -202\n39 81 -401\n71 22 -427\n24 26 -293\n59 76 -875\n59 30 -694\n19 83 -156\n53 78 -805\n5 67 20\n44 98 -873\n91 30 -972\n74 81 -32\n32 5 -719\n49 89 -50\n58 91 -379\n18 50 -495\n83 97 -4\n88 97 -972\n97 98 -502\n52 87 -343\n42 73 -152\n50 20 -683\n3 68 -413\n89 62 -709\n58 55 -949\n91 81 -892\n86 83 -771\n46 79 -797\n22 2 -572\n50 65 -11\n26 59 -776\n89 24 -820\n4 15 -642\n76 51 -655\n80 31 -227\n79 6 -27\n7 20 -898\n41 59 -883\n67 79 -428\n56 4 -784\n96 54 -421\n66 27 -543\n60 66 -703\n20 53 -239\n34 88 -175\n98 44 -237\n93 34 -976\n2 82 -116\n84 73 -414\n57 25 -548\n69 29 -731\n29 19 -70\n82 81 -547\n92 47 -589\n42 83 -596\n1 37 -752\n88 71 -699\n58 6 -657\n63 72 -803\n78 35 -566\n48 21 -240\n86 18 -623\n86 8 -101\n13 59 -768\n95 73 -342\n89 26 -815\n75 17 -825\n10 2 -280\n40 79 -850\n53 91 -7\n26 29 -742\n98 72 -427\n54 16 -156\n68 41 -451\n42 97 -732\n77 62 -574\n27 72 -188\n88 4 -775\n98 4 -808\n61 77 -729\n52 23 -753\n48 27 88\n81 39 -5\n67 2 -912\n53 77 -444\n74 48 -225\n23 1 -800\n35 48 -361\n41 44 55\n78 80 -623\n69 28 -752\n69 85 -179\n62 69 -846\n6 91 -646\n21 55 -58\n94 47 -208\n74 68 -775\n92 42 -169\n34 18 -473\n90 2 -319\n70 82 -515\n1 63 -553\n90 74 -324\n51 86 -743\n88 23 -59\n26 88 -284\n39 97 -636\n58 18 -476\n52 50 -455\n46 44 80\n38 63 -584\n90 37 -872\n31 38 -637\n9 15 68\n61 25 -520\n63 33 -513\n82 4 59\n97 46 15\n98 35 -460\n95 30 -180\n23 33 -483\n92 56 70\n45 66 -357\n86 58 -861\n63 51 -249\n71 8 -777\n48 20 -287\n52 54 -375\n40 75 -388\n38 97 -862\n82 16 19\n44 16 -529\n52 50 -456\n63 12 -710\n55 15 -401\n79 58 -470\n31 23 -443\n49 77 -924\n31 24 24\n53 6 -116\n35 63 -344\n47 24 100\n80 71 -601\n4 67 -773\n83 44 -780\n28 63 24\n77 78 -395\n27 60 -528\n28 91 -128\n57 45 -333\n97 6 0\n48 38 -590\n11 71 -438\n3 32 35\n51 2 -475\n92 66 -131\n26 67 -992\n11 19 -895\n49 34 -840\n20 94 -751\n25 33 -369\n66 79 -4\n11 79 -378\n72 25 -551\n32 18 -344\n13 17 -453\n3 64 -69\n32 79 -142\n9 19 -741\n14 89 -74\n57 82 -92\n98 79 -741\n54 24 -985\n42 80 -323\n80 13 -596\n90 98 -71\n88 13 -477\n91 14 22\n60 70 -866\n6 1 -969\n51 33 -990\n42 45 -670\n53 27 -532\n10 46 -226\n34 9 -639\n2 11 -527\n60 81 -973\n79 68 -202\n15 31 -559\n73 17 -383\n47 49 -179\n95 94 -220\n19 10 -840\n97 62 -289\n61 77 -361\n10 81 -902\n97 305\n1 28 -281\n2 83 -815\n3 41 -403\n4 7 33\n5 59 37\n6 3 -352\n7 17 -16\n8 60 -845\n9 11 -945\n10 54 -617\n11 62 -201\n12 32 -740\n13 74 -10\n14 23 -826\n15 50 -691\n16 91 -476\n17 40 40\n18 94 -494\n19 42 -326\n20 68 -782\n21 10 18\n22 49 -395\n23 7 -794\n24 80 -532\n25 92 -378\n26 15 -883\n27 14 -345\n28 43 -143\n29 28 -835\n30 79 -267\n31 12 -598\n32 76 -770\n33 90 -773\n34 10 -801\n35 29 -836\n36 3 30\n37 97 -300\n38 58 -591\n39 87 -230\n40 91 -774\n41 89 -934\n42 91 63\n43 33 55\n44 49 -422\n45 28 -610\n46 25 -960\n47 94 -477\n48 34 -629\n49 60 -40\n50 23 -93\n51 17 -989\n52 36 -128\n53 29 7\n54 50 -294\n55 49 -593\n56 59 69\n57 88 -364\n58 70 -806\n59 53 -782\n60 66 -955\n61 14 -225\n62 34 -640\n63 20 -447\n64 28 -40\n65 73 -10\n66 55 -423\n67 7 -976\n68 54 -808\n69 73 -239\n70 50 -798\n71 17 -368\n72 44 -804\n73 42 48\n74 93 -143\n75 6 -364\n76 11 -374\n77 5 -343\n78 41 -78\n79 31 -135\n80 74 -741\n81 27 -751\n82 35 -433\n83 76 -929\n84 87 92\n85 83 -745\n86 58 95\n87 3 -989\n88 13 -792\n89 97 -375\n90 61 -676\n91 77 -971\n92 74 -653\n93 30 -746\n94 7 -479\n95 26 39\n96 6 -549\n61 40 -26\n48 60 -765\n71 82 -710\n47 85 -462\n80 83 100\n55 22 -852\n94 97 75\n72 54 -843\n78 5 58\n24 90 -879\n15 4 -75\n30 31 -81\n24 68 -994\n11 35 -371\n23 74 -547\n43 5 -397\n53 57 -258\n83 32 -815\n47 89 -536\n2 21 -947\n80 14 -998\n50 86 -597\n69 92 -723\n46 82 -43\n82 40 -107\n45 41 -692\n73 25 -227\n61 78 -280\n16 23 -996\n41 7 -116\n36 29 -342\n52 95 -398\n71 46 -503\n49 3 -377\n26 50 -309\n26 97 71\n78 48 -266\n23 77 -613\n48 25 -553\n74 66 -783\n9 29 -467\n42 49 -438\n78 18 -105\n53 33 -71\n8 94 -699\n12 60 -695\n10 57 -356\n28 82 -425\n51 44 -824\n79 14 70\n88 12 -775\n16 44 76\n33 2 -142\n13 37 -436\n4 49 7\n75 94 -645\n21 45 -441\n15 64 -320\n30 13 -916\n60 40 -175\n3 19 -792\n59 23 -539\n4 23 -188\n27 33 -477\n5 93 -377\n46 93 -645\n69 67 -46\n51 46 -883\n65 17 27\n25 18 -53\n94 7 -270\n18 67 -897\n18 75 -527\n52 6 -232\n92 14 -869\n78 64 -642\n54 27 -582\n77 36 -614\n15 47 -733\n97 30 -339\n88 87 -53\n37 72 -839\n96 77 -347\n87 29 -942\n90 54 -178\n82 22 -944\n14 79 8\n46 83 -133\n3 62 -218\n41 26 -804\n72 25 -212\n74 42 -721\n72 23 -521\n51 66 -8\n60 38 -298\n75 39 -930\n31 6 -622\n83 56 -649\n82 93 -951\n83 37 -907\n41 94 -739\n58 60 -882\n86 34 -733\n68 71 -668\n90 52 -493\n52 38 60\n18 27 -190\n52 92 -834\n11 7 -745\n41 60 -904\n1 84 -686\n32 81 -383\n82 91 -739\n30 8 -47\n10 2 -820\n89 37 -334\n44 12 -598\n72 30 0\n30 10 65\n65 60 -322\n79 88 -917\n56 87 -637\n58 80 58\n86 33 -206\n5 11 -850\n14 19 87\n86 78 -846\n8 88 -771\n68 37 71\n44 60 -583\n58 73 -969\n27 89 -247\n3 55 -63\n11 83 -479\n28 33 -54\n68 14 84\n70 16 -215\n23 33 -749\n49 40 -472\n42 70 -465\n45 85 -114\n4 7 -689\n95 57 -450\n22 7 -948\n21 24 -333\n20 65 -172\n90 84 -957\n23 38 -147\n92 40 -907\n81 52 -605\n51 97 -890\n67 21 -106\n55 28 -411\n73 35 -667\n63 38 -51\n27 91 -280\n64 10 74\n91 29 -836\n97 40 -523\n77 5 -983\n67 89 -666\n67 18 -290\n22 42 29\n85 54 -827\n81 5 -365\n63 41 69\n72 73 -279\n50 74 -437\n32 46 -567\n69 18 -573\n65 48 51\n63 51 -901\n37 4 -644\n92 13 -405\n16 55 -300\n83 26 -886\n89 46 98\n20 71 -28\n21 38 -53\n7 88 -876\n40 92 -693\n68 44 -206\n39 42 -345\n64 93 -8\n96 39 -708\n62 49 -342\n1 69 -260\n77 60 -875\n25 55 -417\n72 41 -313\n62 64 -84\n91 42 -611\n8 64 -126\n97 22 -165\n23 84 -54\n62 28 -379\n96 19 71\n34 15 -908\n20 58 -467\n59 16 -908\n3 85 -435\n72 70 -644\n80 71 100\n38 24 -584\n30 65 -430\n39 90 -458\n52 36 -230\n96 59 -265\n81 73 -127\n7 22\n1 3 -351\n2 4 -240\n3 7 -399\n4 1 -923\n5 2 -470\n6 4 -528\n6 5 -667\n6 5 -757\n7 3 -72\n2 4 -515\n3 2 -559\n2 6 -515\n4 3 -170\n7 5 -125\n3 5 -46\n3 7 -529\n4 7 -46\n6 2 -655\n1 3 -924\n5 1 84\n4 3 -859\n6 2 -344\n97 565\n1 68 -245\n2 97 -280\n3 65 -61\n4 72 -869\n5 35 -16\n6 13 -956\n7 28 73\n8 57 30\n9 74 -281\n10 32 -793\n11 78 -757\n12 83 98\n13 61 -308\n14 64 -391\n15 5 -368\n16 95 -3\n17 23 -131\n18 83 84\n19 64 -505\n20 54 -628\n21 81 59\n22 12 -976\n23 20 -949\n24 41 -426\n25 50 -504\n26 20 -677\n27 24 -870\n28 94 -360\n29 51 -100\n30 84 -568\n31 71 -557\n32 69 -984\n33 47 49\n34 75 -899\n35 94 -99\n36 11 -551\n37 7 -325\n38 32 -471\n39 84 -383\n40 17 78\n41 79 -416\n42 77 -629\n43 15 -12\n44 19 -539\n45 28 -686\n46 43 -198\n47 23 -145\n48 27 -853\n49 84 -731\n50 78 -528\n51 47 -607\n52 9 -843\n53 14 -414\n54 94 -742\n55 12 -770\n56 77 -216\n57 45 -746\n58 72 -152\n59 25 -753\n60 46 -905\n61 97 -13\n62 6 -847\n63 52 -204\n64 21 -717\n65 25 -290\n66 46 -318\n67 87 -78\n68 12 -590\n69 46 -814\n70 60 -442\n71 73 -424\n72 83 -153\n73 90 -193\n74 84 -175\n75 83 -666\n76 44 -820\n77 64 -478\n78 87 -616\n79 69 24\n80 27 -170\n81 18 -870\n82 96 -846\n83 9 -972\n84 4 -811\n85 22 -726\n86 68 -690\n87 77 -712\n88 14 -283\n89 19 -763\n90 67 -423\n91 63 -625\n92 95 -592\n93 60 86\n94 84 -866\n95 36 -282\n96 87 -129\n4 6 -892\n87 83 87\n40 4 -557\n81 78 -425\n86 35 -971\n13 22 -740\n53 89 -997\n9 55 -14\n45 19 -591\n52 90 -937\n85 79 -619\n11 49 -797\n42 57 -530\n64 85 -667\n49 78 -146\n67 37 -647\n27 88 -388\n56 66 -31\n40 63 -268\n83 15 -36\n16 66 -608\n22 12 -592\n54 83 -88\n52 39 -681\n93 29 -698\n5 68 -723\n88 85 -643\n52 18 -409\n63 65 -755\n20 23 -202\n84 29 -998\n3 95 -696\n17 9 -157\n90 31 -363\n75 14 -163\n46 72 75\n27 25 -204\n86 11 -94\n26 67 -495\n1 28 -840\n89 63 -292\n69 66 -461\n63 81 -992\n83 82 -478\n36 31 -992\n58 86 -710\n95 46 -574\n70 39 46\n75 64 -237\n44 64 -325\n62 65 -735\n31 70 -131\n32 81 -109\n86 6 -957\n2 55 -261\n26 39 -193\n57 33 -266\n50 34 -225\n13 83 50\n14 89 -219\n25 13 -393\n2 22 -680\n61 69 -752\n97 15 -635\n14 64 -150\n77 19 -884\n2 6 -414\n78 20 -553\n2 86 -432\n29 14 -701\n60 88 -782\n45 96 -87\n77 82 68\n88 89 -595\n87 82 -236\n47 69 51\n28 68 -977\n89 85 -151\n79 9 -667\n88 18 -148\n89 86 -35\n75 51 -176\n8 46 -109\n6 9 -589\n40 26 -326\n45 43 -748\n41 93 -101\n95 3 -272\n72 6 -800\n28 84 -308\n31 1 -813\n88 74 -577\n68 18 -434\n84 49 -757\n96 68 -4\n61 32 -419\n93 58 -388\n38 46 -650\n95 35 -248\n6 70 -999\n85 87 -329\n88 57 -54\n1 83 -817\n48 6 -907\n77 11 2\n18 80 -848\n45 85 -489\n41 39 -663\n6 33 -836\n92 62 -359\n64 78 -576\n8 55 -79\n82 53 -506\n88 3 -826\n46 47 -710\n2 49 -204\n47 1 -83\n53 12 -626\n87 51 -115\n60 34 -438\n42 97 -302\n53 50 -137\n45 95 -964\n91 17 -273\n3 89 -424\n96 6 -239\n14 28 45\n44 69 76\n60 29 -26\n39 71 -803\n84 96 -394\n61 68 -133\n82 38 -224\n53 9 24\n91 77 -645\n71 79 -260\n4 72 -543\n94 37 -679\n13 53 -636\n38 28 -102\n26 87 -993\n53 6 -207\n42 43 77\n7 77 -93\n85 34 -421\n69 84 -505\n18 87 -580\n72 49 -741\n37 33 -494\n76 81 -998\n68 13 38\n85 77 -577\n55 22 -64\n65 32 23\n19 55 -424\n57 11 44\n97 79 -365\n7 64 -878\n23 77 -140\n93 74 -277\n59 51 -187\n26 72 -343\n41 96 -633\n64 56 -18\n90 82 -108\n62 46 -54\n6 37 -633\n42 90 -362\n91 5 -710\n10 87 -908\n49 42 -694\n9 57 -888\n48 6 -985\n17 23 -450\n76 52 -446\n12 29 -245\n34 26 -921\n55 57 -649\n29 17 -897\n48 4 -56\n10 84 14\n78 35 -533\n45 1 -31\n91 87 -790\n33 1 -805\n58 7 58\n69 33 -297\n32 26 -626\n35 69 -534\n10 71 -710\n30 39 -339\n61 56 -126\n58 29 -628\n14 59 -915\n6 19 -680\n97 77 -241\n20 53 -870\n85 16 -834\n41 46 -810\n85 61 -54\n32 50 -434\n27 73 -504\n47 6 -883\n23 32 -895\n6 89 -510\n39 7 -743\n86 68 -360\n36 3 -502\n1 6 -227\n1 14 -657\n40 32 -707\n11 28 -379\n96 72 -46\n43 59 -305\n45 96 -204\n24 68 -128\n15 40 -837\n81 26 -717\n88 19 -125\n72 56 -38\n95 72 23\n10 2 -69\n43 87 -816\n85 46 -703\n34 79 -233\n80 1 -188\n55 38 -358\n58 68 -849\n74 28 -449\n58 29 -200\n57 70 -885\n92 50 -237\n34 43 -334\n53 66 -38\n54 86 -1\n34 43 -569\n6 59 73\n17 45 -301\n76 4 -670\n49 82 -201\n82 33 -646\n82 78 -493\n57 69 26\n79 61 -487\n65 77 -150\n50 23 90\n92 45 -587\n48 45 -807\n7 84 -583\n32 89 67\n70 97 -193\n20 83 -851\n64 39 -23\n66 74 -50\n83 66 -560\n35 48 -199\n48 28 -971\n76 21 -553\n75 7 -516\n8 10 -335\n38 58 -410\n72 88 -241\n90 69 -676\n58 2 -548\n5 38 -453\n95 17 -230\n38 75 -831\n52 1 -897\n23 34 -733\n25 91 -833\n92 78 -921\n35 31 -959\n65 12 -815\n78 35 -197\n23 67 -402\n8 75 -317\n5 63 -366\n39 63 -987\n61 56 -407\n90 69 -609\n53 2 -74\n43 45 -406\n82 52 -467\n30 31 -633\n81 82 -420\n43 58 -433\n92 27 -428\n69 89 -2\n88 61 -313\n81 26 -62\n36 15 -348\n37 86 -874\n78 43 -503\n79 83 -366\n3 26 -183\n94 88 -811\n96 43 43\n89 71 -750\n84 7 -681\n27 89 -608\n9 74 -161\n42 16 -334\n45 3 -713\n36 37 -749\n18 59 85\n36 37 -707\n4 79 -536\n76 49 -923\n32 51 -212\n49 15 -589\n42 30 -704\n59 20 -119\n24 10 -586\n65 39 83\n27 97 38\n64 8 -474\n38 34 -752\n91 79 -262\n65 93 -283\n9 2 -762\n83 64 -709\n87 77 -570\n67 31 -884\n33 54 -108\n34 20 -535\n15 92 -201\n25 1 -681\n87 29 73\n24 81 -35\n60 66 -451\n89 33 -983\n93 59 -798\n5 11 -30\n9 55 -798\n57 89 14\n39 15 -467\n50 44 52\n4 38 -289\n63 94 -2\n86 91 -646\n79 65 -320\n86 50 -144\n71 73 -231\n54 21 -21\n41 74 -816\n35 40 -872\n75 61 -30\n92 11 -359\n74 96 -200\n36 42 -530\n37 75 -397\n86 17 -399\n8 3 -470\n15 45 -25\n58 93 -390\n40 12 84\n45 64 89\n79 91 -93\n95 68 -383\n41 39 -959\n50 76 -325\n22 69 -4\n54 97 -445\n64 22 -637\n52 36 -454\n56 63 -383\n71 31 -242\n50 72 -820\n81 5 -783\n16 5 -144\n37 70 -571\n19 53 -1000\n45 26 -582\n25 22 -244\n58 96 -211\n9 40 -870\n12 53 -768\n28 92 -889\n41 67 62\n11 56 -410\n18 29 -754\n12 76 -917\n4 62 -721\n21 88 63\n83 94 -732\n76 72 -835\n14 31 -370\n40 42 62\n81 97 -982\n86 64 62\n43 16 -956\n8 18 -435\n78 13 -964\n33 73 -894\n39 85 -760\n13 83 -647\n76 7 89\n67 8 -595\n63 71 -682\n77 84 -330\n24 80 -782\n81 13 30\n84 35 -211\n92 67 -925\n11 80 13\n19 38 -455\n71 86 62\n75 11 -734\n21 7 -992\n81 84 -252\n23 76 -985\n30 31 -663\n68 33 -265\n73 40 -910\n80 78 -673\n87 83 -802\n29 41 -612\n13 48 -401\n53 54 -581\n79 86 -560\n88 54 -377\n89 32 -50\n82 3 -889\n76 52 -906\n92 46 -424\n18 54 -812\n19 59 -506\n35 48 -972\n23 36 -750\n12 85 -890\n10 60 -433\n1 17 -667\n58 10 -566\n44 32 -224\n17 91 -351\n56 63 -579\n19 72 -535\n3 1 -272\n34 15 -188\n24 73 -124\n56 81 -275\n3 89 -476\n80 92 -415\n6 59 -562\n60 43 -924\n56 24 -382\n87 57 -73\n19 26 -360\n21 71 -663\n23 30 -484\n89 19 -379\n15 11 -577\n32 43 -387\n18 92 69\n21 51 -209\n56 34 -36\n86 45 90\n43 74 -263\n55 35 -303\n37 12 -59\n49 30 -270\n48 15 -711\n77 40 -839\n13 81 -4\n15 1 -425\n34 89 -772\n47 15 -776\n13 51 -571\n12 80 31\n77 211\n1 76 -318\n2 71 17\n3 44 -860\n4 61 -265\n5 32 -469\n6 4 -587\n7 32 19\n8 2 87\n9 77 -785\n10 16 -973\n11 31 55\n12 2 -492\n13 28 -439\n14 33 -491\n15 41 -98\n16 28 -807\n17 9 -605\n18 5 -996\n19 64 -497\n20 50 -317\n21 10 -326\n22 69 -642\n23 40 -592\n24 7 -904\n25 52 -274\n26 50 -347\n27 38 -670\n28 66 -360\n29 30 -760\n30 49 -543\n31 22 -539\n32 21 -785\n33 8 -676\n34 39 -595\n35 6 -750\n36 51 -770\n37 1 -735\n38 29 -977\n39 4 -874\n40 28 -134\n41 7 8\n42 46 -503\n43 60 -989\n44 22 -751\n45 52 -265\n46 48 18\n47 10 -742\n48 13 -36\n49 6 31\n50 5 9\n51 76 -739\n52 22 -156\n53 65 -154\n54 48 34\n55 1 -300\n56 54 -665\n57 33 60\n58 28 -350\n59 10 -972\n60 39 -976\n61 33 -555\n62 14 -53\n63 34 -833\n64 33 -163\n65 64 -810\n66 71 -310\n67 65 -355\n68 12 -130\n69 29 -63\n70 60 -288\n71 40 -931\n72 12 -869\n73 33 -12\n74 1 -234\n75 25 -376\n76 52 -953\n23 22 -760\n74 19 -218\n49 27 -480\n47 60 61\n49 75 -253\n19 74 -398\n21 51 -122\n8 71 12\n19 74 -740\n14 40 -971\n47 39 -719\n71 58 -458\n66 70 -939\n67 21 -248\n73 24 -19\n4 51 -667\n9 54 -12\n63 35 -821\n15 44 -21\n21 33 -479\n21 47 -379\n65 74 -944\n49 37 -593\n19 9 -778\n49 75 -275\n32 53 -882\n5 54 -475\n73 38 -981\n6 23 -345\n46 33 -390\n69 51 -997\n8 6 81\n49 11 -22\n63 74 -519\n32 23 -117\n75 18 -984\n4 65 -663\n75 64 -726\n26 1 -965\n18 26 -627\n14 47 -930\n66 21 -167\n32 62 -578\n6 76 -745\n76 50 -390\n18 61 -80\n48 36 16\n49 46 -17\n31 45 -513\n39 23 -790\n28 68 -537\n20 34 -698\n6 4 -401\n71 61 -232\n63 13 85\n31 54 -822\n58 65 -709\n61 70 -710\n21 64 -711\n20 51 -582\n7 22 -542\n57 4 -314\n73 8 -191\n28 43 -483\n60 31 -49\n73 63 -193\n70 68 -446\n30 7 -360\n70 53 -515\n64 47 -195\n19 23 -159\n24 70 -337\n47 38 16\n47 77 -441\n54 32 -146\n29 40 -574\n30 77 -135\n28 9 -913\n13 76 -654\n63 60 -506\n48 50 -219\n39 72 -742\n39 4 -760\n57 61 -845\n4 36 -723\n31 26 -341\n21 70 -760\n50 37 -699\n69 51 -154\n1 66 -668\n14 56 -247\n28 18 -2\n14 72 -797\n30 38 -954\n61 67 -981\n76 65 -770\n6 8 -766\n59 43 -717\n37 29 -830\n68 67 -43\n35 32 -720\n77 56 -680\n36 22 -924\n27 52 -512\n77 54 -759\n34 46 -56\n76 75 -51\n51 45 -781\n77 47 -270\n62 20 -334\n39 37 11\n59 17 -112\n7 63 -822\n76 61 -584\n48 16 -821\n33 48 41\n57 54 -404\n61 51 -673\n16 6 53\n31 4 56\n12 66 33\n19 72 -883\n47 73 -251\n34 26 -219\n35 49 -463\n27 61 -382\n65 27 -925\n63 66 -226\n25 73 -921\n71 37 -528\n39 58 -772\n1 19 -297\n43 60 -164\n10 74 -869\n46 21 -108\n18 58\n1 9 -415\n2 6 25\n3 16 -533\n4 5 -352\n5 16 -123\n6 4 -694\n7 13 -354\n8 11 -783\n9 18 -773\n10 4 -964\n11 14 -476\n12 13 -59\n13 14 -474\n14 12 -813\n15 2 -928\n16 10 -526\n17 2 -201\n10 5 34\n14 13 -328\n17 2 -688\n12 2 -46\n10 3 -954\n12 16 -654\n1 2 -903\n17 13 -740\n4 5 -890\n1 15 -914\n7 13 -157\n16 1 -355\n3 18 61\n1 17 -888\n13 4 -748\n11 6 -907\n6 5 -365\n14 8 -391\n1 12 -995\n16 18 -388\n3 16 -205\n1 17 -877\n2 4 -783\n7 6 -321\n10 12 -784\n13 6 -404\n2 17 89\n10 14 -701\n6 10 -968\n6 7 -895\n4 10 -492\n11 16 -796\n13 14 -75\n10 12 -43\n16 12 -538\n2 3 -843\n18 10 -59\n15 12 -332\n2 12 -352\n18 10 -367\n15 3 -917\n85 704\n1 4 -182\n2 84 -922\n3 25 -536\n4 37 41\n5 45 -75\n6 62 -425\n7 12 -473\n8 29 -994\n9 58 -776\n10 18 -906\n11 67 63\n12 6 -771\n13 33 -518\n14 58 -616\n15 62 -348\n16 50 -543\n17 79 -691\n18 77 -18\n19 48 -299\n20 23 -49\n21 59 -50\n22 28 -777\n23 9 -363\n24 80 -941\n25 68 -263\n26 46 24\n27 1 -490\n28 52 -619\n29 43 -427\n30 68 -867\n31 50 -278\n32 34 -713\n33 45 -915\n34 25 68\n35 64 -973\n36 44 21\n37 72 -960\n38 6 -629\n39 31 -566\n40 11 -575\n41 34 -361\n42 25 -304\n43 70 59\n44 74 -429\n45 4 -964\n46 35 43\n47 44 -759\n48 34 -210\n49 20 -89\n50 35 52\n51 19 -447\n52 84 -636\n53 70 -144\n54 76 -352\n55 4 -858\n56 52 -840\n57 37 -846\n58 68 23\n59 3 -887\n60 76 -368\n61 60 -51\n62 41 -733\n63 38 -707\n64 81 -905\n65 78 67\n66 67 -964\n67 30 -409\n68 26 -408\n69 85 -982\n70 16 -832\n71 28 18\n72 49 -697\n73 33 -180\n74 57 28\n75 55 -278\n76 47 -473\n77 71 -59\n78 73 -64\n79 46 -948\n80 64 79\n81 39 -74\n82 57 -22\n83 62 -598\n84 35 -286\n43 35 -152\n64 18 -241\n26 74 62\n10 17 -95\n65 43 -706\n8 75 -618\n43 59 -269\n9 71 -242\n33 45 -581\n71 81 54\n39 20 -450\n74 51 -427\n37 19 -113\n66 28 -580\n55 16 95\n41 26 -795\n78 20 -820\n12 29 -852\n42 57 14\n38 76 -471\n37 5 -286\n52 68 -218\n14 67 -407\n24 25 -102\n62 22 -968\n70 22 -793\n61 70 -261\n31 75 -85\n50 46 -477\n54 8 -324\n24 7 -825\n18 30 -480\n2 82 -838\n27 41 61\n2 41 -619\n64 66 -834\n12 57 -313\n78 40 -813\n66 3 -769\n5 68 -935\n48 25 -30\n24 1 -971\n28 44 -301\n9 79 -659\n24 57 -705\n55 63 -651\n27 39 -905\n6 61 -210\n36 81 -940\n47 59 -646\n18 75 -849\n21 44 -796\n64 31 -865\n83 45 -808\n42 30 81\n66 57 83\n61 57 -636\n70 59 -296\n36 15 -736\n14 3 -133\n64 13 -661\n85 72 -252\n57 34 -25\n33 23 -29\n52 27 -420\n27 72 -639\n1 19 -864\n26 8 -625\n42 80 -114\n1 82 -928\n54 52 -258\n1 47 5\n73 84 -856\n10 73 -266\n40 71 -644\n36 12 -285\n19 72 -866\n24 67 -49\n33 3 -514\n35 78 -829\n25 24 -334\n62 5 -907\n82 43 -269\n48 76 -80\n43 39 -98\n19 39 34\n38 58 -581\n9 4 -321\n14 3 -979\n77 8 25\n77 24 -631\n55 9 -468\n59 6 -117\n15 12 -562\n56 32 56\n74 2 -733\n40 13 -36\n69 5 -692\n83 47 -690\n19 35 -602\n65 36 -323\n62 52 -605\n12 82 -588\n19 76 11\n77 1 -336\n34 45 -82\n13 33 -875\n80 71 -441\n10 63 -787\n61 74 6\n80 84 -500\n82 7 -830\n45 51 -987\n31 82 29\n81 75 -352\n60 11 -561\n40 23 -652\n50 67 -414\n50 47 -171\n22 18 -766\n2 72 72\n21 25 1\n47 33 -276\n80 66 82\n82 79 -159\n31 71 -892\n48 36 -232\n64 4 -949\n49 15 -615\n72 3 -232\n7 16 -425\n75 85 -867\n61 16 -893\n24 82 -959\n3 39 -953\n47 19 -143\n11 40 -723\n40 74 -446\n79 8 -156\n15 81 -944\n22 71 -468\n29 16 -302\n11 70 -195\n15 22 -571\n10 14 -844\n76 81 -860\n48 10 -306\n13 50 -182\n66 60 -872\n40 17 -139\n57 20 -772\n39 31 -667\n79 19 68\n70 3 -785\n84 28 -185\n28 38 11\n42 62 -746\n78 74 -136\n27 63 -996\n76 25 -337\n67 81 -7\n44 61 -834\n61 74 -832\n52 11 -98\n82 35 -31\n45 52 -579\n16 32 -876\n55 39 79\n55 29 -425\n7 79 -350\n36 69 -916\n7 47 -582\n15 45 -35\n52 76 -265\n8 3 -202\n55 37 -163\n50 59 -112\n46 43 -568\n43 63 -51\n5 21 -887\n10 84 -609\n48 6 -399\n9 31 -41\n70 60 -216\n16 72 -24\n48 54 -738\n70 63 34\n67 79 -495\n1 73 -182\n38 14 -554\n18 20 -397\n50 69 -967\n5 41 -466\n37 10 -193\n46 81 29\n82 38 -518\n34 15 -34\n70 52 88\n33 82 -57\n33 16 -856\n11 40 -806\n64 4 94\n51 50 -142\n25 70 -104\n76 55 -490\n1 24 50\n19 24 -530\n29 32 -976\n17 84 -396\n40 20 -120\n25 6 -794\n69 75 -53\n81 64 42\n21 50 -681\n72 71 -849\n46 39 -698\n33 85 -92\n59 55 -494\n57 36 -493\n71 5 -961\n34 45 -329\n56 72 -694\n41 67 -780\n25 85 -456\n62 12 -772\n39 44 -292\n2 80 -762\n14 61 -784\n72 42 -764\n84 54 -181\n33 50 -957\n36 57 -389\n22 51 -412\n47 8 -823\n42 14 -351\n73 74 -919\n54 76 -314\n83 74 -549\n32 38 -132\n71 26 -627\n19 42 -382\n3 57 -876\n52 8 -874\n63 68 -428\n20 13 -528\n24 2 -812\n79 32 -952\n27 72 -358\n75 47 -259\n82 32 -665\n72 23 -892\n50 73 -686\n27 53 -231\n53 65 -675\n56 17 -319\n73 45 -493\n19 21 -28\n63 79 -649\n46 37 -560\n48 79 70\n79 42 -643\n79 6 -143\n8 50 -776\n76 16 -237\n71 44 -797\n85 20 -620\n10 32 -716\n26 70 -424\n63 80 -454\n42 85 -361\n26 27 -878\n77 15 -373\n47 24 -73\n43 57 -748\n65 22 -8\n55 70 -157\n8 28 -304\n34 67 -24\n26 74 15\n18 24 -663\n25 36 -105\n68 82 -751\n7 45 -999\n7 50 -452\n57 56 -84\n12 31 -520\n60 32 -717\n60 37 -500\n81 48 31\n9 74 -321\n82 64 -673\n25 49 -677\n23 82 -569\n61 77 -154\n50 6 -744\n54 31 -483\n40 70 -144\n64 46 -695\n62 20 -281\n82 18 -955\n2 61 -309\n47 46 74\n62 56 -588\n69 82 -607\n52 74 -259\n34 55 -325\n10 44 -552\n11 8 -273\n20 82 88\n64 59 -595\n66 34 -251\n58 28 -431\n9 2 -625\n46 70 -260\n57 6 -309\n21 7 -2\n14 27 -52\n77 65 -192\n40 67 -379\n32 50 -734\n24 30 -940\n53 51 -257\n40 18 -958\n4 46 -479\n36 82 -423\n84 14 -742\n82 52 -769\n42 35 -430\n63 11 -967\n73 79 54\n82 85 -973\n40 81 -678\n19 31 -807\n27 37 -739\n58 41 -429\n22 21 -429\n41 83 -226\n15 17 -597\n77 73 -172\n80 35 -538\n58 23 -133\n72 17 -898\n60 21 -588\n26 78 -346\n14 45 -118\n65 53 -771\n46 51 -304\n19 16 -148\n64 76 -626\n82 79 -7\n42 8 -601\n44 28 43\n3 71 -583\n61 45 38\n22 35 -543\n28 3 -185\n21 42 -176\n80 53 -797\n24 79 -164\n67 14 -823\n65 4 -463\n14 4 -11\n3 45 -517\n74 32 -388\n68 47 -815\n74 34 -856\n60 25 -913\n9 70 -551\n76 1 -692\n44 71 -331\n11 57 -118\n84 15 -247\n31 22 -100\n55 24 22\n17 33 -865\n79 84 -102\n7 15 -619\n71 63 -711\n30 11 -883\n77 85 -525\n6 38 -300\n45 84 -531\n83 38 -120\n7 13 -294\n81 52 -800\n17 83 -432\n41 44 -199\n47 56 -970\n69 52 -506\n3 20 -26\n10 30 -349\n73 26 -903\n65 14 -180\n60 22 -705\n53 47 -688\n67 28 -661\n75 64 -229\n41 28 -385\n9 47 -177\n32 10 -719\n48 23 -873\n16 54 -729\n58 59 -216\n7 46 -268\n73 42 -666\n46 33 -978\n40 31 -348\n11 72 12\n80 8 -948\n38 31 -605\n80 52 51\n85 82 -551\n42 47 -401\n35 5 -679\n67 29 -310\n43 3 -692\n16 25 -876\n60 24 -153\n72 58 -117\n71 76 -828\n49 61 -485\n84 82 -579\n70 13 81\n8 57 -299\n20 82 -384\n18 58 -713\n74 35 -347\n73 40 -291\n36 77 3\n32 82 4\n4 79 -160\n32 16 -443\n34 33 -690\n26 20 -914\n37 6 -734\n71 24 -369\n48 23 -456\n75 9 -414\n66 81 -319\n72 84 -553\n33 31 -174\n44 13 -311\n66 33 53\n45 39 -711\n4 72 -969\n76 60 51\n72 61 -752\n72 69 -246\n39 82 -791\n16 22 -266\n42 24 17\n62 29 35\n68 8 -254\n5 26 -23\n84 19 -623\n61 57 -147\n25 41 -138\n49 73 9\n50 59 -63\n36 5 -156\n48 55 79\n84 10 -87\n6 70 -623\n75 48 16\n2 34 -307\n27 70 -600\n8 34 -493\n35 2 -196\n58 35 -760\n3 37 -796\n56 31 -542\n22 28 -950\n14 78 -62\n45 19 -398\n41 81 -789\n32 19 -610\n57 15 -583\n23 4 -840\n60 26 -296\n25 45 -348\n85 26 -377\n44 61 43\n6 35 -295\n20 38 -966\n70 42 -173\n32 69 -545\n64 14 -1000\n8 85 -648\n60 22 -721\n74 35 -333\n7 13 -897\n21 82 -944\n53 82 -460\n75 39 -49\n68 52 -560\n29 72 -685\n10 18 -422\n2 54 -998\n24 67 -651\n17 8 -918\n13 14 -743\n78 49 -366\n22 38 -159\n11 79 -340\n63 43 -178\n78 35 -603\n51 37 -557\n62 2 -791\n42 22 -55\n20 8 -492\n29 2 -941\n40 29 -718\n56 23 -70\n23 57 -616\n77 23 -759\n37 85 -906\n25 59 57\n32 8 -949\n75 85 -553\n22 43 -897\n22 72 -57\n48 14 -319\n33 35 -385\n64 31 -525\n31 39 -373\n37 60 -300\n4 82 -455\n59 14 -66\n64 6 -499\n43 20 -534\n82 45 -1\n58 42 -974\n37 1 -15\n18 6 -31\n72 85 -346\n24 44 -111\n34 22 -768\n33 55 -549\n75 40 -346\n23 5 -912\n34 8 -789\n49 28 -391\n35 22 -371\n13 38 -31\n62 56 -252\n47 77 -786\n39 44 -305\n38 58 -416\n35 64 -759\n37 2 47\n15 71 -943\n39 50 -903\n33 34 -452\n71 51 42\n29 78 -416\n8 1 -217\n20 15 -343\n79 82 23\n28 68 23\n32 38 -451\n3 14 -341\n59 19 -222\n21 67 -556\n2 13 -493\n83 73 -168\n76 26 -379\n22 43 -452\n67 48 -47\n54 84 -543\n58 74 -267\n61 1 99\n15 76 -341\n1 73 -100\n50 31 -951\n62 10 -481\n74 11 -32\n31 69 67\n57 46 -197\n53 12 -708\n85 65 -65\n23 64 -243\n54 11 -930\n47 54 -818\n62 45 -517\n45 6 -629\n39 72 -299\n4 14 -891\n24 40 -257\n75 53 0\n80 65 -454\n32 37 -814\n43 12 -229\n47 81 -449\n51 64 -870\n48 44 -315\n22 51 -782\n84 65 -710\n58 11 12\n37 85 -923\n38 1 -951\n3 28 -831\n57 72 -931\n85 68 -844\n85 35 -490\n52 46 -71\n55 79 78\n70 85 -720\n21 72 -822\n10 69 -629\n54 16 74\n59 23 -164\n39 41 -171\n43 33 84\n64 84 -76\n69 3 -238\n37 35 -553\n48 81 -303\n31 69 92\n81 40 76\n84 39 -912\n",
"output": "No\nNo\nNo\nNo\nNo\nYes\nYes\nNo\nYes\nNo",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "10\n2 2\n1 2 9\n1 1 -8\n12 99\n1 11 -9\n2 9 2\n3 10 3\n4 7 -10\n5 2 6\n6 5 1\n7 12 -6\n8 8 -3\n9 1 -5\n10 3 9\n11 1 7\n9 2 2\n2 9 4\n11 2 -2\n12 4 -4\n11 5 -7\n11 9 9\n4 8 -9\n3 12 2\n6 4 8\n9 4 1\n5 4 6\n5 12 1\n11 6 -9\n12 12 5\n12 3 -6\n4 7 -3\n8 9 5\n7 10 5\n6 4 -5\n4 6 10\n11 10 -5\n11 4 -4\n1 6 5\n11 11 7\n9 5 7\n11 4 5\n4 10 -9\n2 7 5\n5 1 10\n11 12 -8\n3 12 -4\n12 6 -1\n8 9 1\n12 7 -2\n12 12 0\n7 5 -1\n3 4 4\n2 8 -2\n8 1 0\n9 1 -10\n3 2 -3\n12 4 -5\n1 2 -4\n6 4 -4\n7 6 -3\n5 12 1\n2 3 6\n2 10 4\n3 6 -5\n3 4 -9\n10 5 0\n1 9 -7\n5 7 -1\n4 4 -3\n8 9 -1\n6 3 6\n5 8 -5\n3 7 4\n5 9 4\n4 5 8\n2 4 -3\n8 2 4\n7 11 -6\n9 11 4\n10 11 -5\n11 6 -10\n5 10 5\n9 5 2\n7 6 10\n5 1 -10\n1 5 -9\n12 2 -4\n6 2 0\n2 9 1\n12 5 1\n8 12 1\n4 8 -3\n11 3 -8\n7 7 4\n1 9 -10\n2 1 -2\n8 6 -9\n9 11 9\n4 12 9\n12 1 0\n9 8 9\n9 7 -8\n10 5 10\n21 54\n1 21 1\n2 8 -2\n3 9 10\n4 2 -1\n5 10 -2\n6 15 1\n7 18 3\n8 16 7\n9 15 10\n10 3 -9\n11 11 10\n12 3 -8\n13 13 4\n14 13 3\n15 16 -9\n16 5 10\n17 3 -1\n18 15 10\n19 4 -8\n20 15 0\n11 15 4\n13 17 9\n4 8 3\n19 5 7\n13 7 9\n20 4 -4\n6 6 8\n6 3 -10\n7 4 3\n7 4 0\n2 4 -4\n20 14 -6\n2 15 2\n15 13 -4\n9 17 7\n13 3 4\n20 21 4\n16 1 3\n9 15 7\n8 7 2\n12 4 10\n4 15 -5\n15 3 -6\n15 8 -6\n2 2 -3\n5 14 -7\n19 3 -9\n10 1 9\n2 16 -9\n3 13 9\n7 21 -10\n15 2 -8\n3 15 8\n3 5 7\n21 156\n1 20 5\n2 14 -7\n3 14 -1\n4 17 6\n5 13 -6\n6 4 -3\n7 12 0\n8 3 -1\n9 17 -5\n10 6 0\n11 1 -10\n12 20 1\n13 18 -10\n14 14 3\n15 6 -5\n16 7 -5\n17 13 7\n18 20 -9\n19 19 -6\n20 15 4\n8 20 -1\n19 6 -4\n15 7 10\n12 8 -2\n19 4 7\n6 7 -9\n19 17 -9\n5 13 -7\n8 20 5\n14 1 -2\n11 19 1\n2 16 -7\n14 11 8\n1 13 4\n17 6 0\n1 7 -8\n5 1 -10\n21 11 9\n20 16 -4\n16 14 -10\n6 17 -1\n19 8 9\n9 4 -6\n7 7 -7\n21 13 -9\n19 19 -6\n6 20 2\n3 12 -7\n10 21 0\n2 20 -3\n5 10 7\n5 19 2\n1 7 -8\n19 18 10\n17 18 -7\n21 7 -7\n1 20 -5\n9 9 -4\n6 15 -9\n13 9 -4\n11 4 9\n7 21 -6\n11 17 -9\n16 12 -9\n15 12 2\n11 2 -3\n20 11 -7\n10 18 -7\n20 4 -1\n17 21 9\n5 14 -4\n17 5 -3\n1 14 3\n17 14 -6\n6 12 -1\n15 14 -1\n9 6 -4\n15 17 -1\n11 9 6\n11 9 4\n11 18 -4\n21 19 9\n14 2 10\n5 13 0\n3 7 8\n21 1 9\n5 3 -3\n1 21 0\n16 11 -6\n10 15 -9\n9 12 -5\n18 4 3\n18 17 3\n5 19 4\n14 12 4\n11 13 -8\n12 12 3\n7 1 2\n5 17 7\n6 9 7\n17 10 9\n13 18 5\n18 13 -1\n15 7 -10\n8 18 -9\n7 19 -10\n14 2 8\n15 16 10\n4 3 -9\n13 7 -4\n15 4 -1\n6 3 -3\n6 9 -8\n8 4 -3\n1 12 -6\n17 19 -7\n14 12 7\n18 10 -8\n10 17 4\n10 10 -10\n10 21 8\n18 20 -2\n8 8 -10\n11 3 -4\n14 14 1\n17 21 -9\n4 20 -2\n17 15 1\n2 15 6\n20 21 8\n14 6 -9\n7 3 3\n4 11 -10\n9 19 -2\n17 10 5\n4 4 -3\n17 3 -8\n1 18 -6\n6 19 -6\n17 11 7\n10 8 3\n18 3 -6\n9 11 8\n18 20 -3\n4 11 9\n12 3 -4\n21 6 -3\n17 8 -5\n13 14 10\n17 15 2\n10 17 -9\n2 4 -8\n1 6 6\n13 12 6\n14 17 9\n2 11 8\n47 393\n1 23 -5\n2 20 5\n3 39 -3\n4 40 4\n5 25 -4\n6 6 10\n7 21 10\n8 26 1\n9 23 5\n10 3 4\n11 2 6\n12 45 9\n13 36 7\n14 46 -10\n15 6 9\n16 3 -5\n17 16 9\n18 21 -5\n19 44 -3\n20 40 -10\n21 10 10\n22 28 -10\n23 34 3\n24 14 0\n25 44 -4\n26 42 -8\n27 44 -10\n28 10 -1\n29 18 0\n30 10 2\n31 27 3\n32 26 -6\n33 17 2\n34 44 -6\n35 7 6\n36 42 -9\n37 15 7\n38 46 8\n39 36 10\n40 26 -2\n41 6 -2\n42 22 -10\n43 18 0\n44 27 9\n45 10 10\n46 11 -8\n7 11 0\n42 42 10\n38 28 -8\n3 21 -5\n36 34 9\n29 7 3\n18 39 10\n10 20 -1\n46 15 -9\n39 33 0\n20 22 0\n6 1 9\n11 8 -6\n26 13 3\n43 19 -10\n3 14 -7\n29 2 3\n9 11 9\n33 23 -4\n32 20 8\n37 9 -5\n14 46 -10\n18 19 7\n23 34 -7\n5 41 7\n2 12 -6\n4 16 3\n35 23 2\n1 24 0\n44 11 -4\n39 11 5\n33 29 -7\n1 22 -1\n38 36 10\n35 43 7\n42 13 1\n29 47 -3\n16 22 -5\n26 40 10\n6 16 -3\n40 45 9\n34 20 -3\n28 26 7\n22 13 2\n12 15 -4\n21 21 3\n18 26 -7\n18 36 9\n17 16 -3\n25 11 -9\n12 7 -9\n38 35 7\n8 12 5\n39 47 5\n27 14 -10\n16 1 3\n35 23 -9\n45 28 -2\n41 32 -3\n21 20 5\n43 20 -4\n28 33 -10\n37 33 -1\n20 20 -4\n6 37 5\n18 12 -1\n28 40 2\n17 29 -6\n40 16 -3\n47 20 10\n11 32 6\n45 15 -4\n3 7 -9\n30 14 7\n47 12 -7\n36 34 -8\n3 30 6\n19 37 8\n46 27 -8\n43 42 0\n40 29 9\n25 17 2\n39 2 -8\n25 22 5\n17 8 -5\n24 21 -10\n17 23 -10\n34 2 2\n44 17 -2\n17 30 9\n36 40 8\n21 43 1\n9 23 -4\n3 17 6\n30 8 5\n42 24 -3\n32 28 10\n11 20 9\n34 39 -7\n39 3 7\n44 29 -9\n24 33 10\n11 40 10\n10 9 -1\n14 21 -7\n39 6 -1\n36 24 -5\n28 9 -6\n36 47 -2\n21 26 7\n13 36 10\n13 28 2\n5 41 1\n26 16 1\n41 31 -5\n22 46 6\n44 3 -9\n27 36 -9\n9 16 7\n36 12 4\n36 12 -5\n46 28 7\n8 38 1\n19 38 2\n16 24 0\n40 47 -2\n23 41 -2\n23 5 -4\n27 25 5\n35 26 6\n31 4 7\n6 14 -3\n19 34 -2\n44 13 1\n12 23 -2\n1 8 5\n46 12 -8\n2 41 -7\n42 28 -5\n24 5 2\n45 13 -1\n26 7 -7\n21 11 5\n19 46 -3\n42 20 7\n10 28 -10\n44 1 10\n40 41 0\n37 1 -6\n34 4 2\n32 3 9\n4 14 -5\n33 26 4\n2 24 1\n6 36 -1\n4 24 -8\n27 33 -6\n12 14 3\n28 43 -1\n18 24 -2\n22 9 8\n18 38 10\n31 44 -8\n1 25 7\n38 44 -1\n7 2 10\n16 21 7\n46 26 3\n36 37 9\n45 8 6\n35 45 -1\n22 45 -7\n45 28 -8\n20 24 -5\n11 35 1\n25 46 -2\n16 30 10\n40 31 -3\n9 35 0\n14 22 -6\n28 38 -1\n10 35 7\n30 30 3\n44 31 -4\n25 43 -1\n32 23 -5\n36 37 0\n6 1 6\n20 16 -8\n46 44 6\n27 28 8\n14 8 9\n35 40 8\n45 39 3\n8 42 8\n26 7 6\n38 10 6\n18 46 -1\n27 12 -1\n28 26 5\n43 10 10\n7 1 -10\n18 36 -9\n16 39 -7\n7 31 -9\n45 24 -6\n11 28 -9\n30 13 -5\n1 33 -7\n5 23 5\n25 41 7\n33 3 1\n3 12 2\n47 45 0\n43 28 5\n1 18 -3\n15 2 3\n7 25 -9\n6 26 8\n39 39 -9\n24 40 -10\n24 42 10\n36 15 7\n26 32 -6\n8 40 2\n17 3 8\n29 19 10\n20 24 0\n28 33 3\n45 31 -9\n27 12 6\n3 3 8\n32 39 2\n3 2 -8\n37 41 -2\n17 35 -5\n20 38 7\n11 1 -4\n27 6 -7\n21 7 -1\n41 7 -1\n34 29 1\n43 17 10\n1 7 9\n44 14 -8\n35 37 -5\n39 41 -7\n3 16 6\n31 15 6\n27 42 1\n16 45 -4\n7 7 -6\n16 46 0\n32 21 5\n14 3 2\n10 35 -1\n40 29 -6\n23 20 6\n14 45 1\n15 2 7\n44 44 0\n18 3 7\n6 38 1\n2 18 -2\n39 33 -9\n17 34 -4\n47 31 -3\n17 38 -1\n22 5 0\n38 1 -2\n21 44 9\n16 41 8\n30 36 3\n22 26 2\n25 7 -10\n38 20 2\n27 27 -2\n8 27 5\n45 45 2\n16 40 -5\n34 12 5\n23 33 -3\n4 41 8\n17 11 2\n13 33 6\n26 39 5\n43 25 3\n43 29 2\n8 19 6\n4 40 0\n3 33 10\n21 33 2\n4 16 -7\n37 38 -6\n45 47 -4\n44 35 5\n42 21 1\n2 26 -4\n35 26 5\n32 31 -3\n34 4 6\n19 27 -10\n3 41 -7\n39 22 4\n3 27 10\n39 29 -10\n21 30 -9\n24 16 -8\n2 15 -10\n29 14 5\n42 14 4\n37 29 -1\n32 33 -8\n4 33 -6\n20 4 -7\n10 32 9\n10 2 8\n27 25 4\n33 43 2\n21 16 10\n29 9 -1\n5 11 -4\n4 36 -6\n34 5 -7\n42 47 10\n42 10 0\n38 45 8\n34 45 3\n4 46 -5\n3 45 8\n28 28 5\n44 23 -4\n35 33 -5\n8 8 -6\n2 13 -8\n24 3 -8\n10 12 -5\n24 25 4\n18 40 3\n33 42 5\n15 11 -4\n7 21 1\n12 4 7\n3 4 -3\n2 2 0\n13 14 5\n36 22 -7\n11 77\n1 1 -3\n2 7 7\n3 6 -7\n4 3 -7\n5 5 3\n6 3 -3\n7 5 2\n8 5 -1\n9 6 -1\n10 7 4\n1 9 2\n5 5 -6\n6 8 -4\n7 11 2\n3 7 2\n4 5 6\n1 11 3\n6 6 10\n7 8 -8\n3 9 -5\n11 9 -6\n4 11 -7\n7 5 -5\n8 8 -8\n1 7 -9\n9 10 -8\n7 7 4\n5 10 -2\n2 7 -6\n1 1 7\n3 9 -1\n3 6 6\n6 10 7\n9 3 7\n3 8 1\n10 3 3\n11 7 -8\n3 9 -1\n5 4 3\n4 5 -2\n7 11 -2\n9 8 7\n2 5 10\n2 5 4\n3 8 3\n11 11 10\n3 11 -3\n9 1 -1\n3 6 -5\n11 5 -4\n4 5 7\n3 1 -8\n9 1 -3\n10 3 -6\n2 5 9\n5 8 -4\n10 2 1\n3 10 2\n2 11 4\n2 7 -1\n9 5 9\n9 11 -2\n10 9 -10\n4 5 8\n4 3 1\n5 4 -7\n8 5 1\n1 6 4\n1 3 -6\n7 10 9\n4 8 0\n5 2 4\n6 7 8\n11 5 -7\n4 11 3\n6 4 0\n5 5 -7\n26 574\n1 5 -7\n2 10 -2\n3 8 9\n4 13 -9\n5 16 -5\n6 22 -2\n7 23 -3\n8 22 0\n9 21 3\n10 14 2\n11 18 -7\n12 1 -3\n13 7 -6\n14 6 -5\n15 20 -10\n16 18 -4\n17 18 -3\n18 18 -7\n19 20 4\n20 23 -4\n21 14 3\n22 14 5\n23 23 -2\n24 15 -3\n25 10 1\n25 19 9\n2 18 0\n22 21 9\n14 4 -5\n12 17 2\n21 8 -4\n11 15 -4\n3 4 -3\n2 13 -2\n21 19 8\n24 13 10\n4 13 -3\n25 15 -1\n13 2 5\n3 11 2\n24 17 -9\n18 9 -3\n20 12 3\n10 22 7\n17 22 1\n18 22 8\n17 7 6\n9 5 7\n24 21 9\n15 16 0\n5 24 10\n8 21 -7\n14 5 -8\n11 17 4\n10 21 10\n22 22 0\n12 7 0\n17 12 5\n5 17 4\n17 16 1\n19 11 2\n21 13 1\n9 12 1\n6 13 4\n18 10 8\n24 18 -10\n20 18 2\n16 6 -6\n7 12 7\n20 10 -1\n8 4 -7\n3 24 -10\n7 3 -8\n22 15 4\n5 19 4\n10 5 -3\n15 15 -9\n26 2 1\n26 13 2\n7 20 -7\n18 1 -4\n13 18 4\n14 8 -8\n21 1 -8\n21 21 7\n19 15 4\n14 24 -1\n20 6 -8\n23 18 -6\n25 20 2\n21 15 -5\n21 17 5\n19 18 -8\n16 19 -1\n19 13 -10\n7 18 7\n8 12 10\n17 20 7\n14 5 4\n20 15 3\n7 6 6\n19 4 -10\n21 3 3\n17 17 -1\n16 26 -4\n1 9 7\n9 1 -6\n17 11 2\n5 23 -3\n23 13 -9\n12 17 -6\n12 26 -6\n9 21 -6\n22 25 -2\n17 4 2\n13 24 4\n14 10 -5\n12 11 -3\n20 4 -5\n13 23 4\n23 24 -4\n10 19 -5\n1 11 9\n9 25 -4\n2 17 4\n26 14 3\n24 3 -6\n4 9 9\n24 10 -4\n1 23 -1\n25 1 10\n5 14 5\n17 14 10\n3 21 -1\n4 22 -5\n19 14 -6\n1 14 -10\n24 10 7\n9 22 -4\n5 22 8\n5 2 8\n14 23 -2\n9 1 -5\n6 20 0\n3 6 9\n11 19 -5\n25 19 2\n5 15 -9\n16 9 -3\n7 13 -10\n12 6 2\n10 11 -4\n14 24 -5\n3 22 1\n6 1 8\n1 5 1\n26 15 6\n3 4 10\n15 15 -10\n3 26 3\n9 10 -1\n9 6 4\n25 12 10\n5 5 -8\n26 11 5\n6 11 -1\n15 4 2\n9 16 -9\n2 21 0\n13 2 -6\n17 9 -3\n16 3 9\n23 19 -4\n9 7 8\n22 17 -1\n17 2 -8\n23 19 -10\n6 23 1\n10 24 2\n4 20 -2\n1 26 -2\n11 24 -3\n9 21 0\n4 1 9\n5 9 6\n14 24 10\n1 3 -9\n15 10 -7\n14 22 10\n20 20 7\n1 22 4\n15 9 -9\n3 9 9\n12 5 8\n4 16 -3\n17 12 6\n19 26 6\n25 22 -10\n16 8 7\n2 11 -4\n17 14 10\n16 17 4\n17 25 -2\n6 22 3\n16 13 8\n12 11 3\n19 14 -6\n10 26 -5\n9 15 9\n26 17 0\n18 2 8\n1 13 -7\n9 25 9\n1 21 -8\n1 16 -6\n16 19 9\n12 24 3\n10 12 -10\n25 11 -4\n25 21 7\n2 26 3\n1 10 3\n21 9 2\n5 11 -1\n10 13 0\n21 24 10\n3 16 0\n8 2 9\n14 8 4\n18 16 5\n20 4 10\n21 18 -8\n6 1 -9\n24 17 -5\n13 9 2\n11 18 9\n3 4 1\n11 17 6\n10 10 2\n16 9 7\n23 24 2\n9 18 -3\n10 13 -3\n19 15 -10\n18 4 9\n7 15 -4\n19 11 0\n1 24 -6\n18 17 2\n13 22 2\n25 13 -5\n24 23 -1\n22 21 5\n17 4 8\n19 10 10\n21 9 5\n14 20 -9\n1 15 3\n18 8 -9\n9 25 6\n18 18 -9\n3 18 1\n23 4 -1\n19 2 5\n1 10 5\n16 11 4\n20 3 -4\n2 16 2\n15 23 -8\n18 9 5\n9 5 0\n16 23 10\n6 17 -1\n12 21 -6\n13 26 -9\n12 14 -2\n4 20 8\n8 3 10\n13 1 5\n8 12 6\n1 10 -1\n9 12 4\n12 8 2\n5 15 0\n2 23 -8\n10 10 -8\n6 10 -5\n6 8 -7\n25 25 -2\n8 2 -8\n14 2 4\n19 21 8\n17 13 10\n7 19 7\n11 15 5\n24 4 -4\n6 3 3\n12 26 3\n1 2 5\n5 8 -1\n20 10 -1\n22 15 -4\n8 4 -6\n15 19 -4\n2 26 -5\n2 23 9\n26 16 10\n14 20 9\n22 1 0\n18 5 -5\n24 24 -3\n15 23 -9\n20 19 2\n22 13 -3\n23 5 1\n14 17 6\n12 5 -1\n17 16 -10\n25 23 -9\n6 20 2\n10 22 0\n9 22 0\n5 7 -8\n12 4 9\n10 24 -9\n8 13 10\n22 22 -5\n18 24 3\n6 4 -9\n18 14 1\n22 18 8\n18 26 7\n21 25 -1\n13 20 -6\n11 6 10\n24 16 -5\n10 10 -5\n17 21 0\n1 21 -2\n11 6 7\n22 26 0\n18 13 -4\n11 18 -8\n8 8 -2\n14 15 -7\n21 8 7\n3 26 10\n24 4 10\n22 25 7\n10 24 9\n9 15 -9\n13 26 -5\n18 22 -7\n10 8 4\n1 23 -3\n10 24 -3\n3 15 6\n2 25 -4\n26 12 3\n22 8 5\n25 20 -1\n1 24 7\n23 3 -2\n5 6 4\n26 15 -7\n13 8 -7\n26 19 -7\n24 13 -4\n11 16 -2\n1 17 7\n25 23 10\n6 23 -5\n15 15 4\n17 24 -10\n1 13 0\n2 11 1\n6 17 5\n3 19 -2\n13 16 9\n12 6 -7\n12 10 10\n23 14 -7\n17 18 3\n5 21 5\n23 11 9\n15 2 8\n6 9 -1\n23 10 8\n2 1 -4\n15 4 0\n1 19 0\n4 14 1\n21 15 0\n24 13 2\n15 20 -4\n4 23 0\n10 4 3\n8 1 10\n9 5 -4\n7 19 -5\n24 10 -2\n15 10 -1\n7 14 -10\n10 14 -8\n3 3 4\n22 10 -4\n13 18 0\n5 4 7\n25 25 4\n14 7 -7\n2 8 -3\n26 16 -1\n23 13 1\n8 24 3\n12 21 -5\n13 5 -5\n14 17 8\n26 10 -7\n11 1 -4\n23 8 4\n3 1 -10\n7 25 2\n1 20 4\n24 16 5\n11 3 4\n24 10 -2\n18 2 -2\n9 22 2\n12 8 -8\n22 19 -8\n21 1 4\n14 17 5\n25 21 8\n8 7 -4\n2 23 -4\n21 8 -6\n22 17 -9\n12 13 -9\n10 18 1\n25 11 -5\n8 21 2\n13 1 5\n13 9 6\n6 12 6\n26 13 -1\n7 3 4\n8 6 0\n5 12 -7\n11 13 -9\n10 4 -4\n20 18 -1\n20 14 -6\n13 24 -7\n19 1 8\n6 5 3\n22 1 -1\n16 7 -1\n3 18 -3\n19 23 4\n14 20 8\n5 16 8\n15 23 3\n20 10 4\n14 18 -7\n14 22 -7\n15 7 -9\n25 18 -9\n8 22 -8\n4 8 -1\n3 22 -3\n22 14 -9\n19 7 3\n19 18 -9\n25 24 -10\n1 3 6\n26 25 9\n2 26 -4\n7 12 -8\n25 19 -8\n9 21 8\n13 21 5\n17 14 0\n18 21 3\n26 24 7\n15 19 10\n16 8 -4\n9 13 8\n1 16 1\n7 12 -5\n7 25 6\n24 7 9\n17 13 -10\n10 20 3\n14 10 2\n25 26 2\n3 24 -7\n3 12 -9\n16 9 -2\n13 16 -2\n12 12 -3\n14 15 6\n25 20 -2\n19 25 4\n12 6 -6\n22 5 6\n2 26 2\n8 12 10\n1 16 -8\n3 24 3\n4 23 6\n16 9 5\n18 19 1\n19 22 -4\n26 20 3\n14 13 -10\n23 2 2\n1 18 7\n12 14 -8\n21 19 -9\n7 3 5\n20 19 -4\n14 22 -3\n2 3 2\n22 12 -5\n18 25 -3\n17 15 -6\n9 15 -7\n11 8 6\n23 19 5\n8 2 10\n5 16 -6\n15 11 1\n5 15 4\n5 19 -2\n14 25 8\n26 19 -3\n3 25 -10\n21 10 -9\n18 9 -4\n4 26 8\n22 1 -1\n12 23 -6\n5 7 -3\n2 8 -4\n2 7 5\n18 4 -9\n2 21 2\n11 8 8\n17 4 -7\n4 20 -6\n25 2 8\n11 13 -4\n17 16 0\n16 2 7\n16 8 1\n15 3 -1\n26 3 4\n9 14 -9\n18 18 2\n3 18 -5\n19 15 8\n25 12 3\n13 17 5\n2 17 -9\n2 8 -4\n19 3 4\n22 5 3\n10 16 9\n15 10 8\n10 11 7\n13 20 -8\n21 18 10\n1 26 -2\n20 3 0\n15 25\n1 8 -6\n2 9 10\n3 11 9\n4 6 0\n5 15 9\n6 2 2\n7 8 3\n8 6 -4\n9 10 -7\n10 10 -3\n11 9 9\n12 11 9\n13 2 -4\n14 10 6\n2 1 -4\n5 4 -2\n9 5 7\n14 1 10\n11 1 8\n9 8 -8\n13 1 1\n3 6 -6\n4 1 8\n13 8 -6\n4 10 10\n41 778\n1 29 -3\n2 7 -10\n3 10 -5\n4 8 -10\n5 29 2\n6 26 3\n7 19 4\n8 36 -9\n9 17 -1\n10 14 7\n11 35 4\n12 17 1\n13 19 0\n14 16 1\n15 30 -8\n16 16 10\n17 21 8\n18 2 -6\n19 24 -10\n20 30 10\n21 40 -10\n22 41 0\n23 40 -8\n24 10 -4\n25 11 9\n26 9 3\n27 17 -10\n28 2 7\n29 40 -3\n30 39 -4\n31 13 4\n32 25 -8\n33 8 -5\n34 12 1\n35 22 -6\n36 25 5\n37 24 -10\n38 37 10\n39 28 9\n40 39 -5\n4 31 8\n32 24 0\n38 9 8\n38 29 7\n40 16 9\n3 41 -7\n17 27 -7\n8 38 -1\n6 12 -4\n14 33 -10\n37 22 5\n35 20 4\n38 20 5\n18 11 7\n7 15 -5\n30 18 -9\n5 17 -8\n11 10 3\n31 25 -9\n33 15 7\n7 36 -5\n11 34 7\n18 10 8\n27 1 9\n22 8 4\n25 40 2\n13 22 -9\n3 23 1\n28 13 -7\n33 33 -6\n8 32 10\n39 4 2\n7 8 -3\n37 9 7\n17 40 -10\n41 26 1\n18 9 -6\n35 16 -7\n15 32 -10\n18 40 4\n1 16 -2\n11 15 -6\n12 11 -7\n35 5 -3\n7 24 -5\n12 3 1\n12 29 0\n34 1 9\n25 18 -8\n29 13 0\n35 34 9\n15 11 1\n23 1 -10\n21 30 -8\n30 31 3\n10 13 -7\n36 13 -3\n26 6 4\n28 10 -2\n17 21 1\n13 39 -10\n2 41 8\n27 8 -2\n38 35 -7\n12 14 2\n18 20 7\n11 1 -7\n18 16 -8\n10 35 -3\n31 17 6\n31 32 0\n21 8 0\n33 22 9\n33 22 -6\n16 8 -8\n33 27 9\n39 32 5\n40 41 2\n30 37 -8\n26 40 4\n17 38 1\n2 3 3\n36 34 4\n11 25 2\n26 2 1\n12 18 -10\n5 40 5\n6 23 -7\n21 25 -3\n33 2 10\n37 27 2\n32 37 0\n26 39 9\n38 1 -8\n17 12 4\n7 17 0\n16 40 8\n23 9 5\n40 33 -10\n31 13 -6\n16 26 -5\n4 22 10\n13 4 -1\n23 39 -7\n12 13 2\n28 28 -3\n41 3 5\n1 38 -3\n2 15 -2\n25 11 -2\n11 41 1\n3 16 7\n13 32 -4\n39 23 -9\n21 23 1\n10 10 4\n35 37 5\n32 2 -2\n33 5 6\n31 11 3\n31 11 2\n34 41 3\n18 23 4\n26 2 1\n30 4 -3\n39 11 4\n29 32 -3\n39 22 3\n39 11 -10\n16 8 6\n34 28 -8\n41 40 -5\n5 20 6\n9 5 -8\n25 5 7\n19 26 -10\n19 12 5\n22 4 -3\n34 23 8\n28 10 3\n22 19 9\n33 8 -4\n24 40 -4\n38 12 5\n20 10 -9\n16 25 8\n7 14 1\n23 24 2\n16 4 5\n36 41 -6\n37 18 -5\n11 17 -5\n28 27 10\n5 21 -5\n27 37 3\n31 11 7\n4 37 -6\n33 13 -5\n26 34 9\n30 11 4\n29 31 -5\n7 29 2\n37 23 6\n29 38 -6\n28 31 -8\n1 22 0\n29 15 -1\n31 7 -1\n30 36 3\n20 34 6\n33 17 3\n28 17 -6\n21 12 9\n8 41 4\n35 30 -7\n17 34 7\n18 12 -1\n25 21 -9\n12 5 2\n24 7 3\n9 32 -10\n3 40 6\n3 38 10\n36 16 5\n11 11 -8\n8 5 -10\n19 13 7\n5 32 -10\n3 5 -7\n18 12 3\n18 10 7\n20 9 8\n13 40 10\n8 40 -7\n25 27 5\n32 14 -1\n20 38 -6\n36 5 -4\n28 25 -2\n11 21 -4\n23 28 6\n21 20 5\n35 8 1\n2 25 4\n36 32 -9\n34 18 5\n7 23 1\n8 11 10\n15 33 -6\n21 33 2\n13 12 0\n39 38 3\n12 35 10\n20 6 2\n30 31 6\n28 29 -8\n27 23 9\n41 12 -6\n22 17 -3\n15 38 0\n41 5 0\n3 3 4\n35 20 4\n3 5 -10\n36 38 -4\n11 6 -5\n17 6 7\n18 40 10\n40 38 -9\n23 26 -7\n27 10 -3\n5 14 3\n27 37 1\n27 9 7\n29 38 -9\n41 6 1\n14 24 -8\n21 25 -5\n23 20 -8\n27 35 -1\n10 16 -6\n5 9 -4\n41 20 -9\n29 7 10\n21 8 2\n41 14 -5\n19 26 1\n34 7 8\n5 19 10\n34 17 7\n19 25 -4\n4 11 3\n20 22 -5\n17 40 -8\n6 22 7\n2 23 9\n23 14 2\n9 1 6\n36 32 0\n30 27 -2\n4 39 3\n14 12 -5\n38 27 -8\n20 23 5\n29 36 -10\n35 9 7\n13 23 -7\n27 36 -5\n38 23 7\n27 25 -3\n30 12 -9\n40 14 -10\n25 11 2\n13 29 3\n30 24 1\n37 40 -9\n41 16 -9\n7 37 9\n17 27 -2\n19 9 4\n37 4 -7\n36 26 3\n37 11 8\n5 20 -8\n37 29 -5\n32 6 -5\n34 20 0\n5 4 1\n3 26 3\n12 10 9\n10 29 0\n23 10 9\n18 29 8\n16 28 10\n23 39 -3\n34 6 10\n13 35 6\n21 14 3\n36 2 -2\n41 5 9\n13 26 7\n22 9 -6\n4 6 5\n28 29 -10\n14 8 -1\n37 10 9\n1 15 1\n28 19 -8\n21 15 1\n27 32 -5\n41 6 2\n34 32 -7\n33 33 6\n11 21 1\n31 1 1\n2 28 -1\n14 23 0\n39 8 3\n26 8 4\n24 14 -5\n30 1 8\n11 22 -7\n41 37 -7\n11 20 -4\n9 23 6\n6 20 -10\n11 29 1\n26 26 4\n12 29 7\n12 40 6\n4 5 -4\n10 15 3\n34 9 -1\n38 16 6\n23 25 -5\n41 24 -10\n24 7 10\n2 10 0\n3 9 8\n36 17 -10\n23 5 9\n28 1 -7\n4 11 -2\n24 12 -6\n18 17 6\n27 16 -4\n30 26 -5\n8 21 10\n24 35 -9\n27 39 4\n10 1 9\n19 17 -6\n11 19 -9\n28 19 -3\n26 33 10\n11 37 -9\n19 10 -8\n29 35 6\n6 34 -7\n20 16 -4\n14 3 -5\n36 33 -4\n26 38 -6\n11 25 -5\n30 34 4\n28 28 0\n8 11 -7\n3 2 -1\n10 16 9\n22 22 -5\n22 23 4\n8 1 9\n7 31 0\n38 13 -10\n17 9 -5\n17 27 8\n2 35 -6\n6 41 -5\n33 3 -8\n20 24 -6\n3 21 -3\n20 4 -4\n18 7 9\n31 15 -7\n24 23 0\n18 5 2\n30 38 7\n10 3 3\n36 16 -3\n25 14 2\n14 16 8\n26 28 2\n25 1 -4\n40 31 -9\n38 19 9\n39 16 6\n1 35 4\n41 29 -10\n34 37 5\n4 8 6\n11 2 -6\n11 26 -7\n35 6 9\n15 30 -5\n16 20 -9\n25 23 -2\n17 41 4\n18 6 -1\n34 25 -8\n26 14 5\n13 31 -6\n18 12 4\n33 36 -1\n30 30 -9\n20 20 -2\n13 10 0\n22 30 -3\n33 33 8\n39 3 7\n27 14 -4\n33 17 0\n37 23 10\n32 38 9\n5 12 -10\n20 21 -3\n29 4 8\n14 21 -6\n32 4 6\n40 12 -4\n6 14 6\n25 16 -9\n22 25 2\n37 27 -7\n11 8 7\n18 36 -1\n15 22 7\n15 35 4\n11 15 0\n19 9 -4\n5 17 -2\n21 27 -7\n2 22 -10\n6 26 -3\n24 9 -9\n37 32 3\n36 4 9\n13 31 -9\n8 41 -3\n27 25 9\n25 24 2\n17 16 3\n27 2 -1\n15 26 4\n3 40 -10\n37 11 -7\n22 2 -5\n23 29 -9\n29 3 -8\n5 30 8\n6 21 -4\n18 5 -6\n19 5 -2\n17 18 -5\n13 16 6\n28 21 1\n3 29 8\n40 22 -3\n20 1 8\n36 26 7\n39 32 -3\n34 8 9\n15 41 7\n4 14 3\n37 13 -10\n14 32 -5\n14 9 0\n24 8 -6\n8 33 -4\n30 28 -6\n33 12 -4\n25 5 2\n21 4 -4\n33 32 3\n9 3 -8\n36 24 -6\n37 36 -5\n24 39 0\n32 10 -9\n37 7 9\n40 41 3\n19 2 -10\n25 7 -3\n41 41 7\n34 36 4\n35 12 10\n24 16 5\n33 15 6\n11 35 -6\n36 24 -2\n9 11 -5\n36 29 4\n37 11 -6\n12 19 -8\n4 20 -6\n38 9 10\n3 34 -10\n15 15 5\n13 19 -9\n36 18 -2\n22 30 8\n9 19 0\n22 15 9\n37 8 3\n5 10 3\n18 8 -7\n19 20 -3\n39 7 3\n6 15 -5\n25 22 8\n22 28 -8\n6 17 -6\n35 31 2\n32 18 3\n29 32 10\n40 2 8\n21 24 -10\n27 25 -1\n6 7 -9\n5 27 -4\n34 31 9\n32 7 7\n28 31 9\n40 33 -7\n40 4 2\n30 19 4\n14 33 -1\n25 18 -5\n38 5 -7\n38 16 -7\n4 15 8\n25 39 1\n6 10 2\n15 5 -10\n20 25 -5\n28 1 -5\n21 40 -10\n7 7 2\n2 15 -6\n35 28 -8\n3 34 -4\n36 41 9\n17 33 6\n21 26 2\n33 1 9\n33 31 7\n31 4 4\n27 30 5\n3 18 6\n17 6 1\n9 37 -3\n16 40 -3\n13 21 5\n6 6 -9\n31 9 -4\n23 39 -6\n29 21 -3\n3 33 0\n19 18 2\n27 14 0\n9 8 -8\n23 34 1\n17 31 -10\n18 40 0\n3 36 8\n34 26 -6\n28 21 -2\n34 3 -4\n30 41 -5\n39 11 -1\n22 4 -6\n13 28 8\n22 18 1\n17 15 0\n25 21 -3\n19 7 8\n2 37 1\n15 4 -6\n6 34 7\n8 20 0\n9 28 7\n38 15 9\n36 5 0\n2 11 -1\n12 10 -6\n16 32 5\n16 25 -2\n33 14 8\n8 2 8\n6 22 8\n20 30 0\n22 6 -9\n2 1 7\n12 29 -6\n26 22 -3\n39 30 -2\n6 21 -10\n2 39 8\n29 5 6\n39 7 -8\n30 1 -1\n35 13 -7\n28 39 3\n34 15 -2\n24 14 0\n25 11 -5\n8 23 -6\n20 35 7\n28 15 -1\n29 9 3\n14 15 -6\n28 31 -5\n21 5 -1\n41 10 1\n11 18 -6\n34 28 -1\n22 40 -8\n2 36 -7\n25 18 10\n10 25 1\n28 25 5\n4 9 8\n12 21 -4\n13 17 -9\n38 21 7\n26 37 -7\n41 36 -5\n1 34 9\n21 36 -7\n26 1 8\n36 10 0\n34 27 9\n6 38 -5\n33 37 -5\n7 3 -4\n41 4 -6\n3 3 6\n38 26 1\n40 38 5\n2 16 -4\n6 34 8\n15 14 2\n11 21 10\n11 6 -8\n3 5 -5\n27 12 -5\n39 22 9\n22 5 6\n9 16 4\n39 21 -2\n27 4 -4\n28 12 -8\n15 39 -9\n6 27 -3\n8 35 0\n35 8 -2\n40 1 6\n11 38 7\n21 27 9\n4 41 6\n35 25 -4\n26 38 7\n25 28 -9\n13 20 5\n37 32 -8\n18 31 -3\n27 35 0\n1 21 0\n10 9 -2\n11 9 1\n26 20 -7\n23 13 -8\n7 8 -10\n13 35 -5\n32 26 8\n21 39 2\n11 12 -7\n33 24 -8\n32 31 8\n26 8 8\n30 34 3\n40 5 -2\n24 35 -6\n25 33 -5\n6 37 -10\n1 24 2\n18 5 9\n37 3 3\n8 34 8\n20 33 -8\n18 14 -4\n32 15 -1\n33 3 -8\n14 8 -10\n38 4 7\n31 12 4\n11 32 9\n35 3 4\n11 17 2\n19 9 -4\n32 23 -1\n17 31 7\n25 31 1\n13 21 -6\n20 3 -6\n33 13 0\n33 25 2\n23 9 5\n28 16 9\n40 4 2\n19 23 3\n19 40 -2\n12 35 9\n33 6 -10\n2 33 4\n36 3 -9\n37 19 3\n25 33 10\n1 24 1\n37 24 -7\n1 33 6\n6 22 -5\n31 21 -7\n21 21 -3\n40 15 1\n19 35 -4\n18 27 -1\n33 17 -3\n28 21 -8\n28 399\n1 12 -9\n2 9 -4\n3 1 -6\n4 18 -3\n5 28 -5\n6 21 -8\n7 25 -4\n8 25 -4\n9 6 7\n10 8 -10\n11 10 7\n12 13 6\n13 3 -4\n14 7 6\n15 28 -10\n16 12 9\n17 20 -5\n18 7 -10\n19 18 6\n20 22 7\n21 15 4\n22 16 -2\n23 26 9\n24 9 9\n25 28 3\n26 2 0\n27 15 2\n11 6 -3\n18 21 2\n15 6 3\n16 8 6\n16 6 5\n1 13 -1\n9 16 9\n28 12 -9\n20 7 -7\n3 5 -2\n18 17 -8\n12 16 -10\n16 8 4\n5 26 2\n27 23 4\n14 4 -9\n26 24 9\n27 15 -7\n24 13 -1\n25 28 -3\n16 18 -8\n23 6 -7\n9 14 -5\n15 24 -5\n5 4 2\n17 22 4\n7 13 -3\n13 16 -8\n11 23 -4\n24 28 -9\n3 4 9\n26 12 1\n26 18 6\n21 25 2\n20 4 -1\n4 26 0\n25 11 10\n10 17 -9\n26 24 -9\n18 16 9\n25 25 10\n11 17 -5\n15 28 10\n24 14 4\n12 27 7\n15 7 1\n18 26 -6\n16 15 3\n27 1 6\n25 14 6\n17 5 -10\n7 8 6\n3 15 3\n11 13 -9\n24 6 -2\n19 4 10\n10 23 4\n12 15 -3\n16 13 9\n2 27 -4\n7 4 -2\n17 20 -3\n26 8 3\n16 6 9\n24 22 -6\n14 21 6\n16 20 -5\n22 24 3\n12 17 -5\n16 10 -3\n23 19 -7\n13 19 -4\n6 9 1\n12 12 -4\n26 14 8\n21 17 -9\n26 22 -8\n18 14 7\n21 26 -10\n21 25 10\n26 17 -2\n9 4 7\n10 15 10\n25 1 6\n8 5 1\n22 17 4\n13 11 5\n28 28 5\n16 22 -8\n27 1 9\n25 13 -10\n23 16 -5\n26 19 9\n17 8 7\n14 11 -1\n27 24 5\n22 16 5\n22 2 1\n2 28 7\n24 25 -8\n3 8 -10\n17 21 -2\n11 10 4\n20 22 4\n24 13 5\n17 23 -5\n24 13 -1\n19 7 8\n12 28 -6\n4 15 0\n18 6 -4\n27 9 8\n8 11 -3\n6 15 -7\n21 24 1\n24 3 2\n14 5 -6\n22 7 -2\n13 14 -1\n6 20 -10\n5 16 -4\n26 27 -5\n20 20 6\n22 10 -10\n12 8 -9\n1 10 10\n1 3 2\n27 10 3\n22 28 7\n13 9 9\n8 27 7\n23 2 -8\n20 9 7\n22 25 1\n15 4 1\n8 7 2\n4 4 6\n28 22 -8\n9 11 10\n24 13 -9\n13 27 9\n6 27 0\n4 11 2\n27 20 9\n27 2 -4\n18 7 0\n19 13 -7\n7 17 -6\n7 9 5\n27 20 -2\n11 12 6\n11 7 10\n14 21 -8\n20 13 6\n4 27 4\n27 5 7\n21 3 -6\n20 5 -8\n21 2 10\n4 26 -6\n3 28 0\n11 5 -1\n14 18 9\n3 8 -5\n8 17 -5\n11 14 4\n21 16 4\n16 7 -7\n18 2 8\n6 10 6\n22 1 4\n19 16 0\n28 26 3\n11 6 -1\n25 4 6\n18 1 5\n7 19 -4\n22 25 -4\n1 25 1\n13 11 -3\n5 1 -6\n22 8 9\n3 26 -4\n23 10 2\n25 21 -4\n20 14 -6\n7 18 -6\n15 28 -7\n6 4 -9\n28 7 -4\n23 8 -1\n12 24 10\n19 24 5\n11 11 8\n25 16 -1\n12 12 8\n9 8 -2\n10 2 -1\n20 28 -4\n14 27 0\n25 6 -6\n25 21 -1\n23 9 -10\n11 10 3\n22 20 8\n15 22 -1\n3 14 -10\n3 1 -8\n2 22 8\n27 21 -4\n2 23 7\n21 5 0\n14 10 -3\n18 24 -3\n25 5 1\n16 7 -6\n26 25 10\n15 20 -4\n6 26 9\n26 13 1\n17 16 10\n25 4 1\n15 2 2\n5 7 -7\n20 17 -3\n7 27 -8\n19 26 -3\n4 4 0\n9 14 5\n21 19 6\n11 8 -6\n21 23 -10\n7 2 -9\n17 3 2\n16 6 8\n13 3 -1\n23 28 2\n9 6 9\n26 15 3\n11 14 -4\n1 9 -2\n14 15 -10\n28 24 -4\n9 1 6\n28 5 6\n3 26 -2\n10 23 4\n4 15 1\n28 19 -1\n16 21 5\n17 19 0\n6 19 -1\n19 12 -7\n5 15 10\n22 19 -10\n17 6 0\n9 12 6\n14 10 -7\n23 4 7\n23 3 -7\n4 20 2\n20 15 1\n22 12 -7\n23 18 10\n17 1 -1\n21 12 8\n19 3 2\n20 9 9\n11 15 4\n13 7 2\n10 6 -8\n17 14 6\n24 8 0\n10 3 7\n25 5 0\n21 22 -1\n7 22 -9\n2 18 -5\n4 13 -3\n18 2 -6\n24 23 -4\n1 10 -10\n18 13 8\n15 27 3\n21 12 9\n4 8 10\n10 27 -6\n20 26 -1\n1 1 -7\n9 11 2\n7 12 1\n17 2 3\n28 26 9\n24 5 -10\n7 7 7\n12 21 -1\n26 20 0\n19 23 5\n2 4 5\n19 15 -7\n11 5 -6\n26 27 -8\n24 8 5\n16 28 6\n10 20 4\n19 20 -6\n6 25 -9\n18 6 2\n3 19 -1\n12 21 4\n28 12 6\n13 26 -4\n25 7 -3\n12 25 10\n24 3 -1\n9 28 4\n14 6 0\n6 17 -8\n23 24 -7\n18 24 2\n7 11 1\n24 19 4\n4 25 2\n28 15 -2\n15 2 4\n26 4 10\n20 11 5\n26 10 -5\n18 21 0\n5 1 6\n7 18 -3\n26 2 0\n25 12 -10\n5 21 1\n10 5 -1\n2 21 3\n9 27 -7\n10 14 0\n14 1 4\n17 21 3\n20 8 -6\n15 5 4\n2 27 10\n14 9 6\n26 23 6\n15 26 2\n10 15 5\n19 25 7\n12 25 2\n11 15 -4\n1 11 3\n14 15 -1\n27 23 -3\n1 24 1\n14 14 5\n27 24 5\n2 12 2\n26 3 3\n27 18 -8\n8 1 3\n20 11 3\n20 6 2\n26 8 -5\n19 18 -9\n25 3 0\n13 1 10\n21 15 -2\n9 19 3\n15 8 -2\n11 28 -8\n4 10 5\n18 5 3\n",
"output": "No\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "10\n1 1\n1 1 -7\n8 37\n1 1 -3\n2 2 3\n3 2 -3\n4 8 6\n5 5 -4\n6 2 -5\n7 4 4\n5 1 2\n2 1 0\n7 2 0\n6 8 1\n3 1 -1\n4 1 3\n1 8 -10\n6 4 4\n3 7 -1\n5 3 -3\n2 4 1\n4 8 -1\n6 3 6\n7 6 7\n5 4 9\n1 8 -7\n4 8 3\n4 2 -1\n3 2 -9\n1 3 6\n5 4 7\n7 7 9\n3 3 8\n6 2 7\n2 8 6\n1 5 4\n6 7 -9\n2 3 -10\n7 8 -1\n3 4 7\n41 216\n1 35 -6\n2 17 4\n3 6 7\n4 30 0\n5 23 2\n6 23 -5\n7 10 -4\n8 37 -5\n9 21 5\n10 4 -3\n11 15 -4\n12 21 -3\n13 27 -5\n14 10 -10\n15 36 4\n16 22 3\n17 28 2\n18 34 -3\n19 6 -8\n20 4 3\n21 14 7\n22 11 3\n23 7 -6\n24 24 -1\n25 22 -3\n26 13 -10\n27 8 -10\n28 18 -9\n29 14 4\n30 22 -2\n31 11 9\n32 1 7\n33 4 -9\n34 1 10\n35 27 2\n36 39 0\n37 4 -1\n38 20 0\n39 15 -6\n40 22 -2\n35 20 -5\n11 6 2\n1 36 -1\n28 22 5\n31 37 -9\n41 19 -7\n20 37 8\n13 21 -6\n19 13 -10\n38 26 -8\n3 36 0\n3 26 2\n11 26 2\n19 35 -8\n35 26 1\n41 10 -2\n33 13 0\n20 27 -6\n31 39 -6\n33 33 7\n30 27 -3\n29 7 -8\n5 2 -3\n32 31 9\n8 15 7\n24 33 10\n15 20 7\n40 37 -1\n21 41 -3\n34 40 6\n8 6 -10\n7 28 -6\n4 13 -1\n11 32 -10\n21 30 9\n40 35 -10\n37 26 -3\n30 16 2\n8 18 4\n22 9 -9\n31 2 -9\n3 7 -2\n39 21 -9\n15 31 6\n9 13 -5\n39 29 6\n14 8 -1\n17 14 -1\n4 9 -1\n23 25 6\n25 30 -2\n36 38 -9\n14 16 9\n20 35 -9\n38 5 -6\n17 21 -1\n36 10 6\n36 20 8\n21 1 7\n15 19 -10\n5 38 -2\n37 17 -9\n41 21 3\n37 41 -8\n25 38 -8\n24 36 7\n7 27 6\n1 6 -1\n18 34 -5\n15 10 9\n29 21 -1\n36 34 7\n25 28 -1\n22 33 -7\n31 11 -6\n15 34 -4\n30 12 4\n38 9 -4\n17 24 -7\n3 36 2\n9 29 -3\n27 30 7\n2 24 0\n27 1 -7\n3 7 4\n24 19 -6\n2 18 -8\n30 6 1\n8 7 2\n35 20 -8\n6 12 5\n32 2 -7\n21 23 -1\n16 10 3\n29 38 -3\n3 13 1\n40 18 1\n6 6 -3\n15 37 7\n33 26 5\n15 13 5\n21 5 5\n30 30 -10\n27 28 5\n41 16 1\n26 14 -5\n24 20 -6\n10 19 -3\n41 2 -9\n27 28 -3\n40 29 3\n23 27 6\n17 26 -5\n9 8 -8\n26 9 -1\n22 21 -9\n36 21 4\n25 13 -4\n17 21 -10\n28 7 10\n20 21 10\n36 39 -5\n17 18 5\n24 10 5\n21 29 2\n12 5 -7\n30 10 6\n26 33 6\n16 29 -10\n38 20 -8\n32 11 -4\n26 1 -10\n25 20 -6\n1 30 -2\n2 20 4\n5 9 4\n26 41 5\n15 25 2\n11 18 -8\n12 29 8\n20 26 -4\n23 34 -1\n33 34 5\n41 1 9\n2 11 -7\n21 10 8\n11 19 2\n4 31 8\n36 33 -1\n34 3 -6\n31 32 0\n10 5 1\n6 29 -3\n25 39 7\n13 29 -10\n40 19 3\n13 7 1\n24 9 -2\n5 7 0\n10 9 10\n13 26 10\n25 15 -5\n1 7 -3\n9 35 10\n19 40 -8\n10 33 -7\n14 10 -1\n18 39 -10\n38 11 9\n20 29 9\n40 9 -1\n29 23 3\n15 33 -8\n30 36 9\n39 26 8\n31 1 5\n36 730\n1 35 -5\n2 24 7\n3 2 -9\n4 24 -10\n5 5 -2\n6 4 1\n7 33 -9\n8 3 -2\n9 30 3\n10 7 10\n11 32 6\n12 12 -1\n13 8 9\n14 8 8\n15 11 -10\n16 1 -4\n17 8 -8\n18 7 -3\n19 9 0\n20 26 -10\n21 23 -7\n22 5 -3\n23 30 -5\n24 22 3\n25 9 -9\n26 26 7\n27 28 6\n28 34 0\n29 6 6\n30 5 -4\n31 4 -8\n32 21 -9\n33 7 10\n34 32 6\n35 16 -10\n32 33 -7\n18 2 -9\n11 7 3\n1 10 -6\n29 25 8\n14 23 -3\n21 15 2\n34 9 -2\n29 35 -9\n34 26 -10\n9 28 7\n17 12 0\n5 29 4\n21 18 0\n22 31 -1\n23 36 6\n2 16 -6\n13 24 6\n23 3 9\n3 4 -7\n23 23 3\n2 34 -9\n35 16 0\n8 8 -9\n28 12 4\n11 1 10\n22 10 9\n28 2 9\n27 14 0\n30 21 -3\n22 8 -9\n27 7 -7\n15 30 5\n7 15 -9\n22 31 -1\n20 30 -7\n32 13 -2\n22 31 -3\n24 7 -8\n27 14 2\n1 22 -1\n13 23 -2\n8 25 -8\n15 26 -7\n16 12 6\n5 18 2\n14 10 0\n35 8 3\n14 10 0\n13 26 2\n27 36 1\n14 6 -5\n7 9 -10\n12 29 3\n13 14 9\n3 29 1\n29 3 -10\n19 7 1\n25 34 -9\n6 18 -4\n9 9 -1\n15 27 -9\n17 18 1\n32 31 0\n35 19 4\n24 32 -7\n18 33 6\n14 27 8\n33 4 7\n9 29 6\n27 26 -7\n36 6 -6\n35 3 2\n28 22 -6\n20 17 -3\n7 25 -4\n28 15 -5\n4 21 8\n23 12 -10\n2 22 -9\n13 10 4\n31 17 7\n25 30 -6\n10 20 3\n2 1 0\n9 11 2\n1 36 0\n4 11 -1\n27 30 2\n1 29 -9\n6 25 2\n14 12 6\n33 17 -4\n32 31 -2\n14 33 7\n8 18 -4\n34 36 -8\n26 4 -1\n31 9 5\n34 30 3\n19 9 -8\n13 6 1\n3 1 7\n21 24 4\n26 7 -4\n14 9 -4\n12 6 -2\n26 34 7\n17 32 10\n9 15 1\n4 31 0\n8 5 -8\n21 17 -8\n27 4 1\n3 24 4\n16 3 -6\n16 11 9\n25 4 0\n27 17 3\n10 34 -9\n26 20 6\n29 26 5\n31 7 -4\n32 28 -4\n10 15 9\n31 14 -4\n17 9 -8\n14 1 0\n24 5 0\n10 30 -3\n8 26 7\n19 6 9\n32 8 -2\n8 8 -3\n6 29 -6\n17 2 5\n14 5 -7\n20 14 9\n20 6 -8\n22 14 5\n32 34 1\n27 7 -2\n24 25 4\n7 2 8\n25 33 0\n4 29 -3\n8 4 -3\n13 18 10\n34 36 10\n12 34 10\n33 13 3\n11 26 -10\n35 21 -3\n16 17 3\n32 36 1\n22 26 4\n32 22 -5\n28 28 3\n5 8 -10\n36 28 5\n1 13 9\n35 8 9\n25 3 6\n14 25 0\n25 32 8\n14 20 -10\n36 13 -10\n10 16 9\n15 12 8\n23 13 5\n13 31 1\n26 2 4\n11 4 -3\n15 34 4\n1 36 -5\n34 27 -8\n23 17 0\n14 3 -2\n5 15 -6\n10 12 -1\n8 29 0\n20 13 6\n24 5 -4\n18 24 6\n7 31 -10\n32 36 3\n17 12 6\n31 29 -3\n24 9 4\n3 33 4\n10 24 2\n11 32 -2\n20 1 -7\n30 6 -10\n28 22 -5\n25 31 6\n24 11 -7\n20 10 3\n35 34 4\n2 31 -6\n34 20 4\n27 25 1\n9 2 -10\n9 22 -1\n31 29 -1\n17 29 6\n28 6 4\n30 30 1\n18 14 9\n3 30 8\n3 11 3\n7 13 2\n8 28 -9\n15 23 6\n4 36 3\n5 35 5\n28 33 8\n3 19 3\n11 15 6\n15 5 1\n24 17 0\n15 18 7\n17 3 -9\n11 13 0\n9 25 -3\n13 34 0\n17 26 -4\n33 28 1\n34 13 8\n13 4 8\n28 27 4\n8 28 -10\n33 18 3\n6 23 -10\n20 36 7\n4 26 10\n29 4 7\n24 36 -6\n24 34 -2\n22 8 9\n29 22 -9\n11 10 -4\n24 29 0\n30 35 5\n29 22 8\n3 32 -9\n4 14 -9\n11 22 0\n2 30 6\n19 28 4\n14 23 -10\n31 15 5\n11 26 8\n7 1 0\n12 27 0\n23 34 -7\n34 31 1\n19 28 9\n11 14 6\n25 2 -4\n7 18 -8\n16 11 -1\n35 15 0\n25 1 -1\n9 5 -3\n35 23 10\n18 31 -10\n27 7 4\n35 36 10\n4 36 6\n30 22 -7\n3 29 -5\n33 24 -3\n27 1 -4\n3 34 4\n6 1 -10\n2 6 -2\n3 23 -8\n33 19 -7\n8 4 3\n7 21 0\n16 10 3\n34 16 -10\n18 30 1\n29 18 7\n36 4 10\n1 34 -8\n29 3 -10\n25 13 0\n23 28 8\n3 22 3\n16 26 -10\n15 8 10\n21 8 -4\n11 6 10\n5 9 9\n28 18 0\n31 34 3\n2 15 9\n13 7 9\n28 27 10\n10 9 -3\n2 13 1\n24 4 5\n6 22 -9\n10 31 3\n29 8 -10\n31 12 10\n21 23 -4\n36 5 -8\n1 22 -5\n1 17 -6\n14 16 10\n2 10 -1\n6 9 3\n18 4 1\n10 7 3\n23 11 0\n19 15 3\n1 33 -8\n31 6 4\n19 3 6\n20 9 -10\n36 22 5\n36 17 6\n12 33 1\n12 31 9\n8 1 -5\n35 25 -1\n20 9 3\n36 21 2\n12 9 -3\n9 5 -10\n4 36 1\n19 18 -5\n12 36 -6\n7 13 5\n1 12 2\n5 29 -9\n11 27 -9\n5 17 5\n26 9 4\n7 32 1\n18 9 -7\n15 29 -8\n23 36 -8\n16 22 -2\n11 16 -6\n32 15 8\n23 35 6\n10 35 2\n24 20 -5\n31 2 2\n12 33 -6\n16 35 -4\n25 31 10\n3 5 4\n1 27 9\n4 25 5\n23 33 -10\n28 8 -3\n33 12 6\n33 5 8\n10 25 -7\n8 10 -4\n3 33 -8\n12 18 3\n34 29 -9\n6 26 1\n4 36 10\n14 19 0\n1 36 10\n36 5 -5\n8 18 9\n12 30 -9\n6 8 -6\n23 17 -5\n1 10 -6\n33 25 4\n11 30 1\n9 2 -1\n17 35 10\n8 4 5\n6 10 -3\n35 2 -1\n10 35 -1\n25 24 7\n15 7 -10\n1 11 6\n27 17 -6\n16 28 -4\n17 19 -2\n32 8 -7\n25 18 9\n22 16 10\n3 23 -3\n33 16 -1\n4 27 1\n28 5 -4\n30 22 2\n5 15 -10\n8 15 -4\n24 34 7\n23 28 -9\n16 22 7\n1 28 -6\n25 5 -10\n20 23 8\n12 14 9\n22 34 -6\n30 25 -3\n30 35 8\n36 5 -7\n6 4 -8\n3 14 8\n27 34 -6\n6 30 -9\n21 29 2\n34 29 7\n15 8 -3\n20 28 -2\n9 27 -6\n20 21 9\n10 16 0\n18 34 -8\n6 5 -10\n14 21 1\n22 29 10\n18 1 6\n26 21 -7\n11 6 8\n1 9 -5\n30 6 2\n8 4 -10\n7 19 -7\n16 32 0\n14 14 2\n25 25 9\n14 29 -7\n26 27 4\n31 26 2\n9 15 5\n2 8 7\n23 36 0\n25 14 -2\n35 36 -2\n23 5 4\n7 27 -8\n22 1 4\n17 25 7\n32 26 1\n8 35 7\n32 19 8\n28 11 5\n23 9 -9\n20 3 -1\n3 21 -4\n19 1 6\n6 9 0\n33 30 -9\n14 12 -3\n2 22 -9\n33 24 3\n5 7 -6\n9 27 3\n8 22 2\n6 20 6\n26 19 2\n7 32 8\n11 10 3\n17 11 5\n27 24 0\n29 11 5\n8 21 -2\n13 16 6\n35 26 -1\n2 18 -8\n33 12 -2\n2 33 -7\n5 5 -5\n10 33 8\n36 8 7\n6 21 7\n26 23 10\n10 20 -7\n26 18 -7\n5 32 5\n27 25 -3\n22 11 -2\n23 34 -10\n9 23 -9\n34 17 -4\n1 36 3\n31 35 10\n9 27 -8\n20 22 7\n32 3 -5\n14 18 -4\n12 30 -2\n20 15 1\n24 35 6\n33 1 -8\n4 8 0\n23 26 -8\n27 22 -1\n4 13 -3\n15 5 -6\n36 10 -3\n26 29 -10\n4 21 -1\n11 14 -10\n20 6 -8\n21 7 8\n1 24 -5\n1 16 -6\n4 20 -4\n32 15 -6\n17 4 4\n34 16 0\n2 9 8\n12 27 0\n21 27 1\n2 6 5\n19 2 -3\n36 16 4\n8 6 6\n6 25 -3\n8 31 7\n35 14 8\n19 5 5\n18 31 3\n35 22 5\n19 8 -3\n30 34 7\n21 8 6\n31 25 6\n5 18 -3\n17 9 -1\n4 11 -4\n33 11 9\n24 16 3\n8 6 1\n19 14 -5\n6 35 -2\n33 7 -6\n21 16 10\n22 29 4\n21 21 -6\n12 22 -5\n31 28 3\n8 16 10\n21 22 6\n14 31 -7\n30 13 -9\n34 15 -7\n23 15 10\n34 26 -3\n2 11 -2\n12 15 -8\n27 1 -1\n7 27 1\n17 35 6\n16 30 5\n16 33 -10\n12 35 -4\n33 20 -3\n9 29 -1\n28 29 5\n20 34 -7\n33 10 8\n26 25 0\n23 26 10\n10 1 -3\n1 19 -9\n27 27 10\n32 36 0\n21 28 -5\n12 11 -3\n1 33 -2\n12 32 4\n22 16 5\n25 26 5\n34 7 -6\n4 29 -5\n17 35 -5\n14 3 7\n21 16 9\n11 27 5\n11 15 9\n5 12 -6\n7 14 4\n35 8 2\n26 5 -6\n15 6 -1\n28 3 -8\n8 31 -9\n33 18 5\n12 29 4\n12 17 -7\n9 23 0\n2 29 -8\n28 9 10\n20 26 6\n28 6 9\n18 13 -5\n8 17 10\n20 33 6\n23 14 -8\n7 6 8\n2 4 -9\n27 7 -8\n29 6 -10\n13 11 -7\n22 28 -1\n24 5 6\n1 27 4\n10 35 6\n22 14 -6\n32 34 0\n18 21 -7\n23 23 -7\n14 35 -10\n16 27 4\n31 26 10\n11 15 -5\n17 11 10\n9 25 -7\n7 3 -8\n15 5 1\n22 25 9\n16 13 -8\n13 28 9\n1 33 8\n16 3 -2\n13 29 -7\n35 34 6\n1 24 0\n29 16 2\n26 8 4\n26 22 2\n22 14 -6\n9 23 -6\n31 23 0\n23 27 -3\n18 26 7\n12 36 5\n33 27 8\n17 27 6\n17 11 8\n6 3 2\n11 35 -9\n27 8 -8\n29 33 -7\n2 8 4\n12 18 -4\n11 14 -7\n5 5 -5\n36 28 -4\n13 7 0\n23 7 8\n28 36 5\n15 33 4\n20 30 -9\n25 4 -6\n36 8 1\n22 32 -1\n26 36 0\n22 6 9\n28 21 -2\n11 13 4\n33 25 5\n12 25 -1\n35 32 1\n8 30 -10\n32 22 2\n31 35 -1\n6 9 2\n22 24 -6\n25 17 5\n12 30 -10\n19 9 -7\n6 34 7\n30 20 -7\n3 17 5\n11 11 6\n9 8 7\n16 19 -6\n27 20 0\n30 1 -10\n22 29 -2\n12 18 8\n31 22 -3\n36 29 -3\n33 10 4\n34 17 -1\n28 271\n1 10 -2\n2 4 -6\n3 3 10\n4 18 -3\n5 7 9\n6 18 -3\n7 18 8\n8 17 7\n9 10 2\n10 5 -7\n11 1 -8\n12 9 4\n13 6 3\n14 25 0\n15 25 -3\n16 16 -1\n17 15 8\n18 28 10\n19 27 2\n20 22 -3\n21 4 2\n22 25 10\n23 9 8\n24 8 3\n25 4 -2\n26 1 4\n27 27 -6\n26 14 6\n1 20 3\n13 24 -8\n15 23 6\n13 22 3\n17 16 -10\n15 19 8\n19 24 -1\n22 22 10\n1 18 10\n8 19 2\n20 3 1\n3 21 -8\n15 4 5\n20 16 -9\n5 20 1\n10 15 10\n7 6 -9\n5 26 7\n6 5 6\n20 22 -1\n4 3 3\n7 12 -10\n7 7 10\n20 2 10\n10 2 5\n1 3 4\n28 4 -5\n18 10 -9\n15 5 -7\n22 23 -3\n26 19 3\n18 14 3\n15 9 -2\n26 6 -7\n27 5 -9\n8 15 0\n7 18 6\n10 17 -10\n9 14 -8\n4 7 -2\n16 6 -7\n2 26 1\n27 2 2\n9 1 7\n12 13 2\n4 28 9\n9 15 10\n14 13 8\n9 6 -7\n3 10 8\n5 17 10\n19 3 8\n8 16 -4\n26 5 8\n21 5 -7\n27 11 9\n2 12 -5\n15 27 -10\n22 2 -6\n25 16 -7\n11 15 -2\n16 12 -1\n9 16 -3\n3 11 -5\n17 19 -6\n1 11 7\n12 18 10\n22 9 -1\n26 19 4\n3 24 10\n2 27 -4\n12 19 -10\n8 2 -5\n17 18 8\n10 15 9\n12 24 -6\n22 21 -1\n4 9 -5\n25 4 -5\n19 24 9\n12 11 -9\n1 27 -5\n14 1 -9\n15 6 -8\n1 12 9\n17 1 -6\n15 13 -8\n24 11 -6\n21 14 10\n17 10 3\n16 9 -3\n6 22 1\n3 2 6\n23 11 -10\n15 15 -9\n6 20 10\n18 1 8\n21 26 0\n20 24 0\n17 20 -5\n7 26 -6\n26 25 8\n15 8 0\n20 5 2\n7 24 5\n21 22 -6\n2 11 5\n19 15 -7\n7 8 6\n12 21 7\n10 9 2\n14 23 5\n4 21 -8\n3 18 -8\n1 3 10\n8 9 2\n11 14 8\n9 6 6\n14 5 7\n4 16 -8\n7 1 0\n26 19 -5\n19 3 -1\n14 16 -4\n16 10 2\n24 21 -1\n15 17 -8\n26 10 -3\n7 23 -1\n16 9 2\n11 22 -1\n13 1 -1\n5 26 10\n19 19 0\n19 19 -9\n25 16 7\n12 9 -6\n28 27 7\n1 23 4\n26 1 -4\n25 12 -4\n1 9 10\n22 5 -8\n13 25 8\n1 12 2\n7 24 7\n12 17 3\n13 1 -2\n9 7 -1\n13 9 -1\n13 26 -9\n24 20 10\n9 12 -3\n14 26 -10\n7 6 1\n3 24 -1\n17 6 6\n16 27 3\n5 6 -3\n16 16 -6\n9 2 7\n12 23 3\n24 25 -3\n16 16 2\n8 6 -6\n8 6 8\n8 7 7\n2 3 -8\n9 6 0\n13 15 4\n1 16 -10\n4 23 -2\n9 1 3\n27 3 1\n15 5 0\n10 28 -1\n17 26 -9\n5 13 8\n12 12 -10\n10 2 -5\n4 1 6\n11 7 -7\n17 19 3\n4 24 7\n27 16 5\n17 25 9\n11 8 -10\n1 10 2\n22 16 3\n28 18 2\n28 16 -4\n15 27 0\n27 25 -6\n11 9 -5\n20 17 -3\n26 4 2\n10 14 -7\n4 7 5\n22 12 -9\n7 24 -9\n19 6 -9\n11 15 -2\n19 24 8\n20 11 -5\n27 15 6\n10 26 -2\n3 1 -9\n5 16 8\n17 1 -8\n14 22 -9\n23 4 -5\n6 11 0\n1 5 6\n9 27 -5\n10 11 -7\n2 5 8\n14 9 -2\n20 12 0\n9 25 -9\n12 24 7\n5 1 -1\n22 14 -9\n2 22 -10\n5 28 9\n2 11 -5\n1 2 5\n17 4 10\n24 4 8\n12 14 0\n26 19 2\n11 23 4\n5 8 9\n14 19 -7\n19 12 1\n4 12 -10\n11 7 8\n16 11 9\n19 25 3\n3 7 2\n28 10 6\n15 4 -2\n4 6 6\n21 21 -10\n8 16\n1 7 10\n2 5 -4\n3 8 1\n4 7 -8\n5 7 -3\n6 8 -3\n7 2 10\n1 5 -10\n7 1 6\n4 1 3\n3 8 -4\n6 2 -9\n7 1 -4\n3 2 6\n8 6 -5\n4 3 1\n34 737\n1 7 -9\n2 15 -1\n3 31 -5\n4 10 3\n5 31 9\n6 6 1\n7 18 7\n8 1 -5\n9 31 -5\n10 4 -10\n11 27 -3\n12 16 2\n13 1 3\n14 18 4\n15 27 9\n16 12 2\n17 3 -4\n18 17 -6\n19 21 -9\n20 4 5\n21 21 9\n22 30 3\n23 32 5\n24 15 9\n25 30 -4\n26 29 -7\n27 34 2\n28 24 -8\n29 31 9\n30 4 5\n31 11 -3\n32 11 7\n33 27 -7\n3 17 6\n24 16 3\n3 26 10\n7 32 6\n8 27 5\n30 4 -6\n20 28 5\n14 12 5\n20 26 -6\n11 3 4\n25 17 2\n16 18 -8\n6 12 -1\n15 33 6\n24 20 3\n17 24 -8\n4 15 0\n3 27 0\n22 2 -1\n24 14 -8\n11 1 -9\n5 18 2\n8 10 9\n11 15 -3\n11 28 -2\n1 27 6\n13 23 -10\n13 32 10\n20 14 7\n5 10 -10\n1 27 -3\n29 7 9\n7 13 -10\n16 11 -1\n4 15 10\n26 1 -6\n15 21 -8\n29 27 -7\n6 32 -1\n12 17 -8\n14 6 8\n22 30 -3\n2 22 5\n18 16 9\n27 14 -10\n31 24 6\n18 4 -10\n12 8 -6\n17 15 5\n21 10 9\n30 6 0\n9 29 -1\n15 31 9\n5 20 8\n20 9 0\n3 25 -6\n28 6 -9\n18 7 10\n5 17 3\n31 13 7\n22 17 -8\n32 22 8\n9 31 -9\n3 12 0\n12 4 -7\n7 17 -3\n26 14 10\n20 5 -2\n11 28 2\n16 11 1\n16 18 3\n4 34 4\n19 26 8\n20 26 5\n5 32 10\n19 9 10\n21 31 -2\n30 13 -5\n18 1 -9\n13 3 -1\n30 14 9\n23 28 0\n30 24 -6\n3 5 -6\n23 9 -10\n34 15 -5\n24 4 6\n23 8 -10\n14 12 7\n32 8 2\n29 22 -2\n14 29 -4\n15 23 -10\n7 16 -10\n19 10 -3\n12 29 9\n34 27 -7\n30 34 -6\n27 32 -7\n3 17 10\n11 9 0\n18 4 -10\n27 11 -4\n10 23 7\n21 9 -10\n33 27 0\n19 3 1\n23 18 2\n11 7 8\n12 13 -9\n26 3 1\n29 11 -3\n1 14 6\n3 21 6\n15 32 -5\n33 8 -5\n1 19 5\n19 30 2\n4 28 -4\n14 29 4\n13 26 -9\n9 3 2\n9 10 -5\n5 13 2\n34 25 -9\n8 4 8\n6 11 -5\n25 16 -5\n8 25 7\n32 7 -5\n20 14 -5\n16 23 9\n34 24 -6\n33 6 10\n7 12 7\n28 18 8\n28 3 9\n4 20 1\n5 25 3\n9 28 2\n6 22 -1\n3 22 9\n8 19 3\n33 26 -8\n33 20 -8\n1 12 5\n17 31 -4\n17 18 9\n32 14 -3\n2 27 1\n26 25 -3\n19 22 0\n10 12 -3\n12 22 7\n34 22 -5\n12 17 0\n17 8 3\n27 9 -7\n15 22 3\n10 14 2\n20 6 3\n12 25 9\n24 20 8\n15 3 1\n31 16 -3\n28 20 0\n16 5 -7\n13 26 -7\n33 14 4\n5 11 4\n17 34 8\n2 13 6\n16 28 -7\n20 15 5\n21 1 10\n15 18 4\n20 17 10\n4 5 -1\n3 1 1\n21 24 1\n30 20 8\n3 28 -2\n22 3 -5\n5 16 -6\n2 27 5\n30 17 -3\n10 23 3\n24 31 -8\n31 26 1\n34 11 2\n9 33 3\n11 22 7\n5 34 -7\n30 7 -4\n13 6 9\n34 24 10\n30 25 6\n10 17 -4\n8 7 -3\n20 4 -8\n31 16 1\n33 33 3\n14 7 5\n31 29 4\n19 12 1\n25 5 -5\n18 33 -7\n8 16 1\n24 2 7\n28 12 9\n34 4 9\n26 6 4\n3 32 2\n27 27 2\n26 34 1\n3 15 -2\n6 10 -10\n5 15 -8\n20 29 6\n24 2 10\n30 20 -5\n7 29 -9\n25 19 1\n29 4 10\n30 26 1\n23 16 5\n23 1 7\n5 26 -1\n5 16 -3\n28 31 -9\n18 32 -1\n22 7 -5\n2 27 1\n16 11 7\n22 25 -1\n24 25 9\n24 6 -2\n9 14 -9\n20 5 8\n13 13 -2\n30 29 -2\n11 4 -9\n22 9 4\n23 31 4\n17 1 0\n1 29 8\n29 17 0\n3 34 7\n3 12 -5\n28 5 -10\n12 14 7\n8 4 -5\n22 19 -10\n25 3 -10\n17 6 10\n10 21 -6\n18 24 -9\n6 10 -2\n25 27 -7\n26 31 7\n6 7 6\n2 20 -10\n9 13 9\n14 1 10\n22 33 1\n12 20 7\n16 20 -6\n8 34 -1\n23 3 -10\n4 22 1\n7 26 -4\n21 25 3\n28 3 -6\n26 14 -10\n30 6 6\n29 1 9\n26 34 10\n16 25 -8\n3 27 -4\n11 21 -9\n12 27 1\n17 30 -6\n13 26 9\n18 16 -6\n12 9 6\n3 19 -5\n33 13 -1\n3 27 10\n9 31 -4\n34 33 2\n14 14 5\n3 12 8\n29 21 -9\n30 14 -7\n30 4 -1\n32 31 -1\n15 12 -6\n1 11 9\n33 5 -5\n26 33 -9\n22 19 3\n21 5 7\n30 4 0\n26 25 10\n17 25 -5\n13 1 8\n32 14 -8\n14 6 -3\n1 28 2\n27 32 -1\n34 29 -4\n8 29 3\n5 7 -8\n17 5 -9\n14 2 0\n3 21 4\n23 8 7\n2 24 5\n3 15 10\n31 11 5\n5 10 -3\n2 34 -6\n25 11 -6\n9 13 -2\n9 14 -7\n26 13 -5\n24 1 -6\n6 13 -3\n27 32 -8\n32 28 0\n29 3 0\n13 25 4\n7 4 6\n17 21 -10\n28 28 -7\n15 15 -9\n2 5 -7\n15 21 8\n23 19 -8\n18 28 1\n22 21 -7\n22 2 10\n18 33 6\n32 28 6\n16 2 -7\n4 18 2\n26 5 -2\n6 18 5\n23 21 -4\n11 18 4\n12 21 7\n21 20 0\n29 12 -5\n16 34 4\n22 32 -6\n32 28 -2\n19 8 -9\n18 2 3\n14 24 -10\n3 28 6\n3 31 -5\n6 14 -7\n8 20 1\n19 34 7\n18 32 4\n33 4 5\n18 13 0\n30 15 -3\n1 17 -7\n7 25 6\n14 34 -2\n16 28 0\n17 27 4\n13 12 -7\n29 13 -2\n6 31 6\n34 2 5\n2 4 5\n26 2 6\n11 28 2\n27 21 -3\n4 16 -3\n32 21 4\n2 8 9\n14 8 6\n3 15 -1\n26 19 0\n10 4 1\n27 3 -6\n23 4 0\n4 4 -9\n17 19 3\n10 10 -3\n27 16 3\n21 24 2\n31 6 -3\n25 21 6\n2 3 9\n21 26 7\n1 25 -9\n4 17 10\n29 26 -5\n12 23 -10\n10 13 0\n29 27 7\n26 16 7\n12 29 0\n3 14 -10\n17 32 -8\n5 25 -9\n29 32 0\n20 32 3\n8 13 9\n22 26 -6\n15 22 4\n27 27 10\n12 28 -2\n28 8 -4\n11 30 5\n10 27 9\n19 23 -7\n18 5 -8\n22 27 -2\n16 2 3\n16 14 4\n7 25 -8\n30 33 -3\n34 26 4\n2 32 -9\n30 26 6\n5 1 3\n15 31 -7\n27 17 -2\n8 10 10\n21 27 -1\n33 34 0\n32 30 6\n33 10 -2\n20 19 9\n21 26 -6\n20 22 1\n28 30 -8\n15 2 2\n21 18 -3\n34 8 -5\n30 29 -4\n34 3 -4\n4 15 2\n24 1 2\n25 6 -2\n25 27 1\n15 13 0\n19 6 3\n3 30 7\n11 34 8\n28 10 9\n2 20 3\n8 31 0\n19 1 -1\n10 23 1\n16 31 -5\n7 18 3\n26 31 4\n3 17 6\n7 29 -4\n12 14 -3\n13 12 3\n34 7 -3\n28 21 -2\n10 9 5\n17 34 -7\n30 19 5\n2 19 0\n23 1 -1\n15 29 4\n31 1 -8\n2 9 4\n29 10 4\n4 21 -3\n15 19 -10\n16 25 -7\n26 22 2\n33 1 2\n26 31 -10\n10 9 -9\n28 16 2\n31 5 -4\n11 4 -10\n29 1 -4\n2 15 -9\n22 1 -3\n16 27 -7\n27 30 -4\n33 3 3\n30 18 -1\n15 23 10\n3 5 7\n30 3 -7\n19 11 -2\n19 29 6\n29 6 -2\n3 30 5\n25 22 5\n29 3 2\n19 20 5\n16 30 7\n13 33 -6\n14 12 8\n23 16 0\n32 15 6\n25 15 8\n22 11 -5\n33 29 0\n25 30 -4\n19 10 -6\n26 4 -1\n11 11 9\n9 27 6\n16 17 3\n20 33 9\n2 3 -10\n3 31 -3\n16 32 8\n28 25 -10\n4 11 7\n32 19 -6\n2 33 1\n26 7 -3\n22 30 1\n3 4 -1\n32 30 -7\n20 31 6\n15 27 -9\n25 30 1\n7 12 7\n4 3 -1\n27 5 -7\n8 2 6\n17 2 -7\n23 32 -6\n22 2 3\n3 12 -6\n27 2 0\n28 30 6\n16 13 10\n25 30 -5\n32 25 9\n12 32 -10\n15 27 -9\n21 21 -9\n18 13 -3\n34 32 4\n7 7 -2\n5 34 -3\n7 15 0\n22 26 -1\n7 18 8\n6 15 6\n29 15 4\n27 28 -2\n20 7 -4\n14 13 8\n23 34 -3\n27 20 -9\n26 21 6\n24 25 -10\n17 9 -8\n26 20 8\n24 6 3\n17 34 3\n26 5 5\n32 28 -4\n9 14 3\n18 12 -9\n21 18 -3\n1 10 8\n31 11 3\n3 27 -6\n24 9 -5\n7 15 7\n20 14 3\n21 30 -6\n8 32 -6\n33 13 -7\n7 7 -8\n10 7 10\n13 26 2\n6 11 0\n5 29 -1\n29 4 2\n12 20 2\n9 1 1\n6 9 -6\n12 24 -6\n25 15 -9\n19 29 1\n30 11 -2\n10 16 1\n4 30 5\n11 21 1\n28 14 2\n21 5 4\n30 33 8\n27 3 -5\n30 3 -9\n7 27 -8\n23 26 -2\n3 19 0\n5 19 10\n13 17 -2\n26 34 -1\n33 12 5\n29 7 0\n2 29 -3\n2 3 -4\n17 15 7\n9 19 9\n8 21 8\n3 30 -9\n14 32 7\n19 23 -3\n16 32 -6\n31 16 5\n33 28 -2\n24 16 -5\n12 9 1\n2 31 -9\n3 16 6\n5 25 -8\n15 4 -3\n19 8 4\n16 27 8\n34 34 -4\n31 24 4\n4 17 8\n3 3 -7\n21 2 -1\n34 34 8\n19 16 -5\n1 17 7\n20 5 5\n5 21 7\n14 17 -9\n32 20 -2\n26 28 -6\n5 7 1\n30 34 4\n19 33 -4\n16 20 9\n14 9 6\n20 13 6\n16 23 1\n17 34 -5\n32 26 -3\n5 7 -6\n20 31 10\n14 11 8\n24 5 -10\n22 4 3\n23 23 -4\n4 11 0\n30 19 -2\n34 26 -10\n6 26 9\n9 33 -1\n30 18 2\n31 10 -6\n12 1 -7\n6 11 2\n5 16 -6\n10 23 -9\n16 24 -8\n14 14 3\n15 15 3\n17 11 6\n18 5 -6\n18 23 3\n28 23 2\n6 7 -6\n26 23 -10\n25 19 -1\n13 34 4\n27 3 -3\n12 24 -5\n16 12 0\n30 28 7\n26 26 8\n25 21 0\n4 18 6\n1 24 9\n16 17 5\n19 21 -2\n2 5 5\n20 21 -2\n25 29 -5\n32 32 -4\n26 16 2\n8 26 0\n16 8 0\n21 18 8\n18 17 -1\n6 7 10\n22 1 2\n34 23 -7\n38 61\n1 35 -2\n2 21 -8\n3 25 -9\n4 5 4\n5 3 9\n6 31 -7\n7 11 -9\n8 23 2\n9 5 4\n10 2 0\n11 23 -8\n12 31 -6\n13 17 8\n14 22 -9\n15 2 -5\n16 34 10\n17 21 -6\n18 32 9\n19 23 1\n20 19 -2\n21 10 -5\n22 24 6\n23 37 -1\n24 8 -4\n25 26 9\n26 36 0\n27 6 7\n28 33 -3\n29 33 -7\n30 17 5\n31 16 5\n32 26 4\n33 38 8\n34 23 1\n35 15 -3\n36 22 8\n37 32 4\n24 10 7\n27 4 9\n13 18 -5\n10 38 4\n32 30 7\n5 22 7\n8 27 8\n38 5 8\n7 17 -8\n2 15 -1\n27 5 9\n28 19 9\n35 25 -7\n11 13 -6\n38 3 -8\n25 15 9\n26 3 -6\n37 33 -5\n35 7 -10\n4 4 10\n19 24 -3\n7 19 6\n31 37 -5\n20 13 9\n42 567\n1 5 9\n2 29 -10\n3 42 -9\n4 18 2\n5 25 3\n6 11 4\n7 4 -5\n8 3 6\n9 37 10\n10 6 1\n11 15 2\n12 17 7\n13 12 5\n14 18 -8\n15 13 2\n16 37 1\n17 32 -4\n18 32 10\n19 30 7\n20 3 -7\n21 21 3\n22 5 2\n23 27 -7\n24 39 -4\n25 32 -7\n26 36 10\n27 36 -8\n28 13 -9\n29 8 -2\n30 28 -5\n31 6 3\n32 16 8\n33 8 8\n34 38 -9\n35 32 -9\n36 27 2\n37 41 8\n38 27 -9\n39 22 -2\n40 18 -9\n41 22 3\n22 21 -2\n16 30 4\n1 5 -1\n34 40 5\n9 41 -9\n19 35 1\n34 23 -4\n3 24 9\n30 17 -5\n12 39 2\n5 18 -3\n15 26 6\n23 4 -7\n4 40 -10\n38 41 0\n1 30 6\n23 39 -8\n10 1 -3\n14 29 -1\n10 40 5\n10 2 4\n8 28 6\n8 38 -7\n31 26 10\n14 24 9\n30 14 -7\n42 38 9\n29 32 -8\n12 14 -6\n9 23 -9\n22 27 -6\n20 22 -10\n35 30 -4\n33 12 6\n18 3 10\n33 15 8\n3 4 6\n36 24 2\n17 24 -6\n8 24 -1\n2 34 -6\n9 5 -2\n8 21 2\n9 13 -9\n1 15 -5\n4 8 -1\n26 31 1\n28 11 -3\n4 19 -2\n3 4 3\n16 7 10\n41 20 -4\n10 9 -10\n31 42 8\n36 6 -10\n9 3 8\n41 38 4\n15 28 10\n10 15 -1\n3 17 4\n30 31 -8\n11 19 3\n10 38 5\n17 40 6\n31 9 -2\n27 11 -4\n30 28 -1\n31 9 -9\n14 7 6\n16 2 -6\n29 7 8\n13 19 -7\n35 36 -4\n23 2 -9\n42 22 7\n1 15 -7\n15 20 6\n37 10 -2\n27 31 10\n13 6 4\n22 16 -7\n23 6 -4\n38 3 -6\n27 33 5\n18 39 4\n40 16 5\n16 29 -4\n28 22 9\n17 30 2\n39 13 -3\n17 15 6\n6 38 -8\n22 8 3\n39 4 -10\n13 5 8\n30 34 1\n10 39 4\n21 25 2\n27 19 10\n30 38 6\n35 15 -10\n33 5 -3\n9 31 -4\n19 17 8\n15 3 2\n24 31 -1\n21 3 -10\n24 22 6\n34 24 6\n26 13 4\n36 5 10\n19 12 4\n35 7 -9\n26 23 1\n42 17 6\n17 14 -10\n27 16 10\n17 28 3\n39 39 -10\n15 37 -2\n28 7 -7\n2 39 9\n27 30 -5\n42 14 0\n18 12 -7\n31 21 7\n19 41 1\n8 21 3\n33 12 0\n16 14 -7\n14 30 10\n39 1 5\n22 8 -7\n33 6 3\n32 30 -3\n4 1 -1\n4 3 7\n35 25 0\n28 22 7\n32 40 -9\n22 17 -6\n2 24 -3\n29 6 -7\n7 22 3\n36 34 10\n11 32 -8\n38 23 8\n9 36 5\n12 20 5\n8 1 -4\n19 13 -10\n37 35 1\n30 19 -5\n29 9 -6\n6 34 -4\n33 36 9\n26 13 6\n40 28 -5\n21 33 10\n29 29 -8\n27 40 8\n38 14 7\n8 41 -2\n23 23 -6\n26 14 0\n37 41 -3\n37 22 6\n21 4 1\n30 9 -2\n39 19 9\n9 10 -7\n23 10 7\n20 21 -1\n36 11 -5\n22 34 -5\n5 24 -4\n27 35 -10\n27 32 5\n10 6 -8\n31 33 -8\n4 25 -4\n7 32 -7\n26 9 9\n36 1 4\n13 13 10\n21 34 -6\n25 34 -5\n32 10 -8\n20 18 7\n14 28 2\n39 4 -10\n7 13 3\n15 12 9\n37 31 6\n40 41 7\n21 11 10\n40 9 -10\n20 6 6\n10 32 9\n12 17 1\n10 41 10\n14 29 5\n26 21 10\n25 23 5\n20 8 4\n4 37 -3\n24 8 6\n35 18 -10\n1 21 -9\n39 17 -5\n12 7 8\n36 12 -5\n18 31 8\n36 19 8\n2 2 4\n32 41 -9\n40 21 1\n13 23 10\n23 28 7\n26 40 -10\n29 19 -7\n8 12 0\n18 29 10\n30 28 3\n32 35 3\n33 35 9\n31 3 -9\n34 29 3\n32 41 -5\n42 20 9\n27 4 -8\n27 15 -2\n2 10 8\n30 39 0\n10 12 -6\n34 39 -10\n13 41 5\n2 4 -7\n38 33 0\n22 16 10\n16 16 4\n23 23 9\n24 32 -2\n42 17 -9\n1 32 -6\n2 35 -5\n14 19 -10\n24 18 -10\n1 35 10\n38 34 -2\n41 38 3\n9 7 -3\n6 5 -8\n36 22 4\n42 31 1\n41 11 -4\n37 40 0\n30 29 -9\n34 19 -4\n39 32 10\n10 21 10\n15 33 -2\n13 1 -1\n27 20 -3\n1 34 8\n34 35 5\n32 3 -1\n2 21 -6\n11 39 6\n32 41 6\n11 34 9\n37 29 9\n11 5 2\n37 25 3\n6 22 8\n13 23 7\n28 9 10\n2 10 -4\n9 15 -6\n34 14 7\n3 5 -8\n2 26 -4\n1 15 8\n33 32 -4\n41 34 8\n11 26 9\n25 30 6\n42 5 -10\n35 34 -1\n19 41 -1\n15 4 7\n8 21 10\n4 41 8\n24 15 8\n37 26 -4\n20 36 -9\n10 37 6\n8 18 -1\n37 5 2\n24 16 9\n10 28 -7\n5 38 -2\n5 8 -4\n29 20 -9\n33 32 5\n31 38 -7\n16 32 3\n34 32 9\n39 8 3\n41 31 6\n1 40 2\n33 31 -10\n28 40 4\n22 36 -4\n20 42 5\n5 37 8\n29 42 -1\n1 2 -4\n11 35 10\n22 32 -2\n36 23 -10\n38 15 -6\n26 32 4\n35 25 -8\n27 25 -1\n12 38 -5\n40 10 -1\n32 24 -5\n10 32 -4\n38 41 6\n29 19 7\n15 11 -3\n21 3 -7\n41 21 -7\n31 13 -5\n1 13 9\n4 23 3\n29 35 -6\n13 39 3\n4 3 -8\n18 24 -7\n20 2 -10\n4 12 4\n21 42 3\n40 16 -9\n40 26 -7\n37 36 -4\n1 35 1\n4 18 10\n15 12 9\n39 9 9\n36 17 2\n32 42 8\n9 12 8\n33 7 10\n21 23 0\n27 29 -1\n20 42 -6\n18 8 9\n6 23 -8\n2 18 -6\n22 1 1\n16 8 0\n19 30 8\n34 12 -5\n27 38 9\n23 34 5\n10 1 -1\n6 3 2\n34 11 -7\n37 4 0\n22 7 -9\n32 8 3\n18 37 -1\n29 18 -6\n1 20 3\n15 30 -10\n19 9 -6\n38 6 -10\n26 27 2\n20 39 -9\n40 28 10\n17 30 -7\n11 33 -3\n20 9 -6\n15 2 3\n40 30 2\n13 10 -8\n22 16 8\n12 42 6\n40 35 -4\n10 35 -10\n29 19 -5\n27 41 2\n29 20 3\n20 3 9\n40 32 6\n33 20 9\n31 16 -10\n36 8 -4\n33 19 7\n7 37 5\n6 32 -9\n3 11 6\n10 37 -9\n19 31 3\n3 23 3\n31 11 -9\n6 4 -7\n39 14 7\n2 25 -9\n20 19 8\n33 40 -10\n28 17 -1\n39 42 7\n22 2 8\n18 35 9\n30 39 9\n21 1 5\n13 20 6\n22 18 -6\n7 1 -7\n9 32 -3\n35 12 5\n40 10 -2\n13 17 -3\n35 30 -8\n20 15 -4\n36 8 -2\n26 17 -1\n20 25 9\n42 14 0\n8 35 0\n22 11 -8\n25 33 -1\n12 26 -2\n8 33 4\n35 13 -1\n22 37 -4\n39 36 -5\n1 40 -3\n36 37 4\n3 6 3\n10 10 -9\n15 16 10\n26 40 7\n23 12 5\n26 27 -3\n32 12 -3\n26 3 8\n22 16 -6\n21 8 2\n25 36 10\n22 23 -6\n7 14 -7\n17 41 1\n8 20 3\n39 23 -5\n35 21 -4\n15 29 7\n33 2 -1\n7 40 0\n29 39 1\n23 27 -5\n19 8 -9\n17 6 -3\n7 29 -2\n21 35 5\n15 38 -4\n4 10 8\n10 2 4\n14 5 1\n32 1 6\n16 40 -9\n37 20 -4\n33 29 0\n38 38 -8\n40 9 2\n7 12 -3\n1 38 4\n15 15 3\n42 18 10\n5 16 6\n7 20 -5\n10 40 -4\n41 8 1\n37 14 -5\n39 34 -8\n26 28 -2\n10 19 7\n36 5 6\n38 28 -7\n10 11 -3\n21 29 0\n13 9 2\n4 1 -10\n19 4 10\n12 34 -6\n27 41 2\n19 33 -7\n19 4 4\n26 21 4\n13 39 5\n4 7 8\n2 42 -9\n33 37 -9\n39 12 8\n31 6 -2\n33 3 2\n29 7 10\n1 7 0\n37 7 -2\n40 33 -5\n33 41 5\n10 29 7\n26 14 3\n4 12 -6\n1 2 10\n37 4 -2\n15 1 7\n7 41 -3\n42 1 3\n23 20 -7\n39 5 4\n40 36 -5\n8 16 -6\n8 47\n1 6 -4\n2 5 10\n3 3 3\n4 7 10\n5 8 4\n6 4 3\n7 2 -4\n5 2 -9\n4 6 1\n1 8 -3\n3 6 2\n1 5 -3\n6 3 1\n1 7 -6\n8 8 -2\n5 7 -3\n6 5 -7\n4 1 -6\n6 1 8\n2 8 -2\n1 7 -8\n8 7 0\n3 3 -2\n6 8 9\n3 7 -3\n3 7 -9\n8 2 -2\n7 1 -8\n1 8 7\n7 4 -3\n6 6 -9\n4 8 0\n2 3 0\n4 5 -8\n1 6 9\n1 7 -4\n7 2 -4\n7 5 -10\n7 3 4\n6 3 -3\n3 6 10\n7 7 -10\n3 3 6\n4 6 -7\n5 2 4\n7 2 -4\n6 5 -6\n",
"output": "Yes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "10\n70 190\n1 60 0\n2 44 -1\n3 16 -7\n4 40 6\n5 14 -4\n6 24 4\n7 64 0\n8 27 4\n9 37 6\n10 9 -10\n11 29 9\n12 47 8\n13 48 10\n14 43 -2\n15 7 -9\n16 59 5\n17 55 -1\n18 62 -2\n19 2 0\n20 10 9\n21 6 10\n22 45 4\n23 69 -9\n24 20 -7\n25 62 -9\n26 20 10\n27 5 8\n28 3 3\n29 58 -10\n30 7 4\n31 9 3\n32 5 9\n33 3 -4\n34 1 7\n35 48 9\n36 11 -6\n37 44 -6\n38 8 4\n39 17 3\n40 45 3\n41 23 1\n42 48 4\n43 67 -4\n44 68 5\n45 24 -3\n46 31 3\n47 42 6\n48 32 8\n49 14 -10\n50 55 -9\n51 60 -7\n52 39 3\n53 53 -1\n54 15 1\n55 54 -5\n56 43 6\n57 25 -7\n58 69 10\n59 59 -9\n60 37 1\n61 20 8\n62 37 -6\n63 39 1\n64 11 5\n65 50 6\n66 36 -4\n67 25 -10\n68 62 -6\n69 41 -5\n41 48 1\n70 4 -1\n24 66 3\n44 7 -5\n64 62 -9\n47 28 -4\n47 60 -1\n28 6 -8\n27 10 -8\n19 64 1\n66 28 9\n32 14 -2\n19 34 -1\n56 35 6\n33 43 -6\n26 52 -6\n38 44 4\n43 27 6\n62 21 -9\n68 22 -7\n54 27 2\n26 54 8\n24 50 -4\n60 53 10\n43 2 -5\n61 67 2\n54 47 1\n67 61 8\n12 44 8\n3 27 0\n52 53 -7\n51 64 1\n20 30 -7\n66 37 5\n43 34 9\n26 48 -6\n4 64 -7\n47 62 9\n68 38 -4\n38 42 8\n11 54 10\n67 69 2\n45 47 -8\n26 19 0\n1 49 -2\n13 4 10\n4 31 -10\n67 20 5\n14 11 1\n36 54 2\n59 43 7\n24 49 8\n22 61 3\n52 9 -6\n2 16 -7\n50 1 -7\n23 40 10\n14 46 10\n20 29 -1\n17 32 -4\n9 30 2\n46 63 1\n46 68 3\n57 58 7\n70 66 5\n27 13 -7\n53 47 -6\n13 22 -9\n59 25 1\n28 24 8\n60 1 -8\n48 22 -9\n3 42 6\n36 51 1\n4 55 8\n62 58 2\n36 62 1\n42 28 4\n43 56 -10\n58 58 10\n13 65 1\n64 1 10\n6 6 -1\n57 54 -7\n31 1 -9\n11 14 -4\n65 21 1\n15 11 -4\n47 59 10\n54 59 -4\n46 26 2\n26 25 6\n26 3 -9\n11 58 0\n7 4 -9\n25 43 -1\n27 31 7\n1 63 -5\n20 41 -4\n59 67 -3\n30 20 0\n68 47 -3\n36 59 -6\n13 51 -4\n22 21 10\n13 1 -5\n6 55 8\n32 49 1\n4 39 -9\n44 47 -5\n15 53 -3\n53 30 -9\n54 48 2\n56 7 6\n49 62 7\n24 49 -2\n61 66 -6\n17 44 10\n1 67 -2\n47 68 10\n25 67 -6\n44 776\n1 2 -2\n2 24 -2\n3 29 -8\n4 1 9\n5 35 5\n6 36 3\n7 28 4\n8 35 -9\n9 30 9\n10 13 6\n11 25 8\n12 39 5\n13 41 -4\n14 3 7\n15 21 1\n16 43 -10\n17 44 -2\n18 21 9\n19 15 -5\n20 6 6\n21 15 -7\n22 4 4\n23 21 -6\n24 38 4\n25 3 10\n26 13 7\n27 6 2\n28 10 4\n29 34 -8\n30 10 2\n31 39 -3\n32 11 9\n33 41 5\n34 35 2\n35 28 10\n36 38 9\n37 33 10\n38 27 8\n39 38 4\n40 41 10\n41 14 5\n42 28 -4\n43 30 -8\n26 4 -9\n8 20 4\n30 40 -4\n33 23 -2\n38 28 1\n21 6 -8\n34 30 -3\n6 16 7\n33 19 -7\n20 19 5\n32 33 -6\n43 36 1\n38 9 -10\n25 38 8\n15 3 10\n22 34 -7\n31 41 3\n41 1 -7\n24 23 -2\n32 17 3\n34 38 0\n13 33 4\n4 26 4\n14 6 4\n18 7 -8\n40 13 -6\n7 28 6\n31 23 -4\n27 16 -6\n38 34 5\n25 9 6\n19 2 -8\n7 35 -5\n20 13 5\n33 44 5\n30 37 0\n43 30 8\n32 35 -6\n10 32 10\n28 14 -10\n36 13 7\n16 21 0\n20 36 1\n37 2 -3\n44 17 -6\n15 36 3\n20 3 6\n16 13 1\n29 39 -8\n1 16 6\n13 16 7\n18 41 2\n34 34 5\n44 13 -8\n13 2 -4\n23 44 2\n20 13 7\n22 5 -9\n41 31 -8\n16 12 9\n27 3 -6\n14 8 -9\n17 33 -2\n7 44 -9\n21 12 -8\n26 22 8\n3 23 4\n1 27 2\n26 30 1\n36 17 -9\n43 38 -4\n16 24 -7\n14 36 0\n31 35 -1\n23 21 -1\n15 28 -8\n26 35 -8\n34 37 3\n39 15 -4\n11 31 -7\n27 27 -2\n38 34 9\n16 2 -10\n40 43 -1\n26 12 9\n43 8 -9\n4 44 -1\n12 17 -9\n13 28 -1\n39 21 -4\n18 34 -8\n19 39 -3\n41 17 4\n28 3 -2\n9 7 10\n16 14 -5\n25 42 6\n44 19 -2\n42 9 0\n44 18 10\n21 4 0\n15 5 -7\n42 39 -6\n16 5 6\n30 17 -3\n21 43 5\n35 8 10\n6 25 -5\n1 11 7\n14 9 -5\n8 42 -9\n16 20 -4\n24 34 8\n19 31 7\n2 28 0\n8 22 -1\n25 43 -9\n21 24 7\n38 22 5\n37 30 7\n34 40 -8\n6 26 5\n37 7 3\n22 42 -3\n6 13 8\n29 42 -6\n19 39 5\n32 11 -7\n28 12 10\n3 38 8\n32 30 -9\n25 15 1\n31 34 7\n13 33 8\n36 13 6\n16 7 -8\n15 43 -8\n35 5 -8\n39 20 10\n11 24 -4\n6 37 4\n2 22 4\n42 19 -6\n11 6 -6\n24 31 9\n32 39 3\n3 37 -7\n36 41 -8\n20 18 9\n39 24 8\n8 13 0\n25 13 9\n37 16 9\n1 16 7\n24 4 -6\n37 12 8\n38 30 8\n14 6 6\n29 33 -6\n17 10 -5\n14 19 7\n43 38 4\n29 2 -4\n33 39 2\n2 42 5\n18 7 -9\n19 40 5\n30 10 -1\n8 15 -7\n25 32 7\n29 11 -10\n16 40 -6\n20 1 -5\n7 18 10\n16 15 -4\n34 15 -6\n34 42 -7\n42 24 -1\n29 35 -5\n31 36 -4\n42 3 2\n27 25 -4\n14 26 5\n35 34 3\n6 5 -1\n5 22 -6\n41 30 -8\n3 43 -2\n40 12 1\n13 26 -6\n30 2 7\n12 21 4\n4 38 -6\n6 27 -2\n25 23 0\n17 44 4\n36 38 -8\n41 27 6\n29 33 4\n35 28 3\n22 10 1\n41 19 8\n9 25 8\n4 12 2\n37 15 3\n3 23 4\n1 8 -7\n35 17 -8\n17 25 1\n26 26 9\n35 31 5\n40 4 -9\n4 1 -3\n13 10 10\n21 31 5\n26 22 2\n2 43 1\n21 23 -5\n19 18 10\n27 5 -9\n27 15 3\n28 2 -7\n7 24 -9\n33 42 10\n3 19 2\n17 14 -8\n9 34 -5\n42 1 -8\n34 24 -9\n26 10 4\n27 2 -5\n14 13 3\n9 5 -5\n39 41 -9\n33 6 -5\n41 3 10\n28 38 10\n43 23 -3\n15 2 9\n40 24 6\n31 43 5\n4 22 -5\n1 37 -1\n42 41 0\n41 24 8\n13 29 10\n3 4 -7\n30 44 2\n8 17 -9\n7 32 3\n27 33 -7\n3 33 1\n38 16 5\n22 1 -8\n3 9 0\n21 1 5\n32 39 0\n36 32 9\n5 3 -3\n15 13 9\n14 19 7\n17 12 2\n34 20 -5\n25 5 8\n19 21 9\n6 38 3\n5 3 -4\n35 17 -1\n28 1 -1\n36 40 9\n18 5 -6\n16 25 10\n6 31 1\n5 18 5\n16 30 -4\n3 37 7\n10 29 -9\n1 15 9\n38 28 5\n16 42 -10\n13 5 -10\n9 43 -7\n40 16 -6\n20 8 -8\n23 15 -3\n33 30 9\n34 26 -7\n11 10 -5\n36 7 6\n17 35 4\n21 9 -3\n28 2 4\n30 21 7\n7 41 -8\n6 34 3\n24 43 9\n14 18 -2\n15 4 2\n32 19 0\n6 14 3\n17 7 -2\n30 10 2\n32 21 -7\n8 2 2\n22 42 6\n31 40 5\n25 2 5\n27 21 7\n9 5 7\n16 26 7\n13 13 -5\n24 27 -7\n22 41 2\n15 6 1\n40 20 -6\n13 13 -3\n43 13 6\n19 39 -7\n36 14 -2\n40 20 -1\n27 10 9\n38 9 -7\n29 17 7\n14 6 -3\n35 39 -7\n37 8 -9\n12 11 -3\n8 34 10\n16 38 -9\n9 25 4\n43 22 8\n36 25 9\n44 8 -4\n13 32 -9\n8 12 -10\n24 5 1\n25 31 -6\n7 7 -5\n32 38 9\n9 11 2\n29 10 3\n32 13 2\n7 7 -7\n29 16 -3\n4 21 0\n5 14 5\n25 42 0\n9 33 4\n6 37 -10\n44 33 -9\n26 12 -6\n4 38 -4\n1 25 10\n25 22 -6\n31 29 -8\n31 5 -2\n21 9 -8\n1 7 3\n21 5 -10\n4 1 -4\n27 5 -3\n42 18 2\n33 17 -4\n41 43 -10\n29 28 -7\n20 8 0\n36 19 -10\n26 28 3\n20 36 -4\n23 30 -2\n36 12 -2\n17 6 -1\n43 15 -10\n10 42 -5\n43 16 -5\n23 16 2\n25 22 -9\n33 29 2\n39 35 -7\n36 3 -5\n19 5 -1\n35 5 9\n32 30 1\n7 21 -6\n39 44 -10\n3 27 -9\n19 35 3\n13 31 -5\n20 25 6\n31 20 -6\n24 35 -7\n40 42 10\n16 4 -8\n19 20 -2\n1 28 7\n14 42 6\n2 2 -1\n11 32 8\n31 31 -3\n25 9 -10\n7 18 -7\n22 14 -6\n44 40 1\n16 42 -4\n4 30 -6\n22 1 8\n44 17 1\n9 5 -1\n32 29 1\n26 36 8\n15 19 -5\n17 9 2\n14 39 1\n9 38 -9\n39 35 9\n35 5 6\n35 11 6\n20 34 8\n38 34 -3\n36 16 -3\n1 16 8\n35 30 -4\n28 35 -4\n11 5 0\n21 8 10\n3 2 -1\n28 34 9\n18 17 -4\n19 19 -4\n36 36 10\n28 40 0\n11 29 -5\n37 23 8\n32 19 0\n44 21 2\n29 7 9\n35 27 -6\n26 9 -8\n36 27 -9\n33 2 -1\n23 30 -9\n20 15 1\n36 22 8\n31 7 3\n35 12 -1\n2 21 -9\n3 42 -4\n1 43 8\n33 31 0\n33 21 0\n11 22 2\n4 43 4\n24 19 -10\n5 17 6\n13 34 -3\n5 2 -6\n6 4 -5\n40 41 9\n21 22 -7\n43 15 5\n18 17 -3\n17 38 2\n35 11 -4\n15 17 7\n27 19 7\n20 37 -3\n22 15 -9\n2 27 4\n24 34 -6\n22 3 -4\n9 30 -8\n15 40 -3\n28 40 0\n41 19 5\n5 16 8\n35 26 10\n22 39 1\n36 2 3\n31 38 -6\n30 36 1\n41 36 8\n3 9 2\n32 5 -1\n2 8 7\n23 31 8\n29 5 7\n21 40 8\n42 15 4\n5 32 -8\n34 25 -8\n35 35 3\n17 37 -8\n11 29 3\n44 35 10\n6 8 4\n19 7 -8\n6 4 8\n40 43 4\n15 8 3\n31 6 8\n3 5 -10\n21 40 -8\n28 40 -10\n14 3 3\n13 28 10\n28 12 -1\n41 8 -2\n7 44 8\n27 17 -7\n33 23 -1\n28 6 6\n18 3 -4\n31 1 -6\n7 18 10\n10 5 -8\n2 31 8\n30 4 -8\n32 43 5\n1 41 5\n42 25 1\n2 27 -4\n14 39 -2\n10 33 -1\n3 42 -2\n28 12 -5\n22 35 3\n6 35 -7\n19 18 -10\n6 14 -4\n29 37 -4\n44 24 -1\n19 9 2\n25 6 -5\n19 42 8\n40 6 -5\n12 37 1\n26 29 -7\n28 42 1\n20 40 8\n20 5 -5\n8 16 -3\n28 15 1\n19 34 -3\n43 40 -4\n14 7 4\n11 3 7\n8 17 5\n35 36 9\n12 36 -3\n23 9 -6\n39 17 -2\n7 39 4\n4 8 7\n43 9 6\n12 21 -4\n35 34 0\n24 28 6\n25 38 -9\n16 9 -3\n36 3 -2\n9 37 -8\n28 12 -3\n7 33 -5\n23 37 7\n38 17 -7\n20 32 -9\n29 24 7\n20 38 -4\n18 36 -9\n32 24 -10\n20 4 -3\n11 35 10\n2 13 6\n44 21 -6\n23 4 2\n22 37 6\n29 15 1\n11 6 6\n20 27 3\n26 32 4\n23 10 -4\n2 38 -10\n20 5 -8\n7 24 9\n8 40 -10\n18 17 -3\n30 10 -8\n1 8 -1\n43 37 5\n15 44 -1\n6 23 6\n23 43 3\n25 31 5\n38 37 5\n19 4 -2\n34 2 3\n7 35 -1\n14 11 -10\n40 14 -4\n27 32 4\n33 2 1\n40 28 6\n26 22 10\n21 15 0\n25 27 -4\n2 18 -5\n24 19 5\n16 6 -10\n24 23 -8\n1 8 1\n25 19 -9\n15 26 -6\n41 34 -1\n19 13 1\n3 37 -7\n22 19 9\n11 13 -3\n37 3 -2\n25 12 -4\n35 4 -1\n15 35 -6\n28 36 -6\n41 22 -6\n36 14 -10\n6 22 -4\n44 39 3\n13 14 -1\n40 40 1\n43 27 10\n20 26 1\n23 10 -5\n25 31 -3\n20 44 1\n25 43 7\n23 15 -3\n20 31 5\n33 22 10\n11 9 3\n21 5 0\n3 3 3\n31 21 -7\n15 29 4\n32 34 -3\n3 34 1\n8 33 1\n11 15 6\n40 37 6\n35 12 -3\n29 15 -6\n14 44 0\n42 20 10\n14 17 9\n37 21 -10\n18 28 8\n11 40 7\n35 43 -9\n11 11 10\n7 44 -6\n12 12 1\n17 20 -1\n44 15 5\n42 23 4\n32 16 -7\n32 30 1\n40 39 -1\n5 42 -4\n30 12 4\n37 18 1\n17 30 -10\n4 37 2\n41 40 -2\n5 18 2\n2 30 -4\n18 13 5\n26 24 10\n20 22 2\n44 7 -3\n43 19 7\n8 19 -10\n37 22 4\n24 20 -10\n13 38 -7\n28 25 3\n29 24 -9\n37 29 -7\n36 12 3\n9 7 7\n30 2 -7\n7 24 9\n41 28 0\n36 28 -5\n11 32 1\n10 7 7\n27 37 10\n36 19 9\n16 11 1\n4 3 -6\n40 30 -6\n16 23 6\n44 8 9\n16 35 -4\n17 38 -9\n3 17 3\n33 6 -7\n10 12 -3\n38 43 -7\n41 44 1\n39 36 8\n38 26 6\n15 23 -2\n8 27 -9\n4 11 3\n6 32 4\n25 42 -4\n21 44 2\n34 18 -4\n11 39 -2\n22 15 7\n39 13 -5\n20 9 8\n27 19 -2\n43 16 -3\n15 4 -6\n13 25 -4\n25 25 7\n10 24 -5\n18 22 4\n18 2 -7\n29 40 1\n12 33 8\n23 31 -6\n15 19 -5\n16 20 2\n1 2\n1 1 9\n1 1 9\n51 641\n1 33 5\n2 15 -6\n3 8 5\n4 27 -3\n5 16 10\n6 13 -3\n7 21 -6\n8 26 2\n9 35 1\n10 38 5\n11 29 -4\n12 48 -3\n13 7 -4\n14 45 9\n15 42 -7\n16 37 4\n17 4 10\n18 14 8\n19 37 9\n20 44 7\n21 15 9\n22 21 8\n23 2 2\n24 13 -7\n25 7 6\n26 27 -9\n27 10 -7\n28 27 -7\n29 13 -6\n30 44 -4\n31 32 10\n32 39 6\n33 9 9\n34 51 -3\n35 45 10\n36 19 9\n37 44 4\n38 2 3\n39 36 9\n40 50 4\n41 31 -2\n42 9 7\n43 48 5\n44 39 -9\n45 21 6\n46 31 1\n47 43 -4\n48 32 -3\n49 4 1\n50 22 -6\n8 16 -4\n14 24 -4\n8 33 0\n10 36 -4\n9 8 -4\n11 9 1\n20 19 -8\n1 49 2\n33 32 9\n36 41 9\n8 29 5\n47 15 8\n26 38 5\n15 31 -3\n19 22 1\n30 3 2\n17 18 0\n1 7 -2\n28 40 6\n21 49 -3\n2 7 -5\n2 1 9\n48 47 0\n29 48 -1\n38 29 -8\n16 32 3\n40 25 3\n51 12 -8\n29 2 -3\n25 19 -3\n45 18 5\n18 24 -4\n48 32 6\n27 42 2\n36 44 2\n20 19 7\n46 48 8\n45 22 -10\n5 26 2\n26 39 10\n37 31 -1\n49 19 -3\n37 22 -8\n48 31 2\n34 26 5\n5 13 -2\n17 3 5\n41 19 5\n50 37 9\n4 39 -1\n6 35 3\n41 20 9\n39 19 -9\n37 1 3\n17 51 1\n42 33 3\n18 19 -2\n34 37 3\n26 19 7\n4 30 -3\n48 7 7\n3 31 -3\n28 21 8\n15 23 10\n25 45 6\n16 21 0\n2 3 10\n3 12 8\n29 15 -6\n48 26 3\n11 51 3\n45 6 7\n16 34 -4\n42 30 2\n37 6 9\n3 38 8\n17 4 -2\n41 32 7\n10 7 0\n42 24 9\n14 2 -5\n41 4 -7\n12 26 -8\n3 13 0\n32 28 -3\n23 2 -9\n35 10 -9\n36 18 -8\n49 32 9\n18 42 -1\n44 11 3\n22 23 6\n38 30 3\n40 12 1\n33 16 -7\n51 36 5\n38 47 -1\n16 48 4\n21 33 3\n21 48 7\n5 7 7\n41 45 6\n28 17 -4\n11 29 1\n17 38 -7\n17 20 -6\n6 41 7\n43 16 -1\n24 10 -7\n49 6 -10\n17 24 -7\n5 26 2\n29 27 -1\n28 18 -5\n7 32 -10\n13 40 -6\n10 23 3\n16 20 10\n29 5 -7\n38 38 8\n19 9 -2\n24 31 3\n37 44 3\n34 39 6\n50 6 4\n15 5 6\n6 16 -9\n5 18 5\n5 12 -6\n23 46 2\n10 21 5\n25 51 8\n2 6 -2\n18 36 7\n42 9 1\n13 51 -2\n13 31 -2\n47 36 -3\n8 38 6\n41 36 5\n39 10 0\n21 40 8\n48 31 -8\n37 50 7\n3 32 2\n3 28 3\n29 37 5\n11 49 0\n6 11 -2\n46 15 -3\n29 11 -5\n18 36 7\n2 51 -10\n44 20 -10\n48 12 3\n46 23 0\n26 45 6\n46 41 9\n39 47 -10\n23 30 7\n22 40 -9\n8 22 -4\n50 6 2\n15 29 10\n36 43 -9\n16 27 -3\n37 34 9\n8 14 -9\n23 14 -1\n45 45 0\n30 10 3\n7 5 5\n48 34 3\n10 49 -10\n47 6 -6\n51 41 -6\n21 42 5\n30 24 7\n46 44 8\n17 9 -3\n8 46 -6\n4 49 2\n9 19 -7\n15 16 -7\n40 50 -1\n11 2 5\n10 16 3\n13 44 4\n40 17 -2\n10 40 0\n38 34 -5\n23 1 6\n7 1 -2\n8 51 4\n36 23 6\n35 27 -3\n18 46 -5\n23 7 2\n44 31 7\n8 40 -7\n9 18 -10\n42 31 -10\n24 6 2\n20 4 -6\n9 45 -1\n25 45 9\n2 3 -10\n27 31 9\n33 3 -5\n50 21 10\n35 40 -8\n49 17 -7\n31 28 -1\n29 25 -3\n41 46 -3\n6 22 0\n22 35 9\n6 37 -10\n51 10 -5\n2 2 8\n48 12 -4\n28 24 -4\n22 7 3\n29 7 -3\n6 18 -8\n14 33 -9\n10 14 10\n23 8 10\n20 33 -1\n36 9 -8\n6 35 -2\n32 31 2\n36 38 0\n29 19 -5\n29 21 7\n38 7 -3\n26 47 -8\n49 11 -4\n4 11 -10\n30 26 -7\n17 18 3\n20 37 -10\n43 31 2\n50 40 -2\n11 35 -1\n36 37 -3\n45 2 -10\n25 27 -7\n30 22 -7\n33 50 -2\n27 30 7\n2 13 -7\n28 51 1\n7 15 -4\n32 37 8\n46 33 -10\n39 18 5\n4 22 9\n23 4 -10\n10 42 -3\n16 20 -3\n26 15 6\n29 36 9\n38 38 -8\n18 49 3\n9 44 2\n33 19 -1\n17 33 1\n43 38 6\n37 5 -7\n26 23 -8\n48 25 -6\n47 38 10\n30 14 8\n19 37 -7\n7 50 1\n31 21 2\n6 41 -9\n33 44 8\n39 42 9\n50 11 3\n12 47 9\n37 3 3\n4 18 -8\n13 23 3\n4 7 -8\n51 40 7\n15 37 10\n20 28 -1\n32 14 -7\n11 20 -7\n18 40 8\n41 7 -3\n45 10 -4\n7 23 9\n36 11 -8\n9 51 -3\n23 35 -7\n29 45 3\n51 39 -8\n16 6 8\n33 48 -4\n40 32 5\n28 41 -4\n27 48 -1\n3 16 5\n33 1 -5\n5 42 5\n30 33 -1\n38 27 3\n47 44 -8\n8 48 -4\n34 45 -8\n44 33 -9\n1 46 -5\n51 41 4\n38 14 8\n6 35 -9\n4 44 2\n33 8 0\n46 39 4\n26 40 9\n30 10 -8\n49 47 3\n46 24 6\n35 19 2\n37 28 1\n33 7 5\n9 28 2\n19 21 -1\n7 44 -6\n49 9 2\n27 4 3\n29 16 10\n36 35 -4\n2 13 -3\n35 17 8\n22 26 4\n36 43 5\n40 9 1\n30 29 7\n47 9 8\n5 12 6\n31 34 0\n37 26 -3\n32 28 -2\n16 29 0\n20 29 -3\n5 10 -7\n10 7 0\n3 11 7\n45 51 -3\n4 1 -2\n46 30 -7\n14 27 -5\n15 27 -8\n17 30 5\n35 11 -8\n1 45 7\n37 10 -6\n51 1 -8\n11 34 6\n1 3 -7\n12 40 1\n32 29 -7\n6 27 -6\n34 19 -10\n6 28 -4\n47 15 1\n6 16 5\n40 38 -3\n22 42 0\n14 13 4\n18 38 9\n43 10 -2\n16 6 2\n3 40 7\n12 29 -8\n49 11 -7\n27 2 -4\n36 14 -5\n42 2 -8\n1 1 -1\n2 47 10\n1 33 0\n44 25 10\n13 20 9\n35 45 -8\n21 22 0\n36 22 10\n40 50 -4\n30 42 -5\n28 33 7\n23 45 -3\n1 50 3\n29 27 0\n25 39 -5\n49 27 -1\n44 22 -3\n42 28 -10\n17 51 9\n36 16 -10\n35 34 -8\n42 4 -6\n34 3 9\n13 46 0\n38 29 5\n23 37 9\n20 45 0\n25 20 5\n15 42 5\n44 10 -3\n9 17 8\n23 31 10\n19 51 -10\n16 27 -3\n3 4 8\n24 12 -8\n33 42 -3\n23 40 5\n33 32 -1\n2 18 0\n47 47 4\n7 45 3\n5 22 -10\n10 40 -8\n17 13 -5\n33 16 -2\n2 20 4\n47 5 2\n46 12 4\n50 14 9\n2 13 -3\n12 7 -9\n22 2 9\n46 48 4\n1 49 -7\n24 45 6\n10 39 0\n36 35 -1\n34 41 4\n32 40 -10\n40 27 -9\n11 43 1\n43 39 -7\n46 27 6\n48 45 7\n33 46 10\n34 14 7\n2 42 -10\n7 6 1\n4 1 6\n24 40 6\n39 32 -6\n33 40 9\n31 28 9\n10 43 -2\n32 45 -7\n3 24 -6\n30 27 -1\n10 2 1\n28 10 -9\n25 41 4\n5 2 5\n7 18 -4\n24 33 6\n8 43 10\n8 42 10\n1 41 3\n50 44 5\n4 40 5\n31 49 -7\n28 50 -3\n11 37 -7\n8 45 3\n7 18 5\n30 37 -2\n38 34 4\n11 8 -10\n46 15 5\n42 48 1\n20 30 -7\n6 22 -10\n27 12 10\n17 48 8\n42 9 -9\n44 23 7\n15 46 5\n5 50 10\n7 6 8\n30 43 4\n34 6 2\n22 50 -10\n8 22 -7\n3 9 7\n51 17 0\n51 30 6\n31 40 5\n40 33 7\n45 41 -7\n39 38 -6\n46 36 -5\n45 26 4\n40 23 0\n34 40 -4\n22 3 5\n40 14 0\n19 11 9\n15 13 6\n22 31 10\n50 46 3\n51 13 -7\n6 45 8\n13 28 7\n17 41 -10\n51 27 6\n50 27 2\n14 48 -4\n14 48 -4\n8 23 -3\n12 9 -7\n15 33 10\n2 25 10\n20 29 -6\n35 41 5\n7 2 4\n19 28 6\n12 30 -4\n15 26 -8\n19 33 5\n24 18 7\n31 23 5\n43 3 -4\n25 33 1\n15 7 3\n46 51 0\n11 24 -2\n2 11 1\n38 14 -3\n25 27 -4\n30 24 -5\n10 28 -7\n31 17 9\n7 21 8\n31 24 8\n19 6 8\n1 37 3\n46 39 -10\n50 50 10\n15 31 5\n22 48 1\n18 26 -7\n31 22 -6\n16 6 -4\n35 8 7\n9 9 -2\n18 46 -8\n32 11 10\n16 23 -2\n13 45 -7\n18 12 -1\n10 15 1\n8 15 -3\n38 32 8\n47 31 -8\n11 36 8\n17 2 7\n1 2 -1\n18 38 1\n47 50 10\n16 44 5\n8 48 7\n33 39 -5\n18 1 -9\n26 5 2\n12 36 9\n6 3 -4\n26 17 6\n15 2 4\n17 17 -4\n19 39 7\n45 5 -6\n15 22 -8\n48 3 -5\n15 4 -1\n32 10 5\n36 36 -2\n41 3 -2\n38 32 -5\n35 23 -2\n29 42 10\n32 507\n1 15 -6\n2 15 7\n3 21 1\n4 1 1\n5 16 -7\n6 16 1\n7 15 0\n8 15 8\n9 11 -2\n10 16 -7\n11 16 -9\n12 16 -10\n13 25 7\n14 23 -9\n15 24 -9\n16 30 -6\n17 11 -7\n18 27 -8\n19 1 -8\n20 14 -4\n21 23 8\n22 12 6\n23 18 5\n24 16 -5\n25 26 -6\n26 4 4\n27 21 -4\n28 32 -9\n29 4 7\n30 16 -10\n31 20 -6\n1 26 2\n14 30 0\n30 11 -9\n27 5 -1\n22 3 -8\n3 31 8\n4 29 -6\n18 32 -8\n24 30 -9\n17 29 10\n4 29 0\n17 23 1\n5 28 -9\n13 32 -9\n29 3 -2\n8 14 0\n16 9 1\n20 24 10\n17 27 8\n2 31 3\n15 28 6\n8 28 1\n24 23 7\n26 20 -5\n32 31 5\n23 7 6\n4 1 10\n28 30 3\n12 16 -8\n23 23 -6\n29 10 6\n18 12 -2\n7 13 -8\n21 12 7\n7 3 -3\n6 23 -2\n3 5 -7\n28 2 -10\n2 16 7\n27 26 10\n28 12 -2\n14 14 10\n5 1 6\n11 13 3\n11 6 -1\n2 31 -9\n29 11 6\n20 21 5\n5 26 5\n24 17 4\n19 15 6\n32 28 10\n7 25 -2\n19 22 3\n12 8 -8\n13 4 -5\n25 6 1\n1 21 -7\n23 25 -3\n18 7 -9\n20 14 -10\n8 29 -2\n10 11 0\n1 26 6\n17 9 8\n4 10 0\n13 12 7\n14 20 3\n9 17 -1\n19 21 -2\n20 9 2\n17 31 -6\n18 12 3\n31 14 -9\n31 21 -3\n5 30 -6\n30 15 2\n29 8 5\n23 17 7\n24 12 -10\n8 32 -3\n4 1 -9\n32 26 -2\n6 15 -9\n1 31 -2\n7 17 8\n9 4 7\n9 24 0\n28 4 6\n29 1 -7\n28 26 4\n22 6 -9\n14 21 3\n11 31 -9\n24 29 -2\n27 10 -9\n2 28 -5\n30 5 3\n28 29 -7\n12 27 -8\n21 14 9\n23 4 1\n19 9 4\n1 24 -7\n3 23 -1\n11 19 2\n11 3 -4\n16 6 -9\n7 3 -1\n26 2 -7\n9 29 -2\n17 31 8\n1 22 5\n1 31 1\n7 26 9\n5 19 3\n23 7 -1\n28 28 -8\n4 3 6\n32 30 6\n23 26 7\n20 27 2\n13 6 4\n29 32 6\n28 3 -6\n17 29 -9\n20 10 8\n2 32 2\n15 31 1\n23 20 -4\n12 19 6\n11 6 -7\n11 8 2\n11 16 10\n22 26 -1\n17 12 0\n15 2 5\n16 11 -4\n10 31 3\n8 30 5\n16 9 -5\n22 27 -3\n5 19 1\n12 25 5\n17 2 -6\n29 6 10\n4 12 -10\n19 26 8\n3 15 -3\n3 15 10\n21 23 3\n25 31 -4\n2 18 -6\n8 4 2\n22 17 7\n15 30 7\n26 7 -3\n27 27 4\n4 8 -4\n32 32 2\n9 5 9\n4 15 -7\n7 12 -1\n13 17 -10\n6 14 4\n20 9 3\n23 10 -2\n25 26 -8\n24 16 -8\n16 12 2\n1 6 6\n10 14 -2\n22 18 7\n15 26 -2\n12 30 3\n2 16 1\n23 12 -8\n32 16 -7\n14 6 7\n8 15 8\n13 13 -1\n3 23 -8\n5 2 9\n14 8 5\n1 28 8\n7 1 -1\n12 31 -7\n17 6 -3\n7 25 -4\n17 31 9\n25 3 4\n9 30 -9\n15 16 -4\n11 4 -2\n16 2 -10\n3 13 -7\n17 31 -2\n24 5 3\n19 21 3\n26 13 2\n7 28 9\n23 19 -9\n8 8 -4\n30 29 6\n10 14 7\n27 14 8\n23 13 6\n26 15 -8\n26 17 -7\n32 18 -1\n15 21 -1\n17 16 4\n7 32 -4\n24 8 -10\n26 8 9\n25 5 4\n10 7 2\n2 3 3\n5 19 -3\n5 20 -8\n30 3 10\n9 4 -5\n3 4 7\n16 30 -4\n21 3 -7\n27 26 3\n20 23 3\n14 2 3\n23 25 1\n14 18 9\n3 13 -10\n7 32 4\n10 28 1\n32 24 -7\n17 28 -3\n13 19 -6\n21 3 5\n4 15 -8\n31 16 -1\n3 32 -7\n13 14 -3\n23 13 -5\n22 2 -3\n14 12 7\n30 8 -8\n19 1 -2\n3 17 -8\n26 30 -5\n17 22 -1\n12 10 1\n19 31 -5\n18 14 8\n21 26 -3\n13 3 -6\n14 27 7\n4 15 5\n4 3 -9\n32 13 2\n11 14 -10\n32 26 3\n5 10 1\n4 20 -6\n19 7 2\n9 14 -4\n15 18 5\n23 4 7\n27 8 -1\n8 12 7\n13 22 1\n18 13 -2\n13 15 -2\n19 14 10\n19 27 1\n8 16 6\n12 21 7\n24 25 -5\n14 31 -10\n22 19 1\n8 24 5\n6 21 -7\n15 23 -9\n7 12 5\n4 3 -9\n32 13 -7\n27 10 -5\n25 21 -4\n9 9 -7\n31 11 -2\n19 20 -1\n6 23 6\n2 19 -5\n26 25 6\n6 9 10\n30 30 -1\n4 22 2\n24 14 -1\n28 23 -1\n25 30 6\n28 15 1\n11 30 -5\n16 15 9\n7 11 -2\n29 14 8\n10 14 -1\n17 8 6\n26 3 8\n32 12 10\n31 30 -8\n21 25 3\n13 3 0\n23 24 9\n13 30 -9\n31 6 -5\n21 26 1\n26 18 -10\n14 29 2\n1 29 -1\n1 18 1\n3 1 1\n9 13 -4\n20 13 -8\n21 21 8\n3 18 2\n7 10 4\n7 4 -9\n3 22 3\n10 27 4\n29 17 2\n16 2 -5\n25 4 1\n31 21 -7\n22 1 2\n22 12 4\n10 18 3\n9 25 -6\n22 9 -2\n18 16 -6\n25 8 1\n31 20 0\n32 13 -10\n29 28 1\n25 22 7\n24 32 1\n19 30 1\n19 6 0\n6 13 -2\n8 7 3\n11 16 -6\n31 3 -8\n20 11 -6\n18 10 -2\n17 14 -9\n4 15 -5\n25 15 1\n25 26 0\n9 31 8\n32 3 -8\n9 29 -5\n27 20 -5\n15 18 9\n30 1 -4\n14 27 9\n29 14 5\n25 12 -9\n15 8 -3\n32 29 2\n4 27 4\n24 14 -10\n11 15 -5\n25 8 -10\n2 28 -2\n15 2 2\n4 8 7\n4 25 -1\n8 30 -8\n7 7 6\n31 26 -10\n19 3 4\n8 3 -2\n7 5 -10\n3 30 4\n6 15 -1\n17 9 4\n26 19 2\n15 23 0\n14 13 -5\n32 32 -2\n7 12 -9\n10 29 -3\n25 30 6\n20 3 4\n30 32 -3\n2 27 -5\n18 18 4\n24 28 3\n27 6 -5\n31 18 -8\n2 30 5\n32 23 7\n6 24 1\n3 27 -2\n22 32 -10\n5 19 -4\n12 23 -4\n14 25 -3\n24 23 -9\n2 15 -9\n7 15 1\n15 20 -9\n24 27 -8\n26 25 7\n9 27 2\n7 5 -3\n29 22 3\n29 32 0\n11 29 -8\n21 21 9\n24 9 9\n8 15 -5\n16 10 -5\n26 16 5\n22 19 9\n24 29 7\n27 29 -7\n16 15 -10\n14 14 -3\n24 20 7\n26 22 -10\n29 22 6\n7 17 0\n6 2 1\n6 5 0\n21 26 6\n25 14 -5\n7 9 -1\n6 10 -6\n16 2 -6\n6 18 -8\n26 8 1\n17 17 10\n17 9 0\n20 23 1\n6 10 4\n31 7 -7\n3 15 -2\n10 19 0\n2 31 3\n29 24 1\n14 2 8\n2 7 7\n3 8 3\n4 11 -8\n23 27 7\n29 5 10\n2 6 -8\n6 22 -10\n2 30 10\n7 19 -4\n10 28 0\n27 21 9\n14 7 -7\n7 22 6\n12 24 0\n15 9 2\n26 6 -8\n25 16 -1\n18 24 -2\n5 19 -5\n29 14 -9\n26 14 10\n28 27 -10\n31 14 2\n15 23 1\n28 4 -3\n7 18 7\n11 1 8\n84 538\n1 26 -2\n2 16 -8\n3 5 -9\n4 39 -3\n5 47 2\n6 63 4\n7 19 2\n8 67 -7\n9 35 -5\n10 41 -4\n11 39 9\n12 31 -8\n13 32 0\n14 3 -3\n15 10 5\n16 46 8\n17 39 5\n18 14 -5\n19 42 -6\n20 30 8\n21 25 -4\n22 74 -10\n23 30 4\n24 52 -1\n25 65 -3\n26 62 -2\n27 49 5\n28 29 -2\n29 5 3\n30 6 -6\n31 62 -2\n32 56 -2\n33 44 1\n34 61 -8\n35 49 3\n36 76 -4\n37 9 -2\n38 7 -2\n39 22 4\n40 27 8\n41 33 10\n42 65 8\n43 2 -2\n44 33 2\n45 7 8\n46 81 10\n47 6 5\n48 11 -4\n49 15 -10\n50 45 -9\n51 78 9\n52 52 8\n53 50 -10\n54 71 -10\n55 36 -8\n56 1 8\n57 38 7\n58 75 10\n59 5 1\n60 26 2\n61 14 -6\n62 31 -1\n63 28 1\n64 49 0\n65 28 -1\n66 51 4\n67 18 4\n68 71 5\n69 10 6\n70 1 -4\n71 58 -7\n72 31 -6\n73 59 -9\n74 24 -5\n75 7 -5\n76 47 9\n77 83 -2\n78 18 -3\n79 32 7\n80 54 3\n81 40 -5\n82 7 5\n83 5 10\n8 18 -1\n29 24 -4\n4 33 -10\n79 44 -6\n3 67 -8\n5 70 -6\n73 76 -6\n48 42 1\n84 73 5\n46 2 8\n7 36 -9\n72 61 -9\n68 72 -6\n9 24 -10\n23 78 3\n14 77 -5\n58 42 -4\n61 62 9\n12 57 -2\n31 71 10\n46 43 9\n70 84 -3\n25 79 -2\n16 3 -2\n46 81 -9\n66 47 -1\n30 60 -6\n47 70 6\n68 72 7\n6 25 7\n30 54 6\n49 23 8\n51 19 5\n19 19 6\n30 12 10\n30 19 -4\n13 30 0\n57 67 -10\n18 43 -10\n34 81 -9\n18 46 7\n14 83 3\n27 70 -6\n71 2 -9\n48 37 -9\n4 59 -9\n15 80 -4\n53 26 9\n51 17 -5\n79 40 -8\n15 14 5\n56 72 -1\n52 25 3\n1 35 0\n65 4 3\n79 41 1\n3 58 3\n65 30 -8\n53 13 -9\n71 63 1\n27 8 -10\n40 66 -3\n9 4 10\n22 82 2\n31 67 -9\n11 43 7\n44 30 6\n37 48 -9\n59 22 1\n14 57 10\n48 79 -6\n31 4 -2\n49 12 -3\n61 50 -4\n18 6 -8\n77 49 7\n5 28 3\n5 15 -8\n9 3 -6\n71 41 -6\n63 8 -6\n35 83 5\n49 12 3\n70 77 -1\n17 32 -2\n61 9 7\n39 81 -10\n43 8 4\n41 15 1\n20 38 -2\n15 84 -2\n54 35 7\n42 18 -2\n33 66 -10\n68 78 -10\n79 45 7\n51 19 5\n76 46 9\n59 30 -6\n25 69 4\n6 82 7\n69 70 -4\n51 63 9\n15 46 -5\n48 52 7\n5 67 -5\n72 44 4\n33 11 0\n41 35 3\n14 51 4\n69 44 7\n56 52 -3\n84 13 1\n8 84 3\n2 29 3\n63 8 8\n28 22 -4\n38 56 7\n28 55 5\n18 76 4\n40 63 -1\n28 52 -1\n10 41 9\n45 47 1\n17 36 1\n8 65 -10\n23 12 -3\n12 40 4\n82 55 -2\n37 65 9\n83 51 0\n62 82 -10\n55 66 -5\n21 60 6\n74 45 6\n41 58 -2\n78 71 -8\n27 17 -6\n57 18 -4\n18 61 6\n34 27 8\n13 51 1\n84 80 5\n21 26 3\n83 51 5\n83 62 3\n16 61 -2\n68 62 -4\n22 34 6\n76 32 -7\n62 13 0\n71 31 6\n52 65 10\n61 30 4\n52 42 -7\n54 66 8\n29 5 7\n6 44 6\n3 45 -4\n83 3 1\n7 25 -8\n51 52 -7\n64 80 0\n63 31 6\n40 3 -2\n55 1 0\n28 62 1\n53 8 1\n37 16 -2\n33 35 7\n44 79 3\n26 50 -6\n38 82 -9\n4 39 -8\n37 17 10\n53 22 -10\n21 39 9\n64 82 9\n63 76 -8\n36 76 0\n18 51 7\n43 41 -9\n65 72 -2\n31 34 9\n31 38 10\n75 11 8\n30 8 -7\n66 65 8\n7 31 -7\n59 19 -4\n66 84 1\n25 40 -6\n83 66 -6\n37 26 -8\n64 27 -1\n61 37 -8\n84 84 10\n19 43 -4\n49 63 -5\n56 65 8\n16 44 4\n63 45 -6\n32 25 1\n57 4 0\n17 18 10\n32 65 3\n49 56 -9\n7 70 -3\n43 11 4\n17 33 -10\n23 77 -10\n76 25 2\n34 26 -4\n59 20 6\n10 11 10\n61 48 -4\n23 61 -1\n51 33 -3\n66 43 7\n46 67 -1\n11 69 -8\n56 77 -7\n53 50 5\n1 45 1\n46 22 7\n15 32 -1\n50 9 -10\n30 57 -8\n71 70 4\n30 67 5\n45 13 7\n64 2 1\n33 38 4\n30 81 -5\n31 32 -6\n4 12 0\n10 53 -3\n16 3 4\n35 2 -3\n62 78 -2\n35 20 8\n68 50 -7\n59 17 -8\n30 27 -10\n71 58 -3\n3 43 10\n18 37 9\n74 2 -1\n12 49 -8\n16 71 -6\n68 55 -8\n26 11 -7\n63 9 -6\n32 63 3\n60 16 4\n48 73 0\n10 8 -3\n31 11 10\n54 67 -4\n10 49 -5\n57 45 -3\n49 28 2\n16 73 -1\n56 76 9\n65 57 2\n34 2 -3\n14 40 1\n19 23 -3\n36 36 3\n31 52 0\n75 84 3\n28 22 2\n23 8 9\n35 9 1\n75 14 -8\n74 26 8\n7 36 -9\n29 84 0\n64 1 4\n52 52 -4\n43 68 3\n28 45 -5\n35 53 -7\n11 3 8\n27 62 8\n51 73 -6\n79 16 -4\n13 47 1\n79 31 -1\n19 74 8\n58 18 10\n11 3 3\n19 2 -2\n59 15 8\n64 75 2\n32 19 9\n50 20 -4\n11 19 2\n71 68 3\n47 83 0\n50 51 -7\n19 5 -3\n70 72 -10\n19 60 6\n34 50 -3\n51 46 -3\n62 57 -4\n12 77 3\n24 7 -4\n47 63 1\n58 10 3\n13 65 -5\n65 64 7\n73 41 5\n37 63 -3\n74 44 7\n69 31 8\n48 67 8\n59 57 4\n10 7 -1\n45 54 1\n68 50 9\n2 71 3\n34 45 -2\n66 58 -3\n47 22 5\n55 46 8\n64 47 -1\n66 65 8\n40 67 -10\n1 37 -7\n17 46 0\n77 9 2\n2 21 3\n71 64 9\n38 78 -4\n76 74 5\n9 49 -7\n53 59 0\n65 30 4\n29 27 -9\n24 7 -1\n79 28 -1\n80 5 1\n60 70 4\n32 55 8\n8 10 7\n4 16 0\n6 39 -8\n65 11 -8\n61 29 5\n2 26 -7\n48 57 7\n32 6 -6\n51 45 1\n6 51 -3\n53 5 10\n61 47 -9\n10 21 -3\n51 17 10\n22 84 8\n13 45 6\n32 63 -5\n6 52 -9\n64 72 -10\n48 32 6\n45 79 -7\n28 54 -1\n55 83 -9\n53 38 3\n44 18 -3\n24 11 9\n25 40 -5\n80 77 7\n59 72 -5\n40 84 3\n55 62 -10\n4 77 -1\n20 9 4\n50 49 -10\n72 64 0\n84 77 -4\n51 63 8\n42 12 4\n23 59 4\n30 28 -8\n49 64 -10\n43 8 8\n15 41 -6\n54 58 7\n70 54 -8\n46 70 3\n63 19 -6\n69 65 1\n36 83 3\n82 43 -5\n7 33 1\n63 32 10\n46 29 10\n8 56 6\n35 46 -5\n52 10 -10\n31 10 -5\n62 60 3\n67 84 -8\n77 33 10\n60 67 4\n58 54 6\n24 53 7\n12 78 -4\n72 33 9\n32 47 -5\n60 38 6\n19 62 -2\n15 60 2\n6 40 -4\n21 11 2\n40 20 -1\n13 79 8\n9 60 -10\n49 59 0\n18 59 -9\n81 5 -2\n17 35 0\n76 46 -3\n8 12 8\n84 38 4\n3 26 3\n61 21 1\n22 18 -4\n23 84 4\n46 16 7\n53 74 -9\n1 76 1\n25 84 8\n3 28 -5\n59 8 -1\n26 57 10\n19 66 8\n8 2 8\n40 69 6\n69 63 1\n69 16 1\n7 12 6\n47 63 -8\n42 35 3\n78 40 1\n9 18 9\n19 44 1\n75 57 -10\n18 59 -8\n58 72 -1\n16 31 9\n78 25 -8\n69 6 0\n74 329\n1 42 2\n2 71 -4\n3 11 8\n4 49 8\n5 70 1\n6 34 -2\n7 52 -10\n8 4 -8\n9 74 -7\n10 50 -5\n11 11 -5\n12 47 -9\n13 53 -5\n14 45 4\n15 24 6\n16 35 10\n17 43 1\n18 2 -1\n19 47 6\n20 22 -8\n21 17 2\n22 24 -7\n23 60 0\n24 15 7\n25 8 10\n26 53 -7\n27 71 -1\n28 18 -7\n29 1 -4\n30 61 10\n31 3 -5\n32 39 1\n33 59 -8\n34 68 7\n35 64 -8\n36 36 8\n37 16 5\n38 52 8\n39 49 -6\n40 67 -2\n41 14 7\n42 66 6\n43 43 9\n44 51 1\n45 43 6\n46 18 -8\n47 40 -9\n48 3 1\n49 59 7\n50 70 7\n51 14 -7\n52 35 -2\n53 12 4\n54 62 3\n55 57 7\n56 36 7\n57 35 -5\n58 52 -6\n59 33 -8\n60 34 -7\n61 3 3\n62 9 0\n63 55 1\n64 6 -6\n65 14 10\n66 46 -1\n67 71 -7\n68 33 9\n69 68 -7\n70 52 -8\n71 36 9\n72 46 6\n73 27 -6\n44 34 -9\n45 32 0\n71 37 5\n64 23 7\n52 59 -9\n29 19 -10\n13 64 -5\n42 5 -8\n66 42 -4\n33 18 6\n20 56 -4\n63 45 -8\n71 57 7\n57 21 5\n73 55 5\n16 65 9\n62 48 6\n62 55 -10\n21 49 -9\n56 51 8\n19 31 -7\n16 38 -4\n69 50 7\n30 6 -1\n7 3 -4\n41 3 2\n53 59 9\n40 52 6\n33 10 4\n23 60 6\n72 1 -10\n16 29 3\n9 68 -3\n48 45 6\n32 46 -10\n12 22 -5\n55 21 -8\n39 42 3\n39 8 -9\n21 40 5\n16 19 -3\n51 12 -10\n46 5 9\n17 30 5\n46 10 6\n44 60 -5\n66 62 9\n38 44 5\n33 18 10\n48 12 3\n16 73 8\n67 58 0\n39 24 -10\n22 68 -10\n31 28 -9\n61 49 3\n21 35 9\n58 12 9\n22 54 8\n27 26 -1\n49 8 7\n52 27 -5\n33 42 -9\n19 13 -6\n9 30 5\n74 29 7\n33 50 6\n16 48 -6\n37 26 -7\n37 65 7\n71 59 -8\n63 25 10\n51 36 -8\n33 53 -7\n59 63 -5\n35 3 5\n68 38 5\n70 3 0\n23 26 6\n37 32 8\n65 2 -10\n9 56 -8\n22 67 9\n60 44 5\n53 3 -10\n10 41 10\n15 56 1\n24 42 -3\n29 29 -7\n41 32 1\n57 63 9\n32 60 0\n41 54 -10\n52 55 -8\n46 45 -1\n20 25 -7\n69 50 10\n18 54 -10\n3 68 10\n25 37 -5\n29 51 10\n54 61 -7\n54 41 6\n46 63 7\n45 26 -9\n30 52 -1\n3 2 6\n33 17 0\n26 1 -5\n54 38 4\n5 17 -10\n44 27 -1\n26 13 -3\n15 32 -6\n43 51 -1\n28 67 -4\n58 17 -3\n9 66 6\n54 51 -1\n19 11 -10\n60 26 -5\n25 70 -9\n59 13 9\n34 61 -4\n42 59 -1\n19 67 -5\n46 15 -1\n51 67 8\n5 54 0\n18 71 -3\n57 12 -7\n53 54 6\n38 17 9\n38 46 -1\n62 6 9\n48 66 -6\n32 13 2\n30 20 -9\n15 61 -4\n38 12 -4\n33 66 0\n64 52 4\n59 73 5\n56 50 -2\n53 9 -2\n32 66 -7\n2 57 -7\n55 73 -2\n9 1 -9\n53 51 8\n3 43 -2\n26 71 -3\n8 57 1\n30 19 -7\n58 59 6\n63 73 -8\n49 55 7\n3 23 -2\n4 39 -1\n29 26 -2\n17 64 3\n12 60 1\n49 45 8\n6 60 -10\n4 18 -10\n37 5 -5\n14 43 7\n25 15 -3\n2 70 1\n23 59 -7\n58 28 5\n18 70 2\n20 58 5\n16 73 -7\n16 53 -7\n11 27 -5\n3 17 10\n30 42 1\n42 61 2\n68 55 -2\n26 3 5\n55 25 1\n52 62 -1\n67 8 -1\n42 13 -9\n71 59 7\n32 67 4\n29 72 9\n67 72 8\n62 37 -5\n74 19 0\n61 22 7\n11 37 -3\n32 9 -10\n32 68 -2\n55 68 7\n41 17 3\n73 53 8\n32 63 -9\n44 71 6\n14 26 -2\n21 24 -6\n7 57 1\n31 73 -8\n62 38 -8\n24 46 0\n9 63 6\n59 8 -2\n57 28 -7\n66 37 -9\n16 57 9\n66 57 10\n5 26 2\n64 68 1\n57 9 4\n57 73 -4\n11 13 3\n34 51 9\n2 29 -5\n43 45 -9\n13 13 6\n9 62 1\n42 68 -6\n7 56 0\n41 59 3\n47 52 3\n26 24 -4\n31 43 -6\n56 1 8\n30 53 0\n41 49 1\n27 31 1\n1 58 3\n46 50 7\n64 32 -1\n48 70 6\n61 59 6\n53 55 -6\n22 43 2\n61 52 -5\n12 27 -6\n38 41 1\n14 67 -4\n74 34 3\n55 35 1\n40 9 -3\n44 18 5\n7 62 3\n54 72 3\n25 23 1\n49 48 -2\n47 20 10\n17 53 6\n41 58 -3\n28 64 -10\n39 19 -9\n21 96\n1 5 0\n2 17 5\n3 2 1\n4 10 7\n5 4 -6\n6 8 3\n7 20 -6\n8 12 -1\n9 17 -2\n10 6 -9\n11 8 0\n12 19 2\n13 15 4\n14 15 10\n15 21 -9\n16 17 -4\n17 14 -8\n18 15 6\n19 9 -7\n20 5 -2\n8 11 5\n3 21 6\n21 16 -1\n10 12 -7\n21 14 -8\n17 9 6\n21 15 10\n1 10 -2\n13 11 0\n5 17 -2\n13 17 0\n20 15 5\n4 1 -8\n10 14 3\n3 13 -10\n5 3 -2\n10 1 -4\n6 1 -6\n2 10 -9\n21 1 -7\n1 20 5\n9 3 3\n15 5 -10\n20 8 0\n21 15 9\n15 2 4\n20 19 5\n1 5 -2\n1 4 -3\n20 6 -4\n15 2 6\n21 6 8\n11 18 -7\n8 10 -5\n2 6 -2\n16 9 3\n19 2 -7\n20 11 -2\n18 3 3\n12 7 1\n12 3 -7\n13 17 -1\n2 19 -2\n9 2 -10\n18 16 2\n14 19 1\n3 5 1\n7 15 -6\n17 6 10\n20 10 9\n20 11 5\n9 8 -2\n20 13 4\n19 11 -9\n17 9 -4\n13 14 0\n7 16 4\n6 16 3\n7 8 10\n7 1 1\n10 17 -2\n12 14 -10\n6 13 -7\n12 9 -2\n6 2 -4\n2 7 -3\n10 13 4\n21 6 -3\n7 12 -9\n15 16 -10\n1 21 -9\n6 20 7\n20 5 -8\n21 1 4\n1 18 -3\n3 2 8\n53 610\n1 44 5\n2 9 5\n3 39 1\n4 41 9\n5 37 -2\n6 51 7\n7 49 9\n8 35 -9\n9 3 3\n10 51 -10\n11 37 9\n12 22 -9\n13 16 5\n14 38 -4\n15 22 -8\n16 45 -2\n17 33 7\n18 12 3\n19 33 -7\n20 40 -6\n21 37 -2\n22 4 -3\n23 9 -9\n24 16 3\n25 8 3\n26 26 -3\n27 31 9\n28 35 4\n29 41 -7\n30 19 6\n31 33 8\n32 28 -5\n33 1 2\n34 2 1\n35 44 3\n36 14 -4\n37 12 -1\n38 45 5\n39 25 6\n40 7 -5\n41 32 -3\n42 43 8\n43 26 -7\n44 46 3\n45 49 -6\n46 19 4\n47 39 -2\n48 5 -3\n49 37 -10\n50 18 -8\n51 6 -3\n52 16 1\n21 8 -4\n26 29 -4\n26 22 9\n49 43 5\n40 25 -6\n45 53 -3\n27 36 8\n17 27 9\n38 38 9\n19 11 7\n23 13 6\n38 1 4\n27 28 -9\n50 3 -4\n51 1 -1\n30 41 5\n29 29 -4\n17 5 10\n22 23 1\n40 28 10\n31 47 3\n17 30 8\n47 7 -4\n31 53 7\n37 48 2\n45 23 4\n28 16 -10\n39 26 4\n16 12 7\n41 45 9\n3 1 -3\n44 34 -6\n12 27 9\n13 40 -10\n26 41 4\n39 1 -4\n45 27 -10\n50 34 9\n16 15 -2\n48 16 -5\n38 44 10\n38 2 4\n32 3 -6\n43 39 8\n38 14 8\n30 19 -7\n4 43 7\n7 49 10\n27 32 4\n53 23 -3\n51 11 -3\n32 41 3\n17 40 3\n48 52 -10\n14 42 9\n6 41 4\n22 17 3\n43 50 8\n14 41 6\n13 9 -2\n26 37 -4\n3 35 8\n12 23 -5\n26 52 -7\n30 39 8\n2 9 10\n40 16 -3\n29 40 5\n38 20 7\n3 25 1\n39 9 4\n41 7 2\n42 32 -10\n36 49 -6\n2 43 4\n17 9 9\n39 53 -7\n17 42 -3\n17 44 -6\n2 25 4\n47 36 -7\n7 43 1\n9 1 -10\n38 41 3\n39 14 2\n9 24 6\n50 51 8\n28 16 3\n50 5 -2\n44 13 -8\n26 25 -3\n8 5 -10\n44 1 -8\n9 16 7\n47 39 7\n21 29 0\n48 38 -5\n31 40 -1\n41 5 -10\n4 8 0\n21 16 -8\n7 52 7\n5 29 -9\n14 7 4\n3 40 -8\n21 32 7\n16 48 7\n40 24 -7\n45 24 0\n41 25 -7\n10 42 -7\n9 39 -2\n40 3 7\n24 11 -6\n44 6 7\n18 30 3\n46 28 2\n19 47 -7\n12 22 2\n37 6 -6\n33 31 9\n7 16 4\n27 18 5\n41 10 9\n36 39 -10\n23 48 6\n34 53 10\n39 30 5\n16 1 9\n11 52 8\n4 15 -5\n38 37 -10\n45 29 8\n10 42 -6\n28 11 -5\n14 47 0\n44 53 9\n5 31 10\n25 23 8\n5 33 -6\n15 4 -2\n17 31 1\n47 43 9\n50 31 3\n18 49 -4\n44 4 -10\n12 45 1\n5 38 9\n15 37 -7\n25 40 -3\n33 26 -10\n40 38 5\n32 53 -6\n39 47 -5\n2 39 -7\n31 21 3\n18 16 8\n22 52 -6\n47 25 -2\n1 19 10\n5 48 2\n12 35 -8\n53 46 -7\n30 37 5\n12 11 1\n12 11 2\n32 6 -7\n32 20 0\n16 45 9\n43 9 8\n21 24 -4\n19 3 0\n25 15 -4\n49 14 3\n13 38 8\n8 26 0\n2 22 -9\n52 19 9\n48 9 10\n20 36 8\n10 7 5\n52 46 -7\n24 5 -8\n24 37 -6\n36 29 -9\n52 31 -10\n35 39 -5\n33 36 -1\n42 5 10\n33 15 3\n30 32 10\n12 33 10\n22 33 -7\n50 42 -1\n6 26 1\n5 37 -5\n45 40 -3\n4 45 4\n23 20 10\n5 45 -5\n4 6 -9\n46 23 -3\n43 52 2\n34 39 -1\n17 17 9\n43 30 0\n4 12 -10\n42 9 -3\n4 2 3\n38 51 -1\n44 27 8\n28 46 -10\n14 19 -2\n47 38 6\n16 28 -2\n26 2 -2\n28 49 10\n38 28 7\n45 4 9\n21 1 8\n11 31 -10\n51 19 -8\n21 32 9\n45 41 1\n16 50 8\n44 13 0\n27 36 -10\n5 28 -7\n5 41 -1\n47 12 7\n30 50 -4\n26 53 7\n46 15 5\n8 31 -7\n38 4 -5\n19 23 -8\n48 41 -5\n11 52 3\n7 37 -5\n50 19 -1\n32 20 3\n34 11 10\n48 21 -9\n51 34 2\n2 5 -3\n13 49 7\n26 52 0\n48 44 -10\n21 52 3\n13 2 10\n15 49 -5\n28 6 6\n38 26 -4\n2 11 3\n23 2 8\n15 10 1\n5 13 7\n27 32 -6\n42 6 8\n28 37 7\n22 27 -10\n4 47 1\n30 6 -10\n37 2 8\n23 43 -8\n29 19 -7\n39 16 7\n13 26 -5\n47 4 -1\n53 18 -6\n43 7 5\n50 21 -8\n7 10 -10\n16 11 6\n1 30 10\n34 7 9\n7 34 -2\n51 32 10\n16 17 8\n47 30 4\n49 6 8\n41 7 3\n53 10 2\n4 33 -7\n22 40 10\n48 15 -4\n41 36 -3\n17 13 -10\n38 47 0\n37 48 8\n39 27 -6\n50 28 1\n35 42 -9\n38 27 -3\n50 44 1\n3 27 -5\n1 34 3\n46 49 0\n30 35 3\n38 12 -3\n24 28 8\n4 3 -2\n35 37 10\n16 49 5\n30 13 -4\n8 15 3\n10 40 4\n26 31 5\n2 27 -4\n24 53 6\n19 16 4\n46 30 0\n30 48 -3\n1 15 7\n4 51 0\n20 47 -6\n16 41 4\n12 19 7\n20 32 3\n13 44 -4\n15 40 -2\n13 4 7\n40 29 -3\n3 19 1\n7 43 -5\n52 41 8\n16 4 -1\n9 52 -2\n15 47 -1\n16 8 -10\n50 2 -9\n26 12 1\n4 16 -9\n7 23 9\n28 23 -4\n10 22 2\n12 1 -7\n14 29 7\n26 50 -4\n3 45 8\n8 21 0\n3 43 -5\n39 22 10\n42 8 -3\n26 8 -6\n53 17 8\n35 51 -2\n32 52 6\n15 11 -1\n5 48 3\n26 50 3\n27 10 -10\n49 37 3\n19 27 -4\n47 3 -6\n41 7 -4\n30 19 0\n44 16 9\n46 47 2\n2 3 -2\n42 50 -8\n25 18 4\n35 48 0\n34 2 -2\n2 22 1\n30 23 -8\n35 53 -1\n8 15 -4\n17 38 8\n11 35 -7\n34 37 6\n12 2 7\n27 44 4\n15 18 6\n12 40 5\n34 47 6\n50 14 -9\n5 37 6\n38 14 7\n12 35 -8\n27 16 5\n29 47 9\n4 39 -8\n32 49 -7\n20 7 -3\n12 17 3\n10 25 -1\n29 36 2\n33 51 -7\n33 41 -4\n36 19 -7\n48 42 5\n26 53 8\n49 29 -5\n2 12 8\n40 23 -4\n1 33 7\n52 51 9\n17 47 -10\n46 16 -1\n25 9 -8\n28 16 -8\n5 53 -3\n16 49 -5\n7 30 5\n26 36 2\n5 21 -7\n35 53 7\n43 30 5\n16 20 6\n47 23 -7\n32 46 4\n14 38 1\n31 40 -9\n50 24 -2\n5 20 -3\n5 12 3\n51 2 0\n11 21 -1\n42 15 0\n33 29 -8\n49 36 -10\n6 51 -3\n43 42 1\n14 5 -8\n45 40 3\n53 33 -4\n33 20 -1\n14 32 4\n23 7 -2\n7 43 -4\n6 15 1\n32 53 0\n4 39 7\n24 6 10\n51 22 6\n42 5 -3\n41 39 -1\n17 12 -8\n36 5 1\n1 51 -9\n35 20 -5\n24 6 4\n4 47 6\n38 14 9\n26 19 -9\n19 48 -5\n49 7 1\n53 19 2\n36 46 -2\n39 29 7\n51 42 7\n27 44 6\n49 17 -6\n31 16 9\n14 43 1\n22 48 -7\n13 47 -4\n50 42 -8\n9 28 -4\n7 53 5\n12 30 0\n51 53 -2\n43 30 0\n49 43 -10\n12 36 2\n27 41 0\n46 13 -2\n44 52 9\n26 40 -4\n45 30 3\n20 31 5\n51 34 2\n45 15 4\n12 42 -1\n26 27 -1\n50 51 9\n47 52 0\n15 16 4\n45 19 -3\n15 40 5\n16 1 -10\n2 20 5\n51 19 -8\n25 5 1\n24 9 0\n48 44 -5\n16 10 9\n47 41 -6\n7 46 3\n53 32 4\n31 50 -8\n33 13 5\n23 1 -4\n44 1 -3\n7 35 -2\n7 6 3\n10 8 9\n51 10 -3\n52 5 4\n32 32 -4\n1 31 1\n15 30 -7\n30 17 8\n26 17 7\n51 19 -1\n38 44 -1\n46 39 2\n3 47 -10\n43 12 -7\n32 24 9\n12 25 -8\n36 35 -3\n3 29 5\n23 53 -10\n36 28 5\n50 2 -4\n51 51 -10\n53 37 10\n18 10 -4\n33 3 -1\n25 21 -2\n52 31 9\n34 4 -10\n27 3 5\n37 36 2\n53 5 -2\n17 16 -1\n45 12 8\n21 8 6\n22 31 3\n5 8 -6\n31 23 1\n15 29 -7\n26 35 10\n47 43 -10\n33 15 -4\n27 14 4\n18 50 -8\n27 40 2\n23 47 -9\n33 10 -8\n16 4 -2\n39 52 3\n14 30 3\n16 12 -6\n22 14 -1\n35 48 -4\n34 45 6\n23 48 10\n12 12 -2\n25 24 -1\n9 37 -2\n29 38 5\n38 52 -7\n18 42 -8\n16 45 9\n27 12 2\n36 743\n1 23 4\n2 18 10\n3 4 -5\n4 20 8\n5 23 0\n6 1 -8\n7 16 4\n8 8 7\n9 22 -8\n10 21 7\n11 1 10\n12 20 10\n13 6 9\n14 4 -1\n15 16 -3\n16 6 0\n17 13 4\n18 8 10\n19 9 2\n20 25 -1\n21 30 -2\n22 30 -3\n23 12 9\n24 23 2\n25 30 2\n26 28 3\n27 1 7\n28 35 -1\n29 27 -2\n30 29 2\n31 16 -9\n32 10 -10\n33 26 10\n34 36 -3\n35 20 -9\n2 13 -4\n25 9 -5\n20 20 -7\n4 16 3\n34 2 0\n13 21 8\n12 33 -7\n2 12 9\n33 35 7\n28 26 10\n28 5 -3\n29 26 1\n13 7 6\n6 10 10\n5 5 9\n8 22 -6\n26 35 -5\n15 7 -7\n27 26 2\n31 28 7\n15 18 -5\n29 8 9\n11 5 -4\n1 12 -10\n22 20 6\n5 33 -9\n15 33 -7\n32 21 10\n1 13 6\n35 34 9\n14 36 -7\n10 13 4\n22 17 10\n29 22 10\n24 4 1\n26 30 3\n34 12 -8\n30 36 9\n2 25 -4\n33 18 -9\n35 6 -8\n24 23 -3\n3 1 -7\n16 15 -9\n21 15 0\n1 11 -6\n9 6 -5\n23 14 -4\n26 21 9\n28 11 -7\n18 32 7\n25 18 -9\n9 5 -7\n30 6 -9\n23 1 2\n24 14 -2\n16 23 6\n26 23 9\n23 16 0\n27 31 -7\n11 7 -9\n5 9 8\n23 25 -5\n36 23 7\n33 36 -3\n17 34 -10\n8 21 4\n2 21 -8\n14 20 4\n20 6 10\n24 5 -2\n23 32 8\n24 22 7\n25 20 -3\n12 34 -6\n8 21 -8\n18 36 -2\n25 29 7\n16 33 -6\n18 15 2\n14 22 -2\n22 29 10\n6 36 -5\n15 31 -3\n25 10 -6\n34 24 -10\n4 30 1\n25 27 0\n16 17 3\n27 16 0\n20 32 4\n7 24 -6\n18 6 8\n35 30 -9\n1 32 4\n25 27 -5\n32 12 10\n34 36 4\n18 22 6\n14 12 5\n26 2 9\n27 35 2\n26 5 -10\n6 9 -4\n6 18 -2\n23 17 -6\n5 30 1\n23 14 -5\n7 18 5\n35 18 0\n20 20 -5\n30 2 7\n4 27 1\n23 7 1\n9 30 6\n34 11 -5\n29 16 -10\n9 35 4\n25 24 -1\n22 22 -4\n33 1 1\n18 3 -5\n2 6 -9\n22 31 -9\n28 21 10\n23 28 -3\n8 32 0\n29 17 -2\n21 13 -1\n1 31 4\n3 24 8\n14 2 -2\n28 26 -4\n16 8 -7\n13 27 2\n12 26 1\n17 9 0\n10 33 0\n24 14 5\n8 9 6\n11 5 -1\n1 18 8\n5 24 10\n33 14 -2\n17 3 6\n29 29 10\n12 22 -4\n34 32 7\n36 6 0\n16 8 1\n14 28 5\n9 26 -1\n4 23 3\n5 14 8\n32 1 0\n19 20 -7\n1 33 0\n13 13 -5\n2 3 -5\n5 32 6\n16 25 -5\n1 32 10\n29 28 2\n5 19 -6\n29 32 -2\n24 12 -7\n36 21 -10\n34 7 -10\n36 27 5\n15 11 -9\n20 34 7\n14 17 -6\n35 2 -7\n35 1 5\n21 22 5\n23 26 -5\n33 5 -3\n34 23 7\n28 21 -3\n36 9 -3\n6 30 8\n14 18 6\n33 32 -2\n24 5 9\n6 5 -9\n15 10 -2\n14 1 3\n28 18 -6\n12 7 -10\n35 29 -4\n23 6 -8\n3 6 -4\n16 1 -8\n22 5 -2\n22 16 7\n5 23 10\n18 21 -8\n12 34 -1\n7 27 -4\n20 7 8\n21 32 -5\n29 29 5\n26 20 -4\n26 13 7\n20 17 -6\n1 14 0\n6 23 7\n23 30 8\n2 16 -10\n18 13 9\n19 18 3\n30 21 10\n31 29 8\n21 9 10\n10 4 -6\n20 7 -8\n18 20 7\n4 21 0\n29 18 -5\n25 5 1\n34 33 7\n21 25 7\n13 27 -6\n15 10 -5\n11 14 -9\n8 9 5\n20 35 -1\n26 18 1\n9 32 -3\n27 7 -7\n32 32 3\n28 28 4\n29 6 9\n3 8 1\n27 3 -10\n34 9 -8\n13 14 2\n6 14 0\n22 13 3\n19 6 -7\n19 6 10\n13 5 -9\n5 8 -10\n34 35 -7\n32 12 0\n18 5 4\n21 13 7\n27 36 -10\n24 11 8\n33 17 -5\n17 14 9\n13 34 -9\n20 13 7\n34 8 10\n14 19 -7\n31 26 -3\n14 30 5\n11 4 7\n9 14 2\n29 30 -4\n18 28 10\n32 33 -3\n28 10 -6\n36 24 0\n28 23 -4\n19 35 5\n6 11 10\n8 13 8\n9 12 -2\n17 15 1\n32 34 -8\n27 21 -6\n33 13 -3\n9 36 8\n33 23 -8\n34 19 -8\n32 21 7\n12 34 -4\n5 27 -9\n7 35 6\n22 11 -5\n3 8 9\n7 7 -3\n4 32 6\n3 6 -9\n16 29 -5\n28 19 -10\n27 34 4\n24 13 10\n13 14 8\n1 9 4\n11 26 7\n2 30 -4\n31 6 6\n15 17 5\n35 22 -9\n36 3 -3\n9 35 -6\n13 4 0\n18 5 8\n21 26 -10\n36 17 3\n8 5 5\n2 4 -6\n28 7 1\n29 6 5\n15 35 7\n18 15 9\n27 28 -8\n31 22 -2\n18 26 -9\n11 20 3\n34 32 -7\n2 13 -7\n14 10 -10\n33 36 -6\n24 16 -9\n25 34 3\n9 28 -3\n35 32 6\n19 20 -10\n28 26 -5\n34 27 6\n15 13 -9\n28 32 4\n20 10 6\n26 26 -1\n34 4 1\n22 27 7\n23 34 3\n14 15 -10\n14 5 5\n35 6 -4\n32 23 0\n17 7 -1\n17 8 2\n28 4 6\n20 9 1\n20 15 -6\n16 2 -2\n33 4 -7\n34 18 6\n24 26 2\n36 32 0\n11 6 -10\n8 25 5\n30 36 -7\n19 27 -2\n29 29 2\n25 3 6\n18 32 1\n15 16 -5\n26 7 -10\n34 31 6\n14 31 1\n8 36 -5\n7 35 5\n25 19 -9\n27 1 -5\n32 5 4\n8 16 0\n1 5 3\n30 20 0\n4 27 0\n24 12 -4\n20 6 5\n1 28 -10\n8 27 -8\n5 33 10\n31 35 -4\n21 27 6\n23 17 -9\n26 12 -1\n19 36 -4\n3 18 -3\n7 9 3\n34 36 -2\n3 23 9\n32 9 8\n10 32 -6\n18 12 -9\n10 8 -2\n10 17 5\n9 21 -5\n3 11 4\n11 5 1\n31 29 2\n33 13 1\n35 34 -9\n15 32 -4\n27 3 7\n19 8 -8\n8 35 7\n27 32 -7\n34 30 -10\n31 34 0\n3 17 6\n5 17 -2\n23 10 2\n4 11 5\n5 22 5\n27 25 -2\n3 16 -4\n31 18 2\n8 11 -5\n8 31 -10\n36 3 3\n24 36 1\n29 20 0\n2 2 -1\n12 7 6\n18 32 -7\n19 14 -5\n28 17 -2\n17 3 -10\n21 21 -10\n30 28 -5\n9 14 -5\n3 5 3\n28 31 -5\n30 23 -5\n36 24 -8\n24 23 7\n12 16 3\n28 13 1\n19 22 8\n2 8 -2\n24 31 4\n21 33 1\n21 10 -9\n28 36 -5\n17 7 4\n12 23 -10\n21 35 -2\n25 12 7\n22 3 6\n19 21 8\n3 8 5\n29 31 2\n35 34 2\n21 25 -9\n16 8 -5\n1 12 9\n33 2 -10\n17 22 -5\n15 10 -9\n34 2 -7\n12 25 -4\n20 26 0\n26 33 -9\n33 13 7\n27 22 6\n35 27 2\n6 27 -2\n19 12 3\n12 9 2\n1 4 10\n16 11 0\n5 36 8\n1 31 -2\n4 32 5\n28 13 1\n19 18 -5\n23 24 -10\n11 28 9\n32 11 -10\n26 4 -1\n19 30 -10\n7 20 -10\n11 36 -4\n7 34 10\n7 10 10\n33 32 -1\n23 18 -5\n10 4 6\n19 30 6\n36 31 1\n6 15 -6\n4 10 -9\n24 23 3\n30 28 -1\n24 10 3\n32 8 -2\n3 18 -1\n3 3 10\n24 34 -4\n3 2 8\n15 3 2\n16 36 2\n4 2 -5\n18 1 2\n23 10 -3\n31 7 3\n20 14 -10\n26 11 2\n10 28 -6\n8 16 8\n23 3 -7\n9 36 8\n4 3 5\n33 34 -7\n2 25 -7\n35 27 8\n23 29 9\n24 32 -1\n28 12 -5\n26 29 -3\n8 20 -5\n32 30 7\n22 29 6\n27 10 0\n5 1 -6\n28 18 10\n11 10 8\n24 36 8\n34 36 5\n29 13 -4\n21 29 8\n34 4 -3\n15 28 1\n20 28 9\n12 18 5\n27 33 1\n19 2 10\n24 16 1\n14 15 8\n9 26 -2\n31 11 -1\n14 33 7\n2 18 2\n18 34 0\n15 24 -5\n1 15 -10\n26 10 -7\n9 9 9\n18 12 -2\n26 6 -4\n19 35 9\n28 2 -2\n32 27 -1\n5 11 -8\n3 22 7\n4 36 -8\n33 29 9\n28 32 -7\n33 22 -6\n30 16 2\n5 9 -4\n4 1 -9\n18 32 -5\n8 28 -9\n5 31 5\n34 25 4\n30 10 -7\n28 34 6\n32 10 0\n5 16 9\n14 7 -2\n35 33 -8\n16 36 -10\n2 10 -7\n9 11 6\n2 19 -5\n11 15 -3\n33 34 2\n17 16 8\n21 31 -8\n26 36 -10\n13 4 8\n18 13 3\n9 28 7\n33 14 10\n7 33 5\n33 32 -2\n2 19 -5\n25 21 0\n31 10 5\n11 10 -7\n20 1 3\n25 19 -2\n18 7 1\n35 3 10\n30 1 2\n3 24 0\n3 36 2\n32 27 6\n36 7 -9\n20 6 3\n3 13 3\n3 14 7\n1 17 7\n33 8 10\n12 3 -5\n27 29 -4\n29 33 9\n30 12 0\n30 3 4\n6 4 -5\n9 22 9\n8 18 1\n16 1 0\n17 21 4\n15 32 0\n18 14 3\n20 4 0\n11 4 -6\n23 6 3\n29 9 -4\n14 12 -9\n8 2 9\n34 1 -8\n33 24 8\n4 12 -5\n23 22 3\n35 36 9\n26 12 3\n34 14 9\n18 3 5\n28 7 7\n13 27 -6\n26 2 4\n31 33 -3\n18 2 1\n9 34 -3\n10 22 -1\n35 11 6\n36 17 -9\n29 8 3\n9 6 6\n1 10 -8\n14 36 0\n20 12 -5\n20 9 -6\n12 34 -6\n19 8 -4\n35 34 10\n7 1 -4\n34 10 6\n30 10 -1\n8 21 -5\n30 35 2\n11 12 -10\n28 17 3\n36 21 0\n33 17 -10\n1 19 -2\n6 7 3\n1 16 -9\n36 6 -5\n7 4 6\n21 4 -6\n16 1 5\n27 28 -5\n26 22 -1\n12 4 -3\n13 20 8\n13 14 8\n7 31 -3\n9 15 3\n34 1 2\n1 36 -7\n1 14 6\n30 26 5\n11 36 -9\n9 5 -6\n35 10 1\n18 16 2\n34 36 8\n17 4 6\n22 2 -5\n2 25 2\n34 25 9\n26 18 8\n12 33 6\n34 35 8\n31 1 -8\n33 11 -3\n33 3 -7\n18 14 -10\n32 7 6\n16 5 -10\n12 13 3\n25 4 -4\n15 2 -6\n32 15 6\n17 33 -3\n25 1 6\n34 27 -9\n29 18 1\n18 26 0\n12 31 3\n16 10 6\n33 29 9\n32 12 -10\n23 36 3\n12 12 8\n35 14 -2\n36 35 0\n5 32 -5\n6 19 4\n29 33 -1\n23 29 7\n31 9 1\n13 27 7\n19 17 -10\n13 25 -4\n25 35 -2\n23 34 2\n",
"output": "No\nNo\nNo\nNo\nNo\nNo\nNo\nNo\nNo\nNo",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "10\n100 400\n1 2 -611\n2 3 -820\n3 4 -680\n4 5 -145\n5 6 -838\n6 7 -182\n7 8 -938\n8 9 -976\n9 10 -609\n10 11 -819\n11 12 -323\n12 13 -158\n13 14 -866\n14 15 -870\n15 16 -130\n16 17 -264\n17 18 -241\n18 19 -771\n19 20 -859\n20 21 -492\n21 22 -908\n22 23 -511\n23 24 -92\n24 25 -674\n25 26 -800\n26 27 -318\n27 28 -316\n28 29 -942\n29 30 -187\n30 31 -126\n31 32 -570\n32 33 -902\n33 34 -564\n34 35 -771\n35 36 -788\n36 37 -552\n37 38 -562\n38 39 -750\n39 40 -824\n40 41 -688\n41 42 -927\n42 43 -501\n43 44 -859\n44 45 -318\n45 46 -226\n46 47 -251\n47 48 -572\n48 49 -645\n49 50 -792\n50 51 -996\n54 83 672\n66 81 507\n59 61 438\n94 79 -31\n75 79 457\n57 85 762\n96 79 219\n77 70 444\n58 90 666\n60 88 777\n82 97 827\n56 87 574\n92 93 86\n58 89 849\n76 60 326\n94 76 83\n67 52 713\n52 100 213\n68 92 866\n97 75 112\n70 94 -9\n71 80 448\n82 84 191\n91 79 912\n79 100 701\n59 52 824\n94 68 -55\n91 85 336\n82 57 132\n89 85 21\n77 55 723\n81 82 659\n88 83 771\n98 95 422\n66 77 994\n75 57 638\n99 100 661\n69 100 322\n96 52 299\n75 73 778\n87 67 108\n62 88 552\n72 79 113\n100 96 534\n55 100 -94\n75 76 220\n99 90 119\n53 53 357\n77 62 259\n76 88 860\n55 61 451\n93 77 -54\n67 74 455\n95 91 412\n95 57 184\n100 78 570\n81 98 226\n73 81 209\n68 59 65\n88 62 794\n52 99 -73\n60 75 937\n94 84 309\n81 57 258\n55 53 432\n78 82 40\n85 80 853\n54 57 285\n94 94 -29\n84 54 30\n59 67 453\n75 67 519\n78 55 416\n96 79 178\n69 93 780\n69 100 101\n87 57 308\n99 94 288\n72 92 807\n59 61 710\n66 55 39\n77 79 739\n58 99 475\n87 87 980\n95 85 126\n77 94 -5\n78 93 -94\n82 75 988\n88 58 60\n72 71 909\n68 64 76\n66 62 78\n84 57 30\n98 99 623\n63 90 202\n79 81 398\n55 73 333\n90 62 658\n54 63 363\n98 72 -53\n100 69 -99\n73 72 263\n54 66 121\n88 84 505\n93 87 675\n100 56 -11\n52 57 661\n99 91 149\n91 69 30\n71 78 760\n62 65 844\n69 90 692\n98 60 744\n94 90 732\n52 80 193\n85 83 -44\n58 87 63\n56 81 971\n87 80 750\n74 61 715\n66 54 -6\n78 71 843\n99 92 187\n87 65 76\n92 79 670\n91 54 96\n56 100 505\n97 91 748\n59 71 161\n57 62 561\n85 65 173\n87 76 852\n64 98 674\n96 95 926\n90 66 447\n69 94 361\n76 52 105\n68 73 688\n52 89 647\n83 74 768\n52 85 289\n63 74 231\n53 89 110\n57 90 693\n92 81 287\n96 89 47\n100 95 823\n54 98 121\n85 70 62\n63 58 228\n76 62 846\n92 90 491\n62 70 571\n64 88 -67\n63 67 -9\n68 57 272\n60 69 303\n96 73 5\n84 54 309\n95 93 355\n74 86 813\n89 81 180\n97 86 204\n86 69 430\n71 75 251\n93 96 162\n66 65 929\n63 60 483\n59 88 189\n65 62 479\n52 68 -56\n96 94 495\n65 72 741\n98 67 213\n56 68 213\n69 94 482\n81 97 900\n92 60 784\n77 77 778\n93 84 615\n52 68 509\n80 81 645\n95 63 885\n92 69 337\n65 56 75\n92 94 416\n74 67 214\n72 52 301\n99 98 98\n84 89 601\n100 64 249\n98 66 115\n76 88 197\n94 90 238\n57 85 -70\n54 66 124\n68 80 290\n86 78 106\n64 79 -83\n68 70 -19\n54 81 619\n97 81 759\n65 53 237\n61 84 574\n88 99 859\n73 52 252\n92 58 321\n62 100 432\n93 72 386\n84 96 852\n83 86 128\n59 85 309\n53 99 744\n58 56 446\n76 54 889\n68 68 562\n59 87 -91\n99 58 688\n83 95 64\n98 53 242\n59 68 812\n71 90 373\n81 54 820\n98 69 998\n77 76 434\n52 68 776\n100 77 892\n90 98 325\n97 70 816\n85 52 187\n87 77 -18\n86 75 589\n60 94 568\n86 86 556\n80 73 942\n89 95 343\n71 71 830\n70 93 -91\n82 82 701\n74 64 26\n80 81 940\n77 92 57\n58 73 -86\n76 99 497\n92 83 -12\n63 59 369\n59 55 130\n68 82 569\n98 55 902\n73 68 912\n52 85 522\n82 80 765\n56 69 725\n54 90 459\n99 67 272\n59 99 906\n84 78 675\n72 77 460\n95 87 242\n97 65 160\n88 60 345\n82 91 937\n98 65 903\n86 78 816\n65 78 505\n70 74 743\n57 57 907\n53 100 459\n99 68 362\n63 99 159\n67 86 461\n85 95 377\n76 80 690\n87 88 676\n55 76 545\n56 73 332\n74 96 588\n79 99 524\n90 64 170\n64 77 859\n93 96 537\n95 52 64\n87 90 538\n92 73 -1\n71 61 550\n91 61 935\n78 90 544\n68 69 -54\n95 53 793\n70 72 899\n95 70 821\n99 84 674\n86 85 874\n77 66 388\n61 63 109\n82 92 695\n65 74 254\n53 91 101\n78 69 887\n85 57 307\n57 70 154\n94 77 552\n94 53 686\n97 70 152\n71 74 434\n99 61 761\n83 98 -46\n69 98 18\n88 72 501\n62 65 692\n97 84 96\n81 90 999\n72 76 488\n81 61 431\n89 70 816\n65 71 973\n81 83 204\n77 84 591\n73 52 -76\n52 61 946\n60 91 27\n67 74 787\n88 89 843\n69 78 296\n85 89 -81\n55 72 249\n69 94 819\n93 77 796\n92 83 42\n84 90 579\n73 75 984\n54 84 491\n56 84 15\n99 97 638\n96 72 245\n74 88 363\n75 91 266\n61 61 577\n78 78 -14\n72 93 652\n81 86 202\n52 62 158\n76 65 236\n63 61 231\n57 59 790\n90 97 983\n58 63 895\n67 87 583\n56 64 708\n99 67 636\n100 400\n1 2 -541\n2 3 -834\n3 4 -759\n4 5 -23\n5 6 -171\n6 7 -241\n7 8 -925\n8 9 -225\n9 10 -590\n10 11 -324\n11 12 -463\n12 13 -108\n13 14 -493\n14 15 -85\n15 16 -590\n16 17 -221\n17 18 -767\n18 19 -78\n19 20 -661\n20 21 -559\n21 22 -19\n22 23 -230\n23 24 -825\n24 25 -218\n25 26 -295\n26 27 -132\n27 28 -309\n28 29 -195\n29 30 -750\n30 31 -810\n31 32 -738\n32 33 -358\n33 34 -406\n34 35 -240\n35 36 -945\n36 37 -293\n37 38 -400\n38 39 -419\n39 40 -871\n40 41 -656\n41 42 -695\n42 43 2\n43 44 -151\n44 45 -506\n45 46 -414\n46 47 -853\n47 48 -156\n48 49 -907\n49 50 -966\n50 51 -248\n62 81 324\n100 86 621\n60 91 868\n69 64 75\n69 81 34\n75 61 840\n85 60 914\n57 67 591\n85 64 339\n53 56 825\n69 88 734\n58 78 263\n56 76 628\n88 57 432\n59 83 335\n80 58 892\n69 62 19\n86 94 486\n81 83 213\n93 96 317\n80 72 286\n60 78 437\n99 57 -1\n58 72 585\n75 81 247\n82 94 131\n85 61 999\n78 92 590\n64 83 341\n56 91 917\n95 67 23\n76 61 586\n94 90 310\n77 54 345\n89 70 328\n76 64 471\n57 68 710\n65 69 202\n92 90 374\n89 54 142\n98 87 140\n58 95 -80\n77 64 781\n73 67 613\n86 82 366\n97 100 557\n80 99 592\n65 95 952\n81 96 686\n91 65 45\n73 65 990\n94 67 831\n54 99 201\n61 95 51\n61 69 256\n100 62 388\n99 71 540\n99 98 -40\n90 91 826\n92 100 538\n70 83 -33\n86 52 937\n90 75 55\n92 69 993\n57 94 349\n55 67 322\n80 68 955\n86 100 986\n91 91 859\n52 53 419\n98 82 466\n99 97 787\n69 58 701\n97 85 411\n72 62 566\n100 79 172\n79 84 151\n89 91 927\n77 61 618\n82 88 169\n98 80 695\n85 83 758\n73 72 782\n67 76 521\n90 71 197\n55 74 685\n66 97 80\n67 82 996\n93 82 554\n56 76 191\n97 92 599\n94 89 131\n69 77 -4\n57 81 -53\n73 80 457\n97 70 707\n58 61 622\n61 99 -50\n95 75 732\n70 59 -95\n57 54 474\n72 67 607\n55 92 192\n99 91 927\n68 59 24\n74 72 778\n58 100 -45\n62 62 633\n79 52 634\n96 88 358\n80 99 353\n99 100 745\n65 81 136\n92 86 291\n79 84 806\n90 67 649\n89 66 692\n55 87 -71\n90 68 677\n66 100 27\n52 93 822\n88 82 379\n67 77 998\n92 73 326\n73 62 496\n77 57 359\n67 57 395\n70 57 868\n53 60 995\n56 96 426\n77 65 490\n93 68 668\n77 62 483\n84 88 791\n99 87 664\n60 58 990\n89 73 330\n90 83 671\n80 71 268\n94 62 396\n87 94 703\n94 99 538\n76 83 208\n89 71 307\n52 76 -43\n55 59 297\n76 88 692\n91 71 119\n70 52 480\n54 84 470\n92 80 113\n96 92 862\n95 64 421\n94 77 403\n100 78 290\n58 59 483\n57 90 -57\n82 81 156\n65 81 694\n53 89 786\n62 61 44\n53 65 899\n87 79 976\n63 94 444\n87 76 341\n93 73 942\n99 71 228\n100 58 416\n82 82 725\n87 80 62\n90 65 924\n97 65 131\n97 63 320\n59 66 134\n80 59 -5\n75 96 464\n74 78 749\n59 99 314\n79 66 647\n64 97 754\n57 83 376\n56 78 533\n86 52 894\n76 71 313\n52 86 472\n79 99 480\n61 67 991\n53 73 794\n99 77 356\n62 94 812\n87 62 893\n68 56 318\n54 57 479\n60 70 -90\n100 83 799\n60 88 -96\n63 84 61\n54 55 533\n91 77 904\n55 57 422\n86 85 43\n90 98 482\n92 100 606\n77 86 702\n58 65 36\n81 96 580\n91 99 405\n97 66 210\n66 64 -53\n54 91 289\n95 88 393\n77 80 960\n82 64 -3\n61 96 704\n64 63 520\n98 97 516\n61 72 74\n60 93 913\n80 73 517\n53 71 117\n75 73 226\n93 98 213\n88 56 522\n100 83 468\n98 71 855\n54 58 -57\n67 52 455\n85 97 76\n55 92 350\n88 75 827\n73 72 927\n83 59 319\n100 76 798\n53 100 198\n68 92 552\n75 61 733\n56 78 343\n82 76 211\n88 86 42\n66 87 583\n56 55 676\n91 53 1\n97 63 870\n67 88 966\n95 100 744\n69 78 979\n89 98 -3\n99 85 990\n88 88 657\n64 58 200\n79 62 292\n89 95 269\n71 76 94\n58 72 72\n89 73 704\n88 69 185\n86 81 850\n60 78 479\n53 56 457\n79 96 702\n89 54 -8\n57 78 -2\n100 85 446\n52 81 883\n61 66 818\n75 58 384\n94 68 656\n74 64 449\n78 100 821\n78 65 434\n82 55 930\n68 93 985\n92 86 99\n73 100 889\n65 77 411\n76 53 966\n88 89 595\n99 88 150\n55 95 290\n80 66 275\n63 67 728\n97 73 516\n76 72 618\n92 96 906\n69 79 924\n95 54 655\n82 86 619\n92 83 -37\n76 76 388\n76 96 -25\n61 99 834\n78 56 -80\n65 64 710\n58 73 553\n61 84 309\n92 90 359\n56 59 466\n78 90 945\n81 75 120\n52 58 -80\n92 86 793\n85 52 905\n81 88 134\n60 70 587\n85 89 828\n96 64 797\n62 100 214\n75 63 825\n58 88 791\n74 91 974\n66 92 -56\n53 55 781\n58 60 551\n85 88 112\n81 87 681\n59 63 534\n86 71 240\n63 97 200\n98 63 586\n92 52 681\n61 96 -74\n95 59 286\n91 90 243\n61 67 354\n58 92 -44\n68 81 727\n89 74 997\n57 86 367\n66 65 778\n66 52 370\n58 67 417\n100 99 193\n52 96 87\n85 69 591\n63 91 216\n78 72 580\n59 78 682\n52 65 947\n79 97 405\n77 54 378\n91 87 539\n93 77 298\n80 88 256\n90 66 101\n93 80 335\n90 80 531\n91 78 -60\n64 79 238\n75 60 954\n53 58 657\n100 400\n1 2 -861\n2 3 -305\n3 4 -530\n4 5 -152\n5 6 -138\n6 7 -872\n7 8 -753\n8 9 -213\n9 10 -182\n10 11 -677\n11 12 -338\n12 13 -848\n13 14 -286\n14 15 -212\n15 16 -276\n16 17 -991\n17 18 -101\n18 19 -726\n19 20 -343\n20 21 -533\n21 22 -657\n22 23 -562\n23 24 -536\n24 25 -610\n25 26 -248\n26 27 -330\n27 28 -35\n28 29 -98\n29 30 -321\n30 31 -232\n31 32 -725\n32 33 -990\n33 34 -805\n34 35 -548\n35 36 -646\n36 37 -837\n37 38 -850\n38 39 -812\n39 40 -197\n40 41 -680\n41 42 -924\n42 43 -824\n43 44 -401\n44 45 -796\n45 46 -367\n46 47 -755\n47 48 -792\n48 49 -942\n49 50 -436\n50 51 -16\n79 94 829\n83 89 295\n75 84 -99\n81 61 51\n94 94 382\n63 73 121\n84 61 141\n60 91 113\n74 91 340\n52 94 456\n63 79 412\n72 95 473\n93 86 205\n53 78 -46\n76 71 163\n98 77 153\n78 68 -14\n80 95 167\n54 92 792\n75 68 396\n66 93 263\n92 58 841\n95 65 357\n61 89 -89\n99 89 987\n65 100 213\n82 92 449\n77 54 -63\n94 92 582\n74 56 408\n74 100 916\n80 55 681\n57 76 -65\n52 96 973\n64 82 547\n61 69 367\n74 52 264\n68 56 360\n53 61 932\n66 92 760\n91 57 377\n96 90 964\n79 60 734\n80 94 570\n95 96 969\n91 65 657\n56 75 33\n90 72 703\n81 66 420\n96 60 517\n64 95 112\n80 94 324\n90 55 229\n94 85 776\n92 91 804\n89 75 616\n75 66 278\n64 52 939\n78 91 568\n94 57 439\n74 64 296\n68 88 179\n58 80 3\n55 74 695\n76 79 897\n93 84 977\n87 53 517\n97 92 948\n94 61 -56\n92 57 22\n64 57 949\n62 71 -40\n99 52 440\n85 82 627\n67 73 910\n66 72 692\n55 93 234\n85 66 510\n72 84 469\n56 90 205\n97 77 269\n82 70 72\n82 61 719\n56 100 748\n54 86 214\n63 96 827\n82 71 -94\n86 84 775\n68 87 849\n70 54 519\n60 92 115\n90 65 -32\n55 58 918\n69 94 -51\n97 86 582\n85 59 -2\n71 95 387\n100 53 655\n77 78 -41\n53 96 310\n53 88 360\n59 52 783\n56 83 683\n78 90 192\n78 78 829\n86 82 843\n56 64 187\n82 67 443\n93 54 573\n68 76 785\n100 66 380\n80 92 701\n67 67 691\n65 64 -26\n55 95 503\n82 93 -58\n80 78 761\n69 99 105\n87 56 805\n70 64 202\n57 52 188\n82 69 715\n89 90 34\n84 70 835\n61 58 495\n80 99 818\n60 96 227\n80 69 369\n72 57 800\n88 77 551\n89 72 443\n55 66 652\n54 65 750\n62 58 763\n83 88 678\n92 79 425\n70 71 347\n79 62 542\n63 91 126\n100 92 -59\n54 81 970\n77 86 949\n57 60 52\n54 52 63\n99 98 610\n94 62 60\n52 85 -9\n72 87 913\n55 54 895\n91 81 501\n98 98 -31\n100 75 133\n94 96 981\n67 69 113\n78 76 187\n99 92 963\n55 60 328\n91 91 627\n90 66 825\n92 67 953\n98 99 266\n74 76 2\n98 61 431\n91 79 197\n74 83 847\n54 79 846\n80 87 -75\n93 90 381\n89 82 434\n57 56 434\n60 69 775\n54 58 765\n85 56 469\n53 97 325\n73 92 77\n54 70 129\n90 66 -51\n61 100 718\n68 71 338\n64 98 -90\n63 88 873\n91 81 646\n76 63 81\n96 69 68\n59 97 301\n75 81 667\n74 69 407\n61 81 922\n68 67 384\n54 89 715\n63 99 259\n59 93 20\n84 68 514\n100 56 -36\n56 56 812\n84 77 703\n53 78 582\n63 85 881\n62 61 722\n75 100 434\n61 52 823\n78 98 601\n74 77 262\n100 81 391\n75 99 487\n85 90 743\n84 98 661\n93 65 352\n62 99 466\n63 96 646\n93 100 922\n65 79 276\n70 74 954\n69 86 656\n63 88 828\n76 78 499\n70 79 -62\n67 69 285\n84 67 676\n66 52 801\n54 94 346\n76 88 221\n54 65 905\n57 91 334\n84 53 -53\n58 84 300\n83 94 473\n88 79 26\n53 69 242\n99 62 155\n72 73 407\n73 82 41\n89 55 117\n95 53 651\n92 81 139\n54 77 535\n64 71 504\n76 95 407\n99 61 84\n66 52 745\n86 64 96\n79 80 567\n90 54 322\n93 63 300\n85 63 84\n57 100 317\n100 76 836\n64 79 577\n65 76 30\n54 91 105\n92 97 925\n85 99 113\n96 93 916\n82 67 364\n71 96 680\n69 71 126\n65 90 306\n84 69 380\n86 77 505\n64 59 969\n94 57 159\n86 71 990\n94 63 18\n82 93 105\n89 73 556\n74 88 608\n79 65 -9\n72 52 489\n80 64 763\n54 54 159\n98 94 -43\n69 80 530\n68 93 899\n79 67 3\n81 94 217\n92 69 169\n53 80 681\n54 67 10\n91 100 205\n56 82 -58\n99 79 521\n63 85 284\n94 79 223\n66 64 329\n75 57 503\n70 96 885\n61 63 -91\n55 84 932\n58 92 652\n79 90 104\n61 53 1\n78 83 -97\n95 81 86\n57 79 -24\n65 81 47\n97 78 312\n66 68 246\n69 63 198\n69 66 -15\n85 74 5\n97 88 -62\n70 84 221\n92 96 -57\n59 59 745\n81 62 -95\n68 61 422\n74 62 133\n94 82 620\n84 67 51\n62 98 692\n91 53 413\n79 89 528\n88 54 281\n70 95 62\n57 82 104\n77 83 915\n58 77 629\n78 69 421\n56 57 641\n79 85 670\n97 86 829\n91 80 316\n61 65 599\n71 57 834\n85 72 961\n89 65 -58\n90 94 479\n97 78 818\n54 78 993\n75 86 867\n83 99 684\n87 99 278\n54 70 841\n97 61 762\n52 64 593\n94 58 360\n87 55 580\n92 67 345\n70 80 -99\n87 59 219\n85 61 674\n77 100 203\n80 58 557\n55 89 729\n59 54 -2\n78 57 767\n98 74 460\n59 53 -11\n60 78 550\n90 85 780\n100 400\n1 2 -744\n2 3 -549\n3 4 -502\n4 5 -689\n5 6 -513\n6 7 -517\n7 8 -503\n8 9 -218\n9 10 -677\n10 11 -207\n11 12 -40\n12 13 -95\n13 14 -732\n14 15 -237\n15 16 -852\n16 17 -637\n17 18 -284\n18 19 -732\n19 20 -948\n20 21 -462\n21 22 -399\n22 23 -686\n23 24 -817\n24 25 -658\n25 26 -575\n26 27 -622\n27 28 -812\n28 29 -883\n29 30 -737\n30 31 -970\n31 32 -963\n32 33 -112\n33 34 -666\n34 35 -276\n35 36 -1\n36 37 -234\n37 38 -633\n38 39 -929\n39 40 2\n40 41 -163\n41 42 -879\n42 43 -423\n43 44 -125\n44 45 -583\n45 46 -961\n46 47 -881\n47 48 -149\n48 49 -430\n49 50 -782\n50 51 -72\n58 83 348\n90 88 89\n70 76 812\n86 64 136\n57 73 -98\n95 82 468\n85 87 942\n81 81 -39\n60 77 573\n52 85 601\n57 89 342\n87 58 49\n83 70 223\n84 65 48\n90 86 769\n96 94 555\n61 88 9\n92 94 545\n97 86 576\n54 73 -65\n83 65 634\n89 96 -12\n72 63 934\n86 89 789\n95 68 936\n67 82 122\n81 55 625\n80 53 712\n89 100 660\n76 53 840\n86 80 642\n85 73 691\n77 70 761\n71 90 527\n90 71 501\n93 69 230\n79 99 407\n99 55 972\n96 61 958\n77 79 221\n53 84 381\n69 69 103\n100 79 824\n79 89 83\n64 53 19\n82 71 907\n64 81 -74\n98 80 403\n57 91 -87\n92 70 381\n86 83 707\n71 52 25\n74 77 -51\n62 70 773\n98 80 211\n92 84 186\n80 53 75\n100 65 856\n96 86 -92\n93 53 180\n98 60 230\n90 52 709\n66 82 391\n71 64 773\n97 61 894\n52 76 446\n99 80 703\n53 81 750\n73 64 36\n72 58 211\n89 84 859\n77 91 611\n67 70 542\n92 80 634\n100 86 254\n75 87 411\n88 64 714\n52 82 16\n72 70 656\n91 71 199\n55 73 62\n64 70 941\n73 89 227\n80 84 381\n98 65 904\n74 67 197\n83 85 910\n88 77 919\n80 83 646\n74 93 312\n77 86 52\n84 58 738\n83 77 714\n100 71 373\n58 53 -63\n94 93 461\n81 73 856\n82 78 991\n52 73 -26\n73 82 658\n64 75 671\n89 75 260\n52 62 808\n73 68 967\n85 79 216\n68 52 480\n57 71 -80\n65 59 962\n89 70 524\n86 99 362\n81 57 796\n93 91 272\n69 98 864\n77 53 800\n97 59 407\n72 72 265\n93 99 855\n54 63 737\n79 65 868\n77 54 -26\n86 73 986\n87 54 551\n87 67 301\n55 58 539\n52 80 745\n58 62 631\n76 77 -47\n90 53 980\n72 69 328\n81 73 -21\n78 56 607\n52 100 -84\n91 73 358\n72 74 912\n100 55 459\n53 88 66\n69 53 350\n93 78 830\n61 94 589\n83 52 388\n68 91 469\n70 96 16\n55 67 571\n71 75 969\n82 63 491\n79 52 746\n84 100 330\n63 75 169\n61 97 -22\n87 79 800\n100 75 557\n58 60 532\n67 69 127\n92 83 787\n65 90 14\n76 54 141\n90 52 -85\n77 99 631\n55 74 349\n90 69 84\n100 54 409\n77 84 -36\n95 89 814\n58 78 796\n100 80 406\n82 64 -4\n66 96 8\n60 72 921\n68 87 216\n71 70 182\n100 55 983\n57 88 353\n98 67 449\n99 70 128\n97 78 784\n86 98 69\n67 67 257\n59 82 357\n95 57 720\n69 81 261\n58 52 712\n87 70 914\n79 55 231\n73 63 550\n63 57 962\n77 67 -2\n65 52 116\n99 69 159\n76 97 731\n62 56 685\n98 60 695\n91 59 392\n80 93 943\n56 98 -19\n73 87 371\n73 80 263\n71 86 441\n81 89 192\n88 95 575\n81 83 605\n62 75 102\n71 69 133\n53 95 675\n66 54 440\n91 64 261\n88 89 841\n67 66 413\n52 54 652\n95 88 888\n88 62 331\n89 52 325\n74 56 175\n88 94 816\n55 63 629\n52 58 282\n87 81 161\n66 78 984\n62 79 921\n73 66 -26\n63 97 759\n59 81 899\n64 57 673\n86 89 720\n56 79 655\n55 98 283\n68 91 584\n64 68 529\n100 63 931\n73 64 446\n83 65 968\n84 73 351\n63 81 157\n82 78 472\n87 99 77\n92 82 760\n82 56 492\n71 68 101\n66 93 92\n87 54 453\n84 97 141\n57 81 889\n76 82 87\n72 79 580\n74 72 625\n65 66 739\n57 100 260\n93 88 150\n86 91 850\n77 60 627\n100 78 996\n98 97 773\n73 96 315\n58 96 628\n81 67 -68\n67 96 139\n91 73 277\n56 94 82\n69 100 380\n75 72 963\n90 72 -94\n62 90 655\n66 91 303\n64 57 936\n57 85 269\n91 57 992\n55 55 917\n75 89 971\n69 93 664\n92 83 141\n84 96 112\n56 64 915\n81 71 741\n57 91 579\n63 97 815\n86 65 735\n95 91 521\n77 86 923\n82 67 -32\n71 88 669\n87 74 661\n99 67 -72\n88 69 158\n63 99 829\n86 87 928\n65 94 842\n88 96 232\n80 69 864\n87 92 658\n81 60 263\n85 58 187\n97 78 803\n53 95 982\n73 71 272\n98 92 -24\n77 92 152\n57 53 -6\n68 72 52\n74 70 408\n65 84 179\n88 69 307\n100 89 766\n72 62 14\n98 97 654\n89 64 -51\n76 94 324\n78 95 843\n87 88 965\n79 61 -69\n65 84 766\n84 81 970\n61 52 658\n83 86 -12\n72 67 341\n66 95 364\n69 64 364\n73 88 460\n81 95 481\n58 84 334\n53 67 491\n75 73 -48\n83 63 410\n80 62 355\n57 97 901\n74 99 947\n54 66 346\n79 93 160\n92 67 711\n87 70 713\n95 58 960\n86 68 451\n99 89 -62\n62 86 705\n88 86 48\n71 60 414\n93 53 109\n71 99 851\n55 80 490\n98 67 579\n100 69 759\n70 61 264\n72 94 782\n85 61 251\n93 57 108\n78 85 796\n62 90 955\n69 92 83\n56 56 105\n70 82 63\n63 60 945\n80 66 84\n100 400\n1 2 -512\n2 3 -782\n3 4 -414\n4 5 -699\n5 6 -932\n6 7 -838\n7 8 -816\n8 9 -621\n9 10 -731\n10 11 -52\n11 12 -863\n12 13 -39\n13 14 -244\n14 15 -83\n15 16 -792\n16 17 -986\n17 18 -452\n18 19 -755\n19 20 -50\n20 21 -185\n21 22 -350\n22 23 -546\n23 24 -544\n24 25 -54\n25 26 -586\n26 27 -360\n27 28 -912\n28 29 -296\n29 30 -604\n30 31 -729\n31 32 -318\n32 33 -535\n33 34 -758\n34 35 -448\n35 36 -1000\n36 37 -797\n37 38 -553\n38 39 -613\n39 40 -433\n40 41 -557\n41 42 -297\n42 43 -15\n43 44 -836\n44 45 -420\n45 46 -956\n46 47 -118\n47 48 -98\n48 49 -38\n49 50 -641\n50 51 -336\n95 94 512\n87 73 712\n53 80 120\n78 93 314\n97 59 148\n60 76 797\n98 81 864\n65 96 303\n67 96 656\n65 81 493\n62 90 646\n79 67 310\n80 54 -3\n59 91 952\n70 86 -15\n80 92 -81\n77 52 222\n60 79 421\n84 89 198\n73 87 176\n97 78 194\n87 82 -42\n78 56 6\n91 90 720\n58 80 575\n67 87 842\n63 89 870\n97 98 558\n74 91 488\n97 70 531\n83 74 270\n55 54 259\n63 54 853\n66 78 975\n57 66 723\n99 95 -83\n60 92 800\n96 72 184\n87 53 777\n95 94 62\n94 75 297\n73 79 566\n81 71 -37\n99 67 70\n79 73 213\n52 97 697\n69 95 861\n56 62 776\n58 93 -47\n69 70 867\n91 100 382\n59 75 457\n67 100 570\n58 69 896\n95 65 84\n56 93 572\n95 59 434\n82 78 731\n84 78 173\n64 87 322\n76 62 514\n56 53 513\n65 95 610\n60 89 22\n96 73 403\n90 90 979\n58 72 -33\n85 91 554\n97 96 -67\n95 59 898\n80 88 785\n74 52 274\n54 88 957\n68 88 998\n85 58 238\n100 88 447\n69 86 239\n71 56 -3\n93 61 756\n88 63 480\n71 57 433\n55 55 105\n63 67 859\n95 72 -91\n63 86 -80\n74 57 936\n84 87 458\n77 75 467\n65 63 863\n70 65 401\n59 63 537\n73 75 18\n70 83 259\n78 56 12\n94 90 542\n58 86 864\n76 63 373\n86 92 93\n79 73 268\n87 92 315\n71 62 175\n61 84 900\n88 73 613\n78 63 -45\n90 56 259\n75 97 16\n53 87 -89\n100 90 870\n74 63 436\n86 77 626\n74 67 409\n76 57 915\n54 71 735\n57 59 326\n92 78 846\n82 89 347\n81 82 730\n93 59 332\n64 91 14\n62 91 312\n78 71 331\n60 78 757\n71 77 -28\n52 85 334\n55 87 998\n95 58 280\n85 83 224\n76 66 232\n91 79 432\n98 64 332\n87 70 665\n70 89 51\n75 70 652\n95 88 409\n85 95 857\n77 78 352\n69 77 40\n59 78 281\n95 76 690\n92 73 60\n66 87 410\n84 68 644\n87 95 136\n75 66 563\n59 64 1000\n77 88 82\n64 94 968\n54 83 796\n60 63 388\n76 71 645\n81 62 589\n60 96 519\n75 53 124\n88 85 372\n85 59 837\n60 99 131\n100 78 695\n81 90 182\n73 76 837\n54 88 786\n84 96 931\n53 83 542\n83 94 566\n54 66 -59\n84 90 807\n81 54 -70\n52 66 422\n85 92 959\n87 94 445\n52 52 710\n69 70 365\n85 64 527\n53 58 982\n80 95 772\n80 62 48\n76 84 66\n96 95 787\n91 72 412\n54 76 571\n94 63 703\n95 85 741\n77 77 932\n76 67 -62\n60 80 420\n86 85 81\n78 74 -9\n62 61 365\n67 79 463\n80 76 310\n82 96 238\n82 63 651\n84 84 477\n70 93 819\n58 83 561\n64 54 409\n84 53 414\n66 99 42\n73 67 730\n96 81 631\n97 61 258\n96 94 194\n75 63 118\n64 53 491\n76 87 688\n98 76 328\n58 64 122\n63 87 38\n82 58 462\n88 85 300\n71 52 535\n84 92 645\n76 78 895\n88 100 172\n69 84 571\n59 75 573\n54 83 400\n56 75 410\n85 98 742\n93 90 370\n72 85 134\n54 70 193\n77 78 764\n73 94 789\n92 88 62\n76 75 352\n86 59 308\n79 84 62\n70 64 396\n81 58 867\n65 91 674\n58 99 303\n89 65 756\n90 57 746\n68 59 -55\n73 93 100\n72 64 859\n94 99 347\n77 77 223\n96 94 582\n74 86 976\n78 70 228\n65 66 306\n55 53 973\n75 59 183\n58 92 215\n81 61 202\n96 66 698\n55 94 245\n52 60 84\n53 91 230\n84 73 165\n92 73 55\n76 61 867\n71 70 41\n57 64 -50\n83 65 379\n64 87 -57\n58 82 218\n67 63 541\n83 76 -16\n69 96 107\n95 82 801\n59 58 270\n78 57 121\n53 77 941\n61 57 764\n63 72 363\n64 88 225\n64 96 408\n70 79 623\n97 53 322\n98 80 998\n91 75 983\n84 52 -11\n65 55 827\n67 82 692\n61 68 345\n76 86 -4\n88 91 743\n53 100 354\n89 55 542\n69 85 666\n60 77 85\n87 71 806\n56 57 -16\n66 63 499\n53 85 175\n66 57 390\n57 88 838\n87 100 927\n90 99 3\n85 90 906\n82 55 796\n70 60 4\n85 65 132\n79 62 775\n80 90 7\n85 78 188\n55 79 968\n79 79 427\n100 74 503\n79 79 494\n60 96 348\n86 59 514\n61 91 302\n63 98 278\n67 89 286\n94 56 218\n74 97 984\n71 64 509\n65 58 530\n69 82 854\n69 70 -2\n92 79 378\n71 96 712\n69 62 719\n95 89 277\n73 78 322\n87 69 173\n79 62 993\n63 59 190\n93 95 694\n69 89 897\n84 79 481\n76 90 556\n59 80 358\n98 97 701\n72 55 657\n78 69 18\n80 98 -56\n56 64 923\n79 100 625\n73 65 456\n97 93 952\n59 52 476\n97 98 373\n62 78 928\n60 68 -24\n58 83 -95\n76 97 279\n86 67 985\n70 74 474\n69 58 97\n93 75 1000\n74 74 202\n56 76 481\n97 73 63\n69 67 637\n96 90 -17\n67 67 852\n100 400\n1 2 -801\n2 3 -261\n3 4 -406\n4 5 -772\n5 6 -503\n6 7 -215\n7 8 -252\n8 9 -75\n9 10 -426\n10 11 -365\n11 12 -381\n12 13 -543\n13 14 -189\n14 15 -522\n15 16 -870\n16 17 -499\n17 18 -770\n18 19 -91\n19 20 -177\n20 21 -951\n21 22 -304\n22 23 -541\n23 24 -444\n24 25 -59\n25 26 -231\n26 27 -837\n27 28 -114\n28 29 -900\n29 30 -557\n30 31 -3\n31 32 -880\n32 33 -611\n33 34 -160\n34 35 -102\n35 36 -58\n36 37 -530\n37 38 -53\n38 39 -533\n39 40 -133\n40 41 -46\n41 42 -766\n42 43 -782\n43 44 -630\n44 45 -688\n45 46 -624\n46 47 -517\n47 48 -463\n48 49 -918\n49 50 -571\n50 51 -410\n68 84 836\n90 94 61\n81 52 -21\n67 99 415\n67 98 461\n56 98 170\n57 73 603\n69 59 -93\n57 67 605\n58 95 482\n64 82 384\n63 100 221\n96 65 976\n73 89 902\n94 65 345\n81 82 749\n88 96 188\n92 91 -77\n60 100 865\n57 67 662\n85 71 191\n93 77 29\n52 77 471\n89 78 257\n85 91 594\n81 98 226\n72 63 677\n69 96 886\n87 79 302\n91 78 382\n67 60 264\n90 80 156\n52 66 485\n92 84 645\n92 89 650\n75 86 734\n77 94 694\n62 84 649\n62 95 183\n85 69 981\n61 75 138\n86 63 434\n60 54 553\n61 64 416\n91 89 632\n52 96 695\n92 60 615\n90 87 -63\n85 68 45\n91 68 113\n93 61 302\n72 74 855\n79 56 433\n77 55 834\n94 83 123\n66 66 337\n61 95 372\n77 94 221\n63 70 966\n85 78 492\n72 74 242\n65 95 335\n65 76 237\n61 59 195\n84 63 705\n72 65 105\n65 60 950\n77 81 -38\n72 76 675\n56 97 423\n95 63 833\n70 97 759\n98 59 473\n65 89 501\n58 70 903\n59 77 18\n66 54 962\n78 61 853\n55 74 302\n83 79 457\n77 99 -44\n91 66 659\n85 59 238\n71 56 150\n54 58 56\n60 93 205\n96 68 336\n89 57 664\n96 69 382\n54 94 739\n76 83 -35\n99 83 183\n75 52 822\n85 69 767\n99 59 706\n92 74 676\n86 89 460\n74 83 75\n83 96 97\n68 77 815\n91 67 660\n56 69 398\n56 59 -77\n54 71 347\n61 98 669\n88 68 832\n67 82 200\n86 61 -70\n78 97 640\n67 52 31\n60 60 57\n87 71 140\n57 80 850\n97 89 -43\n69 99 902\n94 82 640\n57 95 158\n71 89 317\n84 55 548\n92 86 615\n60 99 498\n100 75 467\n77 74 415\n80 97 375\n70 100 431\n62 81 922\n65 84 -40\n70 96 990\n80 66 379\n78 99 40\n60 82 774\n79 93 475\n70 57 576\n96 55 624\n89 92 624\n84 61 862\n83 99 468\n55 100 335\n53 78 -69\n93 68 -58\n93 95 -65\n100 79 117\n73 82 41\n95 98 733\n85 65 300\n68 70 224\n91 77 443\n53 92 528\n80 87 521\n57 62 956\n96 65 713\n66 60 277\n82 68 884\n82 57 516\n64 83 521\n74 98 321\n58 82 959\n84 96 1\n54 90 -99\n57 87 743\n66 74 816\n88 57 244\n86 86 255\n72 73 458\n68 76 822\n69 83 792\n79 54 78\n91 53 -37\n86 72 559\n60 56 146\n68 58 655\n90 71 361\n86 85 408\n71 69 258\n100 52 717\n52 68 183\n54 57 560\n70 91 189\n69 62 534\n73 61 678\n90 87 587\n98 67 833\n75 73 973\n80 63 512\n80 81 607\n79 59 282\n78 63 463\n75 94 -55\n73 72 964\n92 54 795\n65 86 362\n56 70 356\n56 65 481\n92 97 906\n98 71 761\n80 72 562\n85 59 -2\n73 98 513\n59 63 636\n54 65 716\n94 69 732\n89 72 805\n83 61 641\n86 96 982\n52 80 610\n74 96 901\n90 92 99\n74 54 619\n84 61 664\n95 96 414\n97 81 898\n69 66 26\n91 63 763\n90 76 307\n71 99 727\n65 74 899\n94 76 471\n97 88 71\n89 97 773\n90 73 249\n54 76 -16\n96 85 -35\n62 71 30\n53 87 859\n55 77 875\n65 68 800\n86 75 113\n89 56 593\n73 67 539\n81 95 82\n89 59 836\n69 69 357\n75 56 340\n74 76 -85\n63 91 754\n86 61 645\n88 94 963\n59 52 650\n80 90 412\n86 54 337\n81 85 872\n95 52 204\n61 54 273\n53 91 -84\n67 66 438\n66 65 266\n95 70 430\n90 69 287\n61 89 -57\n66 73 190\n57 52 526\n80 86 944\n97 90 819\n56 79 370\n95 94 183\n58 70 892\n90 86 858\n67 79 683\n53 91 55\n98 94 933\n74 92 161\n53 55 579\n70 81 931\n80 97 83\n68 62 700\n62 98 968\n86 80 535\n67 74 141\n82 57 87\n83 54 521\n89 94 496\n87 80 713\n93 78 468\n75 71 715\n56 56 1\n89 63 374\n75 94 402\n57 96 384\n65 53 2\n86 53 238\n66 67 463\n68 69 596\n69 91 376\n72 96 707\n75 70 38\n95 87 875\n85 66 234\n54 52 951\n57 83 801\n91 55 110\n55 61 68\n59 54 -36\n92 69 635\n81 98 205\n98 83 942\n92 61 163\n61 56 630\n98 85 371\n64 82 170\n80 69 575\n52 72 835\n98 65 686\n84 84 163\n67 66 984\n69 55 987\n55 56 -97\n89 63 971\n77 68 373\n66 52 847\n95 55 40\n58 80 616\n79 53 870\n93 86 276\n64 90 529\n88 69 -52\n53 73 345\n58 84 28\n60 69 -64\n78 68 355\n53 55 414\n85 56 166\n59 54 33\n54 100 588\n58 79 399\n91 76 36\n66 77 470\n54 85 737\n95 80 565\n92 74 321\n64 91 64\n60 83 902\n59 99 164\n96 79 841\n70 54 834\n65 75 558\n90 87 31\n95 69 144\n55 91 894\n62 61 625\n63 70 484\n77 95 356\n93 100 717\n64 100 857\n71 80 601\n94 82 358\n61 92 204\n78 96 22\n77 56 304\n60 60 736\n95 58 848\n100 400\n1 2 -156\n2 3 -689\n3 4 -342\n4 5 -695\n5 6 -211\n6 7 -924\n7 8 -738\n8 9 -595\n9 10 -907\n10 11 -867\n11 12 -26\n12 13 -307\n13 14 -485\n14 15 -798\n15 16 -117\n16 17 -586\n17 18 -606\n18 19 -821\n19 20 -990\n20 21 -667\n21 22 -668\n22 23 -733\n23 24 -490\n24 25 -665\n25 26 -895\n26 27 -261\n27 28 -446\n28 29 -546\n29 30 -770\n30 31 -337\n31 32 -168\n32 33 -585\n33 34 -285\n34 35 -532\n35 36 -541\n36 37 -299\n37 38 -403\n38 39 -871\n39 40 -41\n40 41 -974\n41 42 -292\n42 43 -138\n43 44 -932\n44 45 -581\n45 46 -489\n46 47 -730\n47 48 -684\n48 49 -323\n49 50 -168\n50 51 -815\n86 56 -70\n95 72 87\n58 82 407\n89 63 198\n58 66 773\n88 64 264\n84 90 878\n84 76 978\n57 66 203\n66 79 233\n80 56 613\n74 100 802\n84 64 860\n96 73 889\n98 65 618\n72 92 78\n79 65 402\n90 95 380\n99 91 962\n73 82 318\n92 99 707\n69 67 243\n52 95 849\n54 61 850\n93 60 755\n55 99 385\n54 55 978\n80 60 433\n53 98 294\n90 66 589\n98 64 750\n87 55 840\n91 88 431\n54 56 666\n87 64 625\n65 84 378\n71 86 823\n71 90 392\n79 75 865\n95 76 908\n72 55 3\n69 78 539\n54 73 499\n95 77 379\n94 71 733\n78 64 84\n100 91 931\n55 68 150\n56 56 740\n60 66 701\n87 99 499\n73 61 953\n76 99 800\n67 79 -10\n87 68 281\n65 75 589\n70 88 92\n95 77 861\n88 75 565\n87 83 -17\n75 72 640\n98 71 -66\n96 93 459\n70 88 843\n71 64 1\n61 100 368\n92 59 440\n100 93 1000\n86 100 -29\n72 78 49\n65 55 83\n69 69 -16\n71 72 899\n98 78 -46\n69 58 428\n86 84 313\n54 58 469\n84 77 387\n76 96 56\n82 71 10\n87 87 -87\n82 83 920\n100 58 392\n67 60 49\n84 83 110\n88 74 416\n86 82 702\n56 59 327\n100 99 341\n92 67 41\n83 97 540\n71 52 582\n67 53 733\n75 89 665\n96 72 470\n73 70 634\n86 97 771\n73 86 619\n90 58 2\n73 64 719\n79 83 300\n89 93 746\n78 86 701\n86 79 -9\n60 91 763\n87 98 817\n66 72 -70\n67 84 816\n85 72 539\n92 89 257\n87 75 678\n97 99 921\n63 69 -48\n97 70 62\n56 55 229\n77 56 589\n88 86 369\n75 64 213\n76 93 14\n83 88 968\n77 99 358\n78 58 473\n77 93 -86\n87 53 896\n57 84 699\n69 62 539\n62 68 194\n68 69 772\n73 85 644\n61 61 339\n77 61 353\n81 84 669\n68 87 349\n76 60 144\n58 85 649\n79 88 261\n71 100 797\n52 60 635\n91 66 72\n60 70 48\n83 54 695\n87 56 75\n92 84 -37\n67 83 491\n59 79 862\n73 99 923\n72 52 430\n95 83 128\n84 58 842\n56 85 843\n72 59 346\n100 84 22\n68 72 904\n77 95 238\n97 68 964\n59 98 806\n96 73 886\n66 55 75\n71 88 763\n96 76 300\n73 78 -45\n100 57 216\n76 99 551\n81 85 44\n85 93 739\n58 82 -10\n84 92 990\n78 76 872\n58 64 66\n94 77 612\n73 95 242\n87 100 620\n96 82 60\n84 85 618\n80 64 172\n61 54 83\n73 64 308\n67 78 712\n95 90 -45\n53 59 294\n77 84 868\n75 58 886\n94 61 886\n99 73 95\n60 70 438\n74 73 891\n97 82 764\n93 53 138\n85 72 208\n61 73 171\n89 71 759\n52 76 378\n64 57 224\n70 80 141\n69 82 939\n100 58 601\n96 92 254\n96 76 101\n72 68 415\n82 76 726\n100 95 603\n90 66 157\n87 97 604\n74 66 174\n71 100 128\n91 87 131\n97 83 638\n65 61 973\n57 73 856\n91 96 492\n96 71 253\n76 97 837\n58 80 235\n59 99 540\n58 52 257\n96 93 835\n67 100 825\n73 90 486\n72 56 78\n86 76 -56\n64 95 919\n72 93 416\n64 75 934\n83 62 78\n52 89 574\n97 53 738\n88 67 642\n77 94 43\n59 56 392\n59 99 640\n56 77 377\n95 78 68\n65 72 277\n71 81 191\n92 78 291\n66 72 925\n59 63 -71\n97 84 25\n68 68 344\n62 64 201\n78 81 507\n54 87 412\n76 66 -41\n70 99 334\n98 88 637\n57 91 389\n93 86 218\n68 88 481\n90 75 820\n90 90 253\n79 76 889\n58 93 712\n56 53 670\n100 86 26\n54 57 956\n93 90 976\n70 88 224\n73 58 988\n100 98 235\n68 76 811\n66 68 524\n52 94 319\n99 86 -59\n97 60 836\n71 67 213\n52 87 502\n59 88 927\n92 92 419\n54 78 478\n70 89 783\n53 79 519\n55 81 944\n100 77 124\n84 95 292\n74 82 91\n71 75 961\n92 63 741\n96 53 968\n100 69 797\n68 91 -8\n83 63 855\n54 65 464\n58 97 -29\n78 97 764\n82 63 647\n72 81 972\n93 65 606\n61 60 439\n57 94 625\n53 61 71\n91 64 571\n61 88 224\n99 54 543\n100 68 859\n71 79 876\n86 82 -76\n80 97 412\n63 82 301\n72 53 537\n52 100 317\n75 81 629\n82 92 12\n98 87 553\n95 79 724\n86 71 673\n56 62 488\n84 59 206\n95 67 677\n59 94 820\n72 68 203\n68 71 108\n83 60 829\n64 84 602\n99 85 -88\n97 95 539\n93 57 -99\n92 86 881\n75 87 851\n95 74 240\n60 88 796\n67 82 128\n56 66 354\n59 93 464\n64 61 585\n63 54 693\n88 76 964\n75 91 687\n98 98 431\n80 62 597\n86 88 248\n94 89 608\n79 79 296\n80 68 951\n80 92 117\n75 97 963\n91 90 460\n70 54 125\n62 92 382\n60 58 296\n78 79 553\n68 73 117\n57 76 672\n75 98 923\n62 59 -87\n62 66 78\n91 100 511\n71 70 262\n58 67 70\n86 68 934\n94 82 -52\n100 400\n1 2 -608\n2 3 -420\n3 4 -732\n4 5 -699\n5 6 -258\n6 7 -635\n7 8 -209\n8 9 -727\n9 10 -237\n10 11 -831\n11 12 -518\n12 13 -261\n13 14 -761\n14 15 -992\n15 16 -136\n16 17 -157\n17 18 -22\n18 19 -198\n19 20 -622\n20 21 -915\n21 22 -524\n22 23 -930\n23 24 -114\n24 25 -945\n25 26 -283\n26 27 -131\n27 28 -821\n28 29 -530\n29 30 -567\n30 31 -771\n31 32 -378\n32 33 -681\n33 34 -268\n34 35 -257\n35 36 -706\n36 37 -261\n37 38 -164\n38 39 -229\n39 40 -56\n40 41 -699\n41 42 -144\n42 43 -255\n43 44 -607\n44 45 -494\n45 46 -683\n46 47 -933\n47 48 -783\n48 49 -10\n49 50 -513\n50 51 -189\n64 58 899\n91 75 117\n89 97 719\n60 70 380\n73 81 5\n54 80 565\n81 73 615\n84 79 459\n79 59 668\n78 82 27\n74 61 905\n54 94 447\n94 91 744\n67 56 535\n75 80 589\n80 88 90\n52 93 224\n86 62 -79\n88 89 483\n78 77 16\n59 94 212\n93 61 195\n71 53 524\n60 61 865\n60 67 976\n76 97 244\n98 95 758\n59 56 193\n80 95 460\n72 66 398\n62 69 388\n76 73 93\n88 96 371\n55 94 421\n57 68 237\n64 66 451\n75 82 406\n76 81 863\n84 71 584\n76 54 183\n72 64 841\n83 84 731\n83 71 223\n87 92 577\n86 97 658\n62 57 668\n94 72 861\n55 87 16\n67 63 547\n53 71 786\n97 62 64\n76 53 83\n100 62 3\n94 75 74\n88 85 471\n85 62 685\n59 62 -15\n73 79 701\n98 85 870\n64 63 727\n70 82 764\n53 100 536\n74 64 325\n83 75 45\n100 87 771\n69 95 345\n73 93 786\n77 78 569\n75 53 158\n96 91 941\n82 59 -54\n85 90 688\n98 67 183\n85 98 -73\n72 56 474\n56 71 647\n83 81 676\n74 53 -46\n89 89 365\n78 99 898\n54 91 785\n72 97 436\n74 56 -36\n82 95 274\n88 96 870\n58 85 703\n70 66 744\n56 78 752\n66 98 672\n70 54 339\n91 79 815\n82 96 336\n54 65 406\n67 83 974\n72 97 485\n67 100 659\n88 75 808\n96 92 587\n91 80 807\n97 56 502\n68 98 790\n70 98 970\n75 54 983\n87 93 488\n89 52 528\n92 67 591\n54 74 798\n84 86 849\n61 56 202\n94 72 662\n77 70 787\n57 100 525\n97 76 254\n87 53 929\n72 77 948\n64 75 849\n81 76 769\n54 73 933\n73 77 86\n72 90 259\n88 98 224\n61 76 69\n99 76 274\n96 88 99\n81 77 -88\n80 92 578\n53 96 575\n75 95 950\n95 94 543\n62 75 55\n58 83 -72\n96 99 -47\n89 99 -72\n88 73 207\n84 87 320\n54 63 955\n62 91 803\n59 92 -31\n76 77 128\n88 78 617\n52 73 161\n96 55 168\n76 80 356\n71 86 225\n67 100 635\n70 94 75\n54 72 393\n75 68 107\n86 82 384\n91 93 581\n82 87 462\n91 77 975\n100 88 665\n81 64 -50\n88 94 722\n69 88 353\n56 55 366\n64 90 786\n100 100 390\n83 94 733\n63 64 687\n64 67 756\n82 72 48\n61 100 755\n67 96 65\n71 84 781\n70 77 716\n82 60 222\n92 73 721\n58 67 581\n62 73 159\n83 92 234\n60 84 931\n88 53 197\n64 99 -5\n78 92 765\n69 73 385\n98 73 552\n67 93 389\n72 59 475\n62 62 80\n71 92 226\n80 98 572\n89 89 624\n85 68 -49\n92 81 749\n85 71 707\n64 94 439\n100 88 340\n65 54 3\n61 72 476\n75 52 406\n94 85 722\n63 75 -62\n73 77 933\n92 85 463\n95 88 110\n99 94 924\n82 73 -95\n92 67 88\n82 80 73\n83 63 837\n59 87 361\n99 61 844\n90 69 915\n52 97 910\n93 100 976\n85 74 426\n77 99 887\n64 65 440\n64 91 951\n93 60 -82\n95 54 447\n69 72 -78\n71 96 -5\n62 61 422\n100 56 44\n67 90 630\n86 74 638\n65 95 52\n81 62 856\n79 68 425\n95 65 729\n66 90 439\n93 89 717\n53 94 461\n60 89 882\n57 63 336\n58 76 695\n91 85 -93\n88 82 361\n93 57 320\n64 76 166\n87 97 199\n99 68 721\n95 88 519\n77 60 581\n71 83 768\n66 73 632\n68 74 347\n81 70 176\n63 56 962\n91 65 -57\n64 59 -89\n61 81 525\n57 55 761\n82 71 94\n70 76 291\n54 63 955\n87 58 304\n93 70 786\n100 67 31\n90 68 498\n70 92 774\n54 76 451\n82 52 -15\n93 53 140\n66 65 226\n86 69 895\n68 86 101\n76 72 431\n56 57 370\n59 97 605\n79 57 983\n98 96 112\n55 98 426\n52 93 174\n84 59 588\n68 75 730\n89 89 694\n75 53 575\n90 58 308\n90 86 674\n62 98 145\n57 81 48\n79 63 991\n58 86 681\n80 61 751\n99 100 789\n100 97 279\n87 89 13\n58 97 581\n85 61 544\n79 77 993\n87 98 370\n58 99 594\n67 92 8\n69 52 356\n86 73 806\n70 76 712\n77 80 274\n63 77 471\n81 75 947\n100 81 708\n73 80 142\n86 60 78\n72 92 517\n97 76 748\n89 52 596\n56 68 440\n79 66 -9\n74 78 360\n80 99 611\n62 61 915\n55 56 60\n95 85 691\n74 69 831\n93 96 559\n69 95 220\n55 84 869\n99 82 970\n91 56 191\n66 89 2\n76 86 699\n77 98 569\n62 75 372\n89 56 966\n63 87 949\n59 94 905\n83 87 356\n56 62 -100\n58 85 47\n86 97 714\n83 58 30\n74 97 578\n53 74 998\n98 92 664\n65 72 671\n78 52 -63\n83 54 41\n63 92 831\n56 98 135\n55 82 406\n91 60 621\n97 99 824\n66 61 219\n60 63 894\n84 100 -59\n98 74 809\n58 65 823\n55 69 447\n81 77 759\n96 81 679\n83 53 251\n77 96 446\n96 73 401\n99 77 835\n93 99 631\n89 77 717\n58 53 1\n100 400\n1 2 -758\n2 3 -878\n3 4 -394\n4 5 -65\n5 6 -717\n6 7 -947\n7 8 -343\n8 9 -336\n9 10 -653\n10 11 -227\n11 12 -662\n12 13 -427\n13 14 -907\n14 15 -174\n15 16 -207\n16 17 -39\n17 18 -187\n18 19 -936\n19 20 -577\n20 21 -17\n21 22 -646\n22 23 -991\n23 24 -82\n24 25 -465\n25 26 -688\n26 27 -303\n27 28 -208\n28 29 -353\n29 30 -866\n30 31 -535\n31 32 -85\n32 33 -41\n33 34 -614\n34 35 -101\n35 36 -913\n36 37 -825\n37 38 -821\n38 39 -420\n39 40 -856\n40 41 -997\n41 42 -712\n42 43 -21\n43 44 -669\n44 45 -853\n45 46 -797\n46 47 -317\n47 48 -41\n48 49 -878\n49 50 -950\n50 51 -513\n94 81 398\n55 79 690\n67 75 114\n73 52 23\n65 91 220\n56 77 757\n72 89 967\n86 75 270\n88 58 702\n83 95 452\n73 80 388\n55 65 443\n87 63 747\n88 73 472\n97 57 649\n99 68 -40\n60 57 224\n57 70 174\n77 100 23\n100 72 535\n97 82 542\n80 92 795\n84 62 -58\n53 81 849\n71 98 426\n65 62 974\n79 93 521\n55 60 834\n91 97 375\n84 95 300\n87 95 554\n60 89 831\n92 77 520\n84 59 888\n82 95 485\n82 80 866\n93 87 362\n60 78 -50\n67 59 509\n70 87 300\n91 73 71\n64 93 119\n76 57 273\n58 56 163\n54 73 602\n69 82 -39\n82 86 978\n100 72 311\n88 63 865\n79 75 376\n76 52 436\n58 52 907\n63 91 444\n78 96 219\n88 71 343\n84 81 718\n63 52 725\n75 60 271\n86 84 845\n90 62 185\n58 63 367\n99 67 608\n98 86 -61\n65 73 -82\n87 100 267\n63 54 7\n56 86 979\n73 74 799\n79 56 45\n70 62 781\n99 75 113\n68 93 828\n66 96 -53\n83 61 663\n71 82 748\n72 95 809\n65 92 595\n80 66 763\n69 68 376\n71 77 459\n85 88 597\n78 78 -82\n96 67 118\n99 52 129\n68 97 403\n73 57 383\n75 88 51\n67 54 876\n80 52 -8\n83 90 170\n57 86 423\n81 74 483\n67 96 -12\n89 76 894\n58 79 740\n66 81 122\n61 55 83\n69 92 -26\n96 71 784\n87 90 572\n71 68 394\n98 95 948\n54 91 922\n61 88 276\n70 83 215\n94 84 620\n77 94 209\n92 95 801\n54 62 526\n82 92 116\n74 80 -76\n60 83 401\n58 74 893\n68 56 733\n97 98 -29\n83 57 551\n85 53 684\n88 97 443\n72 80 583\n89 97 44\n92 68 964\n87 80 68\n82 52 824\n68 87 820\n57 100 659\n56 97 739\n61 65 608\n86 58 62\n62 63 655\n57 95 134\n93 76 967\n61 57 570\n96 100 60\n68 61 -9\n89 86 414\n72 88 -40\n77 76 630\n89 72 461\n70 56 498\n75 83 402\n52 59 708\n62 76 869\n63 69 895\n86 79 128\n70 79 827\n58 85 672\n82 68 124\n58 87 214\n66 54 607\n86 91 420\n52 84 357\n74 65 179\n89 78 -5\n74 60 -75\n94 76 -53\n93 53 714\n58 77 704\n93 64 425\n71 67 68\n75 61 639\n83 84 -16\n71 85 290\n89 78 109\n53 85 853\n67 61 715\n86 73 682\n78 94 582\n55 91 252\n79 60 -42\n63 60 449\n73 66 492\n86 81 105\n90 73 842\n84 82 450\n52 82 922\n81 90 473\n94 83 39\n54 63 9\n55 99 971\n68 71 122\n60 75 217\n82 91 555\n63 88 935\n55 60 987\n72 69 614\n73 88 734\n57 79 557\n65 97 966\n91 56 747\n81 59 69\n68 80 959\n70 71 313\n84 61 -47\n57 57 673\n74 92 387\n69 97 881\n89 83 44\n78 65 362\n64 63 907\n68 75 -13\n89 57 944\n95 93 762\n94 76 818\n89 59 415\n61 98 836\n80 86 142\n63 70 173\n100 52 254\n70 56 -91\n73 94 12\n59 56 736\n91 76 637\n99 79 700\n54 83 920\n97 59 -64\n96 59 407\n60 65 980\n81 89 559\n82 64 567\n61 67 826\n81 61 981\n64 57 474\n77 52 105\n73 78 312\n87 75 544\n97 78 766\n93 73 -49\n63 64 -9\n95 60 367\n54 85 763\n80 64 -8\n60 55 20\n57 54 461\n72 73 60\n87 93 727\n58 91 443\n64 75 825\n83 59 232\n94 82 918\n100 91 190\n66 82 261\n88 62 385\n77 54 824\n99 97 724\n73 57 80\n82 63 421\n69 97 973\n77 70 231\n64 81 430\n94 52 834\n57 100 459\n62 94 68\n55 97 349\n65 76 227\n70 59 -32\n84 94 905\n54 82 774\n59 71 21\n90 71 622\n62 98 531\n90 79 941\n91 98 504\n92 53 561\n65 87 414\n87 83 429\n74 80 993\n68 81 262\n87 54 476\n95 76 383\n93 83 59\n75 83 950\n53 62 -65\n67 85 562\n77 75 553\n62 80 966\n76 86 680\n53 56 22\n88 52 657\n99 72 233\n71 82 819\n57 60 555\n99 65 334\n75 70 784\n100 87 125\n74 81 -67\n56 85 275\n72 72 341\n95 78 102\n63 62 776\n57 87 527\n86 66 738\n70 77 529\n99 83 460\n85 90 472\n79 62 449\n65 71 102\n67 100 769\n64 84 104\n81 83 419\n65 57 890\n88 76 39\n84 73 137\n69 82 314\n74 68 457\n70 87 823\n86 91 312\n61 64 200\n68 93 81\n67 62 899\n80 53 87\n72 56 827\n55 98 388\n76 99 -63\n54 70 419\n81 71 581\n57 63 853\n85 71 672\n99 80 -88\n82 70 509\n85 71 688\n73 89 870\n81 99 156\n62 94 618\n89 55 652\n66 63 277\n85 63 301\n71 52 81\n57 66 247\n67 57 228\n88 88 363\n68 62 68\n93 85 332\n65 68 974\n70 80 200\n59 70 245\n62 84 27\n96 83 542\n79 88 -24\n94 53 745\n73 78 379\n88 57 636\n54 83 822\n85 76 110\n71 74 413\n97 60 598\n69 99 81\n84 67 328\n97 58 82\n66 65 400\n53 70 954\n100 400\n1 2 -883\n2 3 -823\n3 4 -986\n4 5 -174\n5 6 -753\n6 7 -265\n7 8 -120\n8 9 -993\n9 10 -93\n10 11 -943\n11 12 -911\n12 13 -563\n13 14 -292\n14 15 -330\n15 16 -312\n16 17 -838\n17 18 -389\n18 19 -539\n19 20 -664\n20 21 -967\n21 22 -257\n22 23 -886\n23 24 -313\n24 25 -789\n25 26 -630\n26 27 -383\n27 28 -938\n28 29 -84\n29 30 -542\n30 31 -937\n31 32 -965\n32 33 -497\n33 34 -934\n34 35 -122\n35 36 -61\n36 37 -701\n37 38 -580\n38 39 -910\n39 40 -246\n40 41 -158\n41 42 -989\n42 43 -852\n43 44 -27\n44 45 -861\n45 46 -411\n46 47 -934\n47 48 -183\n48 49 -681\n49 50 -538\n50 51 -401\n56 61 523\n96 87 282\n57 69 711\n74 52 899\n90 68 610\n60 54 441\n53 71 -94\n55 68 987\n62 76 386\n65 99 380\n70 92 -46\n66 80 913\n100 85 192\n68 53 851\n76 65 277\n78 68 655\n68 91 14\n73 94 -43\n60 65 870\n57 65 357\n52 56 3\n90 71 945\n56 97 888\n67 100 106\n76 76 812\n61 67 919\n98 78 203\n58 92 915\n72 93 186\n90 57 666\n60 68 21\n60 65 462\n92 52 108\n84 88 483\n52 54 842\n71 82 644\n71 57 909\n69 56 29\n70 73 150\n91 65 583\n68 81 807\n97 72 554\n68 64 713\n93 54 602\n100 95 958\n97 89 183\n90 70 744\n92 65 536\n96 78 544\n82 62 774\n56 76 244\n57 85 838\n76 67 550\n86 95 198\n67 57 739\n79 80 862\n59 99 193\n89 90 242\n61 64 186\n83 79 644\n84 58 774\n78 91 939\n89 96 857\n97 97 973\n56 57 -90\n99 87 897\n53 86 271\n83 68 960\n59 61 87\n81 60 872\n87 82 -94\n77 66 340\n79 95 852\n93 94 376\n96 97 323\n77 67 -68\n87 68 285\n55 52 589\n91 60 350\n99 100 214\n67 68 768\n93 85 741\n59 54 951\n85 65 855\n59 52 819\n62 82 712\n72 92 296\n93 96 849\n76 80 362\n86 93 734\n93 92 359\n83 64 427\n78 89 846\n59 84 -74\n60 95 -75\n80 95 684\n87 71 232\n53 58 219\n58 59 733\n52 76 742\n64 56 37\n76 88 888\n71 85 162\n71 81 73\n62 74 109\n92 82 801\n78 67 915\n100 90 461\n69 70 205\n57 62 694\n67 86 989\n95 80 406\n57 80 342\n96 55 186\n92 82 976\n76 76 818\n71 76 -13\n74 100 554\n87 62 921\n96 100 553\n81 73 546\n78 85 336\n86 95 454\n99 70 921\n93 85 953\n63 74 507\n72 61 906\n65 70 -37\n60 95 855\n52 57 603\n100 84 70\n56 56 2\n83 71 905\n55 54 108\n72 92 852\n85 91 238\n53 79 362\n75 73 604\n62 86 939\n90 69 221\n64 89 454\n97 74 237\n86 52 809\n55 91 453\n65 68 140\n61 75 173\n74 70 700\n73 80 708\n91 64 319\n78 81 631\n81 58 136\n92 98 484\n89 75 323\n84 80 951\n98 53 999\n80 83 955\n80 67 567\n93 83 81\n58 83 885\n75 65 65\n78 100 649\n96 86 545\n92 99 718\n66 88 121\n95 86 852\n96 72 967\n96 82 902\n75 68 416\n56 71 620\n54 63 115\n82 65 -52\n99 86 665\n55 82 507\n100 74 866\n72 62 107\n56 93 915\n52 68 303\n94 52 951\n76 91 944\n95 93 -44\n65 80 367\n54 69 850\n86 85 137\n54 72 252\n86 98 997\n56 56 509\n98 56 -75\n100 60 188\n97 93 -90\n84 75 458\n63 97 43\n67 79 237\n94 72 594\n78 96 421\n100 64 81\n73 73 953\n55 72 656\n98 54 450\n92 92 801\n90 68 -60\n81 89 -20\n65 87 73\n59 92 474\n79 82 443\n58 78 1000\n73 57 207\n78 91 426\n70 70 664\n82 60 40\n69 92 22\n59 58 309\n68 71 487\n52 98 700\n53 52 713\n60 91 940\n87 62 288\n69 69 123\n57 59 865\n63 96 162\n54 62 898\n76 84 536\n76 62 660\n75 93 960\n62 68 535\n65 76 131\n91 98 27\n74 96 310\n79 78 916\n69 55 866\n59 77 548\n53 99 724\n91 77 -51\n71 63 480\n92 74 630\n73 71 409\n89 53 949\n55 92 798\n76 53 439\n57 60 280\n69 73 312\n64 54 -9\n55 88 435\n100 60 443\n100 60 968\n53 66 457\n86 62 135\n66 77 848\n99 72 314\n88 66 970\n57 96 137\n70 92 633\n96 70 723\n59 60 639\n87 68 473\n86 68 415\n59 68 177\n76 72 681\n81 58 181\n61 53 322\n67 88 672\n100 95 156\n85 52 474\n52 76 214\n94 81 511\n91 73 44\n54 64 13\n88 94 53\n100 55 21\n71 72 893\n57 92 677\n54 67 53\n100 90 970\n72 61 417\n75 86 172\n89 99 651\n73 98 837\n100 57 547\n83 94 912\n98 93 463\n92 54 359\n96 66 877\n97 93 9\n96 77 114\n79 84 6\n57 70 375\n71 61 -82\n74 53 241\n96 73 292\n55 57 -23\n79 53 452\n52 60 99\n71 54 534\n84 58 495\n93 97 129\n95 64 522\n67 80 807\n75 94 189\n80 71 435\n63 74 24\n79 77 798\n63 74 818\n88 80 319\n98 76 513\n90 54 513\n95 97 978\n98 93 636\n63 52 906\n100 94 698\n57 77 206\n83 86 22\n77 63 298\n53 99 178\n78 94 646\n65 83 600\n75 85 10\n65 82 415\n52 77 579\n91 88 297\n76 84 982\n69 95 563\n62 53 598\n99 57 657\n63 97 297\n53 97 745\n79 65 29\n74 66 566\n74 95 413\n56 52 531\n57 53 435\n74 73 459\n88 94 -55\n54 71 980\n87 55 172\n81 78 91\n54 85 774\n96 75 302\n55 89 712\n65 88 882\n89 93 104\n92 56 492\n58 76 508\n71 54 527\n67 77 346\n83 66 611\n79 67 62\n100 95 55\n61 68 -37\n85 89 791\n60 59 582\n90 80 584\n",
"output": "Yes\nNo\nNo\nNo\nNo\nNo\nYes\nNo\nYes\nNo",
"type": "stdin_stdout"
}
]
} |
|
taco | verifiable_code | https://codeforces.com/problemset/problem/1213/D1 | Solve the following coding problem using the programming language python:
The only difference between easy and hard versions is the number of elements in the array.
You are given an array $a$ consisting of $n$ integers. In one move you can choose any $a_i$ and divide it by $2$ rounding down (in other words, in one move you can set $a_i := \lfloor\frac{a_i}{2}\rfloor$).
You can perform such an operation any (possibly, zero) number of times with any $a_i$.
Your task is to calculate the minimum possible number of operations required to obtain at least $k$ equal numbers in the array.
Don't forget that it is possible to have $a_i = 0$ after some operations, thus the answer always exists.
-----Input-----
The first line of the input contains two integers $n$ and $k$ ($1 \le k \le n \le 50$) — the number of elements in the array and the number of equal numbers required.
The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 2 \cdot 10^5$), where $a_i$ is the $i$-th element of $a$.
-----Output-----
Print one integer — the minimum possible number of operations required to obtain at least $k$ equal numbers in the array.
-----Examples-----
Input
5 3
1 2 2 4 5
Output
1
Input
5 3
1 2 3 4 5
Output
2
Input
5 3
1 2 3 3 3
Output
0
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
l = input().split()
n = int(l[0])
k = int(l[1])
hashi = dict()
l = input().split()
li = [int(i) for i in l]
z = 0
for i in li:
z = i
count = 0
while z > 0:
if z not in hashi:
hashi[z] = [count]
else:
hashi[z].append(count)
z = z // 2
count += 1
if 0 not in hashi:
hashi[0] = [count]
else:
hashi[0].append(count)
maxa = 10 ** 18
for i in hashi:
if len(hashi[i]) < k:
continue
arr = [0 for i in range(30)]
for j in hashi[i]:
arr[j] += 1
ans = 0
z = k
for i in range(30):
if z <= arr[i]:
ans = ans + z * i
break
ans = ans + arr[i] * i
z -= arr[i]
maxa = min(maxa, ans)
print(maxa)
``` | vfc_140309 | {
"difficulty": "medium",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": "https://codeforces.com/problemset/problem/1213/D1",
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "5 3\n1 2 2 4 5\n",
"output": "1\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "5 3\n1 2 3 4 5\n",
"output": "2\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "5 3\n1 2 3 3 3\n",
"output": "0\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "1 1\n1337\n",
"output": "0\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "50 2\n72548 51391 1788 171949 148789 151619 19225 8774 52484 74830 20086 51129 151145 87650 108005 112019 126739 124087 158096 59027 34500 87415 115058 194160 171792 136832 1114 112592 171746 199013 101484 182930 185656 154861 191455 165701 140450 3475 160191 122350 66759 93252 60972 124615 119327 108068 149786 8698 63546 187913\n",
"output": "12\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "50 2\n3 6 10 1 14 5 26 11 6 1 23 43 7 23 20 11 15 11 2 1 8 37 2 19 31 18 2 4 15 84 9 29 38 46 9 21 2 2 13 114 28 9 6 20 14 46 4 20 39 99\n",
"output": "0\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://codeforces.com/problemset/problem/264/B | Solve the following coding problem using the programming language python:
Squirrel Liss is interested in sequences. She also has preferences of integers. She thinks n integers a_1, a_2, ..., a_{n} are good.
Now she is interested in good sequences. A sequence x_1, x_2, ..., x_{k} is called good if it satisfies the following three conditions: The sequence is strictly increasing, i.e. x_{i} < x_{i} + 1 for each i (1 ≤ i ≤ k - 1). No two adjacent elements are coprime, i.e. gcd(x_{i}, x_{i} + 1) > 1 for each i (1 ≤ i ≤ k - 1) (where gcd(p, q) denotes the greatest common divisor of the integers p and q). All elements of the sequence are good integers.
Find the length of the longest good sequence.
-----Input-----
The input consists of two lines. The first line contains a single integer n (1 ≤ n ≤ 10^5) — the number of good integers. The second line contains a single-space separated list of good integers a_1, a_2, ..., a_{n} in strictly increasing order (1 ≤ a_{i} ≤ 10^5; a_{i} < a_{i} + 1).
-----Output-----
Print a single integer — the length of the longest good sequence.
-----Examples-----
Input
5
2 3 4 6 9
Output
4
Input
9
1 2 3 5 6 7 8 9 10
Output
4
-----Note-----
In the first example, the following sequences are examples of good sequences: [2; 4; 6; 9], [2; 4; 6], [3; 9], [6]. The length of the longest good sequence is 4.
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
def main():
input()
d = {}
for a in map(int, input().split()):
(z, l) = (0, [])
for p in (2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313):
if not a % p:
l.append(p)
x = d.get(p, 0)
if z < x:
z = x
a //= p
while not a % p:
a //= p
if a == 1:
break
else:
l.append(a)
x = d.get(a, 0)
if z < x:
z = x
d.update(dict.fromkeys(l, z + 1))
print(max(d.values()))
main()
``` | vfc_140314 | {
"difficulty": "medium",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": "https://codeforces.com/problemset/problem/264/B",
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "5\n2 3 4 6 9\n",
"output": "4\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "9\n1 2 3 5 6 7 8 9 10\n",
"output": "4\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "4\n1 2 4 6\n",
"output": "3\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "7\n1 2 3 4 7 9 10\n",
"output": "3\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "1\n1\n",
"output": "1\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "8\n3 4 5 6 7 8 9 10\n",
"output": "4\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://codeforces.com/problemset/problem/1398/A | Solve the following coding problem using the programming language python:
You are given an array $a_1, a_2, \dots , a_n$, which is sorted in non-decreasing order ($a_i \le a_{i + 1})$.
Find three indices $i$, $j$, $k$ such that $1 \le i < j < k \le n$ and it is impossible to construct a non-degenerate triangle (a triangle with nonzero area) having sides equal to $a_i$, $a_j$ and $a_k$ (for example it is possible to construct a non-degenerate triangle with sides $3$, $4$ and $5$ but impossible with sides $3$, $4$ and $7$). If it is impossible to find such triple, report it.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 1000$) — the number of test cases.
The first line of each test case contains one integer $n$ ($3 \le n \le 5 \cdot 10^4$) — the length of the array $a$.
The second line of each test case contains $n$ integers $a_1, a_2, \dots , a_n$ ($1 \le a_i \le 10^9$; $a_{i - 1} \le a_i$) — the array $a$.
It is guaranteed that the sum of $n$ over all test cases does not exceed $10^5$.
-----Output-----
For each test case print the answer to it in one line.
If there is a triple of indices $i$, $j$, $k$ ($i < j < k$) such that it is impossible to construct a non-degenerate triangle having sides equal to $a_i$, $a_j$ and $a_k$, print that three indices in ascending order. If there are multiple answers, print any of them.
Otherwise, print -1.
-----Example-----
Input
3
7
4 6 11 11 15 18 20
4
10 10 10 11
3
1 1 1000000000
Output
2 3 6
-1
1 2 3
-----Note-----
In the first test case it is impossible with sides $6$, $11$ and $18$. Note, that this is not the only correct answer.
In the second test case you always can construct a non-degenerate triangle.
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
for t in range(int(input())):
n = int(input())
a = list(map(int, input().split()))
if a[0] + a[1] > a[-1]:
print(-1)
else:
print(1, 2, n)
``` | vfc_140319 | {
"difficulty": "easy",
"memory_limit": "256 megabytes",
"memory_limit_bytes": null,
"problem_url": "https://codeforces.com/problemset/problem/1398/A",
"time_limit": "1 second"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "3\n7\n4 6 11 11 15 18 20\n4\n10 10 10 11\n3\n1 1 1000000000\n",
"output": "1 2 7\n-1\n1 2 3\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "1\n3\n78788 78788 100000\n",
"output": "-1\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://codeforces.com/problemset/problem/1227/D2 | Solve the following coding problem using the programming language python:
This is the harder version of the problem. In this version, $1 \le n, m \le 2\cdot10^5$. You can hack this problem if you locked it. But you can hack the previous problem only if you locked both problems.
You are given a sequence of integers $a=[a_1,a_2,\dots,a_n]$ of length $n$. Its subsequence is obtained by removing zero or more elements from the sequence $a$ (they do not necessarily go consecutively). For example, for the sequence $a=[11,20,11,33,11,20,11]$: $[11,20,11,33,11,20,11]$, $[11,20,11,33,11,20]$, $[11,11,11,11]$, $[20]$, $[33,20]$ are subsequences (these are just some of the long list); $[40]$, $[33,33]$, $[33,20,20]$, $[20,20,11,11]$ are not subsequences.
Suppose that an additional non-negative integer $k$ ($1 \le k \le n$) is given, then the subsequence is called optimal if: it has a length of $k$ and the sum of its elements is the maximum possible among all subsequences of length $k$; and among all subsequences of length $k$ that satisfy the previous item, it is lexicographically minimal.
Recall that the sequence $b=[b_1, b_2, \dots, b_k]$ is lexicographically smaller than the sequence $c=[c_1, c_2, \dots, c_k]$ if the first element (from the left) in which they differ less in the sequence $b$ than in $c$. Formally: there exists $t$ ($1 \le t \le k$) such that $b_1=c_1$, $b_2=c_2$, ..., $b_{t-1}=c_{t-1}$ and at the same time $b_t<c_t$. For example: $[10, 20, 20]$ lexicographically less than $[10, 21, 1]$, $[7, 99, 99]$ is lexicographically less than $[10, 21, 1]$, $[10, 21, 0]$ is lexicographically less than $[10, 21, 1]$.
You are given a sequence of $a=[a_1,a_2,\dots,a_n]$ and $m$ requests, each consisting of two numbers $k_j$ and $pos_j$ ($1 \le k \le n$, $1 \le pos_j \le k_j$). For each query, print the value that is in the index $pos_j$ of the optimal subsequence of the given sequence $a$ for $k=k_j$.
For example, if $n=4$, $a=[10,20,30,20]$, $k_j=2$, then the optimal subsequence is $[20,30]$ — it is the minimum lexicographically among all subsequences of length $2$ with the maximum total sum of items. Thus, the answer to the request $k_j=2$, $pos_j=1$ is the number $20$, and the answer to the request $k_j=2$, $pos_j=2$ is the number $30$.
-----Input-----
The first line contains an integer $n$ ($1 \le n \le 2\cdot10^5$) — the length of the sequence $a$.
The second line contains elements of the sequence $a$: integer numbers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$).
The third line contains an integer $m$ ($1 \le m \le 2\cdot10^5$) — the number of requests.
The following $m$ lines contain pairs of integers $k_j$ and $pos_j$ ($1 \le k \le n$, $1 \le pos_j \le k_j$) — the requests.
-----Output-----
Print $m$ integers $r_1, r_2, \dots, r_m$ ($1 \le r_j \le 10^9$) one per line: answers to the requests in the order they appear in the input. The value of $r_j$ should be equal to the value contained in the position $pos_j$ of the optimal subsequence for $k=k_j$.
-----Examples-----
Input
3
10 20 10
6
1 1
2 1
2 2
3 1
3 2
3 3
Output
20
10
20
10
20
10
Input
7
1 2 1 3 1 2 1
9
2 1
2 2
3 1
3 2
3 3
1 1
7 1
7 7
7 4
Output
2
3
2
3
2
3
1
1
3
-----Note-----
In the first example, for $a=[10,20,10]$ the optimal subsequences are: for $k=1$: $[20]$, for $k=2$: $[10,20]$, for $k=3$: $[10,20,10]$.
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
WIDTH = 10
def index_tree(n):
levels = [[1] * n]
size = WIDTH
while size < n:
(m, r) = (n // size, n % size)
levels.append([size] * m + ([r] if r > 0 else []))
size *= WIDTH
return levels
def dec_index(levels, i):
for level in levels:
level[i] -= 1
i //= WIDTH
def find_pos(levels, pos):
(i, l) = (0, len(levels) - 1)
total = 0
while True:
level = levels[l]
while total + level[i] < pos:
total += level[i]
i += 1
if l == 0:
return i
i *= WIDTH
l -= 1
import sys
def main():
numbers = [int(x) for x in sys.stdin.read().split()]
n = numbers[0]
sequence = numbers[1:n + 1]
m = numbers[n + 1]
queries = {}
for i in range(n + 2, n + 2 + 2 * m, 2):
(k, pos) = (numbers[i], numbers[i + 1])
if k in queries:
queries[k][pos] = None
else:
queries[k] = {pos: None}
sequence1 = sorted([(s, -i) for (i, s) in enumerate(sequence)])
tree = index_tree(n)
size = n
for (_, neg_i) in sequence1:
if size in queries:
for pos in queries[size]:
queries[size][pos] = find_pos(tree, pos)
dec_index(tree, -neg_i)
size -= 1
for i in range(n + 2, n + 2 + 2 * m, 2):
(k, pos) = (numbers[i], numbers[i + 1])
print(sequence[queries[k][pos]])
main()
``` | vfc_140323 | {
"difficulty": "medium_hard",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": "https://codeforces.com/problemset/problem/1227/D2",
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "3\n10 20 10\n6\n1 1\n2 1\n2 2\n3 1\n3 2\n3 3\n",
"output": "20\n10\n20\n10\n20\n10\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://codeforces.com/problemset/problem/282/C | Solve the following coding problem using the programming language python:
The Bitlandians are quite weird people. They do everything differently. They have a different alphabet so they have a different definition for a string.
A Bitlandish string is a string made only of characters "0" and "1".
BitHaval (the mayor of Bitland) loves to play with Bitlandish strings. He takes some Bitlandish string a, and applies several (possibly zero) operations to it. In one operation the mayor may take any two adjacent characters of a string, define one of them as x and the other one as y. Then he calculates two values p and q: p = x xor y, q = x or y. Then he replaces one of the two taken characters by p and the other one by q.
The xor operation means the bitwise excluding OR operation. The or operation is the bitwise OR operation.
So for example one operation can transform string 11 to string 10 or to string 01. String 1 cannot be transformed into any other string.
You've got two Bitlandish strings a and b. Your task is to check if it is possible for BitHaval to transform string a to string b in several (possibly zero) described operations.
-----Input-----
The first line contains Bitlandish string a, the second line contains Bitlandish string b. The strings can have different lengths.
It is guaranteed that the given strings only consist of characters "0" and "1". The strings are not empty, their length doesn't exceed 10^6.
-----Output-----
Print "YES" if a can be transformed into b, otherwise print "NO". Please do not print the quotes.
-----Examples-----
Input
11
10
Output
YES
Input
1
01
Output
NO
Input
000
101
Output
NO
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
a = input()
b = input()
if len(a) != len(b):
print('NO')
elif a.count('1') == 0 and b.count('1') > 0:
print('NO')
elif a.count('1') > 0 and b.count('1') == 0:
print('NO')
else:
print('YES')
``` | vfc_140328 | {
"difficulty": "medium",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": "https://codeforces.com/problemset/problem/282/C",
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "11\n10\n",
"output": "YES\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://practice.geeksforgeeks.org/problems/55dbfdc246f3f62d6a7bcee7664cacf6be345527/1 | Solve the following coding problem using the programming language python:
Given a string str, find the minimum characters to be added at front of the string to make it a palindrome.
Example 1:
Input:
str = ABCD
Output: 3
Explanation: The resultant string
after adding 3 characters is DCBABCD.
The minimum possible answer is 3.
Example 2:
Input:
str = ABA
Output: 0
Explanation: The given string
is already a palindrome.
Your Task:
You don't need to read input or print anything. Your task is to complete the function addMinChar() which takes the string str as input parameters and returns the minimum number of characters to be added to make it a palindrome.
Expected Time Complexity: O(|str|)
Expected Auxiliary Space: O(|str|)
Constraints:
1 ≤ |str| ≤ 10^{5}
str contains only uppercase english alphabets
Write your solution by modifying this code:
```python
#User function Template for python3
class Solution:
def addMinChar (self, str1):
# code here
```
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
class Solution:
def addMinChar(self, str1):
size = len(str1)
ans = 0
i = 0
j = size - 1
while i <= j:
if str1[i] == str1[j]:
i += 1
j -= 1
else:
ans += 1
i = 0
j = size - 1 - ans
return ans
``` | vfc_140336 | {
"difficulty": "medium",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": "https://practice.geeksforgeeks.org/problems/55dbfdc246f3f62d6a7bcee7664cacf6be345527/1",
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "str = ABCD",
"output": "3",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | Solve the following coding problem using the programming language python:
The customer telephone support center of the computer sales company called JAG is now in- credibly confused. There are too many customers who request the support, and they call the support center all the time. So, the company wants to figure out how many operators needed to handle this situation.
For simplicity, let us focus on the following simple simulation.
Let N be a number of customers. The i-th customer has id i, and is described by three numbers, Mi, Li and Ki. Mi is the time required for phone support, Li is the maximum stand by time until an operator answers the call, and Ki is the interval time from hanging up to calling back. Let us put these in other words: It takes Mi unit times for an operator to support i-th customer. If the i-th customer is not answered by operators for Li unit times, he hangs up the call. Ki unit times after hanging up, he calls back.
One operator can support only one customer simultaneously. When an operator finish a call, he can immediately answer another call. If there are more than one customer waiting, an operator will choose the customer with the smallest id.
At the beginning of the simulation, all customers call the support center at the same time. The simulation succeeds if operators can finish answering all customers within T unit times.
Your mission is to calculate the minimum number of operators needed to end this simulation successfully.
Input
The input contains multiple datasets. Each dataset has the following format:
N T
M1 L1 K1
.
.
.
MN LN KN
The first line of a dataset contains two positive integers, N and T (1 ≤ N ≤ 1000, 1 ≤ T ≤ 1000). N indicates the number of customers in the dataset, and T indicates the time limit of the simulation.
The following N lines describe the information of customers. The i-th line contains three integers, Mi, Li and Ki (1 ≤ Mi ≤ T , 1 ≤ Li ≤ 1000, 1 ≤ Ki ≤ 1000), describing i-th customer's information. Mi indicates the time required for phone support, Li indicates the maximum stand by time until an operator answers the call, and Ki indicates the is the interval time from hanging up to calling back.
The end of input is indicated by a line containing two zeros. This line is not part of any dataset and hence should not be processed.
Output
For each dataset, print the minimum number of operators needed to end the simulation successfully in a line.
Example
Input
3 300
100 50 150
100 50 150
100 50 150
3 300
100 50 150
100 50 150
200 50 150
9 18
3 1 1
3 1 1
3 1 1
4 100 1
5 100 1
5 100 1
10 5 3
10 5 3
1 7 1000
10 18
1 2 3
2 3 4
3 4 5
4 5 6
5 6 7
6 7 8
7 8 9
8 9 10
9 10 11
10 11 12
0 0
Output
2
3
3
4
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
import sys
readline = sys.stdin.readline
write = sys.stdout.write
def check(N, C, T, x):
used = [0] * N
S = [0] * (T + 1)
cap = x
f = 0
for t in range(T):
cap += S[t]
if cap == 0:
continue
for i in range(f, N):
if used[i]:
continue
(m, l, k) = C[i]
if t + m > T:
break
if t % (l + k) <= l:
used[i] = 1
S[t + m] += 1
cap -= 1
if i == f:
while f < N and used[f]:
f += 1
if cap == 0:
break
cap += S[T]
return sum(used) == N and cap == x
def solve():
(N, T) = map(int, readline().split())
if N == 0:
return False
C = [list(map(int, readline().split())) for i in range(N)]
for x in range(N + 1):
if check(N, C, T, x):
write('%d\n' % x)
break
return True
while solve():
...
``` | vfc_140337 | {
"difficulty": "unknown_difficulty",
"memory_limit": "134.217728 megabytes",
"memory_limit_bytes": null,
"problem_url": null,
"time_limit": "8.0 seconds"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "3 300\n100 46 150\n100 50 150\n100 50 150\n3 300\n100 50 150\n100 50 150\n200 50 150\n9 18\n3 1 1\n3 1 1\n3 1 1\n4 100 1\n5 100 1\n5 100 1\n10 5 3\n10 5 3\n1 7 1000\n10 18\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n5 6 7\n6 7 8\n7 8 9\n8 9 10\n9 10 11\n10 11 12\n0 0",
"output": "2\n3\n3\n4\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "3 300\n100 46 150\n100 50 150\n100 50 150\n3 300\n110 50 150\n100 50 150\n200 50 150\n9 18\n3 1 1\n3 1 1\n3 1 1\n4 100 1\n5 100 1\n5 100 1\n10 5 3\n10 5 3\n1 0 1000\n10 18\n1 2 3\n2 3 4\n3 4 5\n4 6 6\n5 6 7\n6 7 8\n7 8 9\n8 9 10\n9 10 11\n10 11 12\n0 0",
"output": "2\n3\n9\n4\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "3 300\n100 46 150\n100 50 150\n101 50 150\n3 300\n100 50 150\n100 50 272\n200 50 150\n9 18\n3 1 1\n3 1 1\n3 1 1\n4 100 1\n5 100 1\n5 100 1\n10 5 3\n10 5 3\n1 7 1000\n10 18\n1 2 3\n2 3 4\n3 4 5\n4 5 6\n5 6 7\n6 7 8\n7 8 9\n8 9 10\n9 10 11\n10 11 12\n0 0",
"output": "3\n3\n3\n4\n",
"type": "stdin_stdout"
}
]
} |
|
taco | verifiable_code | https://practice.geeksforgeeks.org/problems/occurence-of-an-integer-in-a-linked-list/1 | Solve the following coding problem using the programming language python:
Given a singly linked list and a key, count the number of occurrences of given key in the linked list.
Example 1:
Input:
N = 7
Link List = 1->2->1->2->1->3->1
search_for = 1
Output: 4
Explanation:1 appears 4 times.
Example 2:
Input:
N = 5
Link List = 1->2->1->2->1
search_for = 3
Output: 0
Explanation:3 appears 0 times.
Your Task:
You dont need to read input or print anything. Complete the function count() which takes the head of the link list and search_for i.e- the key as input parameters and returns the count of occurrences of the given key.
Expected Time Complexity: O(N)
Expected Auxiliary Space: O(1)
Constraints:
0 ≤ N ≤ 10^4
Write your solution by modifying this code:
```python
"""
class Node:
def __init__(self, data):
self.data = data
self.next = None
This is method only submission.
You only need to complete the method.
"""
class Solution:
def count(self, head, search_for):
# Code here
```
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
class Solution:
def count(self, head, search_for):
if head is None:
return 0
cnt = 0
while head.next:
if head.data == search_for:
cnt += 1
head = head.next
if head.data == search_for:
return cnt + 1
return cnt
``` | vfc_140341 | {
"difficulty": "easy",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": "https://practice.geeksforgeeks.org/problems/occurence-of-an-integer-in-a-linked-list/1",
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "N = 7\nLink List = 1->2->1->2->1->3->1\nsearch_for = 1",
"output": "4",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "N = 5\nLink List = 1->2->1->2->1\nsearch_for = 3",
"output": "0",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://www.codechef.com/problems/REMOVECARDS | Solve the following coding problem using the programming language python:
You have N cards placed in front of you on the table. The i^{th} card has the number A_{i} written on it.
In one move, you can remove any one card from the remaining cards on the table.
Find the minimum number of moves required so that all the cards remaining on the table have the same number written on them.
------ Input Format ------
- The first line contains a single integer T — the number of test cases. Then the test cases follow.
- The first line of each test case contains an integer N — the number of cards on the table.
- The second line of each test case contains N space-separated integers A_{1}, A_{2}, \dots, A_{N} where A_{i} is the number written on the i^{th} card.
------ Output Format ------
For each test case, output the minimum number of moves required so that all the cards remaining on the table have the same number written on them.
------ Constraints ------
$1 ≤ T ≤ 100$
$1 ≤N ≤100$
$1 ≤A_{i} ≤10$
----- Sample Input 1 ------
3
5
1 1 2 2 3
4
8 8 8 8
6
5 6 7 8 9 10
----- Sample Output 1 ------
3
0
5
----- explanation 1 ------
Test case $1$: The minimum number of moves required such that all remaining cards have same values is $3$:
- Move $1$: Remove a card with number $1$. Remaining cards are $[1, 2, 2, 3]$.
- Move $2$: Remove a card with number $1$. Remaining cards are $[2, 2, 3]$.
- Move $3$: Remove a card with number $3$. Remaining cards are $[2, 2]$.
Test case $2$: All cards have the same number initially. Thus, no moves are required.
Test case $3$: The minimum number of moves required such that all remaining cards have same values is $5$:
- Move $1$: Remove a card with number $5$. Remaining cards are $[6, 7, 8, 9, 10]$.
- Move $2$: Remove a card with number $6$. Remaining cards are $[7, 8, 9, 10]$.
- Move $3$: Remove a card with number $7$. Remaining cards are $[8, 9, 10]$.
- Move $4$: Remove a card with number $8$. Remaining cards are $[9, 10]$.
- Move $5$: Remove a card with number $9$. Remaining cards are $[10]$.
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
from collections import Counter
for _ in range(int(input())):
n = int(input())
a = list(map(int, input().split()))
d = Counter(a)
maximum = 0
for i in d:
if maximum < d[i]:
maximum = d[i]
print(n - maximum)
``` | vfc_140342 | {
"difficulty": "easy",
"memory_limit": "50000 bytes",
"memory_limit_bytes": null,
"problem_url": "https://www.codechef.com/problems/REMOVECARDS",
"time_limit": "0.5 seconds"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "3\n5\n1 1 2 2 3\n4\n8 8 8 8\n6\n5 6 7 8 9 10\n",
"output": "3\n0\n5\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://practice.geeksforgeeks.org/problems/pattern-for-reverse-character-bridge5738/1 | Solve the following coding problem using the programming language python:
For a given value N, denoting the number of Characters starting from the A, print reverse character bridge pattern.
Example 1:
Input:
N = 5
Output:
ABCDEDCBA
ABCD DCBA
ABC CBA
AB BA
A A
Example 2:
Input:
N = 4
Output:
ABCDCBA
ABC CBA
AB BA
A A
Your Task:
You don't need to read input or print anything. Your task is to complete the function revCharBridge() which takes an Integer N as input and returns a vector of strings where each line represents lines of the pattern. For example, if N = 3, the vector v = {"ABCBA", "AB BA", "A A"}.
Expected Time Complexity: O(N)
Expected Auxiliary Space: O(N)
Constraints:
2 <= N <= 26
Write your solution by modifying this code:
```python
#User function Template for python3
class Solution:
def revCharBridge(self, N):
# code here
```
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
class Solution:
def revCharBridge(self, N):
l = []
co = 0
c = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
for i in range(N, 0, -1):
start = c[:i]
if i == N - 1:
co = 1
else:
co += 2
center = ' ' * co
end = start[::-1]
if i == N:
l.append(start + end[1:])
else:
l.append(start + center + end)
return l
``` | vfc_140347 | {
"difficulty": "easy",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": "https://practice.geeksforgeeks.org/problems/pattern-for-reverse-character-bridge5738/1",
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "N = 5",
"output": "ABCDEDCBA\r\nABCD DCBA\r\nABC CBA\r\nAB BA\r\nA A",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "N = 4",
"output": "ABCDCBA\r\nABC CBA\r\nAB BA\r\nA A",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://codeforces.com/problemset/problem/847/D | Solve the following coding problem using the programming language python:
A new dog show on TV is starting next week. On the show dogs are required to demonstrate bottomless stomach, strategic thinking and self-preservation instinct. You and your dog are invited to compete with other participants and naturally you want to win!
On the show a dog needs to eat as many bowls of dog food as possible (bottomless stomach helps here). Dogs compete separately of each other and the rules are as follows:
At the start of the show the dog and the bowls are located on a line. The dog starts at position x = 0 and n bowls are located at positions x = 1, x = 2, ..., x = n. The bowls are numbered from 1 to n from left to right. After the show starts the dog immediately begins to run to the right to the first bowl.
The food inside bowls is not ready for eating at the start because it is too hot (dog's self-preservation instinct prevents eating). More formally, the dog can eat from the i-th bowl after t_{i} seconds from the start of the show or later.
It takes dog 1 second to move from the position x to the position x + 1. The dog is not allowed to move to the left, the dog runs only to the right with the constant speed 1 distance unit per second. When the dog reaches a bowl (say, the bowl i), the following cases are possible: the food had cooled down (i.e. it passed at least t_{i} seconds from the show start): the dog immediately eats the food and runs to the right without any stop, the food is hot (i.e. it passed less than t_{i} seconds from the show start): the dog has two options: to wait for the i-th bowl, eat the food and continue to run at the moment t_{i} or to skip the i-th bowl and continue to run to the right without any stop.
After T seconds from the start the show ends. If the dog reaches a bowl of food at moment T the dog can not eat it. The show stops before T seconds if the dog had run to the right of the last bowl.
You need to help your dog create a strategy with which the maximum possible number of bowls of food will be eaten in T seconds.
-----Input-----
Two integer numbers are given in the first line - n and T (1 ≤ n ≤ 200 000, 1 ≤ T ≤ 2·10^9) — the number of bowls of food and the time when the dog is stopped.
On the next line numbers t_1, t_2, ..., t_{n} (1 ≤ t_{i} ≤ 10^9) are given, where t_{i} is the moment of time when the i-th bowl of food is ready for eating.
-----Output-----
Output a single integer — the maximum number of bowls of food the dog will be able to eat in T seconds.
-----Examples-----
Input
3 5
1 5 3
Output
2
Input
1 2
1
Output
1
Input
1 1
1
Output
0
-----Note-----
In the first example the dog should skip the second bowl to eat from the two bowls (the first and the third).
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
from heapq import heappush, heappop
(bowels, Time) = list(map(int, input().split()))
myLine = [-int(b) for b in input().split()]
gulp = []
eat = 0
for i in range(1, min(bowels + 1, Time)):
while gulp and -gulp[0] >= Time - i:
heappop(gulp)
if -myLine[i - 1] < Time:
heappush(gulp, myLine[i - 1] + i)
eat = max(len(gulp), eat)
print(eat)
``` | vfc_140348 | {
"difficulty": "hard",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": "https://codeforces.com/problemset/problem/847/D",
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "3 5\n1 5 3\n",
"output": "2\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "1 2\n1\n",
"output": "1\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | Solve the following coding problem using the programming language python:
K: Relief (Angel Relief)
Tenma, an angel, decides to save a city.
The city has a rectangular shape divided into north-south $ H $ parcels x east-west $ W $ parcels, with houses in each parcel.
The $ X $ th section from the north and the $ Y $ th section from the west are represented by $ (X, Y) $.
The house in parcel $ (i, j) $ is inhabited by $ A_ {i, j} $ people.
Tenshin chooses a rectangular area whose sides are parallel or vertical to north-south or east-west, and rescues all the people living in it one by one.
Tenshin does this for every possible rectangle.
Find the total number of times Tenma-san rescues people.
input
The integers $ H, W $ are given on the first line, separated by blanks.
Of the following $ H $ lines, the integers $ A_ {i, 1}, A_ {i, 2}, A_ {i, 3}, \ dots, A_ {i, W} $ are blank on the $ i $ line. Given as a delimiter.
output
Output the total number of times Tenma-san rescues people.
Constraint
* $ H, W $ are integers between $ 1 $ and $ 500 $
* $ A_ {i, j} $ are all integers greater than or equal to $ 1 $ and less than or equal to $ 9 $.
Input example 1
twenty two
1 2
4 8
Output example 1
60
For example, if you choose a rectangular area with $ (1, 1) $ in the upper left and $ (2, 2) $ in the lower right, you will rescue $ 15 $ people there one by one, so a total of $ 15 $ times. Relief.
$ 1, 2, 3, 4, 5, 8, 10, 12, 15 $ relief for each of the $ 9 $ rectangular areas, for a total of $ 60 $.
Input example 2
twenty three
one two Three
4 5 6
Output example 2
140
Example
Input
2 2
1 2
4 8
Output
60
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
def f():
return map(int, input().split())
(h, w) = f()
print(sum([sum([(x + 1) * (w - x) * v for (x, v) in enumerate(f())]) * (y + 1) * (h - y) for y in range(h)]))
``` | vfc_140352 | {
"difficulty": "unknown_difficulty",
"memory_limit": "268.435456 megabytes",
"memory_limit_bytes": null,
"problem_url": null,
"time_limit": "1.0 seconds"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "2 2\n1 2\n0 8",
"output": "44\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "2 2\n1 2\n-1 8",
"output": "40\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "2 2\n1 2\n-1 12",
"output": "56\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "2 2\n1 2\n-2 12",
"output": "52\n",
"type": "stdin_stdout"
}
]
} |
|
taco | verifiable_code | https://codeforces.com/problemset/problem/1353/A | Solve the following coding problem using the programming language python:
You are given two integers $n$ and $m$. You have to construct the array $a$ of length $n$ consisting of non-negative integers (i.e. integers greater than or equal to zero) such that the sum of elements of this array is exactly $m$ and the value $\sum\limits_{i=1}^{n-1} |a_i - a_{i+1}|$ is the maximum possible. Recall that $|x|$ is the absolute value of $x$.
In other words, you have to maximize the sum of absolute differences between adjacent (consecutive) elements. For example, if the array $a=[1, 3, 2, 5, 5, 0]$ then the value above for this array is $|1-3| + |3-2| + |2-5| + |5-5| + |5-0| = 2 + 1 + 3 + 0 + 5 = 11$. Note that this example doesn't show the optimal answer but it shows how the required value for some array is calculated.
You have to answer $t$ independent test cases.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 10^4$) — the number of test cases. Then $t$ test cases follow.
The only line of the test case contains two integers $n$ and $m$ ($1 \le n, m \le 10^9$) — the length of the array and its sum correspondingly.
-----Output-----
For each test case, print the answer — the maximum possible value of $\sum\limits_{i=1}^{n-1} |a_i - a_{i+1}|$ for the array $a$ consisting of $n$ non-negative integers with the sum $m$.
-----Example-----
Input
5
1 100
2 2
5 5
2 1000000000
1000000000 1000000000
Output
0
2
10
1000000000
2000000000
-----Note-----
In the first test case of the example, the only possible array is $[100]$ and the answer is obviously $0$.
In the second test case of the example, one of the possible arrays is $[2, 0]$ and the answer is $|2-0| = 2$.
In the third test case of the example, one of the possible arrays is $[0, 2, 0, 3, 0]$ and the answer is $|0-2| + |2-0| + |0-3| + |3-0| = 10$.
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
test = int(input())
for t in range(test):
(a, b) = map(int, input().split())
if a == 1:
print(0)
elif a == 2:
print(b)
else:
print(2 * b)
``` | vfc_140356 | {
"difficulty": "easy",
"memory_limit": "256 megabytes",
"memory_limit_bytes": null,
"problem_url": "https://codeforces.com/problemset/problem/1353/A",
"time_limit": "1 second"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "5\n1 100\n2 2\n5 5\n2 1000000000\n1000000000 1000000000\n",
"output": "0\n2\n10\n1000000000\n2000000000\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "1\n54 33\n",
"output": "66\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "1\n9021 10000\n",
"output": "20000\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://practice.geeksforgeeks.org/problems/sorting-all-array-elements-except-one4653/1 | Solve the following coding problem using the programming language python:
Given an array A of positive integers, sort the array in ascending order such that element at index K in unsorted array stays unmoved and all other elements are sorted.
Example 1:
ââ¬â¹Input : arr[ ] = {10, 4, 11, 7, 6, 20}
and K = 2
Output : 4 6 11 7 10 20
Explanation:
Sort an array except an index 2 So,
4 6 11 7 10 20
ââ¬â¹Example 2:
Input : arr[ ] = {30, 20, 10} and K = 0
Output : 30 10 20
Your Task:
This is a function problem. The input is already taken care of by the driver code. You only need to complete the function sortExceptK() that takes an array (arr), sizeOfArray (n), an integer K and return he sorted array except for the element at index K. The driver code takes care of the printing.
Expected Time Complexity: O(N*LOG(N)).
Expected Auxiliary Space: O(1).
Constraints:
1 ≤ N ≤ 10^{5}
Write your solution by modifying this code:
```python
#User function Template for python3
def sortExceptK (arr, n, k) :
#Complete the function
```
Your solution should implemented in the function "sortExceptK". The inputs will be passed to it and it should return the correct solution.
Now solve the problem and return the code. | ```python
def sortExceptK(arr, n, k):
result = arr[k]
arr.sort()
arr.remove(result)
arr.insert(k, result)
lst = list(map(str, arr))
join = ' '.join(lst)
return join
``` | vfc_140364 | {
"difficulty": "easy",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": "https://practice.geeksforgeeks.org/problems/sorting-all-array-elements-except-one4653/1",
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": "sortExceptK",
"input": "arr[ ] = {10, 4, 11, 7, 6, 20} \r\n and K = 2",
"output": "4 6 11 7 10 20",
"type": "function_call"
},
{
"fn_name": "sortExceptK",
"input": "arr[ ] = {30, 20, 10} and K = 0",
"output": "30 10 20",
"type": "function_call"
}
]
} |
taco | verifiable_code | https://codeforces.com/problemset/problem/909/A | Solve the following coding problem using the programming language python:
The preferred way to generate user login in Polygon is to concatenate a prefix of the user's first name and a prefix of their last name, in that order. Each prefix must be non-empty, and any of the prefixes can be the full name. Typically there are multiple possible logins for each person.
You are given the first and the last name of a user. Return the alphabetically earliest login they can get (regardless of other potential Polygon users).
As a reminder, a prefix of a string s is its substring which occurs at the beginning of s: "a", "ab", "abc" etc. are prefixes of string "{abcdef}" but "b" and 'bc" are not. A string a is alphabetically earlier than a string b, if a is a prefix of b, or a and b coincide up to some position, and then a has a letter that is alphabetically earlier than the corresponding letter in b: "a" and "ab" are alphabetically earlier than "ac" but "b" and "ba" are alphabetically later than "ac".
-----Input-----
The input consists of a single line containing two space-separated strings: the first and the last names. Each character of each string is a lowercase English letter. The length of each string is between 1 and 10, inclusive.
-----Output-----
Output a single string — alphabetically earliest possible login formed from these names. The output should be given in lowercase as well.
-----Examples-----
Input
harry potter
Output
hap
Input
tom riddle
Output
tomr
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
(first, last) = map(str, input().split())
string = first[0]
for i in first[1:]:
if i < last[0]:
string += i
else:
break
print(string + last[0])
``` | vfc_140365 | {
"difficulty": "easy",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": "https://codeforces.com/problemset/problem/909/A",
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "harry potter\n",
"output": "hap\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "tom riddle\n",
"output": "tomr\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "a qdpinbmcrf\n",
"output": "aq\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://codeforces.com/problemset/problem/883/G | Solve the following coding problem using the programming language python:
Vasya has a graph containing both directed (oriented) and undirected (non-oriented) edges. There can be multiple edges between a pair of vertices.
Vasya has picked a vertex s from the graph. Now Vasya wants to create two separate plans:
to orient each undirected edge in one of two possible directions to maximize number of vertices reachable from vertex s; to orient each undirected edge in one of two possible directions to minimize number of vertices reachable from vertex s.
In each of two plans each undirected edge must become directed. For an edge chosen directions can differ in two plans.
Help Vasya find the plans.
-----Input-----
The first line contains three integers n, m and s (2 ≤ n ≤ 3·10^5, 1 ≤ m ≤ 3·10^5, 1 ≤ s ≤ n) — number of vertices and edges in the graph, and the vertex Vasya has picked.
The following m lines contain information about the graph edges. Each line contains three integers t_{i}, u_{i} and v_{i} (1 ≤ t_{i} ≤ 2, 1 ≤ u_{i}, v_{i} ≤ n, u_{i} ≠ v_{i}) — edge type and vertices connected by the edge. If t_{i} = 1 then the edge is directed and goes from the vertex u_{i} to the vertex v_{i}. If t_{i} = 2 then the edge is undirected and it connects the vertices u_{i} and v_{i}.
It is guaranteed that there is at least one undirected edge in the graph.
-----Output-----
The first two lines should describe the plan which maximizes the number of reachable vertices. The lines three and four should describe the plan which minimizes the number of reachable vertices.
A description of each plan should start with a line containing the number of reachable vertices. The second line of a plan should consist of f symbols '+' and '-', where f is the number of undirected edges in the initial graph. Print '+' as the j-th symbol of the string if the j-th undirected edge (u, v) from the input should be oriented from u to v. Print '-' to signify the opposite direction (from v to u). Consider undirected edges to be numbered in the same order they are given in the input.
If there are multiple solutions, print any of them.
-----Examples-----
Input
2 2 1
1 1 2
2 2 1
Output
2
-
2
+
Input
6 6 3
2 2 6
1 4 5
2 3 4
1 4 1
1 3 1
2 2 3
Output
6
++-
2
+-+
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
import sys
input = sys.stdin.readline
def put():
return map(int, input().split())
def dfs(x, flag=1):
(s, vis, ans) = ([x], [0] * n, ['+'] * m)
vis[x] = 1
while s:
i = s.pop()
for (j, k) in graph[i]:
if vis[j] == 0:
if k * flag < 0:
ans[abs(k) - 1] = '-'
elif k * flag > 0:
ans[abs(k) - 1] = '+'
if flag == 1 or k == 0:
s.append(j)
vis[j] = 1
return (''.join(ans), sum(vis))
(n, m, s) = put()
graph = [[] for i in range(n)]
k = 1
for _ in range(m):
(z, x, y) = put()
(x, y) = (x - 1, y - 1)
if z == 1:
graph[x].append((y, 0))
else:
graph[x].append((y, k))
graph[y].append((x, -k))
k += 1
m = k - 1
(x, y) = dfs(s - 1, 1)
print(y)
print(x)
(x, y) = dfs(s - 1, -1)
print(y)
print(x)
``` | vfc_140369 | {
"difficulty": "hard",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": "https://codeforces.com/problemset/problem/883/G",
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "2 2 1\n1 1 2\n2 2 1\n",
"output": "2\n-\n2\n+\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://www.codechef.com/problems/ROWSOLD | Solve the following coding problem using the programming language python:
Limak is a little polar bear.
He is playing a video game and he needs your help.
There is a row with N cells, each either empty or occupied by a soldier, denoted by '0' and '1' respectively.
The goal of the game is to move all soldiers to the right (they should occupy some number of rightmost cells).
The only possible command is choosing a soldier and telling him to move to the right as far as possible.
Choosing a soldier takes 1 second, and a soldier moves with the speed of a cell per second.
The soldier stops immediately if he is in the last cell of the row or the next cell is already occupied.
Limak isn't allowed to choose a soldier that can't move at all (the chosen soldier must move at least one cell to the right).
Limak enjoys this game very much and wants to play as long as possible.
In particular, he doesn't start a new command while the previously chosen soldier moves.
Can you tell him, how many seconds he can play at most?
-----Input-----
The first line of the input contains an integer T denoting the number of test cases. The description of T test cases follows.
The only line of each test case contains a string S describing the row with N cells.
Each character is either '0' or '1', denoting an empty cell or a cell with a soldier respectively.
-----Output-----
For each test case, output a single line containing one integer — the maximum possible number of seconds Limak will play the game.
-----Constraints-----
- 1 ≤ T ≤ 5
- 1 ≤ N ≤ 105 (N denotes the length of the string S)
-----Subtasks-----
- Subtask #1 (25 points): 1 ≤ N ≤ 10
- Subtask #2 (25 points): 1 ≤ N ≤ 2000
- Subtask #3 (50 points): Original constraints.
-----Example-----
Input:
4
10100
1100001
000000000111
001110100011010
Output:
8
10
0
48
-----Explanation-----
Test case 1.
The initial string is 10100.
There are N = 5 cells.
There is one soldier in the first cell, and one soldier in the third cell.
The following scenario maximizes the total time:
- Limak chooses the soldier in the first cell.
This soldier can move only one cell to the right.
It takes 1 second to choose a soldier and 1 second for a soldier to move to the next cell (2 seconds in total).
The string is 01100 now.
- Limak has only one choice.
He must choose the soldier in the third cell because the other soldier can't move at all (the soldier in the second cell can't move to the right because the next cell is already occupied).
Choosing a soldier takes 1 second.
The chosen soldier moves from the third cell to the fifth cell, which takes 2 seconds.
This operation takes 1 + 2 = 3 seconds in total.
The string is 01001 now.
- Limak has only one choice again.
Since the soldier in the last row can't move further to the right, the soldier in the second cell must be chosen.
He will move 2 cells to the right.
This operation takes 1 + 2 = 3 seconds in total.
The string become 00011 and the game is over.
The total time is 2 + 3 + 3 = 8.
Test case 2.
The initial string is 1100001.
There is only one possible scenario:
- 1100001 is changed to 1000011 in 5 seconds (1 second to choose a soldier and 4 seconds for the soldier to move 4 cells to the right).
- 1000011 is changed to 0000111 in 5 seconds.
The total time is 5 + 5 = 10 seconds.
Test case 3.
The game is over immediately because all soldiers occupy rightmost cells already.
The answer is 0.
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
t = int(input())
for _ in range(t):
time = 0
s = list(map(int, input().lstrip('0')))
ones = 0
zeroes = 0
i = 0
while i < len(s):
if i < len(s):
while s[i] == 1:
i += 1
ones += 1
if i >= len(s):
break
if i < len(s):
while s[i] == 0:
i += 1
zeroes += 1
if i >= len(s):
break
time += ones * (zeroes + 1)
zeroes = 0
if len(s) > 0:
if s[-1] == 1:
time -= s.count(1)
print(time)
``` | vfc_140378 | {
"difficulty": "medium_hard",
"memory_limit": "50000 bytes",
"memory_limit_bytes": null,
"problem_url": "https://www.codechef.com/problems/ROWSOLD",
"time_limit": "1 seconds"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "4\n10100\n1100001\n000000000111\n001110100011010\n",
"output": "8\n10\n0\n48\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://practice.geeksforgeeks.org/problems/count-of-palindromic-substrings-in-an-index-range3752/1 | Solve the following coding problem using the programming language python:
Given a string S of lowercase english alphabetic characters and a substring range starting from q1 and ending at q2, the task is to find out the count of palindromic substrings in the given substring range.
Example 1:
Input:
N = 7
S = "xyaabax"
q1 = 3
q2 = 5
Output: 4
Explanation: The substring in the given range
is "aba". Hence, the palindromic substrings are:
"a", "b", "a" and "aba".
ââ¬â¹Example 2:
Input:
N = 7
S = "xyaabax"
q1 = 2
q2 = 3.
Output: 3
Explanation: The substring in the given range
is "aa". Hence, the palindromic substrings are:
"a", "a" and "aa".
Your Task:
You don't need to read input or print anything. Your task is to complete the function countPalinInRange() which takes the string S, its length N and the range variables q1 and q2 as input parameters and returns the count of the Palindromic substrings in the given substring range.
Expected Time Complexity: O(|S|^{2}).
Expected Auxiliary Space: O(1).
Constraints:
1 ≤ |S| ≤ 1000
0 ≤ q1, q2 < |S|
Write your solution by modifying this code:
```python
#User function Template for python3
def countPalinInRange (n, s, q1, q2):
# your code here
```
Your solution should implemented in the function "countPalinInRange". The inputs will be passed to it and it should return the correct solution.
Now solve the problem and return the code. | ```python
def countPalinInRange(n, A, q1, q2):
res = 0
if q1 > q2:
(q1, q2) = (q2, q1)
for i in range(q1, q2 + 1):
j = i - 1
k = i + 1
res += 1
while j >= q1 and k <= q2:
if A[j] == A[k]:
res += 1
else:
break
j -= 1
k += 1
if i < n - 1 and A[i] == A[i + 1]:
j = i
k = i + 1
while j >= q1 and k <= q2:
if A[j] == A[k]:
res += 1
else:
break
j -= 1
k += 1
return res
``` | vfc_140382 | {
"difficulty": "medium",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": "https://practice.geeksforgeeks.org/problems/count-of-palindromic-substrings-in-an-index-range3752/1",
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": "countPalinInRange",
"input": "N = 7 \nS = \"xyaabax\"\nq1 = 3\nq2 = 5",
"output": "4",
"type": "function_call"
},
{
"fn_name": "countPalinInRange",
"input": "N = 7\nS = \"xyaabax\" \nq1 = 2 \nq2 = 3.",
"output": "3",
"type": "function_call"
}
]
} |
taco | verifiable_code | https://www.codechef.com/problems/PRACLIST | Solve the following coding problem using the programming language python:
*CodeChef recently revamped its [practice page] to make it easier for users to identify the next problems they should solve by introducing some new features:*
*Recent Contest Problems - contains only problems from the last 2 contests*
*Separate Un-Attempted, Attempted, and All tabs*
*Problem Difficulty Rating - the Recommended dropdown menu has various difficulty ranges so that you can attempt the problems most suited to your experience*
*Popular Topics and Tags*
Our Chef is currently practicing on CodeChef and is a beginner. The count of ‘All Problems’ in the Beginner section is X. Our Chef has already ‘Attempted’ Y problems among them. How many problems are yet ‘Un-attempted’?
------ Input Format ------
- The first and only line of input contains two space-separated integers X and Y — the count of 'All problems' in the Beginner's section and the count of Chef's 'Attempted' problems, respectively.
------ Output Format ------
Output a single integer in a single line — the number of problems that are yet 'Un-attempted'
------ Constraints ------
$1 ≤ Y ≤ X ≤ 1000$
------ subtasks ------
Subtask 1 (100 points):
Original constraints.
----- Sample Input 1 ------
10 4
----- Sample Output 1 ------
6
----- explanation 1 ------
----- Sample Input 2 ------
10 10
----- Sample Output 2 ------
0
----- explanation 2 ------
----- Sample Input 3 ------
1000 990
----- Sample Output 3 ------
10
----- explanation 3 ------
----- Sample Input 4 ------
500 1
----- Sample Output 4 ------
499
----- explanation 4 ------
Test case $1$: There are $10$ problems in total in the Beginner's section, out of which $4$ have been attempted. Hence, there are $6$ Un-attempted problems.
Test case $2$: There are $10$ problems in total in the Beginner's section, out of which all have been attempted. Hence, there are $0$ Un-attempted problems.
Test case $3$: There are $1000$ problems in total in the Beginner's section, out of which $990$ have been attempted. Hence, there are $10$ Un-attempted problems.
Test case $4$: There are $500$ problems in total in the Beginner's section, out of which only $1$ has been attempted. Hence, there are $499$ Un-attempted problems.
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
(X, Y) = map(int, input().split())
print(X - Y)
``` | vfc_140383 | {
"difficulty": "easy",
"memory_limit": "50000 bytes",
"memory_limit_bytes": null,
"problem_url": "https://www.codechef.com/problems/PRACLIST",
"time_limit": "1 seconds"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "10 4",
"output": "6",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://codeforces.com/problemset/problem/1706/D1 | Solve the following coding problem using the programming language python:
This is the easy version of the problem. The only difference between the versions is the constraints on $n$, $k$, $a_i$, and the sum of $n$ over all test cases. You can make hacks only if both versions of the problem are solved.
Note the unusual memory limit.
You are given an array of integers $a_1, a_2, \ldots, a_n$ of length $n$, and an integer $k$.
The cost of an array of integers $p_1, p_2, \ldots, p_n$ of length $n$ is $$\max\limits_{1 \le i \le n}\left(\left \lfloor \frac{a_i}{p_i} \right \rfloor \right) - \min\limits_{1 \le i \le n}\left(\left \lfloor \frac{a_i}{p_i} \right \rfloor \right).$$
Here, $\lfloor \frac{x}{y} \rfloor$ denotes the integer part of the division of $x$ by $y$. Find the minimum cost of an array $p$ such that $1 \le p_i \le k$ for all $1 \le i \le n$.
-----Input-----
The first line contains a single integer $t$ ($1 \le t \le 100$) — the number of test cases.
The first line of each test case contains two integers $n$ and $k$ ($1 \le n, k \le 3000$).
The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_1 \le a_2 \le \ldots \le a_n \le 3000$).
It is guaranteed that the sum of $n$ over all test cases does not exceed $3000$.
-----Output-----
For each test case, print a single integer — the minimum possible cost of an array $p$ satisfying the condition above.
-----Examples-----
Input
7
5 2
4 5 6 8 11
5 12
4 5 6 8 11
3 1
2 9 15
7 3
2 3 5 5 6 9 10
6 56
54 286 527 1436 2450 2681
3 95
16 340 2241
2 2
1 3
Output
2
0
13
1
4
7
0
-----Note-----
In the first test case, the optimal array is $p = [1, 1, 1, 2, 2]$. The resulting array of values of $\lfloor \frac{a_i}{p_i} \rfloor$ is $[4, 5, 6, 4, 5]$. The cost of $p$ is $\max\limits_{1 \le i \le n}(\lfloor \frac{a_i}{p_i} \rfloor) - \min\limits_{1 \le i \le n}(\lfloor \frac{a_i}{p_i} \rfloor) = 6 - 4 = 2$. We can show that there is no array (satisfying the condition from the statement) with a smaller cost.
In the second test case, one of the optimal arrays is $p = [12, 12, 12, 12, 12]$, which results in all $\lfloor \frac{a_i}{p_i} \rfloor$ being $0$.
In the third test case, the only possible array is $p = [1, 1, 1]$.
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
for _ in range(int(input())):
(N, K) = map(int, input().split())
a = [*map(int, input().split())]
ps = [0] * (10 ** 5 + 10)
for i in range(N):
(pv, j) = (10 ** 9, 1)
while j <= min(a[i], K):
nv = a[i] // j
ps[nv + 1] = max(ps[nv + 1], pv)
pv = nv
j = a[i] // (a[i] // j) + 1
ps[0] = max(ps[0], pv)
(ans, cm) = (10 ** 9, 0)
for i in range(a[0] + 1):
cm = max(cm, ps[i])
ans = min(ans, cm - i)
print(ans)
``` | vfc_140387 | {
"difficulty": "medium_hard",
"memory_limit": "64 megabytes",
"memory_limit_bytes": null,
"problem_url": "https://codeforces.com/problemset/problem/1706/D1",
"time_limit": "4 seconds"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "7\n5 2\n4 5 6 8 11\n5 12\n4 5 6 8 11\n3 1\n2 9 15\n7 3\n2 3 5 5 6 9 10\n6 56\n54 286 527 1436 2450 2681\n3 95\n16 340 2241\n2 2\n1 3\n",
"output": "2\n0\n13\n1\n4\n7\n0\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "1\n1 1\n1\n",
"output": "0\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://www.codechef.com/COOK75/problems/UGLYF | Solve the following coding problem using the programming language python:
Watson gives to Sherlock two strings S1 and S2 consisting of uppercase English alphabets. Next he wants Sherlock to build a flower in the following way:
He puts both strings perpendicular to each other in such a way that they overlap at the same character. For example, if he has two strings "ABCDEF" and "XXBCZQ", one possible way to make a flower is:
Length of petals in the above flower are 2, 2, 3 and 3.
A flower's ugliness is sum of absolute difference of adjacent petal lengths i.e. i.e. if adjacent petal lengths are L1, L2, L3, L4, then ugliness of flower is |L1 - L2| + |L2 - L3| + |L3 - L4| + |L4 - L1|.
Sherlock wants to find minimum value of ugliness if we consider all possible flower configurations. Note that a configuration is valid even if any of the petal length is 0.
-----Input-----
First line contains T, number of test cases. Each test case consists of string S1 in one line followed by string S2 in the next line. It is guaranteed that there exists at least one possible way to make a flower.
-----Output-----
For each test case, output in one line the required answer.
-----Constraints-----
- 1 ≤ T ≤ 10
- 1 ≤ length(S1), length(S2) ≤ 105
-----Example-----
Input:
2
ABCDE
XXBCZQ
BBB
BBBBBB
Output:
2
6
-----Explanation-----
Test case 1:
If we keep the configuration shown in statement, the ugliness is 2, which is minimum possible.
Test case 2:
One of the best configurations is
B
B B B B B B
B
where petal lengths are 1, 3, 1, 2.
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
for _ in range(eval(input())):
S1 = input()
m1 = len(S1) / 2
S2 = input()
m2 = len(S2) / 2
d1 = {}
d2 = {}
for i in range(len(S1)):
c = S1[i]
v = abs(m1 - i)
if c in d1:
if v < d1[c][0]:
d1[c] = [v, i]
else:
d1[c] = [v, i]
for i in range(len(S2)):
c = S2[i]
v = abs(m2 - i)
if c in d2:
if v < d2[c][0]:
d2[c] = [v, i]
else:
d2[c] = [v, i]
mini = 999999999999999999999999999999999
for i in d1:
if i in d2:
L1 = d1[i][1]
L3 = len(S1) - L1 - 1
L2 = d2[i][1]
L4 = len(S2) - L2 - 1
v = abs(L1 - L2) + abs(L2 - L3) + abs(L3 - L4) + abs(L4 - L1)
if v < mini:
mini = v
print(mini)
``` | vfc_140394 | {
"difficulty": "unknown_difficulty",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": "https://www.codechef.com/COOK75/problems/UGLYF",
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "2\nABCDE\nXXBCZQ\nBBB\nBBBBBB\n\n\n",
"output": "2\n6\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://codeforces.com/problemset/problem/607/B | Solve the following coding problem using the programming language python:
Genos recently installed the game Zuma on his phone. In Zuma there exists a line of n gemstones, the i-th of which has color c_{i}. The goal of the game is to destroy all the gemstones in the line as quickly as possible.
In one second, Genos is able to choose exactly one continuous substring of colored gemstones that is a palindrome and remove it from the line. After the substring is removed, the remaining gemstones shift to form a solid line again. What is the minimum number of seconds needed to destroy the entire line?
Let us remind, that the string (or substring) is called palindrome, if it reads same backwards or forward. In our case this means the color of the first gemstone is equal to the color of the last one, the color of the second gemstone is equal to the color of the next to last and so on.
-----Input-----
The first line of input contains a single integer n (1 ≤ n ≤ 500) — the number of gemstones.
The second line contains n space-separated integers, the i-th of which is c_{i} (1 ≤ c_{i} ≤ n) — the color of the i-th gemstone in a line.
-----Output-----
Print a single integer — the minimum number of seconds needed to destroy the entire line.
-----Examples-----
Input
3
1 2 1
Output
1
Input
3
1 2 3
Output
3
Input
7
1 4 4 2 3 2 1
Output
2
-----Note-----
In the first sample, Genos can destroy the entire line in one second.
In the second sample, Genos can only destroy one gemstone at a time, so destroying three gemstones takes three seconds.
In the third sample, to achieve the optimal time of two seconds, destroy palindrome 4 4 first and then destroy palindrome 1 2 3 2 1.
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
import os
import sys
from io import BytesIO, IOBase
from types import GeneratorType
from collections import defaultdict
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = 'x' in file.mode or 'r' not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
(self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr))
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b'\n') + (not b)
ptr = self.buffer.tell()
(self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr))
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
(self.buffer.truncate(0), self.buffer.seek(0))
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode('ascii'))
self.read = lambda : self.buffer.read().decode('ascii')
self.readline = lambda : self.buffer.readline().decode('ascii')
(sys.stdin, sys.stdout) = (IOWrapper(sys.stdin), IOWrapper(sys.stdout))
input = lambda : sys.stdin.readline().rstrip('\r\n')
import math
n = int(input())
b = list(map(int, input().split()))
dp = [[float('inf') for j in range(n)] for i in range(n)]
for i in range(n):
dp[i][i] = 1
i = n - 1
while i >= 0:
j = i + 1
while j < n:
dp[i][j] = min(dp[i][j], 1 + dp[i + 1][j])
k = j
while k > i:
if b[i] == b[k]:
val1 = 1
if k - 1 >= i + 1:
val1 = dp[i + 1][k - 1]
val2 = 0
if k + 1 <= j:
val2 = dp[k + 1][j]
dp[i][j] = min(dp[i][j], val1 + val2)
k += -1
j += 1
i += -1
print(dp[0][n - 1])
``` | vfc_140415 | {
"difficulty": "hard",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": "https://codeforces.com/problemset/problem/607/B",
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "3\n1 2 1\n",
"output": "1\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "3\n1 2 3\n",
"output": "3\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "7\n1 4 4 2 3 2 1\n",
"output": "2\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | Solve the following coding problem using the programming language python:
Mehta is a forever alone and desperate guy. He has a crush on N girls of his society. He wants to impress them all and so he needs to do their task collectively.All the girls give him a number which he stores in an array named A of size N. To do their task, he has to report the number of triplets (i,j,k) in the array A, with i < j < k such that the triplets have at least one prime digit in common.
Input & Output:
The first line of the input contains an integer N. The next N lines has a number on each, which denote the array A.
You need to print on one line, the number of triples with the condition mentioned in the problem statement.
Constraints:
1 ≤ N ≤ 10 ^ 5
0 ≤ A[i] ≤ 10 ^ {18} for all index i in the array A.
Sample Input:
5
21
22
23
24
25
Sample Output:
10
SAMPLE INPUT
5
21
22
23
24
25
SAMPLE OUTPUT
10
Explanation
In the given sample each i,j,k has one prime digit common that is 2. So, total triplets are 5C3 which is 10.
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
combinations = [0]*100005
def combi():
combinations[3]=1
temp = 1
for i in range(4,100000):
temp = (temp*i)/(i-3)
combinations[i] = temp
combi()
n = eval(input())
a = [0]*100005
count = [0]*16
for i in range (0,n):
a[i] = eval(input())
ac = a[i]
c = 0
while(ac>0):
if(ac%10==2):
c = c|1
if(ac%10==3):
c = c|2
if(ac%10==5):
c = c|4
if(ac%10==7):
c = c|8
ac = ac/10
count[c] += 1
ans = 0
for i in range (1,16):
j = i
popcount = 0
while (j>0):
popcount +=1
j = j - (j&-j)
total =0
for j in range (i,16):
if((j&i)==i):
total += count[j]
if(popcount%2==0):
ans -= combinations[total]
elif(popcount%2==1):
ans += combinations[total]
print(ans)
``` | vfc_140423 | {
"difficulty": "medium",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": null,
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "20105\n6051640186872\n627261416550056\n35381765486\n881327430\n70\n331660044\n3162565\n0\n278303\n775746307000\n68\n722000325415\n15\n66\n5\n677\n67518600103\n21850\n34624348521\n83222787581\n486630457775\n624363\n62\n5407687372806713\n753533241724\n4832826318216\n1037348647173\n25182\n674467\n14\n574713637\n517326451\n5477711748773446\n137002071720102\n8345170\n177531\n16835825225\n6318878803\n4146607743\n80524602754422\n338\n8227373304\n670556\n4576136865485\n617477356\n23870\n8028453\n803032\n721858553\n758836747730\n80\n8040083\n872413623566586\n232282\n115760246625325\n5663623\n3844026017833437\n40744100\n6788560303030120\n3542227521400351\n501763835778\n426517\n4\n666\n814443821767324\n4821646235\n712\n50\n740\n52505883572\n464555631625645\n36228\n15771732\n20504\n5135464501633052\n152872270\n2835731\n16\n10072858521\n3248240\n254375404\n2361431658615\n2871\n2\n4042\n44644586712\n8321064305\n4034\n453\n354152744\n314563584347311\n1327032216712801\n677066820324\n868123\n8776324685784652\n885442124026\n1815585333784808\n12107014114\n7823\n341557\n3140813\n8\n186438584603\n288347517\n1460251\n8872\n22748035\n134682826866\n23028886040175\n814\n74655430\n833835518810\n5423408400\n406147824236872\n580050331501636\n8563385877254\n555252\n27667841708\n8\n3608\n3332328330\n4836806375153\n630634343\n5286022\n84171161\n7\n3\n6633\n17186\n5717543381\n2234636475751272\n261624\n532235848051\n560825\n24336\n3184377277146\n7\n63080822667176\n206\n4408272748\n10\n7407115354\n8033775\n743657\n87\n7035735222743\n731433401022322\n8685\n2881354\n52506\n470534147756\n872276626842\n73\n5830865768148\n30\n1305617668180138\n488543423638802\n5\n268527728\n626248467740\n441\n3183\n5568\n66302\n8\n7678185574\n37\n142538634\n46\n66114553622\n71557654211\n6\n768124186142\n5070586833770\n6\n71006472172415\n4\n8882477657\n758335855017340\n504381\n10483656532182\n4303\n7456636652613260\n5\n2022\n31030775285751\n17731558036\n15532874525\n7357\n7\n618827\n8528460274004\n61075\n20087616666\n77373\n48478\n32\n1054631\n11367733718315\n8587\n67\n4385\n785624000287450\n526561771800\n84434540831110\n88\n478\n44\n1135536303\n82\n72\n7\n720527\n544842261103866\n134363\n8618\n752261001\n843\n51580\n838267\n710872\n801865688435687\n25571117472126\n625057806\n448676222106043\n2414803356\n645\n6710\n5212252784757\n61\n323520\n46080\n5\n70414\n6\n58553518\n813874\n518882663578160\n17605068\n80\n2204767465\n71123261772\n51\n40585556655\n8015\n451\n7\n66\n146044722734846\n64620725875278\n31501138161847\n62386240682276\n85\n28368366\n4\n1103641145280013\n261648046\n3730235416618075\n86\n65715441771305\n74\n3105045481142\n457175538\n5852\n5372234\n25675470005268\n7746548387572252\n68842217\n200332072041\n413\n5284212868\n354\n1\n2860254235750\n676841603640705\n5755110\n6\n17\n842\n5204575156706\n2\n286080508323\n1577241827\n3581344\n43837622\n336\n184276704\n611277264660\n22\n1386603081346\n54348223450\n82856772645330\n2\n3054534161545\n361843773210\n8432\n1107150857\n833327731\n52465\n48852712271144\n3722847\n221\n612\n238\n434051554\n1162286\n4814\n7335\n31232325\n62552232358613\n48474123\n4802075432457564\n507143\n342622126104\n408665\n267422\n47646617713\n531110431280\n552846376020614\n85604\n205308615\n7157820680537184\n54157460286\n46\n25200234\n2434424\n16\n3683702502701\n407545\n18218\n725735861353435\n786863338\n65233\n361535711121405\n80874627\n8464\n666776620104438\n75\n31804170207248\n7081731420565\n241134\n2145\n46730\n3706367040764574\n610430742203\n56318\n75021055117\n344\n12731601084\n45843303723885\n66801\n4284302042762713\n487340821\n188181005744241\n16378\n61230653\n3235485538370\n65614455\n52377558133\n6445758\n18718465557\n822563836161\n64038518565\n76151845071\n3\n5350445010\n45774134686\n20843017876580\n28\n17108126810\n25380\n15\n25232566380110\n575776\n6407835170\n257227543266\n3537853336\n16\n156721657028\n686015\n374452304467\n3684688462\n2807\n21524434224\n588822\n38747318078\n232621157\n284467102\n43704\n661483087\n335187058377276\n466453\n527048382\n1638376\n442\n4322515636\n386167034\n55036\n3073881532\n8275582\n4\n75030287\n43138852333\n487786270\n317174031786\n777271332087\n16304\n0\n75\n814036\n462306036437\n2\n7470\n138\n1062632103\n7417487825\n18838518\n5\n171\n3782025560\n8403012515\n6014837701\n556137272517\n44535451101\n40\n64825\n54\n34242406\n270800\n317040\n70\n773\n264811135202136\n62204540588\n58838\n166\n23643632154387\n1006771\n11114580556065\n32747585650113\n112277785\n40650743385782\n25524542688062\n8012005638076028\n587044471\n6422025041263\n11565077\n1\n6\n772045\n6332565\n31402887765333\n24110\n4156\n7665152456088247\n812\n66478056102\n643124\n458230132464064\n0\n6074044125453117\n316\n8\n664\n8443810\n4602125587216\n546353810\n401845\n200415538\n546\n3450832\n17223\n4\n84234166663257\n36848451\n0\n4\n781013184137168\n53428680401000\n7411032851\n857855\n805231830352\n1662\n454876\n202288787772\n364\n0\n314618\n278432651352678\n88150618\n7636\n62481\n831807418023308\n85542651703\n2200133270\n222\n7522006\n42\n226855014582100\n520104328\n83\n872\n83507731578341\n88486720114035\n5\n21524647405008\n362\n6383347568\n120103828035042\n718165344\n523775330546723\n60114165132773\n7\n1528132684233186\n2522433434435\n2\n5327525\n143\n213461560\n1027682288\n2341387\n52821457427473\n4762615\n4355483855448254\n657085870833\n74\n108451127\n0\n7105763057\n2\n3702026280336\n6027\n885\n2847\n4\n40125120011535\n274081781858\n1744080616774651\n206880403\n2284735\n4835162783400853\n64408350\n453173316456\n18217467\n130476302204\n4373218333763\n648\n452088418172\n6417253533\n4800484012064008\n62\n720\n7512331272386\n2015360853\n3084110\n50816\n6\n6060477635816\n441368861236172\n33018\n325\n304\n356157832133208\n313\n627355701\n87157\n48842\n3242856\n734611162232255\n42368825\n53\n83801866723757\n3704136\n87686\n82833408301\n3447635502636\n41330\n2856720\n460787047\n1034561408876\n714407181\n1\n7635012358\n51204\n732435730\n262354\n26881230250238\n68\n1232\n52283063311\n8587301\n43725\n6244874\n6545142484\n22\n4545378057437\n4672\n3516248\n324\n30004772263260\n100613\n636377\n163632361841356\n74110614716372\n37\n48820067685\n5582048688782\n2072852438711\n53268400287\n4\n288713660787\n78641576603128\n2435044466772303\n303\n734423867263674\n632087570\n72634365338504\n853042622\n3\n185104185852617\n864672176218\n42088202\n716134151671\n35140\n140188571458\n15825160364\n5653\n7684444130757204\n5374183217771\n3027374247228\n1\n665\n36872634771644\n168823660\n55743\n147\n1\n7231573744\n3025761\n50\n84557327872325\n117\n5540668\n160788707440\n20\n6654240355408051\n161170660710\n2\n5600\n253840665\n265854617308041\n4311330480\n11760506765376\n7884\n71\n2324\n433771678\n43080\n471124322354388\n4673708138\n4665053144380245\n78506850000656\n6\n4118\n22736152\n1134781\n56600514334\n56464847342414\n75144838\n83773\n3853\n3003305\n8337127\n55315467\n4063301688\n4074452034\n426202\n23234614732\n704867266\n25\n1021\n3886\n585858145186\n408061430\n5504105\n135613\n4206401043573701\n58401210\n8327410774\n3820835424642\n436556321453814\n7516400858006811\n235027\n1242786\n204\n3300167472586\n876154833682363\n8638574865102118\n4255645\n762414\n1813\n15\n5411420\n30034\n86\n756188253\n8\n3517484787780650\n613848457366\n7\n5117425\n43043776\n728650\n66043636\n8\n1\n4\n7288637438301\n841307\n54038666456\n5027083\n48070\n856503271817\n4681\n30530\n3326\n78267\n3176\n468184774232\n84238810605318\n847367285\n20476188804\n487\n886882577074072\n530312260465\n12612716751037\n46633062\n8775\n1241248387168083\n556668854\n4076277\n702\n63638082723668\n26065\n1706\n75054357748020\n532267403\n688010043820288\n485\n2831063524747\n6323315212240\n1288558\n717273534643700\n7565681281371564\n51\n22\n1225407\n7313846\n567438564385\n4033813130785\n4067563623173078\n1831205\n4140\n8\n186\n162557268115501\n7\n70\n131238545734661\n1\n1567102\n34536847747677\n361142641\n872126474048\n247378188\n84411\n8003\n84253777467382\n20311360504\n278536771435032\n7042613015720\n24314700120\n6\n3786772058\n408332546\n157124704465246\n1202066261585\n68555105\n286040701462107\n1232114300410\n5061051707\n347873\n860373884122\n5163886207563\n524854446134175\n17734162368\n512130200453\n4772840\n5101345787\n22877836401231\n81184\n4376\n1680\n2781507876154\n83343432\n24143388747781\n7\n282067856702221\n2684276\n1556035\n11171846\n2132532\n344414547\n4\n2201557288762\n536332286\n664275\n643270581\n3\n8250627\n806\n8020078312783051\n278218727108883\n34\n7126328365543820\n1805571156418800\n3836482324\n256676221227068\n238\n600207\n60608454253\n3354723846812\n124\n631773558\n8632\n3\n1705\n75583128340\n55047\n4335867116\n51\n256101658135147\n8842\n0\n8062206\n262550846442\n2\n4265810730\n1032\n6162336276623\n714358137027847\n473\n2626210\n78577412\n22558438755\n60051720118\n68806\n3123657114350\n7765864\n667834375151\n7214\n3317705272821502\n68644003064\n3473207832\n8\n1053626304685550\n16348467\n27\n26548212615\n604226618454\n21635053803547\n483880554\n45720856\n8587716370868\n0\n38655811248433\n848465523\n1465387687273\n17300672830\n835173\n22117\n27761201\n3\n4772742236853443\n387166337\n40840378\n4625240038365\n7305315\n88157575515\n8348207\n5386012562232244\n73705205767883\n21205407\n41854333\n5338\n8700147105\n15371\n281440\n28268774004\n680331\n5068844504\n484741358565\n7443520138762\n60432654\n3405235663021801\n848882\n5386076367\n25\n31588637228633\n634145612578186\n6117226346\n46624512524\n3856785\n3\n13343561853\n331345\n4888301705345842\n1636\n3566030\n5884864\n3007750527206\n5171262288\n0\n37\n2473381106577163\n8751236366088528\n2785534503763672\n70227560562\n630545\n21377003\n885576\n861720245\n5351884086547022\n241508173178\n7\n828707277213\n832\n136642\n75804\n1361305485\n607\n25067653744383\n344\n3058628726154\n5\n17088\n6172\n88743865247333\n4418601\n663672826\n25870277260140\n5237587841436\n8462582055\n2035257\n7\n33382544\n58803116\n70128866404\n431\n554517481328070\n244\n163326827\n3552477\n7\n1272680824\n373174777528\n2787877\n335806310\n3310836526\n308780630\n461122573153560\n67801366283223\n12428088264741\n7624252531332\n4568\n587727553182684\n7\n132528633648874\n44045557\n2328\n566200\n842224\n6633\n2543022018\n8223544\n701420\n802\n156306734\n6146\n21572674828167\n80517312577881\n46\n26407\n173\n342\n8568858800\n6551537360647\n34337666746\n652\n1678302442712\n42287\n83477585\n163230\n3431481316\n2\n61088805556\n760715\n487010707\n668788\n22645732\n48186348\n8464\n2038887\n73687703\n64\n222686532867\n7\n5866\n5411852578\n205768502706\n8255480368101817\n587381713300118\n20\n4\n5\n53326054616\n4126873520888184\n588534256625\n66581008166\n20445050\n6707041028117552\n56\n862260831\n7021\n47818178662\n8\n683833044\n52036686227\n25632\n72\n13053\n3716102\n776126025308826\n67106148\n881645142205\n365608\n712767617543472\n7715155\n15\n315\n20243\n337674348738221\n443308004884\n201206847114\n53\n76767530340\n662\n1822\n12428372701102\n62762\n8411388\n1\n5335\n6245\n464853252\n650844828268\n808603103548221\n354741622717\n820884648510672\n8851324\n27862306814545\n6001688\n58350287\n5030227037877\n51748211\n605\n806\n506670\n587482108060746\n167258\n371287\n256803772081\n76\n3588022228166\n2\n7282435376788\n24\n5064333\n357\n43730047650114\n8878\n8526655045264233\n3610630\n72770485\n134\n413\n40\n582333001205\n4\n8165071334130205\n428177207433\n511608334401\n852582216611837\n458\n5264875834552\n24432871103702\n312802011\n46428884830318\n21\n3\n1\n3212876334441\n15888\n3136\n278453514\n2684568877731\n61420624715\n5101774303336086\n8\n516827342382301\n5654347\n3142223052384418\n7483\n7\n65074636823\n3348512\n7123625657310\n5888430482063615\n431257\n6485430663615\n807216186\n72066031\n44837272255766\n30102548482121\n350422501431\n4\n241575484338123\n1623822\n2645122655261\n6010574\n327102\n8702478737382480\n5244758\n54840\n6557234355\n3074253\n183618221\n7557077\n2612510520403113\n710081001572\n2745450301367\n376\n706\n17\n62\n11633607281023\n414770547\n661660664757\n54674638875\n38622640445572\n8258020543318\n15041\n77441470\n36260180\n27523418838\n5878814524\n2112433\n0\n3750717\n717\n5\n61430121200\n1472\n83\n403572422563\n85511377034\n3\n212843780724\n56266658324\n8687847714550\n2\n112813\n60751\n17437586661347\n842540\n63408\n6083641\n3455630\n517122861454\n56523855\n60518\n8801000718\n36544674502\n7173\n6272686282184\n535255125\n3448217072232447\n5083174722871777\n75738167\n20\n650030225\n7270667\n538380432326380\n77751711427774\n7804676450\n2266013722\n454153755851464\n214056481387834\n511716736840\n8183730123856263\n37722487832368\n531066487802\n4\n21610750784\n85140244\n2821506653655250\n828226252623806\n4378450\n8305663635044\n1410684272\n6\n386\n338206\n774655668622\n3413051\n35167\n32\n8\n7\n4536428068\n46352\n532684117075\n43444310111\n5\n847272337440208\n8863786173835008\n72850733824562\n231013120\n72827524367\n820340\n64715\n300212831\n80857748354255\n3670817766646\n705\n6\n830572457\n65\n3845551152\n53150625\n7881828443\n708766722434470\n44162\n8055001607\n67416484343\n814788017657467\n21\n7371\n2202\n5240743188\n1058162183\n55175\n532541775723\n33\n7148763303485777\n88876263368527\n15552831627338\n45216\n2353\n32\n5011516186\n348\n40454758874\n71353\n850\n73585\n58177\n18506\n301283060\n3211077\n664414\n65617\n50201462175\n5375\n858607\n1402203158\n10101114\n7\n172753\n858521\n4002\n16607021051256\n5563130\n51561820812\n3\n26725472360\n3547747545\n5161365335506038\n85\n53531256253554\n35566866825003\n12871062\n447500013803427\n66551452480\n155665157\n3673313681\n4\n56716214467817\n1841022205\n46115163\n2182306\n24420475634577\n127430610\n400835266361868\n88661817126\n744843816\n7126836578007343\n46235133728\n88045185\n3853736234\n858747215610\n856182467837320\n760132768845\n6631253518\n32831044164164\n0\n8553331731\n2550\n7815632314141\n4660027427818\n1134002032\n1574\n5070851874546\n112307533\n44704\n52228\n4\n71\n451548414\n6\n810\n7031787400258244\n23567487468\n3677406\n67566283541202\n75614\n1058228814265148\n686218063\n3655463018211826\n713366\n800\n31652442\n6164\n5306181214317230\n50388\n482138\n6\n210038602780\n477217022\n18\n3\n1323072515\n6381\n4703\n1832\n65070\n63347\n7\n830220422386578\n82745577\n354700507767305\n746644435164735\n8426\n843\n282658248167\n1423\n5730525047447\n266185703\n7461454754815102\n254560487\n341732\n7225504443732171\n84046320750\n1578561168\n20\n230628326\n514\n681530\n5203326406801\n872651306255\n161668402601\n3612\n1313848070817\n870601\n53\n422288851685\n881\n765451706543\n6484062766\n504\n4576\n567785886150370\n51682368\n8305\n488158\n20461373\n8000268\n41578711530\n6588605\n32025\n4147473\n3157312478\n370435670522\n8770864536031828\n725\n235634034343\n76020\n2716708318626\n510016182\n711845\n26\n36\n74065576478885\n3801566003\n6425472\n730616825453623\n550418703\n5054826\n7\n525516\n438080443\n4038108236374\n625212377775\n4776\n8783\n34463763\n281348270628208\n587\n36463\n8115\n52801505740\n283484\n783008736\n33665462\n55668\n673636054130665\n5\n355\n5\n58462553261728\n2800508\n417772\n4008313024083\n2877758\n32537\n8170067243728766\n1776201\n514441040115465\n7650\n21271312735\n26353425025\n1644341611452224\n741367364886421\n7610618174758741\n332075\n3\n160173631716017\n7183255\n2447521240\n723488680337136\n2771182728\n75516\n303088411420515\n1683780165485511\n1387\n2107464723556\n55632140751825\n34385\n88436831\n317624865044174\n333\n52461081570\n42112316145213\n4378328\n77052064710226\n87\n115021557874\n16454542644046\n11132028523144\n3216644\n6865613102217110\n82752\n3\n3006305320320\n830\n827488536\n7574623865562\n4312140035116528\n4561\n2501\n352688583333814\n323332\n83841468\n645568\n457028743286372\n113240\n337146878840\n11640013610\n74722\n6522\n2866077562\n8200566540881\n8520234875027877\n611214\n4042053\n38117\n2582011838138\n870870684\n76868371086886\n5381852886686\n821\n541334\n433622\n2438337287222\n628\n34506351\n106\n1534210\n78854344\n8601655581\n538\n2563011\n60424775120340\n347\n1658418043702\n41\n38640526475\n783287873182217\n7161351032833\n258775\n45274725240313\n73174\n2712515\n2312711433462023\n37245728\n6085\n5\n247\n28315\n58047545580\n154471578331782\n6\n174117274276860\n482882503\n8447813357427224\n136014778845123\n7304578326232\n371703313\n841545046\n686563826566038\n50121825725362\n3371850\n231305073055520\n503\n1537554637420364\n6517104145418\n4237\n6415414075323\n77651100360\n2411078\n30033042\n2280563063\n105347\n4280682\n101635\n730061551805483\n27550221\n26630567263\n5\n2\n68846883531600\n1336\n3783867748752385\n6\n3442587\n78\n5655457\n8318644532166\n4552264266722781\n5553717345023\n731861267\n526382632212640\n887352834\n354585\n76\n55800857685\n61577\n7201\n842301650456336\n540\n68087730\n2870280738\n57281418657854\n3\n648438\n887\n5822\n2631\n66\n2241\n165208830688\n232550385\n6466267237726670\n7\n648426557203623\n7145\n805362324\n1\n2756\n4\n7835182123405557\n4\n22724212388\n584604154084\n8065710612426\n505816\n2\n3260108670\n108433761402\n74088181617\n4\n232667264645730\n6444602343586\n74507881538\n1681443662705221\n370324443\n810663\n373\n63802473485767\n7864\n311581666\n65622246611\n548522\n12807580\n220\n4435761\n2476854767415\n83087151413\n834\n45331\n1411\n532142757\n6713\n16348502182268\n76425676\n5421550430563533\n45\n4878373816561\n2856\n378542577764\n2\n7\n2740740\n1870116623542753\n16618524458582\n672572031310\n24228261317585\n0\n17546103215\n157167845\n80803757\n31822287842261\n10030377606163\n8505163171\n870\n3507426\n43585762\n26780\n630268782773\n64373887608\n680302\n62545443\n7480645506243\n184120735\n3788306053\n460112260\n2354685303440\n36637883221200\n5402708378723773\n323\n2373\n6045845645554\n6654786\n7268325273\n561004086273\n84536\n685720\n68528520\n608542166\n8227831126788\n7\n485753\n14435704\n5271883765\n223666\n0\n28271817045\n571650125636505\n5731417623117\n855\n1657165134\n753315400321321\n6285635\n603\n51621666476\n4232627630047572\n64302316537168\n808\n85118340\n31432376073\n625707420\n61422778\n67356256126\n202\n34\n10535124\n1572\n5847\n246158\n55230357067450\n76014358\n71457728\n2742108\n21258330535\n5\n2317085874310\n775511004430401\n63464330\n765153633342\n61441223\n72082772\n250613533675004\n3284403\n587115247818361\n23260156401\n5328023056250\n4472723268025\n712141\n61863857\n763308677751\n176614\n432425804632\n4032811412\n71360\n2544614673\n125607135213\n4656267478415\n3672482\n3737743035\n48618050730\n125\n8155618810825\n608666515785\n721167482487318\n3632\n72238615\n52867037421\n285\n254446671\n2668\n15143407857786\n7710776000267\n465685464056748\n77\n1152608\n3\n278\n8885\n1775131\n3\n353040177855\n641\n17\n68484\n81327624712\n434255564\n7712000\n54621775\n855853312\n68656718834\n1751002855770770\n56545520732106\n4253504645574378\n36028471\n3740\n8536\n2525457846532\n4171\n47855472\n638526247528845\n187378658\n58820787\n20263\n1114\n736517\n2634766113\n4387\n47742470321\n260361073\n235725263813431\n5850724630088\n80332507671\n12130257\n7275\n326332035\n650\n76242770507\n3867421267221\n28501810088557\n21080646612\n573151517511\n6076270652444355\n23871032575\n45318\n561641647120\n6073530\n11628628112\n6154144375187636\n3\n8862324088842\n8642377\n645100858203383\n755208\n67071273204\n278710135530326\n1508675\n273402\n133518471085\n504068128378801\n877416855708\n208804560238\n13537703357\n11627026646214\n125\n38758842\n545313887\n536627864120\n88610\n1574284530082823\n2\n422600115670\n63271303\n2462036442815\n41112\n4684182100\n544613081370\n4222820763481033\n476581\n5016\n16647545\n3024631008366\n34423832347050\n1746673666674\n2870504614025\n11566878886\n268210851\n624570541850474\n6024007870\n4008825\n3447615127\n30200377834\n57131005\n377766227183\n4735158058\n52\n3033876\n36171\n5\n81535\n4558877576507\n220886547166612\n4\n6\n505400\n280476118807244\n11727421566706\n73450548\n763765\n6037515561434\n735502814\n4856726324418\n605\n2334\n6244\n67176565\n628164146\n70176342648575\n4\n604870466504284\n5787021211\n66313874\n6627\n710308\n1817587\n13846351354\n2311\n32800461471475\n7138384142138\n33702\n341423833422106\n473880206734343\n1623150257765\n722\n5281526266\n5\n8537403157465551\n3\n4122652182\n484\n635711830434\n8016635635666\n3622675\n6751\n862517\n67141377\n4443073717700\n64706035\n20\n5301345762726144\n5423085\n825234475\n3110\n2780\n76237816664176\n752226888508837\n4877126720130162\n11018106626842\n5\n55227676\n655674\n8614607116521\n7524440487536\n470\n4\n66576\n72076071\n234528543\n80456040\n70\n3\n88788\n11\n62574125706627\n12\n2786162617433816\n74058126617\n835823\n4506546654061\n54\n88\n2\n5218420815634\n426224\n381080247828\n62403081733570\n5484830017786\n541744570613671\n7656642\n6136\n1\n46\n58786824560027\n664\n564076478\n5546832080283280\n837062\n22404328172\n684238460341\n3318434653\n277571061760024\n807647\n201885557620844\n282\n28548\n831562247\n5238566132\n25680248507\n13056173\n603138584600885\n67343436\n86346152408784\n67424\n17326031318\n20131307504671\n52256244641\n3254\n64134\n631774023\n760601446821\n553314120223\n3033551777315216\n2021021074517\n6368581177161825\n51850\n1132518085735\n32684226732814\n5061\n45210347\n721057544606558\n1278\n832\n58\n40166\n303128375130\n36111167\n1647528135808478\n447611477208803\n5\n4135118\n36823744153\n1712777213084\n6816815637506502\n801766288\n122146800707\n75\n40063576866850\n57\n7825320167\n445\n2755445764028\n77633675388454\n1310511425706\n2814\n351780551705\n48\n68034038\n156\n33825017\n44526702871\n54141837300040\n3238851350406530\n7408313308\n7777702715\n2\n75376620843\n153840010104273\n40\n846\n705805153671442\n3354714\n4508447113577582\n1011407778457815\n8223053522\n5\n31466\n5277\n22817020365713\n57523846\n681\n7\n8053336635\n1433\n528\n4568703\n40352830\n4542127753242\n0\n746675\n723687\n6143513\n7622306685\n846005168\n22103782014344\n82587283624785\n75386176382\n6855\n303608035656\n206736830373422\n50\n524475653\n247838641688087\n606653416631360\n50\n862328575\n871660103204286\n2\n144\n27748740730658\n424176150\n3148\n6542057542024\n2\n216\n7287\n283123118\n84\n2\n8516011\n7438507\n16455\n17383\n26663276106766\n216402113385\n5811551\n77288575557556\n845146114\n465402765\n505430558\n602440022533\n3404764802\n4326528\n1441\n4000422431253\n3344\n7432543\n3651358837782778\n213063745488\n723\n863\n3241112386706\n5880070483445\n616156\n32172\n7\n356352328480705\n53511\n187\n563607\n7460606141286771\n6751472383706\n5311455\n702477033853438\n52453324301\n3443151067045\n64250\n3\n84172274770450\n8685\n782047333130218\n414887\n6532\n385676\n3840545223270\n341718862\n260\n8633472\n53165402\n766730557320\n5\n8122131\n3223\n580362\n6\n8318771\n14733\n1115632\n6\n87068431731857\n40\n6\n73526817\n58823074213\n21078473\n612732\n50864855115132\n18524831505425\n8120\n81\n8\n105476277713\n260535745\n3377172828841\n204136\n47273858\n845061503276355\n428171858\n3807084218\n31030\n571230456375\n4333\n15626\n1\n5008\n20027552882787\n8374\n48568732\n577315264\n32052\n677\n13782101744861\n4\n664316208302\n13703202436\n76147830\n8272330\n74586824357\n423\n846248771422\n2248014\n68\n747343\n201\n6\n82\n85882378\n838456000561\n814215751011\n36450\n73\n1763\n5\n140\n3631164625027081\n27477534484\n366\n73446324881637\n2023\n800452147\n2187033505712864\n1\n3563\n6543663550\n623686537522756\n35501071334555\n2\n46\n35\n1340\n703531248420340\n88\n323437542755685\n563786336640355\n521614702\n865776\n5833086\n574452648\n5286660081101448\n105401\n71005544078660\n747\n3\n352051\n67863461164\n1421362\n2563535171\n8176288444425006\n638\n376526377736\n4\n20055736375\n438\n6162\n761378277172\n5134107761\n52571156\n3564755852378\n725\n276\n86481600636\n2570\n75201630018\n301530154028\n171313822577\n15083052814507\n780\n7248488230232\n1416\n68141821155\n506050210383018\n346288147313277\n54678515678702\n53370\n464320\n2213\n44660014231\n8024514017215056\n4\n7428\n3646703463510\n2005402\n652004805\n318177816385\n624030014\n66411101235588\n64455804228\n4484236612617353\n31260400188\n3\n12708373064418\n514683205253517\n762633\n353110\n668\n4\n585587367855678\n43847658\n270228426\n851\n24\n4668838237\n71046074\n27712524\n61155267526558\n721500118255224\n34\n83430660072426\n843074437414824\n4345518334473323\n2007622730504\n7054653\n280\n7506842713\n6063315686427154\n5636082887\n6782558\n27440\n3806706414073\n531685310072\n482\n8758167803\n2\n4806\n86780852148578\n28\n277\n6\n547528206\n78748406\n713\n7888831635648283\n3026462454046\n3\n547361\n337067266\n561286112551\n6623617531\n88\n8\n217413261\n885281411\n838543220207405\n250\n88257632382\n161110671\n753\n6846851430067805\n48302332\n23004678323845\n76343\n2\n3722755254168688\n75015475828548\n67207\n8\n36558\n443\n341\n0\n652505\n23322745285646\n233320843\n123825\n68071\n210543\n30784\n8125181374021\n20470602857860\n27681\n66186445376\n6\n54257006\n215\n73507018\n4\n78271830036504\n53\n3535778817416087\n356810421\n14424575\n730744081\n102438161265837\n852300648580120\n115432287820\n77681157050040\n50415700254\n175143462\n45658682352742\n576\n576804258043357\n32513242516834\n5476381668260\n35\n4546\n2011108006443\n64461751156\n8864882656013\n151048044\n12026\n27275101824201\n8805\n14463160\n321\n48624\n834243860\n4103200502042370\n7161838448656\n228765043\n60\n8334708442686317\n2572514637846\n214467\n5135014035\n5038\n534755553830\n30858733540\n13562748147\n2314\n62646701068\n45\n32078853\n6\n2840620271\n374214175585\n687681\n77006277682\n32750328465\n65684175564317\n170755\n7\n3\n774030072360503\n52248241574167\n2604687\n547488654873137\n357785321782\n3016\n3165400172448\n8532118784\n74467883528074\n3067824147\n3562018\n14612\n28705124034\n375\n7782326418805\n137880710617\n621282711\n55052317610\n645487764514345\n36670482\n521225602888467\n121826\n7\n77\n48784521511\n174066630423\n3145\n1845516235\n21\n2244\n3431878\n8663\n3173\n841111333423\n3\n447405250\n1\n162733076378236\n466110027\n5517435\n440187478074\n6534700\n0\n4312025031725405\n4\n28\n24511444140\n1401\n5\n444527145438822\n17537043\n363\n3060657078234541\n487616187\n3462121651\n761757\n4255824584408\n5437\n334300\n612504726327037\n81350500764424\n1112566\n521506165202372\n400161\n4714254805\n231231728034\n56\n15178\n784\n337147426887661\n52547763643\n816042743\n58400484780\n58524\n6\n7\n1\n1063687505233427\n14717165\n7525241033823544\n23552602200\n806546473\n45285388513\n63462\n7031075706883331\n467\n648751772724\n6\n685540\n138587771673721\n345700860247\n8866316046275\n43520331815887\n2\n38452\n53282051801113\n28350028454771\n507381537\n7651782\n28057823616\n3661630683026817\n15075635775\n70477285\n57535154527815\n585657602770\n8316\n1813230106310\n764005\n2362807\n5157\n86323572\n346028232\n312637\n36\n5\n4501441015\n71344423250\n427725151\n56\n223\n485777744\n230242148887122\n6662710046028\n17\n5650318315574\n675833120386866\n744880655\n585573205388406\n62\n7076527117288324\n363307\n18\n44528686747101\n3216445454428525\n3261277\n783000330781\n35682256835\n3743160812\n5741\n47601778\n57457\n4723312840\n25112856112365\n42847\n44100\n220538\n40\n206870537\n2243546504372581\n560256\n20887625082461\n67875\n0\n2583005863651663\n25\n774558404\n77105\n3\n12288\n3431364243\n718583\n183055536\n764\n67745668615\n7745\n360077673\n34\n70408\n4271528111685121\n432677022176418\n74172506487615\n41537467\n16861506386\n263768\n62160\n2014602526380\n260057846\n8312601\n41115\n26112207\n667138407\n485802850615\n21863055886\n58763241870588\n8515028575\n8271866\n81134354025753\n2013524\n7705\n313724583202873\n2\n75\n5458\n155\n5267332051262670\n315662741\n5005736\n383\n618\n801\n4843641148540068\n14226134853\n882710\n0\n715\n45505455188\n34277374\n2736641675\n30820536\n1711\n674808283411\n823\n1543214573074\n60654288353825\n86457674524\n3\n287865\n7841\n561485226241505\n77314\n4838622034466\n33848735578525\n1533338806118474\n277328833754073\n401\n426143605757746\n4022035704208675\n365884765408\n564237\n3205828\n0\n2\n4343384\n7058\n28735\n24\n7413280\n1104781573246625\n780\n33331\n761774\n6660121631020\n11222412443268\n58340842030724\n1\n6667450514813488\n7365356044\n871007300524\n3276382188\n842\n33431313216\n0\n6746121256556\n30738\n20253356355010\n745022\n2113351\n607532567380613\n323728134\n2786656\n51\n82571204624557\n167267872547\n54730627145111\n875120\n7221838431\n481403381\n0\n4334188\n4686\n8\n40\n65\n1180445\n87781726300788\n88738240312\n266144552068408\n738750\n454755141621837\n3152317082520346\n123031306742870\n11068231\n121474173835\n74704\n6645811538361\n282160640360044\n622234814\n862351080614834\n13352053827430\n4\n246823472778\n517052112\n38211717\n6\n70888287777743\n0\n527023860542685\n2283881782532715\n21\n15\n77634427458\n36731\n478311550516\n516403366\n117035126\n5\n2474036\n76\n405305078321\n727702806\n1657\n1802323\n836560\n118746335317\n3864083\n8062878\n375532748851308\n8505847345526\n1540200103\n674084\n4244133354\n83\n4053012\n48844758375645\n5873808\n711867410052\n42562688\n2085\n54346\n2888757\n560487\n87876\n758785158078374\n3575057420514726\n28370702\n4456470\n38\n863383\n11304408\n5487203\n2370505641\n78424826267\n3476\n7138\n61884031000\n43788\n271636\n46011400112\n4\n31717\n2202850540084\n7870\n72686\n621012\n10171871\n11\n22621327361\n2648627167257310\n650751\n75\n4888055060857\n578732605345565\n7582246425215662\n8412\n61274765\n20317\n56\n187611364644723\n7067028\n858\n783161\n1022171634\n281\n8288485\n170824641363370\n47327\n56575\n47\n2040846\n371031\n136302735113087\n228\n73246620588411\n52\n4151585341\n710263001266\n3707615778836\n32311846\n81836625578\n81353\n160874234167\n67174034\n3785318637\n57344841\n20203034\n454843315504\n8106474163\n41242\n12684163640\n50046323\n6743630854141001\n838814620504067\n61737\n33\n301\n760011870818640\n4\n20140622\n201417001020660\n14258008665122\n338\n71065\n42303735728\n20377\n2117336761087287\n6\n82126616165\n0\n2475454\n64815\n7216272\n8837326\n3622534584485\n457785816\n23856\n205545\n7\n3653586853082\n4180353\n8532073643202737\n441126\n3656\n60\n772170848636\n680488112872\n813164\n1\n30251757342\n11272247485\n2825848372865\n55387555\n12888302678605\n712\n86125760776413\n4506573\n753703624305\n80\n383082107743\n4851606587\n5818871\n706138853773353\n6558150767\n37274475\n4772320437822\n451585355836100\n683741\n868032488221\n5208844078012\n4328\n423187\n422746448\n8813614\n63503104585\n2254513521\n84737432312\n1\n10\n868663730076\n4076\n6161112\n65418238011584\n0\n316206440562567\n47835301787227\n6510203\n3\n57430838704050\n115024\n8844704\n4426\n1133221253\n63730032187820\n417142440532\n253748\n182322534553322\n4381060\n73573\n45616741607786\n808\n485864611\n3883457\n118635418\n5121843\n381805700660261\n22218163\n68411\n8135653\n8670\n552356\n68\n361\n6415541\n37018622665653\n462451878175562\n51\n64333635\n8165\n2886431\n808577870816587\n3778\n331\n74141471857\n8156885278631\n80681056814\n614\n3824262\n7478516\n65345704034\n34852162271450\n668571\n6730410024\n72156468453717\n7\n1103325050770\n2\n164707488607634\n4\n27873280628264\n6358\n13786077853\n2137466721373\n2\n3867060542017278\n521106116435144\n836308664\n552227467231\n766883760633200\n74464546024\n2383058128311663\n4417233218384\n88713513\n828\n3414\n16455871\n168434\n84\n31211717501\n837156257086\n1881282848\n51202835\n8520520165857\n436627438285811\n88375325227\n585833\n310376188771\n74\n571\n211168600\n665563\n8038356564\n7504031\n46\n63\n20073\n173\n780376376\n86614302\n7860164\n2\n3140328\n48271\n1\n87037307357112\n16542822420\n51\n2308451678\n1175\n58\n682472165713263\n6748857333546600\n446268277\n413843\n2362100175328687\n8726055750\n160675257616711\n602\n324115324467485\n7532551\n610\n416616757358\n3452\n2\n3014\n2204615\n57187074055\n6114704726632065\n277301261\n453747847\n626831148132\n62022570\n58648\n538208546506645\n643\n2432460671\n385108626831307\n8670573822385\n86317580181\n7476580311\n8\n74715186557372\n5555711842811184\n2037543460182328\n48665413546216\n38313\n824711401\n5554755\n81248348823\n681\n16271562818\n67\n1633860605274401\n1306417440\n580\n81127118838\n880625371300251\n182801\n457688\n500253743060\n62121525112545\n576882345608\n1\n2\n4276715133262887\n6760557404838\n2464367450875\n8134043248\n16216603\n36\n26180\n707348658817110\n2086041136614\n1424250042601\n6023013801571304\n74262354837321\n8818766\n48646771610407\n8\n8\n87312857676265\n43581424\n38814510250\n688204127\n285302\n17052\n8\n181056367726720\n84283812022105\n5151336557\n7143231056\n67082803204522\n212\n655056227\n28361430\n241066806726\n7182655215265688\n4646813862320\n6\n45\n80504240\n6572560365\n5\n56004628\n224\n7375614\n847528384224374\n272\n872804362715\n5041835\n8\n6180020568\n1524518660113\n580\n32457855056\n73116748056\n61443\n53250500\n82\n7384524284374\n41106087756752\n5\n442128365662\n3571\n3080138851\n728\n4\n85234188186\n50042\n88813003314504\n6786626502\n833687385\n635714\n3374450405561057\n16065454160123\n1144187515614\n67847\n3323216654\n547\n2265752\n52334187753758\n818\n1628160\n8338430178507\n3135505576\n752572081768\n2751507170\n2362336821\n82653288\n77536\n76\n777388657034\n3446216373\n706317367\n486\n6\n88052586\n72188826\n651075604851\n141006627272350\n177804581712\n165717072335\n47078623\n652175782\n8856\n28525123\n5\n52776\n63050125321627\n568\n631618\n402761066\n2621386742804\n38581340\n5\n565\n632778032\n168601055082771\n200465\n763607236522\n6527157006100\n71520\n735333058564041\n77873542840\n67640\n6733211664060\n16362261\n18611511624\n83354336\n6\n4\n40552627140\n5\n583707382373328\n373326623475\n661\n525061641800811\n8012473633628\n206252836\n31087564060\n707405\n301203667768285\n3543581457316365\n3343231\n832318\n44421832871\n6807527044780263\n4541\n82887570871574\n183728574\n74\n4115132776885761\n4243260142325547\n4515765252057\n216061022\n153\n412847853\n8252876087\n0\n6588\n256373\n843780173436\n206\n3113015152712\n251437244763277\n2175047612402\n830\n46348\n2515687068\n81001003188076\n3715336165238820\n56284850467\n533647715838685\n1566711876\n47058365205660\n42542201473875\n553\n1662364673680252\n858451467870\n54824418\n563178387\n62\n708507804435\n5448\n54\n77\n6158003658261723\n5\n563355013644\n40451013825726\n8\n8637084\n180755170046737\n4786462170\n2235\n7370510288014\n18\n1\n28\n451352878083\n545555548116\n246450752264\n28381\n6\n174454\n181768010157606\n156827\n103110\n3133857785\n4585256101\n231301\n61763\n14\n17551\n221181448\n32843\n688863137\n382\n473\n563\n6703257\n540765\n2482448\n1151753\n6562\n822138857173153\n67880828025516\n2504127766682\n17\n7\n1021774876163552\n776\n3678714402\n66583\n85\n2534683615653\n862265\n661136406\n23\n414\n56785322\n60840344\n70000677207\n8080537550\n5150043072325887\n6463255\n420375472\n4617681801427\n416017771220600\n5520682\n51\n52675160861\n7516\n3\n42\n18\n76274\n14023265246680\n5488230007202\n65166\n38\n3208217663\n354728214817437\n4\n760825032653\n35557274\n544075740\n85002\n124632\n73105387\n841478105740\n60238421307\n26\n576356\n4501416307156\n7240480\n587566146\n55\n22714638037\n4\n56365872\n82757048275638\n17807280157\n40\n7346650\n0\n675372766\n8780\n57336407\n8304535612441318\n4045652605\n353\n3488282376606\n6647424164\n73061066\n445543782038178\n508113271354\n21424\n36\n7448467275100\n62851840757\n16\n4400085477\n7055\n66\n14074724\n12832\n543033\n5286057474\n2326677677052\n25261413574428\n6216\n1\n7147\n770677\n30887\n5701\n165848\n81304538\n37526\n61787253034\n3328861041\n6826704\n18854550804\n138\n141\n425255463200\n6\n478365736617862\n510\n15\n5744088481\n442528025\n1430221\n2553478578683\n244154322401\n503308132\n541734425060\n2284445558576647\n51384088352512\n47\n538585\n273\n3264\n2\n422102\n46525\n6730\n1336\n352727\n735480103\n68603124277\n62\n74628000730\n3787\n368344651107052\n557\n35\n3278730258\n2407758\n173\n5367\n6807555033014\n413481482\n58362313\n3\n280782\n66\n723275623\n13185367886633\n675502536\n6\n8088136705361612\n1252080\n263\n17673\n33621555\n8287462\n7043414646770872\n867\n37023768274580\n2\n5267135\n85517388172428\n78674534\n3832\n36377303844\n41707343\n30337850830\n26\n8164468\n144436401772\n68201402\n400505310\n2103223202351\n57827270613\n6\n555\n24416820240723\n68387126420088\n23100813\n3\n23\n782077827005872\n40178382020\n3476741483\n77730044\n531761622\n5\n73475046507\n7\n366\n541148342\n22\n23173\n54401\n85767257337267\n3360325706331\n8638722647\n8735287125\n564103174610\n67135636167\n61781285\n6825\n84308866\n757043253372174\n10\n785788344176\n1230843564640418\n4617\n7331\n401058314\n20\n4\n25780\n7053777851160\n370058\n7472748448006\n85484\n7886168327778\n1\n578205\n1651\n547164800543086\n6568572015584\n7374446\n260732343164724\n1086\n8883685\n831554\n65375812\n751265\n1341310731833887\n7470656247602\n875617341564703\n370050\n47\n3084\n252868733231510\n4610426826456\n760275250645216\n5427530668\n2263562\n115172157220182\n5172850831\n4306502\n2200078187842\n64\n315318\n4\n5668134\n1220471761\n3402771804\n2517067805316\n144800031251378\n521614645\n775351562650\n625825\n452367514728\n57875808216\n23\n675102484008707\n8\n2161705844628022\n2410623\n276074488711\n15833843862600\n8488201\n273473163623508\n130286263\n5367848758255\n7225713376581773\n675217211\n457886\n37085830\n62770261673687\n6000213172162224\n4\n5632375585\n308583078846238\n87315305033161\n21168\n3183\n67807076440522\n86614728087356\n243018630364677\n15\n507525\n6212851\n6681607\n56455\n1301887855448\n7633\n5428383418722834\n5015381273\n401\n533287735077\n241008574\n7236255224542\n3425432081882157\n3313417488506\n38456016\n6615\n857664466\n2444\n818433273184612\n164608811856\n733\n775808184244765\n1653888\n55244\n5431\n70053703144\n322522737202881\n7358525632341241\n3\n715485216\n1252\n35465536422\n7576\n67304\n117\n82\n308610125\n2248621763778\n517445670\n7547838077\n7068722476652678\n86414844143\n7671277\n584\n422433486\n16106656\n8557858380413\n5\n1121885\n165201\n2634327306731214\n3218327\n6667578548525651\n871661881\n74847828\n3203405074058138\n75076\n71301166514\n37550288026881\n5\n33178400166\n364165667\n221265678520\n310552261\n3642338\n46847844210388\n753\n660768466\n72256486\n6464735545\n0\n4\n386281\n58600568288388\n6060173888\n2528513876346850\n351350118007411\n462122670312025\n3\n485\n1354342374284044\n86123\n38383442541\n2708075\n6534\n75\n0\n1227333850\n337115273568243\n340266325\n207385161\n427005113\n44430266282\n76006\n781725115\n60\n6182\n6720145673421631\n470476662\n88\n3034473\n768103\n807400\n16625440\n5012548\n51173\n87850\n1727\n515360516316508\n8667\n86153\n50\n785778023\n140\n80755773816\n15311570328258\n7334\n68170\n703376564246\n35521283\n41365\n0\n722281001\n2143\n54604\n404\n6\n84686386124\n8533115315525642\n5541503072603311\n61583745024066\n87337\n453070127252\n1538173333115\n4752567422014250\n60700\n8324\n344382475872\n141013824773\n824857867148301\n24836168085\n67627\n12762820064423\n587774\n6241077\n748463152368\n557\n105\n2601665277210\n23703154450312\n35537022230\n7546\n87235177\n27121886\n255034200283751\n707675\n88468\n64260865\n71686430657012\n507861\n4235788382167\n0\n662\n4\n48754\n6237452271025025\n24\n331512062\n2528577847371\n45405416\n6108\n5546\n275704\n6480065665854153\n7\n5464788887213\n5137\n1137846518455\n380177756\n1463331732\n81713530727242\n5\n2853472\n1414\n1524\n672010863533\n15\n10244\n215130713761136\n258\n844\n756\n44458260245\n422053730107\n76240110\n86867234745\n87420776148486\n54357047814801\n10165202\n3660055245\n770114038046717\n175446470272063\n16264111530\n671103666474\n46\n146202147155\n6126731652\n620861513\n7564\n466055103387847\n475335740\n12016\n836364868772\n5407\n1236760641\n57\n54\n55\n823080760583026\n252084064673\n3016\n23547730327304\n4300\n433886105180\n6384800450\n67662567164277\n220554\n733853051628430\n374747322780460\n151245831574\n78472877\n304853767\n870565\n681778740\n33\n70256856417345\n635851535003\n11037556\n5118413637\n0\n110057411687\n861058168632034\n2431510\n85614\n5006207442\n501\n2286362826\n6135345071\n8006288433723852\n8802\n31254765\n822\n377710173763\n61522\n45484816353052\n864052800\n7\n71\n5165387348\n58\n5022248184268768\n21878\n470\n47435678880727\n23005851745464\n6704345670056\n740452503706\n73415524615152\n2284478746\n73065281\n518333\n85778306862271\n6751134666767\n35577\n83641\n8456747\n7\n64180582\n12122777\n20327248321\n3758624373\n62814\n4652847566888\n421811211313565\n0\n161082525404460\n132\n2410\n377264050\n5026676248817822\n257422545455077\n1\n264672830855054\n5103\n37\n6401172862\n36622\n542\n26807023743\n575125\n23286\n228402378738\n4654216458546745\n831760764075\n1833115506\n643364828433321\n6\n66550766\n6577507\n8415\n578760\n12881414054431\n86333443650\n64762\n23803\n21150\n60113682037684\n826371\n2826\n62286\n846\n116260165258\n783\n843040457\n547\n23227773720382\n300735172\n8477222\n7577232076201\n36\n8054\n35301046715752\n577\n2\n571217822\n10688\n621707543\n5402447\n73811348\n760650\n20616346645\n0\n81\n748065527112057\n1252718184\n110835\n302043736578854\n8411715117055375\n13\n5\n243632852\n687151465620\n520400733065673\n5762775661467\n676112136402\n614\n467531885773\n355251758665\n6143\n6675\n24587144\n62\n6863220548550\n614027\n86553844008753\n8234201781637275\n3327\n5535701670007\n316472055044125\n7\n11540228135\n17745431011781\n31\n54286703775657\n257562857847562\n837370210\n8188010\n862511256284\n63548\n210022285\n75871160617134\n63\n2327184887016527\n15701131305744\n564074605\n37\n67362012525061\n375\n50120\n5253000013032\n80\n583218\n276\n4\n5338578371421381\n22584\n116\n577170532701\n48302836474\n1\n1011737072642821\n6223850677025\n217\n7331317466074\n506806087\n6\n3675\n816368465\n5811383022355504\n4601633780707\n43\n745668121518\n56\n140658876377236\n513366882538\n27832828742213\n38208011407800\n66232105337187\n6\n412306633383651\n851342\n55\n111\n82553630057\n3072884604\n306\n16031260501\n7274\n258762260287\n150158137455800\n73\n47811820343\n60\n8\n312105522068\n470324806746\n8758611666121115\n31444546\n45860184187\n606724\n5724870368705\n2681308743183\n64501\n127157\n82183772\n13216865747177\n66138537436\n221\n8164055316\n153623\n4206\n212047542670\n647\n842384\n1438566875666\n8248166048170\n2304357175\n353536716503015\n56243366760\n187075502\n7423636631\n3138\n1016501\n41\n68113364880\n78\n1212254161248707\n28127658586307\n178080271382\n814332731\n60\n72688\n3\n207\n22870054\n0\n1\n6\n48866723\n76\n152142\n844466244\n20\n5502053630422586\n540023152118664\n853104783820\n84\n3446\n18704\n6187331651\n15510\n14444612017100\n714585630\n37\n5124801\n578\n63\n5180\n8236\n52846588284\n604441\n51811007567841\n466450223786\n70550110\n145314\n184247\n8145746\n4543\n4524383480\n1437324258617450\n57213136\n218808\n8860\n6737587\n6765416148557\n76424160742104\n6275880\n163023567\n1685354662764\n24163\n807140013314\n76\n705488618663\n8144826\n74811875\n31\n8537332234\n254441808016\n6642534\n812856\n403651745840\n16814160433316\n8826\n45718\n56765\n685423336573\n235751714846328\n36835014024652\n75658507730126\n6837303\n1343774437\n3440\n2\n1407351\n7863085068254\n33121338463255\n6556041834217777\n84\n16041123428\n761537376574026\n2335375486\n211021642\n624078428\n574251843\n3416254608456\n1858820578051454\n8551452825683336\n40\n464\n38684603281\n7510828338420578\n556\n55470\n181763\n21\n5284062\n364352877551533\n30757774\n462862\n170811262540614\n1\n162844456870617\n851483308357\n7101271075667\n438641346762\n488\n171206\n18254308\n6073642\n80850436\n5054262512106\n718144046\n78403863416\n6254108218662\n37427013\n420\n4763577407\n113\n27468683\n140606\n5521135558044\n786453700447633\n34571082418\n6823306047403\n545631032\n2378\n651487766524\n11260021754681\n134353224358\n8513520074031484\n352680\n4450425505\n3130007822265384\n63770483048\n313\n8853154\n353180758652\n4744500557728\n17582553\n768816043378\n242583566153\n20\n22451\n22621646\n45647\n67314\n78615144732\n8\n274\n2243487\n1338221\n45006113816676\n52768617538\n66075227\n7\n640473036133\n571717887673788\n83626758317\n1238737013008025\n236885822765358\n3855283502\n75567713330733\n706575655733852\n807181336425\n2138182\n1050243710\n53661280118\n71656338\n7507185756838\n21828801050\n28230757\n755157\n670366064643\n164667248614367\n151847628338\n448625102015\n840275672\n140512402727633\n52100\n6202\n11885\n87846072\n11234\n681778\n224265604\n8\n740343\n3524113164\n606443\n832318547577\n874\n302563407\n7245244\n2315\n760584\n6074634\n50477317\n5810740230214\n42032611\n401061233107\n8646683602762586\n2248767408\n51663354514584\n288723204704\n2326\n6577\n626457370\n80\n78435516\n22034308\n48600310454462\n5443810306211\n74703152452\n6642652050354\n22\n713460\n14\n245880173647731\n22\n11765032305\n626786\n4671414404765010\n522503\n74\n3687445\n3821531\n86723\n5275818884\n4408025\n10025727202\n86504682457\n6227316484142134\n1611\n2528407\n3806\n84467221376\n41377854\n724823177887227\n2752\n50303554880\n72\n6135460428\n4\n4\n4543183062636048\n5522\n46028760458666\n8303800743\n46\n81281133035866\n73\n353578541624360\n478847462425\n68\n580806\n387\n171246850\n786\n38151\n237\n5274036326852\n3615\n608\n46140\n328744568\n14618114237\n185764\n207840330\n8651815\n30378883762031\n651\n2311\n574231471387228\n80\n15401680\n65875354022\n88857\n33616882\n3246204302835\n67\n308428848707\n25742430\n8242305041\n52\n320571658144\n487668518656368\n57004\n55376782\n4308804187841\n7581\n1153330527175\n5436628\n21824637212350\n658232\n2265578355676\n3426538386187\n628\n568\n313230417580328\n308010441308\n3245038182046\n400838181518283\n4686\n6424537434864\n21603\n606846138066\n821345313575\n60773047600\n27646520063288\n43675831666\n54716705\n8122840\n1271\n5686700\n8378487106658\n4745331751\n6672074747706183\n4081036\n61210636763656\n61716\n7350738172204424\n7633705785\n7765\n8\n457147646087330\n1700165655226635\n4\n4\n814617\n4266\n242255334\n54085\n40\n5423\n7083613\n720855865\n1\n8012802625115613\n5\n8358\n5702667048760\n85222760\n5805226755\n5137\n7267848\n64567324221\n475\n25\n166\n671784632140055\n825024863287\n4747683530\n5483403766\n6571518837006820\n44753\n5740720124361\n6410855137\n2060\n1\n276145257080446\n4335167637706\n44616525748\n853448\n7220488447836\n56713561\n738864581151367\n706073035776\n76\n53083874\n6\n8\n322674\n3260805573871\n30165718246\n4432328\n185888645\n880655721418\n440\n8523143724052\n6186776\n88200013\n15017480036533\n601\n113\n1118173668257221\n51\n880\n47\n8215405446\n703312523260\n4561051608286\n47864628172178\n2852373\n2221063808627\n1422222372\n817373840570102\n184274162404\n77303065283000\n8665804846\n42315378458\n52506562100771\n6114402026\n436\n7055088\n6021\n82434054225066\n82774143227717\n75121071358736\n11186340641340\n4013071\n8800230\n6183707386\n371354545542\n660\n157511\n52781840276\n1334686630734\n624680356665632\n455375\n881878107486446\n730\n77624855145737\n752120626381\n301160210\n32361128077417\n3503\n7124066204\n725074733486\n415183484463\n4506\n53632600055300\n158714201650\n3\n54\n675\n6871467\n544470056517\n804677\n487816578\n53254051\n864171236\n47553827763\n486\n26000063215\n277771145505072\n63\n0\n17033026\n46003142313\n2051833\n680382\n3\n56410512355\n4618\n86871683584\n817617701\n282240080\n42204\n8530315052\n17475142280\n20\n53806\n45731\n436181416\n214431\n1138504253856257\n48225800\n220168\n7\n447\n585041\n218177667880\n7574477788540005\n8\n385004531052138\n1120531173\n11128228\n478720044550\n62578740067\n83617458\n675627125461\n66524\n340\n68045443865\n40363\n2\n38434112\n431444482\n51413404\n4427147\n1117317226\n32248774807\n46802847\n67\n1846836040383435\n1335\n46\n88716522582\n37444815426366\n14146000\n356\n1558207453347\n411846668627\n6871262\n32770\n313\n67631172772713\n6716366\n52350\n12541232772\n27161876774357\n48072\n487682\n28788\n1646475076052848\n4704303726\n675041157836477\n8032515651\n302273\n136\n8520236\n73868766\n7211540105326\n4\n825220856\n86761\n88684\n56176754758031\n584\n105225853787\n188642441177\n344867323737101\n624406\n6725680226264\n5775278553\n8274718570362035\n1356\n22132223\n342772036206\n74348028\n7883\n67\n18203616548\n6303718871318515\n455316\n77\n443277650\n1342631\n13771603308\n51407284888\n72020222810364\n3\n73438755656837\n68206111267775\n50600\n77126505115610\n32\n4513612536\n332057401416274\n4102023103\n3262746\n8082862223828060\n45878\n62\n1736733\n322830\n2721108\n3512685287\n43648\n61876148355743\n24227835\n75\n6735408\n5608\n524504225731433\n333233\n451\n5328873037\n2200105153086\n8633606282003110\n53113\n5727007647815263\n36\n7\n57280\n1\n876111\n337060774317\n52\n1277\n7320503012138156\n48383764418\n2\n14021882\n10384\n88368404648\n13\n87427\n4267\n3556848\n6517\n444722\n1852\n3423086124265234\n46425270217\n816510\n71\n385137557\n760262807\n13843666836440\n8713\n62558403225064\n4151133417\n3854670060606\n58784341767\n44786018050044\n12874118\n4\n8\n728\n84\n4542210\n5\n251151\n641506621\n888650114500553\n1372\n100\n53\n4\n2266501003836416\n66512147604\n45862120\n726164543506745\n55\n5416205280640741\n11558865331505\n3130802414064157\n88337347876260\n57044201346\n681528305\n320174842\n318856225820\n153563085638\n212767817115015\n6084\n210628501516\n287226006271\n6\n68516050757\n45654\n12548\n85162176\n835\n3101136606470282\n2118755732633\n242346584340730\n13481\n752463655\n2203727781221\n60\n8562\n62\n707\n2\n484474400\n8246\n215588058346\n148187647027\n55218253016\n7648\n783540526878634\n654202\n5641538452501\n10000045484038\n2336253122014503\n18\n4352\n4542\n17644403\n2624026302\n0\n6137353\n28830106180084\n62050778261557\n638353078\n48175\n75475508436320\n70544466375\n1781516284876\n427605717466052\n637481\n0\n82586303711857\n1316\n506405700465234\n340264415\n1302253383872\n463\n83683120550420\n71\n236116464134505\n2837285160\n4870715073513\n74258\n37102682280\n248020470674381\n6226687\n15461682767\n25427768800080\n27741807812023\n326331877\n2118155050811\n33213743180\n5\n3\n1554088858382\n452135461\n27\n776838683283\n7520\n6130163\n461354604886\n4456\n26241782722\n33710358783465\n20640148\n846335664248\n371758\n80558837717\n15153085210\n776382456\n22\n5783648\n266413843\n3423\n7826714\n272\n2717130514502401\n151632073853\n38745248652232\n765811523231852\n1828760\n2120\n8564\n2\n51410485\n7632388138646167\n11685371620\n863814173\n70247501553426\n1042013256\n76227271005\n7855201527\n12815164448\n1867416261326\n343738011210525\n1736530\n50556248144\n3\n47152056782135\n1715351621\n82555468\n608741552378\n46034385\n2675728216\n854280038113261\n887567455\n2381365287346813\n83\n6\n56122583168\n87217440601164\n8582034141\n87011\n136413\n538357\n8474418324\n2582648408860614\n283743745\n66821231\n4818455823677\n1160447660844662\n4367233\n288484836774501\n437107773786\n1506050\n802477845803\n3238502017170\n10325535142884\n4423145327\n164356370601672\n382684662\n7535260\n30846\n3066060838\n574453\n58274756\n775745026181\n6047253374281888\n75578652714\n73\n320270\n6146184053717\n64\n2402644\n13464226716745\n128\n40823\n5587500\n68474\n6735374412\n37620467\n7002\n40\n8778766443581\n0\n36102881428\n481156\n3\n10157074801640\n562667\n48011726587\n37\n1360121653873\n36027582027\n10774084\n41\n6405071378366875\n41\n8706340418\n581216\n6021551224216\n135250046\n75643157373\n643764528\n727\n40048610\n4865037645572457\n5524\n17371004\n16814624206\n67052\n6161\n2\n5400517444833\n40855405\n480118845\n623851\n86646076\n5684271\n7010831\n12\n77818854626\n5765\n52134\n3746\n5810112\n4\n45\n3221600456837523\n3646510\n2\n4806387\n80834456162\n7224536721332\n17168027734632\n372715716655744\n34125122514287\n771780653123641\n28\n20765466\n8455352143726163\n8725\n341\n46488621\n601614723\n5748\n57555453648003\n6245357\n75868788167\n6837\n345024264352\n13403\n6354\n8\n26\n17\n654644812420\n8475422201480355\n70100361326745\n3484035150\n8145686368\n8\n683203177\n3\n36701351656\n372487217058128\n0\n62\n4\n61244805807484\n2707287134\n143025803806124\n37160100462543\n4407244464\n48\n71785\n320862434635081\n3862153773607\n1543427804412\n418100\n4482\n30752\n54641766334\n6163252622616\n650140861507\n54662760724\n5847152464\n37\n461716248728363\n8\n437767515677600\n26526430\n7645163641\n52386130776715\n0\n5207034\n1812444\n7840538746\n804504148082155\n42\n55144728740263\n2212450662272\n7358006155243\n188303217\n606125370380327\n2355685552\n61353131080\n2176374555\n2326055678840\n51600528876380\n4441865\n617347\n788500552\n6107\n67555768664780\n4748838700604\n570477\n21523518\n558514216071\n580135\n6042751720087855\n8463560\n22\n7857\n65312\n66\n155574022634753\n4655228745447314\n1188\n44508618228\n70023244075\n76856718125\n63028751340582\n650112\n443376\n45128211230157\n6774206202610\n7425507588315\n611740068150856\n5847852070113170\n4\n566460\n7\n35058027413\n2507580362237\n65\n58\n284054816\n703613847\n6078424082232538\n7720084\n47\n538445572\n120838582\n322525380\n2156\n66326788003013\n2107470861726068\n17048110522\n807132128338843\n624670582628680\n78042\n8644808824\n5634071441645840\n4647068715074\n2204014\n310162517433\n2367473214633\n2701\n74023165487442\n83437872786557\n11807081257\n50077283575\n45058561731\n534871047844\n3606752116\n3581378305101717\n7758648137185755\n786235\n6532345660\n4466\n5770152126687883\n5\n5527873\n6530271438\n0\n47\n643221661\n6325023667\n64722126651\n366088058186\n8136201607\n11\n10168\n36326614427478\n30146663247\n8371440026053\n835230425555\n3\n28000028622\n82\n383131200825443\n627864741578324\n63\n13183646\n6885367051657367\n808806770444\n4435\n2163\n8721663715571\n27\n8045551\n72282257762803\n87733341\n7225\n8717780482811\n785061827\n613260673281620\n1182614436863\n382103516800341\n6\n148358202145836\n284444452450\n5608218073674\n263811813\n6151633786\n471853\n101734\n355288553436438\n71\n44707572478017\n217441\n863420\n6474\n5833527\n774087303825\n1522683344\n1730\n7372255602676\n213463\n2282123166420\n845768\n432003\n17\n525680\n8344314661\n546214080\n5663563511\n75417\n8611877522164187\n435400783022538\n1\n12\n516241861506\n7820\n78\n253\n7470357133375\n5008101751840822\n626312506356\n66535\n6285177\n120076817\n786842147237\n8\n418\n4716754\n120850566541474\n225442802451\n5386805\n124346531\n81363817216\n38\n687\n5741\n3381236814343\n770012051258414\n61\n6406363\n401636502\n10380188802081\n50558820\n315\n7560065127\n474650521376071\n760757454083\n55\n4858633\n26\n320513253045140\n25000301\n77752\n43545561670856\n6286852630621\n10883\n7341417\n605172722571\n437\n5526820307843804\n18\n51116\n7141670\n2584275286155270\n6736023\n1367\n7558628050266\n72011233\n5652682750463\n1\n368042\n586682054\n7\n50730368407410\n367701607403\n4\n486\n5812476715\n1875\n8016878\n6562\n7\n4334218065562081\n1741177\n55535\n7531774825022\n15\n24748\n283\n10581\n34861382\n560834477\n4784\n172546740217100\n36\n1224\n476787401162788\n2766183\n821737020541707\n2267520673246\n5763323857076\n6715046723\n2163801872708\n6874\n75415475\n5\n548470013012850\n585617281\n562076\n150418728\n0\n2765724\n670875456\n452\n432040482\n523203564453\n201562\n861737034\n137813778524\n648621834\n4312425\n554284\n620160025643888\n12606806146\n37404407564\n7326762206\n518257128\n7016042235\n6754127787017073\n273\n2022638551\n701\n1428732537736176\n416453812254\n731051188215782\n300435212084182\n8774836\n86034284021126\n5\n2568172520201645\n276\n544435385483\n6468742604324648\n1105067334670\n4100708073452163\n862\n8223651624435\n303728513\n82538613455400\n436336577\n8172078617384151\n26011177802\n3571227684522\n76616537216\n42407\n253642310065670\n125484555\n2277546155082\n73760\n43788761137\n720388\n2454824030808\n16500803430\n566\n87725055085\n8816013260062\n48568\n85\n63\n124375072\n71432156\n4515372\n18811314157803\n16\n48687548\n875\n677805125\n41\n535111\n7476558032020801\n2\n3\n2607171468\n136\n6220\n158865264368\n213\n345\n24281\n855265086\n8627423777\n576152551075542\n75065125044771\n8115284655852837\n68883\n7072357101011\n71\n6080516\n267085051643\n4460161073\n47315773\n81280\n746312382580501\n7\n3260\n20073566575\n20033616\n5886052100110583\n353666608834\n3802436482\n4723\n273\n546437032347\n838121464124100\n366\n3646428734050172\n624002\n4723140612242\n47883732453031\n317484556\n356\n41081\n14611\n8218033215748\n43648\n12766413570\n45\n706287883\n4735\n413147525650450\n20375651121\n30068376418\n52567435\n5437\n2780044500\n24754465\n356831812\n64342\n30344\n5363248\n1136421\n66468647\n52552708\n158753263788367\n800777761\n731506441237\n2\n840341242\n3124042781706\n75\n66451272\n37\n741525\n47828138012\n37552645568\n32481650624423\n18\n4123\n1640\n60106836\n40654035\n846610650\n5780\n56735721443030\n24035488556\n6472545013348\n76367851612\n17400245041\n47856\n48468\n4373211\n33805563827744\n86672138807732\n286232\n5\n6534642766\n867375155725\n67356181324\n1025206782\n4\n22\n3211072055055\n132\n6730681238\n1642467\n26556481\n442\n6454472408671\n73444682478782\n1664031157538455\n5483561\n515527743\n478648264\n56637845832252\n14130210851\n176\n4706438130878\n2018406760312604\n338634417\n77343208\n3731723478\n6485\n6\n782776414\n5604728233877071\n432467185\n1862721366445\n705\n58884470\n6864\n23\n73068514683\n2336724337550\n271823\n77\n57677026776520\n775812165165\n38278250504\n74543863\n4015437785351\n32754728\n7436\n43446\n8810662\n776865821082546\n576625215\n121857812553820\n6751414045360372\n2741\n7774061\n730336644\n8516123115\n151272571\n4163787\n7534\n5776310360551\n8778\n537476\n7108504727264070\n445826420832\n6\n370060188\n6540327\n43021\n233167\n7758416201802420\n2\n475\n2\n7828\n4117858478\n618\n2372505207613\n86655\n8048018274081747\n885423517541528\n47073262\n113373763061526\n351877\n56272774\n52545\n23847246382177\n3308281007870084\n202177\n834\n56476465686338\n8202\n77367746858663\n8117\n68278066101\n5615264\n2013238\n50136437808\n70167360\n681505\n500\n600042868426032\n542077\n330780242203\n781025\n72125\n273423543235134\n23856277621870\n76760320107\n475325738124\n3\n848512481364870\n345212170038\n1657182528808843\n566143583731\n71044\n121044610\n578543701\n4284850166367452\n74\n3507651\n85\n6562287017440054\n8\n7\n24801526680613\n582\n131878432235320\n4103625113602363\n8366744\n232751\n7042848271\n8035077445005677\n4\n8354\n741633\n180631\n156000830037\n2583236038264808\n427210885665\n4780865336073\n33\n5457843104504016\n200438626682\n1\n77444\n48458575441\n173631675662\n184753\n6747\n736008442001010\n7340\n6\n315426\n3446\n161821213855230\n41873748868358\n4\n25084086\n626561807125\n36842\n88531562601772\n1756575076213\n2877027\n82\n45648\n26066013\n258435\n1501556760\n46025304137352\n8404124227000048\n574344075380\n582401\n8\n640\n11727333\n103102016\n5547562658\n5065644\n476145624547308\n77724518\n85\n820680\n580002\n1628632044215\n21511371664\n56\n8405345106585\n2687683484651\n5151061542730\n6571610443\n381438806\n28566308\n6\n1780604\n775131754068484\n57050434\n141045625085\n43\n66012708210424\n31782475\n230616358625\n77234120\n17128\n34613802633\n63\n624678441773767\n437610\n28500303\n78718641526051\n57640\n3504074056121624\n207\n57722255607\n1747\n734131402078372\n1146136527210364\n26568472757\n73600272063\n1663446621367857\n5042178332\n543\n1\n837107006\n7\n87850638\n7633\n665225301021\n4\n3053\n56\n528261\n83400263\n25700\n62223622\n5800\n3672667\n60126718025\n71183562356\n4704052\n5206512123740\n844742\n1411265641636\n526070\n660\n556213564543\n487\n7616183042\n61\n5856581666521\n14666\n51450043424132\n77\n60445187421845\n2532371483\n45416828728224\n25\n6353414226\n47848630\n864\n1813416176167\n12773251456\n50447073618\n2512005123770\n538453001\n3\n3886344502448\n1124627746886\n44835\n612620545577\n88\n3\n8830670\n2378032832224781\n8272814624300\n487484365151351\n1242845\n745332501137\n3\n68472656580478\n62213040801\n68\n32\n52\n7255674544885471\n607000407563\n4600026152555178\n55540715703265\n43635171\n18\n0\n763\n5503720811\n41587305\n42112323062266\n444401510635\n816546\n2763163724855571\n28374836365137\n2567415466\n83322068\n2\n1728383\n86015\n65861566467\n7436122345\n23555\n16045\n76\n1011258350734486\n8075462\n26432608660\n17370\n37334352586\n33005507\n25222701617537\n41372618\n343614\n76383847133\n35\n740\n5420\n330465846808541\n7413186277572584\n5481080672441847\n4460126203162\n1380135322\n51371166707002\n1324365458\n24021\n74004535845221\n873714330838744\n37467536446481\n2310\n178763604544\n6\n87851851770\n68500887734\n71862123586\n83254012046\n44242622012\n3733\n340604783413\n37\n2566\n7620317\n363440\n2521\n882230\n3258356273\n353856856532456\n531133245550\n86403220\n741030034\n14042652\n12638667753837\n74534\n21334080773\n1145674\n14410\n5771484833\n804768\n858\n728264108\n613\n30206531588\n201567337017\n588388613\n7810510250\n6485731\n7223107628426\n5172213471302302\n7\n3028365741405\n213\n35\n4\n6180536105288334\n108582\n75702317851143\n34136338627468\n38212\n3174137238258288\n347271405\n1506316087603\n37400\n3\n836875312800466\n4754253356\n36\n777411226627\n43704\n281748425580577\n767271\n7828060856\n128487233434\n77127116\n552131732658412\n72175432\n362868308\n455616\n3514500120312854\n463\n42766\n55\n675155556306\n8240588406428334\n26216841061043\n7724826254820836\n7225\n871665772852570\n481251\n430247387375105\n71568545573\n623174562444\n781321\n33038\n422144262514\n38\n67176702016\n5452273024436\n124732537\n348\n26385\n28\n8200481305360\n754440250\n1418668800\n36\n5286420816372\n24622830\n75047817537\n6504647\n12\n18\n17844\n41710584\n80\n426501\n564030258816101\n5353325\n184542214407\n2\n31506763870\n44\n68\n81608801460\n3610235861\n1170008624652\n236704216707323\n864\n22752745\n7646130\n71408221352818\n60425738\n7\n21186\n345368545445\n4\n5501075038873437\n260751316\n8007620680607266\n848321703\n533732255261\n43137203375526\n2483\n1\n853277\n36325\n53046654\n26\n18138\n481\n346603532370\n2664532\n76200824212\n3552462\n880216\n78463\n2703\n400\n147108686461\n64047815\n2580302\n207150586\n5463551\n825507\n634113445\n226\n62\n816\n43685164138\n570303\n12730\n4300613\n6605260573655\n1412\n52\n3625738507853\n4256405540\n776671121\n88665630461\n7345\n6224740161\n3\n1860388042784\n53314381\n605417\n218340841357\n7732335765\n541373755717\n5876\n622137500145788\n38115\n468163\n3842087244432\n86\n88\n115021276\n67442767743\n7\n7578573240572\n22166\n83\n5074728850\n13227816100501\n6776642841718735\n125524442\n3307\n7375\n24877648201\n8180238\n8462227277572224\n454\n284100\n2\n60678\n82\n71325435\n671783518\n855557773\n227831121783\n1362348041\n2\n605603610\n6117127\n55003336572\n5072228573513\n84\n3032572747\n2306284587004\n7318845\n48485285377085\n215384434124034\n265671267422660\n20756405386\n763038832163105\n702\n4752322676564\n53\n8851187280\n341\n161087\n2862031782\n145188\n42180\n37145424577\n3\n38344730\n17\n858514\n370\n465803852\n45325722706133\n555\n4665226846770\n68770262733\n4132432\n4638\n76\n3833115\n3463182256772\n66018035\n1265\n852268423782870\n3504283256\n5848087\n726502288\n34113143\n5604816520\n2081632464374\n130316\n1066147548007\n38\n4561086782138\n856807466548337\n283312446840033\n567106438316\n454\n468664063\n8451382\n5258016720064\n2111023\n72166616411464\n22812510\n358068110464\n766724310276082\n780322241412\n333850506132\n67\n201851113587\n8861\n53656\n53487305286436\n36674776\n175868862740868\n3220508\n74\n7324\n730\n2517\n880035655166\n480027\n4138\n781548854276\n323\n550123427171\n1845\n411423764\n3548065665667\n1860\n68424857\n8765750378717\n2\n50206755181\n1232031\n5115831078086826\n3868244366067817\n400064\n527714442337318\n5\n2007\n411456220502167\n2\n5180\n14378247622574\n34825747303173\n314327365\n1\n5305\n5700484144283645\n84271862371\n81300\n141184237\n704845562\n10203173\n7065173\n4215556\n230214400\n5306527387621500\n2202581\n70837717362334\n365777\n76341128268367\n3805750\n5\n7778583133\n4187516034712\n554475831\n72\n642263110\n10838430483\n80177586\n3626350\n2758854584\n1\n5406337580\n3434848255\n554\n57723866377\n1\n32533832\n6131561448003048\n213000407777785\n8638876561\n27\n15641400782822\n871\n675034704257144\n432138\n6581\n78425260\n83252\n5654206145\n4871724\n861\n557828044850\n30846103\n1516554810500\n6426814548187643\n16363664171\n78\n828623027741134\n1410485153\n1481175044383\n81710688368\n320576165331178\n1825\n6228084418\n25653370608153\n10\n516287504480315\n847403488\n38843824\n762261520\n8723\n8704757838201651\n5652842\n827\n34467\n1286\n5037637508\n1117\n1816767\n57061\n5\n5655054452165514\n2141678273288222\n8\n118713147\n188785748528\n26643102\n8\n142065267351503\n65677854\n20\n886736562034\n650038\n736\n51552143763726\n55736650\n2708061244\n21150042\n87307027061\n76034126664\n4518373248560810\n6533732\n7543842308206\n13\n2047263\n735806722\n5251445123184\n27740\n87834\n0\n41\n318317306288\n7041\n1226124648733634\n5054611783063\n23780731\n24580347\n13881263015180\n783116\n112116328481702\n105\n78264644852465\n883621155855843\n821\n6108361566682\n6\n124435283130883\n77268141\n716556131\n0\n38321637\n122212310550\n287674628\n420352858508\n175878\n54663655418205\n8077474338747\n758702820\n314761480850745\n712236057001007\n8337764060542\n8442362235823241\n765785\n60001420005127\n8438\n17\n8\n2300\n77425158\n3263820\n84\n86743176238\n326057157874667\n8655\n682065365273158\n6037836285654421\n748148442478520\n3028402061\n3577554462\n51\n4264\n4432388374072470\n644860536618700\n3\n1386558813314664\n7051147502851602\n5210636564138624\n6677\n684034106\n70841\n832868\n143\n227\n12\n80085\n231\n50672274\n1\n754417716\n8841886021546\n617405321211474\n6134806412525065\n77033616274\n374341\n5767201\n754638255525\n15\n4211438301\n6267488842\n44176764727302\n704701588316530\n641166\n74074760187730\n57540803026680\n34801722603653\n2535210633\n76580863246415\n41053577821854\n167483\n5582\n1\n877718611136\n8308558114205\n416615174454\n2410882143214\n86360\n224050230\n1425\n7263605406246144\n13\n520542644058\n6\n8731710250175603\n673318136204\n718367\n4382041\n5511454324\n383\n54441541\n5670\n84507266827\n434730612213\n7334\n607044740263\n8661450235144325\n25012\n420\n557458007705456\n124684\n842\n87032324071\n734078\n76087766368\n27402870412\n361\n77360\n23304\n8247\n718052844253\n205203646122\n455403887460\n36711214512542\n68855\n16478\n68\n1283416765355546\n802\n603164724353643\n188823204580\n282\n6511716528\n865078\n65473117873\n87615052103705\n10226438\n3\n71038\n47061670481300\n28\n703765757453\n1426\n20610052\n422345666\n874035674832588\n67341882\n4\n61525\n748\n755018150072188\n58088\n3180717177767262\n1687552332887\n58655\n2824087765\n7381200188745063\n5635324075\n1347\n631644605\n35161257144\n8546712162070307\n8363704328360\n428\n2821707683752215\n666002805340442\n1878516587\n38208010\n7061028744\n843407344285405\n238630\n456614160346\n85483425\n0\n6461\n710\n2487\n3762021648\n5832\n3624278083\n8000054060\n41\n85583\n10128151478855\n1005518523721728\n121312811\n7820226342682\n18556\n858\n2346\n2805315172441\n21583611\n1411836778281\n62210538765\n5244137123\n20\n55265\n11866434\n450576813\n111152413545115\n1\n8\n1523731522\n161\n673\n31862\n5352534\n732\n65236\n500543673430350\n70040\n1407473766\n525\n354054\n6585\n55506382\n2437\n274303085117\n85368328\n37468\n7831718261766646\n418814100227\n83112308755211\n158332016466\n7305611\n6031\n2216318518571724\n43647178351\n4350406207768810\n2277731561\n116406152850\n188\n656264\n46838023763768\n5717248510063\n141764113\n383205087050\n84\n6\n301\n4241\n4223610401620\n16382\n67\n87\n160731\n1\n3657\n132035\n6\n4550615070023\n8211018283243717\n4800884741551\n0\n6115341152\n206624371480\n758\n0\n23060\n32\n777\n5\n601216122487780\n2142033\n4445775661554\n261277\n248781510\n1877\n3344625\n5382034742630\n77442\n73352\n3\n4188226048514\n514448\n2885684136\n5765081020\n472851074123625\n865181\n8574736\n585131\n71\n22262\n67676476776\n1858335550\n204512546240\n84421045\n187538007260425\n288411665571734\n1205527\n6013362450\n557002510\n285042338518\n8553527\n7341560050\n70310163325020\n30782610814681\n5708\n4511568704\n4725175236510032\n3551842728374338\n4101846\n758214762481472\n1487116425268861\n4\n1828\n1302643268745242\n68830324\n6524\n82216784651\n635\n2460478527\n161682260606583\n700854130275236\n518472\n43375638267\n12112126075\n16588036241670\n23218157043\n8\n58225367\n8882647811\n638787558634244\n27065\n65668847447\n126713515737882\n1\n2\n835216121737\n6372542411\n124146\n7266470306481\n1836\n6077\n34484774\n706625478\n88\n34847334\n38813247251026\n4341313450\n562856360\n7344332\n301785413\n7305405\n114780450430671\n32\n510754056858\n366038036730146\n646257472\n5748131148865\n0\n42128581563517\n606258076\n1075142241078753\n4734120870013\n8236136128\n357346177370868\n1162017\n8118\n35\n328083\n248284815\n3653367313131157\n56\n1557037567515432\n11844166615727\n50504351\n81507\n46880\n2717345\n8866263464014128\n7374377762701623\n64678\n42714344\n3658\n5340074751608\n2\n3428\n201\n8022488486\n382326164758818\n68886254\n51\n3202\n10040\n5765018055735735\n28557582\n5566500377837517\n12\n782\n656430824761847\n4741525346054844\n547501315732724\n834887673271\n5586236\n8\n2122886326703716\n854\n5878\n85840526\n521353822808\n6338236004\n6407\n73842875\n8575338700560568\n48217408103210\n4737210702528\n21275482\n40877673\n6887861862482536\n503304206\n741\n7148341583\n402\n8801\n537011428745601\n678135\n8738181\n0\n7\n8630634\n81352\n8767302748\n75453\n1856\n8743711337\n25274\n440060\n507071388328402\n56026442348\n56235\n6787452\n18827101\n1382726718370641\n36288324131757\n308102723121346\n5078\n875\n80670801417808\n336\n515146245171\n27\n4\n7005\n1135406\n5257775686037\n35\n534328821351346\n31642533620502\n551748474625\n44725502768\n4037033\n8\n4214554745556\n62516417565211\n37\n6778620\n31544040\n4172\n340527863\n15724041\n8371252\n856468338231351\n227\n88\n3728084756\n15345018\n422176170748374\n4040458435858\n624612404805\n4356772\n54\n2780875767643\n642456510\n15840\n4\n7406516335071\n5738050577066\n4832734\n70758825485\n41758\n4157423\n36434554\n614102457622\n4781778508333\n3111754834\n313\n6\n84346468850700\n318071366\n34461576\n75663785432451\n3714332082625271\n5834564537\n283785\n6\n36\n1745806101\n32005\n7685136176228312\n1102824376\n345645\n8028078275274\n223834137572331\n7124080478451372\n342\n8542558105380760\n58067640270\n8860580178766087\n16322182578\n2265303381\n5642054434702\n7540101684142\n5771380802538\n62472820676511\n73\n7530\n50208\n310734867\n7804671641\n23011435758\n36158\n861540251555623\n323680638\n8580010\n57070073\n18867\n7168\n4670701\n8885488\n8733336202444\n74\n36510\n4850054\n563252\n577201300\n676078066806\n644680166158\n16610561711224\n7701\n2717\n4108741163647861\n108316742\n1568776172423034\n46\n868867040866703\n73300110143\n88\n5\n55023620407\n276321708073\n6415585827218\n584355\n3643884252728\n5\n88546\n26\n16348576461\n734346310515\n286034\n457452801187284\n75203284\n382\n180\n108661603038164\n21574442685\n267\n6\n1835338258343\n224\n7713430157\n514\n74467284\n5\n67724\n1445\n4\n200306150\n30588053\n52340841\n14\n604884863646\n545354181835425\n54353\n4411246\n5\n1228\n80816742106300\n63217567\n8012808\n80417860\n1\n705451531423426\n6804330657128\n40\n565434\n4736721088071042\n475\n10503\n407236188\n28480575\n862284\n62\n220\n21862033203\n4\n845274671646\n72852642\n41467\n778\n7565\n131276721632662\n7563243726312\n44551507344571\n8008\n600667\n624771\n178\n5266\n67874\n7176374571683\n644484025\n284407333112\n0\n745\n626551720661\n7878762820805331\n756637\n1\n28135261\n3506\n716\n832778232727\n550535074138\n7554660\n38582177200\n4\n4002\n57544221148243\n683\n4027571\n100314321182\n763051241051\n6672377\n175684\n5435741166772\n1383101786832\n5438130\n2565875688347243\n56520\n672006278\n630304324410\n737886\n20600\n2123\n51242085846\n1024076311630046\n5261816730365\n2122\n88\n224831566722862\n52024824405576\n7\n3475\n2\n1\n5\n251643568174422\n27783337408\n30558042815\n73115161721\n184238030\n23346\n3\n118386650680252\n5305\n27714664160\n2063\n22065781327375\n7377750\n0\n42232\n381506754818122\n146621225453\n4552224\n6\n7780004737\n14754881\n807656\n1103275538\n350848654242565\n536058322\n51077164\n1588876087713672\n786663638\n563818317188\n43572\n45032185472\n32150174670054\n60\n83587707\n28511\n844022777765413\n350\n3\n1\n2102211320545756\n527417244177\n0\n703\n662264771364232\n7020820160827221\n7834574458084743\n7\n855\n165722423621\n4616482743\n66500\n8675785871085875\n77170\n4605366343344\n80\n22\n812342427\n254815473\n2250363\n8846723147220\n8402042611053\n380153238746\n8588610727635044\n3\n141643\n108441403\n37602\n482183022570748\n7773266846431\n300507\n3630301\n35746850\n66\n32848\n580720607160874\n785416562817\n2858537811761\n2025\n2837713587251\n6\n24043\n6062877577835770\n1884040201406\n725211834\n555123\n3556110113\n40474352334543\n86\n666101812\n64884237\n10512\n82323434348462\n171\n562365442\n23727\n0\n3271\n64484465\n1083002880\n20248\n674003\n711707678863\n25\n727115237207770\n4177752\n12188\n6033218\n45562\n773062324705\n2430122\n21834\n415144772545000\n3545071513144008\n243456\n3120347056172852\n217614753116\n647401704\n35184\n753\n20\n125078730\n277130587\n233\n765611506770\n3\n1\n27437310\n7\n28401024718238\n716888726\n368035376854275\n2724565\n184840278216\n636163622\n720757\n687\n2270\n71588\n27602282017726\n17557484750077\n8081685787551\n78015071432570\n4645617530528252\n657462007\n16150741520\n3121703152\n5501083310881525\n14\n413\n885313072\n4177376831620086\n3\n676172060724\n780553\n87\n2170816\n268268266721375\n41708726384\n303606283365208\n82\n30663212264634\n58\n381\n14\n638820387277\n78544\n642324836664\n4166807756122\n820732356785\n6781885251\n45\n784542\n305\n6117\n82\n2061366446501183\n87\n530067\n12256135652\n84432626162833\n3275862\n600467705\n155804611813\n1142471861800043\n758583074\n584220\n1037781078552\n871522\n164743451510883\n106057023\n75383206\n464\n48481\n2027\n58874240545\n3507601261558\n734577656371047\n87688875\n163261660164\n22338233060867\n0\n4404778065644\n7\n2373282270673\n1\n740206127205785\n71836\n135264633\n2474000231\n5\n1332662004641052\n5778184\n67522768810\n2713238067064017\n413018882123\n3568366\n21822738737733\n122101877863627\n313584108\n6117234033781\n55054\n17036511\n53\n82125674\n327817\n75548561403806\n7130303\n5467835638303010\n18645106351\n72\n53822565546004\n856876775\n878\n3\n326075681\n777270\n33507115174\n5\n1007201142\n553260606810\n8332684058\n100\n66074305603365\n284270\n7473882145\n36\n2\n474384352\n34\n2815\n16830032720\n2627535863777\n503817\n8066741520056\n6\n480\n46\n25\n780\n7411616647571\n21447370614111\n82\n137084262\n43606624127\n41885826747615\n7443736550856\n71554717511\n31426810644\n827456\n7\n2760762265800\n37177064277\n764377717085427\n267004263\n3601478072315\n600102\n784260021171453\n6564231\n6043537\n68242513460071\n5371308843837644\n4333\n87\n5\n875103\n75\n224776582772\n4685828\n1302718867\n62467275\n855406850463\n6428254\n4746814\n255627\n55036767\n3411431043763842\n432\n655\n5115745505\n46022131852717\n4115522468723677\n488\n150720543301\n474583711644\n4735442466178158\n0\n1311433373340767\n28574580048346\n68\n21021174436\n1572735705\n1300433412\n2163126\n142\n857002348575\n8\n8\n3357281836\n14\n8\n746\n57\n0\n30062354\n8673150418827\n52\n4751421828\n68\n3088301\n6275826487847\n371735\n13203143\n111772135072\n611\n318104561304\n4\n5053165845280\n6603708142174782\n512006032715\n351108225713\n83278860\n24305\n5871767\n8\n812021506\n8371686362152\n263184461818\n672100680887814\n550541\n37750\n11004841712443\n3274\n4336446138\n7500\n410005717712\n772733\n63525406525\n125107050032\n7123656\n2015511214300040\n6611\n624376382870\n743854\n1686008821\n3702020\n345847303066\n27453874682770\n12316135\n527361615506\n128031506315728\n48\n56\n63\n627662410\n6435426461\n702057\n875\n73\n12264530\n217682580842205\n71\n334832742\n284106\n1158322438\n673\n4845680858000\n87626\n7605188255748\n325386322576140\n7515\n107005\n5\n248230783448060\n421\n81632\n620818304435723\n410118\n82\n5824133764302776\n125806321\n14\n65830332\n2851242060875\n4741363204605\n4702645262435\n3321760533505771\n63143034048373\n3286800866577783\n5370577\n76600\n3700184535571780\n48178836301\n5463737\n1553461062\n6721\n42538\n77687847\n44471386\n6144400684477607\n62370600353\n685\n27\n31\n587573\n7411214\n875\n17256281624334\n5341\n453701674356045\n26224\n20514556405556\n183643548320\n43625768555\n240735654800\n83\n375354477027638\n23802434316750\n2434\n3082504200\n63172\n83305482701502\n401588663\n4\n376387463041\n5436\n182127873005701\n8145356803866182\n6667\n38438\n140222050\n648836003428\n58200\n778\n827632746544\n408082\n43022\n570302\n855266371174086\n156551164\n173\n2423152\n2306025\n508723586477323\n6335172775\n2053431487\n43540\n453611003\n881718182\n8150357468806853\n733331161\n5055020214\n6578888712266768\n2114508008231\n60\n88127\n21380850224176\n736\n57457342\n63204261552700\n4512\n16\n4\n5411306\n25\n1732163\n5387\n308286623\n361143133\n674656078\n82\n7573\n7\n34402446484\n887\n8564224152751\n0\n36\n128688671552\n2852750745\n44072\n16762\n0\n53404633148257\n316807734565\n67024438\n624113382167042\n527\n2434235\n8205565827734\n24\n4027403505061342\n5160\n840077\n363074273\n26\n81335555384\n475383\n45\n1580318032818\n221840157\n274711\n381\n4584085601143\n676208348808\n10206422332831\n277738415801\n6167118\n4143886\n1777635\n7174331\n758885628061\n6125\n600438255573\n10744\n6138\n8262340\n33128617550487\n65166033151\n583443560511\n3111\n415475344344\n202205578386\n434831\n53\n565600188211\n40362816426\n638401078538644\n16\n6634564\n1872\n877270\n381715\n2545756036208\n2\n407022784453\n8558487504751672\n2412242\n34784474\n1552255004703\n32118805127666\n62740033677850\n405827560668740\n162\n468732888552\n83136371\n741471086467\n45\n621180376242\n87784353466708\n5646818326\n6577\n30\n38728366243\n652268727\n87337352430112\n371671648\n26337830\n82\n4\n52634125283277\n72772630\n218170853\n626836460\n5066626572031342\n71883155\n1222730\n52808\n514\n62248\n610367467552543\n514058231315131\n3175\n7575\n101\n26336\n36017787\n471436344343706\n35328881\n311166555\n58464786276\n43307654534\n164\n758351160368440\n5236646\n31571312673601\n36841361106230\n20323468227\n0\n2387652563078\n765\n15045801\n68\n86\n8003617271\n35167280473\n576037\n7716662865271221\n303167001\n601316\n1735777125\n38387100854\n4025418127\n16613\n8202070135\n12132486761\n1618252676448\n74001568644215\n38151632430561\n44555188761\n28225815725\n66863\n70\n40322607888017\n425605\n6371821686618866\n5378004214\n363654042\n8742221851\n254\n4362753118782\n43\n5\n32027\n41177621523\n330702166128222\n704\n67086030125\n21530373543\n604247818655\n45877817640016\n513222801378421\n84360243737\n860\n2082213006\n5218386\n6484847203483\n1312320\n58\n36734604718\n478342685180\n86661537761\n50152623227601\n1465\n86\n8071671715\n7550246033\n88248643565\n87046\n5\n17545780567156\n366\n42554042584873\n63788071283018\n267371104460887\n7164856558537734\n84123358005\n3735302178651386\n5\n604368070\n41160412275\n3234614\n50880\n73756720272\n175352554\n4017855837060\n36141715433\n130827851805611\n100710456\n435045\n1247243351543871\n78570051\n162\n7430171532820232\n381502\n1476232036000\n601480850654\n3201560203\n3\n60561\n15\n7522461\n7\n425073320084548\n351818\n777127402341504\n28263836142120\n76066563\n853423837475183\n1355700578\n1030230\n54160034\n403245086856\n4123571\n17670303\n535564\n5\n2\n463801015155353\n62\n32\n631674\n13332714\n5700347\n87021203260\n8\n14\n801365454512\n60\n48873523180645\n2\n36666844\n12684\n614406604502\n57055117413763\n31\n61301\n8546540654786886\n4801216138826\n257175\n25275\n54335022765\n7684433346408\n857657\n278886\n5610421\n727845538423\n401053670108848\n22402252\n575554482883\n5221476\n3767\n7303750\n47668085857826\n8148830\n5580345\n506671628\n3855632457\n46442\n1601228852551457\n5638\n7083\n754475583\n14526555262\n1048726\n7568\n24664046821\n0\n8886233530028264\n12724684456\n1\n67325218786\n505266578878113\n81350313\n447436614178\n0\n742360\n68182152\n8534\n84012451\n188247046\n770001547174\n77117158\n3427441184\n0\n11015776\n58\n4302020587\n5\n240\n652405\n5\n78837503528104\n6341520626\n416263\n50843347848478\n37360876767\n1177483288516226\n286\n2\n25\n31\n4653470\n6863821486512741\n30645043040\n16200257352\n683082563054737\n33006\n3\n157532\n134563383646\n765\n710\n5135501001\n6414832573108\n776605548\n37706102100741\n3268\n67288706314\n788\n30\n7\n8760202\n46741006647337\n2188\n268025256140\n4561862102\n216851428520853\n554587536\n6235083402701\n146\n8380183\n1364166746\n75243276481\n1434812443353\n5143\n11071\n76727842003\n628021065\n874063\n288138481\n14828\n46664\n44546275571216\n41107466\n80121\n36825301652\n58320\n271623\n3842126284728\n20735375\n461166285648766\n4257157038\n7315551488604414\n2331348757\n28645\n6844\n71712\n5115376\n867228646168520\n8764065613144150\n2477\n17464211163268\n853068347037\n60284077\n72858381\n5533003\n145\n4807320442288\n464446326336224\n45856227\n40601058\n155412305660176\n156582374164\n6773232\n718415656\n444220146\n47807507648\n686576\n56276\n313230073381351\n21736\n1821811436842755\n70043166\n535365136204\n5188585028217303\n18037205013160\n53446321\n8262607428\n8453582574\n31764353\n2322184\n315270\n173115\n128174842318\n0\n201\n5048414\n5684201516060\n63861378276\n4166\n375\n65776206\n5663224\n48636371\n488042\n85516\n12072851648147\n425641065248\n776854422\n41735\n83113\n5832\n375162751\n467461881\n2777828708571656\n2176\n2022\n4887274701\n863208463\n715706\n406131\n7087755051381054\n607\n810\n364386\n54612545\n76474843\n67807053003806\n1\n1148\n5172728\n6251562146\n431080\n16583\n63166633536\n1724\n37\n8\n8131283052806\n8013538038\n5574145883406114\n770008070840\n66418267385\n58153874\n45158\n6168\n641364\n808533147662422\n83\n107018066437\n13437076\n41255238847662\n618\n777281\n30782\n532383527186\n3\n4146130\n6455172423084\n8555\n3401250\n8666064512572\n64742084\n4611605\n48557418858\n618311\n408218823\n77215365738622\n881548624874\n1543\n485044853\n3615710045\n52\n7643180\n2680668700780\n27747472078756\n3510002476254107\n862\n10501254425\n687120\n63\n8620705\n2602025530713467\n233236538234270\n461\n32110362\n3\n45455433807401\n3\n655883370862\n67223\n15134240867110\n6367165555446\n5057210163710481\n44877683\n41088553822\n3753728\n40788\n14467338481557\n283401\n64105\n462165247\n504248120711806\n741556368102545\n175824821856\n5\n536046\n3653646047552\n38083\n10654\n20\n6063785442134\n8677274805\n241806\n57212108\n272675\n1\n814820802\n22015610148378\n7552111\n5887151031612348\n6822200542026\n0\n733216\n72448054103\n457\n30\n32480354432437\n53017066085\n0\n647615\n582\n3518\n655165354837\n612536634\n837777\n645267\n517521\n402\n7184163\n7542617\n5757\n4885433654154\n332762171681330\n245070552251220\n340258543\n825641846341\n387587554505812\n52456\n641888\n476361181643\n6457737230730555\n75762\n15\n8573284\n572870805\n30828503\n1\n225518\n7718\n881504\n15\n82078677\n5\n3820802\n8604352273430113\n4778260127\n78052880\n2520337612547\n60\n21\n7164736023663187\n488272330548374\n8740331764664\n278\n66658152573\n7723883577430\n343883275861\n55228804\n7883713101548648\n132523788401338\n18454\n4275257\n17140581\n45\n85376\n4033852584\n3700158127\n3442840582037\n3615583864765\n114826881\n45821272881540\n7661484618888726\n28410411\n4161030\n375\n45184014676731\n80622\n15207\n5188833\n36332001406\n567873148\n6265755145426\n1081112566810730\n540768\n71241714\n640247172403\n246\n48870715705\n684851\n436448\n5\n318537173\n605\n72526\n4217\n274874\n34057304261160\n354213667338428\n17\n37247111255680\n2555384\n641608466045\n78582\n238\n3064256\n31536728\n31\n66642834511\n41727673475055\n63661\n155623766\n4275\n750281752453\n4735722\n576203825434522\n488735528173153\n2488105\n3477800\n357541365515\n77357435676\n4455336511007\n6044220836008\n27248784042\n41\n8\n2\n400134\n104\n338025375\n777824030\n135283\n52\n7643\n780413465\n33603763\n254262146338210\n50155414724634\n500785666\n674642376\n1\n215837806\n1023737704565\n5335004288\n2860\n8005147\n36020\n880378\n264612\n25014\n4003145486062\n7758\n5288227153317164\n8852233750305\n776545011823642\n85560055023\n51\n778\n1455\n5584\n54516\n844430382\n308\n4121\n1222260855448\n371101\n184847013\n323\n5453618303062833\n548\n6632086\n67350\n5256522231077\n4622\n35\n447657865454\n6871130145\n7775305\n2387363\n27\n8\n7476\n48370206141\n433461248380\n505007133012\n1620672\n453286\n300552444\n32107028321412\n3072185618666607\n637310\n26114\n74173727463228\n35442634610\n6103446\n58663738536\n153001521\n48862762218825\n52284\n3854\n30704824465\n103352723316\n14738372127\n1323172618557450\n7770\n733070535\n467155548\n563\n778257232813143\n5030406\n34\n785\n624620748\n508708727218812\n68734056413\n564185045870287\n704831113815\n863758211532\n561257762\n17047666\n357168616\n75003462733\n5\n4825415034\n38\n586602352\n704105173432012\n674\n1463660\n25\n14\n325\n71275\n321\n201250360\n0\n5053782658065615\n8586\n33204605205562\n1\n232620445835284\n27118\n680604621781\n86672816005256\n5\n4045221087753204\n82551208777231\n4704808276818101\n832\n65227700577707\n723\n3162845216255\n28158085802606\n45\n2457887218430014\n840076116\n35132438428160\n48126828440355\n2175341\n34\n1408172724711\n3523237076\n63334460\n40055576\n641334721835\n878460\n28706152\n541482166\n247838332470036\n67\n628156306112\n50314888\n3863856245\n78833473\n6787504738644\n4740\n106034564\n7140165803807338\n7137\n47201112651\n6626\n7061005511088\n571\n8283048023513\n8756764531854\n4305070\n5508165845184121\n3123137216040376\n811727481806\n7711873\n801\n37\n7468435\n437318\n53\n738877\n22662372\n70760582561\n670278507768638\n6167\n436371372\n346\n430\n321022\n276477514801\n7450\n17\n3202842516\n1267270631383\n572132\n21\n2046\n731878327558447\n53\n54450187\n765454025661\n1323600\n2126\n284\n8712153\n3854667221154482\n666805741007170\n474576608705\n16761706\n6045720877444\n4718511028415546\n45073747251\n8405208036\n5641680485416\n56375\n8307767314177760\n18676711\n351021745737\n38363716\n7242\n4867161822772473\n35525727\n2\n611105534454\n70167\n3637262\n36070441\n62478284215\n5870270\n40618241848532\n20850277314554\n250\n7371285\n3252807\n863874\n3058744\n5352715\n63824774265\n20844674\n6\n17076014\n8410847016710\n17347381830740\n2151275387740\n447630263560\n1887244454\n47503\n733220635215175\n3024366\n0\n44751305\n3151231687\n782411\n2730544313753224\n86854836\n384326012586\n34863\n538456726\n788037427870550\n104134024\n8\n1\n703402064153\n77\n300660338\n310\n58576170\n501546\n83155867607364\n105888\n868615356608162\n3355538336722584\n26\n368847843\n7558384330628351\n7735806053344\n5140446457872\n66317143\n1120824\n210438285\n63\n63514505502\n7706551\n4571488376805\n16353134\n5347357302657\n4010\n715564350\n41\n50274632705427\n312618605313806\n4\n2730235526443187\n82521\n576\n24622288880\n322\n1374586166611\n74265500452\n76\n226\n360616\n308\n77117\n63510315535248\n1645565242535671\n33717260620\n68584153\n4808464146\n85517\n42883618\n34718317012307\n340346075026\n4546806\n36021500688447\n812\n86\n854\n86848578635\n7785\n87724544817742\n78216010880651\n421031453\n4444\n703122743\n404124525461872\n820634772112\n782181456245\n886\n32280600361541\n64132561231\n5528454\n67643774\n30861068245014\n7748256147326007\n427672044646546\n68216\n20607233135045\n70318240\n5114632\n582\n56\n51886032185\n30760655060260\n3728646138471325\n4\n825437\n253165272063014\n8262201\n1526010544255628\n77235884\n3558154526\n3433254250\n2206836344738577\n76627\n8781425423072\n38\n801748268\n7872\n8353547447854\n4234\n178346111\n5\n24264745\n87235354\n441507658681\n86650878783365\n142756\n5\n7566\n73803158024104\n7274338\n850\n653276\n15402710028388\n46804\n2433380600\n60457114208\n7203\n3720585748542245\n48324031136\n1765372048478638\n5828135842302\n36264\n4152406\n3643\n733083757420183\n7545\n101502\n11\n547717876\n256\n637131703166\n737\n801816225582\n4503\n425036122\n1724684071\n66044254427727\n433664322353\n361500580780\n27840388\n3160136122\n3288015776008812\n20527603688478\n87\n366773011747652\n33144784\n548\n56507622242\n465881\n845576608\n5026621684583\n552\n1644082116008\n7128674310\n862731\n13\n8075832\n8572331\n7374222778\n15633220556784\n682582767637502\n381023458541030\n816642505\n764118465026\n4006181\n35060703\n436632358413\n624\n85078370807\n0\n4\n10\n727344413724\n4834133115355164\n83215745860\n136\n354120\n86526047248\n5713127152\n83587\n27\n422824182\n54524184\n2\n511736283\n4617366157\n13176413277\n735\n424346258\n606\n263748830162873\n678302\n2281065148\n57421862686\n7\n818\n613072538\n56200236473003\n63683\n167\n6085556855307466\n670466452\n2518703748644727\n3010048814834\n1863\n35345065784\n6\n1550514500\n7\n854124816802372\n302473065\n113445201844238\n3266411102115\n25\n4786\n5857350\n1312363218815\n184\n2407\n105402256\n155172\n23043\n1\n6\n28526321311481\n37014\n82434\n60068726562474\n20407201110518\n80257315606307\n8\n88136\n80364867\n64185\n28\n5726541\n2881442515111880\n58068721785241\n73325725462\n152564\n23404\n50674212185\n635785\n10666203\n58\n341100\n8\n25017\n73058\n222685064\n8760566106187111\n74\n8\n631\n0\n7\n37\n7547174\n23235131087\n8668\n78561707023\n8276225168753\n800\n84134161652\n8\n763031\n223108576\n1\n6612\n351666051112\n2348628\n381081220885511\n2120088707\n5458506774477072\n1\n33706605\n45\n40070\n1477135451323\n8152651\n1861574521874015\n1\n57131\n65478115107\n875\n234605861651361\n50586203\n6\n6485\n41\n511155476270\n1327656\n60782808488611\n6352771861\n540261885\n4837\n76082341330507\n14124644142834\n76316865\n6651720\n5174\n8\n424880831\n4641485\n10013705201\n4887717883\n42760255260782\n5248604625\n7337122708544\n5166064030466\n7\n3684575081\n8421634150808517\n83201\n805383815735432\n8\n4218423728288206\n481736077361347\n44887513222\n228850805565513\n17141848\n6673475\n882588354004047\n3510038674\n458702438\n4\n125724822232\n627680\n2561278128771800\n806225246486216\n5616211378\n5604388347184787\n1120047020\n6482522173\n3714740602\n187333022762316\n0\n3280103\n2604412048135\n556668006657086\n330\n253018\n370850\n615\n6342541346732770\n3102631\n715\n835\n86410\n7411633276\n607\n3565467716655\n435325315511\n34703\n60583612\n28657760080\n8016266603688050\n2143601438802\n1106551\n343773651\n6663814156730\n178217201881\n373570858886\n771324\n771253454\n508315347541703\n32413808662806\n6512286136732475\n221\n465013435\n3031472602136\n6220802\n714640448222\n650815571787\n573524063720\n7406810542328228\n3657401618501\n0\n685\n57\n12127260163282\n18837048\n480287435514\n3560\n143456088275836\n2764173\n351116327084\n7683712465\n2356036030350785\n150360\n7774711844373662\n316251450885\n8\n784035\n156855\n8684363281685\n82727838028\n361461277\n85088\n63277362372162\n4564017533360134\n7185128\n3752851\n804235812\n5037710030284\n23552745413\n600\n20167752\n501\n402571\n653305\n802775\n8634504625\n784\n41432716637\n203355673\n15280512424623\n12865862734000\n12\n12486050862\n6512388\n26403182444425\n6068550\n1514651553\n73534456812\n0\n817516333726586\n45676410185\n5583170\n32131\n70767305168267\n31\n7264473323400248\n736014058\n20234861\n13833416835728\n745325110\n3208033082125533\n508471774721271\n312868\n51\n51202310223\n48086\n7760014700411773\n76583\n362555582\n1386110\n147580372610655\n613\n658384\n0\n6281\n227186626027\n3\n22565676640586\n803534\n6462531672\n465758530772812\n6\n3832510487126236\n60\n277\n3802733\n8178852\n8605\n201\n3\n160772014301\n401250260\n8\n125114\n48086260722\n83053\n451\n7705244\n368\n828\n5601\n1370116\n266436\n74283451534788\n82\n112082732\n7778157406442\n8756836\n7\n7817382338704863\n3548312142378168\n216134\n65\n8518161603105005\n3238265\n57126117610\n72706114\n8\n83665504135231\n5645040725680882\n17\n8647344\n27\n627651618387\n71383342281\n67466\n802672\n608780\n2763062761667\n226065765301\n58087\n86\n118458302\n656312721507\n363870351661327\n4726043544\n651161700\n37362328255086\n6461636816206\n53\n54306723603\n77764312151806\n878105\n7272377075020455\n204385324480\n816320388530366\n6748531275168\n2246682\n81273677408107\n53123181\n5170\n46\n65681542\n661867124776\n1482502\n627316\n6812\n6580232\n5\n5\n51888441224216\n5144100481606258\n2\n57\n100751871575\n620702874868134\n883115854733\n41\n1077814767\n82\n7\n372031\n61258863\n424833377\n631237\n825\n811\n751\n75\n240613128617\n6\n4264503244\n8\n44157570712\n6278058435783\n834503153245\n388\n86140176\n285865\n7301726002358644\n3631\n275504457062\n6\n26104705577\n7357631\n4\n656\n1467502\n18603316135453\n83188\n80\n137447\n6740267825487626\n3186063825147404\n513\n35240\n21125\n53352824383480\n833752278740837\n501327053884155\n7163276\n228484487875337\n64\n36245076\n14308220833220\n352\n731\n22738\n5614\n7625628521\n4262824\n14455543540\n1071857261\n1523410628767573\n65\n1247856573\n3232105544556\n513841835803364\n4\n8638408433\n24677205606431\n115101181383374\n14551308785606\n41126148450\n3538372743\n5061722188817\n402435576371\n2525326630327\n237684353403527\n732740652812\n440\n362032487\n813340341663\n4160\n852424207\n30474521\n33\n2072226\n8550524\n45513456\n74568218735517\n8826646043040144\n56330\n5380073506851\n88047318\n752128308\n42401\n5264125304\n271671152133\n7245337557080474\n721512753\n3216340053\n7418202188076\n3414634\n85004815817\n6277\n30268827220385\n4410478\n6606252\n86122878271\n5002\n512006176\n76\n606362\n8441383\n8770687128721036\n375\n6680414234138086\n155808137\n6820145573\n5741236642\n58766587813\n322462266145\n344641232130302\n4572786\n7734006\n182\n3861575\n610437480070\n7712620430446320\n352\n4248\n65031618663\n31623461\n40601\n313\n687\n3576147\n5812170\n381743022048\n667\n37874105\n23708221570478\n53721653475\n5334265268448\n882470845803\n480273405\n1730074183\n3\n4\n588700\n654441047357061\n831802585771\n138552088228\n6685323775773\n6\n834177628680127\n3\n2\n147563164\n468745272\n8032540814\n6301888815\n832303004217\n482\n6063003408240\n740420258613270\n347740880868838\n51\n5\n7671518286\n57\n34218\n5231475017\n464816878\n5248844\n86330085084\n62620752516764\n320\n4160684460\n553457287\n1230225634\n31\n448264062271\n1458232707068872\n14\n64\n673116823\n8106135\n62873722066\n6061881448733350\n8\n424584763427643\n382785854886006\n1074880043185557\n6\n72336081132742\n866\n30463001015017\n523406830\n572527055555165\n63872623563\n2027680\n62123354686\n514751\n62535\n277013014655416\n783475802607\n16\n65408\n3704\n653480621\n5115\n87323866328328\n22\n45\n5618305402\n7255081046\n612882\n2764474514\n7565624357085\n5511404632102\n6666\n3453370621\n33\n421570717828216\n65\n51648361822230\n5530874627\n4184508550670354\n33680\n7540055\n68414238262\n734803155123471\n227410250727\n41\n6701733624267\n71638803070\n56714505187\n23038\n83721685613858\n1066543140654\n8322575\n70\n37463361\n110442088\n6\n474\n512284110\n865243832\n2874887867\n5\n222853201510\n241155653\n23760434585023\n813355703\n750322\n6866187434\n4\n5470707\n272\n85262452373870\n141\n374\n11763438\n24332\n140467825\n814137018\n7116287151663\n6125255057\n177057648828\n2132006824802\n831253240\n6463834061243\n741120\n50115587\n46572\n48002334067785\n645266\n763467087134787\n331501155715406\n113210\n21754\n476\n4\n2755\n85164\n668345\n602\n75025088706\n33482754222\n250262370865182\n83620675505642\n363351744028\n55270427\n16461627\n75754828832350\n147548103787\n3704362\n136686667664\n20102251002446\n62341876\n1443133555\n57282237\n5652505\n46151416\n344720555671\n817\n773723272111\n2632\n66625708427433\n31\n438230677332066\n457\n860\n5730856671131\n4471\n556505\n513810460385\n62184\n5331248\n173468235644124\n287234713370\n55256345\n7728510145844731\n385641823\n348702\n10221\n6420543\n8685425288452626\n621277045574603\n587\n6583014307111\n736\n6424147605167561\n18227\n615381017281210\n3812326143314\n54076702\n16435\n83165\n576\n46\n487003\n46\n238803056785104\n76761378150436\n73\n54162844447745\n20406840386\n2\n17835665\n85\n0\n7577870423381\n3150310005465544\n56643481738\n3835088822546\n42635607312\n3\n280\n2671754746362\n320180388\n2817860856620464\n2\n5\n102355\n5688775\n7406112887166705\n40012155\n661\n420242272311326\n605346154\n750483808882\n123\n44803308008426\n811460324634276\n376\n201786464685811\n428538\n75144782\n7614170736002164\n700832\n25310661763\n63583358377\n4523684848110081\n511240\n258211\n1078\n415212\n6850130831834475\n22\n60113\n3\n878540826221\n7226667810542547\n376322\n7268738635766\n57637167370\n22842355262\n37055588383316\n783683346715868\n86151631511140\n22\n32478788187\n67845220824\n20054434830862\n6054\n41\n6031528647\n6025843237502438\n6\n640438405256\n68\n4115774620\n541\n6217237\n622113721810222\n7354752055\n52\n606251\n8650812674432\n21\n3108412\n168027612\n3633558885\n77220041\n3774\n4368533824176277\n6\n651737853236127\n5511027351886\n5\n28857160\n875325012\n3071621382242650\n576756\n2\n2672734814\n3447727654870\n38714073602318\n1181523257256\n751544587\n178787374\n37467050\n7004314367\n66030301448\n30\n742264035510\n5626160388331\n85077273727\n5\n5214853704408\n40\n6438615800\n888582\n55133\n7067057764\n21538346\n548648546370\n85\n136446143\n57788210005\n72\n1557618320182285\n512383862501503\n128103830047\n54421788444731\n635\n727066\n600037173441463\n456436016300\n400040178732\n254206675\n86872202\n1\n205252500\n26256510\n5230162012\n1211640\n137138\n626\n843263474257\n442111042333\n4685585523332\n5672240\n2\n0\n148\n735\n507606664\n6076857286\n18132583253048\n5461656478\n2531\n261750\n374637348801\n15807475\n4141\n548680731253\n23034\n3573\n6\n720071277048\n7\n402667574712637\n38876424838\n838820300\n768150\n5164062166740\n373021038270151\n820654582026264\n244\n28444544\n740838027752\n34670843\n44820807324851\n63154674\n4672218526572001\n43571041\n51407025\n6450553722133078\n2\n3778228263671674\n384648671\n823508\n4267\n45510\n831\n468756222\n766363413842\n632214822\n83\n676388548\n483\n70023\n32\n45446\n40872\n25854065641\n1678\n2158082418413156\n78\n44033\n415782176737183\n5\n5\n6671607604882112\n642822758\n6456186462073752\n117105252242724\n728455\n5075161\n50635707227420\n6453228856337\n34042478\n6423688577282\n18346661662806\n84087471417561\n30632\n5876367\n60861\n4130\n85\n4666847677\n12508267150808\n74\n22\n5217\n117\n4568078\n108222733\n36605222\n4105672815\n75246327151\n8246641844184434\n470\n3024872756078407\n784400315\n7\n8682374831650\n128748\n5582130805357\n7702\n7122267058\n148873776022\n1\n5037730016805\n887585\n62562306832\n1060\n63301564\n468\n1630633188646\n5580817641513541\n4818076346\n3424112165\n7248040302\n5253472117\n4560743\n40233332\n61770638638\n310187766537135\n2768475638154\n2167241\n1123261057\n474778\n204358314503127\n7138\n3631\n426\n635212\n75\n1532664535218518\n757563642480156\n8518565\n1677\n8\n1748476400303\n5423487015460840\n8515004503427\n46\n684731656340\n742078753270\n18867874\n7242\n122454443604851\n1582280\n8618802548508186\n855478\n7\n4054665\n1101552\n68\n3013\n6541324\n7455745080563826\n76863436328\n7021\n6\n86857104\n1812138762601\n4\n648173134856\n71372\n2374066814844253\n676265517678\n81406066104784\n803811667\n82414\n2841363385\n872017\n5414016320227543\n540\n1847253410382\n4816212660\n854761424\n681057367\n34\n381504887\n332241575\n527\n32727034382\n8\n78223147403380\n48\n616\n752125004130577\n8753205\n261154316826204\n55624\n7534306522\n641176304217708\n304011587725\n1615472\n86\n7\n64827334043\n2035223106\n8\n8484141784040\n7821\n6065\n1\n852644\n830510\n30214\n63227768\n1311414\n74507568814\n8\n786\n2358180531\n435237063723\n232\n52708585673\n73411\n5648617151668\n3148223\n5410656\n6476022657868\n336317488475123\n3\n72310702342\n78\n15\n3578\n611383700\n8260565721246\n261177\n311337\n2582\n6143833052434535\n73786\n511415240\n7\n457707\n861334403\n6804141300115\n135\n16840085\n74332650654\n5572\n4826815\n63863740\n53348318308744\n2453785\n57563\n743384030810\n3513632658315\n32208\n368324547245673\n3534773681\n58165468253048\n2\n0\n5626\n5276780\n622082\n0\n220562886640875\n6517586013535\n80742512240636\n64152\n53272412431308\n475\n86384851173\n66476883280240\n408631\n2267772075\n354\n50175801148\n873448\n626132\n6583352424\n45345\n37256\n6711\n632407504\n251\n27580240\n21363611\n16887242017\n6\n7342218604\n100325351150587\n747513\n3501\n757162703434\n63156603548\n237751571\n7762370027430885\n2257\n67853632053285\n5736378650\n4075024015854517\n15061145\n16\n3107676620\n6140104838741\n62\n3314446662\n1\n6335386813683\n26152817377\n3\n313316752066\n3378\n70\n4051006682061675\n7\n235741281354440\n15\n42221558038\n150\n417111161426613\n23701\n32857546631056\n84\n2656232243\n401122650\n42\n5671736737646701\n13428\n3253450\n630033428064136\n7233475538\n72\n38660031\n460744308\n13371680236\n63175774765\n5\n4555267410\n306210461\n643461\n213764717780\n6573433443036\n41412236472606\n10750474052\n8800043538366\n4608666317322100\n446172281\n16825010400\n5543452034\n246\n75484025\n3433711\n56060203\n3673455411\n87023014183\n2463833728111815\n56118\n86388376\n48\n18888385808031\n2450\n1802115360114864\n5721235518\n720716\n40558875381113\n516\n50058865756\n4660358515823\n653462274110\n66774\n503206301626086\n1\n47381603686305\n53\n48\n428675774384\n726885781003\n778312038\n516511407\n5512368\n874231444342612\n6300458\n15848\n668722076205\n4582105407\n3430513162645\n1\n34823358241\n136575772862\n63213551418731\n126206858375207\n46\n187750481887703\n47001\n44621057\n5556\n2331728\n14135688\n101000511\n66421732\n5\n44674272514112\n63032230327\n61742781\n5844405218106\n771\n16\n3607223376\n461\n838\n7063727\n7810454881\n45572\n7677158251628058\n1635276483170610\n2510312\n267445740336028\n6754601877458717\n363124424123\n56764731\n285\n60708\n5\n53660\n125845584\n55\n377753504624\n18860258\n673223300\n66\n26523484\n7655186863\n1076\n672\n6236300405\n1512184433827\n8212500855\n335373801421\n8835471563707\n2645334534752\n175514625744754\n80\n18\n35212786\n45\n62478277724\n1\n3708536681662\n6148703860\n524\n845844023384\n45652\n584652756571604\n8562\n142716536010227\n1\n17240550023873\n38465\n4\n2447545884066\n42161648\n380\n577614421843\n510454840651836\n2\n73210\n43073\n835261714\n158670278268\n2860340574273463\n16\n5270816\n440\n57152\n65736318\n82\n572\n6827301003833\n6\n7571\n84\n75157163720714\n407\n60273575251268\n82874015862\n82563778453078\n42275251660228\n8240310\n1604062650882\n6603\n171426875018536\n61157\n7224021071613678\n2570213766\n52223530\n6502827474\n2738674780\n65547336065\n44274870886117\n375703\n3\n187055666\n38587381227307\n1\n72830461018\n73654\n2205751215635\n564633444450\n4373\n787103\n1010400\n4564221\n286258264117\n14\n821647\n75314754178285\n817630\n702\n36463\n7633\n7441172785813706\n3347526\n6\n575767\n20\n63154030013\n7388450823232\n3558\n31\n6045227660416\n78884\n53117266106\n377864222\n1605620206\n627674\n2533217417361578\n421484164\n2742538420031675\n8167\n5722514170805522\n770131004287\n3357016268646\n3415576643806\n2037748170\n62433\n62172451\n600331282\n456833\n34050384225\n1187737463887463\n0\n71\n4748622081775842\n564214268\n7\n66444\n84384584732551\n22430308340104\n732081462784\n26088\n2805025826214\n4\n41\n3\n2302628277\n8274226031460\n13722636680434\n84\n54031607\n53\n361000\n5\n6066627061045\n4564531755560\n3543626716\n45830211241\n337011002831\n84000\n5420033256812\n22784122\n178818553733\n808123380017\n428255256625500\n12488\n452037783347873\n4801608760705\n1\n2077\n607106150\n83\n7006227184115\n1651655\n353111\n87\n57271044844404\n6758\n73\n1300803\n38288512867285\n4644038427106235\n1\n4628872281\n203280205\n882\n782\n185778663023\n11652\n28688\n3757101134615\n8743487875262147\n744167412150\n106\n85888564117652\n13\n480\n38304815204\n3755447047122\n235\n5413788\n3574800824661024\n3071\n14\n1481162823003438\n2113811733027\n1\n6\n826133332\n52067\n638842631586451\n34768462\n6202001852085802\n184858013887\n652\n548\n340810572684201\n14722\n46723430805\n47761664632\n4661046013351\n646\n4\n758\n7\n6686031\n168170417\n1634472283\n38780241\n165751178\n1551711854\n802\n527500675838\n27408155338820\n8720305012633827\n4567023622068\n234470770764\n5\n741267317011\n805642116\n1\n2350\n435\n7678\n442604\n124516\n18\n232825\n4171171737240\n1885132054633416\n12\n1408366480786112\n1510872503474762\n85383402432274\n86824305133\n71305141083\n782413600\n226628370183\n64221101338134\n70762217686183\n2628503352211856\n18\n2235786\n2877716006523118\n30134\n5467634\n4441\n462842250328610\n766241012747\n825611435750112\n730174165801\n621677477188464\n71461\n67\n715032\n36\n2360518483380454\n33558858284771\n82366\n44\n13005254372\n3285106\n615247\n67601340\n42658715205413\n8158\n48\n1835117014327\n457225731520568\n7383620335\n82113433821\n5\n4265086323544408\n575676580800240\n783017\n818027506302648\n86010007356\n382775\n8580814080\n1\n1758746104\n613044062877\n2352147015818350\n68\n8762014351\n7462045637815\n258\n881004765686\n2\n3123344\n413130672152861\n8\n28482137274837\n35878657275\n73574684482\n3717745801\n77725357453\n604265655250813\n413271\n67\n78473013287806\n2851661661\n48840452762\n734\n2465157337\n5404865181\n7\n31552717611\n8272471566444408\n13218886\n51242\n7427746180\n7\n715327330830331\n76862147115022\n8425\n557410256\n6302\n1211\n58448888224108\n56666\n4484583\n57600775\n5883862120674618\n8677653211337247\n68\n55778\n67721832260\n5782\n8782341\n70\n611835\n7371\n7011347062584\n343523326525201\n6371843540487\n122\n181468130764330\n2\n7337561\n4756\n447604553\n782184\n373530\n71534582876\n283431387787\n7628101828\n676644307\n3022347871453\n4\n746553076846244\n64\n735\n24683523\n228341264\n7184427530317\n200\n70315222\n4100232703\n46\n635147337075\n4733263\n3033422325\n76\n7538217082606347\n62877512725422\n6413041\n88103\n44751033717708\n3057618165241865\n16407665340618\n17565103\n65462328\n8577418055074\n471\n75464503234754\n10\n487118445438\n22703523712\n655545\n510\n4624012\n2563404\n658\n22812413\n444454\n2235\n46835053\n71245703\n7474473\n2033300564431\n7212735\n71564038\n87364018\n658626\n66365612546857\n202\n70\n817007350503\n75535812234337\n4403187417068\n52353\n2\n65327314\n4413427865602\n2115\n8014347600768\n102078\n316\n5\n6026713580\n8088\n40108655202\n27557274607476\n670260250\n8332124241506\n25235245583\n6358311606\n650\n663346131572\n34\n264411536532\n188227138151\n312775488\n568435181\n7326628\n67436067\n5\n22071652764\n54\n1\n56605713\n833458422421406\n88824172\n15788800202420\n274300\n74\n2748116633785\n143528640888\n1216786440725778\n47\n635518254\n62508\n408251376612\n1026400353222014\n47\n4827\n35\n673\n241745\n51642033218307\n37558224\n6667138\n5\n5210508241003\n8582685\n2\n26016151780671\n441185258146\n6536037226626\n544441\n251\n32\n577\n22\n104220718160\n3862821047316\n5171405684\n8\n5\n56220013\n85330316226000\n484301508230208\n208887\n277818653614\n735015205708\n74206053553538\n2424112751\n42105573\n5563\n23881582\n2540822\n3\n3\n7280451\n15\n1082247411576213\n67460020423447\n6\n641608157016612\n6586837525360214\n184\n76481085\n1551646\n48861562252256\n10618272823338\n46635\n2170348170\n47525364\n217818356807\n47017386831261\n681358320\n136452623201858\n4010350775\n4\n4786305\n6407857\n206480221\n7588\n87164332242701\n2884637764\n621427164\n360400618321887\n4\n370038650006\n7800125\n8808681\n443541565\n5\n37708\n5\n813551650130\n3606020676618218\n826861432547684\n7860825863\n46484847\n511528\n8031328457022\n1063877701\n51878\n2143144724036\n6065\n47562408155\n6573876826178\n2637177085085\n12304\n3068\n6844214205\n18233532\n4375408\n78884656438470\n5\n758354\n45842\n5648343357484\n15083\n1843\n557372516551030\n6267872701638\n6367274\n565377100460447\n2546424518\n645144634230\n71375568787676\n37858\n425161601035800\n8125\n481770545650\n80781065055642\n53306202447481\n553\n10685017071245\n317317033436352\n4246303\n5351151\n8663353068305\n5667887788351\n5015603882000\n75607\n276466656\n521\n128257356163\n726008114165310\n35488263442\n62831855\n1164588612280\n5020680285462\n635053340476880\n700205048850068\n20\n57066656\n32081846\n61026\n28611\n15872023606846\n532\n6\n644\n110253636666\n73422361\n4036652\n727865267\n34226\n67762680868\n8778\n25225130\n13776127523\n3274632156406880\n304344780003\n3300334852364764\n3358263\n2852841306\n6\n5418327\n8658257860504\n837715\n612685515\n287337088246360\n33807\n1272344\n87\n164136851505\n88\n7\n35163\n567\n75443722\n55806\n470\n477108852\n728262461371\n51151\n48733072207\n38482553\n181437\n27166237855053\n76783774820\n72466\n462065617374\n6247504401280\n776588174266\n110048077760301\n30776555\n0\n412845\n267240\n201642030465\n4343515608875108\n52555078\n21423453\n8\n4536325228565\n88071516656444\n160560322\n7014540014\n747543035023201\n1811166801870\n410658\n23486187825\n46878\n1\n7884705365183\n70710552365\n50643300282\n2132013731\n130545338167\n1538820311118\n157751\n2024335360\n23\n44\n28337805\n41837735640365\n15505216700\n2648\n21675031\n646841\n8040\n80831780\n361306673152173\n143201668\n35\n73105772486718\n40088\n705240\n80080\n3837842017108816\n46773124481\n73\n10568216371\n887322\n722441673607040\n25506010874814\n52548544531\n80263138380\n621428825087651\n2088252351242\n254507681211\n358\n36281421465828\n30\n323\n243330741084711\n2150514561\n477540341\n673041811\n8\n5600223\n2303032077512\n88124804486086\n53801\n0\n5721786767468\n6421374802667\n687010634773\n1315530603\n67\n72155118343441\n81142\n5222643\n1\n13611\n37607\n8826\n281842001842\n5277455786626\n46214\n83\n63\n870446117518717\n8133060576823680\n61285160313765\n1\n5126611071\n7\n611640233557\n841554052004652\n8\n8266\n2606040761\n77646333\n17\n18413382126027\n8506018320022815\n675740424053\n413025757211\n83312003\n51307675607\n267208867\n6552252414550223\n8460\n5402\n5716688641\n107227806728\n8115\n84841872\n862\n868116\n4435745341\n5582303326281\n457645217337154\n45346087558766\n80001156\n4776\n56512351130463\n7138304862125\n20666441\n700046115474566\n31346370283828\n8471561435\n2773643\n1716585856\n8131183241\n881502857\n44531310027\n2316654\n7207425637161724\n407047\n88321\n52253\n35868840445576\n134\n455635685712555\n10\n23\n48\n7\n68241233\n40381567353835\n7102\n77\n35823827257618\n346\n6707\n8201668260873\n7008\n261\n1527\n34140330743784\n222\n8874542\n688583\n65870600626\n8542630076753\n66\n2\n88378812\n820755333800836\n244806680\n1824037002\n4714\n2017143\n16282836820\n850330547423386\n166\n25488642606325\n87127452045\n203443388\n8054\n3408235575504\n350871\n412373703\n1546\n474520417761\n432068170844\n327313\n484014\n15374772\n2755018\n427564835725\n450320682258\n282112773\n600\n658012531126382\n564\n445036\n4443\n488\n58\n37460515706526\n52211206088512\n30357043442010\n154267121\n60613\n4127350\n126205651710286\n2\n204088755\n1551654432172\n481\n34\n20\n685801\n8762682\n2226345081037005\n514\n4734420\n3822138\n4474\n653671\n255566403107\n54002851360\n521637\n655105\n7307138835755\n41\n4\n47567746607\n1631423\n3024302187\n638\n17570760\n56736253810386\n7380678080570631\n4843242\n43140\n850461344586\n62642441\n8727612888400\n23\n231\n1354661664\n1476\n3271\n13574868621072\n36203006872\n6230773\n277013205517\n521624238\n10780613372215\n3781640115\n3\n663\n2223682803\n2\n68658518\n7327842438362227\n6825\n7568832\n1517\n6\n36\n6485\n20683257687\n1757502\n303534514316\n864556832061\n508\n4\n62206044631\n3153171\n3021\n48744\n5165823\n877737728672\n6357866646285447\n20605427710752\n13466868\n61288502615\n6677667058285\n320560387\n1351487236055838\n651\n582517358305822\n218260038\n6\n68\n678754\n36340455433057\n613487\n26721062\n2325473716\n7\n557177172872217\n1163626466636\n1\n18\n245882861087\n45832425\n80864054435\n22\n7526574\n5025853275\n2012310226\n1817188817\n5\n87111458846042\n1440377443270574\n1260803205\n7445548861600264\n2261252515701547\n110134\n527370\n517220435\n5610417516532117\n3116163575\n12404\n2721408405023754\n6533616283\n13487643364\n6505130470813300\n674437751234643\n3562725554\n3505408720\n406117123362874\n4\n12281045\n6815772264\n116\n632143734\n200533085\n705021021\n161368318178\n6667743007814\n40555202715247\n148807\n65343\n531\n4052146465\n241781482673\n4051037\n575418844350\n855057787633012\n5\n34\n76338111573317\n6604384082265\n70680662215766\n6\n1353\n87436717536276\n532\n4554738386\n564\n41122067\n83\n23076083625337\n615851477\n101211604827\n332387224643503\n14\n355480115353055\n774364554136768\n4285410378047\n41613860458224\n3626181\n171621\n1\n1\n655562702\n3037240445212402\n644800\n75\n25\n770551228\n270427275\n27710520410017\n38\n786588571\n7058773\n1265668306752804\n513\n63\n25088420\n3348027\n5323521\n3033750\n7274100872855\n1323\n51660083\n623140\n2704854\n2337541764304\n11\n656837275785016\n8\n1786350888305436\n25533788\n783108372143\n556505\n5133370\n622385827\n57374802\n608\n8402050\n183463\n40257543276745\n21\n4540\n38\n1757424510060\n5172637\n7168162522360\n4\n4\n4722\n6383306650562820\n5837417485303812\n23084613487100\n4566630677\n7540\n2176476762\n8750106\n80148635352\n804\n108372754\n4521\n321252456723385\n8682583756\n270\n544114273\n8068286706\n7272426811721418\n84781117\n2503876168\n340212672255\n2736161352331\n42\n2\n73412\n77840828\n3362242073868\n5536771\n57768512\n3505817\n7486\n8758378643\n4830132253805620\n27162401314\n634573406872\n148716\n457621718\n1441\n11413016144145\n484672\n36361183\n66638061421255\n1838256\n6877476367\n41781614182222\n4427382162714485\n586570821066\n221587421405\n3875453052\n5557477\n70\n45103\n688773100166\n63533013818\n3381106\n34678813173348\n286\n5750504726571\n3063\n302368843\n363404\n6366421307455457\n22\n500422866021\n164672054315\n731348\n34\n38148638726\n822401516834\n3\n4131\n544852140\n88\n6650145176\n48817884303068\n2534647134321\n84414840500\n2\n47042\n78385886\n1\n717837\n25305100240734\n134784004\n5415\n2\n30643222513548\n3680388\n5\n43114\n104823260803\n2824\n785474432628732\n2\n6\n85\n7486\n65\n77306513802823\n1\n44760\n6\n308351005\n6832417416\n72\n5727\n77208631314\n141711\n66\n8313371406063242\n22348628505\n38\n841518724301\n285828371326\n6\n5852553211\n541731\n17210802\n1280513\n62\n7175\n4\n306\n647632642\n2868080360503886\n3040317823\n436071431653\n135213336801503\n80353\n83415800082262\n371672261445525\n710243813775\n86084157327670\n2200430046021\n82104\n2\n4\n525\n7\n8578\n373223121354552\n77632824\n766\n5565348\n7141\n6603107715843\n586613247027\n55\n50\n6883040771\n26580041386\n76185814716850\n404\n57436786\n703457618\n346641555474\n5675546463\n165024\n550006380\n378013223651\n872171\n757435170601868\n5045774113464201\n4042\n388\n2620556471468\n56647\n54037\n7850414524821235\n407582635726\n56826\n5728826863114362\n22470851534638\n18246\n8823485806424\n85\n630506507256\n761833381072\n43140\n5813468061114\n252142847875721\n885141\n53714\n457775866801367\n16158\n16\n6175132\n43454225\n7268081705070\n8\n261721180\n357328142\n5235337850734\n28271\n75\n4117800620\n372\n1\n5455216847\n32170\n7\n6346413\n57334328888263\n72\n464773\n37\n4638\n628074\n241416051077\n7214\n45780382005215\n58151827\n4447235552361784\n88\n372650665106\n2308420446255422\n77567585501675\n211\n1071208\n681\n351710543\n3084063618\n172221812\n62\n166085265475\n8067\n21326206148\n26211112516\n4\n4270483\n807\n2066216\n4731675\n33424311550\n6107\n13847713850\n85463168280\n840743\n27544822031\n4834\n44026650241700\n32030220\n364405\n8385\n271835672\n256\n10652618884568\n38364832\n32\n3088\n842875751870\n3243565432684732\n357873456030375\n88014252433\n6824043\n571533287272\n35220337121\n67156686\n762700414388686\n1812875681720\n428846\n3215307675\n5650352234\n4\n126500\n2204846210\n58578112\n5484154126058\n431466874785\n50637848\n6546233853\n8\n2824665830538\n1020058641\n5218\n2131656\n775273305\n5820\n3648154080210578\n1353626813276550\n18317865358\n847763414336\n1442648563728\n756336678\n4148537822450\n81815422858\n520752751\n31027371\n508827874\n8282\n36827762367\n404452187264\n61\n487733307342\n788010706102\n21634\n43707463422014\n685\n321474667576\n2748515\n7553478824258847\n7\n351477566782115\n275530142\n4531062\n30376364\n2157851123285\n3\n271\n2542372061233\n5567706\n7847872\n828\n6123001817\n4\n553\n8268364482\n58515113578\n620751367146545\n157678605823\n373372760667450\n18706465352\n6\n67747555177400\n887140430825\n628152746450\n2583631887828\n11811786\n307246654270\n21746761175667\n5272806603123\n533\n23630080885136\n8022261780\n81\n12570475\n330262616\n3054211018710\n77876484\n7177072655\n34\n21114552237\n5318851062765\n3810233724783113\n482757780327\n53534243\n348358\n1\n4778811\n1048345362043\n8520082201758\n445875822568\n3680128888251103\n36262255305\n562104274\n65771\n4623224134164288\n5858\n110463138378116\n625006032572705\n550154701584142\n472\n284370014716871\n46037025322311\n26\n201308325\n11158880631557\n6723806341571\n204441217014562\n754353801550234\n8502571415262\n531118\n3276221\n8461213\n42146\n17\n2115\n856065133843\n2\n2776476303\n156\n680001668241\n666062855115054\n8\n1721665\n4144\n53\n58364463620\n41768326420\n831774\n1887258587\n641867546153226\n81\n83662861086511\n733504\n351572448761048\n18644164320\n1\n34517237248\n3526772273164848\n82208780\n7848038032524\n855136582431\n1238\n5501\n5\n4503628855\n14\n6004\n88653\n473\n78030335635660\n3678681\n3763855755315\n700\n1684128377\n88040\n13\n6605153558\n6651274000\n71\n5\n12725330475\n173814740148\n848041770\n28257\n28057504625\n87782853\n832\n34410404886524\n628277825341\n3\n242\n513281607773\n0\n108703180730\n467826283\n3034556808046\n772255553815\n7\n352877833434\n1378455556\n80146\n5824\n1\n1\n422\n4673207834061235\n6822376004472315\n145\n7117\n75450863060384\n871\n1842221304\n857436\n75761222\n2404\n4560528876213\n628247570\n884311330478\n863\n8247672860\n4413\n587234280\n6440306537233834\n15238781652\n48462417510\n804\n56212604038186\n6736246052\n165514\n538452578030423\n13784624807421\n604854\n46753008432126\n703067246056\n57762603053\n15078360027362\n60676568358\n504\n522317\n37036458\n524252723836828\n850\n84543854275035\n778787822\n5\n784811813330\n5088561220571\n1318431\n27473853238783\n3603365\n24241838\n74271533515\n586180\n454446413550551\n751715416\n568732174723073\n1\n5558506150\n287604133716615\n50512232\n324415734840\n816245\n2172\n400551416055147\n47\n378\n47571720\n28386218135\n603108\n565171310\n561815354767373\n828841\n8781\n336\n6\n83446\n8325411884\n137066604710\n12463\n84356605\n2848160206033\n1827130347\n6813\n50430756\n80068802880\n532\n45760\n2121874001\n54104\n520436532\n61152\n65300\n4701517438052\n713136487757710\n664536513138\n7044807\n5140746\n50665244\n522224131436721\n2832813311212180\n75583808618\n32137\n71\n83473272487645\n783604000506\n45\n3663656\n7105446273248\n50108643238684\n301285465348033\n715867685\n761108750\n4831078\n43821\n38443888176810\n0\n75\n471\n63384706\n3168607706127\n62600685671\n6632\n2107535265864\n3871102723521\n4720033084807\n8\n5\n367\n41345407645\n7480273628335\n23432535006\n8218376824088\n27554862\n43613412\n7\n36603134286\n363\n16\n83246442021\n2542\n62222028648856\n323\n3862\n6248437\n604415\n2468658\n87\n6\n2263278\n580384\n661\n32461314438787\n684173\n25487103184688\n180180563050708\n181861110464\n868405014365\n34684\n75241216345\n466363037\n7107168357661257\n43275325758053\n3737\n20701857207\n3101\n706815770588\n87128\n8107265644145\n33818072457\n585\n1630\n1630\n77320\n102223017724\n544\n0\n7053806103\n27143\n82451427584055\n550212\n152\n545\n234628064162\n367661305650761\n1321\n5377513387758\n621362150\n54457107447\n37585764146757\n262610603\n6824442003447\n5\n830225383818611\n5505078075\n475451282565\n7\n356130681854811\n306741117722662\n73758283485550\n52360770\n71\n84518131766\n576\n827477\n10108167750\n88515687732\n7074288722\n31757200\n5\n251820074566437\n5308246264885\n5447367861062\n4461768511560\n34\n4\n2781134267\n1485021210312105\n5531370813\n2432316\n806\n742767873547\n8\n50126544\n765280652412\n8231360775423\n5425626\n3023382\n3585485\n7188\n28565182370\n3453510\n2875810366645\n4841\n384110\n817368\n335821007\n56268308247\n41\n4644857556473\n2812503431468278\n47715384\n1736674\n5623815836011\n57121780212162\n2632608\n50354720\n61\n535038061104\n510104724226\n28737404846\n30023746507\n8640\n7757245\n3002104400737\n2\n3676837\n273215\n5\n541\n20405085\n6384653814437\n6244874\n237\n3057186\n787\n333450468346852\n8\n422011\n85605\n60228155\n341567\n3\n6073031\n233583316\n8203385418\n35754\n721451811556\n163\n5510352400\n5711241\n612010103082664\n7\n5\n6254557\n5473141832\n4705636170\n482\n27188488471\n225\n722721138547360\n8841582263828\n55050511\n4041232766\n2203435023\n5374670041653744\n206814538138784\n180667802\n825467\n3581502334781\n464883187711265\n258\n838674\n3653278\n31354274\n238267687272\n73\n3\n57760724338378\n41843\n73056721173\n5\n676207642163\n56654464202\n5227421\n44707304\n41307004\n771684807282565\n7113482506516\n826773501\n51021\n823055687841\n4374\n5017414\n87\n545174258074\n5435712721787\n361072875\n316035038574\n1614152613\n3285278131\n122\n324568724580613\n8616345763\n53365032386\n464177\n4541428\n3201168166\n83762\n17\n704\n53\n654180\n5512051680145\n1612\n47131741\n64150718612\n468444\n24366\n4476738\n537740\n8084647124713878\n75522120\n8342732107543\n673608883411\n24327056324\n741632543\n5446108\n6540331786621310\n48\n6725807\n15675024115111\n0\n843864455153\n3\n278224057217384\n6665\n55746680051715\n55223211\n50413\n2807215\n73\n6276474230\n87073043403033\n757\n753317\n763755617125\n826543146463\n3024166\n2013011054426\n220412517373675\n10433644412\n53380227450226\n5714\n53157814\n2266257\n5846348783757\n2\n2313147761\n521024360530\n77312102424452\n303707861616156\n484123572141346\n7546538\n2815860674658065\n4562068653\n501028337\n184\n375630567167538\n5\n410\n643355406340\n120875821013743\n53780\n46064273445\n2446501748\n578138632105\n828755631306880\n7387223135466\n82\n7252148172426750\n150258582852\n1353616785371024\n8\n367047620811172\n171373080\n1005403128722\n20481\n504321\n6\n6530327143510\n74\n6654164435553\n54317441541878\n61\n64482\n827\n4243485685582757\n5560\n50433\n3238105443161\n83\n8718\n230174173620471\n52248834014\n1535558\n425338\n84417\n827568687184254\n63226\n15523647402\n312\n721462086324550\n1310143388\n585678472\n5847\n377485438416\n471526\n4611430544662885\n3167665535\n654215\n70758774270\n3045723687472245\n7130341352\n183\n86780867\n81278615035\n7200\n47\n26778\n855706\n73434047575\n1660681\n3460307618038\n87357551\n7756\n3\n57261\n4457\n540866676\n785\n57\n11441\n4011132188554868\n820580630661\n77323438535620\n7412\n2063880105276742\n4382800\n563458468567\n1631366562318075\n6637558056\n282122042\n83233781\n830504\n1736053\n708480533530747\n6813058\n766341575285271\n272601336\n3327537627810787\n33001442\n21544\n4\n58120718237813\n5848306058486\n637611\n310\n53367174\n3\n55330\n3170765466510\n86465654\n363824374734766\n4043520201\n54\n38754076482200\n4324808517204417\n63\n878\n7400\n61720\n7633668612281024\n351634543270\n50432601181640\n6\n12007386081557\n175663844743302\n214\n34186\n154888674227448\n250000040\n67854784\n67872\n375757381744\n1\n2833463\n371\n13117811\n836040007\n2620316741617\n62\n56706538\n8108360316461\n5\n2\n347685534851563\n6274523161\n40744\n7307878450876440\n754130332\n873837055756\n87636258\n33603\n4838540468\n315\n6156702656852043\n646\n87343603310\n7771048\n40373802881470\n31886502\n803565\n1867\n5\n6785844508\n2\n170078\n2700385234470\n4103427501475728\n365\n70\n805636764263126\n487275\n65246627575834\n12330150174\n1888532\n48443754122\n253007\n6411111001\n8132174322788450\n25\n50848322666770\n1316566846726\n45162081003\n3104\n146755522063375\n4\n5\n430154715262\n31\n2843605\n7258575755466557\n115365\n155125082202\n120400201642208\n76100\n6854324004\n464585357\n60224141\n4063833642468\n16576\n6461814785\n6228214067510\n61\n486273441122865\n24044228\n853\n64540\n8472433627\n5082421246026238\n5668242248715\n5172361832\n3874805051463\n52724\n4443802\n86453678000\n676807412128\n6856881225\n48440223876\n5366727\n656861820\n8318888230\n7764600136245\n78254051\n7228177153\n364617\n4006\n5\n143105518812\n731728778422174\n8762240245276887\n7212152\n784\n62117648\n87662\n76887373\n55478076076340\n0\n535\n127\n36462\n4636\n71036613708801\n2883458606\n30828208120684\n7707871844\n8775123\n63005357\n233763\n27413\n61743404416\n87\n11311\n35058\n686\n3850708630\n4\n877486544\n310637\n21104\n46744\n8026\n416731657502\n55\n17\n3703016470840828\n688\n8161622\n5533281442832\n3471\n2\n18266132451\n16404\n70850331455\n6345215\n5261505\n2134\n4255\n162650186536\n158234072450265\n2038\n2725372\n1520704536728\n2811753271\n160536714161258\n753531\n2805522661\n6638870\n2355121103\n1010008163148523\n861746868157667\n0\n301757374284\n63185\n64\n60\n5534561563616801\n70023\n542\n56040\n446613\n835757\n58315074\n62226\n344374557\n866370821374230\n324332838\n451\n706683484427707\n16602377830454\n2\n220447621853\n871373548\n83543785\n44205257011401\n7112441164766\n7008735\n5546813332\n30264354\n6074087285\n270707531338755\n726017464855\n16868254220186\n202585733716\n0\n4168642358781375\n7072608112777446\n347352355861\n6881873\n57757\n6281136326\n1680016673733165\n781\n24043\n8\n7223558716860\n7\n861324732365647\n40704177\n20038781788451\n22327733\n57610732\n66\n25\n738670361316830\n81184\n483\n5814774\n85514584\n681541225343\n52644503764021\n28221238128\n557\n33355114607\n33465626235\n124611113341601\n374556\n721263571745646\n772136603551527\n3507562641835850\n146\n458126072538\n58043\n11708837783152\n687006630321603\n4\n282734\n5287210030\n258623731071832\n16468625518\n22\n42302\n8\n836\n6865088755862282\n44\n666048621\n416\n76676461840035\n766860122284552\n3\n7446636053\n70624760\n2480\n268801\n64343613214532\n4168\n843\n2364234003145128\n2800481461613\n77108\n3251407454\n254\n660708\n1635\n21177548\n4751101\n2186774858545\n166\n666055874\n54157385\n70300\n44677886275\n7600733231\n554676500421044\n4164\n6112505736338\n14302870278683\n441\n482572736436\n33586\n753662516747\n8\n103731\n215870606\n70656436\n405653374304\n3147583123\n17210001\n6725\n74\n2487611544\n283226644381666\n610216607\n6815064\n46\n17121130003088\n3274216610305\n41700876248711\n14138670\n574763\n7521772\n76325615\n247\n37\n58718221106318\n8676155607323\n712743368\n482144\n4\n8804567867\n13526602276865\n4082472117730665\n825637305535042\n450163\n61267186770465\n4124060408\n2165588102637\n5782266534267\n8588611\n313446038326385\n384814685\n802\n625028024313553\n23242028630\n5042482530504\n76810\n610640104\n8730230716417\n74510717644\n8513154444076083\n345337133\n3825145374526865\n282404133\n2407816840420\n5200754324634676\n73328740773\n3110580222646\n868742006547413\n2\n453084562158\n5361\n80017\n8571\n88434532\n7\n57275312622\n5\n810540651\n810845\n15125\n802181574667\n3\n33432482847315\n4351563538\n54270133714424\n13\n184130243\n466238830226\n58384\n62825226747783\n2\n566328167241211\n518360\n36446716188\n8118785141700\n370\n521750\n8602\n414245\n6700051716\n586\n1852\n20770284\n355760646828\n2131367\n684514417814\n6543\n257763270115117\n4\n1178167338410\n27847430618657\n5631\n4\n6843213016818\n643407218\n686357054550\n84\n578733042\n423608143\n52445402\n7105146035583308\n7104128838\n11052184\n34\n83332346\n182211\n82372473\n51243\n771483382240503\n5754575607020507\n313276331035438\n1113387746546\n313\n746024071130\n626402857\n8780844763\n8413215422040337\n88601670184\n8126358076\n126031\n8013540\n58\n5\n6\n844714\n3644600566866\n801221418151008\n3350814644247220\n17606\n4681081212217\n21155\n55475148\n331033073752\n735187355063621\n4407615147816\n41451\n863887848\n747125310822458\n5580718277258180\n6\n222\n2882630441\n83\n6\n26702774212602\n3782014\n376822\n80653\n58141388\n414605\n25612\n27\n5034580\n140761071321\n702264\n260277413\n3361837716837365\n7860072314\n713052447\n572600223\n4320817233\n1\n15\n485\n6635586827135\n4113545303154170\n24076123062\n336052458251864\n6010071474621\n557545\n803406041\n673435834\n68434162381726\n113457882845686\n4650562\n64730\n821732254826\n63048785413045\n84532\n2265208307\n75840342043\n40\n64688066100314\n823386321\n224715250165127\n125385\n6378672845087\n418408453540084\n676550648\n17805\n572652\n4416182\n750074\n6387606675304\n4825\n52628788578\n54\n24\n20450738\n3\n55000241418\n22206705482586\n4200255048450\n8335\n441\n58280848385\n180435\n122664301806\n85602883651\n648233\n11080\n85171476133\n255\n385483\n4125\n5338327223120\n140285\n268\n4560554\n46520312\n3557070173\n31071\n70\n46852547506136\n6167226344660\n870\n11615312\n432834\n633807760\n2481173\n846440162835\n36664547\n137068331887\n213781706754\n156784052453061\n465111\n37764\n70\n15767\n877111600026\n50752840628\n6452810274\n675246417388507\n7733657517400\n73137135481174\n48010565084184\n550152555538\n3531\n7532\n833036843280146\n80107422142\n5\n8244534275\n82\n140002505\n7\n2261816860534034\n404467781\n1418262624762\n883120345667\n877716706\n1165360\n2\n607001\n4414\n3\n16\n731247\n365736800410863\n828681263517885\n5563\n5450628400875482\n3853858007488\n585224\n687836470\n354\n5810373\n6141702688\n313050750175557\n744\n24\n180778\n456\n4247616014027711\n65570587460005\n70\n6650022208\n45037140562344\n36523133203540\n20512616058422\n27740272725363\n647453232340021\n840418508\n57878\n58237362032264\n32555\n772\n8786512088\n70557855857054\n65\n612825\n681328\n3052040163653344\n57310\n7167211556\n58\n5667378444754\n57205\n2200\n8523365714501813\n655322\n18334642546\n4210106\n277368011108120\n8770\n2460\n585\n620112330\n541482035\n727604\n35442\n380355\n407481\n1570212553043\n52805\n33542170307\n7323\n88\n472522\n7443624\n57\n48553\n52802340\n4\n85887\n567263837186\n4043373\n51145446\n70457\n8124808367020450\n3781\n10887225623\n77785\n4026\n873436348\n801036423037444\n1807282055\n80346362\n6\n4548801\n6816405\n46\n8183523281850834\n63545226\n8172\n3571613\n30\n176686476710084\n2180841756\n173426503\n74630\n5585075638055\n7056207\n527253\n8712583\n8457313067527867\n87785284282\n2740372812\n687645\n4880\n7415871304631315\n7881704134473304\n88863180172\n4521474264\n6137185188446\n57\n25\n51721\n5840730365175\n384066485601\n46382347448\n77086476120\n122288416\n52528\n335236438550\n3572443282073\n2423335517817\n571\n182\n443034030133644\n343602027711\n64030720743647\n5\n6485103448\n45574\n362\n1278672650\n878\n41\n383138505070\n2370765828440\n5\n808310046414\n367634633874\n58\n6224836607\n3866\n57784\n6580653818642\n6250\n7750017000258337\n53006\n2573620051\n31\n36311210420834\n260437537\n4131\n68771\n408235332558\n673\n7461451726532\n8520854735611368\n47\n86538324717223\n60862065\n1102737745852\n405610025068\n31576777083\n55\n768375685\n3888\n417136\n6483701\n5382068522\n33875504546\n7476080\n1767051364186\n345632\n17500226834\n1\n83883328601\n37887712086\n5630776\n8\n524704106076\n387706310\n44070256037710\n43\n821503022\n38001625413337\n27252077726\n87777767\n544317237123\n4251446275\n8\n6731044418272\n2058455267022628\n8200264643\n2366242534281271\n4637361643286848\n4273\n4\n603284645\n13073427538158\n36000\n485577475\n10770\n5748\n1\n5\n23\n52880\n63052\n16015038\n1802040423\n154501884\n780615703584852\n4\n745062\n8302382263138\n81621007828518\n480857321668\n4074716122\n1837044\n156632262238336\n56\n2635037166\n4523158\n342107762050074\n7\n7\n54\n65627772556586\n84182\n1\n30380157\n4530\n233335\n42370333\n51214142128\n74210464\n4\n4\n7503254864\n21283452761440\n726324\n6020582121755\n338\n7620450565\n817078676062871\n507623157772316\n71\n31423614101077\n5\n37346\n6\n13728443\n35214743070\n6\n3083322781\n30300\n4303677564525005\n487711241540\n86715364286\n345\n1251\n511720208420\n83441\n0\n30172302\n830624061\n4646\n32826015632\n36155475\n30433040\n5215768775\n7537127805\n860677250164\n4587814681527\n746528428\n811\n18544538730\n26211000872\n6708160047086\n5081458063557156\n73\n51\n63408527712\n6\n2652650242215\n78024362\n2656\n1\n2125862783878875\n748208530868805\n45542181\n68125228861\n728054\n280\n50342856501260\n5114235\n4015265235\n6712637011878432\n6117774048475\n870682471687462\n66\n6567456\n81744783684630\n2\n1751232053437638\n8076\n172611676454264\n6255646520021\n5150231\n8\n36823170754\n275064303\n2631\n361120624865\n8034072301163168\n206178650204\n1525\n3884503526\n310625\n252243486714\n2438\n33158800\n4731006\n5313728167\n7118805\n6165388570306\n801\n660773688004\n70523610278\n876405533376\n40842667256\n5\n16153323\n86440353432\n1036430\n3782102825111\n4286\n11030328353\n4328223652\n73236047\n54337\n214447\n6236441\n75044282\n4284534\n4120630\n50\n430635037841382\n7726252726\n126330\n556652233\n824478486\n35\n5106\n61371678322\n10562728618\n4\n578760205118\n317117636648336\n7335183874484\n137331777601140\n2\n106786734864\n544\n177124\n45821043438\n4335071641\n455188122464\n5245662537605\n6\n524150077\n5654144555725\n15\n353670238361\n16742\n126\n311480647031405\n70854006364461\n36026\n1824\n4\n677603658155\n546017174800046\n718283055106\n540288813\n5184515\n57727\n271866\n7530\n55162\n367868763202\n38803110\n7518\n2556050476\n30443303822\n3631081208338\n640458001561\n4\n2704116576704256\n640164643714602\n71512437\n5\n420642248\n4727540678876\n7\n247\n7385568258885243\n160133\n133531667626146\n11234\n68\n131671\n502431236514236\n1444838602723\n81034854\n884714\n42414888525\n57\n2784203644678\n1557730225477\n252148\n186581\n0\n1450066866114\n63116702058\n71\n511211521133773\n75\n646\n8013870550\n7157282346114\n718445875\n43\n265782505315118\n56858320441665\n3032560685324\n316271271762\n78423723252\n362825083\n1127188817420\n2688355553653\n77416073\n182847146177783\n378055570\n856028356416603\n4211314821073727\n5\n56357654\n1555\n3352\n527518500071468\n4204675\n66247740\n6187110\n26846686677\n838781683318\n4558775\n621033\n47268577\n157521\n72618271\n14\n538778076841\n734021520\n6385\n24\n685\n51867\n458\n441648575121\n248\n3243583450806\n711320652\n83573742\n3\n5371415252\n6267860757506486\n10256534\n870640647\n163035\n45701876714\n256384\n6888857700632606\n107728\n807153\n527888\n1408\n1\n7114874503780\n4\n543884\n15\n622\n5227\n76114821\n131731380746578\n67238\n280861864512\n877630445013\n1277703861877561\n3124\n3000\n782034\n71773\n1542535\n78111\n466530473\n23332057\n11461272673880\n28\n10617528\n3722\n8584887216654\n1086285027450522\n8\n612118068087\n176743766415\n0\n2776784382135\n152088067017415\n360\n6681633204571\n11158375755452\n5266421638\n760314687662\n5153\n716614888136110\n786\n44541710441822\n77138723\n3483762536\n7750681201148\n36\n45302802187\n2378775\n163006\n534608\n820\n88600\n5\n875848741500\n34\n634761182\n43615\n20326562857475\n7388\n2205418136138626\n635751284278844\n1802\n716262671404280\n13287001\n73216615\n5035\n5715\n3\n43844\n16261268655\n305471071263\n125657504457\n8246810601865\n34\n30\n5616763204\n533418852\n518\n7150042\n4377223645076383\n42881030543\n5346147741\n5757073282706\n5561773840\n516707\n71576113821\n5484088028860230\n62027\n76803410017636\n8358\n8\n865613764633658\n86523048688\n5000670733446\n8601\n628311\n1638\n46370\n46113306507\n4810851487106831\n5641160471351\n358168623528\n2602703661808\n3722785107\n4551238823758402\n658181212045272\n8156355516051058\n5332463745888212\n8740511583\n655141\n186110807\n774206615082\n372502702144\n224343381408704\n7340514877812277\n536622\n340\n53572621157558\n7501\n817888\n4718113302714403\n8341505868345\n20522400\n33\n21260051372\n533023371608202\n525755\n1\n324218\n4650030\n3088202\n56072751160333\n52\n43\n5114285818446777\n2360327370526\n4656550154723303\n3126788520845438\n582\n572315745\n231\n7043847218074512\n5228\n64271178211008\n7664141307456\n1581248\n2146\n11\n4507007061330265\n763132343515\n145610712543\n62\n653721127\n118862275\n43021567173\n1310242645\n852204\n417733031575\n5474\n35362728564\n537118735450364\n13816778\n512800\n3850358725\n1876071662843407\n7303863582477\n32481308\n1283562853\n3713643737347107\n13736\n1817757223747824\n45867308848\n60525325208\n18823082866\n856067514\n675304\n666\n1\n3153315610615\n4\n752473751576586\n4711058485583\n518050767405\n2288421010\n355188623336\n3842770\n2070\n7250\n1053342811011052\n732146\n625810\n6\n5020756452\n701\n4840436678768\n82\n238\n6135\n80165225058\n848287587\n2642882701725002\n651188378174616\n7233138231800277\n274\n643022\n40614468\n150851703183075\n527453674\n82245448400\n41\n640\n566268472\n7\n5\n5638745580627703\n6802\n7\n776\n43043\n866571\n27557\n878342\n124807178\n7118601\n58225726\n3032261047\n664856107133\n5584837743\n2221\n118402117\n706\n15\n3065\n5004\n10613670058616\n707803424125\n31368284657208\n15348036\n18437\n4175564125\n2822270027\n37565268700\n2642\n6221527174848047\n83175\n867527\n5626818027\n582726776407\n631863704112\n6\n544\n651625836066852\n401525748002\n162427742233237\n51874278277410\n8005724701507\n105871711766\n6724445158786\n702065\n4436\n15\n301177328144\n51455\n320182343882\n663347388\n1581855045\n8355160\n5343480620653\n3261646\n8\n844148316400\n16460527\n24085607452\n766523\n51\n450667061636325\n4\n5\n550100137\n17675\n770056\n15805266676\n44451\n1655704\n7703\n0\n70\n2035\n64248\n6\n0\n31031720573\n3064\n620\n7583551401\n20\n323256563\n7705357403245065\n8077066340543\n760765116724\n36185\n81702845\n0\n8\n563\n70\n2\n341767256\n2507\n8664565\n620641\n552\n730265717701685\n10411688857084\n70135251571\n20742\n5820757\n141\n302\n408603604\n6213175470447\n2853085177\n4458\n751346518712\n7258127263338\n37022\n488402525302\n301542\n7074582063566\n563308762\n5565\n872085374715313\n2161708\n870865\n66373471\n42670\n3636447\n83776\n7718\n3665437\n55607\n46567\n300\n116\n5\n53601605132030\n7015438035476\n3763704\n266237774\n5885438321815\n485857850150\n88361342\n58455543\n17151617314\n435046\n5464\n33844\n721080155486\n3\n65643737\n0\n7635\n186811760830528\n38\n237767058\n80124085470075\n6016163\n85783\n8445722235335658\n26370338275\n5\n1064788108\n88\n41\n24621648676804\n50781142848614\n73777885036463\n8\n840284442743654\n3707561\n38428847\n1344838482731\n62057\n85647612704835\n1836448115\n7810\n34580604800\n31224\n71853255072\n453538236876\n2\n4\n137271831570168\n26152\n7543810\n813721061177\n215\n105573687780\n6607283301\n4370578\n68\n6883052\n3181\n8708175825\n24\n7013730404683762\n8547461538327300\n523\n84828642\n622538\n621\n27666068701342\n73644251\n3\n483541578\n685170307\n64220652\n407512\n300\n318660151651435\n17\n248\n71\n47\n8757475358\n0\n805667013633\n765132430053772\n8522\n122\n2\n8363620\n36833048\n706532728650\n82218270\n521512250038557\n5660\n5627682\n335327525558\n716637141\n7653615853224\n882468537404\n322203\n72756886685578\n320300626301105\n136\n523\n47\n0\n13662415\n8115\n54\n423751847016\n123568588175516\n48\n8483281877860\n55323253244\n55\n42528757621\n623181600\n56005804551\n6503173152\n8770381668073825\n1745345106278\n86\n622\n35883441\n2\n6175\n6367715647101511\n382\n2432128\n0\n38062802447827\n836801\n4\n3821403116721\n1073\n474476082614373\n528\n6\n316\n43216277\n8151276182631440\n583244334802\n765033658\n372230\n122\n202521116763717\n111211354105\n328526\n454250871111580\n324\n7111074014370\n6772243\n7560322\n38822342525712\n57837\n58231426367\n815661\n5533303884100407\n646512350887\n42121\n4350401524\n2834\n120884\n356375\n27141010\n1072576008685003\n4313\n5782\n174\n3777255163800\n4435\n6541224831\n6335208\n833\n654513885844178\n758070\n221038841464\n88636566388\n1404708\n1258482747038732\n81316805353\n370\n520\n8331\n127827181\n5555466\n618643058266\n6847262717\n4683431458238\n570178\n23507\n8521483\n5466\n1378660\n311428\n7673\n8\n33877237253775\n570450085084577\n7544211040\n178014\n664763701702\n5247346672307507\n4\n572264707838810\n238712488\n88\n122328067762\n10275\n3352865\n5\n6027270807225626\n4348284823380\n4606681446660\n6116440\n7472564247347735\n3250360661\n501575123300733\n3424\n20054781036\n866525\n557863826016\n5078713666551454\n21\n8\n36405582\n474\n1481705052285\n700586216\n56507\n13\n788742703278\n7373\n718866366421850\n26234060\n686\n775467050\n60888552\n838\n85456280886\n11286640\n3540784\n756343\n43402\n452842207662561\n80438065267\n7\n15147888\n806134485\n72652\n1206652885268104\n875\n630114\n822338830173\n6\n50\n776050102156\n453\n54737348072\n824013236647\n811428\n74673671\n7405486824502\n52\n74637\n43765086\n466823701810747\n15266065466\n322\n10123768624\n25120\n76811128020372\n164\n5054420676\n761216728254511\n6755214501857\n87744\n21028864435\n115\n7856884717718737\n477052853\n2\n56\n74178603051\n2\n71\n534845252813566\n65683505254\n558735\n203287\n25710\n6382014\n2521043613860484\n11016187215\n3552444\n787107480\n6\n8467355255215646\n6\n3\n122421416817\n1627233871745523\n205121645885\n8807\n3644\n525504601\n4\n4575078528856\n486154\n2115864476218607\n785156707\n5677\n4\n8523801072\n76\n78743768001155\n33\n6525150132\n54\n54335481\n420114704432\n37584244\n44603226428625\n635158566605\n1601480522\n50156507233327\n5610000304380\n22257281330\n72376768\n17421\n735422686675267\n7440272572\n2416123600\n2335182847174146\n3481350485424\n7217444152\n4268512\n61108\n3328516340\n7113524030107\n1855205508862715\n5640451678485\n874280\n5636130487186\n28131\n8671224045\n222385315\n5528416032854663\n34575754446688\n62553663\n55554585\n8526\n8311\n3815\n31758425385643\n54305577763140\n81\n384221568358\n502\n388\n61516447800578\n8728322235107\n6061\n534328525624333\n14810444813060\n51057453741422\n7787123\n68021\n877\n6346410868835161\n25160\n40775816305243\n8820110032148\n865643526074030\n133717448261\n17\n37463\n23157188113\n82378\n47\n430127\n2132833\n523874501406625\n8537766045\n3363606120346\n3748271240\n511365621\n16526\n17228720261510\n60566\n7175621218\n6\n77684730\n31521677552743\n45\n5086184\n357542562\n83716640218\n81408110\n784583\n30568505317\n5471682454788\n450511\n20526\n645622227\n2558706255040\n75337\n44180\n4022268\n34881161483\n8035234060453654\n75463822630\n466162324244371\n167327\n2261635487476881\n640106550\n5174073\n436613841805\n607\n5076431404423\n7870\n378173885171\n55161171828858\n425118\n7808\n363371788847\n4355732\n2623528425\n5\n8130816200273481\n11753\n24531251\n6243324051\n444737275258650\n543678\n32824126277067\n33083\n28735242761\n30026\n633\n66735\n8855076676378\n350075117204\n531052\n4833476283881\n2541\n261012106862\n2350\n441805540\n1882665\n14\n624441746781211\n7\n6081648175\n14246830122208\n877401471185713\n350774\n31878315650802\n0\n52085023\n84484624682\n18723485620473\n5170631852\n6\n120684\n23\n8567832\n4217715882786\n4\n631620336475\n140\n763\n54570017341561\n7461574\n65\n88244801\n7588748\n238405\n14025025\n60\n4200433\n7354571688085\n372805\n4474734861883848\n7843034\n313\n53675158\n5\n223\n180180\n6317307\n681725865\n724570078420663\n720240\n5876502633533\n170\n8871872640323\n8\n1561201106\n3\n2824814455\n2051787116\n37158754022812\n4557\n7034336\n66036281240026\n7300026\n8\n680702412118334\n5\n3\n50432146126240\n3727\n617530465357\n351303724422\n0\n181537481328516\n6451806\n7647\n640108773\n33834862\n586\n718808\n7281376481260\n870240184458144\n2\n3515161\n44656721011870\n8427707706\n4586261125525\n3\n1131\n37253285\n1716474566\n774557637432600\n82118\n220284502370343\n2800173\n1104531847712751\n68017545680160\n8458482544660\n3447683402846166\n312474672318134\n27828533\n8038585572286\n217\n508747\n47\n108616772710\n725\n81038004\n5586227424800287\n4205268066576807\n880632\n23871000003727\n0\n18707172741\n57240805\n855833426\n3657170\n308\n503477788646\n243618306\n78788803610\n6667\n2178148\n78684\n1405\n82887215\n8764347\n1524424181882\n51508305534265\n451\n200752420\n74\n771676\n64\n1563256473077\n18004448364\n163\n4115475460\n26751258\n514266288\n46221783281\n223\n44783\n481584\n5041812156580\n173\n1\n257621\n7044\n224\n286812652576136\n67480668250346\n5\n510\n506870803\n113737\n1184721223\n6141742137\n10315766\n716667032831\n335686217013852\n721410128817205\n2887004230750163\n41\n74466461702216\n40482455211766\n1571\n1114315\n2764325773817414\n4125533\n275262\n3268\n1010288100324032\n5734527835708\n642658070\n8527302076\n6557713377386322\n100681123485114\n8623021714\n7142786684236064\n20742206\n1111\n6264661\n407534634042253\n5120233541117\n414082877716\n6032851647\n448404276\n1250801162158514\n5\n83\n3507201\n60216123\n102256511262852\n5471620143371\n75\n21512185304442\n1011\n31438488061283\n734003174514\n7\n727476545\n873\n7551073321\n8550048284\n1776111481572781\n47\n6143\n6263066083674\n640874872427470\n3874348517166663\n2734541644564\n62\n3008231742575\n1420273034814\n1388446\n3376718838\n5787420144454445\n711420705407826\n35462\n8513\n845378575185755\n21862621040815\n6624314821787\n784884024282\n51065\n15717\n358006830\n5167672211\n2404143403140\n731610485\n7878174666471326\n625638\n63133206770\n17075765\n8161742607\n335\n775\n4756331307\n6554646201\n4120\n4088157376580\n231342376\n3003273658\n76\n676\n167466264157634\n364132\n0\n3532450\n6084574573\n63881\n5643316505653786\n55025728\n2264004843\n2075\n8060511207\n70478\n808014133\n251805233073727\n2240572883573\n4781453845822\n148485\n118025154166\n2\n324\n3158421613\n667104062328163\n8\n806\n5\n747841038\n40687463530\n8408404278514242\n223084\n34736\n18138101\n6035\n65284\n372736270\n5448625\n850\n7303516655806654\n561166486866082\n6642412561236401\n303\n20131404768\n158741233\n46242520325\n356725225777\n7217261\n350803\n456417127501\n68633\n4146767\n53137\n427\n220\n5543000742064\n5608206353\n8\n340046421670\n63422060\n107428756\n3\n8563060605\n7202510553474\n3852\n6700700678775\n4650653034640373\n327572618153720\n654674354\n15578774085806\n28\n814585\n752\n44083623057\n7667\n7433482768\n81753840\n523231\n6156062168\n385883\n6766827643556\n673460555\n51005403831\n72\n1448377545\n477171411\n67330\n5564170636727\n5612806560303\n12\n626804\n31531323\n356254226436\n73608873661484\n63007620366\n12155\n2\n477\n76637727\n5367401627773\n58167838177\n52367\n488\n56203\n86834520400\n5123408282722\n542164574727514\n5287343182548372\n8080557627312\n83286112858\n178555026484\n3358487177512\n4573768163\n8770836467617673\n774088053\n60484203\n3234\n13741841520\n351885137876156\n2886413001\n2\n284366514530\n2762\n826345\n8265708161077358\n1214431081\n632821054437\n424\n505087158347477\n223250734\n26320\n635041703778614\n17446544523\n6\n8257465\n5046\n7137702\n44\n8805365802\n2\n45400173063304\n426\n303\n805855022\n167768215664\n17034\n3136516324\n2083063416\n1121504442110244\n4\n6144827826037278\n546160861847268\n6838354147671246\n32465086387\n70412802160246\n761058668435\n58644456214\n100\n63451774134\n2877843812\n35714\n5335478602148564\n63305385787\n7\n805852510\n28141571\n504\n4602\n783431575774\n677\n5362627057555442\n478836384834311\n1183035\n150206157\n88378075\n457034\n47254\n4415770404343\n2476456\n84742612\n12307054817621\n87784428784738\n578\n22\n160323224\n46388207\n73034\n65570\n7\n7032747\n885201\n13465883060265\n4\n501585082372\n40\n135\n0\n38750\n12152208204\n70\n7115751776233020\n6274543\n6772460873\n0\n73185\n868302283801638\n7\n4\n121514\n26711507338383\n7835\n43652641824806\n820\n201148623\n567102575610466\n7866508131\n6136545\n31621\n5807163171\n1480232556185365\n81125443837005\n5\n6185351254484061\n765177\n648706361150800\n42820801138425\n77317554647\n424\n60117054284386\n436\n374\n57\n24454534625\n11211106480\n2158350605456\n865408\n128082440\n528130186\n23583768758468\n55\n2206202153216151\n4380601524234141\n7243\n607443736051816\n4085\n615260\n11348\n875\n3\n602680622570153\n43204152\n404\n1820416347\n713386452150665\n41355338\n3122\n24376572423\n548745083870\n50185331026028\n0\n36\n7500545123672\n252082\n657534\n831065084407756\n230542\n82246482585618\n2306821066\n242241308660\n6872121\n52271\n462340834623\n265137\n72184644751\n6162130614448\n727554361326423\n53564620063636\n1231738346086\n132\n555547307\n30876\n647760472\n55675150547555\n610\n62316\n8216031\n1\n785825153767170\n8645853\n7564471671627753\n55084148716686\n3821121484\n122074674\n822748101661\n4125228317624\n4706\n331525650\n455\n46570488\n7707842670475\n31555231173484\n62626171284636\n76700660538080\n738364\n18712\n23723077207466\n831572303\n7\n4828\n4437877117342\n14110\n103364425\n626\n8526644\n1856278134448312\n46174773\n524353435228\n87503722088\n305\n860546633\n55278114\n664503228586454\n74534270463828\n7\n824\n587475428218\n242345764611\n63114\n2\n46\n453\n1\n6656553676\n725220078475\n638814007166\n7003012373817\n8580\n1207176376\n626640318616063\n4150514\n685\n5\n678524218878214\n15011230320687\n5107\n1630\n5075\n376228817067883\n0\n64710584\n118716833650678\n30648347836348\n726\n1222167\n523822\n452432600\n265528\n3\n48774617\n556\n617\n4872510030660\n7\n50514\n65187633\n4844687470\n1377252347\n1241332753\n125866\n1545334\n2478636238\n14554\n62238\n45023422\n11325\n405715\n5\n4405535622676\n28042776\n3276067\n5787105454\n6403\n3427085355730564\n6\n2260687410100446\n75255\n108\n6\n603611\n48341\n586280172584\n12215\n7444278\n352\n53674684\n61780513655354\n3673678\n82721647753887\n31\n8473042\n522374865817284\n8330646188222\n46234\n88202271\n486768212\n2\n160\n382274774\n1\n2282802446460770\n10662\n28\n4051434\n5816714\n12361044880\n8\n5045112281\n17637431\n53\n57565548\n84\n53504708645556\n10726040020\n300\n41\n282326282044\n5620\n8223573552260\n444387741214566\n7155\n7225383200452\n6708\n182370\n56802\n706481211784\n7124617504252038\n534\n486518286\n76274637011024\n5171868252257745\n500505348026110\n52306\n532356\n40351\n21\n8060\n144\n5\n2\n4147146247315425\n1\n2\n7872\n68354\n763201238261521\n282027\n8637574\n51431561835\n4500658556457215\n34306162344350\n763536\n123488043326\n7213680\n8284\n522\n18340667\n7\n2340241073132632\n2148147230\n612714\n81\n1725728757051\n728\n8\n66886187427163\n174816603\n781513183354\n752266205255\n1260266\n311801630074\n77\n6\n67831552076604\n2204776778863\n23568611\n17667187\n642057\n673282456406302\n6638663\n32735110727\n67210346581\n711243276672786\n364648753\n6214447\n43126032\n15511670\n87705\n3334511071164\n777\n3365571581140242\n8144715578015\n68271271653\n7641450311\n188871052\n72307530672\n438034134\n3125\n8801803788137\n8555527808858732\n75342173\n3545\n442\n12431\n2101\n86658772686707\n615860832475\n517151677\n27530158\n41436662\n408\n44377176722\n3781355626231\n7822305643\n6541\n758\n37622\n800\n6340257322\n800\n13771305\n60\n4845016113064223\n277\n653328\n2528173843533\n22\n4\n737534368083\n5\n17253\n17167583362\n2032165\n748277888\n488204554414\n21806576562\n431363\n4556365250\n1010\n502300545507\n776751368142670\n2\n2382086\n20338523675850\n27\n1028204088706\n6546130033458\n6\n4210\n72553737411007\n24\n14160106240\n643275643114\n83527326\n586748466206\n5056380083\n841165817622856\n45863342\n78356\n460227875725557\n780321038831236\n3027286530\n34746\n56455\n1\n480\n3562\n60226\n561821054414146\n15345\n601838574\n1206702200374\n3\n22583\n83761213448482\n707746458\n706\n518518028712578\n74744486075722\n201166828444514\n312005076\n835470015154135\n621422532\n1720880737\n38712\n6662472364\n68721687312342\n5\n440\n3633507277846\n511631665820252\n67383355057\n8332745483\n2733342652068170\n2026655707\n23614230\n8111318\n1535546071426\n476748\n1676661085\n6108064722741\n72362836\n66\n1106748\n663068173285840\n765230217615\n4\n65047673\n7706853488062\n710\n77001632764002\n25736374\n80320\n1410027\n645\n445456881382\n6871556542424811\n38204856604\n23274788638\n218112587\n866\n10413041360\n663882381624556\n4307176\n5\n2780450837127\n26\n70718\n72876465038012\n11535822\n1\n105183871352272\n2634\n3838121455108583\n323604022\n258221770247\n126684772587\n124076218372\n34242213\n6878\n21815865115635\n5712053\n73651852703763\n7820\n2017363066\n600134\n53\n428\n4286514852755\n76\n6182\n22427\n856737854335640\n35734\n82\n1440860068\n62824\n78\n547037846667878\n2553\n884\n4022\n603174117686\n4\n82655567065132\n76254\n172232\n5852368543236502\n887\n86753322457\n11\n528\n753106\n21838615\n74087124\n6452406112332708\n514137\n8741\n4\n43652815375805\n1363766362252542\n76561064861\n1236102883424620\n1770533105361505\n88\n86523821073627\n835377817532\n72\n1446456760505\n4628121878355835\n45046780003401\n411566212185\n8285745\n3743424644385887\n5254730722\n8\n138160283\n681\n38517648044\n358111367725635\n25578786341442\n72556873\n2\n3360755\n553\n56455678301755\n16788\n133080412873\n748365032773320\n85375\n7180832783703037\n428\n47808145452517\n110562133262\n587\n82741664256\n54452217603\n73058752\n7341136227641246\n33434\n2\n613338833\n87582210627\n713033\n7006313\n85055\n73251321\n42680\n108872305653\n45337481108533\n1440675750\n5283683445575863\n35252253001\n25351552230588\n2\n1\n68420344\n2315733316142128\n4040146785532\n36550578\n62571675\n56270\n45420\n3245724\n587687780014\n25133706173806\n408408054640755\n40210786552016\n325034814046\n433232875035740\n7\n82182701142574\n7663\n608722\n433\n3\n538562045\n526014683624\n1608104750370340\n2582143727781\n4833332617460\n276841434\n234355502481276\n10082830451\n831004627555\n30003221\n457\n7\n652376643472777\n78\n67534738\n534032068714\n2257707518284\n4402351\n6823073384336661\n17072242\n26\n277317371\n637\n804210534386651\n355\n77723771587322\n8532008\n6\n1657423\n6181\n6334450056\n103001376843\n685032652\n563\n73347612618467\n263205658\n86048\n3\n388\n27011365628\n4006832\n7631\n377\n350078\n86203\n610050832628\n662\n174\n845673825821331\n6321235\n354071001\n3375\n1356003672\n255\n1158365323\n7633533207\n874261811637280\n34117237776118\n40486\n558706385\n7401555\n4203778\n6\n3080332426\n50216\n847\n306525857353213\n845\n77123635782\n8533261277837\n606174535\n43061271574774\n4784281\n1777676250\n40\n1735631782700\n3103224574\n3441456633400717\n45\n7477713718317362\n501020677\n314175\n38185648832180\n8\n38\n77675786713131\n533545508817300\n817647112460072\n266656\n551388808637778\n37258233\n80\n28314526\n355478845751562\n711881\n2202076672\n700\n485037\n7057614\n613\n3725140256\n422000263606467\n5544570562\n61617275057087\n5043737\n212405\n43222526807424\n45564020780636\n142\n54884\n2380013\n3202486004\n5132234678\n645100\n57321\n321\n346834\n7362444522682\n676072\n6078\n1\n857428\n1806871763720\n86408\n51824032273863\n26787324153\n871044034664157\n118384737750062\n42571555063\n17423\n2112857\n8825\n614537501780\n126\n6\n18056577\n6771082553\n87\n7560402725\n157837360674\n4\n8336500120603\n501\n64612388212573\n807237644420618\n75470262146171\n1710446818401\n0\n635406450\n743082375538804\n683170243001637\n308803680162\n4\n14177\n14041737616\n485548\n36232\n6537211\n7\n8\n611\n8\n6575771284501346\n1\n6433247678441355\n641727636\n3137588348281\n67\n3\n6315\n2270465872246024\n3302\n113728274\n1201203674435\n5\n8240\n8532228\n186488718\n6748146\n6\n2450717230467\n232562533543\n175848088151224\n83412405472424\n6104313416313\n1053245787465412\n41555728\n70767083137\n165\n64633037674\n8236027612216003\n5483546\n8075614\n37534451515\n855505422\n54887\n8281284\n8542167336706\n60320565654\n278606615400345\n403348233\n2268812\n28032881035423\n564674376115\n80232314512\n6405118180148\n6107\n38108307856\n6280273124\n488626004326\n757\n11506563256\n3\n6\n841004\n3121\n5675411\n402166303275\n11005\n6513486\n1\n4005625255332\n64627048\n473832221118834\n76614882\n163\n6371383257267\n71\n11031051454\n85364001465\n625360788\n67477423282235\n16\n1378843217\n466177587522\n24372\n814862006427573\n164440165034857\n260500\n126\n70685168574308\n1\n3655843241440\n4876423624\n4011\n10311\n7\n34166383420\n12670\n303231510770\n8065\n78225212044\n813870783\n2236173\n70373402434828\n5606423472027\n7264274816\n83842\n470581\n48304715623\n82680\n5336214402006\n320761731756\n448857254231227\n4378568\n11740654316\n852441\n82715\n28242846\n3807788885261\n47186445131008\n45507758\n6\n6368345770286\n2247868637812782\n7256658\n747\n71281\n11061407027\n34\n338403\n1425287332\n811875156\n517860645767560\n43\n5668057767447\n1823038623257\n5182268277\n61\n76770485147045\n5480018776\n8431121837623303\n65381224854\n36582238\n111\n43352204800\n60103280601283\n353668551\n570738066\n6080248\n1210668437561132\n245\n476444201\n1767\n1158144\n33783846403667\n7\n773870045643\n6346727\n233010602538\n8752062\n687288752245525\n832\n781\n568813511\n27681014260472\n67882124\n7474\n1237122824205782\n3\n586285627014\n714777\n3661870588108\n22\n5125527384588177\n55325\n56317863\n456670\n5037208\n284055280543240\n873\n36821873\n44340684\n4668333158256\n528151666445\n50004\n4800741\n60152553\n5862\n4\n888261813354586\n47327\n4068164182650356\n2\n33\n63552\n111838405348074\n3\n755\n1455573530351\n745460212308\n7511420321815\n76236\n74378\n1200664024354\n371\n2522817\n2338522\n778330831220\n33312223274635\n4013710066167871\n1636\n6771234044068\n2620856248\n6\n587304\n50433\n8\n1658138624606078\n387246884216\n42063427005754\n4782055242\n5162374\n8502514440\n573\n3657225241238867\n37\n6558010\n536074601\n1831\n7580466856456\n11167762358868\n4067233188166538\n45\n377\n5\n50580306560203\n74571201778\n587617\n40843212415\n1813236332113663\n328458467030767\n28850515877\n376058404275537\n156046642\n2562302\n246423675\n40022668050333\n17\n32458\n341037747434\n3\n155562175052440\n1257\n533361415551\n1824\n7485582\n21470401018288\n4507\n8\n66532311810\n61711778\n665802807\n44171\n301423224357762\n722737\n378453572\n77410\n803350017\n5\n41\n6417240\n65036316\n53601\n235644736\n83788581576\n833\n775\n38644\n1\n252408656\n735\n72828831628065\n6828757361040\n683201851\n8374\n1226\n14705661554\n20\n315762750581766\n86106040332\n61784778446025\n5\n676383380305354\n77631175504\n1167317548551\n86816473345\n7580304076733\n275\n78677168877823\n43078638\n13784278834431\n856\n25172\n54780673882\n35\n2868412017870164\n346560578171573\n53071206\n4204\n808771554122\n10665\n37202\n3418055730\n8227815765785\n524010706006\n5551588\n8\n7273\n50324800430378\n757048\n701267484803640\n7437411181\n18106370\n1073\n151130\n57866546\n8346228174641274\n85146\n80\n17\n1420675840541\n54255775\n75113378220\n537567\n4073181221\n4840477072322482\n6703272145\n427401138\n403781563\n35006\n73687\n282878676034762\n11\n3871632\n438425374624\n788672147\n688822362117435\n880\n77\n8656271121014\n713316\n5352\n5503606666617\n471607827077223\n5526472374203\n83476\n66\n7\n26452434171\n8031303331\n144062040715654\n4714880581\n6020142\n4866431562312\n3\n182814318556807\n8252271786638\n3771577143717\n13364546133320\n5755112\n731\n2025217216486572\n41482408\n3855822787613316\n456\n88784\n182511\n7444260135815\n40440361742\n1653402162662\n5225445\n63\n146376123738076\n42521\n50\n754384\n6710542138331521\n3831657720382\n538833553771203\n1587653528654772\n5810\n687\n4325670864716\n1024728704\n22\n58574\n71683377172221\n541232\n478462570\n250045\n8646662\n452101230814\n33\n2762182517421\n3767102675607506\n1747135304\n11760557052268\n268403244835\n872\n3107\n6\n3501654103820\n47255010734483\n25313524843\n2732342627\n2876\n6101531705464\n5805\n604431540\n51137062162\n61738120\n768516\n76075\n821\n273338\n6068461875\n4318247314626\n62885284334\n4105260255\n8701\n811877131\n736255535102554\n317\n88\n7\n34\n63\n2012484\n604134720\n637814748\n508708258\n48067\n12286\n55570828743\n881442122624587\n38181742756454\n32\n668187630\n16600284\n33\n281578625467013\n8136263\n656277004048\n774541347\n3837626111\n80768787\n3467211\n88043618875208\n51261836\n12046\n8\n7763637\n374632724\n35\n6\n6661\n277505814\n665\n721\n41201\n7318\n50104643127726\n5217520248\n4713\n23104836650\n578\n3833170771\n62187340771074\n755830082581113\n1530635053\n782681600588\n85528573231733\n88520538750\n26342184588\n411\n5051870012\n17506\n564031823342818\n168755266\n852501456\n2184\n8528268815534268\n315308513046271\n4374765233\n5101683\n154347374\n41674844562736\n50721316416\n1067\n3732808150224700\n8007\n8485355638\n736481274\n4220784346100\n30322187041846\n1763815525114\n272533135\n20207255853\n252\n840703348\n8168041760314727\n20551776461\n34480\n1756787361006\n335650532324\n61117\n44\n255202273\n6\n64427\n3728778468506\n6204\n11241742847421\n3\n75780464537\n61\n30050267145\n18\n31755624577056\n8507866268634642\n1842553723\n8105\n4850760883\n413813485\n64056\n4057332001\n8855\n772\n38\n4848633038461\n348\n586236\n17130\n3675235351\n104163030\n75833861173\n4068\n0\n76766466336357\n304837657847060\n7604761175\n1251886\n1053\n3214\n6727475505\n3846\n8525731325677760\n8313727780\n78\n4533431563021881\n756772453158\n738471860740700\n1574534255646\n73126060\n5\n1357662\n731\n64718462\n7\n112547842\n6880\n13276\n8814517600011\n4\n760585125\n8282241823681\n4127\n8\n52524245\n4070530323\n21\n333\n28454708251\n834728004\n161\n63304141702767\n0\n8040\n0\n2330422402\n6480254386384824\n8235\n81188001\n617615013114\n550161054\n807743\n7405074\n356186451\n253\n3364358\n707568507228\n72316364718\n7732\n1642200108\n6618\n8266861883262136\n586680767618237\n84005834280824\n32645\n4002\n303632475686\n8070258258\n55003834\n57557\n385558233372471\n38707\n2183\n33216\n884\n148\n5408622113\n701745\n36\n6025875824\n61364618\n844273440\n713623550\n433882\n30246\n107205853322221\n805237\n1515177608\n5805\n572568\n2103057672\n41164400\n51265388\n74515\n733461826371\n860543176240804\n624\n7028605\n408\n5546372\n168302015\n10\n5204406312\n15480264084\n74554\n67775525683061\n7842\n2\n766811350\n1212\n624503323\n543337\n177\n18187221162\n478317115667771\n461400017\n2212016\n7451771340552\n375118756\n77564485532\n3474551\n56830573512271\n277740187003083\n61\n175800084\n6307563\n685472\n550\n24432\n88025120182043\n731835150\n8228827556204\n35\n538740704\n803\n64280713\n7811476788368\n62766\n867723010458350\n63112368136\n884487655\n724528\n58\n247\n224086124704216\n25388576202550\n8\n4281\n8862210\n35311818732272\n6338246187\n14\n7103404478104\n755574774070\n7636423833201\n4032584647145054\n2368616677\n8766823\n63351160540\n3610\n3607263735354115\n442735\n30862\n7627206321\n264\n244\n64331051646102\n5075714016538448\n5\n174515235\n62762170455546\n10238733520\n808100872868\n18314\n632485385300715\n824430662421517\n50403856336\n2210885861\n277562021265\n651062315882\n5205087454\n2310087014266082\n270372475732\n6752317157\n7564207\n2338661520101746\n4115183\n2711333853541\n564814\n35318785848\n63345033054\n83577263337\n76553\n604\n821\n53721727130811\n2578082265084\n565815256380\n2837154\n821568518652\n8632871265\n161361724271\n87474607742\n60830\n1622412\n1174138\n456736670854703\n12153816434635\n244\n65654573\n5124326\n46\n516\n3041017454314287\n7643\n46305\n52574785\n22304628151272\n34\n600534257556001\n21813\n83\n40220\n6\n534405285118\n83603146662016\n33787433110410\n2\n28184244452\n1882783167208\n5722\n151318863511076\n744133036807\n61038\n388205835046372\n38845168\n17480\n616858\n4730384\n10303\n6857174\n80741571\n7781348564178\n556260\n371050\n50\n275611460648543\n7646063\n62830270267421\n7622424085527\n3751\n54350667\n2\n86738357223\n12382323762\n115\n7121838\n70470\n551485477\n24006810478\n3305123861635\n736311335674\n158\n13\n838008\n38\n27\n2\n8642\n6676445678\n6547431745237310\n5587\n75050077\n66515386870\n53085856\n27285572524101\n7\n860175\n1764052712613\n668211\n2131203773143532\n2578005\n5634358028844\n885887431531028\n14\n86348384585081\n46112\n2670144045648025\n264053\n161340344273\n55645308230612\n7818381570353167\n6533130886\n760708810331\n74086861067\n4\n487163\n16500581324\n8672\n305\n561237607544\n28204386146\n34805502351234\n61184265148837\n11780\n11756765\n1862781776631015\n1530\n65512358107661\n55810447645312\n528\n863046731272465\n8474\n2047247\n847400\n5486226503050\n8226565003477547\n8045743830341\n13288285565815\n78412725\n38021064381\n25\n5524\n107567861208\n751\n47\n678156434551844\n4661074476411\n4184252182203724\n1048\n4851032857085\n76084788077\n66\n460517\n66\n1534\n87582\n4\n117770563724604\n120420483477254\n330\n546\n14\n14117673682852\n50\n26268186371114\n6\n50058154401073\n6\n50614\n416574\n70235\n403620054\n7440686\n0\n102\n718412\n33527474\n817880415\n8287640664\n822324\n8450717732\n65562\n584288\n22124617502868\n817873472352241\n4667372828756465\n1668\n2215575850134442\n0\n685551738468430\n42130734712138\n3263577247473713\n135271015468876\n32\n541623584330\n21803167353\n838423885606\n7106504068\n2887\n3702354153\n2704410\n612042\n724323588231577\n138818\n3218\n71276124\n31328625271\n24\n5245777775\n30\n6\n803228\n3818543143544\n3167861374307247\n534750\n58000831180\n16527240853\n7307685322438236\n54106256538\n4234117\n2725843\n2831132\n6667061\n503253827826\n63186327662324\n726415286\n738\n157665858685215\n313056\n373351001656\n80367520031\n4150\n6375308685072254\n8225476325\n21226653\n4451616\n21240\n78080877741\n82410227277\n1\n1606667\n623\n8763\n678664148\n8\n8\n662073171815\n0\n8802263645183\n6272\n66882\n52524603733\n518506\n6\n25743\n1170\n234534650467764\n120\n308082566\n212\n8477538361\n27006176\n1520825128364182\n173575216048\n35857881580678\n53444\n8258068\n6765421\n23366188426315\n5538556013201200\n5821\n7840044665\n477816\n415653657325854\n6\n20000012773365\n380150\n5845358135684574\n16626722826302\n174707633\n1015786072\n44\n21528045\n656025\n735135856\n2741610803444\n58318\n8675562804782\n6\n2178704\n123271241738\n667030415\n216\n8110063\n6588742\n1103365203711081\n57\n228460340\n34381503405\n6265624424\n35760658388823\n65136412\n1440660\n13\n16731673\n12548555\n836665687\n7337835212644012\n42117278\n6225777883\n35756\n54715870412\n65\n44\n6842352042814\n26235841118\n72411\n117238208\n651647188\n106710322727\n443636470557\n245465\n32\n56616724865\n15222\n2714440084\n534817012270717\n760101466406325\n3107856621\n62\n8\n12775187124180\n3874\n358\n13\n7652758304673\n8307288740285623\n63210588411\n876758064574\n832538522\n3700160\n456207324\n3188226245\n464752\n605730636748\n561045351080\n1368780\n8756723\n45732221504712\n5033370\n4588818824136428\n417366767\n34585488674673\n2208843425245\n2166\n2224284141260\n76\n613131\n3126371\n73662555317143\n42647433\n4\n2733\n432630\n7714040681\n83560772076161\n536632374826210\n53\n656\n36\n6\n5\n4\n77\n3\n2102760260\n124\n285682074\n85884\n842056813087\n884672\n4011735404\n825803144232\n53064476250\n777\n51583502\n810\n7350366136351232\n2032861376\n328354373300448\n562\n3726175\n183417681020\n876248174\n7538\n31756171612187\n5183\n876275\n2235217\n20477\n8430755\n5\n15827361\n58656235305\n23047622608\n276541640470021\n50030861064688\n8170554805\n14183\n402485\n656784\n684167443\n4234674\n71473434640\n66832754\n73\n855\n226270338\n88774503\n73516433132\n7430718\n2257\n1435\n2\n8\n0\n5250\n88718\n742\n6218246674\n13206\n8861518831681\n7530\n62700575\n6551108774612\n8730652\n8063\n650288271877467\n31024702045\n24042663583523\n732356038116308\n7\n5573447865323\n657860\n1187236802774\n606750\n2\n62780771\n7067588478867\n7460545406408756\n73778077730170\n21523408655112\n4443100121166\n181\n218443236\n266442405302\n435681248\n422\n684447725\n47672\n5111734\n2\n88\n7\n6\n7\n433\n857022600\n3381325010\n46502\n43772685107\n346383346482\n48084\n3018158841310204\n52\n4860380\n6104485305115616\n360013\n1460724454415564\n3072378738402\n41\n2747516\n825546108\n556811\n580042287284261\n1548586\n655232675\n131837\n844\n12211366184088\n17\n756808072056425\n788410518243\n5622417\n3116653403731\n331617283602481\n37\n6875064526121\n3362016\n7556\n71475\n26272183087606\n805645740207573\n57250\n7704722\n8583671423232463\n8\n63811\n785666171773\n58437055\n2\n35026\n5361468\n16578400\n82457231\n74157\n52440062456\n17685546831658\n61255\n6083\n80740145300\n54582034\n8\n87365640331677\n70265\n150038800761\n2643\n37766354\n4545586310712\n7\n760122678402157\n2364201\n574100251\n556\n16171138877265\n582505888153\n7\n325\n7857\n86751737756\n4465570533\n81\n412580140472\n647574\n341048376843434\n5717815334\n3128\n43\n6548570112800\n534577331\n4850382714125614\n25121767732\n31165533722852\n51332585104423\n378\n28288\n800117887426377\n431783258600\n227885845\n52500\n822667762675\n7\n57450446827446\n6440164\n1100753004\n3150008554\n86337144\n355005100858\n4\n63576018324724\n77375408870528\n53330214681227\n61247546\n8128282043804745\n885234\n8\n6347746171406588\n505145880582887\n46\n3600260635\n47232444453\n6050185\n4326501202205\n3\n6283432431554375\n733\n124515534542154\n22137\n0\n4724578\n8604558756514\n2666\n832\n31778\n4483370808\n25767\n7332843046314156\n1315174577\n775515\n86\n38005165570003\n48112101\n5855021284243\n72\n653534118488\n151830664216162\n533627107\n318\n550264\n814360477\n20066811478\n50\n4\n14610\n6\n836884041378732\n2\n1386100328\n4543520\n3036102060888\n43647512\n7151708776\n78\n512214\n66140536167\n0\n520788270654084\n17006\n24044883\n37\n21831164312\n81\n4\n731465365658\n1304621288364543\n1041\n3\n50\n3464838613737\n3758\n50382873850\n1713\n5781486\n33044235151326\n502546231\n1458566\n656\n6567\n1672853162252231\n5463520\n760581703341\n1140877064\n6761271045663\n4\n3\n4762676184\n103160123126\n18612383507\n27\n501676732072\n82\n600676465287582\n32208450410547\n22\n30\n575123242875586\n5731761827058\n410071105\n223741282\n12778563812\n548720473\n337214\n24582812\n327\n6826865847051\n3202566513\n6520\n40512545\n1305\n3312\n838502\n1586283784631\n877858342876760\n3607485472\n235524600643\n55\n158247476206\n15845881\n457461135\n710844611167364\n78\n876805604042\n131466254\n4120302125\n66\n332547487035\n67\n8212\n872277784440\n68336260\n1028241261\n86350753170\n88206075\n3774108772\n7304301808785\n6787143678873\n41402381281\n3053138\n65\n612021\n108\n6657405264\n3365262\n2203636725\n265405\n5250211658882\n0\n2565143647720571\n46527868720\n86131\n24362032\n5461113103\n5746230812768\n7\n673575137227\n1713\n2446522\n4857817136\n55880777735\n885438344\n650204525621024\n44806\n1853231\n707848160345020\n1338280\n7688231\n872718\n57010372461\n203\n3817\n5066707318541\n418200406\n13458866438\n371838128513\n5632487615\n4418\n488804870831\n6718816522636017\n1413838062677\n4170880650088\n315\n3820561400026523\n24886\n416418\n325536\n76\n640\n34568\n25255\n215\n868417467865\n66271053388685\n738777587660\n4\n8283135123\n613860376873176\n7016360362610\n48638120443638\n4757782\n145884513\n0\n673831543345\n5\n3228300848251\n54745632726\n383408\n4654\n5611013172633\n7131611564535\n48760664\n3312700137418708\n51\n7564306571204\n837780458205073\n833775888116\n3716885177\n62\n65158467450865\n238572721060\n3102713856484143\n376212\n228657\n1130\n220362\n78425044521560\n5\n72\n81\n4726475071828815\n608\n263\n4128624226\n67886568\n332216467\n534183757360\n332487\n2067\n408383\n325132014\n54514503\n882506\n7525836361\n3543\n8856812812584558\n823\n127831618475\n235400\n681486183431\n6181381281846\n100413570147\n31\n6674271825338846\n74522436004300\n3284814481\n76551541\n5\n11315710\n881834808461061\n3156267068584785\n6056\n352043526578323\n1636\n217714125460044\n458167618212564\n7160212374834\n5210631424452822\n86\n442812070081103\n5\n2461\n26786\n758\n8\n31303473844\n4278\n17025\n728630014\n2377\n12645320\n16\n52276888605467\n2\n28321302\n17\n210704876\n8861767810651\n817488081\n424648603\n626786738\n3675\n443\n23182\n5117535\n3635732181747452\n223170\n681642\n6230118614\n508663641\n82125781\n876836\n1781\n730254\n20\n270751\n3788252681876\n132586\n23800346524\n246417381050786\n26175\n3355\n88\n800078718\n62545162101513\n3515\n80855745685267\n384\n6\n600838668\n3303875344716377\n55\n20416850272\n3667284518747516\n6452272613\n102002366373057\n5446205084833\n7334246757022\n587342220105570\n5231031840884626\n26453705\n207163326167\n587237306\n476\n8864110438550\n74\n7275256203421\n670035016631\n85324322\n88246628805\n8\n743576065436734\n3543150182\n32866502\n4\n2566\n2665\n23006714\n8272331426\n636068\n1326182433552\n76275\n256711\n453452416386606\n848077367\n74761338703704\n86073\n8635621\n1701\n32871576878\n7484763122\n85456082714\n27143\n803371140468\n334216564\n20267424\n1550\n6027343837567053\n7435212560\n8\n853671037272\n21882552238\n6170\n7363823765145\n81748035428085\n533344\n24531207247\n4466638627458\n840444475\n285640173\n48436\n85750453448665\n1315608172171\n646067165753\n80646647628\n2828440\n102305243\n6273427\n30\n0\n725705226560844\n2666883780026503\n451116\n2606473\n183276842\n75837831878105\n320150763272561\n7110510570104\n430438164806604\n6846571\n830431258258\n2257661582337\n622570666\n113835654668\n5570125465\n542318805\n3350\n3552734016305774\n651151117044066\n427825032\n16806378\n10\n828825048285\n473\n416674507247527\n8763575\n74553512512\n165430\n4\n712102003\n214787\n2411426424801\n5557540\n5167\n653510\n155\n4713027413\n5471\n33\n445\n226446732735\n8488\n64450548026116\n32427443807\n668\n5560023\n5560\n68027681\n6\n8586806066424154\n404454481\n211147881381\n671\n81488556\n576283712085037\n6542020111137571\n11031135608\n26\n43607550847432\n722481637\n2044627613660658\n266433\n52007088625784\n880451\n6422525806582\n881503606158873\n6416015617\n507\n3041787377504663\n73147884208\n654506007\n63765307822\n5811131321156078\n36447122\n51531025822350\n77432\n6546645\n777435501774333\n230205314616\n4558023536108\n18275017107482\n3142608260360213\n35188234\n28534732050\n24473175137006\n3873811035076\n46\n723125201\n5604488386\n34\n2357\n5774218765\n55117577405\n418\n87730204326\n384307623\n42417244\n31\n224\n488\n866072013660681\n41\n284\n34626\n22602707\n456730738\n26453642322\n727437851481503\n0\n61377\n3713350548\n81558824545165\n76868637447\n745833506\n86812426536\n64\n5402425474763\n67660147317222\n8\n7154040\n1780228236001001\n105563\n541738\n80425760488507\n644256\n4268476145322\n38367613\n6604\n3413\n2854264338571\n772830063123621\n4555\n717\n4244403760361607\n57244176531\n11043035747263\n162461804\n128878838001028\n2408346638705\n7844861\n5\n81354887062\n84536872543\n5847136033484\n524176848\n463241874402502\n408248475\n10180608\n662001303226\n377432272251\n5441228482441\n2\n5\n847\n63712847\n1452\n231187\n58448603318\n54135652728\n4055557106101\n75\n32126178\n302\n585371602\n34580344744\n8244068321\n58763\n24845542206726\n545070568078\n8383713177\n2301565\n38050563152\n51275658\n868757661\n3541\n774743\n1823716717037\n6035014088643\n76864122026753\n406076502543\n60738\n4\n625766\n5125725272\n70753263\n400407076351588\n16\n5634507757388\n260\n82\n705\n112166560212447\n1870224441\n213125457504226\n341172826725\n83843028\n3186428\n458436724\n167460286\n3663234231\n3282155885\n2374\n262187370660555\n65532102270\n208766468757\n25\n3520346402322783\n65720647161744\n3871445405\n81\n33406350668\n1\n3824606776850\n255\n5\n758\n62070710740\n32100804\n2781\n4066\n151132776212\n8723344667234\n15770522225\n32731473\n4785170332006\n64120\n5486801\n65040267583\n7380763546417\n885700634\n28314485344511\n25134\n3115\n34617812\n1482003446817887\n62\n61143\n434417277367553\n5\n8734742187277\n4184\n8\n1303367651040\n53038212\n241\n66676428\n3\n2527028214017083\n64\n21307251514346\n666851832\n12\n37808414\n64350\n522546858713378\n7675411\n804553722\n74687531\n43284346253017\n7778\n3\n45563163674\n24217\n44657500\n458830212\n7413762021408\n600\n474163118215\n813670885534\n64016048382\n6332\n2588085424725\n704521811811\n7885\n35657522636277\n8\n82333200040\n11052150742\n7003138452303\n48022035716261\n663388100602781\n3482183070\n34\n780288\n17683\n76647\n6\n77028081753\n863\n15510\n3\n22430351014\n835737750\n2\n466527532721\n48747\n3286706532337767\n83885452048145\n25\n82\n82250006\n413\n34424306153\n824\n4886300\n704428214\n3077158668768\n8758354\n605777664485740\n8772260188247\n30071153\n202746\n1050\n37564730883360\n72583013634188\n634341512336286\n230216473754423\n412730173363850\n77\n4015\n3165473012347\n75618200\n1464\n785470325\n84332705\n8333\n55485523368\n2605\n742762850748\n3154866030407\n30\n7530006\n137182478\n8751\n25\n158686517424\n8\n835153707088\n438474137034323\n560741066204251\n80\n57424100\n682328622400436\n861\n23262\n4163225206536763\n3805\n1517\n56465700\n3120062328607\n566543762013511\n27466440\n3212151303\n735\n33714718687482\n8684652213023410\n45510\n4312232662624056\n36680827716305\n371462210\n6745428851828\n44601477756\n405886883\n17\n5\n335004717024712\n720506202\n644\n563070618\n63365732833\n51702463652\n3345547\n487762410286570\n5117567\n5468843515\n26776827628208\n6844317606\n647400818682483\n3673556136278\n7624014275\n8553\n3233158368\n576620362570\n813571323150\n1712604\n204511246531\n8658434760\n1\n3284614402044155\n3404661008\n41301665478\n8002074285\n27238115\n2606070604030\n8227282602\n4\n1\n82\n10404\n70637666\n162571\n185066588678\n3656875244\n5162\n286424\n6068110\n215610\n302\n37\n0\n1410414768\n315070676251\n20344010\n61233215861210\n754668210280\n6421301268040018\n4314242\n750724785720\n58741727\n582418762\n40520800\n66278157425571\n3551772435143430\n8755233333780344\n752242138\n347\n411802353101156\n863567330854\n746752106\n572225\n32272431834\n4272004843\n8324101424\n51265748\n55200636133\n831100622471\n4666780\n54318077704204\n442758216774441\n3122213\n40564\n1506834015731\n6376863367257\n124227622\n32510235410\n26071682\n3736\n60618\n44574671\n740547026536\n111676\n880452765016\n466481703\n717378788277867\n4212265131366\n82702367\n156442\n78335856883\n33\n44563158\n8873823718\n73075430\n164377555541663\n17611676104233\n783202152145046\n74628170440\n23400484075082\n1148776\n334\n10632555\n347803108621008\n0\n77882\n821117787\n881816255103013\n215323512\n775806\n3430255831304\n824388037032\n31\n701631183517\n50647\n7040437085\n871350\n43824\n323860377\n36827012\n7\n26478681770\n55740270802\n78\n18627288\n4416187276826550\n74270\n120420\n3361637868530\n4338421286275\n2516444\n2644436474\n5584865015812070\n552804810\n58417\n31760\n558184182745388\n7\n575\n854302428017\n51721877265810\n784766167\n300\n53860711118\n77110448534163\n2832865125376\n61\n87818376556\n5728754337818704\n1710\n1534600538\n21\n34525540670\n6542267542776214\n814100002723126\n240684060241374\n5000\n52153645184\n72\n352\n6810\n88146\n711\n17316334715\n564527\n43260451\n182155364282003\n2668202\n21614\n38613461\n3323\n0\n811272770\n64\n76\n314048374788\n23262357207201\n7541534431784\n4320377335\n177483418846\n747162\n477011566\n5384077051428\n785322076677\n4245417\n6861007271755\n7762747005803\n882113704173224\n63762\n2866768704\n752484812215306\n743612805647188\n77774451654125\n54585818582805\n4071\n835567\n5140765\n7\n751186263\n137265771\n28165422344503\n810801515\n1151621010364\n2575178372\n167275237007854\n4\n5560848782\n44003062262\n33451550\n15522030\n410043683744507\n45544156\n524757446\n7\n85007223071847\n3\n30604756587705\n336232041\n506414727743238\n83123701152\n8\n38\n15458271\n50422728234753\n643357005135067\n5375653056645347\n83643\n85821635718\n248\n23543487176737\n513238524617502\n68106708673\n357013680181\n4553711\n575788661563878\n545514258475\n152102601542\n506324\n28062806508\n26325531141\n4688523\n287\n5706\n6821338084168\n6150408587\n2086260058835148\n576\n31268214\n108156475404051\n7184\n155224600536217\n14560\n261553645\n257857800231866\n8054705\n834536024724218\n50524636827\n737076\n6043538270\n223856\n501203\n45471\n810620086\n4651105\n201\n27334\n657388750845881\n30850766088\n786577443160\n206747527300841\n33404121703781\n32405661470608\n52565551227064\n56128460\n5033838471\n5784884124075\n885847370\n320768534400564\n6080\n8\n85\n63\n56\n3526\n25715204620\n105845742\n21701284782331\n3867616414422418\n8025\n711855706180\n174620051\n5863872270381\n5\n227333\n328653300760181\n3541612536\n3823125543426300\n4245841378653220\n3624404\n645330261526\n143877522576143\n68151208725073\n4307\n4442275348284\n8600488121447\n30\n13\n77\n4736\n330523473625\n280462560\n53442717783\n386473305738\n337348\n738670433\n856104\n0\n64663734\n78348155\n52\n446617533126026\n330251\n523115327512240\n7\n2\n28747345\n7567616728353\n7550252184\n2\n201\n48828\n43836513774\n1275462315\n447628218567221\n54801\n0\n6814027011388\n686343434756\n30530\n53014206857038\n8626270685\n0\n4370618517114721\n421102\n4616313\n776\n6632536550800851\n280065\n6342100\n3737\n820111746\n63342\n26387155508350\n754813\n247280350078026\n86\n14162111811101\n48474224\n388545540\n8744860271387054\n48\n6013576250833434\n705008381\n511\n246283410\n31045410\n38200261\n4850\n23672423\n25003036636803\n4163233160635\n8602214\n424334856311668\n122453340\n181862353075\n152684184\n6066416621152885\n6166101\n525240111\n30366185\n54716075533\n87\n4410776778475203\n31205687080\n140883\n848\n46223783\n57582\n547836137\n2385460\n765\n406664\n58450701\n3\n2106435780\n2306032127\n1028068176786401\n807033\n203145\n437164437\n1464256\n6656662100631632\n8751\n253\n2782\n4308522876462776\n663\n534861232\n233558\n11\n65230847481\n224560701085806\n881042\n8041138855188\n41360\n5740348645721\n21012\n6183666\n2440753566\n158502575581658\n724\n608857570055552\n45\n34\n26201354765407\n2774630480023072\n420558050440\n562158074386542\n73443585458\n425627001\n60\n751\n38642852\n6488451\n21506368624\n2016336703\n4\n4015085431268012\n135257371847\n51\n65528356884716\n450364\n8247812288252\n358011281\n7503128175606860\n454053713\n71750650881568\n8620054\n2264885\n84665631\n5356705282823\n0\n1873804\n46483021741557\n667401\n88\n767112645\n274381688764741\n4120404187834344\n603\n565875768661\n6\n57155281124\n57120738781476\n270758143\n22103505\n123271065124\n244341315252113\n455317\n173361\n4662340\n6873074775353286\n1062165700375184\n7\n83527340722\n2\n1032\n8581676062410678\n786523\n415\n374330167038\n7244\n6053\n1\n48670043134008\n164538420461507\n7\n4376647531687\n144725014\n3127535\n751247864\n372\n7\n73373\n173740274821\n882615835078\n814\n7153\n5660712875724260\n54267\n73224537124883\n1\n103873\n71\n42\n7301331\n46172527005\n733208822240425\n62421646712530\n182537471\n64867623548\n73765227162840\n511423860\n25\n34756277\n2523844\n2541553407008161\n2760850\n106162747820\n610380683674\n8452\n26556541\n3374716568\n73421077358\n516302400347666\n262268836\n42700\n7\n4\n4783151255\n80\n84356370651\n8732078\n18107264775\n22\n67677854684028\n80404670602\n82052\n77\n5080513410214416\n226085183150\n5164102320366\n380044\n621474\n2163816055733828\n27271317\n518824246\n6114054373\n8810102204\n4\n326534\n13646057853428\n1400\n753531407025651\n36631\n22485578411\n408674\n104432760\n3\n6\n175467143718087\n11174614045137\n11\n673713828244\n256153\n3830158306402832\n7\n18206448375\n73783663\n64566517345\n4\n1107516380644730\n322578\n52124744523\n88\n34\n6\n15538360362021\n812\n3114622786\n34343348022723\n5633\n8247\n6087301235\n28383460661\n12\n47\n216423060834878\n68\n388666230652\n1883723754\n5818\n2\n6807587666461\n3042\n4850211\n235281222\n573252\n13767\n6787340\n253543486\n140573\n8735\n6518843440826\n314150301300\n731758872\n285303734\n335458\n350\n51\n56784868\n4351187\n36144\n36\n532176\n55\n708782\n763743681\n620508781860\n628208352628\n545103002347518\n1253824544061418\n7446561\n88216\n331554054156588\n75323306\n115226685208711\n4734183\n31006388653\n0\n71077826588850\n533560203746723\n35144754\n3477756818738\n42318146\n67387884002576\n386705843045\n414218\n1\n3835010215\n824\n1564453800414\n3\n6714\n144535254\n722\n843\n658\n24\n21318200333636\n874\n635472\n43035755454\n2888126308760\n1038586268150747\n2241002\n88245177502883\n1\n348705447\n866107775828\n632565144461572\n351711101642\n2767331382375354\n633\n75666813164231\n86\n60370182071\n745221\n1151480\n4\n8666458422801\n76686688\n40858\n78\n200503812170\n623286\n71013755\n1\n721422665482\n7872420\n177778546\n54307466\n228250\n1306\n673\n3457737217\n53202\n3201781281\n330\n3385\n55021020863565\n3506333\n47868\n2630403\n3333403532\n3442\n210278826\n46647712134\n4078325\n800271\n4353217182764\n530617725888242\n774\n618833\n8203107\n75742818327331\n8217018748023307\n74636\n13526013311\n4\n23\n524553854\n7874807\n660653\n84778867\n4535276403164\n156400354018222\n13643234337\n723404160563\n3117055471823\n445406337\n7762\n601743071\n865284707\n0\n521863786273112\n2\n348\n1052233380\n5360630357677\n7688\n13\n5317432448583644\n862544347641\n58275\n700264770665\n7327085757\n5353841887654\n145241644010\n42281133704817\n72261702157305\n8157078002023\n726844885154123\n254802634433867\n84230086000500\n8471017547\n250477\n608\n372766272\n711\n467333\n683\n5885635801485861\n71\n542085015\n8610742173\n67147775763140\n177652615838820\n7831180618\n2610754241\n40576520410588\n4768533784731278\n5\n266771\n288804\n6\n476228604437\n465280527588\n8027025250\n24\n41717624\n583322\n16330167\n4288071662\n562406241265\n723441504\n2\n3301740746408\n6168806\n405\n661\n4684563641674288\n147\n5327627603336465\n258627843505708\n770224355\n2871675856184524\n16686\n835218\n684\n78068356136056\n67186343\n8528\n70783145803\n71\n4\n3\n463358847115271\n1775661855666\n882214548\n4134677534870\n3604\n252301470465\n4345411074814751\n7881224253\n341383413\n15\n508277347\n581\n74\n705\n737\n4240\n1377030075617\n363300730\n2411\n302705622\n18411\n1\n14152752588\n36800326310710\n26\n8112787347\n43008072587012\n282680435363\n485375270\n663058725571\n72\n1\n76\n766178\n578376040150172\n5322808257482464\n118608771\n80525683055\n7242307836\n101\n645071363571156\n4160371523\n106784162851\n552626\n10566460071\n826601620177\n61166\n665725313\n4358834\n5086\n720485\n660758\n31412467076\n40\n1\n851035138838065\n14543\n85\n255363848\n180783453636\n4614823721532\n4425236171108173\n38138\n3305\n474050\n81\n81240348243873\n34735636834\n16160457852803\n56355722\n1822126740742\n2\n88\n13272211761050\n6530607611186536\n2760\n5846161760748\n70\n831\n3642\n746654\n3100632475461647\n6722827323\n86177\n51828637514203\n173147375118\n30487380065033\n5152756185586\n852071661\n11245\n2023145553\n1115\n881752477741822\n3088026717215557\n7601076602300\n772637754375\n3215286287\n1506464\n6502123667053\n86044327\n2287487766767473\n2058224714025087\n381241\n12556\n862554578578\n6\n86811\n3112131\n65\n6014314554121463\n562153517243742\n568504\n20457\n502\n6476878\n13035077677\n251\n778585421582631\n3351120547852306\n274\n23\n5045548743255\n31707205658603\n1854401160618\n4308\n1437205606444\n53383\n836\n1734217477160\n158656540604\n7048170640645801\n454734857201\n4780347338\n372460072\n140322\n8586036414668\n4574637787\n5\n48\n80874825204458\n8\n823254444443617\n6\n3105\n4110100\n332242654142\n60466307205\n8678875\n567264478141142\n86010\n620558676672\n837187384477\n307525781842334\n668735546\n867352\n60524\n20412\n63811627078\n15680650\n140300\n0\n683362733576502\n3\n4\n42013330150152\n241887\n8207872620042272\n7036\n3856655683334\n52106752\n271680061660\n5018877354801\n3\n231644152584\n36111321475\n61438553\n8\n76656234356202\n601182505012017\n554\n367485\n2856180\n452\n411385264\n688\n2\n30\n145551\n48067\n77\n85352\n407705607\n461142110827\n8850242315\n374026060228431\n387802547\n25\n131164\n335\n1358663804\n1\n7770353551872264\n75241204215\n321201224033282\n236376731104535\n227823088548512\n4646883875\n37611200404\n205870\n88400082\n37237503182484\n7810740163\n35146537\n12\n65755368\n785133\n72327612138174\n443320\n622044070\n21830\n2\n73771875726\n413858244\n6438204\n381201183\n26878\n4577045\n2\n452\n14717256461023\n4648853\n53\n4745452638\n166236\n18503421\n551043333\n30\n66487480\n5815720863\n8561871478\n66\n7753\n2371135232\n83600800044433\n872274625856115\n5053522\n7435251366706771\n5602\n5175240\n34075365531\n0\n447202310067\n7530538553882527\n1053708057\n276575626412535\n1345\n648182283\n4607541\n20554365334181\n23725004770773\n6437555003867\n506526442\n1836501\n564631420716\n1553\n810306706677\n4553086808522\n538455058443\n1522\n8704\n42\n50\n704471637\n4236841477031757\n4836277557\n4080\n215164112\n45\n8608525\n818436631366631\n87687203\n51578666226263\n7\n74415007755418\n88435385304426\n263780\n2666\n46211022\n3\n27\n8247222\n667\n813202244485403\n2464386556\n212657506\n3715551\n8\n8250451\n15681858128\n7125\n7235418\n68423346727707\n7\n88\n343585\n778480413100\n465728328820255\n3601708161187\n8126\n4012665\n57576\n32\n3735177751172140\n23808256373\n542756505\n321000826051\n73483756\n78305\n1274152467813376\n60423\n1300\n714303270182\n61737735703\n10344\n4\n2114883020\n78666617176032\n410655383\n8201050382\n5346485618585\n43286672\n17431754\n6618716680721\n23\n2306302236183\n5735687\n615008050248513\n5621837\n28866523674\n10664145767\n63626184143374\n4507876\n2503152\n712271180\n8\n202303836061670\n3585436235302404\n6140424204058136\n763436140\n771736167121371\n7252\n5840114\n1\n8313\n257237238\n1455657578408244\n0\n6885516330153\n34573188\n1754761330714\n53304678713\n48470657\n528673\n718072480\n800\n6472680\n6280355541452317\n5424350066\n408\n761263880101372\n411744\n6\n386351731\n80\n171238\n36764424\n2170018\n2711424674188\n520247483685\n83\n0\n5466\n7133334431\n6576251114061\n555621465\n47427\n31\n8\n7\n254876\n153454001642\n5272\n40681848774773\n533605\n35738118\n3853\n11138848855504\n61\n84312510\n58136817238\n427\n376275\n46602870\n4835354774702\n746\n11645\n12151\n764331106608102\n5283800613216\n25613732610\n555074875062\n28781\n2450828458732887\n6712213\n16321614323571\n55826\n774020632758183\n2\n8\n13168086467\n8433\n24\n602688\n5215381252174751\n1534\n26\n78032387071\n711520517\n772718883\n6686603043873884\n3874\n0\n453686243\n1550721666\n13831247\n5781470181512841\n5700513\n352801751310\n4786\n55132763\n165082430\n32687771\n3278684624760\n417080\n5012\n56444\n583215756685441\n71337844715387\n8016553515621\n13237727\n8115\n2407781\n316417331850882\n1540368433607403\n6031384711043\n411562\n3737\n652\n8211\n57728712142356\n63\n24\n5851681210642\n2580\n24277113036804\n154623560661\n8117535\n767180718\n51122758021\n501310\n23357008377755\n60865\n672\n20\n7242\n430526\n4544862467303866\n726587461811\n7447\n535681383\n3612651\n6786470504648837\n2637247\n5\n2477723\n158\n4073413452251473\n2058360\n2368503\n351646846688\n267543402\n5451320\n2388237\n5502\n742\n66716885654144\n4\n827181462667556\n3758482708352\n672\n48804066\n48386533084\n58785\n63611364085\n208853\n322\n131273\n53264377284802\n76062517\n1\n247733860\n68466686\n674\n15274178082350\n242581882\n864502133\n607\n388\n615686124881\n15825655237\n50886788\n743748042648\n40\n1100\n531\n6378766775284384\n3\n41\n28762871048702\n203272565326304\n10\n6835\n1\n307241364425358\n6067812401208\n487702004\n37747037777413\n70858060405157\n5875104751\n763702405504\n750523\n761158\n87\n6871167558\n2\n235028214820516\n63\n427363\n34164478\n2271647180556276\n4113\n2642713\n442706305448750\n37062375585\n546287\n2416286158738\n4886384\n418360084153202\n2837\n1127\n300065426180\n8215016655747781\n40372128514501\n2050306\n5587310\n305486\n6\n3\n7\n3\n8\n3758156\n8\n1672015\n568433035303\n804283054532\n118727068\n6347405685232214\n8\n533684314\n703142306308471\n4586757672756164\n654628654228\n15713256155460\n58804\n5610812\n13061468201326\n630582764376\n7212032\n51374364354317\n10\n5787330171\n23038\n83852613\n1824147624626\n627\n2454\n106607087566\n8015\n6251\n6\n71347781644\n16222327\n8\n487357474\n6\n1\n741755\n13112627087\n14877583841\n64661566630\n450875112\n873\n5\n44000180\n318002\n740463673263134\n725816211781\n83408\n7216\n41304\n244324138820144\n5385313\n84101754\n470053242658\n545067621155082\n3210152880\n103444\n2435824021233\n10086508543807\n14\n476252303\n12867612016071\n4876215\n2770\n7\n55275138\n60785264533278\n66373476\n4\n701587826\n6282168386\n1\n387324454452\n303242\n51417413185084\n22628640\n4774\n31782\n0\n5640303212758\n52523083088\n74283314708\n647666331175468\n4856811471577\n8610301522112\n367834746045\n178462\n78504\n34865880477771\n6812564403206\n10\n84744118886205\n65664404436623\n57158553213788\n8016302833877084\n86282\n788670456474\n422474455723270\n2505661706835862\n342106685873\n204178631372567\n713422\n32673071140807\n57786423\n2331748707\n754288\n25415\n7155725325832\n6270545117\n3832121776\n24\n6321310763\n48813838312\n4760770283678\n6856111\n2123\n124515462102\n236300227242821\n15645\n87418151288\n3813\n345438085\n741660515856\n61881106538346\n68663\n764523356\n55716458\n33251488333\n35244\n1066063785\n76788\n2276\n84842773\n7153\n81\n655424028868\n573\n373233576244\n336778638375\n1\n741\n1183763503\n4217324741\n54603684048\n5638475552222035\n3540281655\n644257483744\n70758\n7400314748635670\n3080840878662\n38\n8436758\n7413\n31885006135314\n86840\n831081885824\n740667802\n30707338\n5461435704350602\n184140852\n364163\n408\n3117\n5417670776406\n8881180843\n2\n103287066252\n5723247803\n356040863348\n8\n3315\n3816650073\n623\n682062188\n73321533\n174781\n3405518557176033\n87440830134\n0\n8412673\n2\n24\n48436146876\n31014547700760\n62105025263281\n2388368\n707\n65\n48242\n1381668162755\n58511505\n53085313\n6\n1\n8875632\n86\n34115733600\n620033810210744\n52705835\n67751\n3603274\n264335058127\n17\n703505\n513873\n720423728510532\n52314002263\n317727\n735622077420848\n57747\n2128606\n3841\n184063660586355\n121664374642476\n741101573\n37401\n6505105753110\n1615471810\n6\n62774667874664\n3\n38\n82870048885\n8576\n1\n4\n5412645472515626\n5\n61022485\n55\n13600713378841\n4400856870100\n27563\n160178\n223855254318\n70548015573315\n4473448238\n8475\n6642\n1858432880125\n3381616518415\n8762586265\n11328082\n82442\n511844346\n56481\n4\n31585828\n682668\n14534627727410\n6064\n21851657\n80364401\n6334773501851\n200112\n7\n761\n512830054845548\n67320268466261\n441136\n874\n58886113404\n83523\n1078010866375\n67722432638432\n6\n7103\n8716602453167\n14730040885746\n555805871\n761851\n807253450\n4017107563143547\n805441163408\n258137\n560118414623\n5707654762\n68567061478\n28077\n22275816\n8758\n3\n1815\n25\n57775576337\n2\n5\n6276001\n366\n13072\n52130\n68\n68120456\n678678486318061\n2656674756\n4728631431646708\n1770\n8871622\n63880854\n74165540852148\n748228783081025\n773875258410\n7314163234\n341211546145313\n2481232114585\n57212565835\n417738323\n26478060737465\n4723080675244\n627342072747844\n17534013862100\n36051\n206\n2\n620466684712\n5657178157625312\n8715128144643572\n22486612143856\n27881743603213\n585661818\n38823\n5151804120\n717430688022518\n20\n114224548308865\n8874\n30\n426616\n4\n37482768562625\n58704570785173\n4625640240\n444207\n56841668\n17413537442088\n6733308717275231\n75751\n52024506343\n4667780848062201\n233\n736834473\n25874462071815\n76128\n31071404305656\n556\n733074565830\n221\n78640178753435\n4531623\n466436\n21654612676238\n68837662001062\n455405028265463\n4600547531827607\n46585246\n1687572383461\n4736725517\n612257\n113533178257\n887757317\n344\n705705552\n20141\n5732\n25201\n6457403\n2347524385\n5\n47842\n8\n20101372642485\n758\n535804\n8714\n30517644718328\n7\n67\n4817\n5686483700\n73861228427\n423\n64316\n72864\n16282383168\n5341\n443056\n260654453728\n8734754682\n614\n73515\n808\n7\n2178\n27660504\n370\n28\n283360856\n1\n81157861560\n8413523477\n1063\n760\n581138082171155\n38\n8337644\n227821214548815\n717108381\n251\n28242078167\n836308257708488\n1234\n814\n52001383241\n333440\n8\n333772251268276\n7030271064578\n757\n256157331218\n8\n76\n387778\n170366637324\n804233183\n445355\n2323270520\n21518\n38507563412\n3458557146\n11\n1172\n5010\n846372281008\n7410878020748\n18265176414067\n76410227000\n88407542542256\n500313621752827\n322\n66660832344241\n10\n6287867777\n574072400872078\n4600700350315\n56021063173072\n606840545384640\n346026\n84326\n40488374\n85030681\n16465156546178\n52871\n720403551034133\n3358050\n34022502546\n46776546126473\n42\n450504764\n15\n442\n815462824\n8346456670\n6035213048\n43126\n36657880\n245600015074\n1816261\n6183745860\n20532\n1584000\n352874504641041\n65228126527240\n1121520621\n513664412417\n6508870238740\n41\n555632611\n184244071682\n882776140625\n163734177\n508112014754\n10863761335\n6701\n68166\n4485\n70285016604\n207\n838177527401\n4700\n5524143\n144805\n63021088\n126676741366\n4232708758\n67531063311450\n741744034\n40582528881225\n58465376050\n5148354\n67275550814\n5603061240\n558601266287\n5783103074042\n7210242414215730\n720627574584551\n42236188\n6620256042377788\n45118420538\n456\n55\n3\n110738\n7\n74\n5\n6213054\n112850372\n421\n7123806112574\n56812142\n2\n467503671418\n370\n1821066707777725\n7524371688135\n6524\n867554085328130\n3612355286\n1\n8551\n1570686881\n7858047\n32823521670\n2567526133830\n25280216817\n628548401\n25\n5381748866702\n4\n1421\n770\n1057814108118867\n62458410\n4557574\n34702515686754\n82466448\n778874\n8\n111741315\n8864474614\n726568200\n85\n65721184670\n76\n43854566125573\n781642025813345\n528101\n186083755185\n182744\n8165640432508\n7526\n4131126\n366563\n2633516426785815\n1808287035007766\n3004402\n6\n20350\n1\n561708\n570\n26763137\n805743758278\n84721351\n3307513438280\n831077302232\n55673237515426\n8670052455625758\n8174\n46621827\n55567242618\n26365705\n465608\n226130244180220\n7\n428\n47015260653260\n46330120863\n301860278472427\n4487645106\n48\n61200743\n230067520564428\n1041663410\n72080054780\n8675486200\n2584306\n121833465808\n856620860175\n336322576\n74813685748481\n50207850\n1640063087\n66335464743\n8\n334761518\n7638085\n327810208\n4800084462565\n262285\n4784\n40331846366\n5606861650000178\n875\n14834131475\n21310114342221\n247188035841\n5664248815635107\n768762667\n35031761458\n757565150\n428324623\n5622556075223\n6\n321542\n57358201328516\n78208457\n562002652840\n87706\n48742643632267\n6066\n3236024548648\n23\n670\n6787461751825\n33848262180661\n6343035\n4\n4200654362\n602\n618665878846\n0\n15314\n65171212657\n6731\n407777000485\n3\n8561762676\n60517403460627\n34126\n8726485675\n508356623\n28118\n322814242167\n222\n2023\n1638251382\n258760104376644\n50862351813410\n27421446846733\n8715660033032\n50\n8240\n625874\n23171420\n25501\n43441553215\n3647152710\n4\n46617632652662\n3505176887\n8476273673740600\n33414400\n102070347682\n2\n78\n6342640016067257\n637881264108515\n365671437866173\n6681277465815\n31477581\n7664733638631\n172117203473\n47\n27382200525\n717141244017653\n7\n3656281016333516\n85\n460687805637\n72051\n62127164\n3107477160315522\n2411686665514604\n272\n83370545307878\n1031603464545210\n73887151406037\n4844843340357\n331663687286\n66061302764\n5432304801\n31813030001340\n362705858\n7\n3650\n50331\n12557778038\n4766587326\n20260664747822\n64372231\n3858023\n12\n4\n851\n547813742\n2400\n8663\n58752278143\n161745512705266\n8557018021\n64017\n42244841\n3745254\n25\n475231738\n2862654\n41367221141888\n8\n83531\n7083711761437754\n67344085574820\n8355600018757\n27\n11388666726\n55752\n417027118606453\n702847467150\n4\n5\n31\n75066412\n5363613175262435\n355823873643\n1410\n8766\n34364616274101\n56234255684\n2345886246\n33\n7874351530\n37844110483405\n1602783676807\n2581633332771\n75670438752571\n74\n0\n87353548856\n51114268014\n70\n438815780487\n35131654620072\n6553\n44031054315\n64146428361\n7481455785042\n3304642\n27343\n45055\n7337\n820680170010\n17028736\n434582488255\n475140\n1642756\n357750\n3485230327\n270755054760\n85\n211131\n8836\n78\n54111201283562\n22736103484130\n46875\n2184\n3\n3524224601632\n57\n642\n846\n86\n4711748543\n6886782864\n855612580541831\n7762400872777513\n2022403053137854\n4356557146827138\n4270558446187\n6731\n31141046541\n8\n41302831\n2102651384364678\n143200367345\n237282885350387\n848287331308\n270868\n644265630263\n5742015\n58878358180\n88545168\n2845201713502032\n430677\n241\n831242335004\n860534282\n38707865847350\n318854\n18\n61\n7021\n40438276866\n6618411314166\n34672350442\n16787071738377\n772622035\n862522\n4\n4705465357584124\n427648\n74257648255682\n3386135254706564\n371617\n5415801284264752\n2354542665347\n508\n41\n336\n810318\n73847176\n668\n452348214870\n87502\n427106020604106\n16\n6071465422344301\n77\n8523142\n40510\n46661811483715\n7267006716338\n7500626\n4760\n4\n700247\n51816616\n5250131800005\n275710585\n2\n66\n1148\n453371\n31105\n3054728\n46457532521\n23\n412688\n248\n6461252\n63325887602124\n752041837\n651\n172167785156\n175784370645050\n5481750\n7\n14\n106\n80634267445663\n63700424406688\n73718724\n7748726836726\n5362386\n34315257181255\n7718568328532333\n1827380787158530\n74275206030252\n6602875286\n182252\n658500133\n23660386233\n15687268668245\n28176172068658\n425752483166077\n464\n652476841614\n10234174\n8382670024145118\n7804601815402\n8158\n328100148528623\n558502\n5358\n728283616814\n1710254271\n4305628706623\n4044\n4558152158327\n823453\n0\n857316\n32802824422518\n8685832\n2572382\n18055510867745\n763155336882\n757151231778717\n776\n34652240156\n63043776185573\n10\n61\n322078234737740\n3224528205\n804003523545381\n4134826\n4\n5\n26210600026431\n3614114055008747\n61527\n4324730315114800\n188447568257607\n53\n76742718860084\n3\n274753517280275\n4302286458534\n5\n21667\n8466310146362774\n21674223886\n848227655257532\n5776\n407\n7500772\n35433\n4770840085822\n2825151577406618\n1321251\n86277505\n2231635\n575425865821\n7\n52377271325365\n2020333615542\n7574043482013347\n504322\n4307262\n5\n558265346784735\n373513530386\n326\n3\n1472584\n755337\n73671706\n2517763552113105\n743186\n67\n17\n224287708\n413372485730164\n265470470756\n8717780784121\n8166304050062241\n566067466332\n6235\n778\n504855745022428\n778428535372128\n7301417314174\n8508747424\n48130556031\n215\n5046128\n45\n166763\n4004232776457\n427\n1800111580\n8248558315\n16844723247683\n40867\n242184\n3186541466736\n50\n15113701764365\n143234064\n683632361617\n3700281\n322228304151\n10\n622141\n2408547080286800\n1068358623\n3838\n32\n500423502367040\n20067115400\n226248257286523\n8876616502238281\n5753877\n1706804364517\n477038763\n207533\n31034\n273121677364217\n75461246\n261461\n104251334603168\n4040\n62466856\n3721036527\n3360\n3782764\n87164718777226\n53435876074341\n221\n4161534\n770418272474273\n5522886510518\n37600206371537\n3434751\n4613870617\n552440\n4483180\n8456386651435\n264827\n57\n74\n5625856263142\n48244468602\n34\n7451\n1153401467\n1756146101453108\n328\n547843403671883\n518848104001\n383\n10084147682\n106584377823\n82\n688028470071682\n400568615276\n20677835\n1576283881361832\n38863030213248\n13636646648132\n62\n442037\n651566735\n417\n882041807010\n6583484462041872\n5502648424\n521045\n6352\n1066558110627628\n245856338133\n362035764356\n8\n412\n8810\n132\n4651282615555606\n517780861\n280\n57062\n3553748270148454\n111566865\n851150708452\n42735053\n8270447\n2031\n151337618\n224\n462376231\n1036372364268240\n783451\n3\n4318774147\n77\n2347845027\n30\n8\n18062378\n56\n3\n1327\n42821040353\n8864067768138407\n8278\n8382160161111\n3378078082\n7072\n558423465375\n53748878\n3\n41365\n662608850\n88583085348443\n582604448284464\n2800\n1011206671225061\n560\n21\n12048\n383\n17708084885567\n4251052173\n168584608\n88433667841753\n1\n7787\n538\n5510434246\n52\n8341187278238\n40824\n5747800\n5\n612355381104\n3323281\n180527412356638\n53\n775\n705283144\n82440052335808\n20\n178787156771522\n1301572253\n7553047583\n7142678301317640\n8364104\n3227465244087\n8728717581152623\n8877882\n436450204\n3466\n121\n380174505745226\n3851806601613221\n1\n8635864\n3\n50541644\n4\n703843\n65836\n50366407346\n171245701336341\n2728224\n476125\n543010745\n2480251\n625771036\n8337730764\n800\n53407248\n3737245856857862\n4557558244831317\n8007456235\n264068406125616\n507471\n767\n4376655\n834036808465\n6225230525\n86271086157\n7575385547\n821308004287522\n3307034387151361\n6486725026285\n652825277113\n62237310627\n15664523870260\n8817728478437\n6\n64\n3206443316\n47140\n67343\n7\n2463745487570\n600646251\n12216707\n7362831755\n381442857\n86\n201586756626\n8668\n6\n507518258114\n7\n217244388511\n764861\n671\n13085103012\n865507857\n2032263\n10700173\n67271864348410\n62313076373\n86148631873\n2772\n867826471\n7773755106370\n70550724453083\n2836834566355\n106\n2\n33370\n17050252086\n168\n426142815\n87\n3052661466481\n5\n677071556\n50012885478380\n2374615662868801\n4\n5\n4208675516013\n684045\n7673235141881200\n42741162726053\n14225237128527\n58\n0\n11717824\n8075726378082\n62\n5665844437236\n877470662162\n8381\n718\n487\n8\n4561435030\n5627364745\n524051664\n852525005\n866640\n2\n58726\n2\n74532517116\n821\n28585\n727754247053024\n74764\n256258\n8812710076116\n43631260632723\n845805038\n34716170771838\n63475808371263\n3147\n0\n8254\n476811361664\n1\n36\n775858\n4311307424\n640100610525442\n1317711244545433\n136141075\n1785771460\n37240117702\n402116455\n7223705\n4613036338\n5058012216627323\n573\n3150724868223\n368053014\n572814\n277\n80004\n58060818\n63502068502\n30240665024061\n11257604\n445721146747\n5115308\n88\n817535048038113\n31507174\n4866350\n7\n817816584864250\n4487\n52143\n35431646\n423724162055\n37037703\n583873\n83348\n51167135873\n62301\n76006801242307\n84666885\n854711020750725\n243\n240308465160128\n11735636038277\n30\n515602357277162\n66158617561\n52657744832\n6\n868872138\n4\n715267807448\n62754\n730312404577440\n5327264\n53010616\n180806484\n5442\n30\n808053715\n63\n2278\n5546830012\n2\n4033453\n270\n8173\n2674\n3146534511385256\n216486204\n26624378264\n862801766312326\n13165\n6336015434735\n346302671\n507252811\n377460372680\n5\n10306567615537\n120681\n72836\n55404456466312\n70373676055124\n42800136765767\n7165\n518831416118228\n1710\n52416316808058\n73035120254\n21031763\n823011334\n473281556786426\n604028\n752102121527655\n54542\n431187181212\n54471285437372\n67662480336\n61\n863618372\n288\n7237437164221\n5836680212722241\n6\n73005862\n8\n463866\n307521184677\n504616358575715\n84043\n712\n31880164747874\n216570187173\n3650370643\n3383032588672\n5763733\n748\n3638531177\n48066101876464\n217247813\n23854880811185\n7541553638557\n705\n62648082442\n841612\n43\n6833637420174121\n473552\n3\n651248673\n336535850258126\n7\n623\n0\n38641\n465516687178605\n33305632506\n2474577\n566\n4\n8322835231\n5115810\n588182\n11812642\n48445866203110\n11\n1\n5586750354231638\n7873444111\n7577251\n28666253\n77035066062247\n1252\n5\n461146368148567\n8285720\n1\n86888\n565610870662021\n75855806\n54\n3043073522\n50\n114164824\n8522011742764\n7\n5545682368\n6\n47846702666750\n1827838470858843\n18824171\n8170176356\n2725251036776\n50428387171054\n3230006073406175\n6680625081535872\n0\n1460\n705\n4811687806661\n21\n6888\n7472\n4040523150665118\n731785127564637\n68740753\n33\n751362135272813\n5454614513127221\n372118\n872178446438\n123284627\n6244\n22528253448\n616567348\n6346325672302113\n21501142\n86411587\n3454503175485807\n2447833520048606\n654286617\n454753\n410\n86741000711666\n8010300\n57517\n7343747846\n8812138862272\n175872608520\n48210446805686\n8420364665430\n11863187304172\n8035517156254331\n6866526121364703\n2143788200\n5168\n60460875\n5577280767126\n480767262\n22431501\n407412001752553\n222641154875171\n815688668\n46\n11\n511502355803\n587177524\n474572\n1815348504\n685121111\n284610742\n5704025706\n8851101722478052\n867664278221638\n2085535\n724418667587\n274578763646\n58\n6467462008604\n2\n5844\n716\n346043467\n7786882862007820\n141731250538\n681\n741167244137\n714401548604814\n41081275\n41586846843305\n62084874545843\n5644835877\n25010\n7873088026237163\n8684838746852024\n3\n5218877465\n863338517362\n58842275538\n56368\n5\n1387\n304\n75\n57463214521823\n318\n7188435812617737\n30772787\n6\n4\n13164237\n837036471\n5\n1637856176211\n344685608\n7\n2647223611068037\n2403415004512\n3\n5076282453557\n1018332\n4\n74627524857734\n83381002076\n176038147\n6005266786654148\n75061130831\n132087\n20484480\n750\n8005658688\n838132145628288\n280\n5141\n454323361083\n7475140\n3818874347310806\n581\n2736013805\n446\n1584022\n8461781678\n886\n5684\n857285548626680\n72785722\n6828600805137\n38187115\n5157\n4\n24246226\n55683\n4885304177782\n682286622114455\n1148682438587875\n2171\n6177237688\n18532818263\n8068247832206104\n7664\n50261582150\n65803\n7245761314203356\n2183\n210\n7725726\n2\n826234107\n208824\n624506241\n218\n20258114636004\n5233701875\n2860727744\n24532873055\n5828450144330507\n764304837763858\n82705267\n638\n75770067777030\n16516\n1371737\n764428\n20\n16364522\n383636781558880\n2156673076680677\n3848\n7128337056\n818458356217441\n180501\n258552220371\n508247306785518\n483630182112133\n57608\n61782338141431\n8322\n378321\n865476\n26320484\n2138760663621\n753276\n71\n440\n88826243\n8620\n235702071004810\n3\n6853533715567\n525188187202\n567301762563\n177367512676\n2483672\n1\n647253116180030\n6501021887\n428808\n6206141\n36317034\n8517116267605\n121530873045\n55\n1841228564\n73241816\n428114274\n6505150148136\n42746756855271\n270343\n17632\n2822811406826\n2330738023150\n6113853\n882485006138845\n2713506166\n676\n325466477086\n86262866558\n8533417783\n5125561\n171766813585\n74775\n152433828606\n3300\n8581035458\n3585458\n25676683600837\n60\n2377648154\n4\n2540218861\n74444110781\n403377356\n64260637203\n1448474744044\n806882\n455\n131\n535\n181117773\n221228\n7605047\n5\n28842838\n41437241760\n130482624382\n664370348641\n782573\n1\n677734\n170858875672386\n216888555\n70006683\n286888456667747\n3333101405600\n376550405316141\n8033316612\n88410644553134\n7838757\n2160545130\n0\n38020677787\n334323173844\n36588211752673\n73\n7118\n611175\n7538783418\n4453761\n511777\n137640760308\n7480816728\n4478350564718\n23762058\n8663102801051752\n2020415124\n37\n2505026\n32206171\n50706640\n5314\n58576\n6318100234815168\n77316044478040\n1607\n40161\n88134835324\n4226380176\n240\n383378\n236855142006\n131123647587\n4274300245\n48051634\n5466281346650\n5833\n65458\n6726342285247\n442557\n33\n30512\n81352230\n6428640458762047\n23\n8004345\n6100338502\n75606\n13506267\n4355772737656047\n51551463261225\n1263812481227\n1428145247\n626157262505042\n87\n4844535436038\n0\n703\n64826\n61451215016\n181481\n705340262271\n2820373\n717233274285\n5374\n8037367534\n681167572\n668614132\n8013445586857308\n7711\n167134\n24265\n62320131246076\n3005377310161650\n50\n84316153838620\n836640\n5184\n76304883204642\n5\n5\n0\n172178\n5141456830732850\n773411426\n5373732463240\n3875585185460866\n484207\n1518388183124187\n60002236\n7354507174550\n6031723643\n5\n414600872157\n4736220875537\n1\n604704606832\n2835372883171\n0\n60\n167818056133130\n56027811\n856655272775\n0\n82050226275341\n15538440\n35815280437\n577766866\n1016648276\n1\n184\n4073832148\n780733472060028\n874080465\n81535451\n63561620\n7127114845632415\n1801118063\n3430643108251\n38483705\n1460713741616\n24640713813\n455411046\n610075260\n5304\n51871\n6570\n243066332238501\n408708521\n1127527724771\n50431254\n20133768210\n1163600852653\n36722078625\n35100221\n14113681\n387815\n663\n254413845\n5623\n1\n666\n83058147\n86\n23461887733\n7317457647\n40\n7266608107\n81783346\n550866873808\n176178\n4453244845\n86645334683488\n74500271\n1807137202\n2175662885722\n84\n8\n140452067720302\n78164833240\n4\n4345\n200731464115\n50530\n47062018422\n474234720518461\n70\n6207775478\n6474\n406\n23555486427606\n755681\n1760023146543\n4566101\n415810580072775\n528017655882802\n613454873426681\n83155\n483582443\n60628738441\n180875880587\n2856312\n61545557382\n44642601\n168\n31185077475\n782261447\n32652072011432\n5515180452432\n333461\n477446444\n32014418404\n13456\n2224656788037\n155544\n475558\n13\n7516584\n86315127020\n84073227\n5888126378\n2851786743\n43015048631\n84\n4330\n571435171027\n822\n7\n37753701\n5\n8136\n6468\n36736357631372\n48656353686\n24135551\n24418358342678\n786\n3016201403763802\n671\n6134\n558\n565\n4823414837073\n224336360076\n88784671\n11828463875\n80167301776\n55123\n626\n6411755608516\n606\n553776\n705656\n84314440408857\n168\n42525687402\n51678\n1171368355\n1414161\n6\n4\n6016648367838\n54\n80825824\n6837864\n551361467\n1\n8076236\n715020540073465\n67701\n615631\n31208\n805\n437288\n2542716717120707\n4114384832\n263\n51\n50\n53438\n1111835712\n40831814\n88588378\n185068351566\n827221382\n851248824\n1\n8214325824\n3836726073342510\n7536801760\n211373\n330501723523\n833810\n24612737050\n45784\n6856\n864273484473552\n6702207202\n8854481\n84171654550\n38461027336576\n2848851\n6636865177183176\n30784503\n7036068\n501472126564043\n68200464618715\n54454345462\n181742516436\n526875115502557\n7522\n3580\n824750\n60316\n48166053\n2143122278\n534\n5484485102\n44706\n53368684400\n3514603046111\n8\n162605150158\n84\n728128\n4075080\n416847674535\n4105028816331106\n1067200243063632\n665311852082082\n1876\n52428203616221\n6\n8443712143320306\n4\n221530343266\n303381744585\n4351364575421108\n",
"output": "14192550699045\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "23282\n47386288814872\n807641404457224\n43484\n6\n86328766\n7136268544650226\n753430466227\n473\n338537407750\n681678135\n424442343600013\n27825554\n656806\n21\n75124771\n7605674002778\n2654873046834672\n1834\n2365211580782\n715206588078\n5465363437237631\n1354460377553\n5661642308415\n86187388\n680384010727\n2231008\n24432233387\n5254533681624\n862301861885\n56\n361803\n5526311862706\n2240\n3630857\n4\n1788525532358\n373632605\n5755\n0\n205681\n842860174835477\n2160553\n74086467142\n72424\n18055\n406721700\n38085523\n308484258865\n1287\n86\n151343045413242\n31535\n681\n711\n6\n6412225\n8048478373874\n1575600620054\n24303437377\n8713717703\n20872267\n484\n21475826547\n71\n684226\n2264671255\n8143\n11530702\n85316535665\n450415873015801\n5\n12538\n6487174067252\n275408362302\n8381323111584618\n2476234\n52426042\n4828686010207816\n4363124517641325\n77244214256571\n737102832\n27\n54\n34657016\n43428141\n82314028\n3273046064\n47128274264\n613\n73\n7284322064650\n33076771508136\n7528807084\n8745\n36152824\n612\n125033420642317\n168712660571\n748275\n8034748432815\n8566406818236\n6546808178730\n3001745337465\n860718748\n234473\n242660407381\n31867\n877258\n48555253\n442\n5\n5532636346\n620\n4\n61452316\n10028461426\n66415014857424\n87\n6466412\n8\n3566674365\n4\n460\n17040364764\n581850068071117\n52235\n3\n7381864018764157\n17\n343345\n4\n33\n612387345585837\n60855306620561\n3\n8610370576603\n7854275471434365\n8325574\n40761\n7386806575865023\n114404\n36354882727\n1705\n322682427\n2573856865464\n77157\n506532377\n4635030\n228\n582700786\n65220135382054\n52878650\n4583362123562585\n420\n727\n17\n353\n8307623381\n10613433\n6601040573562\n7310275703\n3815\n343\n6624\n35330122\n6358215723038\n54\n215045115\n38744408104\n7050407747188\n775780504604\n0\n1051826523\n13800713531267\n1212018\n6838427413163453\n33702321484054\n572260\n5364\n786347\n814430622\n3783241\n62\n6162615\n5048310723\n7663265231803540\n8438\n565365\n871036822\n43525833\n8258638750824\n633\n1755670573640147\n13\n81782\n263441\n786646\n31401\n124437\n56557\n18150\n15600460287\n671235002304028\n4822645\n644130533046855\n7\n582320\n71240055\n4566205614\n720338741\n33182\n2670754\n3126822748\n3450\n3310040758224\n8112562\n721731303783713\n6400846305014\n565\n103276717106\n2126481226\n3621034\n7073\n4832273148657871\n7268846481770010\n332356\n38606172\n133715\n5444812\n47\n73\n5683144\n603\n30426664746\n61725662617\n3288462431\n6011\n86660736070703\n7082710\n576058481184614\n6001248242254185\n33724505530854\n62427266\n288450\n53823\n2435730046\n840117125562\n713\n2\n64183252273385\n443\n363338284\n28252\n435237353067236\n45612321206\n300\n1833458325266\n221214\n7513204\n63034431\n16667117804\n42113743501030\n76811884853\n6354\n3442533368717\n46537246723475\n206426751\n32452863003\n7640124513045\n3\n256710837671\n0\n76426\n205882748\n6721688726643157\n713237434811034\n37453105142812\n30163441735\n55557\n41121\n56052572767632\n13556\n3088434458\n346484121555783\n185\n3\n800067075\n1323248\n4862462671074\n64767003400\n6\n240\n438044\n7343234124747\n2\n73561816\n3\n264250542\n882\n317117564\n63850273121111\n386\n1203208313\n80466467064\n166447761801008\n552000835306\n268462677360\n278066002\n18\n377324266627324\n20318748\n415\n105157323515336\n1567385\n180852\n286312644\n18120536600250\n30\n18448732668\n211\n67277\n7084715578875043\n45\n3263255533\n483525651112270\n6\n46\n6\n7235334\n6843565\n5\n1085731\n2850613435\n15581\n32581772412655\n31\n376\n1550562410483725\n7755\n76027052165\n63235714537235\n807366540338570\n5741476447625220\n543\n71481\n63586363813\n354\n170466\n41\n351275588515723\n546884580717126\n831507556556\n1857656012\n681386726\n828\n4536121254346\n35575763771178\n443237765\n54\n3170484\n52181276\n20307881610753\n756187785277\n77071884278\n1654301\n8407037268017380\n244132351212131\n73448\n6826\n820424210\n8650157301305028\n873337\n242\n80108736582830\n4104560683028821\n3238572\n6\n4\n421264586\n6851\n1381722888130\n17712006\n8521217443771\n686712737\n77547\n854850358644436\n8066\n23\n283053777420\n7132\n5117\n875053720238\n1775864\n8\n226\n226735347253464\n22008274858\n5\n56832165\n873700266864\n10\n52\n370851\n345520006412553\n8138526713\n4177657284115\n306812340784\n84870\n4\n632413268\n2\n3543077020\n237641025\n5517436812512010\n50257538260\n7671401802\n610258661135\n7126004273023\n6226366028771117\n5\n58273\n2727250354\n1\n27463847\n5720378055127\n1116768545\n475600074482\n5\n7200376164346865\n872\n735736511\n47823427570\n4166642\n578107217280566\n74\n774814674705\n38163327702567\n68366\n4722564055\n521048585734207\n1356740\n538037570243170\n13276073551\n5233183000478\n16844667\n6505736373\n6500005230\n523440730658\n123004\n14\n4562848\n504\n41185005\n38881\n4085488051264646\n232435205555\n83228815376486\n7\n48750341520\n7325\n32403631\n3485\n2\n1\n270550601\n713448770337427\n201422\n7204712282530847\n3733146\n74303043027810\n5587422547\n40730488531180\n20\n41161\n435406172864363\n4005\n57656685230888\n283\n4554716121663\n1786543330652023\n23870365180\n8823\n4351271750\n5317271857\n366774\n78455326470334\n384283831458681\n6214\n8835603225212143\n331172405\n873508266\n50113\n61571\n74360\n12212870131168\n51\n872188774872156\n207\n3372\n4437738885687165\n8621035222785\n56260\n546531\n27534636077\n752672\n60634132\n20817778455214\n1602166451655\n126553\n387170587221714\n88477016822531\n82663788\n300471121012657\n8837870833023764\n80\n268444\n2\n115824714264631\n83231456444601\n572158435472\n537641580322613\n38227\n6336158\n286437566\n8\n46531\n50262168\n77\n41568882\n4023612118\n531606336372265\n863043313067\n8376240\n3\n527106352636126\n6810103023065\n50386710\n45212743817\n306\n324888172\n8336\n836815\n418\n207354322\n6\n3\n714734756220\n7114010306543\n4533268702\n56614031006\n212126025458307\n2252357828432\n338583648\n8160152447\n2646746\n254\n50\n3567330633\n87460348188\n1743001\n53702871335\n858\n1051654247711585\n42324858\n3418645848\n615063\n487\n4082648408531776\n6285888635063\n518\n1250535682\n672420276377\n56613240668\n73565221307536\n646501\n5235542226\n7501515200\n0\n18500\n336674\n2330206168483\n43463306483560\n85\n38721\n787\n504\n288576274121480\n465857\n3645265536081872\n43755626701028\n326134411464\n5115408327401538\n707\n75\n3514738453678\n31605761\n68536764434\n3353342573773\n65138846\n428434\n215545\n13\n476228\n4441210428\n5386510701\n86151181744\n38213\n238013\n854312220803128\n885448862505\n530352\n2357082100854\n148658234327\n27437\n77100\n55301108\n214451866466\n23260512\n65\n2738108481422\n85760518623\n72037121\n4245505084\n66\n58\n525544851566435\n202165\n552854580808\n630\n816\n345816054656\n23236666604\n26438457\n5768161354007\n511210\n7037704\n832182230\n21753028454\n3634734673\n6\n860\n483\n5307\n861335\n758611148782\n28371\n522661\n804226\n674334036767\n5065361753720\n6056204\n8503357103833782\n3826010\n75138145635\n5678648375134\n76572640121\n10877247011371\n855287\n68771767025180\n1\n5\n4525617018\n61445378\n62\n32174\n72\n5400000575412602\n31368462\n3\n501424850601453\n1505\n64101\n4004103\n6300656\n138854381654267\n6464\n6\n224668203873831\n3\n8648773\n7571665787\n57815734558280\n66003225738628\n42724068588600\n485805075\n2234555331260\n7423762\n18274308\n115002062086\n310737\n428271\n21363\n386836647236\n81\n206\n47\n768612687123187\n55133751\n8063\n857585751\n75248488144\n8246177303450\n18\n4778156637\n532\n335404\n818333\n3651167220\n213302501354\n11168253015540\n82800244567\n181866548\n4867322876212083\n3\n117\n548\n4736483166\n35868576236\n336213746036\n7864732510100\n2882\n4853313362\n23366307703787\n753030288\n55157817\n78175041\n312846826\n15510384131\n63\n4\n237\n8257074380\n276\n444380507\n286048361180\n3265882411747\n518523608321\n3\n840438114\n84273\n5508212272131880\n2834857450\n8628475525658\n406323305383228\n7824538823\n43078885\n46355057\n84\n246408515022413\n73210102\n8858147124\n260222720\n71127031470158\n832057542356\n5464\n7\n20832428\n60024806584\n8783567726261\n75\n75647566620\n44880\n42846320830086\n6716\n56381835058\n8\n2211833242\n134286634\n2788407881222\n83131443\n11036\n8370726\n1861361283\n88264487023753\n880844674304\n6486018028167587\n7752364705231\n26122\n67\n460073210610473\n223\n8513\n5201635\n2113803011135\n100347185\n5\n632776\n7528256\n473422656\n7177\n477357373177\n8334671111824\n72564\n8\n1188723785860\n35\n2735704273647\n73888144745522\n315812\n3401173186\n388884377738\n241\n673275\n2442\n74638\n23\n3085810288\n7\n800860037\n883177464\n4470\n3818\n6022482\n2333\n605523787\n1785107864\n2034737228\n748\n3515\n837456\n7263708032\n50525\n46313\n40867864\n34262763\n86100122152\n83214472188\n428422\n7\n1\n87488033680\n14\n11\n321428\n6\n286\n7224\n738278332824431\n486683606544\n4\n828133185266862\n1118411\n2525110\n3057348881218330\n3772\n4\n610104483\n3737602440368\n635753\n7383013646\n8110140302\n257166120735728\n2370338803514\n17137\n84828827\n8024\n6204264761224\n44148\n742168\n4241\n567535\n46\n3233831\n1\n407058\n148064664105\n52314\n21\n86\n64330612766163\n5313627\n17\n351521\n50\n86858180822747\n32531065325766\n7204054\n7121780315627\n1754027328148\n353682\n624\n558686235677216\n77402\n78\n862821515158\n5336354276801115\n1\n571\n5831383\n34482362076114\n4628647354\n20\n6700240184533\n17844\n53\n602610388181\n544684066205\n807663808276\n815510861\n2053663201011071\n4000071382337\n31\n7644426\n64245233810728\n547418470667\n4137\n861650483\n61\n3733502\n446643302368\n35613683267177\n83150172813\n172801075722\n164840756273\n4653\n387027186\n4301488\n28816223\n62083514018870\n8\n7275\n2713661\n4427\n250343315337\n7\n605353064355833\n2627843171802\n6554886\n28\n474640322217372\n823407773452\n77477\n1443\n6\n787450\n1433457204\n6\n125627\n7213\n587287786266\n455602808\n2126705\n0\n614808\n56227460033\n140346831858611\n17643526\n8661617\n213103\n61618734451188\n86373266\n2643248633\n643805\n5083034768352505\n22586488433437\n2708836437\n2\n22866\n35617710062052\n17262673364\n682824067500\n30317347228\n420757668618\n33121760880417\n2\n3342118670\n471642234\n4761758267351\n66\n0\n484172334161\n7\n350461\n51666816\n56840446757\n654\n731\n7\n8114106885280056\n228663867707\n286683008\n205271846073\n85801401524\n80\n205288505040581\n173223110331382\n8830\n120353004422\n44133517\n3\n448147737\n60238486030120\n1\n50465\n82027\n88838\n61786647\n58786011521505\n33201342\n660677653\n1402137035475166\n7305\n56031\n113644870424314\n483066733573\n2487326521\n263015805673544\n84615466115663\n40787710140146\n35051\n161326\n5\n51654540570\n6648511\n1416703453\n586325121210\n74\n687067\n4074\n688827286414\n2145342837\n6272035530\n57142264105\n511\n342\n37523568200\n6663442\n31082236480\n247030630\n5\n2743273858\n1087745700\n5485864448785\n71544\n6\n0\n4184036304440811\n2153166073365283\n674425064588\n473380\n626\n2\n0\n153386\n7365263775562\n22742\n4226853\n1344\n364200071240280\n6156001\n1840\n22126021\n77\n8406\n8\n10280007\n210735702\n3276110\n42533482\n88688134631\n83\n638702\n3670382\n274120285\n1\n6\n4\n143344\n0\n120002\n852361455411\n835557\n21041717371723\n8862\n1\n58306475488511\n80450565358\n63557517\n15257484780560\n8275288360105\n748427604010\n1731478073\n2783210155055\n330741865\n2467037154170\n541127171324\n704432\n62\n457276\n501571628358607\n18\n811388302744411\n8\n8807370\n737673133447\n2650343\n6600076126236066\n2587885378\n707103\n27460661256000\n2067564035085\n10362684\n620\n437331\n2415227734\n84\n70224\n2668018338237\n2\n540307382\n1135\n14718067550335\n50\n176113105\n13610528644\n3285353750858528\n8584367736076726\n2767835565\n53756245125\n44352480737151\n6535731\n16851312457418\n4\n2384186\n341850468828\n3226460\n5532227777523\n750\n1458535062\n1307\n501654740082307\n7606212386\n6030853155886324\n36\n4548464\n71758506831562\n8170547375344\n116172611060332\n216821680827\n6807\n320\n48886133484464\n7281\n7\n65670776\n24571520461142\n6520\n24834885100345\n232363100\n6\n71\n3788843484520\n614057646620\n700814\n25677303254\n3630301144535822\n43816876\n21420286854653\n170857534\n77567565107\n1227507867101\n26103654207307\n3276260\n24533688123\n2\n84787122478278\n764160\n53713717757442\n330\n6640207810816366\n34366507883745\n34308436476\n406680244364\n31413\n36716504\n6675216\n3745775700043807\n618\n53\n35177066\n38\n165261608420\n18485\n62648740\n686\n1167158550\n833\n180781407466446\n753467080\n84\n1\n31272644\n3523724870\n2248\n37\n621400120262340\n531417441\n6182752\n565201816237\n675174\n154\n8743\n564\n3\n115805\n31\n7\n62604576146315\n2822546632\n732446432\n8260038\n514603158331\n134331\n88244\n41577543\n28\n24158\n554115\n16861315535\n3\n2417018777451\n521824767165\n2641342426284\n288641\n64551241\n82884\n57302165\n2584118564607\n8885061\n5714115250645067\n7\n20628062035222\n635387434\n4604412507884551\n36\n8334154\n654140\n876136848\n66088446856315\n40843405675224\n7676414251784\n66414534328\n20655335422457\n61601545877\n684160220642\n78213\n18\n356757637607\n652\n168683020068\n871855\n73133200\n6505567680251417\n1601210721620\n7666\n31407287118\n73605\n8626810655\n8021\n4161136\n1338\n5105\n366232674177062\n158733433306\n4114735810456460\n5058540157648152\n50768101\n7730410335655205\n517885835\n3283860838405124\n271058\n484\n711\n740845422886\n7766716\n8806305063\n77758305461\n6\n448401\n47647705713\n4786128716154617\n46742\n523712713637\n12\n586863436456\n657176646\n3381612110701\n422775\n80821668140684\n85574553\n265005485\n3734582\n86037631\n5470707512475301\n307616250543\n8485506481371021\n7465784\n323350\n7885108121\n766087443\n14538\n752554\n1168737407704\n4\n8105003361504\n786724012\n7116725536505764\n7265772281142426\n6288482351478\n22281464\n81\n8\n32841463\n186137372735\n3555367731876\n175144\n5660502766362\n44\n6486528\n2436067\n4\n1844286367\n33470\n88714246510\n3\n10558874211636\n4\n71\n5483478527215116\n24813\n14144046000200\n440844036302\n3024\n4775057\n23412560\n6020\n34262561511325\n588651733131204\n106700108263\n28725235\n2357\n651\n554134370544\n20\n274335\n3\n354\n73305440161582\n7614104\n6380727\n67201\n8233744247573\n2211356\n210232\n86466538735\n5105857558133435\n3\n84381\n443\n741036125407102\n70808608406\n641740530241287\n1687\n0\n3\n5\n10540744486650\n831414400743622\n2214275\n5586712802\n2875\n3120737445\n62210511\n43088864753\n1063\n47687\n54\n8510586816471\n201482\n30\n875755721036813\n578270620482756\n771876576162385\n3545834\n5232545\n871123118\n37681701025743\n377456547\n13237\n25535865114235\n500668\n33061\n74425\n2\n370674\n8\n320261128445\n324\n27663\n712656182645652\n11516452131545\n6\n537120423717\n511553078384676\n468315613201357\n52286122414404\n571488362\n84467461817410\n44667760\n6\n7078885607248186\n654\n7625372582\n14832312261276\n841\n872437\n18514740\n560636\n50214840\n75223\n1\n523473140278536\n5742538725538510\n50012385470\n6888658301321\n22261\n5265858576272435\n602257\n367580008770808\n8627\n5832227\n40181387151467\n1486657357762\n774721423000\n3\n461114\n815201844825182\n61171232820642\n2685244756\n31165373\n27\n285734503802165\n641573484420\n8178387047\n63531834402\n76160333078\n3568\n6218017722016247\n83\n651\n3820\n16032623820\n760\n148282686\n23\n1\n2104042226363\n3421\n18804\n741875247123\n368206431684\n7\n867845312343\n78000\n46661\n168311\n83\n7\n7\n6475232474347272\n200448\n62\n3616\n483081501253\n2235855035\n6206205588817\n7607\n0\n87848707353\n208324623\n70283468402315\n52111424785577\n16004322471334\n605351344164370\n258181438255371\n5583305428012778\n26063641678\n50148\n66\n1865810578810\n24864\n78\n1342761770575733\n676177230\n61827484146470\n83120334366\n520621605131607\n620246145\n3813\n4871256681435272\n23\n5425834134438\n308\n15815352\n701214\n516350\n43384060315\n2757114778737572\n354080746244\n0\n7566764\n888527478\n7\n6675\n728\n7830\n72602065\n741130536170\n684054536\n823855838833000\n4\n8046227274\n2857757640880265\n8\n5335068\n2807227\n74246\n52806622\n517735287\n540232424437\n75354\n316\n182156314\n3854\n1323072\n7436376222\n6342342536677\n6848473135883\n40813\n8\n673\n56\n57177540206642\n2720377\n736022876071270\n2751857201206\n7\n323465721104235\n4\n828772257\n4034514228037545\n8874\n2513282852275522\n464566\n8313703442421\n63352\n475358257304\n27423441387482\n3\n7223178216\n7623\n10007085288\n81462145\n762838\n8147476534\n222278772\n142014\n240756362881058\n46388157\n45424723718441\n8\n10\n82022653\n42518545437\n6841\n6743034\n74440\n363153615778\n46\n5228\n46\n4\n801780402444176\n42768707823\n534384101023\n43634366115756\n88110\n542255880032237\n3816788028671\n534386524\n265422\n45376660\n35353633323\n8823267\n726646268254410\n515043724141\n151112471\n813482326\n7347565805\n76810416\n8171\n3426254\n33630461802425\n548016225\n565613560600\n4333865100206705\n742427063114732\n262741\n850\n180\n5255\n440\n70\n10286\n8837310\n886\n74478812086\n148620704064456\n78426\n76\n5722\n78001173\n16831177344\n6474580852626287\n5\n8631176787\n57762450762051\n277707064572\n4856\n6235744\n520804636365\n8260460\n0\n52014782154388\n5661\n82458\n8\n1015306025\n478305\n17\n688333715308\n3084814776462\n318736230524\n12\n175\n1532606003267\n220173\n30260253662488\n78656742224\n23547245\n650605865702\n8581285\n12610525\n864520257118\n688\n30228547\n56\n57651\n51\n1250507\n558544\n223201477817\n5\n71875\n476332248651536\n584126\n8581451381708807\n1880514674\n62076676127\n31156703768\n583428150740\n6383561\n847\n3050577\n3732\n32\n6453274\n60\n200676686416581\n852\n8584601865\n17\n678503346726\n66\n21876851\n117432300528\n4712261070\n733142723\n8126310700202\n5001787078\n81182747838351\n54456227\n44442853350553\n633228412814\n31277306458\n1531575874675\n725\n521287314\n3260\n322\n5025454587883\n5406\n4038024\n51164812851567\n17630\n62682\n5881534243\n130460665211\n24264353\n838113505001\n52867535072006\n13454842502\n618753288710\n3\n2188426417\n243837328340\n4712160476125023\n662375085406\n354\n76671436278700\n41502046417181\n53122785224210\n417588152774\n8\n70277438\n307324368562415\n20742528218\n6682318161466\n366635272\n17125840866\n704422152181114\n3485842535\n2853276243058\n338\n4678154807225575\n8842\n23568408\n156347757670847\n4276046\n15232012618165\n642\n3820\n80866217161738\n30835068470\n6248778\n1\n7513366456267\n41486\n708635605\n67420\n470\n42576086081\n865\n4523316720\n3102674\n201721754\n7760\n763828310\n5478227268\n78872434760077\n7\n53087482260462\n2122177742085\n7502115824420\n4800814872477\n300024232782216\n765137852728\n515540268748125\n2848760\n1812123876\n11016053184\n70377012156421\n6\n8236138\n31738084324\n80015200\n48334\n758\n515745573460\n776358\n57235772\n6\n276\n38473570388388\n30634434521\n823770\n26212484735\n266102284878\n5522\n24042433\n3\n15818252887\n4636476361\n58552\n242015\n253206\n3628063814\n220063708\n8367771636454470\n162822811\n5468638102837\n7540748513462\n60748757238777\n672258\n613310072138185\n4174715807\n5608\n257607214520\n21562128102\n2\n21422337\n600111\n8\n10581525\n83531\n63045\n41862863\n448363164\n7715643487\n355650\n387254167\n6230024044632\n75762173567\n510137\n25661103678346\n20381536434541\n2144\n1704761688233\n22743278823046\n41\n5858425158765\n85486785585631\n262127\n545201514811866\n8768338027\n37300273737\n3180557\n241022374806\n14600622\n0\n72\n286628708\n80804607\n50758\n5258601658\n20833\n57022532\n678812854068200\n4516403\n121\n73243\n721065\n27164\n64\n1182701\n83838\n73630133784\n75\n78346504383780\n5148477364765\n77220024552\n51\n57468535375688\n40680121\n745845363088748\n51318801103211\n2087787123328\n28753436861\n63180628863\n7588151\n32465\n460521\n3343\n8308\n41745201558\n50612504363244\n504081465\n101347632\n87710\n4680727\n76674305030638\n422534570630\n780773\n57558230\n844142\n1103757761823436\n27803746657042\n836806021327\n6762412745614120\n28265566125\n152\n3840337688044\n1753815\n14201152867\n6618742033185687\n622844126857\n4061\n1480003270146\n443887136\n8726\n67450268064\n3563858\n1\n12\n80341461870\n776876071\n6128371\n245220267\n3852667637\n1458137626\n50272542\n87068562\n15384723350\n13540\n3527638\n38624\n206155\n3\n8884674\n0\n8\n54582\n11227181206\n241631083\n7833628373\n6\n30\n5\n20027761331848\n20608\n6550871680758\n7332\n35757626884134\n75\n70483377\n647305661450828\n8143671\n107683758044\n664461555\n60657867285385\n6201168845100185\n4\n134582507750176\n6620\n2135\n4175\n257165653\n1762310051\n5418017002318\n52438034\n773705\n67851526520\n78\n653510777311625\n2\n147\n20\n1822254\n2\n3\n3041137282\n357032003\n70113528487220\n504\n54212836\n28051175002\n4734817764362\n187831271730\n4255373670850352\n33\n44333343788\n2800168556121\n816340403007202\n8028\n435050425505340\n844141558\n5750561\n2141080366888278\n10341040307\n578876\n585626\n20703532511\n166847334771647\n1362036271\n181606633568355\n85051675\n1668612663\n11448072161\n171067206\n6615633622515\n20233524042\n527836122041155\n3070237052\n151318337461\n58\n881533057705\n66753610157\n813828\n702475245\n7144552241\n33256272\n28\n36\n73\n1545\n7702458\n61808606\n440014123\n8362741511743\n4544867\n458\n85\n4611186845062\n68240332027\n38534\n2384832376672\n7215537\n83754056872\n141\n648358847563\n356\n656204652062\n376\n41283\n42570287484826\n3866130\n30\n736055\n784180530\n665524428\n475487725415440\n0\n62663560068\n1142876545358555\n0\n7232070\n82257\n5433746\n21808273\n1630266\n5487510\n211725141726\n36125\n2172\n64266\n8\n634\n1664643574883\n86\n81221773110\n74442\n8781102031\n847174\n7662764872\n8720661831\n672211\n8513087366\n378846613\n871725381466148\n8773141154\n772450\n630638\n646611\n1846725358\n223372176773\n3\n84351487453622\n7770384\n51\n856884\n5740513677443\n874356075\n331676387773380\n141\n38018778005\n64350237\n6212\n333101407602808\n1455105587652120\n23422636231\n20282300\n480724356805022\n5076321053\n635\n837\n535\n1227411108625382\n730163051214567\n8252004513121\n42730610041\n711110724220106\n426406742870\n2800677043\n34236852221\n640355\n203248423\n345542266526736\n604\n316748803615056\n4223865\n841028310821\n2736825448518\n5268414\n6802628607465670\n5672604031575463\n88227585577\n743825045158825\n1105621351655\n3\n6083146714613\n384552036\n4028\n21808\n77\n87448804335820\n1874404756452\n834455324\n387327022165667\n250734051\n8617\n8666226022620007\n2456163883\n452087\n278672051\n2\n744\n666825641344820\n780\n51345644307\n82\n3365\n32680615\n276656821\n715\n3325060\n786\n56480\n861368632480524\n334648\n1600023\n838341646\n47658015588\n2363124\n730\n1703661386512874\n611022688444231\n300651743\n258328\n1641\n668615240\n6476\n2262\n457340545\n3370\n350\n8061262754426\n507214253\n7762242387866\n158715800661\n23471\n130208071631\n1531700035364412\n1428047780047028\n81572\n88\n83\n7841562884714174\n7548\n187080770\n161\n362312\n4104346028586\n510321655850543\n765265172618338\n218552815\n36502142\n5806\n385228277653123\n610\n58558135\n838414700338\n58\n726203\n504824354123\n211805247415\n1\n3128844\n721106880\n654410\n15532884162278\n2783748\n7105713208\n3655373655\n357513\n730231\n33621420\n1650055112800838\n642434224176\n56801035651\n63027453401\n764451816207440\n570802715\n205426461772678\n51216352557\n176548768043\n38767060521048\n6050736408\n2766166816\n77580561326013\n428341781060632\n721551358580\n1461877\n30\n76875\n501170830\n2052614\n8024568653\n7220\n225417236178861\n635418\n874\n574\n70384121270\n43\n666\n4527213546531\n657747105872617\n78654\n877471537014376\n6877463\n5445150214\n218653786124455\n800\n4308256664258\n5\n4\n54561014\n8233556\n7\n6070143773837032\n7323071\n15063\n616144465\n41083672\n5344771\n8\n4280\n64287476807306\n6256876157837\n8857634185216807\n2481276151240\n6883656320\n50528138181554\n78864436178220\n184043\n775030\n282202301\n30526\n31248216\n301843\n61263878\n87\n523\n30657737\n784208511483\n51\n714\n8625020064682\n85500014\n40008771826457\n1323286\n432144735681\n822\n51538578\n6732572375\n548641528254\n764156200\n5135702412580\n8362252353364\n1088\n2576687446516\n2645850561237\n24736430567\n68233875418\n2358886027343\n36\n45704300227\n78\n81332356118\n8808140103224\n52\n502033712\n477827854753013\n2718632146\n5343\n3031545\n413\n87708062275\n414505478883\n8578284308\n3133885\n44\n8323078\n134\n2676070811105181\n82270872\n3\n842877634\n66467311\n7817800012187171\n77620\n5384221\n442\n1113452746\n24651\n212226886160\n237708881\n72370158648\n6352382\n1\n3846503\n634481025182400\n751352564480421\n222362364203\n680353862\n650171\n3\n3207\n5088483\n2468680701775\n88460628125\n1\n128325143604833\n61380516838014\n4436\n380\n234702\n610676\n132680808245\n126716052\n240850217703802\n616637402\n7867401651032000\n32\n2\n4541325151\n60778176\n70345276865\n476810412\n56048742528066\n72570\n574127645\n51852\n4576702515543\n25033508336\n17754\n776172244382573\n37883\n63652131044\n6027248005\n707867325130600\n703\n1102435448\n72371355655038\n374848008564\n20848\n10\n736521540\n8\n325030131\n2338518785\n3385\n6214452474855413\n5343606302775\n1315\n811\n63\n608725537\n383164341624000\n428065130033\n77368\n573\n684588421236\n1330765132140117\n7368580433060\n6\n1807423643782536\n2460\n15043223110\n5814808\n2032131274307\n72675516440\n60610250\n7\n6026677100\n60376\n67825\n34\n570247646850173\n83402713447\n0\n80230384\n576051220642362\n6480\n14203651848\n14470\n135646060238648\n217\n6417770878706\n45\n5106671333\n3327771833\n214\n2531324141837106\n5811687238\n25466381547\n2378002\n40020171\n5\n4645\n618\n254211336\n587155\n5442404681145405\n810484537325444\n8444544\n63173473\n576563\n346\n283804288138\n80\n22\n64854102066\n74\n2\n1681\n4505\n421022480\n8\n4186005\n72884143764850\n2561010748165868\n727183527\n13015\n0\n52054138462720\n4231327\n610561623\n41470172\n78171856\n55540406335\n287871006712186\n1300666211415122\n61568138840\n124540\n64237\n8\n171854775110\n8802586827\n3870\n53252\n4767\n850773\n580314\n188706\n4\n3\n33138\n0\n304112686\n1644657\n15803108256\n7052474\n6452336\n1867520631\n101413773\n3410\n88652132\n810\n773461071\n4077\n52284\n32434830\n5231586661011\n37\n46\n237\n267\n18\n16350142\n38440624740\n2225704\n36254801734113\n2405\n3800328203424\n665687\n2844475118683327\n242\n378323645\n584507721\n207383710012\n13\n7751\n703125\n3515620327712170\n1617742837507\n104482024\n1523\n501081756106443\n20312605517435\n11258487716646\n40132\n75476164\n470332618180\n55463788\n6\n332\n135045011\n34030\n85561\n606663503\n46711\n5145\n34\n238\n51402148\n84635713\n404240436282535\n5601261728\n10\n2043646\n4782746654110875\n0\n725054764\n12886830101\n42\n704153623727514\n404454170\n8413\n46\n556412\n723752006615227\n588\n12530040776\n231801\n1260\n26544471204\n2313263277\n383314324\n1864677884407\n2680222670\n23\n34050648210228\n21178100345\n81285825261665\n185802\n3253622460\n425612146845\n2187004772188\n487416236682\n162\n83\n640232841122\n345\n63535188663\n64712460418\n541818081001188\n2027422\n32843546732158\n86083\n3872\n6365675\n54203225756601\n6571\n12516\n684434\n673476\n1776481404415\n1\n41121008248510\n2\n60\n7263350508657236\n827188151\n51726376\n4104568624631\n7438824068557\n48368514\n22\n43148308713673\n5401626\n85182852\n374278133\n46330726\n8722670722\n60\n120826358121788\n455362704674403\n810\n20125658020256\n110552768150748\n5805237204326363\n527766155275\n83072818068\n4\n5761545054\n5025\n520754823662\n58610\n8103324484146373\n214843155\n311708\n50655026604174\n37414441877\n3108602003\n425813634857\n27\n15\n70270237714822\n54174170672\n5732841\n246630\n81522080\n85248335417\n6443286848415\n8\n704025548\n86632324\n3551\n74245338164430\n286758867716\n7618071625211\n708335155\n6644711631100070\n12016566\n1285\n10\n51\n51\n6\n5485571584\n47535\n31643552520646\n42381026314\n28055627\n8641501028885\n44665761\n5407\n136376121727073\n26511370\n8787665303578\n405637707482606\n15205\n66505038\n4706407762025\n40571220866\n821787020025\n257488156\n363262460004\n14241\n415\n8778\n8445484180558\n44\n470781677463\n614014260125844\n8620806716\n7488650\n24\n1125255826745\n6334\n147663876784205\n56000648504105\n3761307463448\n826\n70\n3373270\n2715568464247\n76433\n752\n8771\n647583024684087\n5343405823535\n775576361642507\n8\n7234380\n6181620733235\n324\n25256065315022\n51716\n5666\n34178073235\n8\n1062848\n6663551438351883\n6545730320650504\n0\n88873743231345\n46612336888386\n58141\n56760202\n58\n1\n110285143\n2710253\n6\n5460405\n41253777614755\n88767\n27816\n201347213866\n5127000344574547\n3787212\n16463780077\n162811532606\n7340\n33316575627811\n51532827586288\n7585484737680451\n878\n57\n52740\n42235557780\n60131720728\n316345621555\n78732528748264\n262676461841\n57135\n3268534601\n1528282307753126\n17474643\n74104370\n43342578202\n86\n1372285437\n44823338662257\n6\n7782\n4436166\n5732266773\n7504603013371\n8638110445403454\n3051122882405\n88858742\n67788\n266044687\n85858\n215073272764377\n346780\n704\n40\n3868713\n202113\n77031\n5703325371506\n0\n304782621\n27121654\n625228722881283\n2546031407\n2886516556655\n48706330236\n76147\n85303321626\n18583726218\n80173563064151\n5718213662\n773271716\n2874246215\n616412607\n376816063137\n1686210448\n387\n8241\n8210\n6614628318\n705\n88003774\n25\n180\n6\n86102\n2120456\n384750527457\n4181068473243032\n206\n145670475783\n226\n324080583\n68230\n4214814731802\n757678\n77182176\n4341\n61018\n470208465\n3830070857\n757557\n83632554263056\n465305\n741\n8365217881335172\n8455038253811\n233360235208502\n3361380051\n661720526\n2367550646733276\n6637252736554\n2\n833480357732244\n681377687\n21062204340\n21812037182851\n1\n17\n673248252112678\n8003405008\n1671602\n2288084815\n826262778\n78\n138662851087405\n585642176\n2106852326051163\n326781374555852\n8201001543\n170\n751\n8\n7757\n544\n666636\n42371780187\n376667643\n223815\n25\n8256557\n5560174772387\n416\n68816828536\n4038417851\n578863001454\n832\n784468\n61365876553\n838101615\n41132268330164\n5622517628\n605147313110\n2765145586\n466\n74885\n436620641771\n4367616065\n4111056401112128\n8727874417787017\n0\n15067113\n4361111127\n8341744660448\n8432450\n254448\n5284\n16347005\n70770417060\n60345848218683\n3072402378560517\n836418\n60834146544\n4672103887068306\n6578613018\n7721544128054\n44634\n61637638612\n4010\n61\n6404025532174\n604442711\n1\n285341547307\n51754824\n760415464824\n653184266\n8750873605\n5\n37437\n52633151800\n6004608688\n310162237\n4757\n1541555155161\n7817138154766304\n302810663\n4075644342515606\n223361\n758342576044\n876\n66463672032008\n248456675810\n5107427110010303\n57881845\n253131215542\n1824636765370511\n355560015211517\n4200022354767\n34\n45872852107806\n8\n22203\n5121003238227\n40021184177\n76353637043\n275763\n801316612\n4325110558\n4445047174\n32\n80415\n3112085\n4442333757570\n544206\n80\n5730\n2257857775102323\n835341347375\n154\n2488705835\n14002\n64184667055551\n2255110023415857\n814\n56456233040\n11460\n601352\n51862432\n3317311701403\n417\n834850127155737\n47343\n71228740072827\n5277810360215\n5510475\n2\n8073\n68\n441487888314456\n3206715\n44331302313283\n4852583312\n42831848518\n888410504608\n5361\n3046\n2062137504133\n324436515161\n163318\n48\n6484\n22850\n2671\n1257767668128\n4237864\n828246816\n87046085\n881615575804265\n1305\n72567202137\n4318235707\n2230\n720421578380835\n56005704747\n20828008808\n5374070\n27504\n232448\n8584670710768\n3658545427620234\n1640467\n3321718\n55356\n113667671800\n2\n7204174245413\n14854\n3\n2631760422027661\n3217\n7233783086636\n87033\n5616\n1422\n15888503558308\n58642\n10533743665\n10586254543842\n6602\n6356131522\n61411787705655\n605871320\n2077\n344\n632777155237\n102276322\n6031466\n740241020753\n13703755476300\n2146628112\n7\n14205054047036\n4322\n63607277420036\n3\n1176503334056\n170225001\n12882311\n5366512654674\n56\n7418240668172\n5787406\n141863230\n77375\n35857218\n4677147\n742\n806415800\n5015756530112775\n266342304714065\n51818422672632\n177587\n330561\n60\n7385128\n675850567\n53\n8084823270215207\n3414134532\n32\n853\n5666266072167605\n4722\n84878200764458\n6470306\n820\n74705866150425\n535476631\n334628112\n222\n3863750610323387\n3421\n44156641822\n5425\n2336336555112\n748\n8\n38573603\n7461588576\n4426\n763\n624007\n5041800\n60\n24001\n4706678743\n8714310344\n766780583066\n23585076086582\n345184052\n68\n751261\n17\n31102\n1187\n230743205620178\n8561564\n87322143\n4642788840\n621207\n365138120780274\n864\n41\n8130780684511482\n8680452854551136\n28375833\n501627008128\n30508461014\n41254632446573\n88226336766\n16175102735\n32\n458200867328274\n20754\n40726408\n86842346\n106627175537\n762624834167\n355\n8846303674034\n66606561\n747\n3\n5174141\n7770\n42\n56638417636\n486\n41202307206130\n67745\n4\n8456276026335387\n3726826\n6577\n1853560013610127\n64\n45051331\n646538480137100\n5183207536251384\n8551773\n20\n6003\n7672\n2813\n604541225\n52733\n2177788845510317\n74\n812805\n77002\n767553048\n4433235\n4582\n58\n6355631376\n2615\n2165760272288804\n766216850\n6612\n5827422341524362\n8241214485\n8026\n1255563450\n522244\n87310\n7860\n7514765470\n0\n36107784381\n8428063626666\n8015854510430155\n8568407\n7551571416514123\n233657\n68305060457624\n528418037\n57705127831\n42477052828143\n77\n727041126745\n312345084\n23525\n7\n801233\n47\n52360704\n383\n0\n81860324\n508616855\n12642287353536\n474703512555237\n4441130663734\n62\n75783164043332\n7008522\n767254301835\n551\n2511\n8105114\n5036551527\n1315167726688\n380366658230503\n436332237573\n428770382\n8648454\n8743277114375\n0\n5240\n70007466568\n5025537637777\n687058322631725\n678846814\n6\n8472220466\n74312302121627\n826474661080745\n788265412055657\n54484367764176\n168181421800\n71881515186\n12\n8665424213045328\n71\n22417061\n3137744065346177\n67\n241270370\n145556\n86017568\n8434886\n654653\n1578558883\n3845\n4771\n20720204886\n874\n50506\n4032308637124\n6065837384441\n278\n456174583712\n16181227\n886184548471348\n50060671\n210101830356\n185512510268818\n6344614474352\n707175121\n1273400045857555\n32851658\n34151776081\n6511272872\n683378642\n5162122\n571\n74022011\n1\n820126350\n322873775377\n210765648488\n6171750174381621\n118380038\n42825703\n843470\n5145107280\n177481187\n7671222\n4543082\n62173\n34564415763\n6584385407548\n41110803666552\n8464133121752\n2382785833\n483522\n267430813016\n3255806\n5227\n5601517736504\n55280513104\n8700180702\n524502278\n1787185767773\n0\n2015620650002\n248510106026\n1517061\n2228460503\n4847\n12\n64282710\n570820\n2511227042002\n55832704132736\n100401873048863\n1231853806773217\n454223028086\n1304350\n178\n646576678408\n6323338\n2457\n35485255\n35\n7\n777138001606223\n5\n7235782735182\n317\n66703\n1774688535076\n87752\n346070534285447\n28276280233736\n753120074150\n6\n30437571070\n31730875164\n77017668\n14345515052834\n7307\n21813512\n6364\n61475511\n2\n74088006344223\n54180767\n61358\n7833381825\n36555681858553\n8741343\n2\n310407550772200\n6655658\n21472184\n0\n427650353\n255531\n614634224\n874506683306378\n22573624\n70832\n667220201\n14802\n40\n11\n3\n71036\n8128083\n16318\n8213247882837\n666848\n3027141273\n6782780081855\n553268822128\n75\n311258105\n121354200\n327583\n3807026\n72\n1851611333\n14125\n3272046408440803\n18664048255\n626010858\n412\n256754443153\n56043430246\n780423\n808523255802136\n8807280042\n6361485075030108\n55610573157738\n722550233282517\n2231827\n4535224203104\n302186163256\n4222761\n1148\n58832462323\n7883555\n75113023014611\n84546368760166\n55007280757281\n3513313125\n871700112220550\n38673776\n3203255318\n30\n5661527017126517\n327822421774\n310283\n2163474447105086\n4705\n47401614\n821154\n245735361554\n5233527616205\n301672567120\n73\n6036387314265340\n78374617\n812214874\n36425\n45\n52340351\n4\n26362481\n7551461428207213\n303431\n0\n57821855281703\n822\n7451164483\n444\n5352167504748\n7012846717601\n3417583868106603\n1873380088814742\n212864\n53878\n52412662\n5237\n32\n4771617162\n8552040266830\n7857381\n2\n65050313603\n182\n44471\n44380636448188\n8721\n4311723145\n77606150864345\n45688203286\n344268752485405\n2024065081351155\n7806458750211\n106161268\n7012428\n110462876\n5\n867576638522\n2706\n4317\n62813168337\n363\n57737313\n157176102257606\n4\n84602\n444255\n5026285\n4512\n3316\n13823361247\n216146851\n8\n16764\n711052\n64418\n22674226156200\n81046748\n58118777\n365666514674\n787817480464\n8112\n2841041762333\n62242248612\n224358832786\n408882365440\n740417504533514\n3400\n318717306612\n2752\n74600046851\n2608483232505438\n5237763287307\n88625075585072\n264264187165857\n46057260507726\n6185386\n51871156\n8\n3581465882\n328004\n326778\n6504722675\n404\n87673742251464\n0\n1845084614548\n685805173\n253282\n60730880\n6882317126228\n6\n761424676\n16536743631340\n1081\n3436743062803\n73650\n353\n8\n4565\n14136176\n1\n8755\n66455173\n5\n23\n5242380213\n258\n3336486601055\n7284742770\n71100210221316\n268741\n5715\n155332358628\n6502\n67\n258847578365\n817604733233416\n455352\n14862422582458\n77757314600323\n586810681245271\n377787\n3\n272613616\n225121231\n116582\n68081\n787055651010\n27\n22838716616634\n786511\n78820084\n71445406\n66\n388425535757\n64788478\n47316\n65167057822\n2823451\n65\n6264527486573\n1734\n344208781352\n40164\n8257455641\n360067683268152\n3747120248\n1607710218762314\n153551277286024\n22555751878053\n164645247772552\n10538\n33448\n64255376607\n4805725\n7704370\n1117\n38126481346317\n6844661154860\n2\n15677762\n1\n487751\n5304715233515\n681304527435\n460538461565\n7515734\n80345203\n33068285208182\n8181622\n7\n2837501\n84106\n425374734\n1484861615207\n5171785727348\n60730415\n5242166437\n762377851110\n5734465105\n860220857\n237857\n4\n778\n7515\n5522506\n44232871\n2710533421765676\n1108707204658334\n8335336\n8783751701852652\n2557083427\n1624312677\n60447138\n220\n20468\n448685665521518\n70\n3638074\n532204711831\n736326587288011\n702\n437337\n163854377812400\n618\n72\n742403\n4428508801\n626872767721\n3771\n246\n673115\n55052132070\n1266403078173614\n7\n41037801382\n32000780347\n40125\n8\n60035178\n1133\n624432\n784537776\n57\n10\n2011\n17500823214726\n7557287666218474\n77747378085213\n11008\n67080544760155\n3606\n5\n34344662554325\n816603\n834183627368784\n216337855761\n64047510\n5367164175504050\n88475115164210\n23\n48861178416\n2\n56518\n6378275403\n615232\n5820128153346126\n6026642147674\n2\n77253\n20404116364\n874\n587612\n5488103330221\n582878784400\n51324671342\n15\n2381\n56123\n772\n16733017874\n50841\n727040010627\n67356312080274\n5\n87067471336614\n55222008\n880043616603607\n6\n64286784\n50\n311456181785863\n2364716126111\n6\n450\n75067643\n56743712153\n82323354\n14853071315208\n3\n8374\n22155578\n5872582368771\n538740551555\n36458376\n6\n80\n235580202355448\n40758522728116\n32\n146041731540\n2215666\n126041221\n53\n267254826174283\n40667478268\n76075123416738\n52210135803\n22360702\n328641505481544\n3\n533645640\n64835\n443410508677\n28100\n21046064\n62577\n58228468388667\n8044\n45\n7622\n61821\n28543256803366\n161886\n237403332146070\n42678608182\n22\n3258827\n252544\n30\n348\n78660840678\n28671\n755241\n4832636833\n342421\n10563611\n877765275660\n8214214362735213\n867652\n58020726\n14716258\n883\n825\n285718622845\n5006703100\n5135736457184073\n7745487251021543\n732\n1540603871712\n55078012055126\n6\n65080634\n145\n1018\n27484604\n881\n531100637615346\n80886812257206\n6404666111703\n0\n5137\n128784832\n210557512\n41078\n436746\n410745742\n621000006552165\n7716\n57453210\n887057831858254\n8384302240\n65\n4\n141\n548320323418524\n5570\n66674475770\n256883184071673\n1431476382263\n501888\n645\n1605504203\n2163\n3777026\n714\n3161816743410544\n47514332\n4504686563\n7\n4812584110653482\n5\n8545\n5546463\n65041\n52\n8401\n685480507127120\n4258301\n3543\n74864174724\n888555784545658\n51382457007\n74523\n101032000681118\n837843\n2848514\n63183\n507\n3612044760823046\n73033254\n1146435735\n65353731156\n5682558\n287183804341\n262667\n505224\n2504745035\n0\n2\n7\n8\n51\n703887350206475\n5474\n684004874305\n7\n642\n5481\n8515\n2332454\n5\n60388428036276\n660\n210761\n3734457\n6541453565272063\n711882852\n34574323178586\n6100725\n7686261\n2110471242473127\n1443470401488\n88\n87682733\n4508\n751275340\n4\n25213778\n40637331462\n33113\n58574488\n1\n725780021323\n4716\n15820564732\n45711864881685\n346281301305\n75147135\n7782405356451\n84538733\n8677\n28281\n883878836651\n441\n68302\n683130203\n23007\n1211147508764486\n52305151454542\n53501\n64184\n78881435066780\n23223631\n778250\n4\n562145778\n10557674\n7\n18\n1650143\n5651583\n6175414375\n2445\n157\n6321387708101442\n78420138285568\n6645216463874\n0\n638\n322153882\n74444678508\n308886762235757\n537144328236105\n551278478\n2721708775201\n16071\n52\n362881085\n4511\n807065\n8635224\n4764485780541270\n73054754426\n73243216\n731181476507\n227461610\n53133423035642\n4051\n530082778288\n51273376\n5637066550\n35068634774\n4686267538143145\n348100260833116\n7784863\n713803\n864718\n8747707424\n247187464\n1376560\n58602182485255\n1871822341\n377863\n856815\n240544306816\n534378\n342258\n660170\n633476183\n8384846446713\n61140703221\n6561376216\n2865114184251\n677288444760\n46\n337\n647853751580572\n5517071375507376\n66522832461770\n4245863\n13\n466\n68\n16374340\n80117576427804\n5840064\n84648506817867\n373157067\n357\n2846641453475\n7140120034484\n440\n3274\n1251670\n22086\n3\n213766730016\n44025163472\n1160782604043\n84144\n3223456\n505786\n533\n7\n67181664281\n56283215284\n4605386306101260\n3475\n7\n664403\n40\n728756068\n1316465340\n8626\n7871624324280546\n204855\n60212877687\n78050376\n827741453657137\n1030808\n744163235\n56832620017313\n7511\n73858\n26420520706\n657257561\n5165328312060\n1083501\n721166650\n15688413240\n20156368770\n3668736801\n6411\n36\n780758040600\n614660675285785\n38422712\n26704660\n681660714008\n74623224\n5\n8117\n58872516461\n7824\n621644264133811\n8072\n83380778780\n5413858868\n4557231\n22274213630\n2\n80157863\n51485258715424\n104365223160\n66481827705\n4524\n71475565\n332613737307\n164406\n7627534025310\n263021\n30524520856\n28\n3065854734748663\n38747026528\n627427047781\n53838358678418\n5316140203516121\n5314274852716848\n42642355\n5425706777107831\n3467\n42571815868\n838375403473\n28\n5771088\n40504252154\n404483524357051\n268648864\n3456864673068126\n1\n56\n1642\n66210660\n701452\n4338061376\n8073303768875\n21287\n1537512\n752517248108\n6052\n167205372611628\n111\n4\n34\n148\n75325613\n126661\n2357746104077\n7\n60566356613264\n2345516461747612\n6661417000807\n66\n302307811173\n250254568887\n47\n62526684\n63361657\n281108451\n60537\n8812475382083252\n73674\n17280131\n5227\n5483282444272622\n6404372273123\n5633165738\n172448484626\n130845087\n70834\n7238528583404351\n8\n1028856220\n401820663\n64\n11440\n746366158322\n77203784323132\n45235772428\n6441\n1200453\n514664\n357811353233185\n83461173\n37884548432\n337171\n3783842\n35515064\n8\n6126188522036\n2002821821\n82\n8166033216148\n807577775444108\n61\n4583554\n82088056\n817788712\n8878744788\n87\n741777717\n510442605666\n438326313652\n4620\n7\n88538353\n32847\n3506853871285\n25234\n736010\n67\n17035241721\n670\n7636644278\n141747704271\n3\n4\n2764851245545066\n5585\n4486706662\n2685170\n86170254\n3614731\n60154374728\n4701022077\n4844\n5\n1576223804118066\n842\n102154444087721\n8803548507\n161700827\n5\n6534\n2403\n58245255321\n445\n851214537\n86413\n42146683\n7470226\n8770134420\n1423157014\n4574\n54432\n343824862762\n418876705738286\n6226262261175\n211041128\n3630371752\n14153312647688\n6408277\n76113647666844\n1341134532342\n551061\n60\n6260526180\n54750172\n68\n12504\n426676868\n6\n32244\n85755728136\n464355015\n63021874837\n76\n7000878645\n20706768506006\n75\n733480465654\n2872853401356527\n6\n82160\n42161820736417\n266155057\n48651261621358\n667160218\n2683450\n132156\n50335\n546\n60570255423428\n62542347183875\n77630346458444\n8765218284035\n57356104\n864146152876\n441825048043383\n6741\n5155340085\n7\n4821053384152577\n411320383168\n8083317\n3766\n808270361\n28\n5812066183730440\n883653\n5632032\n171162321013281\n20154656\n646\n46003630\n868437515443\n43380162611347\n7877227336034811\n3481\n6853631240\n631201273031820\n2078528\n2666576048\n225286525364\n841\n6743\n138\n80050\n461402807822225\n541608334821\n325171\n43\n8267281576\n2044\n455804\n28\n65\n2807013638220\n6884534\n457833837212\n4133\n12\n0\n17062681\n3430556663\n2141713072256\n7082527108858284\n2\n6837\n646566221\n75347\n125\n37553034231\n868856154\n432703638353320\n12\n1\n6266048\n737155663301\n37400\n63\n3662544484286\n77482280181660\n843713733357\n517163\n4171\n77113668440\n1611065\n367\n668225731\n7844245\n8657\n2682132\n45504255\n1430653674\n5326352471037\n6141867506620440\n7505847751371830\n757573\n1884668733776\n708328438366\n788\n37603710\n3105310021\n540\n7\n336710578480227\n7114565\n3\n43077060358\n1320623260808\n8406510406315505\n16232213177\n8881500\n28\n3520125\n42426213657031\n24644\n34752\n10520\n4542\n77768110\n744070881\n788167077436254\n73680386331116\n3386804445\n8565100210184850\n1\n1656157480\n65776\n25824382673\n7501112634858853\n46775600777440\n4701483155822\n45\n86761505071405\n230588\n38\n5621\n1475\n32047273023187\n537677640674430\n2\n624357506521\n4105786558273\n1432215\n2650856155\n772803876\n234403\n215224427\n32014753287\n18\n75413\n4755136326813812\n5177658547388\n522808287\n8665884\n51408175534247\n1001170171224\n2264586\n663601055314\n5046630060\n2\n16712258816753\n10425\n15474372775\n360335380616\n6325\n360643427\n626805534\n255036130533\n185788154\n47\n4\n807\n67\n51136018703763\n861146667448\n6887264353\n8800576321707740\n4512420624\n636024\n7\n1652835\n56057126403\n44858622\n884501\n80\n10733364551031\n40\n3542088504313\n2377\n1563701\n175\n813843231\n67524223\n65000052023257\n186621221\n467467525525\n6672513381140\n17347853780322\n360\n678681\n75222\n1013\n335648515\n81087283170\n7\n73254121734230\n342\n152\n84\n554375415\n568313338456840\n1\n41482562\n405108445\n54866388\n77057534\n684540716566105\n787607433777310\n76601\n72362853757535\n5\n7240688300436\n0\n507286067442\n6427858\n6012524017\n44216840\n273120405\n11470363\n533185565640574\n74728144611548\n163\n4\n47573610865025\n34062785803378\n76287520547531\n53507340\n44025170348040\n2412730372\n3\n7\n580703165576\n30563\n162046771201216\n661031\n6063773163036563\n44\n15010165512\n5758\n104277\n78877520275\n706\n52577\n18084\n4778632485363\n56020272130\n311254562170\n7023385\n61655477275560\n53616232\n7512760777257\n241043000\n86351\n783048688\n834748\n2005361831881\n432141\n1\n8432414\n0\n8835037778\n1457\n62460380553633\n7420658848111044\n28\n77825850463\n7721211552\n153\n458813081435015\n777\n743620\n36861603\n860460107\n4750243754831684\n2301787282628026\n8826001434\n750125181\n26\n271507\n481\n204183858705\n8813581556510361\n2681161\n683712844021\n275267\n13\n6265062833440858\n171388533\n738318\n42866211638678\n222733278418508\n450\n3526313438\n8702635524453077\n84577837046\n8\n2335383331353\n1660\n4308\n6380\n2282118212\n73882383620471\n6325203577631\n1683180525214852\n235022312528711\n844\n7601\n114\n6\n5347334223531654\n3356225850\n655010041\n44776081\n38\n57023563573314\n7760\n236\n5756822\n31401474873775\n6344\n67247661421473\n70531\n44468836643106\n22785245236277\n678835560\n38701867778\n88862435\n1684410812\n538485164\n12175\n8203658285752278\n40\n35484635872\n27\n2268731306354\n7\n665822846042\n781145472405145\n47187332\n3580438630232\n372\n26537\n1442101204\n1\n4\n300138235748426\n5163712\n346635768521420\n423107\n2454805427555653\n248802305\n346763772884123\n50200\n6471104133483\n537723126702\n8651208\n271\n374087\n24005003424\n35503667\n3030138184\n22282553544223\n7736\n7645733\n26\n3683362815\n72046\n846363044628357\n4487755713\n312875\n2724\n565650206825513\n6333037102234540\n68822613718\n325825204\n2416423742\n2730780321426\n4461\n435710782823233\n834775\n255\n584457771836415\n48035724485\n18\n2213027\n7655254405213600\n411260255448618\n5603404815\n6041\n520784073472402\n651613835876\n3\n35230632\n344446777342\n18045855\n78720838633761\n1558373723\n0\n3741\n88035713212146\n518088542631\n56743\n66\n7273030\n142423133781283\n638\n424850178\n2\n803877548440484\n260367177\n17064\n53\n316267224\n382660030548\n20134131\n5\n444717\n157\n61658474163667\n7\n6556452240526588\n62626555\n726818153\n17175517068\n6260\n7370876601603746\n58473677235\n0\n25430331003847\n1173416002837\n725352687215771\n5518616044\n5051782511\n11534720767\n510200611\n31850158\n366005\n7215242036852\n1\n7644\n48712104416\n136788\n53160076135586\n86231683521447\n363785\n751405\n20048847723\n444\n187615\n3887\n273602641088\n36335\n43884611325\n31324\n4280416456764031\n8222\n76833805786\n3720285062\n5848306866848\n75\n73755022607\n5664542\n3716566622\n8\n7230\n3\n16638450186408\n3777141143047\n43411504517460\n1\n674362302604880\n36408818667\n12614425516266\n1\n6287\n835355263\n5101656046440600\n8663\n4248810276\n68430354\n47578078144660\n8061172187877\n345105577423\n687477503220678\n3114645\n3160225\n35505\n28702813\n560\n713\n2\n48002005\n7024130\n860540\n840833\n76207\n813043\n48572634\n6802434527136023\n6\n3154\n22170634876\n71872103885621\n75044807515\n68857270623266\n58145566\n85188\n52\n658473673814\n14851447\n73020785301846\n2068808\n32\n753\n27163217623\n76311074\n174131288401165\n63\n601578033\n35888211348\n8613\n6772\n18262354\n2\n16\n5147376474175733\n545303351745\n753256088821342\n3\n461247\n4417046841022117\n10206313087306\n2584153348\n618201236065511\n1078274\n3232784\n218146\n4367\n75805743785\n1\n8641363450\n323684885\n6300\n2675528\n48113573202\n208361824412\n448484166\n2061350077216\n2\n71771467\n86421250\n8113467137148\n6712704781008\n756688303284185\n25357\n337326\n877328803208460\n56002\n550686376215\n77512840113346\n818317\n6173255132177\n658273423\n8271846\n2614326088\n14870688482\n4170623231\n25651\n703813060260\n4485\n7\n30854612320307\n52867306687\n7431328086373104\n8316000\n1317\n52633\n66812\n3\n81222127\n214338\n4300131441781410\n3611\n33423\n3016835\n7\n3820260582128\n366683381420\n340\n2\n161688083257117\n8127012170213\n888704\n4012248002002484\n64533\n6622\n64361117\n42840117\n77\n774227384\n610856\n186168\n87\n7244107280\n240106013\n301113240211\n35168202042238\n28152021508222\n24712528356321\n7551521113250\n31102600058656\n5333878036426\n16632854116815\n205463715630\n378\n164827445\n5\n1663\n3\n663802516615773\n48461707\n75644037671\n28138450574560\n0\n3552\n7885282\n37134\n56672808812\n8814400464714\n8820615\n345846624\n228262507\n38\n3777652\n78580854\n32204\n52\n7401\n581047545\n457137355521\n34678\n27125\n55451836534020\n4460726\n0\n3607302818\n734\n17678730261\n435648087642\n557\n27\n61867715526583\n8756147285\n6005854742258\n1817\n15152636131\n185118725544467\n26875\n7308510732\n77627027\n846750\n8008043\n45644766676\n210030472\n715360\n70007126231\n6147673320243167\n734414\n586586\n7\n5\n2\n702031436\n3846746714454356\n8176\n73158240013778\n52603458037\n67810067\n7162571417874327\n201\n1002134\n185\n73176613804\n3\n447817\n3867087477156\n8141\n3505263\n7\n23865773566\n85308678080\n585077276316\n4264\n64707172320403\n8835\n4802\n6072288\n572\n67\n6181078866\n326\n7805422653383460\n26620880271\n1615822216411356\n8560666032388\n43213\n307024053825307\n5784118274801083\n8\n5732618430858660\n6\n363143027700\n56101765\n7278520827873123\n80833534224\n652\n64235\n138381783887\n4738715773\n8714046630515\n235714258474\n58248161\n137\n666276385211\n35413\n86\n21\n2724010084355\n61054\n864848882564284\n55131\n6230406\n305464544277086\n824383864\n10613\n7360334670112\n3\n664683055482161\n67\n72522\n620\n1873250618733\n624761660870\n1153167343628\n478\n54348\n523573034\n46644330455\n3584575302\n22222064348007\n3401636052788\n3687577442168\n4\n15302768768\n802576441470\n645\n458586603423\n3400418410\n8786333\n14\n371531776\n38154182\n6772652\n2\n12\n21210621287\n6725\n13805\n7286163418732\n7656436825834\n55225657\n5770\n454367461\n8\n5175031240873586\n818\n17355156622\n242775166072057\n1680302406311360\n36835407\n463035570134\n5\n3453302382720\n484320364820671\n11362270\n18186348\n66372\n3233873721875\n14512500878\n30588747138\n468653208474\n53340\n455180\n20671751\n8512226677584\n6085874036\n230548007047468\n810240\n45214215354\n22\n61\n6511630751023\n50464224687561\n882326002628\n58513\n3772554\n218252222262816\n87184807385\n68663868\n1513001\n82138151\n776881226\n1556122631438067\n444156\n26\n83\n671132312637\n816525435432305\n105816\n43\n7505638026\n157864338762248\n27708\n1373214247\n23626\n876781530\n23\n501757\n503705616\n3\n63\n84\n410461540\n6374374284\n4780\n70288334\n865380\n64853\n48576738526\n8\n532878\n138038717661\n47281053\n512312770341358\n63373111332052\n8548403105\n64\n243334\n63257015\n647220141871854\n5110501552453\n1646603805\n4322425550781355\n7763085614\n518005\n8578203028832\n7\n6\n6\n74831125\n4644637\n74\n4283724\n2538\n4345876\n36153817556620\n7541\n3106\n142533154621842\n5404044854683365\n2\n4622015\n417620751\n885244002088505\n55504280002\n582135835150\n451555881333\n2\n8856024552\n78041337\n768060108\n480474713318865\n7\n587535400122564\n2451710280387\n863240784\n60082755436484\n5082142778324\n4037\n4422342\n17150\n8767180628\n400828048\n17687271\n40\n28605831\n711175327355\n137616844845\n43373840\n23033\n571054321808256\n375110761207\n5\n88577753327\n4083144\n3827333665556\n47\n753536606474\n26260304084250\n2887372\n75351\n211228371246477\n6602522\n226680\n1054076642\n781124656\n762046637305221\n1261\n4672\n42123\n21876\n625441\n550113\n44\n141530757761\n18272\n6\n10250224335036\n355848\n54757635\n3185346\n26574672721\n87341061361325\n5161473326662\n5\n33634615\n6\n16057261270\n63245245624527\n33573\n5660386007101\n54\n83251614836364\n3437\n815050411754\n4730524185117155\n202821085\n222146\n674101881688\n435260557211822\n84412255\n511613574521\n7337276\n65\n762043026\n212635108857136\n8886884483515\n18402\n376544423012365\n463687\n21644055888457\n6\n4067844555372\n238278\n86\n74768514855663\n222477806378414\n711\n3810277150875413\n6701\n1381372317287\n22332477743\n4760355\n668220\n6703333233\n6\n31435532866081\n84678125867\n570152275361\n4\n47\n4221062\n3\n8402020\n652140817\n134127852\n5564\n333\n5882120231868338\n236423000\n3420500\n16100\n810288646\n158\n682352754811\n703152\n464358137173343\n340638364\n844277136016221\n6\n152440624\n35462\n3437124020448\n1802042408225\n6721028713543041\n125243680780\n631837\n843\n2211\n14250264084527\n112566512\n430862607777825\n765304818\n468614673222\n76630411573288\n8783566228181614\n378073\n581437\n316\n5737461\n7410484675875\n647\n2208413484\n4401057728258\n2155\n5215025046064\n22260\n7577371\n705318\n47\n125078215125\n732670757\n5740828155\n7\n338\n6\n447\n2606\n8508170208213250\n4143\n881802100\n181605102331\n8613378881\n50503551358\n284416018206855\n1880725885655\n2\n27056316633181\n1360076473603\n52532537\n13\n456756\n265175\n37475013\n482853383682\n2132\n7476\n76077\n560334766\n474\n14\n26411\n32143\n4225224025544525\n6670340\n87150866\n32518135\n2313521507848815\n87766437512\n15358524251345\n242\n881780\n1\n38386675\n3574380086502153\n5065024\n3415370\n4046470721112680\n40112166\n33\n387857\n82\n6382463211\n5570088262056760\n470423168\n800121\n71275280322\n5037078136302305\n56103\n3180200\n3380231\n12\n264255855\n4780808355\n3018260\n7236681\n580\n71025207741\n36781\n611816063447\n10\n87645142255418\n6681527147672\n87\n135\n5107\n727645055\n7685218087111\n52505025\n816\n416201205\n620\n638\n4854444087\n3856271528\n38184008\n7\n614844887657765\n8285168\n302178\n6777360782083407\n805836886634434\n11834254050\n5741\n1744011676585604\n2446283318\n277807288\n7\n4012055707101546\n475614550\n1846154045720\n434057506374\n3\n8340161664173\n62651415736\n27422150\n5146727\n2645050328\n242218011\n8231\n58104662153015\n42310176084\n2158773\n3008057633853222\n866641103\n63818706741\n816117022483\n142100458\n17616\n347\n47842\n31448277047072\n3\n23\n610011108\n5\n304022474\n277567862222033\n73636165\n38\n6851232387764837\n83766\n815\n41234\n2\n77\n506146731442011\n64232635\n12476315153\n8455034\n401438671\n4813568246876564\n23328621876257\n5482646\n57688854500\n6643783\n11\n6413564323\n518251500081286\n56603355\n662765\n16652257717145\n416663268788\n343782\n63053347247\n3\n18\n865773\n442427262056\n826\n63128148680\n240034\n541250\n7874013075688\n2204862570243\n1250\n81758178\n583586\n1710773643155\n17330451831110\n6163367527\n814222\n15\n2232741\n325818\n8035\n34552364657332\n14\n15112247635\n630015724\n56604068024012\n477187874\n4577713277161874\n51054845\n5863517\n3565732243\n81072722328\n4641026551164\n1367\n6186\n24301024\n75545338766175\n17180\n208813\n62073535235525\n318660\n4271030\n85575158105\n7654646217342\n6\n330803732330678\n746210512\n5468005\n3516305175\n783877408\n151264883\n8255356157361\n23616317873\n5688557077750\n814178\n4463555\n1857036\n87616\n6370215\n51\n283410254747672\n48771765\n850720634044\n8528616\n60477\n642\n3040\n33273120637\n6\n300427144385\n221620\n166\n1\n42372577\n4720678154311\n3158211623322\n5\n670351512123\n1308\n310757312042246\n70182460016544\n2761430305500\n183\n33\n701081624055153\n664043576237831\n1\n2205331420\n783021334150\n82112020\n6257277\n340532804\n200053860120818\n63537436700123\n6234016041748\n777473015\n5\n76160437\n70123033\n5512172114380\n1006154251041116\n260\n6780467551804822\n518577482\n426257456\n852\n13248\n1705\n82456460674\n8607488\n1807134\n7374501244033081\n13611725758026\n8578\n53571\n20\n1775043\n1114421167230\n22755656123007\n3246020562\n131544\n16\n5135358218488\n30113618637\n433104632186\n8343670767076\n31\n110644001132\n4288044441\n877144\n450\n24110\n742285464854\n52531235\n6\n37467423\n4830231370\n288\n14577258684407\n627042\n77754\n770\n1532132660461700\n201164636670\n663063\n772054\n26\n2721685171\n7234565186532224\n657267356\n4876077173421313\n228524056126\n41745325814005\n8777088870268\n2122524523842\n780555317\n4241\n141068750722\n8326\n8781817220064\n774821\n4006\n881614\n22114454014\n5866404110166031\n22666347584681\n278020163657\n36\n1375637057018736\n15412823\n5164115774562520\n7831275\n67777261807001\n2560515310672456\n547764116\n316\n6\n4228448\n44280528\n555511726\n675484\n633412783204\n602\n4338763425216\n0\n3430084635851025\n2227507277070\n1237\n8462552427327\n3838\n114728\n15402041\n13252\n8440078267342477\n38082070877183\n16501076\n8584363716378\n25234358615302\n221881364861881\n485031013266031\n684280037187625\n737200500017\n2624335284\n1\n743272654146\n554853682024\n780356\n3043381753\n5844233604\n740145065\n35352867\n253443436174\n80710\n45627532034\n35476012146252\n567266258888\n1484623770871\n223117075456\n88745561\n37172411\n232654617483481\n306\n64812706504\n4203712878218534\n1386138406212\n7161638217\n760546468825\n1602032732\n213024652426801\n214384\n723485522\n1356402\n8400563121274783\n14\n26472261356\n3777004466458777\n824011735735\n145376418867472\n232406278781203\n33810\n271\n466110762\n7808702288\n352\n6318752365214\n177067276734274\n0\n4266455667280\n4\n20483531808\n661020861681545\n782243112241\n2753\n760224251077256\n2844688\n5070801\n3854711575888261\n15438435434857\n77427416\n5565886560027\n832015653042153\n463838\n115502320\n0\n75030038\n757374737\n81465325804\n3507010686004537\n44640\n48733752531001\n68823803157284\n23\n104342572133\n210337540267\n53552\n74020841858\n8\n4872101055\n306876773858461\n104383\n3\n303\n41453118251556\n186\n55463517\n3183434210521076\n78370405048\n7016761170\n710203681003640\n86\n287304141\n72\n5\n1548850255\n864187303775663\n6028116588\n2713382106803\n55406\n53885545605\n8171774537\n7757484331546447\n64230388253\n64\n23220\n3173072866\n1473806844480236\n780087507\n6803146078747614\n773026253\n601\n208448352521\n6643505664772567\n8666167417277870\n687\n48816\n57543\n5\n2724022\n254581736548487\n14532432081\n20073\n7\n82\n7146446410068681\n174\n23861\n53141\n70634\n2\n604\n20\n657653\n466520\n4873837555\n52\n11843222345\n7334474516318\n660801\n503\n7682680575\n8120168735810775\n237473406461471\n53128\n4335408008687066\n400\n630452725033170\n12121546433251\n4813133\n86030253385321\n2514025110414\n40435\n2814221774862718\n650766457872875\n8\n61862036405\n720\n11113167\n7720882\n80\n103480258\n426706\n25824467688300\n1237\n274022711144383\n1554\n1310\n1656207381\n7\n6\n4558613\n5881623\n638232166\n54735177334\n6503106340618\n73135330524761\n631840747710\n20380234185462\n514\n265\n847\n6754010002\n477\n12503360363531\n16172271155507\n72664083058\n2\n44271682776011\n6\n2124372\n5305738167753637\n136210\n715672455576\n2533414\n41\n15686\n3615288681785878\n454\n2111831366346\n43817744\n60\n34515373\n8\n5040660523\n28314201\n8\n36750\n56\n71001251\n3280\n3\n23\n58\n32\n6463304\n73100370341235\n5762722264\n4400666853553454\n6653887\n248300781181\n7087056552680537\n46\n5886250\n1253132304\n684287838\n8662863\n25131735\n5588368301\n55072513612736\n572451286\n2374771440\n71553\n6122427538\n2132247222\n30777075\n4532577377172363\n1203\n21517424\n27053526\n0\n81240578256202\n3540001554833534\n3651848401725115\n837\n2871406\n28\n1346321071341360\n174301046281303\n862168781\n5\n8328621750384\n34284103324783\n660400756370\n651124\n5202274\n6083088580435000\n528640101470848\n133058387\n26\n52456612\n563858\n668850773\n45485715441540\n7\n548\n7224826651\n8871183816276435\n884305262267305\n465410458284025\n1436\n2524881661\n72203767\n433278123\n172150207\n7712840622726\n742172401318262\n76017223348106\n406\n6072423\n307220336147\n57565032\n4802078264160\n434\n38313783721713\n2286484004652\n4243\n26066781\n81582654536\n413000455\n24463845155\n0\n7756674636\n5\n1074261582577626\n421028477124\n752665370082\n834540\n102\n8034402364\n6308875433737154\n4314580378405\n8448\n8464888047840360\n278\n744778608605\n640812802\n5728408243\n61230344305\n78623652158\n80010\n518371417735\n2388418687\n4873\n8881481568241714\n2726886288\n26453\n40030\n15288\n2064830507\n151736\n8182141112455433\n664425034408\n58550\n61530657\n124226611864\n740\n62718686720542\n73358523238438\n27515225\n77335435667376\n1\n740260524\n360053546\n1753535345\n2148602027101\n77468\n33\n327730308888\n577828867240\n180862168207473\n870327358776311\n4587\n8073885\n18371\n3867638274727100\n66\n328066317762056\n7626\n20042402145\n384\n855508827\n54120620634\n4707661\n1053\n73042437263\n4170067\n5135013\n435\n64\n84402\n1754227\n8447830\n108\n807772\n2023652572826\n5644880\n7036\n1\n6004503757601\n105184580415485\n4806710246\n4814885\n26\n265762483667\n277356\n77658\n740\n51207\n626834741066278\n8704155\n6048\n7153223862447757\n5440620\n70171\n13216201463721\n771758487148\n11138353728234\n4456316820501\n72\n54440700\n8210722045777145\n11314\n730618772\n73463088170\n8342206378655\n526437\n52\n3730211120\n62\n820268535525\n0\n467\n7131\n67067\n78\n8284533883\n81011103507674\n50434340646\n54330570\n22665108107\n2740260\n55463237\n652\n48534853511\n1636244147124\n856786158655783\n80702848\n2003231\n58483255\n208673\n8141781155362540\n17\n71771562245\n55754684\n634235582\n571631501051221\n1576867846512158\n83722846121416\n812\n7\n5874472303\n454474355760\n31\n714363665728\n25830463210742\n5604447\n476073\n7301\n21207\n28746\n81047136304\n535735\n41\n80\n6881505\n2380411258464\n645611\n253638735064120\n2\n3828407820516\n733\n3856653186\n40472184145\n41720612488302\n824875\n314883634432768\n30\n8733541631\n43704800752\n3045\n5372666732\n2180007885\n586\n85154376486468\n214628671370258\n8\n3888\n14\n144627307\n3\n3234030816150\n86586233\n13222584023\n170878\n52344\n60560582723248\n351406675837\n85151305124357\n724271320715\n244428345133371\n1104656\n545121770857178\n715207838\n2\n1056118412\n75173361017058\n7067\n8371030707\n55682710156156\n7\n1248466\n32062127\n55058358365\n875387\n138328602\n75332204\n888414515\n54257622\n645\n71\n3004767350\n331665843158\n407646878412\n77022\n24\n71587084315\n33264786542\n4034742130\n1\n631506662357\n1506616368465361\n3\n562500100\n3\n23432533\n11185574742\n736186\n835118171\n1335405066562321\n65842\n1181\n4515338\n42837820314227\n2223330100755615\n63710216640\n0\n775525\n530026\n587057352\n27202\n43418515\n842853844756771\n27\n8030\n82218\n8\n38\n412\n10422826\n12\n701844404\n6373\n173177134208\n27220377133\n3042\n383325242\n2138555144\n817715\n2117883\n74065378788126\n3447348018\n7368\n7814431385144\n30733378384808\n5553871488672420\n686122154023\n663267166\n325855\n13526\n5\n478045440115\n45478033758\n426460\n67612063\n212647311380\n158060036724\n306262751637\n606358\n8762812353\n135\n52276\n28840\n6480205241\n680674\n3247133528706\n67870051030\n781081\n163401\n52803\n65560642086\n2122000512\n42\n4212403\n628\n86\n74815634\n347\n4250678677542257\n62386444120\n41110088\n477670266685553\n2816337577110873\n67072006057\n3544252224053047\n875124164\n15276755765303\n3770\n14681\n1\n3376127228\n6702081041807\n4500548864563\n0\n68732371236877\n376\n3162600\n65886420438\n857722011\n42652\n4632235706622\n3604367720463633\n545371\n41638273\n348\n458\n72874687\n6\n388845428327556\n783511480603\n1157426884427566\n1038116568325\n6478071\n216240084244317\n75556671124376\n48744\n5375122224627245\n8740\n11252702773810\n2\n425128478866\n71233432536\n85640662077438\n3143\n8\n868327736\n2542\n1752254172340\n15133771681\n6\n32117703103324\n2813520800178\n5784248132140\n184750617870743\n82545\n4051126487821\n324526084\n2657552663\n31420106767\n28843\n164271453074\n186\n5634488658348\n2303645123034366\n14608608\n2707164\n68517658587402\n52\n3025203\n63073622584307\n7131\n8652416236386713\n74685387\n5187325005064\n71768521\n438271034435738\n82065277\n75782618367802\n678635233722874\n7517168215\n830\n1555742133\n55678431703562\n34531518\n2033666344106\n532176311771733\n6\n618231\n8\n765\n20\n8586411813772828\n5225\n317263307428\n2715464881\n3643755776138547\n804\n540\n4700441153753050\n85\n7505363102012\n48656782465\n23205\n6568\n815\n317800451\n567231628226244\n5774656812486871\n25\n620583308501\n80\n7835765352124\n2488\n17\n161281801424\n643070\n6378\n22335057571\n5675326\n46585180352525\n4178233863451317\n37\n10126136\n7510105115533324\n75345425\n7515\n86371838713817\n110455025\n55484734435853\n47570611725\n2321040680137175\n4230314602152182\n806323305646\n8367561107\n4051763\n3578317888261457\n17\n4741811044\n36634185014335\n4370714\n4380030\n8116763022266606\n1278502428230034\n63688\n8271171382248\n724474040518\n3327261403064\n850\n21800\n77\n8226261\n1167345\n315734856805608\n71760060340\n7735\n15828686841\n381\n6537762514\n2435260513\n1105318\n7434162170\n7\n252670080066720\n0\n204036\n4441342407310782\n3543817878032\n2387527877\n88183856324\n361\n661040672047\n1436275434522715\n3\n35121\n74844434171204\n5407566323380780\n28163353\n68\n820244611242\n486315026751\n400\n864218161125533\n4607023480741320\n32226\n7380482716271\n2626334075271756\n73727105\n18517147804\n83115737267\n45317615662\n16642880230\n32316687321425\n70043128464483\n52701123576561\n75657\n67856624585214\n5666578\n754138148454026\n5353118\n372786070254526\n27236213\n4375041510202\n548475054\n85018164\n466645888\n18534\n3\n8\n156\n74373861378\n660727800\n73\n742248\n620062800824\n7104531200287\n76520405113\n818151664744\n140178878661\n4\n32345\n103651415006678\n8\n3874\n315546187551614\n5373730\n232705546105481\n52636768701\n603388\n36170466\n82481368514\n236242425233\n188646\n3283550770107166\n563336676806868\n263411846\n7537724\n4\n8528770\n514282410836216\n8018\n384705815\n8\n8883233680\n803\n76017302060\n76\n30561346\n24632145007348\n36632\n7306260\n275030410437\n74838523283\n13180\n2214630278753162\n85754\n4367403\n4\n52540111\n7287303586658142\n441764474\n1455300136781828\n637102766110\n4264117\n827336353\n8130413640\n57531324200121\n737673577130\n736848848\n2321068586220\n3633704813265\n603664740\n242586224231305\n6\n627816573\n1531\n1\n552467560522713\n5835816312064\n8008\n2607\n6466801382\n15260\n5381667882\n6402\n747205\n21324855\n53428258\n801672358221343\n3300306824\n87011\n275016015\n8062646484664335\n801002\n8685855431\n6532755214836265\n82612328\n41573302\n1073634663616\n5507753364\n35004368\n38836\n4180574508416\n16587035653523\n7431508330\n428730\n1\n56537205034\n2801272044638717\n8063326115667\n46\n7400202066831308\n34225138\n752476400\n276\n63484255128\n68\n30833\n113364264223312\n7177380756447\n60033467537837\n83438637417\n7141382533152563\n7210\n21065268\n267404847854\n221500581334444\n1338328\n16585\n372567087325\n6037050120023162\n5316703\n117883803\n377880223\n44145458176\n78728516385350\n70402853817\n58538222241\n58\n11\n0\n275516340865683\n833057\n10037432\n6370\n130\n7823588151810\n31223802507\n2815663106418120\n70605530824625\n8607163544140\n5588600387066728\n28537\n540\n2\n3720\n55483414714\n7320112736732103\n10\n1210016\n16\n5\n6005531657\n41\n6\n24154111138\n806\n7045407065666\n8348074744887385\n40634\n4783538063\n4\n5562378307760\n73523385885\n653452787481342\n80331\n2\n8131575617873\n37\n148073580347011\n43665606423\n1434683014\n68\n564201226\n158144\n373884866641\n4687858526188247\n82\n7882045101748\n778365132715\n1254656\n354256273275263\n854413762075105\n307887\n27774066478076\n4177868452660\n585452026\n71000788\n72480011743414\n4425430546052868\n24\n608341485408723\n58\n8116148217\n226101612203525\n288165615061\n3656\n87822720873\n5585300745\n22072\n66403711\n101606543521414\n2187\n421165586\n35221182854114\n56\n53\n6543175633530\n463640\n760731110812\n40018\n351337443886\n83402840\n582720\n38005425078\n4778846\n257318013444844\n3034\n571255\n530542772\n1000843556\n72341841\n6433\n2\n66242665383\n721406\n44\n5\n483138371472764\n467465178\n82166\n10877\n77847224615\n17402652\n5\n500247601817348\n4808024230707451\n32\n3\n2\n77634417723878\n56876457\n38346233532\n40\n7\n1218\n710030\n5873172313381\n22116505307232\n528188221544644\n8862782554251\n4\n874827486431\n45375834102\n643532416245764\n1\n685717\n4455283\n1\n5227\n52\n372\n58702547878\n5350\n8523218711307275\n51\n1566\n175134\n6550868518230\n7032\n6411074538070742\n322035611110515\n372\n6452658088315428\n17117785280\n73418605\n10462588860\n3888725\n1472218441\n3578\n317\n82036437652\n88\n77\n163232223326067\n2376\n54133358\n267\n70\n51461202\n436825884\n6084174020615114\n868267\n38408855705656\n713856065808056\n3760248778877657\n7453127522033636\n38380023\n670431261184\n3625756\n25712361743\n645\n687813644\n762311536\n528160805\n5468245176215\n1274277587812\n744206834778078\n33842702\n464183071\n2\n35532\n871580848671806\n4122802451634\n857\n3738727560\n825804502301042\n175387520211228\n255753188110277\n46817136535438\n4\n705541045517\n6773174267\n534362766322\n6035141746\n421135835258481\n12\n5408743\n62273474202\n16375440052773\n338\n46210\n4\n2861\n144384007247\n77888880320303\n3410702\n6\n3188501\n30362106\n301313\n2\n6020183222706\n60510303\n407630\n760331553703032\n6080071541527227\n628252280364418\n2\n58456320122\n35411107273143\n47646\n21441182\n84271635103\n8133124101111520\n2678537254323251\n8\n646665\n4780111180537181\n7260300\n883181130227415\n331181574537146\n70367326804268\n570640\n4212\n8186\n540342458\n167222627356148\n321087\n3130525313441\n405\n1441478\n6\n6476742\n86002\n4310568087545\n4828750417728\n773\n75123322084862\n601427\n853271754280067\n6266683115843857\n8855553131703\n2707727575\n388\n27071\n25021267\n26650512\n556210\n6\n315431\n67113\n162084\n11453\n6442571241184\n1802404\n81441216355\n683576\n2\n7661500847342\n60475644\n1027\n28\n7246487275562236\n246117760076\n48434002\n4844441\n7587501332\n68\n14326475148845\n563851883\n1\n3\n6618468\n64151\n34113165774358\n316263234716\n516084014\n2346484321\n785052\n2\n82331558607\n133527026\n3013080676480\n417\n51886034341618\n564\n4302626286255742\n6443\n777\n634524328\n4305261\n377033016327004\n810254560\n6115736111756447\n6667687316\n833466\n2\n6\n88254688542858\n1147525\n5726856804\n3\n5874721186263\n1\n5558\n5301425834\n1276330048170\n414571742351\n415853802332\n54408266687426\n5500247670\n1101170022371286\n244703521674\n5\n648\n6431354266185\n1076238454\n378\n22\n3307857\n7684651685465\n5713404233\n7\n2518\n2202221746242\n137451787\n75887\n1856\n32888260771012\n570681782\n8786616785\n43014\n14256\n6371435771232\n1728402818131808\n240737\n26707277\n1225442122\n82446683660\n72144017\n54164\n731733640\n604753353130\n354137340683757\n251672\n867250084\n41148601251062\n7807157205887258\n405036662\n657175\n453107612756343\n668868701802033\n628\n214708342\n60637462186\n5143\n26364804407481\n151717878\n1822\n86557736046\n6688646754\n2055814651628\n5646253313\n7707473350531\n46746768\n712614655\n5283717457\n0\n61422818813576\n676802614174\n177181008\n164171325867525\n23852104\n2\n86461657452053\n3\n80\n880\n135520027\n337867831\n472\n3\n87383\n14451884711\n44083454\n8576861837\n6703264736013\n2\n4764035775102706\n824242072738\n6\n44111317268863\n1\n43634758\n441283034\n751658366526\n4554871381876\n70\n5241103874374\n477183641148824\n8638671434673581\n5326613446060634\n4267232787405051\n4408000305\n480185814623\n0\n65\n68681101153\n1678031136286543\n4274435368500012\n2410253\n68676\n3005081382\n4812\n572032860\n56454370\n3\n573311472\n743674615156453\n242368140354261\n631026362682606\n61\n0\n234070772047604\n4751\n36335376578\n62\n22348854354600\n48\n4704138\n25108787838\n5013165\n67\n301565\n7057600723527\n5\n836861521155402\n15\n2788236\n76\n14162335051167\n84247450617531\n757\n1768661075\n3637743665873314\n8\n3033341341315424\n4488670167\n1276287426821\n602584\n37\n72555545675838\n10054563425262\n56827\n2323381157\n28\n655103\n212\n1374036576546\n111826508\n61\n7575761382140\n601127543274182\n5467771313\n17145075\n2052108\n0\n312260516\n373025\n2366283386812\n7465815313\n6431257\n85054265328\n815467128\n411432004206486\n11668252\n646\n851055551\n2356311\n62\n3432\n2\n6\n2351641063810\n230\n733235225026\n121857652\n1744258\n13141146814863\n1625515043526\n0\n431265\n33\n5210505\n41125103030\n83267\n828\n7484340027\n74782853857\n4038212012727713\n66587118\n40541383356450\n7084462\n85622613446326\n7787\n134\n1576204857804312\n435752663\n4358\n423\n3215336\n5865354883751\n273680561510\n3375834186063420\n77682\n185\n153515030528670\n728546860165\n2800\n848485620035528\n3\n66362438503\n5453554834\n834720833367543\n127001111\n770233645\n543285\n3237\n44443520518438\n308027\n0\n64081025\n137\n26\n6716076074\n4045288043\n16175273\n64154\n6204787\n4\n4024136667847844\n3420\n6536\n83\n45823847427220\n175351\n7007\n22380246\n300188\n7240543\n46\n703430320\n43841786\n30\n476157547114431\n641688408343\n13157\n86154505\n460711217\n210722\n410282\n4704710360124346\n5856\n1618704\n4140\n584152745\n6155\n536057\n4312\n8684612055346\n6636470671\n4336532\n3882380\n707826\n303671583\n317787\n1120254768870022\n7125854\n3583083721385264\n777\n87418202185\n51\n5\n4780752202\n2842264735\n43445\n53\n1855762374\n2065807\n4320111103075017\n4015841\n7880172156\n6875744152617\n20\n4406443\n23114\n374236\n6636868455401385\n65212707051550\n176\n4\n0\n803707568265\n473867858\n707032815\n5762225153087\n6015387852\n704118\n6240373868870\n4735514443820640\n168\n1515808051060153\n74832865\n807171\n313476024\n2\n5122657216\n56615652086\n27272400750247\n5471854064\n16384\n4273465473873586\n6023012704771\n6552131632438\n32748714031641\n7161\n30855485572654\n22082770758\n3863384\n3450250562\n1622811555541\n10125085\n24318\n4105231117\n5\n440\n5523314780174166\n31\n4131\n620554001627\n31768064\n6\n486741\n7814\n76362816337878\n241211183204351\n77677476463213\n828265737\n434\n838070\n234422\n276\n0\n8178242884645\n7444748\n1487445\n755\n78688704517\n486443\n437080077820200\n3186477231144\n846810784040\n8382305\n4\n7571701771467\n448750557\n31013485\n424406172\n2673\n548\n18878835855\n852884614548\n514316770660341\n15567587\n4224602\n3008188116201330\n81347836\n332\n5723814565864\n84352\n77401186\n528503\n1660824807\n744846675414760\n677460345173604\n520083567\n8408807145340114\n4\n1306344\n6\n85\n334\n802300087\n400570441787668\n458081687645\n6174238640530\n6357344242726\n0\n7114134\n641458\n83348004617\n3565117870284\n1\n38875008260067\n6832512\n6461\n4551\n176\n174413546477032\n84\n468478\n846\n2408\n24278282264813\n827610176660245\n257\n21060003\n38144\n838014513275128\n516302331577\n123827730577236\n2566\n52244\n34582520073450\n70307005535650\n207646514673\n3030280400745464\n8\n8234\n56362045240873\n102313\n3026\n13278\n67468018718\n71534\n11442420555\n780581\n388154\n1016150880110132\n80184701650348\n2662\n8831824720310346\n6043042273706\n6674270186704\n485375076\n743413\n25\n8415\n761768307744025\n1555444\n6543073\n116\n1672140351865500\n655\n6120826288735741\n8\n558877518\n167881237386220\n27342763087052\n5741138\n6455362425\n451443202277\n11454\n374757202722\n54250561\n4046\n71342722737461\n3145233883733\n438802228\n28200211765\n6551361402250\n11\n3024810121\n260412512886873\n1235588632\n7501\n117\n3703\n10351726\n64\n45126660\n363168418280\n742677777285\n4376\n2682410\n165285\n646873\n867663\n441321551\n7826262200321870\n73520473488066\n6564811655\n634628424145864\n21534\n336738815\n317627502\n73650834\n5340357142128002\n21430247644\n5374133\n71526846\n43154\n868830554\n821\n5247061855764150\n5051412762\n53463422\n786651\n8783700743\n11122381887\n345087\n6530770760002246\n24388233104\n54251\n731605\n108\n64748024\n60367130\n16271544283\n23425103283\n6183264681843165\n54\n5668653510101106\n754616676235351\n2513\n77144611218532\n15433\n380048723861\n3055764005818582\n175751\n4\n6\n57\n73702015756\n2652185587252066\n50682857276885\n320442533771\n167\n141080021836014\n171037\n587327630\n0\n18831227688\n63541\n5744868821\n703013703\n81073260552\n3338778040\n426\n436\n5483314506\n73\n67\n787887385437\n47287523507220\n0\n735\n147768\n7247\n45816\n37156353\n45453226\n7515\n3870835\n2018346833604876\n4720\n4484105732847\n71118\n5544861485371555\n8122\n132765171\n385522064\n878630542\n1\n6145858\n21\n4683784400307\n33317631\n32615463\n1055505372467512\n681537\n335\n84316742108\n1861756156740\n205115135153518\n36888\n320833886675\n748\n33668018378185\n5815813247516457\n52\n33533240837482\n678176655\n41\n536\n6200112254675\n757604700\n138726622\n26722265210\n7\n1108462863320265\n721578\n376831570247604\n13363373822\n21235447\n6120540568\n208\n120863880\n5\n414473\n64341062800\n8\n3157\n74653222\n7140\n3774311476030\n15065814032237\n804415231373565\n5767263824\n5534\n11617\n514447015\n435258064\n78470702218\n886\n811570366606020\n646\n5637324672505\n585703\n820624845378\n6584228\n130644411247\n3058\n5362565032004033\n3718747328\n53187\n36612\n415174531\n7383\n301085860\n22415\n17\n178072731303864\n1834736332\n83\n638148580331564\n87324\n435060352\n2461436735\n740157118008483\n70\n87278013\n241\n61473\n337582\n82323068404613\n74715044\n21840564470\n373215166101\n61271485\n56887702603\n7682665\n35415164065102\n40848615426\n1606\n863026745260277\n552013320\n72107686\n83061824544308\n475\n14337556266\n58138428\n8218\n8236017483456\n37580145672\n8703865\n372676601184246\n12\n7627\n6536757300\n4631436163\n12476\n175108126665\n56\n377071\n63\n3700\n573\n8156774128330644\n4058735442570\n333015551\n235543263726645\n8135388216428612\n2874070716055368\n152\n2456067736084\n8523470\n6432527482866\n244513836458\n266655568\n43\n157\n32011485\n2258862844877123\n583877352545\n653\n55648\n66041634183816\n5071530811177340\n27415375020\n7821246435\n1501188336\n858038151006\n6777152240\n37082416538215\n364608082\n6186112411362\n641100508436687\n41747815\n436484256748133\n408500570\n3325128567881\n864461\n4\n76170307232462\n6\n42003443115\n857360086454262\n22\n311870231378\n321536244\n54\n754073\n0\n5\n8428200\n321252008\n4\n523482814174718\n7561387877\n4342528208\n5028153775821828\n826\n734\n2\n7416635418570\n2812663\n348501016\n522425\n15618\n1547780\n3802553716170\n83\n8026\n58\n6\n83488\n13341\n8614560406280\n3345016654567\n646248815301880\n130820\n568\n16\n868008343\n68102276050381\n80884757287206\n53431676\n242113877536430\n43885082646500\n741084005675188\n81085047773424\n335\n6561451\n7773888314325\n18020\n655403441164\n3457728140037\n4043403\n67450\n51\n421340376\n28723264\n365803476775\n37757653837108\n5\n58167773015437\n371521087\n51574454641\n62253241\n417343834338\n50\n52018203\n328025305533813\n42452500560237\n565630605018\n876837161\n66801\n805333835581362\n45728063414\n3354654435024\n837\n57\n68258\n550442583\n8142443\n352\n7237480168266\n82460261555155\n7\n2713204680567688\n75505220838\n822608765074432\n5727558\n2335\n45\n4541264857\n454717753328\n82737\n712\n4037304576004\n27184866\n253405030316\n6\n716\n555211500\n85274484648\n1135226\n78654566530435\n7001707484\n837133\n4\n5388203\n534782406008433\n112513841116\n87814365380\n73274230\n56\n222776\n54027186112\n8321024724\n65\n804850416\n3832706001384\n5708881\n6080688246\n3031716124322\n12\n845471816643\n686656\n422432164\n2\n271236\n4\n50823\n552\n7340721432241\n835542308045476\n2021437580705662\n513200646\n38447086652048\n23633425\n187422284\n7356607824023188\n8113664721853\n483\n1345182416245248\n14114181022566\n81432780454545\n74555\n225216080\n368742711241\n5\n83253236\n3\n368861\n3436462141\n156835850536\n30776\n223534543404\n5115508005\n5822\n7848365\n5675376\n4\n56088423881\n4766180\n806840\n352\n624\n3762\n367672\n1563581\n26\n8826783224\n34232271730\n1110\n54\n7845040\n76\n25760\n6341607852436\n174\n648327243\n2335162012701\n71534616\n237745701\n65665053320373\n2316\n634517056521\n638\n3\n131384740641\n210357633\n2284155044071\n835874\n55\n0\n8650\n53033883558\n116325845217\n124063437\n8057240\n57505224\n3086183885\n5578276450\n347\n6417564422766481\n446516451067\n666220\n14210208675\n18003\n501\n356785\n6343\n3760506543\n7635828\n41523165001275\n2036845273124801\n137715\n156637\n21\n7531447571818251\n3245646712136\n4834277\n2836647\n38713\n5418345\n7437117564214\n7775432664\n80\n8876477\n61736\n35\n38\n7611176825502\n2841588453\n756458438\n71364\n22\n64\n6582210\n542\n76566448804780\n5\n2277506528\n2777\n5436064\n71041377\n68505508620\n6802624\n71528820123213\n57367\n4533\n7\n547427\n84218636475\n47473\n37\n53828233408331\n1613851\n12466781428\n61\n3\n64721216642\n574427742511587\n158463764\n8528\n18316573\n538081556\n6\n5301714868171\n41626446\n4131588871846\n70\n1544700283\n78783534675641\n6138218\n7651135\n324130843\n5\n76733\n32781506637867\n5\n1081378463373311\n55\n888088581227774\n2\n11865450416477\n3031172706238645\n623261463\n8002336555\n5842503421621626\n381876\n6170643\n2237378301607\n1761\n458881\n3328575\n20782272750627\n7080775842173166\n23\n74687\n832717310\n28510533680\n28775448462\n8776\n7\n178176\n4048318444\n7414678386407588\n445657461\n8\n23055\n155875\n6\n85026822172745\n41220\n1778071673452\n4\n6\n8\n7810020741866\n7650315451\n56222534664\n56564785373075\n200220024651331\n261107078\n25064\n2745627503675011\n578675\n74570\n7117357118\n278\n4287535774\n76512500\n7788728037\n518457200\n752153655\n4\n3015808571308367\n22843842251482\n2\n6138337\n8763065478364887\n14731735817\n72288287011610\n4132102800580685\n810273833483\n463570517781\n16067377735148\n7\n115\n8477\n102\n7270\n2877262727083\n261582653530576\n3280\n6512783\n857488511704\n6\n23127\n48256\n1\n626707746\n28865571041\n186866170415\n245750725736\n32123303\n736172125318\n636\n56754458334\n74\n873366503\n4615711\n53478140683410\n5806\n68358071754\n88102250\n3088626717\n2038335\n0\n701040533707662\n3875\n6571357255\n7\n285154168366\n25461262\n6\n713103532175\n854\n8\n21617\n8385565017\n821217\n2312553\n0\n40750\n653654728316744\n4005425778\n7681\n4088\n5411284727\n17353842458\n482112180135\n632\n31867\n1716368335880\n40701762\n706177826\n42157254784\n87771\n51\n282668706644\n257600186\n81331566280870\n6744\n8223\n64466331426\n144216613\n31186245\n5410407410\n6321068812841205\n84\n17\n87137\n52\n60682116122651\n5053204825082\n246687035\n30683243460876\n62154\n71\n8620\n3180858\n278134072217787\n287501200453\n52681\n52188458633578\n1326854\n1675022126573\n64853687861\n436566778543076\n320854355\n8388453534825466\n4\n47032713\n363165\n101433\n31\n710262366252\n5553226706721123\n348718875\n4536638387542188\n572311\n175628003635376\n10105\n24586046845\n52551761435\n2375\n6122621413358\n7083418\n37534271402520\n3315440228\n4477\n4811210461\n7646421334581611\n33861056688548\n62268846\n510218\n7035657344377\n148140637\n37060544\n8424465018042\n8\n2002357411035303\n845611678110206\n3083176\n5736710\n36218580\n17541411165\n51\n78044110123633\n41043252435835\n35146873624481\n5257177\n23415734005861\n25004842758234\n10216402473\n18\n407414\n20688106376\n462756768504451\n542\n8242277\n420103311\n36477\n63215813716000\n7617213705585\n303472\n33513\n185716\n6375838471\n51538152551218\n834\n81558666774022\n5177858422\n258668683553288\n6008232\n3183151215\n477181162077\n1102\n264042887060307\n4286468738861\n3130224117754\n1361034\n63854\n2734\n76333473\n728\n105442455010\n455602112\n81237432240\n7053\n70338832600\n34371881754580\n2630\n164\n747540363855\n57\n5761\n64\n48072730778\n5112512346\n3533838\n453726137\n686\n8\n285604\n142136150724167\n8478264\n217416088505\n173728628163248\n6558750\n7275716366\n54\n851\n7760748812280\n5\n251\n676186\n834356802407\n60302\n265886347687\n1718068644842\n3\n184\n4570\n335523807163161\n62542403164140\n4165466373\n84163\n4416603551\n8268781107050\n283313701\n0\n562772275\n468165086215145\n2112865247\n2076061406\n66176631\n600\n2\n223815631624827\n171354\n700276\n7557417622751035\n5400744\n38515378\n787385006445736\n71164771507630\n683\n50236782117216\n505576650747\n682\n64514845\n224\n3\n878722312130445\n7655\n5000823825155\n57\n2465800705\n4627234446448\n750286\n21587\n761828\n753688670385422\n5\n13047\n5\n51474747313184\n2700414140133274\n1161623820\n7216112633756\n81\n562856\n32871\n87\n64120155\n2634051\n20320844153\n28730083752605\n621484471731\n202304\n48012601874625\n8763331\n3781380406005\n3654826663140888\n605\n4053158871546\n47547686\n7\n3077782004\n567\n31304\n3184324866022\n5183\n5\n38043858543747\n7176255355\n83200567534482\n45346101\n35845585\n467\n0\n2\n283531\n4\n8335202217\n88223734\n66604\n18377178\n365\n60745726\n74\n420682643604528\n87\n402163148841042\n38010057728581\n1\n741763257228286\n436088182\n3725760\n36426075271\n6884883354\n4\n106\n75365338736074\n2442807\n4865014638\n384238326387\n560466446736\n23675056311664\n454683354\n24874741682\n66841\n72\n3\n4310420135863\n62780751\n726\n400683756525\n6518752775046756\n42320204800778\n5\n645542\n540877381\n455263617688577\n7\n4355730176\n1872673255075\n15617426\n63465722565\n830328774263257\n372188082400124\n53111440\n558405210505882\n47524644200\n53\n865\n858\n755572334562683\n452481657417434\n745\n805388522772285\n84\n363\n42124245324\n2065833233\n2\n37144586144148\n565102\n737487278\n23245644\n587345\n335648512617518\n14304004167\n40\n45085151366500\n80\n8144883232\n508442653\n3\n463761650640011\n554515221646\n4031033041\n10253448\n2244263281113\n8443272487518201\n40057052237\n626528646030\n2328685117212721\n24674\n42286230460802\n26670\n8\n3472118\n641810\n4\n6570185054\n665615821\n4\n371386227\n775\n585522587811\n307053514\n12788750334\n42106365588\n50010616486\n424682615004270\n6646116786660267\n24\n847344882044545\n8678768061461\n31668\n80185871215123\n7742630\n30\n2883762072616\n1768070121010147\n1226\n116467765\n3760\n8381\n56778\n45212172076365\n660807\n20734\n636676682371\n75806\n85755505\n60516871821\n5635472336775864\n40450522\n51441\n5760\n46307\n50127\n6862434\n35778603822\n36182350112180\n404755570250344\n323348317623727\n676233476\n455626\n506602\n7\n876\n67244\n605870\n5578332\n73523214\n857330326\n5102003338375\n418438886885325\n4\n103353\n0\n832070866050\n6423570\n31717411524\n170704853310\n28\n572382187\n576\n477728\n67\n34888\n8724\n53\n6541010335808470\n60182273\n8500030\n287182162\n14013053760612\n0\n744581355385183\n615641\n17040084414\n332645111264\n4151\n3854\n18312164487515\n54347372284\n64478343827\n262\n57\n6354854252306\n18\n5885352521723014\n21413006357435\n4360261430312\n3454242565347\n606144131\n717012721\n65204037144\n48220204141\n502015776824222\n32440626881757\n20010738607\n12134050378135\n1443187\n2873318301462\n4311051504845\n2\n783574704\n7832211555372\n4765486244286\n2\n535514034411\n400588666477788\n76388663243642\n1257646\n71564\n0\n3577\n786256042230604\n861\n164\n128\n77215143573387\n420\n15637505834648\n5851475452064221\n6177543540\n54846721\n41\n51\n6764673153616\n3364767272778754\n2811\n3432515\n7271457\n258\n6421\n68185575123\n262762615\n71084\n3128141787620\n3471337002265154\n8604800700\n15\n1335\n75742\n663484548528\n6415310634\n383660248567\n77614228\n14\n1741354236042207\n16613013\n585667406165\n7887\n3211485\n852685241260311\n8380207683551513\n557484407\n2305206068\n4488525\n456410625830815\n31085144607\n3367421756\n5860\n2268048722\n608748141\n485661852377\n71356122312\n1382880840\n8314753\n856571777\n77338\n800614124254851\n360310341785438\n1761862\n6\n547204411126\n87067\n18551070834\n5885566474656005\n22434827\n227105081872\n47\n71876255653\n838373\n8322502684525\n417\n44867460207425\n3\n64840206457176\n7\n47110100434250\n23284\n4288311024\n6870417775335004\n408574\n15388311623\n454638\n6544367\n80531775\n73576\n11\n60\n734332232407\n81123474365340\n55853580182\n326581832\n7881\n3645515728\n62488\n782423427172\n503628\n4353466243\n254331\n3748752015287228\n464414\n32184800\n335574628603\n82868520\n20724\n868580437565\n11\n837483854825\n5010\n71\n8643246757758\n13\n486821322485060\n548\n317378\n26635270\n33437811\n430562110\n800668\n8186438\n320750866438413\n606658757157686\n451\n66173206831\n366521866\n64252015782\n552\n8344043251437\n541620\n322303\n780086055\n5220582460343847\n11857\n10842550857726\n400813083\n488386000470\n66307\n7177383\n7828557308\n8248\n7070606510\n1\n7175166720\n26815180876\n816623438356\n73\n62\n7605250680377\n48\n7041307088868121\n717\n87238\n338441168526360\n6368135321464\n37\n42\n4121246461\n76722\n16556414406200\n1054252084280\n75\n0\n83274074302\n22730033688422\n38846800\n118257162018644\n6005\n238847130\n867\n862642\n21\n88514752451\n5145455562550726\n43100\n3612048\n8211581\n532\n744352040\n171518441\n5532\n834858500\n440308235106036\n764034116321050\n42211646382\n304384612070\n2680206645342\n426246002662\n6\n30\n65003\n62147373423\n33\n87025\n5107\n5\n30216658\n571846\n2\n718505831\n5524044\n71444086\n515271586\n75176\n364830730843\n43244313161056\n6362474107735\n272803688\n300146376\n82381337\n202506466286486\n705\n65052034517\n75433805854054\n860\n6166\n307833728588\n85673\n300\n852551284151658\n77\n37254\n58325502\n4882622347\n2716822547\n8077\n234527018\n470068\n4\n46050583653150\n82036026417\n466522576\n8647343224108\n6348\n870744\n175381\n183137804447832\n826278322\n410228\n413382\n1118341\n61888160\n120637350086\n8101\n26\n1261148\n7\n18\n67\n281050586616\n8553278144281\n1113028738438\n4370487\n7886082062316501\n76\n3536337\n6051561457421\n1123043652\n4678411812167\n64711\n2623\n64\n336343625864\n265746717\n3545228005280208\n637863173336364\n64616864\n5\n441687377357\n87\n71174875822520\n1\n513453\n8655330250370\n28214\n161214157\n3260\n668438406\n34478\n2606228714\n41\n8647623\n84188344275760\n64\n42884\n3657148070068053\n7565111021\n53\n8606882304\n83521608\n7653846105461\n67082130523272\n606578376874147\n26563746848\n8506111213681\n40286\n6321751738240\n57\n8\n23738\n85\n381585\n15854008\n864\n886\n62630761\n407041770106\n1238\n5277304377\n868268446802366\n6037663562\n721384863447144\n731738\n87466\n647187101645426\n6\n1128\n6075710\n705873331576\n244554\n8762723580517\n571383415504158\n7542\n51603764\n21573\n1820332078\n46631333\n27022\n3\n10425708610\n125\n702784\n67625\n3624333378\n7403301866662\n31\n4137660670448\n761561478\n61\n2065414\n1716278257342\n6\n2516551268078\n11570050710386\n40118177\n2513125183\n4\n75563034\n8\n880703\n4112132474\n7615546187610238\n502688165085310\n720016\n52450480505875\n64\n6360053565411\n2535631488\n6238520465840\n37\n4272621510233\n31688\n3754\n8\n587182\n465818784855116\n42546076\n803273413553371\n441\n5\n30\n8472448453450\n351601365\n446342574\n6032015010001\n683\n24212017\n616372685\n4622\n661\n10\n4214\n367186352\n1534\n5605021113\n623487061454305\n75761357484038\n547805842566720\n74\n643070\n6614475757311\n6067487038\n178416664305\n2311886182204417\n775645303080523\n2648\n554\n56570\n5678100\n834\n63\n62446785\n1806683\n1458541683364220\n14\n20\n2686164\n68405\n655371085152678\n728837\n84282750\n27631576555886\n771880112067050\n6530220582\n6\n83163304\n8543115620657867\n8\n840515\n8618186148\n312182243665232\n21\n45144372\n5285342\n4880263470\n16671274\n3082256\n5\n823600101847331\n555821032\n478835600\n380585588227\n277\n84313\n3286480271124\n383787800004261\n5\n48113\n432145640\n441031533\n556840\n4563\n6260781116421632\n1\n4686\n46\n802\n616082\n227534\n68\n751013\n8672381070\n77537\n27\n7175\n44652684088\n142827\n51760616264\n47117706678\n222506323467\n4631\n28532\n35185826\n313\n7473160187\n6\n758141876763788\n6\n66240372\n3232853684067361\n5520\n1341021\n657\n55512787248\n340330168\n54373201\n2228466156030\n62254205702\n82655543180510\n5282612\n842507205\n8\n1117110417\n1137066527\n8617816417202\n1780\n186656\n5508261828622047\n70125016\n282871461560\n281528564326674\n608\n6821285880614\n20574051\n40381\n15016551180765\n858611257317550\n445350186\n4\n7582158644156\n5203761825008\n72755555\n415\n17480711327851\n237168577\n613\n22\n248442\n6467735404217\n8713084017081\n27687\n47828\n841823156687\n217\n717066567133535\n21154180\n6843700540422577\n475\n607713414302\n5022868000340\n32156151882006\n332731102\n275510520466\n5\n6573007655721521\n763410745171\n2\n812815472\n8464\n60553346\n212335\n16256033\n44201816055210\n355328176\n2425575628\n168830825\n572575704376174\n76518043035621\n8600032\n2583728231270\n441707830\n22107886\n16\n28623\n5476887\n70612006220\n66731650316\n472547\n8054\n88668066777611\n7126523356876\n856443000\n400\n758\n421\n4271546\n3767250\n33310138\n4706734022842021\n518774660\n151337411074\n66767322\n822577047\n465417567\n4\n837\n8670143674034712\n4875640\n522847278\n18\n706717622468420\n185053028835457\n47277736\n4\n146317\n13244804602\n3\n505200812004574\n1034346461022424\n24\n131\n21117752500\n8661124238450\n310201757666\n701420274160\n8458843188\n2121820\n6\n563534307205665\n26787\n563064420\n610\n36601778458103\n266550\n52001414\n477681168227804\n5\n184\n681680145433\n63671616433348\n82228355\n644\n467\n781764\n634130\n4883150\n60\n343162160020700\n2878307613871\n436714335753\n2370347865\n4214656730338247\n31\n737104165\n718484\n70785015047\n7\n455107226\n785\n255035261\n630011108588230\n76404228461\n5362766627\n2673\n2130816458568\n3614241173360\n111153388530\n41778068876316\n51040483\n341\n87635828\n45051\n5441421102341\n0\n2554208814737\n47\n113206423750887\n201103746\n2\n5413182151\n552715043622118\n4286\n2505738218\n5\n8713305768587\n24724\n828150\n708622\n87313003033157\n1730576301225\n8778654165837506\n1\n6510572165\n148150\n475184\n1314471616371046\n252432340384246\n378088865225752\n85\n17341525337\n3131\n76150236650167\n8027641711\n6\n1\n223\n6438831\n25070184422\n20673754258154\n3770\n552872411454161\n74\n178143547\n154133161035851\n5207157437164\n8321263\n24572108267\n28584\n62418\n2142546365431\n60\n1323063387\n74868\n726650076065702\n325705245212\n168875280363\n1067626037\n573067865\n86\n141535\n7551\n2582866564308\n2688081841525\n71044214711\n568\n6574641544\n8710602480\n22624416\n11\n488763\n7130\n3068057024765142\n806878\n228317\n1612214\n20\n50034088\n34560517\n456050827\n842767232556525\n266054782387710\n3804841483\n43344535545\n3\n54\n478101\n46841855673173\n5332483274670364\n8280240421770102\n47814451\n66801715\n4\n158602\n52677838\n364\n511784\n8413577640176\n36521706\n46576582606770\n3\n13847308430807\n1600120231\n54\n8567\n713056315\n7\n838177673548\n660142\n1863078760606\n71733180478\n821526377128\n346255006728\n30\n6271244778778152\n823313047023\n175217688534\n502414\n6\n1567\n7483340\n2\n644\n432403\n641885\n360\n7412057264727407\n64377141\n7442714444\n76571\n47668561275203\n3210553854712\n5473828\n70\n87521122527041\n6776101173777846\n8286407\n82420061635\n7242815\n112575\n5507305304460\n65\n35261\n3414455\n55377\n876025\n1\n503\n844\n65562360712\n427213874\n13821132\n856\n3471803\n42472\n8110304784263644\n182126254284483\n36835828\n2774765\n6622335\n660064218040381\n445\n3361326\n260056140610\n784160154304508\n36346550086466\n56205256434828\n551481477\n478\n350716\n586310323\n515040625354\n7215312121474\n4225\n211432\n70764\n318614385238\n7515642363175\n723\n80042231\n4635\n1203001332\n47\n43\n37\n7876\n7\n4560781113064513\n418134083725361\n741\n4408721543182\n8\n8635\n1520314265\n62834464811474\n834000\n8583811516622\n81478\n333\n64\n4424581075520360\n608214834548517\n60534242\n36544\n83380366671\n7168546400364\n5561135517\n30171\n728771014413517\n563255568846363\n54247487\n33131488518\n57724870546884\n1547186563283\n1708415722684\n8527373\n4344007\n3643857\n182788081114430\n8125540174\n102217157483\n333563728020082\n63702633282723\n1\n80271371725\n175865\n37633423385468\n71\n465\n2734724187\n28035287\n376753\n2022\n835610046147\n51725\n5333122513868653\n621143448456\n66002473\n75563428\n8677\n65437364200543\n866183\n2\n7\n25825\n410228474167\n512317046550\n5346403162\n868613150\n568602754\n110\n1830526612206\n35581853355\n6375641753467\n4\n74620414177601\n56742864355\n27316280\n3537\n7244\n210852526427225\n322351011142617\n836653748604\n5014577734216\n678417438\n4478720320072\n0\n21073177\n7222271\n1576786\n75\n3187832863068146\n1584\n168407418\n26158214\n255400471542057\n838581701\n2\n580777\n28545072\n27114364\n786225656071\n218087578\n7340550210660436\n878687200243\n5277268053\n6668644834372182\n407523\n8020751414\n31827637084813\n83477246235\n731245280621\n7287465553168\n638313653\n43101524638683\n763657\n226847585448\n885468262100\n61545\n5\n8287473\n716372756520\n41162\n403640327388\n53586873152786\n868673\n5286658073052\n771\n244751821\n545512\n13314\n3504761130744781\n780720166\n5280\n5034788316634072\n671208152\n45\n81474438500\n72488067\n22884\n3646\n707561778822\n8021503\n6616676202803\n35878257\n64656118380\n44626610\n88287078\n5611777824\n16812147122\n1723\n1106210604086871\n3\n547\n4100\n8670837387878\n584483\n763285\n3132083864\n863\n88\n86524\n52210321310731\n834244538007124\n14304285411084\n52733160\n567774444\n8\n58122810654\n38718067630204\n25\n3481272253870335\n33271434534864\n36441515\n8867446160408\n47825522138504\n384222032188560\n13046562674\n54008\n4842526514\n4073612528\n4802633080724770\n6132710108062\n841878617\n18233081585\n48050116025457\n2\n32211362\n1870155864\n5\n260847\n75\n8476\n244252000763\n3271\n75510827685658\n52\n1504040352851\n1117\n234614188217\n70065581400\n47470257111\n4608647467505820\n412630354504\n3384012\n754835\n77263203305727\n3864540452576324\n4\n62441773\n3701005\n81\n8887302\n82223\n8\n228080531851\n50748660281830\n214257115016568\n2808\n163\n45171070311811\n443306237516543\n6\n2012270\n7634874\n2\n312521255\n71\n175664260470084\n20313568402\n633356662\n5485361381208\n3\n53873782567\n686562\n3\n36701110746347\n28\n210082364741214\n4070310\n70072256351\n5\n541005\n85423077638\n167151415007\n322775\n5\n561054\n166\n138\n188370814846660\n6260520221782613\n4274836818\n58001403260\n133\n6766\n7\n7363\n86537142218\n5275124\n581662\n222\n3\n5562\n17821307157\n8731284351856\n0\n21847833272527\n2\n50458434\n10746086085\n632085585\n48427141542641\n175363743330\n37746123761\n434023158166011\n6352353\n8401\n64655673\n7763447\n11483021\n6232515\n212848138642023\n5682128843674\n5324675\n473006\n2808812336606756\n361678688\n4\n2041133\n10\n6243581\n8665183661\n361710183477807\n46552221020660\n8517785\n284483040\n45217273477755\n4503403678\n45560655681166\n51071005216084\n3758\n8735347273101\n242252\n5200144878078\n4841307701824\n6820574183\n464865016\n433264824486267\n534071312\n53802073\n24724140403\n62816581204\n45601\n70863720301\n622176333864361\n47181410\n62657323833\n57374512830\n34668625765\n27860\n480177\n6477\n551721113\n4215320105\n2486056644310\n51720023400481\n65784073\n6371238\n140503571121\n62341003350\n7826331227\n52334151388252\n22563827684057\n110\n4838068\n204435480\n51333756436305\n347\n4275886\n35771658736240\n273637171513317\n404413812237320\n763\n7842160851\n6381\n215108\n7555531\n60\n33\n7\n0\n67556501701\n65550234108\n874055424262\n3418117431083\n188868020\n75212\n7447763444\n71846120711333\n365686\n87107624\n605585450865\n3140875\n80737401167\n67322\n7203172\n33878\n4\n81\n47033673210\n6574617418\n46\n750\n17451458761\n45330838\n41121863353\n676688\n708263241\n877426\n866605185\n76\n852070765450536\n46853447\n2418748728113\n723\n347\n83224282472120\n4756877350250840\n8312\n36226535\n36684\n3857475108834\n364504\n35640576\n286442863821\n582766732851651\n2505728188\n7\n200228508\n18248\n3650071706\n42\n7017352170\n417422645422\n3570162\n8\n42434731213000\n541685075150\n68238122\n377112\n216302\n2328\n52066\n4720604\n4676510\n2558676457837163\n850008\n18622886\n32526148588475\n56630\n828703883\n5064677\n5564254\n1218736110286146\n104868776\n754123\n7132\n3178285283\n22288614\n31145222234\n5623783318\n524\n2347\n81336450865\n66083\n4167068\n2076447453\n386224050\n676\n777781\n3334815108532538\n88370044\n40772\n587782\n7458212553016\n8\n835572765533\n52\n36342300\n52\n3028038783\n4080262065\n5737\n111147466423\n1472445111710060\n7132\n58160\n4622462248531031\n178058330\n681322\n7\n4570332844205165\n7\n45\n65635\n34\n71335284\n464\n37555632661\n644\n7382237016\n4537082\n28163\n818161144023\n7361737\n5731\n64200\n8\n163753\n70284252382041\n8\n55635254\n1134308\n543630\n71726157\n412\n673474816477\n4880751867\n1680\n463808453\n1041768\n5\n416735822617367\n817842\n185330\n8046\n7272\n2042\n387286456150\n108\n1684268\n2006\n46532588\n45402561050\n4763058\n42214\n3387513667\n471421333480806\n1460286\n82888\n1265641647835\n1635\n5348235043522\n262116563416\n78272715446083\n7351176\n7\n21\n270117135810522\n7213232028113373\n70440\n26666114773\n41240887\n8127030478063767\n64213406\n8147502750455\n2476\n278471214\n2400078213\n32627574\n7\n5250072\n48143368808244\n8000111066183\n46406\n8\n32207113510421\n28734\n6785877616314062\n3144\n648528005728464\n7164356745211453\n56102146686482\n2363067532\n3756\n1326612\n4265846487435\n68882676276\n577648718\n4682127\n0\n3106572\n5266251833831\n6141\n338426\n3205\n887\n413451355\n4870516508607\n60583452023\n72\n1140758\n52500\n3355078200\n836023703\n7448578113\n3883045744105\n26225356153518\n211344375\n260284153531227\n182636031518\n47\n24426408606\n714657520568\n87\n6228301382106\n627704114\n856067057130705\n6545308\n6212681605564\n660050263046\n62523702184\n57526641644\n2\n81484572101124\n2258504086\n56821\n666506148\n4811558\n278\n1\n471732243\n82605080763\n48486605580124\n18488\n770115\n5208225324085\n857652474668\n752462\n7612787184\n327234533548720\n27456533170\n4\n242\n6338118277\n306428817785122\n7147\n208780220105\n78045638\n465166754768046\n8816\n2\n47378025727523\n288408\n752704344113737\n8035530\n8\n61658\n30\n342204658147\n12\n3535717057150\n7\n266248674518\n35381118553264\n7516458152827\n738\n6368\n184308633820428\n255\n47281837\n1537345\n344\n12\n460464\n7774480\n752056833027\n7\n7528148\n61583801613\n442202172\n3124625242\n148\n8378168300046202\n1461678\n56\n88\n8162078302051\n721\n456563757245874\n811611210\n3046054586168\n10170570665\n3078\n41816117\n574075343781\n311043668146470\n1037\n80\n2617283\n403462\n3817853367460\n5\n22424140421002\n5345680\n538710455768\n71\n34080645808\n142630152715037\n1186830647\n41325\n3053471\n638432588\n453077682581\n22\n7611740\n34435\n101041340167\n73641251117825\n1630208\n320\n740552\n770806581\n731243\n87\n33021\n6438647323\n700\n5\n61370121712\n1884337\n262667318814401\n24\n1751654163016502\n3\n5804363732033\n656781182\n7800\n6056\n4772737868\n845264380\n81851000402\n7284255132501\n403485863376\n5735047665\n62081\n87\n5401844267225\n30844651\n30352\n3\n200\n5845101817\n532183683201046\n35020\n8540383\n228431500365\n81772\n56103435313885\n46082841\n8313560163226718\n7\n741\n5223575041737\n7383214305834161\n442055\n523417182285546\n635240\n4678755816\n126105742\n687608303841\n708518586\n3824411375846\n8\n208\n87716330781070\n2303471667\n2218807671\n3050576\n253644743\n726358405682548\n15135\n84221\n3\n352\n41634671518768\n1131006\n6565180106\n241304624022486\n5654661433888\n3041621404753\n5247035444710348\n533457\n136\n75668766\n14201400216441\n768104\n4613028255222772\n100215322\n42013\n4527052462166\n170213652770\n2102713027\n36\n82767\n481560\n41770272186\n71\n116111\n37374\n71654\n8467322688447\n744741348875628\n38680\n1465060\n1257377\n258566\n447162\n3548170\n405151562702\n75653\n57210766134\n3614373455267\n74160853485\n620333462108114\n8542\n1660646584122\n1741081664\n18663\n64567021844670\n4577\n88066828113\n526564\n8425786682166\n428\n3\n34652138702533\n568863\n70281356878\n777464347630784\n572\n56153884716766\n1124711742401442\n273277845725\n13646564\n226247478\n223242528068263\n160884001211383\n5143355500\n573445663064717\n2461804437013\n4071621460720467\n885643376\n46553445\n68570\n788078434807\n1370\n712712\n550207\n446\n15358246\n218\n23064508\n145388730616046\n40841\n1212\n42464422517\n125\n5307171022564781\n2168513746710850\n132452702847851\n335601343\n28851772\n41346015312\n612210827220\n78\n305557038153\n330000\n0\n84354847\n2015624340140678\n8784\n8858633173146\n1158056765\n342113221\n468602\n118\n725228567356648\n6570630538546700\n58834\n67361512264\n834105\n1\n8780\n46255843602070\n2116\n32058666681066\n6213304712858\n21126467\n331410110174\n2048833256344\n4676018\n468110\n474781\n6182\n4253733\n18620475523\n16247477377\n871888435\n1\n532\n6641124810434418\n5\n4467508214720\n21820454\n401710\n3\n2817\n2172881518801613\n4\n5\n484\n75\n2855710\n57721436245742\n253665765162278\n4830\n42480816556\n45\n4773831\n108772270\n231665401724578\n7345020781\n2468456114487\n71214274526476\n617\n3834686558078\n50582586\n1832\n263\n31114\n736834645\n2\n42558\n75302003143\n87702725454740\n868023\n2\n6672\n3454276\n362260807\n11\n1426075284812476\n346\n5751243056080\n7228270117\n22255551547\n762\n5712\n677450227171830\n33327220400\n33807\n55\n278\n7217785075\n464505270\n465080\n3686884321207\n5822348\n63581140\n5847\n454\n71\n412\n201\n8136616348603\n101183110\n64708\n7252\n8321171\n220817524\n28\n2303\n80808843828\n33476612433726\n1\n72\n306574802117284\n3\n5816\n772844\n358817\n5711632283013\n2063265314426558\n762154653086\n63668572373857\n6575132\n832101881\n82448\n407032181628\n376182082184337\n42734087330\n280114147\n48408665255141\n858414371\n54146\n74060877607027\n416368\n81322\n36\n714157621\n38\n63617876072851\n142\n744031\n21704406\n6358558274444432\n27515667\n655302861570442\n403\n284\n313076535811205\n66\n51\n4770\n7\n21\n462404454\n7038788536\n163781366206\n2351328304\n56813180637\n615785543\n5256\n262020302224812\n42131\n23784288\n2423524580220146\n441\n5318063\n0\n208360860\n33272551\n3878858125143706\n262826\n588617784451\n111701216360\n35526145040811\n5317754158\n635066621804760\n7\n70702414\n56636042278\n55\n15118335\n5526\n305440065285\n1766705\n2431114\n78075243711\n84177\n87760\n3\n705303244104575\n434753743112385\n51338212785\n6\n454810534\n483164358215\n86810260037014\n1\n228\n3300\n100470064851\n62356\n724665403\n21680\n777\n51643\n644576\n74378\n7\n2560035733058\n7\n1255280618244855\n4277051\n82\n660535840153\n3713684\n50\n43\n2345424448\n464\n573461442\n5808375\n48013670\n410383514523\n71335153734\n3816348888367002\n7483536820217\n6512\n658\n4175383380745553\n76574100048\n10601140\n44886684\n8383775587160\n22720581\n10082447834761\n321741624235033\n262\n80742455\n4728280313261151\n3718211340\n16411\n728813523\n670275\n7774\n820777802\n766711532526\n70273377168356\n44757274127553\n4868576\n74273\n65131074\n2123\n717273248625206\n5378\n8473517434\n104000\n8281\n3581\n8607502\n80186\n5648760\n75824707188\n62\n87155010734468\n426753887\n62\n2114033\n17124383\n33415\n1683\n7268213\n5578680286\n538\n12755645813\n67747632\n818544182202206\n276\n2358455384178\n6132547\n4528084\n85848662270064\n23\n77208438\n1237511435\n40057510740\n6073787347674\n13077\n2660\n3\n133422170\n67463\n44411186\n50578450187076\n75628106\n0\n65343750377417\n3220407540004\n8063721533532764\n7638414\n2006741747\n46834\n7828401147322\n5747\n376\n2316168630\n3507060\n5258712\n2\n321305\n88883815233\n815707451111\n27555555085561\n83517401886140\n584\n258631611075887\n303875646\n8564530826201\n8\n6\n4267511\n713561383504145\n60\n4\n0\n2667\n57\n7574376336431783\n856\n164622\n53627071587607\n75027\n283\n5742633\n3271\n46024653\n5\n36337641466208\n0\n86757275674604\n56513377\n3856304\n62067\n1755447766173664\n7677014887526581\n5241\n1403\n23017878434\n42403386840\n885\n72012606003\n1348377855\n716352546824360\n4005651888618\n65546357\n4756472116338665\n80\n1006725\n6061183564804\n64161052606185\n7033045683744178\n4482860\n64018767078124\n7356\n8046\n38657055305065\n1167\n7036200427\n35\n8136742244305536\n1553787282624644\n477766778\n71301407\n706056\n434708588604\n4553\n57\n471104\n6573118650386081\n46415422424\n1087585511\n528715504180\n701\n603328225\n6555481868057\n521184528752\n81\n502\n2853\n14711850\n653278154715778\n883\n1002\n304\n32\n25\n57133803788465\n4\n46176541781\n5231524\n236\n505084\n864\n6323644630514367\n24372472307\n8780\n8636\n4560473355783418\n104801264877\n6161\n6086854805\n273263008245\n7316772\n474081122843664\n4\n52634481873\n86\n18367\n2507068653601\n7\n85\n6242050\n7200664315873\n4012235653\n3\n86526232005642\n73885056204438\n165368\n81\n34453776437\n7\n744\n7\n48344\n8082144467355034\n4500214\n114\n14516221708\n360\n77531\n34825511\n17\n27473103847\n5\n30821202087\n30038072111\n552887\n68520\n654827087724521\n423633550475017\n4142\n720563\n31375842300\n317877443276\n177472102244\n1605541237\n56585405733570\n337727\n732\n266\n87\n74\n56248606561\n83545\n551514864\n1283344618\n427\n82463\n63360\n72\n1\n6801171463421405\n664131726072\n47251843334\n8778183651\n6766514350133828\n7\n2720632237077\n31745\n428042267407\n163014073\n0\n37806162\n47252\n50\n4\n1\n1606727866\n584\n46515805\n4188883\n64146373\n43656\n1014\n275\n40435866\n47828014761803\n530\n56007020542\n2057276147815820\n5818\n17214700\n85627735\n16\n7172264521\n744\n16368662526474\n886662568776737\n73\n127881268721466\n3527424275350145\n2124476\n618480425654\n86822\n545545310\n4743008\n7312358\n37\n83268\n84344824130438\n518153024271\n3064\n5261272236616\n75864128158031\n88507717407\n275833643147\n7741063083811\n5007128413411\n17\n52442655808057\n41764064\n352063486380\n88840\n2301153\n33550085\n456070311235260\n77768766561\n25283243553\n4033187311446\n1247\n547\n24027762715\n2172245\n80324\n224172156748\n763561\n3\n666037\n633311605137371\n6326445466122\n2605\n388\n8304574825\n721445\n210821823045\n341314\n5627278\n51051\n5607045142160\n888131758640438\n880\n2767161606853\n5001\n5484072286\n380418\n721\n1\n307137\n6183658\n723053340215\n34\n5756352581\n1744\n5683246\n41417737\n1433677\n22608383708\n225472\n661450403667\n10162\n502163742783514\n687415102770\n72670034\n7015048835327\n7\n16705056627\n8250043220\n4540\n302\n1587460\n25\n87633008\n8\n6665055686\n511531754246383\n504376277\n41\n6371247576818366\n56430374718\n6246105000855652\n21830686\n50\n284752631\n3661575\n1656353545746\n3\n7576045487076882\n65\n305\n256\n682821708171\n32738101206\n71753\n6422384\n3746837560218\n56678\n4\n42286288676017\n732211110\n3574016871\n1620883\n270422862770282\n584367385446\n6336\n55042\n24\n22\n104006505575\n103036\n4822222\n8368865\n374421157436\n6\n7074622516\n8472703011\n720184\n30278\n7243167686\n75701\n7248384641\n3156688888001376\n664258\n73000620\n2204\n602208362\n773428\n80076001\n45055443386\n476517688183\n613276331276\n785204\n24883536\n674342463\n2800534625473\n4301480264424537\n1201615417\n6032270263010136\n264\n825778701252\n751242767347233\n8888677875844\n136614766466625\n63325\n71070355\n30684557\n61536345\n2\n666852555657268\n3273263835725\n25\n8535623523147\n273754815642312\n283\n3310036731885\n872630165\n4533832833634\n73065128163\n228311\n46721831233501\n82024230248785\n5808\n1203241721\n6386016522\n8522\n746685116725854\n3583844387\n2571012467873\n3414464371\n3306868168181\n452857810\n452622\n841528515004\n1643633563\n8372637506622\n137471382\n5301812\n78564035760481\n364336\n3505232746108\n621837507731406\n1115\n7554421801\n367\n4427671605333880\n324106172\n61630878238217\n4\n783573518\n77\n753302170\n4662582536\n31\n48458645254638\n2153721527\n2852276848\n382\n8667\n78\n1788\n7716428213\n662248643237643\n60808330452\n3777\n56275264758063\n17343313850\n708665327764\n2677530510\n5120138\n155164\n88653446273203\n718\n17830\n6338842131\n778\n1257610761630115\n6237680\n581617570247707\n54727564482\n5\n485250122502\n85226665\n6006\n244647715276684\n68\n546240437013\n23\n6210780311455\n782547704881\n81822118733526\n5485556540\n82755245811262\n8503883866\n74018002\n16274771748543\n70711\n6\n2872118\n124134113613166\n6236514114777\n30588474\n4764\n2162665\n640707\n30\n262087112\n482\n7603508866\n7340017364\n2\n800541\n663455502\n5455\n2450527\n170\n3433\n561368851338051\n68850\n82302824572\n73235131\n2\n2\n3044013707077\n77\n108662521607580\n833883\n206\n8435712688405261\n5516113\n33675216833051\n1441\n1\n8064167\n84613178875708\n24041534\n3745745\n5426134414\n11766153576\n65\n413575134405835\n861152604070\n370104\n70673555\n0\n1342336\n881173131614056\n7318\n2471736628100\n334231888336308\n384125887063\n3140355274\n520381173625053\n538\n83758036\n852070\n2335\n857005020414778\n23818671\n7710843432015\n503487187082\n5625241012\n5\n263\n444743\n46048510153125\n1524821713\n2\n33\n6680468548614\n14226407888450\n154066\n7042842673\n4325863\n4834845202155\n4\n1047368828073\n78657176430\n7\n232\n78280564544257\n5770365562784\n244785144374\n637718\n781\n7472\n4058558554474\n83642754763170\n1538846\n4825\n3\n73184570\n4\n67626662\n3057411140571\n20334235853028\n81882\n882167206313046\n763002144852462\n46186513143774\n56\n83241883531705\n41518\n52356257240\n46657808834\n6122011\n2218754848\n76185686\n275803248211\n62282300852\n7455327\n432174551882151\n738185540\n2681843624\n775632\n8154\n460555\n5880532\n7846276204\n8485565580251\n6\n6\n200667025\n464011\n6438767226556457\n622\n313456353\n6444343600157862\n7310807\n406132875\n5872701404826082\n2178\n1342441012376\n8044\n35\n4763671171336236\n4401530685051\n43045450005\n12\n72567823541\n876246562\n7337083\n12258\n7331677432518243\n5188\n88656585274\n7\n1\n15302\n58321521760\n374663824\n562750\n1122106355072612\n63610224\n708886773646\n650\n764266274\n267671615716\n37582174436\n515345075111\n62501\n452326808318\n371\n5885474863334\n41170111\n258508702042313\n854357431\n484537300\n130817735427432\n3347458680821\n4125\n16388831606\n768520644\n788667\n78\n4032067051\n74665630\n545820342185\n30\n1174472441402\n78\n55146230388780\n84761\n2631228674814\n8\n75038\n54\n62367448215\n3524545\n77561017\n8614\n715232576261257\n83761255\n6464\n371575034350\n640250778083\n27720811\n8\n3048250\n817525\n5835888214\n700430600035\n7335450355\n5647426565\n320772341337520\n2807878\n1310542325187307\n748764702\n7878773208137\n1485758\n485\n2725142\n216063\n154405\n87186668171\n88785127535\n67\n540715731017\n27480\n1\n524233673\n737\n4\n24165\n5816042653\n1760356183281821\n1375255404353\n3687551457712506\n143561307\n73303025217523\n3080\n6020218334441341\n1565677525768\n78867\n67752\n801743233161763\n2503041288883\n85575854338\n277\n5510022681\n4358632613\n8532765115153\n75568245176125\n872602505020\n4610841664\n8\n176621320880\n275880001450216\n4\n57657\n8268086306705\n12775034646621\n24433673060387\n64481\n227142\n367458\n137417\n34163326751621\n312528\n7634134604855417\n526\n22710\n338\n3158531\n4525585\n481\n580664\n7644\n31455604788387\n485344084\n416563\n604507\n45\n244\n568637\n54088507\n710047665423\n28887388817478\n454544054\n385736078\n80381414\n34342621\n615114378417\n40688\n7\n152161141102045\n6434105225638638\n3505766\n864518\n55732502\n252545242\n82680027057170\n760771570047\n511680116\n4512133\n60761436147362\n31868531503605\n7205530823352\n2788382720482\n6560480844407\n106226123\n3565757\n2717762048\n56648\n73244\n17801625\n33514633\n5113028165\n7\n43357\n3587350551\n52\n186\n60126\n175732241161448\n1124\n6\n28\n2101730\n62\n568326851\n8\n186452440\n7148275746184878\n72404\n5\n57167442\n6462822180080718\n3816884\n865315845812515\n5361417\n53\n1041366883655182\n807086204253154\n4\n574623670714\n52170408210017\n22\n26328664185164\n5035846860711\n123821801435\n6178502008027422\n13\n5116\n473\n16833605505\n256758228542871\n146\n4733141103682\n61574424308730\n463832877057\n84128736\n2\n85150264\n43013516\n75225638072\n30\n2751448214576367\n14\n615462\n53427\n37145374\n1707451\n775\n57078\n60454\n72766180862\n460814871\n80042708537\n26707520824\n86071354158036\n1817507\n8547761853023\n4335543007448\n65055770106886\n6\n886243253488\n40335703085460\n45213\n333\n8057010\n21830061\n1541681\n15\n0\n543\n756746\n1\n2276213\n1\n8307\n8478734014046\n174250\n803835\n2221123473776\n6\n5\n8535\n1\n4108483063742\n6347377\n34605403038471\n5861265871\n76065150\n34\n4024760\n6674\n1160285\n86270846\n27\n638327555185\n368008\n45315645806\n8186177717313\n2417521546777034\n640436\n418\n524100080\n408276571515\n5663108415\n3568331354515530\n12234414612774\n5320535055606241\n8657872032\n821221440132861\n8310178\n708105337413\n6012414481706817\n37562686827865\n587\n85\n754507507523\n2608081230363110\n8158885354458\n148847\n5\n75\n2667207\n4\n638\n176501861\n21650865515\n7410615\n40\n322724742\n768185332378\n7\n545062574876\n21\n7861661344072072\n3311251\n342336\n3554417513540685\n141846162\n7651504\n6204\n816753\n717601687\n3633357854374\n8774848447236\n2485\n0\n5581\n78060563\n10748\n2735123066337\n4055460654701\n1854066\n6244883208345\n33106735848\n267\n423217341516270\n55164007428105\n80661\n86\n25747230167448\n22275085508037\n3826714026658017\n861543108\n2556545115866\n1613608410\n1610431822\n226\n5644\n77032\n434\n471712836\n458744482361\n675807103\n77303844\n27212858487\n402\n435787021407\n1002342184084547\n3036051656\n46450\n277851171\n66147\n64003\n4028465\n47823\n8826307\n51714231676\n754\n8687234671162\n638\n52415\n8308204878\n11\n58485047\n3\n4810203\n2634207672715\n7\n385804152\n82515263216\n675871\n123086\n342053887777247\n6641662836\n3253852332753\n5848218680601\n6375441320878162\n70\n2022\n4051142577052\n53578\n63572001012\n824478862\n833485183876\n2\n632840770702712\n761777386\n53\n1463876\n636866574581\n14872105621015\n50156731244\n334501325116546\n524348\n52023426\n77208266567511\n285\n7328788614316\n8\n8446422538\n71401455\n4447564688\n2085145\n4588\n8172\n44\n572137\n3357467665\n466280\n1\n57708650\n3461025718\n101056838458720\n54505267227232\n206384001768\n80452226180366\n4\n683\n46840023\n363782362\n45085375608\n631316517603361\n2655234511656\n31445246448\n7201573570\n0\n52256288\n750378041647\n82004110\n25766005365\n3730576\n67742\n1201\n846323563641601\n76010\n13414700830316\n25282\n44003565052416\n240663210762736\n386614535754616\n415781115140\n331046\n133332\n6888\n255163\n75213234125565\n70305500\n2075501\n2148325534101\n28028186\n3130168016\n281632464108\n7862375421\n4362336618722713\n7244183041\n812674340544843\n583\n63800\n7737801\n127324034\n1\n546638\n33746048546733\n3287870460\n418026406314770\n864\n3230\n510662718643115\n1346530\n845637777\n456\n805\n55851261052\n3788237\n70513310\n5\n111781101\n205821\n712742163104863\n624523111160303\n23\n21375066858\n45\n3\n4780407688663775\n70467244\n541654577564\n7218256\n143777273777102\n738700148\n504418848684\n87461857561\n6618\n63443555\n204512082\n4\n27\n575831483875310\n4118\n57644870042844\n82424326\n60053\n38848\n4\n3863783885775\n56672566\n54118480\n2086437203\n413785\n3367\n242570545066\n0\n57547024\n1725226143357\n8214553551\n373066515\n88060518\n5043556\n8826\n214\n6677044\n43732344081\n51\n5282534251\n2680\n40811125\n4275532066\n5\n6855206\n385058\n56\n56246608781321\n15024301763\n8584602828487525\n5\n228571833465\n5433635150536\n83230511\n4542205407557\n21116\n51661710842\n801062\n5\n476220463532\n403\n21703836602212\n55786\n761611128540068\n0\n40603582\n56015354203507\n8785522711376\n172\n2040624\n641515767\n57\n10376315641\n603\n5513102\n1651060774\n8080622134\n8208167564\n80157832281\n138104063856\n15282267\n68\n647812446036\n65823180826\n24627266172252\n6\n710\n56312073132\n70425888472\n2\n5007440873700\n8813823\n84164\n1413573878372650\n15775875166470\n7278\n586702644108868\n48185882844\n1716344253\n5\n73\n5010513844044\n7534771673627\n868\n16545131158\n2266\n87\n6\n862\n18386052170\n7053733246442284\n4\n2618532336\n1543764812875331\n6\n6222643864861\n13683136158168\n82668685\n1626144\n486061864836\n2110557\n2\n25\n544\n6303\n655231605044586\n6805631043055\n521801\n4506876\n311413701137565\n3680727407\n4468136543\n66\n66884\n607\n423416\n7073358031207\n6731136\n878\n3673383\n402384658225415\n436462222\n7448650544587\n28037441\n135\n8055711331870888\n3\n6120337258\n105176152840802\n257461326\n532460036027785\n4883622431431\n285445612141\n474480\n41\n6226250\n651134\n168538\n85\n360418162076814\n38340250840\n75046203540675\n726842177761125\n1175711633643\n775454886511772\n1633767640\n38\n13446564\n327561431\n4\n676\n2521324273\n51144576458\n6204\n7872\n8024\n4231661058\n582837\n7185063621131\n800585342584383\n2034\n57431121451\n4041750352153\n2127\n6274086206758\n36680\n6\n48525240\n26\n45885\n25011380802\n58328518442\n27\n85714884\n8704418\n157316211423820\n632033\n3035048312\n836728737660\n6312383\n522351535816\n416328463\n2\n88601067\n6211787501372\n778103445\n1107\n702555756\n12\n522\n234602324473\n7558201814\n85675276234186\n10457\n775\n836625105316\n58538\n166\n820461771815857\n8778\n7201728631865\n2638\n2\n808628823726\n17631224868\n5723375805832041\n5545086756255\n21247067613\n8157762808\n50142126720270\n760710757541604\n2102161434673\n443\n54431640516\n47478\n7871\n6612\n687422830\n16056182166\n18751015\n554065667081803\n707803421015378\n676420213\n7142\n246028345310\n87610500\n6315151471041\n618338\n8\n60370026883\n361\n816308772\n411\n61722700200\n82685061268\n8032207778\n582016047528264\n18217083031\n26120\n27\n41\n812148883\n73577682281143\n6267137831043316\n34801827857\n11287724\n8871\n882667501523\n61206422638\n7\n236213008\n7021823627823\n451\n71210236070243\n85\n5512817\n767530\n8038420486824306\n523577007753\n44064\n2521487311426851\n22180441133187\n8144088\n280\n85222561052240\n2035785572\n268186446711\n672085674661561\n6044338501\n818756464\n412221808\n131\n22058145\n3881\n628576065\n0\n500174321446432\n8\n120\n343437484818612\n8\n83\n578538872707444\n8252710437\n12867481\n30234\n42\n2374177450613\n3\n5135386028486\n8716258656501\n7762347456640745\n3686130836411\n4858251116015\n1355378576740\n38\n4647828228202448\n62862632\n787626517228155\n1551470156638615\n3061\n3060235623\n0\n58868743278841\n1876020405082243\n78107628273264\n50226027177516\n646263527810\n4423155\n57758586\n215134522\n480158878774\n876\n67\n6\n175\n35033300247217\n4808318721160875\n553862127\n4150616367252\n4434\n18104877746\n566352855\n77482042033\n184325\n8888844\n383075061567\n8137066502367\n301282668205470\n0\n464025\n26785360\n572\n73350770374076\n3783\n84876001271354\n60\n668267260237\n2776077682353\n68588760362\n251172151507\n2882102\n28780010578208\n32665440450\n8\n30346700\n4820268104\n246\n6143012718\n75222733\n8316562422\n1808\n678585822138\n85688415\n62174358203\n560775667166841\n75507538833752\n634587163535887\n4861\n106\n543762287031801\n8851506\n646147105\n2564658473007347\n7152175564\n661685\n4546270784387\n3263\n83583033827451\n257220447\n7465486\n3347036201308510\n65436882437150\n18788581\n784178647335621\n1416\n6322740\n60200172807043\n4226\n562755672\n44675240\n40623505630501\n2215681571107\n4450382333\n0\n3358373062\n20777017122643\n480670531812687\n70\n7362043\n6813\n61427\n68578\n4258260527533\n2680533\n140113804\n7\n614\n1608427877845363\n7\n826\n12528\n17\n72535761662547\n2278766285178225\n5\n77364558\n1303\n744280280883\n525027525545060\n16531661507\n3\n870825308331\n57572627762652\n74726526711367\n552\n7225\n33612130\n77\n264164722237\n804751608\n12876034\n73536\n53\n538067\n5633465\n4058370532037\n53\n0\n42783331738403\n72021575278\n267\n4514728\n86\n71508625435160\n8\n6676170606705\n5338288576\n4\n4383\n284868\n288\n7086514\n755822262171\n178273448787\n2608602\n66388\n516688564\n205012430760660\n7753773\n1460717046422328\n441137245712\n26572741852\n5307122660\n1114848\n188637688707436\n64268571500013\n4768171073\n4\n134758755\n55774508\n357547116060638\n726847024383\n4\n784537034001\n737747084\n282377886420735\n54250162664717\n0\n72884604\n82453621277\n338681406758\n636606177\n87048836583\n778811358\n3\n72\n82\n6278164188266\n5865783478137\n588140731\n7\n1\n25088452624\n1424371257\n37012805034857\n8304406504\n3702527217\n65027081512\n80774111747742\n300668252084260\n152\n41211076662\n672\n780472406627030\n768\n782062360124\n3\n778644\n27\n572828\n5124357753550\n4802005\n773034682456414\n3238256584188\n300178263364607\n26581475\n7\n8\n78120757574\n7577255817625353\n75542\n1434458336880\n278803261\n201\n75310362431264\n6\n638755531443\n65324457706\n577\n181413\n6435060742718875\n8370\n3348548625577\n80357474707\n687467513803\n5227005047218\n1\n42030135334577\n416\n7075\n51103155547\n84464114580423\n0\n28270543748841\n3752757820460\n2213517181075871\n3763\n857280567\n722\n6876742262204230\n7352388713\n12104665203756\n6365850485544\n617541\n40534767200\n16150672270770\n725\n7310354866147637\n58\n3\n14618688513\n71465757\n7855626415606717\n32156\n645500126042\n12406754086702\n1218077358\n7105245047268\n6571\n6703757833447\n1347557871673\n44\n28642\n1713008155\n32856576\n6017653485458385\n16100746350\n431368\n5663572\n178150\n5306034364815347\n313411455164\n8056510041\n727675\n7120363124130\n634352\n34\n564\n4515433\n84041\n52\n24416358\n5\n7736041732838423\n7033662713\n586\n45251431488\n508253042864\n82873\n61188125332541\n28271842474\n5082424103184480\n465846\n722324122137\n7\n78672161103435\n3057221065\n7867524408855\n235\n680706485437\n321\n2163560711\n41602674866828\n3237877160\n7565221033\n34616480387\n5\n425226\n132\n53405072180888\n243224740\n3\n736228461\n4571083375\n16432037752\n114251007\n48\n4453248814454275\n30854205072\n82247162082\n0\n24722\n71157387184400\n285783187\n37312\n843007822415740\n20046353\n8287\n113652758\n4842\n0\n866\n2278016\n62073725\n1727\n5\n8788457024081077\n7464752614616752\n78781806114\n6142668430\n2173374\n843447823432\n482\n257206082\n136213\n3243628\n541\n1523\n1256\n2728\n207077636\n851152\n30\n82504275034\n27756470812\n1428\n7022264084351\n657542\n26108518\n45864036784\n3128\n6533016\n403624344484434\n5628706234040116\n224\n677744133\n728032\n2328522533\n718463115\n313145732\n551503016381\n68684032\n204685157\n4264\n5042733\n7526\n38763586\n26580383\n787673815671\n5852225702703\n6325242\n8748862214\n432\n1\n2050\n1721715782\n6530122874312768\n257633385\n2541101457861352\n4071735168884815\n2537410710\n443864582451\n56800113236\n7\n61305\n18638\n687645\n60824288101\n576\n5521412\n3424672337254\n28\n78236263103711\n3067816584115771\n4478066\n750\n3030231087037\n138\n45340641616044\n62\n173508501\n3\n11208006610450\n135085402\n6017270342\n373586818034\n37647522017233\n683\n717166853053\n5410\n12706734\n2123\n6308703412863\n5656\n874\n47007622531\n506560360175240\n500256856\n11242515074260\n0\n8063\n5828018764\n232760266220163\n2034843883666\n56705868\n241172008\n30324\n5235\n38726504\n5203815552660\n24570378625633\n4062853\n64800721386\n40824851832\n14118\n222068563270\n3\n1\n8047\n6402082\n24670700173\n5\n4838\n21504\n37\n67276860547166\n647\n72442163368\n674\n67841630\n45346324006\n5181721060456\n37061\n83412177644\n85860115\n30447531570\n612487484\n44\n36\n6634032271\n50127808564278\n873010811680\n7\n67740473\n10\n546\n1\n11111250232485\n31376137\n8657471784807\n8852312423257\n874448827532\n3630\n41706218428066\n478734\n2704672837\n457248802\n37416536332\n4441860757\n57806724886\n5367854864\n37843730231\n7157258728\n22805\n615004\n112085706437\n526217\n1603315\n3882161361085344\n4113121687774524\n2361525885724561\n32132647158\n7416\n4571565542\n515270400343630\n463636151\n750855\n6343408743206114\n1\n4317860\n727570\n8650418\n85\n5335\n1488528\n36818824\n25760346615\n2564721612632\n22707406634101\n4073608884\n6558622361830\n614240\n67060501218051\n3783\n50813332550775\n2860263\n8823562671473\n628335546347\n8170341218\n30371318\n264\n5\n316883\n51\n8105\n17480375507004\n8846187374520033\n3518855512\n30\n56\n423\n415062\n5\n861654603250784\n72812081322\n835672782132453\n5\n64168836\n665886\n34361617885\n55846830\n313207154\n54763670704386\n4056622647748\n324\n75465362\n508218475085855\n2234\n7360422635256830\n4681268\n50273371578\n6437218888605507\n8543372007104607\n80543504811\n73058612307\n45726064344535\n2736531\n18107\n8542152407141\n634\n70\n3\n64068513\n827631443561653\n2420767484156047\n415283004664470\n53320764\n32326727\n8635472440\n44\n872410\n408\n75554702\n0\n66515\n544450851301\n27100631228\n75857\n6854502615766\n610482465348\n1823644248075\n44\n2\n34023545717363\n76\n1518055586451\n112886476362623\n43357334804\n6542118238\n3285370386440175\n6307\n8110883463054\n7102461073214\n816817\n102\n255023021273\n41506863\n43601738\n7402114\n210770304323\n53\n63\n5827628317837431\n8061304\n2261664877\n3308237553101356\n4487\n35424267\n822182568853134\n643108\n135567217730358\n84515382361368\n323340602371\n426534475721875\n32134714826701\n6828744863\n388782463823744\n7140088\n1020\n5663485\n34480\n30\n8045577\n8721073163856\n5534544\n7366315566054\n18765\n8\n35541727522245\n758651837\n40883\n860476827145281\n656684555\n81\n7351065064\n864733\n11860468626\n14010487766\n8667370871156341\n6008805585\n74821417274\n181\n7603310587106574\n3160860533205554\n85507225851\n27105543\n843573055847\n387742871\n47660228\n70\n352506212881023\n2201770422555765\n52\n446561\n1178438164165\n6\n16831\n86584061\n24\n400\n803442\n15\n5282170\n88134170\n322204887515\n12518547608\n43856\n2714655017648\n72383\n5558456607\n58213255126573\n5\n3286701\n6235786222823327\n28061\n834335267\n5710\n704\n4425165062716\n40401141\n32126186\n58756144\n86065348\n278382282222\n3\n0\n30250610440517\n4243354868\n50638545261\n770404038365\n8487712578\n86207\n4876668\n1688145254838431\n7043270584771533\n5744\n12731363748368\n8208666\n12587180\n4317037643371\n6243422726132\n56045\n156\n82083243765460\n63218\n4021\n48235687632573\n70243176\n637853188\n8\n7\n8223\n11714633144766\n72423685088\n4024524\n250174281120584\n401541371251380\n65100170\n7\n318188\n66801573483614\n4172176232010\n7283428515\n77420027536\n2713031\n56070\n6426855631868\n4\n40847\n6235754130\n41242085732412\n532862020376\n5542356773662324\n187827\n86745762\n28\n760547663\n2627433\n57540481211\n7046731\n505201\n265825262260\n7813211383635143\n1658864\n824578437768136\n7\n68613254\n5722725\n1348\n8738167432\n1\n11660146\n71854580\n7027867667\n350647716021\n88550440327\n4743\n85888\n22225601882\n28051335201352\n507638\n8123\n133\n3554478014\n1\n725183773833166\n620580\n46446764\n84364372\n3\n815708213707\n732324617712215\n78808200\n43722010\n767516646108014\n18\n56338\n75412174145\n4138\n465\n47563231285\n83666173513\n510533708\n2717828318037\n34372518\n1664381455\n77167032023642\n10840868\n284811705463445\n4317344300\n2738478554834\n717505133\n22\n35\n8383321781217085\n354220610483\n5114683528642\n5456755171\n4611\n8333553548540\n382127783244\n5618638875014032\n2\n180863863617\n160\n75\n6332\n381025602618736\n407\n7057244\n684114043\n815785883602331\n2451437\n4\n3\n3\n8461438574487\n3353478131\n483212408\n818478523857415\n17125162\n7886038318\n4644010087\n1\n140804343\n5406203345\n426654107028\n74008158050674\n220756716812724\n427\n547062188670086\n7\n7213\n480162\n4748\n18463220654\n530\n32010777682604\n1178\n70\n278\n7403836\n32847\n8\n0\n4753706510700177\n16225174\n745\n4621706\n83002058360760\n6145\n602763288614603\n374305\n2\n2074220027434386\n4341\n14633\n55103775660512\n6\n3285227562456504\n2461815607\n7\n22745211750531\n6\n422\n4853608666111\n4523434805474\n340325162432\n5126420613213\n665168182444533\n881657240465321\n635773625124847\n6548842860850\n7846618\n40483033680\n40\n4\n30717157500621\n5030410460\n44728071735573\n55717873007\n700174380\n5866828155\n3262\n3223671\n800510\n7786342005754\n304544544424\n304523\n6\n14020614\n362145257525\n25843\n78277547545\n14461\n3543\n57211\n561072481412180\n63153\n41685538787888\n7705176840\n4773408377\n227014058075\n802\n184387\n7\n46\n62230058784\n652585013081\n3651662228028\n30\n4\n76615038\n1653165447208\n814873654\n648802030060\n5378025050316586\n352888813\n655504216485\n832508804\n0\n52205872\n28745320070203\n36410612575436\n1478188675324363\n256225380624164\n45803577461778\n80067071770574\n8853\n6308380572255256\n5151570102\n20\n864788675472\n366636024\n8676386\n301\n456600\n76417455\n410621805875\n1142\n584805347507\n41883824302447\n433866661478\n844\n2072180\n814\n50\n14835\n6446743064875050\n42561502\n78017627746648\n73835255776\n25328685824\n48752\n34857725336320\n7822502205\n5220730613633273\n3\n674285\n65\n3576\n34602\n341\n402171240\n63565807730\n68\n44708105068\n7250\n5204265468\n7226\n5562\n8561781823\n3502816265803765\n20\n340027117506\n7754083531612317\n4730\n38161533328\n567084807\n47562730\n425315\n85781742482380\n248726231643\n70014206382\n4776\n7421777476136\n805232\n4771765\n848446\n203\n460188\n3622052714\n3\n383817286\n6671752226333048\n8858\n312377205\n48736330545\n110\n88888\n23164773\n310418\n647472702802327\n5105470862640008\n5672\n410064860260414\n8668407567\n18302\n53388\n22523361\n6801733306106450\n5264256532283781\n68741577368\n381306\n202430\n405211555\n25530378\n7800528343\n3525180705\n18011776543\n1051210\n12662653258\n721711\n353308435300470\n8584213678317640\n6036752561008000\n25602288426641\n322282\n2760\n18240573\n88561580685740\n678\n7041171570327\n2280382468264\n11\n35761\n6487675182034\n734435584220\n61744606530\n4\n607305836\n208367502\n5886\n408053411\n28\n3043532001673530\n4883450217\n22556885\n763\n3038744\n27\n67117243673\n2036518006\n18321883\n7330442556602853\n105123637576723\n161115405\n6\n272281245304\n3135785555254175\n18530531117813\n53387063\n411\n7754772\n56056351007\n83\n70464054727\n470\n3276\n6000854387357434\n7760312\n881701\n3788\n671070076407\n3514446450\n80173202035487\n4456\n386672654\n2406806146\n84007871\n6571\n74543206166478\n7014416\n561341\n2812\n55438882260\n76584727\n8813603064677715\n52838\n532476245422\n242473845\n37510888671624\n6\n640270647\n621763401472\n55244\n6\n4343765050521557\n4214422456\n5050164482800\n26183136726\n5530123381878\n545\n6713677\n35867503\n266\n53\n6\n3808418522086315\n444012811367252\n72441031882411\n35\n34\n8861267272716075\n658532868\n3603710368675\n4612\n7684683632455425\n1535\n51804758\n28\n311406\n2708\n38871547841\n2058020564726\n2668011740460\n582864702\n22\n405\n70328784423801\n27464438684\n518388451535277\n57485861260\n2516283544833554\n214501641551\n88\n6\n14862203\n516510751805\n26588\n6\n55556103253\n880\n5\n6712660617\n442\n786200463\n36867\n7072420735006206\n62764817620501\n6853340\n314457483184642\n354785\n8314145523\n4\n5764628\n88165218638\n48148283076268\n6\n4635268354654\n2850667\n4807861\n171502616808\n451023163521\n11273807\n33565315\n221875384012208\n256\n322\n2858267432\n60040338177334\n28567554383478\n8202166868554\n5250280\n8074\n83023157001\n8143261875\n44163621\n5367565\n484706088453\n5142\n18162\n7010163438415746\n870254515414\n1831658640\n7240027\n402353504105146\n33061843358358\n820623057635\n738868275127373\n7\n575600\n323402\n2132541014267\n863201440\n54764428\n660644\n5575241\n0\n3512148745703\n74\n2483112\n84150\n784663506110\n6582\n0\n368\n83\n26845378\n7455071773511\n10\n82650171187387\n2118533767\n67723482\n5015534\n33226055804104\n2703370442646\n1353\n1765\n1628245\n6052831740\n6\n81632060803423\n1847174718636004\n665845876\n3136154532312\n7413653\n7384280174465234\n331\n885\n6744514716226103\n730721381\n2120\n7\n627251005657778\n631220827546\n822801457524\n13054\n707328351502\n374\n3450143651410587\n86516\n5210232248\n1836747046\n703\n4782\n573867\n7278351485111808\n8220481834346\n363080618215\n4255\n46316\n60832422017\n303313600576\n6475088\n412025851\n3447266841372666\n1001\n5\n1\n78051017644\n50573\n7816\n48521401144662\n508\n556\n37366471\n6\n7861274\n6662516\n634\n73077057226\n8\n3617\n26342\n8728440650\n352\n84751\n2587218050245655\n58454\n641542\n1200754\n65\n4708861681377400\n788156710342228\n57683615\n56012512268\n656523437408368\n802313\n85308\n48663612\n4623700333684\n534351501857\n38866671\n6651088234747\n552576463024\n225\n61024012\n56\n2548688514817645\n48266\n203802833\n64\n8\n8213153\n53860876\n287507857\n86158060844\n83\n30321725648\n1\n85750255148264\n177\n638551882250\n45627\n1017876515271\n161787055005688\n5111\n60004236362\n33660\n2167\n883140048\n8035\n60557874\n3125\n70236867268\n544006611647\n655080\n28\n516115\n482214378601\n21513717317614\n128402751654685\n4\n66171106810\n32\n1384\n355355636808736\n478786\n853643057726118\n235751434\n241363827527311\n25418385\n777676\n264460472177\n207565202572622\n881873350\n165221022461\n856288\n65878053\n664325\n405\n5425660206414\n267056830286\n764840657\n777270728100\n104552271081\n45530258636\n1130133874\n15245038\n277833223\n3\n4861320321880\n5082245132\n868\n8742523660685\n24717517731\n622257531\n37412\n2081725166620051\n6737073733733\n803163305874\n303543445\n51138023\n481201277232736\n3708\n654622264201\n66\n24475088\n336\n1540432\n6276203610286\n72\n463833227\n788\n800188058\n32866\n4880680204751465\n418443008448\n7263863063700656\n80200032\n724521\n422\n83\n8584460564\n58615438\n888534357806856\n28481\n576285806025685\n73765385\n3575226454\n6437324360043\n58754273727\n455215840324174\n16206327753056\n4587073668076\n5743\n623386612\n1584228837\n7347500617847\n58801878211262\n54\n532677745160731\n56\n173\n253234\n7876657863\n5276402807677\n417248887478\n86\n67052\n8566511548464200\n6853866163740\n582525684\n6184182055\n154315\n8140544446\n343557\n6566324637225280\n717253425804008\n3571\n8047678\n120110\n5137\n577788221062\n48506246\n3\n80623127627\n3311820383\n2218531782\n8071450522174\n83306\n5241282065\n50673453\n6\n106580785452\n172202612\n57\n534344\n8458772\n617562616304\n426338\n300405421734\n34430520813\n45\n511742\n43436\n724\n787406623781608\n3468302\n22\n81658\n602548730487702\n723624800\n24034304287352\n528756\n41128643\n848716273\n15471355\n24054031\n7\n52\n42325885\n2\n1014538037880\n4612263\n4614685530\n871408343257\n237410218\n17342\n63018035052\n5001710251430\n62724015583117\n763347\n6476441187\n650587374001\n478\n42246360\n104867\n463087544406\n12746\n1541531076\n821\n67205238078\n1130300816\n14704523\n463310567503\n633162718823610\n166\n146362423\n81081511\n2318305722073\n838\n72744275\n10074163010\n5347083677545\n4245005142\n12678\n158062808\n5485530\n321383\n1180160125\n620633\n65050862351364\n87722\n275\n852\n283347553187\n8246627625\n883\n76\n23773107\n632752070175087\n44608\n74267\n7\n66124604318376\n6544270460202733\n1478856\n6062157444\n22\n87717852\n264321044481186\n20\n135708\n462022818050865\n8\n544063437\n30215\n151115607670355\n480130177723721\n1177048686608\n676254547\n735337353563682\n7462050558\n2702453432\n25\n280826327300\n3688631625\n3725636620184\n2765\n872302025760675\n6258040647\n4373805441583\n6738802368633137\n221146\n35674556\n246842\n45278584683878\n20418038724058\n66260103\n310\n86784886044\n6\n462635202844510\n40456\n148161271353\n6041651112600\n8216704244400125\n656803214\n42203560440\n62688\n803345616\n4233\n3\n33826622757\n0\n822203564367\n6632871\n854800820018\n112722375406220\n6740\n1240564247311236\n75006607\n463\n85514356\n2\n45506238\n8172264176077\n1\n65656806155\n2883623160307163\n5110\n7763087\n8446607002\n4\n73524664550\n883\n111602\n55854157518\n6014\n452\n64353\n862548658618248\n3236730\n5521116145783\n8370\n87080603\n256238\n15180407753523\n7126\n3103686663\n6486020\n3\n21\n66\n217251\n240457507\n3176748666687\n81731571836578\n43656\n702565\n6140748033286228\n760788\n3174\n2\n7057328\n4\n1128362232\n33383\n6071313\n715841581157\n4834683836320302\n6565655774333346\n3\n343012104532\n423636782\n1361313\n6680746486\n6733481705413\n860402\n6187371453287203\n7\n68077381\n623050\n72135258452557\n1562\n2018752736847135\n465074260674\n60047312461877\n4108\n111484007\n324360\n4411582521335163\n8844362033\n5431164110754\n3377\n344778337058\n345855562\n52737\n861654665361071\n8487\n705128\n18421347\n731617816336145\n714626474\n12472\n331062014708187\n5147\n68\n1\n50816743776\n7425285710257781\n8516452331726\n3716\n51\n80825160784382\n48618353\n211763856\n725614\n4780674657171473\n53240612031\n6014677\n47451\n5324\n8378\n764261724\n34244531547607\n8256187385\n1237\n7834583\n37055300136\n13\n8411520\n556078703087\n155444686345\n5538784251375325\n4311285542561415\n41075165\n4018486784180\n340\n3437610\n214566254041884\n42034\n27076\n48230533230038\n36450475670681\n62115248\n4531\n24438\n6068\n817120885830666\n40123\n2005765860\n2\n754\n524204173213\n7\n125253867\n4226388\n2836033\n5007671\n7751150\n8121542474320\n80333883457\n1385343668228\n3746762025\n818312182526\n604\n45835\n37355\n40274248\n0\n4304520\n3340466146\n188552\n818813623636\n154340375024\n6\n878\n46\n8741224634017356\n4482755316042804\n528421858\n378484826651880\n5807307068056100\n3288105170062813\n7\n52241311\n64868106140\n6286\n41554455\n611\n821\n707315084\n13785046550380\n63722421\n2\n2053550587821757\n252507\n2\n4808585888817781\n347668848058\n60264101753655\n0\n886638462\n66456752051\n815472525176728\n2626588065187\n106785083023475\n2868185371674280\n5475021\n2126418\n55\n68071656273\n86632075\n8\n876811\n8011407576451454\n716336511\n6372546378454705\n468821424616106\n81261361\n66024502\n420533866\n50382486357634\n276746846\n73326673\n81237861232702\n6645632420180602\n44\n617281217\n670382\n5083146\n85\n2426\n10\n3\n8246474324046\n746481264\n3\n1051367557345022\n256468622\n848465353106\n816377\n4251\n472105241202\n37010620486112\n4215\n6\n12\n25\n352078287\n3663618664\n0\n8\n87463070\n172465758157\n3368730337\n43262707631327\n707666707432037\n40173\n144770263532563\n182642357406883\n42478828144804\n45\n161208025445687\n3401782150434\n883110256548\n78548431523482\n7721\n68172671744\n15\n1\n277258351\n658831602854515\n2248063130847266\n5346874755\n406\n320\n6481306\n227850\n2777318582220\n503824025535\n3570565335\n368828\n75\n3487444350\n408513\n1123770\n1264150161068\n81173400776723\n12423780580\n70157862115563\n6\n3731444\n66\n226267675\n5827860\n371672\n658705055678477\n7730272126\n132266736\n607\n2308173008\n853381\n30\n1515462\n8654324234571756\n25071\n6\n836625820305\n674\n27087518\n4708787071241885\n616486205\n6220\n122118718\n33035045860\n6685\n4202585226\n3\n267610448708\n56\n3\n14712521\n6634820345624783\n70328\n5544\n68578642\n0\n781625461\n6\n242782875342444\n1663082\n53\n334014\n641263832457224\n820\n4873564\n5682182762\n50\n3534572315401730\n17486174676\n22224\n36725447\n46\n28175343262515\n46028\n280\n63\n5\n8050\n62\n2234751730447\n8601772208\n22\n8607308524834437\n8845334\n24131372\n8800665654\n1003537225081\n373753384344\n461681233\n67341143\n80721863206\n117820301\n384730\n611137817723\n74051835428\n3\n16808337770625\n13603015\n777472536\n813455468\n2\n8612606\n50413443358587\n334371\n3784085873445\n334121811465220\n2835055620033\n1278\n4322335304616\n8726466268104055\n832327426137667\n78430130\n8612\n771440386836\n54720227112351\n443348\n88085\n862\n111364\n77832566087578\n7\n73610142240412\n27384\n30337\n1\n2724\n2664058535347476\n58841652172\n85173786644230\n624\n13175643\n737338453568\n85136081\n2457785817\n220407002\n473362070403\n20\n4\n411128202320362\n6\n77086510133\n535453332354\n728625468700728\n7031802528512\n536875873767\n173451384626657\n2680441124157\n17\n7\n615\n61175\n42403506560720\n8704308\n80444114382\n351571236\n7852336\n470243\n42408\n823561518\n7077168208\n655701530815\n433201431887\n36888815\n41\n64381281445\n3327570\n6168416271\n746185745\n374335738233661\n435022388201561\n186151\n242\n76271733710\n825558850211\n8\n435\n3138408226133777\n5767276865\n0\n284022777\n7303234\n87125107386\n28658855368\n45701053310\n86727708335858\n544\n2\n560500334713\n5\n7872\n6342\n6133542042\n624042\n4113\n425042083281\n11125127852\n474887046437\n3041238305\n578210316426470\n71766\n155422741123\n58\n673\n0\n14253668360500\n35\n7423544178515701\n28483874786\n8115500232\n1060\n124332\n51338225078835\n1276465\n7707668078360122\n14\n4615687361660\n161701484\n10571046\n60054417\n1723\n7266120420401280\n37\n46\n1274\n8658026847014\n105358872845347\n2344667864262\n6275422875\n845\n554615688758\n25205787271\n7824842\n55501411\n7545027\n235627621713553\n326228\n351365880\n1322018730706584\n614844\n3785634\n51288\n3146137\n2880370485555\n8635586131\n3637\n13358876722608\n8683810243546177\n17\n7426113051\n543175860316814\n427250220\n453\n434680655\n4\n1223028\n633188275755\n0\n724\n1322267\n8647\n1282\n2575818674364580\n37382230\n2\n5\n1101\n74361647\n6262872540\n26500557\n1\n423714340\n72245\n741707888420866\n6725\n38460231778\n23744754372348\n0\n7738211606\n5\n0\n76737334135\n833028654367\n583\n583037130516\n7574361158\n65201\n7543412328073\n43603028\n7385275240331745\n2244768681402\n7285107616760\n18508\n4\n6162\n5853701502\n563258\n5\n47628\n4766201000281770\n27342825220104\n33322136842116\n51855\n25703016\n0\n8457145338417135\n48\n1143\n51434312\n7288085\n283663166802\n2227665\n6771631805472\n71100243\n314638\n67\n2827633\n613250600172332\n111302\n287717886\n110666088726636\n0\n3505848756\n385466653\n761277843027022\n26653381715665\n2452571241717302\n836\n8227778\n3146274207807708\n716144585\n8347\n72137066781816\n30441034587\n155\n168\n2268011687205\n772160\n7805673237\n1307661565743\n28540582\n15728\n1851\n67563821\n8\n4273\n8\n8252437204\n73234\n3185\n2265484511\n31\n61580\n48811270561521\n483030283\n2214123452677070\n78867130440\n6236517278474\n58511\n40448606\n4\n8\n37275\n807167825154201\n185580612367408\n514\n5621\n738603458758846\n577\n7366353784\n31614305868\n47\n78736188078\n260812287051137\n8683445\n10827511384536\n176561\n741614442858\n3518501\n616664630\n1528366175802\n52553\n141074660823\n1458161\n8312728358\n6\n57748060\n6\n73158\n513\n63\n506013\n1\n2131058\n83035762043\n276567042\n801\n68\n26207166103805\n52364188\n7252\n8640\n853376840438646\n531210376\n265582\n134028372\n3088830\n83712\n207022\n852365077\n7371\n31268\n225305134\n311\n271\n34627165\n788\n4276712528761\n757371\n36270303\n8387511613535483\n21526705163\n167610703086086\n53\n32033370327\n12137264816\n253040585752836\n432264765727525\n5182\n7052115406512\n73833464\n703347112334511\n53442421404641\n4112\n832\n2538334406810766\n375484820888\n88\n6022358042304\n8273880777147\n805152671\n8411\n844338000617\n58028\n61437058237\n57031\n686\n46452\n587488062142647\n5280068434\n1280461206883\n533\n4624\n60635662457172\n860252401503677\n88553483\n1303\n421243032476\n56381778\n1758765457585337\n656352371851548\n3\n70424213\n2512512143\n80733845571123\n10643144805802\n2576858\n427611007010437\n207474\n5010334854377517\n84565\n1138\n27\n672175738640017\n81008013\n3357402\n748071\n866841\n88226840\n6778475084\n24516\n55\n88537265860\n72\n375488382\n4125\n2254884842\n7548455\n6\n33304062\n1128801235667\n182131482\n66640478607\n3870\n81\n5473531007574521\n781225858\n3184\n6156807582463762\n6845256\n0\n3620425558\n442\n31\n7366\n725880312734505\n7825\n64483716756652\n2061831862533484\n58555\n306616824102772\n6\n47314674074\n4725674068602785\n856\n617\n1\n21112235117\n114041047\n646173167016\n8\n60\n1160\n7642\n168414264137078\n8\n73618730\n736\n315681836746030\n1608067348235\n214664323473313\n373836418\n3542\n44811\n3673455825310\n3462\n7\n87331100413\n768877231\n35667723310422\n4726\n26\n1853\n476\n14884330\n64826808455\n4227403\n215406\n26352234852\n4\n7203828005714522\n225737\n5263547\n657376\n1\n6048\n8001247663170\n5084\n2222\n77142375711\n64875867\n841736834\n318442674276\n4152440\n86076\n5355880314840643\n614718415301\n22883\n16588\n602\n46610\n72581813508\n77\n467310787122\n187\n4235157\n8\n7063721\n83152125806364\n3\n5\n15706450275123\n78165\n7406\n5\n46637\n264004247\n3327\n433400754\n44143582872622\n17137333014537\n1662804178660336\n7271571880\n3641442557\n44713872\n38033754020\n756064\n6785287887\n553432163817073\n757\n5384\n681\n6132473167\n2431467154113\n2708441016411\n2336376380\n307353084\n443601065\n7883384\n7\n66236535\n576\n6126050806200\n657350\n4088130036\n481616\n47201\n5275\n338857\n3317745624286\n6616734155461324\n86406728\n761778672\n7451302000\n807887313158060\n244012\n462775075\n856108748150645\n768\n2225624\n43170402741765\n35286856155\n770580\n4070641\n1\n865823348218078\n117\n6586122404263\n65561335606\n1846835802\n76824588063\n2626346100\n480380\n4\n58820756580\n7112\n755815673\n7067605684240860\n156860\n581841\n225351868558\n8813616731101\n71\n578557653\n2105146541800\n4652122766773\n4554010833637\n5220\n12\n432723404030880\n582580\n534264455\n41785\n372815001\n3061\n617127140550\n3681211\n66\n167\n764661548\n768181167231878\n480\n738360\n5430747515062616\n72022\n2\n820422467707\n71442581\n641060\n44330713688\n823\n324462257\n2777380870407\n38\n257618110301\n44571382\n2764841700821700\n1326705\n67625648237\n58746284378268\n85244\n543422882572870\n7330863720158\n33\n153147257512\n271673135\n65267062432\n77551781411\n83666\n360482006\n5627\n517\n42032244223748\n247020332708782\n57432\n3713\n7608306301072\n4540583\n5105814061\n60166862\n27363\n1341285\n20\n85888137\n75604\n4744\n544147168\n7050170287447\n8835\n721660465683467\n20410725071\n582016541422056\n86167157803736\n1564262\n66535041410731\n738208641811\n73671568855\n12345\n6160\n701485\n5404776601\n2887\n60054\n22885\n376\n56\n884322705406\n7651650\n6630077273\n428874047836\n78022552\n344663\n37326534688\n7150\n63203336537353\n822057343\n65172400028\n14351117086712\n3\n35051\n8546184\n1758166716585\n4\n402\n363331\n72655221\n158443025757303\n405\n247023836\n3173\n73175\n647155831\n28151756024\n8502241865541\n176822038537\n687387\n8138\n7711325748\n74\n57282532634840\n41086173370\n24\n43\n730524677244\n73\n3114306\n565556026727\n407882044671610\n6072857500673\n72848722\n70551463\n5702\n641466\n265868733\n685385685\n4163008078124516\n88160767735\n50102888\n2006\n2018\n8126442316\n376846421537\n3568688011563\n850721781662088\n158057721\n41411\n834358\n5123\n5423534\n78\n17203025825722\n4324020140218062\n3\n5542584330885\n882863261\n285121\n400206322367\n480353281456334\n40312667165786\n167023608\n18337876\n684\n35\n5083\n407041163683\n431343366125765\n71672301616660\n7\n3667754802228700\n66333508\n461385\n2308637\n7\n474613286612756\n173817581\n80416\n311847572801\n160\n804364130212261\n15\n817042\n8687\n4710\n5650826117472\n774305437\n475552435463\n777038342\n6251553041\n614015\n1721063\n236354381\n14211\n7661423\n15355687852\n1415\n457\n4280284355830\n32135\n7681631832781356\n225370715178872\n210772234\n86352431613574\n0\n47\n753347\n85813\n28\n16255316378\n4121876208\n82778074077\n0\n822244332124658\n34073132\n5228328341870038\n707775\n2608\n513714\n63334\n76311811\n5658234\n6782810\n261883450\n7186006485674\n18656748\n58560\n3151714\n56123528353878\n41\n84421635348614\n4014750\n6\n52\n8761351221\n26668308333\n3377472101465216\n1227521\n2044218727\n432287406\n1851161\n50151556\n338606463236811\n57\n1167872286458351\n252503\n61628886273432\n236230480\n4642\n5477538662003367\n548514\n423\n754571\n62288703033642\n6156\n610423\n4221416887053281\n8387\n4\n10375866054785\n485176834\n88234882064436\n437383\n3\n68\n3437\n2707400304213155\n7665463561\n88100\n7070076\n8755382588277550\n7735424784811528\n75\n585335631122718\n27670408\n2767730247\n6124246\n686152\n452525073322464\n738873567778\n6203330713811627\n368\n80066\n320208460\n70723123460640\n1274327704\n22073832048\n3356262\n6144233158344155\n425385247108255\n27168676464712\n18215733\n28301113276653\n468\n364750100657\n40034145871106\n25710\n53358187162335\n3037770278872523\n71658064\n77162355\n4516423068843723\n673634043553008\n5335261\n352\n166472361505\n64847251\n566313471556\n88101\n7201884185\n6601282875522\n247450416563800\n870870453033132\n75811847\n72726361300\n730058324135803\n73261635427\n134082028\n6335757034071638\n32625804410268\n3\n38737331\n2833806\n5710\n2\n51\n6\n81208\n45564258\n6685443583\n4756182868\n52\n57612\n1\n80326771467125\n65451021466802\n28\n7154101400\n603114162212\n335\n731751\n4303558555155\n376736011778834\n584\n602387078724682\n3271332474744\n4325178072\n51\n3721\n2716824888544355\n3386514123340427\n566666\n6781864761170\n5128501711884514\n115623573431186\n3163\n1446\n241\n1044\n6\n48124115372\n722681286\n4143674\n7043487448828\n2303\n7483862820831\n5080\n31726770165208\n60761\n5872377686436072\n104417348748585\n214635870253275\n20\n5610080573240745\n27001\n25674610747\n726571811047\n7266884177\n48318565126\n81\n53\n872762\n30642803\n1854501670\n3754\n88004430035806\n1046763353082054\n8047503178\n6074184352131\n75\n76076565348030\n2\n358\n841657204572\n0\n23535\n23618615\n32\n445\n15305577756562\n3\n14213832784574\n787458\n311063\n67115078\n5482276\n3457031076374\n1\n376778234810\n76\n621011\n27036000782\n5374155760044\n12482\n77\n775\n42722351\n203011384\n13541322176\n221\n50203168687300\n5\n8747677262255\n61556578582\n44628\n4146\n121\n33\n874213331553560\n48380435615055\n716635435\n774151710862\n668\n38365823\n214\n6070808323825\n808758\n32\n68705307\n2665\n38285610474\n123118862\n8444773\n1583208657265\n14027\n2553734087063520\n53502674\n41430235140\n32457\n7724314208388\n773347276453523\n3488782426716280\n30038702882\n1703755156572313\n4852883556265\n44\n323833260\n567651064667\n6130\n2431784845\n5375668\n26837622386002\n35222641614533\n4257\n1120125583532828\n8075347305\n42\n212860177\n56077836\n543338331161\n14\n1652334601668\n428\n21214\n214521\n81802180135058\n1820303176774700\n61738\n65\n618\n2\n1836578348\n7381285\n8560286041\n56\n472\n7843187\n738\n2252240232752715\n82457277363228\n207\n4563242088766436\n65863862\n4\n7336074275004048\n665323656260\n61434528\n662030733\n2001664\n2286664121404458\n638542562184550\n85\n16178141335\n415073\n4520031\n447487\n30508322\n64540\n61406653543\n4\n6872218101\n465514886125\n1456060611\n148\n2642027602\n2131\n708547\n8\n55081748486\n75080684532740\n54710860\n33113415440\n3776675\n286345\n330\n80788485\n73083230\n243827078374\n882415885077303\n5\n1\n6506\n41215848\n816438\n76\n853086654378\n443\n7084703388\n755376\n558310836276271\n82\n64336\n645040553867\n86247386676\n818\n30440665\n205176\n432507188536725\n1353478507315\n171756\n6882\n2658060767\n8445548784\n8438478\n3\n18364278131186\n6225657718032\n4464372865\n1284367250665500\n2160\n8550828083717\n1564585275254\n8443086503\n3676\n7753364041723\n7603448633623135\n12783612884248\n6747023\n222522383426\n120713248\n866501302\n413\n533448473\n644605182617\n82336\n378656688\n5103323002446824\n1773327\n545208418486175\n73466086802\n674\n74401816153331\n7\n656\n44\n226\n155165523\n855335445\n2537\n244782727223318\n4\n313741088\n83675\n2870776118523806\n528\n7110708167515\n764572\n316623655387\n48\n4\n4225180004308586\n363340246713438\n3416541\n14405751814117\n24481037646\n360102583533\n63077201418267\n552452502\n6366\n524\n6151181680\n5070480366\n388237648424171\n558007472\n660146577\n7\n47260\n88\n503346708887\n7527\n1\n4124485787630\n460238183782\n86075\n3573286\n357187644441640\n5176850108116\n730778410444257\n552630551\n617386782148650\n5256\n865772020583027\n2516\n5173531451\n53\n6845177702\n26524755\n3134608\n2634\n580\n28514034\n74\n75420\n3\n7603735783521\n16\n2470038826\n88\n2105\n1607618\n213265\n67780726814868\n536531721730478\n381831287735\n2057\n5784\n485700\n150424433864087\n8854357081718517\n70\n3258645300\n214871703\n756838473\n883\n28462587842810\n203\n1534152552685\n332788067237\n123408\n3012555137\n805\n80350\n1571511025\n75264281\n72543\n584274500675331\n5812571461328\n874866302\n3\n2\n48253186663364\n6874505626008651\n7285385\n7623125170386\n68574752338727\n437225882585685\n5502\n110086838866168\n16547713\n35508310507371\n568431\n2475830660211587\n578686547\n60278164211635\n4733608313324\n31377876445\n86\n5774220241226\n0\n454548507467422\n601441100\n412\n8206883642506\n46\n7026034316\n2334\n65681528\n5\n2581\n542884\n3\n50527400303\n814542175326\n5100711306334324\n228664352764\n508648764\n3311\n816374442846065\n2321224575535424\n68447326\n653754443862\n13577462\n1838481103351\n82\n727456\n66403248133\n1855285282\n7537543076534841\n214268158614718\n682\n6216504\n430307570\n84\n5350557407566\n5863601285052\n50078040323514\n268231\n834531\n728280\n7601324552\n14788766\n4\n7375575475806\n8140433663\n77274588606\n12604\n11688\n3640575761\n487\n350\n3547237365286821\n48740\n812535000336173\n567761571\n4\n66768\n7107\n286\n10777514318801\n82813174810716\n138258\n2087584258468\n413230\n3355\n28361072346\n5861625446\n427533550633480\n42078776871\n3042044\n5888443264866\n7236354163726\n13\n60\n3054357\n4381\n583463\n7\n1373108015171178\n234\n130\n6235\n541140400783421\n35718831450007\n10\n53015\n37\n20477363035115\n54\n77730\n658417848452\n5348418\n776028710663\n27075827\n13\n611278036145546\n7\n13308\n57610341\n71054782514\n6552572571286\n778075571426006\n5465703533324\n0\n618715502\n7657565\n6841680186\n375111678\n85004322\n641215126145542\n55544\n3\n5656\n483121561044178\n702657223256486\n6\n5157304006603\n1011673468671526\n17\n838388110\n8560\n3\n0\n5\n4240442605148705\n44\n8802207378\n136341\n855\n7740011781853\n83048534538328\n5633125250524\n533785447835537\n71566854073678\n182850682677735\n265867150675\n85707\n428830114\n413305235\n358822656\n48267571562085\n1021851837786\n8556601363\n2\n73280462073380\n73648\n51586640472411\n16585386\n8076\n770880520054\n2385775377\n5053151668516253\n1\n737144141562286\n2\n730751480\n653701138\n2267457160653348\n84317563736\n63265052\n132003561\n34260258363\n37\n4106771855361624\n28064\n2055123501\n8248101427123705\n70366016347517\n4348512344548\n433160305323611\n3351774\n7723\n520263333\n77874180202372\n215722446666585\n25523542637\n8440\n20874662085\n5404\n34142484706068\n2666307\n51288755635718\n512174721167\n70717240613721\n11452671\n8707806\n3\n867655174048487\n10225055022507\n710\n165314\n561673134\n63432707065\n2381366411434\n60737155552703\n22646335008554\n475724684507\n41386323183\n238270\n712711513\n3737\n407423\n31707\n682\n5848731308243\n38248\n8030601\n616\n4657\n534\n14347746\n2668377\n86363143773\n6882360705\n86\n21\n14\n674748851166236\n637427\n176617246084\n6\n67752845788\n626210\n37\n88363\n4\n487721482846\n2772188777\n200060\n1302\n2557736004012\n71535806805675\n8\n7566450530056816\n555\n165478\n7746053781\n868080402448\n84600715834\n461336577561\n2482744013\n552662300271\n7880672320244\n765432\n8333481362\n4555305661283\n841312585428704\n128016274316128\n6006\n550864316414222\n315\n586\n32367\n710764027770250\n6\n2175028516216570\n6082580022\n50\n6628504326788\n10558\n42\n28\n71210648406\n574835\n326081808484485\n8361845881\n2115846308\n7\n6066335405850\n26547003255\n12278\n4\n84550\n7616750\n1385621001467764\n167618\n82066318574\n5728171822362\n641\n0\n5\n8177\n6\n47308366\n101\n31620163030\n15836\n58336257344355\n1583280245\n22181661272\n5821867\n32407\n138178712\n88548655724\n701\n4\n5241823\n3336445364732056\n55832444511530\n520863116372876\n578845215771\n761403338460586\n103458070570403\n505\n8731104172264\n14674506\n881550\n7847367155273\n58655335342\n2532836758881172\n2420070482100\n5247080208164\n208\n721530345234358\n750033\n214100671641470\n7411835700404468\n533147123864\n5384376\n431\n206275\n412\n31344\n264653546502\n808644025565450\n815\n2482517007\n12635\n4280456022013\n844\n62461\n24663625218060\n467427417\n57180\n1458056541\n5\n88574244\n5421\n608155313318\n5380375602866\n645768451317\n8814464\n3571643732\n320172\n673237560435271\n680\n4444534552\n6418134\n70483451388323\n76221\n8115044562\n68120410426\n466418000\n4570616333802248\n88614\n64\n25744058861505\n6635306416642841\n45\n2875472\n37268456710\n178522\n84\n612361083814\n508338357853526\n4082026056761302\n568145\n877760116\n8282365261\n3611166\n213008\n3382212805832\n4\n50766\n60851\n86\n434315104\n6157456\n5585706076873217\n2675820\n880\n4444852222763\n8500336177273764\n452470\n581884214\n633078188\n35041803674037\n77002360158\n1533131\n53031306880511\n67124444\n33315360253858\n2\n883\n833547\n86220082\n8221543625\n6\n841480257301\n3\n17155204\n76328811775\n42704058\n771308\n5561041\n4706111114434\n5261\n6\n56\n6508215353\n801414684\n6738021783443\n7302338117\n34716413611235\n3782422424212478\n18070\n33652\n6684546740680\n568258\n3457\n8048504086\n45351525626478\n74\n41546424\n6\n77284173436183\n1\n3800315657227\n1745208841565\n3\n1\n11528133\n4366\n7365733\n117123\n4278520648\n531065\n101432\n828360\n4132505483\n4\n73314144702002\n21\n50084\n8345456\n724556\n1476447734\n334875555\n837\n687842\n8628055381702734\n3377\n710\n8084245\n118488104767607\n15\n5\n344253\n500566077\n2441162\n30\n686688331\n7366617\n7\n85267203\n211024\n1522\n7566016214\n3\n512346650527027\n137827877038666\n51135118\n866773766112550\n47217358076\n67\n8557358\n2512640284\n587034012836183\n3411846036244750\n380088\n2144\n38773045\n18365\n16352244\n315754811833527\n574050181847414\n4\n54144\n42626\n5771056378007216\n315\n737410\n346\n71567864\n77501206150624\n707416157\n2\n327278606408566\n32\n42\n44501\n8117\n733\n84\n12004775616\n54544064\n663615\n2\n88\n603\n1478331\n6453\n188170745473773\n27851146\n166604656265\n61036241083474\n848716824\n578171658376\n60\n334204\n5486282344217\n4565733378864651\n4\n51652727\n51876544207472\n11272527543753\n46\n6382254354\n5008604\n71208\n30058314083828\n4405832241\n7173\n24181530\n148582\n40615014\n508050887\n634156546\n22837674\n137\n1868024\n152308348661\n5087\n536418224425\n184441202\n483336745\n70208543772\n5313\n81178673\n602\n4488\n30133364251\n658377443\n323776812\n6435672627046\n781786\n145535\n386168877741\n2412220\n727715016801383\n2763157335\n1502\n25\n8186177154422\n6353\n22588\n4486873724431\n815585135703\n6414\n748150126258787\n48712662688175\n3323380\n6328\n58\n631006500\n3266284682535810\n4534475\n47873677\n441670436\n675531\n7333145258\n14341\n33\n764663\n63815207661\n8445280810341758\n8051466685061038\n455036\n85\n630158211\n274742108567433\n483040230\n7576767218118\n213\n72335504432220\n33024583120882\n8810663655023\n0\n8877152258\n4772\n46402271117\n82506\n16702813023425\n8308223\n68822668703724\n701175\n411574068\n433847532\n6705\n60683304633822\n668070361655\n8254756\n87165\n75017204887465\n4251626408737\n3671230583217284\n62046\n1014062543\n125\n65\n117174536\n5236\n8631\n538786345134\n40026\n6604041\n41816454\n1743050476288660\n751\n6651\n510033210\n558850\n7272677042\n804345\n6753887701512\n88701483833207\n852621745551165\n7\n5287071843277\n100643535072447\n460613278782\n30236187617104\n571734563245470\n66\n1021502\n804468646\n23584804\n323225613230\n55608\n56546584158\n850248163438\n447856\n721102037764585\n38741467813178\n850067344\n3\n8145580258\n76247714627\n237087588\n40123737\n8482457\n4365873\n602002312\n81657\n68374070\n14065082083\n3667044478\n2804262306175\n14\n8345842741250\n52\n305681076067\n2380883\n24182307\n651116488\n400600741\n542\n64526404882\n555740253762146\n716568274\n276673641\n3243203\n53838\n1\n864737280\n46521488\n28650441\n86378445\n2853\n624138048188\n1682611158\n853283113570\n138471623606\n78005663\n55221\n314063\n437116\n465524410284144\n5474526044672\n521528576\n674166776\n1508337052585426\n884664\n32\n5352280542176588\n747458814\n17547\n758504\n175252\n742432743827746\n26\n224\n402875288\n2436\n420867720\n1710\n1744118217\n2\n251110134\n870186585\n12100\n864701823\n10742770482\n0\n63771408\n21430427870734\n344782\n54237\n55367150286\n63627467\n7567131568\n51034706\n65\n2416\n814784\n820\n818210235\n6417476637564\n340066505777\n2481\n27325817\n2628\n136504308263\n8831348311640561\n0\n85126064\n4061025865\n4178408266563863\n3507704557457450\n104882532301\n210226804522\n7586143121420\n1\n536840075564\n4862017\n801\n4222171243\n3676\n4171347886008\n1750002581635472\n755424433\n78288206023\n6825\n6407162361504017\n383204\n7804384612\n82784523\n8325200283854\n2773222870\n16058201\n18456758806\n2\n46171\n5261\n1131035\n14638620615\n34085086514\n74416335022\n5836408724\n2\n33\n183542116033608\n2220633736682\n500610650655\n370303203882537\n541862460863526\n1\n880201\n16140325\n5021013606337\n2337\n321102\n7656877244321237\n78334387724146\n43176060215\n1\n3\n48286527028042\n342644067788586\n74423531618675\n7200788468034\n756558\n63167\n18030\n841207362748362\n12327112\n10\n530\n877335\n2041525501\n84\n405271\n2\n26326868\n61385634\n10247378112\n271\n1130702\n7836870657204\n156552308205076\n218254\n486\n35053\n7158577505\n747\n1783301036\n73826684071\n4428582\n32168580652174\n7\n112346\n131613752631661\n6813013545\n5530658172635364\n3415183684\n242152\n760\n1128036058630\n83684476182361\n474510485566555\n5473\n8285366724223\n774\n78407214702132\n1382160204487373\n5883365021\n33\n1\n648152\n553172063863525\n2340550\n5\n573\n5\n2724\n1734270138100300\n8106616042\n788147643760825\n433782\n623\n50564011\n7655\n81382\n687601401\n52174657750\n7025161485087\n1504330432535405\n2036502\n6227615731\n8546600073\n18113842511342\n62\n501116408\n55\n571831\n466470\n760873436341112\n4202844831087064\n46510358531\n161141\n7\n362616428\n362127\n27546\n35\n7\n85760318\n8126782814338216\n88\n1585\n36401\n1\n5404261212010762\n312660573675\n825568824180840\n84026726380744\n87262343667\n27453\n1\n51431\n2405571671\n4734\n2550154\n233325174703631\n87404447470867\n323315\n5103\n14\n342116\n261382780765\n517\n8087047173420\n2\n466817160423563\n3175528485038\n55154147\n463520732728\n223445\n53\n10238787116525\n6\n88270470826\n7343402\n73253806\n8255410001\n65046\n546228747335218\n44628657\n8535317886\n6030404\n262306162033\n47271470103348\n84680480340\n50303\n23511232\n45080601874237\n5046384\n34518\n536\n331438746853\n703873\n308185670826\n78558575370131\n457274120501\n4707\n785663\n0\n2534021172336\n1770714582835161\n850472\n2802\n80810103840165\n43\n3367617534714\n541053\n6\n7112461556365\n361828133\n747326005513050\n662017\n48017285485\n7406557822278137\n6118074\n3706420465724\n715\n136\n787127\n32404\n7\n2066372\n8763\n2285830707854\n373320\n32\n7\n703484145428\n6832\n55466107877\n882407038\n4\n6\n456403810518341\n2688\n514\n604527601553\n1478631748751\n38453\n5006271410\n42\n31607566\n7516321516\n8457301221\n238036410442257\n50170\n5\n1588664\n413672\n183700721623151\n13364061835546\n66\n207428\n1081073\n1381386255106\n5\n7\n85614136\n111137208721723\n763317785635\n47556\n72687175620503\n60251730200\n846411550325\n216453\n27\n784866373274483\n6564674053616410\n46488217304413\n57561840533540\n378\n5106\n24076340\n847653\n78343222\n30260\n633305178443637\n86046664644\n61367088\n4226678\n30283517116\n3652823828485520\n203361\n461\n3182468050536\n34186527\n1481512380\n65640841506\n6566118618443\n1588\n3018\n38121741\n35204057680438\n1832202386106685\n8\n726332413034006\n6803181043638\n615437424512843\n4660585017856631\n238780416033\n6334028885\n7125783753510\n7534282\n757380056426\n423106\n33574013428\n560268\n7442243\n8642277118\n74717238\n42\n8\n1285164652286\n4\n77237228560\n15363021451070\n3010584\n1450\n701325131\n476434\n83541357017655\n1417775\n11575624114\n2176467403\n228046316\n16687\n855332\n16762185\n7572645542788\n3238524310\n128\n5734677843\n2106564871470364\n2681488381386250\n541651001\n445\n8025212485711\n3746277\n356454\n7\n35301820\n346078421\n658234\n5070741\n1623\n1315853046865454\n527062\n6131686\n7637336272223\n18238\n80201114\n46434703173\n302305714\n428282526\n3754\n113668860265804\n385121257\n38464172\n272071506780311\n4\n873687\n8146\n783101018127\n623254570203\n3500467275221\n163\n8231752\n6134\n312074\n84\n754623161431672\n8346416312540\n6115842\n83528134\n53834531\n3047452406770644\n7435074417240\n2271203470145\n8277747055654863\n5567146037886827\n4726017\n4\n28\n5604452238203\n441212840\n7462582077\n2\n3401637334\n47612810348\n8771\n654650121\n71161363\n3236\n7432405\n4\n10748368232157\n502511855\n453\n4144600\n780518025821\n370010728603120\n870822762037\n74707717\n8181\n188316\n807770310457\n837064\n4855005776261\n7741453207\n760446\n3118\n83416813582\n45268471\n5326103373733254\n60423744172\n15\n103\n1346104324117\n3820560163\n437\n68437\n3641401453\n68\n2466383008\n72525124742526\n5824353154\n18660\n7573\n3177343755355326\n8\n41514768\n707\n46644850\n48\n34310068104\n44320\n55581223703253\n4566185841002444\n78\n3682076534742806\n7615346273087460\n3730435618631\n3727\n3776424\n16530104554781\n758701\n61343583155\n1670855\n82601612151487\n2\n77344572485872\n81125\n57572016\n47080\n3\n1660118188\n530440\n2551227081607\n64201376102318\n8\n54252872221\n434702284634\n845\n2711310\n821535061\n0\n74520736\n352810820208\n75576836260082\n42\n8\n25544465854638\n455038\n660034366\n6348263\n72417686\n8773630482130502\n71482487104221\n7206356\n3463143\n3038755732760374\n12146821\n575015332450328\n507667\n50267171082366\n511347507241845\n388523542\n4158\n67558\n1522452\n215\n300715128\n75114240603\n8\n2\n413083882088\n317304746\n785\n405056436\n1718\n638238620271145\n18210777718\n1285\n623532787314414\n66657523273860\n2526347746\n313\n8471147007132820\n7\n1757340\n7258\n163382\n75506233363242\n412078026585420\n8262322032\n47\n475631108532\n1768843802\n704542461565\n54\n37\n4\n85677\n8405732178034588\n66\n77131\n536887868552810\n21\n4357527847\n27833565\n77007226\n5820412120\n746538\n1\n82105628\n50866445324\n760884045\n26655216200\n353213\n126237612\n770\n14\n2246665570075\n6832128\n71770\n7317614265480\n362770770538163\n2\n8281506415225\n48508\n6312178313\n3\n242688362158\n84166533052876\n430708627133\n4443\n22518147420500\n8564870\n516728862057402\n3\n48636\n63204273324343\n222655258255048\n6020827556727270\n482337241801\n8874621086480\n51154732\n2\n1281\n563300403\n430382630\n220461716686\n540466125\n453\n3\n57156113347666\n183682128\n1531\n215548\n1077472751\n211316300\n416232526141837\n3360106835\n2007862278443\n826336286035777\n44018\n4678452818\n145863834515206\n56400\n5156826\n4404660016140285\n657542803011\n44514675241011\n566861876188\n7447653541717\n15221\n36\n14786\n584547173805527\n47146\n76\n86321827861283\n628678184230\n21174\n72160247740\n800211840851\n130631375042527\n316656\n625336336073270\n8\n442788022701\n4437528410277\n61503288\n312260876240\n6128086267240\n7151670158001\n707504860\n6615663224552365\n24715\n30333851040622\n721167331358244\n505164715450\n325238732\n551138\n2\n3\n326674353282\n3323\n13\n2831541138244806\n563\n4\n262667130863856\n768487\n552\n182514425536\n241\n215530744\n104311103300\n7252244817868412\n67037231310\n56281801502248\n6732328630224472\n802\n3241638\n54346401\n458156\n48136771\n23183\n6251684623413\n18326143771\n8847657585366138\n3\n12126\n7715344\n6672183111\n8788312\n6704417\n62\n838622826\n567\n615033514552076\n631832283261286\n637352842301636\n802556\n1654743381872\n108\n7013\n284506\n63\n63626886258323\n5336560\n44144\n266\n7441464\n870066015401488\n2056556302\n57588\n32200566\n6268877324\n1274172062766\n26601407\n18\n2012785844\n34026540487\n300451116\n2\n111\n431775578010\n18037520867768\n131615\n1437231713277564\n2061530176530\n84\n3470032267160138\n41\n176\n8830331044662\n25614386\n404500\n2\n487272165733305\n32\n4672044414\n0\n634\n21154423822134\n154380450253551\n835\n8\n86133422644\n7201802001\n4120\n86\n4262813104476\n6800126356727652\n85165144747623\n21\n7841708366\n722710721812\n6852400\n545532317155\n84\n1513851616\n762623045170142\n42804711432030\n4017333377744801\n423547805477422\n153712817205\n624\n64447\n41318487\n2421246330\n147072070706275\n1570443\n681385831538054\n452637378031\n345645\n7743106367\n71\n646835714387\n21585414311705\n363\n864\n8558080\n7314\n4525252664734\n1507756282\n1416074440\n7\n367\n10\n22488708\n43\n3666531288845\n8031378400216\n8670003\n632337630\n22005212\n5760\n783567270\n10785176\n6800760\n322122238555\n84\n4885033270251245\n86545782682042\n1\n4\n503605065\n628036\n68825\n471284242\n22752104\n63\n366431436825\n6\n88025\n126\n74073070\n3051004647074\n47238161\n1365\n5550827544\n6646602\n286732731\n70432002\n687877010827513\n216137682510434\n44755607170\n26\n265683402\n203841446\n875016\n7826\n20841466\n8768073\n3542552317783867\n348236\n6740157\n2662\n173583278\n568881414\n765243062281\n43671800153413\n186\n32785542120\n4828227\n21350435412\n15185821330\n23\n20248806026\n562712663\n4641427578661752\n50023\n63531850461\n45574531106\n223\n57085416\n5063\n80677206\n2863407711517\n720327400511022\n8633041\n88265022581\n62\n37015657730402\n28174304\n2135636783\n2161036621237866\n57584228620001\n26053654233\n8\n277666420861\n164686657423261\n706331124243784\n142238411\n61841164137528\n3688844842273\n7\n6064846735748555\n5315226475388418\n325571\n864316181458244\n23738715656353\n35154355\n871826165187222\n737053052450666\n4181728\n4373018104005611\n58420752725076\n4374056\n86\n220737\n40314\n2318210774373\n8\n58743553\n4317044383322546\n121347\n64307540580\n10163\n84480214631\n236\n357485330833776\n21\n58270370643\n61275767788051\n3341\n6\n40206564117822\n42608386\n1132177\n7\n3200802401443\n64\n1264303\n3\n4218570\n2777463\n748482614367\n34734\n74\n3\n5156014\n6646342867\n3005731540\n117738250446\n71610\n4113\n2384181835\n5\n407465540\n25781745444\n556\n0\n7\n701570545161368\n1813318567444\n63\n4\n45121384533627\n4178801150\n336\n72184472583\n70775548365242\n5337567323247\n11846\n1\n681638524\n42100870\n37418\n7844520678226\n2318\n401174467414\n7625412481222712\n1558\n317643576275\n76\n5\n37\n315280138\n8\n8000014475\n458537670211731\n775681\n54368\n7863\n47132\n365623648668878\n4381012437\n186866855185106\n3\n436407\n25417417640\n32724\n17168706613742\n74725057\n5152841816\n2245483106\n8767452636157510\n683072768\n32500430545804\n6487\n0\n311804551\n6573\n4\n258204\n816\n581625442\n31\n6805\n741\n274716882\n1120855031544\n42411213\n78080458356\n5805003372\n41806212144\n3808824\n6752260\n2804250678230\n28588425870005\n645\n8\n72568\n635051280364458\n21816703121\n7786\n614285107\n357268865085\n3507032\n631401001\n510078812\n7106431716501\n8368715007804012\n511757433\n7220\n2411208\n803166\n5331305631575\n4153678034522\n55045\n5350\n18448273\n54717\n52403825657368\n443043323\n7221\n102775\n607438\n17\n3121\n43266\n655607735604\n63277\n57183740427723\n184\n3177128566231\n688356314\n235\n22138\n23\n35118666\n3304856331007664\n715832727566\n614527108\n85816\n330863001\n314884\n486\n3\n845234188065\n4\n46533\n453701072\n354745853655112\n5135\n3715805240167\n4047325743305278\n341622\n873\n7615\n50814655103\n870275663\n2535\n6\n7570557144425515\n3853532064643754\n23468506\n64885881302\n4778753\n608666\n26378685\n13213305\n84\n523250404547\n611353261041\n84223667051\n33876853122\n4263727\n81536\n750748862547\n2065800464078\n608358317408027\n11744568\n4561\n4641615764733\n10844650145263\n40\n462526802057\n27078167880220\n3862524402\n74387735177\n1233\n8224\n741530775273266\n57841\n231774060136337\n6216435135\n1632783\n40255773576\n750352822\n53588\n715453802670600\n6310674337731282\n1766501578\n68231\n172062026508\n48\n104610407076545\n7181865462484723\n57144733125772\n8866\n31508\n6767352428\n30310\n30780772254113\n65560404\n136\n7243113\n62784\n182363187346\n572843076214\n5864184\n78552732\n81263\n85817435436085\n23601\n47163632427\n3670\n120651\n20820701553876\n7371030752\n42228618747\n284322720\n510700702237\n17760537041132\n735048873100670\n580538512\n73423\n80483577256353\n108155481764486\n78844557570\n845118541000827\n4733\n440881232545\n81\n85042337282733\n1742046\n117206\n7066417\n76558438\n74100667820\n3732445\n550\n7760424402820\n762647568\n0\n453\n21437047051\n1714052681\n422471\n3813\n8371\n667884012328\n413\n5203\n8175777738\n8\n473287067466\n431\n765486\n3881476\n83327420\n27801\n562\n6273416\n68\n21\n23544\n73558070\n4200407208228874\n253050488\n84527266032201\n4215284\n38807267748767\n370177238810536\n7787044372672582\n46\n78630785512825\n3\n1171\n3068028435\n4366746362\n3812176731403\n4407047070\n1512\n45126420446057\n1511677086070\n55705880\n61814105243656\n76483860\n2357451\n705\n27071362488605\n241372766475336\n7086331415111713\n520216743\n74431\n8\n4750072855368550\n100216426\n647322127572812\n84752452708\n78\n8656050213652\n53\n1537811705766552\n164506728252\n12750880\n317640140\n272488\n787552135327043\n315484\n622\n26141\n1020038027374227\n780460\n76860483855181\n31381642481\n263410480\n78\n5757613107787537\n73701185\n6483331867\n72525131213784\n16838401847\n124\n5635717110258\n754736\n2\n1836007\n2\n273215488728\n55315721071561\n567804108404044\n467043733656330\n417662\n1\n182304087\n2\n562624636334\n185682\n4701463817\n147135230627318\n23043200046\n73231255\n2\n438062468\n301721086582\n64248014003\n8\n23\n64\n20661842147115\n7114555161731\n5824253460\n13380638760\n481\n128624\n477\n7301\n205326\n7748276817468\n2533068567060\n15641\n20\n1562043\n238760\n61\n74855\n6165327848463\n414040236\n285\n2\n362322127086\n364\n187423087\n106723\n273214178547022\n1662\n4857258464840665\n4460181675\n646657\n3505628\n2578\n8326066706485826\n30014\n6283434353400670\n64828267800\n861\n700481\n308118217\n11618850\n507752\n280\n880514166\n56770741\n1\n2136706786\n5155164\n55783731237332\n886\n7173656153414\n4132484\n381305621368875\n8308071672\n334636865\n5017682110361\n5058248430146\n4482024515261\n5153\n1\n836176301451\n22310787\n200282\n37575245261\n2023381642\n144215261471\n3373\n26732282\n7104\n47234\n42\n70787\n5161\n316324336685\n7253771422\n562044\n56\n86406\n7\n456233288812433\n8430416\n517\n72307124035\n482407167737706\n7\n45465065\n360115126155\n7\n4837838\n748645837\n3708186146\n22238173\n2423404\n776\n503\n8\n282\n808070013\n55342360716872\n2\n536025571\n57021438331\n7837673247\n450\n50\n0\n47334800550\n5\n4\n257\n35455\n3648280301802223\n18338742\n25175823\n57820002848\n8335505\n1440\n1300\n608735856\n471833720\n71\n1\n876546560111\n7\n8\n68\n620343042638422\n15023040413751\n56\n873786\n573\n603884354705417\n3870223022575842\n21\n364122713754184\n574576\n4332260218482724\n1680654513832\n332462210743613\n34354174473036\n537887113648\n827617815\n2617580\n530026281022818\n71618106363715\n417265328110044\n388073341488313\n22231\n762375880580\n7067576515354511\n1411024\n243141060\n382055\n2515866160628\n1786162833\n351405110245\n56165162026\n215572607\n240330\n0\n337015330545\n3301\n83\n1876018177103\n5021186014687\n31134002\n5688026\n3680612464218\n267553207118418\n704557\n3402151840578004\n20888607346\n4780088814171331\n31\n5814104200468\n64057542281047\n758341388633\n81\n712747535\n45336055020\n7100174623\n12\n210047626316570\n2807440\n68\n73153864647\n680636844156561\n21321771887\n2361\n461207458076683\n60308713\n8673580756\n28851308\n37383654352\n828236\n7637306253508\n313702\n8232021\n450342405\n52717804358785\n84161\n8751872\n5172670637838\n86083\n47231\n505154206\n3802427860\n81034476751\n100\n71224470654\n252641443\n22030\n38205861270\n5\n6582552\n67\n12048\n334620171\n7114282085516407\n886427461\n73286872383\n85\n168032\n7176100202\n515341735\n623775627363\n1166680351\n28104081\n86\n71455\n530133188\n303738252363508\n620620111816\n723385\n3683543728712473\n670\n272883382\n302587260440752\n2366\n608305104\n74\n761882824\n322084113\n15737\n38643371\n11485180332581\n74\n176317557835276\n7772628780572444\n7508817\n572743411806\n81076384641\n461764065\n262103340338\n68054685\n1325261256578308\n4277471\n3774451\n75783476488050\n746611361135340\n5025855122557\n3283714023636602\n231166112248\n477770835404306\n88073\n674781077174130\n621\n78536\n786008581\n3348662722242\n180403085\n41828\n46231\n626103072\n441473014230688\n5\n42612328234\n40071\n5422828012\n57403372\n7103745340743\n5068667561\n1016135670804007\n4220482258\n64188681\n1073045616222\n14226825\n88441\n82\n581\n3413571846311\n838553142844260\n76681514875831\n574\n43301\n4035487717011\n223186334632\n27248\n7314178430742\n2\n41333\n1381534\n406145816\n7257471\n6684267552570\n26578114\n781431067260\n51\n18346886\n58784061\n82380774785838\n78352626\n544751867\n75745718650\n4\n36246805\n0\n8368125252382\n38323447826\n153322\n6668228237\n278\n573024\n2563475272834853\n46\n471638720003512\n7346175\n51577220\n4281037484883463\n5583170112125337\n718105\n635003684\n811348002\n8325\n5115165230\n1466668\n76412\n5247\n5870114757\n33107307703312\n5314667684771131\n7530487\n0\n31026366178545\n216756085684606\n575451\n61530804801\n1318\n48331\n70828656583622\n4634500515\n62311068\n5338426331514427\n6881\n12554683\n30771\n8736546750156\n0\n243413280\n813144\n58551374410\n216452837\n856510175644113\n50065\n57\n18842664802\n7028\n7434513\n216356405307\n42370086041421\n655740087871315\n550067231525385\n663235824004548\n2014608281\n7642682\n61543211561\n21435011\n76\n15856165\n10450\n5147\n74301078\n7807\n37238783154210\n661587258624672\n2354622004\n764680772284\n6101432153832834\n601621\n2585\n115060082787\n204727525\n278427533010\n284\n200311178845074\n175200\n10334360052143\n271\n7360066718732057\n2108\n65572265186370\n22\n6851525\n1230\n462334885876688\n16\n614345\n6028243014021312\n503587022\n6130482010430\n420738263\n8771025560858013\n7\n85024628\n626\n57803\n535262\n8317\n5\n8162\n54212141644\n644383638712226\n78682360\n363446764\n262416\n6253414478216\n3437417243\n6824175881338581\n63042827831256\n823150\n2283626454\n3545274\n36176226601105\n7554135360\n207508808612\n25213316036\n58\n62686\n77150407\n30\n7044050014817\n2\n57\n5141173\n658\n744766816486057\n657213484\n65125\n652863760723403\n817144088263164\n41828236025814\n5180354121\n814504571307\n26186884268875\n666684752236\n42236758887518\n67\n2654283236266575\n3281\n65776372883\n853\n6035328263\n15\n356\n73646670537\n62083153372041\n644570\n71\n48\n2048565184172\n2801476807846\n303235261542778\n660860765482203\n45865734\n1681013377424108\n7030\n132882405\n18\n61485\n140588\n776656175622800\n78340\n5\n868507264856846\n80730727278\n2675138\n886088\n237880\n71651\n8663233728124\n418800735\n64057516773375\n76348\n65510275263782\n47\n844861\n4572547657630860\n52068072\n834354\n30253765201\n83613527624\n5271548537\n26386571252273\n352778524\n653\n70022\n26468343\n876244073168783\n3314126\n604\n248220782753\n514\n156742\n181\n85705130225353\n6\n3743576402255\n665\n60080823343\n16\n66140566101201\n858328557744\n105602743755470\n388\n53550351\n4340367271484052\n7401272331380566\n6401\n25724633818\n152\n384662083341415\n52844703\n2028\n537\n820680883246\n7\n7654\n862417603608022\n612\n708668726171\n24361\n608\n4141258\n2017\n6781500\n784\n43762\n711581024\n233056457\n5825070\n8153\n5\n74656\n250206811646\n8244255615872385\n58588\n453\n88\n6033663057\n71363\n78844165531\n88111020727474\n34136150617\n1805330\n531370818\n334453\n6\n44606336664615\n22\n43878133352208\n61037145840\n5\n70813106602\n6425270561558627\n742\n237\n70101806537071\n8734160\n4306237786484538\n71352741\n73737\n4204581\n3511\n568444488\n64867873724\n80070\n4436626588206\n261103207272058\n158821565520717\n2007143136876\n34815582345\n5\n84\n5637862440\n66\n144262010838\n41122202533227\n856360163453425\n1716641561284\n66106173146\n528\n648517713888\n162167313\n28151764571\n18583\n77472451120\n1304788755\n62267\n3766722\n52008837161555\n252602024824\n7\n36864550\n88105\n3\n615176437084780\n41084\n817\n37\n477528010110244\n302025235\n606676448\n2850745512287016\n17513\n1645507314\n4262561118806\n5801\n73226\n18058\n4746620352\n841527644\n77701482506624\n44204\n41\n3124658736433\n7518704\n7731472\n3282530316134\n75010152\n31\n773418354\n408257444137885\n1152651834181724\n84260834482\n21476615223088\n4344642\n3\n63085860\n37725\n6052788884\n17026257360\n2585155\n5286851\n2226362843\n546377016852707\n87161400\n41\n74875667860\n346\n115378416581\n8524140873411\n2326\n30\n555584\n2862316887\n16\n8627057101641150\n81184625252273\n680202600855155\n86\n65\n77\n7004608\n68727881455\n311\n51\n55\n31752444\n473372637835071\n6700107824346447\n38412110\n62786504\n5735\n66277311\n40\n751052\n5616718767\n5\n125815021\n5826186\n56156306\n62668\n5504\n745186482536\n617\n5367852161572\n7343154317413875\n830\n62778713855217\n38060707822023\n3618402\n43637\n3385843\n36414\n5170\n48\n7757614187\n5556030124011\n2\n6264034800038\n2\n84186\n224\n71532284641457\n8132160\n36\n8\n44\n72580605464\n7\n54886871\n803203608\n2713873\n2\n667677657363768\n60514857815\n48501300087\n700855748722411\n7435846430\n8821653435\n8337404118134\n45058363\n366883456\n61533\n88\n33856\n8341382\n241051570266383\n8032814\n84\n445805\n72264168146\n62382015\n5570366555\n8\n31\n4\n5007210587071471\n43015686622\n364874621\n477157\n77\n1702118370\n13\n255762\n1\n55708261\n657537545778\n2057543472458207\n143\n2088504\n362737336\n310732302271318\n110117673\n463245774378\n26\n1440673\n84341770666577\n68\n810712480\n70012848817\n4672\n43310634884324\n6684778315\n4637165\n35\n1038356825438518\n35\n20477603850802\n70045688815580\n11338851022478\n3\n705536513838484\n58862\n62\n4\n10423466041\n76086\n726327814868\n44182415658262\n2155124010874656\n65666177545\n6\n3322\n801074\n4\n866253327666\n245412\n622640640\n8713536512302462\n836\n855110135745\n6483862230\n52538304770346\n6673236537856285\n83753667672515\n2\n371340\n5\n6232100437784\n7581713\n835\n32821783477383\n23256701412\n616166017\n74256330\n318\n82452386542\n345721807\n817787\n325150\n83418625\n15403064164601\n74355\n5643\n620\n375\n1063586\n40371612270\n8284343\n1\n6066472365357\n632\n660735152\n4160\n48475415\n2\n61674263063\n826845853301\n8811088\n5\n72480748202\n31331220\n28577616484445\n3605783330410546\n7068768604268\n71522\n580765730864080\n30\n416648\n7252010301605\n6625365\n560448\n767418\n654150\n1324841878\n862464435743\n488413277054\n4376715746230\n7125636576\n6646370764307\n7478\n8\n2338\n15131\n1746001120804\n837\n5640\n567246256801516\n588782\n36683287\n1776642555150\n53880\n7520104\n1855057263705\n18710557223724\n28333\n40164\n425470335564\n852622006\n3466241573185\n57086847133402\n4002825\n742167611484\n2765036\n6727221405340\n366352\n142700423\n71666636772\n208\n3037\n44215815503\n505885\n6524273\n53\n4\n2462222566571\n22681212176\n3\n5263412382\n2\n58718\n87115\n55256584763305\n712218\n16\n85621754275763\n2514436760\n73530\n8888\n457768\n71874875605826\n1463107\n18787571\n5660\n85265033\n8\n86\n531\n33\n6372374173156360\n18\n3140678623447\n2733\n31367527\n344301473782885\n56357833312\n802602835\n755411\n705\n388807\n74737\n1180271613438\n58788651\n368\n2073641434677712\n713701486251\n311024\n826256777607171\n82\n4\n4\n3380264145\n347627\n5\n5610418\n4371170\n23022\n5258\n8537031765431\n71120\n422257317866\n7\n724610735\n3372855\n282265071713\n588\n736446\n1380646\n7868821011\n66013\n725685\n81\n625\n458345831801\n275141240604026\n833856\n307\n750704534222\n740033567417\n8860467682212\n47741\n5268865257\n4002410\n167555330883\n5181244621\n40705620877\n62\n58357086\n85125777\n455\n21034842\n84755632008730\n143043780754\n50646\n682027324620\n1281573\n2811681616\n30185\n483578\n503386\n206615774327232\n4808\n245772571145231\n42525853310685\n533226\n134462221552801\n4427220\n30308473150\n4310747764403146\n4477235\n63\n15522403686438\n1271063485\n706505\n623640\n54\n31846423060430\n474427\n183615302666830\n80\n70861582572606\n68788533\n1\n5076\n510382\n1331387\n526286400126836\n45\n8624057142\n52858281377\n1741812748551\n4\n376\n5070660760485628\n150165766237732\n8833247264\n140728241735\n32364435\n58013\n1627185825270006\n5206636325005\n84880\n623727481\n4815112464550\n2506670735261\n783\n313035168\n2254554\n474748\n576702448418447\n346045617\n480488107233075\n5263801700005612\n33013163511037\n122163534\n5508561\n5\n56\n75\n150772\n325607272846\n26\n6305635673566434\n6087873\n268583\n33634440\n67002701811\n6810305\n866\n467181655610417\n42\n5658437011646\n842212773680\n378280340\n4615115\n5813215078682620\n50\n87\n1312164\n376657\n444438\n43038882667753\n77\n8582304043\n7372387463638685\n23850842\n1383\n332421832867\n3862067086\n834683620780\n4786236630\n51517201454\n507742785350\n34\n6488\n7350\n476310100734\n64533012285661\n34808\n45725533656138\n1685675075122388\n852504237311\n365516270718\n81\n1\n861855401\n33374\n245\n606224772\n80604678634015\n2\n7868002\n576678122\n47734864\n3\n327608608463652\n2062585011\n47622724221500\n588\n5813228\n2854453\n56171\n10\n6081382513527170\n481533152314720\n10\n827800028053\n466051\n4053356458\n20670\n813081\n8234472207557\n6\n6084480437762\n56887731353\n852614187\n11775482\n85016\n65725\n224037188032582\n414087\n2\n4464\n65\n804222483651626\n70643\n38583336847\n40\n7166626577\n63261506\n47772216580\n78\n5324841254\n5238\n128068063\n715\n565183528\n551721\n712208241806\n740186151\n146407358127\n8573838855812\n743428\n4\n7\n58702355024\n884372\n51041328661752\n260348365144872\n5826621181881\n55648\n8336131873\n525654456053134\n46407686\n8068463\n143074672\n15321086623\n6\n80838\n3877\n706211\n553732\n327741485855041\n880742261755540\n87\n2\n3873223681662\n3211616\n4012111136523655\n358\n800238\n1\n66122\n885\n85044320\n0\n3875283347830\n877\n67\n4624\n730507065511\n0\n1755771173\n50521307\n875520107\n663\n50\n6030\n21210\n30208632\n6\n5681082250436\n47\n8\n3336\n58\n3588647\n3672642\n1441751\n233\n5380\n522720\n151242804\n715150040\n4827452833728\n365726\n456615562\n236444\n6361058\n877082\n2514\n720\n36526606742\n4345756512\n84743454131315\n6437\n408236437658333\n10270\n4312\n5058861334607651\n23047303\n323608885\n764417360\n20751\n5630203738317\n0\n300\n412\n512513680445\n67000763383\n8421571827472822\n18848\n3444774772\n61401528\n14056\n34460\n3\n117725\n668\n1203608478\n8260457445472485\n4363255264\n31884180244083\n253225557\n11034671343\n68082\n468\n773\n351\n2250651360\n435583278\n82\n876851271\n48076246128586\n2850\n287806633525251\n535187544856\n87775\n32464373432723\n51230777728\n76717317115321\n6352878\n7816358\n632305606\n23124\n54420243705562\n6\n7647251241\n24312163\n86081786\n7231172848243\n746\n5204360404380\n7148852038\n83074536567236\n5\n135622325460\n8676313053871\n7538\n318402\n3333861221\n657\n33733\n15606170071\n35172476\n1731380\n527061520\n474816\n15176830818\n1\n1105300118\n152245\n6650\n7142\n2\n167\n32771442127246\n7101\n5635006410171\n1560523334\n654\n4\n381\n332\n4\n16670704260666\n5\n1875848\n331311\n1108\n60581783242108\n12\n6\n506\n46\n636713688066007\n383282514\n3\n8440606316653\n3806\n55481505471\n28526742215\n5621544054\n35\n844517328454\n1663302482875005\n1715164182853061\n124648244783340\n2806\n8\n5886851547510\n84513632\n1002345\n861824135\n6\n84\n12271\n67437\n420481031174\n5273635700873\n825\n5647842\n30005\n582325872\n304547\n38105058436\n23578\n8227\n545\n6054867\n72453386341\n35778148155\n8278275782003\n66447245\n1140113\n7082744388318136\n631027312722673\n447138255\n208054\n77655645367671\n312111042435646\n663734370\n3844105\n5307440015362\n70331703\n678762826641\n650454340444\n1\n7564813\n714242207400482\n1761\n577230315\n31\n5470447203357\n710253740342\n402552\n2400728568\n3\n311322264604584\n75\n464277250116\n646275585\n61605737024407\n51241052\n265413734\n8016\n3401\n4565803\n74860\n1632046533\n16\n40\n468443\n178812687808\n6503760242586\n0\n6328406550808642\n8243461762320305\n53275711806541\n207131084573216\n180\n31803\n6330\n58164376\n382204271634837\n816552344728663\n8\n530865303303\n7046\n671475578\n6151\n6\n88370201\n47143\n4268312465053341\n4301\n33021442011876\n233\n54740387065\n80133154868\n33604\n2540\n4255\n27343273\n67\n218880840831\n35052442761\n31126366\n80\n46825700660\n17433477\n50\n824\n208102572\n86\n52\n2815274178\n22706601887755\n44\n341550424\n77226732448\n356278022758\n62687131310\n48531073\n807414\n665\n18244\n403\n663883285082574\n768258034808\n1045410\n8245321426455\n36610882188775\n2014022\n354368386778\n2\n8778307853\n74\n2737370765716513\n21723660288\n5783833738124\n1358\n327652607458234\n7855412726375873\n307067743\n2802080836\n81247127404404\n1051772555\n3567245\n8410572855642\n34778344\n25718147\n72\n432157023564\n341126370714146\n58640\n851564\n81\n23781655\n5777864\n328\n53\n8560485763\n73548\n326237323150040\n24564757587\n422072\n12\n41681884860558\n101368840554138\n4786482284703\n161247138342056\n683\n65742044720\n252385331\n303466600000\n67667161\n854731057322\n831484002820\n71\n53775638\n1\n16531182325532\n7157312548680743\n426334234160\n307604\n885026673688\n864872124835804\n8034755476408158\n4\n2838088\n6678\n2166062183361\n253521525028\n1545660\n5471\n126134088628081\n666\n5575\n7672068668451\n318302587\n4050886181165\n614750470715\n267854\n76230764\n86167474305710\n2021265\n686748025566031\n4\n1028318521412\n8\n8260666882411\n3386045778\n386447112820\n411784\n135481556240308\n4115310450\n2214867\n7532055311\n220248387\n72\n41565512226347\n586565\n8262715128721085\n58726\n85632\n537834526742721\n144681328807750\n8\n51702805037214\n8213820\n64370\n173355\n8487\n58\n323\n6\n4040\n123217\n41375076635862\n477054212006066\n20733\n63537280170215\n7421734727441617\n46066328281146\n24\n4575166750536\n78382\n7\n2360261665541646\n2131530162\n517243723\n776170770371766\n74432\n5\n323\n48553064473726\n82466\n4888631546\n70\n718703378364366\n84\n1328044\n7806182051\n51260356301\n825057603222276\n305471537400\n85400014274\n8004\n820417578138272\n653480640\n53532805821\n5280816\n5176254153132\n3720013512\n4033\n426644537754583\n2\n61\n31516551571340\n7870136726\n34077\n82464760\n112876251071206\n1551682226574311\n3181326513218106\n4865676566\n53708616003\n3821854\n340645633877565\n36738612226\n6073530815\n3827\n6086771102427\n54\n4073310172746\n5833\n1067383753\n744\n86562572\n6216037876\n2104400\n8560861776\n828606004\n8146065372787\n8\n350162234136\n2120334704\n352\n437413362735661\n26368556000001\n41107170663834\n83354136111126\n4853576644\n45670\n636206360766\n1540767481464\n553203\n630242758751222\n737832216\n670585657658804\n35085405470\n12630\n8368326526216607\n5\n5\n245228745374284\n783614\n263177728124\n207874\n218343411551\n186252780780648\n37636863\n67687820\n651252603384\n826011870370\n3370186666707\n1874663273\n8615674512522\n8206113\n462432743072\n74564852\n723\n532\n65858522437111\n148516\n68\n458458777625\n13436\n3540130056\n5\n7141630631076412\n8210823\n3000112278565\n5605050567642816\n72425201\n17035632146\n0\n56607837\n6732\n72\n86748544\n8715380\n6015\n6808\n8668213046747637\n326331188023\n6217533\n52\n15847000287\n5133107864148\n403223177\n110208743750\n452682830\n5443\n5658684761\n824480220\n3703434054626732\n2207\n20224822277\n3103438\n5348304057\n8528811250425\n8\n4446\n8431725\n11616135321801\n4602350184165\n135127873\n7725572\n576628740\n1163454584232815\n566411284478\n45003\n5\n18313677044\n31516223\n1458754\n60\n74\n4\n2874153126078\n88041\n4027250\n1740660\n344874406560737\n177568783115\n8305407023\n122317102322378\n1\n858153\n611731815368\n86453\n5\n10358122761\n215\n28180840360\n46448241133086\n404\n37243\n62451363848\n5345871372\n85221\n375671655040\n61\n554750\n180700\n2184002473683\n8240735\n51\n8748230825735\n6683\n753723320\n65817635447186\n56128388504\n2\n6570\n3135622\n4836431155670867\n4061026356176830\n3428864\n8076784\n3346203866\n827532267411570\n237363\n3238823615518\n81385862\n112577556431\n16515\n664\n8\n3070004655878\n442358713384\n778601352001224\n8511515264\n8468702704\n5852\n4202\n671874502131216\n837558852637624\n2\n173403777676540\n151477207585870\n2632630330417705\n416\n32547\n4336160006135562\n8232\n515568\n5\n5056320734384581\n6622123658054\n580834664431\n5657\n360385\n160376203\n56130\n8472215373\n8715\n7135\n444475\n224064804137840\n36386013232\n67\n6578\n663735014461677\n411638\n22587122616436\n68817800211\n3352166852784734\n354341476388\n455238635732\n0\n27246323667326\n506824027\n5301647086512400\n38412343846\n665314\n8\n5466760034870\n11\n5782006100\n7733516\n3\n25718751881\n80584414103\n871601734436452\n12127211\n778870386308\n7268461\n7606374\n51401783241335\n21\n265566560214430\n53318\n563\n866438106427866\n65347617831766\n680\n55\n4022760756747230\n4537454674\n2054456262\n58601823\n454142\n6556620538024546\n8072113722\n6151216688771\n882580161406031\n451886\n7601387066802840\n273\n4420073286\n56830653665\n82445\n53161208657\n2383828758047775\n582365465\n37\n274124007805\n737880002\n3\n253254846002866\n8800\n6101\n763\n2448822074721\n603606478114\n805634812687\n2101777787062157\n448545110573725\n5717880864628\n22\n57173\n41033806\n1470286\n807606062\n82\n5204124\n653688042046\n8480\n1781578204335667\n337677\n8782257784728\n87870413\n111768747373\n8548878\n415271387412\n8444741\n4625023244604277\n3368674025763\n15\n7541\n134543378\n14351\n8457250661\n48165646701734\n41176745741265\n5033521\n74275\n782405\n243431\n208\n12660102132387\n40038087803501\n75766\n7\n5518215287636\n8\n417140\n1006784128501\n484218\n651476712351580\n336606320\n8776\n533868650\n1832364\n171335830556\n57127713282324\n78\n38866\n10226444\n677813788\n3486781334466\n2\n5\n702734\n2071\n48087473266\n32441670216741\n8\n22247103\n3375\n38033\n330\n2077\n41\n12561\n575\n2747747\n173054377706670\n248707\n53234815\n7368380745502\n22\n828237\n2\n6867501515\n23\n3088535678507\n2517137613\n831048526\n58015645037\n4160750\n7176647\n751818257\n1505767658\n1370\n274726385573\n60\n558251247\n228563836233613\n245038373681\n6544543331221\n24360\n853265160012\n50015411\n862\n57531\n6087257151\n65502333\n182515186357\n888424365330445\n6674627837\n48488083\n232742325281\n487170\n1\n161\n76621802122\n20204\n882208051761\n220674401386712\n580860160308563\n808750576524\n7660380471814\n466100581\n540473803412\n64062005\n22118373\n2128377135\n846\n4860782431657762\n5130246\n63487134323441\n13415000\n6166047\n5087452705614\n7410785443\n3646\n57673321218\n5104177\n285\n881046462303043\n867206734\n8227151284785\n841300216\n3456186333\n4146525\n5516282\n433338\n80585527\n2201066250563112\n6\n56\n8241542\n8523\n5283582\n82251488\n400545420025\n28818758507\n47646824\n8134161\n773\n142137\n52073826\n15\n107156202\n7447744463\n5111345554783\n21\n602180382316\n347575\n284157601828\n1560870830\n1856183563737\n28\n5425360500681435\n27587316518\n138140833464\n377427\n7771200727454313\n6636\n1666546042545\n1021176\n23314251825\n31415\n5686\n24\n8858236862250\n8376353066\n8557606424704\n754\n5080378\n886783168633\n1462468387445488\n177281\n72573762670136\n27\n182661606\n775573008\n4007280187302\n172112\n4721213865\n26564161307881\n74\n314615146643\n5070116643180\n613525084\n846\n4820560705712584\n178823313335\n5107473665\n8016180430437\n213046807588545\n412\n75\n1\n576372402641851\n4152\n343732643223\n5172827154\n8\n20775670740\n55115642\n2441137085886673\n0\n48582\n31370252576728\n716207006484\n56822837\n27853463756870\n3635218581868445\n205453\n7072755318204\n76412\n4351\n62762772823\n368523308712\n73407\n3784774606761033\n60363626622282\n37673\n2428761345\n68241343545575\n81777703\n5\n3373324022353\n35872883\n451708613858\n8734707\n35072738301512\n3055307644\n218\n552840\n1730840\n6515836256034621\n4215576\n4380853600714321\n567\n333804012088442\n2\n4\n258080243840\n84\n1467724613118361\n572\n70046\n5\n350763880706\n2838\n1423252804\n58124133\n225136112771362\n0\n3708\n50234807003683\n2216174540\n68\n7\n371583262280371\n40176235366586\n83723814483677\n450080\n84617351840751\n64484044488\n48125564\n611740423207\n13265\n522630306\n2405257773408\n25522767\n8641203625\n37\n3586233571\n7281123\n2706\n776752\n515785\n5777441748\n72275404336\n87547866263\n52\n2646734547123665\n86411354\n478777607067\n6803\n308542635150361\n52504\n516686\n212865372101\n2487\n177500524364155\n6\n7\n53\n154007754\n5678533002826758\n84564658666834\n16270\n87805458383\n6553272107507433\n7\n623732475\n5168461023\n8850\n243666210742226\n473587316177\n6\n6382472\n1622574566\n6\n64450\n483\n836268560543\n61510\n3121833\n385\n316\n8267\n202638\n3264438507\n370\n48\n40683481525355\n3027\n4006338645\n2414258133407751\n6456223487405461\n8752601357\n852\n71460\n26023336\n73\n63542000\n8844\n40531212107136\n25\n4\n232335\n52127\n248647846762182\n6458557838770\n54037124\n315001545134\n742850\n85565081\n8\n35372\n858241634633\n2073406026175140\n764323\n43562162\n61120758711274\n4608171171821102\n535200811213730\n5\n667435628161\n4374471322605\n7247352347\n5835\n6736622553871034\n5335483836038048\n6272584\n80582201415\n2513837306382\n738534504\n680327484\n6845\n62\n87708617172803\n1\n754800213637\n2418\n27778125\n31\n1356\n4246858\n4578685\n1330034616868\n682132\n411036\n6\n55581522026\n462870828657\n415\n756\n365\n6313\n3483\n362407347086868\n6\n6347102673101525\n3576860351\n21358663\n6208\n4423012560\n20\n33053\n148378426168\n637747203253\n5280157383715480\n480577420\n2\n161154250654050\n4\n8433787562826\n14003344\n16\n6\n503730687605644\n6\n660483613512\n20174266045\n31404888\n74\n445417\n573\n15184565235\n35851\n5521836151310037\n12077542\n514472443446\n63774\n180458431\n201505281077474\n327746\n228834\n10782787\n23525066\n10015056\n237737\n7687\n70\n1074770561\n7463855078740505\n1664528435\n840\n21515373\n8461747381\n8550050077\n5475875422\n8016\n182582213\n3\n0\n86348534228264\n520\n6216427\n34\n1500786446\n534663352\n1541556\n1672561\n737826263350052\n2850380308866\n734280\n730833410152301\n4188738525153683\n82\n446861615723178\n603311216522481\n240\n624427\n8288380736818\n827756857\n2438611\n7151860\n33734863651886\n22246\n24\n166\n80\n81122387184\n81487\n247375051372\n855754\n747\n6206227076425\n87\n88\n636555134\n51643855461366\n837\n20033607453\n6\n5671888768855\n384457182058763\n7\n224\n834041870868\n6038360785865624\n478582574355\n851681\n80505604603\n6258\n3\n4504\n4586168308125\n860883\n21621235262628\n833827846804\n88\n7811722713702\n772545716142261\n26\n8442816137417547\n1520106776372\n67761627343\n65000205668\n647\n1180\n6\n334530\n7537863760015440\n4853456\n84112531\n18751776166401\n3274786748\n1305322514\n178481801\n7576355357483\n1781841258807\n6078\n4678422748071600\n58742288122683\n68881764\n821852006874265\n641520563435\n680676\n258482813\n7427\n258580326753508\n22731453263448\n844\n4368\n628863364670\n3562332070051538\n81\n77705625\n48344352\n445\n55683615422437\n1534076\n300781\n212564206\n37880846\n4\n513027550378\n77\n7145\n820772542446\n7622113\n68\n1\n7781871646\n245800720\n556450586\n3114043865230482\n7743488243\n81314\n7158605646023\n56552760\n50336417656458\n37116536043\n2620176\n718288304446\n8863126\n626687643428456\n4065680703566\n6\n67886225\n2820553634876684\n7513258875820\n676142\n28212754450\n6275730370854752\n166641\n1054638552740\n423722740536\n2053\n165\n11773043417402\n823314176250\n3420653063201\n3278053\n123837833\n1\n134767658527644\n4340236745\n547862842\n8518204247844\n70861\n6768\n853212184825866\n1\n1338072420\n50528084\n6154358\n185163518\n35814013028\n3383330265\n1300626282738\n2722\n86882703\n58846\n86175638437141\n37\n2026433\n16022031476\n56370162608\n62036634500738\n7\n47\n15\n7428877078328647\n402734587\n2263273\n173202875263\n264\n58\n77\n6220232\n314030103\n35874485233\n552764576406586\n3233623250868768\n684063470711\n33303050\n4444717542511\n615064840\n3538663\n60562\n4137757\n70177836441332\n166\n175083127677281\n71110\n827\n4031\n37376\n880162710707\n84703417575\n7715318\n437450638568174\n3176250610\n7607754\n47822287755\n476317322\n73814\n53075613625335\n425048461\n8217358784526561\n427\n673\n346666504142216\n633\n2880676861\n8762027\n865540807405\n14020788\n4304148051\n33644512370\n350817\n1\n435868583100\n6713178704\n184580\n35\n2742807\n45734112430526\n2625640448316\n167741627262671\n1576580\n6\n60572060540\n4337203\n11017043\n72108217\n7646\n620762006648735\n636542427\n4047452706166760\n7446330607402\n587187348\n4060372\n8105811380707\n12568320318544\n15622410\n22024630358\n44361450\n88\n3432775\n47832\n3\n82821170\n4460058514674\n2655\n8\n204878210233\n1465848286582310\n5811651623572640\n328\n25\n524774\n7802747665\n822266\n344\n7077\n5301\n23147086385715\n126\n235312318\n708744158500\n53837176\n63424765\n182068584\n62187\n8\n10132476\n4202556\n3530\n677123\n5266626248848\n157461030440276\n400272\n344367203711\n845315645241\n5756\n1\n835\n1243286\n17522365720140\n53305715367\n6001650\n37732733\n858484011510\n51643164086\n5\n13855550\n3708555622155\n4653624108\n364\n67261053303\n64\n258084575\n433\n8017618728180\n8\n65458887470000\n4\n86334317446234\n5\n852431482381\n724\n4817027\n6545186800\n53138567\n72102702246070\n7667246231033\n7064001\n265284245\n30647753600041\n5824684538372\n7533417623274574\n20731365\n251800137\n2\n281037\n57433640268355\n531\n24437\n270372384\n4\n445\n44\n802658\n6336411270\n857136056487220\n35806784\n604535515201310\n276242\n150857570455\n12712132300\n77522634\n186071885\n1\n6\n3462\n24253\n514300504232\n7387503777\n2351062413078835\n5434766445036\n60707313565\n205031\n650370\n1\n15350331513248\n38\n48213168524026\n243540742\n1655836\n132\n705\n4\n336730578\n7763355150\n684286\n5760560457\n2\n24488050440742\n154865\n42388021241858\n574514441582088\n237100324582\n577454111657361\n714\n438755837\n386\n5\n26650\n644173\n13431708\n42772420\n8871127566\n50\n312778717874764\n565\n700377734\n76600887643355\n2\n71001815213\n64368665\n1303570083\n21043000747\n425130484\n583870\n6135237348\n57384022731373\n738610\n4471866424\n178\n6388747780575\n133701666061520\n427\n37\n35866\n284753214\n848540058712\n841\n4788217782316\n272018444\n23\n3680410\n8781\n7383238643817\n348\n7124073\n857615035172128\n614387835\n7\n74\n62144\n4648333848\n41688102\n86\n430036741\n48147288037732\n4\n8884725256\n468\n16814\n877447407860\n116001218\n15871\n2421203886315437\n5127\n67622184788101\n2027\n20\n0\n606718031\n765734503576618\n48501\n5\n871007787481\n74\n572336\n258\n384603\n3735407816448\n482750\n57\n751580248\n31131555\n202\n443502727608785\n62341\n428635332141\n854218768154\n77230732738023\n481130713\n2287511\n50633\n43346670527\n441607722\n700717273\n41\n656732212688\n487\n83140043\n1205286\n4245267\n88676537164\n66435337\n3067183204784722\n61545674672\n40558553\n616264271755302\n2802\n32887302\n857\n241816666\n1425222\n56014080864527\n253\n601340046078\n1503487617157425\n2351224754057\n216\n252178260713750\n6\n40164725041\n207\n7664414608806\n777800248852456\n44212\n310\n7238474\n55\n21221855513\n32366436886162\n350810825\n36426618888253\n741022\n2517351423708\n76843\n12418557028\n677451665767\n518\n2038\n12234\n337551701276\n3136416534724877\n247168256088\n7550\n7723734227\n3\n87142472\n642627502\n4230377111574334\n325\n6\n60565710145\n58657557170087\n5\n7380754011575\n64405\n102018431280\n60\n3802507463728\n8023321\n6244243086673271\n341447384564\n456134\n68424200787\n3663888817384\n3382742618678560\n2\n248175\n74265\n3\n608567688\n17286\n63433683\n2423373\n1573416380851\n6\n84522486\n100\n28615542017\n264087650283\n402534\n3\n353076\n48110\n23566262665\n71\n684\n3571734322257571\n22116677\n76305\n25745165\n2\n25421633\n421\n217788265\n501024\n6518011101346\n7\n5212818051581025\n6881386\n7\n875468145482\n122120\n576\n21345777686358\n6343\n1435684073475564\n4476263238\n16651403\n3488680\n43766\n8116544\n7242437\n80864308637\n82783877257\n3654163014\n783240447001724\n73358\n5666077\n35811253146\n45\n228171835368184\n846\n164342085785\n53862\n83215471008576\n28870561\n1\n58416816430005\n5036816271813\n77513361\n8411303677331\n648\n164658\n23441\n4044040351256720\n4058605748257175\n580\n71\n8160755800155684\n6376106804\n3\n26\n2215784277\n282\n10431\n6055887\n574841055\n4606\n8787118040\n205\n4418\n67822863038708\n8381\n1547547883\n70\n42278\n12122416\n56028816\n1407615\n55811216\n41548820774834\n4780261404370677\n7330414735717\n72267\n20076248\n730622714223318\n82500410401\n18237\n301535011287385\n44730188480\n625310633\n4165435723021870\n43\n570\n742546\n822471\n2056\n51772\n37\n40\n5343\n2032273\n3024380288\n6\n2524106675770\n58881\n375802088387\n78383634467\n25612125\n77817011602326\n3667558863030357\n768751\n36\n11\n47105320\n878284168255620\n340264\n1220\n6511015788462\n67\n380816381000722\n75512841146\n68400\n2052\n78\n207264\n5770\n5052164220\n6234006870510652\n82333\n510266488220\n5042112475\n1214150227\n21031866\n8174\n5822485580788247\n74\n657350473152067\n4014861\n410635\n711244003236\n860552\n310175\n74517283052\n6\n2478728886\n44022524872086\n438\n878627562\n2316488616\n4\n47736528\n416\n148120\n763064257367171\n62720600131\n830031731415\n3664\n5\n3218538776832267\n60412162682628\n8642\n66303133\n42382\n42165343\n14011\n6708743\n67537611026564\n30530554865\n61431\n460\n18\n63028624462\n631544026480\n7\n222845044426084\n83240\n6840132672441\n32254\n4\n103465354\n4\n4\n5837547543656\n866737243732132\n810871520853238\n2480312722076\n8326115051\n8214\n573877240288072\n6702241\n20623851614\n24173371056788\n40173\n2412871578627\n58352788165\n41\n8035\n7038704100867030\n254375116706\n4438632663203320\n76754573180\n7872240625077\n4037547787\n451010803565712\n8333806615\n83658208708217\n603161\n487064576257221\n63375246612720\n1507788736142021\n567210\n85466128\n3776800443556464\n4\n4\n71615667137336\n3140186288856287\n160\n5604742\n48464\n62068421\n31\n6651028685363\n2\n5\n4213\n157882280\n8652313476231760\n362468242044073\n204522\n5486656384474022\n85860378\n53334161\n517854815203\n4031562404\n1\n70305531\n1520\n50815471\n65\n4500\n362116608\n741008\n154327\n2784163870\n867\n52723\n67\n0\n73082\n7853437511468\n6144506706657\n542\n1\n761331\n6657\n162883\n6160506\n5253370632825\n5831564451558621\n78061851313\n50130487803\n3038\n3766183030578114\n68572261057\n577\n40277\n838722511\n545455838\n618\n3528711130143\n44421121851\n30\n66230\n2\n6225135840\n340335773835203\n4\n17\n2736027258701\n82\n255\n374623871428734\n21248\n811271618\n78726366518\n712736484786\n264500\n76076525\n4727\n5126622378420228\n6155488731\n22822461054\n533288060321\n34200826207\n71318446436\n3617384852638065\n6181\n6678\n218335311243\n815701\n1731276202\n42282853226663\n8315\n165150743721341\n2275324177243\n670735751\n5153258510847135\n2378470653481468\n8521\n67\n35071\n188\n1875136135017\n80302\n2551012271012\n164741741132\n8571351727\n3547063485487\n7087\n534086411336215\n25311377124\n5260514\n582052047\n324121000221\n456846\n621514788168001\n24156737\n104533712835436\n4258358020\n4631804015828242\n370886360626\n3746575416373\n32477411378\n7143252825765\n4\n87003202563\n32681825228616\n8418833072273\n4148858286\n4534326855\n6858\n823782\n430517113757455\n56\n83\n58586160\n53755677\n35430627448\n3702685824\n35370041213\n35563466\n2276681027350\n76434688\n130357650654653\n811884482\n8180\n26544258167403\n717604\n3\n64\n8418387605366180\n513165748\n1045622470225\n3126132450215\n435611288\n78057832560628\n346723177671650\n400411\n5\n505368418350\n33563211\n1\n7427\n46843177\n6053684653248845\n7\n1311734\n206854836678073\n7181236287557\n4564220431102\n23061361027155\n722278\n8860\n3\n208726135818\n7721183401\n13238\n8857177754421\n3068882615\n3\n82048562344854\n263635\n167373066\n581745216774107\n8643636412641\n63516\n5578\n68246622725614\n37\n71007751864\n283471721075373\n68624420\n1371260383\n6400402221\n603031620\n4840\n1574207133748\n24042540\n457654\n5816266075640\n861\n8156363265\n517367581\n60223107774157\n6608\n8332415047\n636011236\n376\n5747\n27114385\n84764003725287\n87653\n28078117\n78025550287776\n56758\n306617746505167\n76073872\n4577704586506242\n3167326\n1118367\n206438\n16257507755\n785746802851312\n23302\n66244417854247\n216535\n38412\n74226155\n81287372\n781772560\n8876620226\n25\n2550124147081\n6\n753\n34\n6\n77\n57574534\n4338512725401780\n11310536201316\n68325328045220\n80833248253\n300857784\n605446022020\n805\n534513755555837\n8432425\n67284144707\n77045267841865\n834467205312\n871572084761\n514438550387\n85046072362015\n7052515020\n83580034\n167\n2816485773258\n6\n27268285\n107544744\n0\n1767\n17523101\n7\n5526555208\n742062\n8021\n7656835668\n26\n716178\n72\n2556070826552\n224\n83685126\n38785482440366\n3778012174700268\n131221\n870215\n538803033\n22386360\n2\n736404714286406\n26043433227\n62\n163522088437231\n87\n5037\n72127876846\n86\n2571686750\n1613080033481558\n15405832603407\n15\n7128625878417\n1\n2846643\n1374472755165\n71787132\n1227471046344640\n51\n6472637200458273\n85686025378857\n62717\n6308723027431102\n30513388\n2823368205273\n4\n557771755442\n56774\n7717840268887\n7725802541003446\n41217126603658\n75\n21\n7315\n1\n4\n57674674061\n426762507476\n677764\n3368\n76003141663533\n653825460124037\n42481523401\n8554455765\n563372067637\n3315161266\n475303137677755\n26358\n512048\n8865275443\n6858703253350\n1\n606\n4412226\n484762485852115\n4715115476043\n468\n178477616\n542370564\n183175\n453657\n40367623745\n622708633781\n730\n5816510814253\n343\n43654438627168\n57\n447\n60733\n65726884\n4\n7320582068602\n24524\n50632160\n438\n3233566043687\n5076\n88\n5274\n20288\n153741\n6342\n1740306\n10507252361\n3222\n152527811\n3704062351075\n86430\n8410\n2\n1514580\n31831505404\n6252883033282007\n508583472141\n32856\n527671\n217633136164\n803671771506\n57\n25437004744\n7648226857\n72\n87325686653\n335825527\n60842\n8316856246401\n3588020118\n250018\n445562018282451\n333\n456\n765865824\n704138237\n38167207\n4207236546168\n138335333\n171\n460773207\n775366105\n806546060324\n488\n48602817052583\n66657\n6131636102346\n735735821824610\n812\n4501045025818\n7070102252532422\n12820601\n35482388238625\n676\n22663811188378\n652\n530586354031\n61223701608522\n6632272725870611\n40401034\n30166\n7201\n4403\n114\n221604012047\n113\n1314423370045\n50100102417345\n5034562552122824\n514773\n33\n36200\n6765755723881\n3878\n35\n2\n23\n31\n1231823871171380\n8772733437\n585\n885036318506234\n5756463440\n5708316265674\n448072241617434\n7728025326061\n2512444328\n36\n364523\n43181303\n65040\n115\n4146087\n828447028\n7\n4\n343535042374776\n785513\n7533825416785\n5328232577\n6\n5823821\n361213463603\n3011548416408102\n3231514261\n683\n4526626\n4442027304577746\n30354154\n31247215426\n2864167075\n102238604306\n33074033844\n64854875436525\n751234\n8\n431827801\n8644147331575\n8706005245\n87651580\n467856325345322\n8128701773442772\n16014\n4428446350\n8611842763\n11586\n778750207\n66\n2725315622882\n762602238677206\n385370855202\n3250846771750\n736740622563\n725858886876\n76238181\n144\n7872777444248041\n107146868728726\n11808687110\n671716672687\n2585532844\n63065\n364\n12860480223\n107\n706\n25\n1768012\n70661856\n1755638072384\n58478042\n32711177155\n782113184080107\n8223820082646812\n403564375781735\n44831146\n30527065416\n6436867377484\n5080873\n845741410643748\n31\n84210\n887670005\n12462847014\n417088823257241\n378\n0\n880234025577225\n5004138336502\n2113\n2\n4336310\n51430\n8375\n72504201714321\n8384200166\n746213177862\n601550\n8346707440884044\n71613546\n743810611\n200836516741\n53278605624621\n63440645152240\n8873\n80\n3885536\n46\n44877150474683\n32830622036745\n286311334\n320176414687\n223755\n410535511573\n233\n2\n53463432\n3033310575358\n63433821206\n277\n4745257428152000\n284108\n212\n318551456432\n6\n88\n2427\n7\n7111014\n4417535442\n3041\n5\n264\n1606155464\n5100715\n2371416\n2067746\n715\n42423\n72\n78265\n8\n808\n8748046521005\n732045535642206\n3728543228034642\n8057230\n54323057\n50240\n6212707601\n64\n83\n8523860275407735\n73031162088618\n877583347\n4537405\n7\n7713204873726742\n73102222533\n70072754612563\n751535555127845\n70453353767\n5022577057607187\n43117628201583\n56112874731865\n623402834\n11358402205046\n40123367070355\n6468625\n80465411\n5854606886740616\n55843431140\n3121658514722425\n8111700210234570\n46850556\n4136118052231120\n206\n4432072162\n61737068313\n78\n5112221006678334\n4841601076225\n2\n7858574436\n2653600\n40\n41165177\n401766670304226\n3074120\n31320636174\n8665\n17\n8\n12502\n2221858056188766\n60024\n66615321710\n645\n61113333\n30486271060\n3653333454\n7835240345\n13051835\n5467823224261\n8473273810328\n51635570\n3866288512785542\n412100200171\n711\n3803835720\n234152\n404460\n3600745232057\n45\n3643607144865322\n3\n55750571\n16700265\n84042851\n124\n21723137335\n851748214\n4440\n7\n51632705811\n4166701267158368\n7676670322848\n352124\n588500376702820\n1520035416\n682808783\n28488\n641463\n57585\n43485312\n205551\n2760408128\n114846216\n7102358703732124\n76\n82\n8232544215140264\n712456258077\n444841760310\n2047\n46835866407\n4\n621772857\n83075350223102\n2354524705\n37760\n2484035027\n5447\n82042508\n318\n57170871168486\n12251514\n625143\n87\n13142014\n4\n40\n646563660522\n82837128\n8487\n5207565614672\n4807\n4263733010151\n8778501686762\n4252001432552240\n2073352\n75738214\n15135138\n70807147\n7120\n63\n4140776\n65\n63\n3673315213\n67758284\n370285\n412468103170203\n36255\n4\n281561672\n1307\n83432401\n26677640453131\n46352281724\n555400563\n3248340753\n571485251444\n3767687\n13\n42622828124267\n6538410385825\n50650\n5173112880708\n661643276862\n25822625885\n405517\n46513454\n51038363633563\n651526408366\n6018833\n30285305484655\n43163\n272\n1217\n4665467\n24368785116045\n2164\n2466\n82150124\n6526226555134\n74353\n32334\n7\n804303630161265\n76182364\n5\n682\n18550\n2375516271423037\n101475041656\n1\n102140483\n836536268252\n163415555636383\n34351522263106\n6783406166661\n2048381\n524481410276546\n74518206845\n3508436346\n30536\n651680350815015\n3431373264864\n740767205\n652057566315\n824\n80628431751383\n3\n7680862\n33641583\n4580243817\n11882678446510\n221036848231717\n3155\n8\n80\n1340445476\n8277460\n422135586\n1\n255681532853506\n28236703676601\n6422558164604876\n8702682757702\n52557307583\n35\n583\n21621654\n481783016\n22\n67705388\n26\n45313\n33606236267\n41382\n40472676831\n1702\n570\n220810\n7672371756562\n3467\n448\n8244557\n7073306813\n468062552400\n31830522\n4851651758073546\n70087804278432\n1183236576\n83170\n613516008730\n874211681868066\n11750533440274\n607646357153\n2841670081125\n328\n6285\n8124340178416672\n28488\n130856585\n33\n65647\n67212822824\n423350468136155\n1723040116\n5143721\n231061534147\n6406152030575850\n620568861804133\n42480384587\n331\n46123528546\n14\n638418070\n63417880\n0\n5760113\n7381505244220834\n350403521\n424437720\n60865\n6121\n732607844\n638761567724172\n217\n348244\n31020065222\n2306747886\n2732\n223\n35\n12654\n34054256856\n10115152\n30\n6721046480747854\n7452725856820376\n6036737\n534517457\n524060208641\n66\n340\n185672\n7114552\n7663663084\n221\n8\n1601\n4616205342747\n8\n4375127726267257\n4401\n7231307874312033\n4630\n3017527756521364\n713054757412503\n1634471\n5875\n62572\n84538411\n75675557032105\n251842350675507\n27886\n603\n20624\n1\n46061777434\n6477237856621\n4314141037761846\n85023\n6543818168422\n4576\n48014762400705\n80\n624514331862177\n3578404\n60\n3778002502688611\n52\n17155152\n1002760728777\n28245110058125\n4267526\n2626644\n12154685\n85875454730122\n126758\n2036216\n538335126546450\n361513350\n21\n41181062\n1\n1\n388517\n6472312186587\n35810477418061\n656640432\n804373155\n1346231138227\n7774761876231412\n4732\n7453277681001021\n374870558630\n545\n730415856\n3467083004\n272\n3\n71006733113\n61406374854\n580274\n682551110023\n31\n441830740460\n2202347\n2435315418047\n233185\n8\n3875773550405677\n51155357121842\n84135203367\n256\n165773\n82476401576\n146600534808\n1\n3011834\n300653310857\n813025518048881\n80\n2357272021478\n22\n201802112\n55071\n273757455500\n32\n38\n27423\n70303812146\n8012042126486\n15\n474123008\n77200100021\n57702776\n441163410482333\n52082714286836\n541205716602585\n67031264\n76082586\n336\n27012087\n85464238211\n1163471776223\n82720002685102\n2\n11258\n314434104313221\n833544\n16\n601080847054500\n466370725\n435140557307178\n66432655\n50580124026\n6\n2410170362366\n7\n74537147868\n3465271360188265\n1615362166\n245734\n1886202470682\n57021844818\n451306146221\n7622026870561\n3070107274\n35250\n8157527350\n8378144424087650\n6341654284688415\n4841446840510\n70272042588\n2806\n5220757232312\n84217\n7147007\n6860152\n786457877\n34828503585\n70874463157270\n36414\n50482382631\n55311202\n8875017048703\n36811828\n78\n23511872576623\n113127858\n73702322\n43133578742776\n80243726434\n0\n54\n64021066888561\n501788260\n67400\n6623\n1503240026314033\n45537\n3855738277642235\n413244848235232\n251857510853875\n211136618\n2537\n2314077\n7845258775\n11204826404\n514683402\n12006710874127\n441737703852\n66847338632\n573716\n3253003783\n530\n8783\n5367126141270782\n62253163834215\n1572505532547714\n642\n14414\n57\n54\n32\n83\n2745683\n3476\n18356\n250441485516683\n6423\n76227336710167\n2\n731882571270275\n8834545300278711\n252373605117280\n48833632\n65656\n3234\n2146334641\n143622054413136\n1482245103206876\n644300164034\n311485\n86430\n25706237285\n481\n2762334821138\n3512482333240\n868361\n1446674784\n0\n438068056\n3575602227\n37235137\n537246852751225\n6815188\n70278047620422\n5\n12735141287\n705886731\n47401\n4071000131\n6086\n721542676\n833\n65328\n474780801522011\n2722126714\n3\n84760\n481570725050\n1010647\n863884037\n2642183626235\n818426553376\n4310531756676\n481156776458\n4411\n48257467441533\n202515236\n73616353028\n5332205434\n58482253362\n52766465\n26881\n84535628164727\n1781655234324\n47203860066717\n718472\n30725815451\n72617068512645\n532\n13012\n6753164813\n310068766\n725177\n365070550530\n76871505003253\n85888012\n1\n153877\n33347830075\n773215545855456\n66\n782045\n7707\n8577442612667\n581881275357\n5538816151126432\n24\n64581\n304441073747\n5342038823472\n417743\n53807272275783\n85121\n23\n20\n28876\n483836462737\n84515705544\n534464818\n52185777807121\n53082836000810\n252\n4820147251720\n63578505723342\n174\n5374311065801\n35245388\n30422764473254\n28122180384454\n861\n562\n7618256\n32215612810025\n533161\n37747\n804755648336\n47183350\n787227\n22\n430050883367\n607477501320237\n417\n216131147725\n868122017\n652\n78\n4502152580132112\n5738\n862846666141131\n41\n57636082\n5038714810652513\n11443667814860\n50245373154655\n75713383100\n182656147\n7\n273\n8307247227\n8875\n3383340475571438\n57046046\n21600\n62577517\n37\n454245155566300\n64\n26882307\n813\n5\n5144668\n15\n722488147816\n30111846516\n452017508176552\n6263725173\n457325486534081\n12504172881534\n204764278883217\n50\n73160\n501\n66\n53662444228518\n1357\n4235786254\n376836135244\n576\n70084427471805\n516184\n488835500\n2368680\n7256\n35533431724748\n82422084520\n7726\n486243\n618\n323\n810743840\n42424148204\n6\n81220443\n286748537\n3705644\n481573028043\n6\n4003\n74581876575317\n27414656\n36730830048\n888\n68158\n5104738087\n77161646\n57\n36750654\n726\n7007\n86278\n6064230618706\n8\n413\n631536\n430677136263044\n6021154\n576\n131350\n478086062\n840015576\n71772361\n677756\n674551105127001\n37618775681\n74184362412\n8641810\n16145\n4120478057\n42\n680771753\n73432\n483757827430\n614711207387\n457585\n7756340300\n210574510\n0\n38730481\n78781\n488505\n3161855143106\n738084668343\n7\n745136\n826514541\n2682837\n2\n481243\n75430616\n27656226\n444210257744\n53210800187\n445281343\n72\n5831742220\n6174448473515\n64503862088\n6136671\n703788\n11845626647\n7547428\n64\n801615643\n1\n14\n6237042\n15720731848\n61160\n767483\n4561565033264237\n26763352218\n5\n54\n838333\n8137366816\n220438\n58744504483\n8554238\n10\n76342\n46186522843\n2863347180\n486415875\n686886535\n477513\n2131755207071565\n770\n8613550544\n426852763\n25101714707\n857206860\n872642062\n2528361660801544\n364246505176\n4545586742\n52468714\n177\n3584748\n61726\n31788\n80176\n6074\n647756\n1572486\n3224143615025181\n101\n267\n331327670120308\n1806588223512824\n1647803327610881\n730554663874\n37486\n770636750606\n8086247506\n850821\n3218473878\n557304424714\n70643\n23167171573435\n7318813165230\n57745\n87164141000\n174\n37\n32034246\n515166625544836\n51855\n2814767\n311138777\n7\n3418106511\n83256\n450877\n4218478133738\n357674317358\n401074487727\n4\n242\n36\n6282420840472411\n70045\n4656\n2460\n2777577107122586\n4\n561144\n8163\n26683076512\n3423158205\n1131527631302673\n8300\n5271260661\n165700148762\n305\n13780424287\n201\n33626447660\n758003322235127\n225651213\n76820450852\n0\n214741728365\n30012186263138\n48000681\n1778422728\n5770478433574575\n3630\n6651716446\n46745767568423\n381481110747508\n313\n64\n21046833276\n36347084336088\n224861306827111\n7362670141326462\n587313051472187\n2671278423\n84\n408320\n5458623503557370\n5351\n822844213284234\n5863057616866\n4672643321771226\n4571350331185860\n56164810365103\n602142\n6686203\n88625\n866\n202666285\n76\n248662025807665\n35453123320446\n47068178552\n0\n475786181\n3524488120\n30560067285538\n48\n5\n1201182606272075\n6\n725\n814167237276502\n106232148\n7268637204502\n20344633\n5817657\n5038\n841662807372223\n37731180\n277\n28088707\n8516242\n1742\n6876126706\n26215182051837\n566\n28801577\n158537877168\n435\n558\n58547\n3283\n657237461608\n3418163233\n25515\n5485650\n8163\n84080878\n4217252576268\n584467\n3773616528107578\n46775440852\n8377\n84168\n743605\n671578078047\n8\n2365717\n876434635624472\n20318\n8281183065060\n608740152814\n61142447\n226\n62158481687050\n82048\n743464110\n183\n743132544171\n61\n730124087610\n3088847\n328067784\n64547665\n202\n24585133611481\n53\n1557748124651\n40553845047\n74861716343\n5284486563\n8356\n5250375\n58413\n204050\n42438233123563\n52842\n648617304361\n843074067\n8436188541737\n865780628382206\n2112656\n5108033057436353\n6363\n3211\n65320\n853548838230\n683037425811\n4332882053316\n280365560026\n266\n1808725\n801\n185658\n2622252568\n1\n63464546672634\n516441\n2186835\n20646847827883\n4817264\n645587506\n7646474233326\n5812044628\n42\n33\n1277501377245\n64504218\n7\n8754478356830\n226\n661135616426161\n3207730\n67728061730\n8354\n70048148088\n658673\n488018033174882\n33746641163885\n67372331\n4408105105887383\n3175204\n65127803572\n206\n2163368305851\n12667157610550\n5386724\n152102618\n131\n7416801\n1\n6162873\n477602873626873\n74\n6\n6\n8278167863562713\n200\n724003154040844\n4610\n6532363478\n413125801460338\n234184\n778141712664\n14606313\n506262\n421113\n717747257078140\n460301166600271\n7363\n2301461\n8144\n1077820723\n176853377338\n78335637462462\n6785350\n14032276362\n36356\n463\n4237664483\n347077\n30580\n6633227\n70477822430\n46543117\n7602\n75603335524537\n5235770257547\n48326487183137\n5176753164727\n5622658517763\n87361524\n57280004\n85138\n75\n40538045\n3386644066645\n26221655214567\n18247688446630\n774302864584653\n56256546571060\n121\n641507\n73382420\n1783817270747\n30415\n6\n47677\n623003768760072\n47571\n102122607447\n7\n741353\n6657082884\n747551757680\n85205\n71286157\n77\n2207628618238215\n205\n4445888\n160781536\n8861372141\n523821577563\n7340\n7378834\n7066227177722101\n76832251343\n4715633003\n80824686812604\n16786\n42037858518\n16\n718854\n210618430512474\n1634\n772606620440\n143773360\n786237543135\n618806454802314\n332032\n15123\n52101\n8445\n37444184026\n544046700\n5818257172742338\n3118703124\n25127301844\n7145\n160440171086\n3728764226\n17218772734\n775737274538737\n604768715\n8185665355\n364102\n220643522\n42476\n6107\n181\n4540405871203445\n5836415126853\n5580877\n510574871711\n34700618415546\n8780012\n43140576840\n168332057768733\n386674167364\n220\n2260565\n5052443650\n608\n771287240153443\n23560136025\n8053511577664486\n13505315622501\n7048014830577140\n11002\n656846\n871758\n4\n75\n868610\n71368784783\n320371018\n2067213\n5611385608160\n867430\n4408527\n473863066722\n7086230327\n8\n600474360165138\n758414186535216\n6208\n84322\n54404378251\n52\n88608\n33544\n24\n21515836\n4337\n5050\n66\n51186338048073\n2\n5213463364866\n18717222274473\n544758270\n5173\n833357767816627\n170640225\n86418622821767\n4\n8\n6065028\n358536\n813088261458\n521536108602\n11\n6213816\n60\n63643032\n180036\n71361153034048\n8436055\n6044282304726028\n4432\n23631648758\n5663635387\n471418\n4460\n1132500586\n40770575\n74454482800\n8600\n1765206863841701\n180208320753\n583\n626\n576540716\n66801156\n87144\n60\n34\n71356320\n12030814048\n48555626\n70838\n2272464304812684\n82342763352568\n5577270064306\n5630238145563615\n64\n78352062207242\n14415\n86250238153\n67302782\n5075485\n37760605136\n86441430237156\n560317841\n65816\n361566\n40842431185161\n283280431507844\n74325\n204143755202537\n551305861\n272303\n756\n73572814854580\n4\n464556732344860\n6114036666502\n3548\n4771865564483\n402811\n2376802472717\n58678\n73312\n22417406868\n4\n3851\n1411\n436735\n7365250\n443\n84138173756155\n58433886\n4120767353\n666032145634\n5320567\n437201738\n17\n866\n17645644\n432153\n324022765\n7\n18700710\n4006374413047\n853203154375722\n121555465\n448540375\n2\n371188173\n400372\n554\n38777585641\n75\n5346275116770267\n5067513507\n661026386073\n14385\n632040861720334\n6072\n585\n178278023388\n6078\n4354462204215302\n2764\n5\n8822172102\n67\n283340405\n760862443\n382466472\n4256588545\n84426\n5518\n71783642332787\n88141786\n3\n51038321\n8733233461627\n12856653\n877755101881\n464867763\n7503755368\n712145327151\n850763804\n3753\n3872151240821\n4520844842\n51078875542\n210\n16022784\n6\n622308611613\n213760287373158\n8831807073141148\n283066\n853154637173245\n41717\n72610127680\n4030\n74722155005351\n61856025824\n2116780042853\n7562202280\n5374244374806\n467\n53340442\n534215666502251\n843\n38247\n778\n73608\n376671\n2724688882\n1674424718438\n835047066453\n3230\n786655\n3372\n30824383\n8685837\n667677653466660\n60\n3102223\n7\n776135\n0\n51\n5242127601\n4715584831214\n515460726\n166127007656\n833231720158\n4837101\n422140014\n824171651\n27217\n786202\n4355068440574\n17688047284\n6304258453347\n764867\n6122624033\n20\n87684730\n3228531125\n63213\n75234\n38232\n802346286033642\n46722301\n5601114652753283\n48568230612\n3137801\n647027271178\n838607183\n884364140723182\n2075\n45418088752646\n5300252223841\n3\n45816665673\n3\n643544848533241\n17170455\n70624247\n55108\n160554\n1742787\n1030035532824060\n6416856\n30847724264\n51477860\n5\n748503488\n64275047\n404628746\n58\n1718871535623\n1015\n3602\n5761448222\n115\n428041652034270\n86\n737\n3581753257815\n52148471418122\n2\n2880\n582578428\n861378\n51051\n636372704\n60250602458\n7840140677\n4231457415277\n812445\n8503\n647681547815\n0\n58031148062366\n83884451\n84\n704285803166\n6660\n328444372844\n1678034187638\n668353732130\n748301855337008\n705421457\n37576727\n847722781207587\n5512843262311784\n718132\n2\n727772754577\n5\n5533\n853088855487076\n1466244647\n3842846688855054\n6512770301173068\n0\n8\n858747870666344\n53\n3351\n6521\n707486627\n88741677605115\n18707171\n3460846\n1138\n4272\n44207621\n472523552486\n358686\n3374448678\n78\n72\n7355\n411213321\n384013\n115\n2836327543\n27356\n42822878763147\n1\n128383675702\n64147620510\n5027715831475\n25\n44445040\n1168437\n84411436014562\n8\n52261161458826\n145083345274\n7345\n660\n545027\n2785303318052\n12446638\n1333761504530\n27\n34750216332621\n385472\n5722773731173\n52427438156110\n4100501\n5060731151287663\n85001750\n486581464246\n36744787\n34851\n5717220154641683\n8513864636030405\n8300287843265441\n33544\n88263248602\n2857237\n4\n1\n563443\n44680\n5582221308577455\n43067\n755030267300120\n467510638\n522467646\n76474477305175\n5581271666614\n442073888655716\n70775666112\n718840175088116\n2340620\n1152345028445654\n51475805426\n66\n833\n456108614526207\n458420\n437053868824\n3\n5540\n56\n3\n7836031061\n73454266\n58351\n86\n8604748684\n48411\n647\n62405710205\n576257433753\n253537075138\n1\n62848226388\n2772873327165081\n773818033141844\n7767\n42073475153\n821608742148\n7223054023244042\n67316\n2546178380\n52412035311\n2671737555752303\n68204775516\n834063\n764021\n2145534266330\n361\n736\n6136260182743267\n66064\n82088522\n181040754\n8671408657217\n140276\n524261680\n54877631834\n6231286\n1757462\n32053636648017\n568\n1320311287576\n67\n7545153758148\n6\n51388383452664\n3783488034\n66081488\n608543\n2771058214228\n575664443\n431033\n336346\n10371760247\n6857751\n336150\n4205716\n17741826\n410\n0\n35\n50132583718\n750563316\n8877742362\n4877\n6628377058\n54674\n8066454161045127\n48050\n22075\n651578377885426\n25832444\n28720502\n18533\n6773755\n871633477\n7815478766555786\n57735100858678\n5565342\n8652173816704\n341\n13066726\n33173007346562\n651582330416\n153157482\n87181662\n3706744638780232\n1482640516\n857776011\n6263\n13487251180287\n221317481\n270\n3573425\n526366617780113\n23\n740826\n7246386877074204\n2102302\n1\n64637782355\n78510027873025\n7072363545\n8\n641\n6156672803\n14277472087586\n77345345\n3615235704\n84\n24100\n5627704\n475230\n301011302\n4\n702101\n23348785888884\n21150438326\n4563606153456242\n6381723506507521\n7780222\n8347216864\n4075736\n3403110180323\n362\n638471183255\n835662\n6511\n7682557213\n8667\n515363422681\n1400080\n340567076137\n4\n348143441165\n4587527172\n83357188877\n64\n745826870645864\n84311380677562\n84684845424\n6234045423238\n13\n173252433517456\n452432\n446025\n45544155747660\n5176156225214\n165500225125777\n70323168380\n876108050312042\n20221121\n1136601437463008\n7652787\n7451\n7528\n5\n26\n2\n63375\n28544537\n33887\n5705448237568\n863\n7147718\n370212634\n83152265023\n15511325\n60730676364654\n4787458416153768\n723\n11\n141\n7755541\n778153175453\n16120\n1\n616676314426784\n6762\n8\n3656523455\n108627568552478\n331143210\n27\n44716\n3121\n817647735\n842640\n8552828267885\n75253\n66264756680415\n348262880\n57765\n43101085\n4288\n2274547312605\n3663\n60842776232683\n3183\n8\n8128483\n26658\n117232142115\n72\n155\n868105305584\n4\n30072\n6\n362512418\n2\n86277218\n815\n7445\n7803876\n26762\n1883542227218818\n28435856035\n526\n6617\n12383022172625\n276304866415086\n4517820868\n3430667540603705\n31047375440650\n28226381731747\n72737882386\n8217740\n6\n554203425\n8632335831415\n12400341784078\n531326840060061\n613817471756220\n6075\n522306\n8614001\n2631730160\n2080753678355\n441617044484786\n3253040\n2621\n4535874050573363\n8548715\n138343235170411\n17\n282011165144827\n4801621\n7262721\n4867440278834214\n23506364184551\n37435402\n1335502118433\n506600542605805\n4645057023402151\n7848634052516210\n75\n471780421433283\n785\n162386\n4151326440406314\n78514434267422\n43568433745\n31460857\n7257860706\n561536257\n86125444\n1435511\n364723276106\n424168521486335\n183454113528\n24\n3\n67717834621\n70626174322108\n1662505117144737\n623473677835568\n1413208335\n14416645221\n6886017766305262\n2\n61876751821\n5136730364048\n105143142\n755784268371\n5\n1338110044336\n84677363\n688585\n3886260\n5584128271072\n362824313\n23837\n60417240\n662820\n74846834011\n31245571110614\n432422\n841785715\n512721\n11080447651642\n2801847\n82\n706837156\n508346101123013\n763234286\n24805\n5734\n36006\n545584303748\n866313\n45036043168\n5848024\n4030471402\n4070038\n33442036075\n4\n76086735646\n5062153\n73368212864261\n1787441158866\n72111557553\n25087675142\n8837\n760054761\n2211\n35820\n650\n50265785308\n5127135223\n102102642\n8540780378721\n577866470807043\n0\n4880221850\n3535\n4642014754\n17365\n3788526270\n347082250\n2218580675617828\n1853304\n41\n454518\n3031475375806031\n76544\n34208402014255\n8\n8036086875\n61214\n4621440752670872\n6\n561400\n26266401\n37213450658\n374026853625063\n411361203344242\n838108503255210\n72\n76062341003\n3170656\n653\n5470672\n5605\n1027\n117032503\n612271314322\n63128086527\n77\n13304173\n4604637322804\n76840565862108\n73\n704806613056\n3\n5783858\n524440653\n7751030\n25\n61452821873\n83\n23\n48506561\n57155\n5573155004333\n26\n4368\n700806253\n2257267535084\n8251\n7615652521722238\n210573222700\n3705327\n3454048084702087\n258408\n7027026767186\n71620\n34600422517858\n376\n66261766712786\n483213\n24204123\n2000\n601011188330\n68840121161\n38555644622325\n207670451184626\n72811877181618\n7\n40606812154\n473254546\n278605673485\n630343482578\n670315\n2581171\n5\n5561\n11742611\n145501\n617210784446\n231\n5757055703028153\n336237643870348\n54700\n57427\n560455527020550\n588\n448804156\n51362604603744\n75\n204666326818184\n472\n47411234\n3438\n5\n763615762377305\n128847131\n27\n68183\n54582544301\n844\n60872105138201\n48\n16401528\n756128663587823\n204774\n233268233\n435066\n3823217810305041\n2242667\n287811234287\n402372781205876\n30868188776\n7\n415801017\n2520442211614\n83738633\n2478115\n160428718855126\n250335785004\n158716648667371\n542810650\n31787458100031\n2043215413625058\n180225\n34231781\n70372542118\n3643128563138\n266485\n41\n2681717\n12115745017\n0\n223\n6408\n7201817402435\n87340360\n3\n56244407\n51075841\n413476642367\n2081723176\n6160823321304652\n181655232\n4\n41871\n3607087150\n3123387021806504\n502665\n1151\n483358\n8860668357\n4625233858574385\n18703256\n5\n62500\n4616336804\n13\n7836055315367373\n7514671781847\n1621016371\n4876\n814\n4\n431186622764817\n7\n64622528385\n81438616\n6\n88606431287664\n48210\n46676213\n7143255810\n18434717\n3\n4\n235\n13271\n30\n71736625767864\n4151744\n34\n734284502\n3\n3073587676474206\n583424812236\n75\n2576776147575\n70617456\n7\n13211\n52528381\n614450603\n54764037\n6328004416384\n216670437\n8255024\n1167514643214\n6725100727042\n2364301203\n83\n47343752\n4543746026848\n26710\n316501007\n16442332373640\n5562\n86123872305\n8310304015611\n630\n23127\n25253\n234487\n72731546777157\n2655148781\n33054125\n6521175564783184\n8230442452\n217335016726766\n45880\n116706287\n35874\n1781187685704545\n426767306\n78075020882327\n505\n36608\n5386078500718\n7737278\n802160\n503260551412563\n472710860572108\n6732181422351554\n5516576338886780\n456545232\n54631346383384\n8\n334\n6240645262488742\n117425001032\n80\n7\n710138556510\n30847\n624265276\n11\n601726433024035\n250\n650827734\n7736544725\n562336860402123\n464521670850\n354\n50100052220\n5320667\n140563787121264\n171485811421874\n3675228862217720\n4244183156505\n8464\n331538363676468\n6753101876841\n3\n1\n6\n58\n4424\n181701\n857\n5812\n13\n307645843700715\n65261\n76686501\n277170800716507\n40488\n227252375657\n864457\n5004\n2536303281271712\n84826\n18\n1600417722\n146722211\n568428177376022\n2612553850453144\n4214\n84448845867\n1\n631732484102415\n2838332660411011\n40241605867\n15\n5510836\n55113552\n277\n17151\n6221521351\n12483005227\n27673147\n8662262572582774\n6735710178\n18514250\n735784414\n2704764\n716\n2362\n732\n63153716441404\n6457\n5\n721087457835062\n52\n185\n23086344\n26\n5073712322\n278\n5462374525473\n17518\n282\n3764107\n20841683160\n5270101808\n1488477320\n340574044\n6778441088\n3\n8610655\n4626614885654\n835372237007\n6046844467\n468715033\n386\n688014\n3414\n678565386418\n1163710641432\n155318671\n810344102673\n3301744768\n60478752330\n2172275823432\n168772068282406\n5101861700740\n7744185306230\n1545\n7172475\n5533077803\n758668582670436\n805\n30246024441\n86181301460855\n2072210270370\n82\n165486817882652\n1084563622\n511680245121383\n866762\n826568345\n47532163083\n827111\n83376784\n32\n5588032\n440632\n46145374588608\n685062\n738601832088184\n5842557440408\n251408040\n266842\n716043722770208\n838453661438\n770334664672230\n603238\n4\n4824\n853735110\n1614055282837465\n30086\n5541303\n800\n6284825685380\n27077748\n155235540\n8431\n637474\n875\n587030845\n2\n83\n611\n7546\n2204\n7255603\n4251\n4738600\n86726614\n4077868731277878\n300\n32215411741\n150265852755\n1542581023\n86\n114777381565581\n40445014156\n4352088288127\n810350425414420\n67\n301\n85\n5383866657\n71465734783\n640105\n830140333323\n2274117\n8372108\n2434610487\n460205002160241\n804601\n2734652852367472\n2641\n8760133287001\n7\n46365740\n637\n2051364472351861\n4\n55157264\n856247070387\n131250380176\n8562026302\n3\n813\n41868636\n116285873637041\n7337\n370755\n32031666147628\n424443348448\n62020216814041\n3628733300533736\n7508620103755808\n638777272135726\n33827888678\n56464353757\n1135104313\n36181250271466\n1182562715054\n5014736486102\n77600454212321\n0\n484881250727174\n2312835714\n336421\n566364354224126\n807406328626\n83234725\n6787757655\n501032\n2138633847\n346834815187112\n3382152136338840\n8732342365330\n1680511\n825\n7\n3168302863456248\n750\n51564\n51653123827524\n2767135514465847\n2805554660768\n40227864687158\n480526723\n44041230\n726662583212532\n5050862600006\n1143314\n36\n701\n6\n215285\n80706400371\n4\n76070\n24527074113773\n42200706151627\n1115785\n43271252\n3724311\n48345\n2073431464738013\n4432586741606\n52050\n580015034623\n24253436036\n70611\n1400176111802\n285833452778\n5702546131756\n800751165\n3512115704816\n5123263447\n28287\n45553784458\n56367673\n0\n813362445752\n10\n8077552654756\n626788671030\n6834271644\n5648447538742678\n70722\n126167\n686338522284\n6751673365542\n8801244540787274\n281443475328405\n6624\n3256388540527535\n6212862311\n712053508560\n8218636160641167\n804814652\n71586556\n84653\n65554865748142\n5821\n14046\n38\n47277\n48384188404\n10474765837686\n1823045215\n37857732\n706\n80735\n111684\n1188820721\n56146415\n26413360\n28447874777163\n7416322\n2\n212\n63541145521\n225163665411\n8344828\n6183654572127\n10568230\n87246\n22102466556700\n577202617124440\n41658033\n188665515317451\n67488545170\n150\n1544\n62818613015580\n337\n8\n3\n6815812527473124\n3563\n544048253083\n763673\n25758106884088\n42355163335\n610543884\n2251\n404748114673\n4568074\n25560843170308\n48177137104608\n666355318516\n171647753\n2872\n18\n202\n67225\n7\n6221865647611\n41414144566\n578538442\n153846473711756\n1480251\n7\n677416626683\n54110653\n3154544745\n717\n2205\n28\n0\n450657788\n554125240664\n87455853413\n6268766162646125\n5175085\n50232783663575\n63745367437\n1650276688365438\n83713856\n86671627873\n132543846557\n4856301445\n306025066844832\n2588734562585\n777384485024\n1632010786\n4\n540867478263\n116478\n8\n4780787173175005\n241\n2873267\n44166\n505881437006\n4453\n216027354\n6076532485746134\n3330116857\n5423713825\n3\n802522758\n7583\n15860\n2512324781\n440\n863763\n2626\n1246\n6\n7\n1752\n1828\n12\n5\n7504861\n81\n682337670781304\n704347075213\n8\n573236111\n62614\n8500720434\n183773310656\n7844\n441350355\n176842277845\n323\n420825428075\n4816575588\n613\n83575222074311\n35725\n543444302220\n31741266240326\n8334040137\n5822627272\n12318\n7635015000772\n621548627121\n20846818040362\n182024232216421\n10055621364362\n1\n3838\n633767846401782\n4\n61287258760671\n38756484242\n204063736331\n6305313748\n2082\n3046746316\n8438021\n61506\n3460736761215245\n383\n0\n22501822\n3732844135046656\n4370643845853175\n72075181\n113\n541786\n6183265384773\n177345522608257\n64847386868227\n375872883526\n826548566\n72\n14\n82353481151832\n480642\n53440\n1373328358104054\n562847520273082\n2\n8842636\n110\n74157675150\n4641221\n10828864\n70815616266\n63715037234681\n65463055468642\n8836120825\n223524\n3\n7245603181733\n754\n87463058168\n315775063\n1032\n272158847\n36\n8862363043105\n68543\n5\n3620854685\n23701622087\n51473\n1084118436\n7001526830830258\n816568\n873246175341\n42236\n730607\n524084\n44772\n7843\n7168452\n0\n2148\n612\n8\n61278\n4427722\n24\n475314108454\n2567631134112\n2020406662\n886187848821\n6320651\n241321344010\n572027\n38505\n22248210705611\n16423037\n61578042\n50265202542558\n7\n52618412767850\n205\n647253726\n737\n478572217\n331308\n11474320\n225\n2812847278687\n160\n431418838\n1481055\n7227040148\n32\n85321721153723\n358762063023864\n7231625\n754\n84812\n326030\n743\n2287744356440666\n3036208743287485\n204482646823125\n7242887426402\n454025\n8038\n7772025051178247\n34261614\n668411660223678\n73102\n6416831712167\n0\n88001512\n35034321\n63\n64676\n560472607877818\n20185225630518\n6\n4658130\n1011\n24056066378\n3452\n585678605545537\n801\n475587645786308\n73241187882422\n521735831703\n47588751\n6034174326653\n623646040443\n8\n8318468300061025\n3457224\n78373243\n67402521458852\n3\n4780165213\n4632\n41633101661636\n2035084852\n2\n55050070\n523287250121768\n363310\n2735110851\n82522\n70214\n550265007\n44252724162438\n584\n8\n84388\n365\n358887455\n351832040455746\n241004\n5708825030322\n556822302143515\n3\n27332174138\n361\n53264065\n533113581887388\n23\n40\n66018507673554\n2813386027\n6886067723260018\n3603107740607\n334180363301027\n31058562\n43050347251853\n1582445314552106\n67133075328381\n722\n8312847847\n758730685414\n23675484368213\n3050504\n4647048784\n12384836808541\n3\n2325\n202837720085\n16032505\n25\n161021\n6308453413888880\n11\n5275140864\n",
"output": "1104098456464\n",
"type": "stdin_stdout"
}
]
} |
|
taco | verifiable_code | https://codeforces.com/problemset/problem/12/C | Solve the following coding problem using the programming language python:
The spring is coming and it means that a lot of fruits appear on the counters. One sunny day little boy Valera decided to go shopping. He made a list of m fruits he wanted to buy. If Valera want to buy more than one fruit of some kind, he includes it into the list several times.
When he came to the fruit stall of Ashot, he saw that the seller hadn't distributed price tags to the goods, but put all price tags on the counter. Later Ashot will attach every price tag to some kind of fruits, and Valera will be able to count the total price of all fruits from his list. But Valera wants to know now what can be the smallest total price (in case of the most «lucky» for him distribution of price tags) and the largest total price (in case of the most «unlucky» for him distribution of price tags).
Input
The first line of the input contains two integer number n and m (1 ≤ n, m ≤ 100) — the number of price tags (which is equal to the number of different kinds of fruits that Ashot sells) and the number of items in Valera's list. The second line contains n space-separated positive integer numbers. Each of them doesn't exceed 100 and stands for the price of one fruit of some kind. The following m lines contain names of the fruits from the list. Each name is a non-empty string of small Latin letters which length doesn't exceed 32. It is guaranteed that the number of distinct fruits from the list is less of equal to n. Also it is known that the seller has in stock all fruits that Valera wants to buy.
Output
Print two numbers a and b (a ≤ b) — the minimum and the maximum possible sum which Valera may need to buy all fruits from his list.
Examples
Input
5 3
4 2 1 10 5
apple
orange
mango
Output
7 19
Input
6 5
3 5 1 6 8 1
peach
grapefruit
banana
orange
orange
Output
11 30
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
(n, m) = input().split(' ')
n = int(n)
m = int(m)
priceList = []
res = []
least = 0
most = 0
fruitCount = 0
seq = input().split(' ')
for i in seq:
priceList.append(int(i))
item = []
count = []
for i in range(m):
inp = input()
if inp in item:
count[item.index(inp)] += 1
else:
item.append(inp)
count.append(1)
fruitCount += 1
count.sort()
count.reverse()
priceList.sort()
for i in range(len(count)):
least += priceList[i] * count[i]
res.append(str(least))
priceList.reverse()
for i in range(len(count)):
most += priceList[i] * count[i]
res.append(str(most))
print(' '.join(res))
``` | vfc_140427 | {
"difficulty": "easy",
"memory_limit": "256.0 megabytes",
"memory_limit_bytes": null,
"problem_url": "https://codeforces.com/problemset/problem/12/C",
"time_limit": "1.0 seconds"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "3 1\n14 26 22\naag\n",
"output": "14 26\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "3 3\n4 2 3\nwivujdxzjm\nawagljmtc\nwivujdxzjm\n",
"output": "7 11\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "1 4\n1\nu\nu\nu\nu\n",
"output": "4 4\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "12 18\n42 44 69 16 81 64 12 68 70 75 75 67\nfm\nqamklzfmrjnqgdspwfasjnplg\nqamklzfmrjnqgdspwfasjnplg\nqamklzfmrjnqgdspwfasjnplg\nl\nl\nl\nfm\nqamklzfmrjnqgdspwfasjnplg\nl\nnplgwotfm\np\nl\namklzfm\ntkpubqamklzfmrjn\npwf\nfm\np\n",
"output": "606 1338\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "4 3\n5 3 10 3\nxzjhplrzkbbzkypfazf\nxzjhplrzkbbzkypfazf\nh\n",
"output": "9 25\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://codeforces.com/problemset/problem/267/B | Solve the following coding problem using the programming language python:
You have a set of dominoes. Each domino is a rectangular tile with a line dividing its face into two square ends. Can you put all dominoes in a line one by one from left to right so that any two dominoes touched with the sides that had the same number of points? You can rotate the dominoes, changing the left and the right side (domino "1-4" turns into "4-1").
Input
The first line contains number n (1 ≤ n ≤ 100). Next n lines contains the dominoes. Each of these lines contains two numbers — the number of points (spots) on the left and the right half, correspondingly. The numbers of points (spots) are non-negative integers from 0 to 6.
Output
Print "No solution", if it is impossible to arrange the dominoes in the required manner. If the solution exists, then describe any way to arrange the dominoes. You put the dominoes from left to right. In each of n lines print the index of the domino to put in the corresponding position and then, after a space, character "+" (if you don't need to turn the domino) or "–" (if you need to turn it).
Examples
Input
5
1 2
2 4
2 4
6 4
2 1
Output
2 -
1 -
5 -
3 +
4 -
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
def euler(start):
s = [(start, 0)]
ans = []
while s:
(i, e) = s[-1]
if i in mark:
mark.remove(i)
if degree[i] == 0:
ans.append(e)
s.pop()
else:
for (j, e) in graph[i]:
if vis[abs(e)] == 0:
degree[i] -= 1
degree[j] -= 1
vis[abs(e)] = 1
s.append((j, e))
break
if mark:
print('No solution')
else:
for i in ans:
if i < 0:
print(-i, '+')
elif i > 0:
print(i, '-')
n = int(input())
degree = [0] * 7
vis = [0] * (n + 1)
graph = [[] for _ in range(7)]
start = 0
mark = set()
for i in range(1, 1 + n):
(x, y) = map(int, input().split())
graph[x].append((y, i))
graph[y].append((x, -i))
degree[x] += 1
degree[y] += 1
mark.add(x)
mark.add(y)
start = x
odd = 0
for i in range(0, 7):
if degree[i] % 2 == 1:
odd += 1
start = i
if odd not in [0, 2]:
print('No solution')
else:
euler(start)
``` | vfc_140435 | {
"difficulty": "hard",
"memory_limit": "256.0 megabytes",
"memory_limit_bytes": null,
"problem_url": "https://codeforces.com/problemset/problem/267/B",
"time_limit": "2.0 seconds"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "100\n5 0\n6 4\n1 6\n2 2\n4 0\n0 4\n4 4\n4 0\n6 6\n0 2\n3 2\n0 4\n0 4\n2 0\n4 4\n0 4\n2 6\n4 2\n1 4\n2 5\n2 0\n3 2\n1 4\n5 4\n4 2\n2 4\n4 0\n0 1\n6 4\n2 1\n5 4\n4 0\n5 6\n4 1\n2 4\n6 1\n6 4\n2 5\n2 4\n3 3\n5 4\n6 4\n2 2\n2 5\n4 4\n5 2\n3 4\n1 0\n2 2\n5 6\n3 5\n6 0\n0 3\n1 1\n3 1\n4 3\n4 0\n2 4\n2 6\n6 0\n5 6\n6 5\n3 6\n5 0\n0 2\n5 0\n4 5\n3 0\n5 3\n6 4\n6 5\n6 4\n5 6\n6 1\n1 3\n0 4\n4 1\n5 5\n4 5\n1 2\n1 6\n3 5\n2 2\n6 2\n5 3\n6 3\n3 1\n0 3\n3 3\n0 6\n6 6\n6 6\n4 3\n2 4\n5 5\n0 0\n6 6\n0 4\n4 2\n4 1\n",
"output": "53 -\n96 +\n28 +\n48 +\n10 +\n14 +\n21 -\n65 -\n68 -\n88 -\n5 -\n6 -\n8 -\n12 -\n13 +\n16 -\n27 -\n32 +\n57 -\n76 -\n98 +\n19 -\n54 +\n30 -\n80 -\n55 -\n75 -\n87 -\n11 +\n4 +\n43 +\n49 +\n83 +\n22 -\n40 +\n89 +\n47 +\n23 -\n34 -\n77 +\n100 -\n18 +\n25 -\n26 -\n35 +\n39 -\n58 +\n94 -\n99 -\n56 +\n93 -\n7 +\n15 +\n45 +\n24 -\n1 +\n64 -\n66 +\n52 -\n60 +\n90 +\n3 -\n36 -\n74 +\n81 +\n17 -\n20 +\n38 -\n44 +\n46 +\n59 +\n63 -\n51 +\n69 +\n82 +\n85 +\n86 -\n2 +\n31 -\n41 +\n67 +\n79 -\n29 -\n37 +\n42 -\n70 +\n72 -\n33 -\n78 +\n95 +\n50 +\n61 -\n62 -\n71 +\n73 +\n9 +\n91 +\n92 +\n97 +\n84 +\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "10\n6 6\n6 6\n6 2\n6 6\n6 6\n6 6\n6 1\n6 6\n6 6\n6 6\n",
"output": "3 -\n1 +\n2 +\n4 +\n5 +\n6 +\n8 +\n9 +\n10 +\n7 +\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://codeforces.com/problemset/problem/645/A | Solve the following coding problem using the programming language python:
Bessie the cow and her best friend Elsie each received a sliding puzzle on Pi Day. Their puzzles consist of a 2 × 2 grid and three tiles labeled 'A', 'B', and 'C'. The three tiles sit on top of the grid, leaving one grid cell empty. To make a move, Bessie or Elsie can slide a tile adjacent to the empty cell into the empty cell as shown below: $\rightarrow$
In order to determine if they are truly Best Friends For Life (BFFLs), Bessie and Elsie would like to know if there exists a sequence of moves that takes their puzzles to the same configuration (moves can be performed in both puzzles). Two puzzles are considered to be in the same configuration if each tile is on top of the same grid cell in both puzzles. Since the tiles are labeled with letters, rotations and reflections are not allowed.
-----Input-----
The first two lines of the input consist of a 2 × 2 grid describing the initial configuration of Bessie's puzzle. The next two lines contain a 2 × 2 grid describing the initial configuration of Elsie's puzzle. The positions of the tiles are labeled 'A', 'B', and 'C', while the empty cell is labeled 'X'. It's guaranteed that both puzzles contain exactly one tile with each letter and exactly one empty position.
-----Output-----
Output "YES"(without quotes) if the puzzles can reach the same configuration (and Bessie and Elsie are truly BFFLs). Otherwise, print "NO" (without quotes).
-----Examples-----
Input
AB
XC
XB
AC
Output
YES
Input
AB
XC
AC
BX
Output
NO
-----Note-----
The solution to the first sample is described by the image. All Bessie needs to do is slide her 'A' tile down.
In the second sample, the two puzzles can never be in the same configuration. Perhaps Bessie and Elsie are not meant to be friends after all...
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
a1 = input()
a2 = input()
b1 = input()
b2 = input()
first = list(a1 + a2[::-1])
second = list(b1 + b2[::-1])
first.remove('X')
second.remove('X')
ans = 'NO'
for i in range(3):
if first == second:
ans = 'YES'
break
second = second[1:] + [second[0]]
print(ans)
``` | vfc_140439 | {
"difficulty": "easy",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": "https://codeforces.com/problemset/problem/645/A",
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "AB\nXC\nXB\nAC\n",
"output": "YES\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "AB\nXC\nAC\nBX\n",
"output": "NO\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "XC\nBA\nCB\nAX\n",
"output": "NO\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "AB\nXC\nAX\nCB\n",
"output": "YES\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://practice.geeksforgeeks.org/problems/search-a-node-in-bst/1 | Solve the following coding problem using the programming language python:
Given a Binary Search Tree and a node value X, find if the node with value X is present in the BST or not.
Example 1:
Input: 2
\
81
/ \
42 87
\ \
66 90
/
45
X = 87
Output: 1
Explanation: As 87 is present in the
given nodes , so the output will be
1.
Example 2:
Input: 6
\
8
/ \
7 9
X = 11
Output: 0
Explanation: As 11 is not present in
the given nodes , so the output will
be 0.
Your Task:
You don't need to read input or print anything. Complete the function search()which returns true if the node with value x is present in the BSTelse returns false.
Expected Time Complexity: O(Height of the BST)
Expected Auxiliary Space: O(1).
Constraints:
1 <= Number of nodes <= 10^{5}
Write your solution by modifying this code:
```python
#Your task is to complete this function
class BST:
#Function to search a node in BST.
def search(self, node, x):
#code here
```
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
class BST:
def search(self, node, x):
if node is None:
return False
if node.data == x:
return True
elif x < node.data:
return self.search(node.left, x)
else:
return self.search(node.right, x)
``` | vfc_140443 | {
"difficulty": "easy",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": "https://practice.geeksforgeeks.org/problems/search-a-node-in-bst/1",
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "2\r\n \\\r\n 81 \r\n / \\ \r\n 42 87 \r\n \\ \\ \r\n 66 90 \r\n / \r\n 45\r\nX = 87",
"output": "1",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "6\r\n \\ \r\n 8 \r\n / \\ \r\n 7 9\r\nX = 11",
"output": "0",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://www.codechef.com/problems/MY1STCONTEST | Solve the following coding problem using the programming language python:
*Each contest - there are approximately 1500 - 2000 users who participate for the 1st time and get rated.*
*The Chef wanted to tell new users some tricks for their 1st contest:*
*Before the contest - you don’t have any rating. So even if you make a single submission - you will become part of the contest rank list and you will get a rating.*
*If you want your rating to increase - give the entire 3 hours to the contest & don’t quit! If you keep trying till the end, and the more time you get, the more problems you can solve. That means larger rating increases!*
*Do not ask your friends for their code. If you copy paste their code, you will get caught during plagiarism checks and your rating will be reduced by 275 points, along with a permanent black mark on your profile.*
Now to the problem:
In a contest where N new users visited the contest,
A users just saw the problems and didn’t make any submissions and hence won’t get any rating.
B users who made a submission but could not solve any problem correctly. Thus, after the contest, they will get a rating in the range 800 - 1000.
Everyone else could correctly solve at least 1 problem. Thus, they will get a rating strictly greater than 1000 after the contest.
You need to output the number of new users in the contest who, after the contest, will get a rating and also the number of new users who will get a rating strictly greater than 1000.
------ Input Format ------
- Each input file contains of a single line, with three integers N, A and B - the number of new users, the number of users who just saw the problem and didn't make any submission, and the number of users who made a submission but could not solve any problem correctly.
------ Output Format ------
Output two integers separated by a space in a single line - the number of new users who will get a rating at the end of the contest and the number of new users who will get a rating higher than 1000.
------ Constraints ------
$2 ≤ N ≤ 1000$
$1 ≤ A ≤ 1000$
$1 ≤ B ≤ 1000$
$A + B ≤ N$
----- Sample Input 1 ------
10 3 2
----- Sample Output 1 ------
7 5
----- explanation 1 ------
There were $10$ new users. Among those $10$, $3$ didn't make any submissions. This means that the other $10 - 3 = 7$ users made submissions and will get a rating. This is the first integer of the output.
Now, among these $7$ users, $2$ couldn't solve any problem even though they submitted and tried. So, they will get a rating less than equal to $1000$. The other $7 - 2 = 5$ users were able to solve at least $1$ problem and hence will get a rating greater than $1000$. Hence, the second integer of the output is $5$.
----- Sample Input 2 ------
10 4 1
----- Sample Output 2 ------
6 5
----- explanation 2 ------
There were $10$ new users. Among those $10$, $4$ didn't make any submissions. This means that the other $10 - 4 = 6$ users made submissions and will get a rating. This is the first integer of the output.
Now, among these $6$ users, $1$ couldn't solve any problem even though they submitted and tried. So, they will get a rating less than equal to $1000$. The other $6 - 1 = 5$ users were able to solve at least $1$ problem and hence will get a rating greater than $1000$. Hence, the second integer of the output is $5$.
----- Sample Input 3 ------
20 1 2
----- Sample Output 3 ------
19 17
----- explanation 3 ------
There were $20$ new users. Among those $20$, $1$ didn't make any submissions. This means that the other $20 - 1 = 19$ users made submissions and will get a rating. This is the first integer of the output.
Now, among these $19$ users, $2$ couldn't solve any problem even though they submitted and tried. So, they will get a rating less than equal to $1000$. The other $19 - 2 = 17$ users were able to solve at least $1$ problem and hence will get a rating greater than $1000$. Hence, the second integer of the output is $17$.
----- Sample Input 4 ------
1000 300 700
----- Sample Output 4 ------
700 0
----- explanation 4 ------
There were $1000$ new users. Among those $1000$, $300$ didn't make any submissions. This means that the other $1000 - 300 = 700$ users made submissions and will get a rating. This is the first integer of the output.
Now, among these $700$ users, $700$ couldn't solve any problem even though they submitted and tried. So, they will get a rating less than equal to $1000$. The other $700 - 700 = 0$ users were able to solve at least $1$ problem and hence will get a rating greater than $1000$. Hence, the second integer of the output is $0$.
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
(t, s, u) = map(int, input().split())
print(t - s, t - s - u)
``` | vfc_140445 | {
"difficulty": "easy",
"memory_limit": "50000 bytes",
"memory_limit_bytes": null,
"problem_url": "https://www.codechef.com/problems/MY1STCONTEST",
"time_limit": "1 seconds"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "10 3 2\n",
"output": "7 5\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "10 4 1\n",
"output": "6 5\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://codeforces.com/problemset/problem/491/B | Solve the following coding problem using the programming language python:
Think of New York as a rectangular grid consisting of N vertical avenues numerated from 1 to N and M horizontal streets numerated 1 to M. C friends are staying at C hotels located at some street-avenue crossings. They are going to celebrate birthday of one of them in the one of H restaurants also located at some street-avenue crossings. They also want that the maximum distance covered by one of them while traveling to the restaurant to be minimum possible. Help friends choose optimal restaurant for a celebration.
Suppose that the distance between neighboring crossings are all the same equal to one kilometer.
-----Input-----
The first line contains two integers N и M — size of the city (1 ≤ N, M ≤ 10^9). In the next line there is a single integer C (1 ≤ C ≤ 10^5) — the number of hotels friends stayed at. Following C lines contain descriptions of hotels, each consisting of two coordinates x and y (1 ≤ x ≤ N, 1 ≤ y ≤ M). The next line contains an integer H — the number of restaurants (1 ≤ H ≤ 10^5). Following H lines contain descriptions of restaurants in the same format.
Several restaurants and hotels may be located near the same crossing.
-----Output-----
In the first line output the optimal distance. In the next line output index of a restaurant that produces this optimal distance. If there are several possibilities, you are allowed to output any of them.
-----Examples-----
Input
10 10
2
1 1
3 3
2
1 10
4 4
Output
6
2
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
(n, m) = map(int, input().split())
minx = miny = n + m
maxx = maxy = -minx
dist = n + m + 1
c = int(input())
for _ in range(c):
(x, y) = map(int, input().split())
minx = min(minx, x - y)
miny = min(miny, x + y)
maxx = max(maxx, x - y)
maxy = max(maxy, x + y)
h = int(input())
for i in range(h):
(a, b) = map(int, input().split())
x = a - b
y = a + b
maxxy = max(max(abs(minx - x), abs(maxx - x)), max(abs(miny - y), abs(maxy - y)))
if maxxy < dist:
dist = maxxy
res = i + 1
print(dist)
print(res)
``` | vfc_140449 | {
"difficulty": "hard",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": "https://codeforces.com/problemset/problem/491/B",
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "10 10\n2\n1 1\n3 3\n2\n1 10\n4 4\n",
"output": "6\n2\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "100 100\n10\n53 20\n97 6\n12 74\n48 92\n97 13\n47 96\n75 32\n69 21\n95 75\n1 54\n10\n36 97\n41 1\n1 87\n39 23\n27 44\n73 97\n1 1\n6 26\n48 3\n5 69\n",
"output": "108\n4\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "100 100\n10\n86 72\n25 73\n29 84\n34 33\n29 20\n84 83\n41 80\n22 22\n16 89\n77 49\n1\n4 23\n",
"output": "140\n1\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "100 100\n1\n66 77\n10\n70 11\n76 69\n79 39\n90 3\n38 87\n61 81\n98 66\n63 68\n62 93\n53 36\n",
"output": "9\n6\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "1000000000 1000000000\n1\n1 1\n1\n1000000000 1000000000\n",
"output": "1999999998\n1\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "123456789 987654321\n1\n312 987654321\n1\n123456789 213\n",
"output": "1111110585\n1\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://www.codechef.com/problems/CO92REST | Solve the following coding problem using the programming language python:
Chef had an array A with length N, but some of its elements got lost. Now, each element of this array is either unknown (denoted by -1) or a positive integer not exceeding K.
Chef decided to restore the array A by replacing each unknown element by a positive integer not exceeding K.
However, Chef has M restrictions that must hold for the restored array. There are two types of restrictions:
- I L R, meaning that for each i such that L < i ≤ R, the condition Ai - Ai-1 = 1 should be satisfied.
- D L R, meaning that for each i such that L < i ≤ R, the condition Ai - Ai-1 = -1 should be satisfied.
Chef would like to know the number of ways to restore the array while satisfying all restrictions, modulo 109+7.
-----Input-----
- The first line of the input contains a single integer T denoting the number of test cases. The description of T test cases follows.
- The first line of each test case contains three space-separated integers N, M and K.
- The second line contains N integers A1, A2, ..., AN.
- Each of the following M lines contains one restriction in the form I L R or D L R.
-----Output-----
For each test case, print a single line containing one integer - the number of ways to restore the array modulo 109+7.
-----Constraints-----
- 1 ≤ T ≤ 10
- 1 ≤ N, M ≤ 100,000
- 1 ≤ K ≤ 1,000,000,000
- 1 ≤ L < R ≤ N
- 1 ≤ Ai ≤ K or Ai = -1 for each valid i
- 1 ≤ sum of N over all test cases ≤ 500,000
- 1 ≤ sum of M over all test cases ≤ 500,000
-----Example-----
Input:
3
4 2 10
2 3 5 4
I 1 2
D 3 4
5 2 10
-1 -1 -1 -1 -1
I 1 3
D 3 5
6 2 2
-1 -1 -1 -1 -1 -1
I 1 4
D 4 6
Output:
1
8
0
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
mod = 10 ** 9 + 7
for t in range(int(input())):
(N, M, K) = map(int, input().split())
A = list(map(int, input().split()))
(I, D) = ([0] * (N + 2), [0] * (N + 2))
for i in range(M):
(x, L, R) = input().split()
(L, R) = (int(L), int(R))
if x == 'I':
I[L] += 1
I[R] -= 1
else:
D[L] += 1
D[R] -= 1
impossibru = mx = mn = 0
ans = 1
for i in range(N):
I[i] += I[i - 1]
D[i] += D[i - 1]
if I[i] and D[i]:
impossibru = 1
break
if not I[i] and (not D[i]):
ans = ans * (mx - mn + 1) % mod
(mn, mx) = (1, K)
elif I[i]:
mx = min(mx + 1, K)
mn += 1
elif D[i]:
mn = max(1, mn - 1)
mx -= 1
if mn > mx:
impossibru = 1
break
if A[i] != -1:
if not mn <= A[i] <= mx:
impossibru = 1
break
mn = mx = A[i]
ans = ans * (mx - mn + 1) % mod
print(0 if impossibru else ans)
``` | vfc_140453 | {
"difficulty": "very_hard",
"memory_limit": "50000 bytes",
"memory_limit_bytes": null,
"problem_url": "https://www.codechef.com/problems/CO92REST",
"time_limit": "1 seconds"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "3\n4 2 10\n2 3 5 4\nI 1 2\nD 3 4\n5 2 10\n-1 -1 -1 -1 -1\nI 1 3\nD 3 5\n6 2 2\n-1 -1 -1 -1 -1 -1\nI 1 4\nD 4 6\n",
"output": "1\n8\n0\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | Solve the following coding problem using the programming language python:
The professor is conducting a course on Discrete Mathematics to a class of N students. He is angry at the lack of their discipline, and he decides to cancel the class if there are fewer than K students present after the class starts.
Given the arrival time of each student, your task is to find out if the class gets cancelled or not.
INPUT
The first line of the input contains T, the number of test cases. Each test case contains two lines.
The first line of each test case contains two space-separated integers, N and K.
The next line contains N space-separated integers, a1,a2,…,aN, representing the arrival time of each student.
If the arrival time of a given student is a non-positive integer (ai≤0), then the student enters before the class starts. If the arrival time of a given student is a positive integer (ai>0), the student enters after the class has started.
OUTPUT
For each testcase, print "YES" (without quotes) if the class gets cancelled and "NO" (without quotes) otherwise.
CONSTRAINT
1≤T≤10
1≤N≤1000
1≤N≤
−100≤ai≤100,where i∈[1,N]
NOTE
If a student enters the class exactly when it starts (ai=0), the student is considered to have entered before the class has started.
SAMPLE INPUT
2
4 3
-1 -3 4 2
4 2
0 -1 2 1
SAMPLE OUTPUT
YES
NO
Explanation
For the first test case, K=3, i.e., the professor wants at least 3 students to be in class but there are only 2 who have arrived on time (−3 and −1), hence the class gets cancelled.
For the second test case, K=2, i.e, the professor wants at least 2 students to be in class and there are 2 who have arrived on time (0 and −1), hence the class does not get cancelled.
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
test_cases=int(input())
for i in range(test_cases):
students,required=input().split()
students=int(students)
required=int(required)
a=[0]*students
a=input().split()
count=0
for i in range(students):
a[i]=int(a[i])
if a[i]<=0:
count+=1
if count>=required:
print("NO")
else:
print("YES")
``` | vfc_140457 | {
"difficulty": "unknown_difficulty",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": null,
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "2\n4 3\n-1 -3 4 2\n4 2\n0 -1 2 1",
"output": "YES\nNO",
"type": "stdin_stdout"
}
]
} |
|
taco | verifiable_code | https://codeforces.com/problemset/problem/41/D | Solve the following coding problem using the programming language python:
On some square in the lowest row of a chessboard a stands a pawn. It has only two variants of moving: upwards and leftwards or upwards and rightwards. The pawn can choose from which square of the lowest row it can start its journey. On each square lay from 0 to 9 peas. The pawn wants to reach the uppermost row having collected as many peas as possible. As there it will have to divide the peas between itself and its k brothers, the number of peas must be divisible by k + 1. Find the maximal number of peas it will be able to collect and which moves it should make to do it.
The pawn cannot throw peas away or leave the board. When a pawn appears in some square of the board (including the first and last square of the way), it necessarily takes all the peas.
Input
The first line contains three integers n, m, k (2 ≤ n, m ≤ 100, 0 ≤ k ≤ 10) — the number of rows and columns on the chessboard, the number of the pawn's brothers. Then follow n lines containing each m numbers from 0 to 9 without spaces — the chessboard's description. Each square is described by one number — the number of peas in it. The first line corresponds to the uppermost row and the last line — to the lowest row.
Output
If it is impossible to reach the highest row having collected the number of peas divisible by k + 1, print -1.
Otherwise, the first line must contain a single number — the maximal number of peas the pawn can collect given that the number must be divisible by k + 1. The second line must contain a single number — the number of the square's column in the lowest row, from which the pawn must start its journey. The columns are numbered from the left to the right with integral numbers starting from 1. The third line must contain a line consisting of n - 1 symbols — the description of the pawn's moves. If the pawn must move upwards and leftwards, print L, if it must move upwards and rightwards, print R. If there are several solutions to that problem, print any of them.
Examples
Input
3 3 1
123
456
789
Output
16
2
RL
Input
3 3 0
123
456
789
Output
17
3
LR
Input
2 2 10
98
75
Output
-1
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
import sys
from array import array
def input():
return sys.stdin.buffer.readline().decode('utf-8')
(n, m, k) = map(int, input().split())
k += 1
a = [tuple(map(int, input().rstrip())) for _ in range(n)]
empty = -1
dp = [[[empty] * k for _ in range(m)] for _ in range(n)]
prev = [[[(-1, -1, '*')] * k for _ in range(m)] for _ in range(n)]
for i in range(m):
dp[-1][i][a[-1][i] % k] = a[-1][i]
for i in range(n - 1, 0, -1):
for j in range(m):
for mod in range(k):
if dp[i][j][mod] == empty:
continue
val = dp[i][j][mod]
for tj in (j - 1, j + 1):
if 0 <= tj < m and dp[i - 1][tj][(mod + a[i - 1][tj]) % k] < val + a[i - 1][tj]:
dp[i - 1][tj][(mod + a[i - 1][tj]) % k] = val + a[i - 1][tj]
prev[i - 1][tj][(mod + a[i - 1][tj]) % k] = (j, mod, 'L' if tj < j else 'R')
(ans, p_j, p_mod, path) = (empty, 0, 0, '')
for j in range(m):
if ans < dp[0][j][0]:
ans = dp[0][j][0]
(p_j, p_mod, path) = prev[0][j][0]
if ans == empty:
print('-1')
exit()
for i in range(1, n - 1):
path += prev[i][p_j][p_mod][2]
(p_j, p_mod) = prev[i][p_j][p_mod][:2]
print(ans)
print(p_j + 1)
print(path[::-1])
``` | vfc_140462 | {
"difficulty": "hard",
"memory_limit": "256.0 megabytes",
"memory_limit_bytes": null,
"problem_url": "https://codeforces.com/problemset/problem/41/D",
"time_limit": "2.0 seconds"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "100 2 8\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n00\n",
"output": "0\n2\nLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLRL\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "40 10 1\n3662957315\n8667652926\n0833069659\n7030124763\n0285674766\n3253847205\n3183518599\n6584668288\n6016531609\n4094512804\n8169065529\n5526028299\n1251249986\n3970729176\n7534232301\n4643554614\n8544233598\n3618335000\n4458737272\n2014874848\n2052050286\n2523863039\n3367463306\n7570627477\n6504863662\n5673627493\n9683553049\n5087433832\n4895351652\n8976415673\n7744852982\n8880573285\n8601062585\n9914945591\n6101306342\n4477024828\n6711693809\n9518645171\n0320790840\n1660676034\n",
"output": "258\n5\nRLRRRRLRLRLRRLLLLLRLLRLRRRRRRLRLLLLRLLR",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "2 2 0\n02\n64\n",
"output": "8\n1\nR\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "10 5 5\n57903\n23822\n16074\n14758\n17503\n85862\n22741\n24624\n91349\n59483\n",
"output": "60\n5\nLLRLLRLRL",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://codeforces.com/problemset/problem/239/C | Solve the following coding problem using the programming language python:
A sequence of non-negative integers a1, a2, ..., an of length n is called a wool sequence if and only if there exists two integers l and r (1 ≤ l ≤ r ≤ n) such that <image>. In other words each wool sequence contains a subsequence of consecutive elements with xor equal to 0.
The expression <image> means applying the operation of a bitwise xor to numbers x and y. The given operation exists in all modern programming languages, for example, in languages C++ and Java it is marked as "^", in Pascal — as "xor".
In this problem you are asked to compute the number of sequences made of n integers from 0 to 2m - 1 that are not a wool sequence. You should print this number modulo 1000000009 (109 + 9).
Input
The only line of input contains two space-separated integers n and m (1 ≤ n, m ≤ 105).
Output
Print the required number of sequences modulo 1000000009 (109 + 9) on the only line of output.
Examples
Input
3 2
Output
6
Note
Sequences of length 3 made of integers 0, 1, 2 and 3 that are not a wool sequence are (1, 3, 1), (1, 2, 1), (2, 1, 2), (2, 3, 2), (3, 1, 3) and (3, 2, 3).
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
(n, m) = map(int, input().split())
MOD = 10 ** 9 + 9
ans = pow(2, m, MOD) - 1
step = pow(2, m, MOD) - 2
for i in range(n - 1):
ans = ans * step % MOD
step -= 1
while ans < 0:
ans += MOD
while ans >= MOD:
ans -= MOD
print(ans)
``` | vfc_140474 | {
"difficulty": "easy",
"memory_limit": "256.0 megabytes",
"memory_limit_bytes": null,
"problem_url": "https://codeforces.com/problemset/problem/239/C",
"time_limit": "1.0 seconds"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "86232 41348\n",
"output": "77566161\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "2 2\n",
"output": "6\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://codeforces.com/problemset/problem/1092/D2 | Solve the following coding problem using the programming language python:
Vova's family is building the Great Vova Wall (named by Vova himself). Vova's parents, grandparents, grand-grandparents contributed to it. Now it's totally up to Vova to put the finishing touches.
The current state of the wall can be respresented by a sequence $a$ of $n$ integers, with $a_i$ being the height of the $i$-th part of the wall.
Vova can only use $2 \times 1$ bricks to put in the wall (he has infinite supply of them, however).
Vova can put bricks only horizontally on the neighbouring parts of the wall of equal height. It means that if for some $i$ the current height of part $i$ is the same as for part $i + 1$, then Vova can put a brick there and thus increase both heights by 1. Obviously, Vova can't put bricks in such a way that its parts turn out to be off the borders (to the left of part $1$ of the wall or to the right of part $n$ of it).
Note that Vova can't put bricks vertically.
Vova is a perfectionist, so he considers the wall completed when: all parts of the wall has the same height; the wall has no empty spaces inside it.
Can Vova complete the wall using any amount of bricks (possibly zero)?
-----Input-----
The first line contains a single integer $n$ ($1 \le n \le 2 \cdot 10^5$) — the number of parts in the wall.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^9$) — the initial heights of the parts of the wall.
-----Output-----
Print "YES" if Vova can complete the wall using any amount of bricks (possibly zero).
Print "NO" otherwise.
-----Examples-----
Input
5
2 1 1 2 5
Output
YES
Input
3
4 5 3
Output
NO
Input
2
10 10
Output
YES
-----Note-----
In the first example Vova can put a brick on parts 2 and 3 to make the wall $[2, 2, 2, 2, 5]$ and then put 3 bricks on parts 1 and 2 and 3 bricks on parts 3 and 4 to make it $[5, 5, 5, 5, 5]$.
In the second example Vova can put no bricks in the wall.
In the third example the wall is already complete.
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
def f():
b = [a[0]]
for e in a[1:]:
if b != []:
if e > b[-1]:
print('NO')
return
elif e == b[-1]:
b.pop()
else:
b.append(e)
else:
b.append(e)
if len(b) == 0:
print('YES')
elif len(set(b)) == 1 and b[0] == max(a):
print('YES')
else:
print('NO')
n = int(input())
a = [int(i) for i in input().split()]
f()
``` | vfc_140478 | {
"difficulty": "hard",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": "https://codeforces.com/problemset/problem/1092/D2",
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "5\n2 1 1 2 5\n",
"output": "YES\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "3\n4 5 3\n",
"output": "NO\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "2\n10 10\n",
"output": "YES\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "4\n1 2 2 1\n",
"output": "NO\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "6\n3 2 3 3 2 3\n",
"output": "NO\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "1\n1\n",
"output": "YES\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://codeforces.com/problemset/problem/1380/C | Solve the following coding problem using the programming language python:
There are $n$ programmers that you want to split into several non-empty teams. The skill of the $i$-th programmer is $a_i$. You want to assemble the maximum number of teams from them. There is a restriction for each team: the number of programmers in the team multiplied by the minimum skill among all programmers in the team must be at least $x$.
Each programmer should belong to at most one team. Some programmers may be left without a team.
Calculate the maximum number of teams that you can assemble.
-----Input-----
The first line contains the integer $t$ ($1 \le t \le 1000$) — the number of test cases.
The first line of each test case contains two integers $n$ and $x$ ($1 \le n \le 10^5; 1 \le x \le 10^9$) — the number of programmers and the restriction of team skill respectively.
The second line of each test case contains $n$ integers $a_1, a_2, \dots , a_n$ ($1 \le a_i \le 10^9$), where $a_i$ is the skill of the $i$-th programmer.
The sum of $n$ over all inputs does not exceed $10^5$.
-----Output-----
For each test case print one integer — the maximum number of teams that you can assemble.
-----Example-----
Input
3
5 10
7 11 2 9 5
4 8
2 4 2 3
4 11
1 3 3 7
Output
2
1
0
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
for _ in range(int(input())):
(n, x) = map(int, input().split())
l = list(map(int, input().split()))
l.sort(reverse=True)
size = 1
team = 0
for i in range(n):
if l[i] * size >= x:
team += 1
size = 1
else:
size += 1
print(team)
``` | vfc_140482 | {
"difficulty": "medium",
"memory_limit": "256 megabytes",
"memory_limit_bytes": null,
"problem_url": "https://codeforces.com/problemset/problem/1380/C",
"time_limit": "2 seconds"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "3\n5 10\n7 11 2 9 5\n4 8\n2 4 2 3\n4 11\n1 3 3 7\n",
"output": "2\n1\n0\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "3\n5 10\n7 11 2 9 1\n4 8\n2 4 2 3\n4 11\n1 3 3 7\n",
"output": "2\n1\n0\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "3\n5 10\n7 11 2 9 1\n4 8\n2 4 2 3\n4 8\n1 3 3 7\n",
"output": "2\n1\n1\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "3\n5 10\n7 11 2 9 1\n4 8\n2 4 2 1\n4 8\n1 3 3 7\n",
"output": "2\n0\n1\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://codeforces.com/problemset/problem/1144/A | Solve the following coding problem using the programming language python:
A string is called diverse if it contains consecutive (adjacent) letters of the Latin alphabet and each letter occurs exactly once. For example, the following strings are diverse: "fced", "xyz", "r" and "dabcef". The following string are not diverse: "az", "aa", "bad" and "babc". Note that the letters 'a' and 'z' are not adjacent.
Formally, consider positions of all letters in the string in the alphabet. These positions should form contiguous segment, i.e. they should come one by one without any gaps. And all letters in the string should be distinct (duplicates are not allowed).
You are given a sequence of strings. For each string, if it is diverse, print "Yes". Otherwise, print "No".
-----Input-----
The first line contains integer $n$ ($1 \le n \le 100$), denoting the number of strings to process. The following $n$ lines contains strings, one string per line. Each string contains only lowercase Latin letters, its length is between $1$ and $100$, inclusive.
-----Output-----
Print $n$ lines, one line per a string in the input. The line should contain "Yes" if the corresponding string is diverse and "No" if the corresponding string is not diverse. You can print each letter in any case (upper or lower). For example, "YeS", "no" and "yES" are all acceptable.
-----Example-----
Input
8
fced
xyz
r
dabcef
az
aa
bad
babc
Output
Yes
Yes
Yes
Yes
No
No
No
No
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
t = int(input())
while t:
s = input()
s = sorted(list(s))
flag = 0
for i in range(len(s) - 1):
if s.count(s[i]) > 1:
flag = 1
break
if chr(ord(s[i]) + 1) not in s:
flag = 1
break
if flag == 0 or len(s) == 1:
print('Yes')
else:
print('No')
t = t - 1
``` | vfc_140486 | {
"difficulty": "easy",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": "https://codeforces.com/problemset/problem/1144/A",
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "8\nfced\nxyz\nr\ndabcef\naz\naa\nbad\nbabc\n",
"output": "Yes\nYes\nYes\nYes\nNo\nNo\nNo\nNo\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "44\nops\ntest\nyes\nno\nac\nbc\ncb\nz\na\nq\nr\nu\nqq\nop\npo\nxu\nux\nxy\nyx\na\nab\nabc\nabcd\nabcde\nabcdef\nabcdefg\nbcdefg\ncdefg\ndefg\nefgd\nefef\nabacaba\nabz\naoi\nioi\ncodeforces\nklmn\nnmlk\nkln\nklmnl\nkmn\nkklmn\nklmnn\naklkmn\n",
"output": "No\nNo\nNo\nYes\nNo\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nNo\nYes\nYes\nNo\nNo\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nNo\nNo\nNo\nNo\nNo\nNo\nYes\nYes\nNo\nNo\nNo\nNo\nNo\nNo\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "1\nf\n",
"output": "Yes\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "1\nshohrukh\n",
"output": "No\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "69\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\nabc\n",
"output": "Yes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\nYes\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "1\nshohruk\n",
"output": "No\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | Solve the following coding problem using the programming language python:
We have decided to introduce an automatic ticket gate to the railway network of a certain country. One of the difficult issues to implement is determining whether a given ticket can move between designated stations. Each ticket has a boarding station and a getting-off station. With this ticket, you can not only "get on at the boarding station and get off at the getting off station", but you are also allowed to get on and off the train.
There are S stations on this rail network, of which Group R stations are adjacent and can be traversed in both directions without going through other stations. There is only one railroad track connecting adjacent stations. The distance between adjacent stations is the distance measured along this railroad track. There are multiple possible routes from one station to another, depending on the shape of the railway network, but the route with the shortest distance is called the shortest route. If there are multiple such routes, both are accepted as the shortest route.
You can move from station c to station d with a ticket for boarding station a and getting off station b if there is a route p that meets all of the following conditions.
* Route p is the shortest route from station a to station b.
* Route p is a route that starts from station a, goes through station c, then station d, and ends at station b. The section from station c to station d is the shortest route between these two stations.
You will be given route map and ticket information. Next, you will be given several pairs of start and end points, so write a program that determines whether you can move from the start point to the end point with that ticket.
input
The input consists of one dataset. Input data is given in the following format.
S R
u1 v1 w1
u2 v2 w2
::
uR vR wR
a b Q
c1 d1
::
cQ dQ
The numbers given on each line are separated by a single space.
The first line consists of two integers. S (2 ≤ S ≤ 100000) is the number of stations that appear on the railroad map, and R (1 ≤ R ≤ 200000) is the number of pairs of adjacent stations. The following R line is given information on the railroad tracks that directly connect adjacent stations. ui and vi (1 ≤ ui, vi ≤ S) indicate the station numbers at both ends of the i-th line. wi (1 ≤ wi ≤ 1000) is an integer representing the distance between these stations. However, numbers from 1 to S are assigned to each station without duplication, and ui ≠ vi.
The next line consists of three integers. The first two integers represent the ticket sections, where a is the boarding station and b is the getting-off station (1 ≤ a, b ≤ S). The third integer Q (1 ≤ Q ≤ 40000) indicates the number of questions. The question is given on the following Q line. ci and di (1 ≤ ci, di ≤ S) indicate the boarding and alighting stations of the i-th question. However, a ≠ b and ci ≠ di.
output
For each question, print Yes if you can move with the given ticket, or No if you can't.
Example
Input
6 7
1 2 3
1 4 1
2 3 5
4 3 1
3 6 2
4 5 2
5 6 1
1 6 6
1 6
4 3
4 6
5 6
2 6
2 5
Output
Yes
Yes
Yes
Yes
No
No
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
from heapq import heappush, heappop
(s, r) = map(int, input().split())
edges = [[] for _ in range(s)]
for _ in range(r):
(u, v, w) = map(int, input().split())
u -= 1
v -= 1
edges[u].append((v, w))
edges[v].append((u, w))
(a, b, q) = map(int, input().split())
a -= 1
b -= 1
def dijkstra(start):
INF = 10 ** 20
dist = [INF] * s
dist[start] = 0
parents = [[] for _ in range(s)]
que = []
heappush(que, (0, start))
while que:
(score, node) = heappop(que)
for (to, w) in edges[node]:
if dist[to] > score + w:
dist[to] = score + w
parents[to] = {node}
heappush(que, (score + w, to))
elif dist[to] == score + w:
parents[to].add(node)
return (dist, parents)
def on_shortest_path(c, d, mem):
if c == d:
return True
if d in mem:
return False
mem.add(d)
if dist_from_a[c] >= dist_from_a[d]:
return False
for parent in parents[d]:
if on_shortest_path(c, parent, mem):
return True
return False
(dist_from_a, parents) = dijkstra(a)
(dist_from_b, _) = dijkstra(b)
shortest = dist_from_a[b]
for _ in range(q):
(c, d) = map(int, input().split())
c -= 1
d -= 1
if dist_from_a[c] + dist_from_b[c] == shortest and dist_from_a[d] + dist_from_b[d] == shortest and on_shortest_path(c, d, set()):
print('Yes')
else:
print('No')
``` | vfc_140490 | {
"difficulty": "unknown_difficulty",
"memory_limit": "134.217728 megabytes",
"memory_limit_bytes": null,
"problem_url": null,
"time_limit": "8.0 seconds"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "6 3\n1 2 3\n1 4 1\n2 3 5\n4 3 1\n3 6 2\n4 5 2\n5 6 1\n1 6 6\n1 6\n4 3\n4 6\n5 6\n2 6\n2 5",
"output": "No\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "6 3\n1 2 3\n1 4 1\n2 3 5\n4 3 2\n3 1 2\n1 5 2\n5 6 1\n1 6 6\n1 6\n4 3\n4 6\n8 6\n2 6\n2 5",
"output": "No\nNo\n",
"type": "stdin_stdout"
}
]
} |
|
taco | verifiable_code | https://practice.geeksforgeeks.org/problems/earthquake-and-the-paint-shop4518/1 | Solve the following coding problem using the programming language python:
Geek's Paint Shop is one of the famous shop in Geekland, but 2014 Earthquake caused disarrangement of the items in his shop. Each item in his shop is a 40-digit alpha numeric code .
Now Chunky wants to retain the reputation of his shop, for that he has to arrange all the distinct items in lexicographical order.
Your task is to arrange the all the distinct items in lexicographical ascending order and print them along with their count.
Example 1:
Input:
N = 3
A[] =
["2234597891 zmxvvxbcij 8800654113 jihgfedcba",
"1234567891 abcdefghij 9876543219 jihgfedcba",
"2234597891 zmxvvxbcij 8800654113 jihgfedcba"]
Output:
1234567891 abcdefghij 9876543219 jihgfedcba 1
2234597891 zmxvvxbcij 8800654113 jihgfedcba 2
Explanation:
We have 3 items (40 digit alphanumeric codes)
here. We arrange the items based on the
lexicographical order of their alpha-numeric
code. Distinct items are printed only once.
The count of the items describes how many
such items are there, so items that appear
more than once have their count greater than 1.
Example 2:
Input:
N = 2
A[] =
["3122049353 onafrnbhtr 9822827304 yzfhdgzcvx",
"2992299540 lpvkgykmlk 6946169466 vdqwvywwgg",
Output:
2992299540 lpvkgykmlk 6946169466 vdqwvywwgg 1
3122049353 onafrnbhtr 9822827304 yzfhdgzcvx 1
Explanation:
Out of the 2 items here no one is repeated.
Your Task:
You don't need to read input or print anything. Your task is to complete the function sortedStrings() which takes an integer N and an array of strings A[ ] and returns the array in sorted order along with the frequency of each distinct string.
Expected Time Complexity:O(NlogN)
Expected Auxillary Space:O(N)
Constraints:
1 ≤ N ≤ 10000
Write your solution by modifying this code:
```python
#User function Template for python3
class alphanumeric:
def __init__(self,name,count):
self.name=name
self.count=count
class Solution:
def sortedStrings(self,N,A):
#code here
```
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
from collections import defaultdict
class alphanumeric:
def __init__(self, name, count):
self.name = name
self.count = count
class Solution:
def sortedStrings(self, N, A):
store = defaultdict(lambda : 0)
for item in A:
store[item] += 1
output = []
items = sorted(store.keys())
for item in items:
output.append(alphanumeric(item, store[item]))
return output
``` | vfc_140494 | {
"difficulty": "easy",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": "https://practice.geeksforgeeks.org/problems/earthquake-and-the-paint-shop4518/1",
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "N = 3\r\nA[] =\r\n[\"2234597891 zmxvvxbcij 8800654113 jihgfedcba\",\r\n\"1234567891 abcdefghij 9876543219 jihgfedcba\",\r\n\"2234597891 zmxvvxbcij 8800654113 jihgfedcba\"]",
"output": "1234567891 abcdefghij 9876543219 jihgfedcba 1\r\n2234597891 zmxvvxbcij 8800654113 jihgfedcba 2",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "N = 2\r\nA[] =\r\n[\"3122049353 onafrnbhtr 9822827304 yzfhdgzcvx\", \r\n\"2992299540 lpvkgykmlk 6946169466 vdqwvywwgg\",",
"output": "2992299540 lpvkgykmlk 6946169466 vdqwvywwgg 1\r\n3122049353 onafrnbhtr 9822827304 yzfhdgzcvx 1",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://codeforces.com/problemset/problem/1296/F | Solve the following coding problem using the programming language python:
There are n railway stations in Berland. They are connected to each other by n-1 railway sections. The railway network is connected, i.e. can be represented as an undirected tree.
You have a map of that network, so for each railway section you know which stations it connects.
Each of the n-1 sections has some integer value of the scenery beauty. However, these values are not marked on the map and you don't know them. All these values are from 1 to 10^6 inclusive.
You asked m passengers some questions: the j-th one told you three values:
* his departure station a_j;
* his arrival station b_j;
* minimum scenery beauty along the path from a_j to b_j (the train is moving along the shortest path from a_j to b_j).
You are planning to update the map and set some value f_i on each railway section — the scenery beauty. The passengers' answers should be consistent with these values.
Print any valid set of values f_1, f_2, ..., f_{n-1}, which the passengers' answer is consistent with or report that it doesn't exist.
Input
The first line contains a single integer n (2 ≤ n ≤ 5000) — the number of railway stations in Berland.
The next n-1 lines contain descriptions of the railway sections: the i-th section description is two integers x_i and y_i (1 ≤ x_i, y_i ≤ n, x_i ≠ y_i), where x_i and y_i are the indices of the stations which are connected by the i-th railway section. All the railway sections are bidirected. Each station can be reached from any other station by the railway.
The next line contains a single integer m (1 ≤ m ≤ 5000) — the number of passengers which were asked questions. Then m lines follow, the j-th line contains three integers a_j, b_j and g_j (1 ≤ a_j, b_j ≤ n; a_j ≠ b_j; 1 ≤ g_j ≤ 10^6) — the departure station, the arrival station and the minimum scenery beauty along his path.
Output
If there is no answer then print a single integer -1.
Otherwise, print n-1 integers f_1, f_2, ..., f_{n-1} (1 ≤ f_i ≤ 10^6), where f_i is some valid scenery beauty along the i-th railway section.
If there are multiple answers, you can print any of them.
Examples
Input
4
1 2
3 2
3 4
2
1 2 5
1 3 3
Output
5 3 5
Input
6
1 2
1 6
3 1
1 5
4 1
4
6 1 3
3 4 1
6 5 2
1 2 5
Output
5 3 1 2 1
Input
6
1 2
1 6
3 1
1 5
4 1
4
6 1 1
3 4 3
6 5 3
1 2 4
Output
-1
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
import sys
reader = (s.rstrip() for s in sys.stdin)
input = reader.__next__
from collections import deque
n = int(input())
G = [[] for i in range(n)]
edges = []
for i in range(n - 1):
(a, b) = map(int, input().split())
(a, b) = (a - 1, b - 1)
G[a].append(b)
G[b].append(a)
edges.append((a, b))
dep = [0] * n
par = [0] * n
def bfs(root):
que = deque()
que.append((-1, root, 0))
while que:
(p, v, d) = que.pop()
dep[v] = d
par[v] = p
for to in G[v]:
if to != p:
que.append((v, to, d + 1))
bfs(0)
num = [1] * n
def lca(a, b, g):
cnt = 0
if dep[a] < dep[b]:
(a, b) = (b, a)
while dep[a] > dep[b]:
if num[a] <= g:
num[a] = g
cnt += 1
a = par[a]
while a != b:
if num[a] <= g:
num[a] = g
cnt += 1
if num[b] <= g:
num[b] = g
cnt += 1
a = par[a]
b = par[b]
return cnt > 0
q = int(input())
query = []
for i in range(q):
(a, b, g) = map(int, input().split())
(a, b) = (a - 1, b - 1)
query.append((g, a, b))
query.sort(reverse=True)
for (g, a, b) in query:
if not lca(a, b, g):
print(-1)
exit()
ans = []
for (a, b) in edges:
if dep[a] < dep[b]:
(a, b) = (b, a)
ans.append(num[a])
print(*ans)
``` | vfc_140495 | {
"difficulty": "hard",
"memory_limit": "256.0 megabytes",
"memory_limit_bytes": null,
"problem_url": "https://codeforces.com/problemset/problem/1296/F",
"time_limit": "3.0 seconds"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "9\n9 4\n7 5\n4 1\n6 5\n5 2\n3 1\n2 1\n8 3\n3\n9 7 2\n1 6 4\n8 4 1\n",
"output": "2 2 2 4 4 1 4 1 \n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "7\n3 4\n2 3\n6 5\n2 7\n5 2\n1 2\n6\n5 6 2\n3 2 4\n5 1 1\n2 4 3\n3 7 4\n6 5 2\n",
"output": "3 4 2 4 1 1 \n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://practice.geeksforgeeks.org/problems/compete-the-skills5807/1 | Solve the following coding problem using the programming language python:
A and B are good friend and programmers. They are always in a healthy competition with each other. They decide to judge the best among them by competing. They do so by comparing their three skills as per their values. Please help them doing so as they are busy.
Set for A are like [a1, a2, a3]
Set for B are like [b1, b2, b3]
Compare ith skill of A with ith skill of B
if a[i] > b[i] , A's score increases by 1
if a[i] < b[i] , B's score increases by 1
if a[i] = b[i] , nothing happens
Example 1:
Input :
A = {4, 2, 7}
B = {5, 6, 3}
Output :
1 2
Example 2:
Input :
A = {4, 2, 7}
B = {5, 2, 8}
Output :
0 2
Your Task:
You don't need to read input or print anything. Your task is to complete the function scores() which takes the array A[], B[] as inputs and two reference variables ca and cb to store the final answer. Store the score of A in ca and score of B in cb.
Expected Time Complexity: O(1)
Expected Auxiliary Space: O(1)
Constraints :
1 ≤ a[i] ≤ 10^{17}
1 ≤ b[i] ≤ 10^{17}
Write your solution by modifying this code:
```python
#User function Template for python3
class Solution:
def scores(self, a, b, cc):
# Update list cc of length 2 with cc[0] = ca and cc[1] = cb
# Your code goes here
```
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
class Solution:
def scores(self, a, b, cc):
for i in range(len(a)):
if a[i] > b[i]:
cc[0] += 1
elif a[i] < b[i]:
cc[1] += 1
return (cc[0], cc[1])
``` | vfc_140500 | {
"difficulty": "easy",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": "https://practice.geeksforgeeks.org/problems/compete-the-skills5807/1",
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "A = {4, 2, 7}\nB = {5, 6, 3}",
"output": "1 2",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "A = {4, 2, 7}\nB = {5, 2, 8}",
"output": "0 2",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | Solve the following coding problem using the programming language python:
Prateek wants to give a party to his N friends on his birthday, where each friend is numbered from 1 to N. His friends are asking for a gift to come to the party, instead of giving him one. The cost of the gifts are given in the array Value where i^th friend asks for a gift which has a cost Costi.
But, Prateek has only X amount of money to spend on gifts and he wants to invite his friends which are in continuous range such that sum of the cost of the gifts of those friends will be exactly equal to X.
If he can invite his friends, who can satisfy the above condition then, print YES otherwise print NO.
Input:
The first line contains a single integer T, denoting the number of test cases. In each test case, the following input will be present:
- The next line contains two space-separated integers N and X, where N represents the number of friends and X represents amount of money which Prateek can spend on gifts.
- Next N line contains N integers, where i^th line contains i^th integer, which represents the Costi .
Ouput
Output exactly T lines, each containing the answer to the corresponding test case .
Constraints:
1 ≤ T ≤ 10
1 ≤ N , Costi ≤ 10^6
1 ≤ X ≤ 10^12
SAMPLE INPUT
1
5 12
1
3
4
5
2
SAMPLE OUTPUT
YES
Explanation
In the sample input, T is equal to 1. So, accordingly, in next line, values of N and X are given which are 5 and 12 respectively. In the next 5 lines, you have costi asked by i^th friend. As friends numbered from 2 to 4 (inclusively) have gifts value which are {3, 4, 5}, and their sum equals to 12 - that is, the given value of X. So, the answer is YES.
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
t=int(input())
for c in range(t):
N,X=list(map(int,input().split()))
a=[]
flag=0
start=0
s=0
for j in range(N):
a.append(int(input()))
for k in range(N):
while(s>X):
s-=a[start]
start+=1
if(s==X):
flag=1
break
s+=a[k]
while(s>X):
s-=a[start]
start+=1
if(s==X):
flag=1
if(flag==1):
print("YES")
else:
print("NO")
``` | vfc_140502 | {
"difficulty": "easy",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": null,
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "1\n5 12\n1\n3\n4\n5\n2\n",
"output": "YES\nNO\nYES\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "5\n5 25\n25\n1\n2\n3\n4\n6 21\n41\n56\n23\n45\n67\n89\n1 20\n20\n5 7\n1\n1\n2\n2\n2\n5 80\n4\n5\n6\n12\n6",
"output": "YES\nNO\nYES\nYES\nNO",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "3\n6 15\n2\n3\n7\n8\n9\n10\n7 45\n1\n2\n3\n4\n5\n6\n7\n8 35\n4\n5\n7\n8\n1\n2\n3\n5\n",
"output": "YES\n",
"type": "stdin_stdout"
}
]
} |
|
taco | verifiable_code | https://practice.geeksforgeeks.org/problems/insert-in-a-sorted-list/1 | Solve the following coding problem using the programming language python:
Given a linked list sorted in ascending order and an integer called data, insert data in the linked list such that the list remains sorted.
Example 1:
Input:
LinkedList: 25->36->47->58->69->80
data: 19
Output: 19 25 36 47 58 69 80
Example 2:
Input:
LinkedList: 50->100
data: 75
Output: 50 75 100
Your Task:
The task is to complete the function sortedInsert() which should insert the element in sorted Linked List and return the head of the linked list
Expected Time Complexity: O(N).
Expected Auxiliary Space: O(1).
Constraints:
1 <= N <= 10^{4}
-99999 <= A[i] <= 99999, for each valid i
Write your solution by modifying this code:
```python
#User function Template for python3
class Solution:
def sortedInsert(self, head1,key):
# code here
# return head of edited linked list
```
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
class Solution:
def sortedInsert(self, head1, key):
newNode = Node(key)
if head1 == None:
return newNode
if head1.data > key:
newNode.next = head1
head1 = newNode
return head1
current = head1
while current.next:
if current.next.data > key:
newNode.next = current.next
current.next = newNode
return head1
current = current.next
current.next = newNode
return head1
``` | vfc_140506 | {
"difficulty": "easy",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": "https://practice.geeksforgeeks.org/problems/insert-in-a-sorted-list/1",
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "LinkedList:25->36->47->58->69->80\r\ndata:19",
"output": "19 25 36 47 58 69 80",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "LinkedList:50->100\r\ndata:75",
"output": "50 75 100",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://www.hackerrank.com/challenges/sherlock-and-divisors/problem | Solve the following coding problem using the programming language python:
Watson gives an integer $N$ to Sherlock and asks him: What is the number of divisors of $N$ that are divisible by 2?.
Input Format
First line contains $\mathbf{T}$, the number of testcases. This is followed by $\mathbf{T}$ lines each containing an integer $N$.
Output Format
For each testcase, print the required answer in one line.
Constraints
$1\leq T\leq100$
$1\leq N\leq10^9$
Sample Input
2
9
8
Sample Output
0
3
Explanation
9 has three divisors 1, 3 and 9 none of which is divisible by 2.
8 has four divisors 1,2,4 and 8, out of which three are divisible by 2.
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
even = lambda x: x & 1 == 0
def f(x):
div = 1
ret = 0
while div * div < x:
if x % div == 0:
if even(div):
ret += 1
if even(x // div):
ret += 1
div += 1
if div * div == x and even(div):
ret += 1
return ret
t = int(input())
for _ in range(t):
print(f(int(input())))
``` | vfc_140507 | {
"difficulty": "easy",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": "https://www.hackerrank.com/challenges/sherlock-and-divisors/problem",
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "2\n9\n8\n",
"output": "0\n3\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | Solve the following coding problem using the programming language python:
Find the edit distance between given two words s1 and s2.
The disntace is the minimum number of single-character edits required to change one word into the other. The edits including the following operations:
* insertion: Insert a character at a particular position.
* deletion: Delete a character at a particular position.
* substitution: Change the character at a particular position to a different character
Constraints
* 1 ≤ length of s1 ≤ 1000
* 1 ≤ length of s2 ≤ 1000
Input
s1
s2
Two words s1 and s2 are given in the first line and the second line respectively. The words will consist of lower case characters.
Output
Print the edit distance in a line.
Examples
Input
acac
acm
Output
2
Input
icpc
icpc
Output
0
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
s1 = input()
s2 = input()
dist = [[0 for i in range(len(s1) + 1)] for j in range(len(s2) + 1)]
for i in range(len(s1) + 1):
dist[0][i] = i
for i in range(len(s2) + 1):
dist[i][0] = i
for i in range(1, len(s2) + 1):
for j in range(1, len(s1) + 1):
k = 1
if s1[j - 1] == s2[i - 1]:
k = 0
dist[i][j] = min(dist[i - 1][j] + 1, dist[i][j - 1] + 1, dist[i - 1][j - 1] + k)
print(dist[len(s2)][len(s1)])
``` | vfc_140511 | {
"difficulty": "unknown_difficulty",
"memory_limit": "134.217728 megabytes",
"memory_limit_bytes": null,
"problem_url": null,
"time_limit": "1.0 seconds"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "icpc\nipcc",
"output": "2\n",
"type": "stdin_stdout"
}
]
} |
|
taco | verifiable_code | https://www.codechef.com/IARCSJUD/problems/IARANK | Solve the following coding problem using the programming language python:
This is one more story about our old friend, the Despotic King. Once every year, it was customary for the king to give audience to the rich merchants of his country in a large hall. On that day, the merchants were ushered in to meet the king one by one and after paying their respects to the king they were seated in the auditorium.
It was the job of the minister to introduce each merchant, as he arrived, to the others in the hall. He would announce his name and his wealth. However, our quirky king demanded that in addition, he should also announce the rank of the merchant among all those in the hall (at the time of his arrival) in terms of his wealth.
For example, let us suppose that the wealth of the 6 merchants who met the king (in the order in which they arrived) is given by the sequence
78246840398978246840398978 \quad 24 \quad 68 \quad 40 \quad 39 \quad 89
Then, clearly the first merchant is the richest in the hall when he enters it (since there are no others in the hall) and so his rank is $1$. Since $24 < 78$ the rank of the second merchant when he enters the hall is $2$. The rank of the third merchant is also $2$ since $24 < 68 < 78$. The rank of the fourth merchant is $3$ since $24 < 40 < 68 < 78$, the rank of the fifth merchant is $4$ since $24 < 39 < 40 < 68 < 78$ and finally the rank of the sixth merchant is $1$ since $24 < 39 < 40 < 68 < 78 < 89$. The sequence of ranks announced by the minister would thus be:
1223411223411 \quad 2 \quad 2 \quad 3 \quad 4 \quad 1
Your task is to write a program that takes as input a sequence of distinct positive integers indicating the wealth of the merchants in the order in which they visit the king and outputs the sequence of ranks announced by the minister.
-----Input:-----
The first line contains a single integer $N$ indicating the number of merchants. The next $N$ lines (line $2,...,N+1$) describe the wealth of these $N$ merchants. Line $i+1$ contains a single positive integer indicating the wealth of the $i^{th}$ merchant to enter the hall.
-----Output:-----
Your output should consist of $N$ lines. Line $i$ should be the rank announced when the $i^{th}$ minister enters the hall.
-----Constraints:-----
- $1 \leq N \leq 45000$.
- No two merchants have the same wealth.
- You may also assume that in $30 \%$ of of the inputs $1 \leq N \leq 8000$.
-----Sample Input-----
6
78
24
68
40
39
89
-----Sample Output-----
1
2
2
3
4
1
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
arr = []
n = int(input())
for i in range(n):
a = int(input())
arr.append(a)
arr.sort()
p = arr.index(a)
print(i - p + 1)
``` | vfc_140520 | {
"difficulty": "unknown_difficulty",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": "https://www.codechef.com/IARCSJUD/problems/IARANK",
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "6\n78\n24\n68\n40\n39\n89\n",
"output": "1\n2\n2\n3\n4\n1\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://www.codechef.com/problems/SCHTEST | Solve the following coding problem using the programming language python:
The ZCO scholarship contest offers scholarships to first time ZCO participants. You are participating in it for the first time. So you want to know the number of participants who'll get the scholarship.
You know that the maximum number of scholarships offered is $R$ and there are a total of $N$ participants numbered from $1$ to $N$. Out of these, you know the set of people (denoted by $X$) who you know, had participated in previous year ZCOs and hence, they shall not get the scholarship.
Further, as the world isn't free from plagiarism, so is the case with the scholarship contest. And from your secret sources, you also know the set of people (denoted by set $Y$) who were involved in plagiarism and therefore aren't eligible for scholarship either.
Find out the number of participants who shall get the scholarship.
PS: Don't ask how so many scholarships are being offered when you see the constraints on $R$. You never questioned it when in mathematics classes, some person bought $80$ watermelons twice just to compare them and save $₹1$.
-----Input:-----
- The first line will contain a single integer, $T$, the number of testcases. Then the testcases follow.
- The first line of each test case contains four integers; $N$, $R$, $|X|$ and $|Y|$ denoting the number of participants, maximum number of scholarships offered, number of old participants, and the number of participants involved in plagiarism, respectively.
- The second line of each test case contains $|X|$ space separated integers $x_1, x_2 \ldots x_{|X|}$ denoting the indices of people who participated in previous years. If $X$ is empty, this line is skipped and no empty line is in the input.
- The third line of each test case contains $|Y|$ space separated integers $y_1, y_2 \ldots y_{|Y|}$ denoting the indices of people who are involved in plagiarism. If $Y$ is empty, this line is skipped and no empty line is in input.
-----Output:-----
For each testcase, print a single integer in a new line, denoting the number of participants who shall get the scholarship.
-----Constraints-----
- $1 \leq T \leq 1000$
- $1 \leq N \leq 10^{15}$
- $0 \leq R \leq 10^{15}$
- $0 \leq |X|, |Y| \leq min(N, 2*10^5)$
- $1 \leq x_i, y_i \leq N$
- All $x_i$ are distinct
- All $y_i$ are distinct
- Sum of $|X|$ over all test cases does not exceed $5*10^5$
- Sum of $|Y|$ over all test cases does not exceed $5*10^5$
-----Subtasks-----
- 20 points : $1 \leq N \leq 10^3$, and the sum of $N$ over all test cases does not exceed $3*10^3$
- 30 points : $1 \leq N \leq 2*10^5$, and the sum of $N$ over all test cases does not exceed $5*10^5$
- 50 points: Original constraints
-----Sample Input:-----
3
5 3 0 1
4
10 2 4 6
3 1 7 6
4 3 1 5 9 7
10 4 4 6
3 1 7 6
4 3 1 5 9 7
-----Sample Output:-----
3
2
3
-----EXPLANATION:-----
- In the first testcase, only participant $4$ is involved in plagiarism, and thus not eligible for the scholarship. No user has participated in previous years, and so no empty line is there in the sample. All participants except participant $4$ are eligible for the scholarship, but only three of them get it because $R = 3$.
- Both second and third testcases are the same, except for $R$. In both samples, only participants $2$, $8$ and $10$ are eligible for scholarships.
- In the second testcase, since the maximum number of scholarships is $2$, only $2$ participants get scholarships.
- In the third testcase, all three eligible participants get scholarships.
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
for _ in range(int(input())):
(n, r, x, y) = map(int, input().split())
if x > 0:
a = list(map(int, input().split()))
if y > 0:
b = list(map(int, input().split()))
if x > 0 and y > 0:
a = a + b
c = n - len(list(set(a)))
else:
l = x + y
c = n - l
x = min(c, r)
print(x)
``` | vfc_140524 | {
"difficulty": "unknown_difficulty",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": "https://www.codechef.com/problems/SCHTEST",
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "3\n5 3 0 1\n4\n10 2 4 6\n3 1 7 6\n4 3 1 5 9 7\n10 4 4 6\n3 1 7 6\n4 3 1 5 9 7\n",
"output": "3\n2\n3\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://www.codechef.com/problems/COPAR | Solve the following coding problem using the programming language python:
Read problem statements in [Hindi], [Bengali], [Mandarin Chinese], [Russian], and [Vietnamese] as well.
Chef wants to give a gift to Chefina to celebrate their anniversary. Of course, he has a sequence $a_{1}, a_{2}, \ldots, a_{N}$ ready for this occasion. Since the half-heart necklace is kind of cliche, he decided to cut his sequence into two pieces and give her a piece instead. Formally, he wants to choose an integer $l$ ($1 ≤ l < N$) and split the sequence into its prefix with length $l$ and its suffix with length $N-l$.
Chef wants his gift to be *cute*; he thinks that it will be cute if the product of the elements in Chefina's piece is coprime with the product of the elements in his piece. Can you tell him where to cut the sequence? Find the smallest valid $l$ such that Chef's gift would be cute.
------ Input ------
The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows.
The first line of each test case contains the integer $N$.
The second line contains $N$ space-separated integers $a_{1}, a_{2}, \ldots, a_{N}$.
------ Output ------
For each test case, print a single line containing one integer $l$ where Chef should cut the sequence.
It is guaranteed that a solution exists for the given test data.
------ Constraints ------
$1 ≤ T ≤ 20$
$2 ≤ N ≤ 10^{5}$
$2 ≤ a_{i} ≤ 10^{5}$ for each valid $i$
the sum of $N$ over all test cases does not exceed $3 \cdot 10^{5}$
------ Subtasks ------
Subtask #1 (25 points):
$N ≤ 200$
the sum of $N$ over all test cases does not exceed $600$
Subtask #2 (40 points):
$N ≤ 2,000$
the sum of $N$ over all test cases does not exceed $6,000$
Subtask #3 (35 points): original constraints
----- Sample Input 1 ------
1
4
2 3 4 5
----- Sample Output 1 ------
3
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
N = 100000
prime = [-1 for i in range(N + 1)]
i = 2
while i <= N:
if prime[i] == -1:
prime[i] = i
for j in range(2 * i, N + 1, i):
if prime[j] == -1:
prime[j] = i
i += 1
from math import gcd
for _ in range(int(input())):
n = int(input())
arr = list(map(int, input().split()))
range_p = [[-1, -1] for i in range(N + 1)]
for i in range(n):
a = arr[i]
while a > 1:
x = prime[a]
if range_p[x][0] == -1:
range_p[x][0] = i
range_p[x][1] = i
else:
range_p[x][1] = i
a = a // x
mark = [0 for i in range(n)]
for i in range(2, N + 1):
if range_p[i][0] != -1:
l = range_p[i][0]
r = range_p[i][1]
mark[l] += 1
mark[r] -= 1
for i in range(1, n):
mark[i] += mark[i - 1]
for i in range(n):
if mark[i] == 0:
print(i + 1)
break
``` | vfc_140536 | {
"difficulty": "hard",
"memory_limit": "50000 bytes",
"memory_limit_bytes": null,
"problem_url": "https://www.codechef.com/problems/COPAR",
"time_limit": "1 seconds"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "1\n4\n2 3 4 5",
"output": "3",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://www.codechef.com/problems/NMNMX | Solve the following coding problem using the programming language python:
Maheshmati and Sangu are playing a game. First, Maheshmati gives Sangu a sequence of $N$ distinct integers $a_1, a_2, \dots, a_N$ (not necessarily sorted) and an integer $K$. Sangu has to create all subsequences of this sequence with length $K$. For each subsequence, he has to write down the product of $K-2$ integers: all elements of this subsequence except the minimum and maximum element.
Sangu wins the game if he is able to write down all these numbers and tell Maheshmati their product (modulo $10^9+7$, since it can be very large). However, Sangu is a very lazy child and thus wants you to help him win this game. Compute the number Sangu should tell Maheshmati!
-----Input-----
- The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows.
- The first line of each test case contains two space-separated integers $N$ and $K$.
- The second line contains $N$ space-separated integers $a_1, a_2, \dots, a_N$.
-----Output-----
For each test case, print a single line containing one integer — the product of all numbers written down by Sangu modulo $10^9+7$.
-----Constraints-----
- $1 \le T \le 10$
- $3 \le N \le 5,000$
- $3 \le K \le N$
- $1 \le a_i \le 10,000$ for each valid $i$
- the numbers $a_1, a_2, \dots, a_N$ are pairwise distinct
-----Subtasks-----
Subtask #1 (20 points): $1 \le N \le 10$
Subtask #2 (80 points): original constraints
-----Example Input-----
1
4 3
1 2 3 4
-----Example Output-----
36
-----Explanation-----
Example case 1: There are four possible subsequences:
- $[1, 2, 3]$ (Sangu should write down $2$.)
- $[1, 3, 4]$ (Sangu should write down $3$.)
- $[1, 2, 4]$ (Sangu should write down $2$.)
- $[2, 3, 4]$ (Sangu should write down $3$.)
The required product is $2 \cdot 3 \cdot 2 \cdot 3 = 36$.
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
import math
def power(x, y, p):
res = 1
x = x % p
while y > 0:
if y & 1:
res = res * x % p
y = y >> 1
x = x * x % p
return res
def modInverse(n, p):
return power(n, p - 2, p)
def Combi(n, r, p):
if r == 0:
return 1
if r > n:
return 0
return f[n] * modInverse(f[r], p) % p * modInverse(f[n - r], p) % p % p
def chinese_remainder(n, a, len):
prod = 1
sum = 0
i = 0
while i < len:
prod *= n[i]
i = i + 1
i = 0
while i < len:
p = prod // n[i]
sum += a[i] * modInverse(p, n[i]) * p
i = i + 1
return sum % prod
def calpower(t):
sum = 0
i = 1
while i < 30:
sum += t // pow(2, i)
i = i + 1
return sum
def remainder(n, r):
if r > n:
return 0
if calpower(n) - calpower(n - r) - calpower(r) >= 1:
return 0
else:
return 1
t = int(input())
mod1 = 500000003
mod2 = 1000000007
f = [None] * 5010
f[0] = 1
i = 1
while i <= 5005:
f[i] = f[i - 1] * i % mod1
i = i + 1
i = 1
while i <= t:
(n, k) = map(int, input().split())
s = input()
a = list(map(int, s.split()))
a.sort()
prod = 1
j = 1
while j < n - 1:
power1 = (Combi(n - 1, k - 1, mod1) % mod1 - (Combi(n - j - 1, k - 1, mod1) % mod1 + Combi(j, k - 1, mod1) % mod1) % mod1) % mod1
power2 = (remainder(n - 1, k - 1) % 2 - (remainder(n - j - 1, k - 1) % 2 + remainder(j, k - 1) % 2) % 2) % 2
if power1 < 0:
power1 += mod1
if power2 < 0:
power2 += 2
b = [None] * 2
c = [None] * 2
b[0] = 2
c[0] = power2
b[1] = mod1
c[1] = power1
ans = chinese_remainder(b, c, 2)
prod *= power(a[j], ans, mod2)
prod %= mod2
j = j + 1
print(prod)
i = i + 1
``` | vfc_140540 | {
"difficulty": "medium_hard",
"memory_limit": "50000 bytes",
"memory_limit_bytes": null,
"problem_url": "https://www.codechef.com/problems/NMNMX",
"time_limit": "2 seconds"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "1\n4 3\n1 2 3 4\n",
"output": "36\n",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | https://www.codechef.com/problems/PUSH7PA | Solve the following coding problem using the programming language python:
Pushpa has entered Chefland and wants to establish Pushpa-Raj here too.
Chefland has N towers where the height of the i^{th} tower is H_{i}. To establish Pushpa-Raj, Pushpa does the following:
Initially, Pushpa chooses any tower i (1≤ i ≤ N) and lands on the roof of that tower.
Let X denote the height of the tower Pushpa is currently on, then, Pushpa can land on the roof of any tower j (1≤ j ≤ N) such that the height of the j^{th} tower is (X+1).
Let i denote the index of the tower on which Pushpa lands, then, the height of all towers except tower i increases by 1 after each jump including the initial jump.
To establish Pushpa-Raj, Pushpa wants to land at the maximum height possible. Determine the maximum height Pushpa can reach.
------ Input Format ------
- The first line contains a single integer T - the number of test cases. Then the test cases follow.
- The first line of each test case contains an integer N - the number of towers
- The second line of each test case contains N space-separated integers H_{1}, H_{2}, \dots, H_{N} denoting the initial heights of each of the towers from the ground.
------ Output Format ------
For each test case, output in a single line the maximum height achieved by Pushpa.
------ Constraints ------
$1 ≤ T ≤ 10$
$1 ≤ N ≤ 10^{5}$
$1 ≤ H_{i} ≤ 10^{9}$
----- Sample Input 1 ------
2
4
1 2 1 3
1
2
----- Sample Output 1 ------
3
2
----- explanation 1 ------
- Test case $1$: If Pushpa chooses to start from tower at index $1$ with height of $1$ unit, then, the new heights will be $[ 1, 3, 2, 4 ]$. He can then jump to the $3^{rd}$ tower (with height $2$ units). The updated heights of the towers is $[2, 4, 2, 5]$. Pushpa is unable to make any more jumps.
The optimal way to in this case is to take an initial jump at tower $4$ with height $3$. The maximum height Pushpa can reach is $3$.
- Test case $2$: There is only $1$ tower so Pushpa reaches the maximum height of $2$ units.
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
def maxHeight(List):
return max(set(List), key=List.count)
t = int(input())
for i in range(0, t):
n = int(input())
a = list(map(int, input().split()))
x = maxHeight(a) + a.count(maxHeight(a)) - 1
y = max(a) + a.count(max(a)) - 1
print(x if x > y else y)
``` | vfc_140544 | {
"difficulty": "easy",
"memory_limit": "50000 bytes",
"memory_limit_bytes": null,
"problem_url": "https://www.codechef.com/problems/PUSH7PA",
"time_limit": "1 seconds"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "2\n4\n1 2 1 3\n1\n2",
"output": "3\n2",
"type": "stdin_stdout"
}
]
} |
taco | verifiable_code | Solve the following coding problem using the programming language python:
Have you ever been a part of the exciting game Passing the Parcel ? Sid is on a school picnic with his classmates. The teacher decides to make the whole class play the game of Passing the Parcel. Since the
winner of the game gets lots of chocolates and ice cream as his/her prize, all the students are over-excited
about the game, including Sid. Here are the rules of the game:
For the purpose of the game, our Parcel here is a football.
There are a total of N students in the class. Their roll numbers being 1, 2, 3... N.
All N students are made to sit uniformly in a circle in roll number order (ie. from 1 to N in clockwise direction).
The Parcel is first handed over to the student with roll number 1.
The teacher starts playing a song using a loud stereo system. The lyrics of the song are denoted by a
string which consists of only letters 'a' and 'b'. Assume that each lyric of the song is a single letter.
If the lyric 'a' occurs in the song, the student who is currently holding the Parcel passes it on to the next student. This passing takes place in clockwise direction.
If the lyric 'b' occurs in the song, the student who is currently holding the Parcel loses his/her chances of winning the game. He/she hands over the parcel to the next student (in clockwise direction) and moves out.
The game continues until a single student survives in the end. He/she will be the winner of the game.
Note that the song repeats continuously ie. while the game is going on, if at all the song ends, the stereo
system will automatically start playing the song from the start without any delay.
Given N the number of students in the class and the lyrics of the song, you have to find out the roll number of
the student who wins the game.
Input :
The input consists of 2 lines. The first line consists of N, the number of students in the class. The next line consists of a string denoting the lyrics of the song the teacher plays.
Output :
Print a single integer denoting the roll number of the student who wins the game.
Constraints :
2 ≤ N ≤ 1000
1 ≤ |S| ≤ 1000, where |S| denotes the length of the input string. It is guaranteed that at least 1 lyric in the song will be a 'b'
SAMPLE INPUT
6
abba
SAMPLE OUTPUT
5
Explanation
a : 1 -> 2
b : 2 goes out, handing over the parcel to 3
b : 3 goes out, handing over the parcel to 4
a : 4 -> 5
a : 5 -> 6
b : 6 goes out, handing over the parcel to 1
b : 1 goes out, handing over the parcel to 4
a : 4 -> 5
a : 5 -> 4
b : 4 goes out
Hence winner is 5.
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
import itertools
N = eval(input())
S = input()
players = list(range(N))
pos = 0
for c in itertools.cycle(S):
# print pos
# print players
# print c
# print '---------'
if len(players) == 1: break
if c == 'b':
players.remove(players[pos])
else:
pos += 1
if pos >= len(players): pos = 0
print(players[0] + 1)
``` | vfc_140548 | {
"difficulty": "easy",
"memory_limit": null,
"memory_limit_bytes": null,
"problem_url": null,
"time_limit": "None"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "1000\nbaaabbaaabbbbbabbabbababbbaabbabbbbbbaaaabbbbabbbbbaaaababaaabbaaaaaaabaaababababaaabbbaababbbbaababbbaabbabbbabaaabaaaaabbbaabbababaabbbbaaabbbaabaaabaaaaaaabbbbabababbbbbbbbbaabaaaababaaaaaabbababbaababababbaabaababaaabbaabbbbbbabbbbaabbbababbbbbbbabababbabbabbabababbaaaabaabaabbbbaaaaaabbbabaabaaaabaaaababbaaabaabaaabbbbaabbabbbaabbbbbaabbbaaabbaaababaabbaaabbabaabaabaabbbababbabbaabbbbbababbbbbabaaabbaababbbaaabbababbaaabaabbaabbbbbbababbbbaaabababbbbbbbbaabbabbbbababbbaabbbaaaabaabaabbaaaaaabaaababaaaaabbbaababbaaabaaaaaabaabbaabbabbbbaababbabababaababaaaaaaaabbbbbbbbbbbbabaabbbbabababaabababbbaaababbbbbbbabaabbbbaaabaaabaabbaababababbabbbabbabbaaabaabaaaabbbbbaaabbabaabaabaaabbbaabbaaaababaabbbbbabbbabaabaabbbbabbbaabbbabababbbaaabaaaabaaaaabababbaaaaaabbabbbaaaaabbaabababbabbaababbaaabbbaaaaababbaabaaabbbabbbbbbabbaababababaaaaaaababbbbabbbbbabaabaaaaabbbababbabaababbbababbaabaabbbabaaaabbbbaabaaabaabbabbaaaaabbabbbbababbbaabaabbabbbbaabbabbaaaaabababbbababbaabbbaaaabbaababaaaba",
"output": "685\n",
"type": "stdin_stdout"
},
{
"fn_name": null,
"input": "1000\naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaab",
"output": "997\n",
"type": "stdin_stdout"
}
]
} |
|
taco | verifiable_code | https://www.codechef.com/problems/PRETNUM | Solve the following coding problem using the programming language python:
Read problems statements in Mandarin Chinese and Russian.
Chef doesn't love math anymore. He loves Sasha. Sashen'ka is cute.
Chef goes on a date with her. Flowers are boring, while numbers are not. He knows that most of all this girl loves numbers, that's why he is going to bring ribbon with numbers L, L+1, L+2, ..., R written on it.
Sasha thinks that numbers with prime number of divisors are special. That's why she is going to kiss boy for each such number he will bring.
Now Chef wonder how many times he will be kissed by Sashen'ka ?
------ Input ------
The first line of the input contains an integer T denoting the number of test cases. The description of T test cases follows.
The first line of each test case contains two number L, R.
------ Output ------
For each test case, output a single line containing answer for corresponding test case.
------ Constraints ------
$1 ≤ T ≤ 5$
$1 ≤ L ≤ R ≤ 10^{12}$
$0 ≤ R-L ≤ 10^{6}$
----- Sample Input 1 ------
1
1 10
----- Sample Output 1 ------
6
----- explanation 1 ------
Example case 1. Numbers 2,3,4,5,7,9 are special.
The input will be stdin and you should print your solution to stdout
Now solve the problem and return the code. | ```python
from bisect import bisect
from math import sqrt, floor
prime = []
isprime = [True] * (10 ** 6 + 2)
isprime[0] = False
isprime[1] = False
for x in range(2, 10 ** 6 + 2):
if isprime[x]:
prime.append(x)
for i in range(2 * x, 10 ** 6 + 2, x):
isprime[i] = False
for _ in range(int(input())):
(a, b) = map(int, input().split())
sq_rt = floor(sqrt(b)) + 1
index = bisect(prime, sq_rt)
arr = prime[:index]
ans = 0
if a <= 1:
a = 2
isprime = [True] * (b - a + 1)
for x in arr:
st = floor(a / x) * x
if st < a:
st += x
if st == x:
st += x
st = st - a
for y in range(st, b - a + 1, x):
if isprime[y] == True:
isprime[y] = [x]
else:
isprime[y].append(x)
for x in range(b - a + 1):
if isprime[x] == True:
ans += 1
else:
temp = 1
val = a + x
if sqrt(val) == int(sqrt(val)):
c = 0
while val > 1 and c < len(isprime[x]):
elem = isprime[x][c]
t = 0
while val % elem == 0:
t += 1
val = val // elem
temp *= 1 + t
c += 1
pos = bisect(prime, temp) - 1
if prime[pos] == temp:
ans += 1
else:
continue
print(ans)
``` | vfc_140561 | {
"difficulty": "medium_hard",
"memory_limit": "50000 bytes",
"memory_limit_bytes": null,
"problem_url": "https://www.codechef.com/problems/PRETNUM",
"time_limit": "1 - 2 seconds"
} | {
"language": "python",
"test_cases": [
{
"fn_name": null,
"input": "1\n1 10",
"output": "6",
"type": "stdin_stdout"
}
]
} |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.