exec_outcome
stringclasses
1 value
code_uid
stringlengths
32
32
file_name
stringclasses
111 values
prob_desc_created_at
stringlengths
10
10
prob_desc_description
stringlengths
63
3.8k
prob_desc_memory_limit
stringclasses
18 values
source_code
stringlengths
117
65.5k
lang_cluster
stringclasses
1 value
prob_desc_sample_inputs
stringlengths
2
802
prob_desc_time_limit
stringclasses
27 values
prob_desc_sample_outputs
stringlengths
2
796
prob_desc_notes
stringlengths
4
3k
lang
stringclasses
5 values
prob_desc_input_from
stringclasses
3 values
tags
sequencelengths
0
11
src_uid
stringlengths
32
32
prob_desc_input_spec
stringlengths
28
2.37k
difficulty
int64
-1
3.5k
prob_desc_output_spec
stringlengths
17
1.47k
prob_desc_output_to
stringclasses
3 values
hidden_unit_tests
stringclasses
1 value
PASSED
d54cfcbeddea9898307be648c6f20e0f
train_000.jsonl
1426345200
A Martian boy is named s — he has got this name quite recently from his parents for his coming of age birthday. Now he enjoys looking for his name everywhere. If he sees that he can obtain his name from some string by removing zero or more letters (at that, the remaining letters remain in the same order), he gets happy. For example, if s=«aba», then strings «baobab», «aabbaa», «helloabahello» make him very happy and strings «aab», «baaa» and «helloabhello» do not.However rather than being happy once, he loves twice as much being happy twice! So, when he got string t as a present, he wanted to cut it in two parts (the left part and the right part) so that each part made him happy.Help s determine the number of distinct ways to cut the given string t into two parts in the required manner.
256 megabytes
import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.util.StringTokenizer; public class CC { static StringTokenizer st; static BufferedReader br; static PrintWriter pw; public static void main(String[] args) throws IOException{ br = new BufferedReader(new InputStreamReader(System.in)); pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); String s = next(); String t = next(); int p1 = 0; for (int i = 0; i < s.length(); i++) { boolean found = false; for (int j = p1; j < t.length(); j++) { if (s.charAt(i)==t.charAt(j)) { found = true; p1 = j+1; break; } } if (!found) { System.out.println(0); return; } } int p2 = t.length()-1; for (int i = s.length()-1; i >= 0; i--) { boolean found = false; for (int j = p2; j >= 0; j--) { if (s.charAt(i)==t.charAt(j)) { found = true; p2 = j-1; break; } } if (!found) { System.out.println(0); return; } } p1--; int ans = Math.max(0, p2-p1+1); System.out.println(ans); pw.close(); } private static int nextInt() throws IOException { return Integer.parseInt(next()); } private static long nextLong() throws IOException { return Long.parseLong(next()); } private static double nextDouble() throws IOException { return Double.parseDouble(next()); } private static String next() throws IOException{ while (st==null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } }
Java
["aba\nbaobababbah", "mars\nsunvenusearthmarsjupitersaturnuranusneptune"]
2 seconds
["2", "0"]
null
Java 7
standard input
[ "*special", "greedy" ]
724fa4b1d35b8765048857fa8f2f6802
The first line contains string s, consisting of lowercase English letters. The length of string s is from 1 to 1000 letters. The second line contains string t, that also consists of lowercase English letters. The length of string t is from 1 to 106 letters.
1,400
Print the sought number of ways to cut string t in two so that each part made s happy.
standard output
PASSED
914389213eb26fed8297618982e1f44b
train_000.jsonl
1426345200
A Martian boy is named s — he has got this name quite recently from his parents for his coming of age birthday. Now he enjoys looking for his name everywhere. If he sees that he can obtain his name from some string by removing zero or more letters (at that, the remaining letters remain in the same order), he gets happy. For example, if s=«aba», then strings «baobab», «aabbaa», «helloabahello» make him very happy and strings «aab», «baaa» and «helloabhello» do not.However rather than being happy once, he loves twice as much being happy twice! So, when he got string t as a present, he wanted to cut it in two parts (the left part and the right part) so that each part made him happy.Help s determine the number of distinct ways to cut the given string t into two parts in the required manner.
256 megabytes
import java.io.IOException; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.Locale; import java.util.Scanner; import java.util.TreeSet; /** * * @author таня */ public class KF { /** * @param args the command line arguments */ public static void main(String[] args) throws IOException { B jk = new B(); } } class B { PrintWriter out = new PrintWriter(System.out); Scanner in = new Scanner(System.in); String t = in.next(); String s = in.next(); char str[]; char name[]; int NI = 0; int RI = s.length() - 1; boolean fl = false; public B() { str = s.toCharArray(); name = t.toCharArray(); forward(); if (fl) { reverse(); if (RI - NI > 0) { out.print(RI - NI); } else { out.print(0); } } else { out.print(0); } out.flush(); } void forward() { char elName = name[0]; int cI = 0; for (int i = 0; i < str.length; i++) { if (elName == str[i]) { if (cI < name.length - 1) { cI++; elName = name[cI]; NI = i; } else { NI = i; fl = true; break; } } } } void reverse() { char elName = name[name.length - 1]; int cI = name.length - 1; for (int i = str.length - 1; i >= 0; i--) { if (elName == str[i]) { if (cI > 0) { cI--; elName = name[cI]; RI = i; } else { RI = i; break; } } } } }
Java
["aba\nbaobababbah", "mars\nsunvenusearthmarsjupitersaturnuranusneptune"]
2 seconds
["2", "0"]
null
Java 7
standard input
[ "*special", "greedy" ]
724fa4b1d35b8765048857fa8f2f6802
The first line contains string s, consisting of lowercase English letters. The length of string s is from 1 to 1000 letters. The second line contains string t, that also consists of lowercase English letters. The length of string t is from 1 to 106 letters.
1,400
Print the sought number of ways to cut string t in two so that each part made s happy.
standard output
PASSED
1d7c376ee4a7a86c5255a1a809b4b9d3
train_000.jsonl
1426345200
A Martian boy is named s — he has got this name quite recently from his parents for his coming of age birthday. Now he enjoys looking for his name everywhere. If he sees that he can obtain his name from some string by removing zero or more letters (at that, the remaining letters remain in the same order), he gets happy. For example, if s=«aba», then strings «baobab», «aabbaa», «helloabahello» make him very happy and strings «aab», «baaa» and «helloabhello» do not.However rather than being happy once, he loves twice as much being happy twice! So, when he got string t as a present, he wanted to cut it in two parts (the left part and the right part) so that each part made him happy.Help s determine the number of distinct ways to cut the given string t into two parts in the required manner.
256 megabytes
import java.io.BufferedWriter; import java.util.InputMismatchException; import java.io.InputStream; import java.util.NoSuchElementException; import java.io.OutputStreamWriter; import java.math.BigInteger; import java.io.OutputStream; import java.io.PrintWriter; import java.io.Writer; import java.io.IOException; /** * Built using CHelper plug-in * Actual solution is at the top * @author Nguyen Trung Hieu - [email protected] */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } } class TaskC { public void solve(int testNumber, InputReader in, OutputWriter out) { String name = in.readString(); String text = in.readString(); int from = 0; int to = 0; int i = 0; int j = 0; while (i < name.length() && j < text.length()) { if (name.charAt(i) == text.charAt(j)) { i++; j++; } else { j++; } } from = j - 1; i = name.length() - 1; j = text.length() - 1; while (i >= 0 && j >= 0) { if (name.charAt(i) == text.charAt(j)) { i--; j--; } else { j--; } } to = j + 1; out.printLine(Math.max(to - from, 0)); } } class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuffer res = new StringBuffer(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public void print(Object...objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) writer.print(' '); writer.print(objects[i]); } } public void printLine(Object...objects) { print(objects); writer.println(); } public void close() { writer.close(); } }
Java
["aba\nbaobababbah", "mars\nsunvenusearthmarsjupitersaturnuranusneptune"]
2 seconds
["2", "0"]
null
Java 7
standard input
[ "*special", "greedy" ]
724fa4b1d35b8765048857fa8f2f6802
The first line contains string s, consisting of lowercase English letters. The length of string s is from 1 to 1000 letters. The second line contains string t, that also consists of lowercase English letters. The length of string t is from 1 to 106 letters.
1,400
Print the sought number of ways to cut string t in two so that each part made s happy.
standard output
PASSED
4ab6811dc482cd6d97fc687da1ef2c39
train_000.jsonl
1426345200
A Martian boy is named s — he has got this name quite recently from his parents for his coming of age birthday. Now he enjoys looking for his name everywhere. If he sees that he can obtain his name from some string by removing zero or more letters (at that, the remaining letters remain in the same order), he gets happy. For example, if s=«aba», then strings «baobab», «aabbaa», «helloabahello» make him very happy and strings «aab», «baaa» and «helloabhello» do not.However rather than being happy once, he loves twice as much being happy twice! So, when he got string t as a present, he wanted to cut it in two parts (the left part and the right part) so that each part made him happy.Help s determine the number of distinct ways to cut the given string t into two parts in the required manner.
256 megabytes
import java.util.*; import java.io.*; public class KnightTemplar { public static void main(String [] args)throws Exception{ BufferedReader bf=new BufferedReader(new InputStreamReader(System.in)); String s=bf.readLine(); String t=bf.readLine(); int leftPtr=0; int rightPtr=0; int ptr=0; for(int i=0;i<t.length() && ptr < s.length();i++){ if(t.charAt(i)==s.charAt(ptr)){ ptr++;leftPtr=i; //System.out.println(ptr+" "+t.length()+" "+t.charAt(ptr)+" "+leftPtr); } } //System.out.println(ptr); ptr=s.length()-1; for(int i=t.length()-1;i>=0 && ptr >=0;i--){ if(t.charAt(i)==s.charAt(ptr)){ ptr--;rightPtr=i; } } //System.out.println(leftPtr+" "+rightPtr); if(rightPtr <= leftPtr)System.out.print("0"); else System.out.print((rightPtr-leftPtr)); } }
Java
["aba\nbaobababbah", "mars\nsunvenusearthmarsjupitersaturnuranusneptune"]
2 seconds
["2", "0"]
null
Java 7
standard input
[ "*special", "greedy" ]
724fa4b1d35b8765048857fa8f2f6802
The first line contains string s, consisting of lowercase English letters. The length of string s is from 1 to 1000 letters. The second line contains string t, that also consists of lowercase English letters. The length of string t is from 1 to 106 letters.
1,400
Print the sought number of ways to cut string t in two so that each part made s happy.
standard output
PASSED
65c230066cb39665c155785e1b689123
train_000.jsonl
1426345200
A Martian boy is named s — he has got this name quite recently from his parents for his coming of age birthday. Now he enjoys looking for his name everywhere. If he sees that he can obtain his name from some string by removing zero or more letters (at that, the remaining letters remain in the same order), he gets happy. For example, if s=«aba», then strings «baobab», «aabbaa», «helloabahello» make him very happy and strings «aab», «baaa» and «helloabhello» do not.However rather than being happy once, he loves twice as much being happy twice! So, when he got string t as a present, he wanted to cut it in two parts (the left part and the right part) so that each part made him happy.Help s determine the number of distinct ways to cut the given string t into two parts in the required manner.
256 megabytes
import java.lang.*; import java.io.*; import java.util.*; public class CF{ public static boolean isSubstring(String a, String b){ //runs in O(|B| + |A| time) //checks if a is substring of b int i1 = 0; for (int i = 0; i < b.length(); i++){ if (a.charAt(i1) == b.charAt(i)){ i1++; } if (i1 == a.length()) return true; } if (i1 == a.length()) return true; return false; } public static void main(String[] args){ Scanner sc = new Scanner(System.in); String a = sc.nextLine(); String b = sc.nextLine(); if (!isSubstring(a, b)){ System.out.println(0); } else{ int r2 = 0; int r1 = 0; int i1 = 0; int i2 = a.length() - 1; for (int i = 0; i < b.length(); i++){ if (a.charAt(i1) == b.charAt(i)){ i1++; } if (i1 == a.length()){ r1 = i; break; } } for (int i = b.length()-1; i >= 0; i--){ if (a.charAt(i2) == b.charAt(i)){ i2--; } if (i2 == -1){ r2 = i; break; } } if (r2 < r1){ System.out.println(0); } else{ System.out.println(r2-r1); } } } }
Java
["aba\nbaobababbah", "mars\nsunvenusearthmarsjupitersaturnuranusneptune"]
2 seconds
["2", "0"]
null
Java 7
standard input
[ "*special", "greedy" ]
724fa4b1d35b8765048857fa8f2f6802
The first line contains string s, consisting of lowercase English letters. The length of string s is from 1 to 1000 letters. The second line contains string t, that also consists of lowercase English letters. The length of string t is from 1 to 106 letters.
1,400
Print the sought number of ways to cut string t in two so that each part made s happy.
standard output
PASSED
35544cdb702dd8494fc0b655522cb66a
train_000.jsonl
1426345200
A Martian boy is named s — he has got this name quite recently from his parents for his coming of age birthday. Now he enjoys looking for his name everywhere. If he sees that he can obtain his name from some string by removing zero or more letters (at that, the remaining letters remain in the same order), he gets happy. For example, if s=«aba», then strings «baobab», «aabbaa», «helloabahello» make him very happy and strings «aab», «baaa» and «helloabhello» do not.However rather than being happy once, he loves twice as much being happy twice! So, when he got string t as a present, he wanted to cut it in two parts (the left part and the right part) so that each part made him happy.Help s determine the number of distinct ways to cut the given string t into two parts in the required manner.
256 megabytes
import java.io.InputStreamReader; import java.io.IOException; import java.io.OutputStreamWriter; import java.io.BufferedWriter; import java.util.InputMismatchException; import java.io.BufferedReader; import java.io.OutputStream; import java.io.PrintWriter; import java.io.Writer; import java.util.StringTokenizer; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author Andrey Rechitsky ([email protected]) */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastScanner in = new FastScanner(inputStream); FastPrinter out = new FastPrinter(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } } class TaskC { public void solve(int testNumber, FastScanner in, FastPrinter out) { char[] s = in.next().toCharArray(); char[] t = in.next().toCharArray(); int start = 0; int end = 0; int i = 0; for (start = 0; start < t.length; start++) { if (i>=s.length) break; if (t[start]==s[i]) i++; } i = s.length - 1; for (end = t.length; end > 0; end--) { if (i<0) break; if (t[end-1]==s[i]) i--; } out.printLine(end>=start?end-start+1:0); } } class FastScanner { private BufferedReader reader; private StringTokenizer st; public FastScanner(InputStream stream) { this.reader = new BufferedReader(new InputStreamReader(stream)); this.st = new StringTokenizer(""); } public String next(){ while (!st.hasMoreTokens()){ st = new StringTokenizer(readLine()); } return st.nextToken(); } private String readLine() { try { String line = reader.readLine(); if (line==null) throw new InputMismatchException(); return line; } catch (IOException e) { throw new InputMismatchException(); } } } class FastPrinter { private final PrintWriter writer; public FastPrinter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public void close() { writer.close(); } public void printLine(long i) { writer.println(i); } }
Java
["aba\nbaobababbah", "mars\nsunvenusearthmarsjupitersaturnuranusneptune"]
2 seconds
["2", "0"]
null
Java 7
standard input
[ "*special", "greedy" ]
724fa4b1d35b8765048857fa8f2f6802
The first line contains string s, consisting of lowercase English letters. The length of string s is from 1 to 1000 letters. The second line contains string t, that also consists of lowercase English letters. The length of string t is from 1 to 106 letters.
1,400
Print the sought number of ways to cut string t in two so that each part made s happy.
standard output
PASSED
231170e70598fbe9e8d972ab3f1f125b
train_000.jsonl
1426345200
A Martian boy is named s — he has got this name quite recently from his parents for his coming of age birthday. Now he enjoys looking for his name everywhere. If he sees that he can obtain his name from some string by removing zero or more letters (at that, the remaining letters remain in the same order), he gets happy. For example, if s=«aba», then strings «baobab», «aabbaa», «helloabahello» make him very happy and strings «aab», «baaa» and «helloabhello» do not.However rather than being happy once, he loves twice as much being happy twice! So, when he got string t as a present, he wanted to cut it in two parts (the left part and the right part) so that each part made him happy.Help s determine the number of distinct ways to cut the given string t into two parts in the required manner.
256 megabytes
import java.io.*; import java.util.*; public class Solution { StringTokenizer st; BufferedReader in; PrintWriter out; void solve() throws IOException { //in = new BufferedReader(new InputStreamReader(new FileInputStream("input.txt"), "ISO-8859-1")); //out = new PrintWriter(new OutputStreamWriter(new FileOutputStream("output.txt"), "ISO-8859-1")); in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(new OutputStreamWriter(System.out)); Locale.setDefault(Locale.ENGLISH); String t = in.readLine(); String s = in.readLine(); int l = 0; for (int i = 0; i < t.length() && l < s.length(); l++) { if (t.charAt(i) == s.charAt(l)) { i++; } } l--; int r = s.length() - 1; for (int i = t.length() - 1; i >= 0 && r >= 0; r--) { if (t.charAt(i) == s.charAt(r)) { i--; } } r++; out.print(Math.max(0, r - l)); in.close(); out.close(); } public static void main(String[] args) throws IOException { new Solution().solve(); } String next() throws IOException { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(next()); } long nextLong() throws IOException { return Long.parseLong(next()); } double nextDouble() throws IOException { return Double.parseDouble(next()); } }
Java
["aba\nbaobababbah", "mars\nsunvenusearthmarsjupitersaturnuranusneptune"]
2 seconds
["2", "0"]
null
Java 7
standard input
[ "*special", "greedy" ]
724fa4b1d35b8765048857fa8f2f6802
The first line contains string s, consisting of lowercase English letters. The length of string s is from 1 to 1000 letters. The second line contains string t, that also consists of lowercase English letters. The length of string t is from 1 to 106 letters.
1,400
Print the sought number of ways to cut string t in two so that each part made s happy.
standard output
PASSED
acc86b520fb93b8bb3f510f6b76208b7
train_000.jsonl
1426345200
A Martian boy is named s — he has got this name quite recently from his parents for his coming of age birthday. Now he enjoys looking for his name everywhere. If he sees that he can obtain his name from some string by removing zero or more letters (at that, the remaining letters remain in the same order), he gets happy. For example, if s=«aba», then strings «baobab», «aabbaa», «helloabahello» make him very happy and strings «aab», «baaa» and «helloabhello» do not.However rather than being happy once, he loves twice as much being happy twice! So, when he got string t as a present, he wanted to cut it in two parts (the left part and the right part) so that each part made him happy.Help s determine the number of distinct ways to cut the given string t into two parts in the required manner.
256 megabytes
import java.util.*; import java.io.*; public class c { public static void main(String[] args) throws IOException { input.init(System.in); String s = input.next(), t = input.next(); int a = first(s, t), b = last(s, t); int res = 0; if(a > -1 && b > -1 && b > a) res = b-a; System.out.println(res); } static int first(String s, String t) { int pos = 0; int i = 0; for(i = 0; i<t.length() && pos < s.length(); i++) { if(t.charAt(i) == s.charAt(pos)) { pos++; } } return pos == s.length() ? i - 1 : -1; } static int last(String s, String t) { int pos = s.length()-1; int i = t.length()-1; for(i = t.length()-1; i >= 0 && pos >= 0; i--) { if(t.charAt(i) == s.charAt(pos)) pos--; } return pos == -1 ? i + 1 : -1; } public static class input { static BufferedReader reader; static StringTokenizer tokenizer; /** call this method to initialize reader for InputStream */ static void init(InputStream input) { reader = new BufferedReader( new InputStreamReader(input) ); tokenizer = new StringTokenizer(""); } /** get next word */ static String next() throws IOException { while ( ! tokenizer.hasMoreTokens() ) { //TODO add check for eof if necessary tokenizer = new StringTokenizer( reader.readLine() ); } return tokenizer.nextToken(); } static int nextInt() throws IOException { return Integer.parseInt( next() ); } static double nextDouble() throws IOException { return Double.parseDouble( next() ); } static long nextLong() throws IOException { return Long.parseLong( next() ); } } }
Java
["aba\nbaobababbah", "mars\nsunvenusearthmarsjupitersaturnuranusneptune"]
2 seconds
["2", "0"]
null
Java 7
standard input
[ "*special", "greedy" ]
724fa4b1d35b8765048857fa8f2f6802
The first line contains string s, consisting of lowercase English letters. The length of string s is from 1 to 1000 letters. The second line contains string t, that also consists of lowercase English letters. The length of string t is from 1 to 106 letters.
1,400
Print the sought number of ways to cut string t in two so that each part made s happy.
standard output
PASSED
be37090da79427f31d96db7ed249836c
train_000.jsonl
1426345200
A Martian boy is named s — he has got this name quite recently from his parents for his coming of age birthday. Now he enjoys looking for his name everywhere. If he sees that he can obtain his name from some string by removing zero or more letters (at that, the remaining letters remain in the same order), he gets happy. For example, if s=«aba», then strings «baobab», «aabbaa», «helloabahello» make him very happy and strings «aab», «baaa» and «helloabhello» do not.However rather than being happy once, he loves twice as much being happy twice! So, when he got string t as a present, he wanted to cut it in two parts (the left part and the right part) so that each part made him happy.Help s determine the number of distinct ways to cut the given string t into two parts in the required manner.
256 megabytes
//package acc; import java.util.*; public class ACC { //************Main*****************// public static void main(String[] args) { Scanner in=new Scanner (System.in); String s=in.next(); String s1=in.next(); int indl=0; int i; for( i=0;i<s1.length();i++){ if(s.charAt(indl)==s1.charAt(i)) indl++; if(indl==s.length()) break; } int indr=s.length()-1; int j; for(j=s1.length()-1;j>=0;j--){ if(s.charAt(indr)==s1.charAt(j)) indr--; if(indr<0) break; } if(i>=j) System.out.print(0); else System.out.print(j-i); } }
Java
["aba\nbaobababbah", "mars\nsunvenusearthmarsjupitersaturnuranusneptune"]
2 seconds
["2", "0"]
null
Java 7
standard input
[ "*special", "greedy" ]
724fa4b1d35b8765048857fa8f2f6802
The first line contains string s, consisting of lowercase English letters. The length of string s is from 1 to 1000 letters. The second line contains string t, that also consists of lowercase English letters. The length of string t is from 1 to 106 letters.
1,400
Print the sought number of ways to cut string t in two so that each part made s happy.
standard output
PASSED
1c9b1ae95239d93f8c48bca3f44df6c0
train_000.jsonl
1426345200
A Martian boy is named s — he has got this name quite recently from his parents for his coming of age birthday. Now he enjoys looking for his name everywhere. If he sees that he can obtain his name from some string by removing zero or more letters (at that, the remaining letters remain in the same order), he gets happy. For example, if s=«aba», then strings «baobab», «aabbaa», «helloabahello» make him very happy and strings «aab», «baaa» and «helloabhello» do not.However rather than being happy once, he loves twice as much being happy twice! So, when he got string t as a present, he wanted to cut it in two parts (the left part and the right part) so that each part made him happy.Help s determine the number of distinct ways to cut the given string t into two parts in the required manner.
256 megabytes
import java.io.*; import java.util.*; public class Main { BufferedReader in; PrintWriter out; StringTokenizer st; char[] s, t; int n, m; void solve() throws IOException { s = in.readLine().toCharArray(); t = in.readLine().toCharArray(); n = s.length; m = t.length; int l = 0, r = m - 1; boolean was_left = false, was_right = false; for (int left_idx = 0; l < m; l++) { if (s[left_idx] == t[l]) { left_idx++; if (left_idx == n) { was_left = true; break; } } } if (!was_left) { out.println(0); return; } for (int right_idx = n - 1; r >= 0; r--) { if (s[right_idx] == t[r]) { right_idx--; if (right_idx == -1) { was_right = true; break; } } } if (!was_right || r < l) { out.println(0); return; } out.println(r - l); } Main() throws IOException { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); in.close(); out.close(); } String ns() throws IOException { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(); } int ni() throws IOException { return Integer.parseInt(ns()); } double nd() throws IOException { return Double.parseDouble(ns()); } long nl() throws IOException { return Long.parseLong(ns()); } public static void main(String[] args) throws IOException { new Main(); } }
Java
["aba\nbaobababbah", "mars\nsunvenusearthmarsjupitersaturnuranusneptune"]
2 seconds
["2", "0"]
null
Java 7
standard input
[ "*special", "greedy" ]
724fa4b1d35b8765048857fa8f2f6802
The first line contains string s, consisting of lowercase English letters. The length of string s is from 1 to 1000 letters. The second line contains string t, that also consists of lowercase English letters. The length of string t is from 1 to 106 letters.
1,400
Print the sought number of ways to cut string t in two so that each part made s happy.
standard output
PASSED
39f16067f51bc497b9d99a6540924756
train_000.jsonl
1426345200
A Martian boy is named s — he has got this name quite recently from his parents for his coming of age birthday. Now he enjoys looking for his name everywhere. If he sees that he can obtain his name from some string by removing zero or more letters (at that, the remaining letters remain in the same order), he gets happy. For example, if s=«aba», then strings «baobab», «aabbaa», «helloabahello» make him very happy and strings «aab», «baaa» and «helloabhello» do not.However rather than being happy once, he loves twice as much being happy twice! So, when he got string t as a present, he wanted to cut it in two parts (the left part and the right part) so that each part made him happy.Help s determine the number of distinct ways to cut the given string t into two parts in the required manner.
256 megabytes
import java.io.*; import java.util.*; public class NameQuest { public static void main(String[] args) throws IOException { in.init(System.in); String needle = in.next(); String haystack = in.next(); int begin = -1; int end = -2; int p = 0; int n = needle.length(); int m = haystack.length(); for(int i = 0; i < m; i ++) { if(needle.charAt(p) == haystack.charAt(i)) { p++; if(p == n) { begin = i; break; } } } p = n - 1; for(int i = m - 1; i > -1; i--) { if(needle.charAt(p) == haystack.charAt(i)) { p--; if(p == -1) { end = i; break; } } } System.out.println(end < begin ? 0 : end - begin); } public static class in { static BufferedReader reader; static StringTokenizer tokenizer; static void init(InputStream in) { reader = new BufferedReader( new InputStreamReader(in) ); tokenizer = new StringTokenizer(""); } static String next() throws IOException { while ( ! tokenizer.hasMoreTokens() ) { tokenizer = new StringTokenizer( reader.readLine() ); } return tokenizer.nextToken(); } static int nextInt() throws IOException { return Integer.parseInt( next() ); } static double nextDouble() throws IOException { return Double.parseDouble( next() ); } static long nextLong() throws IOException { return Long.parseLong( next() ); } } }
Java
["aba\nbaobababbah", "mars\nsunvenusearthmarsjupitersaturnuranusneptune"]
2 seconds
["2", "0"]
null
Java 7
standard input
[ "*special", "greedy" ]
724fa4b1d35b8765048857fa8f2f6802
The first line contains string s, consisting of lowercase English letters. The length of string s is from 1 to 1000 letters. The second line contains string t, that also consists of lowercase English letters. The length of string t is from 1 to 106 letters.
1,400
Print the sought number of ways to cut string t in two so that each part made s happy.
standard output
PASSED
255e0f00f08487bdbea58ced58d52700
train_000.jsonl
1426345200
A Martian boy is named s — he has got this name quite recently from his parents for his coming of age birthday. Now he enjoys looking for his name everywhere. If he sees that he can obtain his name from some string by removing zero or more letters (at that, the remaining letters remain in the same order), he gets happy. For example, if s=«aba», then strings «baobab», «aabbaa», «helloabahello» make him very happy and strings «aab», «baaa» and «helloabhello» do not.However rather than being happy once, he loves twice as much being happy twice! So, when he got string t as a present, he wanted to cut it in two parts (the left part and the right part) so that each part made him happy.Help s determine the number of distinct ways to cut the given string t into two parts in the required manner.
256 megabytes
import java.util.Scanner; public class C { public static void main(String[] args) { Scanner sc = new Scanner(System.in); String s = sc.nextLine(); String t = sc.nextLine(); int l = 0; int si = 0; while (l < t.length() && si < s.length()) { if (s.charAt(si) == t.charAt(l)) { si++; } l++; } l--; int r = t.length() - 1; si = s.length() - 1; while (r >= 0 && si >= 0) { if (s.charAt(si) == t.charAt(r)) { si--; } r--; } r++; System.out.println(l < r ? r - l : 0); } }
Java
["aba\nbaobababbah", "mars\nsunvenusearthmarsjupitersaturnuranusneptune"]
2 seconds
["2", "0"]
null
Java 7
standard input
[ "*special", "greedy" ]
724fa4b1d35b8765048857fa8f2f6802
The first line contains string s, consisting of lowercase English letters. The length of string s is from 1 to 1000 letters. The second line contains string t, that also consists of lowercase English letters. The length of string t is from 1 to 106 letters.
1,400
Print the sought number of ways to cut string t in two so that each part made s happy.
standard output
PASSED
a945766467f57e3c45cf503ce6704f00
train_000.jsonl
1426345200
A Martian boy is named s — he has got this name quite recently from his parents for his coming of age birthday. Now he enjoys looking for his name everywhere. If he sees that he can obtain his name from some string by removing zero or more letters (at that, the remaining letters remain in the same order), he gets happy. For example, if s=«aba», then strings «baobab», «aabbaa», «helloabahello» make him very happy and strings «aab», «baaa» and «helloabhello» do not.However rather than being happy once, he loves twice as much being happy twice! So, when he got string t as a present, he wanted to cut it in two parts (the left part and the right part) so that each part made him happy.Help s determine the number of distinct ways to cut the given string t into two parts in the required manner.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class C { public static void main (String[] args) throws IOException { BufferedReader bf = new BufferedReader(new InputStreamReader(System.in)); String s = bf.readLine(); String t = bf.readLine(); int q = 0; int w = 0; int index = 0; boolean buff = false; for (int i = 0; i < t.length(); i++) { if (s.charAt(index) == t.charAt(i)) { index++; if (s.length() == index) { buff = true; q = i; break; } } } if (!buff) { System.out.println("0"); return; } index--; buff = false; for (int i = t.length() - 1; i > q; i--) { if (s.charAt(index) == t.charAt(i)) { index--; if (-1 == index) { buff = true; w = i; break; } } } if (buff == false) { System.out.println("0"); return; } System.out.println(w - q); } }
Java
["aba\nbaobababbah", "mars\nsunvenusearthmarsjupitersaturnuranusneptune"]
2 seconds
["2", "0"]
null
Java 7
standard input
[ "*special", "greedy" ]
724fa4b1d35b8765048857fa8f2f6802
The first line contains string s, consisting of lowercase English letters. The length of string s is from 1 to 1000 letters. The second line contains string t, that also consists of lowercase English letters. The length of string t is from 1 to 106 letters.
1,400
Print the sought number of ways to cut string t in two so that each part made s happy.
standard output
PASSED
2c8d209bd776ac639a5283c3ae4512f1
train_000.jsonl
1426345200
A Martian boy is named s — he has got this name quite recently from his parents for his coming of age birthday. Now he enjoys looking for his name everywhere. If he sees that he can obtain his name from some string by removing zero or more letters (at that, the remaining letters remain in the same order), he gets happy. For example, if s=«aba», then strings «baobab», «aabbaa», «helloabahello» make him very happy and strings «aab», «baaa» and «helloabhello» do not.However rather than being happy once, he loves twice as much being happy twice! So, when he got string t as a present, he wanted to cut it in two parts (the left part and the right part) so that each part made him happy.Help s determine the number of distinct ways to cut the given string t into two parts in the required manner.
256 megabytes
import static java.lang.Math.*; import static java.lang.System.currentTimeMillis; import static java.lang.System.exit; import static java.lang.System.arraycopy; import static java.util.Arrays.sort; import static java.util.Arrays.binarySearch; import static java.util.Arrays.fill; import java.util.*; import java.io.*; @SuppressWarnings("unused") public class Main { public static void main(String[] args) throws IOException { new Main().run(); } BufferedReader in; PrintWriter out; StringTokenizer st = new StringTokenizer(""); private void run() throws IOException { if (new File("input.txt").exists()) in = new BufferedReader(new FileReader("input.txt")); else in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); in.close(); out.close(); } private void solve() throws IOException { char s[] = nextToken().toCharArray(); int n = s.length; char t[] = nextToken().toCharArray(); int m = t.length; int l = -1; int r = m; for (int i = 0; i < n; i++) { while (l < m - 1 && s[i] != t[l + 1]) l++; l++; } for (int i = n - 1; i > -1; i--) { while (r > 0 && s[i] != t[r - 1]) r--; r--; } // System.err.println(l + " " + r); if (l >= r) out.println(0); else out.println(r - l); } void chk(boolean b) { if (b) return; System.out.println(new Error().getStackTrace()[1]); exit(999); } void deb(String fmt, Object... args) { System.out.printf(Locale.US, fmt + "%n", args); } String nextToken() throws IOException { while (!st.hasMoreTokens()) st = new StringTokenizer(in.readLine()); return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } String nextLine() throws IOException { st = new StringTokenizer(""); return in.readLine(); } boolean EOF() throws IOException { while (!st.hasMoreTokens()) { String s = in.readLine(); if (s == null) return true; st = new StringTokenizer(s); } return false; } }
Java
["aba\nbaobababbah", "mars\nsunvenusearthmarsjupitersaturnuranusneptune"]
2 seconds
["2", "0"]
null
Java 7
standard input
[ "*special", "greedy" ]
724fa4b1d35b8765048857fa8f2f6802
The first line contains string s, consisting of lowercase English letters. The length of string s is from 1 to 1000 letters. The second line contains string t, that also consists of lowercase English letters. The length of string t is from 1 to 106 letters.
1,400
Print the sought number of ways to cut string t in two so that each part made s happy.
standard output
PASSED
fa54a84472729fa92cadc49e3296c014
train_000.jsonl
1426345200
A Martian boy is named s — he has got this name quite recently from his parents for his coming of age birthday. Now he enjoys looking for his name everywhere. If he sees that he can obtain his name from some string by removing zero or more letters (at that, the remaining letters remain in the same order), he gets happy. For example, if s=«aba», then strings «baobab», «aabbaa», «helloabahello» make him very happy and strings «aab», «baaa» and «helloabhello» do not.However rather than being happy once, he loves twice as much being happy twice! So, when he got string t as a present, he wanted to cut it in two parts (the left part and the right part) so that each part made him happy.Help s determine the number of distinct ways to cut the given string t into two parts in the required manner.
256 megabytes
import java.util.Scanner; public class C { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); char[] name = scanner.next().toCharArray(); char[] chars = scanner.next().toCharArray(); int left = 0; int right = chars.length - 1; int nameIndex = 0; while (nameIndex < name.length && left < chars.length) { while (left < chars.length && chars[left] != name[nameIndex]) { ++left; } ++nameIndex; ++left; } --left; nameIndex = name.length - 1; while (nameIndex >= 0 && right >= 0) { while (right >= 0 && chars[right] != name[nameIndex]) { --right; } --nameIndex; --right; } ++right; System.out.println(right - left > 0 ? right - left : 0); } }
Java
["aba\nbaobababbah", "mars\nsunvenusearthmarsjupitersaturnuranusneptune"]
2 seconds
["2", "0"]
null
Java 7
standard input
[ "*special", "greedy" ]
724fa4b1d35b8765048857fa8f2f6802
The first line contains string s, consisting of lowercase English letters. The length of string s is from 1 to 1000 letters. The second line contains string t, that also consists of lowercase English letters. The length of string t is from 1 to 106 letters.
1,400
Print the sought number of ways to cut string t in two so that each part made s happy.
standard output
PASSED
845c9a7c6322572b625e19f40378daf4
train_000.jsonl
1426345200
A Martian boy is named s — he has got this name quite recently from his parents for his coming of age birthday. Now he enjoys looking for his name everywhere. If he sees that he can obtain his name from some string by removing zero or more letters (at that, the remaining letters remain in the same order), he gets happy. For example, if s=«aba», then strings «baobab», «aabbaa», «helloabahello» make him very happy and strings «aab», «baaa» and «helloabhello» do not.However rather than being happy once, he loves twice as much being happy twice! So, when he got string t as a present, he wanted to cut it in two parts (the left part and the right part) so that each part made him happy.Help s determine the number of distinct ways to cut the given string t into two parts in the required manner.
256 megabytes
import java.util.Scanner; /** * http://codeforces.ru/contest/523/problem/C * * Created by duviteck on 14/03/15. */ public class Problem_C { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); char[] s = scanner.nextLine().toCharArray(); char[] t = scanner.nextLine().toCharArray(); scanner.close(); int bestFirstEnd = findFromStart(s, t); int bestSecondStart = findFromEnd(s, t); int ans = Math.max(0, bestSecondStart - bestFirstEnd); System.out.println(ans); } private static int findFromStart(char[] s, char[] t) { int len = t.length; int checkIndex = 0; for (int i = 0; i < len; i++) { if (s[checkIndex] == t[i]) { checkIndex++; if (checkIndex == s.length) { return i; } } } return t.length; } private static int findFromEnd(char[] s, char[] t) { int checkIndex = s.length - 1; for (int i = t.length - 1; i >= 0; i--) { if (s[checkIndex] == t[i]) { checkIndex--; if (checkIndex < 0) { return i; } } } return 0; } }
Java
["aba\nbaobababbah", "mars\nsunvenusearthmarsjupitersaturnuranusneptune"]
2 seconds
["2", "0"]
null
Java 7
standard input
[ "*special", "greedy" ]
724fa4b1d35b8765048857fa8f2f6802
The first line contains string s, consisting of lowercase English letters. The length of string s is from 1 to 1000 letters. The second line contains string t, that also consists of lowercase English letters. The length of string t is from 1 to 106 letters.
1,400
Print the sought number of ways to cut string t in two so that each part made s happy.
standard output
PASSED
b45df5b5d7a3b4ef40b3aae3bed41e5e
train_000.jsonl
1426345200
A Martian boy is named s — he has got this name quite recently from his parents for his coming of age birthday. Now he enjoys looking for his name everywhere. If he sees that he can obtain his name from some string by removing zero or more letters (at that, the remaining letters remain in the same order), he gets happy. For example, if s=«aba», then strings «baobab», «aabbaa», «helloabahello» make him very happy and strings «aab», «baaa» and «helloabhello» do not.However rather than being happy once, he loves twice as much being happy twice! So, when he got string t as a present, he wanted to cut it in two parts (the left part and the right part) so that each part made him happy.Help s determine the number of distinct ways to cut the given string t into two parts in the required manner.
256 megabytes
import java.io.BufferedReader; import java.io.File; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.FileOutputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.math.BigInteger; import java.util.ArrayList; import java.util.Arrays; import java.util.BitSet; import java.util.Calendar; import java.util.Collections; import java.util.Comparator; import java.util.HashMap; import java.util.HashSet; import java.util.LinkedList; import java.util.PriorityQueue; import java.util.SortedSet; import java.util.Stack; import java.util.StringTokenizer; import java.util.TreeMap; import java.util.TreeSet; /** * # * @author pttrung */ public class C_VK2015_Qual2 { public static long MOD = 1000000007; public static void main(String[] args) throws FileNotFoundException { // PrintWriter out = new PrintWriter(new FileOutputStream(new File( // "output.txt"))); PrintWriter out = new PrintWriter(System.out); Scanner in = new Scanner(); String s = in.next(); String t = in.next(); int first = -1; int last = -1; int cur = 0; for(int i = 0; i < t.length() && cur < s.length(); i++){ if(s.charAt(cur) == t.charAt(i)){ cur++; if(cur == s.length()){ first = i; } } } cur = s.length() - 1; for(int i = t.length() - 1; i >= 0 && cur >= 0; i--){ if(s.charAt(cur) == t.charAt(i)){ cur--; if(cur < 0){ last = i; } } } if(first == -1 || first >= last){ out.println(0); }else{ out.println(last - first); } out.close(); } public static int[] KMP(String val) { int i = 0; int j = -1; int[] result = new int[val.length() + 1]; result[0] = -1; while (i < val.length()) { while (j >= 0 && val.charAt(j) != val.charAt(i)) { j = result[j]; } j++; i++; result[i] = j; } return result; } public static boolean nextPer(int[] data) { int i = data.length - 1; while (i > 0 && data[i] < data[i - 1]) { i--; } if (i == 0) { return false; } int j = data.length - 1; while (data[j] < data[i - 1]) { j--; } int temp = data[i - 1]; data[i - 1] = data[j]; data[j] = temp; Arrays.sort(data, i, data.length); return true; } public static int digit(long n) { int result = 0; while (n > 0) { n /= 10; result++; } return result; } public static double dist(long a, long b, long x, long y) { double val = (b - a) * (b - a) + (x - y) * (x - y); val = Math.sqrt(val); double other = x * x + a * a; other = Math.sqrt(other); return val + other; } public static class Point implements Comparable<Point> { int x, y; public Point(int start, int end) { this.x = start; this.y = end; } @Override public int hashCode() { int hash = 5; hash = 47 * hash + this.x; hash = 47 * hash + this.y; return hash; } @Override public boolean equals(Object obj) { if (obj == null) { return false; } if (getClass() != obj.getClass()) { return false; } final Point other = (Point) obj; if (this.x != other.x) { return false; } if (this.y != other.y) { return false; } return true; } @Override public int compareTo(Point o) { return x - o.x; } } public static class FT { long[] data; FT(int n) { data = new long[n]; } public void update(int index, long value) { while (index < data.length) { data[index] += value; index += (index & (-index)); } } public long get(int index) { long result = 0; while (index > 0) { result += data[index]; index -= (index & (-index)); } return result; } } public static long gcd(long a, long b) { if (b == 0) { return a; } return gcd(b, a % b); } public static long pow(long a, long b) { if (b == 0) { return 1; } if (b == 1) { return a; } long val = pow(a, b / 2); if (b % 2 == 0) { return val * val % MOD; } else { return val * (val * a % MOD) % MOD; } } static class Scanner { BufferedReader br; StringTokenizer st; public Scanner() throws FileNotFoundException { // System.setOut(new PrintStream(new BufferedOutputStream(System.out), true)); br = new BufferedReader(new InputStreamReader(System.in)); // br = new BufferedReader(new InputStreamReader(new FileInputStream(new File("input.txt")))); } public String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception e) { throw new RuntimeException(); } } return st.nextToken(); } public long nextLong() { return Long.parseLong(next()); } public int nextInt() { return Integer.parseInt(next()); } public double nextDouble() { return Double.parseDouble(next()); } public String nextLine() { st = null; try { return br.readLine(); } catch (Exception e) { throw new RuntimeException(); } } public boolean endLine() { try { String next = br.readLine(); while (next != null && next.trim().isEmpty()) { next = br.readLine(); } if (next == null) { return true; } st = new StringTokenizer(next); return st.hasMoreTokens(); } catch (Exception e) { throw new RuntimeException(); } } } }
Java
["aba\nbaobababbah", "mars\nsunvenusearthmarsjupitersaturnuranusneptune"]
2 seconds
["2", "0"]
null
Java 7
standard input
[ "*special", "greedy" ]
724fa4b1d35b8765048857fa8f2f6802
The first line contains string s, consisting of lowercase English letters. The length of string s is from 1 to 1000 letters. The second line contains string t, that also consists of lowercase English letters. The length of string t is from 1 to 106 letters.
1,400
Print the sought number of ways to cut string t in two so that each part made s happy.
standard output
PASSED
6392528c3ea491d13a84a59a654ddfa1
train_000.jsonl
1426345200
A Martian boy is named s — he has got this name quite recently from his parents for his coming of age birthday. Now he enjoys looking for his name everywhere. If he sees that he can obtain his name from some string by removing zero or more letters (at that, the remaining letters remain in the same order), he gets happy. For example, if s=«aba», then strings «baobab», «aabbaa», «helloabahello» make him very happy and strings «aab», «baaa» and «helloabhello» do not.However rather than being happy once, he loves twice as much being happy twice! So, when he got string t as a present, he wanted to cut it in two parts (the left part and the right part) so that each part made him happy.Help s determine the number of distinct ways to cut the given string t into two parts in the required manner.
256 megabytes
import java.util.Scanner; /** * Created by bulbigood on 14.03.15. */ public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); String name = sc.next(); String str = sc.next(); int h = 0; int a = 0; boolean est = false; for(int i = 0; i < str.length(); i++){ if(str.charAt(i) == name.charAt(h)) h++; if(h == name.length()){ est = true; a = i; h--; break; } } if(est){ for(int i = str.length() - 1; i >= 0; i--){ if(str.charAt(i) == name.charAt(h)) h--; if(h == -1){ if(i - a <= 0) System.out.println(0); else System.out.println(i - a); break; } } } else System.out.println(0); } }
Java
["aba\nbaobababbah", "mars\nsunvenusearthmarsjupitersaturnuranusneptune"]
2 seconds
["2", "0"]
null
Java 7
standard input
[ "*special", "greedy" ]
724fa4b1d35b8765048857fa8f2f6802
The first line contains string s, consisting of lowercase English letters. The length of string s is from 1 to 1000 letters. The second line contains string t, that also consists of lowercase English letters. The length of string t is from 1 to 106 letters.
1,400
Print the sought number of ways to cut string t in two so that each part made s happy.
standard output
PASSED
a69bedae61abb88ed18fb8a931dcfffd
train_000.jsonl
1426345200
A Martian boy is named s — he has got this name quite recently from his parents for his coming of age birthday. Now he enjoys looking for his name everywhere. If he sees that he can obtain his name from some string by removing zero or more letters (at that, the remaining letters remain in the same order), he gets happy. For example, if s=«aba», then strings «baobab», «aabbaa», «helloabahello» make him very happy and strings «aab», «baaa» and «helloabhello» do not.However rather than being happy once, he loves twice as much being happy twice! So, when he got string t as a present, he wanted to cut it in two parts (the left part and the right part) so that each part made him happy.Help s determine the number of distinct ways to cut the given string t into two parts in the required manner.
256 megabytes
import java.io.InputStream; import java.io.InputStreamReader; import java.io.BufferedReader; import java.io.OutputStream; import java.io.PrintWriter; import java.io.IOException; import java.util.StringTokenizer; /** * Built using CHelper plug-in * Actual solution is at the top * @author Artem Gilmudinov */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; Reader in = new Reader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } } class TaskC { public void solve(int testNumber, Reader in, PrintWriter out) { String name = in.rl(); String s = in.rl(); int n, m; n = name.length(); m = s.length(); int maxRight, meet; maxRight = meet = 0; for(int i = n - 1, j = m - 1; i >= 0; i--, j--) { for(; j >= 0; j--) { if(s.charAt(j) == name.charAt(i)) { meet++; maxRight = j; break; } } } if(meet != n) { out.println(0); return; } meet = 0; int maxLeft = 0; for(int i = 0, j = 0; i < n; i++, j++) { for(; j < maxRight; j++) { if(s.charAt(j) == name.charAt(i)) { meet++; maxLeft = j; break; } } } if(meet != n) { out.println(0); return; } out.println(maxRight - maxLeft); } } class Reader { private BufferedReader in; public Reader(InputStream in) { this.in = new BufferedReader(new InputStreamReader(in)); } public String rl() { try { return in.readLine(); } catch(IOException e) { throw new RuntimeException(e); } } }
Java
["aba\nbaobababbah", "mars\nsunvenusearthmarsjupitersaturnuranusneptune"]
2 seconds
["2", "0"]
null
Java 7
standard input
[ "*special", "greedy" ]
724fa4b1d35b8765048857fa8f2f6802
The first line contains string s, consisting of lowercase English letters. The length of string s is from 1 to 1000 letters. The second line contains string t, that also consists of lowercase English letters. The length of string t is from 1 to 106 letters.
1,400
Print the sought number of ways to cut string t in two so that each part made s happy.
standard output
PASSED
302452e75c1f731cb0b500c50502f0a3
train_000.jsonl
1426345200
A Martian boy is named s — he has got this name quite recently from his parents for his coming of age birthday. Now he enjoys looking for his name everywhere. If he sees that he can obtain his name from some string by removing zero or more letters (at that, the remaining letters remain in the same order), he gets happy. For example, if s=«aba», then strings «baobab», «aabbaa», «helloabahello» make him very happy and strings «aab», «baaa» and «helloabhello» do not.However rather than being happy once, he loves twice as much being happy twice! So, when he got string t as a present, he wanted to cut it in two parts (the left part and the right part) so that each part made him happy.Help s determine the number of distinct ways to cut the given string t into two parts in the required manner.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class VKCupC2 { static BufferedReader in; static PrintWriter out; static StringTokenizer st; static String next() throws IOException { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(); } static int nextInt() throws IOException { return Integer.parseInt(next()); } static double nextDouble() throws IOException { return Double.parseDouble(next()); } public static void main(String args[]) throws IOException { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); String s = in.readLine(); String t = in.readLine(); int n = s.length(); int a[] = new int[n]; for (int i = 0; i < n; i++) { a[i] = s.charAt(i); } int m = t.length(); int b[] = new int[m]; int head = 0; int pos1 = m; for (int j = 0; j < m; j++) { b[j] = t.charAt(j); if (head < n && b[j] == a[head]) { head++; if (head == n) { pos1 = j; } } } int tail = n - 1; int pos2 = -1; if (pos1 < m - n) { for (int j = m - 1; j >= 0; j--) { if (tail >= 0 && b[j] == a[tail]) { tail--; if (tail == -1) { pos2 = j; break; } } } } int ans = pos2 - pos1; if (ans > 0) { out.println(ans); } else { out.println(0); } in.close(); out.close(); } }
Java
["aba\nbaobababbah", "mars\nsunvenusearthmarsjupitersaturnuranusneptune"]
2 seconds
["2", "0"]
null
Java 7
standard input
[ "*special", "greedy" ]
724fa4b1d35b8765048857fa8f2f6802
The first line contains string s, consisting of lowercase English letters. The length of string s is from 1 to 1000 letters. The second line contains string t, that also consists of lowercase English letters. The length of string t is from 1 to 106 letters.
1,400
Print the sought number of ways to cut string t in two so that each part made s happy.
standard output
PASSED
3648f2382b6582c512c3c054ee4ecccd
train_000.jsonl
1426345200
A Martian boy is named s — he has got this name quite recently from his parents for his coming of age birthday. Now he enjoys looking for his name everywhere. If he sees that he can obtain his name from some string by removing zero or more letters (at that, the remaining letters remain in the same order), he gets happy. For example, if s=«aba», then strings «baobab», «aabbaa», «helloabahello» make him very happy and strings «aab», «baaa» and «helloabhello» do not.However rather than being happy once, he loves twice as much being happy twice! So, when he got string t as a present, he wanted to cut it in two parts (the left part and the right part) so that each part made him happy.Help s determine the number of distinct ways to cut the given string t into two parts in the required manner.
256 megabytes
import java.util.Scanner; /** * Created by loremon long time ago. */ import java.util.ArrayList; public class Main { public static void main(String[] args) { Scanner read = new Scanner(System.in); String s1, s2; char [] a, b; int n, m, i, j, ans=1000000000; ArrayList <Integer> begin = new ArrayList<Integer>(), end = new ArrayList<Integer>(); s1 = read.nextLine(); s2 = read.nextLine(); n = s1.length(); m = s2.length(); a = s1.toCharArray(); b = s2.toCharArray(); i = 0; for (j = 0; j < m; j++) { if (a[i] == b[j]) i++; if (i ==n ) { ans = j; break; } } if (ans == 1000000000) { System.out.print(0); return; } i = n - 1; for (j = m - 1; j >= 0; j--) { if (a[i] == b[j]) i--; if (i < 0) { ans = j - ans; break; } } if (ans < 0) ans = 0; System.out.print(ans); } }
Java
["aba\nbaobababbah", "mars\nsunvenusearthmarsjupitersaturnuranusneptune"]
2 seconds
["2", "0"]
null
Java 7
standard input
[ "*special", "greedy" ]
724fa4b1d35b8765048857fa8f2f6802
The first line contains string s, consisting of lowercase English letters. The length of string s is from 1 to 1000 letters. The second line contains string t, that also consists of lowercase English letters. The length of string t is from 1 to 106 letters.
1,400
Print the sought number of ways to cut string t in two so that each part made s happy.
standard output
PASSED
05451d3329b9e3ea713af77cdbd2fb51
train_000.jsonl
1426345200
A Martian boy is named s — he has got this name quite recently from his parents for his coming of age birthday. Now he enjoys looking for his name everywhere. If he sees that he can obtain his name from some string by removing zero or more letters (at that, the remaining letters remain in the same order), he gets happy. For example, if s=«aba», then strings «baobab», «aabbaa», «helloabahello» make him very happy and strings «aab», «baaa» and «helloabhello» do not.However rather than being happy once, he loves twice as much being happy twice! So, when he got string t as a present, he wanted to cut it in two parts (the left part and the right part) so that each part made him happy.Help s determine the number of distinct ways to cut the given string t into two parts in the required manner.
256 megabytes
import java.io.*; import java.util.*; public class Solution { static BufferedReader cin; static StringTokenizer tok; public static String nextToken() throws Exception { if (tok == null || !tok.hasMoreTokens()) { tok = new StringTokenizer(cin.readLine()); } return tok.nextToken(); } public static int nextInt() throws Exception { return Integer.parseInt(nextToken()); } public static double nextDouble() throws NumberFormatException, Exception { return Double.parseDouble(nextToken()); } public static void main(String[] args) throws Exception { cin = new BufferedReader(new InputStreamReader(System.in)); String s = cin.readLine(); String t = cin.readLine(); int si = 0; int leftI = -1; for (int i = 0; i < t.length(); i++) { if (t.charAt(i) == s.charAt(si)) { si++; if (si >= s.length()) { leftI = i; break; } } } si = s.length() - 1; int rightI = -1; for (int i = t.length() - 1; i >= 0; i--) { if (t.charAt(i) == s.charAt(si)) { si--; if (si < 0) { rightI = i; break; } } } System.out.println(Math.max(0, rightI - leftI)); } }
Java
["aba\nbaobababbah", "mars\nsunvenusearthmarsjupitersaturnuranusneptune"]
2 seconds
["2", "0"]
null
Java 7
standard input
[ "*special", "greedy" ]
724fa4b1d35b8765048857fa8f2f6802
The first line contains string s, consisting of lowercase English letters. The length of string s is from 1 to 1000 letters. The second line contains string t, that also consists of lowercase English letters. The length of string t is from 1 to 106 letters.
1,400
Print the sought number of ways to cut string t in two so that each part made s happy.
standard output
PASSED
072ffb7f7f27c64553c3843355bbd529
train_000.jsonl
1426345200
A Martian boy is named s — he has got this name quite recently from his parents for his coming of age birthday. Now he enjoys looking for his name everywhere. If he sees that he can obtain his name from some string by removing zero or more letters (at that, the remaining letters remain in the same order), he gets happy. For example, if s=«aba», then strings «baobab», «aabbaa», «helloabahello» make him very happy and strings «aab», «baaa» and «helloabhello» do not.However rather than being happy once, he loves twice as much being happy twice! So, when he got string t as a present, he wanted to cut it in two parts (the left part and the right part) so that each part made him happy.Help s determine the number of distinct ways to cut the given string t into two parts in the required manner.
256 megabytes
import java.io.BufferedReader; import java.io.File; import java.io.FileReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.util.StringTokenizer; public class C { FastScanner in; PrintWriter out; public static void main(String args[] ) throws Exception { new C().run(); } void solve() throws IOException { String s = in.next(); String t = in.next(); int n = s.length(); int m = t.length(); int[] L = new int[m]; int[] R = new int[m]; for (int i = 0; i < m; i++) { L[i] = (i==0 ? 0 : L[i-1]); if (L[i] < n && s.charAt(L[i]) == t.charAt(i)) L[i]++; } for (int i = m-1; i >= 0; i--) { R[i] = (i == m-1 ? n-1 : R[i+1]); if (R[i] >= 0 && s.charAt(R[i]) == t.charAt(i)) R[i]--; } int cnt = 0; for (int i = 0; i < m-1; i++) { if (L[i] == n && R[i+1] == -1) cnt++; } out.println(cnt); } void run() throws IOException { in = new FastScanner(System.in); out = new PrintWriter(new OutputStreamWriter(System.out)); solve(); out.close(); } class FastScanner { StringTokenizer st; BufferedReader bf; public FastScanner(InputStream is) { bf = new BufferedReader(new InputStreamReader(is)); } public FastScanner(File f){ try{ bf = new BufferedReader(new FileReader(f)); } catch(IOException ex){ ex.printStackTrace(); } } String next(){ while(st == null || !st.hasMoreTokens()){ try{ st = new StringTokenizer(bf.readLine()); } catch(Exception ex){ ex.printStackTrace(); } } return st.nextToken(); } int nextInt(){ return Integer.parseInt(next()); } long nextLong(){ return Long.parseLong(next()); } double nextDouble(){ return Double.parseDouble(next()); } float nextFloat(){ return Float.parseFloat(next()); } short nextShort(){ return Short.parseShort(next()); } int[] nextIntArray(int n){ int a[] = new int[n]; for(int i = 0; i < n; ++i) a[i] = Integer.parseInt(next()); return a; } long[] nextLongArray(int n){ long a[] = new long[n]; for(int i = 0; i < n; ++i) a[i] = Long.parseLong(next()); return a; } } }
Java
["aba\nbaobababbah", "mars\nsunvenusearthmarsjupitersaturnuranusneptune"]
2 seconds
["2", "0"]
null
Java 7
standard input
[ "*special", "greedy" ]
724fa4b1d35b8765048857fa8f2f6802
The first line contains string s, consisting of lowercase English letters. The length of string s is from 1 to 1000 letters. The second line contains string t, that also consists of lowercase English letters. The length of string t is from 1 to 106 letters.
1,400
Print the sought number of ways to cut string t in two so that each part made s happy.
standard output
PASSED
1c9fb4555bbfa8bacd77fc904e74dec6
train_000.jsonl
1426345200
A Martian boy is named s — he has got this name quite recently from his parents for his coming of age birthday. Now he enjoys looking for his name everywhere. If he sees that he can obtain his name from some string by removing zero or more letters (at that, the remaining letters remain in the same order), he gets happy. For example, if s=«aba», then strings «baobab», «aabbaa», «helloabahello» make him very happy and strings «aab», «baaa» and «helloabhello» do not.However rather than being happy once, he loves twice as much being happy twice! So, when he got string t as a present, he wanted to cut it in two parts (the left part and the right part) so that each part made him happy.Help s determine the number of distinct ways to cut the given string t into two parts in the required manner.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.util.StringTokenizer; public class B { public static void main(String[] args) throws IOException { BufferedReader scan = new BufferedReader(new InputStreamReader(System.in)); //Scanner scan = new Scanner(System.in); PrintWriter pw = new PrintWriter(new OutputStreamWriter(System.out)); String n = scan.readLine(); String m = scan.readLine(); int c = 0; boolean s = true; for (int i = 0; i < m.length(); i++) { if (n.charAt(c) == m.charAt(i)) { if (c == n.length() - 1) { c = i; s = false; break; } c++; } } if (s || c == m.length() - 1) { System.out.println(0); System.exit(0); } int f = n.length()-1; boolean wow = true; for (int i = m.length()-1; i > c; i--) { if (n.charAt(f) == m.charAt(i)) { if (f == 0) { f = i; wow = false; break; } f--; } } if (wow) { System.out.println(0); System.exit(0); } //System.out.println(f + " " + c); pw.write(f-c + "\n"); pw.close(); } }
Java
["aba\nbaobababbah", "mars\nsunvenusearthmarsjupitersaturnuranusneptune"]
2 seconds
["2", "0"]
null
Java 7
standard input
[ "*special", "greedy" ]
724fa4b1d35b8765048857fa8f2f6802
The first line contains string s, consisting of lowercase English letters. The length of string s is from 1 to 1000 letters. The second line contains string t, that also consists of lowercase English letters. The length of string t is from 1 to 106 letters.
1,400
Print the sought number of ways to cut string t in two so that each part made s happy.
standard output
PASSED
ec391f173df81e8b0a99c6c1d2e8d947
train_000.jsonl
1426345200
A Martian boy is named s — he has got this name quite recently from his parents for his coming of age birthday. Now he enjoys looking for his name everywhere. If he sees that he can obtain his name from some string by removing zero or more letters (at that, the remaining letters remain in the same order), he gets happy. For example, if s=«aba», then strings «baobab», «aabbaa», «helloabahello» make him very happy and strings «aab», «baaa» and «helloabhello» do not.However rather than being happy once, he loves twice as much being happy twice! So, when he got string t as a present, he wanted to cut it in two parts (the left part and the right part) so that each part made him happy.Help s determine the number of distinct ways to cut the given string t into two parts in the required manner.
256 megabytes
import java.io.*; import java.util.*; public final class name_quest { static FastScanner sc=new FastScanner(new BufferedReader(new InputStreamReader(System.in))); static PrintWriter out=new PrintWriter(System.out); static ArrayList<Integer>[] al; @SuppressWarnings("unchecked") public static void main(String args[]) throws Exception { char[] a=sc.next().toCharArray(),b=sc.next().toCharArray(); al=new ArrayList[123]; for(int i=97;i<=122;i++) { al[i]=new ArrayList<Integer>(); al[i].add(-1); } for(int i=0;i<b.length;i++) { al[b[i]].add(i); } int first=-1,last=-1,prev=-1; boolean first_now=true,last_now=true; for(int i=0;i<a.length;i++) { int low=0,high=al[a[i]].size()-1; while(low<high) { int mid=(low+high)>>1; if(al[a[i]].get(mid)>prev) { high=mid; } else { low=mid+1; } } if(al[a[i]].get(low)>prev) { prev=al[a[i]].get(low); } else { first_now=false; break; } } first=prev;prev=b.length; for(int i=a.length-1;i>=0;i--) { int low=0,high=al[a[i]].size()-1; while(low<high) { int mid=(low+high+1)>>1; if(al[a[i]].get(mid)<prev) { low=mid; } else { high=mid-1; } } if(al[a[i]].get(low)<prev && al[a[i]].get(low)!=-1) { prev=al[a[i]].get(low); } else { last_now=false; break; } } last=prev; if(last>first && first_now && last_now) { out.println(last-first); } else { out.println(0); } out.close(); } } class FastScanner { BufferedReader in; StringTokenizer st; public FastScanner(BufferedReader in) { this.in = in; } public String nextToken() throws Exception { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(); } public String next() throws Exception { return nextToken().toString(); } public int nextInt() throws Exception { return Integer.parseInt(nextToken()); } public long nextLong() throws Exception { return Long.parseLong(nextToken()); } public double nextDouble() throws Exception { return Double.parseDouble(nextToken()); } }
Java
["aba\nbaobababbah", "mars\nsunvenusearthmarsjupitersaturnuranusneptune"]
2 seconds
["2", "0"]
null
Java 7
standard input
[ "*special", "greedy" ]
724fa4b1d35b8765048857fa8f2f6802
The first line contains string s, consisting of lowercase English letters. The length of string s is from 1 to 1000 letters. The second line contains string t, that also consists of lowercase English letters. The length of string t is from 1 to 106 letters.
1,400
Print the sought number of ways to cut string t in two so that each part made s happy.
standard output
PASSED
d6b426f03f86f9bae26815e72e9aa0e2
train_000.jsonl
1426345200
A Martian boy is named s — he has got this name quite recently from his parents for his coming of age birthday. Now he enjoys looking for his name everywhere. If he sees that he can obtain his name from some string by removing zero or more letters (at that, the remaining letters remain in the same order), he gets happy. For example, if s=«aba», then strings «baobab», «aabbaa», «helloabahello» make him very happy and strings «aab», «baaa» and «helloabhello» do not.However rather than being happy once, he loves twice as much being happy twice! So, when he got string t as a present, he wanted to cut it in two parts (the left part and the right part) so that each part made him happy.Help s determine the number of distinct ways to cut the given string t into two parts in the required manner.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class Main { public static void main(String[] args) throws IOException { // final Scanner sc = new Scanner(System.in); final BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); String s = br.readLine(); // String s = sc.nextLine(); int si = 0; String t = br.readLine(); // String t = sc.nextLine(); int ti = 0; int posLR = 0; int posRL = 0; // from the bottom to the top for (ti = 0; ti < t.length(); ti++) { if (t.charAt(ti) == s.charAt(si)) { if (si == s.length() - 1) { si = 0; posLR = ti; break; } si++; } } si = s.length() - 1; // from the top to the bottom for (ti = t.length() - 1; ti >= 0; ti--) { if (t.charAt(ti) == s.charAt(si)) { if (si == 0) { posRL = ti; break; } si--; } } if (posLR < posRL) { System.out.println(posRL - posLR); } else { System.out.println(0); } } }
Java
["aba\nbaobababbah", "mars\nsunvenusearthmarsjupitersaturnuranusneptune"]
2 seconds
["2", "0"]
null
Java 7
standard input
[ "*special", "greedy" ]
724fa4b1d35b8765048857fa8f2f6802
The first line contains string s, consisting of lowercase English letters. The length of string s is from 1 to 1000 letters. The second line contains string t, that also consists of lowercase English letters. The length of string t is from 1 to 106 letters.
1,400
Print the sought number of ways to cut string t in two so that each part made s happy.
standard output
PASSED
2e6eaa8f5e088ee5996bcaaeb4e11951
train_000.jsonl
1426345200
A Martian boy is named s — he has got this name quite recently from his parents for his coming of age birthday. Now he enjoys looking for his name everywhere. If he sees that he can obtain his name from some string by removing zero or more letters (at that, the remaining letters remain in the same order), he gets happy. For example, if s=«aba», then strings «baobab», «aabbaa», «helloabahello» make him very happy and strings «aab», «baaa» and «helloabhello» do not.However rather than being happy once, he loves twice as much being happy twice! So, when he got string t as a present, he wanted to cut it in two parts (the left part and the right part) so that each part made him happy.Help s determine the number of distinct ways to cut the given string t into two parts in the required manner.
256 megabytes
/* * To change this license header, choose License Headers in Project Properties. * To change this template file, choose Tools | Templates * and open the template in the editor. */ /** * * @author coldhands */ import java.awt.Point; import java.io.*; import java.math.BigInteger; import java.util.*; import static java.lang.Math.*; public class C implements Runnable { BufferedReader in; PrintWriter out; StringTokenizer tok = new StringTokenizer(""); public static void main(String[] args) { new Thread(null, new C(), "", 256 * (1L << 20)).start(); } public void run() { try { long t1 = System.currentTimeMillis(); in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); // in = new BufferedReader(new FileReader("src/input.txt")); Locale.setDefault(Locale.US); solve(); in.close(); out.close(); long t2 = System.currentTimeMillis(); System.err.println("Time = " + (t2 - t1)); } catch (Throwable t) { t.printStackTrace(System.err); System.exit(-1); } } private String readString() throws IOException { while (!tok.hasMoreTokens()) { tok = new StringTokenizer(in.readLine()); } return tok.nextToken(); } private int readInt() throws IOException { return Integer.parseInt(readString()); } private long readLong() throws IOException { return Long.parseLong(readString()); } private double readDouble() throws IOException { return Double.parseDouble(readString()); } // solution private void solve() throws IOException { String pattern = in.readLine(); String s = in.readLine(); int l = 0; for (char ch : pattern.toCharArray()) { while (l < s.length() && s.charAt(l) != ch) l++; l++; } int r = s.length() - 1; StringBuilder sb = new StringBuilder(); sb.append(pattern); for (char ch : sb.reverse().toString().toCharArray()) { while (r >= 0 && s.charAt(r) != ch) r--; r--; } // System.err.println(l + " " + r); out.println(Math.max(0, r - l + 2)); } }
Java
["aba\nbaobababbah", "mars\nsunvenusearthmarsjupitersaturnuranusneptune"]
2 seconds
["2", "0"]
null
Java 7
standard input
[ "*special", "greedy" ]
724fa4b1d35b8765048857fa8f2f6802
The first line contains string s, consisting of lowercase English letters. The length of string s is from 1 to 1000 letters. The second line contains string t, that also consists of lowercase English letters. The length of string t is from 1 to 106 letters.
1,400
Print the sought number of ways to cut string t in two so that each part made s happy.
standard output
PASSED
813448fed4530e058f2464b6e968cff4
train_000.jsonl
1426345200
A Martian boy is named s — he has got this name quite recently from his parents for his coming of age birthday. Now he enjoys looking for his name everywhere. If he sees that he can obtain his name from some string by removing zero or more letters (at that, the remaining letters remain in the same order), he gets happy. For example, if s=«aba», then strings «baobab», «aabbaa», «helloabahello» make him very happy and strings «aab», «baaa» and «helloabhello» do not.However rather than being happy once, he loves twice as much being happy twice! So, when he got string t as a present, he wanted to cut it in two parts (the left part and the right part) so that each part made him happy.Help s determine the number of distinct ways to cut the given string t into two parts in the required manner.
256 megabytes
import java.util.*; import java.io.*; import java.lang.*; import java.math.*; import static java.lang.Math.*; public class Solution implements Runnable { void solve() throws Exception { String s = sc.nextToken(); String t = sc.nextToken(); int lf = t.length(); for (int i = 0, j = 0; i < t.length() && j < s.length(); i++) { if (t.charAt(i) == s.charAt(j)) { j++; if (j == s.length()) lf = i; } } int rg = -1; for (int i = t.length() - 1, j = s.length() - 1; i >= 0 && j >= 0; --i) { if (t.charAt(i) == s.charAt(j)) { --j; if (j == -1) { rg = i; } } } out.println(max(0, rg - lf)); } BufferedReader in; PrintWriter out; FastScanner sc; static Throwable throwable; public static void main(String[] args) throws Throwable { Thread thread = new Thread(null, new Solution(), "", (1 << 26)); thread.start(); thread.join(); thread.run(); if (throwable != null) throw throwable; } public void run() { try { //in = new BufferedReader(new FileReader(".in")); //out = new PrintWriter(new FileWriter(".out")); in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); sc = new FastScanner(in); solve(); } catch (Exception e) { throwable = e; } finally { out.close(); } } } class FastScanner { BufferedReader reader; StringTokenizer strTok; FastScanner(BufferedReader reader) { this.reader = reader; } public String nextToken() throws Exception { while (strTok == null || !strTok.hasMoreTokens()) strTok = new StringTokenizer(reader.readLine()); return strTok.nextToken(); } public int nextInt() throws Exception { return Integer.parseInt(nextToken()); } public long nextLong() throws Exception { return Long.parseLong(nextToken()); } public double nextDouble() throws Exception { return Double.parseDouble(nextToken()); } }
Java
["aba\nbaobababbah", "mars\nsunvenusearthmarsjupitersaturnuranusneptune"]
2 seconds
["2", "0"]
null
Java 7
standard input
[ "*special", "greedy" ]
724fa4b1d35b8765048857fa8f2f6802
The first line contains string s, consisting of lowercase English letters. The length of string s is from 1 to 1000 letters. The second line contains string t, that also consists of lowercase English letters. The length of string t is from 1 to 106 letters.
1,400
Print the sought number of ways to cut string t in two so that each part made s happy.
standard output
PASSED
1bf9ad8b091ba1c4ac0162e52042c5ed
train_000.jsonl
1426345200
A Martian boy is named s — he has got this name quite recently from his parents for his coming of age birthday. Now he enjoys looking for his name everywhere. If he sees that he can obtain his name from some string by removing zero or more letters (at that, the remaining letters remain in the same order), he gets happy. For example, if s=«aba», then strings «baobab», «aabbaa», «helloabahello» make him very happy and strings «aab», «baaa» and «helloabhello» do not.However rather than being happy once, he loves twice as much being happy twice! So, when he got string t as a present, he wanted to cut it in two parts (the left part and the right part) so that each part made him happy.Help s determine the number of distinct ways to cut the given string t into two parts in the required manner.
256 megabytes
import java.util.Scanner; public class C { public static void main(String[] args) { Scanner input = new Scanner(System.in); String s = input.next(); String t = input.next(); boolean stop = false; int pos_s = 0; int pos_1 = -1; int pos_2 = -1; boolean found = false; for(int i = 0; i < t.length(); i++){ if(t.charAt(i) == s.charAt(pos_s)){ if(pos_s == s.length() - 1){ pos_1 = i; break; } else pos_s++; } } if(pos_1 > -1){ for(int i = t.length() - 1; i > pos_1; i--){ //System.out.println("t[" + i + "]: " + t.charAt(i)); if(t.charAt(i) == s.charAt(pos_s)){ if(pos_s == 0){ pos_2 = i; break; } else pos_s--; } } } //System.out.println("pos_1: " + pos_1); //System.out.println("pos_2: " + pos_2); if(pos_1 == -1) System.out.println(0); else{ if(pos_2 == -1) System.out.println(0); else System.out.println(pos_2 - pos_1); } /* for(int i = 0; i < s.length(); i++){ if(t.indexOf(s.charAt(i)) != -1) t = t.substring(t.indexOf(s.charAt(i)) + 1); else{ stop = true; break; } } if(!stop) for(int i = s.length() - 1; i >= 0; i--){ if(t.indexOf(s.charAt(i)) != -1) t = t.substring(0, t.lastIndexOf(s.charAt(i))); else{ stop = true; break; } } if(stop) System.out.println(0); else System.out.println(t.length() + 1); */ input.close(); } }
Java
["aba\nbaobababbah", "mars\nsunvenusearthmarsjupitersaturnuranusneptune"]
2 seconds
["2", "0"]
null
Java 7
standard input
[ "*special", "greedy" ]
724fa4b1d35b8765048857fa8f2f6802
The first line contains string s, consisting of lowercase English letters. The length of string s is from 1 to 1000 letters. The second line contains string t, that also consists of lowercase English letters. The length of string t is from 1 to 106 letters.
1,400
Print the sought number of ways to cut string t in two so that each part made s happy.
standard output
PASSED
93119d09683753666359a895e167546b
train_000.jsonl
1426345200
A Martian boy is named s — he has got this name quite recently from his parents for his coming of age birthday. Now he enjoys looking for his name everywhere. If he sees that he can obtain his name from some string by removing zero or more letters (at that, the remaining letters remain in the same order), he gets happy. For example, if s=«aba», then strings «baobab», «aabbaa», «helloabahello» make him very happy and strings «aab», «baaa» and «helloabhello» do not.However rather than being happy once, he loves twice as much being happy twice! So, when he got string t as a present, he wanted to cut it in two parts (the left part and the right part) so that each part made him happy.Help s determine the number of distinct ways to cut the given string t into two parts in the required manner.
256 megabytes
import java.io.*; import java.util.*; public class VK_C { static Scanner in = new Scanner(System.in);; static PrintStream out = System.out; static char[] s, t; public static void main(String[] args) { s = in.nextLine().toCharArray(); t = in.nextLine().toCharArray(); int i=0; int j=0; int first_end=-1; int last_begin=-1; while(i<t.length){ if(t[i] == s[j]){ if(j<s.length-1) j++; else { first_end = i; break; } } i++; } i=t.length-1; j=s.length-1; while(i>0){ if(t[i] == s[j]){ if(j>0) j--; else { last_begin = i; break; } } i--; } if(first_end>=0 && last_begin>=0 && first_end < last_begin) out.print(last_begin-first_end); else out.print(0); } }
Java
["aba\nbaobababbah", "mars\nsunvenusearthmarsjupitersaturnuranusneptune"]
2 seconds
["2", "0"]
null
Java 7
standard input
[ "*special", "greedy" ]
724fa4b1d35b8765048857fa8f2f6802
The first line contains string s, consisting of lowercase English letters. The length of string s is from 1 to 1000 letters. The second line contains string t, that also consists of lowercase English letters. The length of string t is from 1 to 106 letters.
1,400
Print the sought number of ways to cut string t in two so that each part made s happy.
standard output
PASSED
9a637ec623df28d76e6c679bda82b847
train_000.jsonl
1426345200
A Martian boy is named s — he has got this name quite recently from his parents for his coming of age birthday. Now he enjoys looking for his name everywhere. If he sees that he can obtain his name from some string by removing zero or more letters (at that, the remaining letters remain in the same order), he gets happy. For example, if s=«aba», then strings «baobab», «aabbaa», «helloabahello» make him very happy and strings «aab», «baaa» and «helloabhello» do not.However rather than being happy once, he loves twice as much being happy twice! So, when he got string t as a present, he wanted to cut it in two parts (the left part and the right part) so that each part made him happy.Help s determine the number of distinct ways to cut the given string t into two parts in the required manner.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class Main { static class NameSearcher { String s = null; String t = null; public void setS(String s) { this.s = s; } public void setT(String t) { this.t = t; } public int getNumber() { if (s.length() >= t.length()) { return 0; } int first = indexOf(); int last = lastIndexOf(); if (first == -1 || last == -1) { return 0; } return last - first > 0 ? last - first : 0; } private int indexOf() { int index = 0; for (int i = 0; i < t.length(); i++) { if (s.charAt(index) == t.charAt(i)) { index++; } if (index == s.length()) { return i; } } return -1; } private int lastIndexOf() { int index = s.length() - 1; for (int i = t.length() - 1; i >= 0; i--) { if (s.charAt(index) == t.charAt(i)) { index--; } if (index == -1) { return i; } } return -1; } } public static void main(String[] args) throws IOException { InputStreamReader isr = new InputStreamReader(System.in); BufferedReader br = new BufferedReader(isr); NameSearcher nm = new NameSearcher(); nm.setS(br.readLine()); nm.setT(br.readLine()); System.out.print(nm.getNumber()); } }
Java
["aba\nbaobababbah", "mars\nsunvenusearthmarsjupitersaturnuranusneptune"]
2 seconds
["2", "0"]
null
Java 7
standard input
[ "*special", "greedy" ]
724fa4b1d35b8765048857fa8f2f6802
The first line contains string s, consisting of lowercase English letters. The length of string s is from 1 to 1000 letters. The second line contains string t, that also consists of lowercase English letters. The length of string t is from 1 to 106 letters.
1,400
Print the sought number of ways to cut string t in two so that each part made s happy.
standard output
PASSED
1d4c2cf6358c57e57bc6207760ff310b
train_000.jsonl
1426345200
A Martian boy is named s — he has got this name quite recently from his parents for his coming of age birthday. Now he enjoys looking for his name everywhere. If he sees that he can obtain his name from some string by removing zero or more letters (at that, the remaining letters remain in the same order), he gets happy. For example, if s=«aba», then strings «baobab», «aabbaa», «helloabahello» make him very happy and strings «aab», «baaa» and «helloabhello» do not.However rather than being happy once, he loves twice as much being happy twice! So, when he got string t as a present, he wanted to cut it in two parts (the left part and the right part) so that each part made him happy.Help s determine the number of distinct ways to cut the given string t into two parts in the required manner.
256 megabytes
import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.List; import java.util.Scanner; public class Main { private static class Geometry { public static boolean check3DotsOnLine(int x1, int y1, int x2, int y2, int x3, int y3) { return ((x2 - x1) * (y3 - y1) - (x3 - x1) * (y2 - y1)) == 0; } public static boolean check3DotsOnLine(long x1, long y1, long x2, long y2, long x3, long y3) { return ((x2 - x1) * (y3 - y1) - (x3 - x1) * (y2 - y1)) == 0; } } public static Scanner sc; public static PrintWriter pw; public static void main(String[] args) { sc = new Scanner(System.in); pw = new PrintWriter(System.out); new Main().run(); sc.close(); pw.flush(); pw.close(); } private void run() { readData(); solve(); } String s, t; private void readData() { s = sc.next(); t = sc.next(); } private void solve() { int l = 0, r = 0; int k = 0; int n = t.length(); int m = s.length(); for (int i=0;i<n;i++) { if (t.charAt(i) == s.charAt(k)) { k++; if (k == m) { l = i; break; } } } k = m-1; for (int i=n-1;i>=0;i--) { if (t.charAt(i) == s.charAt(k)) { k--; if (k == -1) { r = i; break; } } } pw.println(Math.max(0, r-l)); } }
Java
["aba\nbaobababbah", "mars\nsunvenusearthmarsjupitersaturnuranusneptune"]
2 seconds
["2", "0"]
null
Java 7
standard input
[ "*special", "greedy" ]
724fa4b1d35b8765048857fa8f2f6802
The first line contains string s, consisting of lowercase English letters. The length of string s is from 1 to 1000 letters. The second line contains string t, that also consists of lowercase English letters. The length of string t is from 1 to 106 letters.
1,400
Print the sought number of ways to cut string t in two so that each part made s happy.
standard output
PASSED
3b989fc45adcff81b4fcb6eda48e47fb
train_000.jsonl
1426345200
A Martian boy is named s — he has got this name quite recently from his parents for his coming of age birthday. Now he enjoys looking for his name everywhere. If he sees that he can obtain his name from some string by removing zero or more letters (at that, the remaining letters remain in the same order), he gets happy. For example, if s=«aba», then strings «baobab», «aabbaa», «helloabahello» make him very happy and strings «aab», «baaa» and «helloabhello» do not.However rather than being happy once, he loves twice as much being happy twice! So, when he got string t as a present, he wanted to cut it in two parts (the left part and the right part) so that each part made him happy.Help s determine the number of distinct ways to cut the given string t into two parts in the required manner.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.List; public class C { static InputStreamReader isr = new InputStreamReader(System.in); static BufferedReader br = new BufferedReader(isr); static int[] readIntArray() throws IOException { String[] v = br.readLine().split(" "); int[] ans = new int[v.length]; for (int i = 0; i < ans.length; i++) { ans[i] = Integer.valueOf(v[i]); } return ans; } static int S, T; static char[] s, t; static int[] fallback; public static void main(String[] args) throws IOException { // s = "participate in parachute".toCharArray(); // t = "participate in parachute asdf participate in parachute sdf participate in parachute".toCharArray(); s = br.readLine().toCharArray(); t = br.readLine().toCharArray(); S = s.length; T = t.length; int si = 0; int[] b = new int[2]; boolean[] bf = new boolean[2]; for (int ti = 0; ti < T; ti++) { if (s[si] == t[ti]){ si++; if (si == S) { b[0] = ti+1; bf[0] = true; break; } } } si = S - 1; for (int ti = T - 1; ti >= 0; ti--) { if (s[si] == t[ti]){ si--; if (si == -1) { b[1] = ti; bf[1] = true; break; } } } if (bf[0] && bf[1]) System.out.println(Math.max(b[1] - b[0] + 1, 0)); else System.out.println(0); // System.out.println(System.currentTimeMillis() - start); } }
Java
["aba\nbaobababbah", "mars\nsunvenusearthmarsjupitersaturnuranusneptune"]
2 seconds
["2", "0"]
null
Java 7
standard input
[ "*special", "greedy" ]
724fa4b1d35b8765048857fa8f2f6802
The first line contains string s, consisting of lowercase English letters. The length of string s is from 1 to 1000 letters. The second line contains string t, that also consists of lowercase English letters. The length of string t is from 1 to 106 letters.
1,400
Print the sought number of ways to cut string t in two so that each part made s happy.
standard output
PASSED
01da3e49b62a1f3ff314ded5f49f112d
train_000.jsonl
1564497300
There is a country with $$$n$$$ citizens. The $$$i$$$-th of them initially has $$$a_{i}$$$ money. The government strictly controls the wealth of its citizens. Whenever a citizen makes a purchase or earns some money, they must send a receipt to the social services mentioning the amount of money they currently have.Sometimes the government makes payouts to the poor: all citizens who have strictly less money than $$$x$$$ are paid accordingly so that after the payout they have exactly $$$x$$$ money. In this case the citizens don't send a receipt.You know the initial wealth of every citizen and the log of all events: receipts and payouts. Restore the amount of money each citizen has after all events.
256 megabytes
import java.util.*; import java.io.*; import java.math.*; public class Main { public static void process()throws IOException { int n=ni(),arr[]=new int[n+1]; for(int i=1;i<=n;i++) arr[i]=ni(); int q=ni(),query_no_2[]=new int[q+1],query_no_1[]=new int[n+1]; for(int i=1;i<=q;i++){ int q_type=ni(); if(q_type==1){ int p=ni(),x=ni(); query_no_1[p]=i; arr[p]=x; } else{ int x=ni(); query_no_2[i]=x; } } for(int i=q-1;i>=0;i--) query_no_2[i]=Math.max(query_no_2[i], query_no_2[i+1]); for(int i=1;i<=n;i++) arr[i]=Math.max(arr[i], query_no_2[query_no_1[i]]); for(int i=1;i<=n;i++) p(arr[i]+" "); p("\n"); } static FastReader sc; static PrintWriter out; public static void main(String[]args)throws IOException { out = new PrintWriter(System.out); sc=new FastReader(); long s = System.currentTimeMillis(); int t=1; //t=ni(); while(t-->0) process(); out.flush(); System.err.println(System.currentTimeMillis()-s+"ms"); } static void pn(Object o){out.println(o);} static void p(Object o){out.print(o);} static int ni()throws IOException{return Integer.parseInt(sc.next());} static long nl()throws IOException{return Long.parseLong(sc.next());} static double nd()throws IOException{return Double.parseDouble(sc.next());} static String nln()throws IOException{return sc.nextLine();} static long gcd(long a, long b)throws IOException{return (b==0)?a:gcd(b,a%b);} static int gcd(int a, int b)throws IOException{return (b==0)?a:gcd(b,a%b);} static int bit(long n)throws IOException{return (n==0)?0:(1+bit(n&(n-1)));} static long mod=(long)1e9+7l; static<T> void r_sort(T arr[],int n){ Random r = new Random(); for (int i = n-1; i > 0; i--){ int j = r.nextInt(i+1); T temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } Arrays.sort(arr); } ///////////////////////////////////////////////////////////////////////////////////////////////////////// static class FastReader{ BufferedReader br; StringTokenizer st; public FastReader(){ br = new BufferedReader(new InputStreamReader(System.in)); } String next(){ while (st == null || !st.hasMoreElements()){ try{ st = new StringTokenizer(br.readLine()); } catch (IOException e){ e.printStackTrace(); } } return st.nextToken(); } String nextLine(){ String str = ""; try{ str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } ///////////////////////////////////////////////////////////////////////////////////////////////////////////// }
Java
["4\n1 2 3 4\n3\n2 3\n1 2 2\n2 1", "5\n3 50 2 1 10\n3\n1 2 0\n2 8\n1 3 20"]
2 seconds
["3 2 3 4", "8 8 20 8 10"]
NoteIn the first example the balances change as follows: 1 2 3 4 $$$\rightarrow$$$ 3 3 3 4 $$$\rightarrow$$$ 3 2 3 4 $$$\rightarrow$$$ 3 2 3 4In the second example the balances change as follows: 3 50 2 1 10 $$$\rightarrow$$$ 3 0 2 1 10 $$$\rightarrow$$$ 8 8 8 8 10 $$$\rightarrow$$$ 8 8 20 8 10
Java 11
standard input
[ "data structures", "binary search", "sortings", "brute force" ]
7b788c660fb8ca703af0030f4c84ce96
The first line contains a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{5}$$$) — the numer of citizens. The next line contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, ..., $$$a_n$$$ ($$$0 \le a_{i} \le 10^{9}$$$) — the initial balances of citizens. The next line contains a single integer $$$q$$$ ($$$1 \le q \le 2 \cdot 10^{5}$$$) — the number of events. Each of the next $$$q$$$ lines contains a single event. The events are given in chronological order. Each event is described as either 1 p x ($$$1 \le p \le n$$$, $$$0 \le x \le 10^{9}$$$), or 2 x ($$$0 \le x \le 10^{9}$$$). In the first case we have a receipt that the balance of the $$$p$$$-th person becomes equal to $$$x$$$. In the second case we have a payoff with parameter $$$x$$$.
1,600
Print $$$n$$$ integers — the balances of all citizens after all events.
standard output
PASSED
dee0b1932d837a2ab622e2ae78cdd6f5
train_000.jsonl
1564497300
There is a country with $$$n$$$ citizens. The $$$i$$$-th of them initially has $$$a_{i}$$$ money. The government strictly controls the wealth of its citizens. Whenever a citizen makes a purchase or earns some money, they must send a receipt to the social services mentioning the amount of money they currently have.Sometimes the government makes payouts to the poor: all citizens who have strictly less money than $$$x$$$ are paid accordingly so that after the payout they have exactly $$$x$$$ money. In this case the citizens don't send a receipt.You know the initial wealth of every citizen and the log of all events: receipts and payouts. Restore the amount of money each citizen has after all events.
256 megabytes
import java.util.*; import java.io.*; import java.math.*; public class B { public static void process()throws IOException { int n = ni(), arr[] = new int[n+1], latest_query[] = new int[n+1]; for(int i = 1; i<=n; i++) arr[i] = ni(); int q = ni(), query[] = new int[q+2]; // query[] holds the threshold for all ele after 'i'th query for(int i = 1; i <= q; i++){ int choice = ni(); if(choice == 1){ int p = ni(), x = ni(); latest_query[p] = i; arr[p] = x; } else{ query[i] = ni(); } } for(int i = q; i >= 0; i--) query[i] = Math.max(query[i], query[i+1]); for(int i = 1; i<=n; i++) arr[i] = Math.max(arr[i], query[latest_query[i]]); for(int i = 1; i<=n; i++) p(arr[i]+" "); p("\n"); } static FastReader sc; static PrintWriter out; public static void main(String[]args)throws IOException { out = new PrintWriter(System.out); sc=new FastReader(); long s = System.currentTimeMillis(); int t=1; //t=ni(); while(t-->0) process(); out.flush(); System.err.println(System.currentTimeMillis()-s+"ms"); } static final long mod=(long)1e9+7l; static void pn(Object o){out.println(o);} static void p(Object o){out.print(o);} static int ni()throws IOException{return Integer.parseInt(sc.next());} static long nl()throws IOException{return Long.parseLong(sc.next());} static double nd()throws IOException{return Double.parseDouble(sc.next());} static String nln()throws IOException{return sc.nextLine();} static long gcd(long a, long b)throws IOException{return (b==0)?a:gcd(b,a%b);} static int gcd(int a, int b)throws IOException{return (b==0)?a:gcd(b,a%b);} static int bit(long n)throws IOException{return (n==0)?0:(1+bit(n&(n-1)));} static class FastReader{ BufferedReader br; StringTokenizer st; public FastReader(){ br = new BufferedReader(new InputStreamReader(System.in)); } String next(){ while (st == null || !st.hasMoreElements()){ try{ st = new StringTokenizer(br.readLine()); } catch (IOException e){ e.printStackTrace(); } } return st.nextToken(); } String nextLine(){ String str = ""; try{ str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["4\n1 2 3 4\n3\n2 3\n1 2 2\n2 1", "5\n3 50 2 1 10\n3\n1 2 0\n2 8\n1 3 20"]
2 seconds
["3 2 3 4", "8 8 20 8 10"]
NoteIn the first example the balances change as follows: 1 2 3 4 $$$\rightarrow$$$ 3 3 3 4 $$$\rightarrow$$$ 3 2 3 4 $$$\rightarrow$$$ 3 2 3 4In the second example the balances change as follows: 3 50 2 1 10 $$$\rightarrow$$$ 3 0 2 1 10 $$$\rightarrow$$$ 8 8 8 8 10 $$$\rightarrow$$$ 8 8 20 8 10
Java 11
standard input
[ "data structures", "binary search", "sortings", "brute force" ]
7b788c660fb8ca703af0030f4c84ce96
The first line contains a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{5}$$$) — the numer of citizens. The next line contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, ..., $$$a_n$$$ ($$$0 \le a_{i} \le 10^{9}$$$) — the initial balances of citizens. The next line contains a single integer $$$q$$$ ($$$1 \le q \le 2 \cdot 10^{5}$$$) — the number of events. Each of the next $$$q$$$ lines contains a single event. The events are given in chronological order. Each event is described as either 1 p x ($$$1 \le p \le n$$$, $$$0 \le x \le 10^{9}$$$), or 2 x ($$$0 \le x \le 10^{9}$$$). In the first case we have a receipt that the balance of the $$$p$$$-th person becomes equal to $$$x$$$. In the second case we have a payoff with parameter $$$x$$$.
1,600
Print $$$n$$$ integers — the balances of all citizens after all events.
standard output
PASSED
a3e0466bc1b14e2da21f0ba32999807b
train_000.jsonl
1564497300
There is a country with $$$n$$$ citizens. The $$$i$$$-th of them initially has $$$a_{i}$$$ money. The government strictly controls the wealth of its citizens. Whenever a citizen makes a purchase or earns some money, they must send a receipt to the social services mentioning the amount of money they currently have.Sometimes the government makes payouts to the poor: all citizens who have strictly less money than $$$x$$$ are paid accordingly so that after the payout they have exactly $$$x$$$ money. In this case the citizens don't send a receipt.You know the initial wealth of every citizen and the log of all events: receipts and payouts. Restore the amount of money each citizen has after all events.
256 megabytes
import java.io.BufferedOutputStream; import java.io.Closeable; import java.io.DataInputStream; import java.io.Flushable; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.util.InputMismatchException; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { static class TaskAdapter implements Runnable { @Override public void run() { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastReader in = new FastReader(inputStream); Output out = new Output(outputStream); BWelfareState solver = new BWelfareState(); solver.solve(1, in, out); out.close(); } } public static void main(String[] args) throws Exception { Thread thread = new Thread(null, new TaskAdapter(), "", Runtime.getRuntime().freeMemory() >> 1L); thread.start(); thread.join(); } static class BWelfareState { public BWelfareState() { } public void solve(int kase, InputReader in, Output pw) { int n = in.nextInt(); int[] arr = in.nextInt(n); boolean[] set = new boolean[n]; int q = in.nextInt(); int[][] queries = new int[q][]; for(int i = 0; i<q; i++) { int type = in.nextInt(); if(type==1) { queries[i] = new int[] {type, in.nextInt()-1, in.nextInt()}; }else { queries[i] = new int[] {type, in.nextInt()}; } } int max = 0; for(int i = q-1; i>=0; i--) { if(queries[i][0]==1) { if(!set[queries[i][1]]) { arr[queries[i][1]] = Math.max(max, queries[i][2]); set[queries[i][1]] = true; } }else { max = Math.max(max, queries[i][1]); } } for(int i = 0; i<n; i++) { if(!set[i]) { arr[i] = Math.max(arr[i], max); } } pw.println(arr); } } static class Output implements Closeable, Flushable { public StringBuilder sb; public OutputStream os; public int BUFFER_SIZE; public boolean autoFlush; public String LineSeparator; public Output(OutputStream os) { this(os, 1<<16); } public Output(OutputStream os, int bs) { BUFFER_SIZE = bs; sb = new StringBuilder(BUFFER_SIZE); this.os = new BufferedOutputStream(os, 1<<17); autoFlush = false; LineSeparator = System.lineSeparator(); } public void print(int i) { print(String.valueOf(i)); } public void print(String s) { sb.append(s); if(autoFlush) { flush(); }else if(sb.length()>BUFFER_SIZE >> 1) { flushToBuffer(); } } public void println() { sb.append(LineSeparator); } public void println(int[] arr) { for(int i = 0; i<arr.length; i++) { if(i!=0) { print(" "); } print(arr[i]); } println(); } private void flushToBuffer() { try { os.write(sb.toString().getBytes()); }catch(IOException e) { e.printStackTrace(); } sb = new StringBuilder(BUFFER_SIZE); } public void flush() { try { flushToBuffer(); os.flush(); }catch(IOException e) { e.printStackTrace(); } } public void close() { flush(); try { os.close(); }catch(IOException e) { e.printStackTrace(); } } } static interface InputReader { int nextInt(); default int[] nextInt(int n) { int[] ret = new int[n]; for(int i = 0; i<n; i++) { ret[i] = nextInt(); } return ret; } } static class FastReader implements InputReader { final private int BUFFER_SIZE = 1<<16; private DataInputStream din; private byte[] buffer; private int bufferPointer; private int bytesRead; public FastReader(InputStream is) { din = new DataInputStream(is); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public int nextInt() { int ret = 0; byte c = skipToDigit(); boolean neg = (c=='-'); if(neg) { c = read(); } do { ret = ret*10+c-'0'; } while((c = read())>='0'&&c<='9'); if(neg) { return -ret; } return ret; } private boolean isDigit(byte b) { return b>='0'&&b<='9'; } private byte skipToDigit() { byte ret; while(!isDigit(ret = read())&&ret!='-') ; return ret; } private void fillBuffer() { try { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); }catch(IOException e) { e.printStackTrace(); throw new InputMismatchException(); } if(bytesRead==-1) { buffer[0] = -1; } } private byte read() { if(bytesRead==-1) { throw new InputMismatchException(); }else if(bufferPointer==bytesRead) { fillBuffer(); } return buffer[bufferPointer++]; } } }
Java
["4\n1 2 3 4\n3\n2 3\n1 2 2\n2 1", "5\n3 50 2 1 10\n3\n1 2 0\n2 8\n1 3 20"]
2 seconds
["3 2 3 4", "8 8 20 8 10"]
NoteIn the first example the balances change as follows: 1 2 3 4 $$$\rightarrow$$$ 3 3 3 4 $$$\rightarrow$$$ 3 2 3 4 $$$\rightarrow$$$ 3 2 3 4In the second example the balances change as follows: 3 50 2 1 10 $$$\rightarrow$$$ 3 0 2 1 10 $$$\rightarrow$$$ 8 8 8 8 10 $$$\rightarrow$$$ 8 8 20 8 10
Java 11
standard input
[ "data structures", "binary search", "sortings", "brute force" ]
7b788c660fb8ca703af0030f4c84ce96
The first line contains a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{5}$$$) — the numer of citizens. The next line contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, ..., $$$a_n$$$ ($$$0 \le a_{i} \le 10^{9}$$$) — the initial balances of citizens. The next line contains a single integer $$$q$$$ ($$$1 \le q \le 2 \cdot 10^{5}$$$) — the number of events. Each of the next $$$q$$$ lines contains a single event. The events are given in chronological order. Each event is described as either 1 p x ($$$1 \le p \le n$$$, $$$0 \le x \le 10^{9}$$$), or 2 x ($$$0 \le x \le 10^{9}$$$). In the first case we have a receipt that the balance of the $$$p$$$-th person becomes equal to $$$x$$$. In the second case we have a payoff with parameter $$$x$$$.
1,600
Print $$$n$$$ integers — the balances of all citizens after all events.
standard output
PASSED
1aa7b6132b7e12b88b2f34f28fa97e26
train_000.jsonl
1564497300
There is a country with $$$n$$$ citizens. The $$$i$$$-th of them initially has $$$a_{i}$$$ money. The government strictly controls the wealth of its citizens. Whenever a citizen makes a purchase or earns some money, they must send a receipt to the social services mentioning the amount of money they currently have.Sometimes the government makes payouts to the poor: all citizens who have strictly less money than $$$x$$$ are paid accordingly so that after the payout they have exactly $$$x$$$ money. In this case the citizens don't send a receipt.You know the initial wealth of every citizen and the log of all events: receipts and payouts. Restore the amount of money each citizen has after all events.
256 megabytes
import java.io.*; import java.util.*; public class A { static FastReader f = new FastReader(); static PrintWriter out = new PrintWriter(System.out); public static void main(String[] args) { int n = f.nextInt(); Pair[] pairs = new Pair[n]; for(int i=0;i<n;i++) { pairs[i] = new Pair(f.nextInt()); } int q = f.nextInt(); int[] suffMax = new int[q+1]; for (int i=0;i<q;i++) { int op = f.nextInt(); if(op == 1) { int p = f.nextInt() - 1; int x = f.nextInt(); pairs[p].pos = i; pairs[p].val = x; } else { suffMax[i] = f.nextInt(); } } for(int i=q-1, max = 0;i>=0;i--) { max = Math.max(max, suffMax[i]); suffMax[i] = max; } for(int i=0;i<n;i++) { int now = Math.max(pairs[i].val, suffMax[pairs[i].pos+1]); out.print(now); out.print(" "); } out.close(); } static class Pair { int pos = -1; int val; Pair(int val) { this.val = val; } } //fast input reader static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["4\n1 2 3 4\n3\n2 3\n1 2 2\n2 1", "5\n3 50 2 1 10\n3\n1 2 0\n2 8\n1 3 20"]
2 seconds
["3 2 3 4", "8 8 20 8 10"]
NoteIn the first example the balances change as follows: 1 2 3 4 $$$\rightarrow$$$ 3 3 3 4 $$$\rightarrow$$$ 3 2 3 4 $$$\rightarrow$$$ 3 2 3 4In the second example the balances change as follows: 3 50 2 1 10 $$$\rightarrow$$$ 3 0 2 1 10 $$$\rightarrow$$$ 8 8 8 8 10 $$$\rightarrow$$$ 8 8 20 8 10
Java 11
standard input
[ "data structures", "binary search", "sortings", "brute force" ]
7b788c660fb8ca703af0030f4c84ce96
The first line contains a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^{5}$$$) — the numer of citizens. The next line contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, ..., $$$a_n$$$ ($$$0 \le a_{i} \le 10^{9}$$$) — the initial balances of citizens. The next line contains a single integer $$$q$$$ ($$$1 \le q \le 2 \cdot 10^{5}$$$) — the number of events. Each of the next $$$q$$$ lines contains a single event. The events are given in chronological order. Each event is described as either 1 p x ($$$1 \le p \le n$$$, $$$0 \le x \le 10^{9}$$$), or 2 x ($$$0 \le x \le 10^{9}$$$). In the first case we have a receipt that the balance of the $$$p$$$-th person becomes equal to $$$x$$$. In the second case we have a payoff with parameter $$$x$$$.
1,600
Print $$$n$$$ integers — the balances of all citizens after all events.
standard output
PASSED
e8ec299cdfe826632c4d6aef9f15fca6
train_000.jsonl
1544884500
Mishka is trying really hard to avoid being kicked out of the university. In particular, he was doing absolutely nothing for the whole semester, miraculously passed some exams so that just one is left.There were $$$n$$$ classes of that subject during the semester and on $$$i$$$-th class professor mentioned some non-negative integer $$$a_i$$$ to the students. It turned out, the exam was to tell the whole sequence back to the professor. Sounds easy enough for those who attended every class, doesn't it?Obviously Mishka didn't attend any classes. However, professor left some clues on the values of $$$a$$$ to help out students like Mishka: $$$a$$$ was sorted in non-decreasing order ($$$a_1 \le a_2 \le \dots \le a_n$$$); $$$n$$$ was even; the following sequence $$$b$$$, consisting of $$$\frac n 2$$$ elements, was formed and given out to students: $$$b_i = a_i + a_{n - i + 1}$$$. Professor also mentioned that any sequence $$$a$$$, which produces sequence $$$b$$$ with the presented technique, will be acceptable.Help Mishka to pass that last exam. Restore any sorted sequence $$$a$$$ of non-negative integers, which produces sequence $$$b$$$ with the presented technique. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
256 megabytes
public class C { public Object solve () { int N = sc.nextInt(); long [] B = sc.nextLongs(); long [] res = new long [N]; int M = N/2; for (int i : rep(M)) res[M+i] = B[M-1-i]; for (int i : rep(1, M)) { int j = N-1-i; if (res[i] < res[i-1]) { long D = res[i-1] - res[i]; res[i] += D; res[j] -= D; } if (res[j] > res[j+1]) { long D = res[j] - res[j+1]; res[j] -= D; res[i] += D; } } return exit(res); } private static final boolean ONE_TEST_CASE = true; private static void init () { } private static int [] rep (int N) { return rep(0, N); } private static int [] rep (int S, int T) { if (S >= T) return new int [0]; int [] res = new int [T-S]; for (int i = S; i < T; ++i) res[i-S] = i; return res; } //////////////////////////////////////////////////////////////////////////////////// OFF private static IOUtils.MyScanner sc = new IOUtils.MyScanner(); private static Object print (Object o, Object ... A) { IOUtils.print(o, A); return null; } private static Object exit (Object o, Object ... A) { print(o, A); IOUtils.exit(); return null; } private static class IOUtils { public static class MyScanner { public String next () { newLine(); return line[index++]; } public int nextInt () { return Integer.parseInt(next()); } public String nextLine () { line = null; return readLine(); } public String [] nextStrings () { return split(nextLine()); } public long[] nextLongs () { return nextStream().mapToLong(Long::parseLong).toArray(); } ////////////////////////////////////////////// private boolean eol () { return index == line.length; } private String readLine () { try { return r.readLine(); } catch (Exception e) { throw new Error (e); } } private final java.io.BufferedReader r; private MyScanner () { this(new java.io.BufferedReader(new java.io.InputStreamReader(System.in))); } private MyScanner (java.io.BufferedReader r) { try { this.r = r; while (!r.ready()) Thread.sleep(1); start(); } catch (Exception e) { throw new Error(e); } } private String [] line; private int index; private void newLine () { if (line == null || eol()) { line = split(readLine()); index = 0; } } private java.util.stream.Stream<String> nextStream () { return java.util.Arrays.stream(nextStrings()); } private String [] split (String s) { return s.length() > 0 ? s.split(" ") : new String [0]; } } private static String build (Object o, Object ... A) { return buildDelim(" ", o, A); } private static String buildDelim (String delim, Object o, Object ... A) { StringBuilder b = new StringBuilder(); append(b, o, delim); for (Object p : A) append(b, p, delim); return b.substring(delim.length()); } ////////////////////////////////////////////////////////////////////////////////// private static final java.text.DecimalFormat formatter = new java.text.DecimalFormat("#.#########"); private static void start () { if (t == 0) t = millis(); } private static void append (java.util.function.Consumer<Object> f, java.util.function.Consumer<Object> g, final Object o) { if (o.getClass().isArray()) { int len = java.lang.reflect.Array.getLength(o); for (int i = 0; i < len; ++i) f.accept(java.lang.reflect.Array.get(o, i)); } else if (o instanceof Iterable<?>) ((Iterable<?>)o).forEach(f::accept); else g.accept(o instanceof Double ? formatter.format(o) : o); } private static void append (final StringBuilder b, Object o, final String delim) { append(x -> { append(b, x, delim); }, x -> b.append(delim).append(x), o); } private static java.io.PrintWriter pw = new java.io.PrintWriter(System.out); private static void print (Object o, Object ... A) { pw.println(build(o, A)); if (DEBUG) pw.flush(); } private static void err (Object o, Object ... A) { System.err.println(build(o, A)); } private static boolean DEBUG; private static void write (Object o) { err(o, '(', time(), ')'); if (!DEBUG) pw.println(o); } private static void exit () { IOUtils.pw.close(); System.out.flush(); err("------------------"); err(time()); System.exit(0); } private static long t; private static long millis () { return System.currentTimeMillis(); } private static String time () { return "Time: " + (millis() - t) / 1000.0; } private static void run (int N) { try { DEBUG = System.getProperties().containsKey("DEBUG"); } catch (Throwable t) {} for (int n = 1; n <= N; ++n) { Object res = new C().solve(); if (res != null) write("Case #" + n + ": " + build(res)); } exit(); } } //////////////////////////////////////////////////////////////////////////////////// public static void main (String[] args) { init(); int N = ONE_TEST_CASE ? 1 : sc.nextInt(); IOUtils.run(N); } }
Java
["4\n5 6", "6\n2 1 2"]
2 seconds
["2 3 3 3", "0 0 1 1 1 2"]
null
Java 8
standard input
[ "greedy" ]
4585419ab2b7200770cfe1e607161e9f
The first line contains a single integer $$$n$$$ ($$$2 \le n \le 2 \cdot 10^5$$$) — the length of sequence $$$a$$$. $$$n$$$ is always even. The second line contains $$$\frac n 2$$$ integers $$$b_1, b_2, \dots, b_{\frac n 2}$$$ ($$$0 \le b_i \le 10^{18}$$$) — sequence $$$b$$$, where $$$b_i = a_i + a_{n - i + 1}$$$. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
1,300
Print $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ ($$$0 \le a_i \le 10^{18}$$$) in a single line. $$$a_1 \le a_2 \le \dots \le a_n$$$ should be satisfied. $$$b_i = a_i + a_{n - i + 1}$$$ should be satisfied for all valid $$$i$$$.
standard output
PASSED
8afb0851ad23b5208551c29e23fff7a0
train_000.jsonl
1544884500
Mishka is trying really hard to avoid being kicked out of the university. In particular, he was doing absolutely nothing for the whole semester, miraculously passed some exams so that just one is left.There were $$$n$$$ classes of that subject during the semester and on $$$i$$$-th class professor mentioned some non-negative integer $$$a_i$$$ to the students. It turned out, the exam was to tell the whole sequence back to the professor. Sounds easy enough for those who attended every class, doesn't it?Obviously Mishka didn't attend any classes. However, professor left some clues on the values of $$$a$$$ to help out students like Mishka: $$$a$$$ was sorted in non-decreasing order ($$$a_1 \le a_2 \le \dots \le a_n$$$); $$$n$$$ was even; the following sequence $$$b$$$, consisting of $$$\frac n 2$$$ elements, was formed and given out to students: $$$b_i = a_i + a_{n - i + 1}$$$. Professor also mentioned that any sequence $$$a$$$, which produces sequence $$$b$$$ with the presented technique, will be acceptable.Help Mishka to pass that last exam. Restore any sorted sequence $$$a$$$ of non-negative integers, which produces sequence $$$b$$$ with the presented technique. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
256 megabytes
import java.io.*; import java.math.*; import java.security.*; import java.text.*; import java.util.*; import javafx.util.Pair; public class CodeForce { static boolean flag = false; public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringBuilder sb = new StringBuilder(); int n=Integer.parseInt(br.readLine()); long[] arr=new long[n/2]; String[] sr=br.readLine().split(" "); for(int i=0;i<n/2;i++) { arr[i]=Long.parseLong(sr[i]); } long[] org=new long[n]; long min=0; long max=Long.MAX_VALUE; for(int k=0;k<n/2;k++) { org[k]=Math.max(min, arr[k]-max); org[n-k-1]=arr[k]-org[k]; min=org[k]; max=org[n-k-1]; } for(int i=0;i<n;i++) System.out.print(org[i]+" "); }}
Java
["4\n5 6", "6\n2 1 2"]
2 seconds
["2 3 3 3", "0 0 1 1 1 2"]
null
Java 8
standard input
[ "greedy" ]
4585419ab2b7200770cfe1e607161e9f
The first line contains a single integer $$$n$$$ ($$$2 \le n \le 2 \cdot 10^5$$$) — the length of sequence $$$a$$$. $$$n$$$ is always even. The second line contains $$$\frac n 2$$$ integers $$$b_1, b_2, \dots, b_{\frac n 2}$$$ ($$$0 \le b_i \le 10^{18}$$$) — sequence $$$b$$$, where $$$b_i = a_i + a_{n - i + 1}$$$. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
1,300
Print $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ ($$$0 \le a_i \le 10^{18}$$$) in a single line. $$$a_1 \le a_2 \le \dots \le a_n$$$ should be satisfied. $$$b_i = a_i + a_{n - i + 1}$$$ should be satisfied for all valid $$$i$$$.
standard output
PASSED
9a919fbe5a7194847e953557db27836c
train_000.jsonl
1544884500
Mishka is trying really hard to avoid being kicked out of the university. In particular, he was doing absolutely nothing for the whole semester, miraculously passed some exams so that just one is left.There were $$$n$$$ classes of that subject during the semester and on $$$i$$$-th class professor mentioned some non-negative integer $$$a_i$$$ to the students. It turned out, the exam was to tell the whole sequence back to the professor. Sounds easy enough for those who attended every class, doesn't it?Obviously Mishka didn't attend any classes. However, professor left some clues on the values of $$$a$$$ to help out students like Mishka: $$$a$$$ was sorted in non-decreasing order ($$$a_1 \le a_2 \le \dots \le a_n$$$); $$$n$$$ was even; the following sequence $$$b$$$, consisting of $$$\frac n 2$$$ elements, was formed and given out to students: $$$b_i = a_i + a_{n - i + 1}$$$. Professor also mentioned that any sequence $$$a$$$, which produces sequence $$$b$$$ with the presented technique, will be acceptable.Help Mishka to pass that last exam. Restore any sorted sequence $$$a$$$ of non-negative integers, which produces sequence $$$b$$$ with the presented technique. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; public class A_GENERAL { static long seive_size = (long) 1e6; static ArrayList<Integer> primes = new ArrayList<>(); static boolean[] set = new boolean[(int) seive_size+1]; static ArrayList<Integer>[] adj; static boolean[] visited; public static void main(String[] args) { MyScanner sc = new MyScanner(); int n = sc.nextInt(); long[] b = new long[(int)n/2]; long[] a = new long[(int)n]; long max = -1; for(int i = 0; i < n/2; i++) { b[i] = sc.nextLong(); if(max == -1 || b[i] <= max) { if(i == 0) a[i] = 0; else a[i] = a[i-1]; a[n-i-1] = b[i]-a[i]; max = a[n-i-1]; } else { a[i] = b[i]-max; a[i] = Math.max(a[i], a[i-1]); a[n-i-1] = b[i]-a[i]; max = a[n-1-i]; } } for(int i = 0; i < n; i++) System.out.print(a[i] + " "); } public static class Pair { long f; long s; Pair(long f, long s) { this.f = f; this.s = s; } } // print string "s" multiple times // prefer to use this function for multiple printing public static String mp(String s, int times) { return String.valueOf(new char[times]).replace("\0", s); } // take log with base 2 public static long log2(long k) { return 63-Long.numberOfLeadingZeros(k); } // using lambda function for sorting public static void lambdaSort(long[][] arr) { Arrays.sort(arr, (a, b) -> Double.compare(a[0], b[0])); } // (n choose k) = (n/k) * ((n-1) choose (k-1)) public static long choose(long n, long k) { return (k == 0) ? 1 : (n*choose(n-1, k-1))/k; } // just for keeping gcd function for other personal purposes public static long gcd(long a, long b) { return (a == 0) ? b : gcd(b%a, a); } public static long max(long... as) { long max = Long.MIN_VALUE; for (long a : as) max = Math.max(a, max); return max; } public static long min(int... as) { long min = Long.MAX_VALUE; for (long a : as) min = Math.min(a, min); return min; } // ======================= binary search (lower and upper bound) ======================= public static int lowerBound(long[] a, int x) { int lo = 0; int hi = a.length-1; int ans = -1; while(lo <= hi) { int mid = (lo+hi)/2; if(x < a[mid]) { hi = mid-1; } else if(x > a[mid]) { lo = mid+1; } else if(lo != hi) { hi = mid-1; // for first occurrence ans = mid; } else { return mid; } } return ans; } public static int upperBound(long[] a, long x) { int lo = 0; int hi = a.length-1; int ans = -1; while(lo <= hi) { int mid = (lo+hi)/2; if(x < a[mid]) { hi = mid-1; } else if(x > a[mid]) { lo = mid+1; } else if(lo != hi) { lo = mid+1; // for last occurrence ans = mid; } else { return mid; } } return ans; } public static void generatePrimes() { // set.add(0); // set.add(1); Arrays.fill(set, true); set[0] = false; set[1] = false; for(int i = 2; i <= seive_size; i++) { if(set[i]) { for(long j = (long) i*i; j <= seive_size; j+=i) set[(int)j] = false; primes.add(i); } } } public static boolean isPrime(long N) { if(N <= seive_size) return set[(int)N]; for (int i = 0; i < (int)primes.size(); i++) if (N % primes.get(i) == 0) return false; return true; } // ================ Permutation of String ==================== public static void permute(String str) { permute(str, 0, str.length()-1); } public static void permute(String str, int l, int r) { if (l == r) System.out.println(str); else { for (int i = l; i <= r; i++) { str = swap(str,l,i); permute(str, l+1, r); str = swap(str,l,i); } } } public static String swap(String a, int i, int j) { char temp; char[] charArray = a.toCharArray(); temp = charArray[i] ; charArray[i] = charArray[j]; charArray[j] = temp; return String.valueOf(charArray); } // Union-find void makeSet(int parent[], int rank[]) { int i; for(i = 0; i < parent.length; i++) { parent[i] = i; rank[i] = 0; } } public static int find(int u, int parent[]) { if(parent[u] == u) return u; int v = find(parent[u], parent); parent[u] = v; return v; } public static boolean connected(int u, int v, int[] parent) { return find(u, parent) == find(v, parent); } public static void Union(int u, int v, int rank[], int parent[]) { int x = find(u, parent); //root of u int y = find(v, parent); //root of v if(x == y) return; if(rank[x] == rank[y]) { parent[y] = x; rank[x]++; } else if(rank[x] > rank[y]) { parent[y] = x; } else { parent[x] = y; } } public static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() {while (st == null || !st.hasMoreElements()) { try {st = new StringTokenizer(br.readLine());} catch (IOException e) {e.printStackTrace();}} return st.nextToken();} int nextInt() {return Integer.parseInt(next());} long nextLong() {return Long.parseLong(next());} double nextDouble() {return Double.parseDouble(next());} String nextLine(){String str = ""; try {str = br.readLine();} catch (IOException e) {e.printStackTrace();} return str;} int[] nextIntArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } int[] nextIntArray(int n, int delta) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt() + delta; return a; } long[] nextLongArray(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } } }
Java
["4\n5 6", "6\n2 1 2"]
2 seconds
["2 3 3 3", "0 0 1 1 1 2"]
null
Java 8
standard input
[ "greedy" ]
4585419ab2b7200770cfe1e607161e9f
The first line contains a single integer $$$n$$$ ($$$2 \le n \le 2 \cdot 10^5$$$) — the length of sequence $$$a$$$. $$$n$$$ is always even. The second line contains $$$\frac n 2$$$ integers $$$b_1, b_2, \dots, b_{\frac n 2}$$$ ($$$0 \le b_i \le 10^{18}$$$) — sequence $$$b$$$, where $$$b_i = a_i + a_{n - i + 1}$$$. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
1,300
Print $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ ($$$0 \le a_i \le 10^{18}$$$) in a single line. $$$a_1 \le a_2 \le \dots \le a_n$$$ should be satisfied. $$$b_i = a_i + a_{n - i + 1}$$$ should be satisfied for all valid $$$i$$$.
standard output
PASSED
66d29d30f2fa673d6f82743ee7503808
train_000.jsonl
1544884500
Mishka is trying really hard to avoid being kicked out of the university. In particular, he was doing absolutely nothing for the whole semester, miraculously passed some exams so that just one is left.There were $$$n$$$ classes of that subject during the semester and on $$$i$$$-th class professor mentioned some non-negative integer $$$a_i$$$ to the students. It turned out, the exam was to tell the whole sequence back to the professor. Sounds easy enough for those who attended every class, doesn't it?Obviously Mishka didn't attend any classes. However, professor left some clues on the values of $$$a$$$ to help out students like Mishka: $$$a$$$ was sorted in non-decreasing order ($$$a_1 \le a_2 \le \dots \le a_n$$$); $$$n$$$ was even; the following sequence $$$b$$$, consisting of $$$\frac n 2$$$ elements, was formed and given out to students: $$$b_i = a_i + a_{n - i + 1}$$$. Professor also mentioned that any sequence $$$a$$$, which produces sequence $$$b$$$ with the presented technique, will be acceptable.Help Mishka to pass that last exam. Restore any sorted sequence $$$a$$$ of non-negative integers, which produces sequence $$$b$$$ with the presented technique. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
256 megabytes
import java.io.*; import java.util.*; public class Main { public static void main(String[] args) throws Exception { Scanner sc = new Scanner(System.in); PrintWriter out = new PrintWriter(System.out); int n = sc.nextInt(); long[] tmp = new long[n / 2]; long arr[] = new long[n]; for(int i = 0;i < n / 2;i++) tmp[i] = sc.nextLong(); arr[0] = 0; arr[n - 1] = tmp[0]; for(int i = 1;i < n / 2;i++) { long curMin = arr[i - 1]; if(tmp[i] - curMin > arr[n - i]) { arr[n - i - 1] = arr[n - i]; arr[i] = tmp[i] - arr[n - i - 1]; } else { arr[n - i - 1] = tmp[i] - curMin; arr[i] = curMin; } } for(int i = 0;i < n;i++) out.print(arr[i] + " "); out.flush(); out.close(); } static class Scanner { StringTokenizer st; BufferedReader br; Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } Scanner(String s) throws FileNotFoundException { br = new BufferedReader(new FileReader(new File(s))); } String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(next()); } long nextLong() throws IOException { return Long.parseLong(next()); } String nextLine() throws IOException { return br.readLine(); } boolean ready() throws IOException { return br.ready(); } } }
Java
["4\n5 6", "6\n2 1 2"]
2 seconds
["2 3 3 3", "0 0 1 1 1 2"]
null
Java 8
standard input
[ "greedy" ]
4585419ab2b7200770cfe1e607161e9f
The first line contains a single integer $$$n$$$ ($$$2 \le n \le 2 \cdot 10^5$$$) — the length of sequence $$$a$$$. $$$n$$$ is always even. The second line contains $$$\frac n 2$$$ integers $$$b_1, b_2, \dots, b_{\frac n 2}$$$ ($$$0 \le b_i \le 10^{18}$$$) — sequence $$$b$$$, where $$$b_i = a_i + a_{n - i + 1}$$$. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
1,300
Print $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ ($$$0 \le a_i \le 10^{18}$$$) in a single line. $$$a_1 \le a_2 \le \dots \le a_n$$$ should be satisfied. $$$b_i = a_i + a_{n - i + 1}$$$ should be satisfied for all valid $$$i$$$.
standard output
PASSED
658fe3c3d7e52b98e6e5298a0a118daa
train_000.jsonl
1544884500
Mishka is trying really hard to avoid being kicked out of the university. In particular, he was doing absolutely nothing for the whole semester, miraculously passed some exams so that just one is left.There were $$$n$$$ classes of that subject during the semester and on $$$i$$$-th class professor mentioned some non-negative integer $$$a_i$$$ to the students. It turned out, the exam was to tell the whole sequence back to the professor. Sounds easy enough for those who attended every class, doesn't it?Obviously Mishka didn't attend any classes. However, professor left some clues on the values of $$$a$$$ to help out students like Mishka: $$$a$$$ was sorted in non-decreasing order ($$$a_1 \le a_2 \le \dots \le a_n$$$); $$$n$$$ was even; the following sequence $$$b$$$, consisting of $$$\frac n 2$$$ elements, was formed and given out to students: $$$b_i = a_i + a_{n - i + 1}$$$. Professor also mentioned that any sequence $$$a$$$, which produces sequence $$$b$$$ with the presented technique, will be acceptable.Help Mishka to pass that last exam. Restore any sorted sequence $$$a$$$ of non-negative integers, which produces sequence $$$b$$$ with the presented technique. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
256 megabytes
import sun.applet.Main; import java.util.ArrayList; import java.util.Scanner; /** * Created by jai on 15/12/18. */ public class p1093c { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); long a[] = new long[n]; long min = 0; long max = Long.MAX_VALUE; for (int i = 0; i < n/2; i++) { long sum = sc.nextLong(); a[n-1-i] = Math.min(max , sum - min ); max = a[n - 1 - i]; a[i] =sum - a[n - 1 - i]; min = a[i]; } for (int i = 0; i < n; i++) { System.out.println(a[i]); } } }
Java
["4\n5 6", "6\n2 1 2"]
2 seconds
["2 3 3 3", "0 0 1 1 1 2"]
null
Java 8
standard input
[ "greedy" ]
4585419ab2b7200770cfe1e607161e9f
The first line contains a single integer $$$n$$$ ($$$2 \le n \le 2 \cdot 10^5$$$) — the length of sequence $$$a$$$. $$$n$$$ is always even. The second line contains $$$\frac n 2$$$ integers $$$b_1, b_2, \dots, b_{\frac n 2}$$$ ($$$0 \le b_i \le 10^{18}$$$) — sequence $$$b$$$, where $$$b_i = a_i + a_{n - i + 1}$$$. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
1,300
Print $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ ($$$0 \le a_i \le 10^{18}$$$) in a single line. $$$a_1 \le a_2 \le \dots \le a_n$$$ should be satisfied. $$$b_i = a_i + a_{n - i + 1}$$$ should be satisfied for all valid $$$i$$$.
standard output
PASSED
2e9a95668ebdbb52701d941c5b07171a
train_000.jsonl
1544884500
Mishka is trying really hard to avoid being kicked out of the university. In particular, he was doing absolutely nothing for the whole semester, miraculously passed some exams so that just one is left.There were $$$n$$$ classes of that subject during the semester and on $$$i$$$-th class professor mentioned some non-negative integer $$$a_i$$$ to the students. It turned out, the exam was to tell the whole sequence back to the professor. Sounds easy enough for those who attended every class, doesn't it?Obviously Mishka didn't attend any classes. However, professor left some clues on the values of $$$a$$$ to help out students like Mishka: $$$a$$$ was sorted in non-decreasing order ($$$a_1 \le a_2 \le \dots \le a_n$$$); $$$n$$$ was even; the following sequence $$$b$$$, consisting of $$$\frac n 2$$$ elements, was formed and given out to students: $$$b_i = a_i + a_{n - i + 1}$$$. Professor also mentioned that any sequence $$$a$$$, which produces sequence $$$b$$$ with the presented technique, will be acceptable.Help Mishka to pass that last exam. Restore any sorted sequence $$$a$$$ of non-negative integers, which produces sequence $$$b$$$ with the presented technique. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
256 megabytes
import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.InputMismatchException; public class _c7 { public static void main(String args[]){ PrintWriter out = new PrintWriter(System.out); Reader in = new Reader(); int n = in.nextInt(); long a[] = new long[n]; long b[] = new long[n/2]; for(int i=0;i<n/2;i++){ b[i] = in.nextLong(); } a[0] = 0; a[n-1] = b[0]; for(int i=1;i<n/2;i++){ long x = b[i] - a[n-i] - a[i-1]; if(x<0){ x = 0; } a[i] = a[i-1] + x; a[n-1-i] = b[i] - a[i]; } for(int i=0;i<n;i++){ out.print(a[i]+" "); } out.flush(); out.close(); } static class Reader { private InputStream mIs; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public Reader() { this(System.in); } public Reader(InputStream is) { mIs = is; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = mIs.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public String nextLine() { int c = read(); while (isSpaceChar(c)) { c = read(); } StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndOfLine(c)); return res.toString(); } public String next() { int c = read(); while (isSpaceChar(c)) { c = read(); } StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } double nextDouble() { return Double.parseDouble(next()); } public long nextLong() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public int nextInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } } }
Java
["4\n5 6", "6\n2 1 2"]
2 seconds
["2 3 3 3", "0 0 1 1 1 2"]
null
Java 8
standard input
[ "greedy" ]
4585419ab2b7200770cfe1e607161e9f
The first line contains a single integer $$$n$$$ ($$$2 \le n \le 2 \cdot 10^5$$$) — the length of sequence $$$a$$$. $$$n$$$ is always even. The second line contains $$$\frac n 2$$$ integers $$$b_1, b_2, \dots, b_{\frac n 2}$$$ ($$$0 \le b_i \le 10^{18}$$$) — sequence $$$b$$$, where $$$b_i = a_i + a_{n - i + 1}$$$. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
1,300
Print $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ ($$$0 \le a_i \le 10^{18}$$$) in a single line. $$$a_1 \le a_2 \le \dots \le a_n$$$ should be satisfied. $$$b_i = a_i + a_{n - i + 1}$$$ should be satisfied for all valid $$$i$$$.
standard output
PASSED
3d74b2655ea9359e34696c4d32e61b49
train_000.jsonl
1544884500
Mishka is trying really hard to avoid being kicked out of the university. In particular, he was doing absolutely nothing for the whole semester, miraculously passed some exams so that just one is left.There were $$$n$$$ classes of that subject during the semester and on $$$i$$$-th class professor mentioned some non-negative integer $$$a_i$$$ to the students. It turned out, the exam was to tell the whole sequence back to the professor. Sounds easy enough for those who attended every class, doesn't it?Obviously Mishka didn't attend any classes. However, professor left some clues on the values of $$$a$$$ to help out students like Mishka: $$$a$$$ was sorted in non-decreasing order ($$$a_1 \le a_2 \le \dots \le a_n$$$); $$$n$$$ was even; the following sequence $$$b$$$, consisting of $$$\frac n 2$$$ elements, was formed and given out to students: $$$b_i = a_i + a_{n - i + 1}$$$. Professor also mentioned that any sequence $$$a$$$, which produces sequence $$$b$$$ with the presented technique, will be acceptable.Help Mishka to pass that last exam. Restore any sorted sequence $$$a$$$ of non-negative integers, which produces sequence $$$b$$$ with the presented technique. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
256 megabytes
import java.io.*; import java.util.*; public class Main implements Runnable { int maxn = (int)1e5+11; int inf = (int)1e9; long mod = (long)1e9+7; int n,m,k; int a[] = new int[n]; void solve() throws Exception { n = in.iInt(); long a[] = new long[n+1]; long b[] = new long[n+1]; for (int i=1; i<=n/2; i++) { b[i] = in.lLong(); } a[n/2] = b[n/2]/2; a[n/2+1] = b[n/2]-a[n/2]; for (int i=n/2-1; i>=1; i--) { long val = b[i]; a[n-i+1] = a[n-i]; val-=a[n-i+1]; if (val>0L) { if (val>a[i+1]) { a[i] = a[i+1]; a[n-i+1] += val-a[i]; } else { a[i] = val; } } } for (int i=1; i<=n; i++) { out.print(a[i] + " "); } } class Pair { int x; int y; public Pair(int x, int y) { this.x = x; this.y = y; } @Override public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; Pair pair = (Pair) o; return x == pair.x && y == pair.y; } @Override public int hashCode() { return Objects.hash(x, y); } } String fileInName = ""; static Throwable throwable; public static void main (String [] args) throws Throwable { Thread thread = new Thread(null, new Main(), "", (1 << 26)); thread.start(); thread.join(); thread.run(); if (throwable != null) throw throwable; } FastReader in; PrintWriter out; public void run() { try { if (!fileInName.isEmpty()) { in = new FastReader(new BufferedReader(new FileReader(fileInName+".in"))); out = new PrintWriter(new BufferedWriter(new FileWriter(fileInName+".out"))); } else { in = new FastReader(new BufferedReader(new InputStreamReader(System.in))); out = new PrintWriter(System.out); } solve(); } catch(Exception e) { throwable = e; } finally { out.close(); } } class FastReader { BufferedReader bf; StringTokenizer tk = null; public FastReader(BufferedReader bf) { this.bf = bf; } public Integer iInt() throws Exception { return Integer.parseInt(sString()); } public Long lLong() throws Exception { return Long.parseLong(sString()); } public Double dDouble() throws Exception { return Double.parseDouble(sString()); } public String sString () throws Exception { if (tk==null || !tk.hasMoreTokens()) { tk = new StringTokenizer(bf.readLine()); } if (!tk.hasMoreTokens()) return sString(); else return tk.nextToken(); } } }
Java
["4\n5 6", "6\n2 1 2"]
2 seconds
["2 3 3 3", "0 0 1 1 1 2"]
null
Java 8
standard input
[ "greedy" ]
4585419ab2b7200770cfe1e607161e9f
The first line contains a single integer $$$n$$$ ($$$2 \le n \le 2 \cdot 10^5$$$) — the length of sequence $$$a$$$. $$$n$$$ is always even. The second line contains $$$\frac n 2$$$ integers $$$b_1, b_2, \dots, b_{\frac n 2}$$$ ($$$0 \le b_i \le 10^{18}$$$) — sequence $$$b$$$, where $$$b_i = a_i + a_{n - i + 1}$$$. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
1,300
Print $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ ($$$0 \le a_i \le 10^{18}$$$) in a single line. $$$a_1 \le a_2 \le \dots \le a_n$$$ should be satisfied. $$$b_i = a_i + a_{n - i + 1}$$$ should be satisfied for all valid $$$i$$$.
standard output
PASSED
ff6cbed1e8c06c8e4b90ee7d01aea6ca
train_000.jsonl
1544884500
Mishka is trying really hard to avoid being kicked out of the university. In particular, he was doing absolutely nothing for the whole semester, miraculously passed some exams so that just one is left.There were $$$n$$$ classes of that subject during the semester and on $$$i$$$-th class professor mentioned some non-negative integer $$$a_i$$$ to the students. It turned out, the exam was to tell the whole sequence back to the professor. Sounds easy enough for those who attended every class, doesn't it?Obviously Mishka didn't attend any classes. However, professor left some clues on the values of $$$a$$$ to help out students like Mishka: $$$a$$$ was sorted in non-decreasing order ($$$a_1 \le a_2 \le \dots \le a_n$$$); $$$n$$$ was even; the following sequence $$$b$$$, consisting of $$$\frac n 2$$$ elements, was formed and given out to students: $$$b_i = a_i + a_{n - i + 1}$$$. Professor also mentioned that any sequence $$$a$$$, which produces sequence $$$b$$$ with the presented technique, will be acceptable.Help Mishka to pass that last exam. Restore any sorted sequence $$$a$$$ of non-negative integers, which produces sequence $$$b$$$ with the presented technique. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
256 megabytes
import java.util.ArrayList; import java.util.List; import java.util.Scanner; public class JavaApplication7 { /** * @param args the command line arguments */ public static void main(String[] args) { // TODO code application logic here int n; long k,t = 0; Scanner in=new Scanner(System.in); n = in.nextInt(); List<Long> list = new ArrayList(); for (int i=0; i<n; i++) list.add(t); k = in.nextLong(); list.set(0, t); list.set(n-1, k); t = k; for (int i=1; i<n/2; i++) { k = in.nextLong(); while (true){ if (k-t >= list.get(i-1)){ list.set(n-i-1, t); list.set(i, k-t); break; } t = k - list.get(i-1); } } for (int i =0; i<n; i++) System.out.print(list.get(i) + " "); System.out.println(); } }
Java
["4\n5 6", "6\n2 1 2"]
2 seconds
["2 3 3 3", "0 0 1 1 1 2"]
null
Java 8
standard input
[ "greedy" ]
4585419ab2b7200770cfe1e607161e9f
The first line contains a single integer $$$n$$$ ($$$2 \le n \le 2 \cdot 10^5$$$) — the length of sequence $$$a$$$. $$$n$$$ is always even. The second line contains $$$\frac n 2$$$ integers $$$b_1, b_2, \dots, b_{\frac n 2}$$$ ($$$0 \le b_i \le 10^{18}$$$) — sequence $$$b$$$, where $$$b_i = a_i + a_{n - i + 1}$$$. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
1,300
Print $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ ($$$0 \le a_i \le 10^{18}$$$) in a single line. $$$a_1 \le a_2 \le \dots \le a_n$$$ should be satisfied. $$$b_i = a_i + a_{n - i + 1}$$$ should be satisfied for all valid $$$i$$$.
standard output
PASSED
f682bd29e8298140fabadd556cd340f4
train_000.jsonl
1544884500
Mishka is trying really hard to avoid being kicked out of the university. In particular, he was doing absolutely nothing for the whole semester, miraculously passed some exams so that just one is left.There were $$$n$$$ classes of that subject during the semester and on $$$i$$$-th class professor mentioned some non-negative integer $$$a_i$$$ to the students. It turned out, the exam was to tell the whole sequence back to the professor. Sounds easy enough for those who attended every class, doesn't it?Obviously Mishka didn't attend any classes. However, professor left some clues on the values of $$$a$$$ to help out students like Mishka: $$$a$$$ was sorted in non-decreasing order ($$$a_1 \le a_2 \le \dots \le a_n$$$); $$$n$$$ was even; the following sequence $$$b$$$, consisting of $$$\frac n 2$$$ elements, was formed and given out to students: $$$b_i = a_i + a_{n - i + 1}$$$. Professor also mentioned that any sequence $$$a$$$, which produces sequence $$$b$$$ with the presented technique, will be acceptable.Help Mishka to pass that last exam. Restore any sorted sequence $$$a$$$ of non-negative integers, which produces sequence $$$b$$$ with the presented technique. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
256 megabytes
import java.util.ArrayList; import java.util.List; import java.util.Scanner; public class JavaApplication7 { /** * @param args the command line arguments */ public static void main(String[] args) { // TODO code application logic here int n; long k,t = 0; Scanner in=new Scanner(System.in); n = in.nextInt(); List<Long> list = new ArrayList(); for (int i=0; i<n; i++) list.add(t); k = in.nextLong(); list.set(0, t); list.set(n-1, k); t = k; for (int i=1; i<n/2; i++) { k = in.nextLong(); if (k-t < list.get(i-1)) t = k - list.get(i-1); list.set(n-i-1, t); list.set(i, k-t); } for (int i =0; i<n; i++) System.out.print(list.get(i) + " "); System.out.println(); } }
Java
["4\n5 6", "6\n2 1 2"]
2 seconds
["2 3 3 3", "0 0 1 1 1 2"]
null
Java 8
standard input
[ "greedy" ]
4585419ab2b7200770cfe1e607161e9f
The first line contains a single integer $$$n$$$ ($$$2 \le n \le 2 \cdot 10^5$$$) — the length of sequence $$$a$$$. $$$n$$$ is always even. The second line contains $$$\frac n 2$$$ integers $$$b_1, b_2, \dots, b_{\frac n 2}$$$ ($$$0 \le b_i \le 10^{18}$$$) — sequence $$$b$$$, where $$$b_i = a_i + a_{n - i + 1}$$$. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
1,300
Print $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ ($$$0 \le a_i \le 10^{18}$$$) in a single line. $$$a_1 \le a_2 \le \dots \le a_n$$$ should be satisfied. $$$b_i = a_i + a_{n - i + 1}$$$ should be satisfied for all valid $$$i$$$.
standard output
PASSED
654354fbe702e8287c9bba9a2e7944c4
train_000.jsonl
1544884500
Mishka is trying really hard to avoid being kicked out of the university. In particular, he was doing absolutely nothing for the whole semester, miraculously passed some exams so that just one is left.There were $$$n$$$ classes of that subject during the semester and on $$$i$$$-th class professor mentioned some non-negative integer $$$a_i$$$ to the students. It turned out, the exam was to tell the whole sequence back to the professor. Sounds easy enough for those who attended every class, doesn't it?Obviously Mishka didn't attend any classes. However, professor left some clues on the values of $$$a$$$ to help out students like Mishka: $$$a$$$ was sorted in non-decreasing order ($$$a_1 \le a_2 \le \dots \le a_n$$$); $$$n$$$ was even; the following sequence $$$b$$$, consisting of $$$\frac n 2$$$ elements, was formed and given out to students: $$$b_i = a_i + a_{n - i + 1}$$$. Professor also mentioned that any sequence $$$a$$$, which produces sequence $$$b$$$ with the presented technique, will be acceptable.Help Mishka to pass that last exam. Restore any sorted sequence $$$a$$$ of non-negative integers, which produces sequence $$$b$$$ with the presented technique. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; public class C { public static void main(String[] args) { FastReader in = new FastReader(); int n = in.nextInt(); long[] ans = new long[n]; for(int i = 0; i < n/2; i++) { if(i != 0) { long last = ans[ans.length-i]; long next = in.nextLong(); long dif = Math.max(next-last,ans[i-1]); if(dif > 0) { ans[ans.length-1-i] = next-dif; ans[i] = dif; } else { ans[ans.length-1-i] = next; } } else { ans[ans.length-1] = in.nextLong(); } System.out.print(ans[i] + " "); } for(int i = n/2; i < n; i++) System.out.print(ans[i] + " "); /*String str = "" + ans[0]; for(int i = 1; i < ans.length; i++) str += " " + ans[i]; System.out.println(str);*/ } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["4\n5 6", "6\n2 1 2"]
2 seconds
["2 3 3 3", "0 0 1 1 1 2"]
null
Java 8
standard input
[ "greedy" ]
4585419ab2b7200770cfe1e607161e9f
The first line contains a single integer $$$n$$$ ($$$2 \le n \le 2 \cdot 10^5$$$) — the length of sequence $$$a$$$. $$$n$$$ is always even. The second line contains $$$\frac n 2$$$ integers $$$b_1, b_2, \dots, b_{\frac n 2}$$$ ($$$0 \le b_i \le 10^{18}$$$) — sequence $$$b$$$, where $$$b_i = a_i + a_{n - i + 1}$$$. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
1,300
Print $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ ($$$0 \le a_i \le 10^{18}$$$) in a single line. $$$a_1 \le a_2 \le \dots \le a_n$$$ should be satisfied. $$$b_i = a_i + a_{n - i + 1}$$$ should be satisfied for all valid $$$i$$$.
standard output
PASSED
9cb6b95689e861563b334f49da20a85f
train_000.jsonl
1544884500
Mishka is trying really hard to avoid being kicked out of the university. In particular, he was doing absolutely nothing for the whole semester, miraculously passed some exams so that just one is left.There were $$$n$$$ classes of that subject during the semester and on $$$i$$$-th class professor mentioned some non-negative integer $$$a_i$$$ to the students. It turned out, the exam was to tell the whole sequence back to the professor. Sounds easy enough for those who attended every class, doesn't it?Obviously Mishka didn't attend any classes. However, professor left some clues on the values of $$$a$$$ to help out students like Mishka: $$$a$$$ was sorted in non-decreasing order ($$$a_1 \le a_2 \le \dots \le a_n$$$); $$$n$$$ was even; the following sequence $$$b$$$, consisting of $$$\frac n 2$$$ elements, was formed and given out to students: $$$b_i = a_i + a_{n - i + 1}$$$. Professor also mentioned that any sequence $$$a$$$, which produces sequence $$$b$$$ with the presented technique, will be acceptable.Help Mishka to pass that last exam. Restore any sorted sequence $$$a$$$ of non-negative integers, which produces sequence $$$b$$$ with the presented technique. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
256 megabytes
import java.util.*; public class C1093{ public static void main(String args[]){ Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int t = n/2; long b[] = new long[t]; for(int i = 0;i<t;i++){ b[i] = sc.nextLong(); } long a[] = new long[n]; for(int i = t-1;i>=0;i--){ // for(int j = t-1;j>=0;j--){ long temp = (b[i])/2; if(i == (t-1)){ a[i] = temp; a[i+1] = b[i]-temp; } else{ a[i] = temp; a[n-i-1] = b[i]-temp; if(a[i]>a[i+1]){ long temp1 = a[i]-a[i+1]; a[i] = a[i]-temp1; a[n-i-1] += temp1; } if(a[n-i-1]<a[n-i-2]){ long temp1 = a[n-i-2]-a[n-i-1]; a[n-i-1] += temp1; a[i] -= temp1; } } } // } for(int i = 0;i<n;i++){ System.out.print(a[i]+" "); } } }
Java
["4\n5 6", "6\n2 1 2"]
2 seconds
["2 3 3 3", "0 0 1 1 1 2"]
null
Java 8
standard input
[ "greedy" ]
4585419ab2b7200770cfe1e607161e9f
The first line contains a single integer $$$n$$$ ($$$2 \le n \le 2 \cdot 10^5$$$) — the length of sequence $$$a$$$. $$$n$$$ is always even. The second line contains $$$\frac n 2$$$ integers $$$b_1, b_2, \dots, b_{\frac n 2}$$$ ($$$0 \le b_i \le 10^{18}$$$) — sequence $$$b$$$, where $$$b_i = a_i + a_{n - i + 1}$$$. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
1,300
Print $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ ($$$0 \le a_i \le 10^{18}$$$) in a single line. $$$a_1 \le a_2 \le \dots \le a_n$$$ should be satisfied. $$$b_i = a_i + a_{n - i + 1}$$$ should be satisfied for all valid $$$i$$$.
standard output
PASSED
deeaa81c0a6250a5ff981803c8fab0b8
train_000.jsonl
1544884500
Mishka is trying really hard to avoid being kicked out of the university. In particular, he was doing absolutely nothing for the whole semester, miraculously passed some exams so that just one is left.There were $$$n$$$ classes of that subject during the semester and on $$$i$$$-th class professor mentioned some non-negative integer $$$a_i$$$ to the students. It turned out, the exam was to tell the whole sequence back to the professor. Sounds easy enough for those who attended every class, doesn't it?Obviously Mishka didn't attend any classes. However, professor left some clues on the values of $$$a$$$ to help out students like Mishka: $$$a$$$ was sorted in non-decreasing order ($$$a_1 \le a_2 \le \dots \le a_n$$$); $$$n$$$ was even; the following sequence $$$b$$$, consisting of $$$\frac n 2$$$ elements, was formed and given out to students: $$$b_i = a_i + a_{n - i + 1}$$$. Professor also mentioned that any sequence $$$a$$$, which produces sequence $$$b$$$ with the presented technique, will be acceptable.Help Mishka to pass that last exam. Restore any sorted sequence $$$a$$$ of non-negative integers, which produces sequence $$$b$$$ with the presented technique. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
256 megabytes
import java.io.*; import java.util.*; import java.math.*; import java.net.*; import java.applet.*; import java.awt.*; import java.awt.event.*; public class cf { public static void main(String args[]) { Scanner in=new Scanner(System.in); int n=in.nextInt(); long[] a=new long[n]; long c=0; long t=in.nextLong(); a[n-1]=t; a[0]=0; for(int i=n-2;i>=n/2;i--) { t=in.nextLong(); a[i]=Math.min(t,a[i+1]); a[n-i-1]=t-a[i]; if(a[n-i-1]<a[n-i-2]) { t=a[n-i-2]-a[n-i-1]; a[n-i-1]=a[n-i-2]; a[i]-=t; } } for(int i=0;i<n;i++) System.out.print(a[i]+" "); } }
Java
["4\n5 6", "6\n2 1 2"]
2 seconds
["2 3 3 3", "0 0 1 1 1 2"]
null
Java 8
standard input
[ "greedy" ]
4585419ab2b7200770cfe1e607161e9f
The first line contains a single integer $$$n$$$ ($$$2 \le n \le 2 \cdot 10^5$$$) — the length of sequence $$$a$$$. $$$n$$$ is always even. The second line contains $$$\frac n 2$$$ integers $$$b_1, b_2, \dots, b_{\frac n 2}$$$ ($$$0 \le b_i \le 10^{18}$$$) — sequence $$$b$$$, where $$$b_i = a_i + a_{n - i + 1}$$$. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
1,300
Print $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ ($$$0 \le a_i \le 10^{18}$$$) in a single line. $$$a_1 \le a_2 \le \dots \le a_n$$$ should be satisfied. $$$b_i = a_i + a_{n - i + 1}$$$ should be satisfied for all valid $$$i$$$.
standard output
PASSED
e1731907ad75fee3743e30ec90007c95
train_000.jsonl
1544884500
Mishka is trying really hard to avoid being kicked out of the university. In particular, he was doing absolutely nothing for the whole semester, miraculously passed some exams so that just one is left.There were $$$n$$$ classes of that subject during the semester and on $$$i$$$-th class professor mentioned some non-negative integer $$$a_i$$$ to the students. It turned out, the exam was to tell the whole sequence back to the professor. Sounds easy enough for those who attended every class, doesn't it?Obviously Mishka didn't attend any classes. However, professor left some clues on the values of $$$a$$$ to help out students like Mishka: $$$a$$$ was sorted in non-decreasing order ($$$a_1 \le a_2 \le \dots \le a_n$$$); $$$n$$$ was even; the following sequence $$$b$$$, consisting of $$$\frac n 2$$$ elements, was formed and given out to students: $$$b_i = a_i + a_{n - i + 1}$$$. Professor also mentioned that any sequence $$$a$$$, which produces sequence $$$b$$$ with the presented technique, will be acceptable.Help Mishka to pass that last exam. Restore any sorted sequence $$$a$$$ of non-negative integers, which produces sequence $$$b$$$ with the presented technique. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
256 megabytes
//package Codeforces; import java.util.*; public class exam { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); long[] arr = new long[n / 2]; for (int i = 0; i < n / 2; i++) arr[i] = in.nextLong(); long[] ans = new long[n]; for (int i = 0; i < n / 2; i++) { ans[i] = 0; ans[n - 1 - i] = arr[i]; if (i == 0) continue; else { if (ans[n - 1 - i] > ans[n - i]) { ans[n - 1 - i] -= arr[i] - ans[n - i]; ans[i] = arr[i] - ans[n - 1 - i]; } if (ans[i] < ans[i - 1]) { ans[i] = ans[i - 1]; ans[n - 1 - i] = arr[i] - ans[i]; } } } for (long i : ans) System.out.print(i + " "); } } /* * 10 55 50 51 49 30 */
Java
["4\n5 6", "6\n2 1 2"]
2 seconds
["2 3 3 3", "0 0 1 1 1 2"]
null
Java 8
standard input
[ "greedy" ]
4585419ab2b7200770cfe1e607161e9f
The first line contains a single integer $$$n$$$ ($$$2 \le n \le 2 \cdot 10^5$$$) — the length of sequence $$$a$$$. $$$n$$$ is always even. The second line contains $$$\frac n 2$$$ integers $$$b_1, b_2, \dots, b_{\frac n 2}$$$ ($$$0 \le b_i \le 10^{18}$$$) — sequence $$$b$$$, where $$$b_i = a_i + a_{n - i + 1}$$$. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
1,300
Print $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ ($$$0 \le a_i \le 10^{18}$$$) in a single line. $$$a_1 \le a_2 \le \dots \le a_n$$$ should be satisfied. $$$b_i = a_i + a_{n - i + 1}$$$ should be satisfied for all valid $$$i$$$.
standard output
PASSED
48f011a1f0f13e20ef5d561616bdd468
train_000.jsonl
1544884500
Mishka is trying really hard to avoid being kicked out of the university. In particular, he was doing absolutely nothing for the whole semester, miraculously passed some exams so that just one is left.There were $$$n$$$ classes of that subject during the semester and on $$$i$$$-th class professor mentioned some non-negative integer $$$a_i$$$ to the students. It turned out, the exam was to tell the whole sequence back to the professor. Sounds easy enough for those who attended every class, doesn't it?Obviously Mishka didn't attend any classes. However, professor left some clues on the values of $$$a$$$ to help out students like Mishka: $$$a$$$ was sorted in non-decreasing order ($$$a_1 \le a_2 \le \dots \le a_n$$$); $$$n$$$ was even; the following sequence $$$b$$$, consisting of $$$\frac n 2$$$ elements, was formed and given out to students: $$$b_i = a_i + a_{n - i + 1}$$$. Professor also mentioned that any sequence $$$a$$$, which produces sequence $$$b$$$ with the presented technique, will be acceptable.Help Mishka to pass that last exam. Restore any sorted sequence $$$a$$$ of non-negative integers, which produces sequence $$$b$$$ with the presented technique. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
256 megabytes
import java.util.*; import java.io.*; public class Solution{ static ArrayList<Integer> a[]; static boolean[] v; static class pair implements Comparable<pair>{ int a,b; pair(int x,int y){ a=x;b=y; } public int compareTo(pair t){ if(t.a==this.a) return this.b-t.b; return this.a-t.a; } } public static ArrayList<pair> bfs(String[] a,int r,int c){ ArrayList<pair> ans=new ArrayList<>(); Queue<pair> q=new LinkedList<>(); int[][] dxy={{-1,0,1,0},{0,-1,0,1}}; q.add(new pair(r,c)); HashSet<String> h=new HashSet<>(); while(!q.isEmpty()){ pair f=q.poll(); ans.add(f);h.add(f.a+" "+f.b); for(int i=0;i<4;i++){ int dx=f.a+dxy[0][i]; int dy=f.b+dxy[1][i]; if(dx<0||dy<0||dx>=a.length||dy>=a.length||h.contains(dx+" "+dy)|| a[dx].charAt(dy)=='1') continue; q.add(new pair(dx,dy)); h.add(dx+" "+dy); } } return ans; } public static void dfs(ArrayList<Integer> a[],boolean[] v,int n,ArrayList<Integer> l){ v[n]=true; l.add(n); for(int i=0;i<a[n].size();i++){ if(!v[a[n].get(i)]){ dfs(a,v,a[n].get(i),l); } } } /* 1 1 1 1 1 3 3 3 2 3 3 2 1 3 1 2 2 2 2 4 4 4 1 4 */ public static int pow(int a, int n) { long ans = 1; long base = a; while (n != 0) { if ((n & 1) == 1) { ans *= base; ans %= 1000000007; } base = (base * base) % 1000000007; n >>= 1; } return (int) ans % 1000000007; } public static int find(int x){ int i=1;int f=0; while(x>0){ if((x&1)==0)f=i; x>>=1;i++; } return f; } public static boolean good(int x){ if((((x+1)&x))==0) return true; return false; } public static long f(long n){ long val=2; long preval=0;int i=1; while(n>=val){ i++; preval=val; val=3*i+val-1; } return preval; } public static void bfs(HashSet<Integer>[] a,int n){ PriorityQueue<Integer> p=new PriorityQueue<>(); boolean v[]=new boolean[n]; v[0]=true; p.add(0); StringBuilder st=new StringBuilder(); while(!p.isEmpty()){ int f=p.poll(); v[f]=true; st.append(f+1+" "); for(int i:a[f]){ if(!v[i]){ p.add(i);v[i]=true;} } } System.out.println(st); } public static void main(String[] args) { Scanner s = new Scanner(System.in); // int t = s.nextInt(); // while(t-- > 0) { int n=s.nextInt(); long[]b=new long[n/2]; for(int i=0;i<n/2;i++){ b[i]=s.nextLong(); } long a[]=new long[n]; a[n-1]=b[0]; for(int i=1;i<=n/2-1;i++){ if(b[i]>b[i-1]){ a[n-i-1]=a[n-i]; a[i]=b[i]-a[n-i-1]; }else{ a[i]=a[i-1]; a[n-i-1]=b[i]-a[i]; } } StringBuilder st=new StringBuilder(); for(int i=0;i<n;i++) st.append(a[i]+" "); System.out.println(st); // } } }
Java
["4\n5 6", "6\n2 1 2"]
2 seconds
["2 3 3 3", "0 0 1 1 1 2"]
null
Java 8
standard input
[ "greedy" ]
4585419ab2b7200770cfe1e607161e9f
The first line contains a single integer $$$n$$$ ($$$2 \le n \le 2 \cdot 10^5$$$) — the length of sequence $$$a$$$. $$$n$$$ is always even. The second line contains $$$\frac n 2$$$ integers $$$b_1, b_2, \dots, b_{\frac n 2}$$$ ($$$0 \le b_i \le 10^{18}$$$) — sequence $$$b$$$, where $$$b_i = a_i + a_{n - i + 1}$$$. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
1,300
Print $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ ($$$0 \le a_i \le 10^{18}$$$) in a single line. $$$a_1 \le a_2 \le \dots \le a_n$$$ should be satisfied. $$$b_i = a_i + a_{n - i + 1}$$$ should be satisfied for all valid $$$i$$$.
standard output
PASSED
2fd3444f230b547babfb3aa308f5e858
train_000.jsonl
1544884500
Mishka is trying really hard to avoid being kicked out of the university. In particular, he was doing absolutely nothing for the whole semester, miraculously passed some exams so that just one is left.There were $$$n$$$ classes of that subject during the semester and on $$$i$$$-th class professor mentioned some non-negative integer $$$a_i$$$ to the students. It turned out, the exam was to tell the whole sequence back to the professor. Sounds easy enough for those who attended every class, doesn't it?Obviously Mishka didn't attend any classes. However, professor left some clues on the values of $$$a$$$ to help out students like Mishka: $$$a$$$ was sorted in non-decreasing order ($$$a_1 \le a_2 \le \dots \le a_n$$$); $$$n$$$ was even; the following sequence $$$b$$$, consisting of $$$\frac n 2$$$ elements, was formed and given out to students: $$$b_i = a_i + a_{n - i + 1}$$$. Professor also mentioned that any sequence $$$a$$$, which produces sequence $$$b$$$ with the presented technique, will be acceptable.Help Mishka to pass that last exam. Restore any sorted sequence $$$a$$$ of non-negative integers, which produces sequence $$$b$$$ with the presented technique. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
256 megabytes
import java.util.*; import java.util.Map.Entry; import java.lang.*; import java.math.*; import java.text.*; import java.io.*; public final class Solve { static PrintWriter out = new PrintWriter(System.out); static void flush() { out.flush(); } static void run(long s, long e) { NumberFormat formatter = new DecimalFormat("#0.00000"); System.out.print("Execution time is " + formatter.format((e - s) / 1000d) + " seconds"); } static int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a % b); } static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a % b); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } static boolean isPalindrome(String str1, String str2) { String str3 = str1+str2; int i = 0, j = str3.length()-1; while(i < j) { char a = str3.charAt(i), b = str3.charAt(j); if(a != b) return false; i++;j--; } return true; } static boolean isPalindrome(String str) { int i = 0, j = str.length()-1; while(i < j) { char a = str.charAt(i), b = str.charAt(j); if(a != b) return false; i++;j--; } return true; } String next() { while (st == null || !st.hasMoreElements()) { try{st = new StringTokenizer(br.readLine());} catch (IOException e) {e.printStackTrace();} } return st.nextToken(); } int nextInt(){ return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next());} static int fact(int n) { if(n == 1) return 1; return n * fact(n-1); } public int[] readIntArray(int n) { int[] arr = new int[n]; for(int i=0; i<n; ++i) arr[i]=nextInt(); return arr; } public long[] readLongArray(int n) { long[] arr = new long[n]; for(int i=0; i<n; ++i) arr[i]=nextLong(); return arr; } public int[][] readIntArray(int m, int n){ int[][] arr = new int[m][n]; for(int i = 0;i<m;i++) for(int j = 0;j<n;j++) arr[i][j] = nextInt(); return arr; } public String[] readStringArray(int n) { String[] arr = new String[n]; for(int i=0; i<n; ++i) arr[i]= nextLine(); return arr; } double nextDouble() {return Double.parseDouble(next());} String nextLine() { String str = ""; try{str = br.readLine();} catch (IOException e) {e.printStackTrace();} return str;} } static void solve(long[] arr, int n){ long[] t = new long[n]; int p = 0; for(int i =n-1;i >=n/2;i--) { t[i] = arr[p++]; } // for(int i = 0;i<t.length;i++) { // out.print(t[i]+" "); // } // out.println(); int i = 1; int j = n-2; long max1 = t[n-1]; long max2 = 0; while(i < j) { if(t[j] > t[j+1]) { if(t[j] - t[j+1] == t[i-1] - t[i]) { t[j] = t[j+1]; t[i] = t[i-1]; } else if(t[j] - t[j+1] < t[i-1] - t[i]) { t[i] = t[i-1]; t[j] = t[j] - t[i]; } else { t[i] = t[j] - t[j+1]; t[j] = t[j] - t[i]; } max2 = t[i]; max1 = t[j]; } else if(t[j] == t[j+1] && t[i] != t[i-1]) { t[i] = max2; t[j] = t[j] - t[i]; max1 = t[j]; } else { long x = t[j]; t[i] = max2; t[j] = x - t[i]; max1 = t[j]; } // out.println(t[i]+" "+t[j]); // out.println(max2+" "+max1); i++; j--; } for(long k:t) { out.print(k+" "); } } public static void main(String args[]) throws IOException { FastReader sc = new FastReader(); long s1 = System.currentTimeMillis(); int n = sc.nextInt(); long[] arr = sc.readLongArray(n/2); solve(arr,n); flush(); long e = System.currentTimeMillis(); // run(s1,e); } }
Java
["4\n5 6", "6\n2 1 2"]
2 seconds
["2 3 3 3", "0 0 1 1 1 2"]
null
Java 8
standard input
[ "greedy" ]
4585419ab2b7200770cfe1e607161e9f
The first line contains a single integer $$$n$$$ ($$$2 \le n \le 2 \cdot 10^5$$$) — the length of sequence $$$a$$$. $$$n$$$ is always even. The second line contains $$$\frac n 2$$$ integers $$$b_1, b_2, \dots, b_{\frac n 2}$$$ ($$$0 \le b_i \le 10^{18}$$$) — sequence $$$b$$$, where $$$b_i = a_i + a_{n - i + 1}$$$. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
1,300
Print $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ ($$$0 \le a_i \le 10^{18}$$$) in a single line. $$$a_1 \le a_2 \le \dots \le a_n$$$ should be satisfied. $$$b_i = a_i + a_{n - i + 1}$$$ should be satisfied for all valid $$$i$$$.
standard output
PASSED
8552f4b90025b07e468b195cd9b8a746
train_000.jsonl
1544884500
Mishka is trying really hard to avoid being kicked out of the university. In particular, he was doing absolutely nothing for the whole semester, miraculously passed some exams so that just one is left.There were $$$n$$$ classes of that subject during the semester and on $$$i$$$-th class professor mentioned some non-negative integer $$$a_i$$$ to the students. It turned out, the exam was to tell the whole sequence back to the professor. Sounds easy enough for those who attended every class, doesn't it?Obviously Mishka didn't attend any classes. However, professor left some clues on the values of $$$a$$$ to help out students like Mishka: $$$a$$$ was sorted in non-decreasing order ($$$a_1 \le a_2 \le \dots \le a_n$$$); $$$n$$$ was even; the following sequence $$$b$$$, consisting of $$$\frac n 2$$$ elements, was formed and given out to students: $$$b_i = a_i + a_{n - i + 1}$$$. Professor also mentioned that any sequence $$$a$$$, which produces sequence $$$b$$$ with the presented technique, will be acceptable.Help Mishka to pass that last exam. Restore any sorted sequence $$$a$$$ of non-negative integers, which produces sequence $$$b$$$ with the presented technique. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
256 megabytes
import java.util.HashMap; import java.util.Scanner; public class Main { public static long[] f(long l,long r, long c) { long a = l; long b = r; long[] p = new long[2]; p[0] = a; p[1] = b; if (a + b == c) return p; if ((a + b) < c) { a = c - b; } else { b = c - a; } p[0] = a; p[1] = b; return p; } public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); long[] a = new long[n]; long[] b = new long[n/2]; for (int i = 0; i < n/2; i++) { b[i] = in.nextLong(); } long[] p = new long[2]; a[0] = 0; a[n - 1] = b[0]; p[0] = 0; p[1] = b[0]; for (int i = 1; i < n/2; i++) { p = f(p[0],p[1],b[i]); a[i] = p[0]; a[n - i - 1] = p[1]; } for (int i = 0; i < n; i++) { System.out.print(a[i] + " "); } } }
Java
["4\n5 6", "6\n2 1 2"]
2 seconds
["2 3 3 3", "0 0 1 1 1 2"]
null
Java 8
standard input
[ "greedy" ]
4585419ab2b7200770cfe1e607161e9f
The first line contains a single integer $$$n$$$ ($$$2 \le n \le 2 \cdot 10^5$$$) — the length of sequence $$$a$$$. $$$n$$$ is always even. The second line contains $$$\frac n 2$$$ integers $$$b_1, b_2, \dots, b_{\frac n 2}$$$ ($$$0 \le b_i \le 10^{18}$$$) — sequence $$$b$$$, where $$$b_i = a_i + a_{n - i + 1}$$$. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
1,300
Print $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ ($$$0 \le a_i \le 10^{18}$$$) in a single line. $$$a_1 \le a_2 \le \dots \le a_n$$$ should be satisfied. $$$b_i = a_i + a_{n - i + 1}$$$ should be satisfied for all valid $$$i$$$.
standard output
PASSED
065a2b01af23b526b102086f462bb5c3
train_000.jsonl
1544884500
Mishka is trying really hard to avoid being kicked out of the university. In particular, he was doing absolutely nothing for the whole semester, miraculously passed some exams so that just one is left.There were $$$n$$$ classes of that subject during the semester and on $$$i$$$-th class professor mentioned some non-negative integer $$$a_i$$$ to the students. It turned out, the exam was to tell the whole sequence back to the professor. Sounds easy enough for those who attended every class, doesn't it?Obviously Mishka didn't attend any classes. However, professor left some clues on the values of $$$a$$$ to help out students like Mishka: $$$a$$$ was sorted in non-decreasing order ($$$a_1 \le a_2 \le \dots \le a_n$$$); $$$n$$$ was even; the following sequence $$$b$$$, consisting of $$$\frac n 2$$$ elements, was formed and given out to students: $$$b_i = a_i + a_{n - i + 1}$$$. Professor also mentioned that any sequence $$$a$$$, which produces sequence $$$b$$$ with the presented technique, will be acceptable.Help Mishka to pass that last exam. Restore any sorted sequence $$$a$$$ of non-negative integers, which produces sequence $$$b$$$ with the presented technique. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
256 megabytes
import java.io.BufferedOutputStream; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class Main { public static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine(){ String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static void main(String args[]) { MyScanner in = new MyScanner(); PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out)); // System.out.println(Long.MAX_VALUE); int n = in.nextInt(); int mid = n / 2; long a[] = new long[n]; for(int i = 0; i < mid; i++) { a[i] = 0; a[n-i-1] = in.nextLong(); } long dl, dr; for (int i=1;i<mid;i++) { dl = 0; dr = 0; if (a[i-1] > a[i]) { dl = a[i-1] - a[i]; } if (a[n-i-1] > a[n-i]) { dr = a[n-i-1] - a[n-i]; } if (dl > dr) { a[i] = a[i] + dl; a[n-i-1] = a[n-i-1] - dl; } else { a[i] = a[i] + dr; a[n-i-1] = a[n-i-1] - dr; } } for(int i = 0; i < n; i++) { out.print(a[i]); out.print(" "); } out.println(); out.close(); } }
Java
["4\n5 6", "6\n2 1 2"]
2 seconds
["2 3 3 3", "0 0 1 1 1 2"]
null
Java 8
standard input
[ "greedy" ]
4585419ab2b7200770cfe1e607161e9f
The first line contains a single integer $$$n$$$ ($$$2 \le n \le 2 \cdot 10^5$$$) — the length of sequence $$$a$$$. $$$n$$$ is always even. The second line contains $$$\frac n 2$$$ integers $$$b_1, b_2, \dots, b_{\frac n 2}$$$ ($$$0 \le b_i \le 10^{18}$$$) — sequence $$$b$$$, where $$$b_i = a_i + a_{n - i + 1}$$$. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
1,300
Print $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ ($$$0 \le a_i \le 10^{18}$$$) in a single line. $$$a_1 \le a_2 \le \dots \le a_n$$$ should be satisfied. $$$b_i = a_i + a_{n - i + 1}$$$ should be satisfied for all valid $$$i$$$.
standard output
PASSED
4564b84ab3740920f5f1d729a64861ea
train_000.jsonl
1544884500
Mishka is trying really hard to avoid being kicked out of the university. In particular, he was doing absolutely nothing for the whole semester, miraculously passed some exams so that just one is left.There were $$$n$$$ classes of that subject during the semester and on $$$i$$$-th class professor mentioned some non-negative integer $$$a_i$$$ to the students. It turned out, the exam was to tell the whole sequence back to the professor. Sounds easy enough for those who attended every class, doesn't it?Obviously Mishka didn't attend any classes. However, professor left some clues on the values of $$$a$$$ to help out students like Mishka: $$$a$$$ was sorted in non-decreasing order ($$$a_1 \le a_2 \le \dots \le a_n$$$); $$$n$$$ was even; the following sequence $$$b$$$, consisting of $$$\frac n 2$$$ elements, was formed and given out to students: $$$b_i = a_i + a_{n - i + 1}$$$. Professor also mentioned that any sequence $$$a$$$, which produces sequence $$$b$$$ with the presented technique, will be acceptable.Help Mishka to pass that last exam. Restore any sorted sequence $$$a$$$ of non-negative integers, which produces sequence $$$b$$$ with the presented technique. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
256 megabytes
import java.util.Arrays; import java.util.Scanner; import java.util.stream.Collectors; import java.util.stream.IntStream; public class Solution { public static long[] toLongArray(String s) { String nums[] = s.split("\\s"); return IntStream.range(0, nums.length) .mapToLong(index -> Long.parseLong(nums[index])) .toArray(); } public static void main(String[] args) { Scanner scanner = new Scanner(System.in); int n = Integer.parseInt(scanner.nextLine()); long[] a = new long[n]; long[] b = toLongArray(scanner.nextLine()); a[0] = 0; for(int i = 0; i < b.length; i++) { if(i == 0) { a[0] = 0; a[n - 1] = b[0]; } else { a[n - 1 - i] = Math.min(b[i], a[n - i]); a[i] = b[i] - a[n - 1 - i]; if(a[i] < a[i - 1]) { a[i] = a[i - 1]; a[n - 1 - i] = b[i] - a[i]; } } } System.out.println(Arrays.stream(a) .boxed() .map(e -> e.toString()) .collect(Collectors.joining(" "))); } }
Java
["4\n5 6", "6\n2 1 2"]
2 seconds
["2 3 3 3", "0 0 1 1 1 2"]
null
Java 8
standard input
[ "greedy" ]
4585419ab2b7200770cfe1e607161e9f
The first line contains a single integer $$$n$$$ ($$$2 \le n \le 2 \cdot 10^5$$$) — the length of sequence $$$a$$$. $$$n$$$ is always even. The second line contains $$$\frac n 2$$$ integers $$$b_1, b_2, \dots, b_{\frac n 2}$$$ ($$$0 \le b_i \le 10^{18}$$$) — sequence $$$b$$$, where $$$b_i = a_i + a_{n - i + 1}$$$. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
1,300
Print $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ ($$$0 \le a_i \le 10^{18}$$$) in a single line. $$$a_1 \le a_2 \le \dots \le a_n$$$ should be satisfied. $$$b_i = a_i + a_{n - i + 1}$$$ should be satisfied for all valid $$$i$$$.
standard output
PASSED
f62b8f8941de9146a8cbae82a7cb36fe
train_000.jsonl
1544884500
Mishka is trying really hard to avoid being kicked out of the university. In particular, he was doing absolutely nothing for the whole semester, miraculously passed some exams so that just one is left.There were $$$n$$$ classes of that subject during the semester and on $$$i$$$-th class professor mentioned some non-negative integer $$$a_i$$$ to the students. It turned out, the exam was to tell the whole sequence back to the professor. Sounds easy enough for those who attended every class, doesn't it?Obviously Mishka didn't attend any classes. However, professor left some clues on the values of $$$a$$$ to help out students like Mishka: $$$a$$$ was sorted in non-decreasing order ($$$a_1 \le a_2 \le \dots \le a_n$$$); $$$n$$$ was even; the following sequence $$$b$$$, consisting of $$$\frac n 2$$$ elements, was formed and given out to students: $$$b_i = a_i + a_{n - i + 1}$$$. Professor also mentioned that any sequence $$$a$$$, which produces sequence $$$b$$$ with the presented technique, will be acceptable.Help Mishka to pass that last exam. Restore any sorted sequence $$$a$$$ of non-negative integers, which produces sequence $$$b$$$ with the presented technique. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
256 megabytes
import org.omg.CORBA.MARSHAL; import java.awt.event.InputEvent; import java.awt.image.AreaAveragingScaleFilter; import java.io.*; import java.net.CookieHandler; import java.util.*; import java.math.*; import java.lang.*; public class Main implements Runnable { static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; private BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars==-1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if(numChars <= 0) return -1; } return buf[curChar++]; } public String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } public int nextInt() { int c = read(); while(isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if(c<'0'||c>'9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public double nextDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public String next() { return readString(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } public static void main(String args[]) throws Exception { new Thread(null, new Main(),"Main",1<<26).start(); } static long gcd(long a,long b){ if(b==0)return a;return gcd(b,a%b); } static long modPow(long a,long p,long m){ if(a==1)return 1;long ans=1;while (p>0){ if(p%2==1)ans=(ans*a)%m;a=(a*a)%m;p>>=1; }return ans; } static long modInv(long a,long m){return modPow(a,m-2,m);} public void run() { Scanner sc = new Scanner(System.in); PrintWriter out = new PrintWriter(System.out); int n=sc.nextInt(); int m=n/2; long b[]=new long[m]; for (int i = 0; i <m; i++) { b[i]=sc.nextLong(); } long a[]=new long[n]; a[n-1]=b[0]; int cc=1; for (int i = n-2; i >=n/2 ; i--) { a[i]=Math.min(a[i+1],b[cc]); a[n-i-1]=b[cc]-a[i]; if(a[n-i-1]<a[n-i-1-1]){ a[n-i-1]=a[n-i-1-1]; a[i]=b[cc]-a[n-i-1]; } cc++; } for (int i = 0; i <n ; i++) { out.print(a[i]+" "); } out.close(); } }
Java
["4\n5 6", "6\n2 1 2"]
2 seconds
["2 3 3 3", "0 0 1 1 1 2"]
null
Java 8
standard input
[ "greedy" ]
4585419ab2b7200770cfe1e607161e9f
The first line contains a single integer $$$n$$$ ($$$2 \le n \le 2 \cdot 10^5$$$) — the length of sequence $$$a$$$. $$$n$$$ is always even. The second line contains $$$\frac n 2$$$ integers $$$b_1, b_2, \dots, b_{\frac n 2}$$$ ($$$0 \le b_i \le 10^{18}$$$) — sequence $$$b$$$, where $$$b_i = a_i + a_{n - i + 1}$$$. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
1,300
Print $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ ($$$0 \le a_i \le 10^{18}$$$) in a single line. $$$a_1 \le a_2 \le \dots \le a_n$$$ should be satisfied. $$$b_i = a_i + a_{n - i + 1}$$$ should be satisfied for all valid $$$i$$$.
standard output
PASSED
168b767f8fba04943c9c79b69394da16
train_000.jsonl
1544884500
Mishka is trying really hard to avoid being kicked out of the university. In particular, he was doing absolutely nothing for the whole semester, miraculously passed some exams so that just one is left.There were $$$n$$$ classes of that subject during the semester and on $$$i$$$-th class professor mentioned some non-negative integer $$$a_i$$$ to the students. It turned out, the exam was to tell the whole sequence back to the professor. Sounds easy enough for those who attended every class, doesn't it?Obviously Mishka didn't attend any classes. However, professor left some clues on the values of $$$a$$$ to help out students like Mishka: $$$a$$$ was sorted in non-decreasing order ($$$a_1 \le a_2 \le \dots \le a_n$$$); $$$n$$$ was even; the following sequence $$$b$$$, consisting of $$$\frac n 2$$$ elements, was formed and given out to students: $$$b_i = a_i + a_{n - i + 1}$$$. Professor also mentioned that any sequence $$$a$$$, which produces sequence $$$b$$$ with the presented technique, will be acceptable.Help Mishka to pass that last exam. Restore any sorted sequence $$$a$$$ of non-negative integers, which produces sequence $$$b$$$ with the presented technique. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
256 megabytes
import java.io.BufferedReader; import java.io.FileNotFoundException; import java.io.FileReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.HashSet; import java.util.Scanner; import java.util.StringTokenizer; import java.util.TreeSet; public class q54 { static final double EPS = 1e-9; static pair[] x = new pair[3]; static int ac1 = -1; static int ac2 = -1; static int noox = -1; static int nooy = -1; static int same = -1; static int grid[][] = new int[1001][1001]; public static void main(String[] args) throws IOException { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); long x[] = new long[n / 2]; for (int i = 0; i < n / 2; i++) { x[i] = sc.nextlong(); } long y[] = new long[n]; long k = x[(n / 2) - 1]; long l = k/2, r = k/2; if (k % 2 == 0) { l = k/2; r = k/2; } else { l = k/2; r = (k/2)+1; } for (int i = 0; i < n/2; i++) { if (i == 0) { y[(n / 2) - 1] = l; y[(n / 2)] = r; } else { long z = x[(n/2)-1-i]; if(z==(r+l)) { y[(n / 2) + i] = r; y[(n / 2) -1- i] = l; }else if(z>(r+l)) { y[(n / 2) + i] = r+(z-l-r); y[(n / 2)-1 - i] = l; r= r+(z-l-r); }else if(z<(r+l)) { y[(n / 2)+ i] = r; y[(n / 2) -1- i] = l-(l+r-z); l= l-(l+r-z); } } } StringBuilder sb = new StringBuilder(); for (int i = 0; i < n; i++) { sb.append(y[i] + " "); } System.out.println(sb.toString()); } static boolean tsamever() { if (x[0].x == x[1].x) { ac1 = x[0].y; ac2 = x[1].y; noox = x[2].y; nooy = x[2].x; same = x[0].x; return true; } if (x[2].x == x[1].x) { same = x[1].x; ac1 = x[2].y; ac2 = x[1].y; noox = x[0].y; nooy = x[0].x; return true; } if (x[0].x == x[2].x) { same = x[0].x; ac1 = x[0].y; ac2 = x[2].y; noox = x[1].y; nooy = x[1].x; return true; } return false; } public static class pair implements Comparable<pair> { int x, y; pair(int a, int b) { x = a; y = b; } public int compareTo(pair p) { if (Math.abs(x - p.x) > EPS) return x > p.x ? 1 : -1; if (Math.abs(y - p.y) > EPS) return y > p.y ? 1 : -1; return 0; } } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public Scanner(String file) throws FileNotFoundException { br = new BufferedReader(new FileReader(file)); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public long nextlong() throws IOException { String x = next(); StringBuilder sb = new StringBuilder("0"); long res = 0, f = 1; boolean dec = false, neg = false; int start = 0; if (x.charAt(0) == '-') { neg = true; start++; } for (int i = start; i < x.length(); i++) if (x.charAt(i) == '.') { res = Long.parseLong(sb.toString()); sb = new StringBuilder("0"); dec = true; } else { sb.append(x.charAt(i)); if (dec) f *= 10; } res += Long.parseLong(sb.toString()) / f; return res * (neg ? -1 : 1); } public boolean ready() throws IOException { return br.ready(); } } }
Java
["4\n5 6", "6\n2 1 2"]
2 seconds
["2 3 3 3", "0 0 1 1 1 2"]
null
Java 8
standard input
[ "greedy" ]
4585419ab2b7200770cfe1e607161e9f
The first line contains a single integer $$$n$$$ ($$$2 \le n \le 2 \cdot 10^5$$$) — the length of sequence $$$a$$$. $$$n$$$ is always even. The second line contains $$$\frac n 2$$$ integers $$$b_1, b_2, \dots, b_{\frac n 2}$$$ ($$$0 \le b_i \le 10^{18}$$$) — sequence $$$b$$$, where $$$b_i = a_i + a_{n - i + 1}$$$. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
1,300
Print $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ ($$$0 \le a_i \le 10^{18}$$$) in a single line. $$$a_1 \le a_2 \le \dots \le a_n$$$ should be satisfied. $$$b_i = a_i + a_{n - i + 1}$$$ should be satisfied for all valid $$$i$$$.
standard output
PASSED
2c6fe24f2fa1615d08f04eb12e9876d4
train_000.jsonl
1544884500
Mishka is trying really hard to avoid being kicked out of the university. In particular, he was doing absolutely nothing for the whole semester, miraculously passed some exams so that just one is left.There were $$$n$$$ classes of that subject during the semester and on $$$i$$$-th class professor mentioned some non-negative integer $$$a_i$$$ to the students. It turned out, the exam was to tell the whole sequence back to the professor. Sounds easy enough for those who attended every class, doesn't it?Obviously Mishka didn't attend any classes. However, professor left some clues on the values of $$$a$$$ to help out students like Mishka: $$$a$$$ was sorted in non-decreasing order ($$$a_1 \le a_2 \le \dots \le a_n$$$); $$$n$$$ was even; the following sequence $$$b$$$, consisting of $$$\frac n 2$$$ elements, was formed and given out to students: $$$b_i = a_i + a_{n - i + 1}$$$. Professor also mentioned that any sequence $$$a$$$, which produces sequence $$$b$$$ with the presented technique, will be acceptable.Help Mishka to pass that last exam. Restore any sorted sequence $$$a$$$ of non-negative integers, which produces sequence $$$b$$$ with the presented technique. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
256 megabytes
import java.io.*; import java.util.*; import java.lang.*; import java.math.*; public class Main extends Thread { boolean[] prime; FastScanner sc; PrintWriter pw; long startTime = System.currentTimeMillis(); final class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner() { try { br = new BufferedReader(new InputStreamReader(System.in)); st = new StringTokenizer(br.readLine()); } catch (Exception e) { e.printStackTrace(); } } public long nlo() { return Long.parseLong(next()); } public String next() { if (st.hasMoreTokens()) return st.nextToken(); try { st = new StringTokenizer(br.readLine()); } catch (Exception e) { e.printStackTrace(); } return st.nextToken(); } public int ni() { return Integer.parseInt(next()); } public String nli() { String line = ""; if (st.hasMoreTokens()) line = st.nextToken(); else try { return br.readLine(); } catch (IOException e) { e.printStackTrace(); } while (st.hasMoreTokens()) line += " " + st.nextToken(); return line; } public double nd() { return Double.parseDouble(next()); } } public Main(ThreadGroup t,Runnable r,String s,long d ) { super(t,r,s,d); } public void run() { sc=new FastScanner(); pw=new PrintWriter(System.out); solve(); pw.flush(); pw.close(); } public static void main(String[] args) { new Main(null,null,"",1<<25).start(); } /////////////------------------------------------////////////// ////////////------------------Main-Logic--------////////////// ///////////-------------------------------------////////////// public void solve() { int t=1; while(t-->0) { int n=sc.ni(); long[] arr=new long[n]; for(int i=n-1;i>=(n/2);i--) arr[i]=sc.nlo(); for(int i=n-2;i>=(n/2);i--) { int j=n-1-i; long y=Math.min(arr[i],arr[i+1]); long z=Math.max(arr[i]-y,arr[j-1]); arr[j]=z; arr[i]=arr[i]-z; } for(int i=0;i<n;i++) pw.print(arr[i]+" "); } } }
Java
["4\n5 6", "6\n2 1 2"]
2 seconds
["2 3 3 3", "0 0 1 1 1 2"]
null
Java 8
standard input
[ "greedy" ]
4585419ab2b7200770cfe1e607161e9f
The first line contains a single integer $$$n$$$ ($$$2 \le n \le 2 \cdot 10^5$$$) — the length of sequence $$$a$$$. $$$n$$$ is always even. The second line contains $$$\frac n 2$$$ integers $$$b_1, b_2, \dots, b_{\frac n 2}$$$ ($$$0 \le b_i \le 10^{18}$$$) — sequence $$$b$$$, where $$$b_i = a_i + a_{n - i + 1}$$$. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
1,300
Print $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ ($$$0 \le a_i \le 10^{18}$$$) in a single line. $$$a_1 \le a_2 \le \dots \le a_n$$$ should be satisfied. $$$b_i = a_i + a_{n - i + 1}$$$ should be satisfied for all valid $$$i$$$.
standard output
PASSED
6fded10eaf6bbdfe707f406963ad7082
train_000.jsonl
1544884500
Mishka is trying really hard to avoid being kicked out of the university. In particular, he was doing absolutely nothing for the whole semester, miraculously passed some exams so that just one is left.There were $$$n$$$ classes of that subject during the semester and on $$$i$$$-th class professor mentioned some non-negative integer $$$a_i$$$ to the students. It turned out, the exam was to tell the whole sequence back to the professor. Sounds easy enough for those who attended every class, doesn't it?Obviously Mishka didn't attend any classes. However, professor left some clues on the values of $$$a$$$ to help out students like Mishka: $$$a$$$ was sorted in non-decreasing order ($$$a_1 \le a_2 \le \dots \le a_n$$$); $$$n$$$ was even; the following sequence $$$b$$$, consisting of $$$\frac n 2$$$ elements, was formed and given out to students: $$$b_i = a_i + a_{n - i + 1}$$$. Professor also mentioned that any sequence $$$a$$$, which produces sequence $$$b$$$ with the presented technique, will be acceptable.Help Mishka to pass that last exam. Restore any sorted sequence $$$a$$$ of non-negative integers, which produces sequence $$$b$$$ with the presented technique. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
256 megabytes
import java.math.BigInteger; import java.util.Scanner; public class TestClass1 { public static void main(String[] args) { Scanner s = new Scanner(System.in); String name = s.nextLine(); int t = Integer.parseInt(name); name = s.nextLine(); String[] spl = name.split(" "); BigInteger[] b = new BigInteger[t/2]; BigInteger[] a = new BigInteger[t]; for(int i =0;i<t/2;i++) { b[i] = new BigInteger(spl[i]); } BigInteger inc =new BigInteger("0"); for(int i =0;i<t/2;i++) { if(i!=0 && b[i].compareTo(a[t-i])==1) { inc = b[i].subtract(a[t-i]); if(a[i-1].compareTo(inc)==1) { inc = a[i-1]; } } a[i] = inc; a[t-1-i] = b[i].subtract(inc); } for(int i =0;i<t;i++) { System.out.print(a[i]); if(i!=t-1) { System.out.print(" "); } // System.out.println(); } } }
Java
["4\n5 6", "6\n2 1 2"]
2 seconds
["2 3 3 3", "0 0 1 1 1 2"]
null
Java 8
standard input
[ "greedy" ]
4585419ab2b7200770cfe1e607161e9f
The first line contains a single integer $$$n$$$ ($$$2 \le n \le 2 \cdot 10^5$$$) — the length of sequence $$$a$$$. $$$n$$$ is always even. The second line contains $$$\frac n 2$$$ integers $$$b_1, b_2, \dots, b_{\frac n 2}$$$ ($$$0 \le b_i \le 10^{18}$$$) — sequence $$$b$$$, where $$$b_i = a_i + a_{n - i + 1}$$$. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
1,300
Print $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ ($$$0 \le a_i \le 10^{18}$$$) in a single line. $$$a_1 \le a_2 \le \dots \le a_n$$$ should be satisfied. $$$b_i = a_i + a_{n - i + 1}$$$ should be satisfied for all valid $$$i$$$.
standard output
PASSED
6a90a8dee5a7f701084fb1eeb3b53aef
train_000.jsonl
1544884500
Mishka is trying really hard to avoid being kicked out of the university. In particular, he was doing absolutely nothing for the whole semester, miraculously passed some exams so that just one is left.There were $$$n$$$ classes of that subject during the semester and on $$$i$$$-th class professor mentioned some non-negative integer $$$a_i$$$ to the students. It turned out, the exam was to tell the whole sequence back to the professor. Sounds easy enough for those who attended every class, doesn't it?Obviously Mishka didn't attend any classes. However, professor left some clues on the values of $$$a$$$ to help out students like Mishka: $$$a$$$ was sorted in non-decreasing order ($$$a_1 \le a_2 \le \dots \le a_n$$$); $$$n$$$ was even; the following sequence $$$b$$$, consisting of $$$\frac n 2$$$ elements, was formed and given out to students: $$$b_i = a_i + a_{n - i + 1}$$$. Professor also mentioned that any sequence $$$a$$$, which produces sequence $$$b$$$ with the presented technique, will be acceptable.Help Mishka to pass that last exam. Restore any sorted sequence $$$a$$$ of non-negative integers, which produces sequence $$$b$$$ with the presented technique. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
256 megabytes
import java.util.*; public class C{ public static void main(String[] args){ Scanner sc = new Scanner(System.in); int nb = sc.nextInt(); long tab[] = new long[nb]; long min=0; long max=sc.nextLong(); tab[0]=min; tab[nb-1]=max; long encours; for (int i=1;i<(nb/2);i++){ encours=sc.nextLong()-min; if (encours>max){ min+=encours-max; encours-= encours-max; } tab[i]=min; tab[nb-i-1]=encours; max=encours; } for (int i=0;i<nb;i++){ System.out.print(tab[i]+" "); } } }
Java
["4\n5 6", "6\n2 1 2"]
2 seconds
["2 3 3 3", "0 0 1 1 1 2"]
null
Java 8
standard input
[ "greedy" ]
4585419ab2b7200770cfe1e607161e9f
The first line contains a single integer $$$n$$$ ($$$2 \le n \le 2 \cdot 10^5$$$) — the length of sequence $$$a$$$. $$$n$$$ is always even. The second line contains $$$\frac n 2$$$ integers $$$b_1, b_2, \dots, b_{\frac n 2}$$$ ($$$0 \le b_i \le 10^{18}$$$) — sequence $$$b$$$, where $$$b_i = a_i + a_{n - i + 1}$$$. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
1,300
Print $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ ($$$0 \le a_i \le 10^{18}$$$) in a single line. $$$a_1 \le a_2 \le \dots \le a_n$$$ should be satisfied. $$$b_i = a_i + a_{n - i + 1}$$$ should be satisfied for all valid $$$i$$$.
standard output
PASSED
7cd200d48e9b8b54188dc0343dec18dc
train_000.jsonl
1544884500
Mishka is trying really hard to avoid being kicked out of the university. In particular, he was doing absolutely nothing for the whole semester, miraculously passed some exams so that just one is left.There were $$$n$$$ classes of that subject during the semester and on $$$i$$$-th class professor mentioned some non-negative integer $$$a_i$$$ to the students. It turned out, the exam was to tell the whole sequence back to the professor. Sounds easy enough for those who attended every class, doesn't it?Obviously Mishka didn't attend any classes. However, professor left some clues on the values of $$$a$$$ to help out students like Mishka: $$$a$$$ was sorted in non-decreasing order ($$$a_1 \le a_2 \le \dots \le a_n$$$); $$$n$$$ was even; the following sequence $$$b$$$, consisting of $$$\frac n 2$$$ elements, was formed and given out to students: $$$b_i = a_i + a_{n - i + 1}$$$. Professor also mentioned that any sequence $$$a$$$, which produces sequence $$$b$$$ with the presented technique, will be acceptable.Help Mishka to pass that last exam. Restore any sorted sequence $$$a$$$ of non-negative integers, which produces sequence $$$b$$$ with the presented technique. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
256 megabytes
import java.util.Arrays; import java.util.Scanner; public class ProblemC { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); int n = scanner.nextInt(); long [] nums = new long[n/2]; for (int i = 0; i < nums.length; i++) { nums[i] = scanner.nextLong(); } Arrays.stream(solve(nums)).forEach(a -> System.out.print(a + " ")); } private static long [] solve(long [] nums) { long [] results = new long[nums.length * 2]; long lastMax = nums[0]; long lastMin = 0; for (int i = 0; i < nums.length; i++) { if (nums[i] - lastMax < 0) { results[i] = lastMin; results[results.length - i - 1] = nums[i] - lastMin; lastMax = nums[i]- lastMin; } else { if (nums[i] - lastMax < lastMin) { results[i] = lastMin; results[results.length - i - 1] = nums[i] - lastMin; lastMax = nums[i] - lastMin; continue; } results[i] = nums[i] - lastMax; results[results.length - i - 1] = lastMax; lastMin = nums[i] - lastMax; } } return results; } }
Java
["4\n5 6", "6\n2 1 2"]
2 seconds
["2 3 3 3", "0 0 1 1 1 2"]
null
Java 8
standard input
[ "greedy" ]
4585419ab2b7200770cfe1e607161e9f
The first line contains a single integer $$$n$$$ ($$$2 \le n \le 2 \cdot 10^5$$$) — the length of sequence $$$a$$$. $$$n$$$ is always even. The second line contains $$$\frac n 2$$$ integers $$$b_1, b_2, \dots, b_{\frac n 2}$$$ ($$$0 \le b_i \le 10^{18}$$$) — sequence $$$b$$$, where $$$b_i = a_i + a_{n - i + 1}$$$. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
1,300
Print $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ ($$$0 \le a_i \le 10^{18}$$$) in a single line. $$$a_1 \le a_2 \le \dots \le a_n$$$ should be satisfied. $$$b_i = a_i + a_{n - i + 1}$$$ should be satisfied for all valid $$$i$$$.
standard output
PASSED
d2d5c37cf8706e08c1a720bcc618d949
train_000.jsonl
1544884500
Mishka is trying really hard to avoid being kicked out of the university. In particular, he was doing absolutely nothing for the whole semester, miraculously passed some exams so that just one is left.There were $$$n$$$ classes of that subject during the semester and on $$$i$$$-th class professor mentioned some non-negative integer $$$a_i$$$ to the students. It turned out, the exam was to tell the whole sequence back to the professor. Sounds easy enough for those who attended every class, doesn't it?Obviously Mishka didn't attend any classes. However, professor left some clues on the values of $$$a$$$ to help out students like Mishka: $$$a$$$ was sorted in non-decreasing order ($$$a_1 \le a_2 \le \dots \le a_n$$$); $$$n$$$ was even; the following sequence $$$b$$$, consisting of $$$\frac n 2$$$ elements, was formed and given out to students: $$$b_i = a_i + a_{n - i + 1}$$$. Professor also mentioned that any sequence $$$a$$$, which produces sequence $$$b$$$ with the presented technique, will be acceptable.Help Mishka to pass that last exam. Restore any sorted sequence $$$a$$$ of non-negative integers, which produces sequence $$$b$$$ with the presented technique. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
256 megabytes
import java.util.Arrays; import java.util.Scanner; public class ProblemC { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); int n = scanner.nextInt(); long[] nums = new long[n / 2]; for (int i = 0; i < nums.length; i++) { nums[i] = scanner.nextLong(); } Arrays.stream(solve(nums)).forEach(a -> System.out.print(a + " ")); } private static long[] solve(long[] nums) { long[] results = new long[nums.length * 2]; long lastMax = nums[0]; long lastMin = 0; for (int i = 0; i < nums.length; i++) { if (nums[i] - lastMax < lastMin) { results[i] = lastMin; results[results.length - i - 1] = nums[i] - lastMin; lastMax = nums[i] - lastMin; } else { results[i] = nums[i] - lastMax; results[results.length - i - 1] = lastMax; lastMin = nums[i] - lastMax; } } return results; } }
Java
["4\n5 6", "6\n2 1 2"]
2 seconds
["2 3 3 3", "0 0 1 1 1 2"]
null
Java 8
standard input
[ "greedy" ]
4585419ab2b7200770cfe1e607161e9f
The first line contains a single integer $$$n$$$ ($$$2 \le n \le 2 \cdot 10^5$$$) — the length of sequence $$$a$$$. $$$n$$$ is always even. The second line contains $$$\frac n 2$$$ integers $$$b_1, b_2, \dots, b_{\frac n 2}$$$ ($$$0 \le b_i \le 10^{18}$$$) — sequence $$$b$$$, where $$$b_i = a_i + a_{n - i + 1}$$$. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
1,300
Print $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ ($$$0 \le a_i \le 10^{18}$$$) in a single line. $$$a_1 \le a_2 \le \dots \le a_n$$$ should be satisfied. $$$b_i = a_i + a_{n - i + 1}$$$ should be satisfied for all valid $$$i$$$.
standard output
PASSED
c55226990927540394cf98b28975b90d
train_000.jsonl
1544884500
Mishka is trying really hard to avoid being kicked out of the university. In particular, he was doing absolutely nothing for the whole semester, miraculously passed some exams so that just one is left.There were $$$n$$$ classes of that subject during the semester and on $$$i$$$-th class professor mentioned some non-negative integer $$$a_i$$$ to the students. It turned out, the exam was to tell the whole sequence back to the professor. Sounds easy enough for those who attended every class, doesn't it?Obviously Mishka didn't attend any classes. However, professor left some clues on the values of $$$a$$$ to help out students like Mishka: $$$a$$$ was sorted in non-decreasing order ($$$a_1 \le a_2 \le \dots \le a_n$$$); $$$n$$$ was even; the following sequence $$$b$$$, consisting of $$$\frac n 2$$$ elements, was formed and given out to students: $$$b_i = a_i + a_{n - i + 1}$$$. Professor also mentioned that any sequence $$$a$$$, which produces sequence $$$b$$$ with the presented technique, will be acceptable.Help Mishka to pass that last exam. Restore any sorted sequence $$$a$$$ of non-negative integers, which produces sequence $$$b$$$ with the presented technique. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
256 megabytes
import java.util.*; import java.io.*; import java.lang.reflect.Array; import java.math.*; public class Main { static int N = (int)1e5 + 10; public static void main(String[] args) throws FileNotFoundException { Scanner in = new Scanner(System.in); long[] b = new long[N]; long[][] a = new long[2][N]; int n = in.nextInt(); n /= 2; for(int i = 0; i < n; i++) b[i] = in.nextLong(); a[0][0] = 0; a[1][0] = b[0]; for(int i = 1; i < n; i++) { if(b[i] <= b[i-1]) { a[0][i] = a[0][i-1]; a[1][i] = b[i] - a[0][i]; } else { a[1][i] = a[1][i-1]; a[0][i] = b[i] - a[1][i]; } } StringBuilder xp = new StringBuilder(); for(int i = 0; i < n; i++) xp.append(a[0][i] + " "); for(int i = n-1; i >= 0; i--) xp.append(a[1][i] + " "); System.out.println(xp.toString().trim()); in.close(); } }
Java
["4\n5 6", "6\n2 1 2"]
2 seconds
["2 3 3 3", "0 0 1 1 1 2"]
null
Java 8
standard input
[ "greedy" ]
4585419ab2b7200770cfe1e607161e9f
The first line contains a single integer $$$n$$$ ($$$2 \le n \le 2 \cdot 10^5$$$) — the length of sequence $$$a$$$. $$$n$$$ is always even. The second line contains $$$\frac n 2$$$ integers $$$b_1, b_2, \dots, b_{\frac n 2}$$$ ($$$0 \le b_i \le 10^{18}$$$) — sequence $$$b$$$, where $$$b_i = a_i + a_{n - i + 1}$$$. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
1,300
Print $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ ($$$0 \le a_i \le 10^{18}$$$) in a single line. $$$a_1 \le a_2 \le \dots \le a_n$$$ should be satisfied. $$$b_i = a_i + a_{n - i + 1}$$$ should be satisfied for all valid $$$i$$$.
standard output
PASSED
d55f07ff24bfeb5f066dc99c935243b4
train_000.jsonl
1544884500
Mishka is trying really hard to avoid being kicked out of the university. In particular, he was doing absolutely nothing for the whole semester, miraculously passed some exams so that just one is left.There were $$$n$$$ classes of that subject during the semester and on $$$i$$$-th class professor mentioned some non-negative integer $$$a_i$$$ to the students. It turned out, the exam was to tell the whole sequence back to the professor. Sounds easy enough for those who attended every class, doesn't it?Obviously Mishka didn't attend any classes. However, professor left some clues on the values of $$$a$$$ to help out students like Mishka: $$$a$$$ was sorted in non-decreasing order ($$$a_1 \le a_2 \le \dots \le a_n$$$); $$$n$$$ was even; the following sequence $$$b$$$, consisting of $$$\frac n 2$$$ elements, was formed and given out to students: $$$b_i = a_i + a_{n - i + 1}$$$. Professor also mentioned that any sequence $$$a$$$, which produces sequence $$$b$$$ with the presented technique, will be acceptable.Help Mishka to pass that last exam. Restore any sorted sequence $$$a$$$ of non-negative integers, which produces sequence $$$b$$$ with the presented technique. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
256 megabytes
import java.util.*; import java.io.*; import java.lang.reflect.Array; import java.math.*; public class Main { static int N = (int)1e5 + 10; public static void main(String[] args) throws FileNotFoundException { Scanner in = new Scanner(System.in); long[] b = new long[N]; long[][] a = new long[2][N]; int n = in.nextInt(); n /= 2; for(int i = 0; i < n; i++) b[i] = in.nextLong(); a[0][0] = 0; a[1][0] = b[0]; for(int i = 1; i < n; i++) { if(b[i] <= b[i-1]) { a[0][i] = a[0][i-1]; a[1][i] = b[i] - a[0][i]; } else { a[1][i] = a[1][i-1]; a[0][i] = b[i] - a[1][i]; } } StringBuilder xp = new StringBuilder(); for(int i = 0; i < n; i++) xp.append(a[0][i] + " "); for(int i = n-1; i >= 0; i--) xp.append(a[1][i] + " "); System.out.println(xp); in.close(); } }
Java
["4\n5 6", "6\n2 1 2"]
2 seconds
["2 3 3 3", "0 0 1 1 1 2"]
null
Java 8
standard input
[ "greedy" ]
4585419ab2b7200770cfe1e607161e9f
The first line contains a single integer $$$n$$$ ($$$2 \le n \le 2 \cdot 10^5$$$) — the length of sequence $$$a$$$. $$$n$$$ is always even. The second line contains $$$\frac n 2$$$ integers $$$b_1, b_2, \dots, b_{\frac n 2}$$$ ($$$0 \le b_i \le 10^{18}$$$) — sequence $$$b$$$, where $$$b_i = a_i + a_{n - i + 1}$$$. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
1,300
Print $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ ($$$0 \le a_i \le 10^{18}$$$) in a single line. $$$a_1 \le a_2 \le \dots \le a_n$$$ should be satisfied. $$$b_i = a_i + a_{n - i + 1}$$$ should be satisfied for all valid $$$i$$$.
standard output
PASSED
9628782008d2ace8aa4e6c1d61dd9e8f
train_000.jsonl
1544884500
Mishka is trying really hard to avoid being kicked out of the university. In particular, he was doing absolutely nothing for the whole semester, miraculously passed some exams so that just one is left.There were $$$n$$$ classes of that subject during the semester and on $$$i$$$-th class professor mentioned some non-negative integer $$$a_i$$$ to the students. It turned out, the exam was to tell the whole sequence back to the professor. Sounds easy enough for those who attended every class, doesn't it?Obviously Mishka didn't attend any classes. However, professor left some clues on the values of $$$a$$$ to help out students like Mishka: $$$a$$$ was sorted in non-decreasing order ($$$a_1 \le a_2 \le \dots \le a_n$$$); $$$n$$$ was even; the following sequence $$$b$$$, consisting of $$$\frac n 2$$$ elements, was formed and given out to students: $$$b_i = a_i + a_{n - i + 1}$$$. Professor also mentioned that any sequence $$$a$$$, which produces sequence $$$b$$$ with the presented technique, will be acceptable.Help Mishka to pass that last exam. Restore any sorted sequence $$$a$$$ of non-negative integers, which produces sequence $$$b$$$ with the presented technique. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
256 megabytes
import java.util.*; import java.io.*; import java.lang.reflect.Array; import java.math.*; public class Main { static int N = (int)1e5 + 10; public static void main(String[] args) throws FileNotFoundException { Scanner in = new Scanner(System.in); long[] b = new long[N]; long[][] a = new long[2][N]; int n = in.nextInt(); n /= 2; for(int i = 0; i < n; i++) b[i] = in.nextLong(); a[0][0] = 0; a[1][0] = b[0]; for(int i = 1; i < n; i++) { if(b[i] <= b[i-1]) { a[0][i] = a[0][i-1]; a[1][i] = b[i] - a[0][i]; } else { a[1][i] = a[1][i-1]; a[0][i] = b[i] - a[1][i]; } } for(int i = 0; i < n; i++) System.out.print(a[0][i] + " "); for(int i = n-1; i >= 0; i--) System.out.print(a[1][i] + " "); System.out.println(); in.close(); } }
Java
["4\n5 6", "6\n2 1 2"]
2 seconds
["2 3 3 3", "0 0 1 1 1 2"]
null
Java 8
standard input
[ "greedy" ]
4585419ab2b7200770cfe1e607161e9f
The first line contains a single integer $$$n$$$ ($$$2 \le n \le 2 \cdot 10^5$$$) — the length of sequence $$$a$$$. $$$n$$$ is always even. The second line contains $$$\frac n 2$$$ integers $$$b_1, b_2, \dots, b_{\frac n 2}$$$ ($$$0 \le b_i \le 10^{18}$$$) — sequence $$$b$$$, where $$$b_i = a_i + a_{n - i + 1}$$$. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
1,300
Print $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ ($$$0 \le a_i \le 10^{18}$$$) in a single line. $$$a_1 \le a_2 \le \dots \le a_n$$$ should be satisfied. $$$b_i = a_i + a_{n - i + 1}$$$ should be satisfied for all valid $$$i$$$.
standard output
PASSED
e5503161d4a07d1d64bf5426998a9896
train_000.jsonl
1544884500
Mishka is trying really hard to avoid being kicked out of the university. In particular, he was doing absolutely nothing for the whole semester, miraculously passed some exams so that just one is left.There were $$$n$$$ classes of that subject during the semester and on $$$i$$$-th class professor mentioned some non-negative integer $$$a_i$$$ to the students. It turned out, the exam was to tell the whole sequence back to the professor. Sounds easy enough for those who attended every class, doesn't it?Obviously Mishka didn't attend any classes. However, professor left some clues on the values of $$$a$$$ to help out students like Mishka: $$$a$$$ was sorted in non-decreasing order ($$$a_1 \le a_2 \le \dots \le a_n$$$); $$$n$$$ was even; the following sequence $$$b$$$, consisting of $$$\frac n 2$$$ elements, was formed and given out to students: $$$b_i = a_i + a_{n - i + 1}$$$. Professor also mentioned that any sequence $$$a$$$, which produces sequence $$$b$$$ with the presented technique, will be acceptable.Help Mishka to pass that last exam. Restore any sorted sequence $$$a$$$ of non-negative integers, which produces sequence $$$b$$$ with the presented technique. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
256 megabytes
import java.util.*; public class C { public static void main(String[]args){ Scanner sc=new Scanner(System.in); int n=sc.nextInt(); long[]b=new long[n/2]; long[]b2=new long[n/2]; for(int i=0;i<n/2;i++) b[i]=sc.nextLong(); long r=Long.MAX_VALUE,p=0; for(int i=0;i<n/2;i++){ b2[i]=Math.min(r,b[i]-p); b[i]-=b2[i]; r=b2[i]; p=b[i]; } for(int i=0;i<n/2;i++) System.out.print(b[i]+" "); for(int i=n/2-1;i>=0;i--) System.out.print(b2[i]+" "); sc.close(); } }
Java
["4\n5 6", "6\n2 1 2"]
2 seconds
["2 3 3 3", "0 0 1 1 1 2"]
null
Java 8
standard input
[ "greedy" ]
4585419ab2b7200770cfe1e607161e9f
The first line contains a single integer $$$n$$$ ($$$2 \le n \le 2 \cdot 10^5$$$) — the length of sequence $$$a$$$. $$$n$$$ is always even. The second line contains $$$\frac n 2$$$ integers $$$b_1, b_2, \dots, b_{\frac n 2}$$$ ($$$0 \le b_i \le 10^{18}$$$) — sequence $$$b$$$, where $$$b_i = a_i + a_{n - i + 1}$$$. It is guaranteed that there exists at least one correct sequence $$$a$$$, which produces the given sequence $$$b$$$.
1,300
Print $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ ($$$0 \le a_i \le 10^{18}$$$) in a single line. $$$a_1 \le a_2 \le \dots \le a_n$$$ should be satisfied. $$$b_i = a_i + a_{n - i + 1}$$$ should be satisfied for all valid $$$i$$$.
standard output
PASSED
a2e1b1f566c831af83f4d806ef52dafd
train_000.jsonl
1380295800
You are given an array a1, a2, ..., an and m sets S1, S2, ..., Sm of indices of elements of this array. Let's denote Sk = {Sk, i} (1 ≤ i ≤ |Sk|). In other words, Sk, i is some element from set Sk.In this problem you have to answer q queries of the two types: Find the sum of elements with indices from set Sk: . The query format is "? k". Add number x to all elements at indices from set Sk: aSk, i is replaced by aSk, i + x for all i (1 ≤ i ≤ |Sk|). The query format is "+ k x". After each first type query print the required sum.
256 megabytes
import java.util.Scanner; import java.io.OutputStream; import java.io.IOException; import java.io.PrintWriter; import java.util.ArrayList; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author Alexandr Azizyan */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; Scanner in = new Scanner(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskE solver = new TaskE(); solver.solve(1, in, out); out.close(); } } class TaskE { public void solve(int testNumber, Scanner in, PrintWriter out) { int n = in.nextInt(); int m = in.nextInt(); int q = in.nextInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = in.nextInt(); final int C = (int) Math.sqrt(m); long[] sum = new long[m]; int[] pos = new int[m]; ArrayList<Integer> big = new ArrayList<Integer>(); ArrayList<Integer>[] s = new ArrayList[m]; for (int i = 0; i < m; i++) s[i] = new ArrayList<Integer>(); ArrayList<Integer>[] rs = new ArrayList[n]; for (int i = 0; i < n; i++) rs[i] = new ArrayList<Integer>(); for (int i = 0; i < m; i++) { int size = in.nextInt(); while (size-- > 0) { int S = in.nextInt() - 1; s[i].add(S); rs[S].add(i); sum[i] += a[S]; } if (s[i].size() > C) { pos[i] = big.size(); big.add(i); } else pos[i] = -1; } int[][] b = new int[big.size()][m]; for (int i = 0; i < big.size(); i++) { int x = big.get(i); for (int y : s[x]) for (int z : rs[y]) b[i][z]++; } long[] change = new long[big.size()]; long[] add = new long[n]; long[] d = new long[big.size()]; while (q-- > 0) { String c = in.next(); int x = in.nextInt() - 1; if (c.equals("?")) { long ans = sum[x]; for (int i = 0; i < big.size(); i++) ans += change[i] * b[i][x]; if (pos[x] > - 1) ans += d[pos[x]]; else for (int i : s[x]) ans += add[i]; out.println(ans); } else { int y = in.nextInt(); if (pos[x] == -1) { for (int i : s[x]) add[i] += y; for (int i = 0; i < big.size(); i++) d[i] += (long) y * b[i][x]; } else change[pos[x]] += y; } } } }
Java
["5 3 5\n5 -5 5 1 -4\n2 1 2\n4 2 1 4 5\n2 2 5\n? 2\n+ 3 4\n? 1\n+ 2 1\n? 2"]
3 seconds
["-3\n4\n9"]
null
Java 7
standard input
[]
9e1b04e8049eeb87060a0439e31530b5
The first line contains integers n, m, q (1 ≤ n, m, q ≤ 105). The second line contains n integers a1, a2, ..., an (|ai| ≤ 108) — elements of array a. Each of the following m lines describes one set of indices. The k-th line first contains a positive integer, representing the number of elements in set (|Sk|), then follow |Sk| distinct integers Sk, 1, Sk, 2, ..., Sk, |Sk| (1 ≤ Sk, i ≤ n) — elements of set Sk. The next q lines contain queries. Each query looks like either "? k" or "+ k x" and sits on a single line. For all queries the following limits are held: 1 ≤ k ≤ m, |x| ≤ 108. The queries are given in order they need to be answered. It is guaranteed that the sum of sizes of all sets Sk doesn't exceed 105.
2,500
After each first type query print the required sum on a single line. Please, do not write the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier.
standard output
PASSED
999f1d5bce01b2e082001c94af01bd94
train_000.jsonl
1592663700
Ashish has an array $$$a$$$ of consisting of $$$2n$$$ positive integers. He wants to compress $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$. To do this, he first discards exactly $$$2$$$ (any two) elements from $$$a$$$. He then performs the following operation until there are no elements left in $$$a$$$: Remove any two elements from $$$a$$$ and append their sum to $$$b$$$. The compressed array $$$b$$$ has to have a special property. The greatest common divisor ($$$\mathrm{gcd}$$$) of all its elements should be greater than $$$1$$$.Recall that the $$$\mathrm{gcd}$$$ of an array of positive integers is the biggest integer that is a divisor of all integers in the array.It can be proven that it is always possible to compress array $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$ such that $$$gcd(b_1, b_2..., b_{n-1}) &gt; 1$$$. Help Ashish find a way to do so.
256 megabytes
import java.io.BufferedReader; import java.io.FileReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.lang.reflect.Array; import java.math.BigInteger; import java.util.*; public class Codeforces{ private static long [] catalan= new long[2501]; private static final int MOD=1000000007; void pre() throws Exception{} void solve(int TC) throws Exception{ int t=ni(); while(t--!=0) { //int a=ni(); int n=ni(); int odd=0; int even=0; int a[]=new int[2*n+1]; int odd_index=0; int even_index=0; for(int i=1;i<2*n+1;i++) { a[i]=ni(); if(a[i]%2==0) {even++;even_index=i;} else {odd++; odd_index=i; } } //pn(odd); int count=0; if(odd%2!=0) { count=1; odd--; a[odd_index]=Integer.MAX_VALUE; } if(count==1) { even--; a[even_index]=Integer.MAX_VALUE; count=2; } if(count==0) { if(even==0) { odd-=2; int xx=0; int i=1; while(xx!=2) { if(a[i]%2!=0&&a[i]!=Integer.MAX_VALUE) { a[i]=Integer.MAX_VALUE; xx++; } i++; } } else { even-=2; int xx=0; int i=1; while(xx!=2) { if(a[i]%2==0&&a[i]!=Integer.MAX_VALUE) { a[i]=Integer.MAX_VALUE; xx++; } i++; } } } while(even!=0) { for(int i=1;i<2*n+1;i++) { for(int j=i+1;j<2*n+1;j++) { if(a[i]%2==0&&a[j]%2==0&&a[i]!=Integer.MAX_VALUE&&a[j]!=Integer.MAX_VALUE) { pn(i + " " + j); even-=2; a[i]=Integer.MAX_VALUE; a[j]=Integer.MAX_VALUE; break; } if(even<=0)break; } if(even<=0)break; } } while(odd!=0) { for(int i=1;i<2*n+1;i++) { for(int j=i+1;j<2*n+1;j++) { if(a[i]%2!=0&&a[j]%2!=0&&a[i]!=Integer.MAX_VALUE&&a[j]!=Integer.MAX_VALUE) { pn(i + " " + j); odd-=2; a[i]=Integer.MAX_VALUE; a[j]=Integer.MAX_VALUE; break; } if(odd<=0)break; } if(odd<=0)break; } } } } // class TrieNode{ // TrieNode[] children=new TrieNode[26]; // boolean isEnd; // TrieNode() { // isEnd=false; // for(int i=0;i<26;i++) // children[i]=null; // } // } // // static TrieNode root; // // void insert(String s) { // TrieNode pCrawl=root; // int index=0; // int len=s.length(); // for(int i=0;i<len;i++) { // index=s.charAt(i)-'a'; // if(pCrawl.children[index]!=null) // pCrawl.children[index]=new TrieNode(); // pCrawl = pCrawl.children[index]; // // } // pCrawl.isEnd= true; // // } static boolean multipleTC = false, memory = false; FastReader in;PrintWriter out; void run() throws Exception{ in = new FastReader(); out = new PrintWriter(System.out); int T = (multipleTC)?ni():1; pre();for(int t = 1; t<= T; t++)solve(t); out.flush(); out.close(); } public static void main(String[] args) throws Exception{ if(memory)new Thread(null, new Runnable() {public void run(){try{new Codeforces().run();}catch(Exception e){e.printStackTrace();}}}, "1", 1 << 28).start(); else new Codeforces().run(); } void p(Object o){out.print(o);} void pn(Object o){out.println(o);} void nd(Object o){out.println(o);} void pni(Object o){out.println(o);out.flush();} String n()throws Exception{return in.next();} String nln()throws Exception{return in.nextLine();} int ni()throws Exception{return Integer.parseInt(in.next());} long nl()throws Exception{return Long.parseLong(in.next());} double nd()throws Exception{return Double.parseDouble(in.next());} class FastReader{ BufferedReader br; StringTokenizer st; public FastReader(){ br = new BufferedReader(new InputStreamReader(System.in)); } public FastReader(String s) throws Exception{ br = new BufferedReader(new FileReader(s)); } String next() throws Exception{ while (st == null || !st.hasMoreElements()){ try{ st = new StringTokenizer(br.readLine()); }catch (IOException e){ throw new Exception(e.toString()); } } return st.nextToken(); } String nextLine() throws Exception{ String str = ""; try{ str = br.readLine(); }catch (IOException e){ throw new Exception(e.toString()); } return str; } } }
Java
["3\n3\n1 2 3 4 5 6\n2\n5 7 9 10\n5\n1 3 3 4 5 90 100 101 2 3"]
1 second
["3 6\n4 5\n3 4\n1 9\n2 3\n4 5\n6 10"]
NoteIn the first test case, $$$b = \{3+6, 4+5\} = \{9, 9\}$$$ and $$$\mathrm{gcd}(9, 9) = 9$$$.In the second test case, $$$b = \{9+10\} = \{19\}$$$ and $$$\mathrm{gcd}(19) = 19$$$.In the third test case, $$$b = \{1+2, 3+3, 4+5, 90+3\} = \{3, 6, 9, 93\}$$$ and $$$\mathrm{gcd}(3, 6, 9, 93) = 3$$$.
Java 8
standard input
[ "constructive algorithms", "number theory", "math" ]
96fac9f9377bf03e144067bf93716d3d
The first line contains a single integer $$$t$$$ ($$$1 \leq t \leq 10$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains a single integer $$$n$$$ ($$$2 \leq n \leq 1000$$$). The second line of each test case contains $$$2n$$$ integers $$$a_1, a_2, \ldots, a_{2n}$$$ ($$$1 \leq a_i \leq 1000$$$) — the elements of the array $$$a$$$.
1,100
For each test case, output $$$n-1$$$ lines — the operations performed to compress the array $$$a$$$ to the array $$$b$$$. The initial discard of the two elements is not an operation, you don't need to output anything about it. The $$$i$$$-th line should contain two integers, the indices ($$$1$$$ —based) of the two elements from the array $$$a$$$ that are used in the $$$i$$$-th operation. All $$$2n-2$$$ indices should be distinct integers from $$$1$$$ to $$$2n$$$. You don't need to output two initially discarded elements from $$$a$$$. If there are multiple answers, you can find any.
standard output
PASSED
21428f328b945ecd72dfbbf39bc9510b
train_000.jsonl
1592663700
Ashish has an array $$$a$$$ of consisting of $$$2n$$$ positive integers. He wants to compress $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$. To do this, he first discards exactly $$$2$$$ (any two) elements from $$$a$$$. He then performs the following operation until there are no elements left in $$$a$$$: Remove any two elements from $$$a$$$ and append their sum to $$$b$$$. The compressed array $$$b$$$ has to have a special property. The greatest common divisor ($$$\mathrm{gcd}$$$) of all its elements should be greater than $$$1$$$.Recall that the $$$\mathrm{gcd}$$$ of an array of positive integers is the biggest integer that is a divisor of all integers in the array.It can be proven that it is always possible to compress array $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$ such that $$$gcd(b_1, b_2..., b_{n-1}) &gt; 1$$$. Help Ashish find a way to do so.
256 megabytes
import java.util.*; import java.io.*; import java.lang.Math; public class Main{ static int maxDivisor(int n){ for (int i=n-1;i>=1;i--){ if(n%i==0){ return i; } } return -1; } public static void main(String[] args){ FastScanner s = new FastScanner(System.in); int T= s.nextInt(); while(T-->0){ int n=s.nextInt(); int[] a= new int[2*n]; int[] parity= new int[2*n]; int even=0; int odd=0; ArrayList<Integer> oddidx=new ArrayList<>(); ArrayList<Integer> evenidx=new ArrayList<>(); for(int i=0;i<2*n;i++){ a[i]=s.nextInt(); parity[i]=a[i]%2; if(parity[i]==1){ oddidx.add(i); }else{ evenidx.add(i); } even=even+1-parity[i]; odd=odd+parity[i]; } // System.out.println`(evenidx); // System.out.println(oddidx); if(odd%2==0){ if(odd==0){ for(int i=0;i<n-1;i++){ System.out.println((1+evenidx.get(2*i))+" "+(1+evenidx.get(2*i+1))); } }else if(even==0){ for(int i=0;i<n-1;i++){ System.out.println((1+oddidx.get(2*i))+" "+(1+oddidx.get(2*i+1))); } }else{ oddidx.remove(oddidx.size()-1); oddidx.remove(oddidx.size()-1); for(int i=0;i<evenidx.size()/2;i++){ System.out.println((1+evenidx.get(2*i))+" "+(1+evenidx.get(2*i+1))); } for(int i=0;i<oddidx.size()/2;i++){ System.out.println((1+oddidx.get(2*i))+" "+(1+oddidx.get(2*i+1))); } } }else{ evenidx.remove(evenidx.size()-1); oddidx.remove(oddidx.size()-1); for(int i=0;i<oddidx.size()/2;i++){ System.out.println((1+oddidx.get(2*i))+" "+(1+oddidx.get(2*i+1))); } for(int i=0;i<evenidx.size()/2;i++){ System.out.println((1+evenidx.get(2*i))+" "+(1+evenidx.get(2*i+1))); } } // System.out.println("aaaaaaaaaaaa"); } } } class FastScanner { BufferedReader br; StringTokenizer st; FastScanner(InputStream stream) { try { br = new BufferedReader(new InputStreamReader(stream)); } catch (Exception e) { e.printStackTrace(); } } String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong(){ return Long.parseLong(next()); } }
Java
["3\n3\n1 2 3 4 5 6\n2\n5 7 9 10\n5\n1 3 3 4 5 90 100 101 2 3"]
1 second
["3 6\n4 5\n3 4\n1 9\n2 3\n4 5\n6 10"]
NoteIn the first test case, $$$b = \{3+6, 4+5\} = \{9, 9\}$$$ and $$$\mathrm{gcd}(9, 9) = 9$$$.In the second test case, $$$b = \{9+10\} = \{19\}$$$ and $$$\mathrm{gcd}(19) = 19$$$.In the third test case, $$$b = \{1+2, 3+3, 4+5, 90+3\} = \{3, 6, 9, 93\}$$$ and $$$\mathrm{gcd}(3, 6, 9, 93) = 3$$$.
Java 8
standard input
[ "constructive algorithms", "number theory", "math" ]
96fac9f9377bf03e144067bf93716d3d
The first line contains a single integer $$$t$$$ ($$$1 \leq t \leq 10$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains a single integer $$$n$$$ ($$$2 \leq n \leq 1000$$$). The second line of each test case contains $$$2n$$$ integers $$$a_1, a_2, \ldots, a_{2n}$$$ ($$$1 \leq a_i \leq 1000$$$) — the elements of the array $$$a$$$.
1,100
For each test case, output $$$n-1$$$ lines — the operations performed to compress the array $$$a$$$ to the array $$$b$$$. The initial discard of the two elements is not an operation, you don't need to output anything about it. The $$$i$$$-th line should contain two integers, the indices ($$$1$$$ —based) of the two elements from the array $$$a$$$ that are used in the $$$i$$$-th operation. All $$$2n-2$$$ indices should be distinct integers from $$$1$$$ to $$$2n$$$. You don't need to output two initially discarded elements from $$$a$$$. If there are multiple answers, you can find any.
standard output
PASSED
ffcc20870091f0b80f16d9455ebc50b3
train_000.jsonl
1592663700
Ashish has an array $$$a$$$ of consisting of $$$2n$$$ positive integers. He wants to compress $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$. To do this, he first discards exactly $$$2$$$ (any two) elements from $$$a$$$. He then performs the following operation until there are no elements left in $$$a$$$: Remove any two elements from $$$a$$$ and append their sum to $$$b$$$. The compressed array $$$b$$$ has to have a special property. The greatest common divisor ($$$\mathrm{gcd}$$$) of all its elements should be greater than $$$1$$$.Recall that the $$$\mathrm{gcd}$$$ of an array of positive integers is the biggest integer that is a divisor of all integers in the array.It can be proven that it is always possible to compress array $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$ such that $$$gcd(b_1, b_2..., b_{n-1}) &gt; 1$$$. Help Ashish find a way to do so.
256 megabytes
import java.util.*; public class Main{ public static void main(String[] args){ Scanner s = new Scanner(System.in); int t = s.nextInt(); while(t-->0){ int n = s.nextInt(); int[] arr = new int[2*n]; ArrayList<Integer> listo = new ArrayList<Integer>(); ArrayList<Integer> liste = new ArrayList<Integer>(); for(int i=0; i<2*n; i++){ arr[i] = s.nextInt(); if(arr[i]%2==0) liste.add(i+1); else listo.add(i+1); } int count = n-1; // System.out.println("count: "+count); if(listo.size()==0){ for(int i=0; i<liste.size()-1;i=i+2){ System.out.print(liste.get(i)+" "+liste.get(i+1)); System.out.println(); count--; if(count==0) break; } }else if(liste.size()==0){ for(int i=0; i<listo.size()-1;i=i+2){ System.out.print(listo.get(i)+" "+listo.get(i+1)); System.out.println(); count--; if(count==0) break; } } else if(listo.size()%2==0 && liste.size()%2==0){ for(int i=0; i<listo.size()-1; i=i+2){ System.out.print(listo.get(i)+" "+listo.get(i+1)); System.out.println(); count--; if(count==0) break; } if(count>0){ for(int i=0; i<liste.size()-1; i=i+2){ System.out.print(liste.get(i)+" "+liste.get(i+1)); System.out.println(); count--; if(count==0) break; } } } else if(listo.size()%2!=0 && liste.size()%2!=0){ for(int i=0; i<listo.size()-2; i=i+2){ System.out.print(listo.get(i)+" "+listo.get(i+1)); System.out.println(); count--; if(count==0) break; } if(count>0){ for(int i=0; i<liste.size()-2; i=i+2){ System.out.print(liste.get(i)+" "+liste.get(i+1)); System.out.println(); count--; if(count==0) break; } // if(count==0) // break; } } // System.out.println(); } } }
Java
["3\n3\n1 2 3 4 5 6\n2\n5 7 9 10\n5\n1 3 3 4 5 90 100 101 2 3"]
1 second
["3 6\n4 5\n3 4\n1 9\n2 3\n4 5\n6 10"]
NoteIn the first test case, $$$b = \{3+6, 4+5\} = \{9, 9\}$$$ and $$$\mathrm{gcd}(9, 9) = 9$$$.In the second test case, $$$b = \{9+10\} = \{19\}$$$ and $$$\mathrm{gcd}(19) = 19$$$.In the third test case, $$$b = \{1+2, 3+3, 4+5, 90+3\} = \{3, 6, 9, 93\}$$$ and $$$\mathrm{gcd}(3, 6, 9, 93) = 3$$$.
Java 8
standard input
[ "constructive algorithms", "number theory", "math" ]
96fac9f9377bf03e144067bf93716d3d
The first line contains a single integer $$$t$$$ ($$$1 \leq t \leq 10$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains a single integer $$$n$$$ ($$$2 \leq n \leq 1000$$$). The second line of each test case contains $$$2n$$$ integers $$$a_1, a_2, \ldots, a_{2n}$$$ ($$$1 \leq a_i \leq 1000$$$) — the elements of the array $$$a$$$.
1,100
For each test case, output $$$n-1$$$ lines — the operations performed to compress the array $$$a$$$ to the array $$$b$$$. The initial discard of the two elements is not an operation, you don't need to output anything about it. The $$$i$$$-th line should contain two integers, the indices ($$$1$$$ —based) of the two elements from the array $$$a$$$ that are used in the $$$i$$$-th operation. All $$$2n-2$$$ indices should be distinct integers from $$$1$$$ to $$$2n$$$. You don't need to output two initially discarded elements from $$$a$$$. If there are multiple answers, you can find any.
standard output
PASSED
87d45b0029f1e1db83be6f436a20806c
train_000.jsonl
1592663700
Ashish has an array $$$a$$$ of consisting of $$$2n$$$ positive integers. He wants to compress $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$. To do this, he first discards exactly $$$2$$$ (any two) elements from $$$a$$$. He then performs the following operation until there are no elements left in $$$a$$$: Remove any two elements from $$$a$$$ and append their sum to $$$b$$$. The compressed array $$$b$$$ has to have a special property. The greatest common divisor ($$$\mathrm{gcd}$$$) of all its elements should be greater than $$$1$$$.Recall that the $$$\mathrm{gcd}$$$ of an array of positive integers is the biggest integer that is a divisor of all integers in the array.It can be proven that it is always possible to compress array $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$ such that $$$gcd(b_1, b_2..., b_{n-1}) &gt; 1$$$. Help Ashish find a way to do so.
256 megabytes
import java.util.*; public class Main { public static void main(String args[]) { Scanner scanner=new Scanner(System.in); int t=scanner.nextInt(); while(t>0){ int flag=0; ArrayList<Integer> a=new ArrayList<Integer>(); ArrayList<Integer> b=new ArrayList<Integer>(); int n=scanner.nextInt(); for(int i=1;i<=2*n;i++){ int k=scanner.nextInt(); if(k%2==0) a.add(i); else b.add(i); } if(a.size()/2>=n-1) { int j=0; for(int i=0;i<n-1;i+=1){ System.out.println(a.get(j)+" "+a.get(j+1)); j+=2; } } else { if(a.size()%2==0){ flag=1; int j=0; for(int i=0;i<a.size()/2;i+=1){ System.out.println(a.get(j)+" "+a.get(j+1)); j+=2; } } else{ int j=0; for(int i=0;i<a.size()/2;i+=1){ System.out.println(a.get(j)+" "+a.get(j+1)); j+=2; } } if(flag==1){ int j=0; for(int i=0;i<(n-1)-(a.size())/2;i+=1){ System.out.println(b.get(j)+" "+b.get(j+1)); j+=2; } } else{ int j=0; for(int i=0;i<(n-1)-(a.size()-1)/2;i+=1){ System.out.println(b.get(j)+" "+b.get(j+1)); j+=2; } } } t-=1; } } }
Java
["3\n3\n1 2 3 4 5 6\n2\n5 7 9 10\n5\n1 3 3 4 5 90 100 101 2 3"]
1 second
["3 6\n4 5\n3 4\n1 9\n2 3\n4 5\n6 10"]
NoteIn the first test case, $$$b = \{3+6, 4+5\} = \{9, 9\}$$$ and $$$\mathrm{gcd}(9, 9) = 9$$$.In the second test case, $$$b = \{9+10\} = \{19\}$$$ and $$$\mathrm{gcd}(19) = 19$$$.In the third test case, $$$b = \{1+2, 3+3, 4+5, 90+3\} = \{3, 6, 9, 93\}$$$ and $$$\mathrm{gcd}(3, 6, 9, 93) = 3$$$.
Java 8
standard input
[ "constructive algorithms", "number theory", "math" ]
96fac9f9377bf03e144067bf93716d3d
The first line contains a single integer $$$t$$$ ($$$1 \leq t \leq 10$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains a single integer $$$n$$$ ($$$2 \leq n \leq 1000$$$). The second line of each test case contains $$$2n$$$ integers $$$a_1, a_2, \ldots, a_{2n}$$$ ($$$1 \leq a_i \leq 1000$$$) — the elements of the array $$$a$$$.
1,100
For each test case, output $$$n-1$$$ lines — the operations performed to compress the array $$$a$$$ to the array $$$b$$$. The initial discard of the two elements is not an operation, you don't need to output anything about it. The $$$i$$$-th line should contain two integers, the indices ($$$1$$$ —based) of the two elements from the array $$$a$$$ that are used in the $$$i$$$-th operation. All $$$2n-2$$$ indices should be distinct integers from $$$1$$$ to $$$2n$$$. You don't need to output two initially discarded elements from $$$a$$$. If there are multiple answers, you can find any.
standard output
PASSED
3a1d3792b38e75ef73a649ccb4ff4c42
train_000.jsonl
1592663700
Ashish has an array $$$a$$$ of consisting of $$$2n$$$ positive integers. He wants to compress $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$. To do this, he first discards exactly $$$2$$$ (any two) elements from $$$a$$$. He then performs the following operation until there are no elements left in $$$a$$$: Remove any two elements from $$$a$$$ and append their sum to $$$b$$$. The compressed array $$$b$$$ has to have a special property. The greatest common divisor ($$$\mathrm{gcd}$$$) of all its elements should be greater than $$$1$$$.Recall that the $$$\mathrm{gcd}$$$ of an array of positive integers is the biggest integer that is a divisor of all integers in the array.It can be proven that it is always possible to compress array $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$ such that $$$gcd(b_1, b_2..., b_{n-1}) &gt; 1$$$. Help Ashish find a way to do so.
256 megabytes
import java.util.*; public class Main { public static void main(String args[]) { Scanner scanner=new Scanner(System.in); int t=scanner.nextInt(); while(t>0){ int flag=0; ArrayList<Integer> a=new ArrayList<Integer>(); ArrayList<Integer> b=new ArrayList<Integer>(); int n=scanner.nextInt(); for(int i=1;i<=2*n;i++){ int k=scanner.nextInt(); if(k%2==0) a.add(i); else b.add(i); } if(a.size()/2>=n-1) { int j=0; for(int i=0;i<n-1;i+=1){ System.out.println(a.get(j)+" "+a.get(j+1)); j+=2; } } else { if(a.size()%2==0){ flag=1; } int k=0; for(int i=0;i<a.size()/2;i+=1){ System.out.println(a.get(k)+" "+a.get(k+1)); k+=2; } int l=0; for(int i=0;i<(n-1)-(a.size())/2;i+=1){ System.out.println(b.get(l)+" "+b.get(l+1)); l+=2; } } t-=1; } } }
Java
["3\n3\n1 2 3 4 5 6\n2\n5 7 9 10\n5\n1 3 3 4 5 90 100 101 2 3"]
1 second
["3 6\n4 5\n3 4\n1 9\n2 3\n4 5\n6 10"]
NoteIn the first test case, $$$b = \{3+6, 4+5\} = \{9, 9\}$$$ and $$$\mathrm{gcd}(9, 9) = 9$$$.In the second test case, $$$b = \{9+10\} = \{19\}$$$ and $$$\mathrm{gcd}(19) = 19$$$.In the third test case, $$$b = \{1+2, 3+3, 4+5, 90+3\} = \{3, 6, 9, 93\}$$$ and $$$\mathrm{gcd}(3, 6, 9, 93) = 3$$$.
Java 8
standard input
[ "constructive algorithms", "number theory", "math" ]
96fac9f9377bf03e144067bf93716d3d
The first line contains a single integer $$$t$$$ ($$$1 \leq t \leq 10$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains a single integer $$$n$$$ ($$$2 \leq n \leq 1000$$$). The second line of each test case contains $$$2n$$$ integers $$$a_1, a_2, \ldots, a_{2n}$$$ ($$$1 \leq a_i \leq 1000$$$) — the elements of the array $$$a$$$.
1,100
For each test case, output $$$n-1$$$ lines — the operations performed to compress the array $$$a$$$ to the array $$$b$$$. The initial discard of the two elements is not an operation, you don't need to output anything about it. The $$$i$$$-th line should contain two integers, the indices ($$$1$$$ —based) of the two elements from the array $$$a$$$ that are used in the $$$i$$$-th operation. All $$$2n-2$$$ indices should be distinct integers from $$$1$$$ to $$$2n$$$. You don't need to output two initially discarded elements from $$$a$$$. If there are multiple answers, you can find any.
standard output
PASSED
e6421d821283bbb4d3905ef6cc36326a
train_000.jsonl
1592663700
Ashish has an array $$$a$$$ of consisting of $$$2n$$$ positive integers. He wants to compress $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$. To do this, he first discards exactly $$$2$$$ (any two) elements from $$$a$$$. He then performs the following operation until there are no elements left in $$$a$$$: Remove any two elements from $$$a$$$ and append their sum to $$$b$$$. The compressed array $$$b$$$ has to have a special property. The greatest common divisor ($$$\mathrm{gcd}$$$) of all its elements should be greater than $$$1$$$.Recall that the $$$\mathrm{gcd}$$$ of an array of positive integers is the biggest integer that is a divisor of all integers in the array.It can be proven that it is always possible to compress array $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$ such that $$$gcd(b_1, b_2..., b_{n-1}) &gt; 1$$$. Help Ashish find a way to do so.
256 megabytes
import java.util.*; public class Main { public static void main(String args[]) { Scanner scanner=new Scanner(System.in); int t=scanner.nextInt(); while(t>0){ int flag=0; ArrayList<Integer> a=new ArrayList<Integer>(); ArrayList<Integer> b=new ArrayList<Integer>(); int n=scanner.nextInt(); for(int i=1;i<=2*n;i++){ int k=scanner.nextInt(); if(k%2==0) a.add(i); else b.add(i); } if(a.size()/2>=n-1) { int j=0; for(int i=0;i<n-1;i+=1){ System.out.println(a.get(j)+" "+a.get(j+1)); j+=2; } } else { if(a.size()%2==0){ flag=1; } int k=0; for(int i=0;i<a.size()/2;i+=1){ System.out.println(a.get(k)+" "+a.get(k+1)); k+=2; } if(flag==1){ int j=0; for(int i=0;i<(n-1)-(a.size())/2;i+=1){ System.out.println(b.get(j)+" "+b.get(j+1)); j+=2; } } else{ int j=0; for(int i=0;i<(n-1)-(a.size()-1)/2;i+=1){ System.out.println(b.get(j)+" "+b.get(j+1)); j+=2; } } } t-=1; } } }
Java
["3\n3\n1 2 3 4 5 6\n2\n5 7 9 10\n5\n1 3 3 4 5 90 100 101 2 3"]
1 second
["3 6\n4 5\n3 4\n1 9\n2 3\n4 5\n6 10"]
NoteIn the first test case, $$$b = \{3+6, 4+5\} = \{9, 9\}$$$ and $$$\mathrm{gcd}(9, 9) = 9$$$.In the second test case, $$$b = \{9+10\} = \{19\}$$$ and $$$\mathrm{gcd}(19) = 19$$$.In the third test case, $$$b = \{1+2, 3+3, 4+5, 90+3\} = \{3, 6, 9, 93\}$$$ and $$$\mathrm{gcd}(3, 6, 9, 93) = 3$$$.
Java 8
standard input
[ "constructive algorithms", "number theory", "math" ]
96fac9f9377bf03e144067bf93716d3d
The first line contains a single integer $$$t$$$ ($$$1 \leq t \leq 10$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains a single integer $$$n$$$ ($$$2 \leq n \leq 1000$$$). The second line of each test case contains $$$2n$$$ integers $$$a_1, a_2, \ldots, a_{2n}$$$ ($$$1 \leq a_i \leq 1000$$$) — the elements of the array $$$a$$$.
1,100
For each test case, output $$$n-1$$$ lines — the operations performed to compress the array $$$a$$$ to the array $$$b$$$. The initial discard of the two elements is not an operation, you don't need to output anything about it. The $$$i$$$-th line should contain two integers, the indices ($$$1$$$ —based) of the two elements from the array $$$a$$$ that are used in the $$$i$$$-th operation. All $$$2n-2$$$ indices should be distinct integers from $$$1$$$ to $$$2n$$$. You don't need to output two initially discarded elements from $$$a$$$. If there are multiple answers, you can find any.
standard output
PASSED
876d956477f6047273458e05b789ede1
train_000.jsonl
1592663700
Ashish has an array $$$a$$$ of consisting of $$$2n$$$ positive integers. He wants to compress $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$. To do this, he first discards exactly $$$2$$$ (any two) elements from $$$a$$$. He then performs the following operation until there are no elements left in $$$a$$$: Remove any two elements from $$$a$$$ and append their sum to $$$b$$$. The compressed array $$$b$$$ has to have a special property. The greatest common divisor ($$$\mathrm{gcd}$$$) of all its elements should be greater than $$$1$$$.Recall that the $$$\mathrm{gcd}$$$ of an array of positive integers is the biggest integer that is a divisor of all integers in the array.It can be proven that it is always possible to compress array $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$ such that $$$gcd(b_1, b_2..., b_{n-1}) &gt; 1$$$. Help Ashish find a way to do so.
256 megabytes
import java.util.*; public class Main { public static void main(String[] args){ Scanner input = new Scanner(System.in); int tc = input.nextInt(); while(tc-->0) { int n = input.nextInt(); int a[] = new int[n*2]; int count=0; for (int i = 0; i < n*2; i++) { a[i] = input.nextInt(); } for (int i = 0; i < n*2; i++) { for (int j = i+1; j < n*2; j++) { if(count<n-1&&(a[i]+a[j])%2==0&&a[i]!=-1 &&a[j]!=-1) { System.out.println((i+1)+" "+(j+1)); a[i]=-1; a[j]=-1; count++; } } } } } }
Java
["3\n3\n1 2 3 4 5 6\n2\n5 7 9 10\n5\n1 3 3 4 5 90 100 101 2 3"]
1 second
["3 6\n4 5\n3 4\n1 9\n2 3\n4 5\n6 10"]
NoteIn the first test case, $$$b = \{3+6, 4+5\} = \{9, 9\}$$$ and $$$\mathrm{gcd}(9, 9) = 9$$$.In the second test case, $$$b = \{9+10\} = \{19\}$$$ and $$$\mathrm{gcd}(19) = 19$$$.In the third test case, $$$b = \{1+2, 3+3, 4+5, 90+3\} = \{3, 6, 9, 93\}$$$ and $$$\mathrm{gcd}(3, 6, 9, 93) = 3$$$.
Java 8
standard input
[ "constructive algorithms", "number theory", "math" ]
96fac9f9377bf03e144067bf93716d3d
The first line contains a single integer $$$t$$$ ($$$1 \leq t \leq 10$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains a single integer $$$n$$$ ($$$2 \leq n \leq 1000$$$). The second line of each test case contains $$$2n$$$ integers $$$a_1, a_2, \ldots, a_{2n}$$$ ($$$1 \leq a_i \leq 1000$$$) — the elements of the array $$$a$$$.
1,100
For each test case, output $$$n-1$$$ lines — the operations performed to compress the array $$$a$$$ to the array $$$b$$$. The initial discard of the two elements is not an operation, you don't need to output anything about it. The $$$i$$$-th line should contain two integers, the indices ($$$1$$$ —based) of the two elements from the array $$$a$$$ that are used in the $$$i$$$-th operation. All $$$2n-2$$$ indices should be distinct integers from $$$1$$$ to $$$2n$$$. You don't need to output two initially discarded elements from $$$a$$$. If there are multiple answers, you can find any.
standard output
PASSED
da0608a9768431305e890a4a08539a1f
train_000.jsonl
1592663700
Ashish has an array $$$a$$$ of consisting of $$$2n$$$ positive integers. He wants to compress $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$. To do this, he first discards exactly $$$2$$$ (any two) elements from $$$a$$$. He then performs the following operation until there are no elements left in $$$a$$$: Remove any two elements from $$$a$$$ and append their sum to $$$b$$$. The compressed array $$$b$$$ has to have a special property. The greatest common divisor ($$$\mathrm{gcd}$$$) of all its elements should be greater than $$$1$$$.Recall that the $$$\mathrm{gcd}$$$ of an array of positive integers is the biggest integer that is a divisor of all integers in the array.It can be proven that it is always possible to compress array $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$ such that $$$gcd(b_1, b_2..., b_{n-1}) &gt; 1$$$. Help Ashish find a way to do so.
256 megabytes
import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.InputMismatchException; public class A { public static void main(String[] args) throws Exception { // TODO Auto-generated method stub InputReader s = new InputReader(System.in); PrintWriter p = new PrintWriter(System.out); int t = s.nextInt(); while(t-->0){ int n = s.nextInt(); ArrayList<pair> odd = new ArrayList<>(); ArrayList<pair> even = new ArrayList<>(); for(int i = 0; i < 2*n; i++){ int val = s.nextInt(); if(val%2==0){ even.add(new pair(val, i+1)); }else odd.add(new pair(val, i+1)); } if(odd.size()%2==0){ if(even.size()>0){ even.remove(0); even.remove(0); }else{ odd.remove(0); odd.remove(0); } }else{ even.remove(0); odd.remove(0); } for(int i = 0; i < odd.size(); i+=2){ p.println(odd.get(i).y+" "+odd.get(i+1).y); } for(int i = 0; i < even.size(); i+=2){ p.println(even.get(i).y+" "+even.get(i+1).y); } } p.flush(); p.close(); } public static boolean prime(long n) { if (n == 1) { return false; } if (n == 2) { return true; } for (long i = 2; i <= (long) Math.sqrt(n); i++) { if (n % i == 0) return false; } return true; } public static ArrayList Divisors(long n) { ArrayList<Long> div = new ArrayList<>(); for (long i = 1; i <= Math.sqrt(n); i++) { if (n % i == 0) { div.add(i); if (n / i != i) div.add(n / i); } } return div; } public static int BinarySearch(long[] a, long k) { int n = a.length; int i = 0, j = n - 1; int mid = 0; if (k < a[0]) return 0; else if (k >= a[n - 1]) return n; else { while (j - i > 1) { mid = (i + j) / 2; if (k >= a[mid]) i = mid; else j = mid; } } return i + 1; } public static long GCD(long a, long b) { if (b == 0) return a; else return GCD(b, a % b); } public static long LCM(long a, long b) { return (a * b) / GCD(a, b); } static class pair implements Comparable<pair> { Integer x, y; pair(int x, int y) { this.x = x; this.y = y; } public int compareTo(pair o) { int result = x.compareTo(o.x); if (result == 0) result = y.compareTo(o.y); return result; } public String toString() { return x + " " + y; } public boolean equals(Object o) { if (o instanceof pair) { pair p = (pair) o; return p.x - x == 0 && p.y - y == 0; } return false; } public int hashCode() { return new Long(x).hashCode() * 31 + new Long(y).hashCode(); } } static class InputReader { private final InputStream stream; private final byte[] buf = new byte[8192]; private int curChar, snumChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int snext() { if (snumChars == -1) throw new InputMismatchException(); if (curChar >= snumChars) { curChar = 0; try { snumChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (snumChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public int[] nextIntArray(int n) { int a[] = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } return a; } public String readString() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = snext(); } while (!isSpaceChar(c)); return res.toString(); } public String nextLine() { int c = snext(); while (isSpaceChar(c)) c = snext(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = snext(); } while (!isEndOfLine(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static class CodeX { public static void sort(long arr[]) { merge_sort(arr, 0, arr.length - 1); } private static void merge_sort(long A[], long start, long end) { if (start < end) { long mid = (start + end) / 2; merge_sort(A, start, mid); merge_sort(A, mid + 1, end); merge(A, start, mid, end); } } private static void merge(long A[], long start, long mid, long end) { long p = start, q = mid + 1; long Arr[] = new long[(int) (end - start + 1)]; long k = 0; for (int i = (int) start; i <= end; i++) { if (p > mid) Arr[(int) k++] = A[(int) q++]; else if (q > end) Arr[(int) k++] = A[(int) p++]; else if (A[(int) p] < A[(int) q]) Arr[(int) k++] = A[(int) p++]; else Arr[(int) k++] = A[(int) q++]; } for (int i = 0; i < k; i++) { A[(int) start++] = Arr[i]; } } } }
Java
["3\n3\n1 2 3 4 5 6\n2\n5 7 9 10\n5\n1 3 3 4 5 90 100 101 2 3"]
1 second
["3 6\n4 5\n3 4\n1 9\n2 3\n4 5\n6 10"]
NoteIn the first test case, $$$b = \{3+6, 4+5\} = \{9, 9\}$$$ and $$$\mathrm{gcd}(9, 9) = 9$$$.In the second test case, $$$b = \{9+10\} = \{19\}$$$ and $$$\mathrm{gcd}(19) = 19$$$.In the third test case, $$$b = \{1+2, 3+3, 4+5, 90+3\} = \{3, 6, 9, 93\}$$$ and $$$\mathrm{gcd}(3, 6, 9, 93) = 3$$$.
Java 8
standard input
[ "constructive algorithms", "number theory", "math" ]
96fac9f9377bf03e144067bf93716d3d
The first line contains a single integer $$$t$$$ ($$$1 \leq t \leq 10$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains a single integer $$$n$$$ ($$$2 \leq n \leq 1000$$$). The second line of each test case contains $$$2n$$$ integers $$$a_1, a_2, \ldots, a_{2n}$$$ ($$$1 \leq a_i \leq 1000$$$) — the elements of the array $$$a$$$.
1,100
For each test case, output $$$n-1$$$ lines — the operations performed to compress the array $$$a$$$ to the array $$$b$$$. The initial discard of the two elements is not an operation, you don't need to output anything about it. The $$$i$$$-th line should contain two integers, the indices ($$$1$$$ —based) of the two elements from the array $$$a$$$ that are used in the $$$i$$$-th operation. All $$$2n-2$$$ indices should be distinct integers from $$$1$$$ to $$$2n$$$. You don't need to output two initially discarded elements from $$$a$$$. If there are multiple answers, you can find any.
standard output
PASSED
38211e32261e1e767645c55287a39894
train_000.jsonl
1592663700
Ashish has an array $$$a$$$ of consisting of $$$2n$$$ positive integers. He wants to compress $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$. To do this, he first discards exactly $$$2$$$ (any two) elements from $$$a$$$. He then performs the following operation until there are no elements left in $$$a$$$: Remove any two elements from $$$a$$$ and append their sum to $$$b$$$. The compressed array $$$b$$$ has to have a special property. The greatest common divisor ($$$\mathrm{gcd}$$$) of all its elements should be greater than $$$1$$$.Recall that the $$$\mathrm{gcd}$$$ of an array of positive integers is the biggest integer that is a divisor of all integers in the array.It can be proven that it is always possible to compress array $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$ such that $$$gcd(b_1, b_2..., b_{n-1}) &gt; 1$$$. Help Ashish find a way to do so.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; import java.util.*; public class Solution { public static int gcd(int a,int b){ if(a==1 ||b==1) return 1; if(b==0) return a; return gcd(b, a%b); } public static HashMap<Integer,Integer> primeFactors(int n) { HashMap<Integer,Integer> h=new HashMap<Integer,Integer> (); while (n%2==0) { if(h.containsKey(2)) h.put(2,h.get(2)+1); else h.put(2,1); n /= 2; } // n must be odd at this point. So we can // skip one element (Note i = i +2) for (int i = 3; i <= Math.sqrt(n); i+= 2) { // While i divides n, print i and divide n while (n%i == 0) { if(h.containsKey(i)) h.put(i,h.get(i)+1); else h.put(i,1); n /= i; } } // This condition is to handle the case whien // n is a prime number greater than 2 if (n > 2) { if(h.containsKey(n)) h.put(n,h.get(n)+1); else h.put(n,1); } return h; } public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader( new InputStreamReader(System.in)); StringBuilder out=new StringBuilder(); int t=Integer.parseInt(br.readLine()); while(t-->0){ ArrayList<Integer> e=new ArrayList<>(); ArrayList<Integer> o=new ArrayList<>(); int n=Integer.parseInt(br.readLine()); StringTokenizer st=new StringTokenizer(br.readLine()); int arr[]=new int[2*n]; for(int i=0;i<(2*n);i++){ arr[i]=Integer.parseInt(st.nextToken()); if(arr[i]%2==0) e.add(i+1); else o.add(i+1); } // System.out.print(o.size()+"/"); if(e.size()==0){ for(int k=0;k<o.size()-3;k=k+2){ out.append(o.get(k)+" "+o.get(k+1)+"\n"); } } else if(o.size()==0){ for(int k=0;k<e.size()-3;k=k+2){ out.append(e.get(k)+" "+e.get(k+1)+"\n"); } } else if(e.size()%2==0 && o.size()%2==0){ for(int k=0;k<e.size()-1;k=k+2){ out.append(e.get(k)+" "+e.get(k+1)+"\n"); } for(int k=0;k<o.size()-3;k=k+2){ out.append(o.get(k)+" "+o.get(k+1)+"\n"); } }else{ for(int k=0;k<e.size()-2;k=k+2){ out.append(e.get(k)+" "+e.get(k+1)+"\n"); } for(int k=0;k<o.size()-2;k=k+2){ out.append(o.get(k)+" "+o.get(k+1)+"\n"); } } // out.append("*"); } System.out.println(out); }} // class Graph // { // private int V; // No. of vertices // // Array of lists for Adjacency List Representation // ArrayList<pair> adj[]; // // Constructor // Graph(int v) // { // V = v; // adj = new ArrayList[v]; // for (int i=0; i<v; ++i) // adj[i] = new ArrayList(); // } // //Function to add an edge into the graph // void addEdge(int v, int w,int x) // { // adj[v].add(new pair(w,x)); // adj[w].add(new pair(v,x));// Add w to v's list. // } // // A function used by DFS // } // class pair{ // int x; // int y; // public pair(int xx,int yy){ // x=xx; // y=yy; // } // } class SortT implements Comparator<String> { public int compare(String a, String b) { return a.length() - b.length(); } }
Java
["3\n3\n1 2 3 4 5 6\n2\n5 7 9 10\n5\n1 3 3 4 5 90 100 101 2 3"]
1 second
["3 6\n4 5\n3 4\n1 9\n2 3\n4 5\n6 10"]
NoteIn the first test case, $$$b = \{3+6, 4+5\} = \{9, 9\}$$$ and $$$\mathrm{gcd}(9, 9) = 9$$$.In the second test case, $$$b = \{9+10\} = \{19\}$$$ and $$$\mathrm{gcd}(19) = 19$$$.In the third test case, $$$b = \{1+2, 3+3, 4+5, 90+3\} = \{3, 6, 9, 93\}$$$ and $$$\mathrm{gcd}(3, 6, 9, 93) = 3$$$.
Java 8
standard input
[ "constructive algorithms", "number theory", "math" ]
96fac9f9377bf03e144067bf93716d3d
The first line contains a single integer $$$t$$$ ($$$1 \leq t \leq 10$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains a single integer $$$n$$$ ($$$2 \leq n \leq 1000$$$). The second line of each test case contains $$$2n$$$ integers $$$a_1, a_2, \ldots, a_{2n}$$$ ($$$1 \leq a_i \leq 1000$$$) — the elements of the array $$$a$$$.
1,100
For each test case, output $$$n-1$$$ lines — the operations performed to compress the array $$$a$$$ to the array $$$b$$$. The initial discard of the two elements is not an operation, you don't need to output anything about it. The $$$i$$$-th line should contain two integers, the indices ($$$1$$$ —based) of the two elements from the array $$$a$$$ that are used in the $$$i$$$-th operation. All $$$2n-2$$$ indices should be distinct integers from $$$1$$$ to $$$2n$$$. You don't need to output two initially discarded elements from $$$a$$$. If there are multiple answers, you can find any.
standard output
PASSED
b7b0324c85cc65408fb73bbbc5907f9d
train_000.jsonl
1592663700
Ashish has an array $$$a$$$ of consisting of $$$2n$$$ positive integers. He wants to compress $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$. To do this, he first discards exactly $$$2$$$ (any two) elements from $$$a$$$. He then performs the following operation until there are no elements left in $$$a$$$: Remove any two elements from $$$a$$$ and append their sum to $$$b$$$. The compressed array $$$b$$$ has to have a special property. The greatest common divisor ($$$\mathrm{gcd}$$$) of all its elements should be greater than $$$1$$$.Recall that the $$$\mathrm{gcd}$$$ of an array of positive integers is the biggest integer that is a divisor of all integers in the array.It can be proven that it is always possible to compress array $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$ such that $$$gcd(b_1, b_2..., b_{n-1}) &gt; 1$$$. Help Ashish find a way to do so.
256 megabytes
import java.util.*; import java.io.*; public class GCD_Compression { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static void main(String[] args) { // TODO Auto-generated method stub FastReader t = new FastReader(); PrintWriter o = new PrintWriter(System.out); int test = t.nextInt(); while (test-- > 0) { List<Integer> odd = new ArrayList<>(); List<Integer> even = new ArrayList<>(); int n = t.nextInt(); for (int i = 0; i < 2 * n; ++i) { int x = t.nextInt(); if ((x & 1) == 1) odd.add(i + 1); else even.add(i + 1); } int i = 0, j = 0, count = 0; while (count < n - 1) { if (i <= odd.size() - 2) { o.println(odd.get(i) + " " + odd.get(i + 1)); i += 2; count++; } else { o.println(even.get(j) + " " + even.get(j + 1)); count++; j += 2; } } } o.flush(); o.close(); } }
Java
["3\n3\n1 2 3 4 5 6\n2\n5 7 9 10\n5\n1 3 3 4 5 90 100 101 2 3"]
1 second
["3 6\n4 5\n3 4\n1 9\n2 3\n4 5\n6 10"]
NoteIn the first test case, $$$b = \{3+6, 4+5\} = \{9, 9\}$$$ and $$$\mathrm{gcd}(9, 9) = 9$$$.In the second test case, $$$b = \{9+10\} = \{19\}$$$ and $$$\mathrm{gcd}(19) = 19$$$.In the third test case, $$$b = \{1+2, 3+3, 4+5, 90+3\} = \{3, 6, 9, 93\}$$$ and $$$\mathrm{gcd}(3, 6, 9, 93) = 3$$$.
Java 8
standard input
[ "constructive algorithms", "number theory", "math" ]
96fac9f9377bf03e144067bf93716d3d
The first line contains a single integer $$$t$$$ ($$$1 \leq t \leq 10$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains a single integer $$$n$$$ ($$$2 \leq n \leq 1000$$$). The second line of each test case contains $$$2n$$$ integers $$$a_1, a_2, \ldots, a_{2n}$$$ ($$$1 \leq a_i \leq 1000$$$) — the elements of the array $$$a$$$.
1,100
For each test case, output $$$n-1$$$ lines — the operations performed to compress the array $$$a$$$ to the array $$$b$$$. The initial discard of the two elements is not an operation, you don't need to output anything about it. The $$$i$$$-th line should contain two integers, the indices ($$$1$$$ —based) of the two elements from the array $$$a$$$ that are used in the $$$i$$$-th operation. All $$$2n-2$$$ indices should be distinct integers from $$$1$$$ to $$$2n$$$. You don't need to output two initially discarded elements from $$$a$$$. If there are multiple answers, you can find any.
standard output
PASSED
eb3c91bcb908e17f6224c52900025d96
train_000.jsonl
1592663700
Ashish has an array $$$a$$$ of consisting of $$$2n$$$ positive integers. He wants to compress $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$. To do this, he first discards exactly $$$2$$$ (any two) elements from $$$a$$$. He then performs the following operation until there are no elements left in $$$a$$$: Remove any two elements from $$$a$$$ and append their sum to $$$b$$$. The compressed array $$$b$$$ has to have a special property. The greatest common divisor ($$$\mathrm{gcd}$$$) of all its elements should be greater than $$$1$$$.Recall that the $$$\mathrm{gcd}$$$ of an array of positive integers is the biggest integer that is a divisor of all integers in the array.It can be proven that it is always possible to compress array $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$ such that $$$gcd(b_1, b_2..., b_{n-1}) &gt; 1$$$. Help Ashish find a way to do so.
256 megabytes
/* Aman Agarwal algo.java */ import java.util.*; import java.io.*; public class C { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static FastReader sc = new FastReader(); static PrintWriter out = new PrintWriter(System.out); static int ni()throws IOException{return sc.nextInt();} static long nl()throws IOException{return sc.nextLong();} static int[][] nai2(int n,int m)throws IOException{int a[][] = new int[n][m];for(int i=0;i<n;i++)for(int j=0;j<m;j++)a[i][j] = ni();return a;} static int[] nai(int N,int start)throws IOException{int[]A=new int[N+start];for(int i=start;i!=(N+start);i++){A[i]=ni();}return A;} static Integer[] naI(int N,int start)throws IOException{Integer[]A=new Integer[N+start];for(int i=start;i!=(N+start);i++){A[i]=ni();}return A;} static long[] nal(int N)throws IOException{long[]A=new long[N];for(int i=0;i!=N;i++){A[i]=nl();}return A;} static void print(int arr[]){for(int i=0;i<arr.length;i++)out.print(arr[i]+" ");out.println();} static void print(long arr[]){for(int i=0;i<arr.length;i++)out.print(arr[i]+" ");out.println();} static long gcd(long a, long b)throws IOException{return (b==0)?a:gcd(b,a%b);} static int gcd(int a, int b)throws IOException{return (b==0)?a:gcd(b,a%b);} static int bit(long n)throws IOException{return (n==0)?0:(1+bit(n&(n-1)));} // return the number of set bits. static boolean isPrime(int number){if(number==1) return false;if (number == 2 || number == 3){return true;}if (number % 2 == 0) {return false;}int sqrt = (int) Math.sqrt(number) + 1;for(int i = 3; i < sqrt; i += 2){if (number % i == 0){return false;}}return true;} static boolean isPrime(long number){if(number==1) return false;if (number == 2 || number == 3){return true;}if (number % 2 == 0) {return false;}long sqrt = (long) Math.sqrt(number) + 1;for(int i = 3; i < sqrt; i += 2){if (number % i == 0){return false;}}return true;} static int power(int n,int p){if(p==0)return 1;int a = power(n,p/2);a = a*a;int b = p & 1;if(b!=0){a = n*a;}return a;} static long power(long n,long p){if(p==0)return 1;long a = power(n,p/2);a = a*a;long b = p & 1;if(b!=0){a = n*a;}return a;} static void reverse(int[] a) {int b;for (int i = 0, j = a.length - 1; i < j; i++, j--) {b = a[i];a[i] = a[j];a[j] = b;}} static void reverse(long[] a) {long b;for (int i = 0, j = a.length - 1; i < j; i++, j--) {b = a[i];a[i] = a[j];a[j] = b;}} static void swap(int a[],int i,int j){a[i] = a[i] ^ a[j];a[j] = a[j] ^ a[i];a[i] = a[i] ^ a[j];} static void swap(long a[],int i,int j){a[i] = a[i] ^ a[j];a[j] = a[j] ^ a[i];a[i] = a[i] ^ a[j];} static int count(int n){int c=0;while(n>0){c++;n = n/10;}return c;} static int[] prefix_sum(int a[],int n){int s[] = new int[n];s[0] = a[0];for(int i=1;i<n;i++){s[i] = a[i]+s[i-1];}return s;} static long[] prefix_sum_int(int a[],int n){long s[] = new long[n];s[0] = (long)a[0];for(int i=1;i<n;i++){s[i] = ((long)a[i])+s[i-1];}return s;} static long[] prefix_sum_Integer(Integer a[],int n){long s[] = new long[n];s[0] = (long)a[0];for(int i=1;i<n;i++){s[i] = ((long)a[i])+s[i-1];}return s;} static long[] prefix_sum_long(long a[],int n){long s[] = new long[n];s[0] = a[0];for(int i=1;i<n;i++){s[i] = a[i]+s[i-1];}return s;} static boolean isPerfectSquare(double x){double sr = Math.sqrt(x);return ((sr - Math.floor(sr)) == 0);} static ArrayList<Integer> sieve(int n) {int k=0; boolean prime[] = new boolean[n+1];ArrayList<Integer> p_arr = new ArrayList<>();for(int i=0;i<n;i++) prime[i] = true;for(int p = 2; p*p <=n; p++){ k=p;if(prime[p] == true) { p_arr.add(p);for(int i = p*2; i <= n; i += p) prime[i] = false; } }for(int i = k+1;i<=n;i++){if(prime[i]==true)p_arr.add(i);}return p_arr;} static boolean[] seive_check(int n) {boolean prime[] = new boolean[n+1];for(int i=0;i<n;i++) prime[i] = true;for(int p = 2; p*p <=n; p++){ if(prime[p] == true) { for(int i = p*2; i <= n; i += p) prime[i] = false; } }prime[1]=false;return prime;} static int get_bits(int n){int p=0;while(n>0){p++;n = n>>1;}return p;} static int get_bits(long n){int p=0;while(n>0){p++;n = n>>1;}return p;} static int get_2_power(int n){if((n & (n-1))==0)return get_bits(n)-1;return -1;} static int get_2_power(long n){if((n & (n-1))==0)return get_bits(n)-1;return -1;} static void close(){out.flush();} /*-------------------------Main Code Starts(algo.java)----------------------------------*/ static public void solve() throws IOException { int n = ni(); int arr[] = new int[2*n]; ArrayList<Integer>even = new ArrayList<>(); ArrayList<Integer>odd = new ArrayList<>(); int k=0,l=0; for(int i=0;i<2*n;i++) { arr[i] = ni(); if(arr[i]%2==1) { odd.add(i); } else { even.add(i); } } int ans = 0; if(odd.size()>1) { for(int i=0;i<odd.size();i=i+2) { if(i+1<odd.size()) { System.out.print(odd.get(i)+1+" "); System.out.println(odd.get(i+1)+1); ans++; } if(ans==n-1) { return; } } } if(even.size()>1) { for(int i=0;i<even.size();i=i+2) { if(i+1<even.size()) { System.out.print(even.get(i)+1+" "); System.out.println(even.get(i+1)+1); ans++; } if(ans==n-1) { return; } } } } public static void main(String[] args) throws IOException { int test = 1; test = sc.nextInt(); while(test-- > 0) { solve(); } close(); } }
Java
["3\n3\n1 2 3 4 5 6\n2\n5 7 9 10\n5\n1 3 3 4 5 90 100 101 2 3"]
1 second
["3 6\n4 5\n3 4\n1 9\n2 3\n4 5\n6 10"]
NoteIn the first test case, $$$b = \{3+6, 4+5\} = \{9, 9\}$$$ and $$$\mathrm{gcd}(9, 9) = 9$$$.In the second test case, $$$b = \{9+10\} = \{19\}$$$ and $$$\mathrm{gcd}(19) = 19$$$.In the third test case, $$$b = \{1+2, 3+3, 4+5, 90+3\} = \{3, 6, 9, 93\}$$$ and $$$\mathrm{gcd}(3, 6, 9, 93) = 3$$$.
Java 8
standard input
[ "constructive algorithms", "number theory", "math" ]
96fac9f9377bf03e144067bf93716d3d
The first line contains a single integer $$$t$$$ ($$$1 \leq t \leq 10$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains a single integer $$$n$$$ ($$$2 \leq n \leq 1000$$$). The second line of each test case contains $$$2n$$$ integers $$$a_1, a_2, \ldots, a_{2n}$$$ ($$$1 \leq a_i \leq 1000$$$) — the elements of the array $$$a$$$.
1,100
For each test case, output $$$n-1$$$ lines — the operations performed to compress the array $$$a$$$ to the array $$$b$$$. The initial discard of the two elements is not an operation, you don't need to output anything about it. The $$$i$$$-th line should contain two integers, the indices ($$$1$$$ —based) of the two elements from the array $$$a$$$ that are used in the $$$i$$$-th operation. All $$$2n-2$$$ indices should be distinct integers from $$$1$$$ to $$$2n$$$. You don't need to output two initially discarded elements from $$$a$$$. If there are multiple answers, you can find any.
standard output
PASSED
62bbcb96219540ed97ce61fe2589c9b2
train_000.jsonl
1592663700
Ashish has an array $$$a$$$ of consisting of $$$2n$$$ positive integers. He wants to compress $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$. To do this, he first discards exactly $$$2$$$ (any two) elements from $$$a$$$. He then performs the following operation until there are no elements left in $$$a$$$: Remove any two elements from $$$a$$$ and append their sum to $$$b$$$. The compressed array $$$b$$$ has to have a special property. The greatest common divisor ($$$\mathrm{gcd}$$$) of all its elements should be greater than $$$1$$$.Recall that the $$$\mathrm{gcd}$$$ of an array of positive integers is the biggest integer that is a divisor of all integers in the array.It can be proven that it is always possible to compress array $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$ such that $$$gcd(b_1, b_2..., b_{n-1}) &gt; 1$$$. Help Ashish find a way to do so.
256 megabytes
import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.LinkedList; import java.util.StringTokenizer; /** * I realized that you might have doubt in this question, so if at some point in my * code you find anything that you don't understand, please do not disturb me. * * - Sheldon Cooper */ public class Howard { public static void main(String[] args) throws Exception { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st; PrintWriter pw = new PrintWriter(System.out); try { int t = Integer.parseInt(br.readLine()); while(t-->0) { int n = Integer.parseInt(br.readLine()); st = new StringTokenizer(br.readLine()); LinkedList<Integer> ll1 = new LinkedList<>(); LinkedList<Integer> ll2 = new LinkedList<>(); for(int i=0 ; i<2*n ; i++) { int x = Integer.parseInt(st.nextToken()); if(x%2 == 0) ll1.add((i+1)); else ll2.add((i+1)); } if(ll1.size()%2 == 1) { ll1.poll(); ll2.poll(); } else { if(ll1.size()!=0) { ll1.poll(); ll1.poll(); } else { ll2.poll(); ll2.poll(); } } while(ll1.size() != 0) { int x = ll1.poll(); int y = ll1.poll(); pw.println(x + " " + y); } while(ll2.size() != 0) { int x = ll2.poll(); int y = ll2.poll(); pw.println(x + " " + y); } } } finally { pw.flush(); pw.close(); } } }
Java
["3\n3\n1 2 3 4 5 6\n2\n5 7 9 10\n5\n1 3 3 4 5 90 100 101 2 3"]
1 second
["3 6\n4 5\n3 4\n1 9\n2 3\n4 5\n6 10"]
NoteIn the first test case, $$$b = \{3+6, 4+5\} = \{9, 9\}$$$ and $$$\mathrm{gcd}(9, 9) = 9$$$.In the second test case, $$$b = \{9+10\} = \{19\}$$$ and $$$\mathrm{gcd}(19) = 19$$$.In the third test case, $$$b = \{1+2, 3+3, 4+5, 90+3\} = \{3, 6, 9, 93\}$$$ and $$$\mathrm{gcd}(3, 6, 9, 93) = 3$$$.
Java 8
standard input
[ "constructive algorithms", "number theory", "math" ]
96fac9f9377bf03e144067bf93716d3d
The first line contains a single integer $$$t$$$ ($$$1 \leq t \leq 10$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains a single integer $$$n$$$ ($$$2 \leq n \leq 1000$$$). The second line of each test case contains $$$2n$$$ integers $$$a_1, a_2, \ldots, a_{2n}$$$ ($$$1 \leq a_i \leq 1000$$$) — the elements of the array $$$a$$$.
1,100
For each test case, output $$$n-1$$$ lines — the operations performed to compress the array $$$a$$$ to the array $$$b$$$. The initial discard of the two elements is not an operation, you don't need to output anything about it. The $$$i$$$-th line should contain two integers, the indices ($$$1$$$ —based) of the two elements from the array $$$a$$$ that are used in the $$$i$$$-th operation. All $$$2n-2$$$ indices should be distinct integers from $$$1$$$ to $$$2n$$$. You don't need to output two initially discarded elements from $$$a$$$. If there are multiple answers, you can find any.
standard output
PASSED
b71413ed7b5e4d212dbda1999341250a
train_000.jsonl
1592663700
Ashish has an array $$$a$$$ of consisting of $$$2n$$$ positive integers. He wants to compress $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$. To do this, he first discards exactly $$$2$$$ (any two) elements from $$$a$$$. He then performs the following operation until there are no elements left in $$$a$$$: Remove any two elements from $$$a$$$ and append their sum to $$$b$$$. The compressed array $$$b$$$ has to have a special property. The greatest common divisor ($$$\mathrm{gcd}$$$) of all its elements should be greater than $$$1$$$.Recall that the $$$\mathrm{gcd}$$$ of an array of positive integers is the biggest integer that is a divisor of all integers in the array.It can be proven that it is always possible to compress array $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$ such that $$$gcd(b_1, b_2..., b_{n-1}) &gt; 1$$$. Help Ashish find a way to do so.
256 megabytes
import java.util.ArrayList; import java.util.Scanner; import java.util.Stack; public class Main { public static void test() { } public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); for (int i = 0; i < n; i++) { int size = sc.nextInt(); ArrayList<Integer> values = new ArrayList<>(); for (int j = 0; j < 2 * size; j++) { values.add(sc.nextInt()); } printCompressionPath(values); } } public static void printCompressionPath(ArrayList<Integer> values) { Stack<IndexElement> evens = new Stack<>(); Stack<IndexElement> odds = new Stack<>(); for (int i = 0; i < values.size(); i++) { IndexElement v = new IndexElement(i + 1, values.get(i)); if (values.get(i) % 2 == 0) { evens.add(v); } else { odds.add(v); } } if (odds.size() % 2 == 1) { odds.pop(); evens.pop(); } else if (evens.size() > 1) { evens.pop(); evens.pop(); } else { odds.pop(); odds.pop(); } while (odds.size() >= 2) { System.out.println(odds.pop() + " " + odds.pop()); } while (evens.size() >= 2) { System.out.println(evens.pop() + " " + evens.pop()); } } static class IndexElement { int index; int element; public IndexElement(int i, int e) { index = i; element = e; } public String toString() { return "" + index; } } }
Java
["3\n3\n1 2 3 4 5 6\n2\n5 7 9 10\n5\n1 3 3 4 5 90 100 101 2 3"]
1 second
["3 6\n4 5\n3 4\n1 9\n2 3\n4 5\n6 10"]
NoteIn the first test case, $$$b = \{3+6, 4+5\} = \{9, 9\}$$$ and $$$\mathrm{gcd}(9, 9) = 9$$$.In the second test case, $$$b = \{9+10\} = \{19\}$$$ and $$$\mathrm{gcd}(19) = 19$$$.In the third test case, $$$b = \{1+2, 3+3, 4+5, 90+3\} = \{3, 6, 9, 93\}$$$ and $$$\mathrm{gcd}(3, 6, 9, 93) = 3$$$.
Java 8
standard input
[ "constructive algorithms", "number theory", "math" ]
96fac9f9377bf03e144067bf93716d3d
The first line contains a single integer $$$t$$$ ($$$1 \leq t \leq 10$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains a single integer $$$n$$$ ($$$2 \leq n \leq 1000$$$). The second line of each test case contains $$$2n$$$ integers $$$a_1, a_2, \ldots, a_{2n}$$$ ($$$1 \leq a_i \leq 1000$$$) — the elements of the array $$$a$$$.
1,100
For each test case, output $$$n-1$$$ lines — the operations performed to compress the array $$$a$$$ to the array $$$b$$$. The initial discard of the two elements is not an operation, you don't need to output anything about it. The $$$i$$$-th line should contain two integers, the indices ($$$1$$$ —based) of the two elements from the array $$$a$$$ that are used in the $$$i$$$-th operation. All $$$2n-2$$$ indices should be distinct integers from $$$1$$$ to $$$2n$$$. You don't need to output two initially discarded elements from $$$a$$$. If there are multiple answers, you can find any.
standard output
PASSED
ceab4a5e073bc2e702d62fdfbdbebeb0
train_000.jsonl
1592663700
Ashish has an array $$$a$$$ of consisting of $$$2n$$$ positive integers. He wants to compress $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$. To do this, he first discards exactly $$$2$$$ (any two) elements from $$$a$$$. He then performs the following operation until there are no elements left in $$$a$$$: Remove any two elements from $$$a$$$ and append their sum to $$$b$$$. The compressed array $$$b$$$ has to have a special property. The greatest common divisor ($$$\mathrm{gcd}$$$) of all its elements should be greater than $$$1$$$.Recall that the $$$\mathrm{gcd}$$$ of an array of positive integers is the biggest integer that is a divisor of all integers in the array.It can be proven that it is always possible to compress array $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$ such that $$$gcd(b_1, b_2..., b_{n-1}) &gt; 1$$$. Help Ashish find a way to do so.
256 megabytes
import java.io.*; import java.util.*; import static java.lang.Math.*; /** * Built using CHelper plug-in * Actual solution is at the top */ public class AA { public static void main(String[] args) throws IOException { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); solver.solve(in.nextInt(), in, out); out.close(); } static class TaskA { long mod = (long)(998244353); long fact[]; int depth[]; int parentTable[][]; int degree[]; ArrayList<Integer> leaves; int start = 0; int end = 0; int length = Integer.MAX_VALUE; public void solve(int testNumber, InputReader in, PrintWriter out) throws IOException { while(testNumber-->0){ int n = in.nextInt(); ArrayList<Integer> odd = new ArrayList<>(); ArrayList<Integer> even = new ArrayList<>(); for(int i=0;i<2*n;i++){ int x = in.nextInt(); if(x%2 == 0) even.add(i+1); else odd.add(i+1); } // out.println(odd); // out.println(even); int i = 0,j = 0; if(odd.size() == 0){ i = 0; j = 2; } else if(even.size() == 0){ i = 2; j = 0; } else if(odd.size()%2 == 0){ i = 2; j = 0; // while(i<odd.size() && j<even.size()){ // out.println(odd.get(i) + " " + even.get(j)); // i++; // j++; // } } else{ i = 1; j = 1; } while(i<odd.size()){ out.println(odd.get(i) + " " + odd.get(i+1)); i+=2; } while(j<even.size()){ out.println(even.get(j) + " " + even.get(j+1)); j+=2; } while(i<odd.size()){ out.println(odd.get(i) + " " + odd.get(i+2)); i+=2; } while(j<even.size()){ out.println(even.get(j) + " " + even.get(j+1)); j+=2; } } } public void dfs(ArrayList<ArrayList<Integer>> a , int index , int parent , int visited[] , int p[]){ depth[index] = 1+depth[parent]; p[index] = parent; visited[index] = 1; int l = a.get(index).size(); // for(int i=0;i<l;i++){ // if(visited[a.get(index).get(i)] == 1) // continue; // dfs(a , a.get(index).get(i) , index , visited); // } for(int i=0;i<l;i++){ if(a.get(index).get(i) == parent) continue; if(visited[a.get(index).get(i)] == 1){ int x = Math.abs(depth[index] - depth[a.get(index).get(i)]); if(x<length){ length = x; start = a.get(index).get(i); end = index; } continue; } dfs(a , a.get(index).get(i) , index , visited , p); } } public int distance(ArrayList<ArrayList<Integer>> a , int u , int v){ return depth[u]+depth[v] - 2*depth[lca(a , u , v)]; } // public void dfs(ArrayList<ArrayList<Integer>> a , int index , int parent){ // parentTable[index][0] = parent; // depth[index] = depth[parent]+1; // if(a.get(index).size()==1) // leaves.add(index); // for(int i=1;i<parentTable[index].length;i++) // parentTable[index][i] = parentTable[parentTable[index][i-1]][i-1]; // for(int i=0;i<a.get(index).size();i++){ // if(a.get(index).get(i)==parent) // continue; // dfs(a , a.get(index).get(i) , index); // } // } public int lca(ArrayList<ArrayList<Integer>> a , int u , int v){ if(depth[v]<depth[u]){ int x = u; u = v; v = x; } int diff = depth[v] - depth[u]; for(int i=0;i<parentTable[v].length;i++){ // checking whether the ith bit is set in the diff variable if(((diff>>i)&1) == 1) v = parentTable[v][i]; } if(v == u) return v; for(int i=parentTable[v].length-1;i>=0;i--){ if(parentTable[u][i] != parentTable[v][i]){ v = parentTable[v][i]; u = parentTable[u][i]; } } return parentTable[u][0]; } // for the min max problems public void build(int lookup[][] , int arr[], int n) { for (int i = 0; i < n; i++) lookup[i][0] = arr[i]; for (int j = 1; (1 << j) <= n; j++) { for (int i = 0; (i + (1 << j) - 1) < n; i++) { if (lookup[i][j - 1] > lookup[i + (1 << (j - 1))][j - 1]) lookup[i][j] = lookup[i][j - 1]; else lookup[i][j] = lookup[i + (1 << (j - 1))][j - 1]; } } } public int query(int lookup[][] , int L, int R) { int j = (int)(Math.log(R - L + 1)/Math.log(2)); if (lookup[L][j] >= lookup[R - (1 << j) + 1][j]) return lookup[L][j]; else return lookup[R - (1 << j) + 1][j]; } // for printing purposes public void print1d(int a[] , PrintWriter out){ for(int i=0;i<a.length;i++) out.print(a[i] + " "); out.println(); } public void print2d(int a[][] , PrintWriter out){ for(int i=0;i<a.length;i++){ for(int j=0;j<a[i].length;j++) out.print(a[i][j] + " "); out.println(); } out.println(); } public void sieve(int a[]){ a[0] = a[1] = 1; int i; for(i=2;i*i<=a.length;i++){ if(a[i] != 0) continue; a[i] = i; for(int k = (i)*(i);k<a.length;k+=i){ if(a[k] != 0) continue; a[k] = i; } } } public int [][] matrixExpo(int c[][] , int n){ int a[][] = new int[c.length][c[0].length]; int b[][] = new int[a.length][a[0].length]; for(int i=0;i<c.length;i++) for(int j=0;j<c[0].length;j++) a[i][j] = c[i][j]; for(int i=0;i<a.length;i++) b[i][i] = 1; while(n!=1){ if(n%2 == 1){ b = matrixMultiply(a , a); n--; } a = matrixMultiply(a , a); n/=2; } return matrixMultiply(a , b); } public int [][] matrixMultiply(int a[][] , int b[][]){ int r1 = a.length; int c1 = a[0].length; int c2 = b[0].length; int c[][] = new int[r1][c2]; for(int i=0;i<r1;i++){ for(int j=0;j<c2;j++){ for(int k=0;k<c1;k++) c[i][j] += a[i][k]*b[k][j]; } } return c; } public long nCrPFermet(int n , int r , long p){ if(r==0) return 1l; // long fact[] = new long[n+1]; // fact[0] = 1; // for(int i=1;i<=n;i++) // fact[i] = (i*fact[i-1])%p; long modInverseR = pow(fact[r] , p-2 , p); long modInverseNR = pow(fact[n-r] , p-2 , p); long w = (((fact[n]*modInverseR)%p)*modInverseNR)%p; return w; } public long pow(long a, long b, long m) { a %= m; long res = 1; while (b > 0) { long x = b&1; if (x == 1) res = res * a % m; a = a * a % m; b >>= 1; } return res; } public long pow(long a, long b) { long res = 1; while (b > 0) { long x = b&1; if (x == 1) res = res * a; a = a * a; b >>= 1; } return res; } public void swap(int a[] , int p1 , int p2){ int x = a[p1]; a[p1] = a[p2]; a[p2] = x; } public void sortedArrayToBST(TreeSet<Integer> a , int start, int end) { if (start > end) { return; } int mid = (start + end) / 2; a.add(mid); sortedArrayToBST(a, start, mid - 1); sortedArrayToBST(a, mid + 1, end); } class Combine{ int value; int delete; Combine(int val , int delete){ this.value = val; this.delete = delete; } } class Sort2 implements Comparator<Combine>{ public int compare(Combine a , Combine b){ if(a.value > b.value) return 1; else if(a.value == b.value && a.delete>b.delete) return 1; else if(a.value == b.value && a.delete == b.delete) return 0; return -1; } } public int lowerLastBound(ArrayList<Integer> a , int x){ int l = 0; int r = a.size()-1; if(a.get(l)>=x) return -1; if(a.get(r)<x) return r; int mid = -1; while(l<=r){ mid = (l+r)/2; if(a.get(mid) == x && a.get(mid-1)<x) return mid-1; else if(a.get(mid)>=x) r = mid-1; else if(a.get(mid)<x && a.get(mid+1)>=x) return mid; else if(a.get(mid)<x && a.get(mid+1)<x) l = mid+1; } return mid; } public int upperFirstBound(ArrayList<Integer> a , Integer x){ int l = 0; int r = a.size()-1; if(a.get(l)>x) return l; if(a.get(r)<=x) return r+1; int mid = -1; while(l<=r){ mid = (l+r)/2; if(a.get(mid) == x && a.get(mid+1)>x) return mid+1; else if(a.get(mid)<=x) l = mid+1; else if(a.get(mid)>x && a.get(mid-1)<=x) return mid; else if(a.get(mid)>x && a.get(mid-1)>x) r = mid-1; } return mid; } public int lowerLastBound(int a[] , int x){ int l = 0; int r = a.length-1; if(a[l]>=x) return -1; if(a[r]<x) return r; int mid = -1; while(l<=r){ mid = (l+r)/2; if(a[mid] == x && a[mid-1]<x) return mid-1; else if(a[mid]>=x) r = mid-1; else if(a[mid]<x && a[mid+1]>=x) return mid; else if(a[mid]<x && a[mid+1]<x) l = mid+1; } return mid; } public int upperFirstBound(long a[] , long x){ int l = 0; int r = a.length-1; if(a[l]>x) return l; if(a[r]<=x) return r+1; int mid = -1; while(l<=r){ mid = (l+r)/2; if(a[mid] == x && a[mid+1]>x) return mid+1; else if(a[mid]<=x) l = mid+1; else if(a[mid]>x && a[mid-1]<=x) return mid; else if(a[mid]>x && a[mid-1]>x) r = mid-1; } return mid; } public long log(float number , int base){ return (long) Math.ceil((Math.log(number) / Math.log(base)) + 1e-9); } public long gcd(long a , long b){ if(a<b){ long c = b; b = a; a = c; } while(b!=0){ long c = a; a = b; b = c%a; } return a; } public long[] gcdEx(long p, long q) { if (q == 0) return new long[] { p, 1, 0 }; long[] vals = gcdEx(q, p % q); long d = vals[0]; long a = vals[2]; long b = vals[1] - (p / q) * vals[2]; // 0->gcd 1->xValue 2->yValue return new long[] { d, a, b }; } public void sievePhi(int a[]){ a[0] = 0; a[1] = 1; for(int i=2;i<a.length;i++) a[i] = i-1; for(int i=2;i<a.length;i++) for(int j = 2*i;j<a.length;j+=i) a[j] -= a[i]; } public void lcmSum(long a[]){ int sievePhi[] = new int[(int)1e6 + 1]; sievePhi(sievePhi); a[0] = 0; for(int i=1;i<a.length;i++) for(int j = i;j<a.length;j+=i) a[j] += (long)i*sievePhi[i]; } static class AVLTree{ Node root; public AVLTree(){ this.root = null; } public int height(Node n){ return (n == null ? 0 : n.height); } public int getBalance(Node n){ return (n == null ? 0 : height(n.left) - height(n.right)); } public Node rotateRight(Node a){ Node b = a.left; Node br = b.right; a.lSum -= b.lSum; a.lCount -= b.lCount; b.rSum += a.rSum; b.rCount += a.rCount; b.right = a; a.left = br; a.height = 1 + Math.max(height(a.left) , height(a.right)); b.height = 1 + Math.max(height(b.left) , height(b.right)); return b; } public Node rotateLeft(Node a){ Node b = a.right; Node bl = b.left; a.rSum -= b.rSum; a.rCount -= b.rCount; b.lSum += a.lSum; b.lCount += a.lCount; b.left = a; a.right = bl; a.height = 1 + Math.max(height(a.left) , height(a.right)); b.height = 1 + Math.max(height(b.left) , height(b.right)); return b; } public Node insert(Node root , long value){ if(root == null){ return new Node(value); } if(value<=root.value){ root.lCount++; root.lSum += value; root.left = insert(root.left , value); } if(value>root.value){ root.rCount++; root.rSum += value; root.right = insert(root.right , value); } // updating the height of the root root.height = 1 + Math.max(height(root.left) , height(root.right)); int balance = getBalance(root); //ll if(balance>1 && value<=root.left.value) return rotateRight(root); //rr if(balance<-1 && value>root.right.value) return rotateLeft(root); //lr if(balance>1 && value>root.left.value){ root.left = rotateLeft(root.left); return rotateRight(root); } //rl if(balance<-1 && value<=root.right.value){ root.right = rotateRight(root.right); return rotateLeft(root); } return root; } public void insertElement(long value){ this.root = insert(root , value); } public int getElementLessThanK(long k){ int count = 0; Node temp = root; while(temp!=null){ if(temp.value == k){ if(temp.left == null || temp.left.value<k){ count += temp.lCount; return count-1; } else temp = temp.left; } else if(temp.value>k){ temp = temp.left; } else{ count += temp.lCount; temp = temp.right; } } return count; } public void inorder(Node root , PrintWriter out){ Node temp = root; if(temp!=null){ inorder(temp.left , out); out.println(temp.value + " " + temp.lCount + " " + temp.rCount); inorder(temp.right , out); } } } static class Node{ long value; long lCount , rCount; long lSum , rSum; Node left , right; int height; public Node(long value){ this.value = value; left = null; right = null; lCount = 1; rCount = 1; lSum = value; rSum = value; height = 1; } } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } } }
Java
["3\n3\n1 2 3 4 5 6\n2\n5 7 9 10\n5\n1 3 3 4 5 90 100 101 2 3"]
1 second
["3 6\n4 5\n3 4\n1 9\n2 3\n4 5\n6 10"]
NoteIn the first test case, $$$b = \{3+6, 4+5\} = \{9, 9\}$$$ and $$$\mathrm{gcd}(9, 9) = 9$$$.In the second test case, $$$b = \{9+10\} = \{19\}$$$ and $$$\mathrm{gcd}(19) = 19$$$.In the third test case, $$$b = \{1+2, 3+3, 4+5, 90+3\} = \{3, 6, 9, 93\}$$$ and $$$\mathrm{gcd}(3, 6, 9, 93) = 3$$$.
Java 8
standard input
[ "constructive algorithms", "number theory", "math" ]
96fac9f9377bf03e144067bf93716d3d
The first line contains a single integer $$$t$$$ ($$$1 \leq t \leq 10$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains a single integer $$$n$$$ ($$$2 \leq n \leq 1000$$$). The second line of each test case contains $$$2n$$$ integers $$$a_1, a_2, \ldots, a_{2n}$$$ ($$$1 \leq a_i \leq 1000$$$) — the elements of the array $$$a$$$.
1,100
For each test case, output $$$n-1$$$ lines — the operations performed to compress the array $$$a$$$ to the array $$$b$$$. The initial discard of the two elements is not an operation, you don't need to output anything about it. The $$$i$$$-th line should contain two integers, the indices ($$$1$$$ —based) of the two elements from the array $$$a$$$ that are used in the $$$i$$$-th operation. All $$$2n-2$$$ indices should be distinct integers from $$$1$$$ to $$$2n$$$. You don't need to output two initially discarded elements from $$$a$$$. If there are multiple answers, you can find any.
standard output
PASSED
d23979a65404a92a40490bbe39d3ad25
train_000.jsonl
1592663700
Ashish has an array $$$a$$$ of consisting of $$$2n$$$ positive integers. He wants to compress $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$. To do this, he first discards exactly $$$2$$$ (any two) elements from $$$a$$$. He then performs the following operation until there are no elements left in $$$a$$$: Remove any two elements from $$$a$$$ and append their sum to $$$b$$$. The compressed array $$$b$$$ has to have a special property. The greatest common divisor ($$$\mathrm{gcd}$$$) of all its elements should be greater than $$$1$$$.Recall that the $$$\mathrm{gcd}$$$ of an array of positive integers is the biggest integer that is a divisor of all integers in the array.It can be proven that it is always possible to compress array $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$ such that $$$gcd(b_1, b_2..., b_{n-1}) &gt; 1$$$. Help Ashish find a way to do so.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.StringTokenizer; /** * * @author milon */ public class GCD_Compression { public static void main(String[] args) { FastScanner fs=new FastScanner(); int T=fs.nextInt(); for(int tt=0;tt<T;tt++){ int n=fs.nextInt()*2; int[] a=fs.readArray(n); ArrayList<Integer> evens=new ArrayList<>(),odds=new ArrayList<>(); for(int i=0;i<n;i++){ if(a[i]%2==0){ evens.add(i+1); }else{ odds.add(i+1); } } if(evens.size()%2==0){ if(evens.size()>0){ evens.remove(0); }else{ odds.remove(0); } } for(int i=0;i+1<evens.size();i+=2){ System.out.println(evens.get(i)+" "+evens.get(i+1)); } for(int i=0;i+1<odds.size();i+=2){ System.out.println(odds.get(i)+" "+odds.get(i+1)); } } } } class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } }
Java
["3\n3\n1 2 3 4 5 6\n2\n5 7 9 10\n5\n1 3 3 4 5 90 100 101 2 3"]
1 second
["3 6\n4 5\n3 4\n1 9\n2 3\n4 5\n6 10"]
NoteIn the first test case, $$$b = \{3+6, 4+5\} = \{9, 9\}$$$ and $$$\mathrm{gcd}(9, 9) = 9$$$.In the second test case, $$$b = \{9+10\} = \{19\}$$$ and $$$\mathrm{gcd}(19) = 19$$$.In the third test case, $$$b = \{1+2, 3+3, 4+5, 90+3\} = \{3, 6, 9, 93\}$$$ and $$$\mathrm{gcd}(3, 6, 9, 93) = 3$$$.
Java 8
standard input
[ "constructive algorithms", "number theory", "math" ]
96fac9f9377bf03e144067bf93716d3d
The first line contains a single integer $$$t$$$ ($$$1 \leq t \leq 10$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains a single integer $$$n$$$ ($$$2 \leq n \leq 1000$$$). The second line of each test case contains $$$2n$$$ integers $$$a_1, a_2, \ldots, a_{2n}$$$ ($$$1 \leq a_i \leq 1000$$$) — the elements of the array $$$a$$$.
1,100
For each test case, output $$$n-1$$$ lines — the operations performed to compress the array $$$a$$$ to the array $$$b$$$. The initial discard of the two elements is not an operation, you don't need to output anything about it. The $$$i$$$-th line should contain two integers, the indices ($$$1$$$ —based) of the two elements from the array $$$a$$$ that are used in the $$$i$$$-th operation. All $$$2n-2$$$ indices should be distinct integers from $$$1$$$ to $$$2n$$$. You don't need to output two initially discarded elements from $$$a$$$. If there are multiple answers, you can find any.
standard output
PASSED
30f9121e63469c602186c5315601a8fe
train_000.jsonl
1592663700
Ashish has an array $$$a$$$ of consisting of $$$2n$$$ positive integers. He wants to compress $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$. To do this, he first discards exactly $$$2$$$ (any two) elements from $$$a$$$. He then performs the following operation until there are no elements left in $$$a$$$: Remove any two elements from $$$a$$$ and append their sum to $$$b$$$. The compressed array $$$b$$$ has to have a special property. The greatest common divisor ($$$\mathrm{gcd}$$$) of all its elements should be greater than $$$1$$$.Recall that the $$$\mathrm{gcd}$$$ of an array of positive integers is the biggest integer that is a divisor of all integers in the array.It can be proven that it is always possible to compress array $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$ such that $$$gcd(b_1, b_2..., b_{n-1}) &gt; 1$$$. Help Ashish find a way to do so.
256 megabytes
import java.io.*; import java.util.*; import java.math.*; import java.awt.Point; //ArrayList<Integer> ar=new ArrayList<Integer>(); //HashSet<Integer> h=new HashSet<Integer>(); //HashMap<Integer,Integer> h=new HashMap<Integer, Integer>(); //int b[]=new int[m]; //int a[]=new int[n]; //for(i=0;i<n;i++) //a[i]=sc.ni(); //out.println(); //out.print(+" "); public class Main { //static final long MOD = 998244353L; //static final long INF = 1000000000000000007L; static final long MOD = 1000000007L; static final int INF = 1000000007; public static void main(String[] args) { FastScanner sc = new FastScanner(); PrintWriter out = new PrintWriter(System.out); int T=sc.ni(); while(T-->0) { int n=sc.ni(); int ev=0,od=0; int i; int a[]=new int[2*n+1]; for( i=1;i<=2*n;i++){ a[i]=sc.ni(); if(a[i]%2==0)ev++; else if(a[i]%2==1)od++; } int even[]=new int[ev]; int odd[]=new int[od]; int x=0,y=0; for(i=1;i<=2*n;i++){ if(a[i]%2==0) even[x++]=i; else if(a[i]%2==1) odd[y++]=i; } if(od%2==1 && ev%2==1){ if(ev>1){ for(i=1;i<ev;i+=2) out.println(even[i]+" "+even[i+1]); } if(od>1){ for(i=1;i<od;i+=2) out.println(odd[i]+" "+odd[i+1]); } } else if(od%2==0 && ev%2==0){ if(ev>2){ for(i=2;i<ev;i+=2) out.println(even[i]+" "+even[i+1]); } if(ev==0){ for(i=2;i<od;i+=2) out.println(odd[i]+" "+odd[i+1]); continue; } for(i=0;i<od;i+=2) out.println(odd[i]+" "+odd[i+1]); } // ArrayList<Integer> even=new ArrayList<Integer>(); // ArrayList<Integer> odd=new ArrayList<Integer>(); // for( i=1;i<=2*n;i++){ // if(a[i]%2==0) even.add(i); // else if(a[i]%2==1) odd.add(i); // } // if(od%2==1 && ev%2==1){ // odd.remove(0); // even.remove(0); // } // else if(ev%2==0){ // even.remove(0); // even.remove(1); // } // for( i=0;i<even.size();i+=2){ // out.println(even.get(i)+" "+even.get(i+1)); // } // for( i=0;i<odd.size();i+=2) // out.println(odd.get(i)+" "+odd.get(i+1)); }out.flush(); } public static long dist(long[] p1, long[] p2) { return (Math.abs(p2[0]-p1[0])+Math.abs(p2[1]-p1[1])); } //Find the GCD of two numbers public static long gcd(long a, long b) { if (a < b) return gcd(b,a); if (b == 0) return a; else return gcd(b,a%b); } //Fast exponentiation (x^y mod m) public static long power(long x, long y, long m) { if (y < 0) return 0L; long ans = 1; x %= m; while (y > 0) { if(y % 2 == 1) ans = (ans * x) % m; y /= 2; x = (x * x) % m; } return ans; } public static int[] shuffle(int[] array) { Random rgen = new Random(); for (int i = 0; i < array.length; i++) { int randomPosition = rgen.nextInt(array.length); int temp = array[i]; array[i] = array[randomPosition]; array[randomPosition] = temp; } return array; } public static long[] shuffle(long[] array) { Random rgen = new Random(); for (int i = 0; i < array.length; i++) { int randomPosition = rgen.nextInt(array.length); long temp = array[i]; array[i] = array[randomPosition]; array[randomPosition] = temp; } return array; } public static int[][] shuffle(int[][] array) { Random rgen = new Random(); for (int i = 0; i < array.length; i++) { int randomPosition = rgen.nextInt(array.length); int[] temp = array[i]; array[i] = array[randomPosition]; array[randomPosition] = temp; } return array; } public static int[][] sort(int[][] array) { //Sort an array (immune to quicksort TLE) Arrays.sort(array, new Comparator<int[]>() { @Override public int compare(int[] a, int[] b) { return a[1]-b[1]; //ascending order } }); return array; } public static long[][] sort(long[][] array) { //Sort an array (immune to quicksort TLE) Random rgen = new Random(); for (int i = 0; i < array.length; i++) { int randomPosition = rgen.nextInt(array.length); long[] temp = array[i]; array[i] = array[randomPosition]; array[randomPosition] = temp; } Arrays.sort(array, new Comparator<long[]>() { @Override public int compare(long[] a, long[] b) { if (a[0] < b[0]) return -1; else if (a[0] > b[0]) return 1; else return 0; } }); return array; } static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int ni() { return Integer.parseInt(next()); } long nl() { return Long.parseLong(next()); } double nd() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["3\n3\n1 2 3 4 5 6\n2\n5 7 9 10\n5\n1 3 3 4 5 90 100 101 2 3"]
1 second
["3 6\n4 5\n3 4\n1 9\n2 3\n4 5\n6 10"]
NoteIn the first test case, $$$b = \{3+6, 4+5\} = \{9, 9\}$$$ and $$$\mathrm{gcd}(9, 9) = 9$$$.In the second test case, $$$b = \{9+10\} = \{19\}$$$ and $$$\mathrm{gcd}(19) = 19$$$.In the third test case, $$$b = \{1+2, 3+3, 4+5, 90+3\} = \{3, 6, 9, 93\}$$$ and $$$\mathrm{gcd}(3, 6, 9, 93) = 3$$$.
Java 8
standard input
[ "constructive algorithms", "number theory", "math" ]
96fac9f9377bf03e144067bf93716d3d
The first line contains a single integer $$$t$$$ ($$$1 \leq t \leq 10$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains a single integer $$$n$$$ ($$$2 \leq n \leq 1000$$$). The second line of each test case contains $$$2n$$$ integers $$$a_1, a_2, \ldots, a_{2n}$$$ ($$$1 \leq a_i \leq 1000$$$) — the elements of the array $$$a$$$.
1,100
For each test case, output $$$n-1$$$ lines — the operations performed to compress the array $$$a$$$ to the array $$$b$$$. The initial discard of the two elements is not an operation, you don't need to output anything about it. The $$$i$$$-th line should contain two integers, the indices ($$$1$$$ —based) of the two elements from the array $$$a$$$ that are used in the $$$i$$$-th operation. All $$$2n-2$$$ indices should be distinct integers from $$$1$$$ to $$$2n$$$. You don't need to output two initially discarded elements from $$$a$$$. If there are multiple answers, you can find any.
standard output
PASSED
adce047fd13c339fca83096f0122acd8
train_000.jsonl
1592663700
Ashish has an array $$$a$$$ of consisting of $$$2n$$$ positive integers. He wants to compress $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$. To do this, he first discards exactly $$$2$$$ (any two) elements from $$$a$$$. He then performs the following operation until there are no elements left in $$$a$$$: Remove any two elements from $$$a$$$ and append their sum to $$$b$$$. The compressed array $$$b$$$ has to have a special property. The greatest common divisor ($$$\mathrm{gcd}$$$) of all its elements should be greater than $$$1$$$.Recall that the $$$\mathrm{gcd}$$$ of an array of positive integers is the biggest integer that is a divisor of all integers in the array.It can be proven that it is always possible to compress array $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$ such that $$$gcd(b_1, b_2..., b_{n-1}) &gt; 1$$$. Help Ashish find a way to do so.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.util.InputMismatchException; import java.util.*; import java.io.*; import java.lang.*; public class Main{ public static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputReader.SpaceCharFilter filter; private BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars==-1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if(numChars <= 0) return -1; } return buf[curChar++]; } public String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } public int nextInt() { int c = read(); while(isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if(c<'0'||c>'9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public double nextDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public String next() { return readString(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static long gcd(long a, long b){ if (a == 0) return b; return gcd(b % a, a); } static long lcm(long a, long b) { return (a*b)/gcd(a, b); } public static void sortbyColumn(int arr[][], int col) { Arrays.sort(arr, new Comparator<int[]>() { @Override public int compare(final int[] entry1, final int[] entry2) { if (entry1[col] > entry2[col]) return 1; else return -1; } }); } static long func(long a[],long size,int s){ long max1=a[s]; long maxc=a[s]; for(int i=s+1;i<size;i++){ maxc=Math.max(a[i],maxc+a[i]); max1=Math.max(maxc,max1); } return max1; } public static class Pair<U extends Comparable<U>, V extends Comparable<V>> implements Comparable<Pair<U, V>> { public U x; public V y; public Pair(U x, V y) { this.x = x; this.y = y; } public int hashCode() { return (x == null ? 0 : x.hashCode() * 31) + (y == null ? 0 : y.hashCode()); } public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; Pair<U, V> p = (Pair<U, V>) o; return (x == null ? p.x == null : x.equals(p.x)) && (y == null ? p.y == null : y.equals(p.y)); } public int compareTo(Pair<U, V> b) { int cmpU = x.compareTo(b.x); return cmpU != 0 ? cmpU : y.compareTo(b.y); } public String toString() { return String.format("(%s, %s)", x.toString(), y.toString()); } } //static LinkedList<Integer> li; //static LinkedList<Integer> ans; static int ans1=0,ans2=0,k; static long dist[]; static int visited[]; //static int arr[]; static ArrayList<Integer> adj[]; static int color[]; public static void main(String args[]){ InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter w = new PrintWriter(outputStream); int t,i,j; t=in.nextInt(); while(t-->0){ int n=in.nextInt(); int arr[]=new int[2*n],oc=0,ec=0; LinkedList<Integer> odd=new LinkedList<>(); LinkedList<Integer> even=new LinkedList<>(); for(i=0;i<2*n;i++){ arr[i]=in.nextInt(); if(arr[i]%2==0){ even.add(i+1); }else{ odd.add(i+1); } } //w.println(odd+" "+even); if(odd.size()%2!=0){ odd.removeFirst(); } int c=0; while(odd.size()>=2){ if(c==n-1){ break; } w.println(odd.removeFirst()+" "+odd.removeFirst()); c++; } while(even.size()>=2){ if(c==n-1){ break; } w.println(even.removeFirst()+" "+even.removeFirst()); c++; } //w.println(t); } w.close(); } }
Java
["3\n3\n1 2 3 4 5 6\n2\n5 7 9 10\n5\n1 3 3 4 5 90 100 101 2 3"]
1 second
["3 6\n4 5\n3 4\n1 9\n2 3\n4 5\n6 10"]
NoteIn the first test case, $$$b = \{3+6, 4+5\} = \{9, 9\}$$$ and $$$\mathrm{gcd}(9, 9) = 9$$$.In the second test case, $$$b = \{9+10\} = \{19\}$$$ and $$$\mathrm{gcd}(19) = 19$$$.In the third test case, $$$b = \{1+2, 3+3, 4+5, 90+3\} = \{3, 6, 9, 93\}$$$ and $$$\mathrm{gcd}(3, 6, 9, 93) = 3$$$.
Java 8
standard input
[ "constructive algorithms", "number theory", "math" ]
96fac9f9377bf03e144067bf93716d3d
The first line contains a single integer $$$t$$$ ($$$1 \leq t \leq 10$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains a single integer $$$n$$$ ($$$2 \leq n \leq 1000$$$). The second line of each test case contains $$$2n$$$ integers $$$a_1, a_2, \ldots, a_{2n}$$$ ($$$1 \leq a_i \leq 1000$$$) — the elements of the array $$$a$$$.
1,100
For each test case, output $$$n-1$$$ lines — the operations performed to compress the array $$$a$$$ to the array $$$b$$$. The initial discard of the two elements is not an operation, you don't need to output anything about it. The $$$i$$$-th line should contain two integers, the indices ($$$1$$$ —based) of the two elements from the array $$$a$$$ that are used in the $$$i$$$-th operation. All $$$2n-2$$$ indices should be distinct integers from $$$1$$$ to $$$2n$$$. You don't need to output two initially discarded elements from $$$a$$$. If there are multiple answers, you can find any.
standard output
PASSED
d3197e3b9c32ce9a58e12ef4169ec6d7
train_000.jsonl
1592663700
Ashish has an array $$$a$$$ of consisting of $$$2n$$$ positive integers. He wants to compress $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$. To do this, he first discards exactly $$$2$$$ (any two) elements from $$$a$$$. He then performs the following operation until there are no elements left in $$$a$$$: Remove any two elements from $$$a$$$ and append their sum to $$$b$$$. The compressed array $$$b$$$ has to have a special property. The greatest common divisor ($$$\mathrm{gcd}$$$) of all its elements should be greater than $$$1$$$.Recall that the $$$\mathrm{gcd}$$$ of an array of positive integers is the biggest integer that is a divisor of all integers in the array.It can be proven that it is always possible to compress array $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$ such that $$$gcd(b_1, b_2..., b_{n-1}) &gt; 1$$$. Help Ashish find a way to do so.
256 megabytes
import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.List; import java.util.StringTokenizer; public class Solution { static final FS sc = new FS(); static final PrintWriter pw = new PrintWriter(System.out); public static void main(String[] args) { int t = sc.nextInt(); while (t-- > 0) { int n = sc.nextInt(); List<Integer> odd = new ArrayList<>(), even = new ArrayList<>(); for(int i = 1;i <= 2 * n;i++) { int num = sc.nextInt(); if (num % 2 == 0) { even.add(i); } else { odd.add(i); } } int count = 0; for(int i = 0;i < odd.size() - 1;i += 2) { if (count == n - 1) { break; } pw.println(odd.get(i) + " " + odd.get(i + 1)); count++; } for(int i = 0;i < even.size() - 1;i += 2) { if (count == n - 1) { break; } pw.println(even.get(i) + " " + even.get(i + 1)); count++; } } pw.flush(); } static class FS { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while(!st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch(Exception ignored) {} } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } } }
Java
["3\n3\n1 2 3 4 5 6\n2\n5 7 9 10\n5\n1 3 3 4 5 90 100 101 2 3"]
1 second
["3 6\n4 5\n3 4\n1 9\n2 3\n4 5\n6 10"]
NoteIn the first test case, $$$b = \{3+6, 4+5\} = \{9, 9\}$$$ and $$$\mathrm{gcd}(9, 9) = 9$$$.In the second test case, $$$b = \{9+10\} = \{19\}$$$ and $$$\mathrm{gcd}(19) = 19$$$.In the third test case, $$$b = \{1+2, 3+3, 4+5, 90+3\} = \{3, 6, 9, 93\}$$$ and $$$\mathrm{gcd}(3, 6, 9, 93) = 3$$$.
Java 8
standard input
[ "constructive algorithms", "number theory", "math" ]
96fac9f9377bf03e144067bf93716d3d
The first line contains a single integer $$$t$$$ ($$$1 \leq t \leq 10$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains a single integer $$$n$$$ ($$$2 \leq n \leq 1000$$$). The second line of each test case contains $$$2n$$$ integers $$$a_1, a_2, \ldots, a_{2n}$$$ ($$$1 \leq a_i \leq 1000$$$) — the elements of the array $$$a$$$.
1,100
For each test case, output $$$n-1$$$ lines — the operations performed to compress the array $$$a$$$ to the array $$$b$$$. The initial discard of the two elements is not an operation, you don't need to output anything about it. The $$$i$$$-th line should contain two integers, the indices ($$$1$$$ —based) of the two elements from the array $$$a$$$ that are used in the $$$i$$$-th operation. All $$$2n-2$$$ indices should be distinct integers from $$$1$$$ to $$$2n$$$. You don't need to output two initially discarded elements from $$$a$$$. If there are multiple answers, you can find any.
standard output
PASSED
6be2ebf3b5e8e52a8ac89b36afacc836
train_000.jsonl
1592663700
Ashish has an array $$$a$$$ of consisting of $$$2n$$$ positive integers. He wants to compress $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$. To do this, he first discards exactly $$$2$$$ (any two) elements from $$$a$$$. He then performs the following operation until there are no elements left in $$$a$$$: Remove any two elements from $$$a$$$ and append their sum to $$$b$$$. The compressed array $$$b$$$ has to have a special property. The greatest common divisor ($$$\mathrm{gcd}$$$) of all its elements should be greater than $$$1$$$.Recall that the $$$\mathrm{gcd}$$$ of an array of positive integers is the biggest integer that is a divisor of all integers in the array.It can be proven that it is always possible to compress array $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$ such that $$$gcd(b_1, b_2..., b_{n-1}) &gt; 1$$$. Help Ashish find a way to do so.
256 megabytes
// Working program using Reader Class import java.io.*; import java.util.*; public class Main { static class Reader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Reader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[64]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } public static void main(String[] args) throws IOException { Reader sc=new Reader(); PrintWriter out = new PrintWriter(System.out); int t=sc.nextInt(); while(t-->0){ int n=sc.nextInt(); Queue<Integer> odd=new LinkedList<Integer>(),even=new LinkedList<Integer>(); for(int i=0;i<2*n;i++){ Integer num=sc.nextInt(); if(num%2==0){ even.add(i+1); }else{ odd.add(i+1); } } //System.out.println(odd.size()+" "+even.size()); for(int i=1;i<n;i++){ if(odd.size()>1){ out.println(odd.poll()+" "+odd.poll()); }else{ out.println(even.poll()+" "+even.poll()); } } } out.flush(); } }
Java
["3\n3\n1 2 3 4 5 6\n2\n5 7 9 10\n5\n1 3 3 4 5 90 100 101 2 3"]
1 second
["3 6\n4 5\n3 4\n1 9\n2 3\n4 5\n6 10"]
NoteIn the first test case, $$$b = \{3+6, 4+5\} = \{9, 9\}$$$ and $$$\mathrm{gcd}(9, 9) = 9$$$.In the second test case, $$$b = \{9+10\} = \{19\}$$$ and $$$\mathrm{gcd}(19) = 19$$$.In the third test case, $$$b = \{1+2, 3+3, 4+5, 90+3\} = \{3, 6, 9, 93\}$$$ and $$$\mathrm{gcd}(3, 6, 9, 93) = 3$$$.
Java 8
standard input
[ "constructive algorithms", "number theory", "math" ]
96fac9f9377bf03e144067bf93716d3d
The first line contains a single integer $$$t$$$ ($$$1 \leq t \leq 10$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains a single integer $$$n$$$ ($$$2 \leq n \leq 1000$$$). The second line of each test case contains $$$2n$$$ integers $$$a_1, a_2, \ldots, a_{2n}$$$ ($$$1 \leq a_i \leq 1000$$$) — the elements of the array $$$a$$$.
1,100
For each test case, output $$$n-1$$$ lines — the operations performed to compress the array $$$a$$$ to the array $$$b$$$. The initial discard of the two elements is not an operation, you don't need to output anything about it. The $$$i$$$-th line should contain two integers, the indices ($$$1$$$ —based) of the two elements from the array $$$a$$$ that are used in the $$$i$$$-th operation. All $$$2n-2$$$ indices should be distinct integers from $$$1$$$ to $$$2n$$$. You don't need to output two initially discarded elements from $$$a$$$. If there are multiple answers, you can find any.
standard output
PASSED
7a8a351ee0dbe5237db172a83fa11d72
train_000.jsonl
1592663700
Ashish has an array $$$a$$$ of consisting of $$$2n$$$ positive integers. He wants to compress $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$. To do this, he first discards exactly $$$2$$$ (any two) elements from $$$a$$$. He then performs the following operation until there are no elements left in $$$a$$$: Remove any two elements from $$$a$$$ and append their sum to $$$b$$$. The compressed array $$$b$$$ has to have a special property. The greatest common divisor ($$$\mathrm{gcd}$$$) of all its elements should be greater than $$$1$$$.Recall that the $$$\mathrm{gcd}$$$ of an array of positive integers is the biggest integer that is a divisor of all integers in the array.It can be proven that it is always possible to compress array $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$ such that $$$gcd(b_1, b_2..., b_{n-1}) &gt; 1$$$. Help Ashish find a way to do so.
256 megabytes
import java.util.*; import java.lang.*; public final class TestB { public static void main(String args[]) { Scanner sc=new Scanner(System.in); int t=sc.nextInt(); for(int i=0;i<t;i++) { int n=sc.nextInt(); int val=2*n; int[] a=new int[val]; for(int j=0;j<val;j++) { int v=sc.nextInt(); a[j]=v; } int count=0; boolean[] visited=new boolean[val]; Arrays.fill(visited,false); for(int j=0;j<val;j++) { //int temp=a[j]; if(visited[j]==true) continue; for(int k=j+1;k<val;k++) { if((a[j]+a[k])%2==0 && visited[k]==false) { System.out.println((j+1)+" "+(k+1)); visited[j]=true; visited[k]=true; count++; if(count==n-1) { k=val;j=val; } else { break; } } } } } } }
Java
["3\n3\n1 2 3 4 5 6\n2\n5 7 9 10\n5\n1 3 3 4 5 90 100 101 2 3"]
1 second
["3 6\n4 5\n3 4\n1 9\n2 3\n4 5\n6 10"]
NoteIn the first test case, $$$b = \{3+6, 4+5\} = \{9, 9\}$$$ and $$$\mathrm{gcd}(9, 9) = 9$$$.In the second test case, $$$b = \{9+10\} = \{19\}$$$ and $$$\mathrm{gcd}(19) = 19$$$.In the third test case, $$$b = \{1+2, 3+3, 4+5, 90+3\} = \{3, 6, 9, 93\}$$$ and $$$\mathrm{gcd}(3, 6, 9, 93) = 3$$$.
Java 8
standard input
[ "constructive algorithms", "number theory", "math" ]
96fac9f9377bf03e144067bf93716d3d
The first line contains a single integer $$$t$$$ ($$$1 \leq t \leq 10$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains a single integer $$$n$$$ ($$$2 \leq n \leq 1000$$$). The second line of each test case contains $$$2n$$$ integers $$$a_1, a_2, \ldots, a_{2n}$$$ ($$$1 \leq a_i \leq 1000$$$) — the elements of the array $$$a$$$.
1,100
For each test case, output $$$n-1$$$ lines — the operations performed to compress the array $$$a$$$ to the array $$$b$$$. The initial discard of the two elements is not an operation, you don't need to output anything about it. The $$$i$$$-th line should contain two integers, the indices ($$$1$$$ —based) of the two elements from the array $$$a$$$ that are used in the $$$i$$$-th operation. All $$$2n-2$$$ indices should be distinct integers from $$$1$$$ to $$$2n$$$. You don't need to output two initially discarded elements from $$$a$$$. If there are multiple answers, you can find any.
standard output
PASSED
8d6ef405e8cea94bc9ddd0b2b04b7d2c
train_000.jsonl
1592663700
Ashish has an array $$$a$$$ of consisting of $$$2n$$$ positive integers. He wants to compress $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$. To do this, he first discards exactly $$$2$$$ (any two) elements from $$$a$$$. He then performs the following operation until there are no elements left in $$$a$$$: Remove any two elements from $$$a$$$ and append their sum to $$$b$$$. The compressed array $$$b$$$ has to have a special property. The greatest common divisor ($$$\mathrm{gcd}$$$) of all its elements should be greater than $$$1$$$.Recall that the $$$\mathrm{gcd}$$$ of an array of positive integers is the biggest integer that is a divisor of all integers in the array.It can be proven that it is always possible to compress array $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$ such that $$$gcd(b_1, b_2..., b_{n-1}) &gt; 1$$$. Help Ashish find a way to do so.
256 megabytes
import java.io.*; import java.util.*; import static java.lang.Integer.*; import static java.lang.Long.*; import static java.lang.System.*; public class B { public static void main(String[] args) throws IOException { BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); PrintWriter pw = new PrintWriter(System.out); StringTokenizer st; int t = parseInt(in.readLine()); for (int t1 = 0; t1 < t; t1++) { int n = parseInt(in.readLine()); ArrayDeque<Integer> even = new ArrayDeque<>(); ArrayDeque<Integer> odd = new ArrayDeque<>(); st = new StringTokenizer(in.readLine()); for (int i = 0; i < 2 * n; i++) { int a = parseInt(st.nextToken()); if (a % 2 == 0) even.add((i + 1)); else odd.add((i + 1)); } pw.print(solve(even,odd,n)); } pw.close(); } static StringBuilder solve(ArrayDeque<Integer> even, ArrayDeque<Integer> odd, int n) { StringBuilder sb = new StringBuilder(); while ((n - 1) != 0) { if (even.size() >= 2 && (n - 1) != 0) { sb.append(even.remove() + " " + even.remove() + "\n"); n--; } if (odd.size() >= 2 && (n - 1) != 0) { sb.append(odd.remove() + " " + odd.remove()+ "\n"); n--; } } return sb; } }
Java
["3\n3\n1 2 3 4 5 6\n2\n5 7 9 10\n5\n1 3 3 4 5 90 100 101 2 3"]
1 second
["3 6\n4 5\n3 4\n1 9\n2 3\n4 5\n6 10"]
NoteIn the first test case, $$$b = \{3+6, 4+5\} = \{9, 9\}$$$ and $$$\mathrm{gcd}(9, 9) = 9$$$.In the second test case, $$$b = \{9+10\} = \{19\}$$$ and $$$\mathrm{gcd}(19) = 19$$$.In the third test case, $$$b = \{1+2, 3+3, 4+5, 90+3\} = \{3, 6, 9, 93\}$$$ and $$$\mathrm{gcd}(3, 6, 9, 93) = 3$$$.
Java 8
standard input
[ "constructive algorithms", "number theory", "math" ]
96fac9f9377bf03e144067bf93716d3d
The first line contains a single integer $$$t$$$ ($$$1 \leq t \leq 10$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains a single integer $$$n$$$ ($$$2 \leq n \leq 1000$$$). The second line of each test case contains $$$2n$$$ integers $$$a_1, a_2, \ldots, a_{2n}$$$ ($$$1 \leq a_i \leq 1000$$$) — the elements of the array $$$a$$$.
1,100
For each test case, output $$$n-1$$$ lines — the operations performed to compress the array $$$a$$$ to the array $$$b$$$. The initial discard of the two elements is not an operation, you don't need to output anything about it. The $$$i$$$-th line should contain two integers, the indices ($$$1$$$ —based) of the two elements from the array $$$a$$$ that are used in the $$$i$$$-th operation. All $$$2n-2$$$ indices should be distinct integers from $$$1$$$ to $$$2n$$$. You don't need to output two initially discarded elements from $$$a$$$. If there are multiple answers, you can find any.
standard output
PASSED
762069bf83099b910704e7af6ddff0a1
train_000.jsonl
1592663700
Ashish has an array $$$a$$$ of consisting of $$$2n$$$ positive integers. He wants to compress $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$. To do this, he first discards exactly $$$2$$$ (any two) elements from $$$a$$$. He then performs the following operation until there are no elements left in $$$a$$$: Remove any two elements from $$$a$$$ and append their sum to $$$b$$$. The compressed array $$$b$$$ has to have a special property. The greatest common divisor ($$$\mathrm{gcd}$$$) of all its elements should be greater than $$$1$$$.Recall that the $$$\mathrm{gcd}$$$ of an array of positive integers is the biggest integer that is a divisor of all integers in the array.It can be proven that it is always possible to compress array $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$ such that $$$gcd(b_1, b_2..., b_{n-1}) &gt; 1$$$. Help Ashish find a way to do so.
256 megabytes
import java.util.*; import java.math.*; public class GDCCompression { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int runs = sc.nextInt(); while(runs-->0) { int n = sc.nextInt(); ArrayList<Integer> even = new ArrayList<>(); ArrayList<Integer> odd = new ArrayList<>(); for(int i = 0;i<n*2;i++) { int temp = sc.nextInt(); if(temp%2==0) even.add(i); else { odd.add(i); } } for (int i = 0; i < n - 1; i++) { if (odd.size() >= 2) { System.out.println((odd.remove(0) + 1) + " " + (odd.remove(0) + 1)); } else { System.out.println((even.remove(0) + 1) + " " + (even.remove(0) + 1)); } } } } }
Java
["3\n3\n1 2 3 4 5 6\n2\n5 7 9 10\n5\n1 3 3 4 5 90 100 101 2 3"]
1 second
["3 6\n4 5\n3 4\n1 9\n2 3\n4 5\n6 10"]
NoteIn the first test case, $$$b = \{3+6, 4+5\} = \{9, 9\}$$$ and $$$\mathrm{gcd}(9, 9) = 9$$$.In the second test case, $$$b = \{9+10\} = \{19\}$$$ and $$$\mathrm{gcd}(19) = 19$$$.In the third test case, $$$b = \{1+2, 3+3, 4+5, 90+3\} = \{3, 6, 9, 93\}$$$ and $$$\mathrm{gcd}(3, 6, 9, 93) = 3$$$.
Java 8
standard input
[ "constructive algorithms", "number theory", "math" ]
96fac9f9377bf03e144067bf93716d3d
The first line contains a single integer $$$t$$$ ($$$1 \leq t \leq 10$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains a single integer $$$n$$$ ($$$2 \leq n \leq 1000$$$). The second line of each test case contains $$$2n$$$ integers $$$a_1, a_2, \ldots, a_{2n}$$$ ($$$1 \leq a_i \leq 1000$$$) — the elements of the array $$$a$$$.
1,100
For each test case, output $$$n-1$$$ lines — the operations performed to compress the array $$$a$$$ to the array $$$b$$$. The initial discard of the two elements is not an operation, you don't need to output anything about it. The $$$i$$$-th line should contain two integers, the indices ($$$1$$$ —based) of the two elements from the array $$$a$$$ that are used in the $$$i$$$-th operation. All $$$2n-2$$$ indices should be distinct integers from $$$1$$$ to $$$2n$$$. You don't need to output two initially discarded elements from $$$a$$$. If there are multiple answers, you can find any.
standard output
PASSED
97cf0aef2b64cc1939214507e4b1a085
train_000.jsonl
1592663700
Ashish has an array $$$a$$$ of consisting of $$$2n$$$ positive integers. He wants to compress $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$. To do this, he first discards exactly $$$2$$$ (any two) elements from $$$a$$$. He then performs the following operation until there are no elements left in $$$a$$$: Remove any two elements from $$$a$$$ and append their sum to $$$b$$$. The compressed array $$$b$$$ has to have a special property. The greatest common divisor ($$$\mathrm{gcd}$$$) of all its elements should be greater than $$$1$$$.Recall that the $$$\mathrm{gcd}$$$ of an array of positive integers is the biggest integer that is a divisor of all integers in the array.It can be proven that it is always possible to compress array $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$ such that $$$gcd(b_1, b_2..., b_{n-1}) &gt; 1$$$. Help Ashish find a way to do so.
256 megabytes
//package test.codeforce.c651; import java.util.ArrayList; import java.util.List; import java.util.Scanner; /** * @author Lin * @version 1.0 * @date 2020/6/20 22:36 */ public class B { public static void main(String[] args) { Scanner input = new Scanner(System.in); int testNum = input.nextInt(); StringBuffer stringBuffer = new StringBuffer(); for (int rr = 0; rr < testNum; rr++) { int n = input.nextInt(); int ans = 0; //������������ List<Integer> oddList = new ArrayList<>(); List<Integer> evenList = new ArrayList<>(); for (int i = 0; i < 2*n; i++) { int a = input.nextInt(); if (a % 2 == 1) { oddList.add(i+1); }else { evenList.add(i+1); } } if (oddList.size() % 2 == 0) { if (oddList.size() == 0) { evenList.remove(0); evenList.remove(0); }else { oddList.remove(0); oddList.remove(0); } }else { oddList.remove(0); evenList.remove(0); } for (int i = 0; i < oddList.size(); i=i+2) { stringBuffer.append(oddList.get(i) + " " + oddList.get(i + 1)+"\n"); } for (int i = 0; i < evenList.size(); i=i+2) { stringBuffer.append(evenList.get(i) + " " + evenList.get(i + 1)+"\n"); } } System.out.println(stringBuffer.toString()); } }
Java
["3\n3\n1 2 3 4 5 6\n2\n5 7 9 10\n5\n1 3 3 4 5 90 100 101 2 3"]
1 second
["3 6\n4 5\n3 4\n1 9\n2 3\n4 5\n6 10"]
NoteIn the first test case, $$$b = \{3+6, 4+5\} = \{9, 9\}$$$ and $$$\mathrm{gcd}(9, 9) = 9$$$.In the second test case, $$$b = \{9+10\} = \{19\}$$$ and $$$\mathrm{gcd}(19) = 19$$$.In the third test case, $$$b = \{1+2, 3+3, 4+5, 90+3\} = \{3, 6, 9, 93\}$$$ and $$$\mathrm{gcd}(3, 6, 9, 93) = 3$$$.
Java 8
standard input
[ "constructive algorithms", "number theory", "math" ]
96fac9f9377bf03e144067bf93716d3d
The first line contains a single integer $$$t$$$ ($$$1 \leq t \leq 10$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains a single integer $$$n$$$ ($$$2 \leq n \leq 1000$$$). The second line of each test case contains $$$2n$$$ integers $$$a_1, a_2, \ldots, a_{2n}$$$ ($$$1 \leq a_i \leq 1000$$$) — the elements of the array $$$a$$$.
1,100
For each test case, output $$$n-1$$$ lines — the operations performed to compress the array $$$a$$$ to the array $$$b$$$. The initial discard of the two elements is not an operation, you don't need to output anything about it. The $$$i$$$-th line should contain two integers, the indices ($$$1$$$ —based) of the two elements from the array $$$a$$$ that are used in the $$$i$$$-th operation. All $$$2n-2$$$ indices should be distinct integers from $$$1$$$ to $$$2n$$$. You don't need to output two initially discarded elements from $$$a$$$. If there are multiple answers, you can find any.
standard output
PASSED
5495cd9031e8649607139eb1d8f29a55
train_000.jsonl
1592663700
Ashish has an array $$$a$$$ of consisting of $$$2n$$$ positive integers. He wants to compress $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$. To do this, he first discards exactly $$$2$$$ (any two) elements from $$$a$$$. He then performs the following operation until there are no elements left in $$$a$$$: Remove any two elements from $$$a$$$ and append their sum to $$$b$$$. The compressed array $$$b$$$ has to have a special property. The greatest common divisor ($$$\mathrm{gcd}$$$) of all its elements should be greater than $$$1$$$.Recall that the $$$\mathrm{gcd}$$$ of an array of positive integers is the biggest integer that is a divisor of all integers in the array.It can be proven that it is always possible to compress array $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$ such that $$$gcd(b_1, b_2..., b_{n-1}) &gt; 1$$$. Help Ashish find a way to do so.
256 megabytes
import java.io.*; import java.util.*; import java.lang.*; import java.math.*; public class Main { public static void main(String[] args) { Scanner s=new Scanner(System.in); int t=s.nextInt(); while(t>0){ int n=s.nextInt(); int arr[]=new int[2*n]; for(int i=0;i<2*n;i++){ arr[i]=s.nextInt(); } ArrayList<Integer> even=new ArrayList<Integer>(); ArrayList<Integer> odd=new ArrayList<Integer>(); for(int i=0;i<2*n;i++){ if(arr[i]%2==0){ even.add(i+1); } else odd.add(i+1); } int flag=0; if(even.size()%2==1){ even.remove(0); flag=1; } else{ if(even.size()>=2 && flag==0){ flag=1; even.remove(0); even.remove(0);} } if(odd.size()%2==1){ odd.remove(0); flag=1; } else{ if(flag==0 && odd.size()>=2){ flag=1; odd.remove(0); odd.remove(0);} } for(int i=0;i<even.size();i=i+2){ System.out.println(even.get(i)+" "+even.get(i+1)); } for(int i=0;i<odd.size();i=i+2){ System.out.println(odd.get(i)+" "+odd.get(i+1)); } t--; } } }
Java
["3\n3\n1 2 3 4 5 6\n2\n5 7 9 10\n5\n1 3 3 4 5 90 100 101 2 3"]
1 second
["3 6\n4 5\n3 4\n1 9\n2 3\n4 5\n6 10"]
NoteIn the first test case, $$$b = \{3+6, 4+5\} = \{9, 9\}$$$ and $$$\mathrm{gcd}(9, 9) = 9$$$.In the second test case, $$$b = \{9+10\} = \{19\}$$$ and $$$\mathrm{gcd}(19) = 19$$$.In the third test case, $$$b = \{1+2, 3+3, 4+5, 90+3\} = \{3, 6, 9, 93\}$$$ and $$$\mathrm{gcd}(3, 6, 9, 93) = 3$$$.
Java 8
standard input
[ "constructive algorithms", "number theory", "math" ]
96fac9f9377bf03e144067bf93716d3d
The first line contains a single integer $$$t$$$ ($$$1 \leq t \leq 10$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains a single integer $$$n$$$ ($$$2 \leq n \leq 1000$$$). The second line of each test case contains $$$2n$$$ integers $$$a_1, a_2, \ldots, a_{2n}$$$ ($$$1 \leq a_i \leq 1000$$$) — the elements of the array $$$a$$$.
1,100
For each test case, output $$$n-1$$$ lines — the operations performed to compress the array $$$a$$$ to the array $$$b$$$. The initial discard of the two elements is not an operation, you don't need to output anything about it. The $$$i$$$-th line should contain two integers, the indices ($$$1$$$ —based) of the two elements from the array $$$a$$$ that are used in the $$$i$$$-th operation. All $$$2n-2$$$ indices should be distinct integers from $$$1$$$ to $$$2n$$$. You don't need to output two initially discarded elements from $$$a$$$. If there are multiple answers, you can find any.
standard output
PASSED
8de10eef1d05001e753a7e8f5059b1bc
train_000.jsonl
1592663700
Ashish has an array $$$a$$$ of consisting of $$$2n$$$ positive integers. He wants to compress $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$. To do this, he first discards exactly $$$2$$$ (any two) elements from $$$a$$$. He then performs the following operation until there are no elements left in $$$a$$$: Remove any two elements from $$$a$$$ and append their sum to $$$b$$$. The compressed array $$$b$$$ has to have a special property. The greatest common divisor ($$$\mathrm{gcd}$$$) of all its elements should be greater than $$$1$$$.Recall that the $$$\mathrm{gcd}$$$ of an array of positive integers is the biggest integer that is a divisor of all integers in the array.It can be proven that it is always possible to compress array $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$ such that $$$gcd(b_1, b_2..., b_{n-1}) &gt; 1$$$. Help Ashish find a way to do so.
256 megabytes
import java.util.Scanner; import java.math.BigInteger; import java.util.Arrays; import java.util.ArrayList; import java.util.*; import java.util.List; import java.lang.Math; import java.util.HashMap; public class javasample { static boolean isPrime(int n) { // Corner cases if (n <= 1) return false; if (n <= 3) return true; // This is checked so that we can skip // middle five numbers in below loop if (n % 2 == 0 || n % 3 == 0) return false; for (int i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } public static int useBs(int[] arr, int targetValue) { int a = Arrays.binarySearch(arr, targetValue); if(a >=0 && a<arr.length) return a; else return -1; } public static void printArray(int []a) { for(int i=0;i<a.length;i++) { System.out.println(a[i]+" "); } System.out.println(); } static boolean isPalindrome(String s) { int l=s.length(); for(int i=0;i<l/2;i++) { if(s.charAt(i)!=s.charAt(l-i-1)) return false; } return true; } static String revString(String str) { return new StringBuffer(str).reverse().toString(); } static String sortString(String s) { char a[]=s.toCharArray(); Arrays.sort(a); return new String(a); } static int sumList(List<Integer>a) { return a.stream().mapToInt(Integer::intValue).sum(); } static int sumArray(int []a) { int sum=0; for(int i=0;i<a.length;i++) { sum+=a[i]; } return sum; } public static void main(String[]args) throws java.lang.Exception{ Scanner sc=new Scanner(System.in); int t=sc.nextInt(); while(t-->0) { // int n=sc.nextInt(); // if(n==1||n==6) { // System.out.println("FastestFinger"); // }else { // if(n%2!=0||n==2) { // System.out.println("Ashishgup"); // }else { // if(Math.log(n)/Math.log(2)-(int)(Math.log(n)/Math.log(2))==0) { // System.out.println("FastestFinger"); // }else { // int k=0; // while(n>1) { // n/=2; // k+=1; // } // if(k==1) { // if(isPrime(n/2)) // System.out.println("FastestFinger"); // else // System.out.println("Ashishgup"); // // } // else // System.out.println("Ashishgup"); // } // } // } int n=sc.nextInt(); int a[]=new int[2*n]; List<Integer>e=new ArrayList<Integer>(); List<Integer>o=new ArrayList<Integer>(); for(int i=0;i<2*n;i++) { a[i]=sc.nextInt(); if(a[i]%2==0)e.add(i+1); else o.add(i+1); } if(e.size()%2!=0)e.remove(e.size()-1); e.sort(null); if(o.size()%2!=0)o.remove(o.size()-1); o.sort(null); e.addAll(o); for(int i=0;i<2*(n-1);i+=2) { System.out.println(e.get(i)+" "+e.get(i+1)); } } } }
Java
["3\n3\n1 2 3 4 5 6\n2\n5 7 9 10\n5\n1 3 3 4 5 90 100 101 2 3"]
1 second
["3 6\n4 5\n3 4\n1 9\n2 3\n4 5\n6 10"]
NoteIn the first test case, $$$b = \{3+6, 4+5\} = \{9, 9\}$$$ and $$$\mathrm{gcd}(9, 9) = 9$$$.In the second test case, $$$b = \{9+10\} = \{19\}$$$ and $$$\mathrm{gcd}(19) = 19$$$.In the third test case, $$$b = \{1+2, 3+3, 4+5, 90+3\} = \{3, 6, 9, 93\}$$$ and $$$\mathrm{gcd}(3, 6, 9, 93) = 3$$$.
Java 8
standard input
[ "constructive algorithms", "number theory", "math" ]
96fac9f9377bf03e144067bf93716d3d
The first line contains a single integer $$$t$$$ ($$$1 \leq t \leq 10$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains a single integer $$$n$$$ ($$$2 \leq n \leq 1000$$$). The second line of each test case contains $$$2n$$$ integers $$$a_1, a_2, \ldots, a_{2n}$$$ ($$$1 \leq a_i \leq 1000$$$) — the elements of the array $$$a$$$.
1,100
For each test case, output $$$n-1$$$ lines — the operations performed to compress the array $$$a$$$ to the array $$$b$$$. The initial discard of the two elements is not an operation, you don't need to output anything about it. The $$$i$$$-th line should contain two integers, the indices ($$$1$$$ —based) of the two elements from the array $$$a$$$ that are used in the $$$i$$$-th operation. All $$$2n-2$$$ indices should be distinct integers from $$$1$$$ to $$$2n$$$. You don't need to output two initially discarded elements from $$$a$$$. If there are multiple answers, you can find any.
standard output
PASSED
163e0140aa872d24bf368cb908833fca
train_000.jsonl
1592663700
Ashish has an array $$$a$$$ of consisting of $$$2n$$$ positive integers. He wants to compress $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$. To do this, he first discards exactly $$$2$$$ (any two) elements from $$$a$$$. He then performs the following operation until there are no elements left in $$$a$$$: Remove any two elements from $$$a$$$ and append their sum to $$$b$$$. The compressed array $$$b$$$ has to have a special property. The greatest common divisor ($$$\mathrm{gcd}$$$) of all its elements should be greater than $$$1$$$.Recall that the $$$\mathrm{gcd}$$$ of an array of positive integers is the biggest integer that is a divisor of all integers in the array.It can be proven that it is always possible to compress array $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$ such that $$$gcd(b_1, b_2..., b_{n-1}) &gt; 1$$$. Help Ashish find a way to do so.
256 megabytes
import java.io.*; import java.util.*; public class MyClass { public static void main(String args[])throws IOException { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); BufferedWriter bw=new BufferedWriter(new OutputStreamWriter(System.out)); int t=Integer.parseInt(br.readLine()); while(t-->0){ int n=Integer.parseInt(br.readLine()); int[] arr=new int[2*n]; String[] str=br.readLine().split(" "); for(int i=0;i<2*n;i++) arr[i]=Integer.parseInt(str[i]); ArrayList<Integer> ale=new ArrayList(); ArrayList<Integer> alo=new ArrayList(); for(int i=0;i<2*n;i++){ if(arr[i]%2==0) ale.add(i); else alo.add(i); } int esize=ale.size(); int osize=alo.size(); int j=0,k=0; for(int i=0;i<n-1;i++){ if(j<esize-1){ int x=ale.get(j)+1; int y=ale.get(j+1)+1; bw.write(x+" "+y+"\n"); j+=2; } else if(j>=esize-1 && k<osize-1){ int x=alo.get(k)+1; int y=alo.get(k+1)+1; bw.write(x+" "+y+"\n"); k+=2; } } } bw.flush(); } }
Java
["3\n3\n1 2 3 4 5 6\n2\n5 7 9 10\n5\n1 3 3 4 5 90 100 101 2 3"]
1 second
["3 6\n4 5\n3 4\n1 9\n2 3\n4 5\n6 10"]
NoteIn the first test case, $$$b = \{3+6, 4+5\} = \{9, 9\}$$$ and $$$\mathrm{gcd}(9, 9) = 9$$$.In the second test case, $$$b = \{9+10\} = \{19\}$$$ and $$$\mathrm{gcd}(19) = 19$$$.In the third test case, $$$b = \{1+2, 3+3, 4+5, 90+3\} = \{3, 6, 9, 93\}$$$ and $$$\mathrm{gcd}(3, 6, 9, 93) = 3$$$.
Java 8
standard input
[ "constructive algorithms", "number theory", "math" ]
96fac9f9377bf03e144067bf93716d3d
The first line contains a single integer $$$t$$$ ($$$1 \leq t \leq 10$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains a single integer $$$n$$$ ($$$2 \leq n \leq 1000$$$). The second line of each test case contains $$$2n$$$ integers $$$a_1, a_2, \ldots, a_{2n}$$$ ($$$1 \leq a_i \leq 1000$$$) — the elements of the array $$$a$$$.
1,100
For each test case, output $$$n-1$$$ lines — the operations performed to compress the array $$$a$$$ to the array $$$b$$$. The initial discard of the two elements is not an operation, you don't need to output anything about it. The $$$i$$$-th line should contain two integers, the indices ($$$1$$$ —based) of the two elements from the array $$$a$$$ that are used in the $$$i$$$-th operation. All $$$2n-2$$$ indices should be distinct integers from $$$1$$$ to $$$2n$$$. You don't need to output two initially discarded elements from $$$a$$$. If there are multiple answers, you can find any.
standard output
PASSED
558b05a2684885b51772d76851e0a37d
train_000.jsonl
1592663700
Ashish has an array $$$a$$$ of consisting of $$$2n$$$ positive integers. He wants to compress $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$. To do this, he first discards exactly $$$2$$$ (any two) elements from $$$a$$$. He then performs the following operation until there are no elements left in $$$a$$$: Remove any two elements from $$$a$$$ and append their sum to $$$b$$$. The compressed array $$$b$$$ has to have a special property. The greatest common divisor ($$$\mathrm{gcd}$$$) of all its elements should be greater than $$$1$$$.Recall that the $$$\mathrm{gcd}$$$ of an array of positive integers is the biggest integer that is a divisor of all integers in the array.It can be proven that it is always possible to compress array $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$ such that $$$gcd(b_1, b_2..., b_{n-1}) &gt; 1$$$. Help Ashish find a way to do so.
256 megabytes
import java.io.*; import java.math.*; import java.security.*; import java.text.*; import java.time.LocalTime; import java.util.*; import java.util.concurrent.*; import java.util.regex.*; public class B { public static void main(String[] args) { FastScanner scan = new FastScanner(); int t = scan.nextInt(); for(int tt=0; tt<t; tt++) { int n = scan.nextInt(); ArrayList<Integer> even = new ArrayList<>(), odd = new ArrayList<>(); for(int i=0; i<2*n; i++) { int num = scan.nextInt(); if(num % 2 == 0) even.add(i+1); else odd.add(i+1); } int count = 0; for(int i=0; i+1<even.size() && count<n-1; i+=2) { System.out.println(even.get(i) + " "+ even.get(i+1)); count++; } for(int i=0; i+1<odd.size() && count<n-1; i+=2) { System.out.println(odd.get(i) +" " + odd.get(i+1)); count++; } } } public static void sort(int [] a) { ArrayList<Integer> b = new ArrayList<>(); for(int i: a) b.add(i); Collections.sort(b); for(int i=0; i<a.length; i++) a[i]= b.get(i); } static class FastScanner{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while(!st.hasMoreTokens()) try { st = new StringTokenizer(br.readLine()); } catch (IOException e){ e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int [] readArray(int n) { int [] a = new int[n]; for(int i=0; i<n ; i++) a[i] = nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } }
Java
["3\n3\n1 2 3 4 5 6\n2\n5 7 9 10\n5\n1 3 3 4 5 90 100 101 2 3"]
1 second
["3 6\n4 5\n3 4\n1 9\n2 3\n4 5\n6 10"]
NoteIn the first test case, $$$b = \{3+6, 4+5\} = \{9, 9\}$$$ and $$$\mathrm{gcd}(9, 9) = 9$$$.In the second test case, $$$b = \{9+10\} = \{19\}$$$ and $$$\mathrm{gcd}(19) = 19$$$.In the third test case, $$$b = \{1+2, 3+3, 4+5, 90+3\} = \{3, 6, 9, 93\}$$$ and $$$\mathrm{gcd}(3, 6, 9, 93) = 3$$$.
Java 8
standard input
[ "constructive algorithms", "number theory", "math" ]
96fac9f9377bf03e144067bf93716d3d
The first line contains a single integer $$$t$$$ ($$$1 \leq t \leq 10$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains a single integer $$$n$$$ ($$$2 \leq n \leq 1000$$$). The second line of each test case contains $$$2n$$$ integers $$$a_1, a_2, \ldots, a_{2n}$$$ ($$$1 \leq a_i \leq 1000$$$) — the elements of the array $$$a$$$.
1,100
For each test case, output $$$n-1$$$ lines — the operations performed to compress the array $$$a$$$ to the array $$$b$$$. The initial discard of the two elements is not an operation, you don't need to output anything about it. The $$$i$$$-th line should contain two integers, the indices ($$$1$$$ —based) of the two elements from the array $$$a$$$ that are used in the $$$i$$$-th operation. All $$$2n-2$$$ indices should be distinct integers from $$$1$$$ to $$$2n$$$. You don't need to output two initially discarded elements from $$$a$$$. If there are multiple answers, you can find any.
standard output
PASSED
0de0414a8f0636944db5e11d76625687
train_000.jsonl
1592663700
Ashish has an array $$$a$$$ of consisting of $$$2n$$$ positive integers. He wants to compress $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$. To do this, he first discards exactly $$$2$$$ (any two) elements from $$$a$$$. He then performs the following operation until there are no elements left in $$$a$$$: Remove any two elements from $$$a$$$ and append their sum to $$$b$$$. The compressed array $$$b$$$ has to have a special property. The greatest common divisor ($$$\mathrm{gcd}$$$) of all its elements should be greater than $$$1$$$.Recall that the $$$\mathrm{gcd}$$$ of an array of positive integers is the biggest integer that is a divisor of all integers in the array.It can be proven that it is always possible to compress array $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$ such that $$$gcd(b_1, b_2..., b_{n-1}) &gt; 1$$$. Help Ashish find a way to do so.
256 megabytes
import java.io.*; import java.math.*; import java.security.*; import java.text.*; import java.time.LocalTime; import java.util.*; import java.util.concurrent.*; import java.util.regex.*; public class B { public static void main(String[] args) { FastScanner scan = new FastScanner(); int t = scan.nextInt(); for(int tt=0; tt<t; tt++) { int n = scan.nextInt(); ArrayList<Integer> even = new ArrayList<>(), odd = new ArrayList<>(); for(int i=0; i<2*n; i++) { int num = scan.nextInt(); if(num % 2 == 0) even.add(i+1); else odd.add(i+1); } int count = 0; for(int i=0; i+1<even.size() && count<n-1; i+=2) { System.out.println(even.get(i) + " "+ even.get(i+1)); count++; } for(int i=0; i+1<odd.size() && count<n-1; i+=2) { System.out.println(odd.get(i) +" " + odd.get(i+1)); count++; } } } public static void sort(int [] a) { ArrayList<Integer> b = new ArrayList<>(); for(int i: a) b.add(i); Collections.sort(b); for(int i=0; i<a.length; i++) a[i]= b.get(i); } static class FastScanner{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while(!st.hasMoreTokens()) try { st = new StringTokenizer(br.readLine()); } catch (IOException e){ e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int [] readArray(int n) { int [] a = new int[n]; for(int i=0; i<n ; i++) a[i] = nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } }
Java
["3\n3\n1 2 3 4 5 6\n2\n5 7 9 10\n5\n1 3 3 4 5 90 100 101 2 3"]
1 second
["3 6\n4 5\n3 4\n1 9\n2 3\n4 5\n6 10"]
NoteIn the first test case, $$$b = \{3+6, 4+5\} = \{9, 9\}$$$ and $$$\mathrm{gcd}(9, 9) = 9$$$.In the second test case, $$$b = \{9+10\} = \{19\}$$$ and $$$\mathrm{gcd}(19) = 19$$$.In the third test case, $$$b = \{1+2, 3+3, 4+5, 90+3\} = \{3, 6, 9, 93\}$$$ and $$$\mathrm{gcd}(3, 6, 9, 93) = 3$$$.
Java 8
standard input
[ "constructive algorithms", "number theory", "math" ]
96fac9f9377bf03e144067bf93716d3d
The first line contains a single integer $$$t$$$ ($$$1 \leq t \leq 10$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains a single integer $$$n$$$ ($$$2 \leq n \leq 1000$$$). The second line of each test case contains $$$2n$$$ integers $$$a_1, a_2, \ldots, a_{2n}$$$ ($$$1 \leq a_i \leq 1000$$$) — the elements of the array $$$a$$$.
1,100
For each test case, output $$$n-1$$$ lines — the operations performed to compress the array $$$a$$$ to the array $$$b$$$. The initial discard of the two elements is not an operation, you don't need to output anything about it. The $$$i$$$-th line should contain two integers, the indices ($$$1$$$ —based) of the two elements from the array $$$a$$$ that are used in the $$$i$$$-th operation. All $$$2n-2$$$ indices should be distinct integers from $$$1$$$ to $$$2n$$$. You don't need to output two initially discarded elements from $$$a$$$. If there are multiple answers, you can find any.
standard output
PASSED
af56a73855b6ea1ae0e9e1451a4d1f10
train_000.jsonl
1592663700
Ashish has an array $$$a$$$ of consisting of $$$2n$$$ positive integers. He wants to compress $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$. To do this, he first discards exactly $$$2$$$ (any two) elements from $$$a$$$. He then performs the following operation until there are no elements left in $$$a$$$: Remove any two elements from $$$a$$$ and append their sum to $$$b$$$. The compressed array $$$b$$$ has to have a special property. The greatest common divisor ($$$\mathrm{gcd}$$$) of all its elements should be greater than $$$1$$$.Recall that the $$$\mathrm{gcd}$$$ of an array of positive integers is the biggest integer that is a divisor of all integers in the array.It can be proven that it is always possible to compress array $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$ such that $$$gcd(b_1, b_2..., b_{n-1}) &gt; 1$$$. Help Ashish find a way to do so.
256 megabytes
import java.io.BufferedReader; import java.io.InputStreamReader; import java.util.ArrayList; public class Main { public static void main(String[] args) throws Exception { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int test = Integer.parseInt(br.readLine()); String line[] = null; int array[] = null; ArrayList<Integer> even = new ArrayList<Integer>(); ArrayList<Integer> odd = new ArrayList<Integer>(); while (test != 0) { int len = Integer.parseInt(br.readLine()); line = br.readLine().split(" "); array = new int[2 * len]; even.clear(); odd.clear(); for (int i = 0; i < line.length; i++) { array[i] = Integer.parseInt(line[i]); if (array[i] % 2 == 0) { even.add(i+1); } else { odd.add(i+1); } } int count = 0; if (even.size() > 1) { int n = 0; while (n + 1 < even.size() && count < len-1) { System.out.println(even.get(n) + " " + even.get(n + 1)); n = n + 2; count++; } } if (odd.size() > 1) { int n = 0; while (n + 1 < odd.size() && count < len-1) { System.out.println(odd.get(n) + " " + odd.get(n + 1)); n = n + 2; count++; } } --test; } } }
Java
["3\n3\n1 2 3 4 5 6\n2\n5 7 9 10\n5\n1 3 3 4 5 90 100 101 2 3"]
1 second
["3 6\n4 5\n3 4\n1 9\n2 3\n4 5\n6 10"]
NoteIn the first test case, $$$b = \{3+6, 4+5\} = \{9, 9\}$$$ and $$$\mathrm{gcd}(9, 9) = 9$$$.In the second test case, $$$b = \{9+10\} = \{19\}$$$ and $$$\mathrm{gcd}(19) = 19$$$.In the third test case, $$$b = \{1+2, 3+3, 4+5, 90+3\} = \{3, 6, 9, 93\}$$$ and $$$\mathrm{gcd}(3, 6, 9, 93) = 3$$$.
Java 8
standard input
[ "constructive algorithms", "number theory", "math" ]
96fac9f9377bf03e144067bf93716d3d
The first line contains a single integer $$$t$$$ ($$$1 \leq t \leq 10$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains a single integer $$$n$$$ ($$$2 \leq n \leq 1000$$$). The second line of each test case contains $$$2n$$$ integers $$$a_1, a_2, \ldots, a_{2n}$$$ ($$$1 \leq a_i \leq 1000$$$) — the elements of the array $$$a$$$.
1,100
For each test case, output $$$n-1$$$ lines — the operations performed to compress the array $$$a$$$ to the array $$$b$$$. The initial discard of the two elements is not an operation, you don't need to output anything about it. The $$$i$$$-th line should contain two integers, the indices ($$$1$$$ —based) of the two elements from the array $$$a$$$ that are used in the $$$i$$$-th operation. All $$$2n-2$$$ indices should be distinct integers from $$$1$$$ to $$$2n$$$. You don't need to output two initially discarded elements from $$$a$$$. If there are multiple answers, you can find any.
standard output
PASSED
8b310d9e4a7ee85b2fb767bd4b6950ea
train_000.jsonl
1592663700
Ashish has an array $$$a$$$ of consisting of $$$2n$$$ positive integers. He wants to compress $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$. To do this, he first discards exactly $$$2$$$ (any two) elements from $$$a$$$. He then performs the following operation until there are no elements left in $$$a$$$: Remove any two elements from $$$a$$$ and append their sum to $$$b$$$. The compressed array $$$b$$$ has to have a special property. The greatest common divisor ($$$\mathrm{gcd}$$$) of all its elements should be greater than $$$1$$$.Recall that the $$$\mathrm{gcd}$$$ of an array of positive integers is the biggest integer that is a divisor of all integers in the array.It can be proven that it is always possible to compress array $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$ such that $$$gcd(b_1, b_2..., b_{n-1}) &gt; 1$$$. Help Ashish find a way to do so.
256 megabytes
import java.util.*; import java.io.*; public class Solution{ static PrintWriter out=new PrintWriter(System.out); public static void main (String[] args) throws IOException{ BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); String[] input=br.readLine().trim().split(" "); int numTestCases=Integer.parseInt(input[0]); while(numTestCases-->0) { input=br.readLine().trim().split(" "); int n=Integer.parseInt(input[0]); int[] arr=new int[2*n]; input=br.readLine().trim().split(" "); for(int i=0;i<2*n;i++) { arr[i]=Integer.parseInt(input[i]); } printSteps(arr); } out.flush(); out.close(); } public static void printSteps(int[] arr) { int n=arr.length; ArrayList<Integer> oddIndices=new ArrayList<>(); ArrayList<Integer> evenIndices=new ArrayList<>(); for(int i=0;i<n;i++) { if(arr[i]%2==0) { evenIndices.add(i); } else { oddIndices.add(i); } } int oddSize=oddIndices.size(); int evenSize=evenIndices.size(); if(evenSize==0) { for(int i=0;i<oddSize-2;i+=2) { int index1=oddIndices.get(i)+1; int index2=oddIndices.get(i+1)+1; out.println(index1+" "+index2); } return; } if(oddSize==0) { for(int i=0;i<evenSize-2;i+=2) { int index1=evenIndices.get(i)+1; int index2=evenIndices.get(i+1)+1; out.println(index1+" "+index2); } return; } if(oddSize%2!=0 && evenSize%2!=0) { for(int i=0;i<oddSize-1;i+=2) { int index1=oddIndices.get(i)+1; int index2=oddIndices.get(i+1)+1; out.println(index1+" "+index2); } for(int i=0;i<evenSize-1;i+=2) { int index1=evenIndices.get(i)+1; int index2=evenIndices.get(i+1)+1; out.println(index1+" "+index2); } } else { for(int i=0;i<oddSize-2;i+=2) { int index1=oddIndices.get(i)+1; int index2=oddIndices.get(i+1)+1; out.println(index1+" "+index2); } for(int i=0;i<evenSize;i+=2) { int index1=evenIndices.get(i)+1; int index2=evenIndices.get(i+1)+1; out.println(index1+" "+index2); } } } }
Java
["3\n3\n1 2 3 4 5 6\n2\n5 7 9 10\n5\n1 3 3 4 5 90 100 101 2 3"]
1 second
["3 6\n4 5\n3 4\n1 9\n2 3\n4 5\n6 10"]
NoteIn the first test case, $$$b = \{3+6, 4+5\} = \{9, 9\}$$$ and $$$\mathrm{gcd}(9, 9) = 9$$$.In the second test case, $$$b = \{9+10\} = \{19\}$$$ and $$$\mathrm{gcd}(19) = 19$$$.In the third test case, $$$b = \{1+2, 3+3, 4+5, 90+3\} = \{3, 6, 9, 93\}$$$ and $$$\mathrm{gcd}(3, 6, 9, 93) = 3$$$.
Java 8
standard input
[ "constructive algorithms", "number theory", "math" ]
96fac9f9377bf03e144067bf93716d3d
The first line contains a single integer $$$t$$$ ($$$1 \leq t \leq 10$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains a single integer $$$n$$$ ($$$2 \leq n \leq 1000$$$). The second line of each test case contains $$$2n$$$ integers $$$a_1, a_2, \ldots, a_{2n}$$$ ($$$1 \leq a_i \leq 1000$$$) — the elements of the array $$$a$$$.
1,100
For each test case, output $$$n-1$$$ lines — the operations performed to compress the array $$$a$$$ to the array $$$b$$$. The initial discard of the two elements is not an operation, you don't need to output anything about it. The $$$i$$$-th line should contain two integers, the indices ($$$1$$$ —based) of the two elements from the array $$$a$$$ that are used in the $$$i$$$-th operation. All $$$2n-2$$$ indices should be distinct integers from $$$1$$$ to $$$2n$$$. You don't need to output two initially discarded elements from $$$a$$$. If there are multiple answers, you can find any.
standard output
PASSED
09eb846dfe9d8923ae41480db4206c8d
train_000.jsonl
1592663700
Ashish has an array $$$a$$$ of consisting of $$$2n$$$ positive integers. He wants to compress $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$. To do this, he first discards exactly $$$2$$$ (any two) elements from $$$a$$$. He then performs the following operation until there are no elements left in $$$a$$$: Remove any two elements from $$$a$$$ and append their sum to $$$b$$$. The compressed array $$$b$$$ has to have a special property. The greatest common divisor ($$$\mathrm{gcd}$$$) of all its elements should be greater than $$$1$$$.Recall that the $$$\mathrm{gcd}$$$ of an array of positive integers is the biggest integer that is a divisor of all integers in the array.It can be proven that it is always possible to compress array $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$ such that $$$gcd(b_1, b_2..., b_{n-1}) &gt; 1$$$. Help Ashish find a way to do so.
256 megabytes
import java.io.*; public class Compression { public static void main(String args[])throws IOException { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); int test=Integer.parseInt(br.readLine()); for(int t=1;t<=test;t++) { int n=Integer.parseInt(br.readLine()); String s[]=br.readLine().split(" "); int a[]=new int[2*n]; for(int x=0;x<2*n;x++) { a[x]=Integer.parseInt(s[x]); } int count=n-1; for(int x=0;x<2*n;x++) { int index=0; if(a[x]!=0) { for(int y=x+1;y<2*n;y++) { if(a[y]!=0) { if(a[x]%2==a[y]%2) { index=y; a[x]=0; a[y]=0; count--; break; } } } if(index!=0) { if(count==0) { System.out.println((x+1)+" "+(index+1)); break; } else System.out.println((x+1)+" "+(index+1)); } } } } } }
Java
["3\n3\n1 2 3 4 5 6\n2\n5 7 9 10\n5\n1 3 3 4 5 90 100 101 2 3"]
1 second
["3 6\n4 5\n3 4\n1 9\n2 3\n4 5\n6 10"]
NoteIn the first test case, $$$b = \{3+6, 4+5\} = \{9, 9\}$$$ and $$$\mathrm{gcd}(9, 9) = 9$$$.In the second test case, $$$b = \{9+10\} = \{19\}$$$ and $$$\mathrm{gcd}(19) = 19$$$.In the third test case, $$$b = \{1+2, 3+3, 4+5, 90+3\} = \{3, 6, 9, 93\}$$$ and $$$\mathrm{gcd}(3, 6, 9, 93) = 3$$$.
Java 8
standard input
[ "constructive algorithms", "number theory", "math" ]
96fac9f9377bf03e144067bf93716d3d
The first line contains a single integer $$$t$$$ ($$$1 \leq t \leq 10$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains a single integer $$$n$$$ ($$$2 \leq n \leq 1000$$$). The second line of each test case contains $$$2n$$$ integers $$$a_1, a_2, \ldots, a_{2n}$$$ ($$$1 \leq a_i \leq 1000$$$) — the elements of the array $$$a$$$.
1,100
For each test case, output $$$n-1$$$ lines — the operations performed to compress the array $$$a$$$ to the array $$$b$$$. The initial discard of the two elements is not an operation, you don't need to output anything about it. The $$$i$$$-th line should contain two integers, the indices ($$$1$$$ —based) of the two elements from the array $$$a$$$ that are used in the $$$i$$$-th operation. All $$$2n-2$$$ indices should be distinct integers from $$$1$$$ to $$$2n$$$. You don't need to output two initially discarded elements from $$$a$$$. If there are multiple answers, you can find any.
standard output
PASSED
391c46796766a0b8bd53e3c8137506f8
train_000.jsonl
1592663700
Ashish has an array $$$a$$$ of consisting of $$$2n$$$ positive integers. He wants to compress $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$. To do this, he first discards exactly $$$2$$$ (any two) elements from $$$a$$$. He then performs the following operation until there are no elements left in $$$a$$$: Remove any two elements from $$$a$$$ and append their sum to $$$b$$$. The compressed array $$$b$$$ has to have a special property. The greatest common divisor ($$$\mathrm{gcd}$$$) of all its elements should be greater than $$$1$$$.Recall that the $$$\mathrm{gcd}$$$ of an array of positive integers is the biggest integer that is a divisor of all integers in the array.It can be proven that it is always possible to compress array $$$a$$$ into an array $$$b$$$ of size $$$n-1$$$ such that $$$gcd(b_1, b_2..., b_{n-1}) &gt; 1$$$. Help Ashish find a way to do so.
256 megabytes
import java.util.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); while(t>0) { int n = sc.nextInt(); Map<Integer,Integer> even = new HashMap<Integer,Integer>(); Map<Integer,Integer> odd = new HashMap<Integer,Integer>(); int a[] = new int[2*n]; int size = n-1; for(int i=0;i<2*n;i++) { a[i] = sc.nextInt(); } for(int i=0;i<2*n;i++) { if(a[i]%2==0) even.put(i+1,a[i]); else odd.put(i+1,a[i]); } ArrayList<Integer> evenIndex = new ArrayList<>(even.keySet()); ArrayList<Integer> oddIndex = new ArrayList<>(odd.keySet()); int evenSize = 0; int oddSize = 0; int count=0; if(even.size()>=2) { for(int i=0;i<evenIndex.size();i+=2) { if((i+1)==evenIndex.size()) break; System.out.println(evenIndex.get(i)+" "+evenIndex.get(i+1)); count++; if(count==size) break; } } if(count<size) { if(odd.size()>=2) { for(int i=0;i<oddIndex.size();i+=2) { if((i+1)==oddIndex.size()) break; System.out.println(oddIndex.get(i)+" "+oddIndex.get(i+1)); count++; if(count==size || (i+1)==oddIndex.size()) break; } } } t--; } } }
Java
["3\n3\n1 2 3 4 5 6\n2\n5 7 9 10\n5\n1 3 3 4 5 90 100 101 2 3"]
1 second
["3 6\n4 5\n3 4\n1 9\n2 3\n4 5\n6 10"]
NoteIn the first test case, $$$b = \{3+6, 4+5\} = \{9, 9\}$$$ and $$$\mathrm{gcd}(9, 9) = 9$$$.In the second test case, $$$b = \{9+10\} = \{19\}$$$ and $$$\mathrm{gcd}(19) = 19$$$.In the third test case, $$$b = \{1+2, 3+3, 4+5, 90+3\} = \{3, 6, 9, 93\}$$$ and $$$\mathrm{gcd}(3, 6, 9, 93) = 3$$$.
Java 8
standard input
[ "constructive algorithms", "number theory", "math" ]
96fac9f9377bf03e144067bf93716d3d
The first line contains a single integer $$$t$$$ ($$$1 \leq t \leq 10$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains a single integer $$$n$$$ ($$$2 \leq n \leq 1000$$$). The second line of each test case contains $$$2n$$$ integers $$$a_1, a_2, \ldots, a_{2n}$$$ ($$$1 \leq a_i \leq 1000$$$) — the elements of the array $$$a$$$.
1,100
For each test case, output $$$n-1$$$ lines — the operations performed to compress the array $$$a$$$ to the array $$$b$$$. The initial discard of the two elements is not an operation, you don't need to output anything about it. The $$$i$$$-th line should contain two integers, the indices ($$$1$$$ —based) of the two elements from the array $$$a$$$ that are used in the $$$i$$$-th operation. All $$$2n-2$$$ indices should be distinct integers from $$$1$$$ to $$$2n$$$. You don't need to output two initially discarded elements from $$$a$$$. If there are multiple answers, you can find any.
standard output
PASSED
49fef5a0d65f50c4cc603ae04e44c76f
train_000.jsonl
1304175600
Fox Ciel saw a large field while she was on a bus. The field was a n × m rectangle divided into 1 × 1 cells. Some cells were wasteland, and other each cell contained crop plants: either carrots or kiwis or grapes. After seeing the field carefully, Ciel found that the crop plants of each cell were planted in following procedure: Assume that the rows are numbered 1 to n from top to bottom and the columns are numbered 1 to m from left to right, and a cell in row i and column j is represented as (i, j). First, each field is either cultivated or waste. Crop plants will be planted in the cultivated cells in the order of (1, 1) → ... → (1, m) → (2, 1) → ... → (2, m) → ... → (n, 1) → ... → (n, m). Waste cells will be ignored. Crop plants (either carrots or kiwis or grapes) will be planted in each cell one after another cyclically. Carrots will be planted in the first cell, then kiwis in the second one, grapes in the third one, carrots in the forth one, kiwis in the fifth one, and so on. The following figure will show you the example of this procedure. Here, a white square represents a cultivated cell, and a black square represents a waste cell. Now she is wondering how to determine the crop plants in some certain cells.
256 megabytes
import java.util.Arrays; import java.util.Scanner; public class B_79_Colorful_Field { @SuppressWarnings("unused") public static void main(String[] args) { Scanner s = new Scanner(System.in); int n = s.nextInt(), m = s.nextInt(), k = s.nextInt(), t = s.nextInt(); int[] is = new int[k]; for (int i = 0; i < k; ++i) { is[i] = (s.nextInt() - 1) * m + s.nextInt() - 1; } Arrays.sort(is); String[] r = { "Carrots", "Kiwis", "Grapes" }; for (; t-- > 0;) { int key = (s.nextInt() - 1) * m + s.nextInt() - 1; if (Arrays.binarySearch(is, key) >= 0) { System.out.println("Waste"); continue; } int c = 0; for (; c < is.length && is[c] < key; ++c) ; System.out.println(r[(key - c) % 3]); } } }
Java
["4 5 5 6\n4 3\n1 3\n3 3\n2 5\n3 2\n1 3\n1 4\n2 3\n2 4\n1 1\n1 1"]
2 seconds
["Waste\nGrapes\nCarrots\nKiwis\nCarrots\nCarrots"]
NoteThe sample corresponds to the figure in the statement.
Java 7
standard input
[ "implementation", "sortings" ]
bfef3f835357dae290620efabe650580
In the first line there are four positive integers n, m, k, t (1 ≤ n ≤ 4·104, 1 ≤ m ≤ 4·104, 1 ≤ k ≤ 103, 1 ≤ t ≤ 103), each of which represents the height of the field, the width of the field, the number of waste cells and the number of queries that ask the kind of crop plants in a certain cell. Following each k lines contains two integers a, b (1 ≤ a ≤ n, 1 ≤ b ≤ m), which denotes a cell (a, b) is waste. It is guaranteed that the same cell will not appear twice in this section. Following each t lines contains two integers i, j (1 ≤ i ≤ n, 1 ≤ j ≤ m), which is a query that asks you the kind of crop plants of a cell (i, j).
1,400
For each query, if the cell is waste, print Waste. Otherwise, print the name of crop plants in the cell: either Carrots or Kiwis or Grapes.
standard output