Commit
·
59d116a
1
Parent(s):
9206874
Fix bug
Browse files- modules/maskrcnn_train.sh +38 -35
modules/maskrcnn_train.sh
CHANGED
@@ -39,52 +39,55 @@ if [ ! -f "$TRAIN_NET_FILE" ]; then
|
|
39 |
echo "Downloading train_net.py file..."
|
40 |
wget $TRAIN_NET_URL -O $TRAIN_NET_FILE
|
41 |
fi
|
42 |
-
|
43 |
-
# Function to extract the number of classes from COCO annotation
|
44 |
-
NUM_CLASSES=$(python3 - <<END
|
45 |
-
import json
|
46 |
-
|
47 |
-
# Load the COCO annotation file
|
48 |
-
with open("$TRAIN_ANNOTATION", 'r') as f:
|
49 |
-
coco_data = json.load(f)
|
50 |
-
|
51 |
-
# Extract the number of unique categories
|
52 |
-
num_classes = len(coco_data['categories'])
|
53 |
-
print(num_classes)
|
54 |
-
END
|
55 |
-
)
|
56 |
-
|
57 |
-
echo "Detected $NUM_CLASSES classes from the dataset."
|
58 |
-
|
59 |
-
# Register the datasets with Detectron2 (assuming Detectron2 environment is set up)
|
60 |
python3 - <<END
|
61 |
import os
|
|
|
62 |
from detectron2.data.datasets import register_coco_instances
|
|
|
63 |
|
64 |
-
#
|
65 |
train_annotation = "$TRAIN_ANNOTATION"
|
66 |
train_image_dir = "$TRAIN_IMAGE_DIR"
|
67 |
val_annotation = "$VAL_ANNOTATION"
|
68 |
val_image_dir = "$VAL_IMAGE_DIR"
|
69 |
|
70 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
register_coco_instances("coco_roboone_train", {}, train_annotation, train_image_dir)
|
72 |
register_coco_instances("coco_roboone_val", {}, val_annotation, val_image_dir)
|
73 |
|
|
|
74 |
print("Datasets registered successfully.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
END
|
76 |
-
|
77 |
-
# Run the training with Detectron2
|
78 |
-
python3 $TRAIN_NET_FILE \
|
79 |
-
--config-file $COCO_CONFIG_FILE \
|
80 |
-
--num-gpus 1 \
|
81 |
-
OUTPUT_DIR $OUTPUT_DIR \
|
82 |
-
DATASETS.TRAIN "('coco_roboone_train',)" \
|
83 |
-
DATASETS.TEST "('coco_roboone_val',)" \
|
84 |
-
SOLVER.IMS_PER_BATCH 2 \
|
85 |
-
SOLVER.BASE_LR 0.00025 \
|
86 |
-
SOLVER.MAX_ITER 1000 \
|
87 |
-
MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE 512 \
|
88 |
-
MODEL.ROI_HEADS.NUM_CLASSES $NUM_CLASSES # Automatically set based on dataset
|
89 |
-
|
90 |
-
echo "Mask R-CNN training completed."
|
|
|
39 |
echo "Downloading train_net.py file..."
|
40 |
wget $TRAIN_NET_URL -O $TRAIN_NET_FILE
|
41 |
fi
|
42 |
+
# Function to extract the number of classes from COCO annotation and run training
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
python3 - <<END
|
44 |
import os
|
45 |
+
import json
|
46 |
from detectron2.data.datasets import register_coco_instances
|
47 |
+
from detectron2.data import DatasetCatalog
|
48 |
|
49 |
+
# Paths
|
50 |
train_annotation = "$TRAIN_ANNOTATION"
|
51 |
train_image_dir = "$TRAIN_IMAGE_DIR"
|
52 |
val_annotation = "$VAL_ANNOTATION"
|
53 |
val_image_dir = "$VAL_IMAGE_DIR"
|
54 |
|
55 |
+
# Load the COCO annotation file to detect number of classes
|
56 |
+
with open(train_annotation, 'r') as f:
|
57 |
+
coco_data = json.load(f)
|
58 |
+
|
59 |
+
# Extract number of unique categories
|
60 |
+
num_classes = len(coco_data['categories'])
|
61 |
+
print(f"Detected {num_classes} classes from the dataset.")
|
62 |
+
|
63 |
+
# Register the datasets
|
64 |
register_coco_instances("coco_roboone_train", {}, train_annotation, train_image_dir)
|
65 |
register_coco_instances("coco_roboone_val", {}, val_annotation, val_image_dir)
|
66 |
|
67 |
+
# Confirm the datasets are registered
|
68 |
print("Datasets registered successfully.")
|
69 |
+
print("Available datasets:", DatasetCatalog.list())
|
70 |
+
|
71 |
+
# Import necessary modules for training
|
72 |
+
from detectron2.engine import DefaultTrainer
|
73 |
+
from detectron2.config import get_cfg
|
74 |
+
|
75 |
+
# Set up configuration
|
76 |
+
cfg = get_cfg()
|
77 |
+
cfg.merge_from_file("$COCO_CONFIG_FILE")
|
78 |
+
cfg.DATASETS.TRAIN = ("coco_roboone_train",)
|
79 |
+
cfg.DATASETS.TEST = ("coco_roboone_val",)
|
80 |
+
cfg.SOLVER.IMS_PER_BATCH = 2
|
81 |
+
cfg.SOLVER.BASE_LR = 0.00025
|
82 |
+
cfg.SOLVER.MAX_ITER = 1000
|
83 |
+
cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 512
|
84 |
+
cfg.MODEL.ROI_HEADS.NUM_CLASSES = num_classes # Automatically set based on dataset
|
85 |
+
cfg.OUTPUT_DIR = "$OUTPUT_DIR"
|
86 |
+
|
87 |
+
# Train the model
|
88 |
+
trainer = DefaultTrainer(cfg)
|
89 |
+
trainer.resume_or_load(resume=False)
|
90 |
+
trainer.train()
|
91 |
+
|
92 |
+
print("Mask R-CNN training completed.")
|
93 |
END
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|