Commit
·
9206874
1
Parent(s):
9d283bc
train data
Browse files- modules/maskrcnn_train.sh +90 -0
modules/maskrcnn_train.sh
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
# Get script dir
|
4 |
+
SCRIPT_DIR=$(cd $(dirname $0); pwd)
|
5 |
+
|
6 |
+
# Set the paths for the dataset and configuration files
|
7 |
+
TRAIN_ANNOTATION=$SCRIPT_DIR/../export_coco/annotations/train.json
|
8 |
+
TRAIN_IMAGE_DIR=$SCRIPT_DIR/../export_coco/train
|
9 |
+
VAL_ANNOTATION=$SCRIPT_DIR/../export_coco/annotations/val.json
|
10 |
+
VAL_IMAGE_DIR=$SCRIPT_DIR/../export_coco/val
|
11 |
+
COCO_CONFIG_FILE=$SCRIPT_DIR/../export_coco/config/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml
|
12 |
+
BASE_CONFIG_FILE=$SCRIPT_DIR/../export_coco/config/Base-RCNN-FPN.yaml # Base config file path
|
13 |
+
CONFIG_URL="https://raw.githubusercontent.com/facebookresearch/detectron2/main/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"
|
14 |
+
BASE_CONFIG_URL="https://raw.githubusercontent.com/facebookresearch/detectron2/main/configs/Base-RCNN-FPN.yaml" # Base config URL
|
15 |
+
TRAIN_NET_DIR=$SCRIPT_DIR/../export_coco/detectron2
|
16 |
+
TRAIN_NET_FILE=$TRAIN_NET_DIR/train_net.py
|
17 |
+
TRAIN_NET_URL="https://raw.githubusercontent.com/facebookresearch/detectron2/main/tools/train_net.py"
|
18 |
+
OUTPUT_DIR=$SCRIPT_DIR/../export_coco/output
|
19 |
+
|
20 |
+
# Create necessary directories
|
21 |
+
mkdir -p $(dirname $COCO_CONFIG_FILE)
|
22 |
+
mkdir -p $TRAIN_NET_DIR
|
23 |
+
mkdir -p $OUTPUT_DIR
|
24 |
+
|
25 |
+
# Download the COCO config file if it doesn't exist
|
26 |
+
if [ ! -f "$COCO_CONFIG_FILE" ]; then
|
27 |
+
echo "Downloading Mask R-CNN configuration file..."
|
28 |
+
wget $CONFIG_URL -O $COCO_CONFIG_FILE
|
29 |
+
fi
|
30 |
+
|
31 |
+
# Download the base config file if it doesn't exist
|
32 |
+
if [ ! -f "$BASE_CONFIG_FILE" ]; then
|
33 |
+
echo "Downloading Base-RCNN-FPN.yaml configuration file..."
|
34 |
+
wget $BASE_CONFIG_URL -O $BASE_CONFIG_FILE
|
35 |
+
fi
|
36 |
+
|
37 |
+
# Download train_net.py if it doesn't exist
|
38 |
+
if [ ! -f "$TRAIN_NET_FILE" ]; then
|
39 |
+
echo "Downloading train_net.py file..."
|
40 |
+
wget $TRAIN_NET_URL -O $TRAIN_NET_FILE
|
41 |
+
fi
|
42 |
+
|
43 |
+
# Function to extract the number of classes from COCO annotation
|
44 |
+
NUM_CLASSES=$(python3 - <<END
|
45 |
+
import json
|
46 |
+
|
47 |
+
# Load the COCO annotation file
|
48 |
+
with open("$TRAIN_ANNOTATION", 'r') as f:
|
49 |
+
coco_data = json.load(f)
|
50 |
+
|
51 |
+
# Extract the number of unique categories
|
52 |
+
num_classes = len(coco_data['categories'])
|
53 |
+
print(num_classes)
|
54 |
+
END
|
55 |
+
)
|
56 |
+
|
57 |
+
echo "Detected $NUM_CLASSES classes from the dataset."
|
58 |
+
|
59 |
+
# Register the datasets with Detectron2 (assuming Detectron2 environment is set up)
|
60 |
+
python3 - <<END
|
61 |
+
import os
|
62 |
+
from detectron2.data.datasets import register_coco_instances
|
63 |
+
|
64 |
+
# Register COCO datasets
|
65 |
+
train_annotation = "$TRAIN_ANNOTATION"
|
66 |
+
train_image_dir = "$TRAIN_IMAGE_DIR"
|
67 |
+
val_annotation = "$VAL_ANNOTATION"
|
68 |
+
val_image_dir = "$VAL_IMAGE_DIR"
|
69 |
+
|
70 |
+
# Register with the name coco_roboone_train and coco_roboone_val
|
71 |
+
register_coco_instances("coco_roboone_train", {}, train_annotation, train_image_dir)
|
72 |
+
register_coco_instances("coco_roboone_val", {}, val_annotation, val_image_dir)
|
73 |
+
|
74 |
+
print("Datasets registered successfully.")
|
75 |
+
END
|
76 |
+
|
77 |
+
# Run the training with Detectron2
|
78 |
+
python3 $TRAIN_NET_FILE \
|
79 |
+
--config-file $COCO_CONFIG_FILE \
|
80 |
+
--num-gpus 1 \
|
81 |
+
OUTPUT_DIR $OUTPUT_DIR \
|
82 |
+
DATASETS.TRAIN "('coco_roboone_train',)" \
|
83 |
+
DATASETS.TEST "('coco_roboone_val',)" \
|
84 |
+
SOLVER.IMS_PER_BATCH 2 \
|
85 |
+
SOLVER.BASE_LR 0.00025 \
|
86 |
+
SOLVER.MAX_ITER 1000 \
|
87 |
+
MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE 512 \
|
88 |
+
MODEL.ROI_HEADS.NUM_CLASSES $NUM_CLASSES # Automatically set based on dataset
|
89 |
+
|
90 |
+
echo "Mask R-CNN training completed."
|