id
stringlengths 2
115
| private
bool 1
class | tags
sequence | description
stringlengths 0
5.93k
⌀ | downloads
int64 0
1.14M
| likes
int64 0
1.79k
|
---|---|---|---|---|---|
Lacito/pangloss | false | [
"task_categories:automatic-speech-recognition",
"annotations_creators:expert-generated",
"language_creators:expert-generated",
"multilinguality:multilingual",
"multilinguality:translation",
"source_datasets:original",
"language:jya",
"language:nru",
"license:cc-by-nc-sa-4.0"
] | These datasets are extracts from the Pangloss collection and have
been preprocessed for ASR experiments in Na and Japhug. | 278 | 2 |
Binbin/my_dataset | false | [] | null | 150 | 0 |
BlakesOrb6/Fred-Flintstone | false | [] | null | 151 | 0 |
Bosio/pacman | false | [] | null | 299 | 0 |
Bosio/pacman_descriptions | false | [] | null | 299 | 0 |
BritishLibraryLabs/EThOS-PhD-metadata | false | [
"task_categories:text-classification",
"task_categories:fill-mask",
"task_ids:multi-label-classification",
"task_ids:masked-language-modeling",
"multilinguality:monolingual",
"language:en"
] | The data in this collection comprises the bibliographic metadata for all UK doctoral theses listed in EThOS, the UK's national thesis service.
We estimate the data covers around 98% of all PhDs ever awarded by UK Higher Education institutions, dating back to 1787.
Thesis metadata from every PhD-awarding university in the UK is included. | 445 | 1 |
CAGER/rick | false | [] | null | 151 | 0 |
CALM/arwiki | false | [
"multilinguality:monolingual",
"language:ar",
"license:unknown"
] | null | 297 | 1 |
CAiRE/ASCEND | false | [
"task_categories:automatic-speech-recognition",
"annotations_creators:expert-generated",
"language_creators:crowdsourced",
"multilinguality:multilingual",
"size_categories:10K<n<100K",
"source_datasets:original",
"language:en",
"language:zh",
"license:cc-by-sa-4.0",
"speech-recognition",
"code-switching",
"arxiv:2112.06223"
] | ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong. ASCEND consists of 10.62 hours of spontaneous speech with a total of ~12.3K utterances. The corpus is split into 3 sets: training, validation, and test with a ratio of 8:1:1 while maintaining a balanced gender proportion on each set. | 386 | 7 |
CShorten/KerasBERT | false | [] | null | 151 | 2 |
ChadxxxxHall/Inter-vision | false | [] | null | 151 | 0 |
Champion/vpc2020_clear_anon_speech | false | [] | null | 149 | 0 |
Check/a_re_gi | false | [] | null | 151 | 0 |
Check/region_1 | false | [] | null | 299 | 0 |
Check/region_2 | false | [] | null | 299 | 0 |
Check/region_3 | false | [] | null | 299 | 0 |
Check/region_4 | false | [] | null | 299 | 0 |
Check/region_5 | false | [] | null | 298 | 0 |
Check/region_6 | false | [] | null | 297 | 0 |
Check/region_7 | false | [] | null | 298 | 0 |
Check/region_8 | false | [] | null | 297 | 0 |
Check/region_9 | false | [] | null | 299 | 0 |
Check/regions | false | [] | null | 298 | 0 |
Check/vverify | false | [] | null | 297 | 0 |
Cheranga/test | false | [
"license:afl-3.0"
] | null | 148 | 0 |
ChristophSchuhmann/MS_COCO_2017_URL_TEXT | false | [] | null | 337 | 5 |
Chun/dataset | false | [] | null | 299 | 0 |
Chuu/Vhh | false | [] | null | 151 | 0 |
CodedotAI/code-clippy-tfrecords | false | [] | null | 300 | 0 |
CodedotAI/code_clippy | false | [
"task_categories:text-generation",
"task_ids:language-modeling",
"annotations_creators:no-annotation",
"language_creators:crowdsourced",
"multilinguality:multilingual",
"size_categories:unknown",
"source_datasets:original",
"language:code",
"license:gpl-3.0",
"arxiv:2107.03374"
] | This dataset was generated by selecting GitHub repositories from a large collection of repositories. These repositories were collected from https://seart-ghs.si.usi.ch/ and Github portion of [The Pile](https://github.com/EleutherAI/github-downloader) (performed on July 7th, 2021). The goal of this dataset is to provide a training set for pretraining large language models on code data for helping software engineering researchers better understand their impacts on software related tasks such as autocompletion of code. The dataset is split into train, validation, and test splits. There is a version containing duplicates (209GBs compressed) and ones where exact duplicates (132GBs compressed) are removed. Contains mostly JavaScript and Python code, but other programming languages are included as well to various degrees. | 152 | 8 |
CodedotAI/code_clippy_github | false | [
"task_ids:language-modeling",
"language_creators:crowdsourced",
"language_creators:expert-generated",
"multilinguality:multilingual",
"size_categories:unknown",
"language:code",
"license:mit",
"arxiv:2107.03374"
] | The Code Clippy dataset consists of various public codebases from GitHub in 22 programming languages with 23 extensions totalling about 16 TB of data when uncompressed. The dataset was created from the public GitHub dataset on Google BiqQuery. | 160 | 9 |
Crives/haha | false | [] | null | 298 | 1 |
Cropinky/flatearther | false | [] | null | 151 | 0 |
Cropinky/rap_lyrics_english | false | [] | null | 308 | 0 |
Cropinky/wow_fishing_bobber | false | [] | null | 298 | 0 |
Cyberfish/pos_tagger | false | [] | null | 297 | 0 |
Cyberfish/text_error_correction | false | [] | null | 298 | 0 |
CyranoB/polarity | false | [
"task_categories:text-classification",
"task_ids:sentiment-classification",
"annotations_creators:crowdsourced",
"language_creators:crowdsourced",
"multilinguality:monolingual",
"size_categories:1M<n<10M",
"source_datasets:original",
"language:en",
"license:apache-2.0",
"arxiv:1509.01626"
] | The Amazon reviews dataset consists of reviews from amazon.
The data span a period of 18 years, including ~35 million reviews up to March 2013.
Reviews include product and user information, ratings, and a plaintext review. | 297 | 1 |
DDSC/angry-tweets | false | [
"task_categories:text-classification",
"task_ids:sentiment-classification",
"annotations_creators:crowdsourced",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:da",
"license:cc-by-4.0"
] | null | 297 | 1 |
DDSC/europarl | false | [
"task_categories:text-classification",
"task_ids:sentiment-classification",
"annotations_creators:expert-generated",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:n<1K",
"source_datasets:original",
"language:da",
"license:cc-by-4.0"
] | null | 297 | 2 |
DDSC/lcc | false | [
"task_categories:text-classification",
"task_ids:sentiment-classification",
"annotations_creators:expert-generated",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:n<1K",
"source_datasets:original",
"language:da",
"license:cc-by-4.0"
] | null | 309 | 3 |
DDSC/partial-danish-gigaword-no-twitter | false | [
"task_categories:text-generation",
"task_ids:language-modeling",
"annotations_creators:no-annotation",
"language_creators:crowdsourced",
"multilinguality:monolingual",
"size_categories:unknown",
"source_datasets:original",
"language:da",
"license:cc-by-4.0"
] | null | 321 | 3 |
DDSC/reddit-da-asr-preprocessed | false | [] | null | 299 | 0 |
DDSC/reddit-da | false | [
"task_categories:text-generation",
"task_ids:language-modeling",
"annotations_creators:no-annotation",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1M<n<10M",
"source_datasets:original",
"language:da",
"license:mit"
] | null | 297 | 2 |
DDSC/twitter-sent | false | [
"task_categories:text-classification",
"task_ids:sentiment-classification",
"annotations_creators:expert-generated",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"source_datasets:original",
"language:da",
"license:cc-by-4.0"
] | null | 297 | 2 |
DELith/github-issues | false | [] | null | 299 | 0 |
DSCI511G1/COP26_Energy_Transition_Tweets | false | [] | null | 299 | 1 |
DanL/scientific-challenges-and-directions-dataset | false | [
"task_categories:text-classification",
"task_ids:multi-label-classification",
"annotations_creators:expert-generated",
"multilinguality:monolingual",
"source_datasets:CORD-19",
"language:en",
"arxiv:2108.13751",
"arxiv:2004.10706"
] | null | 266 | 1 |
Daniele/dante-corpus | false | [] | null | 282 | 0 |
Darren/data | false | [] | null | 135 | 0 |
Datatang/accented_english | false | [] | null | 267 | 4 |
Datatang/accented_mandarin | false | [] | null | 267 | 3 |
Datatang/chinese_dialect | false | [] | null | 268 | 5 |
Datatang/mandarin_chinese | false | [] | null | 279 | 5 |
Datatang/mixed_speech_chinese_english | false | [] | null | 265 | 4 |
Datatang/multi_language | false | [] | null | 266 | 3 |
Datatang/multi_language_conversation | false | [] | null | 267 | 5 |
Davlan/conll2003_de_noMISC | false | [] | null | 267 | 0 |
Davlan/conll2003_noMISC | false | [] | null | 268 | 0 |
Davlan/masakhanerV1 | false | [] | null | 135 | 0 |
DelgadoPanadero/Pokemon | false | [] | null | 267 | 3 |
DeskDown/ALTDataset | false | [] | null | 311 | 0 |
DeskDown/ALTDataset_en-to-fil-vi-id-ms-ja-khm | false | [] | null | 267 | 0 |
DiFronzo/Human_Activity_Recognition | false | [] | null | 267 | 1 |
Dmitriy612/1 | false | [] | null | 135 | 0 |
DoctorSlimm/yipee | false | [] | null | 135 | 0 |
Doohae/klue-mrc-bm25 | false | [] | null | 267 | 0 |
Doohae/modern_music_re | false | [] | null | 293 | 0 |
DoyyingFace/github-embeddings-doy | false | [] | null | 267 | 0 |
DoyyingFace/github-issues-doy | false | [] | null | 135 | 0 |
DrishtiSharma/as_opus100_processed | false | [] | null | 266 | 0 |
DrishtiSharma/bg_opus100_processed | false | [] | null | 265 | 0 |
DrishtiSharma/br_opus100_processed | false | [] | null | 265 | 0 |
DrishtiSharma/hi_opus100_processed | false | [] | null | 265 | 0 |
DrishtiSharma/kk_opus100_processed | false | [] | null | 266 | 0 |
DrishtiSharma/mr_opus100_processed | false | [] | null | 266 | 0 |
DrishtiSharma/or_opus100_processed | false | [] | null | 267 | 0 |
DrishtiSharma/sl_opus100_processed | false | [] | null | 267 | 0 |
DrishtiSharma/sr_opus100_processed | false | [] | null | 268 | 0 |
Dumiiii/common-voice-romaniarss | false | [] | null | 267 | 0 |
EMBO/biolang | false | [
"task_categories:text-generation",
"task_ids:language-modeling",
"annotations_creators:machine-generated",
"language_creators:expert-generated",
"multilinguality:monolingual",
"size_categories:n>1M",
"language:en",
"license:cc-by-4.0"
] | This dataset is based on abstracts from the open access section of EuropePubMed Central to train language models in the domain of biology. | 663 | 0 |
EMBO/sd-nlp | false | [
"task_categories:text-classification",
"task_ids:multi-class-classification",
"task_ids:named-entity-recognition",
"task_ids:parsing",
"annotations_creators:expert-generated",
"language_creators:expert-generated",
"multilinguality:monolingual",
"size_categories:10K<n<100K",
"language:en",
"license:cc-by-4.0"
] | This dataset is based on the SourceData database and is intented to facilitate training of NLP tasks in the cell and molecualr biology domain. | 793 | 0 |
ESZER/H | false | [] | null | 135 | 0 |
Emanuel/UD_Portuguese-Bosque | false | [
"language:pt"
] | null | 265 | 1 |
Emma121/aaaaa | false | [
"license:bsd-3-clause-clear"
] | null | 137 | 0 |
Emma121/testtest | false | [] | null | 135 | 0 |
Enes3774/data | false | [] | null | 135 | 0 |
Exr0n/wiki-entity-similarity | false | [
"annotations_creators:found",
"language_creators:found",
"multilinguality:monolingual",
"size_categories:10M<n<100M",
"source_datasets:original",
"language:en",
"license:mit",
"named entities",
"similarity",
"paraphrasing",
"synonyms",
"wikipedia",
"arxiv:2004.04906",
"arxiv:2202.13581"
] | null | 936 | 4 |
Eymen3455/xsum_tr | false | [] | null | 135 | 0 |
FIG-Loneliness/FIG-Loneliness | false | [] | null | 267 | 1 |
FL33TW00D/test-dataset | false | [] | null | 135 | 0 |
FRTNX/cosuju | false | [] | Court Summaries and Judgements (CoSuJu) Dataset | 400 | 0 |
FRTNX/worldbank-projects | false | [] | null | 135 | 0 |
Felix-ML/quoteli3 | false | [
"multilinguality:monolingual",
"size_categories:1K<n<10K",
"language:en",
"license:cc-by-4.0"
] | This dataset is a representation of Muzny et al.'s QuoteLi3 dataset as a Huggingface dataset. It can be best used for
quote attribution. | 135 | 0 |
Finnish-NLP/mc4_fi_cleaned | false | [
"task_categories:text-generation",
"task_categories:fill-mask",
"task_ids:language-modeling",
"task_ids:masked-language-modeling",
"multilinguality:monolingual",
"size_categories:unknown",
"source_datasets:extended|mc4",
"language:fi"
] | null | 265 | 3 |
Firoj/HumAID | false | [] | The HumAID Twitter dataset consists of several thousands of manually annotated tweets that has been collected during 19 major natural disaster events including earthquakes, hurricanes, wildfires, and floods, which happened from 2016 to 2019 across different parts of the World. The annotations in the provided datasets consists of following humanitarian categories. The dataset consists only english tweets and it is the largest dataset for crisis informatics so far.
** Humanitarian categories **
- Caution and advice
- Displaced people and evacuations
- Dont know cant judge
- Infrastructure and utility damage
- Injured or dead people
- Missing or found people
- Not humanitarian
- Other relevant information
- Requests or urgent needs
- Rescue volunteering or donation effort
- Sympathy and support | 267 | 1 |
Francois/futures_es | false | [] | null | 134 | 0 |
Fraser/mnist-text-default | false | [] | MNIST dataset adapted to a text-based representation.
This allows testing interpolation quality for Transformer-VAEs.
System is heavily inspired by Matthew Rayfield's work https://youtu.be/Z9K3cwSL6uM
Works by quantising each MNIST pixel into one of 64 characters.
Every sample has an up & down version to encourage the model to learn rotation invarient features.
Use `.array_to_text(` and `.text_to_array(` methods to test your generated data.
Data format:
- text: (30 x 28 tokens, 840 tokens total): Textual representation of MNIST digit, for example:
```
00 down ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
01 down ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
02 down ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
03 down ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
04 down ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
05 down ! ! ! ! ! ! ! ! ! ! ! ! ! % % % @ C L ' J a ^ @ ! ! ! !
06 down ! ! ! ! ! ! ! ! ( * 8 G K ` ` ` ` ` Y L ` ] Q 1 ! ! ! !
07 down ! ! ! ! ! ! ! - \ ` ` ` ` ` ` ` ` _ 8 5 5 / * ! ! ! ! !
08 down ! ! ! ! ! ! ! % W ` ` ` ` ` R N ^ ] ! ! ! ! ! ! ! ! ! !
09 down ! ! ! ! ! ! ! ! 5 H ; ` ` T # ! + G ! ! ! ! ! ! ! ! ! !
10 down ! ! ! ! ! ! ! ! ! $ ! G ` 7 ! ! ! ! ! ! ! ! ! ! ! ! ! !
11 down ! ! ! ! ! ! ! ! ! ! ! C ` P ! ! ! ! ! ! ! ! ! ! ! ! ! !
12 down ! ! ! ! ! ! ! ! ! ! ! # P ` 2 ! ! ! ! ! ! ! ! ! ! ! ! !
13 down ! ! ! ! ! ! ! ! ! ! ! ! ) ] Y I < ! ! ! ! ! ! ! ! ! ! !
14 down ! ! ! ! ! ! ! ! ! ! ! ! ! 5 ] ` ` > ' ! ! ! ! ! ! ! ! !
15 down ! ! ! ! ! ! ! ! ! ! ! ! ! ! , O ` ` F ' ! ! ! ! ! ! ! !
16 down ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! % 8 ` ` O ! ! ! ! ! ! ! !
17 down ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! _ ` _ 1 ! ! ! ! ! ! !
18 down ! ! ! ! ! ! ! ! ! ! ! ! ! ! , A N ` ` T ! ! ! ! ! ! ! !
19 down ! ! ! ! ! ! ! ! ! ! ! ! * F Z ` ` ` _ N ! ! ! ! ! ! ! !
20 down ! ! ! ! ! ! ! ! ! ! ' = X ` ` ` ` S 4 ! ! ! ! ! ! ! ! !
21 down ! ! ! ! ! ! ! ! & 1 V ` ` ` ` R 5 ! ! ! ! ! ! ! ! ! ! !
22 down ! ! ! ! ! ! % K W ` ` ` ` Q 5 # ! ! ! ! ! ! ! ! ! ! ! !
23 down ! ! ! ! . L Y ` ` ` ` ^ B # ! ! ! ! ! ! ! ! ! ! ! ! ! !
24 down ! ! ! ! C ` ` ` V B B % ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
25 down ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
26 down ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
27 down ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
```
- label: Just a number with the texts matching label. | 266 | 0 |
Fraser/mnist-text-no-spaces | false | [] | MNIST dataset adapted to a text-based representation.
This allows testing interpolation quality for Transformer-VAEs.
System is heavily inspired by Matthew Rayfield's work https://youtu.be/Z9K3cwSL6uM
Works by quantising each MNIST pixel into one of 64 characters.
Every sample has an up & down version to encourage the model to learn rotation invarient features.
Use `.array_to_text(` and `.text_to_array(` methods to test your generated data.
Removed spaces to get better BPE compression on sequences.
**Should only be used with a trained tokenizer.**
Data format:
- text: (30 x 28 tokens, 840 tokens total): Textual representation of MNIST digit, for example:
```
00down!!!!!!!!!!!!!!!!!!!!!!!!!!!!
01down!!!!!!!!!!!!!!!!!!!!!!!!!!!!
02down!!!!!!!!!!!!!!!!!!!!!!!!!!!!
03down!!!!!!!!!!!!!!!!!!!!!!!!!!!!
04down!!!!!!!!!!!!!!!!!!!!!!!!!!!!
05down!!!!!!!!!!!!!%%%@CL'Ja^@!!!!
06down!!!!!!!!(*8GK`````YL`]Q1!!!!
07down!!!!!!!-\\````````_855/*!!!!!
08down!!!!!!!%W`````RN^]!!!!!!!!!!
09down!!!!!!!!5H;``T#!+G!!!!!!!!!!
10down!!!!!!!!!$!G`7!!!!!!!!!!!!!!
11down!!!!!!!!!!!C`P!!!!!!!!!!!!!!
12down!!!!!!!!!!!#P`2!!!!!!!!!!!!!
13down!!!!!!!!!!!!)]YI<!!!!!!!!!!!
14down!!!!!!!!!!!!!5]``>'!!!!!!!!!
15down!!!!!!!!!!!!!!,O``F'!!!!!!!!
16down!!!!!!!!!!!!!!!%8``O!!!!!!!!
17down!!!!!!!!!!!!!!!!!_`_1!!!!!!!
18down!!!!!!!!!!!!!!,AN``T!!!!!!!!
19down!!!!!!!!!!!!*FZ```_N!!!!!!!!
20down!!!!!!!!!!'=X````S4!!!!!!!!!
21down!!!!!!!!&1V````R5!!!!!!!!!!!
22down!!!!!!%KW````Q5#!!!!!!!!!!!!
23down!!!!.LY````^B#!!!!!!!!!!!!!!
24down!!!!C```VBB%!!!!!!!!!!!!!!!!
25down!!!!!!!!!!!!!!!!!!!!!!!!!!!!
26down!!!!!!!!!!!!!!!!!!!!!!!!!!!!
27down!!!!!!!!!!!!!!!!!!!!!!!!!!!!
```
- label: Just a number with the texts matching label. | 267 | 0 |
Fraser/mnist-text-small | false | [] | MNIST dataset adapted to a text-based representation.
*Modified images to be ~1/4 the original area.*
Done by taking a max pool.
This allows testing interpolation quality for Transformer-VAEs.
System is heavily inspired by Matthew Rayfield's work https://youtu.be/Z9K3cwSL6uM
Works by quantising each MNIST pixel into one of 64 characters.
Every sample has an up & down version to encourage the model to learn rotation invarient features.
Use `.array_to_text(` and `.text_to_array(` methods to test your generated data.
Data format:
- text: (16 x 14 tokens, 224 tokens total): Textual representation of MNIST digit, for example:
```
00 down ! ! ! ! ! ! ! ! ! ! ! ! ! !
01 down ! ! ! ! ! ! ! ! ! ! ! ! ! !
02 down ! ! ! ! ! ! % % C L a ^ ! !
03 down ! ! ! - ` ` ` ` ` Y ` Q ! !
04 down ! ! ! % ` ` ` R ^ ! ! ! ! !
05 down ! ! ! ! $ G ` ! ! ! ! ! ! !
06 down ! ! ! ! ! # ` Y < ! ! ! ! !
07 down ! ! ! ! ! ! 5 ` ` F ! ! ! !
08 down ! ! ! ! ! ! ! % ` ` 1 ! ! !
09 down ! ! ! ! ! ! F ` ` ` ! ! ! !
10 down ! ! ! ! 1 ` ` ` ` 4 ! ! ! !
11 down ! ! L ` ` ` ` 5 ! ! ! ! ! !
12 down ! ! ` ` V B ! ! ! ! ! ! ! !
13 down ! ! ! ! ! ! ! ! ! ! ! ! ! !
```
- label: Just a number with the texts matching label. | 329 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.