id
stringlengths
2
115
private
bool
1 class
tags
sequence
description
stringlengths
0
5.93k
downloads
int64
0
1.14M
likes
int64
0
1.79k
castorini/mr-tydi
false
[ "task_categories:text-retrieval", "multilinguality:multilingual", "language:ar", "language:bn", "language:en", "language:fi", "language:id", "language:ja", "language:ko", "language:ru", "language:sw", "language:te", "language:th", "license:apache-2.0" ]
null
2,178
2
castorini/msmarco_v1_doc_doc2query-t5_expansions
false
[ "language:en", "license:apache-2.0" ]
null
267
0
castorini/msmarco_v1_doc_segmented_doc2query-t5_expansions
false
[ "language:English", "license:Apache License 2.0" ]
null
263
0
castorini/msmarco_v1_passage_doc2query-t5_expansions
false
[ "language:English", "license:Apache License 2.0" ]
null
268
0
castorini/msmarco_v2_doc_doc2query-t5_expansions
false
[ "language:English", "license:Apache License 2.0" ]
null
263
0
castorini/msmarco_v2_doc_segmented_doc2query-t5_expansions
false
[ "language:English", "license:Apache License 2.0" ]
null
263
0
castorini/msmarco_v2_passage_doc2query-t5_expansions
false
[ "language:English", "license:Apache License 2.0" ]
null
265
0
castorini/nq_gar-t5_expansions
false
[ "language:English", "license:Apache License 2.0" ]
null
261
1
castorini/triviaqa_gar-t5_expansions
false
[ "language:English", "license:Apache License 2.0" ]
null
262
0
caythuoc/caoduoclieu
false
[]
null
133
0
cbrew475/hwu66
false
[]
This project contains natural language data for human-robot interaction in a projecthome domain which Xingkun Liu et al, from Heriot-Watt University, collected and annotated. It can be used for evaluating NLU services/platforms.
264
0
ccccccc/hdjw_94ejrjr
false
[]
null
133
0
ccdv/arxiv-classification
false
[ "task_categories:text-classification", "task_ids:multi-class-classification", "task_ids:topic-classification", "size_categories:10K<n<100K", "language:en", "long context" ]
Arxiv Classification Dataset: a classification of Arxiv Papers (11 classes). It contains 11 slightly unbalanced classes, 33k Arxiv Papers divided into 3 splits: train (23k), val (5k) and test (5k). Copied from "Long Document Classification From Local Word Glimpses via Recurrent Attention Learning" by JUN HE LIQUN WANG LIU LIU, JIAO FENG AND HAO WU See: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8675939 See: https://github.com/LiqunW/Long-document-dataset
611
5
ccdv/arxiv-summarization
false
[ "task_categories:summarization", "task_categories:text-generation", "multilinguality:monolingual", "size_categories:100K<n<1M", "language:en", "conditional-text-generation" ]
Arxiv dataset for summarization. From paper: A Discourse-Aware Attention Model for Abstractive Summarization of Long Documents" by A. Cohan et al. See: https://aclanthology.org/N18-2097.pdf See: https://github.com/armancohan/long-summarization
1,720
16
ccdv/cnn_dailymail
false
[ "task_categories:summarization", "task_categories:text-generation", "annotations_creators:no-annotation", "language_creators:found", "multilinguality:monolingual", "size_categories:100K<n<1M", "source_datasets:original", "language:en", "license:apache-2.0", "conditional-text-generation" ]
CNN/DailyMail non-anonymized summarization dataset. There are two features: - article: text of news article, used as the document to be summarized - highlights: joined text of highlights with <s> and </s> around each highlight, which is the target summary
4,998
3
ccdv/govreport-summarization
false
[ "task_categories:summarization", "task_categories:text-generation", "multilinguality:monolingual", "size_categories:10K<n<100K", "language:en", "conditional-text-generation", "arxiv:2104.02112" ]
GovReport dataset for summarization. From paper: Efficient Attentions for Long Document Summarization" by L. Huang et al. See: https://arxiv.org/pdf/2104.02112.pdf See: https://github.com/luyang-huang96/LongDocSum
433
4
ccdv/patent-classification
false
[ "task_categories:text-classification", "task_ids:multi-class-classification", "task_ids:topic-classification", "size_categories:10K<n<100K", "language:en", "long context" ]
Patent Classification Dataset: a classification of Patents (9 classes). It contains 9 unbalanced classes, 35k Patents and summaries divided into 3 splits: train (25k), val (5k) and test (5k). Data are sampled from "BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization." by Eva Sharma, Chen Li and Lu Wang See: https://aclanthology.org/P19-1212.pdf See: https://evasharma.github.io/bigpatent/
633
3
ccdv/pubmed-summarization
false
[ "task_categories:summarization", "task_categories:text-generation", "multilinguality:monolingual", "size_categories:100K<n<1M", "language:en", "conditional-text-generation" ]
PubMed dataset for summarization. From paper: A Discourse-Aware Attention Model for Abstractive Summarization of Long Documents" by A. Cohan et al. See: https://aclanthology.org/N18-2097.pdf See: https://github.com/armancohan/long-summarization
1,742
12
cdleong/piglatin-mt
false
[ "task_categories:translation", "multilinguality:translation", "size_categories:10K<n<100K", "source_datasets:original", "language:en", "license:mit" ]
\\r\nPig-latin machine and English parallel machine translation corpus. Based on The Project Gutenberg EBook of "De Bello Gallico" and Other Commentaries https://www.gutenberg.org/ebooks/10657 Converted to pig-latin with https://github.com/bpabel/piglatin
262
0
cdleong/temp_africaNLP_keyword_spotting_for_african_languages
false
[ "language:wo", "language:fuc", "language:srr", "language:mnk", "language:snk" ]
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
132
0
cdminix/iwslt2011
false
[]
Both manual transcripts and ASR outputs from the IWSLT2011 speech translation evalutation campaign are often used for the related punctuation annotation task. This dataset takes care of preprocessing said transcripts and automatically inserts punctuation marks given in the manual transcripts in the ASR outputs using Levenshtein aligment.
134
0
cdminix/mgb1
false
[]
The first edition of the Multi-Genre Broadcast (MGB-1) Challenge is an evaluation of speech recognition, speaker diarization, and lightly supervised alignment using TV recordings in English. The speech data is broad and multi-genre, spanning the whole range of TV output, and represents a challenging task for speech technology. In 2015, the challenge used data from the British Broadcasting Corporation (BBC).
264
0
cem/dnm
false
[]
null
263
0
cem/film
false
[]
null
133
0
cemigo/taylor_vs_shakes
false
[]
null
133
0
cemigo/test-data
false
[]
null
133
0
cestwc/adapted-msrcomp
false
[]
null
264
0
cestwc/adapted-paranmt5m
false
[]
null
265
2
cestwc/adapted-sentcomp
false
[]
null
265
0
cestwc/adapted-synonym
false
[]
null
263
0
cestwc/adapted-wikismall
false
[]
null
264
0
cestwc/adapted-wordnet
false
[]
null
268
1
cestwc/asrc
false
[]
null
265
0
cestwc/cnn_dailymail-metaeval100
false
[]
null
265
0
cestwc/cnn_dailymail-snippets
false
[]
null
267
0
cestwc/cnn_dailymail-test50
false
[]
null
271
0
cestwc/conjnli
false
[]
null
267
0
cestwc/sac-approx-1
false
[]
null
265
0
cestwc/sac-na
false
[]
null
267
0
cestwc/sac
false
[]
null
266
0
cfilt/iitb-english-hindi
false
[]
null
941
6
cgarciae/point-cloud-mnist
false
[]
The MNIST dataset consists of 70,000 28x28 black-and-white points in 10 classes (one for each digits), with 7,000 points per class. There are 60,000 training points and 10,000 test points.
265
2
chau/ink_test01
false
[ "license:other" ]
null
266
0
chenghao/mc4_eu_dedup
false
[]
null
266
0
chenghao/mc4_sw_dedup
false
[]
null
264
0
chenghao/scielo_books
false
[ "task_ids:language-modeling", "annotations_creators:no-annotation", "language_creators:found", "multilinguality:multilingual", "size_categories:n<1K", "source_datasets:original", "language:en", "language:pt", "language:es", "license:cc-by-nc-sa-3.0" ]
null
263
0
chenyuxuan/wikigold
false
[]
WikiGold dataset.
334
0
cheulyop/dementiabank
false
[]
DementiaBank Pitt Corpus includes audios and transcripts of 99 controls and 194 dementia patients. These transcripts and audio files were gathered as part of a larger protocol administered by the Alzheimer and Related Dementias Study at the University of Pittsburgh School of Medicine. The original acquisition of the DementiaBank data was supported by NIH grants AG005133 and AG003705 to the University of Pittsburgh. Participants included elderly controls, people with probable and possible Alzheimer’s Disease, and people with other dementia diagnoses. Data were gathered longitudinally, on a yearly basis.
265
0
cheulyop/ksponspeech
false
[]
KsponSpeech is a large-scale spontaneous speech corpus of Korean conversations. This corpus contains 969 hrs of general open-domain dialog utterances, spoken by about 2,000 native Korean speakers in a clean environment. All data were constructed by recording the dialogue of two people freely conversing on a variety of topics and manually transcribing the utterances. The transcription provides a dual transcription consisting of orthography and pronunciation, and disfluency tags for spontaneity of speech, such as filler words, repeated words, and word fragments. KsponSpeech is publicly available on an open data hub site of the Korea government. (https://aihub.or.kr/aidata/105)
290
2
chitra/contradiction
false
[]
null
264
0
chitra/contradictionNLI
false
[]
null
266
0
chmanoj/ai4bharat__samanantar_processed_te
false
[]
null
264
0
chopey/dhivehi
false
[]
null
264
0
clarin-pl/2021-punctuation-restoration
false
[ "task_categories:automatic-speech-recognition", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "size_categories:n<1K", "language:pl" ]
This dataset is designed to be used in training models that restore punctuation marks from the output of Automatic Speech Recognition system for Polish language.
262
0
clarin-pl/aspectemo
false
[ "task_categories:token-classification", "task_ids:sentiment-classification", "annotations_creators:expert-generated", "language_creators:other", "multilinguality:monolingual", "size_categories:1K", "size_categories:1K<n<10K", "source_datasets:original", "language:pl", "license:mit" ]
AspectEmo dataset: Multi-Domain Corpus of Consumer Reviews for Aspect-Based Sentiment Analysis
368
1
clarin-pl/cst-wikinews
false
[]
CST Wikinews dataset.
264
1
clarin-pl/kpwr-ner
false
[ "task_categories:other", "task_ids:named-entity-recognition", "annotations_creators:expert-generated", "language_creators:found", "multilinguality:monolingual", "size_categories:18K", "size_categories:10K<n<100K", "source_datasets:original", "language:pl", "license:cc-by-3.0", "structure-prediction" ]
KPWR-NER tagging dataset.
856
4
clarin-pl/multiwiki_90k
false
[]
Multi-Wiki90k: Multilingual benchmark dataset for paragraph segmentation
264
1
clarin-pl/nkjp-pos
false
[ "task_categories:other", "task_ids:part-of-speech", "annotations_creators:expert-generated", "language_creators:other", "multilinguality:monolingual", "size_categories:unknown", "source_datasets:original", "language:pl", "license:gpl-3.0", "structure-prediction" ]
NKJP-POS tagging dataset.
279
1
clarin-pl/polemo2-official
false
[ "task_categories:text-classification", "task_ids:sentiment-classification", "annotations_creators:expert-generated", "language_creators:other", "multilinguality:monolingual", "size_categories:8K", "size_categories:1K<n<10K", "source_datasets:original", "language:pl", "license:cc-by-sa-4.0" ]
PolEmo 2.0: Corpus of Multi-Domain Consumer Reviews, evaluation data for article presented at CoNLL.
2,624
3
classla/FRENK-hate-en
false
[ "task_categories:text-classification", "size_categories:1K<n<10K", "language:en", "license:other", "hate-speech-detection", "offensive-language", "arxiv:1906.02045" ]
The FRENK Datasets of Socially Unacceptable Discourse in English.
658
1
classla/FRENK-hate-hr
false
[ "task_categories:text-classification", "size_categories:1K<n<10K", "language:hr", "license:other", "hate-speech-detection", "offensive-language", "arxiv:1906.02045" ]
The FRENK Datasets of Socially Unacceptable Discourse in Croatian.
537
0
classla/FRENK-hate-sl
false
[ "task_categories:text-classification", "size_categories:1K<n<10K", "language:sl", "license:other", "hate-speech-detection", "offensive-language", "arxiv:1906.02045" ]
The FRENK Datasets of Socially Unacceptable Discourse in Slovene.
520
0
classla/copa_hr
false
[ "task_categories:text-classification", "task_ids:natural-language-inference", "language:hr", "license:cc-by-sa-4.0", "causal-reasoning", "textual-entailment", "commonsense-reasoning", "arxiv:2005.00333", "arxiv:2104.09243" ]
The COPA-HR dataset (Choice of plausible alternatives in Croatian) is a translation of the English COPA dataset (https://people.ict.usc.edu/~gordon/copa.html) by following the XCOPA dataset translation methodology (https://arxiv.org/abs/2005.00333). The dataset consists of 1000 premises (My body cast a shadow over the grass), each given a question (What is the cause?), and two choices (The sun was rising; The grass was cut), with a label encoding which of the choices is more plausible given the annotator or translator (The sun was rising). The dataset is split into 400 training samples, 100 validation samples, and 500 test samples. It includes the following features: 'premise', 'choice1', 'choice2', 'label', 'question', 'changed' (boolean).
275
0
classla/hr500k
false
[ "task_categories:other", "task_ids:lemmatization", "task_ids:named-entity-recognition", "task_ids:part-of-speech", "language:hr", "license:cc-by-sa-4.0", "structure-prediction", "normalization", "tokenization" ]
The hr500k training corpus contains about 500,000 tokens manually annotated on the levels of tokenisation, sentence segmentation, morphosyntactic tagging, lemmatisation and named entities. On the sentence level, the dataset contains 20159 training samples, 1963 validation samples and 2672 test samples across the respective data splits. Each sample represents a sentence and includes the following features: sentence ID ('sent_id'), sentence text ('text'), list of tokens ('tokens'), list of lemmas ('lemmas'), list of Multext-East tags ('xpos_tags), list of UPOS tags ('upos_tags'), list of morphological features ('feats'), and list of IOB tags ('iob_tags'). The 'upos_tags' and 'iob_tags' features are encoded as class labels.
524
0
classla/janes_tag
false
[ "task_categories:other", "task_ids:lemmatization", "task_ids:part-of-speech", "language:si", "license:cc-by-sa-4.0", "structure-prediction", "normalization", "tokenization" ]
The dataset contains 6273 training samples, 762 validation samples and 749 test samples. Each sample represents a sentence and includes the following features: sentence ID ('sent_id'), list of tokens ('tokens'), list of normalised word forms ('norms'), list of lemmas ('lemmas'), list of Multext-East tags ('xpos_tags), list of morphological features ('feats'), and list of UPOS tags ('upos_tags'), which are encoded as class labels.
262
0
classla/reldi_hr
false
[ "task_categories:other", "task_ids:lemmatization", "task_ids:named-entity-recognition", "task_ids:part-of-speech", "language:hr", "license:cc-by-sa-4.0", "structure-prediction", "normalization", "tokenization" ]
The dataset contains 6339 training samples, 815 validation samples and 785 test samples. Each sample represents a sentence and includes the following features: sentence ID ('sent_id'), list of tokens ('tokens'), list of lemmas ('lemmas'), list of UPOS tags ('upos_tags'), list of Multext-East tags ('xpos_tags), list of morphological features ('feats'), and list of IOB tags ('iob_tags'), which are encoded as class labels.
262
0
classla/reldi_sr
false
[ "task_categories:other", "task_ids:lemmatization", "task_ids:named-entity-recognition", "task_ids:part-of-speech", "language:sr", "license:cc-by-sa-4.0", "structure-prediction", "normalization", "tokenization" ]
The dataset contains 5462 training samples, 711 validation samples and 725 test samples. Each sample represents a sentence and includes the following features: sentence ID ('sent_id'), list of tokens ('tokens'), list of lemmas ('lemmas'), list of UPOS tags ('upos_tags'), list of Multext-East tags ('xpos_tags), list of morphological features ('feats'), and list of IOB tags ('iob_tags'), which are encoded as class labels.
262
0
classla/setimes_sr
false
[ "task_categories:other", "task_ids:lemmatization", "task_ids:named-entity-recognition", "task_ids:part-of-speech", "language:sr", "license:cc-by-sa-4.0", "structure-prediction", "normalization", "tokenization" ]
SETimes_sr is a Serbian dataset annotated for morphosyntactic information and named entities. The dataset contains 3177 training samples, 395 validation samples and 319 test samples across the respective data splits. Each sample represents a sentence and includes the following features: sentence ID ('sent_id'), sentence text ('text'), list of tokens ('tokens'), list of lemmas ('lemmas'), list of Multext-East tags ('xpos_tags), list of UPOS tags ('upos_tags'), list of morphological features ('feats'), and list of IOB tags ('iob_tags'). The 'upos_tags' and 'iob_tags' features are encoded as class labels.
528
0
classla/ssj500k
false
[ "task_categories:token-classification", "task_ids:lemmatization", "task_ids:named-entity-recognition", "task_ids:parsing", "task_ids:part-of-speech", "language:sl", "license:cc-by-sa-4.0", "structure-prediction", "tokenization", "dependency-parsing" ]
The dataset contains 7432 training samples, 1164 validation samples and 893 test samples. Each sample represents a sentence and includes the following features: sentence ID ('sent_id'), list of tokens ('tokens'), list of lemmas ('lemmas'), list of Multext-East tags ('xpos_tags), list of UPOS tags ('upos_tags'), list of morphological features ('feats'), list of IOB tags ('iob_tags'), and list of universal dependency tags ('uds'). Three dataset configurations are available, where the corresponding features are encoded as class labels: 'ner', 'upos', and 'ud'.
528
0
clem/autonlp-data-french_word_detection
false
[]
null
133
1
clips/mfaq
false
[ "task_categories:question-answering", "task_ids:multiple-choice-qa", "annotations_creators:no-annotation", "language_creators:other", "multilinguality:multilingual", "size_categories:unknown", "source_datasets:original", "language:cs", "language:da", "language:de", "language:en", "language:es", "language:fi", "language:fr", "language:he", "language:hr", "language:hu", "language:id", "language:it", "language:nl", "language:no", "language:pl", "language:pt", "language:ro", "language:ru", "language:sv", "language:tr", "language:vi", "license:cc0-1.0", "arxiv:2109.12870" ]
We present the first multilingual FAQ dataset publicly available. We collected around 6M FAQ pairs from the web, in 21 different languages.
6,197
19
clips/mqa
false
[ "task_categories:question-answering", "task_ids:multiple-choice-qa", "annotations_creators:no-annotation", "language_creators:other", "multilinguality:multilingual", "size_categories:unknown", "source_datasets:original", "language:ca", "language:en", "language:de", "language:es", "language:fr", "language:ru", "language:ja", "language:it", "language:zh", "language:pt", "language:nl", "language:tr", "language:pl", "language:vi", "language:ar", "language:id", "language:uk", "language:ro", "language:no", "language:th", "language:sv", "language:el", "language:fi", "language:he", "language:da", "language:cs", "language:ko", "language:fa", "language:hi", "language:hu", "language:sk", "language:lt", "language:et", "language:hr", "language:is", "language:lv", "language:ms", "language:bg", "language:sr", "license:cc0-1.0" ]
MQA is a multilingual corpus of questions and answers parsed from the Common Crawl. Questions are divided between Frequently Asked Questions (FAQ) pages and Community Question Answering (CQA) pages.
36,491
15
cloverhxy/DADER-source
false
[]
null
264
0
cnrcastroli/aaaa
false
[]
null
133
0
coala/kkk
false
[]
null
133
0
coastalcph/fairlex
false
[ "task_categories:text-classification", "task_ids:multi-label-classification", "task_ids:multi-class-classification", "task_ids:topic-classification", "annotations_creators:found", "annotations_creators:machine-generated", "language_creators:found", "source_datasets:extended", "language:en", "language:de", "language:fr", "language:it", "language:zh", "license:cc-by-nc-sa-4.0", "bias", "gender-bias", "arxiv:2103.13868", "arxiv:2105.03887" ]
Fairlex: A multilingual benchmark for evaluating fairness in legal text processing.
758
2
codeceejay/ng_accent
false
[]
null
133
0
cointegrated/ru-paraphrase-NMT-Leipzig
false
[ "task_categories:text-generation", "annotations_creators:no-annotation", "language_creators:machine-generated", "multilinguality:translation", "size_categories:100K<n<1M", "source_datasets:extended|other", "language:ru", "license:cc-by-4.0", "conditional-text-generation", "paraphrase-generation", "paraphrase" ]
null
291
2
collectivat/tv3_parla
false
[ "task_categories:automatic-speech-recognition", "task_categories:text-generation", "task_ids:language-modeling", "annotations_creators:found", "language_creators:found", "multilinguality:monolingual", "size_categories:100K<n<1M", "source_datasets:original", "language:ca", "license:cc-by-nc-4.0" ]
This corpus includes 240 hours of Catalan speech from broadcast material. The details of segmentation, data processing and also model training are explained in Külebi, Öktem; 2018. The content is owned by Corporació Catalana de Mitjans Audiovisuals, SA (CCMA); we processed their material and hereby making it available under their terms of use. This project was supported by the Softcatalà Association.
262
2
comodoro/pscr
false
[ "license:cc-by-nc-3.0" ]
null
262
0
comodoro/vystadial2016_asr
false
[ "license:cc-by-nc-3.0" ]
This is the Czech data collected during the `VYSTADIAL` project. It is an extension of the 'Vystadial 2013' Czech part data release. The dataset comprises of telephone conversations in Czech, developed for training acoustic models for automatic speech recognition in spoken dialogue systems.
262
1
congpt/dstc23_asr
false
[]
null
133
0
corypaik/coda
false
[ "annotations_creators:crowdsourced", "language_creators:expert-generated", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:original", "language:en", "license:apache-2.0", "arxiv:2110.08182" ]
*The Color Dataset* (CoDa) is a probing dataset to evaluate the representation of visual properties in language models. CoDa consists of color distributions for 521 common objects, which are split into 3 groups: Single, Multi, and Any.
266
2
corypaik/prost
false
[ "task_categories:question-answering", "task_ids:multiple-choice-qa", "task_ids:open-domain-qa", "annotations_creators:expert-generated", "language_creators:expert-generated", "multilinguality:monolingual", "size_categories:10K<n<100K", "source_datasets:original", "language:en-US", "license:apache-2.0", "arxiv:2106.03634" ]
*Physical Reasoning about Objects Through Space and Time* (PROST) is a probing dataset to evaluate the ability of pretrained LMs to understand and reason about the physical world. PROST consists of 18,736 cloze-style multiple choice questions from 14 manually curated templates, covering 10 physical reasoning concepts: direction, mass, height, circumference, stackable, rollable, graspable, breakable, slideable, and bounceable.
463
1
craffel/openai_lambada
false
[]
LAMBADA dataset variant used by OpenAI to evaluate GPT-2 and GPT-3.
1,126
1
crich/cider
false
[]
null
133
0
cristinakuo/latino40
false
[]
null
133
0
crystina-z/inlang-mrtydi-corpus
false
[]
null
1,053
0
crystina-z/inlang-mrtydi
false
[]
null
1,056
0
crystina-z/mbert-mrtydi-corpus
false
[]
null
1,576
0
crystina-z/mbert-mrtydi
false
[]
null
1,584
0
crystina-z/msmarco-passage
false
[]
null
264
1
csarron/25m-img-caps
false
[]
null
133
1
csarron/4m-img-caps
false
[]
null
133
1
csarron/image-captions
false
[]
null
133
0
csebuetnlp/xlsum
false
[ "task_categories:summarization", "task_categories:text-generation", "annotations_creators:found", "language_creators:found", "multilinguality:multilingual", "size_categories:1M<n<10M", "source_datasets:original", "language:am", "language:ar", "language:az", "language:bn", "language:my", "language:zh", "language:en", "language:fr", "language:gu", "language:ha", "language:hi", "language:ig", "language:id", "language:ja", "language:rn", "language:ko", "language:ky", "language:mr", "language:ne", "language:om", "language:ps", "language:fa", "language:pcm", "language:pt", "language:pa", "language:ru", "language:gd", "language:sr", "language:si", "language:so", "language:es", "language:sw", "language:ta", "language:te", "language:th", "language:ti", "language:tr", "language:uk", "language:ur", "language:uz", "language:vi", "language:cy", "language:yo", "license:cc-by-nc-sa-4.0", "conditional-text-generation", "arxiv:1607.01759" ]
We present XLSum, a comprehensive and diverse dataset comprising 1.35 million professionally annotated article-summary pairs from BBC, extracted using a set of carefully designed heuristics. The dataset covers 45 languages ranging from low to high-resource, for many of which no public dataset is currently available. XL-Sum is highly abstractive, concise, and of high quality, as indicated by human and intrinsic evaluation.
8,082
27
csebuetnlp/xnli_bn
false
[ "task_categories:text-classification", "task_ids:natural-language-inference", "annotations_creators:machine-generated", "language_creators:found", "multilinguality:monolingual", "size_categories:100K<n<1M", "source_datasets:extended", "language:bn", "license:cc-by-nc-sa-4.0", "arxiv:2101.00204", "arxiv:2007.01852" ]
This is a Natural Language Inference (NLI) dataset for Bengali, curated using the subset of MNLI data used in XNLI and state-of-the-art English to Bengali translation model.
303
0
csikasote/bemba_train_dev_sets_processed
false
[]
null
266
0
csikasote/bemba_trainset_processed
false
[]
null
265
0