content
stringlengths
5
1.05M
# AoC 2019. Day 12. The N-Body Problem import util class Moon(): def __init__(self, pos): self.pos = pos.copy() self.vel = [0,0,0] def apply_velocity(self): for dim in range(3): self.pos[dim] += self.vel[dim] def potential(self): return sum([abs(x) for x in self.pos]) def kinetic(self): return sum([abs(x) for x in self.vel]) def energy(self): return self.potential() * self.kinetic() def __str__(self): return f"pos=<x={self.pos[0]}, y={self.pos[1]}, z={self.pos[2]}>, vel=<x={self.vel[0]}, y={self.vel[1]}, z={self.vel[2]}>" def apply_gravity(A, B): for dimention in range(3): if A.pos[dimention] < B.pos[dimention]: A.vel[dimention] += 1 B.vel[dimention] -= 1 elif A.pos[dimention] > B.pos[dimention]: A.vel[dimention] -= 1 B.vel[dimention] += 1 def test1(positions, steps: int, expected_energy: int): moons = list() for p in positions: moons.append(Moon(p)) for step in range(steps): for i in range(len(moons)): for j in range(0,i): apply_gravity(moons[i], moons[j]) #print(f"\nAfter {step+1} steps:") for m in moons: m.apply_velocity() #print(m) result = sum([m.energy() for m in moons]) if result != expected_energy: print(f"Error, expected={expected_energy}, actual={result}") else: print("OK") def test2(positions, expected_steps: int): moons = list() for p in positions: moons.append(Moon(p)) step = 0 while (1==1): for i in range(len(moons)): for j in range(0,i): apply_gravity(moons[i], moons[j]) #print(f"\nAfter {step+1} steps:") for m in moons: m.apply_velocity() # print(m) step += 1 if positions == [m.pos for m in moons]: break if step % 1000000 == 0: print(f'step = {step/1000000}M', ) result = step + 1 # why? if result != expected_steps: print(f"Error, expected={expected_steps}, actual={result}") else: print("OK") print("Part 1.") test1([[-1,0,2], [2,-10,-7], [4,-8,8], [3,5,-1]], 10, 179) test1([[-8,-10,0], [5,5,10], [2,-7,3], [9,-8,-3]], 100, 1940) test1([[-19,-4,2], [-9,8,-16], [-4,5,-11], [1,9,-13]], 1000, 8287) # my task print("Part 2.") test2([[-1,0,2], [2,-10,-7], [4,-8,8], [3,5,-1]], 2772) # too long # test2([[-8,-10,0], [5,5,10], [2,-7,3], [9,-8,-3]], 4686774924)
import re import bpy import bmesh import logging from mathutils import Vector """ split mesh into different objects """ def split(regex, split_z, **kwargs): for obj in bpy.data.objects: m = re.match(regex, obj.name) if not m: continue for ob in bpy.data.objects: ob.select = False bpy.context.scene.objects.active = obj bpy.ops.object.mode_set(mode='EDIT') dmesh = obj.data mesh = bmesh.from_edit_mesh(dmesh) for f in mesh.faces: f.select = f.calc_center_median().z > split_z bpy.ops.mesh.separate(type='SELECTED') bmesh.update_edit_mesh(dmesh) dmesh.update() bpy.ops.object.mode_set(mode='OBJECT') """ remove mesh (e.g. starting cube) """ def remove(mesh_name, **kwargs): for ob in bpy.context.scene.objects: ob.select = ob.type == 'MESH' and ob.name.startswith(mesh_name) bpy.ops.object.delete() """ reposition by median """ def reposition(regex, **kwargs): for obj in bpy.data.objects: m = re.match(regex, obj.name) if not m: continue me = obj.data verts = [v.co for v in me.vertices] pivot = sum(verts, Vector()) / len(verts) for v in me.vertices: v.co.z -= pivot.z obj.location.z = pivot.z
import numpy as np import torch from torch.distributions import Distribution def gaussian_processes(data=10): return NotImplementedError
import xarray import numpy as np BA_THRESH = 7.7 * 1e6 # Threshold for burned area AGB_THRESH = 0 # Threshold for AGB dataset def fuelload(path_agb: str, path_ba: str, path_fl: str = None) -> xarray.Dataset: """This function generates Fuel Load xarray dataset Parameters ----------- path_agb : str path of AGB dataset path_ba : str path of BA dataset path_fl : str path to save final fuel load dataset. Defaults to None. Returns -------- xarray.Dataset Returns xarray dataset of fuel load """ da_agb = xarray.open_dataset(path_agb) da_ba = xarray.open_dataset(path_ba) agb_data = da_agb["abg_avitabile_vodmean"][:, :, :] ba_data = da_ba["burned_area"][:, :, :] agb_data.values[agb_data.values == AGB_THRESH] = np.nan ba_data.values[ba_data.values < BA_THRESH] = np.nan # AGB units are Mg/h # BA units are m2, therefore we convert BA to hectares. ba_data = ba_data * 0.0001 # Now that units are consistent we calculate LOAD = AGB * BA fuel_load_dataset = agb_data * ba_data if path_fl is not None: fuel_load_dataset.to_netcdf(path_fl) return fuel_load_dataset
#!/usr/bin/env python3 from datetime import datetime, timedelta import subprocess import time imagelist = [ {"filename": "test_images/nzflag.svg", "fuzz": None}, {"filename":"test_images/redpainting.jpg", "fuzz": None}, {"filename":"test_images/redwhiteblack-art.jpg", "fuzz": None}, {"filename":"test_images/textile.jpg", "fuzz": None}, {"filename":"test_images/stpaul.jpg", "fuzz": None}, {"filename": "test_images/banksy.jpg", "fuzz": 40}, {"filename": "test_images/art-cropped.jpg", "fuzz": None}, ] def run_cmd(cmdline): convert = subprocess.Popen(cmdline, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = convert.communicate() if len(stderr) > 1: print(stderr) return stdout.decode("UTF-8") while True: item = imagelist.pop() imagelist.insert(0,item) cmdline = ["./display.py", "-i", item["filename"]] if item["fuzz"]: cmdline.append("-f") cmdline.append(f"{str(item['fuzz'])}") print(item["filename"]) run_cmd(cmdline) dt = datetime.now() + timedelta(hours=1) #dt = dt.replace(minute=0) while datetime.now() < dt: time.sleep(60)
''' python manage.py --dest backup ''' from django.apps import apps as django_apps from django.db import connections, transaction from django.db.utils import ConnectionDoesNotExist, OperationalError from django.core.management.base import BaseCommand, CommandError from django.core.management import call_command class Command(BaseCommand): help = 'Backup default database to destination database.' def add_arguments(self, parser): # ? 只用一个 # * 表示 0 到多个 # +表示至少一个 parser.add_argument('others', metavar='others', nargs='*') parser.add_argument('-D', '--dest', metavar='dest database', nargs='?', default='backup') def handle(self, *args, **options): db = options['dest'] if db == 'default': raise CommandError(f'This is the production database.') # 验证 backup 是否有效 try: connection = connections[db] if not connection.is_usable(): raise OperationalError('Not Usable!') except ConnectionDoesNotExist: raise CommandError(f'Database connection of {db} does not exist, please check settings.py.') except (OperationalError, AttributeError) as e: raise CommandError(f'Database {db} connecting failed: {e}.') # 同步并清空 备份数据库 call_command('migrate', database=db) confirm = input(self.style.WARNING(f'Are you sure to trancate the database {db}? (y/n)')) if confirm == 'y': call_command('flush', database=db, interactive=False) self.stdout.write(self.style.SUCCESS(f'Database {db} had been trancated!')) else: exit('Backup cancled, bye...') # 将 default 数据库中的数据库写入 backup all_models = django_apps.all_models # contenttypes # migrate 的时候自动就添加数据了, # flush 的时候清空原来的,又创建新数据,所以主键改变了 self.backup(model=all_models['contenttypes']['contenttype'], db=db) # auth - User # permission migrate 的时候自动添加了内容 # flush 的时候清空原来的,又创建新数据,所以主键改变了 self.backup(model=all_models['auth']['permission'], db=db) self.backup(model=all_models['auth']['group'], db=db) self.backup(model=all_models['auth']['group_permissions'], db=db) # self.backup(model=all_models['auth']['user'], db=db) # account # 顺序 self.backup(model=all_models['account']['user'], db=db) self.backup(model=all_models['account']['user_groups'], db=db) self.backup(model=all_models['account']['user_user_permissions'], db=db) self.backup(model=all_models['account']['follow'], db=db) self.backup(model=all_models['account']['groupsetting'], db=db) # sessiongs for model in all_models['sessions'].values(): self.backup(model=model, db=db) # admin for model in all_models['admin'].values(): self.backup(model=model, db=db) # xadmin for model in all_models['xadmin'].values(): self.backup(model=model, db=db) # action for model in all_models['action'].values(): self.backup(model=model, db=db) # tft for model in all_models['tft'].values(): self.backup(model=model, db=db) self.stdout.write(self.style.SUCCESS('Backup Finished!')) def backup(self, model=None, db=None): # 自动添加的时间无效了 # 接下来的主键 ID 不是想要的结果 if db is None: exit(self.style.ERROR('Please confirm the db parameter')) try: with transaction.atomic(using=db): querysets = model.objects.using('default').all() model.objects.using(db).delete() # 因为默认生成的数据主键变了 # for SQLite where the default is such that at most 999 variables per query are used. model.objects.using(db).bulk_create(querysets) except Exception as e: transaction.rollback(using=db) self.stderr.write(self.style.ERROR(f'Something happened, transaction rollbak: {e}.')) else: self.stdout.write(self.style.SQL_TABLE(f'{model._meta.verbose_name} finished...'))
# -*- coding: utf-8 -*- # Generated by Django 1.11.5 on 2017-09-14 16:03 from __future__ import unicode_literals from django.db import migrations import django.db.models.manager class Migration(migrations.Migration): dependencies = [ ('courses', '0002_auto_20170913_1307'), ] operations = [ migrations.AlterModelManagers( name='course', managers=[ ('object', django.db.models.manager.Manager()), ], ), ]
import argparse from overrides import overrides from typing import Any from typing import Dict from allennlp.commands.subcommand import Subcommand import optuna def fetch_best_params(storage: str, study_name: str) -> Dict[str, Any]: study = optuna.load_study(study_name=study_name, storage=storage) return study.best_params def show_best_params(args: argparse.Namespace) -> None: best_params = fetch_best_params(args.storage, args.study_name) print(" ".join("{}={}".format(k, v) for k, v in best_params.items())) @Subcommand.register("best-params") class BestParam(Subcommand): @overrides def add_subparser(self, parser: argparse._SubParsersAction) -> argparse.ArgumentParser: description = """Export best hyperparameters in the trials.""" subparser = parser.add_parser(self.name, description=description, help="Export best hyperparameters.") subparser.add_argument( "--study-name", default=None, help="The name of the study to start optimization on." ) subparser.add_argument( "--storage", type=str, help=( "The path to storage. " "allennlp-optuna supports a valid URL" "for sqlite3, mysql, postgresql, or redis." ), default="sqlite:///allennlp_optuna.db", ) subparser.set_defaults(func=show_best_params) return subparser
''' 65-Crie um programa que leia vários números inteiros pelo teclado.No final da execução,mostre a média entre todos,e qual foi o maior e o menor valores lidos.O programa deve perguntar se o usuário quer continuar ou não. ''' total=0 soma=0 maior=0 menor=0 resp=False while not resp: num=int(input('Digite um valor: ')) soma += num total += 1 if total == 1: maior = num menor = num else: if num > maior: maior = num if num < menor: menor = num continuar=str(input('Quer continuar[S/N]: ')).upper() if continuar == 'N': resp=True media=soma/total print('Você digitou {} números\n' 'Media = {}\n' 'Maior = {}\n' 'Menor = {}\n' .format(total,media,maior,menor))
import fixtures import os import uuid from vnc_api.vnc_api import * from cfgm_common.exceptions import NoIdError from tcutils.util import get_dashed_uuid from openstack import OpenstackAuth, OpenstackOrchestrator from vcenter import VcenterAuth from common import log_orig as contrail_logging from contrailapi import ContrailVncApi class VncLibFixture(fixtures.Fixture): ''' Wrapper for VncApi :param domain : default is default-domain :param project_name : default is admin :param cfgm_ip : default is 127.0.0.1 :param api_port : default is 8082 :param connections : ContrailConnections object. default is None :param username : default is admin :param password : default is contrail123 :param auth_server_ip : default is 127.0.0.1 :param project_id : defualt is None :param logger : logger object ''' def __init__(self, *args, **kwargs): self.username = os.getenv('OS_USERNAME') or \ kwargs.get('username', 'admin') self.password = os.getenv('OS_PASSWORD') or \ kwargs.get('password', 'contrail123') self.project_name = kwargs.get('project_name', 'admin') self.domain = kwargs.get('domain', 'default-domain') self.api_server_port = kwargs.get('api_server_port', '8082') self.cfgm_ip = kwargs.get('cfgm_ip', '127.0.0.1') self.logger = kwargs.get('logger', None) self.connections = kwargs.get('connections', None) self.orchestrator = kwargs.get('orchestrator', 'openstack') self.vnc_api_h = None self.inputs = self.connections.inputs if self.connections \ else kwargs.get('inputs', None) self.neutron_handle = None self.auth_server_ip = self.inputs.auth_ip if self.inputs else \ kwargs.get('auth_server_ip', '127.0.0.1') self.auth_url = self.inputs.auth_url if self.inputs else \ os.getenv('OS_AUTH_URL') or \ 'http://%s:5000/v2.0'%self.auth_server_ip self.project_id = kwargs.get('project_id', None) # end __init__ def setUp(self): super(VncLibFixture, self).setUp() if self.connections: self.logger = self.connections.logger self.project_name = self.connections.project_name self.inputs = self.connections.inputs self.neutron_handle = self.connections.quantum_h self.vnc_api_h = self.connections.vnc_lib self.username = self.connections.username self.password = self.connections.password self.cfgm_ip = self.inputs.cfgm_ip self.auth_server_ip = self.inputs.auth_ip self.project_id = self.connections.project_id self.auth_url = 'http://' + self.inputs.auth_ip + ':5000/v2.0' else: self.logger = self.logger or contrail_logging.getLogger(__name__) self.vnc_api_h = VncApi( username=self.username, password=self.password, tenant_name=self.project_name, api_server_host=self.cfgm_ip, api_server_port=self.api_server_port, auth_host=self.auth_server_ip) if not self.project_id: if self.orchestrator == 'openstack': self.auth_client = OpenstackAuth( self.username, self.password, self.project_name, auth_url=self.auth_url, logger=self.logger) self.project_id = self.auth_client.get_project_id() elif self.orchestrator == 'vcenter': self.auth_client = VcenterAuth(self.username, self.password, self.project_name, self.inputs ) self.project_id = self.auth_client.get_project_id() self.vnc_h = ContrailVncApi(self.vnc_api_h, self.logger) # end setUp def cleanUp(self): super(VncLibFixture, self).cleanUp() def get_handle(self): return self.vnc_api_h # end get_handle def get_neutron_handle(self): if self.neutron_handle: return self.neutron_handle else: self.orch = OpenstackOrchestrator(username=self.username, password=self.password, project_id=self.project_id, project_name=self.project_name, auth_server_ip=self.auth_server_ip, vnclib=self.vnc_api_h, logger=self.logger, inputs=self.inputs) self.neutron_handle = self.orch.get_network_handler() return self.neutron_handle # end get_neutron_handle def get_project_obj(self): if self.connections: project_id = self.connections.project_id elif self.project_id: project_id = self.project_id else: project_id = self.vnc_api_h.project_read( fq_name_str='default-domain:default-project').uuid parent_obj = self.vnc_api_h.project_read(id=project_id) return parent_obj # end get_parent_obj def get_forwarding_mode(self, vn_fq_name): vnc_lib = self.vnc_api_h # Figure out VN vni_list = vnc_lib.virtual_networks_list( parent_id=self.project_id)['virtual-networks'] for vni_record in vni_list: if (vni_record['fq_name'][0] == vn_fq_name.split(":")[0] and vni_record['fq_name'][1] == vn_fq_name.split(":")[1] and vni_record['fq_name'][2] == vn_fq_name.split(":")[2]): vni_obj = vnc_lib.virtual_network_read(id=vni_record['uuid']) vni_obj_properties = vni_obj.get_virtual_network_properties() if vni_obj_properties: fw_mode = vni_obj_properties.get_forwarding_mode() else: fw_mode = None return fw_mode # end get_forwarding_mode def get_vn_subnet_dhcp_flag(self, vn_fq_name): vnc_lib = self.vnc_api_h # Figure out VN vni_list = vnc_lib.virtual_networks_list( parent_id=self.project_id)['virtual-networks'] for vni_record in vni_list: if (vni_record['fq_name'][0] == vn_fq_name.split(":")[0] and vni_record['fq_name'][1] == vn_fq_name.split(":")[1] and vni_record['fq_name'][2] == vn_fq_name.split(":")[2]): vni_obj = vnc_lib.virtual_network_read(id=vni_record['uuid']) subnets = vni_obj.network_ipam_refs[0]['attr'] ipam = subnets.get_ipam_subnets() enable_dhcp = ipam[0].get_enable_dhcp() return enable_dhcp # get_vn_subnet_dhcp_flag def set_rpf_mode(self, vn_fq_name, mode): vnc_lib = self.vnc_api_h # Figure out VN vni_list = self.vnc_api_h.virtual_networks_list( parent_id=self.project_id)['virtual-networks'] for vni_record in vni_list: if (vni_record['fq_name'][0] == vn_fq_name.split(":")[0] and vni_record['fq_name'][1] == vn_fq_name.split(":")[1] and vni_record['fq_name'][2] == vn_fq_name.split(":")[2]): vni_obj = vnc_lib.virtual_network_read(id=vni_record['uuid']) vni_obj_properties = vni_obj.get_virtual_network_properties() or VirtualNetworkType() vni_obj_properties.set_rpf(mode) vni_obj.set_virtual_network_properties(vni_obj_properties) vnc_lib.virtual_network_update(vni_obj) # end set_rpf_mode def id_to_fq_name(self, id): return self.vnc_api_h.id_to_fq_name(id) def set_vxlan_mode(self, vxlan_mode='automatic'): ''' one of automatic or configured ''' fq_name = [ 'default-global-system-config', 'default-global-vrouter-config'] vrouter_config = self.vnc_api_h.global_vrouter_config_read(fq_name=fq_name) vrouter_config.set_vxlan_network_identifier_mode(vxlan_mode) self.vnc_api_h.global_vrouter_config_update(vrouter_config) def get_vxlan_mode(self): fq_name = [ 'default-global-system-config', 'default-global-vrouter-config'] vrouter_config = self.vnc_api_h.global_vrouter_config_read(fq_name=fq_name) return vrouter_config.get_vxlan_network_identifier_mode() # end def get_global_asn(self, gsc_id=None): gsc_id = gsc_id or self.vnc_api_h.get_default_global_system_config_id() gsc_obj = self.vnc_api_h.global_system_config_read(id=gsc_id) return gsc_obj.get_autonomous_system() # end get_global_asn def set_global_asn(self, asn, gsc_id=None): gsc_id = gsc_id or self.vnc_api_h.get_default_global_system_config_id() gsc_obj = self.vnc_api_h.global_system_config_read(id=gsc_id) gsc_obj.set_autonomous_system(int(asn)) self.vnc_api_h.global_system_config_update(gsc_obj) # end set_global_asn def get_global_forwarding_mode(self): fq_name = [ 'default-global-system-config', 'default-global-vrouter-config'] gsc_obj = self.vnc_api_h.global_vrouter_config_read(fq_name=fq_name) return gsc_obj.get_forwarding_mode() # end get_global_forwarding_mode def get_active_forwarding_mode(self,vn_fq_name): ''' Returns l2 or l3 or l2_l3 Returns Vn's forwarding mode if set. If VN forwarding mode is not set, returns global forwarding mode If global forwarding mode too is not set, returns 'l2_l3' since this is the default. "''' if type(vn_fq_name).__name__ == 'str': vn_fq_name = vn_fq_name.split(':') gl_fw_mode = self.get_global_forwarding_mode() vn_fw_mode = self.get_forwarding_mode(vn_fq_name) if vn_fw_mode: return vn_fw_mode elif gl_fw_mode: return gl_fw_mode else: return 'l2_l3' #end get_active_forwarding_mode def set_global_forwarding_mode(self,forwarding_mode): fq_name = [ 'default-global-system-config', 'default-global-vrouter-config'] gsc_obj = self.vnc_api_h.global_vrouter_config_read(fq_name=fq_name) gsc_obj.set_forwarding_mode(forwarding_mode) self.vnc_api_h.global_vrouter_config_update(gsc_obj) #end set_global_forwarding_mode def get_flow_export_rate(self): fq_name = [ 'default-global-system-config', 'default-global-vrouter-config'] gv_obj = self.vnc_api_h.global_vrouter_config_read(fq_name=fq_name) rate = gv_obj.get_flow_export_rate() if not rate: # If not set, return 100 , since this is default return 100 else: return rate # end get_flow_export_rate def set_flow_export_rate(self, value): ''' Set flow export rate in default global vrouter config value : Value of flow export rate to be set ''' fq_name = [ 'default-global-system-config', 'default-global-vrouter-config'] gv_obj = self.vnc_api_h.global_vrouter_config_read(fq_name=fq_name) gv_obj.set_flow_export_rate(int(value)) self.vnc_api_h.global_vrouter_config_update(gv_obj) self.logger.info('Setting flow export rate: %s' % (value)) return True # end set_flow_export_rate # end VncLibFixture
#Automatic Hyperparameter Tuning Method for Local Outlier Factor, with Applications to Anomaly Detection #https://arxiv.org/pdf/1902.00567v1.pdf import numpy as np import tqdm import matplotlib import matplotlib.pyplot as plt from celluloid import Camera from collections import defaultdict from sklearn.neighbors import LocalOutlierFactor from scipy.stats import nct np.set_printoptions(precision=5) """ Algorithm : Tuning algorithm for LOF 1: training data X ∈ R n×p 2: a grid of feasible values gridc for contamination c 3: a grid of feasible values gridk for neighborhood size k 4: for each c ∈ gridc do 5: for each k ∈ gridk do 6: set Mc,k,out to be mean log LOF for the bcnc outliers 7: set Mc,k,in to be mean log LOF for the bcnc inliers 8: set Vc,k,out to be variance of log LOF for the bcnc outliers 9: set Vc,k,in to be variance of log LOF for the bcnc inliers 10: set Tc,k = √ Mc,k,out−Mc,k,in 1 bcnc (Vc,k,out+Vc,k,in) 11: end for 12: set Mc,out to be mean Mc,k,out over k ∈ gridk 13: set Mc,in to be mean Mc,k,in over k ∈ gridk 14: set Vc,out to be mean Vc,k,out over k ∈ gridk 15: set Vc,in to be mean Vc,k,in over k ∈ gridk 16: set ncpc = √ Mc,out−Mc,in 1 bcnc (Vc,out+Vc,in) 17: set dfc = 2bcnc − 2 18: set kc,opt = arg maxk Tc,k 19: end for 20: set copt = arg maxc P(Z < Tc,kc,opt ; d fc , ncpc), where the random variable Z follows a noncentral t distribution with dfc degrees of freedom and ncpc noncentrality parameter """ class LOF_AutoTuner(object): def __init__(self, n_samples = 500, data = None, c_max = 0.1, k_max = 100): if data is None: self.n_samples = n_samples print("Input 'data', array-like, shape : (n_samples, n_features).") else: self.data = data self.n_samples = self.data.shape[0] self.eps = 1e-8 self.c_max = c_max self.k_max = k_max self.c_steps = 100 self.k_grid = np.arange(1,self.k_max + 1) #neighbors self.c_grid = np.linspace(0.005, self.c_max, self.c_steps) #contamination def test(self): #sample random gaussian data self.data = np.random.standard_normal(size=(self.n_samples,2)) #run tuner self.run() #visualize tuning self.visualise() def visualise(self): #set inlier threshold. i.e - Any point with Log-LOF score < thresh is considered an inlier. thresh = 0.2 fig, ax = plt.subplots(2,2,dpi= 100) cam = Camera(fig) c_list = [c[3] for c in self.collector] k_list = [c[0] for c in self.collector] z_list = [c[2] for c in self.collector] for i, v in tqdm.tqdm(enumerate(self.collector)): Kopt, Topt, Z, contamination = v clf = LocalOutlierFactor(n_neighbors=Kopt, contamination=contamination) clf.fit_predict(self.data) X_scores = clf.negative_outlier_factor_ log_lof = np.log(-X_scores).flatten() #viz---> ax[0,1].hist(log_lof, density = True, bins = 100) ax[0,1].text(0.05, 0.85, 'Log-LOF :', transform=ax[0,1].transAxes) c_lis = c_list[:i+1] k_lis = k_list[:i+1] z_lis = z_list[:i+1] ax[0,0].scatter(c_lis, z_lis, c = 'b', s = 5.) ax[0,0].text(0.05, 0.85, 'Z :' + str(Z), c = 'b', transform=ax[0,0].transAxes) ax[1,0].scatter(c_lis, k_lis, c = 'r', s = 5.) ax[1,0].text(0.05, 0.85, 'K :' + str(Kopt), c = 'r', transform=ax[1,0].transAxes) #set axes limits ax[1,0].set_xlim(0,self.c_max) ax[1,0].set_ylim(0,self.k_max) ax[0,0].set_xlim(0,self.c_max) ax[0,0].set_ylim(min(z_list),max(z_list)) if Kopt == self.tuned_params['k'] and contamination == self.tuned_params['c']: ax[1,1].scatter(self.data[:, 0], self.data[:, 1], facecolors = 'none', s=1000 * log_lof, edgecolors = 'darkgray') ax[1,1].scatter(np.ma.masked_where(log_lof < thresh, self.data[:, 0]), np.ma.masked_where(log_lof < thresh, self.data[:, 1]), c = 'orange', s=5.0) ax[1,1].scatter(np.ma.masked_where(log_lof > thresh, self.data[:, 0]), np.ma.masked_where(log_lof > thresh, self.data[:, 1]), c = 'green', s=5.0) ax[1,1].text(0.05, 0.85, 'C :' + str(contamination), c = 'darkgray', transform=ax[1,1].transAxes) cam.snap() self.animation = cam.animate() return def run(self): self.collector = [] #main op for contamination in tqdm.tqdm(self.c_grid): samps = int(contamination * self.n_samples) if samps < 2: continue #init running metrics running_metrics = defaultdict(list) for k in self.k_grid: clf = LocalOutlierFactor(n_neighbors=k, contamination=contamination) clf.fit_predict(self.data) X_scores = np.log(- clf.negative_outlier_factor_) t0 = X_scores.argsort()#[::-1] top_k = t0[-samps:] min_k = t0[:samps] x_out = X_scores[top_k] x_in = X_scores[min_k] mc_out = np.mean(x_out) mc_in = np.mean(x_in) vc_out = np.var(x_out) vc_in = np.var(x_in) Tck = (mc_out - mc_in)/np.sqrt((self.eps + ((1/samps)*(vc_out +vc_in)))) running_metrics['tck'].append(Tck) running_metrics['mck_out'].append(mc_out) running_metrics['mck_in'].append(mc_in) running_metrics['vck_in'].append(vc_in) running_metrics['vck_out'].append(vc_out) largest_idx = np.array(running_metrics['tck']).argsort()[-1] mean_mc_out = np.mean(running_metrics['mck_out']) mean_mc_in = np.mean(running_metrics['mck_in']) mean_vc_out = np.mean(running_metrics['vck_out']) mean_vc_in = np.mean(running_metrics['vck_in']) #ncpc - non-centrality parameter ncpc = (mean_mc_out - mean_mc_in)/np.sqrt((self.eps + ((1/samps)*(mean_vc_out + mean_vc_in)))) #dfc - degrees of freedom dfc = (2*samps) - 2 if dfc <= 0: continue Z = nct(dfc, ncpc) #non-central t-distribution Kopt = self.k_grid[largest_idx] Topt = running_metrics['tck'][largest_idx] Z = Z.cdf(Topt) self.collector.append([Kopt, Topt, Z, contamination]) max_cdf = 0. self.tuned_params = {} for v in self.collector: Kopt, Topt, Z, contamination = v if Z > max_cdf: max_cdf = Z if max_cdf == Z: self.tuned_params['k'] = Kopt self.tuned_params['c'] = contamination print("\nTuned LOF Parameters : {}".format(self.tuned_params)) return
from . import packet class Packet68(packet.Packet): def __init__(self, player): super().__init__(68) self.add_data(player.uuid, pascal_string=True)
import requests import re from typing import List, Optional, Iterator from .codingamer import CodinGamer from .clash_of_code import ClashOfCode from .notification import Notification from .endpoints import Endpoints from .exceptions import CodinGamerNotFound, ClashOfCodeNotFound, LoginRequired from .utils import validate_args class Client: """CodinGame API client. Attributes ----------- logged_in: :class:`bool` If the client is logged in as a CodinGamer. codingamer: Optional[:class:`CodinGamer`] The CodinGamer that is logged in through the client. ``None`` if the client isn't logged in. """ _CODINGAMER_HANDLE_REGEX = re.compile(r"[0-9a-f]{32}[0-9]{7}") _CLASH_OF_CODE_HANDLE_REGEX = re.compile(r"[0-9]{7}[0-9a-f]{32}") logged_in: bool codingamer: Optional[CodinGamer] def __init__(self, email=None, password=None): self._session = requests.Session() self.logged_in = False self.codingamer = None if email is not None and password is not None: self.login(email, password) @validate_args def login(self, email: str, password: str): """Login to a CodinGamer account. Parameters ----------- email: :class:`str` Email adress of the CodinGamer. password: :class:`str` Password of the CodinGamer. Raises ------ :exc:`ValueError` Error with the login (empty email, empty password, wrong email format, incorrect password, etc). Returns -------- :class:`CodinGamer` The CodinGamer that is logged in. """ if email == "": raise ValueError("Email is required") if password == "": raise ValueError("Password is required") r = self._session.post(Endpoints.CodinGamer_login, json=[email, password, True]) json = r.json() if "id" in json and "message" in json: raise ValueError(f"{json['id']}: {json['message']}") self.logged_in = True self.codingamer = CodinGamer(client=self, **r.json()["codinGamer"]) return self.codingamer @validate_args def get_codingamer(self, codingamer_handle: str) -> CodinGamer: """Get a CodinGamer from his public handle. Parameters ----------- codingamer_handle: :class:`str` The CodinGamer's public handle. 39 character long hexadecimal string (regex: ``[0-9a-f]{32}[0-9]{7}``). Raises ------ :exc:`ValueError` The CodinGamer handle isn't in the good format. :exc:`.CodinGamerNotFound` The CodinGamer with the given public handle isn't found. Returns -------- :class:`CodinGamer` The CodinGamer. """ if not self._CODINGAMER_HANDLE_REGEX.match(codingamer_handle): raise ValueError( f"CodinGamer handle {codingamer_handle!r} isn't in the good format " "(regex: [0-9a-f]{32}[0-9]{7})." ) r = self._session.post(Endpoints.CodinGamer, json=[codingamer_handle]) if r.json() is None: raise CodinGamerNotFound(f"No CodinGamer with handle {codingamer_handle!r}") return CodinGamer(client=self, **r.json()["codingamer"]) @validate_args def get_clash_of_code(self, clash_of_code_handle: str) -> ClashOfCode: """Get a Clash of Code from its public handle. Parameters ----------- clash_of_code_handle: :class:`str` The Clash of Code's public handle. 39 character long hexadecimal string (regex: ``[0-9]{7}[0-9a-f]{32}``). Raises ------ :exc:`ValueError` The Clash of Code handle isn't in the good format. :exc:`.ClashOfCodeNotFound` The Clash of Code with the given public handle isn't found. Returns -------- :class:`ClashOfCode` The ClashOfCode. """ if not self._CLASH_OF_CODE_HANDLE_REGEX.match(clash_of_code_handle): raise ValueError( f"Clash of Code handle {clash_of_code_handle!r} isn't in the good format " "(regex: [0-9]{7}[0-9a-f]{32})." ) r = self._session.post(Endpoints.ClashOfCode, json=[clash_of_code_handle]) json = r.json() if "id" in json and "message" in json: raise ClashOfCodeNotFound(f"No Clash of Code with handle {clash_of_code_handle!r}") return ClashOfCode(client=self, **json) def get_pending_clash_of_code(self) -> Optional[ClashOfCode]: """Get a pending Clash of Code. Returns -------- Optional[:class:`ClashOfCode`] The pending ClashOfCode if there's one or ``None``. """ r = self._session.post(Endpoints.ClashOfCode_pending, json=[]) json = r.json() if len(json) == 0: return None return ClashOfCode(client=self, **json[0]) @property def language_ids(self) -> List[str]: """List[:class:`str`]: List of all available language ids.""" if hasattr(self, "_language_ids"): return self._language_ids else: r = self._session.post(Endpoints.LanguageIds, json=[]) self._language_ids = r.json() return self._language_ids @property def notifications(self) -> Iterator[Notification]: """Get all the unseen notifications of the Client. You need to be logged in to get notifications or else a :exc:`LoginRequired` will be raised. .. note:: This property is a generator. Raises ------ :exc:`LoginRequired` The Client needs to log in. See :meth:`login`. Yields ------- :class:`Notification` The Notification. """ if not self.logged_in: raise LoginRequired() r = self._session.post(Endpoints.UnseenNotifications, json=[self.codingamer.id]) for notification in r.json(): yield Notification(notification)
import pytest from kopf.reactor.registries import Resource def test_no_args(): with pytest.raises(TypeError): Resource() def test_all_args(mocker): group = mocker.Mock() version = mocker.Mock() plural = mocker.Mock() resource = Resource( group=group, version=version, plural=plural, ) assert resource.group is group assert resource.version is version assert resource.plural is plural
from PyObjCTools.TestSupport import * from AppKit import * try: unicode except NameError: unicode = str class TestNSErrors (TestCase): def testConstants(self): self.assertIsInstance(NSTextLineTooLongException, unicode) self.assertIsInstance(NSTextNoSelectionException, unicode) self.assertIsInstance(NSWordTablesWriteException, unicode) self.assertIsInstance(NSWordTablesReadException, unicode) self.assertIsInstance(NSTextReadException, unicode) self.assertIsInstance(NSTextWriteException, unicode) self.assertIsInstance(NSPasteboardCommunicationException, unicode) self.assertIsInstance(NSPrintingCommunicationException, unicode) self.assertIsInstance(NSAbortModalException, unicode) self.assertIsInstance(NSAbortPrintingException, unicode) self.assertIsInstance(NSIllegalSelectorException, unicode) self.assertIsInstance(NSAppKitVirtualMemoryException, unicode) self.assertIsInstance(NSBadRTFDirectiveException, unicode) self.assertIsInstance(NSBadRTFFontTableException, unicode) self.assertIsInstance(NSBadRTFStyleSheetException, unicode) self.assertIsInstance(NSTypedStreamVersionException, unicode) self.assertIsInstance(NSTIFFException, unicode) self.assertIsInstance(NSPrintPackageException, unicode) self.assertIsInstance(NSBadRTFColorTableException, unicode) self.assertIsInstance(NSDraggingException, unicode) self.assertIsInstance(NSColorListIOException, unicode) self.assertIsInstance(NSColorListNotEditableException, unicode) self.assertIsInstance(NSBadBitmapParametersException, unicode) self.assertIsInstance(NSWindowServerCommunicationException, unicode) self.assertIsInstance(NSFontUnavailableException, unicode) self.assertIsInstance(NSPPDIncludeNotFoundException, unicode) self.assertIsInstance(NSPPDParseException, unicode) self.assertIsInstance(NSPPDIncludeStackOverflowException, unicode) self.assertIsInstance(NSPPDIncludeStackUnderflowException, unicode) self.assertIsInstance(NSRTFPropertyStackOverflowException, unicode) self.assertIsInstance(NSAppKitIgnoredException, unicode) self.assertIsInstance(NSBadComparisonException, unicode) self.assertIsInstance(NSImageCacheException, unicode) self.assertIsInstance(NSNibLoadingException, unicode) self.assertIsInstance(NSBrowserIllegalDelegateException, unicode) self.assertIsInstance(NSAccessibilityException, unicode) if __name__ == "__main__": main()
# -*- coding: utf-8 -*- # visigoth: A lightweight Python3 library for rendering data visualizations in SVG # Copyright (C) 2020-2021 Visigoth Developers # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software # and associated documentation files (the "Software"), to deal in the Software without # restriction, including without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies or # substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING # BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import os.path from visigoth.common.diagram_element import DiagramElement from visigoth.common.panzoom import PanZoom from visigoth.common.axis import ContinuousAxis from visigoth.internal.utils.js import Js class ContinuousHueLegend(DiagramElement): """ Create a legend graphic describing the hues used in a ContinuousHueManager Arguments: manager(visigoth.utils.ContinuousHueManager: the hue_manager object Keyword Arguments: length(int): length of the hue bar label(str): a descriptive label to display value_formatter(visigoth.utils.ValueFormatter): control the way values are represented in the legend orientation(str): "horizontal"|"vertical" whether to display legend horizontally or vertically (applies only to continuous hue_manager) stroke(str): the stroke hue for lines stroke_width(int): the stroke width lines font_height(int): the font size for the legend text_attributes(dict): a dict containing SVG name/value pairs bar_thickness(int): the thickness of the bar in pixels bar_spacing(int): the spacing between the bar and the axis/labels """ def __init__(self, manager, length=512, label=None, value_formatter=None, orientation="horizontal", stroke="black", stroke_width=2, font_height=24, text_attributes={}, bar_thickness=40, bar_spacing=10): DiagramElement.__init__(self) self.hue_manager = manager self.text_attributes = text_attributes self.input_length = length self.length = length self.width = 0 self.height = 0 self.axis = None self.label = label self.value_formatter = value_formatter self.stroke = stroke self.stroke_width = stroke_width self.font_height = font_height self.bar_thickness = bar_thickness self.bar_spacing = bar_spacing self.panzoom_spacing = 20 self.orientation = orientation self.adjustable = False self.fill = "white" self.adjustable = self.hue_manager.getAdjustable() self.bar_length = self.length - 2 * self.hue_manager.getCapSize() self.axis = ContinuousAxis(self.bar_length, orientation=self.orientation, min_value=self.hue_manager.getMinValue(), max_value=self.hue_manager.getMaxValue(), label=self.label, value_formatter=self.value_formatter, font_height=self.font_height, axis_font_height=self.font_height, text_attributes=self.text_attributes, stroke=self.stroke, stroke_width=self.stroke_width) self.panzoom = None def getHeight(self): return self.height def getWidth(self): return self.width def getAxis(self): return self.axis def build(self, fmt): self.hue_manager.build() if self.adjustable: pan_controls = ["e","w"] if self.orientation == "horizontal" else ["n","s"] self.panzoom = PanZoom(zoom_to=16,radius=50,pan_controls=pan_controls) self.panzoom.build(fmt) self.hue_manager.addEventProducer(self, "hue_scale") tickpoints = self.hue_manager.getTickPositions() if self.hue_manager.hasIntervals(): self.axis.setMinValue(tickpoints[0]) self.axis.setMaxValue(tickpoints[-1]) self.axis.setTickPoints(tickpoints) else: self.axis.setMinValue(self.hue_manager.getMinValue()) self.axis.setMaxValue(self.hue_manager.getMaxValue()) self.axis.build(fmt) if self.orientation == "horizontal": self.height = self.bar_thickness + self.bar_spacing + self.axis.getHeight() self.width = self.input_length else: self.height = self.input_length self.width = self.bar_thickness + self.bar_spacing + self.axis.getWidth() self.legend_width = self.width self.legend_height = self.height if self.adjustable: if self.orientation == "horizontal": self.height = max(self.height, self.panzoom.getHeight()) self.width = self.width + self.panzoom.getWidth() + self.panzoom_spacing else: self.width = max(self.width, self.panzoom.getWidth()) self.height = self.height + self.panzoom.getHeight() + self.panzoom_spacing def draw(self, d, cx, cy): d.getDiagram().addEventBroker(self.hue_manager) ox = cx - self.getWidth() / 2 oy = cy - self.getHeight() / 2 config = {} if self.adjustable: if self.orientation == "horizontal": cx = ox + self.panzoom.getWidth()/2 else: cy = oy + self.panzoom.getHeight()/2 self.panzoom.draw(d,cx,cy) if self.orientation == "horizontal": ox += self.panzoom.getWidth()+self.panzoom_spacing cx = ox + self.legend_width/2 else: oy += self.panzoom.getHeight()+self.panzoom_spacing cy = oy + self.legend_height/2 rect_length = self.bar_length + 2 * self.hue_manager.getCapSize() if self.orientation == "horizontal": self.axis.draw(d, cx, oy + self.bar_thickness + self.bar_spacing + self.axis.getHeight() / 2) config["hue_manager"] = self.hue_manager.draw(d, cx - rect_length / 2, oy, rect_length, self.bar_thickness, self.orientation, stroke=self.stroke, stroke_width=self.stroke_width) else: self.axis.draw(d, ox + self.axis.getWidth() / 2, cy) config["hue_manager"] = self.hue_manager.draw(d, ox + self.axis.getWidth(), cy - rect_length / 2, self.bar_thickness, rect_length, self.orientation, stroke=self.stroke, stroke_width=self.stroke_width) config["adjustable"] = self.adjustable config["type"] = "continuous" config["with_intervals"] = self.hue_manager.hasIntervals() config["orientation"] = self.orientation config["min_value"] = self.axis.getMinValue() config["max_value"] = self.axis.getMaxValue() if self.adjustable and d.getFormat() == "html": config["zoom_to"] = 16 config["adjust_increment"] = self.axis.getTickSpacing()/4 d.getDiagram().connect(self.panzoom,"zoom",self,"zoom") d.getDiagram().connect(self.panzoom, "pan", self, "pan") if self.adjustable: hue_manager_js_path = os.path.join(os.path.split(__file__)[0], "..", "..", "utils", "hue_manager", "continuous_hue_manager.js") with open(hue_manager_js_path) as f: hue_manager_js = f.read() d.addLibraryCode(hue_manager_js) axisutils_js_path = os.path.join(os.path.split(__file__)[0], "..", "..", "internal", "utils", "axis", "axisutils.js") with open(axisutils_js_path) as f: axisutils_js = f.read() d.addLibraryCode(axisutils_js) with open(os.path.join(os.path.split(__file__)[0], "continuous_hue_legend.js"), "r") as jsfile: jscode = jsfile.read() Js.registerJs(d, self, jscode, "continuous_hue_legend", cx, cy, config) if not self.hue_manager.isDiscrete(): d.getDiagram().connect(self.axis,"axis_drag",self,"axis_drag"); d.getDiagram().connect(self, "axis_rescale", self.axis, "axis_rescale") d.getDiagram().connect(self, "axis_slide", self.axis, "axis_slide") d.getDiagram().connect(self.axis, "rescaled_axis", self, "rescaled_axis")
import cv2 import numpy as np # imgpath = os.path.join(os.getcwd(), # "images", "4.2.06.tiff") # img = cv2.imread(imgpath, 0) original = np.zeros((200, 200), dtype=np.uint8) original[50:150, 50:150] = 255 original[90:110, 90:110] = 128 # ret, thresh = cv2.threshold(original, 127, 255, cv2.THRESH_BINARY) image, contours, hierarchy = cv2.findContours( original, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) gray = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR) imgContour = cv2.drawContours(gray, contours, -1, (0, 255, 0), 1) cv2.imshow('original', original) # cv2.imshow('thresh', thresh) cv2.imshow('gray', gray) cv2.imshow('imgContour', imgContour) cv2.waitKey() cv2.destroyAllWindows()
"""Implements learning rate schedulers used in training loops.""" import numpy as np # %% class LRCosineAnnealingScheduler(): """Implements an LRCosineAnnealingScheduler for lr adjustment.""" def __init__(self, eta_max, eta_min, Ti, Tmultiplier, num_batches_per_epoch): """Initialize LRCosineAnnealingScheduler Object. Args: eta_max (float): Max eta. eta_min (float): Minimum eta. Ti (float): Initial temperature Tmultiplier (float): Temperature multiplier num_batches_per_epoch (int): Number of batches per epoch. """ self.eta_min = eta_min self.eta_max = eta_max self.Ti = Ti self.Tcur = 0.0 self.nbpe = num_batches_per_epoch self.iteration_counter = 0.0 self.eta = eta_max self.Tm = Tmultiplier def _compute_rule(self): self.eta = self.eta_min + 0.5 * \ (self.eta_max - self.eta_min) * \ (1 + np.cos(np.pi * self.Tcur / self.Ti)) return self.eta def step(self): """Apply scheduler one step, and adjust the learning rate accordingly. Returns: float: Adjusted learning rate """ self.Tcur = self.iteration_counter / self.nbpe self.iteration_counter = self.iteration_counter + 1.0 eta = self._compute_rule() if eta <= self.eta_min + 1e-10: self.Tcur = 0 self.Ti = self.Ti * self.Tm self.iteration_counter = 0 return eta def update_optimizer(self, optimizer): """Apply current scheduler learning rate to optimizer. Args: optimizer (torch.optim.Optimizer): Torch optimizer instance. """ state_dict = optimizer.state_dict() for param_group in state_dict['param_groups']: param_group['lr'] = self.eta optimizer.load_state_dict(state_dict) # %% class FixedScheduler(): """Implements a fixed learning rate for each epoch.""" def __init__(self, lr): """Initialize a FixedScheduler Object. Args: lr (float): Learning rate """ self.lr = lr def step(self): """Update learning rate for scheduler. Returns: float: Updated learning rate """ return self.lr def update_optimizer(self, optimizer): """Update optimizer instance with current learning rate. Args: optimizer (nn.optim.Optimizer): Optimizer instance to modify """ state_dict = optimizer.state_dict() for param_group in state_dict['param_groups']: param_group['lr'] = self.lr optimizer.load_state_dict(state_dict)
import json import numpy as np class NumpyEncoder(json.JSONEncoder): def default(self, o): if isinstance(o, np.void): return None if isinstance(o, (np.generic, np.bool_)): return o.item() if isinstance(o, np.ndarray): return o.tolist() return o
from unittest import TestCase import pytest from zanna._binding_spec import InstanceBindingSpec class DummyClass(object): def __init__(self, value): self.value = value def TEST_CALLABLE(x): return x + 500 class TestInstanceBindingSpec(TestCase): TEST_STRING = "testtest" TEST_INT = 9999 TEST_DUMMY_INSTANCE = DummyClass(TEST_STRING) def test_instance_binding_spec(self): bspec = InstanceBindingSpec(self.TEST_STRING) assert bspec.get_instance() == self.TEST_STRING def test_int_instance_binding_spec(self): bspec = InstanceBindingSpec(self.TEST_INT) assert bspec.get_instance() == self.TEST_INT def test_dummyclass_instance_binding_spec(self): bspec = InstanceBindingSpec(self.TEST_DUMMY_INSTANCE) assert bspec.get_instance() == self.TEST_DUMMY_INSTANCE def test_class_binding_spec_raises(self): with pytest.raises(TypeError): InstanceBindingSpec(DummyClass) def test_none_binding_spec_raises(self): with pytest.raises(TypeError): InstanceBindingSpec(None) def test_argspec_methods_raise(self): bspec = InstanceBindingSpec(3) with pytest.raises(TypeError): bspec.construct_instance({}) with pytest.raises(TypeError): bspec.get_argument_specs() def test_callable_binding_spec(self): bspec = InstanceBindingSpec(TEST_CALLABLE) print(bspec.get_instance()) assert bspec.get_instance()(500) == 1000
import numpy as np def linear(x): return x def sigmoid(x): return np.divide(1, np.add(1, np.exp(np.multiply(-1, x)))) def tanh(x): return np.tanh(x) def relu(x): return np.maximum(x, 0) def lrelu(x): if x >= 0: return x else: return np.multiply(0.01, x) def prelu(x, a): if x >= 0: return x else: return np.multiply(a, x) def selu(x, a=1): if x >= 0: return x else: return np.multiply(a, np.subtract(np.exp(x), 1))
import time import matplotlib.pyplot as plt import numpy as np from core import get_model, global_opt, LOOCV, normalize, plot_2d from scipy.special import erfc def sbostep(X_, Y, bnds, acq='EI', model_type='GP', output=False, plotting=False, loocv=False): acqd = {'EI': EI, 'Bayesian optimization': EI, 'FMIN': FMIN, 'SDMAX': SDMAX} acqdk = {'EI': {'y_min': Y.min()}, 'Bayesian optimization': {'y_min': Y.min()}, 'FMIN': {}, 'SDMAX': {}} acqf = acqd[acq] acqk = acqdk[acq] ubnds = np.zeros(bnds.shape) ubnds[:, 1] = 1. X_ = np.array(X_) Y = Y[:, 0] ndims = bnds.shape[0] model = get_model(X_, Y, bnds, model_type) if output and model_type == 'GP': print('GP kernel:', model.kernel_) if loocv: if output: print('LOOCV:') LOOCV(model, X_, Y, output, plotting) def surrogate_eval(x, model): ymean, ystd = model.predict( np.atleast_2d(x), return_std=True) return ymean, ystd def acqf_opt(x, bnds=None): ymean, ystd = model.predict( np.atleast_2d(x), return_std=True) res = acqf(np.squeeze(ymean), np.squeeze(ystd), **acqk) return res if output: print('find acquistion function minimum') x_p_, y_p = global_opt(acqf_opt, ubnds, typ='DE', output=output) x_p = np.zeros(x_p_.shape) for ii in range(bnds.shape[0]): x_p[ii] = x_p_[ii]*(bnds[ii, 1] - bnds[ii, 0]) + bnds[ii, 0] if plotting and ndims == 2: def obj_fs(x, bnds=None): return np.squeeze(model.predict(np.atleast_2d(x), return_std=False)) def obj_stddev(x, bnds=None): ymean, ystd = model.predict( np.atleast_2d(x), return_std=True) return ystd X__ = normalize(X_, bnds) x_p_ = normalize(np.atleast_2d(x_p), bnds) plot_2d(obj_fs, ubnds, pts=X__, newpts=x_p_, resolution=25, fignum='surrogate mean') plot_2d(obj_stddev, ubnds, pts=X__, newpts=x_p_, resolution=25, fignum='surrogate std. dev.') plot_2d(acqf_opt, ubnds, pts=X__, newpts=x_p_, resolution=25, fignum='acquisition function') return x_p def EI(y_mean, y_std, y_min): alpha = (y_min - y_mean)/(np.sqrt(2)*np.pi) ei = y_std*(np.exp(-alpha**2)+np.sqrt(np.pi)*alpha*erfc(-1*alpha)) \ / np.sqrt(2*np.pi) return -ei def FMIN(y_mean, y_std): return y_mean def soptimize(func, bnds, stset, acq='EI', model_type='GP', niter=30, plot_freq=1, output=False, loocv=False): randA = np.zeros((10000, bnds.shape[0])) for ii in range(bnds.shape[0]): randA[:, ii] = np.random.uniform( bnds[ii, 0], bnds[ii, 1], size=(10000)) iterL = np.arange(0, niter, 1) XL, resL, teL, bestL = [], [], [], [] c = np.linspace(1, 0, niter) best = 1e10 st = time.time() for ii in iterL: te = time.time() - st if np.mod(ii+1, plot_freq) == 0 and output and ii >= len(stset): plotting = True else: plotting = False if acq == 'random': x = list(randA[ii, :]) elif ii < stset.shape[0]: x = list(stset[ii, :]) else: x = sbostep(XL, np.array(resL), bnds, acq, model_type, output, plotting, loocv) res = np.atleast_1d(func(x, bnds)) teL += [te] XL += [x] resL += [res] if res[0] < best: best = res[0] bestL += [best] if output: print('iteration', ii, 'complete') if plotting: plt.show() return iterL, XL, resL, bestL def SDMAX(y_mean, y_std): return -y_std
import os import uuid import shutil import subprocess from avel.shared_lib import call_ffmpeg, get_duration def _pad_integer(i): return str(i).zfill(2) def combine_audio(audio_list, output_path, transition_time=13, debugging=False): """Creates a single audio file from a list""" temp0 = os.path.join(os.path.dirname(output_path), 'temp0.wav') temp1 = os.path.join(os.path.dirname(output_path), 'temp1.wav') def temp_file(i): if i % 2 == 0: return temp0 else: return temp1 if len(audio_list) > 2: print(audio_list) call_ffmpeg(f'ffmpeg -i {audio_list[0]} -i {audio_list[1]} -vn -filter_complex acrossfade=d={transition_time}:c1=tri:c2=squ {temp1}', verbose=True) for i in range(2, len(audio_list) - 1): call_ffmpeg(f'ffmpeg -i {temp_file(i-1)} -i {audio_list[i]} -vn -filter_complex acrossfade=d={transition_time}:c1=tri:c2=squ {temp_file(i)}', verbose=True) # final call to convert to mp3 call_ffmpeg(f'ffmpeg -i {temp_file(len(audio_list) - 2)} -i {audio_list[-1]} -vn -filter_complex acrossfade=d={transition_time}:c1=tri:c2=squ {output_path}', verbose=True) elif len(audio_list) == 2: call_ffmpeg(f'ffmpeg -i {audio_list[0]} -i {audio_list[1]} -vn -filter_complex acrossfade=d={transition_time}:c1=tri:c2=squ {output_path}', verbose=True) elif len(audio_list) == 1: shutil.copyfile(audio_list[0], output_path) else: raise ValueError("Empty audio list") if not debugging: try: os.remove(temp0) os.remove(temp1) except OSError: pass return output_path def extract_audio(video_file, output_file, time1=None, time2=None): """Creates audio file from video and timestamps""" if time1: ss_str = f'-ss {time1} ' if time2: to_str = f'-to {time2} ' call_ffmpeg(f'ffmpeg -i {video_file} {ss_str}{to_str}-c:a libmp3lame {output_file}', verbose=True) #f"volume=enable='between(t,t1,t2)':volume=0, volume=enable='between(t,t3,t4)':volume=0", def merge_audio(audio_file1, audio_file2, output_file, vol1=1.0, vol2=1.0): """Merges two audios into one. option to adjust volumes for both audio""" call_ffmpeg(f'ffmpeg -i {audio_file1} -i {audio_file2} -filter_complex [0:0]volume={vol1}[a];[1:0]volume={vol2}[b];[a][b]amix=inputs=2:duration=longest -c:a libmp3lame {output_file}', verbose=True)
#!/usr/bin/python # ex:set fileencoding=utf-8: from __future__ import unicode_literals from django.db import models from django.utils.encoding import python_2_unicode_compatible from django.utils.translation import ugettext_lazy as _ from djangobmf.categories import SETTINGS from djangobmf.contrib.accounting.models import ACCOUNTING_LIABILITY from djangobmf.models import BMFModel from djangobmf.settings import CONTRIB_ACCOUNT from decimal import Decimal @python_2_unicode_compatible class AbstractTax(BMFModel): name = models.CharField(max_length=255, null=False, blank=False, ) # invoice_name_long = models.CharField( max_length=255, null=False, blank=False, ) # invoice_name_short = models.CharField( max_length=255, null=False, blank=False, ) account = models.ForeignKey( CONTRIB_ACCOUNT, null=False, blank=False, related_name="tax_liability", limit_choices_to={'type': ACCOUNTING_LIABILITY, 'read_only': False}, on_delete=models.PROTECT, ) rate = models.DecimalField(max_digits=8, decimal_places=5) passive = models.BooleanField( _('Tax is allways included in the product price and never visible to the customer'), null=False, blank=False, default=False, ) is_active = models.BooleanField(_("Is active"), null=False, blank=False, default=True) def get_rate(self): return self.rate / Decimal(100) class Meta: verbose_name = _('Tax') verbose_name_plural = _('Taxes') ordering = ['name'] abstract = True swappable = "BMF_CONTRIB_TAX" class BMFMeta: category = SETTINGS observed_fields = ['name', 'invoice_name', 'rate'] def __str__(self): return self.name class Tax(AbstractTax): pass
from Module import AbstractModule class Module(AbstractModule): def __init__(self): AbstractModule.__init__(self) def run( self, network, in_data, out_attributes, user_options, num_cores, outfile): import shutil shutil.copyfile(in_data.identifier, outfile) def name_outfile(self, antecedents, user_options): from Betsy import module_utils original_file = module_utils.get_inputid(antecedents.identifier) filename = 'signal_check_normalize_' + original_file + '.tdf' return filename def set_out_attributes(self, antecedents, out_attributes): import arrayio new_parameters = out_attributes.copy() M = arrayio.read(antecedents.identifier) if is_gene_normalize_variance(M): new_parameters['gene_normalize'] = 'variance' elif is_gene_normalize_ss(M): new_parameters['gene_normalize'] = 'sum_of_squares' else: new_parameters['gene_normalize'] = 'no' return new_parameters def is_gene_normalize_variance(M): import numpy for line in M.slice(): if abs(numpy.var(line) - 1) > 0.000001: return False return True def is_gene_normalize_ss(M): import numpy for line in M.slice(): if abs(numpy.sum([(x - numpy.mean(line)) ** 2 for x in line]) - 1) > 0.000001: return False return True
import numpy as np class Dynamics: """docstring for Dynamics""" def __init__(self, dt): self.dt = dt def create_motion_model_params(motion_model_cov): raise NotImplementedError def create_meas_model_params(meas_cov): raise NotImplementedError if __name__ == '__main__': main()
from java.lang import String # a demo of using speech recognition to # turn an Arduino's pin 13 off or on # the commands are 2 stage - with the command, the the system # asking if that command was said, then a affirmation or negation # e.g. - you say "on", the system asks if you said "on", you say "yes" # the system turns the Arduino pin 13 on # create services python = Runtime.createAndStart("python", "Python") mouth = Runtime.createAndStart("mouth", "Speech") arduino = Runtime.createAndStart("arduino", "Arduino") ear = Runtime.createAndStart("ear", "Sphinx") # connect mrl to the arduino - change the port on your system arduino.connect("COM4") # attaching the mouth to the ear # prevents listening when speaking # which causes an undesired feedback loop ear.attach(mouth) # for anything recognized we'll send that data back to python to be printed # in the python tab # ear.addListener("recognized", "python", "heard", String.class); # add a "on" -> arduino.digitalWrite(13, 1) - turn's pin 13 on ear.addCommand("on", arduino.getName(), "digitalWrite", 13, 1) # add a "off" -> arduino.digitalWrite(13, 0) - turn's pin 13 off ear.addCommand("off", arduino.getName(), "digitalWrite", 13, 0) arduino.pinMode(13,1) # add confirmations and negations - this makes any command a 2 part commit # where first you say the command then mrl asks you if that is what you said # after recognition ear.addComfirmations("yes","correct","yeah","ya") ear.addNegations("no","wrong","nope","nah") # begin listening ear.startListening() def heard(data): # print it print "heard ", data
import sys from pprint import pprint from collections import deque import urllib import urlparse import json import random from lxml import html def create_node(name, children): return { "name": name, "children": children } def crawl(addr): current = create_node(addr, []) root = current depth = random.randint(1, 5) page_content = "" crawled = [] # Not crawl same url twice to_crawl = addr for i in range(depth): remain = depth - i - 1 print "Crawling: " + to_crawl + " - Remains: " + str(remain) url = urlparse.urlparse(to_crawl) try: response = urllib.urlopen(to_crawl) except: print "Error opening url: " + to_crawl break crawled.append(to_crawl) page_content = response.read() raw_links = html.fromstring(page_content).xpath('//a') full_links = [] for link in (raw_links.pop(0) for _ in xrange(len(raw_links))): if 'href' in link.attrib: link = link.attrib['href'] else: continue if link.startswith('/'): link = 'http://' + url[1] + link elif link.startswith('#'): link = 'http://' + url[1] + url[2] + link elif not link.startswith('http'): link = 'http://' + url[1] + '/' + link if link not in crawled: full_links.append(link) if not full_links: # no link crawlable break for link in full_links: current["children"].append(create_node(link, [])) rand_link = random.randint(0, len(full_links)) - 1 print "selected " + str(rand_link + 1) + " of " + str(len(full_links)) current["children"][rand_link]["visited"] = True current = current["children"][rand_link] to_crawl = current["name"] return { 'crawled': root, 'page_content': page_content } def get_term(content): try: tree = html.fromstring(content) paragraphs = tree.xpath('//p') if paragraphs: for par in paragraphs: for word in par.text.split(): if len(word) > random.randint(4, 7): return word except Exception, err: sys.stderr.write('ERROR: %s\n' % str(err)) return "_err_term_" return "_no_term_" def get_google_results(searchfor): query = urllib.urlencode({'q': searchfor}) url = 'http://ajax.googleapis.com/ajax/services/search/web?v=1.0&%s' % query search_response = urllib.urlopen(url) j = json.load(search_response) return [url['url'] for url in j['responseData']['results']] def get_terms(search_content): divterms = [] contents = [] #try: # Get a bunch of keywords #search_content = raw_input('Please, insert terms you would like to diverge: ') # Search them on google and get links urls_to_crawl = get_google_results(search_content) #print urls_to_crawl # go in depth following links in those pages crawled_paths = { "name": search_content, "children": [] } for url in urls_to_crawl: content = crawl(url) #print content['page_content'] new_term = get_term(content['page_content']) crawled_paths["children"].append(content['crawled']) # Find some words longer than 4-5 characters if new_term not in divterms: if new_term not in ['_no_term_', '_err_term_']: divterms.append(new_term) result = { 'crawled_paths': crawled_paths, 'divterms': divterms } return result #except Exception, err: # sys.stderr.write('ERROR: %s\n' % str(err)) # raise err
#I officially GIVE UP ON THIS FUNCTION. # In order to remove silence I have to split into mono, then resample and then clean # and EVEN AFTER I managed to do all that, the script I use to remove silence doesn't like # libosa resambling, however when I manually resamble with audacity it works just fine. # THIS MAKES NO SENSE WHATSOEVER. # I THOUGHT THIS WILL BE AN EASY TASK AND NOW I WASTED 3 HOURS! # import librosa # import resampy # import wave # import scipy # x, sr_orig = librosa.load("/home/ravingmad/Desktop/Work/amazonthon/stutter_AI/silence_removal_trials/right.wav",sr=None) # y_low = resampy.resample(x, sr_orig, 16000) # scipy.io.wavfile.write("/home/ravingmad/Desktop/Work/amazonthon/stutter_AI/silence_removal_trials/ugh.wav", 16000, y_low) # # librosa.output.write_wav("/home/ravingmad/Desktop/Work/amazonthon/stutter_AI/silence_removal_trials/librosad.wav",y,sr,True) # # import os # # import wave # # def downsampleWav(src, dst, inrate=44100, outrate=16000, inchannels=2, outchannels=1): # # if not os.path.exists(src): # # print('Source not found!') # # return False # # if not os.path.exists(os.path.dirname(dst)): # # os.makedirs(os.path.dirname(dst)) # # try: # # s_read = wave.open(src, 'r') # # s_write = wave.open(dst, 'w') # # except: # # print('Failed to open files!') # # return False # # n_frames = s_read.getnframes() # # data = s_read.readframes(n_frames) # # try: # # converted = audioop.ratecv(data, 2, inchannels, inrate, outrate, None) # # if outchannels == 1: # # converted = audioop.tomono(converted[0], 2, 1, 0) # # except: # # print('Failed to downsample wav') # # return False # # try: # # s_write.setparams((outchannels, 2, outrate, 0, 'NONE', 'Uncompressed')) # # s_write.writeframes(converted) # # except: # # print('Failed to write wav') # # return False # # try: # # s_read.close() # # s_write.close() # # except: # # print('Failed to close wav files') # # return False # # return True # # downsampleWav("/home/ravingmad/Desktop/Work/amazonthon/stutter_AI/silence_removal_trials/test.wav","/home/ravingmad/Desktop/Work/amazonthon/stutter_AI/silence_removal_trials/downed.wav")
from functools import partial import torch from glasses.models.classification.resnest import * def test_resnest(): x = torch.rand(1, 3, 224, 224) with torch.no_grad(): model = ResNeSt.resnest14d().eval() pred = model(x) assert pred.shape[-1] == 1000 n_classes = 10 model = ResNeSt.resnest14d(n_classes=n_classes).eval() pred = model(x) assert pred.shape[-1] == n_classes model = ResNeSt.resnest26d().eval() pred = model(x) assert pred.shape[-1] == 1000 model = ResNeSt.resnest50d().eval() pred = model(x) assert pred.shape[-1] == 1000 model = ResNeSt.resnest50d_1s4x24d().eval() pred = model(x) assert pred.shape[-1] == 1000 model = ResNeSt.resnest50d_4s2x40d().eval() pred = model(x) assert pred.shape[-1] == 1000 model = ResNeSt.resnest101e().eval() pred = model(x) assert pred.shape[-1] == 1000 model = ResNeSt.resnest50d_fast().eval() pred = model(x) assert pred.shape[-1] == 1000 # too big! # model = ResNetSt.resnest200e().eval() # pred = model(x) # assert pred.shape[-1] == 1000 # model = ResNetSt.resnest269e().eval() # pred = model(x) # assert pred.shape[-1] == 1000
# Standard Imports import time import paho.mqtt.client as mqtt from db.connection import add_weatherData def on_message(client, userdata, message): dataArray = str(message.payload.decode("utf-8")).split(",") add_weatherData(dataArray[0], dataArray[1], dataArray[2], dataArray[3], dataArray[4], dataArray[5], dataArray[6], dataArray[7], dataArray[8], dataArray[9]) # Set MQTT broker and Topic broker = "test.mosquitto.org" pub_topic = "weatheralytics/data" # Connect functions for MQTT client = mqtt.Client() # Connect to MQTT print("Attempting to connect to broker " + broker) client.connect(broker) client.subscribe(pub_topic) client.on_message = on_message client.loop_start()
import json from django.contrib import admin, auth from django.core import serializers from .models import LandZone class LandZoneAdmin(admin.ModelAdmin): """ Creates the land zone dashboard section :author Munir Safi :since 2020-11-22 """ model = LandZone list_display = ('geo_json', 'owner') ordering = ('owner',) fieldsets = () def change_view(self, request, object_id, form_url='', extra_context=None): land_zone = LandZone.objects.get(pk=object_id) land_zone_json = { 'owner': str(land_zone.owner), 'geo_json': json.dumps(land_zone.geo_json) } extra_context = extra_context or {} extra_context['zone_data'] = land_zone_json response = super(LandZoneAdmin, self).change_view(request, object_id, form_url, extra_context=extra_context) return response admin.site.register(LandZone, LandZoneAdmin)
import cv2 cv2.ocl.setUseOpenCL(False) import numpy as np from copy import deepcopy from utils.sth import sth from utils.sampler import create_sampler_manager from mlagents.mlagents_envs.environment import UnityEnvironment from mlagents.mlagents_envs.side_channel.engine_configuration_channel import EngineConfigurationChannel from mlagents.mlagents_envs.side_channel.environment_parameters_channel import EnvironmentParametersChannel class UnityWrapper(object): def __init__(self, env_args): self.engine_configuration_channel = EngineConfigurationChannel() if env_args['train_mode']: self.engine_configuration_channel.set_configuration_parameters(time_scale=env_args['train_time_scale']) else: self.engine_configuration_channel.set_configuration_parameters(width=env_args['width'], height=env_args['height'], quality_level=env_args['quality_level'], time_scale=env_args['inference_time_scale'], target_frame_rate=env_args['target_frame_rate']) self.float_properties_channel = EnvironmentParametersChannel() if env_args['file_path'] is None: self._env = UnityEnvironment(base_port=5004, seed=env_args['env_seed'], side_channels=[self.engine_configuration_channel, self.float_properties_channel]) else: self._env = UnityEnvironment(file_name=env_args['file_path'], base_port=env_args['port'], no_graphics=not env_args['render'], seed=env_args['env_seed'], side_channels=[self.engine_configuration_channel, self.float_properties_channel]) def reset(self, **kwargs): reset_config = kwargs.get('reset_config', {}) for k, v in reset_config.items(): self.float_properties_channel.set_property(k, v) self._env.reset() def __getattr__(self, name): if name.startswith('_'): raise AttributeError("attempted to get missing private attribute '{}'".format(name)) return getattr(self._env, name) class BasicWrapper: def __init__(self, env): self._env = env self._env.reset() def __getattr__(self, name): if name.startswith('_'): raise AttributeError("attempted to get missing private attribute '{}'".format(name)) return getattr(self._env, name) class InfoWrapper(BasicWrapper): def __init__(self, env, env_args): super().__init__(env) self.resize = env_args['resize'] self.brain_names = self._env.get_behavior_names() #所有脑的名字列表 self.fixed_brain_names = list(map(lambda x: x.replace('?','_'), self.brain_names)) self.brain_specs = [self._env.get_behavior_spec(b) for b in self.brain_names] # 所有脑的信息 self.vector_idxs = [[i for i,b in enumerate(spec.observation_shapes) if len(b)==1] for spec in self.brain_specs] # 得到所有脑 观测值为向量的下标 self.vector_dims = [[b[0] for b in spec.observation_shapes if len(b)==1] for spec in self.brain_specs] # 得到所有脑 观测值为向量的维度 self.visual_idxs = [[i for i,b in enumerate(spec.observation_shapes) if len(b)==3] for spec in self.brain_specs] # 得到所有脑 观测值为图像的下标 self.brain_num = len(self.brain_names) self.visual_sources = [len(v) for v in self.visual_idxs] self.visual_resolutions = [] stack_visual_nums = env_args['stack_visual_nums'] if env_args['stack_visual_nums'] > 1 else 1 for spec in self.brain_specs: for b in spec.observation_shapes: if len(b) == 3: self.visual_resolutions.append( list(self.resize)+[list(b)[-1] * stack_visual_nums]) break else: self.visual_resolutions.append([]) self.s_dim = [sum(v) for v in self.vector_dims] self.a_dim_or_list = [spec.action_shape for spec in self.brain_specs] self.a_size = [spec.action_size for spec in self.brain_specs] self.is_continuous = [spec.is_action_continuous() for spec in self.brain_specs] self.brain_agents = [len(d) for d in [self._env.get_steps(bn)[0] for bn in self.brain_names]] # 得到每个环境控制几个智能体 def random_action(self): ''' choose random action for each brain and each agent. continuous: [-1, 1] discrete: [0-max, 0-max, ...] i.e. action dim = [2, 3] => action range from [0, 0] to [1, 2]. ''' actions = [] for i in range(self.brain_num): if self.is_continuous[i]: actions.append(np.random.random((self.brain_agents[i], self.a_dim_or_list[i])) * 2 - 1) # [-1, 1] else: actions.append(np.random.randint(self.a_dim_or_list[i], size=(self.brain_agents[i], self.a_size[i]), dtype=np.int32)) return actions class UnityReturnWrapper(BasicWrapper): def __init__(self, env): super().__init__(env) def reset(self, **kwargs): self._env.reset(**kwargs) return self.get_obs() def step(self, actions): for k, v in actions.items(): self._env.set_actions(k, v) self._env.step() return self.get_obs() def get_obs(self): ''' 解析环境反馈的信息,将反馈信息分为四部分:向量、图像、奖励、done信号 ''' vector = [] visual = [] reward = [] done = [] for i, bn in enumerate(self.brain_names): vec, vis, r, d = self.coordinate_information(i, bn) vector.append(vec) visual.append(vis) reward.append(r) done.append(d) return zip(vector, visual, reward, done) def coordinate_information(self, i, bn): ''' TODO: Annotation ''' n = self.brain_agents[i] d, t = self._env.get_steps(bn) ps = [t] if len(d) != 0 and len(d) != n: raise ValueError('agents number error.') while len(d) != n: self._env.step() d, t = self._env.get_steps(bn) ps.append(t) obs, reward = d.obs, d.reward done = np.full(n, False) for t in ps: # TODO: 有待优化 if len(t) != 0: reward[t.agent_id] = t.reward done[t.agent_id] = True for _obs, _tobs in zip(obs, t.obs): _obs[t.agent_id] = _tobs return (self.deal_vector(n, [obs[vi] for vi in self.vector_idxs[i]]), self.deal_visual(n, [obs[vi] for vi in self.visual_idxs[i]]), np.asarray(reward), np.asarray(done)) def deal_vector(self, n, vecs): ''' 把向量观测信息 按每个智能体 拼接起来 ''' if len(vecs): return np.hstack(vecs) else: return np.array([]).reshape(n, -1) def deal_visual(self, n, viss): ''' viss : [camera1, camera2, camera3, ...] 把图像观测信息 按每个智能体 组合起来 ''' ss = [] for j in range(n): s = [] for v in viss: s.append(self.resize_image(v[j])) ss.append(np.array(s)) # [agent1(camera1, camera2, camera3, ...), ...] return np.array(ss) # [B, N, (H, W, C)] def resize_image(self, image): image = cv2.resize(image, tuple(self.resize), interpolation=cv2.INTER_AREA).reshape(list(self.resize)+[-1]) return image class SamplerWrapper(BasicWrapper): def __init__(self, env, env_args): super().__init__(env) self.reset_config = env_args['reset_config'] self.sampler_manager, self.resample_interval = create_sampler_manager(env_args['sampler_path'], 0) self.episode = 0 def reset(self): self.episode += 1 if self.episode % self.resample_interval == 0: self.reset_config.update(self.sampler_manager.sample_all()) obs = self._env.reset(config=self.reset_config) return obs class ActionWrapper(BasicWrapper): def __init__(self, env): super().__init__(env) def step(self, actions): actions = deepcopy(actions) for i, k in enumerate(actions.keys()): if self.is_continuous[i]: pass else: actions[k] = sth.int2action_index(actions[k], self.a_dim_or_list[i]) return self._env.step(actions)
# # PySNMP MIB module SAMSUNG-DIAGNOSTICS-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/SAMSUNG-DIAGNOSTICS-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 20:52:28 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # OctetString, Integer, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "OctetString", "Integer", "ObjectIdentifier") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueRangeConstraint, SingleValueConstraint, ConstraintsIntersection, ValueSizeConstraint, ConstraintsUnion = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueRangeConstraint", "SingleValueConstraint", "ConstraintsIntersection", "ValueSizeConstraint", "ConstraintsUnion") samsungCommonMIB, = mibBuilder.importSymbols("SAMSUNG-COMMON-MIB", "samsungCommonMIB") NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "NotificationGroup", "ModuleCompliance") Bits, Gauge32, IpAddress, NotificationType, TimeTicks, iso, Counter32, Integer32, Unsigned32, ModuleIdentity, Counter64, MibIdentifier, MibScalar, MibTable, MibTableRow, MibTableColumn, ObjectIdentity = mibBuilder.importSymbols("SNMPv2-SMI", "Bits", "Gauge32", "IpAddress", "NotificationType", "TimeTicks", "iso", "Counter32", "Integer32", "Unsigned32", "ModuleIdentity", "Counter64", "MibIdentifier", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "ObjectIdentity") DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "TextualConvention") scmDiagnostics = ModuleIdentity((1, 3, 6, 1, 4, 1, 236, 11, 5, 11, 64)) if mibBuilder.loadTexts: scmDiagnostics.setLastUpdated('0408240000Z') if mibBuilder.loadTexts: scmDiagnostics.setOrganization('Samsung Corporation - Samsung Common Management Interface (SCMI) Working Group') scmDiagnosticsDevice = MibIdentifier((1, 3, 6, 1, 4, 1, 236, 11, 5, 11, 64, 1)) scmDiagnosticsDeviceTable = MibTable((1, 3, 6, 1, 4, 1, 236, 11, 5, 11, 64, 1, 2), ) if mibBuilder.loadTexts: scmDiagnosticsDeviceTable.setStatus('current') scmDiagnosticsDeviceEntry = MibTableRow((1, 3, 6, 1, 4, 1, 236, 11, 5, 11, 64, 1, 2, 1), ).setIndexNames((0, "SAMSUNG-DIAGNOSTICS-MIB", "scmDiagnosticsDeviceIndex")) if mibBuilder.loadTexts: scmDiagnosticsDeviceEntry.setStatus('current') scmDiagnosticsDeviceIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 236, 11, 5, 11, 64, 1, 2, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 2147483647))).setMaxAccess("readonly") if mibBuilder.loadTexts: scmDiagnosticsDeviceIndex.setStatus('current') scmDiagnosticsDeviceItem = MibTableColumn((1, 3, 6, 1, 4, 1, 236, 11, 5, 11, 64, 1, 2, 1, 2), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 64))).setMaxAccess("readonly") if mibBuilder.loadTexts: scmDiagnosticsDeviceItem.setStatus('current') scmDiagnosticsDeviceType = MibTableColumn((1, 3, 6, 1, 4, 1, 236, 11, 5, 11, 64, 1, 2, 1, 3), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6, 7, 8, 21, 22, 23, 24, 25, 26, 41, 42, 43))).clone(namedValues=NamedValues(("input", 1), ("output", 2), ("cover", 3), ("geeralPrinter", 4), ("mediaPath", 5), ("marker", 6), ("markerSupplies", 7), ("markerColorant", 8), ("fax", 21), ("scanner", 22), ("network", 23), ("usb", 24), ("parallel", 25), ("finisher", 26), ("motor", 41), ("smps", 42), ("memory", 43)))).setMaxAccess("readonly") if mibBuilder.loadTexts: scmDiagnosticsDeviceType.setStatus('current') scmDiagnosticsDeviceDescr = MibTableColumn((1, 3, 6, 1, 4, 1, 236, 11, 5, 11, 64, 1, 2, 1, 4), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 64))).setMaxAccess("readonly") if mibBuilder.loadTexts: scmDiagnosticsDeviceDescr.setStatus('current') scmDiagnosticsDeviceID = MibTableColumn((1, 3, 6, 1, 4, 1, 236, 11, 5, 11, 64, 1, 2, 1, 5), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 2147483647))).setMaxAccess("readonly") if mibBuilder.loadTexts: scmDiagnosticsDeviceID.setStatus('current') scmDiagnosticsDeviceStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 236, 11, 5, 11, 64, 1, 2, 1, 6), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6))).clone(namedValues=NamedValues(("unknown", 1), ("running", 2), ("warning", 3), ("testing", 4), ("down", 5), ("printing", 6)))).setMaxAccess("readonly") if mibBuilder.loadTexts: scmDiagnosticsDeviceStatus.setStatus('current') scmDiagnosticsDeviceErrors = MibTableColumn((1, 3, 6, 1, 4, 1, 236, 11, 5, 11, 64, 1, 2, 1, 7), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: scmDiagnosticsDeviceErrors.setStatus('current') scmDiagnosticsRequest = MibTableColumn((1, 3, 6, 1, 4, 1, 236, 11, 5, 11, 64, 1, 2, 1, 8), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("on", 1), ("off", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: scmDiagnosticsRequest.setStatus('current') scmGenBaseDeviceImageFileName = MibTableColumn((1, 3, 6, 1, 4, 1, 236, 11, 5, 11, 64, 1, 2, 1, 999), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 31))).setMaxAccess("readonly") if mibBuilder.loadTexts: scmGenBaseDeviceImageFileName.setStatus('current') mibBuilder.exportSymbols("SAMSUNG-DIAGNOSTICS-MIB", PYSNMP_MODULE_ID=scmDiagnostics, scmDiagnosticsDeviceItem=scmDiagnosticsDeviceItem, scmDiagnosticsDeviceEntry=scmDiagnosticsDeviceEntry, scmDiagnosticsDeviceStatus=scmDiagnosticsDeviceStatus, scmGenBaseDeviceImageFileName=scmGenBaseDeviceImageFileName, scmDiagnosticsDeviceDescr=scmDiagnosticsDeviceDescr, scmDiagnosticsDeviceTable=scmDiagnosticsDeviceTable, scmDiagnosticsDeviceID=scmDiagnosticsDeviceID, scmDiagnosticsDeviceErrors=scmDiagnosticsDeviceErrors, scmDiagnosticsRequest=scmDiagnosticsRequest, scmDiagnosticsDeviceIndex=scmDiagnosticsDeviceIndex, scmDiagnosticsDevice=scmDiagnosticsDevice, scmDiagnosticsDeviceType=scmDiagnosticsDeviceType, scmDiagnostics=scmDiagnostics)
import numpy as np from mpi4py import MPI from time import time import sys sys.path.append("/Users/bl/Dropbox/repos/Delight/") from delight.utils_cy import * comm = MPI.COMM_WORLD threadNum = comm.Get_rank() numThreads = comm.Get_size() # -------------------------------------- numsamples = int(sys.argv[1]) prefix = "./sv3dhst_" useSpec = True usePhoto = not useSpec importanceSampling = not useSpec numTypes = 10 nz = 1000 z_grid_bounds = np.logspace(-2, 0.4, nz+1) muell_range = [0.1, 100] mulnz_range = [-1, 0.2] varell_range = [0.1, 100] varlnz_range = [0.001, 0.1] # -------------------------------------- if useSpec: specdata = np.load(prefix+'specdata.npz') assert specdata["redshifts"].size == specdata["nobj"] assert specdata["sedfeatures"].shape[0] == specdata["features_zgrid"].size assert specdata["sedfeatures"].shape[1] == specdata["numFeatures"] assert specdata["sedfeatures"].shape[2] == specdata["numBands"] assert specdata["fluxes"].shape[1] == specdata["numBands"] assert specdata["fluxes"].shape[0] == specdata["nobj"] assert specdata["fluxes"].shape[1] == specdata["numBands"] assert specdata["fluxVars"].shape[0] == specdata["nobj"] assert specdata["fluxVars"].shape[1] == specdata["numBands"] f_mod_features_spec = np.zeros((specdata["nobj"], specdata["numFeatures"], specdata["numBands"])) for it in range(specdata["numFeatures"]): for ib in range(specdata["numBands"]): f_mod_features_spec[:, it, ib] = np.interp(specdata["redshifts"], specdata["features_zgrid"], specdata["sedfeatures"][:, it, ib]) if usePhoto: photdata = np.load(prefix+'photdata.npz') if useSpec: assert photdata["numFeatures"] == specdata["numFeatures"] assert photdata["sedfeatures"].shape[0] == photdata["features_zgrid"].size assert photdata["sedfeatures"].shape[1] == photdata["numFeatures"] assert photdata["sedfeatures"].shape[2] == photdata["numBands"] assert photdata["fluxes"].shape[0] == photdata["nobj"] assert photdata["fluxes"].shape[1] == photdata["numBands"] assert photdata["fluxVars"].shape[0] == photdata["nobj"] assert photdata["fluxVars"].shape[1] == photdata["numBands"] z_grid_centers = (z_grid_bounds[1:] + z_grid_bounds[:-1]) / 2.0 z_grid_sizes = (z_grid_bounds[1:] - z_grid_bounds[:-1]) f_mod_features_phot = np.zeros((nz, photdata["numFeatures"], photdata["numBands"])) for it in range(photdata["numFeatures"]): for ib in range(photdata["numBands"]): f_mod_features_phot[:, it, ib] = np.interp(z_grid_centers, photdata["features_zgrid"], photdata["sedfeatures"][:, it, ib]) def hypercube2simplex(zs): fac = np.concatenate((1 - zs, np.array([1]))) zsb = np.concatenate((np.array([1]), zs)) fs = np.cumprod(zsb) * fac return fs if useSpec: numFeatures = specdata["numFeatures"] if usePhoto: numFeatures = photdata["numFeatures"] def logposterior(x): if not importanceSampling: if np.any(x < param_ranges_min) or np.any(x > param_ranges_max): ind = x < param_ranges_min ind |= x > param_ranges_max print("parameters outside of allowed range: ", np.where(ind)[0]) return -np.inf zs = x[0:numTypes-1] fs = hypercube2simplex(zs) order = np.argsort(fs) alpha_zs = x[numTypes-1:numTypes-1+numTypes*(numFeatures-1)] alpha_fs = np.vstack([hypercube2simplex(alpha_zs[i*(numFeatures-1):(i+1)*(numFeatures-1)]) for i in order]) # numTypes * numFeatures betas = x[numTypes-1+numTypes*(numFeatures-1):] mu_ell, mu_lnz, var_ell, var_lnz, corr = np.split(betas, 5) mu_ell, mu_lnz, var_ell, var_lnz, corr =\ mu_ell[order], mu_lnz[order], var_ell[order], var_lnz[order], corr[order] rho = corr * np.sqrt(var_ell * var_lnz) logpost = 0 if useSpec: f_mod_spec = np.dot(alpha_fs, f_mod_features_spec) speclnevidences = np.zeros((specdata["nobj"], )) specobj_evidences_margell( speclnevidences, fs, specdata["nobj"], numTypes, specdata["numBands"], specdata["fluxes"], specdata["fluxVars"], f_mod_spec, specdata["redshifts"], mu_ell, mu_lnz, var_ell, var_lnz, rho) logpost += np.sum(speclnevidences) if usePhoto: photolnevidences = np.zeros((photdata["nobj"], )) f_mod_phot = np.dot(alpha_fs, f_mod_features_phot) photoobj_evidences_marglnzell( photolnevidences, fs, photdata["nobj"], numTypes, nz, photdata["numBands"], photdata["fluxes"], photdata["fluxVars"], f_mod_phot, z_grid_centers, z_grid_sizes, mu_ell, mu_lnz, var_ell, var_lnz, rho) ind = np.where(np.isfinite(photolnevidences))[0] logpost += np.sum(photolnevidences[ind]) return logpost fname = prefix+"samples_thread"+str(threadNum+1)+"on"+str(numThreads) if importanceSampling: samples = np.genfromtxt(fname+".txt") t1 = time() for i in range(numsamples): samples[i, 0] += logposterior(samples[i, 1:]) t2 = time() print('Thread', threadNum+1, "on", numThreads, ': Finished sampling! Took', (t2-t1)/numsamples, 'sec per sample') np.savetxt(fname+"_importancesampled.txt", samples[0:numsamples, :]) print("Wrote to file", fname+"_importancesampled.txt") else: param_ranges = \ [[0, 1]] * (numTypes-1) +\ [[0, 1]] * (numTypes*(numFeatures-1)) +\ [muell_range] * numTypes +\ [mulnz_range] * numTypes +\ [varell_range] * numTypes +\ [varlnz_range] * numTypes +\ [[-.9, .9]] * numTypes ndim = len(param_ranges) param_ranges_min = np.array([rr[0] for rr in param_ranges]) param_ranges_max = np.array([rr[1] for rr in param_ranges]) t1 = time() samples = np.zeros((numsamples, ndim+1)) for i in range(numsamples): samples[i, 1:] = param_ranges_min + (param_ranges_max - param_ranges_min) * np.random.uniform(0.1, 0.9, size=ndim) samples[i, 0] = logposterior(samples[i, 1:]) t2 = time() print('Thread', threadNum+1, "on", numThreads, ': Finished sampling! Took', (t2-t1)/numsamples, 'sec per sample') t1 = time() order = np.argsort(samples[:, 0])[::-1] samples = samples[order, :] t2 = time() print('Thread', threadNum+1, "on", numThreads, ': Finished sorting samples. Took', (t2-t1), 'sec') np.savetxt(fname+".txt", samples) print("Wrote to file", fname+".txt")
name0_1_1_1_0_3_0 = None name0_1_1_1_0_3_1 = None name0_1_1_1_0_3_2 = None name0_1_1_1_0_3_3 = None name0_1_1_1_0_3_4 = None
import datetime import numpy as np import matplotlib as plt from floodsystem.datafetcher import fetch_measure_levels from floodsystem.analysis import polyfit from floodsystem.flood import stations_level_over_threshold from floodsystem.stationdata import build_station_list, update_water_levels """Explanation If the derivative is positive, then the water levels are increasing, hence the flood risk increases. If the relative water level is higher than the typical high, then flooding may occur if the water levels are increasing Severe flood risk if 1.5 relative water level and a positive derivative High flood risk if 1.0 relative water level and a positive derivative Moderate flood risk if 0.75 relative water level and a positive derivate Low flood risk if any other combination. """ def run(): stations = build_station_list() update_water_levels(stations) stationsover = stations_level_over_threshold(stations, 0.75) severe = set() high = set() moderate = set() low = set() for station in stationsover: dates, levels = fetch_measure_levels(station[0].measure_id, dt=datetime.timedelta(days=1)) if dates == [] or levels == []: pass else: poly, d0 = polyfit(dates, levels, 4) derivative = np.polyder(poly, 4) value = derivative(plt.dates.date2num(dates[-1]) - d0) if station[1] > 1.5 and value > 0: for i in stations: if station[0].name == i.name and i.town != None: severe.add(i.town) elif station[1] > 1.0 and value > 0: for i in stations: if station[0].name == i.name and i.town != None: high.add(i.town) elif station[1] > 0.75 or value > 0: for i in stations: if station[0].name == i.name and i.town != None: moderate.add(i.town) else: for i in stations: if station[0].name == i.name and i.town != None: low.add(i.town) print("--TOWNS WITH SEVERE FLOOD RISK--") print(severe) print("--TOWNS WITH HIGH FLOOD RISK--") print(high) if __name__ == "__main__": run()
from .models import Campaign def connect_campaign(sender, **kwargs): reference = kwargs.get('reference') if not reference: return parts = reference.split(':', 1) if len(parts) != 2: return namespace = parts[0] try: campaign = Campaign.objects.get(ident=namespace) except Campaign.DoesNotExist: return sender.campaign = campaign sender.save() sender.user.tags.add(campaign.ident) if not sender.user.is_active: # First-time requester sender.user.tags.add('%s-first' % campaign.ident)
import discord import logging import asyncio import aiosqlite import contextlib from bot import Main # source: rdanny because I'm lazy to do my own launcher @contextlib.contextmanager def setlogging(): try: logging.getLogger('discord').setLevel(logging.INFO) logging.getLogger('discord.http').setLevel(logging.INFO) log = logging.getLogger() handler = logging.FileHandler(filename='mod.log', encoding='utf-8', mode='w') date_fmt = "%d-%m-%Y %H:%M:%S" fmt = logging.Formatter('[{asctime}] [{levelname:<7}] {name}: {message}', date_fmt, style='{') handler.setFormatter(fmt) log.addHandler(handler) yield finally: handlers = log.handlers[:] for handler in handlers: handler.close() log.removeHandler(handler) def run_bot(): loop = asyncio.get_event_loop() log = logging.getLogger() try: db = loop.run_until_complete(aiosqlite.connect('mod.db')) except Exception as e: print(e) return bot = Main() bot.db = db bot.run() if __name__ == '__main__': run_bot()
#!/usr/bin/env python3 """The Museum of Incredibly Dull Things. A museum wants to get rid of some exhibitions. Vanya, the interior architect, comes up with a plan to remove the most boring exhibitions. She gives them a rating, and removes the one with the lowest rating. Just as she finishes rating the exhibitions, she's called off to an important meeting. She asks you to write a program that tells her the ratings of the items after the lowest one is removed. Create a function that takes a list of integers and removes the smallest value. Source: https://edabit.com/challenge/cx7eFvQBzjauLgwgZ """ def remove_smallest(ratings: list) -> list: """Remove the smallest rating from list.""" if ratings: min_, index_ = ratings[0], 0 for index, score in enumerate(ratings): if score < int(min_): min_ = score index_ = index ratings.pop(index_) return ratings def main(): """Run sample remove_smallest functions. Do not import.""" print(remove_smallest([1, 2, 3, 4, 5])) print(remove_smallest([5, 3, 2, 1, 4])) print(remove_smallest([2, 2, 1, 2, 1])) if __name__ == "__main__": main()
import os, sys import cgi import webapp2 from google.appengine.ext import ndb from datetime import datetime import json from Cube.models import Cube, Content import logging #Get Functionality. class CubeHandler(webapp2.RequestHandler): def post(self): # try: cube_fields = json.loads(self.request.body) logging.info(cube_fields) if cube_fields: cube = Cube() self.createCube(cube,cube_fields) cube.put() else: logging.info("No input data") return # except Exception as e: # logging.info("Error posting a Content") def get(self): user = dict(self.request.params)["user"] logging.info(user) response = {"personal": [], "shared": []} lists = [] #Do a gql Query to fetch the personal; queries query_1 = ndb.gql("SELECT * FROM Cube WHERE created_by=:1",ndb.Key(urlsafe=str(user))).fetch() if query_1: response["personal"] = convert_query_to_dict(query_1) #Another gql query shall fetch the shared. logging.info(response["personal"]) query_2 = ndb.gql("SELECT * FROM Cube WHERE shared_list=:1", ndb.Key(urlsafe=str(user))).fetch() #Code to convert an instance to a dictionary value logging.info(query_2) if query_2: logging.info("adfad") response["shared"] = convert_query_to_dict(query_2) logging.info(response) return self.response.write(json.dumps(response)) def put(self): # """ # This shall handle the Cube Share Functionality # """ # try: cube_shared_fields = json.loads(self.request.body) user_to_be_shared_with = cube_shared_fields["user"] cube_key = cube_shared_fields["cube"] #First Update the CUBE. cube = ndb.Key(urlsafe=str(cube_key)).get() list_of_contents = cube.content_list logging.info(list_of_contents) shared_list = [key.urlsafe() for key in cube.shared_list] shared_list.append(user_to_be_shared_with) cube.shared_list = [ndb.Key(urlsafe=str(key)) for key in list(set(shared_list))] #Fetch all the contents and input the user2 key. for content in list_of_contents: logging.info(content) content_instance = content.get() shared_with_users = [user.urlsafe() for user in content_instance.content_shared_list] shared_with_users.append(user_to_be_shared_with) content_instance.content_shared_list = [ndb.Key(urlsafe=user) for user in list(set(shared_with_users))] content_instance.put() cube.put() # except Exception as e: # logging.info("Error while sharing a cube") def delete(self): """ This handles the delete functionality""" pass def createCube(self,cube, cube_fields): """ A helper Function that initializes a cube during a post request. """ cube.name = cube_fields["name"] cube.created_by = ndb.Key(urlsafe=str(cube_fields["user"])) cube.create_on = datetime.now() return cube class ContentHandler(webapp2.RequestHandler): """ This Handler handles all the requests for deleting or adding contents. """ def get(self): try: params = dict(self.request.params) user_id = params["user"] # Contents created by the user and the contents shared with the user. result = {"personal": None, "shared": None} #Query to read all the personalized contents query = ndb.gql("SELECT * FROM Content WHERE created_by=:1", ndb.Key(urlsafe=str(user_id))).fetch() if query: result["personal"] = [str(query.link) for query in query] query = ndb.gql("SELECT * FROM Content WHERE content_shared_list=:1", ndb.Key(urlsafe=str(user_id))).fetch() if query: result["shared"] = [str(query.link) for query in query] return self.response.write(json.dumps(result)) except Exception as e: logging.info("Error in Getting the List") def post(self): # try: content_fields = json.loads(self.request.body) content = Content() cubes = content_fields["cubes"] if content_fields.has_key("cubes") else None logging.info(cubes) content.created_by = ndb.Key(urlsafe=content_fields["user"]) content.link = content_fields["link"] content.created_on = datetime.now() if cubes: content.put() key = content.key for cube in cubes: #Fetch the cube and append it to the list of contents. cube_instance = ndb.Key(urlsafe=str(cube)).get() logging.info(cube_instance) cube_instance.content_list.append(key) cube_instance.put() else: content.independent_content = True content.put() # except Exception as e: # logging.info("Error in creating a Content") def put(self): # """ # Put Here amounts to Sharing a Content. # """ # try: content_share_fields = json.loads(self.request.body) user_key_to_share = content_share_fields["user"] content_key = content_share_fields["key"] #Update the information. fetched_content = ndb.Key(urlsafe=str(content_key)).get() prev_content_list = fetched_content.content_shared_list if prev_content_list: prev_content_list.append(ndb.Key(urlsafe=str(user_key_to_share))) else: prev_content_list = [ndb.Key(urlsafe=str(user_key_to_share))] fetched_content.content_shared_list = prev_content_list fetched_content.put() # # except Exception as e: # logging.info("Error in Sharing with others") class CubeContentDeleteHandler(webapp2.RequestHandler): """ This class handles the delete functionality """ def get(self): pass def post(self): """ This Handler takes a cube id and a content id. """ fields = json.loads(self.request.body) logging.info(fields) cube = fields["cube"] if fields.has_key("cube") else None logging.info("adadads") content = fields["content"] if fields.has_key("content") else None logging.info(content) if cube: if content: #Fetch the Cube. cube_instance = ndb.Key(urlsafe=str(cube)).get() content_instance = ndb.Key(urlsafe=str(content)).get() cube_shared_list = [key.urlsafe() for key in cube_instance.shared_list] content_list = [content.urlsafe() for content in cube_instance.content_list] logging.info(content) logging.info(content_list) if content.urlsafe() in content_list: logging.info("jbkjhjb") index = content_list.index(content.urlsafe()) del content_list[index] cube_instance.content_list = [ndb.Key(urlsafe=str(key)) for key in list(set(content_list))] cube_instance.put() logging.info("sacdasdca") #Fetch the Content now.logging.info("sacdasdca") logging.info(content_instance) logging.info("sacdasdca") created_by = content_instance.created_by.urlsafe() shared_content_list = [key.urlsafe() for key in content_instance.content_shared_list] logging.info("sacdasdca") logging.info(content) if created_by in cube_shared_list: for key in cube_shared_list: index = shared_content_list.index(key) del shared_content_list[index] if shared_content_list: content_instance.created_by = ndb.Key(urlsafe=shared_content_list[0]) else: #Delete the instance. pass else: # Delete the Cube ndb.Key(urlsafe=str(cube)).delete() #Check for the def convert_query_to_dict(query_object): query_list = [] logging.info(query_object) for query in query_object: query_obj = {} query_obj["name"] = str(query.name) if query.content_list: query_obj["content_list"] = [id.urlsafe() for id in query.content_list] query_list.append(query_obj) logging.info(query_list) return query_list def get_name_from_key(content): return "www.google.com"
#!/usr/bin/env pybricks-micropython from pybricks.hubs import EV3Brick from pybricks.ev3devices import Motor, TouchSensor, ColorSensor, GyroSensor from pybricks.parameters import Port, Direction, Button, Stop from pybricks.tools import wait, StopWatch from pybricks.robotics import DriveBase from pybricks.media.ev3dev import ImageFile, SoundFile # Initialize the EV3 brick. ev3 = EV3Brick() # Configure 2 motors on Ports A and B. Set the motor directions to # clockwise, so that positive speed values make the robot move # forward. These will be the left and right motors of the Tank Bot. left_motor = Motor(Port.B, Direction.CLOCKWISE) right_motor = Motor(Port.C, Direction.CLOCKWISE) # The wheel diameter of the Bot in mm. WHEEL_DIAMETER = 54 # The axle track is the distance between the centers of each of the # wheels. This is about 200 mm for the Tank Bot. AXLE_TRACK = 125 # The Driving Base is comprised of 2 motors. There is a wheel on each # motor. The wheel diameter and axle track values are used to make the # motors move at the correct speed when you give a drive command. #robot = DriveBase(left_motor, right_motor, WHEEL_DIAMETER, AXLE_TRACK) # Sets up the robot's drive base def setupTank(): global robot robot = DriveBase(left_motor, right_motor, WHEEL_DIAMETER, AXLE_TRACK) # Set up the robot speed robot.stop # settings(straight_speed, straight_acceleration, turn_rate, turn_acceleration) robot.settings(800, 5000, 40000, 100000) # Sets up the tank for the first time setupTank() # Initialize the steering and overshoot variables. steering = 60 overshoot = 5 # Set up the Gyro Sensor. It is used to measure the angle of the robot. # Keep the Gyro Sensor and EV3 steady when connecting the cable and # during start-up of the EV3. gyroSensor = GyroSensor(Port.S1) #Set up the fork lift liftMotor = Motor(Port.D, Direction.CLOCKWISE, [8, 12, 28]) # Functions are under this line #------------------------------------------------------------------------- def rightTurnLoop(inputAngle): gyroSensor.reset_angle(0) print("Sub target angle " + str(inputAngle - 10)) # Turn quickly only if the angle is bigger than 10 if (inputAngle > 10): robot.turn(inputAngle - 10) print(gyroSensor.angle()) print("Target angle " + str(inputAngle)) print("Loop condition " + str(gyroSensor.angle() < inputAngle)) if (gyroSensor.angle() < inputAngle): while (gyroSensor.angle() < inputAngle): robot.turn(1) print(gyroSensor.angle()) if (gyroSensor.angle() > inputAngle): while (gyroSensor.angle() > inputAngle): robot.turn(-1) print(gyroSensor.angle()) def leftTurnLoop(inputAngle): gyroSensor.reset_angle(0) print("Target angle " + str(-inputAngle)) print("Sub target angle " + str((-inputAngle) + 10)) # Turn quickly only if the angle is bigger than 10 if (inputAngle > 10): robot.turn((-inputAngle) + 10) print(gyroSensor.angle()) if (gyroSensor.angle() > -inputAngle): while (gyroSensor.angle() > -inputAngle): robot.turn(-1) print(gyroSensor.angle()) if (gyroSensor.angle() < -inputAngle): while (gyroSensor.angle() < -inputAngle): robot.turn(1) print(gyroSensor.angle()) # torque; only for run_until_stalled, limit is the torque of the motor # height; max height to lift to def grab(torque, height): # Opens up the arm liftMotor.run_target(400, -450) # move in to grab by length of the black pins on the fork forkLength = 30 robot.straight(forkLength) # alternative lift function liftMotor.run_target(250, height) def letGo(): liftMotor.run_target(400, -450) liftMotor.hold() # back out by length of the black pins on the fork forkLenght = 30 constant = 10 robot.straight(-forkLenght -constant) # restore fork position liftMotor.run_target(400, 0) # Moves the fork up # Must start with the fork positioned like a forklift def liftUp(): # Reset the position of the fork to 0 liftMotor.run_target(400, 0) # lift it up liftMotor.run_target(400, 450) # Moves the fork down def liftDown(): liftMotor.run_target(400, 0) def ram(): # Record the angle while moving for better accuracy robot.straight(500) gyroSensor.reset_angle(0) angleBefore = gyroSensor.angle() robot.straight(270) ramDistance = 20 index = 0 indexMax = 20 while (index < indexMax): wait(100) robot.straight(-ramDistance) print("Back distance " + str(-ramDistance)) wait(100) # The distance changes for each push robot.straight(ramDistance + 30) print("Forward distance " + str(ramDistance + 30)) index += 1 angleAfter = gyroSensor.angle() print("Angle in " + str(angleBefore)) print("Angle after " + str(angleAfter)) # Go back a bit robot.straight(-50) if (0 > angleAfter): rightTurnLoop(abs(angleAfter)) else: restoreAngle(angleBefore, angleAfter) # Go back to start robot.straight(-1200) # Restores the previous angle of the bot def restoreAngle(angleBefore, angleAfter): if (angleBefore != angleAfter): if (angleAfter < angleBefore): rightTurnLoop(abs(angleAfter - angleBefore)) if (angleAfter > angleBefore): leftTurnLoop(abs(angleAfter - angleBefore)) # Goes under the pull up bar def goUnder(): robot.straight(800) leftTurnLoop(90) robot.straight(640) leftTurnLoop(65) robot.straight(350) dance() def dance(): gyroSensor.reset_angle(0) robot.turn(180) robot.straight(-10) robot.turn(360) robot.straight(10) robot.turn(360 * 2) # Takes an string input # Makes the robot say the input out loud in Norwegian def speakNor(whatToSay): ev3.speaker.set_speech_options(language='no', voice='f1', speed=200, pitch=70) ev3.speaker.say(whatToSay) # Pulls the arms down from the locked position def releaseArms(): liftMotor.run_target(400, -1050) liftMotor.run_target(400, 180) liftMotor.run_target(400, 0) def wallSmash(): robot.straight(280) leftTurnLoop(90) robot.straight(1000) robot.straight(-170) gyroSensor.reset_angle(90) leftTurnLoop(90) robot.straight(800) def treadmill_complete(): robot.straight(1000) gyroSensor.reset_angle(0) robot.straight(650) treadmill() angleAfter = gyroSensor.angle() robot.straight(-200) restoreAngle(0, angleAfter) rightTurnLoop(180) robot.straight(1700) def treadmill(): # Disable the tank robot.stop() index = 0 while index < 20: right_motor.dc(100) wait(100) index += 1 # Set up the tank again setupTank() #------------------------------------------------------------------------- # checks which button is pressed and does methods that are being called upon. def buttonPress(): if Button.UP in ev3.buttons.pressed(): # Checks if button UP is pressed. print("You pressed the up button") ev3.speaker.beep() wait(400) ram() speakNor('Er du sikker på at du trykket rett knapp?') elif Button.RIGHT in ev3.buttons.pressed(): print("You pressed the right button") ev3.speaker.beep() wait(400) wallSmash() speakNor('Tror ikke denne knappen gjør noe heller...') elif Button.DOWN in ev3.buttons.pressed(): # Checks if button right is pressed. print("You pressed the down button") ev3.speaker.beep() wait(400) goUnder() speakNor('Ja, ja, ja, dette var gøy') elif Button.LEFT in ev3.buttons.pressed(): # Checks if button down is pressed. print("You pressed the left button") ev3.speaker.beep() wait(400) treadmill_complete() speakNor('Tror du mente å trykke høyre knapp.') #------------------------------------------------------------------------- ev3.speaker.beep() print('I am ready!') # Main loop, makes buttonPres() run for ever! while True: buttonPress() wait(0.01)
# Copyright 2019-2022 Cambridge Quantum Computing # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pytket.circuit import Circuit, OpType # type: ignore from pytket.architecture import Architecture # type: ignore from pytket.passes import AASRouting, CNotSynthType, ComposePhasePolyBoxes # type: ignore from pytket.predicates import CompilationUnit # type: ignore def test_AAS() -> None: arc = Architecture([[0, 1], [1, 2], [2, 3], [3, 4]]) circ = Circuit(5) circ.H(0).H(2) circ.CX(0, 1).CX(1, 2).CX(3, 4) circ.Rz(0, 1) pass1 = AASRouting(arc, lookahead=2) assert pass1.apply(circ) def test_AAS_2() -> None: arc = Architecture([[0, 1], [1, 2], [2, 3], [3, 4]]) circ = Circuit(5) circ.H(0).H(2) circ.CX(0, 1).CX(1, 2).CX(3, 4) circ.Rz(0, 1) pass1 = AASRouting(arc) assert pass1.apply(circ) def test_AAS_3() -> None: arc = Architecture([[0, 1], [1, 2], [2, 3], [3, 4]]) circ = Circuit(5) circ.H(0).H(2) circ.CX(0, 1).CX(1, 2).CX(3, 4) circ.Rz(0, 1) pass1 = AASRouting(arc, lookahead=2) assert pass1.apply(circ) def test_AAS_4() -> None: arc = Architecture([[0, 1], [1, 2], [2, 3], [3, 4]]) circ = Circuit(5) circ.H(0).H(2) circ.CX(0, 1).CX(1, 2).CX(3, 4) circ.Rz(0, 1) pass1 = AASRouting(arc) assert pass1.apply(circ) def test_AAS_5() -> None: arc = Architecture([[0, 1], [1, 2], [2, 3], [3, 4]]) circ = Circuit(5) circ.H(0).H(2) circ.CX(0, 1).CX(1, 2).CX(3, 4) circ.Rz(0, 1) pass1 = AASRouting(arc, lookahead=2) assert pass1.apply(circ) def test_AAS_6() -> None: arc = Architecture([[0, 1], [1, 2], [2, 3], [3, 4]]) circ = Circuit(5) circ.H(0).H(2) circ.CX(0, 1).CX(1, 2).CX(3, 4) circ.Rz(0, 1) pass1 = AASRouting(arc) assert pass1.apply(circ) def test_AAS_7() -> None: arc = Architecture([[0, 1], [1, 2], [2, 3], [3, 4]]) circ = Circuit(5) circ.H(0).H(2) circ.CX(0, 1).CX(1, 2).CX(3, 4) circ.Rz(0, 1) pass1 = AASRouting(arc, lookahead=2) assert pass1.apply(circ) def test_AAS_8() -> None: arc = Architecture([[0, 1], [1, 2], [2, 3], [3, 4]]) circ = Circuit(5) circ.CX(0, 1) circ.H(0) circ.Z(1) circ.CX(0, 3) circ.Rx(1.5, 3) circ.CX(2, 4) circ.X(2) circ.CX(1, 4) circ.CX(0, 4) pass1 = AASRouting(arc, lookahead=2) assert pass1.apply(circ) def test_AAS_9() -> None: arc = Architecture([[0, 1], [1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7], [7, 8]]) circ = Circuit(9) circ.CX(0, 8).CX(8, 1).CX(1, 7).CX(7, 2).CX(2, 6).CX(6, 3).CX(3, 5).CX(5, 4) circ.Rz(0.5, 4) pass1 = AASRouting(arc, lookahead=2) cu = CompilationUnit(circ) assert pass1.apply(cu) out_circ = cu.circuit assert out_circ.valid_connectivity(arc, False, True) assert out_circ.depth() < 56 def test_AAS_10() -> None: arc = Architecture([[0, 1], [1, 2], [2, 3], [3, 4], [4, 5], [5, 6]]) circ = Circuit(7) circ.CX(0, 6).CX(6, 1).CX(1, 5).CX(5, 2).CX(2, 4).CX(4, 3) circ.Rz(0.5, 3) pass1 = AASRouting(arc, lookahead=2) cu = CompilationUnit(circ) assert pass1.apply(cu) out_circ = cu.circuit assert out_circ.valid_connectivity(arc, False, True) assert out_circ.depth() < 33 def test_AAS_11() -> None: arc = Architecture([[0, 1], [1, 2], [2, 3], [3, 4], [4, 5], [5, 6]]) circ = Circuit(7) circ.CX(0, 6).CX(6, 1).CX(1, 5).CX(5, 2).CX(2, 4).CX(4, 3) circ.Rz(0.5, 3) pass1 = AASRouting(arc, lookahead=1, cnotsynthtype=CNotSynthType.SWAP) cu = CompilationUnit(circ) assert pass1.apply(cu) out_circ = cu.circuit assert out_circ.valid_connectivity(arc, False, True) assert out_circ.depth() == 119 def test_AAS_12() -> None: arc = Architecture([[0, 1], [1, 2], [2, 3], [3, 4], [4, 5], [5, 6]]) circ = Circuit(7) circ.CX(0, 6).CX(6, 1).CX(1, 5).CX(5, 2).CX(2, 4).CX(4, 3) circ.Rz(0.5, 3) pass1 = AASRouting(arc, lookahead=1, cnotsynthtype=CNotSynthType.HamPath) cu = CompilationUnit(circ) assert pass1.apply(cu) out_circ = cu.circuit assert out_circ.valid_connectivity(arc, False, True) assert out_circ.depth() == 36 def test_AAS_13() -> None: arc = Architecture([[0, 1], [1, 2], [2, 3], [3, 4], [4, 5], [5, 6]]) circ = Circuit(7) circ.CX(0, 6).CX(6, 1).CX(1, 5).CX(5, 2).CX(2, 4).CX(4, 3) circ.Rz(0.5, 3) pass1 = AASRouting(arc, lookahead=1, cnotsynthtype=CNotSynthType.Rec) cu = CompilationUnit(circ) assert pass1.apply(cu) out_circ = cu.circuit assert out_circ.valid_connectivity(arc, False, True) assert out_circ.depth() == 28 def test_AAS_14() -> None: arc = Architecture([[0, 1], [1, 0], [1, 2], [2, 1]]) circ = Circuit(3).CZ(0, 1) pass1 = AASRouting(arc, lookahead=1, cnotsynthtype=CNotSynthType.Rec) cu = CompilationUnit(circ) assert pass1.apply(cu) out_circ = cu.circuit assert out_circ.valid_connectivity(arc, False, True) assert out_circ.depth() == 3 def test_AAS_15() -> None: arc = Architecture([[0, 1], [1, 0], [1, 2], [2, 1]]) circ = Circuit(2).CZ(0, 1) pass1 = AASRouting(arc, lookahead=1, cnotsynthtype=CNotSynthType.Rec) cu = CompilationUnit(circ) assert pass1.apply(cu) out_circ = cu.circuit assert out_circ.valid_connectivity(arc, False, True) assert out_circ.depth() == 3 def test_noncontiguous_arc_phase_poly() -> None: # testing non-contiguous ascending named nodes arc = Architecture([[0, 2]]) pass1 = AASRouting(arc, lookahead=1) c = Circuit(2).H(0).H(1) pass1.apply(c) assert c.n_gates_of_type(OpType.H) == 2 assert c.n_gates_of_type(OpType.CX) == 0 assert c.n_gates_of_type(OpType.CX) == 0 def test_compose_ppb() -> None: circ = Circuit(5).CZ(0, 1).CZ(1, 2).CX(2, 3).CX(3, 4) pass1 = ComposePhasePolyBoxes(min_size=2) cu = CompilationUnit(circ) assert pass1.apply(cu) out_circ = cu.circuit assert out_circ.depth() == 6 if __name__ == "__main__": test_AAS() test_AAS_2() test_AAS_3() test_AAS_4() test_AAS_5() test_AAS_6() test_AAS_7() test_AAS_8() test_AAS_9() test_AAS_10() test_AAS_11() test_AAS_12() test_AAS_13() test_AAS_14() test_AAS_15() test_noncontiguous_arc_phase_poly() test_compose_ppb()
# -*- coding: utf-8 -*- """ @date: 2020/11/4 下午1:49 @file: build.py @author: zj @description: """ import torch.nn as nn from .. import registry from .sgd import build_sgd from .adam import build_adam def build_optimizer(cfg, model): assert isinstance(model, nn.Module) return registry.OPTIMIZERS[cfg.OPTIMIZER.NAME](cfg, model)
# -*- coding: utf-8 -*- # Generated by Django 1.9.9 on 2016-10-22 19:45 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('access', '0013_auto_20160608_0018'), ] operations = [ migrations.AddField( model_name='emailaliastype', name='priority', field=models.IntegerField(default=0, help_text='When determining the e-mail address of a person in relation to a specific event, the e-mail alias type with the smallest priority number wins.', verbose_name='priority'), ), ]
# Author : ThammeGowda Narayanaswamy # Email : [email protected] # Student ID : 2074669439 # Subject : CSCI 567 Fall 16 Homework 2 # Date : Oct 2, 2016 from __future__ import print_function import numpy as np import pandas as pd import matplotlib.pyplot as plt quiet = True # to disable unwanted output def log(*args): if not quiet: print(args) ### Global Parameters alpha = 0.001 # learning rate conv_tol = 0.005 num_iter = 50000 print_interval = 500 print("The following parameters will be used for gradient descent optimizer:") print("\t Learning rate=", alpha) print("\t Convergence Tolerance=", conv_tol) print("\t Max Iterations=", num_iter) ### from sklearn.datasets import load_boston boston = load_boston() dfX = boston.data dfY = np.array([boston.target]).transpose() assert dfX.shape[0] == dfY.shape[0] test_split_rule = np.arange(dfX.shape[0], dtype=int) % 7 == 0 testX, testY = dfX[test_split_rule], dfY[test_split_rule] trainX, trainY = dfX[~test_split_rule], dfY[~test_split_rule] print("##### 3.1 DATA ANALYSIS / EXPLORATION ") print('Feature Names:\n', pd.DataFrame(boston.feature_names)) print('Dataset shape:', dfX.shape, dfY.shape) print('Test shape:', testX.shape, testY.shape) print('Train shape:', trainX.shape, trainY.shape) n_attrs = trainX.shape[1] attrs = [trainX[:, i] for i in range(n_attrs)] stds = [a.std() for a in attrs] corrs = np.zeros(shape=(n_attrs, n_attrs)) for i, a in enumerate(attrs): for j in range(0, i + 1): b = attrs[j] res = np.cov(a, b) / (stds[i] * stds[j]) corrs[i][j] = res[0,1] print("Correlations between the attributes:") print(pd.DataFrame(corrs)) def pearson_cor(X, Y, names): Y = Y[:, 0] assert X.shape[0] == Y.shape[0] assert X.shape[1] == len(names) y_std = Y.std() cor = [] for i in range(X.shape[1]): # each column attr = trainX[:, i] # Correlation between the attribs and target value cor_ab = np.cov(attr, Y) / (stds[i] * y_std) cor_ab = abs(cor_ab[0,1]) cor.append((names[i], cor_ab)) return cor def show_plots(bins=10): plt.imshow(corrs, cmap='hot', interpolation='nearest') plt.title("Heatmap of correlation between attributes") plt.show() for i, cor_ab in enumerate(pearson_cor(trainX, trainY, boston.feature_names)): print(cor_ab) print("##### Generating Histograms") plt.figure(1, figsize=(16, 16)) for i, attr in enumerate(attrs): plt.subplot(5, 3, 1 + i) plt.hist(attr, bins=bins) plt.title("Histogram of '%s' with %d bins" % (boston.feature_names[i], bins)) plt.subplot(5, 3, len(attrs) + 1) plt.hist(trainY, bins=bins) plt.title("Histogram of Target Price with %d bins" % bins) plt.savefig('Histograms.png') plt.show() show_plots() print("\n\n###### 3.2 a LINEAR REGRESSION ALGORITHM") ## Linear Regression def predict(X, W): return np.matmul(X, W) def MSECost(Y2, Y1): # Cost = 1/N SIGMA[(XW-Y)^2] return float(np.sum((Y2 - Y1) ** 2) / len(Y2)) def analytical_optimizer(X, Y): '''W = [X^T X]^{-1} X^T Y ''' return np.matmul( np.matmul( np.linalg.pinv(np.matmul(X.transpose(), X)), X.transpose()), Y) def gradient_desc(X, Y, W, alpha, num_iter = num_iter, conv_tol=conv_tol, print_interval = print_interval): c = float('inf') log("Learn Rate", alpha) for i in range(num_iter): # delta = 2/N SIGMA[(XW - Y)*x] predY = predict(X, W) diff = predY - Y delta = np.sum(np.multiply(X, diff), axis=0) # sum top to bottom for each attribute delta = delta * 2.0 / len(Y) delta = np.array([delta]).transpose() # restore vector shape of (n_attr x 1) W = (W - alpha * delta) if i % print_interval == 0: predY = predict(X, W) newcost = MSECost(predY, Y) log("#%d, cost = %.8g" % (i, newcost)) if np.isnan(newcost) or np.isinf(newcost) or np.isneginf(newcost): raise Exception("ERROR: number overflow, please adjust learning rate") diff = abs(newcost - c) c = newcost if diff < conv_tol: log("Converged with tolerance %f " % conv_tol) break if i % (print_interval * 10) == 0: log(W.flatten()) return W # compute means and stds class LinearRegression(object): def __init__(self, X, Y, learn_rate=0.001, num_iter=10000, conv_tol=0.01, opt='analytical'): self.means = X.mean(axis=0) self.stds = X.std(axis=0) X = self.normalize(X) self.n_attrs = X.shape[1] if opt == 'gradient_desc': W = np.random.rand(self.n_attrs, 1) self.W = gradient_desc(X, Y, W, alpha=learn_rate, num_iter=num_iter, conv_tol=conv_tol) elif opt == 'analytical': self.W = analytical_optimizer(X, Y) else: raise Exception('Unknown Optimizer %s' % opt) def normalize(self, X): X = (X - self.means) / self.stds # Bias is added as a weight to simplify the calculations X = np.insert(X, 0, 1, axis=1) return X def predict(self, X, normalize=True): if normalize: X = self.normalize(X) return np.matmul(X, self.W) def find_cost(self, X, Y,normalize=True): return MSECost(self.predict(X, normalize=normalize), Y) for opt_val in ["analytical", "gradient_desc"]: print("Using %s optimizer" % opt_val) linreg = LinearRegression(trainX, trainY, alpha, num_iter, conv_tol, opt=opt_val) print("W=", linreg.W.flatten()) train_mse_cost = linreg.find_cost(trainX, trainY) test_mse_cost = linreg.find_cost(testX, testY) print('Train MSE::', train_mse_cost, '\tTest MSE::', test_mse_cost) ###################### print("\n\n##### 3.2 b RIDGE REGRESSION########") def gradient_desc_ridge(X, Y, W, alpha, lambd, num_iter = 1000, conv_tol=0.01, check_interval = 500): c = float('inf') log("Learn Rate", alpha) for i in range(num_iter): # # delta = 2/N SIGMA[(XW - Y)*x] + 2 * \lambd * W diff = predict(X, W) - Y delta = np.sum(np.multiply(X, diff), axis=0) # sum top to bottom for each attribute delta = delta * 2.0 / len(Y) delta = np.array([delta]).transpose() # restore vector shape of (n_attr x 1) delta = delta + (2 * lambd * W) # Vectors addition W = (W - alpha * delta) if i % check_interval == 0: predY = predict(X, W) newcost = MSECost(predY, Y) log("#%d, cost = %.8g" % (i, newcost)) if np.isnan(newcost) or np.isinf(newcost) or np.isneginf(newcost): raise Exception("ERROR: number overflow, please adjust learning rate") diff = abs(newcost - c) c = newcost if diff < conv_tol: log("Converged with tolerance %f " % conv_tol) break if not quiet and i % (check_interval * 10) == 0: print(W.flatten()) return W class RidgeRegression(LinearRegression): def __init__(self, X, Y, learn_rate=0.001, lambd=0.1, num_iter=1000, conv_tol=0.1): self.means = X.mean(axis=0) self.stds = X.std(axis=0) X = self.normalize(X) self.n_attrs = X.shape[1] W = np.random.rand(self.n_attrs, 1) self.lambd = lambd self.W = gradient_desc_ridge(X, Y, W, alpha=learn_rate, lambd=lambd, num_iter=num_iter, conv_tol=conv_tol) lambds = [0.01, 0.1, 1.0] results = [] print("\nLambda\t\tTrain MSE\t\tTest MSE") for lambd in lambds: ridreg = RidgeRegression(trainX, trainY, alpha, lambd, num_iter, conv_tol) train_mse = ridreg.find_cost(trainX, trainY) test_mse = ridreg.find_cost(testX, testY) t = (lambd, train_mse, test_mse) print("\t\t".join(map(lambda x: str(x), t))) ########################### # 10 fold validation print("\n\n###### 3.2 c RIDGE REGRESSION : 10-FOLD CROSS VALIDATION########") k = 10 def k_fold_cv(X, Y, lambd, k): n = len(Y) # Shuffle shuf_idx = np.random.permutation(n) X, Y = X[shuf_idx], Y[shuf_idx] assert k > 1 and k <= n ss = n / k # split size # split accuracy = [] for i in range(k): start, end = i * ss, (i + 1) * ss if i == k-1 and end < n: # anything left over shall go to the last split (if n is not multiple of k) end = n # ith split is for testing test_X, test_Y = X[start:end], Y[start:end] # everything else for training train_X = np.delete(X, np.s_[start, end], axis=0) train_Y = np.delete(Y, np.s_[start, end], axis=0) ridreg = RidgeRegression(train_X, train_Y, alpha, lambd, num_iter, conv_tol) acc = ridreg.find_cost(test_X, test_Y) accuracy.append(acc) return np.array(accuracy).mean() lambds = [0.0001, 0.001, 0.01, 0.1, 1, 10] print("\nLambda\t\tTrain MSE\t\tTest MSE") for lambd in lambds: train_mse = k_fold_cv(trainX, trainY, lambd, k) ridreg = RidgeRegression(trainX, trainY, alpha, lambd, num_iter, conv_tol) test_mse = ridreg.find_cost(testX, testY) t = (lambd, train_mse, test_mse) print("\t\t".join(map(lambda x: str(x), t))) ###################################################### print("\n\n###### 3.3 a FEATURE SELECTION: TOP 4 CORRELATIONS WITH TARGET") # Top 4 features top4TrainX = np.zeros(shape=(len(trainY), 0)) top4TestX = np.zeros(shape=(len(testY), 0)) tuples = pearson_cor(trainX, trainY, boston.feature_names) target_cor = dict(tuples) top4= sorted(target_cor, key=target_cor.get, reverse=True)[:4] for k in top4: column = np.where(boston.feature_names == k)[0][0] x = np.array([trainX[:, column]]).transpose() top4TrainX = np.concatenate((top4TrainX, x), axis=1) x = np.array([testX[:, column]]).transpose() top4TestX = np.concatenate((top4TestX, x), axis=1) print("Top4 attrs::", top4) linreg = LinearRegression(top4TrainX, trainY, alpha) train_mse_cost = MSECost(linreg.predict(top4TrainX), trainY) test_mse_cost = MSECost(linreg.predict(top4TestX), testY) print('Train MSE::', train_mse_cost, " Test MSE::", test_mse_cost) ########## print("\n\n###### 3.3 b FEATURE SELECTION: TOP 4 CORRELATIONS WITH RESIDUAL ERROR") # top 4 from residual errors X_train, Y_train = trainX, trainY X_test, Y_test = testX, testY names = boston.feature_names Z_train = np.zeros(shape=(X_train.shape[0], 0)) Z_test = np.zeros(shape=(X_test.shape[0], 0)) pred_Y = None for i in range(4): # first time we use the target, then on we use the Y - predY _Y = Y_train if pred_Y is None else np.subtract(Y_train, pred_Y) corrs = dict(pearson_cor(X_train, _Y, names)) top1 = sorted(corrs, key=corrs.get)[-1] print("Choosing: ", top1) top1_col = names.tolist().index(top1) x = np.array([X_train[:, top1_col]]).transpose() Z_train = np.concatenate((Z_train, x), axis=1) x = np.array([X_test[:, top1_col]]).transpose() Z_test = np.concatenate((Z_test, x), axis=1) linreg = LinearRegression(Z_train, Y_train, alpha) pred_Y = linreg.predict(Z_train) train_mse_cost = MSECost(pred_Y, Y_train) test_mse_cost = MSECost(linreg.predict(Z_test), Y_test) print('Train MSE::', train_mse_cost, " Test MSE::", test_mse_cost) # for the next iteration X_train = np.delete(X_train, top1_col, axis=1) X_test = np.delete(X_test, top1_col, axis=1) names = np.delete(names, top1_col) ###################################### print("\n\n###### 3.3 c FEATURE SELECTION: TOP 4 USING BRUTEFORCE") # Brute force import itertools def brute_force_select(): least_test_cost = float('inf') best_combination = None train_cost = None for cols in itertools.combinations(range(trainX.shape[1]), 4): Z_train = np.zeros(shape=(X_train.shape[0], 0)) Z_test = np.zeros(shape=(X_test.shape[0], 0)) for col in cols: x = np.array([trainX[:, col]]).transpose() Z_train = np.concatenate((Z_train, x), axis=1) x = np.array([testX[:, col]]).transpose() Z_test = np.concatenate((Z_test, x), axis=1) linreg = LinearRegression(Z_train, Y_train, alpha) train_mse_cost = MSECost(linreg.predict(Z_train), Y_train) test_mse_cost = MSECost(linreg.predict(Z_test), Y_test) if test_mse_cost < least_test_cost: best_combination = cols least_test_cost = test_mse_cost train_cost = train_mse_cost # print(cols, 'Train MSE::', train_mse_cost, " Test MSE::", test_mse_cost) return best_combination, least_test_cost, train_cost try: print("Performing bruteforce feature selection. Hang tight for results or press CTRL+C to skip") best_combination, least_test_cost, train_cost = brute_force_select() print('Best Combination:: ', best_combination, ", Least Test MSE::", least_test_cost, ", Train MSE::", train_cost) except: print("Skipping bruteforce selection...") ############################### print("\n\n###### 3.4 FEATURE EXPANSION") # Feature Expansion Z_train = trainX Z_test = testX for i in range(n_attrs): xi_train = np.array([trainX[:, i]]).transpose() xi_test = np.array([testX[:, i]]).transpose() for j in range(0, i+1): xj_train = np.array([trainX[:, j]]).transpose() xj_test = np.array([testX[:, j]]).transpose() Z_train = np.concatenate((Z_train, xi_train * xj_train), axis=1) Z_test = np.concatenate((Z_test, xi_test * xj_test), axis=1) print('Train Shape:', Z_train.shape) print('Test Shape:', Z_test.shape) linreg = LinearRegression(Z_train, trainY, alpha) pred_Y = linreg.predict(Z_train) train_mse_cost = MSECost(pred_Y, trainY) test_mse_cost = MSECost(linreg.predict(Z_test), testY) print('Train MSE::', train_mse_cost, " Test MSE::", test_mse_cost)
# coding=utf-8 # Copyright 2018 The TF-Agents Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Loss utility code.""" from __future__ import absolute_import from __future__ import division # Using Type Annotations. from __future__ import print_function from typing import Optional, Text import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import from tf_agents.typing import types def pinball_loss( y_true: types.Tensor, y_pred: types.Tensor, weights: types.Float = 1.0, scope: Optional[Text] = None, loss_collection: tf.compat.v1.GraphKeys = tf.compat.v1.GraphKeys.LOSSES, reduction: tf.compat.v1.losses.Reduction = tf.compat.v1.losses.Reduction .SUM_BY_NONZERO_WEIGHTS, quantile: float = 0.5) -> types.Float: """Adds a Pinball loss for quantile regression. ``` loss = quantile * (y_true - y_pred) if y_true > y_pred loss = (quantile - 1) * (y_true - y_pred) otherwise ``` See: https://en.wikipedia.org/wiki/Quantile_regression#Quantiles `weights` acts as a coefficient for the loss. If a scalar is provided, then the loss is simply scaled by the given value. If `weights` is a tensor of size `[batch_size]`, then the total loss for each sample of the batch is rescaled by the corresponding element in the `weights` vector. If the shape of `weights` matches the shape of `predictions`, then the loss of each measurable element of `predictions` is scaled by the corresponding value of `weights`. Args: y_true: tensor of true targets. y_pred: tensor of predicted targets. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `losses` dimension). scope: The scope for the operations performed in computing the loss. loss_collection: collection to which the loss will be added. reduction: Type of reduction to apply to loss. quantile: A float between 0. and 1., the quantile we want to regress. Returns: Weighted Pinball loss float `Tensor`. If `reduction` is `NONE`, this has the same shape as `labels`; otherwise, it is scalar. Raises: ValueError: If the shape of `predictions` doesn't match that of `labels` or if the shape of `weights` is invalid. Also if `labels` or `predictions` is None. @compatibility(eager) The `loss_collection` argument is ignored when executing eagerly. Consider holding on to the return value or collecting losses via a `tf.keras.Model`. @end_compatibility """ if y_true is None: raise ValueError('y_true must not be None.') if y_pred is None: raise ValueError('y_pred must not be None.') with tf.compat.v1.name_scope(scope, 'pinball_loss', (y_pred, y_true, weights)) as scope: y_pred = tf.cast(y_pred, dtype=tf.float32) y_true = tf.cast(y_true, dtype=tf.float32) y_pred.get_shape().assert_is_compatible_with(y_true.get_shape()) error = tf.subtract(y_true, y_pred) loss_tensor = tf.maximum(quantile * error, (quantile - 1) * error) return tf.compat.v1.losses.compute_weighted_loss( loss_tensor, weights, scope, loss_collection, reduction=reduction)
#!/usr/bin/env python3 # -*- coding:utf-8 -*- # Copyright (c) Megvii, Inc. and its affiliates. import itertools from typing import Optional import torch import torch.distributed as dist from torch.utils.data.sampler import Sampler class InfiniteSampler(Sampler): """ In training, we only care about the "infinite stream" of training data. So this sampler produces an infinite stream of indices and all workers cooperate to correctly shuffle the indices and sample different indices. The samplers in each worker effectively produces `indices[worker_id::num_workers]` where `indices` is an infinite stream of indices consisting of `shuffle(range(size)) + shuffle(range(size)) + ...` (if shuffle is True) or `range(size) + range(size) + ...` (if shuffle is False) """ def __init__( self, size: int, shuffle: bool = True, seed: Optional[int] = 0, rank=0, world_size=1, ): """ Args: size (int): the total number of data of the underlying dataset to sample from shuffle (bool): whether to shuffle the indices or not seed (int): the initial seed of the shuffle. Must be the same across all workers. If None, will use a random seed shared among workers (require synchronization among all workers). """ self._size = size assert size > 0 self._shuffle = shuffle self._seed = int(seed) if dist.is_available() and dist.is_initialized(): self._rank = dist.get_rank() self._world_size = dist.get_world_size() else: self._rank = rank self._world_size = world_size def __iter__(self): start = self._rank yield from itertools.islice( self._infinite_indices(), start, None, self._world_size ) def _infinite_indices(self): g = torch.Generator() g.manual_seed(self._seed) while True: if self._shuffle: yield from torch.randperm(self._size, generator=g) else: yield from torch.arange(self._size) def __len__(self): return self._size // self._world_size
for i in range(10): print("i", i) if(i % 2 == 0): continue for j in range(10): print("j", j)
import bz2 from collections import Counter from contextlib import contextmanager from datetime import datetime from functools import wraps import gzip import operator import os import re import string from typing import ( Any, Callable, ContextManager, List, Optional, Sequence, Tuple, Type, Union, cast, ) import warnings import zipfile import numpy as np from pandas._config.localization import ( # noqa:F401 can_set_locale, get_locales, set_locale, ) from pandas._typing import Dtype, FilePathOrBuffer, FrameOrSeries from pandas.compat import get_lzma_file, import_lzma from pandas.core.dtypes.common import ( is_datetime64_dtype, is_datetime64tz_dtype, is_period_dtype, is_sequence, is_timedelta64_dtype, ) import pandas as pd from pandas import ( Categorical, CategoricalIndex, DataFrame, DatetimeIndex, Index, IntervalIndex, MultiIndex, RangeIndex, Series, bdate_range, ) from pandas._testing.asserters import ( # noqa:F401 assert_almost_equal, assert_attr_equal, assert_categorical_equal, assert_class_equal, assert_contains_all, assert_copy, assert_datetime_array_equal, assert_dict_equal, assert_equal, assert_extension_array_equal, assert_frame_equal, assert_index_equal, assert_interval_array_equal, assert_is_sorted, assert_is_valid_plot_return_object, assert_numpy_array_equal, assert_period_array_equal, assert_series_equal, assert_sp_array_equal, assert_timedelta_array_equal, raise_assert_detail, ) from pandas._testing.contexts import ( # noqa:F401 decompress_file, ensure_clean, ensure_clean_dir, ensure_safe_environment_variables, set_timezone, use_numexpr, with_csv_dialect, ) from pandas.core.arrays import DatetimeArray, PeriodArray, TimedeltaArray, period_array from pandas.io.common import urlopen lzma = import_lzma() _N = 30 _K = 4 _RAISE_NETWORK_ERROR_DEFAULT = False UNSIGNED_INT_DTYPES: List[Dtype] = ["uint8", "uint16", "uint32", "uint64"] UNSIGNED_EA_INT_DTYPES: List[Dtype] = ["UInt8", "UInt16", "UInt32", "UInt64"] SIGNED_INT_DTYPES: List[Dtype] = [int, "int8", "int16", "int32", "int64"] SIGNED_EA_INT_DTYPES: List[Dtype] = ["Int8", "Int16", "Int32", "Int64"] ALL_INT_DTYPES = UNSIGNED_INT_DTYPES + SIGNED_INT_DTYPES ALL_EA_INT_DTYPES = UNSIGNED_EA_INT_DTYPES + SIGNED_EA_INT_DTYPES FLOAT_DTYPES: List[Dtype] = [float, "float32", "float64"] FLOAT_EA_DTYPES: List[Dtype] = ["Float32", "Float64"] COMPLEX_DTYPES: List[Dtype] = [complex, "complex64", "complex128"] STRING_DTYPES: List[Dtype] = [str, "str", "U"] DATETIME64_DTYPES: List[Dtype] = ["datetime64[ns]", "M8[ns]"] TIMEDELTA64_DTYPES: List[Dtype] = ["timedelta64[ns]", "m8[ns]"] BOOL_DTYPES = [bool, "bool"] BYTES_DTYPES = [bytes, "bytes"] OBJECT_DTYPES = [object, "object"] ALL_REAL_DTYPES = FLOAT_DTYPES + ALL_INT_DTYPES ALL_NUMPY_DTYPES = ( ALL_REAL_DTYPES + COMPLEX_DTYPES + STRING_DTYPES + DATETIME64_DTYPES + TIMEDELTA64_DTYPES + BOOL_DTYPES + OBJECT_DTYPES + BYTES_DTYPES ) NULL_OBJECTS = [None, np.nan, pd.NaT, float("nan"), pd.NA] EMPTY_STRING_PATTERN = re.compile("^$") # set testing_mode _testing_mode_warnings = (DeprecationWarning, ResourceWarning) def set_testing_mode(): # set the testing mode filters testing_mode = os.environ.get("PANDAS_TESTING_MODE", "None") if "deprecate" in testing_mode: # pandas\_testing.py:119: error: Argument 2 to "simplefilter" has # incompatible type "Tuple[Type[DeprecationWarning], # Type[ResourceWarning]]"; expected "Type[Warning]" warnings.simplefilter( "always", _testing_mode_warnings # type: ignore[arg-type] ) def reset_testing_mode(): # reset the testing mode filters testing_mode = os.environ.get("PANDAS_TESTING_MODE", "None") if "deprecate" in testing_mode: # pandas\_testing.py:126: error: Argument 2 to "simplefilter" has # incompatible type "Tuple[Type[DeprecationWarning], # Type[ResourceWarning]]"; expected "Type[Warning]" warnings.simplefilter( "ignore", _testing_mode_warnings # type: ignore[arg-type] ) set_testing_mode() def reset_display_options(): """ Reset the display options for printing and representing objects. """ pd.reset_option("^display.", silent=True) def round_trip_pickle( obj: Any, path: Optional[FilePathOrBuffer] = None ) -> FrameOrSeries: """ Pickle an object and then read it again. Parameters ---------- obj : any object The object to pickle and then re-read. path : str, path object or file-like object, default None The path where the pickled object is written and then read. Returns ------- pandas object The original object that was pickled and then re-read. """ _path = path if _path is None: _path = f"__{rands(10)}__.pickle" with ensure_clean(_path) as temp_path: pd.to_pickle(obj, temp_path) return pd.read_pickle(temp_path) def round_trip_pathlib(writer, reader, path: Optional[str] = None): """ Write an object to file specified by a pathlib.Path and read it back Parameters ---------- writer : callable bound to pandas object IO writing function (e.g. DataFrame.to_csv ) reader : callable IO reading function (e.g. pd.read_csv ) path : str, default None The path where the object is written and then read. Returns ------- pandas object The original object that was serialized and then re-read. """ import pytest Path = pytest.importorskip("pathlib").Path if path is None: path = "___pathlib___" with ensure_clean(path) as path: writer(Path(path)) obj = reader(Path(path)) return obj def round_trip_localpath(writer, reader, path: Optional[str] = None): """ Write an object to file specified by a py.path LocalPath and read it back. Parameters ---------- writer : callable bound to pandas object IO writing function (e.g. DataFrame.to_csv ) reader : callable IO reading function (e.g. pd.read_csv ) path : str, default None The path where the object is written and then read. Returns ------- pandas object The original object that was serialized and then re-read. """ import pytest LocalPath = pytest.importorskip("py.path").local if path is None: path = "___localpath___" with ensure_clean(path) as path: writer(LocalPath(path)) obj = reader(LocalPath(path)) return obj def write_to_compressed(compression, path, data, dest="test"): """ Write data to a compressed file. Parameters ---------- compression : {'gzip', 'bz2', 'zip', 'xz'} The compression type to use. path : str The file path to write the data. data : str The data to write. dest : str, default "test" The destination file (for ZIP only) Raises ------ ValueError : An invalid compression value was passed in. """ args: Tuple[Any, ...] = (data,) mode = "wb" method = "write" compress_method: Callable if compression == "zip": compress_method = zipfile.ZipFile mode = "w" args = (dest, data) method = "writestr" elif compression == "gzip": compress_method = gzip.GzipFile elif compression == "bz2": compress_method = bz2.BZ2File elif compression == "xz": compress_method = get_lzma_file(lzma) else: raise ValueError(f"Unrecognized compression type: {compression}") with compress_method(path, mode=mode) as f: getattr(f, method)(*args) def randbool(size=(), p: float = 0.5): return np.random.rand(*size) <= p RANDS_CHARS = np.array(list(string.ascii_letters + string.digits), dtype=(np.str_, 1)) RANDU_CHARS = np.array( list("".join(map(chr, range(1488, 1488 + 26))) + string.digits), dtype=(np.unicode_, 1), ) def rands_array(nchars, size, dtype="O"): """ Generate an array of byte strings. """ retval = ( np.random.choice(RANDS_CHARS, size=nchars * np.prod(size)) .view((np.str_, nchars)) .reshape(size) ) return retval.astype(dtype) def randu_array(nchars, size, dtype="O"): """ Generate an array of unicode strings. """ retval = ( np.random.choice(RANDU_CHARS, size=nchars * np.prod(size)) .view((np.unicode_, nchars)) .reshape(size) ) return retval.astype(dtype) def rands(nchars): """ Generate one random byte string. See `rands_array` if you want to create an array of random strings. """ return "".join(np.random.choice(RANDS_CHARS, nchars)) def close(fignum=None): from matplotlib.pyplot import close as _close, get_fignums if fignum is None: for fignum in get_fignums(): _close(fignum) else: _close(fignum) # ----------------------------------------------------------------------------- # Comparators def equalContents(arr1, arr2) -> bool: """ Checks if the set of unique elements of arr1 and arr2 are equivalent. """ return frozenset(arr1) == frozenset(arr2) def box_expected(expected, box_cls, transpose=True): """ Helper function to wrap the expected output of a test in a given box_class. Parameters ---------- expected : np.ndarray, Index, Series box_cls : {Index, Series, DataFrame} Returns ------- subclass of box_cls """ if box_cls is pd.array: expected = pd.array(expected) elif box_cls is pd.Index: expected = pd.Index(expected) elif box_cls is pd.Series: expected = pd.Series(expected) elif box_cls is pd.DataFrame: expected = pd.Series(expected).to_frame() if transpose: # for vector operations, we need a DataFrame to be a single-row, # not a single-column, in order to operate against non-DataFrame # vectors of the same length. expected = expected.T elif box_cls is PeriodArray: # the PeriodArray constructor is not as flexible as period_array expected = period_array(expected) elif box_cls is DatetimeArray: expected = DatetimeArray(expected) elif box_cls is TimedeltaArray: expected = TimedeltaArray(expected) elif box_cls is np.ndarray: expected = np.array(expected) elif box_cls is to_array: expected = to_array(expected) else: raise NotImplementedError(box_cls) return expected def to_array(obj): # temporary implementation until we get pd.array in place dtype = getattr(obj, "dtype", None) if is_period_dtype(dtype): return period_array(obj) elif is_datetime64_dtype(dtype) or is_datetime64tz_dtype(dtype): return DatetimeArray._from_sequence(obj) elif is_timedelta64_dtype(dtype): return TimedeltaArray._from_sequence(obj) else: return np.array(obj) # ----------------------------------------------------------------------------- # Others def getCols(k): return string.ascii_uppercase[:k] # make index def makeStringIndex(k=10, name=None): return Index(rands_array(nchars=10, size=k), name=name) def makeUnicodeIndex(k=10, name=None): return Index(randu_array(nchars=10, size=k), name=name) def makeCategoricalIndex(k=10, n=3, name=None, **kwargs): """ make a length k index or n categories """ x = rands_array(nchars=4, size=n) return CategoricalIndex( Categorical.from_codes(np.arange(k) % n, categories=x), name=name, **kwargs ) def makeIntervalIndex(k=10, name=None, **kwargs): """ make a length k IntervalIndex """ x = np.linspace(0, 100, num=(k + 1)) return IntervalIndex.from_breaks(x, name=name, **kwargs) def makeBoolIndex(k=10, name=None): if k == 1: return Index([True], name=name) elif k == 2: return Index([False, True], name=name) return Index([False, True] + [False] * (k - 2), name=name) def makeIntIndex(k=10, name=None): return Index(list(range(k)), name=name) def makeUIntIndex(k=10, name=None): return Index([2 ** 63 + i for i in range(k)], name=name) def makeRangeIndex(k=10, name=None, **kwargs): return RangeIndex(0, k, 1, name=name, **kwargs) def makeFloatIndex(k=10, name=None): values = sorted(np.random.random_sample(k)) - np.random.random_sample(1) return Index(values * (10 ** np.random.randint(0, 9)), name=name) def makeDateIndex(k=10, freq="B", name=None, **kwargs): dt = datetime(2000, 1, 1) dr = bdate_range(dt, periods=k, freq=freq, name=name) return DatetimeIndex(dr, name=name, **kwargs) def makeTimedeltaIndex(k=10, freq="D", name=None, **kwargs): return pd.timedelta_range(start="1 day", periods=k, freq=freq, name=name, **kwargs) def makePeriodIndex(k=10, name=None, **kwargs): dt = datetime(2000, 1, 1) return pd.period_range(start=dt, periods=k, freq="B", name=name, **kwargs) def makeMultiIndex(k=10, names=None, **kwargs): return MultiIndex.from_product((("foo", "bar"), (1, 2)), names=names, **kwargs) _names = [ "Alice", "Bob", "Charlie", "Dan", "Edith", "Frank", "George", "Hannah", "Ingrid", "Jerry", "Kevin", "Laura", "Michael", "Norbert", "Oliver", "Patricia", "Quinn", "Ray", "Sarah", "Tim", "Ursula", "Victor", "Wendy", "Xavier", "Yvonne", "Zelda", ] def _make_timeseries(start="2000-01-01", end="2000-12-31", freq="1D", seed=None): """ Make a DataFrame with a DatetimeIndex Parameters ---------- start : str or Timestamp, default "2000-01-01" The start of the index. Passed to date_range with `freq`. end : str or Timestamp, default "2000-12-31" The end of the index. Passed to date_range with `freq`. freq : str or Freq The frequency to use for the DatetimeIndex seed : int, optional The random state seed. * name : object dtype with string names * id : int dtype with * x, y : float dtype Examples -------- >>> _make_timeseries() id name x y timestamp 2000-01-01 982 Frank 0.031261 0.986727 2000-01-02 1025 Edith -0.086358 -0.032920 2000-01-03 982 Edith 0.473177 0.298654 2000-01-04 1009 Sarah 0.534344 -0.750377 2000-01-05 963 Zelda -0.271573 0.054424 ... ... ... ... ... 2000-12-27 980 Ingrid -0.132333 -0.422195 2000-12-28 972 Frank -0.376007 -0.298687 2000-12-29 1009 Ursula -0.865047 -0.503133 2000-12-30 1000 Hannah -0.063757 -0.507336 2000-12-31 972 Tim -0.869120 0.531685 """ index = pd.date_range(start=start, end=end, freq=freq, name="timestamp") n = len(index) state = np.random.RandomState(seed) columns = { "name": state.choice(_names, size=n), "id": state.poisson(1000, size=n), "x": state.rand(n) * 2 - 1, "y": state.rand(n) * 2 - 1, } df = pd.DataFrame(columns, index=index, columns=sorted(columns)) if df.index[-1] == end: df = df.iloc[:-1] return df def index_subclass_makers_generator(): make_index_funcs = [ makeDateIndex, makePeriodIndex, makeTimedeltaIndex, makeRangeIndex, makeIntervalIndex, makeCategoricalIndex, makeMultiIndex, ] yield from make_index_funcs def all_timeseries_index_generator(k=10): """ Generator which can be iterated over to get instances of all the classes which represent time-series. Parameters ---------- k: length of each of the index instances """ make_index_funcs = [makeDateIndex, makePeriodIndex, makeTimedeltaIndex] for make_index_func in make_index_funcs: # pandas\_testing.py:1986: error: Cannot call function of unknown type yield make_index_func(k=k) # type: ignore[operator] # make series def makeFloatSeries(name=None): index = makeStringIndex(_N) return Series(np.random.randn(_N), index=index, name=name) def makeStringSeries(name=None): index = makeStringIndex(_N) return Series(np.random.randn(_N), index=index, name=name) def makeObjectSeries(name=None): data = makeStringIndex(_N) data = Index(data, dtype=object) index = makeStringIndex(_N) return Series(data, index=index, name=name) def getSeriesData(): index = makeStringIndex(_N) return {c: Series(np.random.randn(_N), index=index) for c in getCols(_K)} def makeTimeSeries(nper=None, freq="B", name=None): if nper is None: nper = _N return Series( np.random.randn(nper), index=makeDateIndex(nper, freq=freq), name=name ) def makePeriodSeries(nper=None, name=None): if nper is None: nper = _N return Series(np.random.randn(nper), index=makePeriodIndex(nper), name=name) def getTimeSeriesData(nper=None, freq="B"): return {c: makeTimeSeries(nper, freq) for c in getCols(_K)} def getPeriodData(nper=None): return {c: makePeriodSeries(nper) for c in getCols(_K)} # make frame def makeTimeDataFrame(nper=None, freq="B"): data = getTimeSeriesData(nper, freq) return DataFrame(data) def makeDataFrame(): data = getSeriesData() return DataFrame(data) def getMixedTypeDict(): index = Index(["a", "b", "c", "d", "e"]) data = { "A": [0.0, 1.0, 2.0, 3.0, 4.0], "B": [0.0, 1.0, 0.0, 1.0, 0.0], "C": ["foo1", "foo2", "foo3", "foo4", "foo5"], "D": bdate_range("1/1/2009", periods=5), } return index, data def makeMixedDataFrame(): return DataFrame(getMixedTypeDict()[1]) def makePeriodFrame(nper=None): data = getPeriodData(nper) return DataFrame(data) def makeCustomIndex( nentries, nlevels, prefix="#", names=False, ndupe_l=None, idx_type=None ): """ Create an index/multindex with given dimensions, levels, names, etc' nentries - number of entries in index nlevels - number of levels (> 1 produces multindex) prefix - a string prefix for labels names - (Optional), bool or list of strings. if True will use default names, if false will use no names, if a list is given, the name of each level in the index will be taken from the list. ndupe_l - (Optional), list of ints, the number of rows for which the label will repeated at the corresponding level, you can specify just the first few, the rest will use the default ndupe_l of 1. len(ndupe_l) <= nlevels. idx_type - "i"/"f"/"s"/"u"/"dt"/"p"/"td". If idx_type is not None, `idx_nlevels` must be 1. "i"/"f" creates an integer/float index, "s"/"u" creates a string/unicode index "dt" create a datetime index. "td" create a datetime index. if unspecified, string labels will be generated. """ if ndupe_l is None: ndupe_l = [1] * nlevels assert is_sequence(ndupe_l) and len(ndupe_l) <= nlevels assert names is None or names is False or names is True or len(names) is nlevels assert idx_type is None or ( idx_type in ("i", "f", "s", "u", "dt", "p", "td") and nlevels == 1 ) if names is True: # build default names names = [prefix + str(i) for i in range(nlevels)] if names is False: # pass None to index constructor for no name names = None # make singleton case uniform if isinstance(names, str) and nlevels == 1: names = [names] # specific 1D index type requested? idx_func = { "i": makeIntIndex, "f": makeFloatIndex, "s": makeStringIndex, "u": makeUnicodeIndex, "dt": makeDateIndex, "td": makeTimedeltaIndex, "p": makePeriodIndex, }.get(idx_type) if idx_func: # pandas\_testing.py:2120: error: Cannot call function of unknown type idx = idx_func(nentries) # type: ignore[operator] # but we need to fill in the name if names: idx.name = names[0] return idx elif idx_type is not None: raise ValueError( f"{repr(idx_type)} is not a legal value for `idx_type`, " "use 'i'/'f'/'s'/'u'/'dt'/'p'/'td'." ) if len(ndupe_l) < nlevels: ndupe_l.extend([1] * (nlevels - len(ndupe_l))) assert len(ndupe_l) == nlevels assert all(x > 0 for x in ndupe_l) tuples = [] for i in range(nlevels): def keyfunc(x): import re numeric_tuple = re.sub(r"[^\d_]_?", "", x).split("_") return [int(num) for num in numeric_tuple] # build a list of lists to create the index from div_factor = nentries // ndupe_l[i] + 1 # pandas\_testing.py:2148: error: Need type annotation for 'cnt' cnt = Counter() # type: ignore[var-annotated] for j in range(div_factor): label = f"{prefix}_l{i}_g{j}" cnt[label] = ndupe_l[i] # cute Counter trick result = sorted(cnt.elements(), key=keyfunc)[:nentries] tuples.append(result) tuples = list(zip(*tuples)) # convert tuples to index if nentries == 1: # we have a single level of tuples, i.e. a regular Index index = Index(tuples[0], name=names[0]) elif nlevels == 1: name = None if names is None else names[0] index = Index((x[0] for x in tuples), name=name) else: index = MultiIndex.from_tuples(tuples, names=names) return index def makeCustomDataframe( nrows, ncols, c_idx_names=True, r_idx_names=True, c_idx_nlevels=1, r_idx_nlevels=1, data_gen_f=None, c_ndupe_l=None, r_ndupe_l=None, dtype=None, c_idx_type=None, r_idx_type=None, ): """ Create a DataFrame using supplied parameters. Parameters ---------- nrows, ncols - number of data rows/cols c_idx_names, idx_names - False/True/list of strings, yields No names , default names or uses the provided names for the levels of the corresponding index. You can provide a single string when c_idx_nlevels ==1. c_idx_nlevels - number of levels in columns index. > 1 will yield MultiIndex r_idx_nlevels - number of levels in rows index. > 1 will yield MultiIndex data_gen_f - a function f(row,col) which return the data value at that position, the default generator used yields values of the form "RxCy" based on position. c_ndupe_l, r_ndupe_l - list of integers, determines the number of duplicates for each label at a given level of the corresponding index. The default `None` value produces a multiplicity of 1 across all levels, i.e. a unique index. Will accept a partial list of length N < idx_nlevels, for just the first N levels. If ndupe doesn't divide nrows/ncol, the last label might have lower multiplicity. dtype - passed to the DataFrame constructor as is, in case you wish to have more control in conjunction with a custom `data_gen_f` r_idx_type, c_idx_type - "i"/"f"/"s"/"u"/"dt"/"td". If idx_type is not None, `idx_nlevels` must be 1. "i"/"f" creates an integer/float index, "s"/"u" creates a string/unicode index "dt" create a datetime index. "td" create a timedelta index. if unspecified, string labels will be generated. Examples -------- # 5 row, 3 columns, default names on both, single index on both axis >> makeCustomDataframe(5,3) # make the data a random int between 1 and 100 >> mkdf(5,3,data_gen_f=lambda r,c:randint(1,100)) # 2-level multiindex on rows with each label duplicated # twice on first level, default names on both axis, single # index on both axis >> a=makeCustomDataframe(5,3,r_idx_nlevels=2,r_ndupe_l=[2]) # DatetimeIndex on row, index with unicode labels on columns # no names on either axis >> a=makeCustomDataframe(5,3,c_idx_names=False,r_idx_names=False, r_idx_type="dt",c_idx_type="u") # 4-level multindex on rows with names provided, 2-level multindex # on columns with default labels and default names. >> a=makeCustomDataframe(5,3,r_idx_nlevels=4, r_idx_names=["FEE","FI","FO","FAM"], c_idx_nlevels=2) >> a=mkdf(5,3,r_idx_nlevels=2,c_idx_nlevels=4) """ assert c_idx_nlevels > 0 assert r_idx_nlevels > 0 assert r_idx_type is None or ( r_idx_type in ("i", "f", "s", "u", "dt", "p", "td") and r_idx_nlevels == 1 ) assert c_idx_type is None or ( c_idx_type in ("i", "f", "s", "u", "dt", "p", "td") and c_idx_nlevels == 1 ) columns = makeCustomIndex( ncols, nlevels=c_idx_nlevels, prefix="C", names=c_idx_names, ndupe_l=c_ndupe_l, idx_type=c_idx_type, ) index = makeCustomIndex( nrows, nlevels=r_idx_nlevels, prefix="R", names=r_idx_names, ndupe_l=r_ndupe_l, idx_type=r_idx_type, ) # by default, generate data based on location if data_gen_f is None: data_gen_f = lambda r, c: f"R{r}C{c}" data = [[data_gen_f(r, c) for c in range(ncols)] for r in range(nrows)] return DataFrame(data, index, columns, dtype=dtype) def _create_missing_idx(nrows, ncols, density, random_state=None): if random_state is None: random_state = np.random else: random_state = np.random.RandomState(random_state) # below is cribbed from scipy.sparse size = int(np.round((1 - density) * nrows * ncols)) # generate a few more to ensure unique values min_rows = 5 fac = 1.02 extra_size = min(size + min_rows, fac * size) def _gen_unique_rand(rng, _extra_size): ind = rng.rand(int(_extra_size)) return np.unique(np.floor(ind * nrows * ncols))[:size] ind = _gen_unique_rand(random_state, extra_size) while ind.size < size: extra_size *= 1.05 ind = _gen_unique_rand(random_state, extra_size) j = np.floor(ind * 1.0 / nrows).astype(int) i = (ind - j * nrows).astype(int) return i.tolist(), j.tolist() def makeMissingDataframe(density=0.9, random_state=None): df = makeDataFrame() # pandas\_testing.py:2306: error: "_create_missing_idx" gets multiple # values for keyword argument "density" [misc] # pandas\_testing.py:2306: error: "_create_missing_idx" gets multiple # values for keyword argument "random_state" [misc] i, j = _create_missing_idx( # type: ignore[misc] *df.shape, density=density, random_state=random_state ) df.values[i, j] = np.nan return df def optional_args(decorator): """ allows a decorator to take optional positional and keyword arguments. Assumes that taking a single, callable, positional argument means that it is decorating a function, i.e. something like this:: @my_decorator def function(): pass Calls decorator with decorator(f, *args, **kwargs) """ @wraps(decorator) def wrapper(*args, **kwargs): def dec(f): return decorator(f, *args, **kwargs) is_decorating = not kwargs and len(args) == 1 and callable(args[0]) if is_decorating: f = args[0] # pandas\_testing.py:2331: error: Incompatible types in assignment # (expression has type "List[<nothing>]", variable has type # "Tuple[Any, ...]") args = [] # type: ignore[assignment] return dec(f) else: return dec return wrapper # skip tests on exceptions with this message _network_error_messages = ( # 'urlopen error timed out', # 'timeout: timed out', # 'socket.timeout: timed out', "timed out", "Server Hangup", "HTTP Error 503: Service Unavailable", "502: Proxy Error", "HTTP Error 502: internal error", "HTTP Error 502", "HTTP Error 503", "HTTP Error 403", "HTTP Error 400", "Temporary failure in name resolution", "Name or service not known", "Connection refused", "certificate verify", ) # or this e.errno/e.reason.errno _network_errno_vals = ( 101, # Network is unreachable 111, # Connection refused 110, # Connection timed out 104, # Connection reset Error 54, # Connection reset by peer 60, # urllib.error.URLError: [Errno 60] Connection timed out ) # Both of the above shouldn't mask real issues such as 404's # or refused connections (changed DNS). # But some tests (test_data yahoo) contact incredibly flakey # servers. # and conditionally raise on exception types in _get_default_network_errors def _get_default_network_errors(): # Lazy import for http.client because it imports many things from the stdlib import http.client return (IOError, http.client.HTTPException, TimeoutError) def can_connect(url, error_classes=None): """ Try to connect to the given url. True if succeeds, False if IOError raised Parameters ---------- url : basestring The URL to try to connect to Returns ------- connectable : bool Return True if no IOError (unable to connect) or URLError (bad url) was raised """ if error_classes is None: error_classes = _get_default_network_errors() try: with urlopen(url): pass except error_classes: return False else: return True @optional_args def network( t, url="https://www.google.com", raise_on_error=_RAISE_NETWORK_ERROR_DEFAULT, check_before_test=False, error_classes=None, skip_errnos=_network_errno_vals, _skip_on_messages=_network_error_messages, ): """ Label a test as requiring network connection and, if an error is encountered, only raise if it does not find a network connection. In comparison to ``network``, this assumes an added contract to your test: you must assert that, under normal conditions, your test will ONLY fail if it does not have network connectivity. You can call this in 3 ways: as a standard decorator, with keyword arguments, or with a positional argument that is the url to check. Parameters ---------- t : callable The test requiring network connectivity. url : path The url to test via ``pandas.io.common.urlopen`` to check for connectivity. Defaults to 'https://www.google.com'. raise_on_error : bool If True, never catches errors. check_before_test : bool If True, checks connectivity before running the test case. error_classes : tuple or Exception error classes to ignore. If not in ``error_classes``, raises the error. defaults to IOError. Be careful about changing the error classes here. skip_errnos : iterable of int Any exception that has .errno or .reason.erno set to one of these values will be skipped with an appropriate message. _skip_on_messages: iterable of string any exception e for which one of the strings is a substring of str(e) will be skipped with an appropriate message. Intended to suppress errors where an errno isn't available. Notes ----- * ``raise_on_error`` supersedes ``check_before_test`` Returns ------- t : callable The decorated test ``t``, with checks for connectivity errors. Example ------- Tests decorated with @network will fail if it's possible to make a network connection to another URL (defaults to google.com):: >>> from pandas._testing import network >>> from pandas.io.common import urlopen >>> @network ... def test_network(): ... with urlopen("rabbit://bonanza.com"): ... pass Traceback ... URLError: <urlopen error unknown url type: rabit> You can specify alternative URLs:: >>> @network("https://www.yahoo.com") ... def test_something_with_yahoo(): ... raise IOError("Failure Message") >>> test_something_with_yahoo() Traceback (most recent call last): ... IOError: Failure Message If you set check_before_test, it will check the url first and not run the test on failure:: >>> @network("failing://url.blaher", check_before_test=True) ... def test_something(): ... print("I ran!") ... raise ValueError("Failure") >>> test_something() Traceback (most recent call last): ... Errors not related to networking will always be raised. """ from pytest import skip if error_classes is None: error_classes = _get_default_network_errors() t.network = True @wraps(t) def wrapper(*args, **kwargs): if ( check_before_test and not raise_on_error and not can_connect(url, error_classes) ): skip() try: return t(*args, **kwargs) except Exception as err: errno = getattr(err, "errno", None) if not errno and hasattr(errno, "reason"): # pandas\_testing.py:2521: error: "Exception" has no attribute # "reason" errno = getattr(err.reason, "errno", None) # type: ignore[attr-defined] if errno in skip_errnos: skip(f"Skipping test due to known errno and error {err}") e_str = str(err) if any(m.lower() in e_str.lower() for m in _skip_on_messages): skip( f"Skipping test because exception message is known and error {err}" ) if not isinstance(err, error_classes): raise if raise_on_error or can_connect(url, error_classes): raise else: skip(f"Skipping test due to lack of connectivity and error {err}") return wrapper with_connectivity_check = network @contextmanager def assert_produces_warning( expected_warning: Optional[Union[Type[Warning], bool]] = Warning, filter_level="always", check_stacklevel: bool = True, raise_on_extra_warnings: bool = True, match: Optional[str] = None, ): """ Context manager for running code expected to either raise a specific warning, or not raise any warnings. Verifies that the code raises the expected warning, and that it does not raise any other unexpected warnings. It is basically a wrapper around ``warnings.catch_warnings``. Parameters ---------- expected_warning : {Warning, False, None}, default Warning The type of Exception raised. ``exception.Warning`` is the base class for all warnings. To check that no warning is returned, specify ``False`` or ``None``. filter_level : str or None, default "always" Specifies whether warnings are ignored, displayed, or turned into errors. Valid values are: * "error" - turns matching warnings into exceptions * "ignore" - discard the warning * "always" - always emit a warning * "default" - print the warning the first time it is generated from each location * "module" - print the warning the first time it is generated from each module * "once" - print the warning the first time it is generated check_stacklevel : bool, default True If True, displays the line that called the function containing the warning to show were the function is called. Otherwise, the line that implements the function is displayed. raise_on_extra_warnings : bool, default True Whether extra warnings not of the type `expected_warning` should cause the test to fail. match : str, optional Match warning message. Examples -------- >>> import warnings >>> with assert_produces_warning(): ... warnings.warn(UserWarning()) ... >>> with assert_produces_warning(False): ... warnings.warn(RuntimeWarning()) ... Traceback (most recent call last): ... AssertionError: Caused unexpected warning(s): ['RuntimeWarning']. >>> with assert_produces_warning(UserWarning): ... warnings.warn(RuntimeWarning()) Traceback (most recent call last): ... AssertionError: Did not see expected warning of class 'UserWarning'. ..warn:: This is *not* thread-safe. """ __tracebackhide__ = True with warnings.catch_warnings(record=True) as w: warnings.simplefilter(filter_level) yield w if expected_warning: expected_warning = cast(Type[Warning], expected_warning) _assert_caught_expected_warning( caught_warnings=w, expected_warning=expected_warning, match=match, check_stacklevel=check_stacklevel, ) if raise_on_extra_warnings: _assert_caught_no_extra_warnings( caught_warnings=w, expected_warning=expected_warning, ) def _assert_caught_expected_warning( *, caught_warnings: Sequence[warnings.WarningMessage], expected_warning: Type[Warning], match: Optional[str], check_stacklevel: bool, ) -> None: """Assert that there was the expected warning among the caught warnings.""" saw_warning = False matched_message = False for actual_warning in caught_warnings: if issubclass(actual_warning.category, expected_warning): saw_warning = True if check_stacklevel and issubclass( actual_warning.category, (FutureWarning, DeprecationWarning) ): _assert_raised_with_correct_stacklevel(actual_warning) if match is not None and re.search(match, str(actual_warning.message)): matched_message = True if not saw_warning: raise AssertionError( f"Did not see expected warning of class " f"{repr(expected_warning.__name__)}" ) if match and not matched_message: raise AssertionError( f"Did not see warning {repr(expected_warning.__name__)} " f"matching {match}" ) def _assert_caught_no_extra_warnings( *, caught_warnings: Sequence[warnings.WarningMessage], expected_warning: Optional[Union[Type[Warning], bool]], ) -> None: """Assert that no extra warnings apart from the expected ones are caught.""" extra_warnings = [] for actual_warning in caught_warnings: if _is_unexpected_warning(actual_warning, expected_warning): extra_warnings.append( ( actual_warning.category.__name__, actual_warning.message, actual_warning.filename, actual_warning.lineno, ) ) if extra_warnings: raise AssertionError(f"Caused unexpected warning(s): {repr(extra_warnings)}") def _is_unexpected_warning( actual_warning: warnings.WarningMessage, expected_warning: Optional[Union[Type[Warning], bool]], ) -> bool: """Check if the actual warning issued is unexpected.""" if actual_warning and not expected_warning: return True expected_warning = cast(Type[Warning], expected_warning) return bool(not issubclass(actual_warning.category, expected_warning)) def _assert_raised_with_correct_stacklevel( actual_warning: warnings.WarningMessage, ) -> None: from inspect import getframeinfo, stack caller = getframeinfo(stack()[4][0]) msg = ( "Warning not set with correct stacklevel. " f"File where warning is raised: {actual_warning.filename} != " f"{caller.filename}. Warning message: {actual_warning.message}" ) assert actual_warning.filename == caller.filename, msg class RNGContext: """ Context manager to set the numpy random number generator speed. Returns to the original value upon exiting the context manager. Parameters ---------- seed : int Seed for numpy.random.seed Examples -------- with RNGContext(42): np.random.randn() """ def __init__(self, seed): self.seed = seed def __enter__(self): self.start_state = np.random.get_state() np.random.seed(self.seed) def __exit__(self, exc_type, exc_value, traceback): np.random.set_state(self.start_state) def test_parallel(num_threads=2, kwargs_list=None): """ Decorator to run the same function multiple times in parallel. Parameters ---------- num_threads : int, optional The number of times the function is run in parallel. kwargs_list : list of dicts, optional The list of kwargs to update original function kwargs on different threads. Notes ----- This decorator does not pass the return value of the decorated function. Original from scikit-image: https://github.com/scikit-image/scikit-image/pull/1519 """ assert num_threads > 0 has_kwargs_list = kwargs_list is not None if has_kwargs_list: assert len(kwargs_list) == num_threads import threading def wrapper(func): @wraps(func) def inner(*args, **kwargs): if has_kwargs_list: update_kwargs = lambda i: dict(kwargs, **kwargs_list[i]) else: update_kwargs = lambda i: kwargs threads = [] for i in range(num_threads): updated_kwargs = update_kwargs(i) thread = threading.Thread(target=func, args=args, kwargs=updated_kwargs) threads.append(thread) for thread in threads: thread.start() for thread in threads: thread.join() return inner return wrapper class SubclassedSeries(Series): _metadata = ["testattr", "name"] @property def _constructor(self): return SubclassedSeries @property def _constructor_expanddim(self): return SubclassedDataFrame class SubclassedDataFrame(DataFrame): _metadata = ["testattr"] @property def _constructor(self): return SubclassedDataFrame @property def _constructor_sliced(self): return SubclassedSeries class SubclassedCategorical(Categorical): @property def _constructor(self): return SubclassedCategorical def _make_skipna_wrapper(alternative, skipna_alternative=None): """ Create a function for calling on an array. Parameters ---------- alternative : function The function to be called on the array with no NaNs. Only used when 'skipna_alternative' is None. skipna_alternative : function The function to be called on the original array Returns ------- function """ if skipna_alternative: def skipna_wrapper(x): return skipna_alternative(x.values) else: def skipna_wrapper(x): nona = x.dropna() if len(nona) == 0: return np.nan return alternative(nona) return skipna_wrapper def convert_rows_list_to_csv_str(rows_list: List[str]): """ Convert list of CSV rows to single CSV-formatted string for current OS. This method is used for creating expected value of to_csv() method. Parameters ---------- rows_list : List[str] Each element represents the row of csv. Returns ------- str Expected output of to_csv() in current OS. """ sep = os.linesep return sep.join(rows_list) + sep def external_error_raised(expected_exception: Type[Exception]) -> ContextManager: """ Helper function to mark pytest.raises that have an external error message. Parameters ---------- expected_exception : Exception Expected error to raise. Returns ------- Callable Regular `pytest.raises` function with `match` equal to `None`. """ import pytest return pytest.raises(expected_exception, match=None) cython_table = pd.core.base.SelectionMixin._cython_table.items() def get_cython_table_params(ndframe, func_names_and_expected): """ Combine frame, functions from SelectionMixin._cython_table keys and expected result. Parameters ---------- ndframe : DataFrame or Series func_names_and_expected : Sequence of two items The first item is a name of a NDFrame method ('sum', 'prod') etc. The second item is the expected return value. Returns ------- list List of three items (DataFrame, function, expected result) """ results = [] for func_name, expected in func_names_and_expected: results.append((ndframe, func_name, expected)) results += [ (ndframe, func, expected) for func, name in cython_table if name == func_name ] return results def get_op_from_name(op_name: str) -> Callable: """ The operator function for a given op name. Parameters ---------- op_name : string The op name, in form of "add" or "__add__". Returns ------- function A function performing the operation. """ short_opname = op_name.strip("_") try: op = getattr(operator, short_opname) except AttributeError: # Assume it is the reverse operator rop = getattr(operator, short_opname[1:]) op = lambda x, y: rop(y, x) return op # ----------------------------------------------------------------------------- # Indexing test helpers def getitem(x): return x def setitem(x): return x def loc(x): return x.loc def iloc(x): return x.iloc
import os import matplotlib.pyplot as plt import sys import re def parse_logs_to_lists(logs_path): with open(logs_path, 'r') as f: lines = f.readlines() loss_list = [] psnr_noise_list = [] psnr_gt_list = [] iter_list = [] for line in lines: if 'Iteration' not in line: continue cur_iter, cur_loss, cur_psnr_noisy, cur_psnt_gt, _ = re.findall(r"[-+]?\d*\.\d+|\d+", line[line.find('INFO'):-1]) loss_list.append(float(cur_loss)) psnr_noise_list.append(float(cur_psnr_noisy)) psnr_gt_list.append(float(cur_psnt_gt)) iter_list.append(int(cur_iter)) return loss_list, psnr_noise_list, psnr_gt_list, iter_list if __name__ == '__main__': log_file_path = sys.argv[1] dst_path = sys.argv[2] plt.figure(figsize=(7, 7)) loss_list, psnr_noise_list, psnr_gt_list, iter_list = parse_logs_to_lists(log_file_path) psnr_gt_hanlde = plt.plot(iter_list, psnr_gt_list, label='psnr_gt') psnr_noise_handle = plt.plot(iter_list, psnr_noise_list, label='psnr_noise_gt') plt.legend() plt.title('PSNR-GT vs PSNR-NOISE-GT') plt.savefig(os.path.join(dst_path, 'psnrs.png')) plt.show()
from io import BytesIO from typing import TYPE_CHECKING from xml import sax if TYPE_CHECKING: from ..environment import Environment class XmlParser(sax.ContentHandler): def __init__(self, environment: 'Environment'): self.environment = environment self.template = None self.act_parent = None def parse(self, source: bytes, template_name: str): self.template = self.environment.template_class() self.act_parent = None parser = sax.make_parser() #parser.setFeature(sax.handler.feature_external_pes, False) #parser.setFeature(sax.handler.feature_external_ges, False) parser.setFeature(sax.handler.feature_namespaces, True) #parser.setProperty(sax.handler.property_lexical_handler, self) parser.setContentHandler(self) isource = sax.xmlreader.InputSource() isource.setByteStream(BytesIO(source)) isource.setSystemId(template_name) parser.parse(isource) return self.template def startElementNS(self, name, qname, attrs): ns, name = name if ns: fqdn = '{' + ns + '}' + name else: fqdn = name klass = self.environment.registry.get_class_by_name(fqdn) element = klass(xml_tag=name, xml_attrs=attrs) if self.act_parent is None: assert self.template.root_element is None self.template.root_element = self.act_parent = element else: self.act_parent.add_child(element) self.act_parent = element def endElementNS(self, *args, **kwargs): self.act_parent = self.act_parent.parent def characters(self, content): if len(content.strip()) == 0: return content = sax.saxutils.escape(content).strip() element = self.environment.registry.anonymus_element_klass(text=content) self.act_parent.add_child(element)
#!/usr/bin/env python import os import sys, time, math, cmath from std_msgs.msg import String import numpy as np import roslib import rospy from hlpr_object_labeling.msg import LabeledObjects from hlpr_knowledge_retrieval.msg import ObjectKnowledge, ObjectKnowledgeArray def get_param(name, value=None): private = "~%s" % name if rospy.has_param(private): return rospy.get_param(private) elif rospy.has_param(name): return rospy.get_param(name) else: return value class lookup: def __init__(self): self.subscriber = rospy.Subscriber("/beliefs/labels", LabeledObjects, self.cbLabels, queue_size = 1) self.knowPub = rospy.Publisher("/beliefs/knowledge", ObjectKnowledge) fileref = get_param("data_file_location") if fileref is not None: self.filename = os.path.expanduser(fileref) self.readObjectKnowledge(self.filename) print "Reading knowledge data from " + self.filename else: self.filename = None topicref = get_param("data_file_rostopic") if topicref is not None: self.rostopic = os.path.expanduser(topicref) self.fileSub = rospy.Subscriber(self.rostopic, String, self.cbFile, queue_size = 1) def cbFile(self, ros_data): if self.filename is not ros_data.data: self.filename = ros_data.data self.readObjectKnowledge(self.filename) self.initialized = True print "Reading knowledge data from " + self.filename def readObjectKnowledge(self, filename): lines = None with open(filename) as f: lines = f.readlines() dictionaries = [] knowledgeTypes = [] for l in lines: newDict = dict() lineList = l[:-1].split(";") knowledgeTypes.append(lineList[0]) for o in lineList[1:]: ftList = o.split(":")[1] newDict[o.split(":")[0]] = ftList dictionaries.append(newDict) self.knowledgeTypes = knowledgeTypes self.dictionaries = dictionaries def cbLabels(self, ros_data): labels = ros_data.labels if labels is None or self.filename is None: return messages = [] idx = 0 for kType in self.knowledgeTypes: #affList = affList + self.affDictionary[label.rsplit(None,1)[-1]] + ',' message = [] for label in labels: msg = String() if label.data in self.dictionaries[idx]: msg.data = self.dictionaries[idx][label.data] message.append(msg) else: print "Object " + label.data + " not found in knowledge source" idx += 1 arrMsg = ObjectKnowledgeArray() arrMsg.data = message messages.append(arrMsg) kmsg = ObjectKnowledge() kmsg.knowledge = messages kmsg.labels = labels self.knowPub.publish(kmsg) def get_param(name, value=None): private = "~%s" % name if rospy.has_param(private): return rospy.get_param(private) elif rospy.has_param(name): return rospy.get_param(name) else: return value def main(args): rospy.init_node('knowledge_retrieval', anonymous=True) lkup = lookup() rospy.spin() if __name__ == '__main__': main(sys.argv)
{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "d27457c3", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import math\n", "class Node:\n", " def __init__(self, l):\n", " self.label = l\n", " self.branch = {}\n", "def entropy(data):\n", " total_ex = len(data)\n", " p_ex = len(data.loc[data['PlayTennis']=='Yes'])\n", " n_ex = len(data.loc[data['PlayTennis']=='No'])\n", " en = 0\n", " if(p_ex>0):\n", " en = -(p_ex/float(total_ex)) * (math.log(p_ex,2)-math.log(total_ex,2))\n", " if(n_ex>0):\n", " en += -(n_ex/float(total_ex)) * (math.log(n_ex,2)-math.log(total_ex,2))\n", " return en\n", "def gain(en_s,data_s,attrib):\n", " values = set(data_s[attrib])\n", " gain = en_s\n", " for value in values:\n", " gain -= len(data_s.loc[data_s[attrib]==value])/float(len(data_s)) *\n", "entropy(data_s.loc[data_s[attrib]==value])\n", " return gain\n", "def get_attr(data):\n", " en_s = entropy(data)\n", " attribute = \"\"\n", " max_gain = 0\n", " for attr in data.columns[:len(data.columns)-1]:\n", " g = gain(en_s, data, attr)\n", " if g > max_gain:\n", " max_gain = g\n", " attribute = attr\n", " return attribute\n", "def decision_tree(data):\n", " root = Node(\"NULL\")\n", " if(entropy(data)==0):\n", " if(len(data.loc[data[data.columns[-1]]==\"Yes\"]) == len(data)):\n", " root.label = \"Yes\"\n", " else:\n", " root.label = \"No\"\n", " return root\n", " if(len(data.columns)==1):\n", " return\n", " else:\n", " attr = get_attr(data)\n", " root.label = attr\n", " values = set(data[attr])\n", " for value in values:\n", " root.branch[value] =decision_tree(data.loc[data[attr]==value].drop(attr,axis=1))\n", " return root\n", " \n", "def get_rules(root, rule, rules):\n", " if not root.branch:\n", " rules.append(rule[:-1]+\"=>\"+root.label)\n", " return rules\n", " for val in root.branch:\n", " get_rules(root.branch[val], rule+root.label+\"=\"+str(val)+\"^\", rules)\n", " return rules\n", "def test(tree, test_str):\n", " if not tree.branch:\n", " return tree.label\n", " return test(tree.branch[str(test_str[tree.label])], test_str)\n", "data = pd.read_csv(\"tennis.csv\")\n", "tree = decision_tree(data)\n", "rules = get_rules(tree,\" \",[])\n", "for rule in rules:\n", " print(rule)\n", "test_str = {}\n", "print(\"Enter the test case input: \")\n", "for attr in data.columns[:-1]:\n", " test_str[attr] = input(attr+\": \")\n", "print(test_str)\n", "print(test(tree, test_str))\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.8" } }, "nbformat": 4, "nbformat_minor": 5 }
from rest_framework.status import HTTP_400_BAD_REQUEST ERROR_ADMIN_LISTING_INVALID_SORT_DIRECTION = ( "ERROR_ADMIN_LISTING_INVALID_SORT_DIRECTION", HTTP_400_BAD_REQUEST, "Attributes to sort by must be prefixed with one of '-' or '+'.", ) ERROR_ADMIN_LISTING_INVALID_SORT_ATTRIBUTE = ( "ERROR_ADMIN_LISTING_INVALID_SORT_ATTRIBUTE", HTTP_400_BAD_REQUEST, "Invalid attribute name provided to sort by.", )
from unittest.mock import MagicMock from coworks.fixture import * from tests.mockup import email_mock, smtp_mock @pytest.fixture def example_dir(): return os.getenv('EXAMPLE_DIR') @pytest.fixture def samples_docs_dir(): return os.getenv('SAMPLES_DOCS_DIR') @pytest.fixture def email_mock_fixture(): yield email_mock @pytest.fixture def smtp_mock_fixture(): yield smtp_mock s3session_mock = MagicMock() @pytest.fixture def s3_session(): class S3Session: mock = s3session_mock def __new__(cls, *args, **kwargs): return s3session_mock yield S3Session
# Correlations from Churchill1974 paper # see section "Functions Which Cross One Limiting Solution", pg. 41 # plot should be same as plot in Fig. 9, pg. 41 # use Python 3 print function from __future__ import print_function from __future__ import division import numpy as np import matplotlib.pyplot as py py.close('all') # parameters # ----------------------------------------------------------------------------- # range of x = 0-6 x = np.linspace(np.spacing(1), 6) # vector to store zinf values zinf = np.zeros(len(x)) # vector to store z at n=4 values z4 = np.zeros(len(x)) # vector to store z at n=2 values z2 = np.zeros(len(x)) # vector to store z at n=1 values z1 = np.zeros(len(x)) # vector to store z at n=3/4 values z34 = np.zeros(len(x)) # functions # ----------------------------------------------------------------------------- # where zi{x} = x, z{inf} = 1, xA = 5, alpha = 2 # zinf{x} function as seen in Fig. 9 and Eq. 8 # zinf{x} = 1 + (5/x)^2 def z_inf(x): return 1 + (5.0 / x)**2 # z{x} function as seen in Fig. 9 and Eq. 9 # z{x} = x / ( [1 + t^n]^(1/n) ) where t = x / (1 + (5/x)^2) def z(x, n): t = x / (1 + (5.0/x)**2) return x / (( 1 + t**n )**(1/n)) # calculations # ----------------------------------------------------------------------------- # evaluate zi{x} = x zi = x # evaluate zinf{x} k = 0 for i in x: zinf[k] = z_inf(i) k+=1 # evaluate z{x} for n = 4, 2, 1 and 3/4 k = 0 for i in x: z4[k] = z(i, 4) z2[k] = z(i, 2) z1[k] = z(i, 1) z34[k] = z(i, 0.75) k+=1 # plot results # ----------------------------------------------------------------------------- py.figure(1) py.plot(x, zinf, 'g--', label=r'z$_\infty${x}') py.plot(x, zi, 'b--', label=r'z$_0${x}') py.plot(x, z4, 'y', label='z{x} n=4') py.plot(x, z2, 'r', label='z{x} n=2') py.plot(x, z1, 'm', label='z{x} n=1') py.plot(x, z34, 'c', label='z{x} n=3/4') py.axhline(y=1, color='k', label=r'z{$\infty$}=1') py.ylim([0, 4]) py.legend(loc='best', numpoints=1) py.xlabel('X') py.ylabel('Z') py.title('Churchill1974 - Figure 9\n'+r'z$_0${x}=x, z{$\infty$}=1, x$_A$=5, $\alpha$=2') py.grid() py.show()
import tensorflow as tf from data_loader.data_generator import DataGenerator from scripts.gan import GAN from scripts.gan_trainer import GANTrainer from utils.summarizer import Summarizer from utils.dirs import create_dirs def main(config): # capture the config path from the run arguments # then process the json configuration file # create the experiments dirs create_dirs([config.summary_dir, config.checkpoint_dir, config.step_generation_dir]) # create tensorflow session sess = tf.Session() # create your data generator data = DataGenerator(config) # create an instance of the model you want model = GAN(config) # create tensorboard logger logger = Summarizer(sess, config) # create trainer and pass all the previous components to it trainer = GANTrainer(sess, model, data, config, logger) # load model if exists model.load(sess) # here you train your model trainer.train() if __name__ == "__main__": main()
import os from app import create_app app = create_app() app.run( host=os.environ.get("BIND_HOST", '0.0.0.0'), port=os.environ.get("BIND_PORT", 80), )
#!/usr/bin/env python # -*- coding: utf-8 -*- #MIT License (MIT) #Copyright (c) <2014> <Rapp Project EU> #Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is #furnished to do so, subject to the following conditions: #The above copyright notice and this permission notice shall be included in #all copies or substantial portions of the Software. #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR #IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, #FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE #AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER #LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, #OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN #THE SOFTWARE. # Authors: Manos Tsardoulias # contact: [email protected] import rospy import sys import mmap class GreekSupport(): def __init__(self): pass def configureLetters(self): self.f_base_pre = [u'π', u'τ', u'κ', u'θ', u'χ', u'σ', u'ξ', u'ψ'] self.f_base = [] for l in self.f_base_pre: self.f_base.append(l.encode('utf-8')) self.v_base_pre = [u'δ', u'γ', u'ζ', u'λ', u'ρ', u'μ', u'ν', u'α', u'ά', u'ε',\ u'έ', u'η', u'ή', u'ι', u'ί', u'ϊ', u'ΐ', u'ο', u'ό', u'υ', u'ύ', u'ϋ'\ u'ΰ', u'ω', u'ώ'] self.v_base = [] for l in self.v_base_pre: self.v_base.append(l.encode('utf-8')) self.capital_letters = {} self.capital_letters[(u'Α').encode('utf-8')] = (u'α').encode('utf-8') self.capital_letters[(u'Ά').encode('utf-8')] = (u'ά').encode('utf-8') self.capital_letters[(u'Β').encode('utf-8')] = (u'β').encode('utf-8') self.capital_letters[(u'Γ').encode('utf-8')] = (u'γ').encode('utf-8') self.capital_letters[(u'Δ').encode('utf-8')] = (u'δ').encode('utf-8') self.capital_letters[(u'Ε').encode('utf-8')] = (u'ε').encode('utf-8') self.capital_letters[(u'Έ').encode('utf-8')] = (u'έ').encode('utf-8') self.capital_letters[(u'Ζ').encode('utf-8')] = (u'ζ').encode('utf-8') self.capital_letters[(u'Η').encode('utf-8')] = (u'η').encode('utf-8') self.capital_letters[(u'Ή').encode('utf-8')] = (u'ή').encode('utf-8') self.capital_letters[(u'Θ').encode('utf-8')] = (u'θ').encode('utf-8') self.capital_letters[(u'Ι').encode('utf-8')] = (u'ι').encode('utf-8') self.capital_letters[(u'Ί').encode('utf-8')] = (u'ί').encode('utf-8') self.capital_letters[(u'Ϊ').encode('utf-8')] = (u'ϊ').encode('utf-8') self.capital_letters[(u'Κ').encode('utf-8')] = (u'κ').encode('utf-8') self.capital_letters[(u'Λ').encode('utf-8')] = (u'λ').encode('utf-8') self.capital_letters[(u'Μ').encode('utf-8')] = (u'μ').encode('utf-8') self.capital_letters[(u'Ν').encode('utf-8')] = (u'ν').encode('utf-8') self.capital_letters[(u'Ξ').encode('utf-8')] = (u'ξ').encode('utf-8') self.capital_letters[(u'Ο').encode('utf-8')] = (u'ο').encode('utf-8') self.capital_letters[(u'Ό').encode('utf-8')] = (u'ό').encode('utf-8') self.capital_letters[(u'Π').encode('utf-8')] = (u'π').encode('utf-8') self.capital_letters[(u'Ρ').encode('utf-8')] = (u'ρ').encode('utf-8') self.capital_letters[(u'Σ').encode('utf-8')] = (u'σ').encode('utf-8') self.capital_letters[(u'Τ').encode('utf-8')] = (u'τ').encode('utf-8') self.capital_letters[(u'Υ').encode('utf-8')] = (u'γ').encode('utf-8') self.capital_letters[(u'Ύ').encode('utf-8')] = (u'ύ').encode('utf-8') self.capital_letters[(u'Ϋ').encode('utf-8')] = (u'ϋ').encode('utf-8') self.capital_letters[(u'Φ').encode('utf-8')] = (u'φ').encode('utf-8') self.capital_letters[(u'Χ').encode('utf-8')] = (u'χ').encode('utf-8') self.capital_letters[(u'Ψ').encode('utf-8')] = (u'ψ').encode('utf-8') self.capital_letters[(u'Ω').encode('utf-8')] = (u'ω').encode('utf-8') self.capital_letters[(u'Ώ').encode('utf-8')] = (u'ώ').encode('utf-8') self.phonems = {} self.phonems[(u'ου').encode('utf-8')] = 'UW ' self.phonems[(u'ού').encode('utf-8')] = 'UW ' self.phonems[(u'μπ').encode('utf-8')] = 'B ' self.phonems[(u'ντ').encode('utf-8')] = 'D ' self.phonems[(u'γκ').encode('utf-8')] = 'G ' #? self.phonems[(u'γγ').encode('utf-8')] = 'G ' #? self.phonems[(u'τσ').encode('utf-8')] = 'CH ' #? self.phonems[(u'τζ').encode('utf-8')] = 'JH ' #? self.phonems[(u'σσ').encode('utf-8')] = 'S ' #? self.phonems[(u'κκ').encode('utf-8')] = 'K ' self.two_digit_letters = {} self.two_digit_letters[(u'αι').encode('utf-8')] = 'EH ' self.two_digit_letters[(u'αί').encode('utf-8')] = 'EH ' self.two_digit_letters[(u'ει').encode('utf-8')] = 'IH ' self.two_digit_letters[(u'εί').encode('utf-8')] = 'IH ' self.two_digit_letters[(u'οι').encode('utf-8')] = 'IH ' self.two_digit_letters[(u'οί').encode('utf-8')] = 'IH ' self.two_digit_letters[(u'υι').encode('utf-8')] = 'IH ' self.two_digit_letters[(u'υί').encode('utf-8')] = 'IH ' self.special_two_digit_letters = [] self.special_two_digit_letters.append((u'αυ').encode('utf-8')) self.special_two_digit_letters.append((u'αύ').encode('utf-8')) self.special_two_digit_letters.append((u'ευ').encode('utf-8')) self.special_two_digit_letters.append((u'εύ').encode('utf-8')) self.special_two_digit_letters_v = {} self.special_two_digit_letters_v[(u'αυ').encode('utf-8')] = (u'αβ').encode('utf-8') self.special_two_digit_letters_v[(u'αύ').encode('utf-8')] = (u'άβ').encode('utf-8') self.special_two_digit_letters_v[(u'ευ').encode('utf-8')] = (u'εβ').encode('utf-8') self.special_two_digit_letters_v[(u'εύ').encode('utf-8')] = (u'έβ').encode('utf-8') self.special_two_digit_letters_f = {} self.special_two_digit_letters_f[(u'αυ').encode('utf-8')] = (u'αφ').encode('utf-8') self.special_two_digit_letters_f[(u'αύ').encode('utf-8')] = (u'άφ').encode('utf-8') self.special_two_digit_letters_f[(u'ευ').encode('utf-8')] = (u'εφ').encode('utf-8') self.special_two_digit_letters_f[(u'εύ').encode('utf-8')] = (u'έφ').encode('utf-8') self.all_special_two_digit_letters = {} for tdl in self.special_two_digit_letters: for fb in self.f_base: self.all_special_two_digit_letters[tdl + fb] = \ self.special_two_digit_letters_f[tdl] + fb for tdl in self.special_two_digit_letters: for vb in self.v_base: self.all_special_two_digit_letters[tdl + vb] = \ self.special_two_digit_letters_v[tdl] + vb self.s_specific_rules = {} self.s_specific_rules[(u'σγ').encode('utf-8')] = 'Z W ' self.s_specific_rules[(u'σβ').encode('utf-8')] = 'Z V ' self.s_specific_rules[(u'σδ').encode('utf-8')] = 'Z DH ' self.letters = {} self.letters[(u'α').encode('utf-8')] = 'AA ' # when AE? self.letters[(u'ά').encode('utf-8')] = 'AA ' self.letters[(u'β').encode('utf-8')] = 'V ' self.letters[(u'γ').encode('utf-8')] = 'W ' self.letters[(u'δ').encode('utf-8')] = 'DH ' self.letters[(u'ε').encode('utf-8')] = 'EH ' self.letters[(u'έ').encode('utf-8')] = 'EH ' self.letters[(u'ζ').encode('utf-8')] = 'Z ' self.letters[(u'η').encode('utf-8')] = 'IH ' self.letters[(u'ή').encode('utf-8')] = 'IH ' self.letters[(u'θ').encode('utf-8')] = 'TH ' self.letters[(u'ι').encode('utf-8')] = 'IH ' self.letters[(u'ί').encode('utf-8')] = 'IH ' self.letters[(u'ϊ').encode('utf-8')] = 'IH ' self.letters[(u'ΐ').encode('utf-8')] = 'IH ' self.letters[(u'κ').encode('utf-8')] = 'K ' self.letters[(u'λ').encode('utf-8')] = 'L ' self.letters[(u'μ').encode('utf-8')] = 'M ' self.letters[(u'ν').encode('utf-8')] = 'N ' self.letters[(u'ξ').encode('utf-8')] = 'K S ' self.letters[(u'ο').encode('utf-8')] = 'OW ' self.letters[(u'ό').encode('utf-8')] = 'OW ' self.letters[(u'π').encode('utf-8')] = 'P ' self.letters[(u'ρ').encode('utf-8')] = 'R ' self.letters[(u'σ').encode('utf-8')] = 'S ' self.letters[(u'τ').encode('utf-8')] = 'T ' self.letters[(u'υ').encode('utf-8')] = 'IH ' self.letters[(u'ύ').encode('utf-8')] = 'IH ' self.letters[(u'ϋ').encode('utf-8')] = 'IH ' self.letters[(u'ΰ').encode('utf-8')] = 'IH ' self.letters[(u'φ').encode('utf-8')] = 'F ' self.letters[(u'χ').encode('utf-8')] = 'HH ' self.letters[(u'ψ').encode('utf-8')] = 'P S ' self.letters[(u'ω').encode('utf-8')] = 'OW ' self.letters[(u'ώ').encode('utf-8')] = 'OW ' self.letters[(u'ς').encode('utf-8')] = 'S ' self.literal_letters = {} self.literal_letters[(u'α').encode('utf-8')] = 'a' # when AE? self.literal_letters[(u'ά').encode('utf-8')] = 'a\'' self.literal_letters[(u'β').encode('utf-8')] = 'b' self.literal_letters[(u'γ').encode('utf-8')] = 'g' self.literal_letters[(u'δ').encode('utf-8')] = 'd' self.literal_letters[(u'ε').encode('utf-8')] = 'e' self.literal_letters[(u'έ').encode('utf-8')] = 'e\'' self.literal_letters[(u'ζ').encode('utf-8')] = 'z' self.literal_letters[(u'η').encode('utf-8')] = 'h' self.literal_letters[(u'ή').encode('utf-8')] = 'h\'' self.literal_letters[(u'θ').encode('utf-8')] = 'th' self.literal_letters[(u'ι').encode('utf-8')] = 'i' self.literal_letters[(u'ί').encode('utf-8')] = 'i\'' self.literal_letters[(u'ϊ').encode('utf-8')] = 'i:' self.literal_letters[(u'ΐ').encode('utf-8')] = 'i\':' self.literal_letters[(u'κ').encode('utf-8')] = 'k' self.literal_letters[(u'λ').encode('utf-8')] = 'l' self.literal_letters[(u'μ').encode('utf-8')] = 'm' self.literal_letters[(u'ν').encode('utf-8')] = 'n' self.literal_letters[(u'ξ').encode('utf-8')] = 'ks' self.literal_letters[(u'ο').encode('utf-8')] = 'o' self.literal_letters[(u'ό').encode('utf-8')] = 'o\'' self.literal_letters[(u'π').encode('utf-8')] = 'p' self.literal_letters[(u'ρ').encode('utf-8')] = 'r' self.literal_letters[(u'σ').encode('utf-8')] = 's' self.literal_letters[(u'ς').encode('utf-8')] = 's\'' self.literal_letters[(u'τ').encode('utf-8')] = 't' self.literal_letters[(u'υ').encode('utf-8')] = 'u' self.literal_letters[(u'ύ').encode('utf-8')] = 'u\'' self.literal_letters[(u'ϋ').encode('utf-8')] = 'u:' self.literal_letters[(u'ΰ').encode('utf-8')] = 'u\':' self.literal_letters[(u'φ').encode('utf-8')] = 'f' self.literal_letters[(u'χ').encode('utf-8')] = 'x' self.literal_letters[(u'ψ').encode('utf-8')] = 'ps' self.literal_letters[(u'ω').encode('utf-8')] = 'w' self.literal_letters[(u'ώ').encode('utf-8')] = 'w\'' self.all_greek_letters = [\ u'Α', u'Ά', u'α', u'ά',\ u'Β', u'β',\ u'Γ', u'γ',\ u'Δ', u'δ',\ u'Ε', u'Έ', u'ε', u'έ',\ u'Ζ', u'ζ',\ u'Η', u'Ή', u'η', u'ή',\ u'Θ', u'θ',\ u'I', u'Ί', u'Ϊ', u'ι', u'ί', u'ϊ', u'ΐ',\ u'Κ', u'κ',\ u'Λ', u'λ',\ u'Μ', u'μ',\ u'Ν', u'ν',\ u'Ξ', u'ξ',\ u'Ο', u'Ό', u'ο', u'ό',\ u'Π', u'π',\ u'Ρ', u'ρ',\ u'Σ', u'σ', u'ς',\ u'Τ', u'τ',\ u'Υ', u'Ύ', u'Ϋ', u'υ', u'ύ', u'ϋ', u'ΰ',\ u'Φ', u'φ',\ u'Χ', u'χ',\ u'Ψ', u'ψ',\ u'Ω', u'Ώ', u'ω', u'ώ',\ u' '\ ] #tmp = [] #for l in self.all_greek_letters: #tmp.append(l.encode('utf-8')) #self.all_greek_letters = tmp def transformWords(self, words): enhanced_words = {} englified_words = {} for word in words: initial_word = word # transform capital letters for cap in self.capital_letters: initial_word = initial_word.replace(cap, self.capital_letters[cap]) # fix english version of letters eng_w = initial_word for lit in self.literal_letters: eng_w = eng_w.replace(lit, self.literal_letters[lit]) englified_words[eng_w] = word # check phonems for ph in self.phonems: initial_word = initial_word.replace(ph, self.phonems[ph]) # check special two digit letters for stdl in self.all_special_two_digit_letters: initial_word = initial_word.replace(stdl, \ self.all_special_two_digit_letters[stdl]) # check two-digit letters for let in self.two_digit_letters: initial_word = initial_word.replace(let, self.two_digit_letters[let]) # check specific rules for sr in self.s_specific_rules: initial_word = initial_word.replace(sr, self.s_specific_rules[sr]) # check the rest of the letters for l in self.letters: initial_word = initial_word.replace(l, self.letters[l]) enhanced_words[eng_w] = [] temp = initial_word.split(' ') if len(temp) > 0: temp = temp[:-1] enhanced_words[eng_w] = temp return [enhanced_words, englified_words] def englify_words(self, words): englified_words = [] for word in words: eng_w = word for lit in self.literal_letters: eng_w = eng_w.replace(lit, self.literal_letters[lit]) englified_words.append(eng_w) return englified_words def main(): # The Greek support helper class greek = GreekSupport() greek.configureLetters() # Open corpus file corpus_file = open("corpus.txt") corpus = corpus_file.read() corpus_file.close() # Split the corpus into expressions / sentences split_chars = [".", ",", ")", "(", "\"", "[", "]", ":"] sentences = [corpus] for c in split_chars: tmp = [] for s in sentences: tmp += s.split(c) sentences = tmp # Erase all other words that are not Greek valid letters to_be_erased = [] for s in sentences: for l in s.decode('utf-8'): if l not in greek.all_greek_letters: if l not in to_be_erased: to_be_erased.append(l) tmp = [] for s in sentences: if s == '': continue tmp_s = s.decode('utf-8') for l in to_be_erased: tmp_s = tmp_s.replace(l, "") # Transform capital letters to lower case tmp_w = tmp_s.encode('utf-8') for cl in greek.capital_letters: tmp_w = tmp_w.replace(cl, greek.capital_letters[cl]) tmp.append(tmp_w) sentences = tmp initial_sentences = tmp # Sentences and initial sentences are unicode now # Break the sentences into words words = [] for s in sentences: tmp_words = s.split(" ") for w in tmp_words: if w == "": continue if w not in words: words.append(w) # Words in utf-8 now # Transform words in phonemes [enh, engl] = greek.transformWords(words) # Open custom.dict and write the words custom_dict = open('custom.dict', 'w') for w in enh: custom_dict.write(w + " ") for ph in enh[w]: custom_dict.write(ph + " ") custom_dict.write("\n") custom_dict.close() # Create the transliteration file translit_file = open('transliteration.txt', 'w') for i in engl: translit_file.write(i + " " + engl[i] + "\n") translit_file.close() # Create the sentences file sentences_file = open('sentences.txt', 'w') # Create reverse translit dictionary reverse_translit = {} for tr in engl: reverse_translit[engl[tr]] = tr #print engl[tr], tr # Create translit sentences translit_sentences = [] for s in initial_sentences: words = s.split(" ") new_sentence = "" for w in words: if w == '': continue a = reverse_translit[w] new_sentence += reverse_translit[w] + " " sentences_file.write("<s>" + new_sentence + "</s>\n") sentences_file.close() if __name__ == "__main__": main()
import re, os, datetime file_shell_rex = "data_orig/200[0-9]_[0-9][0-9]_[a-z]*/*.2[0-9][0-9]" site_rex = re.compile("^\*SITE NUMB\s*ER: ([0-9\s]+)$") channel_rex = re.compile("^\*CHANNEL\s*:\s+([0-9]+)\s+OF") date_rex = re.compile("^DATE\s+([0-9]?[0-9])\s*/([0-1]?[0-9])/([0-3]?[0-9])\s[0-9\s]+AVERAGE$") count_rex = re.compile("[12]?[0-9]\s+[0-9-]+\s+[0-9-]+\s+[0-9-]+\s+[0-9-]+\s+[0-9-]+\s+[0-9-]+\s+[0-9-]+\s+[0-9-]+") totals_rex = re.compile("^TOTALS$") ifilenames = [s.strip() for s in os.popen("ls %s" % file_shell_rex).readlines()] def ilines(ifilenames): for ifilename in ifilenames: ifile = open(ifilename) # pypy requires explicit close for line in ifile: if len(line)>2 and line[-1]=="\n": yield ifilename, line.strip() ifile.close() yield None, 'eof' def events(lines): for ifilename, line in lines: if line=="eof": yield 'eof', None else: m = re.match(site_rex, line) if m: yield 'site', (int(re.sub("\s*", "", m.groups()[0])), ifilename) else: m = re.match(channel_rex, line) if m: yield 'channel', (int(m.groups()[0]), ifilename) else: m = re.match(date_rex, line) if m: yield 'date', m.groups() else: m = re.match(count_rex, line) if m: try: fields = [int(i) if i != "-" else None for i in line.split()] yield 'hourly', (fields[0], fields[1:8]) except ValueError: yield 'error', line else: m = re.match(totals_rex, line) if m: yield 'eod', None def data_lines(evs): errors = [] for evt, info in evs: if evt=="error": errors.append("%s %s %s format %s"%(filename, site, date, info)) continue elif evt=="eof": date, site, hdata = None, None, {} elif evt=="site": site, filename = info channel = '0' elif evt=="channel": channel = info[0] elif evt=="date": date = info hours, hdata = set(xrange(24)), {} elif evt=="hourly": if date==None or site==None: continue else: hour, counts = info if hour in hours: hours.remove(hour) hdata[hour] = counts else: errors.append("%s %s %s %s duplicate hour"%(filename, site, date, hour)) elif evt=="eod": if len(hours)==0: for hour, counts in hdata.iteritems(): for iday, count in enumerate(counts): yield errors, (filename, site, channel, date, iday, hour, count) else: errors.append("%s %s %s incomplete"%(filename, site, date)) hdata = {} def date_vars(dtuple, iday): year, month, day = [int(i) for i in dtuple] date = datetime.datetime(year+2000, month, day, 0, 0) + datetime.timedelta(int(iday)) days = (date - datetime.datetime(2003, 12, 1, 0, 0)).days return date.strftime("%Y-%m-%d"), days, date.strftime("%A"), date.timetuple().tm_yday print "file site channel date day weekday yday hour count" for errors, (filename, site, channel, dtuple, iday, hour, count) in data_lines(events(ilines(ifilenames))): print "%s %s %s %s %s %s %s %s %s" % ( (filename, site, channel) + date_vars(dtuple, iday) + (hour, "NA" if count==None else count)) logfile = open("model_data/errors.log", "w") for error in errors: print >>logfile, error logfile.close()
#!/usr/bin/env python3 import rogue.hardware.rce import pyrogue.mesh import surf import rceg3 class rce(object): def __init__(self): # Set base self.dpmTest = pyrogue.Root('dpmTest','DPM Test Image') # Create the AXI interfaces self.rceMap = rogue.hardware.rce.MapMemory(); self.rceMap.addMap(0x80000000,0x10000) self.rceMap.addMap(0x84000000,0x10000) # Add Devices self.dpmTest.add(rceg3.RceVersion(memBase=self.rceMap)) # Create mesh node self.mNode = pyrogue.mesh.MeshNode('rce',iface='eth0',root=self.dpmTest) self.mNode.start()
S = input() if S[0] == 'A' and S[2:-1].count('C') == 1: index_c = S[2:-1].index('C') S = S[1:2 + index_c] + S[3 + index_c:] if S.islower(): print('AC') exit() print('WA')
from keras.layers import Embedding, TimeDistributed, RepeatVector, LSTM class AttentionLSTM(LSTM): """LSTM with attention mechanism This is an LSTM incorporating an attention mechanism into its hidden states. Currently, the context vector calculated from the attended vector is fed into the model's internal states, closely following the model by Xu et al. (2016, Sec. 3.1.2), using a soft attention model following Bahdanau et al. (2014). The layer expects two inputs instead of the usual one: 1. the "normal" layer input; and 2. a 3D vector to attend. Args: attn_activation: Activation function for attentional components attn_init: Initialization function for attention weights output_alpha (boolean): If true, outputs the alpha values, i.e., what parts of the attention vector the layer attends to at each timestep. References: * Bahdanau, Cho & Bengio (2014), "Neural Machine Translation by Jointly Learning to Align and Translate", <https://arxiv.org/pdf/1409.0473.pdf> * Xu, Ba, Kiros, Cho, Courville, Salakhutdinov, Zemel & Bengio (2016), "Show, Attend and Tell: Neural Image Caption Generation with Visual Attention", <http://arxiv.org/pdf/1502.03044.pdf> See Also: `LSTM`_ in the Keras documentation. .. _LSTM: http://keras.io/layers/recurrent/#lstm """ def __init__(self, *args, attn_activation='tanh', attn_init='orthogonal', output_alpha=False, **kwargs): self.attn_activation = activations.get(attn_activation) self.attn_init = initializations.get(attn_init) self.output_alpha = output_alpha super().__init__(*args, **kwargs) def build(self, input_shape): if not (isinstance(input_shape, list) and len(input_shape) == 2): raise Exception('Input to AttentionLSTM must be a list of ' 'two tensors [lstm_input, attn_input].') input_shape, attn_input_shape = input_shape super().build(input_shape) self.input_spec.append(InputSpec(shape=attn_input_shape)) # weights for attention model self.U_att = self.inner_init((self.output_dim, self.output_dim), name='{}_U_att'.format(self.name)) self.W_att = self.attn_init((attn_input_shape[-1], self.output_dim), name='{}_W_att'.format(self.name)) self.v_att = self.init((self.output_dim, 1), name='{}_v_att'.format(self.name)) self.b_att = K.zeros((self.output_dim,), name='{}_b_att'.format(self.name)) self.trainable_weights += [self.U_att, self.W_att, self.v_att, self.b_att] # weights for incorporating attention into hidden states if self.consume_less == 'gpu': self.Z = self.init((attn_input_shape[-1], 4 * self.output_dim), name='{}_Z'.format(self.name)) self.trainable_weights += [self.Z] else: self.Z_i = self.attn_init((attn_input_shape[-1], self.output_dim), name='{}_Z_i'.format(self.name)) self.Z_f = self.attn_init((attn_input_shape[-1], self.output_dim), name='{}_Z_f'.format(self.name)) self.Z_c = self.attn_init((attn_input_shape[-1], self.output_dim), name='{}_Z_c'.format(self.name)) self.Z_o = self.attn_init((attn_input_shape[-1], self.output_dim), name='{}_Z_o'.format(self.name)) self.trainable_weights += [self.Z_i, self.Z_f, self.Z_c, self.Z_o] self.Z = K.concatenate([self.Z_i, self.Z_f, self.Z_c, self.Z_o]) # weights for initializing states based on attention vector if not self.stateful: self.W_init_c = self.attn_init((attn_input_shape[-1], self.output_dim), name='{}_W_init_c'.format(self.name)) self.W_init_h = self.attn_init((attn_input_shape[-1], self.output_dim), name='{}_W_init_h'.format(self.name)) self.b_init_c = K.zeros((self.output_dim,), name='{}_b_init_c'.format(self.name)) self.b_init_h = K.zeros((self.output_dim,), name='{}_b_init_h'.format(self.name)) self.trainable_weights += [self.W_init_c, self.b_init_c, self.W_init_h, self.b_init_h] if self.initial_weights is not None: self.set_weights(self.initial_weights) del self.initial_weights def get_output_shape_for(self, input_shape): # output shape is not affected by the attention component return super().get_output_shape_for(input_shape[0]) def compute_mask(self, input, input_mask=None): if input_mask is not None: input_mask = input_mask[0] return super().compute_mask(input, input_mask=input_mask) def get_initial_states(self, x_input, x_attn, mask_attn): # set initial states from mean attention vector fed through a dense # activation mean_attn = K.mean(x_attn * K.expand_dims(mask_attn), axis=1) h0 = K.dot(mean_attn, self.W_init_h) + self.b_init_h c0 = K.dot(mean_attn, self.W_init_c) + self.b_init_c return [self.attn_activation(h0), self.attn_activation(c0)] def call(self, x, mask=None): assert isinstance(x, list) and len(x) == 2 x_input, x_attn = x if mask is not None: mask_input, mask_attn = mask else: mask_input, mask_attn = None, None # input shape: (nb_samples, time (padded with zeros), input_dim) input_shape = self.input_spec[0].shape if K._BACKEND == 'tensorflow': if not input_shape[1]: raise Exception('When using TensorFlow, you should define ' 'explicitly the number of timesteps of ' 'your sequences.\n' 'If your first layer is an Embedding, ' 'make sure to pass it an "input_length" ' 'argument. Otherwise, make sure ' 'the first layer has ' 'an "input_shape" or "batch_input_shape" ' 'argument, including the time axis. ' 'Found input shape at layer ' + self.name + ': ' + str(input_shape)) if self.stateful: initial_states = self.states else: initial_states = self.get_initial_states(x_input, x_attn, mask_attn) constants = self.get_constants(x_input, x_attn, mask_attn) preprocessed_input = self.preprocess_input(x_input) last_output, outputs, states = K.rnn(self.step, preprocessed_input, initial_states, go_backwards=self.go_backwards, mask=mask_input, constants=constants, unroll=self.unroll, input_length=input_shape[1]) if self.stateful: self.updates = [] for i in range(len(states)): self.updates.append((self.states[i], states[i])) if self.return_sequences: return outputs else: return last_output def step(self, x, states): h_tm1 = states[0] c_tm1 = states[1] B_U = states[2] B_W = states[3] x_attn = states[4] mask_attn = states[5] attn_shape = self.input_spec[1].shape #### attentional component # alignment model # -- keeping weight matrices for x_attn and h_s separate has the advantage # that the feature dimensions of the vectors can be different h_att = K.repeat(h_tm1, attn_shape[1]) att = time_distributed_dense(x_attn, self.W_att, self.b_att) energy = self.attn_activation(K.dot(h_att, self.U_att) + att) energy = K.squeeze(K.dot(energy, self.v_att), 2) # make probability tensor alpha = K.exp(energy) if mask_attn is not None: alpha *= mask_attn alpha /= K.sum(alpha, axis=1, keepdims=True) alpha_r = K.repeat(alpha, attn_shape[2]) alpha_r = K.permute_dimensions(alpha_r, (0, 2, 1)) # make context vector -- soft attention after Bahdanau et al. z_hat = x_attn * alpha_r z_hat = K.sum(z_hat, axis=1) if self.consume_less == 'gpu': z = K.dot(x * B_W[0], self.W) + K.dot(h_tm1 * B_U[0], self.U) \ + K.dot(z_hat, self.Z) + self.b z0 = z[:, :self.output_dim] z1 = z[:, self.output_dim: 2 * self.output_dim] z2 = z[:, 2 * self.output_dim: 3 * self.output_dim] z3 = z[:, 3 * self.output_dim:] else: if self.consume_less == 'cpu': x_i = x[:, :self.output_dim] x_f = x[:, self.output_dim: 2 * self.output_dim] x_c = x[:, 2 * self.output_dim: 3 * self.output_dim] x_o = x[:, 3 * self.output_dim:] elif self.consume_less == 'mem': x_i = K.dot(x * B_W[0], self.W_i) + self.b_i x_f = K.dot(x * B_W[1], self.W_f) + self.b_f x_c = K.dot(x * B_W[2], self.W_c) + self.b_c x_o = K.dot(x * B_W[3], self.W_o) + self.b_o else: raise Exception('Unknown `consume_less` mode.') z0 = x_i + K.dot(h_tm1 * B_U[0], self.U_i) + K.dot(z_hat, self.Z_i) z1 = x_f + K.dot(h_tm1 * B_U[1], self.U_f) + K.dot(z_hat, self.Z_f) z2 = x_c + K.dot(h_tm1 * B_U[2], self.U_c) + K.dot(z_hat, self.Z_c) z3 = x_o + K.dot(h_tm1 * B_U[3], self.U_o) + K.dot(z_hat, self.Z_o) i = self.inner_activation(z0) f = self.inner_activation(z1) c = f * c_tm1 + i * self.activation(z2) o = self.inner_activation(z3) h = o * self.activation(c) if self.output_alpha: return alpha, [h, c] else: return h, [h, c] def get_constants(self, x_input, x_attn, mask_attn): constants = super().get_constants(x_input) attn_shape = self.input_spec[1].shape if mask_attn is not None: if K.ndim(mask_attn) == 3: mask_attn = K.all(mask_attn, axis=-1) constants.append(x_attn) constants.append(mask_attn) return constants def get_config(self): cfg = super().get_config() cfg['output_alpha'] = self.output_alpha cfg['attn_activation'] = self.attn_activation.__name__ return cfg @classmethod def from_config(cls, config): instance = super(AttentionLSTM, cls).from_config(config) if 'output_alpha' in config: instance.output_alpha = config['output_alpha'] if 'attn_activation' in config: instance.attn_activation = activations.get(config['attn_activation']) return instance
import os if not os.environ.get("AZURE_TESTING") and not is_re_worker_active(): new_user() show_global_para() run_pdf() read_calib_file_new() # read file from: /nsls2/data/fxi-new/legacy/log/calib_new.csv # check_latest_scan_id(init_guess=60000, search_size=100)
"""Hello World Class.""" class HelloWorld: """Class Hello World!""" def __init__(self, my_name="Hello World!"): """Initializer for the HelloWorld class""" self.my_name = my_name def print_name(self): """Prints the value of my_name""" print(str(self.my_name))
__version__ = "0.1.0" from .config import Config from .database import Database __all__ = ["Database", "Config"]
from dcache_nagios_plugins.urlopen import urlopen try: from xml.etree import cElementTree as etree except ImportError: from xml.etree import ElementTree as etree # The full XML data is available from /info. The document is wrappend in # dCache. Subelements can also be fetched independently under a sub-URL # composed from the element names, at least down to a certain level. The # toplevel elements are: # # doors # summary # linkgroups # unitgroups # domains # links # nas # pools # units # reservations # poolgroups class DCacheTags(object): def __getattr__(self, name): return '{http://www.dcache.org/2008/01/Info}' + name DCACHE = DCacheTags() class PoolInfo(object): def __init__(self, name): self.name = name self.enabled = None self.read_only = None self.last_heartbeat = None self.poolgrouprefs = [] self.space_total = None self.space_break_even = None self.space_precious = None self.space_removable = None self.space_gap = None self.space_LRU_seconds = None self.space_used = None self.space_free = None class PoolgroupInfo(object): def __init__(self, name, linkrefs=None, poolrefs=None): self.name = name self.linkrefs = linkrefs or [] self.space_total = None self.space_free = None self.space_removable = None self.space_precious = None self.space_used = None self.poolrefs = poolrefs or [] @property def available_space(self): return self.space_removable + self.space_free @property def nonprecious_space(self): return self.space_total - self.space_precious def __repr__(self): return 'PoolgroupInfo(%r, %d, %d, %d, %d, %d, {%s}, {%s})' \ % (self.name, self.space_total, self.space_free, self.space_removable, self.space_precious, self.space_used, ', '.join(self.linkrefs), ', '.join(self.poolrefs)) def _scan_metric(metric_elt): t = metric_elt.get('type') s = metric_elt.text if t == 'boolean': x = {'true': True, 'false': False}[s] elif t == 'integer': x = int(s) elif t == 'float': x = float(s) else: raise AssertionError('Unsupported type %s.'%t) return (metric_elt.get('name'), x) def load_pools(url, certkey=None, cert=None): fh = urlopen(url, certkey = certkey, cert = cert) doc = etree.parse(fh) for e_p in doc.findall('.//' + DCACHE.pools + '/' + DCACHE.pool): name = e_p.get('name') metrics = dict(map(_scan_metric, e_p.findall(DCACHE.metric))) p = PoolInfo(name) p.enabled = metrics.get('enabled') p.read_only = metrics.get('read-only') p.last_heartbeat = metrics.get('last-heartbeat') p.poolgrouprefs = [e.get('name') for e in e_p.findall(DCACHE.poolgroups + '/' + DCACHE.poolgroupref)] e_space = e_p.find(DCACHE.space) if e_space: space_metrics = dict(map(_scan_metric, e_space.findall(DCACHE.metric))) p.space_total = space_metrics.get('total') p.space_break_even = space_metrics.get('break-even') p.space_precious = space_metrics.get('precious') p.space_removable = space_metrics.get('removable') p.space_gap = space_metrics.get('gap') p.space_LRU_seconds = space_metrics.get('LRU-seconds') p.space_used = space_metrics.get('used') p.space_free = space_metrics.get('free') yield p fh.close() def load_pool(url, certkey = None, cert = None): pools = list(load_pools(url, certkey = certkey, cert = cert)) if len(pools) == 1: return pools[0] elif len(pools) == 0: return None else: raise RuntimeError('Request for single pool gave %d results.' % len(pools)) def load_domain_poolnames(info_url, certkey=None, cert = None): fh = urlopen(info_url + '/domains', certkey = certkey, cert = cert) doc = etree.parse(fh) for domain_ele in doc.findall(DCACHE.domains + '/' + DCACHE.domain): dn = domain_ele.get('name') pns = set() for pool_ele in domain_ele.findall(DCACHE.cells + '/' + DCACHE.cell): for metric_ele in pool_ele.findall(DCACHE.metric): if metric_ele.get('name') == 'class': if metric_ele.text == 'Pool': pns.add(pool_ele.get('name')) break if len(pns) > 0: yield dn, pns fh.close() def load_domain_of_pool_dict(info_url, certkey = None, cert = None): data = load_domain_poolnames(info_url, certkey = certkey, cert = cert) return dict((pn, dn) for dn, pns in data for pn in pns) def load_pools_of_domain_dict(info_url, certkey = None, cert = None): data = load_domain_poolnames(info_url, certkey = certkey, cert = cert) return dict((dn, pns) for dn, pns in data) def load_poolgroups(url, certkey = None, cert = None): fh = urlopen(url, certkey = certkey, cert = cert) doc = etree.parse(fh) for e_g in doc.findall('.//' + DCACHE.poolgroup): name = e_g.get('name') linkrefs = [e.get('name') for e in e_g.findall(DCACHE.links + '/' + DCACHE.linkref)] poolrefs = [e.get('name') for e in e_g.findall(DCACHE.pools + '/' + DCACHE.poolref)] space = dict(map(_scan_metric, e_g.findall(DCACHE.space+'/'+DCACHE.metric))) pg = PoolgroupInfo(name, linkrefs = linkrefs, poolrefs = poolrefs) pg.space_total = space['total'] pg.space_free = space['free'] pg.space_removable = space['removable'] pg.space_precious = space['precious'] pg.space_used = space['used'] yield pg fh.close() def load_poolgroup(url, certkey = None, cert = None): poolgroups = list(load_poolgroups(url, certkey = certkey, cert = cert)) if len(poolgroups) == 1: return poolgroups[0] elif len(poolgroups) == 0: return None else: raise RuntimeError('Request for a single pool group gave %d entries.' % len(poolgroups))
import os from cs50 import SQL from flask import Flask, flash, redirect, render_template, request, session from flask_session import Session from tempfile import mkdtemp from werkzeug.exceptions import default_exceptions from werkzeug.security import check_password_hash, generate_password_hash from time import sleep from helpers import apology, login_required, lookup, usd # API_KEY: FEZQRI69L2T14I0I # export API_KEY=FEZQRI69L2T14I0I # Ensure environment variable is set if not os.environ.get("API_KEY"): raise RuntimeError("API_KEY not set") # Configure application app = Flask(__name__) # Ensure templates are auto-reloaded app.config["TEMPLATES_AUTO_RELOAD"] = True # Ensure responses aren't cached @app.after_request def after_request(response): response.headers["Cache-Control"] = "no-cache, no-store, must-revalidate" response.headers["Expires"] = 0 response.headers["Pragma"] = "no-cache" return response # Custom filter app.jinja_env.filters["usd"] = usd app.jinja_env.globals.update(usd=usd) # Configure session to use filesystem (instead of signed cookies) app.config["SESSION_FILE_DIR"] = mkdtemp() app.config["SESSION_PERMANENT"] = False app.config["SESSION_TYPE"] = "filesystem" Session(app) # Configure CS50 Library to use SQLite database db = SQL("sqlite:///finance.db") @app.route("/") @login_required def index(): """Show portfolio of stocks""" uid = session.get("user_id") # retrieves stock details from database cash = db.execute("SELECT cash FROM users WHERE id = :uid", uid=uid) portfolio = db.execute("SELECT * FROM portfolio WHERE id = :uid", uid=uid) add = cash[0]['cash'] value = {} # retrieves each record for a particular stock for record in portfolio: comp = record['company'] while True: look = lookup(comp) if look == None: sleep(2) continue value[comp] = look['price'] break add += value[comp] * record['stocks'] return render_template("index.html", cash=usd(cash[0]['cash']), portfolio=portfolio, value=value, add=usd(add)) @app.route("/buy", methods=["GET", "POST"]) @login_required def buy(): """Buy shares of stock""" if request.method == "POST": symbol = request.form.get("symbol") while True: company = lookup(symbol) if company == None: sleep(2) continue break shares = request.form.get("shares") # check for valid entry in form submission if company == None: return apology("Enter valid stock name") if not shares.isdigit() or int(shares) < 1 or shares == None: return apology("Enter valid share amount") uid = session.get("user_id") query = db.execute("SELECT username FROM users WHERE id = :uid", uid=uid) uname = query[0]['username'] cash = db.execute("SELECT cash FROM users WHERE id = :userid", userid=uid) total_price = company['price'] * float(shares) comp = company['symbol'] price = company['price'] # checks if enough cash is there to purchase the stock if cash[0]['cash'] > total_price: res = db.execute("SELECT * FROM portfolio WHERE id = :uid AND company = :comp", uid=uid, comp=comp) if len(res) == 0: db.execute("INSERT INTO portfolio (id, company, stocks) VALUES \ (:uid, :company, :stocks)", uid=uid, company=comp, stocks=shares) else: db.execute("UPDATE portfolio SET stocks = :stocks WHERE \ id = :uid AND company = :comp", stocks=int(shares) + res[0]['stocks'], uid=uid, comp=comp) db.execute("UPDATE users SET cash = cash - :total WHERE id = :uid", uid=uid, total=total_price) db.execute("INSERT INTO history (id, company, stocks, price) VALUES (:uid, :company, \ :stocks, :price)", uid=uid, company=comp, stocks=shares, price=price) else: return apology("Not enough cash left for your request") sleep(1) return redirect("/") else: return render_template("buy.html") @app.route("/history") @login_required def history(): """Show history of transactions""" uid = session.get("user_id") # gets history from a separate table for listing history = db.execute("SELECT * FROM history WHERE id = :uid", uid=uid) return render_template("history.html", history=history) @app.route("/login", methods=["GET", "POST"]) def login(): """Log user in""" # Forget any user_id session.clear() # User reached route via POST (as by submitting a form via POST) if request.method == "POST": # Ensure username was submitted if not request.form.get("username"): return apology("must provide username", 403) # Ensure password was submitted elif not request.form.get("password"): return apology("must provide password", 403) # Query database for username rows = db.execute("SELECT * FROM users WHERE username = :username", username=request.form.get("username")) # Ensure username exists and password is correct if len(rows) != 1 or not check_password_hash(rows[0]["hash"], request.form.get("password")): return apology("invalid username and/or password", 403) # Remember which user has logged in session["user_id"] = rows[0]["id"] # Redirect user to home page return redirect("/") # User reached route via GET (as by clicking a link or via redirect) else: return render_template("login.html") @app.route("/logout") def logout(): """Log user out""" # Forget any user_id session.clear() # Redirect user to login form return redirect("/") @app.route("/quote", methods=["GET", "POST"]) @login_required def quote(): """Get stock quote.""" if request.method == "POST": qte = lookup(request.form.get("symbol")) if qte == None: return apology("INVALID REQUEST") else: return render_template("quoted.html", qte=qte) else: return render_template("quote.html") @app.route("/reset", methods=["GET", "POST"]) @login_required def reset(): """Resets Password""" if request.method == "POST": oldpass = request.form.get("oldpass") newpass = request.form.get("newpass") uid = session.get("user_id") if not oldpass: return apology("Enter old password") if not newpass: return apology("Enter new password") row = db.execute("SELECT * FROM users WHERE id = :uid", uid=uid) oldhash = row[0]['hash'] newhash = generate_password_hash(newpass) # checks if old password matches for verification if not check_password_hash(oldhash, oldpass): return apology("Passwords don't match") db.execute("UPDATE users SET hash = :newhash WHERE id = :uid", newhash=newhash, uid=uid) sleep(1) return redirect("/") else: return render_template("reset.html") @app.route("/register", methods=["GET", "POST"]) def register(): """Register user""" session.clear() if request.method == "POST": name = request.form.get("username") password = request.form.get("password") confirm = request.form.get("confirmation") if not name: return apology("Username Required") if not password: return apology("Password Required") if not confirm: return apology("Confirmation Required") if password != confirm: return apology("Passwords not matching") passhash = generate_password_hash(password) result = db.execute("INSERT INTO users (username, hash) VALUES (:username, :hash)", username=name, hash=passhash) if not result: return apology("User already exits") return redirect("/") return render_template("register.html") @app.route("/sell", methods=["GET", "POST"]) @login_required def sell(): """Sell shares of stock""" if request.method == "POST": symbol = request.form.get("symbol") if symbol == None: return apology("Select stock") shares = request.form.get("shares") if not shares.isdigit() or int(shares) < 1 or shares == None: return apology("Enter valid share amount") while True: company = lookup(symbol) if company == None: sleep(2) continue break uid = session.get("user_id") query = db.execute("SELECT username FROM users WHERE id = :uid", uid=uid) uname = query[0]['username'] cash = db.execute("SELECT cash FROM users WHERE id = :userid", userid=uid) comp = request.form.get("symbol") res = db.execute("SELECT * FROM portfolio WHERE id = :uid AND company = :comp", uid=uid, comp=comp) if res[0]['stocks'] >= int(shares): price = company['price'] total_price = company['price'] * float(shares) db.execute("UPDATE portfolio SET stocks = :stocks WHERE \ id = :uid AND company = :comp", stocks=res[0]['stocks'] - int(shares), uid=uid, comp=comp) db.execute("UPDATE users SET cash = cash + :total WHERE id = :uid", uid=uid, total=total_price) db.execute("INSERT INTO history (id, company, stocks, price) VALUES (:uid, :company, \ :stocks, :price)", uid=uid, company=comp, stocks=int(shares) * -1, price=price) else: return apology("Not enough shares with you") sleep(1) return redirect("/") else: uid = session.get("user_id") query = db.execute("SELECT * FROM portfolio WHERE id = :uid", uid=uid) companies = [] for company in query: companies.append(company['company']) return render_template("sell.html", companies=companies) def errorhandler(e): """Handle error""" return apology(e.name, e.code) # listen for errors for code in default_exceptions: app.errorhandler(code)(errorhandler)
#!/usr/bin/env python # -*- coding: utf-8 -*-\ import os import unittest os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import tensorlayerx import tensorlayerx as tlx import numpy as np from tests.utils import CustomTestCase class Layer_nested(CustomTestCase): @classmethod def setUpClass(cls): print("##### begin testing nested layer #####") @classmethod def tearDownClass(cls): pass def test_nested_layer_with_inchannels(cls): class MyLayer(tensorlayerx.nn.Module): def __init__(self, name=None): super(MyLayer, self).__init__(name=name) self.input_layer = tlx.nn.Linear(in_features=50, out_features=20) self.build(None) self._built = True def build(self, inputs_shape=None): self.W = self._get_weights('weights', shape=(20, 10)) def forward(self, inputs): inputs = self.input_layer(inputs) output = tlx.ops.matmul(inputs, self.W) return output class model(tensorlayerx.nn.Module): def __init__(self, name=None): super(model, self).__init__(name=name) self.layer = MyLayer() def forward(self, inputs): return self.layer(inputs) input = tlx.nn.Input(shape=(100, 50)) model_dynamic = model() model_dynamic.set_train() cls.assertEqual(model_dynamic(input).shape, (100, 10)) cls.assertEqual(len(model_dynamic.all_weights), 3) cls.assertEqual(len(model_dynamic.trainable_weights), 3) model_dynamic.layer.input_layer.b.assign_add(tlx.ones((20, ))) cls.assertEqual(np.sum(model_dynamic.all_weights[-1].numpy() - tlx.ones(20, ).numpy()), 0) if __name__ == '__main__': tlx.logging.set_verbosity(tlx.logging.DEBUG) unittest.main()
""" lokalise.models.translation ~~~~~~~~~~~~~~~~~~~~~~~~~~~ Module containing translation model. """ from .base_model import BaseModel class TranslationModel(BaseModel): """Describes translation model. """ DATA_KEY = 'translation' ATTRS = [ 'translation_id', 'key_id', 'language_iso', 'modified_at', 'modified_at_timestamp', 'modified_by', 'modified_by_email', 'translation', 'is_fuzzy', 'is_reviewed', 'reviewed_by', 'words', 'custom_translation_statuses', 'task_id' ]
from django.contrib.auth.models import User from django.forms import model_to_dict from django.urls import include, path, reverse from rest_framework import status from rest_framework.test import APITestCase, URLPatternsTestCase, APIClient from oldp.apps.annotations.models import AnnotationLabel, CaseAnnotation class AnnotationsAPITestCase(APITestCase, URLPatternsTestCase): fixtures = [ 'users/with_password_unittest.json', # password=unittest 'locations/countries.json', 'locations/states.json', 'locations/cities.json', 'courts/courts.json', 'cases/cases.json', 'annotations/labels.json', ] urlpatterns = [ path('api/', include('oldp.api.urls')), ] username = 'test' password = 'test' dummy_label = AnnotationLabel( name='Some label', slug='some-label', trusted=False, private=True, ) dummy_annotation = CaseAnnotation( belongs_to_id=1, label_id=2, value_str='Some annotation value' ) def setUp(self): self.user = User.objects.create_user(self.username, '[email protected]', self.password) self.admin_client = APIClient() self.admin_client.force_authenticate(user=User.objects.get(pk=1)) self.owner_client = APIClient() self.owner_client.force_authenticate(user=User.objects.get(pk=2)) super().setUp() def tearDown(self): self.user.delete() super().tearDown() def test_create_case_annotation(self): dummy_data = model_to_dict(self.dummy_annotation) res = self.owner_client.post(reverse('caseannotation-list'), data=dummy_data, format='json') self.assertEqual(res.status_code, status.HTTP_201_CREATED) created_id = res.data['id'] # second time -> expect error: duplicated annotation res = self.owner_client.post(reverse('caseannotation-list'), data=dummy_data, format='json') # print(res.data['label']) self.assertEqual(res.status_code, status.HTTP_400_BAD_REQUEST) self.assertTrue('label' in res.data, 'Error should be for `label` field') def test_create_case_annotation_as_guest(self): dummy_data = model_to_dict(self.dummy_annotation) res = self.client.post(reverse('caseannotation-list'), data=dummy_data, format='json') self.assertEqual(res.status_code, status.HTTP_401_UNAUTHORIZED) def test_read_as_guest(self): # GET list res = self.client.get(reverse('annotationlabel-list'), format='json') self.assertEqual(res.status_code, status.HTTP_200_OK) self.assertEqual(len(res.data['results']), 1) # print(res.data['results']) # GET public res = self.client.get(reverse('annotationlabel-detail', args=(1, )), format='json') self.assertEqual(res.status_code, status.HTTP_200_OK) # GET private res = self.client.get(reverse('annotationlabel-detail', args=(2,)), format='json') self.assertEqual(res.status_code, status.HTTP_404_NOT_FOUND) def test_read_as_owner(self): res = self.owner_client.get(reverse('annotationlabel-list'), format='json') # print(res.data) self.assertEqual(len(res.data['results']), 3) # GET private res = self.owner_client.get(reverse('annotationlabel-detail', args=(2,)), format='json') self.assertEqual(res.status_code, status.HTTP_200_OK) def test_write_as_guest(self): # Create res = self.client.post(reverse('annotationlabel-list'), data=model_to_dict(self.dummy_label), format='json') self.assertEqual(res.status_code, status.HTTP_401_UNAUTHORIZED) # Update res = self.client.put(reverse('annotationlabel-detail', args=(2,))) self.assertEqual(res.status_code, status.HTTP_401_UNAUTHORIZED) # Delete res = self.client.delete(reverse('annotationlabel-detail', args=(2,))) self.assertEqual(res.status_code, status.HTTP_401_UNAUTHORIZED) def test_write_as_owner(self): dummy_data = model_to_dict(self.dummy_label) # Create res = self.owner_client.post(reverse('annotationlabel-list'), data=dummy_data, format='json') self.assertEqual(res.status_code, status.HTTP_201_CREATED) created_id = res.data['id'] # Partial update updated_name = 'Updated name' res = self.owner_client.patch(reverse('annotationlabel-detail', args=(created_id,)), data={'name': updated_name}, format='json') self.assertEqual(res.status_code, status.HTTP_200_OK) self.assertEqual(res.data['name'], updated_name) # Delete res = self.owner_client.delete(reverse('annotationlabel-detail', args=(created_id,))) self.assertEqual(res.status_code, status.HTTP_204_NO_CONTENT) # Get to deleted item res = self.owner_client.get(reverse('annotationlabel-detail', args=(created_id,))) self.assertEqual(res.status_code, status.HTTP_404_NOT_FOUND)
from . import expedia from . import scraper import datetime import requests import json def timeScorer(s): if "pm" in s: if len(s) == 7: hours = int(s[0:2]) minutes = int(s[3:5]) else : hours = int(s[0:1]) minutes = int(s[2:4]) score = hours * 60 + minutes + 720 else : if len(s) == 7: hours = int(s[0:2]) minutes = int(s[3:5]) else : hours = int(s[0:1]) minutes = int(s[2:4]) score = hours * 60 + minutes return score def getTime(s): return s.get('flight_hour') * 60 def getDistance(org, dest): URL = "https://www.distance24.org/route.json?stops=" URL = URL + org + "|" + dest r = requests.get(url = URL) data = r.json() return data["distance"] def mergeSort(arr): if len(arr) >1: mid = len(arr)//2 #Finding the mid of the array L = arr[:mid] # Dividing the array elements R = arr[mid:] # into 2 halves mergeSort(L) # Sorting the first half mergeSort(R) # Sorting the second half i = j = k = 0 # Copy data to temp arrays L[] and R[] while i < len(L) and j < len(R): if L[i]["rank"] < R[j]["rank"]: arr[k] = L[i] i+=1 else: arr[k] = R[j] j+=1 k+=1 # Checking if any element was left while i < len(L): arr[k] = L[i] i+=1 k+=1 while j < len(R): arr[k] = R[j] j+=1 k+=1 def runner(source, destination, date, weight_time, weight_price): formatDate = datetime.datetime.strptime(date, "%d/%m/%Y").strftime("%Y-%m-%d") scraper.callPeoria(formatDate) busses = [] busses = scraper.peoria(formatDate) flights = expedia.parse(source,destination,date) pairings = [] fuel = getDistance(source, destination) for bus in busses: busTime = timeScorer(bus) for flight in flights: flightTime = timeScorer(flight.get('departure_time')) if (flightTime - busTime) > 420 and (flightTime - busTime) < 600: pairingCurrent = { 'departure_airport':flight.get('departure_airport'), 'departure_time':flight.get('departure_time'), 'price': flight.get('price'), 'aircraft':flight.get('aircraft'), 'flight_number': flight.get('flight_number'), 'airline': flight.get('airline'), 'arrival_airport': flight.get('arrival_airport'), 'arrival_time':flight.get('arrival_time'), 'bus_time': bus, 'flight_hour': flight.get('flight_hour'), 'flight_minute': flight.get('flight_minute'), 'rank': 0.0, 'fuel': 0.0 } file = open("projectFly/assets/FlightFuelData.json", "r") flightData = json.loads(file.read()) pairingCurrent["fuel"] = float(fuel) / 100.0 for x in range(0,len(flightData)): if flightData[x]["model"] == pairingCurrent["aircraft"]: pairingCurrent["fuel"] = float(fuel) * float(flightData[x]["fuel"]) / 100.0 break pairings.append(pairingCurrent) sum_price = 0 sum_time = 0 sorted = [] for x in range(0,len(pairings)): sum_time = sum_time + float(pairings[x]["flight_hour"]) sum_price = sum_price + float(pairings[x]["price"]) average_time = float(sum_time)/float(len(pairings)) average_price = float(sum_price)/float(len(pairings)) print(average_price) print(average_time) for x in range(0,len(pairings)): pairings[x]["rank"] = ((float(pairings[x]["flight_hour"])) * weight_time / average_time) + ((float(pairings[x]["price"])) * weight_price / average_price) mergeSort(pairings) for x in range(0,len(pairings)): print(pairings[x]["rank"]) return pairings
import numpy as np import argparse parser = argparse.ArgumentParser() parser.add_argument('-n', type=int, help='number of iterations') parser.add_argument('-x', type=float, help='X0') parser.add_argument('-s', type=float, help='step') parser.add_argument('-a', type=str, help='calculate automaticaly') parser.add_argument('-m', type=float, help='maximum x value') parser.add_argument('-e', type=float, help='epsilon') args = parser.parse_args() auto = False A = np.array([[-500.005, 499.995], [499.995, -500.005]]) N = 10000 x = 0 xmax = 800 h = 0.001 eps = 0.00001 if args.n: N = args.n if args.x: x = args.x if args.s: h = args.s if args.a: auto = False if 'False' == args.a else 'True' if args.m: xmax = args.m if args.e: eps = args.e p = 2 # порядок метода def U(x): a1 = np.array([[1], [1]]) # вектор (1, 1) a2 = np.array([[1], [-1]]) # вектор (1, -1) temp1 = np.multiply(10.0, a1) # умножение 10 на вектор (1, 1) temp1 = np.multiply(temp1, np.exp(-0.01 * x)) # умножение полученного вектора на 'e' в степени -0.01 * х temp2 = np.multiply(3.0, a2) # умножение 3 на вектор (1, -1) temp2 = np.multiply(temp2, np.exp(-1000 * x)) # умножение полученного вектора на 'e' в степени -1000 * х return np.subtract(temp1, temp2) # вычитание из первого полученного вектора второго полученного вектора def rk(v, h): E = np.array([[1, 0], [0, 1]]) # единичная матрица 2х2 temp = np.multiply(h / 2, A) # умножение половины шага на матрицу А temp = np.subtract(E, temp) # вычитание из единичной матрицы полученной матрицы temp = np.linalg.inv(temp) # обратная матрица temp = np.multiply(h, temp) # умножение шага на обратную матрицу temp = temp.dot(A.dot(v)) # умножение матрицы А на вектор v return np.add(v, temp) # сложение вектора v и полученного вектора temp v = U(x) print('i: ' + str(0) + ', ' \ 'x: ' + str(x) + ', ' \ 'h: ' + str(h) + ', ' \ 'v:' + '[' + str(float(v[0])) + ', ' + str(float(v[1])) + ']\n') Hprev = h Vstep = v.copy() Vhalf = v.copy() Vprev = v.copy() i = 1 c1 = 0 c2 = 0 max_dif = 0 while i <= N: Hprev = h Vstep = rk(Vprev, h) Vhalf = rk(Vprev, h * 0.5) Vhalf = rk(Vhalf, h * 0.5) S1 = float((Vhalf[0] - Vstep[0]) / (np.power(2, p) - 1)) S2 = float((Vhalf[1] - Vstep[1]) / (np.power(2, p) - 1)) S = S1 if np.abs(S1) > np.abs(S2) else S2 e = U(x + h) x += h if np.abs(S) > eps: x -= h h *= 0.5 c1 += 1 continue elif np.abs(S) < (eps / np.power(2, p + 1)): c2 += 1 h *= 2.0 print('\n\ni: ' + str(i) + ', x: ' + str(x) + ', h: ' + str(Hprev) + ':\n') print('Решение, вычисленное неявным методом 2 порядка:\n') print('\t' + '[' + str(float(Vstep[0])) + ', ' + str(float(Vstep[1])) + ']\n') print('Точное решение в точке х:\n') print('\t[' + str(float(e[0])) + ', ' + str(float(e[1])) + ']\n') print('|V(x) - Vточ(x)|:\n') print('\t[' + str(abs(float(e[0]) - float(Vstep[0]))) + ', ' + str(abs(float(e[1]) - float(Vstep[1]))) + ']\n') print('||V(x) - Vточ(x)||:\n') print('\t' + str(np.power(np.linalg.norm(np.subtract(e, Vstep)), 2)), '\n') print('S в точке x:\n') print('\t' + str(S), '\n') if not auto: string = input() if 'auto' == string: auto = True if x >= xmax: break Vprev = Vstep i += 1 if np.power(np.linalg.norm(np.subtract(e, Vstep)), 2) > max_dif: max_dif = np.power(np.linalg.norm(np.subtract(e, Vstep)), 2) print('\n\nmax||V(x) - Vточ(x)||:\n') print('\t' + str(max_dif), '\n') print('Уменьшений шага:', c1) print('Увеличений шага:', c2) print() exit(0)
#!/usr/bin/env python # -*- coding: utf-8 -*- import vtk def main(): colors = vtk.vtkNamedColors() # Set the background color. colors.SetColor("BkgColor", [26, 51, 102, 255]) surface = vtk.vtkParametricSuperEllipsoid() source = vtk.vtkParametricFunctionSource() renderer = vtk.vtkRenderer() mapper = vtk.vtkPolyDataMapper() actor = vtk.vtkActor() backProperty = vtk.vtkProperty() backProperty.SetColor(colors.GetColor3d("Tomato")) # Create a parametric function source, renderer, mapper, and actor source.SetParametricFunction(surface) mapper.SetInputConnection(source.GetOutputPort()) actor.SetMapper(mapper) actor.SetBackfaceProperty(backProperty) actor.GetProperty().SetDiffuseColor(colors.GetColor3d("Banana")) actor.GetProperty().SetSpecular(.5) actor.GetProperty().SetSpecularPower(20) renderWindow = vtk.vtkRenderWindow() renderWindow.SetWindowName("Parametric Objects Super Ellipsoid Demo") renderWindow.AddRenderer(renderer) renderWindow.SetSize(640, 480) renderer.AddActor(actor) renderer.SetBackground(colors.GetColor3d("BkgColor")) renderer.ResetCamera() renderer.GetActiveCamera().Azimuth(30) renderer.GetActiveCamera().Elevation(-30) renderer.GetActiveCamera().Zoom(0.9) renderer.ResetCameraClippingRange() interactor = vtk.vtkRenderWindowInteractor() interactor.SetRenderWindow(renderWindow) # Setup a slider widget for each varying parameter tubeWidth = 0.008 sliderLength = 0.008 titleHeight = 0.04 labelHeight = 0.04 sliderRepN1 = vtk.vtkSliderRepresentation2D() sliderRepN1.SetMinimumValue(0.0) sliderRepN1.SetMaximumValue(4.0) sliderRepN1.SetValue(1.0) sliderRepN1.SetTitleText("Z squareness") sliderRepN1.GetPoint1Coordinate().SetCoordinateSystemToNormalizedDisplay() sliderRepN1.GetPoint1Coordinate().SetValue(.1, .1) sliderRepN1.GetPoint2Coordinate().SetCoordinateSystemToNormalizedDisplay() sliderRepN1.GetPoint2Coordinate().SetValue(.9, .1) sliderRepN1.SetTubeWidth(tubeWidth) sliderRepN1.SetSliderLength(sliderLength) sliderRepN1.SetTitleHeight(titleHeight) sliderRepN1.SetLabelHeight(labelHeight) sliderWidgetN1 = vtk.vtkSliderWidget() sliderWidgetN1.SetInteractor(interactor) sliderWidgetN1.SetRepresentation(sliderRepN1) sliderWidgetN1.SetAnimationModeToAnimate() sliderWidgetN1.EnabledOn() sliderWidgetN1.AddObserver(vtk.vtkCommand.InteractionEvent, SliderCallbackN1(surface)) sliderRepN2 = vtk.vtkSliderRepresentation2D() sliderRepN2.SetMinimumValue(0.0001) sliderRepN2.SetMaximumValue(4.0) sliderRepN2.SetValue(1.0) sliderRepN2.SetTitleText("XY squareness") sliderRepN2.GetPoint1Coordinate().SetCoordinateSystemToNormalizedDisplay() sliderRepN2.GetPoint1Coordinate().SetValue(.1, .9) sliderRepN2.GetPoint2Coordinate().SetCoordinateSystemToNormalizedDisplay() sliderRepN2.GetPoint2Coordinate().SetValue(.9, .9) sliderRepN2.SetTubeWidth(tubeWidth) sliderRepN2.SetSliderLength(sliderLength) sliderRepN2.SetTitleHeight(titleHeight) sliderRepN2.SetLabelHeight(labelHeight) sliderWidgetN2 = vtk.vtkSliderWidget() sliderWidgetN2.SetInteractor(interactor) sliderWidgetN2.SetRepresentation(sliderRepN2) sliderWidgetN2.SetAnimationModeToAnimate() sliderWidgetN2.EnabledOn() sliderWidgetN2.AddObserver(vtk.vtkCommand.InteractionEvent, SliderCallbackN2(surface)) sliderRepMinimumV = vtk.vtkSliderRepresentation2D() sliderRepN1.SetMinimumValue(.0001) sliderRepMinimumV.SetMaximumValue(.9999 * vtk.vtkMath.Pi()) sliderRepMinimumV.SetValue(.0001) sliderRepMinimumV.SetTitleText("V min") sliderRepMinimumV.GetPoint1Coordinate().SetCoordinateSystemToNormalizedDisplay() sliderRepMinimumV.GetPoint1Coordinate().SetValue(.1, .1) sliderRepMinimumV.GetPoint2Coordinate().SetCoordinateSystemToNormalizedDisplay() sliderRepMinimumV.GetPoint2Coordinate().SetValue(.1, .9) sliderRepMinimumV.SetTubeWidth(tubeWidth) sliderRepMinimumV.SetSliderLength(sliderLength) sliderRepMinimumV.SetTitleHeight(titleHeight) sliderRepMinimumV.SetLabelHeight(labelHeight) surface.SetN1(1.0) surface.SetN2(1.0) renderer.ResetCamera() renderer.GetActiveCamera().Azimuth(30) renderer.GetActiveCamera().Elevation(-30) renderer.GetActiveCamera().Zoom(0.9) renderer.ResetCameraClippingRange() renderWindow.Render() interactor.Initialize() interactor.Start() # These callbacks do the actual work. # Callbacks for the interactions class SliderCallbackN1(): def __init__(self, superEllipsoid): self.superEllipsoid = superEllipsoid def __call__(self, caller, ev): sliderWidget = caller value = sliderWidget.GetRepresentation().GetValue() self.superEllipsoid.SetN1(value) class SliderCallbackN2(): def __init__(self, superEllipsoid): self.superEllipsoid = superEllipsoid def __call__(self, caller, ev): sliderWidget = caller value = sliderWidget.GetRepresentation().GetValue() self.superEllipsoid.SetN2(value) if __name__ == '__main__': main()
from flask import Flask from flask_limiter import Limiter from flask_limiter.util import get_ipaddr as get_remote_address from core import config limiter = Limiter(key_func=get_remote_address) def init_limiter(app: Flask): app.config["RATELIMIT_DEFAULT"] = config.RATELIMIT_DEFAULT app.config["RATELIMIT_STORAGE_URL"] = config.RATELIMIT_STORAGE_URL app.config["RATELIMIT_HEADERS_ENABLED"] = config.RATELIMIT_HEADERS_ENABLED app.config["RATELIMIT_IN_MEMORY_FALLBACK"] = config.RATELIMIT_IN_MEMORY_FALLBACK app.config["RATELIMIT_KEY_PREFIX"] = config.RATELIMIT_KEY_PREFIX app.config["RATELIMIT_SWALLOW_ERRORS"] = config.RATELIMIT_SWALLOW_ERRORS limiter.init_app(app)
class Silly: def __setattr__(self, attr, value): if attr == "silly" and value == 7: raise AttributeError("you shall not set 7 for silly") super().__setattr__(attr, value) def __getattribute__(self, attr): if attr == "silly": return "Just Try and Change Me!" return super().__getattribute__(attr) @property def silly(self): "This is a silly property" print("You are getting silly") return self._silly @silly.setter def silly(self, value): print("You are making silly {}".format(value)) self._silly = value @silly.deleter def silly(self): print("Whoa, you killed silly!") del self._silly s = Silly() s.silly = 4 # setter print(s.silly) # getter
#!/usr/bin/python # ex:ts=4:sw=4:sts=4:et # -*- tab-width: 4; c-basic-offset: 4; indent-tabs-mode: nil -*- # The unittest framwork doesn't play nice with pylint: # pylint: disable-msg=C0103 from __future__ import absolute_import import unittest from svtplay_dl.service.tests import HandlesURLsTestMixin from svtplay_dl.service.oppetarkiv import OppetArkiv class handlesTest(unittest.TestCase, HandlesURLsTestMixin): service = OppetArkiv urls = { 'ok': [ "http://www.oppetarkiv.se/video/1129844/jacobs-stege-avsnitt-1-av-1" ], 'bad': [ "http://www.svtplay.se/video/1090393/del-9" ] }
# kdtree的具体实现,包括构建和查找 import random import math import numpy as np from result_set import KNNResultSet, RadiusNNResultSet # Node类,Node是tree的基本组成元素 class Node: def __init__(self, axis, value, left, right, point_indices): self.axis = axis self.value = value self.left = left self.right = right self.point_indices = point_indices def is_leaf(self): if self.value is None: return True else: return False def __str__(self): output = '' output += 'axis %d, ' % self.axis if self.value is None: output += 'split value: leaf, ' else: output += 'split value: %.2f, ' % self.value output += 'point_indices: ' output += str(self.point_indices.tolist()) return output # 功能:构建树之前需要对value进行排序,同时对一个的key的顺序也要跟着改变 # 输入: # key:键 # value:值 # 输出: # key_sorted:排序后的键 # value_sorted:排序后的值 def sort_key_by_value(key, value): assert key.shape == value.shape assert len(key.shape) == 1 sorted_idx = np.argsort(value) key_sorted = key[sorted_idx] value_sorted = value[sorted_idx] return key_sorted, value_sorted def axis_round_robin(axis, dim): if axis == dim-1: return 0 else: return axis + 1 def axis_by_variance(data): vars = np.var(data, axis=0) return np.argmax(vars) # 功能:通过递归的方式构建树 # 输入: # root: 树的根节点 # db: 点云数据 # point_indices:排序后的键 # axis: scalar # leaf_size: scalar # 输出: # root: 即构建完成的树 def kdtree_recursive_build(root, db, point_indices, axis, leaf_size, axis_method): if root is None: root = Node(axis, None, None, None, point_indices) # determine whether to split into left and right if len(point_indices) > leaf_size: # --- get the split position --- point_indices_sorted, _ = sort_key_by_value(point_indices, db[point_indices, axis]) # M # 作业1 # 屏蔽开始 middle_left_idx = math.ceil(point_indices_sorted.shape[0] / 2) - 1 # ceil ensure left idx wil >= 0, minus 1 ensure right idx will < n middle_left_point_idx = point_indices_sorted[middle_left_idx] middle_left_point_value = db[middle_left_point_idx, axis] # get middle value in target axis middle_right_idx = middle_left_idx + 1 middle_right_point_idx = point_indices_sorted[middle_right_idx] middle_right_point_value = db[middle_right_point_idx, axis] root.value = (middle_left_point_value + middle_right_point_value) * 0.5 next_axis_l = axis_round_robin(axis, db.shape[1]) next_axis_r = next_axis_l if axis_method == 'by_variance': if middle_right_point_idx > 0: next_axis_l = axis_by_variance(db[point_indices_sorted[0:middle_right_point_idx]]) if middle_right_point_idx < len(point_indices_sorted): next_axis_r = axis_by_variance(db[point_indices_sorted[middle_right_point_idx:]]) # --- get the split position --- # root.left = kdtree_recursive_build(root.left, db, point_indices_sorted[0:middle_right_idx], # [0: middle_right_idx) equal to [0:middle_left_idx] next_axis_l, leaf_size, axis_method=axis_method) root.right = kdtree_recursive_build(root.right, db, point_indices_sorted[middle_right_idx:], next_axis_r, leaf_size, axis_method=axis_method) # 屏蔽结束 return root # 功能:翻转一个kd树 # 输入: # root:kd树 # depth: 当前深度 # max_depth:最大深度 def traverse_kdtree(root: Node, depth, max_depth): depth[0] += 1 if max_depth[0] < depth[0]: max_depth[0] = depth[0] if root.is_leaf(): print(root) else: traverse_kdtree(root.left, depth, max_depth) traverse_kdtree(root.right, depth, max_depth) depth[0] -= 1 # 功能:构建kd树(利用kdtree_recursive_build功能函数实现的对外接口) # 输入: # db_np:原始数据 # leaf_size:scale # 输出: # root:构建完成的kd树 def kdtree_construction(db_np, leaf_size, axis_method='round_robin'): N, dim = db_np.shape[0], db_np.shape[1] if axis_method == 'round_robin': axis = 0 elif axis_method == 'by_variance': axis = axis_by_variance(db_np) else: raise NotImplementedError # build kd_tree recursively root = None root = kdtree_recursive_build(root, db_np, np.arange(N), axis, leaf_size=leaf_size, axis_method=axis_method) return root # 功能:通过kd树实现knn搜索,即找出最近的k个近邻 # 输入: # root: kd树 # db: 原始数据 # result_set:搜索结果 # query:索引信息 # 输出: # 搜索失败则返回False def kdtree_knn_search(root: Node, db: np.ndarray, result_set: KNNResultSet, query: np.ndarray): if root is None: return False if root.is_leaf(): # compare the contents of a leaf leaf_points = db[root.point_indices, :] diff = np.linalg.norm(np.expand_dims(query, 0) - leaf_points, axis=1) for i in range(diff.shape[0]): result_set.add_point(diff[i], root.point_indices[i]) return False # 作业2 # 提示:仍通过递归的方式实现搜索 # 屏蔽开始 if query[root.axis] <= root.value: # search space where query inside kdtree_knn_search(root.left, db, result_set, query) if math.fabs(query[root.axis] - root.value) < result_set.worstDist(): # search other space if worstDist is still large kdtree_knn_search(root.right, db, result_set, query) else: kdtree_knn_search(root.right, db, result_set, query) if math.fabs(query[root.axis] - root.value) < result_set.worstDist(): kdtree_knn_search(root.left, db, result_set, query) # 屏蔽结束 return False # 功能:通过kd树实现radius搜索,即找出距离radius以内的近邻 # 输入: # root: kd树 # db: 原始数据 # result_set:搜索结果 # query:索引信息 # 输出: # 搜索失败则返回False def kdtree_radius_search(root: Node, db: np.ndarray, result_set: RadiusNNResultSet, query: np.ndarray): if root is None: return False if root.is_leaf(): # compare the contents of a leaf leaf_points = db[root.point_indices, :] diff = np.linalg.norm(np.expand_dims(query, 0) - leaf_points, axis=1) for i in range(diff.shape[0]): result_set.add_point(diff[i], root.point_indices[i]) return False # 作业3 # 提示:通过递归的方式实现搜索 # 屏蔽开始 # same to knn search if query[root.axis] <= root.value: kdtree_radius_search(root.left, db, result_set, query) if math.fabs(query[root.axis] - root.value) < result_set.worstDist(): kdtree_radius_search(root.right, db, result_set, query) else: kdtree_radius_search(root.right, db, result_set, query) if math.fabs(query[root.axis] - root.value) < result_set.worstDist(): kdtree_radius_search(root.left, db, result_set, query) # 屏蔽结束 return False def main(): # configuration db_size = 64 dim = 3 leaf_size = 4 k = 1 db_np = np.random.rand(db_size, dim) root = kdtree_construction(db_np, leaf_size=leaf_size) depth = [0] max_depth = [0] traverse_kdtree(root, depth, max_depth) print("tree max depth: %d" % max_depth[0]) query = np.asarray([0, 0, 0]) result_set = KNNResultSet(capacity=k) kdtree_knn_search(root, db_np, result_set, query) print(result_set) diff = np.linalg.norm(np.expand_dims(query, 0) - db_np, axis=1) nn_idx = np.argsort(diff) nn_dist = diff[nn_idx] print(nn_idx[0:k]) print(nn_dist[0:k]) print("Radius search:") query = np.asarray([0, 0, 0]) result_set = RadiusNNResultSet(radius = 0.5) kdtree_radius_search(root, db_np, result_set, query) print(result_set) if __name__ == '__main__': main()
students = [] references = [] benefits = [] MODE_SPECIFIC = '1. SPECIFIC' MODE_HOSTEL = '2. HOSTEL' MODE_MCDM = '3. MCDM' MODE_REMAIN = '4. REMAIN'
from discord.ext import commands import cogs.inactive.lists.listconf as lc class Lists(commands.Cog): def __init__(self, bot): self.bot = bot self.lists = {} @commands.Cog.listener("on_ready") async def on_ready(self): """Load JSON lists when ready""" lc.backup_data() self.lists = lc.get_data() @commands.command(name="listnew", aliases=["newlist"]) @commands.cooldown(1, 5) async def list_new(self, ctx, *, list_name: str): """ Create a new list. """ if not str(ctx.author.id) in self.lists: self.lists.update({str(ctx.author.id): {}}) if list_name in self.lists[str(ctx.author.id)]: await ctx.send("That list already exists!") return list_name = list_name.lower() self.lists[str(ctx.author.id)].update({list_name: []}) lc.update_users(self.lists) lc.save_data() await ctx.send(f"Created new list `{list_name}`.") @commands.command(name="deletelist", aliases=["dellist", "listdelete"]) @commands.cooldown(1, 5) async def list_delete(self, ctx, *, list_name: str): """ Delete a list. """ try: list_name = list_name.lower() self.lists[str(ctx.author.id)].pop(list_name) lc.update_users(self.lists) lc.save_data() await ctx.send(f"Deleted list `{list_name}`.") except KeyError: await ctx.send("Invalid list!") @commands.command(name="listslist", aliases=["listlists", "lists"]) @commands.cooldown(1, 3) async def lists_list(self, ctx): """ List current user lists. """ try: user_lists = self.lists[str(ctx.author.id)] lists = f"{ctx.author.name}'s Lists\n\n" for t in sorted(user_lists): lists += f"- {t}\n" parts = [(lists[i:i + 750]) for i in range(0, len(lists), 750)] for part in parts: await ctx.send(f"```{part}```") except KeyError: await ctx.send("No lists available!") @commands.command(name="listview", aliases=["viewlist", "list"]) @commands.cooldown(1, 3) async def list_view(self, ctx, *, list_name: str): """ View a list. """ try: list_name = list_name.lower() list_content = self.lists[str(ctx.author.id)][list_name] content = f"{ctx.author.name}'s List - {list_name.capitalize()}\n\n" i = 0 for item in list_content: i += 1 content += f"{i} - {item}\n" parts = [(content[i:i + 1500]) for i in range(0, len(content), 1500)] for part in parts: await ctx.send(f"```{part}```") except KeyError: await ctx.send("No lists available!") @commands.command(name="listitemadd", aliases=["additem"]) @commands.cooldown(1, 3) async def list_item_add(self, ctx, list_name: str, *, item: str): """ Add an item to a list. """ list_name = list_name.lower() if not str(ctx.author.id) in self.lists: await ctx.send("No lists available!") return if list_name not in self.lists[str(ctx.author.id)]: await ctx.send("That list does not exist!") return current_content = self.lists[str(ctx.author.id)][list_name] current_content.append(item) self.lists[str(ctx.author.id)].update({list_name: current_content}) lc.update_users(self.lists) lc.save_data() await ctx.send(f"Added `{item}` to list `{list_name}`.") @commands.command(name="listitemdelete", aliases=["delitem"]) @commands.cooldown(1, 3) async def list_item_delete(self, ctx, list_name: str, item_num: int): """ Remove an item from a list. """ list_name = list_name.lower() if not str(ctx.author.id) in self.lists: await ctx.send("No lists available!") return if list_name not in self.lists[str(ctx.author.id)]: await ctx.send("That list does not exist!") return current_content = self.lists[str(ctx.author.id)][list_name] del current_content[item_num-1] self.lists[str(ctx.author.id)].update({list_name: current_content}) lc.update_users(self.lists) lc.save_data() await ctx.send(f"Removed item from list `{list_name}`.") def setup(bot): bot.add_cog(Lists(bot))
import uuid from src.model.SqliteObject import SqliteObject from src.server import databaseHandler class Session(SqliteObject): properties = [ "id", "name", "description" ] table = "session" def __init__(self, name=None, description=None, id=None): super(Session, self).__init__(id=id) self.name = name or "A Whiteboard Story" self.description = description or "Snowboard and the 7 stickyNotes" def get_latest_canvas(self): from src.model.Canvas import Canvas if self.database: c = self.database.cursor() else: c = databaseHandler().get_database().cursor() query = 'SELECT (id) FROM canvases WHERE session="{}" ORDER BY datetime(derivedAt) DESC LIMIT 1;'.format(self.id) c.execute(query) data = c.fetchone() if data is None: return None return Canvas.get(data[0]) def create_new_canvas(self): from src.model.Canvas import Canvas canvas = self.get_latest_canvas() if canvas is None: return Canvas(session=self.id) return canvas.clone()
"""Created by sgoswami on 3/23/17 as part of leetcode""" """The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility). P A H N A P L S I I G Y I R And then read line by line: 'PAHNAPLSIIGYIR' Write the code that will take a string and make this conversion given a number of rows: string convert(string text, int nRows)""" class Solution(object): def convert(self, s, numRows): """ :type s: str :type numRows: int :rtype: str """
from __future__ import print_function, absolute_import, unicode_literals, division import six from six.moves import (zip, filter, map, reduce, input, range) from IPython.core.display import Image as display_image from .dot import ( render_nx_as_dot, clear_formatting, format_graph_for_lifespan, format_graph_for_worm_counts, format_graph_for_true_counts, format_graph_for_moved ) from ..subgraph import nearby, neartime def look(graph, target, jumps, ref=False, ctype='lifespan'): """ In *graph*, a waldo.network.Graph, around *target*, show the network out to an (undirected) distance of *jumps*. Optionally show a colored reference. """ subgraph = nearby(graph, target, jumps) if ctype == 'lifespan': format_graph_for_lifespan(subgraph, ref=ref, focus=graph.where_is(target)) elif ctype == 'worm_count': format_graph_for_worm_counts(subgraph, ref=ref) elif ctype == 'true_count': format_graph_for_true_counts(subgraph, ref=ref) elif ctype == 'moved_bool': format_graph_for_moved(subgraph, ref=ref) temp_file = render_nx_as_dot(subgraph) return display_image(temp_file) def save_graphs(ex_id, graph, target, jumps, ref=False): """ In *graph*, a waldo.network.Graph, around *target*, show the network out to an (undirected) distance of *jumps*. Optionally show a colored reference. """ subgraph = nearby(graph, target, jumps) format_graph_for_lifespan(subgraph, focus=graph.where_is(target)) of = '{eid}_lifespan.gv'.format(eid=ex_id) print(of) temp_file = render_nx_as_dot(subgraph, output_file=of) clear_formatting(subgraph) format_graph_for_worm_counts(subgraph) of = '{eid}_worm_counts.gv'.format(eid=ex_id) temp_file = render_nx_as_dot(subgraph, output_file=of) clear_formatting(subgraph) format_graph_for_true_counts(subgraph) of = '{eid}_true_counts.gv'.format(eid=ex_id) temp_file = render_nx_as_dot(subgraph, output_file=of) clear_formatting(subgraph) format_graph_for_moved(subgraph) of = '{eid}_seed_counts.gv'.format(eid=ex_id) temp_file = render_nx_as_dot(subgraph, output_file=of) clear_formatting(subgraph) return display_image(temp_file) def look2(graph, target, jumps, ref=False): """ In *graph*, a waldo.network.Graph, around *target*, show the network out to an (undirected) distance of *jumps*. Optionally show a colored reference. """ subgraph = nearby(graph, target, jumps) format_graph_for_worm_counts(subgraph, ref=ref) temp_file = render_nx_as_dot(subgraph) return display_image(temp_file) def look_time(graph, fstart, fend, ref=False): subgraph = neartime(graph, fstart, fend) temp_file = render_nx_as_dot(subgraph, ref=ref) return display_image(temp_file)
import sys import json import argparse from clickandcollectnz.countdown import Countdown from clickandcollectnz.foodstuffs import NewWorld, PakNSave classes = ['Countdown', 'NewWorld', 'PakNSave'] def print_usage(): print("Usage: python -m clickandcollectnz [chain] [store_id]") print() print(" chain: Countdown | PakNSave | NewWorld") if __name__ == "__main__": parser = argparse.ArgumentParser(prog='python -m clickandcollectnz', description='NZ Click and Collect time slots.') parser.add_argument('chain', nargs="?", choices=classes) parser.add_argument('store_id', nargs="?") parser.add_argument('--json', dest='json', action='store_const', const=True, default=False, help='output in JSON format') args = parser.parse_args() if not args.chain: parser.print_help() sys.exit(0) if args.chain and not args.store_id: cls = eval(args.chain) stores = cls.get_store_list() if args.json: print(json.dumps(stores, default=lambda o: o.to_json())) else: print("ID - Store Name") for store in stores: print(store) sys.exit(0) if args.chain and args.store_id: cls = eval(args.chain) stores = cls.get_store_list() store = next((x for x in stores if x.id == args.store_id), None) store.get_slots() if args.json: print(json.dumps(store, default=lambda o: o.to_json())) else: print("Not Implemented")
from django.contrib import admin from django.contrib.auth.admin import UserAdmin from .models import usuario_acesso, recursos #admin.site.register(Usuario, UserAdmin) class usuario_acesso_adm (admin.ModelAdmin): list_display = ['user','escrita']#lista de campos mostrados na tela do admin admin.site.register(usuario_acesso,usuario_acesso_adm) #registra model na tela do admin class recursos_adm (admin.ModelAdmin): list_display = ['nome','nome_google','tipo','email_responsavel']#lista de campos mostrados na tela do admin admin.site.register(recursos,recursos_adm) #registra model na tela do admin
import re import torch from torch import nn import logging from typing import Dict logger = logging.getLogger(__name__) class DefaultModelVocabResizer: @classmethod def set_embeddings(cls, model, token_ids): # self.model.get_input_embeddings() old_word_embeddings = model.embeddings.word_embeddings old_word_embeddings_weight = old_word_embeddings.weight pruned_word_embeddings_weight = torch.index_select( old_word_embeddings_weight, 0, index=torch.LongTensor(token_ids).to(old_word_embeddings_weight.device)) pruned_num_tokens, embedding_dim = pruned_word_embeddings_weight.shape pruned_word_embeddings = nn.Embedding( pruned_num_tokens, embedding_dim).to(old_word_embeddings_weight.device) pruned_word_embeddings.weight.data[:] = pruned_word_embeddings_weight[:] model.embeddings.word_embeddings = pruned_word_embeddings @classmethod def set_lm_head(cls, model, token_ids) -> bool: try: output_embedding_layer = model.get_output_embeddings() except AttributeError: return False if output_embedding_layer is None: return False output_embedding_layer.weight = model.get_input_embeddings().weight output_embedding_layer.bias.data = torch.index_select( output_embedding_layer.bias.data, 0, index=torch.LongTensor(token_ids).to(output_embedding_layer.weight.device)) return True #bert, roberta, xlmr, ... def get_word_embeddings(model): state_dict = model.state_dict() layer_template = "embeddings.word_embeddings" layer_names = [] for key in state_dict: if layer_template in key: layer_names.append(key) assert len( layer_names) == 1, f"Invalid model structure with ambiguous word embeddings: {layer_names}" word_embedding_weight = state_dict[layer_names[0]] return word_embedding_weight #bert, roberta, xlmr, ... def get_num_of_trms(model): layer_template_regex = "encoder.layer\.(\d+)\." layer_template = "encoder.layer.LAYER_INDEX." layer_indices = set() layer_names = set() state_dict = model.state_dict() for key in state_dict: matched = re.findall(layer_template_regex, key) if len(matched) > 0: assert len( matched) == 1, f"Invalid model structure. Cannot parse {key}" layer_index = int(matched[0]) layer_indices.add(layer_index) layer_name = layer_template.replace("LAYER_INDEX", matched[0]) layer_name = key[:key.find(layer_name)]+layer_name layer_names.add(layer_name) print("Found transfomr layers:", layer_indices) print("Layer name prefixes:", layer_names) return len(layer_indices), layer_names
import sys import os import logging import time import json # os.environ['PYTHON_EGG_CACHE'] = '/tmp' sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'vendored/')) logger = logging.getLogger() logger.setLevel(logging.INFO) import Adafruit_DHT import RPi.GPIO as GPIO import greengrasssdk logger.info('Initializing moistureHandler') #setup moisture channel_moisture = 17 GPIO.setmode(GPIO.BCM) GPIO.setup(channel_moisture, GPIO.IN) #setup temperature channel_temperature = 4 sensor_temperature = Adafruit_DHT.DHT11 #setup greengrasssdk iotData = greengrasssdk.client('iot-data') payload = {"water_level": 0, "temperature": 0, "humidity":0, "deviceId": "" } serial = "" def __init__(self): global serial serial = getserial() def getserial(): logger.info('getserial called') # Extract serial from cpuinfo file cpuserial = "0000000000000000" try: f = open('/proc/cpuinfo','r') for line in f: if line[0:6]=='Serial': cpuserial = line[10:26] f.close() except: cpuserial = "ERROR000000000" logger.info('serial {}'.format(cpuserial)) return cpuserial def publish_metrics(): shallow = payload.copy() shallow['water_level'] = collect_moisture() shallow['deviceId'] = getserial() shallow['humidity'], shallow['temperature'] = collect_temperature() iotData.publish(topic='SmartGarden/MoistureLevel', payload=json.dumps(shallow)) def collect_moisture(): if GPIO.input(channel_moisture): logger.info('no water detected on channel {}'.format(channel_moisture)) return 0 else: logger.info('water detected on channel {}'.format(channel_moisture)) return 1 def collect_temperature(): humidity, temperature = Adafruit_DHT.read_retry(sensor_temperature, channel_temperature) logger.info("humidity: {} temperature: {}".format(humidity, temperature)) if humidity is not None and temperature is not None: return humidity, temperature logger.error("Falha ao ler dados do DHT11") return 0, 0 #GPIO.add_event_detect(channel, GPIO.BOTH) #GPIO.add_event_callback(channel, collect_moisture) def pinned_handler(event, context): """ Mock function for pinned/long-lived Lambda """ pass while True: publish_metrics() time.sleep(20)
from flask import Flask, url_for, redirect, Blueprint,render_template,session from werkzeug.security import generate_password_hash from prol import db from prol.user.forms import RegisterForm, LoginForm from prol.user.models import User user_app = Blueprint('User',__name__) @user_app.route('/register', methods=('GET','POST')) def register(): form = RegisterForm() if form.validate_on_submit(): hashed_password = generate_password_hash(form.password.data) user = User( form.first_name.data, form.last_name.data, form.email.data, hashed_password ) db.session.add(user) db.session.commit() user.query.filter_by(email=form.email.data).first() session['id'] = user.id session['first_name'] = user.first_name return redirect(url_for('User.home')) return render_template("register.html",form=form) @user_app.route('/',methods=('GET','POST')) def login(): form = LoginForm() if form.validate_on_submit(): user = User.query.filter_by(email=form.email.data).first() session['id'] = user.id session['first_name'] = user.first_name return redirect(url_for('User.home')) return render_template('login.html',form=form) @user_app.route('/home') def home(): #first_name = session['first_name'] return render_template("index.html",first_name=session['first_name']) @user_app.route('/logout') def logout(): session.pop('id') session.pop('first_name') return redirect(url_for('User.login'))
import json import requests from webContent.constants import URL_AUTH_V2, TIMEOUT from exception import Unauthorized def keystone_auth(username, password, tenant='admin'): # Authentication json tenant = username datajs = {"auth": {"tenantName": tenant, "passwordCredentials": {"username": username, "password": password}}} headers = {'Accept': 'application/json', 'Content-Type': 'application/json'} # Authentication request resp = requests.post(URL_AUTH_V2, data=json.dumps(datajs), headers=headers, timeout=TIMEOUT) if resp.status_code == 401: raise Unauthorized('Keystone returns 401 Unauthorized') resp.raise_for_status() js_response = json.loads(resp.text) return js_response["access"]["token"]["id"], js_response["access"]["user"]["id"] def user_logout(request): request.session.flush()
import numpy as np import cv2 def calibrate_images(images, nx, ny): objpoints = [] # 3d points from real world imgpoints = [] # 2d points on image #prepare object points - points of cheessboard in undistoretd space objp = np.zeros((6 * 9, 3), np.float32) objp[:, :2] = np.mgrid[0:9, 0:6].T.reshape(-1, 2) size = (0, 0) for imageFile in images: image = cv2.imread(imageFile) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) size = gray.shape[::-1] ret, corners = cv2.findChessboardCorners(gray, (nx, ny), None) if ret: objpoints.append(objp) imgpoints.append(corners) ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, size, None, None) return ret, mtx, dist, rvecs, tvecs def undistort(image, mtx, dist): dst = cv2.undistort(image, mtx, dist, None, mtx) return dst def warp(image, src, dst): size = image.shape w = size[1] h = size[0] M = cv2.getPerspectiveTransform(src, dst) warped = cv2.warpPerspective(image, M, (w, h)) return warped
# -*- coding: utf-8 -*- # Generated by Django 1.10.4 on 2017-06-25 16:47 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Blacklist', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=256, verbose_name='Title')), ('blacklist_type', models.IntegerField(choices=[(0, 'Haritrex blacklist'), (1, 'Wayback blacklist')])), ('url_list', models.TextField(verbose_name='List of urls to block')), ], options={ 'verbose_name_plural': 'Blacklists', 'ordering': ('id',), 'verbose_name': 'Blacklist', }, ), ]
import pytest from l5kit.configs import load_config_data from l5kit.data import ChunkedDataset, LocalDataManager @pytest.fixture(scope="session") def dmg() -> LocalDataManager: """ Get a data manager for the artefacts folder. Note: the scope of this fixture is "session"-> only one is created regardless the number of the tests Returns: LocalDataManager: the data manager object """ return LocalDataManager("./l5kit/tests/artefacts/") @pytest.fixture(scope="function") def cfg() -> dict: """ Get a config file from artefacts Note: the scope of this fixture is "function"-> one per test function Returns: dict: the config python dict """ return load_config_data("./l5kit/tests/artefacts/config.yaml") @pytest.fixture(scope="session") def zarr_dataset() -> ChunkedDataset: zarr_dataset = ChunkedDataset(path="./l5kit/tests/artefacts/single_scene.zarr") zarr_dataset.open() return zarr_dataset
def romberg(n0,steps,order,quadrature,f): res = np.zeros((steps,steps)) for i in range(0,steps): n = n0 * 1<<i res[i,0] = quadrature(n,f) for j in range(1,i+1): res[i,j] = res[i,j-1] + \ (res[i,j-1]-res[i-1,j-1])/(2**(order*j)-1.) return res
import time from machine import Pin pin0 = Pin(0, Pin.IN, Pin.PULL_UP) def callback(pin): # disable callback pin.irq(trigger=False) print("PUSH") time.sleep_ms(200) #re-enable callback irq(pin) def irq(pin): pin.irq(trigger=Pin.IRQ_FALLING, handler=callback) # Initial irq setup irq(pin0) print("Push the button!")
# AUTOGENERATED! DO NOT EDIT! File to edit: 10_matrix_multiply.ipynb (unless otherwise specified). __all__ = ['dotp', 'mmult'] # Cell def dotp(v1, v2): "Get dot product of 2 vectors" sum = 0 for i in range(0, len(v1)): sum += v1[i] * v2[i] return sum # Cell def mmult(m1, m2): "Get product of 2 matrices using [dotp](/mmult#dotp) " import numpy as np assert m1.shape[1] == m2.shape[0] vsize = m1.shape[1] pmatrix = np.zeros((m1.shape[0],m2.shape[1])) for i in range(0,m1.shape[0]): for j in range(0,m2.shape[1]): nv = dotp(m1[i,:], m2[:,j]) pmatrix[i,j] = nv return pmatrix
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for V2 Collective Operations.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.eager import context from tensorflow.python.eager import def_function from tensorflow.python.framework import config from tensorflow.python.framework import constant_op from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import gen_collective_ops from tensorflow.python.platform import test class CollectiveOpsTest(test.TestCase): def _setup_context(self, num_cpus=2): context._reset_context() cpus = config.list_physical_devices('CPU') self.assertEqual(len(cpus), 1) config.set_logical_device_configuration(cpus[0], [ context.LogicalDeviceConfiguration(), context.LogicalDeviceConfiguration() ]) context.ensure_initialized() @test_util.run_v2_only def testReduceV2(self): self._setup_context() @def_function.function def single_all_reduce(in_value, group_size, group_key, instance_key): return gen_collective_ops.collective_reduce_v2( in_value, group_size, group_key, instance_key, merge_op='Add', final_op='Id', communication_hint='auto') @def_function.function def run_all_reduce_1cpu(): with ops.device('/device:CPU:0'): in_value = constant_op.constant([1.]) group_size = constant_op.constant(1) group_key = constant_op.constant(1) instance_key = constant_op.constant(1) return single_all_reduce(in_value, group_size, group_key, instance_key) @def_function.function def run_all_reduce_2cpus(): in_value = constant_op.constant([1.]) group_size = constant_op.constant(2) group_key = constant_op.constant(2) instance_key = constant_op.constant(2) collectives = [] with ops.device('/device:CPU:0'): collectives.append(single_all_reduce(in_value, group_size, group_key, instance_key)) with ops.device('/device:CPU:1'): collectives.append(single_all_reduce(in_value, group_size, group_key, instance_key)) return collectives self.assertAllClose(run_all_reduce_1cpu(), [1.], rtol=1e-5, atol=1e-5) for result in run_all_reduce_2cpus(): self.assertAllClose(result, [2.], rtol=1e-5, atol=1e-5) if __name__ == '__main__': test.main()
import math import os import random import re import sys def factorial(x): if x == 1 or x == 0: return 1 else: return x * factorial(x-1) def bino(n, x, p): comb = factorial(n) / (factorial(n-x) * factorial(x)) return comb * pow(p, x) * pow((1-p), n-x) def bd(prob, n): ans = 0 for i in range(3): ans += bino(n, i, prob/100) print(round(ans, 3)) ans = 0 for i in range(2): ans += bino(n, i, prob/100) print(round(1-ans, 3)) if __name__ == '__main__': a = list(map(str, input().rstrip().split())) prob, n = float(a[0]), float(a[1]) bd(prob, n)
#!/usr/bin/env python3 """ Created on Sat May 8 19:17:36 2021 @author: Gruppo Carboni - Ongaro """ from socket import AF_INET, socket, SOCK_STREAM from threading import Thread import threading from Game.game import Game from Game.gameStatus import GameStatus import time as tm """ La funzione che segue accetta le connessioni dei client in entrata.""" def accept_in_connections(): while True: client, client_address = SERVER.accept() print("%s:%s si è collegato." % client_address) #Se il gioco è gia iniziato non accetto la connessione if game.get_status() != GameStatus.NOT_STARTED: print("Gioco già iniziato. Anche se inserito un nome non potrà giocare") # ci serviamo di un dizionario per registrare i client indirizzi[client] = client_address # diamo inizio all'attività del Thread - uno per ciascun client Thread(target=handle_client_request, args=(client,)).start() """La funzione seguente gestisce la connessione di un singolo client.""" def handle_client_request(client): # Prende il socket del client come argomento della funzione. global matchIndex global currentPlayer global game global gameStatus nome = client.recv(BUFSIZ).decode("utf8") # --------------------------------SCELTA NOME while game.check_name_player(nome): # se il nome è già presente ci aggiunge un _ per distinguere i nomi nome = "{}{}".format(nome, "_") # CONTROLLO STATO GIOCO if game.get_status() != GameStatus.NOT_STARTED: client.send(bytes("Il gioco è attualmente in esecuzione", "utf8")) client.send(bytes("\nNon ti è permesso giocare, ma puoi aspettare la fine del gioco\n", "utf8")) game.add_player_to_queue(nome) else: game.add_player_to_game_list(nome) # BENVENUTO if len(game.get_players()) > 1: client.send(bytes("Sono già presenti i seguenti giocatori: \n", "utf8")) for player in game.get_players(): if player.get_name() != nome: client.send(bytes("{}: {}\n".format(player.get_name(), player.get_role()), "utf8")) client.send(bytes('Benvenuto %s! Se vuoi lasciare la Chat' % nome, "utf8")) client.send(bytes('\nClicca il pulsante Pronto per dichiararti pronto', "utf8")) client.send(bytes('\n{quit} per uscire dal gioco', "utf8")) client.send(bytes('\nIl tuo ruolo è %s'%game.get_player(nome).get_role(), "utf8")) #Se il giocatore è nella sala d'attesa gli dico altre cose in aggiunta if game.check_queue_players(nome): client.send(bytes('\nSei nella sala d\'attesa, non fare niente\n', "utf8")) broadcast("%s è nella sala d'attesa" % nome) else: broadcast("%s si è unito alla chat!" % nome) broadcast("Il ruolo di {} è {}.".format(nome, game.get_player(nome).get_role())) clients[client] = nome # si mette in ascolto del thread del singolo client e ne gestisce l'invio dei messaggi o l'uscita dalla Chat while True: msg = client.recv(BUFSIZ).decode("utf8") gameStatus = game.get_status() # --------COMANDI-------- # QUIT if msg == QUIT: broadcast("%s ha abbandonato la Chat." % nome) game.remove_player(game.get_player(nome)) client.close() del clients[client] if (gameStatus != GameStatus.NOT_STARTED): print(gameStatus) broadcast("La partita termina.") end_function() break # START se è gia cominciato elif msg == START and gameStatus != GameStatus.NOT_STARTED and not game.check_queue_players(nome): client.send("Gioco già cominciato!".encode()) # START se è gia pronto elif msg == START and game.check_player_ready(nome) and not game.check_queue_players(nome): client.send('Ti sei già dichiarato pronto'.encode()) # START elif msg == START and gameStatus != GameStatus.STARTED and not game.check_queue_players(nome): game.set_player_ready(nome) broadcast("Il giocatore %s è pronto" % nome) # Se i giocatori sono tutti pronti parte il gioco if game.get_status() == GameStatus.STARTED: broadcast("\nTutti pronti, si parte!") matchIndex += 1 #il gioco iniza game.start_game() #inizia il timer del gioco principale start_countdown(GAME_TIME, GameStatus.ENDED, True, None, end_function) # BROADCAST MESSAGGIO (se non è un comando) else: if game.check_queue_players(nome): client.send(bytes("NON DEVI FARE NIENTE", "utf8")) else: broadcast("{}: {}".format(nome, msg)) currentPlayer = "" gameStatus = game.get_status() if gameStatus != GameStatus.NOT_STARTED and gameStatus != GameStatus.ENDED: # se il gioco è partito currentPlayer = game.get_current_player().get_name() # GIOCO INIZIATO, stampo testo per la scelta della porta if gameStatus == GameStatus.STARTED: broadcast("\nTurno di: %s. " % currentPlayer) broadcast("\nScegli una porta tra 1, 2 e 3.") game.set_status(GameStatus.MENU_PHASE) else: # se chi scrive è chi deve dare una risposta if currentPlayer == nome: # è stata scelta la porta if gameStatus == GameStatus.MENU_PHASE: # controllo se il messaggio inviato è un numero tra 1, 2 e 3 print(msg) if msg.isnumeric(): if int(msg) == 1 or int(msg) == 2 or int(msg) == 3: if game.answer_menu(msg): # stampo domanda broadcast(game.get_question()) game.set_status(GameStatus.QUESTION_PHASE) gameStatus = GameStatus.QUESTION_PHASE # timer di 5 secondi per rispondere alla domanda start_countdown(5, GameStatus.MENU_PHASE, False, GameStatus.QUESTION_PHASE, stop_time_answer) #il giocatore è entrato nella porta con la bomba else: broadcast("%s è entrato nella porta sbagliata!." % nome) game.next_player() game.kill_player(game.get_player(currentPlayer)) # se non rimane solo un giocatore il gioco termina if game.check_end(): game.set_status(GameStatus.ENDED) gameStatus = GameStatus.ENDED end_function() # se rimane più di un giocatore continuo il gioco else: game.set_status(GameStatus.STARTED) broadcast("%s se ne va!." % nome) currentPlayer = game.get_current_player().get_name() broadcast("\nTurno di: %s. " % currentPlayer) broadcast("\nScegli una porta tra 1, 2 e 3.") game.set_status(GameStatus.MENU_PHASE) gameStatus = GameStatus.MENU_PHASE else: client.send(bytes("Inserimento Errato, Scegli una porta tra 1, 2 , 3", "utf8")) # se il messaggio per la scelta della porta non è un numero tra 1, 2 e 3 else: client.send(bytes("Inserimento Errato, Scegli una porta tra 1, 2 , 3", "utf8")) # se è stata scelta la risposta alla domanda elif gameStatus == GameStatus.QUESTION_PHASE: # se la risposta è corretta if game.answer_question(msg): game.add_points() broadcast("Risposta esatta, punteggio aumentato!") # se la risposta è sbagliata else: game.remove_points() broadcast("Risposta errata!") # passo al prossimo giocatore game.next_player() currentPlayer = game.get_current_player().get_name() broadcast("\nTurno di: %s. " % currentPlayer) broadcast("Scegli una porta tra 1, 2 e 3.") game.set_status(GameStatus.MENU_PHASE) # se chi scrive non è chi deve dare una risposta stampo errore else: client.send(bytes("Non è il tuo turno", "utf8")) """ La funzione, che segue, invia un messaggio in broadcast a tutti i client.""" def broadcast(msg, prefisso=""): # il prefisso è usato per l'identificazione del nome. for utente in clients: utente.send(bytes(prefisso + msg, "utf8")) """ La funzione countdown crea un timer di specificata durata, argomenti: quitStatus: specifica lo stato nel quale il timer deve fermarsi alwaysDo: specifica se va sempre fatto o vanno fatti controlli aggiuntivi doStatus: specifica quando bisogna eseguire la funzione specificata """ def countdown(duration, quitStatus, alwaysDo, doStatus, function): thisCountdownMatchIndex = matchIndex thisPlayer = currentPlayer # il countdown si ferma quando finisce i secondi o quando il gioco arriva allo stato definito while duration > 0 and gameStatus != quitStatus: tm.sleep(1) duration -= 1 # timer ended - eseguo la funzione specificata quando il flag alwaysDo è true # oppure quando sono in doStatus ed il giocatore è lo stesso if alwaysDo and thisCountdownMatchIndex == matchIndex and game.get_status() != GameStatus.ENDED and game.get_status() != GameStatus.NOT_STARTED: function() else: actualGameStatus = game.get_status() if actualGameStatus == doStatus and thisCountdownMatchIndex == matchIndex and thisPlayer == currentPlayer: function() """ Avvia un thread per il countdown """ def start_countdown(duration, quitStatus, alwaysDo, doStatus, function): countdown_thread = threading.Thread(target=countdown, args=(duration, quitStatus, alwaysDo, doStatus, function,)) countdown_thread.daemon = True # rendo il thread deamon, alla chiusura del server morirà countdown_thread.start() """ Funzione da eseguire quando termina il tempo per rispondere alla domanda """ def stop_time_answer(): broadcast("Tempo Scaduto per rispondere") game.remove_points() game.next_player() currentPlayer = game.get_current_player().get_name() broadcast("\nTurno di: %s. " % currentPlayer) broadcast("\nScegli una porta tra 1, 2 e 3.") game.set_status(GameStatus.MENU_PHASE) """ Funzione che fa terminare il gioco e stampare la classifica """ def end_function(): rank = game.get_rank() winner = rank[0] broadcast("%s Ha vinto." % winner.get_name()) tm.sleep(1) game.set_status(GameStatus.ENDED) # stampa classifica broadcast("\nGioco Terminato. Classifica:", "utf8") i = 0 for player in rank: i += 1 broadcast("\n{}°: {}, {}, {}\n".format(i, player.get_name(), player.get_score(), player.get_status())) tm.sleep(1) game.active_queue_players() # reset gioco game.reset_all() broadcast("Premi Pronto per giocare ad una nuova partita!") clients = {} indirizzi = {} HOST = '' PORT = 53000 BUFSIZ = 1024 ADDR = (HOST, PORT) game = Game() START = "{start}" QUIT = "{quit}" GAME_TIME = 180 #Modificare questo valore per incrementare o diminuire il tempo di gioco timerGame = "" timerQuestion = "" gameStatus = "" currentPlayer = "" matchIndex = 0 SERVER = socket(AF_INET, SOCK_STREAM) SERVER.bind(ADDR) if __name__ == "__main__": SERVER.listen(5) print("In attesa di connessioni...") ACCEPT_THREAD = Thread(target=accept_in_connections) ACCEPT_THREAD.start() ACCEPT_THREAD.join() SERVER.close()
# -*- coding: utf-8 -*- # # Copyright (c) nexB Inc. and others. All rights reserved. # http://nexb.com and https://github.com/nexB/scancode-toolkit/ # The ScanCode software is licensed under the Apache License version 2.0. # Data generated with ScanCode require an acknowledgment. # ScanCode is a trademark of nexB Inc. # # You may not use this software except in compliance with the License. # You may obtain a copy of the License at: http://apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software distributed # under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR # CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. # # When you publish or redistribute any data created with ScanCode or any ScanCode # derivative work, you must accompany this data with the following acknowledgment: # # Generated with ScanCode and provided on an "AS IS" BASIS, WITHOUT WARRANTIES # OR CONDITIONS OF ANY KIND, either express or implied. No content created from # ScanCode should be considered or used as legal advice. Consult an Attorney # for any legal advice. # ScanCode is a free software code scanning tool from nexB Inc. and others. # Visit https://github.com/nexB/scancode-toolkit/ for support and download. from __future__ import absolute_import from __future__ import unicode_literals from __future__ import print_function import io import os import attr import click click.disable_unicode_literals_warning = True from license_expression import Licensing import saneyaml from licensedcode import cache from licensedcode import models from licensedcode import match_hash @attr.attrs(slots=True) class LicenseRule(object): data = attr.ib() text = attr.ib() raw_data = attr.ib(default=None) def __attrs_post_init__(self, *args, **kwargs): self.raw_data = rdat = '\n'.join(self.data).strip() self.text = '\n'.join(self.text).strip() # validate YAML syntax try: self.data = saneyaml.load(rdat) except: print('########################################################') print('Invalid YAML:') print(rdat) print('########################################################') raise def load_data(location='00-new-licenses.txt'): with io.open(location, encoding='utf-8') as o: lines = o.read().splitlines(False) rules = [] data = [] text = [] in_data = False in_text = False last_lines = [] for ln, line in enumerate(lines, 1): last_lines.append(': '.join([str(ln), line])) if line == '----------------------------------------': if not (ln == 1 or in_text): raise Exception('Invalid structure: #{ln}: {line}\n'.format(**locals()) + '\n'.join(last_lines[-10:])) in_data = True in_text = True if data and ''.join(text).strip(): rules.append(LicenseRule(data, text)) data = [] text = [] continue if line == '---': if not in_data: raise Exception('Invalid structure: #{ln}: {line}\n'.format(**locals()) + '\n'.join(last_lines[-10:])) in_data = False in_text = True continue if in_data: data.append(line) continue if in_text: text.append(line) continue return rules def rule_exists(text): """ Return the matched rule identifier if the text is an existing rule matched exactly, False otherwise. """ idx = cache.get_index() matches = idx.match(query_string=text) if not matches: return False if len(matches) > 1: return False match = matches[0] if match.matcher == match_hash.MATCH_HASH: return match.rule.identifier def all_rule_tokens(): """ Return a set of tuples of tokens, one corresponding to every existing and added rules. Used to avoid duplicates. """ rule_tokens = set() for rule in models.get_rules(): rule_tokens.add(tuple(rule.tokens())) return rule_tokens def find_rule_base_loc(license_expression): """ Return a new, unique and non-existing base name location suitable to create a new rule. """ template = (license_expression .lower() .strip() .replace(' ', '_') .replace('(', '') .replace(')', '') +'_{}') idx = 1 while True: base_name = template.format(idx) base_loc = os.path.join(models.rules_data_dir, base_name) if not os.path.exists(base_loc + '.RULE'): return base_loc idx += 1 @click.command() @click.argument('licenses_file', type=click.Path(), metavar='FILE') @click.help_option('-h', '--help') def cli(licenses_file): """ Create rules from a structured text file For instance: ---------------------------------------- license_expression: lgpl-2.1 relevance: 100 is_license_notice: yes --- This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License version 2.1 as published by the Free Software Foundation; ---------------------------------------- """ rules_data = load_data(licenses_file) rules_tokens = all_rule_tokens() licenses = cache.get_licenses_db() licensing = Licensing(licenses.values()) print() for rule in rules_data: existing = rule_exists(rule.text) if existing: print('Skipping existing rule:', existing, 'with text:\n', rule.text[:50].strip(), '...') continue if rule.data.get('is_negative'): base_name = 'not-a-license' else: license_expression = rule.data.get('license_expression') if not license_expression: raise Exception('Missing license_expression for text:', rule) licensing.parse(license_expression, validate=True, simple=True) base_name = license_expression base_loc = find_rule_base_loc(base_name) data_file = base_loc + '.yml' with io.open(data_file, 'w', encoding='utf-8') as o: o.write(rule.raw_data) text_file = base_loc + '.RULE' with io.open(text_file, 'w', encoding='utf-8') as o: o.write(rule.text) rulerec = models.Rule(data_file=data_file, text_file=text_file) rule_tokens = tuple(rulerec.tokens()) if rule_tokens in rules_tokens: # cleanup os.remove(text_file) os.remove(data_file) print('Skipping already added rule with text for:', base_name) else: rules_tokens.add(rule_tokens) rulerec.dump() models.update_ignorables(rulerec, verbose=True) print('Rule added:', rulerec.identifier) if __name__ == '__main__': cli()