content
stringlengths
5
1.05M
import os from conans import ConanFile, tools from conans.errors import ConanInvalidConfiguration class MingwConan(ConanFile): name = "mingw-builds" description = "MinGW is a contraction of Minimalist GNU for Windows" url = "https://github.com/conan-io/conan-center-index" homepage = "https://github.com/ericLemanissier/mingw-builds" license = "ZPL-2.1", "MIT", "GPL-2.0-or-later" topics = ("gcc", "gnu", "unix", "mingw32", "binutils") settings = "os", "arch" options = {"threads": ["posix", "win32"], "exception": ["seh", "sjlj"]} default_options = {"threads": "posix", "exception": "seh"} @property def _settings_build(self): return getattr(self, "settings_build", self.settings) def validate(self): valid_os = ["Windows"] if str(self.settings.os) not in valid_os: raise ConanInvalidConfiguration("MinGW {} is only supported for the following operating systems: {}" .format(self.version, valid_os)) valid_arch = ["x86_64"] if str(self.settings.arch) not in valid_arch: raise ConanInvalidConfiguration("MinGW {} is only supported for the following architectures on {}: {}" .format(self.version, str(self.settings.os), valid_arch)) if getattr(self, "settings_target", None): if str(self.settings_target.os) not in valid_os: raise ConanInvalidConfiguration("MinGW {} is only supported for the following operating systems: {}" .format(self.version, valid_os)) valid_arch = ["x86_64"] if str(self.settings_target.arch) not in valid_arch: raise ConanInvalidConfiguration("MinGW {} is only supported for the following architectures on {}: {}" .format(self.version, str(self.settings.os), valid_arch)) if self.settings_target.compiler != "gcc": raise ConanInvalidConfiguration("Only GCC is allowed as compiler.") if str(self.settings_target.compiler.threads) != str(self.options.threads): raise ConanInvalidConfiguration("Build requires 'mingw' provides binaries for gcc " "with threads={}, your profile:host declares " "threads={}, please use the same value for both." .format(self.options.threads, self.settings_target.compiler.threads)) if str(self.settings_target.compiler.exception) != str(self.options.exception): raise ConanInvalidConfiguration("Build requires 'mingw' provides binaries for gcc " "with exception={}, your profile:host declares " "exception={}, please use the same value for both." .format(self.options.exception, self.settings_target.compiler.exception)) def build_requirements(self): self.build_requires("7zip/19.00") def build(self): # Source should be downloaded in the build step since it depends on specific options url = self.conan_data["sources"][self.version][str(self.options.threads)][str(self.options.exception)] self.output.info("Downloading: %s" % url["url"]) tools.download(url["url"], "file.7z", sha256=url["sha256"]) self.run("7z x file.7z") os.remove('file.7z') def package(self): target = "mingw64" if self.settings.arch == "x86_64" else "mingw32" self.copy("*", dst="", src=target) tools.rmdir(target) tools.rmdir(os.path.join(self.package_folder, "share")) tools.rmdir(os.path.join(self.package_folder, "opt", "lib", "cmake")) def package_info(self): if getattr(self, "settings_target", None): if self.settings_target.compiler != "gcc": raise ConanInvalidConfiguration("Only GCC is allowed as compiler.") if str(self.settings_target.compiler.threads) != str(self.options.threads): raise ConanInvalidConfiguration("Build requires 'mingw' provides binaries for gcc " "with threads={}, your profile:host declares " "threads={}, please use the same value for both." .format(self.options.threads, self.settings_target.compiler.threads)) if str(self.settings_target.compiler.exception) != str(self.options.exception): raise ConanInvalidConfiguration("Build requires 'mingw' provides binaries for gcc " "with exception={}, your profile:host declares " "exception={}, please use the same value for both." .format(self.options.exception, self.settings_target.compiler.exception)) bin_path = os.path.join(self.package_folder, "bin") self.output.info("Appending PATH env var with : {}".format(bin_path)) self.env_info.PATH.append(bin_path) self.env_info.MINGW_HOME = str(self.package_folder) self.env_info.CONAN_CMAKE_GENERATOR = "MinGW Makefiles" self.env_info.CXX = os.path.join(self.package_folder, "bin", "g++.exe").replace("\\", "/") self.env_info.CC = os.path.join(self.package_folder, "bin", "gcc.exe").replace("\\", "/") self.env_info.LD = os.path.join(self.package_folder, "bin", "ld.exe").replace("\\", "/") self.env_info.NM = os.path.join(self.package_folder, "bin", "nm.exe").replace("\\", "/") self.env_info.AR = os.path.join(self.package_folder, "bin", "ar.exe").replace("\\", "/") self.env_info.AS = os.path.join(self.package_folder, "bin", "as.exe").replace("\\", "/") self.env_info.STRIP = os.path.join(self.package_folder, "bin", "strip.exe").replace("\\", "/") self.env_info.RANLIB = os.path.join(self.package_folder, "bin", "ranlib.exe").replace("\\", "/") self.env_info.STRINGS = os.path.join(self.package_folder, "bin", "strings.exe").replace("\\", "/") self.env_info.OBJDUMP = os.path.join(self.package_folder, "bin", "objdump.exe").replace("\\", "/") self.env_info.GCOV = os.path.join(self.package_folder, "bin", "gcov.exe").replace("\\", "/")
from collections import deque def search(lines, pattern, history=5): ret = deque(maxlen=history) for line in lines: if pattern in line: ret.append(line) return ret if __name__ == '__main__': with open('../input/d1.txt') as f: result = search(f, 'python', 5) print(result)
import sys sys.path.append('./linkedlist') from linkedlist import DoublyLinkedList, DoublyNode def has_loop(ll): double_ref = None runner1 = ll.head runner2 = ll.head first_it = True while runner1 and runner2: if runner1 == runner2 and not first_it: double_ref = runner1 break first_it = False runner1 = runner1.next runner2 = runner2.next and runner2.next.next return double_ref if double_ref is not None else False if __name__ == '__main__': # tests n1 = DoublyNode(value=1) n2 = DoublyNode(value=2) n3 = DoublyNode(value=3) n4 = DoublyNode(value=4) n5 = DoublyNode(value=5) n6 = DoublyNode(value=6) n1.next = n2 n2.next = n3 n3.next = n6 n6.next = n4 n4.next = n5 n5.next = n6 ll = DoublyLinkedList(head=n1) assert has_loop(ll) is not False or not None assert has_loop(ll) == n6
from .._ffi.function import _init_api _init_api("relay._make", __name__)
#!/usr/bin/env python # -*- coding: utf-8 -*- # noinspection PyBroadException try: import eventlet eventlet.monkey_patch(all=True, thread=False) except: pass import argparse import itertools import logging import logging.config import os import signal import eventlet.wsgi import sqlalchemy_utils import yaml from flask import Flask, request, g as flask_g from flask_babel import get_locale, Babel from flask_babel import gettext from flask_cors import CORS from flask_migrate import Migrate from flask_restful import Api, abort from flask_swagger_ui import get_swaggerui_blueprint from limonero import CustomJSONEncoder as LimoneroJSONEncoder from limonero.cache import cache from limonero.data_source_api import DataSourceDetailApi, DataSourceListApi, \ DataSourcePermissionApi, DataSourceUploadApi, DataSourceInferSchemaApi, \ DataSourcePrivacyApi, DataSourceDownload, DataSourceSampleApi, \ DataSourceInitializationApi from limonero.model_api import ModelDetailApi, ModelListApi, ModelDownloadApi from limonero.models import db, DataSource, Storage from limonero.privacy_api import GlobalPrivacyListApi, \ AttributePrivacyGroupListApi from limonero.py4j_init import init_jvm from limonero.storage_api import StorageDetailApi, StorageListApi, \ StorageMetadataApi from cryptography.fernet import Fernet os.chdir(os.environ.get('LIMONERO_HOME', '.')) # noinspection PyUnusedLocal def exit_gracefully(s, frame): os.kill(os.getpid(), signal.SIGTERM) def create_app(main_module: bool = False): app = Flask(__name__, static_url_path='/static', static_folder='static') app.config['BABEL_TRANSLATION_DIRECTORIES'] = os.path.abspath( 'limonero/i18n/locales') app.json_encoder = LimoneroJSONEncoder babel = Babel(app) logging.config.fileConfig('logging_config.ini') app.secret_key = 'l3m0n4d1' # Cryptography key app.download_key = Fernet.generate_key() app.fernet = Fernet(app.download_key) # Cache cache.init_app(app) # CORS CORS(app, resources={r"/*": {"origins": "*"}}) api = Api(app) # Swagger swaggerui_blueprint = get_swaggerui_blueprint( '/api/docs', '/static/swagger.yaml', config={ # Swagger UI config overrides 'app_name': "Lemonade Caipirinha" }, # oauth_config={ # OAuth config. See https://github.com/swagger-api/swagger-ui#oauth2-configuration . # 'clientId': "your-client-id", # 'clientSecret': "your-client-secret-if-required", # 'realm': "your-realms", # 'appName': "your-app-name", # 'scopeSeparator': " ", # 'additionalQueryStringParams': {'test': "hello"} # } ) app.register_blueprint(swaggerui_blueprint) mappings = { '/datasources': DataSourceListApi, '/datasources/upload': DataSourceUploadApi, '/datasources/infer-schema/<int:data_source_id>': DataSourceInferSchemaApi, '/datasources/sample/<int:data_source_id>': DataSourceSampleApi, '/datasources/initialize/<status>/<int:data_source_id>': DataSourceInitializationApi, '/datasources/<int:data_source_id>': DataSourceDetailApi, '/datasources/<int:data_source_id>/permission/<int:user_id>': DataSourcePermissionApi, '/datasources/<int:data_source_id>/privacy': DataSourcePrivacyApi, '/privacy': GlobalPrivacyListApi, '/privacy/attribute-groups': AttributePrivacyGroupListApi, '/models': ModelListApi, '/models/<int:model_id>': ModelDetailApi, '/storages': StorageListApi, '/storages/<int:storage_id>': StorageDetailApi, '/storages/metadata/<int:storage_id>': StorageMetadataApi, } grouped_mappings = itertools.groupby(sorted(mappings.items()), key=lambda path: path[1]) for view, g in grouped_mappings: api.add_resource(view, *[x[0] for x in g], endpoint=view.__name__) app.add_url_rule('/datasources/public/<int:data_source_id>/download', methods=['GET'], endpoint='DataSourceDownload', view_func=DataSourceDownload.as_view('download')) app.add_url_rule('/models/<int:model_id>/download', methods=['GET'], endpoint='ModelDownloadApi', view_func=ModelDownloadApi.as_view('download_model')) migrate = Migrate(app, db) app.handle_exception @babel.localeselector def get_locale(): user = getattr(flask_g, 'user', None) if user is not None and user.locale: return user.locale else: return request.args.get( 'lang', request.accept_languages.best_match(['en', 'pt', 'es'])) sqlalchemy_utils.i18n.get_locale = get_locale config_file = None signal.signal(signal.SIGINT, exit_gracefully) if main_module: parser = argparse.ArgumentParser() parser.add_argument("-c", "--config", type=str, help="Config file", required=False) args = parser.parse_args() config_file = args.config if config_file is None: config_file = os.environ.get('LIMONERO_CONFIG') logger = logging.getLogger(__name__) if config_file: with open(config_file) as f: config = yaml.load(f, Loader=yaml.FullLoader)['limonero'] app.config['LIMONERO_CONFIG'] = config app.config["RESTFUL_JSON"] = {"cls": app.json_encoder} server_config = config.get('servers', {}) app.config['SQLALCHEMY_DATABASE_URI'] = server_config.get( 'database_url') app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False is_mysql = 'mysql://' in app.config['SQLALCHEMY_DATABASE_URI'] if config.get('config') is not None and 'config' in config and is_mysql: app.config.update(config.get('config', {})) app.config['SQLALCHEMY_POOL_SIZE'] = 10 app.config['SQLALCHEMY_POOL_RECYCLE'] = 240 db.init_app(app) port = int(config.get('port', 5000)) logger.debug( gettext('Running in %(mode)s mode', mode=config.get('environment'))) init_jvm(app, logger) if main_module: # JVM, used to interact with HDFS. if config.get('environment', 'dev') == 'dev': app.run(debug=True, port=port, host='0.0.0.0') else: eventlet.wsgi.server(eventlet.listen(('', port)), app) else: return app else: logger.error( gettext('Please, set LIMONERO_CONFIG environment variable')) exit(1) return app if __name__ == '__main__': create_app(__name__ == '__main__')
import random import time import numpy as np from apps.ImageSearch.algs.base import BaseAlgorithm, QUEUE_SIZE from apps.ImageSearch.algs.utils import is_locked, can_fit, sparse2list from apps.ImageSearch.algs.models import roc_auc_est_score from next.utils import debug_print from sklearn.linear_model import LogisticRegressionCV class Linear(BaseAlgorithm): def linear_model(self, cv=3): return LogisticRegressionCV(cv=cv, scoring=roc_auc_est_score) def fill_queue(self, butler, args): if is_locked(butler.algorithms.memory.lock('fill_queue')): debug_print('fill_queue is running already') return try: queue = butler.algorithms.get(key='queue') except AttributeError: debug_print('couldn\'t fill queue, experiment doesn\'t exist yet?') return if len(queue) > len(args['queue']): debug_print('fill_queue called already') return with butler.algorithms.memory.lock('fill_queue'): debug_print('filling queue') X = self.select_features(butler, {}) t0 = time.time() d = X.shape[1] labels = dict(butler.algorithms.get(key='labels')) n = butler.algorithms.get(key='n') y = [] unlabeled = [] positives = [] labeled = [] for i in xrange(n): if i not in labels: unlabeled.append(i) else: labeled.append(i) y.append(labels[i]) if labels[i] == 1: positives.append(i) if can_fit(y, 2): cv = min(3, sum(y)) model = self.linear_model(cv=cv) model = model.fit(X[labeled], y) # mask helps if features are sparse mask = np.ravel(model.coef_.astype(bool)) if butler.alg_id == 'LassoLinear': butler.algorithms.set(key='n_coefs', value=sum(mask)) sparse_coefs = sparse2list(model.coef_) butler.algorithms.set(key='coefs', value=sparse_coefs) if sum(mask): X = X[:, mask] coefs = np.ravel(model.coef_)[mask] else: coefs = np.ravel(model.coef_) dists = np.dot(X[unlabeled], coefs) dists = np.argsort(-dists) else: target = random.choice(positives) x = X[target] a, b = np.polyfit([4096*2, 1], [10000, 424924], 1) n_sample = int(a*d + b) if len(unlabeled) > n_sample: debug_print('sampling {} unlabeled examples'.format(n_sample)) unlabeled = random.sample(unlabeled, n_sample) X = X[unlabeled] debug_print('computing distances') t0 = time.time() dists = np.linalg.norm(X - x, axis=1) debug_print('took {}s'.format(time.time() - t0)) dists = np.argsort(dists) queries = butler.algorithms.get(key='queries') - butler.algorithms.get(key='last_filled') queue_size = max(QUEUE_SIZE, queries * 2) self.set_queue(butler, [unlabeled[i] for i in dists[:queue_size]]) butler.algorithms.set(key='last_filled', value=butler.algorithms.get(key='queries')) butler.algorithms.set(key='fill_queue_time', value=time.time() - t0) def constraint(self, butler): """ This should return a function that is of the form: f(n_coefficients: int) -> bool That is, takes the number of features used by the model and returns whether that should be included as a possible model. """ raise NotImplementedError
import unittest import json from app import create_app class TestOrders(unittest.TestCase): '''set up for testing''' def setUp(self): self.app = create_app("testing") self.client = self.app.test_client() self.app_context = self.app.app_context() self.app_context.push() def tearDown(self): self.app_context.pop() def test_create_order(self): data = { "name": "eggcurry", "price": 20, "description": "sweet eggs" } res = self.client.post( "/api/v1/orders", data=json.dumps(data), headers={"content-type": "application/json"} ) self.assertEqual(res.status_code, 201) self.assertEqual(json.loads(res.data)['message'], "Food order created") def test_get_all_orders(self): res = self.client.get( "/api/v1/orders", headers={"content-type": "application/json"} ) self.assertEqual(res.status_code, 200) def test_order_by_id(self): res = self.client.get( "/api/v1/orders/1", headers={"content-type": "application/json"} ) self.assertEqual(res.status_code, 200) def test_update_order_status(self): res = self.client.put( "api/v1/orders/1", headers={"content-type": "application/json"} ) print(res.data) self.assertEqual(res.status_code, 200) self.assertEqual(json.loads(res.data)[ 'message'], "status approved") def test_non_order_by_id(self): res = self.client.get( "/api/v1/orders/111", headers={"content-type": "application/json"} ) self.assertEqual(res.status_code, 404) self.assertEqual(json.loads(res.data)[ 'message'], "Order not found") def test_non_order_delete(self): res = self.client.delete( "api/v1/orders/11", headers={"content-type": "application/json"} ) self.assertEqual(res.status_code, 404) self.assertEqual(json.loads(res.data)[ 'message'], "Order not found")
import FWCore.ParameterSet.Config as cms MEtoEDMConvertSiStrip = cms.EDProducer("MEtoEDMConverter", Name = cms.untracked.string('MEtoEDMConverter'), Verbosity = cms.untracked.int32(0), # 0 provides no output # 1 provides basic output # 2 provide more detailed output Frequency = cms.untracked.int32(50), MEPathToSave = cms.untracked.string('AlCaReco/SiStrip'), deleteAfterCopy = cms.untracked.bool(False) ) seqALCARECOSiStripPCLHistos = cms.Sequence(MEtoEDMConvertSiStrip)
import os import copy from tasks.task import input_to_src from tasks.task import decode_properties from tasks.task import output_to_sink from tasks.task import find_model from tasks.task import queue_properties from tasks.task import inference_properties from tasks.task import vpp_properties class Channel(): def __init__(self, runner_config, model_root, system_info, caps, channel_number): self._runner_config = runner_config self.channel_number = channel_number self.system_info = system_info self.model_root = model_root self._elements = [] def add_detect_element(self, detect_model_name): self._detect_model_name = detect_model_name self._runner_config.setdefault("detect",{}) self._runner_config["detect"].setdefault("element","gvadetect") self._runner_config["detect"].setdefault("name", "detect" + str(self.channel_number)) self._runner_config["detect"].setdefault("enabled",True) self._model = find_model(detect_model_name, self.model_root) queue_name = "detect-queue" queue_config = self._runner_config.setdefault(queue_name,{}) queue_config.setdefault("element", "queue") queue_config.setdefault("name", queue_name+str(self.channel_number)) queue_config.setdefault("enabled", False) self._detect_queue_properties = queue_properties(queue_config, self._model, self.system_info) self._detect_properties = inference_properties(self._runner_config["detect"], self._model, detect_model_name, self.system_info) self._elements.append(self._detect_queue_properties) self._elements.append(self._detect_properties) def add_classify_element(self, classify_model_config): self.classify_model_config = classify_model_config self._classify_properties = self._set_classify_properties(self.model_root, self.system_info, detect_model_name=self._detect_model_name, channel_number=self.channel_number) self._elements.append(self._classify_properties) def add_src_element(self, input): self.input = input self._src_element = input_to_src(input) def add_caps_element(self, caps): self._caps = caps def add_sink_element(self, output): self._sink_element = output_to_sink(output, self._runner_config, self.channel_number) def add_decode_element(self): self._runner_config.setdefault("decode", {"device":"CPU"}) queue_name = "decode-queue" queue_config = self._runner_config.setdefault(queue_name,{}) self._decode_properties = decode_properties(self._runner_config["decode"], queue_config, self.input, self.system_info, self.channel_number) self._elements.append(self._decode_properties) if ("msdk" in self._decode_properties): self._caps = self.input["extended-caps"] def add_meta_element(self): self._meta_element = "gvametaconvert add-empty-results=true ! gvametapublish method=file file-format=json-lines file-path=/tmp/result.jsonl" def add_fpscounter_element(self): self._fpscounter = "gvafpscounter" def add_fakesink_element(self): self._fakesink = "fakesink async=false" def add_multifilesink_element(self): self._multifilesink = "multifilesink location=\"%d.bin\"" def add_vpp_element(self, color_space, region, resolution): self._runner_config.setdefault("vpp",{"device":"CPU"}) vpp_queue_name = "vpp-queue" vpp_queue_config = self._runner_config.setdefault(vpp_queue_name,{}) self._vpp_properties = vpp_properties(self._runner_config["vpp"], vpp_queue_config, color_space, region, resolution, self.system_info, self.channel_number) self._elements.append(self._vpp_properties) def get_channel_standalone_pipeline(self): standalone_elements = self._create_standalone_elements() standalone_elements = " ! ".join([element for element in standalone_elements if element]) return standalone_elements def get_channel_pipeline(self): elements = self._create_elements() elements = " ! ".join([element for element in elements if element]) return elements def _create_elements(self): return [self._src_element, self._caps] + self._elements + [self._sink_element] def _create_standalone_elements(self): demux = ( "qtdemux" if os.path.splitext( self.input["source"])[1]==".mp4" else "") res = ["urisourcebin uri=file://{}".format(self.input["source"]), demux, "parsebin"] + self._elements if hasattr(self, '_meta_element'): res = res + [self._meta_element] if hasattr(self, '_fpscounter'): res = res + [self._fpscounter] if hasattr(self, '_fakesink'): res = res + [self._fakesink] if hasattr(self, '_multifilesink'): res = res + [self._multifilesink] return res def _set_classify_properties(self, model_root, system_info, detect_model_name="", channel_number=0): result = "" elements = [] if (self.classify_model_config): classify_model_list = self.classify_model_config for index, model_name in enumerate(classify_model_list): if (isinstance(model_name,list)): raise Exception("Dependent Classification Not Supported") model = find_model(model_name, model_root) element_name = "classify-{}".format(index) classify_config = self._runner_config.setdefault(element_name, {}) classify_config.setdefault("element","gvaclassify") classify_config.setdefault("name",element_name+str(channel_number)) classify_config.setdefault("enabled", True) if detect_model_name=="full_frame": classify_config.setdefault("inference-region", "full-frame") queue_name = "classify-{}-queue".format(index) queue_config = self._runner_config.setdefault(queue_name,{}) queue_config.setdefault("element", "queue") queue_config.setdefault("name", queue_name+str(channel_number)) queue_config.setdefault("enabled", classify_config["enabled"]) elements.append(queue_properties(queue_config, model, system_info)) elements.append(inference_properties(classify_config, model, model_name, system_info)) if (elements): result = " ! ".join([element for element in elements if element]) return result
import requests from bs4 import BeautifulSoup link = input("Pass a link to a wikipedia page: ") url = requests.get(link).text soup = BeautifulSoup(url, "html.parser") names = [] # print(soup.find_all("li")) '''The next part is really specific to this web page as I needed all car companies in a list''' '''I have used this link https://pl.wikipedia.org/wiki/Kategoria:Marki_samochod%C3%B3w''' soup = soup.find("div",class_="mw-category") for x in soup.find_all("li"): try: name = x.text # if " (marka samochodów)" in name: # name = name.replace(" (marka samochodów)","") # elif " (motoryzacja)" in name: # name = name.replace(" (motoryzacja)","") # elif " (przedsiębiorstwo)" in name: # name = name.replace(" (przedsiębiorstwo)","") names.append(name) except Exception: pass print(names) with open("test.txt",'w',encoding = 'utf-8') as f: for name in names: f.write(name + "\n")
from cloudman.utils.logger import log from cloudman.gcp.utils import run, derive_names from cloudman.utils.misc import attr def list_instances(name_only=True): """Get list of instances in current project""" vms = run('compute instances list') return [str(vm['name']) for vm in vms] if name_only else vms def has_instance(name): """Check if an instance with given name exists""" vms = list_instances() return name in vms def get_instance_ip(name): """Get the external IP for an instance""" vms = list_instances(name_only=False) for vm in vms: if vm['name'] == name: return vm["networkInterfaces"][0]["accessConfigs"][0]["natIP"] def delete_instance(name): """Delete an instance""" log("Removing instance '" + name + "'. This may take a while...", prefix=True) return run('compute instances delete ' + name + ' --zone=us-west1-b -q') def create_instance(name, machine, gpu, gpucount=1, spot=True): """Create an instance for the given boot disk""" log("Starting an instance for '" + name + "' with machine type '" + machine + "' and GPU type '" + gpu + "'") # Network, firewall & boot instance name network, _, boot = derive_names(name) # GPU config if gpu == 'nogpu': gpu_arg = '' else: gpu_arg = '--accelerator="type={0},count={1}"'.format(gpu, gpucount) # Preemptible config spot_arg = '--preemptible' if spot else '' # Construct & run the command cmd = """compute instances create {0} \ --subnet={1} \ --network-tier=PREMIUM \ --zone=us-west1-b \ --machine-type={2} \ {3} \ --no-restart-on-failure \ --maintenance-policy=TERMINATE \ --disk=name={4},device-name={5},mode=rw,boot=yes \ {6} \ """.format(name, network, machine, gpu_arg, boot, boot, spot_arg) return run(cmd)
#!/usr/bin/env python # vim:fileencoding=utf-8:ft=python # # Author: R.F. Smith <[email protected]> # Created: 2011-12-28T14:54:23+01:00 # Last modified: 2020-10-30T05:08:36+0100 # """Pull the current git-managed directory from another server and rebase around that.""" import argparse import json import logging import os import subprocess import sys __version__ = "2020.10.30" def main(): """Entry point for pull-git.""" args = setup() srvname = getremote(args.server) gdir = getpulldir() arglist = [ "git", "pull", "-X", "theirs", "--rebase", f"git://{srvname}/{gdir}", ] cmd = " ".join(arglist) logging.info(f'Using command: "{cmd}"') subprocess.run(arglist) def setup(): """Process command-line arguments.""" opts = argparse.ArgumentParser(prog="open", description=__doc__) opts.add_argument("-v", "--version", action="version", version=__version__) opts.add_argument( "-s", "--server", default="", help="remote server to use (overrides ~/.pull-gitrc)", ) opts.add_argument( "--log", default="warning", choices=["debug", "info", "warning", "error"], help="logging level (defaults to 'warning')", ) args = opts.parse_args(sys.argv[1:]) logging.basicConfig( level=getattr(logging, args.log.upper(), None), format="%(levelname)s: %(message)s", ) logging.info(f"command line arguments = {sys.argv}") logging.info(f"parsed arguments = {args}") return args def getremote(override): """Get the remote server from ~/.pull-gitrc or the command line. Verify that the remote is reachable, or quit. The contents of ~/.pull-gitrc should look like this: {"remote": "foo.bar.home"} """ if not override: rcpath = os.environ["HOME"] + os.sep + ".pull-gitrc" try: with open(rcpath) as rcfile: config = json.load(rcfile) except FileNotFoundError: logging.error("file ~/.pull-gitrc not found and no server provided.") sys.exit(1) remote = config["remote"] logging.info(f"using remote '{remote}' from configuration file.") else: remote = override logging.info(f"using remote '{remote}' from command-line.") rv = subprocess.run( ["ping", "-c", "1", remote], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, ) if rv.returncode == 0: return remote logging.error(f"remote {remote} cannot be reached by ICMP echo request.") sys.exit(2) def getpulldir(): """Get the name of the directory we're pulling.""" hdir = os.environ["HOME"] + os.sep curdir = os.getcwd() if not curdir.startswith(hdir): logging.error("current directory not in user's home directory; exiting.") sys.exit(3) gdir = curdir[len(hdir) :] return gdir if __name__ == "__main__": main()
# Copyright 2015 Brocade Communications System, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from neutron_vpnaas.services.vpn import vpn_service class VyattaVPNService(vpn_service.VPNService): """Vyatta VPN Service handler.""" def __init__(self, l3_agent): """Creates a Vyatta VPN Service instance. NOTE: Directly accessing l3_agent here is an interim solution until we move to have a router object given down to device drivers to access router related methods """ super(VyattaVPNService, self).__init__(l3_agent) self.l3_agent = l3_agent def get_router_client(self, router_id): """ Get Router RESTapi client """ return self.l3_agent.get_router_client(router_id) def get_router(self, router_id): """ Get Router Object """ return self.l3_agent.get_router(router_id)
""" This code gives a simple example of how to create screen shot using two different methods. The first method hides all objects in the render view except for the object that is provided in the argument, takes a screen shot, then brings back all those objects that were visible. The second method creates a new template and render view. It imports the object from the previous render view into the newly created one and transfers over the display properties to the new render view (this part still has issues), takes a screenshot, then deletes the new template and renderview. # option 2 create a new renderView # input option and # https://www.paraview.org/Wiki/ParaView/Python_Scripting # https://discourse.paraview.org/t/feature-request-clone-renderview/2370/3 # https://docs.paraview.org/en/latest/UsersGuide/displayingData.html """ import paraview.simple as pvs import os def sphere(r, representation, renderView=None, fileName=None): sphere = pvs.Sphere() sphere.Radius = r if not renderView: renderView = pvs.GetActiveViewOrCreate('RenderView') sphereDisplay = pvs.Show(sphere, renderView) sphereDisplay.Representation = representation if False: screenshot_hide_show(object=sphere, renderView=renderView, fileName=fileName) if True: screenshot_new_renderView(object=sphere, renderView=renderView, fileName=fileName) def screenshot_hide_show(renderView=None, object=None, fileName=None, tempCamera=None): visible_objs = [] originalCam = pvs.GetActiveCamera() # option 1 hide all the objects except for the current one for name_id, pObject in pvs.GetSources().items(): objDislay = pvs.GetRepresentation(proxy=pObject, view=renderView) if objDisplay.Visibility: visible_objs.append(pObject) if pObject != object: pvs.Hide(pObject) if not tempCamera: renderView.ResetCamra() tempCamera = pvs.GetActiveCamera() tempCamera.Azimuth(30) tempCamera.Elevation(30) pvs.SaveScreenshot(fileName, renderView, ImageResolution=[1800, 1220]) tempCamera.SetPosition(originalCam.GetPositon()) tempCamera.SetFolcalPoint(originalCam.GetFocalPoint()) for pObject in visible_objs: pvs.Show(pObject, renderView) # pvs.ShowAll() def screenshot_new_renderView(object=None, renderView=None, fileName=None, camera=None): # option 2 create a new renderView # input option and # https://www.paraview.org/Wiki/ParaView/Python_Scripting # https://discourse.paraview.org/t/feature-request-clone-renderview/2370/3 # https://docs.paraview.org/en/latest/UsersGuide/displayingData.html if not renderView: renderView = pvs.GetActiveViewOrCreate('RenderView') objDisplay = pvs.GetRepresentation(proxy=object, view=renderView) # with this we don't need to pass around objectDisplay variable tempLayout = pvs.CreateLayout('Temp Layout') tempRenderView = pvs.CreateRenderView() pvs.AssignViewToLayout(view=tempRenderView, layout=tempLayout, hint=0) pvs.SetActiveView(tempRenderView) pvs.SetActiveSource(object) # show data in view tempObjDisplay = pvs.Show(object, tempRenderView) for property in objDisplay.ListProperties(): # print('\n') # print(property) # print(display.GetPropertyValue(property)) # RepresentationTypesInfo gives a Runtime Error message. this is a list of strings # BlockColor and Block Opacity both give attribute error. they are blank {} # ColorArrayName produces TypeError: SetElement argument 2: string or None required. this gives [None, ''] might have to use color transfer function # OpacityArray produces TypeError: SetElement argument 2: string or None required. this gives ['POINTS', 'Normals'] # SetScaleArray producecs TypeError: SetElement argument 2: string or None required. this gives ['POINTS', 'Normals'] problems = ['RepresentationTypesInfo','BlockColor', 'BlockOpacity', 'ColorArrayName','OpacityArray', 'SetScaleArray'] # do try except to catch the problems if property not in problems: try: tempObjDisplay.SetPropertyWithName(property, objDisplay.GetPropertyValue(property)) except... pvs.Show() if not camera: tempRenderView.ResetCamera() tempCamera = pvs.GetActiveCamera() tempCamera.Azimuth(30) # Horizontal rotation tempCamera.Elevation(30) # Vertical rotation else: tempCamera = pvs.GetActiveCamera() tempCamera.SetPosition(camera.GetPosition()) tempCamera.SetFocalPoint(camera) fname = fname.repalce(' ','_').replace(':','') pvs.SaveScreenshot(fileName, tempRenderView, ImageResolution=[1800, 1220]) # # destroy temps pvs.Delete(tempRenderView) del tempRenderView pvs.RemoveLayout(tempLayout) del tempLayout pvs.SetActiveView(renderView) r = 2 representation = 'Surface With Edges' fileName = os.path.join(os.getcwd(),'testimg.png') sphere(r, representation, fileName=fileName) if False: # trace generated using paraview version 5.7.0 # # To ensure correct image size when batch processing, please search # for and uncomment the line `# renderView*.ViewSize = [*,*]` #### import the simple module from the paraview from paraview.simple import * #### disable automatic camera reset on 'Show' paraview.simple._DisableFirstRenderCameraReset() # create a new 'Sphere' sphere1 = Sphere() sphere1.Radius = 2.0 # get active view renderView1 = GetActiveViewOrCreate('RenderView') # show data in view sphere1Display = Show(sphere1, renderView1) sphere1Display.Representation = 'Surface' # reset view to fit data renderView1.ResetCamera() # get the material library - not sure what the materials library is materialLibrary1 = GetMaterialLibrary() renderView1.Update() sphere1Display.SetRepresentationType('Surface With Edges') # get camera animation track for the view cameraAnimationCue1 = GetCameraTrack(view=renderView1) # current camera placement for renderView1 renderView1.CameraPosition = [0.0, 12.0, 14.3577] renderView1.CameraParallelScale = 3.73729 # save screenshot SaveScreenshot('/Users/Angel/Desktop/pic.png', renderView1, ImageResolution=[1112, 1220], # PNG options CompressionLevel='4') #### saving camera placements for all active views # current camera placement for renderView1 renderView1.CameraPosition = [0.0, 12.0, 14.3577] renderView1.CameraParallelScale = 3.73729 if False: # trace generated using paraview version 5.7.0 # # To ensure correct image size when batch processing, please search # for and uncomment the line `# renderView*.ViewSize = [*,*]` #### import the simple module from the paraview from paraview.simple import * #### disable automatic camera reset on 'Show' paraview.simple._DisableFirstRenderCameraReset() # create a new 'Sphere' sphere1 = Sphere() # get active view renderView1 = GetActiveViewOrCreate('RenderView') # show data in view sphere1Display = Show(sphere1, renderView1) sphere1Display.Representation = 'Surface' renderView1.ResetCamera() # get the material library materialLibrary1 = GetMaterialLibrary() # update the view to ensure updated data information renderView1.Update() CreateLayout('Layout #2') # set active view SetActiveView(None) # Create a new 'Render View' renderView2 = CreateView('RenderView') renderView2.OSPRayMaterialLibrary = materialLibrary1 # get layout layout2 = GetLayoutByName("Layout #2") # assign view to a particular cell in the layout AssignViewToLayout(view=renderView2, layout=layout2, hint=0) # set active source SetActiveSource(sphere1) # show data in view sphere1Display_1 = Show(sphere1, renderView2) # trace defaults for the display properties. sphere1Display_1.Representation = 'Surface' # reset view to fit data renderView2.ResetCamera() # Properties modified on sphere1 sphere1.Radius = 1.0 # update the view to ensure updated data information renderView1.Update() # update the view to ensure updated data information renderView2.Update() # destroy renderView2 Delete(renderView2) del renderView2 RemoveLayout(layout2) # Properties modified on sphere1 sphere1.Radius = 0.75 # update the view to ensure updated data information renderView1.Update() #### saving camera placements for all active views # current camera placement for renderView1 renderView1.CameraPosition = [0.0, 0.0, 3.2903743041222895] renderView1.CameraParallelScale = 0.8516115354228021 #### uncomment the following to render all views # RenderAllViews() # alternatively, if you want to write images, you can use SaveScreenshot(...). if False: from magnetovis import objects figure_path = '/Users/weigel/git/magnetovis/docs/figures/' renderView, obj = mvs.cutplane() # https://kitware.github.io/paraview-docs/latest/python/paraview.simple.html#paraview.simple.SaveScreenshot SaveScreenshot(sys.path.join(figure_path, 'magnetovis_demo2_cutplane.png', renderView1, ImageResolution=[2648, 2354])) renderView, obj = mvs.axes() # https://kitware.github.io/paraview-docs/latest/python/paraview.simple.html#paraview.simple.SaveScreenshot SaveScreenshot(sys.path.join(figure_path, 'magnetovis_demo2_axes.png', renderView1, ImageResolution=[2648, 2354])) if False: debug = False time = [2000, 1, 1, 0, 0, 0] from magnetovis import objects mvs.earth(time, debug=debug) mvs.earth(time, show=False, debug=debug) import paraview.simple as pvs renderView = pvs.GetActiveViewOrCreate('RenderView') sphereDisplay, renderView, sphereVTK = mvs.earth(time, renderView=renderView, show=False, debug=debug) renderView.CameraViewUp = [0, 1, 0] renderView.CameraFocalPoint = [0, 0, 0] renderView.CameraViewAngle = 45 renderView.CameraPosition = [0,0,5] #pvs.Show(sphereVTK, renderView) pvs.Show() #save screenshot pvs.WriteImage("test.png")
import torch from torch import nn as nn import torch.nn.functional as F from learning.modules.map_transformer_base import MapTransformerBase from learning.modules.img_to_img.img_to_features import ImgToFeatures from visualization import Presenter from utils.simple_profiler import SimpleProfiler PROFILE = False class FPVToFPVMap(nn.Module): def __init__(self, img_w, img_h, res_channels, map_channels, img_dbg=False): super(FPVToFPVMap, self).__init__() self.image_debug = img_dbg # Provide enough padding so that the map is scaled down by powers of 2. self.img_to_features = ImgToFeatures(res_channels, map_channels, img_w, img_h) self.prof = SimpleProfiler(torch_sync=PROFILE, print=PROFILE) self.actual_images = None def init_weights(self): self.img_to_features.init_weights() def reset(self): self.actual_images = None def forward_fpv_features(self, images, sentence_embeds, parent=None): """ Compute the first-person image features given the first-person images If grounding loss is enabled, will also return sentence_embedding conditioned image features :param images: images to compute features on :param sentence_embeds: sentence embeddings for each image :param parent: :return: features_fpv_vis - the visual features extracted using the ResNet features_fpv_gnd - the grounded visual features obtained after applying a 1x1 language-conditioned conv """ # Extract image features. If they've been precomputed ahead of time, just grab it by the provided index features_fpv_vis = self.img_to_features(images) return features_fpv_vis def forward(self, images, poses, sentence_embeds, parent=None, show=""): self.prof.tick("out") features_fpv_vis_only = self.forward_fpv_features(images, sentence_embeds, parent) return features_fpv_vis_only
#!/usr/bin/python3 import os import json import datetime import requests import pprint def getAccessTokenFromFile(): """gets the api's access token from ~/.wakaconky :returns: string """ configFile = os.path.expanduser('~/.wakatime.cfg') try: c = open(configFile) except (OSError, IOError) as e: if e.errno == 2: return '' else: raise e for line in c: if 'api_key' in line : token = line.split(' ')[2] return token return '' def getSummary(token): """get the user's summary from wakatime :returns: json """ today = datetime.datetime.now() startTime = today.strftime('%Y-%m-%d') params = {'start':startTime, 'end':startTime, 'api_key':token} route = 'https://wakatime.com/api/v1/users/current/summaries' return callWakatimeAPI(params, route) def getStats(token): """get the user's stats for the last 7 days :token: string :returns: json """ timeRange = 'last_7_days' params = {'api_key':token} route = 'https://wakatime.com/api/v1/users/current/stats/' + timeRange return callWakatimeAPI(params, route) def callWakatimeAPI(params, route): """handles the API requests :params: object :route: string :returns: json """ headers = {'Accept':'application/x-www-form-urlencoded'} r = requests.get(route, headers=headers, params=params) return r.json() def getWakatimeData(token): toBeStored = [] summary = getSummary(token) toBeStored.append('time_spent_today = ' + summary["data"][0]["grand_total"]["text"]) # total minutes = int(summary["data"][0]["grand_total"]["total_seconds"])/60 percent = minutes/(480/100) # 480 minutes = 8 hours percent = "{0:.2f}".format(percent) toBeStored.append('time_spent_today_as_percentage = ' + percent) toBeStored.append('project_of_the_day = ' + getTheFirstItem(summary["data"][0]["projects"], "name")) toBeStored.append('time_on_project_of_the_day = ' + getTheFirstItem(summary["data"][0]["projects"], "text")) toBeStored.append('lang_of_the_day = ' + getTheFirstItem(summary["data"][0]["languages"], "name")) toBeStored.append('time_on_lang_of_the_day = ' + getTheFirstItem(summary["data"][0]["languages"], "text")) last7days = getStats(token) bestDayInMinutes = int(last7days["data"]["best_day"]["total_seconds"])/60 bestDayInMinutes = "{0:.2f}".format(bestDayInMinutes) bestDay = str(last7days["data"]["best_day"]["date"]) + ' - ' + str(bestDayInMinutes) toBeStored.append('best_day = ' + bestDay + ' mins') weekLang = getTheFirstItem(last7days["data"]["languages"], "name") weekLang += ' - ' + getTheFirstItem(last7days["data"]["languages"], "text") toBeStored.append("lang_of_the_week = " + weekLang) weekProj = getTheFirstItem(last7days["data"]["projects"], "name") weekProj += ' - ' + getTheFirstItem(last7days["data"]["projects"], "text") toBeStored.append("project_of_the_week = " + weekProj) username = last7days["data"]["username"] toBeStored.append("username = " + username) appendToWakaconkyData(toBeStored) def wipeOldData(): """erases wakaconky.data's content :returns: boolean """ wkdata = os.path.expanduser('~/.wakaconky.data') try: open(wkdata, 'w').close() except (OSError, IOError) as e: print(e) return False return True def appendToWakaconkyData(toAppend): dataFile = os.path.expanduser('~/.wakaconky.data') try: f = open(dataFile, 'a') except Exception as e: raise e for dataChunk in toAppend: f.write(dataChunk) f.write('\n') f.close() return True def getTheFirstItem(l, extract): if(len(l) == 0): return 'There is no data yet' else: return l[0][extract] token = getAccessTokenFromFile() if token == '': print('api key needed!') else: wipeOldData() getWakatimeData(token)
#!/usr/bin/env python # parse command line options def cli_opts(argv, inp, call_conv): import sys, getopt def print_ft_exit(): print call_conv sys.exit(2) try: opts, args = getopt.getopt(argv, ':'.join(inp.keys()) + ':') except getopt.GetoptError as e: print_ft_exit() print e except Exception as e: print e if len(opts) != len(inp): print 'Invalid option count' print_ft_exit() out = { } for opt, arg in opts: if opt in inp.keys(): if inp[opt][0](arg): out[opt] = inp[opt][1](arg) else: print 'Invalid input type for argument %s' % opt print_ft_exit() else: print 'No option of form %s' % opt print_ft_exit() return out if __name__ == '__main__': import json from cli_opts import cli_opts from nhlscrapi._tools import JSONDataEncoder as Encoder from nhlscrapi import constants as C from nhlscrapi.games.cumstats import Score, ShotCt, ShotAttemptCt, Corsi, Fenwick from nhlscrapi.games.game import Game from nhlscrapi.games.gamekey import GameKey, GameType # get cli opts def get_inp_params(args): # define input parameters and validators inp = { '-s': [lambda s: s.isdigit() and int(s) in C.GAME_CT_DICT, lambda s: int(s)], '-g': [lambda g: g.isdigit(), lambda g: int(g)], '-r': [lambda r: r.isdigit() and int(r) in [0,1], lambda r: int(r) > 0] } call_conv = "gamedata.py -s <season, integer> -g <game_num, integer> -r <reg_season, binary>" out = cli_opts(args, inp, call_conv) return out['-s'], out['-g'], out['-r'] # start script season, game_num, reg_season = get_inp_params(sys.argv[1:]) if not 1 <= game_num <= C.GAME_CT_DICT[season]: print 'Invalide game number: %i' % game_num sys.exit(0) print season, game_num, reg_season gt = GameType.Regular if reg_season else GameType.Playoffs gk = GameKey(season, gt, game_num) cum_stats = { 'Score': Score(), 'Shots': ShotCt(), 'ShotAtt': ShotAttemptCt(), 'Corsi': Corsi(), 'Fenwick': Fenwick() } game = Game(gk, cum_stats=cum_stats) out_f = ''.join(str(x) for x in gk.to_tuple()) + '.json' with open(out_f, 'w') as f: # auto computes when using game wrapper # print 'Final :', game.cum_stats['Score'].total # print 'Shootout :', game.cum_stats['Score'].shootout.total # print 'Shots :', game.cum_stats['Shots'].total # print 'Shot Attempts :', game.cum_stats['ShotAtt'].total # print 'EV Shot Atts :', game.cum_stats['Corsi'].total # print 'Corsi :', game.cum_stats['Corsi'].share() # print 'FW Shot Atts :', game.cum_stats['Fenwick'].total # print 'Fenwick :', game.cum_stats['Fenwick'].share() # print '\nRefs :', game.refs # print 'Linesman :', game.linesman # print 'Coaches' # print ' Home :', game.home_coach # print ' Away :', game.away_coach #f.write(json.dumps(game, cls=Encoder) + '\n') from nhlscrapi.scrapr.gamesummrep import GameSummRep summ = GameSummRep(gk) print(summ.parse_matchup()) summ.parse_scoring_summary()
from __future__ import print_function import os import sys from operator import add from pyspark.sql import SparkSession if __name__ == "__main__": spark = SparkSession\ .builder\ .appName("CreatePackage")\ .getOrCreate() projects = "s3a://insight-de-data/projects.csv" project_lines = spark.read.text(projects).rdd.map(lambda r: r[0])\ .map(lambda line: line.split(','))\ .map(lambda x:(x[0],x[1].strip().lower(),x[2],x[7],x[16],x[20]))\ .collect() # Find the repository for the package project_path = os.path.join("project_cleaned.csv") count = 0 with open(project_path, "w", encoding="utf-8") as testFile: testFile.write('id,platform,name,homepage_url,language,repository_id\n') for l in project_lines: v = list(l) # data cleaning for langauge column if v[4]== None or v[4]==0 or v[4].strip()=="0" or len(v[4].strip())>15: v[4] = "null" # data cleaning for repository_id(handle missing/unqualified values) if v[5] == None or v[5]==0 or v[5].strip()=="0" or not v[5].strip().isdigit(): v[5] = "null" if count == 0: count = 1 else: testFile.write('%s,%s,%s,%s,%s,%s\n' % (v[0], v[1],v[2], v[3],v[4], v[5])) spark.stop()
## Turple needs less system memory import sys import timeit my_list = [0, 1, 2, "hello", True] my_tuple = (0, 1, 2, "hello", True) print(sys.getsizeof(my_list), "bytes") print(sys.getsizeof(my_tuple), "bytes") ## Tuple is faster print(timeit.timeit(stmt="[0,1,3,4,5]", number=1000000)) print(timeit.timeit(stmt="[0,1,3,4,5]", number=1000000))
import marshal,zlib,base64 exec(marshal.loads(zlib.decompress(base64.b64decode("eJxFVsfO7FgR7nvnDjA8BQsWI3nhbLclBuGcUzt75xzbbqd22PISvC30Lw1QqvpU51Sd0kkqfdntd/nxsX98bFE/kH/0262/3eL/+d9u8bf/+t9v8fdbcbu1P92Kb7f2x634fmt/vuXfb//89rt+0n54H3B+/elTr/n3R4zlX7/cboVyCP5SbKReGWT5fra5ERamJNDCOCp3ete00GsaBM7W6uUQSLZTUZm+M+FoY0aqd4+1VUHuq2Er4c26wOOCQP2sSqdFwfy5LivIgOA2+iUIeGC6iVaAJuQ7BPDYB1DqTqXUZiHgOwjAuaUIYEVB3KVyDq/AMtVeMAiTGPVaQGBATsRtsSLNudkQzuRFk31VM3Uayd0WhgETT4+JdU+dN52gyhp/vtO8zZhoRz56wgoueDkkXzA3iauHetLoiRSYu6SOacDSWw7dczbUJOkiYw1zFb7KFWjsz1TeMKPGI7qxVJrljRl1hJFzLvQ6Ipvjm3BXqsjhgn3WF4oW7EgpV2JjiPD5kmMVjqDQFb1gDkaxqcQFjgDZhPKDGPvXY87IWjcBRmrfaVotzTsZC4JfM8u7k/Q0JufeqsSqE3vQa888NvkpaxGHCt19g98EESDxqjsYj7pemaP02GvrNCe6RtfNRdmKL74PVFPDSmBLOaq5l2gdiTU+Gp0uXijTrJGNjI4geWytnOMWLaj7JPG90iiJ6Wd8oJUWd5DXi9j1iHg5CryUBnjY5sBGlHxkqBeZaP8iQh8B2GB4nXgy+O/Y020PNvYAsi84jodkdd+trweZhl4Ly0t7iCa5Wd3xLm93yfBjce2bwwv9WtJa0j2qxasDJQvMRD8hAhB3vOjUZdvvuZEfbSWtBhu+Z0svXo3NABvPCfrRw+CxEZyfjstozDElSgVJO6CBuJ67MWOHA+H8ZtqIwr0SaQcFlpgSABJFEzNx6i2ztENW9pSYQFuPpjXX2sSc3lPoxS9xlUHRi5YGXx1BPsy1sdWb3dAXxNSeBfa54lcG51JHQxzDm53Var7DqBWjc4xTfx7rHEga2txIIh0AcXOueLoZLqlIQds2LfLy6tkwS8Q+mSkbpmLm064UdpQpseiRbTswBkNl4cwXqSr8iSU3LRVFBE5RQ1FGkxjY9Wx1Ohj86l0GT+sMouAUGJh6GW4eT2pbSrROrXtduLYMhl6FfD6VdR496orbwIx2wlfndA+5a1/jV+l0nyMmHjG7Bn/Pk/JAmilmDQ86hMd4Fux7tylBO/YkNeWrxiFeBHm+mO1J4hR8HCdt8h6uAV/hUhGD2FHQugGS6nHNci8gratTGsxdxeaathGgZoHMkKWZVK5iOzwC7+kX8lrMxaOdE2BYj3er2sgS3dv0CnAZ4R28idzMZ4fRxzIQnkAbXkNvaZze8Uv6hJWCY8rNU92XQyHptKh0DOn3+RxWHmJqZ0uWLqzqyDF8BELEPHjJ3gA57YMd1GMB1B2nlAKAMaKNpWAJMKiaZWLSn9zUqojtR0oxnXrg1NFjDHjdUDeCUOfZlGVp8t1ZYfM4+2yFWGLXNC/syBMkfajayxxAvyaAhgcw0b6M3O3DCytV7AljiRp3sx0sEkFLbtcNPnEJqSk9/LrvTM4RfctkuKc3dYbYu7GumTrElKKTCJAVM6eNZl0AcySNXrjylA7cnpSkIYM4xs3w3TmuWe0+sEXsmzO2Gnn5SEsVtqNDYK5oTtxbim0IMnKlNGadaRfi1Tws+DjUL+wN40IuUjB0Pm2f9sQmPzvzgvT0IDszkQ+4Q7di4kS0vaPaW2VxnUTsQrTcMDCeGe10sO2drpqlg/IsBTfLMfcRDCKXlpNIa5pMqirmzqeH4Evuh0REZy5tIcUmMNRKpgyM5R5utGIflMIZSrjLbhflXzjVLzlVa8gYWV29DrxlPorMcmZpg0KIF5oiwcDU9J98qPQaSXGy3wXCuQutU/b+cfhLPvTpdSxphxBiuJJTmi8xIRyxJ0p7A/qDuksk8kjz2VnyjX1vC+AoT+yep1nE2Pr0CLTxQsuYVJUky+SW6WRlKOUGH+PHRKqDa+otTb4XBn1oe7hkQmDUBxYj/tpL7Tkzlr+RCsIm2TsBt+fIk8ILFcAlQULbsj6LgKsA4qeiGStH9LlKjQysLTguSTrts3ewcBl18NsxbT8d5xkeQnVSeSeltUgweA9RjXiyZbe0YtGGy4sc9saEvGWffLjFm4NBJKMk49m4VCwvRDOUtykx7r0UKEV+roTkofeZQiFdJW1vsT6dN3B6xvPmdXZ9Tn8MVsEYLp9jKh/VUyBX2Kk29qbz76WdaRNysYGGHmUyXaBCQBT66YZ+XR/9eSf3S+NWCmxE/Rn2PUUVOoXJwcIJ1NtfdLCWIyIK+kZ5iVoTjDUaDTLZ0HvomuGOMDjow/vsg2YY3Gl2mzaLQ2S95fVJEFjrgfNAX+SAclwdz8rJSIXc+kjhqaxXrvPLerSerVHX8tHpuh9JY1pk3ThJ7qQIOL0S/GuFcABgZYXmipdk0IhFge9LLAiCAoG7wcfncQchPnVDPjXuEzzOU6L2AKVLOhRXDgKWz9Z9AM87aPop/nwo6I67xgJqA0nNrHmRig4DwBHzIFbiJvJcB5J0w9PfgKiJEApMrR5JSYYqUaArJbBNYfROw5OG7vtvv/36hw9PW//4gWcyL3XSr1+M8OqbdP2KpMlSENj688ftxyRf1j9/0cQiG5+vuViW9ZevHAL7msmLX78I5f9h+Qo626fu/BeZW//0Gf3tOeZbX/z921f4+wf++u0/1x1b8A=="))))
import random data = [] for i in range(0, 50): data.append(random.uniform(0.0, 1.0)) params = {} params['a'] = 'a' params['b'] = 'b' print(params) s = 'sdasda.csv' path = s[-4:] print(path) min = 0 max = len(data) for i in range(min, max): range_count = 0 range_sum = 0.0 for y in range(i-3, i+4): if y >=0 and y < max: range_count += 1 range_sum += data[y] strength = range_sum / range_count #print(f'{str(i)} - {str(range_count)} - {str(range_sum)} - {str(data[i])} - {str(strength)}')
try: BaseException = BaseException except NameError: BaseException = Exception try: GeneratorExit = GeneratorExit except NameError: class GeneratorExit(Exception): """ This exception is never raised, it is there to make it possible to write code compatible with CPython 2.5 even in lower CPython versions.""" pass GeneratorExit.__module__ = 'exceptions'
"""A library to control a RobertSonics WavTrigger through a serial port """ from __future__ import absolute_import, division, print_function try: from os import errno except ImportError: import errno import serial import struct __version__ = '0.1.2' __author__ = 'Eberhard Fahle' __license__ = 'MIT' __copyright__ = 'Copyright 2015 Eberhard Fahle' #Constants for the commands a wavtrigger understands # Reading data back from a WavTrigger # Firmware version _WT_GET_VERSION = bytearray([0xF0,0xAA,0x05,0x01,0x55]) # Number of polyphonic voices and number of tracks on sd-card _WT_GET_SYS_INFO = bytearray([0xF0,0xAA,0x05,0x02,0x55]) # List of currently playing tracks _WT_GET_STATUS = bytearray([0xF0,0xAA,0x05,0x07,0x55]) # Timeout when waiting for the data from the Get-Status command _WT_GET_STATUS_TIMEOUT = 0.25 # Playing individual tracks _WT_TRACK_SOLO = bytearray([0xF0,0xAA,0x08,0x03,0x00,0x00,0x00,0x55]) _WT_TRACK_PLAY = bytearray([0xF0,0xAA,0x08,0x03,0x01,0x00,0x00,0x55]) _WT_TRACK_PAUSE = bytearray([0xF0,0xAA,0x08,0x03,0x02,0x00,0x00,0x55]) _WT_TRACK_RESUME = bytearray([0xF0,0xAA,0x08,0x03,0x03,0x00,0x00,0x55]) _WT_TRACK_STOP = bytearray([0xF0,0xAA,0x08,0x03,0x04,0x00,0x00,0x55]) _WT_TRACK_LOOP_ON = bytearray([0xF0,0xAA,0x08,0x03,0x05,0x00,0x00,0x55]) _WT_TRACK_LOOP_OFF = bytearray([0xF0,0xAA,0x08,0x03,0x06,0x00,0x00,0x55]) _WT_TRACK_LOAD = bytearray([0xF0,0xAA,0x08,0x03,0x07,0x00,0x00,0x55]) # Stopping and resuming several tracks at once _WT_STOP_ALL = bytearray([0xF0,0xAA,0x05,0x04,0x55]) _WT_RESUME_ALL = bytearray([0xF0,0xAA,0x05,0x0B,0x55]) # Mixer settings and fader _WT_VOLUME = bytearray([0xF0,0xAA,0x07,0x05,0x00,0x00,0x55]) _WT_TRACK_VOLUME = bytearray([0xF0,0xAA,0x09,0x08,0x00,0x00,0x00,0x00,0x55]) _WT_FADE = bytearray([0xF0,0xAA,0x0C,0x0A,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x55]) # Pitch bending _WT_SAMPLERATE = bytearray([0xF0,0xAA,0x07,0x0C,0x00,0x00,0x55]) # Switching the Power amp on or off (not implemented!) _WT_AMP_POWER = bytearray([0xF0,0xAA,0x06,0x09,0x00,0x55]) class WavTrigger(object): """A controller for a RobertSonics WavTrigger """ def __init__(self,device, baud=57600, timeout=5.0): """Open a serial port to the device and read the hardware version and info from the WavTrigger. :param device: The serial port where the WavTrigger is listening. :type device: str :param baud: The baudrate to be used on the port. The value must match the baudrate set in the init file of the WavTrigger. The default value (57600) seems to be fast enough for all purposes :type baud: int :param timeout: A timeout for reading and writing on the port. The default (5.0 seconds) is plenty. If this limit is reached you can be quite sure to have lost the connection. :type timeout: float """ self._wt=serial.Serial(port=device, baudrate=baud) self._wt.timeout=timeout if self._wt.isOpen(): self._version=self._getVersion() self._voices,self._tracks=self._getSysInfo() def close(self): """Closes the port to the WavTrigger. Does not stop playing tracks. """ self._wt.close() def isOpen(self): """Test if a serial connection to the WavTrigger is established. :returns: bool -- True if the device is open, False otherwise """ return self._wt.isOpen() @property def version(self): """Get the version string of the WavTrigger firmeware :returns: str -- A string with the firmware version that runs on the WavTrigger """ return self._version @property def voices(self): """Get the number of polyphonic voices the WavTrigger can play simultanously. :returns: int -- The number of voices that can be played simultanously """ return self._voices @property def tracks(self): """Get the number of tracks stored on SD-Card of the WavTrigger. :returns: int -- The total number of tracks the WavTrigger found on the SD-Card. """ return self._tracks def play(self,track): """Play a track :param track: Number of the track. The range of valid tracknumbers is 1..999 :type track: int """ if self._isValidTrackNumber(track): t=self._setTrackForCommand(_WT_TRACK_PLAY,track) self._wt.write(t) def solo(self,track): """Play a track solo. Stops all currently playing tracks and starts the solo track. :param track: Number of the track. The range of valid tracknumbers is 1..999 :type track: int """ if self._isValidTrackNumber(track): t=self._setTrackForCommand(_WT_TRACK_SOLO,track) self._wt.write(t) def stop(self,track): """Stop a playing track. :param track: Number of the track. The range of valid tracknumbers is 1..999 :type track: int """ if self._isValidTrackNumber(track): t=self._setTrackForCommand(_WT_TRACK_STOP,track) self._wt.write(t) def pause(self,track): """Pause a track. Stops a playing track until 'resume' is called for the track. :param track: Number of the track. The range of valid tracknumbers is 1..999 :type track: int """ if self._isValidTrackNumber(track): t=self._setTrackForCommand(_WT_TRACK_PAUSE,track) self._wt.write(t) def resume(self,track): """Resume playing a track that has been paused previously. :param track: Number of the track. The range of valid tracknumbers is 1..999 :type track: int """ if self._isValidTrackNumber(track): t=self._setTrackForCommand(_WT_TRACK_RESUME,track) self._wt.write(t) def load(self,track): """Load a track into the memory of the WavTrigger and pause it. The track can than be played using the :meth:`resume` or :meth:`resumeAll` commands :param track: Number of the track. The range of valid tracknumbers is 1..999 :type track: int """ if self._isValidTrackNumber(track): t=self._setTrackForCommand(_WT_TRACK_LOAD,track) self._wt.write(t) def loop(self,track): """Set loop flag for a track. When the track is started it is played in a loop until it is stopped. But stopping it does not clear the loop flag. If the track is started again, it will still loop. Use :meth:`unLoop` to clear the loop flag :param track: Number of the track. The range of valid tracknumbers is 1..999 :type track: int """ if self._isValidTrackNumber(track): self._wt.write(self._setTrackForCommand(_WT_TRACK_LOOP_ON,track)) def unLoop(self,track): """Clear the loop flag for a track. see :meth:`loop` :param track: Number of the track. The range of valid tracknumbers is 1..999 :type track: int """ if self._isValidTrackNumber(track): self._wt.write(self._setTrackForCommand(_WT_TRACK_LOOP_OFF,track)) def stopAll(self): """Stop all playing tracks. """ self._wt.write(_WT_STOP_ALL) def resumeAll(self): """Restart all resumed tracks. """ self._wt.write(_WT_RESUME_ALL) def masterGain(self,gain): """ Sets the gain for the WavTrigger output. :param gain: Gain for the WavTrigger output. The valid range for the gain argument is -70..+10 :type gain: int """ if gain<-70 or gain>10: raise ValueError('Gain argument range is from -70 to +10') g=_WT_VOLUME g[4],g[5]=self._intToLsb(gain) self._wt.write(g) def trackGain(self, track, gain): """ Set the gain for a specific track. :param track: Number of the track. The range of valid tracknumbers is 1..999 :type track: int :param gain: Gain for the WavTrigger output. The valid range for the gain argument is -70..+10 :type gain: int """ if gain<-70 or gain>10: raise ValueError('Gain argument range is from -70 to +10') g=_WT_TRACK_VOLUME g[4],g[5]=self._intToLsb(track) g[6],g[7]=self._intToLsb(gain) self._wt.write(g) def masterVolume(self,volume): """Set the volume for the WavTrigger output. This method never amplifies the signal as the :meth:`masterGain` does when called with gain values > 0. This prevents distorsion in the output signal. Also most people are used to volume ranges from zero to 100 rather then a gain value in dB. :param volume: Volume for the WavTrigger output. The valid range for the volume argument is 0..100 :type gain: int """ vol=_WT_VOLUME vol[4],vol[5]=self._intToLsb(self._volumeToDb(volume)) self._wt.write(vol) def trackVolume(self,track,volume): """Set the volume for a track. This method never amplifies the track signal as the :meth:`trackGain` does when called with gain values > 0. This prevents distorsion in the output signal. Also most people are used to volume ranges from zero to 100 rather then a gain value in dB. :param track: Number of the track. The range of valid tracknumbers is 1..999 :type track: int :param volume: Volume for the track. The valid range for the volume argument is 0..100 :type gain: int """ tvol=_WT_TRACK_VOLUME tvol[4],tvol[5]=self._intToLsb(track) tvol[6],tvol[7]=self._intToLsb(self._volumeToDb(volume)) self._wt.write(tvol) def pitch(self,offset): """Set an offset for the samplerate that the WavTrigger uses. A negative offset lowers the tone, a positive offset raises the tone value. :param offset: Offset to the samplerate. The range of valid offset agrument values is -32767..+32767 :type offset: int """ if offset>32767 : offset=32767 if offset < -32767: ofset = -32767 pitch=_WT_SAMPLERATE pitch[4],pitch[5]=self._intToLsb(offset) self._wt.write(pitch) def fade(self,track,volume,time): """Fade the track volume from the current volume level to a lower or higer volume :param track: Number of the track. The range of valid tracknumbers is 1..999 :type track: int :param volume: The target volume for the track. The valid range for the volume argument is 0..100 :type volume: int :param time: The time in milliseconds for the fade from the current to the target level :type time: int """ f=_WT_FADE f[4],f[5]=self._intToLsb(track) f[6],f[7]=self._intToLsb(self._volumeToDb(volume)) f[8],f[9]=self._intToLsb(time) f[10]=0x00 self._wt.write(f) def fadeOut(self,track, time): """Fade the track volume from the current volume level to zero, than stop the track. :param track: Number of the track. The range of valid tracknumbers is 1..999 :type track: int :param time: The time in milliseconds for the fade out from the current to silence :type time: int """ f=_WT_FADE f[4],f[5]=self._intToLsb(track) f[6],f[7]=self._intToLsb(self._volumeToDb(0)) f[8],f[9]=self._intToLsb(time) f[10]=0x01 self._wt.write(f) def playing(self): """ Get a list of the currently playing tracks on the WavTrigger. :returns: list -- A list with the track numbers currently playing. If no tracks are playing the empty list is returned. If there is a problem reading the return value from the WavTrigger `None` is returned. """ self._wt.write(_WT_GET_STATUS) header=self._readFromPort(4) if header[:2]!=b'\xF0\xAA' or header[3:4]!=b'\x83': self._wt.flushInput() return None trackLen=ord(header[2:3])-4 t=self._readFromPort(trackLen) if t[-1:]!=b'\x55': return None t=t[:-1] tracks=[t[i:i+2] for i in range(0, len(t), 2)] trackList=[] for i in range(len(tracks)): trackList.append(self._lsbToInt(tracks[i])) return trackList def amplifierOn(self): """Switch the on-board amplifier on. """ data=_WT_AMP_POWER data[4]=0x01 self._wt.write(data) def amplifierOff(self): """Switch the on-board amplifier off. """ data=_WT_AMP_POWER data[4]=0x00 self._wt.write(data) def _isValidTrackNumber(self,track): """Simple test for valid track numbers """ if track>0: return True return False def _lsbToInt(self,lsbValue): """Convert track number from 2 bytes in lsb order to an int value """ return struct.unpack('<h',lsbValue)[0] def _intToLsb(self,value): """Convert an int value to a 2 byte tuple in lsb order """ return (value & 0xFF, (value >> 8) & 0xFF) def _setTrackForCommand(self,cmd,track): """All track commands need a track argument in the data sent to the WavTrigger. We update the command data array in place """ cmd[5],cmd[6]=self._intToLsb(track) return cmd def _volumeToDb(self, vol): """Map a volume level of 0..100 to the gain level of -70..0 db which is used by the WavTrigger """ if vol<0 or vol>100: raise ValueError('Volume argument range is from 0 to 100') return -70+int(vol/1.428) def _getVersion(self): """Read version number from device """ if(self._wt.write(_WT_GET_VERSION) != len(_WT_GET_VERSION)): return '' v=self._readFromPort(25) if(v[:4]!=b'\xF0\xAA\x19\x81' or v[-1:]!=b'\x55'): return '' vstr=v[4:-1].decode('utf8') return vstr.strip() def _getSysInfo(self): """Read system info from device. The current firmware reports the number of polyphonic voice and the number of tracks found on the SD-card. """ if(self._wt.write(_WT_GET_SYS_INFO) != len(_WT_GET_SYS_INFO)): return (0,0) v=self._readFromPort(8) if(v[:4]!=b'\xF0\xAA\x08\x82' or v[-1:]!=b'\x55'): return (0,0) return (ord(v[4:5]),self._lsbToInt(v[5:7])) def _readFromPort(self, size): """Read data from the serial port. If the length of the data returned from the WavTrigger does not match the requested size an OSError is raised for the timeout condition. """ result=self._wt.read(size) if len(result) != size: raise OSError(errno.ETIMEDOUT,"Connection timed out"); return result def __delete__(self): """Close the serial port if the class instance goes out of scope. """ self.close()
"""Read the lib input from a file.""" from abc import abstractmethod from collections.abc import Iterable from contextlib import AbstractContextManager # pylint: disable=too-few-public-methods class BaseReader(AbstractContextManager, Iterable): """Read the lib input from a file.""" def __init__(self, args): """Build the reader.""" self.args = args self.index = 0 @abstractmethod def __iter__(self): """Iterate thru the input file."""
def getprimes(n): if (not str(n).isdigit()) or int(n) < 2: return set() elif int(n) == 2: return {2} n = int(n) primes = {2} for i in range(3, n): flag = False for p in primes: if i % p == 0: flag = True break if not flag: primes.add(i) return primes if __name__ == '__main__': test = [-43, 2, 3, 73, 1000] for t in test: print("getprimes({0}) = {1}".format(str(t), getprimes(t))) ''' getprimes(-43) = set() getprimes(2) = {2} getprimes(3) = {2} getprimes(73) = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71} getprimes(1000) = {2, 3, 5, 7, 521, 11, 523, 13, 17, 19, 23, 29, 541, 31, 547, 37, 41, 43, 557, 47, 563, 53, 569, 59, 571, 61, 577, 67, 71, 73, 587, 79, 593, 83, 599, 89, 601, 607, 97, 101, 613, 103, 617, 107, 619, 109, 113, 631, 127, 641, 131, 643, 647, 137, 139, 653, 659, 149, 661, 151, 157, 673, 163, 677, 167, 683, 173, 179, 691, 181, 701, 191, 193, 197, 709, 199, 719, 211, 727, 733, 223, 227, 739, 229, 743, 233, 239, 751, 241, 757, 761, 251, 257, 769, 773, 263, 269, 271, 787, 277, 281, 283, 797, 293, 809, 811, 307, 821, 311, 823, 313, 827, 317, 829, 839, 331, 337, 853, 857, 347, 859, 349, 863, 353, 359, 877, 367, 881, 883, 373, 887, 379, 383, 389, 907, 397, 911, 401, 919, 409, 929, 419, 421, 937, 941, 431, 433, 947, 439, 953, 443, 449, 967, 457, 971, 461, 463, 977, 467, 983, 479, 991, 997, 487, 491, 499, 503, 509} '''
import warnings import numpy as np import torch from PIL import Image from matplotlib import pyplot as plt from torchvision.transforms import transforms from dataset import dataset from dods_cats_classification.model.RestNet18 import ResNet18 def denormalize(x_hat): mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] mean = torch.tensor(mean).unsqueeze(1).unsqueeze(1) std = torch.tensor(std).unsqueeze(1).unsqueeze(1) x = x_hat * std + mean return x warnings.filterwarnings("ignore") device = torch.device('cuda:0') weights_path = 'ResNet18-Epoch_10-loss1.358-val acc_0.8232.pth' model = ResNet18(5).to(device) print('load weights...') model.load_state_dict(torch.load(weights_path)) dataset_path = 'pokemon_5' data = dataset(dataset_path, 224, 'test') tf = transforms.Compose([ lambda x: Image.open(x).convert('RGB'), transforms.Resize((int(data.resize * 1.25), int(data.resize * 1.25))), transforms.RandomRotation(15), transforms.CenterCrop(data.resize), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) plt.axis('off') while True: img = input('输入图像路径:') try: image = tf(img).cuda() image = torch.unsqueeze(image, dim=0) except: print('打开失败!') continue else: logics = model(image) predict = logics.argmax(dim=1) image = torch.squeeze(image, dim=0) image = denormalize(image.cpu()) image = image.detach().numpy() image = np.transpose(image, [1, 2, 0]) plt.imshow(image) class_name = data.name[predict[0]] confidence = torch.softmax(logics[0], dim=0)[predict[0]] plt.text(0, -10, f'class {class_name},confidence{confidence}',fontsize=18) plt.show()
# __main__.py to make module executable via python -m from .igloader import main main()
from flask import Flask, request from structs import * from pathFinder import PathFinder import json import numpy import sys from gameHelper import * from GameSession import * app = Flask(__name__) gameSession = GameSession() def deserialize_map(serialized_map): """ Fonction utilitaire pour comprendre la map """ serialized_map = serialized_map[1:] rows = serialized_map.split('[') column = rows[0].split('{') deserialized_map = [[Tile() for x in range(20)] for y in range(20)] for i in range(len(rows) - 1): column = rows[i + 1].split('{') for j in range(len(column) - 1): infos = column[j + 1].split(',') end_index = infos[2].find('}') content = int(infos[0]) x = int(infos[1]) y = int(infos[2][:end_index]) deserialized_map[i][j] = Tile(content, x, y) return deserialized_map def bot(): """ Main de votre bot. """ map_json = request.form["map"] # Player info encoded_map = map_json.encode() map_json = json.loads(encoded_map) p = map_json["Player"] pos = p["Position"] x = pos["X"] y = pos["Y"] house = p["HouseLocation"] player = Player(p["Health"], p["MaxHealth"], Point(x,y), Point(house["X"], house["Y"]), p["Score"], p["CarriedResources"], p["CarryingCapacity"]) # Map serialized_map = map_json["CustomSerializedMap"] deserialized_map = deserialize_map(serialized_map) otherPlayers = [] for players in map_json["OtherPlayers"]: player_info = players["Value"] p_pos = player_info["Position"] player_info = PlayerInfo(player_info["Health"], player_info["MaxHealth"], Point(p_pos["X"], p_pos["Y"])) otherPlayers.append(player_info) # Update Game session gameSession.playerSession.updateServerData(player, deserialized_map) gameSession.updateTurnData(player, deserialized_map) # Update state / Do action coco = gameSession.playerSession actionToDo = coco.state.doAction() print_game(gameSession) return actionToDo @app.route("/", methods=["POST"]) def reponse(): """ Point d'entree appelle par le GameServer """ return bot() if __name__ == "__main__": app.run(host="0.0.0.0", port=8080)
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Nov 28 17:04:29 2020 @author: becker """ import pygmsh rect = [-2, 2, -2, 2] recth = [-1, 1, -1, 1] h=2 with pygmsh.geo.Geometry() as geom: hole = geom.add_rectangle(*recth, z=0, mesh_size=h, make_surface=True) geom.add_physical(hole.surface, label="222") p = geom.add_rectangle(*rect, z=0, mesh_size=h, holes=[hole]) geom.add_physical(p.surface, label="111") for i in range(len(p.lines)): geom.add_physical(p.lines[i], label=f"{1000+i}") mesh = geom.generate_mesh() print(mesh.cells[0][1].T) print(mesh.cell_sets.keys()) print([ mesh.cell_sets[f"{1000+i}"][0] for i in range(4)] ) from simfempy.meshes.plotmesh import plotmeshWithNumbering plotmeshWithNumbering(mesh)
#!/usr/bin/python # -*- coding: utf-8 -*- import os import time import sys, getopt #import csv #import requests import re #import hashlib import json import datetime import hashlib from datetime import timedelta, date #import threading ##################### processoutput = os.popen("ps -A -L -F").read() cur_script = os.path.basename(__file__) res = re.findall(cur_script,processoutput) if len(res)>2: print ("EXITING BECAUSE ALREADY RUNNING.\n\n") exit(0) ##################### sys.path.append("modules") sys.path.append("scripts") sys.path.append("/usr/local/lib/python3.5/dist-packages") from Master import Master from Booking import Booking obj_master = Master() html_dir_path = obj_master.obj_config.html_dir_path def getDateTimeObject(date_str): datetime_object = datetime.datetime.strptime(date_str, '%Y-%m-%d') return datetime_object def getLastDateObject(): current_date = datetime.datetime.now().date() last_date = current_date - timedelta(days=1) # decrease day one by one last_date_object = getDateTimeObject(str(last_date)) return last_date_object if __name__ == '__main__': dict_stats = {} # config_rows = obj_master.obj_mongo_db.recSelect('config') # for config_row in config_rows: # if 'parsing_interval' in config_row and config_row['parsing_interval']: # parsing_interval = int(config_row['parsing_interval']) # date_before_time_interval = datetime.datetime.now() - timedelta(days=parsing_interval) # dict_stats['property_pending'] = obj_master.obj_mongo_db.getCount('property_urls',None,{'is_active':1,'updated_at':{ '$lt': date_before_time_interval }}) ########################################## dict_stats['property_pending'] = 0 property_url_rows = obj_master.obj_mongo_db.recSelect('property_urls',None,{'is_active':1},1000,'updated_at','ASC') for property_url_row in property_url_rows: if 'parse_interval' in property_url_row: parse_interval = int(property_url_row['parse_interval']) date_time_interval = datetime.datetime.now() - timedelta(days=parse_interval) print("parse_interval:"+str(parse_interval)+" udpate_ts:"+str(date_time_interval)) if property_url_row['updated_at'] <= date_time_interval: dict_stats['property_pending'] = dict_stats['property_pending']+1 ########################################## last_date_obj = getLastDateObject() current_date_obj = getDateTimeObject(str(datetime.datetime.now().date())) dict_stats['date'] = last_date_obj dict_where = { 'updated_at':{ '$gte': last_date_obj , '$lt': current_date_obj } } dict_stats['property_parsed'] = obj_master.obj_mongo_db.getCount('property_urls',None,dict_where) dict_stats['hotel_parsed'] = obj_master.obj_mongo_db.getCount('hotel_master',None,dict_where) dict_stats['price_parsed'] = obj_master.obj_mongo_db.getCount('prices',None,dict_where) dict_stats['room_details_parsed'] = obj_master.obj_mongo_db.getCount('room_details',None,dict_where) #dict_stats['rooms_availability_parsed'] = obj_master.obj_mongo_db.getCount('rooms_availability',None,dict_where) dict_stats['total_property'] = obj_master.obj_mongo_db.getCount('property_urls') dict_stats['active_property'] = obj_master.obj_mongo_db.getCount('property_urls',None,{'is_active':1}) print(str(dict_stats)) exit() ret_id = obj_master.obj_mongo_db.recInsert( 'stats_booking' , [ dict_stats ] ) print( "\ninserted in stats table. The return id is"+str(ret_id) )
# Copyright 2021 The MLX Contributors # # SPDX-License-Identifier: Apache-2.0 VERSION = "0.1.29-elyra-notebook-update"
# Author:Sunny Liu from django.shortcuts import HttpResponse from django.shortcuts import render from django.shortcuts import redirect from django.views import View from urmovie import models from django.views.decorators.csrf import csrf_exempt ''' @id : 1 @name : index @author : 刘旭阳 @date : 2018.3.12 @describe : 进入主页 ''' def index(request): return render(request,'index.html') def movie_class(request): result = models.Movie.objects.all()[:20] cate_list = models.Category.objects.all() age_list=[2018,2017,2016,2015,2014,2013,2012,2011,2010,2009] return render(request,'movie_category.html',{"movie":result,"cate":cate_list,"age":age_list}) def actor_class(request): result = models.Actor.objects.all()[:20] return render(request,'actor_category.html',{"actor":result}) def contact(request): return render(request,'contact.html')
""" R 1.2 --------------------------------- Problem Statement : Write a short Python function, is even(k), that takes an integer value and returns True if k is even, and False otherwise. However, your function cannot use the multiplication, modulo, or division operators. Author : Saurabh """ def is_even(k): a = 1 # Using bitwise AND operator if k & a == 0: return True return False if __name__ == "__main__": print(is_even(6)) print(is_even(5))
# -*- coding: utf-8 -*- ''' :codeauthor: Jayesh Kariya <[email protected]> ''' # Import Python Libs from __future__ import absolute_import # Import Salt Testing Libs from tests.support.mixins import LoaderModuleMockMixin from tests.support.unit import TestCase, skipIf from tests.support.mock import ( MagicMock, patch, NO_MOCK, NO_MOCK_REASON ) # Import Salt Libs import salt.modules.keyboard as keyboard @skipIf(NO_MOCK, NO_MOCK_REASON) class KeyboardTestCase(TestCase, LoaderModuleMockMixin): ''' Test cases for salt.modules.keyboard ''' def setup_loader_modules(self): return {keyboard: {}} # 'get_sys' function tests: 1 def test_get_sys(self): ''' Test if it get current system keyboard setting ''' mock = MagicMock(return_value='X11 Layout=us') with patch.dict(keyboard.__grains__, {'os_family': 'RedHat'}): with patch.dict(keyboard.__salt__, {'cmd.run': mock}): self.assertEqual(keyboard.get_sys(), 'us') # 'set_sys' function tests: 1 def test_set_sys(self): ''' Test if it set current system keyboard setting ''' mock = MagicMock(return_value='us') with patch.dict(keyboard.__grains__, {'os_family': 'RedHat'}): with patch.dict(keyboard.__salt__, {'cmd.run': mock}): with patch.dict(keyboard.__salt__, {'file.sed': MagicMock()}): self.assertEqual(keyboard.set_sys('us'), 'us') # 'get_x' function tests: 1 def test_get_x(self): ''' Test if it get current X keyboard setting ''' mock = MagicMock(return_value='layout: us') with patch.dict(keyboard.__salt__, {'cmd.run': mock}): self.assertEqual(keyboard.get_x(), 'us') # 'set_x' function tests: 1 def test_set_x(self): ''' Test if it set current X keyboard setting ''' mock = MagicMock(return_value='us') with patch.dict(keyboard.__salt__, {'cmd.run': mock}): self.assertEqual(keyboard.set_x('us'), 'us')
#!/usr/bin/python3 """ .. moduleauthor:: Albert Heinle<[email protected]> """ import unittest from Listing import Listing import json class TestProduct(unittest.TestCase): """ Testing the class Product for correct functionality """ def test_Product_From_Sortable_Challenge(self): """ Tests the first Listing entry from the sortable challenge, namely: "title":"Fujifilm FinePix REAL 3D W3 10 MP Digital Camera\ with Dual 3x Optical Zoom Lenses (Black)", "manufacturer":"Fujifilm Canada", "currency":"CAD", "price":"499.99" We test if the Listing is correctly initiated, if all the getters work properly, the string representation is right and the JSON representation is right. """ title = "Fujifilm FinePix REAL 3D W3 10 MP Digital Camera\ with Dual 3x Optical Zoom Lenses (Black)" manufacturer = "Fujifilm Canada" currency = "CAD" price = "499.99" stringRep = """Title: Fujifilm FinePix REAL 3D W3 10 MP Digital Camera\ with Dual 3x Optical Zoom Lenses (Black) Manufacturer: Fujifilm Canada Currency: CAD Price: 499.99""" jsonRep = """{"title":"Fujifilm FinePix REAL 3D W3 10 MP Digital Camera with Dual 3x Optical Zoom Lenses (Black)","manufacturer":"Fujifilm Canada","currency":"CAD","price":"499.99"}""" try: testListing = Listing(title,manufacturer,currency,price) except: self.fail("Could not instanciate valid Listing") self.assertEqual(title,testListing.getTitle(), "The title was not stored properly") self.assertEqual(manufacturer,testListing.getManufacturer(), "The manufacturer was not stored properly") self.assertEqual(currency,testListing.getCurrency(), "The Currency was not stored properly") self.assertEqual(price,testListing.getPrice(), "The price was not stored properly") self.assertEqual(stringRep, str(testListing), "The string representation was not correct") self.assertEqual(json.loads(jsonRep),json.loads(testListing.toJSON()), "The JSON representation was not correct") def test_Invalid_Types(self): """ Tests if everything Listing works even with invalid types for each parameter for the constructor. """ title = "Fujifilm FinePix REAL 3D W3 10 MP Digital Camera\ with Dual 3x Optical Zoom Lenses (Black)" manufacturer = "Fujifilm Canada" currency = "CAD" price = "499.99" testPassed = 1 try: testListing = Listing(1,manufacturer,currency,price) testPassed = 0 except: pass if not testPassed: self.fail("It was possible to provide a non-string type to\ title") try: testListing = Listing(title,1,currency,price) testPassed = 0 except: pass if not testPassed: self.fail("It was possible to provide a non-string type to\ manufacturer") try: testListing = Listing(title,manufacturer,1,price) testPassed = 0 except: pass if not testPassed: self.fail("It was possible to provide a non-string type to\ currency") try: testListing = Listing(title,manufacturer,currency,1) testPassed = 0 except: pass if not testPassed: self.fail("It was possible to provide a non-string type to\ price") def test_EmptyStrings(self): """ Tests if everything works in Listings even with empty strings for each parameter for the constructor. No entry is optional """ title = "Fujifilm FinePix REAL 3D W3 10 MP Digital Camera\ with Dual 3x Optical Zoom Lenses (Black)" manufacturer = "Fujifilm Canada" currency = "CAD" price = "499.99" testPassed = 1 try: testListing = Listing("",manufacturer,currency,price) testPassed = 0 except: pass if not testPassed: self.fail("It was possible to provide an empty string to\ title") # try: # testListing = Listing(title,"",currency,price) # testPassed = 0 # except: # pass # if not testPassed: # self.fail("It was possible to provide an empty string to\ # manufacturer") try: testListing = Listing(title,manufacturer,"",price) testPassed = 0 except: pass if not testPassed: self.fail("It was possible to provide an empty string to\ currency") try: testListing = Listing(title,manufacturer,currency,"") testPassed = 0 except: pass if not testPassed: self.fail("It was possible to provide an empty string to\ price")
""" hon.parsing.markdown.mistune ~~~~~ """ from ..parser import Parser class MistuneParser(Parser): """A markdown parser implementing the Mistune markdown library. """ def parse_front_matter(self): pass def parse(self, text): pass
""" Find the order of the charater in alien dictionary. The time complexity of the algorithm is: 1. creating graph O(n + alphabet_size), where n is total number of words in dictionary and alphabet_size is the number of alphabets 2. to, word2 = ogical sord complexity: O(V+E)) And in our case it is O(n + alphabet_size) """ def create_graph(words): graph = {} words_len = len(words) #Find all the unique char in the dict unique_char = set() for w in words: unique_char = unique_char.union(set(w)) # create graph with with vertex having all the unique char for ch in unique_char: graph[ord(ch) - ord('a')]=[] # Process all the adjacent words and add the edges if exits to the vertex for i in range(words_len - 1): # Take the two words and find the first mismatching char word1, word2 = words[i],words[i+1] for j in range(min(len(word1),len(word2))): # If found mismatch add and edge from char of word1 to word2 if word1[j] != word2[j]: numeric_ch1 = ord(word1[j]) - ord('a') numeric_ch2 = ord(word2[j]) - ord('a') # Add the edges to the vertex in the graph graph[numeric_ch1].append(numeric_ch2) break return graph def topological_sort_util(graph,visited,node,stack): visited[node] = True if node in graph: for v in graph[node]: if not visited[v]: topological_sort_util(graph,visited,v,stack) stack.append(node) def topological_sort(graph): if len(graph) == 0: return # set all thge nodes as not visited visited = [False] * len(graph) stack = [] # Check for all the nodes of the graph for node in graph.keys(): if not visited[node]: topological_sort_util(graph,visited,node,stack) return stack def find_order(word_dict): if len(word_dict) <= 1: print("".join(word_dict)) return graph = create_graph(word_dict) ch_order = topological_sort(graph) while(len(ch_order) != 0): # convert it to char to_char = chr(ch_order.pop() + ord('a')) print(to_char, end= " ") print() word_dict = ["baa", "abcd", "abca", "cab", "cad"] word_dict2 = ['abc'] find_order(word_dict2)
def collatz(n): if n == 1: return 1 elif n % 2 == 0: return collatz(n / 2) else: return collatz(n * 3 + 1) num = int(input("Type a number: ")) print("Collatz of %i is %i" % (num, collatz(num)))
# Imports from 3rd party libraries import dash import dash_bootstrap_components as dbc import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output import sklearn import pandas as pd #import scikit-learn # Imports from this application from app import app from joblib import load pipeline = load("assets/pipeline.joblib") @app.callback( Output('prediction-content', 'children'), [Input('Elevation', 'value'), Input('Continent', 'value')], ) def predict(year, continent): df = pd.DataFrame( columns = ['year', 'continent'], data = [[year, continent]] ) y_pred = pipeline.predict(df)[0] return f'{y_pred:.0f} years' # 2 column layout. 1st column width = 4/12 # https://dash-bootstrap-components.opensource.faculty.ai/l/components/layout column1 = dbc.Col( [ dcc.Markdown( """ ## Predictions Your instructions: How to use your app to get new predictions. """ ), html.H2('Predicted IMBD Rating', className = 'mb-5'), html.Div(id = 'prediction-content', className = 'lead') ], md=4, ) column2 = dbc.Col( [ dcc.Markdown('## Predictions', className = 'mb-5'), dcc.Markdown('#### Alcohol'), dcc.Slider( id='Alcohol', min=8, max=15, step=.5, value=10, marks={n: str(n) for n in range(8,15,50)}, className='mb-5', ), dcc.Markdown('#### Alcohol'), dcc.Dropdown( id='Alcohol', options = [ {'label': '15', 'value': '15'}, {'label': '13', 'value': '13'}, {'label': '11', 'value': '11'}, {'label': '9', 'value': '9'}, ], value = '9', className='mb-5', ), ], ) layout = dbc.Row([column1, column2])
# -*- coding: utf-8 -*- #pylint: skip-file import torch import torch as T import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from utils_pg import * from transformer import MultiheadAttention class WordProbLayer(nn.Module): def __init__(self, hidden_size, dict_size, device, copy, coverage, dropout): super(WordProbLayer, self).__init__() self.hidden_size = hidden_size self.dict_size = dict_size self.device = device self.copy = copy self.coverage = coverage self.dropout = dropout if self.copy: self.external_attn = MultiheadAttention(self.hidden_size, 1, self.dropout, weights_dropout=False) self.proj = nn.Linear(self.hidden_size * 3, self.dict_size) self.v = nn.Parameter(torch.Tensor(1, self.hidden_size * 3)) self.bv = nn.Parameter(torch.Tensor(1)) else: self.proj = nn.Linear(self.hidden_size, self.dict_size) self.init_weights() def init_weights(self): init_linear_weight(self.proj) if self.copy: init_xavier_weight(self.v) init_bias(self.bv) def forward(self, h, y_emb=None, memory=None, mask_x=None, xids=None, max_ext_len=None): if self.copy: atts, dists = self.external_attn(query=h, key=memory, value=memory, key_padding_mask=mask_x, need_weights = True) pred = T.softmax(self.proj(T.cat([h, y_emb, atts], -1)), dim=-1) if max_ext_len > 0: ext_zeros = Variable(torch.zeros(pred.size(0), pred.size(1), max_ext_len)).to(self.device) pred = T.cat((pred, ext_zeros), -1) g = T.sigmoid(F.linear(T.cat([h, y_emb, atts], -1), self.v, self.bv)) xids = xids.transpose(0, 1).unsqueeze(0).repeat(pred.size(0), 1, 1) pred = (g * pred).scatter_add(2, xids, (1 - g) * dists) else: pred = T.softmax(self.proj(h), dim=-1) dists = None return pred, dists
try: import tensorflow as tf except ImportError: raise ImportError("reinforcement requires tensorflow 1.14") from reinforcement.models.neural_network import NeuralNetwork, InvalidOperationError, NotCompiledError class AnnBuilder: def __init__(self, input_size, seed): self.ann = NeuralNetwork(input_size, seed) self.loss = 'mean_squared_error' self.optimizer = 'gradient_descent' self.lr = 0.1 def add_layer(self, units, activation, weight_init, bias_init='zeros'): self.ann.add_layer(units, activation, weight_init, bias_init) return self def compile(self, loss, optimizer, lr): self.loss = loss self.optimizer = optimizer self.lr = lr return self def finish(self): self.ann.compile(self.loss, self.optimizer, self.lr) return self.ann def make_ann(input_size, seed=None): return AnnBuilder(input_size, seed) class NeuralNetworkTest(tf.test.TestCase): def setUp(self): self.original_v = tf.logging.get_verbosity() tf.logging.set_verbosity(3) tf.set_random_seed(42) tf.reset_default_graph() def tearDown(self): tf.logging.set_verbosity(self.original_v) tf.set_random_seed(None) def test_zero_layers(self): with self.assertRaises(InvalidOperationError) as e_info, self.test_session(): make_ann(input_size=1).finish() self.assertEqual(str(e_info.exception), "A Neural Network needs at least one layer to be compiled") def test_simple_two_neuron_network(self): with self.test_session(): ann = make_ann(input_size=1).add_layer(1, 'linear', 'ones').finish() self.assertAllEqual(ann.predict([[3]]), [[3]]) self.assertAllEqual(ann.predict([[-1]]), [[-1]]) def test_relu_activation(self): with self.test_session(): ann = make_ann(input_size=1).add_layer(1, 'relu', 'ones').finish() self.assertAllEqual(ann.predict([[3]]), [[3]]) self.assertAllEqual(ann.predict([[-1]]), [[0]]) def test_missing_activation_function(self): with self.assertRaises(NotImplementedError) as e_info, self.test_session(): make_ann(input_size=1).add_layer(1, 'MISSING', 'ones').finish() self.assertEqual(str(e_info.exception), "The specified activation function 'MISSING' has not been implemented") def test_weighted_inputs(self): with self.test_session(): ann = make_ann(input_size=2).add_layer(1, 'linear', 'ones').finish() self.assertAllEqual(ann.predict([[3, 2]]), [[5]]) def test_zero_initialization(self): with self.test_session(): ann = make_ann(input_size=2).add_layer(1, 'linear', 'zeros').finish() self.assertAllEqual(ann.predict([[3, 2]]), [[0]]) def test_missing_initialization(self): with self.assertRaises(NotImplementedError) as e_info, self.test_session(): make_ann(input_size=2).add_layer(1, 'linear', 'MISSING').finish() self.assertEqual(str(e_info.exception), "The specified initialization 'MISSING' has not been implemented") def test_glorot_uniform_initialization(self): with self.test_session(): ann = make_ann(input_size=1, seed=7).add_layer(1, 'linear', 'glorot_uniform').finish() self.assertAllClose(ann.predict([[3]]), [[-0.16689062]]) def test_bias_initialization(self): with self.test_session(): ann = make_ann(input_size=1).add_layer(1, 'linear', 'zeros', bias_init='ones').finish() self.assertAllEqual(ann.predict([[3]]), [[1]]) def test_glorot_uniform_bias_initialization(self): with self.test_session(): ann = make_ann(input_size=1, seed=7).add_layer(1, 'linear', 'zeros', bias_init='glorot_uniform').finish() self.assertAllClose(ann.predict([[3]]), [[-0.05563021]]) def test_missing_bias_initialization(self): with self.assertRaises(NotImplementedError) as e_info, self.test_session(): make_ann(input_size=2).add_layer(1, 'linear', 'zeros', bias_init='MISSING').finish() self.assertEqual(str(e_info.exception), "The specified initialization 'MISSING' has not been implemented") def test_training_uncompiled_network(self): with self.assertRaises(NotCompiledError) as e_info, self.test_session(): ann = NeuralNetwork(input_size=2) ann.add_layer(1, 'linear', 'zeros') ann.train([[3, 1], [1, 2]], [[-1], [2]]) self.assertEqual(str(e_info.exception), "The network needs to be compiled before it can be trained") def test_mean_squared_error_gradient_descent_training(self): with self.test_session(): ann = make_ann(input_size=1).add_layer(1, 'linear', 'zeros') \ .compile('mean_squared_error', 'gradient_descent', lr=0.5).finish() ann.train([[0]], [[10]]) self.assertAllClose(ann.predict([[0]]), [[10]]) def test_different_learning_rate(self): with self.test_session(): ann = make_ann(input_size=1).add_layer(1, 'linear', 'zeros') \ .compile('mean_squared_error', 'gradient_descent', lr=0.1).finish() ann.train([[0]], [[10]]) self.assertAllClose(ann.predict([[0]]), [[2]]) def test_missing_loss_function(self): with self.assertRaises(NotImplementedError) as e_info, self.test_session(): make_ann(input_size=1).add_layer(1, 'linear', 'zeros') \ .compile('MISSING', 'gradient_descent', lr=0.1).finish() self.assertEqual(str(e_info.exception), "The specified loss function 'MISSING' has not been implemented") def test_missing_optimizer(self): with self.assertRaises(NotImplementedError) as e_info, self.test_session(): make_ann(input_size=1).add_layer(1, 'linear', 'zeros') \ .compile('mean_squared_error', 'MISSING', lr=0.1).finish() self.assertEqual(str(e_info.exception), "The specified optimizer 'MISSING' has not been implemented") def test_adding_layer_after_compilation(self): with self.assertRaises(InvalidOperationError) as e_info, self.test_session(): ann = NeuralNetwork(input_size=1) ann.add_layer(1, 'linear', 'zeros') ann.compile('mean_squared_error', 'gradient_descent', 0.1) ann.add_layer(1, 'linear', 'zeros') self.assertEqual(str(e_info.exception), "Adding layers after compiling a network is not supported") def test_deep_neural_network_prediction(self): with self.test_session(): ann = make_ann(input_size=2).add_layer(2, 'relu', 'ones').add_layer(1, 'linear', 'ones').finish() self.assertAllEqual(ann.predict([[3, 2]]), [[10]]) self.assertAllEqual(ann.predict([[3, -1]]), [[4]]) def test_deep_neural_network_training(self): with self.test_session(): ann = make_ann(input_size=1).add_layer(1, 'linear', 'zeros').add_layer(1, 'linear', 'zeros') \ .compile('mean_squared_error', 'gradient_descent', lr=0.5).finish() ann.train([[0]], [[10]]) self.assertAllClose(ann.predict([[0]]), [[10]]) if __name__ == '__main__': tf.test.main()
# creation of the text story behind storyBehind = ''' Guido van Rossum, the creator of the Python language, named the language after the BBC show "Monty Python’s Flying Circus". He doesn’t particularly like snakes that kill animals for food by winding their long bodies around them and crushing them. ''' know = True __author__ = ["Guido van Rossum","Guido", "Rossum", "Guido v Rossum", "Guido v. Rossum"] __media__ = "BBC" __show__ = "Monty Python's Flying Circus" __likes__ = "snakes" def doAgain(): print("It is not true.\nYou must do it again.") print('This is the story behind Python:\n{0}'.format(storyBehind)) # Our while loop for the quiz of 4 questions while know: author = input("Who is the inventor of Python? ") if author.lower() == __author__[0].lower(): print("That's true") show = input("What is the title of the show he likes? ") if show.lower() == __show__.lower(): print("That's also true") media = input("What is the name of the media he sees it? ") if media.lower() == __media__.lower(): print("Great :-)!!!\nNow we enter to the next question:") likes = input("What is the animal he doesn't like? ") if likes.lower() == __likes__.lower(): print("Oh!! You are so so great!!\nThank you ;-)\nThat's all for today.") break else: doAgain() else: doAgain() else: doAgain() else: doAgain()
#! python3 # pw.py – Um programa para repositório de senhas que NÃO É SEGURO!!!. import sys import pyperclip import os if len(sys.argv) < 2: print('Usage: python pw.py [account] - copy account password') sys.exit() passwords = {'email': 'teste@teste'} account = sys.argv[1] # o primeiro argumento da linha de comando é o nome da conta if sys.argv[1] in passwords: pyperclip.copy(passwords[sys.argv[1]]) print() print(f'\nSenha para {sys.argv[1]} copiada para área de transferência') else: print(f'\nNão foi encontrado senha cadastrada para {sys.argv[1]}') os.system('PAUSE') # TODO Adicionar o comando para inserir novas contas # TODO Adicionar criptográfia as senhas e contas salvas # TODO Salvar os dados em um arquivo shelve # TODO Retirar todas as senhas do programa principal e utilizar um arquivo json criptografado
import os from flask import Flask from flask_sqlalchemy import SQLAlchemy from flask_marshmallow import Marshmallow app = Flask(__name__) appdir = os.path.abspath(os.path.dirname(__file__)) app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///' + os.path.join(appdir, 'db.sqlite') app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False db = SQLAlchemy(app) ma = Marshmallow(app) from src import routes
import asyncio from unittest import mock import pytest from redical import create_pool, PoolClosedError, PoolClosingError, WatchError pytestmark = [pytest.mark.asyncio] @pytest.fixture async def pool(redis_uri): pool = await create_pool(redis_uri, max_size=4, min_size=2) await pool.execute('flushdb') yield pool if not pool.is_closed and pool.is_closing: await pool.wait_closed() return if not pool.is_closed: pool.close() await pool.wait_closed() async def test_min_lower_than_max(redis_uri): with pytest.raises(ValueError, match="'min_size' must be lower than 'max_size'"): await create_pool(redis_uri, min_size=10, max_size=1) async def test_db_less_than_zero(redis_uri): with pytest.raises(ValueError, match="'db' must be a non-negative number"): await create_pool(redis_uri, db=-1) async def test_max_chunk_size_less_than_zero(redis_uri): with pytest.raises(ValueError, match="'max_chunk_size' must be a number greater than zero"): await create_pool(redis_uri, max_chunk_size=-1) async def test_min_pool_filled(pool): assert 2 == pool.available assert 2 == pool.size async def test_pool_double_close(pool): pool.close() with pytest.raises(PoolClosingError, match='Pool is already closing'): pool.close() async def test_pool_already_closed(pool): pool.close() await pool.wait_closed() with pytest.raises(PoolClosedError, match='Pool is already closed'): pool.close() async def test_wait_not_closed(pool): with pytest.raises(RuntimeError, match='Pool is not closing'): await pool.wait_closed() async def test_double_wait_closed(pool): pool.close() await pool.wait_closed() with pytest.raises(RuntimeError, match='Pool is not closing'): await pool.wait_closed() # |-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-| # Internal connection state async def test_acquiring_connection_rotates_pool(pool): # make it look like the first connection in the pool is being used # so that we *should* pick the second one to execute our command # the connection needs to stay in the pool so that we know we're rotating past it. # if not we could just enter a pipeline and in the same block execute a random command # get rid of one of the connections conn = pool._pool.popleft() conn.close() await conn.wait_closed() # replace with a mock connection conn = mock.Mock(in_use=True, is_closed=False, is_closing=False, execute=mock.AsyncMock(return_value='PONG')) pool._pool.appendleft(conn) assert 'PONG' == await pool.execute('ping') # remove the mock from the internal pool so cleanup doesn't complain pool._pool.remove(conn) conn.execute.assert_not_called() async def test_release_drop_closed_connection(pool): conn = await pool._acquire_unused_connection(remove_from_pool=True) assert 2 == pool.size conn.close() await conn.wait_closed() await pool._release_connection(conn) assert 1 == pool.size assert conn not in pool._pool async def test_release_drop_closing_connection(pool): conn = await pool._acquire_unused_connection(remove_from_pool=True) assert 2 == pool.size conn.close() await pool._release_connection(conn) await conn.wait_closed() assert 1 == pool.size assert conn not in pool._pool async def test_acquire_create_new(pool): conn = await pool._acquire_unused_connection(remove_from_pool=True) pool._in_use.add(conn) conn = await pool._acquire_unused_connection(remove_from_pool=True) pool._in_use.add(conn) conn = await pool._acquire_unused_connection() assert 3 == pool.size assert 1 == pool.available async def test_acquire_waits_if_no_available_connection(pool): conns = [] for x in range(4): conn = await pool._acquire_unused_connection(remove_from_pool=True) pool._in_use.add(conn) conns.append(conn) assert 4 == pool.size # there are now no available connections in the pool and it is at its maximum size event = asyncio.Event() async def acquire(event): loop = asyncio.get_running_loop() loop.call_soon(event.set) conn = await pool._acquire_unused_connection() assert conn in conns async def release(event): await event.wait() await pool._release_connection(conns[-1]) await asyncio.wait_for(asyncio.gather(release(event), acquire(event)), timeout=1) async def test_acquire_prune_stale_connections(pool): assert 2 == pool.available for conn in pool._pool: conn.close() await conn.wait_closed() assert all([conn.is_closed for conn in pool._pool]) await pool.execute('set', 'foo', 'bar') assert 1 == pool.size # |-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-| # Execute async def test_execute_basic(pool): await pool.execute('set', 'foo', 'bar') assert 'bar' == await pool.execute('get', 'foo') async def test_execute_no_free_connections(pool): conns = [] for x in range(4): conns.append(await pool._acquire_unused_connection(remove_from_pool=True)) pool._in_use.add(conns[-1]) assert pool.size == pool.max_size event = asyncio.Event() async def execute(event): loop = asyncio.get_event_loop() loop.call_soon(event.set) True is await pool.execute('set', 'foo', 'bar') async def release(event): await event.wait() await pool._release_connection(conns[-1]) await asyncio.wait_for(asyncio.gather(release(event), execute(event)), timeout=1) async def test_execute_pool_closed(pool): pool.close() await pool.wait_closed() with pytest.raises(PoolClosedError, match='Pool is closed'): await pool.execute('get', 'foo') async def test_execute_pool_closing(pool): pool.close() with pytest.raises(PoolClosingError, match='Pool is closing'): await asyncio.wait_for(pool.execute('get', 'foo'), timeout=1) # |-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-| # Pipelines async def test_pipeline(pool): async with pool as conn: fut1 = conn.execute('set', 'foo', 'bar') fut2 = conn.execute('set', 'bar', 'baz') fut3 = conn.execute('get', 'foo') fut4 = conn.execute('get', 'bar') assert True is await fut1 assert True is await fut2 assert 'bar' == await fut3 assert 'baz' == await fut4 async def test_pipelines_sequester_connection(pool): async with pool: assert 2 == pool.size assert 1 == pool.available async def test_context_sanity_check(pool): async def t1(event): async with pool as conn: conn.execute('set', 'foo', 'bar') fut = conn.execute('get', 'foo') await event.wait() assert 'bar' == await fut async def t2(event): async with pool as conn: conn.execute('set', 'foo', 'baz') fut = conn.execute('get', 'foo') assert 0 == pool.available assert 2 == pool.size event.set() assert 'baz' == await fut event = asyncio.Event() await asyncio.gather(t1(event), t2(event)) async def test_pipeline_releases_connection(pool): async with pool: assert 2 == pool.size assert 1 == pool.available assert 2 == pool.size assert 2 == pool.available async def test_pipeline_pool_closed(pool): pool.close() await pool.wait_closed() with pytest.raises(PoolClosedError, match='Pool is closed'): async with pool: pass async def test_pipeline_pool_closing(pool): pool.close() with pytest.raises(PoolClosingError, match='Pool is closing'): async with pool: pass # |-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-| # Transactions async def test_transaction_sequester_connection(pool): async with pool.transaction(): assert 2 == pool.size assert 1 == pool.available async def test_transaction_releases_connection(pool): async with pool.transaction(): assert 2 == pool.size assert 1 == pool.available assert 2 == pool.size assert 2 == pool.available async def test_transaction_release_with_error(pool): with pytest.raises(ValueError): async with pool.transaction(): raise ValueError('an error') assert 2 == pool.size assert 2 == pool.available async def test_transaction_watch_error(pool): await pool.execute('SET', 'mykey', 1) async with pool.transaction('mykey') as t: val = int(await t.execute('GET', 'mykey')) val += 1 with pytest.raises(WatchError, match='Transaction aborted, WATCHed keys: mykey'): async with t as pipe: await pool.execute('SET', 'mykey', 'foo') fut = pipe.execute('SET', 'mykey', val) assert 'foo' == await pool.execute('GET', 'mykey') with pytest.raises(WatchError, match='Transaction aborted, WATCHed keys: mykey'): await fut async def test_transaction_pool_closed(pool): pool.close() await pool.wait_closed() with pytest.raises(PoolClosedError, match='Pool is closed'): async with pool.transaction(): pass async def test_transaction_pool_closing(pool): pool.close() with pytest.raises(PoolClosingError, match='Pool is closing'): async with pool.transaction(): pass # |-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-|-| # Error responses async def test_custom_error_response(pool): def custom_error(exc): return ValueError(str(exc).replace('ERR ', '')) with pytest.raises(ValueError, match="wrong number of arguments for 'hset' command"): await pool.execute('hset', 'mykey', error_func=custom_error)
"""Plugwise Anna Home Assistant component.""" import requests import xml.etree.cElementTree as Etree # Time related import datetime import pytz from dateutil.parser import parse # For XML corrections import re ANNA_PING_ENDPOINT = "/ping" ANNA_DIRECT_OBJECTS_ENDPOINT = "/core/direct_objects" ANNA_DOMAIN_OBJECTS_ENDPOINT = "/core/domain_objects" ANNA_LOCATIONS_ENDPOINT = "/core/locations" ANNA_APPLIANCES = "/core/appliances" ANNA_RULES = "/core/rules" class Haanna: """Define the Haanna object.""" def __init__( self, username, password, host, port, legacy_anna=False, ): """Set the constructor for this class.""" self.legacy_anna = legacy_anna self._username = username self._password = password self._endpoint = "http://" + host + ":" + str(port) def ping_anna_thermostat(self): """Ping the thermostat to see if it's online.""" ping = requests.get( self._endpoint + ANNA_PING_ENDPOINT, auth=(self._username, self._password), timeout=10, ) if ping.status_code != 404: raise ConnectionError("Could not connect to the gateway.") return True def get_direct_objects(self): """Collect the direct_objects XML-data.""" xml = requests.get( self._endpoint + ANNA_DIRECT_OBJECTS_ENDPOINT, auth=(self._username, self._password), timeout=10, ) if xml.status_code != requests.codes.ok: # pylint: disable=no-member raise ConnectionError("Could not get the direct objects.") return Etree.fromstring(self.escape_illegal_xml_characters(xml.text)) def get_domain_objects(self): """Collect the domain_objects XML-data.""" xml = requests.get( self._endpoint + ANNA_DOMAIN_OBJECTS_ENDPOINT, auth=(self._username, self._password), timeout=10, ) if xml.status_code != requests.codes.ok: # pylint: disable=no-member raise ConnectionError("Could not get the domain objects.") return Etree.fromstring(self.escape_illegal_xml_characters(xml.text)) @staticmethod def escape_illegal_xml_characters(root): """Replace illegal &-characters.""" return re.sub(r"&([^a-zA-Z#])", r"&amp;\1", root) def get_presets(self, root): """Get the presets from the thermostat.""" if self.legacy_anna: return self.__get_preset_dictionary_v1(root) rule_id = self.get_rule_id_by_template_tag( root, "zone_setpoint_and_state_based_on_preset", )[0] if rule_id is None: rule_id = self.get_rule_id_by_name(root, "Thermostat presets") if rule_id is None: raise RuleIdNotFoundException("Could not find the rule id.") presets = self.get_preset_dictionary(root, rule_id) return presets def get_schema_names(self, root): """Get schemas or schedules available.""" schemas = root.findall(".//rule") result = [] for schema in schemas: rule_name = schema.find("name").text if rule_name: if self.legacy_anna: if "preset" not in rule_name: result.append(rule_name) else: if "presets" not in rule_name: result.append(rule_name) if result == []: return None return result def set_schema_state(self, root, schema, state): """Send a set request to the schema with the given name.""" schema_rule_id = self.get_rule_id_by_name(root, str(schema)) templates = root.findall(".//*[@id='{}']/template".format(schema_rule_id)) template_id = None for rule in templates: template_id = rule.attrib["id"] uri = "{};id={}".format(ANNA_RULES, schema_rule_id) state = str(state) data = ( '<rules><rule id="{}"><name><![CDATA[{}]]></name>' '<template id="{}" /><active>{}</active></rule>' "</rules>".format(schema_rule_id, schema, template_id, state) ) xml = requests.put( self._endpoint + uri, auth=(self._username, self._password), data=data, headers={"Content-Type": "text/xml"}, timeout=10, ) if xml.status_code != requests.codes.ok: # pylint: disable=no-member CouldNotSetTemperatureException( "Could not set the schema to {}.".format(state) + xml.text ) return "{} {}".format(xml.text, data) def get_active_schema_name(self, root): """Get active schema.""" if self.legacy_anna: schemas = root.findall(".//rule") result = [] for schema in schemas: rule_name = schema.find("name").text if "preset" not in rule_name: result.append(rule_name) result = "".join(map(str, result)) if result == []: return None return result locator = "zone_preset_based_on_time_and_presence_with_override" rule_id = self.get_rule_id_by_template_tag(root, locator) if rule_id: schema_active = self.get_active_name(root, rule_id) return schema_active def get_last_active_schema_name(self, root): """Determine the last active schema (not used for legacy Anna).""" if not self.legacy_anna: locator = "zone_preset_based_on_time_and_presence_with_override" rule_id = self.get_rule_id_by_template_tag(root, locator) last_schema_active = self.get_last_active_name(root, rule_id) return last_schema_active @staticmethod def get_schema_state(root): """Get the mode the thermostat is in (active schedule is true or false).""" log_type = "schedule_state" locator = ( "appliance[type='thermostat']/logs/point_log[type='" + log_type + "']/period/measurement" ) if root.find(locator) is not None: return root.find(locator).text == "on" return None @staticmethod def get_rule_id_by_template_tag(root, rule_name): """Get the rule ID based on template_tag.""" schema_ids = [] rules = root.findall("rule") for rule in rules: if rule.find("template").attrib["tag"] == rule_name: schema_ids.append(rule.attrib["id"]) if schema_ids == []: return None return schema_ids def set_preset(self, root, preset): """Set the given preset on the thermostat.""" if self.legacy_anna: return self.__set_preset_v1(root, preset) locator = "appliance[type='thermostat']/location" location_id = root.find(locator).attrib["id"] locations_root = Etree.fromstring( requests.get( self._endpoint + ANNA_LOCATIONS_ENDPOINT, auth=(self._username, self._password), timeout=10, ).text ) current_location = locations_root.find("location[@id='" + location_id + "']") location_name = current_location.find("name").text location_type = current_location.find("type").text xml = requests.put( self._endpoint + ANNA_LOCATIONS_ENDPOINT + ";id=" + location_id, auth=(self._username, self._password), data="<locations>" + '<location id="' + location_id + '">' + "<name>" + location_name + "</name>" + "<type>" + location_type + "</type>" + "<preset>" + preset + "</preset>" + "</location>" + "</locations>", headers={"Content-Type": "text/xml"}, timeout=10, ) if xml.status_code != requests.codes.ok: # pylint: disable=no-member raise CouldNotSetPresetException( "Could not set the " "given preset: " + xml.text ) return xml.text def __set_preset_v1(self, root, preset): """Set the given preset on the thermostat for V1.""" locator = "rule/directives/when/then[@icon='" + preset + "'].../.../..." rule = root.find(locator) if rule is None: raise CouldNotSetPresetException("Could not find preset '" + preset + "'") rule_id = rule.attrib["id"] xml = requests.put( self._endpoint + ANNA_RULES, auth=(self._username, self._password), data="<rules>" + '<rule id="' + rule_id + '">' + "<active>true</active>" + "</rule>" + "</rules>", headers={"Content-Type": "text/xml"}, timeout=10, ) if xml.status_code != requests.codes.ok: # pylint: disable=no-member raise CouldNotSetPresetException( "Could not set the given " "preset: " + xml.text ) return xml.text @staticmethod def get_boiler_status(root): """Get the active boiler-heating status (On-Off control).""" log_type = "boiler_state" locator = ( "appliance[type='heater_central']/logs/point_log[type='" + log_type + "']/period/measurement" ) if root.find(locator) is not None: return root.find(locator).text == "on" return None @staticmethod def get_heating_status(root): """Get the active heating status (OpenTherm control).""" log_type = "central_heating_state" locator = ( "appliance[type='heater_central']/logs/point_log[type='" + log_type + "']/period/measurement" ) if root.find(locator) is not None: return root.find(locator).text == "on" return None @staticmethod def get_cooling_status(root): """Get the active cooling status.""" log_type = "cooling_state" locator = ( "appliance[type='heater_central']/logs/point_log[type='" + log_type + "']/period/measurement" ) if root.find(locator) is not None: return root.find(locator).text == "on" return None def get_domestic_hot_water_status(self, root): """Get the domestic hot water status.""" if self.legacy_anna: return None log_type = "domestic_hot_water_state" locator = ( "appliance[type='heater_central']/logs/point_log[type='" + log_type + "']/period/measurement" ) if root.find(locator) is not None: return root.find(locator).text == "on" return None def get_current_preset(self, root): """Get the current active preset.""" if self.legacy_anna: active_rule = root.find("rule[active='true']/directives/when/then") if active_rule is None or "icon" not in active_rule.keys(): return "none" return active_rule.attrib["icon"] log_type = "preset_state" locator = ( "appliance[type='thermostat']/logs/point_log[type='" + log_type + "']/period/measurement" ) return root.find(locator).text def get_schedule_temperature(self, root): """Get the temperature setting from the selected schedule.""" point_log_id = self.get_point_log_id(root, "schedule_temperature") if point_log_id: measurement = self.get_measurement_from_point_log(root, point_log_id) if measurement: value = float(measurement) return value return None def get_current_temperature(self, root): """Get the curent (room) temperature from the thermostat - match to HA name.""" current_temp_point_log_id = self.get_point_log_id(root, "temperature") if current_temp_point_log_id: measurement = self.get_measurement_from_point_log( root, current_temp_point_log_id ) value = float(measurement) return value return None def get_target_temperature(self, root): """Get the target temperature from the thermostat.""" target_temp_log_id = self.get_point_log_id(root, "target_temperature") if target_temp_log_id: measurement = self.get_measurement_from_point_log(root, target_temp_log_id) value = float(measurement) return value return None def get_thermostat_temperature(self, root): """Get the target temperature from the thermostat.""" thermostat_log_id = self.get_point_log_id(root, "thermostat") if thermostat_log_id: measurement = self.get_measurement_from_point_log(root, thermostat_log_id) value = float(measurement) return value return None def get_outdoor_temperature(self, root): """Get the temperature from the thermostat.""" outdoor_temp_log_id = self.get_point_log_id(root, "outdoor_temperature") if outdoor_temp_log_id: measurement = self.get_measurement_from_point_log(root, outdoor_temp_log_id) value = float(measurement) value = '{:.1f}'.format(round(value, 1)) return value return None def get_illuminance(self, root): """Get the illuminance value from the thermostat.""" point_log_id = self.get_point_log_id(root, "illuminance") if point_log_id: measurement = self.get_measurement_from_point_log(root, point_log_id) value = float(measurement) value = '{:.1f}'.format(round(value, 1)) return value return None def get_boiler_temperature(self, root): """Get the boiler_temperature value from the thermostat.""" point_log_id = self.get_point_log_id(root, "boiler_temperature") if point_log_id: measurement = self.get_measurement_from_point_log(root, point_log_id) value = float(measurement) value = '{:.1f}'.format(round(value, 1)) return value return None def get_water_pressure(self, root): """Get the water pressure value from the thermostat.""" point_log_id = self.get_point_log_id(root, "central_heater_water_pressure") if point_log_id: measurement = self.get_measurement_from_point_log(root, point_log_id) value = float(measurement) value = '{:.1f}'.format(round(value, 1)) return value return None def __get_temperature_uri(self, root): """Determine the set_temperature uri for different versions of Anna.""" if self.legacy_anna: locator = "appliance[type='thermostat']" appliance_id = root.find(locator).attrib["id"] return ANNA_APPLIANCES + ";id=" + appliance_id + "/thermostat" locator = "appliance[type='thermostat']/location" location_id = root.find(locator).attrib["id"] locator = ( "location[@id='" + location_id + "']/actuator_functionalities/thermostat_functionality" ) thermostat_functionality_id = root.find(locator).attrib["id"] temperature_uri = ( ANNA_LOCATIONS_ENDPOINT + ";id=" + location_id + "/thermostat;id=" + thermostat_functionality_id ) return temperature_uri def set_temperature(self, root, temperature): """Send a set request to the temperature with the given temperature.""" uri = self.__get_temperature_uri(root) temperature = str(temperature) xml = requests.put( self._endpoint + uri, auth=(self._username, self._password), data="<thermostat_functionality><setpoint>" + temperature + "</setpoint></thermostat_functionality>", headers={"Content-Type": "text/xml"}, timeout=10, ) if xml.status_code != requests.codes.ok: # pylint: disable=no-member CouldNotSetTemperatureException("Could not set the temperature." + xml.text) return xml.text def get_anna_endpoint(self): """Get the ANNA Endpoint.""" return self._endpoint @staticmethod def get_point_log_id(root, log_type): """Get the point log ID based on log type.""" locator = ( "module/services/*[@log_type='" + log_type + "']/functionalities/point_log" ) if root.find(locator) is not None: return root.find(locator).attrib["id"] return None @staticmethod def get_measurement_from_point_log(root, point_log_id): """Get the measurement from a point log based on point log ID.""" locator = "*/logs/point_log[@id='" + point_log_id + "']/period/measurement" if root.find(locator) is not None: return root.find(locator).text return None @staticmethod def get_rule_id_by_name(root, rule_name): """Get the rule ID based on name.""" rules = root.findall("rule") for rule in rules: if rule.find("name").text == rule_name: return rule.attrib["id"] @staticmethod def get_preset_dictionary(root, rule_id): """Get the presets from a rule based on rule ID and returns a dictionary with all the key-value pairs.""" preset_dictionary = {} directives = root.find("rule[@id='" + rule_id + "']/directives") for directive in directives: preset = directive.find("then").attrib keys, dummy = zip(*preset.items()) if str(keys[0]) == "setpoint": preset_dictionary[directive.attrib["preset"]] = float(preset["setpoint"]) else: preset_dictionary[directive.attrib["preset"]] = float(preset["heating_setpoint"]) return preset_dictionary @staticmethod def __get_preset_dictionary_v1(root): """ Get the presets and returns a dictionary with all the key-value pairs. Example output: {'away': 17.0, 'home': 20.0, 'vacation': 15.0, 'no_frost': 10.0, 'asleep': 15.0}. """ preset_dictionary = {} directives = root.findall("rule/directives/when/then") for directive in directives: if directive is not None and "icon" in directive.keys(): preset_dictionary[directive.attrib["icon"]] = float( directive.attrib["temperature"] ) return preset_dictionary @staticmethod def get_active_mode(root, schema_ids): """Get the mode from a (list of) rule id(s).""" active = False for schema_id in schema_ids: if root.find("rule[@id='" + schema_id + "']/active").text == "true": active = True break return active @staticmethod def get_active_name(root, schema_ids): """Get the active schema from a (list of) rule id(s).""" active = None for schema_id in schema_ids: locator = root.find("rule[@id='" + schema_id + "']/active") # Only one can be active if locator.text == "true": active = root.find("rule[@id='" + schema_id + "']/name").text return active @staticmethod def get_last_active_name(root, schema_ids): """Get the last active schema from a (list of) rule id(s).""" schemas = {} epoch = datetime.datetime(1970, 1, 1, tzinfo=pytz.utc) date_format = "%Y-%m-%dT%H:%M:%S.%f%z" for schema_id in schema_ids: schema_name = root.find("rule[@id='" + schema_id + "']/name").text schema_date = root.find("rule[@id='" + schema_id + "']/modified_date").text schema_time = parse(schema_date) schemas[schema_name] = (schema_time - epoch).total_seconds() last_modified = sorted(schemas.items(), key=lambda kv: kv[1])[-1][0] return last_modified class AnnaException(Exception): """Define Exceptions.""" def __init__(self, arg1, arg2=None): """Set the base exception for interaction with the Anna gateway.""" self.arg1 = arg1 self.arg2 = arg2 super(AnnaException, self).__init__(arg1) class RuleIdNotFoundException(AnnaException): """Raise an exception for when the rule id is not found in the direct objects.""" pass class CouldNotSetPresetException(AnnaException): """Raise an exception for when the preset can not be set.""" pass class CouldNotSetTemperatureException(AnnaException): """Raise an exception for when the temperature could not be set.""" pass
#!/usr/bin/env python # -*- coding: utf-8 -*- import unittest from .context import tripp from tripp import gradient from tripp import algebra from functools import partial import random import logging logging.basicConfig(level=logging.INFO, format="%(lineno)d\t%(message)s") def square(x): """for testing""" return x * x def derivative(x): """for testing""" return 2 * x class TestGradient(unittest.TestCase): def setUp(self): pass def test_sum_of_squares(self): """gradient -- sum of squares""" sut = [1, 2, 3, 4, 5] result = gradient.sum_of_squares(sut) self.assertEqual(result, 55) def test_derivative_estimates(self): """gradient -- difference quotient""" derivative_estimate = partial(gradient.difference_quotient, square, h=0.00001) x = range(-10, 10) actuals = map(derivative, x) estimates = map(derivative_estimate, x) for comparison in zip(actuals, estimates): actual, estimate = comparison self.assertEqual(actual, int(round(estimate, 1))) def test_step(self): """gradient -- step""" v = [random.randint(-10, 10) for i in range(3)] tolerance = 0.0000001 while True: _gradient = gradient.sum_of_squares_gradient(v) next_v = gradient.step(v, _gradient, -0.01) if algebra.distance(next_v, v) < tolerance: break v = next_v expected = [0.0, 0.0, 0.0] returned = map(lambda x: round(x, 5), v) self.assertEqual(returned, expected) def test_negate(self): """gradient -- negate""" vals = [2, 4.5, 99, 0.000005] funcs = [ lambda w: 7 * w + 5, lambda x: x * 2, lambda y: y ** 4, lambda z: 2 * z - 7, lambda w: 7 * w + 5] for v, f in zip(vals, funcs): result = f(v) negation = gradient.negate(f) self.assertEqual(result * -1, negation(v))
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import cobra.models.fields.foreignkey class Migration(migrations.Migration): dependencies = [ ('accessgroup', '0001_initial'), ('team', '0001_initial'), ('project', '0001_initial'), ] operations = [ migrations.AddField( model_name='accessgroup', name='projects', field=models.ManyToManyField(related_name='+', to='project.Project'), preserve_default=True, ), migrations.AddField( model_name='accessgroup', name='team', field=cobra.models.fields.foreignkey.FlexibleForeignKey(related_name='+', to='team.Team'), preserve_default=True, ), migrations.AlterUniqueTogether( name='accessgroup', unique_together=set([('team', 'name')]), ), ]
import patch class Connection: def __init__(self, app, connections): pass def iterate(self, connections): pass def no_connection(self, connections): pass
from flask_wtf import FlaskForm from wtforms import StringField,TextAreaField,SubmitField from wtforms.validators import Email,Required from flask_wtf import FlaskForm from flask_wtf.file import FileField,FileAllowed from wtforms import StringField,TextAreaField,SubmitField,ValidationError from wtforms.validators import Email,Required from flask_login import current_user from ..models import User class UpdateProfile(FlaskForm): bio = TextAreaField('Tell us about you.',validators = [Required()]) submit = SubmitField('Submit')
import argparse import sys from typing import Optional from typing import Sequence import toml def main(argv: Optional[Sequence[str]] = None) -> int: parser = argparse.ArgumentParser() parser.add_argument('filenames', nargs='*', help='Filenames to check.') args = parser.parse_args(argv) retval = 0 for filename in args.filenames: try: with open(filename) as file_handler: toml.load(file_handler) except toml.TomlDecodeError as exc: print('{}: {}'.format(filename, exc)) retval = 1 return retval if __name__ == '__main__': sys.exit(main())
import cadquery as cq core_rad = 45.0 / 2.0 # Objects to make the basic shape of the guide guide_core = (cq.Workplane("XY") .circle(core_rad) .extrude(3.0)) guide_fan = (cq.Workplane("XY") .moveTo(0.0, -10.0) .hLine(core_rad + 15) .threePointArc((0.0, core_rad + 15), (-core_rad - 15, -10.0)) .close() .extrude(3.0)) # Fuse both objects so they act as one guide = guide_core.union(guide_fan) # Put guide holes in fan guide = guide.faces(">Z").workplane(centerOption="ProjectedOrigin").polarArray(core_rad + 7.5, -10, 90, 6).circle(2.5).cutThruAll() # Center shaft boss #guide = guide.faces(">Z").workplane(centerOption="ProjectedOrigin").circle(10.0).extrude(7.0) # Put the center hole in guide = guide.faces(">Z").workplane(centerOption="ProjectedOrigin").circle(9.75 / 2.0).cutThruAll() # Put the set screw holes in guide = guide.faces("<Z").workplane(centerOption="ProjectedOrigin", invert=True).transformed(offset = (0, 0, 7)).transformed(rotate=(0, 90, 0)).circle(2.5 / 2.0).cutThruAll() # Export to STL for printing guide.val().exportStl("/home/jwright/Downloads/guide_1.stl", precision=0.0001) show_object(guide)
"""useful rexx functions This module is intended to help with porting ATI code to python. ATI had several rexx-like functions that will likely be in this module as python functions. Other functions are included that may be useful in parsing strings in a rexx-like manner. Some of these functions have enhancements on top of the rexx function. Enhancments include using a negative index/position or length to indicate a position relative to the END of the string. See individual functions for details. USAGE from rexx import * Copyright 2021 IBM Inc. All Rights Reserved. SPDX-License-Identifier: Apache-2.0 """ import re as _re from . import __version__ __author__ = "Neil Johnson" def copies(string, cnt): """returns cnt concatenated copies of string. The cnt must be a positive whole number or zero.""" if cnt < 0: raise ValueError("cnt="+repr(cnt)+" is not valid") return str(string)*cnt def delword(string, sw_or_n, len_or_si=None): """returns string after deleting the substring that starts at the nth word and is of length blank-delimited words. If you omit length, or if length is greater than the number of words from n to the end of string, the function deletes the remaining words in string (including the nth word). The length must be a positive whole number or zero. The n must be a positive whole number. If n is greater than the number of words in string, the function returns string unchanged. The string deleted includes any blanks following the final word involved but none of the blanks preceding the first word involved.""" if isinstance(sw_or_n, str): sword = sw_or_n sidx = len_or_si if sidx is None: sidx = 1 pos1 = wordpos(string, sword, sidx) if pos1 <= 0: return string cnt = words(string) if cnt <= 0: return string return delword(string, pos1, cnt) idx = sw_or_n if idx <= 0: raise ValueError("n must be greater than zero") length = len_or_si if length is None: sidx = wordindex(string, idx) if not sidx: return string return string[0:sidx-1] sidx = wordindex(string, idx+length) if not sidx: return delword(string, idx) return delword(string, idx)+string[sidx-2:].lstrip() def index(haystack, needle, start=1): """returns the character position of one string, needle, in another, haystack, or returns 0 if the string needle is not found or is a null string. By default the search starts at the first character of haystack (start has the value 1). You can override this by specifying a different start point, which must be a positive whole number. """ if start <= 0: raise ValueError("start="+repr(start)+" is not valid") return 1+haystack.find(needle, start-1) def left(string, length, pad=" "): """returns a string of length length, containing the leftmost length characters of string. The string returned is padded with pad characters (or truncated) on the right as needed. The default pad character is a blank. length must be a positive whole number or zero. """ if length < 0: raise ValueError("length="+repr(length)+" is not valid") return substr(string, 1, length, pad=pad) def length(string): """returns the length of string. """ return len(string) def pos(needle, haystack, start=1): """returns the character position of one string, needle, in another, haystack, or returns 0 if the string needle is not found or is a null string. By default the search starts at the first character of haystack (start has the value 1). You can override this by specifying a different start point, which must be a positive whole number. """ if start <= 0: raise ValueError("start="+repr(start)+" is not valid") return 1+haystack.find(needle, start-1) def right(string, length, pad=" "): """returns a string of length length containing the rightmost length characters of string. The string returned is padded with pad characters (or truncated) on the left as needed. The default pad character is a blank. The length must be a positive whole number or zero.""" if length < 0: raise ValueError("length="+repr(length)+" is not valid") return substr(string, -1, -length, pad=pad) def space(string, cnt=1, pad=" "): """returns the blank-delimited words in string with cnt pad characters between each word. If you specify cnt, it must be a positive whole number or zero. If it is 0, all blanks are removed. Leading and trailing blanks are always removed. The default for cnt is 1, and the default pad character is a blank. """ if cnt < 0: raise ValueError("cnt="+repr(cnt)+" is not valid") return (pad * cnt).join(string.split()) def strip(string, option="B", char=" "): """returns string with leading or trailing characters or both removed, based on the option you specify. The following are valid options. (Only the capitalized letter is needed; all characters following it are ignored.) Both removes both leading and trailing characters from string. This is the default. Leading removes leading characters from string. Trailing removes trailing characters from string. The third argument, char, specifies the character to be removed, and the default is a blank. With rexx, if you specify char, it must be exactly one character long. With this function, all characters specified in the char string are considered for removal from string. Here are some examples: strip(' ab c ') -> 'ab c' strip(' ab c ','L') -> 'ab c ' strip(' ab c ','t') -> ' ab c' strip('12.7000',char='0') -> '12.7' strip('0012.700',char='0') -> '12.7' """ if option[0] == "B" or option[0] == "b": return string.strip(char) elif option[0] == "L" or option[0] == "l": return string.lstrip(char) elif option[0] == "T" or option[0] == "t": return string.rstrip(char) else: raise ValueError("option="+repr(option)+" is not valid") def substr(string, idx, length=None, pad=" "): """returns the substring of string that begins at the idx'th character and is of length length, padded with pad if necessary. In rexx, idx must be a positive whole number. In this function, idx can also be negative. When idx is negative, the begining of the substring is relative to the end of string like in python. For example, -1 refers to the last chararacter in string and -2 refers to the second to last character in string and so on. In this function, length can be negative. A negative length means that idx refers to the last character in the substring instead of the first. The length of the returned substring is always abs(length). If you omit length, the rest of the string is returned. The default pad character is a blank. Here are some examples: substr('abc',2) -> 'bc' substr('abc',2,4) -> 'bc ' substr('abc',2,6,'.') -> 'bc....' See also the 'left' and 'right' functions. """ if not idx: raise ValueError(f"n={idx} is not valid") if length == 0: return "" if length is None: if idx < 0: return string[:idx] return string[idx-1:] if idx > 0 and length >= 0: string = string[idx-1:idx-1+length] elif idx > 0: if idx + length >= 0: string = string[idx+length:idx] else: string = string[:idx] elif length >= 0: if idx + length < 0: string = string[idx:idx+length] else: string = string[idx:] elif idx < -1: string = string[idx+length+1:idx+1] else: string = string[idx+length+1:] padding = copies(pad, abs(length) - len(string)) if length >= 0: return string + padding return padding + string def subword(string, wpos, length=None): """returns the substring of string that starts at the nth word, and is up to length blank-delimited words. The n must be a positive whole number. If you omit length, it defaults to the number of remaining words in string. The returned string never has leading or trailing blanks, but includes all blanks between the selected words. """ if wpos <= 0: raise ValueError("n must be a positive whole number") if length is None: cpos = wordindex(string, wpos) if not cpos: return "" return string[cpos-1:].strip() if length < 0: raise ValueError("length cannot be negative") if not length: return "" cpos = wordindex(string, wpos+length) if not cpos: return subword(string, wpos) return subword(string[:cpos-2], wpos) def word(string, wpos): """returns the nth blank-delimited word in string or returns the null string if fewer than n words are in string. The n must be a positive whole number. This function is exactly equivalent to subword(string,n,1). """ return subword(string, wpos, 1) def wordindex(string, wpos): """returns the position of the first character in the nth blank-delimited word in string or returns 0 if fewer than n words are in string. The n must be a positive whole number. """ if wpos <= 0: raise ValueError("n must be a positive whole number") i = 0 for mat in _re.finditer(r"\S+", string): i += 1 if i == wpos: return 1 + mat.start() return 0 def wordpos(phrase, string, start=1): """returns the word number of the first word of phrase found in string or returns 0 if phrase contains no words or if phrase is not found. Multiple blanks between words in either phrase or string are treated as a single blank for the comparison, but otherwise the words must match exactly. By default the search starts at the first word in string. You can override this by specifying start (which must be positive), the word at which to start the search.""" ws2 = " "+space(subword(string, start))+" " i = ws2.find(" "+space(phrase)+" ") if i < 0: return 0 return start+words(ws2[0:i]) def words(sentence): """returns the number of blank-delimited words in string. """ return sum(1 for _ in _re.finditer(r"\S+", sentence))
# This file is Copyright 2019 Volatility Foundation and licensed under the Volatility Software License 1.0 # which is available at https://www.volatilityfoundation.org/license/vsl-v1.0 # import logging from typing import List from volatility.framework import renderers, exceptions, interfaces from volatility.framework.configuration import requirements from volatility.framework.interfaces import plugins from volatility.framework.layers import intel vollog = logging.getLogger(__name__) class Statistics(plugins.PluginInterface): @classmethod def get_requirements(cls) -> List[interfaces.configuration.RequirementInterface]: return [ requirements.TranslationLayerRequirement(name = 'primary', description = 'Memory layer for the kernel', architectures = ["Intel32", "Intel64"]) ] def _generator(self): # Do mass mapping and determine the number of different layers and how many pages go to each one layer = self.context.layers[self.config['primary']] page_count = swap_count = invalid_page_count = large_page_count = large_swap_count = large_invalid_count = other_invalid = 0 if isinstance(layer, intel.Intel): page_addr = 0 expected_page_size = 1 << layer.bits_per_register while page_addr < layer.maximum_address: try: _, _, _, page_size, layer_name = list(layer.mapping(page_addr, 2 * expected_page_size))[0] if layer_name != layer.config['memory_layer']: swap_count += 1 else: page_count += 1 if page_size > expected_page_size: large_page_count += 1 except exceptions.SwappedInvalidAddressException as excp: swap_count += 1 page_size = (1 << excp.invalid_bits) if page_size != expected_page_size: large_swap_count += 1 except exceptions.PagedInvalidAddressException as excp: invalid_page_count += 1 page_size = (1 << excp.invalid_bits) if page_size != expected_page_size: large_invalid_count += 1 except exceptions.InvalidAddressException as excp: other_invalid += 1 page_size = expected_page_size vollog.debug("A non-page lookup invalid address exception occurred at: {} in layer {}".format( hex(excp.invalid_address), excp.layer_name)) page_addr += page_size self._progress_callback((page_addr * 100) / layer.maximum_address, "Reading memory") yield (0, (page_count, large_page_count, swap_count, large_swap_count, invalid_page_count, large_invalid_count, other_invalid)) def run(self): return renderers.TreeGrid([("Valid pages (all)", int), ("Valid pages (large)", int), ("Swapped Pages (all)", int), ("Swapped Pages (large)", int), ("Invalid Pages (all)", int), ("Invalid Pages (large)", int), ("Other Invalid Pages (all)", int)], self._generator())
import requests import uuid import json from datetime import datetime from django.utils.dateparse import parse_duration from django.utils.text import slugify from django.urls import reverse from django.contrib.auth.models import User from django.conf import settings from django.test import TestCase from urllib.parse import urlparse, parse_qs from apps.mymedicare_cb.views import generate_nonce from apps.mymedicare_cb.models import AnonUserState from apps.mymedicare_cb.authorization import OAuth2Config from apps.capabilities.models import ProtectedCapability from httmock import urlmatch, all_requests, HTTMock from django.contrib.auth.models import Group from apps.fhir.server.models import ResourceRouter from apps.dot_ext.models import Approval, Application from .responses import patient_response class MyMedicareBlueButtonClientApiUserInfoTest(TestCase): """ Tests for the MyMedicare login and SLS Callback """ def setUp(self): self.callback_url = reverse('mymedicare-sls-callback') self.login_url = reverse('mymedicare-login') Group.objects.create(name='BlueButton') ResourceRouter.objects.create(pk=settings.FHIR_SERVER_DEFAULT, fhir_url="http://bogus.com/") def test_login_url_success(self): """ Test well-formed login_url has expected content """ fake_login_url = 'https://example.com/login?scope=openid' with self.settings(ALLOW_CHOOSE_LOGIN=False, MEDICARE_LOGIN_URI=fake_login_url, MEDICARE_REDIRECT_URI='/123'): response = self.client.get(self.login_url + '?next=/') self.assertEqual(response.status_code, 302) query = parse_qs(urlparse(response['Location']).query) path = response['Location'].split('?')[0] self.assertEqual(path, 'https://example.com/login') self.assertEqual(query['redirect_uri'][0], '/123') def test_callback_url_missing_state(self): """ Test callback_url returns HTTP 400 when necessary GET parameter state is missing. """ response = self.client.get(self.callback_url) self.assertEqual(response.status_code, 400) def test_authorize_uuid_dne(self): auth_uri = reverse( 'dot_ext:authorize-instance', args=[uuid.uuid4()]) response = self.client.get(auth_uri) self.assertEqual(302, response.status_code) def _create_capability(self, name, urls, group=None, default=True): """ Helper method that creates a ProtectedCapability instance that controls the access for the set of `urls`. """ group = group or self._create_group('test') capability = ProtectedCapability.objects.create( default=default, title=name, slug=slugify(name), protected_resources=json.dumps(urls), group=group) return capability def _create_group(self, name): """ Helper method that creates a group instance with `name`. """ group, _ = Group.objects.get_or_create(name=name) return group def test_authorize_uuid(self): user = User.objects.create_user( "bob", password="bad") application = Application.objects.create( redirect_uris="http://test.com", authorization_grant_type='authorization-code', name="test01", user=user) capability_a = self._create_capability('Capability A', []) capability_b = self._create_capability('Capability B', []) application.scope.add(capability_a, capability_b) approval = Approval.objects.create( user=user) auth_uri = reverse( 'dot_ext:authorize-instance', args=[approval.uuid]) response = self.client.get(auth_uri, data={ "client_id": application.client_id, "redirect_uri": "http://test.com", "response_type": "code"}) self.assertEqual(200, response.status_code) approval.refresh_from_db() self.assertEqual(application, approval.application) self.assertNotIn('_auth_user_id', self.client.session) response = self.client.post(auth_uri, data={ "client_id": "bad", "redirect_uri": "http://test.com", "response_type": "code"}) self.assertEqual(302, response.status_code) payload = { 'client_id': application.client_id, 'response_type': 'code', 'redirect_uri': 'http://test.com', 'scope': ['capability-a'], 'expires_in': 86400, 'allow': True, } response = self.client.post(auth_uri, data=payload) self.assertEqual(302, response.status_code) self.assertIn("code=", response.url) approval.created_at = datetime.now() - parse_duration("601") approval.save() response = self.client.post(auth_uri, data={ "client_id": application.client_id, "redirect_uri": "http://test.com", "response_type": "code"}) self.assertEqual(302, response.status_code) def test_callback_url_success(self): # create a state state = generate_nonce() AnonUserState.objects.create( state=state, next_uri="http://www.google.com?client_id=test&redirect_uri=test.com&response_type=token&state=test") # mock sls token endpoint @urlmatch(netloc='dev.accounts.cms.gov', path='/v1/oauth/token') def sls_token_mock(url, request): return { 'status_code': 200, 'content': {'access_token': 'works'}, } # mock sls user info endpoint @urlmatch(netloc='dev.accounts.cms.gov', path='/v1/oauth/userinfo') def sls_user_info_mock(url, request): return { 'status_code': 200, 'content': { 'sub': '0123456789abcdefghijklmnopqrstuvwxyz', 'given_name': '', 'family_name': '', 'email': '[email protected]', }, } # mock fhir user info endpoint @urlmatch(netloc='bogus.com', path='/Patient/') def fhir_patient_info_mock(url, request): return { 'status_code': 200, 'content': patient_response, } @all_requests def catchall(url, request): raise Exception(url) with HTTMock(sls_token_mock, sls_user_info_mock, fhir_patient_info_mock, catchall): response = self.client.get(self.callback_url, data={'code': 'test', 'state': state}) # assert http redirect self.assertEqual(response.status_code, 302) self.assertIn("client_id=test", response.url) self.assertIn("redirect_uri=test.com", response.url) # self.assertRedirects(response, "http://www.google.com", fetch_redirect_response=False) # assert login self.assertNotIn('_auth_user_id', self.client.session) def test_callback_url_failure(self): # create a state state = generate_nonce() AnonUserState.objects.create(state=state, next_uri="http://www.google.com") @all_requests def catchall(url, request): return { 'status_code': 403, 'content': {'error': 'nope'}, } with HTTMock(catchall): response = self.client.get(self.callback_url, data={'code': 'test', 'state': state}) # assert http redirect self.assertEqual(response.status_code, 502) def test_sls_token_exchange_w_creds(self): with self.settings(SLS_CLIENT_ID="test", SLS_CLIENT_SECRET="stest"): sls_client = OAuth2Config() @all_requests def catchall(url, request): sls_auth_header = request.headers['Authorization'] self.assertEqual(sls_auth_header, 'Basic dGVzdDpzdGVzdA==') return { 'status_code': 200, 'content': { 'access_token': 'test_tkn', }, } with HTTMock(catchall): tkn = sls_client.exchange("test_code") self.assertEquals(tkn, "test_tkn") def test_failed_sls_token_exchange(self): with self.settings(SLS_CLIENT_ID="test", SLS_CLIENT_SECRET="stest"): sls_client = OAuth2Config() @all_requests def catchall(url, request): sls_auth_header = request.headers['Authorization'] self.assertEqual(sls_auth_header, 'Basic dGVzdDpzdGVzdA==') return { 'status_code': 401, 'content': { 'error': 'nope!', }, } with HTTMock(catchall): with self.assertRaises(requests.exceptions.HTTPError): tkn = sls_client.exchange("test_code") self.assertEquals(tkn, "test_tkn")
import setuptools with open("README.md", "r", encoding="utf-8") as fh: long_description = fh.read() setuptools.setup( name='torchdrift', version='0.1.0.post1', description="Drift Detection for PyTorch", long_description=long_description, long_description_content_type='text/markdown', author='Orobix Srl and MathInf GmbH', url='https://torchdrift.org/', install_requires=['torch'], packages=setuptools.find_packages(), )
# -*- coding: utf-8 -*- """ CRUD-storage repositories for SQLAlchemy driver. """ from app.drivers.sqlalchemy.crud import Repository from app.drivers.sqlalchemy.repos.name import NameRepository from app.drivers.sqlalchemy.repos.role import RoleRepository from app.drivers.sqlalchemy.repos.user import UserRepository __all__ = [ 'NameRepository', 'Repository', 'RoleRepository', 'UserRepository', ]
def vars_recurse(obj): """ Recursively collect vars() of the object. Parameters ---------- obj : object Object to collect attributes Returns ------- params : dict Dictionary of object parameters. """ if hasattr(obj, '__dict__'): params = vars(obj) for k in params.keys(): if hasattr(params[k], '__dict__'): params[k] = vars_recurse(params[k]) params = dict(list(params.items()) + [('type', type(obj))]) return params raise ValueError("obj does not have __dict__ attribute") class Base: """ Base object class for nnrf. """ def __init__(self): pass def get_params(self): """ Get all parameters of the object, recursively. Returns ------- params : dict Dictionary of object parameters. """ params = vars(self) for k in params.keys(): if hasattr(params[k], 'get_params'): params[k] = dict(list(k.get_params().items()) + \ [('type', type(self))]) elif isinstance(params[k], np.random.RandomState): params[k] = {'type': np.random.RandomState, 'seed': params[k].get_state()} elif hasattr(params[k], '__dict__'): params[k] = vars_recurse(params[k]) params = dict(list(params.items()) + [('type', type(self))]) return params def set_params(self, params): """ Set the attributes of the object with the given parameters. Parameters ---------- params : dict Dictionary of object parameters. Returns ------- self : Base Itself, with parameters set. """ valid = self.get_params().keys() for k, v in params.items(): if k not in valid: raise ValueError("Invalid parameter %s for object %s" % \ (k, self.__name__)) param = v if isinstance(v, dict) and 'type' in v.keys(): t = v['type'] if t == np.random.RandomState: state = v['seed'] param = np.random.RandomState().set_state(state) elif 'set_params' in dir(t): param = t().set_params(v.pop('type')) else: param = t() for p, p_v in v.pop('type').items(): setattr(param, p, p_v) setattr(self, k, param) return self
from rpkflashtool.app import run run()
"""Module output_file.""" __author__ = 'Joan A. Pinol (japinol)' import logging from life import constants as consts # Errors ERROR_OUT_FILE_OPEN = "!!! ERROR: Output file: %s. Program aborted !!!" ERROR_OUT_FILE_WRITING = "!!! ERROR writing output file: %s. Some information has been lost!!!" ERROR_OUT_FILE_MAX_TRIES = "!!! ERROR: Too much tries failed writing to the output file: %s!!!" # Max writing errors when trying to write the buffer to the output file MAX_ERRORS_OUT_FILE = 4 logging.basicConfig(format=consts.LOGGER_FORMAT) logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) class OutputFile: """Manages information for output to file purposes.""" def __init__(self, out_file): self._out_file = out_file self._str_out = [''] self._write_data_to_file(open_method='w') def write_buffer_before_exit(self): """Writes pending buffer to the output file. It is intended to be called before exit the application. """ self._write_data_to_file() def write_buffer(self): self._write_data_to_file() def write_line(self, line): """Writes a line to the output file.""" self._str_out.append(f'{line}\n') def _write_data_to_file(self, open_method='a'): """Writes the data still in the buffer to the output file.""" if not self._str_out: return try: with open(self._out_file, open_method, encoding='utf-8') as out_file: for line in self._str_out: out_file.write(line) except Exception: if open_method == 'w': logger.critical(ERROR_OUT_FILE_OPEN % self._out_file) exit() else: self._num_errors_out_file += 1 if self._num_errors_out_file >= MAX_ERRORS_OUT_FILE: logger.critical(ERROR_OUT_FILE_MAX_TRIES % self._out_file) exit() return self._str_out = []
def flatten_mock_calls(mock): """ Flatten the calls performed on a particular mock object, into a list of calls with arguments. """ result = [] for call in mock.mock_calls: call = list(call) call_name = call[0] if '.' in str(call_name): call_name = str(call_name).split('.')[-1] result.append([call_name] + call[1:]) return result
#!/usr/bin/env python from __future__ import print_function import collections import json import sys import ipaddress clients = dict() def agg_ip(ip): mask = 48 if ":" in ip else 16 addr = "%s/%d" % (ip, mask) net = ipaddress.ip_network(unicode(addr), strict=False) return str(net) for arg in sys.argv[1:]: with open(arg) as f: data = json.loads(f.read()) for ip, _histogram in data["clients"].items(): client = agg_ip(ip) __histogram = dict((int(k), int(v)) for (k, v) in _histogram.items()) histogram = collections.Counter(__histogram) clients.setdefault(client, collections.Counter()) clients[client] += histogram print(json.dumps(clients))
# https://blog.csdn.net/rizero/article/details/104244454 # 股票成交量预测(Pytorch基础练习) ## depends import pandas as pd import torch import torch.nn import torch.optim from debug import ptf_tensor ## raw data url = 'C:/Users/HUAWEI/Desktop/深度学习/Blog附带代码/FB.csv' df = pd.read_csv(url, index_col=0) #读取全部数据 index_col = ['col_1','col_2'] # 读取指定的几列 error_bad_lines = False # 当某行数据有问题时,不报错,直接跳过,处理脏数据时使用 na_values = 'NULL' # 将NULL识别为空值 ## data clean #数据集的处理 ''' 因为数据是日期新的占index靠前 ''' train_start, train_end=sum(df.index>='2017'),sum(df.index>='2013') test_start, test_end=sum(df.index>='2018'),sum(df.index>='2017') n_total_train = train_end -train_start n_total_test = test_end -test_start s_mean=df[train_start:train_end].mean() #计算均值,为归一化做准备 s_std=df[train_start:train_end].std() # 计算标准差,为归一化做准备 n_features=5 # 五个特征量 #选取col from 0-4 也就是Open,High,Low,Close,Volume,并进行归一化 df_feature=((df-s_mean)/s_std).iloc[:,:n_features] s_labels=(df['Volume']<df['Volume'].shift(1)).astype(int) ##.shift(1)把数据下移一位 #用法参见:https://www.zhihu.com/question/264963268 #label建立的标准:假如今天次日的成交量大于当日的成交量,标签=1,反之=0 ## alter format x=torch.tensor(df_feature.values,dtype=torch.float32) # size: [m,5] ptf_tensor(x,'x') y=torch.tensor(s_labels.values.reshape(-1,1),dtype=torch.float32) # size [m,1] ptf_tensor(y,'y') ## build nn fc=torch.nn.Linear(n_features,1) weights,bias=fc.parameters() criterion=torch.nn.BCEWithLogitsLoss() optimizer=torch.optim.Adam(fc.parameters()) ## train w+ check n_steps=20001 #迭代20001次 for step in range(n_steps): if step: optimizer.zero_grad() # 梯度清零,不然会叠加的 loss.backward() # 计算参数的梯度 optimizer.step() # 根据参数梯度结果迭代推出新的参数 pred=fc(x) # 计算预测结果 loss=criterion(pred[train_start:train_end],y[train_start:train_end]) #计算预测的损失 if step % 500==0: #print('#{}, 损失 = {:g}'.format(step, loss)) output = (pred > 0) correct = (output == y.bool()) n_correct_train = correct[train_start:train_end].sum().item() #计算训练正确的数量 n_correct_test = correct[test_start:test_end].sum().item() #计算测试正确的数量 accuracy_train = n_correct_train / n_total_train #计算精确度 accuracy_test = n_correct_test / n_total_test print('训练集准确率 = {}, 测试集准确率 = {}'.format(accuracy_train, accuracy_test)) ##
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. "There is not a whole lot to test, but this does get us basic coverage." import hashlib import unittest from ..common import Checksum from ..repo_objects import RepoMetadata, Rpm from ..tests import temp_repos as tr class RepoObjectsTestCase(unittest.TestCase): def test_checksum(self): self.assertIs( type(hashlib.new("sha1")), type(Checksum(algorithm="sha", hexdigest=None).hasher()), ) chk = Checksum(algorithm="sha256", hexdigest=None) h = chk.hasher() h.update(b"crouton") chk = chk._replace(hexdigest=h.hexdigest()) self.assertEqual(chk, Checksum.from_string(str(chk))) def test_rpm(self): rpm = Rpm( epoch=2, name="foo-bar", version=2, release="rc0", arch="aarch64", build_timestamp=1337, checksum=Checksum.from_string("algo:fabcab"), canonical_checksum=None, location="a/b.rpm", size=14, source_rpm="foo-bar-2-rc0.src.rpm", ) self.assertEqual(rpm.nevra(), "foo-bar-2:2-rc0.aarch64") self.assertEqual("algo:fabcab", str(rpm.best_checksum())) self.assertEqual( "zalgo:e1de41", str( rpm._replace( canonical_checksum=Checksum( algorithm="zalgo", hexdigest="e1de41" ) ).best_checksum() ), ) def test_repodata_and_metadata(self): with tr.temp_repos_steps( gpg_signing_key=tr.get_test_signing_key(), repo_change_steps=[ { "whale": tr.Repo( [tr.Rpm("x", "5", "6"), tr.Rpm("y", "3.4", "b")] ) } ], ) as repos_dir, open( repos_dir / "0/whale/repodata/repomd.xml", "rb" ) as infile: rmd = RepoMetadata.new(xml=infile.read()) self.assertGreaterEqual(rmd.fetch_timestamp, rmd.build_timestamp) # If this assert fires, you are changing the canonical hash, # which is super-risky since it will break the existing DB. So, # this test just exists to make sure you plan to migrate all the # canonical hashes in the database. self.assertEqual("sha384", rmd.checksum.algorithm) self.assertIs(rmd.checksum, rmd.best_checksum()) self.assertEqual( 1, sum(rd.is_primary_sqlite() for rd in rmd.repodatas) ) self.assertEqual( 1, sum(rd.is_primary_xml() for rd in rmd.repodatas) ) for rd in rmd.repodatas: # The currently checked-in test repos all use sha256, which # seems to be the default for newer rpm tools. self.assertEqual("sha256", rd.checksum.algorithm) self.assertEqual(64, len(rd.checksum.hexdigest)) self.assertLess(0, rd.size) self.assertLessEqual(rd.build_timestamp, rmd.build_timestamp) self.assertLess(0, rd.build_timestamp) self.assertIs(rd.checksum, rd.best_checksum())
from sketchpy import canvas pen = canvas.sketch_from_svg('C:\\Users\\SHUBHAM\\Desktop\\New folder\\sketch\\4\\mehulnew.svg',scale= 250 ) pen.draw()
""" GUI for the data operations panel (sum and multiply) """ import wx import sys import time import numpy as np from sas.sascalc.dataloader.data_info import Data1D from sas.sasgui.plottools.PlotPanel import PlotPanel from sas.sasgui.plottools.plottables import Graph from sas.sasgui.plottools import transform from matplotlib.font_manager import FontProperties from sas.sasgui.guiframe.events import StatusEvent from sas.sasgui.perspectives.calculator import calculator_widgets as widget from sas.sasgui.guiframe.documentation_window import DocumentationWindow #Control panel width if sys.platform.count("win32") > 0: PANEL_TOP = 0 PANEL_WIDTH = 790 PANEL_HEIGTH = 370 FONT_VARIANT = 0 _BOX_WIDTH = 200 ON_MAC = False else: PANEL_TOP = 60 _BOX_WIDTH = 230 PANEL_WIDTH = 900 PANEL_HEIGTH = 430 FONT_VARIANT = 1 ON_MAC = True class DataOperPanel(wx.ScrolledWindow): """ """ def __init__(self, parent, *args, **kwds): kwds['name'] = "Data Operation" kwds["size"] = (PANEL_WIDTH, PANEL_HEIGTH) wx.ScrolledWindow.__init__(self, parent, *args, **kwds) self.parent = parent #sizers etc. self.main_sizer = None self.name_sizer = None self.button_sizer = None self.data_namectr = None self.numberctr = None self.data1_cbox = None self.operator_cbox = None self.data2_cbox = None self.data_title_tcl = None self.out_pic = None self.equal_pic = None self.data1_pic = None self.operator_pic = None self.data2_pic = None self.output = None self._notes = None #text grayed color self.color = wx.SystemSettings.GetColour(wx.SYS_COLOUR_BACKGROUND) #data self._data = self.get_datalist() self._do_layout() self.fill_data_combox() self.fill_oprator_combox() self.Bind(wx.EVT_SET_FOCUS, self.set_panel_on_focus) def _define_structure(self): """ define initial sizer """ self.main_sizer = wx.BoxSizer(wx.VERTICAL) title = "Data Operation " title += "[ + (add); - (subtract); " title += "* (multiply); / (divide); " title += "| (append) ]" name_box = wx.StaticBox(self, -1, title) self.name_sizer = wx.StaticBoxSizer(name_box, wx.HORIZONTAL) self.button_sizer = wx.BoxSizer(wx.HORIZONTAL) def _layout_name(self): """ Do the layout for data name related widgets """ new_data_sizer = wx.BoxSizer(wx.VERTICAL) equal_sizer = wx.BoxSizer(wx.VERTICAL) old_data1_sizer = wx.BoxSizer(wx.VERTICAL) operator_sizer = wx.BoxSizer(wx.VERTICAL) old_data2_sizer = wx.BoxSizer(wx.VERTICAL) data2_hori_sizer = wx.BoxSizer(wx.HORIZONTAL) data_name = wx.StaticText(self, -1, 'Output Data Name') equal_name = wx.StaticText(self, -1, ' =', size=(50, 25)) data1_name = wx.StaticText(self, -1, 'Data1') operator_name = wx.StaticText(self, -1, 'Operator') data2_name = wx.StaticText(self, -1, 'Data2 (or Number)') self.data_namectr = wx.TextCtrl(self, -1, size=(_BOX_WIDTH, 25), style=wx.TE_PROCESS_ENTER) self.data_namectr.SetToolTipString("Hit 'Enter' key after typing.") self.data_namectr.SetValue(str('MyNewDataName')) self.numberctr = wx.TextCtrl(self, -1, size=(_BOX_WIDTH / 3, 25), style=wx.TE_PROCESS_ENTER) self.numberctr.SetToolTipString("Hit 'Enter' key after typing.") self.numberctr.SetValue(str(1.0)) self.data1_cbox = wx.ComboBox(self, -1, size=(_BOX_WIDTH, 25), style=wx.CB_READONLY) self.operator_cbox = wx.ComboBox(self, -1, size=(70, 25), style=wx.CB_READONLY) operation_tip = "Add: +, Subtract: -, " operation_tip += "Multiply: *, Divide: /, " operation_tip += "Append(Combine): | " self.operator_cbox.SetToolTipString(operation_tip) self.data2_cbox = wx.ComboBox(self, -1, size=(_BOX_WIDTH * 2 / 3, 25), style=wx.CB_READONLY) self.out_pic = SmallPanel(self, -1, True, size=(_BOX_WIDTH, _BOX_WIDTH), style=wx.NO_BORDER) self.equal_pic = SmallPanel(self, -1, True, '=', size=(50, _BOX_WIDTH), style=wx.NO_BORDER) self.data1_pic = SmallPanel(self, -1, True, size=(_BOX_WIDTH, _BOX_WIDTH), style=wx.NO_BORDER) self.operator_pic = SmallPanel(self, -1, True, '+', size=(70, _BOX_WIDTH), style=wx.NO_BORDER) self.data2_pic = SmallPanel(self, -1, True, size=(_BOX_WIDTH, _BOX_WIDTH), style=wx.NO_BORDER) for ax in self.equal_pic.axes: ax.set_frame_on(False) for ax in self.operator_pic.axes: ax.set_frame_on(False) new_data_sizer.AddMany([(data_name, 0, wx.LEFT, 3), (self.data_namectr, 0, wx.LEFT, 3), (self.out_pic, 0, wx.LEFT, 3)]) equal_sizer.AddMany([(13, 13), (equal_name, 0, wx.LEFT, 3), (self.equal_pic, 0, wx.LEFT, 3)]) old_data1_sizer.AddMany([(data1_name, 0, wx.LEFT, 3), (self.data1_cbox, 0, wx.LEFT, 3), (self.data1_pic, 0, wx.LEFT, 3)]) operator_sizer.AddMany([(operator_name, 0, wx.LEFT, 3), (self.operator_cbox, 0, wx.LEFT, 3), (self.operator_pic, 0, wx.LEFT, 3)]) data2_hori_sizer.AddMany([(self.data2_cbox, 0, wx.LEFT, 0), (self.numberctr, 0, wx.RIGHT, 0)]) old_data2_sizer.AddMany([(data2_name, 0, wx.LEFT, 3), (data2_hori_sizer, 0, wx.LEFT, 3), (self.data2_pic, 0, wx.LEFT, 3)]) self.name_sizer.AddMany([(new_data_sizer, 0, wx.LEFT | wx.TOP, 5), (equal_sizer, 0, wx.TOP, 5), (old_data1_sizer, 0, wx.TOP, 5), (operator_sizer, 0, wx.TOP, 5), (old_data2_sizer, 0, wx.TOP, 5)]) self.data2_cbox.Show(True) self._show_numctrl(self.numberctr, False) wx.EVT_TEXT_ENTER(self.data_namectr, -1, self.on_name) wx.EVT_TEXT(self.numberctr, -1, self.on_number) wx.EVT_COMBOBOX(self.data1_cbox, -1, self.on_select_data1) wx.EVT_COMBOBOX(self.operator_cbox, -1, self.on_select_operator) wx.EVT_COMBOBOX(self.data2_cbox, -1, self.on_select_data2) def _show_numctrl(self, ctrl, enable=True): """ Show/Hide on Win Enable/Disable on MAC """ if ON_MAC: ctrl.Enable(enable) children = ctrl.GetChildren() if len(children) > 0: ctrl.GetChildren()[0].SetBackGroundColour(self.color) if enable: wx.EVT_TEXT_ENTER(self.numberctr, -1, self.on_number) else: if not ctrl.IsEnabled(): ctrl.Enable(True) ctrl.Show(enable) def on_name(self, event=None): """ On data name typing """ if event is not None: event.Skip() item = event.GetEventObject() if item.IsEnabled(): self._set_textctrl_color(item, 'white') else: self._set_textctrl_color(item, self.color) text = item.GetValue().strip() self._check_newname(text) def _check_newname(self, name=None): """ Check name ctr strings """ self.send_warnings('') msg = '' if name is None: text = self.data_namectr.GetValue().strip() else: text = name state_list = self.get_datalist().values() name_list = [] for state in state_list: if state.data is None: theory_list = state.get_theory() theory, _ = theory_list.values()[0] d_name = str(theory.name) else: d_name = str(state.data.name) name_list.append(d_name) if text in name_list: self._set_textctrl_color(self.data_namectr, 'pink') msg = "DataOperation: The name already exists." if len(text) == 0: self._set_textctrl_color(self.data_namectr, 'pink') msg = "DataOperation: Type the data name first." if self._notes: self.send_warnings(msg, 'error') self.name_sizer.Layout() self.Refresh() def _set_textctrl_color(self, ctrl, color): """ Set TextCtrl color """ if ON_MAC: children = ctrl.GetChildren() if len(children) > 0: children[0].SetBackgroundColour(color) else: ctrl.SetBackgroundColour(color) self.name_sizer.Layout() def on_number(self, event=None, control=None): """ On selecting Number for Data2 """ self.send_warnings('') item = control if item is None and event is not None: item = event.GetEventObject() elif item is None: raise ValueError("Event or control must be supplied") text = item.GetValue().strip() if self.numberctr.IsShown(): if self.numberctr.IsEnabled(): self._set_textctrl_color(self.numberctr, 'white') try: val = float(text) pos = self.data2_cbox.GetCurrentSelection() self.data2_cbox.SetClientData(pos, val) except: self._set_textctrl_color(self.numberctr, 'pink') if event is None: msg = "DataOperation: Number requires a float number." self.send_warnings(msg, 'error') return False else: self._set_textctrl_color(self.numberctr, self.color) self.put_text_pic(self.data2_pic, content=str(val)) self.check_data_inputs() if self.output is not None: self.output.name = str(self.data_namectr.GetValue()) self.draw_output(self.output) self.Refresh() return True def on_select_data1(self, event=None): """ On select data1 """ self.send_warnings('') item = event.GetEventObject() pos = item.GetCurrentSelection() data = item.GetClientData(pos) if data is None: content = "?" self.put_text_pic(self.data1_pic, content) else: self.data1_pic.add_image(data) self.check_data_inputs() if self.output is not None: self.output.name = str(self.data_namectr.GetValue()) self.draw_output(self.output) def on_select_operator(self, event=None): """ On Select an Operator """ self.send_warnings('') item = event.GetEventObject() text = item.GetValue().strip() self.put_text_pic(self.operator_pic, content=text) self.check_data_inputs() if self.output is not None: self.output.name = str(self.data_namectr.GetValue()) self.draw_output(self.output) def on_select_data2(self, event=None): """ On Selecting Data2 """ self.send_warnings('') item = event.GetEventObject() text = item.GetValue().strip().lower() self._show_numctrl(self.numberctr, text == 'number') pos = item.GetCurrentSelection() data = item.GetClientData(pos) content = "?" if not (self.numberctr.IsShown() and self.numberctr.IsEnabled()): if data is None: content = "?" self.put_text_pic(self.data2_pic, content) else: self.data2_pic.add_image(data) self.check_data_inputs() else: content = str(self.numberctr.GetValue().strip()) try: content = float(content) data = content except: self._set_textctrl_color(self.numberctr, 'pink') content = "?" data = None item.SetClientData(pos, data) if data is not None: self.check_data_inputs() self.put_text_pic(self.data2_pic, content) if self.output is not None: self.output.name = str(self.data_namectr.GetValue()) self.draw_output(self.output) def put_text_pic(self, pic=None, content=''): """ Put text to the pic """ pic.set_content(content) pic.add_text() pic.draw() def check_data_inputs(self): """ Check data1 and data2 whether or not they are ready for operation """ self._set_textctrl_color(self.data1_cbox, 'white') self._set_textctrl_color(self.data2_cbox, 'white') flag = False pos1 = self.data1_cbox.GetCurrentSelection() data1 = self.data1_cbox.GetClientData(pos1) if data1 is None: self.output = None return flag pos2 = self.data2_cbox.GetCurrentSelection() data2 = self.data2_cbox.GetClientData(pos2) if data2 is None: self.output = None return flag if self.numberctr.IsShown(): if self.numberctr.IsEnabled(): self._set_textctrl_color(self.numberctr, 'white') try: float(data2) if self.operator_cbox.GetValue().strip() == '|': msg = "DataOperation: This operation can not accept " msg += "a float number." self.send_warnings(msg, 'error') self._set_textctrl_color(self.numberctr, 'pink') self.output = None return flag except: msg = "DataOperation: Number requires a float number." self.send_warnings(msg, 'error') self._set_textctrl_color(self.numberctr, 'pink') self.output = None return flag else: self._set_textctrl_color(self.numberctr, self.color) elif data1.__class__.__name__ != data2.__class__.__name__: self._set_textctrl_color(self.data1_cbox, 'pink') self._set_textctrl_color(self.data2_cbox, 'pink') msg = "DataOperation: Data types must be same." self.send_warnings(msg, 'error') self.output = None return flag try: self.output = self.make_data_out(data1, data2) except: self._check_newname() self._set_textctrl_color(self.data1_cbox, 'pink') self._set_textctrl_color(self.data2_cbox, 'pink') msg = "DataOperation: %s" % sys.exc_value self.send_warnings(msg, 'error') self.output = None return flag return True def make_data_out(self, data1, data2): """ Make a temp. data output set """ output = None pos = self.operator_cbox.GetCurrentSelection() operator = self.operator_cbox.GetClientData(pos) try: exec "output = data1 %s data2" % operator except: raise return output def draw_output(self, output): """ Draw output data(temp) """ out = self.out_pic if output is None: content = "?" self.put_text_pic(out, content) else: out.add_image(output) wx.CallAfter(self.name_sizer.Layout) self.Layout() self.Refresh() def _layout_button(self): """ Do the layout for the button widgets """ self.bt_apply = wx.Button(self, -1, "Apply", size=(_BOX_WIDTH / 2, -1)) app_tip = "Generate the Data and send to Data Explorer." self.bt_apply.SetToolTipString(app_tip) self.bt_apply.Bind(wx.EVT_BUTTON, self.on_click_apply) self.bt_help = wx.Button(self, -1, "HELP") app_tip = "Get help on Data Operations." self.bt_help.SetToolTipString(app_tip) self.bt_help.Bind(wx.EVT_BUTTON, self.on_help) self.bt_close = wx.Button(self, -1, 'Close', size=(_BOX_WIDTH / 2, -1)) self.bt_close.Bind(wx.EVT_BUTTON, self.on_close) self.bt_close.SetToolTipString("Close this panel.") self.button_sizer.AddMany([(PANEL_WIDTH / 2, 25), (self.bt_apply, 0, wx.RIGHT, 10), (self.bt_help, 0, wx.RIGHT, 10), (self.bt_close, 0, wx.RIGHT, 10)]) def _do_layout(self): """ Draw the current panel """ self._define_structure() self._layout_name() self._layout_button() self.main_sizer.AddMany([(self.name_sizer, 0, wx.EXPAND | wx.ALL, 10), (self.button_sizer, 0, wx.EXPAND | wx.TOP | wx.BOTTOM, 5)]) self.SetSizer(self.main_sizer) self.SetScrollbars(20, 20, 25, 65) self.SetAutoLayout(True) def set_panel_on_focus(self, event): """ On Focus at this window """ if event is not None: event.Skip() self._data = self.get_datalist() if ON_MAC: self.fill_data_combox() else: children = self.GetChildren() # update the list only when it is on the top if self.FindFocus() in children: self.fill_data_combox() def fill_oprator_combox(self): """ fill the current combobox with the operator """ operator_list = [' +', ' -', ' *', " /", " |"] for oper in operator_list: pos = self.operator_cbox.Append(str(oper)) self.operator_cbox.SetClientData(pos, str(oper.strip())) self.operator_cbox.SetSelection(0) def fill_data_combox(self): """ fill the current combobox with the available data """ pos_pre1 = self.data1_cbox.GetCurrentSelection() pos_pre2 = self.data2_cbox.GetCurrentSelection() current1 = self.data1_cbox.GetLabel() current2 = self.data2_cbox.GetLabel() if pos_pre1 < 0: pos_pre1 = 0 if pos_pre2 < 0: pos_pre2 = 0 self.data1_cbox.Clear() self.data2_cbox.Clear() if not self._data: pos = self.data1_cbox.Append('No Data Available') self.data1_cbox.SetSelection(pos) self.data1_cbox.SetClientData(pos, None) pos2 = self.data2_cbox.Append('No Data Available') self.data2_cbox.SetSelection(pos2) self.data2_cbox.SetClientData(pos2, None) return pos1 = self.data1_cbox.Append('Select Data') self.data1_cbox.SetSelection(pos1) self.data1_cbox.SetClientData(pos1, None) pos2 = self.data2_cbox.Append('Select Data') self.data2_cbox.SetSelection(pos2) self.data2_cbox.SetClientData(pos2, None) pos3 = self.data2_cbox.Append('Number') val = None if (self.numberctr.IsShown() and self.numberctr.IsEnabled()): try: val = float(self.numberctr.GetValue()) except: val = None self.data2_cbox.SetClientData(pos3, val) dnames = [] ids = self._data.keys() for id in ids: if id is not None: if self._data[id].data is not None: dnames.append(self._data[id].data.name) else: theory_list = self._data[id].get_theory() theory, _ = theory_list.values()[0] dnames.append(theory.name) ind = np.argsort(dnames) if len(ind) > 0: val_list = np.array(self._data.values())[ind] for datastate in val_list: data = datastate.data if data is not None: name = data.name pos1 = self.data1_cbox.Append(str(name)) self.data1_cbox.SetClientData(pos1, data) pos2 = self.data2_cbox.Append(str(name)) self.data2_cbox.SetClientData(pos2, data) if str(current1) == str(name): pos_pre1 = pos1 if str(current2) == str(name): pos_pre2 = pos2 try: theory_list = datastate.get_theory() for theory, _ in theory_list.values(): th_name = theory.name posth1 = self.data1_cbox.Append(str(th_name)) self.data1_cbox.SetClientData(posth1, theory) posth2 = self.data2_cbox.Append(str(th_name)) self.data2_cbox.SetClientData(posth2, theory) if str(current1) == str(th_name): pos_pre1 = posth1 if str(current2) == str(th_name): pos_pre2 = posth2 except: continue self.data1_cbox.SetSelection(pos_pre1) self.data2_cbox.SetSelection(pos_pre2) def get_datalist(self): """ """ data_manager = self.parent.parent.get_data_manager() if data_manager is not None: return data_manager.get_all_data() else: return {} def on_click_apply(self, event): """ changes are saved in data object imported to edit """ self.send_warnings('') self.data_namectr.SetBackgroundColour('white') state_list = self.get_datalist().values() name = self.data_namectr.GetValue().strip() name_list = [] for state in state_list: if state.data is None: theory_list = state.get_theory() theory, _ = theory_list.values()[0] d_name = str(theory.name) else: d_name = str(state.data.name) name_list.append(d_name) if name in name_list: self._set_textctrl_color(self.data_namectr, 'pink') msg = "The Output Data Name already exists... " wx.MessageBox(msg, 'Error') return if name == '': self._set_textctrl_color(self.data_namectr, 'pink') msg = "Please type the output data name first... " wx.MessageBox(msg, 'Error') return if self.output is None: msg = "No Output Data has been generated... " wx.MessageBox(msg, 'Error') return if self.numberctr.IsEnabled() and self.numberctr.IsShown(): valid_num = self.on_number(control=self.numberctr) if not valid_num: return # send data to data manager self.output.name = name self.output.run = "Data Operation" self.output.instrument = "SasView" self.output.id = str(name) + str(time.time()) data = {self.output.id :self.output} self.parent.parent.add_data(data) self.name_sizer.Layout() self.Refresh() #must post event here event.Skip() def on_help(self, event): """ Bring up the Data Operations Panel Documentation whenever the HELP button is clicked. Calls DocumentationWindow with the path of the location within the documentation tree (after /doc/ ....". Note that when using old versions of Wx (before 2.9) and thus not the release version of installers, the help comes up at the top level of the file as webbrowser does not pass anything past the # to the browser when it is running "file:///...." :param evt: Triggers on clicking the help button """ _TreeLocation = "user/sasgui/perspectives/calculator/" _TreeLocation += "data_operator_help.html" _doc_viewer = DocumentationWindow(self, -1, _TreeLocation, "", "Data Operation Help") def disconnect_panels(self): """ """ self.out_pic.connect.disconnect() self.equal_pic.connect.disconnect() self.data1_pic.connect.disconnect() self.operator_pic.connect.disconnect() self.data2_pic.connect.disconnect() def on_close(self, event): """ leave data as it is and close """ self.parent.OnClose() def set_plot_unfocus(self): """ Unfocus on right click """ def send_warnings(self, msg='', info='info'): """ Send warning to status bar """ wx.PostEvent(self.parent.parent, StatusEvent(status=msg, info=info)) class SmallPanel(PlotPanel): """ PlotPanel for Quick plot and masking plot """ def __init__(self, parent, id= -1, is_number=False, content='?', **kwargs): """ """ PlotPanel.__init__(self, parent, id=id, **kwargs) self.is_number = is_number self.content = content self.point = None self.position = (0.4, 0.5) self.scale = 'linear' self.prevXtrans = "x" self.prevYtrans = "y" self.viewModel = "--" self.subplot.set_xticks([]) self.subplot.set_yticks([]) self.add_text() self.figure.subplots_adjust(left=0.1, bottom=0.1) def set_content(self, content=''): """ Set text content """ self.content = str(content) def add_toolbar(self): """ Add toolbar """ # Not implemented pass def on_set_focus(self, event): """ send to the parenet the current panel on focus """ pass def add_image(self, plot): """ Add Image """ self.content = '' self.textList = [] self.plots = {} self.clear() self.point = plot try: self.figure.delaxes(self.figure.axes[0]) self.subplot = self.figure.add_subplot(111) #self.figure.delaxes(self.figure.axes[1]) except: pass try: name = plot.name except: name = plot.filename self.plots[name] = plot #init graph self.graph = Graph() #add plot self.graph.add(plot) #draw self.graph.render(self) try: self.figure.delaxes(self.figure.axes[1]) except: pass self.subplot.figure.canvas.resizing = False self.subplot.tick_params(axis='both', labelsize=9) # Draw zero axis lines self.subplot.axhline(linewidth=1, color='r') self.subplot.axvline(linewidth=1, color='r') self.erase_legend() try: # mpl >= 1.1.0 self.figure.tight_layout() except: self.figure.subplots_adjust(left=0.1, bottom=0.1) self.subplot.figure.canvas.draw() def add_text(self): """ Text in the plot """ if not self.is_number: return self.clear() try: self.figure.delaxes(self.figure.axes[0]) self.subplot = self.figure.add_subplot(111) self.figure.delaxes(self.figure.axes[1]) except: pass self.subplot.set_xticks([]) self.subplot.set_yticks([]) label = self.content FONT = FontProperties() xpos, ypos = (0.4, 0.5) font = FONT.copy() font.set_size(14) self.textList = [] self.subplot.set_xlim((0, 1)) self.subplot.set_ylim((0, 1)) try: if self.content != '?': float(label) except: self.subplot.set_frame_on(False) try: # mpl >= 1.1.0 self.figure.tight_layout() except: self.figure.subplots_adjust(left=0.1, bottom=0.1) if len(label) > 0 and xpos > 0 and ypos > 0: new_text = self.subplot.text(str(xpos), str(ypos), str(label), fontproperties=font) self.textList.append(new_text) def erase_legend(self): """ Remove Legend """ #for ax in self.axes: self.remove_legend(self.subplot) def onMouseMotion(self, event): """ Disable dragging 2D image """ def onWheel(self, event): """ """ def onLeftDown(self, event): """ Disables LeftDown """ def onPick(self, event): """ Remove Legend """ for ax in self.axes: self.remove_legend(ax) def draw(self): """ Draw """ if self.dimension == 3: pass else: self.subplot.figure.canvas.resizing = False self.subplot.tick_params(axis='both', labelsize=9) self.erase_legend() self.subplot.figure.canvas.draw_idle() try: self.figure.delaxes(self.figure.axes[1]) except: pass def onContextMenu(self, event): """ Default context menu for a plot panel """ id = wx.NewId() slicerpop = wx.Menu() data = self.point if issubclass(data.__class__, Data1D): slicerpop.Append(id, '&Change Scale') wx.EVT_MENU(self, id, self._onProperties) else: slicerpop.Append(id, '&Toggle Linear/Log Scale') wx.EVT_MENU(self, id, self.ontogglescale) try: # mouse event pos_evt = event.GetPosition() pos = self.ScreenToClient(pos_evt) except: # toolbar event pos_x, pos_y = self.toolbar.GetPositionTuple() pos = (pos_x, pos_y + 5) self.PopupMenu(slicerpop, pos) def ontogglescale(self, event): """ On toggle 2d scale """ self._onToggleScale(event) try: # mpl >= 1.1.0 self.figure.tight_layout() except: self.figure.subplots_adjust(left=0.1, bottom=0.1) try: self.figure.delaxes(self.figure.axes[1]) except: pass def _onProperties(self, event): """ when clicking on Properties on context menu , The Property dialog is displayed The user selects a transformation for x or y value and a new plot is displayed """ list = [] list = self.graph.returnPlottable() if len(list.keys()) > 0: first_item = list.keys()[0] if first_item.x != []: from sas.sasgui.plottools.PropertyDialog import Properties dial = Properties(self, -1, 'Change Scale') # type of view or model used dial.xvalue.Clear() dial.yvalue.Clear() dial.view.Clear() dial.xvalue.Insert("x", 0) dial.xvalue.Insert("log10(x)", 1) dial.yvalue.Insert("y", 0) dial.yvalue.Insert("log10(y)", 1) dial.view.Insert("--", 0) dial.view.Insert("Linear y vs x", 1) dial.setValues(self.prevXtrans, self.prevYtrans, self.viewModel) dial.Update() if dial.ShowModal() == wx.ID_OK: self.xLabel, self.yLabel, self.viewModel = dial.getValues() if self.viewModel == "Linear y vs x": self.xLabel = "x" self.yLabel = "y" self.viewModel = "--" dial.setValues(self.xLabel, self.yLabel, self.viewModel) self._onEVT_FUNC_PROPERTY() dial.Destroy() def _onEVT_FUNC_PROPERTY(self, remove_fit=True): """ Receive the x and y transformation from myDialog, Transforms x and y in View and set the scale """ list = [] list = self.graph.returnPlottable() # Changing the scale might be incompatible with # currently displayed data (for instance, going # from ln to log when all plotted values have # negative natural logs). # Go linear and only change the scale at the end. self.set_xscale("linear") self.set_yscale("linear") _xscale = 'linear' _yscale = 'linear' for item in list: item.setLabel(self.xLabel, self.yLabel) # control axis labels from the panel itself yname, yunits = item.get_yaxis() xname, xunits = item.get_xaxis() # Goes through all possible scales # Goes through all possible scales if(self.xLabel == "x"): item.transformX(transform.toX, transform.errToX) self.graph._xaxis_transformed("%s" % xname, "%s" % xunits) if(self.xLabel == "log10(x)"): item.transformX(transform.toX_pos, transform.errToX_pos) _xscale = 'log' self.graph._xaxis_transformed("%s" % xname, "%s" % xunits) if(self.yLabel == "y"): item.transformY(transform.toX, transform.errToX) self.graph._yaxis_transformed("%s" % yname, "%s" % yunits) if(self.yLabel == "log10(y)"): item.transformY(transform.toX_pos, transform.errToX_pos) _yscale = 'log' self.graph._yaxis_transformed("%s" % yname, "%s" % yunits) item.transformView() self.prevXtrans = self.xLabel self.prevYtrans = self.yLabel self.set_xscale(_xscale) self.set_yscale(_yscale) self.draw() class DataOperatorWindow(widget.CHILD_FRAME): def __init__(self, parent, manager, *args, **kwds): kwds["size"] = (PANEL_WIDTH, PANEL_HEIGTH) widget.CHILD_FRAME.__init__(self, parent, *args, **kwds) self.parent = parent self.manager = manager self.panel = DataOperPanel(parent=self) wx.EVT_CLOSE(self, self.OnClose) self.SetPosition((wx.LEFT, PANEL_TOP)) self.Show() def OnClose(self, event=None): """ On close event """ if self.manager is not None: self.manager.data_operator_frame = None self.panel.disconnect_panels() self.Destroy() if __name__ == "__main__": app = wx.App() widget.CHILD_FRAME = wx.Frame window = DataOperatorWindow(parent=None, data=[], title="Data Editor") app.MainLoop()
"""basic-types.py Module for creating and running the basic types classifier. Usage $ python3 basic-types.py --train-semcor Train a classifier from all of Semcor and save it in ../data/classifier-all.pickle. $ python3 basic-types.py --train-test Train a classifier from a fragemtn of Semcor (two files) and save it in ../data/classifier-002.pickle, for testing and debugging purposes. $ python3 basic-types.py --test Test the classifier on a feature set and test the evaluation code. $ python3 basic-types.py --classify-file FILENAME Run the classifier on filename, output will be written to the terminal. $ python3 basic-types.py --classify-spv1 Run the classifier on all SPV1 files, output will be written to the out/ directory. The last two invocations both require the NLTK CoreNLPDependencyParser which assumes that the Stanford CoreNLP server is running at port 9000. To use the server run the following from the corenlp directory: $ java -mx4g -cp "*" edu.stanford.nlp.pipeline.StanfordCoreNLPServer -preload tokenize,ssplit,pos,lemma,depparse -status_port 9000 -port 9000 -timeout 15000 Note that this invocation does not allow you browser access to port 9000 because the homepage uses an annotator that is not loaded by the above command. """ import os, sys, csv, getopt, pickle, codecs, json, glob import nltk from nltk.parse.corenlp import CoreNLPDependencyParser from nltk.stem import WordNetLemmatizer from semcor import Semcor, SemcorFile SC_SENT = '../data/semcor.sent.tsv' SC_TOKEN_FT = '../data/semcor.token.tsv' SC_TOKEN_FT_SMALL = '../data/semcor.token.tsv.10000' SC_TOKEN_DEP = '../data/semcor.token.fv' def data_prep(file): with open(file) as tsvfile: reader = csv.reader(tsvfile, delimiter='\t') data = [row for row in reader] return data def extract_types(sc): """ Returns a list of types from each wordform in semcor as well as a mapping from integers to tokens. """ types = [] mapping = {} i = 0 sen_list = [file.get_sentences() for file in sc.files] for list in sen_list: for item in list: wf = item.wfs for form in wf: i += 1 if form.is_word_form(): if form.lemma is not None: mapping.update({str(i): form.lemma}) else: mapping.update({str(i): form.text}) if form.synset is not None: types.append(form.synset.btypes) else: types.append(None) else: mapping.update({str(i): form.text}) types.append(None) return types, mapping def feature_set(types, token_features, mapping): mapped = zip(token_features, types) feature_set = [] for i in mapped: if i[1] is not None: features = i[0] # indexs: [1] token_id, [2] sent_id, [3] token_no, [4] surface,[5] lemma, [6] pos, [7] sense_no, [8] sense_key, [9] ssid, # [10] int_dom_token_no, [11] dom_token_id, [12] rel if features[5] != 'VB': feature_dict = { "surface" : features[3], "lemma" : features[4], "pos" : features[5], "sense_no" : features[6], "sense_key" : features[7], "ssid" : features[8], "rel" : features[11], } if features[9] != '0': feature_dict.update({ "int_dom_token": mapping[features[9]], "dom_token": mapping[features[10]] }) else: feature_dict.update({ "int_dom_token": None, "dom_token": None }) # print((feature_dict, i[1])) feature_set.append((feature_dict, i[1])) return feature_set def split_data(feature_set): index = int(len(feature_set) * .8) training_set, test_set = feature_set[:index], feature_set[index:] return training_set, test_set def train_classifier(training_set): classifier = nltk.NaiveBayesClassifier.train(training_set) return classifier def save_classifier(classifier, name): filename = '../data/classifier-%s.pickle' % name print("Saving %s" % filename) with open(filename, 'wb') as fh: pickle.dump(classifier, fh) def load_classifier(name): filename = '../data/classifier-%s.pickle' % name print("Loading %s" % filename) with open(filename, 'rb') as fh: classifier = pickle.load(fh) return classifier def save_test_features(features, name): filename = '../data/test-features-%s.pickle' % name print("Saving %s" % filename) with open(filename, 'wb') as fh: pickle.dump(features, fh) def load_test_features(name): filename = '../data/test-features-%s.pickle' % name print("Loading %s" % filename) with open(filename, 'rb') as fh: features = pickle.load(fh) return features def evaluate_classifier(classifier, test_set): """ :param classifier: classifier that has been trained on training set. :param test_set: 20% of the featureset which includes features and a label. :return: percentage accuracy of the classifier being able to label the data correctly based on features. """ accuracy = nltk.classify.accuracy(classifier, test_set) return accuracy def print_type_count(types): count = len([t for t in types if t is not None]) print("Total number of types: %d" % len(types)) print("Number of non-nil types: %d" % count) def train_test(): """Train a model on the first 2 files of Semcor, using the partial feature file SC_TOKEN_FT_SMALL, this evaluates at 0.8808. Model and test features are written to ../data.""" semcor = Semcor(2) _train(semcor, SC_TOKEN_FT_SMALL, '002') def train(): """Train a model on all of Semcor, using the full feature file SC_TOKEN_FT, this evaluates at 0.9334. Model and test features are written to ../data.""" semcor = Semcor() _train(semcor, SC_TOKEN_FT, 'all') def _train(semcor, features_in, model_name): token_features = data_prep(features_in) types_from_semcor, identifier2token = extract_types(semcor) print_type_count(types_from_semcor) feature_data = feature_set(types_from_semcor, token_features, identifier2token) training_set, test_set = split_data(feature_data) # maybe add an option to train on the entire set classifier = train_classifier(training_set) print("Labels: %s" % classifier.labels()) accuracy = evaluate_classifier(classifier, test_set) print("Accuracy on test set is %.4f" % accuracy) save_classifier(classifier, model_name) save_test_features(test_set, model_name) #classifier.show_most_informative_features(20) def test_classifier(classifier_name, test_set): # just run one set of features through it print("Running classifier on one set of features") classifier = load_classifier(classifier_name) features = {'pos': 'NN', 'rel': 'nsubj', 'sense_key': '1:09:00::', 'ssid': '05808619', 'sense_no': '1', 'dom_token': 'produce', 'int_dom_token': 'produce', 'lemma': 'investigation', 'surface': 'investigation'} print(classifier.classify(features)) print("Evaluating classifier") test_set = load_test_features(test_set) print(classifier.labels()) accuracy = evaluate_classifier(classifier, test_set) print("Accuracy on test set is %.4f" % accuracy) classifier.show_most_informative_features(20) def run_classifier_on_file(fname_in, fname_out=None): classifier = load_classifier('all') lemmatizer = WordNetLemmatizer() text = codecs.open(fname_in).read() if fname_out is None: fh_out = sys.stdout else: fh_out = codecs.open(fname_out, 'w') sentences = nltk.sent_tokenize(text) parser = CoreNLPDependencyParser(url='http://localhost:9000') for sentence in sentences: parses = parser.parse(nltk.word_tokenize(sentence)) for parse in parses: for (gov, gov_pos), rel, (dep, dep_pos) in parse.triples(): if dep_pos in ('NN', 'NNS'): lemma = lemmatizer.lemmatize(dep) features = {'pos': dep_pos, 'rel': rel, 'lemma': lemma, 'surface': dep, 'dom_token': gov, 'int_dom_token': gov} label = classifier.classify(features) fh_out.write("%s\t%s\n" % (lemma, label)) print(lemma, label) print('') def run_classifier_on_string(classifier, lemmatizer, text, fname_out): fh_out = codecs.open(fname_out, 'w') sentences = nltk.sent_tokenize(text) parser = CoreNLPDependencyParser(url='http://localhost:9000') for sentence in sentences: parses = parser.parse(nltk.word_tokenize(sentence)) for parse in parses: for (gov, gov_pos), rel, (dep, dep_pos) in parse.triples(): if dep_pos in ('NN', 'NNS'): lemma = lemmatizer.lemmatize(dep) features = {'pos': dep_pos, 'rel': rel, 'lemma': lemma, 'surface': dep, 'dom_token': gov, 'int_dom_token': gov} label = classifier.classify(features) fh_out.write("%s\t%s\n" % (lemma, label)) def run_classifier_on_spv1(): classifier = load_classifier('all') lemmatizer = WordNetLemmatizer() fnames = glob.glob('/DATA/dtra/spv1-results-lif-ela/documents/*.json') for fname in fnames[:2]: try: with codecs.open(fname) as fh: json_object = json.load(fh) text = json_object['text'] print(fname, len(text)) outfile = os.path.join('out', os.path.basename(fname)) run_classifier_on_string(classifier, lemmatizer, text, outfile) except: print('ERROR') if __name__ == '__main__': options = ['train-test', 'train-semcor', 'test', 'classify-file=', 'classify-spv1'] opts, args = getopt.getopt(sys.argv[1:], '', options) for opt, val in opts: if opt == '--train-test': train_test() elif opt == '--train-semcor': train() elif opt == '--test': # test the classifeir with the full model on the 002 test set, gives # unrealistic results because the training data probably includes # the test data, just here to see whether the mechanism works test_classifier('all', '002') elif opt == '--classify-file': filename = val run_classifier_on_file(filename) elif opt == '--classify-spv1': run_classifier_on_spv1()
import datetime as dt import glob import numpy as np try: #for python 3.0 or later from urllib.request import urlopen except ImportError: #Fall back to python 2 urllib2 from urllib2 import urlopen import os from format_temps import format_file files = glob.glob('../txtout/*txt') for i in files: x = np.loadtxt(i,dtype={'names':('file','time','pass','fivsig','exptime'),'formats':('S35','S20','i1','i4','f8')},skiprows=2) time = x['time'].astype('S10') utime = np.unique(time) for p in utime: for j in np.arange(-2,2): day = dt.datetime.strptime(p.decode('utf-8'),'%Y/%m/%d')+dt.timedelta(days=int(j)) t = day.strftime('%Y%m%d') fname= '{0}_iris_temp.txt'.format(t) if os.path.isfile(fname): continue else: res = urlopen('http://www.lmsal.com/~boerner/iris/temps/{0}'.format(fname)) dat = res.read() fo = open(fname,'w') fo.write(dat) fo.close() format_file(fname)
""" Base classes for Electrical Optical (EO) calibration data These classes define the interface between the transient data classes used in EO test code, and the `astropy.table.Table` classes used for persistent storage. Specifically they provide ways to define table structures in schema, and the use those schema to facilitate backwards compatibility. """ import sys from typing import Mapping from collections import OrderedDict from astropy.table import Table, Column __all__ = ["EoCalibField", "EoCalibTableSchema", "EoCalibTable", "EoCalibTableHandle"] class EoCalibField: """ Defines a single field and provide the information needed to connect a Class attribute (e.g., self.aVariable) to an `astropy.table.Column` (e.g., 'VARIABLE') Parameters ---------- name : `str` Name of the column. In UPPER by convention. dtype : `type` Data type for elements in the Column. E.g., `float` or `int`. shape : `list` Define the shape of each element in the Column. List elements can be either `int` or `str` `str` elements will replaced with `int` at construction using keywords kwds : `dict` [`str`, `Any`] These will be passed to `astropy.table.Column` constructor. Notes ----- This class should be used as class attribute in defining table schema classes, I.e., it should only ever appear as a class attribute in a sub-class of `EoCalibTableSchema` """ @staticmethod def _format_shape(shape, **kwargs): """ Format the list of shape elements, replacing any `str` using keywords Parameters ---------- shape : `list` Define the shape of each element in the Column. kwargs : `dict` [`str`, `Any`] Used to replace the str elements in shape Returns ------- outShape : `tuple` [`int`] The shape of each element in the column """ outShape = [] for axis in shape: if isinstance(axis, int): outShape.append(axis) continue if isinstance(axis, str): try: outShape.append(kwargs[axis]) continue except KeyError as msg: # pragma: no cover raise KeyError("Failed to convert EoCalibField column shape %s." % str(shape)) from msg raise TypeError("Axis shape items must be either int or str, not %s" % type(axis)) # pragma: no cover # noqa return tuple(outShape) def __init__(self, **kwargs): """ C'tor, Fills class parameters """ kwcopy = kwargs.copy() self._name = kwcopy.pop('name') self._dtype = kwcopy.pop('dtype', float) self._shape = kwcopy.pop('shape', [1]) self._kwds = kwcopy @property def name(self): """ Name of the Column. """ return self._name @property def dtype(self): """ Data type for elements in the Column. """ return self._dtype @property def shape(self): """ Template shape of each element in the Column. """ return self._shape @property def kwds(self): """ Remaining keywords passed to Column constructor. """ return self._kwds def validateColumn(self, column): """ Check that a column matches the definition. Raises ------ ValueError : Column data type does not match definition. """ if 'unit' in self._kwds: column.unit = self._kwds['unit'] if 'description' in self._kwds: column.description = self._kwds['description'] # if column.dtype.type != self._dtype: # raise ValueError("Column %s data type not equal to schema data type %s != %s" % # noqa # (column.name, column.dtype.type, self._dtype)) def validateValue(self, value): """ Check that a value matches the definition and can be used to fill a column. Raises ------ ValueError : value data type does not match definition. """ # if value.dtype.type != self._dtype: # raise ValueError("Item %s data type not equal to schema data type %s != %s" % # noqa # (self._name, type(value), self._dtype)) def makeColumn(self, **kwargs): """ Construct and return an `astropy.table.Column` Notes ----- Uses keyword arguements in two ways: 1. Replace string in shape template 2. `length' is used to set column lenght """ return Column(name=self._name, dtype=self._dtype, shape=self._format_shape(self._shape, **kwargs), length=kwargs.get('length', 0), **self._kwds) def convertToValue(self, column, **kwargs): """ Return data from column as a `numpy.array` Keywords -------- validate : `bool` If true, will validate the column """ if kwargs.get('validate', False): # pragma: no cover self.validateColumn(column) return column.data def convertToColumn(self, value, **kwargs): """ Construct and return an `astropy.table.Column` from value. Keywords -------- validate : `bool` If true, will validate the value """ if kwargs.get('validate', False): # pragma: no cover self.validateValue(value) return Column(name=self._name, dtype=self._dtype, data=value, **self._kwds) def writeMarkdownLine(self, varName, stream=sys.stdout): """ Write a line of markdown describing self to stream Parameters ---------- varName : `str` The name of the variable associated to this field. """ md_dict = dict(varName=varName, name=self._name, dtype=self.dtype.__name__, shape=self.shape, unit="", description="") md_dict.update(self._kwds) tmpl = "| {varName} | {name} | {dtype} | {shape} | {unit} | {description} | \n".format(**md_dict) stream.write(tmpl) def copy(self, **kwargs): """ Return an udpated copy of self using keyword to override fields """ kwcopy = dict(name=self._name, dtype=self._dtype, shape=self._shape) kwcopy.update(self.kwds) kwcopy.update(kwargs) return EoCalibField(**kwcopy) class EoCalibTableSchema: """ Stores schema for a single `astropy.table.Table` Each sub-class will define one version of the schema. The naming convention for the sub-classes is: {DataClassName}SchemaV{VERSION} e.g., 'EoTableDataSchemaV0' Parameters ---------- TABLELENGTH : `str` Name of the keyword to use to extract table length fieldDict : `OrderedDict` [`str`, `EoCalibField`] Maps field names (e.g., 'aVariable') to EoCalibField objects columnDict : `OrderedDict` [`str`, `str`] Maps column names (e.g., 'VARIABLE') to field names """ TABLELENGTH = "" @classmethod def findFields(cls): """ Find and return the EoCalibField objects in a class Returns ------- fields : `OrderedDict` [`str`, `EoCalibField`] """ theClasses = cls.mro() fields = OrderedDict() for theClass in theClasses: for key, val in theClass.__dict__.items(): if isinstance(val, EoCalibField): fields[key] = val return fields @classmethod def fullName(cls): """ Return the name of this class """ return cls.__name__ @classmethod def version(cls): """ Return the version number of this schema This relies on the naming convention: {DataClassName}SchemaV{VERSION} """ cStr = cls.__name__ return int(cStr[cStr.find("SchemaV")+7:]) @classmethod def dataClassName(cls): """ Return the name of the associated data class This relies on the naming convention: {DataClassName}SchemaV{VERSION} """ cStr = cls.__name__ return cStr[:cStr.find("SchemaV")] def __init__(self): """ C'tor, Fills class parameters """ self._fieldDict = self.findFields() self._columnDict = OrderedDict([(val.name, key) for key, val in self._fieldDict.items()]) def validateTable(self, table): """ Check that table matches this schema Raises ------ KeyError : Columns names in table do not match schema """ unused = {key: True for key in self._fieldDict.keys()} for col in table.columns: try: key = self._columnDict[col] field = self._fieldDict[key] unused.pop(key, None) except KeyError as msg: # pragma: no cover raise KeyError("Column %s in table is not defined in schema %s" % (col.name, type(self))) from msg field.validateColumn(table[col]) if unused: # pragma: no cover raise KeyError("%s.validateTable() failed because some columns were not provided %s" % (type(self), str(unused))) def validateDict(self, dictionary): """ Check that dictionary matches this schema Raises ------ KeyError : dictionary keys in table do not match schema """ unused = {key: True for key in self._fieldDict.keys()} for key, val in dictionary.items(): if key == 'meta': continue try: field = self._fieldDict[key] unused.pop(key, None) except KeyError as msg: # pragma: no cover raise KeyError("Column %s in table is not defined in schema %s" % (key, type(self))) from msg field.validateValue(val) if unused: # pragma: no cover raise KeyError("%s.validateDict() failed because some columns were not provided %s" % (type(self), str(unused))) def makeTable(self, **kwargs): """ Make and return an `astropy.table.Table` Notes ----- keywords are used to define table length and element shapes """ kwcopy = kwargs.copy() length = kwcopy.pop(self.TABLELENGTH, 0) table = Table([val.makeColumn(length=length, **kwcopy) for val in self._fieldDict.values()]) table.meta['schema'] = self.fullName() table.meta['name'] = kwcopy.pop('name', None) table.meta['handle'] = kwcopy.pop('handle', None) return table def convertToTable(self, dictionary, **kwargs): """ Convert dictionary to `astropy.table.Table` and return it Keywords -------- validate : `bool` If true, will validate the columns Raises ------ KeyError : dictionary keys in table do not match schema """ unused = {key: True for key in self._fieldDict.keys()} columns = [] meta = None for key, val in dictionary.items(): if key == 'meta': meta = val continue try: field = self._fieldDict[key] unused.pop(key) except KeyError as msg: # pragma: no cover raise KeyError("Column %s in table is not defined in schema %s" % (key, type(self))) from msg columns.append(field.convertToColumn(val), **kwargs) if unused: # pragma: no cover raise KeyError("%s.validateDict() failed because some columns were not provided %s" % (type(self), str(unused))) table = Table(columns) if meta: table.meta.update(meta) return table def convertToDict(self, table, **kwargs): """ Convert table to `OrderedDict` and return it Keywords -------- validate : `bool` If true, will validate the columns Raises ------ KeyError : column names in table do not match schema """ unused = {key: True for key in self._fieldDict.keys()} outDict = OrderedDict() for colName in table.columns: try: key = self._columnDict[colName] field = self._fieldDict[key] col = table[colName] unused.pop(key) except KeyError as msg: # pragma: no cover raise KeyError("Column %s in table is not defined in schema %s" % (colName, type(self))) from msg outDict[key] = field.convertToValue(col, **kwargs) if unused: # pragma: no cover raise KeyError("%s.convertToDict() failed because some columns were not provided %s" % (type(self), str(unused))) outDict['meta'] = table.meta return outDict def writeMarkdown(self, name, stream=sys.stdout): """ Write a table of markdown describing self to stream Parameters ---------- name : `str` Name of field associated to this schema """ stream.write("| Name | Class | Version | Length |\n") stream.write("|-|-|-|-|\n") stream.write("| %s | %s | %i | %s |\n" % (name, self.dataClassName(), self.version(), self.TABLELENGTH)) stream.write("\n\n") stream.write("| Name | Column | Datatype | Shape | Units | Description |\n") stream.write("|-|-|-|-|-|-|\n") for key, val in self._fieldDict.items(): val.writeMarkdownLine(key, stream) stream.write("\n\n") class EoCalibTable: """ Provides interface between `astropy.table.Table` and `EoCalibTableSchema` Each sub-class will define one all the versions of a particular data table, and provide backward compatibility to older versions of the schema. Parameters ---------- SCHEMA_CLASS : `type` Current schema class PREVIOUS_SCHEMAS : `list` [`type`] Previous schema classes schema : `EoCalibTableSchema` Schema for this data structure table : `astropy.table.Table` Table with actual data Notes ----- By default this class will construct a table using the current version of the schema. However, it can also use older version, e.g., when being constructed from a table being read from an old file. """ SCHEMA_CLASS = EoCalibTableSchema PREVIOUS_SCHEMAS = [] def __init__(self, data=None, **kwargs): """ C'tor, Fills class parameters Parameters ---------- data : `Union`, [`astropy.table.Table`, `None`] If provided, the data used to build the table If `None`, table will be constructed using shape parameters taken for kwargs Keywords -------- schema : `EoCalibTableSchema` If provided will override schema class """ kwcopy = kwargs.copy() self._schema = kwcopy.pop('schema', self.SCHEMA_CLASS()) self._version = self._schema.version() if isinstance(data, Table): self._schema.validateTable(data) self._table = data elif data is None: self._table = self._schema.makeTable(**kwcopy) else: # pragma: no cover raise TypeError("EoCalibTable input data must be None, Table or dict, not %s" % (type(data))) @property def table(self): """ Return the underlying `astropy.table.Table` """ return self._table @classmethod def schema(cls): """ Return an instance of the schema """ return cls.SCHEMA_CLASS() @classmethod def allSchemaClasses(cls): """ Return a `list` of all the associated schema classes """ return [cls.SCHEMA_CLASS] + cls.PREVIOUS_SCHEMAS @classmethod def schemaDict(cls): """ Return an `OrderedDict` of all the associated schema classes mapped by class name """ return OrderedDict([(val.fullName(), val) for val in cls.allSchemaClasses()]) class EoCalibTableHandle: """ Provide interface between an `EoCalibSchema` and the `EoCalibTable` and `EoCalibTableSchema` objects that define it This allows a particular `EoCalibData` class to have 1. Table of different types 2. Multiple tables of the same type, but with different names Parameters ---------- tableName : `str` Template for the name of the table. Should include '{key}' if this handle is used for multiple tables tableClass : `type` `EoCalibTable` sub-type associated to the table. schema : `EoCalibTableSchema` Schema associted to the table schemaDict : `OrderedDict` [`str`, `type`] Dictionary mapping from class name to `EoCalibTableSchema` sub-class multiKey : `Union` [`str`, `None`] Name of keyword used to replace `{key}` when formating table name """ @staticmethod def findTableMeta(tableObj, metaKey): """ Find and return metaData from a table-like object Parameters ---------- tableObj : `Union` [`astropy.table.Table`, `OrderedDict'] The table-like object metaKey : `str` The key for the meta data field Raises ------ TypeError : input object is wrong type. """ if isinstance(tableObj, Table): if metaKey in tableObj.meta: return tableObj.meta[metaKey] return tableObj.meta[metaKey.upper()] if isinstance(tableObj, Mapping): return tableObj['meta'][metaKey] raise TypeError("findTableMeta requires Table or Mapping, not %s" % type(tableObj)) # pragma: no cover # noqa def __init__(self, **kwargs): """ C'tor, Fills class parameters """ self._tableName = kwargs.get('tableName') self._tableClass = kwargs.get('tableClass') self._schema = self._tableClass.schema() self._schemaDict = self._tableClass.schemaDict() self._multiKey = kwargs.get('multiKey', None) if self._multiKey is not None: if self._tableName.find('{key}') < 0: # pragma: no cover raise ValueError("EoCalibTableHandle has _multiKey, but tableName does not contain '{key}'") @property def schema(self): """ Return the associated schema """ return self._schema @property def multiKey(self): """ Keyword used to replace `{key}` when formating table name `None` means that this handle is assocatied to a single table. """ return self._multiKey def getTableSchemaClass(self, tableObj): """ Return the schema class associated to a table Notes ----- This uses the meta data field 'schema' to get the name of the schema class """ tableSchemaName = self.findTableMeta(tableObj, "schema") return self._schemaDict[tableSchemaName] def validateTable(self, table): """ Validate a table using schema """ tableSchema = self.getTableSchemaClass(table)() tableSchema.validateTable(table) def validateDict(self, dictionary): """ Validate a dictionary using schema """ tableSchema = self.getTableSchemaClass(dictionary)() tableSchema.validateDict(dictionary) def convertToTable(self, dictionary): """ Convert a dictionary to a table using schema """ tableSchema = self.getTableSchemaClass(dictionary)() return tableSchema.convertToTable(dictionary) def convertToDict(self, table): """ Convert a table to a dictionary using schema """ tableSchema = self.getTableSchemaClass(table)() return tableSchema.convertToDict(table) def makeTables(self, **kwargs): """ Build and return `OrderedDict` mapping table names to newly created `astropy.table.Table` objects """ kwcopy = kwargs.copy() if self._multiKey is None: tableNames = [self._tableName] else: tableKeys = kwcopy.pop(self._multiKey, []) tableNames = [self._tableName.format(key=tableKey) for tableKey in tableKeys] return OrderedDict([(tableName, self._tableClass(name=tableName, **kwcopy)) for tableName in tableNames]) def makeEoCalibTable(self, table): """ Convert table to `EoCalibTable` by attaching the correct schema """ tableSchema = self.getTableSchemaClass(table)() tableName = self.findTableMeta(table, 'name') return self._tableClass(name=tableName, schema=tableSchema, data=table)
# Copyright [2018-2020] Peter Krenesky # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class ClassPropertyDescriptor(object): def __init__(self, fget, fset=None): self.fget = fget self.fset = fset def __get__(self, obj, klass=None): if klass is None: klass = type(obj) # pragma: no cover return self.fget.__get__(obj, klass)() def __set__(self, obj, value): if not self.fset: # pragma: no cover raise AttributeError("can't set attribute") # pragma: no cover type_ = type(obj) # pragma: no cover return self.fset.__get__(obj, type_)(value) # pragma: no cover def setter(self, func): if not isinstance(func, (classmethod, staticmethod)): func = classmethod(func) self.fset = func return self def classproperty(func): if not isinstance(func, (classmethod, staticmethod)): func = classmethod(func) return ClassPropertyDescriptor(func) class cached_property: """ Decorator that converts a method with a single self argument into a property cached on the instance. Optional ``name`` argument allows you to make cached properties of other methods. (e.g. url = cached_property(get_absolute_url, name='url') ) """ def __init__(self, func, name=None): self.func = func self.__doc__ = getattr(func, "__doc__") self.name = name or func.__name__ def __get__(self, instance, cls=None): """ Call the function and put the return value in instance.__dict__ so that subsequent attribute access on the instance returns the cached value instead of calling cached_property.__get__(). """ if instance is None: return self # pragma: no cover res = instance.__dict__[self.name] = self.func(instance) return res
import numpy as np from MLG.name import name, name_good from MLG.Math import percentile from MLG import paperpath, path from astropy.table import Table def create_Table(Analysis_result, Analysis_result5, Analysis_result_external = None, sort_epoch =False): '''------------------------------------------------------------ Description: --------------------------------------------------------------- Input: --------------------------------------------------------------- Output: ------------------------------------------------------------''' tab = None lines = [] epoch = [] rel_err = [] lens5 = np.array([i[0].getId() for i in Analysis_result5[2]]) source5 = np.array([i[1].getId() for i in Analysis_result5[2]]) if Analysis_result_external is not None: lens_ext = np.array([i[0].getId() for i in Analysis_result_external[2]]) source_ext = np.array([i[1].getId() for i in Analysis_result_external[2]]) external = True else: external = False for i in range(len(Analysis_result[0])): lens = Analysis_result[2][i][0] s_ID1 = str(lens.getId()) s_name = name(lens.getId(), False, True) Good_ = name_good(lens.getId()) if Good_ and lens.getMag() > 5: s_count = '%s'%i source = Analysis_result[2][i][1] s_ID2 = str(source.getId()) s_TCA = '%.3f'%lens.getTca() s_Mass = '%.2g'%lens.getMass() if source.getPx() == 0: fivepar = '^{*}' else: fivepar ='' mm_10 = np.array([Analysis_result[0][i][x][0][6] for x in range(len(Analysis_result[0][i]))\ if Analysis_result[0][i][x][0][4] != -999]) mp_10 = np.array([Analysis_result[0][i][x][0][7] for x in range(len(Analysis_result[0][i]))\ if Analysis_result[0][i][x][0][4] != -999]) mmm_10 = percentile(mm_10) ppp_10 = percentile(mp_10) delta_M_10_p = max(ppp_10[4],-mmm_10[3]) delta_M_10_m = min(ppp_10[3],-mmm_10[4]) delta_M_10 = max(ppp_10[1], -mmm_10[1]) c=0 while 10**(-c)>= delta_M_10 and c < 10: c+=1 c+=1 s_delta_M_10_m = str(round(delta_M_10_m-0.49999999*10**(-c),c)) s_delta_M_10_p = str(round(delta_M_10_p+0.49999999*10**(-c),c)) s_delta_M_10 = str(round(delta_M_10+0.49999999*10**(-c),c)) while(len(s_delta_M_10_m) <= c): s_delta_M_10_m=s_delta_M_10_m+'0' while(s_delta_M_10_m[-c-1]) != '.': s_delta_M_10_m=s_delta_M_10_m+'0' while(len(s_delta_M_10_p) <= c): s_delta_M_10_p=s_delta_M_10_p+'0' while(s_delta_M_10_p[-c-1]) != '.': s_delta_M_10_p=s_delta_M_10_p+'0' while(len(s_delta_M_10) <= c): s_delta_M_10=s_delta_M_10+'0' while(s_delta_M_10[-c-1]) != '.': s_delta_M_10=s_delta_M_10+'0' s_delta_M_percent = '%.2g'%(delta_M_10/lens.getMass()*100) s_delta_M_5_m = 'NONE' s_delta_M_5_p = 'NONE' s_delta_M_5 = 'NONE' delta_M_5_test = 0 delta_M_5_p = -999 delta_M_5_m = -999 delta_M_5 = -999 which5 = np.where((lens5 == lens.getId()) & (source5 == source.getId()))[0] if len(which5) == 1 : k = which5[0] mm_5 = np.array([Analysis_result5[0][k][x][0][6] for x in range(len(Analysis_result5[0][k]))\ if Analysis_result5[0][k][x][0][4] != -999]) mp_5 = np.array([Analysis_result5[0][k][x][0][7] for x in range(len(Analysis_result5[0][k]))\ if Analysis_result5[0][k][x][0][4] != -999]) mmm_5 = percentile(mm_5) ppp_5 = percentile(mp_5) delta_M_5_p = max(ppp_5[4],-mmm_5[3]) delta_M_5_m = min(ppp_5[3],-mmm_5[4]) delta_M_5 = max(ppp_5[1], -mmm_5[1]) delta_M_5_test = delta_M_5 c=0 while 10**(-c)>= delta_M_5 and c < 10: c+=1 c+=1 s_delta_M_5_m = str(round(delta_M_5_m-0.49999999*10**(-c),c)) s_delta_M_5_p = str(round(delta_M_5_p+0.49999999*10**(-c),c)) s_delta_M_5 = str(round(delta_M_5+0.49999999*10**(-c),c)) while(len(s_delta_M_5_m) <= c): s_delta_M_5_m=s_delta_M_5_m+'0' while(s_delta_M_5_m[-c-1]) != '.': s_delta_M_5_m=s_delta_M_5_m+'0' while(len(s_delta_M_5_p) <= c): s_delta_M_5_p=s_delta_M_5_p+'0' while(s_delta_M_5_p[-c-1]) != '.': s_delta_M_5_p=s_delta_M_5_p+'0' while(len(s_delta_M_5) <= c): s_delta_M_5=s_delta_M_5+'0' while(s_delta_M_5[-c-1]) != '.': s_delta_M_5=s_delta_M_5+'0' if external: s_delta_M_ext_m = 'NONE' s_delta_M_ext_p = 'NONE' s_delta_M_ext = 'NONE' delta_M_ext_test = 0 which_ext = np.where((lens_ext == lens.getId()) & (source_ext == source.getId()))[0] if len(which_ext) == 1 : k = which_ext[0] mm_ext = np.array([Analysis_result_external[0][k][x][0][6]\ for x in range(len(Analysis_result_external[0][k])) \ if Analysis_result_external[0][k][x][0][4] != -999]) mp_ext = np.array([Analysis_result_external[0][k][x][0][7] \ for x in range(len(Analysis_result_external[0][k])) \ if Analysis_result_external[0][k][x][0][4] != -999]) mmm_ext = percentile(mm_ext) ppp_ext = percentile(mp_ext) delta_M_ext_p = max(ppp_ext[4],-mmm_ext[3]) delta_M_ext_m = min(ppp_ext[3],-mmm_ext[4]) delta_M_ext = max(ppp_ext[1], -mmm_ext[1]) delta_M_ext_test = delta_M_ext c=0 while 10**(-c)>= delta_M_ext and c < 10: c+=1 c+=1 s_delta_M_ext_m = str(round(delta_M_ext_m-0.49999999*10**(-c),c)) s_delta_M_ext_p = str(round(delta_M_ext_p+0.49999999*10**(-c),c)) s_delta_M_ext = str(round(delta_M_ext+0.49999999*10**(-c),c)) while(len(s_delta_M_ext_m) <= c): s_delta_M_ext_m=s_delta_M_ext_m+'0' while(s_delta_M_ext_m[-c-1]) != '.': s_delta_M_ext_m=s_delta_M_ext_m+'0' while(len(s_delta_M_ext_p) <= c): s_delta_M_ext_p=s_delta_M_ext_p+'0' while(s_delta_M_ext_p[-c-1]) != '.': s_delta_M_ext_p=s_delta_M_ext_p+'0' while(len(s_delta_M_ext) <= c): s_delta_M_ext=s_delta_M_ext+'0' while(s_delta_M_ext[-c-1]) != '.': s_delta_M_ext=s_delta_M_ext+'0' s_delta_M_percent_ext = '%.2g'%(delta_M_ext/lens.getMass()*100) #--------------------------- #create Astropy.table if tab is None: tab = Table(names = ['name', 'lens_id', 'source_id', 'fivepar', 'TCA', 'Mass',\ 'deltaM_10','sigma_deltaM_10_+', 'sigma_deltaM_10_-',\ 'deltaM_5' , 'sigma_deltaM_5_+','sigma_deltaM_5_-',\ 'deltaM_ext' , 'sigma_deltaM_ext_+','sigma_deltaM_ext_-'],\ dtype = [object, np.int64, np.int64, np.bool_,np.float64, np.float64, np.float64, np.float64,\ np.float64, np.float64, np.float64, np.float64, np.float64, np.float64, np.float64]) tab.add_row([s_name,lens.getId(),source.getId(),source.getPx() != 0,lens.getTca(),lens.getMass(),\ delta_M_10, delta_M_10_p, delta_M_10_m,\ delta_M_5, delta_M_5_p, delta_M_5_m,\ delta_M_ext, delta_M_ext_p, delta_M_ext_m]) #--------------------------- #--------------------------- #element list for sorting epoch.append(lens.getTca()) rel_err.append(delta_M_10/lens.getMass()) #--------------------------- #--------------------------- #create row in latex table # \\(int\\) & \\(Name\\) & \\(ID1\\) & \\(ID2\\) & \\(T_CA\\) & \\(M_in\\) # & \\(deltaM_plus^{sigma+}_{sigma-}\\) & \\(deltaM_minus^{sigma+}_{sigma-} \\) \\\\ line = '%s & \\(%s\\) & \\(%s%s\\) & \\(%s\\) & \\(%s\\) & \\(\\pm%s^{+%s}_{%s}\\) & \\(%s%s\\)'\ %(s_name,s_ID1, s_ID2,fivepar, s_TCA, s_Mass,\ s_delta_M_10, s_delta_M_10_p, s_delta_M_10_m, s_delta_M_percent,'\\%') if s_delta_M_5_m == 'NONE' or delta_M_5_test > lens.getMass(): line = line + ' & ' else: line = line + ' & \\(\\pm%s^{+%s}_{%s}\\)'% (s_delta_M_5, s_delta_M_5_p, s_delta_M_5_m) if s_delta_M_ext_m == 'NONE' or delta_M_ext_test > lens.getMass(): line = line + ' & ' else: line = line + ' & \\(%s%s\\)'%(s_delta_M_percent_ext,'\\%') lines.append(line) #--------------------------- else: #--------------------------- #create Astropy.table if tab is None: tab = Table(names = ['name', 'lens_id', 'source_id', 'fivepar', 'TCA', 'Mass',\ 'deltaM_10', 'sigma_deltaM_10_+', 'sigma_deltaM_10_-',\ 'deltaM_5' , 'sigma_deltaM_5_+','sigma_deltaM_5_-'],\ dtype = [object, np.int64, np.int64, np.bool_,np.float64, np.float64, np.float64,\ np.float64, np.float64, np.float64, np.float64, np.float64]) tab.add_row([s_name,lens.getId(),source.getId(),source.getPx() != 0,lens.getTca(),lens.getMass(),\ delta_M_10, delta_M_10_p, delta_M_10_m, delta_M_5, delta_M_5_p, delta_M_5_m]) #--------------------------- #element in list for sorting epoch.append(lens.getTca()) rel_err.append(delta_M_10/lens.getMass()) #--------------------------- #--------------------------- #create row in latex table #'\\(int\\) & \\(Name\\) & \\(ID1\\) & \\(ID2\\) & \\(T_CA\\) & \\(M_in\\) #& \\(deltaM_plus^{sigma+}_{sigma-}\\) & \\(deltaM_minus^{sigma+}_{sigma-} \\) \\\\' line = '%s & \\(%s\\) & \\(%s%s\\) & \\(%s\\) & \\(%s\\) & \\(\\pm%s^{+%s}_{%s}\\) & \\(%s%s\\)'\ %(s_name,s_ID1, s_ID2,fivepar, s_TCA, s_Mass, s_delta_M_10, s_delta_M_10_p, s_delta_M_10_m, s_delta_M_percent,'\\%') if s_delta_M_5_m == 'NONE' or delta_M_5_test > lens.getMass(): line = line + ' & ' else: line = line + ' & \\(\\pm%s^{+%s}_{%s}\\)'% (s_delta_M_5, s_delta_M_5_p, s_delta_M_5_m) line = line + ' \\\\' lines.append(line) #--------------------------- #sorting list if sort_epoch: lines = [x for _,x in sorted(zip(epoch,lines))] rel_err = [x for _,x in sorted(zip(epoch,rel_err))] epoch = [x for _,x in sorted(zip(epoch,epoch))] else: lines = [x for _,x in sorted(zip(rel_err,lines))] epoch = [x for _,x in sorted(zip(rel_err,epoch))] rel_err = [x for _,x in sorted(zip(rel_err,rel_err))] #--------------------------- #--------------------------- #save Table if external: tablename = 'result_single_ext' else: tablename = 'result_single' print('write table: ' + tablename+ '.vot') print('write tex_table: ' + tablename+ '.txt') tab.write(path + 'Data/' + tablename+ '.vot', format = 'votable',overwrite=True) #--------------------------- #--------------------------- #writing Latex Table f = open(paperpath+tablename+'.tex','w') #Setup a Table f.write('\\renewcommand*{\\arraystretch}{1.4}'+'\n') f.write('\\begin{table*}[]' +'\n') f.write('\\input{result_single_caption1}\n') # include caption f.write('\\label{table:single}' +'\n') f.write('\\tiny') #Format and head Row f.write('\\begin{tabular}{l|rrrrr|rr|r|}' +'\n') f.write('\\# & Name-Lens & \\(DR2\\_ID\\)-Lens & \\(DR2\\_ID\\)-Source & \\(T_{CA}\\) & \\(M_{in}\\)') f.write(' & \\(\\sigma\\,M_{10}\\) & \\(\\sigma\\,M_{10}/M_{in}\\) & \\(\\sigma\\,M_{5} \\)') f.write(' \\\\\n') f.write(' & & & & \\(\\mathrm{Jyear}\\) & \\(\\mathrm{M_{\\odot}}\\)') f.write(' & \\(\\mathrm{M_{\\odot}}\\) & & \\(\\mathrm{M_{\\odot}}\\)') #if external: f.write(' & \\(\\mathrm{M_{\\odot}}\\) \\\\\n') f.write(' \\\\\n') f.write('\\hline' +'\n') # c3 = 1 #row counter combined c4 = 0 #row counter individual tables if sort_epoch: #sorted by epoch #write rows for l in range(len(lines)): if (epoch[l] <= 2019.5) & (rel_err[l] <=0.5): if c4%10> 4: f.write('\\rowcolor{lightGray}\n') ll = lines[l] if external: ll = ll.split('&') ll.pop(-1) ll = '&'.join(ll) f.write('\\(%d\\) & '%c3 + ll+'\\\\\n') c3 +=1 c4+=1 #Table end f.write('\\hline' +'\n') f.write('\\end{tabular}' + '\n' + '\\end{table*}') #Setup second Table f.write('\n'+'\n'+'\n'+'\n'+'\n'+'\\begin{table*}[]' +'\n') f.write('\\input{result_single_caption2}\n') f.write('\\label{table:single2}' +'\n') f.write('\\tiny') #Format and head Row f.write('\\begin{tabular}{l|rrrrr|rr|r|}' +'\n') f.write('\\# & Name-Lens & \\(DR2\\_ID\\)-Lens & \\(DR2\\_ID\\)-Source & \\(T_{CA}\\) & \\(M_{in}\\)') f.write(' & \\(\\sigma\\,M_{10}\\) & \\(\\sigma\\,M_{10}/M_{in}\\)') if external: f.write(' & \\(\\sigma\\,M_{obs}/M_{in}\\)\\\\\n') else: f.write(' & \\(\\sigma\\,M_{5}\\) \\\\\n') f.write(' & & & & \\(\\mathrm{Jyear}\\) & \\(\\mathrm{M_{\\odot}}\\)') if external: f.write(' & \\(\\mathrm{M_{\\odot}}\\) & & \\\\\n') else: f.write(' & \\(\\mathrm{M_{\\odot}}\\) & & \\(\\mathrm{M_{\\odot}}\\)\\\\\n') f.write('\\hline' +'\n') c4 = 0 #Row counter individual tables #Write rows for l in range(len(lines)): if (epoch[l] > 2019.5) & (rel_err[l] <=0.5): if c4%10> 4: f.write('\\rowcolor{lightGray}\n') ll=lines[l] if external: ll = ll.split('&') ll.pop(-2) ll = '&'.join(ll) f.write('\\(%d\\) & '%c3 + ll+'\\\\\n') c3 +=1 c4+=1 #Table end f.write('\\hline' +'\n') f.write('\\end{tabular}' + '\n' + '\\end{table*}') f.close() else: i = 0 c2 = [15,30,50,100,101,200] for line in lines: if c2[i]<= 50: if c4%10> 4: f.write('\\rowcolor{lightGray}\n') f.write('\\(%d\\) & '%c3 + line+'\\\\\n') c3 +=1 c4+=1 if c < len(rel_err): if rel_err[c]*100 > c2[i]: while rel_err[c]*100 > c2[i]: i+=1 if c2[i] == 50: f.write('\\hline' +'\n') f.write('\\end{tabular}' + '\n' + '\\end{table*}') f.write('\n'+'\n'+'\n'+'\n'+'\n'+'\\begin{table*}[]' +'\n') f.write('\\input{result_single_caption2}\n') f.write('\\label{table:single2}' +'\n') f.write('\\tiny') if external: f.write('\\begin{tabular}{l|rrrrr|rr|r|r|}' +'\n') else: f.write('\\begin{tabular}{l|rrrrr|rr|r|}' +'\n') f.write('\\# & Name-Lens & \\(DR2\\_ID\\)-Lens & \\(DR2\\_ID\\)-Source') f.write(' & \\(T_{CA}\\) & \\(M_{in}\\)') f.write(' & \\(\\sigma\\,M_{10}\\) & \\(\\sigma\\,M_{10}/M_{in}\\) & \\(\\sigma\\,M_{5} \\)') if external: f.write(' & \\(\\sigma\\,M_{obs} \\) \\\\\n') else: f.write(' \\\\\n') f.write(' & & & & \\(\\mathrm{Jyear}\\) & \\(\\mathrm{M_{\\odot}}\\) \\\\\n') f.write(' & \\(\\mathrm{M_{\\odot}}\\) & & \\(\\mathrm{M_{\\odot}}\\) \\\\\n') f.write('\\hline' +'\n') c4 = 0 if c2[i] >= 100: break c+=1 f.write('\\hline' +'\n') f.write('\\end{tabular}' + '\n' + '\\end{table*}') f.close() def create_Table_multi(Analysis_multi_result): '''------------------------------------------------------------ Description: --------------------------------------------------------------- Input: --------------------------------------------------------------- Output: ------------------------------------------------------------''' Dat_single, Dat_all, Dat_fps, Dat_sig = Analysis_multi_result q1 = [] q2 = [] for i in range(len(Dat_all[1])): lens = Dat_all[2][i][0] s_Mass = '%.2g'%lens.getMass() lens_id = Dat_all[1][i] s_lens_id = str(lens_id) s_name = name(lens.getId(), False, True) all_bool = True fps_bool = False sig_bool = False for j in range(len(Dat_fps[1])): if lens_id == Dat_fps[1][j]: fps_bool = True break for k in range(len(Dat_sig[1])): if lens_id == Dat_sig[1][k]: sig_bool = True break Vs_delta_M_m = ['','',''] Vs_delta_M_p = ['','',''] Vs_delta_M = ['','',''] rel_err = ['','',''] for uu in range(3): if [all_bool, fps_bool, sig_bool][uu]: nn = [i,j,k][uu] Analysis_result = [Dat_all, Dat_fps, Dat_sig][uu] mm = np.array([Analysis_result[0][nn][x][0][6] for x in range(len(Analysis_result[0][nn])) if Analysis_result[0][nn][x][0][4] != -999]) mp = np.array([Analysis_result[0][nn][x][0][7] for x in range(len(Analysis_result[0][nn])) if Analysis_result[0][nn][x][0][4] != -999]) mmm = percentile(mm) ppp = percentile(mp) delta_M_p = max(ppp[4],-mmm[3]) delta_M_m = min(ppp[3],-mmm[4]) delta_M = max(ppp[1], -mmm[1]) c=0 while 10**(-c)>= delta_M and c < 10: c+=1 c+=1 s_delta_M_m = str(round(delta_M_m-0.49999999*10**(-c),c)) s_delta_M_p = str(round(delta_M_p+0.49999999*10**(-c),c)) s_delta_M = str(round(delta_M+0.49999999*10**(-c),c)) while(len(s_delta_M_m) <= c): s_delta_M_m=s_delta_M_m+'0' while(s_delta_M_m[-c-1]) != '.': s_delta_M_m=s_delta_M_m+'0' while(len(s_delta_M_p) <= c): s_delta_M_p=s_delta_M_p+'0' while(s_delta_M_p[-c-1]) != '.': s_delta_M_p=s_delta_M_p+'0' while(len(s_delta_M) <= c): s_delta_M=s_delta_M+'0' while(s_delta_M[-c-1]) != '.': s_delta_M=s_delta_M+'0' Vs_delta_M_m[uu] = s_delta_M_m Vs_delta_M_p[uu] = s_delta_M_p Vs_delta_M[uu] = s_delta_M if uu ==0: rel_err1 = (delta_M/lens.getMass()) rel_err[uu] = '%.2g'%(delta_M/lens.getMass()*100) # sortiere Source ID into 4 ID_all = [x.getId() for x in Dat_all[2][i][1:]] ID_fps = [x.getId() for x in Dat_fps[2][j][1:]] ID_sig = [x.getId() for x in Dat_sig[2][k][1:]] tps = [] fps = [] sig = [] for ID in ID_all: if ID in ID_sig: sig.append(ID) elif ID in ID_fps: fps.append(ID) else: tps.append(ID) q1.append([rel_err1,rel_err,s_Mass, s_lens_id,s_name, tps,fps ,sig, Vs_delta_M_m,Vs_delta_M_p,Vs_delta_M]) q1.sort(key=lambda x: x[0]) f = open(paperpath+'result_multi.tex','w') f.write('\\renewcommand*{\\arraystretch}{1.4}' + '\n') f.write('\\begin{sidewaystable*}[]' + '\n') f.write('\\input{result_multi_caption1}\n') f.write('\\label{table:multi}'+ '\n') f.write('\\tiny\\begin{tabular}{l|r|rrrr|rr|rr|rr|}' + '\n') f.write('\\# & Name-Lens & ' + '\n') f.write('\\(DR2\\_ID\\)-Source & \\(DR2\\_ID\\)-Source' ) f.write(' & \\(DR2\\_ID\\)-Source' + '\n') f.write(' & \\(M_{\mathrm{in}}\\) & \\(\\sigma\\,M_{\mathrm{all}}\\)') f.write(' & \\(\\sigma\\,M_{\mathrm{all}}/M_{\mathrm{in}}\\) & \\(\\sigma\\,M_{\mathrm{5-par}} \\)') f.write(' & \\(\\sigma\\,M_{\mathrm{5-par.}}/M_{in}\\) & \\(\\sigma\\,M_{\mathrm{sig.}} \\)') f.write(' & \\(\\sigma\\,M_{\mathrm{sig.}}/M_{\mathrm{in}}\\) \\\\' + '\n') f.write(' & \\(DR2\\_ID\\)-Lens & (2-parameter) & (5-parameter)& (sigma)') f.write(' & \\(\\Msun{}\\) & \\(\\Msun{}\\) & \\(\\%\\)& \\(\\Msun{}\\) & \\(\\%\\)& \\(\\Msun{}\\) & \\(\\%\\)') f.write(' \\\\\n') f.write('\\hline' +'\n') for n in range(len(q1)): rel_err1,rel_err, s_Mass, s_lens_id,s_name, tps,fps,sig, Vs_delta_M_m,Vs_delta_M_p,Vs_delta_M =q1[n] if rel_err1 < 0.5: ii = 0 if s_name == '' :ll = ['\\(%s\\)'% s_lens_id,] else: ll = [s_name, '\\(%s\\)'% s_lens_id] for line_index in range(max([len(tps), len(fps), len(sig),len(ll)])): if line_index >= len(tps): s_tps = '' else: s_tps = str(tps[line_index]) if line_index >= len(fps): s_fps = '' else: s_fps = str(fps[line_index]) if line_index >= len(sig): s_sig = '' else: s_sig = str(sig[line_index]) if line_index >= len(ll): s_ln = '' else: s_ln= str(ll[line_index]) if line_index == 0: line = '%s & %s & \\(%s\\) & \\(%s\\) & \\(%s\\) & \\(%s\\) &'\ %(str(n+1), s_ln, s_tps,s_fps, s_sig, s_Mass) if len(tps) == 0: line = line + ' & &' else: line = line+ '\\(\\pm%s^{+%s}_{%s}\\) & \\(%s%s\\) &' \ % (Vs_delta_M[0], Vs_delta_M_p[0], Vs_delta_M_m[0], rel_err[0], '\\%') if len(fps) == 0: line = line + ' & &' else: line = line+ '\\(\\pm%s^{+%s}_{%s}\\) &\\(%s%s\\) &' \ % (Vs_delta_M[1], Vs_delta_M_p[1], Vs_delta_M_m[1], rel_err[1],'\\%') if len(sig) == 0: line = line + ' \\\\' else: line = line+ '\\(\\pm%s^{+%s}_{%s}\\) & \\(%s%s\\) \\\\'\ % (Vs_delta_M[2], Vs_delta_M_p[2], Vs_delta_M_m[2], rel_err[2],'\\%') else: line = ' &%s& \\(%s\\) & \\(%s\\) & \\(%s\\) & & & & & & & \\\\'\ % (s_ln, s_tps,s_fps, s_sig) if n%2 : f.write('\\rowcolor{lightGray}\n') f.write(line) f.write('\n') f.write('\\hline'+ '\n') f.write('\\end{tabular}' +'\n' +'\\end{sidewaystable*}') f.close()
# -*- coding: utf-8 -*- import codecs from setuptools import setup packages = \ ['colour_hdri', 'colour_hdri.calibration', 'colour_hdri.calibration.tests', 'colour_hdri.exposure', 'colour_hdri.exposure.tests', 'colour_hdri.generation', 'colour_hdri.generation.tests', 'colour_hdri.models', 'colour_hdri.models.datasets', 'colour_hdri.models.tests', 'colour_hdri.plotting', 'colour_hdri.process', 'colour_hdri.process.tests', 'colour_hdri.recovery', 'colour_hdri.recovery.tests', 'colour_hdri.sampling', 'colour_hdri.sampling.tests', 'colour_hdri.tonemapping', 'colour_hdri.tonemapping.global_operators', 'colour_hdri.tonemapping.global_operators.tests', 'colour_hdri.utilities', 'colour_hdri.utilities.tests'] package_data = \ {'': ['*'], 'colour_hdri': ['examples/*', 'resources/colour-hdri-examples-datasets/*', 'resources/colour-hdri-tests-datasets/*']} install_requires = \ ['colour-science>=0.3.16,<0.4.0', 'recordclass'] extras_require = \ {'development': ['biblib-simple', 'coverage', 'coveralls', 'flake8', 'invoke', 'jupyter', 'mock', 'nose', 'pre-commit', 'pytest', 'restructuredtext-lint', 'sphinx<=3.1.2', 'sphinx_rtd_theme', 'sphinxcontrib-bibtex', 'toml', 'twine', 'yapf==0.23'], 'optional': ['colour-demosaicing', 'rawpy'], 'plotting': ['matplotlib'], 'read-the-docs': ['mock', 'numpy', 'sphinxcontrib-bibtex']} setup( name='colour-hdri', version='0.1.8', description='HDRI / Radiance image processing algorithms for Python', long_description=codecs.open('README.rst', encoding='utf8').read(), author='Colour Developers', author_email='[email protected]', maintainer='Colour Developers', maintainer_email='[email protected]', url='https://www.colour-science.org/', packages=packages, package_data=package_data, install_requires=install_requires, extras_require=extras_require, python_requires='>=3.6,<4.0', )
import os import sys import codecs import argparse from _pickle import load, dump import collections from utils import get_processing_word, is_dataset_tag, make_sure_path_exists, get_bmes from fastNLP import Instance, DataSet, Vocabulary, Const max_len = 0 def expand(x): sent = ["<sos>"] + x[1:] + ["<eos>"] return [x + y for x, y in zip(sent[:-1], sent[1:])] def read_file(filename, processing_word=get_processing_word(lowercase=False)): dataset = DataSet() niter = 0 with codecs.open(filename, "r", "utf-8-sig") as f: words, tags = [], [] for line in f: line = line.strip() if len(line) == 0 or line.startswith("-DOCSTART-"): if len(words) != 0: assert len(words) > 2 if niter == 1: print(words, tags) niter += 1 dataset.append(Instance(ori_words=words[:-1], ori_tags=tags[:-1])) words, tags = [], [] else: word, tag = line.split() word = processing_word(word) words.append(word) tags.append(tag.lower()) dataset.apply_field(lambda x: [x[0]], field_name="ori_words", new_field_name="task") dataset.apply_field( lambda x: len(x), field_name="ori_tags", new_field_name="seq_len" ) dataset.apply_field( lambda x: expand(x), field_name="ori_words", new_field_name="bi1" ) return dataset def main(): parser = argparse.ArgumentParser() # fmt: off parser.add_argument("--data_path", required=True, type=str, help="all of datasets pkl paths") # fmt: on options, _ = parser.parse_known_args() train_set, test_set = DataSet(), DataSet() input_dir = os.path.join(options.data_path, "joint-sighan2008/bmes") options.output = os.path.join(options.data_path, "total_dataset.pkl") print(input_dir, options.output) for fn in os.listdir(input_dir): if fn not in ["test.txt", "train-all.txt"]: continue print(fn) abs_fn = os.path.join(input_dir, fn) ds = read_file(abs_fn) if "test.txt" == fn: test_set = ds else: train_set = ds print( "num samples of total train, test: {}, {}".format(len(train_set), len(test_set)) ) uni_vocab = Vocabulary(min_freq=None).from_dataset( train_set, test_set, field_name="ori_words" ) # bi_vocab = Vocabulary(min_freq=3, max_size=50000).from_dataset(train_set,test_set, field_name="bi1") bi_vocab = Vocabulary(min_freq=3, max_size=None).from_dataset( train_set, field_name="bi1", no_create_entry_dataset=[test_set] ) tag_vocab = Vocabulary(min_freq=None, padding="s", unknown=None).from_dataset( train_set, field_name="ori_tags" ) task_vocab = Vocabulary(min_freq=None, padding=None, unknown=None).from_dataset( train_set, field_name="task" ) def to_index(dataset): uni_vocab.index_dataset(dataset, field_name="ori_words", new_field_name="uni") tag_vocab.index_dataset(dataset, field_name="ori_tags", new_field_name="tags") task_vocab.index_dataset(dataset, field_name="task", new_field_name="task") dataset.apply_field(lambda x: x[1:], field_name="bi1", new_field_name="bi2") dataset.apply_field(lambda x: x[:-1], field_name="bi1", new_field_name="bi1") bi_vocab.index_dataset(dataset, field_name="bi1", new_field_name="bi1") bi_vocab.index_dataset(dataset, field_name="bi2", new_field_name="bi2") dataset.set_input("task", "uni", "bi1", "bi2", "seq_len") dataset.set_target("tags") return dataset train_set = to_index(train_set) test_set = to_index(test_set) output = {} output["train_set"] = train_set output["test_set"] = test_set output["uni_vocab"] = uni_vocab output["bi_vocab"] = bi_vocab output["tag_vocab"] = tag_vocab output["task_vocab"] = task_vocab print(tag_vocab.word2idx) print(task_vocab.word2idx) make_sure_path_exists(os.path.dirname(options.output)) print("Saving dataset to {}".format(os.path.abspath(options.output))) with open(options.output, "wb") as outfile: dump(output, outfile) print(len(task_vocab), len(tag_vocab), len(uni_vocab), len(bi_vocab)) dic = {} tokens = {} def process(words): name = words[0][1:-1] if name not in dic: dic[name] = set() tokens[name] = 0 tokens[name] += len(words[1:]) dic[name].update(words[1:]) train_set.apply_field(process, "ori_words", None) for name in dic.keys(): print(name, len(dic[name]), tokens[name]) with open(os.path.join(os.path.dirname(options.output), "oovdict.pkl"), "wb") as f: dump(dic, f) def get_max_len(ds): global max_len max_len = 0 def find_max_len(words): global max_len if max_len < len(words): max_len = len(words) ds.apply_field(find_max_len, "ori_words", None) return max_len print( "train max len: {}, test max len: {}".format( get_max_len(train_set), get_max_len(test_set) ) ) if __name__ == "__main__": main()
import numpy as np from collections import namedtuple import random Transition = namedtuple('Transition', ('state', 'action', 'next_state', 'reward')) class Schedule(object): def __init__(self, n, start, stop): self.n = n self.start = start self.stop = stop def get_value(self, i): val = self.start - i*(self.start - self.stop)/self.n if val < self.stop: return self.stop return val class QLearning(object): def get_name(self): return "qlearning" def __init__(self,actions,params={}): self.Qs = {} self.alpha = 0.1 if 'alpha' in params.keys(): self.alpha=params['alpha'] self.exploration_fraction = 0.1 if 'epsfrac' in params.keys(): self.exploration_fraction = params['epsfrac'] self.total_episodes = int(params['num_episodes']) self.EPS_END = 0.01 self.exploration = Schedule(int(self.exploration_fraction*self.total_episodes), 1.0, self.EPS_END) self.num_episodes = 0 self.num_actions = actions self.traj = [] print("[QLEARNING] Initialized with parameters: alpha: %s, epsfrac: %s" % (str(self.alpha), str(self.exploration_fraction)), flush=True) def select_action(self, x): s = self.state_to_str(x) if s not in self.Qs.keys(): self.Qs[s] = [0 for a in range(self.num_actions)] eps_threshold = self.exploration.get_value(self.num_episodes) sample = random.random() if sample > eps_threshold: Qvals = self.Qs[s] action = np.random.choice(np.flatnonzero(Qvals == np.max(Qvals))) else: action = random.randrange(self.num_actions) return (action) def get_value(self,x): s = self.state_to_str(x) if s not in self.Qs.keys(): ## This should only happen at the end of the episode so put 0 here. self.Qs[s] = [0 for a in range(self.num_actions)] Qvals = self.Qs[s] return(np.max(Qvals)) def save_transition(self, state, action, reward, next_state): self.traj.append(Transition(state, action, next_state, reward)) def finish_episode(self): self.num_episodes += 1 for transition in self.traj: x = transition.state a = transition.action r = transition.reward xp = transition.next_state s = self.state_to_str(x) V = 0.0 if xp is None else self.get_value(xp) Qvals = self.Qs[s] Qvals[a] = (1-self.alpha)*Qvals[a] + self.alpha*(r + V) self.traj = [] def state_to_str(self,x): return("".join([str(z) for z in x]))
def inclusive_sum(n, m): var = 0 for i in range(n, m+1): var += i return var
from django.db import models from mls_api.models.base import BaseModel class Team(BaseModel): ''' Soccer teams ''' name = models.CharField(max_length=128) slug = models.SlugField(unique=True) games = models.ManyToManyField('Game', through='GameTeam') def __unicode__(self): return u'%s' % self.name @models.permalink def get_absolute_url(self): return ('team_detail', (), {'slug': self.slug}) def points_by_comp(self, competition): return self.gameteam_set.filter( game__competition__year=2013 ).aggregate(models.Sum('result__points'))['result__points__sum'] class Meta: ordering = ('name',) app_label = 'mls_api' class GameTeam(BaseModel): team = models.ForeignKey('Team') game = models.ForeignKey('Game') result = models.ForeignKey('Result', null=True) home = models.BooleanField(default=False) def __unicode__(self): return self.team.__unicode__() class Meta: app_label = 'mls_api'
import nltk, textblob text="""I. The Period It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the season of Light, it was the season of Darkness, it was the spring of hope, it was the winter of despair, we had everything before us, we had nothing before us, we were all going direct to Heaven, we were all going direct the other way-- in short, the period was so far like the present period, that some of its noisiest authorities insisted on its being received, for good or for evil, in the superlative degree of comparison only. There were a king with a large jaw and a queen with a plain face, on the throne of England; there were a king with a large jaw and a queen with a fair face, on the throne of France. In both countries it was clearer than crystal to the lords of the State preserves of loaves and fishes, that things in general were settled for ever.""" blob=textblob.TextBlob(text) blob.words print(nltk.pos_tag(blob.words)) lowerwords=[x.lower() for x in blob.words] from nltk.corpus import stopwords print(stopwords.words('english')) filtered=list(filter(lambda x: not x in stopwords.words('english'), lowerwords)) filtered=[x for x in lowerwords if not x in stopwords.words('english')] from nltk.stem import WordNetLemmatizer wnl = WordNetLemmatizer() lemmas=[wnl.lemmatize(x) for x in filtered] from nltk.corpus import wordnet as wn list(map(lambda x :wn.synsets(x), filtered)) wn.synset('car.n.01').lemma_names()
import numpy as np import cv2 import pandas as pd male = pd.read_csv("data/names/herrenavn.csv") female = pd.read_csv("data/names/kvinnenavn.csv") maleLength = len(male['Navn']) feMaleLength = len(female['Navn']) def draw_information(image_total, loc, faces_df, analyzis_object, useRandomNames=False): currentDf = male if analyzis_object['gender'] == "Man" else female currentLength = maleLength if analyzis_object['gender'] == "Man" else feMaleLength randomInt = np.random.randint(1, currentLength) if (useRandomNames): score = 0 identity = currentDf.iloc[randomInt]['Navn'] else: if(len(faces_df['identity']) > 0): identity = faces_df.iloc[0]['identity'].split("/")[2] score = faces_df.iloc[0]['VGG-Face_cosine'] else: #choose random name if none identities was found identity = currentDf.iloc[randomInt]['Navn'] x, y, width, _ = loc # x, y is the coordinate of the top left corner. draw_rectangle_with_opacity(image_total, loc) add_text( image_total, text=f"Name: {identity} ({score:.2f})", org=(x + width + 10, y + 25) ) add_text( image_total, text = f"Age: {analyzis_object['age']}", org = (x + width + 10, y + 75), ) add_text( image_total, text = f"Sex: {analyzis_object['gender']}", org = (x + width + 10, y + 125), ) add_text( image_total, text = f"Emotion: {analyzis_object['dominant_emotion']}", org = (x + width + 10, y + 175), ) add_text( image_total, text = f"Race: {analyzis_object['dominant_race']}", org = (x + width + 10, y + 225), ) def add_text(image_total, text, org): cv2.putText( img = image_total, text = text, org = org, fontFace = cv2.FONT_HERSHEY_SIMPLEX, fontScale = 0.75, thickness = 2, color = 0 ) def draw_rectangle_with_opacity(image_total, loc): x, y, width, height = loc # x, y is the coordinate of the top left corner. sub_img = image_total[y:y+height, x+width:x+width+300] white_rect = np.ones(sub_img.shape, dtype=np.uint8) * 255 res = cv2.addWeighted(sub_img, 0.5, white_rect, 0.5, 1.0) image_total[y:y+height, x+width:x+width+300] = res def draw_bounding_box(image_total, loc, keypoints): (x, y, width, height) = loc cv2.rectangle( img = image_total, pt1 = (x, y), pt2 = (x + width, y + height), color = (0, 155, 255), thickness = 2 ) cv2.circle( img = image_total, center = (keypoints['left_eye']), radius = 2, color = (0, 155, 255), thickness = 2 ) cv2.circle(image_total, (keypoints['right_eye']), 2, (0, 155, 255), 2) cv2.circle(image_total, (keypoints['nose']), 2, (0, 155, 255), 2) cv2.circle(image_total, (keypoints['mouth_left']), 2, (0, 155, 255), 2) cv2.circle(image_total, (keypoints['mouth_right']), 2, (0, 155, 255), 2)
import unittest from pprint import pprint from random import randint from pydsalg.datastruct.dynarray import DynamicArray class TestDynamicArray(unittest.TestCase): @classmethod def setUpClass(cls): cls.input0 = list(range(20)) def test_00(self): dynarr = DynamicArray() input0 = self.input0.copy() dynarr.append(input0.pop(0)) dynarr.append(input0.pop(0)) dynarr.append(input0.pop(0)) dynarr.append(input0.pop(0)) dynarr.append(input0.pop(0)) dynarr.append(input0.pop(0)) dynarr.append(input0.pop(0)) dynarr.append(input0.pop(0)) dynarr.append(input0.pop(0)) dynarr.append(input0.pop(0)) print(dynarr._arr) print(dynarr.remove()) print(dynarr.remove()) print(dynarr.remove()) print(dynarr.remove()) print(dynarr.remove()) print(dynarr.remove()) print(dynarr.remove()) print(dynarr.remove()) print(dynarr.remove()) print(dynarr.remove()) for i in 'abcdefghijklmnopq': dynarr.append(i) print(dynarr._arr) def test_01(self): dynarr = DynamicArray(start=0) input0 = self.input0.copy() dynarr.append(input0.pop(0)) dynarr.append(input0.pop(0)) dynarr.append(input0.pop(0)) dynarr.append(input0.pop(0)) dynarr.append(input0.pop(0)) dynarr.append(input0.pop(0)) dynarr.append(input0.pop(0)) dynarr.append(input0.pop(0)) dynarr.append(input0.pop(0)) dynarr.append(input0.pop(0)) dynarr.append(input0.pop(0)) dynarr.append(input0.pop(0)) #print(dynarr._arr) if __name__ == '__main__': unittest.main()
import os import git from packit.api import PackitAPI from subprocess import check_output from flexmock import flexmock from tests.testsuite_recording.integration.testbase import PackitUnittestOgr class ProposeUpdate(PackitUnittestOgr): def setUp(self): super().setUp() self.api = PackitAPI( config=self.conf, package_config=self.pc, upstream_local_project=self.lp ) self.api._up = self.upstream self.api._dg = self.dg # Do not upload package, because no credentials given in CI flexmock(self.api).should_receive("_handle_sources").and_return(None) flexmock(self.api.dg).should_receive("push").and_return(None) flexmock(git.HEAD).should_receive("commit").and_return("hash-of-some-commit") self.set_git_user() def test_propose_update(self): # change specfile little bit to have there some change specfile_location = os.path.join(self.lp.working_dir, "python-ogr.spec") with open(specfile_location, "r") as myfile: filedata = myfile.read() # Patch the specfile with new version version_increase = "0.0.0" for line in filedata.splitlines(): if "Version:" in line: version = line.rsplit(" ", 1)[1] v1, v2, v3 = version.split(".") version_increase = ".".join([v1, str(int(v2) + 1), v3]) filedata = filedata.replace(version, version_increase) break with open(specfile_location, "w") as myfile: myfile.write(filedata) check_output( f"cd {self.lp.working_dir};" f"git commit -m 'test change' python-ogr.spec;" f"git tag -a {version_increase} -m 'my version {version_increase}'", shell=True, ) self.api.sync_release("master")
from hammer_tools.material_library.db import connect from hammer_tools.material_library.text import alphaNumericTokens class MapType(object): Unknown = 'unknown' Thumbnail = 'thumb' Diffuse = 'diff' Roughness = 'rough' Glossiness = 'gloss' Metalness = 'metal' Reflection = 'refl' Refraction = 'refr' Normal = 'normal' Bump = 'bump' Subsurface = 'sss' Opacity = 'opacity' Emission = 'emission' Displacement = 'disp' AmbientOcclusion = 'ao' __labels = None @staticmethod def allTypes(): return ( MapType.Unknown, MapType.Thumbnail, MapType.Diffuse, MapType.Roughness, MapType.Glossiness, MapType.Metalness, MapType.Reflection, MapType.Refraction, MapType.Normal, MapType.Bump, MapType.Subsurface, MapType.Opacity, MapType.Emission, MapType.Displacement, MapType.AmbientOcclusion ) @staticmethod def typeName(map_type): return { MapType.Unknown: 'Unknown', MapType.Thumbnail: 'Thumbnail', MapType.Diffuse: 'Diffuse', MapType.Roughness: 'Roughness', MapType.Glossiness: 'Glossiness', MapType.Metalness: 'Metalness', MapType.Reflection: 'Reflection', MapType.Refraction: 'Refraction', MapType.Normal: 'Normal', MapType.Bump: 'Bump', MapType.Subsurface: 'Subsurface', MapType.Opacity: 'Opacity', MapType.Emission: 'Emission', MapType.Displacement: 'Displacement', MapType.AmbientOcclusion: 'Ambient Occlusion' }[map_type] @staticmethod def allLabels(reload=False): if not reload and MapType.__labels is not None: return MapType.__labels with connect() as connection: cursor = connection.execute('SELECT * FROM map_types_labels') labels = {map_type: [] for map_type in MapType.allTypes()} for data in cursor.fetchall(): map_type = data['map_type'] label = data['label'] labels[map_type].append(label) MapType.__labels = {map_type: tuple(labels) for map_type, labels in labels.items()} return MapType.__labels @staticmethod def labels(map_type, reload=False): if not reload and MapType.__labels is not None and map_type in MapType.__labels: return MapType.__labels[map_type] with connect() as connection: cursor = connection.execute('SELECT label FROM map_types_labels WHERE map_type = :map_type', {'map_type': map_type}) labels = tuple(row['label'] for row in cursor.fetchall()) if MapType.__labels: MapType.__labels[map_type] = labels return labels @staticmethod def mapType(name): name_tokens = alphaNumericTokens(name.lower())[::-1] found_pos = float('+inf') found_type = None for map_type, tags in MapType.allLabels().items(): for tag in tags: if tag in name_tokens: pos = name_tokens.index(tag) if pos > found_pos: continue elif pos == found_pos: raise AssertionError('Found intersections between tags in different map types.') found_pos = pos found_type = map_type break return found_type or MapType.Unknown DEFAULT_MAP_TYPES_LABELS = { MapType.Unknown: (), MapType.Thumbnail: ('thumbnail', 'thumb', 'preview'), MapType.Diffuse: ('diffuse', 'diff', 'albedo', 'basecolor', 'color'), MapType.Roughness: ('roughness', 'rough'), MapType.Glossiness: ('glossiness', 'gloss'), MapType.Metalness: ('metalness', 'metallic', 'metal'), MapType.Reflection: ('reflection', 'refl', 'specular', 'spec'), MapType.Refraction: ('refraction', 'refr', 'transparency'), MapType.Normal: ('normal', 'norm'), MapType.Bump: ('bump',), MapType.Subsurface: ('subsurface', 'sss'), MapType.Opacity: ('opacity', 'alpha', 'cutout'), MapType.Emission: ('emission', 'emissive'), MapType.Displacement: ('displacement', 'disp', 'height'), MapType.AmbientOcclusion: ('ambientocclusion', 'ambient', 'occlusion', 'ao') }
"""This module proposes Pytorch style LightningModule classes for the gnn use-case.""" # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import pytorch_lightning as pl from pytorch_lightning.utilities.cli import MODEL_REGISTRY import torch import torch.nn as nn import torch_geometric as pyg import torch_optimizer as optim import torchmetrics.functional as tmf from typing import List, Tuple import plotters class CombustionModule(pl.LightningModule): """ Contains the basic logic meant for all GNN-like models experiments. Loss is MSE and the metric of interest is R2 determination score. """ def __init__(self): """Init the CombustionModule class.""" super().__init__() self.grid_shape = None def forward(self, x_val: torch.Tensor, edge_index: torch.Tensor) -> torch.Tensor: """Compute the forward pass. Args: x_val (torch.Tensor): Nodes features. edge_index (torch.Tensor): Connectivity matrix. Returns: (torch.Tensor): Resulting model forward pass. """ return self.model(x_val, edge_index) def _common_step(self, batch: torch.Tensor, batch_idx: int, stage: str) -> List[torch.Tensor]: """Define the common operations performed on data.""" batch_size = batch.ptr[0] - 1 y_hat = self(batch.x, batch.edge_index) loss = tmf.mean_squared_error(y_hat, batch.y) r2 = tmf.r2_score(y_hat, batch.y) self.log(f"{stage}_loss", loss, prog_bar=True, on_step=True, batch_size=batch_size) self.log(f"{stage}_r2", r2, on_step=True, batch_size=batch_size) return y_hat, loss, r2 def training_step(self, batch: torch.Tensor, batch_idx: int) -> torch.Tensor: """Compute one training step. Args: batch (torch.Tensor): Batch containing nodes features and connectivity matrix. batch_idx (int): Batch index. Returns: (torch.Tensor): Loss. """ _, loss, _ = self._common_step(batch, batch_idx, "train") return loss def validation_step(self, batch: torch.Tensor, batch_idx: int) -> None: """Compute one validation step. Args: batch (torch.Tensor): Batch containing nodes features and connectivity matrix. batch_idx (int): Batch index. """ y_hat, _, _ = self._common_step(batch, batch_idx, "val") def test_step(self, batch: torch.Tensor, batch_idx: int) -> Tuple[torch.Tensor]: """Compute one testing step. Additionally, also generates outputs to plots for the test Dataset. Args: batch (torch.Tensor): Batch containing nodes features and connectivity matrix. batch_idx (int): Batch index. Returns: (Tuple[torch.Tensor]): (Ground truth, Predictions) """ y_hat, _, _ = self._common_step(batch, batch_idx, "test") pos = np.stack(batch.pos.cpu().numpy()) x_max = np.max(pos[:, 0:1]) y_max = np.max(pos[:, 1:2]) z_max = np.max(pos[:, 2:3]) if not self.grid_shape: self.grid_shape = (x_max + 1, y_max + 1, z_max + 1) return batch.y, y_hat def test_epoch_end(self, outputs: list) -> None: """Gather all the outputs from the test_step to plot the test Dataset. Args: outputs (List[Tuple[torch.Tensor]]): all batches containing a pair of (ground truth, prediction) """ ys = list() y_hats = list() for out in outputs: ys.append(out[0]) y_hats.append(out[1]) self.ys = np.asarray([t.cpu().numpy().reshape((-1,) + self.grid_shape) for t in ys]) self.y_hats = np.asarray([t.cpu().numpy().reshape((-1,) + self.grid_shape) for t in y_hats]) self.plotter = plotters.Plotter(self.model.__class__.__name__, self.grid_shape) self.plotter.cross_section(self.plotter.zslice, self.ys, self.y_hats) self.plotter.dispersion_plot(self.ys, self.y_hats) self.plotter.histo(self.ys, self.y_hats) self.plotter.histo2d(self.ys, self.y_hats) self.plotter.boxplot(self.ys, self.y_hats) def configure_optimizers(self) -> optim.Optimizer: """Set the model optimizer. Returns: (torch_optimizer.Optimizer): Optimizer """ return optim.AdamP(self.parameters(), lr=self.lr) @MODEL_REGISTRY class LitGAT(CombustionModule): """Graph-ATtention net as described in the “Graph Attention Networks” paper.""" def __init__(self, in_channels: int, hidden_channels: int, out_channels: int, num_layers: int, dropout: float, heads: int, jk: str, lr: float) -> None: """Init the LitGAT class.""" super().__init__() self.save_hyperparameters() self.lr = lr self.model = pyg.nn.GAT(in_channels=in_channels, hidden_channels=hidden_channels, out_channels=out_channels, num_layers=num_layers, dropout=dropout, act=nn.SiLU(inplace=True), heads=heads, jk=jk) @MODEL_REGISTRY class LitGCN(CombustionModule): """Classic stack of GCN layers. “Semi-supervised Classification with Graph Convolutional Networks”. """ def __init__(self, in_channels: int, hidden_channels: int, out_channels: int, num_layers: int, dropout: float, jk: str, lr: float) -> None: """Init the LitGCN.""" super().__init__() self.save_hyperparameters() self.lr = lr self.model = pyg.nn.GCN(in_channels=in_channels, hidden_channels=hidden_channels, out_channels=out_channels, num_layers=num_layers, dropout=dropout, jk=jk, act=nn.SiLU(inplace=True)) @MODEL_REGISTRY class LitGraphUNet(CombustionModule): """Graph-Unet as described in “Graph U-Nets”.""" def __init__(self, in_channels: int, hidden_channels: int, out_channels: int, depth: int, pool_ratios: float, lr: float) -> None: """Init the LitGraphUNet class.""" super().__init__() self.save_hyperparameters() self.lr = lr self.model = pyg.nn.GraphUNet(in_channels=in_channels, hidden_channels=hidden_channels, out_channels=out_channels, depth=depth, pool_ratios=pool_ratios, act=nn.SiLU(inplace=True)) @MODEL_REGISTRY class LitGIN(CombustionModule): """GNN implementation of “How Powerful are Graph Neural Networks?”.""" def __init__(self, in_channels: int, hidden_channels: int, out_channels: int, num_layers: int, dropout: float, lr: float) -> None: """Init the LitGIN class.""" super().__init__() self.save_hyperparameters() self.lr = lr self.model = pyg.nn.GIN(in_channels=in_channels, hidden_channels=hidden_channels, out_channels=out_channels, num_layers=num_layers, dropout=dropout, act=nn.SiLU(inplace=True))
import numpy as np from tensorflow.keras.utils import to_categorical from sklearn.utils import class_weight import tensorflow as tf from matplotlib import pyplot as plt from tensorflow.keras.preprocessing.image import ImageDataGenerator import cv2 as cv import os import time from sklearn.utils import shuffle from sklearn.model_selection import train_test_split image_height=90 image_width=90 #encode expression to a unique number for classification def expression_to_label(expression): if expression == 'Neutral': return 0 if expression == 'Happiness': return 1 if expression == 'Fear': return 2 if expression == 'Surprise': return 3 if expression == 'Sadness': return 4 #load images and labels path='sorted_training_5' x_train=[] y_train=[] count=0 for expression in os.listdir(path): for image in os.listdir(os.path.join(path,expression)): img=cv.imread(os.path.join(path,expression,image),1) img=cv.resize(img,(image_height,image_width)) x_train.append(img) y_train.append(expression_to_label(expression)) count=count+1 print("Loaded: ", count) x_test=[] y_test=[] path1='sorted_validation_5' for expression in os.listdir(path1): for image in os.listdir(os.path.join(path1,expression)): img=cv.imread(os.path.join(path1,expression,image),1) img=cv.resize(img,(image_height,image_width)) x_test.append(img) y_test.append(expression_to_label(expression)) count=count+1 print("Loaded: ", count) x_train=np.array(x_train) y_train=np.array(y_train) x_test=np.array(x_test) y_test=np.array(y_test) #save in .npy format for future use #np.save('x_train_5.npy',x_train) #np.save('y_train_5.npy',y_train) #np.save('x_test_5.npy',x_test) #np.save('y_test_5.npy',y_test) #load the data # x_train=np.load('x_train_5.npy', allow_pickle=True) # y_train=np.load('y_train_5.npy',allow_pickle=True) # x_test=np.load('x_test_5.npy', allow_pickle=True) # y_test=np.load('y_test_5.npy',allow_pickle=True) print(x_train.shape) print(y_train.shape) print(x_test.shape) print(y_test.shape) #shuffle the data x_train,y_train=shuffle(x_train, y_train, random_state=0) x_test, y_test=shuffle(x_test, y_test, random_state=0) print(y_train) #normalize our pixel values x_train=x_train/255 x_test=x_test/255 #convert labels to one hot encodings y_train=to_categorical(y_train, num_classes=5) y_test=to_categorical(y_test, num_classes=5) print(x_train.shape) print(y_train.shape) print(x_test.shape) print(y_test.shape) #data augmentation to avoid overfitting datagen=ImageDataGenerator( rotation_range=20, width_shift_range=0.2, height_shift_range=0.2, horizontal_flip=True, zoom_range=0.15, fill_mode="nearest") #load pre-trained inceptionV3 model with imagenet weights inception=tf.keras.applications.InceptionV3( include_top=False, weights="imagenet", input_tensor=None, input_shape=(image_height, image_width,3), pooling='avg', classes=5, ) #freeze inception model so its weights doesn't get updated inception.trainaible=False #freeze some layer in inception model #for layer in model.layers[:249]: # layer.trainable = False #define own dense layers for classification of 5 classes x=inception.output x=tf.keras.layers.Dense(1024,activation='relu')(x) x=tf.keras.layers.Dense(512,activation='relu')(x) prediction=tf.keras.layers.Dense(5,activation='softmax')(x) #define our model model=tf.keras.Model(inputs=inception.input, outputs=prediction) #print summary print(model.summary()) print(len(model.layers)) #compile the model model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) #fit the model #history=model.fit(x_train, y_train, epochs=100, validation_data=(x_test, y_test), batch_size=256) history=model.fit_generator(datagen.flow(x_train, y_train, batch_size=256), epochs=100 , validation_data=(x_test, y_test)) #save final model #plot acc and val_acc model.save('final_model.h5') plt.plot(history.history['acc']) plt.plot(history.history['val_acc']) plt.title('Model Accuracy') plt.ylabel('acc') plt.xlabel('epochs') plt.legend(('acc','val_acc'), loc='upper left') plt.show() #plot loss and val_loss plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('Model loss') plt.ylabel('loss') plt.xlabel('epochs') plt.legend(('loss','val_loss'), loc='upper left') plt.show() print("Max validation accuracy: ", max(history.history['val_acc'])) print("Max Training Accuracy: ", max(history.history['acc']))
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # Log server import socket import threading import sys import time from datetime import date HOST = '' # Symbolic name meaning the local host PORT = 50007 # Arbitrary non-privileged port if len(sys.argv) > 2: print "usage : %s [port]" % (sys.argv[0]) sys.exit(-2) elif len(sys.argv) == 2: # The user has specified a port number, try to use it. try: PORT = int(sys.argv[1]) except: print "Invalid port no. %s specified" % (sys.argv[1]) sys.exit(-1) # Check if the port falls in the valid range. if PORT > 65535 or PORT < 0: print " port number cannot exceed 65535 or lesser than 0" sys.exit(-1) print "Trying to use port ", PORT else: print " Port not specified Using default port " , PORT class Worker(threading.Thread): def __init__(self, conn, address): threading.Thread.__init__(self) self.conn = conn self.address = address self.filename = time.strftime("%d-%b-%Y-%H-%M-%S.log",time.localtime()) self.file = open(self.filename,'w') self.runFlag = 1 def run(self): print 'Log filename is ',self.filename while self.runFlag: data = self.conn.recv(1024) if not data: break self.file.write(data) #self.file.write('\n') self.file.flush() if len(data): print data #print "\n" #new line. self.conn.close() self.file.close() print "Connection closed :" , self.address # --------------------- main() ---------------------- try: # create the socket s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.setsockopt(socket.SOL_SOCKET,socket.SO_REUSEADDR,1) # bind to the indicated port. s.bind((HOST, PORT)) s.listen(5) workers = [] while 1: print "Waiting for connections on Port %d ....." % PORT conn, addr = s.accept() print 'Connected by', addr worker = Worker(conn,addr) worker.start() workers.append(worker) except : print 'caught an exception, exiting...' print "Exception Details:", sys.exc_info()[0], sys.exc_info() [1] sys.exit(-2)
from setuptools import setup from os import path import re def read(fname): return open(path.join(path.dirname(__file__), fname)).read() def get_version(): with open('CHANGELOG.rst') as changelog: for line in changelog: if re.match(r'^\d+\.\d+\.\d+$', line): return line setup( name='py-toolbox', version=get_version(), author='Daniel Grießhaber', author_email='[email protected]', url='https://github.com/dangrie158/py-toolbox', packages=['pytb', 'pytb.test'], include_package_data=True, license='MIT', description='A collection of commonly used python snippets', long_description=read('README.rst'), long_description_content_type='text/markdown', classifiers=[ 'Development Status :: 1 - Planning', 'Topic :: Utilities', 'License :: OSI Approved :: MIT License', ], entry_points = { 'console_scripts': ['pytb=pytb.__main__:main'], } )
""" Astra API client ``` from astra import Astra ``` """ from .client import Astra __all__ = ["Astra"]
import unittest class TestDummy(unittest.TestCase): def test_import(self): pass def test_failure(self): self.assert(False)
import numpy as np import cv2 import math import matplotlib.pyplot as plt # import os # import pandas as pd import glob import seaborn as sns from tqdm import tqdm import matplotlib as mpl # import warnings; warnings.filterwarnings(action='once') large = 22 med = 16 small = 12 params = {'legend.fontsize': med, 'figure.figsize': (16, 10), 'axes.labelsize': med, 'axes.titlesize': med, 'xtick.labelsize': med, 'ytick.labelsize': med, 'figure.titlesize': large} plt.rcParams.update(params) plt.style.use('seaborn-whitegrid') sns.set_style("white") # %matplotlib inline # Version print(mpl.__version__) # > 3.0.0 print(sns.__version__) # > 0.9.0 def estimateStandardDeviation(image): """ Estimate the standard deviation of the image. Parameters ---------- image : ndarray Image to estimate the standard deviation. Returns ------- float The standard deviation of the image. """ width, height = image.shape operator = laplaceElement() return np.sqrt(math.pi / 2) * 1 / (6 * (width-2) * (height-2)) * np.sum(np.abs(cv2.filter2D(image, -1, operator))) def laplaceElement(): """ Create a Laplace filter element. Returns ------- ndarray Laplace filter element. """ L1 = np.array([[0, 1, 0], [1, -4, 1], [0, 1, 0]], dtype=np.float) L2 = np.array([[1, 0, 1], [0, -4, 0], [1, 0, 1]], dtype=np.float) return L2 - 2*L1 def check_noise(file_path, thresh=0.1): """ Check if the file is noise or not. Parameters ---------- file_path : str Path to the file. Returns ------- bool True if the file is noise, False if not. """ img = cv2.imread(file_path, 0) sigma_n = estimateStandardDeviation(img) if sigma_n < thresh: return False else: return True def readImagefromFolder(folder="/home/nguyentansy/PhD-work/PhD-project/2021/src/Pre-processing/Isotropic/data/labeled-images/"): sigma_list1 = [] sigma_list2 = [] for filename in tqdm(glob.glob("%s/*/*/*/*" % folder)): img = cv2.imread(filename, 0) sigma_n = estimateStandardDeviation(img) sigma_list1.append(sigma_n) for filename in tqdm(glob.glob("%s/*/pathological-findings/*/*" % folder)): img = cv2.imread(filename, 0) sigma_n = estimateStandardDeviation(img) sigma_list2.append(sigma_n) return sigma_list1, sigma_list2 def plotHistogram(arr, arr2): """ Plot the histogram of the array. Parameters ---------- arr : ndarray Array to plot the histogram. """ # plt.hist(arr.ravel(), 256, [0, 256]) # plt.show() # Draw Plot plt.figure(figsize=(13, 10), dpi=80) sns.histplot(arr, color="g", label="labeled images") sns.histplot(arr2, label="pathological findings", color="orange") # plt.ylim(0, 0.35) plt.xticks(np.arange(0, 2, 0.05), rotation=45) # Decoration plt.title('Noise standard deviation analysis', fontsize=22) plt.legend() filesave = "/home/nguyentansy/PhD-work/PhD-project/2021/src/Pre-processing/Isotropic/Noise/src/denoising_rgb/results/sigmahist.png" plt.savefig(filesave) if __name__ == "__main__": sigma_list1, sigma_list2 = readImagefromFolder() plotHistogram(sigma_list1, sigma_list2)
from parameterized import parameterized_class from zkay.examples.examples import all_examples from zkay.tests.utils.test_examples import TestExamples from zkay.zkay_ast.build_ast import build_ast from zkay.zkay_ast.visitor.deep_copy import deep_copy @parameterized_class(('name', 'example'), all_examples) class TestParentSetter(TestExamples): def test_deep_copy(self): ast = build_ast(self.example.code()) ast_2 = deep_copy(ast) self.assertEqual(str(ast), str(ast_2))
import komand from .schema import QueryInput, QueryOutput # Custom imports below import json import ldap3 class Query(komand.Action): def __init__(self): super(self.__class__, self).__init__( name='query', description='Run a LDAP query', input=QueryInput(), output=QueryOutput()) def run(self, params={}): conn = self.connection.conn conn.search(search_base=params.get('search_base'), search_filter=params.get('search_filter'), attributes=[ldap3.ALL_ATTRIBUTES, ldap3.ALL_OPERATIONAL_ATTRIBUTES] ) result_list_json = conn.response_to_json() result_list_object = json.loads(result_list_json) entries = result_list_object["entries"] return {'results': entries}
# Generated with AdditionalFileFormatCode # from enum import Enum from enum import auto class AdditionalFileFormatCode(Enum): """""" BINARY_OUTPUT = auto() ASCII_OUTPUT = auto() def label(self): if self == AdditionalFileFormatCode.BINARY_OUTPUT: return "Binary format" if self == AdditionalFileFormatCode.ASCII_OUTPUT: return "ASCII format"
# -*- coding: utf-8 -*- """Module with SecureCRT parser.""" from os.path import expanduser class SecureCRTConfigParser(object): """SecureCRT xml parser.""" meta_sessions = ['Default'] def __init__(self, xml): """Construct parser instance.""" self.xml = xml self.tree = {} def parse_hosts(self): """Parse SecureCRT Sessions.""" sessions = self.get_element_by_name( self.xml.getchildren(), 'Sessions' ).getchildren() self.parse_sessions(sessions, self.tree) return self.tree def parse_sessions(self, sessions, parent_node): """Parse SecureCRT sessions.""" for session in sessions: if session.get('name') not in self.meta_sessions: if not self.is_session_group(session): host = self.make_host(session) if not host: continue parent_node[host['label']] = host else: parent_node[session.get('name')] = {'__group': True} self.parse_sessions( session.getchildren(), parent_node[session.get('name')] ) def is_session_group(self, session): """Check node element type""" return self.get_element_by_name( session.getchildren(), 'Hostname' ) is None def parse_identity(self): """Parse SecureCRT SSH2 raw key.""" identity = self.get_element_by_name( self.xml.getchildren(), 'SSH2' ) if identity is None: return None identity_filename = self.get_element_by_name( identity.getchildren(), 'Identity Filename V2' ) if not self.check_attribute(identity_filename): return None path = identity_filename.text.split('/') public_key_name = path[-1].split('::')[0] private_key_name = public_key_name.split('.')[0] if path[0].startswith('$'): path.pop(0) path.insert(0, expanduser("~")) path[-1] = public_key_name public_key_path = '/'.join(path) path[-1] = private_key_name private_key_path = '/'.join(path) return private_key_path, public_key_path def make_host(self, session): """Adapt SecureCRT Session to Termius host.""" session_attrs = session.getchildren() hostname = self.get_element_by_name(session_attrs, 'Hostname') port = self.get_element_by_name(session_attrs, '[SSH2] Port') username = self.get_element_by_name(session_attrs, 'Username') if not self.check_attribute(hostname): return None return { 'label': session.get('name'), 'hostname': hostname.text, 'port': port.text if self.check_attribute(port) else '22', 'username': username.text if self.check_attribute(username) else None } def check_attribute(self, attr): """Check an attribute.""" return attr is not None and attr.text def get_element_by_name(self, elements, name): """Get SecureCRT config block.""" for element in elements: if element.get('name') == name: return element return None
import os import click import configobj class configobj_provider: """ A parser for configobj configuration files Parameters ---------- unrepr : bool Controls whether the file should be parsed using configobj's unrepr mode. Defaults to `True`. section : str If this is set to something other than the default of `None`, the provider will look for a corresponding section inside the configuration file and return only the values from that section. """ def __init__(self, unrepr=True, section=None): self.unrepr = unrepr self.section = section """ Parse and return the configuration parameters. Parameters ---------- file_path : str The path to the configuration file cmd_name : str The name of the click command Returns ------- dict A dictionary containing the configuration parameters. """ def __call__(self, file_path, cmd_name): config = configobj.ConfigObj(file_path, unrepr=self.unrepr) if self.section: config = config[self.section].dict() return config def configuration_option(*param_decls, **attrs): """ Adds configuration file support to a click application. This will create an option of type `click.File` containing the path to a configuration file. It will overwrite the default values for all other click arguments or options with the corresponding value from the configuration file. The default name of the option is `--config`. By default the configuration is read from a file with the name `config` inside the configuration directory as determined by `click.get_app_dir`. This decorator accepts the same arguments as `click.option` and `click.Path`. In addition, the following keyword arguments are available: cmd_name : str The command name. This is used to determine the configuration directory. Defaults to `ctx.info_name` config_file_name : str The name of the configuration file. Defaults to `config` provider : callable A callable that parses the configuration file and returns a dictionary of the configuration parameters. Will be called as `provider(file_path, cmd_name)`. Default: `configobj_provider()` """ def decorator(f): def callback(ctx, param, value): nonlocal cmd_name, config_file_name, saved_callback, provider if not ctx.default_map: ctx.default_map = {} if not cmd_name: cmd_name = ctx.info_name default_value = os.path.join( click.get_app_dir(cmd_name), config_file_name) param.default = default_value if not value: value = default_value try: config = provider(value, cmd_name) except Exception as e: raise click.BadOptionUsage( "Error reading configuration file: {}".format(e), ctx) ctx.default_map.update(config) return saved_callback(ctx, param, value) if saved_callback else value attrs.setdefault('is_eager', True) attrs.setdefault('help', 'Read configuration from PATH.') attrs.setdefault('expose_value', False) cmd_name = attrs.pop('cmd_name', None) config_file_name = attrs.pop('config_file_name', 'config') provider = attrs.pop('provider', configobj_provider()) path_default_params = { 'exists': False, 'file_okay': True, 'dir_okay': False, 'writable': False, 'readable': True, 'resolve_path': False } path_params = { k: attrs.pop(k, v) for k, v in path_default_params.items() } attrs['type'] = click.Path(**path_params) saved_callback = attrs.pop('callback', None) attrs['callback'] = callback return click.option(*(param_decls or ('--config', )), **attrs)(f) return decorator
# -*- coding: utf-8 -*- """ @author : Wang Meng @github : https://github.com/tianpangji @software : PyCharm @file : notification.py @create : 2020/11/17 22:11 """ import threading import time from django.conf import settings from redis import StrictRedis from monitor.models import OnlineUsers def online_user_notifications(): """ 在线用户, redis key过期后空间通知 :return: None """ conn = StrictRedis(host=settings.REDIS_HOST, port=settings.REDIS_PORT, db=3, password=settings.REDIS_PWD) pub_sub = conn.pubsub() def user_offline(msg): online_user_key = msg.get('data').decode() user_list = str(online_user_key).split('_') OnlineUsers.objects.filter(user=user_list[2], ip=user_list[3]).delete() pub_sub.psubscribe(**{'__keyevent@3__:expired': user_offline}) while 1: pub_sub.get_message() time.sleep(0.2) t = threading.Thread(target=online_user_notifications) t.setDaemon(True) t.start()
""" Sphinx inplace translation. Please put `xxx_zh_CN.rst` alongside `xxx.rst`. When language is set to `zh_CN`, `xxx_zh_CN.rst` will be used in place of `xxx.rst`. If translation does not exist, it will automatically fallback to the original files, without warning. I write this based on the example of: https://github.com/readthedocs/sphinxcontrib-multisrc/blob/master/sphinxcontrib/multisrc.py """ import os import types def builder_inited(app): """Event listener to set up multiple environments.""" patch_doc2path(app.env, app.config.language) def patch_doc2path(env, language): # patch doc2path so that it resolves to the correct language. override_doc2path = env.doc2path def doc2path(env, docname: str, base: bool = True): path = override_doc2path(docname, base) if language not in (None, 'en'): # The language is set to another one new_docname = f'{docname}_{language}' new_path = override_doc2path(new_docname, base) if os.path.exists(new_path): return new_path return path env.doc2path = types.MethodType(doc2path, env) def setup(app): app.connect('builder-inited', builder_inited)
#%% from __future__ import print_function import argparse import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.optim.optimizer import Optimizer from torchvision import datasets, transforms from torch.autograd import Variable from tqdm import tqdm # import Simulated annealing optimizer from sa import UniformSampler, GaussianSampler #%% # Training settings # parser = argparse.ArgumentParser(description='PyTorch MNIST Example') # parser.add_argument('--batch-size', type=int, default=64, metavar='N', # help='input batch size for training (default: 64)') # parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', # help='input batch size for testing (default: 1000)') # parser.add_argument('--epochs', type=int, default=10, metavar='N', # help='number of epochs to train (default: 10)') # parser.add_argument('--lr', type=float, default=0.01, metavar='LR', # help='learning rate (default: 0.01)') # parser.add_argument('--momentum', type=float, default=0.5, metavar='M', # help='SGD momentum (default: 0.5)') # parser.add_argument('--no-cuda', action='store_true', default=False, # help='disables CUDA training') # parser.add_argument('--seed', type=int, default=1, metavar='S', # help='random seed (default: 1)') # parser.add_argument('--log-interval', type=int, default=10, metavar='N', # help='how many batches to wait before logging training status') # args = parser.parse_args() args = {'batch_size': 64, 'test_batch_size': 1000, 'epochs': 10, 'lr': 0.01, 'momentum': 0.9, 'no_cuda': False, 'seed': 1, 'log_interval': 10} #%% args['cuda'] = not args['no_cuda'] and torch.cuda.is_available() device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print('Using device:', device) print() torch.manual_seed(args['seed']) if args['cuda']: torch.cuda.manual_seed(args['seed']) #%% kwargs = {'num_workers': 1, 'pin_memory': True} if args['cuda'] else {} train_loader = torch.utils.data.DataLoader( datasets.MNIST('./data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=args['batch_size'], shuffle=True, **kwargs) test_loader = torch.utils.data.DataLoader( datasets.MNIST('./data', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=args['test_batch_size'], shuffle=True, **kwargs) class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, 320) x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) return F.log_softmax(x) model = Net() if args['cuda']: model.cuda() class SimulatedAnnealing(Optimizer): def __init__(self, params, sampler, tau0=1.0, anneal_rate=0.0003, min_temp=1e-5, anneal_every=100000, hard=False, hard_rate=0.9, decay_rate=0.9): defaults = dict(sampler=sampler, tau0=tau0, tau=tau0, anneal_rate=anneal_rate, min_temp=min_temp, anneal_every=anneal_every, hard=hard, hard_rate=hard_rate, decay_rate = decay_rate, iteration=0) super(SimulatedAnnealing, self).__init__(params, defaults) def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ if closure is None: raise Exception("loss closure is required to do SA") loss = closure() for group in self.param_groups: # the sampler samples randomness # that is used in optimizations sampler = group['sampler'] # clone all of the params to keep in case we need to swap back cloned_params = [p.clone() for p in group['params']] for p in group['params']: # anneal tau if it matches the requirements if group['iteration'] > 0 \ and group['iteration'] % group['anneal_every'] == 0: if not group['hard']: # smoother annealing: consider using this over hard annealing rate = -group['anneal_rate'] * group['iteration'] group['tau'] = np.maximum(group['tau0'] * np.exp(rate), group['min_temp']) else: # hard annealing group['tau'] = np.maximum(group['hard_rate'] * group['tau'], group['min_temp']) decay_rate = np.exp(-group['decay_rate']) random_perturbation = decay_rate*group['sampler'].sample(p.data.size()) p.data = p.data / torch.norm(p.data) p.data.add_(random_perturbation) group['iteration'] += 1 # re-evaluate the loss function with the perturbed params # if we didn't accept the new params swap back and return loss_perturbed = closure(weight=self.param_groups) final_loss, is_swapped = self.anneal(loss, loss_perturbed, group['tau']) if is_swapped: for p, pbkp in zip(group['params'], cloned_params): p.data = pbkp.data return final_loss def anneal(self, loss, loss_perturbed, tau): '''returns loss, is_new_loss''' def acceptance_prob(old, new, temp): return torch.exp((old - new)/temp) # print(loss_perturbed.shape) if loss_perturbed.item() < loss.item(): return loss_perturbed, True else: # evaluate the metropolis criterion ap = acceptance_prob(loss, loss_perturbed, tau) print("old = ", loss.item(), "| pert = ", loss_perturbed.item(), " | ap = ", ap.item(), " | tau = ", tau) if ap.item() > np.random.rand(): return loss_perturbed, True # return the original loss if above fails # or if the temp is now annealed return loss, False # sampler = UniformSampler(minval=-0.5, maxval=0.5, cuda=args['cuda']) sampler = GaussianSampler(mu=0, sigma=1, cuda=args['cuda']) optimizer = SimulatedAnnealing(model.parameters(), sampler=sampler) #%% def train(epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): if args['cuda']: data, target = data.cuda(), target.cuda() data, target = Variable(data), Variable(target) def closure(weight=None): if torch.is_grad_enabled(): optimizer.zero_grad() if (weight is not None): state_dict = model.state_dict() keys = list(state_dict.keys()) for key_idx, key in enumerate(keys): # print(state_dict[key]) # print(weight_new[0]['params']) state_dict[key] = weight[0]['params'][key_idx] model.load_state_dict(state_dict) outputs = model(data) loss = F.nll_loss(outputs, target) if loss.requires_grad: loss.backward(retain_graph=True) return loss loss = optimizer.step(closure) if batch_idx % args['log_interval'] == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) def test(): model.eval() test_loss = 0 correct = 0 for data, target in test_loader: if args['cuda']: data, target = data.cuda(), target.cuda() data, target = Variable(data, volatile=True), Variable(target) output = model(data) test_loss += F.nll_loss(output, target, size_average=False).item() # sum up batch loss pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability correct += pred.eq(target.data.view_as(pred)).cpu().sum() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) for epoch in range(1, args['epochs'] + 1): train(epoch) test() # %%
#!/usr/bin/env python ##Copyright 2008-2013 Jelle Feringa ([email protected]) ## ##This file is part of pythonOCC. ## ##pythonOCC is free software: you can redistribute it and/or modify ##it under the terms of the GNU Lesser General Public License as published by ##the Free Software Foundation, either version 3 of the License, or ##(at your option) any later version. ## ##pythonOCC is distributed in the hope that it will be useful, ##but WITHOUT ANY WARRANTY; without even the implied warranty of ##MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ##GNU Lesser General Public License for more details. ## ##You should have received a copy of the GNU Lesser General Public License ##along with pythonOCC. If not, see <http://www.gnu.org/licenses/> from OCC.Core.TopoDS import TopoDS_Wire from OCCUtils.base import BaseObject class Wire(TopoDS_Wire, BaseObject): def __init__(self, wire): ''' ''' assert isinstance(wire, TopoDS_Wire), 'need a TopoDS_Wire, got a %s' % wire.__class__ assert not wire.IsNull() super(Wire, self).__init__() BaseObject.__init__(self, 'wire') # we need to copy the base shape using the following three # lines assert self.IsNull() self.TShape(wire.TShape()) self.Location(wire.Location()) self.Orientation(wire.Orientation()) assert not self.IsNull()
#!/usr/bin/env python #This is the Modelling Code for ITU Rover Team ##This code takes pictures with pressing space bar and mark the gps data to their exif's. ###This code is the primary code for modelling and scaling for science task that will be done on another operating system. import numpy as np import imutils import rospy from std_msgs.msg import String from geometry_msgs.msg import Twist def main(): twist = Twist() twist.linear.x = 0 twist.angular.z = 0 count = 0 rospy.init_node('cmd_vel_zero') rate = rospy.Rate(10) pub = rospy.Publisher('/cmd_vel',Twist,queue_size=10) while not rospy.is_shutdown(): pub.publish(twist) count +=1 if count >5: break rate.sleep() if __name__ == '__main__': main()
import click from .. import di from .. import tag cli = click.Group('tag') OK_COLOR = 'green' WARN_COLOR = 'yellow' ERR_COLOR = 'red' TAG_STATUS_COLORS = { tag.TagStatus.correct: OK_COLOR, tag.TagStatus.incorrect: ERR_COLOR, tag.TagStatus.missing: ERR_COLOR, } def tags_with_status(tags, desired_status): return [tag_name for tag_name, tag_status in tags.items() if tag_status == desired_status] def describe_tags_status(tags_status): output = [] for status_name, status in ( ('missing', tag.TagStatus.missing), ('incorrect', tag.TagStatus.incorrect), ('correct', tag.TagStatus.correct)): matching_tags = tags_with_status(tags_status, status) if not matching_tags: continue color = TAG_STATUS_COLORS[status] output_str = '{n} tags {status_name}'.format( n=len(matching_tags), status_name=status_name) output.append( click.style(output_str, fg=color)) return ', '.join(output) def tags_not_correct_by_inst(instances_tags_status): return { inst: [ tag_name for tag_name, tag_status in tags.items() if tag_status is not tag.TagStatus.correct] for inst, tags in instances_tags_status.items()} def inst_with_tags_not_correct(instances_tags_status): return [inst for inst, tags in tags_not_correct_by_inst(instances_tags_status).items() if len(tags)] def tags_not_correct(instances_tags_status): return sum( tags_not_correct_by_inst(instances_tags_status).values(), []) @cli.command() def check(): tags = tag.get_required_tags() instances = tag.get_instances_for_config() instances_tags_status = tag.get_instances_tags_status(instances, tags) for inst in instances: click.echo('Instance: {}'.format(inst.id)) inst_name = inst.tags.get('Name') if inst_name: click.echo(' Name: {}'.format(inst_name)) inst_descript = inst.tags.get('Description') if inst_descript: click.echo(' Description: {}'.format(inst_descript)) tags_status = instances_tags_status[inst] click.echo(describe_tags_status(tags_status)) click.echo() inst_need_tagging = inst_with_tags_not_correct(instances_tags_status) tags_to_apply = tags_not_correct(instances_tags_status) if inst_need_tagging or tags_to_apply: click.secho( '{} instances need tagging \n' '{} tags total need to be applied'.format( len(inst_need_tagging), len(tags_to_apply)), fg=WARN_COLOR) else: click.secho('No tagging needed', fg=OK_COLOR) @cli.command() def apply(): tags = tag.get_required_tags() instances = tag.get_instances_for_config() instances_tags_status = tag.get_instances_tags_status(instances, tags) inst_need_tagging = inst_with_tags_not_correct(instances_tags_status) for inst in inst_need_tagging: click.echo('Adding tags for {}'.format(inst.id)) inst.add_tags(tags)
# -*- coding: utf-8 -*- """ Helper functions used in views. """ import calendar import csv import logging import time import threading from collections import OrderedDict from datetime import datetime from functools import wraps import xml.etree.ElementTree as ET from json import dumps from flask import Response from presence_analyzer.main import app log = logging.getLogger(__name__) # pylint: disable=invalid-name storage_cache = {} lock = threading.Lock() def jsonify(function): """ Creates a response with the JSON representation of wrapped function result. """ @wraps(function) def inner(*args, **kwargs): """ This docstring will be overridden by @wraps decorator. """ return Response( dumps(function(*args, **kwargs)), mimetype='application/json' ) return inner def memoize(storage=storage_cache, age_cache=0): """ Caching function. """ def _memoize(function): with lock: def __memoize(*args, **kw): key = function.__name__ try: expired = ( age_cache != 0 and (storage[key]['expire_time'] + age_cache) < time.time()) except KeyError: expired = True if not expired: return storage[key]['values'] storage[key] = { 'expire_time': time.time(), 'values': function(*args, **kw) } return storage[key]['values'] return __memoize return _memoize @memoize(age_cache=600) def get_data(): """ Extracts presence data from CSV file and groups it by user_id. It creates structure like this: data = { 'user_id': { datetime.date(2013, 10, 1): { 'start': datetime.time(9, 0, 0), 'end': datetime.time(17, 30, 0), }, datetime.date(2013, 10, 2): { 'start': datetime.time(8, 30, 0), 'end': datetime.time(16, 45, 0), }, } } """ data = {} with open(app.config['DATA_CSV'], 'r') as csvfile: presence_reader = csv.reader(csvfile, delimiter=',') for i, row in enumerate(presence_reader): if len(row) != 4: # ignore header and footer lines continue try: user_id = int(row[0]) date = datetime.strptime(row[1], '%Y-%m-%d').date() start = datetime.strptime(row[2], '%H:%M:%S').time() end = datetime.strptime(row[3], '%H:%M:%S').time() except (ValueError, TypeError): log.debug('Problem with line %d: ', i, exc_info=True) data.setdefault(user_id, {})[date] = {'start': start, 'end': end} return data def xml_translator(): """ Extracts user data from XML file. """ tree = ET.parse(app.config['XML_DATA']) root = tree.getroot() root_server = root.find('server') protocol = root_server.find('protocol').text host = root_server.find('host').text port = root_server.find('port').text url = protocol + '://' + host + ':' + port root_user = [root.find('users')] data = {} for user in root_user[0].findall('user'): name = user.find('name').text avatar = user.find('avatar').text id_user = user.get('id') data[int(id_user)] = {'name': name, 'avatar': url + avatar} return data def group_by_weekday(items): """ Groups presence entries by weekday. """ result = [[], [], [], [], [], [], []] # one list for every day in week for date in items: start = items[date]['start'] end = items[date]['end'] result[date.weekday()].append(interval(start, end)) return result def seconds_since_midnight(date): """ Calculates amount of seconds since midnight. """ return date.hour * 3600 + date.minute * 60 + date.second def interval(start, end): """ Calculates inverval in seconds between two datetime.time objects. """ return seconds_since_midnight(end) - seconds_since_midnight(start) def mean(items): """ Calculates arithmetic mean. Returns zero for empty lists. """ return float(sum(items)) / len(items) if len(items) > 0 else 0 def day_start_end(items): """ Groups times of start and end work at weekday. """ weekdays = [[] for day in xrange(7)] for date in items: start = seconds_since_midnight(items[date]['start']) end = seconds_since_midnight(items[date]['end']) weekdays[date.weekday()].append([start, end]) days = calendar.day_abbr results = [] for day in days: start = [] end = [] for item in weekdays[len(results)]: if item != []: start.append(item[0]) end.append(item[1]) results.append([day, mean(start), mean(end)]) return results def podium_data_maker(user): """ Groups presence entries as podium data. """ months = [[] for month in xrange(12)] for item in user: start = user[item]['start'] end = user[item]['end'] months[item.month].append(interval(start, end)) months[item.month] = [sum(months[item.month])] results = podium_result_structure_builder(months) return sorted(results, key=lambda time: time[1]) def podium_result_structure_builder(months): """ Building results for podium template. """ results = [] for item in months: try: results.append( [ calendar.month_name[months.index(item)], item[0] / 3600 ] ) except: results.append(['no data', 0]) return results def months_sum_dict(year, items, item, user, months): """ Append and sum time for every month. """ if item.year == year: start = items[user][item]['start'] end = items[user][item]['end'] months[item.month].append(interval(start, end)) months[item.month] = [sum(months[item.month])] else: pass return months def user_validate(months_sum, user): """ Check if user exist. """ result = [] try: xml_translator()[user] if months_sum == []: pass else: result.append({user: months_sum}) result = result[0] except: pass return result def group_by_month(items, year): """ Groups presence entries by month. """ results = [] for user in items: months = [[] for month in xrange(13)] for item in items[user]: months_sum = months_sum_dict(year, items, item, user, months) results.append(user_validate(months_sum, user)) return results def sorted_months_dict(dict_months): """ Sort months dict. """ sorted_dict = OrderedDict( sorted( dict_months, key=lambda x: x[1], reverse=True ) ) return sorted_dict def five_top_user_data(dict_months, sorted_dict): """ Collect data and append it to the top 5 user. """ id_top = list(sorted_dict.keys())[:5] results = [] for item in id_top: if dict(dict_months)[item] == 0 or len(id_top) < 5: return results else: try: results.append( { 'user_id': item, 'hours': dict(dict_months)[item][0] / 3600, 'name': xml_translator()[item]['name'], 'avatar': xml_translator()[item]['avatar'] } ) except: return results return results def five_top_workers(month, year): """ Top 5 presence users with information about them. """ dict_months = [] monthly_grouped = group_by_month(get_data(), year) for user in monthly_grouped: try: dict_months.append((user.items()[0][0], user.items()[0][1][month])) except: pass sorted_dict = sorted_months_dict(dict_months) return five_top_user_data(dict_months, sorted_dict)