content
stringlengths
5
1.05M
import os from typing import Dict from fluid.http import HttpClient from .repo import GithubRepo class Github(HttpClient): def __init__(self, token=None) -> None: self.token = token or get_token() @property def api_url(self): return "https://api.github.com" @property def uploads_url(self): return "https://uploads.github.com" def __repr__(self): return self.api_url __str__ = __repr__ def repo(self, repo_name: str) -> GithubRepo: return GithubRepo(self, repo_name) def default_headers(self) -> Dict[str, str]: headers = super().default_headers() if self.token: headers["authorization"] = f"token {self.token}" return headers def get_token() -> str: token = os.getenv("GITHUB_SECRET_TOKEN") or os.getenv("GITHUB_TOKEN") return token
import os from pm4py.objects.log.importer.xes import importer as xes_importer from pm4py.algo.discovery.inductive import algorithm as inductive_miner from pm4py.objects.petri.exporter import exporter as pnml_exporter from pm4py.visualization.petrinet import visualizer as pn_visualizer log = xes_importer.apply(os.path.join("logs", "log_augur_preprocessed.xes")) net, initial_marking, final_marking = inductive_miner.apply(log) pnml_exporter.apply( net, initial_marking, os.path.join("petri", "augur_preprocessed_discovered_petri.pnml"), final_marking=final_marking ) parameters = {pn_visualizer.Variants.WO_DECORATION.value.Parameters.FORMAT: "svg"} gviz = pn_visualizer.apply(net, initial_marking, final_marking, parameters=parameters) pn_visualizer.save(gviz, os.path.join("img", "augur_preprocessed_discovered_petri.svg"),)
from typing import List class Board: CONTINUE = -1 STALEMATE = 0 P_ONE_WIN = 1 P_TWO_WIN = 2 def __init__(self): self.board = self.col_count = None # Stop the inspections from complaining self.reset() @property def available_columns(self): return [i for i in range(7) if self.col_count[i] < 6] @property def game_state(self): """Returns state representing current game state""" # For now, brute force check all the rows, columns, and diagonals # Further optimization is needed # Check all rows for r in range(6): for c in range(4): section = self.board[r][c:c+4] four_in_a_row = self._four_in_a_row(section) if four_in_a_row: return four_in_a_row # Check all columns for c in range(7): for r in range(3): section = [self.board[i][c] for i in range(r, r+4)] four_in_a_row = self._four_in_a_row(section) if four_in_a_row: return four_in_a_row # Check all diagonals (\) direction for r in range(3): for c in range(4): section = [self.board[r+i][c+i] for i in range(4)] four_in_a_row = self._four_in_a_row(section) if four_in_a_row: return four_in_a_row # Check all diagonals (/) direction for r in range(3): for c in range(3, 7): section = [self.board[r+i][c-i] for i in range(4)] four_in_a_row = self._four_in_a_row(section) if four_in_a_row: return four_in_a_row # If board is full then stalemate if len(self.available_columns) == 0: return Board.STALEMATE return Board.CONTINUE def p_one_play(self, column) -> int: return self._play(column, 1) def p_two_play(self, column) -> int: return self._play(column, 2) def reset(self): self.board = [[0 for j in range(7)] for i in range(6)] self.col_count = [0 for i in range(7)] # Stores the number of pieces in each column def _play(self, column, piece) -> int: piece_count = self.col_count[column] # If column is filled, raise exception if piece_count >= 6: raise ValueError("Column " + str(column) + " is already full") row = 5 - piece_count # Find row to place piece self.board[row][column] = piece self.col_count[column] += 1 # Update number of pieces in column return row def _four_in_a_row(self, piece_sequence: List[int]) -> int: """Returns if and which player has a 4-in-a-row given the piece sequence""" piece_set = set(piece_sequence) # Convert sequence to set to filter out duplicates if len(piece_set) == 1: # If all pieces are of one type return piece_set.pop() # Return singular piece return 0 # No 4-in-a-row def __repr__(self): return '\n'.join([' '.join([str(piece) for piece in row]) for row in self.board])
import os import shutil import winbrew.util import zipfile import tarfile import urllib import subprocess class Archive: """ Archive describes the type of package to download. Typically, some kind of compressed file (tar, zip) or a git repository. """ @staticmethod def create(url, work_dir, package_name): ext = os.path.splitext(url)[1] name = os.path.split(url)[1] if ext == '.zip': return ZipArchive(url, work_dir, name) elif ext == '.gz': return TarArchive(url, work_dir, name, compression='gz') elif ext == '.tgz': return TarArchive(url, work_dir, name, compression='gz') elif ext == '.bz2': return TarArchive(url, work_dir, name, compression='bz2') elif ext == '.xz': return TarArchive(url, work_dir, name, compression='xz') elif ext == '.msi': return MsiArchive(url, work_dir, name) elif ext == '.git': return GitArchive(url, work_dir, package_name) else: raise Exception('unknown archive file type') def __init__(self, url, work_dir, name): self.url = url # Parent working directory in cache self.work_dir = work_dir # File name self.name = name # Full downloaded file path self.path = os.path.join(work_dir, name) def download(self): winbrew.util.rm_rf(self.work_dir) winbrew.util.mkdir_p(self.work_dir) with open(self.path, 'wb') as fd, self.urlopen() as stream: shutil.copyfileobj(stream, fd) def urlopen(self): headers = { 'User-Agent': 'Mozilla/5.0 (X11; U; Linux i686) Gecko/20071127 Firefox/2.0.0.11' } request = urllib.request.Request(self.url, headers=headers) return urllib.request.urlopen(request) def clean(self): for fn in os.listdir(self.work_dir): if fn != self.name: winbrew.util.rm_rf(os.path.join(self.work_dir, fn)) @property def unpack_dir(self): return os.path.join(self.work_dir, self.unpack_name) class ZipArchive(Archive): def __init__(self, url, work_dir, name): super(ZipArchive, self).__init__(url, work_dir, name) @property def unpack_name(self): with self.zipfile() as zf: return os.path.commonprefix(zf.namelist()) def zipfile(self): return zipfile.ZipFile(self.path) def unpack(self): with self.zipfile() as zf: zf.extractall(self.work_dir) class TarArchive(Archive): def __init__(self, url, work_dir, name, compression='gz'): super(TarArchive, self).__init__(url, work_dir, name) self.compression = compression @property def unpack_name(self): with self.tarfile() as tf: return os.path.commonprefix(tf.getnames()) def tarfile(self): return tarfile.open(self.path, mode='r:%s' % self.compression) def unpack(self): with self.tarfile() as tf: tf.extractall(self.work_dir) class MsiArchive(Archive): def __init__(self, url, work_dir, name, compression='gz'): super(MsiArchive, self).__init__(url, work_dir, name) @property def unpack_name(self): return '.' def unpack(self): self.system('msiexec /quiet /i %s' % self.path) class GitArchive(Archive): def __init__(self, url, work_dir, name): super(GitArchive, self).__init__(url, work_dir, name) try: self.tag = self.url.split('#')[1] except IndexError: self.tag = None @property def unpack_name(self): return self.name + '-build' def unpack(self): subprocess.check_call(('git', 'clone', self.path, self.unpack_dir)) if self.tag: subprocess.check_call(('git', '-C', self.unpack_dir, 'fetch', self.tag)) subprocess.check_call(('git', '-C', self.unpack_dir, 'tag', self.tag, 'FETCH_HEAD')) subprocess.check_call(('git', '-C', self.unpack_dir, 'checkout', self.tag, '--quiet')) def download(self): winbrew.util.rm_rf(self.work_dir) winbrew.util.mkdir_p(self.work_dir) subprocess.check_call(('git', 'clone', self.url, self.path))
import uuid from django.utils.functional import cached_property from django.conf import settings from .tasks import send_report_task GOOGLE_ID = settings.GOOGLE_ANALYTICS_ID class Tracker(object): valid_anal_types = ('pageview', 'event', 'social', 'screenview', 'transaction', 'item', 'exception', 'timing') def __init__(self, request=None, client_id=None, user_id=None): self.request = request self.client_id = client_id self.user_id = user_id @cached_property def get_client_id(self): if self.client_id: return self.client_id if not self.request: self.client_id = str(uuid.uuid4()) else: _ga = self.request.COOKIES.get('_ga') if _ga: ga_split = _ga.split('.') self.client_id = '.'.join((ga_split[2], ga_split[3])) return self.client_id @cached_property def get_user_id(self): if self.user_id: return self.user_id if self.request and self.request.user.id: self.user_id = self.request.user.id return self.user_id @property def default_params(self): client_id = self.get_client_id user_id = self.get_user_id ret = { 'v': 1, 'tid': GOOGLE_ID, 'cid': client_id, } if user_id: ret['uid'] = user_id return ret def get_payload(self, *args, **kwargs): """Receive all passed in args, kwargs, and combine them together with any required params""" if not kwargs: kwargs = self.default_params else: kwargs.update(self.default_params) for item in args: if isinstance(item, dict): kwargs.update(item) if hasattr(self, 'type_params'): kwargs.update(self.type_params(*args, **kwargs)) return kwargs def debug(self, *args, **kwargs): return self.get_payload(*args, **kwargs) def sync_send(self, *args, **kwargs): # For use when you don't want to send as an async task through Celery payload = self.get_payload(*args, **kwargs) return send_report_task(payload) def send(self, *args, **kwargs): payload = self.get_payload(*args, **kwargs) return send_report_task.delay(payload) class PageView(Tracker): anal_type = 'pageview' def type_params(self, *args, **kwargs): domain = kwargs.get('domain') or kwargs.get('dh') page = kwargs.get('page') or kwargs.get('dp') title = kwargs.get('title') or kwargs.get('dt') label = kwargs.get('label') or kwargs.get('el') value = kwargs.get('value') or kwargs.get('ev') params = { 't': self.anal_type, 'dh': domain or settings.DEFAULT_TRACKING_DOMAIN, #mydomain.com 'dp': page, #/home 'dt': title #hompage } if label: params['el'] = label if value: params['ev'] = value return params class Event(Tracker): anal_type = 'event' def type_params(self, *args, **kwargs): category = kwargs.get('category') or kwargs.get('ec') action = kwargs.get('action') or kwargs.get('ea') document_path = kwargs.get('document_path') or kwargs.get('dp') document_title = kwargs.get('document_title') or kwargs.get('dt') campaign_id = kwargs.get('campaign_id') or kwargs.get('ci') campaign_name = kwargs.get('campaign_name') or kwargs.get('cn') campaign_source = kwargs.get('campaign_source') or kwargs.get('cs') campaign_medium = kwargs.get('campaign_medium') or kwargs.get('cm') campaign_content = kwargs.get('campaign_content') or kwargs.get('cc') label = kwargs.get('label') or kwargs.get('el') value = kwargs.get('value') or kwargs.get('ev') params = { 't': self.anal_type, 'ec': category, #video 'ea': action, #play } if document_path: params['dp'] = document_path if document_title: params['dt'] = document_title if campaign_id: params['ci'] = campaign_id if campaign_name: params['cn'] = campaign_name if campaign_source: params['cs'] = campaign_source if campaign_medium: params['cm'] = campaign_medium if campaign_content: params['cc'] = campaign_content if label: params['el'] = label if value: params['ev'] = value return params
from typing import List from mathy_core import ExpressionParser, MathExpression, Token, VariableExpression problem = "4 + 2x" parser = ExpressionParser() tokens: List[Token] = parser.tokenize(problem) expression: MathExpression = parser.parse(problem) assert len(expression.find_type(VariableExpression)) == 1
# -*- encoding: utf-8 -*- TRAIN_PERIOD = ['2010', '2011', '2012', '2013', '2014', '2015'] VALIDATION_PERIOD = ['2016', '2017'] BACKTEST_PERIOD = ['2018', '2019'] M = 60 T = 28 UP_THRESHOLD = 6 DOWN_THRESHOLD = -6
import subprocess from voxel_globe.tools.subprocessbg import Popen def findProcess(imageName, filterString): pid = Popen(['wmic', 'path', 'win32_process', 'where', "Name='%s'" % imageName, 'get', 'CommandLine,ProcessId', '/VALUE'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) out = pid.communicate() out=out[0].split('\r\r\n\r\r\n') out=filter(lambda x:'CommandLine' in x, out) out = map(lambda x:x.strip().split('\r\r\n'), out) if out: if out[0][0].startswith('CommandLine'): commandLineIndex = 0 processIndex = 1 else: commandLineIndex = 1 processIndex = 0 out = map(lambda x:[int(x[processIndex][10:]), x[commandLineIndex][12:]], out) out = filter(lambda x:filterString in x[1], out) return map(lambda x:x[0], out) return [] if __name__=='__main__': import sys import os myPid = os.getpid() if 1: # try: imageName = sys.argv[1] filterString = sys.argv[2] pids = findProcess(imageName, filterString) pids = filter(lambda x: x!=myPid, pids) print '\n'.join(map(str, pids)) # except: # print 'Usage: %s [imageName] [filterString]' % sys.argv[0]
from django.conf.urls import include, url from rest_framework import routers from .views import DynamicSerializerViewSet router = routers.DefaultRouter() router.register(r'users-dynamic', DynamicSerializerViewSet) # router.register(r'users-dynamic-fields', DynamicFieldsSerializerViewSet) # router.register(r'users-dynamic-output', DynamicOutputViewSet) urlpatterns = ( url(r'^', include(router.urls)), )
"""AWS CodeArtifact Poetry CLI Definition.""" from typing import Optional import click from click import Context from aws_codeartifact_poetry.commands.login import login from aws_codeartifact_poetry.helpers.catch_exceptions import catch_exceptions from aws_codeartifact_poetry.helpers.logging import setup_logging @click.group(help='AWS CodeArtifact Poetry CLI.') @click.option( '--loglevel', help='Log level.', required=False, default='WARNING', show_default=True, type=click.Choice(['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], case_sensitive=False) ) @click.option( '--log-file', help='Log file name', required=False, type=str ) @catch_exceptions @click.pass_context def cli(ctx: Context, loglevel: str, log_file: Optional[str]): """ CLI group root function (aws-codeartifact-poetry --help). Args: ctx (`Context`): click context loglevel (`str`): loglevel log_file (`str`, optional): output log file """ ctx.ensure_object(dict) ctx.obj['loglevel'] = loglevel setup_logging(__package__, loglevel, log_file) cli.add_command(login)
/home/runner/.cache/pip/pool/9a/45/66/84570200a54f99fddefdcdaee7fc44afacceb8b1f18723cbf24f70e90b
class ZoneStats: def __init__(self, zones_data:dict): self.zones_secured = zones_data.get('secured', 0) self.zones_captured = zones_data.get('captured', 0) self.occupation_time = zones_data.get('occupation', {}).get('duration', {}).get('seconds', 0) zone_kills = zones_data.get('kills', {}) self.defensive_kills = zone_kills.get('defensive', 0) self.offensive_kills = zone_kills.get('offensive', 0) class FlagStats: def __init__(self, flags_data:dict): self.flag_grabs = flags_data.get('grabs', 0) self.flag_steals = flags_data.get('grabs', 0) self.flag_secures = flags_data.get('grabs', 0) self.flag_returns = flags_data.get('grabs', 0) self.flag_possession = flags_data.get('possession', {}).get('duration', {}).get('seconds', 0) capture_data = flags_data.get('captures', {}) self.flag_captures = capture_data.get('total', 0) self.flag_assists = capture_data.get('assists', 0) flag_kills = flags_data.get('kills', {}) self.flag_carrier_kills = flag_kills.get('carriers', 0) self.flag_returner_kills = flag_kills.get('returners', 0) self.kills_as_flag_carrier = flag_kills.get('as', {}).get('carrier', 0) self.kills_as_flag_returner = flag_kills.get('as', {}).get('returner', 0) class OddballStats: def __init__(self, oddballs_stats:dict): self.ball_grabs = oddballs_stats.get('grabs', 0) self.ball_controls = oddballs_stats.get('controls', 0) possession_data = oddballs_stats.get('possession', {}) self.ball_hold_ticks, \ self.longest_ball_time, \ self.total_ball_time = self._parse_possession_data(possession_data) self.ball_carriers_killed = oddballs_stats.get('kills', {}).get('carriers', 0) self.kills_as_ball_carrier = oddballs_stats.get('kills', {}).get('as', {}).get('carrier', 0) @staticmethod def _parse_possession_data(possession_data:dict): ticks = possession_data.get('ticks', 0) durations = possession_data.get('durations', {}) longest_hold = durations.get('longest', {}).get('seconds', 0) total_hold_time = durations.get('total', {}).get('seconds', 0) return ticks, longest_hold, total_hold_time
from __future__ import absolute_import, unicode_literals from celery import Celery from celery.schedules import crontab from jeta.archive.ingest import force_sort_by_time, calculate_delta_times ##CELERYBEAT_SCHEDULER = 'redbeat.RedBeatScheduler' app = Celery( 'jeta.archive', broker='redis://localhost', backend='redis://localhost', include=[ 'jeta.archive.ingest', 'jeta.archive.ingest' ] ) app.conf.update( result_expires=3600, ) if __name__ == '__main__': app.start() # app.conf.broker_url = 'redis://' # app.conf.result_backend = 'redis://localhost' # redbeat_redis_url = "redis://localhost" # app.conf.beat_schedule = { # 'execute_telemetry_ingest': { # 'task': 'jeta.ingest.controller._execute_automated_ingest', # 'schedule': crontab(minute='*/15'), # } # } # app.autodiscover_tasks()
""" Permissions for the instructor dashboard and associated actions """ from bridgekeeper import perms from bridgekeeper.rules import is_staff from lms.djangoapps.courseware.rules import HasAccessRule, HasRolesRule ALLOW_STUDENT_TO_BYPASS_ENTRANCE_EXAM = 'instructor.allow_student_to_bypass_entrance_exam' ASSIGN_TO_COHORTS = 'instructor.assign_to_cohorts' EDIT_COURSE_ACCESS = 'instructor.edit_course_access' EDIT_FORUM_ROLES = 'instructor.edit_forum_roles' EDIT_INVOICE_VALIDATION = 'instructor.edit_invoice_validation' ENABLE_CERTIFICATE_GENERATION = 'instructor.enable_certificate_generation' GENERATE_CERTIFICATE_EXCEPTIONS = 'instructor.generate_certificate_exceptions' GENERATE_BULK_CERTIFICATE_EXCEPTIONS = 'instructor.generate_bulk_certificate_exceptions' GIVE_STUDENT_EXTENSION = 'instructor.give_student_extension' VIEW_ISSUED_CERTIFICATES = 'instructor.view_issued_certificates' CAN_RESEARCH = 'instructor.research' CAN_ENROLL = 'instructor.enroll' CAN_BETATEST = 'instructor.enroll_beta' ENROLLMENT_REPORT = 'instructor.enrollment_report' EXAM_RESULTS = 'instructor.view_exam_results' OVERRIDE_GRADES = 'instructor.override_grades' SHOW_TASKS = 'instructor.show_tasks' VIEW_COUPONS = 'instructor.view_coupons' EMAIL = 'instructor.email' RESCORE_EXAMS = 'instructor.rescore_exams' VIEW_REGISTRATION = 'instructor.view_registration' VIEW_DASHBOARD = 'instructor.dashboard' perms[ALLOW_STUDENT_TO_BYPASS_ENTRANCE_EXAM] = HasAccessRule('staff') perms[ASSIGN_TO_COHORTS] = HasAccessRule('staff') perms[EDIT_COURSE_ACCESS] = HasAccessRule('instructor') perms[EDIT_FORUM_ROLES] = HasAccessRule('staff') perms[EDIT_INVOICE_VALIDATION] = HasAccessRule('staff') perms[ENABLE_CERTIFICATE_GENERATION] = is_staff perms[GENERATE_CERTIFICATE_EXCEPTIONS] = is_staff perms[GENERATE_BULK_CERTIFICATE_EXCEPTIONS] = is_staff perms[GIVE_STUDENT_EXTENSION] = HasAccessRule('staff') perms[VIEW_ISSUED_CERTIFICATES] = HasAccessRule('staff') | HasRolesRule('data_researcher') # only global staff or those with the data_researcher role can access the data download tab # HasAccessRule('staff') also includes course staff perms[CAN_RESEARCH] = is_staff | HasRolesRule('data_researcher') perms[CAN_ENROLL] = HasAccessRule('staff') perms[CAN_BETATEST] = HasAccessRule('instructor') perms[ENROLLMENT_REPORT] = HasAccessRule('staff') | HasRolesRule('data_researcher') perms[VIEW_COUPONS] = HasAccessRule('staff') | HasRolesRule('data_researcher') perms[EXAM_RESULTS] = HasAccessRule('staff') perms[OVERRIDE_GRADES] = HasAccessRule('staff') perms[SHOW_TASKS] = HasAccessRule('staff') | HasRolesRule('data_researcher') perms[EMAIL] = HasAccessRule('staff') perms[RESCORE_EXAMS] = HasAccessRule('instructor') perms[VIEW_REGISTRATION] = HasAccessRule('staff') perms[VIEW_DASHBOARD] = \ HasRolesRule( 'staff', 'instructor', 'data_researcher' ) | HasAccessRule('staff') | HasAccessRule('instructor')
import serial import time import numpy as np import pyqtgraph as pg from pyqtgraph.Qt import QtGui # Change the configuration file name configFileName = 'mmw_pplcount_demo_default.cfg' CLIport = {} Dataport = {} byteBuffer = np.zeros(2**15,dtype = 'uint8') byteBufferLength = 0; # ------------------------------------------------------------------ # Function to configure the serial ports and send the data from # the configuration file to the radar def serialConfig(configFileName): global CLIport global Dataport # Open the serial ports for the configuration and the data ports # Raspberry pi CLIport = serial.Serial('/dev/ttyACM0', 115200) Dataport = serial.Serial('/dev/ttyACM1', 921600) # Windows #CLIport = serial.Serial('COM3', 115200) #Dataport = serial.Serial('COM4', 921600) # Read the configuration file and send it to the board config = [line.rstrip('\r\n') for line in open(configFileName)] for i in config: CLIport.write((i+'\n').encode()) print(i) time.sleep(0.01) return CLIport, Dataport # ------------------------------------------------------------------ # Function to parse the data inside the configuration file def parseConfigFile(configFileName): configParameters = {} # Initialize an empty dictionary to store the configuration parameters # Read the configuration file and send it to the board config = [line.rstrip('\r\n') for line in open(configFileName)] for i in config: # Split the line splitWords = i.split(" ") # Hard code the number of antennas, change if other configuration is used numRxAnt = 4 numTxAnt = 2 # Get the information about the profile configuration if "profileCfg" in splitWords[0]: startFreq = int(float(splitWords[2])) idleTime = int(splitWords[3]) rampEndTime = float(splitWords[5]) freqSlopeConst = float(splitWords[8]) numAdcSamples = int(splitWords[10]) digOutSampleRate = int(splitWords[11]) numAdcSamplesRoundTo2 = 1; while numAdcSamples > numAdcSamplesRoundTo2: numAdcSamplesRoundTo2 = numAdcSamplesRoundTo2 * 2; digOutSampleRate = int(splitWords[11]); # Get the information about the frame configuration elif "frameCfg" in splitWords[0]: chirpStartIdx = int(splitWords[1]); chirpEndIdx = int(splitWords[2]); numLoops = int(splitWords[3]); numFrames = int(splitWords[4]); framePeriodicity = int(splitWords[5]); # Combine the read data to obtain the configuration parameters numChirpsPerFrame = (chirpEndIdx - chirpStartIdx + 1) * numLoops configParameters["numDopplerBins"] = numChirpsPerFrame / numTxAnt configParameters["numRangeBins"] = numAdcSamplesRoundTo2 configParameters["rangeResolutionMeters"] = (3e8 * digOutSampleRate * 1e3) / (2 * freqSlopeConst * 1e12 * numAdcSamples) configParameters["rangeIdxToMeters"] = (3e8 * digOutSampleRate * 1e3) / (2 * freqSlopeConst * 1e12 * configParameters["numRangeBins"]) configParameters["dopplerResolutionMps"] = 3e8 / (2 * startFreq * 1e9 * (idleTime + rampEndTime) * 1e-6 * configParameters["numDopplerBins"] * numTxAnt) configParameters["maxRange"] = (300 * 0.9 * digOutSampleRate)/(2 * freqSlopeConst * 1e3) configParameters["maxVelocity"] = 3e8 / (4 * startFreq * 1e9 * (idleTime + rampEndTime) * 1e-6 * numTxAnt) return configParameters # ------------------------------------------------------------------ # Funtion to read and parse the incoming data def readAndParseData16xx(Dataport, configParameters): global byteBuffer, byteBufferLength # Constants OBJ_STRUCT_SIZE_BYTES = 12; BYTE_VEC_ACC_MAX_SIZE = 2**15; MMWDEMO_UART_MSG_POINT_CLOUD_2D = 6; MMWDEMO_UART_MSG_TARGET_LIST_2D = 7; MMWDEMO_UART_MSG_TARGET_INDEX_2D = 8; maxBufferSize = 2**15; tlvHeaderLengthInBytes = 8; pointLengthInBytes = 16; targetLengthInBytes = 68; magicWord = [2, 1, 4, 3, 6, 5, 8, 7] # Initialize variables magicOK = 0 # Checks if magic number has been read dataOK = 0 # Checks if the data has been read correctly targetDetected = 0 # Checks if a person has been detected frameNumber = 0 targetObj = {} pointObj = {} readBuffer = Dataport.read(Dataport.in_waiting) byteVec = np.frombuffer(readBuffer, dtype = 'uint8') byteCount = len(byteVec) # Check that the buffer is not full, and then add the data to the buffer if (byteBufferLength + byteCount) < maxBufferSize: byteBuffer[byteBufferLength:byteBufferLength + byteCount] = byteVec[:byteCount] byteBufferLength = byteBufferLength + byteCount # Check that the buffer has some data if byteBufferLength > 16: # Check for all possible locations of the magic word possibleLocs = np.where(byteBuffer == magicWord[0])[0] # Confirm that is the beginning of the magic word and store the index in startIdx startIdx = [] for loc in possibleLocs: check = byteBuffer[loc:loc + 8] if np.all(check == magicWord): startIdx.append(loc) # Check that startIdx is not empty if startIdx: # Remove the data before the first start index if startIdx[0] > 0 and startIdx[0] < byteBufferLength: byteBuffer[:byteBufferLength - startIdx[0]] = byteBuffer[startIdx[0]:byteBufferLength] byteBuffer[byteBufferLength-startIdx[0]:] = np.zeros(len(byteBuffer[byteBufferLength-startIdx[0]:]),dtype = 'uint8') byteBufferLength = byteBufferLength - startIdx[0] # Check that there have no errors with the byte buffer length if byteBufferLength < 0: byteBufferLength = 0 # word array to convert 4 bytes to a 32 bit number word = [1, 2 ** 8, 2 ** 16, 2 ** 24] # Read the total packet length totalPacketLen = np.matmul(byteBuffer[20:20 + 4], word) # Check that all the packet has been read if (byteBufferLength >= totalPacketLen) and (byteBufferLength != 0): magicOK = 1 # If magicOK is equal to 1 then process the message if magicOK: # word array to convert 4 bytes to a 32 bit number word = [1, 2 ** 8, 2 ** 16, 2 ** 24] # Initialize the pointer index idX = 0 # Read the header # Read the header magicNumber = byteBuffer[idX:idX + 8] idX += 8 version = format(np.matmul(byteBuffer[idX:idX + 4], word), 'x') idX += 4 platform = format(np.matmul(byteBuffer[idX:idX + 4], word), 'x') idX += 4 timeStamp = np.matmul(byteBuffer[idX:idX + 4], word) idX += 4 totalPacketLen = np.matmul(byteBuffer[idX:idX + 4], word) idX += 4 frameNumber = np.matmul(byteBuffer[idX:idX + 4], word) idX += 4 subFrameNumber = np.matmul(byteBuffer[idX:idX + 4], word) idX += 4 chirpMargin = np.matmul(byteBuffer[idX:idX + 4], word) idX += 4 frameMargin = np.matmul(byteBuffer[idX:idX + 4], word) idX += 4 uartSentTime = np.matmul(byteBuffer[idX:idX + 4], word) idX += 4 trackProcessTime = np.matmul(byteBuffer[idX:idX + 4], word) idX += 4 word = [1, 2 ** 8] numTLVs = np.matmul(byteBuffer[idX:idX + 2], word) idX += 2 checksum = np.matmul(byteBuffer[idX:idX + 2], word) idX += 2 # Read the TLV messages for tlvIdx in range(numTLVs): # word array to convert 4 bytes to a 32 bit number word = [1, 2 ** 8, 2 ** 16, 2 ** 24] # Initialize the tlv type tlv_type = 0 try: # Check the header of the TLV message tlv_type = np.matmul(byteBuffer[idX:idX + 4], word) idX += 4 tlv_length = np.matmul(byteBuffer[idX:idX + 4], word) idX += 4 except: pass # Read the data depending on the TLV message if tlv_type == MMWDEMO_UART_MSG_POINT_CLOUD_2D: # word array to convert 4 bytes to a 16 bit number word = [1, 2 ** 8, 2 ** 16, 2 ** 24] # Calculate the number of detected points numInputPoints = (tlv_length - tlvHeaderLengthInBytes) // pointLengthInBytes # Initialize the arrays rangeVal = np.zeros(numInputPoints, dtype=np.float32) azimuth = np.zeros(numInputPoints, dtype=np.float32) dopplerVal = np.zeros(numInputPoints, dtype=np.float32) snr = np.zeros(numInputPoints, dtype=np.float32) for objectNum in range(numInputPoints): # Read the data for each object rangeVal[objectNum] = byteBuffer[idX:idX + 4].view(dtype=np.float32) idX += 4 azimuth[objectNum] = byteBuffer[idX:idX + 4].view(dtype=np.float32) idX += 4 dopplerVal[objectNum] = byteBuffer[idX:idX + 4].view(dtype=np.float32) idX += 4 snr[objectNum] = byteBuffer[idX:idX + 4].view(dtype=np.float32) idX += 4 # Store the data in the detObj dictionary pointObj = {"numObj": numInputPoints, "range": rangeVal, "azimuth": azimuth,\ "doppler": dopplerVal, "snr": snr} dataOK = 1 elif tlv_type == MMWDEMO_UART_MSG_TARGET_LIST_2D: # word array to convert 4 bytes to a 16 bit number word = [1, 2 ** 8, 2 ** 16, 2 ** 24] # Calculate the number of target points numTargetPoints = (tlv_length - tlvHeaderLengthInBytes) // targetLengthInBytes # Initialize the arrays targetId = np.zeros(numTargetPoints, dtype=np.uint32) posX = np.zeros(numTargetPoints, dtype=np.float32) posY = np.zeros(numTargetPoints, dtype=np.float32) velX = np.zeros(numTargetPoints, dtype=np.float32) velY = np.zeros(numTargetPoints, dtype=np.float32) accX = np.zeros(numTargetPoints, dtype=np.float32) accY = np.zeros(numTargetPoints, dtype=np.float32) EC = np.zeros((3, 3, numTargetPoints), dtype=np.float32) # Error covariance matrix G = np.zeros(numTargetPoints, dtype=np.float32) # Gain for objectNum in range(numTargetPoints): # Read the data for each object targetId[objectNum] = np.matmul(byteBuffer[idX:idX + 4], word) idX += 4 posX[objectNum] = byteBuffer[idX:idX + 4].view(dtype=np.float32) idX += 4 posY[objectNum] = byteBuffer[idX:idX + 4].view(dtype=np.float32) idX += 4 velX[objectNum] = byteBuffer[idX:idX + 4].view(dtype=np.float32) idX += 4 velY[objectNum] = byteBuffer[idX:idX + 4].view(dtype=np.float32) idX += 4 accX[objectNum] = byteBuffer[idX:idX + 4].view(dtype=np.float32) idX += 4 accY[objectNum] = byteBuffer[idX:idX + 4].view(dtype=np.float32) idX += 4 EC[0, 0, objectNum] = byteBuffer[idX:idX + 4].view(dtype=np.float32) idX += 4 EC[0, 1, objectNum] = byteBuffer[idX:idX + 4].view(dtype=np.float32) idX += 4 EC[0, 2, objectNum] = byteBuffer[idX:idX + 4].view(dtype=np.float32) idX += 4 EC[1, 0, objectNum] = byteBuffer[idX:idX + 4].view(dtype=np.float32) idX += 4 EC[1, 1, objectNum] = byteBuffer[idX:idX + 4].view(dtype=np.float32) idX += 4 EC[1, 2, objectNum] = byteBuffer[idX:idX + 4].view(dtype=np.float32) idX += 4 EC[2, 0, objectNum] = byteBuffer[idX:idX + 4].view(dtype=np.float32) idX += 4 EC[2, 1, objectNum] = byteBuffer[idX:idX + 4].view(dtype=np.float32) idX += 4 EC[2, 2, objectNum] = byteBuffer[idX:idX + 4].view(dtype=np.float32) idX += 4 G[objectNum] = byteBuffer[idX:idX + 4].view(dtype=np.float32) idX += 4 # Store the data in the detObj dictionary targetObj = {"targetId": targetId, "posX": posX, "posY": posY, \ "velX": velX, "velY": velY, "accX": accX, "accY": accY, \ "EC": EC, "G": G, "numTargets":numTargetPoints} targetDetected = 1 elif tlv_type == MMWDEMO_UART_MSG_TARGET_INDEX_2D: # Calculate the length of the index message numIndices = tlv_length - tlvHeaderLengthInBytes indices = byteBuffer[idX:idX + numIndices] idX += numIndices # Remove already processed data if idX > 0: shiftSize = totalPacketLen byteBuffer[:byteBufferLength - shiftSize] = byteBuffer[shiftSize:byteBufferLength] byteBuffer[byteBufferLength - shiftSize:] = np.zeros(len(byteBuffer[byteBufferLength - shiftSize:]),dtype = 'uint8') byteBufferLength = byteBufferLength - shiftSize # Check that there are no errors with the buffer length if byteBufferLength < 0: byteBufferLength = 0 return dataOK, targetDetected, frameNumber, targetObj, pointObj # ------------------------------------------------------------------ # Funtion to update the data and display in the plot def update(): dataOk = 0 targetDetected = 0 global targetObj global pointObj x = [] y = [] # Read and parse the received data dataOk, targetDetected, frameNumber, targetObj, pointObj = readAndParseData16xx(Dataport, configParameters) if targetDetected: print(targetObj) print(targetObj["numTargets"]) x = -targetObj["posX"] y = targetObj["posY"] s2.setData(x,y) QtGui.QApplication.processEvents() if dataOk: x = -pointObj["range"]*np.sin(pointObj["azimuth"]) y = pointObj["range"]*np.cos(pointObj["azimuth"]) s1.setData(x,y) QtGui.QApplication.processEvents() return dataOk # ------------------------- MAIN ----------------------------------------- # Configurate the serial port CLIport, Dataport = serialConfig(configFileName) # Get the configuration parameters from the configuration file configParameters = parseConfigFile(configFileName) # START QtAPPfor the plot app = QtGui.QApplication([]) # Set the plot pg.setConfigOption('background','w') win = pg.GraphicsWindow(title="2D scatter plot") p = win.addPlot() p.setXRange(-0.5,0.5) p.setYRange(0,6) p.setLabel('left',text = 'Y position (m)') p.setLabel('bottom', text= 'X position (m)') s1 = p.plot([],[],pen=None,symbol='o') s2 = p.plot([],[],pen=(0,0,255),symbol='star') # Main loop targetObj = {} pointObj = {} frameData = {} currentIndex = 0 while True: try: # Update the data and check if the data is okay dataOk = update() if dataOk: # Store the current frame into frameData frameData[currentIndex] = targetObj currentIndex += 1 time.sleep(0.033) # Sampling frequency of 30 Hz # Stop the program and close everything if Ctrl + c is pressed except KeyboardInterrupt: CLIport.write(('sensorStop\n').encode()) CLIport.close() Dataport.close() win.close() break
from .legofy import legofy
""" Test cases for the HTTP endpoints of the profile image api. """ from contextlib import closing from unittest import mock from unittest.mock import patch import pytest import datetime # lint-amnesty, pylint: disable=wrong-import-order from pytz import UTC from django.urls import reverse from django.http import HttpResponse import ddt from PIL import Image from rest_framework.test import APITestCase, APIClient from common.djangoapps.student.tests.factories import UserFactory from common.djangoapps.student.tests.tests import UserSettingsEventTestMixin from openedx.core.djangoapps.user_api.accounts.image_helpers import ( set_has_profile_image, get_profile_image_names, get_profile_image_storage, ) from openedx.core.djangolib.testing.utils import skip_unless_lms from ..images import create_profile_images, ImageValidationError from ..views import LOG_MESSAGE_CREATE, LOG_MESSAGE_DELETE from .helpers import make_image_file TEST_PASSWORD = "test" TEST_UPLOAD_DT = datetime.datetime(2002, 1, 9, 15, 43, 1, tzinfo=UTC) TEST_UPLOAD_DT2 = datetime.datetime(2003, 1, 9, 15, 43, 1, tzinfo=UTC) class ProfileImageEndpointMixin(UserSettingsEventTestMixin): """ Base class / shared infrastructure for tests of profile_image "upload" and "remove" endpoints. """ # subclasses should override this with the name of the view under test, as # per the urls.py configuration. _view_name = None def setUp(self): super().setUp() self.user = UserFactory.create(password=TEST_PASSWORD) # Ensure that parental controls don't apply to this user self.user.profile.year_of_birth = 1980 self.user.profile.save() self.url = reverse(self._view_name, kwargs={'username': self.user.username}) self.client.login(username=self.user.username, password=TEST_PASSWORD) self.storage = get_profile_image_storage() self.table = 'auth_userprofile' # this assertion is made here as a sanity check because all tests # assume user.profile.has_profile_image is False by default assert not self.user.profile.has_profile_image # Reset the mock event tracker so that we're not considering the # initial profile creation events. self.reset_tracker() def tearDown(self): super().tearDown() for name in get_profile_image_names(self.user.username).values(): self.storage.delete(name) def check_images(self, exist=True): """ If exist is True, make sure the images physically exist in storage with correct sizes and formats. If exist is False, make sure none of the images exist. """ for size, name in get_profile_image_names(self.user.username).items(): if exist: assert self.storage.exists(name) with closing(Image.open(self.storage.path(name))) as img: assert img.size == (size, size) assert img.format == 'JPEG' else: assert not self.storage.exists(name) def check_response(self, response, expected_code, expected_developer_message=None, expected_user_message=None): """ Make sure the response has the expected code, and if that isn't 204, optionally check the correctness of a developer-facing message. """ assert expected_code == response.status_code if expected_code == 204: assert response.data is None else: if expected_developer_message is not None: assert response.data.get('developer_message') == expected_developer_message if expected_user_message is not None: assert response.data.get('user_message') == expected_user_message def check_has_profile_image(self, has_profile_image=True): """ Make sure the value of self.user.profile.has_profile_image is what we expect. """ # it's necessary to reload this model from the database since save() # would have been called on another instance. profile = self.user.profile.__class__.objects.get(user=self.user) assert profile.has_profile_image == has_profile_image def check_anonymous_request_rejected(self, method): """ Make sure that the specified method rejects access by unauthorized users. """ anonymous_client = APIClient() request_method = getattr(anonymous_client, method) response = request_method(self.url) self.check_response(response, 401) self.assert_no_events_were_emitted() @skip_unless_lms @mock.patch('openedx.core.djangoapps.profile_images.views.log') class ProfileImageViewGeneralTestCase(ProfileImageEndpointMixin, APITestCase): """ Tests for the profile image endpoint """ _view_name = "accounts_profile_image_api" def test_unsupported_methods(self, mock_log): """ Test that GET, PUT, and PATCH are not supported. """ assert 405 == self.client.get(self.url).status_code assert 405 == self.client.put(self.url).status_code assert 405 == self.client.patch(self.url).status_code assert not mock_log.info.called self.assert_no_events_were_emitted() @ddt.ddt @skip_unless_lms @mock.patch('openedx.core.djangoapps.profile_images.views.log') class ProfileImageViewPostTestCase(ProfileImageEndpointMixin, APITestCase): """ Tests for the POST method of the profile_image api endpoint. """ _view_name = "accounts_profile_image_api" # Use the patched version of the API client to workaround a unicode issue # with DRF 3.1 and Django 1.4. Remove this after we upgrade Django past 1.4! def check_upload_event_emitted(self, old=None, new=TEST_UPLOAD_DT): """ Make sure we emit a UserProfile event corresponding to the profile_image_uploaded_at field changing. """ self.assert_user_setting_event_emitted( setting='profile_image_uploaded_at', old=old, new=new ) def test_anonymous_access(self, mock_log): """ Test that an anonymous client (not logged in) cannot call POST. """ self.check_anonymous_request_rejected('post') assert not mock_log.info.called @ddt.data('.jpg', '.jpeg', '.jpg', '.jpeg', '.png', '.gif', '.GIF') @patch( 'openedx.core.djangoapps.profile_images.views._make_upload_dt', side_effect=[TEST_UPLOAD_DT, TEST_UPLOAD_DT2], ) def test_upload_self(self, extension, _mock_make_image_version, mock_log): """ Test that an authenticated user can POST to their own upload endpoint. """ with make_image_file(extension=extension) as image_file: response = self.client.post(self.url, {'file': image_file}, format='multipart') self.check_response(response, 204) self.check_images() self.check_has_profile_image() mock_log.info.assert_called_once_with( LOG_MESSAGE_CREATE, {'image_names': list(get_profile_image_names(self.user.username).values()), 'user_id': self.user.id} ) self.check_upload_event_emitted() # Try another upload and make sure that a second event is emitted. with make_image_file() as image_file: response = self.client.post(self.url, {'file': image_file}, format='multipart') self.check_response(response, 204) self.check_upload_event_emitted(old=TEST_UPLOAD_DT, new=TEST_UPLOAD_DT2) @ddt.data( ('image/jpeg', '.jpg'), ('image/jpeg', '.jpeg'), ('image/pjpeg', '.jpg'), ('image/pjpeg', '.jpeg'), ('image/png', '.png'), ('image/gif', '.gif'), ('image/gif', '.GIF'), ) @ddt.unpack @patch('openedx.core.djangoapps.profile_images.views._make_upload_dt', return_value=TEST_UPLOAD_DT) def test_upload_by_mimetype(self, content_type, extension, _mock_make_image_version, mock_log): """ Test that a user can upload raw content with the appropriate mimetype """ with make_image_file(extension=extension) as image_file: data = image_file.read() response = self.client.post( self.url, data, content_type=content_type, HTTP_CONTENT_DISPOSITION=f'attachment;filename=filename{extension}', ) self.check_response(response, 204) self.check_images() self.check_has_profile_image() mock_log.info.assert_called_once_with( LOG_MESSAGE_CREATE, {'image_names': list(get_profile_image_names(self.user.username).values()), 'user_id': self.user.id} ) self.check_upload_event_emitted() def test_upload_unsupported_mimetype(self, mock_log): """ Test that uploading an unsupported image as raw content fails with an HTTP 415 Error. """ with make_image_file() as image_file: data = image_file.read() response = self.client.post( self.url, data, content_type='image/tiff', HTTP_CONTENT_DISPOSITION='attachment;filename=filename.tiff', ) self.check_response(response, 415) self.check_images(False) self.check_has_profile_image(False) assert not mock_log.info.called self.assert_no_events_were_emitted() def test_upload_nonexistent_user(self, mock_log): """ Test that an authenticated user who POSTs to a non-existent user's upload endpoint gets an indistinguishable 403. """ nonexistent_user_url = reverse(self._view_name, kwargs={'username': 'nonexistent'}) with make_image_file() as image_file: response = self.client.post(nonexistent_user_url, {'file': image_file}, format='multipart') self.check_response(response, 403) assert not mock_log.info.called def test_upload_other(self, mock_log): """ Test that an authenticated user cannot POST to another user's upload endpoint. """ different_user = UserFactory.create(password=TEST_PASSWORD) # Ignore UserProfileFactory creation events. self.reset_tracker() different_client = APIClient() different_client.login(username=different_user.username, password=TEST_PASSWORD) with make_image_file() as image_file: response = different_client.post(self.url, {'file': image_file}, format='multipart') self.check_response(response, 403) self.check_images(False) self.check_has_profile_image(False) assert not mock_log.info.called self.assert_no_events_were_emitted() def test_upload_staff(self, mock_log): """ Test that an authenticated staff cannot POST to another user's upload endpoint. """ staff_user = UserFactory(is_staff=True, password=TEST_PASSWORD) # Ignore UserProfileFactory creation events. self.reset_tracker() staff_client = APIClient() staff_client.login(username=staff_user.username, password=TEST_PASSWORD) with make_image_file() as image_file: response = staff_client.post(self.url, {'file': image_file}, format='multipart') self.check_response(response, 403) self.check_images(False) self.check_has_profile_image(False) assert not mock_log.info.called self.assert_no_events_were_emitted() def test_upload_missing_file(self, mock_log): """ Test that omitting the file entirely from the POST results in HTTP 400. """ response = self.client.post(self.url, {}, format='multipart') self.check_response( response, 400, expected_developer_message="No file provided for profile image", expected_user_message="No file provided for profile image", ) self.check_images(False) self.check_has_profile_image(False) assert not mock_log.info.called self.assert_no_events_were_emitted() def test_upload_not_a_file(self, mock_log): """ Test that sending unexpected data that isn't a file results in HTTP 400. """ response = self.client.post(self.url, {'file': 'not a file'}, format='multipart') self.check_response( response, 400, expected_developer_message="No file provided for profile image", expected_user_message="No file provided for profile image", ) self.check_images(False) self.check_has_profile_image(False) assert not mock_log.info.called self.assert_no_events_were_emitted() def test_upload_validation(self, mock_log): """ Test that when upload validation fails, the proper HTTP response and messages are returned. """ with make_image_file() as image_file: with mock.patch( 'openedx.core.djangoapps.profile_images.views.validate_uploaded_image', side_effect=ImageValidationError("test error message") ): response = self.client.post(self.url, {'file': image_file}, format='multipart') self.check_response( response, 400, expected_developer_message="test error message", expected_user_message="test error message", ) self.check_images(False) self.check_has_profile_image(False) assert not mock_log.info.called self.assert_no_events_were_emitted() @patch('PIL.Image.open') def test_upload_failure(self, image_open, mock_log): """ Test that when upload validation fails, the proper HTTP response and messages are returned. """ image_open.side_effect = [Exception("whoops"), None] with make_image_file() as image_file: with pytest.raises(Exception): self.client.post(self.url, {'file': image_file}, format='multipart') self.check_images(False) self.check_has_profile_image(False) assert not mock_log.info.called self.assert_no_events_were_emitted() @skip_unless_lms @mock.patch('openedx.core.djangoapps.profile_images.views.log') class ProfileImageViewDeleteTestCase(ProfileImageEndpointMixin, APITestCase): """ Tests for the DELETE method of the profile_image endpoint. """ _view_name = "accounts_profile_image_api" def setUp(self): super().setUp() with make_image_file() as image_file: create_profile_images(image_file, get_profile_image_names(self.user.username)) self.check_images() set_has_profile_image(self.user.username, True, TEST_UPLOAD_DT) # Ignore previous event self.reset_tracker() def check_remove_event_emitted(self): """ Make sure we emit a UserProfile event corresponding to the profile_image_uploaded_at field changing. """ self.assert_user_setting_event_emitted( setting='profile_image_uploaded_at', old=TEST_UPLOAD_DT, new=None ) def test_anonymous_access(self, mock_log): """ Test that an anonymous client (not logged in) cannot call DELETE. """ self.check_anonymous_request_rejected('delete') assert not mock_log.info.called def test_remove_self(self, mock_log): """ Test that an authenticated user can DELETE to remove their own profile images. """ response = self.client.delete(self.url) self.check_response(response, 204) self.check_images(False) self.check_has_profile_image(False) mock_log.info.assert_called_once_with( LOG_MESSAGE_DELETE, {'image_names': list(get_profile_image_names(self.user.username).values()), 'user_id': self.user.id} ) self.check_remove_event_emitted() def test_remove_other(self, mock_log): """ Test that an authenticated user cannot DELETE to remove another user's profile images. """ different_user = UserFactory.create(password=TEST_PASSWORD) # Ignore UserProfileFactory creation events. self.reset_tracker() different_client = APIClient() different_client.login(username=different_user.username, password=TEST_PASSWORD) response = different_client.delete(self.url) self.check_response(response, 403) self.check_images(True) # thumbnails should remain intact. self.check_has_profile_image(True) assert not mock_log.info.called self.assert_no_events_were_emitted() def test_remove_staff(self, mock_log): """ Test that an authenticated staff user can DELETE to remove another user's profile images. """ staff_user = UserFactory(is_staff=True, password=TEST_PASSWORD) staff_client = APIClient() staff_client.login(username=staff_user.username, password=TEST_PASSWORD) response = self.client.delete(self.url) self.check_response(response, 204) self.check_images(False) self.check_has_profile_image(False) mock_log.info.assert_called_once_with( LOG_MESSAGE_DELETE, {'image_names': list(get_profile_image_names(self.user.username).values()), 'user_id': self.user.id} ) self.check_remove_event_emitted() @patch('common.djangoapps.student.models.UserProfile.save') def test_remove_failure(self, user_profile_save, mock_log): """ Test that when remove validation fails, the proper HTTP response and messages are returned. """ user_profile_save.side_effect = [Exception("whoops"), None] with pytest.raises(Exception): self.client.delete(self.url) self.check_images(True) # thumbnails should remain intact. self.check_has_profile_image(True) assert not mock_log.info.called self.assert_no_events_were_emitted() class DeprecatedProfileImageTestMixin(ProfileImageEndpointMixin): """ Actual tests for DeprecatedProfileImage.*TestCase classes defined here. Requires: self._view_name self._replacement_method """ def test_unsupported_methods(self, mock_log): """ Test that GET, PUT, PATCH, and DELETE are not supported. """ assert 405 == self.client.get(self.url).status_code assert 405 == self.client.put(self.url).status_code assert 405 == self.client.patch(self.url).status_code assert 405 == self.client.delete(self.url).status_code assert not mock_log.info.called self.assert_no_events_were_emitted() def test_post_calls_replacement_view_method(self, mock_log): """ Test that calls to this view pass through the the new view. """ with patch(self._replacement_method) as mock_method: mock_method.return_value = HttpResponse() self.client.post(self.url) assert mock_method.called assert not mock_log.info.called self.assert_no_events_were_emitted() @skip_unless_lms @mock.patch('openedx.core.djangoapps.profile_images.views.log') class DeprecatedProfileImageUploadTestCase(DeprecatedProfileImageTestMixin, APITestCase): """ Tests for the deprecated profile_image upload endpoint. Actual tests defined on DeprecatedProfileImageTestMixin """ _view_name = 'profile_image_upload' _replacement_method = 'openedx.core.djangoapps.profile_images.views.ProfileImageView.post' @skip_unless_lms @mock.patch('openedx.core.djangoapps.profile_images.views.log') class DeprecatedProfileImageRemoveTestCase(DeprecatedProfileImageTestMixin, APITestCase): """ Tests for the deprecated profile_image remove endpoint. Actual tests defined on DeprecatedProfileImageTestMixin """ _view_name = "profile_image_remove" _replacement_method = 'openedx.core.djangoapps.profile_images.views.ProfileImageView.delete'
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class JobSpecification(Model): """Specifies details of the jobs to be created on a schedule. :param priority: The priority of jobs created under this schedule. Priority values can range from -1000 to 1000, with -1000 being the lowest priority and 1000 being the highest priority. The default value is 0. This priority is used as the default for all jobs under the job schedule. You can update a job's priority after it has been created using by using the update job API. :type priority: int :param display_name: The display name for jobs created under this schedule. The name need not be unique and can contain any Unicode characters up to a maximum length of 1024. :type display_name: str :param uses_task_dependencies: Whether tasks in the job can define dependencies on each other. The default is false. :type uses_task_dependencies: bool :param on_all_tasks_complete: The action the Batch service should take when all tasks in a job created under this schedule are in the completed state. Note that if a job contains no tasks, then all tasks are considered complete. This option is therefore most commonly used with a Job Manager task; if you want to use automatic job termination without a Job Manager, you should initially set onAllTasksComplete to noAction and update the job properties to set onAllTasksComplete to terminateJob once you have finished adding tasks. The default is noAction. Possible values include: 'noAction', 'terminateJob' :type on_all_tasks_complete: str or :class:`OnAllTasksComplete <azure.batch.models.OnAllTasksComplete>` :param on_task_failure: The action the Batch service should take when any task fails in a job created under this schedule. A task is considered to have failed if it have failed if has a failureInfo. A failureInfo is set if the task completes with a non-zero exit code after exhausting its retry count, or if there was an error starting the task, for example due to a resource file download error. The default is noAction. Possible values include: 'noAction', 'performExitOptionsJobAction' :type on_task_failure: str or :class:`OnTaskFailure <azure.batch.models.OnTaskFailure>` :param constraints: The execution constraints for jobs created under this schedule. :type constraints: :class:`JobConstraints <azure.batch.models.JobConstraints>` :param job_manager_task: The details of a Job Manager task to be launched when a job is started under this schedule. If the job does not specify a Job Manager task, the user must explicitly add tasks to the job using the Task API. If the job does specify a Job Manager task, the Batch service creates the Job Manager task when the job is created, and will try to schedule the Job Manager task before scheduling other tasks in the job. :type job_manager_task: :class:`JobManagerTask <azure.batch.models.JobManagerTask>` :param job_preparation_task: The Job Preparation task for jobs created under this schedule. If a job has a Job Preparation task, the Batch service will run the Job Preparation task on a compute node before starting any tasks of that job on that compute node. :type job_preparation_task: :class:`JobPreparationTask <azure.batch.models.JobPreparationTask>` :param job_release_task: The Job Release task for jobs created under this schedule. The primary purpose of the Job Release task is to undo changes to compute nodes made by the Job Preparation task. Example activities include deleting local files, or shutting down services that were started as part of job preparation. A Job Release task cannot be specified without also specifying a Job Preparation task for the job. The Batch service runs the Job Release task on the compute nodes that have run the Job Preparation task. :type job_release_task: :class:`JobReleaseTask <azure.batch.models.JobReleaseTask>` :param common_environment_settings: A list of common environment variable settings. These environment variables are set for all tasks in jobs created under this schedule (including the Job Manager, Job Preparation and Job Release tasks). Individual tasks can override an environment setting specified here by specifying the same setting name with a different value. :type common_environment_settings: list of :class:`EnvironmentSetting <azure.batch.models.EnvironmentSetting>` :param pool_info: The pool on which the Batch service runs the tasks of jobs created under this schedule. :type pool_info: :class:`PoolInformation <azure.batch.models.PoolInformation>` :param metadata: A list of name-value pairs associated with each job created under this schedule as metadata. The Batch service does not assign any meaning to metadata; it is solely for the use of user code. :type metadata: list of :class:`MetadataItem <azure.batch.models.MetadataItem>` """ _validation = { 'pool_info': {'required': True}, } _attribute_map = { 'priority': {'key': 'priority', 'type': 'int'}, 'display_name': {'key': 'displayName', 'type': 'str'}, 'uses_task_dependencies': {'key': 'usesTaskDependencies', 'type': 'bool'}, 'on_all_tasks_complete': {'key': 'onAllTasksComplete', 'type': 'OnAllTasksComplete'}, 'on_task_failure': {'key': 'onTaskFailure', 'type': 'OnTaskFailure'}, 'constraints': {'key': 'constraints', 'type': 'JobConstraints'}, 'job_manager_task': {'key': 'jobManagerTask', 'type': 'JobManagerTask'}, 'job_preparation_task': {'key': 'jobPreparationTask', 'type': 'JobPreparationTask'}, 'job_release_task': {'key': 'jobReleaseTask', 'type': 'JobReleaseTask'}, 'common_environment_settings': {'key': 'commonEnvironmentSettings', 'type': '[EnvironmentSetting]'}, 'pool_info': {'key': 'poolInfo', 'type': 'PoolInformation'}, 'metadata': {'key': 'metadata', 'type': '[MetadataItem]'}, } def __init__(self, pool_info, priority=None, display_name=None, uses_task_dependencies=None, on_all_tasks_complete=None, on_task_failure=None, constraints=None, job_manager_task=None, job_preparation_task=None, job_release_task=None, common_environment_settings=None, metadata=None): self.priority = priority self.display_name = display_name self.uses_task_dependencies = uses_task_dependencies self.on_all_tasks_complete = on_all_tasks_complete self.on_task_failure = on_task_failure self.constraints = constraints self.job_manager_task = job_manager_task self.job_preparation_task = job_preparation_task self.job_release_task = job_release_task self.common_environment_settings = common_environment_settings self.pool_info = pool_info self.metadata = metadata
""" Created on Sep 23, 2016 @author: andrew """ import asyncio import logging from math import floor import discord from discord.errors import NotFound from discord.ext import commands import api.avrae.utils.redisIO as redis from api.avrae.cogs5e.funcs.lookupFuncs import compendium from api.avrae.utils import checks, config log = logging.getLogger(__name__) COMMAND_PUBSUB_CHANNEL = f"admin-commands:{config.ENVIRONMENT}" # >:c class AdminUtils(commands.Cog): """ Administrative Utilities. """ def __init__(self, bot): self.bot = bot bot.loop.create_task(self.load_admin()) bot.loop.create_task(self.admin_pubsub()) self.blacklisted_serv_ids = set() self.whitelisted_serv_ids = set() # pubsub stuff self._ps_cmd_map = {} # set up in admin_pubsub() self._ps_requests_pending = {} # ==== setup tasks ==== async def load_admin(self): self.bot.muted = set(await self.bot.rdb.jget('muted', [])) self.blacklisted_serv_ids = set(await self.bot.rdb.jget('blacklist', [])) self.whitelisted_serv_ids = set(await self.bot.rdb.jget('server-whitelist', [])) loglevels = await self.bot.rdb.jget('loglevels', {}) for logger, level in loglevels.items(): try: logging.getLogger(logger).setLevel(level) except: log.warning(f"Failed to reset loglevel of {logger}") async def admin_pubsub(self): self._ps_cmd_map = { "leave": self._leave, "loglevel": self._loglevel, "changepresence": self._changepresence, "reload_static": self._reload_static, "reload_lists": self._reload_lists, "serv_info": self._serv_info, "whois": self._whois, "ping": self._ping } channel = (await self.bot.rdb.subscribe(COMMAND_PUBSUB_CHANNEL))[0] async for msg in channel.iter(encoding="utf-8"): try: await self._ps_recv(msg) except Exception as e: log.error(str(e)) # ==== commands ==== @commands.command(hidden=True) @checks.is_owner() async def blacklist(self, ctx, _id: int): self.blacklisted_serv_ids.add(_id) await self.bot.rdb.jset('blacklist', list(self.blacklisted_serv_ids)) resp = await self.pscall("reload_lists") await self._send_replies(ctx, resp) @commands.command(hidden=True) @checks.is_owner() async def whitelist(self, ctx, _id: int): self.whitelisted_serv_ids.add(_id) await self.bot.rdb.jset('server-whitelist', list(self.whitelisted_serv_ids)) resp = await self.pscall("reload_lists") await self._send_replies(ctx, resp) @commands.command(hidden=True) @checks.is_owner() async def chanSay(self, ctx, channel: int, *, message: str): """Low-level calls `bot.http.send_message()`.""" await self.bot.http.send_message(channel, message) await ctx.send(f"Sent message.") @commands.command(hidden=True) @checks.is_owner() async def servInfo(self, ctx, guild_id: int): resp = await self.pscall("serv_info", kwargs={"guild_id": guild_id}, expected_replies=1) await self._send_replies(ctx, resp) @commands.command(hidden=True) @checks.is_owner() async def whois(self, ctx, user_id: int): user = await self.bot.fetch_user(user_id) resp = await self.pscall("whois", kwargs={"user_id": user_id}) await self._send_replies(ctx, resp, base=f"{user_id} is {user}:") @commands.command(hidden=True) @checks.is_owner() async def pingall(self, ctx): resp = await self.pscall("ping") embed = discord.Embed(title="Cluster Pings") for cluster, pings in sorted(resp.items(), key=lambda i: i[0]): pingstr = "\n".join(f"Shard {shard}: {floor(ping * 1000)}ms" for shard, ping in pings.items()) avgping = floor((sum(pings.values()) / len(pings)) * 1000) embed.add_field(name=f"Cluster {cluster}: {avgping}ms", value=pingstr) await ctx.send(embed=embed) @commands.command(hidden=True, name='leave') @checks.is_owner() async def leave_server(self, ctx, guild_id: int): resp = await self.pscall("leave", kwargs={"guild_id": guild_id}, expected_replies=1) await self._send_replies(ctx, resp) @commands.command(hidden=True) @checks.is_owner() async def mute(self, ctx, target: int): """Mutes a person by ID.""" try: target_user = await self.bot.fetch_user(target) except NotFound: target_user = "Not Found" if target in self.bot.muted: self.bot.muted.remove(target) await ctx.send("{} ({}) unmuted.".format(target, target_user)) else: self.bot.muted.add(target) await ctx.send("{} ({}) muted.".format(target, target_user)) await self.bot.rdb.jset('muted', list(self.bot.muted)) resp = await self.pscall("reload_lists") await self._send_replies(ctx, resp) @commands.command(hidden=True) @checks.is_owner() async def loglevel(self, ctx, level: int, logger=None): """Changes the loglevel. Do not pass logger for global. Default: 20""" loglevels = await self.bot.rdb.jget('loglevels', {}) loglevels[logger] = level await self.bot.rdb.jset('loglevels', loglevels) resp = await self.pscall("loglevel", args=[level], kwargs={"logger": logger}) await self._send_replies(ctx, resp) @commands.command(hidden=True) @checks.is_owner() async def changepresence(self, ctx, status=None, *, msg=None): """Changes Avrae's presence. Status: online, idle, dnd""" resp = await self.pscall("changepresence", kwargs={"status": status, "msg": msg}) await self._send_replies(ctx, resp) @commands.command(hidden=True) @checks.is_owner() async def reload_static(self, ctx): resp = await self.pscall("reload_static") await self._send_replies(ctx, resp) # ==== listener ==== @commands.Cog.listener() async def on_guild_join(self, server): if server.id in self.blacklisted_serv_ids: return await server.leave() elif server.id in self.whitelisted_serv_ids: return bots = sum(1 for m in server.members if m.bot) members = len(server.members) ratio = bots / members if ratio >= 0.6 and members >= 20: log.info("Detected bot collection server ({}), ratio {}. Leaving.".format(server.id, ratio)) try: await server.owner.send("Please do not add me to bot collection servers. " "Your server was flagged for having over 60% bots. " "If you believe this is an error, please PM the bot author.") except: pass await asyncio.sleep(members / 200) await server.leave() # ==== helper ==== @staticmethod async def _send_replies(ctx, resp, base=None): sorted_replies = sorted(resp.items(), key=lambda i: i[0]) out = '\n'.join(f"{cid}: {rep}" for cid, rep in sorted_replies) if base: out = f"{base}\n{out}" await ctx.send(out) # ==== methods (called by pubsub) ==== async def _leave(self, guild_id): guild = self.bot.get_guild(guild_id) if not guild: return False await guild.leave() return f"Left {guild.name}." @staticmethod async def _loglevel(level, logger=None): logging.getLogger(logger).setLevel(level) return f"Set level of {logger} to {level}." async def _changepresence(self, status=None, msg=None): statuslevel = {'online': discord.Status.online, 'idle': discord.Status.idle, 'dnd': discord.Status.dnd} status = statuslevel.get(status) await self.bot.change_presence(status=status, activity=discord.Game(msg or "D&D 5e | !help")) return "Changed presence." async def _reload_static(self): await compendium.reload(self.bot.mdb) return "OK" async def _reload_lists(self): self.blacklisted_serv_ids = set(await self.bot.rdb.jget('blacklist', [])) self.whitelisted_serv_ids = set(await self.bot.rdb.jget('server-whitelist', [])) self.bot.muted = set(await self.bot.rdb.jget('muted', [])) return "OK" async def _serv_info(self, guild_id): guild = self.bot.get_guild(guild_id) if not guild: channel = self.bot.get_channel(guild_id) if not channel: return False else: guild = channel.guild try: invite = ( await next(c for c in guild.channels if isinstance(c, discord.TextChannel)).create_invite()).url except: invite = None if invite: out = f"{guild.name} ({guild.id}, <{invite}>)" else: out = f"{guild.name} ({guild.id})" out += f"\n{len(guild.members)} members, {sum(m.bot for m in guild.members)} bot" return out async def _whois(self, user_id): return [guild.id for guild in self.bot.guilds if user_id in {user.id for user in guild.members}] async def _ping(self): return dict(self.bot.latencies) # ==== pubsub ==== async def pscall(self, command, args=None, kwargs=None, *, expected_replies=config.NUM_CLUSTERS or 1, timeout=30): """Makes an IPC call to all clusters. Returns a dict of {cluster_id: reply_data}.""" request = redis.PubSubCommand.new(self.bot, command, args, kwargs) self._ps_requests_pending[request.id] = {} await self.bot.rdb.publish(COMMAND_PUBSUB_CHANNEL, request.to_json()) for _ in range(timeout * 10): # timeout after 30 sec if len(self._ps_requests_pending[request.id]) >= expected_replies: break else: await asyncio.sleep(0.1) return self._ps_requests_pending.pop(request.id) async def _ps_recv(self, message): redis.pslogger.debug(message) msg = redis.deserialize_ps_msg(message) if msg.type == 'reply': await self._ps_reply(msg) elif msg.type == 'cmd': await self._ps_cmd(msg) async def _ps_reply(self, message: redis.PubSubReply): if message.reply_to not in self._ps_requests_pending: return self._ps_requests_pending[message.reply_to][message.sender] = message.data async def _ps_cmd(self, message: redis.PubSubCommand): if message.command not in self._ps_cmd_map: return command = self._ps_cmd_map[message.command] result = await command(*message.args, **message.kwargs) if result is not False: response = redis.PubSubReply.new(self.bot, reply_to=message.id, data=result) await self.bot.rdb.publish(COMMAND_PUBSUB_CHANNEL, response.to_json()) # ==== setup ==== def setup(bot): bot.add_cog(AdminUtils(bot))
from __future__ import absolute_import from __future__ import unicode_literals import json import logging import os import re import sys import six from docker.utils.ports import split_port from jsonschema import Draft4Validator from jsonschema import FormatChecker from jsonschema import RefResolver from jsonschema import ValidationError from .errors import ConfigurationError from .errors import VERSION_EXPLANATION from .sort_services import get_service_name_from_network_mode log = logging.getLogger(__name__) DOCKER_CONFIG_HINTS = { 'cpu_share': 'cpu_shares', 'add_host': 'extra_hosts', 'hosts': 'extra_hosts', 'extra_host': 'extra_hosts', 'device': 'devices', 'link': 'links', 'memory_swap': 'memswap_limit', 'port': 'ports', 'privilege': 'privileged', 'priviliged': 'privileged', 'privilige': 'privileged', 'volume': 'volumes', 'workdir': 'working_dir', } VALID_NAME_CHARS = '[a-zA-Z0-9\._\-]' VALID_EXPOSE_FORMAT = r'^\d+(\-\d+)?(\/[a-zA-Z]+)?$' @FormatChecker.cls_checks(format="ports", raises=ValidationError) def format_ports(instance): try: split_port(instance) except ValueError as e: raise ValidationError(six.text_type(e)) return True @FormatChecker.cls_checks(format="expose", raises=ValidationError) def format_expose(instance): if isinstance(instance, six.string_types): if not re.match(VALID_EXPOSE_FORMAT, instance): raise ValidationError( "should be of the format 'PORT[/PROTOCOL]'") return True @FormatChecker.cls_checks(format="bool-value-in-mapping") def format_boolean_in_environment(instance): """ Check if there is a boolean in the environment and display a warning. Always return True here so the validation won't raise an error. """ if isinstance(instance, bool): log.warn( "There is a boolean value in the 'environment' key.\n" "Environment variables can only be strings.\n" "Please add quotes to any boolean values to make them string " "(eg, 'True', 'yes', 'N').\n" "This warning will become an error in a future release. \r\n" ) return True def match_named_volumes(service_dict, project_volumes): service_volumes = service_dict.get('volumes', []) for volume_spec in service_volumes: if volume_spec.is_named_volume and volume_spec.external not in project_volumes: raise ConfigurationError( 'Named volume "{0}" is used in service "{1}" but no' ' declaration was found in the volumes section.'.format( volume_spec.repr(), service_dict.get('name') ) ) def validate_top_level_service_objects(filename, service_dicts): """Perform some high level validation of the service name and value. This validation must happen before interpolation, which must happen before the rest of validation, which is why it's separate from the rest of the service validation. """ for service_name, service_dict in service_dicts.items(): if not isinstance(service_name, six.string_types): raise ConfigurationError( "In file '{}' service name: {} needs to be a string, eg '{}'".format( filename, service_name, service_name)) if not isinstance(service_dict, dict): raise ConfigurationError( "In file '{}' service '{}' doesn\'t have any configuration options. " "All top level keys in your docker-compose.yml must map " "to a dictionary of configuration options.".format( filename, service_name ) ) def validate_top_level_object(config_file): if not isinstance(config_file.config, dict): raise ConfigurationError( "Top level object in '{}' needs to be an object not '{}'.".format( config_file.filename, type(config_file.config))) def validate_ulimits(service_config): ulimit_config = service_config.config.get('ulimits', {}) for limit_name, soft_hard_values in six.iteritems(ulimit_config): if isinstance(soft_hard_values, dict): if not soft_hard_values['soft'] <= soft_hard_values['hard']: raise ConfigurationError( "Service '{s.name}' has invalid ulimit '{ulimit}'. " "'soft' value can not be greater than 'hard' value ".format( s=service_config, ulimit=ulimit_config)) def validate_extends_file_path(service_name, extends_options, filename): """ The service to be extended must either be defined in the config key 'file', or within 'filename'. """ error_prefix = "Invalid 'extends' configuration for %s:" % service_name if 'file' not in extends_options and filename is None: raise ConfigurationError( "%s you need to specify a 'file', e.g. 'file: something.yml'" % error_prefix ) def validate_network_mode(service_config, service_names): network_mode = service_config.config.get('network_mode') if not network_mode: return if 'networks' in service_config.config: raise ConfigurationError("'network_mode' and 'networks' cannot be combined") dependency = get_service_name_from_network_mode(network_mode) if not dependency: return if dependency not in service_names: raise ConfigurationError( "Service '{s.name}' uses the network stack of service '{dep}' which " "is undefined.".format(s=service_config, dep=dependency)) def validate_depends_on(service_config, service_names): for dependency in service_config.config.get('depends_on', []): if dependency not in service_names: raise ConfigurationError( "Service '{s.name}' depends on service '{dep}' which is " "undefined.".format(s=service_config, dep=dependency)) def get_unsupported_config_msg(path, error_key): msg = "Unsupported config option for {}: '{}'".format(path_string(path), error_key) if error_key in DOCKER_CONFIG_HINTS: msg += " (did you mean '{}'?)".format(DOCKER_CONFIG_HINTS[error_key]) return msg def anglicize_validator(validator): if validator in ["array", "object"]: return 'an ' + validator return 'a ' + validator def is_service_dict_schema(schema_id): return schema_id == 'fields_schema_v1.json' or schema_id == '#/properties/services' def handle_error_for_schema_with_id(error, path): schema_id = error.schema['id'] if is_service_dict_schema(schema_id) and error.validator == 'additionalProperties': return "Invalid service name '{}' - only {} characters are allowed".format( # The service_name is the key to the json object list(error.instance)[0], VALID_NAME_CHARS) if schema_id == '#/definitions/constraints': # Build context could in 'build' or 'build.context' and dockerfile could be # in 'dockerfile' or 'build.dockerfile' context = False dockerfile = 'dockerfile' in error.instance if 'build' in error.instance: if isinstance(error.instance['build'], six.string_types): context = True else: context = 'context' in error.instance['build'] dockerfile = dockerfile or 'dockerfile' in error.instance['build'] # TODO: only applies to v1 if 'image' in error.instance and context: return ( "{} has both an image and build path specified. " "A service can either be built to image or use an existing " "image, not both.".format(path_string(path))) if 'image' not in error.instance and not context: return ( "{} has neither an image nor a build path specified. " "At least one must be provided.".format(path_string(path))) # TODO: only applies to v1 if 'image' in error.instance and dockerfile: return ( "{} has both an image and alternate Dockerfile. " "A service can either be built to image or use an existing " "image, not both.".format(path_string(path))) if error.validator == 'additionalProperties': if schema_id == '#/definitions/service': invalid_config_key = parse_key_from_error_msg(error) return get_unsupported_config_msg(path, invalid_config_key) if not error.path: return '{}\n{}'.format(error.message, VERSION_EXPLANATION) def handle_generic_service_error(error, path): msg_format = None error_msg = error.message if error.validator == 'oneOf': msg_format = "{path} {msg}" config_key, error_msg = _parse_oneof_validator(error) if config_key: path.append(config_key) elif error.validator == 'type': msg_format = "{path} contains an invalid type, it should be {msg}" error_msg = _parse_valid_types_from_validator(error.validator_value) # TODO: no test case for this branch, there are no config options # which exercise this branch elif error.validator == 'required': msg_format = "{path} is invalid, {msg}" elif error.validator == 'dependencies': config_key = list(error.validator_value.keys())[0] required_keys = ",".join(error.validator_value[config_key]) msg_format = "{path} is invalid: {msg}" path.append(config_key) error_msg = "when defining '{}' you must set '{}' as well".format( config_key, required_keys) elif error.cause: error_msg = six.text_type(error.cause) msg_format = "{path} is invalid: {msg}" elif error.path: msg_format = "{path} value {msg}" if msg_format: return msg_format.format(path=path_string(path), msg=error_msg) return error.message def parse_key_from_error_msg(error): return error.message.split("'")[1] def path_string(path): return ".".join(c for c in path if isinstance(c, six.string_types)) def _parse_valid_types_from_validator(validator): """A validator value can be either an array of valid types or a string of a valid type. Parse the valid types and prefix with the correct article. """ if not isinstance(validator, list): return anglicize_validator(validator) if len(validator) == 1: return anglicize_validator(validator[0]) return "{}, or {}".format( ", ".join([anglicize_validator(validator[0])] + validator[1:-1]), anglicize_validator(validator[-1])) def _parse_oneof_validator(error): """oneOf has multiple schemas, so we need to reason about which schema, sub schema or constraint the validation is failing on. Inspecting the context value of a ValidationError gives us information about which sub schema failed and which kind of error it is. """ types = [] for context in error.context: if context.validator == 'required': return (None, context.message) if context.validator == 'additionalProperties': invalid_config_key = parse_key_from_error_msg(context) return (None, "contains unsupported option: '{}'".format(invalid_config_key)) if context.path: return ( path_string(context.path), "contains {}, which is an invalid type, it should be {}".format( json.dumps(context.instance), _parse_valid_types_from_validator(context.validator_value)), ) if context.validator == 'uniqueItems': return ( None, "contains non unique items, please remove duplicates from {}".format( context.instance), ) if context.validator == 'type': types.append(context.validator_value) valid_types = _parse_valid_types_from_validator(types) return (None, "contains an invalid type, it should be {}".format(valid_types)) def process_errors(errors, path_prefix=None): """jsonschema gives us an error tree full of information to explain what has gone wrong. Process each error and pull out relevant information and re-write helpful error messages that are relevant. """ path_prefix = path_prefix or [] def format_error_message(error): path = path_prefix + list(error.path) if 'id' in error.schema: error_msg = handle_error_for_schema_with_id(error, path) if error_msg: return error_msg return handle_generic_service_error(error, path) return '\n'.join(format_error_message(error) for error in errors) def validate_against_fields_schema(config_file): schema_filename = "fields_schema_v{0}.json".format(config_file.version) _validate_against_schema( config_file.config, schema_filename, format_checker=["ports", "expose", "bool-value-in-mapping"], filename=config_file.filename) def validate_against_service_schema(config, service_name, version): _validate_against_schema( config, "service_schema_v{0}.json".format(version), format_checker=["ports"], path_prefix=[service_name]) def _validate_against_schema( config, schema_filename, format_checker=(), path_prefix=None, filename=None): config_source_dir = os.path.dirname(os.path.abspath(__file__)) if sys.platform == "win32": file_pre_fix = "///" config_source_dir = config_source_dir.replace('\\', '/') else: file_pre_fix = "//" resolver_full_path = "file:{}{}/".format(file_pre_fix, config_source_dir) schema_file = os.path.join(config_source_dir, schema_filename) with open(schema_file, "r") as schema_fh: schema = json.load(schema_fh) resolver = RefResolver(resolver_full_path, schema) validation_output = Draft4Validator( schema, resolver=resolver, format_checker=FormatChecker(format_checker)) errors = [error for error in sorted(validation_output.iter_errors(config), key=str)] if not errors: return error_msg = process_errors(errors, path_prefix=path_prefix) file_msg = " in file '{}'".format(filename) if filename else '' raise ConfigurationError("Validation failed{}, reason(s):\n{}".format( file_msg, error_msg))
import matplotlib.pyplot as plt import numpy as np from matplotlib import cm alpha, beta = 0.4, 0.5 def f(x1, x2): return alpha * np.log(x1) + beta * np.log(x2) p1, p2, m = 1.0, 1.2, 4 def budget_line(x1): return (m - p1 * x1) / p2 x1star = (alpha / (alpha + beta)) * (m / p1) x2star = budget_line(x1star) maxval = f(x1star, x2star) xgrid = np.linspace(1e-2, 4, 50) ygrid = xgrid # === plot value function === # fig, ax = plt.subplots(figsize=(8,6)) x, y = np.meshgrid(xgrid, ygrid) if 1: ax.plot(xgrid, budget_line(xgrid), 'k-', lw=2, alpha=0.8) #ax.fill_between(xgrid, xgrid * 0.0, budget_line(xgrid), facecolor='blue', alpha=0.3) if 0: # Annotate with text ax.text(1, 1, r'$p_1 x_1 + p_2 x_2 < m$', fontsize=16) ax.annotate(r'$p_1 x_1 + p_2 x_2 = m$', xy=(2, budget_line(2)), xycoords='data', xytext=(40, 40), textcoords='offset points', fontsize=16, arrowprops=dict(arrowstyle="->")) if 1: # Add maximizer ax.annotate(r'$(x_1^*, x_2^*)$', xy=(x1star, x2star), xycoords='data', xytext=(30, 30), textcoords='offset points', fontsize=16, arrowprops=dict(arrowstyle="->")) ax.plot([x1star], [x2star], 'ro', alpha=0.6) if 1: # Plot with contours #points = [-10, -2, -1, 0, 0.4, 0.6, 0.8, 1.0, 1.2, 4] points = [-10, -2, -1, 0, 0.6, 1.0, 1.2, 4] ax.contourf(x, y, f(x, y), points, cmap=cm.jet, alpha=0.5) cs = ax.contour(x, y, f(x, y), points, colors='k', linewidth=2, alpha=0.7, antialias=True) plt.clabel(cs, inline=1, fontsize=12) ax.set_xlim(0, 4) ax.set_ylim(0, 4) ax.set_xticks((0.0, 1.0, 2.0, 3.0)) ax.set_yticks((1.0, 2.0, 3.0)) ax.set_xlabel(r'$x_1$', fontsize=16) ax.set_ylabel(r'$x_2$', fontsize=16) plt.show()
import os import subprocess import glob import hashlib import shutil from common.basedir import BASEDIR from selfdrive.swaglog import cloudlog # OPKR #android_packages = ("com.mixplorer", "com.opkr.maphack", "com.gmd.hidesoftkeys", "com.google.android.inputmethod.korean", "com.skt.tmap.ku",) android_packages = ("com.mixplorer","com.gmd.hidesoftkeys", "com.opkr.maphack", "com.mnsoft.mappyobn","com.phillit.akeyboard","com.goodappsoftware.laserlevel","net.androgames.level","com.moon.android.level" ) # "com.skt.tmap.ku", def get_installed_apks(): dat = subprocess.check_output(["pm", "list", "packages", "-f"], encoding='utf8').strip().split("\n") ret = {} for x in dat: if x.startswith("package:"): v, k = x.split("package:")[1].split("=") ret[k] = v return ret def install_apk(path): # can only install from world readable path install_path = "/sdcard/%s" % os.path.basename(path) shutil.copyfile(path, install_path) ret = subprocess.call(["pm", "install", "-r", install_path]) os.remove(install_path) return ret == 0 def appops_set(package, op, mode): system(f"LD_LIBRARY_PATH= appops set {package} {op} {mode}") def pm_grant(package, permission): system(f"pm grant {package} {permission}") def system(cmd): try: cloudlog.info("running %s" % cmd) subprocess.check_output(cmd, stderr=subprocess.STDOUT, shell=True) except subprocess.CalledProcessError as e: cloudlog.event("running failed", cmd=e.cmd, output=e.output[-1024:], returncode=e.returncode) # *** external functions *** def update_apks(): # install apks installed = get_installed_apks() install_apks = glob.glob(os.path.join(BASEDIR, "selfdrive/assets/addon/apk/*.apk")) for apk in install_apks: app = os.path.basename(apk)[:-4] if app not in installed: installed[app] = None cloudlog.info("installed apks %s" % (str(installed), )) for app in installed.keys(): apk_path = os.path.join(BASEDIR, "selfdrive/assets/addon/apk/"+app+".apk") if not os.path.exists(apk_path): continue h1 = hashlib.sha1(open(apk_path, 'rb').read()).hexdigest() h2 = None if installed[app] is not None: h2 = hashlib.sha1(open(installed[app], 'rb').read()).hexdigest() cloudlog.info("comparing version of %s %s vs %s" % (app, h1, h2)) if h2 is None or h1 != h2: cloudlog.info("installing %s" % app) success = install_apk(apk_path) if not success: cloudlog.info("needing to uninstall %s" % app) system("pm uninstall %s" % app) success = install_apk(apk_path) assert success def pm_apply_packages(cmd): for p in android_packages: system("pm %s %s" % (cmd, p)) if __name__ == "__main__": update_apks()
################################################################################ # Author:Justin Vankirk # Username:vankirkj # # Assignment:A03 # https://docs.google.com/document/d/1upvTP9Z7BehzY-HqRqI9Uh2F3cD19rZi_MtArv0Tn_M/edit?usp=sharing ################################################################################# # Acknowledgements: Azah and I made the stars # # ################################################################################# import turtle def makesquare(): #makes the square outline square = turtle.Turtle() square.penup() square.setpos(-241, 241) square.pendown() square.pensize(20) square.color("white") for i in range(4): square.forward(500) square.right(90) """ Docstring for function_1 """ # ... def boustraphedon(): fanciness = turtle.Turtle() #stars!!! fanciness.pensize(20) fanciness.penup() fanciness.setpos(-221, 221) fanciness.pendown() fanciness.speed(100) for i in range(5): ###This is the algorythm for our stars.### for i in range(11): fanciness.forward(20) fanciness.right(90) fanciness.forward(20) fanciness.right(90) fanciness.forward(20) fanciness.left(90) fanciness.forward(20) fanciness.left(90) fanciness.forward(20) fanciness.right(90) fanciness.forward(20) fanciness.right(90) fanciness.forward(20) fanciness.right(180) fanciness.forward(60) fanciness.left(180) for i in range(11): fanciness.forward(20) fanciness.right(90) fanciness.forward(20) fanciness.right(90) fanciness.forward(20) fanciness.left(90) fanciness.forward(20) fanciness.left(90) fanciness.forward(20) fanciness.right(90) fanciness.forward(20) fanciness.right(90) fanciness.forward(20) fanciness.right(180) fanciness.backward(20) fanciness.left(180) for i in range(11): #if we continued this last loop, it would be impossible to keep the snake inside the box. fanciness.forward(20) #We subtracted this last line of code in order to fix it. fanciness.right(90) fanciness.forward(20) fanciness.right(90) fanciness.forward(20) fanciness.left(90) fanciness.forward(20) fanciness.left(90) fanciness.forward(20) fanciness.right(90) fanciness.forward(20) fanciness.right(90) fanciness.forward(20) fanciness.right(180) fanciness.forward(60) fanciness.left(180) for i in range(11): fanciness.forward(20) fanciness.right(90) fanciness.forward(20) fanciness.right(90) fanciness.forward(20) fanciness.left(90) fanciness.forward(20) fanciness.left(90) fanciness.forward(20) fanciness.right(90) fanciness.forward(20) fanciness.right(90) fanciness.forward(20) fanciness.right(180) fanciness.left(180) """ Create the background """ # ... def makeskyscraper(): skyscraper = turtle.Turtle() #makes the skyscrapers base skyscraper.color(115,115,200) skyscraper.width(10) skyscraper.penup() skyscraper.setpos(-100,-245) skyscraper.pendown() skyscraper.begin_fill() skyscraper.forward(100) skyscraper.left(90) skyscraper.forward(400) skyscraper.left(90) skyscraper.forward(100) skyscraper.left(90) skyscraper.forward(400) skyscraper.end_fill() def door(): door = turtle.Turtle() #skyscraper door door.penup() door.setpos(-75, -245) door.pendown() door.begin_fill() for i in range(2): door.forward(30) door.left(90) door.forward(50) door.left(90) door.end_fill() door.hideturtle() def main(): """ This actually runs the code. """ # ... makesquare() # Function call to function_1 boustraphedon() # Function call to function_2 makeskyscraper() door() window = turtle.Screen() window.bgcolor("yellow") window.colormode(255) main() window.exitonclick()
# Copyright: (c) 2021, Ryan Gordon # The MIT License #   # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. from __future__ import (absolute_import, division, print_function) # Additional import of common code # from cp4s_common import create_authenticated_client __metaclass__ = type DOCUMENTATION = r''' --- module: cp4s_create_artifact short_description: A Module used to create an Artifact in CP4S or Resilient # If this is part of a collection, you need to use semantic versioning, # i.e. the version is of the form "2.5.0" and not "2.4". version_added: "1.0.0" description: Note: This module depends on the global artifacts feature. This module is an example of how you can choose to use a module or a role to achieve a similar outcome. An almost identical piece of functionality exists in the CP4S role but this gives a programmatic way to do it. options: type: description: The Type of the artifact to be created. e.g 'DNS Name'. required: true type: str value: description: The value of the artifact to be created. e.g 'www.google.com'. required: true type: str other: description: - Control to pass any extra information that might be needed to create an artifact. required: false type: dict author: - Ryan Gordon (@Ryan-Gordon) ''' EXAMPLES = r''' # Pass in a message - name: Test creation of a DNS Name artifact ryan_gordon1.cloud_pak_for_security.cp4s_create_artifact: type: 'DNS Name' value: 'google.com' # pass in a message and have changed true - name: Test creation of a IP Address artifact ryan_gordon1.cloud_pak_for_security.cp4s_create_artifact: type: 'IP Address' value: '9.9.9.9' ''' RETURN = r''' # These are examples of possible return values, and in general should use other names for return values. original_message: description: The original name param that was passed in. type: str returned: always sample: 'hello world' message: description: The output message that the test module generates. type: str returned: always sample: 'goodbye' ''' import resilient from ansible.module_utils.basic import AnsibleModule from resilient_lib import close_incident def run_module(): # define available arguments/parameters a user can pass to the module module_args = dict( type=dict(type='str', required=True), value=dict(type='str', required=True), other=dict(type='dict', required=False, default={}) ) # seed the result dict in the object # we primarily care about changed and state # changed is if this module effectively modified the target # state will include any data that you want your module to pass back # for consumption, for example, in a subsequent task result = dict( changed=False, original_message='', message='' ) # the AnsibleModule object will be our abstraction working with Ansible # this includes instantiation, a couple of common attr would be the # args/params passed to the execution, as well as if the module # supports check mode module = AnsibleModule( argument_spec=module_args, supports_check_mode=True ) # if the user is working with this module in only check mode we do not # want to make any changes to the environment, just return the current # state with no modifications if module.check_mode: module.exit_json(**result) client = create_authenticated_client() # TODO: Review if we can make the exception less bare, or if we can use a conditional for the changed property instead try: # Try to make the API call # Make an API call to the global artifacts endpoint for the org # Pass the provided name and value # the 'other' module param is dict and is expanded to provide a way to add any other properties to the call response = client.post('/artifacts', { 'type': { 'name': module.params['type'] }, 'value': module.params['value'], **module.params['other'] }) # Add the response to the result to return result.update({"note_creation_result": response}) except Exception as e: # we need to except in order to do else; use bare except and just raise the exception as normal # raise # raises the exact error that would have otherwise been raised. module.fail_json(msg=u'An exception occurred when creating an artifact: {}'.format(e), **result) else: # if no expections are raised we can assume the API call is successful and has changed state result['changed'] = True # in the event of a successful module execution, you will want to # simple AnsibleModule.exit_json(), passing the key/value results module.exit_json(**result) def create_authenticated_client(): """create_authenticated_client uses the resilient package to gather values from a standard app.config file; the configuration file used for an Integration Server or App Host App. This means all credentials needed to run this module can be kept separate and we can also avoid var prompts. Note: If your running this module on a host other than localhost, that host needs to have an app.config file or you need to copy one over. :return: An authenticated rest client to CP4S or Resilient :rtype: SimpleClient """ import resilient # Create Resilient API Client resilient_parser = resilient.ArgumentParser( config_file=resilient.get_config_file()) resilient_opts = resilient_parser.parse_known_args() # Instantiate a client using the gathered opts return resilient.get_client(resilient_opts[0]) def main(): run_module() if __name__ == '__main__': main()
# Reusable components like navbar/header, footer etc. # ------------------------------------------------------------ import dash_html_components as html import dash_bootstrap_components as dbc header = dbc.Row(children=[ dbc.Col(html.Img(src='/assets/logo.png', height='30px'), width='auto', align="center"), dbc.Col('MyPortfolio', className="h1 text-uppercase font-weight-bold", width=True, align="center"), ], className='p-3 bg-dark text-white', style={'fontFamily': 'Inconsolata'})
from datetime import datetime from typing import Optional, List from pydantic import BaseModel, root_validator from application.models.schema.utils import SuccessResponse from application.utils.api_response import CustomException class BasePatient(BaseModel): first_name: str last_name: str email: Optional[str] phone: str class PatientCreate(BasePatient): password: str @root_validator(pre=True) def check(cls, values): errors = [] for k, v in values.items(): if v=='string' and k in ['first_name', 'last_name', 'phone', 'password']: errors.append({k: f'{k.replace("_", " ")} is required'}) if errors: raise CustomException(error=[error for error in errors]) return values class _Patient(BasePatient): id: Optional[int] full_name: str created_at: datetime updated_at: datetime class Config: orm_mode = True class Patient(SuccessResponse): data: Optional[_Patient] class PatientList(SuccessResponse): data: Optional[List[_Patient]]
########################################################################## # # Copyright (c) 2012, John Haddon. All rights reserved. # Copyright (c) 2013, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above # copyright notice, this list of conditions and the following # disclaimer. # # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided with # the distribution. # # * Neither the name of John Haddon nor the names of # any other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## import os import unittest import IECore import Gaffer import GafferTest import GafferImage import GafferImageTest class ImagePlugTest( GafferImageTest.ImageTestCase ) : def testTileOrigin( self ) : ts = GafferImage.ImagePlug.tileSize() testCases = [ ( IECore.V2i( ts-1, ts-1 ), IECore.V2i( 0, 0 ) ), ( IECore.V2i( ts, ts-1 ), IECore.V2i( ts, 0 ) ), ( IECore.V2i( ts, ts ), IECore.V2i( ts, ts ) ), ( IECore.V2i( ts*3-1, ts+5 ), IECore.V2i( ts*2, ts ) ), ( IECore.V2i( ts*3, ts-5 ), IECore.V2i( ts*3, 0 ) ), ( IECore.V2i( -ts+ts/2, 0 ), IECore.V2i( -ts, 0 ) ), ( IECore.V2i( ts*5+ts/3, -ts*4 ), IECore.V2i( ts*5, -ts*4 ) ), ( IECore.V2i( -ts+1, -ts-1 ), IECore.V2i( -ts, -ts*2 ) ) ] for input, expectedResult in testCases : self.assertEqual( GafferImage.ImagePlug.tileOrigin( input ), expectedResult ) def testTileIndex( self ) : ts = GafferImage.ImagePlug.tileSize() for position, tileIndex in [ ( IECore.V2i( -ts ), IECore.V2i( -1 ) ), ( IECore.V2i( -ts -1 ), IECore.V2i( -2 ) ), ( IECore.V2i( 0 ), IECore.V2i( 0 ) ), ( IECore.V2i( ts ), IECore.V2i( 1 ) ), ( IECore.V2i( ts - 1 ), IECore.V2i( 0 ) ), ] : self.assertEqual( GafferImage.ImagePlug.tileIndex( position ), tileIndex ) def testDefaultChannelNamesMethod( self ) : channelNames = GafferImage.ImagePlug()['channelNames'].defaultValue() self.assertTrue( 'R' in channelNames ) self.assertTrue( 'G' in channelNames ) self.assertTrue( 'B' in channelNames ) def testCreateCounterpart( self ) : p = GafferImage.ImagePlug() p2 = p.createCounterpart( "a", Gaffer.Plug.Direction.Out ) self.assertEqual( p2.getName(), "a" ) self.assertEqual( p2.direction(), Gaffer.Plug.Direction.Out ) self.assertEqual( p2.getFlags(), p.getFlags() ) def testDynamicSerialisation( self ) : s = Gaffer.ScriptNode() s["n"] = Gaffer.Node() s["n"]["p"] = GafferImage.ImagePlug( flags = Gaffer.Plug.Flags.Default | Gaffer.Plug.Flags.Dynamic ) ss = s.serialise() s = Gaffer.ScriptNode() s.execute( ss ) self.assertTrue( isinstance( s["n"]["p"], GafferImage.ImagePlug ) ) self.assertEqual( s["n"]["p"].getFlags(), Gaffer.Plug.Flags.Default | Gaffer.Plug.Flags.Dynamic ) def testBoxPromotion( self ) : b = Gaffer.Box() b["n"] = GafferImage.Grade() self.assertTrue( Gaffer.PlugAlgo.canPromote( b["n"]["in"] ) ) self.assertTrue( Gaffer.PlugAlgo.canPromote( b["n"]["out"] ) ) i = Gaffer.PlugAlgo.promote( b["n"]["in"] ) o = Gaffer.PlugAlgo.promote( b["n"]["out"] ) self.assertEqual( b["n"]["in"].getInput(), i ) self.assertEqual( o.getInput(), b["n"]["out"] ) self.assertTrue( Gaffer.PlugAlgo.isPromoted( b["n"]["in"] ) ) self.assertTrue( Gaffer.PlugAlgo.isPromoted( b["n"]["out"] ) ) def testTypeNamePrefixes( self ) : self.assertTypeNamesArePrefixed( GafferImage ) self.assertTypeNamesArePrefixed( GafferImageTest ) def testDefaultNames( self ) : self.assertDefaultNamesAreCorrect( GafferImage ) self.assertDefaultNamesAreCorrect( GafferImageTest ) def testImageHash( self ) : r = GafferImage.ImageReader() r['fileName'].setValue( os.path.expandvars( "$GAFFER_ROOT/python/GafferImageTest/images/checker.exr" ) ) h = r['out'].imageHash() for i in range( 20 ) : self.assertEqual( h, r['out'].imageHash() ) r['refreshCount'].setValue( 2 ) self.assertNotEqual( h, r['out'].imageHash() ) def testDefaultFormatForImage( self ) : constant = GafferImage.Constant() with Gaffer.Context() as c : GafferImage.FormatPlug.setDefaultFormat( c, GafferImage.Format( 100, 200 ) ) self.assertEqual( constant["out"].image().displayWindow, IECore.Box2i( IECore.V2i( 0 ), IECore.V2i( 99, 199 ) ) ) GafferImage.FormatPlug.setDefaultFormat( c, GafferImage.Format( 200, 300 ) ) self.assertEqual( constant["out"].image().displayWindow, IECore.Box2i( IECore.V2i( 0 ), IECore.V2i( 199, 299 ) ) ) if __name__ == "__main__": unittest.main()
import numpy import numpy as np from sklearn.svm import SVR #-------------------------------------------------------------------- # Hyperparameters #-------------------------------------------------------------------- lr = 0.001 # learning rate #-------------------------------------------------------------------- # Multilayer network #-------------------------------------------------------------------- class Sequential: def __init__(self,modules): self.modules = modules def forward(self,X): for m in self.modules: X = m.forward(X) return X def backward(self,DY): for m in self.modules[::-1]: DY = m.backward(DY) return DY def update(self): for m in self.modules: m.update() #-------------------------------------------------------------------- # Linear layer #-------------------------------------------------------------------- class Linear: def __init__(self,m,n,last=False): self.m = m self.n = n self.W = numpy.random.uniform(-1/self.m**.5,1/self.m**.5,[m,n]).astype('float32') self.B = numpy.zeros([n]).astype('float32') if last: self.W *= 0 def forward(self,X): self.X = X return numpy.dot(X,self.W)+self.B def backward(self,DY): DX = numpy.dot(DY,self.W.T) self.DW = (numpy.dot(self.X.T,DY))/ self.m**.5 self.DB = (DY.sum(axis=0)) / self.m**.25 return DX*(self.m**.5/self.n**.5) def update(self): self.W -= lr*self.DW self.B -= lr*self.DB #-------------------------------------------------------------------- # Hyperbolic tangent layer #-------------------------------------------------------------------- class Tanh: def __init__(self): pass def forward(self,X): self.Y = numpy.tanh(X); return self.Y def backward(self,DY): return DY*(1-self.Y**2) def update(self): pass #==================================================================== # Test #==================================================================== # Prepare data nbsamples=200 nbinputdims=100 nboutputdims=1 # Random regression task X = numpy.random.normal(0,1,[nbsamples,nbinputdims]) T = numpy.random.normal(0,1,[nbsamples,nboutputdims]) T = numpy.random.normal(0,1,[nbsamples]) # Initialize network nn = Sequential([ Linear(nbinputdims,200), Tanh(), Linear(200,20), Tanh(), Linear(20,nboutputdims) ]) clf = SVR(C=1000.0, epsilon=0.0002) clf.fit(X, T) ypred = clf.predict(X) print((ypred-T)**2).sum() T = T[:,np.newaxis] # Training for t in range(1000): Y = nn.forward(X) nn.backward(Y-T) nn.update() if t % 100 == 0: print(t,((Y-T)**2).sum())
import os import signal import sys import time from abc import ABCMeta from abc import abstractmethod from contextlib import contextmanager from functools import partial from shutil import rmtree from types import FrameType from typing import Iterator from typing import List from typing import Optional from typing import Tuple import colorlog import staticconf from backuppy.blob import apply_diff from backuppy.blob import compute_diff from backuppy.crypto import compress_and_encrypt from backuppy.crypto import decrypt_and_unpack from backuppy.crypto import generate_key_pair from backuppy.exceptions import DiffTooLargeException from backuppy.exceptions import ManifestLockedException from backuppy.io import compute_sha from backuppy.io import IOIter from backuppy.manifest import lock_manifest from backuppy.manifest import Manifest from backuppy.manifest import MANIFEST_FILE from backuppy.manifest import MANIFEST_KEY_FILE from backuppy.manifest import MANIFEST_PREFIX from backuppy.manifest import ManifestEntry from backuppy.manifest import unlock_manifest from backuppy.options import DEFAULT_OPTIONS from backuppy.options import OptionsDict from backuppy.util import get_scratch_dir from backuppy.util import path_join from backuppy.util import regex_search_list from backuppy.util import sha_to_path logger = colorlog.getLogger(__name__) _UNLOCKED_STORE = None _SIGNALS_TO_HANDLE = (signal.SIGINT, signal.SIGTERM) class BackupStore(metaclass=ABCMeta): backup_name: str _manifest: Optional[Manifest] def __init__(self, backup_name: str) -> None: """ A BackupStore object controls all the reading and writing of data from a particular backup location (local, S3, ssh, etc) This is an abstract class that needs to be subclassed with a _save and _load function that determines how to actually read and write data from/to the store. The remaining methods for this class are common across different types of stores, and are what establish many of the "safety" guarantees of backuppy. :param backup_name: the name of the backup this store corresponds to in the configuration file """ self.backup_name = backup_name self.config = staticconf.NamespaceReaders(backup_name) self._manifest = None @contextmanager def unlock(self, *, dry_run=False, preserve_scratch=False) -> Iterator: """ Unlock the backup store and prep for work The backup store is responsible for the manifest in the store; unfortunately, since sqlite3 doesn't accept an open file descriptor when opening a DB connection, we have to circumvent some of the IOIter functionality and do it ourselves. We wrap this in a context manager so this can be abstracted away and still ensure that proper cleanup happens. :param dry_run: whether to actually save any data or not :param preserve_scratch: whether to clean up the scratch directory before we exit; mainly used for debugging purposes """ # we have to create the scratch dir regardless of whether --dry-run is enabled # because we still need to be able to figure out what's changed and what we should do rmtree(get_scratch_dir(), ignore_errors=True) os.makedirs(get_scratch_dir(), exist_ok=True) try: manifests = sorted(self._query(MANIFEST_PREFIX)) if not manifests: logger.warning( ''' ******************************************************************** This looks like a new backup location; if you are not expecting this message, someone may be tampering with your backup! ******************************************************************** ''' ) self._manifest = Manifest(os.path.join( get_scratch_dir(), MANIFEST_FILE.format(ts=time.time()), )) else: self._manifest = unlock_manifest( manifests[-1], self.config.read('private_key_filename', default=''), self._load, self.options, ) _register_unlocked_store(self, dry_run, preserve_scratch) yield finally: self.do_cleanup(dry_run, preserve_scratch) _unregister_store() def save_if_new( self, abs_file_name: str, *, dry_run: bool = False, force_copy: bool = False, ) -> None: """ The main workhorse function; determine if a file has changed, and if so, back it up! :param abs_file_name: the name of the file under consideration :param dry_run: whether to actually save any data or not """ curr_entry, new_entry = self.manifest.get_entry(abs_file_name), None with IOIter(abs_file_name) as new_file: new_sha = compute_sha(new_file) # If the file hasn't been backed up before, or if it's been deleted previously, save a # new copy; we make a copy here to ensure that the contents don't change while backing # the file up, and that we have the correct sha if force_copy or not curr_entry or not curr_entry.sha: new_entry = self._write_copy(abs_file_name, new_sha, new_file, force_copy, dry_run) # If the file has been backed up, check to see if it's changed by comparing shas elif new_sha != curr_entry.sha: if regex_search_list(abs_file_name, self.options['skip_diff_patterns']): new_entry = self._write_copy(abs_file_name, new_sha, new_file, False, dry_run) else: new_entry = self._write_diff( abs_file_name, new_sha, curr_entry, new_file, dry_run, ) # If the sha is the same but metadata on the file has changed, we just store the updated # metadata elif ( new_file.uid != curr_entry.uid or new_file.gid != curr_entry.gid or new_file.mode != curr_entry.mode ): logger.info(f'Saving changed metadata for {abs_file_name}') new_entry = ManifestEntry( abs_file_name, curr_entry.sha, curr_entry.base_sha, new_file.uid, new_file.gid, new_file.mode, curr_entry.key_pair, # NOTE: this is safe because the data has not changed! curr_entry.base_key_pair, ) else: # we don't want to flood the log with all the files that haven't changed logger.debug(f'{abs_file_name} is up to date!') if new_entry and not dry_run: self.manifest.insert_or_update(new_entry) return # test_m2_crash_after_file_save def restore_entry( self, entry: ManifestEntry, orig_file: IOIter, diff_file: IOIter, restore_file: IOIter, ) -> None: if entry.base_sha: assert entry.base_key_pair # make mypy happy; this cannot be None here self.load(entry.base_sha, orig_file, entry.base_key_pair) self.load(entry.sha, diff_file, entry.key_pair) apply_diff(orig_file, diff_file, restore_file) else: self.load(entry.sha, restore_file, entry.key_pair) def save(self, src: IOIter, dest: str, key_pair: bytes) -> bytes: """ Wrapper around the _save function that converts the SHA to a path and does encryption :param src: the file to save :param dest: the name of the file to write to in the store :param key_pair: an AES key + nonce to use to encrypt the file :returns: the HMAC of the saved file """ dest = sha_to_path(dest) # We compress and encrypt the file on the local file system, and then pass the encrypted # file to the backup store to handle atomically filename = path_join(get_scratch_dir(), dest) with IOIter(filename) as encrypted_save_file: signature = compress_and_encrypt(src, encrypted_save_file, key_pair, self.options) self._save(encrypted_save_file, dest) # test_f1_crash_file_save os.remove(filename) return signature def load( self, src: str, dest: IOIter, key_pair: bytes, ) -> IOIter: """ Wrapper around the _load function that converts the SHA to a path """ src = sha_to_path(src) with IOIter() as encrypted_load_file: self._load(src, encrypted_load_file) decrypt_and_unpack(encrypted_load_file, dest, key_pair, self.options) dest.fd.seek(0) return dest def rotate_manifests(self) -> None: max_versions = self.options['max_manifest_versions'] if not max_versions: return # this just means that there's no configured limit to the number of versions manifests = sorted(self._query(MANIFEST_PREFIX)) for manifest in manifests[:-max_versions]: ts = manifest.split('.', 1)[1] self._delete(manifest) self._delete(MANIFEST_KEY_FILE.format(ts=ts)) def do_cleanup( self, dry_run: bool, preserve_scratch: bool, ) -> None: """ Ensure that the backup store gets cleaned up appropriately before we shut down; this can be called as a signal handler, hence the first two arguments. Otherwise this should be called whenever we lock the store. :param signum: if called as a signal handler, the signal num; otherwise None :param frame: if called as a signal handler, the stack trace; otherwise None :param dry_run: whether to actually save any data or not :param preserve_scratch: whether to clean up the scratch directory before we exit; mainly used for debugging purposes """ if not self._manifest: return if not self._manifest.changed: # test_m1_crash_before_save logger.info('No changes detected; nothing to do') elif not dry_run: lock_manifest( self._manifest, self.config.read('private_key_filename', default=''), self._save, self._load, self.options, ) self.rotate_manifests() if not preserve_scratch: rmtree(get_scratch_dir(), ignore_errors=True) self._manifest = None # test_m1_crash_after_save def _write_copy( self, abs_file_name: str, new_sha: str, file_obj: IOIter, force_copy: bool, dry_run: bool, ) -> ManifestEntry: logger.info(f'Saving a new copy of {abs_file_name}') entry_data = None if not force_copy: entry_data = self._find_existing_entry_data(new_sha) # test_f3_file_changed_while_saving key_pair, base_sha, base_key_pair = entry_data or (generate_key_pair(), None, None) new_entry = ManifestEntry( # test_m2_crash_before_file_save abs_file_name, new_sha, base_sha, file_obj.uid, file_obj.gid, file_obj.mode, key_pair, base_key_pair, ) if not dry_run and not entry_data: signature = self.save(file_obj, new_entry.sha, key_pair) new_entry.key_pair = key_pair + signature # append the HMAC before writing to db return new_entry def _write_diff( self, abs_file_name: str, new_sha: str, curr_entry: ManifestEntry, file_obj: IOIter, dry_run: bool, ) -> ManifestEntry: logger.info(f'Saving a diff for {abs_file_name}') entry_data = self._find_existing_entry_data(new_sha) # If the current entry is itself a diff, get its base; otherwise, this # entry becomes the base if entry_data: key_pair, base_sha, base_key_pair = entry_data elif curr_entry.base_sha: key_pair = generate_key_pair() base_sha = curr_entry.base_sha base_key_pair = curr_entry.base_key_pair else: key_pair = generate_key_pair() base_sha = curr_entry.sha base_key_pair = curr_entry.key_pair # compute a diff between the version we've previously backed up and the new version new_entry = ManifestEntry( abs_file_name, new_sha, base_sha, file_obj.uid, file_obj.gid, file_obj.mode, key_pair, base_key_pair, ) if not entry_data: assert base_sha and base_key_pair with IOIter() as orig_file, IOIter() as diff_file: orig_file = self.load(base_sha, orig_file, base_key_pair) try: fd_diff = compute_diff( orig_file, file_obj, diff_file, self.options['discard_diff_percentage'], ) except DiffTooLargeException: logger.info('The computed diff was too large; saving a copy instead.') logger.info( '(you can configure this threshold with the skip_diff_percentage option)' ) file_obj.fd.seek(0) return self._write_copy(abs_file_name, new_sha, file_obj, False, dry_run) new_entry.sha = new_sha if not dry_run: signature = self.save(fd_diff, new_entry.sha, key_pair) new_entry.key_pair = key_pair + signature return new_entry def _find_existing_entry_data( self, sha: str, ) -> Optional[Tuple[bytes, Optional[str], Optional[bytes]]]: entries = self.manifest.get_entries_by_sha(sha) if entries: assert len({e.key_pair for e in entries}) == 1 logger.debug('Found pre-existing sha in the manifest, using that data') return entries[0].key_pair, entries[0].base_sha, entries[0].base_key_pair else: return None @abstractmethod def _save(self, src: IOIter, dest: str) -> None: # pragma: no cover pass @abstractmethod def _load(self, path: str, tmpfile: IOIter) -> IOIter: # pragma: no cover pass @abstractmethod def _query(self, prefix: str) -> List[str]: # pragma: no cover pass @abstractmethod def _delete(self, filename: str) -> None: # pragma: no cover pass @property def manifest(self) -> Manifest: """ Wrapper around the manifest to make sure we've unlocked it in a with unlock()... block """ if not self._manifest: raise ManifestLockedException('The manifest is currently locked') return self._manifest @property def options(self) -> OptionsDict: try: options = self.config.read_list('options', default=[{}])[0] except IndexError: options = dict() return {**DEFAULT_OPTIONS, **options} # type: ignore def _cleanup_and_exit(signum: int, frame: FrameType, dry_run: bool, preserve_scratch: bool) -> None: """ Signal handler to safely clean up after Ctrl-C or SIGTERM; this minimizes the amount of duplicate work we have to do in the event that we cancel the backup partway through """ signal.signal(signum, signal.SIG_IGN) logger.info(f'Received signal {signum}, cleaning up the backup store') if _UNLOCKED_STORE: try: _UNLOCKED_STORE.do_cleanup(dry_run, preserve_scratch) except Exception as e: logger.exception(f'Shutdown was requested, but there was an error cleaning up: {str(e)}') sys.exit(1) logger.info('Cleanup complete; shutting down') sys.exit(0) def _register_unlocked_store(store: BackupStore, dry_run: bool, preserve_scratch: bool) -> None: global _UNLOCKED_STORE _UNLOCKED_STORE = store sig_handler = partial( _cleanup_and_exit, dry_run=dry_run, preserve_scratch=preserve_scratch ) for sig in _SIGNALS_TO_HANDLE: signal.signal(sig, sig_handler) def _unregister_store() -> None: global _UNLOCKED_STORE _UNLOCKED_STORE = None for sig in _SIGNALS_TO_HANDLE: signal.signal(sig, signal.SIG_DFL)
# Copyright (c) 2008, Kundan Singh. All rights reserved. See LICENSING for details. # @implements RFC3263 (Locating SIP servers) ''' Uses DNS to resolve a domain name into SIP servers using NAPTR, SRV and A/AAAA records. TODO: (1) need to make it multitask compatible or have a separate thread, (3) need to return priority and weight. >>> print resolve('sip:192.1.2.3') # with numeric IP [('192.1.2.3', 5060, 'udp'), ('192.1.2.3', 5060, 'tcp'), ('192.1.2.3', 5061, 'tls')] >>> print resolve('sip:192.1.2.3;maddr=192.3.3.3') # and maddr param [('192.3.3.3', 5060, 'udp'), ('192.3.3.3', 5060, 'tcp'), ('192.3.3.3', 5061, 'tls')] >>> print resolve('sip:192.1.2.3:5062;transport=tcp') # and port, transport param [('192.1.2.3', 5062, 'tcp')] >>> print resolve('sips:192.1.2.3') # and sips [('192.1.2.3', 5061, 'tls')] >>> print resolve('sips:192.1.2.3:5062') # and sips, port [('192.1.2.3', 5062, 'tls')] >>> print resolve('sip:39peers.net') # with non-numeric without NAPTR/SRV [('74.220.215.84', 5060, 'udp'), ('74.220.215.84', 5060, 'tcp'), ('74.220.215.84', 5061, 'tls')] >>> print resolve('sip:39peers.net:5062') # and port [('74.220.215.84', 5062, 'udp'), ('74.220.215.84', 5062, 'tcp'), ('74.220.215.84', 5062, 'tls')] >>> print resolve('sip:39peers.net;transport=tcp') # and transport [('74.220.215.84', 5060, 'tcp')] >>> print resolve('sips:39peers.net') # and sips [('74.220.215.84', 5061, 'tls')] >>> print resolve('sip:iptel.org') # with no NAPTR but has SRV records [('217.9.36.145', 5060, 'udp'), ('217.9.36.145', 5060, 'tcp')] >>> print resolve('sips:iptel.org') # and sips [('217.9.36.145', 5061, 'tls')] >>> print resolve('sip:columbia.edu') # with one NAPTR and two SRV records [('128.59.59.229', 5060, 'udp'), ('128.59.59.208', 5060, 'udp')] >>> print resolve('sips:columbia.edu') # and sips (no NAPTR for sips) [('128.59.48.24', 5061, 'tls')] >>> print resolve('sip:adobe.com') # with multiple NAPTR and multiple SRV [('192.150.12.115', 5060, 'udp')] >>> print resolve('sip:adobe.com', supported=('tcp', 'tls')) # if udp is not supported [('192.150.12.115', 5060, 'tcp')] >>> print resolve('sips:adobe.com') # with multiple NAPTR and multiple SRV [('192.150.12.115', 5061, 'tls')] >>> try: resolve('sip:twilio.com') # with incorrectly configured SRV ... except: print 'error' error ''' import sys, os, time, random if __name__ == '__main__': # hack to add other libraries in the sys.path f = os.path.dirname(sys.path.pop(0)) sys.path.append(os.path.join(f, 'external')) if os.name == 'nt': # on windows import w32util and use RegistryResolve import w32util _nameservers = w32util.RegistryResolve() else: _nameservers = None import dns from std.rfc2396 import URI, isIPv4 _debug = False; # enable debug trace or not _resolver, _cache = None, {} # Name servers, resolver and DNS cache (plus negative cache) _proto = {'udp': ('sip+d2u', 5060), 'tcp': ('sip+d2t', 5060), 'tls': ('sips+d2t', 5061), 'sctp': ('sip+d2s', 5060)} # map from transport to details _rproto = dict([(x[1][0], x[0]) for x in _proto.iteritems()]) # reverse mapping {'sip+d2u': 'udp', ...} _xproto = dict([(x[0], '_%s._%s'%(x[1][0].split('+')[0], x[0] if x[0] != 'tls' else 'tcp')) for x in _proto.iteritems()]) # mapping {'udp' : '_sip._udp', ...} _rxproto = dict([(x[1], x[0]) for x in _xproto.iteritems()]) # mapping { '_sips._tcp': 'tls', ...} _zxproto = dict([(x[0], _proto[x[1]]) for x in _rxproto.iteritems()]) # mapping { '_sips._tcp': ('sip+d2t, 5061), ...} _group = lambda x: sorted(x, lambda a,b: a[1]-b[1]) # sort a list of tuples based on priority def _query(key, negTimeout=60): # key is (target, type) '''Perform a single DNS query, and return the ANSWER section. Uses internal cache to avoid repeating the queries. The timeout of the cache entry is determined by TTL obtained in the results. It always returns a list, even if empty.''' global _resolver; resolver = _resolver or dns.Resolver(_nameservers) if key in _cache and _cache[key][1] < time.time(): return random.shuffle(_cache[key][0]) and _cache[key][0] try: raw = resolver.Raw(key[0], key[1], dns.C_IN, recursion=True, proto=None) if raw and raw['HEADER']['OPCODES']['TC']: # if truncated, try with TCP raw = resolver.Raw(key[0], key[1], dns.C_IN, recursion=False, proto='tcp') answer = raw and raw['HEADER']['ANCOUNT'] > 0 and raw['ANSWER'] or []; random.shuffle(answer) except Exception, e: if _debug: print '_query(', key, ') exception=', e answer = [] _cache[key] = (answer, time.time() + min([(x['TTL'] if 'TTL' in x else negTimeout) for x in answer] + [negTimeout])) return answer # @implements RFC3263 P1L27-P1L32 def resolve(uri, supported=('udp', 'tcp', 'tls'), secproto=('tls',)): '''Resolve a URI using RFC3263 to list of (IP address, port) tuples each with its order, preference, transport and TTL information. The application can supply a list of supported protocols if needed.''' if not isinstance(uri, URI): uri = URI(uri) transport = uri.param['transport'] if 'transport' in uri.param else None target = uri.param['maddr'] if 'maddr' in uri.param else uri.host numeric, port, naptr, srv, result = isIPv4(target), uri.port, None, None, None if uri.secure: supported = secproto # only support secproto for "sips" #@implements rfc3263 P6L10-P8L32 if transport: transports = (transport,) if transport in supported else () # only the given transport is used elif numeric or port is not None: transports = supported else: naptr = _query((target, dns.T_NAPTR)) if naptr: # find the first that is supported ordered = filter(lambda r: r[1] in supported, sorted(map(lambda r: (r['RDATA']['ORDER'], _rproto.get(r['RDATA']['SERVICE'].lower(), ''), r), naptr), lambda a,b: a[0]-b[0])) # filter out unsupported transports if ordered: selected = filter(lambda r: r[0] == ordered[0][0], ordered) # keep only top-ordered values, ignore rest transports, naptr = map(lambda r: r[1], selected), map(lambda r: r[2], selected) # unzip to transports and naptr values else: transports, naptr = supported, None # assume failure if not found; clear the naptr response if not naptr: # do not use "else", because naptr may be cleared in "if" srv = filter(lambda r: r[1], map(lambda p: (_rxproto.get(p, ''), _query(('%s.%s'%(p, target), dns.T_SRV))), map(lambda t: _xproto[t], supported))) if srv: transports = map(lambda s: s[0], srv) else: transports = supported #@implements rfc3263 P8L34-P9L31 if numeric: result = map(lambda t: (target, port or _proto[t][1], t), transports) elif port: result = sum(map(lambda t: map(lambda r: (r['RDATA'], port, t), _query((target, dns.T_A))), transports), []) else: service = None if naptr: service = sorted(map(lambda x: (x['RDATA']['REPLACEMENT'].lower(), x['RDATA']['ORDER'], x['RDATA']['PREFERENCE'], x['RDATA']['SERVICE'].lower()), naptr), lambda a,b: a[1]-b[1]) elif transport: service = [('%s.%s'%(_xproto[transport], target), 0, 0, _proto[transport][0])] if not srv: srv = filter(lambda y: y[1], map(lambda s: (_rproto[s[3].lower()], _query((s[0], dns.T_SRV))), service)) if service else [] if srv: out = list(sorted(sum(map(lambda s: map(lambda r: (r['RDATA']['DOMAIN'].lower(), r['RDATA']['PRIORITY'], r['RDATA']['WEIGHT'], r['RDATA']['PORT'], s[0]), s[1]), srv), []), lambda a,b: a[1]-b[1])) result = sum(map(lambda x: map(lambda y: (y['RDATA'], x[1], x[2]), (_query((x[0], dns.T_A)) or [])), map(lambda r: (r[0], r[3], r[4]), out)), []) return result or map(lambda x: (x[0], port or _proto[x[1]][1], x[1]), sum(map(lambda b: map(lambda a: (a, b), map(lambda x: x['RDATA'], _query((target, dns.T_A)))), transports), [])) # finally do A record on target, if nothing else worked if __name__ == '__main__': # Unit test of this module import doctest; doctest.testmod()
# Python program to implement server side of chat room. import socket import select import sys from thread import * server = socket.socket(socket.AF_INET, socket.SOCK_STREAM) server.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) # checks whether sufficient arguments have been provided if len(sys.argv) != 3: print "Correct usage: script, IP address, port number" exit() # takes the first argument from command prompt as IP address IP_address = str(sys.argv[1]) # takes second argument from command prompt as port number Port = int(sys.argv[2]) server.bind((IP_address, Port)) server.listen(100) list_of_clients = [] def clientthread(conn, addr): # sends a message to the client whose user object is conn conn.send("Welcome to this chatroom!") while True: try: message = conn.recv(2048) if message: print "<" + addr[0] + "> " + message # Calls broadcast function to send message to all message_to_send = "<" + addr[0] + "> " + message broadcast(message_to_send, conn) else: remove(conn) except: continue def broadcast(message, connection): for clients in list_of_clients: if clients!=connection: try: clients.send(message) except: clients.close() # if the link is broken, we remove the client remove(clients) def remove(connection): if connection in list_of_clients: list_of_clients.remove(connection) while True: conn, addr = server.accept() list_of_clients.append(conn) # prints the address of the user that just connected print addr[0] + " connected" # creates and individual thread for every user # that connects start_new_thread(clientthread,(conn,addr)) conn.close() server.close()
""" Number letter counts Problem 17 https://projecteuler.net/problem=17 """ def sol(): under_ten = get_under_ten() total_of_one_to_ninety_nine = get_total_of_one_to_ninety_nine(under_ten) total_of_one_hundred_until_thousand = get_total_of_one_hundred_until_thousand( under_ten, total_of_one_to_ninety_nine ) print( total_of_one_to_ninety_nine + total_of_one_hundred_until_thousand + len("one") + len("thousand") ) def get_under_ten(): return [ "one", "two", "three", "four", "five", "six", "seven", "eight", "nine", ] def get_total_of_one_to_ninety_nine(under_ten): ten_to_nineteen = [ "ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen", "sixteen", "seventeen", "eighteen", "nineteen", ] twenty_to_ninety_step_10 = [ "twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety", ] total_length_of_under_ten = sum([len(i) for i in under_ten]) total_length_of_ten_to_nineteen = sum([len(i) for i in ten_to_nineteen]) total_length_of_twenty_to_ninety_nine = 0 for ten_time in twenty_to_ninety_step_10: tmp = len(ten_time) * 10 tmp += total_length_of_under_ten total_length_of_twenty_to_ninety_nine += tmp return ( total_length_of_under_ten + total_length_of_ten_to_nineteen + total_length_of_twenty_to_ninety_nine ) def get_total_of_one_hundred_until_thousand(under_ten, total_of_one_to_ninety_nine): result = 0 hundred_length = len("hundred") and_length = len("and") for num in under_ten: tmp = (len(num) + len("hundred")) * 100 tmp += and_length * 99 tmp += total_of_one_to_ninety_nine result += tmp return result if __name__ == "__main__": sol()
#!/usr/bin/python """ This example shows how to create an empty Mininet object (without a topology object) and add nodes to it manually. """ from mininet.net import Mininet, MininetWithControlNet from mininet.node import Controller, RemoteController from mininet.cli import CLI from mininet.log import setLogLevel, info class InbandController( RemoteController ): def checkListening( self ): "Overridden to do nothing." return def netWithVNFs(netconf = False): "Create an empty network and add nodes to it." #ctl = InbandController( 'ctl', ip='192.168.123.1' ) #ctl = InbandController( 'ctl', ip='127.0.0.1' ) #net = MininetWithControlNet( ) net = MininetWithControlNet( controller=Controller, autoSetMacs=True ) #net = Mininet( controller=Controller ) info( '*** Adding controller\n' ) ctl = net.addController( 'c0' , controller=RemoteController ) #import pdb; pdb.set_trace(); info( '*** Adding hosts \n' ) h1 = net.addHost( 'h1') h2 = net.addHost( 'h2') info( '*** Adding VNFs \n' ) if netconf: ee1 = net.addEE( 'ee1' ) ee1.setVNF(vnf_name='netconf') ee2 = net.addEE( 'ee2' ) ee2.setVNF(vnf_name='netconf') #[ exe1_sw, exe1_container ] = net.addManagedExe( 'exe1', nintf=5) #exe1_container.cmd = netconf.makeNetConfCmd() else: ee1 = net.addEE( 'ee1',cpu=0.1) #ee1.setVNF(vnf_name='fakeLoad', cpu='8', mem='5MB') ee1.setVNF(vnf_name='simpleForwarder', device=ee1.name+'_eth1',name=ee1.name) ee2 = net.addEE( 'ee2',cpu=0.1) #example for NAT with two ports connected to internal hosts (private addresses) and one port connected to the Internet (public address) device=[{'index':0,'name':'eth1','ip1':'1.0.0.1','ip2':'1.0.0.10'},{'index':1,'name':'eth2','ip1':'1.0.0.20','ip2':'1.0.0.30'}] public={'index':2,'name':'eth2'} ee2.setVNF(vnf_name='nat',device=device,public=public) # ee2.setVNF(vnf_name='simpleObservationPoint', name=ee2.name) #ee2.setVNF(vnf_name='fakeLoad', cpu='8', mem='5MB') #ee2.setVNF(vnf_name='lookbusy', # mem_util='5MB', cpu_util='8-20', cpu_mode='curve', # cpu_curve_period='5m', cpu_curve_peak='2m' ) info( '*** Adding switches\n' ) s3 = net.addSwitch( 's3' ) s4 = net.addSwitch( 's4' ) info( '*** Creating links\n' ) net.addLink( h1, s3 ) net.addLink( h2, s4 ) net.addLink( s3, s4 ) if netconf: net.addLink( exe1_sw, s3 ) else: net.addLink( ee1, s3 ) net.addLink( ee2, s4 ) info( '*** Starting network\n' ) net.start() info( '*** Running CLI\n' ) CLI( net ) info( '*** Stopping network' ) net.stop() def add_VNF(): """ add VNFs to catalog (required parameters should be given) """ from mininet.vnfcatalogiminds import Catalog #1. First single Click elements are added to the DB Catalog().add_VNF(vnf_name='FromDevice',vnf_type='Click') Catalog().add_VNF(vnf_name='ToDevice',vnf_type='Click') Catalog().add_VNF(vnf_name='Queue',vnf_type='Click') Catalog().add_VNF(vnf_name='Tee',vnf_type='Click') #Catalog().add_VNF(vnf_name='Counter',vnf_type='Click',clickPath='/home/click', # clickSource=['elements/standard/counter.cc','elements/standard/counter.cc']) Catalog().add_VNF(vnf_name='Counter',vnf_type='Click') Catalog().add_VNF(vnf_name='Classifier',vnf_type='Click') Catalog().add_VNF(vnf_name='IPClassifier',vnf_type='Click') Catalog().add_VNF(vnf_name='ICMPPingSource',vnf_type='Click') Catalog().add_VNF(vnf_name='ARPQuerier',vnf_type='Click') Catalog().add_VNF(vnf_name='AggregateIPFlows',vnf_type='Click') Catalog().add_VNF(vnf_name='RFC2507Comp',vnf_type='Click') Catalog().add_VNF(vnf_name='RFC2507Decomp',vnf_type='Click') Catalog().add_VNF(vnf_name='IPAddRewriter',vnf_type='Click') #2. Then the VNFs composed of several Click elements are added to the DB Catalog().add_VNF(vnf_name='simpleForwarder',vnf_type='Click',description='receive on the data interface and loop back the packet') Catalog().add_VNF(vnf_name='simpleObservationPoint',vnf_type='Click',description='A simple observation point in click') Catalog().add_VNF(vnf_name='headerCompressor',vnf_type='Click',description='Compress IPv4/TCP headers as defined in RFC2507') Catalog().add_VNF(vnf_name='headerDecompressor',vnf_type='Click',description='Decompress IPv4/TCP headers as defined in RFC2507') Catalog().add_VNF(vnf_name='nat',vnf_type='Click',description='Provide the functionality of basic network address translator') if __name__ == '__main__': add_VNF() setLogLevel( 'info' ) netWithVNFs()
import logging import amrlib import penman import penman.models.noop import re from amrlib.alignments.rbw_aligner import RBWAligner from amrlib.graph_processing.annotator import add_lemmas, load_spacy from amratom.atomese import is_variable, is_amrset_name _spacy_model = 'en_core_web_md' _penman_model = penman.models.noop.NoOpModel() def _load_spacy(): #return spacy.load(_spacy_model) # There is no API to inject own model into amrlib pipeline. I keep this # code because I don't like reimplementing internal `add_lemmas` logic # using own spacy model load_spacy(_spacy_model) from amrlib.graph_processing.annotator import spacy_nlp logging.getLogger(__name__).debug("_load_spacy(): %s is loaded", spacy_nlp.path) return spacy_nlp _stog_model_cache = None _gtos_model_cache = None _spacy_model_cache = None def load_models(): global _stog_model_cache if _stog_model_cache is None: _stog_model_cache = amrlib.load_stog_model() global _gtos_model_cache if _gtos_model_cache is None: _gtos_model_cache = amrlib.load_gtos_model() global _spacy_model_cache if _spacy_model_cache is None: _spacy_model_cache = _load_spacy() amrlib.setup_spacy_extension() class AmrProcessor: def __init__(self): self.log = logging.getLogger(__name__ + '.' + type(self).__name__) load_models() global _spacy_model_cache self.nlp = _spacy_model_cache global _gtos_model_cache self.gtos = _gtos_model_cache def utterance_to_amr(self, utterance, indent=-1): doc = self.nlp(utterance) amrs = doc._.to_amr() sents = doc.sents triples_proc = [] for p in zip(amrs, sents): # Entry point (amr text->triples); can be replaced with penman.decode triples, top = self._add_pos_tags(doc, p[0], p[1], indent) # further triples processing triples_proc += self._sentence_splitter(triples, top) return list(map(lambda ts: penman.encode(penman.Graph(ts), indent=indent, model=_penman_model), triples_proc)) def amr_to_utterance(self, amr): return self.gtos.generate([amr], use_tense=False)[0][0] def triples_to_utterance(self, triples): return self.amr_to_utterance(penman.encode(penman.Graph(triples))) def _add_pos_tags(self, doc, amr, sent, indent): self.log.debug('_add_pos_tags: amr: %s, sent: %s', amr, sent) graph = add_lemmas(amr, snt_key='snt') aligner = RBWAligner.from_penman_w_json(graph) graph = aligner.get_penman_graph() triples = graph.triples self.log.debug('_add_pos_tags: alignments: %s', penman.surface.alignments(graph)) for triple, alignment in penman.surface.alignments(graph).items(): pos_tag = doc[sent.start + alignment.indices[0]].tag_ triples.append((triple[0], ':pos', '"' + pos_tag + '"')) self.log.debug('_add_pos_tags: triples: %s', triples) return triples, graph.top def _child_lnodes_rec(self, triples, parent): ''' Returns all those nodes (possibly duplicated) in the subgraph (including `parent`) which appear on the left side of triples (i.e. not leaves) ''' grandchildren = [] isOnLeft = False for t in triples: if t[0] == parent: isOnLeft = True grandchildren += self._child_lnodes_rec(triples, t[2]) return [parent] + grandchildren if isOnLeft else [] def _sentence_splitter(self, triples, top): top_roles = [] top_concept = None for triple in triples: if triple[0] == top: if triple[1] == ':instance': top_concept = triple[2] elif triple[1] != ':pos': top_roles += [(triple[1], triple[2])] if top_concept == 'and': expected = 'op' elif top_concept == 'multi-sentence': expected = 'snt' else: return [triples] # Just checking that there are no unexpected roles for r in top_roles: if not expected in r[0]: logging.getLogger(__name__).debug("_sentence_splitter(): WARNING - unexpected role %s for %s", r[0], top_concept) return [triples] subgraphs = [[[], self._child_lnodes_rec(triples, r[1])] for r in top_roles] for t in triples: for s in subgraphs: if t[0] in s[1]: s[0] += [t] return [s[0] for s in subgraphs] def is_instance(triple): return triple[1] == ':instance' def is_unknown(triple): return is_instance(triple) and triple[2] == 'amr-unknown' def _remove_postfix(word): pos = word.rfind('-') return word[:pos] if pos > 0 else word def triple_to_string(triple): source, role, target = triple return '(' + source + ', ' + role + ', ' + target + ')' def triple_from_string(line): left = line.find('(') right = line.rfind(')') source, role, target = line[left+1:right].split(', ') return (source, role, target) class AmrInstanceDict: def __init__(self, id_generator): self.log = logging.getLogger(__name__ + '.AmrInstanceDict') self.id_generator = id_generator self.instance_by_node = {} self.instance_triples = [] def add_graph(self, graph): for triple in filter(is_instance, graph.triples): self.log.debug('triple: %s', triple) (source, role, target) = triple instance = self._get_unique_instance(target) self.instance_by_node[source] = instance self.instance_triples.append((instance, role, target)) def _get_unique_instance(self, target): id = self.id_generator() return target + '-' + '{:06d}'.format(id) def get_instance_triples(self): return self.instance_triples def map_node_to_instance(self, node): if node in self.instance_by_node: return self.instance_by_node[node] else: return node _number_or_string_pattern = re.compile(r'\d+(\.\d+)?|"[^\"]+"|-|\+') def is_amr_set(triple): return triple[1] == ':amr-set' def is_const( word): return _number_or_string_pattern.fullmatch(word) _roles_with_attrs_at_right = { ':mode', ':pos', ':polarity' } class PatternInstanceDict(AmrInstanceDict): def __init__(self, id_generator): super().__init__(id_generator) self.log = logging.getLogger(__name__ + '.PatternInstanceDict') def add_graph(self, graph): for triple in filter(is_instance, graph.triples): node, instance_role, concept = triple assert not(is_variable(node) and is_amrset_name(concept)), ( '($var / @amrset) is not supported') assert not(node == '-' and is_variable(concept)), ( '(- / $var) is not supported') if concept is None: continue if concept == '-': self.instance_by_node[node] = node continue instance = self._get_unique_instance(concept) self.instance_by_node[node] = instance self.instance_triples.append((instance, instance_role, concept)) for triple in filter(lambda x: not is_instance(x), graph.triples): self.log.debug('triple: %s', triple) source, role, target = triple self._add_instance(source, role, True) self._add_instance(target, role, False) def _add_instance(self, concept, role, is_source): if concept in self.instance_by_node: return elif is_variable(concept): self.instance_by_node[concept] = concept return elif is_amrset_name(concept): if role == ':amr-set' and is_source: self.instance_by_node[concept] = concept return elif is_const(concept): return elif not is_source and role in _roles_with_attrs_at_right: self.log.warn('Concept node is generated for the possible attribute ' + 'name, please use (%s / -) if it is not expected', concept) instance = self._get_unique_instance(concept) self.instance_by_node[concept] = instance self.instance_triples.append((instance, ":instance", concept)) def _get_unique_instance(self, target): if is_variable(target) or is_amrset_name(target): return super()._get_unique_instance(target[1:]) else: return super()._get_unique_instance(target) class ParsedAmr: def __init__(self, top, triples): self.top = top self.triples = triples def __iter__(self): return self.triples.__iter__() def get_top(self): return self.top class TripleProcessor: def __init__(self, instance_dict_constr=AmrInstanceDict): self.log = logging.getLogger(__name__ + '.TripleProcessor') self.next_id = 0 self.instance_dict_constr = instance_dict_constr def _process_relation(self, triple, amr_instances): self.log.debug('_process_relation: triple: %s', triple) (source, role, target) = triple source = amr_instances.map_node_to_instance(source) target = amr_instances.map_node_to_instance(target) return (source, role, target) def add_triple(self, triple): source, role, target = triple if role == ':instance': self._add_variable(source) def _add_variable(self, text): id = int(text.split('-')[-1]) if self.next_id <= id: self.next_id = id + 1 def _next_id(self): id = self.next_id self.next_id += 1 return id def amr_to_triples(self, amr): graph = penman.decode(amr, model=_penman_model) return self._graph_to_triples(graph) def file_to_triples(self, file): for graph in penman.iterdecode(file, model=_penman_model): for triple in self._graph_to_triples(graph): yield triple def _graph_to_triples(self, graph): sentence_vars = {} amr_instances = self.instance_dict_constr(lambda: self._next_id()) amr_instances.add_graph(graph) top = graph.top top = amr_instances.map_node_to_instance(top) return ParsedAmr(top, self._triples_generator(amr_instances, graph)) def _triples_generator(self, amr_instances, graph): for triple in amr_instances.get_instance_triples(): yield triple for triple in filter(lambda x: not is_instance(x), graph.triples): yield self._process_relation(triple, amr_instances)
# -*- coding: utf-8 -*- """ Created on Mon Jun 30 13:19:29 2014 @author: enrico.giampieri2 """ import unittest import sympy from utils import Counter from utils import variazione from utils import shift from utils import WRGnumpy from CME import CME if __name__ == '__main__': unittest.main()
from functools import reduce import pandas as pd import glob import numpy as np import matplotlib.pyplot as plt from sklearn.ensemble import IsolationForest from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import ExtraTreesClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier import datetime as dt import os def cleanData(imports): outerjoin = reduce(lambda a, b: pd.merge(a, b, on='ID', how='outer'), imports) outerjoin.set_index('ID', drop=True, inplace=True) outerjoin.columns = [str(i+1) for i in range(0, len(outerjoin.columns))] outerjoin = outerjoin.loc[:, '1':'400'].apply(pd.to_numeric, errors='coerce') outerjoin.fillna(1, inplace=True) outerjoin.replace(0, 1, inplace=True) return outerjoin def importCSV(kfilepath, tfilepath, catfilepath): print("Importing CSV files...") ids = glob.glob(kfilepath + "*.csv") outerjoinln = cleanData([pd.read_csv(file, delimiter=',', header=None, names=['ID', 'ttest'], usecols=[0,1], quotechar='"') for file in ids]) outerjoinsp = cleanData([pd.read_csv(file, delimiter=',', header=None, names=['ID', 'ttest'], usecols=[0,2], quotechar='"') for file in ids]) test = pd.read_csv(tfilepath, delimiter=',', header=None, names=['ID', 'lnnsaf', 'spc'], quotechar='"') test.set_index('ID', drop=True, inplace=True) label = pd.read_csv(catfilepath, delimiter=',', header=None) return outerjoinln, outerjoinsp, test, label def individualForests(kerberusln, kerberussp, testdata, type, time): print("Producing " + type + " forests") count = 0 predictiontest = [] if type == "Isolation": forest = IsolationForest(max_samples='auto', contamination=0.2) os.mkdir('src/output/isolationforest/' + time) foldername = 'src/output/isolationforest/' + time + '/' elif type == "RandomClassifier": forest = RandomForestClassifier(n_estimators=100) os.mkdir('src/output/randomclassifierforest/' + time) foldername = 'src/output/randomclassifierforest/' + time + '/' categories = pd.read_csv('src/output/permcategories/permcategories.csv', delimiter=',', header=None) # This section here will produce 400 separate forests, 1 for every ttest combo, # indexed to a protein ID for index, row in testdata.iterrows(): # index = ID and row = all 400 values count += 1 if index not in kerberusln.index.values: print("Test not in 400Data...? Why?") continue foresttrain = pd.concat([kerberusln.loc[index], kerberussp.loc[index]], axis=1) foresttrain.columns = ["lnNSAF", "SpC"] foresttrain.fillna(1, inplace=True) foresttrain.replace(' NaN', 1, inplace=True) foresttrain.drop(foresttrain[(foresttrain.lnNSAF == 1) | (foresttrain.SpC == 1) | (foresttrain.lnNSAF == 0) | (foresttrain.SpC == 0)].index, inplace=True) test = pd.DataFrame(testdata.loc[index].values.reshape(1, -1)) test.columns = ["lnNSAF", "SpC"] test.fillna(1, inplace=True) test.replace(' NaN', 1, inplace=True) test.drop(test[(test.lnNSAF == 1) | (test.SpC == 1) | (test.lnNSAF == 0) | (test.SpC == 0)].index, inplace=True) try: print("Tree " + str(count) + " of " + str(len(testdata.index)) + " completed.") if type == "Isolation": forest.fit(foresttrain) predictiontest.append(forest.predict(test)) # This tells us whether the test is an outlier/in elif type == "RandomClassifier": forest.fit(foresttrain, foresttrain) predictiontest.append(forest.predict(test)) except ValueError: print("Warning: Incompatible Test @: " + str(count)) test.to_csv(str("src/output/error/" + str(count) + "-Test.csv"), sep=',') foresttrain.to_csv(str("src/output/error/" + str(count) + "-Train.csv"), sep=',') continue plt.clf() index = index.replace("|", "-") plt.title(index + " " + type) xx, yy = np.meshgrid(np.linspace(0, 1, 50), np.linspace(0, 1, 50)) z = forest.decision_function(np.c_[xx.ravel(), yy.ravel()]) z = z.reshape(xx.shape) plt.contourf(xx, yy, z, cmap=plt.cm.Greens_r) b1 = plt.scatter(foresttrain["lnNSAF"], foresttrain["SpC"], c='black', s=1, edgecolor='k') b2 = plt.scatter(test["lnNSAF"], test["SpC"], c='yellow', s=20) plt.legend([b1, b2], ["training observations", "new observations"], loc="upper right") plt.xlabel("TTest from lnNSAF") plt.ylabel("TTest from SpC") plt.yticks(np.arange(0, 1, step=0.05)) plt.xticks(np.arange(0, 1, step=0.05), rotation=75) plt.tight_layout() plt.savefig(foldername + index + '.jpg') plt.close("all") def constructDataFrames(kerberusln, kerberussp, testdata): print("Making the Train and Test Dataframes for the Mega Forest...") totaldf = pd.concat([pd.Series(kerberusln.values.ravel()), pd.Series(kerberussp.values.ravel())], axis=1) totaldf.columns = ["lnNSAF", "SpC"] totaldf.replace(' NaN', 1, inplace=True) totaldf.replace('NaN', 1, inplace=True) totaldf.fillna(1, inplace=True) totaldf.drop(totaldf[(totaldf.lnNSAF == 1) | (totaldf.SpC == 1) | (totaldf.lnNSAF == 0) | (totaldf.SpC == 0) | (totaldf.lnNSAF.dtype == np.str) | (totaldf.SpC.dtype == np.str)].index, inplace=True) totaldf.reset_index(drop=True, inplace=True) testdf = testdata testdf.columns = ["lnNSAF", "SpC"] testdf.replace(' NaN', 1, inplace=True) testdf.replace('NaN', 1, inplace=True) testdf.fillna(1, inplace=True) testdf.drop(testdf[(testdf.lnNSAF == 1) | (testdf.SpC == 1) | (testdf.lnNSAF == 0) | (testdf.SpC == 0) | (testdf.lnNSAF.dtype == np.str) | (testdf.SpC.dtype == np.str)].index, inplace=True) testdf.reset_index(drop=True, inplace=True) return totaldf, testdf def megaIsolationForest(totaldf, testdf): forest = IsolationForest(max_samples='auto') # This section computes a mega-forest. print("Now constructing the mega forest") forest.fit(totaldf) predictiontest = forest.predict(testdf) plt.clf() plt.title("Isolation Forest") xx, yy = np.meshgrid(np.linspace(0, 1, 50), np.linspace(0, 1, 50)) z = forest.decision_function(np.c_[xx.ravel(), yy.ravel()]) z = z.reshape(xx.shape) plt.contourf(xx, yy, z, cmap=plt.cm.Greens_r) colours = ['yellow' if test == 1 else 'red' for test in predictiontest] b1 = plt.scatter(totaldf["lnNSAF"], totaldf["SpC"], c='black', s=.1) b2 = plt.scatter(testdf["lnNSAF"], testdf["SpC"], c=colours, s=30, edgecolor='k') plt.legend([b1, b2], ["Training", "Test Inlier"], loc="center left", bbox_to_anchor=(1.05, 1)) plt.plot((0.05, 0.05), (0, 1), c='blue') # (x1 x2), (y1 y2) plt.plot((0, 1), (0.05, 0.05), c='blue') plt.xlabel("TTest from lnNSAF") plt.ylabel("TTest from SpC") plt.yticks(np.arange(0, 1, step=0.05)) plt.xticks(np.arange(0, 1, step=0.05), rotation=75) plt.show() plt.close("all") def multiLabelMultiClassifier(kerberusln, kerberussp, testdata, labels): forestcollection = [] types = ["KNeighbors", "Extra Trees", "Random Forest", "Decision Tree"] widths = [0.8, 0.65, 0.5, 0.35] colours = ['#0a3052', '#161fc0', '#486bea', '#7fbbf0'] # This is a second round of data cleaning traindatalist = [] testdatalist = [] for index, row in testdata.iterrows(): # index = ID and row = all 400 values if index not in kerberusln.index.values: print("Test not in 400Data...? Why?") continue foresttrain = pd.concat([kerberusln.loc[index], kerberussp.loc[index]], axis=1) for i in range(0, 12): foresttrain["Label " + str(i + 1)] = labels.iloc[:, i].astype(str).values foresttrain.columns = ["lnNSAF", "SpC", *list("Label " + str(i) for i in range(1, 13))] foresttrain.fillna(1, inplace=True) foresttrain.replace(' NaN', 1, inplace=True) foresttrain.drop(foresttrain[(foresttrain.lnNSAF == 1) | (foresttrain.SpC == 1) | (foresttrain.lnNSAF == 0) | (foresttrain.SpC == 0)].index, inplace=True) test = pd.DataFrame(testdata.loc[index].values.reshape(1, -1)) test.columns = ["lnNSAF", "SpC"] test.fillna(1, inplace=True) test.replace(' NaN', 1, inplace=True) test.drop(test[(test.lnNSAF == 1) | (test.SpC == 1) | (test.lnNSAF == 0) | (test.SpC == 0)].index, inplace=True) traindatalist.append(foresttrain) testdatalist.append(test) # This is where the forest is constructed and executed for count, foresttype in enumerate([ KNeighborsClassifier(n_jobs=-1), #ExtraTreesClassifier(testdata.shape[0], n_jobs=-1), #RandomForestClassifier(testdata.shape[0], n_jobs=-1), DecisionTreeClassifier()]): print("Currently Conducting: " + types[count]) testsize = testdata.shape[0] testindexes = [i for i in range(len(testdatalist))] totaloutput = np.zeros(12) for i in testindexes: totaloutput = totaloutput + performClassifierProcess(testdatalist[i], traindatalist[i], foresttype, testsize, i) forestcollection.append(list(map(lambda x: x / int(testdata.shape[0]), totaloutput))) print(forestcollection) plt.clf() for i, test in enumerate(forestcollection): plt.bar(np.arange(len(test)), test, widths[i], alpha=0.75, color=colours[i]) plt.xticks(np.arange(len(test)), ['R{}'.format(i + 1) for i in range(len(test))]) axes = plt.gca() axes.set_ylim([0, 1]) plt.legend(types) plt.plot(np.arange(12), np.average(np.asarray(forestcollection), axis=0), c='black', linewidth=2) plt.plot([0, 11], [.5, .5], '--', c='red', linewidth=1) plt.show() def performClassifierProcess(testdatalist, traindatalist, foresttype, size, chunk): print("Producing Classifier: " + str(chunk) + " of " + str(size)) try: foresttype.fit(traindatalist.loc[:, "lnNSAF":"SpC"], traindatalist.loc[:, "Label 1":"Label 12"]) prediction = pd.DataFrame(foresttype.predict(testdatalist)).apply(lambda x: int(x)) return np.array(prediction) except ValueError: print("Warning: Incompatible Test @: " + str(chunk + 1)) return np.zeros((12,), dtype=int) if __name__ == '__main__': time = str(dt.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")) Kerberusdataln, Kerberusdatasp, Testdata, Labels = importCSV("src/output/400/", "src/output/6by6/result.csv", "src/output/permcategories/permtotal.csv") #multiLabelMultiClassifier(Kerberusdataln, Kerberusdatasp, Testdata, Labels) individualForests(Kerberusdataln, Kerberusdatasp, Testdata, "Isolation", time) #individualForests(Kerberusdataln, Kerberusdatasp, Testdata, "RandomClassifier", time) #TotalDF, TestDF = constructDataFrames(Kerberusdataln, Kerberusdatasp, Testdata) #megaIsolationForest(TotalDF, TestDF)
""" Copyright (c) Facebook, Inc. and its affiliates. This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. """ from typing import Optional, Sequence import numpy as np from fastmri.data.subsample import MaskFunc, RandomMaskFunc def create_mask_for_mask_type( mask_type_str: str, center_fractions: Sequence[float], accelerations: Sequence[int], skip_low_freqs: bool, ) -> MaskFunc: """ Creates a mask of the specified type. Args: center_fractions: What fraction of the center of k-space to include. accelerations: What accelerations to apply. skip_low_freqs: Whether to skip already sampled low-frequency lines for the purposes of determining where equispaced lines should be. Set this `True` to guarantee the same number of sampled lines for all masks with a given (acceleration, center_fraction) setting. Returns: A mask func for the target mask type. """ if mask_type_str == "random": return RandomMaskFunc(center_fractions, accelerations) elif mask_type_str == "adaptive_equispaced_fraction": return EquispacedMaskFractionFunc( center_fractions, accelerations, skip_low_freqs ) else: raise ValueError(f"{mask_type_str} not supported") class EquispacedMaskFractionFunc(MaskFunc): """ Equispaced mask with strictly exact acceleration matching. The mask selects a subset of columns from the input k-space data. If the k-space data has N columns, the mask picks out: 1. N_low_freqs = (N * center_fraction) columns in the center corresponding to low-frequencies. 2. The other columns are selected with equal spacing at a proportion that reaches the desired acceleration rate taking into consideration the number of low frequencies. This ensures that the expected number of columns selected is equal to (N / acceleration) It is possible to use multiple center_fractions and accelerations, in which case one possible (center_fraction, acceleration) is chosen uniformly at random each time the EquispacedMaskFunc object is called. Note that this function may not give equispaced samples (documented in https://github.com/facebookresearch/fastMRI/issues/54), which will require modifications to standard GRAPPA approaches. Nonetheless, this aspect of the function has been preserved to match the public multicoil data. """ def __init__( self, center_fractions: Sequence[float], accelerations: Sequence[int], skip_low_freqs: bool = False, ): """ Args: center_fractions: Fraction of low-frequency columns to be retained. If multiple values are provided, then one of these numbers is chosen uniformly each time. accelerations: Amount of under-sampling. This should have the same length as center_fractions. If multiple values are provided, then one of these is chosen uniformly each time. skip_low_freqs: Whether to skip already sampled low-frequency lines for the purposes of determining where equispaced lines should be. Set this `True` to guarantee the same number of sampled lines for all masks with a given (acceleration, center_fraction) setting. """ super().__init__(center_fractions, accelerations) self.skip_low_freqs = skip_low_freqs def calculate_acceleration_mask( self, num_cols: int, acceleration: int, offset: Optional[int], num_low_frequencies: int, ) -> np.ndarray: """ Produce mask for non-central acceleration lines. Args: num_cols: Number of columns of k-space (2D subsampling). acceleration: Desired acceleration rate. offset: Offset from 0 to begin masking. If no offset is specified, then one is selected randomly. num_low_frequencies: Number of low frequencies. Used to adjust mask to exactly match the target acceleration. Returns: A mask for the high spatial frequencies of k-space. """ mask = np.zeros(num_cols) pad = (num_cols - num_low_frequencies + 1) // 2 # determine acceleration rate by adjusting for the number of low frequencies adjusted_accel = (acceleration * (num_low_frequencies - num_cols)) / ( num_low_frequencies * acceleration - num_cols ) offset = self.rng.randint(0, round(adjusted_accel) - 1) # Select samples from the remaining columns accel_samples = np.arange( offset, num_cols - num_low_frequencies - 1, adjusted_accel ) accel_samples = np.around(accel_samples).astype(int) skip = ( num_low_frequencies # Skip low freq AND optionally lines right next to it ) for sample in accel_samples: if sample < pad: mask[sample] = True else: # sample is further than center, so skip low_freqs mask[int(sample + skip)] = True return mask
from datetime import timedelta import pandas.util.testing as tm from pandas import TimedeltaIndex, timedelta_range, compat, Index, Timedelta class TestTimedeltaIndex(tm.TestCase): _multiprocess_can_split_ = True def test_insert(self): idx = TimedeltaIndex(['4day', '1day', '2day'], name='idx') result = idx.insert(2, timedelta(days=5)) exp = TimedeltaIndex(['4day', '1day', '5day', '2day'], name='idx') self.assert_index_equal(result, exp) # insertion of non-datetime should coerce to object index result = idx.insert(1, 'inserted') expected = Index([Timedelta('4day'), 'inserted', Timedelta('1day'), Timedelta('2day')], name='idx') self.assertNotIsInstance(result, TimedeltaIndex) tm.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) idx = timedelta_range('1day 00:00:01', periods=3, freq='s', name='idx') # preserve freq expected_0 = TimedeltaIndex(['1day', '1day 00:00:01', '1day 00:00:02', '1day 00:00:03'], name='idx', freq='s') expected_3 = TimedeltaIndex(['1day 00:00:01', '1day 00:00:02', '1day 00:00:03', '1day 00:00:04'], name='idx', freq='s') # reset freq to None expected_1_nofreq = TimedeltaIndex(['1day 00:00:01', '1day 00:00:01', '1day 00:00:02', '1day 00:00:03'], name='idx', freq=None) expected_3_nofreq = TimedeltaIndex(['1day 00:00:01', '1day 00:00:02', '1day 00:00:03', '1day 00:00:05'], name='idx', freq=None) cases = [(0, Timedelta('1day'), expected_0), (-3, Timedelta('1day'), expected_0), (3, Timedelta('1day 00:00:04'), expected_3), (1, Timedelta('1day 00:00:01'), expected_1_nofreq), (3, Timedelta('1day 00:00:05'), expected_3_nofreq)] for n, d, expected in cases: result = idx.insert(n, d) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(result.freq, expected.freq) def test_delete(self): idx = timedelta_range(start='1 Days', periods=5, freq='D', name='idx') # prserve freq expected_0 = timedelta_range(start='2 Days', periods=4, freq='D', name='idx') expected_4 = timedelta_range(start='1 Days', periods=4, freq='D', name='idx') # reset freq to None expected_1 = TimedeltaIndex( ['1 day', '3 day', '4 day', '5 day'], freq=None, name='idx') cases = {0: expected_0, -5: expected_0, -1: expected_4, 4: expected_4, 1: expected_1} for n, expected in compat.iteritems(cases): result = idx.delete(n) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(result.freq, expected.freq) with tm.assertRaises((IndexError, ValueError)): # either depeidnig on numpy version result = idx.delete(5) def test_delete_slice(self): idx = timedelta_range(start='1 days', periods=10, freq='D', name='idx') # prserve freq expected_0_2 = timedelta_range(start='4 days', periods=7, freq='D', name='idx') expected_7_9 = timedelta_range(start='1 days', periods=7, freq='D', name='idx') # reset freq to None expected_3_5 = TimedeltaIndex(['1 d', '2 d', '3 d', '7 d', '8 d', '9 d', '10d'], freq=None, name='idx') cases = {(0, 1, 2): expected_0_2, (7, 8, 9): expected_7_9, (3, 4, 5): expected_3_5} for n, expected in compat.iteritems(cases): result = idx.delete(n) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(result.freq, expected.freq) result = idx.delete(slice(n[0], n[-1] + 1)) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(result.freq, expected.freq)
""" Based on augmented_lstm.py and stacked_bidirectional_lstm.py from AllenNLP 0.8.3 """ from typing import Optional, Tuple, Type, List, Dict, Any import torch from allennlp.nn.util import get_dropout_mask from modules.stack_rnn_cell import StackRnnCellBase, StackLstmCell class StackRnn(torch.nn.Module): """ A standard stacked LSTM where the LSTM layers are concatenated between each layer. The only difference between this and a regular LSTM is the application of variational dropout to the hidden states and outputs of each layer apart from the last layer of the LSTM. Note that this will be slower, as it doesn't use CUDNN. Parameters ---------- input_size : int, required The dimension of the inputs to the LSTM. hidden_size : int, required The dimension of the outputs of the LSTM. num_layers : int, required The number of stacked Bidirectional LSTMs to use. recurrent_dropout_probability: float, optional (default = 0.0) The recurrent dropout probability to be used in a dropout scheme as stated in `A Theoretically Grounded Application of Dropout in Recurrent Neural Networks <https://arxiv.org/abs/1512.05287>`_ . layer_dropout_probability: float, optional (default = 0.0) The layer wise dropout probability to be used in a dropout scheme as stated in `A Theoretically Grounded Application of Dropout in Recurrent Neural Networks <https://arxiv.org/abs/1512.05287>`_ . use_highway: bool, optional (default = True) Whether or not to use highway connections between layers. This effectively involves reparameterising the normal output of an LSTM as:: gate = sigmoid(W_x1 * x_t + W_h * h_t) output = gate * h_t + (1 - gate) * (W_x2 * x_t) """ def __init__(self, input_size: int, hidden_size: int, num_layers: int, use_highway: bool = True, recurrent_dropout_probability: float = 0.0, layer_dropout_probability: float = 0.0, same_dropout_mask_per_instance: bool = True, cell: Type[StackRnnCellBase] = StackLstmCell) -> None: super(StackRnn, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.num_layers = num_layers self.recurrent_dropout_probability = recurrent_dropout_probability self.layer_dropout_probability = layer_dropout_probability self.same_dropout_mask_per_instance = same_dropout_mask_per_instance layers = [] rnn_input_size = input_size for layer_index in range(num_layers): layer = cell(rnn_input_size, hidden_size, use_highway=use_highway, use_input_projection_bias=True) rnn_input_size = hidden_size self.add_module('layer_{}'.format(layer_index), layer) layers.append(layer) self.rnn_layers = layers self.stacks: List[List[Dict[str, Any]]] = [] self.push_buffer: List[Optional[Dict[str, Any]]] = [] if self.same_dropout_mask_per_instance: self.layer_dropout_mask: Optional[torch.Tensor] = None self.recurrent_dropout_mask: Optional[torch.Tensor] = None def reset_stack(self, num_stacks: int) -> None: self.stacks = [[] for _ in range(num_stacks)] self.push_buffer = [None for _ in range(num_stacks)] if self.same_dropout_mask_per_instance: if 0.0 < self.layer_dropout_probability < 1.0: self.layer_dropout_mask = [[get_dropout_mask(self.layer_dropout_probability, torch.ones(layer.hidden_size, device=self.layer_0.input_linearity.weight.device)) for _ in range(num_stacks)] for layer in self.rnn_layers] self.layer_dropout_mask = torch.stack([torch.stack(l) for l in self.layer_dropout_mask]) else: self.layer_dropout_mask = None if 0.0 < self.recurrent_dropout_probability < 1.0: self.recurrent_dropout_mask = [[get_dropout_mask(self.recurrent_dropout_probability, torch.ones(self.hidden_size, device=self.layer_0.input_linearity.weight.device)) for _ in range(num_stacks)] for _ in range(self.num_layers)] self.recurrent_dropout_mask = torch.stack([torch.stack(l) for l in self.recurrent_dropout_mask]) else: self.recurrent_dropout_mask = None def push(self, stack_index: int, input: torch.Tensor, extra: Optional[Dict[str, Any]] = None) -> None: if self.push_buffer[stack_index] is not None: self._apply_push() self.push_buffer[stack_index] = {'stack_rnn_input': input} if extra is not None: self.push_buffer[stack_index].update(extra) def pop(self, stack_index: int) -> Dict[str, Any]: if self.push_buffer[stack_index] is not None: self._apply_push() return self.stacks[stack_index].pop(-1) def pop_penult(self, stack_index: int) -> Dict[str, Any]: if self.push_buffer[stack_index] is not None: self._apply_push() stack_0 = self.get_stack(stack_index)[-1] stack_0_emb, stack_0_token = stack_0['stack_rnn_input'], stack_0['token'] self.stacks[stack_index].pop(-1) rnt = self.stacks[stack_index].pop(-1) self.push(stack_index, stack_0_emb, {'token': stack_0_token}) return rnt def get_stack(self, stack_index: int) -> List[Dict[str, Any]]: if self.push_buffer[stack_index] is not None: self._apply_push() return self.stacks[stack_index] def get_stacks(self) -> List[List[Dict[str, Any]]]: self._apply_push() return self.stacks def get_len(self, stack_index: int) -> int: return len(self.get_stack(stack_index)) def get_output(self, stack_index: int) -> torch.Tensor: return self.get_stack(stack_index)[-1]['stack_rnn_output'] def _apply_push(self) -> None: index_list = [] inputs = [] initial_state = [] layer_dropout_mask = [] recurrent_dropout_mask = [] for i, (stack, buffer) in enumerate(zip(self.stacks, self.push_buffer)): if buffer is not None: index_list.append(i) inputs.append(buffer['stack_rnn_input'].unsqueeze(0)) if len(stack) > 0: initial_state.append( (stack[-1]['stack_rnn_state'].unsqueeze(1), stack[-1]['stack_rnn_memory'].unsqueeze(1))) else: initial_state.append( (buffer['stack_rnn_input'].new_zeros(self.num_layers, 1, self.hidden_size),) * 2) if self.same_dropout_mask_per_instance: if self.layer_dropout_mask is not None: layer_dropout_mask.append(self.layer_dropout_mask[:, i].unsqueeze(1)) if self.recurrent_dropout_mask is not None: recurrent_dropout_mask.append(self.recurrent_dropout_mask[:, i].unsqueeze(1)) else: if 0.0 < self.layer_dropout_probability < 1.0: layer_dropout_mask.append(get_dropout_mask(self.layer_dropout_probability, torch.ones(self.num_layers, 1, self.hidden_size, device=self.layer_0.input_linearity.weight.device))) if 0.0 < self.recurrent_dropout_probability < 1.0: recurrent_dropout_mask.append(get_dropout_mask(self.recurrent_dropout_probability, torch.ones(self.num_layers, 1, self.hidden_size, device=self.layer_0.input_linearity.weight.device))) if len(layer_dropout_mask) == 0: layer_dropout_mask = None if len(recurrent_dropout_mask) == 0: recurrent_dropout_mask = None if len(index_list) > 0: inputs = torch.cat(inputs, 0) initial_state = list(torch.cat(t, 1) for t in zip(*initial_state)) if layer_dropout_mask is not None: layer_dropout_mask = torch.cat(layer_dropout_mask, 1) if recurrent_dropout_mask is not None: recurrent_dropout_mask = torch.cat(recurrent_dropout_mask, 1) output_state, output_memory = self._forward(inputs, initial_state, layer_dropout_mask, recurrent_dropout_mask) for i, stack_index in enumerate(index_list): output = { 'stack_rnn_state': output_state[:, i, :], 'stack_rnn_memory': output_memory[:, i, :], 'stack_rnn_output': output_state[-1, i, :] } output.update(self.push_buffer[stack_index]) self.stacks[stack_index].append(output) self.push_buffer[stack_index] = None def _forward(self, # pylint: disable=arguments-differ inputs: torch.Tensor, initial_state: Optional[Tuple[torch.Tensor, torch.Tensor]], layer_dropout_mask: Optional[torch.Tensor] = None, recurrent_dropout_mask: Optional[torch.Tensor] = None ) -> Tuple[torch.Tensor, torch.Tensor]: """ Parameters ---------- inputs : torch.Tensor, required. A batch first torch.Tensor to run the stacked LSTM over. initial_state : Tuple[torch.Tensor, torch.Tensor], optional, (default = None) A tuple (state, memory) representing the initial hidden state and memory of the LSTM. Each tensor has shape (num_layers, batch_size, hidden_size). Returns ------- final_states: torch.Tensor The per-layer final (state, memory) states of the LSTM, each with shape (num_layers, batch_size, hidden_size). """ # if not initial_state: # hidden_states = [None] * len(self.lstm_layers) # elif initial_state[0].size()[0] != len(self.lstm_layers): # raise ConfigurationError("Initial states were passed to forward() but the number of " # "initial states does not match the number of layers.") # else: hidden_states = list(zip(initial_state[0].split(1, 0), initial_state[1].split(1, 0))) previous_output = inputs final_h = [] final_c = [] for i, state in enumerate(hidden_states): layer = getattr(self, 'layer_{}'.format(i)) # The state is duplicated to mirror the Pytorch API for LSTMs. if self.training: if self.same_dropout_mask_per_instance: if layer_dropout_mask is not None and i > 0: previous_output = previous_output * layer_dropout_mask[i - 1] if recurrent_dropout_mask is not None: state = (state[0] * recurrent_dropout_mask[i], state[1]) else: pass final_state = layer(previous_output, state) previous_output = final_state[0].squeeze(0) final_h.append(final_state[0]) final_c.append(final_state[1]) final_h = torch.cat(final_h, dim=0) final_c = torch.cat(final_c, dim=0) final_state_tuple = (final_h, final_c) return final_state_tuple
''' Function Name : DirectoryTraversal, DisplayDuplicate Description : In This Application We Import All Other Modules To Perform Duplicate Files Removing Operation Function Date : 25 June 2021 Function Author : Prasad Dangare Input : Get The Directory Name Output : Delete Duplicate Files And Create Log File And Send It Through Mail To The User / Client. ''' # =================== # Imports # =================== import os from sys import * import CheckSum, log_File, Mailing, Connection from datetime import * # ============================== # Directory Traversal Operations # ============================== def DirectoryTraversal(path): print("\nContents of the Directory are : ") dictionary = {} for Folder, SubFolder, Filename in os.walk(path): print("\nDirectory Name is : " + Folder) for sub in SubFolder: print("Subfolder of " + Folder +" is "+ sub) for file in Filename: print("File Name is : " + file) actualpath = os.path.join(Folder, file) hash = CheckSum.calculateCheckSum(actualpath) if hash in dictionary: dictionary[hash].append(actualpath) else: dictionary[hash] = [actualpath] current_date_time = datetime.now().strftime("%d_%m_%Y-%I_%M")+".txt" log_File.Writing(dictionary, current_date_time) Show = DisplayDuplicate(dictionary) Mailing.mail(current_date_time) return dictionary # ================================== # Display Directory Files Operations # ================================== def DisplayDuplicate(dictionary): output = list(filter(lambda x : len(x) > 1, dictionary.values())) if(len(output) > 0): print("\nThere Are Duplicate Files") else: print("\nThere Are No Dupicate Files") return print("\nList Of Duplicate Files Are : \n") i = 0 icnt = 0 for result in output: icnt = 0 print(result) for path in result: icnt += 1 # skip 1 file if icnt >= 2: i += 1 #print("%s"%path) os.remove(path) # here type logic for delete the duplicate files print("\nNumber Of Duplicate Files Deleted ", i) # ======================= # Entry Point # ======================= def main(): print("\n\t_____Duplicate File Removing Script_____\n\t") if(len(argv) != 2): print("Error : Invalid Number Of Arguments") exit() if((argv[1] == "-h") or (argv[1] == "-H")): print("It Is A Directory Cleaner Script") exit() if((argv[1] == "-u") or (argv[1] == "-U")): print("Usage : Provide Absolute Path Of The Target Directory") exit() path = os.path.join(os.getcwd(), argv[1]) if((os.path.isdir(path) == True) and (Connection.Check_Connection() == True)): DirectoryTraversal(argv[1]) # =================== # Starter # =================== if __name__=="__main__": main()
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class AlgorithmGoodsInfo(object): def __init__(self): self._algorithm_goods_id = None self._gif_file_id = None self._pic_file_id = None self._three_dimension = None self._thumbnails = None @property def algorithm_goods_id(self): return self._algorithm_goods_id @algorithm_goods_id.setter def algorithm_goods_id(self, value): self._algorithm_goods_id = value @property def gif_file_id(self): return self._gif_file_id @gif_file_id.setter def gif_file_id(self, value): self._gif_file_id = value @property def pic_file_id(self): return self._pic_file_id @pic_file_id.setter def pic_file_id(self, value): self._pic_file_id = value @property def three_dimension(self): return self._three_dimension @three_dimension.setter def three_dimension(self, value): self._three_dimension = value @property def thumbnails(self): return self._thumbnails @thumbnails.setter def thumbnails(self, value): self._thumbnails = value def to_alipay_dict(self): params = dict() if self.algorithm_goods_id: if hasattr(self.algorithm_goods_id, 'to_alipay_dict'): params['algorithm_goods_id'] = self.algorithm_goods_id.to_alipay_dict() else: params['algorithm_goods_id'] = self.algorithm_goods_id if self.gif_file_id: if hasattr(self.gif_file_id, 'to_alipay_dict'): params['gif_file_id'] = self.gif_file_id.to_alipay_dict() else: params['gif_file_id'] = self.gif_file_id if self.pic_file_id: if hasattr(self.pic_file_id, 'to_alipay_dict'): params['pic_file_id'] = self.pic_file_id.to_alipay_dict() else: params['pic_file_id'] = self.pic_file_id if self.three_dimension: if hasattr(self.three_dimension, 'to_alipay_dict'): params['three_dimension'] = self.three_dimension.to_alipay_dict() else: params['three_dimension'] = self.three_dimension if self.thumbnails: if hasattr(self.thumbnails, 'to_alipay_dict'): params['thumbnails'] = self.thumbnails.to_alipay_dict() else: params['thumbnails'] = self.thumbnails return params @staticmethod def from_alipay_dict(d): if not d: return None o = AlgorithmGoodsInfo() if 'algorithm_goods_id' in d: o.algorithm_goods_id = d['algorithm_goods_id'] if 'gif_file_id' in d: o.gif_file_id = d['gif_file_id'] if 'pic_file_id' in d: o.pic_file_id = d['pic_file_id'] if 'three_dimension' in d: o.three_dimension = d['three_dimension'] if 'thumbnails' in d: o.thumbnails = d['thumbnails'] return o
import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.getcwd(), "../../../"))) sys.path.insert(0, os.path.abspath( os.path.join(os.getcwd(), "../../../../FedML"))) from fedml_core.distributed.client.client_manager import ClientManager class CommunicationManager(ClientManager): def __init__(self, args, comm, rank, size, backend): super().__init__(args, comm, rank, size, backend) def register_message_receive_handlers(self): pass def run(self): super().run()
from django.middleware.csrf import CsrfMiddleware, CsrfViewMiddleware, CsrfResponseMiddleware from django.views.decorators.csrf import csrf_exempt, csrf_view_exempt, csrf_response_exempt import warnings warnings.warn("This import for CSRF functionality is deprecated. Please use django.middleware.csrf for the middleware and django.views.decorators.csrf for decorators.", PendingDeprecationWarning )
# Copyright 2018 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for mathematics_dataset.modules.arithmetic.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # Dependency imports from absl.testing import absltest from mathematics_dataset.modules import arithmetic import sympy class ArithmeticTest(absltest.TestCase): def testSurdCoefficients(self): exp = sympy.sympify('1') self.assertEqual(arithmetic._surd_coefficients(exp), (1, 0)) exp = sympy.sympify('1/2') self.assertEqual(arithmetic._surd_coefficients(exp), (1/2, 0)) exp = sympy.sympify('sqrt(2)') self.assertEqual(arithmetic._surd_coefficients(exp), (0, 1)) exp = sympy.sympify('3*sqrt(2)') self.assertEqual(arithmetic._surd_coefficients(exp), (0, 3)) exp = sympy.sympify('3*sqrt(5)/2') self.assertEqual(arithmetic._surd_coefficients(exp), (0, 3/2)) exp = sympy.sympify('1 + 3 * sqrt(2)') self.assertEqual(arithmetic._surd_coefficients(exp), (1, 3)) exp = sympy.sympify('1/2 + 3 * sqrt(5) / 2') self.assertEqual(arithmetic._surd_coefficients(exp), (1/2, 3/2)) exp = sympy.sympify('sqrt(2)/(-1 + 2*sqrt(2))**2') self.assertEqual(arithmetic._surd_coefficients(exp), (8/49, 9/49)) if __name__ == '__main__': absltest.main()
#! usr/bin/python3 import pandas as pd import re import numpy as np import os import sys from collections import OrderedDict parent_path = os.path.realpath(os.pardir) if sys.platform.startswith('win') or sys.platform.startswith('cygwin'): seseds_path = os.path.join(parent_path, 'MCM-ICM-2018-Problem-C\\data\\csv\\seseds.csv') msncodes_path = os.path.join(parent_path, 'MCM-ICM-2018-Problem-C\\data\\csv\\msncodes.csv') elif sys.platform.startswith('darwin') or sys.platform.startswith('linux'): seseds_path = os.path.join(parent_path, 'MCM-ICM-2018-Problem-C/data/csv/seseds.csv') msncodes_path = os.path.join(parent_path, 'MCM-ICM-2018-Problem-C/data/csv/msncodes.csv') else: pass seseds = pd.read_csv(seseds_path, skiprows=None, engine='c', low_memory=True) msncodes = pd.read_csv(msncodes_path, skiprows=None, engine='c', low_memory=True) # print(seseds) # print(msncodes) # print(type(msncodes)) # dict # for key in msncodes.keys(): # print(msncodes[key]) msn = [] description = [] unit = [] for i in range(len(msncodes["Description"])): if not re.search("price", msncodes["Description"][i]) and not re.search("expenditures", msncodes["Description"][i]) and \ not re.search("production", msncodes["Description"][i]) and not re.search("imported", msncodes["Description"][i]) and \ not re.search("imports", msncodes["Description"][i]) and not re.search("exported", msncodes["Description"][i]) and \ not re.search("exported", msncodes["Description"][i]) and not re.search("Factor", msncodes["Description"][i]): msn.append(msncodes["MSN"][i]) description.append(msncodes["Description"][i]) unit.append(msncodes["Unit"][i]) comp_data = OrderedDict() item_dict = OrderedDict() item_dict["MSN"] = msn item_dict["Description"] = description item_dict["Unit"] = unit comp_data = pd.DataFrame(item_dict) # data_frame.to_csv("C:\\Users\\THINKPAD\\PycharmProjects\\MCM-ICM2018\\data\\test.csv",index=False,index_label=False,sep=',') comp_data.to_csv("data/csv/test.csv", index=False, index_label=False, sep=',') print(comp_data)
# Copyright (c) 2017, Michael Boyle # See LICENSE file for details: <https://github.com/moble/quaternion/blob/master/LICENSE> from __future__ import division, print_function, absolute_import import numpy as np from quaternion.numba_wrapper import njit, jit, xrange def derivative(f, t): """Fourth-order finite-differencing with non-uniform time steps The formula for this finite difference comes from Eq. (A 5b) of "Derivative formulas and errors for non-uniformly spaced points" by M. K. Bowen and Ronald Smith. As explained in their Eqs. (B 9b) and (B 10b), this is a fourth-order formula -- though that's a squishy concept with non-uniform time steps. TODO: If there are fewer than five points, the function should revert to simpler (lower-order) formulas. """ dfdt = np.empty_like(f) if (f.ndim == 1): _derivative(f, t, dfdt) elif (f.ndim == 2): _derivative_2d(f, t, dfdt) elif (f.ndim == 3): _derivative_3d(f, t, dfdt) else: raise NotImplementedError("Taking derivatives of {0}-dimensional arrays is not yet implemented".format(f.ndim)) return dfdt @njit def _derivative(f, t, dfdt): for i in xrange(2): t_i = t[i] t1 = t[0] t2 = t[1] t3 = t[2] t4 = t[3] t5 = t[4] h1 = t1 - t_i h2 = t2 - t_i h3 = t3 - t_i h4 = t4 - t_i h5 = t5 - t_i h12 = t1 - t2 h13 = t1 - t3 h14 = t1 - t4 h15 = t1 - t5 h23 = t2 - t3 h24 = t2 - t4 h25 = t2 - t5 h34 = t3 - t4 h35 = t3 - t5 h45 = t4 - t5 dfdt[i] = (-((h2 * h3 * h4 + h2 * h3 * h5 + h2 * h4 * h5 + h3 * h4 * h5) / (h12 * h13 * h14 * h15)) * f[0] + ((h1 * h3 * h4 + h1 * h3 * h5 + h1 * h4 * h5 + h3 * h4 * h5) / (h12 * h23 * h24 * h25)) * f[1] - ((h1 * h2 * h4 + h1 * h2 * h5 + h1 * h4 * h5 + h2 * h4 * h5) / (h13 * h23 * h34 * h35)) * f[2] + ((h1 * h2 * h3 + h1 * h2 * h5 + h1 * h3 * h5 + h2 * h3 * h5) / (h14 * h24 * h34 * h45)) * f[3] - ((h1 * h2 * h3 + h1 * h2 * h4 + h1 * h3 * h4 + h2 * h3 * h4) / (h15 * h25 * h35 * h45)) * f[4]) for i in xrange(2, len(t) - 2): t1 = t[i - 2] t2 = t[i - 1] t3 = t[i] t4 = t[i + 1] t5 = t[i + 2] h1 = t1 - t3 h2 = t2 - t3 h4 = t4 - t3 h5 = t5 - t3 h12 = t1 - t2 h13 = t1 - t3 h14 = t1 - t4 h15 = t1 - t5 h23 = t2 - t3 h24 = t2 - t4 h25 = t2 - t5 h34 = t3 - t4 h35 = t3 - t5 h45 = t4 - t5 dfdt[i] = (-((h2 * h4 * h5) / (h12 * h13 * h14 * h15)) * f[i - 2] + ((h1 * h4 * h5) / (h12 * h23 * h24 * h25)) * f[i - 1] - ((h1 * h2 * h4 + h1 * h2 * h5 + h1 * h4 * h5 + h2 * h4 * h5) / (h13 * h23 * h34 * h35)) * f[i] + ((h1 * h2 * h5) / (h14 * h24 * h34 * h45)) * f[i + 1] - ((h1 * h2 * h4) / (h15 * h25 * h35 * h45)) * f[i + 2]) for i in xrange(len(t) - 2, len(t)): t_i = t[i] t1 = t[-5] t2 = t[-4] t3 = t[-3] t4 = t[-2] t5 = t[-1] h1 = t1 - t_i h2 = t2 - t_i h3 = t3 - t_i h4 = t4 - t_i h5 = t5 - t_i h12 = t1 - t2 h13 = t1 - t3 h14 = t1 - t4 h15 = t1 - t5 h23 = t2 - t3 h24 = t2 - t4 h25 = t2 - t5 h34 = t3 - t4 h35 = t3 - t5 h45 = t4 - t5 dfdt[i] = (-((h2 * h3 * h4 + h2 * h3 * h5 + h2 * h4 * h5 + h3 * h4 * h5) / (h12 * h13 * h14 * h15)) * f[-5] + ((h1 * h3 * h4 + h1 * h3 * h5 + h1 * h4 * h5 + h3 * h4 * h5) / (h12 * h23 * h24 * h25)) * f[-4] - ((h1 * h2 * h4 + h1 * h2 * h5 + h1 * h4 * h5 + h2 * h4 * h5) / (h13 * h23 * h34 * h35)) * f[-3] + ((h1 * h2 * h3 + h1 * h2 * h5 + h1 * h3 * h5 + h2 * h3 * h5) / (h14 * h24 * h34 * h45)) * f[-2] - ((h1 * h2 * h3 + h1 * h2 * h4 + h1 * h3 * h4 + h2 * h3 * h4) / (h15 * h25 * h35 * h45)) * f[-1]) return @njit def _derivative_2d(f, t, dfdt): for i in xrange(2): t_i = t[i] t1 = t[0] t2 = t[1] t3 = t[2] t4 = t[3] t5 = t[4] h1 = t1 - t_i h2 = t2 - t_i h3 = t3 - t_i h4 = t4 - t_i h5 = t5 - t_i h12 = t1 - t2 h13 = t1 - t3 h14 = t1 - t4 h15 = t1 - t5 h23 = t2 - t3 h24 = t2 - t4 h25 = t2 - t5 h34 = t3 - t4 h35 = t3 - t5 h45 = t4 - t5 for k in xrange(f.shape[1]): dfdt[i, k] = ( -((h2 * h3 * h4 + h2 * h3 * h5 + h2 * h4 * h5 + h3 * h4 * h5) / (h12 * h13 * h14 * h15)) * f[0, k] + ((h1 * h3 * h4 + h1 * h3 * h5 + h1 * h4 * h5 + h3 * h4 * h5) / (h12 * h23 * h24 * h25)) * f[1, k] - ((h1 * h2 * h4 + h1 * h2 * h5 + h1 * h4 * h5 + h2 * h4 * h5) / (h13 * h23 * h34 * h35)) * f[2, k] + ((h1 * h2 * h3 + h1 * h2 * h5 + h1 * h3 * h5 + h2 * h3 * h5) / (h14 * h24 * h34 * h45)) * f[3, k] - ((h1 * h2 * h3 + h1 * h2 * h4 + h1 * h3 * h4 + h2 * h3 * h4) / (h15 * h25 * h35 * h45)) * f[4, k]) for i in xrange(2, len(t) - 2): t1 = t[i - 2] t2 = t[i - 1] t3 = t[i] t4 = t[i + 1] t5 = t[i + 2] h1 = t1 - t3 h2 = t2 - t3 h4 = t4 - t3 h5 = t5 - t3 h12 = t1 - t2 h13 = t1 - t3 h14 = t1 - t4 h15 = t1 - t5 h23 = t2 - t3 h24 = t2 - t4 h25 = t2 - t5 h34 = t3 - t4 h35 = t3 - t5 h45 = t4 - t5 for k in xrange(f.shape[1]): dfdt[i, k] = (-((h2 * h4 * h5) / (h12 * h13 * h14 * h15)) * f[i - 2, k] + ((h1 * h4 * h5) / (h12 * h23 * h24 * h25)) * f[i - 1, k] - ((h1 * h2 * h4 + h1 * h2 * h5 + h1 * h4 * h5 + h2 * h4 * h5) / (h13 * h23 * h34 * h35)) * f[i, k] + ((h1 * h2 * h5) / (h14 * h24 * h34 * h45)) * f[i + 1, k] - ((h1 * h2 * h4) / (h15 * h25 * h35 * h45)) * f[i + 2, k]) for i in xrange(len(t) - 2, len(t)): t_i = t[i] t1 = t[-5] t2 = t[-4] t3 = t[-3] t4 = t[-2] t5 = t[-1] h1 = t1 - t_i h2 = t2 - t_i h3 = t3 - t_i h4 = t4 - t_i h5 = t5 - t_i h12 = t1 - t2 h13 = t1 - t3 h14 = t1 - t4 h15 = t1 - t5 h23 = t2 - t3 h24 = t2 - t4 h25 = t2 - t5 h34 = t3 - t4 h35 = t3 - t5 h45 = t4 - t5 for k in xrange(f.shape[1]): dfdt[i, k] = ( -((h2 * h3 * h4 + h2 * h3 * h5 + h2 * h4 * h5 + h3 * h4 * h5) / (h12 * h13 * h14 * h15)) * f[-5, k] + ((h1 * h3 * h4 + h1 * h3 * h5 + h1 * h4 * h5 + h3 * h4 * h5) / (h12 * h23 * h24 * h25)) * f[-4, k] - ((h1 * h2 * h4 + h1 * h2 * h5 + h1 * h4 * h5 + h2 * h4 * h5) / (h13 * h23 * h34 * h35)) * f[-3, k] + ((h1 * h2 * h3 + h1 * h2 * h5 + h1 * h3 * h5 + h2 * h3 * h5) / (h14 * h24 * h34 * h45)) * f[-2, k] - ((h1 * h2 * h3 + h1 * h2 * h4 + h1 * h3 * h4 + h2 * h3 * h4) / (h15 * h25 * h35 * h45)) * f[-1, k]) return @njit def _derivative_3d(f, t, dfdt): for i in xrange(2): t_i = t[i] t1 = t[0] t2 = t[1] t3 = t[2] t4 = t[3] t5 = t[4] h1 = t1 - t_i h2 = t2 - t_i h3 = t3 - t_i h4 = t4 - t_i h5 = t5 - t_i h12 = t1 - t2 h13 = t1 - t3 h14 = t1 - t4 h15 = t1 - t5 h23 = t2 - t3 h24 = t2 - t4 h25 = t2 - t5 h34 = t3 - t4 h35 = t3 - t5 h45 = t4 - t5 for k in xrange(f.shape[1]): for m in xrange(f.shape[1]): dfdt[i, k, m] = ( -((h2 * h3 * h4 + h2 * h3 * h5 + h2 * h4 * h5 + h3 * h4 * h5) / (h12 * h13 * h14 * h15)) * f[0, k, m] + ((h1 * h3 * h4 + h1 * h3 * h5 + h1 * h4 * h5 + h3 * h4 * h5) / (h12 * h23 * h24 * h25)) * f[1, k, m] - ((h1 * h2 * h4 + h1 * h2 * h5 + h1 * h4 * h5 + h2 * h4 * h5) / (h13 * h23 * h34 * h35)) * f[2, k, m] + ((h1 * h2 * h3 + h1 * h2 * h5 + h1 * h3 * h5 + h2 * h3 * h5) / (h14 * h24 * h34 * h45)) * f[3, k, m] - ((h1 * h2 * h3 + h1 * h2 * h4 + h1 * h3 * h4 + h2 * h3 * h4) / (h15 * h25 * h35 * h45)) * f[4, k, m]) for i in xrange(2, len(t) - 2): t1 = t[i - 2] t2 = t[i - 1] t3 = t[i] t4 = t[i + 1] t5 = t[i + 2] h1 = t1 - t3 h2 = t2 - t3 h4 = t4 - t3 h5 = t5 - t3 h12 = t1 - t2 h13 = t1 - t3 h14 = t1 - t4 h15 = t1 - t5 h23 = t2 - t3 h24 = t2 - t4 h25 = t2 - t5 h34 = t3 - t4 h35 = t3 - t5 h45 = t4 - t5 for k in xrange(f.shape[1]): for m in xrange(f.shape[1]): dfdt[i, k, m] = (-((h2 * h4 * h5) / (h12 * h13 * h14 * h15)) * f[i - 2, k, m] + ((h1 * h4 * h5) / (h12 * h23 * h24 * h25)) * f[i - 1, k, m] - ((h1 * h2 * h4 + h1 * h2 * h5 + h1 * h4 * h5 + h2 * h4 * h5) / (h13 * h23 * h34 * h35)) * f[i, k, m] + ((h1 * h2 * h5) / (h14 * h24 * h34 * h45)) * f[i + 1, k, m] - ((h1 * h2 * h4) / (h15 * h25 * h35 * h45)) * f[i + 2, k, m]) for i in xrange(len(t) - 2, len(t)): t_i = t[i] t1 = t[-5] t2 = t[-4] t3 = t[-3] t4 = t[-2] t5 = t[-1] h1 = t1 - t_i h2 = t2 - t_i h3 = t3 - t_i h4 = t4 - t_i h5 = t5 - t_i h12 = t1 - t2 h13 = t1 - t3 h14 = t1 - t4 h15 = t1 - t5 h23 = t2 - t3 h24 = t2 - t4 h25 = t2 - t5 h34 = t3 - t4 h35 = t3 - t5 h45 = t4 - t5 for k in xrange(f.shape[1]): for m in xrange(f.shape[1]): dfdt[i, k, m] = ( -((h2 * h3 * h4 + h2 * h3 * h5 + h2 * h4 * h5 + h3 * h4 * h5) / (h12 * h13 * h14 * h15)) * f[-5, k, m] + ((h1 * h3 * h4 + h1 * h3 * h5 + h1 * h4 * h5 + h3 * h4 * h5) / (h12 * h23 * h24 * h25)) * f[-4, k, m] - ((h1 * h2 * h4 + h1 * h2 * h5 + h1 * h4 * h5 + h2 * h4 * h5) / (h13 * h23 * h34 * h35)) * f[-3, k, m] + ((h1 * h2 * h3 + h1 * h2 * h5 + h1 * h3 * h5 + h2 * h3 * h5) / (h14 * h24 * h34 * h45)) * f[-2, k, m] - ((h1 * h2 * h3 + h1 * h2 * h4 + h1 * h3 * h4 + h2 * h3 * h4) / (h15 * h25 * h35 * h45)) * f[-1, k, m]) return # @njit('void(f8[:,:], f8[:], f8[:,:])') @jit def indefinite_integral(f, t): Sfdt = np.empty_like(f) Sfdt[0] = 0.0 for i in xrange(1, len(t)): for j in xrange(f.shape[1]): Sfdt[i, j] = Sfdt[i - 1, j] + (f[i, j] + f[i - 1, j]) * ((t[i] - t[i - 1]) / 2.0) return Sfdt #@njit('void(f8[:,:], f8[:], f8[:])') @jit def definite_integral(f, t): Sfdt = np.zeros_like(f) Sfdt[1:, ...] = (f[1:, ...] + f[:-1, ...]) * ((t[1:] - t[:-1]) / 2.0) return np.sum(Sfdt)
expected_output = { 'dynamic_nat_entries': '0 entries', 'flow_record': 'Disabled', 'nat_type': 'Static', 'netflow_type': 'NA', 'static_nat_entries': '0 entries', 'total_hw_resource_tcam': '26 of 27648 /0 .09% utilization', 'total_nat_entries': '0 entries' }
from django.contrib import admin from .models import BookAppoinment # Register your models here. admin.site.register(BookAppoinment)
{ 'French': 'fransè', 'Haitian Creole': 'kreyòl ayisyen', 'Haitian French': 'fransè ayisyen', }
class NotSet(object): """Sentinel value.""" def __eq__(self, other): return self is other def __repr__(self): return 'NotSet' class StateNotSet(object): def __eq__(self, other): return self is other def __repr__(self): return 'NotSet' def value(self): return 0 class StateSet(object): def __eq__(self, other): return self is other def __repr__(self): return 'Set' def value(self): return 1 class StateCleared(object): def __eq__(self, other): return self is other def __repr__(self): return 'Cleared' def value(self): return 2
from IPython.html.services.contents.filemanager import FileContentsManager c.ServerApp.jpserver_extensions = {"jupyterlab_hubshare": True} c.HubShare.file_path_template = "{user}/{path}" c.HubShare.contents_manager = { "manager_cls": FileContentsManager, "kwargs": {"root_dir": "/tmp/"}, }
"""Generated client library for run version v1alpha1.""" # NOTE: This file is autogenerated and should not be edited by hand. from __future__ import absolute_import from apitools.base.py import base_api from googlecloudsdk.third_party.apis.run.v1alpha1 import run_v1alpha1_messages as messages class RunV1alpha1(base_api.BaseApiClient): """Generated client library for service run version v1alpha1.""" MESSAGES_MODULE = messages BASE_URL = 'https://run.googleapis.com/' MTLS_BASE_URL = 'https://run.mtls.googleapis.com/' _PACKAGE = 'run' _SCOPES = ['https://www.googleapis.com/auth/cloud-platform'] _VERSION = 'v1alpha1' _CLIENT_ID = '1042881264118.apps.googleusercontent.com' _CLIENT_SECRET = 'x_Tw5K8nnjoRAqULM9PFAC2b' _USER_AGENT = 'google-cloud-sdk' _CLIENT_CLASS_NAME = 'RunV1alpha1' _URL_VERSION = 'v1alpha1' _API_KEY = None def __init__(self, url='', credentials=None, get_credentials=True, http=None, model=None, log_request=False, log_response=False, credentials_args=None, default_global_params=None, additional_http_headers=None, response_encoding=None): """Create a new run handle.""" url = url or self.BASE_URL super(RunV1alpha1, self).__init__( url, credentials=credentials, get_credentials=get_credentials, http=http, model=model, log_request=log_request, log_response=log_response, credentials_args=credentials_args, default_global_params=default_global_params, additional_http_headers=additional_http_headers, response_encoding=response_encoding) self.namespaces_domainmappings = self.NamespacesDomainmappingsService(self) self.namespaces_jobs = self.NamespacesJobsService(self) self.namespaces = self.NamespacesService(self) self.projects_locations_domainmappings = self.ProjectsLocationsDomainmappingsService(self) self.projects_locations = self.ProjectsLocationsService(self) self.projects = self.ProjectsService(self) class NamespacesDomainmappingsService(base_api.BaseApiService): """Service class for the namespaces_domainmappings resource.""" _NAME = 'namespaces_domainmappings' def __init__(self, client): super(RunV1alpha1.NamespacesDomainmappingsService, self).__init__(client) self._upload_configs = { } def Create(self, request, global_params=None): r"""Creates a new domain mapping. Args: request: (RunNamespacesDomainmappingsCreateRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (DomainMapping) The response message. """ config = self.GetMethodConfig('Create') return self._RunMethod( config, request, global_params=global_params) Create.method_config = lambda: base_api.ApiMethodInfo( flat_path='apis/domains.cloudrun.com/v1alpha1/namespaces/{namespacesId}/domainmappings', http_method='POST', method_id='run.namespaces.domainmappings.create', ordered_params=['parent'], path_params=['parent'], query_params=[], relative_path='apis/domains.cloudrun.com/v1alpha1/{+parent}/domainmappings', request_field='domainMapping', request_type_name='RunNamespacesDomainmappingsCreateRequest', response_type_name='DomainMapping', supports_download=False, ) def Delete(self, request, global_params=None): r"""Rpc to delete a domain mapping. Args: request: (RunNamespacesDomainmappingsDeleteRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Empty) The response message. """ config = self.GetMethodConfig('Delete') return self._RunMethod( config, request, global_params=global_params) Delete.method_config = lambda: base_api.ApiMethodInfo( flat_path='apis/domains.cloudrun.com/v1alpha1/namespaces/{namespacesId}/domainmappings/{domainmappingsId}', http_method='DELETE', method_id='run.namespaces.domainmappings.delete', ordered_params=['name'], path_params=['name'], query_params=['apiVersion', 'kind', 'orphanDependents', 'propagationPolicy'], relative_path='apis/domains.cloudrun.com/v1alpha1/{+name}', request_field='', request_type_name='RunNamespacesDomainmappingsDeleteRequest', response_type_name='Empty', supports_download=False, ) def Get(self, request, global_params=None): r"""Rpc to get information about a domain mapping. Args: request: (RunNamespacesDomainmappingsGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (DomainMapping) The response message. """ config = self.GetMethodConfig('Get') return self._RunMethod( config, request, global_params=global_params) Get.method_config = lambda: base_api.ApiMethodInfo( flat_path='apis/domains.cloudrun.com/v1alpha1/namespaces/{namespacesId}/domainmappings/{domainmappingsId}', http_method='GET', method_id='run.namespaces.domainmappings.get', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='apis/domains.cloudrun.com/v1alpha1/{+name}', request_field='', request_type_name='RunNamespacesDomainmappingsGetRequest', response_type_name='DomainMapping', supports_download=False, ) def List(self, request, global_params=None): r"""Rpc to list domain mappings. Args: request: (RunNamespacesDomainmappingsListRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (ListDomainMappingsResponse) The response message. """ config = self.GetMethodConfig('List') return self._RunMethod( config, request, global_params=global_params) List.method_config = lambda: base_api.ApiMethodInfo( flat_path='apis/domains.cloudrun.com/v1alpha1/namespaces/{namespacesId}/domainmappings', http_method='GET', method_id='run.namespaces.domainmappings.list', ordered_params=['parent'], path_params=['parent'], query_params=['continue_', 'fieldSelector', 'includeUninitialized', 'labelSelector', 'limit', 'resourceVersion', 'watch'], relative_path='apis/domains.cloudrun.com/v1alpha1/{+parent}/domainmappings', request_field='', request_type_name='RunNamespacesDomainmappingsListRequest', response_type_name='ListDomainMappingsResponse', supports_download=False, ) def ReplaceDomainMapping(self, request, global_params=None): r"""Rpc to replace a domain mapping. Only the spec and metadata labels and annotations are modifiable. After the Update request, Cloud Run will work to make the 'status' match the requested 'spec'. May provide metadata.resourceVersion to enforce update from last read for optimistic concurrency control. Args: request: (RunNamespacesDomainmappingsReplaceDomainMappingRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (DomainMapping) The response message. """ config = self.GetMethodConfig('ReplaceDomainMapping') return self._RunMethod( config, request, global_params=global_params) ReplaceDomainMapping.method_config = lambda: base_api.ApiMethodInfo( flat_path='apis/domains.cloudrun.com/v1alpha1/namespaces/{namespacesId}/domainmappings/{domainmappingsId}', http_method='PUT', method_id='run.namespaces.domainmappings.replaceDomainMapping', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='apis/domains.cloudrun.com/v1alpha1/{+name}', request_field='domainMapping', request_type_name='RunNamespacesDomainmappingsReplaceDomainMappingRequest', response_type_name='DomainMapping', supports_download=False, ) class NamespacesJobsService(base_api.BaseApiService): """Service class for the namespaces_jobs resource.""" _NAME = 'namespaces_jobs' def __init__(self, client): super(RunV1alpha1.NamespacesJobsService, self).__init__(client) self._upload_configs = { } def Create(self, request, global_params=None): r"""Create a job. Args: request: (RunNamespacesJobsCreateRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Job) The response message. """ config = self.GetMethodConfig('Create') return self._RunMethod( config, request, global_params=global_params) Create.method_config = lambda: base_api.ApiMethodInfo( flat_path='apis/run.googleapis.com/v1alpha1/namespaces/{namespacesId}/jobs', http_method='POST', method_id='run.namespaces.jobs.create', ordered_params=['parent'], path_params=['parent'], query_params=[], relative_path='apis/run.googleapis.com/v1alpha1/{+parent}/jobs', request_field='job', request_type_name='RunNamespacesJobsCreateRequest', response_type_name='Job', supports_download=False, ) def Delete(self, request, global_params=None): r"""Delete a job. Args: request: (RunNamespacesJobsDeleteRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Empty) The response message. """ config = self.GetMethodConfig('Delete') return self._RunMethod( config, request, global_params=global_params) Delete.method_config = lambda: base_api.ApiMethodInfo( flat_path='apis/run.googleapis.com/v1alpha1/namespaces/{namespacesId}/jobs/{jobsId}', http_method='DELETE', method_id='run.namespaces.jobs.delete', ordered_params=['name'], path_params=['name'], query_params=['apiVersion', 'kind', 'propagationPolicy'], relative_path='apis/run.googleapis.com/v1alpha1/{+name}', request_field='', request_type_name='RunNamespacesJobsDeleteRequest', response_type_name='Empty', supports_download=False, ) def Get(self, request, global_params=None): r"""Get information about a job. Args: request: (RunNamespacesJobsGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Job) The response message. """ config = self.GetMethodConfig('Get') return self._RunMethod( config, request, global_params=global_params) Get.method_config = lambda: base_api.ApiMethodInfo( flat_path='apis/run.googleapis.com/v1alpha1/namespaces/{namespacesId}/jobs/{jobsId}', http_method='GET', method_id='run.namespaces.jobs.get', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='apis/run.googleapis.com/v1alpha1/{+name}', request_field='', request_type_name='RunNamespacesJobsGetRequest', response_type_name='Job', supports_download=False, ) def List(self, request, global_params=None): r"""List jobs. Args: request: (RunNamespacesJobsListRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (ListJobsResponse) The response message. """ config = self.GetMethodConfig('List') return self._RunMethod( config, request, global_params=global_params) List.method_config = lambda: base_api.ApiMethodInfo( flat_path='apis/run.googleapis.com/v1alpha1/namespaces/{namespacesId}/jobs', http_method='GET', method_id='run.namespaces.jobs.list', ordered_params=['parent'], path_params=['parent'], query_params=['continue_', 'fieldSelector', 'includeUninitialized', 'labelSelector', 'limit', 'resourceVersion', 'watch'], relative_path='apis/run.googleapis.com/v1alpha1/{+parent}/jobs', request_field='', request_type_name='RunNamespacesJobsListRequest', response_type_name='ListJobsResponse', supports_download=False, ) class NamespacesService(base_api.BaseApiService): """Service class for the namespaces resource.""" _NAME = 'namespaces' def __init__(self, client): super(RunV1alpha1.NamespacesService, self).__init__(client) self._upload_configs = { } class ProjectsLocationsDomainmappingsService(base_api.BaseApiService): """Service class for the projects_locations_domainmappings resource.""" _NAME = 'projects_locations_domainmappings' def __init__(self, client): super(RunV1alpha1.ProjectsLocationsDomainmappingsService, self).__init__(client) self._upload_configs = { } def Create(self, request, global_params=None): r"""Creates a new domain mapping. Args: request: (RunProjectsLocationsDomainmappingsCreateRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (DomainMapping) The response message. """ config = self.GetMethodConfig('Create') return self._RunMethod( config, request, global_params=global_params) Create.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/domainmappings', http_method='POST', method_id='run.projects.locations.domainmappings.create', ordered_params=['parent'], path_params=['parent'], query_params=[], relative_path='v1alpha1/{+parent}/domainmappings', request_field='domainMapping', request_type_name='RunProjectsLocationsDomainmappingsCreateRequest', response_type_name='DomainMapping', supports_download=False, ) def Delete(self, request, global_params=None): r"""Rpc to delete a domain mapping. Args: request: (RunProjectsLocationsDomainmappingsDeleteRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Empty) The response message. """ config = self.GetMethodConfig('Delete') return self._RunMethod( config, request, global_params=global_params) Delete.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/domainmappings/{domainmappingsId}', http_method='DELETE', method_id='run.projects.locations.domainmappings.delete', ordered_params=['name'], path_params=['name'], query_params=['apiVersion', 'kind', 'orphanDependents', 'propagationPolicy'], relative_path='v1alpha1/{+name}', request_field='', request_type_name='RunProjectsLocationsDomainmappingsDeleteRequest', response_type_name='Empty', supports_download=False, ) def Get(self, request, global_params=None): r"""Rpc to get information about a domain mapping. Args: request: (RunProjectsLocationsDomainmappingsGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (DomainMapping) The response message. """ config = self.GetMethodConfig('Get') return self._RunMethod( config, request, global_params=global_params) Get.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/domainmappings/{domainmappingsId}', http_method='GET', method_id='run.projects.locations.domainmappings.get', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1alpha1/{+name}', request_field='', request_type_name='RunProjectsLocationsDomainmappingsGetRequest', response_type_name='DomainMapping', supports_download=False, ) def List(self, request, global_params=None): r"""Rpc to list domain mappings. Args: request: (RunProjectsLocationsDomainmappingsListRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (ListDomainMappingsResponse) The response message. """ config = self.GetMethodConfig('List') return self._RunMethod( config, request, global_params=global_params) List.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/domainmappings', http_method='GET', method_id='run.projects.locations.domainmappings.list', ordered_params=['parent'], path_params=['parent'], query_params=['continue_', 'fieldSelector', 'includeUninitialized', 'labelSelector', 'limit', 'resourceVersion', 'watch'], relative_path='v1alpha1/{+parent}/domainmappings', request_field='', request_type_name='RunProjectsLocationsDomainmappingsListRequest', response_type_name='ListDomainMappingsResponse', supports_download=False, ) def ReplaceDomainMapping(self, request, global_params=None): r"""Rpc to replace a domain mapping. Only the spec and metadata labels and annotations are modifiable. After the Update request, Cloud Run will work to make the 'status' match the requested 'spec'. May provide metadata.resourceVersion to enforce update from last read for optimistic concurrency control. Args: request: (RunProjectsLocationsDomainmappingsReplaceDomainMappingRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (DomainMapping) The response message. """ config = self.GetMethodConfig('ReplaceDomainMapping') return self._RunMethod( config, request, global_params=global_params) ReplaceDomainMapping.method_config = lambda: base_api.ApiMethodInfo( flat_path='v1alpha1/projects/{projectsId}/locations/{locationsId}/domainmappings/{domainmappingsId}', http_method='PUT', method_id='run.projects.locations.domainmappings.replaceDomainMapping', ordered_params=['name'], path_params=['name'], query_params=[], relative_path='v1alpha1/{+name}', request_field='domainMapping', request_type_name='RunProjectsLocationsDomainmappingsReplaceDomainMappingRequest', response_type_name='DomainMapping', supports_download=False, ) class ProjectsLocationsService(base_api.BaseApiService): """Service class for the projects_locations resource.""" _NAME = 'projects_locations' def __init__(self, client): super(RunV1alpha1.ProjectsLocationsService, self).__init__(client) self._upload_configs = { } class ProjectsService(base_api.BaseApiService): """Service class for the projects resource.""" _NAME = 'projects' def __init__(self, client): super(RunV1alpha1.ProjectsService, self).__init__(client) self._upload_configs = { }
import mock import pyconfig from unittest.case import SkipTest from humbledb import Mongo, Document, _version from humbledb.errors import DatabaseMismatch, ConnectionFailure from ..util import database_name, ok_, eq_, DBTest, raises def teardown(): DBTest.connection.drop_database(database_name()) def test_new(): eq_(DBTest, DBTest()) @raises(TypeError) def test_missing_config_host(): class Test(Mongo): config_port = 27017 @raises(TypeError) def test_missing_config_port(): class Test(Mongo): config_host = 'localhost' def test_reload(): with mock.patch.object(DBTest, '_new_connection') as _new_conn: pyconfig.reload() _new_conn.assert_called_once() # Have to reload again to get real connection instance back pyconfig.reload() @raises(RuntimeError) def test_nested_conn(): with DBTest: with DBTest: pass def test_harmless_end(): # This shouldn't raise any errors DBTest.end() DBTest.start() DBTest.end() DBTest.end() def test_replica_works_for_versions_between_2_1_and_2_4(): if _version._lt('2.1') or _version._gte('2.4'): raise SkipTest with mock.patch('pymongo.ReplicaSetConnection') as replica: class Replica(Mongo): config_host = 'localhost' config_port = 27017 config_replica = 'test' with Replica: pass replica.assert_called_once() def test_replica_works_for_versions_after_2_4(): if _version._lt('2.4'): raise SkipTest if _version._gte('3'): raise SkipTest with mock.patch('pymongo.MongoReplicaSetClient') as replica: class Replica(Mongo): config_host = 'localhost' config_port = 27017 config_replica = 'test' with Replica: pass replica.assert_called_once() @raises(TypeError) def test_replica_errors_for_versions_before_2_1(): if _version._gte('2.1'): raise SkipTest class Replica(Mongo): config_host = 'localhost' config_port = 27017 config_replica = 'test' def test_reconnect(): with mock.patch.object(DBTest, '_new_connection') as _new_conn: DBTest.reconnect() _new_conn.assert_called_once() # Have to reconnect again to get real connection instance back DBTest.reconnect() def test_mongo_uri_with_database(): if _version._lt('2.6.0'): raise SkipTest("Needs version 2.6.0 or later") host = pyconfig.get('humbledb.test.db.host', 'localhost') port = pyconfig.get('humbledb.test.db.port', 27017) uri = 'mongodb://{}:{}/{}'.format(host, port, database_name()) class DBuri(Mongo): config_uri = uri with DBuri: eq_(DBuri.database.name, database_name()) eq_(Mongo.context.database.name, database_name()) @raises(DatabaseMismatch) def test_mongo_uri_database_with_conflict_raises_error(): if _version._lt('2.6.0'): raise SkipTest("Needs version 2.6.0 or later") host = pyconfig.get('humbledb.test.db.host', 'localhost') port = pyconfig.get('humbledb.test.db.port', 27017) uri = 'mongodb://{}:{}/{}'.format(host, port, database_name()) class DBuri(Mongo): config_uri = uri from humbledb import Document class TestDoc(Document): config_database = database_name() + '_is_different' config_collection = 'test' with DBuri: TestDoc.find() @raises(TypeError) def test_mongo_client_with_ssl_before_2_1(): if _version._gte('2.1'): raise SkipTest("Only test this with version 2.1 or earlier.") class SSLMongo(Mongo): config_host = 'localhost' config_port = 27017 config_ssl = True def test_mongo_client_with_ssl_after_2_1(): if _version._lt('2.1'): raise SkipTest("This test requires version 2.1 or later.") class SSLMongo(Mongo): config_host = 'localhost' config_port = 27017 config_ssl = True config_mongo_client = ({'serverSelectionTimeoutMS': 300} if _version._gte('3.0') else {}) class SomeDoc(Document): config_database = database_name() config_collection = 'ssl_collection' name = 'n' try: SomeDoc.insert except: raise try: import socket socket.setdefaulttimeout(3) with SSLMongo: SomeDoc.insert({SomeDoc.name:'foobar'}) ok_(SomeDoc.find({SomeDoc.name:'foobar'})) except ConnectionFailure as err: raise SkipTest("SSL may not be enabled on mongodb server: %r" % err)
B_35_01_11 = {0: {'A': 0.282, 'C': -0.023, 'E': -0.036, 'D': 0.029, 'G': 0.081, 'F': -0.29, 'I': -0.259, 'H': -0.031, 'K': 0.25, 'M': -0.315, 'L': -0.34, 'N': -0.029, 'Q': 0.063, 'P': 0.313, 'S': 0.153, 'R': 0.507, 'T': 0.079, 'W': -0.183, 'V': -0.151, 'Y': -0.102}, 1: {'A': -0.243, 'C': 0.021, 'E': 0.07, 'D': 0.048, 'G': -0.002, 'F': 0.075, 'I': -0.06, 'H': 0.181, 'K': 0.112, 'M': 0.031, 'L': -0.11, 'N': 0.056, 'Q': 0.007, 'P': -0.452, 'S': 0.096, 'R': 0.24, 'T': -0.032, 'W': 0.089, 'V': -0.244, 'Y': 0.117}, 2: {'A': -0.132, 'C': 0.009, 'E': 0.031, 'D': 0.046, 'G': 0.029, 'F': -0.066, 'I': -0.131, 'H': 0.065, 'K': 0.046, 'M': -0.021, 'L': -0.093, 'N': 0.079, 'Q': 0.137, 'P': 0.06, 'S': -0.028, 'R': 0.036, 'T': -0.06, 'W': 0.06, 'V': -0.196, 'Y': 0.127}, 3: {'A': -0.171, 'C': -0.135, 'E': 0.007, 'D': -0.002, 'G': -0.031, 'F': -0.469, 'I': -0.475, 'H': 0.303, 'K': 0.147, 'M': 0.012, 'L': -0.251, 'N': 0.291, 'Q': 0.379, 'P': -0.659, 'S': 0.485, 'R': 0.325, 'T': 0.264, 'W': 0.023, 'V': -0.333, 'Y': 0.289}, 4: {'A': 0.027, 'C': -0.008, 'E': -0.015, 'D': 0.001, 'G': 0.001, 'F': -0.077, 'I': -0.021, 'H': -0.003, 'K': 0.007, 'M': -0.018, 'L': -0.026, 'N': 0.017, 'Q': 0.03, 'P': 0.037, 'S': 0.031, 'R': 0.013, 'T': 0.039, 'W': -0.017, 'V': 0.01, 'Y': -0.028}, 5: {'A': -0.467, 'C': -0.031, 'E': -0.017, 'D': -0.068, 'G': 0.007, 'F': 0.319, 'I': 0.167, 'H': 0.079, 'K': 0.198, 'M': 0.105, 'L': 0.206, 'N': -0.001, 'Q': 0.03, 'P': -0.014, 'S': -0.438, 'R': 0.213, 'T': -0.448, 'W': 0.136, 'V': -0.174, 'Y': 0.199}, 6: {'A': 0.21, 'C': -0.123, 'E': 0.07, 'D': -0.004, 'G': -0.134, 'F': 0.083, 'I': 0.226, 'H': -0.206, 'K': 0.062, 'M': 0.025, 'L': 0.264, 'N': -0.334, 'Q': 0.086, 'P': 0.308, 'S': -0.414, 'R': 0.14, 'T': -0.132, 'W': -0.134, 'V': 0.251, 'Y': -0.245}, 7: {'A': 0.432, 'C': 0.028, 'E': 0.013, 'D': 0.019, 'G': 0.094, 'F': -0.106, 'I': -0.291, 'H': -0.095, 'K': -0.221, 'M': 0.019, 'L': 0.264, 'N': 0.237, 'Q': -0.058, 'P': 0.019, 'S': 0.294, 'R': -0.51, 'T': 0.215, 'W': -0.19, 'V': 0.255, 'Y': -0.418}, 8: {'A': -0.15, 'C': -0.04, 'E': 0.06, 'D': 0.138, 'G': 0.028, 'F': -0.318, 'I': -0.379, 'H': 0.143, 'K': -0.037, 'M': -0.103, 'L': -0.207, 'N': 0.172, 'Q': 0.187, 'P': 0.082, 'S': 0.239, 'R': 0.049, 'T': 0.259, 'W': 0.084, 'V': -0.306, 'Y': 0.097}, 9: {'A': -0.067, 'C': -0.057, 'E': -0.165, 'D': -0.106, 'G': 0.067, 'F': -0.118, 'I': -0.099, 'H': 0.096, 'K': 0.139, 'M': 0.042, 'L': -0.001, 'N': 0.081, 'Q': 0.06, 'P': -0.187, 'S': 0.145, 'R': 0.136, 'T': 0.092, 'W': -0.015, 'V': 0.004, 'Y': -0.047}, 10: {'A': 0.131, 'C': -0.057, 'E': 0.023, 'D': -0.014, 'G': -0.004, 'F': -0.381, 'I': 0.366, 'H': -0.196, 'K': 0.127, 'M': 0.063, 'L': 0.166, 'N': -0.038, 'Q': 0.24, 'P': 0.253, 'S': 0.099, 'R': 0.043, 'T': 0.049, 'W': -0.181, 'V': 0.212, 'Y': -0.9}, -1: {'con': 4.27325}}
from typing import Dict, Set, List, Tuple import pkgutil import sys import typing from importlib import import_module, invalidate_caches from databases import Database from .migration import Migration def build_dependants(dependencies: Dict[str, Set[str]]) -> Dict[str, Set[str]]: """ Given a dependencies mapping, return the reversed dependants dictionary. """ dependants = {name: set() for name in dependencies.keys()} for child, parents in dependencies.items(): for parent in parents: dependants[parent].add(child) return dependants def order_dependencies( dependencies: Dict[str, Set[str]], dependants: Dict[str, Set[str]] ) -> List[str]: """ Given the dependencies and dependants mappings, return an ordered list of the dependencies. """ # The root nodes are the only ones with no dependencies. root_nodes = sorted([name for name, deps in dependencies.items() if not deps]) ordered = list(root_nodes) seen = set(root_nodes) children = set() for node in root_nodes: children |= dependants[node] while children: for node in sorted(children): if dependencies[node].issubset(seen): ordered.append(node) seen.add(node) children.remove(node) children |= dependants[node] break else: raise Exception() return ordered def load_migrations(applied: Set[str], dir_name: str) -> List[Migration]: migration_classes = {} dependencies = {} if "." not in sys.path: sys.path.insert(0, ".") names = [name for _, name, is_pkg in pkgutil.iter_modules([dir_name])] for name in names: module = import_module(f"{dir_name}.{name}") migration_cls = getattr(module, "Migration") migration_classes[name] = migration_cls dependencies[name] = set(migration_cls.dependencies) dependants = build_dependants(dependencies) names = order_dependencies(dependencies, dependants) migrations = [] for name in names: migration_cls = migration_classes[name] is_applied = name in applied dependant_list = sorted(dependants[name]) migration = migration_cls( name=name, is_applied=is_applied, dependants=dependant_list ) migrations.append(migration) return migrations
import unittest from .. api_client import ApcUrl, UrlBadParam, IncompleteUrl class TestApcUrl(unittest.TestCase): def test_init(self): url = "/testing" u = ApcUrl(url) self.assertEquals( u.base_url, url) def test_params_1(self): u = ApcUrl("/testing/%%key%%") self.assertEquals(u.params(key='val').url(), '/testing/val') def test_params_2(self): u = ApcUrl('/testing/%%key%%/%%api%%/more_testing') full_url = u.params(key="AAA",api="BBB").url() self.assertEquals(full_url, '/testing/AAA/BBB/more_testing') def test_params_ex(self): u = ApcUrl("/testing/%%key%%") with self.assertRaises(UrlBadParam): u.params(bad_key='testing') def test_url(self): u = "one/two/three" self.assertEquals( ApcUrl(u).url(), u ) def test_url_ex(self): u = ApcUrl('/%%one%%/%%two%%/three').params(two='testing') with self.assertRaises(IncompleteUrl): u.url()
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Prepare dataset for NCF. Load the training dataset and evaluation dataset from csv file into memory. Prepare input for model training and evaluation. """ import numpy as np from six.moves import xrange # pylint: disable=redefined-builtin import tensorflow as tf from official.recommendation import constants # pylint: disable=g-bad-import-order # The buffer size for shuffling train dataset. _SHUFFLE_BUFFER_SIZE = 1024 class NCFDataSet(object): """A class containing data information for model training and evaluation.""" def __init__(self, train_data, num_users, num_items, num_negatives, true_items, all_items, all_eval_data): """Initialize NCFDataset class. Args: train_data: A list containing the positive training instances. num_users: An integer, the number of users in training dataset. num_items: An integer, the number of items in training dataset. num_negatives: An integer, the number of negative instances for each user in train dataset. true_items: A list, the ground truth (positive) items of users for evaluation. Each entry is a latest positive instance for one user. all_items: A nested list, all items for evaluation, and each entry is the evaluation items for one user. all_eval_data: A numpy array of eval/test dataset. """ self.train_data = train_data self.num_users = num_users self.num_items = num_items self.num_negatives = num_negatives self.eval_true_items = true_items self.eval_all_items = all_items self.all_eval_data = all_eval_data def load_data(file_name): """Load data from a csv file which splits on tab key.""" lines = tf.gfile.Open(file_name, "r").readlines() # Process the file line by line def _process_line(line): return [int(col) for col in line.split("\t")] data = [_process_line(line) for line in lines] return data def data_preprocessing(train_fname, test_fname, test_neg_fname, num_negatives): """Preprocess the train and test dataset. In data preprocessing, the training positive instances are loaded into memory for random negative instance generation in each training epoch. The test dataset are generated from test positive and negative instances. Args: train_fname: A string, the file name of training positive dataset. test_fname: A string, the file name of test positive dataset. Each user has one positive instance. test_neg_fname: A string, the file name of test negative dataset. Each user has 100 negative instances by default. num_negatives: An integer, the number of negative instances for each user in train dataset. Returns: ncf_dataset: A NCFDataset object containing information about training and evaluation/test dataset. """ # Load training positive instances into memory for later train data generation train_data = load_data(train_fname) # Get total number of users in the dataset num_users = len(np.unique(np.array(train_data)[:, 0])) # Process test dataset to csv file test_ratings = load_data(test_fname) test_negatives = load_data(test_neg_fname) # Get the total number of items in both train dataset and test dataset (the # whole dataset) num_items = len( set(np.array(train_data)[:, 1]) | set(np.array(test_ratings)[:, 1])) # Generate test instances for each user true_items, all_items = [], [] all_test_data = [] for idx in range(num_users): items = test_negatives[idx] rating = test_ratings[idx] user = rating[0] # User true_item = rating[1] # Positive item as ground truth # All items with first 100 as negative and last one positive items.append(true_item) users = np.full(len(items), user, dtype=np.int32) users_items = list(zip(users, items)) # User-item list true_items.append(true_item) # all ground truth items all_items.append(items) # All items (including positive and negative items) all_test_data.extend(users_items) # Generate test dataset # Create NCFDataset object ncf_dataset = NCFDataSet( train_data, num_users, num_items, num_negatives, true_items, all_items, np.asarray(all_test_data) ) return ncf_dataset def generate_train_dataset(train_data, num_items, num_negatives): """Generate train dataset for each epoch. Given positive training instances, randomly generate negative instances to form the training dataset. Args: train_data: A list of positive training instances. num_items: An integer, the number of items in positive training instances. num_negatives: An integer, the number of negative training instances following positive training instances. It is 4 by default. Returns: A numpy array of training dataset. """ all_train_data = [] # A set with user-item tuples train_data_set = set((u, i) for u, i, _ in train_data) for u, i, _ in train_data: # Positive instance all_train_data.append([u, i, 1]) # Negative instances, randomly generated for _ in xrange(num_negatives): j = np.random.randint(num_items) while (u, j) in train_data_set: j = np.random.randint(num_items) all_train_data.append([u, j, 0]) return np.asarray(all_train_data) def input_fn(training, batch_size, ncf_dataset, repeat=1): """Input function for model training and evaluation. The train input consists of 1 positive instance (user and item have interactions) followed by some number of negative instances in which the items are randomly chosen. The number of negative instances is "num_negatives" which is 4 by default. Note that for each epoch, we need to re-generate the negative instances. Together with positive instances, they form a new train dataset. Args: training: A boolean flag for training mode. batch_size: An integer, batch size for training and evaluation. ncf_dataset: An NCFDataSet object, which contains the information about training and test data. repeat: An integer, how many times to repeat the dataset. Returns: dataset: A tf.data.Dataset object containing examples loaded from the files. """ # Generate random negative instances for training in each epoch if training: train_data = generate_train_dataset( ncf_dataset.train_data, ncf_dataset.num_items, ncf_dataset.num_negatives) # Get train features and labels train_features = [ (constants.USER, np.expand_dims(train_data[:, 0], axis=1)), (constants.ITEM, np.expand_dims(train_data[:, 1], axis=1)) ] train_labels = [ (constants.RATING, np.expand_dims(train_data[:, 2], axis=1))] dataset = tf.data.Dataset.from_tensor_slices( (dict(train_features), dict(train_labels)) ) dataset = dataset.shuffle(buffer_size=_SHUFFLE_BUFFER_SIZE) else: # Create eval/test dataset test_user = ncf_dataset.all_eval_data[:, 0] test_item = ncf_dataset.all_eval_data[:, 1] test_features = [ (constants.USER, np.expand_dims(test_user, axis=1)), (constants.ITEM, np.expand_dims(test_item, axis=1))] dataset = tf.data.Dataset.from_tensor_slices(dict(test_features)) # Repeat and batch the dataset dataset = dataset.repeat(repeat) dataset = dataset.batch(batch_size) # Prefetch to improve speed of input pipeline. dataset = dataset.prefetch(1) return dataset
import re import urllib2 from django.http import HttpRequest, HttpResponse from django.shortcuts import redirect # {STIX/ID Alias}:{type}-{GUID} _STIX_ID_REGEX = r"[a-z][\w\d-]+:[a-z]+-[a-f\d]{8}-[a-f\d]{4}-[a-f\d]{4}-[a-f\d]{4}-[a-f\d]{12}" _OBJECT_ID_MATCHER = re.compile("%s$" % _STIX_ID_REGEX, re.IGNORECASE) _URL_OBJECT_ID_MATCHER = re.compile(r".*/(%s)/?$" % _STIX_ID_REGEX, re.IGNORECASE) _STIX_TYPE_ID_REGEX = r"[a-z][\w\d-]+:([a-z]+)-[a-f\d]{8}-[a-f\d]{4}-[a-f\d]{4}-[a-f\d]{4}-[a-f\d]{12}" _OBJECT__TYPE_ID_MATCHER = re.compile("%s$" % _STIX_TYPE_ID_REGEX, re.IGNORECASE) def is_valid_stix_id(candidate_stix_id): match = _OBJECT_ID_MATCHER.match(candidate_stix_id) return match is not None def get_type_string(stix_id): if not is_valid_stix_id(stix_id): return '' match = _OBJECT__TYPE_ID_MATCHER.match(stix_id) if not match: return '' try: return match.group(1) except: return '' def find_id(request): """ Discovers a STIX id from the request's referrer. Args: request (HttpRequest): the request to inspect Returns: string: A STIX id """ def has_single_match(match_result): return match_result is not None and len(match_result.groups()) == 1 referer = urllib2.unquote(request.META.get("HTTP_REFERER", "")) match = _URL_OBJECT_ID_MATCHER.match(referer) id_ = None if has_single_match(match): id_ = match.group(1) return id_ def discover(request, matched_to, failed_to): """ Discovers a STIX id from the request's referrer, returning an appropriate redirect response. Args: request (HttpRequest): the request to inspect matched_to (Any): model, view name or url redirected to if discovery is successful. `id_` contains the STIX id failed_to (Any): model, view name or url redirected to if discovery fails Returns: HttpResponse: A redirect response """ id_ = find_id(request) if id_: response = redirect(matched_to, id_=id_) else: response = redirect(failed_to) return response
""" https://leetcode.com/problems/lowest-common-ancestor-of-a-binary-tree/ Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree. According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes p and q as the lowest node in T that has both p and q as descendants (where we allow a node to be a descendant of itself).” Given the following binary tree: root = [3,5,1,6,2,0,8,null,null,7,4] Example 1: Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1 Output: 3 Explanation: The LCA of nodes 5 and 1 is 3. Example 2: Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4 Output: 5 Explanation: The LCA of nodes 5 and 4 is 5, since a node can be a descendant of itself according to the LCA definition. Note: All of the nodes' values will be unique. p and q are different and both values will exist in the binary tree. """ # the two solutions are provided by the solution set of the question. # the code and algorithms are very elegant. # time complexity: O(n), space complexity: O(n) # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode': # the main idea of the first algorithm is to find the moment when p and q are spread in node, node.left and node.right, so that node+left+right>=2 """ recursive if not root: return None if root.val == q.val or root.val == p.val: return root self.answer = None def recurse_tree(node): if node is None: return False if node.val == p.val or node.val == q.val: mid = True else: mid = False left = recurse_tree(node.left) right= recurse_tree(node.right) if mid + left + right >= 2: self.answer = node return left or mid or right recurse_tree(root) return self.answer """ # the second algorithm is to traverse the tree until both q and p are found # when we traverse, we mark down the parent of each node we have visited # Then we from p using the parent notes, find the path to root # at last, we start from q and go back to root, see when we will find the same node in p's path, that will be the lowest common ancestor stack = [root] parent = {root:None} while p not in parent or q not in parent: node = stack.pop() if node.left: stack.append(node.left) parent[node.left] = node if node.right: stack.append(node.right) parent[node.right] = node p_parents = set() while p: p_parents.add(p) p = parent[p] while q not in p_parents: q = parent[q] return q
#!/usr/bin/env python3 import numpy as np import pyboof as pb from pyboof.swing import visualize_matches # Load two images image0 = pb.load_single_band("../data/example/stitch/cave_01.jpg", np.uint8) image1 = pb.load_single_band("../data/example/stitch/cave_02.jpg", np.uint8) # Set up the SURF fast hessian feature detector. Reduce the number of features it will detect by putting a limit # on how close two features can be and the maximum number at each scale config_fh = pb.ConfigFastHessian() config_fh.extractRadius = 4 config_fh.maxFeaturesPerScale = 300 # Create the detector and use default for everything else feature_detector = pb.FactoryDetectDescribe(np.uint8).createSurf(config_detect=config_fh) # Detect features in the first image locs0, desc0 = feature_detector.detect(image0) locs1, desc1 = feature_detector.detect(image1) print("Detected {:4d} features in image 0".format(len(desc0))) print(" {:4d} image 1".format(len(desc1))) config_greedy = pb.ConfigAssociateGreedy() config_greedy.forwardsBackwards = True config_greedy.scoreRatioThreshold = 0.95 factory_association = pb.FactoryAssociate() factory_association.set_score(pb.AssocScoreType.DEFAULT, feature_detector.get_descriptor_type()) associator = factory_association.greedy(config_greedy) associator.set_source(desc0) associator.set_destination(desc1) matches = associator.associate() print("Associated {} features".format(len(matches))) # Visualize the images using a Java function visualize_matches(image0, image1, locs0, locs1, associator.get_java_matches()) # TODO add support for python to java formatted matches input("Press any key to exit")
# Testing raytracing functions against lenstools import tensorflow as tf import numpy as np from numpy.testing import assert_allclose from scipy.interpolate import InterpolatedUnivariateSpline as iuspline from scipy.ndimage import fourier_gaussian import flowpm import flowpm.constants as constants import lenstools as lt import bigfile import os import astropy.units as u data_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), '..') np.random.seed(0) bs = 200 nc = 64 plane_resolution = 64 field = 5 npix = 64 class FlowPMSnapshot(lt.simulations.nbody.NbodySnapshot): """ A class that handles FlowPM simulation snapshots for lenstools """ _header_keys = [ 'masses', 'num_particles_file', 'num_particles_total', 'box_size', 'num_files', 'Om0', 'Ode0', 'h' ] ############################ #Open the file with bigfile# ############################ @classmethod def open(cls, filename, pool=None, header_kwargs=dict(), **kwargs): if bigfile is None: raise ImportError("bigfile must be installed!") fp = bigfile.BigFile(cls.buildFilename(filename, pool, **kwargs)) return cls(fp, pool, header_kwargs=header_kwargs) ################################################################################### ######################Abstract method implementation############################### ################################################################################### @classmethod def buildFilename(cls, root, pool): return root @classmethod def int2root(cls, name, n): return name def getHeader(self): #Initialize header header = dict() bf_header = self.fp["Header"].attrs ############################################### #Translate FlowPM header into lenstools header# ############################################### #Number of particles/files header["num_particles_file"] = bf_header["NC"][0]**3 header["num_particles_total"] = header["num_particles_file"] header["num_files"] = 1 #Cosmology header["Om0"] = bf_header["OmegaCDM"][0] + bf_header["OmegaB"][0] header["Ode0"] = 1. - header["Om0"] header["w0"] = -1. header["wa"] = 0. header["h"] = bf_header["h"][0] header["redshift"] = 1 / (bf_header["Time"][0]) - 1 header["comoving_distance"] = bf_header["comoving_distance"][0] * 1.0e3 header["scale_factor"] = bf_header["Time"][0] #Box size in kpc/h header["box_size"] = bf_header["BoxSize"][0] * 1.0e3 header["box_size_mpch"] = bf_header["BoxSize"][0] #Plane Resolution header["nc"] = bf_header["NC"][0] #Masses header["masses"] = np.array( [0., bf_header["M0"][0] * header["h"], 0., 0., 0., 0.]) ################# return header def setLimits(self): if self.pool is None: self._first = None self._last = None else: #Divide equally between tasks Nt, Np = self.pool.size + 1, bigfile.BigData(self.fp).size part_per_task = Np // Nt self._first = part_per_task * self.pool.rank self._last = part_per_task * (self.pool.rank + 1) #Add the remainder to the last task if (Np % Nt) and (self.pool.rank == Nt - 1): self._last += Np % Nt def getPositions(self, first=None, last=None, save=True): #Get data pointer data = self.fp #Read in positions in Mpc/h if (first is None) or (last is None): positions = (data["0/Position"][:] + np.array([ 0.5 / self.header["nc"] * self.header["box_size_mpch"], 0.5 / self.header["nc"] * self.header["box_size_mpch"], 0 ], dtype=np.float32)) * self.Mpc_over_h else: positions = data["0/Position"][first:last] * self.Mpc_over_h #Enforce periodic boundary conditions for n in (0, 1): positions[:, n][positions[:, n] < 0] += self.header["box_size"] positions[:, n][ positions[:, n] > self.header["box_size"]] -= self.header["box_size"] #Maybe save if save: self.positions = positions #Initialize useless attributes to None self.weights = None self.virial_radius = None self.concentration = None #Return return positions def test_density_plane(return_results=False): """ Tests cutting density planes from snapshots against lenstools """ klin = np.loadtxt(data_path + '/flowpm/data/Planck15_a1p00.txt').T[0] plin = np.loadtxt(data_path + '/flowpm/data/Planck15_a1p00.txt').T[1] ipklin = iuspline(klin, plin) cosmo = flowpm.cosmology.Planck15() a0 = 0.9 r0 = flowpm.background.rad_comoving_distance(cosmo, a0) # Create a state vector initial_conditions = flowpm.linear_field(nc, bs, ipklin, batch_size=2) state = flowpm.lpt_init(cosmo, initial_conditions, a0) # Export the snapshot flowpm.io.save_state( cosmo, state, a0, [nc, nc, nc], [bs, bs, bs], 'snapshot_density_testing', attrs={'comoving_distance': r0}) # Reload the snapshot with lenstools snapshot = FlowPMSnapshot.open('snapshot_density_testing') # Cut a lensplane in the middle of the volume lt_plane, resolution, NumPart = snapshot.cutPlaneGaussianGrid( normal=2, plane_resolution=plane_resolution, center=(bs / 2) * snapshot.Mpc_over_h, thickness=(bs / 4) * snapshot.Mpc_over_h, left_corner=np.zeros(3) * snapshot.Mpc_over_h, smooth=None, kind='density') # Cut the same lensplane with flowpm fpm_plane = flowpm.raytracing.density_plane( state, nc, center=nc / 2, width=nc / 4, plane_resolution=plane_resolution) # Apply additional normalization terms to match lenstools definitions constant_factor = 3 / 2 * cosmo.Omega_m * (constants.H0 / constants.c)**2 density_normalization = bs / 4 * r0 / a0 fpm_plane = fpm_plane * density_normalization * constant_factor # Checking first the mean value, which accounts for any normalization # issues assert_allclose(np.mean(fpm_plane[0]), np.mean(lt_plane), rtol=1e-5) # To check pixelwise difference, we need to do some smoothing as lenstools and # flowpm use different painting kernels smooth_lt_plane = np.fft.ifft2(fourier_gaussian(np.fft.fft2(lt_plane), 3)).real smooth_fpm_plane = np.fft.ifft2( fourier_gaussian(np.fft.fft2(fpm_plane[0]), 3)).real assert_allclose(smooth_fpm_plane, smooth_lt_plane, rtol=2e-2) if return_results: return fpm_plane, lt_plane, smooth_fpm_plane, smooth_lt_plane def test_convergence_Born(return_results=False): """ This function tests that given a set of density planes, both lenstools and flowpm recover the same convergence maps in angular coordinates. """ klin = np.loadtxt(data_path + '/flowpm/data/Planck15_a1p00.txt').T[0] plin = np.loadtxt(data_path + '/flowpm/data/Planck15_a1p00.txt').T[1] ipklin = iuspline(klin, plin) cosmo = flowpm.cosmology.Planck15() a0 = 0.9 # Create a state vector initial_conditions = flowpm.linear_field([nc, nc, 10 * nc], [bs, bs, 10 * bs], ipklin, batch_size=2) state = flowpm.lpt_init(cosmo, initial_conditions, a0) r = tf.linspace(0., 10 * bs, 11) r_center = 0.5 * (r[1:] + r[:-1]) a_center = flowpm.background.a_of_chi(cosmo, r_center) constant_factor = 3 / 2 * cosmo.Omega_m * (constants.H0 / constants.c)**2 # To make it convenient to access simulation properties in lenstools # let's quicly export and reload the sim # TODO: remove the need for this! flowpm.io.save_state( cosmo, state, a0, [nc, nc, 10 * nc], [bs, bs, 10 * bs], 'snapshot_born_testing', attrs={'comoving_distance': r_center[0]}) # Reload the snapshot with lenstools snapshot = FlowPMSnapshot.open('snapshot_born_testing') # Get some density planes and create lenstool tracer lensplanes = [] tracer = lt.simulations.RayTracer(lens_type=lt.simulations.DensityPlane) for i in range(len(r_center)): plane = flowpm.raytracing.density_plane( state, [nc, nc, 10 * nc], r_center[i] / bs * nc, width=nc, plane_resolution=plane_resolution) r, a, p = r_center[i], a_center[i], plane[0] lensplanes.append((r, a, plane)) density_normalization = bs * r / a # We upsample the lensplanes before giving them to lenstools because # lentools is using a weird kind of interpolation when converting from # comoving coordinates to angular coords. with a larger p = tf.image.resize( tf.reshape(p, [1, plane_resolution, plane_resolution, 1]), [2048, 2048]) p = (p[0, :, :, 0] * constant_factor * density_normalization).numpy() p = p - np.mean(p) lt_plane = lt.simulations.DensityPlane( p, angle=snapshot.header["box_size"], redshift=1 / a - 1, cosmology=snapshot.cosmology) tracer.addLens(lt_plane) # Adding dummy lensplane at the end tracer.addLens( lt.simulations.DensityPlane( np.zeros((2048, 2048)), angle=snapshot.header["box_size"], redshift=0.99, cosmology=snapshot.cosmology)) tracer.addLens( lt.simulations.DensityPlane( np.zeros((2048, 2048)), angle=snapshot.header["box_size"], redshift=2, cosmology=snapshot.cosmology)) tracer.reorderLenses() # Create an array of coordinates at which to retrieve the convernge maps xgrid, ygrid = np.meshgrid( np.linspace(0, field, npix, endpoint=False), # range of X coordinates np.linspace(0, field, npix, endpoint=False)) # range of Y coordinates coords = np.stack([xgrid, ygrid], axis=0) * u.deg c = coords.reshape([2, -1]).T # Compute convergence map with lenstool lt_map = tracer.convergenceBorn(coords, z=1.0) # Compute convergemce map with flowpm fpm_map = flowpm.raytracing.convergenceBorn( cosmo, lensplanes, bs / nc, bs, c.to(u.rad), z_source=tf.ones([1])) # Comparing the final maps assert_allclose( lt_map, fpm_map[0].numpy().reshape([npix, npix, -1])[:, :, -1], atol=5e-4) if return_results: return lt_map, fpm_map
from scipy.optimize import minimize import matplotlib.pyplot as plt import numpy as np import logging import os.path logger = logging.getLogger(__name__) logger.setLevel(logging.WARNING) def fit_tophat(x, y, verify=False): """ Fit the x and y data to a tophat function, returning: base_level - the y-value inside the tophat hat_level - the y-value outside the tophat hat_start - start of the tophat hat_end - end of the tophat :param x: iterable of x values :param y: corresponding iterable of y values :param verify: Show a plot of the fit, blocking progress until it is dismissed :param verify_file: :return: (base_level, hat_level, hat_start, hat_end) """ # TODO Try to spot close to zero height tophats, which may confuse the algorithm def top_hat(x, base_level, hat_level, hat_start, hat_end): return np.where((hat_start < x) & (x < hat_end), hat_level, base_level) gradient = list(get_derivative(y, x)) max_gradient = max(gradient) min_gradient = min(gradient) # The tophat could be upside down, so we don't know which of these comes # in the x direction max_gradient_index = gradient.index(max_gradient) min_gradient_index = gradient.index(min_gradient) step_indices = (max_gradient_index, min_gradient_index) max_gradient_x = x[max_gradient_index] min_gradient_x = x[min_gradient_index] step_xs = (max_gradient_x, min_gradient_x) base_level = np.mean(y[:min(step_indices)]) hat_level = np.mean(y[min(*step_indices):max(*step_indices)]) hat_start = min(*step_xs) hat_end = max(*step_xs) if verify: plt.close('all') plt.figure(figsize=(8, 5)) plt.plot(x, y) plt.plot(x, top_hat(x, base_level, hat_level, hat_start, hat_end)) plt.show() return base_level, hat_level, hat_start, hat_end def find_peaks(x, y, threshold=0, verify=False): """ Count signficant spikes in y values above threshold, for some definition of "significant". This is a very naive approach - any time the trace goes then below the threshold, find the highest value while it is above. That is the peak. It works so far. scipy.signal.findpeaks may provide a more robust approach if needed, using a peaks "prominence". :param x: list of x values :param y: list of y values :param threshold: y threshold that neesd to be crossed to count as a peak :param verify: If True, a plot showing peaks found will be shown, or saved to file if verify=='offline' :return: list of (idx, x, y) values of peaks at point of maximum y """ logger.debug('Peak threshold is {}'.format(threshold)) in_peak = False peak = [] # list of data points that are part of a peak peaks = [] # list or peaks for idx, data_point in enumerate(zip(x, y)): if in_peak: if data_point[1] > threshold: peak.append((idx, data_point[0], data_point[1])) else: in_peak = False peaks.append(peak) elif data_point[1] > threshold: in_peak = True peak = [(idx, *data_point)] # print([peak[0] for peak in peaks]) # if len(peaks) > 0: # print([max(peak, key=lambda d: d[1]) for peak in peaks]) # else: # print('No peaks') # print(len(peaks)) maximums = [max(peak, key=lambda d: d[2]) for peak in peaks] if verify: plt.close(fig='all') # Make sure there are no unwanted figures plt.figure(figsize=(16, 10)) plt.plot(x, y) for m in maximums: plt.axvline(x=m[1], color='red') plt.show() logger.info('Found {} peaks'.format(len(maximums))) return maximums def get_derivative(y, x): """ Return the numerical derivatice of the data dy/dx :param y: y values list :param x: x values list :return: dy/dx """ return np.gradient(y, x)
from google.appengine.ext import db # Database # font db class EnFamily(db.Model): # width = x A width / cap height # x height = x height / cap height # m serif = serif length of m 500% chrome screen - font-size 20px # h_stem_horizontal_balance = H horizontal height / H stem width # o_stroke_axis = angle 0 - vertical # p_descender = length of p descender / cap height # i_line_thickness: thickness of i 500% chrome screen - font-size 20px name = db.StringProperty(required=True) style = db.StringProperty(required=True) category = db.StringProperty(required=True, choices=('sans', 'serif', 'other')) width = db.FloatProperty(required=True) w_width = db.FloatProperty(required=True) x_height = db.FloatProperty(required=True) m_serif = db.FloatProperty(required=True) h_stem_horizontal_balance = db.FloatProperty(required=True) o_stroke_axis = db.FloatProperty(required=True) p_descender = db.FloatProperty(required=True) i_line_thickness = db.FloatProperty(required=True) design = db.StringProperty(required=True) # aggregation of width, x-height, descender distance_v = db.FloatProperty(required=True) # aggregation of m_serif, stem-horizontal, stroke axis, line thickness distance_h = db.FloatProperty(required=True) # sum of abs of distance_v and distance_h distance = db.FloatProperty(required=True) lang = db.StringProperty(required=True) def get_position(cls): position_style = 'left: '+str(cls.distance_h*8+50)+'%;top :'+str(cls.distance_v*8+50)+'%' return position_style def get_svg(cls): svg = 'font_en'+cls.style+'.svg' return svg def get_num(cls): category = cls.category width = (cls.width + cls.w_width)/2 x_height = cls.x_height m_serif = cls.m_serif h_stem_horizontal_balance = cls.h_stem_horizontal_balance o_stroke_axis = cls.o_stroke_axis p_descender = cls.p_descender i_line_thickness = cls.i_line_thickness num1 = width num2 = x_height + p_descender num3 = h_stem_horizontal_balance num4 = o_stroke_axis+m_serif + m_serif*5 num5 = i_line_thickness return category, num1, num2, num3, num4, num5
import os import sys import urllib2 import urlparse import json import base64 import time from boto.s3.key import Key import boto.s3 import logging from selenium import webdriver logger = logging.getLogger('sitetest') def test_screenshots(set, credentials, options, test_category_id, batch_id, max_test_count=20, verbose=False): use_browserstack = False # True if('browserstack' in credentials and 'USERNAME' in credentials['browserstack']) else False if max_test_count is None: max_test_count = 20 use_basic_auth = False if 'use_basic_auth' not in options else truthy(options['use_basic_auth']) basic_auth_username = '' if not use_basic_auth else options['basic_auth_username'] basic_auth_password = '' if not use_basic_auth else options['basic_auth_password'] if use_browserstack: username = credentials['browserstack']['USERNAME'] password = credentials['browserstack']['PASSWORD'] user_data = base64.encodestring('%s:%s' % (username, password)).replace('\n', '') else: if use_basic_auth: profile = webdriver.FirefoxProfile() profile.set_preference('network.http.phishy-userpass-length', 255) browser = webdriver.Firefox(firefox_profile=profile) else: browser = webdriver.Firefox() total = len(set.parsed_links) count = 0 tested_count = 0 for link_url in set.parsed_links: if verbose: logger.debug("%s/%s" % (count, total)) count += 1 link = set.parsed_links[link_url] if link.is_internal_html and not link.skip_test: if tested_count < max_test_count: tested_count += 1 if use_browserstack: browser_data = { "browsers": [ {"os": "Windows", "os_version": "7", "browser_version": "8.0", "browser": "ie"}, {"os": "Windows", "os_version": "7", "browser_version": "9.0", "browser": "ie"} ], "url": link.url } api_url = 'http://www.browserstack.com/screenshots' request = urllib2.Request(api_url, json.dumps(browser_data)) request.add_header("Authorization", "Basic %s" % user_data) request.add_header('Content-Type', 'application/json') request.add_header('Accept', 'application/json') # response urllib2.urlopen(request) # result = json.load(response) # TODO -- handle results... else: # !/usr/bin/env python if use_basic_auth: parsed = urlparse.urlparse(link.url) updated_location = "%s:%s@%s" % (basic_auth_username, basic_auth_password, parsed.netloc) parsed = parsed._replace(netloc=updated_location) updated = urlparse.urlunparse(parsed) url = updated else: url = link.url browser.get(url) if 'screenshots' in options: for key, screenshot in options['screenshots'].iteritems(): screenshots_directory = 'screenshots' width = screenshot[0] height = screenshot[1] browser.set_window_size(width, height) # delay, allow to render time.sleep(1) results_dir = os.path.join(os.path.dirname(__file__), '..', 'test_results', test_category_id, batch_id, screenshots_directory, link.page_slug) if not os.path.exists(results_dir): os.makedirs(results_dir) filename = '%s/%s-%s.png' % (results_dir, width, height) browser.save_screenshot(filename) folder = '%s/%s/%s/%s' % (test_category_id, batch_id, screenshots_directory, link.page_slug) image_url = copy_to_amazon(filename, folder, test_category_id, batch_id, credentials, verbose) link.screenshots[key] = image_url browser.quit() def copy_to_amazon(file_name, folder, test_category_id, batch_id, credentials, verbose): if 'aws' in credentials and 'AWS_ACCESS_KEY_ID' in credentials['aws']: AWS_ACCESS_KEY_ID = credentials['aws']['AWS_ACCESS_KEY_ID'] AWS_SECRET_ACCESS_KEY = credentials['aws']['AWS_SECRET_ACCESS_KEY'] AWS_STORAGE_BUCKET_NAME = credentials['aws']['AWS_STORAGE_BUCKET_NAME'] AWS_RESULTS_PATH = credentials['aws']['AWS_RESULTS_PATH'] base_name = os.path.basename(file_name) bucket_name = AWS_STORAGE_BUCKET_NAME conn = boto.connect_s3(AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) bucket = conn.get_bucket(bucket_name) if verbose: logger.debug('Uploading %s to Amazon S3 from %s' % (base_name, file_name)) def percent_cb(complete, total): sys.stdout.write('.') sys.stdout.flush() k = Key(bucket) k.key = u"%s/%s/%s" % (AWS_RESULTS_PATH, folder, base_name) k.set_contents_from_filename(file_name, cb=percent_cb, num_cb=10) k.set_acl('public-read') url = "http://s3.amazonaws.com/%s/%s/%s/%s" % (AWS_STORAGE_BUCKET_NAME, AWS_RESULTS_PATH, folder, base_name) # if verbose: # logger.debug('Uploaded to %s' % (url)) return url else: logger.warn("Warning: AWS API credentials not supplied.") return None def truthy(value): if value == 'True': return True elif value == 'False': return False return value
""" A python module that generates uni-variate and bi-variate analysis graphs for exploratory data analysis. Specifically, the module contains functions to graph histograms for numeric data, bar plots for categorical data, a correlation matrix heat map, and a scatter pair plot. The graphs produced are added into the final eda pdf report. """ import matplotlib.pyplot as plt import seaborn as sns from eda_assistant import _calc_dataframe_statistics from eda_assistant import _calc_variable_statistics from eda_assistant import _format_graphs def plot_numeric_hist(df): """ Returns histogram plot(s) for all numeric data in the dataset. If there are no numeric variables, function will return None. Parameters: df (pandas DataFrame): Dataframe to create histogram plot(s) for numeric variables in the dataset Returns: fig (figure): figure containing histogram plot(s) for numeric variables in df """ n = _calc_dataframe_statistics.count_numeric(df) if n == 0: return None else: fig, ax = plt.subplots(n, 1, figsize=(10, n * 10)) counter = 0 for i in range(len(df.columns)): col = df.iloc[:, i] if _calc_variable_statistics.is_numeric(col): if n == 1: plot = sns.histplot(data=df, x=col.name) else: plot = sns.histplot(data=df, x=col.name, ax=ax[counter]) _format_graphs.format_numeric(fig, plot, col) counter += 1 return fig def plot_categorical_bar(df, set_limit=10): """ Returns count bar plot(s) for all categorical data in the dataset. Criteria for a categorical variable when graphing the bar plot is determined by a set_limit of unique values in the column which is default set to 10 because anything greater than this would result in a very compact, condensed, and messy figure displayed. Function returns None if there are no categorical variables. Parameters: df (pandas DataFrame): Dataframe to create count bar plot(s) for categorical variables in dataset set_limit (int): set limit for number of unique values in a categorical variable column. Default is set to 10 Returns: fig (figure): figure containing count bar plot(s) for categorical variables in df """ n = _format_graphs.count_categorical_bar(df) if n == 0: return None else: fig, ax = plt.subplots(n, 1, figsize=(10, n * 10)) counter = 0 for i in range(len(df.columns)): col = df.iloc[:, i] if _format_graphs.is_categorical_bar(col, set_limit=set_limit): if n == 1: plot = sns.countplot(data=df, x=col.name) else: plot = sns.countplot(data=df, x=col.name, ax=ax[counter]) _format_graphs.format_categorical(fig, plot, col) counter += 1 return fig def plot_corr_graph(df): """ Returns correlation matrix heat map plot for the dataset. If dataframe is empty, or if the number of numeric variables in the dataset is less than or equal to 1, the function returns None. Parameters: df (pandas DataFrame): Dataframe to create correlation matrix heat map plot for the dataset Returns: plot_corr (figure): figure containing correlation matrix heat map plot for df """ if len(df) == 0 or _calc_dataframe_statistics.count_numeric(df) <= 1: return None else: corr = df.corr() plot_corr = sns.heatmap(corr, annot=True, fmt='.0f') _format_graphs.format_corr() return plot_corr.figure def plot_pair_graph(df, set_limit=10): """ Returns scatter pair plots for the dataset. If dataframe is empty, or if there are greater than the set_limit of numerical variables in the dataset (processing time is too long for this instance), or if the number of numeric variables in the dataset is less than or equal to 1, the function returns None. Parameters: df (pandas DataFrame): Dataframe to create pair plots for the dataset set_limit (int): the set limit for the number of numeric variables in a dataset. Default is set to 10 Returns: plot_pair (figure): figure containing pair plots for df """ if len(df) == 0 \ or _calc_dataframe_statistics.count_numeric(df) >= set_limit \ or _calc_dataframe_statistics.count_numeric(df) <= 1: return None else: plot_pair = sns.pairplot(data=df) _format_graphs.format_pair(plot_pair, df) return plot_pair.figure
from part1 import ( gamma_board, gamma_busy_fields, gamma_delete, gamma_free_fields, gamma_golden_move, gamma_golden_possible, gamma_move, gamma_new, ) """ scenario: test_random_actions uuid: 226171178 """ """ random actions, total chaos """ board = gamma_new(3, 3, 2, 3) assert board is not None assert gamma_move(board, 1, 0, 2) == 1 assert gamma_move(board, 2, 1, 0) == 1 assert gamma_busy_fields(board, 2) == 1 assert gamma_move(board, 1, 1, 0) == 0 assert gamma_move(board, 2, 1, 1) == 1 assert gamma_move(board, 2, 0, 1) == 1 assert gamma_busy_fields(board, 2) == 3 assert gamma_move(board, 1, 1, 2) == 1 assert gamma_move(board, 1, 0, 0) == 1 assert gamma_busy_fields(board, 1) == 3 assert gamma_move(board, 2, 2, 1) == 1 assert gamma_move(board, 1, 1, 2) == 0 assert gamma_move(board, 2, 2, 2) == 1 assert gamma_move(board, 2, 1, 0) == 0 assert gamma_move(board, 1, 0, 2) == 0 assert gamma_move(board, 2, 0, 2) == 0 assert gamma_move(board, 2, 0, 1) == 0 assert gamma_busy_fields(board, 2) == 5 assert gamma_golden_possible(board, 2) == 1 board255575207 = gamma_board(board) assert board255575207 is not None assert board255575207 == ("112\n" "222\n" "12.\n") del board255575207 board255575207 = None assert gamma_move(board, 1, 0, 2) == 0 assert gamma_free_fields(board, 1) == 1 assert gamma_move(board, 2, 1, 1) == 0 assert gamma_move(board, 1, 0, 2) == 0 assert gamma_move(board, 1, 1, 1) == 0 assert gamma_free_fields(board, 1) == 1 assert gamma_move(board, 2, 0, 2) == 0 assert gamma_move(board, 2, 2, 2) == 0 assert gamma_busy_fields(board, 2) == 5 assert gamma_move(board, 1, 0, 2) == 0 assert gamma_move(board, 1, 0, 2) == 0 assert gamma_move(board, 1, 1, 2) == 0 assert gamma_move(board, 1, 2, 2) == 0 assert gamma_move(board, 2, 0, 0) == 0 assert gamma_busy_fields(board, 2) == 5 board426797504 = gamma_board(board) assert board426797504 is not None assert board426797504 == ("112\n" "222\n" "12.\n") del board426797504 board426797504 = None gamma_delete(board)
import logging import os import sys from kolibri.core.logger.csv_export import classes_info from kolibri.core.logger.csv_export import csv_file_generator from kolibri.core.tasks.management.commands.base import AsyncCommand logger = logging.getLogger(__name__) class Command(AsyncCommand): def add_arguments(self, parser): parser.add_argument( "-O", "--output-file", action="store", dest="output_file", default=None, type=str, help="The generated file will be saved with this name", ) parser.add_argument( "-l", "--log-type", action="store", dest="log_type", default="session", choices=classes_info.keys(), help='Log type to be exported. Valid values are "session" and "summary".', ) parser.add_argument( "-w", "--overwrite", action="store_true", dest="overwrite", default=False, help="Allows overwritten of the exported file in case it exists", ) def handle_async(self, *args, **options): log_type = options["log_type"] log_info = classes_info[log_type] if options["output_file"] is None: filename = log_info["filename"] else: filename = options["output_file"] filepath = os.path.join(os.getcwd(), filename) queryset = log_info["queryset"] total_rows = queryset.count() with self.start_progress(total=total_rows) as progress_update: try: for row in csv_file_generator( log_type, filepath, overwrite=options["overwrite"] ): progress_update(1) except (ValueError, IOError) as e: logger.error("Error trying to write csv file: {}".format(e)) sys.exit(1)
# coding: utf-8 import ast from functools import partial, wraps from json import JSONDecodeError from django.conf import settings from django.core.exceptions import EmptyResultSet from django.db import models from django.db.models import Avg, Count, F, Max, Min, Q, QuerySet, StdDev, Sum, Variance, functions from rest_framework import serializers, viewsets from rest_framework.decorators import api_view from rest_framework.exceptions import NotFound, ValidationError from rest_framework.relations import PrimaryKeyRelatedField from rest_framework.response import Response from common.api.fields import ChoiceDisplayField, ReadOnlyObjectField from common.utils import ( get_field_by_path, get_pk_field, get_prefetchs, get_related, json_decode, parsedate, prefetch_metadata, str_to_bool, ) # URLs dans les serializers HYPERLINKED = settings.REST_FRAMEWORK.get("HYPERLINKED", False) # Mots clés réservés dans les URLs des APIs AGGREGATES = { "count": Count, "sum": Sum, "avg": Avg, "min": Min, "max": Max, "stddev": StdDev, "variance": Variance, } CASTS = { "bool": models.BooleanField, "date": models.DateField, "datetime": models.DateTimeField, "decimal": models.DecimalField, "float": models.FloatField, "int": models.IntegerField, "str": models.CharField, "time": models.TimeField, } FUNCTIONS = { "cast": lambda value, cast_type="", *args: ( partial(functions.Cast, output_field=CASTS.get(cast_type, models.CharField)())(value, *args) ), "coalesce": functions.Coalesce, "greatest": functions.Greatest, "least": functions.Least, "nullif": functions.NullIf, "extract_year": functions.ExtractIsoYear, "extract_month": functions.ExtractMonth, "extract_day": functions.ExtractDay, "extract_week_day": functions.ExtractIsoWeekDay, "extract_week": functions.ExtractWeek, "extract_quarter": functions.ExtractQuarter, "extract_hour": functions.ExtractHour, "extract_minute": functions.ExtractMinute, "extract_second": functions.ExtractSecond, "trunc_year": functions.TruncYear, "trunc_month": functions.TruncMonth, "trunc_week": functions.TruncWeek, "trunc_quarter": functions.TruncQuarter, "trunc_date": functions.TruncDate, "trunc_time": functions.TruncTime, "trunc_day": functions.TruncDay, "trunc_hour": functions.TruncHour, "trunc_minute": functions.TruncMinute, "trunc_second": functions.TruncSecond, "abs": functions.Abs, "acos": functions.ACos, "asin": functions.ASin, "atan": functions.ATan, "atan2": functions.ATan2, "ceil": functions.Ceil, "cos": functions.Cos, "cot": functions.Cot, "degrees": functions.Degrees, "exp": functions.Exp, "floor": functions.Floor, "ln": functions.Ln, "log": functions.Log, "mod": functions.Mod, "radians": functions.Radians, "round": functions.Round, "power": functions.Power, "sign": functions.Sign, "sin": functions.Sin, "sqrt": functions.Sqrt, "tan": functions.Tan, "left": functions.Left, "length": functions.Length, "lower": functions.Lower, "lpad": functions.LPad, "ltrim": functions.LTrim, "md5": functions.MD5, "ord": functions.Ord, "repeat": functions.Repeat, "replace": functions.Replace, "reverse": functions.Reverse, "right": functions.Right, "rpad": functions.RPad, "rtrim": functions.RTrim, "sha1": functions.SHA1, "sha224": functions.SHA224, "sha256": functions.SHA256, "sha384": functions.SHA384, "sha512": functions.SHA512, "strindex": functions.StrIndex, "substr": functions.Substr, "trim": functions.Trim, "upper": functions.Upper, } RESERVED_QUERY_PARAMS = ( [ "filters", "fields", "order_by", "group_by", "all", "display", "distinct", "silent", "simple", "meta", "cache", "timeout", ] + list(AGGREGATES.keys()) + list(FUNCTIONS.keys()) ) def url_value(filter, value): """ Transforme la valeur dans l'URL à partir du filtre :param filter: Filtre :param value: Valeur :return: Valeur """ if not isinstance(value, str): return value try: value = ast.literal_eval(value) evaluated = True except (SyntaxError, ValueError): evaluated = False if not filter: return value if any( filter.endswith(lookup) for lookup in ("__in", "__range", "__hasany", "__hasall", "__has_keys", "__has_any_keys", "__overlap") ): if evaluated: if not isinstance(value, (list, set, tuple)): return (value,) else: return value.split(",") if any(filter.endswith(lookup) for lookup in ("__isnull", "__isempty")): return str_to_bool(value) if any(filter.endswith(lookup) for lookup in ("__contains", "__contained_by", "__hasdict", "__indict")): if not isinstance(value, str): return value try: return json_decode(value) except (JSONDecodeError, TypeError, ValueError): if ":" in value: data = {} for subvalue in value.split(","): key, val = subvalue.split(":") data[key] = val return data elif "," in value: return value.split(",") return value def parse_filters(filters): """ Parse une chaîne de caractères contenant des conditions au format suivant : [and|or|not](champ__lookup:valeur[,champ__lookup:valeur]) Il est possible de chainer les opérateurs dans un même filtres, exemple : or(and(champ_1:valeur_1,champ_2:valeur_2),and(not(champ_3:valeur_3),champ_4:valeur_4)) :param filters: Filtres sous forme de chaîne de caractères :return: Chaîne de conditions Django """ if isinstance(filters, str): try: import ast import re filters = filters.replace("'", "\\'").replace('"', '\\"') filters = re.sub(r"([\w.]+):([^,()]*)", r'{"\1":"\2"}', filters) filters = re.sub(r"(\w+)\(", r'("\1",', filters) filters = ast.literal_eval(filters) except Exception as exception: raise Exception("{filters}: {exception}".format(filters=filters, exception=exception)) if isinstance(filters, dict): filters = (filters,) operator = None elements = [] for filter in filters: if isinstance(filter, tuple): elements.append(parse_filters(filter)) elif isinstance(filter, dict): fields = {} for key, value in filter.items(): key = key.strip().replace(".", "__") if value.startswith("[") and value.endswith("]"): value = F(value[1:-1].replace(".", "__")) fields[key] = url_value(key, value) elements.append(Q(**fields)) elif isinstance(filter, str): operator = filter.lower() if operator == "or": q = elements.pop(0) for element in elements: q |= element else: q = ~elements.pop(0) if operator == "not" else elements.pop(0) for element in elements: q &= element return q def to_model_serializer(model, **metadata): """ Décorateur permettant d'associer un modèle à une définition de serializer :param model: Modèle :param metadata: Metadonnées du serializer :return: Serializer """ from common.api.fields import JsonField as ApiJsonField from common.fields import JsonField as ModelJsonField def wrapper(serializer): for field in model._meta.fields: if "fields" in metadata and field.name not in metadata.get("fields", []): continue if "exclude" in metadata and field.name in metadata.get("exclude", []): continue # Injection des identifiants de clés étrangères if HYPERLINKED and field.related_model: serializer._declared_fields[field.name + "_id"] = serializers.ReadOnlyField() if "fields" in metadata and "exclude" not in metadata: metadata["fields"] = list(metadata.get("fields", [])) + [field.name + "_id"] # Injection des valeurs humaines pour les champs ayant une liste de choix if field.choices: serializer_field_name = "{}_display".format(field.name) source_field_name = "get_{}".format(serializer_field_name) serializer._declared_fields[serializer_field_name] = serializers.CharField( source=source_field_name, label=field.verbose_name or field.name, read_only=True ) if "fields" in metadata and "exclude" not in metadata: metadata["fields"] = list(metadata.get("fields", [])) + [serializer_field_name] # Injection des données des champs de type JSON if isinstance(field, ModelJsonField): serializer._declared_fields[field.name] = ApiJsonField( label=field.verbose_name, help_text=field.help_text, required=not field.blank, allow_null=field.null, read_only=not field.editable, ) # Mise à jour des métadonnées du serializer if "fields" not in metadata and "exclude" not in metadata: metadata.update(fields="__all__") metadata.update(model=model) metadata.update(ref_name=model._meta.label) serializer.Meta = type("Meta", (), metadata) return serializer return wrapper def to_model_viewset(model, serializer, permissions=None, queryset=None, bases=None, **metadata): """ Décorateur permettant d'associer un modèle et un serializer à une définition de viewset :param model: Modèle :param serializer: Serializer :param permissions: Permissions spécifiques :param queryset: Surcharge du queryset par défaut pour le viewset :param bases: Classes dont devra hériter le serializer par défaut :param metadata: Metadonnées du serializer :return: ViewSet """ from common.api.permissions import CommonModelPermissions def wrapper(viewset): viewset.queryset = queryset or model.objects.all() viewset.model = model viewset.serializer_class = serializer viewset.simple_serializer = create_model_serializer(model, bases=bases, **metadata) excludes_many_to_many_from_serializer(viewset.simple_serializer) viewset.default_serializer = create_model_serializer(model, bases=bases, hyperlinked=False, **metadata) viewset.permission_classes = permissions or [CommonModelPermissions] return viewset return wrapper def excludes_many_to_many_from_serializer(serializer): """ Permet d'exclure les champs de type many-to-many d'un serializer de modèle :param serializer: Serializer (classe) :return: Rien """ model = getattr(serializer.Meta, "model", None) if model is None: return fields = getattr(serializer.Meta, "fields", None) if fields == "__all__": fields = None del serializer.Meta.fields if fields is None: serializer.Meta.exclude = list( set(getattr(serializer.Meta, "exclude", [])) | {field.name for field in model._meta.many_to_many} ) def create_model_serializer(model, bases=None, attributes=None, hyperlinked=True, **metas): """ Permet de créer le ModelSerializer pour le modèle fourni en paramètre :param model: Modèle à sérialiser :param bases: Classes dont devra hériter le serializer :param attributes: Attributs spécifiques du serializer :param hyperlinked: Active ou non la gestion des URLs pour la clé primaire :param metas: Métadonnées du serializer :return: serializer """ from common.api.serializers import CommonModelSerializer serializer = type( "{}GenericSerializer".format(model._meta.object_name), (bases or (CommonModelSerializer,)), (attributes or {}) ) if not hyperlinked: serializer.serializer_related_field = PrimaryKeyRelatedField return to_model_serializer(model, **metas)(serializer) def serializer_factory(excludes): """ Factory fournissant les 2 méthodes de récuperation de classe et d'instance du serializer :param excludes: Liste de champs à exclure du ModelSerializer :return: Méthode de récupération de la classe du serializer, méthode de récupération de l'instance du serializer """ def get_serializer_class(model): return create_model_serializer(model, excludes=excludes.get(model, ())) def get_serializer(model, *args, **kwargs): return get_serializer_class(model)(*args, **kwargs) return get_serializer_class, get_serializer def create_model_serializer_and_viewset( model, foreign_keys=True, many_to_many=False, one_to_one=True, one_to_many=False, fks_in_related=False, null_fks=False, serializer_base=None, viewset_base=None, serializer_data=None, viewset_data=None, permissions=None, queryset=None, metas=None, exclude_related=None, depth=0, height=1, _level=0, _origin=None, _field=None, **options ): """ Permet de créer les classes de serializer et de viewset associés à un modèle :param model: Modèle :param foreign_keys: Récupérer les données des clés étrangères ? :param many_to_many: Récupérer les données des many-to-many ? :param one_to_one: Récupérer les données des one-to-one (selon profondeur) ? :param one_to_many: Récupérer les données des one-to-many (selon profondeur) ? :param fks_in_related: Récupérer les données de clés étrangères dans les relations inversées ? :param null_fks: Récupérer les données de clés étrangères pouvant être nulles ? :param serializer_base: Classes dont devra hériter le serializer (dictionnaire organisé par modèle) :param viewset_base: Classes dont devra hériter le viewset (dictionnaire organisé par modèle) :param serializer_data: Données complémentaires à ajouter dans le serializer (dictionnaire organisé par modèle) :param viewset_data: Données complémentaires à ajouter dans le viewset (dictionnaire organisé par modèle) :param permissions: Permissions à vérifier dans le viewset :param queryset: Surcharge du queryset dans le viewset :param metas: Metadonnées des serializers dépendants (dictionnaire organisé par modèle) :param exclude_related: Nom des relations inversées à exclure :param depth: Profondeur de récupération des modèles dépendants :param height: Hauteur maximale de récupération des clés étrangères :param _level: Profondeur actuelle (utilisé par la récursivité) :param _origin: Modèle d'origine dans la récursivité pour éviter la redondance (utilisé par la récursivité) :param _field: Nom du champ dans le modèle d'origine (utilisé par la récursivité) :param options: Metadonnées du serializer de base :return: Tuple (serializer, viewset) """ object_name = model._meta.object_name # Héritages du serializer et viewset from common.api.serializers import CommonModelSerializer from common.api.viewsets import CommonModelViewSet _serializer_base = (serializer_base or {}).get(model, (CommonModelSerializer,)) _viewset_base = (viewset_base or {}).get(model, (CommonModelViewSet,)) # Ajout du serializer des hyperlinks à la liste si ils sont activés _bases = _serializer_base # Le serializer par défaut des viewsets ne doit pas hériter du serializer des hyperlinks # Si aucune surcharge des serializer et/ou du viewset, utilisation des modèles par défaut _serializer_base = _serializer_base or (serializers.ModelSerializer,) _viewset_base = _viewset_base or (viewsets.ModelViewSet,) # Données complémentaires du serializer et viewset _serializer_data = (serializer_data or {}).get(model, {}).copy() _viewset_data = (viewset_data or {}).get(model, {}).copy() # Métadonnées du serializer exclude_related = exclude_related if isinstance(exclude_related, dict) else {model: exclude_related or []} metadata = (metas or {}).get(model, {}) metadata.update(options) metadata["extra_kwargs"] = metadata.get("extra_kwargs", {}) # Vérifie qu'un nom de champ donné est inclu ou exclu def field_allowed(field_name): return field_name in metadata.get("fields", []) or ( field_name not in metadata.get("exclude", []) and field_name not in exclude_related.get(model, []) ) # Création du serializer et du viewset serializer = to_model_serializer(model, **metadata)( type(object_name + "Serializer", _serializer_base, _serializer_data) ) viewset = to_model_viewset(model, serializer, permissions, bases=_bases, **metadata)( type(object_name + "ViewSet", _viewset_base, _viewset_data) ) # Surcharge du queryset par défaut dans le viewset if queryset is not None: viewset.queryset = queryset # Gestion des clés étrangères relateds = [] prefetchs = [] prefetchs_metadata = [] # Prefetch pour récupérer les métadonnées à chaque niveau excludes = [] for field in model._meta.fields: if field.primary_key or not field.remote_field or field.related_model is _origin: continue # Vérification que le champ est bien inclu ou n'est pas exclu if not field_allowed(field.name): excludes.append(field.name) continue # Ajout du serializer pour la relation de clé étrangère if (foreign_keys and 0 >= _level > -height) or (fks_in_related and _level > 0): fk_serializer, fk_viewset = create_model_serializer_and_viewset( field.related_model, foreign_keys=foreign_keys, many_to_many=False, one_to_one=False, one_to_many=False, fks_in_related=False, null_fks=False, serializer_base=serializer_base, viewset_base=viewset_base, serializer_data=serializer_data, viewset_data=viewset_data, exclude_related=exclude_related, metas=metas, depth=0, height=height, _level=_level - 1, _origin=model, _field=field.name, ) serializer._declared_fields[field.name] = fk_serializer(read_only=True) relateds.append(field.name) # Récupération des relations de plus haut niveau si nécessaire field_relateds = get_related(field.related_model, null=null_fks, height=height - 1, _models=[model]) relateds += [ "__".join([field.name, field_related]) for field_related in field_relateds if field_related not in exclude_related.get(field.related_model, []) ] elif _level > 0: # Les clés étrangères des relations inversées qui pointent sur le modèle d'origine peuvent être nulles if field.remote_field and not field.primary_key and field.related_model is _origin: serializer.Meta.extra_kwargs[field.name] = dict(required=False, allow_null=True) # Prefetch des métadonnées prefetchs_metadata += prefetch_metadata(field.related_model, field.name) # Gestion des many-to-many if many_to_many and depth > _level: for field in model._meta.many_to_many: # Vérification que le champ est bien inclu ou n'est pas exclu if not field_allowed(field.name): excludes.append(field.name) continue # Ajout du serializer pour la relation many-to-many m2m_serializer, m2m_viewset = create_model_serializer_and_viewset( field.related_model, foreign_keys=False, many_to_many=False, one_to_one=False, one_to_many=False, fks_in_related=False, null_fks=False, serializer_base=serializer_base, viewset_base=viewset_base, serializer_data=serializer_data, viewset_data=viewset_data, exclude_related=exclude_related, metas=metas, depth=0, height=0, _level=0, _origin=model, _field=field.name, ) serializer._declared_fields[field.name] = m2m_serializer(many=True, read_only=True) prefetchs.append(field.name) # Prefetch des métadonnées prefetchs_metadata += prefetch_metadata(field.related_model, field.name) else: # Exclusion du champ many-to-many du serializer excludes_many_to_many_from_serializer(viewset.serializer_class) # Gestion des one-to-one if one_to_one and depth > _level: for field in model._meta.related_objects: if not field.auto_created or not field.one_to_one: continue # Vérification que le champ est bien inclu ou n'est pas exclu if not field_allowed(field.name): excludes.append(field.name) continue field_name = field.get_accessor_name() # Ajout du serializer pour la relation inversée child_serializer, child_viewset = create_model_serializer_and_viewset( field.related_model, foreign_keys=foreign_keys, many_to_many=many_to_many, one_to_one=one_to_one, one_to_many=one_to_many, fks_in_related=fks_in_related, null_fks=null_fks, serializer_base=serializer_base, viewset_base=viewset_base, serializer_data=serializer_data, viewset_data=viewset_data, exclude_related=exclude_related, metas=metas, depth=depth, height=0, _level=_level + 1, _origin=model, _field=field_name, ) serializer._declared_fields[field_name] = child_serializer(read_only=True) relateds.append(field_name) # Récupération des relations de plus haut niveau si nécessaire field_relateds = get_related( field.related_model, one_to_one=True, null=null_fks, height=height - 1, _models=[model] ) relateds += [ "__".join([field_name, field_related]) for field_related in field_relateds if field_related not in exclude_related.get(field.related_model, []) ] # Gestion des one-to-many if one_to_many and depth > _level: for field in model._meta.related_objects: if not field.auto_created or not field.one_to_many: continue # Vérification que le champ est bien inclu ou n'est pas exclu, et qu'il s'agisse bien d'un champ if not field_allowed(field.name): excludes.append(field.name) continue field_name = field.get_accessor_name() # Ajout du serializer pour la relation inversée child_serializer, child_viewset = create_model_serializer_and_viewset( field.related_model, foreign_keys=foreign_keys, many_to_many=many_to_many, one_to_one=one_to_one, one_to_many=one_to_many, fks_in_related=fks_in_related, null_fks=null_fks, serializer_base=serializer_base, viewset_base=viewset_base, serializer_data=serializer_data, viewset_data=viewset_data, exclude_related=exclude_related, metas=metas, depth=depth, height=0, _level=_level + 1, _origin=model, _field=field_name, ) serializer._declared_fields[field_name] = child_serializer(many=True, read_only=True) # Récupération des relations inversées arguments = dict( depth=depth, excludes=excludes, foreign_keys=fks_in_related, one_to_one=one_to_one, one_to_many=one_to_many, many_to_many=many_to_many, null=null_fks, ) prefetchs += get_prefetchs(model, **arguments) prefetchs_metadata += get_prefetchs(model, metadata=True, **arguments) # Injection des clés étrangères dans le queryset du viewset if relateds: viewset.queryset = viewset.queryset.select_related(*relateds) # Injection des many-to-many et des relations inversées dans le queryset du viewset if prefetchs: viewset.queryset = viewset.queryset.prefetch_related(*prefetchs) viewset.metadata = prefetchs_metadata return serializer, viewset def perishable_view(func): """ Décorateur permettant d'enrichir la request utilisée par la fonction des attributs 'date_de_reference' (date) et 'valide' (bool) ainsi que du valid_filter à appliquer sur le select_valid récupérés dans les query_params (None si non présents) :param func: Fonction à décorer :return: Fonction avec la request enrichie """ @wraps(func) def wrapper(item, *args, **kwargs): # "request = item.request" dans le cas d'une ViewSet, "item" dans le cas d'une api_view request = item.request if hasattr(item, "request") else item valid = None valid_date = None params = request.data if request.data else request.query_params if params: valid = str_to_bool(params.get("valid", None)) valid_date = parsedate(params.get("valid_date", None)) setattr(request, "valid", valid) setattr(request, "valid_date", valid_date) setattr(request, "valid_filter", dict(valid=valid, date=valid_date)) return func(item, *args, **kwargs) return wrapper def api_view_with_serializer(http_method_names=None, input_serializer=None, serializer=None, validation=True): """ Décorateur permettant de créer une APIView à partir d'une fonction suivant la structure d'un serializer Elle remplace le décorateur @api_view fourni par défaut dans Django REST Framework :param http_method_names: Méthodes HTTP supportées :param input_serializer: Serializer des données d'entrée :param serializer: Serializer des données de sortie :param validation: Exécuter la validation des données d'entrée ? (request contiendra alors "validated_data") :return: APIView """ def decorator(func): @wraps(func) def inner_func(request, *args, **kwargs): result = func(request, *args, **kwargs) if isinstance(result, Response): return result if not serializer: return Response(result) try: many = isinstance(result, (list, QuerySet)) return Response(serializer(result, many=many, context=dict(request=request)).data) except: # noqa return Response(result) view = api_view(http_method_names)(inner_func) if input_serializer: view_class = view.view_class view_class.serializer_class = input_serializer # Reprise des méthodes d'accès au serializer pour les métadonnées de l'APIView from rest_framework.generics import GenericAPIView view_class.get_serializer = GenericAPIView.get_serializer view_class.get_serializer_context = GenericAPIView.get_serializer_context view_class.get_serializer_class = GenericAPIView.get_serializer_class if validation: # POST post_handler = getattr(view_class, "post", None) if post_handler: def handler(self, request, *args, **kwargs): serializer_instance = input_serializer(data=request.data) serializer_instance.is_valid(raise_exception=True) request.validated_data = serializer_instance.validated_data return post_handler(self, request, *args, **kwargs) view_class.post = handler # PUT put_handler = getattr(view_class, "put", None) if put_handler: def handler(self, request, *args, **kwargs): partial = kwargs.pop("partial", False) instance = self.get_object() serializer_instance = input_serializer(instance, data=request.data, partial=partial) serializer_instance.is_valid(raise_exception=True) request.validated_data = serializer_instance.validated_data return post_handler(self, request, *args, **kwargs) view_class.put = handler return view return decorator def auto_view( http_method_names=None, input_serializer=None, serializer=None, validation=True, many=False, custom_func=None, query_func=None, func_args=None, func_kwargs=None, ): """ Décorateur permettant de générer le corps d'une APIView à partir d'un QuerySet :param http_method_names: Méthodes HTTP supportées :param input_serializer: Serializer des données d'entrée :param serializer: Serializer des données de sortie :param validation: Exécuter la validation des données d'entrée ? (request contiendra alors "validated_data") :param many: Affichage de plusieurs éléments ou élément individuel (404 si élément non trouvé) ? :param custom_func: Fonction facultive de transformation du QuerySet fonction(request: Request, queryset: QuerySet) -> Union[QuerySet, Tuple[QuerySet, dict]] :param query_func: Fonction de récupération des éléments ('first' ou 'all' par défaut selon le paramètre 'many') :param func_args: Arguments optionnels de la fonction de récupération (pour 'latest' ou 'earliest' par exemple) :param func_kwargs: Arguments optionnels nommés de la fonction de récupération :return: API View """ query_func = (query_func or QuerySet.all) if many else (query_func or QuerySet.first) func_args = func_args or [] func_kwargs = func_kwargs or {} def wrapper(func): @wraps(func) def wrapped(request, **kwargs): context = {} queryset = func(request, **kwargs) if isinstance(queryset, tuple): # (Facultatif) La fonction peut retourner un contexte en plus de son QuerySet queryset, context = queryset if custom_func: queryset = custom_func(request, queryset) if many and serializer: return api_paginate( request, queryset, serializer, context=context, query_func=query_func, func_args=func_args, func_kwargs=func_kwargs, ) queryset = query_func(queryset, *func_args, **func_kwargs) if not isinstance(queryset, QuerySet) and not queryset: raise NotFound() if not serializer: return Response(queryset) return Response(serializer(queryset, context=dict(request=request, **context)).data) return api_view_with_serializer( http_method_names=http_method_names, input_serializer=input_serializer, serializer=serializer, validation=validation, )(wrapped) return wrapper def api_paginate( request, queryset, serializer, pagination=None, enable_options=True, context=None, query_func=None, func_args=None, func_kwargs=None, ): """ Ajoute de la pagination aux résultats d'un QuerySet dans un serializer donné :param request: Requête HTTP :param queryset: QuerySet :param serializer: Serializer :param pagination: Classe de pagination :param enable_options: Active toutes les options de filtre/tri/aggregation/distinct :param context: Contexte du serializer :param query_func: Fonction spécifique à exécuter sur le QuerySet avant la pagination :param func_args: Arguments de la fonction :param func_kwargs: Arguments mots-clés de la fonction :return: Réponse HTTP des résultats avec pagination """ from common.api.pagination import CustomPageNumberPagination pagination = pagination or CustomPageNumberPagination # Mots-clés réservés dans les URLs default_reserved_query_params = ["format", pagination.page_query_param, pagination.page_size_query_param] reserved_query_params = default_reserved_query_params + RESERVED_QUERY_PARAMS url_params = request.query_params.dict() context = dict(request=request, **(context or {})) options = dict(aggregates=None, annotates=None, distinct=None, filters=None, order_by=None) # Activation des options if enable_options: # Critères de recherche dans le cache cache_key = url_params.pop("cache", None) if cache_key: from django.core.cache import cache cache_params = cache.get(settings.API_CACHE_PREFIX + cache_key, {}) new_url_params = {} new_url_params.update(**cache_params) new_url_params.update(**url_params) url_params = new_url_params new_cache_params = { key: value for key, value in url_params.items() if key not in default_reserved_query_params } if new_cache_params: from datetime import timedelta from django.utils.timezone import now cache_timeout = int(url_params.pop("timeout", settings.API_CACHE_TIMEOUT)) or None cache.set(settings.API_CACHE_PREFIX + cache_key, new_cache_params, timeout=cache_timeout) options["cache_expires"] = now() + timedelta(seconds=cache_timeout) if cache_timeout else "never" cache_url = "{}?cache={}".format(request.build_absolute_uri(request.path), cache_key) plain_url = cache_url for key, value in url_params.items(): url_param = "&{}={}".format(key, value) if key in default_reserved_query_params: cache_url += url_param plain_url += url_param options["cache_data"] = new_cache_params options["cache_url"] = cache_url options["raw_url"] = plain_url # Erreurs silencieuses silent = str_to_bool(url_params.get("silent", "")) # Filtres (dans une fonction pour être appelé par les aggregations sans group_by) def do_filter(queryset): try: filters, excludes = {}, {} for key, value in url_params.items(): key = key.replace(".", "__") if value.startswith("[") and value.endswith("]"): value = F(value[1:-1].replace(".", "__")) if key in reserved_query_params: continue if key.startswith("-"): key = key[1:].strip() excludes[key] = url_value(key, value) else: key = key[1:].strip() if key.startswith("+") else key.strip() filters[key] = url_value(key, value) if filters: queryset = queryset.filter(**filters) if excludes: queryset = queryset.exclude(**excludes) # Filtres génériques others = url_params.get("filters", "") if others: queryset = queryset.filter(parse_filters(others)) if filters or excludes or others: options["filters"] = True except Exception as error: if not silent: raise ValidationError(dict(error="filters: {}".format(error)), code="filters") options["filters"] = False if settings.DEBUG: options["filters_error"] = str(error) return queryset # Annotations annotations = {} try: for annotation, function in FUNCTIONS.items(): for field_name in url_params.pop(annotation, "").split(","): if not field_name: continue field_name, *args = field_name.split("|") function_args = [] for arg in args: try: function_args.append(ast.literal_eval(arg)) except (SyntaxError, ValueError): arg = arg.replace(".", "__") if any(arg.endswith(":{}".format(cast)) for cast in CASTS): arg, *junk, cast = arg.split(":") cast = CASTS.get(cast.lower()) arg = functions.Cast(arg, output_field=cast()) if cast else arg function_args.append(arg) field_name = field_name.replace(".", "__") field = field_name if any(field_name.endswith(":{}".format(cast)) for cast in CASTS): field_name, *junk, cast = field_name.split(":") cast = CASTS.get(cast.lower()) field = functions.Cast(field_name, output_field=cast()) if cast else field_name annotations[annotation + "__" + field_name] = function(field, *function_args) if annotations: queryset = queryset.annotate(**annotations) options["annotates"] = True except Exception as error: if not silent: raise ValidationError(dict(error="annotates: {}".format(error)), code="annotates") options["annotates"] = False if settings.DEBUG: options["annotates_error"] = str(error) # Aggregations aggregations = {} try: for aggregate, function in AGGREGATES.items(): for field_name in url_params.get(aggregate, "").split(","): if not field_name: continue distinct = field_name.startswith(" ") or field_name.startswith("+") field_name = field_name[1:] if distinct else field_name field_name = field_name.strip().replace(".", "__") value = field_name if any(field_name.endswith(":{}".format(cast)) for cast in CASTS): field_name, *junk, cast = field_name.split(":") cast = CASTS.get(cast.lower()) value = functions.Cast(field_name, output_field=cast()) if cast else value aggregations[aggregate + "__" + field_name] = function(value, distinct=distinct) group_by = url_params.get("group_by", "") if group_by: _queryset = queryset.values(*group_by.replace(".", "__").split(",")) if aggregations: _queryset = _queryset.annotate(**aggregations) else: _queryset = _queryset.distinct() queryset = _queryset options["aggregates"] = True elif aggregations: options["aggregates"] = True queryset = do_filter(queryset) # Filtres éventuels return queryset.aggregate(**aggregations) except ValidationError: raise except Exception as error: if not silent: raise ValidationError(dict(error="aggregates: {}".format(error)), code="aggregates") options["aggregates"] = False if settings.DEBUG: options["aggregates_error"] = str(error) # Filtres queryset = do_filter(queryset) # Tris orders = [] try: order_by = url_params.get("order_by", "") if order_by: for order in order_by.replace(".", "__").split(","): nulls_first, nulls_last = order.endswith("<"), order.endswith(">") order = order[:-1] if nulls_first or nulls_last else order if order.startswith("-"): orders.append(F(order[1:]).desc(nulls_first=nulls_first, nulls_last=nulls_last)) else: order = order[1:] if order.startswith("+") or order.startswith(" ") else order orders.append(F(order).asc(nulls_first=nulls_first, nulls_last=nulls_last)) temp_queryset = queryset.order_by(*orders) str(temp_queryset.query) # Force SQL evaluation to retrieve exception queryset = temp_queryset options["order_by"] = True except EmptyResultSet: pass except Exception as error: if not silent: raise ValidationError(dict(error="order_by: {}".format(error)), code="order_by") options["order_by"] = False if settings.DEBUG: options["order_by_error"] = str(error) # Distinct distincts = [] try: distinct = url_params.get("distinct", "") if distinct: distincts = distinct.replace(".", "__").split(",") if str_to_bool(distinct) is not None: distincts = [] queryset = queryset.distinct(*distincts) options["distinct"] = True except EmptyResultSet: pass except Exception as error: if not silent: raise ValidationError(dict(error="distinct: {}".format(error)), code="distinct") options["distinct"] = False if settings.DEBUG: options["distinct_error"] = str(error) # Extraction de champs spécifiques fields = url_params.get("fields", "") if fields: # Supprime la récupération des relations queryset = queryset.select_related(None).prefetch_related(None) # Champs spécifiques try: relateds = set() field_names = set() for field in fields.replace(".", "__").split(","): if not field: continue field_names.add(field) *related, field_name = field.split("__") if related and field not in annotations: relateds.add("__".join(related)) if relateds: queryset = queryset.select_related(*relateds) if field_names: queryset = queryset.values(*field_names) except Exception as error: if not silent: raise ValidationError(dict(error="fields: {}".format(error)), code="fields") # Fonction utilitaire d'ajout de champ au serializer def add_field_to_serializer(fields, field_name): field_name = field_name.strip() source = field_name.strip().replace(".", "__") # Champ spécifique en cas d'énumération choices = getattr(get_field_by_path(queryset.model, field_name), "flatchoices", None) if choices and str_to_bool(url_params.get("display", "")): fields[field_name + "_display"] = ChoiceDisplayField(choices=choices, source=source) # Champ spécifique pour l'affichage de la valeur fields[field_name] = ReadOnlyObjectField(source=source if "." in field_name else None) # Création de serializer à la volée en cas d'aggregation ou de restriction de champs aggregations = {} for aggregate in AGGREGATES.keys(): for field in url_params.get(aggregate, "").split(","): if not field: continue field_name = aggregate + "__" + field.strip() source = field_name.replace(".", "__") if "." in field else None aggregations[field_name] = serializers.ReadOnlyField(source=source) # Regroupements & aggregations if "group_by" in url_params or aggregations: fields = {} for field in url_params.get("group_by", "").split(","): add_field_to_serializer(fields, field) fields.update(aggregations) fields.update(annotations) # Un serializer avec les données groupées est créé à la volée serializer = type(serializer.__name__, (serializers.Serializer,), fields) # Restriction de champs elif "fields" in url_params: fields = {} for field in url_params.get("fields", "").split(","): add_field_to_serializer(fields, field) fields.update(annotations) # Un serializer avec restriction des champs est créé à la volée serializer = type(serializer.__name__, (serializers.Serializer,), fields) elif annotations: serializer._declared_fields.update({key: serializers.ReadOnlyField() for key, value in annotations.items()}) # Fonction spécifique if query_func: func_args = func_args or [] func_kwargs = func_kwargs or {} queryset = query_func(queryset, *func_args, **func_kwargs) # Uniquement si toutes les données sont demandées all_data = str_to_bool(url_params.get("all", "")) if all_data: return Response(serializer(queryset, context=context, many=True).data) # Pagination avec ajout des options de filtres/tris dans la pagination paginator = pagination() if enable_options and hasattr(paginator, "additional_data"): paginator.additional_data = dict(options=options) # Force un tri sur la clé primaire en cas de pagination if hasattr(queryset, "ordered") and not queryset.ordered: primary_key = get_pk_field(queryset.model) queryset = queryset.order_by( *(getattr(queryset, "_fields", None) or (enable_options and distincts) or [primary_key.name]) ) serializer = serializer(paginator.paginate_queryset(queryset, request), context=context, many=True) return paginator.get_paginated_response(serializer.data) def create_api( *models, default_config=None, router=None, all_serializers=None, all_viewsets=None, all_bases_serializers=None, all_bases_viewsets=None, all_data_serializers=None, all_data_viewsets=None, all_querysets=None, all_metadata=None, all_configs=None ): """ Crée les APIs REST standard pour les modèles donnés :param models: Liste des modèles :param default_config: Configuration par défaut des APIs :param router: Router existant à mettre à jour :param all_serializers: Tous les serializers créés jusqu'à présent :param all_viewsets: Tous les viewsets créés jusqu'à présent :param all_bases_serializers: Toutes les bases de serializers créées jusqu'à présent :param all_bases_viewsets: Toutes les bases de viewsets créées jusqu'à présent :param all_metadata: Toutes les métadonnées créées jusqu'à présent :param all_data_serializers: Toutes les données de serializers créées jusqu'à présent :param all_data_viewsets: Toutes les données de viewsets créées jusqu'à présent :param all_querysets: Toutes les requêtes créées jusqu'à présent :param all_configs: Toutes les configs créées jusqu'à présent :return: Router, Serializers, Viewsets """ serializers = {} viewsets = {} # Récupération de la configuration générale from common.api.base import ( CONFIGS, DEFAULT_CONFIG, METADATA, QUERYSETS, SERIALIZERS, SERIALIZERS_BASE, SERIALIZERS_DATA, VIEWSETS, VIEWSETS_BASE, VIEWSETS_DATA, ) all_serializers = all_serializers or SERIALIZERS all_viewsets = all_viewsets or VIEWSETS all_bases_serializers = all_bases_serializers or SERIALIZERS_BASE all_bases_viewsets = all_bases_viewsets or VIEWSETS_BASE all_data_serializers = all_data_serializers or SERIALIZERS_DATA all_data_viewsets = all_data_viewsets or VIEWSETS_DATA all_querysets = all_querysets or QUERYSETS all_metadata = all_metadata or METADATA all_configs = all_configs or CONFIGS default_config = default_config or DEFAULT_CONFIG # Création des serializers et viewsets par défaut for model in models: if not model: continue serializers[model], viewsets[model] = create_model_serializer_and_viewset( model, serializer_base=all_bases_serializers, viewset_base=all_bases_viewsets, serializer_data=all_data_serializers, viewset_data=all_data_viewsets, queryset=all_querysets.get(model, None), metas=all_metadata, **all_configs.get(model, default_config or {}) ) # Création des routes par défaut from rest_framework import routers router = router or routers.DefaultRouter() for model, viewset in sorted(viewsets.items(), key=lambda key: key[0]._meta.model_name): code = model._meta.model_name router.register(code, viewset, basename=code) # Mise à jour des serializers et viewsets par défaut all_serializers.update(serializers) all_viewsets.update(viewsets) return router, serializers, viewsets def disable_relation_fields(*models, all_metadata=None): """ Remplace la liste de choix par un simple champ de saisie pour toutes les relations des modèles donnés (Permet d'améliorer significativement les performances lors de l'affichage du formulaire dans les APIs) :param models: Liste des modèles :param all_metadata: Toutes les métadonnées créées jusqu'à présent :return: Rien """ from common.api.base import METADATA all_metadata = all_metadata or METADATA for model in models: if not model: continue metas = {} for field in model._meta.get_fields(): if field.concrete and not field.auto_created and field.related_model: metas[field.name] = dict(style={"base_template": "input.html", "placeholder": str(field.verbose_name)}) if metas: metadata = all_metadata[model] = all_metadata.get(model, {}) extra_kwargs = metadata["extra_kwargs"] = metadata.get("extra_kwargs", {}) for key, value in metas.items(): extra_kwargs[key] = extra_kwargs.get(key, {}) extra_kwargs[key].update(value)
from math import sqrt import sys import scipy.stats import seaborn as sns import pandas as pd from matplotlib import pyplot as plt sys.path.append('/home/silvio/git/track-ml-1/utils') from tracktop import * original_tracks = sys.argv[1] reconstructed_tracks = sys.argv[2] dfOriginal = pd.read_csv(original_tracks) dfReconstructed = pd.read_csv(reconstructed_tracks) track_plot(dfReconstructed) #,'teste') ''' original_tracks = sys.argv[1] reconstructed_tracks = sys.argv[2] outputfig = sys.argv[3] dfOriginal = pd.read_csv(original_tracks) dfReconstructed = pd.read_csv(reconstructed_tracks) lines = dfOriginal.shape[0] columns = dfOriginal.shape[1] dfEval = pd.DataFrame(index=range(lines),columns=range(29)) ind_dfEval=0 #for hit in range(1, 20): for hit in range(1, 28): dataOR=dfOriginal.iloc[:, [ (hit*6)+1,(hit*6)+2,(hit*6)+3 ]] dataRE=dfReconstructed.iloc[:, [ (hit*6)+1,(hit*6)+2,(hit*6)+3 ]] dftemp = pd.DataFrame(index=range(lines),columns=range(7)) dftemp[0]=dataOR.iloc[:,[0]] dftemp[1]=dataOR.iloc[:,[1]] dftemp[2]=dataOR.iloc[:,[2]] dftemp[3]=dataRE.iloc[:,[0]] dftemp[4]=dataRE.iloc[:,[1]] dftemp[5]=dataRE.iloc[:,[2]] dftemp[6]=((dftemp[0]-dftemp[3])**2)+((dftemp[1]-dftemp[4])**2)+((dftemp[2]-dftemp[5])**2) dfEval[ind_dfEval] = dftemp[6] ind_dfEval=ind_dfEval+1 col = dfEval.loc[: , 0:26] dfEval[27] = col.mean(axis=1) dfEval[28] = col.std(axis=1) print(dfEval.shape) print(dfEval.iloc[:,[27]].min()) print(dfEval.iloc[:,[27]].max()) plt.figure() #sns_plot = sns.pairplot(dfEval.iloc[:,[27]]) #, hue='27', size=2.5) #sns_plot = sns.pairplot(dfEval) #, hue='27', size=2.5) sns_plot = sns.distplot(dfEval.iloc[:,[27]]); plt.savefig(outputfig) '''
from locust import HttpLocust, TaskSet, task import bs4 import random import sys, os class WebsiteTasks(TaskSet): def on_start(self): res = self.client.get("/runestone/default/user/login") pq = bs4.BeautifulSoup(res.content, features="lxml") # Get the csrf key for successful submission i = pq.select('input[name="_formkey"]') token = i[0]["value"] # login a user try: user = os.environ["RUNESTONE_TESTUSER"] pw = os.environ["RUNESTONE_TESTPW"] except: print("ERROR please set RUNESTONE_TESTUSER and RUNESTONE_TESTPW ") sys.exit(-1) res = self.client.post( "/runestone/default/user/login", {"username": user, "password": pw, "_formkey": token, "_formname": "login"}, ) # Get the index and make a list of all chapters/subchapters res = self.client.get("/runestone/books/published/fopp/index.html") pq = bs4.BeautifulSoup(res.content, features="lxml") pages = pq.select(".toctree-l2 a") self.bookpages = [p["href"] for p in pages] @task(5) def index(self): self.client.get("/runestone") @task(20) def boookpage(self): # pick a page at random url = random.choice(self.bookpages) base = "/runestone/books/published/fopp/" res = self.client.get(base + url) pq = bs4.BeautifulSoup(res.content, features="lxml") # client.get ONLY gets the html, so we need to simulate getting all # of the static assets ourselves. for s in pq.select("script"): if s.has_attr("src"): if s["src"].startswith(("http", "//")) == False: js = self.client.get( base + s["src"].replace("../", ""), name="scripts" ) for s in pq.select("link"): if s.has_attr("href"): if s["href"].startswith(("http", "//")) == False: css = self.client.get( base + s["href"].replace("../", ""), name="css" ) class WebsiteUser(HttpLocust): host = "http://localhost" task_set = WebsiteTasks min_wait = 1000 max_wait = 15000
from django.core.urlresolvers import reverse from django.test import TestCase class AccountsDeleteViewTestCase(TestCase): fixtures = ['users_views_testdata.yaml'] def test_delete_non_existent_user(self): url = reverse('del', args=[99]) resp = self.client.get(url, follow=True) self.assertEqual(resp.status_code, 200) self.assertTrue('alert' in resp.context) self.assertIsNotNone(resp.context['alert'])
import numpy as np import matplotlib.pyplot as plt # The following helper functions simplify the SPEIS data import from MPT files def get_boundaries(highest_freq, lowest_freq, f): if (np.count_nonzero(f[0] >= highest_freq) > 0): cutoff_start = np.where(f[0] >= highest_freq)[0][-1] else: cutoff_start = 0 if (np.count_nonzero(f[0] <= lowest_freq) > 0): cutoff_end = np.where(f[0] <= lowest_freq)[0][0] else: cutoff_end = len(f[0])-1 return cutoff_start, cutoff_end def read_mpt_parameters(filename): with open(filename, 'r', encoding="latin-1") as input_file: lines = input_file.readlines() header_line = lines[1] header_lines_number = int(header_line.split(":")[1]) # Iterate over headline section containing relevant information for i in range(header_lines_number): if lines[i].startswith("Ei (V)"): pot_start = float(lines[i].split("(V)")[1])*1E+3 if lines[i].startswith("Ef (V)"): pot_end = float(lines[i].split("(V)")[1])*1E+3 if lines[i].startswith("N"): potstepnumber = int(lines[i].strip().split(" ")[-1])+1 pot_step = int(abs(pot_start-pot_end)/(potstepnumber-1)) return pot_start, pot_step, potstepnumber
""" 返回数据的基类 create by judy 2018/10/22 """ import datetime import enum import io import json import os import threading from abc import ABCMeta, abstractmethod import pytz from commonbaby.helpers import helper_crypto, helper_str from datacontract.idowndataset import Task from datacontract.outputdata import (EStandardDataType, OutputData, OutputDataSeg) # from idownclient.config_output import muti_seg_count # get_write_lines函数弃用,muti_seg_count参数现在不是从config_output里来的 muti_seg_count = 1000 class EGender(enum.Enum): """统一性别枚举值""" Female = 1 Male = 2 Unknown = 3 class EResourceType(enum.Enum): """标识资源类型\n 0图片 1视频 2音频 3网站(分享链接) 4其他""" Picture = 0 Video = 1 Audio = 2 Url = 3 Other_Text = 4 class ESign(enum.Enum): """对RESOURCE预定义的sign标记枚举""" Null = 0 PicUrl = 1 # 标记当前数据为一个头像图片 class DriveTreeData: """表示一个目录树结构中的数据(文件夹或文件)。\n treedataid:当前目录树对象在当前树结构中的的唯一标识\n path:当前DriveTreeData的完整路径\n""" __metaclass = ABCMeta @property def is_dir(self) -> bool: """指示当前数据是否为一个目录""" return self._is_dir() @abstractmethod def _is_dir(self) -> bool: raise NotImplementedError() @property def parent(self): """当前DriveTreeData的父目录, 没有父级(本身就是根级)则为None""" return self._parent @parent.setter def parent(self, value): """当前DriveTreeData的父目录, 没有父级(本身就是根级)则为None""" if not isinstance(value, DriveTreeData): raise Exception( "Invalid property value set for DriveTreeData.parent") self._parent = value def __init__(self, treedataid: str, path: str = '/'): if treedataid is None: raise Exception("Invalid param 'treedataid' for DriveTreeData") if not isinstance(path, str) or path == "": raise Exception("Invalid param 'path' for DriveTreeData") self._treedataid: str = treedataid self._path: str = path # 父级对象 self._parent: DriveTreeData = None # 子级对象 self._subitems: dict = {} self._subitems_locker = threading.RLock() # 用于存储已序列化好的json结构 self._jsondata: dict = {} self._jsondata_locker = threading.RLock() self._jsondata_ok: bool = False def append_item(self, item): """向当前网盘数据添加一个子级数据""" if not isinstance(item, DriveTreeData): raise Exception("Invalid param 'item' for DriveTreeData") item: DriveTreeData = item with self._subitems_locker: if self._subitems.__contains__(item._treedataid): # 一般情况下,任何网盘都不允许同一文件夹下有重名文件 # 所以此处暂时不添加,也不报错,真遇到了id一样的再想办法处理下 return self._subitems[item._treedataid] = item def _get_tree_json(self) -> dict: """创建当前DriveTreeData的json目录树结构""" if self._jsondata_ok: return self._jsondata with self._jsondata_locker: if self._jsondata_ok: return self._jsondata self._jsondata['key'] = self._treedataid for i in self._get_current_tree_json().items(): key = i[0] val = i[1] if self._jsondata.__contains__(key): continue self._jsondata[key] = val if self.is_dir and any(self._subitems): tmplist: list = [] for i in self._subitems.values(): i: DriveTreeData = i d: dict = i._get_current_tree_json() if not isinstance(d, dict): # raise Exception( # "Get subitem json dict error, invalid json dict: treedataid={}". # format(self._treedataid)) continue if any(d): tmplist.append(d) if any(tmplist): self._jsondata['items'] = tmplist self._jsondata_ok = True return self._jsondata @abstractmethod def _get_current_tree_json(self) -> dict: '''子类实现时,拼接一个字典,存放当前DriveTreeData的 除了self._treedataid以外的相关信息,键和要统一! 例如:\n { "name":"xxx", "url":"xxxx" }''' raise NotImplementedError() class OrderData: """表示带有订单self._order字段的数据""" _transjsonpath = os.path.abspath( os.path.join(os.path.dirname(__file__), 'translation.json')) _transjsonloaded: bool = False _translocker = threading.RLock() _transjson: dict = None def __init__(self): self._order: dict = {} self._order_locker = threading.Lock() self._order_res = {} self._load_transjson() def _load_transjson(self): if OrderData._transjsonloaded: return with OrderData._translocker: if OrderData._transjsonloaded: return succ = self.__load_transjson() if succ: OrderData._transjsonloaded = True def __load_transjson(self): with open(OrderData._transjsonpath, 'rb') as f: string = f.read().decode('utf-8') OrderData._transjson = json.loads(string) return True def append_order(self, **kwargs): """将订单以键值对的形式添加到当前数据的详情字典中""" if kwargs is None or len(kwargs) < 1: return with self._order_locker: self._order.update(kwargs) def append_orders(self, kwargs: dict): """将订单以字典的形式添加到当前数据的详情字典中""" if not isinstance(kwargs, dict) or len(kwargs) < 1: return with self._order_locker: self._order.update(kwargs) def _format_order(self): """将 self._order 这个字典展平成只有1级的,并 翻译其所有可翻译的键,然后按照标准格式化并返回 纯文本。 例: { "orderid":"a", "b":"b", "c": ["c1","c2"], "d": [{"d1":"d1","d2":"d2"}]...} ↓格式化为 订单号:a b:b c:["c1","c2"] d1:d1 d2:d2 """ dic: dict = OrderData._transjson if dic is None: dic = {} orders = self.__order_iter(self._order) new_dic = {} for key, value in orders.items(): if dic.__contains__(key): new_dic[dic[key]] = orders[key] else: new_dic[key] = orders[key] order_str = '' for key, value in new_dic.items(): order_str = order_str + key + ':' + str(value) + '\n' return order_str def __order_iter(self, order, key='order'): """内部格式化函数,递归""" if isinstance(order, dict): for key, value in order.items(): if isinstance(value, dict): self.__order_iter(value, key) elif isinstance(value, list): for value1 in value: if isinstance(value1, dict): self.__order_iter(value1, key) elif isinstance(value1, list): self.__order_iter(value1, key) else: self._order_res[key] = value else: self._order_res[key] = value elif isinstance(order, list): for li in order: if isinstance(li, dict) or isinstance(li, list): self.__order_iter(li) else: break self._order_res[key] = order else: self._order_res[key] = order return self._order_res class DetailedData: """表示带有详情self._detail字段的数据""" def __init__(self): self._detail: dict = {} self._detail_locker = threading.Lock() def append_detail(self, **kwargs): """将详情以键值对的形式添加到当前数据的详情字典中""" if kwargs is None or len(kwargs) < 1: return with self._detail_locker: self._detail.update(kwargs) def append_details(self, kwargs: dict): """将详情以字典的形式添加到当前数据的详情字典中""" if not isinstance(kwargs, dict) or len(kwargs) < 1: return with self._detail_locker: self._detail.update(kwargs) class Resource: """表示一个资源数据。\n url:当前资源的唯一标识\n rsctype:EResourceType资源类型""" @property def sign(self): '''当前Resource资源的特殊标记,统一使用resourcefeedback.ESign枚举值''' return self.__sign @sign.setter def sign(self, value): '''当前Resource资源的特殊标记,统一使用resourcefeedback.ESign枚举值''' if not isinstance(value, ESign) or not self._sign_map.__contains__(value): raise Exception("Value must be Esign or value is invalid") self.__sign = value def __init__(self, url: str, rsctype: EResourceType = EResourceType.Other_Text): if not isinstance(url, str) or url == "": raise Exception("Invalid param 'url' for Resource") if not isinstance(rsctype, EResourceType): raise Exception("Invalid param 'rsctype' for Resource") self._url: str = url self._resourcetype: EResourceType = rsctype self.filename: str = None self.__sign: ESign = ESign.Null self._sign_map: dict = { ESign.Null: None, ESign.PicUrl: "picurl", } class ResourceData: """表示一个可能附带资源的数据,即带有resources列表字段的数据类型, 其中可能关联了多个Resource数据。""" _sign_map: dict = { ESign.Null: "0", ESign.PicUrl: "picurl", } def __init__(self): self._resources: list = [] # 格式详情参见数据标准 def append_resource(self, rsc: Resource): """将一个RESOURCE资源数据关联到当前数据的resources列表""" if not issubclass(type(rsc), Resource) or \ helper_str.is_none_or_empty(rsc._url) or \ not isinstance(rsc._resourcetype, EResourceType): raise Exception( "Invalid param 'rsc' Resource for append_resource: {}".format( rsc)) tmp = { "url": rsc._url, "type": rsc._resourcetype.value, } if isinstance(rsc.sign, ESign) and not rsc.sign == ESign.Null: tmp['sign'] = ResourceData._sign_map[rsc.sign] if not helper_str.is_none_or_empty(rsc.filename): tmp['name'] = rsc.filename self._resources.append(tmp) class UniqueData: """表示一个可以去重的,有唯一ID标识的数据""" __metaclass = ABCMeta def __init__(self, task: Task, apptype: int): if not isinstance(apptype, int): raise Exception("AppType is invalid in Uniquedata") if not isinstance(task, Task): raise Exception("Task is invalid in Uniquedata") self._datatype_str_unique: str = type(self).__name__ # 数据类型 self._task: Task = task self._apptype = apptype @abstractmethod def get_write_lines(self) -> str: raise NotImplementedError() @abstractmethod def get_uniqueid(self): """子类实现时,返回当前数据的唯一标识id,用于去重数据,和增量下载。 默认实现为返回当前数据的hash值""" # return helper_crypto.get_md5_from_str( # self._task.taskid.decode('utf-8')) hs = self.__hash__() return hs @abstractmethod def get_display_name(self): """返回当前数据的显示名称""" return self.get_uniqueid() class InnerDataBase(UniqueData, OutputDataSeg): """表示多段数据类型的一段数据""" __metaclass = ABCMeta def __init__(self, task: Task, apptype: int): UniqueData.__init__(self, task, apptype) OutputDataSeg.__init__(self) # 用于将一些爬取过程中有用的东西记录下来 self.remarks = None def get_write_lines(self) -> str: """返回当前数据段构建的字段内容文本""" lines: str = '' lines += self._get_write_lines() if not lines.endswith('\r\n\r\n'): lines = lines.strip() + '\r\n\r\n' return lines @abstractmethod def _get_write_lines(self) -> str: """子类返回当前数据段构建的字段内容文本""" return '' @abstractmethod def get_uniqueid(self): """子类实现时,返回当前数据的唯一标识id,用于去重数据,和增量下载""" return helper_crypto.get_md5_from_str(self.get_write_lines()) def get_output_fields(self) -> dict: """返回当前数据段应输出的所有字段字典""" self._get_output_fields() return self._fields @abstractmethod def _get_output_fields(self) -> dict: """子类实现时,返回当前数据段应输出的所有字段字典""" raise NotImplementedError() class FeedDataBase(UniqueData, OutputData, OutputDataSeg): """ datatype: 数据类型唯一标识\n suffix: 数据类型后缀\n task: 关联当前数据的task任务\n apptype: 当前生成此数据的插件的apptype""" __metaclass = ABCMeta @property def innerdata_len(self): with self.__innerdata_locker: return len(self.__innerdatas) @property def io_stream(self) -> io.RawIOBase: """当前数据的数据体,二进制流""" return self._get_io_stream() @io_stream.setter def io_stream(self, value): """当前数据的数据体,二进制流""" self._set_io_stream(value) @abstractmethod def _get_io_stream(self) -> io.RawIOBase: """子类实现时,返回当前数据的文件体,二进制流""" return self._io_stream @abstractmethod def _set_io_stream(self, value): """子类实现时,设置当前数据的文件体,二进制流""" self._io_stream = value def __init__(self, suffix, datatype: EStandardDataType, task: Task, apptype: int, clientid: str, is_muti_seg: bool = False): UniqueData.__init__(self, task, apptype) OutputData.__init__(self, self._task.platform, datatype) OutputDataSeg.__init__(self) if not isinstance(clientid, str) or clientid == "": raise Exception("Invalid param 'clientid' for FeedDataBase") self._clientid: str = clientid # 东8区时间 self.time = datetime.datetime.now(pytz.timezone('Asia/Shanghai')).strftime('%Y-%m-%d %H:%M:%S') if not isinstance(suffix, str) or suffix == "": raise Exception("Suffix is invalid.") self._is_muti_seg: bool = False if isinstance(is_muti_seg, bool): self._is_muti_seg = is_muti_seg self._suffix: str = suffix # 文件后缀 self.__innerdatas: list = [] # 内部多段数据 self.__innerdata_locker = threading.Lock() self._io_stream = None # 从网上下载回来的数据流 # 统一使用ha来获取head里面的length # resp = ha.get_response() # lengthn = resp.headers.get('Content-Length') # responseio = ResponseIO(resp) self.stream_length = 0 # 下载的文件流大小,用来做文件大小过滤 self.remarks = None # 用于将一些爬取过程中有用的东西记录下来 def __iter__(self): return self.__innerdatas.__iter__() def first_innerdata(self): """若当前数据的innerdata集合不为空,则返回Innerdata集合中的第一个元素。 否则返回None""" if self.innerdata_len > 0: return self.__innerdatas[0] return None def append_innerdata(self, innerdata: InnerDataBase): """添加一个内部数据结构体到当前总数据结构体中""" if not isinstance(innerdata, InnerDataBase): raise Exception("Inner data is invalid.") with self.__innerdata_locker: innerdata.owner_data = self self.__innerdatas.append(innerdata) def remove_innerdata(self, innerdata: InnerDataBase): '''将指定的InnerDataBase对象从当前数据的子数据段集合中移除''' if not isinstance(innerdata, InnerDataBase): return with self.__innerdata_locker: if innerdata in self.__innerdatas: self.__innerdatas.remove(innerdata) @abstractmethod def get_output_segs(self) -> iter: """子类实现时,返回当前数据包含的数据段iterable""" if any(self.__innerdatas): segidx = 1 with self.__innerdata_locker: for seg in self.__innerdatas: seg: InnerDataBase = seg seg.append_to_fields('clientid', self._clientid) seg.append_to_fields('taskid', self._task.taskid) seg.append_to_fields('batchid', self._task.batchid) seg.append_to_fields('apptype', self._apptype) seg.append_to_fields('time', self.time) seg.append_to_fields('casenode', self._task.casenode) seg.append_to_fields('source', self._task.source) seg.segindex = segidx segidx += 1 yield seg else: self.segindex = 1 if self.owner_data is None: self.owner_data = self yield self def get_output_fields(self) -> dict: """返回当前数据段应输出的所有字段字典""" self.append_to_fields('clientid', self._clientid) self.append_to_fields('taskid', self._task.taskid) self.append_to_fields('batchid', self._task.batchid) self.append_to_fields('apptype', self._apptype) self.append_to_fields('time', self.time) self.append_to_fields('casenode', self._task.casenode) self.append_to_fields('source', self._task.source) for field in self._task._other_fields.items(): self.append_to_fields(field[0], field[1]) return self._get_output_fields() @abstractmethod def _get_output_fields(self) -> dict: """子类实现时,返回当前数据段应输出的所有字段字典""" raise NotImplementedError() def get_write_lines(self) -> iter: """""" lines: str = '' if any(self.__innerdatas): with self.__innerdata_locker: segcount: int = 0 for innerdata in self.__innerdatas: innerdata: InnerDataBase = innerdata lines += self._get_common_fields_lines() lines += innerdata.get_write_lines() if not lines.endswith('\r\n\r\n'): lines = lines.strip() + '\r\n\r\n' segcount += 1 if segcount >= muti_seg_count: yield lines.encode('utf-8') lines = '' segcount = 0 if not helper_str.is_none_or_empty(lines): yield lines.encode('utf-8') elif isinstance(self.io_stream, io.IOBase): lines += self._get_common_fields_lines() lines += self._get_write_lines() if not lines.endswith('\r\n\r\n'): lines = lines.strip() + '\r\n\r\n' yield lines.encode('utf-8') else: lines += self._get_common_fields_lines() lines += self._get_write_lines() if not lines.endswith('\r\n\r\n'): lines = lines.strip() + '\r\n\r\n' yield lines.encode('utf-8') @abstractmethod def _get_write_lines(self) -> str: """子类按数据类型返回子类应有的字段""" return '' def _get_common_fields_lines(self): """以每行一个字段的形式返回当前数据中的基本共有字段""" lines: str = '' lines += 'taskid:{}\r\n'.format(self._task.taskid) lines += 'apptype:{}\r\n'.format(self._task.apptype) lines += 'time:{}\r\n'.format(self.time) for field in self._task._other_fields.items(): if field[0] is None or field[1] is None: continue lines += "{}:{}\r\n".format(field[0], helper_str.base64format(field[1])) return lines def get_stream(self): return self.io_stream
#!/usr/bin/env python # -*- coding: utf-8 -*- '''main.py - Waqas Bhatti ([email protected]) - Aug 2018 License: MIT - see the LICENSE file for the full text. This is the main file for the authnzerver, a simple authorization and authentication server backed by SQLite and Tornado for use with the lcc-server. ''' ############# ## LOGGING ## ############# import logging # setup a logger LOGMOD = __name__ ############# ## IMPORTS ## ############# import os import os.path import socket import sys import signal import time from functools import partial # setup signal trapping on SIGINT def recv_sigint(signum, stack): ''' handler function to receive and process a SIGINT ''' raise KeyboardInterrupt ##################### ## TORNADO IMPORTS ## ##################### # experimental, probably will remove at some point try: import asyncio import uvloop asyncio.set_event_loop_policy(uvloop.EventLoopPolicy()) IOLOOP_SPEC = 'uvloop' except Exception as e: HAVE_UVLOOP = False IOLOOP_SPEC = 'asyncio' import tornado.ioloop import tornado.httpserver import tornado.web import tornado.options from tornado.options import define, options import multiprocessing as mp ############################### ### APPLICATION SETUP BELOW ### ############################### modpath = os.path.abspath(os.path.dirname(__file__)) # define our commandline options # the port to serve on # indexserver will serve on 12600-12604 by default define('port', default=12600, help='Run on the given port.', type=int) # the address to listen on define('serve', default='127.0.0.1', help='Bind to given address and serve content.', type=str) # whether to run in debugmode or not define('debugmode', default=0, help='start up in debug mode if set to 1.', type=int) # number of background threads in the pool executor define('backgroundworkers', default=4, help=('number of background workers to use '), type=int) # basedir is the directory at the root where all LCC collections are stored this # contains subdirs for each collection and a lcc-collections.sqlite file that # contains info on all collections. define('basedir', default=os.getcwd(), help=('The base directory of the light curve collections.'), type=str) # the path to the authentication DB define('authdb', default=None, help=('An SQLAlchemy database URL to override the use of ' 'the local authentication DB. ' 'This should be in the form discussed at: ' 'https://docs.sqlalchemy.org/en/latest' '/core/engines.html#database-urls'), type=str) # the path to the cache directory used by indexserver define('cachedir', default='/tmp/lccserver-cache', help=('Path to the cache directory used by the main LCC-Server ' 'indexserver process as defined in its site-info.json config ' 'file.'), type=str) define('sessionexpiry', default=7, help=('This tells the lcc-server the session-expiry time in days.'), type=int) ####################### ## UTILITY FUNCTIONS ## ####################### def setup_auth_worker(authdb_path, fernet_secret): '''This stores secrets and the auth DB path in the worker loop's context. The worker will then open the DB and set up its Fernet instance by itself. ''' # unregister interrupt signals so they don't get to the worker # and the executor can kill them cleanly (hopefully) signal.signal(signal.SIGINT, signal.SIG_IGN) currproc = mp.current_process() currproc.auth_db_path = authdb_path currproc.fernet_secret = fernet_secret def close_authentication_database(): '''This is used to close the authentication database when the worker loop exits. ''' currproc = mp.current_process() if getattr(currproc, 'table_meta', None): del currproc.table_meta if getattr(currproc, 'connection', None): currproc.connection.close() del currproc.connection if getattr(currproc, 'engine', None): currproc.engine.dispose() del currproc.engine print('Shutting down database engine in process: %s' % currproc.name, file=sys.stdout) ########## ## MAIN ## ########## def main(): # parse the command line tornado.options.parse_command_line() DEBUG = True if options.debugmode == 1 else False # get a logger LOGGER = logging.getLogger(__name__) if DEBUG: LOGGER.setLevel(logging.DEBUG) else: LOGGER.setLevel(logging.INFO) ################### ## LOCAL IMPORTS ## ################### from ..utils import ProcExecutor ############## ## HANDLERS ## ############## from .handlers import AuthHandler, EchoHandler from . import authdb from . import cache from . import actions ################### ## SET UP CONFIG ## ################### MAXWORKERS = options.backgroundworkers FERNETSECRET = authdb.get_secret_token('LCC_FERNETSECRET', os.path.join( options.basedir, '.lccserver.secret-fernet' ), LOGGER) # use the local sqlite DB as the default auth DB AUTHDB_SQLITE = os.path.join(options.basedir, '.authdb.sqlite') # pass the DSN to the SQLAlchemy engine if os.path.exists(AUTHDB_SQLITE): AUTHDB_PATH = 'sqlite:///%s' % os.path.abspath(AUTHDB_SQLITE) elif options.authdb: # if the local authdb doesn't exist, we'll use the DSN provided by the # user AUTHDB_PATH = options.authdb else: raise ConnectionError( "No auth DB connection available. " "The local auth DB is missing or " "no SQLAlchemy database URL was provided to override it" ) # # this is the background executor we'll pass over to the handler # executor = ProcExecutor(max_workers=MAXWORKERS, initializer=setup_auth_worker, initargs=(AUTHDB_PATH, FERNETSECRET), finalizer=close_authentication_database) # we only have one actual endpoint, the other one is for testing handlers = [ (r'/', AuthHandler, {'authdb':AUTHDB_PATH, 'fernet_secret':FERNETSECRET, 'executor':executor}), ] if DEBUG: # put in the echo handler for debugging handlers.append( (r'/echo', EchoHandler, {'authdb':AUTHDB_PATH, 'fernet_secret':FERNETSECRET, 'executor':executor}) ) ######################## ## APPLICATION SET UP ## ######################## app = tornado.web.Application( debug=DEBUG, autoreload=False, # this sometimes breaks Executors so disable it ) # try to guard against the DNS rebinding attack # http://www.tornadoweb.org/en/stable/guide/security.html#dns-rebinding app.add_handlers(r'(localhost|127\.0\.0\.1)', handlers) # start up the HTTP server and our application http_server = tornado.httpserver.HTTPServer(app) ###################################################### ## CLEAR THE CACHE AND REAP OLD SESSIONS ON STARTUP ## ###################################################### removed_items = cache.cache_flush( cache_dirname=options.cachedir ) LOGGER.info('removed %s stale items from authdb cache' % removed_items) session_killer = partial(actions.auth_kill_old_sessions, session_expiry_days=options.sessionexpiry, override_authdb_path=AUTHDB_PATH) # run once at start up session_killer() ###################### ## start the server ## ###################### # register the signal callbacks signal.signal(signal.SIGINT, recv_sigint) signal.signal(signal.SIGTERM, recv_sigint) # make sure the port we're going to listen on is ok # inspired by how Jupyter notebook does this portok = False serverport = options.port maxtries = 10 thistry = 0 while not portok and thistry < maxtries: try: http_server.listen(serverport, options.serve) portok = True except socket.error as e: LOGGER.warning('%s:%s is already in use, trying port %s' % (options.serve, serverport, serverport + 1)) serverport = serverport + 1 if not portok: LOGGER.error('Could not find a free port after %s tries, giving up' % maxtries) sys.exit(1) LOGGER.info('Started authnzerver. listening on http://%s:%s' % (options.serve, serverport)) LOGGER.info('Background worker processes: %s. IOLoop in use: %s' % (MAXWORKERS, IOLOOP_SPEC)) LOGGER.info('Base directory is: %s' % os.path.abspath(options.basedir)) # start the IOLoop and begin serving requests try: loop = tornado.ioloop.IOLoop.current() # add our periodic callback for the session-killer # runs daily periodic_session_kill = tornado.ioloop.PeriodicCallback( session_killer, 86400000.0, jitter=0.1, ) periodic_session_kill.start() # start the IOLoop loop.start() except KeyboardInterrupt: LOGGER.info('Received Ctrl-C: shutting down...') # close down the processpool executor.shutdown() time.sleep(2) tornado.ioloop.IOLoop.instance().stop() currproc = mp.current_process() if getattr(currproc, 'table_meta', None): del currproc.table_meta if getattr(currproc, 'connection', None): currproc.connection.close() del currproc.connection if getattr(currproc, 'engine', None): currproc.engine.dispose() del currproc.engine print('Shutting down database engine in process: %s' % currproc.name, file=sys.stdout) # run the server if __name__ == '__main__': main()
from .elements.element_base import ElementBase from .elements.list import List from .elements.value_element_base import ValueElementBase from .elements.missing.missing_element_base import MissingElementBase from .elements.missing.missing_list import MissingList from .elements.missing.missing_value_element_base import MissingValueElementBase def _register(name: str, function): if name == 'string': raise ValueError("You cannot register 'string' as a type/loader with enolib as this conflicts with the native string type accessors.") setattr(ElementBase, f"{name}_key", lambda self: self.key(function)) setattr(ElementBase, f"optional_{name}_comment", lambda self: self.optional_comment(function)) setattr(ElementBase, f"required_{name}_comment", lambda self: self.required_comment(function)) setattr(ValueElementBase, f"optional_{name}_value", lambda self: self.optional_value(function)) setattr(ValueElementBase, f"required_{name}_value", lambda self: self.required_value(function)) setattr(List, f"optional_{name}_values", lambda self: self.optional_values(function)) setattr(List, f"required_{name}_values", lambda self: self.required_values(function)) setattr(MissingElementBase, f"{name}_key", MissingElementBase.string_key) setattr(MissingElementBase, f"optional_{name}_comment", MissingElementBase.optional_string_comment) setattr(MissingElementBase, f"required_{name}_comment", MissingElementBase.required_string_comment) setattr(MissingValueElementBase, f"optional_{name}_value", MissingValueElementBase.optional_string_value) setattr(MissingValueElementBase, f"required_{name}_value", MissingValueElementBase.required_string_value) setattr(MissingList, f"optional_{name}_values", MissingList.optional_string_values) setattr(MissingList, f"required_{name}_values", MissingList.required_string_values) # TODO: Specs for different register signatures (see below) def register(*definitions_list, **definitions_dict): for definition in definitions_list: if callable(definition): _register(definition.__name__, definition) else: for name, function in definition.items(): _register(name, function) for name, function in definitions_dict.items(): _register(name, function)
import pickle as pkl plotname = 'DentateGyrus' from scvi.dataset.MouseBrain import DentateGyrus10X, DentateGyrusC1 from scvi.dataset.dataset import GeneExpressionDataset dataset1= DentateGyrus10X() dataset1.subsample_genes(dataset1.nb_genes) dataset2 = DentateGyrusC1() dataset2.subsample_genes(dataset2.nb_genes) gene_dataset = GeneExpressionDataset.concat_datasets(dataset1,dataset2) from scvi.dataset.dataset import SubsetGenes dataset1, dataset2, gene_dataset = SubsetGenes(dataset1, dataset2, gene_dataset, plotname) magan = MAGAN(dim_b1=10, dim_b2=10, correspondence_loss=correspondence_loss) from scvi.harmonization.clustering.Magan import Magan from utils import now from model import MAGAN from loader import Loader import tensorflow as tf from sklearn.decomposition import PCA magan = Magan() out1, out2 = magan.fit_transform(gene_dataset.X, gene_dataset.batch_indices.ravel(), [0, 1]) import numpy as np batch = gene_dataset.batch_indices.ravel() index_0 = np.where(batch == 0)[0] index_1 = np.where(batch == 1)[0] X = gene_dataset.X X1 = np.log(1 + X[index_0]) X2 = np.log(1 + X[index_1]) loadb1 = Loader(X1, shuffle=True) loadb2 = Loader(X2, shuffle=True) # Build the tf graph def correspondence_loss(b1, b2): """ The correspondence loss. :param b1: a tensor representing the object in the graph of the current minibatch from domain one :param b2: a tensor representing the object in the graph of the current minibatch from domain two :returns a scalar tensor of the correspondence loss """ domain1cols = [0] domain2cols = [0] loss = tf.constant(0.) for c1, c2 in zip(domain1cols, domain2cols): loss += tf.reduce_mean((b1[:, c1] - b2[:, c2])**2) return loss magan = MAGAN(dim_b1=X1.shape[1], dim_b2=X2.shape[1], correspondence_loss=correspondence_loss) # Train for i in range(1, self.n_epochs): if i % 100 == 0: print("Iter {} ({})".format(i, now())) xb1_ = loadb1.next_batch(self.batch_size) xb2_ = loadb2.next_batch(self.batch_size) magan.train(xb1_, xb2_) latent = PCA(n_components=10).fit_transform(out1) # np.save('../' + filename + '/' + 'MNN' + '.npy', latent)
import requests import random def handle(st): r = requests.get("http://api.open-notify.org/astros.json") result = r.json() index = random.randint(0, len(result["people"])-1) name = result["people"][index]["name"] print (name + " is in space")
# from django.forms import ModelForm from .models import ClockIn, SetUp from django import forms # from django_bootstrap5.widgets import RadioSelectButtonGroup from django.forms import ModelForm class ClockInForm(forms.Form): def __init__(self, user, *args, **kwargs): # 动态的选项 self._user = user super(ClockInForm, self).__init__(*args, **kwargs) self.fields['setup_id'] = forms.ChoiceField( label="选择打卡", widget=forms.RadioSelect, # choices=(("1", "2"), ("2", "4"),), choices=[(su.id, su.name) for su in SetUp.objects.filter(user_id=user.id)], initial=1, ) # for visible in self.visible_fields(): # visible.field.widget.attrs['class'] = 'form-control' setup_id = forms.ChoiceField(label="选择打卡类型") iamge_0 = forms.ImageField(label="图片") def save(self): user_id = self._user.id setup_id = self.cleaned_data['setup_id'] image_0 = self.cleaned_data['iamge_0'] clock_in = ClockIn( user_id=user_id, setup_id=setup_id, image_0=image_0, ) clock_in.save() class SetUpForm(ModelForm): class Meta: model = SetUp fields = ['name', 'times'] def save(self, user_id): # name = self.cleaned_data["name"] # times = self.cleaned_data["times"] data = { "name": self.cleaned_data["name"], "times": self.cleaned_data["times"], "user_id": user_id } setup = SetUp.objects.create(**data) setup.save()
import os import sys import argparse from azureml.core.workspace import Workspace from azureml.core import Experiment, Datastore, RunConfiguration from azureml.train.estimator import Estimator parser = argparse.ArgumentParser() parser.add_argument('experiment', help='Azure ML experiment name') parser.add_argument('--workspace-config', default="azureml_config.json", help='Download from the Azure ML portal') parser.add_argument('--compute', default="nc6v3", help='Azure ML training cluster') parser.add_argument('--max_epochs', type=int, default=300) args = parser.parse_args() print(args) # load workspace configuration from the config.json file ws = Workspace.from_config(path=args.workspace_config) print('=' * 40) print(ws) # create an experiment exp = Experiment(workspace=ws, name=args.experiment) print('=' * 40) print(exp) # specify a cluster compute_target = ws.compute_targets[args.compute] print('=' * 40) print(compute_target) # Mount the blob to the training container # NOTE: (prerequisite) unzip and upload the ePillID data to the blob data_ds = Datastore.get(ws, datastore_name='data') rc = RunConfiguration() rc.environment.docker.enabled = True # Using an image from https://hub.docker.com/r/naotous/pytorch-image # TODO: clean up the Dockerfile rc.environment.docker.base_image = "naotous/pytorch-image:py36torch041-legacy" rc.environment.docker.gpu_support = True # don't let the system build a new conda environment rc.environment.python.user_managed_dependencies = True # point to an existing python environment in the Docker image rc.environment.python.interpreter_path = '/app/miniconda/envs/py36/bin/python' # flag for the user input SUBMIT_ALL = False def submit(script_params): global SUBMIT_ALL input_data = None # the files in source_directory will be uploaded to the cluster est = Estimator(source_directory='src', script_params=script_params, compute_target=compute_target, entry_script='train_cv.py', environment_definition=rc.environment) print('script_params', script_params) while not SUBMIT_ALL and True: input_data = input("Submit? [Y/y/n/s]") if input_data in ['Y', 'y', 'n', 's']: break if input_data == 'Y': SUBMIT_ALL = True if SUBMIT_ALL or input_data == 'y': run = exp.submit(est) print('=' * 40) print(run) print('Monitor the training progress on the portal: URL=', run.get_portal_url()) elif input_data == 'n': print("aborting!") sys.exit(0) else: print("skip!") # define the entry script base_script_params = { '--data_root_dir': data_ds.path('ePillID_data').as_mount().as_mount(), '--max_epochs': args.max_epochs } loss_params = [ {'--contrastive_w': 0.0, '--triplet_w': 0.0, '--arcface_w': 0.0, '--ce_w': 1.0, '--focal_w': 0.0, '--dropout': 0.5}, # plain classification (logits) {'--contrastive_w': 1.0, '--triplet_w': 1.0, '--arcface_w': 0.1, '--ce_w': 1.0, '--focal_w': 0.0}, # multihead metric learning ] networks = [ #{'--appearance_network': 'resnet18'}, # {'--appearance_network': 'resnet34'}, #{'--appearance_network': 'resnet50', '--train_with_side_labels': '0', '--metric_simul_sidepairs_eval': '0'}, #{'--appearance_network': 'resnet50', '--train_with_side_labels': '0', '--metric_simul_sidepairs_eval': '1'}, #{'--appearance_network': 'resnet50', '--train_with_side_labels': '1', '--metric_simul_sidepairs_eval': '0'}, #{'--appearance_network': 'resnet50', '--train_with_side_labels': '1', '--metric_simul_sidepairs_eval': '1'}, {'--appearance_network': 'resnet50'}, {'--appearance_network': 'resnet50', '--pooling': 'CBP'}, {'--appearance_network': 'resnet50', '--pooling': 'BCNN'}, # {'--appearance_network': 'resnet101'}, # {'--appearance_network': 'resnet152'}, # {'--appearance_network': 'densenet121'}, # {'--appearance_network': 'densenet161'}, # {'--appearance_network': 'densenet201'}, ] for l in loss_params: for n in networks: submit({**l, **n, **base_script_params})
#!/usr/bin/env python import sys import os import re import numpy from PIL import Image import StringIO # you need to install this library yourself # recent versions handle bigtiff too... import tifffile """ Extract a pyramidal TIFF with JPEG tiled storage into a tree of separate JPEG files as expected by Zoomify. usage: extract.py pyramid-file dest-dir The pyramid-file must be a multi-page TIFF with each page having an image scaled by 1/2 from the previous page. All pages must be tiled with the same tile size, and tiles must be stored using the new-style JPEG compression format, i.e. TIFF compression == 7. If the lowest resolution page must have 4 or fewer tiles. If it has more than 1, this script will leave space for the user to manually generate the final lowest zoom tile 0-0-0.jpg that is 1/2 scaled version of the image represented by that last page. """ tiff_files = [] tiff_outpages = [] tiff_tifffile = [] tiff_infile = [] tiff_maxval = [] redColors = ['Rhodamine', 'RFP', 'Alexa Fluor 555', 'Alexa Fluor 594', 'tdTomato', 'Alexa Fluor 633', 'Alexa Fluor 647'] greenColors = ['FITC', 'Alexa 488', 'EGFP', 'Alexa Fluor 488'] blueColors = ['DAPI'] tiff_colors = [redColors, greenColors, blueColors] def checkFileColors(files): for file in files: colorMatched = None for colors in tiff_colors: for color in colors: if re.match('.*[-]%s[-]Z1[.]tif' % color, file): colorMatched = True break if colorMatched: break if not colorMatched: sys.stderr.write('Unknown color for file "%s" \n' % file) sys.exit(1) def colorFile(files, colors, pattern): tifFiles = [] for color in colors: colorFiles = [ f for f in files if re.match('.*[-]%s%s' % (color, pattern), f) ] if len(colorFiles) == 1: tifFiles.append(colorFiles[0]) sys.stdout.write('colorFile %s\n'%colorFiles[0]); if len(tifFiles) > 0: return tifFiles else: return None def getTiffFiles(dname): global tiff_files files = os.listdir(dname) z1 = [f for f in files if re.match('.*[-]Z1[.]tif', f)] if len(z1) > 0: checkFileColors(z1) stacks = len(files) / len(z1) stackNo = stacks / 2 if stackNo * 2 < stacks: stackNo += 1 stackPattern = '[-]Z%d[.]tif' % stackNo else: stackPattern = '[.]tif' for colors in tiff_colors: colorFiles = colorFile(files, colors, stackPattern) if colorFiles: for file in colorFiles: tiff_files.append('%s%s%s' % (dname, os.sep, file)) sys.stdout.write('adding, %s\n'%file); if len(tiff_files) == 0: tiff_files = [ '%s%s%s' % (dname, os.sep, f) for f in files if re.match('.*%s' % stackPattern, f) ] try: dname = sys.argv[1] outdir = sys.argv[2] if not os.path.exists(dname) or not os.path.isdir(dname): sys.stderr.write('Pyramid directory must be given and exist') sys.exit(1) getTiffFiles(dname) if not os.path.exists(outdir): os.makedirs(outdir) except SystemExit: raise except: sys.stderr.write('\nusage: extract_rgb.py pyramid-directory dest-dir\n\n') raise if len(tiff_files) == 0: print 'Nothing to do' sys.exit() dir_template = '%(outdir)s/TileGroup%(groupno)d' tile_template = dir_template + '/%(zoomno)d-%(tcolno)d-%(trowno)d.jpg' for file in range(0, len(tiff_files)): tiff = tifffile.TiffFile(tiff_files[file]) tiff_tifffile.append(tiff) pages = list(tiff) pages.reverse() outpages = [ page for page in pages if hasattr(page.tags, 'tile_offsets') ] if type(outpages[0].tags.tile_offsets.value) is int: outpages[0].tags.tile_offsets.value=[outpages[0].tags.tile_offsets.value] outpages[0].tags.tile_byte_counts.value=[outpages[0].tags.tile_byte_counts.value] tiff_outpages.append(outpages) infile = open(tiff_files[file], 'rb') tiff_infile.append(infile) tile_group = 0 tiles_per_group = 256 # skip pages that aren't tiled... thumbnails?! outpages = tiff_outpages[0] if hasattr(outpages[0].tags, 'tile_offsets') and len(outpages[0].tags.tile_offsets.value) > 1: # first input zoom level is multi-tile assert len(outpages[0].tags.tile_offsets.value) <= 4 # so leave space for tile 0-0-0 zoomno = 1 group_file_count = 1 total_tiles = 1 need_to_build_0 = True else: # input includes first zoom level already zoomno = 0 group_file_count = 0 total_tiles = 0 need_to_build_0 = False # remember values for debugging sanity checks prev_page = None tile_width = None tile_length = None def jpeg_assemble(jpeg_tables_bytes, jpeg_bytes): # start-image + tables + rest of image to end-image return jpeg_bytes[0:2] + jpeg_tables_bytes + jpeg_bytes[2:] def load_tile(infile, tile_offset, tile_length): infile.seek(tile_offset) return infile.read(tile_length) def write_tile(tileno, trow, tcol, rgb_image): """Output one tile. Note this manages global state for tile grouping in subdirs.""" global group_file_count global zoomno global tile_group global total_tiles if group_file_count >= tiles_per_group: # last group is full already tile_group += 1 group_file_count = 0 group_file_count += 1 total_tiles += 1 dirname = dir_template % dict( outdir = outdir, groupno = tile_group ) if not os.path.exists(dirname): # create tile group dir on demand os.makedirs(dirname, mode=0755) outname = tile_template % dict( outdir = outdir, groupno = tile_group, zoomno = zoomno, tcolno = tcol, trowno = trow ) rgb_image.save(outname, 'JPEG') outinfo = [] def get_page_info(page): pxsize = page.tags.image_width.value pysize = page.tags.image_length.value # get common JPEG tables to insert into all tiles if hasattr(page.tags, 'jpeg_tables'): # trim off start-image/end-image byte markers at prefix and suffix jpeg_tables_bytes = bytes(bytearray(page.tags.jpeg_tables.value))[2:-2] else: # no common tables to insert? jpeg_tables_bytes = bytes(bytearray([])) # this page has multiple JPEG tiles txsize = page.tags.tile_width.value tysize = page.tags.tile_length.value tcols = pxsize / txsize + (pxsize % txsize > 0) trows = pysize / tysize + (pysize % tysize > 0) return pxsize, pysize, txsize, tysize, tcols, trows, jpeg_tables_bytes def getTile(page, infile, jpeg_tables_bytes, tileno): jpeg = jpeg_assemble(jpeg_tables_bytes, load_tile(infile, page.tags.tile_offsets.value[tileno], page.tags.tile_byte_counts.value[tileno])) outfile = StringIO.StringIO() outfile.write( jpeg ) outfile.seek(0) image = Image.open(outfile) ret = numpy.asarray(image) outfile.close() return ret def maxTile(page, infile): pxsize, pysize, txsize, tysize, tcols, trows, jpeg_tables_bytes = get_page_info(page) maxval = 0 for tileno in range(0, len(page.tags.tile_offsets.value)): tile = getTile(page, infile, jpeg_tables_bytes, tileno) maxval = max(maxval, tile.max()) return maxval for channelno in range(0, len(tiff_outpages)): tiff_maxval.append([]) for pageno in range(0, len(tiff_outpages[0])): tiff_maxval[channelno].append(max(0, maxTile(tiff_outpages[channelno][pageno], tiff_infile[channelno]))) for pageno in range(0, len(tiff_outpages[0])): page = tiff_outpages[0][pageno] # panic if these change from reverse-engineered samples assert page.tags.fill_order.value == 1 assert page.tags.orientation.value == 1 assert page.tags.compression.value == 7 # new-style JPEG if prev_page is not None: assert prev_page.tags.image_width.value == (page.tags.image_width.value / 2) assert prev_page.tags.image_length.value == (page.tags.image_length.value / 2) tiff_page_info = [] for channelno in range(0, len(tiff_outpages)): tiff_page_info.append(tiff_outpages[channelno][pageno]) for tileno in range(0, len(page.tags.tile_offsets.value)): tile_array = [] for channelno in range(0, len(tiff_outpages)): tiffPage = tiff_outpages[channelno][pageno] pxsize, pysize, txsize, tysize, tcols, trows, jpeg_tables_bytes = get_page_info(tiffPage) # figure position of tile within tile array trow = tileno / tcols tcol = tileno % tcols assert trow >= 0 and trow < trows assert tcol >= 0 and tcol < tcols if tile_width is not None: assert tile_width == txsize assert tile_length == tysize else: tile_width = txsize tile_length = tysize tile = getTile(tiffPage, tiff_infile[channelno], jpeg_tables_bytes, tileno) tile_norm = (255 * (tile.astype('float') / tiff_maxval[channelno][pageno])).astype('uint8') tile_array.append(tile_norm) rgb_array = numpy.dstack( tuple(tile_array) ) rgb_image = Image.fromarray(rgb_array) write_tile(tileno, trow, tcol, rgb_image) # each page is next higher zoom level zoomno += 1 prev_page = page outinfo.append( dict( tile_width= txsize, tile_length= tysize, image_width_orig= pxsize, image_length_orig= pysize, image_width_padded= tcols * txsize, image_length_padded= trows * tysize, total_tile_count= total_tiles ) ) for infile in tiff_infile: infile.close() if need_to_build_0: # tier 0 was missing from input image, so built it from tier 1 data page = outpages[0] pxsize, pysize, txsize, tysize, tcols, trows, jpeg_tables_bytes = get_page_info(page) tier1 = None for tileno in range(0, len(page.tags.tile_offsets.value)): trow = tileno / tcols tcol = tileno % tcols image = Image.open(tile_template % dict(zoomno=1, tcolno=tcol, trowno=trow, outdir=outdir, groupno=0)) if tier1 is None: # lazily create with proper pixel data type tier1 = Image.new(image.mode, (tcols * txsize, trows * tysize)) # accumulate tile into tier1 image tier1.paste(image, (tcol * txsize, trow * tysize)) # generate reduced resolution tier and crop to real page size tier0 = tier1.resize( (txsize * tcols / 2, tysize * trows / 2), Image.ANTIALIAS ).crop((0, 0, pxsize / 2, pysize / 2)) assert tier0.size[0] <= txsize assert tier0.size[1] <= tysize # write final tile tier0.save(tile_template % dict(zoomno=0, tcolno=0, trowno=0, outdir=outdir, groupno=0), 'JPEG') else: # tier 0 must be cropped down to the page size... page = outpages[0] pxsize, pysize, txsize, tysize, tcols, trows, jpeg_tables_bytes = get_page_info(page) image = Image.open(tile_template % dict(zoomno=0, tcolno=0, trowno=0, outdir=outdir, groupno=0)) image = image.crop((0,0, pxsize,pysize)) image.save(tile_template % dict(zoomno=0, tcolno=0, trowno=0, outdir=outdir, groupno=0), 'JPEG') zoomify_descriptor = """ <IMAGE_PROPERTIES width="%(image_width_padded)d" height="%(image_length_padded)d" numTiles="%(total_tile_count)d" numImages="1" version="1.8" tileSize="%(tile_width)d" /> """ % outinfo[-1] f = open('%s/ImageProperties.xml' % outdir, 'w') f.write(zoomify_descriptor) f.close
from django.contrib import admin from . models import Videos, Comment # Register your models here. admin.site.register(Videos) admin.site.register(Comment)
# myproject/apps/core/admin.py from django.conf import settings def get_multilingual_field_names(field_name): lang_code_underscored = settings.LANGUAGE_CODE.replace("-", "_") field_names = [f"{field_name}_{lang_code_underscored}"] for lang_code, lang_name in settings.LANGUAGES: if lang_code != settings.LANGUAGE_CODE: lang_code_underscored = lang_code.replace("-", "_") field_names.append( f"{field_name}_{lang_code_underscored}" ) return field_names
# -*- coding: utf-8 -*- # Python Libraries import MySQLdb import json import io import datetime import re # Importing other code from classes import * def saveJson(json_name, objects_list, encoder_class): with io.open(''+json_name+'.json', 'w', encoding='utf-8') as jsonTemp: jsonTemp.write(unicode(json.dumps(objects_list, jsonTemp, cls=encoder_class, indent=2))) jsonTemp.close() ''' Get users and data from database ''' print "\nGet data from database\n" # Set the proper params database_host = "" database_user = "" database_passwd = "" database_name = "" db = MySQLdb.connect(host=database_host,user=database_user,passwd=database_passwd, db=database_name) users_list = [] groups_list = [] membership_list = [] friendship_list = [] cur = db.cursor() # SQL Query cur.execute("""SELECT PrincipalID, FirstName, LastName, Email from UserAccounts """) for row in cur.fetchall(): p = User(user_id=row[0], user_name=row[1].replace("*pending* ", ""), user_surname=row[2], email=row[3]) users_list.append(p) saveJson("users", users_list, UserEncoder) ''' Other queries that could be used - These queries produce json files with the info. - You can format these data to ARFF using utilities available in this code # Interesting fields in the "UserAccounts" table # PrincipalID # FirstName # LastName # Email # UserLevel -> superadmins have a 100 user level. Common users an user level = 0 # UserTitle -> the label for an user, not all have one. # "friends" Table # PrincipalID # Friend # Flags ? # Offered ? # The "griduser" table keeps the users' positions within the virtual world # "osgroup" table # GroupID # Name (of the group) # OwnerRoleID # "osgroupmembership" Table # GroupID # AgentID # Get groups cur.execute("""SELECT GroupID, Name, OwnerRoleID from osgroup """) for row in cur.fetchall(): print row[0] print row[1] print row[2] g = Group(group_id=row[0], group_name=row[1], group_owner=row[2]) groups_list.append(g) with io.open('path/groups.json', 'w', encoding='utf-8') as groups_json: groups_json.write(unicode(json.dumps(groups_list, groups_json, cls=GroupEncoder, indent=2))) groups_json.close() # Get members of groups cur.execute("""SELECT GroupID, AgentID from osgroupmembership """) for row in cur.fetchall(): print row[0] print row[1] g = Member(group_id=row[0], user_id=row[1], ) membership_list.append(g) with io.open('path/groupsMembers.json', 'w', encoding='utf-8') as members_json: members_json.write(unicode(json.dumps(membership_list, members_json, cls=MembersEncoder, indent=2))) members_json.close() # Get friends cur.execute("""SELECT PrincipalID, Friend from friends """) for row in cur.fetchall(): print row[0] print row[1] g = Friend(user_id1=row[0], user_id2=row[1], ) friendship_list.append(g) with io.open('path/friends.json', 'w', encoding='utf-8') as json_friends: json_friends.write(unicode(json.dumps(friendship_list, json_friends, cls=FriendsEncoder, indent=2))) json_friends.close() ''' ''' Get sessions from Opensim log ''' session_list = [] date_temp = [] hour_temp = [] h2_temp = [] begin_session = 0 fin_session = 0 print "\nReal Sessions\n" # path to Opensim Robust.log log_path = "" f = open(log_path) line = f.readline() for line in f: if line.find("OpenSim.Services.PresenceService.PresenceService [PRESENCE SERVICE]: LoginAgent") >= 0: begin_session = begin_session+1 session_init = re.search("(.+).LoginAgent (.+).with session (.+).and ssession (.+)", line) if session_init is not None: date_beg_session = re.split(" ", session_init.group(1)) date_temp = date_beg_session[0].split("-") hour_temp = date_beg_session[1].split(":") h2_temp=hour_temp[2].split(",",1) p = Session(session_id=str(session_init.group(3)), user_id=str(session_init.group(2)), date_init=str(date_beg_session[0]), year_init=str(date_temp[0]), month_init=str(date_temp[1]), day_init=str(date_temp[2]), hour_init=str(date_beg_session[1]), hours_init=str(hour_temp[0]), minutes_init=str(hour_temp[1]), seconds_init=str(h2_temp[0]), date_fin=0, year_fin=0, month_fin=0, day_fin=0, hour_fin=0, hours_fin=0, minutes_fin=0, seconds_fin=0, session_t=0) session_list.append(p) elif line.find("OpenSim.Services.PresenceService.PresenceService [PRESENCE SERVICE]: Session") >= 0: fin_session = fin_session+1 endSession = re.search("(.+).Session (.+).logout", line) if endSession is not None: date_e_session = re.split(" ", endSession.group(1)) for x in session_list: if x.session_id == endSession.group(2): x.date_fin = str(date_e_session[0]) x.hour_fin = str(date_e_session[1]) date_temp = date_e_session[0].split("-") x.year_fin = str(date_temp[0]) x.month_fin = str(date_temp[1]) x.day_fin = str(date_temp[2]) hour_temp = x.hour_fin.split(":") h2_temp = hour_temp[2].split(",",1) x.hours_fin = str(hour_temp[0]) x.minutes_fin = str(hour_temp[1]) x.seconds_fin = str(h2_temp[0]) d1 = datetime.datetime.strptime(x.date_init+" "+x.hours_init+":"+x.minutes_init + ":"+x.seconds_init, "%Y-%m-%d %H:%M:%S") d2 = datetime.datetime.strptime(x.date_fin+" "+x.hours_fin+":"+x.minutes_fin + ":"+x.seconds_fin, "%Y-%m-%d %H:%M:%S") result = d2 - d1 x.session_t = str(result.total_seconds()) time_total_sec = 0 time_total_hours = 0.0 time_average_min = 0.0 for x in session_list: time_total_sec += float(x.session_t) tMedioSeg = time_total_sec/len(session_list) time_total_hours = time_total_sec/3660 time_average_min = tMedioSeg/60 print "With real users" print "How many sessions started %d, complete sessions: %d" % (begin_session, fin_session) print "Users have employed %d seconds or %.2f hours in the world" % (time_total_sec, time_total_hours) print "Average time of %d seconds or %.2f minutes per user" % (tMedioSeg, time_average_min) saveJson("sessions", session_list, SessionEncoder) print "\n\nReal sessions for Weka\n\n" arff = open ("sessions.arff", "w") arff.write("% Title: Info about sessions\n% Creator: Juan Cruz-Benito\n% Date: June, 2013\n\n") arff.write("@relation 'Sessions'\n") arff.write("\n@attribute CLASE {Login, Logout}\n") arff.write("@attribute user_id string\n@attribute fecha DATE yyyy-MM-dd HH:mm:ss\n") arff.write("\n\n@data\n") for x in session_list: if x.date_fin != 0: arff.write("Login,"+str(x.user_id)+","+str(x.date_init)+" "+str(x.hours_init)+":" +str(x.minutes_init)+":"+str(x.seconds_init)+"\n") arff.write("Logout,"+str(x.user_id)+","+str(x.date_fin)+" "+str(x.hours_fin)+":" +str(x.minutes_fin)+":"+str(x.seconds_fin)+"\n") arff.close() ''' Get movements from Virtual World's log ''' teleports_requests_counter = 0 teleports_incomplete_counter = 0 teleports_complete_counter = 0 teleports_list = [] out_terrain_counter = 0 close_terrain_counter = 0 close_connection_counter = 0 arrival_terrain_counter = 0 print "\nTeleports Reales\n" # path to Opensim Opensim.log log_path = "" f = open(log_path) line = f.readline() for line in f: if line.find("Request Teleport to") >= 0: # Example # 2012-07-05 09:43:34,697 DEBUG - OpenSim.Region.CoreModules.Framework.EntityTransfer.EntityTransferModule # [ENTITY TRANSFER MODULE]: Request Teleport to http://212.128.146.39:1935/ (http://212.128.146.39:1935/) # USALPHARMA/<128, 128, 1.5> teleport_request = re.search("(.+).Request Teleport to http://(.+)/ \(http://(.+)/\) (.+)/.", line) if teleport_request is not None: teleport_date = re.split(" ", teleport_request.group(1)) teleport_region_dest_o = teleport_request.group(4) teleports_requests_counter = teleports_requests_counter+1 for line in f: if line.find("Closing child agents. Checking") >= 0: # Example # 2012-07-05 09:35:02,498 DEBUG - OpenSim.Region.Framework.Scenes.ScenePresence [SCENE PRESENCE]: # Closing child agents. Checking 1 regions in USAL SIPPE teleport_o = re.search("(.+).Closing child agents. Checking (.+) regions in (.+)", line) if teleport_o is not None: teleport_date = re.split(" ", teleport_request.group(1)) source_region_teleport = teleport_o.group(3) horaTemp = teleport_date[1].split(",",1) hour_initTemp = horaTemp[0] p = Teleport(user_name="", date_init=str(teleport_date[0]), hour_init=str(hour_initTemp), teleport_source=str(source_region_teleport.replace(" ", "_")), teleport_dest="") teleports_list.append(p) posLisAct = len(teleports_list) out_terrain_counter = out_terrain_counter+1 elif line.find("Upgrading child to root agent") >= 0: # Example # 2012-07-05 09:35:04,490 DEBUG - OpenSim.Region.Framework.Scenes.ScenePresence [SCENE]: # Upgrading child to root agent for Admin SIPPE in USALBIO teleport_d = re.search("Upgrading child to root agent for (.+) in (.+)", line) if teleport_d is not None: arrival_counter = arrival_terrain_counter+1 if teleport_d.group(2) == teleport_region_dest_o: regionteleport_d = teleport_d.group(2) teleports_complete_counter = teleports_complete_counter+1 teleports_list[posLisAct-1].teleport_dest = str(regionteleport_d.replace (" ", "_")) teleports_list[posLisAct-1].user_name = str(teleport_d.group(1).replace (" ", "_")) else: teleports_incomplete_counter = teleports_incomplete_counter+1 break elif line.find("Closing child agents. Checking") >= 0: # Example # 2012-07-05 09:35:02,498 DEBUG - OpenSim.Region.Framework.Scenes.ScenePresence [SCENE PRESENCE]: Closing # child agents. Checking 1 regions in USAL SIPPE teleport_source = re.search("(.+).Closing child agents. Checking (.+) regions in (.+)", line) if teleport_source is not None: out_terrain_counter = out_terrain_counter+1 elif line.find("Removing root agent") >= 0: # Example # 2012-12-03 14:49:16,846 DEBUG - OpenSim.Region.Framework.Scenes.Scene [SCENE]: Removing root agent # Patricia Gonzalez f09f6a7e-2baf-4cb4-a9af-db3ca7714ad5 from USALBIO terrain_close = re.search(".Removing root agent (.+) (.+)from (.+)", line) if terrain_close is not None: close_terrain_counter = close_terrain_counter+1 elif line.find("Removing child agent") >= 0: # Example # 2012-12-03 14:49:16,863 DEBUG - OpenSim.Region.Framework.Scenes.Scene [SCENE]: Removing child agent # Patricia Gonzalez f09f6a7e-2baf-4cb4-a9af-db3ca7714ad5 from Animal Recovery Center connection_close = re.search(".Removing child agent (.+) (.+)from (.+)", line) if connection_close is not None: close_connection_counter = close_connection_counter+1 elif line.find("Upgrading child to root agent") >= 0: # Example # 2012-07-05 09:35:04,490 DEBUG - OpenSim.Region.Framework.Scenes.ScenePresence [SCENE]: Upgrading child # to root agent for Admin SIPPE in USALBIO teleport_dest = re.search(".Upgrading child to root agent for (.+) in (.+)", line) if teleport_dest is not None: arrival_terrain_counter = arrival_terrain_counter+1 teleport_source_list = [] teleport_dest_list = [] for x in teleports_list: if x.teleport_source not in teleport_source_list: teleport_source_list.append(x.teleport_source) if x.teleport_dest not in teleport_dest_list: teleport_dest_list.append(x.teleport_dest) teleport_source_list_str = str(teleport_source_list).replace("[", "") teleport_source_list_str = teleport_source_list_str.replace("]", "") teleport_dest_list_str = str(teleport_dest_list).replace("[", "") teleport_dest_list_str = teleport_dest_list_str.replace("]", "") print "\n\nWeka Teleports\n\n" arff = open ("teleports.arff", "w") arff.write("% Title: Info about teleports\n% Creator: Juan Cruz-Benito\n% Date: June, 2013\n\n") arff.write("@relation 'Teleports'\n") arff.write("\n@attribute CLASE {CompleteTeleport, IncompleteTeleport}\n") arff.write("@attribute user_name string\n@attribute teleport_source {"+teleport_source_list_str+"}" "\n@attribute teleport_dest {"+teleport_dest_list_str+"}\n@attribute date " "DATE yyyy-MM-dd HH:mm:ss") arff.write("\n\n@data\n") for x in teleports_list: if (x.user_name != "") or (x.teleport_dest != ""): arff.write("CompleteTeleport," + str(x.user_name) + "," + str(x.teleport_source) + "," + str(x.teleport_dest) + "," + str(x.date_init) + " " + str(x.hour_init)+"\n") elif x.user_name != "": arff.write("IncompleteTeleport,?" + ","+str(x.teleport_source) + "," + str(x.teleport_dest) + "," + str(x.date_init) + " " + str(x.hour_init)+"\n") elif x.teleport_dest != "": arff.write("IncompleteTeleport," + str(x.user_name)+"," + str(x.teleport_source) + ",?," + str(x.date_init)+" " + str(x.hour_init)+"\n") else: arff.write("IncompleteTeleport,?" + "," + str(x.teleport_source) + ",?," + str(x.date_init) + " " + str(x.hour_init) + "\n") arff.close() print "Number of teleport requests %d" % teleports_requests_counter print "Complete teleports: %d" % teleports_complete_counter print "Incomplete teleports: %d" % teleports_incomplete_counter print "Departures from terrain/island: %d" % out_terrain_counter print "Clossing connections in a terrain: %d" % close_terrain_counter print "Clossing connections: %d" % close_connection_counter print "Arrivals to terrain/island: %d" % arrival_terrain_counter saveJson("real_movements", teleports_list, TeleportEncoder)
import random import numpy as np from kerastuner.tuners import Hyperband from sklearn.model_selection import RandomizedSearchCV class Model: def __init__( self, X_train, X_test, y_train, y_test, metric, metric_sign, cv ): self.metric = metric self.metric_sign = metric_sign self.results = [] self.X_train = X_train self.X_test = X_test self.y_train = y_train self.y_test = y_test self.cv = cv def param_tunning_method(self, estimator, desc, params=None, sqrt=False): if params is None: params = {} if not bool(params): if desc == "Neural Networks": trained_model = self.__train_neural_networks(estimator) else: trained_model = self.__train_without_optimizer(estimator) else: trained_model = self.__randomized_search(estimator, params, sqrt) y_pred = trained_model.predict(self.X_test) if desc == "Neural Networks": if estimator.get_output_units() == 2: y_pred[y_pred > .5] = 1 y_pred[y_pred <= .5] = 0 else: y_pred = np.argmax(y_pred, axis=1) metric = self.metric(self.y_test, y_pred) if hasattr(trained_model, "best_params_"): print("The best params found: " + str(trained_model.best_params_)) print("[%s] Score: %f\n" % (desc, metric)) self.results.append( { "name": desc, "model": trained_model, "score": metric } ) def __randomized_search(self, estimator, params, sqrt=False): n_space = np.prod([len(params[x]) for x in params.keys()]) if sqrt: n_space = np.sqrt(n_space) try: randomized = RandomizedSearchCV( estimator=estimator, param_distributions=params, random_state=0, cv=self.cv, n_jobs=-1, # uses all available processors n_iter=n_space ) except: randomized = RandomizedSearchCV( estimator=estimator, param_distributions=params, random_state=0, cv=self.cv, n_iter=n_space ) return randomized.fit(self.X_train, self.y_train) def __train_without_optimizer(self, estimator): return estimator.fit(self.X_train, self.y_train) def __train_neural_networks(self, estimator): if estimator.get_metric() == "mse": tuner = Hyperband( estimator, max_epochs=20, objective="val_mse", executions_per_trial=1, directory="regression_nn" + str(random.randint(0, 1000)) ) else: tuner = Hyperband( estimator, max_epochs=20, objective="val_accuracy", executions_per_trial=1, directory="classification_nn" + str(random.randint(0, 1000)) ) tuner.search(self.X_train, self.y_train, epochs=1, validation_split=0.1, verbose=0) return tuner.get_best_models(num_models=1)[0]
""" Spatial helper files """ __version__ = '0.2' import math import numpy as np import pysal.lib.cg.sphere as sphere def geointerpolate(point0, point1, proportion): """Interpolate on great sphere (world coords) Arguments: point0 {list} -- (lng,lat) of first point point1 {list} -- (lng,lat) of first point proportion {float} -- the interpolation distance Returns: list -- the list of interpolated points (lng,lat) """ return sphere.geointerpolate(point0, point1, proportion) def geo_distance_in_km(pt1, pt2): """ Get the distance in km between two (lng,lat) poinmts Arguments: pt1 {list} -- (lng,lat) of first point pt2 {list} -- (lng,lat) of second point Returns: float -- Ditance between pt1 and pt2 """ return sphere.harcdist(pt1, pt2) def get_nearest_point(kdtree, the_pt, dist_thresh_in_km=0.005): """ Get the nearest point to "the_pt" using the the kd=tree index Arguments: kd {[KDTree]} -- The KD-tree of all the points the_pt {list} -- [x,y] of the point Keyword Arguments: dist_thresh_in_km {float} -- The maximum distance (in km) within which the nearest points have to be searched (default: {0.005}) Returns: list -- A tuple of the nearest point in the tuple (distance, point index) """ dist_in_km, ind = kdtree.query(the_pt, k=1) if dist_in_km is not None and dist_in_km <= dist_thresh_in_km: return dist_in_km, ind return None, None def add_graph_attr_to_entry_exit(entry_points, kd_points, points_arr, rev_point_dict): """ Enhance the graph attributes for entry and exit points Arguments: entry_points {list} -- List of entry points kd_points {KDTree} -- KDTree of points points_arr {list} -- list of points rev_point_dict {dictionary} -- A dictionary mapping points to ids """ for ept in entry_points: _, ind = get_nearest_point( kd_points, ept["approx_coordinate"], dist_thresh_in_km=0.005) if ind is not None: ept['node_id'] = rev_point_dict[points_arr[ind]] def get_lng_lat_coord(origin_lnglat, xy_pt): """ Get the (lng, lat) from a given eucledian point (x,y). The origin point is given by origin_lnglat in (longitude, latitude) format. We assume (x,y) is "x" kilometers along longitude from the origin_lnglat, and "y" kilometers along the latitude. NOTE: (x,y) is in km from origin (and NOT in meters) Arguments: origin_lnglat {list} -- The (longitude,latitude) of the origin point xy_pt {tuple} -- The (x,y) point (see above for details) Returns: list -- The (longitude, latitude) of the (x,y) point """ ret_pt = list((0, 0)) (var_dx, var_dy) = xy_pt ret_pt[1] = origin_lnglat[1] - (var_dy * 360.0 / 40000.0) ret_pt[0] = origin_lnglat[0] - \ (var_dx * 360.0 / (40000.0 * math.cos((origin_lnglat[1] + ret_pt[1]) * math.pi / 360.0))) ret_pt = tuple(ret_pt) return ret_pt def get_flat_earth_coord(origin, the_pt): """ Get the flat earth coordinates (x,y) from a given (lng,lat) point "pt". The (x,y) is the offset in lng and lat dimensions (in meters or km) from a given origin point (olng, olat) Arguments: origin {list} -- (lng,lat) of the origin point pt {list} -- (lnt,lat) of the point Returns: [type] -- [description] """ vardx = ((origin[0] - the_pt[0]) * 40000.0 * math.cos((origin[1] + the_pt[1]) * math.pi / 360) / 360) vardy = (origin[1] - the_pt[1]) * 40000.0 / 360 return vardx, vardy def get_euc_dist(pt1, pt2): """ Get eucledian distance between two points pt1 and pt2 Note that we assume we pass flat earth coords (x,y) and (lng,lat), since eucledian distance of (lng,lat) does not yield meaningful distances Arguments: pt1 {[type]} -- [description] pt2 {[type]} -- [description] Returns: [type] -- [description] """ return math.hypot(pt2[0] - pt1[0], pt2[1] - pt1[1]) def get_radangle_flat_earth_old(pt1, pt2): """Get the angle for two given points (in flat earth coords) Arguments: pt1 {list} -- (x,y) for the first point pt2 {list} -- (x,y) for the first point Returns: float -- Angle (in radians) betweent pt1 and pt2 """ ydiff = pt1[1] - pt2[1] xdiff = pt1[0] - pt2[0] if abs(xdiff) < 1E-6: return math.pi / 2.0 return math.atan(ydiff / float(xdiff)) def angle_trunc(the_angle): """ Truncate the angle between [0, 360) Arguments: the_angle {float} -- angle Returns: float -- Angle between [0,360)] """ while the_angle < 0.0: the_angle += math.pi * 2 return the_angle def get_radangle_flat_earth(the_pt1, the_pt2): """Get the angle for two given points (in flat earth coords) Arguments: pt1 {list} -- (x,y) for the first point pt2 {list} -- (x,y) for the first point Returns: float -- Angle (in radians) betweent pt1 and pt2 """ delta_y = the_pt2[1] - the_pt1[1] delta_x = the_pt2[0] - the_pt1[0] return angle_trunc(math.atan2(delta_y, delta_x)) def get_all_rects(rect, the_pt): """ Get all rectangles for the point the_pt Arguments: rect {KDTree rect} -- Input rectangle kdtree the_pt {[type]} -- [description] Returns: [type] -- [description] """ res = [r.leaf_obj() for r in rect.query_point(the_pt) if r.is_leaf()] return res def get_angle_between_pts_on_sphere(the_pt1, the_pt2): """ Get the angle between two points on a sphere Arguments: the_pt1 {list} -- (lng,lat) of first point the_pt2 {list} -- (lng,lat) of second point Returns: float -- angle in radians between first and second point """ return sphere.radangle(the_pt1, the_pt2) def get_origin(pt_dict): """ Get the origin point of all points (mean lng and lat) Arguments: pt_dict {[list]} -- list of all points Returns: list -- the origin point """ # Compute origin lngs = [v[0] for v in pt_dict.values()] lats = [v[1] for v in pt_dict.values()] origin = (np.mean(lngs), np.mean(lats)) #origin_angle_rad = get_angle_between_pts_on_sphere((0,0), origin) return origin def add_camera_attr_with_entry_exit(cameras_dict, cam_rtree, entry_point_attributes, exit_point_attributes): """Based on entry and exit points, we assign entry and exit camearas Arguments: cameras_dict {dict} -- Dict of cameras cam_rtree {RTree} -- R-tree of camera points entry_point_attributes {list} -- List of entry points exit_point_attributes {list} -- List of exit points """ for ept in entry_point_attributes.values(): the_pt = ept['approx_coordinate'] cams = get_all_rects(cam_rtree, the_pt) cameras_detected = [cameras_dict[i] for i in cams] for cam in cameras_detected: cam['isEntryCamera'] = 1 for ept in exit_point_attributes.values(): the_pt = ept['approx_coordinate'] cams = get_all_rects(cam_rtree, the_pt) cameras_detected = [cameras_dict[i] for i in cams] for cam in cameras_detected: cam['isExitCamera'] = 1
# -*- coding: utf-8 -*- from symbol_table import SymbolTable TYPES = ['inteiro', 'flutuante'] OPERATIONS = ['=', '<>', '>', '<', '>=', '<=', '&&', '||'] success = True class Analyzer(): def __init__(self): self.symboltable = SymbolTable() success = True def scan_tree(self, node): currentStatus = self.verify_node(node) if(not currentStatus['goNextNode']): return for child in node.children: self.scan_tree(child) if(currentStatus['isNewContext']): self.symboltable.removeCurrentContext() if(currentStatus['isFunction']): line = self.symboltable.getGlobal() if(line['type'] != '' and not self.symboltable.hasReturn()): success = False print('[ERRO] Função ' + line['name'] + ' deveria retornar ' + line['type'] + ' em ' + str(line['line']) + ':' + str(line['column'])) def verify_node(self, node): if(node.value == 'declaracao_variaveis'): for var in node.children[1:]: dimension = self.verify_variable(var) status = self.symboltable.insert({ 'name': var.children[0].value, 'type': node.children[0].value, 'used': False, 'symbol_type': 'var', 'initialized': False, 'dimension': dimension, 'line': var.children[0].line, 'column': var.children[0].column, 'value': None }) var.children[0].table_pointer = self.symboltable.searchFor(var.children[0].value) if(not status): success = False return { 'goNextNode': False, 'isNewContext': False, 'isFunction': False, } elif(node.value == 'lista_parametros'): for param in node.children: self.symboltable.insert({ 'name': param.children[1].value, 'type': param.children[0].value, 'used': False, 'symbol_type': 'params', 'initialized': True, 'dimension': int(len(param.children[2:]) / 2), 'line': param.children[0].line, 'column': param.children[0].column }) line = self.symboltable.searchFor(param.children[1].value) param.children[1].table_pointer = line return { 'goNextNode': False, 'isNewContext': False, 'isFunction': False, } elif(node.value == 'atribuicao'): var = node.children[0] expression = node.children[1] self.verify_variable(var) line = self.verify_tableline(var, initialized = True, used = False) var_type = 'inteiro' if(line): var_type = line['type'] expression_type = self.verify_expression(expression) if(expression_type == 'wrong_type'): print('[AVISO] Atribuição de tipos distintos \'' + var.table_pointer['name'] + '\' ' + var_type + ' em ' + str(var.table_pointer['line']) + ':' + str(var.table_pointer['column'])) success = False elif(var_type != expression_type and expression_type != None): print('[AVISO] Atribuição de tipos distintos \'' + var.table_pointer['name'] + '\' ' + var_type + ' e ' + expression_type + ' em ' + str(var.table_pointer['line']) + ':' + str(var.table_pointer['column'])) success = False return { 'goNextNode': True, 'isNewContext': False, 'isFunction': False, } elif(node.value == 'corpo'): for child in node.children: if(child.value == 'expressao'): self.verify_expression(child) return { 'goNextNode': True, 'isNewContext': False, 'isFunction': False, } elif(node.value == 'retorna'): self.symboltable.setReturn() expression_type = self.verify_expression(node.children[0]) line = self.symboltable.getGlobal() if(line['type'] not in TYPES or expression_type not in TYPES): success = False print('[ERRO] Tipo de Retorno inválido em ' + str(node.line) + ':' + str(node.column)) elif(line['type'] != expression_type): print('[AVISO] Conversão Implícita de tipos em ' + str(node.line) + ':' + str(node.column)) return { 'goNextNode': False, 'isNewContext': False, 'isFunction': False, } elif(node.value == 'declaracao_funcao'): params = [] function_type = None if(len(node.children) == 4): function_type = node.children[0].value function_name = node.children[1].value params_list = node.children[2] else: function_name = node.children[0].value params_list = node.children[1] for param in params_list.children: params.append({ 'type': param.children[0].value, 'vet': 0 if len(param.children) == 2 else int((len(param.children) - 2)/2) }) status = self.symboltable.insert({ 'name': function_name, 'type': function_type if function_type else '', 'used': False, 'symbol_type': 'function', 'initialized': True, 'dimension': 0, 'params': params, 'line': node.children[0].line, 'column': node.children[0].column }) line = self.symboltable.searchFor(function_name, used = False) if(len(node.children) == 4): node.children[1].table_pointer = line else: node.children[0].table_pointer = line if(not status): success = False self.symboltable.insertContex(function_name) return { 'goNextNode': True, 'isNewContext': True, 'isFunction': True, } elif(node.value == 'repita' or node.value == 'se' or node.value == 'senão'): self.symboltable.insertContex(node.value) if(node.value == 'repita'): for child in node.children: if(child.value == 'expression'): self.verify_expression(child) return { 'goNextNode': True, 'isNewContext': True, 'isFunction': False, } elif(node.value == 'condicional'): for child in node.children: if(child.value == 'expression'): self.verify_expression(child) return { 'goNextNode': True, 'isNewContext': False, 'isFunction': False, } elif(node.value == 'leia'): var = node.children[0] var.children[0].table_pointer = self.verify_tableline(var, initialized = True) return { 'goNextNode': True, 'isNewContext': False, 'isFunction': False, } elif(node.value == 'chamada_funcao'): self.verify_function(node) return { 'goNextNode': True, 'isNewContext': False, 'isFunction': False, } elif(node.value == 'escreva'): self.verify_expression(node.children[0]) return { 'goNextNode': False, 'isNewContext': False, 'isFunction': False, } else: return { 'goNextNode': True, 'isNewContext': False, 'isFunction': False, } def verify_variable(self, node): dimension = 0 if(len(node.children) > 1): for child in node.children[1].children: if(child.value != '[' and child.value != ']'): var_type = self.verify_expression(child) var = self.verify_tableline(node, False) if(var_type and var_type != 'inteiro'): success = False print('[ERRO] Índice de array \'' + node.children[0].value + '\' não é inteiro, em ' + str(node.children[0].line) + ':' + str(node.children[0].column)) dimension += 1 return dimension def verify_function(self, node): function = self.verify_tableline(node, False) node.table_pointer = function if(function): params = function['params'] args = [] for expression in node.children[-1].children: arg = {} expression_type = self.verify_expression(expression).split(' ') arg['type'] = expression_type[0] arg['vet'] = int(expression_type[1]) if len(expression_type) == 2 else 0 args.append(arg) if(function['name'] == 'principal'): if(self.symboltable.getCurrentContex().scope == 'principal'): print('[AVISO] Chamada recursiva para principal.') else: success = False print('[ERRO] Chamada para a função principal não permitida.') if(len(params) != len(args)): success = False print('[ERRO] Chamada à função \'' + function['name'] + '\' com número de parâmetros diferente que o declarado. Esperado ' + str(len(params)) + ', mas recebido ' + str(len(args)) + ', em ' + str(function['line']) + ':' + str(function['column'])) elif(params != args): success = False print('[ERRO] Conversão Implícita em função \'' + function['name'] + '\' em ' + str(function['line']) + ':' + str(function['column'])) def verify_tableline(self, node_type, isError = True, used = True, initialized = False): aux = node_type.children[0].value line = self.symboltable.searchFor(aux, used = used, initialized = initialized) node_type.table_pointer = line if(not line): success = False if(isError): success = False print('[ERRO] Chamada à ' + ('variável ' if(node_type.value == 'var') else 'função ') + aux + ' que não foi declarada em ' + str(node_type.children[0].line) + ':' + str(node_type.children[0].column)) return line if line else None def verify_expression(self, node): if(node.value == 'expressao'): return self.verify_expression(node.children[0]) if(node.value == 'expressao_unaria'): children = node.children if(len(children) == 1): expression_type = children[0].children[0] else: operation = children[0].value expression_type = children[1].children[0] if(operation == '!'): if(expression_type.value == 'expressao'): self.verify_expression(expression_type) return 'wrong_type' if(expression_type.value == 'numero'): number = expression_type.children[0].value return 'inteiro' if(type(number) is int) else 'flutuante' elif(expression_type.value == 'expressao'): return self.verify_expression(expression_type) else: line = self.verify_tableline(expression_type) if(line and (line['symbol_type'] == 'var' or line['symbol_type'] == 'params')): dimension = line['dimension'] if(dimension != 0): real_dimension = len(expression_type.children) - 1 if(dimension - real_dimension != 0): return line['type'] if(expression_type.value == 'chamada_funcao'): self.verify_function(expression_type) return line['type'] if line else None elif(len(node.children) >= 2): type1 = self.verify_expression(node.children[0]) type2 = self.verify_expression(node.children[1]) if(node.value in OPERATIONS): if(not type1 or not type2 or (len(type1.split(' ')) == 2 or len(type2.split(' ')) == 2)): print('[AVISO] Tipo Inválido em ' + str(node.line) + ':' + str(node.column)) return 'wrong_type' if(type1 == type2): return type1 elif(type1 in TYPES and type2 in TYPES): return 'flutuante' else: return self.verify_expression(node.children[0]) return None def verify_principal(self): line = self.symboltable.hasPrincipal() if(line and line['used']): print('[ERRO] Chamada para a função principal não permitida.') success = False elif(not line): print('[ERRO] Função principal não declarada.') success = False def verify_other_points(self): for line in self.symboltable.getUninitializedLines(): print('[AVISO] Variável \'' + line['name'] + '\' declarada, e não utilizada em ' + str(line['line']) + ':' + str(line['column'])) for line in self.symboltable.getUnusedLines(): if(line['name'] == 'principal'): continue print('[AVISO] Função \'' + line['name'] + '\' declarada, mas não utilizada em ' + str(line['line']) + ':' + str(line['column'])) def analyzer(tree): analyzer = Analyzer() analyzer.scan_tree(tree) analyzer.verify_principal() analyzer.verify_other_points() return success
DATA = [ {'timestamp': 100000000, 'momentary': -79.89229196784386, 'shortterm': -88.642904601760861, 'global': float('-inf'), 'window': -90.861392097924423, 'range': 0}, {'timestamp': 200000000, 'momentary': -66.953377330406298, 'shortterm': -75.703989964323284, 'global': float('-inf'), 'window': -77.92247746048686, 'range': 0}, {'timestamp': 300000000, 'momentary': -36.757750473281597, 'shortterm': -45.508363107198605, 'global': float('-inf'), 'window': -47.726850603362166, 'range': 0}, {'timestamp': 400000000, 'momentary': -32.821624718837185, 'shortterm': -41.572237352754179, 'global': -32.821624718837185, 'window': -43.790724848917741, 'range': 0}, {'timestamp': 500000000, 'momentary': -30.739924072566936, 'shortterm': -39.490483917308033, 'global': -31.657222948761262, 'window': -41.708971413471595, 'range': 0}, {'timestamp': 600000000, 'momentary': -29.191061788402944, 'shortterm': -37.940947452455575, 'global': -30.671388479460788, 'window': -40.159434948619136, 'range': 0}, {'timestamp': 700000000, 'momentary': -28.173243287136938, 'shortterm': -36.360404506607537, 'global': -29.89996316806052, 'window': -38.578892002771099, 'range': 0}, {'timestamp': 800000000, 'momentary': -27.059463442954048, 'shortterm': -34.788043237402839, 'global': -29.164016371220104, 'window': -37.006530733566393, 'range': 0}, {'timestamp': 900000000, 'momentary': -24.934545614523024, 'shortterm': -32.672141130775842, 'global': -28.109949343636824, 'window': -34.89062862693941, 'range': 0}, {'timestamp': 1000000000, 'momentary': -23.058202928981988, 'shortterm': -30.861793862582122, 'global': -26.922965683881078, 'window': -33.080281358745687, 'range': 0}, {'timestamp': 1100000000, 'momentary': -21.394062127219279, 'shortterm': -29.213905515414311, 'global': -25.712365280980293, 'window': -31.432393011577872, 'range': 0}, {'timestamp': 1200000000, 'momentary': -19.98117393839529, 'shortterm': -27.769794410919399, 'global': -24.557320692722932, 'window': -29.98828190708296, 'range': 0}, {'timestamp': 1300000000, 'momentary': -19.804646360860072, 'shortterm': -27.132817139207223, 'global': -23.770135372744758, 'window': -29.351304635370784, 'range': 0}, {'timestamp': 1400000000, 'momentary': -19.934685931767618, 'shortterm': -26.628304045141157, 'global': -23.243373042839192, 'window': -28.846791541304722, 'range': 0}, {'timestamp': 1500000000, 'momentary': -20.88727028393912, 'shortterm': -26.41042249555279, 'global': -22.990203731923454, 'window': -28.628909991716355, 'range': 0}, {'timestamp': 1600000000, 'momentary': -23.066111209687978, 'shortterm': -26.327701245780499, 'global': -22.995995897109623, 'window': -28.546188741944061, 'range': 0}, {'timestamp': 1700000000, 'momentary': -25.07298856065384, 'shortterm': -26.289734669937484, 'global': -23.115546578265732, 'window': -28.508222166101046, 'range': 0}, {'timestamp': 1800000000, 'momentary': -28.481812628835826, 'shortterm': -26.265953674536416, 'global': -23.325938716764206, 'window': -28.484441170699977, 'range': 0}, {'timestamp': 1900000000, 'momentary': -32.08704529327035, 'shortterm': -26.256486134563954, 'global': -23.567884908961119, 'window': -28.474973630727519, 'range': 0}, {'timestamp': 2000000000, 'momentary': -35.012235630574096, 'shortterm': -26.250008728606399, 'global': -23.567884908961119, 'window': -28.468496224769964, 'range': 0}, {'timestamp': 2100000000, 'momentary': -36.514574009813032, 'shortterm': -26.235095475230427, 'global': -23.567884908961119, 'window': -28.453582971393992, 'range': 0}, {'timestamp': 2200000000, 'momentary': -32.341418349672971, 'shortterm': -26.125308338332044, 'global': -23.79532198676598, 'window': -28.343795834495605, 'range': 0}, {'timestamp': 2300000000, 'momentary': -28.335550032218929, 'shortterm': -25.91176600140825, 'global': -23.95466628457714, 'window': -28.130253497571811, 'range': 0}, {'timestamp': 2400000000, 'momentary': -26.168839070238189, 'shortterm': -25.69680361761219, 'global': -24.046933600786414, 'window': -27.915291113775755, 'range': 0}, {'timestamp': 2500000000, 'momentary': -24.907195955920113, 'shortterm': -25.512519691157657, 'global': -24.086130884859191, 'window': -27.731007187321218, 'range': 0}, {'timestamp': 2600000000, 'momentary': -23.849495596113446, 'shortterm': -25.243327370090057, 'global': -24.07456530811297, 'window': -27.461814866253622, 'range': 0}, {'timestamp': 2700000000, 'momentary': -22.842689283230918, 'shortterm': -24.872702248693745, 'global': -24.010300110202007, 'window': -27.091189744857306, 'range': 0}, {'timestamp': 2800000000, 'momentary': -20.464404718814905, 'shortterm': -24.098683654888152, 'global': -23.778222099352966, 'window': -26.317171151051721, 'range': 0}, {'timestamp': 2900000000, 'momentary': -18.890359166023554, 'shortterm': -23.43733748202774, 'global': -23.416980367412787, 'window': -25.655824978191301, 'range': 0}, {'timestamp': 3000000000, 'momentary': -18.327172255623648, 'shortterm': -23.054108563545935, 'global': -23.046166973502832, 'window': -25.2725960597095, 'range': 0}, {'timestamp': 3100000000, 'momentary': -18.137408944334162, 'shortterm': -22.754197417370442, 'global': -22.709373023701726, 'window': -24.972683794318968, 'range': 0}, {'timestamp': 3200000000, 'momentary': -19.601679596346695, 'shortterm': -22.71401980561691, 'global': -22.54440077709743, 'window': -24.932485485223904, 'range': 0}, {'timestamp': 3300000000, 'momentary': -21.826648728806532, 'shortterm': -22.692855927138144, 'global': -22.373155941093014, 'window': -24.888691738136099, 'range': 0}, {'timestamp': 3400000000, 'momentary': -23.591080698627398, 'shortterm': -22.625363739466192, 'global': -22.549563561616036, 'window': -24.788853581523924, 'range': 0}, {'timestamp': 3500000000, 'momentary': -23.595920223393183, 'shortterm': -22.385354439689934, 'global': -22.580669617289157, 'window': -24.520074301737857, 'range': 0}, {'timestamp': 3600000000, 'momentary': -22.236999497677242, 'shortterm': -22.226475284807375, 'global': -22.569148338011232, 'window': -24.329995032531297, 'range': 0}, {'timestamp': 3700000000, 'momentary': -21.461064124489322, 'shortterm': -22.126435168279048, 'global': -22.404705954365912, 'window': -24.184109387174491, 'range': 0}, {'timestamp': 3800000000, 'momentary': -20.863706586362337, 'shortterm': -22.010829516561099, 'global': -22.347280568264228, 'window': -24.006036368081546, 'range': 0}, {'timestamp': 3900000000, 'momentary': -20.352576660858315, 'shortterm': -21.820934562021158, 'global': -22.271230033166379, 'window': -23.696341046011376, 'range': 0}, {'timestamp': 4000000000, 'momentary': -19.242493397547545, 'shortterm': -21.600802181589483, 'global': -22.144283124499612, 'window': -23.332736426181537, 'range': 1.4533063819564518}, {'timestamp': 4100000000, 'momentary': -18.247406214762872, 'shortterm': -21.452405297657531, 'global': -21.853146256266303, 'window': -22.998560347392417, 'range': 1.4533063819564518}, {'timestamp': 4200000000, 'momentary': -17.805365816883981, 'shortterm': -21.447968884757039, 'global': -21.666179966970649, 'window': -22.75595309271489, 'range': 1.4533063819564518}, {'timestamp': 4300000000, 'momentary': -18.285664395879323, 'shortterm': -21.451385417587321, 'global': -21.41461943830544, 'window': -22.63078698993106, 'range': 1.4533063819564518}, {'timestamp': 4400000000, 'momentary': -19.452371324220096, 'shortterm': -21.502111580306757, 'global': -21.346255197376848, 'window': -22.557273759605899, 'range': 1.4533063819564518}, {'timestamp': 4500000000, 'momentary': -21.104973891037634, 'shortterm': -21.484771777739535, 'global': -21.339554703706359, 'window': -22.491969640101026, 'range': 1.4533063819564518}, {'timestamp': 4600000000, 'momentary': -22.578071433877778, 'shortterm': -21.400779037238632, 'global': -21.36800487218505, 'window': -22.408286335758948, 'range': 1.4533063819564518}, {'timestamp': 4700000000, 'momentary': -22.987180325982713, 'shortterm': -21.299026110552948, 'global': -21.402800249171086, 'window': -22.321969014000732, 'range': 1.4533063819564518}, {'timestamp': 4800000000, 'momentary': -22.71060453118913, 'shortterm': -21.191187559821767, 'global': -21.431123796752725, 'window': -22.234210242942954, 'range': 1.4533063819564518}, {'timestamp': 4900000000, 'momentary': -22.427085332231954, 'shortterm': -21.087776554549325, 'global': -21.452885833551516, 'window': -22.152892455252211, 'range': 1.4533063819564518}, {'timestamp': 5000000000, 'momentary': -22.435387303803285, 'shortterm': -20.98975533530124, 'global': -21.473872016989777, 'window': -22.076050470672687, 'range': 2.0643532282446948}, {'timestamp': 5100000000, 'momentary': -22.282309698796492, 'shortterm': -20.876001782612779, 'global': -21.491060684888208, 'window': -21.984781842410175, 'range': 2.0643532282446948}, {'timestamp': 5200000000, 'momentary': -21.91617501046991, 'shortterm': -20.766995629311793, 'global': -21.500274326620794, 'window': -21.875609805253571, 'range': 2.0643532282446948}, {'timestamp': 5300000000, 'momentary': -21.959668345356722, 'shortterm': -20.737672391406374, 'global': -21.509972510150575, 'window': -21.815162272702775, 'range': 2.0643532282446948}, {'timestamp': 5400000000, 'momentary': -22.308936927868768, 'shortterm': -20.745122973371871, 'global': -21.525866323017439, 'window': -21.785927939510255, 'range': 2.0643532282446948}, {'timestamp': 5500000000, 'momentary': -23.024355301223505, 'shortterm': -20.753530894162271, 'global': -21.552914321755157, 'window': -21.763327121033438, 'range': 2.0643532282446948}, {'timestamp': 5600000000, 'momentary': -24.057448712627039, 'shortterm': -20.78032975491076, 'global': -21.592748026606582, 'window': -21.732240353025595, 'range': 2.0643532282446948}, {'timestamp': 5700000000, 'momentary': -24.4720430518996, 'shortterm': -20.850695620278433, 'global': -21.63592051467781, 'window': -21.70840441257452, 'range': 2.0643532282446948}, {'timestamp': 5800000000, 'momentary': -24.250234162057552, 'shortterm': -21.120239034496795, 'global': -21.67538270183093, 'window': -21.693099591382651, 'range': 2.0643532282446948}, {'timestamp': 5900000000, 'momentary': -23.466029215285019, 'shortterm': -21.375176751106132, 'global': -21.704251047645396, 'window': -21.696493677186332, 'range': 2.0643532282446948}, {'timestamp': 6000000000, 'momentary': -22.795713067291757, 'shortterm': -21.489872470117387, 'global': -21.797902708964006, 'window': -21.71631824704809, 'range': 2.0643532282446948}, {'timestamp': 6100000000, 'momentary': -22.597672190459811, 'shortterm': -21.607201956549222, 'global': -21.811450650393834, 'window': -21.799769177175254, 'range': 2.0643532282446948}, {'timestamp': 6200000000, 'momentary': -22.240378627581336, 'shortterm': -21.511367039569397, 'global': -21.818882952344897, 'window': -21.907304776010122, 'range': 2.0643532282446948}, {'timestamp': 6300000000, 'momentary': -22.122500481564739, 'shortterm': -21.409681682988662, 'global': -21.824122675440901, 'window': -21.924507473487143, 'range': 2.0643532282446948}, {'timestamp': 6400000000, 'momentary': -22.870123822818396, 'shortterm': -21.425888602059608, 'global': -21.840461587640906, 'window': -21.981523928282694, 'range': 2.0643532282446948}, {'timestamp': 6500000000, 'momentary': -23.000295124900415, 'shortterm': -21.553686044987888, 'global': -21.858046685776085, 'window': -21.968137222698985, 'range': 2.0643532282446948}, {'timestamp': 6600000000, 'momentary': -22.358390197117949, 'shortterm': -21.524893421645881, 'global': -21.866064205830387, 'window': -21.860467251194958, 'range': 2.0643532282446948}, {'timestamp': 6700000000, 'momentary': -22.212084321150869, 'shortterm': -21.501520429411759, 'global': -21.871610989958082, 'window': -21.770378067714919, 'range': 2.0643532282446948}, {'timestamp': 6800000000, 'momentary': -20.214548728289067, 'shortterm': -21.320907829727783, 'global': -21.838661794313175, 'window': -21.558687178120316, 'range': 2.0643532282446948}, {'timestamp': 6900000000, 'momentary': -18.682709109350704, 'shortterm': -21.209666933087743, 'global': -21.700363084595288, 'window': -21.313534778320342, 'range': 2.0643532282446948}, {'timestamp': 7000000000, 'momentary': -19.080681723874889, 'shortterm': -21.487872100612876, 'global': -21.642749972623786, 'window': -21.261588705785577, 'range': 2.0643532282446948}, {'timestamp': 7100000000, 'momentary': -18.898707724643284, 'shortterm': -21.675559584030132, 'global': -21.582433863762599, 'window': -21.154759976759632, 'range': 2.0643532282446948}, {'timestamp': 7200000000, 'momentary': -19.180833586996506, 'shortterm': -21.689266886791945, 'global': -21.532611217133766, 'window': -21.021618438820536, 'range': 2.0643532282446948}, {'timestamp': 7300000000, 'momentary': -18.714943875693486, 'shortterm': -21.317857710334366, 'global': -21.472018971094204, 'window': -20.784105495921924, 'range': 2.0643532282446948}, {'timestamp': 7400000000, 'momentary': -16.368607250946845, 'shortterm': -20.623124863975846, 'global': -21.327164904609322, 'window': -20.39450280024527, 'range': 2.0643532282446948}, {'timestamp': 7500000000, 'momentary': -15.553761132291642, 'shortterm': -20.233389568391377, 'global': -21.150685292975911, 'window': -20.162055225920732, 'range': 2.0643532282446948}, {'timestamp': 7600000000, 'momentary': -15.681683172073445, 'shortterm': -20.156973323796286, 'global': -20.992472843853591, 'window': -20.115992518507699, 'range': 2.0643532282446948}, {'timestamp': 7700000000, 'momentary': -16.359207540510681, 'shortterm': -20.089612595903152, 'global': -20.874121215092892, 'window': -20.095552560689693, 'range': 2.0643532282446948}, {'timestamp': 7800000000, 'momentary': -17.766080962368861, 'shortterm': -19.922855318062183, 'global': -20.809734557120404, 'window': -20.109566093962322, 'range': 2.0643532282446948}, {'timestamp': 7900000000, 'momentary': -18.726481329114797, 'shortterm': -19.787285794283289, 'global': -20.77224361851702, 'window': -20.144186001396744, 'range': 2.0643532282446948}, {'timestamp': 8000000000, 'momentary': -19.01812324973957, 'shortterm': -19.765187264965245, 'global': -20.742328938282469, 'window': -20.193834871015106, 'range': 1.8356149166242375}, {'timestamp': 8100000000, 'momentary': -19.713077265658853, 'shortterm': -19.816390402494601, 'global': -20.726447753878659, 'window': -20.264751472760896, 'range': 1.8356149166242375}, {'timestamp': 8200000000, 'momentary': -21.064178200393332, 'shortterm': -19.844258489924862, 'global': -20.730840954539698, 'window': -20.222687055309951, 'range': 1.8356149166242375}, {'timestamp': 8300000000, 'momentary': -21.422899776135186, 'shortterm': -19.741333969625206, 'global': -20.73937912952707, 'window': -20.121269273101365, 'range': 1.8356149166242375}, {'timestamp': 8400000000, 'momentary': -19.080348195461326, 'shortterm': -19.423397235420179, 'global': -20.712875579551334, 'window': -19.913044477269203, 'range': 1.8356149166242375}, {'timestamp': 8500000000, 'momentary': -17.636880650280727, 'shortterm': -19.184797726493517, 'global': -20.655139844519457, 'window': -19.814018290189455, 'range': 1.8356149166242375}, {'timestamp': 8600000000, 'momentary': -17.6948112888787, 'shortterm': -19.169163545814033, 'global': -20.601072988977062, 'window': -19.837010329308363, 'range': 1.8356149166242375}, {'timestamp': 8700000000, 'momentary': -18.149430044017041, 'shortterm': -19.143786299770372, 'global': -20.55956929144968, 'window': -19.838778219918225, 'range': 1.8356149166242375}, {'timestamp': 8800000000, 'momentary': -19.937409399567805, 'shortterm': -19.111042685496059, 'global': -20.551215693310212, 'window': -19.847185533742724, 'range': 1.8356149166242375}, {'timestamp': 8900000000, 'momentary': -21.72269024576946, 'shortterm': -19.079360538781884, 'global': -20.563910454866711, 'window': -19.897861906961371, 'range': 1.8356149166242375}, {'timestamp': 9000000000, 'momentary': -20.745127099070753, 'shortterm': -19.020143222364769, 'global': -20.566075481045708, 'window': -19.955129336628428, 'range': 2.5806589592247136}, {'timestamp': 9100000000, 'momentary': -20.887237646023106, 'shortterm': -19.019407102176121, 'global': -20.569806897202781, 'window': -20.073281878947196, 'range': 2.5806589592247136}, {'timestamp': 9200000000, 'momentary': -21.114701884661887, 'shortterm': -19.02848014625004, 'global': -20.575907582149796, 'window': -20.154276400763127, 'range': 2.5806589592247136}, {'timestamp': 9300000000, 'momentary': -21.346538522834646, 'shortterm': -19.023507711723564, 'global': -20.584222946603198, 'window': -20.160357444993309, 'range': 2.5806589592247136}, {'timestamp': 9400000000, 'momentary': -21.668616125193548, 'shortterm': -18.944746671293498, 'global': -20.595395559996934, 'window': -20.113906537981599, 'range': 2.5806589592247136}, {'timestamp': 9500000000, 'momentary': -20.861605957424405, 'shortterm': -18.874514309900832, 'global': -20.598364570081262, 'window': -20.057519527609003, 'range': 2.5806589592247136}, {'timestamp': 9600000000, 'momentary': -20.242250285752885, 'shortterm': -18.862797712515469, 'global': -20.594149320247627, 'window': -20.014904274614732, 'range': 2.5806589592247136}, {'timestamp': 9700000000, 'momentary': -20.122310881768325, 'shortterm': -18.855084321202341, 'global': -20.58855265998918, 'window': -19.994294632488671, 'range': 2.5806589592247136}, {'timestamp': 9800000000, 'momentary': -20.509458290430754, 'shortterm': -18.973218026229524, 'global': -20.587665872740541, 'window': -19.989588500954479, 'range': 2.5806589592247136}, {'timestamp': 9900000000, 'momentary': -21.308681203990677, 'shortterm': -19.158183935148344, 'global': -20.594972488473477, 'window': -19.998782548019808, 'range': 2.5806589592247136}, {'timestamp': 10000000000, 'momentary': -22.443328364609854, 'shortterm': -19.170248663647861, 'global': -20.611366008085945, 'window': -20.015267805563155, 'range': 2.5806589592247136}, {'timestamp': 10100000000, 'momentary': -23.843215126664706, 'shortterm': -19.263342217457545, 'global': -20.635945853110254, 'window': -20.056678208481507, 'range': 2.5806589592247136}, {'timestamp': 10187755102, 'momentary': -25.429005280781066, 'shortterm': -19.405104198349111, 'global': -20.635945853110254, 'window': -20.115126912051082, 'range': 2.5806589592247136}, ]
from __future__ import absolute_import, unicode_literals from django.conf.urls import url from tuiuiu.tuiuiuembeds.views import chooser urlpatterns = [ url(r'^chooser/$', chooser.chooser, name='chooser'), url(r'^chooser/upload/$', chooser.chooser_upload, name='chooser_upload'), ]
""" API for Pioneer Network Receivers. """ # pylint: disable=logging-fstring-interpolation,broad-except import logging import traceback import socket import telnetlib import time import random from threading import Thread, Event, Lock _LOGGER = logging.getLogger(__name__) MAX_VOLUME = 185 MAX_VOLUME_ZONEX = 81 MAX_SOURCE_NUMBERS = 60 RECONNECT_DELAY_MAX = 64 PIONEER_COMMANDS = { "turn_on": {"1": "PO", "2": "APO", "3": "BPO", "Z": "ZEO",}, "turn_off": {"1": "PF", "2": "APF", "3": "BPF", "Z": "ZEF",}, "select_source": { "1": ["FN", "FN"], "2": ["ZS", "Z2F"], "3": ["ZT", "Z3F"], "Z": ["ZEA", "ZEA"], }, "volume_up": { "1": ["VU", "VOL"], "2": ["ZU", "ZV"], "3": ["YU", "YV"], "Z": ["HZU", "XV"], }, "volume_down": { "1": ["VD", "VOL"], "2": ["ZD", "ZV"], "3": ["YD", "YV"], "Z": ["HZD", "XV"], }, "set_volume_level": { "1": ["VL", "VOL"], "2": ["ZV", "ZV"], "3": ["YV", "YV"], "Z": ["HZV", "XV"], }, "mute_on": { "1": ["MO", "MUT"], "2": ["Z2MO", "Z2MUT"], "3": ["Z3MO", "Z3MUT"], "Z": ["HZMO", "HZMUT"], }, "mute_off": { "1": ["MF", "MUT"], "2": ["Z2MF", "Z2MUT"], "3": ["Z3MF", "Z3MUT"], "Z": ["HZMF", "HZMUT"], }, "query_power": { "1": ["?P", "PWR"], "2": ["?AP", "APR"], "3": ["?BP", "BPR"], "Z": ["?ZEP", "ZEP"], }, "query_volume": { "1": ["?V", "VOL"], "2": ["?ZV", "ZV"], "3": ["?YV", "YV"], "Z": ["?HZV", "XV"], }, "query_mute": { "1": ["?M", "MUT"], "2": ["?Z2M", "Z2MUT"], "3": ["?Z3M", "Z3MUT"], "Z": ["?HZM", "HZMUT"], }, "query_source_id": { "1": ["?F", "FN"], "2": ["?ZS", "Z2F"], "3": ["?ZT", "Z3F"], "Z": ["?ZEA", "ZEA"], }, } ## https://stackoverflow.com/questions/12248132/how-to-change-tcp-keepalive-timer-using-python-script def sock_set_keepalive(sock, after_idle_sec=1, interval_sec=3, max_fails=5): """Set TCP keepalive on an open socket. It activates after 1 second (after_idle_sec) of idleness, then sends a keepalive ping once every 3 seconds (interval_sec), and closes the connection after 5 failed ping (max_fails), or 15 seconds """ if sock: sock.setsockopt(socket.SOL_SOCKET, socket.SO_KEEPALIVE, 1) sock.setsockopt(socket.IPPROTO_TCP, socket.TCP_KEEPIDLE, after_idle_sec) sock.setsockopt(socket.IPPROTO_TCP, socket.TCP_KEEPINTVL, interval_sec) sock.setsockopt(socket.IPPROTO_TCP, socket.TCP_KEEPCNT, max_fails) def get_backoff_delay(retry_count): """ Calculate exponential backoff with random jitter delay. """ delay = round( min(RECONNECT_DELAY_MAX, (2 ** retry_count)) + (random.randint(0, 1000) / 1000), 4, ) return delay class PioneerAVR: """ Pioneer AVR interface. """ def __init__( self, host, port=8102, timeout=2, scan_interval=60, volume_workaround=True, command_delay=0.1, ): """ Initialize the Pioneer AVR interface. """ _LOGGER.debug("PioneerAVR.__init__()") self._host = host self._port = port self._timeout = timeout self._scan_interval = scan_interval self._volume_workaround = volume_workaround self._command_delay = command_delay ## Public properties self.available = False self.zones = [] self.power = {} self.volume = {} self.max_volume = {} self.mute = {} self.source = {} ## Internal state self._full_update = True self._last_updated = 0.0 self._last_command = 0.0 self._source_name_to_id = {} self._source_id_to_name = {} self._zone_callback = {} self._update_callback = None self._telnet_obj = None self._telnet_lock = Lock() self._telnet_thread = None self._telnet_reconnect = True self._request_lock = Lock() self._response_lock = Lock() self._response_event = Event() self._response_prefix = None self._response_value = None self._response_commands = [] ## Connect to AVR and determine zones and sources self.telnet_connect() self.query_zones() self.build_source_dict() def __del__(self): _LOGGER.debug("PioneerAVR.__del__()") self.telnet_disconnect() def telnet_connect(self): """ Open telnet connection to AVR and start listener thread. """ ## Open telnet connection _LOGGER.info(">> telnet_connect()") with self._telnet_lock: if not self._telnet_obj: try: self._telnet_obj = telnetlib.Telnet( self._host, self._port, self._timeout ) sock_set_keepalive(self._telnet_obj.get_socket()) _LOGGER.info("AVR connection opened") except Exception as e: # pylint: disable=invalid-name raise Exception(f"Could not open AVR connection: {e}") self.available = True self._last_updated = 0.0 else: _LOGGER.debug("AVR connection already open") ## Create child thread to listen to telnet socket if not self._telnet_thread or not self._telnet_thread.is_alive(): try: _LOGGER.debug("Creating new AVR listener thread") self._telnet_thread = Thread(target=self.telnet_listener) if self._telnet_thread: self._telnet_thread.start() _LOGGER.debug("AVR listener started") else: raise Exception("Could not create thread") except Exception as e: # pylint: disable=invalid-name raise Exception(f"Could not start AVR listener: {e}") else: _LOGGER.debug("AVR listener already started") return True def telnet_disconnect(self, reconnect=True): """ Shutdown and close telnet connection to AVR. """ _LOGGER.info(f">> telnet_disconnect(reconnect={reconnect})") with self._telnet_lock: if self._telnet_obj: _LOGGER.debug("Closing AVR connection") self._telnet_reconnect = reconnect self.available = False self.call_zone_callbacks() sock = self._telnet_obj.get_socket() if sock: try: sock.shutdown(socket.SHUT_RDWR) except OSError: pass self._telnet_obj.close() self._telnet_obj = None _LOGGER.info("AVR connection closed") def telnet_listener(self): """ Telnet listener thread. """ _LOGGER.info("AVR listener running") while True: self.telnet_listener_main_loop() # rc not checked ## Main loop exited, reconnect after delay _LOGGER.info(">> Calling telnet_disconnect()") self.telnet_disconnect() _LOGGER.info(">> Telnet disconnected") if not self._telnet_reconnect: _LOGGER.info("AVR reconnection disabled, not reconnecting") break _LOGGER.info("Reconnecting to AVR") retry = 0 while True: delay = get_backoff_delay(retry) _LOGGER.debug(f"Waiting {delay}s before retrying connection") time.sleep(delay) retry += 1 try: self.telnet_connect() ## Schedule update to be run in HA event loop ## NOTE: Cannot run self.update() in listener thread as it ## depends on the listener to process AVR responses _LOGGER.debug("Scheduling full AVR status update") self._full_update = True self.call_update_callback() break except Exception as e: # pylint: disable=invalid-name _LOGGER.debug(f"Could not reconnect to AVR: {e}") self.telnet_disconnect() _LOGGER.info("AVR listener thread terminating") self.telnet_disconnect() def telnet_listener_main_loop(self): """ Main loop of telnet listener. """ _LOGGER.debug("Running AVR listener main loop") while self._telnet_obj: try: ## Check for telnet responses raw_response = self._telnet_obj.read_until(b"\r\n") response = raw_response.decode().strip() self._last_updated = time.time() ## include empty responses if not response: _LOGGER.debug("Ignoring empty response") ## Skip processing empty responses (keepalives?) continue _LOGGER.debug(f"Received response: {response}") ## Parse response, update cached properties updated_zones = self.parse_response(response) if self._response_commands: ## Send post-response commands for cmd in self._response_commands: self.telnet_send_command(cmd) self._response_commands = [] if updated_zones: ## Call zone callbacks for updated zones self.call_zone_callbacks(updated_zones) ## NOTE: this does not seem to reset the scan interval # if "1" not in updated_zones: # self.call_update_callback() ## Reset scan interval timer # ## update will be skipped within timeout period ## Check whether a request is waiting for a response if self._response_lock.locked() and self._response_prefix: if response.startswith("E"): _LOGGER.debug(f"Signalling error {response} to waiting request") self._response_value = response self._response_event.set() elif response.startswith(self._response_prefix): _LOGGER.debug( f"Signalling response {response} to waiting request" ) self._response_value = response self._response_event.set() except EOFError: _LOGGER.debug("AVR listener: EOFError") return False except TimeoutError: _LOGGER.debug("AVR listener: TimeoutError") return False except Exception as e: # pylint: disable=invalid-name if not self.available: ## Connection closed outside of listener _LOGGER.debug(f"AVR listener exception: {e}") return None else: _LOGGER.error(f"AVR listener fatal exception: {e}") traceback.print_exc() _LOGGER.info(">> Exiting telnet_listener_main_loop()") return None ## Telnet connection closed return False def telnet_send_command(self, command, rate_limit=True): """ Send a command to the AVR via telnet.""" # _LOGGER.info(f">> telnet_send_command({command})") _LOGGER.debug(f"Sending AVR command {command}") ## Check if connection available if not self.available: raise Exception("AVR connection not available") now = time.time() if rate_limit: ## Rate limit commands since_command = now - self._last_command if since_command < self._command_delay: delay = self._command_delay - since_command _LOGGER.debug(f"Delaying command for {delay:.3f}s") time.sleep(self._command_delay - since_command) self._last_command = now try: self._telnet_obj.write(command.encode("UTF-8") + b"\r") return True except Exception as e: # pylint: disable=invalid-name _LOGGER.error(f"Could not send AVR command: {str(e)}") self.telnet_disconnect() return False def telnet_send_request( self, command, response_prefix, ignore_error=None, rate_limit=True ): """ Execute a request synchronously on the AVR via telnet. """ # _LOGGER.info( # f">> telnet_send_request({command}, {response_prefix}, ignore_error={ignore_error})" # ) with self._request_lock: ## single request if not self.telnet_send_command(command, rate_limit=rate_limit): return False self._response_event.clear() self._response_prefix = response_prefix with self._response_lock: self._response_event.wait(timeout=self._timeout) self._response_prefix = None if self._response_event.is_set(): response = self._response_value if response.startswith("E"): ## Error value returned err = f"AVR command {command} returned error {response}" if ignore_error is None: raise Exception(err) elif not ignore_error: _LOGGER.error(err) return False elif ignore_error: _LOGGER.debug(err) return False return response ## Request timed out _LOGGER.debug(f"AVR command {command} returned no response") return None ## Raw functions. Hook for re-implementing HTTP command/requests. def send_raw_command(self, raw_command, rate_limit=True): """ Send a raw command to the device. """ return self.telnet_send_command(raw_command, rate_limit) def send_raw_request( self, raw_command, response_prefix, ignore_error=None, rate_limit=True ): """ Execute a raw command and return the response. """ return self.telnet_send_request( raw_command, response_prefix, ignore_error, rate_limit ) def send_command( self, command, zone="1", prefix="", ignore_error=None, rate_limit=True ): """ Send a command or request to the device. """ # pylint: disable=unidiomatic-typecheck raw_command = PIONEER_COMMANDS.get(command, {}).get(zone) if type(raw_command) is list: if len(raw_command) == 2: ## Handle command as request expected_response = raw_command[1] raw_command = raw_command[0] return self.send_raw_request( prefix + raw_command, expected_response, ignore_error, rate_limit ) else: _LOGGER.error(f"Invalid request {raw_command} for zone {zone}") return None elif type(raw_command) is str: return self.send_raw_command(prefix + raw_command, rate_limit) else: _LOGGER.warning(f"Invalid command {command} for zone {zone}") return None ## Initialisation functions def query_zones(self): """ Query zones on Pioneer AVR by querying power status. """ if not self.zones: _LOGGER.info("Querying available zones on AVR") if self.send_command("query_power", "1", ignore_error=True): _LOGGER.info("Zone 1 discovered") if "1" not in self.zones: self.zones.append("1") self.max_volume["1"] = MAX_VOLUME else: raise RuntimeError("Main Zone not found on AVR") if self.send_command("query_power", "2", ignore_error=True): _LOGGER.info("Zone 2 discovered") if "2" not in self.zones: self.zones.append("2") self.max_volume["2"] = MAX_VOLUME_ZONEX if self.send_command("query_power", "3", ignore_error=True): _LOGGER.info("Zone 3 discovered") if "3" not in self.zones: self.zones.append("3") self.max_volume["3"] = MAX_VOLUME_ZONEX if self.send_command("query_power", "Z", ignore_error=True): _LOGGER.info("HDZone discovered") if "Z" not in self.zones: self.zones.append("Z") self.max_volume["Z"] = MAX_VOLUME_ZONEX def build_source_dict(self): """ Generate source id<->name translation tables. """ timeouts = 0 if not self._source_name_to_id: _LOGGER.info("Querying source names on AVR") for src in range(MAX_SOURCE_NUMBERS): response = self.send_raw_request( "?RGB" + str(src).zfill(2), "RGB", ignore_error=True, rate_limit=False, ) if response is None: timeouts += 1 _LOGGER.debug(f"Timeout {timeouts} retrieving source {src}") elif response is not False: timeouts = 0 source_name = response[6:] source_active = response[5] == "1" source_number = str(src).zfill(2) if source_active: self._source_name_to_id[source_name] = source_number self._source_id_to_name[source_number] = source_name _LOGGER.debug(f"Source name->id: {self._source_name_to_id}") _LOGGER.debug(f"Source id->name: {self._source_id_to_name}") if not self._source_name_to_id: raise RuntimeError("No input sources found on AVR") def get_source_list(self): """ Return list of available input sources. """ return list(self._source_name_to_id.keys()) ## Callback functions def set_zone_callback(self, zone, callback): """ Register a callback for a zone. """ if zone in self.zones: if callback: self._zone_callback[zone] = callback else: self._zone_callback.pop(zone) def call_zone_callbacks(self, zones=None): """ Call callbacks to signal updated zone(s). """ if zones is None: zones = self.zones for zone in zones: if zone in self._zone_callback: callback = self._zone_callback[zone] if callback: _LOGGER.debug(f"Calling callback for zone {zone}") callback() def set_update_callback(self, callback): """ Register a callback to trigger update. """ if callback: self._update_callback = callback else: self._update_callback = None def call_update_callback(self): """ Trigger update. """ if self._update_callback: _LOGGER.debug("Calling update callback") self._update_callback() ## Update functions def parse_response(self, response): """ Parse response and update cached parameters. """ updated_zones = set() if response.startswith("PWR"): value = response == "PWR0" if self.power.get("1") != value: self.power["1"] = value updated_zones.add("1") _LOGGER.info(f"Zone 1: Power: {value}") if value and self._volume_workaround: self._response_commands.extend(["VU", "VD"]) elif response.startswith("APR"): value = response == "APR0" if self.power.get("2") != value: self.power["2"] = value updated_zones.add("2") _LOGGER.info(f"Zone 2: Power: {value}") elif response.startswith("BPR"): value = response == "BPR0" if self.power.get("3") != value: self.power["3"] = value updated_zones.add("3") _LOGGER.info(f"Zone 3: Power: {value}") elif response.startswith("ZEP"): value = response == "ZEP0" if self.power.get("Z") != value: self.power["Z"] = value updated_zones.add("Z") _LOGGER.info(f"HDZone: Power: {value}") elif response.startswith("VOL"): value = int(response[3:]) if self.volume.get("1") != value: self.volume["1"] = value updated_zones.add("1") _LOGGER.info(f"Zone 1: Volume: {value}") elif response.startswith("ZV"): value = int(response[2:]) if self.volume.get("2") != value: self.volume["2"] = value updated_zones.add("2") _LOGGER.info(f"Zone 2: Volume: {value}") elif response.startswith("YV"): value = int(response[2:]) if self.volume.get("3") != value: self.volume["3"] = value updated_zones.add("3") _LOGGER.info(f"Zone 3: Volume: {value}") elif response.startswith("XV"): value = int(response[2:]) if self.volume.get("Z") != value: self.volume["Z"] = value updated_zones.add("Z") _LOGGER.info(f"HDZone: Volume: {value}") elif response.startswith("MUT"): value = response == "MUT0" if self.mute.get("1") != value: self.mute["1"] = value updated_zones.add("1") _LOGGER.info(f"Zone 1: Mute: {value}") elif response.startswith("Z2MUT"): value = response == "Z2MUT0" if self.mute.get("2") != value: self.mute["2"] = value updated_zones.add("2") _LOGGER.info(f"Zone 2: Mute: {value}") elif response.startswith("Z3MUT"): value = response == "Z3MUT0" if self.mute.get("3") != value: self.mute["3"] = value updated_zones.add("3") _LOGGER.info(f"Zone 3: Mute: {value}") elif response.startswith("HZMUT"): value = response == "HZMUT0" if self.mute.get("Z") != value: self.mute["Z"] = value updated_zones.add("Z") _LOGGER.info(f"HDZone: Mute: {value}") elif response.startswith("FN"): raw_id = response[2:] value = self._source_id_to_name.get(raw_id, raw_id) if self.source.get("1") != value: self.source["1"] = value updated_zones.add("1") _LOGGER.info(f"Zone 1: Source: {value}") elif response.startswith("Z2F"): raw_id = response[3:] value = self._source_id_to_name.get(raw_id, raw_id) if self.source.get("2") != value: self.source["2"] = value updated_zones.add("2") _LOGGER.info(f"Zone 2: Source: {value}") elif response.startswith("Z3F"): raw_id = response[3:] value = self._source_id_to_name.get(raw_id, raw_id) if self.source.get("3") != value: value = self.source["3"] updated_zones.add("3") _LOGGER.info(f"Zone 3: Source: {value}") elif response.startswith("ZEA"): raw_id = response[3:] value = self._source_id_to_name.get(raw_id, raw_id) if self.source.get("Z") != value: self.source["Z"] = value updated_zones.add("Z") _LOGGER.info(f"HDZone: Source: {value}") return updated_zones def update_zone(self, zone): """ Update an AVR zone. """ ## Check for timeouts, but ignore errors (eg. ?V will ## return E02 immediately after power on) if ( self.send_command("query_power", zone, ignore_error=True) is None or self.send_command("query_volume", zone, ignore_error=True) is None or self.send_command("query_mute", zone, ignore_error=True) is None or self.send_command("query_source_id", zone, ignore_error=True) is None ): ## Timeout occurred, indicates AVR disconnected raise TimeoutError("Timeout waiting for data") def update(self): """ Update AVR cached status. """ if self.available: now = time.time() since_updated = now - self._last_updated full_update = self._full_update if full_update or since_updated > self._scan_interval: _LOGGER.debug( f"Updating AVR status (full={full_update}, last updated {since_updated:.3f}s ago)" ) self._last_updated = now self._full_update = False try: for zone in self.zones: self.update_zone(zone) if full_update: ## Trigger updates to all zones on full update self.call_zone_callbacks() return True except Exception as e: # pylint: disable=invalid-name _LOGGER.error(f"Could not update AVR status: {e}") self.telnet_disconnect() return False else: ## NOTE: any response from the AVR received within ## scan_interval, including keepalives and responses triggered ## via the remote and by other clients, will cause an update to ## be skipped on the basis that the AVR is alive. ## ## Keepalives may be sent by the AVR (every 30 seconds on the ## VSX-930) when connected to port 8102, but are not sent when ## connected to port 23. _LOGGER.debug(f"Skipping update: last updated {since_updated:.3f}s ago") return True else: _LOGGER.debug("Skipping update: AVR is unavailable") return True ## State change functions def turn_on(self, zone="1"): """ Turn on the Pioneer AVR. """ return self.send_command("turn_on", zone) def turn_off(self, zone="1"): """ Turn off the Pioneer AVR. """ return self.send_command("turn_off", zone) def select_source(self, source, zone="1"): """ Select input source. """ source_id = self._source_name_to_id.get(source) if source_id: return self.send_command( "select_source", zone, prefix=source_id, ignore_error=False ) else: _LOGGER.error(f"Invalid source {source} for zone {zone}") return False def volume_up(self, zone="1"): """ Volume up media player. """ return self.send_command("volume_up", zone, ignore_error=False) def volume_down(self, zone="1"): """ Volume down media player. """ return self.send_command("volume_down", zone, ignore_error=False) def bounce_volume(self): """ Send volume up/down to work around Main Zone reporting bug where an initial volume is set. This initial volume is not reported until the volume is changed. """ if self.volume_up(): return self.volume_down() else: return False def set_volume_level(self, volume, zone="1"): """ Set volume level (0..185 for Zone 1, 0..81 for other Zones). """ if ( volume < 0 or (zone == "1" and volume > MAX_VOLUME) or (zone != "1" and volume > MAX_VOLUME_ZONEX) ): raise ValueError(f"volume {volume} out of range for zone {zone}") vol_len = 3 if zone == "1" else 2 vol_prefix = str(volume).zfill(vol_len) return self.send_command( "set_volume_level", zone, prefix=vol_prefix, ignore_error=False ) def mute_on(self, zone="1"): """ Mute AVR. """ return self.send_command("mute_on", zone, ignore_error=False) def mute_off(self, zone="1"): """ Unmute AVR. """ return self.send_command("mute_off", zone, ignore_error=False) logging.basicConfig(level=logging.DEBUG)
# # ______ ____ ______ ____ _____ ____ _____ __ __ # | ___ \ / ___ \ | ___ \ / ___ \ | ___ \ / ___ \ / _____\ | | / / # | |__| / | | | | | |__| / | | | | | | | | | | | | | | | |/ / # | \ | | | | | ___ \ | | | | | | | | | | | | | | | / # | |\ \ | |__| | | |__| | | |__| | | |__| | | |__| | | |_____ | |\ \ # |__| \__\ \_____/ |_______/ \_____/ |______/ \_____/ \______/ |__| \__\ # # Written by Mutlu Polatcan # 21.06.2018 import yaml class Config: def __init__(self, config_filename): try: self.config = yaml.load(open(config_filename, "r")) except yaml.YAMLError as err: print(err) def __check_attr_defined(self, attr_name): return self.config.keys().__contains__(attr_name) def get_int(self, attr_name): if self.__check_attr_defined(attr_name=attr_name): return int(self.config[attr_name]) else: return None def get_str(self, attr_name): if self.__check_attr_defined(attr_name=attr_name): return str(self.config[attr_name]) else: return None def get(self, attr_name): if self.__check_attr_defined(attr_name=attr_name): return self.config[attr_name] else: return None def len(self, attr_name): if self.__check_attr_defined(attr_name=attr_name): self.config[attr_name].__len__() else: return 0 # Returns count of service which is defined by attr_name def count(self, attr_name): if self.__check_attr_defined(attr_name=attr_name): return self.nodes(attr_name).__len__() else: return 0 # Returns configs for current service which is defined by attr_name def configs(self, attr_name): if self.__check_attr_defined(attr_name=attr_name) and \ self.get(attr_name=attr_name) is not None and \ self.get(attr_name=attr_name).keys().__contains__("configs") and \ self.get(attr_name=attr_name)["configs"] is not None: return self.config[attr_name]["configs"] else: return [] def nodes(self, attr_name): if self.__check_attr_defined(attr_name=attr_name) and \ self.get(attr_name=attr_name) is not None and \ self.get(attr_name=attr_name).keys().__contains__("nodes") and \ self.get(attr_name=attr_name)["nodes"] is not None: return self.get(attr_name=attr_name)["nodes"].split(',') else: return []
import datetime import io import os import re import subprocess import warnings from collections import namedtuple from decimal import Decimal from pathlib import Path import six from PyPDF2 import PdfFileMerger from reportlab.pdfgen import canvas class DoctorUnicodeDecodeError(UnicodeDecodeError): def __init__(self, obj, *args): self.obj = obj UnicodeDecodeError.__init__(self, *args) def __str__(self): original = UnicodeDecodeError.__str__(self) return f"{original}. You passed in {self.obj!r} ({type(self.obj)})" def force_bytes(s, encoding="utf-8", strings_only=False, errors="strict"): """ Similar to smart_bytes, except that lazy instances are resolved to strings, rather than kept as lazy objects. If strings_only is True, don't convert (some) non-string-like objects. """ # Handle the common case first for performance reasons. if isinstance(s, bytes): if encoding == "utf-8": return s else: return s.decode("utf-8", errors).encode(encoding, errors) if strings_only and is_protected_type(s): return s if isinstance(s, six.memoryview): return bytes(s) if isinstance(s, Promise): return six.text_type(s).encode(encoding, errors) if not isinstance(s, six.string_types): try: if six.PY3: return six.text_type(s).encode(encoding) else: return bytes(s) except UnicodeEncodeError: if isinstance(s, Exception): # An Exception subclass containing non-ASCII data that doesn't # know how to print itself properly. We shouldn't raise a # further exception. return b" ".join( force_bytes(arg, encoding, strings_only, errors) for arg in s ) return six.text_type(s).encode(encoding, errors) else: return s.encode(encoding, errors) def force_text(s, encoding="utf-8", strings_only=False, errors="strict"): """ Similar to smart_text, except that lazy instances are resolved to strings, rather than kept as lazy objects. If strings_only is True, don't convert (some) non-string-like objects. """ # Handle the common case first for performance reasons. if issubclass(type(s), six.text_type): return s if strings_only and is_protected_type(s): return s try: if not issubclass(type(s), six.string_types): if six.PY3: if isinstance(s, bytes): s = six.text_type(s, encoding, errors) else: s = six.text_type(s) elif hasattr(s, "__unicode__"): s = six.text_type(s) else: s = six.text_type(bytes(s), encoding, errors) else: # Note: We use .decode() here, instead of six.text_type(s, encoding, # errors), so that if s is a SafeBytes, it ends up being a # SafeText at the end. s = s.decode(encoding, errors) except UnicodeDecodeError as e: if not isinstance(s, Exception): raise DoctorUnicodeDecodeError(s, *e.args) else: # If we get to here, the caller has passed in an Exception # subclass populated with non-ASCII bytestring data without a # working unicode method. Try to handle this without raising a # further exception by individually forcing the exception args # to unicode. s = " ".join(force_text(arg, encoding, strings_only, errors) for arg in s) return s def smart_text(s, encoding="utf-8", strings_only=False, errors="strict"): """ Returns a text object representing 's' -- unicode on Python 2 and str on Python 3. Treats bytestrings using the 'encoding' codec. If strings_only is True, don't convert (some) non-string-like objects. """ if isinstance(s, Promise): # The input is the result of a gettext_lazy() call. return s return force_text(s, encoding, strings_only, errors) class Promise(object): """ This is just a base class for the proxy class created in the closure of the lazy function. It can be used to recognize promises in code. """ pass _PROTECTED_TYPES = six.integer_types + ( type(None), float, Decimal, datetime.datetime, datetime.date, datetime.time, ) def is_protected_type(obj): """Determine if the object instance is of a protected type. Objects of protected types are preserved as-is when passed to force_text(strings_only=True). """ return isinstance(obj, _PROTECTED_TYPES) def audio_encoder(data): return namedtuple("AudioFile", data.keys())(*data.values()) def ignore_warnings(test_func): def do_test(self, *args, **kwargs): with warnings.catch_warnings(): warnings.simplefilter("ignore", ResourceWarning) warnings.simplefilter("ignore", DeprecationWarning) test_func(self, *args, **kwargs) return do_test def make_png_thumbnail_for_instance(filepath, max_dimension): """Abstract function for making a thumbnail for a PDF See helper functions below for how to use this in a simple way. :param filepath: The attr where the PDF is located on the item :param max_dimension: The longest you want any edge to be :param response: Flask response object """ command = [ "pdftoppm", "-singlefile", "-f", "1", "-scale-to", str(max_dimension), filepath, "-png", ] p = subprocess.Popen( command, close_fds=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE ) stdout, stderr = p.communicate() return stdout, stderr.decode("utf-8"), str(p.returncode) def make_png_thumbnails(filepath, max_dimension, pages, directory): """Abstract function for making a thumbnail for a PDF See helper functions below for how to use this in a simple way. :param filepath: The attr where the PDF is located on the item :param max_dimension: The longest you want any edge to be :param response: Flask response object """ for page in pages: command = [ "pdftoppm", "-singlefile", "-f", str(page), "-scale-to", str(max_dimension), filepath, "-png", f"{directory.name}/thumb-{page}", ] p = subprocess.Popen( command, close_fds=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE ) p.communicate() def pdf_bytes_from_image_array(image_list, output_path) -> None: """Make a pdf given an array of Image files :param image_list: List of images :type image_list: list :return: pdf_data :type pdf_data: PDF as bytes """ image_list[0].save( output_path, "PDF", resolution=100.0, save_all=True, append_images=image_list[1:], ) del image_list def strip_metadata_from_path(file_path): """Convert PDF file into PDF and remove metadata from it Stripping the metadata allows us to hash the PDFs :param pdf_bytes: PDF as binary content :return: PDF bytes with metadata removed. """ with open(file_path, "rb") as f: pdf_merger = PdfFileMerger() pdf_merger.append(io.BytesIO(f.read())) pdf_merger.addMetadata({"/CreationDate": "", "/ModDate": ""}) byte_writer = io.BytesIO() pdf_merger.write(byte_writer) return force_bytes(byte_writer.getvalue()) def strip_metadata_from_bytes(pdf_bytes): """Convert PDF bytes into PDF and remove metadata from it Stripping the metadata allows us to hash the PDFs :param pdf_bytes: PDF as binary content :return: PDF bytes with metadata removed. """ pdf_merger = PdfFileMerger() pdf_merger.append(io.BytesIO(pdf_bytes)) pdf_merger.addMetadata({"/CreationDate": "", "/ModDate": ""}) byte_writer = io.BytesIO() pdf_merger.write(byte_writer) return force_bytes(byte_writer.getvalue()) def cleanup_form(form): """Clean up a form object""" os.remove(form.cleaned_data["fp"]) def make_file(filename, dir=None): filepath = f"{Path.cwd()}/doctor/test_assets/{filename}" with open(filepath, "rb") as f: return {"file": (filename, f.read())} def make_buffer(filename, dir=None): filepath = f"{Path.cwd()}/doctor/test_assets/{filename}" with open(filepath, "rb") as f: return {"file": ("filename", f.read())} def pdf_has_images(path: str) -> bool: """Check raw PDF for embedded images. We need to check if a PDF contains any images. If a PDF contains images it likely has content that needs to be scanned. :param path: Location of PDF to process. :return: Does the PDF contain images? :type: bool """ with open(path, "rb") as pdf_file: pdf_bytes = pdf_file.read() return True if re.search(rb"/Image ?/", pdf_bytes) else False def ocr_needed(path: str, content: str) -> bool: """Check if OCR is needed on a PDF Check if images are in PDF or content is empty. :param path: The path to the PDF :param content: The content extracted from the PDF. :return: Whether OCR should be run on the document. """ if content.strip() == "" or pdf_has_images(path): return True return False def make_page_with_text(page, data, h, w): """Make a page with text :param page: :param data: :param h: :param w: :return: """ packet = io.BytesIO() can = canvas.Canvas(packet, pagesize=(w, h)) # Set to a standard size and font for now. can.setFont("Helvetica", 9) # Make the text transparent can.setFillAlpha(0) for i in range(len(data["level"])): try: letter, (x, y, ww, hh), pg = ( data["text"][i], (data["left"][i], data["top"][i], data["width"][i], data["height"][i]), data["page_num"][i], ) except: continue # Adjust the text to an 8.5 by 11 inch page sub = ((11 * 72) / h) * int(hh) x = ((8.5 * 72) / w) * int(x) y = ((11 * 72) / h) * int(y) yy = (11 * 72) - y if int(page) == int(pg): can.drawString(x, yy - sub, letter) can.showPage() can.save() packet.seek(0) return packet
if not 1121 + 100 < 1920 & 1010 + 80 < 1080: print("aa")
from django.db import models from django.utils.encoding import smart_text from django.utils.encoding import python_2_unicode_compatible from django.urls import reverse from django.utils.text import slugify from redactor.fields import RedactorField @python_2_unicode_compatible class Topic(models.Model): title = models.CharField(max_length=255) content = RedactorField() summary = models.TextField(null=True, blank=True) class Meta: ordering = ('id',) def __str__(self): return smart_text(self.title) def get_absolute_url(self): return reverse('topic-detail', args=[self.id, slugify(self.title)])
import re import requests class InvalidIDError(Exception): pass class OrgIDGuide(): def __init__(self): self._request_cache = {} self._org_id_re = re.compile(r'([^-]+-[^-]+)-(.+)') self._dac_channel_code_re = re.compile(r'\d{5}') self._dac_donor_code_re = re.compile(r'([A-Z]{2})-(\d+)') def _cache(var_name): def __cache(fn): def ___cache(self): cached = self._request_cache.get(var_name) if cached: return cached data = fn(self) self._request_cache[var_name] = data return data return ___cache return __cache @property @_cache('org_id_guide') def _org_id_guide(self): org_id_guide_url = 'http://org-id.guide/download.json' org_id_guide_data = requests.get(org_id_guide_url).json()['lists'] return {x['code']: x for x in org_id_guide_data} @property @_cache('dac_channel_codes') def _dac_channel_codes(self): dac_channels_url = 'https://datahub.io/core/' + \ 'dac-and-crs-code-lists/r/channel-codes.json' dac_channels_data = requests.get(dac_channels_url).json() return {x['code']: x for x in dac_channels_data} @property @_cache('dac_donor_codes') def _dac_donor_codes(self): dac_donors_url = 'https://datahub.io/core/' + \ 'dac-and-crs-code-lists/r/dac-members.json' dac_donors_data = requests.get(dac_donors_url).json() return {x['name_en'].upper(): x for x in dac_donors_data} @property @_cache('country_codes') def _country_codes(self): country_codes_url = 'https://datahub.io/core/' + \ 'country-codes/r/country-codes.json' country_codes_url_data = requests.get(country_codes_url).json() return {x['ISO3166-1-Alpha-2']: x for x in country_codes_url_data} @property @_cache('xi_iati_codes') def _xi_iati_codes(self): xi_iati_url = 'http://iatistandard.org/202/codelists/downloads/' + \ 'clv2/json/en/IATIOrganisationIdentifier.json' xi_iati_data = requests.get(xi_iati_url).json()['data'] return {x['code']: x for x in xi_iati_data} @property @_cache('org_types') def _org_types(self): org_type_url = 'http://iatistandard.org/202/codelists/downloads/' + \ 'clv2/json/en/OrganisationType.json' org_type_data = requests.get(org_type_url).json()['data'] return {x['code']: x['name'] for x in org_type_data} def lookup_prefix(self, prefix): return self._org_id_guide.get(prefix) def is_valid_prefix(self, prefix): return self.lookup_prefix(prefix) is not None def split_id(self, org_id): match = self._org_id_re.match(org_id) if not match: raise InvalidIDError() return match.groups() def is_valid_id(self, org_id): try: pref, suf = self.split_id(org_id) except InvalidIDError: return False return self.is_valid_prefix(pref) def get_suggested_id(self, org_id): if self.is_valid_id(org_id): return org_id try: # looks a bit like an org ID. # Try uppercasing pref, suf = self.split_id(org_id) if self.is_valid_prefix(pref.upper()): return '{pref}-{suf}'.format(pref=pref.upper(), suf=suf) except InvalidIDError: pass if self._dac_channel_code_re.match(org_id): # looks like a channel code if self._dac_channel_codes.get(org_id): return 'XM-DAC-{}'.format(org_id) dac_donor_code_match = self._dac_donor_code_re.match(org_id) if dac_donor_code_match: # looks like a donor code country_code, agency_code = dac_donor_code_match.groups() country = self._country_codes.get(country_code) if country: country_name = country['official_name_en'].upper() dac_donor = self._dac_donor_codes.get(country_name) if dac_donor: return 'XM-DAC-{country}-{agency}'.format( country=dac_donor['code'], agency=agency_code, ) xi_iati_org_id = 'XI-IATI-{}'.format(org_id) if self._xi_iati_codes.get(xi_iati_org_id): # I mean this is pretty rare return xi_iati_org_id
from pytest import fixture from app import factory @fixture(scope="function") def test_app(): app = factory.create_app("testing") with app.app_context(): yield app
# Generated by Django 3.2a1 on 2021-03-08 19:09 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('geodata', '0004_auto_20210302_2017'), ] operations = [ migrations.AlterField( model_name='checksumfile', name='name', field=models.CharField(blank=True, max_length=1000), ), migrations.AlterField( model_name='fmventry', name='name', field=models.CharField(max_length=1000), ), migrations.AlterField( model_name='geometryentry', name='name', field=models.CharField(blank=True, max_length=1000), ), migrations.AlterField( model_name='imageentry', name='name', field=models.CharField(blank=True, max_length=1000), ), migrations.AlterField( model_name='imageset', name='name', field=models.CharField(blank=True, max_length=1000), ), migrations.AlterField( model_name='kwcocoarchive', name='name', field=models.CharField(blank=True, max_length=1000), ), migrations.AlterField( model_name='rasterentry', name='name', field=models.CharField(blank=True, max_length=1000), ), ]
class Solution: def isValidBST(self, root): """ :type root: TreeNode :rtype: bool """ def traverse(node, low, high): if not node: return True if node.val <= low or node.val >= high: return False return traverse(node.left, low, node.val) and traverse(node.right, node.val, high) return traverse(root, -math.inf, math.inf)
class ShapesList: def __init__(self): self.shapes = [] print("In init") def add(self, s): print(s) self.shapes.append(s) def areas(self): return [shapes.area() for shapes in self.shapes] class Triangle: def __init__(self, b, h): self.base = b self.height = h def area(self): return self.base * self.height / 2.0 class Rectangle: def __init__(self, l, w): self.length = l self.height = w def area(self): return self.length * self.height / 2.0 class Circle: def __init__(self, r): self.radius = r def area(self): return 3.14 * self.radius * self.radius
import os import numpy as np import tensorflow as tf import math from PIL import Image #import pdb F = tf.app.flags.FLAGS """ Save tensorflow model Parameters: * checkpoint_dir - name of the directory where model is to be saved * sess - current tensorflow session * saver - tensorflow saver """ def save_model(checkpoint_dir, sess, saver): model_name = "model.ckpt" if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) saver.save(sess, os.path.join(checkpoint_dir, model_name)) """ Load tensorflow model Parameters: * checkpoint_dir - name of the directory where model is to be loaded from * sess - current tensorflow session * saver - tensorflow saver Returns: True if the model loaded successfully, else False """ def load_model(checkpoint_dir, sess, saver): print(" [*] Reading checkpoints...") ckpt = tf.train.get_checkpoint_state(checkpoint_dir) if ckpt and ckpt.model_checkpoint_path: ckpt_name = os.path.basename(ckpt.model_checkpoint_path) saver.restore(sess, os.path.join(checkpoint_dir, ckpt_name)) return True else: return False """ To recompose an array of 3D images from patches """ def recompose3D_overlap(preds, img_h, img_w, img_d, stride_h, stride_w, stride_d): patch_h = preds.shape[1] patch_w = preds.shape[2] patch_d = preds.shape[3] N_patches_h = (img_h-patch_h)//stride_h+1 N_patches_w = (img_w-patch_w)//stride_w+1 N_patches_d = (img_d-patch_d)//stride_d+1 N_patches_img = N_patches_h * N_patches_w * N_patches_d print("N_patches_h: " ,N_patches_h) print("N_patches_w: " ,N_patches_w) print("N_patches_d: " ,N_patches_d) print("N_patches_img: ",N_patches_img) assert(preds.shape[0]%N_patches_img==0) N_full_imgs = preds.shape[0]//N_patches_img print("According to the dimension inserted, there are " \ +str(N_full_imgs) +" full images (of " +str(img_h)+"x" +str(img_w)+"x" +str(img_d) +" each)") # itialize to zero mega array with sum of Probabilities raw_pred_martrix = np.zeros((N_full_imgs,img_h,img_w,img_d)) raw_sum = np.zeros((N_full_imgs,img_h,img_w,img_d)) final_matrix = np.zeros((N_full_imgs,img_h,img_w,img_d),dtype='uint16') k = 0 # iterator over all the patches for i in range(N_full_imgs): for h in range((img_h-patch_h)//stride_h+1): for w in range((img_w-patch_w)//stride_w+1): for d in range((img_d-patch_d)//stride_d+1): raw_pred_martrix[i,h*stride_h:(h*stride_h)+patch_h,\ w*stride_w:(w*stride_w)+patch_w,\ d*stride_d:(d*stride_d)+patch_d]+=preds[k] raw_sum[i,h*stride_h:(h*stride_h)+patch_h,\ w*stride_w:(w*stride_w)+patch_w,\ d*stride_d:(d*stride_d)+patch_d]+=1.0 k+=1 assert(k==preds.shape[0]) #To check for non zero sum matrix assert(np.min(raw_sum)>=1.0) final_matrix = np.around(raw_pred_martrix/raw_sum) return final_matrix #functions below are added by liuhuaqing 2019-07-15 def make_grid(tensor, nrow=8, padding=2, normalize=False, scale_each=False): """Code based on https://github.com/pytorch/vision/blob/master/torchvision/utils.py""" nmaps = tensor.shape[0] xmaps = min(nrow, nmaps) ymaps = int(math.ceil(float(nmaps) / xmaps)) height, width = int(tensor.shape[1] + padding), int(tensor.shape[2] + padding) grid = np.zeros([height * ymaps + 1 + padding // 2, width * xmaps + 1 + padding // 2], dtype=np.uint8) k = 0 for y in range(ymaps): for x in range(xmaps): if k >= nmaps: break h, h_width = y * height + 1 + padding // 2, height - padding w, w_width = x * width + 1 + padding // 2, width - padding grid[h:h+h_width, w:w+w_width] = tensor[k] k = k + 1 return grid def save_image(tensor, filename, nrow=8, padding=2, normalize=False, scale_each=False): ndarr = make_grid(tensor, nrow=nrow, padding=padding, normalize=normalize, scale_each=scale_each) im = Image.fromarray(ndarr) im.save(filename) # 语义分割准确率的定义和计算,参考:https://blog.csdn.net/majinlei121/article/details/78965435 def fast_hist(a, b, n): k = (a >= 0) & (a < n) #正常情况下全是True return np.bincount(n * a[k].astype(int) + b[k], minlength=n**2).reshape(n, n)#np.bincount 用于统计数组中(从小到大)给取值出现的次数 def Hist(a,b,n): hist = fast_hist(a,b,n) return hist def pixelAccuracy(trueMask,predMask,n_cls): hist = Hist(trueMask,predMask,n_cls) PA = np.diag(hist).sum() / hist.sum() return PA def MeanPixelAccuracy(trueMask,predMask,n_cls): #epsilon = 1 hist = Hist(trueMask,predMask,n_cls) PAs = np.diag(hist) / hist.sum(1) return PAs def IntersectionoverUnion(trueMask,predMask,n_cls): #epsilon = 1 hist = Hist(trueMask,predMask,n_cls) IoUs = np.diag(hist) / (hist.sum(1) + hist.sum(0) - np.diag(hist)) return IoUs def DiceScore(trueMask,predMask,n_cls): # epsilon = 1 hist = Hist(trueMask,predMask,n_cls) correct_pred = np.diag(hist) # 给类别正确预测的像素点数 pred_classes = np.sum(hist,0) # 预测处的各类别像素点数, true_classes = np.sum(hist,1) # 真实的各类别像素点数 DSs = 2*correct_pred/(pred_classes+true_classes) return DSs
from unittest import TestCase import numpy.testing as npt from itertools import zip_longest from distancematrix.consumer.contextmanager import GeneralStaticManager class TestGeneralStaticManager(TestCase): def test_does_not_return_empty_contexts(self): r = [range(1, 5), range(0, 0), range(5, 10)] m = GeneralStaticManager(r) _assert_equal_iteration(m.series_contexts(0, 1), []) _assert_equal_iteration(m.series_contexts(0, 4), [(1, 5, 0)]) _assert_equal_iteration(m.series_contexts(0, 8), [(1, 5, 0), (5, 10, 2)]) _assert_equal_iteration(m.series_contexts(0, 12), [(1, 5, 0), (5, 10, 2)]) _assert_equal_iteration(m.series_contexts(5, 12), [(5, 10, 2)]) _assert_equal_iteration(m.query_contexts(0, 1), []) _assert_equal_iteration(m.query_contexts(0, 4), [(1, 5, 0)]) _assert_equal_iteration(m.query_contexts(0, 8), [(1, 5, 0), (5, 10, 2)]) _assert_equal_iteration(m.query_contexts(0, 12), [(1, 5, 0), (5, 10, 2)]) _assert_equal_iteration(m.query_contexts(5, 12), [(5, 10, 2)]) def _assert_equal_iteration(actual, expected, msg=''): """ Assert function similar to TestCase.assertSequenceEqual, but that actually treats 2D numpy arrays as iterables. """ sentinel = object() for actual_value, expected_value in zip_longest(actual, expected, fillvalue=sentinel): if sentinel is actual_value: raise AssertionError("Actual iterator is shorter, does not include " + str(expected_value)) if sentinel is expected_value: raise AssertionError("Actual iterator is longer, contained " + str(actual_value)) npt.assert_equal(actual_value, expected_value, msg)