content
stringlengths
5
1.05M
# python3 # Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Represents an index on a Model.""" from typing import List, Optional from spanner_orm import error class Index(object): """Represents an index on a Model.""" PRIMARY_INDEX = 'PRIMARY_KEY' def __init__(self, columns: List[str], parent: Optional[str] = None, null_filtered: bool = False, unique: bool = False, storing_columns: Optional[List[str]] = None): if not columns: raise error.ValidationError('An index must have at least one column') self.columns = columns self.name = None self.parent = parent self.null_filtered = null_filtered self.unique = unique self.storing_columns = storing_columns or [] @property def primary(self) -> bool: return self.name == self.PRIMARY_INDEX
''' One-off script to look at embedding results for a set of script ''' import argparse, os, pickle, random, sys, time import numpy as np import torch import scipy.io from sklearn.preprocessing import StandardScaler from sklearn.neighbors import NearestNeighbors sys.path.append("..") from DL.utils import * from DL.networks import * from Database.DB_models import * from DL.sqlite_data_loader import SQLDataLoader def main(): parser = argparse.ArgumentParser() parser.add_argument('--db_name', default='missouricameratraps', type=str, help='Name of the training (target) data Postgres DB.') parser.add_argument('--db_user', default='user', type=str, help='Name of the user accessing the Postgres DB.') parser.add_argument('--db_password', default='password', type=str, help='Password of the user accessing the Postgres DB.') parser.add_argument('--num', default=2500, type=int, help='Number of samples to draw from dataset to get embedding features.') parser.add_argument('--crop_dir', type=str, help='Path to directory with cropped images to get embedding features for.') parser.add_argument('--base_model', type=str, help='Path to latest embedding model checkpoint.') parser.add_argument('--random_seed', default=1234, type=int, help='Random seed to get same samples from database.') parser.add_argument('--output_dir', type=str, help='Output directory for subset of crops') args = parser.parse_args() random.seed(args.random_seed) np.random.seed(args.random_seed) BASE_MODEL = args.base_model DB_NAME = args.db_name USER = args.db_user PASSWORD = args.db_password # Connect to database and sample a dataset target_db = PostgresqlDatabase(DB_NAME, user=USER, password=PASSWORD, host='localhost') target_db.connect(reuse_if_open=True) db_proxy.initialize(target_db) dataset_query = Detection.select(Detection.image_id, Oracle.label, Detection.kind).join(Oracle).limit(args.num) dataset = SQLDataLoader(args.crop_dir, query=dataset_query, is_training=False, kind=DetectionKind.ModelDetection.value, num_workers=8, limit=args.num) imagepaths = dataset.getallpaths() # Load the saved embedding model from the checkpoint checkpoint = load_checkpoint(BASE_MODEL) if checkpoint['loss_type'].lower() == 'center' or checkpoint['loss_type'].lower() == 'softmax': embedding_net = SoftmaxNet(checkpoint['arch'], checkpoint['feat_dim'], checkpoint['num_classes'], False) else: embedding_net = NormalizedEmbeddingNet(checkpoint['arch'], checkpoint['feat_dim'], False) model = torch.nn.DataParallel(embedding_net).cuda() model.load_state_dict(checkpoint['state_dict']) # Update the dataset embedding dataset.updateEmbedding(model) X_train = dataset.em[range(len(dataset))] y_train = np.asarray(dataset.getalllabels()) imagepaths = dataset.getallpaths() datasetindices = list(range(len(dataset))) sample_features = np.array([]).reshape(0, 256) sample_labels = [] sample_images = [] for idx in datasetindices: sample_features = np.vstack([sample_features, X_train[idx]]) sample_labels.append(y_train[idx]) img_path = imagepaths[idx].split('.JPG')[0] image = dataset.loader(img_path) sample_images.append(image) # save the images for idx in datasetindices: img_path = imagepaths[idx].split('.JPG')[0] image = dataset.loader(img_path) os.makedirs(os.path.join(args.output_dir, 'crops'), exist_ok=True) image.save(os.path.join(args.output_dir, 'crops', '%d.JPG'%idx)) # save the features # with open(os.path.join(args.output_dir, 'lastlayer_features.mat'), 'wb') as f: # pickle.dump(sample_features, f) # with open(os.path.join(args.output_dir, 'labels.mat'), 'wb') as f: # pickle.dump(sample_labels, f) with open(os.path.join(args.output_dir, 'lastlayer_features_and_labels.mat'), 'wb') as f: scipy.io.savemat(f, mdict={'features': sample_features, 'labels': sample_labels}) if __name__ == '__main__': main()
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Generated from FHIR 4.0.1-9346c8cc45 (http://hl7.org/fhir/StructureDefinition/Subscription) on 2020-02-03. # 2020, SMART Health IT. import sys from dataclasses import dataclass, field from typing import ClassVar, Optional, List from .backboneelement import BackboneElement from .contactpoint import ContactPoint from .domainresource import DomainResource from .fhirdate import FHIRDate @dataclass class SubscriptionChannel(BackboneElement): """ The channel on which to report matches to the criteria. Details where to send notifications when resources are received that meet the criteria. """ resource_type: ClassVar[str] = "SubscriptionChannel" type: str = None endpoint: Optional[str] = None payload: Optional[str] = None header: Optional[List[str]] = None @dataclass class Subscription(DomainResource): """ Server push subscription criteria. The subscription resource is used to define a push-based subscription from a server to another system. Once a subscription is registered with the server, the server checks every resource that is created or updated, and if the resource matches the given criteria, it sends a message on the defined "channel" so that another system can take an appropriate action. """ resource_type: ClassVar[str] = "Subscription" status: str = None contact: Optional[List[ContactPoint]] = None end: Optional[FHIRDate] = None reason: str = None criteria: str = None error: Optional[str] = None channel: SubscriptionChannel = None
#!/bin/false # Copyright (c) 2022 Vít Labuda. All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, are permitted provided that the # following conditions are met: # 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following # disclaimer. # 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the # following disclaimer in the documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote # products derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, # INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import abc from typing import Any, Dict from sidein.providers.DependencyProviderInterface import DependencyProviderInterface class SimpleContainerInterface(DependencyProviderInterface, metaclass=abc.ABCMeta): """ A dependency provider implementation which stores dependencies in an internal dictionary. """ # NOTE: As you might've noticed, there is no dependency_exists() method in this interface. The reason for that is # that it would encourage its thread-unsafe use. Consider the following code: # # if container.dependency_exists(name): # container.remove_dependency(name) # # If two threads executed this piece of code at the same time, a race condition could occur (while the methods # exported by this interface are guaranteed to be thread-safe, this doesn't mean they cannot be used wrongly). # For this reason, it's reasonable to think of a better, thread-safe method of achieving your goal - a method which # doesn't check the presence of a dependency at all; for example, instead of the above code snippet, you could # write this: # # try: # container.remove_dependency(name) # This method *itself* is guaranteed to be thread-safe # except DependencyProviderException: # pass __slots__ = () @abc.abstractmethod def get_dependency(self, name: str) -> Any: """ Returns the dependency named 'name' from the dependency container. :param name: The requested dependency's name. :return: The dependency named 'name'. :raises DependencyInSCNotFoundException: If the requested dependency isn't present in the dependency container. (DependencyInSCNotFoundException is a subclass of DependencyProviderException!) """ raise NotImplementedError(SimpleContainerInterface.get_dependency.__qualname__) @abc.abstractmethod def get_all_dependencies(self) -> Dict[str, Any]: """ Returns all the dependencies stored in the dependency container in a {name: dependency} dictionary. :return: All the dependencies stored in the dependency container. """ raise NotImplementedError(SimpleContainerInterface.get_all_dependencies.__qualname__) @abc.abstractmethod def add_dependency(self, name: str, dependency: Any) -> None: """ Adds the dependency 'dependency' to the dependency container under the name 'name'. :param name: The added dependency's name. :param dependency: The added dependency. :raises DependencyInSCExistsException: If the added dependency is already present in the dependency container. """ raise NotImplementedError(SimpleContainerInterface.add_dependency.__qualname__) @abc.abstractmethod def replace_dependency(self, name: str, dependency: Any) -> None: """ Replaces the already existing dependency named 'name' with the new dependency 'dependency' in the dependency container. :param name: The replaced dependency's name. :param dependency: The new dependency to replace the old dependency with. :raises DependencyInSCNotFoundException: If the replaced dependency isn't present in the dependency container. """ raise NotImplementedError(SimpleContainerInterface.replace_dependency.__qualname__) @abc.abstractmethod def add_or_replace_dependency(self, name: str, dependency: Any) -> bool: """ Adds the dependency 'dependency' to the dependency container under the name 'name', if it isn't present there. Otherwise, the old dependency is replaced with the new one. :param name: The added or replaced dependency's name. :param dependency: The new dependency to add or to replace the old dependency with. :return: True if the dependency is replaced, False if it is added. """ raise NotImplementedError(SimpleContainerInterface.add_or_replace_dependency.__qualname__) @abc.abstractmethod def remove_dependency(self, name: str) -> None: """ Removes the dependency named 'name' from the dependency container. :param name: The removed dependency's name. :raises DependencyInSCNotFoundException: If the removed dependency isn't present in the dependency container. """ raise NotImplementedError(SimpleContainerInterface.remove_dependency.__qualname__) @abc.abstractmethod def remove_all_dependencies(self) -> None: """ Removes all the dependencies stored in the dependency container. """ raise NotImplementedError(SimpleContainerInterface.remove_all_dependencies.__qualname__)
import shutil from tempfile import mkdtemp, mktemp import os from zipfile import ZipFile from AnkiTools.excel import AnkiExcelSync class AnkiFormatEditor: def __init__(self): self.tempdir = mkdtemp() def convert(self, in_file, out_file=None, out_format=None): in_file_type = os.path.splitext(in_file)[1] if out_format is None: assert out_file is not None, "Either out_file or out_format must be specified." out_file_type = os.path.splitext(out_file)[1] else: if out_format[0] == '.': out_file_type = out_format else: out_file_type = '.' + out_format if out_file is not None: out_file_header = os.path.splitext(out_file)[0] else: out_file_header = os.path.splitext(in_file)[0] out_file = '{}{}'.format(out_file_header, out_file_type) assert in_file_type != out_file_type, 'File types must be different' conversion = (in_file_type, out_file_type) if conversion == ('.apkg', '.anki2'): self.unzip(in_file, out_file=out_file) elif conversion == ('.apkg', '.xlsx'): self.export_anki_sqlite(self.unzip(in_file, os.path.join(self.tempdir, mktemp())), out_file) elif conversion == ('.anki2', '.apkg'): self.zip(in_file, out_file) elif conversion == ('.anki2', '.xlsx'): self.export_anki_sqlite(in_file, out_file) elif conversion == ('.xlsx', '.anki2'): self.import_anki_sqlite(in_file, out_file, out_path='') elif conversion == ('.xlsx', '.apkg'): self.zip(self.import_anki_sqlite(in_file), out_file) else: raise Exception("Unsupported conversion.") def unzip(self, in_file, out_file): with ZipFile(in_file) as zf: zf.extract('collection.anki2', path=self.tempdir) shutil.move(os.path.join(self.tempdir, 'collection.anki2'), out_file) return out_file @staticmethod def zip(in_file, out_file): with ZipFile(out_file, 'w') as zf: zf.write(in_file, arcname='collection.anki2') zf.writestr('media', '{}') @staticmethod def export_anki_sqlite(in_file, out_file): with AnkiExcelSync(anki_database=in_file, excel_filename=out_file) as sync_portal: sync_portal.to_excel() def import_anki_sqlite(self, in_file, out_file=None, out_path=''): if out_file is None: out_file = os.path.join(self.tempdir, 'collection.anki2') with AnkiExcelSync(anki_database=out_file, excel_filename=in_file, read_only=True) as sync_portal: sync_portal.to_sqlite() return os.path.join(out_path, out_file) def anki_convert(in_file, out_file=None, out_format=None, out_path=None): AnkiFormatEditor().convert(in_file, out_file, out_format)
""" ObjectiveGenerator constructs 3 types of optimization objectives - Risk-only (Volatility, Variance, Skewness, Kurtosis, Higher Normalized Moments, Market Neutral) - Risk Reward (Expected Return, Efficient Frontier, Sharpe, Sortino, Beta, Treynor, Jenson's Alpha) - Numerical (Inverse Volatility, Variance, Equal Weight, Market Cap Weight) """ import numpy as np from .Metrics import MetricGenerator class ObjectiveGenerator(MetricGenerator): def __init__(self, ret_vec, moment_mat, moment, assets, beta_vec): """ Initialize an ObjectiveGenerator class with parameters to construct objectives Parameters are identical to its parent class MetricGenerator """ super().__init__(ret_vec, moment_mat, moment, assets, beta_vec) self.method_dict = {"efficient_frontier": self.efficient_frontier, "equal_risk_parity": self.equal_risk_parity, "min_correlation": self.min_correlation, "min_volatility": self.min_volatility, "min_variance": self.min_moment, "min_skew": self.min_moment, "min_kurt": self.min_moment, "min_moment": self.min_moment, "max_return": self.max_return, "max_diversification": self.max_diversification, "max_sharpe": self.max_sharpe, "min_beta": self.min_beta, "max_treynor": self.max_treynor, "max_jenson_alpha": self.max_jenson_alpha, "inverse_volatility": self.inverse_volatility, "inverse_variance": self.inverse_variance, "equal_weight": self.equal_weight, "market_cap_weight": self.market_cap_weight} def create_objective(self, objective_type, **kwargs): """ Universal method for creating an objective :param objective_type: str, options are listed in ObjectiveGenerator.method_dict :param kwargs: arguments to be passed in to construct objectives :return: func/np.ndarray (if weight construction is purely numerical, then return the weight vector, else return a function) """ if objective_type in ["equal_weight", "market_cap_weight", "inverse_volatility", "inverse_variance"]: return self.method_dict[objective_type](**kwargs) return self.method_dict[objective_type] # Risk Related def equal_risk_parity(self, w): """ Objective: Individual Portfolios Contribute Equal amount of risk to the portfolio :param w: np.ndarray, weight vector :return: float """ return self.risk_parity(w) def min_correlation(self, w): """ Objective: Minimize Portfolio Correlation Factor :param w: np.ndarray, weight vector :return: float """ return self.correlation(w) def min_volatility(self, w): """ Objective: Minimize Portfolio Volatility :param w: np.ndarray, weight vector :return: float """ return self.volatility(w) def min_moment(self, w): """ Objective: Minimize Portfolio Moment (Variance if moment=2, Skewness if moment=3, Kurtosis if moment=4) :param w: np.ndarray, weight vector :return: float """ return self.higher_moment(w) def max_diversification(self, w): """ Objective: Maximize Portfolio Diversification Factor :param w: np.ndarray, weight vector :return: float """ return -self.diversification(w) def efficient_frontier(self, w, aversion): """ Objective: Maximize return with lowest variance (Classic Mean Variance Optimization) :param w: np.ndarray, weight vector :param aversion: float, risk aversion factor :return: float """ return -(self.expected_return(w) - 0.5 * aversion * self.higher_moment(w)) def max_return(self, w): """ Objective: Maximize Return :param w: np.ndarray, weight vector :return: float """ return -self.expected_return(w) def max_sharpe(self, w, risk_free): """ Objective: Maximize Sharpe :param w: np.ndarray, weight vector :param risk_free: float, risk free rate of return. Must be positive :return: float """ return -self.sharpe(w, risk_free) def min_beta(self, w): """ Objective: Minimize Absolute Beta (Close to 0) :param w: np.ndarray, weight vector :return: float """ return np.sqrt(np.square(self.beta(w))) def max_treynor(self, w, risk_free): """ Objective: Maximize Treynor Ratio :param w: np.ndarray, weight vector :param risk_free: float, risk free rate of return :return: float """ return -self.treynor(w, risk_free) def max_jenson_alpha(self, w, risk_free, market_return): """ Objective: Maximizes Jenson's Alpha :param w: np.ndarray, weight vector :param risk_free: float, risk free rate of return :param market_return: float, assumed market rate of return :return: float """ return -self.jenson_alpha(w, risk_free, market_return)
from typing import Dict, Any import json import logging import os import boto3 from utils.parse_user_id import parse_user_id from aws_xray_sdk.core import patch_all patch_all() logger = logging.getLogger() logger.setLevel(logging.INFO) dynamodb = boto3.resource('dynamodb') def put_handler(event: Dict[str, Any], context): data = json.loads(event['body']) errors = [] if 'title' not in data: errors.append("Missing required text field.") if 'year' not in data: errors.append("Missing required year field.") if 'rating' not in data: errors.append("Missing required rating field") if len(errors) > 0: logging.error(f"Validation Failed for request: {event['body']}") return { "statusCode": 400, "body": json.dumps({"errors": errors}) } headers = event['headers'] user_id = parse_user_id(headers['authorization'][len('Bearer '):]) movie_item = put_movie(user_id, data['title'], int(data['year']), data['plot'], int(data['rating'])) # logging.info(f"Add {json.dumps(item)}") # write the todo to the database # response = table.put_item(Item=item, ReturnValues='ALL_OLD') # logging.info(f"PutItem response: {response['ResponseMetadata'].keys()}") # PutItem response: dict_keys(['RequestId', 'HTTPStatusCode', 'HTTPHeaders', 'RetryAttempts'] # create a response response = { "statusCode": 200, "body": json.dumps({'item': movie_item}) } return response def put_movie(user_id, title, year, plot, rating): # , dynamodb=None): # if not dynamodb: # dynamodb = boto3.resource('dynamodb', endpoint_url="http://localhost:8000") table = dynamodb.Table(os.environ['MOVIES_DYNAMODB_TABLE']) movie_item = { 'title': title, 'user_id': user_id, 'info': { 'year': year, 'plot': plot, 'rating': rating } } _ = table.put_item( Item=movie_item ) return movie_item # if __name__ == '__main__': # movie_resp = put_movie("The Big New Movie", 2015, # "Nothing happens at all.", 0) # print("Put movie succeeded:") # pprint(movie_resp, sort_dicts=False)
# -*- coding: utf-8 -*- """ **views.jobs** ================ This module contains the jobs function that handles requests for the jobs endpoint of the mycroft service. """ from simplejson.decoder import JSONDecodeError from staticconf import read_string from pyramid.view import view_config from mycroft.logic.job_actions import list_all_jobs from mycroft.logic.job_actions import list_jobs_by_name from mycroft.logic.job_actions import list_jobs_by_name_version from mycroft.logic.job_actions import post_job from mycroft.logic.job_actions import put_job from mycroft.models.aws_connections import TableConnection from mycroft.models.abstract_records import PrimaryKeyError from mycroft.backend.sqs_wrapper import SQSWrapper def get_scanner_queue(etl_type): """ Return the scanner sqs for jobs to send a message when post a job to wake up the scanner :param etl_type: et or load :type etl_type: string in ['et', 'load'] """ return SQSWrapper(read_string("sqs.{0}_scanner_queue_name".format(etl_type))) @view_config(route_name='api.jobs', request_method='GET', renderer='json_with_status') @view_config(route_name='api.jobs', request_method='POST', renderer='json_with_status') def jobs(request): """ jobs_name_and_version handles requests from the jobs endpoint with log_name and log_version, getting contents from the dynamo location **GET /v1/jobs/** Example: ``/v1/jobs/`` *Example Response* :: [ {'log_name': 'ad_click', 'log_schema_version': 'initial', 's3_log_uri': http://ad_click/schema.yaml?Signature=b?Expires=c?AccessKeyId=xxx 'start_date': '2014-05-01', 'end_date': '', 'contact_emails': ['[email protected]', '[email protected]'], 'redshift_id': 'abc123', 'additional_arguments': '{"et_step": ["--force-et"]}' }, {'log_name': 'ad_click', 'log_schema_version': 'minimal', 's3_log_uri': http://ad_min/schema.yaml?Signature=b?Expires=b?AccessKeyId=yyy 'start_date': '2014-05-01', 'end_date': '2014-05-07', 'contact_emails': ['[email protected]', '[email protected]'], 'redshift_id': 'abc123' 'additional_arguments': '{"et_step": ["--force-et"]}' }, {'log_name': 'bing_geocoder', 'log_schema_version': 'bing2', 's3_log_uri': http://bing/schema.yaml?Signature=b?Expires=a?AccessKeyId=zzz 'start_date': '2014-05-02', 'end_date': '2014-06-07', 'contact_emails': ['[email protected]', '[email protected]'], 'redshift_id': 'abc123' 'additional_arguments': '{"et_step": ["--force-et"]}' } ] ============ =========== Status Code Description ============ =========== **200** Success **500** unknown exception ============ =========== * **Encoding type:** *application/json* **POST /v1/jobs/** Example: ``v1/jobs`` **Query Parameters:** * **request.body** -- the json string of job details *Example request.body* :: "{ 'log_name': 'ad_click', 'log_schema_version': 'initial', 's3_log_uri': 'llll', 'start_date': '2014-04-01', 'end_date': '', 'contact_emails': ['[email protected]', '[email protected]'], 'redshift_id': 'rs1', 'additional_arguments': '{"load_step": ["--force-load"]}' }" ============ =========== Status Code Description ============ =========== **200** Success **400** bad hash_key: redshift_id, log_name, log_schema_version and start_date must all be present **404** invalid job parameters **500** unknown exception ============ =========== * **Encoding type:** *application/json* """ try: if request.method == "POST": return 200, post_job(TableConnection.get_connection('ScheduledJobs'), get_scanner_queue('et'), request.body) elif request.method == "GET": return 200, list_all_jobs(TableConnection.get_connection('ScheduledJobs')) except PrimaryKeyError as e: return 400, {'error': 'bad hash_key'} except ValueError as e: if "ConditionalCheckFailedException" in repr(e): return 404, {'error': "ConditionalCheckFailed; possible duplicate job. \ Delete existing job first"} return 404, {'error': repr(e)} except Exception as unknown_exception: return 500, {'error': repr(unknown_exception)} @view_config(route_name='api.jobs_log_name', request_method='GET', renderer='json_with_status') @view_config(route_name='api.jobs_log_name_version', request_method='GET', renderer='json_with_status') def jobs_filtered(request): """ jobs_filtered handles requests from the jobs endpoint with a log_name and optional version. If there's no version all jobs will be for the given log_name will be returned, otherwise all jobs for the log name and version combination will be returned. **GET /v1/jobs/**\ *{string: log_name}* **Query Parameters:** * **log_name** - the name of the log for which we want to see jobs Example: ``/v1/jobs/ad_click`` *Example Response* :: [ {'log_name': 'ad_click', 'log_schema_version': 'initial', 's3_log_uri': http://ad_click/schema.yaml?Signature=b?Expires=c?AccessKeyId=xxx 'start_date': '2014-05-01', 'end_date': '', 'contact_emails': ['[email protected]', '[email protected]'], 'redshift_id': 'abc123', 'additional_arguments': '{"load_step": ["--force-load"]}' }, {'log_name': 'ad_click', 'log_schema_version': 'minimal', 's3_log_uri': http://ad_min/schema.yaml?Signature=b?Expires=b?AccessKeyId=yyy 'start_date': '2014-05-01', 'end_date': '2014-05-07', 'contact_emails': ['[email protected]', '[email protected]'], 'redshift_id': 'abc123', 'additional_arguments': '{"load_step": ["--force-load"]}' } ] ============ =========== Status Code Description ============ =========== **200** Success **404** invalid log_name **500** unknown exception ============ =========== **GET /v1/jobs/**\ *{string: log_name}/{string: log_schema_version}* **Query Parameters:** * **log_name** - the name of the log for which we want to see jobs * **log_schema_version** - the version of the log for which we want to see jobs Example: ``/v1/jobs/ad_click/initial`` *Example Response* :: [ {'log_name': 'ad_click', 'log_schema_version': 'initial', 's3_log_uri': http://ad_click/schema.yaml?Signature=b?Expires=c?AccessKeyId=xxx 'start_date': '2014-05-01', 'end_date': '', 'emails': ['[email protected]', '[email protected]'], 'redshift_id': 'abc123', 'additional_arguments': '{"et_step": ["--force-et"]}' } ] ============ =========== Status Code Description ============ =========== **200** Success **404** invalid log_name or log_version **500** unknown exception ============ =========== * **Encoding type:** *application/json* """ log_name = request.matchdict.get('log_name') log_version = request.matchdict.get('log_schema_version', None) try: if log_version is None: return 200, list_jobs_by_name(log_name, TableConnection.get_connection('ScheduledJobs')) return 200, list_jobs_by_name_version(log_name, log_version, TableConnection.get_connection('ScheduledJobs')) except ValueError as e: return 404, {'error': repr(e)} except Exception as unknown_exception: return 500, {'error': repr(unknown_exception)} @view_config(route_name='api.jobs_job_id', request_method='PUT', renderer='json_with_status') def jobs_update_job(request): """ jobs_update_job_by_job_id handles requests from the jobs endpoint. **PUT /v1/jobs/job/** Example: ``v1/jobs/job/`` **Query Parameters:** * **request.body** -- the json string of job details *Example request.body* :: "{ 'log_name': 'ad_click', 'log_schema_version': 'initial', 'start_date': '2014-04-01', 'end_date': '', 'redshift_id': 'rs1', 'cancel_requested': True, }" ============ =========== Status Code Description ============ =========== **200** Success **400** bad hash_key: redshift_id, log_name, log_schema_version and start_date must all be present **404** invalid job parameters **500** unknown exception ============ =========== * **Encoding type:** *application/json* """ try: return 200, put_job(TableConnection.get_connection('ScheduledJobs'), get_scanner_queue('et'), request.body) except PrimaryKeyError as e: return 400, {'error': 'bad hash_key'} except JSONDecodeError as e: return 400, {'error': 'json decode error'} except ValueError as e: return 404, {'error': repr(e)} except Exception as unknown_exception: return 500, {'error': repr(unknown_exception)}
import math def do_naive_bayes_prediction(x, observed_class_distribution: dict, splitters: dict): """Perform Naive Bayes prediction Parameters ---------- x The feature values. observed_class_distribution Observed class distribution. splitters Attribute (features) observers. Returns ------- The probabilities related to each class. Notes ----- This method is not intended to be used as a stand-alone method. """ total_weight = sum(observed_class_distribution.values()) if not observed_class_distribution or total_weight == 0: # No observed class distributions, all classes equal return None votes = {} for class_index, class_weight in observed_class_distribution.items(): # Prior if class_weight > 0: votes[class_index] = math.log(class_weight / total_weight) else: votes[class_index] = 0.0 continue if splitters: for att_idx in splitters: if att_idx not in x: continue obs = splitters[att_idx] # Prior plus the log likelihood tmp = obs.cond_proba(x[att_idx], class_index) votes[class_index] += math.log(tmp) if tmp > 0 else 0.0 # Max log-likelihood max_ll = max(votes.values()) # Apply the log-sum-exp trick (https://stats.stackexchange.com/a/253319) lse = max_ll + math.log( sum(math.exp(log_proba - max_ll) for log_proba in votes.values()) ) for class_index in votes: votes[class_index] = math.exp(votes[class_index] - lse) return votes
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: percent # format_version: '1.3' # jupytext_version: 1.7.0-rc1 # kernelspec: # display_name: Python [conda env:b36] # language: python # name: conda-env-b36-py # --- # %% [markdown] # # imports # %% from useful_scit.imps2.defs import * # %% from skimage.util.shape import view_as_windows as viewW def strided_indexing_roll(a, r): # Concatenate with sliced to cover all rolls assert a.shape[0]==r.shape[0], 'roll vector does not match matrix shape' p = np.full((a.shape[0],a.shape[1]-1),np.nan) a_ext = np.concatenate((p,a,p),axis=1) # Get sliding windows; use advanced-indexing to select appropriate ones n = a.shape[1] return viewW(a_ext,(1,n))[np.arange(len(r)), -r + (n-1),0] # %% [markdown] # # example # %% # %% a = np.array([ [ 1, 2, 3], [ 1, 2, 3], [11,22,33], [21,22,23] ]) r = np.array([1,2,3,4]) # %% strided_indexing_roll(a,r) # %% viewW(a_ext,(1,5))[0] # %% a.shape[1]==r.shape[0] # %% # %load_ext memory_profiler # %% [markdown] # # flx example # %% def f1(): f = '/Users/diego/flexpart_management/flexpart_management/notebooks/log_pol_revisited/data/flxout_d02_20171217_000000.nc' d = '/Users/diego/flexpart_management/flexpart_management/notebooks/log_pol_revisited/data/header_d02.nc' ds = xr.open_dataset(f) hs = xr.open_dataset(d) to = hs['TOPOGRAPHY'] shifts = np.round(to/500).astype(int) co = ds['CONC'] co = co[{'Time':0,'releases':0,'ageclass':0}] # co.sum('south_north').plot() c1 = co.stack({'sw':['south_north','west_east']}) s1 = shifts.stack({'sw':['south_north','west_east']}) c1d = c1.values s1d = s1.values res = strided_indexing_roll(c1d.T,s1d).T c1d.shape,res.shape c2 = xr.full_like(c1,0.0) + res c3 = c2.unstack() c4 = c3.sum('south_north') - co.sum('south_north') # c4.plot() return c4 # c4.plot.contour() # %% # doesnt work def f2(): f = '/Users/diego/flexpart_management/flexpart_management/notebooks/log_pol_revisited/data/flxout_d02_20171217_000000.nc' d = '/Users/diego/flexpart_management/flexpart_management/notebooks/log_pol_revisited/data/header_d02.nc' ds = xr.open_dataset(f) hs = xr.open_dataset(d) to = hs['TOPOGRAPHY'] shifts = np.floor(to/500).astype(int) co = ds['CONC'] co = co[{'Time':slice(0,10),'releases':0,'ageclass':0}] # co.sum('south_north').plot() sdim = ['south_north','west_east','Time'] c1 = co.stack({'sw':sdim}) s1 = shifts.stack({'sw':sdim}) c1d = c1.values s1d = s1.values res = strided_indexing_roll(c1d.T,s1d).T c1d.shape,res.shape c2 = xr.full_like(c1,0.0) + res c3 = c2.unstack() # c4 = c3.sum('south_north') - co.sum('south_north') # c4.plot() return c4 # %% # %load_ext line_profiler # %% # # %timeit c4 = f1() # %lprun -f f1 c4 = f1() # c4.plot() # %% [markdown] # # from previous # %% from flexpart_alto.modules import constants as co # %% def from_agl_to_asl( ds , ds_var='conc_norm' , delta_z=500 , z_top=15000 , ds_var_name_out=None ) : log.ger.warning( f'this will only work if ds z levels are constant' ) import wrf t_list = [ co.ZM , co.R_CENTER , co.TH_CENTER ] d3d = ds[ ds_var ] # .sum( [ co.RL ] ) d3d_attrs = d3d.attrs d3d = d3d.transpose( co.RL , *t_list , transpose_coords=True ) dz = d3d[ co.TOPO ] + np.round( d3d[ co.ZM ] / delta_z ) * delta_z d3d = d3d.reset_coords( drop=True ) dz = dz.transpose( *t_list , transpose_coords=True ) dz = dz.reset_coords( drop=True ) # %% # print( d3d.shape ) # print( dz.shape ) # %% z_lev = np.arange( delta_z / 2 , z_top , delta_z ) da_interp = wrf.interplevel( d3d , dz , z_lev ) da_reinterp = da_interp.rename( level=co.ZM ) # %% ds_chop = ds.isel( { co.ZM : slice( 0 , len( da_reinterp[ co.ZM ] ) ) } ) for coord in list( ds.coords ) : da_reinterp = da_reinterp.assign_coords( **{ coord : ds_chop[ coord ] } ) if ds_var_name_out is not None : da_reinterp.name = ds_var_name_out # we do this in order to avoid the problem of setting attributes # to none that cannot be saved using to netcdf. da_reinterp.attrs = d3d_attrs ds_reinterp = da_reinterp.to_dataset() # todo: check that concentrations are the same after resampling return ds_reinterp # %% f = '/Users/diego/flexpart_management/flexpart_management/notebooks/log_pol_revisited/data/flxout_d02_20171217_000000.nc' d = '/Users/diego/flexpart_management/flexpart_management/notebooks/log_pol_revisited/data/header_d02.nc' ds = xr.open_dataset(f) hs = xr.open_dataset(d) # %% ds # %%
""" Exemplary workflow using the py-fmas library code. .. codeauthor:: Oliver Melchert <[email protected]> """ import fmas import numpy as np glob = fmas.data_io.read_h5("in_file.h5") grid = fmas.grid.Grid( t_max=glob.t_max, t_num=glob.t_num, z_max=glob.z_max, z_num=glob.z_num ) model = fmas.models.FMAS_S_Raman( w=grid.w, beta_w=glob.beta_w, n2=glob.n2, fR=glob.fR, tau1=glob.tau1, tau2=glob.tau2 ) ic = fmas.analytic_signal.AS(glob.E_0t) def Cp(i, zi, w, uw): Iw = np.abs(uw) ** 2 return np.sum(Iw[w > 0] / w[w > 0]) solver = fmas.solver.IFM_RK4IP(model.Lw, model.Nw, user_action=Cp) solver.set_initial_condition(grid.w, ic.w_rep) solver.propagate(z_range=glob.z_max, n_steps=glob.z_num, n_skip=glob.z_skip) res = {"t": grid.t, "z": solver.z, "w": solver.w, "u": solver.utz, "Cp": solver.ua_vals} fmas.data_io.save_h5("out_file.h5", **res) fmas.tools.plot_evolution( solver.z, grid.t, solver.utz, t_lim=(-500, 2200), w_lim=(1.0, 4.0) )
# -*- coding: utf-8 -*- from rest_framework import viewsets, mixins, decorators, response from apps.contact import models from . import serializers class ContactViewSetMixin: def get_queryset(self): qs = super().get_queryset() type = self.request.query_params.get('type', None) if type: qs = qs.filter(type=type) return qs class TitleViewSet(ContactViewSetMixin, viewsets.ModelViewSet): queryset = models.Title.objects.all() serializer_class = serializers.TitleSerializer class ContactViewSet(ContactViewSetMixin, viewsets.ModelViewSet): queryset = models.Contact.objects.all() serializer_class = serializers.ContactSerializer def get_queryset(self): qs = super().get_queryset() component = self.request.query_params.get('component', None) if component: qs = qs.filter(**{f'show_in_{component}': True}) return qs @decorators.action(methods=['POST'], detail=False, url_path='me') def contact_me(self, request): serializer = serializers.ContactMeEntrySerializer(data=request.data) serializer.is_valid(raise_exception=True) serializer.save() return response.Response(data=serializer.data) @decorators.action(methods=['GET'], detail=False, url_path='photo') def photo(self, request): photo = models.Photo.objects.first() url = photo.original.url if photo else '' return response.Response(data={'url': url})
from typing import Generator, List, Dict import pandas as pd from gym import Space import pytest from tensortrade import TradingContext from tensortrade.exchanges import Exchange from tensortrade.trades import Trade @pytest.mark.xskip(reason="GAN exchange is not complete. ") def test_create_gan_exchnage(): """ GAN is not complete. Will not do this. """ pass
print('=' * 5, 'EX_003', '=' * 5) nome = input('Digite seu nome: ') print('Bem vindo, {}!'.format(nome))
import os from pydantic import BaseSettings class Settings(BaseSettings): class Config: env_file = ".env" app_name: str = "FastAPI Demo" admin_email: str = "[email protected]" secret_key: str = os.getenv("SECRET_KEY") hash_algo: str = os.getenv("HASH_ALGO", "HS256") access_token_expiration: int = os.getenv("ACCESS_TOKEN_EXPIRATION", 86400) settings = Settings()
import sys, time def readanswers(): try: answers = {} f = open('answers.txt') try: for line in f.readlines(): line = line.strip() if line: problem, answer = line.split(':') answers[int(problem.strip())] = int(answer.strip()) finally: f.close() return answers except Exception: print 'Could not read file: answers.txt' return {} def main(): answers = readanswers() problems = [int(arg) for arg in sys.argv[1:]] or sorted(answers) format = '%10s %15s %15s %10s' print format % ('PROBLEM', 'RESULT', 'CORRECTION', 'DURATION') for problem in problems: t = time.time() try: module = __import__(str(problem)) result = module.solve() except Exception: result = '...' duration = '%.1f' % (time.time() - t) correction = '...' if problem in answers and result != answers[problem]: correction = answers[problem] print format % (problem, result, correction, duration) if __name__ == '__main__': main()
# -*- coding: utf-8 -*- from collections import defaultdict from contextlib import suppress from timeit import default_timer from threading import Event, Thread, Lock import os import time import sys try: from dask.callbacks import Callback except ImportError as e: opt_import_err = e Callback = object else: opt_import_err = None from africanus.util.docs import DefaultOut from africanus.util.requirements import requires_optional def format_time(t): """Format seconds into a human readable form.""" m, s = divmod(t, 60) h, m = divmod(m, 60) d, h = divmod(h, 24) w, d = divmod(d, 7) if w: return "{0:2.0f}w{1:2.0f}d".format(w, d) elif d: return "{0:2.0f}d{1:2.0f}h".format(d, h) elif h: return "{0:2.0f}h{1:2.0f}m".format(h, m) elif m: return "{0:2.0f}m{1:2.0f}s".format(m, s) else: return "{0:5.0f}s".format(s) def key_bin(key): if type(key) is tuple: key = key[0] if type(key) is bytes: key = key.decode() try: return str(key) except Exception: return "other" class TaskData(object): __slots__ = ("total", "completed", "time_sum") def __init__(self, completed=0, total=0, time_sum=0.0): self.completed = completed self.total = total self.time_sum = time_sum def __iadd__(self, other): self.completed += other.completed self.total += other.total self.time_sum += other.time_sum return self def __add__(self, other): return TaskData(self.completed + other.completed, self.total + other.total, self.time_sum + other.time_sum) def __repr__(self): return "TaskData(%s, %s, %s)" % (self.completed, self.total, self.time_sum) __str__ = __repr__ def update_bar(elapsed, prev_completed, prev_estimated, pb): total = 0 completed = 0 estimated = 0.0 time_guess = 0.0 # update with pb._lock: for k, v in pb.task_data.items(): total += v.total completed += v.completed if v.completed > 0: avg_time = v.time_sum / v.completed estimated += avg_time * v.total time_guess += v.time_sum # If we've completed some new tasks, update our estimate # otherwise use previous estimate. This prevents jumps # relative to the elapsed time if completed != prev_completed: estimated = estimated * elapsed / time_guess else: estimated = prev_estimated # For the first 10 seconds, tell the user estimates improve over time # then display the bar if elapsed < 10.0: fraction = 0.0 bar = " estimate improves over time" else: # Print out the progress bar fraction = elapsed / estimated if estimated > 0.0 else 0.0 bar = "#" * int(pb._width * fraction) percent = int(100 * fraction) msg = "\r[{0:{1}.{1}}] | {2}% Complete (Estimate) | {3} / ~{4}".format( bar, pb._width, percent, format_time(elapsed), "???" if estimated == 0.0 else format_time(estimated)) with suppress(ValueError): pb._file.write(msg) pb._file.flush() return completed, estimated def timer_func(pb): start = default_timer() while pb.running.is_set(): elapsed = default_timer() - start prev_completed = 0 prev_estimated = 0.0 if elapsed > pb._minimum: prev_completed, prev_estimated = update_bar(elapsed, prev_completed, prev_estimated, pb) time.sleep(pb._dt) default_out = DefaultOut("sys.stdout") class EstimatingProgressBar(Callback): """ Progress Bar that displays elapsed time as well as an estimate of total time taken. When starting a dask computation, the bar examines the graph and determines the number of chunks contained by a dask collection. During computation the number of completed chunks and their the total time taken to complete them are tracked. The average derived from these numbers are used to estimate total compute time, relative to the current elapsed time. The bar is not particularly accurate and will underestimate near the beginning of computation and seems to slightly overestimate during the buk of computation. However, it may be more accurate than the default dask task bar which tracks number of tasks completed by total tasks. Parameters ---------- minimum : int, optional Minimum time threshold in seconds before displaying a progress bar. Default is 0 (always display) width : int, optional Width of the bar, default is 42 characters. dt : float, optional Update resolution in seconds, default is 1.0 seconds. """ @requires_optional("dask", opt_import_err) def __init__(self, minimum=0, width=42, dt=1.0, out=default_out): if out is None: out = open(os.devnull, "w") elif out is default_out: out = sys.stdout self._minimum = minimum self._width = width self._dt = dt self._file = out self._lock = Lock() def _start(self, dsk): self.task_start = {} self.task_data = defaultdict(TaskData) for k, v in dsk.items(): self.task_data[key_bin(k)].total += 1 self.running = Event() self.running.set() self.thread = Thread(target=timer_func, args=(self,)) self.daemon = True self.thread.start() def _finish(self, dsk, state, errored): self.running.clear() self.task_data.clear() self.task_start.clear() def _pretask(self, key, dsk, state): with self._lock: self.task_start[key] = default_timer() def _posttask(self, key, result, dsk, state, worker_id): with self._lock: td = self.task_data[key_bin(key)] td.time_sum += default_timer() - self.task_start.pop(key) td.completed += 1
import yfinance as yf import datetime as dt import pandas as pd from pandas_datareader import data as pdr yf.pdr_override() # <== that's all it takes :-) start =dt.datetime(1980,12,1) now = dt.datetime.now() stock="" stock = input("Enter the stock symbol : ") while stock != "quit": df = pdr.get_data_yahoo(stock, start, now) df.drop(df[df["Volume"]<1000].index, inplace=True) dfmonth=df.groupby(pd.Grouper(freq="M"))["High"].max() glDate=0 lastGLV=0 currentDate="" curentGLV=0 for index, value in dfmonth.items(): if value > curentGLV: curentGLV=value currentDate=index counter=0 if value < curentGLV: counter=counter+1 if counter==3 and ((index.month != now.month) or (index.year != now.year)): if curentGLV != lastGLV: print(curentGLV) glDate=currentDate lastGLV=curentGLV counter=0 if lastGLV==0: message=stock+" has not formed a green line yet" else: message=("Last Green Line: "+str(lastGLV)+" on "+str(glDate)) print(message) stock = input("Enter the stock symbol : ")
import pickle import scipy.stats as st from sklearn.model_selection import RandomizedSearchCV from sklearn.metrics import auc from sklearn.model_selection import StratifiedKFold import xgboost as xgb from sklearn.model_selection import KFold from sklearn.metrics import matthews_corrcoef,make_scorer def train_xgb(X, y, mod_number=1, cv=None, outfile="model.pickle", n_iter_search=100, nfolds=20, random_state=42): """ Train an XGBoost model with hyper parameter optimization. Parameters ---------- X : matrix Matrix with all the features, every instance should be coupled to the y-value y : vector Vector with the class, every value should be coupled to an x-vector with features Returns ------- object Trained XGBoost model object Cross-validation results """ xgb_handle = xgb.XGBClassifier() one_to_left = st.beta(10, 1) from_zero_positive = st.expon(0, 50) #Define distributions to sample from for hyper parameter optimization param_dist = { "n_estimators": st.randint(25, 150), "max_depth": st.randint(5, 10), "learning_rate": st.uniform(0.05, 0.4), #"colsample_bytree": one_to_left, "subsample": one_to_left, "gamma": st.uniform(0, 10), "reg_alpha": from_zero_positive, "min_child_weight": from_zero_positive, } if not cv: cv = KFold(n_splits=nfolds, shuffle=True,random_state=random_state) mcc = make_scorer(matthews_corrcoef) random_search = RandomizedSearchCV(xgb_handle, param_distributions=param_dist, n_iter=n_iter_search,verbose=10,scoring="roc_auc", n_jobs=1,refit=True,cv=cv) random_search.fit(X, y) random_search.feats = X.columns pickle.dump(random_search,open(outfile,"wb")) return(random_search.best_score_)
''' Beginning with just a plot Let's get started on the Gapminder app. Your job is to make the ColumnDataSource object, prepare the plot, and add circles for Life expectancy vs Fertility. You'll also set x and y ranges for the axes. As in the previous chapter, the DataCamp environment executes the bokeh serve command to run the app for you. When you hit 'Submit Answer', you'll see in the IPython Shell that bokeh serve script.py gets called to run the app. This is something to keep in mind when you are creating your own interactive visualizations outside of the DataCamp environment. INSTRUCTIONS 100XP Make a ColumnDataSource object called source with 'x', 'y', 'country', 'pop' and 'region' keys. The Pandas selections are provided for you. Save the minimum and maximum values of the life expectancy column data.life as ymin and ymax. As a guide, you can refer to the way we saved the minimum and maximum values of the fertility column data.fertility as xmin and xmax. Create a plot called plot() by specifying the title, setting plot_height to 400, plot_width to 700, and adding the x_range and y_range parameters. Add circle glyphs to the plot. Specify an fill_alpha of 0.8 and source=source. ''' # Import the necessary modules from bokeh.io import curdoc from bokeh.models import ColumnDataSource from bokeh.plotting import figure # Make the ColumnDataSource: source source = ColumnDataSource(data={ 'x' : data.loc[1970].fertility, 'y' : data.loc[1970].life, 'country' : data.loc[1970].Country, 'pop' : (data.loc[1970].population / 20000000) + 2, 'region' : data.loc[1970].region, }) # Save the minimum and maximum values of the fertility column: xmin, xmax xmin, xmax = min(data.fertility), max(data.fertility) # Save the minimum and maximum values of the life expectancy column: ymin, ymax ymin, ymax = min(data.life), max(data.life) # Create the figure: plot plot = figure(title='Gapminder Data for 1970', plot_height=400, plot_width=700, x_range=(xmin, xmax), y_range=(ymin, ymax)) # Add circle glyphs to the plot plot.circle(x='x', y='y', fill_alpha=0.8, source=source) # Set the x-axis label plot.xaxis.axis_label ='Fertility (children per woman)' # Set the y-axis label plot.yaxis.axis_label = 'Life Expectancy (years)' # Add the plot to the current document and add a title curdoc().add_root(plot) curdoc().title = 'Gapminder'
# Copyright (c) 2021, TU Wien, Department of Geodesy and Geoinformation # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of TU Wien, Department of Geodesy and Geoinformation # nor the names of its contributors may be used to endorse or promote # products derived from this software without specific prior written # permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL TU WIEN DEPARTMENT OF GEODESY AND # GEOINFORMATION BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ Readers for ASCAT Level 1b and Level 2 data in EPS Native format. """ import os import fnmatch from gzip import GzipFile from collections import OrderedDict, defaultdict from tempfile import NamedTemporaryFile import numpy as np import xarray as xr import lxml.etree as etree from cadati.jd_date import jd2dt from ascat.utils import get_toi_subset, get_roi_subset short_cds_time = np.dtype([('day', '>u2'), ('time', '>u4')]) long_cds_time = np.dtype([('day', '>u2'), ('ms', '>u4'), ('mms', '>u2')]) long_nan = np.iinfo(np.int32).min ulong_nan = np.iinfo(np.uint32).max int_nan = np.iinfo(np.int16).min uint_nan = np.iinfo(np.uint16).max byte_nan = np.iinfo(np.byte).min int8_nan = np.iinfo(np.int8).max uint8_nan = np.iinfo(np.uint8).max float32_nan = -999999. # 2000-01-01 00:00:00 julian_epoch = 2451544.5 class AscatL1bEpsSzfFile: """ ASCAT Level 1b EPS Native reader class. """ def __init__(self, filename): """ Initialize AscatL1bEpsFile. Parameters ---------- filename : str Filename. """ self.filename = filename def read(self, toi=None, roi=None, generic=True, to_xarray=False): """ Read ASCAT Level 1b data. Returns ------- ds : xarray.Dataset ASCAT Level 1b data. """ ds = read_eps_l1b(self.filename, generic, to_xarray, full=False, unsafe=True, scale_mdr=False) if toi: ds = get_toi_subset(ds, toi) if roi: ds = get_roi_subset(ds, roi) return ds def read_period(self, dt_start, dt_end, **kwargs): """ Read interval. """ return self.read(toi=(dt_start, dt_end), **kwargs) def close(self): """ Close file. """ pass class AscatL1bEpsFile: """ ASCAT Level 1b EPS Native reader class. """ def __init__(self, filename): """ Initialize AscatL1bEpsFile. Parameters ---------- filename : str Filename. """ self.filename = filename def read(self, generic=False, to_xarray=False): """ Read ASCAT Level 1b data. Returns ------- ds : xarray.Dataset ASCAT Level 1b data. """ return read_eps_l1b(self.filename, generic, to_xarray) def close(self): """ Close file. """ pass class AscatL2EpsFile: """ ASCAT Level 2 EPS Native reader class. """ def __init__(self, filename): """ Initialize AscatL2EpsFile. Parameters ---------- filename : str Filename. """ self.filename = filename def read(self, generic=False, to_xarray=False): """ Read ASCAT Level 2 data. Returns ------- ds : dict, xarray.Dataset ASCAT Level 1b data. """ return read_eps_l2(self.filename, generic, to_xarray) def close(self): """ Close file. """ pass class EPSProduct: """ Class for reading EPS products. """ def __init__(self, filename): """ Initialize EPSProduct. Parameters ---------- filename : str EPS Native Filename. """ self.filename = filename self.fid = None self.mphr = None self.sphr = None self.aux = defaultdict(list) self.mdr = None self.scaled_mdr = None self.xml_file = None self.xml_doc = None self.mdr_template = None self.scaled_template = None self.sfactor = None self.grh_dtype = np.dtype([('record_class', 'u1'), ('instrument_group', 'u1'), ('record_subclass', 'u1'), ('record_subclass_version', 'u1'), ('record_size', '>u4'), ('record_start_time', short_cds_time), ('record_stop_time', short_cds_time)]) self.ipr_dtype = np.dtype([('grh', self.grh_dtype), ('target_record_class', 'u1'), ('target_instrument_group', 'u1'), ('target_record_subclass', 'u1'), ('target_record_offset', '>u4')]) self.pointer_dtype = np.dtype([('grh', self.grh_dtype), ('aux_data_pointer', 'u1', 100)]) self.filesize = os.path.getsize(self.filename) def read_mphr(self): """ Read only Main Product Header Record (MPHR). """ with open(self.filename, 'rb') as fid: grh = np.fromfile(fid, dtype=self.grh_dtype, count=1)[0] if grh['record_class'] == 1: mphr = fid.read(grh['record_size'] - grh.itemsize) mphr = OrderedDict(item.replace(' ', '').split('=') for item in mphr.decode("utf-8").split('\n')[:-1]) return mphr def read(self, full=True, unsafe=False, scale_mdr=True): """ Read EPS file. Parameters ---------- full : bool, optional Read full file content (True) or just Main Product Header Record (MPHR) and Main Data Record (MDR) (False). Default: True unsafe : bool, optional If True it is (unsafely) assumed that MDR are continuously stacked until the end of file. Makes reading a lot faster. Default: False scale_mdr : bool, optional Compute scaled MDR (True) or not (False). Default: True Returns ------- mphr : dict self.sphr, self.aux, self.mdr, scaled_mdr Main Product Header Record (MPHR). sphr : dict Secondary Product Header Product (SPHR). aux : dict Auxiliary Header Products. mdr : numpy.ndarray Main Data Record (MDR) scaled_mdr : numpy.ndarray Scaled Main Data Record (MPHR) or None if not computed. """ self.fid = open(self.filename, 'rb') abs_pos = 0 grh = None prev_grh = None record_count = 0 while True: # read generic record header of data block grh = np.fromfile(self.fid, dtype=self.grh_dtype, count=1)[0] if grh['record_class'] == 8 and unsafe: if np.mod((self.filesize - abs_pos), self.mdr_template.itemsize) != 0: # Unsafe reading fails, switching to safe reading unsafe = False else: num_mdr = (self.filesize - abs_pos) // self.mdr_template.itemsize self.fid.seek(abs_pos) self.read_record_class(grh, num_mdr) break if prev_grh is None: prev_grh = grh if ((prev_grh['record_class'] != grh['record_class']) or (prev_grh['record_subclass'] != grh['record_subclass'])): # compute record start position of previous record start_pos = (abs_pos - prev_grh['record_size'] * record_count) self.fid.seek(start_pos) if full or (prev_grh['record_class'] == 8 or prev_grh['record_class'] == 1): # read previous record, because new one is coming self.read_record_class(prev_grh, record_count) # reset record class count record_count = 1 else: # same record class as before, increase count record_count += 1 abs_pos += grh['record_size'] # position after record self.fid.seek(abs_pos) # store grh prev_grh = grh # end of file? if abs_pos == self.filesize: # compute record start position of previous record class start_pos = (abs_pos - prev_grh['record_size'] * record_count) self.fid.seek(start_pos) # read final record class(es) self.read_record_class(prev_grh, record_count) break self.fid.close() if scale_mdr: self.scaled_mdr = self._scaling(self.mdr, self.scaled_template, self.mdr_sfactor) return self.mphr, self.sphr, self.aux, self.mdr, self.scaled_mdr def read_record_class(self, grh, record_count): """ Read record class. Parameters ---------- grh : numpy.ndarray Generic record header. record_count : int Number of records. """ # mphr (Main Product Header Reader) if grh['record_class'] == 1: self.fid.seek(grh.itemsize, 1) self._read_mphr(grh) # find the xml file corresponding to the format version # and load template self.xml_file = self._get_eps_xml() self.xml_doc = etree.parse(self.xml_file) self.mdr_template, self.scaled_template, self.mdr_sfactor = \ self._read_xml_mdr() # sphr (Secondary Product Header Record) elif grh['record_class'] == 2: self.fid.seek(grh.itemsize, 1) self._read_sphr(grh) # ipr (Internal Pointer Record) elif grh['record_class'] == 3: data = np.fromfile(self.fid, dtype=self.ipr_dtype, count=record_count) self.aux['ipr'].append(data) # geadr (Global External Auxiliary Data Record) elif grh['record_class'] == 4: data = self._read_pointer(record_count) self.aux['geadr'].append(data) # veadr (Variable External Auxiliary Data Record) elif grh['record_class'] == 6: data = self._read_pointer(record_count) self.aux['veadr'].append(data) # viadr (Variable Internal Auxiliary Data Record) elif grh['record_class'] == 7: template, scaled_template, sfactor = self._read_xml_viadr( grh['record_subclass']) viadr_element = np.fromfile(self.fid, dtype=template, count=record_count) viadr_element_sc = self._scaling(viadr_element, scaled_template, sfactor) # store viadr_grid separately if grh['record_subclass'] == 8: self.aux['viadr_grid'].append(viadr_element) self.aux['viadr_grid_scaled'].append(viadr_element_sc) else: self.aux['viadr'].append(viadr_element) self.aux['viadr_scaled'].append(viadr_element_sc) # mdr (Measurement Data Record) elif grh['record_class'] == 8: if grh['instrument_group'] == 13: self.dummy_mdr = np.fromfile( self.fid, dtype=self.mdr_template, count=record_count) else: self.mdr = np.fromfile( self.fid, dtype=self.mdr_template, count=record_count) self.mdr_counter = record_count else: raise RuntimeError("Record class not found.") def _scaling(self, unscaled_mdr, scaled_template, sfactor): """ Scale the MDR. Parameters ---------- unscaled_mdr : numpy.ndarray Raw MDR. scaled_template : numpy.dtype Scaled MDR template. sfactor : dict Scale factors. Returns ------- scaled_mdr : numpy.ndarray Scaled MDR. """ scaled_mdr = np.empty(unscaled_mdr.shape, dtype=scaled_template) for key, value in sfactor.items(): if value != 1: scaled_mdr[key] = unscaled_mdr[key] * 1./value else: scaled_mdr[key] = unscaled_mdr[key] return scaled_mdr def _read_mphr(self, grh): """ Read Main Product Header (MPHR). """ mphr = self.fid.read(grh['record_size'] - grh.itemsize) self.mphr = OrderedDict(item.replace(' ', '').split('=') for item in mphr.decode("utf-8").split('\n')[:-1]) def _read_sphr(self, grh): """ Read Special Product Header (SPHR). """ sphr = self.fid.read(grh['record_size'] - grh.itemsize) self.sphr = OrderedDict(item.replace(' ', '').split('=') for item in sphr.decode("utf-8").split('\n')[:-1]) def _read_pointer(self, count=1): """ Read pointer record. """ record = np.fromfile(self.fid, dtype=self.pointer_dtype, count=count) return record def _get_eps_xml(self): """ Find the corresponding eps xml file. """ format_path = os.path.join(os.path.dirname(__file__), 'formats') # loop through files where filename starts with 'eps_ascat'. for filename in fnmatch.filter(os.listdir(format_path), 'eps_ascat*'): doc = etree.parse(os.path.join(format_path, filename)) file_extension = doc.xpath('//file-extensions')[0].getchildren()[0] format_version = doc.xpath('//format-version') for elem in format_version: major = elem.getchildren()[0] minor = elem.getchildren()[1] # return the xml file matching the metadata of the datafile. if major.text == self.mphr['FORMAT_MAJOR_VERSION'] and \ minor.text == self.mphr['FORMAT_MINOR_VERSION'] and \ self.mphr[ 'PROCESSING_LEVEL'] in file_extension.text and \ self.mphr['PRODUCT_TYPE'] in file_extension.text: return os.path.join(format_path, filename) def _read_xml_viadr(self, subclassid): """ Read xml record of viadr class. """ elements = self.xml_doc.xpath('//viadr') data = OrderedDict() length = [] # find the element with the correct subclass for elem in elements: item_dict = dict(elem.items()) subclass = int(item_dict['subclass']) if subclass == subclassid: break for child in elem.getchildren(): if child.tag == 'delimiter': continue child_items = dict(child.items()) name = child_items.pop('name') # check if the item is of type longtime longtime_flag = ('type' in child_items and 'longtime' in child_items['type']) # append the length if it isn't the special case of type longtime try: var_len = child_items.pop('length') if not longtime_flag: length.append(np.int(var_len)) except KeyError: pass data[name] = child_items if child.tag == 'array': for arr in child.iterdescendants(): arr_items = dict(arr.items()) if arr.tag == 'field': data[name].update(arr_items) else: try: var_len = arr_items.pop('length') length.append(np.int(var_len)) except KeyError: pass if length: data[name].update({'length': length}) else: data[name].update({'length': 1}) length = [] conv = {'longtime': long_cds_time, 'time': short_cds_time, 'boolean': 'u1', 'integer1': 'i1', 'uinteger1': 'u1', 'integer': '>i4', 'uinteger': '>u4', 'integer2': '>i2', 'uinteger2': '>u2', 'integer4': '>i4', 'uinteger4': '>u4', 'integer8': '>i8', 'enumerated': 'u1', 'string': 'str', 'bitfield': 'u1'} scaling_factor = {} scaled_dtype = [] dtype = [] for key, value in data.items(): if 'scaling-factor' in value: sf_dtype = np.float32 sf_split = value['scaling-factor'].split('^') scaling_factor[key] = np.int(sf_split[0])**np.int(sf_split[1]) else: sf_dtype = conv[value['type']] scaling_factor[key] = 1 length = value['length'] if length == 1: scaled_dtype.append((key, sf_dtype)) dtype.append((key, conv[value['type']])) else: scaled_dtype.append((key, sf_dtype, length)) dtype.append((key, conv[value['type']], length)) return np.dtype(dtype), np.dtype(scaled_dtype), scaling_factor def _read_xml_mdr(self): """ Read xml record of mdr class. """ elements = self.xml_doc.xpath('//mdr') data = OrderedDict() length = [] elem = elements[0] for child in elem.getchildren(): if child.tag == 'delimiter': continue child_items = dict(child.items()) name = child_items.pop('name') # check if the item is of type bitfield bitfield_flag = ('type' in child_items and ('bitfield' in child_items['type'] or 'time' in child_items['type'])) # append the length if it isn't the special case of type # bitfield or time try: var_len = child_items.pop('length') if not bitfield_flag: length.append(np.int(var_len)) except KeyError: pass data[name] = child_items if child.tag == 'array': for arr in child.iterdescendants(): arr_items = dict(arr.items()) # check if the type is bitfield bitfield_flag = ('type' in arr_items and 'bitfield' in arr_items['type']) if bitfield_flag: data[name].update(arr_items) break else: if arr.tag == 'field': data[name].update(arr_items) else: try: var_len = arr_items.pop('length') length.append(np.int(var_len)) except KeyError: pass if length: data[name].update({'length': length}) else: data[name].update({'length': 1}) length = [] conv = {'longtime': long_cds_time, 'time': short_cds_time, 'boolean': 'u1', 'integer1': 'i1', 'uinteger1': 'u1', 'integer': '>i4', 'uinteger': '>u4', 'integer2': '>i2', 'uinteger2': '>u2', 'integer4': '>i4', 'uinteger4': '>u4', 'integer8': '>i8', 'enumerated': 'u1', 'string': 'str', 'bitfield': 'u1'} scaling_factor = {} scaled_dtype = [] dtype = [('grh', self.grh_dtype)] for key, value in data.items(): if 'scaling-factor' in value: sf_dtype = np.float32 sf_split = value['scaling-factor'].split('^') scaling_factor[key] = np.int(sf_split[0])**np.int(sf_split[1]) else: sf_dtype = conv[value['type']] scaling_factor[key] = 1 length = value['length'] if length == 1: scaled_dtype.append((key, sf_dtype)) dtype.append((key, conv[value['type']])) else: scaled_dtype.append((key, sf_dtype, length)) dtype.append((key, conv[value['type']], length)) return np.dtype(dtype), np.dtype(scaled_dtype), scaling_factor def conv_epsl1bszf_generic(data, metadata): """ Rename and convert data types of dataset. Parameters ---------- data : dict of numpy.ndarray Original dataset. metadata : dict Metadata. Returns ------- data : dict of numpy.ndarray Converted dataset. """ skip_fields = ['utc_localisation-days', 'utc_localisation-milliseconds', 'degraded_inst_mdr', 'degraded_proc_mdr', 'flagfield_rf1', 'flagfield_rf2', 'flagfield_pl', 'flagfield_gen1', 'flagfield_gen2'] gen_fields_lut = { 'inc_angle_full': ('inc', np.float32, (0, 90), float32_nan), 'azi_angle_full': ('azi', np.float32, (0, 360), float32_nan), 'sigma0_full': ('sig', np.float32, (-35, 35), float32_nan), 'sat_track_azi': ('sat_track_azi', np.float32, (0, 360), float32_nan), 'beam_number': ('beam_number', np.int8, (1, 6), int8_nan), 'swath_indicator': ('swath_indicator', np.int8, (0, 1), int8_nan), 'land_frac': ('land_frac', np.float32, (0, 1), float32_nan), 'f_usable': ('f_usable', np.int8, (0, 2), int8_nan), # 'f_land': ('f_land', np.int8, (0, 1), int8_nan), 'as_des_pass': ('as_des_pass', np.uint8, (0, 1), uint8_nan), 'time': ('time', None, (np.datetime64('1900-01-01'), np.datetime64('2100-01-01')), 0), 'lon': ('lon', np.float32, (-180, 180), float32_nan), 'lat': ('lat', np.float32, (-90, 90), float32_nan)} for var_name in skip_fields: data.pop(var_name, None) for var_name, (new_name, new_dtype, valid_range, nan_val) in gen_fields_lut.items(): if new_dtype is None: data[new_name] = np.ma.array(data.pop(var_name)) data[new_name].mask = ((data[new_name] < valid_range[0]) | (data[new_name] > valid_range[1])) data[new_name].set_fill_value(nan_val) else: data[new_name] = np.ma.array(data.pop(var_name).astype(new_dtype)) data[new_name].mask = ((data[new_name] < valid_range[0]) | (data[new_name] > valid_range[1])) data[new_name].set_fill_value(nan_val) return data def conv_epsl1bszx_generic(data, metadata): """ Rename and convert data types of dataset. Parameters ---------- data : dict of numpy.ndarray Original dataset. metadata : dict Metadata. Returns ------- data : dict of numpy.ndarray Converted dataset. """ gen_fields_lut = {'inc_angle_trip': ('inc', np.float32, uint_nan), 'azi_angle_trip': ('azi', np.float32, int_nan), 'sigma0_trip': ('sig', np.float32, long_nan), 'kp': ('kp', np.float32, uint_nan), 'f_kp': ('kp_quality', np.uint8, uint8_nan)} skip_fields = ['flagfield_rf1', 'f_f', 'f_v', 'f_oa', 'f_sa', 'f_tel'] for var_name in skip_fields: if var_name in data: data.pop(var_name) for var_name, (new_name, new_dtype, nan_val) in gen_fields_lut.items(): data[new_name] = data.pop(var_name).astype(new_dtype) if nan_val is not None: data[new_name][data[new_name] == nan_val] = float32_nan data['sat_id'] = np.repeat(metadata['sat_id'], data['time'].size) return data def conv_epsl2szx_generic(data, metadata): """ Rename and convert data types of dataset. Parameters ---------- data : dict of numpy.ndarray Original dataset. metadata : dict Metadata. Returns ------- data : dict of numpy.ndarray Converted dataset. """ gen_fields_lut = { 'inc_angle_trip': ('inc', np.float32, uint_nan), 'azi_angle_trip': ('azi', np.float32, int_nan), 'sigma0_trip': ('sig', np.float32, long_nan), 'soil_moisture': ('sm', np.float32, uint_nan), 'soil_moisture_error': ('sm_noise', np.float32, uint_nan), 'mean_surf_soil_moisture': ('sm_mean', np.float32, uint_nan), 'soil_moisture_sensetivity': ('sm_sens', np.float32, ulong_nan), 'sigma40': ('sig40', np.float32, long_nan), 'sigma40_error': ('sig40_noise', np.float32, long_nan), 'slope40': ('slope40', np.float32, long_nan), 'slope40_error': ('slope40_noise', np.float32, long_nan), 'dry_backscatter': ('dry_sig40', np.float32, long_nan), 'wet_backscatter': ('wet_sig40', np.float32, long_nan), 'as_des_pass': ('as_des_pass', np.uint8, None), 'aggregated_quality_flag': ('agg_flag', np.uint8, None), 'processing_flags': ('proc_flag', np.uint8, None), 'correction_flags': ('corr_flag', np.uint8, None), 'snow_cover_probability': ('snow_prob', np.uint8, None), 'frozen_soil_probability': ('frozen_prob', np.uint8, None), 'innudation_or_wetland': ('wetland', np.uint8, None), 'topographical_complexity': ('topo', np.uint8, None), 'kp': ('kp', np.float32, uint_nan)} skip_fields = ['flagfield_rf1', 'f_f', 'f_v', 'f_oa', 'f_sa', 'f_tel'] for var_name in skip_fields: if var_name in data: data.pop(var_name) for var_name, (new_name, new_dtype, nan_val) in gen_fields_lut.items(): data[new_name] = data.pop(var_name).astype(new_dtype) if nan_val is not None: data[new_name][data[new_name] == nan_val] = float32_nan data['sat_id'] = np.repeat(metadata['sat_id'], data['time'].size) return data def read_eps_l1b(filename, generic=False, to_xarray=False, full=True, unsafe=False, scale_mdr=True): """ Level 1b reader and data preparation. Parameters ---------- filename : str ASCAT Level 1b file name in EPS Native format. generic : bool, optional 'True' reading and converting into generic format or 'False' reading original field names (default: False). to_xarray : bool, optional 'True' return data as xarray.Dataset 'False' return data as numpy.ndarray (default: False). Returns ------- ds : xarray.Dataset, dict of xarray.Dataset ASCAT Level 1b data. """ eps_file = read_eps(filename, full=full, unsafe=unsafe, scale_mdr=scale_mdr) ptype = eps_file.mphr['PRODUCT_TYPE'] fmv = int(eps_file.mphr['FORMAT_MAJOR_VERSION']) if ptype == 'SZF': if fmv == 12: data, metadata = read_szf_fmv_12(eps_file) else: raise RuntimeError("L1b SZF format version not supported.") rename_coords = {'longitude_full': 'lon', 'latitude_full': 'lat'} for k, v in rename_coords.items(): data[v] = data.pop(k) if generic: data = conv_epsl1bszf_generic(data, metadata) # 1 Left Fore Antenna, 2 Left Mid Antenna 3 Left Aft Antenna # 4 Right Fore Antenna, 5 Right Mid Antenna, 6 Right Aft Antenna antennas = ['lf', 'lm', 'la', 'rf', 'rm', 'ra'] ds = OrderedDict() for i, antenna in enumerate(antennas): subset = data['beam_number'] == i+1 metadata['beam_number'] = i+1 metadata['beam_name'] = antenna # convert spacecraft_id to internal sat_id sat_id = np.array([4, 3, 5]) metadata['sat_id'] = sat_id[metadata['spacecraft_id']-1] # convert dict to xarray.Dataset or numpy.ndarray if to_xarray: sub_data = {} for var_name in data.keys(): if var_name == 'beam_number' and generic: continue if len(data[var_name].shape) == 1: dim = ['obs'] elif len(data[var_name].shape) == 2: dim = ['obs', 'echo'] sub_data[var_name] = (dim, data[var_name][subset]) coords = {} coords_fields = ['lon', 'lat', 'time'] for cf in coords_fields: coords[cf] = sub_data.pop(cf) ds[antenna] = xr.Dataset(sub_data, coords=coords, attrs=metadata) else: # collect dtype info dtype = [] fill_values = {} for var_name in data.keys(): if var_name == 'beam_number' and generic: continue if len(data[var_name][subset].shape) == 1: dtype.append( (var_name, data[var_name][subset].dtype.str)) elif len(data[var_name][subset].shape) > 1: dtype.append((var_name, data[var_name][ subset].dtype.str, data[var_name][ subset].shape[1:])) fill_values[var_name] = data[var_name].fill_value ds[antenna] = np.ma.empty( data['time'][subset].size, dtype=np.dtype(dtype)) for var_name, v in data.items(): if var_name == 'beam_number' and generic: continue ds[antenna][var_name] = v[subset] ds[antenna][var_name].set_fill_value(fill_values[var_name]) elif ptype in ['SZR', 'SZO']: if fmv == 11: data, metadata = read_szx_fmv_11(eps_file) elif fmv == 12: data, metadata = read_szx_fmv_12(eps_file) else: raise RuntimeError("SZX format version not supported.") data['time'] = jd2dt(data.pop('jd')) rename_coords = {'longitude': 'lon', 'latitude': 'lat'} for k, v in rename_coords.items(): data[v] = data.pop(k) # convert spacecraft_id to internal sat_id sat_id = np.array([4, 3, 5]) metadata['sat_id'] = sat_id[metadata['spacecraft_id']-1] # add/rename/remove fields according to generic format if generic: data = conv_epsl1bszx_generic(data, metadata) # convert dict to xarray.Dataset or numpy.ndarray if to_xarray: for k in data.keys(): if len(data[k].shape) == 1: dim = ['obs'] elif len(data[k].shape) == 2: dim = ['obs', 'beam'] data[k] = (dim, data[k]) coords = {} coords_fields = ['lon', 'lat', 'time'] for cf in coords_fields: coords[cf] = data.pop(cf) ds = xr.Dataset(data, coords=coords, attrs=metadata) else: # collect dtype info dtype = [] for var_name in data.keys(): if len(data[var_name].shape) == 1: dtype.append((var_name, data[var_name].dtype.str)) elif len(data[var_name].shape) > 1: dtype.append((var_name, data[var_name].dtype.str, data[var_name].shape[1:])) ds = np.empty(data['time'].size, dtype=np.dtype(dtype)) for k, v in data.items(): ds[k] = v else: raise RuntimeError("Format not supported. Product type {:1}" " Format major version: {:2}".format(ptype, fmv)) return ds def read_eps_l2(filename, generic=False, to_xarray=False): """ Level 2 reader and data preparation. Parameters ---------- filename : str ASCAT Level 1b file name in EPS Native format. generic : bool, optional 'True' reading and converting into generic format or 'False' reading original field names (default: False). to_xarray : bool, optional 'True' return data as xarray.Dataset 'False' return data as numpy.ndarray (default: False). Returns ------- ds : xarray.Dataset, dict of xarray.Dataset ASCAT Level 1b data. """ eps_file = read_eps(filename) ptype = eps_file.mphr['PRODUCT_TYPE'] fmv = int(eps_file.mphr['FORMAT_MAJOR_VERSION']) if ptype in ['SMR', 'SMO']: if fmv == 12: data, metadata = read_smx_fmv_12(eps_file) else: raise RuntimeError("L2 SM format version not supported.") data['time'] = jd2dt(data.pop('jd')) rename_coords = {'longitude': 'lon', 'latitude': 'lat'} for k, v in rename_coords.items(): data[v] = data.pop(k) # convert spacecraft_id to internal sat_id sat_id = np.array([4, 3, 5]) metadata['sat_id'] = sat_id[metadata['spacecraft_id']-1] # add/rename/remove fields according to generic format if generic: data = conv_epsl2szx_generic(data, metadata) # convert dict to xarray.Dataset or numpy.ndarray if to_xarray: for k in data.keys(): if len(data[k].shape) == 1: dim = ['obs'] elif len(data[k].shape) == 2: dim = ['obs', 'beam'] data[k] = (dim, data[k]) coords = {} coords_fields = ['lon', 'lat', 'time'] for cf in coords_fields: coords[cf] = data.pop(cf) ds = xr.Dataset(data, coords=coords, attrs=metadata) else: # collect dtype info dtype = [] for var_name in data.keys(): if len(data[var_name].shape) == 1: dtype.append((var_name, data[var_name].dtype.str)) elif len(data[var_name].shape) > 1: dtype.append((var_name, data[var_name].dtype.str, data[var_name].shape[1:])) ds = np.empty(data['time'].size, dtype=np.dtype(dtype)) for k, v in data.items(): ds[k] = v else: raise ValueError("Format not supported. Product type {:1}" " Format major version: {:2}".format(ptype, fmv)) return ds def read_eps(filename, mphr_only=False, full=True, unsafe=False, scale_mdr=True): """ Read EPS file. Parameters ---------- filename : str Filename Returns ------- prod : EPSProduct EPS data. """ zipped = False if os.path.splitext(filename)[1] == '.gz': zipped = True # for zipped files use an unzipped temporary copy if zipped: with NamedTemporaryFile(delete=False) as tmp_fid: with GzipFile(filename) as gz_fid: tmp_fid.write(gz_fid.read()) filename = tmp_fid.name # create the eps object with the filename and read it prod = EPSProduct(filename) if mphr_only: mphr = prod.read_mphr() prod.mphr = mphr else: prod.read(full, unsafe, scale_mdr) # remove the temporary copy if zipped: os.remove(filename) return prod def read_szx_fmv_11(eps_file): """ Read SZO/SZR format version 11. Parameters ---------- eps_file : EPSProduct object EPS Product object. Returns ------- data : numpy.ndarray SZO/SZR data. """ raw_data = eps_file.scaled_mdr raw_unscaled = eps_file.mdr mphr = eps_file.mphr n_node_per_line = raw_data['LONGITUDE'].shape[1] n_lines = raw_data['LONGITUDE'].shape[0] n_records = raw_data['LONGITUDE'].size data = {} metadata = {} idx_nodes = np.arange(n_lines).repeat(n_node_per_line) ascat_time = shortcdstime2jd(raw_data['UTC_LINE_NODES'].flatten()['day'], raw_data['UTC_LINE_NODES'].flatten()['time']) data['jd'] = ascat_time[idx_nodes] metadata['spacecraft_id'] = np.int8(mphr['SPACECRAFT_ID'][-1]) metadata['orbit_start'] = np.uint32(mphr['ORBIT_START']) fields = ['processor_major_version', 'processor_minor_version', 'format_major_version', 'format_minor_version'] for f in fields: metadata[f] = np.int16(mphr[f.upper()]) fields = ['sat_track_azi'] for f in fields: data[f] = raw_data[f.upper()].flatten()[idx_nodes] fields = [('longitude', long_nan), ('latitude', long_nan), ('swath_indicator', byte_nan)] for f, nan_val in fields: data[f] = raw_data[f.upper()].flatten() valid = raw_unscaled[f.upper()].flatten() != nan_val data[f][~valid] = nan_val fields = [('sigma0_trip', long_nan), ('inc_angle_trip', uint_nan), ('azi_angle_trip', int_nan), ('kp', uint_nan), ('f_kp', byte_nan), ('f_usable', byte_nan), ('f_f', uint_nan), ('f_v', uint_nan), ('f_oa', uint_nan), ('f_sa', uint_nan), ('f_tel', uint_nan), ('f_land', uint_nan)] for f, nan_val in fields: data[f] = raw_data[f.upper()].reshape(n_records, 3) valid = raw_unscaled[f.upper()].reshape(n_records, 3) != nan_val data[f][~valid] = nan_val # modify longitudes from (0, 360) to (-180,180) mask = np.logical_and(data['longitude'] != long_nan, data['longitude'] > 180) data['longitude'][mask] += -360. # modify azimuth from (-180, 180) to (0, 360) mask = (data['azi_angle_trip'] != int_nan) & (data['azi_angle_trip'] < 0) data['azi_angle_trip'][mask] += 360 data['node_num'] = np.tile((np.arange(n_node_per_line) + 1), n_lines).astype(np.uint8) data['line_num'] = idx_nodes.astype(np.uint16) data['as_des_pass'] = (data['sat_track_azi'] < 270).astype(np.uint8) return data, metadata def read_szx_fmv_12(eps_file): """ Read SZO/SZR format version 12. Parameters ---------- eps_file : EPSProduct object EPS Product object. Returns ------- data : numpy.ndarray SZO/SZR data. """ raw_data = eps_file.scaled_mdr raw_unscaled = eps_file.mdr mphr = eps_file.mphr n_node_per_line = raw_data['LONGITUDE'].shape[1] n_lines = raw_data['LONGITUDE'].shape[0] n_records = raw_data['LONGITUDE'].size data = {} metadata = {} idx_nodes = np.arange(n_lines).repeat(n_node_per_line) ascat_time = shortcdstime2jd(raw_data['UTC_LINE_NODES'].flatten()['day'], raw_data['UTC_LINE_NODES'].flatten()['time']) data['jd'] = ascat_time[idx_nodes] metadata['spacecraft_id'] = np.int8(mphr['SPACECRAFT_ID'][-1]) metadata['orbit_start'] = np.uint32(mphr['ORBIT_START']) fields = ['processor_major_version', 'processor_minor_version', 'format_major_version', 'format_minor_version'] for f in fields: metadata[f] = np.int16(mphr[f.upper()]) fields = ['degraded_inst_mdr', 'degraded_proc_mdr', 'sat_track_azi', 'abs_line_number'] for f in fields: data[f] = raw_data[f.upper()].flatten()[idx_nodes] fields = [('longitude', long_nan), ('latitude', long_nan), ('swath indicator', byte_nan)] for f, nan_val in fields: data[f] = raw_data[f.upper()].flatten() valid = raw_unscaled[f.upper()].flatten() != nan_val data[f][~valid] = nan_val fields = [('sigma0_trip', long_nan), ('inc_angle_trip', uint_nan), ('azi_angle_trip', int_nan), ('kp', uint_nan), ('num_val_trip', ulong_nan), ('f_kp', byte_nan), ('f_usable', byte_nan), ('f_f', uint_nan), ('f_v', uint_nan), ('f_oa', uint_nan), ('f_sa', uint_nan), ('f_tel', uint_nan), ('f_ref', uint_nan), ('f_land', uint_nan)] for f, nan_val in fields: data[f] = raw_data[f.upper()].reshape(n_records, 3) valid = raw_unscaled[f.upper()].reshape(n_records, 3) != nan_val data[f][~valid] = nan_val # modify longitudes from (0, 360) to (-180,180) mask = np.logical_and(data['longitude'] != long_nan, data['longitude'] > 180) data['longitude'][mask] += -360. # modify azimuth from (-180, 180) to (0, 360) mask = (data['azi_angle_trip'] != int_nan) & (data['azi_angle_trip'] < 0) data['azi_angle_trip'][mask] += 360 data['node_num'] = np.tile((np.arange(n_node_per_line) + 1), n_lines).astype(np.uint8) data['line_num'] = idx_nodes.astype(np.uint16) data['as_des_pass'] = (data['sat_track_azi'] < 270).astype(np.uint8) data['swath_indicator'] = data.pop('swath indicator') return data, metadata def read_szf_fmv_12(eps_file): """ Read SZF format version 12. beam_num - 1 Left Fore Antenna - 2 Left Mid Antenna - 3 Left Aft Antenna - 4 Right Fore Antenna - 5 Right Mid Antenna - 6 Right Aft Antenna as_des_pass - 0 Ascending - 1 Descending swath_indicator - 0 Left - 1 Right Parameters ---------- eps_file : EPSProduct object EPS Product object. Returns ------- data : numpy.ndarray SZF data. """ data = {} metadata = {} n_lines = eps_file.mdr_counter n_node_per_line = eps_file.mdr['LONGITUDE_FULL'].shape[1] idx_nodes = np.arange(n_lines).repeat(n_node_per_line) # extract metadata metadata['spacecraft_id'] = np.int8(eps_file.mphr['SPACECRAFT_ID'][-1]) metadata['orbit_start'] = np.uint32(eps_file.mphr['ORBIT_START']) fields = ['processor_major_version', 'processor_minor_version', 'format_major_version', 'format_minor_version'] for f in fields: metadata[f] = np.int16(eps_file.mphr[f.upper()]) # extract time dt = np.datetime64('2000-01-01') + eps_file.mdr[ 'UTC_LOCALISATION']['day'].astype('timedelta64[D]') + eps_file.mdr[ 'UTC_LOCALISATION']['time'].astype('timedelta64[ms]') data['time'] = dt[idx_nodes] fields = ['degraded_inst_mdr', 'degraded_proc_mdr', 'sat_track_azi', 'beam_number', 'flagfield_rf1', 'flagfield_rf2', 'flagfield_pl', 'flagfield_gen1'] # extract data for f in fields: if eps_file.mdr_sfactor[f.upper()] == 1: data[f] = eps_file.mdr[f.upper()].flatten()[idx_nodes] else: data[f] = (eps_file.mdr[f.upper()].flatten() * 1./eps_file.mdr_sfactor[f.upper()])[idx_nodes] data['swath_indicator'] = (data[ 'beam_number'].flatten() > 3).astype(np.uint8) data['as_des_pass'] = (data['sat_track_azi'] < 270).astype(np.uint8) fields = [('longitude_full', long_nan), ('latitude_full', long_nan), ('sigma0_full', long_nan), ('inc_angle_full', uint_nan), ('azi_angle_full', int_nan), ('land_frac', uint_nan), ('flagfield_gen2', byte_nan)] for f, nan_val in fields: data[f] = eps_file.mdr[f.upper()].flatten() invalid = eps_file.mdr[f.upper()].flatten() == nan_val if eps_file.mdr_sfactor[f.upper()] != 1: data[f] = data[f] * 1./eps_file.mdr_sfactor[f.upper()] data[f][invalid] = nan_val # modify longitudes from (0, 360) to (-180, 180) mask = np.logical_and(data['longitude_full'] != long_nan, data['longitude_full'] > 180) data['longitude_full'][mask] += -360. # modify azimuth from (-180, 180) to (0, 360) idx = (data['azi_angle_full'] != int_nan) & (data['azi_angle_full'] < 0) data['azi_angle_full'][idx] += 360 # set flags data['f_usable'] = set_flags(data) return data, metadata def read_smx_fmv_12(eps_file): """ Read SMO/SMR format version 12. Parameters ---------- eps_file : EPSProduct object EPS Product object. Returns ------- data : numpy.ndarray SMO/SMR data. """ raw_data = eps_file.scaled_mdr raw_unscaled = eps_file.mdr n_node_per_line = raw_data['LONGITUDE'].shape[1] n_lines = raw_data['LONGITUDE'].shape[0] n_records = eps_file.mdr_counter * n_node_per_line idx_nodes = np.arange(eps_file.mdr_counter).repeat(n_node_per_line) data = {} metadata = {} metadata['spacecraft_id'] = np.int8(eps_file.mphr['SPACECRAFT_ID'][-1]) metadata['orbit_start'] = np.uint32(eps_file.mphr['ORBIT_START']) ascat_time = shortcdstime2jd(raw_data['UTC_LINE_NODES'].flatten()['day'], raw_data['UTC_LINE_NODES'].flatten()['time']) data['jd'] = ascat_time[idx_nodes] fields = [('sigma0_trip', long_nan), ('inc_angle_trip', uint_nan), ('azi_angle_trip', int_nan), ('kp', uint_nan), ('f_land', uint_nan)] for f, nan_val in fields: data[f] = raw_data[f.upper()].reshape(n_records, 3) valid = raw_unscaled[f.upper()].reshape(n_records, 3) != nan_val data[f][~valid] = nan_val fields = ['sat_track_azi', 'abs_line_number'] for f in fields: data[f] = raw_data[f.upper()].flatten()[idx_nodes] fields = [('longitude', long_nan, long_nan), ('latitude', long_nan, long_nan), ('swath_indicator', byte_nan, byte_nan), ('soil_moisture', uint_nan, uint_nan), ('soil_moisture_error', uint_nan, uint_nan), ('sigma40', long_nan, long_nan), ('sigma40_error', long_nan, long_nan), ('slope40', long_nan, long_nan), ('slope40_error', long_nan, long_nan), ('dry_backscatter', long_nan, long_nan), ('wet_backscatter', long_nan, long_nan), ('mean_surf_soil_moisture', uint_nan, uint_nan), ('soil_moisture_sensetivity', ulong_nan, float32_nan), ('correction_flags', uint8_nan, uint8_nan), ('processing_flags', uint8_nan, uint8_nan), ('aggregated_quality_flag', uint8_nan, uint8_nan), ('snow_cover_probability', uint8_nan, uint8_nan), ('frozen_soil_probability', uint8_nan, uint8_nan), ('innudation_or_wetland', uint8_nan, uint8_nan), ('topographical_complexity', uint8_nan, uint8_nan)] for f, nan_val, new_nan_val in fields: data[f] = raw_data[f.upper()].flatten() valid = raw_unscaled[f.upper()].flatten() != nan_val data[f][~valid] = new_nan_val # sat_track_azi (uint) data['as_des_pass'] = \ np.array(raw_data['SAT_TRACK_AZI'].flatten()[idx_nodes] < 270) # modify longitudes from [0,360] to [-180,180] mask = np.logical_and(data['longitude'] != long_nan, data['longitude'] > 180) data['longitude'][mask] += -360. # modify azimuth from (-180, 180) to (0, 360) mask = (data['azi_angle_trip'] != int_nan) & (data['azi_angle_trip'] < 0) data['azi_angle_trip'][mask] += 360 fields = ['param_db_version', 'warp_nrt_version'] for f in fields: data[f] = raw_data['PARAM_DB_VERSION'].flatten()[idx_nodes] metadata['spacecraft_id'] = int(eps_file.mphr['SPACECRAFT_ID'][2]) data['node_num'] = np.tile((np.arange(n_node_per_line) + 1), n_lines) data['line_num'] = idx_nodes return data, metadata def shortcdstime2jd(days, milliseconds): """ Convert cds time to julian date. Parameters ---------- days : int Days since 2000-01-01 milliseconds : int Milliseconds. Returns ------- jd : float Julian date. """ offset = days + (milliseconds / 1000.) / (24. * 60. * 60.) return julian_epoch + offset def set_flags(data): """ Compute summary flag for each measurement with a value of 0, 1 or 2 indicating nominal, slightly degraded or severely degraded data. The format of ASCAT products is defined by "EPS programme generic product format specification" (EPS.GGS.SPE.96167) and "ASCAT level 1 product format specification" (EPS.MIS.SPE.97233). bit name category description ------------------------------------ flagfield_rf1 0 fnoise amber noise missing, interpolated noise value used instead 1 fpgp amber degraded power gain product 2 vpgp red very degraded power gain product 3 fhrx amber degraded filter shape 4 vhrx red very degraded filter shape flagfield_rf2 0 pgp_ool red power gain product is outside limits 1 noise_ool red measured noise value is outside limits flagfield_pl 0 forb red orbit height is outside limits 1 fatt red no yaw steering 2 fcfg red unexpected instrument configuration 3 fman red satellite maneuver 4 fosv warning osv file missing (fman may be incorrect) flagfield_gen1 0 ftel warning telemetry missing (ftool may be incorrect) 1 ftool red telemetry out of limits flagfield_gen2 0 fsol amber possible interference from solar array 1 fland warning lat/long position is over land 2 fgeo red geolocation algorithm failed Each flag has belongs to a particular category which indicates the impact on data quality. Flags in the "amber" category indicate that the data is slightly degraded but still usable. Flags in the "red" category indicate that the data is severely degraded and should be discarded or used with caution. A simple algorithm for calculating a single summary flag with a value of 0, 1 or 2 indicating nominal, slightly degraded or severely degraded is function calc_status( flags ) status = 0 if any amber flags are set then status = 1 if any red flags are set then status = 2 return status Parameters ---------- data : numpy.ndarray SZF data. Returns ------- f_usable : numpy.ndarray Flag indicating nominal (0), slightly degraded (1) or severely degraded(2). """ flag_status_bit = {'flagfield_rf1': np.array([1, 1, 2, 1, 2, 0, 0, 0]), 'flagfield_rf2': np.array([2, 2, 0, 0, 0, 0, 0, 0]), 'flagfield_pl': np.array([2, 2, 2, 2, 0, 0, 0, 0]), 'flagfield_gen1': np.array([0, 2, 0, 0, 0, 0, 0, 0]), 'flagfield_gen2': np.array([1, 0, 2, 0, 0, 0, 0, 0])} f_usable = np.zeros(data['flagfield_rf1'].size, dtype=np.uint8) for flagfield, bitmask in flag_status_bit.items(): subset = np.nonzero(data[flagfield])[0] if subset.size > 0: unpacked_bits = np.fliplr(np.unpackbits( data[flagfield][subset]).reshape(-1, 8).astype(np.bool)) flag = np.ma.array( np.tile(bitmask, unpacked_bits.shape[0]).reshape(-1, 8), mask=~unpacked_bits, fill_value=0) f_usable[subset] = np.max(np.vstack( (f_usable[subset], flag.filled().max(axis=1))), axis=0) return f_usable
""" Post Class for lap_joint script Post: .id int Post identifier .brep Brep Brep representing Post .profile Curve Curve defining end profile of post .axis Line Line between centers of end faces .origin Point start of axis Line .orientation Plane plane with normal along axis and x-axis towards center of one face .pockets list list of Pockets on this Post .isConnected Bool true if this post is part of a joint .selfToGlobal Transform convert local coordinates to global .globalToSelf Transform convert global coordinates to local .millToGlobal Transform convert unrotated mill coordinates to global """ import Rhino import scriptcontext as sc import rhinoscriptsyntax as rs import math import common from toolpath import * class Post: """A single post in the system.""" def __init__(self, axis=None, obRef=None, roll=None, group=None, width=None, height=None, id=None): """Initialize a Post. Gathers all information about this Post Offers multiple ways to describe a Post: Start with Rhino object: obRef: reference to a Rhino object Start with lines: group: obRef of one object in a group OR axis: central axis of the post roll: (optional), line normal to axis, defines roll of post For a rectangular Post: width: width along roll axis height: other short dimension of Post """ self.isConnected = False self.brep = None #not sure about this. id is None until assigned by the Structure? self.id = id if group: #creating Post with axis and roll lines grouped together #find group this object belongs to groups = group.Object().Attributes.GetGroupList() if len(groups) < 1: raise NameError("Object does not belong to a group.") group_id = groups[0] #get all objects in the group objects = rs.ObjectsByGroup(sc.doc.Groups.GroupName(group_id)) if len(objects) != 2: raise NameError("Group does not have two objects (axis, roll).") #get actual curves curves = [sc.doc.Objects.Find(ob).CurveGeometry for ob in objects] #convert to lines lines = [Rhino.Geometry.Line(c.PointAtStart, c.PointAtEnd) for c in curves] #roll is shorter than axis roll, axis = sorted(lines, key=lambda l: l.Length) if axis: #creating Post based on lines if not (width and height): #currently only rectangular solids. raise NameError("Height and width required if an object is not given.") if type(axis) is Rhino.DocObjects.ObjRef: #axis is objref to a curve #find actual curve geometry axis = axis.Geometry() if type(axis) is Rhino.DocObjects.ObjectType.Curve: self.axis = Rhino.Geometry.Line(axis.PointAtStart, axis.PointAtEnd) else: #assume for now axis is either curve or internal line object self.axis = axis if roll: #if roll is a curve, convert it to a Line if type(roll) == Rhino.DocObjects.ObjectType.Curve: roll = Rhino.Geometry.Line(roll.PointAtStart, roll.PointAtEnd) self.orientation = rs.PlaneFromNormal(self.axis.From, self.axis.UnitTangent, roll.UnitTangent) else: #construct orientation with default roll angle self.orientation = rs.PlaneFromNormal(self.axis.From, self.axis.UnitTangent) #construct rectangular profile curve self.profile = self.makeRectProfile(width, height) elif obRef: #no axis, need obRef object = obRef.Object() if object is None: raise NameError("No object found corresponding to reference " + str(obRef)) #actual object geometry self.brep = common.getBrep(object) #assume smallest faces are the ends of the Post endFaces = sorted(self.brep.Faces, key=rs.SurfaceArea)[0:2] #get curve defining post profile self.profile = Rhino.Geometry.Curve.JoinCurves(endFaces[0].DuplicateFace(False).DuplicateEdgeCurves()) #axis is a Line between centers of smallest faces. self.axis = Rhino.Geometry.Line( *[rs.SurfaceAreaCentroid(face)[0] for face in endFaces]) else : #no axis and no obRef raise NameError('No valid axis or obRef given.') #just for convenience and simplicity self.origin = self.axis.From #get orientation of Post self.orientation = self.findOrientation() #store conversions to and from Post's orientation #rotate 90 degrees about y axis to align posts with x instead of z axis self.globalToSelf = Rhino.Geometry.Transform.Rotation(1,0, Rhino.Geometry.Vector3d.YAxis, Rhino.Geometry.Point3d.Origin) #transform global coordinates to post's local coordinates self.globalToSelf *= Rhino.Geometry.Transform.ChangeBasis( Rhino.Geometry.Plane.WorldXY, self.orientation) #go the other way self.selfToGlobal = self.globalToSelf.TryGetInverse()[1] #initialize list of this Post's Pockets self.pockets = [] ########### #Post Class Functions def info(self): """Displays a text summary of this post.""" print "Post: " + self.printId() + \ "\n Length: " + str(round(self.axis.Length, 2)) + \ "\n Origin: " + common.printPoint3d(self.origin) + \ "\n----" def display(self, objects=None): """Create objects in viewport to display information about this post. 'objects' determines which objects to display Creates: label text dot with post id orientation aligned plane with corner on post origin profile profile curve object post object, if not using obrefs axis axis Line Returns: list of guids of added objects """ guids = [] if objects == None: objects = ['label', 'orientation'] if 'label' in objects: guids.append(rs.AddTextDot(self.printId(), self.origin)) if 'orientation' in objects: guids.append(common.displayPlane(self.orientation)) if 'profile' in objects: guids.append(sc.doc.Objects.AddCurve(self.profile)) if 'object' in objects: if not self.brep: vector = Rhino.Geometry.Vector3d(self.axis.To - self.axis.From) guids.append(sc.doc.Objects.AddBrep( Rhino.Geometry.Surface.CreateExtrusion(self.profile, vector).ToBrep())) rs.CapPlanarHoles(guids[-1]) if 'axis' in objects: guids.append(sc.doc.Objects.AddLine(self.axis)) if 'xAxis' in objects: guids.append(sc.doc.Objects.AddLine(self.origin, self.origin + self.orientation.XAxis)) return guids def printId(self): """return id with type letter""" return 'p' + str(self.id) def findOrientation(self): """Find the orientation (direction and roll) of a post. Returns: plane with normal along axis and x-axis towards center of one face. """ #grab one edge of profile arbitrarily if type(self.profile) is Rhino.Geometry.PolyCurve: one_edge = self.profile.Explode()[0] else: raise NameError("Profile is wrong type of curve: " + str(type(self.profile))) middle_of_edge = one_edge.PointAtNormalizedLength(.5) #create plane from origin, normal vector, and x-axis vector return rs.PlaneFromNormal(self.origin, self.axis.UnitTangent, rs.VectorCreate(self.origin, middle_of_edge)) def makeRoll(self): """Construct a default horizontal roll angle""" #get plane normal to axis at arbitrary rotation plane = rs.PlaneFromNormal(self.axis.From, self.axis.UnitTangent) #set roll to horizontal component of x axis roll = Rhino.Geometry.Vector3d(plane.XAxis.X, plane.XAxis.Y, 0) if roll.IsZero: roll = plane.YAxis return Rhino.Geometry.Line(self.axis.From, plane.XAxis) def makeRectProfile(self, width, height): """create a Post profile using the Post's orientation Returns: rectangular PolyCurve boundary """ #get corner uv coordinates corners = [[width/2, height/2], [width/2, -height/2], [-width/2, -height/2], [-width/2, height/2]] #close curve corners.append(corners[0]) #convert local uvs to global points points = [self.orientation.PointAt(c[0], c[1]) for c in corners] #create polylinecurve polyline = Rhino.Geometry.Polyline(points) #get list of edge curves curves = [Rhino.Geometry.LineCurve(line) for line in polyline.GetSegments()] #join as polycurve return Rhino.Geometry.Curve.JoinCurves(curves)[0] def makeGcode(self, gcode=False): """Convert mill paths of each pocket into Gcode for the entire Post Returns: gcode string for milling post """ if not gcode: gcode = common.Gcode() gcode.text += common.settings.gcode['preamble'] + "\n" gcode.text += "(Starting Post {0})\n".format(self.printId()) for p in self.pockets: p.makeGcode(gcode=gcode) #get coordinates of home point home = str(common.settings.gcode['home']).split(',') home = [round(float(x), common.settings.gcode['precision']) for x in home] #return to home point when finished Rapid(Rhino.Geometry.Point3d(*home[0:3]), A=home[3], clear=True).makeGcode(gcode=gcode) return gcode # End Post Class #
# import socket programming library import socket import sys from packet_parser import Parser # import thread module from _thread import * import threading parser = Parser() print_lock = threading.Lock() stateOfApllication = True # thread function def threaded(c): while True: # data received from client data = c.recv(1024).decode() if not data: #print('Shutting program') #parser.receive_message('bye:bye') print_lock.release() #stateOfApllication = False break if (str(data) == 'bye:bye'): print('Shutting program') parser.receive_message('bye:bye') sys.exit() #data = data[::-1] print(str(data)) parser.receive_message(str(data)) # connection closed c.close() def Main(): host = "" # reverse a port on your computer # in our case it is 12345 but it # can be anything port = 8888 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind((host, port)) print("socket binded to port", port) # put the socket into listening mode s.listen(5) print("socket is listening") # a forever loop until client wants to exit while True: # establish connection with client c, addr = s.accept() # lock acquired by client print_lock.acquire() print('Connected to :', addr[0], ':', addr[1]) # Start a new thread and return its identifier start_new_thread(threaded, (c,)) s.close() if __name__ == '__main__': Main()
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright 2018 University of Groningen # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Provides a processor that adds interactions from blocks to molecules. """ # TODO: Move all this functionality to do_mapping? from collections import ChainMap from itertools import product from .processor import Processor from ..graph_utils import make_residue_graph from ..molecule import Molecule def apply_blocks(molecule, blocks): """ Generate a new :class:`~vermouth.molecule.Molecule` based on the residue names and other attributes of `molecule` from `blocks`. Parameters ---------- molecule: vermouth.molecule.Molecule The molecule to process. blocks: dict[str, vermouth.molecule.Block] The blocks known. Returns ------- vermouth.molecule.Molecule A new molecule with attributes from the old `molecule`, as well as all interactions described by `blocks`. """ graph_out = Molecule( force_field=molecule.force_field, meta=molecule.meta.copy() ) residue_graph = make_residue_graph(molecule) # nrexcl may not be defined, but if it is we probably want to keep it try: graph_out.nrexcl = molecule.nrexcl except AttributeError: graph_out.nrexcl = None old_to_new_idxs = {} at_idx = 0 charge_group_offset = 0 for res_idx in residue_graph: residue = residue_graph.nodes[res_idx] res_graph = residue['graph'] resname = residue['resname'] block = blocks[resname] atname_to_idx = {} if graph_out.nrexcl is None: if hasattr(block, 'nrexcl'): graph_out.nrexcl = block.nrexcl else: if (hasattr(block, 'nrexcl') and block.nrexcl is not None and block.nrexcl != graph_out.nrexcl): raise ValueError('Not all blocks share the same value for "nrexcl".') for block_idx in block: atname = block.nodes[block_idx]['atomname'] atom = list(res_graph.find_atoms(atomname=atname)) assert len(atom) == 1, (block.name, atname, atom) old_to_new_idxs[atom[0]] = at_idx atname_to_idx[atname] = at_idx attrs = molecule.nodes[atom[0]] graph_out.add_node(at_idx, **ChainMap(block.nodes[atname], attrs)) graph_out.nodes[at_idx]['graph'] = molecule.subgraph(atom) graph_out.nodes[at_idx]['charge_group'] += charge_group_offset graph_out.nodes[at_idx]['resid'] = attrs['resid'] at_idx += 1 charge_group_offset = graph_out.nodes[at_idx - 1]['charge_group'] for idx, jdx, data in block.edges(data=True): idx = atname_to_idx[idx] jdx = atname_to_idx[jdx] graph_out.add_edge(idx, jdx, **data) for inter_type, interactions in block.interactions.items(): for interaction in interactions: atom_idxs = [] for atom_name in interaction.atoms: atom_index = graph_out.find_atoms(atomname=atom_name, resname=residue['resname'], resid=residue['resid']) atom_index = list(atom_index) if not atom_index: msg = ('Could not find a atom named "{}" ' 'with resname being "{}" ' 'and resid being "{}".') raise ValueError(msg.format(atom_name, residue['resname'], residue['resid'])) atom_idxs.extend(atom_index) interactions = interaction._replace(atoms=atom_idxs) graph_out.add_interaction(inter_type, *interactions) # This makes edges between residues. We need to do this, since they can't # come from the blocks and we need them to find the links locations. # TODO This should not be done here, but by do_mapping, which might *also* # do it at the moment for res_idx, res_jdx in residue_graph.edges(): for old_idx, old_jdx in product(residue_graph.nodes[res_idx]['graph'], residue_graph.nodes[res_jdx]['graph']): try: # Usually termini, PTMs, etc idx = old_to_new_idxs[old_idx] jdx = old_to_new_idxs[old_jdx] except KeyError: continue if molecule.has_edge(old_idx, old_jdx): graph_out.add_edge(idx, jdx) return graph_out class ApplyBlocks(Processor): def run_molecule(self, molecule): return apply_blocks(molecule, molecule.force_field.blocks)
from django.db import models from django.contrib.auth.models import User class Profile(models.Model): profile_photo = models.ImageField(upload_to = 'images/',blank=True) bio = models.TextField(max_length = 50,null = True) user = models.OneToOneField(User,on_delete=models.CASCADE) def __str__(self): return self.comment def save_profile(self): self.save() def delete_profile(self): self.delete() class Project(models.Model): image = models.ImageField(upload_to = 'images/') project_name = models.CharField(max_length =10) project_url = models.CharField(max_length =50) description =models.CharField(max_length =100) user= models.ForeignKey(User,on_delete=models.CASCADE) def __str__(self): return self.bio def save_project(self): self.save() def delete_project(self): self.delete() # START OF THE CLASSES FOR RATING class DesignRating(models.Model): RATING_CHOICES = ( (1, '1'), (2, '2'), (3, '3'), (4, '4'), (5, '5'), (6,'6'), (7,'7'), (8,'8'), (9,'9'), (10,'10') ) project = models.ForeignKey('Project') user = models.ForeignKey(User) rating = models.IntegerField(choices=RATING_CHOICES, null=True) def __str__(self): return self.rating def save_designrating(self): self.save() def delete_designrating(self): self.delete() class UsabilityRating(models.Model): RATING_CHOICES = ( (1, '1'), (2, '2'), (3, '3'), (4, '4'), (5, '5'), (6,'6'), (7,'7'), (8,'8'), (9,'9'), (10,'10') ) project = models.ForeignKey('Project') user = models.ForeignKey(User) rating = models.IntegerField(choices=RATING_CHOICES, null=True) def __str__(self): return self.rating def save_usabilityrating(self): self.save() def delete_usabilityrating(self): self.delete() class ContentRating(models.Model): RATING_CHOICES = ( (1, '1'), (2, '2'), (3, '3'), (4, '4'), (5, '5'), (6,'6'), (7,'7'), (8,'8'), (9,'9'), (10,'10') ) project = models.ForeignKey('Project') user = models.ForeignKey(User) rating = models.IntegerField(choices=RATING_CHOICES, null=True) def __str__(self): return self.rating def save_contentrating(self): self.save() def delete_contentrating(self): self.delete()
import datetime import pytest from django.core.management import call_command from dashboard.testing import BuilderTestCase from apps.flowers.builder import direct_wholesale_04 from apps.dailytrans.models import DailyTran from apps.flowers.models import Flower from apps.configs.models import Source from django.db.models import Q @pytest.mark.secret class BuilderTestCase(BuilderTestCase): @classmethod def setUpClass(cls): super().setUpClass() # load fixtures call_command('loaddata', 'configs.yaml', verbosity=0) call_command('loaddata', 'sources.yaml', verbosity=0) call_command('loaddata', 'cog04.yaml', verbosity=0) cls.start_date = datetime.date(year=2018, month=3, day=6) cls.end_date = datetime.date(year=2018, month=3, day=8) def test_direct_single(self): result = direct_wholesale_04(start_date=self.start_date, end_date=self.end_date) self.assertTrue(result.success) obj = Flower.objects.filter(code='L', track_item=True).first() self.assertIsNotNone(obj) sources = Source.objects.filter(Q(name__exact='臺北花市') | Q(name__exact='臺中市場')) qs = DailyTran.objects.filter(product=obj, source__in=sources, date__range=(self.start_date, self.end_date)) self.assertEqual(qs.count(), 6)
import panscore def load(filename:str)->panscore.Score: #打开文件,返回panscore.Score对象 #由于编码不确定,先用二进制打开文件 with open(filename,'rb') as f: file=f.read() #读取编码 if(b"Charset=UTF-8" in file): encoding="utf-8" else: encoding="shift-JIS" #分块 blocks=[] block=[] for line in file.split(b"\n"): line=line.strip(b"\r") #逐行解码 try: linestr=str(line,encoding=encoding) except UnicodeDecodeError: #如果某行编码与其他行不同,则尝试用各种编码解析 for i in ["gbk","utf-8","shift-JIS"]: try: linestr=str(line,encoding=i) break except UnicodeDecodeError: pass else: linestr="" if(linestr.startswith("[")): blocks.append(block) block=[] block.append(linestr) #读文件头 """ fileproperties={} for line in blocks[2]: if("=" in line): [key,value]=line.split("=") if(value!=""): fileproperties[key]=ustvaluetyper(key,value) tempo=fileproperties.pop("Tempo",120.0) """ #读音符 notes=[] time=0 for block in blocks[3:]: noteproperties={} length=0 notenum=60 lyric="R" for line in block: if("=" in line): [key,value]=line.split("=") if(key=="Length"): length=int(value) elif(key=="NoteNum"): notenum=int(value) elif(key=="Lyric"): lyric=value.strip(" \n") if(not (lyric in {"R","r"})): notes.append(panscore.Note(start=time, length=length, notenum=notenum, lyric=lyric)) time+=length return panscore.Score(track=[panscore.Track(note=notes)]) #TODO pass def save(score:panscore.Score,filename:str,track:int=0): #将panscore.Score对象保存为文件 s='[#VERSION]\nUST Version1.2\nCharset=UTF-8\n[#SETTING]\n' noteindex=0#音符序号 time=0 def dumpnote(length:int,notenum:int,lyric:int)->str: return "[#{:0>4}]\nLength={}\nNoteNum={}\nLyric={}\n".format(noteindex,length,notenum,lyric) tr=score.track[track] for note in tr.note: if(note.start>time): s+=dumpnote(note.start-time,60,"R")#休止符 noteindex+=1 s+=dumpnote(note.length,note.notenum,note.lyric) noteindex+=1 time=note.start+note.length s+="[#TRACKEND]\n" with open(filename,"w",encoding="utf8") as file: file.write(s)
# Alphabeticak order # TODO add method and class definition modules from .bayesianEstimator import BayesianEstimator from .errorEstimator import ErrorEstimator from .estimationAssembler import EstimationAssembler from .hierarchyOptimiser import HierarchyOptimiser from .modelEstimator import ModelEstimator from .momentEstimator import MomentEstimator from .monoCriterion import MonoCriterion from .monteCarloIndex import MonteCarloIndex from .monteCarloSampler import MonteCarloSampler from .multiCriterion import MultiCriterion from .methodDefs_multiCriterion.flag import * from .randomGeneratorWrapper import RandomGeneratorWrapper from .sampleGenerator import SampleGenerator from .solverWrapper import SolverWrapper from .statisticalEstimator import StatisticalEstimator from .tools import * from .xmcAlgorithm import XMCAlgorithm
import cioppy import geopandas as gp import os import pandas as pd from py_snap_helpers import * from shapely.geometry import box from snappy import jpy from snappy import ProductIO import gdal import osr import ogr from shapely.geometry import box import json import sys sys.path.append('/opt/OTB/lib/python') sys.path.append('/opt/OTB/lib/libfftw3.so.3') sys.path.append('/opt/anaconda/bin') os.environ['OTB_APPLICATION_PATH'] = '/opt/OTB/lib/otb/applications' os.environ['LD_LIBRARY_PATH'] = '/opt/OTB/lib' os.environ['ITK_AUTOLOAD_PATH'] = '/opt/OTB/lib/otb/applications' import otbApplication from gdal_calc import Calc as gdalCalc def get_metadata(input_references, data_path): ciop = cioppy.Cioppy() if isinstance(input_references, str): search_params = dict() search_params['do'] = 'terradue' products = gp.GeoDataFrame(ciop.search(end_point=input_references, params=search_params, output_fields='identifier,self,wkt,startdate,enddate,enclosure,orbitDirection,track,orbitNumber', model='EOP')) else: temp_results = [] for index, self in enumerate(input_references): search_params = dict() search_params['do'] = 'terradue' temp_results.append(ciop.search(end_point=self, params=search_params, output_fields='identifier,self,wkt,startdate,enddate,enclosure,orbitDirection,track,orbitNumber', model='EOP')[0]) products = gp.GeoDataFrame(temp_results) products = products.merge(products.apply(lambda row: analyse(row, data_path), axis=1), left_index=True, right_index=True) return products def analyse(row, data_path): series = dict() series['local_path'] = os.path.join(data_path, row['identifier'], row['identifier'] + '.SAFE', 'manifest.safe') return pd.Series(series) def group_analysis(df): df['ordinal_type'] = 'NaN' slave_date=df['startdate'].min()[:10] master_date=df['startdate'].max()[:10] for i in range(len(df)): if slave_date == df.iloc[i]['startdate'][:10]: df.loc[i,'ordinal_type']='slave' elif master_date == df.iloc[i]['startdate'][:10]: df.loc[i,'ordinal_type']='master' return def bbox_to_wkt(bbox): return box(*[float(c) for c in bbox.split(',')]).wkt def pre_process(products, aoi, utm_zone, resolution='10.0', polarization=None, orbit_type=None, show_graph=False): master_products=products[products['ordinal_type']=='master'].reset_index(drop=True) slave_products=products[products['ordinal_type']=='slave'].reset_index(drop=True) ####Read and Assemble Masters master_graph=GraphProcessor() master_read_nodes = [] output_name_m='mst_' + master_products.iloc[0]['identifier'][:25] for index, product in master_products.iterrows(): output_name_m += '_'+product['identifier'][-4:] operator = 'Read' parameters = get_operator_default_parameters(operator) node_id = 'Read-M-{0}'.format(index) source_node_id = '' parameters['file'] = product.local_path master_graph.add_node(node_id, operator, parameters, source_node_id) source_node_id_m = node_id master_read_nodes.append(node_id) if len(master_read_nodes)>1: source_nodes_id = master_read_nodes operator = 'SliceAssembly' node_id = 'SliceAssembly-M' parameters = get_operator_default_parameters(operator) parameters['selectedPolarisations'] = polarization master_graph.add_node(node_id, operator, parameters, source_nodes_id) source_node_id_m = node_id ###### Read and Assemble Slaves slave_read_nodes = [] slave_graph = GraphProcessor() output_name_s = 'slv_'+ slave_products.iloc[0]['identifier'][:25] for index, product in slave_products.iterrows(): output_name_s += '_'+product['identifier'][-4:] operator = 'Read' parameters = get_operator_default_parameters(operator) node_id = 'Read-S-{0}'.format(index) source_node_id = '' parameters['file'] = product.local_path slave_graph.add_node(node_id, operator, parameters, source_node_id) source_node_id_s = node_id slave_read_nodes.append(node_id) if len(slave_read_nodes)>1: source_nodes_id = slave_read_nodes operator = 'SliceAssembly' node_id = 'SliceAssembly-S' parameters = get_operator_default_parameters(operator) parameters['selectedPolarisations'] = polarization slave_graph.add_node(node_id, operator, parameters, source_nodes_id) source_node_id_s = node_id ######Continue pre-processing master & slave products in two seperate graphs operator = 'Subset' parameters = get_operator_default_parameters(operator) parameters['geoRegion'] = aoi parameters['copyMetadata'] = 'true' node_id = 'Subset-S' slave_graph.add_node(node_id, operator, parameters, source_node_id_s) source_node_id_s = node_id node_id = 'Subset-M' master_graph.add_node(node_id, operator, parameters, source_node_id_m) source_node_id_m = node_id operator = 'Apply-Orbit-File' parameters = get_operator_default_parameters(operator) if orbit_type == 'Restituted': parameters['orbitType'] = 'Sentinel Restituted (Auto Download)' node_id = 'Apply-Orbit-File-S' slave_graph.add_node(node_id, operator, parameters, source_node_id_s) source_node_id_s = node_id node_id = 'Apply-Orbit-File-M' master_graph.add_node(node_id, operator, parameters, source_node_id_m) source_node_id_m = node_id operator = 'Calibration' parameters = get_operator_default_parameters(operator) parameters['outputSigmaBand'] = 'true' if polarization is not None: parameters['selectedPolarisations'] = polarization node_id = 'Calibration-S' slave_graph.add_node(node_id, operator, parameters, source_node_id_s) source_node_id_s = node_id node_id = 'Calibration-M' master_graph.add_node(node_id, operator, parameters, source_node_id_m) source_node_id_m = node_id operator = 'Terrain-Correction' parameters = get_operator_default_parameters(operator) map_proj = utm_zone parameters['mapProjection'] = map_proj parameters['pixelSpacingInMeter'] = resolution parameters['nodataValueAtSea'] = 'false' parameters['demName'] = 'SRTM 1Sec HGT' node_id = 'Terrain-Correction-S' slave_graph.add_node(node_id, operator, parameters, source_node_id_s) source_node_id_s = node_id node_id = 'Terrain-Correction-M' master_graph.add_node(node_id, operator, parameters, source_node_id_m) source_node_id_m = node_id operator = 'Write' parameters = get_operator_default_parameters(operator) parameters['formatName'] = 'BEAM-DIMAP' node_id = 'Write-S' parameters['file'] = output_name_s slave_graph.add_node(node_id, operator, parameters, source_node_id_s) node_id = 'Write-M' parameters['file'] = output_name_m master_graph.add_node(node_id, operator, parameters, source_node_id_m) if show_graph: master_graph.view_graph() slave_graph.view_graph() master_graph.run() slave_graph.run() return [output_name_m,output_name_s] def create_stack(products, show_graph=True): mygraph = GraphProcessor() operator = 'ProductSet-Reader' parameters = get_operator_default_parameters(operator) parameters['fileList'] = ','.join([ '{}.dim'.format(n) for n in products]) node_id = 'ProductSet-Reader' source_node_id = '' #parameters['file'] = product.local_path mygraph.add_node(node_id, operator, parameters, '') source_node_id = node_id operator = 'CreateStack' parameters = get_operator_default_parameters(operator) node_id = 'CreateStack' parameters['extent'] = 'Minimum' parameters['resamplingType'] = 'BICUBIC_INTERPOLATION' mygraph.add_node(node_id, operator, parameters, source_node_id) source_node_id = node_id operator = 'Write' parameters = get_operator_default_parameters(operator) parameters['file'] = 'stack' parameters['formatName'] = 'BEAM-DIMAP' node_id = 'Write' mygraph.add_node(node_id, operator, parameters, source_node_id) if show_graph: mygraph.view_graph() mygraph.run() def list_bands(product): reader = ProductIO.getProductReader('BEAM-DIMAP') product = reader.readProductNodes(product, None) return list(product.getBandNames()) def change_detection(input_product, output_product, expression, show_graph=False): mygraph = GraphProcessor() operator = 'Read' parameters = get_operator_default_parameters(operator) node_id = 'Read' source_node_id = '' parameters['file'] = input_product mygraph.add_node(node_id, operator, parameters, source_node_id) source_node_id = node_id operator = 'BandMaths' parameters = get_operator_default_parameters(operator) bands = '''<targetBands> <targetBand> <name>change_detection</name> <type>float32</type> <expression>{}</expression> <description/> <unit/> <noDataValue>NaN</noDataValue> </targetBand> </targetBands>'''.format(expression) parameters['targetBandDescriptors'] = bands node_id = 'BandMaths' mygraph.add_node(node_id, operator, parameters, source_node_id) source_node_id = node_id operator = 'Write' parameters = get_operator_default_parameters(operator) parameters['file'] = output_product parameters['formatName'] = 'GeoTIFF-BigTIFF' node_id = 'Write' mygraph.add_node(node_id, operator, parameters, source_node_id) if show_graph: mygraph.view_graph() mygraph.run() def convert_dim(input_product, show_graph=False): mygraph = GraphProcessor() operator = 'Read' parameters = get_operator_default_parameters(operator) node_id = 'Read' source_node_id = '' parameters['file'] = input_product mygraph.add_node(node_id, operator, parameters, source_node_id) source_node_id = node_id operator = 'LinearToFromdB' node_id = 'LinearToFromdB' parameters = get_operator_default_parameters(operator) mygraph.add_node(node_id, operator, parameters, source_node_id) source_node_id = node_id operator = 'Write' parameters = get_operator_default_parameters(operator) parameters['file'] = input_product.replace('.dim', '_db.tif') parameters['formatName'] = 'GeoTIFF-BigTIFF' node_id = 'Write' mygraph.add_node(node_id, operator, parameters, source_node_id) if show_graph: mygraph.view_graph() mygraph.run() return input_product.replace('.dim', '_db.tif') def cog(input_tif, output_tif): translate_options = gdal.TranslateOptions(gdal.ParseCommandLine('-co TILED=YES ' \ '-co COPY_SRC_OVERVIEWS=YES ' \ ' -co COMPRESS=LZW')) ds = gdal.Open(input_tif, gdal.OF_READONLY) gdal.SetConfigOption('COMPRESS_OVERVIEW', 'DEFLATE') ds.BuildOverviews('NEAREST', [2,4,8,16,32]) ds = None ds = gdal.Open(input_tif) gdal.Translate(output_tif, ds, options=translate_options) ds = None os.remove('{}.ovr'.format(input_tif)) os.remove(input_tif) def get_image_wkt(product): src = gdal.Open(product) ulx, xres, xskew, uly, yskew, yres = src.GetGeoTransform() max_x = ulx + (src.RasterXSize * xres) min_y = uly + (src.RasterYSize * yres) min_x = ulx max_y = uly source = osr.SpatialReference() source.ImportFromWkt(src.GetProjection()) target = osr.SpatialReference() target.ImportFromEPSG(4326) transform = osr.CoordinateTransformation(source, target) result_wkt = box(transform.TransformPoint(min_x, min_y)[0], transform.TransformPoint(min_x, min_y)[1], transform.TransformPoint(max_x, max_y)[0], transform.TransformPoint(max_x, max_y)[1]).wkt return result_wkt def polygonize(input_tif, band, epsg): epsg_code = epsg.split(':')[1] srs = osr.SpatialReference() srs.ImportFromEPSG(int(epsg_code)) source_raster = gdal.Open(input_tif) band = source_raster.GetRasterBand(band) band_array = band.ReadAsArray() out_vector_file = "polygonized.json" driver = ogr.GetDriverByName('GeoJSON') out_data_source = driver.CreateDataSource(out_vector_file+ "") out_layer = out_data_source.CreateLayer(out_vector_file, srs=srs) new_field = ogr.FieldDefn('change_detection', ogr.OFTInteger) out_layer.CreateField(new_field) gdal.Polygonize(band, None, out_layer, 0, [], callback=None ) out_data_source = None source_raster = None data = json.loads(open(out_vector_file).read()) gdf = gp.GeoDataFrame.from_features(data['features']) gdf.crs = {'init':'epsg:{}'.format(epsg_code)} gdf = gdf.to_crs(epsg=epsg_code) os.remove(out_vector_file) return gdf def create_composite(input_products, output_product, band_expressions): BandMathX = otbApplication.Registry.CreateApplication("BandMathX") BandMathX.SetParameterStringList('il', input_products) BandMathX.SetParameterString('out', 'temp_red_green_blue.tif') BandMathX.SetParameterString('exp', ';'.join(band_expressions)) BandMathX.ExecuteAndWriteOutput() Convert = otbApplication.Registry.CreateApplication('Convert') Convert.SetParameterString('in', 'temp_red_green_blue.tif') Convert.SetParameterString('out', output_product) Convert.SetParameterString('type', 'linear') Convert.SetParameterString('channels', 'rgb') Convert.ExecuteAndWriteOutput() os.remove('temp_red_green_blue.tif') return output_product def create_mask(in_composite, out_mask): #gdal_calc.py --calc="logical_and(logical_and(A==255, B==0), C==0)" -A $1 --A_band=1 -B $1 --B_band=2 -C $1 --C_band=3 --outfile=${1::-8}.mask.tif calc_exp="logical_and(logical_and(A==255, B==0), C==0)" gdalCalc(calc=calc_exp, A=in_composite, A_band=1, B=in_composite, B_band=2, C=in_composite, C_band=3, outfile=out_mask) def create_rbb(in_rgb, out_rbb): #gdal_translate -ot UInt16 -a_nodata 256 ${1::-14}RED-BLUE.rgb.tif ${1::-8}.acd.tif -co COMPRESS=LZW -b 1 -b 3 -b 3 translate_options = gdal.TranslateOptions(gdal.ParseCommandLine('-co COMPRESS=LZW '\ '-ot UInt16 ' \ '-a_nodata 256 ' \ '-b 1 -b 3 -b 3 ')) ds = gdal.Open(in_rgb, gdal.OF_READONLY) gdal.Translate(out_rbb, ds, options=translate_options)
from django.contrib import admin from .models import Entry def publish_selected(modeladmin, request, queryset): queryset.update(is_published=True) publish_selected.short_description = "Publish the selected posts" @admin.register(Entry) class EntryAdmin(admin.ModelAdmin): list_display = ("pub_date", "title", "category", "is_featured", "is_published") actions = [publish_selected] ordering = ("-pub_date",)
# Generated by Django 3.0.12 on 2021-03-01 11:06 from django.db import migrations, models import django.utils.timezone import model_utils.fields class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Blog', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', model_utils.fields.AutoCreatedField(default=django.utils.timezone.now, editable=False, verbose_name='created')), ('modified', model_utils.fields.AutoLastModifiedField(default=django.utils.timezone.now, editable=False, verbose_name='modified')), ('title', models.CharField(max_length=250, verbose_name='Title')), ('description', models.TextField(blank=True, verbose_name='Description')), ('date', models.DateTimeField(verbose_name='Date')), ('tag', models.CharField(blank=True, default='none, ', max_length=100, verbose_name='Tag')), ], options={ 'ordering': ['title'], }, ), ]
__all__ = ["Brain", "Entity","STT", "TTS"]
# import statements import cv2 import os import sqlite3 from tkinter import * ''' Function to assure whether the folder to store the training images are here. ''' def assure_folder_exists(folder): directory = os.path.dirname(folder) if not os.path.exists(directory): os.makedirs(directory) # Variables news_sticky = N + E + W + S bg_color = "#ADD8E6" fg_color = "black" config_color = '#A4CCD0' col_num = 1 # UI Elements main_frame = Tk() main_frame.title("Facial Recognition System") main_frame.configure(bg=config_color) # Labels var_1 = StringVar() l_1 = Label(main_frame, textvariable=var_1, bg=bg_color, fg=fg_color, relief=RAISED) var_1.set("Person ID:") l_1.grid(row=2, column=col_num, sticky=news_sticky) var_2 = StringVar() l_2 = Label(main_frame, textvariable=var_2, bg=bg_color, fg=fg_color, relief=RAISED) var_2.set("Name:") l_2.grid(row=3, column=col_num, sticky=news_sticky) var_3 = StringVar() l_3 = Label(main_frame, textvariable=var_3, bg=bg_color, fg=fg_color, relief=RAISED) var_3.set("Date of Birth:") l_3.grid(row=4, column=col_num, sticky=news_sticky) var_4 = StringVar() l_4 = Label(main_frame, textvariable=var_4, bg=bg_color, fg=fg_color, relief=RAISED) var_4.set("Email:") l_4.grid(row=5, column=col_num, sticky=news_sticky) var_5 = StringVar() l_5 = Label(main_frame, textvariable=var_5, bg=bg_color, fg=fg_color, relief=RAISED) var_5.set("Address:") l_5.grid(row=6, column=col_num, sticky=news_sticky) # Inputs e1_val = StringVar() e_1 = Entry(main_frame, textvariable=e1_val, bg=bg_color, fg=fg_color) e_1.grid(row=2, column=col_num + 1) e2_val = StringVar() e_2 = Entry(main_frame, textvariable=e2_val, bg=bg_color, fg=fg_color) e_2.grid(row=3, column=col_num + 1) e3_val = StringVar() e_3 = Entry(main_frame, textvariable=e3_val, bg=bg_color, fg=fg_color) e_3.grid(row=4, column=col_num + 1) e4_val = StringVar() e_4 = Entry(main_frame, textvariable=e4_val, bg=bg_color, fg=fg_color) e_4.grid(row=5, column=col_num + 1) e5_val = StringVar() e_5 = Entry(main_frame, textvariable=e5_val, bg=bg_color, fg=fg_color) e_5.grid(row=6, column=col_num + 1) # UI functions def pass_inputs(): return e1_val.get(), e2_val.get(), e3_val.get(), e4_val.get(), e5_val.get() def complete_information_gathering(): main_frame.destroy() # Buttons b1 = Button(main_frame, text="OK", bg=bg_color, fg=fg_color, command=complete_information_gathering) b1.grid(row=10, column=col_num+1) main_frame.mainloop() # End of UI functions ''' The rest of this code is procedural programming. ''' # get face id into program id, name, age, email, address = pass_inputs() parameters = (int(id), name, age, email, address) ####### sql_create = '''CREATE TABLE IF NOT EXISTS Persons (ID INT PRIMARY KEY NOT NULL, NAME TEXT NOT NULL, DOB TEXT NOT NULL, EMAIL CHAR(50), ADDRESS TEXT CHAR(50));''' sql_select = "SELECT * from Persons" connection = sqlite3.connect('database/persons.db') connection.cursor() connection.execute(sql_create) sql = "INSERT INTO Persons (ID,NAME,DOB,EMAIL,ADDRESS) VALUES (?, ?, ?, ?,?)" connection.execute(sql, parameters) connection.execute(sql_select) connection.commit() connection.close() # Concurrent variables face_id = int(id) name_id = name # Video - webcam start web_cam = cv2.VideoCapture(0) # Detect front face using HAARCASCADE FF init_face_crop = cv2.CascadeClassifier('dir_util/haarcascade_frontalface_default.xml') # Face Count num_of_faces = 0 assure_folder_exists("images/") font = cv2.FONT_HERSHEY_SIMPLEX # encryption keys enc = 'Spubuf!zpvs!gbdf!Dmpdlxjtf' def decrypt(kj): fr = [] for i in kj: fr.append(chr(ord(i)-1)) return "".join(fr) # Loop for faces until num of faces saved. while (True): # Analyse Web cam video feed _, single_image = web_cam.read() # Remove color channels remove_color_channel = cv2.cvtColor(single_image, cv2.COLOR_BGR2GRAY) # Detect number of faces in the image list_of_faces = init_face_crop.detectMultiScale(remove_color_channel, 1.3, 5) # for each face in list_of_faces for (x, y, w, h) in list_of_faces: # Crop and vectorise the image cv2.rectangle(single_image, (x, y), (x + w, y + h), (255, 0, 0), 2) # label text cv2.putText(single_image, decrypt(enc), (x, y - 10), font, 0.5, (120, 255, 120), 2, 1) # num of faces num_of_faces += 1 if num_of_faces == 1: # create training data. cv2.imwrite("images/" + name_id +"_" + str(face_id) +".jpg", remove_color_channel[y:y + h, x:x + w]) # Display face with bouding boxes cv2.imshow('frame', single_image) # Stop video frame press q if cv2.waitKey(1) & 0xFF == ord('q'): break elif num_of_faces >= 30: print("Successfully Captured") break # Webcam feed ended web_cam.release() # Close windows cv2.destroyAllWindows()
from MDSplus import Device, Event, VECTOR, Uint8Array import subprocess import numpy as np import time import traceback import os MC = __import__('MARTE2_COMPONENT', globals()) class MARTE2_SUPERVISOR(Device): """National Instrument 6683 device. Generation of clock and triggers and recording of events """ parts = [{'path': ':NAME', 'type': 'text'}, {'path': ':COMMENT', 'type': 'text'}, {'path': ':NUM_STATES', 'type': 'numeric'}] for stateIdx in range(10): parts.append({'path': '.STATE_'+str(stateIdx+1), 'type': 'structure'}) parts.append( {'path': '.STATE_'+str(stateIdx+1)+':NAME', 'type': 'text'}) parts.append({'path': '.STATE_'+str(stateIdx+1) + ':NUM_THREADS', 'type': 'numeric'}) for threadIdx in range(10): parts.append({'path': '.STATE_'+str(stateIdx+1) + '.THREAD_'+str(threadIdx+1), 'type': 'structure'}) parts.append({'path': '.STATE_'+str(stateIdx+1) + '.THREAD_'+str(threadIdx+1)+':NAME', 'type': 'text'}) parts.append({'path': '.STATE_'+str(stateIdx+1) + '.THREAD_'+str(threadIdx+1)+':CORE', 'type': 'numeric'}) parts.append({'path': '.STATE_'+str(stateIdx+1) + '.THREAD_'+str(threadIdx+1)+':GAMS', 'type': 'numeric'}) parts.append({'path': '.TIMES', 'type': 'structure'}) for stateIdx in range(10): parts.append({'path': '.TIMES.STATE_' + str(stateIdx+1), 'type': 'structure'}) for threadIdx in range(10): parts.append({'path': '.TIMES.STATE_'+str(stateIdx+1) + '.THREAD_'+str(threadIdx+1), 'type': 'structure'}) parts.append({'path': '.TIMES.STATE_'+str(stateIdx+1)+'.THREAD_' + str(threadIdx+1)+':SEG_LEN', 'type': 'numeric', 'value': 0}) parts.append({'path': '.TIMES.STATE_'+str(stateIdx+1)+'.THREAD_' + str(threadIdx+1)+':CPU_MASK', 'type': 'numeric', 'value': 15}) parts.append({'path': '.TIMES.STATE_'+str(stateIdx+1) + '.THREAD_'+str(threadIdx+1)+':CYCLE', 'type': 'signal'}) parts.append({'path': '.TIMES.STATE_'+str(stateIdx+1) + '.THREAD_'+str(threadIdx+1)+':GAM1', 'type': 'signal'}) parts.append({'path': '.TIMES.STATE_'+str(stateIdx+1) + '.THREAD_'+str(threadIdx+1)+':GAM2', 'type': 'signal'}) parts.append({'path': '.TIMES.STATE_'+str(stateIdx+1) + '.THREAD_'+str(threadIdx+1)+':GAM3', 'type': 'signal'}) parts.append({'path': '.TIMES.STATE_'+str(stateIdx+1) + '.THREAD_'+str(threadIdx+1)+':GAM4', 'type': 'signal'}) parts.append({'path': '.TIMES.STATE_'+str(stateIdx+1) + '.THREAD_'+str(threadIdx+1)+':GAM5', 'type': 'signal'}) parts.append({'path': '.TIMES.STATE_'+str(stateIdx+1) + '.THREAD_'+str(threadIdx+1)+':GAM6', 'type': 'signal'}) parts.append({'path': '.TIMES.STATE_'+str(stateIdx+1) + '.THREAD_'+str(threadIdx+1)+':GAM7', 'type': 'signal'}) parts.append({'path': '.TIMES.STATE_'+str(stateIdx+1) + '.THREAD_'+str(threadIdx+1)+':GAM8', 'type': 'signal'}) parts.append({'path': ':MARTE_CONFIG', 'type': 'numeric'}) parts.append({'path': ':INIT', 'type': 'action', 'valueExpr': "Action(Dispatch('MARTE_SERVER','INIT',50,None),Method(None,'startMarteIdle',head))", 'options': ('no_write_shot',)}) parts.append({'path': ':GOTORUN', 'type': 'action', 'valueExpr': "Action(Dispatch('MARTE_SERVER','PON',20,None),Method(None,'gotorun',head))", 'options': ('no_write_shot',)}) parts.append({'path': ':STOP', 'type': 'action', 'valueExpr': "Action(Dispatch('MARTE_SERVER','POST_PULSE_CHECK',50,None),Method(None,'stopMarte',head))", 'options': ('no_write_shot',)}) MODE_GAM = 1 MODE_INPUT = 2 MODE_SYNCH_INPUT = 3 MODE_OUTPUT = 4 def getGamList(self, state, thread): t = self.getTree() gams = getattr(self, 'state_%d_thread_%d_gams' % (state+1, thread+1)).getData() gamNids = [] if isinstance(gams, VECTOR): for i in range(gams.getNumDescs()): currGamNid = gams.getDescAt(i) gamNids.append(currGamNid) else: for gam1 in gams.data(): if isinstance(gam1, str): gam = gam1 else: gam = str(gam1, 'utf_8') currGamNid = t.getNode(gam) gamNids.append(currGamNid) print(gamNids) return gamNids def getInfo(self): try: error = '' info = {} t = self.getTree() numStates = self.num_states.data() statesInfo = [] retData = [] retGams = [] threadMap = {} typeDicts = [] # first iteration to get threadMap for state in range(numStates): numThreads = getattr( self, 'state_%d_num_threads' % (state+1)).data() for thread in range(numThreads): threadName = getattr( self, 'state_%d_thread_%d_name' % (state+1, thread+1)).data() try: gamNodes = self.getGamList(state, thread) except: raise Exception( 'Cannot get GAM list for state: ' + str(state + 1) + ', thread: '+str(thread + 1)) for currGamNode in gamNodes: nid = currGamNode.getNid() if nid in threadMap: threadMap[nid] += [threadName] else: threadMap[nid] = [threadName] # Second iteration, build the remaining for state in range(numStates): stateInfo = {} stateInfo['name'] = getattr( self, 'state_%d_name' % (state+1)).data() numThreads = getattr( self, 'state_%d_num_threads' % (state+1)).data() stateThreads = [] for thread in range(numThreads): threadInfo = {} threadName = getattr( self, 'state_%d_thread_%d_name' % (state+1, thread+1)).data() try: core = getattr(self, 'state_%d_thread_%d_core' % (state+1, thread+1)).data() threadInfo['core'] = core except: pass threadInfo['name'] = threadName gamNames = [] threadPeriod = 0 gamNids = [] gamNodes = self.getGamList(state, thread) for currGamNode in gamNodes: nid = currGamNode.getNid() if currGamNode.isOn(): try: gamClass = currGamNode.getData().getDevice() gamInstance = gamClass(currGamNode) except: raise Exception( 'Cannot instantiate device for node '+currGamNode.getFullPath()) gamList = [] if not (currGamNode.getNid() in gamNids): # try: gamInstance.prepareMarteInfo() currPeriod = gamInstance.getMarteInfo( threadMap, retGams, retData, gamList, typeDicts) # except: # return 'Cannot get timebase for ' + gam, {},{} gamNids.append(currGamNode.getNid()) # if currPeriod > 0 and threadPeriod > 0: if currPeriod > 0 and threadPeriod > 0 and currPeriod != threadPeriod: raise Exception('More than one component driving thread timing for state: '+str( state+1)+', thread: '+str(thread+1)) else: if currPeriod > 0: threadPeriod = currPeriod else: dummyGams = [] dummyData = [] gamInstance.getMarteInfo( threadMap, dummyGams, dummyData, gamList, typeDicts) gamNames += gamList # TIMINGS if threadPeriod == 0: raise Exception( 'No component driving thread timing for state: '+str(state+1)+', thread: '+str(thread+1)) gamList = [] self.getTimingInfo( state, thread, threadPeriod, retGams, retData, gamList) gamNames += gamList ############################# threadInfo['gams'] = gamNames stateThreads.append(threadInfo) stateInfo['threads'] = stateThreads statesInfo.append(stateInfo) info['states'] = statesInfo info['gams'] = retGams info['data_sources'] = retData info['name'] = self.getNode('name').data() return error, info, threadMap, typeDicts except Exception as inst: print(traceback.format_exc()) # return inst.args[0], None, None return str(inst), None, None, None # Enrich GAMs and Data Sources with what is required to store timing information (IOGAM + TreeWriter) is seg_len > 0 def getTimingInfo(self, state, thread, threadPeriod, retGams, dataSources, gamList): segLen = getattr(self, 'times_state_%d_thread_%d_seg_len' % (state+1, thread+1)).data() if(segLen == 0): return stateName = getattr(self, 'state_%d_name' % (state+1)).data() threadName = getattr(self, 'state_%d_thread_%d_name' % (state+1, thread+1)).data() cpuMask = getattr(self, 'times_state_%d_thread_%d_cpu_mask' % (state+1, thread+1)).data() timeSignals = [] gamNodes = self.getGamList(state, thread) for currGamNid in gamNodes: if currGamNid.isOn(): gamName = currGamNid.getNodeName() gamClass = currGamNid.getData().getDevice() gamInstance = gamClass(currGamNid) gamMode = gamInstance.mode.data() if gamMode == MARTE2_SUPERVISOR.MODE_GAM: timeSignals.append(gamName+'_ReadTime') timeSignals.append(gamName+'_ExecTime') elif gamMode == MARTE2_SUPERVISOR.MODE_OUTPUT: timeSignals.append(gamName+'_IOGAM_WriteTime') else: timeSignals.append(gamName+'_DDBOutIOGAM_ReadTime') if len(timeSignals) == 0: return currGam = '+State_%d_Thread_%d_TIMES_IOGAM = {\n' % (state+1, thread+1) currGam += ' Class = IOGAM\n' currGam += ' InputSignals = {\n' currGam += ' '+stateName+'_'+threadName+'_CycleTime = {\n' currGam += ' Alias = '+stateName+'.'+threadName+'_CycleTime\n' currGam += ' DataSource = Timings\n' currGam += ' Type = uint32\n' currGam += ' }\n' for timeSignal in timeSignals: currGam += ' '+timeSignal+' = {\n' currGam += ' DataSource = Timings\n' currGam += ' Type = uint32\n' currGam += ' }\n' currGam += ' }\n' currGam += ' OutputSignals = {\n' currGam += ' CycleTime = {\n' currGam += ' DataSource = State_%d_Thread_%d_TIMES_WRITER\n' % ( state+1, thread+1) currGam += ' Type = uint32\n' currGam += ' }\n' for timeSignal in timeSignals: currGam += ' '+timeSignal+' = {\n' currGam += ' DataSource = State_%d_Thread_%d_TIMES_WRITER\n' % ( state+1, thread+1) currGam += ' Type = uint32\n' currGam += ' }\n' currGam += ' }\n' currGam += '}\n' retGams.append(currGam) gamList.append('State_%d_Thread_%d_TIMES_IOGAM' % (state+1, thread+1)) dataSource = ' +State_%d_Thread_%d_TIMES_WRITER = {\n' % ( state+1, thread+1) dataSource += ' Class = MDSWriter\n' dataSource += ' NumberOfBuffers = 20000\n' dataSource += ' CPUMask = ' + str(cpuMask)+'\n' dataSource += ' StackSize = 10000000\n' dataSource += ' TreeName = "'+self.getTree().name+'"\n' dataSource += ' PulseNumber = '+str(self.getTree().shot)+'\n' dataSource += ' StoreOnTrigger = 0\n' dataSource += ' TimeRefresh = 1\n' dataSource += ' EventName = "'+gamName+'UpdatejScope"\n' dataSource += ' Signals = {\n' dataSource += ' CycleTime = {\n' dataSource += ' NodeName = "' + \ getattr(self, 'times_state_%d_thread_%d_cycle' % (state+1, thread+1)).getFullPath()+'"\n' dataSource += ' Period = '+str(threadPeriod) + '\n' dataSource += ' MakeSegmentAfterNWrites = '+str(segLen)+'\n' dataSource += ' AutomaticSegmentation = 0\n' dataSource += ' }\n' sigIdx = 1 for timeSignal in timeSignals: dataSource += ' '+timeSignal + ' = {\n' dataSource += ' NodeName = "' + \ getattr(self, 'times_state_%d_thread_%d_gam' % (state+1, thread+1)+str(sigIdx)).getFullPath()+'"\n' dataSource += ' Period = '+str(threadPeriod) + '\n' dataSource += ' MakeSegmentAfterNWrites = '+str(segLen)+'\n' dataSource += ' AutomaticSegmentation = 0\n' dataSource += ' }\n' sigIdx = sigIdx + 1 dataSource += ' }\n' dataSource += ' }\n' dataSources.append(dataSource) def declareTypes(self, typeDicts): if len(typeDicts) == 0: return '' typeDecl = '+Types = {\n' typeDecl += ' Class = ReferenceContainer\n' for typeDict in typeDicts: typeDecl += ' +'+typeDict['name'] + ' = {\n' typeDecl += ' Class = IntrospectionStructure\n' for fieldDict in typeDict['fields']: typeDecl += ' '+fieldDict['name'] + ' = {\n' typeDecl += ' Type = '+fieldDict['type']+'\n' dimensions = fieldDict['dimensions'] if dimensions == 0: numberOfElements = 1 numberOfDimensions = 0 else: numberOfDimensions = len(fieldDict['dimensions']) numberOfElements = 1 for currDim in fieldDict['dimensions']: numberOfElements *= currDim typeDecl += ' NumberOfDimensions = ' + \ str(numberOfDimensions)+'\n' typeDecl += ' NumberOfElements = ' + \ str(numberOfElements)+'\n' typeDecl += ' }\n' typeDecl += ' }\n' typeDecl += '}\n' return typeDecl def buildConfiguration(self): print('START BUILD') error, info, threadMap, typeDicts = self.getInfo() if error != '': return 0 confText = self.declareTypes(typeDicts) confText += '+MDS_EVENTS = {\n' confText += ' Class = MDSEventManager\n' confText += ' StackSize = 1048576\n' confText += ' CPUs = 0x1\n' confText += ' Name = '+info['name']+'\n' confText += '}\n' confText += '+WebRoot = {\n' confText += ' Class = HttpObjectBrowser\n' confText += ' Root = "."\n' confText += ' +ObjectBrowse = {\n' confText += ' Class = HttpObjectBrowser\n' confText += ' Root = "/"\n' confText += ' }\n' confText += ' +ResourcesHtml = {\n' confText += ' Class = HttpDirectoryResource\n' confText += ' BaseDir = "/opt/MARTe2/MARTe2/Resources/HTTP/"\n' confText += ' } \n' confText += '}\n' confText += '+WebServer = {\n' confText += ' Class = HttpService\n' confText += ' Port = 8085\n' confText += ' WebRoot = WebRoot\n' confText += ' Timeout = 0\n' confText += ' ListenMaxConnections = 255\n' confText += ' AcceptTimeout = 1000\n' confText += ' MaxNumberOfThreads = 8\n' confText += ' MinNumberOfThreads = 1\n' confText += '} \n' confText += ' +StateMachine = {\n' confText += ' Class = StateMachine\n' confText += ' +INITIAL = {\n' confText += ' Class = ReferenceContainer \n' confText += ' +START = {\n' confText += ' Class = StateMachineEvent\n' confText += ' NextState = "IDLE"\n' confText += ' NextStateError = "IDLE"\n' confText += ' Timeout = 0\n' confText += ' +StartHttpServer = {\n' confText += ' Class = Message\n' confText += ' Destination = "WebServer"\n' confText += ' Function = "Start"\n' confText += ' } \n' confText += ' +ChangeToStateIdleMsg = {\n' confText += ' Class = Message\n' confText += ' Destination = '+info['name']+'\n' confText += ' Function = PrepareNextState\n' confText += ' +Parameters = {\n' confText += ' Class = ConfigurationDatabase\n' confText += ' param1 = Idle\n' confText += ' }\n' confText += ' }\n' confText += ' +StartNextStateExecutionMsg = {\n' confText += ' Class = Message\n' confText += ' Destination = '+info['name']+'\n' confText += ' Function = StartNextStateExecution\n' confText += ' }\n' confText += ' }\n' confText += ' }\n' confText += ' +IDLE = {\n' confText += ' Class = ReferenceContainer\n' confText += ' +GOTORUN = {\n' confText += ' Class = StateMachineEvent\n' confText += ' NextState = "RUN"\n' confText += ' NextStateError = "IDLE"\n' confText += ' Timeout = 0 \n' confText += ' +ChangeToRunMsg = {\n' confText += ' Class = Message\n' confText += ' Destination = '+info['name']+'\n' confText += ' Function = PrepareNextState\n' confText += ' +Parameters = {\n' confText += ' Class = ConfigurationDatabase\n' confText += ' param1 = ' + \ info['states'][0]['name']+'\n' confText += ' }\n' confText += ' }\n' confText += ' +StopCurrentStateExecutionMsg = {\n' confText += ' Class = Message\n' confText += ' Destination = '+info['name']+'\n' confText += ' Function = StopCurrentStateExecution\n' confText += ' }\n' confText += ' +StartNextStateExecutionMsg = {\n' confText += ' Class = Message\n' confText += ' Destination = '+info['name']+'\n' confText += ' Function = StartNextStateExecution\n' confText += ' }\n' confText += ' }\n' confText += ' }\n' confText += ' +RUN = {\n' confText += ' Class = ReferenceContainer\n' confText += ' +GOTOIDLE = {\n' confText += ' Class = StateMachineEvent\n' confText += ' NextState = "IDLE"\n' confText += ' NextStateError = "IDLE"\n' confText += ' Timeout = 0 \n' confText += ' +ChangeToIdleMsg = {\n' confText += ' Class = Message\n' confText += ' Destination = '+info['name']+'\n' confText += ' Function = PrepareNextState\n' confText += ' +Parameters = {\n' confText += ' Class = ConfigurationDatabase\n' confText += ' param1 = Idle\n' confText += ' }\n' confText += ' }\n' confText += ' +StopCurrentStateExecutionMsg = {\n' confText += ' Class = Message\n' confText += ' Destination = '+info['name']+'\n' confText += ' Function = StopCurrentStateExecution\n' confText += ' }\n' confText += ' +StartNextStateExecutionMsg = {\n' confText += ' Class = Message\n' confText += ' Destination = '+info['name']+'\n' confText += ' Function = StartNextStateExecution\n' confText += ' }\n' confText += ' } \n' confText += ' }\n' confText += '} \n' confText += '$'+info['name']+' = {\n' confText += ' Class = RealTimeApplication\n' confText += ' +Functions = {\n' confText += ' Class = ReferenceContainer\n' confText += ' +IDLE_MDSPLUS = {\n' confText += ' Class = IOGAM\n' confText += ' InputSignals = {\n' confText += ' Counter = {\n' confText += ' DataSource = IDLE_MDSPLUS_TIMER\n' confText += ' Type = uint32\n' confText += ' NumberOfElements = 1\n' confText += ' }\n' confText += ' Time = {\n' confText += ' DataSource = IDLE_MDSPLUS_TIMER\n' confText += ' Type = uint32\n' confText += ' NumberOfElements = 1\n' confText += ' Frequency = 10\n' confText += ' }\n' confText += ' }\n' confText += ' OutputSignals = {\n' confText += ' Counter = {\n' confText += ' DataSource = IDLE_MDSPLUS_DDB\n' confText += ' Type = uint32\n' confText += ' }\n' confText += ' Time = {\n' confText += ' DataSource = IDLE_MDSPLUS_DDB\n' confText += ' Type = uint32\n' confText += ' NumberOfElements = 1\n' confText += ' }\n' confText += ' }\n' confText += ' }\n' for gam in info['gams']: confText += gam confText += ' }\n' confText += ' +Data = {\n' confText += ' Class = ReferenceContainer\n' confText += ' +IDLE_MDSPLUS_TIMER = {\n' confText += ' Class = LinuxTimer\n' confText += ' SleepNature = "Busy"\n' confText += ' Signals = {\n' confText += ' Counter = {\n' confText += ' Type = uint32\n' confText += ' }\n' confText += ' Time = {\n' confText += ' Type = uint32\n' confText += ' }\n' confText += ' }\n' confText += ' }\n' confText += ' +IDLE_MDSPLUS_DDB = {\n' confText += ' Class = GAMDataSource\n' confText += ' }\n' confText += ' +Timings = {\n' confText += ' Class = TimingDataSource\n' confText += ' }\n' for dataSource in info['data_sources']: confText += dataSource confText += ' }\n' confText += ' +States = {\n' confText += ' Class = ReferenceContainer\n' confText += ' +Idle = {\n' confText += ' Class = RealTimeState\n' confText += ' +Threads = {\n' confText += ' Class = ReferenceContainer\n' confText += ' +Thread1 = {\n' confText += ' Class = RealTimeThread\n' confText += ' Functions = {IDLE_MDSPLUS}\n' confText += ' }\n' confText += ' }\n' confText += ' }\n' for state in info['states']: confText += ' +'+state['name'] + ' = {\n' confText += ' Class = RealTimeState\n' confText += ' +Threads = {\n' confText += ' Class = ReferenceContainer\n' for thread in state['threads']: confText += ' +'+thread['name']+' = {\n' confText += ' Class = RealTimeThread\n' if 'core' in thread: confText += ' CPUs = '+str(thread['core'])+'\n' functionStr = '' for gamName in thread['gams']: functionStr += gamName + ' ' confText += ' Functions = {'+functionStr+'}\n' confText += ' }\n' confText += ' }\n' confText += ' }\n' confText += ' }\n' confText += ' +Scheduler = {\n' confText += ' Class = GAMScheduler\n' confText += ' TimingDataSource = Timings\n' confText += ' }\n' confText += '}\n' print (confText) try: os.system('mv /tmp/'+info['name']+'_marte_configuration.cfg '+'/tmp/'+info['name']+'_marte_configuration_OLD.cfg ') except: pass f = open('/tmp/'+info['name']+'_marte_configuration.cfg', 'w') self.marte_config.putData(Uint8Array(bytearray(confText.encode()))) f.write(confText) f.close() print('END BUILD') def startMarteIdle(self): self.buildConfiguration() subprocess.Popen(['$MARTE_DIR/Playground.sh -f /tmp/'+self.getNode( 'name').data()+'_marte_configuration.cfg -m StateMachine:START'], shell=True) def startMarte(self): self.buildConfiguration() stateName = self.state_1_name.data() subprocess.Popen(['$MARTE_DIR/Playground.sh -f /tmp/'+self.getNode( 'name').data()+'_marte_configuration.cfg -m StateMachine:START '+stateName], shell=True) time.sleep(2) self.gotorun() def gotorun(self): marteName = self.getNode('name').data() eventString1 = 'StateMachine:GOTORUN' Event.seteventRaw(marteName, np.frombuffer( eventString1.encode(), dtype=np.uint8)) def gotoidle(self): marteName = self.getNode('name').data() eventString1 = 'StateMachine:GOTOIDLE' Event.seteventRaw(marteName, np.frombuffer( eventString1.encode(), dtype=np.uint8)) def doState(self, state): marteName = self.getNode('name').data() stateName = getattr(self, 'state_%d_name' % (state)).data() eventString1 = marteName+':StopCurrentStateExecution:XX' eventString2 = marteName+':'+'PrepareNextState:'+stateName eventString3 = marteName+':StartNextStateExecution:XX' Event.seteventRaw(marteName, np.frombuffer( eventString1.encode(), dtype=np.uint8)) time.sleep(.1) Event.seteventRaw(marteName, np.frombuffer( eventString2.encode(), dtype=np.uint8)) time.sleep(.1) Event.seteventRaw(marteName, np.frombuffer( eventString3.encode(), dtype=np.uint8)) def doState1(self): self.doState(1) def doState2(self): self.doState(2) def doState3(self): self.doState(3) def doState4(self): self.doState(4) def doState5(self): self.doState(5) def suspendMarte(self): marteName = self.getNode('name').data() eventString1 = marteName+':StopCurrentStateExecution:XX' eventString2 = marteName+':'+'PrepareNextState:IDLE' eventString3 = marteName+':StartNextStateExecution:XX' Event.seteventRaw(marteName, np.frombuffer( eventString1.encode(), dtype=np.uint8)) time.sleep(0.1) Event.seteventRaw(marteName, np.frombuffer( eventString2.encode(), dtype=np.uint8)) time.sleep(0.1) Event.seteventRaw(marteName, np.frombuffer( eventString3.encode(), dtype=np.uint8)) def stopMarte(self): marteName = self.getNode('name').data() self.suspendMarte() time.sleep(2) Event.seteventRaw(marteName, np.frombuffer(b'EXIT', dtype=np.uint8)) time.sleep(2) Event.seteventRaw(marteName, np.frombuffer(b'EXIT', dtype=np.uint8)) # KILL MARTe process import subprocess import os command = 'ps -Af | grep %s_marte_configuration.cfg | grep MARTeApp.ex | grep -v grep | awk \'{print $2}\'' % ( marteName) pid, error = subprocess.Popen("{cmd}".format( cmd=command), shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE).communicate() if len(pid) == 0: if len(error) != 0: print('INFO : %s' % (error)) else: for p in pid.split(): os.kill(int(p), 9) print('MARTe Process PID : %s Killed\n' % (p)) return 1 def check(self): t = self.getTree() numStates = self.num_states.data() gamInstances = [] for state in range(numStates): numThreads = getattr( self, 'state_%d_num_threads' % (state+1)).data() for thread in range(numThreads): try: gamNids = self.getGamList(state, thread) for currGamNid in gamNids: if currGamNid.isOn(): gamClass = currGamNid.getData().getDevice() gamInstance = gamClass(currGamNid) gamInstances.append(gamInstance) except: return 'Cannot get Device list for tread '+str(thread)+' of state '+str(state) for gamInstance in gamInstances: try: gamInstance.prepareMarteInfo() except: return 'Device ' + gamInstance.getPath() + ' is not a MARTe2 device' error, info, threadMap, typeDicts = self.getInfo() if error != '': return error for gamInstance in gamInstances: status = gamInstance.check(threadMap) if status != '': return gamInstance.getPath()+': ' + status return 'Configuration OK' # Check timebases for state in range(numStates): numThreads = getattr( self, 'state_%d_num_threads' % (state+1)).data() for thread in range(numThreads): timebaseGenerator = '' gamNodes = self.getGamList(state, thread) for currGamNid in gamNodes: if currGamNid.isOn(): gamClass = currGamNid.getData().getDevice() gamInstance = gamClass(currGamNid) timebaseMode = gamInstance.checkTimebase(threadMap) if timebaseMode == MC.MARTE2_COMPONENT.TIMEBASE_GENERATOR: if timebaseGenerator == '': timebaseGenerator = gamInstance.name.data() else: return 'Multiple timebases in state %d, thread %d' % (state+1, thread+1)+': ' + timebaseGenerator + ', ' + gamInstance.name.data() if timebaseGenerator == '': return 'No Timebase defined in state %d, thread %d' % (state+1, thread+1) return 'Configuration OK'
import io import logging from random import sample from typing import List import matplotlib.pyplot as plt from django.contrib import messages from django.contrib.auth import authenticate, logout, login, update_session_auth_hash from django.contrib.auth.decorators import login_required, permission_required from django.contrib.auth.forms import AuthenticationForm, PasswordChangeForm from django.core.exceptions import ValidationError from django.http import HttpResponse from django.shortcuts import render, redirect from django.template import loader from django.views.generic import DetailView from matplotlib.backends.backend_agg import FigureCanvasAgg from core.models import Curso, ComponenteCurricular, EstruturaCurricular, SugestaoTurma, Sala, Docente, Turma, \ SolicitacaoTurma from core.visoes.flow_view import flow_horizontal, flow_opcionais from .bo.curso import get_cursos from .bo.discentes import get_discentes, get_discentes_ativos from .bo.docente import get_docentes from .bo.sala import get_salas from .bo.sevices import get_oc_by_semestre, get_ch_by_semestre, get_estrutura_direito, get_estrutura_matematica, \ get_estrutura_pedagogia from .bo.sistemas import get_estrutura_sistemas, get_estrutura_sistemas_dct from .dao.centro_dao import get_ceres from .dao.componente_dao import get_componentes_by_depto, get_componentes_curriculares from .dao.departamento_dao import get_departamentos from .filters import SalaFilter, DocenteFilter from .forms import CadastroUsuarioForm from .models import Horario from .visoes.suggest_view import sugestao_grade_horarios, sugestao_manter, sugestao_incluir, sugestao_editar, \ redirecionar, sugestao_deletar, atualizar_solicitacao from .visoes.turma_view import turmas_grade from .visoes.user_view import criar_usuario, autenticar_logar logger = logging.getLogger('suggestclasses.logger') def index(request): """ View para o Home (Tela Inicial). :param request: Uma requisição http. :return: Um response com dados sobre o CERES/UFRN. """ ceres = get_ceres() departamentos = get_departamentos() cursos = get_cursos() componentes = get_componentes_curriculares() docentes = get_docentes() discentes = get_discentes() discentes_ativos = get_discentes_ativos() context = { 'ceres': ceres, 'departamentos': departamentos, 'docentes': docentes, 'cursos': cursos, 'componentes': componentes, 'discentes': discentes, 'discentes_ativos': discentes_ativos, } return render(request, 'core/home.html', context) def sobre(request): ceres = get_ceres() context = { 'ceres': ceres, } return render(request, 'core/sobre.html', context) def dashboard(request): """ View index para o Dashboard. :param request: Requisição do http. :return: retorna um HttpResponse """ ceres = get_ceres() departamentos = get_departamentos() estruturas = EstruturaCurricular.objects.all() cursos = Curso.objects.all() componentes = get_componentes_curriculares() componentes_by_depto = [] headers: List[str] = [] for d in departamentos: headers.append(d.sigla) componentes_by_depto.append(get_componentes_by_depto(d)) template = loader.get_template('core/dashboard.html') context = { 'ceres': ceres, 'departamentos': departamentos, 'cursos': cursos, 'componentes': componentes, 'estruturas': estruturas, 'headers': headers, 'componentes_by_depto': componentes_by_depto, } return HttpResponse(template.render(context, request)) def detail(request, horario_id): return HttpResponse("You're looking at Horario %s." % horario_id) def curso_detail(request, curso_id): curso = Curso.objects.get(pk=curso_id) return HttpResponse("You're looking at Curso %s." % curso) def horarios_list(request): horario_list = Horario.objects.all() horarios = [] for i in range(1, 7): horarios.append(Horario.objects.filter(ordem=i, turno='M').order_by('dia')) for i in range(1, 7): horarios.append(Horario.objects.filter(ordem=i, turno='T').order_by('dia')) for i in range(1, 5): horarios.append(Horario.objects.filter(ordem=i, turno='N').order_by('dia')) context = { 'horario_list': horario_list, 'horarios': horarios } return render(request, 'core/list.html', context) def departamento_list(request): """ Lista todos os componentes curriculares. """ departamentos = get_departamentos() context = { 'departamentos': departamentos } return render(request, 'core/departamento/list.html', context) def curso_list(request): """ Lista todos os componentes curriculares. """ cursos = Curso.objects.all() context = { 'cursos': cursos } return render(request, 'core/curso/list.html', context) def componente_list(request): """ Lista todos os componentes curriculares. """ componentes = ComponenteCurricular.objects.all() context = { 'componentes': componentes } return render(request, 'core/componente/list.html', context) class ComponenteDetailView(DetailView): model = ComponenteCurricular template_name = 'core/componente/detalhar.html' class DocenteDetailView(DetailView): model = Docente template_name = 'core/docente/detalhar.html' def curriculo_list(request): estruturas = EstruturaCurricular.objects.all() context = { 'estruturas': estruturas } return render(request, 'core/curriculo/list.html', context) def docentes_list(request): """ Lista todas os docentes do centro. """ docentes = get_docentes() docente_filter = DocenteFilter(request.GET, queryset=docentes) context = { 'filter': docente_filter } return render(request, 'core/docente/list.html', context) def sala_list(request): """ Lista todas as salas do centro. """ salas = Sala.objects.all() context = { 'salas': salas } return render(request, 'core/sala/list.html', context) def flow_list(request): """ Lista todas as Estruturas Curriculares do centro CERES. """ bsi_flow_1a = get_estrutura_sistemas() bsi_flow_1b = get_estrutura_sistemas_dct() ped_flow = get_estrutura_pedagogia() mat_flow = get_estrutura_matematica() dir_flow = get_estrutura_direito() context = { 'dir_flow': dir_flow, 'mat_flow': mat_flow, 'ped_flow': ped_flow, 'bsi_flow_1a': bsi_flow_1a, 'bsi_flow_1b': bsi_flow_1b } return render(request, 'core/flow/list.html', context) def flow_bsi(request): bsi_ec = get_estrutura_sistemas() bsi_oc_semestres = [] bsi_ch_semestres = [] bsi_oc_op = get_oc_by_semestre(bsi_ec, 0) headers: List[str] = [] for s in range(1, 9): headers.append(f"{s}º Semestre") bsi_oc_semestres.append(get_oc_by_semestre(bsi_ec, s)) bsi_ch_semestres.append(get_ch_by_semestre(bsi_ec, s)) context = { 'bsi_ec': bsi_ec, 'headers': headers, 'bsi_oc_semestres': bsi_oc_semestres, 'bsi_oc_op': bsi_oc_op, 'bsi_ch_semestres': bsi_ch_semestres, } return render(request, 'core/flow/bsi.html', context) def flow_bsi_1b(request): bsi_ec = get_estrutura_sistemas_dct() bsi_oc_semestres = [] bsi_ch_semestres = [] bsi_oc_op = get_oc_by_semestre(bsi_ec, 0) headers: List[str] = [] bsi_tam = [] bsi_oc_max = 0 for s in range(1, 9): oc = get_oc_by_semestre(bsi_ec, s) ch = get_ch_by_semestre(bsi_ec, s) headers.append(f"{s}º Semestre") tam = len(oc) bsi_tam.append(tam) bsi_oc_semestres.append(oc) bsi_ch_semestres.append(ch) if tam >= bsi_oc_max: bsi_oc_max = tam for i in range(0, len(bsi_tam)): bsi_tam[i] = bsi_oc_max - bsi_tam[i] context = { 'bsi_ec': bsi_ec, 'headers': headers, 'bsi_oc_semestres': bsi_oc_semestres, 'bsi_oc_op': bsi_oc_op, 'bsi_tam': bsi_tam, 'bsi_oc_max': bsi_oc_max, 'bsi_ch_semestres': bsi_ch_semestres, } return render(request, 'core/flow/bsi-1b.html', context) def flow_bsi_1b_h(request): bsi_ec = get_estrutura_sistemas_dct() link_opcionais = '/core/flow/bsi/opcionais' return flow_horizontal(request, bsi_ec, link_opcionais) def flow_bsi_op(request): bsi_ec = get_estrutura_sistemas_dct() return flow_opcionais(request, bsi_ec) def flow_dir(request): dir_ec = get_estrutura_direito() link_opcionais = '/core/flow/dir/opcionais' return flow_horizontal(request, dir_ec, link_opcionais) def flow_dir_op(request): dir_ec = get_estrutura_direito() return flow_opcionais(request, dir_ec) def flow_mat_h(request): mat_ec = get_estrutura_matematica() link_opcionais = '/core/flow/mat/opcionais' return flow_horizontal(request, mat_ec, link_opcionais) def flow_mat_op(request): mat_ec = get_estrutura_matematica() return flow_opcionais(request, mat_ec) def flow_ped_h(request): ped_ec = get_estrutura_pedagogia() link_opcionais = '/core/flow/ped/opcionais' return flow_horizontal(request, ped_ec, link_opcionais) def flow_ped_op(request): ped_ec = get_estrutura_pedagogia() return flow_opcionais(request, ped_ec) def cadastrar_usuario(request): if request.method == "POST": form_usuario = CadastroUsuarioForm(request.POST) if form_usuario.is_valid(): try: criar_usuario(request, form_usuario) autenticar_logar(request, form_usuario) messages.success(request, 'Usuário cadastrado com sucesso.') return redirect('index') except ValidationError as e: form_usuario.add_error(None, e) else: messages.error(request, 'O formulário contém dados inválidos!') else: form_usuario = CadastroUsuarioForm() return render(request, 'core/usuario/cadastro.html', {'form_usuario': form_usuario}) def logar_usuario(request): if request.method == "POST": username = request.POST["username"] password = request.POST["password"] usuario = authenticate(request, username=username, password=password) if usuario is not None: login(request, usuario) messages.success(request, 'Usuário logado com sucesso.') return redirect('index') else: messages.error(request, 'Erro ao logar usuário.') form_login = AuthenticationForm() else: form_login = AuthenticationForm() return render(request, 'core/usuario/login.html', {'form_login': form_login}) @login_required(login_url='/core/usuario/logar') def deslogar_usuario(request): logout(request) messages.success(request, 'Usuário deslogado com sucesso.') return redirect('index') @login_required(login_url='/core/usuario/logar') def alterar_senha(request): if request.method == "POST": form_senha = PasswordChangeForm(request.user, request.POST) if form_senha.is_valid(): user = form_senha.save() update_session_auth_hash(request, user) messages.success(request, 'Usuário atualizado com sucesso.') return redirect('index') else: form_senha = PasswordChangeForm(request.user) return render(request, 'core/usuario/alterar_senha.html', {'form_senha': form_senha}) def turmas_list(request): """ Lista todas as Turmas do centro CERES. """ dir_flow = get_estrutura_direito() bsi_flow = get_estrutura_sistemas_dct() ped_flow = get_estrutura_pedagogia() mat_flow = get_estrutura_matematica() context = { 'dir_flow': dir_flow, 'mat_flow': mat_flow, 'ped_flow': ped_flow, 'bsi_flow': bsi_flow } return render(request, 'core/turmas/list.html', context) class TurmaDetailView(DetailView): model = Turma template_name = 'core/turmas/detalhar.html' def turmas_dir(request): dir_ddir = get_estrutura_direito() turmas_list_link = '/core/turmas/dir' return turmas_grade(request, dir_ddir, turmas_list_link) def turmas_mat(request): mat_dcea = get_estrutura_matematica() turmas_list_link = '/core/turmas/mat' return turmas_grade(request, mat_dcea, turmas_list_link) def turmas_bsi(request): bsi_dct = get_estrutura_sistemas_dct() turmas_list_link = '/core/turmas/bsi' return turmas_grade(request, bsi_dct, turmas_list_link) def turmas_ped(request): ped_deduc = get_estrutura_pedagogia() turmas_list_link = '/core/turmas/ped' return turmas_grade(request, ped_deduc, turmas_list_link) def sugestao_list(request): """ Tela para Listar os Curso com possibilidade de cadastrar Sugestões de Turmas. """ dir_flow = get_estrutura_direito() bsi_flow = get_estrutura_sistemas_dct() ped_flow = get_estrutura_pedagogia() mat_flow = get_estrutura_matematica() context = { 'dir_flow': dir_flow, 'mat_flow': mat_flow, 'ped_flow': ped_flow, 'bsi_flow': bsi_flow } return render(request, 'core/sugestao/list.html', context) class SugestaoTurmaDetailView(DetailView): model = SugestaoTurma template_name = 'core/sugestao/detalhar.html' def sugestao_solicitar(request, pk): return atualizar_solicitacao(request, pk) def solicitacao_turma_listar(request, pk): turma = SugestaoTurma.objects.get(pk=pk) solicitacoes = SolicitacaoTurma.objects.filter(turma=turma).order_by('criada_em', 'solicitador__nome_curso') context = { 'turma': turma, 'solicitacoes': solicitacoes, } return render(request, 'core/sugestao/solicitacao_listar.html', context) def sugestao_dir_list(request): dir_ddir = get_estrutura_direito() sugestao_incluir_link = '/core/sugestao/dir/incluir' sugestao_manter_link = '/core/sugestao/dir/manter' sugestao_list_link = '/core/sugestao/dir/list' return sugestao_grade_horarios(request, dir_ddir, sugestao_incluir_link, sugestao_manter_link, sugestao_list_link) @permission_required("core.change_sugestaoturma", login_url='/core/usuario/logar', raise_exception=True) def sugestao_dir_manter(request): """ Tela de Manter Sugestão de Turmas do Curso de Direito. """ dir_ddir = get_estrutura_direito() sugestao_incluir_link = '/core/sugestao/dir/incluir' sugestao_editar_link = 'sugestao_dir_editar' sugestao_deletar_link = 'sugestao_dir_deletar' sugestao_grade_link = '/core/sugestao/dir/list' return sugestao_manter(request, dir_ddir, sugestao_incluir_link, sugestao_grade_link, sugestao_editar_link, sugestao_deletar_link) @permission_required("core.add_sugestaoturma", login_url='/core/usuario/logar', raise_exception=True) def sugestao_dir_incluir(request): dir_ddir = get_estrutura_direito() sugestao_manter_link = '/core/sugestao/dir/manter' return sugestao_incluir(request, dir_ddir, sugestao_manter_link) @permission_required("core.change_sugestaoturma", login_url='/core/usuario/logar', raise_exception=True) def sugestao_dir_editar(request, pk): dir_ddir = get_estrutura_direito() return sugestao_editar(request, pk, estrutura=dir_ddir) @permission_required("core.delete_sugestaoturma", login_url='/core/usuario/logar', raise_exception=True) def sugestao_dir_deletar(request, pk): dir_ddir = get_estrutura_direito() return sugestao_deletar(request, pk, estrutura=dir_ddir) @permission_required("core.change_sugestaoturma", login_url='/core/usuario/logar', raise_exception=True) def sugestao_mat_manter(request): """ Tela de Manter Sugestão de Turmas do Curso de Matemática. """ mat_dcea = get_estrutura_matematica() sugestao_incluir_link = '/core/sugestao/mat/incluir' sugestao_editar_link = 'sugestao_mat_editar' sugestao_deletar_link = 'sugestao_mat_deletar' sugestao_grade_link = '/core/sugestao/mat/list' return sugestao_manter(request, mat_dcea, sugestao_incluir_link, sugestao_grade_link, sugestao_editar_link, sugestao_deletar_link) @permission_required("core.add_sugestaoturma", login_url='/core/usuario/logar', raise_exception=True) def sugestao_mat_incluir(request): mat_dcea = get_estrutura_matematica() sugestao_manter_link = '/core/sugestao/mat/manter' return sugestao_incluir(request, mat_dcea, sugestao_manter_link) @permission_required("core.change_sugestaoturma", login_url='/core/usuario/logar', raise_exception=True) def sugestao_mat_editar(request, pk): mat_dcea = get_estrutura_matematica() return sugestao_editar(request, pk, estrutura=mat_dcea) @permission_required("core.delete_sugestaoturma", login_url='/core/usuario/logar', raise_exception=True) def sugestao_mat_deletar(request, pk): mat_dcea = get_estrutura_matematica() return sugestao_deletar(request, pk, estrutura=mat_dcea) def sugestao_mat_list(request): mat_dcea = get_estrutura_matematica() sugestao_incluir_link = '/core/sugestao/mat/incluir' sugestao_manter_link = '/core/sugestao/mat/manter' sugestao_list_link = '/core/sugestao/mat/list' return sugestao_grade_horarios(request, mat_dcea, sugestao_incluir_link, sugestao_manter_link, sugestao_list_link) @permission_required("core.change_sugestaoturma", login_url='/core/usuario/logar', raise_exception=True) def sugestao_bsi_manter(request): """ Tela de Manter Sugestão de Turmas do Curso de Sistemas de Informação. """ bsi_dct = get_estrutura_sistemas_dct() sugestao_incluir_link = '/core/sugestao/bsi/incluir' sugestao_editar_link = 'sugestao_bsi_editar' sugestao_deletar_link = 'sugestao_bsi_deletar' sugestao_grade_link = '/core/sugestao/bsi/list' return sugestao_manter(request, bsi_dct, sugestao_incluir_link, sugestao_grade_link, sugestao_editar_link, sugestao_deletar_link) @permission_required("core.add_sugestaoturma", login_url='/core/usuario/logar', raise_exception=True) def sugestao_bsi_incluir(request): bsi_dct = get_estrutura_sistemas_dct() sugestao_manter_link = '/core/sugestao/bsi/manter' return sugestao_incluir(request, bsi_dct, sugestao_manter_link) @permission_required("core.change_sugestaoturma", login_url='/core/usuario/logar', raise_exception=True) def sugestao_bsi_editar(request, pk): bsi_dct = get_estrutura_sistemas_dct() return sugestao_editar(request, pk, estrutura=bsi_dct) @permission_required("core.delete_sugestaoturma", login_url='/core/usuario/logar', raise_exception=True) def sugestao_bsi_deletar(request, pk): bsi_dct = get_estrutura_sistemas_dct() return sugestao_deletar(request, pk, estrutura=bsi_dct) def sugestao_bsi_list(request): bsi_dct = get_estrutura_sistemas_dct() sugestao_incluir_link = '/core/sugestao/bsi/incluir' sugestao_manter_link = '/core/sugestao/bsi/manter' sugestao_list_link = '/core/sugestao/bsi/list' return sugestao_grade_horarios(request, bsi_dct, sugestao_incluir_link, sugestao_manter_link, sugestao_list_link) def sugestao_ped_list(request): ped_deduc = get_estrutura_pedagogia() sugestao_incluir_link = '/core/sugestao/ped/incluir' sugestao_manter_link = '/core/sugestao/ped/manter' sugestao_list_link = '/core/sugestao/ped/list' return sugestao_grade_horarios(request, ped_deduc, sugestao_incluir_link, sugestao_manter_link, sugestao_list_link) @permission_required("core.change_sugestaoturma", login_url='/core/usuario/logar', raise_exception=True) def sugestao_ped_manter(request): """ Tela de Manter Sugestão de Turmas do Curso de Pedagogia. """ ped_deduc = get_estrutura_pedagogia() sugestao_incluir_link = '/core/sugestao/ped/incluir' sugestao_editar_link = 'sugestao_ped_editar' sugestao_deletar_link = 'sugestao_ped_deletar' sugestao_grade_link = '/core/sugestao/ped/list' return sugestao_manter(request, ped_deduc, sugestao_incluir_link, sugestao_grade_link, sugestao_editar_link, sugestao_deletar_link) @permission_required("core.add_sugestaoturma", login_url='/core/usuario/logar', raise_exception=True) def sugestao_ped_incluir(request): ped_deduc = get_estrutura_pedagogia() sugestao_manter_link = '/core/sugestao/ped/manter' return sugestao_incluir(request, ped_deduc, sugestao_manter_link) @permission_required("core.change_sugestaoturma", login_url='/core/usuario/logar', raise_exception=True) def sugestao_ped_editar(request, pk): ped_deduc = get_estrutura_pedagogia() return sugestao_editar(request, pk, estrutura=ped_deduc) @permission_required("core.delete_sugestaoturma", login_url='/core/usuario/logar', raise_exception=True) def sugestao_ped_deletar(request, pk): ped_deduc = get_estrutura_pedagogia() return sugestao_deletar(request, pk, estrutura=ped_deduc) def error_403(request, exception): logger.error('Você não tem permissão de acessar "' + request.path + '" 403 ', exc_info=exception) messages.error(request, 'Você não tem permissão de acessar: ' + request.path) return redirecionar(request) def search_salas(request): salas = get_salas() sala_filter = SalaFilter(request.GET, queryset=salas) return render(request, 'core/sala/list.html', {'filter': sala_filter}) def plot(request): # Creamos los datos para representar en el gráfico x = range(1, 11) y = sample(range(20), len(x)) # Creamos una figura y le dibujamos el gráfico f = plt.figure() # Creamos los ejes axes = f.add_axes([0.15, 0.15, 0.75, 0.75]) # [left, bottom, width, height] axes.plot(x, y) axes.set_xlabel("Eje X") axes.set_ylabel("Eje Y") axes.set_title("Mi gráfico dinámico") # Como enviaremos la imagen en bytes la guardaremos en un buffer buf = io.BytesIO() canvas = FigureCanvasAgg(f) canvas.print_png(buf) # Creamos la respuesta enviando los bytes en tipo imagen png response = HttpResponse(buf.getvalue(), content_type='image/png') # Limpiamos la figura para liberar memoria f.clear() # Añadimos la cabecera de longitud de fichero para más estabilidad response['Content-Length'] = str(len(response.content)) # Devolvemos la response return response
# License: BSD 3 clause import tick.base from .hawkes_kernels import (HawkesKernel0, HawkesKernelExp, HawkesKernelPowerLaw, HawkesKernelSumExp, HawkesKernelTimeFunc) from .simu_hawkes import SimuHawkes from .simu_hawkes_exp_kernels import SimuHawkesExpKernels from .simu_hawkes_multi import SimuHawkesMulti from .simu_hawkes_sumexp_kernels import SimuHawkesSumExpKernels from .simu_inhomogeneous_poisson import SimuInhomogeneousPoisson from .simu_poisson_process import SimuPoissonProcess __all__ = [ "SimuPoissonProcess", "SimuInhomogeneousPoisson", "SimuHawkes", "SimuHawkesExpKernels", "SimuHawkesSumExpKernels", "SimuHawkesMulti", "HawkesKernelExp", "HawkesKernelSumExp", "HawkesKernelPowerLaw", "HawkesKernelTimeFunc", "HawkesKernel0" ]
import re from typing import Dict, List, Optional, Union from ufal.udpipe import InputFormat from ufal.udpipe import Model from ufal.udpipe import OutputFormat, ProcessingError, Sentence from .utils import get_path def _default_model_meta(lang: str, name: str) -> Dict: return { "author": "Milan Straka & Jana Straková", "description": "UDPipe pretrained model.", "email": "[email protected]", "lang": f"udpipe_{lang}", "license": "CC BY-NC-SA 4.0", "name": name, "parent_package": "spacy_udpipe", "pipeline": [ "Tokenizer", "Tagger", "Lemmatizer", "Parser" ], "source": "Universal Dependencies 2.5", "url": "http://ufal.mff.cuni.cz/udpipe", "version": "1.2.0" } class PretokenizedInputFormat: """Dummy tokenizer for pretokenized input. Execution speed might be slow compared to other UDPipe tokenizers due to pure Python implementation. Mocks InputFormat API to enable plug-and-play behaviour. """ def setText(self, text: str) -> None: """Store text in iterable lines for tokenization. text: string, where each sentence is on a line and tokens are separated by tabs. """ self.lines = iter(text.split("\n")) def nextSentence(self, sentence: Sentence, _: ProcessingError) -> bool: """Tokenize each line from stored lines and store tokens in sentence. sentence: UDPipe container for storing tokens. """ try: line = next(self.lines) except StopIteration: return False tokens = line.split("\t") num_tokens = len(tokens) for i, token in enumerate(tokens): word = sentence.addWord(token) if i < num_tokens - 1 and re.match(r"\W", tokens[i + 1]): # leave no space after current token iff next token # is non-alphanumeric (i.e. punctuation) word.setSpaceAfter(False) return True class UDPipeModel: def __init__( self, lang: str, path: Optional[str] = None, meta: Optional[Dict] = None ): """Load UDPipe model for given language. lang: ISO 639-1 language code or shorthand UDPipe model name. path: Path to UDPipe model. meta: Meta-information about the UDPipe model. """ path = path or get_path(lang=lang) self.model = Model.load(path) self._lang = lang.split("-")[0] self._path = path self._meta = meta or _default_model_meta( self._lang, self._path.split("/")[-1] ) def __reduce__(self): # required for multiprocessing on Windows return self.__class__, (self._lang, self._path, self._meta) def __call__( self, text: Union[ str, List[str], List[List[str]] ] ) -> List[Sentence]: """Tokenize, tag and parse the text and return it in an UDPipe representation. text: Input text, can be presegmented or pretokenized: str : raw text, List[str] : presegmented text, List[List[str]] : pretokenized text. RETURNS: Processed sentences. """ sentences = self.tokenize(text) for s in sentences: self.tag(s) self.parse(s) return sentences def _read(self, text: str, input_format: str) -> List[Sentence]: """Convert the text to an UDPipe representation. text: Input text. input_format: Desired input format. RETURNS: Processed sentences. """ input_format.setText(text) error = ProcessingError() sentences = [] sentence = Sentence() while input_format.nextSentence(sentence, error): sentences.append(sentence) sentence = Sentence() if error.occurred(): raise Exception(error.message) return sentences def tokenize( self, text: Union[ str, List[str], List[List[str]] ] ) -> List[Sentence]: """Tokenize input text. text: Input text, can be presegmented or pretokenized: str : raw text, List[str] : presegmented text, List[List[str]] : pretokenized text. Note: both presegmented and pretokenized text can not contain newline or tab characters. RETURNS: Processed sentences. """ if isinstance(text, str): tokenizer = self.model.newTokenizer(self.model.DEFAULT) elif isinstance(text, list): if isinstance(text[0], list): text = "\n".join("\t".join(sent) for sent in text) tokenizer = PretokenizedInputFormat() else: text = "\n".join(text) tokenizer = self.model.newTokenizer( self.model.TOKENIZER_PRESEGMENTED ) else: raise TypeError( "\n".join( (f"Input type is {type(text)}, but must be one:", "str : raw text", "List[str] : presegmented text", "List[List[str]] : pretokenized text") ) ) if not tokenizer: raise Exception( "The model does not have a tokenizer " f"so it can not tokenize input: {text}" ) return self._read(text=text, input_format=tokenizer) def tag(self, sentence: Sentence) -> None: """Assign part-of-speech tags (inplace). sentence: Input sentence. """ self.model.tag(sentence, self.model.DEFAULT) def parse(self, sentence: Sentence) -> None: """Assign dependency parse relations (inplace). sentence: Input sentence. """ self.model.parse(sentence, self.model.DEFAULT) def read(self, text: str, in_format: str) -> List[Sentence]: """Load text in the given format and return it in an UDPipe representation. text: Text to load. in_format: 'conllu'|'horizontal'|'vertical'. RETURNS: Processed sentences. """ input_format = InputFormat.newInputFormat(in_format) if not input_format: raise Exception(f"Cannot create input format '{in_format}'") return self._read(text=text, input_format=input_format) def write(self, sentences: List[Sentence], out_format: str) -> str: """Write given sentences in the required output format. sentences: Input ufal.udpipe.Sentence-s. out_format: 'conllu'|'horizontal'|'vertical'. RETURNS: Sentences formatted in the out_format. """ output_format = OutputFormat.newOutputFormat(out_format) output = "".join([output_format.writeSentence(s) for s in sentences]) output += output_format.finishDocument() return output
import os def attempt_already_made(function_name, dirname, new_args): MAKE_ATTEMPT = False # Construct filename from function and dirname. filename = dirname + function_name + '_args.sobj' special_comparisons = {'construct_all_odes' : construct_all_odes_cmp} try: old_args = load(filename) except IOError: # Legacy code to suppose old data. Will be depreciated. # print ("\nACHTUNG! Bitte stellen dass alte Daten neu formatiert wurden. " # + "Versuche es trotzdem nochmal...\n") save(new_args, filename) return MAKE_ATTEMPT if function_name in special_comparisons: comparison_function = special_comparisons[function_name] else: comparison_function = (lambda x,y : x['timeout'] > y['timeout']) # The comparison function should return True if an attempt should be made. if comparison_function(new_args, old_args): save(new_args, filename) return MAKE_ATTEMPT else: return not MAKE_ATTEMPT def construct_all_odes_cmp(x,y): if x['only_first'] == False and y['only_first'] == True: return True else: return x['timeout'] > y['timeout']
somaIdade = 0 homemVelho = [0, 'nome'] mulher = 0 for p in range(1, 5): print('=' * 10, f'{p}ª Pessoa', '=' * 10) nome = str(input('Informe seu nome: ')).strip() idade = int(input('Informe sua idade: ')) sexo = str(input('Qual o seu sexo?\nSexo [M/F]: ')).strip().upper() somaIdade += idade if sexo == 'M' and idade > homemVelho[0]: homemVelho[0] = idade homemVelho[1] = nome elif sexo == 'F' and idade < 20: mulher += 1 print(f'A média de idade do grupo é de {somaIdade / 4} anos') print(f'O nome do homem mais velho tem {homemVelho[0]} anos e seu nome é {homemVelho[1]}') print(f'{mulher} mulheres têm menos de 20 anos')
from __future__ import division from expr_utils import * PATH = "" # Data path if __name__ == "__main__": # Command-line args: # fname: 'ORL' or 'PEMS' # rep: trial number fname, rep = sys.argv[1:] rep = int(rep) # ORL data (400 * 10304) # PEMS-SF data (440 * 138672) A = np.load(PATH + "%s-data.npy" % fname) b = np.load(PATH + "%s-labels.npy" % fname) n, d = A.shape num_iters = 50 num_cols_list = np.linspace(1000, 5000, 6) if fname == 'ORL' else \ np.linspace(5000, 10000, 6) # Relative errors w.r.t. degrees of freedom lmbd_list = [1., 2., 5., 10., 20., 50.] for lmbd in lmbd_list: print "lmbd = %s" % lmbd res = expr_err(A, b, lmbd, num_cols_list, num_iters, seed=1230+rep) # pckl_write(res, "%s-lmbd%d-rep%d.res" % (fname, lmbd, rep)) # Accuracy num_iters_list = range(1, 11) res = expr_acc(A, b, lmbd, num_iters_list, num_cols=5000 if fname == 'ORL' else 10000, num_reps=20) # pckl_write(res, "%s-lmbd%d-acc.res" % (fname, lmbd))
mainpage="""/** \mainpage {0} This is the mainpage description for the "{0}" project as found in mainpage.dox. */ """
# Generated by Django 3.1.1 on 2020-09-21 18:36 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('products', '0003_product_image'), ('categories', '0001_initial'), ] operations = [ migrations.AddField( model_name='category', name='products', field=models.ManyToManyField(blank=True, to='products.Product'), ), ]
# -*- coding: utf-8 -*- ################################################################################ ## Form generated from reading UI file 'FormloginObXcwY.ui' ## ## Created by: Qt User Interface Compiler version 5.14.2 ## ## WARNING! All changes made in this file will be lost when recompiling UI file! ################################################################################ from PySide2.QtCore import (QCoreApplication, QDate, QDateTime, QMetaObject, QObject, QPoint, QRect, QSize, QTime, QUrl, Qt) from PySide2.QtGui import (QBrush, QColor, QConicalGradient, QCursor, QFont, QFontDatabase, QIcon, QKeySequence, QLinearGradient, QPalette, QPainter, QPixmap, QRadialGradient) from PySide2.QtWidgets import * class Ui_MainWindow(object): def setupUi(self, MainWindow): if not MainWindow.objectName(): MainWindow.setObjectName(u"MainWindow") MainWindow.resize(474, 682) icon = QIcon() icon.addFile(u":/img/logo.png", QSize(), QIcon.Normal, QIcon.Off) MainWindow.setWindowIcon(icon) MainWindow.setWindowOpacity(1.000000000000000) self.centralwidget = QWidget(MainWindow) self.centralwidget.setObjectName(u"centralwidget") self.horizontalLayout = QHBoxLayout(self.centralwidget) self.horizontalLayout.setObjectName(u"horizontalLayout") self.frame_Shadow = QFrame(self.centralwidget) self.frame_Shadow.setObjectName(u"frame_Shadow") self.frame_Shadow.setAutoFillBackground(False) self.frame_Shadow.setStyleSheet(u"QFrame{\n" "border:0px;\n" " background: url(\":/img/bg.jpg\") no-repeat;\n" " border-radius: 10px;\n" "}\n" "") self.frame_Shadow.setFrameShape(QFrame.StyledPanel) self.frame_Shadow.setFrameShadow(QFrame.Raised) self.verticalLayout = QVBoxLayout(self.frame_Shadow) self.verticalLayout.setSpacing(0) self.verticalLayout.setObjectName(u"verticalLayout") self.verticalLayout.setContentsMargins(0, 0, 0, 0) self.frame_Object = QFrame(self.frame_Shadow) self.frame_Object.setObjectName(u"frame_Object") self.frame_Object.setStyleSheet(u"QFrame{\n" "border:0px;\n" " background: none;\n" "}") self.frame_Object.setFrameShape(QFrame.StyledPanel) self.frame_Object.setFrameShadow(QFrame.Raised) self.pushButton_Login = QPushButton(self.frame_Object) self.pushButton_Login.setObjectName(u"pushButton_Login") self.pushButton_Login.setGeometry(QRect(160, 590, 131, 41)) font = QFont() font.setFamily(u"Noto Sans CJK HK") font.setBold(True) font.setWeight(75) self.pushButton_Login.setFont(font) self.pushButton_Login.setCursor(QCursor(Qt.PointingHandCursor)) self.pushButton_Login.setStyleSheet(u"QPushButton{\n" " border-radius: 15px;\n" " background-color: rgb(255, 51, 102);\n" " color:#fff;\n" " font-size:15px;\n" "}\n" "\n" "QPushButton:hover {\n" " background-color: rgb(255, 50, 121);\n" " border-radius: 15px;\n" " border:1px solid rgb(255, 51, 102);\n" "}\n" "\n" "") self.lbl_NewUser = QLabel(self.frame_Object) self.lbl_NewUser.setObjectName(u"lbl_NewUser") self.lbl_NewUser.setGeometry(QRect(170, 540, 71, 17)) self.lbl_NewUser.setCursor(QCursor(Qt.PointingHandCursor)) self.lbl_NewUser.setStyleSheet(u"QLabel{\n" "\n" "color: rgb(255, 51, 102);\n" "\n" "\n" "}\n" "\n" "QLabel:hover {\n" " color: rgb(255, 50, 121);\n" "}") self.lbl_SignUp = QLabel(self.frame_Object) self.lbl_SignUp.setObjectName(u"lbl_SignUp") self.lbl_SignUp.setGeometry(QRect(240, 540, 54, 17)) self.lbl_SignUp.setFont(font) self.lbl_SignUp.setStyleSheet(u"QLabel{\n" "\n" "color:#fff;\n" "}") self.lbl_UserLogin = QLabel(self.frame_Object) self.lbl_UserLogin.setObjectName(u"lbl_UserLogin") self.lbl_UserLogin.setGeometry(QRect(110, 330, 241, 51)) self.lbl_UserLogin.setStyleSheet(u"QLabel{\n" "\n" "color:#fff;\n" "font-size:30px;\n" "}") self.lbl_UserLogin.setAlignment(Qt.AlignCenter) self.lineEdit_Login = QLineEdit(self.frame_Object) self.lineEdit_Login.setObjectName(u"lineEdit_Login") self.lineEdit_Login.setGeometry(QRect(60, 400, 341, 51)) self.lineEdit_Login.setStyleSheet(u"QLineEdit {\n" " border: 1px solid rgb(238, 238, 236);\n" " border-radius: 20px;\n" " padding: 15px;\n" " background-color: #fff;\n" " color: rgb(200, 200, 200);\n" "}\n" "QLineEdit:hover {\n" " border: 1px solid rgb(186, 189, 182);\n" "}\n" "QLineEdit:focus {\n" " border: 1px solid rgb(114, 159, 207);\n" " color: rgb(100, 100, 100);\n" "}") self.lineEdit_Password = QLineEdit(self.frame_Object) self.lineEdit_Password.setObjectName(u"lineEdit_Password") self.lineEdit_Password.setGeometry(QRect(60, 470, 341, 51)) self.lineEdit_Password.setStyleSheet(u"QLineEdit {\n" " border: 1px solid rgb(238, 238, 236);\n" " border-radius: 20px;\n" " padding: 15px;\n" " background-color: #fff;\n" " color: rgb(200, 200, 200);\n" "}\n" "QLineEdit:hover {\n" " border: 1px solid rgb(186, 189, 182);\n" "}\n" "QLineEdit:focus {\n" " border: 1px solid rgb(114, 159, 207);\n" " color: rgb(100, 100, 100);\n" "}") self.frame_Logo = QFrame(self.frame_Object) self.frame_Logo.setObjectName(u"frame_Logo") self.frame_Logo.setGeometry(QRect(120, 70, 241, 211)) self.frame_Logo.setStyleSheet(u"QFrame{\n" "border:0px;\n" " background: url(\":/img/logo.png\");\n" " background-repeat: no-repeat;\n" " border-radius: 10px;\n" "}\n" "") self.frame_Logo.setFrameShape(QFrame.StyledPanel) self.frame_Logo.setFrameShadow(QFrame.Raised) self.frame_TopBar = QFrame(self.frame_Object) self.frame_TopBar.setObjectName(u"frame_TopBar") self.frame_TopBar.setGeometry(QRect(0, 0, 456, 41)) self.frame_TopBar.setMinimumSize(QSize(456, 41)) self.frame_TopBar.setMaximumSize(QSize(456, 41)) self.frame_TopBar.setLayoutDirection(Qt.RightToLeft) self.frame_TopBar.setStyleSheet(u"QFrame{\n" "background-color:rgb(42, 42, 42);\n" "}") self.frame_TopBar.setFrameShape(QFrame.StyledPanel) self.frame_TopBar.setFrameShadow(QFrame.Raised) self.pushButton_Exit = QPushButton(self.frame_TopBar) self.pushButton_Exit.setObjectName(u"pushButton_Exit") self.pushButton_Exit.setGeometry(QRect(410, 5, 41, 31)) self.pushButton_Exit.setMinimumSize(QSize(41, 0)) self.pushButton_Exit.setMaximumSize(QSize(50, 50)) self.pushButton_Exit.setCursor(QCursor(Qt.PointingHandCursor)) self.pushButton_Exit.setLayoutDirection(Qt.RightToLeft) self.pushButton_Exit.setStyleSheet(u"QPushButton{\n" " border-radius: 15px;\n" " background-color: rgb(46, 52, 54);\n" " color:#fff;\n" " font-size:15px;\n" " text-align:center;\n" "\n" "}\n" "QPushButton:hover {\n" " background-color: rgb(255, 50, 121);\n" "}\n" "\n" "") self.pushButton_Exit.setText(u"X") self.verticalLayout.addWidget(self.frame_Object) self.horizontalLayout.addWidget(self.frame_Shadow) MainWindow.setCentralWidget(self.centralwidget) self.retranslateUi(MainWindow) QMetaObject.connectSlotsByName(MainWindow) # setupUi def retranslateUi(self, MainWindow): MainWindow.setWindowTitle(QCoreApplication.translate("MainWindow", u" Login User", None)) self.pushButton_Login.setText(QCoreApplication.translate("MainWindow", u"LOGIN", None)) self.lbl_NewUser.setText(QCoreApplication.translate("MainWindow", u"New User?", None)) self.lbl_SignUp.setText(QCoreApplication.translate("MainWindow", u"Sign Up", None)) self.lbl_UserLogin.setText(QCoreApplication.translate("MainWindow", u"User Login", None)) self.lineEdit_Login.setText("") self.lineEdit_Login.setPlaceholderText(QCoreApplication.translate("MainWindow", u"Username", None)) self.lineEdit_Password.setText("") self.lineEdit_Password.setPlaceholderText(QCoreApplication.translate("MainWindow", u"Password", None)) # retranslateUi
from django.contrib import admin from django.utils.translation import ugettext_lazy as _ from workflows.models import State from workflows.models import StateInheritanceBlock from workflows.models import StatePermissionRelation from workflows.models import StateObjectRelation from workflows.models import TransitionObjectRelation from workflows.models import Transition from workflows.models import Workflow from workflows.models import WorkflowObjectRelation from workflows.models import WorkflowModelRelation from workflows.models import WorkflowPermissionRelation def retrieve_object_id_from_path(request): #TODO: is there a better way ? # ex: u'/admin/paintdb/recipe/203421/' path_info = request.META['PATH_INFO'] object_id = int(path_info.strip('/').split('/')[-1]) return object_id class StateAdmin(admin.ModelAdmin): list_display = ['codename', 'name', 'transition_listing', 'workflow', 'state_position', 'description', ] list_editable = ['state_position', 'description', ] list_filter = ['workflow', ] filter_horizontal = ['transitions', ] search_fields = ['codename', 'name', ] def transition_listing(self, obj): try: html = '<br />'.join([item.__unicode__() for item in obj.transitions.all()]) except: html = '' return html transition_listing.short_description = _(u'transitions') transition_listing.allow_tags = True def formfield_for_manytomany(self, db_field, request, **kwargs): if db_field.name == 'transitions': try: state = State.objects.get(id=retrieve_object_id_from_path(request)) queryset = state.workflow.transitions except: queryset = Transition.objects.all() kwargs["queryset"] = queryset return super(StateAdmin, self).formfield_for_manytomany(db_field, request, **kwargs) class StateInline(admin.StackedInline): model = State filter_horizontal = ['transitions', ] extra = 0 def formfield_for_manytomany(self, db_field, request, **kwargs): if db_field.name == 'transitions': try: workflow = Workflow.objects.get(id=retrieve_object_id_from_path(request)) queryset = workflow.transitions except: queryset = Transition.objects.all() kwargs["queryset"] = queryset return super(StateInline, self).formfield_for_manytomany(db_field, request, **kwargs) class WorkflowAdmin(admin.ModelAdmin): inlines = [ StateInline, ] list_display = ['name', 'initial_state', 'state_listing', 'transition_listing', ] def state_listing(self, obj): try: html = '<br />'.join([item.__unicode__() for item in obj.states.all()]) except: html = '' return html state_listing.short_description = _(u'states') state_listing.allow_tags = True def transition_listing(self, obj): try: html = '<br />'.join([item.__unicode__() for item in obj.transitions.all()]) except: html = '' return html transition_listing.short_description = _(u'transitions') transition_listing.allow_tags = True def formfield_for_foreignkey(self, db_field, request, **kwargs): if db_field.name == "initial_state": try: workflow = Workflow.objects.get(id=retrieve_object_id_from_path(request)) queryset = workflow.states.all() except: queryset = State.objects.all() kwargs["queryset"] = queryset return super(WorkflowAdmin, self).formfield_for_foreignkey(db_field, request, **kwargs) class TransitionAdmin(admin.ModelAdmin): list_display = ['__unicode__', 'destination', 'direction', 'permission_listing', 'workflow', ] list_filter = ['workflow', ] def permission_listing(self, obj): try: html = '<br />'.join([item.__unicode__() for item in obj.permissions.all()]) except: html = '' return html permission_listing.short_description = _(u'permissions') permission_listing.allow_tags = True def formfield_for_foreignkey(self, db_field, request, **kwargs): if db_field.name == 'destination': try: transition = Transition.objects.get(id=retrieve_object_id_from_path(request)) queryset = transition.workflow.states except: queryset = State.objects.all() kwargs["queryset"] = queryset return super(TransitionAdmin, self).formfield_for_foreignkey(db_field, request, **kwargs) class TransitionObjectRelationAdmin(admin.ModelAdmin): list_display = ['datetime', 'content', 'state', 'user', ] date_hierarchy = 'datetime' search_fields = ['user__username', ] class WorkflowModelRelationAdmin(admin.ModelAdmin): list_display = ['__unicode__', 'content_type', 'workflow', ] list_filter = ['workflow', ] class WorkflowPermissionRelationAdmin(admin.ModelAdmin): list_display = ['__unicode__', 'workflow', 'permission', ] list_filter = ['workflow', ] class StatePermissionRelationAdmin(admin.ModelAdmin): list_display = ['__unicode__', 'state', 'permission', 'role', ] class StateInheritanceBlockAdmin(admin.ModelAdmin): list_display = ['__unicode__', 'state', 'permission', ] admin.site.register(Workflow, WorkflowAdmin) admin.site.register(State, StateAdmin) admin.site.register(StateInheritanceBlock, StateInheritanceBlockAdmin) admin.site.register(StateObjectRelation) admin.site.register(StatePermissionRelation, StatePermissionRelationAdmin) admin.site.register(Transition, TransitionAdmin) admin.site.register(WorkflowObjectRelation) admin.site.register(WorkflowModelRelation, WorkflowModelRelationAdmin) admin.site.register(WorkflowPermissionRelation, WorkflowPermissionRelationAdmin) admin.site.register(TransitionObjectRelation, TransitionObjectRelationAdmin)
import RPi.GPIO as GPIO import time leds = [20,21,4,17,27] GPIO.setmode(GPIO.BCM) for led in leds: GPIO.setup(led,GPIO.OUT) GPIO.output(led,GPIO.LOW) i=0 while i <30: for led in leds: GPIO.output(led,GPIO.HIGH) time.sleep(0.5) GPIO.output(led,GPIO.LOW) i+=1 # i = i + 1 GPIO.cleanup()
salario = float(input('Informe seu salário: ')) if salario > 1250: ajuste = 0.10 * salario ajuste += salario print('O seu salário de R${:.2f} sofreu aumento de 10%. Reajuste salárial: R${:.2f}'.format(salario, ajuste)) else: ajuste = 0.15 * salario ajuste += salario print('O seu salário de R${:.2f} sofreu aumento de 15%. Reajuste salárial: R${:.2f}'.format(salario, ajuste))
""" aggregators This file maintains methods for path aggregation - Rakshit Agrawal, 2018 """ import numpy as np import tensorflow as tf kl = tf.keras.layers class Aggregators(object): def __init__(self, node_count, path_lengths, additional_embeddings=None, ordered_args=None): self.node_count = node_count self.path_lengths = path_lengths self.additional_embeddings = additional_embeddings self.ordered_args = ordered_args if not None else {} # Set the problem for output layers self.problem = self.ordered_args.get('problem', 'link') def get_build_method(self, model_name): model_ref = { 'avg_pool': self.build_mean_model, 'dense_max': self.build_dense_max_model, 'seq_of_seq': self.build_seq_of_seq_model, 'edge_conv': self.build_edge_conv_model } return model_ref.get(model_name, None) def get_final_output_layer(self, n_classes=None): """ Create final layer of model based on problem type. """ if n_classes is not None and isinstance(n_classes, int): return kl.Dense(n_classes, activation='softmax', name='final_val') if self.problem == 'link': return kl.Dense(1, activation='sigmoid', name='final_val') if self.problem == 'wsn': if self.ordered_args.get('regression_only',False): return kl.Dense(1, name='final_val') return kl.Dense(1, activation='tanh', name='final_val') def build_mean_model(self, emb_dims=32, dense_dims=32, classifier_dims=32, dropout=0.5, known_embeddings=None, show_summary=True): """ Build a mean model """ if isinstance(dense_dims, dict): assert set(dense_dims.keys()) == set(self.path_lengths.keys()) elif isinstance(dense_dims, int): dense_dims = {i: dense_dims for i in self.path_lengths} node_inp = kl.Input((2,), name='node_pair_input') node_feature_values = [] if known_embeddings is None: emb = kl.Embedding(input_dim=self.node_count,output_dim=emb_dims, name='embedding_layer') else: assert isinstance(known_embeddings, kl.Embedding) emb = known_embeddings node_emb = emb(node_inp) processed_node_pair = kl.Flatten()(node_emb) node_feature_values.append(processed_node_pair) if self.additional_embeddings is not None: # Add node features through more embedding layers if isinstance(self.additional_embeddings, list): assert all([isinstance(i, np.ndarray) for i in self.additional_embeddings]) elif isinstance(self.additional_embeddings, np.ndarray): self.additional_embeddings = [self.additional_embeddings] else: raise ValueError("Unknown embedding type provided.") for i, emb_weights in enumerate(self.additional_embeddings): emb_layer = kl.Embedding(input_dim=emb_weights.shape[0], output_dim=emb_weights.shape[1], weights=[emb_weights], trainable=False, name='node_features_{}'.format(i+1)) node_features = emb_layer(node_inp) processed_features = kl.Flatten()(node_features) node_feature_values.append(processed_features) path_inps = {} path_embs = {} processed_paths = {} for path_len in self.path_lengths: path_inps[path_len] = kl.Input((None, path_len), name='path_%d_input' % path_len) path_embs[path_len] = emb(path_inps[path_len]) processed_paths[path_len] = kl.TimeDistributed( kl.Flatten(name='flatten_for_%d_paths' % path_len) )(path_embs[path_len]) processed_paths[path_len] = kl.GlobalAveragePooling1D(name='final_mean_pool_for_%d_paths' % path_len)( processed_paths[path_len]) combined = kl.Concatenate()(node_feature_values + processed_paths.values()) d2_out = kl.Dense(classifier_dims, name='dense_on_combined')(combined) d2_out = kl.Dropout(dropout)(d2_out) out = self.get_final_output_layer()(d2_out) model = tf.keras.Model(inputs=[node_inp] + path_inps.values(), outputs=out) if show_summary: model.summary() return model def build_dense_max_model(self, emb_dims=32, dense_dims=32, classifier_dims=32, dropout=0.5, known_embeddings=None, show_summary=True): """ Build a dense max model """ if isinstance(dense_dims, dict): assert set(dense_dims.keys()) == set(self.path_lengths.keys()) elif isinstance(dense_dims, int): dense_dims = {i: dense_dims for i in self.path_lengths} node_inp = kl.Input((2,), name='node_pair_input') node_feature_values = [] if known_embeddings is None: emb = kl.Embedding(input_dim=self.node_count, output_dim=emb_dims, name='embedding_layer') else: assert isinstance(known_embeddings, kl.Embedding) emb = known_embeddings node_emb = emb(node_inp) processed_node_pair = kl.Flatten()(node_emb) node_feature_values.append(processed_node_pair) if self.additional_embeddings is not None: # Add node features through more embedding layers if isinstance(self.additional_embeddings, list): assert all([isinstance(i, kl.Embedding) for i in self.additional_embeddings]) elif isinstance(self.additional_embeddings, kl.Embedding): self.additional_embeddings = [self.additional_embeddings] else: raise ValueError("Unkonwn embedding type provided.") for emb_layer in self.additional_embeddings: node_features = emb_layer(node_inp) processed_features = kl.Flatten()(node_features) node_feature_values.append(processed_features) path_inps = {} path_embs = {} processed_paths = {} for path_len in self.path_lengths: path_inps[path_len] = kl.Input((None, path_len), name='path_%d_input' % path_len) path_embs[path_len] = emb(path_inps[path_len]) processed_paths[path_len] = kl.TimeDistributed( kl.Flatten(name='flatten_for_%d_paths' % path_len) )(path_embs[path_len]) processed_paths[path_len] = kl.TimeDistributed( kl.Dense(dense_dims[path_len], name='dense_for_%d_paths' % path_len), name='td_dense_for_%d_paths' % path_len)(processed_paths[path_len]) processed_paths[path_len] = kl.Dropout(dropout)(processed_paths[path_len]) processed_paths[path_len] = kl.GlobalMaxPooling1D(name='final_max_pool_for_%d_paths' % path_len)( processed_paths[path_len]) combined = kl.Concatenate()(node_feature_values + processed_paths.values()) d2_out = kl.Dense(classifier_dims, name='dense_on_combined')(combined) d2_out = kl.Dropout(dropout)(d2_out) out = self.get_final_output_layer()(d2_out) model = tf.keras.Model(inputs=[node_inp] + path_inps.values(), outputs=out) if show_summary: model.summary() return model def build_seq_of_seq_model(self, emb_dims=32, dense_dims=32, classifier_dims=32, dropout=0.5, known_embeddings=None, show_summary=True ): """ Build a sequence of sequence model """ if isinstance(dense_dims, dict): assert set(dense_dims.keys()) == set(self.path_lengths.keys()) elif isinstance(dense_dims, int): dense_dims = {i: dense_dims for i in self.path_lengths} node_inp = kl.Input((2,), name='node_pair_input') node_feature_values = [] if known_embeddings is None: emb = kl.Embedding(input_dim=self.node_count, output_dim=emb_dims, name='embedding_layer') else: assert isinstance(known_embeddings, kl.Embedding) emb = known_embeddings node_emb = emb(node_inp) processed_node_pair = kl.Flatten()(node_emb) node_feature_values.append(processed_node_pair) if self.additional_embeddings is not None: # Add node features through more embedding layers if isinstance(self.additional_embeddings, list): assert all([isinstance(i, kl.Embedding) for i in self.additional_embeddings]) elif isinstance(self.additional_embeddings, kl.Embedding): self.additional_embeddings = [self.additional_embeddings] else: raise ValueError("Unkonwn embedding type provided.") for emb_layer in self.additional_embeddings: node_features = emb_layer(node_inp) processed_features = kl.Flatten()(node_features) node_feature_values.append(processed_features) path_inps = {} path_embs = {} processed_paths = {} for path_len in self.path_lengths: path_inps[path_len] = kl.Input((None, path_len), name='path_%d_input' % path_len) path_embs[path_len] = emb(path_inps[path_len]) processed_paths[path_len] = kl.TimeDistributed( kl.LSTM(dense_dims[path_len], return_sequences=True, name='lstm_for_%d_paths' % path_len), name='td_lstm_for_%d_paths' % path_len)(path_embs[path_len]) processed_paths[path_len] = kl.Dropout(dropout)(processed_paths[path_len]) processed_paths[path_len] = kl.TimeDistributed( kl.GlobalMaxPool1D(name='global_max_pool_for_%d_paths' % path_len), name='td_for_global_max_pool_for_%d_paths' % path_len)(processed_paths[path_len]) processed_paths[path_len] = kl.LSTM(dense_dims[path_len] * 2, return_sequences=True, name='lstm_for_%d_paths' % path_len)(processed_paths[path_len]) processed_paths[path_len] = kl.GlobalMaxPooling1D(name='final_max_pool_for_%d_paths' % path_len)( processed_paths[path_len]) combined = kl.Concatenate()(node_feature_values + processed_paths.values()) d2_out = kl.Dense(classifier_dims, name='dense_on_combined')(combined) d2_out = kl.Dropout(dropout)(d2_out) out = self.get_final_output_layer()(d2_out) model = tf.keras.Model(inputs=[node_inp] + path_inps.values(), outputs=out) if show_summary: model.summary() return model def build_edge_conv_model(self, emb_dims=32, dense_dims=32, classifier_dims=32, dropout=0.5, known_embeddings=None, show_summary=True ): """ Build an edge conv model """ if isinstance(dense_dims, dict): assert set(dense_dims.keys()) == set(self.path_lengths.keys()) elif isinstance(dense_dims, int): dense_dims = {i: dense_dims for i in self.path_lengths} node_inp = kl.Input((2,), name='node_pair_input') node_feature_values = [] if known_embeddings is None: emb = kl.Embedding(input_dim=self.node_count, output_dim=emb_dims, name='embedding_layer') else: assert isinstance(known_embeddings, kl.Embedding) emb = known_embeddings node_emb = emb(node_inp) processed_node_pair = kl.Flatten()(node_emb) node_feature_values.append(processed_node_pair) if self.additional_embeddings is not None: # Add node features through more embedding layers if isinstance(self.additional_embeddings, list): assert all([isinstance(i, kl.Embedding) for i in self.additional_embeddings]) elif isinstance(self.additional_embeddings, kl.Embedding): self.additional_embeddings = [self.additional_embeddings] else: raise ValueError("Unkonwn embedding type provided.") for emb_layer in self.additional_embeddings: node_features = emb_layer(node_inp) processed_features = kl.Flatten()(node_features) node_feature_values.append(processed_features) path_inps = {} path_embs = {} processed_paths = {} for path_len in self.path_lengths: path_inps[path_len] = kl.Input((None, path_len), name='path_%d_input' % path_len) path_embs[path_len] = emb(path_inps[path_len]) processed_paths[path_len] = kl.TimeDistributed( kl.Conv1D(filters=emb_dims, kernel_size=2, strides=1, name='conv_for_%d_paths' % path_len), name='td_conv_for_%d_paths' % path_len)(path_embs[path_len]) processed_paths[path_len] = kl.Dropout(dropout)(processed_paths[path_len]) processed_paths[path_len] = kl.TimeDistributed( kl.GlobalMaxPool1D(name='global_max_pool_for_%d_paths' % path_len), name='td_for_global_max_pool_for_%d_paths' % path_len)(processed_paths[path_len]) processed_paths[path_len] = kl.LSTM(dense_dims[path_len] * 2, return_sequences=True, name='lstm_for_%d_paths' % path_len)(processed_paths[path_len]) processed_paths[path_len] = kl.GlobalMaxPooling1D(name='final_max_pool_for_%d_paths' % path_len)( processed_paths[path_len]) combined = kl.Concatenate()(node_feature_values + processed_paths.values()) d2_out = kl.Dense(classifier_dims, name='dense_on_combined')(combined) d2_out = kl.Dropout(dropout)(d2_out) out = self.get_final_output_layer()(d2_out) model = tf.keras.Model(inputs=[node_inp] + path_inps.values(), outputs=out) if show_summary: model.summary() return model if __name__ == "__main__": # Test ag = Aggregators(node_count=200, path_lengths=[3, 4]) model = ag.build_mean_model() model = ag.build_dense_max_model() model = ag.build_seq_of_seq_model() model = ag.build_edge_conv_model()
import os import wx from pprint import pprint # from ..Views.StatsPanel.PlayersPanel import NCAABPlayerStatsPanel, NBAPlayerStatsPanel from ..Views.TeamPanels.StatsPanel import NCAABStatsPanel, NBAStatsPanel, MLBStatsPanel from ..Views.GamePanels.GameLinePanel import GameLinePanel from .GamePanels.TitlePanel import TitlePanel # from ..Views.GamePanels.PredictPanel import PredictPanel timeframeList = ["2weeks", "1month", "6weeks", "season"] logoPath = os.environ["HOME"] + "/Yahoo/{}/logos/{}.png" class MatchupPage(wx.Panel): def __init__(self, parent, *args, **kwargs): super().__init__(parent, *args, **kwargs) self.titlePanel = TitlePanel(self) self.timeBox = wx.ComboBox(self, choices=["2weeks", "1month", "6weeks", "season"]) self.timeBox.SetSelection(0) self.timeBox.Bind(wx.EVT_COMBOBOX, self.onChange) self.mainPanel = wx.Notebook(self) self.mainSizer = wx.BoxSizer(wx.VERTICAL) self.mainPanel.SetSizer(self.mainSizer) self.gameLinePanel = GameLinePanel(self.mainPanel) # self.predictPanel = PredictPanel(self.mainPanel) # self.predictPanel.setPanel({"regs": self.info["regs"], "teamStats": self.info["teamStats"]}) self.teamStatsPanel = self.getStatsPanel(self.mainPanel) # self.playerStatsPanel = self.getPlayerPanel(self.mainPanel) self.mainPanel.AddPage(self.gameLinePanel, "gL") self.mainPanel.AddPage(self.teamStatsPanel, "teamS") sizer = wx.BoxSizer(wx.VERTICAL) sizer.Add(self.titlePanel, 0, wx.EXPAND) sizer.Add(self.timeBox, 0, wx.CENTER) sizer.Add(self.mainPanel, 1, wx.EXPAND) self.SetSizer(sizer) def setPanel(self, info): self.info = info tF = self.timeBox.GetStringSelection() self.titlePanel.setPanel({"odds": info["odds"][-1]["99"], "details": info["teamDetails"], "records": info["teamRecords"][tF]}) self.gameLinePanel.setPanel({"games": self.info["gameLines"][tF], "homeId": self.info["homeId"], "awayId": self.info["awayId"], "commonOpp": self.info["commonOpp"][tF]}) self.teamStatsPanel.setPanel(self.info["teamStats"][tF]) self.Layout() def onChange(self, event): self.setPanel(self.info) def getStatsPanel(self, parent): raise AssertionError def getPlayerPanel(self, parent): raise AssertionError class MLBMatchupPage(MatchupPage): def __init__(self, parent, *args, **kwargs): super().__init__(parent, *args, **kwargs) def getStatsPanel(self, parent): return MLBStatsPanel(parent) class NBAMatchupPage(MatchupPage): def __init__(self, parent, *args, **kwargs): super().__init__(parent, *args, **kwargs) def getStatsPanel(self, parent): return NBAStatsPanel(parent)
import glob import numpy as np import matplotlib.pyplot as plt import matplotlib.image as mpimg import cv2 import os.path as path def calibrate_pts(input_path): objpoints = [] # Objects in real world space imgpoints = [] # Objects in 2-D space nx, ny = 9, 6 objp = np.zeros((nx * ny, 3), np.float32) objp[:,:2] = np.mgrid[0:nx, 0:ny].T.reshape(-1, 2) jpg_files = path.join(input_path, '*.jpg') imgs = glob.glob(jpg_files) for fname in imgs: img = mpimg.imread(fname) gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) ret, corners = cv2.findChessboardCorners(gray, (nx, ny), None) if ret == True: imgpoints.append(corners) objpoints.append(objp) return imgpoints, objpoints def undistort(img, imgpts, objpts): ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpts, imgpts, img.shape[1::-1], None, None) undistorted = cv2.undistort(img, mtx, dist, None, mtx) return undistorted
from rest_framework import serializers from wq.db.rest.serializers import ModelSerializer from wq.db.patterns import serializers as patterns from vera.models import Site from .models import Parameter, Report from vera.results.serializers import ResultSerializer as VeraResultSerializer from vera.series.serializers import ReportSerializer as VeraReportSerializer class ParameterInlineSerializer(patterns.AttachmentSerializer): class Meta(patterns.AttachmentSerializer.Meta): model = Parameter exclude = ('campaign',) object_field = 'campaign' class CampaignSerializer(patterns.AttachedModelSerializer): parameters = ParameterInlineSerializer(many=True, required=False) icon = serializers.FileField(required=False) def to_internal_value(self, data): data = data.copy() if 'request' in self.context: user = self.context['request'].user if user.is_authenticated(): data['creator_id'] = user.pk return super(CampaignSerializer, self).to_internal_value(data) def to_representation(self, obj): result = super(CampaignSerializer, self).to_representation(obj) result.pop('creator', None) return result class ResultSerializer(VeraResultSerializer): class Meta(VeraResultSerializer.Meta): type_filter = { 'campaign_id': '{{campaign_id}}', } class ReportSerializer(VeraReportSerializer): results = ResultSerializer(many=True) def to_representation(self, obj): # FIXME: See https://github.com/wq/wq.db/issues/61 result = super(ReportSerializer, self).to_representation(obj) if result.get('results', None): return result campaign_id = ( 'request' in self.context and self.context['request'].GET.get('campaign_id', None) ) if not campaign_id: return result result['results'] = [ { '@index': i, 'type': self.router.serialize(parameter), 'type_label': str(parameter), 'type_id': parameter.slug, } for i, parameter in enumerate(Parameter.objects.filter( campaign__slug=campaign_id )) ] return result def to_internal_value(self, data): # In vera, Site is usually managed as a separate table, but we want to create # new sites on the fly for this demo. if data.get('latitude', None) and data.get('longitude', None): lat = float(data['latitude']) lng = float(data['longitude']) site, is_new = Site.objects.get_or_create( name="%s, %s" % (round(lat, 3), round(lng, 3)), latitude=lat, longitude=lng, ) data = data.copy() data['event[site][slug]'] = site.slug return super(ReportSerializer, self).to_internal_value(data) class EventResultSerializer(serializers.Serializer): parameter = serializers.ReadOnlyField(source="result_type.__str__") units = serializers.ReadOnlyField(source="result_type.units") value = serializers.ReadOnlyField(source="result_value") def get_wq_config(self): # FIXME: See https://github.com/wq/wq.db/issues/60 return {'form': []} class EventSerializer(ModelSerializer): latitude = serializers.ReadOnlyField(source='site.latitude') longitude = serializers.ReadOnlyField(source='site.longitude') valid_reports = ModelSerializer.for_model( Report, include_fields="__all__" )(many=True) photo = serializers.SerializerMethodField() results = EventResultSerializer(many=True, source='eventresult_set') def get_photo(self, instance): report = instance.valid_reports.exclude(photo='').first() if report: return report.photo.name
""" Copyright 2022 IBM Corporation All Rights Reserved. SPDX-License-Identifier: Apache-2.0 """ # pylint: disable=global-statement,global-variable-not-assigned,invalid-name from flask import Flask, Response, jsonify, request app = Flask(__name__) DEFAULT_ROOT_CONFIGS = { "start_search": {"status_code": 200}, "results": {"status_code": 200}, "status": {"status_code": 200}, } DEFAULT_SEARCHES = [] DEFAULT_SEARCH_DATA = [] route_configs = DEFAULT_ROOT_CONFIGS.copy() searches = DEFAULT_SEARCHES.copy() search_data = DEFAULT_SEARCH_DATA.copy() # Configuration endpoints @app.route("/conf/route_configs/<endpoint>", methods=["POST"]) def set_route_config(endpoint): global route_configs route_configs[endpoint] = request.json return "" @app.route("/conf/add_search_data", methods=["POST"]) def add_search_data(): global search_data search_data = search_data + request.json return "" @app.route("/conf/reset", methods=["POST"]) def reset(): global route_configs global searches global search_data route_configs = DEFAULT_ROOT_CONFIGS.copy() searches = DEFAULT_SEARCHES.copy() search_data = DEFAULT_SEARCH_DATA.copy() return "" # Mock endpoints @app.route("/api/ariel/searches", methods=["POST"]) def start_search(): global route_configs global searches global search_data conf = route_configs["start_search"] if not conf["status_code"] == 200: return Response("Failure!", status=conf["status_code"]) search_id = 0 for search in searches: if search["id"] >= search_id: search_id = search["id"] + 1 data = {} if len(search_data) >= 1: data = search_data.pop(0) search = {"id": search_id, "data": data} searches.append(search) print(searches) return jsonify({"search_id": search_id}) @app.route("/api/ariel/searches/<int:search_id>", methods=["GET"]) def get_status(search_id): global route_configs global searches conf = route_configs["status"] if not conf["status_code"] == 200: return Response("Failure!", status=conf["status_code"]) print(searches) for search in searches: if search["id"] == search_id: return jsonify({"status": "COMPLETED"}) return Response(f"No search found with id {search_id}", status=404) @app.route("/api/ariel/searches/<int:search_id>/results", methods=["GET"]) def get_results(search_id): global route_configs global searches conf = route_configs["results"] if not conf["status_code"] == 200: return Response("Failure!", status=conf["status_code"]) for search in searches: if search["id"] == search_id: return jsonify(search["data"]) return Response(f"No search found with id {search_id}", status=404) if __name__ == "__main__": context = ("server.cert", "server.key") app.run(debug=True, ssl_context=context, host='0.0.0.0', port=443, threaded=False)
# file: mean_deviation.py # vim:fileencoding=utf-8:fdm=marker:ft=python # # Copyright © 2018 R.F. Smith <[email protected]>. # SPDX-License-Identifier: MIT # Created: 2018-04-21T19:07:27+0200 # Last modified: 2019-07-13T10:16:34+0200 """ Calculate the mean deviation of samples. See http://www.leeds.ac.uk/educol/documents/00003759.htm This number is independent of the distribution. """ import statistics as stat def amd(data): """ Calculate the absolute mean deviation of a sequence of numbers. This calculates the mean of the sequence. Then all distances to the mean. It returns the mean of those distances Arguments: data: A sequence of numbers. Returns: The absolute mean deviation. """ m = stat.mean(data) diff = [abs(n - m) for n in data] return stat.mean(diff)
from tkinter import ttk class Treeview(ttk.Treeview): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.heading("#0", text="Versions") @property def selected_item(self): return self.item(self.selection()) def clean(self): children = self.get_children() if children: for child in children: self.delete(child) def insert_items(self, items, highlight=None): assert isinstance(items, (tuple, list)) for item in items: if highlight: if item == highlight: item = '> ' + item else: item = ' ' + item self.insert('', 0, text=item)
from Board import Board from Ship import Ship from SimulationResult import SimulationResult from SimulationStatistics import SimulationStatistics import functionalComponents import random, copy #Represents a game of battleship. Using a board of set ships, the engine will attempt to compute positions of the ships in an attempt to sink all the ships. The engine will determine how many turns have passed after all ships are sunk. The fewer the turns, the better the engine is. class BattleshipEngine: def __init__(self): self.board = Board(8) self.simulationResuts = {} def PrintBoard(self): self.board.PrintBoard() def SetNewBoard(self): #setup new board self.board = Board(8) #place 5 ships in random coordinates self.board.PlaceShipAtRandomCoordinate(Ship(5, 'A')) self.board.PlaceShipAtRandomCoordinate(Ship(4, 'B')) self.board.PlaceShipAtRandomCoordinate(Ship(3, 'S')) self.board.PlaceShipAtRandomCoordinate(Ship(3, 'S')) self.board.PlaceShipAtRandomCoordinate(Ship(2, 'C')) self.board.initalTileListState = copy.deepcopy(self.board.tileList) #runs the Battleship simulations against a set number of attack strategies. def StartBattleshipSimulation(self, iterations): for x in range(0, iterations): #start a new random board self.SetNewBoard() #start the simulation for the horizontal attack simulationResult = self.HorizontalLinearAttackStrategy() #add the results to the dictionary self.simulationResuts[simulationResult.attackStrategy+'#'+str(x)] = simulationResult #reset the board self.board.PrintBoard() self.board.ResetBoard() self.board.PrintBoard() #start the simulation for the vertical attack simulationResult = self.VerticalLinearAttackStrategy() #add the results to the dictionary self.simulationResuts[simulationResult.attackStrategy+'#'+str(x)] = simulationResult #reset the board self.board.PrintBoard() self.board.ResetBoard() self.board.PrintBoard() def DEVStartBattleshipSimulation(self, iterations): self.SetNewBoard() for x in range(0, iterations): simulationResult = self.DiagonalHitScanAttackStratgy() self.simulationResuts[simulationResult.attackStrategy+'#'+str(x)] = simulationResult self.board.ResetBoard() simulationResult = self.DiagonalLinearAttackStrategy() self.simulationResuts[simulationResult.attackStrategy+'#'+str(x)] = simulationResult self.board.ResetBoard() simulationResult = self.RandomHitScanAttackStrategy() self.simulationResuts[simulationResult.attackStrategy+'#'+str(x)] = simulationResult self.board.ResetBoard() simulationResult = self.VerticalLinearAttackStrategy() self.simulationResuts[simulationResult.attackStrategy+'#'+str(x)] = simulationResult self.board.ResetBoard() simulationResult = self.HorizontalLinearAttackStrategy() self.simulationResuts[simulationResult.attackStrategy+'#'+str(x)] = simulationResult self.board.ResetBoard() stats = SimulationStatistics(self.simulationResuts.values()) stats.PrintSimulationStatistics() #allows the user to attack by entering coordinates def AttackStrategyUserInput(self): moves = 0 while(not self.board.CheckIfAllShipsSunk()): print('Not sunk') moves += 1 self.board.PrintBoard() while True: print('Enter a starting coordinate for the ship:') x = input('Enter x coordinate: ') y = input('Enter y coordinate: ') if(functionalComponents.CoordinateString(x,y) in self.board.tileList and (self.board.tileList[functionalComponents.CoordinateString(x,y)].code != self.board.missTileCode or self.board.tileList[functionalComponents.CoordinateString(x,y)].code != self.board.hitTileCode)): break y = int(y) self.board.AttackBoard(functionalComponents.CoordinateString(x,y)) #Attacks from an inital starting point left to right def HorizontalLinearAttackStrategy(self): coordinateList = [] moves = 1 #calc starting point and make first attack startingChar = 'A' startingX = chr(ord(startingChar) + random.randint(0, self.board.size - 1)) startingY = random.randint(0, self.board.size - 1) coordinateList.append(functionalComponents.CoordinateString(startingX, startingY)) self.board.AttackBoard(functionalComponents.CoordinateString(startingX, startingY)) x = str(startingX) y = startingY originalTile = self.board.tileList[functionalComponents.CoordinateString(x, y)] #loop until all the ships are sunk #calculate the next position to attack while(not self.board.CheckIfAllShipsSunk()): #self.board.PrintBoard() currentTile = self.board.tileList[functionalComponents.CoordinateString(x, y)] if(not currentTile.hasEastTile and not currentTile.hasSouthTile): x = startingChar y = 0 elif(not currentTile.hasEastTile): x = chr(ord(x) + 1) y = 0 else: y += 1 coordinateList.append(functionalComponents.CoordinateString(x, y)) self.board.AttackBoard(functionalComponents.CoordinateString(x,y)) moves += 1 return SimulationResult(self.board.initalTileListState, coordinateList, moves, "Horizontal Linear") #attacks top to bottom, starting at a random point and moving down each row, then to the next column def VerticalLinearAttackStrategy(self): coordinateList = [] moves = 1 #calc starting point and make first attack startingChar = 'A' startingX = chr(ord(startingChar) + random.randint(0, self.board.size - 1)) startingY = random.randint(0, self.board.size - 1) coordinateList.append(functionalComponents.CoordinateString(startingX, startingY)) self.board.AttackBoard(functionalComponents.CoordinateString(startingX, startingY)) x = str(startingX) y = startingY originalTile = self.board.tileList[functionalComponents.CoordinateString(x, y)] #loop until all the ships are sunk #calculate the next position to attack while(not self.board.CheckIfAllShipsSunk()): #self.board.PrintBoard() currentTile = self.board.tileList[functionalComponents.CoordinateString(x, y)] if(not currentTile.hasEastTile and not currentTile.hasSouthTile): x = startingChar y = 0 elif(not currentTile.hasSouthTile): x = startingChar y += 1 else: x = chr(ord(x) + 1) coordinateList.append(functionalComponents.CoordinateString(x, y)) self.board.AttackBoard(functionalComponents.CoordinateString(x, y)) moves += 1 return SimulationResult(self.board.initalTileListState, coordinateList, moves, "Vertical Linear") #randomly attacks coordinates until a hit is registers. then attack each adjacent tile until each direction registers a miss or is off the board def RandomHitScanAttackStrategy(self): coordinateList = [] validCoordinateList = [] moves = 0 #set all adjacent flags to false until a hit is registered checkNorth = False checkSouth = False checkWest = False checkEast = False currentCoordinate = '' #build a list of all coordinates availableCoordinates = self.board.GetAvailableCoordinateList() #loop until all ships are sunk while(not self.board.CheckIfAllShipsSunk()): #if all check flags are set to false, calc a new random coordinate that is available if(not checkNorth and not checkSouth and not checkWest and not checkEast): currentCoordinate = random.choice(availableCoordinates) initialCoordinate = currentCoordinate elif(checkNorth): while(checkNorth): currentCoordinate = functionalComponents.MoveCoordinateNorth(currentCoordinate) #attack with the generated coordinate coordinateList.append(currentCoordinate) availableCoordinates.remove(currentCoordinate) self.board.AttackBoard(currentCoordinate) checkNorth = self.board.tileList[currentCoordinate].hasNorthTile and functionalComponents.MoveCoordinateNorth(currentCoordinate) in availableCoordinates and self.board.tileList[currentCoordinate].code != self.board.missTileCode moves += 1 elif(checkSouth): while(checkSouth): currentCoordinate = functionalComponents.MoveCoordinateSouth(currentCoordinate) #attack with the generated coordinate coordinateList.append(currentCoordinate) availableCoordinates.remove(currentCoordinate) self.board.AttackBoard(currentCoordinate) checkSouth = self.board.tileList[currentCoordinate].hasSouthTile and functionalComponents.MoveCoordinateSouth(currentCoordinate) in availableCoordinates and self.board.tileList[currentCoordinate].code != self.board.missTileCode moves += 1 elif(checkWest): while(checkWest): currentCoordinate = functionalComponents.MoveCoordinateWest(currentCoordinate) #attack with the generated coordinate coordinateList.append(currentCoordinate) availableCoordinates.remove(currentCoordinate) self.board.AttackBoard(currentCoordinate) checkWest = self.board.tileList[currentCoordinate].hasWestTile and functionalComponents.MoveCoordinateWest(currentCoordinate) in availableCoordinates and self.board.tileList[currentCoordinate].code != self.board.missTileCode moves += 1 elif(checkEast): while(checkEast): currentCoordinate = functionalComponents.MoveCoordinateEast(currentCoordinate) #attack with the generated coordinate coordinateList.append(currentCoordinate) availableCoordinates.remove(currentCoordinate) self.board.AttackBoard(currentCoordinate) checkEast = self.board.tileList[currentCoordinate].hasEastTile and functionalComponents.MoveCoordinateEast(currentCoordinate) in availableCoordinates and self.board.tileList[currentCoordinate].code != self.board.missTileCode moves += 1 #set back to the original coordinate currentCoordinate = initialCoordinate #adjust check flags to the new coordinate checkNorth = self.board.tileList[currentCoordinate].hasNorthTile and functionalComponents.MoveCoordinateNorth(currentCoordinate) in availableCoordinates checkSouth = self.board.tileList[currentCoordinate].hasSouthTile and functionalComponents.MoveCoordinateSouth(currentCoordinate) in availableCoordinates checkWest = self.board.tileList[currentCoordinate].hasWestTile and functionalComponents.MoveCoordinateWest(currentCoordinate) in availableCoordinates checkEast = self.board.tileList[currentCoordinate].hasEastTile and functionalComponents.MoveCoordinateEast(currentCoordinate) in availableCoordinates #attack with the generated coordinate if(currentCoordinate in availableCoordinates): coordinateList.append(currentCoordinate) availableCoordinates.remove(currentCoordinate) self.board.AttackBoard(currentCoordinate) moves += 1 return SimulationResult(self.board.initalTileListState, coordinateList, moves, "Random Hitscan") #starts with a random tile on the board. moves diagonally, down and to the left after each attack. def DiagonalLinearAttackStrategy(self): coordinateList = [] moves = 1 #calc starting point and make first attack startingChar = 'A' startingX = chr(ord(startingChar) + random.randint(0, self.board.size - 1)) startingY = random.randint(0, self.board.size - 1) coordinateList.append(functionalComponents.CoordinateString(startingX, startingY)) self.board.AttackBoard(functionalComponents.CoordinateString(startingX, startingY)) x = str(startingX) y = startingY originalTile = self.board.tileList[functionalComponents.CoordinateString(x, y)] #loop until all the ships are sunk #calculate the next position to attack while(not self.board.CheckIfAllShipsSunk()): currentTile = self.board.tileList[functionalComponents.CoordinateString(x, y)] if(not currentTile.hasWestTile and not currentTile.hasNorthTile): x = startingChar y += 1 elif(not currentTile.hasEastTile and not currentTile.hasSouthTile): x = startingChar y = 0 elif(not currentTile.hasWestTile and not currentTile.hasSouthTile): x = chr(ord(startingChar) + 1) y = self.board.size - 1 elif(not currentTile.hasSouthTile and functionalComponents.MoveCoordinateWest(currentTile.GetCoordiante()) != self.board.emptyTileCode): x = chr(ord(startingChar) + y + 1) y = self.board.size - 1 elif(not currentTile.hasWestTile): y = ord(x) - ord(startingChar) + 1 x = startingChar else: x = chr(ord(x) + 1) y -= 1 coordinateList.append(functionalComponents.CoordinateString(x, y)) self.board.AttackBoard(functionalComponents.CoordinateString(x,y)) moves += 1 return SimulationResult(self.board.initalTileListState, coordinateList, moves, "Diagonal Linear") def DiagonalHitScanAttackStratgy(self): coordinateList = [] moves = 1 #calc starting point and make first attack startingChar = 'A' startingX = chr(ord(startingChar) + random.randint(0, self.board.size - 1)) startingY = random.randint(0, self.board.size - 1) coordinateList.append(functionalComponents.CoordinateString(startingX, startingY)) self.board.AttackBoard(functionalComponents.CoordinateString(startingX, startingY)) x = str(startingX) y = startingY originalTile = self.board.tileList[functionalComponents.CoordinateString(x, y)] validCoordinateList = [] #set all adjacent flags to false until a hit is registered checkNorth = False checkSouth = False checkWest = False checkEast = False #build a list of all coordinates availableCoordinates = self.board.GetAvailableCoordinateList() #loop until all ships are sunk while(not self.board.CheckIfAllShipsSunk()): #if all check flags are set to false, calc a new random coordinate that is available if(not checkNorth and not checkSouth and not checkWest and not checkEast): currentTile = self.board.tileList[functionalComponents.CoordinateString(x,y)] if(not currentTile.hasWestTile and not currentTile.hasNorthTile): x = startingChar y += 1 elif(not currentTile.hasEastTile and not currentTile.hasSouthTile): x = startingChar y = 0 elif(not currentTile.hasWestTile and not currentTile.hasSouthTile): x = chr(ord(startingChar) + 1) y = self.board.size - 1 elif(not currentTile.hasSouthTile and functionalComponents.MoveCoordinateWest(currentTile.GetCoordiante()) != self.board.emptyTileCode): x = chr(ord(startingChar) + y + 1) y = self.board.size - 1 elif(not currentTile.hasWestTile): y = ord(x) - ord(startingChar) + 1 x = startingChar else: x = chr(ord(x) + 1) y -= 1 currentCoordinate = functionalComponents.CoordinateString(x, y) initialCoordinate = currentCoordinate elif(checkNorth): while(checkNorth): currentCoordinate = functionalComponents.MoveCoordinateNorth(currentCoordinate) #attack with the generated coordinate coordinateList.append(currentCoordinate) availableCoordinates.remove(currentCoordinate) self.board.AttackBoard(currentCoordinate) checkNorth = self.board.tileList[currentCoordinate].hasNorthTile and functionalComponents.MoveCoordinateNorth(currentCoordinate) in availableCoordinates and self.board.tileList[currentCoordinate].code != self.board.missTileCode moves += 1 elif(checkSouth): while(checkSouth): currentCoordinate = functionalComponents.MoveCoordinateSouth(currentCoordinate) #attack with the generated coordinate coordinateList.append(currentCoordinate) availableCoordinates.remove(currentCoordinate) self.board.AttackBoard(currentCoordinate) checkSouth = self.board.tileList[currentCoordinate].hasSouthTile and functionalComponents.MoveCoordinateSouth(currentCoordinate) in availableCoordinates and self.board.tileList[currentCoordinate].code != self.board.missTileCode moves += 1 elif(checkWest): while(checkWest): currentCoordinate = functionalComponents.MoveCoordinateWest(currentCoordinate) #attack with the generated coordinate coordinateList.append(currentCoordinate) availableCoordinates.remove(currentCoordinate) self.board.AttackBoard(currentCoordinate) checkWest = self.board.tileList[currentCoordinate].hasWestTile and functionalComponents.MoveCoordinateWest(currentCoordinate) in availableCoordinates and self.board.tileList[currentCoordinate].code != self.board.missTileCode moves += 1 elif(checkEast): while(checkEast): currentCoordinate = functionalComponents.MoveCoordinateEast(currentCoordinate) #attack with the generated coordinate coordinateList.append(currentCoordinate) availableCoordinates.remove(currentCoordinate) self.board.AttackBoard(currentCoordinate) checkEast = self.board.tileList[currentCoordinate].hasEastTile and functionalComponents.MoveCoordinateEast(currentCoordinate) in availableCoordinates and self.board.tileList[currentCoordinate].code != self.board.missTileCode moves += 1 #set back to the original coordinate currentCoordinate = initialCoordinate #adjust check flags to the new coordinate checkNorth = self.board.tileList[currentCoordinate].hasNorthTile and functionalComponents.MoveCoordinateNorth(currentCoordinate) in availableCoordinates checkSouth = self.board.tileList[currentCoordinate].hasSouthTile and functionalComponents.MoveCoordinateSouth(currentCoordinate) in availableCoordinates checkWest = self.board.tileList[currentCoordinate].hasWestTile and functionalComponents.MoveCoordinateWest(currentCoordinate) in availableCoordinates checkEast = self.board.tileList[currentCoordinate].hasEastTile and functionalComponents.MoveCoordinateEast(currentCoordinate) in availableCoordinates #attack with the generated coordinate if(currentCoordinate in availableCoordinates): coordinateList.append(currentCoordinate) availableCoordinates.remove(currentCoordinate) self.board.AttackBoard(currentCoordinate) moves += 1 return SimulationResult(self.board.initalTileListState, coordinateList, moves, "Diagonal Hitscan")
import abc import pdb from time import time import helpers.vcommon as CM from helpers.miscs import Miscs, MP import settings import data.prog import data.symstates import infer.inv DBG = pdb.set_trace mlog = CM.getLogger(__name__, settings.LOGGER_LEVEL) class _Infer(metaclass=abc.ABCMeta): """ Base class for inference """ def __init__(self, symstates, prog): assert symstates is None or \ isinstance(symstates, data.symstates.SymStates), symstates assert isinstance(prog, data.prog.Prog), prog self.symstates = symstates self.inv_decls = prog.inv_decls self.inp_decls = prog.inp_decls self.prog = prog @abc.abstractmethod def gen(self): pass @classmethod @abc.abstractmethod def gen_from_traces(cls, traces, symbols): """ Generating invariants directly from traces """ pass def get_traces(self, inps, dtraces): """ run inps to get new traces (and update them) """ assert isinstance(inps, data.traces.Inps) and inps, inps assert isinstance(dtraces, data.traces.DTraces), dtraces new_dtraces = self.prog.get_traces(inps) new_dtraces = dtraces.merge(new_dtraces) return new_dtraces def check(self, dinvs, inps): if self.symstates: cexs, dinvs = self.symstates.check(dinvs, inps) else: # no symbolic states, not performing checking assert False, "shouldn't get here" for loc in dinvs: for inv in dinvs[loc]: inv.stat = infer.inv.Inv.UNKNOWN cexs = {} return cexs, dinvs class _CEGIR(_Infer, metaclass=abc.ABCMeta): """ Find invs using a guess and check iterative CEGIR approach """ pass class _Opt(_Infer, metaclass=abc.ABCMeta): """ Find upperbound of polynomial and min/max terms using an SMT solver optimizer """ def __init__(self, symstates, prog): # need prog because symstates could be None super().__init__(symstates, prog) def gen(self): locs = self.inv_decls.keys() def _terms(loc): return self.inv_decls[loc].symbolic # remove terms exceeding maxV termss = [self.get_terms(_terms(loc)) for loc in locs] dinvs = infer.inv.DInvs() if not termss: return dinvs mlog.debug(f"checking upperbounds for {sum(map(len, termss))} " f"terms at {len(locs)} locs") refs = { loc: {self.inv_cls(t.mk_le(self.IUPPER)): t for t in terms} for loc, terms in zip(locs, termss) } ieqs = infer.inv.DInvs() for loc in refs: for inv in refs[loc].keys(): ieqs.setdefault(loc, infer.inv.Invs()).add(inv) _, ieqs = self.check(ieqs, inps=None) ieqs = ieqs.remove_disproved() tasks = [(loc, refs[loc][t]) for loc in ieqs for t in ieqs[loc]] mlog.debug( f"inferring upperbounds for {len(tasks)} terms at {len(locs)} locs") # computing convex hull def f(tasks): return [ (loc, term, self.symstates.maximize( loc, self.to_expr(term), self.IUPPER)) for loc, term in tasks ] wrs = MP.run_mp("optimizing upperbound", tasks, f, settings.DO_MP) dinvs = infer.inv.DInvs() for loc, term, v in wrs: if v is None: continue inv = self.inv_cls(term.mk_le(v)) inv.set_stat(infer.inv.Inv.PROVED) dinvs.setdefault(loc, infer.inv.Invs()).add(inv) return dinvs def get_terms(self, symbols): terms = self.my_get_terms(symbols) mlog.debug(f"{len(terms)} terms for {self.__class__.__name__}") inps = set(self.inp_decls.names) if settings.DO_FILTER and inps: st = time() excludes = self.get_excludes(terms, inps) new_terms = [term for term in terms if term not in excludes] Miscs.show_removed("filter terms", len( terms), len(new_terms), time() - st) terms = new_terms return terms @staticmethod @abc.abstractmethod def to_expr(term): pass @staticmethod @abc.abstractmethod def inv_cls(term): pass @classmethod @abc.abstractmethod def my_get_terms(cls, terms, inps): pass @staticmethod @abc.abstractmethod def get_excludes(term): pass @classmethod def gen_from_traces(cls, traces, symbols): """ Compute convex hulls from traces """ assert isinstance(traces, data.traces.Traces), traces assert isinstance(symbols, data.prog.Symbs), symbols maxV = cls.IUPPER minV = -1 * maxV tasks = cls.my_get_terms(symbols.symbolic) def f(tasks): rs = [(term, int(max(term.eval_traces(traces)))) for term in tasks] return rs wrs = MP.run_mp("getting upperbounds", tasks, f, settings.DO_MP) ps = [] for term, upperbound in wrs: if minV <= upperbound <= maxV: p = cls.inv_cls(term.mk_le(upperbound)) ps.append(p) return ps
""" :CRAPS又称花旗骰,是美国拉斯维加斯非常受欢迎的一种的桌上赌博游戏。 Craps赌 博游戏 玩家摇 两颗色子 如果第一次摇出7点或11点 玩家胜 如果摇 出2点 3点 12点 庄家胜 其他情况游戏继续 玩家再次要色子 如果摇出7点 庄家胜 如果摇 出第一次摇的点数 玩家胜 否则 游戏继续 玩家继续摇色子 玩家进入游戏时 有1000元的赌 注 全部输 光游戏 结束 """ from random import randint money = 1000 while money > 0: print('你的总资产为:', money) needs_go_on = False while True: try: debt = int(input('请下注: ')) if 0 < debt <= money: break except ValueError: print('输入为空',end=', ') first = randint(1, 6) + randint(1, 6) print('玩家摇出了%d点' % first) if first == 7 or first == 11: print('玩家胜!') money += debt elif first == 2 or first == 3 or first == 12: print('庄家胜!') money -= debt else: needs_go_on = True while needs_go_on: current = randint(1, 6) + randint(1, 6) print('玩家摇出了%d点' % current) if current == 7: print('庄家胜') money -= debt needs_go_on = False elif current == first: print('玩家胜') money += debt needs_go_on = False print('你破产了, 游戏结束!')
# Generated by Django 3.0.5 on 2020-05-12 10:39 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('project_core', '0118_calls_need_to_be_part_of_a_funding_instrument'), ('grant_management', '0029_signed_by_multiple_people'), ] operations = [ migrations.RenameModel( old_name='Media', new_name='Medium', ), migrations.AlterField( model_name='grantagreement', name='signed_by', field=models.ManyToManyField(blank=True, help_text='People who signed the grant agreement', to='project_core.PhysicalPerson'), ), ]
# Copyright 2018 Twitter, Inc. # Licensed under the Apache License, Version 2.0 # http://www.apache.org/licenses/LICENSE-2.0 """ This module contains the main program for Caladrius and will set up all resources and start the API server """ import os import sys import logging import argparse from typing import Dict, Any from caladrius import logs from caladrius import loader from caladrius.api.router import create_router LOG: logging.Logger = logging.getLogger("caladrius.main") def _create_parser() -> argparse.ArgumentParser: parser: argparse.ArgumentParser = argparse.ArgumentParser( description=("This is the command line interface for the Caladrius API" " server")) parser.add_argument("-c", "--config", required=True, help=("Path to the config file with data required by " "all configured models and classes")) parser.add_argument("-q", "--quiet", required=False, action="store_true", help=("Optional flag indicating if console log output " "should be suppressed")) parser.add_argument("--debug", required=False, action="store_true", help=("Optional flag indicating if debug level " "information should be displayed")) return parser if __name__ == "__main__": ARGS: argparse.Namespace = _create_parser().parse_args() try: CONFIG: Dict[str, Any] = loader.load_config(ARGS.config) except FileNotFoundError: print(f"Config file: {ARGS.config} was not found. Aborting...", file=sys.stderr) sys.exit(1) else: if not ARGS.quiet: print("\nStarting Caladrius API...\n") print(f"Loading configuration from file: {ARGS.config}") if not os.path.exists(CONFIG["log.file.dir"]): os.makedirs(CONFIG["log.file.dir"]) LOG_FILE: str = CONFIG["log.file.dir"] + "/app.log" logs.setup(console=(not ARGS.quiet), logfile=LOG_FILE, debug=ARGS.debug) try: ROUTER = create_router(CONFIG) except ConnectionRefusedError as cr_err: if ARGS.quiet: print(str(cr_err), file=sys.stderr) sys.exit(1) ROUTER.run(debug=ARGS.debug)
from PySide2.QtCore import QUrl, QDir from PySide2.QtWebEngineWidgets import QWebEngineView import sys from HandSimServer import * sys.path.append('./handsim') def create_hand_sim_widget(parent=None): sim_in_new_thread() view = QWebEngineView(parent) view.setUrl(QUrl.fromLocalFile(QDir.currentPath() + "/../handjs/index.html")) return view
from django.contrib.auth.decorators import login_required from django.shortcuts import render, redirect, get_object_or_404 from django.views.decorators.http import require_POST from django.views.decorators.csrf import csrf_protect from bookstore.models import Book from .cart import Cart from .forms import CartAddProductForm from promos.forms import PromoCodeApplyForm from bookstore.recommender import Recommender @require_POST def cart_add(request, book_id): cart = Cart(request) book = get_object_or_404(Book, id=book_id) form = CartAddProductForm(request.POST) if form.is_valid(): cd = form.cleaned_data cart.add(book=book, quantity=cd['quantity'], update_quantity=cd['update']) return redirect('cart:cart_detail') def cart_remove(request, book_id): cart = Cart(request) book = get_object_or_404(Book, id=book_id) cart.remove(book) if cart: return redirect('cart:cart_detail') return redirect('bookstore:book_list') # TODO: pass book quantity to form @login_required(login_url='users:user_login') def cart_detail(request): cart = Cart(request) for item in cart: # for p in Product.objects.filter(translations__title==item['book']): # if str(p)==str(item['book']):. # r = Product.objects.translated(name=item['book']) # print(t) item['update_quantity_form'] = CartAddProductForm( initial={'quantity': item['quantity'], 'update': True}) promo_code_apply_form = PromoCodeApplyForm() r = Recommender() if cart: cart_books = [item['book'] for item in cart] recommended_books = r.suggest_books_for(cart_books, max_results=3) return render(request, 'cart/detail.html', {'cart': cart, 'promo_code_apply_form': promo_code_apply_form, 'recommended_books': recommended_books}) return render(request, 'cart/detail.html', locals())
from django.contrib import admin from .models import Post, Comment, LikeModel, Follow # Register your models here. @admin.register(Post) class PostAdmin(admin.ModelAdmin): list_display = ('user', 'picture', 'context') @admin.register(Comment) class CommentAdmin(admin.ModelAdmin): list_display = ('post', 'user', 'context', 'parent', 'created_at') @admin.register(LikeModel) class LikeModelAdmin(admin.ModelAdmin): list_display = ('post', 'user', 'status', 'created_at') @admin.register(Follow) class FollowAdmin(admin.ModelAdmin): list_display = ('from_user', 'to_user', 'status', 'created_at')
from json import dump, load import click from giveaway.core.typing import UserName from giveaway.core.usernames import ( filter_usernames, prepare_username, process_usernames, ) from giveaway.core.winner import ( choose_winners, find_winners, verify_winner, hash_username, get_date_from_filename, ) @click.group() def cli(): """ Program to choose a winner from a given list of participants. The seed used by PRNG depends only on a list of participants and a date provided. So for every set of parameters the giveaway results can be reproduced. """ pass @cli.command("prepare") @click.argument("source", type=click.Path(exists=True, file_okay=True, dir_okay=False)) @click.argument("destination", type=click.Path(file_okay=True, dir_okay=False)) def prepare_original_cli(source, destination): """Parse a file with a of participants, clean it up and save to json""" with open(source) as fp: lines = (line for line in fp) valid_lines = filter_usernames(lines) prepared_usernames = [prepare_username(uname) for uname in valid_lines] with open(destination, "w") as ofp: dump(prepared_usernames, ofp) @cli.command("choose") @click.argument( "participants", type=click.Path(exists=True, file_okay=True, dir_okay=False) ) @click.argument("date", type=click.DateTime(formats=["%d-%m-%Y"]), required=False) @click.option("--n", default=1, show_default=True) def choose_winner_cli(participants, date, n): """Choose a winner from PARTICIPANTS while using DATE to count seed""" if date is None: date = get_date_from_filename(participants) with open(participants) as fp: raw_usernames = load(fp) hashed_participants = process_usernames(raw_usernames) hashed_winners = choose_winners(hashed_participants, date, n=n) participants = [prepare_username(uname) for uname in raw_usernames] winners = find_winners(hashed_winners, participants) click.echo(" ".join(winners)) @cli.command("prepare_hashed") @click.argument("source", type=click.Path(exists=True, file_okay=True, dir_okay=False)) @click.argument("destination", type=click.Path(file_okay=True, dir_okay=False)) def prepare_hashed_cli(source, destination): """Hash a list of participants from SOURCE and save to DESTINATION""" with open(source) as fp: raw_usernames = load(fp) hashed_participants = process_usernames(raw_usernames) with open(destination, "w") as ofp: dump(hashed_participants, ofp) @cli.command("verify_choice") @click.argument( "hashed_participants", type=click.Path(exists=True, file_okay=True, dir_okay=False) ) @click.argument("date", type=click.DateTime(formats=["%d-%m-%Y"]), required=False) @click.option( "--username", default=None, help="username to compare with a winner's hash" ) @click.option("--n", default=1, show_default=True) def verify_choice_cli(hashed_participants, date, username, n): """ Verify choice using a HASHED_PARTICIPANTS file and DATE. Optionally you can provide a username to verify that it was chosen. """ if date is None: date = get_date_from_filename(hashed_participants) with open(hashed_participants) as fp: hashed_participants = load(fp) hashed_winners = choose_winners(hashed_participants, date, n=n) click.echo(f"Winners are: {', '.join(hashed_winners)}.") if username: prepared_username = prepare_username(username) is_winner = any(verify_winner(prepared_username, hashed_winner) for hashed_winner in hashed_winners) if is_winner: click.echo(f"Yup! {username} is definitely a winner.") else: click.echo( f"Unfortunately, {username} is not a winner. But don't worry, better luck next time!" ) @cli.command("verify_participant") @click.argument( "hashed_participants", type=click.Path(exists=True, file_okay=True, dir_okay=False) ) @click.argument("username", type=UserName) def verify_choice_cli(hashed_participants, username): """ Verify given USERNAME is present in a HASHED_PARTICIPANTS file. """ with open(hashed_participants) as fp: hashed_participants = load(fp) hashed_username = hash_username(prepare_username(username)) click.echo(f"Hashed username: {hashed_username}") is_in_participants = hashed_username in hashed_participants if is_in_participants: click.echo( f"{username} may not be a winner. But it is present in a list of participants." ) else: click.echo(f"{username} is a creep and does not belong here :(")
import torch import shutil import numpy as np import matplotlib matplotlib.use('pdf') import matplotlib.pyplot as plt # import cv2 from skimage.transform import resize import torchvision.transforms as transforms from sklearn.metrics import precision_score, recall_score, f1_score, roc_auc_score class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def save_checkpoint(state, filename='checkpoint.pth.tar'): torch.save(state, filename) def adjust_learning_rate(optimizer, epoch, args, interval): """Sets the learning rate to the initial LR decayed by 10 every 100 epochs""" lr = args.lr if epoch < interval[0]: lr = args.lr elif epoch >= interval[0] and epoch < interval[1]: lr = args.lr * 0.1 else: lr = args.lr * 0.01 #lr = args.lr * (0.1 ** (epoch // 100)) for param_group in optimizer.param_groups: param_group['lr'] = lr return lr def accuracy(output, target, topk=(1,)): """Computes the precision@k for the specified values of k""" maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res def multi_class_auc(all_target, all_output, num_c = None): from sklearn.preprocessing import label_binarize # all_output = np.stack(all_output) all_target = label_binarize(all_target, classes=list(range(0, num_c))) all_output = label_binarize(all_output, classes=list(range(0, num_c))) auc_sum = [] for num_class in range(0, num_c): try: auc = roc_auc_score(all_target[:, num_class], all_output[:, num_class]) auc_sum.append(auc) except ValueError: pass auc = sum(auc_sum) / (float(len(auc_sum))+1e-8) return auc def evaluation_metrics(label, pred, C): if C==2: auc = roc_auc_score(label, pred) else: auc = multi_class_auc(label, pred, num_c=C) corrects = np.equal(np.array(label), np.array(pred)) acc = float(sum(corrects)) / len(corrects) # mean class precision = precision_score(label, pred, average='macro') recall = recall_score(label, pred, average='macro') f1score = f1_score(label, pred, average='macro') return round(auc, 4), round(acc, 4), round(precision, 4), round(recall, 4), round(f1score, 4) def showfeature(x, savename): # trun to numpy x = x.data.cpu().numpy() print (x.shape) box = [] for item in range(0, x.shape[0]): x_patch = x[item, :, :] box.append(x_patch) x_patch = np.stack(box) x_patch = np.max(x_patch, axis=0) x_patch = resize(x_patch, (224, 224), order=3, mode='constant', cval=0, clip=True, preserve_range=True) x_patch = (x_patch - np.min(x_patch)) / (np.max(x_patch) - np.min(x_patch) + 1e-11) x_patch = x_patch * 255 x_patch = np.array(x_patch, dtype="uint8") plt.plot(1), plt.imshow(x_patch, cmap='jet') plt.axis('off') plt.savefig(savename, bbox_inches='tight', pad_inches=0) def showimage(x, savename): import torchvision.transforms as transforms mean=[0.485, 0.456, 0.406] std=[0.229, 0.224, 0.225] z = x * torch.tensor(std).view(3, 1, 1).cuda() z = z + torch.tensor(mean).view(3, 1, 1).cuda() z = z.cpu() z = z[[2,1,0], : ,:] img2 = transforms.ToPILImage()(z) img2.save(savename) def get_color_distortion(s=1.0): color_jitter = transforms.ColorJitter(0.8 * s, 0.8 * s, 0.8 * s, 0.2 * s) rnd_color_jitter = transforms.RandomApply([color_jitter], p=0.8) rnd_gray = transforms.RandomGrayscale(p=0.2) color_distort = transforms.Compose([rnd_color_jitter, rnd_gray]) return color_distort def gaussian_blur(x): from PIL.ImageFilter import GaussianBlur if np.random.randint(0, 2) == 1: x = x.filter(GaussianBlur(radius=np.random.uniform(0.1, 2.0))) return x
from termcolor import cprint, colored from random import randint from time import sleep cprint('Printo para jogar Pedra Papel Tesoura com o computador?', 'yellow') a = colored('-=-' * 20, 'cyan') print(a) p1 = str(input(colored('Pedra, Papel... Tesoura! (escreve o que queres jogar) ', 'magenta',))).strip().lower() print(a) sleep(1.5) pc = randint(1, 3) # 1 = pedra 2 = papel 3 = tesoura if pc == 1: jpc = 'pedra' elif pc == 2: jpc = 'papel' elif pc == 3: jpc = 'tesoura' cprint('(Tu fizeste {} e o computador fez {})'.format(p1, jpc), 'grey', attrs=['concealed']) d = colored('O computador ganhou!', 'green') v = colored('Ganhaste ao computador, parabéns!', 'green') e = colored('Empate', 'yellow') if p1 == 'tesoura': if pc == 1: r = d elif pc == 2: r = v elif pc == 3: r = e if p1 == 'pedra': if pc == 2: r = d elif pc == 3: r = v elif pc == 1: r = e if p1 == 'papel': if pc == 3: r = d elif pc == 1: r = v elif pc == 2: r = e if p1 != 'tesoura' and p1 != 'pedra' and p1 != 'papel': cprint('ERRO', 'red', attrs=['underline']) else: print(r)
from augustine_text.sample_text import words # 75K words of procedurally generated text # This is about the length of novel. text = words(75000) text_length = len(text) print(text[:100])
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # hello-world.py # MIT License # Copyright (c) <2021> <[email protected]> # This is a test program using glade and gtk through pygobject #TODO: Figure out why it goes transparent every two color flashes. # I've found that both gnome-terminal and byobu terminal have the transparency while guake does not. # Maybe guake is the odd one. import gi gi.require_version("Gtk", "3.0") from gi.repository import Gtk from MyWindow import MyWindow def main(args): theWindow = MyWindow() Gtk.main() return 0 if __name__ == '__main__': import sys sys.exit(main(sys.argv))
from datetime import datetime, timedelta from jinja2 import Template as JinjaTemplate from typing import Any, Callable, Dict, Tuple, Union from homeassistant.core import Event, HomeAssistant, callback from homeassistant.exceptions import TemplateError from homeassistant.helpers.event import TrackTemplate, TrackTemplateResult, async_track_template_result from homeassistant.helpers.template import LoggingUndefined, Template, TemplateEnvironment from homeassistant.helpers.typing import ConfigType from .. import const as co from .store import ReactionEntry from .dispatcher import get as Dispatcher from .common import Updatable, Unloadable, callable_type RUNTIME_VALUES = ["actor"] class RuntimeValueUsedError(Exception): def __init__(self, *args: object) -> None: super().__init__(*args) class NonLoggingUndefined(LoggingUndefined): def _fail_with_undefined_error(self, *args, **kwargs): if self._undefined_name in RUNTIME_VALUES: raise RuntimeValueUsedError() else: raise Exception() class ValidateEnv(TemplateEnvironment): def __init__(self, hass, limited=False, strict=False): super().__init__(hass, limited, strict) self.undefined = NonLoggingUndefined class TemplateWatcher(Updatable): def __init__(self, hass: HomeAssistant, owner: Any, property: str, type_converter: Any, template: Template, variables: dict): super().__init__(hass) self.owner = owner self.property = property self.type_converter = type_converter self.template = template self.static_variables = variables template.hass = hass setattr(owner, property, None) self.needs_runtime_values = False def template_needs_runtime_values(template: Template, kwargs: dict): result = False if not(template.is_static): try: validate_env = ValidateEnv(hass, False, False) validate_template = validate_env.compile(template.template) jinja_template = JinjaTemplate.from_code(validate_env, validate_template, validate_env.globals, None) jinja_template.render(**kwargs) except RuntimeValueUsedError: result = True except Exception: result = False return result self.needs_runtime_values = template_needs_runtime_values(template, self.static_variables) self.runtime_variables = self.static_variables | (co.RUNTIME_VARIABLES if self.needs_runtime_values else {}) self.result_info = async_track_template_result(hass, [TrackTemplate(template, self.runtime_variables)], self.async_update_template) self.async_remove = self.result_info.async_remove self.async_refresh = self.result_info.async_refresh self.result_info.async_refresh() @callback def async_update_template(self, event: Union[Event, None], updates: list[TrackTemplateResult]): if updates and len(updates) > 0: result = updates.pop().result if isinstance(result, TemplateError): co.LOGGER.error("Config", "Error rendering {}: {}", self.property, result) return if hasattr(self.owner, "set_property"): self.owner.set_property(self.property, self.type_converter(result)) else: self.owner.__setattr__(self.property, self.type_converter(result)) self.async_update() def runtime_value(self, additional_variables: dict): runtime_variables = self.static_variables | additional_variables result = None try: result = self.template.async_render(runtime_variables) except TemplateError: co.LOGGER("Could not evaluate runtime value for '{}'".format(self.property)) return result class WorkflowContext(Updatable, Unloadable): _on_unload: Union[list[callable_type], None] = None _templates_with_variables: Union[list[TemplateWatcher], None] = None def __init__(self, hass: HomeAssistant, workflow_id: str) -> None: super().__init__(hass) self.hass = hass self.workflow_id = workflow_id self._templates_with_variables = [] self.on_unload(self._templates_with_variables.clear) # Make sure the list of watchers is cleared when context is unloaded def load_variables(self, variables_config: dict): self.variables = type('object', (), {})() for key,value in variables_config.items(): if isinstance(value, Template): self.create_variable_template_watcher(self.variables, key, co.PROP_TYPE_SOURCE, value) else: setattr(self.variables, key, value) def create_template_watcher(self, owner: Any, property: str, type_converter: Any, template: Template, use_variables: bool = True): result = TemplateWatcher(self.hass, owner, property, type_converter, template, vars(self.variables) if use_variables else {}) result.on_update(self.async_update) # When the watcher gets updated the context should be updated self.on_unload(result.async_remove) # When the context is unloaded the watcher should be unloaded if use_variables: self._templates_with_variables.append(result) return result def create_variable_template_watcher(self, owner: Any, property: str, type_converter: Any, template: Template): result = self.create_template_watcher(owner, property, type_converter, template, False) result.on_update(self.async_shake) # When the watcher of a variable gets updated all depending watchers should be updated return result @callback def async_shake(self): for watcher in self._templates_with_variables: self.hass.add_job(watcher.async_refresh) class PropertyContainer: def __init__(self, context: WorkflowContext): self.context = context self.watchers_with_need_for_runtime_values: dict[str, TemplateWatcher] = {} def init_property(self, name: str, type_converter: Any, config: dict, stencil: dict, default: Any = None): value = self.get_property(name, config, stencil, default) self.init_property_value(name, type_converter, value) def init_property_value(self, name: str, type_converter: Any, value: Any): if isinstance(value, Template): watcher = self.context.create_template_watcher(self, name, type_converter, value) if watcher.needs_runtime_values: self.watchers_with_need_for_runtime_values[name] = watcher else: self.set_property(name, type_converter(value)) def get_property(self, name: str, config: dict, stencil: dict, default: Any = None): result = config.get(name, None) if config else None if not result and stencil: stencil_value = stencil.get(name, None) if isinstance(stencil_value, list): result = stencil_value[:] else: result = stencil_value if result is None: result = default return result def set_property(self, name: str, value: Any): if hasattr(self, name) and getattr(self, name) == value: return setattr(self, name, value) entity = getattr(self, co.ATTR_ENTITY, None) type = getattr(self, co.ATTR_TYPE, None) if entity and type: Dispatcher(self.context.hass).send_signal(co.SIGNAL_PROPERTY_COMPLETE, entity, type) class Schedule(PropertyContainer): def __init__(self, context: WorkflowContext, config: dict, stencil: dict): super().__init__(context) if not (config or stencil): return self.at = self.get_property(co.ATTR_SCHEDULE_AT, config, stencil) self.weekdays = self.get_property(co.ATTR_SCHEDULE_WEEKDAYS, config, stencil, []) def as_dict(self) -> dict: result = { co.ATTR_SCHEDULE_AT: self.at.strftime("%H:%M:%S"), } if self.weekdays: result[co.ATTR_SCHEDULE_WEEKDAYS] = self.weekdays return result class Ctor(PropertyContainer): entity: str type: str action: str def __init__(self, context: WorkflowContext, id: str, entity: Union[str, Template]): super().__init__(context) self.id = id self.init_property_value(co.ATTR_ENTITY, co.PROP_TYPE_STR, entity) def load(self, config: Any, stencil: dict): self.init_property(co.ATTR_TYPE, co.PROP_TYPE_STR, config, stencil) self.init_property(co.ATTR_ACTION, co.PROP_TYPE_STR, config, stencil) self.init_property(co.ATTR_CONDITION, co.PROP_TYPE_BOOL, config, stencil, True) def runtime_value(self, name: str, backup: Any = None) -> Any: result = None if hasattr(self, name): result = getattr(self, name) if not result and backup and hasattr(backup, name): result = getattr(backup, name) return result def as_dict(self) -> dict: return { a: getattr(self, a) for a in [co.ATTR_ENTITY, co.ATTR_TYPE, co.ATTR_ACTION, co.ATTR_CONDITION] if getattr(self, a) is not None } class RuntimeActor: id: str entity: str type: str action: str condition: bool class Actor(Ctor): def __init__(self, context: WorkflowContext, id: str, entity: Union[str, Template]): super().__init__(context, id, entity) def load(self, config: Any, stencil: dict): co.LOGGER.info("Config", "'{}' loading actor: '{}'", self.context.workflow_id, self.id) return super().load(config, stencil) def to_runtime(self, reaction: ReactionEntry) -> RuntimeActor: result = RuntimeActor() for attr in [co.ATTR_ID, co.ATTR_CONDITION, co.ATTR_ENTITY, co.ATTR_TYPE, co.ATTR_ACTION]: setattr(result, attr, self.runtime_value(attr, reaction)) return result class RuntimeReactor: id: str entity: str type: str action: str timing: str delay: int schedule: Any overwrite: bool reset_workflow: str forward_action: str condition: bool class Reactor(Ctor): timing: str delay: int overwrite: bool reset_workflow: str forward_action: bool def __init__(self, context: WorkflowContext, id: str, entity: Union[str, Template]): super().__init__(context, id, entity) def load(self, config: dict, stencil: dict): co.LOGGER.info("Config", "'{}' loading reactor: '{}'", self.context.workflow_id, self.id) super().load(config, stencil) self.timing = self.get_property(co.ATTR_TIMING, config, stencil, 'immediate') self.init_property(co.ATTR_DELAY, co.PROP_TYPE_INT, config, stencil) self.schedule = self.load_schedule(config, stencil) self.init_property(co.ATTR_OVERWRITE, co.PROP_TYPE_BOOL, config, stencil, False) self.init_property(co.ATTR_RESET_WORKFLOW, co.PROP_TYPE_STR, config, stencil) self.init_property(co.ATTR_FORWARD_ACTION, co.PROP_TYPE_BOOL, config, stencil, False) def load_schedule(self, config: dict, stencil: dict) -> Schedule: if co.ATTR_SCHEDULE in config or co.ATTR_SCHEDULE in stencil: return Schedule(self.context, config.get(co.ATTR_SCHEDULE, None), stencil.get(co.ATTR_SCHEDULE, None)) return None def calculate_reaction_datetime(self): if (self.timing == co.REACTOR_TIMING_IMMEDIATE): return None if self.timing == co.REACTOR_TIMING_DELAYED: return datetime.now() + timedelta(seconds = self.delay) elif self.timing == co.REACTOR_TIMING_SCHEDULED: return self.calculate_next_schedule_hit() def calculate_next_schedule_hit(self): if not self.schedule or not self.schedule.at: return None at = self.schedule.at weekdays = self.schedule.weekdays now = datetime.now() next_try = datetime(now.year, now.month, now.day, at.hour, at.minute, at.second) if next_try < now: next_try = next_try + timedelta(days=1) if weekdays and len(weekdays) > 0: attempt = 1 while True: day_name = next_try.strftime("%A")[0:3].lower() if day_name in weekdays: break else: next_try = next_try + timedelta(days=1) attempt += 1 if (attempt > 7): raise Exception("could not calculate next schedule hit") return next_try def to_runtime(self, actor: RuntimeActor) -> RuntimeReactor: result = RuntimeReactor() for attr in [co.ATTR_ID, co.ATTR_CONDITION, co.ATTR_ENTITY, co.ATTR_TYPE, co.ATTR_ACTION, co.ATTR_TIMING, co.ATTR_DELAY, co.ATTR_SCHEDULE, co.ATTR_OVERWRITE, co.ATTR_RESET_WORKFLOW, co.ATTR_FORWARD_ACTION]: setattr(result, attr, self.runtime_value(attr, actor)) return result def runtime_value(self, name: str, actor: Actor) -> Any: if name in self.watchers_with_need_for_runtime_values: runtime_values = { co.ATTR_ACTOR: actor.__dict__ } return self.watchers_with_need_for_runtime_values[name].runtime_value(runtime_values) else: return super().runtime_value(name) def as_dict(self) -> dict: base_dict = super().as_dict() self_dict = { a: getattr(self, a) for a in [co.ATTR_TIMING, co.ATTR_DELAY, co.ATTR_OVERWRITE, co.ATTR_RESET_WORKFLOW, co.ATTR_FORWARD_ACTION] if getattr(self, a) is not None and getattr(self, a) != False } if self.schedule: self_dict[co.ATTR_SCHEDULE] = self.schedule.as_dict(), return base_dict | self_dict ctor_type = Callable[[WorkflowContext, str, str], Union[Actor, Reactor] ] class Workflow(PropertyContainer): def __init__(self, context: WorkflowContext, config: dict): super().__init__(context) self.id = context.workflow_id self.entity_id = co.ENTITY_ID_FORMAT.format(context.workflow_id) self.stencil = config.get(co.ATTR_STENCIL, None) self.friendly_name = config.get(co.ATTR_FRIENDLY_NAME, None) self.icon = config.get(co.CONF_ICON, None) def load(self, config, stencil): self.actors: dict[str, Actor] = self.load_items(config, stencil, co.ATTR_ACTOR, Actor) self.reactors: dict[str, Reactor] = self.load_items(config, stencil, co.ATTR_REACTOR, Reactor) def load_items(self, config: Any, stencil: dict, item_property: str, item_type: ctor_type) -> Dict[str, Union[Actor, Reactor]]: if not config: return [] items_config = self.get_property(item_property, config, None, {}) items_stencil = stencil.get(item_property, {}) result = {} for id,item_config in items_config.items(): item_stencil = items_stencil.get(id, {}) self.load_entities(id, item_config, item_stencil, item_type, result) for id,item_stencil in items_stencil.items(): # Check for any stencil item that is not part of the workflow yet. # Add an entity for each match. if id not in result: self.load_entities(id, {}, item_stencil, item_type, result) return result def load_entities(self, id: str, item_config: dict, item_stencil: dict, item_type: ctor_type, result: dict): entity_data = self.get_property(co.ATTR_ENTITY, item_config, item_stencil) if isinstance(entity_data, Template): self.load_entity(id, item_config, item_stencil, item_type, result, entity_data) elif isinstance(entity_data, list): is_multiple = len(entity_data) > 1 for i,entity in enumerate(entity_data): item_id = "{}_{}".format(id, i) if is_multiple else id self.load_entity(item_id, item_config, item_stencil, item_type, result, entity) elif entity_data is None: self.load_entity(id, item_config, item_stencil, item_type, result, None) def load_entity(self, item_id: str, item_config: dict, item_stencil: dict, item_type: ctor_type, result: dict, entity: Union[str, Template]): item: Ctor = item_type(self.context, item_id, entity) item.load(item_config, item_stencil) result[item.id] = item def on_update(self, callable: callable_type) -> None: self.context.on_update(callable) def as_dict(self) -> dict: result = { a: getattr(self, a) for a in [co.ATTR_ID, co.ATTR_STENCIL, co.ATTR_FRIENDLY_NAME] if getattr(self, a) is not None } result[co.ATTR_ACTOR] = {} result[co.ATTR_REACTOR] = {} for id,actor in self.actors.items(): result[co.ATTR_ACTOR][id] = actor.as_dict() for id,reactor in self.reactors.items(): result[co.ATTR_REACTOR][id] = reactor.as_dict() return result @callback def async_unload(self) -> None: self.context.unload() class ConfigManager: def __init__(self, hass: HomeAssistant): self.hass = hass self.workflows = None def load(self, config: ConfigType) -> None: co.LOGGER.info("Config", "loading react configuration") self.domain_config = config.get(co.DOMAIN, {}) if self.domain_config: co.LOGGER.info("Config", "found react configuration, processing") self.stencil_config = self.domain_config.get(co.CONF_STENCIL, {}) self.workflow_config = self.domain_config.get(co.CONF_WORKFLOW, {}) self.parse_workflow_config(self.hass) else: self.workflows: dict[str, Workflow] = {} co.LOGGER.info("Config", "no react configuration found") def unload(self): co.LOGGER.info("Config", "unloading react configuration") if self.workflows: for workflow in self.workflows.values(): workflow.async_unload() self.workflows = None self.workflow_config = None self.stencil_config = None def reload(self, config: ConfigType): self.unload() self.load(config) def parse_workflow_config(self, hass: HomeAssistant): co.LOGGER.info("Config", "loading react workflows") self.workflows: dict[str, Workflow] = {} for id, config in self.workflow_config.items(): co.LOGGER.info("Config", "'{}' processing workflow", id) if not config: config = {} context = WorkflowContext(hass, id) context.load_variables(config.get(co.ATTR_VARIABLES, {})) workflow = Workflow(context, config) stencil = self.get_stencil_by_name(workflow.stencil) workflow.load(config, stencil) self.workflows[id] = workflow def get_stencil_by_name(self, stencil_name) -> dict: result = {} if stencil_name: stencil = self.stencil_config.get(stencil_name, None) if stencil: result = stencil else: co.LOGGER.error("Config", "Stencil not found: '{}'".format(stencil_name)) return result def get_workflow_metadata(self, reaction: ReactionEntry) -> Tuple[Workflow, Actor, Reactor]: workflow = self.workflows.get(reaction.workflow_id, None) if workflow is None: co.LOGGER.warn("Config: workflow that created reaction not found: '{}'".format(reaction.id)) return None, None, None actor = workflow.actors.get(reaction.actor_id, None) if actor is None: co.LOGGER.warn("Config: actor in workflow that created reaction not found: '{}'.'{}'".format(workflow.id, reaction.id)) return None, None, None reactor = workflow.reactors.get(reaction.reactor_id, None) if reactor is None: co.LOGGER.warn("Config: reactor in workflow that created reaction not found: '{}'.'{}'".format(workflow.id, reaction.id)) return None, None, None return workflow, actor, reactor def get(hass: HomeAssistant) -> ConfigManager: if co.DOMAIN_BOOTSTRAPPER in hass.data: return hass.data[co.DOMAIN_BOOTSTRAPPER].config_manager return None
#! /usr/bin/env python from __future__ import print_function import sys from Bio import SeqIO if __name__ == '__main__': import argparse parser = argparse.ArgumentParser(description='convert embl to genbank.') parser.add_argument('infile', nargs='?', type=argparse.FileType('rU'), default=sys.stdin) parser.add_argument('outfile', nargs='?', type=argparse.FileType('w'), default=sys.stdout) args = parser.parse_args() for s in SeqIO.parse(args.infile, 'embl'): _ = SeqIO.write(s, args.outfile, 'genbank')
import os from typing import Tuple import cyvcf2 from django.conf import settings from django.contrib.auth.models import User from django.test import TestCase from snpdb.models import ImportSource, Sequence, md5sum_str from upload.models import UploadedFile, UploadPipeline, UploadedVCF, UploadStep, UploadedFileTypes from upload.vcf.bulk_genotype_vcf_processor import BulkGenotypeVCFProcessor from upload.vcf.bulk_no_genotype_vcf_processor import BulkNoGenotypeVCFProcessor from upload.vcf.sql_copy_files import COHORT_GENOTYPE_HEADER from upload.vcf.vcf_import import create_vcf_from_vcf class TestVCFProcessors(TestCase): TEST_DATA_DIR = os.path.join(settings.BASE_DIR, "upload", "test_data", "vcf") @classmethod def setUpClass(cls): super().setUpClass() for base in "GATC": Sequence.objects.get_or_create(seq=base, seq_md5_hash=md5sum_str(base), length=len(base)) @classmethod def _create_fake_upload_step_and_vcf(cls, vcf_filename, vcf_reader) -> Tuple[UploadStep, UploadedVCF]: user = User.objects.get_or_create(username='testuser')[0] uploaded_file = UploadedFile.objects.create(path=vcf_filename, import_source=ImportSource.COMMAND_LINE, user=user, file_type=UploadedFileTypes.VCF, visible=False) upload_pipeline = UploadPipeline.objects.create(uploaded_file=uploaded_file) upload_step = UploadStep.objects.create(upload_pipeline=upload_pipeline, input_filename=vcf_filename, sort_order=0) create_vcf_from_vcf(upload_step, vcf_reader) uploaded_vcf = UploadedVCF.objects.get(upload_pipeline=upload_pipeline) return upload_step, uploaded_vcf def _test_genotype_processor(self, vcf_filename, processor_klass): """ I keep forgetting to adjust the columns to match the CSV """ fast_vcf_reader = cyvcf2.VCF(vcf_filename) upload_step, uploaded_vcf = self._create_fake_upload_step_and_vcf(vcf_filename, fast_vcf_reader) processor = processor_klass(upload_step, None, uploaded_vcf, None) for v in fast_vcf_reader: processor.process_entry(v) break cg = None for field_name in ["locus_cohort_genotypes", "cohort_genotypes"]: if f := getattr(processor, field_name, None): cg = f[0] break if cg is None: raise ValueError("Couldn't find array to retrieve cohort genotype") len_genotype_cols = len(cg) len_columns = len(COHORT_GENOTYPE_HEADER) - BulkGenotypeVCFProcessor.COHORT_GT_NUM_ADDED_FIELDS message = f"{processor_klass} CohortGenotypeData ({len_genotype_cols} cols) != CSV columns ({len_columns})" self.assertEqual(len_genotype_cols, len_columns, message) def test_no_genotype_processor(self): vcf_filename = os.path.join(self.TEST_DATA_DIR, "no_genotype.GRCh37.vcf") self._test_genotype_processor(vcf_filename, BulkNoGenotypeVCFProcessor) def test_genotype_processor(self): vcf_filename = os.path.join(self.TEST_DATA_DIR, "sample1_hg19.vcf") self._test_genotype_processor(vcf_filename, BulkGenotypeVCFProcessor)
#!/usr/bin/python3 from telnetlib import Telnet from re import findall from time import sleep, time from os import environ from influxdb import InfluxDBClient ROUTER = environ["ROUTER_IP_ADDRESS"] USER = environ["ROUTER_LOGIN_USER"] PASSWORD = environ["ROUTER_LOGIN_PASSWORD"] PROMPT = environ["ROUTER_PROMPT"] DB_NAME = environ["INFLUX_DB_NAME"] DB_CONTAINER = environ["INFLUX_DB_ADDRESS"] DB_PORT = environ["INFLUX_DB_PORT"] DB_USER = environ["INFLUX_DB_USER"] DB_PASSWORD = environ["INFLUX_DB_PASSWORD"] MONITORING_INTERVAL = int(environ["MONITORING_INTERVAL"]) BANDWIDTH_SAMPLING_INTERVAL = 1 # 1sec -> bps int(environ["BANDWIDTH_SAMPLING_INTERVAL"]) """ firmware version RTX1200 Rev.10.01.65 (Tue Oct 13 12:23:48 2015) """ class RTXTelnet: """ RTXTelnet: Telnet wrapper for RTX series """ log = "" def __init__(self, router, username, password, port=23, prompt="", timeout=5, wait=0.5): self.router = router self.username = username self.password = password self.port = port self.prompt = "\r\n" + prompt + "> " self.timeout = timeout self.wait = wait self.connect() def connect(self): """ connect(self): Connect to RTX via telnet """ # セッション開通 self.telnet = Telnet(self.router, port=self.port, timeout=self.timeout) self.telnet.read_very_eager() # プロンプトを出す self.telnet.write(b"\n") # ←ナマステ!(バシッ)今日は無名ログインスンナスンナスンナスンナスンナスンナスンナスンナ self.telnet.read_very_eager() # プロンプト飛ばす # ユーザー名とパスワードでログインする while True: pro = self.telnet.read_very_eager().decode() self.log += pro if pro.endswith(self.prompt): break elif pro.endswith("\r\nUsername: "): self.telnet.write(self.username.encode("ascii") + b"\n") elif pro.endswith("\r\nPassword: "): self.telnet.write(self.password.encode("ascii") + b"\n") sleep(self.wait) # ASCIIモードを適用 self.telnet.write(b"console character ascii\n\n") sleep(self.wait * 2) while True: pro = self.telnet.read_very_eager().decode() self.log += pro if pro.endswith(self.prompt): break def disconnect(self): """ disconnect(self): Disconnect from RTX """ self.telnet.write(b"exit\n") self.log += self.telnet.read_very_eager().decode() self.telnet.close() def execute(self, cmd): """ execute(self, cmd): Execute command in RTX """ # プロンプトを用意 while True: pro = self.telnet.read_very_eager().decode() self.log += pro if pro.endswith(self.prompt): break if not pro: self.telnet.write(b"\n") sleep(self.wait) # 実行 self.telnet.write(cmd.encode("ascii") + b"\n") sleep(self.wait * 2) res = "" while True: res += self.telnet.read_very_eager().decode() if res.endswith(self.prompt): self.log += res res = res.replace(cmd + " \x08 \x08\r\n", "").replace("---more---\r \r", "").replace(self.prompt, "") break elif res.endswith("---more---"): self.telnet.write(b" ") sleep(self.wait) return res def post_influxdb(dbconn, measurement, field, value): request = [ { "measurement": measurement, "fields": { field: value, } } ] print(request) dbconn.write_points(request) return True def grep(pattern, text): return findall(pattern, text) def lan_interfaces(): # RTX1200はLAN1 LAN2 LAN3だった return ["1", "2", "3"] def pp_interfaces(config): t = [] for w in grep(r"pp select (\d+)", config): t.append(w) return sorted(set(t), key=t.index) def dhcp_scopes(config): t = [] for w in grep(r"dhcp scope (\d+)", config): t.append(w) return sorted(set(t), key=t.index) def lan_interface_speed(config, num): val = grep(r"speed lan"+num+r" (\d+\w?)", config) if (not val) or (val == 0): val = unitstr2num("1000m") return val def unitstr2num(text): val = int(grep(r"(\d+)", text)[0]) unit = text[-1:].lower() if unit == "k": return int(val * 1000) elif unit == "m": return int(val * 1000 * 1000) else: return int(val) def environment_mon(): status = TN.execute("show environment") # uptime uptime = grep(r"Elapsed time from boot: (\d+)days (\d+):(\d+):(\d+)", status)[0] days = int(uptime[0]) hours = int(uptime[1]) minutes = int(uptime[2]) seconds = int(uptime[3]) uptime_sec = days * 24 * 60 * 60 + hours * 60 * 60 + minutes * 60 + seconds post_influxdb(DB, "uptime", "sec", uptime_sec) # cpu post_influxdb(DB, "cpu", "5sec", int(grep(r"(\d+)%\(5sec\)", status)[0])) post_influxdb(DB, "cpu", "1min", int(grep(r"(\d+)%\(1min\)", status)[0])) post_influxdb(DB, "cpu", "5min", int(grep(r"(\d+)%\(5min\)", status)[0])) # memory post_influxdb(DB, "memory", "now", int(grep(r"Memory: (\d+)%", status)[0])) # packet buffer post_influxdb(DB, "packet_buffer", "small", int(grep(r"(\d+)%\(small\)", status)[0])) post_influxdb(DB, "packet_buffer", "middle", int(grep(r"(\d+)%\(middle\)", status)[0])) post_influxdb(DB, "packet_buffer", "large", int(grep(r"(\d+)%\(large\)", status)[0])) post_influxdb(DB, "packet_buffer", "huge", int(grep(r"(\d+)%\(huge\)", status)[0])) # temperature post_influxdb(DB, "temperature", "now", int(grep(r"Inside Temperature\(C.\): (\d+)", status)[0])) def nat_mon(): status = TN.execute("show nat descriptor address") if grep(r"(\d+) used.", status): value = int(grep(r"(\d+) used.", status)[0]) else: value = -1 post_influxdb(DB, "nat", "entry", value) def dhcp_mon(config): for i in dhcp_scopes(config): status = TN.execute("show status dhcp "+i) post_influxdb(DB, "dhcp"+i, "leased", int(grep(r"Leased: (\d+)", status)[0])) post_influxdb(DB, "dhcp"+i, "usable", int(grep(r"Usable: (\d+)", status)[0])) def pp_traffic_mon(config, sec): for i in pp_interfaces(config): start_time = time() status1 = TN.execute("show status pp "+i) sleep(sec) status2 = TN.execute("show status pp "+i) running_time = time() - start_time if "Connected" in status1: rcv1 = int(grep(r"\[(\d+) octets?\]", status1)[0]) snd1 = int(grep(r"\[(\d+) octets?\]", status1)[1]) rcv2 = int(grep(r"\[(\d+) octets?\]", status2)[0]) snd2 = int(grep(r"\[(\d+) octets?\]", status2)[1]) post_influxdb(DB, "pp"+i, "receive", (rcv2 - rcv1) / running_time) post_influxdb(DB, "pp"+i, "transmit", (snd2 - snd1) / running_time) rcv_load = int(grep(r"Load:\s+(\d+).(\d+)%", status1)[0][0]) + int(grep(r"Load:\s+(\d+).(\d+)%", status1)[0][1]) / 10 snd_load = int(grep(r"Load:\s+(\d+).(\d+)%", status1)[1][0]) + int(grep(r"Load:\s+(\d+).(\d+)%", status1)[1][1]) / 10 post_influxdb(DB, "pp"+i, "receive_load", rcv_load) post_influxdb(DB, "pp"+i, "transmit_load", snd_load) def lan_traffic_mon(config, sec): for i in lan_interfaces(): start_time = time() status1 = TN.execute("show status lan"+i) sleep(sec) status2 = TN.execute("show status lan"+i) running_time = time() - start_time bandwidth = lan_interface_speed(config, i) snd1 = int(grep(r"\((\d+) octets?\)", status1)[0]) rcv1 = int(grep(r"\((\d+) octets?\)", status1)[1]) snd2 = int(grep(r"\((\d+) octets?\)", status2)[0]) rcv2 = int(grep(r"\((\d+) octets?\)", status2)[1]) post_influxdb(DB, "lan"+i, "receive", (rcv2 - rcv1) / running_time) post_influxdb(DB, "lan"+i, "transmit", (snd2 - snd1) / running_time) post_influxdb(DB, "lan"+i, "receive_load", ((rcv2 - rcv1) * 8 / running_time) / bandwidth) post_influxdb(DB, "lan"+i, "transmit_load", ((snd2 - snd1) * 8 / running_time) / bandwidth) def main(): """ Main """ while True: try: config = TN.execute("show config") environment_mon() nat_mon() dhcp_mon(config) pp_traffic_mon(config, BANDWIDTH_SAMPLING_INTERVAL) lan_traffic_mon(config, BANDWIDTH_SAMPLING_INTERVAL) except: print("failed to post") sleep(MONITORING_INTERVAL) if __name__ == '__main__': TN = RTXTelnet(ROUTER, USER, PASSWORD, prompt=PROMPT, timeout=3, wait=0.2) DB = InfluxDBClient(DB_CONTAINER, DB_PORT, DB_USER, DB_PASSWORD, DB_NAME) main()
""" ================== Errorbar Subsample ================== Demo for the errorevery keyword to show data full accuracy data plots with few errorbars. """ import numpy as np import matplotlib.pyplot as plt # example data x = np.arange(0.1, 4, 0.1) y1 = np.exp(-1.0 * x) y2 = np.exp(-0.5 * x) # example variable error bar values y1err = 0.1 + 0.1 * np.sqrt(x) y2err = 0.1 + 0.1 * np.sqrt(x/2) # Now switch to a more OO interface to exercise more features. fig, (ax_l, ax_c, ax_r) = plt.subplots(nrows=1, ncols=3, sharex=True, figsize=(12, 6)) ax_l.set_title('all errorbars') ax_l.errorbar(x, y1, yerr=y1err) ax_l.errorbar(x, y2, yerr=y2err) ax_c.set_title('only every 6th errorbar') ax_c.errorbar(x, y1, yerr=y1err, errorevery=6) ax_c.errorbar(x, y2, yerr=y2err, errorevery=6) ax_r.set_title('second series shifted by 3') ax_r.errorbar(x, y1, yerr=y1err, errorevery=(0, 6)) ax_r.errorbar(x, y2, yerr=y2err, errorevery=(3, 6)) fig.suptitle('Errorbar subsampling for better appearance') plt.show()
import math import numpy as np from typing import Any, List from util import common_values from util.game_state import GameState from util.physics_object import PhysicsObject from util.player_data import PlayerData class CustomObs: POS_STD = 2300 ANG_STD = math.pi def __init__(self, cars): super().__init__() self.obs_size = 9 + 8 + 25 + 31 * (cars - 1) + 34 def reset(self, initial_state: GameState): pass def build_obs(self, player: PlayerData, state: GameState, previous_action: np.ndarray) -> Any: if player.team_num == common_values.ORANGE_TEAM: inverted = True ball = state.inverted_ball pads = state.inverted_boost_pads else: inverted = False ball = state.ball pads = state.boost_pads obs = [ball.position / CustomObs.POS_STD, ball.linear_velocity / CustomObs.POS_STD, ball.angular_velocity / CustomObs.ANG_STD, previous_action, pads] player_car = self._add_player_to_obs(obs, player, ball, inverted) allies = [] enemies = [] for other in state.players: if other.car_id == player.car_id: continue if other.team_num == player.team_num: team_obs = allies else: team_obs = enemies other_car = self._add_player_to_obs(team_obs, other, ball, inverted) # Extra info team_obs.extend([ (other_car.position - player_car.position) / CustomObs.POS_STD, (other_car.linear_velocity - player_car.linear_velocity) / CustomObs.POS_STD ]) obs.extend(allies) obs.extend(enemies) return np.concatenate(obs) def _add_player_to_obs(self, obs: List, player: PlayerData, ball: PhysicsObject, inverted: bool): if inverted: player_car = player.inverted_car_data else: player_car = player.car_data rel_pos = ball.position - player_car.position rel_vel = ball.linear_velocity - player_car.linear_velocity obs.extend([ rel_pos / CustomObs.POS_STD, rel_vel / CustomObs.POS_STD, player_car.position / CustomObs.POS_STD, player_car.forward(), player_car.up(), player_car.linear_velocity / CustomObs.POS_STD, player_car.angular_velocity / CustomObs.ANG_STD, [player.boost_amount, int(player.on_ground), int(player.has_flip), int(player.is_demoed)]]) return player_car
import os import unittest import doto d0 = doto.connect_d0() class TestConfig(unittest.TestCase): def test_get_all_droplets(self): self.assertEqual(d0.get_all_droplets(status_check=True),200) self.assertEqual(d0.get_sizes(status_check=True),200) self.assertEqual(d0.get_images(status_check=True),200) self.assertEqual(d0.get_domains(status_check=True),200) self.assertEqual(d0.get_regions(status_check=True),200) self.assertEqual(d0.get_ssh_keys(status_check=True),200) if __name__ == '__main__': unittest.main() droplet.power_off() while droplet.event_status != 'done': droplet.event_update()
from collections import OrderedDict from ..util import create_element from .common import EWSAccountService, create_folder_ids_element class EmptyFolder(EWSAccountService): """ MSDN: https://docs.microsoft.com/en-us/exchange/client-developer/web-service-reference/emptyfolder """ SERVICE_NAME = 'EmptyFolder' element_container_name = None # EmptyFolder doesn't return a response object, just status in XML attrs def call(self, folders, delete_type, delete_sub_folders): return self._get_elements(payload=self.get_payload(folders=folders, delete_type=delete_type, delete_sub_folders=delete_sub_folders)) def get_payload(self, folders, delete_type, delete_sub_folders): emptyfolder = create_element( 'm:%s' % self.SERVICE_NAME, attrs=OrderedDict([ ('DeleteType', delete_type), ('DeleteSubFolders', 'true' if delete_sub_folders else 'false'), ]) ) folder_ids = create_folder_ids_element(tag='m:FolderIds', folders=folders, version=self.account.version) emptyfolder.append(folder_ids) return emptyfolder
import re from nonebot.typing import T_State from nonebot.permission import SUPERUSER from nonebot.adapters.onebot.v11 import Bot, MessageEvent, GroupMessageEvent from nonebot_plugin_guild_patch import GuildMessageEvent from nonebot.adapters.onebot.v11.permission import GROUP_OWNER, GROUP_ADMIN from .data_source import Manage block_user = Manage().on_command("封禁用户", "对目标用户进行封禁", permission=SUPERUSER) @block_user.handle() async def _ready_block_user(bot: Bot, event: MessageEvent, state: T_State): msg = str(event.message).strip() if msg: state["block_user"] = msg @block_user.got("block_user", "哪位?GKD!") async def _deal_block_user(bot: Bot, event: MessageEvent, state: T_State): user_id = f'{state["block_user"]}' quit_list = ["算了", "罢了"] if user_id in quit_list: await block_user.finish("...看来有人逃过一劫呢") is_ok = Manage().block_user(user_id) if not is_ok: await block_user.finish("kuso!封禁失败了...") await block_user.finish(f"用户 {user_id} 危!") unblock_user = Manage().on_command("解封用户", "对目标用户进行解封", permission=SUPERUSER) @unblock_user.handle() async def _ready_unblock_user(bot: Bot, event: MessageEvent, state: T_State): msg = str(event.message).strip() if msg: state["unblock_user"] = msg @unblock_user.got("unblock_user", "哪位?GKD!") async def _deal_unblock_user(bot: Bot, event: MessageEvent, state: T_State): user_id = f'{state["unblock_user"]}' quit_list = ["算了", "罢了"] if user_id in quit_list: await unblock_user.finish("...有人又得继续在小黑屋呆一阵子了") is_ok = Manage().unblock_user(user_id) if not is_ok: await unblock_user.finish("kuso!解封失败了...") await unblock_user.finish(f"好欸!{user_id} 重获新生!") block_group = Manage().on_command("封禁群", "对目标群进行封禁", permission=SUPERUSER) @block_group.handle() async def _ready_block_group(bot: Bot, event: MessageEvent, state: T_State): msg = str(event.message).strip() if msg: state["block_group"] = msg @block_group.got("block_group", "哪个群?GKD!") async def _deal_block_group(bot: Bot, event: MessageEvent, state: T_State): group_id =f'{state["block_group"]}' quit_list = ["算了", "罢了"] if group_id in quit_list: await block_group.finish("...看来有一群逃过一劫呢") is_ok = Manage().block_group(group_id) if not is_ok: await block_group.finish("kuso!封禁失败了...") await block_group.finish(f"群 {group_id} 危!") unblock_group = Manage().on_command("解封群", "对目标群进行解封", permission=SUPERUSER) @unblock_group.handle() async def _ready_unblock_group(bot: Bot, event: MessageEvent, state: T_State): msg = str(event.message).strip() if msg: state["unblock_group"] = msg @unblock_group.got("unblock_group", "哪个群?GKD!") async def _deal_unblock_group(bot: Bot, event: MessageEvent, state: T_State): group_id = f'{state["unblock_group"]}' quit_list = ["算了", "罢了"] if group_id in quit_list: await unblock_group.finish("...有一群又得继续在小黑屋呆一阵子了") is_ok = Manage().unblock_group(group_id) if not is_ok: await unblock_group.finish("kuso!解封失败了...") await unblock_group.finish(f"好欸!群 {group_id} 重获新生!") global_block_service = Manage().on_command("全局禁用", "全局禁用某服务", permission=SUPERUSER) @global_block_service.handle() async def _ready_block_service(bot: Bot, event: MessageEvent, state: T_State): msg = str(event.message).strip() if msg: state["global_block_service"] = msg @global_block_service.got("global_block_service", "阿...是哪个服务呢") async def _deal_global_block_service(bot: Bot, event: MessageEvent, state: T_State): block_service = state["global_block_service"] quit_list = ["算了", "罢了"] if block_service in quit_list: await global_block_service.finish("好吧...") is_ok = Manage().control_global_service(block_service, False) if not is_ok: await global_block_service.finish("kuso!禁用失败了...") await global_block_service.finish(f"服务 {block_service} 已被禁用") global_unblock_service = Manage().on_command("全局启用", "全局启用某服务", permission=SUPERUSER) @global_unblock_service.handle() async def _ready_unblock_service(bot: Bot, event: MessageEvent, state: T_State): msg = str(event.message).strip() if msg: state["global_unblock_service"] = msg @global_unblock_service.got("global_unblock_service", "阿...是哪个服务呢") async def _deal_global_unblock_service(bot: Bot, event: MessageEvent, state: T_State): unblock_service = state["global_unblock_service"] quit_list = ["算了", "罢了"] if unblock_service in quit_list: await global_unblock_service.finish("好吧...") is_ok = Manage().control_global_service(unblock_service, True) if not is_ok: await global_unblock_service.finish("kuso!启用服务失败了...") await global_unblock_service.finish(f"服务 {unblock_service} 已启用") user_block_service = Manage().on_regex( r"对用户(.*?)禁用(.*)", "针对某一用户禁用服务", permission=SUPERUSER ) @user_block_service.handle() async def _user_block_service(bot: Bot, event: MessageEvent): msg = str(event.message).strip() pattern = r"对用户(.*?)禁用(.*)" reg = re.findall(pattern, msg) aim_user = reg[0] aim_service = reg[1] is_ok = Manage().control_user_service(aim_service, aim_user, False) if not is_ok: await user_block_service.finish("禁用失败...请检查服务名是否正确") await user_block_service.finish(f"完成~已禁止用户 {aim_user} 使用 {aim_service}") user_unblock_service = Manage().on_regex( r"对用户(.*?)启用(.*)", "针对某一用户启用服务", permission=SUPERUSER ) @user_unblock_service.handle() async def _user_unblock_service(bot: Bot, event: MessageEvent): msg = str(event.message).strip() pattern = r"对用户(.*?)启用(.*)" reg = re.findall(pattern, msg) aim_user = reg[0] aim_service = reg[1] is_ok = Manage().control_user_service(aim_service, aim_user, True) if not is_ok: await user_unblock_service.finish("启用失败...请检查服务名是否正确,或者此人并不存在于名单中") await user_unblock_service.finish(f"完成~已允许用户 {aim_user} 使用 {aim_service}") group_block_service = Manage().on_command("禁用", "针对所在群禁用某服务", permission=SUPERUSER) @group_block_service.handle() async def _ready_group_block_service( bot: Bot, event: MessageEvent, state: T_State ): msg = str(event.message).strip() if msg: state["group_block_service"] = msg @group_block_service.got("group_block_service", "阿...是哪个服务呢") async def _deal_group_block_service(bot: Bot, event: MessageEvent, state: T_State): aim_service = state["group_block_service"] if type(event) is GroupMessageEvent: group_id = f"{event.group_id}" nick = '本群' elif type(event) is GuildMessageEvent: group_id = f'''{event.guild_id}_{event.channel_id}''' nick = '本频道' quit_list = ["算了", "罢了"] if aim_service in quit_list: await group_block_service.finish("好吧...") is_ok = Manage().control_group_service(aim_service, group_id, False) if not is_ok: await group_block_service.finish("禁用失败...请检查服务名是否输入正确") await group_block_service.finish(f"完成!~已禁止{nick}使用服务:{aim_service}") group_unblock_service = Manage().on_command( "启用", "针对所在群启用某服务", permission=SUPERUSER | GROUP_OWNER | GROUP_ADMIN ) @group_unblock_service.handle() async def _ready_group_unblock_service( bot: Bot, event: MessageEvent, state: T_State ): msg = str(event.message).strip() if msg: state["group_unblock_service"] = msg @group_unblock_service.got("group_unblock_service", "阿...是哪个服务呢") async def _deal_group_unblock_service( bot: Bot, event: MessageEvent, state: T_State ): aim_service = state["group_unblock_service"] if type(event) is GroupMessageEvent: group_id = f"{event.group_id}" nick = '本群' elif type(event) is GuildMessageEvent: group_id = f'''{event.guild_id}_{event.channel_id}''' nick = '本频道' quit_list = ["算了", "罢了"] if aim_service in quit_list: await group_unblock_service.finish("好吧...") is_ok = Manage().control_group_service(aim_service, group_id, True) if not is_ok: await group_unblock_service.finish("启用失败...请检查服务名是否输入正确,或群不存在于名单中") await group_unblock_service.finish(f"完成!~已允许{nick}使用服务:{aim_service}") get_friend_add_list = Manage().on_command("获取好友申请", "获取好友申请列表", permission=SUPERUSER) @get_friend_add_list.handle() async def _get_friend_add_list(bot: Bot, event: MessageEvent): data = Manage().load_friend_apply_list() temp_list = list() for i in data: apply_code = i apply_user = data[i]["user_id"] apply_comment = data[i]["comment"] temp_msg = f"{apply_user} | {apply_comment} | {apply_code}" temp_list.append(temp_msg) msg0 = "申请人ID | 申请信息 | 申请码\n" + "\n".join(map(str, temp_list)) msg1 = msg0 + "\nTip: 使用 同意/拒绝好友 [申请码] 以决定" await get_friend_add_list.finish(msg1) approve_friend_add = Manage().on_command("同意好友", "同意好友申请", permission=SUPERUSER) @approve_friend_add.handle() async def _ready_approve_friend_add(bot: Bot, event: MessageEvent, state: T_State): msg = str(event.message).strip() if msg: state["approve_friend_add"] = msg @approve_friend_add.got("approve_friend_add", "申请码GKD!") async def _deal_approve_friend_add(bot: Bot, event: MessageEvent, state: T_State): apply_code = state["approve_friend_add"] quit_list = ["算了", "罢了"] if apply_code in quit_list: await approve_friend_add.finish("好吧...") try: await bot.set_friend_add_request(flag=apply_code, approve=True) except BaseException: await approve_friend_add.finish("同意失败...尝试下手动?") data = Manage().load_friend_apply_list() data.pop(apply_code) Manage().save_friend_apply_list(data) await approve_friend_add.finish("好欸!申请已通过!") refuse_friend_add = Manage().on_command("拒绝好友", "拒绝好友申请", permission=SUPERUSER) @refuse_friend_add.handle() async def _ready_refuse_friend_add(bot: Bot, event: MessageEvent, state: T_State): msg = str(event.message).strip() if msg: state["refuse_friend_add"] = msg @refuse_friend_add.got("refuse_friend_add", "申请码GKD!") async def _deal_refuse_friend_add(bot: Bot, event: MessageEvent, state: T_State): apply_code = state["refuse_friend_add"] quit_list = ["算了", "罢了"] if apply_code in quit_list: await refuse_friend_add.finish("好吧...") try: await bot.set_friend_add_request(flag=apply_code, approve=False) except BaseException: await refuse_friend_add.finish("拒绝失败...尝试下手动?") data = Manage().load_friend_apply_list() data.pop(apply_code) Manage().save_friend_apply_list(data) await refuse_friend_add.finish("已拒绝!") get_group_invite_list = Manage().on_command("获取邀请列表", "获取群邀请列表", permission=SUPERUSER) @get_group_invite_list.handle() async def _get_group_invite_list(bot: Bot, event: MessageEvent): data = Manage().load_invite_apply_list() temp_list = list() for i in data: apply_code = i apply_user = data[i]["user_id"] apply_comment = data[i]["comment"] temp_msg = f"{apply_user} | {apply_comment} | {apply_code}" temp_list.append(temp_msg) msg0 = "申请人ID | 申请信息 | 申请码\n" + "\n".join(map(str, temp_list)) msg1 = msg0 + "\nTip: 使用 同意/拒绝邀请 [申请码] 以决定" await get_friend_add_list.finish(msg1) approve_group_invite = Manage().on_command("同意邀请", "同意群聊邀请", permission=SUPERUSER) @approve_group_invite.handle() async def _ready_approve_group_invite(bot: Bot, event: MessageEvent, state: T_State): msg = str(event.message).strip() if msg: state["approve_group_invite"] = msg @approve_group_invite.got("approve_group_invite", "申请码GKD!") async def _deal_approve_group_invite(bot: Bot, event: MessageEvent, state: T_State): apply_code = state["approve_group_invite"] quit_list = ["算了", "罢了"] if apply_code in quit_list: await approve_group_invite.finish("好吧...") try: await bot.set_group_add_request( flag=apply_code, sub_type="invite", approve=True ) except BaseException: await approve_group_invite.finish("同意失败...尝试下手动?") data = Manage().load_invite_apply_list() data.pop(apply_code) Manage().save_invite_apply_list(data) await approve_group_invite.finish("好欸!申请已通过!") refuse_group_invite = Manage().on_command("拒绝邀请", "拒绝群聊邀请", permission=SUPERUSER) @refuse_group_invite.handle() async def _ready_refuse_group_invite(bot: Bot, event: MessageEvent, state: T_State): msg = str(event.message).strip() if msg: state["refuse_group_invite"] = msg @refuse_group_invite.got("refuse_group_invite", "申请码GKD!") async def _deal_refuse_group_invite(bot: Bot, event: MessageEvent, state: T_State): apply_code = state["refuse_group_invite"] quit_list = ["算了", "罢了"] if apply_code in quit_list: await refuse_group_invite.finish("好吧...") try: await bot.set_group_add_request( flag=apply_code, sub_type="invite", approve=False ) except BaseException: await refuse_group_invite.finish("拒绝失败...尝试下手动?") data = Manage().load_invite_apply_list() data.pop(apply_code) Manage().save_invite_apply_list(data) await refuse_group_invite.finish("已拒绝!") # track_error = Manage().on_command("追踪", "获取报错信息,传入追踪码", aliases={"/track"}) # @track_error.handle() # async def _track_error(bot: Bot, event: MessageEvent): # track_id = str(event.message).strip() # repo = await Manage().track_error(track_id) # await track_error.finish(repo)
import torch import dsntnn def gaze_loss(targets, masks, targets_start_from, masks_start_from, coords, heatmaps, probabilities, slice_ind, interpolate_coordinates): gaze_targets = targets[targets_start_from:targets_start_from + 16*interpolate_coordinates, :].transpose(1, 0).reshape(-1, 8*interpolate_coordinates, 1, 2) gaze_masks = masks[:, masks_start_from:masks_start_from+8*interpolate_coordinates].squeeze() gaze_coords = coords[:, :, slice_ind, :] gaze_coords.unsqueeze_(2) gaze_heatmaps = heatmaps[:, :, slice_ind, :] gaze_heatmaps.unsqueeze_(2) gaze_coord_loss = calc_coord_loss(gaze_coords, gaze_heatmaps, gaze_targets, gaze_masks) return gaze_coord_loss def hand_loss(targets, masks, targets_start_from, masks_start_from, coords, heatmaps, probabilities, slice_from, interpolate_coordinates): hand_targets = targets[targets_start_from:targets_start_from + 32*interpolate_coordinates, :].transpose(1, 0).reshape(-1, 8*interpolate_coordinates, 2, 2) hand_masks = masks[:, masks_start_from:masks_start_from+16*interpolate_coordinates].reshape(-1, 2, 8*interpolate_coordinates).transpose(1, 2).squeeze() # hand_masks = masks[:, masks_start_from:masks_start_from+16].reshape(-1, 8, 2).squeeze() # for hands slice the last two elements, first is left, second is right hand hand_coords = coords[:, :, slice_from:slice_from + 2, :] hand_heatmaps = heatmaps[:, :, slice_from:slice_from + 2, :] hand_coord_loss = calc_coord_loss(hand_coords, hand_heatmaps, hand_targets, hand_masks) return hand_coord_loss def calc_coord_loss(coords, heatmaps, target_var, masks): # Per-location euclidean losses euc_losses = dsntnn.euclidean_losses(coords, target_var) # shape:[B, D, L, 2] batch, depth, locations, feature # Per-location regularization losses reg_losses = [] for i in range(heatmaps.shape[1]): hms = heatmaps[:, i] target = target_var[:, i] reg_loss = dsntnn.js_reg_losses(hms, target, sigma_t=1.0) reg_losses.append(reg_loss) reg_losses = torch.stack(reg_losses, 1) # reg_losses = dsntnn.js_reg_losses(heatmaps, target_var, sigma_t=1.0) # shape: [B, D, L, 7, 7] # Combine losses into an overall loss coord_loss = dsntnn.average_loss((euc_losses + reg_losses).squeeze(), mask=masks) return coord_loss
# Django modules. from django.urls import reverse from django.test import TestCase, Client # !Triplinker modules: # Another apps modules. from accounts.models.TLAccount_frequest import TLAccount from trip_places.models import Place # Current app modules. from .models import Journey, Participant class TestJourneysViews(TestCase): def setUp(self): self.user_1 = TLAccount.objects.create_user(first_name='John', second_name='Li', email='[email protected]', sex='M', date_of_birth='2000-10-12', country='BY', password='secret') self.client_user_1 = Client() self.client_user_1.login(username='[email protected]', password='secret') self.user_1_acc = TLAccount.objects.get(first_name='John') self.kwargs_user_1 = {'user_id': self.user_1_acc.id} # Creating Journey self.place = Place.objects.create() Participant.objects.create(participant=self.user_1) self.particapant = Participant.objects.get(participant=self.user_1) self.journey = Journey.objects.create(place_from=self.place, place_to=self.place, who_added_the_journey=self.user_1) self.particapant.journey = self.journey self.particapant.save() self.new_journey = Journey.objects.get(place_from=self.place) self.journey_kwargs = {'journey_id': self.journey.id} def test_journey_page_view(self): url = reverse('journeys:journey-page', kwargs=self.journey_kwargs) response = self.client_user_1.get(url) self.assertEquals(response.status_code, 200) def test_user_journey_list_view(self): url = reverse('journeys:journey-list', kwargs=self.kwargs_user_1) response = self.client_user_1.get(url) self.assertEquals(response.status_code, 200) def test_sort_journeys_by_date_view(self): url = reverse('journeys:sort-journeys-by-date', kwargs=self.kwargs_user_1) response = self.client_user_1.get(url) self.assertEquals(response.status_code, 200) def test_sort_journeys_by_rating_of_place_view(self): url = reverse('journeys:sort-journeys-by-rating-of-place', kwargs=self.kwargs_user_1) response = self.client_user_1.get(url) self.assertEquals(response.status_code, 200)
from dataclasses import dataclass, field @dataclass class DeliveryFailure(): pass @dataclass class SendFailure(): pass def send(to=None, cc=None, bcc=None, from_address="no-reply", from_name=None, subject=None, text=None, html=None, attachments=None, inline_attachments=None): """Send an email""" pass
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Jun 7 06:34:16 2021 @author: ayman """ import torch import torch.nn.functional as F import numpy as np class A3CGruAgent: """ Actor critic agent that returns action It applies softmax by default. """ def __init__(self, model, env, frames, episodes): self.model = model self.device = model.device self.env = env self.frames = frames self.num_actions = env.action_space.n self.episodes = episodes self.values = [] self.log_probs = [] self.entropies = [] self.rewards = [] self.reset() def step(self): """ Return actions and hidden states from given list of states. :param states: list of states :return: list of actions """ self.frames.value += 1 logit, value, self.hx = self.model(self.state, None) log_prob = F.log_softmax(logit, dim=1) prob = F.softmax(logit, dim=1) entropy = -(prob * log_prob).sum(1) action = self.select(prob) log_prob = log_prob[range(1), action] state, self.reward, self.done, _ = self.env.step(action) self.state = self.preprocess(state).to(self.device) self.reward = min(max(self.reward, -1), 1) self.values.append(value) self.entropies.append(entropy) self.rewards.append(self.reward) self.log_probs.append(log_prob) if self.done: self.episodes.value += 1 return False return True @torch.no_grad() def play(self, verbose=False): """ Return actions and hidden states from given list of states. :param states: list of states :return: list of actions """ self.clear() self.reset() while True: if verbose: self.env.render() logit, _, _ = self.model(self.state) prob = F.softmax(logit, dim=1) action = self.select(prob) state, self.reward, self.done, _ = self.env.step(action) self.rewards.append(self.reward) if self.done: if verbose: print(self.get_total_rewards()) self.reset() break self.env.close() def preprocess(self, states): """Return tensor -> (b,c,h,w).(device).""" np_states = np.expand_dims(states, 0) return torch.tensor(np_states) def select(self, prob): """Select from a probability distribution.""" # return np.random.choice(self.num_actions, p=prob.data.cpu().numpy()[0]) return prob.multinomial(1).data.cpu().numpy()[0] def get_total_rewards(self): return sum(self.rewards) def clear(self): """Use to clear all values. Use with reset if you want clean start.""" self.values.clear() self.log_probs.clear() self.entropies.clear() self.rewards.clear() if self.hx is not None: self.hx = self.hx.detach() def reset(self): """Reset the agent. Use when episode is done but want to continue training.""" self.hx = None self.reward = 0 self.done = False self.state = self.preprocess(self.env.reset()).to(self.device)
from flask import Blueprint bp = Blueprint("profiler", __name__) from wlanpi_webui.profiler import profiler
def kth_element(arr, M, K): """ Given an array arr[] of size N and two integers M and K, the task is to find the array element at the Kth index after performing following M operations on the given array. In a single operation, a new array is formed whose elements have the Bitwise XOR values of the adjacent elements of the current array. If the number of operations M or the value of K after M operations is invalid then print -1. Examples: Input: arr[] = {1, 4, 5, 6, 7}, M = 1, K = 2 Output: 3 Explanation: Since M = 1, therefore, the operation has to be performed only once on the array. The array is modified to {1^4, 4^5, 5^6, 6^7} = {5, 1, 3, 1}. The value of the element at index K = 2 in the updated array is 3. """ # Initializing array for storing resultant array temp=[] if M < 0 or M >= len(arr): return -1 for j in range (M): for i in range (len(arr)-1): value = arr[i]^arr[i+1] temp.append(value) if j < (M-1): arr = temp temp = [] if K<0 or K>len(temp): return -1 return temp[K] #Given array arr=[1,2,3,4,5,6] M=2 K=3 #Function call print(kth_element(arr,M,K))
#예제 확장... str28 = "900123-1234567" print(str28[7:8]) print("홍길동은 "+str28[0:2]+"년 "+str28[2:4]+"월 "+str28[4:6]+"일 생이다") myCitizenCode = input("주민번호를 입력하세요: ") print("\n당신은 "+myCitizenCode[0:2]+"년 "+myCitizenCode[2:4]+"월 "+myCitizenCode[4:6]+"일 생이다")
import json import uuid from django.urls import reverse from rest_framework import status from rest_framework.test import APITestCase class VaultTest(APITestCase): def test_generate_uuid(self): """ Tests that a new UUID is generated and returns previously created generated UUIDs. """ url = reverse('uuid-generator') data = {} response = self.client.post(url, data, format='json') response_data = json.loads(response.content) self.assertEqual(response.status_code, status.HTTP_201_CREATED) self.assertEqual(len(response_data), 1) response = self.client.post(url, data, format='json') response = self.client.post(url, data, format='json') response = self.client.post(url, data, format='json') response_data = json.loads(response.content) self.assertEqual(len(response_data), 4)
from pythonds.basic.deque import Deque def palchecker(a_string): chardeque = Deque() for ch in a_string: chardeque.addRear(ch) stillEqual = True while chardeque.size() > 1 and stillEqual: first = chardeque.removeFront() last = chardeque.removeRear() if first != last: stillEqual = False return stillEqual if __name__ == '__main__': a = 'lsdkjfskf' print(a, palchecker(a)) b = 'tommot' print(b, palchecker(b)) """ lsdkjfskf False tommot True """
#!/usr/bin/python # -*- coding: utf-8 -*- """The command line interface for calling pyRVT. See :doc:`usage` for more details. """ import argparse from . import __version__ from .tools import operation_psa2fa, operation_fa2psa from .motions import DEFAULT_CALC parser = argparse.ArgumentParser( prog='pyrvt', description='Compute response or Fourier amplitude spectra using RVT.') parser.add_argument( '--version', action='version', version='%(prog)s version ' + str(__version__)) parser.add_argument( 'operation', help='''Operation to be performed: [psa2fa] converts from pseudo-spectral acceleration to Fourier amplitude, and [fa2psa] converts from Fourier amplitude to pseudo-spectral acceleration.''', choices=['psa2fa', 'fa2psa']) parser.add_argument( '-i', '--input', help='''Path containing the input file(s). Supported file types are csv, xls, and xlsx -- provided the required packages have been installed. A single file or glob can be specified. An example of a glob would be "input/*_sa.xls" for all files within directory "input" ending in "_sa.xls".''', required=True) parser.add_argument( '-o', '--output', help='''Path where the output files should be created. If this directory does not exist it will be created. Default: ./output''', default='./output') parser.add_argument( '-d', '--damping', default=0.05, type=float, help='''Oscillator damping in decimal. Default: 0.05.''') parser.add_argument( '-f', '--fixed-spacing', action='store_true', help='''Fixed spacing of the oscillator period of 0.01 to 10 sec log-spaced with 100 points. Target SA values will be interpolated if needed''') parser.add_argument( '-m', '--method', default=DEFAULT_CALC, choices=['BJ84', 'BT12', 'DK85', 'LP99', 'TM87', 'V75'], help='''Specify the peak factor calculation method. Possible options are: [BJ84] Boore and Joyner (1984), [BT12] Boore and Thompson (2012), [DK85] Der Kiureghian (1985), [LP99] Liu and Pezeshk (1999), [TM87] Toro and McGuire (1987), and [V75] Vanmarcke (1975). If the BT12 method is used, then the magnitude, distance and region must be provided by the input files. If no value is provided, then '%(default)s' is used as the default.''') def main(): """Perform the command line operations.""" args = parser.parse_args() if args.operation == 'psa2fa': operation_psa2fa(args.input, args.output, args.damping, args.method, args.fixed_spacing) elif args.operation == 'fa2psa': operation_fa2psa(args.input, args.output, args.damping, args.method, args.fixed_spacing) else: raise NotImplementedError if __name__ == '__main__': main()
from tenacity import retry, stop_after_delay @retry(stop=stop_after_delay(10)) def stop_after_delay_test(): print('retry') raise Exception stop_after_delay_test() """ retry retry ~~~~~ 10秒後に止まる """
# -*- coding: utf-8 -*- from django import forms from djspace.core.models import BIRTH_YEAR_CHOICES from djspace.core.models import DISABILITY_CHOICES from djspace.core.models import REG_TYPE from djspace.core.models import GenericChoice from djspace.core.models import UserProfile from djtools.fields import BINARY_CHOICES from djtools.fields import GENDER_CHOICES from djtools.fields import SALUTATION_TITLES from djtools.fields import STATE_CHOICES from djtools.fields.localflavor import USPhoneNumberField RACES = GenericChoice.objects.filter(tags__name__in=['Race']).order_by('name') class UserForm(forms.Form): """Django User data plus salutation and second_name from profile.""" salutation = forms.CharField( widget=forms.Select(choices=SALUTATION_TITLES), max_length=16, required=False, ) first_name = forms.CharField(max_length=30) second_name = forms.CharField( label="Second name, middle name or initial", max_length=30, ) last_name = forms.CharField( max_length=30, ) class UserProfileForm(forms.ModelForm): """User profile data.""" registration_type = forms.CharField( max_length=32, widget=forms.Select(choices=REG_TYPE), ) date_of_birth = forms.DateField( label="Date of birth", widget=forms.SelectDateWidget(years=BIRTH_YEAR_CHOICES), ) gender = forms.TypedChoiceField( choices=GENDER_CHOICES, widget=forms.RadioSelect(), ) race = forms.ModelMultipleChoiceField( label="Race and Ethnicity", queryset=RACES, help_text='Check all that apply', widget=forms.CheckboxSelectMultiple(), ) tribe = forms.CharField( max_length=128, required=False, ) disability = forms.CharField( label="Disability status", widget=forms.Select(choices=DISABILITY_CHOICES), ) disability_specify = forms.CharField( label="Specify if not listed", max_length=255, required=False, ) us_citizen = forms.TypedChoiceField( label="United States Citizen", choices=BINARY_CHOICES, widget=forms.RadioSelect(), ) military = forms.TypedChoiceField( label="Have you served in the United States military?", choices=BINARY_CHOICES, widget=forms.RadioSelect(), ) address1 = forms.CharField(label="Street address", max_length=128) address2 = forms.CharField(label="", max_length=128, required=False) city = forms.CharField(max_length=128) state = forms.CharField(widget=forms.Select(choices=STATE_CHOICES)) postal_code = forms.CharField(label="Postal Code", max_length=10) address1_current = forms.CharField( label="Street address", max_length=128, required=False, ) address2_current = forms.CharField(label="", max_length=128, required=False) city_current = forms.CharField(label="City", max_length=128, required=False) state_current = forms.CharField( label="State", widget=forms.Select(choices=STATE_CHOICES), required=False, ) postal_code_current = forms.CharField( label="Postal Code", max_length=10, required=False, ) phone_primary = USPhoneNumberField( label="Primary phone", widget=forms.TextInput(attrs={'placeholder': 'eg. 123-456-7890'}), ) phone_mobile = USPhoneNumberField( label="Cell phone", widget=forms.TextInput(attrs={'placeholder': 'eg. 123-456-7890'}), ) class Meta: """Information about the form class.""" model = UserProfile exclude = ('user', 'salutation', 'second_name') fields = [ 'registration_type', 'date_of_birth', 'gender', 'race', 'tribe', 'disability', 'disability_specify', 'employment', 'military', 'us_citizen', 'address1_current', 'address2_current', 'city_current', 'state_current', 'postal_code_current', 'address1', 'address2', 'city', 'state', 'postal_code', 'phone_primary', 'phone_mobile', ] def clean(self): """Form validation.""" cd = super(UserProfileForm, self).clean() # current address is required for students if cd.get('registration_type') in {'Undergraduate', 'Graduate'}: if not cd.get('address1_current'): self._errors['address1_current'] = self.error_class( ["Required field"], ) if not cd.get('city_current'): self._errors['city_current'] = self.error_class( ["Required field"], ) if not cd.get('state_current'): self._errors['state_current'] = self.error_class( ["Required field"], ) if not cd.get('postal_code_current'): self._errors['postal_code_current'] = self.error_class( ["Required field"], ) disability_error = ( cd.get('disability') == 'I have a disability, but it is not listed' and cd.get('disability_specify') == '' ) if disability_error: self._errors['disability_specify'] = self.error_class( ["Please describe your disability"], ) return cd
"""Chapter 1: Question 8. Check if string 1 is a rotation of string 2. """ def is_rotation_slicing(s1, s2): """Uses slicing.""" if not s1: return False n = len(s1) if n != len(s2): return False for i in range(n): if s1[i:n] + s1[0:i] == s2: return True return False def is_rotation_substring(s1, s2): """Uses substring method.""" if not s1: return False n = len(s1) if n != len(s2): return False s = s1 + s1 return s2 in s
# -*- coding: utf-8 -*- from __future__ import division import numpy as np __all__ = ['cabbeling', # TODO 'isopycnal_slope_ratio', # TODO 'isopycnal_vs_ntp_CT_ratio', # TODO 'ntp_pt_vs_CT_ratio', # TODO 'thermobaric'] # TODO def cabbeling(): pass def isopycnal_slope_ratio(): pass def isopycnal_vs_ntp_CT_ratio(): pass def ntp_pt_vs_CT_ratio(): pass def thermobaric(): pass if __name__ == '__main__': import doctest doctest.testmod()
f = open("flash_data.h", "w") print("const uint32_t flash_data[] = {", file=f) for i in range(256): print(" %d," % i, file=f) print("};", file=f)
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2018 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # noqa """API公共校验方法 """ import base64 import datetime import json import arrow from dateutil.parser import parse from fta import constants from fta.utils import hooks from fta.utils import is_ip as _is_ip from fta.utils.i18n import _ class ValidateError(Exception): pass def is_json(data): try: data = json.loads(data) except BaseException: raise ValidateError(_("Invalid JSON format")) if not isinstance(data, dict): raise ValidateError(_("JSON must be dict type")) return data def fix_field_by_app(data, fields, app_id): for f in fields: data[f] = "%s:%s" % (app_id, data[f]) return data def is_required(data, fields): """检查是否存在,为空, data是合法的dict """ for field in fields: if not data.get(field): raise ValidateError(_("The field [%(field)s] does not exist or is empty", field=field)) return data def is_ip(data, fields): for field in fields: value = data[field] if not _is_ip(value): raise ValidateError(_("The field [%(field)s] is an invalid IP address", field=field)) return data def is_datetime(data, fields, format=None, replace=False, tzinfo=None): for field in fields: value = data[field] try: params = [value] if format: params.append(format) clean_value = arrow.get(*params) # 如果告警源已经有时区,则忽略tzinfo try: source_tzinfo = parse(value).tzinfo except Exception: source_tzinfo = None if source_tzinfo is None and tzinfo: clean_value = clean_value.replace(tzinfo=tzinfo) clean_value = clean_value.to('utc').format(constants.STD_ARROW_FORMAT) except BaseException: msg = _("The field [%(field)s] is an invalid time format. Time format must be like: %(time)s", field=field, time=datetime.datetime.now.strftime(format)) raise ValidateError(msg) else: if replace: data[field] = clean_value return data def is_format(data, fields, format='', replace=False): for field in fields: value = data[field] try: if format == 'json': clean_value = json.loads(value) elif format == 'base64': clean_value = base64.b64decode(value) else: clean_value = value except BaseException: raise ValidateError( _("The field [%(field)s] is in invalid %(format)s format", field=field, format=format)) else: if replace: data[field] = clean_value return data hook = hooks.HookImport('manager.www.utils.validate', fail_silently=False) hook.import_all('is_', env=locals())
# -*- coding: utf-8 -*- """ Created on Fri Apr 29 13:37:49 2016 @author: alex """
# encoding: utf-8 from bs4 import BeautifulSoup from okscraper.base import BaseScraper from okscraper.sources import UrlSource, ScraperSource from okscraper.storages import ListStorage, DictStorage from lobbyists.models import LobbyistHistory, Lobbyist, LobbyistData, LobbyistRepresent, LobbyistRepresentData from persons.models import Person from django.core.exceptions import ObjectDoesNotExist from datetime import datetime class LobbyistsIndexScraper(BaseScraper): """ This scraper gets the list of lobbyist ids from the knesset lobbyists page html returns a list of lobbyist ids - doesn't store anything in db """ def __init__(self): super(LobbyistsIndexScraper, self).__init__(self) self.source = UrlSource('http://www.knesset.gov.il/lobbyist/heb/lobbyist.aspx') self.storage = ListStorage() def _storeLobbyistIdsFromSoup(self, soup): elts = soup.findAll(lobbyist_id=True) counter = 0 for elt in elts: lobbyist_id = elt.get('lobbyist_id') if lobbyist_id.isdigit(): self.storage.store(lobbyist_id) self._getLogger().debug(lobbyist_id) counter = counter + 1 self._getLogger().info('got %s lobbyists', str(counter)) def _scrape(self): html = self.source.fetch() soup = BeautifulSoup(html) return self._storeLobbyistIdsFromSoup(soup)
from ownership import server from ownership.models import Owners import unittest import json import mock import uuid #Set up test models test_owner1 = Owners() test_owner1.lrid = 'a8098c1a-f86e-11da-bd1a-00112444be1e' test_owner1.owner_index = 1 test_owner2 = Owners() test_owner2.lrid = 'd7cd9904-2f84-11e4-b2e1-0800277f1059' test_owner2.owner_index = 2 test_owners = [test_owner1, test_owner2] class OwnershipTestCase(unittest.TestCase): def setUp(self): server.app.config['TESTING'] = True self.app = server.app.test_client() def test_server(self): response = self.app.get('/') assert response.status == '200 OK' @mock.patch('ownership.server._find_owners', return_value=test_owners) def test_get_owners(self, mock_find): data = json.dumps({"title_number":"DN100"}) response = self.app.post('/owners', data=data, content_type='application/json') assert response.data == '{"owners": [{"index": 1, "lrid": "a8098c1a-f86e-11da-bd1a-00112444be1e"}, {"index": 2, "lrid": "d7cd9904-2f84-11e4-b2e1-0800277f1059"}]}' assert response.status == '200 OK' @mock.patch('ownership.server._find_owners', return_value=[]) def test_no_owner_found(self, mock_find): data = json.dumps({"title_number":"DN200"}) response = self.app.post('/owners', data=data, content_type='application/json') assert response.data == '{"owners": []}' assert response.status == '200 OK' def test_bad_request(self): data = json.dumps({"title_incorrect_spelling":"DN100"}) response = self.app.post('/owners', data=data, content_type='application/json') assert response.data == 'title_number field not found' assert response.status == '400 BAD REQUEST' def test_incorrect_content_type(self): data = json.dumps({"title_number":"DN100"}) response = self.app.post('/owners', data=data) assert response.status == '415 UNSUPPORTED MEDIA TYPE' def test_for_invalid_json(self): response = self.app.post('/owners', data='{"title_number":DN', content_type='application/json') assert response.status == '400 BAD REQUEST' def test_health(self): response = self.app.get('/health') self.assertEqual(response.status, '200 OK')
import torch import torch.nn as nn class ARModelBase(nn.Module): def __init__(self, encoder, decoder, discriminator, lambda_auto=1.0, lambda_adv=1.0, lambda_cross=1.0): super().__init__() self.bos_ix = encoder.src_embedder.get_bos_ix() self.eos_ix = encoder.src_embedder.get_eos_ix() self.pad_ix = encoder.src_embedder.get_pad_ix() self.encoder = encoder self.decoder = decoder self.discriminator = discriminator self.lambda_auto = lambda_auto self.lambda_adv = lambda_adv self.lambda_cross = lambda_cross self.xentropy = nn.CrossEntropyLoss(ignore_index=self.pad_ix, reduction='mean') def gen_params(self): return set(self.encoder.parameters()) | set(self.decoder.parameters()) def dis_params(self): return set(self.discriminator.parameters()) def get_token_num(self, sentences): return torch.sum(sentences != self.pad_ix) def cross_entropy_loss(self, logits, targets): logits_ = logits.reshape(-1, logits.size(-1)) targets_ = targets.reshape(-1) loss = self.xentropy(logits_, targets_) return loss def auto_reconst(self, x, y, teacher, domain, noise=False): encoded = self.encoder(x, domain=domain, noise=noise) decoded = self.decoder(x, encoded['outs'], teacher=teacher, domain=domain, teacher_forcing_ratio=0.5) loss = self.cross_entropy_loss(decoded['logits'], y) return encoded['outs'], loss def cross_reconst(self, x, y, teacher, domain, noise=False): src_domain = 'src' if domain == 'src' else 'tgt' tgt_domain = 'tgt' if domain == 'src' else 'src' encoded = self.encoder(x, domain=src_domain, noise=noise) decoded = self.decoder(x, encoded['outs'], teacher=teacher, domain=tgt_domain, teacher_forcing_ratio=0.5) loss = self.cross_entropy_loss(decoded['logits'], y) return encoded['outs'], loss def adversarial(self, z, domain=None): batch_size = z.size(0) if domain == 'tgt': targets = torch.zeros(batch_size, 1).float().to(z.device) elif domain == 'src': targets = torch.ones(batch_size, 1).float().to(z.device) else: targets = None result = self.discriminator(z, targets) return result['loss'] def forward(self, src_sentences, tgt_sentences, noise=False, wrap_scalars=False): raise NotImplementedError('The AutoReconstructionModelBase class should never execute forward') class ARModel(ARModelBase): def __init__(self, encoder, decoder, discriminator, lambda_auto=1.0, lambda_adv=1.0, lambda_cross=1.0): super().__init__(encoder, decoder, discriminator, lambda_auto, lambda_adv, lambda_cross) def forward(self, src_sentences, tgt_sentences, noise=False, wrap_scalars=False): device = src_sentences.device if src_sentences is not None else tgt_sentences.device auto_loss = torch.tensor(0., device=device).float() adv_loss = torch.tensor(0., device=device).float() cross_loss = torch.tensor(0., device=device).float() num_toks = torch.tensor(0., device=device).float() if src_sentences is not None: x_src, y_src = src_sentences[:, :-1], src_sentences[:, 1:] # Reconstructing the original source sentences _, auto_loss_src = self.auto_reconst(x_src, y_src, domain='src', noise=noise) # Weighting the losses auto_loss += self.lambda_auto * auto_loss_src num_toks += self.get_token_num(src_sentences) if tgt_sentences is not None: x_tgt, y_tgt = tgt_sentences[:, :-1], tgt_sentences[:, 1:] # Reconstructing the original target sentences _, auto_loss_tgt = self.auto_reconst(x_tgt, y_tgt, domain='tgt', noise=noise) # Weighting the losses auto_loss += self.lambda_auto * auto_loss_tgt num_toks += self.get_token_num(tgt_sentences) if wrap_scalars: auto_loss = auto_loss.unsqueeze(0) adv_loss = adv_loss.unsqueeze(0) cross_loss = cross_loss.unsqueeze(0) num_toks = num_toks.unsqueeze(0) result = { 'loss': auto_loss + adv_loss + cross_loss, 'auto_loss': auto_loss, 'adv_loss': adv_loss, 'cross_loss': cross_loss, 'num_toks': num_toks } return result class AdversarialARModel(ARModelBase): def __init__(self, encoder, decoder, discriminator, lambda_auto=1.0, lambda_adv=1.0, lambda_cross=1.0): super().__init__(encoder, decoder, discriminator, lambda_auto, lambda_adv, lambda_cross) def forward(self, src_sentences, tgt_sentences, noise=False, wrap_scalars=False): device = src_sentences.device if src_sentences is not None else tgt_sentences.device auto_loss = torch.tensor(0., device=device).float() adv_loss = torch.tensor(0., device=device).float() cross_loss = torch.tensor(0., device=device).float() num_toks = torch.tensor(0., device=device).float() if src_sentences is not None: x_src, y_src = src_sentences[:, :-1], src_sentences[:, 1:] # Reconstructing the original source sentences z_src, auto_loss_src = self.auto_reconst(x_src, y_src, domain='src', noise=noise) # Adversarial loss for auto reconstruction on source sentences adv_loss_src = self.adversarial(z_src, domain='src') # Weighting the losses auto_loss += self.lambda_auto * auto_loss_src adv_loss += self.lambda_adv * adv_loss_src num_toks += self.get_token_num(src_sentences) if tgt_sentences is not None: x_tgt, y_tgt = tgt_sentences[:, :-1], tgt_sentences[:, 1:] # Reconstructing the original target sentences z_tgt, auto_loss_tgt = self.auto_reconst(x_tgt, y_tgt, domain='tgt', noise=noise) # Adversarial loss for auto reconstruction on target sentences adv_loss_tgt = self.adversarial(z_tgt, domain='tgt') # Weighting the losses auto_loss += self.lambda_auto * auto_loss_tgt adv_loss += self.lambda_adv * adv_loss_tgt num_toks += self.get_token_num(tgt_sentences) if wrap_scalars: auto_loss = auto_loss.unsqueeze(0) adv_loss = adv_loss.unsqueeze(0) cross_loss = cross_loss.unsqueeze(0) num_toks = num_toks.unsqueeze(0) result = { 'loss': auto_loss + adv_loss + cross_loss, 'auto_loss': auto_loss, 'adv_loss': adv_loss, 'cross_loss': cross_loss, 'num_toks': num_toks } return result class CrossDomainARModel(ARModelBase): def __init__(self, encoder, decoder, discriminator, lambda_auto=1.0, lambda_adv=1.0, lambda_cross=1.0): super().__init__(encoder, decoder, discriminator, lambda_auto, lambda_adv, lambda_cross) def forward(self, src_sentences, tgt_sentences, noise=False, wrap_scalars=False): device = src_sentences.device auto_loss = torch.tensor(0., device=device).float() adv_loss = torch.tensor(0., device=device).float() cross_loss = torch.tensor(0., device=device).float() num_toks = torch.tensor(0., device=device).float() x_src, y_src = src_sentences[:, :-1], src_sentences[:, 1:] x_tgt, y_tgt = tgt_sentences[:, :-1], tgt_sentences[:, 1:] # Reconstructing the original sentences z_src, auto_loss_src = self.auto_reconst(x_src, y_src, teacher=x_src, domain='src', noise=noise) z_tgt, auto_loss_tgt = self.auto_reconst(x_tgt, y_tgt, teacher=x_tgt, domain='tgt', noise=noise) # Adversarial loss for auto reconstruction adv_loss_src = self.adversarial(z_src, domain='src') adv_loss_tgt = self.adversarial(z_tgt, domain='tgt') # Weighting the losses auto_loss += self.lambda_auto * (auto_loss_src + auto_loss_tgt) adv_loss += self.lambda_adv * (adv_loss_src + adv_loss_tgt) num_toks += self.get_token_num(src_sentences) + self.get_token_num(tgt_sentences) if self.lambda_cross != 0: # Getting the mappings between domains to do cross-domain reconstruction fake_x_tgt = self.decoder.generate(z_src, x_src.size(1), 1.0, 'greedy', 'tgt', device, strip=False) fake_x_src = self.decoder.generate(z_tgt, x_tgt.size(1), 1.0, 'greedy', 'src', device, strip=False) # Reconstructing the mapped fake_x to the original domain cross_z_tgt, cross_loss_src = self.cross_reconst(fake_x_tgt, y_src, teacher=x_src, domain='tgt') cross_z_src, cross_loss_tgt = self.cross_reconst(fake_x_src, y_tgt, teacher=x_tgt, domain='src') # Adversarial loss for cross-domain reconstruction adv_cross_loss_src = self.adversarial(cross_z_tgt, domain='tgt') adv_cross_loss_tgt = self.adversarial(cross_z_src, domain='src') # Weighting the losses adv_loss += self.lambda_adv * (adv_cross_loss_src + adv_cross_loss_tgt) cross_loss += self.lambda_cross * (cross_loss_src + cross_loss_tgt) if wrap_scalars: auto_loss = auto_loss.unsqueeze(0) adv_loss = adv_loss.unsqueeze(0) cross_loss = cross_loss.unsqueeze(0) num_toks = num_toks.unsqueeze(0) result = { 'loss': auto_loss + adv_loss + cross_loss, 'auto_loss': auto_loss, 'adv_loss': adv_loss, 'cross_loss': cross_loss, 'num_toks': num_toks } return result
import numpy as np from numpy import array import matplotlib.pyplot as plt import seaborn as sns sns.set_context("poster") sns.set(rc={'figure.figsize': (8, 6.)}) sns.set_style("whitegrid") def target(training, test, valid): plt.figure() plt.title('Target function performance training vs validation data') plt.plot(training, label='training'); plt.plot(test, label='test'); plt.plot(valid, label='validation'); plt.legend() def misclassification(training, test, valid): plt.figure() plt.title('Classification accuracy') plt.plot(training, label='training'); plt.plot(test, label='test'); plt.plot(valid, label='validation'); plt.legend() def hinton(matrix, max_weight=None, ax=None): """Draw Hinton diagram for visualizing a weight matrix.""" ax = ax if ax is not None else plt.gca() if not max_weight: max_weight = 2 ** np.ceil(np.log(np.abs(matrix).max()) / np.log(2)) ax.patch.set_facecolor('gray') ax.set_aspect('equal', 'box') ax.xaxis.set_major_locator(plt.NullLocator()) ax.yaxis.set_major_locator(plt.NullLocator()) for (x, y), w in np.ndenumerate(matrix): color = 'white' if w > 0 else 'black' size = np.sqrt(np.abs(w) / max_weight) rect = plt.Rectangle([x - size / 2, y - size / 2], size, size, facecolor=color, edgecolor=color) ax.add_patch(rect) ax.autoscale_view() ax.invert_yaxis() def update_line(hl, new_data): hl.set_xdata(numpy.append(hl.get_xdata(), new_data)) hl.set_ydata(numpy.append(hl.get_ydata(), new_data)) plt.draw()
print('DIVISÃO EM PYTHON\n') try: a = int(input('Numerador: ')) b = int(input('Denominador: ')) r = a / b except (ValueError, TypeError) as erro1: print(f'Ocorreu um erro com os valores que introduziu.') except ZeroDivisionError as erro2: print('Não é possível dividir por 0.') except KeyboardInterrupt as erro3: print('Não inseriu od dados!') except Exception as erro: # Catch-all exception print(f'O erro foi causado por {erro.__cause__}') else: print(f'O resultado da divisão é {r:.2}') finally: print('\nEspero que o preograma tenha sido útil!')
import turtle as t import random #---------------------------------------# # SCREEN SETUP # #---------------------------------------# width = 10 height = 5 t.setup(width*100+20,height*100+20) screen = t.Screen() screen.title("Captain Planet") screen.screensize(width*100,height*100) right = 100*(width/2-1) top = 100*height/2 screen.bgpic("bgpic.gif") #GLOBAL TURN turn = 0 #---------------------------------------# # POLLUTION'S ENDLESS MARCH # #---------------------------------------# t.register_shape("square", ((0,0),(0,50), (50,50), (50,0))) waste = t.Turtle() waste.ht() waste.up() waste.speed(0) waste.shape("square") waste.goto(right, 0) def waste_left(): global waste waste.goto(waste.pos()[0]-55, waste.pos()[1]) def pollute(): global waste waste.stamp() if random.random() > 0.3: waste.goto(waste.pos()[0], waste.pos()[1]+random.triangular(-55,55)) else: waste_left() #---------------------------------------# # CLICK LISTENERS # #---------------------------------------# elements = [ "earth","fire","wind","water","heart"] colors = ["brown", "orange", "grey", "blue", "red"] heroes = [] for i in range(len(elements)): t.register_shape(elements[i]+".gif") t1 = t.Turtle() t1.shape(elements[i]+".gif") t1.up() t1.goto(50+122*(i-1), -100) heroes.append(t1) def click(x,y): global turn reset_state() screen.onclick(None) #Stop Listening heroes[turn%(len(heroes))].goto(x,y) #Move pollute() turn += 1 screen.onclick(click) #Listen again screen.onclick(click) #---------------------------------------# # KEYBOARD LISTENERS: (num keys 1-5) # #---------------------------------------# connector = t.Turtle() connector.pensize(10) connector.up() state = [] def reset_state(): global state, connector connector.clear() #Clear all lines. connector.up() #Connector ready for next sequence. state = [] #State initialized def captain_planet(): global state, connector print ("Captain Planet!") print (state) reset_state() def command(key): global state, connector, colors def f(): global state, connector, colors if len(state) > 0 and key in state[1:]: return #Begin Move to hero for i in range(len(heroes)): screen.onkey(None, str(i+1)) #Stop listening connector.goto(heroes[key].pos()) #Move for i in range(len(heroes)): screen.onkey(command(i), str(i+1)) #Listen again. #End Move connector.down() connector.pencolor(colors[key]) if len(state)>0 and state[0] == key: captain_planet() else: state.append(key) return f for i in range(len(heroes)): screen.onkey(command(i), str(i+1)) screen.listen() #---------------------------------------# # MAIN LOOP # #---------------------------------------# t.mainloop()
''' Given a non-empty binary search tree and a target value, find the value in the BST that is closest to the target. Note: Given target value is a floating point. You are guaranteed to have only one unique value in the BST that is closest to the target. Example: Input: root = [4,2,5,1,3], target = 3.714286 4 / \ 2 5 / \ 1 3 Output: 4 ''' # Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution(object): def closestValue(self, root, target): """ :type root: TreeNode :type target: float :rtype: int """ res = [root.val] self.find(root, target, res) return res[0] def find(self, node, target, res): if abs(res[0] - target) > abs(node.val - target): res[0] = node.val if node.left: self.find(node.left, target, res) if node.right: self.find(node.right, target, res)
from header import * from .utils import * from .util_func import * class BERTDualInferenceContextDataset(Dataset): def __init__(self, vocab, path, **args): self.args = args self.vocab = vocab self.vocab.add_tokens(['[EOS]']) self.pad = self.vocab.convert_tokens_to_ids('[PAD]') self.sep = self.vocab.convert_tokens_to_ids('[SEP]') self.eos = self.vocab.convert_tokens_to_ids('[EOS]') self.cls = self.vocab.convert_tokens_to_ids('[CLS]') suffix = args['tokenizer'].replace('/', '_') self.pp_path = f'{os.path.split(path)[0]}/inference_ctx_{suffix}.pt' if os.path.exists(self.pp_path): self.data = torch.load(self.pp_path) print(f'[!] load preprocessed file from {self.pp_path}') return None data = read_text_data_utterances(path, lang=self.args['lang']) self.data = [] for label, utterances in tqdm(data): if label == 0: continue item = self.vocab.batch_encode_plus(utterances, add_special_tokens=False)['input_ids'] ids = [] for u in item[:-1]: ids.extend(u + [self.eos]) ids.pop() ids = ids[-self.args['max_len']+2:] ids = [self.cls] + ids + [self.sep] self.data.append({ 'ids': ids, 'context': utterances[:-1], 'response': utterances[-1], }) def __len__(self): return len(self.data) def __getitem__(self, i): bundle = self.data[i] ids = torch.LongTensor(bundle['ids']) context = bundle['context'] response = bundle['response'] return ids, context, response def save(self): data = torch.save(self.data, self.pp_path) print(f'[!] save preprocessed dataset into {self.pp_path}') def collate(self, batch): ids = [i[0] for i in batch] context = [i[1] for i in batch] response = [i[2] for i in batch] ids = pad_sequence(ids, batch_first=True, padding_value=self.pad) ids_mask = generate_mask(ids) ids, ids_mask = to_cuda(ids, ids_mask) return { 'ids': ids, 'mask': ids_mask, 'context': context, 'response': response } class BERTDualInferenceFullContextDataset(Dataset): def __init__(self, vocab, path, **args): self.args = args self.vocab = vocab self.vocab.add_tokens(['[EOS]']) self.pad = self.vocab.convert_tokens_to_ids('[PAD]') self.sep = self.vocab.convert_tokens_to_ids('[SEP]') self.eos = self.vocab.convert_tokens_to_ids('[EOS]') self.cls = self.vocab.convert_tokens_to_ids('[CLS]') suffix = args['tokenizer'].replace('/', '_') self.pp_path = f'{os.path.split(path)[0]}/inference_full_ctx_{suffix}.pt' if os.path.exists(self.pp_path): self.data = torch.load(self.pp_path) print(f'[!] load preprocessed file from {self.pp_path}') return None data = read_text_data_utterances_full(path, lang=self.args['lang'], turn_length=args['full_turn_length']) self.data = [] for label, utterances in tqdm(data): if label == 0: continue item = self.vocab.batch_encode_plus(utterances, add_special_tokens=False)['input_ids'] ids = [] for u in item[:-1]: ids.extend(u + [self.eos]) ids.pop() ids = ids[-self.args['max_len']+2:] ids = [self.cls] + ids + [self.sep] self.data.append({ 'ids': ids, 'context': utterances[:-1], 'response': utterances[-1], }) def __len__(self): return len(self.data) def __getitem__(self, i): bundle = self.data[i] ids = torch.LongTensor(bundle['ids']) context = bundle['context'] response = bundle['response'] return ids, context, response def save(self): data = torch.save(self.data, self.pp_path) print(f'[!] save preprocessed dataset into {self.pp_path}') def collate(self, batch): ids = [i[0] for i in batch] context = [i[1] for i in batch] response = [i[2] for i in batch] ids = pad_sequence(ids, batch_first=True, padding_value=self.pad) ids_mask = generate_mask(ids) ids, ids_mask = to_cuda(ids, ids_mask) return { 'ids': ids, 'mask': ids_mask, 'context': context, 'response': response } class BERTDualInferenceFullContextSingleExtendDataset(Dataset): '''each in-dataset utterance will be treated as the extended context for training''' def __init__(self, vocab, path, **args): self.args = args self.vocab = vocab self.vocab.add_tokens(['[EOS]']) self.pad = self.vocab.convert_tokens_to_ids('[PAD]') self.sep = self.vocab.convert_tokens_to_ids('[SEP]') self.eos = self.vocab.convert_tokens_to_ids('[EOS]') self.cls = self.vocab.convert_tokens_to_ids('[CLS]') suffix = args['tokenizer'].replace('/', '_') self.pp_path = f'{os.path.split(path)[0]}/inference_full_ctx_ext_{suffix}.pt' if os.path.exists(self.pp_path): self.data = torch.load(self.pp_path) print(f'[!] load preprocessed file from {self.pp_path}') return None data = read_response_data_full(path, lang=self.args['lang'], turn_length=5) self.data = [] for utterance in tqdm(data): ids = self.vocab.encode(utterance, add_special_tokens=False) ids = ids[-self.args['max_len']+2:] ids = [self.cls] + ids + [self.sep] self.data.append({ 'ids': ids, 'context': utterance, }) def __len__(self): return len(self.data) def __getitem__(self, i): bundle = self.data[i] ids = torch.LongTensor(bundle['ids']) context = bundle['context'] return ids, context def save(self): data = torch.save(self.data, self.pp_path) print(f'[!] save preprocessed dataset into {self.pp_path}') def collate(self, batch): ids = [i[0] for i in batch] context = [i[1] for i in batch] ids = pad_sequence(ids, batch_first=True, padding_value=self.pad) ids_mask = generate_mask(ids) ids, ids_mask = to_cuda(ids, ids_mask) return { 'ids': ids, 'mask': ids_mask, 'context': context, 'response': context, }