Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
semantic-similarity-classification
Size:
10K - 100K
ArXiv:
License:
metadata
annotations_creators:
- expert-annotated
language:
- asm
- ben
- bho
- ell
- guj
- kan
- mar
- ory
- pan
- rus
- san
- tam
- tur
license: unknown
multilinguality: translated
task_categories:
- text-classification
task_ids:
- semantic-similarity-classification
tags:
- mteb
- text
dataset_info:
- config_name: assamese
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: labels
dtype: int64
splits:
- name: test
num_bytes: 565556
num_examples: 1365
download_size: 230705
dataset_size: 565556
- config_name: bengali
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: labels
dtype: int64
splits:
- name: test
num_bytes: 567227
num_examples: 1365
download_size: 223053
dataset_size: 567227
- config_name: bhojpuri
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: labels
dtype: int64
splits:
- name: test
num_bytes: 549145
num_examples: 1365
download_size: 220031
dataset_size: 549145
- config_name: greek
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: labels
dtype: int64
splits:
- name: test
num_bytes: 446843
num_examples: 1365
download_size: 224614
dataset_size: 446843
- config_name: gujrati
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: labels
dtype: int64
splits:
- name: test
num_bytes: 550823
num_examples: 1365
download_size: 224504
dataset_size: 550823
- config_name: kannada
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: labels
dtype: int64
splits:
- name: test
num_bytes: 622208
num_examples: 1365
download_size: 239158
dataset_size: 622208
- config_name: marathi
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: labels
dtype: int64
splits:
- name: test
num_bytes: 569028
num_examples: 1365
download_size: 225578
dataset_size: 569028
- config_name: odiya
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: labels
dtype: int64
splits:
- name: test
num_bytes: 571151
num_examples: 1365
download_size: 228006
dataset_size: 571151
- config_name: punjabi
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: labels
dtype: int64
splits:
- name: test
num_bytes: 565812
num_examples: 1365
download_size: 224326
dataset_size: 565812
- config_name: russian
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: labels
dtype: int64
splits:
- name: test
num_bytes: 418863
num_examples: 1365
download_size: 213532
dataset_size: 418863
- config_name: sanskrit
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: labels
dtype: int64
splits:
- name: test
num_bytes: 598335
num_examples: 1365
download_size: 235984
dataset_size: 598335
- config_name: tamil
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: labels
dtype: int64
splits:
- name: test
num_bytes: 676943
num_examples: 1365
download_size: 245022
dataset_size: 676943
- config_name: turkish
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: labels
dtype: int64
splits:
- name: test
num_bytes: 246707
num_examples: 1365
download_size: 156292
dataset_size: 246707
configs:
- config_name: assamese
data_files:
- split: test
path: assamese/test-*
- config_name: bengali
data_files:
- split: test
path: bengali/test-*
- config_name: bhojpuri
data_files:
- split: test
path: bhojpuri/test-*
- config_name: greek
data_files:
- split: test
path: greek/test-*
- config_name: gujrati
data_files:
- split: test
path: gujrati/test-*
- config_name: kannada
data_files:
- split: test
path: kannada/test-*
- config_name: marathi
data_files:
- split: test
path: marathi/test-*
- config_name: odiya
data_files:
- split: test
path: odiya/test-*
- config_name: punjabi
data_files:
- split: test
path: punjabi/test-*
- config_name: russian
data_files:
- split: test
path: russian/test-*
- config_name: sanskrit
data_files:
- split: test
path: sanskrit/test-*
- config_name: tamil
data_files:
- split: test
path: tamil/test-*
- config_name: turkish
data_files:
- split: test
path: turkish/test-*
This is subset of 'XNLI 2.0: Improving XNLI dataset and performance on Cross Lingual Understanding' with languages that were not part of the original XNLI plus three (verified) languages that are not strongly covered in MTEB
Task category | t2t |
Domains | Non-fiction, Fiction, Government, Written |
Reference | https://arxiv.org/pdf/2301.06527 |
How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
import mteb
task = mteb.get_tasks(["XNLIV2"])
evaluator = mteb.MTEB(task)
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
To learn more about how to run models on mteb
task check out the GitHub repitory.
Citation
If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.
@inproceedings{upadhyay2023xnli,
author = {Upadhyay, Ankit Kumar and Upadhya, Harsit Kumar},
booktitle = {2023 IEEE 8th International Conference for Convergence in Technology (I2CT)},
organization = {IEEE},
pages = {1--6},
title = {XNLI 2.0: Improving XNLI dataset and performance on Cross Lingual Understanding (XLU)},
year = {2023},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
Dataset Statistics
Dataset Statistics
The following code contains the descriptive statistics from the task. These can also be obtained using:
import mteb
task = mteb.get_task("XNLIV2")
desc_stats = task.metadata.descriptive_stats
{
"test": {
"num_samples": 17745,
"number_of_characters": 2778287,
"unique_pairs": 17745,
"min_sentence1_length": 5,
"avg_sentence1_length": 105.99329388560157,
"max_sentence1_length": 339,
"unique_sentence1": 14234,
"min_sentence2_length": 8,
"avg_sentence2_length": 50.57402085094393,
"max_sentence2_length": 162,
"unique_sentence2": 17745,
"unique_labels": 2,
"labels": {
"0": {
"count": 8879
},
"1": {
"count": 8866
}
}
}
}
This dataset card was automatically generated using MTEB