Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
XNLIV2 / README.md
Samoed's picture
Add dataset card
a1ab75b verified
metadata
annotations_creators:
  - expert-annotated
language:
  - asm
  - ben
  - bho
  - ell
  - guj
  - kan
  - mar
  - ory
  - pan
  - rus
  - san
  - tam
  - tur
license: unknown
multilinguality: translated
task_categories:
  - text-classification
task_ids:
  - semantic-similarity-classification
tags:
  - mteb
  - text
dataset_info:
  - config_name: assamese
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
      - name: labels
        dtype: int64
    splits:
      - name: test
        num_bytes: 565556
        num_examples: 1365
    download_size: 230705
    dataset_size: 565556
  - config_name: bengali
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
      - name: labels
        dtype: int64
    splits:
      - name: test
        num_bytes: 567227
        num_examples: 1365
    download_size: 223053
    dataset_size: 567227
  - config_name: bhojpuri
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
      - name: labels
        dtype: int64
    splits:
      - name: test
        num_bytes: 549145
        num_examples: 1365
    download_size: 220031
    dataset_size: 549145
  - config_name: greek
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
      - name: labels
        dtype: int64
    splits:
      - name: test
        num_bytes: 446843
        num_examples: 1365
    download_size: 224614
    dataset_size: 446843
  - config_name: gujrati
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
      - name: labels
        dtype: int64
    splits:
      - name: test
        num_bytes: 550823
        num_examples: 1365
    download_size: 224504
    dataset_size: 550823
  - config_name: kannada
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
      - name: labels
        dtype: int64
    splits:
      - name: test
        num_bytes: 622208
        num_examples: 1365
    download_size: 239158
    dataset_size: 622208
  - config_name: marathi
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
      - name: labels
        dtype: int64
    splits:
      - name: test
        num_bytes: 569028
        num_examples: 1365
    download_size: 225578
    dataset_size: 569028
  - config_name: odiya
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
      - name: labels
        dtype: int64
    splits:
      - name: test
        num_bytes: 571151
        num_examples: 1365
    download_size: 228006
    dataset_size: 571151
  - config_name: punjabi
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
      - name: labels
        dtype: int64
    splits:
      - name: test
        num_bytes: 565812
        num_examples: 1365
    download_size: 224326
    dataset_size: 565812
  - config_name: russian
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
      - name: labels
        dtype: int64
    splits:
      - name: test
        num_bytes: 418863
        num_examples: 1365
    download_size: 213532
    dataset_size: 418863
  - config_name: sanskrit
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
      - name: labels
        dtype: int64
    splits:
      - name: test
        num_bytes: 598335
        num_examples: 1365
    download_size: 235984
    dataset_size: 598335
  - config_name: tamil
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
      - name: labels
        dtype: int64
    splits:
      - name: test
        num_bytes: 676943
        num_examples: 1365
    download_size: 245022
    dataset_size: 676943
  - config_name: turkish
    features:
      - name: sentence1
        dtype: string
      - name: sentence2
        dtype: string
      - name: labels
        dtype: int64
    splits:
      - name: test
        num_bytes: 246707
        num_examples: 1365
    download_size: 156292
    dataset_size: 246707
configs:
  - config_name: assamese
    data_files:
      - split: test
        path: assamese/test-*
  - config_name: bengali
    data_files:
      - split: test
        path: bengali/test-*
  - config_name: bhojpuri
    data_files:
      - split: test
        path: bhojpuri/test-*
  - config_name: greek
    data_files:
      - split: test
        path: greek/test-*
  - config_name: gujrati
    data_files:
      - split: test
        path: gujrati/test-*
  - config_name: kannada
    data_files:
      - split: test
        path: kannada/test-*
  - config_name: marathi
    data_files:
      - split: test
        path: marathi/test-*
  - config_name: odiya
    data_files:
      - split: test
        path: odiya/test-*
  - config_name: punjabi
    data_files:
      - split: test
        path: punjabi/test-*
  - config_name: russian
    data_files:
      - split: test
        path: russian/test-*
  - config_name: sanskrit
    data_files:
      - split: test
        path: sanskrit/test-*
  - config_name: tamil
    data_files:
      - split: test
        path: tamil/test-*
  - config_name: turkish
    data_files:
      - split: test
        path: turkish/test-*

XNLIV2

An MTEB dataset
Massive Text Embedding Benchmark

This is subset of 'XNLI 2.0: Improving XNLI dataset and performance on Cross Lingual Understanding' with languages that were not part of the original XNLI plus three (verified) languages that are not strongly covered in MTEB

Task category t2t
Domains Non-fiction, Fiction, Government, Written
Reference https://arxiv.org/pdf/2301.06527

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["XNLIV2"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@inproceedings{upadhyay2023xnli,
  author = {Upadhyay, Ankit Kumar and Upadhya, Harsit Kumar},
  booktitle = {2023 IEEE 8th International Conference for Convergence in Technology (I2CT)},
  organization = {IEEE},
  pages = {1--6},
  title = {XNLI 2.0: Improving XNLI dataset and performance on Cross Lingual Understanding (XLU)},
  year = {2023},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("XNLIV2")

desc_stats = task.metadata.descriptive_stats
{
    "test": {
        "num_samples": 17745,
        "number_of_characters": 2778287,
        "unique_pairs": 17745,
        "min_sentence1_length": 5,
        "avg_sentence1_length": 105.99329388560157,
        "max_sentence1_length": 339,
        "unique_sentence1": 14234,
        "min_sentence2_length": 8,
        "avg_sentence2_length": 50.57402085094393,
        "max_sentence2_length": 162,
        "unique_sentence2": 17745,
        "unique_labels": 2,
        "labels": {
            "0": {
                "count": 8879
            },
            "1": {
                "count": 8866
            }
        }
    }
}

This dataset card was automatically generated using MTEB