Datasets:
Tasks:
Text Ranking
Modalities:
Text
Formats:
parquet
Languages:
French
Size:
10K - 100K
ArXiv:
License:
Dataset Viewer
query-id
string | corpus-id
string | score
int64 |
---|---|---|
test_query0 | apositive_test_query0_00000 | 1 |
test_query0 | apositive_test_query0_00001 | 1 |
test_query0 | negative_test_query0_00000 | 0 |
test_query0 | negative_test_query0_00001 | 0 |
test_query0 | negative_test_query0_00002 | 0 |
test_query0 | negative_test_query0_00003 | 0 |
test_query0 | negative_test_query0_00004 | 0 |
test_query0 | negative_test_query0_00005 | 0 |
test_query0 | negative_test_query0_00006 | 0 |
test_query0 | negative_test_query0_00007 | 0 |
test_query0 | negative_test_query0_00008 | 0 |
test_query0 | negative_test_query0_00009 | 0 |
test_query1 | apositive_test_query1_00000 | 1 |
test_query1 | negative_test_query1_00000 | 0 |
test_query1 | negative_test_query1_00001 | 0 |
test_query1 | negative_test_query1_00002 | 0 |
test_query1 | negative_test_query1_00003 | 0 |
test_query1 | negative_test_query1_00004 | 0 |
test_query1 | negative_test_query1_00005 | 0 |
test_query1 | negative_test_query1_00006 | 0 |
test_query1 | negative_test_query1_00007 | 0 |
test_query1 | negative_test_query1_00008 | 0 |
test_query2 | apositive_test_query2_00000 | 1 |
test_query2 | apositive_test_query2_00001 | 1 |
test_query2 | negative_test_query2_00000 | 0 |
test_query2 | negative_test_query2_00001 | 0 |
test_query2 | negative_test_query2_00002 | 0 |
test_query2 | negative_test_query2_00003 | 0 |
test_query2 | negative_test_query2_00004 | 0 |
test_query2 | negative_test_query2_00005 | 0 |
test_query2 | negative_test_query2_00006 | 0 |
test_query2 | negative_test_query2_00007 | 0 |
test_query2 | negative_test_query2_00008 | 0 |
test_query2 | negative_test_query2_00009 | 0 |
test_query3 | apositive_test_query3_00000 | 1 |
test_query3 | negative_test_query3_00000 | 0 |
test_query3 | negative_test_query3_00001 | 0 |
test_query3 | negative_test_query3_00002 | 0 |
test_query3 | negative_test_query3_00003 | 0 |
test_query3 | negative_test_query3_00004 | 0 |
test_query3 | negative_test_query3_00005 | 0 |
test_query3 | negative_test_query3_00006 | 0 |
test_query3 | negative_test_query3_00007 | 0 |
test_query3 | negative_test_query3_00008 | 0 |
test_query3 | negative_test_query3_00009 | 0 |
test_query4 | apositive_test_query4_00000 | 1 |
test_query4 | negative_test_query4_00000 | 0 |
test_query4 | negative_test_query4_00001 | 0 |
test_query4 | negative_test_query4_00002 | 0 |
test_query4 | negative_test_query4_00003 | 0 |
test_query4 | negative_test_query4_00004 | 0 |
test_query4 | negative_test_query4_00005 | 0 |
test_query4 | negative_test_query4_00006 | 0 |
test_query4 | negative_test_query4_00007 | 0 |
test_query4 | negative_test_query4_00008 | 0 |
test_query5 | apositive_test_query5_00000 | 1 |
test_query5 | negative_test_query5_00000 | 0 |
test_query5 | negative_test_query5_00001 | 0 |
test_query5 | negative_test_query5_00002 | 0 |
test_query5 | negative_test_query5_00003 | 0 |
test_query5 | negative_test_query5_00004 | 0 |
test_query5 | negative_test_query5_00005 | 0 |
test_query5 | negative_test_query5_00006 | 0 |
test_query5 | negative_test_query5_00007 | 0 |
test_query5 | negative_test_query5_00008 | 0 |
test_query5 | negative_test_query5_00009 | 0 |
test_query6 | apositive_test_query6_00000 | 1 |
test_query6 | negative_test_query6_00000 | 0 |
test_query6 | negative_test_query6_00001 | 0 |
test_query6 | negative_test_query6_00002 | 0 |
test_query6 | negative_test_query6_00003 | 0 |
test_query6 | negative_test_query6_00004 | 0 |
test_query6 | negative_test_query6_00005 | 0 |
test_query6 | negative_test_query6_00006 | 0 |
test_query6 | negative_test_query6_00007 | 0 |
test_query6 | negative_test_query6_00008 | 0 |
test_query6 | negative_test_query6_00009 | 0 |
test_query7 | apositive_test_query7_00000 | 1 |
test_query7 | apositive_test_query7_00001 | 1 |
test_query7 | negative_test_query7_00000 | 0 |
test_query7 | negative_test_query7_00001 | 0 |
test_query7 | negative_test_query7_00002 | 0 |
test_query7 | negative_test_query7_00003 | 0 |
test_query7 | negative_test_query7_00004 | 0 |
test_query7 | negative_test_query7_00005 | 0 |
test_query7 | negative_test_query7_00006 | 0 |
test_query7 | negative_test_query7_00007 | 0 |
test_query8 | apositive_test_query8_00000 | 1 |
test_query8 | negative_test_query8_00000 | 0 |
test_query8 | negative_test_query8_00001 | 0 |
test_query8 | negative_test_query8_00002 | 0 |
test_query8 | negative_test_query8_00003 | 0 |
test_query8 | negative_test_query8_00004 | 0 |
test_query8 | negative_test_query8_00005 | 0 |
test_query8 | negative_test_query8_00006 | 0 |
test_query8 | negative_test_query8_00007 | 0 |
test_query8 | negative_test_query8_00008 | 0 |
test_query9 | apositive_test_query9_00000 | 1 |
test_query9 | negative_test_query9_00000 | 0 |
test_query9 | negative_test_query9_00001 | 0 |
End of preview. Expand
in Data Studio
AlloprofReranking
This dataset was provided by AlloProf, an organisation in Quebec, Canada offering resources and a help forum curated by a large number of teachers to students on all subjects taught from in primary and secondary school
This dataset is included as a task in
mteb
.
- Task category: t2t
- Domains: ['Web', 'Academic', 'Written']
How to evaluate on this task
import mteb
task = mteb.get_tasks(["AlloprofReranking"])
evaluator = mteb.MTEB(task)
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
Reference: https://huggingface.co/datasets/antoinelb7/alloprof
Citation
If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.
@misc{lef23,
doi = {10.48550/ARXIV.2302.07738},
url = {https://arxiv.org/abs/2302.07738},
author = {Lefebvre-Brossard, Antoine and Gazaille, Stephane and Desmarais, Michel C.},
keywords = {Computation and Language (cs.CL), Information Retrieval (cs.IR), Machine Learning (cs.LG), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Alloprof: a new French question-answer education dataset and its use in an information retrieval case study},
publisher = {arXiv},
year = {2023},
copyright = {Creative Commons Attribution Non Commercial Share Alike 4.0 International}
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
Dataset Statistics
{
"test": {
"num_samples": 27355,
"number_of_characters": 102329333,
"num_documents": 25039,
"min_document_length": 42,
"average_document_length": 4071.0077079755583,
"max_document_length": 47972,
"unique_documents": 25039,
"num_queries": 2316,
"min_query_length": 8,
"average_query_length": 170.71286701208982,
"max_query_length": 2863,
"unique_queries": 2316,
"none_queries": 0,
"num_relevant_docs": 25039,
"min_relevant_docs_per_query": 10,
"average_relevant_docs_per_query": 1.2845423143350605,
"max_relevant_docs_per_query": 37,
"unique_relevant_docs": 25039,
"num_instructions": null,
"min_instruction_length": null,
"average_instruction_length": null,
"max_instruction_length": null,
"unique_instructions": null,
"num_top_ranked": 2316,
"min_top_ranked_per_query": 10,
"average_top_ranked_per_query": 10.811312607944732,
"max_top_ranked_per_query": 37
}
}
- Downloads last month
- 69