Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Languages:
French
ArXiv:
Libraries:
Datasets
pandas
License:
Dataset Viewer
Auto-converted to Parquet
query-id
string
corpus-id
string
score
int64
test_query0
apositive_test_query0_00000
1
test_query0
apositive_test_query0_00001
1
test_query0
negative_test_query0_00000
0
test_query0
negative_test_query0_00001
0
test_query0
negative_test_query0_00002
0
test_query0
negative_test_query0_00003
0
test_query0
negative_test_query0_00004
0
test_query0
negative_test_query0_00005
0
test_query0
negative_test_query0_00006
0
test_query0
negative_test_query0_00007
0
test_query0
negative_test_query0_00008
0
test_query0
negative_test_query0_00009
0
test_query1
apositive_test_query1_00000
1
test_query1
negative_test_query1_00000
0
test_query1
negative_test_query1_00001
0
test_query1
negative_test_query1_00002
0
test_query1
negative_test_query1_00003
0
test_query1
negative_test_query1_00004
0
test_query1
negative_test_query1_00005
0
test_query1
negative_test_query1_00006
0
test_query1
negative_test_query1_00007
0
test_query1
negative_test_query1_00008
0
test_query2
apositive_test_query2_00000
1
test_query2
apositive_test_query2_00001
1
test_query2
negative_test_query2_00000
0
test_query2
negative_test_query2_00001
0
test_query2
negative_test_query2_00002
0
test_query2
negative_test_query2_00003
0
test_query2
negative_test_query2_00004
0
test_query2
negative_test_query2_00005
0
test_query2
negative_test_query2_00006
0
test_query2
negative_test_query2_00007
0
test_query2
negative_test_query2_00008
0
test_query2
negative_test_query2_00009
0
test_query3
apositive_test_query3_00000
1
test_query3
negative_test_query3_00000
0
test_query3
negative_test_query3_00001
0
test_query3
negative_test_query3_00002
0
test_query3
negative_test_query3_00003
0
test_query3
negative_test_query3_00004
0
test_query3
negative_test_query3_00005
0
test_query3
negative_test_query3_00006
0
test_query3
negative_test_query3_00007
0
test_query3
negative_test_query3_00008
0
test_query3
negative_test_query3_00009
0
test_query4
apositive_test_query4_00000
1
test_query4
negative_test_query4_00000
0
test_query4
negative_test_query4_00001
0
test_query4
negative_test_query4_00002
0
test_query4
negative_test_query4_00003
0
test_query4
negative_test_query4_00004
0
test_query4
negative_test_query4_00005
0
test_query4
negative_test_query4_00006
0
test_query4
negative_test_query4_00007
0
test_query4
negative_test_query4_00008
0
test_query5
apositive_test_query5_00000
1
test_query5
negative_test_query5_00000
0
test_query5
negative_test_query5_00001
0
test_query5
negative_test_query5_00002
0
test_query5
negative_test_query5_00003
0
test_query5
negative_test_query5_00004
0
test_query5
negative_test_query5_00005
0
test_query5
negative_test_query5_00006
0
test_query5
negative_test_query5_00007
0
test_query5
negative_test_query5_00008
0
test_query5
negative_test_query5_00009
0
test_query6
apositive_test_query6_00000
1
test_query6
negative_test_query6_00000
0
test_query6
negative_test_query6_00001
0
test_query6
negative_test_query6_00002
0
test_query6
negative_test_query6_00003
0
test_query6
negative_test_query6_00004
0
test_query6
negative_test_query6_00005
0
test_query6
negative_test_query6_00006
0
test_query6
negative_test_query6_00007
0
test_query6
negative_test_query6_00008
0
test_query6
negative_test_query6_00009
0
test_query7
apositive_test_query7_00000
1
test_query7
apositive_test_query7_00001
1
test_query7
negative_test_query7_00000
0
test_query7
negative_test_query7_00001
0
test_query7
negative_test_query7_00002
0
test_query7
negative_test_query7_00003
0
test_query7
negative_test_query7_00004
0
test_query7
negative_test_query7_00005
0
test_query7
negative_test_query7_00006
0
test_query7
negative_test_query7_00007
0
test_query8
apositive_test_query8_00000
1
test_query8
negative_test_query8_00000
0
test_query8
negative_test_query8_00001
0
test_query8
negative_test_query8_00002
0
test_query8
negative_test_query8_00003
0
test_query8
negative_test_query8_00004
0
test_query8
negative_test_query8_00005
0
test_query8
negative_test_query8_00006
0
test_query8
negative_test_query8_00007
0
test_query8
negative_test_query8_00008
0
test_query9
apositive_test_query9_00000
1
test_query9
negative_test_query9_00000
0
test_query9
negative_test_query9_00001
0
End of preview. Expand in Data Studio

AlloprofReranking

This dataset was provided by AlloProf, an organisation in Quebec, Canada offering resources and a help forum curated by a large number of teachers to students on all subjects taught from in primary and secondary school

This dataset is included as a task in mteb.

  • Task category: t2t
  • Domains: ['Web', 'Academic', 'Written']

How to evaluate on this task

import mteb

task = mteb.get_tasks(["AlloprofReranking"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

Reference: https://huggingface.co/datasets/antoinelb7/alloprof

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.

@misc{lef23,
            doi = {10.48550/ARXIV.2302.07738},
            url = {https://arxiv.org/abs/2302.07738},
            author = {Lefebvre-Brossard, Antoine and Gazaille, Stephane and Desmarais, Michel C.},
            keywords = {Computation and Language (cs.CL), Information Retrieval (cs.IR), Machine Learning (cs.LG), FOS: Computer and information sciences, FOS: Computer and information sciences},
            title = {Alloprof: a new French question-answer education dataset and its use in an information retrieval case study},
            publisher = {arXiv},
            year = {2023},
            copyright = {Creative Commons Attribution Non Commercial Share Alike 4.0 International}
            }

@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

{
    "test": {
        "num_samples": 27355,
        "number_of_characters": 102329333,
        "num_documents": 25039,
        "min_document_length": 42,
        "average_document_length": 4071.0077079755583,
        "max_document_length": 47972,
        "unique_documents": 25039,
        "num_queries": 2316,
        "min_query_length": 8,
        "average_query_length": 170.71286701208982,
        "max_query_length": 2863,
        "unique_queries": 2316,
        "none_queries": 0,
        "num_relevant_docs": 25039,
        "min_relevant_docs_per_query": 10,
        "average_relevant_docs_per_query": 1.2845423143350605,
        "max_relevant_docs_per_query": 37,
        "unique_relevant_docs": 25039,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": 2316,
        "min_top_ranked_per_query": 10,
        "average_top_ranked_per_query": 10.811312607944732,
        "max_top_ranked_per_query": 37
    }
}
Downloads last month
69