repository_name
stringlengths 5
67
| func_path_in_repository
stringlengths 4
234
| func_name
stringlengths 0
314
| whole_func_string
stringlengths 52
3.87M
| language
stringclasses 6
values | func_code_string
stringlengths 52
3.87M
| func_code_tokens
sequencelengths 15
672k
| func_documentation_string
stringlengths 1
47.2k
| func_documentation_tokens
sequencelengths 1
3.92k
| split_name
stringclasses 1
value | func_code_url
stringlengths 85
339
|
---|---|---|---|---|---|---|---|---|---|---|
hovren/crisp | crisp/camera.py | AtanCameraModel.invert | def invert(self, points):
"""Invert the distortion
Parameters
------------------
points : ndarray
Input image points
Returns
-----------------
ndarray
Undistorted points
"""
X = points if not points.ndim == 1 else points.reshape((points.size, 1))
wx, wy = self.wc
# Switch to polar coordinates
rn = np.sqrt((X[0,:] - wx)**2 + (X[1,:] - wy)**2)
phi = np.arctan2(X[1,:] - wy, X[0,:]-wx)
# 'atan' method
r = np.tan(rn * self.lgamma) / self.lgamma;
# Switch back to rectangular coordinates
Y = np.ones(X.shape)
Y[0,:] = wx + r * np.cos(phi)
Y[1,:]= wy + r * np.sin(phi)
return Y | python | def invert(self, points):
"""Invert the distortion
Parameters
------------------
points : ndarray
Input image points
Returns
-----------------
ndarray
Undistorted points
"""
X = points if not points.ndim == 1 else points.reshape((points.size, 1))
wx, wy = self.wc
# Switch to polar coordinates
rn = np.sqrt((X[0,:] - wx)**2 + (X[1,:] - wy)**2)
phi = np.arctan2(X[1,:] - wy, X[0,:]-wx)
# 'atan' method
r = np.tan(rn * self.lgamma) / self.lgamma;
# Switch back to rectangular coordinates
Y = np.ones(X.shape)
Y[0,:] = wx + r * np.cos(phi)
Y[1,:]= wy + r * np.sin(phi)
return Y | [
"def",
"invert",
"(",
"self",
",",
"points",
")",
":",
"X",
"=",
"points",
"if",
"not",
"points",
".",
"ndim",
"==",
"1",
"else",
"points",
".",
"reshape",
"(",
"(",
"points",
".",
"size",
",",
"1",
")",
")",
"wx",
",",
"wy",
"=",
"self",
".",
"wc",
"# Switch to polar coordinates",
"rn",
"=",
"np",
".",
"sqrt",
"(",
"(",
"X",
"[",
"0",
",",
":",
"]",
"-",
"wx",
")",
"**",
"2",
"+",
"(",
"X",
"[",
"1",
",",
":",
"]",
"-",
"wy",
")",
"**",
"2",
")",
"phi",
"=",
"np",
".",
"arctan2",
"(",
"X",
"[",
"1",
",",
":",
"]",
"-",
"wy",
",",
"X",
"[",
"0",
",",
":",
"]",
"-",
"wx",
")",
"# 'atan' method",
"r",
"=",
"np",
".",
"tan",
"(",
"rn",
"*",
"self",
".",
"lgamma",
")",
"/",
"self",
".",
"lgamma",
"# Switch back to rectangular coordinates",
"Y",
"=",
"np",
".",
"ones",
"(",
"X",
".",
"shape",
")",
"Y",
"[",
"0",
",",
":",
"]",
"=",
"wx",
"+",
"r",
"*",
"np",
".",
"cos",
"(",
"phi",
")",
"Y",
"[",
"1",
",",
":",
"]",
"=",
"wy",
"+",
"r",
"*",
"np",
".",
"sin",
"(",
"phi",
")",
"return",
"Y"
] | Invert the distortion
Parameters
------------------
points : ndarray
Input image points
Returns
-----------------
ndarray
Undistorted points | [
"Invert",
"the",
"distortion"
] | train | https://github.com/hovren/crisp/blob/65cae19e7cfae5a397859096c9ef666e0f4e7f1b/crisp/camera.py#L160-L187 |
hovren/crisp | crisp/camera.py | AtanCameraModel.project | def project(self, points):
"""Project 3D points to image coordinates.
This projects 3D points expressed in the camera coordinate system to image points.
Parameters
--------------------
points : (3, N) ndarray
3D points
Returns
--------------------
image_points : (2, N) ndarray
The world points projected to the image plane
"""
K = self.camera_matrix
XU = points
XU = XU / np.tile(XU[2], (3,1))
X = self.apply(XU)
x2d = np.dot(K, X)
return from_homogeneous(x2d) | python | def project(self, points):
"""Project 3D points to image coordinates.
This projects 3D points expressed in the camera coordinate system to image points.
Parameters
--------------------
points : (3, N) ndarray
3D points
Returns
--------------------
image_points : (2, N) ndarray
The world points projected to the image plane
"""
K = self.camera_matrix
XU = points
XU = XU / np.tile(XU[2], (3,1))
X = self.apply(XU)
x2d = np.dot(K, X)
return from_homogeneous(x2d) | [
"def",
"project",
"(",
"self",
",",
"points",
")",
":",
"K",
"=",
"self",
".",
"camera_matrix",
"XU",
"=",
"points",
"XU",
"=",
"XU",
"/",
"np",
".",
"tile",
"(",
"XU",
"[",
"2",
"]",
",",
"(",
"3",
",",
"1",
")",
")",
"X",
"=",
"self",
".",
"apply",
"(",
"XU",
")",
"x2d",
"=",
"np",
".",
"dot",
"(",
"K",
",",
"X",
")",
"return",
"from_homogeneous",
"(",
"x2d",
")"
] | Project 3D points to image coordinates.
This projects 3D points expressed in the camera coordinate system to image points.
Parameters
--------------------
points : (3, N) ndarray
3D points
Returns
--------------------
image_points : (2, N) ndarray
The world points projected to the image plane | [
"Project",
"3D",
"points",
"to",
"image",
"coordinates",
"."
] | train | https://github.com/hovren/crisp/blob/65cae19e7cfae5a397859096c9ef666e0f4e7f1b/crisp/camera.py#L219-L239 |
hovren/crisp | crisp/camera.py | AtanCameraModel.unproject | def unproject(self, image_points):
"""Find (up to scale) 3D coordinate of an image point
This is the inverse of the `project` function.
The resulting 3D points are only valid up to an unknown scale.
Parameters
----------------------
image_points : (2, N) ndarray
Image points
Returns
----------------------
points : (3, N) ndarray
3D coordinates (valid up to scale)
"""
Ki = self.inv_camera_matrix
X = np.dot(Ki, to_homogeneous(image_points))
X = X / X[2]
XU = self.invert(X)
return XU | python | def unproject(self, image_points):
"""Find (up to scale) 3D coordinate of an image point
This is the inverse of the `project` function.
The resulting 3D points are only valid up to an unknown scale.
Parameters
----------------------
image_points : (2, N) ndarray
Image points
Returns
----------------------
points : (3, N) ndarray
3D coordinates (valid up to scale)
"""
Ki = self.inv_camera_matrix
X = np.dot(Ki, to_homogeneous(image_points))
X = X / X[2]
XU = self.invert(X)
return XU | [
"def",
"unproject",
"(",
"self",
",",
"image_points",
")",
":",
"Ki",
"=",
"self",
".",
"inv_camera_matrix",
"X",
"=",
"np",
".",
"dot",
"(",
"Ki",
",",
"to_homogeneous",
"(",
"image_points",
")",
")",
"X",
"=",
"X",
"/",
"X",
"[",
"2",
"]",
"XU",
"=",
"self",
".",
"invert",
"(",
"X",
")",
"return",
"XU"
] | Find (up to scale) 3D coordinate of an image point
This is the inverse of the `project` function.
The resulting 3D points are only valid up to an unknown scale.
Parameters
----------------------
image_points : (2, N) ndarray
Image points
Returns
----------------------
points : (3, N) ndarray
3D coordinates (valid up to scale) | [
"Find",
"(",
"up",
"to",
"scale",
")",
"3D",
"coordinate",
"of",
"an",
"image",
"point"
] | train | https://github.com/hovren/crisp/blob/65cae19e7cfae5a397859096c9ef666e0f4e7f1b/crisp/camera.py#L241-L261 |
hovren/crisp | crisp/camera.py | OpenCVCameraModel.project | def project(self, points):
"""Project 3D points to image coordinates.
This projects 3D points expressed in the camera coordinate system to image points.
Parameters
--------------------
points : (3, N) ndarray
3D points
Returns
--------------------
image_points : (2, N) ndarray
The world points projected to the image plane
"""
rvec = tvec = np.zeros(3)
image_points, jac = cv2.projectPoints(points.T.reshape(-1,1,3), rvec, tvec, self.camera_matrix, self.dist_coefs)
return image_points.reshape(-1,2).T | python | def project(self, points):
"""Project 3D points to image coordinates.
This projects 3D points expressed in the camera coordinate system to image points.
Parameters
--------------------
points : (3, N) ndarray
3D points
Returns
--------------------
image_points : (2, N) ndarray
The world points projected to the image plane
"""
rvec = tvec = np.zeros(3)
image_points, jac = cv2.projectPoints(points.T.reshape(-1,1,3), rvec, tvec, self.camera_matrix, self.dist_coefs)
return image_points.reshape(-1,2).T | [
"def",
"project",
"(",
"self",
",",
"points",
")",
":",
"rvec",
"=",
"tvec",
"=",
"np",
".",
"zeros",
"(",
"3",
")",
"image_points",
",",
"jac",
"=",
"cv2",
".",
"projectPoints",
"(",
"points",
".",
"T",
".",
"reshape",
"(",
"-",
"1",
",",
"1",
",",
"3",
")",
",",
"rvec",
",",
"tvec",
",",
"self",
".",
"camera_matrix",
",",
"self",
".",
"dist_coefs",
")",
"return",
"image_points",
".",
"reshape",
"(",
"-",
"1",
",",
"2",
")",
".",
"T"
] | Project 3D points to image coordinates.
This projects 3D points expressed in the camera coordinate system to image points.
Parameters
--------------------
points : (3, N) ndarray
3D points
Returns
--------------------
image_points : (2, N) ndarray
The world points projected to the image plane | [
"Project",
"3D",
"points",
"to",
"image",
"coordinates",
"."
] | train | https://github.com/hovren/crisp/blob/65cae19e7cfae5a397859096c9ef666e0f4e7f1b/crisp/camera.py#L292-L309 |
hovren/crisp | crisp/camera.py | OpenCVCameraModel.unproject | def unproject(self, image_points):
"""Find (up to scale) 3D coordinate of an image point
This is the inverse of the `project` function.
The resulting 3D points are only valid up to an unknown scale.
Parameters
----------------------
image_points : (2, N) ndarray
Image points
Returns
----------------------
points : (3, N) ndarray
3D coordinates (valid up to scale)
"""
undist_image_points = cv2.undistortPoints(image_points.T.reshape(1,-1,2), self.camera_matrix, self.dist_coefs, P=self.camera_matrix)
world_points = np.dot(self.inv_camera_matrix, to_homogeneous(undist_image_points.reshape(-1,2).T))
return world_points | python | def unproject(self, image_points):
"""Find (up to scale) 3D coordinate of an image point
This is the inverse of the `project` function.
The resulting 3D points are only valid up to an unknown scale.
Parameters
----------------------
image_points : (2, N) ndarray
Image points
Returns
----------------------
points : (3, N) ndarray
3D coordinates (valid up to scale)
"""
undist_image_points = cv2.undistortPoints(image_points.T.reshape(1,-1,2), self.camera_matrix, self.dist_coefs, P=self.camera_matrix)
world_points = np.dot(self.inv_camera_matrix, to_homogeneous(undist_image_points.reshape(-1,2).T))
return world_points | [
"def",
"unproject",
"(",
"self",
",",
"image_points",
")",
":",
"undist_image_points",
"=",
"cv2",
".",
"undistortPoints",
"(",
"image_points",
".",
"T",
".",
"reshape",
"(",
"1",
",",
"-",
"1",
",",
"2",
")",
",",
"self",
".",
"camera_matrix",
",",
"self",
".",
"dist_coefs",
",",
"P",
"=",
"self",
".",
"camera_matrix",
")",
"world_points",
"=",
"np",
".",
"dot",
"(",
"self",
".",
"inv_camera_matrix",
",",
"to_homogeneous",
"(",
"undist_image_points",
".",
"reshape",
"(",
"-",
"1",
",",
"2",
")",
".",
"T",
")",
")",
"return",
"world_points"
] | Find (up to scale) 3D coordinate of an image point
This is the inverse of the `project` function.
The resulting 3D points are only valid up to an unknown scale.
Parameters
----------------------
image_points : (2, N) ndarray
Image points
Returns
----------------------
points : (3, N) ndarray
3D coordinates (valid up to scale) | [
"Find",
"(",
"up",
"to",
"scale",
")",
"3D",
"coordinate",
"of",
"an",
"image",
"point"
] | train | https://github.com/hovren/crisp/blob/65cae19e7cfae5a397859096c9ef666e0f4e7f1b/crisp/camera.py#L311-L329 |
hovren/crisp | crisp/camera.py | Kinect.timestamps_from_file_list | def timestamps_from_file_list(file_list):
"Take list of Kinect filenames (without path) and extracts timestamps while accounting for timestamp overflow (returns linear timestamps)."
timestamps = np.array([Kinect.timestamp_from_filename(fname) for fname in file_list])
# Handle overflow
diff = np.diff(timestamps)
idxs = np.flatnonzero(diff < 0)
ITEM_SIZE = 2**32
for i in idxs:
timestamps[i+1:] += ITEM_SIZE
return timestamps.flatten() | python | def timestamps_from_file_list(file_list):
"Take list of Kinect filenames (without path) and extracts timestamps while accounting for timestamp overflow (returns linear timestamps)."
timestamps = np.array([Kinect.timestamp_from_filename(fname) for fname in file_list])
# Handle overflow
diff = np.diff(timestamps)
idxs = np.flatnonzero(diff < 0)
ITEM_SIZE = 2**32
for i in idxs:
timestamps[i+1:] += ITEM_SIZE
return timestamps.flatten() | [
"def",
"timestamps_from_file_list",
"(",
"file_list",
")",
":",
"timestamps",
"=",
"np",
".",
"array",
"(",
"[",
"Kinect",
".",
"timestamp_from_filename",
"(",
"fname",
")",
"for",
"fname",
"in",
"file_list",
"]",
")",
"# Handle overflow",
"diff",
"=",
"np",
".",
"diff",
"(",
"timestamps",
")",
"idxs",
"=",
"np",
".",
"flatnonzero",
"(",
"diff",
"<",
"0",
")",
"ITEM_SIZE",
"=",
"2",
"**",
"32",
"for",
"i",
"in",
"idxs",
":",
"timestamps",
"[",
"i",
"+",
"1",
":",
"]",
"+=",
"ITEM_SIZE",
"return",
"timestamps",
".",
"flatten",
"(",
")"
] | Take list of Kinect filenames (without path) and extracts timestamps while accounting for timestamp overflow (returns linear timestamps). | [
"Take",
"list",
"of",
"Kinect",
"filenames",
"(",
"without",
"path",
")",
"and",
"extracts",
"timestamps",
"while",
"accounting",
"for",
"timestamp",
"overflow",
"(",
"returns",
"linear",
"timestamps",
")",
"."
] | train | https://github.com/hovren/crisp/blob/65cae19e7cfae5a397859096c9ef666e0f4e7f1b/crisp/camera.py#L472-L483 |
hovren/crisp | crisp/camera.py | Kinect.purge_bad_timestamp_files | def purge_bad_timestamp_files(file_list):
"Given a list of image files, find bad frames, remove them and modify file_list"
MAX_INITIAL_BAD_FRAMES = 15
bad_ts = Kinect.detect_bad_timestamps(Kinect.timestamps_from_file_list(file_list))
# Trivial case
if not bad_ts:
return file_list
# No bad frames after the initial allowed
last_bad = max(bad_ts)
if last_bad >= MAX_INITIAL_BAD_FRAMES:
raise Exception('Only 15 initial bad frames are allowed, but last bad frame is %d' % last_bad)
# Remove all frames up to the last bad frame
for i in range(last_bad + 1):
os.remove(file_list[i])
# Purge from the list
file_list = file_list[last_bad+1:]
return file_list | python | def purge_bad_timestamp_files(file_list):
"Given a list of image files, find bad frames, remove them and modify file_list"
MAX_INITIAL_BAD_FRAMES = 15
bad_ts = Kinect.detect_bad_timestamps(Kinect.timestamps_from_file_list(file_list))
# Trivial case
if not bad_ts:
return file_list
# No bad frames after the initial allowed
last_bad = max(bad_ts)
if last_bad >= MAX_INITIAL_BAD_FRAMES:
raise Exception('Only 15 initial bad frames are allowed, but last bad frame is %d' % last_bad)
# Remove all frames up to the last bad frame
for i in range(last_bad + 1):
os.remove(file_list[i])
# Purge from the list
file_list = file_list[last_bad+1:]
return file_list | [
"def",
"purge_bad_timestamp_files",
"(",
"file_list",
")",
":",
"MAX_INITIAL_BAD_FRAMES",
"=",
"15",
"bad_ts",
"=",
"Kinect",
".",
"detect_bad_timestamps",
"(",
"Kinect",
".",
"timestamps_from_file_list",
"(",
"file_list",
")",
")",
"# Trivial case",
"if",
"not",
"bad_ts",
":",
"return",
"file_list",
"# No bad frames after the initial allowed",
"last_bad",
"=",
"max",
"(",
"bad_ts",
")",
"if",
"last_bad",
">=",
"MAX_INITIAL_BAD_FRAMES",
":",
"raise",
"Exception",
"(",
"'Only 15 initial bad frames are allowed, but last bad frame is %d'",
"%",
"last_bad",
")",
"# Remove all frames up to the last bad frame",
"for",
"i",
"in",
"range",
"(",
"last_bad",
"+",
"1",
")",
":",
"os",
".",
"remove",
"(",
"file_list",
"[",
"i",
"]",
")",
"# Purge from the list",
"file_list",
"=",
"file_list",
"[",
"last_bad",
"+",
"1",
":",
"]",
"return",
"file_list"
] | Given a list of image files, find bad frames, remove them and modify file_list | [
"Given",
"a",
"list",
"of",
"image",
"files",
"find",
"bad",
"frames",
"remove",
"them",
"and",
"modify",
"file_list"
] | train | https://github.com/hovren/crisp/blob/65cae19e7cfae5a397859096c9ef666e0f4e7f1b/crisp/camera.py#L498-L519 |
hovren/crisp | crisp/camera.py | Kinect.depth_file_for_nir_file | def depth_file_for_nir_file(video_filename, depth_file_list):
"""Returns the corresponding depth filename given a NIR filename"""
(root, filename) = os.path.split(video_filename)
needle_ts = int(filename.split('-')[2].split('.')[0])
haystack_ts_list = np.array(Kinect.timestamps_from_file_list(depth_file_list))
haystack_idx = np.flatnonzero(haystack_ts_list == needle_ts)[0]
depth_filename = depth_file_list[haystack_idx]
return depth_filename | python | def depth_file_for_nir_file(video_filename, depth_file_list):
"""Returns the corresponding depth filename given a NIR filename"""
(root, filename) = os.path.split(video_filename)
needle_ts = int(filename.split('-')[2].split('.')[0])
haystack_ts_list = np.array(Kinect.timestamps_from_file_list(depth_file_list))
haystack_idx = np.flatnonzero(haystack_ts_list == needle_ts)[0]
depth_filename = depth_file_list[haystack_idx]
return depth_filename | [
"def",
"depth_file_for_nir_file",
"(",
"video_filename",
",",
"depth_file_list",
")",
":",
"(",
"root",
",",
"filename",
")",
"=",
"os",
".",
"path",
".",
"split",
"(",
"video_filename",
")",
"needle_ts",
"=",
"int",
"(",
"filename",
".",
"split",
"(",
"'-'",
")",
"[",
"2",
"]",
".",
"split",
"(",
"'.'",
")",
"[",
"0",
"]",
")",
"haystack_ts_list",
"=",
"np",
".",
"array",
"(",
"Kinect",
".",
"timestamps_from_file_list",
"(",
"depth_file_list",
")",
")",
"haystack_idx",
"=",
"np",
".",
"flatnonzero",
"(",
"haystack_ts_list",
"==",
"needle_ts",
")",
"[",
"0",
"]",
"depth_filename",
"=",
"depth_file_list",
"[",
"haystack_idx",
"]",
"return",
"depth_filename"
] | Returns the corresponding depth filename given a NIR filename | [
"Returns",
"the",
"corresponding",
"depth",
"filename",
"given",
"a",
"NIR",
"filename"
] | train | https://github.com/hovren/crisp/blob/65cae19e7cfae5a397859096c9ef666e0f4e7f1b/crisp/camera.py#L522-L529 |
hovren/crisp | crisp/camera.py | Kinect.depth_file_for_rgb_file | def depth_file_for_rgb_file(rgb_filename, rgb_file_list, depth_file_list):
"""Returns the *closest* depth file from an RGB filename"""
(root, filename) = os.path.split(rgb_filename)
rgb_timestamps = np.array(Kinect.timestamps_from_file_list(rgb_file_list))
depth_timestamps = np.array(Kinect.timestamps_from_file_list(depth_file_list))
needle_ts = rgb_timestamps[rgb_file_list.index(rgb_filename)]
haystack_idx = np.argmin(np.abs(depth_timestamps - needle_ts))
depth_filename = depth_file_list[haystack_idx]
return depth_filename | python | def depth_file_for_rgb_file(rgb_filename, rgb_file_list, depth_file_list):
"""Returns the *closest* depth file from an RGB filename"""
(root, filename) = os.path.split(rgb_filename)
rgb_timestamps = np.array(Kinect.timestamps_from_file_list(rgb_file_list))
depth_timestamps = np.array(Kinect.timestamps_from_file_list(depth_file_list))
needle_ts = rgb_timestamps[rgb_file_list.index(rgb_filename)]
haystack_idx = np.argmin(np.abs(depth_timestamps - needle_ts))
depth_filename = depth_file_list[haystack_idx]
return depth_filename | [
"def",
"depth_file_for_rgb_file",
"(",
"rgb_filename",
",",
"rgb_file_list",
",",
"depth_file_list",
")",
":",
"(",
"root",
",",
"filename",
")",
"=",
"os",
".",
"path",
".",
"split",
"(",
"rgb_filename",
")",
"rgb_timestamps",
"=",
"np",
".",
"array",
"(",
"Kinect",
".",
"timestamps_from_file_list",
"(",
"rgb_file_list",
")",
")",
"depth_timestamps",
"=",
"np",
".",
"array",
"(",
"Kinect",
".",
"timestamps_from_file_list",
"(",
"depth_file_list",
")",
")",
"needle_ts",
"=",
"rgb_timestamps",
"[",
"rgb_file_list",
".",
"index",
"(",
"rgb_filename",
")",
"]",
"haystack_idx",
"=",
"np",
".",
"argmin",
"(",
"np",
".",
"abs",
"(",
"depth_timestamps",
"-",
"needle_ts",
")",
")",
"depth_filename",
"=",
"depth_file_list",
"[",
"haystack_idx",
"]",
"return",
"depth_filename"
] | Returns the *closest* depth file from an RGB filename | [
"Returns",
"the",
"*",
"closest",
"*",
"depth",
"file",
"from",
"an",
"RGB",
"filename"
] | train | https://github.com/hovren/crisp/blob/65cae19e7cfae5a397859096c9ef666e0f4e7f1b/crisp/camera.py#L532-L540 |
hovren/crisp | crisp/camera.py | Kinect.find_nir_file_with_missing_depth | def find_nir_file_with_missing_depth(video_file_list, depth_file_list):
"Remove all files without its own counterpart. Returns new lists of files"
new_video_list = []
new_depth_list = []
for fname in video_file_list:
try:
depth_file = Kinect.depth_file_for_nir_file(fname, depth_file_list)
new_video_list.append(fname)
new_depth_list.append(depth_file)
except IndexError: # Missing file
pass
# Purge bad files
bad_nir = [f for f in video_file_list if f not in new_video_list]
bad_depth = [f for f in depth_file_list if f not in new_depth_list]
return (new_video_list, new_depth_list, bad_nir, bad_depth) | python | def find_nir_file_with_missing_depth(video_file_list, depth_file_list):
"Remove all files without its own counterpart. Returns new lists of files"
new_video_list = []
new_depth_list = []
for fname in video_file_list:
try:
depth_file = Kinect.depth_file_for_nir_file(fname, depth_file_list)
new_video_list.append(fname)
new_depth_list.append(depth_file)
except IndexError: # Missing file
pass
# Purge bad files
bad_nir = [f for f in video_file_list if f not in new_video_list]
bad_depth = [f for f in depth_file_list if f not in new_depth_list]
return (new_video_list, new_depth_list, bad_nir, bad_depth) | [
"def",
"find_nir_file_with_missing_depth",
"(",
"video_file_list",
",",
"depth_file_list",
")",
":",
"new_video_list",
"=",
"[",
"]",
"new_depth_list",
"=",
"[",
"]",
"for",
"fname",
"in",
"video_file_list",
":",
"try",
":",
"depth_file",
"=",
"Kinect",
".",
"depth_file_for_nir_file",
"(",
"fname",
",",
"depth_file_list",
")",
"new_video_list",
".",
"append",
"(",
"fname",
")",
"new_depth_list",
".",
"append",
"(",
"depth_file",
")",
"except",
"IndexError",
":",
"# Missing file",
"pass",
"# Purge bad files",
"bad_nir",
"=",
"[",
"f",
"for",
"f",
"in",
"video_file_list",
"if",
"f",
"not",
"in",
"new_video_list",
"]",
"bad_depth",
"=",
"[",
"f",
"for",
"f",
"in",
"depth_file_list",
"if",
"f",
"not",
"in",
"new_depth_list",
"]",
"return",
"(",
"new_video_list",
",",
"new_depth_list",
",",
"bad_nir",
",",
"bad_depth",
")"
] | Remove all files without its own counterpart. Returns new lists of files | [
"Remove",
"all",
"files",
"without",
"its",
"own",
"counterpart",
".",
"Returns",
"new",
"lists",
"of",
"files"
] | train | https://github.com/hovren/crisp/blob/65cae19e7cfae5a397859096c9ef666e0f4e7f1b/crisp/camera.py#L543-L559 |
hovren/crisp | crisp/camera.py | Kinect.disparity_image_to_distance | def disparity_image_to_distance(self, dval_img):
"Convert image of Kinect disparity values to distance (linear method)"
dist_img = dval_img / 2048.0
dist_img = 1 / (self.opars[0]*dist_img + self.opars[1])
return dist_img | python | def disparity_image_to_distance(self, dval_img):
"Convert image of Kinect disparity values to distance (linear method)"
dist_img = dval_img / 2048.0
dist_img = 1 / (self.opars[0]*dist_img + self.opars[1])
return dist_img | [
"def",
"disparity_image_to_distance",
"(",
"self",
",",
"dval_img",
")",
":",
"dist_img",
"=",
"dval_img",
"/",
"2048.0",
"dist_img",
"=",
"1",
"/",
"(",
"self",
".",
"opars",
"[",
"0",
"]",
"*",
"dist_img",
"+",
"self",
".",
"opars",
"[",
"1",
"]",
")",
"return",
"dist_img"
] | Convert image of Kinect disparity values to distance (linear method) | [
"Convert",
"image",
"of",
"Kinect",
"disparity",
"values",
"to",
"distance",
"(",
"linear",
"method",
")"
] | train | https://github.com/hovren/crisp/blob/65cae19e7cfae5a397859096c9ef666e0f4e7f1b/crisp/camera.py#L561-L565 |
hovren/crisp | crisp/videoslice.py | fill_sampling | def fill_sampling(slice_list, N):
"""Given a list of slices, draw N samples such that each slice contributes as much as possible
Parameters
--------------------------
slice_list : list of Slice
List of slices
N : int
Number of samples to draw
"""
A = [len(s.inliers) for s in slice_list]
N_max = np.sum(A)
if N > N_max:
raise ValueError("Tried to draw {:d} samples from a pool of only {:d} items".format(N, N_max))
samples_from = np.zeros((len(A),), dtype='int') # Number of samples to draw from each group
remaining = N
while remaining > 0:
remaining_groups = np.flatnonzero(samples_from - np.array(A))
if remaining < len(remaining_groups):
np.random.shuffle(remaining_groups)
for g in remaining_groups[:remaining]:
samples_from[g] += 1
else:
# Give each group the allowed number of samples. Constrain to their max size.
to_each = max(1, int(remaining / len(remaining_groups)))
samples_from = np.min(np.vstack((samples_from + to_each, A)), axis=0)
# Update remaining count
remaining = int(N - np.sum(samples_from))
if not remaining == 0:
raise ValueError("Still {:d} samples left! This is an error in the selection.")
# Construct index list of selected samples
samples = []
for s, a, n in zip(slice_list, A, samples_from):
if a == n:
samples.append(np.array(s.inliers)) # all
elif a == 0:
samples.append(np.arange([]))
else:
chosen = np.random.choice(s.inliers, n, replace=False)
samples.append(np.array(chosen))
return samples | python | def fill_sampling(slice_list, N):
"""Given a list of slices, draw N samples such that each slice contributes as much as possible
Parameters
--------------------------
slice_list : list of Slice
List of slices
N : int
Number of samples to draw
"""
A = [len(s.inliers) for s in slice_list]
N_max = np.sum(A)
if N > N_max:
raise ValueError("Tried to draw {:d} samples from a pool of only {:d} items".format(N, N_max))
samples_from = np.zeros((len(A),), dtype='int') # Number of samples to draw from each group
remaining = N
while remaining > 0:
remaining_groups = np.flatnonzero(samples_from - np.array(A))
if remaining < len(remaining_groups):
np.random.shuffle(remaining_groups)
for g in remaining_groups[:remaining]:
samples_from[g] += 1
else:
# Give each group the allowed number of samples. Constrain to their max size.
to_each = max(1, int(remaining / len(remaining_groups)))
samples_from = np.min(np.vstack((samples_from + to_each, A)), axis=0)
# Update remaining count
remaining = int(N - np.sum(samples_from))
if not remaining == 0:
raise ValueError("Still {:d} samples left! This is an error in the selection.")
# Construct index list of selected samples
samples = []
for s, a, n in zip(slice_list, A, samples_from):
if a == n:
samples.append(np.array(s.inliers)) # all
elif a == 0:
samples.append(np.arange([]))
else:
chosen = np.random.choice(s.inliers, n, replace=False)
samples.append(np.array(chosen))
return samples | [
"def",
"fill_sampling",
"(",
"slice_list",
",",
"N",
")",
":",
"A",
"=",
"[",
"len",
"(",
"s",
".",
"inliers",
")",
"for",
"s",
"in",
"slice_list",
"]",
"N_max",
"=",
"np",
".",
"sum",
"(",
"A",
")",
"if",
"N",
">",
"N_max",
":",
"raise",
"ValueError",
"(",
"\"Tried to draw {:d} samples from a pool of only {:d} items\"",
".",
"format",
"(",
"N",
",",
"N_max",
")",
")",
"samples_from",
"=",
"np",
".",
"zeros",
"(",
"(",
"len",
"(",
"A",
")",
",",
")",
",",
"dtype",
"=",
"'int'",
")",
"# Number of samples to draw from each group",
"remaining",
"=",
"N",
"while",
"remaining",
">",
"0",
":",
"remaining_groups",
"=",
"np",
".",
"flatnonzero",
"(",
"samples_from",
"-",
"np",
".",
"array",
"(",
"A",
")",
")",
"if",
"remaining",
"<",
"len",
"(",
"remaining_groups",
")",
":",
"np",
".",
"random",
".",
"shuffle",
"(",
"remaining_groups",
")",
"for",
"g",
"in",
"remaining_groups",
"[",
":",
"remaining",
"]",
":",
"samples_from",
"[",
"g",
"]",
"+=",
"1",
"else",
":",
"# Give each group the allowed number of samples. Constrain to their max size.",
"to_each",
"=",
"max",
"(",
"1",
",",
"int",
"(",
"remaining",
"/",
"len",
"(",
"remaining_groups",
")",
")",
")",
"samples_from",
"=",
"np",
".",
"min",
"(",
"np",
".",
"vstack",
"(",
"(",
"samples_from",
"+",
"to_each",
",",
"A",
")",
")",
",",
"axis",
"=",
"0",
")",
"# Update remaining count",
"remaining",
"=",
"int",
"(",
"N",
"-",
"np",
".",
"sum",
"(",
"samples_from",
")",
")",
"if",
"not",
"remaining",
"==",
"0",
":",
"raise",
"ValueError",
"(",
"\"Still {:d} samples left! This is an error in the selection.\"",
")",
"# Construct index list of selected samples",
"samples",
"=",
"[",
"]",
"for",
"s",
",",
"a",
",",
"n",
"in",
"zip",
"(",
"slice_list",
",",
"A",
",",
"samples_from",
")",
":",
"if",
"a",
"==",
"n",
":",
"samples",
".",
"append",
"(",
"np",
".",
"array",
"(",
"s",
".",
"inliers",
")",
")",
"# all",
"elif",
"a",
"==",
"0",
":",
"samples",
".",
"append",
"(",
"np",
".",
"arange",
"(",
"[",
"]",
")",
")",
"else",
":",
"chosen",
"=",
"np",
".",
"random",
".",
"choice",
"(",
"s",
".",
"inliers",
",",
"n",
",",
"replace",
"=",
"False",
")",
"samples",
".",
"append",
"(",
"np",
".",
"array",
"(",
"chosen",
")",
")",
"return",
"samples"
] | Given a list of slices, draw N samples such that each slice contributes as much as possible
Parameters
--------------------------
slice_list : list of Slice
List of slices
N : int
Number of samples to draw | [
"Given",
"a",
"list",
"of",
"slices",
"draw",
"N",
"samples",
"such",
"that",
"each",
"slice",
"contributes",
"as",
"much",
"as",
"possible"
] | train | https://github.com/hovren/crisp/blob/65cae19e7cfae5a397859096c9ef666e0f4e7f1b/crisp/videoslice.py#L117-L162 |
hovren/crisp | crisp/videoslice.py | Slice.estimate_rotation | def estimate_rotation(self, camera, ransac_threshold=7.0):
"""Estimate the rotation between first and last frame
It uses RANSAC where the error metric is the reprojection error of the points
from the last frame to the first frame.
Parameters
-----------------
camera : CameraModel
Camera model
ransac_threshold : float
Distance threshold (in pixels) for a reprojected point to count as an inlier
"""
if self.axis is None:
x = self.points[:, 0, :].T
y = self.points[:, -1, :].T
inlier_ratio = 0.5
R, t, dist, idx = rotations.estimate_rotation_procrustes_ransac(x, y,
camera,
ransac_threshold,
inlier_ratio=inlier_ratio,
do_translation=False)
if R is not None:
self.axis, self.angle = rotations.rotation_matrix_to_axis_angle(R)
if self.angle < 0: # Constrain to positive angles
self.angle = -self.angle
self.axis = -self.axis
self.inliers = idx
return self.axis is not None | python | def estimate_rotation(self, camera, ransac_threshold=7.0):
"""Estimate the rotation between first and last frame
It uses RANSAC where the error metric is the reprojection error of the points
from the last frame to the first frame.
Parameters
-----------------
camera : CameraModel
Camera model
ransac_threshold : float
Distance threshold (in pixels) for a reprojected point to count as an inlier
"""
if self.axis is None:
x = self.points[:, 0, :].T
y = self.points[:, -1, :].T
inlier_ratio = 0.5
R, t, dist, idx = rotations.estimate_rotation_procrustes_ransac(x, y,
camera,
ransac_threshold,
inlier_ratio=inlier_ratio,
do_translation=False)
if R is not None:
self.axis, self.angle = rotations.rotation_matrix_to_axis_angle(R)
if self.angle < 0: # Constrain to positive angles
self.angle = -self.angle
self.axis = -self.axis
self.inliers = idx
return self.axis is not None | [
"def",
"estimate_rotation",
"(",
"self",
",",
"camera",
",",
"ransac_threshold",
"=",
"7.0",
")",
":",
"if",
"self",
".",
"axis",
"is",
"None",
":",
"x",
"=",
"self",
".",
"points",
"[",
":",
",",
"0",
",",
":",
"]",
".",
"T",
"y",
"=",
"self",
".",
"points",
"[",
":",
",",
"-",
"1",
",",
":",
"]",
".",
"T",
"inlier_ratio",
"=",
"0.5",
"R",
",",
"t",
",",
"dist",
",",
"idx",
"=",
"rotations",
".",
"estimate_rotation_procrustes_ransac",
"(",
"x",
",",
"y",
",",
"camera",
",",
"ransac_threshold",
",",
"inlier_ratio",
"=",
"inlier_ratio",
",",
"do_translation",
"=",
"False",
")",
"if",
"R",
"is",
"not",
"None",
":",
"self",
".",
"axis",
",",
"self",
".",
"angle",
"=",
"rotations",
".",
"rotation_matrix_to_axis_angle",
"(",
"R",
")",
"if",
"self",
".",
"angle",
"<",
"0",
":",
"# Constrain to positive angles",
"self",
".",
"angle",
"=",
"-",
"self",
".",
"angle",
"self",
".",
"axis",
"=",
"-",
"self",
".",
"axis",
"self",
".",
"inliers",
"=",
"idx",
"return",
"self",
".",
"axis",
"is",
"not",
"None"
] | Estimate the rotation between first and last frame
It uses RANSAC where the error metric is the reprojection error of the points
from the last frame to the first frame.
Parameters
-----------------
camera : CameraModel
Camera model
ransac_threshold : float
Distance threshold (in pixels) for a reprojected point to count as an inlier | [
"Estimate",
"the",
"rotation",
"between",
"first",
"and",
"last",
"frame"
] | train | https://github.com/hovren/crisp/blob/65cae19e7cfae5a397859096c9ef666e0f4e7f1b/crisp/videoslice.py#L31-L61 |
hovren/crisp | crisp/videoslice.py | Slice.from_stream_randomly | def from_stream_randomly(video_stream, step_bounds=(5, 15), length_bounds=(2, 15), max_start=None, min_distance=10, min_slice_points=10):
"""Create slices from a video stream using random sampling
Parameters
-----------------
video_stream : VideoStream
A video stream
step_bounds : tuple
Range bounds (inclusive) of possible step lengths
length_bounds : tuple
Range bounds (inclusive) of possible slice lengths
max_start : int
Maximum frame number to start from
min_distance : float
Minimum (initial) distance between tracked points
min_slice_points : int
Minimum number of points to keep a slice
Returns
-------------------
list of Slice
List of slices
"""
new_step = lambda: int(np.random.uniform(low=step_bounds[0], high=step_bounds[1]))
new_length = lambda: int(np.random.uniform(low=length_bounds[0], high=length_bounds[1]))
seq_frames = []
slices = []
seq_start_points = None
next_seq_start = new_step() if max_start is None else min(new_step(), max_start)
next_seq_length = new_length()
for i, im in enumerate(video_stream):
if next_seq_start <= i < next_seq_start + next_seq_length:
im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
seq_frames.append(im)
if len(seq_frames) == 1:
max_corners = 400
quality_level = 0.07
seq_start_points = cv2.goodFeaturesToTrack(im, max_corners, quality_level, min_distance)
elif len(seq_frames) == next_seq_length:
points, status = tracking.track_retrack(seq_frames, seq_start_points)
if points.shape[0] >= min_slice_points:
s = Slice(next_seq_start, i, points)
slices.append(s)
logger.debug('{0:4d} {1:3d} {2:5d} {3:>5d}-{4:<5d}'.format(len(slices)-1, points.shape[1], points.shape[0], next_seq_start, i))
seq_frames = []
next_seq_start = i + new_step()
next_seq_length = new_length()
return slices | python | def from_stream_randomly(video_stream, step_bounds=(5, 15), length_bounds=(2, 15), max_start=None, min_distance=10, min_slice_points=10):
"""Create slices from a video stream using random sampling
Parameters
-----------------
video_stream : VideoStream
A video stream
step_bounds : tuple
Range bounds (inclusive) of possible step lengths
length_bounds : tuple
Range bounds (inclusive) of possible slice lengths
max_start : int
Maximum frame number to start from
min_distance : float
Minimum (initial) distance between tracked points
min_slice_points : int
Minimum number of points to keep a slice
Returns
-------------------
list of Slice
List of slices
"""
new_step = lambda: int(np.random.uniform(low=step_bounds[0], high=step_bounds[1]))
new_length = lambda: int(np.random.uniform(low=length_bounds[0], high=length_bounds[1]))
seq_frames = []
slices = []
seq_start_points = None
next_seq_start = new_step() if max_start is None else min(new_step(), max_start)
next_seq_length = new_length()
for i, im in enumerate(video_stream):
if next_seq_start <= i < next_seq_start + next_seq_length:
im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
seq_frames.append(im)
if len(seq_frames) == 1:
max_corners = 400
quality_level = 0.07
seq_start_points = cv2.goodFeaturesToTrack(im, max_corners, quality_level, min_distance)
elif len(seq_frames) == next_seq_length:
points, status = tracking.track_retrack(seq_frames, seq_start_points)
if points.shape[0] >= min_slice_points:
s = Slice(next_seq_start, i, points)
slices.append(s)
logger.debug('{0:4d} {1:3d} {2:5d} {3:>5d}-{4:<5d}'.format(len(slices)-1, points.shape[1], points.shape[0], next_seq_start, i))
seq_frames = []
next_seq_start = i + new_step()
next_seq_length = new_length()
return slices | [
"def",
"from_stream_randomly",
"(",
"video_stream",
",",
"step_bounds",
"=",
"(",
"5",
",",
"15",
")",
",",
"length_bounds",
"=",
"(",
"2",
",",
"15",
")",
",",
"max_start",
"=",
"None",
",",
"min_distance",
"=",
"10",
",",
"min_slice_points",
"=",
"10",
")",
":",
"new_step",
"=",
"lambda",
":",
"int",
"(",
"np",
".",
"random",
".",
"uniform",
"(",
"low",
"=",
"step_bounds",
"[",
"0",
"]",
",",
"high",
"=",
"step_bounds",
"[",
"1",
"]",
")",
")",
"new_length",
"=",
"lambda",
":",
"int",
"(",
"np",
".",
"random",
".",
"uniform",
"(",
"low",
"=",
"length_bounds",
"[",
"0",
"]",
",",
"high",
"=",
"length_bounds",
"[",
"1",
"]",
")",
")",
"seq_frames",
"=",
"[",
"]",
"slices",
"=",
"[",
"]",
"seq_start_points",
"=",
"None",
"next_seq_start",
"=",
"new_step",
"(",
")",
"if",
"max_start",
"is",
"None",
"else",
"min",
"(",
"new_step",
"(",
")",
",",
"max_start",
")",
"next_seq_length",
"=",
"new_length",
"(",
")",
"for",
"i",
",",
"im",
"in",
"enumerate",
"(",
"video_stream",
")",
":",
"if",
"next_seq_start",
"<=",
"i",
"<",
"next_seq_start",
"+",
"next_seq_length",
":",
"im",
"=",
"cv2",
".",
"cvtColor",
"(",
"im",
",",
"cv2",
".",
"COLOR_BGR2GRAY",
")",
"seq_frames",
".",
"append",
"(",
"im",
")",
"if",
"len",
"(",
"seq_frames",
")",
"==",
"1",
":",
"max_corners",
"=",
"400",
"quality_level",
"=",
"0.07",
"seq_start_points",
"=",
"cv2",
".",
"goodFeaturesToTrack",
"(",
"im",
",",
"max_corners",
",",
"quality_level",
",",
"min_distance",
")",
"elif",
"len",
"(",
"seq_frames",
")",
"==",
"next_seq_length",
":",
"points",
",",
"status",
"=",
"tracking",
".",
"track_retrack",
"(",
"seq_frames",
",",
"seq_start_points",
")",
"if",
"points",
".",
"shape",
"[",
"0",
"]",
">=",
"min_slice_points",
":",
"s",
"=",
"Slice",
"(",
"next_seq_start",
",",
"i",
",",
"points",
")",
"slices",
".",
"append",
"(",
"s",
")",
"logger",
".",
"debug",
"(",
"'{0:4d} {1:3d} {2:5d} {3:>5d}-{4:<5d}'",
".",
"format",
"(",
"len",
"(",
"slices",
")",
"-",
"1",
",",
"points",
".",
"shape",
"[",
"1",
"]",
",",
"points",
".",
"shape",
"[",
"0",
"]",
",",
"next_seq_start",
",",
"i",
")",
")",
"seq_frames",
"=",
"[",
"]",
"next_seq_start",
"=",
"i",
"+",
"new_step",
"(",
")",
"next_seq_length",
"=",
"new_length",
"(",
")",
"return",
"slices"
] | Create slices from a video stream using random sampling
Parameters
-----------------
video_stream : VideoStream
A video stream
step_bounds : tuple
Range bounds (inclusive) of possible step lengths
length_bounds : tuple
Range bounds (inclusive) of possible slice lengths
max_start : int
Maximum frame number to start from
min_distance : float
Minimum (initial) distance between tracked points
min_slice_points : int
Minimum number of points to keep a slice
Returns
-------------------
list of Slice
List of slices | [
"Create",
"slices",
"from",
"a",
"video",
"stream",
"using",
"random",
"sampling"
] | train | https://github.com/hovren/crisp/blob/65cae19e7cfae5a397859096c9ef666e0f4e7f1b/crisp/videoslice.py#L64-L115 |
hovren/crisp | crisp/rotations.py | procrustes | def procrustes(X, Y, remove_mean=False):
"""Orthogonal procrustes problem solver
The procrustes problem finds the best rotation R, and translation t
where
X = R*Y + t
The number of points in X and Y must be at least 2.
For the minimal case of two points, a third point is temporarily created
and used for the estimation.
Parameters
-----------------
X : (3, N) ndarray
First set of points
Y : (3, N) ndarray
Second set of points
remove_mean : bool
If true, the mean is removed from X and Y before solving the
procrustes problem. Can yield better results in some applications.
Returns
-----------------
R : (3,3) ndarray
Rotation component
t : (3,) ndarray
Translation component (None if remove_mean is False)
"""
assert X.shape == Y.shape
assert X.shape[0] > 1
# Minimal case, create third point using cross product
if X.shape[0] == 2:
X3 = np.cross(X[:,0], X[:,1], axis=0)
X = np.hstack((X, X3 / np.linalg.norm(X3)))
Y3 = np.cross(Y[:,0], Y[:,1], axis=0)
Y = np.hstack((Y, Y3 / np.linalg.norm(Y3)))
D, N = X.shape[:2]
if remove_mean:
mx = np.mean(X, axis=1).reshape(D, 1)
my = np.mean(Y, axis=1).reshape(D, 1)
Xhat = X - mx
Yhat = Y - my
else:
Xhat = X
Yhat = Y
(U, S, V) = np.linalg.svd((Xhat).dot(Yhat.T))
Dtmp = np.eye(Xhat.shape[0])
Dtmp[-1,-1] = np.linalg.det(U.dot(V))
R_est = U.dot(Dtmp).dot(V)
# Now X=R_est*(Y-my)+mx=R_est*Y+t_est
if remove_mean:
t_est= mx - R_est.dot(my)
else:
t_est = None
return (R_est, t_est) | python | def procrustes(X, Y, remove_mean=False):
"""Orthogonal procrustes problem solver
The procrustes problem finds the best rotation R, and translation t
where
X = R*Y + t
The number of points in X and Y must be at least 2.
For the minimal case of two points, a third point is temporarily created
and used for the estimation.
Parameters
-----------------
X : (3, N) ndarray
First set of points
Y : (3, N) ndarray
Second set of points
remove_mean : bool
If true, the mean is removed from X and Y before solving the
procrustes problem. Can yield better results in some applications.
Returns
-----------------
R : (3,3) ndarray
Rotation component
t : (3,) ndarray
Translation component (None if remove_mean is False)
"""
assert X.shape == Y.shape
assert X.shape[0] > 1
# Minimal case, create third point using cross product
if X.shape[0] == 2:
X3 = np.cross(X[:,0], X[:,1], axis=0)
X = np.hstack((X, X3 / np.linalg.norm(X3)))
Y3 = np.cross(Y[:,0], Y[:,1], axis=0)
Y = np.hstack((Y, Y3 / np.linalg.norm(Y3)))
D, N = X.shape[:2]
if remove_mean:
mx = np.mean(X, axis=1).reshape(D, 1)
my = np.mean(Y, axis=1).reshape(D, 1)
Xhat = X - mx
Yhat = Y - my
else:
Xhat = X
Yhat = Y
(U, S, V) = np.linalg.svd((Xhat).dot(Yhat.T))
Dtmp = np.eye(Xhat.shape[0])
Dtmp[-1,-1] = np.linalg.det(U.dot(V))
R_est = U.dot(Dtmp).dot(V)
# Now X=R_est*(Y-my)+mx=R_est*Y+t_est
if remove_mean:
t_est= mx - R_est.dot(my)
else:
t_est = None
return (R_est, t_est) | [
"def",
"procrustes",
"(",
"X",
",",
"Y",
",",
"remove_mean",
"=",
"False",
")",
":",
"assert",
"X",
".",
"shape",
"==",
"Y",
".",
"shape",
"assert",
"X",
".",
"shape",
"[",
"0",
"]",
">",
"1",
"# Minimal case, create third point using cross product",
"if",
"X",
".",
"shape",
"[",
"0",
"]",
"==",
"2",
":",
"X3",
"=",
"np",
".",
"cross",
"(",
"X",
"[",
":",
",",
"0",
"]",
",",
"X",
"[",
":",
",",
"1",
"]",
",",
"axis",
"=",
"0",
")",
"X",
"=",
"np",
".",
"hstack",
"(",
"(",
"X",
",",
"X3",
"/",
"np",
".",
"linalg",
".",
"norm",
"(",
"X3",
")",
")",
")",
"Y3",
"=",
"np",
".",
"cross",
"(",
"Y",
"[",
":",
",",
"0",
"]",
",",
"Y",
"[",
":",
",",
"1",
"]",
",",
"axis",
"=",
"0",
")",
"Y",
"=",
"np",
".",
"hstack",
"(",
"(",
"Y",
",",
"Y3",
"/",
"np",
".",
"linalg",
".",
"norm",
"(",
"Y3",
")",
")",
")",
"D",
",",
"N",
"=",
"X",
".",
"shape",
"[",
":",
"2",
"]",
"if",
"remove_mean",
":",
"mx",
"=",
"np",
".",
"mean",
"(",
"X",
",",
"axis",
"=",
"1",
")",
".",
"reshape",
"(",
"D",
",",
"1",
")",
"my",
"=",
"np",
".",
"mean",
"(",
"Y",
",",
"axis",
"=",
"1",
")",
".",
"reshape",
"(",
"D",
",",
"1",
")",
"Xhat",
"=",
"X",
"-",
"mx",
"Yhat",
"=",
"Y",
"-",
"my",
"else",
":",
"Xhat",
"=",
"X",
"Yhat",
"=",
"Y",
"(",
"U",
",",
"S",
",",
"V",
")",
"=",
"np",
".",
"linalg",
".",
"svd",
"(",
"(",
"Xhat",
")",
".",
"dot",
"(",
"Yhat",
".",
"T",
")",
")",
"Dtmp",
"=",
"np",
".",
"eye",
"(",
"Xhat",
".",
"shape",
"[",
"0",
"]",
")",
"Dtmp",
"[",
"-",
"1",
",",
"-",
"1",
"]",
"=",
"np",
".",
"linalg",
".",
"det",
"(",
"U",
".",
"dot",
"(",
"V",
")",
")",
"R_est",
"=",
"U",
".",
"dot",
"(",
"Dtmp",
")",
".",
"dot",
"(",
"V",
")",
"# Now X=R_est*(Y-my)+mx=R_est*Y+t_est",
"if",
"remove_mean",
":",
"t_est",
"=",
"mx",
"-",
"R_est",
".",
"dot",
"(",
"my",
")",
"else",
":",
"t_est",
"=",
"None",
"return",
"(",
"R_est",
",",
"t_est",
")"
] | Orthogonal procrustes problem solver
The procrustes problem finds the best rotation R, and translation t
where
X = R*Y + t
The number of points in X and Y must be at least 2.
For the minimal case of two points, a third point is temporarily created
and used for the estimation.
Parameters
-----------------
X : (3, N) ndarray
First set of points
Y : (3, N) ndarray
Second set of points
remove_mean : bool
If true, the mean is removed from X and Y before solving the
procrustes problem. Can yield better results in some applications.
Returns
-----------------
R : (3,3) ndarray
Rotation component
t : (3,) ndarray
Translation component (None if remove_mean is False) | [
"Orthogonal",
"procrustes",
"problem",
"solver",
"The",
"procrustes",
"problem",
"finds",
"the",
"best",
"rotation",
"R",
"and",
"translation",
"t",
"where",
"X",
"=",
"R",
"*",
"Y",
"+",
"t",
"The",
"number",
"of",
"points",
"in",
"X",
"and",
"Y",
"must",
"be",
"at",
"least",
"2",
".",
"For",
"the",
"minimal",
"case",
"of",
"two",
"points",
"a",
"third",
"point",
"is",
"temporarily",
"created",
"and",
"used",
"for",
"the",
"estimation",
".",
"Parameters",
"-----------------",
"X",
":",
"(",
"3",
"N",
")",
"ndarray",
"First",
"set",
"of",
"points",
"Y",
":",
"(",
"3",
"N",
")",
"ndarray",
"Second",
"set",
"of",
"points",
"remove_mean",
":",
"bool",
"If",
"true",
"the",
"mean",
"is",
"removed",
"from",
"X",
"and",
"Y",
"before",
"solving",
"the",
"procrustes",
"problem",
".",
"Can",
"yield",
"better",
"results",
"in",
"some",
"applications",
".",
"Returns",
"-----------------",
"R",
":",
"(",
"3",
"3",
")",
"ndarray",
"Rotation",
"component",
"t",
":",
"(",
"3",
")",
"ndarray",
"Translation",
"component",
"(",
"None",
"if",
"remove_mean",
"is",
"False",
")"
] | train | https://github.com/hovren/crisp/blob/65cae19e7cfae5a397859096c9ef666e0f4e7f1b/crisp/rotations.py#L21-L84 |
hovren/crisp | crisp/rotations.py | rotation_matrix_to_axis_angle | def rotation_matrix_to_axis_angle(R):
"""Convert a 3D rotation matrix to a 3D axis angle representation
Parameters
---------------
R : (3,3) array
Rotation matrix
Returns
----------------
v : (3,) array
(Unit-) rotation angle
theta : float
Angle of rotations, in radians
Note
--------------
This uses the algorithm as described in Multiple View Geometry, p. 584
"""
assert R.shape == (3,3)
assert_almost_equal(np.linalg.det(R), 1.0, err_msg="Not a rotation matrix: determinant was not 1")
S, V = np.linalg.eig(R)
k = np.argmin(np.abs(S - 1.))
s = S[k]
assert_almost_equal(s, 1.0, err_msg="Not a rotation matrix: No eigen value s=1")
v = np.real(V[:, k]) # Result is generally complex
vhat = np.array([R[2,1] - R[1,2], R[0,2] - R[2,0], R[1,0] - R[0,1]])
sintheta = 0.5 * np.dot(v, vhat)
costheta = 0.5 * (np.trace(R) - 1)
theta = np.arctan2(sintheta, costheta)
return (v, theta) | python | def rotation_matrix_to_axis_angle(R):
"""Convert a 3D rotation matrix to a 3D axis angle representation
Parameters
---------------
R : (3,3) array
Rotation matrix
Returns
----------------
v : (3,) array
(Unit-) rotation angle
theta : float
Angle of rotations, in radians
Note
--------------
This uses the algorithm as described in Multiple View Geometry, p. 584
"""
assert R.shape == (3,3)
assert_almost_equal(np.linalg.det(R), 1.0, err_msg="Not a rotation matrix: determinant was not 1")
S, V = np.linalg.eig(R)
k = np.argmin(np.abs(S - 1.))
s = S[k]
assert_almost_equal(s, 1.0, err_msg="Not a rotation matrix: No eigen value s=1")
v = np.real(V[:, k]) # Result is generally complex
vhat = np.array([R[2,1] - R[1,2], R[0,2] - R[2,0], R[1,0] - R[0,1]])
sintheta = 0.5 * np.dot(v, vhat)
costheta = 0.5 * (np.trace(R) - 1)
theta = np.arctan2(sintheta, costheta)
return (v, theta) | [
"def",
"rotation_matrix_to_axis_angle",
"(",
"R",
")",
":",
"assert",
"R",
".",
"shape",
"==",
"(",
"3",
",",
"3",
")",
"assert_almost_equal",
"(",
"np",
".",
"linalg",
".",
"det",
"(",
"R",
")",
",",
"1.0",
",",
"err_msg",
"=",
"\"Not a rotation matrix: determinant was not 1\"",
")",
"S",
",",
"V",
"=",
"np",
".",
"linalg",
".",
"eig",
"(",
"R",
")",
"k",
"=",
"np",
".",
"argmin",
"(",
"np",
".",
"abs",
"(",
"S",
"-",
"1.",
")",
")",
"s",
"=",
"S",
"[",
"k",
"]",
"assert_almost_equal",
"(",
"s",
",",
"1.0",
",",
"err_msg",
"=",
"\"Not a rotation matrix: No eigen value s=1\"",
")",
"v",
"=",
"np",
".",
"real",
"(",
"V",
"[",
":",
",",
"k",
"]",
")",
"# Result is generally complex",
"vhat",
"=",
"np",
".",
"array",
"(",
"[",
"R",
"[",
"2",
",",
"1",
"]",
"-",
"R",
"[",
"1",
",",
"2",
"]",
",",
"R",
"[",
"0",
",",
"2",
"]",
"-",
"R",
"[",
"2",
",",
"0",
"]",
",",
"R",
"[",
"1",
",",
"0",
"]",
"-",
"R",
"[",
"0",
",",
"1",
"]",
"]",
")",
"sintheta",
"=",
"0.5",
"*",
"np",
".",
"dot",
"(",
"v",
",",
"vhat",
")",
"costheta",
"=",
"0.5",
"*",
"(",
"np",
".",
"trace",
"(",
"R",
")",
"-",
"1",
")",
"theta",
"=",
"np",
".",
"arctan2",
"(",
"sintheta",
",",
"costheta",
")",
"return",
"(",
"v",
",",
"theta",
")"
] | Convert a 3D rotation matrix to a 3D axis angle representation
Parameters
---------------
R : (3,3) array
Rotation matrix
Returns
----------------
v : (3,) array
(Unit-) rotation angle
theta : float
Angle of rotations, in radians
Note
--------------
This uses the algorithm as described in Multiple View Geometry, p. 584 | [
"Convert",
"a",
"3D",
"rotation",
"matrix",
"to",
"a",
"3D",
"axis",
"angle",
"representation",
"Parameters",
"---------------",
"R",
":",
"(",
"3",
"3",
")",
"array",
"Rotation",
"matrix",
"Returns",
"----------------",
"v",
":",
"(",
"3",
")",
"array",
"(",
"Unit",
"-",
")",
"rotation",
"angle",
"theta",
":",
"float",
"Angle",
"of",
"rotations",
"in",
"radians",
"Note",
"--------------",
"This",
"uses",
"the",
"algorithm",
"as",
"described",
"in",
"Multiple",
"View",
"Geometry",
"p",
".",
"584"
] | train | https://github.com/hovren/crisp/blob/65cae19e7cfae5a397859096c9ef666e0f4e7f1b/crisp/rotations.py#L88-L120 |
hovren/crisp | crisp/rotations.py | axis_angle_to_rotation_matrix | def axis_angle_to_rotation_matrix(v, theta):
"""Convert rotation from axis-angle to rotation matrix
Parameters
---------------
v : (3,) ndarray
Rotation axis (normalized)
theta : float
Rotation angle (radians)
Returns
----------------
R : (3,3) ndarray
Rotation matrix
"""
if np.abs(theta) < np.spacing(1):
return np.eye(3)
else:
v = v.reshape(3,1)
np.testing.assert_almost_equal(np.linalg.norm(v), 1.)
vx = np.array([[0, -v[2], v[1]],
[v[2], 0, -v[0]],
[-v[1], v[0], 0]])
vvt = np.dot(v, v.T)
R = np.eye(3)*np.cos(theta) + (1 - np.cos(theta))*vvt + vx * np.sin(theta)
return R | python | def axis_angle_to_rotation_matrix(v, theta):
"""Convert rotation from axis-angle to rotation matrix
Parameters
---------------
v : (3,) ndarray
Rotation axis (normalized)
theta : float
Rotation angle (radians)
Returns
----------------
R : (3,3) ndarray
Rotation matrix
"""
if np.abs(theta) < np.spacing(1):
return np.eye(3)
else:
v = v.reshape(3,1)
np.testing.assert_almost_equal(np.linalg.norm(v), 1.)
vx = np.array([[0, -v[2], v[1]],
[v[2], 0, -v[0]],
[-v[1], v[0], 0]])
vvt = np.dot(v, v.T)
R = np.eye(3)*np.cos(theta) + (1 - np.cos(theta))*vvt + vx * np.sin(theta)
return R | [
"def",
"axis_angle_to_rotation_matrix",
"(",
"v",
",",
"theta",
")",
":",
"if",
"np",
".",
"abs",
"(",
"theta",
")",
"<",
"np",
".",
"spacing",
"(",
"1",
")",
":",
"return",
"np",
".",
"eye",
"(",
"3",
")",
"else",
":",
"v",
"=",
"v",
".",
"reshape",
"(",
"3",
",",
"1",
")",
"np",
".",
"testing",
".",
"assert_almost_equal",
"(",
"np",
".",
"linalg",
".",
"norm",
"(",
"v",
")",
",",
"1.",
")",
"vx",
"=",
"np",
".",
"array",
"(",
"[",
"[",
"0",
",",
"-",
"v",
"[",
"2",
"]",
",",
"v",
"[",
"1",
"]",
"]",
",",
"[",
"v",
"[",
"2",
"]",
",",
"0",
",",
"-",
"v",
"[",
"0",
"]",
"]",
",",
"[",
"-",
"v",
"[",
"1",
"]",
",",
"v",
"[",
"0",
"]",
",",
"0",
"]",
"]",
")",
"vvt",
"=",
"np",
".",
"dot",
"(",
"v",
",",
"v",
".",
"T",
")",
"R",
"=",
"np",
".",
"eye",
"(",
"3",
")",
"*",
"np",
".",
"cos",
"(",
"theta",
")",
"+",
"(",
"1",
"-",
"np",
".",
"cos",
"(",
"theta",
")",
")",
"*",
"vvt",
"+",
"vx",
"*",
"np",
".",
"sin",
"(",
"theta",
")",
"return",
"R"
] | Convert rotation from axis-angle to rotation matrix
Parameters
---------------
v : (3,) ndarray
Rotation axis (normalized)
theta : float
Rotation angle (radians)
Returns
----------------
R : (3,3) ndarray
Rotation matrix | [
"Convert",
"rotation",
"from",
"axis",
"-",
"angle",
"to",
"rotation",
"matrix",
"Parameters",
"---------------",
"v",
":",
"(",
"3",
")",
"ndarray",
"Rotation",
"axis",
"(",
"normalized",
")",
"theta",
":",
"float",
"Rotation",
"angle",
"(",
"radians",
")"
] | train | https://github.com/hovren/crisp/blob/65cae19e7cfae5a397859096c9ef666e0f4e7f1b/crisp/rotations.py#L124-L149 |
hovren/crisp | crisp/rotations.py | quat_to_rotation_matrix | def quat_to_rotation_matrix(q):
"""Convert unit quaternion to rotation matrix
Parameters
-------------
q : (4,) ndarray
Unit quaternion, scalar as first element
Returns
----------------
R : (3,3) ndarray
Rotation matrix
"""
q = q.flatten()
assert q.size == 4
assert_almost_equal(np.linalg.norm(q), 1.0, err_msg="Not a unit quaternion!")
qq = q ** 2
R = np.array([[qq[0] + qq[1] - qq[2] - qq[3], 2*q[1]*q[2] -
2*q[0]*q[3], 2*q[1]*q[3] + 2*q[0]*q[2]],
[2*q[1]*q[2] + 2*q[0]*q[3], qq[0] - qq[1] + qq[2] -
qq[3], 2*q[2]*q[3] - 2*q[0]*q[1]],
[2*q[1]*q[3] - 2*q[0]*q[2], 2*q[2]*q[3] + 2*q[0]*q[1],
qq[0] - qq[1] - qq[2] + qq[3]]])
return R | python | def quat_to_rotation_matrix(q):
"""Convert unit quaternion to rotation matrix
Parameters
-------------
q : (4,) ndarray
Unit quaternion, scalar as first element
Returns
----------------
R : (3,3) ndarray
Rotation matrix
"""
q = q.flatten()
assert q.size == 4
assert_almost_equal(np.linalg.norm(q), 1.0, err_msg="Not a unit quaternion!")
qq = q ** 2
R = np.array([[qq[0] + qq[1] - qq[2] - qq[3], 2*q[1]*q[2] -
2*q[0]*q[3], 2*q[1]*q[3] + 2*q[0]*q[2]],
[2*q[1]*q[2] + 2*q[0]*q[3], qq[0] - qq[1] + qq[2] -
qq[3], 2*q[2]*q[3] - 2*q[0]*q[1]],
[2*q[1]*q[3] - 2*q[0]*q[2], 2*q[2]*q[3] + 2*q[0]*q[1],
qq[0] - qq[1] - qq[2] + qq[3]]])
return R | [
"def",
"quat_to_rotation_matrix",
"(",
"q",
")",
":",
"q",
"=",
"q",
".",
"flatten",
"(",
")",
"assert",
"q",
".",
"size",
"==",
"4",
"assert_almost_equal",
"(",
"np",
".",
"linalg",
".",
"norm",
"(",
"q",
")",
",",
"1.0",
",",
"err_msg",
"=",
"\"Not a unit quaternion!\"",
")",
"qq",
"=",
"q",
"**",
"2",
"R",
"=",
"np",
".",
"array",
"(",
"[",
"[",
"qq",
"[",
"0",
"]",
"+",
"qq",
"[",
"1",
"]",
"-",
"qq",
"[",
"2",
"]",
"-",
"qq",
"[",
"3",
"]",
",",
"2",
"*",
"q",
"[",
"1",
"]",
"*",
"q",
"[",
"2",
"]",
"-",
"2",
"*",
"q",
"[",
"0",
"]",
"*",
"q",
"[",
"3",
"]",
",",
"2",
"*",
"q",
"[",
"1",
"]",
"*",
"q",
"[",
"3",
"]",
"+",
"2",
"*",
"q",
"[",
"0",
"]",
"*",
"q",
"[",
"2",
"]",
"]",
",",
"[",
"2",
"*",
"q",
"[",
"1",
"]",
"*",
"q",
"[",
"2",
"]",
"+",
"2",
"*",
"q",
"[",
"0",
"]",
"*",
"q",
"[",
"3",
"]",
",",
"qq",
"[",
"0",
"]",
"-",
"qq",
"[",
"1",
"]",
"+",
"qq",
"[",
"2",
"]",
"-",
"qq",
"[",
"3",
"]",
",",
"2",
"*",
"q",
"[",
"2",
"]",
"*",
"q",
"[",
"3",
"]",
"-",
"2",
"*",
"q",
"[",
"0",
"]",
"*",
"q",
"[",
"1",
"]",
"]",
",",
"[",
"2",
"*",
"q",
"[",
"1",
"]",
"*",
"q",
"[",
"3",
"]",
"-",
"2",
"*",
"q",
"[",
"0",
"]",
"*",
"q",
"[",
"2",
"]",
",",
"2",
"*",
"q",
"[",
"2",
"]",
"*",
"q",
"[",
"3",
"]",
"+",
"2",
"*",
"q",
"[",
"0",
"]",
"*",
"q",
"[",
"1",
"]",
",",
"qq",
"[",
"0",
"]",
"-",
"qq",
"[",
"1",
"]",
"-",
"qq",
"[",
"2",
"]",
"+",
"qq",
"[",
"3",
"]",
"]",
"]",
")",
"return",
"R"
] | Convert unit quaternion to rotation matrix
Parameters
-------------
q : (4,) ndarray
Unit quaternion, scalar as first element
Returns
----------------
R : (3,3) ndarray
Rotation matrix | [
"Convert",
"unit",
"quaternion",
"to",
"rotation",
"matrix",
"Parameters",
"-------------",
"q",
":",
"(",
"4",
")",
"ndarray",
"Unit",
"quaternion",
"scalar",
"as",
"first",
"element"
] | train | https://github.com/hovren/crisp/blob/65cae19e7cfae5a397859096c9ef666e0f4e7f1b/crisp/rotations.py#L153-L177 |
hovren/crisp | crisp/rotations.py | integrate_gyro_quaternion | def integrate_gyro_quaternion(gyro_ts, gyro_data):
"""Integrate angular velocities to rotations
Parameters
---------------
gyro_ts : ndarray
Timestamps
gyro_data : (3, N) ndarray
Angular velocity measurements
Returns
---------------
rotations : (4, N) ndarray
Rotation sequence as unit quaternions (first element scalar)
"""
#NB: Quaternion q = [a, n1, n2, n3], scalar first
q_list = np.zeros((gyro_ts.shape[0], 4)) # Nx4 quaternion list
q_list[0,:] = np.array([1, 0, 0, 0]) # Initial rotation (no rotation)
# Iterate over all (except first)
for i in range(1, gyro_ts.size):
w = gyro_data[i]
dt = gyro_ts[i] - gyro_ts[i - 1]
qprev = q_list[i - 1]
A = np.array([[0, -w[0], -w[1], -w[2]],
[w[0], 0, w[2], -w[1]],
[w[1], -w[2], 0, w[0]],
[w[2], w[1], -w[0], 0]])
qnew = (np.eye(4) + (dt/2.0) * A).dot(qprev)
qnorm = np.sqrt(np.sum(qnew ** 2))
qnew /= qnorm
q_list[i] = qnew
return q_list | python | def integrate_gyro_quaternion(gyro_ts, gyro_data):
"""Integrate angular velocities to rotations
Parameters
---------------
gyro_ts : ndarray
Timestamps
gyro_data : (3, N) ndarray
Angular velocity measurements
Returns
---------------
rotations : (4, N) ndarray
Rotation sequence as unit quaternions (first element scalar)
"""
#NB: Quaternion q = [a, n1, n2, n3], scalar first
q_list = np.zeros((gyro_ts.shape[0], 4)) # Nx4 quaternion list
q_list[0,:] = np.array([1, 0, 0, 0]) # Initial rotation (no rotation)
# Iterate over all (except first)
for i in range(1, gyro_ts.size):
w = gyro_data[i]
dt = gyro_ts[i] - gyro_ts[i - 1]
qprev = q_list[i - 1]
A = np.array([[0, -w[0], -w[1], -w[2]],
[w[0], 0, w[2], -w[1]],
[w[1], -w[2], 0, w[0]],
[w[2], w[1], -w[0], 0]])
qnew = (np.eye(4) + (dt/2.0) * A).dot(qprev)
qnorm = np.sqrt(np.sum(qnew ** 2))
qnew /= qnorm
q_list[i] = qnew
return q_list | [
"def",
"integrate_gyro_quaternion",
"(",
"gyro_ts",
",",
"gyro_data",
")",
":",
"#NB: Quaternion q = [a, n1, n2, n3], scalar first",
"q_list",
"=",
"np",
".",
"zeros",
"(",
"(",
"gyro_ts",
".",
"shape",
"[",
"0",
"]",
",",
"4",
")",
")",
"# Nx4 quaternion list",
"q_list",
"[",
"0",
",",
":",
"]",
"=",
"np",
".",
"array",
"(",
"[",
"1",
",",
"0",
",",
"0",
",",
"0",
"]",
")",
"# Initial rotation (no rotation)",
"# Iterate over all (except first)",
"for",
"i",
"in",
"range",
"(",
"1",
",",
"gyro_ts",
".",
"size",
")",
":",
"w",
"=",
"gyro_data",
"[",
"i",
"]",
"dt",
"=",
"gyro_ts",
"[",
"i",
"]",
"-",
"gyro_ts",
"[",
"i",
"-",
"1",
"]",
"qprev",
"=",
"q_list",
"[",
"i",
"-",
"1",
"]",
"A",
"=",
"np",
".",
"array",
"(",
"[",
"[",
"0",
",",
"-",
"w",
"[",
"0",
"]",
",",
"-",
"w",
"[",
"1",
"]",
",",
"-",
"w",
"[",
"2",
"]",
"]",
",",
"[",
"w",
"[",
"0",
"]",
",",
"0",
",",
"w",
"[",
"2",
"]",
",",
"-",
"w",
"[",
"1",
"]",
"]",
",",
"[",
"w",
"[",
"1",
"]",
",",
"-",
"w",
"[",
"2",
"]",
",",
"0",
",",
"w",
"[",
"0",
"]",
"]",
",",
"[",
"w",
"[",
"2",
"]",
",",
"w",
"[",
"1",
"]",
",",
"-",
"w",
"[",
"0",
"]",
",",
"0",
"]",
"]",
")",
"qnew",
"=",
"(",
"np",
".",
"eye",
"(",
"4",
")",
"+",
"(",
"dt",
"/",
"2.0",
")",
"*",
"A",
")",
".",
"dot",
"(",
"qprev",
")",
"qnorm",
"=",
"np",
".",
"sqrt",
"(",
"np",
".",
"sum",
"(",
"qnew",
"**",
"2",
")",
")",
"qnew",
"/=",
"qnorm",
"q_list",
"[",
"i",
"]",
"=",
"qnew",
"return",
"q_list"
] | Integrate angular velocities to rotations
Parameters
---------------
gyro_ts : ndarray
Timestamps
gyro_data : (3, N) ndarray
Angular velocity measurements
Returns
---------------
rotations : (4, N) ndarray
Rotation sequence as unit quaternions (first element scalar) | [
"Integrate",
"angular",
"velocities",
"to",
"rotations",
"Parameters",
"---------------",
"gyro_ts",
":",
"ndarray",
"Timestamps",
"gyro_data",
":",
"(",
"3",
"N",
")",
"ndarray",
"Angular",
"velocity",
"measurements",
"Returns",
"---------------",
"rotations",
":",
"(",
"4",
"N",
")",
"ndarray",
"Rotation",
"sequence",
"as",
"unit",
"quaternions",
"(",
"first",
"element",
"scalar",
")"
] | train | https://github.com/hovren/crisp/blob/65cae19e7cfae5a397859096c9ef666e0f4e7f1b/crisp/rotations.py#L181-L216 |
hovren/crisp | crisp/rotations.py | slerp | def slerp(q1, q2, u):
"""SLERP: Spherical linear interpolation between two unit quaternions.
Parameters
------------
q1 : (4, ) ndarray
Unit quaternion (first element scalar)
q2 : (4, ) ndarray
Unit quaternion (first element scalar)
u : float
Interpolation factor in range [0,1] where 0 is first quaternion
and 1 is second quaternion.
Returns
-----------
q : (4,) ndarray
The interpolated unit quaternion
"""
q1 = q1.flatten()
q2 = q2.flatten()
assert q1.shape == q2.shape
assert q1.size == 4
costheta = np.dot(q1, q2)
if np.isclose(u, 0.):
return q1
elif np.isclose(u, 1.):
return q2
elif u > 1 or u < 0:
raise ValueError("u must be in range [0, 1]")
# Shortest path
if costheta < 0:
costheta = -costheta
q2 = -q2
# Almost the same, we can return any of them?
if np.isclose(costheta, 1.0):
return q1
theta = np.arccos(costheta)
f1 = np.sin((1.0 - u)*theta) / np.sin(theta)
f2 = np.sin(u*theta) / np.sin(theta)
q = f1*q1 + f2*q2
q = q / np.sqrt(np.sum(q**2)) # Normalize
return q | python | def slerp(q1, q2, u):
"""SLERP: Spherical linear interpolation between two unit quaternions.
Parameters
------------
q1 : (4, ) ndarray
Unit quaternion (first element scalar)
q2 : (4, ) ndarray
Unit quaternion (first element scalar)
u : float
Interpolation factor in range [0,1] where 0 is first quaternion
and 1 is second quaternion.
Returns
-----------
q : (4,) ndarray
The interpolated unit quaternion
"""
q1 = q1.flatten()
q2 = q2.flatten()
assert q1.shape == q2.shape
assert q1.size == 4
costheta = np.dot(q1, q2)
if np.isclose(u, 0.):
return q1
elif np.isclose(u, 1.):
return q2
elif u > 1 or u < 0:
raise ValueError("u must be in range [0, 1]")
# Shortest path
if costheta < 0:
costheta = -costheta
q2 = -q2
# Almost the same, we can return any of them?
if np.isclose(costheta, 1.0):
return q1
theta = np.arccos(costheta)
f1 = np.sin((1.0 - u)*theta) / np.sin(theta)
f2 = np.sin(u*theta) / np.sin(theta)
q = f1*q1 + f2*q2
q = q / np.sqrt(np.sum(q**2)) # Normalize
return q | [
"def",
"slerp",
"(",
"q1",
",",
"q2",
",",
"u",
")",
":",
"q1",
"=",
"q1",
".",
"flatten",
"(",
")",
"q2",
"=",
"q2",
".",
"flatten",
"(",
")",
"assert",
"q1",
".",
"shape",
"==",
"q2",
".",
"shape",
"assert",
"q1",
".",
"size",
"==",
"4",
"costheta",
"=",
"np",
".",
"dot",
"(",
"q1",
",",
"q2",
")",
"if",
"np",
".",
"isclose",
"(",
"u",
",",
"0.",
")",
":",
"return",
"q1",
"elif",
"np",
".",
"isclose",
"(",
"u",
",",
"1.",
")",
":",
"return",
"q2",
"elif",
"u",
">",
"1",
"or",
"u",
"<",
"0",
":",
"raise",
"ValueError",
"(",
"\"u must be in range [0, 1]\"",
")",
"# Shortest path",
"if",
"costheta",
"<",
"0",
":",
"costheta",
"=",
"-",
"costheta",
"q2",
"=",
"-",
"q2",
"# Almost the same, we can return any of them?",
"if",
"np",
".",
"isclose",
"(",
"costheta",
",",
"1.0",
")",
":",
"return",
"q1",
"theta",
"=",
"np",
".",
"arccos",
"(",
"costheta",
")",
"f1",
"=",
"np",
".",
"sin",
"(",
"(",
"1.0",
"-",
"u",
")",
"*",
"theta",
")",
"/",
"np",
".",
"sin",
"(",
"theta",
")",
"f2",
"=",
"np",
".",
"sin",
"(",
"u",
"*",
"theta",
")",
"/",
"np",
".",
"sin",
"(",
"theta",
")",
"q",
"=",
"f1",
"*",
"q1",
"+",
"f2",
"*",
"q2",
"q",
"=",
"q",
"/",
"np",
".",
"sqrt",
"(",
"np",
".",
"sum",
"(",
"q",
"**",
"2",
")",
")",
"# Normalize",
"return",
"q"
] | SLERP: Spherical linear interpolation between two unit quaternions.
Parameters
------------
q1 : (4, ) ndarray
Unit quaternion (first element scalar)
q2 : (4, ) ndarray
Unit quaternion (first element scalar)
u : float
Interpolation factor in range [0,1] where 0 is first quaternion
and 1 is second quaternion.
Returns
-----------
q : (4,) ndarray
The interpolated unit quaternion | [
"SLERP",
":",
"Spherical",
"linear",
"interpolation",
"between",
"two",
"unit",
"quaternions",
".",
"Parameters",
"------------",
"q1",
":",
"(",
"4",
")",
"ndarray",
"Unit",
"quaternion",
"(",
"first",
"element",
"scalar",
")",
"q2",
":",
"(",
"4",
")",
"ndarray",
"Unit",
"quaternion",
"(",
"first",
"element",
"scalar",
")",
"u",
":",
"float",
"Interpolation",
"factor",
"in",
"range",
"[",
"0",
"1",
"]",
"where",
"0",
"is",
"first",
"quaternion",
"and",
"1",
"is",
"second",
"quaternion",
".",
"Returns",
"-----------",
"q",
":",
"(",
"4",
")",
"ndarray",
"The",
"interpolated",
"unit",
"quaternion"
] | train | https://github.com/hovren/crisp/blob/65cae19e7cfae5a397859096c9ef666e0f4e7f1b/crisp/rotations.py#L220-L266 |
hovren/crisp | crisp/rotations.py | estimate_rotation_procrustes_ransac | def estimate_rotation_procrustes_ransac(x, y, camera, threshold, inlier_ratio=0.75, do_translation=False):
"""Calculate rotation between two sets of image coordinates using ransac.
Inlier criteria is the reprojection error of y into image 1.
Parameters
-------------------------
x : array 2xN image coordinates in image 1
y : array 2xN image coordinates in image 2
camera : Camera model
threshold : float pixel distance threshold to accept as inlier
do_translation : bool Try to estimate the translation as well
Returns
------------------------
R : array 3x3 The rotation that best fulfills X = RY
t : array 3x1 translation if do_translation is False
residual : array pixel distances ||x - xhat|| where xhat ~ KRY (and lens distorsion)
inliers : array Indices of the points (in X and Y) that are RANSAC inliers
"""
assert x.shape == y.shape
assert x.shape[0] == 2
X = camera.unproject(x)
Y = camera.unproject(y)
data = np.vstack((X, Y, x))
assert data.shape[0] == 8
model_func = lambda data: procrustes(data[:3], data[3:6], remove_mean=do_translation)
def eval_func(model, data):
Y = data[3:6].reshape(3,-1)
x = data[6:].reshape(2,-1)
R, t = model
Xhat = np.dot(R, Y) if t is None else np.dot(R, Y) + t
xhat = camera.project(Xhat)
dist = np.sqrt(np.sum((x-xhat)**2, axis=0))
return dist
inlier_selection_prob = 0.99999
model_points = 2
ransac_iterations = int(np.log(1 - inlier_selection_prob) / np.log(1-inlier_ratio**model_points))
model_est, ransac_consensus_idx = ransac.RANSAC(model_func, eval_func, data, model_points, ransac_iterations, threshold, recalculate=True)
if model_est is not None:
(R, t) = model_est
dist = eval_func((R, t), data)
else:
dist = None
R, t = None, None
ransac_consensus_idx = []
return R, t, dist, ransac_consensus_idx | python | def estimate_rotation_procrustes_ransac(x, y, camera, threshold, inlier_ratio=0.75, do_translation=False):
"""Calculate rotation between two sets of image coordinates using ransac.
Inlier criteria is the reprojection error of y into image 1.
Parameters
-------------------------
x : array 2xN image coordinates in image 1
y : array 2xN image coordinates in image 2
camera : Camera model
threshold : float pixel distance threshold to accept as inlier
do_translation : bool Try to estimate the translation as well
Returns
------------------------
R : array 3x3 The rotation that best fulfills X = RY
t : array 3x1 translation if do_translation is False
residual : array pixel distances ||x - xhat|| where xhat ~ KRY (and lens distorsion)
inliers : array Indices of the points (in X and Y) that are RANSAC inliers
"""
assert x.shape == y.shape
assert x.shape[0] == 2
X = camera.unproject(x)
Y = camera.unproject(y)
data = np.vstack((X, Y, x))
assert data.shape[0] == 8
model_func = lambda data: procrustes(data[:3], data[3:6], remove_mean=do_translation)
def eval_func(model, data):
Y = data[3:6].reshape(3,-1)
x = data[6:].reshape(2,-1)
R, t = model
Xhat = np.dot(R, Y) if t is None else np.dot(R, Y) + t
xhat = camera.project(Xhat)
dist = np.sqrt(np.sum((x-xhat)**2, axis=0))
return dist
inlier_selection_prob = 0.99999
model_points = 2
ransac_iterations = int(np.log(1 - inlier_selection_prob) / np.log(1-inlier_ratio**model_points))
model_est, ransac_consensus_idx = ransac.RANSAC(model_func, eval_func, data, model_points, ransac_iterations, threshold, recalculate=True)
if model_est is not None:
(R, t) = model_est
dist = eval_func((R, t), data)
else:
dist = None
R, t = None, None
ransac_consensus_idx = []
return R, t, dist, ransac_consensus_idx | [
"def",
"estimate_rotation_procrustes_ransac",
"(",
"x",
",",
"y",
",",
"camera",
",",
"threshold",
",",
"inlier_ratio",
"=",
"0.75",
",",
"do_translation",
"=",
"False",
")",
":",
"assert",
"x",
".",
"shape",
"==",
"y",
".",
"shape",
"assert",
"x",
".",
"shape",
"[",
"0",
"]",
"==",
"2",
"X",
"=",
"camera",
".",
"unproject",
"(",
"x",
")",
"Y",
"=",
"camera",
".",
"unproject",
"(",
"y",
")",
"data",
"=",
"np",
".",
"vstack",
"(",
"(",
"X",
",",
"Y",
",",
"x",
")",
")",
"assert",
"data",
".",
"shape",
"[",
"0",
"]",
"==",
"8",
"model_func",
"=",
"lambda",
"data",
":",
"procrustes",
"(",
"data",
"[",
":",
"3",
"]",
",",
"data",
"[",
"3",
":",
"6",
"]",
",",
"remove_mean",
"=",
"do_translation",
")",
"def",
"eval_func",
"(",
"model",
",",
"data",
")",
":",
"Y",
"=",
"data",
"[",
"3",
":",
"6",
"]",
".",
"reshape",
"(",
"3",
",",
"-",
"1",
")",
"x",
"=",
"data",
"[",
"6",
":",
"]",
".",
"reshape",
"(",
"2",
",",
"-",
"1",
")",
"R",
",",
"t",
"=",
"model",
"Xhat",
"=",
"np",
".",
"dot",
"(",
"R",
",",
"Y",
")",
"if",
"t",
"is",
"None",
"else",
"np",
".",
"dot",
"(",
"R",
",",
"Y",
")",
"+",
"t",
"xhat",
"=",
"camera",
".",
"project",
"(",
"Xhat",
")",
"dist",
"=",
"np",
".",
"sqrt",
"(",
"np",
".",
"sum",
"(",
"(",
"x",
"-",
"xhat",
")",
"**",
"2",
",",
"axis",
"=",
"0",
")",
")",
"return",
"dist",
"inlier_selection_prob",
"=",
"0.99999",
"model_points",
"=",
"2",
"ransac_iterations",
"=",
"int",
"(",
"np",
".",
"log",
"(",
"1",
"-",
"inlier_selection_prob",
")",
"/",
"np",
".",
"log",
"(",
"1",
"-",
"inlier_ratio",
"**",
"model_points",
")",
")",
"model_est",
",",
"ransac_consensus_idx",
"=",
"ransac",
".",
"RANSAC",
"(",
"model_func",
",",
"eval_func",
",",
"data",
",",
"model_points",
",",
"ransac_iterations",
",",
"threshold",
",",
"recalculate",
"=",
"True",
")",
"if",
"model_est",
"is",
"not",
"None",
":",
"(",
"R",
",",
"t",
")",
"=",
"model_est",
"dist",
"=",
"eval_func",
"(",
"(",
"R",
",",
"t",
")",
",",
"data",
")",
"else",
":",
"dist",
"=",
"None",
"R",
",",
"t",
"=",
"None",
",",
"None",
"ransac_consensus_idx",
"=",
"[",
"]",
"return",
"R",
",",
"t",
",",
"dist",
",",
"ransac_consensus_idx"
] | Calculate rotation between two sets of image coordinates using ransac.
Inlier criteria is the reprojection error of y into image 1.
Parameters
-------------------------
x : array 2xN image coordinates in image 1
y : array 2xN image coordinates in image 2
camera : Camera model
threshold : float pixel distance threshold to accept as inlier
do_translation : bool Try to estimate the translation as well
Returns
------------------------
R : array 3x3 The rotation that best fulfills X = RY
t : array 3x1 translation if do_translation is False
residual : array pixel distances ||x - xhat|| where xhat ~ KRY (and lens distorsion)
inliers : array Indices of the points (in X and Y) that are RANSAC inliers | [
"Calculate",
"rotation",
"between",
"two",
"sets",
"of",
"image",
"coordinates",
"using",
"ransac",
".",
"Inlier",
"criteria",
"is",
"the",
"reprojection",
"error",
"of",
"y",
"into",
"image",
"1",
"."
] | train | https://github.com/hovren/crisp/blob/65cae19e7cfae5a397859096c9ef666e0f4e7f1b/crisp/rotations.py#L270-L325 |
hovren/crisp | crisp/ransac.py | RANSAC | def RANSAC(model_func, eval_func, data, num_points, num_iter, threshold, recalculate=False):
"""Apply RANSAC.
This RANSAC implementation will choose the best model based on the number of points in the consensus set. At evaluation time the model is created using num_points points. Then it will be recalculated using the points in the consensus set.
Parameters
------------
model_func: Takes a data parameter of size DxK where K is the number of points needed to construct the model and returns the model (Mx1 vector)
eval_func: Takes a model parameter (Lx1) and one or more data points (DxC, C>=1) and calculates the score of the point(s) relative to the selected model
data : array (DxN) where D is dimensionality and N number of samples
"""
M = None
max_consensus = 0
all_idx = list(range(data.shape[1]))
final_consensus = []
for k in range(num_iter):
np.random.shuffle(all_idx)
model_set = all_idx[:num_points]
x = data[:, model_set]
m = model_func(x)
model_error = eval_func(m, data)
assert model_error.ndim == 1
assert model_error.size == data.shape[1]
consensus_idx = np.flatnonzero(model_error < threshold)
if len(consensus_idx) > max_consensus:
M = m
max_consensus = len(consensus_idx)
final_consensus = consensus_idx
# Recalculate using current consensus set?
if recalculate and len(final_consensus) > 0:
final_consensus_set = data[:, final_consensus]
M = model_func(final_consensus_set)
return (M, final_consensus) | python | def RANSAC(model_func, eval_func, data, num_points, num_iter, threshold, recalculate=False):
"""Apply RANSAC.
This RANSAC implementation will choose the best model based on the number of points in the consensus set. At evaluation time the model is created using num_points points. Then it will be recalculated using the points in the consensus set.
Parameters
------------
model_func: Takes a data parameter of size DxK where K is the number of points needed to construct the model and returns the model (Mx1 vector)
eval_func: Takes a model parameter (Lx1) and one or more data points (DxC, C>=1) and calculates the score of the point(s) relative to the selected model
data : array (DxN) where D is dimensionality and N number of samples
"""
M = None
max_consensus = 0
all_idx = list(range(data.shape[1]))
final_consensus = []
for k in range(num_iter):
np.random.shuffle(all_idx)
model_set = all_idx[:num_points]
x = data[:, model_set]
m = model_func(x)
model_error = eval_func(m, data)
assert model_error.ndim == 1
assert model_error.size == data.shape[1]
consensus_idx = np.flatnonzero(model_error < threshold)
if len(consensus_idx) > max_consensus:
M = m
max_consensus = len(consensus_idx)
final_consensus = consensus_idx
# Recalculate using current consensus set?
if recalculate and len(final_consensus) > 0:
final_consensus_set = data[:, final_consensus]
M = model_func(final_consensus_set)
return (M, final_consensus) | [
"def",
"RANSAC",
"(",
"model_func",
",",
"eval_func",
",",
"data",
",",
"num_points",
",",
"num_iter",
",",
"threshold",
",",
"recalculate",
"=",
"False",
")",
":",
"M",
"=",
"None",
"max_consensus",
"=",
"0",
"all_idx",
"=",
"list",
"(",
"range",
"(",
"data",
".",
"shape",
"[",
"1",
"]",
")",
")",
"final_consensus",
"=",
"[",
"]",
"for",
"k",
"in",
"range",
"(",
"num_iter",
")",
":",
"np",
".",
"random",
".",
"shuffle",
"(",
"all_idx",
")",
"model_set",
"=",
"all_idx",
"[",
":",
"num_points",
"]",
"x",
"=",
"data",
"[",
":",
",",
"model_set",
"]",
"m",
"=",
"model_func",
"(",
"x",
")",
"model_error",
"=",
"eval_func",
"(",
"m",
",",
"data",
")",
"assert",
"model_error",
".",
"ndim",
"==",
"1",
"assert",
"model_error",
".",
"size",
"==",
"data",
".",
"shape",
"[",
"1",
"]",
"consensus_idx",
"=",
"np",
".",
"flatnonzero",
"(",
"model_error",
"<",
"threshold",
")",
"if",
"len",
"(",
"consensus_idx",
")",
">",
"max_consensus",
":",
"M",
"=",
"m",
"max_consensus",
"=",
"len",
"(",
"consensus_idx",
")",
"final_consensus",
"=",
"consensus_idx",
"# Recalculate using current consensus set?",
"if",
"recalculate",
"and",
"len",
"(",
"final_consensus",
")",
">",
"0",
":",
"final_consensus_set",
"=",
"data",
"[",
":",
",",
"final_consensus",
"]",
"M",
"=",
"model_func",
"(",
"final_consensus_set",
")",
"return",
"(",
"M",
",",
"final_consensus",
")"
] | Apply RANSAC.
This RANSAC implementation will choose the best model based on the number of points in the consensus set. At evaluation time the model is created using num_points points. Then it will be recalculated using the points in the consensus set.
Parameters
------------
model_func: Takes a data parameter of size DxK where K is the number of points needed to construct the model and returns the model (Mx1 vector)
eval_func: Takes a model parameter (Lx1) and one or more data points (DxC, C>=1) and calculates the score of the point(s) relative to the selected model
data : array (DxN) where D is dimensionality and N number of samples | [
"Apply",
"RANSAC",
"."
] | train | https://github.com/hovren/crisp/blob/65cae19e7cfae5a397859096c9ef666e0f4e7f1b/crisp/ransac.py#L5-L41 |
hovren/crisp | crisp/tracking.py | track_points | def track_points(img1, img2, initial_points=None, gftt_params={}):
"""Track points between two images
Parameters
-----------------
img1 : (M, N) ndarray
First image
img2 : (M, N) ndarray
Second image
initial_points : ndarray
Initial points. If empty, initial points will be calculated from
img1 using goodFeaturesToTrack in OpenCV
gftt_params : dict
Keyword arguments for goodFeaturesToTrack
Returns
-----------------
points : ndarray
Tracked points
initial_points : ndarray
Initial points used
"""
params = GFTT_DEFAULTS
if gftt_params:
params.update(gftt_params)
if initial_points is None:
initial_points = cv2.goodFeaturesToTrack(img1, params['max_corners'], params['quality_level'], params['min_distance'])
[_points, status, err] = cv2.calcOpticalFlowPyrLK(img1, img2, initial_points, np.array([]))
# Filter out valid points only
points = _points[np.nonzero(status)]
initial_points = initial_points[np.nonzero(status)]
return (points, initial_points) | python | def track_points(img1, img2, initial_points=None, gftt_params={}):
"""Track points between two images
Parameters
-----------------
img1 : (M, N) ndarray
First image
img2 : (M, N) ndarray
Second image
initial_points : ndarray
Initial points. If empty, initial points will be calculated from
img1 using goodFeaturesToTrack in OpenCV
gftt_params : dict
Keyword arguments for goodFeaturesToTrack
Returns
-----------------
points : ndarray
Tracked points
initial_points : ndarray
Initial points used
"""
params = GFTT_DEFAULTS
if gftt_params:
params.update(gftt_params)
if initial_points is None:
initial_points = cv2.goodFeaturesToTrack(img1, params['max_corners'], params['quality_level'], params['min_distance'])
[_points, status, err] = cv2.calcOpticalFlowPyrLK(img1, img2, initial_points, np.array([]))
# Filter out valid points only
points = _points[np.nonzero(status)]
initial_points = initial_points[np.nonzero(status)]
return (points, initial_points) | [
"def",
"track_points",
"(",
"img1",
",",
"img2",
",",
"initial_points",
"=",
"None",
",",
"gftt_params",
"=",
"{",
"}",
")",
":",
"params",
"=",
"GFTT_DEFAULTS",
"if",
"gftt_params",
":",
"params",
".",
"update",
"(",
"gftt_params",
")",
"if",
"initial_points",
"is",
"None",
":",
"initial_points",
"=",
"cv2",
".",
"goodFeaturesToTrack",
"(",
"img1",
",",
"params",
"[",
"'max_corners'",
"]",
",",
"params",
"[",
"'quality_level'",
"]",
",",
"params",
"[",
"'min_distance'",
"]",
")",
"[",
"_points",
",",
"status",
",",
"err",
"]",
"=",
"cv2",
".",
"calcOpticalFlowPyrLK",
"(",
"img1",
",",
"img2",
",",
"initial_points",
",",
"np",
".",
"array",
"(",
"[",
"]",
")",
")",
"# Filter out valid points only",
"points",
"=",
"_points",
"[",
"np",
".",
"nonzero",
"(",
"status",
")",
"]",
"initial_points",
"=",
"initial_points",
"[",
"np",
".",
"nonzero",
"(",
"status",
")",
"]",
"return",
"(",
"points",
",",
"initial_points",
")"
] | Track points between two images
Parameters
-----------------
img1 : (M, N) ndarray
First image
img2 : (M, N) ndarray
Second image
initial_points : ndarray
Initial points. If empty, initial points will be calculated from
img1 using goodFeaturesToTrack in OpenCV
gftt_params : dict
Keyword arguments for goodFeaturesToTrack
Returns
-----------------
points : ndarray
Tracked points
initial_points : ndarray
Initial points used | [
"Track",
"points",
"between",
"two",
"images",
"Parameters",
"-----------------",
"img1",
":",
"(",
"M",
"N",
")",
"ndarray",
"First",
"image",
"img2",
":",
"(",
"M",
"N",
")",
"ndarray",
"Second",
"image",
"initial_points",
":",
"ndarray",
"Initial",
"points",
".",
"If",
"empty",
"initial",
"points",
"will",
"be",
"calculated",
"from",
"img1",
"using",
"goodFeaturesToTrack",
"in",
"OpenCV",
"gftt_params",
":",
"dict",
"Keyword",
"arguments",
"for",
"goodFeaturesToTrack",
"Returns",
"-----------------",
"points",
":",
"ndarray",
"Tracked",
"points",
"initial_points",
":",
"ndarray",
"Initial",
"points",
"used"
] | train | https://github.com/hovren/crisp/blob/65cae19e7cfae5a397859096c9ef666e0f4e7f1b/crisp/tracking.py#L32-L67 |
hovren/crisp | crisp/tracking.py | optical_flow_magnitude | def optical_flow_magnitude(image_sequence, max_diff=60, gftt_options={}):
"""Return optical flow magnitude for the given image sequence
The flow magnitude is the mean value of the total (sparse) optical flow
between two images.
Crude outlier detection using the max_diff parameter is used.
Parameters
----------------
image_sequence : sequence
Sequence of image data (ndarrays) to calculate flow magnitude from
max_diff : float
Distance threshold for outlier rejection
gftt_options : dict
Keyword arguments to the OpenCV goodFeaturesToTrack function
Returns
----------------
flow : ndarray
The optical flow magnitude
"""
flow = []
prev_img = None
for img in image_sequence:
if img.ndim == 3 and img.shape[2] == 3:
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
if prev_img is None:
prev_img = img
continue
(next_points, prev_points) = track_points(prev_img, img, gftt_params=gftt_options)
distance = np.sqrt(np.sum((next_points - prev_points)**2, 1))
distance2 = distance[np.nonzero(distance < max_diff)] # Crude outlier rejection
dm = np.mean(distance2)
if np.isnan(dm):
dm = 0
flow.append(dm)
prev_img = img
return np.array(flow) | python | def optical_flow_magnitude(image_sequence, max_diff=60, gftt_options={}):
"""Return optical flow magnitude for the given image sequence
The flow magnitude is the mean value of the total (sparse) optical flow
between two images.
Crude outlier detection using the max_diff parameter is used.
Parameters
----------------
image_sequence : sequence
Sequence of image data (ndarrays) to calculate flow magnitude from
max_diff : float
Distance threshold for outlier rejection
gftt_options : dict
Keyword arguments to the OpenCV goodFeaturesToTrack function
Returns
----------------
flow : ndarray
The optical flow magnitude
"""
flow = []
prev_img = None
for img in image_sequence:
if img.ndim == 3 and img.shape[2] == 3:
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
if prev_img is None:
prev_img = img
continue
(next_points, prev_points) = track_points(prev_img, img, gftt_params=gftt_options)
distance = np.sqrt(np.sum((next_points - prev_points)**2, 1))
distance2 = distance[np.nonzero(distance < max_diff)] # Crude outlier rejection
dm = np.mean(distance2)
if np.isnan(dm):
dm = 0
flow.append(dm)
prev_img = img
return np.array(flow) | [
"def",
"optical_flow_magnitude",
"(",
"image_sequence",
",",
"max_diff",
"=",
"60",
",",
"gftt_options",
"=",
"{",
"}",
")",
":",
"flow",
"=",
"[",
"]",
"prev_img",
"=",
"None",
"for",
"img",
"in",
"image_sequence",
":",
"if",
"img",
".",
"ndim",
"==",
"3",
"and",
"img",
".",
"shape",
"[",
"2",
"]",
"==",
"3",
":",
"img",
"=",
"cv2",
".",
"cvtColor",
"(",
"img",
",",
"cv2",
".",
"COLOR_BGR2GRAY",
")",
"if",
"prev_img",
"is",
"None",
":",
"prev_img",
"=",
"img",
"continue",
"(",
"next_points",
",",
"prev_points",
")",
"=",
"track_points",
"(",
"prev_img",
",",
"img",
",",
"gftt_params",
"=",
"gftt_options",
")",
"distance",
"=",
"np",
".",
"sqrt",
"(",
"np",
".",
"sum",
"(",
"(",
"next_points",
"-",
"prev_points",
")",
"**",
"2",
",",
"1",
")",
")",
"distance2",
"=",
"distance",
"[",
"np",
".",
"nonzero",
"(",
"distance",
"<",
"max_diff",
")",
"]",
"# Crude outlier rejection",
"dm",
"=",
"np",
".",
"mean",
"(",
"distance2",
")",
"if",
"np",
".",
"isnan",
"(",
"dm",
")",
":",
"dm",
"=",
"0",
"flow",
".",
"append",
"(",
"dm",
")",
"prev_img",
"=",
"img",
"return",
"np",
".",
"array",
"(",
"flow",
")"
] | Return optical flow magnitude for the given image sequence
The flow magnitude is the mean value of the total (sparse) optical flow
between two images.
Crude outlier detection using the max_diff parameter is used.
Parameters
----------------
image_sequence : sequence
Sequence of image data (ndarrays) to calculate flow magnitude from
max_diff : float
Distance threshold for outlier rejection
gftt_options : dict
Keyword arguments to the OpenCV goodFeaturesToTrack function
Returns
----------------
flow : ndarray
The optical flow magnitude | [
"Return",
"optical",
"flow",
"magnitude",
"for",
"the",
"given",
"image",
"sequence",
"The",
"flow",
"magnitude",
"is",
"the",
"mean",
"value",
"of",
"the",
"total",
"(",
"sparse",
")",
"optical",
"flow",
"between",
"two",
"images",
".",
"Crude",
"outlier",
"detection",
"using",
"the",
"max_diff",
"parameter",
"is",
"used",
".",
"Parameters",
"----------------",
"image_sequence",
":",
"sequence",
"Sequence",
"of",
"image",
"data",
"(",
"ndarrays",
")",
"to",
"calculate",
"flow",
"magnitude",
"from",
"max_diff",
":",
"float",
"Distance",
"threshold",
"for",
"outlier",
"rejection",
"gftt_options",
":",
"dict",
"Keyword",
"arguments",
"to",
"the",
"OpenCV",
"goodFeaturesToTrack",
"function",
"Returns",
"----------------",
"flow",
":",
"ndarray",
"The",
"optical",
"flow",
"magnitude"
] | train | https://github.com/hovren/crisp/blob/65cae19e7cfae5a397859096c9ef666e0f4e7f1b/crisp/tracking.py#L71-L110 |
hovren/crisp | crisp/tracking.py | track | def track(image_list, initial_points, remove_bad=True):
"""Track points in image list
Parameters
----------------
image_list : list
List of images to track in
initial_points : ndarray
Initial points to use (in first image in image_list)
remove_bad : bool
If True, then the resulting list of tracks will only contain succesfully
tracked points. Else, it will contain all points present in initial_points.
Returns
-----------------
tracks : (N, M, 2) ndarray
N tracks over M images with (x,y) coordinates of points
status : (N,) ndarray
The status of each track. 1 means ok, while 0 means tracking failure
"""
# Precreate track array
tracks = np.zeros((initial_points.shape[0], len(image_list), 2), dtype='float32') # NxMx2
tracks[:,0,:] = np.reshape(np.array(initial_points), [-1,2])
track_status = np.ones([np.size(initial_points,0),1]) # All initial points are OK
empty = np.array([])
window_size = (5,5)
for i in range(1, len(image_list)):
img1 = image_list[i-1]
img2 = image_list[i]
prev_ok_track = np.flatnonzero(track_status)
prev_points = tracks[prev_ok_track,i-1,:]
[points, status, err] = cv2.calcOpticalFlowPyrLK(img1, img2, prev_points, empty, empty, empty, window_size)
if status is None:
track_status[:] = 0 # All tracks are bad
break
valid_set = np.flatnonzero(status)
now_ok_tracks = prev_ok_track[valid_set] # Remap
tracks[now_ok_tracks,i,:] = points[valid_set]
track_status[prev_ok_track] = status
if remove_bad:
final_ok = np.flatnonzero(track_status)
tracks = tracks[final_ok] # Only rows/tracks with nonzero status
track_status = track_status[final_ok]
return (tracks, track_status) | python | def track(image_list, initial_points, remove_bad=True):
"""Track points in image list
Parameters
----------------
image_list : list
List of images to track in
initial_points : ndarray
Initial points to use (in first image in image_list)
remove_bad : bool
If True, then the resulting list of tracks will only contain succesfully
tracked points. Else, it will contain all points present in initial_points.
Returns
-----------------
tracks : (N, M, 2) ndarray
N tracks over M images with (x,y) coordinates of points
status : (N,) ndarray
The status of each track. 1 means ok, while 0 means tracking failure
"""
# Precreate track array
tracks = np.zeros((initial_points.shape[0], len(image_list), 2), dtype='float32') # NxMx2
tracks[:,0,:] = np.reshape(np.array(initial_points), [-1,2])
track_status = np.ones([np.size(initial_points,0),1]) # All initial points are OK
empty = np.array([])
window_size = (5,5)
for i in range(1, len(image_list)):
img1 = image_list[i-1]
img2 = image_list[i]
prev_ok_track = np.flatnonzero(track_status)
prev_points = tracks[prev_ok_track,i-1,:]
[points, status, err] = cv2.calcOpticalFlowPyrLK(img1, img2, prev_points, empty, empty, empty, window_size)
if status is None:
track_status[:] = 0 # All tracks are bad
break
valid_set = np.flatnonzero(status)
now_ok_tracks = prev_ok_track[valid_set] # Remap
tracks[now_ok_tracks,i,:] = points[valid_set]
track_status[prev_ok_track] = status
if remove_bad:
final_ok = np.flatnonzero(track_status)
tracks = tracks[final_ok] # Only rows/tracks with nonzero status
track_status = track_status[final_ok]
return (tracks, track_status) | [
"def",
"track",
"(",
"image_list",
",",
"initial_points",
",",
"remove_bad",
"=",
"True",
")",
":",
"# Precreate track array",
"tracks",
"=",
"np",
".",
"zeros",
"(",
"(",
"initial_points",
".",
"shape",
"[",
"0",
"]",
",",
"len",
"(",
"image_list",
")",
",",
"2",
")",
",",
"dtype",
"=",
"'float32'",
")",
"# NxMx2",
"tracks",
"[",
":",
",",
"0",
",",
":",
"]",
"=",
"np",
".",
"reshape",
"(",
"np",
".",
"array",
"(",
"initial_points",
")",
",",
"[",
"-",
"1",
",",
"2",
"]",
")",
"track_status",
"=",
"np",
".",
"ones",
"(",
"[",
"np",
".",
"size",
"(",
"initial_points",
",",
"0",
")",
",",
"1",
"]",
")",
"# All initial points are OK",
"empty",
"=",
"np",
".",
"array",
"(",
"[",
"]",
")",
"window_size",
"=",
"(",
"5",
",",
"5",
")",
"for",
"i",
"in",
"range",
"(",
"1",
",",
"len",
"(",
"image_list",
")",
")",
":",
"img1",
"=",
"image_list",
"[",
"i",
"-",
"1",
"]",
"img2",
"=",
"image_list",
"[",
"i",
"]",
"prev_ok_track",
"=",
"np",
".",
"flatnonzero",
"(",
"track_status",
")",
"prev_points",
"=",
"tracks",
"[",
"prev_ok_track",
",",
"i",
"-",
"1",
",",
":",
"]",
"[",
"points",
",",
"status",
",",
"err",
"]",
"=",
"cv2",
".",
"calcOpticalFlowPyrLK",
"(",
"img1",
",",
"img2",
",",
"prev_points",
",",
"empty",
",",
"empty",
",",
"empty",
",",
"window_size",
")",
"if",
"status",
"is",
"None",
":",
"track_status",
"[",
":",
"]",
"=",
"0",
"# All tracks are bad",
"break",
"valid_set",
"=",
"np",
".",
"flatnonzero",
"(",
"status",
")",
"now_ok_tracks",
"=",
"prev_ok_track",
"[",
"valid_set",
"]",
"# Remap",
"tracks",
"[",
"now_ok_tracks",
",",
"i",
",",
":",
"]",
"=",
"points",
"[",
"valid_set",
"]",
"track_status",
"[",
"prev_ok_track",
"]",
"=",
"status",
"if",
"remove_bad",
":",
"final_ok",
"=",
"np",
".",
"flatnonzero",
"(",
"track_status",
")",
"tracks",
"=",
"tracks",
"[",
"final_ok",
"]",
"# Only rows/tracks with nonzero status",
"track_status",
"=",
"track_status",
"[",
"final_ok",
"]",
"return",
"(",
"tracks",
",",
"track_status",
")"
] | Track points in image list
Parameters
----------------
image_list : list
List of images to track in
initial_points : ndarray
Initial points to use (in first image in image_list)
remove_bad : bool
If True, then the resulting list of tracks will only contain succesfully
tracked points. Else, it will contain all points present in initial_points.
Returns
-----------------
tracks : (N, M, 2) ndarray
N tracks over M images with (x,y) coordinates of points
status : (N,) ndarray
The status of each track. 1 means ok, while 0 means tracking failure | [
"Track",
"points",
"in",
"image",
"list",
"Parameters",
"----------------",
"image_list",
":",
"list",
"List",
"of",
"images",
"to",
"track",
"in",
"initial_points",
":",
"ndarray",
"Initial",
"points",
"to",
"use",
"(",
"in",
"first",
"image",
"in",
"image_list",
")",
"remove_bad",
":",
"bool",
"If",
"True",
"then",
"the",
"resulting",
"list",
"of",
"tracks",
"will",
"only",
"contain",
"succesfully",
"tracked",
"points",
".",
"Else",
"it",
"will",
"contain",
"all",
"points",
"present",
"in",
"initial_points",
".",
"Returns",
"-----------------",
"tracks",
":",
"(",
"N",
"M",
"2",
")",
"ndarray",
"N",
"tracks",
"over",
"M",
"images",
"with",
"(",
"x",
"y",
")",
"coordinates",
"of",
"points",
"status",
":",
"(",
"N",
")",
"ndarray",
"The",
"status",
"of",
"each",
"track",
".",
"1",
"means",
"ok",
"while",
"0",
"means",
"tracking",
"failure"
] | train | https://github.com/hovren/crisp/blob/65cae19e7cfae5a397859096c9ef666e0f4e7f1b/crisp/tracking.py#L114-L159 |
hovren/crisp | crisp/tracking.py | track_retrack | def track_retrack(image_list, initial_points, max_retrack_distance=0.5, keep_bad=False):
"""Track-retracks points in image list
Using track-retrack can help in only getting point tracks of high quality.
The point is tracked forward, and then backwards in the image sequence.
Points that end up further than max_retrack_distance from its starting point
are marked as bad.
Parameters
----------------
image_list : list
List of images to track in
initial_points : ndarray
Initial points to use (in first image in image_list)
max_retrack_distance : float
The maximum distance of the retracked point from its starting point to
still count as a succesful retrack.
remove_bad : bool
If True, then the resulting list of tracks will only contain succesfully
tracked points. Else, it will contain all points present in initial_points.
Returns
-----------------
tracks : (N, M, 2) ndarray
N tracks over M images with (x,y) coordinates of points
Note that M is the number of image in the input, and is the track in
the forward tracking step.
status : (N,) ndarray
The status of each track. 1 means ok, while 0 means tracking failure
"""
(forward_track, forward_status) = track(image_list, initial_points, remove_bad=False)
# Reverse the order
(backward_track, backward_status) = track(image_list[::-1], forward_track[:,-1,:], remove_bad=False)
# Prune bad tracks
ok_track = np.flatnonzero(forward_status * backward_status) # Only good if good in both
forward_first = forward_track[ok_track,0,:]
backward_last = backward_track[ok_track,-1,:]
# Distance
retrack_distance = np.sqrt(np.sum((forward_first - backward_last)**2, 1))
# Allowed
retracked_ok = np.flatnonzero(retrack_distance <= max_retrack_distance)
final_ok = ok_track[retracked_ok]
if keep_bad: # Let caller check status
status = np.zeros(forward_status.shape)
status[final_ok] = 1
return (forward_track, status)
else: # Remove tracks with faulty retrack
return (forward_track[final_ok], forward_status[final_ok]) | python | def track_retrack(image_list, initial_points, max_retrack_distance=0.5, keep_bad=False):
"""Track-retracks points in image list
Using track-retrack can help in only getting point tracks of high quality.
The point is tracked forward, and then backwards in the image sequence.
Points that end up further than max_retrack_distance from its starting point
are marked as bad.
Parameters
----------------
image_list : list
List of images to track in
initial_points : ndarray
Initial points to use (in first image in image_list)
max_retrack_distance : float
The maximum distance of the retracked point from its starting point to
still count as a succesful retrack.
remove_bad : bool
If True, then the resulting list of tracks will only contain succesfully
tracked points. Else, it will contain all points present in initial_points.
Returns
-----------------
tracks : (N, M, 2) ndarray
N tracks over M images with (x,y) coordinates of points
Note that M is the number of image in the input, and is the track in
the forward tracking step.
status : (N,) ndarray
The status of each track. 1 means ok, while 0 means tracking failure
"""
(forward_track, forward_status) = track(image_list, initial_points, remove_bad=False)
# Reverse the order
(backward_track, backward_status) = track(image_list[::-1], forward_track[:,-1,:], remove_bad=False)
# Prune bad tracks
ok_track = np.flatnonzero(forward_status * backward_status) # Only good if good in both
forward_first = forward_track[ok_track,0,:]
backward_last = backward_track[ok_track,-1,:]
# Distance
retrack_distance = np.sqrt(np.sum((forward_first - backward_last)**2, 1))
# Allowed
retracked_ok = np.flatnonzero(retrack_distance <= max_retrack_distance)
final_ok = ok_track[retracked_ok]
if keep_bad: # Let caller check status
status = np.zeros(forward_status.shape)
status[final_ok] = 1
return (forward_track, status)
else: # Remove tracks with faulty retrack
return (forward_track[final_ok], forward_status[final_ok]) | [
"def",
"track_retrack",
"(",
"image_list",
",",
"initial_points",
",",
"max_retrack_distance",
"=",
"0.5",
",",
"keep_bad",
"=",
"False",
")",
":",
"(",
"forward_track",
",",
"forward_status",
")",
"=",
"track",
"(",
"image_list",
",",
"initial_points",
",",
"remove_bad",
"=",
"False",
")",
"# Reverse the order",
"(",
"backward_track",
",",
"backward_status",
")",
"=",
"track",
"(",
"image_list",
"[",
":",
":",
"-",
"1",
"]",
",",
"forward_track",
"[",
":",
",",
"-",
"1",
",",
":",
"]",
",",
"remove_bad",
"=",
"False",
")",
"# Prune bad tracks",
"ok_track",
"=",
"np",
".",
"flatnonzero",
"(",
"forward_status",
"*",
"backward_status",
")",
"# Only good if good in both",
"forward_first",
"=",
"forward_track",
"[",
"ok_track",
",",
"0",
",",
":",
"]",
"backward_last",
"=",
"backward_track",
"[",
"ok_track",
",",
"-",
"1",
",",
":",
"]",
"# Distance",
"retrack_distance",
"=",
"np",
".",
"sqrt",
"(",
"np",
".",
"sum",
"(",
"(",
"forward_first",
"-",
"backward_last",
")",
"**",
"2",
",",
"1",
")",
")",
"# Allowed",
"retracked_ok",
"=",
"np",
".",
"flatnonzero",
"(",
"retrack_distance",
"<=",
"max_retrack_distance",
")",
"final_ok",
"=",
"ok_track",
"[",
"retracked_ok",
"]",
"if",
"keep_bad",
":",
"# Let caller check status",
"status",
"=",
"np",
".",
"zeros",
"(",
"forward_status",
".",
"shape",
")",
"status",
"[",
"final_ok",
"]",
"=",
"1",
"return",
"(",
"forward_track",
",",
"status",
")",
"else",
":",
"# Remove tracks with faulty retrack",
"return",
"(",
"forward_track",
"[",
"final_ok",
"]",
",",
"forward_status",
"[",
"final_ok",
"]",
")"
] | Track-retracks points in image list
Using track-retrack can help in only getting point tracks of high quality.
The point is tracked forward, and then backwards in the image sequence.
Points that end up further than max_retrack_distance from its starting point
are marked as bad.
Parameters
----------------
image_list : list
List of images to track in
initial_points : ndarray
Initial points to use (in first image in image_list)
max_retrack_distance : float
The maximum distance of the retracked point from its starting point to
still count as a succesful retrack.
remove_bad : bool
If True, then the resulting list of tracks will only contain succesfully
tracked points. Else, it will contain all points present in initial_points.
Returns
-----------------
tracks : (N, M, 2) ndarray
N tracks over M images with (x,y) coordinates of points
Note that M is the number of image in the input, and is the track in
the forward tracking step.
status : (N,) ndarray
The status of each track. 1 means ok, while 0 means tracking failure | [
"Track",
"-",
"retracks",
"points",
"in",
"image",
"list",
"Using",
"track",
"-",
"retrack",
"can",
"help",
"in",
"only",
"getting",
"point",
"tracks",
"of",
"high",
"quality",
".",
"The",
"point",
"is",
"tracked",
"forward",
"and",
"then",
"backwards",
"in",
"the",
"image",
"sequence",
".",
"Points",
"that",
"end",
"up",
"further",
"than",
"max_retrack_distance",
"from",
"its",
"starting",
"point",
"are",
"marked",
"as",
"bad",
".",
"Parameters",
"----------------",
"image_list",
":",
"list",
"List",
"of",
"images",
"to",
"track",
"in",
"initial_points",
":",
"ndarray",
"Initial",
"points",
"to",
"use",
"(",
"in",
"first",
"image",
"in",
"image_list",
")",
"max_retrack_distance",
":",
"float",
"The",
"maximum",
"distance",
"of",
"the",
"retracked",
"point",
"from",
"its",
"starting",
"point",
"to",
"still",
"count",
"as",
"a",
"succesful",
"retrack",
".",
"remove_bad",
":",
"bool",
"If",
"True",
"then",
"the",
"resulting",
"list",
"of",
"tracks",
"will",
"only",
"contain",
"succesfully",
"tracked",
"points",
".",
"Else",
"it",
"will",
"contain",
"all",
"points",
"present",
"in",
"initial_points",
".",
"Returns",
"-----------------",
"tracks",
":",
"(",
"N",
"M",
"2",
")",
"ndarray",
"N",
"tracks",
"over",
"M",
"images",
"with",
"(",
"x",
"y",
")",
"coordinates",
"of",
"points",
"Note",
"that",
"M",
"is",
"the",
"number",
"of",
"image",
"in",
"the",
"input",
"and",
"is",
"the",
"track",
"in",
"the",
"forward",
"tracking",
"step",
".",
"status",
":",
"(",
"N",
")",
"ndarray",
"The",
"status",
"of",
"each",
"track",
".",
"1",
"means",
"ok",
"while",
"0",
"means",
"tracking",
"failure"
] | train | https://github.com/hovren/crisp/blob/65cae19e7cfae5a397859096c9ef666e0f4e7f1b/crisp/tracking.py#L163-L215 |
hovren/crisp | crisp/imu.py | IMU.from_mat_file | def from_mat_file(cls, matfilename):
"""Load gyro data from .mat file
The MAT file should contain the following two arrays
gyro : (3, N) float ndarray
The angular velocity measurements.
timestamps : (N, ) float ndarray
Timestamps of the measurements.
Parameters
---------------
matfilename : string
Name of the .mat file
Returns
----------------
A new IMU class instance
"""
M = scipy.io.loadmat(matfilename)
instance = cls()
instance.gyro_data = M['gyro']
instance.timestamps = M['timestamps']
return instance | python | def from_mat_file(cls, matfilename):
"""Load gyro data from .mat file
The MAT file should contain the following two arrays
gyro : (3, N) float ndarray
The angular velocity measurements.
timestamps : (N, ) float ndarray
Timestamps of the measurements.
Parameters
---------------
matfilename : string
Name of the .mat file
Returns
----------------
A new IMU class instance
"""
M = scipy.io.loadmat(matfilename)
instance = cls()
instance.gyro_data = M['gyro']
instance.timestamps = M['timestamps']
return instance | [
"def",
"from_mat_file",
"(",
"cls",
",",
"matfilename",
")",
":",
"M",
"=",
"scipy",
".",
"io",
".",
"loadmat",
"(",
"matfilename",
")",
"instance",
"=",
"cls",
"(",
")",
"instance",
".",
"gyro_data",
"=",
"M",
"[",
"'gyro'",
"]",
"instance",
".",
"timestamps",
"=",
"M",
"[",
"'timestamps'",
"]",
"return",
"instance"
] | Load gyro data from .mat file
The MAT file should contain the following two arrays
gyro : (3, N) float ndarray
The angular velocity measurements.
timestamps : (N, ) float ndarray
Timestamps of the measurements.
Parameters
---------------
matfilename : string
Name of the .mat file
Returns
----------------
A new IMU class instance | [
"Load",
"gyro",
"data",
"from",
".",
"mat",
"file",
"The",
"MAT",
"file",
"should",
"contain",
"the",
"following",
"two",
"arrays",
"gyro",
":",
"(",
"3",
"N",
")",
"float",
"ndarray",
"The",
"angular",
"velocity",
"measurements",
".",
"timestamps",
":",
"(",
"N",
")",
"float",
"ndarray",
"Timestamps",
"of",
"the",
"measurements",
".",
"Parameters",
"---------------",
"matfilename",
":",
"string",
"Name",
"of",
"the",
".",
"mat",
"file",
"Returns",
"----------------",
"A",
"new",
"IMU",
"class",
"instance"
] | train | https://github.com/hovren/crisp/blob/65cae19e7cfae5a397859096c9ef666e0f4e7f1b/crisp/imu.py#L39-L62 |
hovren/crisp | crisp/imu.py | IMU.rate | def rate(self):
"""Get the sample rate in Hz.
Returns
---------
rate : float
The sample rate, in Hz, calculated from the timestamps
"""
N = len(self.timestamps)
t = self.timestamps[-1] - self.timestamps[0]
rate = 1.0 * N / t
return rate | python | def rate(self):
"""Get the sample rate in Hz.
Returns
---------
rate : float
The sample rate, in Hz, calculated from the timestamps
"""
N = len(self.timestamps)
t = self.timestamps[-1] - self.timestamps[0]
rate = 1.0 * N / t
return rate | [
"def",
"rate",
"(",
"self",
")",
":",
"N",
"=",
"len",
"(",
"self",
".",
"timestamps",
")",
"t",
"=",
"self",
".",
"timestamps",
"[",
"-",
"1",
"]",
"-",
"self",
".",
"timestamps",
"[",
"0",
"]",
"rate",
"=",
"1.0",
"*",
"N",
"/",
"t",
"return",
"rate"
] | Get the sample rate in Hz.
Returns
---------
rate : float
The sample rate, in Hz, calculated from the timestamps | [
"Get",
"the",
"sample",
"rate",
"in",
"Hz",
".",
"Returns",
"---------",
"rate",
":",
"float",
"The",
"sample",
"rate",
"in",
"Hz",
"calculated",
"from",
"the",
"timestamps"
] | train | https://github.com/hovren/crisp/blob/65cae19e7cfae5a397859096c9ef666e0f4e7f1b/crisp/imu.py#L66-L77 |
hovren/crisp | crisp/imu.py | IMU.zero_level_calibrate | def zero_level_calibrate(self, duration, t0=0.0):
"""Performs zero-level calibration from the chosen time interval.
This changes the previously lodaded data in-place.
Parameters
--------------------
duration : float
Number of timeunits to use for calibration
t0 : float
Starting time for calibration
Returns
----------------------
gyro_data : (3, N) float ndarray
The calibrated data (note that it is also changed in-place!)
"""
t1 = t0 + duration
indices = np.flatnonzero((self.timestamps >= t0) & (self.timestamps <= t1))
m = np.mean(self.gyro_data[:, indices], axis=1)
self.gyro_data -= m.reshape(3,1)
return self.gyro_data | python | def zero_level_calibrate(self, duration, t0=0.0):
"""Performs zero-level calibration from the chosen time interval.
This changes the previously lodaded data in-place.
Parameters
--------------------
duration : float
Number of timeunits to use for calibration
t0 : float
Starting time for calibration
Returns
----------------------
gyro_data : (3, N) float ndarray
The calibrated data (note that it is also changed in-place!)
"""
t1 = t0 + duration
indices = np.flatnonzero((self.timestamps >= t0) & (self.timestamps <= t1))
m = np.mean(self.gyro_data[:, indices], axis=1)
self.gyro_data -= m.reshape(3,1)
return self.gyro_data | [
"def",
"zero_level_calibrate",
"(",
"self",
",",
"duration",
",",
"t0",
"=",
"0.0",
")",
":",
"t1",
"=",
"t0",
"+",
"duration",
"indices",
"=",
"np",
".",
"flatnonzero",
"(",
"(",
"self",
".",
"timestamps",
">=",
"t0",
")",
"&",
"(",
"self",
".",
"timestamps",
"<=",
"t1",
")",
")",
"m",
"=",
"np",
".",
"mean",
"(",
"self",
".",
"gyro_data",
"[",
":",
",",
"indices",
"]",
",",
"axis",
"=",
"1",
")",
"self",
".",
"gyro_data",
"-=",
"m",
".",
"reshape",
"(",
"3",
",",
"1",
")",
"return",
"self",
".",
"gyro_data"
] | Performs zero-level calibration from the chosen time interval.
This changes the previously lodaded data in-place.
Parameters
--------------------
duration : float
Number of timeunits to use for calibration
t0 : float
Starting time for calibration
Returns
----------------------
gyro_data : (3, N) float ndarray
The calibrated data (note that it is also changed in-place!) | [
"Performs",
"zero",
"-",
"level",
"calibration",
"from",
"the",
"chosen",
"time",
"interval",
".",
"This",
"changes",
"the",
"previously",
"lodaded",
"data",
"in",
"-",
"place",
".",
"Parameters",
"--------------------",
"duration",
":",
"float",
"Number",
"of",
"timeunits",
"to",
"use",
"for",
"calibration",
"t0",
":",
"float",
"Starting",
"time",
"for",
"calibration",
"Returns",
"----------------------",
"gyro_data",
":",
"(",
"3",
"N",
")",
"float",
"ndarray",
"The",
"calibrated",
"data",
"(",
"note",
"that",
"it",
"is",
"also",
"changed",
"in",
"-",
"place!",
")"
] | train | https://github.com/hovren/crisp/blob/65cae19e7cfae5a397859096c9ef666e0f4e7f1b/crisp/imu.py#L79-L102 |
hovren/crisp | crisp/imu.py | IMU.integrate | def integrate(self, pose_correction=np.eye(3), uniform=True):
"""Integrate angular velocity measurements to rotations.
Parameters
-------------
pose_correction : (3,3) ndarray, optional
Rotation matrix that describes the relative pose between the IMU and something else (e.g. camera).
uniform : bool
If True (default), assume uniform sample rate. This will use a faster integration method.
Returns
-------------
rotations : (4, N) ndarray
Rotations as unit quaternions with scalar as first element.
"""
if uniform:
dt = float(self.timestamps[1]-self.timestamps[0]) # Must be python float for fastintegrate to work
return fastintegrate.integrate_gyro_quaternion_uniform(self.gyro_data_corrected, dt)
else:
N = len(self.timestamps)
integrated = np.zeros((4, N))
integrated[:,0] = np.array([1, 0, 0, 0]) # Initial rotation (no rotation)
# Iterate over all
for i in range(1, len(self.timestamps)):
w = pose_correction.dot(self.gyro_data[:, i]) # Change to correct coordinate frame
dt = float(self.timestamps[i] - self.timestamps[i - 1])
qprev = integrated[:, i - 1].flatten()
A = np.array([[0, -w[0], -w[1], -w[2]],
[w[0], 0, w[2], -w[1]],
[w[1], -w[2], 0, w[0]],
[w[2], w[1], -w[0], 0]])
qnew = (np.eye(4) + (dt/2.0) * A).dot(qprev)
qnorm = np.sqrt(np.sum(qnew ** 2))
qnew = qnew / qnorm if qnorm > 0 else 0
integrated[:, i] = qnew
#print "%d, %s, %s, %s, %s" % (i, w, dt, qprev, qnew)
return integrated | python | def integrate(self, pose_correction=np.eye(3), uniform=True):
"""Integrate angular velocity measurements to rotations.
Parameters
-------------
pose_correction : (3,3) ndarray, optional
Rotation matrix that describes the relative pose between the IMU and something else (e.g. camera).
uniform : bool
If True (default), assume uniform sample rate. This will use a faster integration method.
Returns
-------------
rotations : (4, N) ndarray
Rotations as unit quaternions with scalar as first element.
"""
if uniform:
dt = float(self.timestamps[1]-self.timestamps[0]) # Must be python float for fastintegrate to work
return fastintegrate.integrate_gyro_quaternion_uniform(self.gyro_data_corrected, dt)
else:
N = len(self.timestamps)
integrated = np.zeros((4, N))
integrated[:,0] = np.array([1, 0, 0, 0]) # Initial rotation (no rotation)
# Iterate over all
for i in range(1, len(self.timestamps)):
w = pose_correction.dot(self.gyro_data[:, i]) # Change to correct coordinate frame
dt = float(self.timestamps[i] - self.timestamps[i - 1])
qprev = integrated[:, i - 1].flatten()
A = np.array([[0, -w[0], -w[1], -w[2]],
[w[0], 0, w[2], -w[1]],
[w[1], -w[2], 0, w[0]],
[w[2], w[1], -w[0], 0]])
qnew = (np.eye(4) + (dt/2.0) * A).dot(qprev)
qnorm = np.sqrt(np.sum(qnew ** 2))
qnew = qnew / qnorm if qnorm > 0 else 0
integrated[:, i] = qnew
#print "%d, %s, %s, %s, %s" % (i, w, dt, qprev, qnew)
return integrated | [
"def",
"integrate",
"(",
"self",
",",
"pose_correction",
"=",
"np",
".",
"eye",
"(",
"3",
")",
",",
"uniform",
"=",
"True",
")",
":",
"if",
"uniform",
":",
"dt",
"=",
"float",
"(",
"self",
".",
"timestamps",
"[",
"1",
"]",
"-",
"self",
".",
"timestamps",
"[",
"0",
"]",
")",
"# Must be python float for fastintegrate to work",
"return",
"fastintegrate",
".",
"integrate_gyro_quaternion_uniform",
"(",
"self",
".",
"gyro_data_corrected",
",",
"dt",
")",
"else",
":",
"N",
"=",
"len",
"(",
"self",
".",
"timestamps",
")",
"integrated",
"=",
"np",
".",
"zeros",
"(",
"(",
"4",
",",
"N",
")",
")",
"integrated",
"[",
":",
",",
"0",
"]",
"=",
"np",
".",
"array",
"(",
"[",
"1",
",",
"0",
",",
"0",
",",
"0",
"]",
")",
"# Initial rotation (no rotation)",
"# Iterate over all",
"for",
"i",
"in",
"range",
"(",
"1",
",",
"len",
"(",
"self",
".",
"timestamps",
")",
")",
":",
"w",
"=",
"pose_correction",
".",
"dot",
"(",
"self",
".",
"gyro_data",
"[",
":",
",",
"i",
"]",
")",
"# Change to correct coordinate frame",
"dt",
"=",
"float",
"(",
"self",
".",
"timestamps",
"[",
"i",
"]",
"-",
"self",
".",
"timestamps",
"[",
"i",
"-",
"1",
"]",
")",
"qprev",
"=",
"integrated",
"[",
":",
",",
"i",
"-",
"1",
"]",
".",
"flatten",
"(",
")",
"A",
"=",
"np",
".",
"array",
"(",
"[",
"[",
"0",
",",
"-",
"w",
"[",
"0",
"]",
",",
"-",
"w",
"[",
"1",
"]",
",",
"-",
"w",
"[",
"2",
"]",
"]",
",",
"[",
"w",
"[",
"0",
"]",
",",
"0",
",",
"w",
"[",
"2",
"]",
",",
"-",
"w",
"[",
"1",
"]",
"]",
",",
"[",
"w",
"[",
"1",
"]",
",",
"-",
"w",
"[",
"2",
"]",
",",
"0",
",",
"w",
"[",
"0",
"]",
"]",
",",
"[",
"w",
"[",
"2",
"]",
",",
"w",
"[",
"1",
"]",
",",
"-",
"w",
"[",
"0",
"]",
",",
"0",
"]",
"]",
")",
"qnew",
"=",
"(",
"np",
".",
"eye",
"(",
"4",
")",
"+",
"(",
"dt",
"/",
"2.0",
")",
"*",
"A",
")",
".",
"dot",
"(",
"qprev",
")",
"qnorm",
"=",
"np",
".",
"sqrt",
"(",
"np",
".",
"sum",
"(",
"qnew",
"**",
"2",
")",
")",
"qnew",
"=",
"qnew",
"/",
"qnorm",
"if",
"qnorm",
">",
"0",
"else",
"0",
"integrated",
"[",
":",
",",
"i",
"]",
"=",
"qnew",
"#print \"%d, %s, %s, %s, %s\" % (i, w, dt, qprev, qnew)",
"return",
"integrated"
] | Integrate angular velocity measurements to rotations.
Parameters
-------------
pose_correction : (3,3) ndarray, optional
Rotation matrix that describes the relative pose between the IMU and something else (e.g. camera).
uniform : bool
If True (default), assume uniform sample rate. This will use a faster integration method.
Returns
-------------
rotations : (4, N) ndarray
Rotations as unit quaternions with scalar as first element. | [
"Integrate",
"angular",
"velocity",
"measurements",
"to",
"rotations",
"."
] | train | https://github.com/hovren/crisp/blob/65cae19e7cfae5a397859096c9ef666e0f4e7f1b/crisp/imu.py#L119-L157 |
hovren/crisp | crisp/imu.py | IMU.rotation_at_time | def rotation_at_time(t, timestamps, rotation_sequence):
"""Get the gyro rotation at time t using SLERP.
Parameters
-----------
t : float
The query timestamp.
timestamps : array_like float
List of all timestamps
rotation_sequence : (4, N) ndarray
Rotation sequence as unit quaternions with scalar part as first element.
Returns
-----------
q : (4,) ndarray
Unit quaternion representing the rotation at time t.
"""
idx = np.flatnonzero(timestamps >= (t - 0.0001))[0]
t0 = timestamps[idx - 1]
t1 = timestamps[idx]
tau = (t - t0) / (t1 - t0)
q1 = rotation_sequence[:, idx - 1]
q2 = rotation_sequence[:, idx]
q = rotations.slerp(q1, q2, tau)
return q | python | def rotation_at_time(t, timestamps, rotation_sequence):
"""Get the gyro rotation at time t using SLERP.
Parameters
-----------
t : float
The query timestamp.
timestamps : array_like float
List of all timestamps
rotation_sequence : (4, N) ndarray
Rotation sequence as unit quaternions with scalar part as first element.
Returns
-----------
q : (4,) ndarray
Unit quaternion representing the rotation at time t.
"""
idx = np.flatnonzero(timestamps >= (t - 0.0001))[0]
t0 = timestamps[idx - 1]
t1 = timestamps[idx]
tau = (t - t0) / (t1 - t0)
q1 = rotation_sequence[:, idx - 1]
q2 = rotation_sequence[:, idx]
q = rotations.slerp(q1, q2, tau)
return q | [
"def",
"rotation_at_time",
"(",
"t",
",",
"timestamps",
",",
"rotation_sequence",
")",
":",
"idx",
"=",
"np",
".",
"flatnonzero",
"(",
"timestamps",
">=",
"(",
"t",
"-",
"0.0001",
")",
")",
"[",
"0",
"]",
"t0",
"=",
"timestamps",
"[",
"idx",
"-",
"1",
"]",
"t1",
"=",
"timestamps",
"[",
"idx",
"]",
"tau",
"=",
"(",
"t",
"-",
"t0",
")",
"/",
"(",
"t1",
"-",
"t0",
")",
"q1",
"=",
"rotation_sequence",
"[",
":",
",",
"idx",
"-",
"1",
"]",
"q2",
"=",
"rotation_sequence",
"[",
":",
",",
"idx",
"]",
"q",
"=",
"rotations",
".",
"slerp",
"(",
"q1",
",",
"q2",
",",
"tau",
")",
"return",
"q"
] | Get the gyro rotation at time t using SLERP.
Parameters
-----------
t : float
The query timestamp.
timestamps : array_like float
List of all timestamps
rotation_sequence : (4, N) ndarray
Rotation sequence as unit quaternions with scalar part as first element.
Returns
-----------
q : (4,) ndarray
Unit quaternion representing the rotation at time t. | [
"Get",
"the",
"gyro",
"rotation",
"at",
"time",
"t",
"using",
"SLERP",
".",
"Parameters",
"-----------",
"t",
":",
"float",
"The",
"query",
"timestamp",
".",
"timestamps",
":",
"array_like",
"float",
"List",
"of",
"all",
"timestamps",
"rotation_sequence",
":",
"(",
"4",
"N",
")",
"ndarray",
"Rotation",
"sequence",
"as",
"unit",
"quaternions",
"with",
"scalar",
"part",
"as",
"first",
"element",
".",
"Returns",
"-----------",
"q",
":",
"(",
"4",
")",
"ndarray",
"Unit",
"quaternion",
"representing",
"the",
"rotation",
"at",
"time",
"t",
"."
] | train | https://github.com/hovren/crisp/blob/65cae19e7cfae5a397859096c9ef666e0f4e7f1b/crisp/imu.py#L160-L185 |
hovren/crisp | crisp/stream.py | GyroStream.from_csv | def from_csv(cls, filename):
"""Create gyro stream from CSV data
Load data from a CSV file.
The data must be formatted with three values per line: (x, y, z)
where x, y, z is the measured angular velocity (in radians) of the specified axis.
Parameters
-------------------
filename : str
Path to the CSV file
Returns
---------------------
GyroStream
A gyroscope stream
"""
instance = cls()
instance.data = np.loadtxt(filename, delimiter=',')
return instance | python | def from_csv(cls, filename):
"""Create gyro stream from CSV data
Load data from a CSV file.
The data must be formatted with three values per line: (x, y, z)
where x, y, z is the measured angular velocity (in radians) of the specified axis.
Parameters
-------------------
filename : str
Path to the CSV file
Returns
---------------------
GyroStream
A gyroscope stream
"""
instance = cls()
instance.data = np.loadtxt(filename, delimiter=',')
return instance | [
"def",
"from_csv",
"(",
"cls",
",",
"filename",
")",
":",
"instance",
"=",
"cls",
"(",
")",
"instance",
".",
"data",
"=",
"np",
".",
"loadtxt",
"(",
"filename",
",",
"delimiter",
"=",
"','",
")",
"return",
"instance"
] | Create gyro stream from CSV data
Load data from a CSV file.
The data must be formatted with three values per line: (x, y, z)
where x, y, z is the measured angular velocity (in radians) of the specified axis.
Parameters
-------------------
filename : str
Path to the CSV file
Returns
---------------------
GyroStream
A gyroscope stream | [
"Create",
"gyro",
"stream",
"from",
"CSV",
"data"
] | train | https://github.com/hovren/crisp/blob/65cae19e7cfae5a397859096c9ef666e0f4e7f1b/crisp/stream.py#L36-L55 |
hovren/crisp | crisp/stream.py | GyroStream.from_data | def from_data(cls, data):
"""Create gyroscope stream from data array
Parameters
-------------------
data : (N, 3) ndarray
Data array of angular velocities (rad/s)
Returns
-------------------
GyroStream
Stream object
"""
if not data.shape[1] == 3:
raise ValueError("Gyroscope data must have shape (N, 3)")
instance = cls()
instance.data = data
return instance | python | def from_data(cls, data):
"""Create gyroscope stream from data array
Parameters
-------------------
data : (N, 3) ndarray
Data array of angular velocities (rad/s)
Returns
-------------------
GyroStream
Stream object
"""
if not data.shape[1] == 3:
raise ValueError("Gyroscope data must have shape (N, 3)")
instance = cls()
instance.data = data
return instance | [
"def",
"from_data",
"(",
"cls",
",",
"data",
")",
":",
"if",
"not",
"data",
".",
"shape",
"[",
"1",
"]",
"==",
"3",
":",
"raise",
"ValueError",
"(",
"\"Gyroscope data must have shape (N, 3)\"",
")",
"instance",
"=",
"cls",
"(",
")",
"instance",
".",
"data",
"=",
"data",
"return",
"instance"
] | Create gyroscope stream from data array
Parameters
-------------------
data : (N, 3) ndarray
Data array of angular velocities (rad/s)
Returns
-------------------
GyroStream
Stream object | [
"Create",
"gyroscope",
"stream",
"from",
"data",
"array"
] | train | https://github.com/hovren/crisp/blob/65cae19e7cfae5a397859096c9ef666e0f4e7f1b/crisp/stream.py#L58-L76 |
hovren/crisp | crisp/stream.py | GyroStream.integrate | def integrate(self, dt):
"""Integrate gyro measurements to orientation using a uniform sample rate.
Parameters
-------------------
dt : float
Sample distance in seconds
Returns
----------------
orientation : (4, N) ndarray
Gyroscope orientation in quaternion form (s, q1, q2, q3)
"""
if not dt == self.__last_dt:
self.__last_q = fastintegrate.integrate_gyro_quaternion_uniform(self.data, dt)
self.__last_dt = dt
return self.__last_q | python | def integrate(self, dt):
"""Integrate gyro measurements to orientation using a uniform sample rate.
Parameters
-------------------
dt : float
Sample distance in seconds
Returns
----------------
orientation : (4, N) ndarray
Gyroscope orientation in quaternion form (s, q1, q2, q3)
"""
if not dt == self.__last_dt:
self.__last_q = fastintegrate.integrate_gyro_quaternion_uniform(self.data, dt)
self.__last_dt = dt
return self.__last_q | [
"def",
"integrate",
"(",
"self",
",",
"dt",
")",
":",
"if",
"not",
"dt",
"==",
"self",
".",
"__last_dt",
":",
"self",
".",
"__last_q",
"=",
"fastintegrate",
".",
"integrate_gyro_quaternion_uniform",
"(",
"self",
".",
"data",
",",
"dt",
")",
"self",
".",
"__last_dt",
"=",
"dt",
"return",
"self",
".",
"__last_q"
] | Integrate gyro measurements to orientation using a uniform sample rate.
Parameters
-------------------
dt : float
Sample distance in seconds
Returns
----------------
orientation : (4, N) ndarray
Gyroscope orientation in quaternion form (s, q1, q2, q3) | [
"Integrate",
"gyro",
"measurements",
"to",
"orientation",
"using",
"a",
"uniform",
"sample",
"rate",
"."
] | train | https://github.com/hovren/crisp/blob/65cae19e7cfae5a397859096c9ef666e0f4e7f1b/crisp/stream.py#L83-L99 |
hovren/crisp | crisp/znccpyr.py | gaussian_kernel | def gaussian_kernel(gstd):
"""Generate odd sized truncated Gaussian
The generated filter kernel has a cutoff at $3\sigma$
and is normalized to sum to 1
Parameters
-------------
gstd : float
Standard deviation of filter
Returns
-------------
g : ndarray
Array with kernel coefficients
"""
Nc = np.ceil(gstd*3)*2+1
x = np.linspace(-(Nc-1)/2,(Nc-1)/2,Nc,endpoint=True)
g = np.exp(-.5*((x/gstd)**2))
g = g/np.sum(g)
return g | python | def gaussian_kernel(gstd):
"""Generate odd sized truncated Gaussian
The generated filter kernel has a cutoff at $3\sigma$
and is normalized to sum to 1
Parameters
-------------
gstd : float
Standard deviation of filter
Returns
-------------
g : ndarray
Array with kernel coefficients
"""
Nc = np.ceil(gstd*3)*2+1
x = np.linspace(-(Nc-1)/2,(Nc-1)/2,Nc,endpoint=True)
g = np.exp(-.5*((x/gstd)**2))
g = g/np.sum(g)
return g | [
"def",
"gaussian_kernel",
"(",
"gstd",
")",
":",
"Nc",
"=",
"np",
".",
"ceil",
"(",
"gstd",
"*",
"3",
")",
"*",
"2",
"+",
"1",
"x",
"=",
"np",
".",
"linspace",
"(",
"-",
"(",
"Nc",
"-",
"1",
")",
"/",
"2",
",",
"(",
"Nc",
"-",
"1",
")",
"/",
"2",
",",
"Nc",
",",
"endpoint",
"=",
"True",
")",
"g",
"=",
"np",
".",
"exp",
"(",
"-",
".5",
"*",
"(",
"(",
"x",
"/",
"gstd",
")",
"**",
"2",
")",
")",
"g",
"=",
"g",
"/",
"np",
".",
"sum",
"(",
"g",
")",
"return",
"g"
] | Generate odd sized truncated Gaussian
The generated filter kernel has a cutoff at $3\sigma$
and is normalized to sum to 1
Parameters
-------------
gstd : float
Standard deviation of filter
Returns
-------------
g : ndarray
Array with kernel coefficients | [
"Generate",
"odd",
"sized",
"truncated",
"Gaussian"
] | train | https://github.com/hovren/crisp/blob/65cae19e7cfae5a397859096c9ef666e0f4e7f1b/crisp/znccpyr.py#L18-L39 |
hovren/crisp | crisp/znccpyr.py | subsample | def subsample(time_series, downsample_factor):
"""Subsample with Gaussian prefilter
The prefilter will have the filter size $\sigma_g=.5*ssfactor$
Parameters
--------------
time_series : ndarray
Input signal
downsample_factor : float
Downsampling factor
Returns
--------------
ts_out : ndarray
The downsampled signal
"""
Ns = np.int(np.floor(np.size(time_series)/downsample_factor))
g = gaussian_kernel(0.5*downsample_factor)
ts_blur = np.convolve(time_series,g,'same')
ts_out = np.zeros((Ns,1), dtype='float64')
for k in range(0,Ns):
cpos = (k+.5)*downsample_factor-.5
cfrac = cpos-np.floor(cpos)
cind = np.floor(cpos)
if cfrac>0:
ts_out[k]=ts_blur[cind]*(1-cfrac)+ts_blur[cind+1]*cfrac
else:
ts_out[k]=ts_blur[cind]
return ts_out | python | def subsample(time_series, downsample_factor):
"""Subsample with Gaussian prefilter
The prefilter will have the filter size $\sigma_g=.5*ssfactor$
Parameters
--------------
time_series : ndarray
Input signal
downsample_factor : float
Downsampling factor
Returns
--------------
ts_out : ndarray
The downsampled signal
"""
Ns = np.int(np.floor(np.size(time_series)/downsample_factor))
g = gaussian_kernel(0.5*downsample_factor)
ts_blur = np.convolve(time_series,g,'same')
ts_out = np.zeros((Ns,1), dtype='float64')
for k in range(0,Ns):
cpos = (k+.5)*downsample_factor-.5
cfrac = cpos-np.floor(cpos)
cind = np.floor(cpos)
if cfrac>0:
ts_out[k]=ts_blur[cind]*(1-cfrac)+ts_blur[cind+1]*cfrac
else:
ts_out[k]=ts_blur[cind]
return ts_out | [
"def",
"subsample",
"(",
"time_series",
",",
"downsample_factor",
")",
":",
"Ns",
"=",
"np",
".",
"int",
"(",
"np",
".",
"floor",
"(",
"np",
".",
"size",
"(",
"time_series",
")",
"/",
"downsample_factor",
")",
")",
"g",
"=",
"gaussian_kernel",
"(",
"0.5",
"*",
"downsample_factor",
")",
"ts_blur",
"=",
"np",
".",
"convolve",
"(",
"time_series",
",",
"g",
",",
"'same'",
")",
"ts_out",
"=",
"np",
".",
"zeros",
"(",
"(",
"Ns",
",",
"1",
")",
",",
"dtype",
"=",
"'float64'",
")",
"for",
"k",
"in",
"range",
"(",
"0",
",",
"Ns",
")",
":",
"cpos",
"=",
"(",
"k",
"+",
".5",
")",
"*",
"downsample_factor",
"-",
".5",
"cfrac",
"=",
"cpos",
"-",
"np",
".",
"floor",
"(",
"cpos",
")",
"cind",
"=",
"np",
".",
"floor",
"(",
"cpos",
")",
"if",
"cfrac",
">",
"0",
":",
"ts_out",
"[",
"k",
"]",
"=",
"ts_blur",
"[",
"cind",
"]",
"*",
"(",
"1",
"-",
"cfrac",
")",
"+",
"ts_blur",
"[",
"cind",
"+",
"1",
"]",
"*",
"cfrac",
"else",
":",
"ts_out",
"[",
"k",
"]",
"=",
"ts_blur",
"[",
"cind",
"]",
"return",
"ts_out"
] | Subsample with Gaussian prefilter
The prefilter will have the filter size $\sigma_g=.5*ssfactor$
Parameters
--------------
time_series : ndarray
Input signal
downsample_factor : float
Downsampling factor
Returns
--------------
ts_out : ndarray
The downsampled signal | [
"Subsample",
"with",
"Gaussian",
"prefilter"
] | train | https://github.com/hovren/crisp/blob/65cae19e7cfae5a397859096c9ef666e0f4e7f1b/crisp/znccpyr.py#L41-L71 |
hovren/crisp | crisp/znccpyr.py | upsample | def upsample(time_series, scaling_factor):
"""Upsample using linear interpolation
The function uses replication of the value at edges
Parameters
--------------
time_series : ndarray
Input signal
scaling_factor : float
The factor to upsample with
Returns
--------------
ts_out : ndarray
The upsampled signal
"""
Ns0 = np.size(time_series)
Ns = np.int(np.floor(np.size(time_series)*scaling_factor))
ts_out = np.zeros((Ns,1), dtype='float64')
for k in range(0,Ns):
cpos = int(np.min([Ns0-1,np.max([0.,(k+0.5)/scaling_factor-0.5])]))
cfrac = cpos-np.floor(cpos)
cind = int(np.floor(cpos))
#print "cpos=%f cfrac=%f cind=%d", (cpos,cfrac,cind)
if cfrac>0:
ts_out[k]=time_series[cind]*(1-cfrac)+time_series[cind+1]*cfrac
else:
ts_out[k]=time_series[cind]
return ts_out | python | def upsample(time_series, scaling_factor):
"""Upsample using linear interpolation
The function uses replication of the value at edges
Parameters
--------------
time_series : ndarray
Input signal
scaling_factor : float
The factor to upsample with
Returns
--------------
ts_out : ndarray
The upsampled signal
"""
Ns0 = np.size(time_series)
Ns = np.int(np.floor(np.size(time_series)*scaling_factor))
ts_out = np.zeros((Ns,1), dtype='float64')
for k in range(0,Ns):
cpos = int(np.min([Ns0-1,np.max([0.,(k+0.5)/scaling_factor-0.5])]))
cfrac = cpos-np.floor(cpos)
cind = int(np.floor(cpos))
#print "cpos=%f cfrac=%f cind=%d", (cpos,cfrac,cind)
if cfrac>0:
ts_out[k]=time_series[cind]*(1-cfrac)+time_series[cind+1]*cfrac
else:
ts_out[k]=time_series[cind]
return ts_out | [
"def",
"upsample",
"(",
"time_series",
",",
"scaling_factor",
")",
":",
"Ns0",
"=",
"np",
".",
"size",
"(",
"time_series",
")",
"Ns",
"=",
"np",
".",
"int",
"(",
"np",
".",
"floor",
"(",
"np",
".",
"size",
"(",
"time_series",
")",
"*",
"scaling_factor",
")",
")",
"ts_out",
"=",
"np",
".",
"zeros",
"(",
"(",
"Ns",
",",
"1",
")",
",",
"dtype",
"=",
"'float64'",
")",
"for",
"k",
"in",
"range",
"(",
"0",
",",
"Ns",
")",
":",
"cpos",
"=",
"int",
"(",
"np",
".",
"min",
"(",
"[",
"Ns0",
"-",
"1",
",",
"np",
".",
"max",
"(",
"[",
"0.",
",",
"(",
"k",
"+",
"0.5",
")",
"/",
"scaling_factor",
"-",
"0.5",
"]",
")",
"]",
")",
")",
"cfrac",
"=",
"cpos",
"-",
"np",
".",
"floor",
"(",
"cpos",
")",
"cind",
"=",
"int",
"(",
"np",
".",
"floor",
"(",
"cpos",
")",
")",
"#print \"cpos=%f cfrac=%f cind=%d\", (cpos,cfrac,cind)",
"if",
"cfrac",
">",
"0",
":",
"ts_out",
"[",
"k",
"]",
"=",
"time_series",
"[",
"cind",
"]",
"*",
"(",
"1",
"-",
"cfrac",
")",
"+",
"time_series",
"[",
"cind",
"+",
"1",
"]",
"*",
"cfrac",
"else",
":",
"ts_out",
"[",
"k",
"]",
"=",
"time_series",
"[",
"cind",
"]",
"return",
"ts_out"
] | Upsample using linear interpolation
The function uses replication of the value at edges
Parameters
--------------
time_series : ndarray
Input signal
scaling_factor : float
The factor to upsample with
Returns
--------------
ts_out : ndarray
The upsampled signal | [
"Upsample",
"using",
"linear",
"interpolation"
] | train | https://github.com/hovren/crisp/blob/65cae19e7cfae5a397859096c9ef666e0f4e7f1b/crisp/znccpyr.py#L73-L103 |
hovren/crisp | crisp/znccpyr.py | zncc | def zncc(ts1,ts2):
"""Zero mean normalised cross-correlation (ZNCC)
This function does ZNCC of two signals, ts1 and ts2
Normalisation by very small values is avoided by doing
max(nmin,nvalue)
Parameters
--------------
ts1 : ndarray
Input signal 1 to be aligned with
ts2 : ndarray
Input signal 2
Returns
--------------
best_shift : float
The best shift of *ts1* to align it with *ts2*
ts_out : ndarray
The correlation result
"""
# Output is the same size as ts1
Ns1 = np.size(ts1)
Ns2 = np.size(ts2)
ts_out = np.zeros((Ns1,1), dtype='float64')
ishift = int(np.floor(Ns2/2)) # origin of ts2
t1m = np.mean(ts1)
t2m = np.mean(ts2)
for k in range(0,Ns1):
lstart = np.int(ishift-k)
if lstart<0 :
lstart=0
lend = np.int(ishift-k+Ns2)
imax = np.int(np.min([Ns2,Ns1-k+ishift]))
if lend>imax :
lend=imax
csum = 0
ts1sum = 0
ts1sum2 = 0
ts2sum = 0
ts2sum2 = 0
Nterms = lend-lstart
for l in range(lstart,lend):
csum += ts1[k+l-ishift]*ts2[l]
ts1sum += ts1[k+l-ishift]
ts1sum2 += ts1[k+l-ishift]*ts1[k+l-ishift]
ts2sum += ts2[l]
ts2sum2 += ts2[l]*ts2[l]
ts1sum2 = np.max([t1m*t1m*100,ts1sum2])-ts1sum*ts1sum/Nterms
ts2sum2 = np.max([t2m*t2m*100,ts2sum2])-ts2sum*ts2sum/Nterms
#ts_out[k]=csum/np.sqrt(ts1sum2*ts2sum2)
ts_out[k]=(csum-2.0*ts1sum*ts2sum/Nterms+ts1sum*ts2sum/Nterms/Nterms)/np.sqrt(ts1sum2*ts2sum2)
best_shift = np.argmax(ts_out)-ishift
return best_shift, ts_out | python | def zncc(ts1,ts2):
"""Zero mean normalised cross-correlation (ZNCC)
This function does ZNCC of two signals, ts1 and ts2
Normalisation by very small values is avoided by doing
max(nmin,nvalue)
Parameters
--------------
ts1 : ndarray
Input signal 1 to be aligned with
ts2 : ndarray
Input signal 2
Returns
--------------
best_shift : float
The best shift of *ts1* to align it with *ts2*
ts_out : ndarray
The correlation result
"""
# Output is the same size as ts1
Ns1 = np.size(ts1)
Ns2 = np.size(ts2)
ts_out = np.zeros((Ns1,1), dtype='float64')
ishift = int(np.floor(Ns2/2)) # origin of ts2
t1m = np.mean(ts1)
t2m = np.mean(ts2)
for k in range(0,Ns1):
lstart = np.int(ishift-k)
if lstart<0 :
lstart=0
lend = np.int(ishift-k+Ns2)
imax = np.int(np.min([Ns2,Ns1-k+ishift]))
if lend>imax :
lend=imax
csum = 0
ts1sum = 0
ts1sum2 = 0
ts2sum = 0
ts2sum2 = 0
Nterms = lend-lstart
for l in range(lstart,lend):
csum += ts1[k+l-ishift]*ts2[l]
ts1sum += ts1[k+l-ishift]
ts1sum2 += ts1[k+l-ishift]*ts1[k+l-ishift]
ts2sum += ts2[l]
ts2sum2 += ts2[l]*ts2[l]
ts1sum2 = np.max([t1m*t1m*100,ts1sum2])-ts1sum*ts1sum/Nterms
ts2sum2 = np.max([t2m*t2m*100,ts2sum2])-ts2sum*ts2sum/Nterms
#ts_out[k]=csum/np.sqrt(ts1sum2*ts2sum2)
ts_out[k]=(csum-2.0*ts1sum*ts2sum/Nterms+ts1sum*ts2sum/Nterms/Nterms)/np.sqrt(ts1sum2*ts2sum2)
best_shift = np.argmax(ts_out)-ishift
return best_shift, ts_out | [
"def",
"zncc",
"(",
"ts1",
",",
"ts2",
")",
":",
"# Output is the same size as ts1",
"Ns1",
"=",
"np",
".",
"size",
"(",
"ts1",
")",
"Ns2",
"=",
"np",
".",
"size",
"(",
"ts2",
")",
"ts_out",
"=",
"np",
".",
"zeros",
"(",
"(",
"Ns1",
",",
"1",
")",
",",
"dtype",
"=",
"'float64'",
")",
"ishift",
"=",
"int",
"(",
"np",
".",
"floor",
"(",
"Ns2",
"/",
"2",
")",
")",
"# origin of ts2",
"t1m",
"=",
"np",
".",
"mean",
"(",
"ts1",
")",
"t2m",
"=",
"np",
".",
"mean",
"(",
"ts2",
")",
"for",
"k",
"in",
"range",
"(",
"0",
",",
"Ns1",
")",
":",
"lstart",
"=",
"np",
".",
"int",
"(",
"ishift",
"-",
"k",
")",
"if",
"lstart",
"<",
"0",
":",
"lstart",
"=",
"0",
"lend",
"=",
"np",
".",
"int",
"(",
"ishift",
"-",
"k",
"+",
"Ns2",
")",
"imax",
"=",
"np",
".",
"int",
"(",
"np",
".",
"min",
"(",
"[",
"Ns2",
",",
"Ns1",
"-",
"k",
"+",
"ishift",
"]",
")",
")",
"if",
"lend",
">",
"imax",
":",
"lend",
"=",
"imax",
"csum",
"=",
"0",
"ts1sum",
"=",
"0",
"ts1sum2",
"=",
"0",
"ts2sum",
"=",
"0",
"ts2sum2",
"=",
"0",
"Nterms",
"=",
"lend",
"-",
"lstart",
"for",
"l",
"in",
"range",
"(",
"lstart",
",",
"lend",
")",
":",
"csum",
"+=",
"ts1",
"[",
"k",
"+",
"l",
"-",
"ishift",
"]",
"*",
"ts2",
"[",
"l",
"]",
"ts1sum",
"+=",
"ts1",
"[",
"k",
"+",
"l",
"-",
"ishift",
"]",
"ts1sum2",
"+=",
"ts1",
"[",
"k",
"+",
"l",
"-",
"ishift",
"]",
"*",
"ts1",
"[",
"k",
"+",
"l",
"-",
"ishift",
"]",
"ts2sum",
"+=",
"ts2",
"[",
"l",
"]",
"ts2sum2",
"+=",
"ts2",
"[",
"l",
"]",
"*",
"ts2",
"[",
"l",
"]",
"ts1sum2",
"=",
"np",
".",
"max",
"(",
"[",
"t1m",
"*",
"t1m",
"*",
"100",
",",
"ts1sum2",
"]",
")",
"-",
"ts1sum",
"*",
"ts1sum",
"/",
"Nterms",
"ts2sum2",
"=",
"np",
".",
"max",
"(",
"[",
"t2m",
"*",
"t2m",
"*",
"100",
",",
"ts2sum2",
"]",
")",
"-",
"ts2sum",
"*",
"ts2sum",
"/",
"Nterms",
"#ts_out[k]=csum/np.sqrt(ts1sum2*ts2sum2)",
"ts_out",
"[",
"k",
"]",
"=",
"(",
"csum",
"-",
"2.0",
"*",
"ts1sum",
"*",
"ts2sum",
"/",
"Nterms",
"+",
"ts1sum",
"*",
"ts2sum",
"/",
"Nterms",
"/",
"Nterms",
")",
"/",
"np",
".",
"sqrt",
"(",
"ts1sum2",
"*",
"ts2sum2",
")",
"best_shift",
"=",
"np",
".",
"argmax",
"(",
"ts_out",
")",
"-",
"ishift",
"return",
"best_shift",
",",
"ts_out"
] | Zero mean normalised cross-correlation (ZNCC)
This function does ZNCC of two signals, ts1 and ts2
Normalisation by very small values is avoided by doing
max(nmin,nvalue)
Parameters
--------------
ts1 : ndarray
Input signal 1 to be aligned with
ts2 : ndarray
Input signal 2
Returns
--------------
best_shift : float
The best shift of *ts1* to align it with *ts2*
ts_out : ndarray
The correlation result | [
"Zero",
"mean",
"normalised",
"cross",
"-",
"correlation",
"(",
"ZNCC",
")"
] | train | https://github.com/hovren/crisp/blob/65cae19e7cfae5a397859096c9ef666e0f4e7f1b/crisp/znccpyr.py#L123-L180 |
hovren/crisp | crisp/znccpyr.py | find_shift_pyr | def find_shift_pyr(ts1,ts2,nlevels):
"""
Find shift that best aligns two time series
The shift that aligns the timeseries ts1 with ts2.
This is sought using zero mean normalized cross correlation (ZNCC) in a coarse to fine search with an octave pyramid on nlevels levels.
Parameters
----------------
ts1 : list_like
The first timeseries
ts2 : list_like
The seconds timeseries
nlevels : int
Number of levels in pyramid
Returns
----------------
ts1_shift : float
How many samples to shift ts1 to align with ts2
"""
pyr1 = create_pyramid(ts1,nlevels)
pyr2 = create_pyramid(ts2,nlevels)
logger.debug("pyramid size = %d" % len(pyr1))
logger.debug("size of first element %d " % np.size(pyr1[0]))
logger.debug("size of last element %d " % np.size(pyr1[-1]))
ishift, corrfn = zncc(pyr1[-1],pyr2[-1])
for k in range(1,nlevels+1):
ishift, corrfn = refine_correlation(pyr1[-k-1],pyr2[-k-1],ishift*2)
return ishift | python | def find_shift_pyr(ts1,ts2,nlevels):
"""
Find shift that best aligns two time series
The shift that aligns the timeseries ts1 with ts2.
This is sought using zero mean normalized cross correlation (ZNCC) in a coarse to fine search with an octave pyramid on nlevels levels.
Parameters
----------------
ts1 : list_like
The first timeseries
ts2 : list_like
The seconds timeseries
nlevels : int
Number of levels in pyramid
Returns
----------------
ts1_shift : float
How many samples to shift ts1 to align with ts2
"""
pyr1 = create_pyramid(ts1,nlevels)
pyr2 = create_pyramid(ts2,nlevels)
logger.debug("pyramid size = %d" % len(pyr1))
logger.debug("size of first element %d " % np.size(pyr1[0]))
logger.debug("size of last element %d " % np.size(pyr1[-1]))
ishift, corrfn = zncc(pyr1[-1],pyr2[-1])
for k in range(1,nlevels+1):
ishift, corrfn = refine_correlation(pyr1[-k-1],pyr2[-k-1],ishift*2)
return ishift | [
"def",
"find_shift_pyr",
"(",
"ts1",
",",
"ts2",
",",
"nlevels",
")",
":",
"pyr1",
"=",
"create_pyramid",
"(",
"ts1",
",",
"nlevels",
")",
"pyr2",
"=",
"create_pyramid",
"(",
"ts2",
",",
"nlevels",
")",
"logger",
".",
"debug",
"(",
"\"pyramid size = %d\"",
"%",
"len",
"(",
"pyr1",
")",
")",
"logger",
".",
"debug",
"(",
"\"size of first element %d \"",
"%",
"np",
".",
"size",
"(",
"pyr1",
"[",
"0",
"]",
")",
")",
"logger",
".",
"debug",
"(",
"\"size of last element %d \"",
"%",
"np",
".",
"size",
"(",
"pyr1",
"[",
"-",
"1",
"]",
")",
")",
"ishift",
",",
"corrfn",
"=",
"zncc",
"(",
"pyr1",
"[",
"-",
"1",
"]",
",",
"pyr2",
"[",
"-",
"1",
"]",
")",
"for",
"k",
"in",
"range",
"(",
"1",
",",
"nlevels",
"+",
"1",
")",
":",
"ishift",
",",
"corrfn",
"=",
"refine_correlation",
"(",
"pyr1",
"[",
"-",
"k",
"-",
"1",
"]",
",",
"pyr2",
"[",
"-",
"k",
"-",
"1",
"]",
",",
"ishift",
"*",
"2",
")",
"return",
"ishift"
] | Find shift that best aligns two time series
The shift that aligns the timeseries ts1 with ts2.
This is sought using zero mean normalized cross correlation (ZNCC) in a coarse to fine search with an octave pyramid on nlevels levels.
Parameters
----------------
ts1 : list_like
The first timeseries
ts2 : list_like
The seconds timeseries
nlevels : int
Number of levels in pyramid
Returns
----------------
ts1_shift : float
How many samples to shift ts1 to align with ts2 | [
"Find",
"shift",
"that",
"best",
"aligns",
"two",
"time",
"series"
] | train | https://github.com/hovren/crisp/blob/65cae19e7cfae5a397859096c9ef666e0f4e7f1b/crisp/znccpyr.py#L245-L278 |
hovren/crisp | crisp/l3g4200d.py | load_L3G_arduino | def load_L3G_arduino(filename, remove_begin_spurious=False, return_parser=False):
"Load gyro data collected by the arduino version of the L3G logging platform, and return the data (in rad/s), a time vector, and the sample rate (seconds)"
file_data = open(filename, 'rb').read()
parser = L3GArduinoParser()
parser.parse(file_data[7:]) # Skip first "GYROLOG" header in file
data = parser.data
if parser.actual_data_rate:
T = 1. / parser.actual_data_rate
print("Found measured data rate %.3f ms (%.3f Hz)" % (1000*T, 1. / T))
else:
T = 1. / parser.data_rate
print("Using data rate provided by gyro (probably off by a few percent!) %.3f ms (%.3f Hz)" % (1000*T, 1. / T))
N = parser.data.shape[1]
t = np.linspace(0, T*N, num=data.shape[1])
print(t.shape, data.shape)
print("Loaded %d samples (%.2f seconds) with expected sample rate %.3f ms (%.3f Hz)" % (N, t[-1], T*1000.0, 1./T))
try:
print("Actual sample rate is %.3f ms (%.3f Hz)" % (1000. / parser.actual_data_rate, parser.actual_data_rate, ))
except TypeError:
pass
if remove_begin_spurious:
to_remove = int(0.3/T) # Remove first three tenth of second
data[:,:to_remove] = 0.0
if return_parser:
return np.deg2rad(data), t, T, parser
else:
return np.deg2rad(data), t, T | python | def load_L3G_arduino(filename, remove_begin_spurious=False, return_parser=False):
"Load gyro data collected by the arduino version of the L3G logging platform, and return the data (in rad/s), a time vector, and the sample rate (seconds)"
file_data = open(filename, 'rb').read()
parser = L3GArduinoParser()
parser.parse(file_data[7:]) # Skip first "GYROLOG" header in file
data = parser.data
if parser.actual_data_rate:
T = 1. / parser.actual_data_rate
print("Found measured data rate %.3f ms (%.3f Hz)" % (1000*T, 1. / T))
else:
T = 1. / parser.data_rate
print("Using data rate provided by gyro (probably off by a few percent!) %.3f ms (%.3f Hz)" % (1000*T, 1. / T))
N = parser.data.shape[1]
t = np.linspace(0, T*N, num=data.shape[1])
print(t.shape, data.shape)
print("Loaded %d samples (%.2f seconds) with expected sample rate %.3f ms (%.3f Hz)" % (N, t[-1], T*1000.0, 1./T))
try:
print("Actual sample rate is %.3f ms (%.3f Hz)" % (1000. / parser.actual_data_rate, parser.actual_data_rate, ))
except TypeError:
pass
if remove_begin_spurious:
to_remove = int(0.3/T) # Remove first three tenth of second
data[:,:to_remove] = 0.0
if return_parser:
return np.deg2rad(data), t, T, parser
else:
return np.deg2rad(data), t, T | [
"def",
"load_L3G_arduino",
"(",
"filename",
",",
"remove_begin_spurious",
"=",
"False",
",",
"return_parser",
"=",
"False",
")",
":",
"file_data",
"=",
"open",
"(",
"filename",
",",
"'rb'",
")",
".",
"read",
"(",
")",
"parser",
"=",
"L3GArduinoParser",
"(",
")",
"parser",
".",
"parse",
"(",
"file_data",
"[",
"7",
":",
"]",
")",
"# Skip first \"GYROLOG\" header in file",
"data",
"=",
"parser",
".",
"data",
"if",
"parser",
".",
"actual_data_rate",
":",
"T",
"=",
"1.",
"/",
"parser",
".",
"actual_data_rate",
"print",
"(",
"\"Found measured data rate %.3f ms (%.3f Hz)\"",
"%",
"(",
"1000",
"*",
"T",
",",
"1.",
"/",
"T",
")",
")",
"else",
":",
"T",
"=",
"1.",
"/",
"parser",
".",
"data_rate",
"print",
"(",
"\"Using data rate provided by gyro (probably off by a few percent!) %.3f ms (%.3f Hz)\"",
"%",
"(",
"1000",
"*",
"T",
",",
"1.",
"/",
"T",
")",
")",
"N",
"=",
"parser",
".",
"data",
".",
"shape",
"[",
"1",
"]",
"t",
"=",
"np",
".",
"linspace",
"(",
"0",
",",
"T",
"*",
"N",
",",
"num",
"=",
"data",
".",
"shape",
"[",
"1",
"]",
")",
"print",
"(",
"t",
".",
"shape",
",",
"data",
".",
"shape",
")",
"print",
"(",
"\"Loaded %d samples (%.2f seconds) with expected sample rate %.3f ms (%.3f Hz)\"",
"%",
"(",
"N",
",",
"t",
"[",
"-",
"1",
"]",
",",
"T",
"*",
"1000.0",
",",
"1.",
"/",
"T",
")",
")",
"try",
":",
"print",
"(",
"\"Actual sample rate is %.3f ms (%.3f Hz)\"",
"%",
"(",
"1000.",
"/",
"parser",
".",
"actual_data_rate",
",",
"parser",
".",
"actual_data_rate",
",",
")",
")",
"except",
"TypeError",
":",
"pass",
"if",
"remove_begin_spurious",
":",
"to_remove",
"=",
"int",
"(",
"0.3",
"/",
"T",
")",
"# Remove first three tenth of second",
"data",
"[",
":",
",",
":",
"to_remove",
"]",
"=",
"0.0",
"if",
"return_parser",
":",
"return",
"np",
".",
"deg2rad",
"(",
"data",
")",
",",
"t",
",",
"T",
",",
"parser",
"else",
":",
"return",
"np",
".",
"deg2rad",
"(",
"data",
")",
",",
"t",
",",
"T"
] | Load gyro data collected by the arduino version of the L3G logging platform, and return the data (in rad/s), a time vector, and the sample rate (seconds) | [
"Load",
"gyro",
"data",
"collected",
"by",
"the",
"arduino",
"version",
"of",
"the",
"L3G",
"logging",
"platform",
"and",
"return",
"the",
"data",
"(",
"in",
"rad",
"/",
"s",
")",
"a",
"time",
"vector",
"and",
"the",
"sample",
"rate",
"(",
"seconds",
")"
] | train | https://github.com/hovren/crisp/blob/65cae19e7cfae5a397859096c9ef666e0f4e7f1b/crisp/l3g4200d.py#L105-L134 |
hovren/crisp | examples/gopro_dataset_example.py | to_rot_matrix | def to_rot_matrix(r):
"Convert combined axis angle vector to rotation matrix"
theta = np.linalg.norm(r)
v = r/theta
R = crisp.rotations.axis_angle_to_rotation_matrix(v, theta)
return R | python | def to_rot_matrix(r):
"Convert combined axis angle vector to rotation matrix"
theta = np.linalg.norm(r)
v = r/theta
R = crisp.rotations.axis_angle_to_rotation_matrix(v, theta)
return R | [
"def",
"to_rot_matrix",
"(",
"r",
")",
":",
"theta",
"=",
"np",
".",
"linalg",
".",
"norm",
"(",
"r",
")",
"v",
"=",
"r",
"/",
"theta",
"R",
"=",
"crisp",
".",
"rotations",
".",
"axis_angle_to_rotation_matrix",
"(",
"v",
",",
"theta",
")",
"return",
"R"
] | Convert combined axis angle vector to rotation matrix | [
"Convert",
"combined",
"axis",
"angle",
"vector",
"to",
"rotation",
"matrix"
] | train | https://github.com/hovren/crisp/blob/65cae19e7cfae5a397859096c9ef666e0f4e7f1b/examples/gopro_dataset_example.py#L42-L47 |
hovren/crisp | crisp/pose.py | estimate_pose | def estimate_pose(image_sequences, imu_sequences, K):
"""Estimate sync between IMU and camera based on gyro readings and optical flow.
The user should first create at least two sequences of corresponding image and
gyroscope data.
From each sequence we calculate the rotation axis (one from images, one from IMU/gyro).
The final set of len(image_sequences) corresponding rotation axes are then used to calculate
the relative pose between the IMU and camera.
The returned rotation is such that it transfers vectors in the gyroscope coordinate
frame to the camera coordinate frame:
X_camera = R * X_gyro
Parameters
------------
image_sequences : list of list of ndarrays
List of image sequences (list of ndarrays) to use. Must have at least two sequences.
imu_sequences : list of (3, N) ndarray
Sequence of gyroscope measurements (angular velocities).
K : (3,3) ndarray
Camera calibration matrix
Returns
-----------
R : (3,3) ndarray
The relative pose (gyro-to-camera) such that X_camera = R * X_gyro
"""
assert len(image_sequences) == len(imu_sequences)
assert len(image_sequences) >= 2
# Note: list(image_sequence) here makes sure any generator type input is expanded to an actual list
sync_correspondences = [_get_point_correspondences(list(image_sequence)) for image_sequence in image_sequences]
# ) Procrustes on corresponding pairs
PROCRUSTES_MAX_POINTS = 15 # Number of tracks/points to use for procrustes
logger.debug("Running procrustes on track-retrack results")
image_rotation_axes = []
for i, points in enumerate(sync_correspondences):
if points.size < 1:
logger.error('Shape of points are %s', str(points.shape))
raise Exception("Did not get enough points when tracking")
num_points_to_use = min(PROCRUSTES_MAX_POINTS, points.shape[0])
logger.debug("Using %d tracks to calculate procrustes", num_points_to_use)
idxs_to_use = np.random.permutation(points.shape[0])[:num_points_to_use]
assert points.shape[-1] == 2
x = points[idxs_to_use,0,:].T.reshape(2,-1)
y = points[idxs_to_use,-1,:].T.reshape(2,-1)
x = np.vstack((x, np.ones((1, x.shape[1]))))
y = np.vstack((y, np.ones((1, y.shape[1]))))
K_inv = np.linalg.inv(K)
X = K_inv.dot(x)
Y = K_inv.dot(y)
# Depth must be positive
(R, t) = rotations.procrustes(X, Y, remove_mean=False) # X = R * Y + t
(v, theta) = rotations.rotation_matrix_to_axis_angle(R)
image_rotation_axes.append(v) # Save rotation axis
# Check the quality via the mean reprojection error
mean_error = np.mean(np.sqrt(np.sum((X - R.dot(Y))**2, axis=0)))
MEAN_ERROR_LIMIT = 0.1 # Arbitrarily chosen limit (in meters)
logger.debug('Image sequence %d: Rotation axis %s, degrees %.2f, mean error %.3f',
i, v, np.rad2deg(theta), mean_error)
if mean_error > MEAN_ERROR_LIMIT:
logger.warning("Procrustes solution mean error %.3f > %.3f", mean_error, MEAN_ERROR_LIMIT)
# ) Gyro principal rotation axis
gyro_rotation_axes = []
for i, gyro_seq in enumerate(imu_sequences):
assert gyro_seq.shape[0] == 3
v = principal_rotation_axis(gyro_seq)
logger.debug('Gyro sequence %d: Rotation axis %s', i, v)
gyro_rotation_axes.append(v)
# ) Procrustes to get rotation between coordinate frames
X = np.vstack(image_rotation_axes).T
Y = np.vstack(gyro_rotation_axes).T
(R,t) = rotations.procrustes(X, Y, remove_mean=False)
return (R, t) | python | def estimate_pose(image_sequences, imu_sequences, K):
"""Estimate sync between IMU and camera based on gyro readings and optical flow.
The user should first create at least two sequences of corresponding image and
gyroscope data.
From each sequence we calculate the rotation axis (one from images, one from IMU/gyro).
The final set of len(image_sequences) corresponding rotation axes are then used to calculate
the relative pose between the IMU and camera.
The returned rotation is such that it transfers vectors in the gyroscope coordinate
frame to the camera coordinate frame:
X_camera = R * X_gyro
Parameters
------------
image_sequences : list of list of ndarrays
List of image sequences (list of ndarrays) to use. Must have at least two sequences.
imu_sequences : list of (3, N) ndarray
Sequence of gyroscope measurements (angular velocities).
K : (3,3) ndarray
Camera calibration matrix
Returns
-----------
R : (3,3) ndarray
The relative pose (gyro-to-camera) such that X_camera = R * X_gyro
"""
assert len(image_sequences) == len(imu_sequences)
assert len(image_sequences) >= 2
# Note: list(image_sequence) here makes sure any generator type input is expanded to an actual list
sync_correspondences = [_get_point_correspondences(list(image_sequence)) for image_sequence in image_sequences]
# ) Procrustes on corresponding pairs
PROCRUSTES_MAX_POINTS = 15 # Number of tracks/points to use for procrustes
logger.debug("Running procrustes on track-retrack results")
image_rotation_axes = []
for i, points in enumerate(sync_correspondences):
if points.size < 1:
logger.error('Shape of points are %s', str(points.shape))
raise Exception("Did not get enough points when tracking")
num_points_to_use = min(PROCRUSTES_MAX_POINTS, points.shape[0])
logger.debug("Using %d tracks to calculate procrustes", num_points_to_use)
idxs_to_use = np.random.permutation(points.shape[0])[:num_points_to_use]
assert points.shape[-1] == 2
x = points[idxs_to_use,0,:].T.reshape(2,-1)
y = points[idxs_to_use,-1,:].T.reshape(2,-1)
x = np.vstack((x, np.ones((1, x.shape[1]))))
y = np.vstack((y, np.ones((1, y.shape[1]))))
K_inv = np.linalg.inv(K)
X = K_inv.dot(x)
Y = K_inv.dot(y)
# Depth must be positive
(R, t) = rotations.procrustes(X, Y, remove_mean=False) # X = R * Y + t
(v, theta) = rotations.rotation_matrix_to_axis_angle(R)
image_rotation_axes.append(v) # Save rotation axis
# Check the quality via the mean reprojection error
mean_error = np.mean(np.sqrt(np.sum((X - R.dot(Y))**2, axis=0)))
MEAN_ERROR_LIMIT = 0.1 # Arbitrarily chosen limit (in meters)
logger.debug('Image sequence %d: Rotation axis %s, degrees %.2f, mean error %.3f',
i, v, np.rad2deg(theta), mean_error)
if mean_error > MEAN_ERROR_LIMIT:
logger.warning("Procrustes solution mean error %.3f > %.3f", mean_error, MEAN_ERROR_LIMIT)
# ) Gyro principal rotation axis
gyro_rotation_axes = []
for i, gyro_seq in enumerate(imu_sequences):
assert gyro_seq.shape[0] == 3
v = principal_rotation_axis(gyro_seq)
logger.debug('Gyro sequence %d: Rotation axis %s', i, v)
gyro_rotation_axes.append(v)
# ) Procrustes to get rotation between coordinate frames
X = np.vstack(image_rotation_axes).T
Y = np.vstack(gyro_rotation_axes).T
(R,t) = rotations.procrustes(X, Y, remove_mean=False)
return (R, t) | [
"def",
"estimate_pose",
"(",
"image_sequences",
",",
"imu_sequences",
",",
"K",
")",
":",
"assert",
"len",
"(",
"image_sequences",
")",
"==",
"len",
"(",
"imu_sequences",
")",
"assert",
"len",
"(",
"image_sequences",
")",
">=",
"2",
"# Note: list(image_sequence) here makes sure any generator type input is expanded to an actual list",
"sync_correspondences",
"=",
"[",
"_get_point_correspondences",
"(",
"list",
"(",
"image_sequence",
")",
")",
"for",
"image_sequence",
"in",
"image_sequences",
"]",
"# ) Procrustes on corresponding pairs",
"PROCRUSTES_MAX_POINTS",
"=",
"15",
"# Number of tracks/points to use for procrustes",
"logger",
".",
"debug",
"(",
"\"Running procrustes on track-retrack results\"",
")",
"image_rotation_axes",
"=",
"[",
"]",
"for",
"i",
",",
"points",
"in",
"enumerate",
"(",
"sync_correspondences",
")",
":",
"if",
"points",
".",
"size",
"<",
"1",
":",
"logger",
".",
"error",
"(",
"'Shape of points are %s'",
",",
"str",
"(",
"points",
".",
"shape",
")",
")",
"raise",
"Exception",
"(",
"\"Did not get enough points when tracking\"",
")",
"num_points_to_use",
"=",
"min",
"(",
"PROCRUSTES_MAX_POINTS",
",",
"points",
".",
"shape",
"[",
"0",
"]",
")",
"logger",
".",
"debug",
"(",
"\"Using %d tracks to calculate procrustes\"",
",",
"num_points_to_use",
")",
"idxs_to_use",
"=",
"np",
".",
"random",
".",
"permutation",
"(",
"points",
".",
"shape",
"[",
"0",
"]",
")",
"[",
":",
"num_points_to_use",
"]",
"assert",
"points",
".",
"shape",
"[",
"-",
"1",
"]",
"==",
"2",
"x",
"=",
"points",
"[",
"idxs_to_use",
",",
"0",
",",
":",
"]",
".",
"T",
".",
"reshape",
"(",
"2",
",",
"-",
"1",
")",
"y",
"=",
"points",
"[",
"idxs_to_use",
",",
"-",
"1",
",",
":",
"]",
".",
"T",
".",
"reshape",
"(",
"2",
",",
"-",
"1",
")",
"x",
"=",
"np",
".",
"vstack",
"(",
"(",
"x",
",",
"np",
".",
"ones",
"(",
"(",
"1",
",",
"x",
".",
"shape",
"[",
"1",
"]",
")",
")",
")",
")",
"y",
"=",
"np",
".",
"vstack",
"(",
"(",
"y",
",",
"np",
".",
"ones",
"(",
"(",
"1",
",",
"y",
".",
"shape",
"[",
"1",
"]",
")",
")",
")",
")",
"K_inv",
"=",
"np",
".",
"linalg",
".",
"inv",
"(",
"K",
")",
"X",
"=",
"K_inv",
".",
"dot",
"(",
"x",
")",
"Y",
"=",
"K_inv",
".",
"dot",
"(",
"y",
")",
"# Depth must be positive",
"(",
"R",
",",
"t",
")",
"=",
"rotations",
".",
"procrustes",
"(",
"X",
",",
"Y",
",",
"remove_mean",
"=",
"False",
")",
"# X = R * Y + t",
"(",
"v",
",",
"theta",
")",
"=",
"rotations",
".",
"rotation_matrix_to_axis_angle",
"(",
"R",
")",
"image_rotation_axes",
".",
"append",
"(",
"v",
")",
"# Save rotation axis",
"# Check the quality via the mean reprojection error",
"mean_error",
"=",
"np",
".",
"mean",
"(",
"np",
".",
"sqrt",
"(",
"np",
".",
"sum",
"(",
"(",
"X",
"-",
"R",
".",
"dot",
"(",
"Y",
")",
")",
"**",
"2",
",",
"axis",
"=",
"0",
")",
")",
")",
"MEAN_ERROR_LIMIT",
"=",
"0.1",
"# Arbitrarily chosen limit (in meters)",
"logger",
".",
"debug",
"(",
"'Image sequence %d: Rotation axis %s, degrees %.2f, mean error %.3f'",
",",
"i",
",",
"v",
",",
"np",
".",
"rad2deg",
"(",
"theta",
")",
",",
"mean_error",
")",
"if",
"mean_error",
">",
"MEAN_ERROR_LIMIT",
":",
"logger",
".",
"warning",
"(",
"\"Procrustes solution mean error %.3f > %.3f\"",
",",
"mean_error",
",",
"MEAN_ERROR_LIMIT",
")",
"# ) Gyro principal rotation axis",
"gyro_rotation_axes",
"=",
"[",
"]",
"for",
"i",
",",
"gyro_seq",
"in",
"enumerate",
"(",
"imu_sequences",
")",
":",
"assert",
"gyro_seq",
".",
"shape",
"[",
"0",
"]",
"==",
"3",
"v",
"=",
"principal_rotation_axis",
"(",
"gyro_seq",
")",
"logger",
".",
"debug",
"(",
"'Gyro sequence %d: Rotation axis %s'",
",",
"i",
",",
"v",
")",
"gyro_rotation_axes",
".",
"append",
"(",
"v",
")",
"# ) Procrustes to get rotation between coordinate frames",
"X",
"=",
"np",
".",
"vstack",
"(",
"image_rotation_axes",
")",
".",
"T",
"Y",
"=",
"np",
".",
"vstack",
"(",
"gyro_rotation_axes",
")",
".",
"T",
"(",
"R",
",",
"t",
")",
"=",
"rotations",
".",
"procrustes",
"(",
"X",
",",
"Y",
",",
"remove_mean",
"=",
"False",
")",
"return",
"(",
"R",
",",
"t",
")"
] | Estimate sync between IMU and camera based on gyro readings and optical flow.
The user should first create at least two sequences of corresponding image and
gyroscope data.
From each sequence we calculate the rotation axis (one from images, one from IMU/gyro).
The final set of len(image_sequences) corresponding rotation axes are then used to calculate
the relative pose between the IMU and camera.
The returned rotation is such that it transfers vectors in the gyroscope coordinate
frame to the camera coordinate frame:
X_camera = R * X_gyro
Parameters
------------
image_sequences : list of list of ndarrays
List of image sequences (list of ndarrays) to use. Must have at least two sequences.
imu_sequences : list of (3, N) ndarray
Sequence of gyroscope measurements (angular velocities).
K : (3,3) ndarray
Camera calibration matrix
Returns
-----------
R : (3,3) ndarray
The relative pose (gyro-to-camera) such that X_camera = R * X_gyro | [
"Estimate",
"sync",
"between",
"IMU",
"and",
"camera",
"based",
"on",
"gyro",
"readings",
"and",
"optical",
"flow",
".",
"The",
"user",
"should",
"first",
"create",
"at",
"least",
"two",
"sequences",
"of",
"corresponding",
"image",
"and",
"gyroscope",
"data",
".",
"From",
"each",
"sequence",
"we",
"calculate",
"the",
"rotation",
"axis",
"(",
"one",
"from",
"images",
"one",
"from",
"IMU",
"/",
"gyro",
")",
".",
"The",
"final",
"set",
"of",
"len",
"(",
"image_sequences",
")",
"corresponding",
"rotation",
"axes",
"are",
"then",
"used",
"to",
"calculate",
"the",
"relative",
"pose",
"between",
"the",
"IMU",
"and",
"camera",
".",
"The",
"returned",
"rotation",
"is",
"such",
"that",
"it",
"transfers",
"vectors",
"in",
"the",
"gyroscope",
"coordinate",
"frame",
"to",
"the",
"camera",
"coordinate",
"frame",
":",
"X_camera",
"=",
"R",
"*",
"X_gyro",
"Parameters",
"------------",
"image_sequences",
":",
"list",
"of",
"list",
"of",
"ndarrays",
"List",
"of",
"image",
"sequences",
"(",
"list",
"of",
"ndarrays",
")",
"to",
"use",
".",
"Must",
"have",
"at",
"least",
"two",
"sequences",
".",
"imu_sequences",
":",
"list",
"of",
"(",
"3",
"N",
")",
"ndarray",
"Sequence",
"of",
"gyroscope",
"measurements",
"(",
"angular",
"velocities",
")",
".",
"K",
":",
"(",
"3",
"3",
")",
"ndarray",
"Camera",
"calibration",
"matrix",
"Returns",
"-----------",
"R",
":",
"(",
"3",
"3",
")",
"ndarray",
"The",
"relative",
"pose",
"(",
"gyro",
"-",
"to",
"-",
"camera",
")",
"such",
"that",
"X_camera",
"=",
"R",
"*",
"X_gyro"
] | train | https://github.com/hovren/crisp/blob/65cae19e7cfae5a397859096c9ef666e0f4e7f1b/crisp/pose.py#L24-L106 |
hovren/crisp | crisp/pose.py | pick_manual | def pick_manual(image_sequence, imu_gyro, num_sequences=2):
"""Select N matching sequences and return data indices.
Parameters
---------------
image_sequence : list_like
A list, or generator, of image data
imu_gyro : (3, N) ndarray
Gyroscope data (angular velocities)
num_sequences : int
The number of matching sequences to pick
Returns
----------------
sync_sequences : list
List of (frame_pair, gyro_pair) tuples where each pair contains
(a, b) which are indices of the (inclusive) range [a, b] that was chosen
"""
assert num_sequences >= 2
# Create optical flow for user to select parts in
logger.info("Calculating optical flow")
flow = tracking.optical_flow_magnitude(image_sequence)
# ) Prompt user for sync slices
logger.debug("Prompting user for %d sequences" % num_sequences)
imu_fake_timestamps = np.linspace(0,1,num=imu_gyro.shape[1])
sync_sequences = [timesync.manual_sync_pick(flow, imu_fake_timestamps, imu_gyro) for i in range(num_sequences)]
return sync_sequences | python | def pick_manual(image_sequence, imu_gyro, num_sequences=2):
"""Select N matching sequences and return data indices.
Parameters
---------------
image_sequence : list_like
A list, or generator, of image data
imu_gyro : (3, N) ndarray
Gyroscope data (angular velocities)
num_sequences : int
The number of matching sequences to pick
Returns
----------------
sync_sequences : list
List of (frame_pair, gyro_pair) tuples where each pair contains
(a, b) which are indices of the (inclusive) range [a, b] that was chosen
"""
assert num_sequences >= 2
# Create optical flow for user to select parts in
logger.info("Calculating optical flow")
flow = tracking.optical_flow_magnitude(image_sequence)
# ) Prompt user for sync slices
logger.debug("Prompting user for %d sequences" % num_sequences)
imu_fake_timestamps = np.linspace(0,1,num=imu_gyro.shape[1])
sync_sequences = [timesync.manual_sync_pick(flow, imu_fake_timestamps, imu_gyro) for i in range(num_sequences)]
return sync_sequences | [
"def",
"pick_manual",
"(",
"image_sequence",
",",
"imu_gyro",
",",
"num_sequences",
"=",
"2",
")",
":",
"assert",
"num_sequences",
">=",
"2",
"# Create optical flow for user to select parts in",
"logger",
".",
"info",
"(",
"\"Calculating optical flow\"",
")",
"flow",
"=",
"tracking",
".",
"optical_flow_magnitude",
"(",
"image_sequence",
")",
"# ) Prompt user for sync slices",
"logger",
".",
"debug",
"(",
"\"Prompting user for %d sequences\"",
"%",
"num_sequences",
")",
"imu_fake_timestamps",
"=",
"np",
".",
"linspace",
"(",
"0",
",",
"1",
",",
"num",
"=",
"imu_gyro",
".",
"shape",
"[",
"1",
"]",
")",
"sync_sequences",
"=",
"[",
"timesync",
".",
"manual_sync_pick",
"(",
"flow",
",",
"imu_fake_timestamps",
",",
"imu_gyro",
")",
"for",
"i",
"in",
"range",
"(",
"num_sequences",
")",
"]",
"return",
"sync_sequences"
] | Select N matching sequences and return data indices.
Parameters
---------------
image_sequence : list_like
A list, or generator, of image data
imu_gyro : (3, N) ndarray
Gyroscope data (angular velocities)
num_sequences : int
The number of matching sequences to pick
Returns
----------------
sync_sequences : list
List of (frame_pair, gyro_pair) tuples where each pair contains
(a, b) which are indices of the (inclusive) range [a, b] that was chosen | [
"Select",
"N",
"matching",
"sequences",
"and",
"return",
"data",
"indices",
".",
"Parameters",
"---------------",
"image_sequence",
":",
"list_like",
"A",
"list",
"or",
"generator",
"of",
"image",
"data",
"imu_gyro",
":",
"(",
"3",
"N",
")",
"ndarray",
"Gyroscope",
"data",
"(",
"angular",
"velocities",
")",
"num_sequences",
":",
"int",
"The",
"number",
"of",
"matching",
"sequences",
"to",
"pick",
"Returns",
"----------------",
"sync_sequences",
":",
"list",
"List",
"of",
"(",
"frame_pair",
"gyro_pair",
")",
"tuples",
"where",
"each",
"pair",
"contains",
"(",
"a",
"b",
")",
"which",
"are",
"indices",
"of",
"the",
"(",
"inclusive",
")",
"range",
"[",
"a",
"b",
"]",
"that",
"was",
"chosen"
] | train | https://github.com/hovren/crisp/blob/65cae19e7cfae5a397859096c9ef666e0f4e7f1b/crisp/pose.py#L110-L138 |
hovren/crisp | crisp/pose.py | principal_rotation_axis | def principal_rotation_axis(gyro_data):
"""Get the principal rotation axis of angular velocity measurements.
Parameters
-------------
gyro_data : (3, N) ndarray
Angular velocity measurements
Returns
-------------
v : (3,1) ndarray
The principal rotation axis for the chosen sequence
"""
N = np.zeros((3,3))
for x in gyro_data.T: # Transpose because samples are stored as columns
y = x.reshape(3,1)
N += y.dot(y.T)
(eig_val, eig_vec) = np.linalg.eig(N)
i = np.argmax(eig_val)
v = eig_vec[:,i]
# Make sure v has correct sign
s = 0
for x in gyro_data.T: # Transpose because samples are stored as columns
s += v.T.dot(x.reshape(3,1))
v *= np.sign(s)
return v | python | def principal_rotation_axis(gyro_data):
"""Get the principal rotation axis of angular velocity measurements.
Parameters
-------------
gyro_data : (3, N) ndarray
Angular velocity measurements
Returns
-------------
v : (3,1) ndarray
The principal rotation axis for the chosen sequence
"""
N = np.zeros((3,3))
for x in gyro_data.T: # Transpose because samples are stored as columns
y = x.reshape(3,1)
N += y.dot(y.T)
(eig_val, eig_vec) = np.linalg.eig(N)
i = np.argmax(eig_val)
v = eig_vec[:,i]
# Make sure v has correct sign
s = 0
for x in gyro_data.T: # Transpose because samples are stored as columns
s += v.T.dot(x.reshape(3,1))
v *= np.sign(s)
return v | [
"def",
"principal_rotation_axis",
"(",
"gyro_data",
")",
":",
"N",
"=",
"np",
".",
"zeros",
"(",
"(",
"3",
",",
"3",
")",
")",
"for",
"x",
"in",
"gyro_data",
".",
"T",
":",
"# Transpose because samples are stored as columns",
"y",
"=",
"x",
".",
"reshape",
"(",
"3",
",",
"1",
")",
"N",
"+=",
"y",
".",
"dot",
"(",
"y",
".",
"T",
")",
"(",
"eig_val",
",",
"eig_vec",
")",
"=",
"np",
".",
"linalg",
".",
"eig",
"(",
"N",
")",
"i",
"=",
"np",
".",
"argmax",
"(",
"eig_val",
")",
"v",
"=",
"eig_vec",
"[",
":",
",",
"i",
"]",
"# Make sure v has correct sign",
"s",
"=",
"0",
"for",
"x",
"in",
"gyro_data",
".",
"T",
":",
"# Transpose because samples are stored as columns",
"s",
"+=",
"v",
".",
"T",
".",
"dot",
"(",
"x",
".",
"reshape",
"(",
"3",
",",
"1",
")",
")",
"v",
"*=",
"np",
".",
"sign",
"(",
"s",
")",
"return",
"v"
] | Get the principal rotation axis of angular velocity measurements.
Parameters
-------------
gyro_data : (3, N) ndarray
Angular velocity measurements
Returns
-------------
v : (3,1) ndarray
The principal rotation axis for the chosen sequence | [
"Get",
"the",
"principal",
"rotation",
"axis",
"of",
"angular",
"velocity",
"measurements",
".",
"Parameters",
"-------------",
"gyro_data",
":",
"(",
"3",
"N",
")",
"ndarray",
"Angular",
"velocity",
"measurements",
"Returns",
"-------------",
"v",
":",
"(",
"3",
"1",
")",
"ndarray",
"The",
"principal",
"rotation",
"axis",
"for",
"the",
"chosen",
"sequence"
] | train | https://github.com/hovren/crisp/blob/65cae19e7cfae5a397859096c9ef666e0f4e7f1b/crisp/pose.py#L142-L171 |
codejamninja/sphinx-markdown-builder | sphinx_markdown_builder/markdown_writer.py | MarkdownTranslator.visit_image | def visit_image(self, node):
"""
Image directive
"""
uri = node.attributes['uri']
doc_folder = os.path.dirname(self.builder.current_docname)
if uri.startswith(doc_folder):
# drop docname prefix
uri = uri[len(doc_folder):]
if uri.startswith("/"):
uri = "." + uri
self.add('\n\n\n\n' % uri) | python | def visit_image(self, node):
"""
Image directive
"""
uri = node.attributes['uri']
doc_folder = os.path.dirname(self.builder.current_docname)
if uri.startswith(doc_folder):
# drop docname prefix
uri = uri[len(doc_folder):]
if uri.startswith("/"):
uri = "." + uri
self.add('\n\n\n\n' % uri) | [
"def",
"visit_image",
"(",
"self",
",",
"node",
")",
":",
"uri",
"=",
"node",
".",
"attributes",
"[",
"'uri'",
"]",
"doc_folder",
"=",
"os",
".",
"path",
".",
"dirname",
"(",
"self",
".",
"builder",
".",
"current_docname",
")",
"if",
"uri",
".",
"startswith",
"(",
"doc_folder",
")",
":",
"# drop docname prefix",
"uri",
"=",
"uri",
"[",
"len",
"(",
"doc_folder",
")",
":",
"]",
"if",
"uri",
".",
"startswith",
"(",
"\"/\"",
")",
":",
"uri",
"=",
"\".\"",
"+",
"uri",
"self",
".",
"add",
"(",
"'\\n\\n\\n\\n'",
"%",
"uri",
")"
] | Image directive | [
"Image",
"directive"
] | train | https://github.com/codejamninja/sphinx-markdown-builder/blob/a28f48df937d4b0e158ba453e5e1c66824299196/sphinx_markdown_builder/markdown_writer.py#L203-L214 |
codejamninja/sphinx-markdown-builder | sphinx_markdown_builder/doctree2md.py | add_pref_suff | def add_pref_suff(pref_suff_map):
""" Decorator adds visit, depart methods for prefix/suffix pairs
"""
def dec(cls):
# Need _make_method to ensure new variable picked up for each iteration
# of the loop. The defined method picks up this new variable in its
# scope.
for key, (prefix, suffix) in pref_suff_map.items():
setattr(cls, 'visit_' + key, _make_method(prefix))
setattr(cls, 'depart_' + key, _make_method(suffix))
return cls
return dec | python | def add_pref_suff(pref_suff_map):
""" Decorator adds visit, depart methods for prefix/suffix pairs
"""
def dec(cls):
# Need _make_method to ensure new variable picked up for each iteration
# of the loop. The defined method picks up this new variable in its
# scope.
for key, (prefix, suffix) in pref_suff_map.items():
setattr(cls, 'visit_' + key, _make_method(prefix))
setattr(cls, 'depart_' + key, _make_method(suffix))
return cls
return dec | [
"def",
"add_pref_suff",
"(",
"pref_suff_map",
")",
":",
"def",
"dec",
"(",
"cls",
")",
":",
"# Need _make_method to ensure new variable picked up for each iteration",
"# of the loop. The defined method picks up this new variable in its",
"# scope.",
"for",
"key",
",",
"(",
"prefix",
",",
"suffix",
")",
"in",
"pref_suff_map",
".",
"items",
"(",
")",
":",
"setattr",
"(",
"cls",
",",
"'visit_'",
"+",
"key",
",",
"_make_method",
"(",
"prefix",
")",
")",
"setattr",
"(",
"cls",
",",
"'depart_'",
"+",
"key",
",",
"_make_method",
"(",
"suffix",
")",
")",
"return",
"cls",
"return",
"dec"
] | Decorator adds visit, depart methods for prefix/suffix pairs | [
"Decorator",
"adds",
"visit",
"depart",
"methods",
"for",
"prefix",
"/",
"suffix",
"pairs"
] | train | https://github.com/codejamninja/sphinx-markdown-builder/blob/a28f48df937d4b0e158ba453e5e1c66824299196/sphinx_markdown_builder/doctree2md.py#L241-L253 |
codejamninja/sphinx-markdown-builder | sphinx_markdown_builder/doctree2md.py | add_pass_thru | def add_pass_thru(pass_thrus):
""" Decorator adds explicit pass-through visit and depart methods
"""
def meth(self, node):
pass
def dec(cls):
for element_name in pass_thrus:
for meth_prefix in ('visit_', 'depart_'):
meth_name = meth_prefix + element_name
if hasattr(cls, meth_name):
raise ValueError('method name {} already defined'
.format(meth_name))
setattr(cls, meth_name, meth)
return cls
return dec | python | def add_pass_thru(pass_thrus):
""" Decorator adds explicit pass-through visit and depart methods
"""
def meth(self, node):
pass
def dec(cls):
for element_name in pass_thrus:
for meth_prefix in ('visit_', 'depart_'):
meth_name = meth_prefix + element_name
if hasattr(cls, meth_name):
raise ValueError('method name {} already defined'
.format(meth_name))
setattr(cls, meth_name, meth)
return cls
return dec | [
"def",
"add_pass_thru",
"(",
"pass_thrus",
")",
":",
"def",
"meth",
"(",
"self",
",",
"node",
")",
":",
"pass",
"def",
"dec",
"(",
"cls",
")",
":",
"for",
"element_name",
"in",
"pass_thrus",
":",
"for",
"meth_prefix",
"in",
"(",
"'visit_'",
",",
"'depart_'",
")",
":",
"meth_name",
"=",
"meth_prefix",
"+",
"element_name",
"if",
"hasattr",
"(",
"cls",
",",
"meth_name",
")",
":",
"raise",
"ValueError",
"(",
"'method name {} already defined'",
".",
"format",
"(",
"meth_name",
")",
")",
"setattr",
"(",
"cls",
",",
"meth_name",
",",
"meth",
")",
"return",
"cls",
"return",
"dec"
] | Decorator adds explicit pass-through visit and depart methods | [
"Decorator",
"adds",
"explicit",
"pass",
"-",
"through",
"visit",
"and",
"depart",
"methods"
] | train | https://github.com/codejamninja/sphinx-markdown-builder/blob/a28f48df937d4b0e158ba453e5e1c66824299196/sphinx_markdown_builder/doctree2md.py#L256-L272 |
codejamninja/sphinx-markdown-builder | sphinx_markdown_builder/doctree2md.py | IndentLevel.write | def write(self):
""" Add ``self.contents`` with current ``prefix`` and ``first_prefix``
Add processed ``self.contents`` to ``self.base``. The first line has
``first_prefix`` prepended, further lines have ``prefix`` prepended.
Empty (all whitespace) lines get written as bare carriage returns, to
avoid ugly extra whitespace.
"""
string = ''.join(self.content)
lines = string.splitlines(True)
if len(lines) == 0:
return
texts = [self.first_prefix + lines[0]]
for line in lines[1:]:
if line.strip() == '': # avoid prefix for empty lines
texts.append('\n')
else:
texts.append(self.prefix + line)
self.base.append(''.join(texts)) | python | def write(self):
""" Add ``self.contents`` with current ``prefix`` and ``first_prefix``
Add processed ``self.contents`` to ``self.base``. The first line has
``first_prefix`` prepended, further lines have ``prefix`` prepended.
Empty (all whitespace) lines get written as bare carriage returns, to
avoid ugly extra whitespace.
"""
string = ''.join(self.content)
lines = string.splitlines(True)
if len(lines) == 0:
return
texts = [self.first_prefix + lines[0]]
for line in lines[1:]:
if line.strip() == '': # avoid prefix for empty lines
texts.append('\n')
else:
texts.append(self.prefix + line)
self.base.append(''.join(texts)) | [
"def",
"write",
"(",
"self",
")",
":",
"string",
"=",
"''",
".",
"join",
"(",
"self",
".",
"content",
")",
"lines",
"=",
"string",
".",
"splitlines",
"(",
"True",
")",
"if",
"len",
"(",
"lines",
")",
"==",
"0",
":",
"return",
"texts",
"=",
"[",
"self",
".",
"first_prefix",
"+",
"lines",
"[",
"0",
"]",
"]",
"for",
"line",
"in",
"lines",
"[",
"1",
":",
"]",
":",
"if",
"line",
".",
"strip",
"(",
")",
"==",
"''",
":",
"# avoid prefix for empty lines",
"texts",
".",
"append",
"(",
"'\\n'",
")",
"else",
":",
"texts",
".",
"append",
"(",
"self",
".",
"prefix",
"+",
"line",
")",
"self",
".",
"base",
".",
"append",
"(",
"''",
".",
"join",
"(",
"texts",
")",
")"
] | Add ``self.contents`` with current ``prefix`` and ``first_prefix``
Add processed ``self.contents`` to ``self.base``. The first line has
``first_prefix`` prepended, further lines have ``prefix`` prepended.
Empty (all whitespace) lines get written as bare carriage returns, to
avoid ugly extra whitespace. | [
"Add",
"self",
".",
"contents",
"with",
"current",
"prefix",
"and",
"first_prefix"
] | train | https://github.com/codejamninja/sphinx-markdown-builder/blob/a28f48df937d4b0e158ba453e5e1c66824299196/sphinx_markdown_builder/doctree2md.py#L206-L225 |
sbuss/bitmerchant | bitmerchant/wallet/bip32.py | Wallet.identifier | def identifier(self):
"""Get the identifier for this node.
Extended keys can be identified by the Hash160 (RIPEMD160 after SHA256)
of the public key's `key`. This corresponds exactly to the data used in
traditional Bitcoin addresses. It is not advised to represent this data
in base58 format though, as it may be interpreted as an address that
way (and wallet software is not required to accept payment to the chain
key itself).
"""
key = self.get_public_key_hex()
return ensure_bytes(hexlify(hash160(unhexlify(ensure_bytes(key))))) | python | def identifier(self):
"""Get the identifier for this node.
Extended keys can be identified by the Hash160 (RIPEMD160 after SHA256)
of the public key's `key`. This corresponds exactly to the data used in
traditional Bitcoin addresses. It is not advised to represent this data
in base58 format though, as it may be interpreted as an address that
way (and wallet software is not required to accept payment to the chain
key itself).
"""
key = self.get_public_key_hex()
return ensure_bytes(hexlify(hash160(unhexlify(ensure_bytes(key))))) | [
"def",
"identifier",
"(",
"self",
")",
":",
"key",
"=",
"self",
".",
"get_public_key_hex",
"(",
")",
"return",
"ensure_bytes",
"(",
"hexlify",
"(",
"hash160",
"(",
"unhexlify",
"(",
"ensure_bytes",
"(",
"key",
")",
")",
")",
")",
")"
] | Get the identifier for this node.
Extended keys can be identified by the Hash160 (RIPEMD160 after SHA256)
of the public key's `key`. This corresponds exactly to the data used in
traditional Bitcoin addresses. It is not advised to represent this data
in base58 format though, as it may be interpreted as an address that
way (and wallet software is not required to accept payment to the chain
key itself). | [
"Get",
"the",
"identifier",
"for",
"this",
"node",
"."
] | train | https://github.com/sbuss/bitmerchant/blob/901de06489805c396a922f955eeef2da04734e3e/bitmerchant/wallet/bip32.py#L153-L164 |
sbuss/bitmerchant | bitmerchant/wallet/bip32.py | Wallet.get_child | def get_child(self, child_number, is_prime=None, as_private=True):
"""Derive a child key.
:param child_number: The number of the child key to compute
:type child_number: int
:param is_prime: If True, the child is calculated via private
derivation. If False, then public derivation is used. If None,
then it is figured out from the value of child_number.
:type is_prime: bool, defaults to None
:param as_private: If True, strips private key from the result.
Defaults to False. If there is no private key present, this is
ignored.
:type as_private: bool
Positive child_numbers (>= 0, < 2,147,483,648) produce publicly
derived children. (prime=False)
Negative numbers (> -2,147,483,648, < 0) use private derivation.
(prime=True)
NOTE: Python can't do -0, so if you want the privately derived 0th
child you need to manually set is_prime=True.
NOTE: negative numbered children are provided as a convenience
because nobody wants to remember the above numbers. Negative numbers
are considered 'prime children', which is described in the BIP32 spec
as a leading 1 in a 32 bit unsigned int.
This derivation is fully described at
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki#child-key-derivation-functions # nopep8
"""
boundary = 0x80000000
# Note: If this boundary check gets removed, then children above
# the boundary should use private (prime) derivation.
if abs(child_number) >= boundary:
raise ValueError("Invalid child number %s" % child_number)
# If is_prime isn't set, then we can infer it from the child_number
if is_prime is None:
# Prime children are either < 0 or > 0x80000000
if child_number < 0:
child_number = abs(child_number)
is_prime = True
else:
is_prime = False
else:
# Otherwise is_prime is set so the child_number should be between
# 0 and 0x80000000
if child_number < 0 or child_number >= boundary:
raise ValueError(
"Invalid child number. Must be between 0 and %s" %
boundary)
if not self.private_key and is_prime:
raise ValueError(
"Cannot compute a prime child without a private key")
if is_prime:
# Even though we take child_number as an int < boundary, the
# internal derivation needs it to be the larger number.
child_number = child_number + boundary
child_number_hex = long_to_hex(child_number, 8)
if is_prime:
# Let data = concat(0x00, self.key, child_number)
data = b'00' + self.private_key.get_key()
else:
data = self.get_public_key_hex()
data += child_number_hex
# Compute a 64 Byte I that is the HMAC-SHA512, using self.chain_code
# as the seed, and data as the message.
I = hmac.new(
unhexlify(ensure_bytes(self.chain_code)),
msg=unhexlify(ensure_bytes(data)),
digestmod=sha512).digest()
# Split I into its 32 Byte components.
I_L, I_R = I[:32], I[32:]
if long_or_int(hexlify(I_L), 16) >= SECP256k1.order:
raise InvalidPrivateKeyError("The derived key is too large.")
c_i = hexlify(I_R)
private_exponent = None
public_pair = None
if self.private_key:
# Use private information for derivation
# I_L is added to the current key's secret exponent (mod n), where
# n is the order of the ECDSA curve in use.
private_exponent = (
(long_or_int(hexlify(I_L), 16) +
long_or_int(self.private_key.get_key(), 16))
% SECP256k1.order)
# I_R is the child's chain code
else:
# Only use public information for this derivation
g = SECP256k1.generator
I_L_long = long_or_int(hexlify(I_L), 16)
point = (_ECDSA_Public_key(g, g * I_L_long).point +
self.public_key.to_point())
# I_R is the child's chain code
public_pair = PublicPair(point.x(), point.y())
child = self.__class__(
chain_code=c_i,
depth=self.depth + 1, # we have to go deeper...
parent_fingerprint=self.fingerprint,
child_number=child_number_hex,
private_exponent=private_exponent,
public_pair=public_pair,
network=self.network)
if child.public_key.to_point() == INFINITY:
raise InfinityPointException("The point at infinity is invalid.")
if not as_private:
return child.public_copy()
return child | python | def get_child(self, child_number, is_prime=None, as_private=True):
"""Derive a child key.
:param child_number: The number of the child key to compute
:type child_number: int
:param is_prime: If True, the child is calculated via private
derivation. If False, then public derivation is used. If None,
then it is figured out from the value of child_number.
:type is_prime: bool, defaults to None
:param as_private: If True, strips private key from the result.
Defaults to False. If there is no private key present, this is
ignored.
:type as_private: bool
Positive child_numbers (>= 0, < 2,147,483,648) produce publicly
derived children. (prime=False)
Negative numbers (> -2,147,483,648, < 0) use private derivation.
(prime=True)
NOTE: Python can't do -0, so if you want the privately derived 0th
child you need to manually set is_prime=True.
NOTE: negative numbered children are provided as a convenience
because nobody wants to remember the above numbers. Negative numbers
are considered 'prime children', which is described in the BIP32 spec
as a leading 1 in a 32 bit unsigned int.
This derivation is fully described at
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki#child-key-derivation-functions # nopep8
"""
boundary = 0x80000000
# Note: If this boundary check gets removed, then children above
# the boundary should use private (prime) derivation.
if abs(child_number) >= boundary:
raise ValueError("Invalid child number %s" % child_number)
# If is_prime isn't set, then we can infer it from the child_number
if is_prime is None:
# Prime children are either < 0 or > 0x80000000
if child_number < 0:
child_number = abs(child_number)
is_prime = True
else:
is_prime = False
else:
# Otherwise is_prime is set so the child_number should be between
# 0 and 0x80000000
if child_number < 0 or child_number >= boundary:
raise ValueError(
"Invalid child number. Must be between 0 and %s" %
boundary)
if not self.private_key and is_prime:
raise ValueError(
"Cannot compute a prime child without a private key")
if is_prime:
# Even though we take child_number as an int < boundary, the
# internal derivation needs it to be the larger number.
child_number = child_number + boundary
child_number_hex = long_to_hex(child_number, 8)
if is_prime:
# Let data = concat(0x00, self.key, child_number)
data = b'00' + self.private_key.get_key()
else:
data = self.get_public_key_hex()
data += child_number_hex
# Compute a 64 Byte I that is the HMAC-SHA512, using self.chain_code
# as the seed, and data as the message.
I = hmac.new(
unhexlify(ensure_bytes(self.chain_code)),
msg=unhexlify(ensure_bytes(data)),
digestmod=sha512).digest()
# Split I into its 32 Byte components.
I_L, I_R = I[:32], I[32:]
if long_or_int(hexlify(I_L), 16) >= SECP256k1.order:
raise InvalidPrivateKeyError("The derived key is too large.")
c_i = hexlify(I_R)
private_exponent = None
public_pair = None
if self.private_key:
# Use private information for derivation
# I_L is added to the current key's secret exponent (mod n), where
# n is the order of the ECDSA curve in use.
private_exponent = (
(long_or_int(hexlify(I_L), 16) +
long_or_int(self.private_key.get_key(), 16))
% SECP256k1.order)
# I_R is the child's chain code
else:
# Only use public information for this derivation
g = SECP256k1.generator
I_L_long = long_or_int(hexlify(I_L), 16)
point = (_ECDSA_Public_key(g, g * I_L_long).point +
self.public_key.to_point())
# I_R is the child's chain code
public_pair = PublicPair(point.x(), point.y())
child = self.__class__(
chain_code=c_i,
depth=self.depth + 1, # we have to go deeper...
parent_fingerprint=self.fingerprint,
child_number=child_number_hex,
private_exponent=private_exponent,
public_pair=public_pair,
network=self.network)
if child.public_key.to_point() == INFINITY:
raise InfinityPointException("The point at infinity is invalid.")
if not as_private:
return child.public_copy()
return child | [
"def",
"get_child",
"(",
"self",
",",
"child_number",
",",
"is_prime",
"=",
"None",
",",
"as_private",
"=",
"True",
")",
":",
"boundary",
"=",
"0x80000000",
"# Note: If this boundary check gets removed, then children above",
"# the boundary should use private (prime) derivation.",
"if",
"abs",
"(",
"child_number",
")",
">=",
"boundary",
":",
"raise",
"ValueError",
"(",
"\"Invalid child number %s\"",
"%",
"child_number",
")",
"# If is_prime isn't set, then we can infer it from the child_number",
"if",
"is_prime",
"is",
"None",
":",
"# Prime children are either < 0 or > 0x80000000",
"if",
"child_number",
"<",
"0",
":",
"child_number",
"=",
"abs",
"(",
"child_number",
")",
"is_prime",
"=",
"True",
"else",
":",
"is_prime",
"=",
"False",
"else",
":",
"# Otherwise is_prime is set so the child_number should be between",
"# 0 and 0x80000000",
"if",
"child_number",
"<",
"0",
"or",
"child_number",
">=",
"boundary",
":",
"raise",
"ValueError",
"(",
"\"Invalid child number. Must be between 0 and %s\"",
"%",
"boundary",
")",
"if",
"not",
"self",
".",
"private_key",
"and",
"is_prime",
":",
"raise",
"ValueError",
"(",
"\"Cannot compute a prime child without a private key\"",
")",
"if",
"is_prime",
":",
"# Even though we take child_number as an int < boundary, the",
"# internal derivation needs it to be the larger number.",
"child_number",
"=",
"child_number",
"+",
"boundary",
"child_number_hex",
"=",
"long_to_hex",
"(",
"child_number",
",",
"8",
")",
"if",
"is_prime",
":",
"# Let data = concat(0x00, self.key, child_number)",
"data",
"=",
"b'00'",
"+",
"self",
".",
"private_key",
".",
"get_key",
"(",
")",
"else",
":",
"data",
"=",
"self",
".",
"get_public_key_hex",
"(",
")",
"data",
"+=",
"child_number_hex",
"# Compute a 64 Byte I that is the HMAC-SHA512, using self.chain_code",
"# as the seed, and data as the message.",
"I",
"=",
"hmac",
".",
"new",
"(",
"unhexlify",
"(",
"ensure_bytes",
"(",
"self",
".",
"chain_code",
")",
")",
",",
"msg",
"=",
"unhexlify",
"(",
"ensure_bytes",
"(",
"data",
")",
")",
",",
"digestmod",
"=",
"sha512",
")",
".",
"digest",
"(",
")",
"# Split I into its 32 Byte components.",
"I_L",
",",
"I_R",
"=",
"I",
"[",
":",
"32",
"]",
",",
"I",
"[",
"32",
":",
"]",
"if",
"long_or_int",
"(",
"hexlify",
"(",
"I_L",
")",
",",
"16",
")",
">=",
"SECP256k1",
".",
"order",
":",
"raise",
"InvalidPrivateKeyError",
"(",
"\"The derived key is too large.\"",
")",
"c_i",
"=",
"hexlify",
"(",
"I_R",
")",
"private_exponent",
"=",
"None",
"public_pair",
"=",
"None",
"if",
"self",
".",
"private_key",
":",
"# Use private information for derivation",
"# I_L is added to the current key's secret exponent (mod n), where",
"# n is the order of the ECDSA curve in use.",
"private_exponent",
"=",
"(",
"(",
"long_or_int",
"(",
"hexlify",
"(",
"I_L",
")",
",",
"16",
")",
"+",
"long_or_int",
"(",
"self",
".",
"private_key",
".",
"get_key",
"(",
")",
",",
"16",
")",
")",
"%",
"SECP256k1",
".",
"order",
")",
"# I_R is the child's chain code",
"else",
":",
"# Only use public information for this derivation",
"g",
"=",
"SECP256k1",
".",
"generator",
"I_L_long",
"=",
"long_or_int",
"(",
"hexlify",
"(",
"I_L",
")",
",",
"16",
")",
"point",
"=",
"(",
"_ECDSA_Public_key",
"(",
"g",
",",
"g",
"*",
"I_L_long",
")",
".",
"point",
"+",
"self",
".",
"public_key",
".",
"to_point",
"(",
")",
")",
"# I_R is the child's chain code",
"public_pair",
"=",
"PublicPair",
"(",
"point",
".",
"x",
"(",
")",
",",
"point",
".",
"y",
"(",
")",
")",
"child",
"=",
"self",
".",
"__class__",
"(",
"chain_code",
"=",
"c_i",
",",
"depth",
"=",
"self",
".",
"depth",
"+",
"1",
",",
"# we have to go deeper...",
"parent_fingerprint",
"=",
"self",
".",
"fingerprint",
",",
"child_number",
"=",
"child_number_hex",
",",
"private_exponent",
"=",
"private_exponent",
",",
"public_pair",
"=",
"public_pair",
",",
"network",
"=",
"self",
".",
"network",
")",
"if",
"child",
".",
"public_key",
".",
"to_point",
"(",
")",
"==",
"INFINITY",
":",
"raise",
"InfinityPointException",
"(",
"\"The point at infinity is invalid.\"",
")",
"if",
"not",
"as_private",
":",
"return",
"child",
".",
"public_copy",
"(",
")",
"return",
"child"
] | Derive a child key.
:param child_number: The number of the child key to compute
:type child_number: int
:param is_prime: If True, the child is calculated via private
derivation. If False, then public derivation is used. If None,
then it is figured out from the value of child_number.
:type is_prime: bool, defaults to None
:param as_private: If True, strips private key from the result.
Defaults to False. If there is no private key present, this is
ignored.
:type as_private: bool
Positive child_numbers (>= 0, < 2,147,483,648) produce publicly
derived children. (prime=False)
Negative numbers (> -2,147,483,648, < 0) use private derivation.
(prime=True)
NOTE: Python can't do -0, so if you want the privately derived 0th
child you need to manually set is_prime=True.
NOTE: negative numbered children are provided as a convenience
because nobody wants to remember the above numbers. Negative numbers
are considered 'prime children', which is described in the BIP32 spec
as a leading 1 in a 32 bit unsigned int.
This derivation is fully described at
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki#child-key-derivation-functions # nopep8 | [
"Derive",
"a",
"child",
"key",
"."
] | train | https://github.com/sbuss/bitmerchant/blob/901de06489805c396a922f955eeef2da04734e3e/bitmerchant/wallet/bip32.py#L247-L363 |
sbuss/bitmerchant | bitmerchant/wallet/bip32.py | Wallet.crack_private_key | def crack_private_key(self, child_private_key):
"""Crack the parent private key given a child private key.
BIP32 has a vulnerability/feature that allows you to recover the
master private key if you're given a master public key and any of its
publicly-derived child private keys. This is a pretty serious security
vulnerability that looks as innocuous as this:
>>> w = Wallet.new_random_wallet()
>>> child = w.get_child(0, is_prime=False)
>>> w_pub = w.public_copy()
>>> assert w_pub.private_key is None
>>> master_public_key = w_pub.serialize_b58(private=False)
>>> # Now you put master_public_key on your website
>>> # and give somebody a private key
>>> public_master = Wallet.deserialize(master_public_key)
>>> cracked_private_master = public_master.crack_private_key(child)
>>> assert w == cracked_private_master # :(
Implementation details from http://bitcoinmagazine.com/8396/deterministic-wallets-advantages-flaw/ # nopep8
"""
if self.private_key:
raise AssertionError("You already know the private key")
if child_private_key.parent_fingerprint != self.fingerprint:
raise ValueError("This is not a valid child")
if child_private_key.child_number >= 0x80000000:
raise ValueError(
"Cannot crack private keys from private derivation")
# Duplicate the public child derivation
child_number_hex = long_to_hex(child_private_key.child_number, 8)
data = self.get_public_key_hex() + child_number_hex
I = hmac.new(
unhexlify(ensure_bytes(self.chain_code)),
msg=unhexlify(ensure_bytes(data)),
digestmod=sha512).digest()
I_L, I_R = I[:32], I[32:]
# Public derivation is the same as private derivation plus some offset
# knowing the child's private key allows us to find this offset just
# by subtracting the child's private key from the parent I_L data
privkey = PrivateKey(long_or_int(hexlify(I_L), 16),
network=self.network)
parent_private_key = child_private_key.private_key - privkey
return self.__class__(
chain_code=self.chain_code,
depth=self.depth,
parent_fingerprint=self.parent_fingerprint,
child_number=self.child_number,
private_key=parent_private_key,
network=self.network) | python | def crack_private_key(self, child_private_key):
"""Crack the parent private key given a child private key.
BIP32 has a vulnerability/feature that allows you to recover the
master private key if you're given a master public key and any of its
publicly-derived child private keys. This is a pretty serious security
vulnerability that looks as innocuous as this:
>>> w = Wallet.new_random_wallet()
>>> child = w.get_child(0, is_prime=False)
>>> w_pub = w.public_copy()
>>> assert w_pub.private_key is None
>>> master_public_key = w_pub.serialize_b58(private=False)
>>> # Now you put master_public_key on your website
>>> # and give somebody a private key
>>> public_master = Wallet.deserialize(master_public_key)
>>> cracked_private_master = public_master.crack_private_key(child)
>>> assert w == cracked_private_master # :(
Implementation details from http://bitcoinmagazine.com/8396/deterministic-wallets-advantages-flaw/ # nopep8
"""
if self.private_key:
raise AssertionError("You already know the private key")
if child_private_key.parent_fingerprint != self.fingerprint:
raise ValueError("This is not a valid child")
if child_private_key.child_number >= 0x80000000:
raise ValueError(
"Cannot crack private keys from private derivation")
# Duplicate the public child derivation
child_number_hex = long_to_hex(child_private_key.child_number, 8)
data = self.get_public_key_hex() + child_number_hex
I = hmac.new(
unhexlify(ensure_bytes(self.chain_code)),
msg=unhexlify(ensure_bytes(data)),
digestmod=sha512).digest()
I_L, I_R = I[:32], I[32:]
# Public derivation is the same as private derivation plus some offset
# knowing the child's private key allows us to find this offset just
# by subtracting the child's private key from the parent I_L data
privkey = PrivateKey(long_or_int(hexlify(I_L), 16),
network=self.network)
parent_private_key = child_private_key.private_key - privkey
return self.__class__(
chain_code=self.chain_code,
depth=self.depth,
parent_fingerprint=self.parent_fingerprint,
child_number=self.child_number,
private_key=parent_private_key,
network=self.network) | [
"def",
"crack_private_key",
"(",
"self",
",",
"child_private_key",
")",
":",
"if",
"self",
".",
"private_key",
":",
"raise",
"AssertionError",
"(",
"\"You already know the private key\"",
")",
"if",
"child_private_key",
".",
"parent_fingerprint",
"!=",
"self",
".",
"fingerprint",
":",
"raise",
"ValueError",
"(",
"\"This is not a valid child\"",
")",
"if",
"child_private_key",
".",
"child_number",
">=",
"0x80000000",
":",
"raise",
"ValueError",
"(",
"\"Cannot crack private keys from private derivation\"",
")",
"# Duplicate the public child derivation",
"child_number_hex",
"=",
"long_to_hex",
"(",
"child_private_key",
".",
"child_number",
",",
"8",
")",
"data",
"=",
"self",
".",
"get_public_key_hex",
"(",
")",
"+",
"child_number_hex",
"I",
"=",
"hmac",
".",
"new",
"(",
"unhexlify",
"(",
"ensure_bytes",
"(",
"self",
".",
"chain_code",
")",
")",
",",
"msg",
"=",
"unhexlify",
"(",
"ensure_bytes",
"(",
"data",
")",
")",
",",
"digestmod",
"=",
"sha512",
")",
".",
"digest",
"(",
")",
"I_L",
",",
"I_R",
"=",
"I",
"[",
":",
"32",
"]",
",",
"I",
"[",
"32",
":",
"]",
"# Public derivation is the same as private derivation plus some offset",
"# knowing the child's private key allows us to find this offset just",
"# by subtracting the child's private key from the parent I_L data",
"privkey",
"=",
"PrivateKey",
"(",
"long_or_int",
"(",
"hexlify",
"(",
"I_L",
")",
",",
"16",
")",
",",
"network",
"=",
"self",
".",
"network",
")",
"parent_private_key",
"=",
"child_private_key",
".",
"private_key",
"-",
"privkey",
"return",
"self",
".",
"__class__",
"(",
"chain_code",
"=",
"self",
".",
"chain_code",
",",
"depth",
"=",
"self",
".",
"depth",
",",
"parent_fingerprint",
"=",
"self",
".",
"parent_fingerprint",
",",
"child_number",
"=",
"self",
".",
"child_number",
",",
"private_key",
"=",
"parent_private_key",
",",
"network",
"=",
"self",
".",
"network",
")"
] | Crack the parent private key given a child private key.
BIP32 has a vulnerability/feature that allows you to recover the
master private key if you're given a master public key and any of its
publicly-derived child private keys. This is a pretty serious security
vulnerability that looks as innocuous as this:
>>> w = Wallet.new_random_wallet()
>>> child = w.get_child(0, is_prime=False)
>>> w_pub = w.public_copy()
>>> assert w_pub.private_key is None
>>> master_public_key = w_pub.serialize_b58(private=False)
>>> # Now you put master_public_key on your website
>>> # and give somebody a private key
>>> public_master = Wallet.deserialize(master_public_key)
>>> cracked_private_master = public_master.crack_private_key(child)
>>> assert w == cracked_private_master # :(
Implementation details from http://bitcoinmagazine.com/8396/deterministic-wallets-advantages-flaw/ # nopep8 | [
"Crack",
"the",
"parent",
"private",
"key",
"given",
"a",
"child",
"private",
"key",
"."
] | train | https://github.com/sbuss/bitmerchant/blob/901de06489805c396a922f955eeef2da04734e3e/bitmerchant/wallet/bip32.py#L375-L424 |
sbuss/bitmerchant | bitmerchant/wallet/bip32.py | Wallet.export_to_wif | def export_to_wif(self):
"""Export a key to WIF.
See https://en.bitcoin.it/wiki/Wallet_import_format for a full
description.
"""
# Add the network byte, creating the "extended key"
extended_key_hex = self.private_key.get_extended_key()
# BIP32 wallets have a trailing \01 byte
extended_key_bytes = unhexlify(ensure_bytes(extended_key_hex)) + b'\01'
# And return the base58-encoded result with a checksum
return base58.b58encode_check(extended_key_bytes) | python | def export_to_wif(self):
"""Export a key to WIF.
See https://en.bitcoin.it/wiki/Wallet_import_format for a full
description.
"""
# Add the network byte, creating the "extended key"
extended_key_hex = self.private_key.get_extended_key()
# BIP32 wallets have a trailing \01 byte
extended_key_bytes = unhexlify(ensure_bytes(extended_key_hex)) + b'\01'
# And return the base58-encoded result with a checksum
return base58.b58encode_check(extended_key_bytes) | [
"def",
"export_to_wif",
"(",
"self",
")",
":",
"# Add the network byte, creating the \"extended key\"",
"extended_key_hex",
"=",
"self",
".",
"private_key",
".",
"get_extended_key",
"(",
")",
"# BIP32 wallets have a trailing \\01 byte",
"extended_key_bytes",
"=",
"unhexlify",
"(",
"ensure_bytes",
"(",
"extended_key_hex",
")",
")",
"+",
"b'\\01'",
"# And return the base58-encoded result with a checksum",
"return",
"base58",
".",
"b58encode_check",
"(",
"extended_key_bytes",
")"
] | Export a key to WIF.
See https://en.bitcoin.it/wiki/Wallet_import_format for a full
description. | [
"Export",
"a",
"key",
"to",
"WIF",
"."
] | train | https://github.com/sbuss/bitmerchant/blob/901de06489805c396a922f955eeef2da04734e3e/bitmerchant/wallet/bip32.py#L426-L437 |
CloverHealth/pytest-pgsql | deploy.py | _pypi_push | def _pypi_push(dist):
"""Push created package to PyPI.
Requires the following defined environment variables:
- TWINE_USERNAME: The PyPI username to upload this package under
- TWINE_PASSWORD: The password to the user's account
Args:
dist (str):
The distribution to push. Must be a valid directory; shell globs are
NOT allowed.
"""
# Register all distributions and wheels with PyPI. We have to list the dist
# directory and register each file individually because `twine` doesn't
# handle globs.
for filename in os.listdir(dist):
full_path = os.path.join(dist, filename)
if os.path.isfile(full_path):
# This will fail if the project has never been uploaded, so use check=false
_shell('twine register ' + shlex.quote(full_path), check=False)
_shell('twine upload ' + shlex.quote(dist + '/*')) | python | def _pypi_push(dist):
"""Push created package to PyPI.
Requires the following defined environment variables:
- TWINE_USERNAME: The PyPI username to upload this package under
- TWINE_PASSWORD: The password to the user's account
Args:
dist (str):
The distribution to push. Must be a valid directory; shell globs are
NOT allowed.
"""
# Register all distributions and wheels with PyPI. We have to list the dist
# directory and register each file individually because `twine` doesn't
# handle globs.
for filename in os.listdir(dist):
full_path = os.path.join(dist, filename)
if os.path.isfile(full_path):
# This will fail if the project has never been uploaded, so use check=false
_shell('twine register ' + shlex.quote(full_path), check=False)
_shell('twine upload ' + shlex.quote(dist + '/*')) | [
"def",
"_pypi_push",
"(",
"dist",
")",
":",
"# Register all distributions and wheels with PyPI. We have to list the dist",
"# directory and register each file individually because `twine` doesn't",
"# handle globs.",
"for",
"filename",
"in",
"os",
".",
"listdir",
"(",
"dist",
")",
":",
"full_path",
"=",
"os",
".",
"path",
".",
"join",
"(",
"dist",
",",
"filename",
")",
"if",
"os",
".",
"path",
".",
"isfile",
"(",
"full_path",
")",
":",
"# This will fail if the project has never been uploaded, so use check=false",
"_shell",
"(",
"'twine register '",
"+",
"shlex",
".",
"quote",
"(",
"full_path",
")",
",",
"check",
"=",
"False",
")",
"_shell",
"(",
"'twine upload '",
"+",
"shlex",
".",
"quote",
"(",
"dist",
"+",
"'/*'",
")",
")"
] | Push created package to PyPI.
Requires the following defined environment variables:
- TWINE_USERNAME: The PyPI username to upload this package under
- TWINE_PASSWORD: The password to the user's account
Args:
dist (str):
The distribution to push. Must be a valid directory; shell globs are
NOT allowed. | [
"Push",
"created",
"package",
"to",
"PyPI",
"."
] | train | https://github.com/CloverHealth/pytest-pgsql/blob/a863ed4b652053e315dfa039d978b56f03664c07/deploy.py#L19-L40 |
CloverHealth/pytest-pgsql | deploy.py | deploy | def deploy(target):
"""Deploys the package and documentation.
Proceeds in the following steps:
1. Ensures proper environment variables are set and checks that we are on Circle CI
2. Tags the repository with the new version
3. Creates a standard distribution and a wheel
4. Updates version.py to have the proper version
5. Commits the ChangeLog, AUTHORS, and version.py file
6. Pushes to PyPI
7. Pushes the tags and newly committed files
Raises:
`EnvironmentError`:
- Not running on CircleCI
- `*_PYPI_USERNAME` and/or `*_PYPI_PASSWORD` environment variables
are missing
- Attempting to deploy to production from a branch that isn't master
"""
# Ensure proper environment
if not os.getenv(CIRCLECI_ENV_VAR): # pragma: no cover
raise EnvironmentError('Must be on CircleCI to run this script')
current_branch = os.getenv('CIRCLE_BRANCH')
if (target == 'PROD') and (current_branch != 'master'):
raise EnvironmentError(
f'Refusing to deploy to production from branch {current_branch!r}. '
f'Production deploys can only be made from master.')
if target in ('PROD', 'TEST'):
pypi_username = os.getenv(f'{target}_PYPI_USERNAME')
pypi_password = os.getenv(f'{target}_PYPI_PASSWORD')
else:
raise ValueError(f"Deploy target must be 'PROD' or 'TEST', got {target!r}.")
if not (pypi_username and pypi_password): # pragma: no cover
raise EnvironmentError(
f"Missing '{target}_PYPI_USERNAME' and/or '{target}_PYPI_PASSWORD' "
f"environment variables. These are required to push to PyPI.")
# Twine requires these environment variables to be set. Subprocesses will
# inherit these when we invoke them, so no need to pass them on the command
# line. We want to avoid that in case something's logging each command run.
os.environ['TWINE_USERNAME'] = pypi_username
os.environ['TWINE_PASSWORD'] = pypi_password
# Set up git on circle to push to the current branch
_shell('git config --global user.email "[email protected]"')
_shell('git config --global user.name "Circle CI"')
_shell('git config push.default current')
# Obtain the version to deploy
ret = _shell('make version', stdout=subprocess.PIPE)
version = ret.stdout.decode('utf-8').strip()
print(f'Deploying version {version!r}...')
# Tag the version
_shell(f'git tag -f -a {version} -m "Version {version}"')
# Update the version
_shell(
f'sed -i.bak "s/^__version__ = .*/__version__ = {version!r}/" */version.py')
# Create a standard distribution and a wheel
_shell('python setup.py sdist bdist_wheel')
# Add the updated ChangeLog and AUTHORS
_shell('git add ChangeLog AUTHORS */version.py')
# Start the commit message with "Merge" so that PBR will ignore it in the
# ChangeLog. Use [skip ci] to ensure CircleCI doesn't recursively deploy.
_shell('git commit --no-verify -m "Merge autogenerated files [skip ci]"')
# Push the distributions to PyPI.
_pypi_push('dist')
# Push the tag and AUTHORS / ChangeLog after successful PyPI deploy
_shell('git push --follow-tags')
print(f'Deployment complete. Latest version is {version}.') | python | def deploy(target):
"""Deploys the package and documentation.
Proceeds in the following steps:
1. Ensures proper environment variables are set and checks that we are on Circle CI
2. Tags the repository with the new version
3. Creates a standard distribution and a wheel
4. Updates version.py to have the proper version
5. Commits the ChangeLog, AUTHORS, and version.py file
6. Pushes to PyPI
7. Pushes the tags and newly committed files
Raises:
`EnvironmentError`:
- Not running on CircleCI
- `*_PYPI_USERNAME` and/or `*_PYPI_PASSWORD` environment variables
are missing
- Attempting to deploy to production from a branch that isn't master
"""
# Ensure proper environment
if not os.getenv(CIRCLECI_ENV_VAR): # pragma: no cover
raise EnvironmentError('Must be on CircleCI to run this script')
current_branch = os.getenv('CIRCLE_BRANCH')
if (target == 'PROD') and (current_branch != 'master'):
raise EnvironmentError(
f'Refusing to deploy to production from branch {current_branch!r}. '
f'Production deploys can only be made from master.')
if target in ('PROD', 'TEST'):
pypi_username = os.getenv(f'{target}_PYPI_USERNAME')
pypi_password = os.getenv(f'{target}_PYPI_PASSWORD')
else:
raise ValueError(f"Deploy target must be 'PROD' or 'TEST', got {target!r}.")
if not (pypi_username and pypi_password): # pragma: no cover
raise EnvironmentError(
f"Missing '{target}_PYPI_USERNAME' and/or '{target}_PYPI_PASSWORD' "
f"environment variables. These are required to push to PyPI.")
# Twine requires these environment variables to be set. Subprocesses will
# inherit these when we invoke them, so no need to pass them on the command
# line. We want to avoid that in case something's logging each command run.
os.environ['TWINE_USERNAME'] = pypi_username
os.environ['TWINE_PASSWORD'] = pypi_password
# Set up git on circle to push to the current branch
_shell('git config --global user.email "[email protected]"')
_shell('git config --global user.name "Circle CI"')
_shell('git config push.default current')
# Obtain the version to deploy
ret = _shell('make version', stdout=subprocess.PIPE)
version = ret.stdout.decode('utf-8').strip()
print(f'Deploying version {version!r}...')
# Tag the version
_shell(f'git tag -f -a {version} -m "Version {version}"')
# Update the version
_shell(
f'sed -i.bak "s/^__version__ = .*/__version__ = {version!r}/" */version.py')
# Create a standard distribution and a wheel
_shell('python setup.py sdist bdist_wheel')
# Add the updated ChangeLog and AUTHORS
_shell('git add ChangeLog AUTHORS */version.py')
# Start the commit message with "Merge" so that PBR will ignore it in the
# ChangeLog. Use [skip ci] to ensure CircleCI doesn't recursively deploy.
_shell('git commit --no-verify -m "Merge autogenerated files [skip ci]"')
# Push the distributions to PyPI.
_pypi_push('dist')
# Push the tag and AUTHORS / ChangeLog after successful PyPI deploy
_shell('git push --follow-tags')
print(f'Deployment complete. Latest version is {version}.') | [
"def",
"deploy",
"(",
"target",
")",
":",
"# Ensure proper environment",
"if",
"not",
"os",
".",
"getenv",
"(",
"CIRCLECI_ENV_VAR",
")",
":",
"# pragma: no cover",
"raise",
"EnvironmentError",
"(",
"'Must be on CircleCI to run this script'",
")",
"current_branch",
"=",
"os",
".",
"getenv",
"(",
"'CIRCLE_BRANCH'",
")",
"if",
"(",
"target",
"==",
"'PROD'",
")",
"and",
"(",
"current_branch",
"!=",
"'master'",
")",
":",
"raise",
"EnvironmentError",
"(",
"f'Refusing to deploy to production from branch {current_branch!r}. '",
"f'Production deploys can only be made from master.'",
")",
"if",
"target",
"in",
"(",
"'PROD'",
",",
"'TEST'",
")",
":",
"pypi_username",
"=",
"os",
".",
"getenv",
"(",
"f'{target}_PYPI_USERNAME'",
")",
"pypi_password",
"=",
"os",
".",
"getenv",
"(",
"f'{target}_PYPI_PASSWORD'",
")",
"else",
":",
"raise",
"ValueError",
"(",
"f\"Deploy target must be 'PROD' or 'TEST', got {target!r}.\"",
")",
"if",
"not",
"(",
"pypi_username",
"and",
"pypi_password",
")",
":",
"# pragma: no cover",
"raise",
"EnvironmentError",
"(",
"f\"Missing '{target}_PYPI_USERNAME' and/or '{target}_PYPI_PASSWORD' \"",
"f\"environment variables. These are required to push to PyPI.\"",
")",
"# Twine requires these environment variables to be set. Subprocesses will",
"# inherit these when we invoke them, so no need to pass them on the command",
"# line. We want to avoid that in case something's logging each command run.",
"os",
".",
"environ",
"[",
"'TWINE_USERNAME'",
"]",
"=",
"pypi_username",
"os",
".",
"environ",
"[",
"'TWINE_PASSWORD'",
"]",
"=",
"pypi_password",
"# Set up git on circle to push to the current branch",
"_shell",
"(",
"'git config --global user.email \"[email protected]\"'",
")",
"_shell",
"(",
"'git config --global user.name \"Circle CI\"'",
")",
"_shell",
"(",
"'git config push.default current'",
")",
"# Obtain the version to deploy",
"ret",
"=",
"_shell",
"(",
"'make version'",
",",
"stdout",
"=",
"subprocess",
".",
"PIPE",
")",
"version",
"=",
"ret",
".",
"stdout",
".",
"decode",
"(",
"'utf-8'",
")",
".",
"strip",
"(",
")",
"print",
"(",
"f'Deploying version {version!r}...'",
")",
"# Tag the version",
"_shell",
"(",
"f'git tag -f -a {version} -m \"Version {version}\"'",
")",
"# Update the version",
"_shell",
"(",
"f'sed -i.bak \"s/^__version__ = .*/__version__ = {version!r}/\" */version.py'",
")",
"# Create a standard distribution and a wheel",
"_shell",
"(",
"'python setup.py sdist bdist_wheel'",
")",
"# Add the updated ChangeLog and AUTHORS",
"_shell",
"(",
"'git add ChangeLog AUTHORS */version.py'",
")",
"# Start the commit message with \"Merge\" so that PBR will ignore it in the",
"# ChangeLog. Use [skip ci] to ensure CircleCI doesn't recursively deploy.",
"_shell",
"(",
"'git commit --no-verify -m \"Merge autogenerated files [skip ci]\"'",
")",
"# Push the distributions to PyPI.",
"_pypi_push",
"(",
"'dist'",
")",
"# Push the tag and AUTHORS / ChangeLog after successful PyPI deploy",
"_shell",
"(",
"'git push --follow-tags'",
")",
"print",
"(",
"f'Deployment complete. Latest version is {version}.'",
")"
] | Deploys the package and documentation.
Proceeds in the following steps:
1. Ensures proper environment variables are set and checks that we are on Circle CI
2. Tags the repository with the new version
3. Creates a standard distribution and a wheel
4. Updates version.py to have the proper version
5. Commits the ChangeLog, AUTHORS, and version.py file
6. Pushes to PyPI
7. Pushes the tags and newly committed files
Raises:
`EnvironmentError`:
- Not running on CircleCI
- `*_PYPI_USERNAME` and/or `*_PYPI_PASSWORD` environment variables
are missing
- Attempting to deploy to production from a branch that isn't master | [
"Deploys",
"the",
"package",
"and",
"documentation",
"."
] | train | https://github.com/CloverHealth/pytest-pgsql/blob/a863ed4b652053e315dfa039d978b56f03664c07/deploy.py#L43-L124 |
pyvisa/pyvisa-sim | pyvisa-sim/parser.py | _get_triplet | def _get_triplet(dd):
"""Return a triplet from a dialogue dictionary.
:param dd: Dialogue dictionary.
:type dd: Dict[str, str]
:return: (query, response, error response)
:rtype: (str, str | NoResponse, str | NoResponse)
"""
return _s(dd['q']), _s(dd.get('r', NoResponse)), _s(dd.get('e', NoResponse)) | python | def _get_triplet(dd):
"""Return a triplet from a dialogue dictionary.
:param dd: Dialogue dictionary.
:type dd: Dict[str, str]
:return: (query, response, error response)
:rtype: (str, str | NoResponse, str | NoResponse)
"""
return _s(dd['q']), _s(dd.get('r', NoResponse)), _s(dd.get('e', NoResponse)) | [
"def",
"_get_triplet",
"(",
"dd",
")",
":",
"return",
"_s",
"(",
"dd",
"[",
"'q'",
"]",
")",
",",
"_s",
"(",
"dd",
".",
"get",
"(",
"'r'",
",",
"NoResponse",
")",
")",
",",
"_s",
"(",
"dd",
".",
"get",
"(",
"'e'",
",",
"NoResponse",
")",
")"
] | Return a triplet from a dialogue dictionary.
:param dd: Dialogue dictionary.
:type dd: Dict[str, str]
:return: (query, response, error response)
:rtype: (str, str | NoResponse, str | NoResponse) | [
"Return",
"a",
"triplet",
"from",
"a",
"dialogue",
"dictionary",
"."
] | train | https://github.com/pyvisa/pyvisa-sim/blob/9836166b6b57c165fc63a276f87fe81f106a4e26/pyvisa-sim/parser.py#L71-L79 |
pyvisa/pyvisa-sim | pyvisa-sim/parser.py | _load | def _load(content_or_fp):
"""YAML Parse a file or str and check version.
"""
try:
data = yaml.load(content_or_fp, Loader=yaml.loader.BaseLoader)
except Exception as e:
raise type(e)('Malformed yaml file:\n%r' % format_exc())
try:
ver = data['spec']
except:
raise ValueError('The file does not specify a spec version')
try:
ver = tuple(map(int, (ver.split("."))))
except:
raise ValueError("Invalid spec version format. Expect 'X.Y'"
" (X and Y integers), found %s" % ver)
if ver > SPEC_VERSION_TUPLE:
raise ValueError('The spec version of the file is '
'%s but the parser is %s. '
'Please update pyvisa-sim.' % (ver, SPEC_VERSION))
return data | python | def _load(content_or_fp):
"""YAML Parse a file or str and check version.
"""
try:
data = yaml.load(content_or_fp, Loader=yaml.loader.BaseLoader)
except Exception as e:
raise type(e)('Malformed yaml file:\n%r' % format_exc())
try:
ver = data['spec']
except:
raise ValueError('The file does not specify a spec version')
try:
ver = tuple(map(int, (ver.split("."))))
except:
raise ValueError("Invalid spec version format. Expect 'X.Y'"
" (X and Y integers), found %s" % ver)
if ver > SPEC_VERSION_TUPLE:
raise ValueError('The spec version of the file is '
'%s but the parser is %s. '
'Please update pyvisa-sim.' % (ver, SPEC_VERSION))
return data | [
"def",
"_load",
"(",
"content_or_fp",
")",
":",
"try",
":",
"data",
"=",
"yaml",
".",
"load",
"(",
"content_or_fp",
",",
"Loader",
"=",
"yaml",
".",
"loader",
".",
"BaseLoader",
")",
"except",
"Exception",
"as",
"e",
":",
"raise",
"type",
"(",
"e",
")",
"(",
"'Malformed yaml file:\\n%r'",
"%",
"format_exc",
"(",
")",
")",
"try",
":",
"ver",
"=",
"data",
"[",
"'spec'",
"]",
"except",
":",
"raise",
"ValueError",
"(",
"'The file does not specify a spec version'",
")",
"try",
":",
"ver",
"=",
"tuple",
"(",
"map",
"(",
"int",
",",
"(",
"ver",
".",
"split",
"(",
"\".\"",
")",
")",
")",
")",
"except",
":",
"raise",
"ValueError",
"(",
"\"Invalid spec version format. Expect 'X.Y'\"",
"\" (X and Y integers), found %s\"",
"%",
"ver",
")",
"if",
"ver",
">",
"SPEC_VERSION_TUPLE",
":",
"raise",
"ValueError",
"(",
"'The spec version of the file is '",
"'%s but the parser is %s. '",
"'Please update pyvisa-sim.'",
"%",
"(",
"ver",
",",
"SPEC_VERSION",
")",
")",
"return",
"data"
] | YAML Parse a file or str and check version. | [
"YAML",
"Parse",
"a",
"file",
"or",
"str",
"and",
"check",
"version",
"."
] | train | https://github.com/pyvisa/pyvisa-sim/blob/9836166b6b57c165fc63a276f87fe81f106a4e26/pyvisa-sim/parser.py#L82-L106 |
pyvisa/pyvisa-sim | pyvisa-sim/parser.py | parse_resource | def parse_resource(name):
"""Parse a resource file
"""
with closing(pkg_resources.resource_stream(__name__, name)) as fp:
rbytes = fp.read()
return _load(StringIO(rbytes.decode('utf-8'))) | python | def parse_resource(name):
"""Parse a resource file
"""
with closing(pkg_resources.resource_stream(__name__, name)) as fp:
rbytes = fp.read()
return _load(StringIO(rbytes.decode('utf-8'))) | [
"def",
"parse_resource",
"(",
"name",
")",
":",
"with",
"closing",
"(",
"pkg_resources",
".",
"resource_stream",
"(",
"__name__",
",",
"name",
")",
")",
"as",
"fp",
":",
"rbytes",
"=",
"fp",
".",
"read",
"(",
")",
"return",
"_load",
"(",
"StringIO",
"(",
"rbytes",
".",
"decode",
"(",
"'utf-8'",
")",
")",
")"
] | Parse a resource file | [
"Parse",
"a",
"resource",
"file"
] | train | https://github.com/pyvisa/pyvisa-sim/blob/9836166b6b57c165fc63a276f87fe81f106a4e26/pyvisa-sim/parser.py#L109-L115 |
pyvisa/pyvisa-sim | pyvisa-sim/parser.py | update_component | def update_component(name, comp, component_dict):
"""Get a component from a component dict.
"""
for dia in component_dict.get('dialogues', ()):
try:
comp.add_dialogue(*_get_pair(dia))
except Exception as e:
msg = 'In device %s, malformed dialogue %s\n%r'
raise Exception(msg % (name, dia, e))
for prop_name, prop_dict in component_dict.get('properties', {}).items():
try:
getter = (_get_pair(prop_dict['getter'])
if 'getter' in prop_dict else None)
setter = (_get_triplet(prop_dict['setter'])
if 'setter' in prop_dict else None)
comp.add_property(prop_name, prop_dict.get('default', ''),
getter, setter, prop_dict.get('specs', {}))
except Exception as e:
msg = 'In device %s, malformed property %s\n%r'
raise type(e)(msg % (name, prop_name, format_exc())) | python | def update_component(name, comp, component_dict):
"""Get a component from a component dict.
"""
for dia in component_dict.get('dialogues', ()):
try:
comp.add_dialogue(*_get_pair(dia))
except Exception as e:
msg = 'In device %s, malformed dialogue %s\n%r'
raise Exception(msg % (name, dia, e))
for prop_name, prop_dict in component_dict.get('properties', {}).items():
try:
getter = (_get_pair(prop_dict['getter'])
if 'getter' in prop_dict else None)
setter = (_get_triplet(prop_dict['setter'])
if 'setter' in prop_dict else None)
comp.add_property(prop_name, prop_dict.get('default', ''),
getter, setter, prop_dict.get('specs', {}))
except Exception as e:
msg = 'In device %s, malformed property %s\n%r'
raise type(e)(msg % (name, prop_name, format_exc())) | [
"def",
"update_component",
"(",
"name",
",",
"comp",
",",
"component_dict",
")",
":",
"for",
"dia",
"in",
"component_dict",
".",
"get",
"(",
"'dialogues'",
",",
"(",
")",
")",
":",
"try",
":",
"comp",
".",
"add_dialogue",
"(",
"*",
"_get_pair",
"(",
"dia",
")",
")",
"except",
"Exception",
"as",
"e",
":",
"msg",
"=",
"'In device %s, malformed dialogue %s\\n%r'",
"raise",
"Exception",
"(",
"msg",
"%",
"(",
"name",
",",
"dia",
",",
"e",
")",
")",
"for",
"prop_name",
",",
"prop_dict",
"in",
"component_dict",
".",
"get",
"(",
"'properties'",
",",
"{",
"}",
")",
".",
"items",
"(",
")",
":",
"try",
":",
"getter",
"=",
"(",
"_get_pair",
"(",
"prop_dict",
"[",
"'getter'",
"]",
")",
"if",
"'getter'",
"in",
"prop_dict",
"else",
"None",
")",
"setter",
"=",
"(",
"_get_triplet",
"(",
"prop_dict",
"[",
"'setter'",
"]",
")",
"if",
"'setter'",
"in",
"prop_dict",
"else",
"None",
")",
"comp",
".",
"add_property",
"(",
"prop_name",
",",
"prop_dict",
".",
"get",
"(",
"'default'",
",",
"''",
")",
",",
"getter",
",",
"setter",
",",
"prop_dict",
".",
"get",
"(",
"'specs'",
",",
"{",
"}",
")",
")",
"except",
"Exception",
"as",
"e",
":",
"msg",
"=",
"'In device %s, malformed property %s\\n%r'",
"raise",
"type",
"(",
"e",
")",
"(",
"msg",
"%",
"(",
"name",
",",
"prop_name",
",",
"format_exc",
"(",
")",
")",
")"
] | Get a component from a component dict. | [
"Get",
"a",
"component",
"from",
"a",
"component",
"dict",
"."
] | train | https://github.com/pyvisa/pyvisa-sim/blob/9836166b6b57c165fc63a276f87fe81f106a4e26/pyvisa-sim/parser.py#L126-L147 |
pyvisa/pyvisa-sim | pyvisa-sim/parser.py | get_bases | def get_bases(definition_dict, loader):
"""Collect dependencies.
"""
bases = definition_dict.get('bases', ())
if bases:
bases = (loader.get_comp_dict(required_version=SPEC_VERSION_TUPLE[0],
**b)
for b in bases)
return SimpleChainmap(definition_dict, *bases)
else:
return definition_dict | python | def get_bases(definition_dict, loader):
"""Collect dependencies.
"""
bases = definition_dict.get('bases', ())
if bases:
bases = (loader.get_comp_dict(required_version=SPEC_VERSION_TUPLE[0],
**b)
for b in bases)
return SimpleChainmap(definition_dict, *bases)
else:
return definition_dict | [
"def",
"get_bases",
"(",
"definition_dict",
",",
"loader",
")",
":",
"bases",
"=",
"definition_dict",
".",
"get",
"(",
"'bases'",
",",
"(",
")",
")",
"if",
"bases",
":",
"bases",
"=",
"(",
"loader",
".",
"get_comp_dict",
"(",
"required_version",
"=",
"SPEC_VERSION_TUPLE",
"[",
"0",
"]",
",",
"*",
"*",
"b",
")",
"for",
"b",
"in",
"bases",
")",
"return",
"SimpleChainmap",
"(",
"definition_dict",
",",
"*",
"bases",
")",
"else",
":",
"return",
"definition_dict"
] | Collect dependencies. | [
"Collect",
"dependencies",
"."
] | train | https://github.com/pyvisa/pyvisa-sim/blob/9836166b6b57c165fc63a276f87fe81f106a4e26/pyvisa-sim/parser.py#L150-L161 |
pyvisa/pyvisa-sim | pyvisa-sim/parser.py | get_channel | def get_channel(device, ch_name, channel_dict, loader, resource_dict):
"""Get a channels from a channels dictionary.
:param name: name of the device
:param device_dict: device dictionary
:rtype: Device
"""
channel_dict = get_bases(channel_dict, loader)
r_ids = resource_dict.get('channel_ids', {}).get(ch_name, [])
ids = r_ids if r_ids else channel_dict.get('ids', {})
can_select = False if channel_dict.get('can_select') == 'False' else True
channels = Channels(device, ids, can_select)
update_component(ch_name, channels, channel_dict)
return channels | python | def get_channel(device, ch_name, channel_dict, loader, resource_dict):
"""Get a channels from a channels dictionary.
:param name: name of the device
:param device_dict: device dictionary
:rtype: Device
"""
channel_dict = get_bases(channel_dict, loader)
r_ids = resource_dict.get('channel_ids', {}).get(ch_name, [])
ids = r_ids if r_ids else channel_dict.get('ids', {})
can_select = False if channel_dict.get('can_select') == 'False' else True
channels = Channels(device, ids, can_select)
update_component(ch_name, channels, channel_dict)
return channels | [
"def",
"get_channel",
"(",
"device",
",",
"ch_name",
",",
"channel_dict",
",",
"loader",
",",
"resource_dict",
")",
":",
"channel_dict",
"=",
"get_bases",
"(",
"channel_dict",
",",
"loader",
")",
"r_ids",
"=",
"resource_dict",
".",
"get",
"(",
"'channel_ids'",
",",
"{",
"}",
")",
".",
"get",
"(",
"ch_name",
",",
"[",
"]",
")",
"ids",
"=",
"r_ids",
"if",
"r_ids",
"else",
"channel_dict",
".",
"get",
"(",
"'ids'",
",",
"{",
"}",
")",
"can_select",
"=",
"False",
"if",
"channel_dict",
".",
"get",
"(",
"'can_select'",
")",
"==",
"'False'",
"else",
"True",
"channels",
"=",
"Channels",
"(",
"device",
",",
"ids",
",",
"can_select",
")",
"update_component",
"(",
"ch_name",
",",
"channels",
",",
"channel_dict",
")",
"return",
"channels"
] | Get a channels from a channels dictionary.
:param name: name of the device
:param device_dict: device dictionary
:rtype: Device | [
"Get",
"a",
"channels",
"from",
"a",
"channels",
"dictionary",
"."
] | train | https://github.com/pyvisa/pyvisa-sim/blob/9836166b6b57c165fc63a276f87fe81f106a4e26/pyvisa-sim/parser.py#L164-L181 |
pyvisa/pyvisa-sim | pyvisa-sim/parser.py | get_device | def get_device(name, device_dict, loader, resource_dict):
"""Get a device from a device dictionary.
:param name: name of the device
:param device_dict: device dictionary
:rtype: Device
"""
device = Device(name, device_dict.get('delimiter', ';').encode('utf-8'))
device_dict = get_bases(device_dict, loader)
err = device_dict.get('error', {})
device.add_error_handler(err)
for itype, eom_dict in device_dict.get('eom', {}).items():
device.add_eom(itype, *_get_pair(eom_dict))
update_component(name, device, device_dict)
for ch_name, ch_dict in device_dict.get('channels', {}).items():
device.add_channels(ch_name, get_channel(device, ch_name, ch_dict,
loader, resource_dict))
return device | python | def get_device(name, device_dict, loader, resource_dict):
"""Get a device from a device dictionary.
:param name: name of the device
:param device_dict: device dictionary
:rtype: Device
"""
device = Device(name, device_dict.get('delimiter', ';').encode('utf-8'))
device_dict = get_bases(device_dict, loader)
err = device_dict.get('error', {})
device.add_error_handler(err)
for itype, eom_dict in device_dict.get('eom', {}).items():
device.add_eom(itype, *_get_pair(eom_dict))
update_component(name, device, device_dict)
for ch_name, ch_dict in device_dict.get('channels', {}).items():
device.add_channels(ch_name, get_channel(device, ch_name, ch_dict,
loader, resource_dict))
return device | [
"def",
"get_device",
"(",
"name",
",",
"device_dict",
",",
"loader",
",",
"resource_dict",
")",
":",
"device",
"=",
"Device",
"(",
"name",
",",
"device_dict",
".",
"get",
"(",
"'delimiter'",
",",
"';'",
")",
".",
"encode",
"(",
"'utf-8'",
")",
")",
"device_dict",
"=",
"get_bases",
"(",
"device_dict",
",",
"loader",
")",
"err",
"=",
"device_dict",
".",
"get",
"(",
"'error'",
",",
"{",
"}",
")",
"device",
".",
"add_error_handler",
"(",
"err",
")",
"for",
"itype",
",",
"eom_dict",
"in",
"device_dict",
".",
"get",
"(",
"'eom'",
",",
"{",
"}",
")",
".",
"items",
"(",
")",
":",
"device",
".",
"add_eom",
"(",
"itype",
",",
"*",
"_get_pair",
"(",
"eom_dict",
")",
")",
"update_component",
"(",
"name",
",",
"device",
",",
"device_dict",
")",
"for",
"ch_name",
",",
"ch_dict",
"in",
"device_dict",
".",
"get",
"(",
"'channels'",
",",
"{",
"}",
")",
".",
"items",
"(",
")",
":",
"device",
".",
"add_channels",
"(",
"ch_name",
",",
"get_channel",
"(",
"device",
",",
"ch_name",
",",
"ch_dict",
",",
"loader",
",",
"resource_dict",
")",
")",
"return",
"device"
] | Get a device from a device dictionary.
:param name: name of the device
:param device_dict: device dictionary
:rtype: Device | [
"Get",
"a",
"device",
"from",
"a",
"device",
"dictionary",
"."
] | train | https://github.com/pyvisa/pyvisa-sim/blob/9836166b6b57c165fc63a276f87fe81f106a4e26/pyvisa-sim/parser.py#L184-L207 |
pyvisa/pyvisa-sim | pyvisa-sim/parser.py | get_devices | def get_devices(filename, bundled):
"""Get a Devices object from a file.
:param filename: full path of the file to parse or name of the resource.
:param is_resource: boolean indicating if it is a resource.
:rtype: Devices
"""
loader = Loader(filename, bundled)
data = loader.data
devices = Devices()
# Iterate through the resources and generate each individual device
# on demand.
for resource_name, resource_dict in data.get('resources', {}).items():
device_name = resource_dict['device']
dd = loader.get_device_dict(device_name,
resource_dict.get('filename', None),
resource_dict.get('bundled', False),
SPEC_VERSION_TUPLE[0])
devices.add_device(resource_name,
get_device(device_name, dd, loader, resource_dict))
return devices | python | def get_devices(filename, bundled):
"""Get a Devices object from a file.
:param filename: full path of the file to parse or name of the resource.
:param is_resource: boolean indicating if it is a resource.
:rtype: Devices
"""
loader = Loader(filename, bundled)
data = loader.data
devices = Devices()
# Iterate through the resources and generate each individual device
# on demand.
for resource_name, resource_dict in data.get('resources', {}).items():
device_name = resource_dict['device']
dd = loader.get_device_dict(device_name,
resource_dict.get('filename', None),
resource_dict.get('bundled', False),
SPEC_VERSION_TUPLE[0])
devices.add_device(resource_name,
get_device(device_name, dd, loader, resource_dict))
return devices | [
"def",
"get_devices",
"(",
"filename",
",",
"bundled",
")",
":",
"loader",
"=",
"Loader",
"(",
"filename",
",",
"bundled",
")",
"data",
"=",
"loader",
".",
"data",
"devices",
"=",
"Devices",
"(",
")",
"# Iterate through the resources and generate each individual device",
"# on demand.",
"for",
"resource_name",
",",
"resource_dict",
"in",
"data",
".",
"get",
"(",
"'resources'",
",",
"{",
"}",
")",
".",
"items",
"(",
")",
":",
"device_name",
"=",
"resource_dict",
"[",
"'device'",
"]",
"dd",
"=",
"loader",
".",
"get_device_dict",
"(",
"device_name",
",",
"resource_dict",
".",
"get",
"(",
"'filename'",
",",
"None",
")",
",",
"resource_dict",
".",
"get",
"(",
"'bundled'",
",",
"False",
")",
",",
"SPEC_VERSION_TUPLE",
"[",
"0",
"]",
")",
"devices",
".",
"add_device",
"(",
"resource_name",
",",
"get_device",
"(",
"device_name",
",",
"dd",
",",
"loader",
",",
"resource_dict",
")",
")",
"return",
"devices"
] | Get a Devices object from a file.
:param filename: full path of the file to parse or name of the resource.
:param is_resource: boolean indicating if it is a resource.
:rtype: Devices | [
"Get",
"a",
"Devices",
"object",
"from",
"a",
"file",
"."
] | train | https://github.com/pyvisa/pyvisa-sim/blob/9836166b6b57c165fc63a276f87fe81f106a4e26/pyvisa-sim/parser.py#L270-L298 |
pyvisa/pyvisa-sim | pyvisa-sim/channels.py | ChannelProperty.init_value | def init_value(self, string_value):
"""Create an empty defaultdict holding the default value.
"""
value = self.validate_value(string_value)
self._value = defaultdict(lambda: value) | python | def init_value(self, string_value):
"""Create an empty defaultdict holding the default value.
"""
value = self.validate_value(string_value)
self._value = defaultdict(lambda: value) | [
"def",
"init_value",
"(",
"self",
",",
"string_value",
")",
":",
"value",
"=",
"self",
".",
"validate_value",
"(",
"string_value",
")",
"self",
".",
"_value",
"=",
"defaultdict",
"(",
"lambda",
":",
"value",
")"
] | Create an empty defaultdict holding the default value. | [
"Create",
"an",
"empty",
"defaultdict",
"holding",
"the",
"default",
"value",
"."
] | train | https://github.com/pyvisa/pyvisa-sim/blob/9836166b6b57c165fc63a276f87fe81f106a4e26/pyvisa-sim/channels.py#L30-L35 |
pyvisa/pyvisa-sim | pyvisa-sim/channels.py | ChannelProperty.set_value | def set_value(self, string_value):
"""Set the current value for a channel.
"""
value = self.validate_value(string_value)
self._value[self._channel._selected] = value | python | def set_value(self, string_value):
"""Set the current value for a channel.
"""
value = self.validate_value(string_value)
self._value[self._channel._selected] = value | [
"def",
"set_value",
"(",
"self",
",",
"string_value",
")",
":",
"value",
"=",
"self",
".",
"validate_value",
"(",
"string_value",
")",
"self",
".",
"_value",
"[",
"self",
".",
"_channel",
".",
"_selected",
"]",
"=",
"value"
] | Set the current value for a channel. | [
"Set",
"the",
"current",
"value",
"for",
"a",
"channel",
"."
] | train | https://github.com/pyvisa/pyvisa-sim/blob/9836166b6b57c165fc63a276f87fe81f106a4e26/pyvisa-sim/channels.py#L43-L48 |
pyvisa/pyvisa-sim | pyvisa-sim/channels.py | Channels.add_dialogue | def add_dialogue(self, query, response):
"""Add dialogue to channel.
:param query: query string
:param response: response string
"""
self._dialogues['__default__'][to_bytes(query)] = to_bytes(response) | python | def add_dialogue(self, query, response):
"""Add dialogue to channel.
:param query: query string
:param response: response string
"""
self._dialogues['__default__'][to_bytes(query)] = to_bytes(response) | [
"def",
"add_dialogue",
"(",
"self",
",",
"query",
",",
"response",
")",
":",
"self",
".",
"_dialogues",
"[",
"'__default__'",
"]",
"[",
"to_bytes",
"(",
"query",
")",
"]",
"=",
"to_bytes",
"(",
"response",
")"
] | Add dialogue to channel.
:param query: query string
:param response: response string | [
"Add",
"dialogue",
"to",
"channel",
"."
] | train | https://github.com/pyvisa/pyvisa-sim/blob/9836166b6b57c165fc63a276f87fe81f106a4e26/pyvisa-sim/channels.py#L93-L99 |
pyvisa/pyvisa-sim | pyvisa-sim/channels.py | Channels.add_property | def add_property(self, name, default_value, getter_pair, setter_triplet,
specs):
"""Add property to channel
:param name: property name
:param default_value: default value as string
:param getter_pair: (query, response)
:param setter_triplet: (query, response, error)
:param specs: specification of the Property
"""
self._properties[name] = ChannelProperty(self, name,
default_value, specs)
if getter_pair:
query, response = getter_pair
self._getters['__default__'][to_bytes(query)] = name, response
if setter_triplet:
query, response, error = setter_triplet
self._setters.append((name,
stringparser.Parser(query),
to_bytes(response),
to_bytes(error))) | python | def add_property(self, name, default_value, getter_pair, setter_triplet,
specs):
"""Add property to channel
:param name: property name
:param default_value: default value as string
:param getter_pair: (query, response)
:param setter_triplet: (query, response, error)
:param specs: specification of the Property
"""
self._properties[name] = ChannelProperty(self, name,
default_value, specs)
if getter_pair:
query, response = getter_pair
self._getters['__default__'][to_bytes(query)] = name, response
if setter_triplet:
query, response, error = setter_triplet
self._setters.append((name,
stringparser.Parser(query),
to_bytes(response),
to_bytes(error))) | [
"def",
"add_property",
"(",
"self",
",",
"name",
",",
"default_value",
",",
"getter_pair",
",",
"setter_triplet",
",",
"specs",
")",
":",
"self",
".",
"_properties",
"[",
"name",
"]",
"=",
"ChannelProperty",
"(",
"self",
",",
"name",
",",
"default_value",
",",
"specs",
")",
"if",
"getter_pair",
":",
"query",
",",
"response",
"=",
"getter_pair",
"self",
".",
"_getters",
"[",
"'__default__'",
"]",
"[",
"to_bytes",
"(",
"query",
")",
"]",
"=",
"name",
",",
"response",
"if",
"setter_triplet",
":",
"query",
",",
"response",
",",
"error",
"=",
"setter_triplet",
"self",
".",
"_setters",
".",
"append",
"(",
"(",
"name",
",",
"stringparser",
".",
"Parser",
"(",
"query",
")",
",",
"to_bytes",
"(",
"response",
")",
",",
"to_bytes",
"(",
"error",
")",
")",
")"
] | Add property to channel
:param name: property name
:param default_value: default value as string
:param getter_pair: (query, response)
:param setter_triplet: (query, response, error)
:param specs: specification of the Property | [
"Add",
"property",
"to",
"channel"
] | train | https://github.com/pyvisa/pyvisa-sim/blob/9836166b6b57c165fc63a276f87fe81f106a4e26/pyvisa-sim/channels.py#L101-L123 |
pyvisa/pyvisa-sim | pyvisa-sim/channels.py | Channels.match | def match(self, query):
"""Try to find a match for a query in the channel commands.
"""
if not self.can_select:
ch_id = self._device._properties['selected_channel'].get_value()
if ch_id in self._ids:
self._selected = ch_id
else:
return
response = self._match_dialog(query,
self._dialogues['__default__'])
if response is not None:
return response
response = self._match_getters(query,
self._getters['__default__'])
if response is not None:
return response
else:
for ch_id in self._ids:
self._selected = ch_id
response = self._match_dialog(query,
self._dialogues[ch_id])
if response is not None:
return response
response = self._match_getters(query,
self._getters[ch_id])
if response is not None:
return response
return self._match_setters(query) | python | def match(self, query):
"""Try to find a match for a query in the channel commands.
"""
if not self.can_select:
ch_id = self._device._properties['selected_channel'].get_value()
if ch_id in self._ids:
self._selected = ch_id
else:
return
response = self._match_dialog(query,
self._dialogues['__default__'])
if response is not None:
return response
response = self._match_getters(query,
self._getters['__default__'])
if response is not None:
return response
else:
for ch_id in self._ids:
self._selected = ch_id
response = self._match_dialog(query,
self._dialogues[ch_id])
if response is not None:
return response
response = self._match_getters(query,
self._getters[ch_id])
if response is not None:
return response
return self._match_setters(query) | [
"def",
"match",
"(",
"self",
",",
"query",
")",
":",
"if",
"not",
"self",
".",
"can_select",
":",
"ch_id",
"=",
"self",
".",
"_device",
".",
"_properties",
"[",
"'selected_channel'",
"]",
".",
"get_value",
"(",
")",
"if",
"ch_id",
"in",
"self",
".",
"_ids",
":",
"self",
".",
"_selected",
"=",
"ch_id",
"else",
":",
"return",
"response",
"=",
"self",
".",
"_match_dialog",
"(",
"query",
",",
"self",
".",
"_dialogues",
"[",
"'__default__'",
"]",
")",
"if",
"response",
"is",
"not",
"None",
":",
"return",
"response",
"response",
"=",
"self",
".",
"_match_getters",
"(",
"query",
",",
"self",
".",
"_getters",
"[",
"'__default__'",
"]",
")",
"if",
"response",
"is",
"not",
"None",
":",
"return",
"response",
"else",
":",
"for",
"ch_id",
"in",
"self",
".",
"_ids",
":",
"self",
".",
"_selected",
"=",
"ch_id",
"response",
"=",
"self",
".",
"_match_dialog",
"(",
"query",
",",
"self",
".",
"_dialogues",
"[",
"ch_id",
"]",
")",
"if",
"response",
"is",
"not",
"None",
":",
"return",
"response",
"response",
"=",
"self",
".",
"_match_getters",
"(",
"query",
",",
"self",
".",
"_getters",
"[",
"ch_id",
"]",
")",
"if",
"response",
"is",
"not",
"None",
":",
"return",
"response",
"return",
"self",
".",
"_match_setters",
"(",
"query",
")"
] | Try to find a match for a query in the channel commands. | [
"Try",
"to",
"find",
"a",
"match",
"for",
"a",
"query",
"in",
"the",
"channel",
"commands",
"."
] | train | https://github.com/pyvisa/pyvisa-sim/blob/9836166b6b57c165fc63a276f87fe81f106a4e26/pyvisa-sim/channels.py#L125-L160 |
pyvisa/pyvisa-sim | pyvisa-sim/channels.py | Channels._match_setters | def _match_setters(self, query):
"""Try to find a match
"""
q = query.decode('utf-8')
for name, parser, response, error_response in self._setters:
try:
parsed = parser(q)
logger.debug('Found response in setter of %s' % name)
except ValueError:
continue
try:
if isinstance(parsed, dict) and 'ch_id' in parsed:
self._selected = parsed['ch_id']
self._properties[name].set_value(parsed['0'])
else:
self._properties[name].set_value(parsed)
return response
except ValueError:
if isinstance(error_response, bytes):
return error_response
return self._device.error_response('command_error')
return None | python | def _match_setters(self, query):
"""Try to find a match
"""
q = query.decode('utf-8')
for name, parser, response, error_response in self._setters:
try:
parsed = parser(q)
logger.debug('Found response in setter of %s' % name)
except ValueError:
continue
try:
if isinstance(parsed, dict) and 'ch_id' in parsed:
self._selected = parsed['ch_id']
self._properties[name].set_value(parsed['0'])
else:
self._properties[name].set_value(parsed)
return response
except ValueError:
if isinstance(error_response, bytes):
return error_response
return self._device.error_response('command_error')
return None | [
"def",
"_match_setters",
"(",
"self",
",",
"query",
")",
":",
"q",
"=",
"query",
".",
"decode",
"(",
"'utf-8'",
")",
"for",
"name",
",",
"parser",
",",
"response",
",",
"error_response",
"in",
"self",
".",
"_setters",
":",
"try",
":",
"parsed",
"=",
"parser",
"(",
"q",
")",
"logger",
".",
"debug",
"(",
"'Found response in setter of %s'",
"%",
"name",
")",
"except",
"ValueError",
":",
"continue",
"try",
":",
"if",
"isinstance",
"(",
"parsed",
",",
"dict",
")",
"and",
"'ch_id'",
"in",
"parsed",
":",
"self",
".",
"_selected",
"=",
"parsed",
"[",
"'ch_id'",
"]",
"self",
".",
"_properties",
"[",
"name",
"]",
".",
"set_value",
"(",
"parsed",
"[",
"'0'",
"]",
")",
"else",
":",
"self",
".",
"_properties",
"[",
"name",
"]",
".",
"set_value",
"(",
"parsed",
")",
"return",
"response",
"except",
"ValueError",
":",
"if",
"isinstance",
"(",
"error_response",
",",
"bytes",
")",
":",
"return",
"error_response",
"return",
"self",
".",
"_device",
".",
"error_response",
"(",
"'command_error'",
")",
"return",
"None"
] | Try to find a match | [
"Try",
"to",
"find",
"a",
"match"
] | train | https://github.com/pyvisa/pyvisa-sim/blob/9836166b6b57c165fc63a276f87fe81f106a4e26/pyvisa-sim/channels.py#L162-L185 |
pyvisa/pyvisa-sim | pyvisa-sim/highlevel.py | SimVisaLibrary.get_debug_info | def get_debug_info():
"""Return a list of lines with backend info.
"""
from . import __version__
from .parser import SPEC_VERSION
d = OrderedDict()
d['Version'] = '%s' % __version__
d['Spec version'] = SPEC_VERSION
return d | python | def get_debug_info():
"""Return a list of lines with backend info.
"""
from . import __version__
from .parser import SPEC_VERSION
d = OrderedDict()
d['Version'] = '%s' % __version__
d['Spec version'] = SPEC_VERSION
return d | [
"def",
"get_debug_info",
"(",
")",
":",
"from",
".",
"import",
"__version__",
"from",
".",
"parser",
"import",
"SPEC_VERSION",
"d",
"=",
"OrderedDict",
"(",
")",
"d",
"[",
"'Version'",
"]",
"=",
"'%s'",
"%",
"__version__",
"d",
"[",
"'Spec version'",
"]",
"=",
"SPEC_VERSION",
"return",
"d"
] | Return a list of lines with backend info. | [
"Return",
"a",
"list",
"of",
"lines",
"with",
"backend",
"info",
"."
] | train | https://github.com/pyvisa/pyvisa-sim/blob/9836166b6b57c165fc63a276f87fe81f106a4e26/pyvisa-sim/highlevel.py#L44-L53 |
pyvisa/pyvisa-sim | pyvisa-sim/highlevel.py | SimVisaLibrary.open | def open(self, session, resource_name,
access_mode=constants.AccessModes.no_lock, open_timeout=constants.VI_TMO_IMMEDIATE):
"""Opens a session to the specified resource.
Corresponds to viOpen function of the VISA library.
:param session: Resource Manager session
(should always be a session returned
from open_default_resource_manager()).
:param resource_name: Unique symbolic name of a resource.
:param access_mode: Specifies the mode by which the resource is to be accessed. (constants.AccessModes)
:param open_timeout: Specifies the maximum time period (in milliseconds) that this operation waits
before returning an error.
:return: Unique logical identifier reference to a session, return value of the library call.
:rtype: session, :class:`pyvisa.constants.StatusCode`
"""
try:
open_timeout = int(open_timeout)
except ValueError:
raise ValueError('open_timeout (%r) must be an integer (or compatible type)' % open_timeout)
try:
parsed = rname.parse_resource_name(resource_name)
except rname.InvalidResourceName:
return 0, constants.StatusCode.error_invalid_resource_name
# Loops through all session types, tries to parse the resource name and if ok, open it.
cls = sessions.Session.get_session_class(parsed.interface_type_const, parsed.resource_class)
sess = cls(session, resource_name, parsed)
try:
sess.device = self.devices[sess.attrs[constants.VI_ATTR_RSRC_NAME]]
except KeyError:
return 0, constants.StatusCode.error_resource_not_found
return self._register(sess), constants.StatusCode.success | python | def open(self, session, resource_name,
access_mode=constants.AccessModes.no_lock, open_timeout=constants.VI_TMO_IMMEDIATE):
"""Opens a session to the specified resource.
Corresponds to viOpen function of the VISA library.
:param session: Resource Manager session
(should always be a session returned
from open_default_resource_manager()).
:param resource_name: Unique symbolic name of a resource.
:param access_mode: Specifies the mode by which the resource is to be accessed. (constants.AccessModes)
:param open_timeout: Specifies the maximum time period (in milliseconds) that this operation waits
before returning an error.
:return: Unique logical identifier reference to a session, return value of the library call.
:rtype: session, :class:`pyvisa.constants.StatusCode`
"""
try:
open_timeout = int(open_timeout)
except ValueError:
raise ValueError('open_timeout (%r) must be an integer (or compatible type)' % open_timeout)
try:
parsed = rname.parse_resource_name(resource_name)
except rname.InvalidResourceName:
return 0, constants.StatusCode.error_invalid_resource_name
# Loops through all session types, tries to parse the resource name and if ok, open it.
cls = sessions.Session.get_session_class(parsed.interface_type_const, parsed.resource_class)
sess = cls(session, resource_name, parsed)
try:
sess.device = self.devices[sess.attrs[constants.VI_ATTR_RSRC_NAME]]
except KeyError:
return 0, constants.StatusCode.error_resource_not_found
return self._register(sess), constants.StatusCode.success | [
"def",
"open",
"(",
"self",
",",
"session",
",",
"resource_name",
",",
"access_mode",
"=",
"constants",
".",
"AccessModes",
".",
"no_lock",
",",
"open_timeout",
"=",
"constants",
".",
"VI_TMO_IMMEDIATE",
")",
":",
"try",
":",
"open_timeout",
"=",
"int",
"(",
"open_timeout",
")",
"except",
"ValueError",
":",
"raise",
"ValueError",
"(",
"'open_timeout (%r) must be an integer (or compatible type)'",
"%",
"open_timeout",
")",
"try",
":",
"parsed",
"=",
"rname",
".",
"parse_resource_name",
"(",
"resource_name",
")",
"except",
"rname",
".",
"InvalidResourceName",
":",
"return",
"0",
",",
"constants",
".",
"StatusCode",
".",
"error_invalid_resource_name",
"# Loops through all session types, tries to parse the resource name and if ok, open it.",
"cls",
"=",
"sessions",
".",
"Session",
".",
"get_session_class",
"(",
"parsed",
".",
"interface_type_const",
",",
"parsed",
".",
"resource_class",
")",
"sess",
"=",
"cls",
"(",
"session",
",",
"resource_name",
",",
"parsed",
")",
"try",
":",
"sess",
".",
"device",
"=",
"self",
".",
"devices",
"[",
"sess",
".",
"attrs",
"[",
"constants",
".",
"VI_ATTR_RSRC_NAME",
"]",
"]",
"except",
"KeyError",
":",
"return",
"0",
",",
"constants",
".",
"StatusCode",
".",
"error_resource_not_found",
"return",
"self",
".",
"_register",
"(",
"sess",
")",
",",
"constants",
".",
"StatusCode",
".",
"success"
] | Opens a session to the specified resource.
Corresponds to viOpen function of the VISA library.
:param session: Resource Manager session
(should always be a session returned
from open_default_resource_manager()).
:param resource_name: Unique symbolic name of a resource.
:param access_mode: Specifies the mode by which the resource is to be accessed. (constants.AccessModes)
:param open_timeout: Specifies the maximum time period (in milliseconds) that this operation waits
before returning an error.
:return: Unique logical identifier reference to a session, return value of the library call.
:rtype: session, :class:`pyvisa.constants.StatusCode` | [
"Opens",
"a",
"session",
"to",
"the",
"specified",
"resource",
"."
] | train | https://github.com/pyvisa/pyvisa-sim/blob/9836166b6b57c165fc63a276f87fe81f106a4e26/pyvisa-sim/highlevel.py#L87-L124 |
pyvisa/pyvisa-sim | pyvisa-sim/highlevel.py | SimVisaLibrary.close | def close(self, session):
"""Closes the specified session, event, or find list.
Corresponds to viClose function of the VISA library.
:param session: Unique logical identifier to a session, event, or find list.
:return: return value of the library call.
:rtype: :class:`pyvisa.constants.StatusCode`
"""
try:
del self.sessions[session]
return constants.StatusCode.success
except KeyError:
return constants.StatusCode.error_invalid_object | python | def close(self, session):
"""Closes the specified session, event, or find list.
Corresponds to viClose function of the VISA library.
:param session: Unique logical identifier to a session, event, or find list.
:return: return value of the library call.
:rtype: :class:`pyvisa.constants.StatusCode`
"""
try:
del self.sessions[session]
return constants.StatusCode.success
except KeyError:
return constants.StatusCode.error_invalid_object | [
"def",
"close",
"(",
"self",
",",
"session",
")",
":",
"try",
":",
"del",
"self",
".",
"sessions",
"[",
"session",
"]",
"return",
"constants",
".",
"StatusCode",
".",
"success",
"except",
"KeyError",
":",
"return",
"constants",
".",
"StatusCode",
".",
"error_invalid_object"
] | Closes the specified session, event, or find list.
Corresponds to viClose function of the VISA library.
:param session: Unique logical identifier to a session, event, or find list.
:return: return value of the library call.
:rtype: :class:`pyvisa.constants.StatusCode` | [
"Closes",
"the",
"specified",
"session",
"event",
"or",
"find",
"list",
"."
] | train | https://github.com/pyvisa/pyvisa-sim/blob/9836166b6b57c165fc63a276f87fe81f106a4e26/pyvisa-sim/highlevel.py#L126-L139 |
pyvisa/pyvisa-sim | pyvisa-sim/highlevel.py | SimVisaLibrary.list_resources | def list_resources(self, session, query='?*::INSTR'):
"""Returns a tuple of all connected devices matching query.
:param query: regular expression used to match devices.
"""
# For each session type, ask for the list of connected resources and merge them into a single list.
resources = self.devices.list_resources()
resources = rname.filter(resources, query)
if resources:
return resources
raise errors.VisaIOError(errors.StatusCode.error_resource_not_found.value) | python | def list_resources(self, session, query='?*::INSTR'):
"""Returns a tuple of all connected devices matching query.
:param query: regular expression used to match devices.
"""
# For each session type, ask for the list of connected resources and merge them into a single list.
resources = self.devices.list_resources()
resources = rname.filter(resources, query)
if resources:
return resources
raise errors.VisaIOError(errors.StatusCode.error_resource_not_found.value) | [
"def",
"list_resources",
"(",
"self",
",",
"session",
",",
"query",
"=",
"'?*::INSTR'",
")",
":",
"# For each session type, ask for the list of connected resources and merge them into a single list.",
"resources",
"=",
"self",
".",
"devices",
".",
"list_resources",
"(",
")",
"resources",
"=",
"rname",
".",
"filter",
"(",
"resources",
",",
"query",
")",
"if",
"resources",
":",
"return",
"resources",
"raise",
"errors",
".",
"VisaIOError",
"(",
"errors",
".",
"StatusCode",
".",
"error_resource_not_found",
".",
"value",
")"
] | Returns a tuple of all connected devices matching query.
:param query: regular expression used to match devices. | [
"Returns",
"a",
"tuple",
"of",
"all",
"connected",
"devices",
"matching",
"query",
"."
] | train | https://github.com/pyvisa/pyvisa-sim/blob/9836166b6b57c165fc63a276f87fe81f106a4e26/pyvisa-sim/highlevel.py#L151-L166 |
pyvisa/pyvisa-sim | pyvisa-sim/highlevel.py | SimVisaLibrary.read | def read(self, session, count):
"""Reads data from device or interface synchronously.
Corresponds to viRead function of the VISA library.
:param session: Unique logical identifier to a session.
:param count: Number of bytes to be read.
:return: data read, return value of the library call.
:rtype: bytes, :class:`pyvisa.constants.StatusCode`
"""
try:
sess = self.sessions[session]
except KeyError:
return b'', constants.StatusCode.error_invalid_object
try:
chunk, status = sess.read(count)
if status == constants.StatusCode.error_timeout:
raise errors.VisaIOError(constants.VI_ERROR_TMO)
return chunk, status
except AttributeError:
return b'', constants.StatusCode.error_nonsupported_operation | python | def read(self, session, count):
"""Reads data from device or interface synchronously.
Corresponds to viRead function of the VISA library.
:param session: Unique logical identifier to a session.
:param count: Number of bytes to be read.
:return: data read, return value of the library call.
:rtype: bytes, :class:`pyvisa.constants.StatusCode`
"""
try:
sess = self.sessions[session]
except KeyError:
return b'', constants.StatusCode.error_invalid_object
try:
chunk, status = sess.read(count)
if status == constants.StatusCode.error_timeout:
raise errors.VisaIOError(constants.VI_ERROR_TMO)
return chunk, status
except AttributeError:
return b'', constants.StatusCode.error_nonsupported_operation | [
"def",
"read",
"(",
"self",
",",
"session",
",",
"count",
")",
":",
"try",
":",
"sess",
"=",
"self",
".",
"sessions",
"[",
"session",
"]",
"except",
"KeyError",
":",
"return",
"b''",
",",
"constants",
".",
"StatusCode",
".",
"error_invalid_object",
"try",
":",
"chunk",
",",
"status",
"=",
"sess",
".",
"read",
"(",
"count",
")",
"if",
"status",
"==",
"constants",
".",
"StatusCode",
".",
"error_timeout",
":",
"raise",
"errors",
".",
"VisaIOError",
"(",
"constants",
".",
"VI_ERROR_TMO",
")",
"return",
"chunk",
",",
"status",
"except",
"AttributeError",
":",
"return",
"b''",
",",
"constants",
".",
"StatusCode",
".",
"error_nonsupported_operation"
] | Reads data from device or interface synchronously.
Corresponds to viRead function of the VISA library.
:param session: Unique logical identifier to a session.
:param count: Number of bytes to be read.
:return: data read, return value of the library call.
:rtype: bytes, :class:`pyvisa.constants.StatusCode` | [
"Reads",
"data",
"from",
"device",
"or",
"interface",
"synchronously",
"."
] | train | https://github.com/pyvisa/pyvisa-sim/blob/9836166b6b57c165fc63a276f87fe81f106a4e26/pyvisa-sim/highlevel.py#L168-L190 |
pyvisa/pyvisa-sim | pyvisa-sim/highlevel.py | SimVisaLibrary.write | def write(self, session, data):
"""Writes data to device or interface synchronously.
Corresponds to viWrite function of the VISA library.
:param session: Unique logical identifier to a session.
:param data: data to be written.
:type data: str
:return: Number of bytes actually transferred, return value of the library call.
:rtype: int, :class:`pyvisa.constants.StatusCode`
"""
try:
sess = self.sessions[session]
except KeyError:
return constants.StatusCode.error_invalid_object
try:
return sess.write(data)
except AttributeError:
return constants.StatusCode.error_nonsupported_operation | python | def write(self, session, data):
"""Writes data to device or interface synchronously.
Corresponds to viWrite function of the VISA library.
:param session: Unique logical identifier to a session.
:param data: data to be written.
:type data: str
:return: Number of bytes actually transferred, return value of the library call.
:rtype: int, :class:`pyvisa.constants.StatusCode`
"""
try:
sess = self.sessions[session]
except KeyError:
return constants.StatusCode.error_invalid_object
try:
return sess.write(data)
except AttributeError:
return constants.StatusCode.error_nonsupported_operation | [
"def",
"write",
"(",
"self",
",",
"session",
",",
"data",
")",
":",
"try",
":",
"sess",
"=",
"self",
".",
"sessions",
"[",
"session",
"]",
"except",
"KeyError",
":",
"return",
"constants",
".",
"StatusCode",
".",
"error_invalid_object",
"try",
":",
"return",
"sess",
".",
"write",
"(",
"data",
")",
"except",
"AttributeError",
":",
"return",
"constants",
".",
"StatusCode",
".",
"error_nonsupported_operation"
] | Writes data to device or interface synchronously.
Corresponds to viWrite function of the VISA library.
:param session: Unique logical identifier to a session.
:param data: data to be written.
:type data: str
:return: Number of bytes actually transferred, return value of the library call.
:rtype: int, :class:`pyvisa.constants.StatusCode` | [
"Writes",
"data",
"to",
"device",
"or",
"interface",
"synchronously",
"."
] | train | https://github.com/pyvisa/pyvisa-sim/blob/9836166b6b57c165fc63a276f87fe81f106a4e26/pyvisa-sim/highlevel.py#L192-L212 |
pyvisa/pyvisa-sim | pyvisa-sim/sessions.py | Session.get_session_class | def get_session_class(cls, interface_type, resource_class):
"""Return the session class for a given interface type and resource class.
:type interface_type: constants.InterfaceType
:type resource_class: str
:return: Session
"""
try:
return cls._session_classes[(interface_type, resource_class)]
except KeyError:
raise ValueError('No class registered for %s, %s' % (interface_type, resource_class)) | python | def get_session_class(cls, interface_type, resource_class):
"""Return the session class for a given interface type and resource class.
:type interface_type: constants.InterfaceType
:type resource_class: str
:return: Session
"""
try:
return cls._session_classes[(interface_type, resource_class)]
except KeyError:
raise ValueError('No class registered for %s, %s' % (interface_type, resource_class)) | [
"def",
"get_session_class",
"(",
"cls",
",",
"interface_type",
",",
"resource_class",
")",
":",
"try",
":",
"return",
"cls",
".",
"_session_classes",
"[",
"(",
"interface_type",
",",
"resource_class",
")",
"]",
"except",
"KeyError",
":",
"raise",
"ValueError",
"(",
"'No class registered for %s, %s'",
"%",
"(",
"interface_type",
",",
"resource_class",
")",
")"
] | Return the session class for a given interface type and resource class.
:type interface_type: constants.InterfaceType
:type resource_class: str
:return: Session | [
"Return",
"the",
"session",
"class",
"for",
"a",
"given",
"interface",
"type",
"and",
"resource",
"class",
"."
] | train | https://github.com/pyvisa/pyvisa-sim/blob/9836166b6b57c165fc63a276f87fe81f106a4e26/pyvisa-sim/sessions.py#L42-L52 |
pyvisa/pyvisa-sim | pyvisa-sim/sessions.py | Session.register | def register(cls, interface_type, resource_class):
"""Register a session class for a given interface type and resource class.
:type interface_type: constants.InterfaceType
:type resource_class: str
"""
def _internal(python_class):
if (interface_type, resource_class) in cls._session_classes:
logger.warning('%s is already registered in the ResourceManager. '
'Overwriting with %s' % ((interface_type, resource_class), python_class))
python_class.session_type = (interface_type, resource_class)
cls._session_classes[(interface_type, resource_class)] = python_class
return python_class
return _internal | python | def register(cls, interface_type, resource_class):
"""Register a session class for a given interface type and resource class.
:type interface_type: constants.InterfaceType
:type resource_class: str
"""
def _internal(python_class):
if (interface_type, resource_class) in cls._session_classes:
logger.warning('%s is already registered in the ResourceManager. '
'Overwriting with %s' % ((interface_type, resource_class), python_class))
python_class.session_type = (interface_type, resource_class)
cls._session_classes[(interface_type, resource_class)] = python_class
return python_class
return _internal | [
"def",
"register",
"(",
"cls",
",",
"interface_type",
",",
"resource_class",
")",
":",
"def",
"_internal",
"(",
"python_class",
")",
":",
"if",
"(",
"interface_type",
",",
"resource_class",
")",
"in",
"cls",
".",
"_session_classes",
":",
"logger",
".",
"warning",
"(",
"'%s is already registered in the ResourceManager. '",
"'Overwriting with %s'",
"%",
"(",
"(",
"interface_type",
",",
"resource_class",
")",
",",
"python_class",
")",
")",
"python_class",
".",
"session_type",
"=",
"(",
"interface_type",
",",
"resource_class",
")",
"cls",
".",
"_session_classes",
"[",
"(",
"interface_type",
",",
"resource_class",
")",
"]",
"=",
"python_class",
"return",
"python_class",
"return",
"_internal"
] | Register a session class for a given interface type and resource class.
:type interface_type: constants.InterfaceType
:type resource_class: str | [
"Register",
"a",
"session",
"class",
"for",
"a",
"given",
"interface",
"type",
"and",
"resource",
"class",
"."
] | train | https://github.com/pyvisa/pyvisa-sim/blob/9836166b6b57c165fc63a276f87fe81f106a4e26/pyvisa-sim/sessions.py#L55-L69 |
pyvisa/pyvisa-sim | pyvisa-sim/sessions.py | Session.get_attribute | def get_attribute(self, attribute):
"""Get an attribute from the session.
:param attribute:
:return: attribute value, status code
:rtype: object, constants.StatusCode
"""
# Check that the attribute exists.
try:
attr = attributes.AttributesByID[attribute]
except KeyError:
return 0, constants.StatusCode.error_nonsupported_attribute
# Check that the attribute is valid for this session type.
if not attr.in_resource(self.session_type):
return 0, constants.StatusCode.error_nonsupported_attribute
# Check that the attribute is readable.
if not attr.read:
raise Exception('Do not now how to handle write only attributes.')
# Return the current value of the default according the VISA spec
return self.attrs.setdefault(attribute, attr.default), constants.StatusCode.success | python | def get_attribute(self, attribute):
"""Get an attribute from the session.
:param attribute:
:return: attribute value, status code
:rtype: object, constants.StatusCode
"""
# Check that the attribute exists.
try:
attr = attributes.AttributesByID[attribute]
except KeyError:
return 0, constants.StatusCode.error_nonsupported_attribute
# Check that the attribute is valid for this session type.
if not attr.in_resource(self.session_type):
return 0, constants.StatusCode.error_nonsupported_attribute
# Check that the attribute is readable.
if not attr.read:
raise Exception('Do not now how to handle write only attributes.')
# Return the current value of the default according the VISA spec
return self.attrs.setdefault(attribute, attr.default), constants.StatusCode.success | [
"def",
"get_attribute",
"(",
"self",
",",
"attribute",
")",
":",
"# Check that the attribute exists.",
"try",
":",
"attr",
"=",
"attributes",
".",
"AttributesByID",
"[",
"attribute",
"]",
"except",
"KeyError",
":",
"return",
"0",
",",
"constants",
".",
"StatusCode",
".",
"error_nonsupported_attribute",
"# Check that the attribute is valid for this session type.",
"if",
"not",
"attr",
".",
"in_resource",
"(",
"self",
".",
"session_type",
")",
":",
"return",
"0",
",",
"constants",
".",
"StatusCode",
".",
"error_nonsupported_attribute",
"# Check that the attribute is readable.",
"if",
"not",
"attr",
".",
"read",
":",
"raise",
"Exception",
"(",
"'Do not now how to handle write only attributes.'",
")",
"# Return the current value of the default according the VISA spec",
"return",
"self",
".",
"attrs",
".",
"setdefault",
"(",
"attribute",
",",
"attr",
".",
"default",
")",
",",
"constants",
".",
"StatusCode",
".",
"success"
] | Get an attribute from the session.
:param attribute:
:return: attribute value, status code
:rtype: object, constants.StatusCode | [
"Get",
"an",
"attribute",
"from",
"the",
"session",
"."
] | train | https://github.com/pyvisa/pyvisa-sim/blob/9836166b6b57c165fc63a276f87fe81f106a4e26/pyvisa-sim/sessions.py#L90-L113 |
pyvisa/pyvisa-sim | pyvisa-sim/sessions.py | Session.set_attribute | def set_attribute(self, attribute, attribute_state):
"""Get an attribute from the session.
:param attribute:
:return: attribute value, status code
:rtype: object, constants.StatusCode
"""
# Check that the attribute exists.
try:
attr = attributes.AttributesByID[attribute]
except KeyError:
return constants.StatusCode.error_nonsupported_attribute
# Check that the attribute is valid for this session type.
if not attr.in_resource(self.session_type):
return constants.StatusCode.error_nonsupported_attribute
# Check that the attribute is writable.
if not attr.write:
return constants.StatusCode.error_attribute_read_only
try:
self.attrs[attribute] = attribute_state
except ValueError:
return constants.StatusCode.error_nonsupported_attribute_state
return constants.StatusCode.success | python | def set_attribute(self, attribute, attribute_state):
"""Get an attribute from the session.
:param attribute:
:return: attribute value, status code
:rtype: object, constants.StatusCode
"""
# Check that the attribute exists.
try:
attr = attributes.AttributesByID[attribute]
except KeyError:
return constants.StatusCode.error_nonsupported_attribute
# Check that the attribute is valid for this session type.
if not attr.in_resource(self.session_type):
return constants.StatusCode.error_nonsupported_attribute
# Check that the attribute is writable.
if not attr.write:
return constants.StatusCode.error_attribute_read_only
try:
self.attrs[attribute] = attribute_state
except ValueError:
return constants.StatusCode.error_nonsupported_attribute_state
return constants.StatusCode.success | [
"def",
"set_attribute",
"(",
"self",
",",
"attribute",
",",
"attribute_state",
")",
":",
"# Check that the attribute exists.",
"try",
":",
"attr",
"=",
"attributes",
".",
"AttributesByID",
"[",
"attribute",
"]",
"except",
"KeyError",
":",
"return",
"constants",
".",
"StatusCode",
".",
"error_nonsupported_attribute",
"# Check that the attribute is valid for this session type.",
"if",
"not",
"attr",
".",
"in_resource",
"(",
"self",
".",
"session_type",
")",
":",
"return",
"constants",
".",
"StatusCode",
".",
"error_nonsupported_attribute",
"# Check that the attribute is writable.",
"if",
"not",
"attr",
".",
"write",
":",
"return",
"constants",
".",
"StatusCode",
".",
"error_attribute_read_only",
"try",
":",
"self",
".",
"attrs",
"[",
"attribute",
"]",
"=",
"attribute_state",
"except",
"ValueError",
":",
"return",
"constants",
".",
"StatusCode",
".",
"error_nonsupported_attribute_state",
"return",
"constants",
".",
"StatusCode",
".",
"success"
] | Get an attribute from the session.
:param attribute:
:return: attribute value, status code
:rtype: object, constants.StatusCode | [
"Get",
"an",
"attribute",
"from",
"the",
"session",
"."
] | train | https://github.com/pyvisa/pyvisa-sim/blob/9836166b6b57c165fc63a276f87fe81f106a4e26/pyvisa-sim/sessions.py#L115-L142 |
pyvisa/pyvisa-sim | pyvisa-sim/component.py | to_bytes | def to_bytes(val):
"""Takes a text message and return a tuple
"""
if val is NoResponse:
return val
val = val.replace('\\r', '\r').replace('\\n', '\n')
return val.encode() | python | def to_bytes(val):
"""Takes a text message and return a tuple
"""
if val is NoResponse:
return val
val = val.replace('\\r', '\r').replace('\\n', '\n')
return val.encode() | [
"def",
"to_bytes",
"(",
"val",
")",
":",
"if",
"val",
"is",
"NoResponse",
":",
"return",
"val",
"val",
"=",
"val",
".",
"replace",
"(",
"'\\\\r'",
",",
"'\\r'",
")",
".",
"replace",
"(",
"'\\\\n'",
",",
"'\\n'",
")",
"return",
"val",
".",
"encode",
"(",
")"
] | Takes a text message and return a tuple | [
"Takes",
"a",
"text",
"message",
"and",
"return",
"a",
"tuple"
] | train | https://github.com/pyvisa/pyvisa-sim/blob/9836166b6b57c165fc63a276f87fe81f106a4e26/pyvisa-sim/component.py#L16-L22 |
pyvisa/pyvisa-sim | pyvisa-sim/component.py | Property.validate_value | def validate_value(self, string_value):
"""Validate that a value match the Property specs.
"""
specs = self.specs
if 'type' in specs:
value = specs['type'](string_value)
else:
value = string_value
if 'min' in specs and value < specs['min']:
raise ValueError
if 'max' in specs and value > specs['max']:
raise ValueError
if 'valid' in specs and value not in specs['valid']:
raise ValueError
return value | python | def validate_value(self, string_value):
"""Validate that a value match the Property specs.
"""
specs = self.specs
if 'type' in specs:
value = specs['type'](string_value)
else:
value = string_value
if 'min' in specs and value < specs['min']:
raise ValueError
if 'max' in specs and value > specs['max']:
raise ValueError
if 'valid' in specs and value not in specs['valid']:
raise ValueError
return value | [
"def",
"validate_value",
"(",
"self",
",",
"string_value",
")",
":",
"specs",
"=",
"self",
".",
"specs",
"if",
"'type'",
"in",
"specs",
":",
"value",
"=",
"specs",
"[",
"'type'",
"]",
"(",
"string_value",
")",
"else",
":",
"value",
"=",
"string_value",
"if",
"'min'",
"in",
"specs",
"and",
"value",
"<",
"specs",
"[",
"'min'",
"]",
":",
"raise",
"ValueError",
"if",
"'max'",
"in",
"specs",
"and",
"value",
">",
"specs",
"[",
"'max'",
"]",
":",
"raise",
"ValueError",
"if",
"'valid'",
"in",
"specs",
"and",
"value",
"not",
"in",
"specs",
"[",
"'valid'",
"]",
":",
"raise",
"ValueError",
"return",
"value"
] | Validate that a value match the Property specs. | [
"Validate",
"that",
"a",
"value",
"match",
"the",
"Property",
"specs",
"."
] | train | https://github.com/pyvisa/pyvisa-sim/blob/9836166b6b57c165fc63a276f87fe81f106a4e26/pyvisa-sim/component.py#L77-L92 |
pyvisa/pyvisa-sim | pyvisa-sim/component.py | Component._match_dialog | def _match_dialog(self, query, dialogues=None):
"""Tries to match in dialogues
:param query: message tuple
:type query: Tuple[bytes]
:return: response if found or None
:rtype: Tuple[bytes] | None
"""
if dialogues is None:
dialogues = self._dialogues
# Try to match in the queries
if query in dialogues:
response = dialogues[query]
logger.debug('Found response in queries: %s' % repr(response))
return response | python | def _match_dialog(self, query, dialogues=None):
"""Tries to match in dialogues
:param query: message tuple
:type query: Tuple[bytes]
:return: response if found or None
:rtype: Tuple[bytes] | None
"""
if dialogues is None:
dialogues = self._dialogues
# Try to match in the queries
if query in dialogues:
response = dialogues[query]
logger.debug('Found response in queries: %s' % repr(response))
return response | [
"def",
"_match_dialog",
"(",
"self",
",",
"query",
",",
"dialogues",
"=",
"None",
")",
":",
"if",
"dialogues",
"is",
"None",
":",
"dialogues",
"=",
"self",
".",
"_dialogues",
"# Try to match in the queries",
"if",
"query",
"in",
"dialogues",
":",
"response",
"=",
"dialogues",
"[",
"query",
"]",
"logger",
".",
"debug",
"(",
"'Found response in queries: %s'",
"%",
"repr",
"(",
"response",
")",
")",
"return",
"response"
] | Tries to match in dialogues
:param query: message tuple
:type query: Tuple[bytes]
:return: response if found or None
:rtype: Tuple[bytes] | None | [
"Tries",
"to",
"match",
"in",
"dialogues"
] | train | https://github.com/pyvisa/pyvisa-sim/blob/9836166b6b57c165fc63a276f87fe81f106a4e26/pyvisa-sim/component.py#L158-L174 |
pyvisa/pyvisa-sim | pyvisa-sim/component.py | Component._match_getters | def _match_getters(self, query, getters=None):
"""Tries to match in getters
:param query: message tuple
:type query: Tuple[bytes]
:return: response if found or None
:rtype: Tuple[bytes] | None
"""
if getters is None:
getters = self._getters
if query in getters:
name, response = getters[query]
logger.debug('Found response in getter of %s' % name)
response = response.format(self._properties[name].get_value())
return response.encode('utf-8') | python | def _match_getters(self, query, getters=None):
"""Tries to match in getters
:param query: message tuple
:type query: Tuple[bytes]
:return: response if found or None
:rtype: Tuple[bytes] | None
"""
if getters is None:
getters = self._getters
if query in getters:
name, response = getters[query]
logger.debug('Found response in getter of %s' % name)
response = response.format(self._properties[name].get_value())
return response.encode('utf-8') | [
"def",
"_match_getters",
"(",
"self",
",",
"query",
",",
"getters",
"=",
"None",
")",
":",
"if",
"getters",
"is",
"None",
":",
"getters",
"=",
"self",
".",
"_getters",
"if",
"query",
"in",
"getters",
":",
"name",
",",
"response",
"=",
"getters",
"[",
"query",
"]",
"logger",
".",
"debug",
"(",
"'Found response in getter of %s'",
"%",
"name",
")",
"response",
"=",
"response",
".",
"format",
"(",
"self",
".",
"_properties",
"[",
"name",
"]",
".",
"get_value",
"(",
")",
")",
"return",
"response",
".",
"encode",
"(",
"'utf-8'",
")"
] | Tries to match in getters
:param query: message tuple
:type query: Tuple[bytes]
:return: response if found or None
:rtype: Tuple[bytes] | None | [
"Tries",
"to",
"match",
"in",
"getters"
] | train | https://github.com/pyvisa/pyvisa-sim/blob/9836166b6b57c165fc63a276f87fe81f106a4e26/pyvisa-sim/component.py#L176-L191 |
pyvisa/pyvisa-sim | pyvisa-sim/component.py | Component._match_setters | def _match_setters(self, query):
"""Tries to match in setters
:param query: message tuple
:type query: Tuple[bytes]
:return: response if found or None
:rtype: Tuple[bytes] | None
"""
q = query.decode('utf-8')
for name, parser, response, error_response in self._setters:
try:
value = parser(q)
logger.debug('Found response in setter of %s' % name)
except ValueError:
continue
try:
self._properties[name].set_value(value)
return response
except ValueError:
if isinstance(error_response, bytes):
return error_response
return self.error_response('command_error')
return None | python | def _match_setters(self, query):
"""Tries to match in setters
:param query: message tuple
:type query: Tuple[bytes]
:return: response if found or None
:rtype: Tuple[bytes] | None
"""
q = query.decode('utf-8')
for name, parser, response, error_response in self._setters:
try:
value = parser(q)
logger.debug('Found response in setter of %s' % name)
except ValueError:
continue
try:
self._properties[name].set_value(value)
return response
except ValueError:
if isinstance(error_response, bytes):
return error_response
return self.error_response('command_error')
return None | [
"def",
"_match_setters",
"(",
"self",
",",
"query",
")",
":",
"q",
"=",
"query",
".",
"decode",
"(",
"'utf-8'",
")",
"for",
"name",
",",
"parser",
",",
"response",
",",
"error_response",
"in",
"self",
".",
"_setters",
":",
"try",
":",
"value",
"=",
"parser",
"(",
"q",
")",
"logger",
".",
"debug",
"(",
"'Found response in setter of %s'",
"%",
"name",
")",
"except",
"ValueError",
":",
"continue",
"try",
":",
"self",
".",
"_properties",
"[",
"name",
"]",
".",
"set_value",
"(",
"value",
")",
"return",
"response",
"except",
"ValueError",
":",
"if",
"isinstance",
"(",
"error_response",
",",
"bytes",
")",
":",
"return",
"error_response",
"return",
"self",
".",
"error_response",
"(",
"'command_error'",
")",
"return",
"None"
] | Tries to match in setters
:param query: message tuple
:type query: Tuple[bytes]
:return: response if found or None
:rtype: Tuple[bytes] | None | [
"Tries",
"to",
"match",
"in",
"setters"
] | train | https://github.com/pyvisa/pyvisa-sim/blob/9836166b6b57c165fc63a276f87fe81f106a4e26/pyvisa-sim/component.py#L193-L217 |
pyvisa/pyvisa-sim | pyvisa-sim/devices.py | Device.add_error_handler | def add_error_handler(self, error_input):
"""Add error handler to the device
"""
if isinstance(error_input, dict):
error_response = error_input.get('response', {})
cerr = error_response.get('command_error', NoResponse)
qerr = error_response.get('query_error', NoResponse)
response_dict = {'command_error': cerr,
'query_error': qerr}
register_list = error_input.get('status_register', [])
for register_dict in register_list:
query = register_dict['q']
register = StatusRegister(register_dict)
self._status_registers[to_bytes(query)] = register
for key in register.keys():
self._error_map[key] = register
queue_list = error_input.get('error_queue', [])
for queue_dict in queue_list:
query = queue_dict['q']
err_queue = ErrorQueue(queue_dict)
self._error_queues[to_bytes(query)] = err_queue
else:
response_dict = {'command_error': error_input,
'query_error': error_input}
for key, value in response_dict.items():
self._error_response[key] = to_bytes(value) | python | def add_error_handler(self, error_input):
"""Add error handler to the device
"""
if isinstance(error_input, dict):
error_response = error_input.get('response', {})
cerr = error_response.get('command_error', NoResponse)
qerr = error_response.get('query_error', NoResponse)
response_dict = {'command_error': cerr,
'query_error': qerr}
register_list = error_input.get('status_register', [])
for register_dict in register_list:
query = register_dict['q']
register = StatusRegister(register_dict)
self._status_registers[to_bytes(query)] = register
for key in register.keys():
self._error_map[key] = register
queue_list = error_input.get('error_queue', [])
for queue_dict in queue_list:
query = queue_dict['q']
err_queue = ErrorQueue(queue_dict)
self._error_queues[to_bytes(query)] = err_queue
else:
response_dict = {'command_error': error_input,
'query_error': error_input}
for key, value in response_dict.items():
self._error_response[key] = to_bytes(value) | [
"def",
"add_error_handler",
"(",
"self",
",",
"error_input",
")",
":",
"if",
"isinstance",
"(",
"error_input",
",",
"dict",
")",
":",
"error_response",
"=",
"error_input",
".",
"get",
"(",
"'response'",
",",
"{",
"}",
")",
"cerr",
"=",
"error_response",
".",
"get",
"(",
"'command_error'",
",",
"NoResponse",
")",
"qerr",
"=",
"error_response",
".",
"get",
"(",
"'query_error'",
",",
"NoResponse",
")",
"response_dict",
"=",
"{",
"'command_error'",
":",
"cerr",
",",
"'query_error'",
":",
"qerr",
"}",
"register_list",
"=",
"error_input",
".",
"get",
"(",
"'status_register'",
",",
"[",
"]",
")",
"for",
"register_dict",
"in",
"register_list",
":",
"query",
"=",
"register_dict",
"[",
"'q'",
"]",
"register",
"=",
"StatusRegister",
"(",
"register_dict",
")",
"self",
".",
"_status_registers",
"[",
"to_bytes",
"(",
"query",
")",
"]",
"=",
"register",
"for",
"key",
"in",
"register",
".",
"keys",
"(",
")",
":",
"self",
".",
"_error_map",
"[",
"key",
"]",
"=",
"register",
"queue_list",
"=",
"error_input",
".",
"get",
"(",
"'error_queue'",
",",
"[",
"]",
")",
"for",
"queue_dict",
"in",
"queue_list",
":",
"query",
"=",
"queue_dict",
"[",
"'q'",
"]",
"err_queue",
"=",
"ErrorQueue",
"(",
"queue_dict",
")",
"self",
".",
"_error_queues",
"[",
"to_bytes",
"(",
"query",
")",
"]",
"=",
"err_queue",
"else",
":",
"response_dict",
"=",
"{",
"'command_error'",
":",
"error_input",
",",
"'query_error'",
":",
"error_input",
"}",
"for",
"key",
",",
"value",
"in",
"response_dict",
".",
"items",
"(",
")",
":",
"self",
".",
"_error_response",
"[",
"key",
"]",
"=",
"to_bytes",
"(",
"value",
")"
] | Add error handler to the device | [
"Add",
"error",
"handler",
"to",
"the",
"device"
] | train | https://github.com/pyvisa/pyvisa-sim/blob/9836166b6b57c165fc63a276f87fe81f106a4e26/pyvisa-sim/devices.py#L156-L189 |
pyvisa/pyvisa-sim | pyvisa-sim/devices.py | Device.add_eom | def add_eom(self, type_class, query_termination, response_termination):
"""Add default end of message for a given interface type and resource class.
:param type_class: interface type and resource class as strings joined by space
:param query_termination: end of message used in queries.
:param response_termination: end of message used in responses.
"""
interface_type, resource_class = type_class.split(' ')
interface_type = getattr(constants.InterfaceType,
interface_type.lower())
self._eoms[(interface_type,
resource_class)] = (to_bytes(query_termination),
to_bytes(response_termination)) | python | def add_eom(self, type_class, query_termination, response_termination):
"""Add default end of message for a given interface type and resource class.
:param type_class: interface type and resource class as strings joined by space
:param query_termination: end of message used in queries.
:param response_termination: end of message used in responses.
"""
interface_type, resource_class = type_class.split(' ')
interface_type = getattr(constants.InterfaceType,
interface_type.lower())
self._eoms[(interface_type,
resource_class)] = (to_bytes(query_termination),
to_bytes(response_termination)) | [
"def",
"add_eom",
"(",
"self",
",",
"type_class",
",",
"query_termination",
",",
"response_termination",
")",
":",
"interface_type",
",",
"resource_class",
"=",
"type_class",
".",
"split",
"(",
"' '",
")",
"interface_type",
"=",
"getattr",
"(",
"constants",
".",
"InterfaceType",
",",
"interface_type",
".",
"lower",
"(",
")",
")",
"self",
".",
"_eoms",
"[",
"(",
"interface_type",
",",
"resource_class",
")",
"]",
"=",
"(",
"to_bytes",
"(",
"query_termination",
")",
",",
"to_bytes",
"(",
"response_termination",
")",
")"
] | Add default end of message for a given interface type and resource class.
:param type_class: interface type and resource class as strings joined by space
:param query_termination: end of message used in queries.
:param response_termination: end of message used in responses. | [
"Add",
"default",
"end",
"of",
"message",
"for",
"a",
"given",
"interface",
"type",
"and",
"resource",
"class",
"."
] | train | https://github.com/pyvisa/pyvisa-sim/blob/9836166b6b57c165fc63a276f87fe81f106a4e26/pyvisa-sim/devices.py#L200-L212 |
pyvisa/pyvisa-sim | pyvisa-sim/devices.py | Device.write | def write(self, data):
"""Write data into the device input buffer.
:param data: single element byte
:type data: bytes
"""
logger.debug('Writing into device input buffer: %r' % data)
if not isinstance(data, bytes):
raise TypeError('data must be an instance of bytes')
if len(data) != 1:
msg = 'data must have a length of 1, not %d'
raise ValueError(msg % len(data))
self._input_buffer.extend(data)
l = len(self._query_eom)
if not self._input_buffer.endswith(self._query_eom):
return
try:
message = bytes(self._input_buffer[:-l])
queries = (message.split(self.delimiter) if self.delimiter
else [message])
for query in queries:
response = self._match(query)
eom = self._response_eom
if response is None:
response = self.error_response('command_error')
if response is not NoResponse:
self._output_buffer.extend(response)
self._output_buffer.extend(eom)
finally:
self._input_buffer = bytearray() | python | def write(self, data):
"""Write data into the device input buffer.
:param data: single element byte
:type data: bytes
"""
logger.debug('Writing into device input buffer: %r' % data)
if not isinstance(data, bytes):
raise TypeError('data must be an instance of bytes')
if len(data) != 1:
msg = 'data must have a length of 1, not %d'
raise ValueError(msg % len(data))
self._input_buffer.extend(data)
l = len(self._query_eom)
if not self._input_buffer.endswith(self._query_eom):
return
try:
message = bytes(self._input_buffer[:-l])
queries = (message.split(self.delimiter) if self.delimiter
else [message])
for query in queries:
response = self._match(query)
eom = self._response_eom
if response is None:
response = self.error_response('command_error')
if response is not NoResponse:
self._output_buffer.extend(response)
self._output_buffer.extend(eom)
finally:
self._input_buffer = bytearray() | [
"def",
"write",
"(",
"self",
",",
"data",
")",
":",
"logger",
".",
"debug",
"(",
"'Writing into device input buffer: %r'",
"%",
"data",
")",
"if",
"not",
"isinstance",
"(",
"data",
",",
"bytes",
")",
":",
"raise",
"TypeError",
"(",
"'data must be an instance of bytes'",
")",
"if",
"len",
"(",
"data",
")",
"!=",
"1",
":",
"msg",
"=",
"'data must have a length of 1, not %d'",
"raise",
"ValueError",
"(",
"msg",
"%",
"len",
"(",
"data",
")",
")",
"self",
".",
"_input_buffer",
".",
"extend",
"(",
"data",
")",
"l",
"=",
"len",
"(",
"self",
".",
"_query_eom",
")",
"if",
"not",
"self",
".",
"_input_buffer",
".",
"endswith",
"(",
"self",
".",
"_query_eom",
")",
":",
"return",
"try",
":",
"message",
"=",
"bytes",
"(",
"self",
".",
"_input_buffer",
"[",
":",
"-",
"l",
"]",
")",
"queries",
"=",
"(",
"message",
".",
"split",
"(",
"self",
".",
"delimiter",
")",
"if",
"self",
".",
"delimiter",
"else",
"[",
"message",
"]",
")",
"for",
"query",
"in",
"queries",
":",
"response",
"=",
"self",
".",
"_match",
"(",
"query",
")",
"eom",
"=",
"self",
".",
"_response_eom",
"if",
"response",
"is",
"None",
":",
"response",
"=",
"self",
".",
"error_response",
"(",
"'command_error'",
")",
"if",
"response",
"is",
"not",
"NoResponse",
":",
"self",
".",
"_output_buffer",
".",
"extend",
"(",
"response",
")",
"self",
".",
"_output_buffer",
".",
"extend",
"(",
"eom",
")",
"finally",
":",
"self",
".",
"_input_buffer",
"=",
"bytearray",
"(",
")"
] | Write data into the device input buffer.
:param data: single element byte
:type data: bytes | [
"Write",
"data",
"into",
"the",
"device",
"input",
"buffer",
"."
] | train | https://github.com/pyvisa/pyvisa-sim/blob/9836166b6b57c165fc63a276f87fe81f106a4e26/pyvisa-sim/devices.py#L214-L250 |
pyvisa/pyvisa-sim | pyvisa-sim/devices.py | Device.read | def read(self):
"""Return a single byte from the output buffer
"""
if self._output_buffer:
b, self._output_buffer = (self._output_buffer[0:1],
self._output_buffer[1:])
return b
return b'' | python | def read(self):
"""Return a single byte from the output buffer
"""
if self._output_buffer:
b, self._output_buffer = (self._output_buffer[0:1],
self._output_buffer[1:])
return b
return b'' | [
"def",
"read",
"(",
"self",
")",
":",
"if",
"self",
".",
"_output_buffer",
":",
"b",
",",
"self",
".",
"_output_buffer",
"=",
"(",
"self",
".",
"_output_buffer",
"[",
"0",
":",
"1",
"]",
",",
"self",
".",
"_output_buffer",
"[",
"1",
":",
"]",
")",
"return",
"b",
"return",
"b''"
] | Return a single byte from the output buffer | [
"Return",
"a",
"single",
"byte",
"from",
"the",
"output",
"buffer"
] | train | https://github.com/pyvisa/pyvisa-sim/blob/9836166b6b57c165fc63a276f87fe81f106a4e26/pyvisa-sim/devices.py#L252-L260 |
pyvisa/pyvisa-sim | pyvisa-sim/devices.py | Device._match | def _match(self, query):
"""Tries to match in dialogues, getters and setters and subcomponents
:param query: message tuple
:type query: Tuple[bytes]
:return: response if found or None
:rtype: Tuple[bytes] | None
"""
response = self._match_dialog(query)
if response is not None:
return response
response = self._match_getters(query)
if response is not None:
return response
response = self._match_registers(query)
if response is not None:
return response
response = self._match_errors_queues(query)
if response is not None:
return response
response = self._match_setters(query)
if response is not None:
return response
if response is None:
for channel in self._channels.values():
response = channel.match(query)
if response:
return response
return None | python | def _match(self, query):
"""Tries to match in dialogues, getters and setters and subcomponents
:param query: message tuple
:type query: Tuple[bytes]
:return: response if found or None
:rtype: Tuple[bytes] | None
"""
response = self._match_dialog(query)
if response is not None:
return response
response = self._match_getters(query)
if response is not None:
return response
response = self._match_registers(query)
if response is not None:
return response
response = self._match_errors_queues(query)
if response is not None:
return response
response = self._match_setters(query)
if response is not None:
return response
if response is None:
for channel in self._channels.values():
response = channel.match(query)
if response:
return response
return None | [
"def",
"_match",
"(",
"self",
",",
"query",
")",
":",
"response",
"=",
"self",
".",
"_match_dialog",
"(",
"query",
")",
"if",
"response",
"is",
"not",
"None",
":",
"return",
"response",
"response",
"=",
"self",
".",
"_match_getters",
"(",
"query",
")",
"if",
"response",
"is",
"not",
"None",
":",
"return",
"response",
"response",
"=",
"self",
".",
"_match_registers",
"(",
"query",
")",
"if",
"response",
"is",
"not",
"None",
":",
"return",
"response",
"response",
"=",
"self",
".",
"_match_errors_queues",
"(",
"query",
")",
"if",
"response",
"is",
"not",
"None",
":",
"return",
"response",
"response",
"=",
"self",
".",
"_match_setters",
"(",
"query",
")",
"if",
"response",
"is",
"not",
"None",
":",
"return",
"response",
"if",
"response",
"is",
"None",
":",
"for",
"channel",
"in",
"self",
".",
"_channels",
".",
"values",
"(",
")",
":",
"response",
"=",
"channel",
".",
"match",
"(",
"query",
")",
"if",
"response",
":",
"return",
"response",
"return",
"None"
] | Tries to match in dialogues, getters and setters and subcomponents
:param query: message tuple
:type query: Tuple[bytes]
:return: response if found or None
:rtype: Tuple[bytes] | None | [
"Tries",
"to",
"match",
"in",
"dialogues",
"getters",
"and",
"setters",
"and",
"subcomponents"
] | train | https://github.com/pyvisa/pyvisa-sim/blob/9836166b6b57c165fc63a276f87fe81f106a4e26/pyvisa-sim/devices.py#L262-L296 |
pyvisa/pyvisa-sim | pyvisa-sim/devices.py | Device._match_registers | def _match_registers(self, query):
"""Tries to match in status registers
:param query: message tuple
:type query: Tuple[bytes]
:return: response if found or None
:rtype: Tuple[bytes] | None
"""
if query in self._status_registers:
register = self._status_registers[query]
response = register.value
logger.debug('Found response in status register: %s',
repr(response))
register.clear()
return response | python | def _match_registers(self, query):
"""Tries to match in status registers
:param query: message tuple
:type query: Tuple[bytes]
:return: response if found or None
:rtype: Tuple[bytes] | None
"""
if query in self._status_registers:
register = self._status_registers[query]
response = register.value
logger.debug('Found response in status register: %s',
repr(response))
register.clear()
return response | [
"def",
"_match_registers",
"(",
"self",
",",
"query",
")",
":",
"if",
"query",
"in",
"self",
".",
"_status_registers",
":",
"register",
"=",
"self",
".",
"_status_registers",
"[",
"query",
"]",
"response",
"=",
"register",
".",
"value",
"logger",
".",
"debug",
"(",
"'Found response in status register: %s'",
",",
"repr",
"(",
"response",
")",
")",
"register",
".",
"clear",
"(",
")",
"return",
"response"
] | Tries to match in status registers
:param query: message tuple
:type query: Tuple[bytes]
:return: response if found or None
:rtype: Tuple[bytes] | None | [
"Tries",
"to",
"match",
"in",
"status",
"registers"
] | train | https://github.com/pyvisa/pyvisa-sim/blob/9836166b6b57c165fc63a276f87fe81f106a4e26/pyvisa-sim/devices.py#L298-L313 |
pyvisa/pyvisa-sim | pyvisa-sim/devices.py | Device._match_errors_queues | def _match_errors_queues(self, query):
"""Tries to match in error queues
:param query: message tuple
:type query: Tuple[bytes]
:return: response if found or None
:rtype: Tuple[bytes] | None
"""
if query in self._error_queues:
queue = self._error_queues[query]
response = queue.value
logger.debug('Found response in error queue: %s',
repr(response))
return response | python | def _match_errors_queues(self, query):
"""Tries to match in error queues
:param query: message tuple
:type query: Tuple[bytes]
:return: response if found or None
:rtype: Tuple[bytes] | None
"""
if query in self._error_queues:
queue = self._error_queues[query]
response = queue.value
logger.debug('Found response in error queue: %s',
repr(response))
return response | [
"def",
"_match_errors_queues",
"(",
"self",
",",
"query",
")",
":",
"if",
"query",
"in",
"self",
".",
"_error_queues",
":",
"queue",
"=",
"self",
".",
"_error_queues",
"[",
"query",
"]",
"response",
"=",
"queue",
".",
"value",
"logger",
".",
"debug",
"(",
"'Found response in error queue: %s'",
",",
"repr",
"(",
"response",
")",
")",
"return",
"response"
] | Tries to match in error queues
:param query: message tuple
:type query: Tuple[bytes]
:return: response if found or None
:rtype: Tuple[bytes] | None | [
"Tries",
"to",
"match",
"in",
"error",
"queues"
] | train | https://github.com/pyvisa/pyvisa-sim/blob/9836166b6b57c165fc63a276f87fe81f106a4e26/pyvisa-sim/devices.py#L315-L329 |
pyvisa/pyvisa-sim | pyvisa-sim/devices.py | Devices.add_device | def add_device(self, resource_name, device):
"""Bind device to resource name
"""
if device.resource_name is not None:
msg = 'The device %r is already assigned to %s'
raise ValueError(msg % (device, device.resource_name))
device.resource_name = resource_name
self._internal[device.resource_name] = device | python | def add_device(self, resource_name, device):
"""Bind device to resource name
"""
if device.resource_name is not None:
msg = 'The device %r is already assigned to %s'
raise ValueError(msg % (device, device.resource_name))
device.resource_name = resource_name
self._internal[device.resource_name] = device | [
"def",
"add_device",
"(",
"self",
",",
"resource_name",
",",
"device",
")",
":",
"if",
"device",
".",
"resource_name",
"is",
"not",
"None",
":",
"msg",
"=",
"'The device %r is already assigned to %s'",
"raise",
"ValueError",
"(",
"msg",
"%",
"(",
"device",
",",
"device",
".",
"resource_name",
")",
")",
"device",
".",
"resource_name",
"=",
"resource_name",
"self",
".",
"_internal",
"[",
"device",
".",
"resource_name",
"]",
"=",
"device"
] | Bind device to resource name | [
"Bind",
"device",
"to",
"resource",
"name"
] | train | https://github.com/pyvisa/pyvisa-sim/blob/9836166b6b57c165fc63a276f87fe81f106a4e26/pyvisa-sim/devices.py#L343-L353 |
percipient/django-querysetsequence | queryset_sequence/pagination.py | SequenceCursorPagination.get_ordering | def get_ordering(self, *args, **kwargs):
"""Take whatever the expected ordering is and then first order by QuerySet."""
result = super(SequenceCursorPagination, self).get_ordering(*args, **kwargs)
# Because paginate_queryset sets self.ordering after reading it...we
# need to only modify it sometimes. (This allows re-use of the
# paginator, which probably only happens in tests.)
if result[0] != '#':
result = ('#', ) + result
return result | python | def get_ordering(self, *args, **kwargs):
"""Take whatever the expected ordering is and then first order by QuerySet."""
result = super(SequenceCursorPagination, self).get_ordering(*args, **kwargs)
# Because paginate_queryset sets self.ordering after reading it...we
# need to only modify it sometimes. (This allows re-use of the
# paginator, which probably only happens in tests.)
if result[0] != '#':
result = ('#', ) + result
return result | [
"def",
"get_ordering",
"(",
"self",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"result",
"=",
"super",
"(",
"SequenceCursorPagination",
",",
"self",
")",
".",
"get_ordering",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"# Because paginate_queryset sets self.ordering after reading it...we",
"# need to only modify it sometimes. (This allows re-use of the",
"# paginator, which probably only happens in tests.)",
"if",
"result",
"[",
"0",
"]",
"!=",
"'#'",
":",
"result",
"=",
"(",
"'#'",
",",
")",
"+",
"result",
"return",
"result"
] | Take whatever the expected ordering is and then first order by QuerySet. | [
"Take",
"whatever",
"the",
"expected",
"ordering",
"is",
"and",
"then",
"first",
"order",
"by",
"QuerySet",
"."
] | train | https://github.com/percipient/django-querysetsequence/blob/7bf324b08af6268821d235c18482847d7bf75eaa/queryset_sequence/pagination.py#L155-L165 |
percipient/django-querysetsequence | queryset_sequence/pagination.py | SequenceCursorPagination._get_position_from_instance | def _get_position_from_instance(self, instance, ordering):
"""
The position will be a tuple of values:
The QuerySet number inside of the QuerySetSequence.
Whatever the normal value taken from the ordering property gives.
"""
# Get the QuerySet number of the current instance.
qs_order = getattr(instance, '#')
# Strip the '#' and call the standard _get_position_from_instance.
result = super(SequenceCursorPagination, self)._get_position_from_instance(instance, ordering[1:])
# Return a tuple of these two elements.
return (qs_order, result) | python | def _get_position_from_instance(self, instance, ordering):
"""
The position will be a tuple of values:
The QuerySet number inside of the QuerySetSequence.
Whatever the normal value taken from the ordering property gives.
"""
# Get the QuerySet number of the current instance.
qs_order = getattr(instance, '#')
# Strip the '#' and call the standard _get_position_from_instance.
result = super(SequenceCursorPagination, self)._get_position_from_instance(instance, ordering[1:])
# Return a tuple of these two elements.
return (qs_order, result) | [
"def",
"_get_position_from_instance",
"(",
"self",
",",
"instance",
",",
"ordering",
")",
":",
"# Get the QuerySet number of the current instance.",
"qs_order",
"=",
"getattr",
"(",
"instance",
",",
"'#'",
")",
"# Strip the '#' and call the standard _get_position_from_instance.",
"result",
"=",
"super",
"(",
"SequenceCursorPagination",
",",
"self",
")",
".",
"_get_position_from_instance",
"(",
"instance",
",",
"ordering",
"[",
"1",
":",
"]",
")",
"# Return a tuple of these two elements.",
"return",
"(",
"qs_order",
",",
"result",
")"
] | The position will be a tuple of values:
The QuerySet number inside of the QuerySetSequence.
Whatever the normal value taken from the ordering property gives. | [
"The",
"position",
"will",
"be",
"a",
"tuple",
"of",
"values",
":"
] | train | https://github.com/percipient/django-querysetsequence/blob/7bf324b08af6268821d235c18482847d7bf75eaa/queryset_sequence/pagination.py#L167-L182 |
percipient/django-querysetsequence | queryset_sequence/pagination.py | SequenceCursorPagination.decode_cursor | def decode_cursor(self, request):
"""
Given a request with a cursor, return a `Cursor` instance.
Differs from the standard CursorPagination to handle a tuple in the
position field.
"""
# Determine if we have a cursor, and if so then decode it.
encoded = request.query_params.get(self.cursor_query_param)
if encoded is None:
return None
try:
querystring = b64decode(encoded.encode('ascii')).decode('ascii')
tokens = urlparse.parse_qs(querystring, keep_blank_values=True)
offset = tokens.get('o', ['0'])[0]
offset = _positive_int(offset, cutoff=self.offset_cutoff)
reverse = tokens.get('r', ['0'])[0]
reverse = bool(int(reverse))
# The difference. Don't get just the 0th entry: get all entries.
position = tokens.get('p', None)
except (TypeError, ValueError):
raise NotFound(self.invalid_cursor_message)
return Cursor(offset=offset, reverse=reverse, position=position) | python | def decode_cursor(self, request):
"""
Given a request with a cursor, return a `Cursor` instance.
Differs from the standard CursorPagination to handle a tuple in the
position field.
"""
# Determine if we have a cursor, and if so then decode it.
encoded = request.query_params.get(self.cursor_query_param)
if encoded is None:
return None
try:
querystring = b64decode(encoded.encode('ascii')).decode('ascii')
tokens = urlparse.parse_qs(querystring, keep_blank_values=True)
offset = tokens.get('o', ['0'])[0]
offset = _positive_int(offset, cutoff=self.offset_cutoff)
reverse = tokens.get('r', ['0'])[0]
reverse = bool(int(reverse))
# The difference. Don't get just the 0th entry: get all entries.
position = tokens.get('p', None)
except (TypeError, ValueError):
raise NotFound(self.invalid_cursor_message)
return Cursor(offset=offset, reverse=reverse, position=position) | [
"def",
"decode_cursor",
"(",
"self",
",",
"request",
")",
":",
"# Determine if we have a cursor, and if so then decode it.",
"encoded",
"=",
"request",
".",
"query_params",
".",
"get",
"(",
"self",
".",
"cursor_query_param",
")",
"if",
"encoded",
"is",
"None",
":",
"return",
"None",
"try",
":",
"querystring",
"=",
"b64decode",
"(",
"encoded",
".",
"encode",
"(",
"'ascii'",
")",
")",
".",
"decode",
"(",
"'ascii'",
")",
"tokens",
"=",
"urlparse",
".",
"parse_qs",
"(",
"querystring",
",",
"keep_blank_values",
"=",
"True",
")",
"offset",
"=",
"tokens",
".",
"get",
"(",
"'o'",
",",
"[",
"'0'",
"]",
")",
"[",
"0",
"]",
"offset",
"=",
"_positive_int",
"(",
"offset",
",",
"cutoff",
"=",
"self",
".",
"offset_cutoff",
")",
"reverse",
"=",
"tokens",
".",
"get",
"(",
"'r'",
",",
"[",
"'0'",
"]",
")",
"[",
"0",
"]",
"reverse",
"=",
"bool",
"(",
"int",
"(",
"reverse",
")",
")",
"# The difference. Don't get just the 0th entry: get all entries.",
"position",
"=",
"tokens",
".",
"get",
"(",
"'p'",
",",
"None",
")",
"except",
"(",
"TypeError",
",",
"ValueError",
")",
":",
"raise",
"NotFound",
"(",
"self",
".",
"invalid_cursor_message",
")",
"return",
"Cursor",
"(",
"offset",
"=",
"offset",
",",
"reverse",
"=",
"reverse",
",",
"position",
"=",
"position",
")"
] | Given a request with a cursor, return a `Cursor` instance.
Differs from the standard CursorPagination to handle a tuple in the
position field. | [
"Given",
"a",
"request",
"with",
"a",
"cursor",
"return",
"a",
"Cursor",
"instance",
"."
] | train | https://github.com/percipient/django-querysetsequence/blob/7bf324b08af6268821d235c18482847d7bf75eaa/queryset_sequence/pagination.py#L184-L211 |
percipient/django-querysetsequence | queryset_sequence/__init__.py | multiply_iterables | def multiply_iterables(it1, it2):
"""
Element-wise iterables multiplications.
"""
assert len(it1) == len(it2),\
"Can not element-wise multiply iterables of different length."
return list(map(mul, it1, it2)) | python | def multiply_iterables(it1, it2):
"""
Element-wise iterables multiplications.
"""
assert len(it1) == len(it2),\
"Can not element-wise multiply iterables of different length."
return list(map(mul, it1, it2)) | [
"def",
"multiply_iterables",
"(",
"it1",
",",
"it2",
")",
":",
"assert",
"len",
"(",
"it1",
")",
"==",
"len",
"(",
"it2",
")",
",",
"\"Can not element-wise multiply iterables of different length.\"",
"return",
"list",
"(",
"map",
"(",
"mul",
",",
"it1",
",",
"it2",
")",
")"
] | Element-wise iterables multiplications. | [
"Element",
"-",
"wise",
"iterables",
"multiplications",
"."
] | train | https://github.com/percipient/django-querysetsequence/blob/7bf324b08af6268821d235c18482847d7bf75eaa/queryset_sequence/__init__.py#L29-L35 |
percipient/django-querysetsequence | queryset_sequence/__init__.py | ComparatorMixin._cmp | def _cmp(cls, value1, value2):
"""
Comparison method that takes into account Django's special rules when
ordering by a field that is a model:
1. Try following the default ordering on the related model.
2. Order by the model's primary key, if there is no Meta.ordering.
"""
if isinstance(value1, Model) and isinstance(value2, Model):
field_names = value1._meta.ordering
# Assert that the ordering is the same between different models.
if field_names != value2._meta.ordering:
valid_field_names = (set(cls._get_field_names(value1)) &
set(cls._get_field_names(value2)))
raise FieldError(
"Ordering differs between models. Choices are: %s" %
', '.join(valid_field_names))
# By default, order by the pk.
if not field_names:
field_names = ['pk']
# TODO Figure out if we don't need to generate this comparator every
# time.
return cls._generate_comparator(field_names)(value1, value2)
return cmp(value1, value2) | python | def _cmp(cls, value1, value2):
"""
Comparison method that takes into account Django's special rules when
ordering by a field that is a model:
1. Try following the default ordering on the related model.
2. Order by the model's primary key, if there is no Meta.ordering.
"""
if isinstance(value1, Model) and isinstance(value2, Model):
field_names = value1._meta.ordering
# Assert that the ordering is the same between different models.
if field_names != value2._meta.ordering:
valid_field_names = (set(cls._get_field_names(value1)) &
set(cls._get_field_names(value2)))
raise FieldError(
"Ordering differs between models. Choices are: %s" %
', '.join(valid_field_names))
# By default, order by the pk.
if not field_names:
field_names = ['pk']
# TODO Figure out if we don't need to generate this comparator every
# time.
return cls._generate_comparator(field_names)(value1, value2)
return cmp(value1, value2) | [
"def",
"_cmp",
"(",
"cls",
",",
"value1",
",",
"value2",
")",
":",
"if",
"isinstance",
"(",
"value1",
",",
"Model",
")",
"and",
"isinstance",
"(",
"value2",
",",
"Model",
")",
":",
"field_names",
"=",
"value1",
".",
"_meta",
".",
"ordering",
"# Assert that the ordering is the same between different models.",
"if",
"field_names",
"!=",
"value2",
".",
"_meta",
".",
"ordering",
":",
"valid_field_names",
"=",
"(",
"set",
"(",
"cls",
".",
"_get_field_names",
"(",
"value1",
")",
")",
"&",
"set",
"(",
"cls",
".",
"_get_field_names",
"(",
"value2",
")",
")",
")",
"raise",
"FieldError",
"(",
"\"Ordering differs between models. Choices are: %s\"",
"%",
"', '",
".",
"join",
"(",
"valid_field_names",
")",
")",
"# By default, order by the pk.",
"if",
"not",
"field_names",
":",
"field_names",
"=",
"[",
"'pk'",
"]",
"# TODO Figure out if we don't need to generate this comparator every",
"# time.",
"return",
"cls",
".",
"_generate_comparator",
"(",
"field_names",
")",
"(",
"value1",
",",
"value2",
")",
"return",
"cmp",
"(",
"value1",
",",
"value2",
")"
] | Comparison method that takes into account Django's special rules when
ordering by a field that is a model:
1. Try following the default ordering on the related model.
2. Order by the model's primary key, if there is no Meta.ordering. | [
"Comparison",
"method",
"that",
"takes",
"into",
"account",
"Django",
"s",
"special",
"rules",
"when",
"ordering",
"by",
"a",
"field",
"that",
"is",
"a",
"model",
":"
] | train | https://github.com/percipient/django-querysetsequence/blob/7bf324b08af6268821d235c18482847d7bf75eaa/queryset_sequence/__init__.py#L52-L80 |
percipient/django-querysetsequence | queryset_sequence/__init__.py | ComparatorMixin._generate_comparator | def _generate_comparator(cls, field_names):
"""
Construct a comparator function based on the field names. The comparator
returns the first non-zero comparison value.
Inputs:
field_names (iterable of strings): The field names to sort on.
Returns:
A comparator function.
"""
# Ensure that field names is a list and not a tuple.
field_names = list(field_names)
# For fields that start with a '-', reverse the ordering of the
# comparison.
reverses = [1] * len(field_names)
for i, field_name in enumerate(field_names):
if field_name[0] == '-':
reverses[i] = -1
field_names[i] = field_name[1:]
field_names = [f.replace(LOOKUP_SEP, '.') for f in field_names]
def comparator(i1, i2):
# Get a tuple of values for comparison.
v1 = attrgetter(*field_names)(i1)
v2 = attrgetter(*field_names)(i2)
# If there's only one arg supplied, attrgetter returns a single
# item, directly return the result in this case.
if len(field_names) == 1:
return cls._cmp(v1, v2) * reverses[0]
# Compare each field for the two items, reversing if necessary.
order = multiply_iterables(list(map(cls._cmp, v1, v2)), reverses)
try:
# The first non-zero element.
return next(dropwhile(__not__, order))
except StopIteration:
# Everything was equivalent.
return 0
return comparator | python | def _generate_comparator(cls, field_names):
"""
Construct a comparator function based on the field names. The comparator
returns the first non-zero comparison value.
Inputs:
field_names (iterable of strings): The field names to sort on.
Returns:
A comparator function.
"""
# Ensure that field names is a list and not a tuple.
field_names = list(field_names)
# For fields that start with a '-', reverse the ordering of the
# comparison.
reverses = [1] * len(field_names)
for i, field_name in enumerate(field_names):
if field_name[0] == '-':
reverses[i] = -1
field_names[i] = field_name[1:]
field_names = [f.replace(LOOKUP_SEP, '.') for f in field_names]
def comparator(i1, i2):
# Get a tuple of values for comparison.
v1 = attrgetter(*field_names)(i1)
v2 = attrgetter(*field_names)(i2)
# If there's only one arg supplied, attrgetter returns a single
# item, directly return the result in this case.
if len(field_names) == 1:
return cls._cmp(v1, v2) * reverses[0]
# Compare each field for the two items, reversing if necessary.
order = multiply_iterables(list(map(cls._cmp, v1, v2)), reverses)
try:
# The first non-zero element.
return next(dropwhile(__not__, order))
except StopIteration:
# Everything was equivalent.
return 0
return comparator | [
"def",
"_generate_comparator",
"(",
"cls",
",",
"field_names",
")",
":",
"# Ensure that field names is a list and not a tuple.",
"field_names",
"=",
"list",
"(",
"field_names",
")",
"# For fields that start with a '-', reverse the ordering of the",
"# comparison.",
"reverses",
"=",
"[",
"1",
"]",
"*",
"len",
"(",
"field_names",
")",
"for",
"i",
",",
"field_name",
"in",
"enumerate",
"(",
"field_names",
")",
":",
"if",
"field_name",
"[",
"0",
"]",
"==",
"'-'",
":",
"reverses",
"[",
"i",
"]",
"=",
"-",
"1",
"field_names",
"[",
"i",
"]",
"=",
"field_name",
"[",
"1",
":",
"]",
"field_names",
"=",
"[",
"f",
".",
"replace",
"(",
"LOOKUP_SEP",
",",
"'.'",
")",
"for",
"f",
"in",
"field_names",
"]",
"def",
"comparator",
"(",
"i1",
",",
"i2",
")",
":",
"# Get a tuple of values for comparison.",
"v1",
"=",
"attrgetter",
"(",
"*",
"field_names",
")",
"(",
"i1",
")",
"v2",
"=",
"attrgetter",
"(",
"*",
"field_names",
")",
"(",
"i2",
")",
"# If there's only one arg supplied, attrgetter returns a single",
"# item, directly return the result in this case.",
"if",
"len",
"(",
"field_names",
")",
"==",
"1",
":",
"return",
"cls",
".",
"_cmp",
"(",
"v1",
",",
"v2",
")",
"*",
"reverses",
"[",
"0",
"]",
"# Compare each field for the two items, reversing if necessary.",
"order",
"=",
"multiply_iterables",
"(",
"list",
"(",
"map",
"(",
"cls",
".",
"_cmp",
",",
"v1",
",",
"v2",
")",
")",
",",
"reverses",
")",
"try",
":",
"# The first non-zero element.",
"return",
"next",
"(",
"dropwhile",
"(",
"__not__",
",",
"order",
")",
")",
"except",
"StopIteration",
":",
"# Everything was equivalent.",
"return",
"0",
"return",
"comparator"
] | Construct a comparator function based on the field names. The comparator
returns the first non-zero comparison value.
Inputs:
field_names (iterable of strings): The field names to sort on.
Returns:
A comparator function. | [
"Construct",
"a",
"comparator",
"function",
"based",
"on",
"the",
"field",
"names",
".",
"The",
"comparator",
"returns",
"the",
"first",
"non",
"-",
"zero",
"comparison",
"value",
"."
] | train | https://github.com/percipient/django-querysetsequence/blob/7bf324b08af6268821d235c18482847d7bf75eaa/queryset_sequence/__init__.py#L83-L127 |
percipient/django-querysetsequence | queryset_sequence/__init__.py | QuerySequenceIterable._ordered_iterator | def _ordered_iterator(self):
"""
Interleave the values of each QuerySet in order to handle the requested
ordering. Also adds the '#' property to each returned item.
"""
# A list of tuples, each with:
# * The iterable
# * The QuerySet number
# * The next value
#
# (Remember that each QuerySet is already sorted.)
iterables = []
for i, qs in zip(self._queryset_idxs, self._querysets):
it = iter(qs)
try:
value = next(it)
except StopIteration:
# If this is already empty, just skip it.
continue
# Set the QuerySet number so that the comparison works properly.
setattr(value, '#', i)
iterables.append((it, i, value))
# The offset of items returned.
index = 0
# Create a comparison function based on the requested ordering.
_comparator = self._generate_comparator(self._order_by)
def comparator(tuple_1, tuple_2):
# The last element in each tuple is the actual item to compare.
return _comparator(tuple_1[2], tuple_2[2])
comparator = functools.cmp_to_key(comparator)
# If in reverse mode, get the last value instead of the first value from
# ordered_values below.
if self._standard_ordering:
next_value_ind = 0
else:
next_value_ind = -1
# Continue until all iterables are empty.
while iterables:
# If there's only one iterator left, don't bother sorting.
if len(iterables) > 1:
# Sort the current values for each iterable.
iterables = sorted(iterables, key=comparator)
# The next ordering item is in the first position, unless we're
# in reverse mode.
it, i, value = iterables[next_value_ind]
else:
it, i, value = iterables[0]
# Return the next value if we're within the slice of interest.
if self._low_mark <= index:
yield value
index += 1
# We've left the slice of interest, we're done.
if index == self._high_mark:
return
# Iterate the iterable that just lost a value.
try:
value = next(it)
# Set the QuerySet number so that the comparison works properly.
setattr(value, '#', i)
iterables[next_value_ind] = it, i, value
except StopIteration:
# This iterator is done, remove it.
del iterables[next_value_ind] | python | def _ordered_iterator(self):
"""
Interleave the values of each QuerySet in order to handle the requested
ordering. Also adds the '#' property to each returned item.
"""
# A list of tuples, each with:
# * The iterable
# * The QuerySet number
# * The next value
#
# (Remember that each QuerySet is already sorted.)
iterables = []
for i, qs in zip(self._queryset_idxs, self._querysets):
it = iter(qs)
try:
value = next(it)
except StopIteration:
# If this is already empty, just skip it.
continue
# Set the QuerySet number so that the comparison works properly.
setattr(value, '#', i)
iterables.append((it, i, value))
# The offset of items returned.
index = 0
# Create a comparison function based on the requested ordering.
_comparator = self._generate_comparator(self._order_by)
def comparator(tuple_1, tuple_2):
# The last element in each tuple is the actual item to compare.
return _comparator(tuple_1[2], tuple_2[2])
comparator = functools.cmp_to_key(comparator)
# If in reverse mode, get the last value instead of the first value from
# ordered_values below.
if self._standard_ordering:
next_value_ind = 0
else:
next_value_ind = -1
# Continue until all iterables are empty.
while iterables:
# If there's only one iterator left, don't bother sorting.
if len(iterables) > 1:
# Sort the current values for each iterable.
iterables = sorted(iterables, key=comparator)
# The next ordering item is in the first position, unless we're
# in reverse mode.
it, i, value = iterables[next_value_ind]
else:
it, i, value = iterables[0]
# Return the next value if we're within the slice of interest.
if self._low_mark <= index:
yield value
index += 1
# We've left the slice of interest, we're done.
if index == self._high_mark:
return
# Iterate the iterable that just lost a value.
try:
value = next(it)
# Set the QuerySet number so that the comparison works properly.
setattr(value, '#', i)
iterables[next_value_ind] = it, i, value
except StopIteration:
# This iterator is done, remove it.
del iterables[next_value_ind] | [
"def",
"_ordered_iterator",
"(",
"self",
")",
":",
"# A list of tuples, each with:",
"# * The iterable",
"# * The QuerySet number",
"# * The next value",
"#",
"# (Remember that each QuerySet is already sorted.)",
"iterables",
"=",
"[",
"]",
"for",
"i",
",",
"qs",
"in",
"zip",
"(",
"self",
".",
"_queryset_idxs",
",",
"self",
".",
"_querysets",
")",
":",
"it",
"=",
"iter",
"(",
"qs",
")",
"try",
":",
"value",
"=",
"next",
"(",
"it",
")",
"except",
"StopIteration",
":",
"# If this is already empty, just skip it.",
"continue",
"# Set the QuerySet number so that the comparison works properly.",
"setattr",
"(",
"value",
",",
"'#'",
",",
"i",
")",
"iterables",
".",
"append",
"(",
"(",
"it",
",",
"i",
",",
"value",
")",
")",
"# The offset of items returned.",
"index",
"=",
"0",
"# Create a comparison function based on the requested ordering.",
"_comparator",
"=",
"self",
".",
"_generate_comparator",
"(",
"self",
".",
"_order_by",
")",
"def",
"comparator",
"(",
"tuple_1",
",",
"tuple_2",
")",
":",
"# The last element in each tuple is the actual item to compare.",
"return",
"_comparator",
"(",
"tuple_1",
"[",
"2",
"]",
",",
"tuple_2",
"[",
"2",
"]",
")",
"comparator",
"=",
"functools",
".",
"cmp_to_key",
"(",
"comparator",
")",
"# If in reverse mode, get the last value instead of the first value from",
"# ordered_values below.",
"if",
"self",
".",
"_standard_ordering",
":",
"next_value_ind",
"=",
"0",
"else",
":",
"next_value_ind",
"=",
"-",
"1",
"# Continue until all iterables are empty.",
"while",
"iterables",
":",
"# If there's only one iterator left, don't bother sorting.",
"if",
"len",
"(",
"iterables",
")",
">",
"1",
":",
"# Sort the current values for each iterable.",
"iterables",
"=",
"sorted",
"(",
"iterables",
",",
"key",
"=",
"comparator",
")",
"# The next ordering item is in the first position, unless we're",
"# in reverse mode.",
"it",
",",
"i",
",",
"value",
"=",
"iterables",
"[",
"next_value_ind",
"]",
"else",
":",
"it",
",",
"i",
",",
"value",
"=",
"iterables",
"[",
"0",
"]",
"# Return the next value if we're within the slice of interest.",
"if",
"self",
".",
"_low_mark",
"<=",
"index",
":",
"yield",
"value",
"index",
"+=",
"1",
"# We've left the slice of interest, we're done.",
"if",
"index",
"==",
"self",
".",
"_high_mark",
":",
"return",
"# Iterate the iterable that just lost a value.",
"try",
":",
"value",
"=",
"next",
"(",
"it",
")",
"# Set the QuerySet number so that the comparison works properly.",
"setattr",
"(",
"value",
",",
"'#'",
",",
"i",
")",
"iterables",
"[",
"next_value_ind",
"]",
"=",
"it",
",",
"i",
",",
"value",
"except",
"StopIteration",
":",
"# This iterator is done, remove it.",
"del",
"iterables",
"[",
"next_value_ind",
"]"
] | Interleave the values of each QuerySet in order to handle the requested
ordering. Also adds the '#' property to each returned item. | [
"Interleave",
"the",
"values",
"of",
"each",
"QuerySet",
"in",
"order",
"to",
"handle",
"the",
"requested",
"ordering",
".",
"Also",
"adds",
"the",
"#",
"property",
"to",
"each",
"returned",
"item",
"."
] | train | https://github.com/percipient/django-querysetsequence/blob/7bf324b08af6268821d235c18482847d7bf75eaa/queryset_sequence/__init__.py#L140-L209 |
percipient/django-querysetsequence | queryset_sequence/__init__.py | QuerySequenceIterable._unordered_iterator | def _unordered_iterator(self):
"""
Return the value of each QuerySet, but also add the '#' property to each
return item.
"""
for i, qs in zip(self._queryset_idxs, self._querysets):
for item in qs:
setattr(item, '#', i)
yield item | python | def _unordered_iterator(self):
"""
Return the value of each QuerySet, but also add the '#' property to each
return item.
"""
for i, qs in zip(self._queryset_idxs, self._querysets):
for item in qs:
setattr(item, '#', i)
yield item | [
"def",
"_unordered_iterator",
"(",
"self",
")",
":",
"for",
"i",
",",
"qs",
"in",
"zip",
"(",
"self",
".",
"_queryset_idxs",
",",
"self",
".",
"_querysets",
")",
":",
"for",
"item",
"in",
"qs",
":",
"setattr",
"(",
"item",
",",
"'#'",
",",
"i",
")",
"yield",
"item"
] | Return the value of each QuerySet, but also add the '#' property to each
return item. | [
"Return",
"the",
"value",
"of",
"each",
"QuerySet",
"but",
"also",
"add",
"the",
"#",
"property",
"to",
"each",
"return",
"item",
"."
] | train | https://github.com/percipient/django-querysetsequence/blob/7bf324b08af6268821d235c18482847d7bf75eaa/queryset_sequence/__init__.py#L211-L219 |
percipient/django-querysetsequence | queryset_sequence/__init__.py | QuerySetSequence._filter_or_exclude_querysets | def _filter_or_exclude_querysets(self, negate, **kwargs):
"""
Similar to QuerySet._filter_or_exclude, but run over the QuerySets in
the QuerySetSequence instead of over each QuerySet's fields.
"""
# Ensure negate is a boolean.
negate = bool(negate)
for kwarg, value in kwargs.items():
parts = kwarg.split(LOOKUP_SEP)
# Ensure this is being used to filter QuerySets.
if parts[0] != '#':
raise ValueError("Keyword '%s' is not a valid keyword to filter over, "
"it must begin with '#'." % kwarg)
# Don't allow __ multiple times.
if len(parts) > 2:
raise ValueError("Keyword '%s' must not contain multiple "
"lookup seperators." % kwarg)
# The actual lookup is the second part.
try:
lookup = parts[1]
except IndexError:
lookup = 'exact'
# Math operators that all have the same logic.
LOOKUP_TO_OPERATOR = {
'exact': eq,
'iexact': eq,
'gt': gt,
'gte': ge,
'lt': lt,
'lte': le,
}
try:
operator = LOOKUP_TO_OPERATOR[lookup]
# These expect integers, this matches the logic in
# IntegerField.get_prep_value(). (Essentially treat the '#'
# field as an IntegerField.)
if value is not None:
value = int(value)
self._queryset_idxs = filter(lambda i: operator(i, value) != negate, self._queryset_idxs)
continue
except KeyError:
# It wasn't one of the above operators, keep trying.
pass
# Some of these seem to get handled as bytes.
if lookup in ('contains', 'icontains'):
value = six.text_type(value)
self._queryset_idxs = filter(lambda i: (value in six.text_type(i)) != negate, self._queryset_idxs)
elif lookup == 'in':
self._queryset_idxs = filter(lambda i: (i in value) != negate, self._queryset_idxs)
elif lookup in ('startswith', 'istartswith'):
value = six.text_type(value)
self._queryset_idxs = filter(lambda i: six.text_type(i).startswith(value) != negate, self._queryset_idxs)
elif lookup in ('endswith', 'iendswith'):
value = six.text_type(value)
self._queryset_idxs = filter(lambda i: six.text_type(i).endswith(value) != negate, self._queryset_idxs)
elif lookup == 'range':
# Inclusive include.
start, end = value
self._queryset_idxs = filter(lambda i: (start <= i <= end) != negate, self._queryset_idxs)
else:
# Any other field lookup is not supported, e.g. date, year, month,
# day, week_day, hour, minute, second, isnull, search, regex, and
# iregex.
raise ValueError("Unsupported lookup '%s'" % lookup)
# Convert back to a list on Python 3.
self._queryset_idxs = list(self._queryset_idxs)
# Finally, keep only the QuerySets we care about!
self._querysets = [self._querysets[i] for i in self._queryset_idxs] | python | def _filter_or_exclude_querysets(self, negate, **kwargs):
"""
Similar to QuerySet._filter_or_exclude, but run over the QuerySets in
the QuerySetSequence instead of over each QuerySet's fields.
"""
# Ensure negate is a boolean.
negate = bool(negate)
for kwarg, value in kwargs.items():
parts = kwarg.split(LOOKUP_SEP)
# Ensure this is being used to filter QuerySets.
if parts[0] != '#':
raise ValueError("Keyword '%s' is not a valid keyword to filter over, "
"it must begin with '#'." % kwarg)
# Don't allow __ multiple times.
if len(parts) > 2:
raise ValueError("Keyword '%s' must not contain multiple "
"lookup seperators." % kwarg)
# The actual lookup is the second part.
try:
lookup = parts[1]
except IndexError:
lookup = 'exact'
# Math operators that all have the same logic.
LOOKUP_TO_OPERATOR = {
'exact': eq,
'iexact': eq,
'gt': gt,
'gte': ge,
'lt': lt,
'lte': le,
}
try:
operator = LOOKUP_TO_OPERATOR[lookup]
# These expect integers, this matches the logic in
# IntegerField.get_prep_value(). (Essentially treat the '#'
# field as an IntegerField.)
if value is not None:
value = int(value)
self._queryset_idxs = filter(lambda i: operator(i, value) != negate, self._queryset_idxs)
continue
except KeyError:
# It wasn't one of the above operators, keep trying.
pass
# Some of these seem to get handled as bytes.
if lookup in ('contains', 'icontains'):
value = six.text_type(value)
self._queryset_idxs = filter(lambda i: (value in six.text_type(i)) != negate, self._queryset_idxs)
elif lookup == 'in':
self._queryset_idxs = filter(lambda i: (i in value) != negate, self._queryset_idxs)
elif lookup in ('startswith', 'istartswith'):
value = six.text_type(value)
self._queryset_idxs = filter(lambda i: six.text_type(i).startswith(value) != negate, self._queryset_idxs)
elif lookup in ('endswith', 'iendswith'):
value = six.text_type(value)
self._queryset_idxs = filter(lambda i: six.text_type(i).endswith(value) != negate, self._queryset_idxs)
elif lookup == 'range':
# Inclusive include.
start, end = value
self._queryset_idxs = filter(lambda i: (start <= i <= end) != negate, self._queryset_idxs)
else:
# Any other field lookup is not supported, e.g. date, year, month,
# day, week_day, hour, minute, second, isnull, search, regex, and
# iregex.
raise ValueError("Unsupported lookup '%s'" % lookup)
# Convert back to a list on Python 3.
self._queryset_idxs = list(self._queryset_idxs)
# Finally, keep only the QuerySets we care about!
self._querysets = [self._querysets[i] for i in self._queryset_idxs] | [
"def",
"_filter_or_exclude_querysets",
"(",
"self",
",",
"negate",
",",
"*",
"*",
"kwargs",
")",
":",
"# Ensure negate is a boolean.",
"negate",
"=",
"bool",
"(",
"negate",
")",
"for",
"kwarg",
",",
"value",
"in",
"kwargs",
".",
"items",
"(",
")",
":",
"parts",
"=",
"kwarg",
".",
"split",
"(",
"LOOKUP_SEP",
")",
"# Ensure this is being used to filter QuerySets.",
"if",
"parts",
"[",
"0",
"]",
"!=",
"'#'",
":",
"raise",
"ValueError",
"(",
"\"Keyword '%s' is not a valid keyword to filter over, \"",
"\"it must begin with '#'.\"",
"%",
"kwarg",
")",
"# Don't allow __ multiple times.",
"if",
"len",
"(",
"parts",
")",
">",
"2",
":",
"raise",
"ValueError",
"(",
"\"Keyword '%s' must not contain multiple \"",
"\"lookup seperators.\"",
"%",
"kwarg",
")",
"# The actual lookup is the second part.",
"try",
":",
"lookup",
"=",
"parts",
"[",
"1",
"]",
"except",
"IndexError",
":",
"lookup",
"=",
"'exact'",
"# Math operators that all have the same logic.",
"LOOKUP_TO_OPERATOR",
"=",
"{",
"'exact'",
":",
"eq",
",",
"'iexact'",
":",
"eq",
",",
"'gt'",
":",
"gt",
",",
"'gte'",
":",
"ge",
",",
"'lt'",
":",
"lt",
",",
"'lte'",
":",
"le",
",",
"}",
"try",
":",
"operator",
"=",
"LOOKUP_TO_OPERATOR",
"[",
"lookup",
"]",
"# These expect integers, this matches the logic in",
"# IntegerField.get_prep_value(). (Essentially treat the '#'",
"# field as an IntegerField.)",
"if",
"value",
"is",
"not",
"None",
":",
"value",
"=",
"int",
"(",
"value",
")",
"self",
".",
"_queryset_idxs",
"=",
"filter",
"(",
"lambda",
"i",
":",
"operator",
"(",
"i",
",",
"value",
")",
"!=",
"negate",
",",
"self",
".",
"_queryset_idxs",
")",
"continue",
"except",
"KeyError",
":",
"# It wasn't one of the above operators, keep trying.",
"pass",
"# Some of these seem to get handled as bytes.",
"if",
"lookup",
"in",
"(",
"'contains'",
",",
"'icontains'",
")",
":",
"value",
"=",
"six",
".",
"text_type",
"(",
"value",
")",
"self",
".",
"_queryset_idxs",
"=",
"filter",
"(",
"lambda",
"i",
":",
"(",
"value",
"in",
"six",
".",
"text_type",
"(",
"i",
")",
")",
"!=",
"negate",
",",
"self",
".",
"_queryset_idxs",
")",
"elif",
"lookup",
"==",
"'in'",
":",
"self",
".",
"_queryset_idxs",
"=",
"filter",
"(",
"lambda",
"i",
":",
"(",
"i",
"in",
"value",
")",
"!=",
"negate",
",",
"self",
".",
"_queryset_idxs",
")",
"elif",
"lookup",
"in",
"(",
"'startswith'",
",",
"'istartswith'",
")",
":",
"value",
"=",
"six",
".",
"text_type",
"(",
"value",
")",
"self",
".",
"_queryset_idxs",
"=",
"filter",
"(",
"lambda",
"i",
":",
"six",
".",
"text_type",
"(",
"i",
")",
".",
"startswith",
"(",
"value",
")",
"!=",
"negate",
",",
"self",
".",
"_queryset_idxs",
")",
"elif",
"lookup",
"in",
"(",
"'endswith'",
",",
"'iendswith'",
")",
":",
"value",
"=",
"six",
".",
"text_type",
"(",
"value",
")",
"self",
".",
"_queryset_idxs",
"=",
"filter",
"(",
"lambda",
"i",
":",
"six",
".",
"text_type",
"(",
"i",
")",
".",
"endswith",
"(",
"value",
")",
"!=",
"negate",
",",
"self",
".",
"_queryset_idxs",
")",
"elif",
"lookup",
"==",
"'range'",
":",
"# Inclusive include.",
"start",
",",
"end",
"=",
"value",
"self",
".",
"_queryset_idxs",
"=",
"filter",
"(",
"lambda",
"i",
":",
"(",
"start",
"<=",
"i",
"<=",
"end",
")",
"!=",
"negate",
",",
"self",
".",
"_queryset_idxs",
")",
"else",
":",
"# Any other field lookup is not supported, e.g. date, year, month,",
"# day, week_day, hour, minute, second, isnull, search, regex, and",
"# iregex.",
"raise",
"ValueError",
"(",
"\"Unsupported lookup '%s'\"",
"%",
"lookup",
")",
"# Convert back to a list on Python 3.",
"self",
".",
"_queryset_idxs",
"=",
"list",
"(",
"self",
".",
"_queryset_idxs",
")",
"# Finally, keep only the QuerySets we care about!",
"self",
".",
"_querysets",
"=",
"[",
"self",
".",
"_querysets",
"[",
"i",
"]",
"for",
"i",
"in",
"self",
".",
"_queryset_idxs",
"]"
] | Similar to QuerySet._filter_or_exclude, but run over the QuerySets in
the QuerySetSequence instead of over each QuerySet's fields. | [
"Similar",
"to",
"QuerySet",
".",
"_filter_or_exclude",
"but",
"run",
"over",
"the",
"QuerySets",
"in",
"the",
"QuerySetSequence",
"instead",
"of",
"over",
"each",
"QuerySet",
"s",
"fields",
"."
] | train | https://github.com/percipient/django-querysetsequence/blob/7bf324b08af6268821d235c18482847d7bf75eaa/queryset_sequence/__init__.py#L445-L527 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.