text
stringlengths 96
319k
| id
stringlengths 14
178
| metadata
dict |
---|---|---|
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch Mimi model."""
import inspect
import os
import tempfile
import unittest
import numpy as np
from datasets import Audio, load_dataset
from parameterized import parameterized
from pytest import mark
from transformers import AutoFeatureExtractor, MimiConfig
from transformers.testing_utils import (
is_flaky,
is_torch_available,
require_flash_attn,
require_torch,
require_torch_gpu,
require_torch_sdpa,
slow,
torch_device,
)
from transformers.utils import (
is_torch_bf16_available_on_device,
is_torch_fp16_available_on_device,
)
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor, sdpa_kernel
if is_torch_available():
import torch
from transformers import MimiModel
# Copied from transformers.tests.encodec.test_modeling_encodec.prepare_inputs_dict
def prepare_inputs_dict(
config,
input_ids=None,
input_values=None,
decoder_input_ids=None,
attention_mask=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
):
if input_ids is not None:
encoder_dict = {"input_ids": input_ids}
else:
encoder_dict = {"input_values": input_values}
decoder_dict = {"decoder_input_ids": decoder_input_ids} if decoder_input_ids is not None else {}
return {**encoder_dict, **decoder_dict}
@require_torch
class MimiModelTester:
def __init__(
self,
parent,
batch_size=5,
num_channels=1,
is_training=False,
intermediate_size=40,
hidden_size=32,
num_filters=8,
num_residual_layers=1,
upsampling_ratios=[8, 4],
codebook_size=64,
vector_quantization_hidden_dimension=64,
codebook_dim=64,
upsample_groups=32,
num_hidden_layers=2,
num_attention_heads=2,
num_key_value_heads=2,
sliding_window=4,
use_cache=False,
):
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.is_training = is_training
self.intermediate_size = intermediate_size
self.hidden_size = hidden_size
self.num_filters = num_filters
self.num_residual_layers = num_residual_layers
self.upsampling_ratios = upsampling_ratios
self.codebook_size = codebook_size
self.vector_quantization_hidden_dimension = vector_quantization_hidden_dimension
self.codebook_dim = codebook_dim
self.upsample_groups = upsample_groups
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.sliding_window = sliding_window
self.use_cache = use_cache
def prepare_config_and_inputs(self):
input_values = floats_tensor([self.batch_size, self.num_channels, self.intermediate_size], scale=1.0)
config = self.get_config()
inputs_dict = {"input_values": input_values}
return config, inputs_dict
def prepare_config_and_inputs_for_common(self):
config, inputs_dict = self.prepare_config_and_inputs()
return config, inputs_dict
def prepare_config_and_inputs_for_model_class(self, model_class):
config, inputs_dict = self.prepare_config_and_inputs()
inputs_dict["audio_codes"] = ids_tensor([self.batch_size, 1, self.num_channels], self.codebook_size).type(
torch.int32
)
return config, inputs_dict
def get_config(self):
return MimiConfig(
audio_channels=self.num_channels,
chunk_in_sec=None,
hidden_size=self.hidden_size,
num_filters=self.num_filters,
num_residual_layers=self.num_residual_layers,
upsampling_ratios=self.upsampling_ratios,
codebook_size=self.codebook_size,
vector_quantization_hidden_dimension=self.vector_quantization_hidden_dimension,
upsample_groups=self.upsample_groups,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
num_key_value_heads=self.num_key_value_heads,
sliding_window=self.sliding_window,
codebook_dim=self.codebook_dim,
use_cache=self.use_cache,
)
def create_and_check_model_forward(self, config, inputs_dict):
model = MimiModel(config=config).to(torch_device).eval()
input_values = inputs_dict["input_values"]
result = model(input_values)
self.parent.assertEqual(
result.audio_values.shape, (self.batch_size, self.num_channels, self.intermediate_size)
)
@require_torch
class MimiModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (MimiModel,) if is_torch_available() else ()
is_encoder_decoder = True
test_pruning = False
test_headmasking = False
test_resize_embeddings = False
test_torchscript = False
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
# model does support returning hidden states
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
if "output_attentions" in inputs_dict:
inputs_dict.pop("output_attentions")
if "output_hidden_states" in inputs_dict:
inputs_dict.pop("output_hidden_states")
return inputs_dict
def setUp(self):
self.model_tester = MimiModelTester(self)
self.config_tester = ConfigTester(
self, config_class=MimiConfig, hidden_size=37, common_properties=[], has_text_modality=False
)
def test_config(self):
self.config_tester.run_common_tests()
def test_model_forward(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_forward(*config_and_inputs)
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["input_values", "padding_mask", "num_quantizers"]
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
@unittest.skip(reason="The MimiModel does not have `inputs_embeds` logics")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="The MimiModel does not have `inputs_embeds` logics")
def test_model_get_set_embeddings(self):
pass
@unittest.skip(reason="The MimiModel does not have the usual `attention` logic")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip(reason="The MimiModel does not have the usual `attention` logic")
def test_torchscript_output_attentions(self):
pass
@unittest.skip(reason="The MimiModel does not have the usual `hidden_states` logic")
def test_torchscript_output_hidden_state(self):
pass
# Copied from transformers.tests.encodec.test_modeling_encodec.MimiModelTest._create_and_check_torchscript
def _create_and_check_torchscript(self, config, inputs_dict):
if not self.test_torchscript:
self.skipTest(reason="test_torchscript is set to False")
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
configs_no_init.torchscript = True
configs_no_init.return_dict = False
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class)
main_input_name = model_class.main_input_name
try:
main_input = inputs[main_input_name]
model(main_input)
traced_model = torch.jit.trace(model, main_input)
except RuntimeError:
self.fail("Couldn't trace module.")
with tempfile.TemporaryDirectory() as tmp_dir_name:
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
try:
torch.jit.save(traced_model, pt_file_name)
except Exception:
self.fail("Couldn't save module.")
try:
loaded_model = torch.jit.load(pt_file_name)
except Exception:
self.fail("Couldn't load module.")
model.to(torch_device)
model.eval()
loaded_model.to(torch_device)
loaded_model.eval()
model_state_dict = model.state_dict()
loaded_model_state_dict = loaded_model.state_dict()
non_persistent_buffers = {}
for key in loaded_model_state_dict.keys():
if key not in model_state_dict.keys():
non_persistent_buffers[key] = loaded_model_state_dict[key]
loaded_model_state_dict = {
key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
}
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
model_buffers = list(model.buffers())
for non_persistent_buffer in non_persistent_buffers.values():
found_buffer = False
for i, model_buffer in enumerate(model_buffers):
if torch.equal(non_persistent_buffer, model_buffer):
found_buffer = True
break
self.assertTrue(found_buffer)
model_buffers.pop(i)
model_buffers = list(model.buffers())
for non_persistent_buffer in non_persistent_buffers.values():
found_buffer = False
for i, model_buffer in enumerate(model_buffers):
if torch.equal(non_persistent_buffer, model_buffer):
found_buffer = True
break
self.assertTrue(found_buffer)
model_buffers.pop(i)
models_equal = True
for layer_name, p1 in model_state_dict.items():
if layer_name in loaded_model_state_dict:
p2 = loaded_model_state_dict[layer_name]
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
# Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
# (Even with this call, there are still memory leak by ~0.04MB)
self.clear_torch_jit_class_registry()
@unittest.skip(reason="The MimiModel does not have the usual `attention` logic")
def test_attention_outputs(self):
pass
@unittest.skip(reason="The MimiModel does not have the usual `hidden_states` logic")
def test_hidden_states_output(self):
pass
# Copied from transformers.tests.encodec.test_modeling_encodec.MimiModelTest.test_determinism
def test_determinism(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
def check_determinism(first, second):
# outputs are not tensors but list (since each sequence don't have the same frame_length)
out_1 = first.cpu().numpy()
out_2 = second.cpu().numpy()
out_1 = out_1[~np.isnan(out_1)]
out_2 = out_2[~np.isnan(out_2)]
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
if isinstance(first, tuple) and isinstance(second, tuple):
for tensor1, tensor2 in zip(first, second):
check_determinism(tensor1, tensor2)
else:
check_determinism(first, second)
# Copied from transformers.tests.encodec.test_modeling_encodec.MimiModelTest.test_model_outputs_equivalence
def test_model_outputs_equivalence(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(t):
t[t != t] = 0
return t
def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
with torch.no_grad():
tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs)
self.assertTrue(isinstance(tuple_output, tuple))
self.assertTrue(isinstance(dict_output, dict))
for tuple_value, dict_value in zip(tuple_output, dict_output.values()):
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(tuple_value), set_nan_tensor_to_zero(dict_value), atol=1e-5
),
msg=(
"Tuple and dict output are not equal. Difference:"
f" {torch.max(torch.abs(tuple_value - dict_value))}. Tuple has `nan`:"
f" {torch.isnan(tuple_value).any()} and `inf`: {torch.isinf(tuple_value)}. Dict has"
f" `nan`: {torch.isnan(dict_value).any()} and `inf`: {torch.isinf(dict_value)}."
),
)
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
check_equivalence(model, tuple_inputs, dict_inputs)
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
uniform_init_parms = ["conv", "input_proj", "output_proj"]
if param.requires_grad:
if any(x in name for x in uniform_init_parms):
self.assertTrue(
-1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
# Copied from transformers.tests.encodec.test_modeling_encodec.MimiModelTest.test_identity_shortcut
def test_identity_shortcut(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
config.use_conv_shortcut = False
self.model_tester.create_and_check_model_forward(config, inputs_dict)
# Overwrite to use `audio_values` as the tensors to compare.
# TODO: Try to do this in the parent class.
@parameterized.expand([("float16",), ("bfloat16",), ("float32",)])
@require_torch_sdpa
def test_eager_matches_sdpa_inference(self, torch_dtype: str):
if torch_dtype == "float16" and torch_device == "cpu":
self.skipTest("`replication_pad1d` not implemented for 'Half")
if not self.has_attentions:
self.skipTest(reason="Model architecture does not support attentions")
if not self.all_model_classes[0]._supports_sdpa:
self.skipTest(f"{self.all_model_classes[0].__name__} does not support SDPA")
if torch_dtype == "float16" and not is_torch_fp16_available_on_device(torch_device):
self.skipTest(f"float16 not supported on {torch_device} (on the specific device currently used)")
if torch_dtype == "bfloat16" and not is_torch_bf16_available_on_device(torch_device):
self.skipTest(
f"bfloat16 not supported on {torch_device} (on the specific device currently used, e.g. Nvidia T4 GPU)"
)
# Not sure whether it's fine to put torch.XXX in a decorator if torch is not available so hacking it here instead.
if torch_dtype == "float16":
torch_dtype = torch.float16
elif torch_dtype == "bfloat16":
torch_dtype = torch.bfloat16
elif torch_dtype == "float32":
torch_dtype = torch.float32
atols = {
("cpu", False, torch.float32): 1e-6,
("cpu", False, torch.bfloat16): 1e-2,
("cpu", True, torch.float32): 1e-6,
("cpu", True, torch.bfloat16): 1e-2,
("cuda", False, torch.float32): 1e-6,
("cuda", False, torch.bfloat16): 1e-2,
("cuda", False, torch.float16): 5e-3,
("cuda", True, torch.float32): 1e-6,
("cuda", True, torch.bfloat16): 1e-2,
("cuda", True, torch.float16): 5e-3,
}
rtols = {
("cpu", False, torch.float32): 1e-4,
("cpu", False, torch.bfloat16): 1e-2,
("cpu", True, torch.float32): 1e-4,
("cpu", True, torch.bfloat16): 1e-2,
("cuda", False, torch.float32): 1e-4,
("cuda", False, torch.bfloat16): 1e-2,
("cuda", False, torch.float16): 5e-3,
("cuda", True, torch.float32): 1e-4,
("cuda", True, torch.bfloat16): 3e-2,
("cuda", True, torch.float16): 5e-3,
}
def get_mean_reldiff(failcase, x, ref, atol, rtol):
return f"{failcase}: mean relative difference: {((x - ref).abs() / (ref.abs() + 1e-12)).mean():.3e}, torch atol = {atol}, torch rtol = {rtol}"
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
model = model_class(config)
# FIXME: we deactivate boolean mask for models using "use_mask_token" in their constructors.
# These models support masking only in the case `use_mask_token=True`. Otherwise they cannot consume an input mask.
# This means that the class needs to be instantiated much later, after `use_mask` is set, which means a significant refactor of the code.
# However masking there is not done at any layers that matters (i.e self-attention), therefore we can safely deactivate it.
deactivate_mask = "use_mask_token" in inspect.signature(model_class).parameters
is_encoder_decoder = model.config.is_encoder_decoder
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model_sdpa = model_class.from_pretrained(tmpdirname, torch_dtype=torch_dtype)
model_sdpa = model_sdpa.eval().to(torch_device)
self.assertTrue(model_sdpa.config._attn_implementation == "sdpa")
model_eager = model_class.from_pretrained(
tmpdirname,
torch_dtype=torch_dtype,
attn_implementation="eager",
)
model_eager = model_eager.eval().to(torch_device)
self.assertTrue(model_eager.config._attn_implementation == "eager")
for name, submodule in model_eager.named_modules():
class_name = submodule.__class__.__name__
if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
raise ValueError("The eager model should not have SDPA attention layers")
has_sdpa = False
for name, submodule in model_sdpa.named_modules():
class_name = submodule.__class__.__name__
if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
has_sdpa = True
break
if not has_sdpa and model_sdpa.config.model_type != "falcon":
raise ValueError("The SDPA model should have SDPA attention layers")
# We use these for loops instead of parameterized.expand just for the interest of avoiding loading/saving 16 times the model,
# but it would be nicer to have an efficient way to use parameterized.expand
fail_cases = []
for padding_side in ["left", "right"]:
for use_mask in [False, True]:
for output_attentions in [True, False]:
can_output_attn = "output_attentions" in inspect.signature(model_sdpa.forward).parameters
if not (self.has_attentions and can_output_attn) and output_attentions:
continue
for batch_size in [7]:
dummy_input = inputs_dict[model.main_input_name]
if dummy_input.dtype in [torch.float32, torch.bfloat16, torch.float16]:
dummy_input = dummy_input.to(torch_dtype)
dummy_input = dummy_input[:batch_size]
if dummy_input.shape[0] != batch_size:
if dummy_input.dtype in [torch.float32, torch.bfloat16, torch.float16]:
extension = torch.rand(
batch_size - dummy_input.shape[0],
*dummy_input.shape[1:],
dtype=torch_dtype,
device=torch_device,
)
dummy_input = torch.cat((dummy_input, extension), dim=0).to(torch_device)
else:
extension = torch.randint(
high=5,
size=(batch_size - dummy_input.shape[0], *dummy_input.shape[1:]),
dtype=dummy_input.dtype,
device=torch_device,
)
dummy_input = torch.cat((dummy_input, extension), dim=0).to(torch_device)
if not use_mask:
dummy_attention_mask = None
else:
dummy_attention_mask = inputs_dict.get("attention_mask", None)
if dummy_attention_mask is None:
if is_encoder_decoder:
seqlen = inputs_dict.get("decoder_input_ids", dummy_input).shape[-1]
else:
seqlen = dummy_input.shape[-1]
dummy_attention_mask = (
torch.ones(batch_size, seqlen).to(torch.int64).to(torch_device)
)
dummy_attention_mask = dummy_attention_mask[:batch_size]
if dummy_attention_mask.shape[0] != batch_size:
extension = torch.ones(
batch_size - dummy_attention_mask.shape[0],
*dummy_attention_mask.shape[1:],
dtype=dummy_attention_mask.dtype,
device=torch_device,
)
dummy_attention_mask = torch.cat((dummy_attention_mask, extension), dim=0)
dummy_attention_mask = dummy_attention_mask.to(torch_device)
dummy_attention_mask[:] = 1
if padding_side == "left":
dummy_attention_mask[-1, :2] = 0
dummy_attention_mask[-1, 2:] = 1
elif padding_side == "right":
dummy_attention_mask[-1, -2:] = 0
dummy_attention_mask[-1, :-2] = 1
for enable_kernels in [False, True]:
failcase = f"padding_side={padding_side}, use_mask={use_mask}, batch_size={batch_size}, enable_kernels={enable_kernels}"
if is_encoder_decoder:
decoder_input_ids = inputs_dict.get("decoder_input_ids", dummy_input)[
:batch_size
]
if decoder_input_ids.shape[0] != batch_size:
extension = torch.ones(
batch_size - decoder_input_ids.shape[0],
*decoder_input_ids.shape[1:],
dtype=decoder_input_ids.dtype,
device=torch_device,
)
decoder_input_ids = torch.cat((decoder_input_ids, extension), dim=0)
decoder_input_ids = decoder_input_ids.to(torch_device)
# TODO: never an `attention_mask` arg here?
processed_inputs = {
model.main_input_name: dummy_input,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": dummy_attention_mask,
"output_hidden_states": True,
}
else:
processed_inputs = {
model.main_input_name: dummy_input,
"output_hidden_states": True,
}
# Otherwise fails for e.g. WhisperEncoderModel
if "attention_mask" in inspect.signature(model_eager.forward).parameters:
processed_inputs["attention_mask"] = dummy_attention_mask
if (
self.has_attentions
and "output_attentions" in inspect.signature(model_sdpa.forward).parameters
):
processed_inputs["output_attentions"] = output_attentions
if not deactivate_mask and (
"bool_masked_pos" in inspect.signature(model_eager.forward).parameters
):
dummy_mask = torch.ones((self.model_tester.num_masks,))
# In case of additional token (like class) we define a custom `mask_length`
if hasattr(self.model_tester, "mask_length"):
mask_length = self.model_tester.mask_length - dummy_mask.size(0)
else:
mask_length = self.model_tester.seq_length - dummy_mask.size(0)
dummy_mask = torch.cat([dummy_mask, torch.zeros(mask_length)])
dummy_bool_masked_pos = dummy_mask.expand(batch_size, -1).bool()
processed_inputs["bool_masked_pos"] = dummy_bool_masked_pos.to(torch_device)
if "noise" in inspect.signature(model_eager.forward).parameters:
np.random.seed(2)
num_patches = int(
(self.model_tester.image_size // self.model_tester.patch_size) ** 2
)
noise = np.random.uniform(size=(batch_size, num_patches))
processed_inputs["noise"] = torch.from_numpy(noise)
# TODO: test gradients as well (& for FA2 as well!)
with torch.no_grad():
with sdpa_kernel(
enable_flash=enable_kernels,
enable_math=True,
enable_mem_efficient=enable_kernels,
):
prepared_inputs = self._prepare_for_class(processed_inputs, model_class)
outputs_eager = model_eager(**prepared_inputs)
outputs_sdpa = model_sdpa(**prepared_inputs)
# Ignore copy
logits_eager = outputs_eager.audio_values
# Ignore copy
logits_sdpa = outputs_sdpa.audio_values
if torch_device in ["cpu", "cuda"]:
atol = atols[torch_device, enable_kernels, torch_dtype]
rtol = rtols[torch_device, enable_kernels, torch_dtype]
elif torch_device == "xpu":
# As of PyTorch 2.5 XPU backend supports only torch.nn.attention.SDPBackend.MATH
# which is implemented on PyTorch level using aten operators and is
# device agnostic with respect to implementation of each aten operator.
atol = atols["cuda", False, torch_dtype]
rtol = rtols["cuda", False, torch_dtype]
else:
atol = 1e-7
rtol = 1e-4
# Masked tokens output slightly deviates - we don't mind that.
if use_mask:
_logits_sdpa = torch.zeros_like(input=logits_sdpa)
_logits_eager = torch.zeros_like(input=logits_eager)
_logits_sdpa[:-1] = logits_sdpa[:-1]
_logits_eager[:-1] = logits_eager[:-1]
if padding_side == "left":
_logits_sdpa[-1:, 2:] = logits_sdpa[-1:, 2:]
_logits_eager[-1:, 2:] = logits_eager[-1:, 2:]
elif padding_side == "right":
_logits_sdpa[-1:, 2:] = logits_sdpa[-1:, :-2]
_logits_eager[-1:, 2:] = logits_eager[-1:, :-2]
logits_sdpa = _logits_sdpa
logits_eager = _logits_eager
results = [
torch.allclose(_logits_sdpa, _logits_eager, atol=atol, rtol=rtol)
for (_logits_sdpa, _logits_eager) in zip(logits_sdpa, logits_eager)
]
# If 80% batch elements have matched results, it's fine
if np.mean(results) < 0.8:
fail_cases.append(
get_mean_reldiff(failcase, logits_sdpa, logits_eager, atol, rtol)
)
self.assertTrue(len(fail_cases) == 0, "\n".join(fail_cases))
@require_flash_attn
@require_torch_gpu
@mark.flash_attn_test
@slow
@is_flaky()
def test_flash_attn_2_inference_equivalence(self):
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model_fa = model_class.from_pretrained(
tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
)
model_fa.to(torch_device)
model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.bfloat16)
model.to(torch_device)
dummy_input = inputs_dict[model.main_input_name][:1]
if dummy_input.dtype in [torch.float32, torch.float16]:
dummy_input = dummy_input.to(torch.bfloat16)
outputs = model(dummy_input)
outputs_fa = model_fa(dummy_input)
logits = outputs[1]
logits_fa = outputs_fa[1]
assert torch.allclose(logits_fa, logits, atol=4e-2, rtol=4e-2)
@unittest.skip(reason="The MimiModel does not support right padding")
def test_flash_attn_2_inference_equivalence_right_padding(self):
pass
@unittest.skip(reason="The MimiModel does not have support dynamic compile yet")
def test_sdpa_can_compile_dynamic(self):
pass
# Copied from transformers.tests.encodec.test_modeling_encodec.normalize
def normalize(arr):
norm = np.linalg.norm(arr)
normalized_arr = arr / norm
return normalized_arr
# Copied from transformers.tests.encodec.test_modeling_encodec.compute_rmse
def compute_rmse(arr1, arr2):
arr1_normalized = normalize(arr1)
arr2_normalized = normalize(arr2)
return np.sqrt(((arr1_normalized - arr2_normalized) ** 2).mean())
@slow
@require_torch
class MimiIntegrationTest(unittest.TestCase):
def test_integration_using_cache_decode(self):
expected_rmse = {
"8": 0.0018785292,
"32": 0.0012330565,
}
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
model_id = "kyutai/mimi"
model = MimiModel.from_pretrained(model_id, use_cache=True).to(torch_device)
processor = AutoFeatureExtractor.from_pretrained(model_id)
librispeech_dummy = librispeech_dummy.cast_column("audio", Audio(sampling_rate=processor.sampling_rate))
audio_sample = librispeech_dummy[-1]["audio"]["array"]
inputs = processor(
raw_audio=audio_sample,
sampling_rate=processor.sampling_rate,
return_tensors="pt",
).to(torch_device)
for num_codebooks, expected_rmse in expected_rmse.items():
with torch.no_grad():
# use max bandwith for best possible reconstruction
encoder_outputs = model.encode(inputs["input_values"], num_quantizers=int(num_codebooks))
audio_codes = encoder_outputs[0]
decoder_outputs_first_part = model.decode(audio_codes[:, :, : audio_codes.shape[2] // 2])
decoder_outputs_second_part = model.decode(
audio_codes[:, :, audio_codes.shape[2] // 2 :],
decoder_past_key_values=decoder_outputs_first_part.decoder_past_key_values,
)
audio_output_entire_context = model.decode(audio_codes)[0]
audio_output_concat_context = torch.cat(
[decoder_outputs_first_part[0], decoder_outputs_second_part[0]], dim=2
)
# make sure audios are more or less equal
# the RMSE of two random gaussian noise vectors with ~N(0, 1) is around 1.0
rmse = compute_rmse(
audio_output_concat_context.squeeze().cpu().numpy(),
audio_output_entire_context.squeeze().cpu().numpy(),
)
self.assertTrue(rmse < 1e-3)
def test_integration(self):
expected_rmses = {
"8": 0.0018785292,
"32": 0.0012330565,
}
expected_codesums = {
"8": 426176,
"32": 1795819,
}
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
model_id = "kyutai/mimi"
processor = AutoFeatureExtractor.from_pretrained(model_id)
librispeech_dummy = librispeech_dummy.cast_column("audio", Audio(sampling_rate=processor.sampling_rate))
audio_sample = librispeech_dummy[-1]["audio"]["array"]
inputs = processor(
raw_audio=audio_sample,
sampling_rate=processor.sampling_rate,
return_tensors="pt",
).to(torch_device)
for use_cache in [False, True]:
model = MimiModel.from_pretrained(model_id, use_cache=use_cache).to(torch_device)
for num_codebooks, expected_rmse in expected_rmses.items():
with torch.no_grad():
# use max bandwith for best possible reconstruction
encoder_outputs = model.encode(inputs["input_values"], num_quantizers=int(num_codebooks))
audio_code_sums = encoder_outputs[0].sum().cpu().item()
# make sure audio encoded codes are correct
# assert relative difference less than a threshold, because `audio_code_sums` varies a bit
# depending on torch version
self.assertTrue(
np.abs(audio_code_sums - expected_codesums[num_codebooks]) <= (3e-3 * audio_code_sums)
)
input_values_dec = model.decode(encoder_outputs[0], padding_mask=inputs["padding_mask"])[0]
input_values_enc_dec = model(
inputs["input_values"], inputs["padding_mask"], num_quantizers=int(num_codebooks)
)[1]
# make sure forward and decode gives same result
torch.testing.assert_close(input_values_dec, input_values_enc_dec)
# make sure shape matches
self.assertTrue(inputs["input_values"].shape == input_values_enc_dec.shape)
arr = inputs["input_values"][0].cpu().numpy()
arr_enc_dec = input_values_enc_dec[0].cpu().numpy()
# make sure audios are more or less equal
# the RMSE of two random gaussian noise vectors with ~N(0, 1) is around 1.0
rmse = compute_rmse(arr, arr_enc_dec)
self.assertTrue(np.abs(rmse - expected_rmse) < 1e-5)
| transformers/tests/models/mimi/test_modeling_mimi.py/0 | {
"file_path": "transformers/tests/models/mimi/test_modeling_mimi.py",
"repo_id": "transformers",
"token_count": 21775
} |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch Moonshine model."""
import copy
import unittest
from transformers import MoonshineConfig, is_torch_available
from transformers.testing_utils import cleanup, require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
ModelTesterMixin,
floats_tensor,
random_attention_mask,
)
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
AutoProcessor,
MoonshineForConditionalGeneration,
MoonshineModel,
)
from datasets import load_dataset
class MoonshineModelTester:
def __init__(
self,
parent,
batch_size=3, # need batch_size != num_hidden_layers
seq_length=1000,
is_training=False,
use_labels=False,
vocab_size=147,
hidden_size=8,
intermediate_size=32,
num_hidden_layers=2,
num_attention_heads=2,
num_key_value_heads=2,
encoder_hidden_act="gelu",
decoder_hidden_act="silu",
decoder_start_token_id=85,
bos_token_id=98,
eos_token_id=98,
pad_token_id=0,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.hidden_size = hidden_size
self.use_labels = use_labels
self.vocab_size = vocab_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.encoder_hidden_act = encoder_hidden_act
self.decoder_hidden_act = decoder_hidden_act
self.decoder_start_token_id = decoder_start_token_id
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
def prepare_config_and_inputs(self):
input_values = floats_tensor([self.batch_size, self.seq_length], scale=1.0)
attention_mask = random_attention_mask([self.batch_size, self.seq_length])
decoder_input_ids = torch.tensor(self.batch_size * [[self.decoder_start_token_id]], device=torch_device)
decoder_attention_mask = decoder_input_ids.ne(self.pad_token_id)
config = self.get_config()
return config, input_values, attention_mask, decoder_input_ids, decoder_attention_mask
def get_config(self):
return MoonshineConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
intermediate_size=self.intermediate_size,
encoder_num_hidden_layers=self.num_hidden_layers,
decoder_num_hidden_layers=self.num_hidden_layers,
encoder_num_attention_heads=self.num_attention_heads,
decoder_num_attention_heads=self.num_attention_heads,
encoder_num_key_value_heads=self.num_key_value_heads,
decoder_num_key_value_heads=self.num_key_value_heads,
encoder_hidden_act=self.encoder_hidden_act,
decoder_hidden_act=self.decoder_hidden_act,
decoder_start_token_id=self.decoder_start_token_id,
bos_token_id=self.bos_token_id,
eos_token_id=self.eos_token_id,
)
def create_and_check_model(self, config, input_values, attention_mask):
model = MoonshineModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_values, attention_mask=attention_mask)
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size)
)
def create_and_check_batch_inference(self, config, input_values, *args):
# test does not pass for models making use of `group_norm`
# check: https://github.com/pytorch/fairseq/issues/3227
model = MoonshineModel(config=config)
model.to(torch_device)
model.eval()
input_values = input_values[:3]
attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.bool)
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
# pad input
for i in range(len(input_lengths)):
input_values[i, input_lengths[i] :] = 0.0
attention_mask[i, input_lengths[i] :] = 0.0
batch_outputs = model(input_values, attention_mask=attention_mask).last_hidden_state
for i in range(input_values.shape[0]):
input_slice = input_values[i : i + 1, : input_lengths[i]]
output = model(input_slice).last_hidden_state
batch_output = batch_outputs[i : i + 1, : output.shape[1]]
self.parent.assertTrue(torch.allclose(output, batch_output, atol=1e-3))
def check_output_attentions(self, config, input_values, attention_mask):
model = MoonshineModel(config=config)
model.config.layerdrop = 1.0
model.to(torch_device)
model.train()
outputs = model(input_values, attention_mask=attention_mask, output_attentions=True)
self.parent.assertTrue(len(outputs.attentions) > 0)
def prepare_config_and_inputs_for_common(self):
config, input_values, attention_mask, decoder_input_ids, decoder_attention_mask = (
self.prepare_config_and_inputs()
)
inputs_dict = {
"input_values": input_values,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
}
return config, inputs_dict
@require_torch
class MoonshineModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (MoonshineModel, MoonshineForConditionalGeneration) if is_torch_available() else ()
pipeline_model_mapping = (
{
"automatic-speech-recognition": MoonshineForConditionalGeneration,
"feature-extraction": MoonshineModel,
}
if is_torch_available()
else {}
)
test_pruning = False
test_headmasking = False
def setUp(self):
self.model_tester = MoonshineModelTester(self)
self.config_tester = ConfigTester(self, config_class=MoonshineConfig)
def test_config(self):
self.config_tester.run_common_tests()
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
seq_len = getattr(self.model_tester, "seq_length", None)
decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", 1)
encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
decoder_key_length = getattr(self.model_tester, "decoder_key_length", 1)
encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.eval()
subsampled_encoder_seq_length = model._get_feat_extract_output_lengths(encoder_seq_length)
subsampled_encoder_key_length = model._get_feat_extract_output_lengths(encoder_key_length)
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, subsampled_encoder_seq_length, subsampled_encoder_key_length],
)
out_len = len(outputs)
correct_outlen = 5
# loss is at first position
if "labels" in inputs_dict:
correct_outlen += 1 # loss is added to beginning
if "past_key_values" in outputs:
correct_outlen += 1 # past_key_values have been returned
self.assertEqual(out_len, correct_outlen)
# decoder attentions
decoder_attentions = outputs.decoder_attentions
self.assertIsInstance(decoder_attentions, (list, tuple))
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(decoder_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
)
# cross attentions
cross_attentions = outputs.cross_attentions
self.assertIsInstance(cross_attentions, (list, tuple))
self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(cross_attentions[0].shape[-3:]),
[
self.model_tester.num_attention_heads,
decoder_seq_length,
subsampled_encoder_key_length,
],
)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
added_hidden_states = 2
self.assertEqual(out_len + added_hidden_states, len(outputs))
self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, subsampled_encoder_seq_length, subsampled_encoder_key_length],
)
# Copied from tests.models.whisper.test_modeling_whisper.WhisperModelTest.test_hidden_states_output
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
expected_num_layers = getattr(
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
)
self.assertEqual(len(hidden_states), expected_num_layers)
if hasattr(self.model_tester, "encoder_seq_length"):
seq_length = self.model_tester.encoder_seq_length
else:
seq_length = self.model_tester.seq_length
subsampled_seq_length = model._get_feat_extract_output_lengths(seq_length)
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[subsampled_seq_length, self.model_tester.hidden_size],
)
if config.is_encoder_decoder:
hidden_states = outputs.decoder_hidden_states
self.assertIsInstance(hidden_states, (list, tuple))
self.assertEqual(len(hidden_states), expected_num_layers)
decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", 1)
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[decoder_seq_length, self.model_tester.hidden_size],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
# Copied from tests.models.whisper.test_modeling_whisper.WhisperModelTest.test_inputs_embeds
def test_inputs_embeds(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
decoder_input_ids = inputs.pop("decoder_input_ids", None)
inputs.pop("decoder_attention_mask", None)
wte = model.get_input_embeddings()
inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
with torch.no_grad():
model(**inputs)[0]
# Copied from tests.models.whisper.test_modeling_whisper.WhisperModelTest.test_resize_tokens_embeddings
def test_resize_tokens_embeddings(self):
(
original_config,
inputs_dict,
) = self.model_tester.prepare_config_and_inputs_for_common()
if not self.test_resize_embeddings:
self.skipTest(reason="test_resize_embeddings is False")
for model_class in self.all_model_classes:
config = copy.deepcopy(original_config)
model = model_class(config)
model.to(torch_device)
if self.model_tester.is_training is False:
model.eval()
model_vocab_size = config.vocab_size
# Retrieve the embeddings and clone theme
model_embed = model.resize_token_embeddings(model_vocab_size)
cloned_embeddings = model_embed.weight.clone()
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
model_embed = model.resize_token_embeddings(model_vocab_size + 10)
self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
# Check that it actually resizes the embeddings matrix
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
model(**self._prepare_for_class(inputs_dict, model_class))
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
model_embed = model.resize_token_embeddings(model_vocab_size - 15)
self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
# Check that it actually resizes the embeddings matrix
self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)
# make sure that decoder_input_ids are resized
if "decoder_input_ids" in inputs_dict:
inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
model(**self._prepare_for_class(inputs_dict, model_class))
# Check that adding and removing tokens has not modified the first part of the embedding matrix.
models_equal = True
for p1, p2 in zip(cloned_embeddings, model_embed.weight):
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
# Copied from tests.models.whisper.test_modeling_whisper.WhisperModelTest.test_resize_embeddings_untied
def test_resize_embeddings_untied(self):
(
original_config,
inputs_dict,
) = self.model_tester.prepare_config_and_inputs_for_common()
if not self.test_resize_embeddings:
self.skipTest(reason="test_resize_embeddings is False")
original_config.tie_word_embeddings = False
# if model cannot untied embeddings -> leave test
if original_config.tie_word_embeddings:
self.skipTest(reason="Model cannot untie embeddings")
for model_class in self.all_model_classes:
config = copy.deepcopy(original_config)
model = model_class(config).to(torch_device)
# if no output embeddings -> leave test
if model.get_output_embeddings() is None:
continue
# Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
model_vocab_size = config.vocab_size
model.resize_token_embeddings(model_vocab_size + 10)
self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
output_embeds = model.get_output_embeddings()
self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
# Check bias if present
if output_embeds.bias is not None:
self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
model(**self._prepare_for_class(inputs_dict, model_class))
# Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
model.resize_token_embeddings(model_vocab_size - 15)
self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
# Check that it actually resizes the embeddings matrix
output_embeds = model.get_output_embeddings()
self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
# Check bias if present
if output_embeds.bias is not None:
self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
if "decoder_input_ids" in inputs_dict:
inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
# Check that the model can still do a forward pass successfully (every parameter should be resized)
model(**self._prepare_for_class(inputs_dict, model_class))
@require_torch
class MoonshineModelIntegrationTests(unittest.TestCase):
def setUp(self):
self.processor_tiny = AutoProcessor.from_pretrained("UsefulSensors/moonshine-tiny")
self.processor_base = AutoProcessor.from_pretrained("UsefulSensors/moonshine-base")
def tearDown(self):
cleanup(torch_device, gc_collect=True)
def _load_datasamples(self, num_samples):
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
# automatic decoding with librispeech
speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"]
return [x["array"] for x in speech_samples]
@slow
def test_tiny_logits_single(self):
model = MoonshineForConditionalGeneration.from_pretrained("UsefulSensors/moonshine-tiny")
model.to(torch_device)
inputs = self.processor_tiny(self._load_datasamples(1), return_tensors="pt")
inputs.to(torch_device)
outputs = model.generate(**inputs, max_new_tokens=1, return_dict_in_generate=True, output_logits=True)
# fmt: off
EXPECTED_LOGITS = torch.tensor([
-9.1106, 4.5542, 6.3892, -6.8139, -7.2456, -7.9074, -7.2839, -7.6043, -8.0384, -7.8351,
-7.3867, -7.2450, -7.7420, -7.3912, -7.3866, -7.6979, -7.6420, -7.0504, -7.3979, -7.2483,
-8.0796, -7.3300, -7.3672, -6.8765, -7.6876, -7.2682, -6.9866, -6.7457, -7.6855, -7.3050,
])
# fmt: on
torch.testing.assert_close(outputs.logits[0][0, :30].cpu(), EXPECTED_LOGITS, rtol=1e-4, atol=1e-4)
@slow
def test_base_logits_single(self):
model = MoonshineForConditionalGeneration.from_pretrained("UsefulSensors/moonshine-base")
model.to(torch_device)
inputs = self.processor_base(self._load_datasamples(1), return_tensors="pt")
inputs.to(torch_device)
outputs = model.generate(**inputs, max_new_tokens=1, return_dict_in_generate=True, output_logits=True)
# fmt: off
EXPECTED_LOGITS = torch.tensor([
-6.7336, 1.9482, 5.2448, -8.0277, -7.9167, -7.8956, -7.9649, -7.9348, -8.1312, -8.0616,
-8.1070, -7.7696, -7.8809, -7.9450, -8.1013, -7.8177, -7.8598, -7.8257, -7.8729, -7.9657,
-7.9310, -8.1024, -7.8699, -7.8231, -8.0752, -7.9764, -7.8127, -8.0536, -7.9492, -7.9290,
])
# fmt: on
torch.testing.assert_close(outputs.logits[0][0, :30].cpu(), EXPECTED_LOGITS, rtol=1e-4, atol=1e-4)
@slow
def test_tiny_logits_batch(self):
model = MoonshineForConditionalGeneration.from_pretrained("UsefulSensors/moonshine-tiny")
model.to(torch_device)
inputs = self.processor_tiny(self._load_datasamples(4), return_tensors="pt", padding=True)
inputs.to(torch_device)
outputs = model.generate(**inputs, max_new_tokens=1, return_dict_in_generate=True, output_logits=True)
# fmt: off
EXPECTED_LOGITS = torch.tensor([
[-8.0109, 5.0241, 4.5979, -6.8125, -7.1675, -7.8783, -7.2152, -7.5188, -7.9077, -7.7394],
[-4.4399, -1.4422, 6.6710, -6.8929, -7.3751, -7.0969, -6.5257, -7.0257, -7.2585, -7.0008],
[-10.0086, 3.2859, 0.7345, -6.5557, -6.8514, -6.5308, -6.4172, -6.9484, -6.6214, -6.6229],
[-10.8078, 4.0030, -0.0633, -5.0505, -5.3906, -5.4590, -5.2420, -5.4746, -5.2665, -5.3158]
])
# fmt: on
torch.testing.assert_close(outputs.logits[0][:, :10].cpu(), EXPECTED_LOGITS, rtol=1e-4, atol=1e-4)
@slow
def test_base_logits_batch(self):
model = MoonshineForConditionalGeneration.from_pretrained("UsefulSensors/moonshine-base")
model.to(torch_device)
inputs = self.processor_base(self._load_datasamples(4), return_tensors="pt", padding=True)
inputs.to(torch_device)
outputs = model.generate(**inputs, max_new_tokens=1, return_dict_in_generate=True, output_logits=True)
# fmt: off
EXPECTED_LOGITS = torch.tensor([
[-7.7272, 1.4630, 5.2294, -7.7313, -7.6252, -7.6011, -7.6788, -7.6441, -7.8452, -7.7549],
[-6.2173, -0.5891, 7.9493, -7.0694, -6.9997, -6.9982, -7.0953, -7.0831, -7.1686, -7.0137],
[-7.3184, 3.1192, 3.8937, -5.7206, -5.8428, -5.7609, -5.9996, -5.8212, -5.8615, -5.8719],
[-9.5475, 1.0146, 4.1179, -5.9971, -6.0614, -6.0329, -6.2103, -6.0318, -6.0789, -6.0873]
])
# fmt: on
torch.testing.assert_close(outputs.logits[0][:, :10].cpu(), EXPECTED_LOGITS, rtol=1e-4, atol=1e-4)
@slow
def test_tiny_generation_single(self):
model = MoonshineForConditionalGeneration.from_pretrained("UsefulSensors/moonshine-tiny")
model.to(torch_device)
audio_array = self._load_datasamples(1)
inputs = self.processor_tiny(audio_array, return_tensors="pt")
inputs.to(torch_device)
generated_ids = model.generate(**inputs, max_new_tokens=20)
transcript = self.processor_tiny.batch_decode(generated_ids, skip_special_tokens=True)[0]
EXPECTED_TRANSCRIPT = "Mr. Quilter is the apostle of the middle classes, and we are glad to welcome"
self.assertEqual(transcript, EXPECTED_TRANSCRIPT)
@slow
def test_base_generation_single(self):
model = MoonshineForConditionalGeneration.from_pretrained("UsefulSensors/moonshine-base")
model.to(torch_device)
audio_array = self._load_datasamples(1)
inputs = self.processor_base(audio_array, return_tensors="pt")
inputs.to(torch_device)
generated_ids = model.generate(**inputs, max_new_tokens=20)
transcript = self.processor_base.batch_decode(generated_ids, skip_special_tokens=True)[0]
EXPECTED_TRANSCRIPT = "Mr. Quilter is the apostle of the middle classes, and we are glad to welcome"
self.assertEqual(transcript, EXPECTED_TRANSCRIPT)
@slow
def test_tiny_generation_batch(self):
model = MoonshineForConditionalGeneration.from_pretrained("UsefulSensors/moonshine-tiny")
model.to(torch_device)
audio_array = self._load_datasamples(4)
inputs = self.processor_tiny(audio_array, return_tensors="pt", padding=True)
inputs.to(torch_device)
generated_ids = model.generate(**inputs, max_new_tokens=20)
transcript = self.processor_tiny.batch_decode(generated_ids, skip_special_tokens=True)
# fmt: off
EXPECTED_TRANSCRIPT = [
"Mr. Quilter is the apostle of the middle classes, and we are glad to welcome",
"Nor is Mr. Quilter's manner less interesting than his matter.",
"He tells us that at this festive season of the year, with Christmas and Rose beef lo",
"He has grave doubts whether Sir Frederick Layton's work is really Greek after all,",
]
# fmt: on
self.assertListEqual(transcript, EXPECTED_TRANSCRIPT)
@slow
def test_base_generation_batch(self):
model = MoonshineForConditionalGeneration.from_pretrained("UsefulSensors/moonshine-base")
model.to(torch_device)
audio_array = self._load_datasamples(4)
inputs = self.processor_base(audio_array, return_tensors="pt", padding=True)
inputs.to(torch_device)
generated_ids = model.generate(**inputs, max_new_tokens=20)
transcript = self.processor_base.batch_decode(generated_ids, skip_special_tokens=True)
# fmt: off
EXPECTED_TRANSCRIPT = [
"Mr. Quilter is the apostle of the middle classes, and we are glad to welcome",
"Nor is Mr. Quilter's manner less interesting than his matter.",
"He tells us that at this festive season of the year, with Christmas and rose beef lo",
"He has grave doubts whether Sir Frederick Layton's work is really Greek after all,",
]
# fmt: on
self.assertListEqual(transcript, EXPECTED_TRANSCRIPT)
| transformers/tests/models/moonshine/test_modeling_moonshine.py/0 | {
"file_path": "transformers/tests/models/moonshine/test_modeling_moonshine.py",
"repo_id": "transformers",
"token_count": 12733
} |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch Pop2Piano model."""
import copy
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers import Pop2PianoConfig
from transformers.feature_extraction_utils import BatchFeature
from transformers.testing_utils import (
require_essentia,
require_librosa,
require_onnx,
require_scipy,
require_torch,
slow,
torch_device,
)
from transformers.utils import is_essentia_available, is_librosa_available, is_scipy_available, is_torch_available
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import Pop2PianoForConditionalGeneration
@require_torch
class Pop2PianoModelTester:
def __init__(
self,
parent,
vocab_size=99,
batch_size=13,
encoder_seq_length=7,
decoder_seq_length=9,
# For common tests
is_training=False,
use_attention_mask=True,
use_labels=True,
hidden_size=64,
num_hidden_layers=5,
num_attention_heads=4,
d_ff=37,
relative_attention_num_buckets=8,
dropout_rate=0.1,
initializer_factor=0.002,
eos_token_id=1,
pad_token_id=0,
decoder_start_token_id=0,
scope=None,
decoder_layers=None,
):
self.parent = parent
self.batch_size = batch_size
self.encoder_seq_length = encoder_seq_length
self.decoder_seq_length = decoder_seq_length
# For common tests
self.seq_length = self.decoder_seq_length
self.is_training = is_training
self.use_attention_mask = use_attention_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.d_ff = d_ff
self.relative_attention_num_buckets = relative_attention_num_buckets
self.dropout_rate = dropout_rate
self.initializer_factor = initializer_factor
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.decoder_start_token_id = decoder_start_token_id
self.scope = None
self.decoder_layers = decoder_layers
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size)
decoder_input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
attention_mask = None
decoder_attention_mask = None
if self.use_attention_mask:
attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2)
decoder_attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2)
lm_labels = (
ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) if self.use_labels else None
)
return self.get_config(), input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, lm_labels
def get_pipeline_config(self):
return Pop2PianoConfig(
vocab_size=166, # Pop2Piano forces 100 extra tokens
d_model=self.hidden_size,
d_ff=self.d_ff,
d_kv=self.hidden_size // self.num_attention_heads,
num_layers=self.num_hidden_layers,
num_decoder_layers=self.decoder_layers,
num_heads=self.num_attention_heads,
relative_attention_num_buckets=self.relative_attention_num_buckets,
dropout_rate=self.dropout_rate,
initializer_factor=self.initializer_factor,
eos_token_id=self.eos_token_id,
bos_token_id=self.pad_token_id,
pad_token_id=self.pad_token_id,
decoder_start_token_id=self.decoder_start_token_id,
)
def get_config(self):
return Pop2PianoConfig(
vocab_size=self.vocab_size,
d_model=self.hidden_size,
d_ff=self.d_ff,
d_kv=self.hidden_size // self.num_attention_heads,
num_layers=self.num_hidden_layers,
num_decoder_layers=self.decoder_layers,
num_heads=self.num_attention_heads,
relative_attention_num_buckets=self.relative_attention_num_buckets,
dropout_rate=self.dropout_rate,
initializer_factor=self.initializer_factor,
eos_token_id=self.eos_token_id,
bos_token_id=self.pad_token_id,
pad_token_id=self.pad_token_id,
decoder_start_token_id=self.decoder_start_token_id,
)
def check_prepare_lm_labels_via_shift_left(
self,
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
):
model = Pop2PianoForConditionalGeneration(config=config)
model.to(torch_device)
model.eval()
# make sure that lm_labels are correctly padded from the right
lm_labels.masked_fill_((lm_labels == self.decoder_start_token_id), self.eos_token_id)
# add causal pad token mask
triangular_mask = torch.tril(lm_labels.new_ones(lm_labels.shape)).logical_not()
lm_labels.masked_fill_(triangular_mask, self.pad_token_id)
decoder_input_ids = model._shift_right(lm_labels)
for i, (decoder_input_ids_slice, lm_labels_slice) in enumerate(zip(decoder_input_ids, lm_labels)):
# first item
self.parent.assertEqual(decoder_input_ids_slice[0].item(), self.decoder_start_token_id)
if i < decoder_input_ids_slice.shape[-1]:
if i < decoder_input_ids.shape[-1] - 1:
# items before diagonal
self.parent.assertListEqual(
decoder_input_ids_slice[1 : i + 1].tolist(), lm_labels_slice[:i].tolist()
)
# pad items after diagonal
if i < decoder_input_ids.shape[-1] - 2:
self.parent.assertListEqual(
decoder_input_ids_slice[i + 2 :].tolist(), lm_labels_slice[i + 1 : -1].tolist()
)
else:
# all items after square
self.parent.assertListEqual(decoder_input_ids_slice[1:].tolist(), lm_labels_slice[:-1].tolist())
def create_and_check_model(
self,
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
):
model = Pop2PianoForConditionalGeneration(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids=input_ids,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
)
result = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
decoder_past = result.past_key_values
encoder_output = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size(), (self.batch_size, self.encoder_seq_length, self.hidden_size))
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(decoder_past), config.num_layers)
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0]), 4)
def create_and_check_with_lm_head(
self,
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
):
model = Pop2PianoForConditionalGeneration(config=config).to(torch_device).eval()
outputs = model(
input_ids=input_ids,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
labels=lm_labels,
)
self.parent.assertEqual(len(outputs), 4)
self.parent.assertEqual(outputs["logits"].size(), (self.batch_size, self.decoder_seq_length, self.vocab_size))
self.parent.assertEqual(outputs["loss"].size(), ())
def create_and_check_decoder_model_past(
self,
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
):
model = Pop2PianoForConditionalGeneration(config=config).get_decoder().to(torch_device).eval()
# first forward pass
outputs = model(input_ids, use_cache=True)
outputs_use_cache_conf = model(input_ids)
outputs_no_past = model(input_ids, use_cache=False)
self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)
output, past_key_values = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
output_from_no_past = model(next_input_ids)["last_hidden_state"]
output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def create_and_check_decoder_model_attention_mask_past(
self,
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
):
model = Pop2PianoForConditionalGeneration(config=config).get_decoder()
model.to(torch_device)
model.eval()
# create attention mask
attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
half_seq_length = input_ids.shape[-1] // 2
attn_mask[:, half_seq_length:] = 0
# first forward pass
output, past_key_values = model(input_ids, attention_mask=attn_mask, use_cache=True).to_tuple()
# create hypothetical next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
# change a random masked slice from input_ids
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1
random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1)
input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens
# append to next input_ids and attn_mask
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
attn_mask = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)],
dim=1,
)
# get two different outputs
output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"]
output_from_past = model(next_tokens, past_key_values=past_key_values, attention_mask=attn_mask)[
"last_hidden_state"
]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def create_and_check_decoder_model_past_large_inputs(
self,
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
):
model = Pop2PianoForConditionalGeneration(config=config).get_decoder().to(torch_device).eval()
# first forward pass
outputs = model(input_ids, attention_mask=attention_mask, use_cache=True)
output, past_key_values = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([attention_mask, next_mask], dim=-1)
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"]
output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[
"last_hidden_state"
]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def create_and_check_generate_with_past_key_values(
self,
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
):
model = Pop2PianoForConditionalGeneration(config=config).to(torch_device).eval()
torch.manual_seed(0)
output_without_past_cache = model.generate(
input_ids[:1], num_beams=2, max_length=5, do_sample=True, use_cache=False
)
torch.manual_seed(0)
output_with_past_cache = model.generate(input_ids[:1], num_beams=2, max_length=5, do_sample=True)
self.parent.assertTrue(torch.all(output_with_past_cache == output_without_past_cache))
def create_and_check_model_fp16_forward(
self,
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
):
model = Pop2PianoForConditionalGeneration(config=config).to(torch_device).half().eval()
output = model(input_ids, decoder_input_ids=input_ids, attention_mask=attention_mask)[
"encoder_last_hidden_state"
]
self.parent.assertFalse(torch.isnan(output).any().item())
def create_and_check_encoder_decoder_shared_weights(
self,
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
):
for model_class in [Pop2PianoForConditionalGeneration]:
torch.manual_seed(0)
model = model_class(config=config).to(torch_device).eval()
# load state dict copies weights but does not tie them
model.encoder.load_state_dict(model.decoder.state_dict(), strict=False)
torch.manual_seed(0)
tied_config = copy.deepcopy(config)
tied_config.tie_encoder_decoder = True
tied_model = model_class(config=tied_config).to(torch_device).eval()
model_result = model(
input_ids=input_ids,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
)
tied_model_result = tied_model(
input_ids=input_ids,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
)
# check that models has less parameters
self.parent.assertLess(
sum(p.numel() for p in tied_model.parameters()), sum(p.numel() for p in model.parameters())
)
random_slice_idx = ids_tensor((1,), model_result[0].shape[-1]).item()
# check that outputs are equal
self.parent.assertTrue(
torch.allclose(
model_result[0][0, :, random_slice_idx], tied_model_result[0][0, :, random_slice_idx], atol=1e-4
)
)
# check that outputs after saving and loading are equal
with tempfile.TemporaryDirectory() as tmpdirname:
tied_model.save_pretrained(tmpdirname)
tied_model = model_class.from_pretrained(tmpdirname)
tied_model.to(torch_device)
tied_model.eval()
# check that models has less parameters
self.parent.assertLess(
sum(p.numel() for p in tied_model.parameters()), sum(p.numel() for p in model.parameters())
)
random_slice_idx = ids_tensor((1,), model_result[0].shape[-1]).item()
tied_model_result = tied_model(
input_ids=input_ids,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
)
# check that outputs are equal
self.parent.assertTrue(
torch.allclose(
model_result[0][0, :, random_slice_idx],
tied_model_result[0][0, :, random_slice_idx],
atol=1e-4,
)
)
def check_resize_embeddings_pop2piano_v1_1(
self,
config,
):
prev_vocab_size = config.vocab_size
config.tie_word_embeddings = False
model = Pop2PianoForConditionalGeneration(config=config).to(torch_device).eval()
model.resize_token_embeddings(prev_vocab_size - 10)
self.parent.assertEqual(model.get_input_embeddings().weight.shape[0], prev_vocab_size - 10)
self.parent.assertEqual(model.get_output_embeddings().weight.shape[0], prev_vocab_size - 10)
self.parent.assertEqual(model.config.vocab_size, prev_vocab_size - 10)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"use_cache": False,
}
return config, inputs_dict
@require_torch
class Pop2PianoModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (Pop2PianoForConditionalGeneration,) if is_torch_available() else ()
all_generative_model_classes = ()
pipeline_model_mapping = (
{"automatic-speech-recognition": Pop2PianoForConditionalGeneration} if is_torch_available() else {}
)
all_parallelizable_model_classes = ()
fx_compatible = False
test_pruning = False
test_resize_embeddings = True
test_model_parallel = False
is_encoder_decoder = True
def setUp(self):
self.model_tester = Pop2PianoModelTester(self)
self.config_tester = ConfigTester(self, config_class=Pop2PianoConfig, d_model=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_shift_right(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_prepare_lm_labels_via_shift_left(*config_and_inputs)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_v1_1(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
# check that gated gelu feed forward and different word embeddings work
config = config_and_inputs[0]
config.tie_word_embeddings = False
config.feed_forward_proj = "gated-gelu"
self.model_tester.create_and_check_model(config, *config_and_inputs[1:])
def test_config_and_model_silu_gated(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
config = config_and_inputs[0]
config.feed_forward_proj = "gated-silu"
self.model_tester.create_and_check_model(*config_and_inputs)
def test_with_lm_head(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_with_lm_head(*config_and_inputs)
def test_decoder_model_past(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past(*config_and_inputs)
def test_decoder_model_past_with_attn_mask(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_attention_mask_past(*config_and_inputs)
def test_decoder_model_past_with_3d_attn_mask(self):
(
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
) = self.model_tester.prepare_config_and_inputs()
attention_mask = ids_tensor(
[self.model_tester.batch_size, self.model_tester.encoder_seq_length, self.model_tester.encoder_seq_length],
vocab_size=2,
)
decoder_attention_mask = ids_tensor(
[self.model_tester.batch_size, self.model_tester.decoder_seq_length, self.model_tester.decoder_seq_length],
vocab_size=2,
)
self.model_tester.create_and_check_decoder_model_attention_mask_past(
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
)
def test_decoder_model_past_with_large_inputs(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
def test_encoder_decoder_shared_weights(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_encoder_decoder_shared_weights(*config_and_inputs)
@unittest.skipIf(torch_device == "cpu", "Cant do half precision")
def test_model_fp16_forward(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fp16_forward(*config_and_inputs)
def test_v1_1_resize_embeddings(self):
config = self.model_tester.prepare_config_and_inputs()[0]
self.model_tester.check_resize_embeddings_pop2piano_v1_1(config)
@slow
def test_model_from_pretrained(self):
model_name = "sweetcocoa/pop2piano"
model = Pop2PianoForConditionalGeneration.from_pretrained(model_name)
self.assertIsNotNone(model)
@require_onnx
def test_export_to_onnx(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
model = Pop2PianoForConditionalGeneration(config_and_inputs[0]).to(torch_device)
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
model,
(config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]),
f"{tmpdirname}/Pop2Piano_test.onnx",
export_params=True,
opset_version=14,
input_names=["input_ids", "decoder_input_ids"],
)
def test_pass_with_input_features(self):
input_features = BatchFeature(
{
"input_features": torch.rand((75, 100, 512)).type(torch.float32),
"beatsteps": torch.randint(size=(1, 955), low=0, high=100).type(torch.float32),
"extrapolated_beatstep": torch.randint(size=(1, 900), low=0, high=100).type(torch.float32),
}
)
model = Pop2PianoForConditionalGeneration.from_pretrained("sweetcocoa/pop2piano")
model_opts = model.generate(input_features=input_features["input_features"], return_dict_in_generate=True)
self.assertEqual(model_opts.sequences.ndim, 2)
def test_pass_with_batched_input_features(self):
input_features = BatchFeature(
{
"input_features": torch.rand((220, 70, 512)).type(torch.float32),
"beatsteps": torch.randint(size=(5, 955), low=0, high=100).type(torch.float32),
"extrapolated_beatstep": torch.randint(size=(5, 900), low=0, high=100).type(torch.float32),
"attention_mask": torch.concatenate(
[
torch.ones([120, 70], dtype=torch.int32),
torch.zeros([1, 70], dtype=torch.int32),
torch.ones([50, 70], dtype=torch.int32),
torch.zeros([1, 70], dtype=torch.int32),
torch.ones([47, 70], dtype=torch.int32),
torch.zeros([1, 70], dtype=torch.int32),
],
axis=0,
),
"attention_mask_beatsteps": torch.ones((5, 955)).type(torch.int32),
"attention_mask_extrapolated_beatstep": torch.ones((5, 900)).type(torch.int32),
}
)
model = Pop2PianoForConditionalGeneration.from_pretrained("sweetcocoa/pop2piano")
model_opts = model.generate(
input_features=input_features["input_features"],
attention_mask=input_features["attention_mask"],
return_dict_in_generate=True,
)
self.assertEqual(model_opts.sequences.ndim, 2)
@require_torch
class Pop2PianoModelIntegrationTests(unittest.TestCase):
@slow
def test_mel_conditioner_integration(self):
composer = "composer1"
model = Pop2PianoForConditionalGeneration.from_pretrained("sweetcocoa/pop2piano")
input_embeds = torch.ones([10, 100, 512])
composer_value = model.generation_config.composer_to_feature_token[composer]
composer_value = torch.tensor(composer_value)
composer_value = composer_value.repeat(input_embeds.size(0))
outputs = model.mel_conditioner(
input_embeds, composer_value, min(model.generation_config.composer_to_feature_token.values())
)
# check shape
self.assertEqual(outputs.size(), torch.Size([10, 101, 512]))
# check values
EXPECTED_OUTPUTS = torch.tensor(
[[1.0475305318832397, 0.29052114486694336, -0.47778210043907166], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]
)
torch.testing.assert_close(outputs[0, :3, :3], EXPECTED_OUTPUTS, rtol=1e-4, atol=1e-4)
@slow
@require_essentia
@require_librosa
@require_scipy
def test_full_model_integration(self):
if is_librosa_available() and is_scipy_available() and is_essentia_available() and is_torch_available():
from transformers import Pop2PianoProcessor
speech_input1 = np.zeros([1_000_000], dtype=np.float32)
sampling_rate = 44_100
processor = Pop2PianoProcessor.from_pretrained("sweetcocoa/pop2piano")
input_features = processor.feature_extractor(
speech_input1, sampling_rate=sampling_rate, return_tensors="pt"
)
model = Pop2PianoForConditionalGeneration.from_pretrained("sweetcocoa/pop2piano")
outputs = model.generate(
input_features=input_features["input_features"], return_dict_in_generate=True
).sequences
# check for shapes
self.assertEqual(outputs.size(0), 70)
# check for values
self.assertEqual(outputs[0, :2].detach().cpu().numpy().tolist(), [0, 1])
# This is the test for a real music from K-Pop genre.
@slow
@require_essentia
@require_librosa
@require_scipy
def test_real_music(self):
if is_librosa_available() and is_scipy_available() and is_essentia_available() and is_torch_available():
from transformers import Pop2PianoFeatureExtractor, Pop2PianoTokenizer
model = Pop2PianoForConditionalGeneration.from_pretrained("sweetcocoa/pop2piano")
model.eval()
feature_extractor = Pop2PianoFeatureExtractor.from_pretrained("sweetcocoa/pop2piano")
tokenizer = Pop2PianoTokenizer.from_pretrained("sweetcocoa/pop2piano")
ds = load_dataset("sweetcocoa/pop2piano_ci", split="test")
output_fe = feature_extractor(
ds["audio"][0]["array"], sampling_rate=ds["audio"][0]["sampling_rate"], return_tensors="pt"
)
output_model = model.generate(input_features=output_fe["input_features"], composer="composer1")
output_tokenizer = tokenizer.batch_decode(token_ids=output_model, feature_extractor_output=output_fe)
pretty_midi_object = output_tokenizer["pretty_midi_objects"][0]
# Checking if no of notes are same
self.assertEqual(len(pretty_midi_object.instruments[0].notes), 59)
predicted_timings = []
for i in pretty_midi_object.instruments[0].notes:
predicted_timings.append(i.start)
# Checking note start timings(first 6)
EXPECTED_START_TIMINGS = [
0.4876190423965454,
0.7314285635948181,
0.9752380847930908,
1.4396371841430664,
1.6718367338180542,
1.904036283493042,
]
np.allclose(EXPECTED_START_TIMINGS, predicted_timings[:6])
# Checking note end timings(last 6)
EXPECTED_END_TIMINGS = [
12.341403007507324,
12.567797183990479,
12.567797183990479,
12.567797183990479,
12.794191360473633,
12.794191360473633,
]
np.allclose(EXPECTED_END_TIMINGS, predicted_timings[-6:])
| transformers/tests/models/pop2piano/test_modeling_pop2piano.py/0 | {
"file_path": "transformers/tests/models/pop2piano/test_modeling_pop2piano.py",
"repo_id": "transformers",
"token_count": 15020
} |
# coding=utf-8
# Copyright 2025 The Qwen Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch Qwen2.5-VL model."""
import gc
import unittest
import requests
from transformers import (
AutoProcessor,
Qwen2_5_VLConfig,
Qwen2_5_VLForConditionalGeneration,
is_torch_available,
is_vision_available,
)
from transformers.testing_utils import (
require_flash_attn,
require_torch,
require_torch_gpu,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
ModelTesterMixin,
_config_zero_init,
floats_tensor,
ids_tensor,
)
if is_torch_available():
import torch
else:
is_torch_greater_or_equal_than_2_0 = False
if is_vision_available():
from PIL import Image
class Qwen2_5_VLVisionText2TextModelTester:
def __init__(
self,
parent,
batch_size=3,
seq_length=7,
num_channels=3,
ignore_index=-100,
image_size=14,
bos_token_id=0,
eos_token_id=1,
pad_token_id=2,
vision_start_token_id=3,
image_token_id=4,
video_token_id=5,
hidden_act="silu",
hidden_size=32,
vocab_size=99,
intermediate_size=37,
max_position_embeddings=512,
max_window_layers=3,
model_type="qwen2_5_vl",
num_attention_heads=4,
num_hidden_layers=4,
num_key_value_heads=2,
rope_theta=10000,
tie_word_embeddings=True,
is_training=True,
vision_config={
"depth": 2,
"in_chans": 3,
"hidden_act": "silu",
"intermediate_size": 32,
"out_hidden_size": 32,
"hidden_size": 32,
"num_heads": 4,
"patch_size": 14,
"spatial_patch_size": 14,
"spatial_merge_size": 1,
"temporal_patch_size": 2,
},
rope_scaling={"type": "mrope", "mrope_section": [2, 1, 1]},
):
self.parent = parent
self.ignore_index = ignore_index
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.vision_start_token_id = vision_start_token_id
self.image_token_id = image_token_id
self.video_token_id = video_token_id
self.hidden_act = hidden_act
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.max_position_embeddings = max_position_embeddings
self.max_window_layers = max_window_layers
self.model_type = model_type
self.num_attention_heads = num_attention_heads
self.num_hidden_layers = num_hidden_layers
self.num_key_value_heads = num_key_value_heads
self.rope_theta = rope_theta
self.tie_word_embeddings = tie_word_embeddings
self.vision_config = vision_config
self.rope_scaling = rope_scaling
self.batch_size = batch_size
self.num_channels = num_channels
self.image_size = image_size
self.is_training = is_training
self.vocab_size = vocab_size
self.num_image_tokens = 32
self.seq_length = seq_length + self.num_image_tokens
def get_config(self):
return Qwen2_5_VLConfig(
hidden_size=self.hidden_size,
intermediate_size=self.intermediate_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
num_key_value_heads=self.num_key_value_heads,
hidden_act=self.hidden_act,
max_position_embeddings=self.max_position_embeddings,
vision_config=self.vision_config,
model_type=self.model_type,
max_window_layers=self.max_window_layers,
rope_scaling=self.rope_scaling,
tie_word_embeddings=self.tie_word_embeddings,
bos_token_id=self.bos_token_id,
eos_token_id=self.eos_token_id,
pad_token_id=self.pad_token_id,
vision_start_token_id=self.vision_start_token_id,
image_token_id=self.image_token_id,
video_token_id=self.video_token_id,
vocab_size=self.vocab_size,
)
def prepare_config_and_inputs(self):
config = self.get_config()
patch_size = config.vision_config.patch_size
temporal_patch_size = config.vision_config.temporal_patch_size
pixel_values = floats_tensor(
[
self.batch_size * (self.image_size**2) // (patch_size**2),
self.num_channels * (patch_size**2) * temporal_patch_size,
]
)
return config, pixel_values
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
input_ids[:, -1] = self.pad_token_id
input_ids[input_ids == self.video_token_id] = self.pad_token_id
input_ids[input_ids == self.image_token_id] = self.pad_token_id
input_ids[:, self.num_image_tokens] = self.image_token_id
labels = torch.zeros(
(self.batch_size, self.seq_length),
dtype=torch.long,
device=torch_device,
)
inputs_dict = {
"pixel_values": pixel_values,
"image_grid_thw": torch.tensor([[1, 1, 1]] * self.batch_size),
"input_ids": input_ids,
"attention_mask": attention_mask,
"labels": labels,
}
return config, inputs_dict
def create_and_check_qwen2_5_vl_model_fp16_forward(
self, config, input_ids, pixel_values, attention_mask, image_grid_thw
):
model = Qwen2_5_VLForConditionalGeneration(config=config)
model.to(torch_device)
model.half()
model.eval()
logits = model(
input_ids=input_ids,
attention_mask=attention_mask,
image_grid_thw=image_grid_thw,
pixel_values=pixel_values.to(torch.bfloat16),
return_dict=True,
)["logits"]
self.parent.assertFalse(torch.isnan(logits).any().item())
def create_and_check_qwen2_5_vl_model_fp16_autocast_forward(
self, config, input_ids, pixel_values, attention_mask, image_grid_thw
):
config.torch_dtype = torch.float16
model = Qwen2_5_VLForConditionalGeneration(config=config)
model.to(torch_device)
model.eval()
with torch.autocast(device_type="cuda", dtype=torch.float16):
logits = model(
input_ids=input_ids,
attention_mask=attention_mask,
image_grid_thw=image_grid_thw,
pixel_values=pixel_values.to(torch.bfloat16),
return_dict=True,
)["logits"]
self.parent.assertFalse(torch.isnan(logits).any().item())
@require_torch
class Qwen2_5_VLModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
"""
Model tester for `Qwen2_5_VLForConditionalGeneration`.
"""
all_model_classes = (Qwen2_5_VLForConditionalGeneration,) if is_torch_available() else ()
all_generative_model_classes = (Qwen2_5_VLForConditionalGeneration,) if is_torch_available() else ()
test_pruning = False
test_head_masking = False
def setUp(self):
self.model_tester = Qwen2_5_VLVisionText2TextModelTester(self)
self.config_tester = ConfigTester(self, config_class=Qwen2_5_VLConfig, has_text_modality=False)
def test_config(self):
self.config_tester.run_common_tests()
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
def test_mismatching_num_image_tokens(self):
"""
Tests that VLMs through an error with explicit message saying what is wrong
when number of images don't match number of image tokens in the text.
Also we need to test multi-image cases when one prompr has multiple image tokens.
"""
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config).to(torch_device)
_ = model(**input_dict) # successfull forward with no modifications
# remove one image but leave the image token in text
patch_size = config.vision_config.patch_size
one_img_length = (self.model_tester.image_size**2) // (patch_size**2)
input_dict["pixel_values"] = input_dict["pixel_values"][-one_img_length:, ...]
input_dict["image_grid_thw"] = input_dict["image_grid_thw"][-1:, ...]
with self.assertRaises(ValueError):
_ = model(**input_dict)
# simulate multi-image case by concatenating inputs where each has exactly one image/image-token
input_ids = input_dict["input_ids"][:1]
pixel_values = input_dict["pixel_values"][:one_img_length]
image_grid_thw = input_dict["image_grid_thw"][:1]
input_ids = torch.cat([input_ids, input_ids], dim=0)
# one image and two image tokens raise an error
with self.assertRaises(ValueError):
_ = model(
input_ids=input_ids,
pixel_values=pixel_values,
image_grid_thw=image_grid_thw,
)
# two images and two image tokens don't raise an error
pixel_values = torch.cat([pixel_values, pixel_values], dim=0)
image_grid_thw = torch.cat([image_grid_thw, image_grid_thw], dim=0)
_ = model(
input_ids=input_ids,
pixel_values=pixel_values,
image_grid_thw=image_grid_thw,
)
@unittest.skip(reason="Feedforward chunking is not yet supported")
def test_feed_forward_chunking(self):
pass
@unittest.skip(reason="CPU offload is not yet supported")
def test_cpu_offload(self):
pass
@unittest.skip(reason="Some undefined behavior encountered with test versions of this model. Skip for now.")
def test_disk_offload_bin(self):
pass
@unittest.skip(reason="Some undefined behavior encountered with test versions of this model. Skip for now.")
def test_disk_offload_safetensors(self):
pass
@unittest.skip(reason="Some undefined behavior encountered with test versions of this model. Skip for now.")
def test_model_parallelism(self):
pass
@unittest.skip(reason="Compile not yet supported because in Qwen2_5_VL models")
def test_sdpa_can_compile_dynamic(self):
pass
@unittest.skip(reason="Compile not yet supported because in Qwen2_5_VL models")
def test_sdpa_can_dispatch_on_flash(self):
pass
@unittest.skip(reason="Got `CUDA error: misaligned address` with PyTorch 2.0.0.")
def test_multi_gpu_data_parallel_forward(self):
pass
@unittest.skip(reason="We cannot configure to output a smaller model.")
def test_model_is_small(self):
pass
@unittest.skip(
reason="Qwen2.5-VL can't do low-memory generation because position IDs have extra dimension and split function doesn't work for that"
)
def test_beam_search_low_memory(self):
pass
@unittest.skip(
reason="VLMs can't generate from inputs embeds and pixels. This can be tested as part of bacbone LM, no need to run the tes for VLMs"
)
def test_generate_from_inputs_embeds_with_static_cache(self):
pass
@unittest.skip(reason="Can't compile fullgraph due to dynamic control flow in `prepare_inputs_for_generate`")
def test_generate_compile_fullgraph(self):
pass
@require_torch
class Qwen2_5_VLIntegrationTest(unittest.TestCase):
def setUp(self):
self.processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
self.messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What kind of dog is this?"},
],
}
]
url = "https://qianwen-res.oss-accelerate-overseas.aliyuncs.com/Qwen2-VL/demo_small.jpg"
self.image = Image.open(requests.get(url, stream=True).raw)
def tearDown(self):
gc.collect()
torch.cuda.empty_cache()
@slow
def test_small_model_integration_test(self):
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2.5-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
)
text = self.processor.apply_chat_template(self.messages, tokenize=False, add_generation_prompt=True)
inputs = self.processor(text=[text], images=[self.image], return_tensors="pt")
expected_input_ids = [151644, 8948, 198, 2610, 525, 264, 10950, 17847, 13, 151645, 198, 151644, 872, 198, 151652, 151655, 151655] # fmt: skip
assert torch.allclose(expected_input_ids, inputs.input_ids[0].tolist()[:17], atol=3e-3)
expected_pixel_slice = torch.tensor(
[
[0.8792, 0.8792, 0.9084],
[1.1858, 1.1858, 1.2296],
[1.2004, 1.2004, 1.2150],
[1.4340, 1.4340, 1.4194],
[1.3902, 1.4048, 1.4194],
[1.5216, 1.5362, 1.5362],
],
dtype=torch.float32,
device="cpu",
)
assert torch.allclose(expected_pixel_slice, inputs.pixel_values[:6, :3], atol=3e-3)
# verify generation
inputs = inputs.to(torch_device)
output = model.generate(**inputs, max_new_tokens=30)
EXPECTED_DECODED_TEXT = "system\nYou are a helpful assistant.\nuser\nWhat kind of dog is this?\nassistant\nThe dog in the picture appears to be a Labrador Retriever. Labradors are known for their friendly and intelligent nature, making them popular pets"
self.assertEqual(
self.processor.decode(output[0], skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
@slow
def test_small_model_integration_test_batch(self):
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2.5-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
)
text = self.processor.apply_chat_template(self.messages, tokenize=False, add_generation_prompt=True)
inputs = self.processor(text=[text, text], images=[self.image, self.image], return_tensors="pt").to(
torch_device
)
# it should not matter whether two images are the same size or not
output = model.generate(**inputs, max_new_tokens=30)
EXPECTED_DECODED_TEXT = [
'system\nYou are a helpful assistant.\nuser\nWhat kind of dog is this?\nassistant\nThe dog in the picture appears to be a Labrador Retriever. Labradors are known for their friendly and intelligent nature, making them popular choices',
'system\nYou are a helpful assistant.\nuser\nWhat kind of dog is this?\nassistant\nThe dog in the picture appears to be a Labrador Retriever. Labradors are known for their friendly and intelligent nature, making them popular pets'
] # fmt: skip
self.assertEqual(
self.processor.batch_decode(output, skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
@slow
def test_small_model_integration_test_batch_wo_image(self):
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2.5-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
)
text = self.processor.apply_chat_template(self.messages, tokenize=False, add_generation_prompt=True)
messages2 = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Who are you?"},
]
text2 = self.processor.apply_chat_template(messages2, tokenize=False, add_generation_prompt=True)
inputs = self.processor(text=[text, text2], images=[self.image], padding=True, return_tensors="pt").to(
torch_device
)
# it should not matter whether two images are the same size or not
output = model.generate(**inputs, max_new_tokens=30)
EXPECTED_DECODED_TEXT = [
'system\nYou are a helpful assistant.\nuser\nWhat kind of dog is this?\nassistant\nThe dog in the picture appears to be a Labrador Retriever. Labradors are known for their friendly and intelligent nature, making them popular pets',
'system\nYou are a helpful assistant.\nuser\nWho are you?\nassistant\nI am Qwen, a large language model created by Alibaba Cloud. I am designed to assist with various tasks and answer questions to the best of my'
] # fmt: skip
self.assertEqual(
self.processor.batch_decode(output, skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
@slow
def test_small_model_integration_test_batch_different_resolutions(self):
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2.5-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
)
text = self.processor.apply_chat_template(self.messages, tokenize=False, add_generation_prompt=True)
text2 = self.processor.apply_chat_template(self.messages, tokenize=False, add_generation_prompt=True)
image2 = self.image.resize((224, 224))
inputs = self.processor(
text=[text, text2],
images=[self.image, image2],
padding=True,
return_tensors="pt",
).to(torch_device)
# it should not matter whether two images are the same size or not
output = model.generate(**inputs, max_new_tokens=30)
EXPECTED_DECODED_TEXT = [
"system\nYou are a helpful assistant.\nuser\nWhat kind of dog is this?\nassistant\nThe dog in the picture appears to be a Labrador Retriever. Labradors are known for their friendly and intelligent nature, making them popular pets",
"system\nYou are a helpful assistant.\nuser\nWhat kind of dog is this?\nassistant\nThe dog in the picture appears to be a Labrador Retriever. Labradors are known for their friendly and intelligent nature, making them popular pets",
]
self.assertEqual(
self.processor.batch_decode(output, skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
@slow
@require_flash_attn
@require_torch_gpu
def test_small_model_integration_test_batch_flashatt2(self):
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2.5-VL-7B-Instruct",
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
device_map="auto",
)
text = self.processor.apply_chat_template(self.messages, tokenize=False, add_generation_prompt=True)
inputs = self.processor(text=[text, text], images=[self.image, self.image], return_tensors="pt").to(
torch_device
)
# it should not matter whether two images are the same size or not
output = model.generate(**inputs, max_new_tokens=30)
EXPECTED_DECODED_TEXT = [
"system\nYou are a helpful assistant.\nuser\nWhat kind of dog is this?\nassistant\nThe dog in the picture appears to be a Labrador Retriever. Labradors are known for their friendly and intelligent nature, making them popular pets",
"system\nYou are a helpful assistant.\nuser\nWhat kind of dog is this?\nassistant\nThe dog in the picture appears to be a Labrador Retriever. Labradors are known for their friendly and intelligent nature, making them popular pets",
]
self.assertEqual(
self.processor.batch_decode(output, skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
self.assertEqual(
self.processor.batch_decode(output, skip_special_tokens=True)[0],
self.processor.batch_decode(output, skip_special_tokens=True)[1],
)
@slow
@require_flash_attn
@require_torch_gpu
def test_small_model_integration_test_batch_wo_image_flashatt2(self):
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2.5-VL-7B-Instruct",
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
device_map="auto",
)
text = self.processor.apply_chat_template(self.messages, tokenize=False, add_generation_prompt=True)
messages2 = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Who are you?"},
]
text2 = self.processor.apply_chat_template(messages2, tokenize=False, add_generation_prompt=True)
inputs = self.processor(text=[text, text2], images=[self.image], padding=True, return_tensors="pt").to(
torch_device
)
# it should not matter whether two images are the same size or not
output = model.generate(**inputs, max_new_tokens=30)
EXPECTED_DECODED_TEXT = [
"system\nYou are a helpful assistant.\nuser\nWhat kind of dog is this?\nassistant\nThe dog in the picture appears to be a Labrador Retriever. Labradors are known for their friendly and intelligent nature, making them popular pets",
"system\nYou are a helpful assistant.\nuser\nWho are you?\nassistant\nI am Qwen, a large language model created by Alibaba Cloud. I am designed to answer a wide range of questions and provide information on various topics",
]
self.assertEqual(
self.processor.batch_decode(output, skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
| transformers/tests/models/qwen2_5_vl/test_modeling_qwen2_5_vl.py/0 | {
"file_path": "transformers/tests/models/qwen2_5_vl/test_modeling_qwen2_5_vl.py",
"repo_id": "transformers",
"token_count": 10316
} |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the Tensorflow ResNet model."""
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import ResNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFResNetForImageClassification, TFResNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class TFResNetModelTester:
def __init__(
self,
parent,
batch_size=3,
image_size=32,
num_channels=3,
embeddings_size=10,
hidden_sizes=[10, 20, 30, 40],
depths=[1, 1, 2, 1],
is_training=True,
use_labels=True,
hidden_act="relu",
num_labels=3,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.num_channels = num_channels
self.embeddings_size = embeddings_size
self.hidden_sizes = hidden_sizes
self.depths = depths
self.is_training = is_training
self.use_labels = use_labels
self.hidden_act = hidden_act
self.num_labels = num_labels
self.scope = scope
self.num_stages = len(hidden_sizes)
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size], self.num_labels)
config = self.get_config()
return config, pixel_values, labels
def get_config(self):
return ResNetConfig(
num_channels=self.num_channels,
embeddings_size=self.embeddings_size,
hidden_sizes=self.hidden_sizes,
depths=self.depths,
hidden_act=self.hidden_act,
num_labels=self.num_labels,
image_size=self.image_size,
)
def create_and_check_model(self, config, pixel_values, labels):
model = TFResNetModel(config=config)
result = model(pixel_values)
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape,
(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32),
)
def create_and_check_for_image_classification(self, config, pixel_values, labels):
config.num_labels = self.num_labels
model = TFResNetForImageClassification(config)
result = model(pixel_values, labels=labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, labels = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_tf
class TFResNetModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as ResNet does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else ()
pipeline_model_mapping = (
{"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification}
if is_tf_available()
else {}
)
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
test_onnx = False
has_attentions = False
def setUp(self):
self.model_tester = TFResNetModelTester(self)
self.config_tester = ConfigTester(self, config_class=ResNetConfig, has_text_modality=False)
def test_config(self):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def create_and_test_config_common_properties(self):
return
@unittest.skip(reason="ResNet does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="ResNet does not support input and output embeddings")
def test_model_common_attributes(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.call)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
expected_num_stages = self.model_tester.num_stages
self.assertEqual(len(hidden_states), expected_num_stages + 1)
# ResNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[self.model_tester.image_size // 4, self.model_tester.image_size // 4],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
layers_type = ["basic", "bottleneck"]
for model_class in self.all_model_classes:
for layer_type in layers_type:
config.layer_type = layer_type
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
def test_for_image_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
model_name = "microsoft/resnet-50"
model = TFResNetModel.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_tf
@require_vision
class TFResNetModelIntegrationTest(unittest.TestCase):
@cached_property
def default_image_processor(self):
return AutoImageProcessor.from_pretrained("microsoft/resnet-50") if is_vision_available() else None
@slow
def test_inference_image_classification_head(self):
model = TFResNetForImageClassification.from_pretrained("microsoft/resnet-50")
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(images=image, return_tensors="tf")
# forward pass
outputs = model(**inputs)
# verify the logits
expected_shape = tf.TensorShape((1, 1000))
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = tf.constant([-11.1069, -9.7877, -8.3777])
self.assertTrue(np.allclose(outputs.logits[0, :3].numpy(), expected_slice, atol=1e-4))
| transformers/tests/models/resnet/test_modeling_tf_resnet.py/0 | {
"file_path": "transformers/tests/models/resnet/test_modeling_tf_resnet.py",
"repo_id": "transformers",
"token_count": 3760
} |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import unittest
from transformers import RoFormerConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerModel,
)
from transformers.models.roformer.modeling_tf_roformer import (
TFRoFormerSelfAttention,
TFRoFormerSinusoidalPositionalEmbedding,
)
class TFRoFormerModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = 13
self.seq_length = 7
self.is_training = True
self.use_input_mask = True
self.use_token_type_ids = True
self.use_labels = True
self.vocab_size = 99
self.hidden_size = 32
self.num_hidden_layers = 2
self.num_attention_heads = 4
self.intermediate_size = 37
self.hidden_act = "gelu"
self.hidden_dropout_prob = 0.1
self.attention_probs_dropout_prob = 0.1
self.max_position_embeddings = 512
self.type_vocab_size = 16
self.type_sequence_label_size = 2
self.initializer_range = 0.02
self.num_labels = 3
self.num_choices = 4
self.scope = None
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = RoFormerConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
return_dict=True,
)
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFRoFormerModel(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
inputs = [input_ids, input_mask]
result = model(inputs)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_lm_head(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.is_decoder = True
model = TFRoFormerForCausalLM(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
prediction_scores = model(inputs)["logits"]
self.parent.assertListEqual(
list(prediction_scores.numpy().shape), [self.batch_size, self.seq_length, self.vocab_size]
)
def create_and_check_for_masked_lm(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFRoFormerForMaskedLM(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_for_sequence_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = TFRoFormerForSequenceClassification(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_for_multiple_choice(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_choices = self.num_choices
model = TFRoFormerForMultipleChoice(config=config)
multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
inputs = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
def create_and_check_for_token_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = TFRoFormerForTokenClassification(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def create_and_check_for_question_answering(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFRoFormerForQuestionAnswering(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
result = model(inputs)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class TFRoFormerModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
TFRoFormerModel,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerForMultipleChoice,
)
if is_tf_available()
else ()
)
pipeline_model_mapping = (
{
"feature-extraction": TFRoFormerModel,
"fill-mask": TFRoFormerForMaskedLM,
"question-answering": TFRoFormerForQuestionAnswering,
"text-classification": TFRoFormerForSequenceClassification,
"text-generation": TFRoFormerForCausalLM,
"token-classification": TFRoFormerForTokenClassification,
"zero-shot": TFRoFormerForSequenceClassification,
}
if is_tf_available()
else {}
)
test_head_masking = False
test_onnx = False
# TODO: add `prepare_inputs_for_generation` for `TFRoFormerForCausalLM`
def is_pipeline_test_to_skip(
self,
pipeline_test_case_name,
config_class,
model_architecture,
tokenizer_name,
image_processor_name,
feature_extractor_name,
processor_name,
):
if pipeline_test_case_name == "TextGenerationPipelineTests":
return True
return False
def setUp(self):
self.model_tester = TFRoFormerModelTester(self)
self.config_tester = ConfigTester(self, config_class=RoFormerConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_causal_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head(*config_and_inputs)
def test_for_multiple_choice(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
def test_for_sequence_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
def test_for_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
model = TFRoFormerModel.from_pretrained("junnyu/roformer_chinese_base")
self.assertIsNotNone(model)
@require_tf
class TFRoFormerModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_masked_lm(self):
model = TFRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base")
input_ids = tf.constant([[0, 1, 2, 3, 4, 5]])
output = model(input_ids)[0]
# TODO Replace vocab size
vocab_size = 50000
expected_shape = [1, 6, vocab_size]
self.assertEqual(output.shape, expected_shape)
print(output[:, :3, :3])
# TODO Replace values below with what was printed above.
expected_slice = tf.constant(
[
[
[-0.12053341, -1.0264901, 0.29221946],
[-1.5133783, 0.197433, 0.15190607],
[-5.0135403, -3.900256, -0.84038764],
]
]
)
tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=1e-4)
@require_tf
class TFRoFormerSinusoidalPositionalEmbeddingTest(unittest.TestCase):
tolerance = 1e-4
def test_basic(self):
input_ids = tf.constant([[4, 10]])
emb1 = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6, embedding_dim=6)
emb = emb1(input_ids.shape)
desired_weights = tf.constant(
[[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]]
)
tf.debugging.assert_near(emb, desired_weights, atol=self.tolerance)
def test_positional_emb_weights_against_roformer(self):
desired_weights = tf.constant(
[
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
[0.8415, 0.8219, 0.8020, 0.7819, 0.7617],
[0.9093, 0.9364, 0.9581, 0.9749, 0.9870],
]
)
emb1 = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512, embedding_dim=512)
emb1([2, 16, 512])
weights = emb1.weight[:3, :5]
tf.debugging.assert_near(weights, desired_weights, atol=self.tolerance)
@require_tf
class TFRoFormerSelfAttentionRotaryPositionEmbeddingTest(unittest.TestCase):
tolerance = 1e-4
def test_apply_rotary_position_embeddings(self):
# 2,12,16,64
query_layer = tf.reshape(tf.range(2 * 12 * 16 * 64, dtype=tf.float32), shape=(2, 12, 16, 64)) / 100
key_layer = -tf.reshape(tf.range(2 * 12 * 16 * 64, dtype=tf.float32), shape=(2, 12, 16, 64)) / 100
embed_positions = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32, embedding_dim=64)
sinusoidal_pos = embed_positions([2, 16, 768])[None, None, :, :]
query_layer, key_layer = TFRoFormerSelfAttention.apply_rotary_position_embeddings(
sinusoidal_pos, query_layer, key_layer
)
desired_query_layer = tf.constant(
[
[0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700],
[-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343],
[-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985],
[-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871],
[0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980],
[3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253],
]
)
desired_key_layer = tf.constant(
[
[0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700],
[0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343],
[1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985],
[2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871],
[-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980],
[-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253],
]
)
tf.debugging.assert_near(query_layer[0, 0, :6, :8], desired_query_layer, atol=self.tolerance)
tf.debugging.assert_near(key_layer[0, 0, :6, :8], desired_key_layer, atol=self.tolerance)
| transformers/tests/models/roformer/test_modeling_tf_roformer.py/0 | {
"file_path": "transformers/tests/models/roformer/test_modeling_tf_roformer.py",
"repo_id": "transformers",
"token_count": 7875
} |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch SeamlessM4T model."""
import copy
import tempfile
import unittest
from transformers import SeamlessM4TConfig, is_speech_available, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from transformers.trainer_utils import set_seed
from transformers.utils import cached_property
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
ModelTesterMixin,
_config_zero_init,
floats_tensor,
ids_tensor,
random_attention_mask,
)
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
SeamlessM4TForSpeechToSpeech,
SeamlessM4TForSpeechToText,
SeamlessM4TForTextToSpeech,
SeamlessM4TForTextToText,
SeamlessM4TModel,
)
if is_speech_available():
from transformers import SeamlessM4TProcessor
class SeamlessM4TModelTester:
def __init__(
self,
parent,
input_modality="speech",
batch_size=2,
seq_length=4,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
initializer_range=0.02,
max_new_tokens=None,
num_labels=3,
num_choices=4,
scope=None,
vocab_size=20,
t2u_vocab_size=20,
hidden_size=6,
num_hidden_layers=2,
intermediate_size=6,
max_position_embeddings=256,
encoder_layers=2,
decoder_layers=2,
encoder_ffn_dim=6,
decoder_ffn_dim=6,
t2u_encoder_layers=2,
t2u_decoder_layers=2,
t2u_encoder_ffn_dim=6,
t2u_decoder_ffn_dim=6,
num_heads=2,
vocoder_num_spkrs=5,
vocoder_num_langs=5,
upsample_initial_channel=32,
unit_embed_dim=25,
spkr_embed_dim=6,
lang_embed_dim=6,
num_conv_pos_embeddings=8,
unit_hifi_gan_vocab_size=20,
t2u_num_langs=0,
t2u_max_new_tokens=25,
t2u_offset_tgt_lang=0,
vocoder_offset=0,
):
self.parent = parent
self.input_modality = input_modality
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
self.vocab_size = vocab_size
self.t2u_vocab_size = t2u_vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.intermediate_size = intermediate_size
self.max_position_embeddings = max_position_embeddings
self.encoder_layers = encoder_layers
self.decoder_layers = decoder_layers
self.encoder_ffn_dim = encoder_ffn_dim
self.decoder_ffn_dim = decoder_ffn_dim
self.t2u_encoder_layers = t2u_encoder_layers
self.t2u_decoder_layers = t2u_decoder_layers
self.t2u_encoder_ffn_dim = t2u_encoder_ffn_dim
self.t2u_decoder_ffn_dim = t2u_decoder_ffn_dim
self.num_heads = num_heads
self.num_attention_heads = num_heads
self.vocoder_num_spkrs = vocoder_num_spkrs
self.vocoder_num_langs = vocoder_num_langs
self.upsample_initial_channel = upsample_initial_channel
self.unit_embed_dim = unit_embed_dim
self.spkr_embed_dim = spkr_embed_dim
self.num_conv_pos_embeddings = num_conv_pos_embeddings
self.lang_embed_dim = lang_embed_dim
self.max_new_tokens = max_new_tokens
self.unit_hifi_gan_vocab_size = unit_hifi_gan_vocab_size
self.t2u_num_langs = t2u_num_langs
self.t2u_max_new_tokens = t2u_max_new_tokens
self.t2u_offset_tgt_lang = t2u_offset_tgt_lang
self.vocoder_offset = vocoder_offset
def prepare_config_and_inputs(self):
if self.input_modality == "text":
inputs = ids_tensor([self.batch_size, self.seq_length], self.vocab_size - 1)
else:
inputs = ids_tensor([self.batch_size, self.seq_length, 160], self.vocab_size - 1).float()
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size - 1)
lm_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
config = self.get_config()
return config, inputs, decoder_input_ids, input_mask, lm_labels
def get_config(self):
return SeamlessM4TConfig(
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
initializer_range=self.initializer_range,
vocab_size=self.vocab_size,
t2u_vocab_size=self.t2u_vocab_size,
hidden_size=self.hidden_size,
speech_encoder_layers=self.num_heads,
speech_encoder_intermediate_size=self.intermediate_size,
max_position_embeddings=self.max_position_embeddings,
encoder_layers=self.encoder_layers,
decoder_layers=self.decoder_layers,
encoder_ffn_dim=self.encoder_ffn_dim,
decoder_ffn_dim=self.decoder_ffn_dim,
t2u_encoder_layers=self.t2u_encoder_layers,
t2u_decoder_layers=self.t2u_decoder_layers,
t2u_encoder_ffn_dim=self.t2u_encoder_ffn_dim,
t2u_decoder_ffn_dim=self.t2u_decoder_ffn_dim,
num_attention_heads=self.num_heads,
encoder_attention_heads=self.num_heads,
decoder_attention_heads=self.num_heads,
t2u_encoder_attention_heads=self.num_heads,
t2u_decoder_attention_heads=self.num_heads,
speech_encoder_attention_heads=self.num_heads,
unit_hifigan_vocab_vise=self.t2u_vocab_size,
vocoder_num_spkrs=self.vocoder_num_spkrs,
vocoder_num_langs=self.vocoder_num_langs,
upsample_initial_channel=self.upsample_initial_channel,
unit_embed_dim=self.unit_embed_dim,
spkr_embed_dim=self.spkr_embed_dim,
num_conv_pos_embeddings=self.num_conv_pos_embeddings,
lang_embed_dim=self.lang_embed_dim,
max_new_tokens=self.max_new_tokens,
unit_hifi_gan_vocab_size=self.unit_hifi_gan_vocab_size,
t2u_num_langs=self.t2u_num_langs,
t2u_max_new_tokens=self.t2u_max_new_tokens,
t2u_offset_tgt_lang=self.t2u_offset_tgt_lang,
vocoder_offset=self.vocoder_offset,
)
def prepare_config_and_inputs_for_decoder(self):
(
config,
input_ids,
decoder_input_ids,
input_mask,
lm_labels,
) = self.prepare_config_and_inputs()
config.is_decoder = True
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
return (
config,
input_ids,
decoder_input_ids,
input_mask,
lm_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def create_and_check_model(self, config, input_ids, decoder_input_ids, input_mask, labels):
model = SeamlessM4TModel(config=config)
model.to(torch_device)
model.eval()
if self.input_modality == "text":
result = model(input_ids=input_ids, attention_mask=input_mask, decoder_input_ids=decoder_input_ids)
result = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
else:
result = model(input_features=input_ids, attention_mask=input_mask, decoder_input_ids=decoder_input_ids)
result = model(input_features=input_ids, decoder_input_ids=decoder_input_ids)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
decoder_output = result.logits
decoder_past = result.past_key_values
encoder_output = result.encoder_last_hidden_state
if self.input_modality == "text":
seq_length = self.seq_length
else:
# if speech, expected length has been subsampled.
seq_length = model._compute_sub_sample_lengths_from_attention_mask(input_mask).max().item()
self.parent.assertEqual(encoder_output.size(), (self.batch_size, seq_length, self.hidden_size))
self.parent.assertEqual(decoder_output.size(), (self.batch_size, decoder_input_ids.shape[1], self.vocab_size))
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(decoder_past), config.decoder_layers)
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0]), 4)
def create_and_check_decoder_model_past_large_inputs(
self,
config,
input_ids,
decoder_input_ids,
input_mask,
lm_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.is_decoder = True
model = SeamlessM4TModel(config=config)
model.to(torch_device)
model.eval()
# make sure no pad token in decoder_input_ids
decoder_input_ids = torch.clamp(decoder_input_ids, config.pad_token_id + 1)
# first forward pass
outputs = model(
input_ids, decoder_input_ids=decoder_input_ids, decoder_attention_mask=input_mask, use_cache=True
)
past_key_values = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
# append to next input_ids and
next_input_ids = torch.cat([decoder_input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
output_from_no_past = model(
input_ids,
decoder_input_ids=next_input_ids,
decoder_attention_mask=next_attention_mask,
output_hidden_states=True,
)
output_from_no_past = output_from_no_past["decoder_hidden_states"][0]
output_from_past = model(
input_ids,
decoder_input_ids=next_tokens,
decoder_attention_mask=next_attention_mask,
past_key_values=past_key_values,
output_hidden_states=True,
)["decoder_hidden_states"][0]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
decoder_input_ids,
input_mask,
lm_labels,
) = config_and_inputs
input_name = "input_ids" if self.input_modality == "text" else "input_features"
inputs_dict = {
input_name: input_ids,
"attention_mask": input_mask,
"decoder_input_ids": decoder_input_ids,
"labels": lm_labels,
}
return config, inputs_dict
@require_torch
class SeamlessM4TModelWithSpeechInputTest(ModelTesterMixin, unittest.TestCase):
is_encoder_decoder = True
fx_compatible = False
test_missing_keys = False
test_pruning = False
test_model_parallel = False
test_resize_embeddings = False
test_headmasking = False
test_torchscript = False
all_model_classes = (
(
SeamlessM4TModel,
SeamlessM4TForSpeechToSpeech,
SeamlessM4TForSpeechToText,
)
if is_torch_available()
else ()
)
all_generative_model_classes = (SeamlessM4TForSpeechToText,) if is_torch_available() else ()
def setUp(self):
self.model_tester = SeamlessM4TModelTester(self, input_modality="speech")
self.config_tester = ConfigTester(self, config_class=SeamlessM4TConfig)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
model_name = "facebook/hf-seamless-m4t-medium"
model = SeamlessM4TModel.from_pretrained(model_name)
self.assertIsNotNone(model)
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
uniform_init_parms = [
"conv.weight",
"masked_spec_embed",
"codevectors",
"quantizer.weight_proj.weight",
"project_hid.weight",
"project_hid.bias",
"project_q.weight",
"project_q.bias",
"pos_bias_v",
"pos_bias_u",
"pointwise_conv1",
"pointwise_conv2",
"feature_projection.projection.weight",
"feature_projection.projection.bias",
"objective.weight",
"adapter",
]
if param.requires_grad:
if any(x in name for x in uniform_init_parms):
self.assertTrue(
-1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
else:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
@unittest.skip(reason="SeamlessM4TSpeechEncoder doesn't have an embedding layer")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="SeamlessM4TSpeechEncoder doesn't have an embedding layer")
def test_inputs_embeds_matches_input_ids(self):
pass
@unittest.skip(
reason="Expected missing keys serve when using SeamlessM4TForXXX.from_pretrained from a checkpoint saved by SeamlessM4TModel.save_pretrained."
)
def test_model_weights_reload_no_missing_tied_weights(self):
pass
@unittest.skip(
reason="SeamlessM4TModel is base class but has actually a bigger architecture than seamlessM4T task-specific models."
)
def test_save_load_fast_init_to_base(self):
pass
@unittest.skip(reason="SeamlessM4TModel can takes input_ids or input_features")
def test_forward_signature(self):
pass
@unittest.skip(reason="SeamlessM4T has no base model")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@unittest.skip(
reason="This architecure has tied weights by default and there is no way to remove it, check: https://github.com/huggingface/transformers/pull/31771#issuecomment-2210915245"
)
def test_load_save_without_tied_weights(self):
pass
def test_attention_outputs(self):
# expected length is subsampled so need to change a bit this test
if not self.has_attentions:
self.skipTest(reason="Model does not output attentions")
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
seq_len = getattr(self.model_tester, "seq_length", None)
decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
# no more chunk_length test
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
)
out_len = len(outputs)
if self.is_encoder_decoder:
correct_outlen = 5
# loss is at first position
if "labels" in inputs_dict:
correct_outlen += 1 # loss is added to beginning
if "past_key_values" in outputs:
correct_outlen += 1 # past_key_values have been returned
self.assertEqual(out_len, correct_outlen)
# decoder attentions
decoder_attentions = outputs.decoder_attentions
self.assertIsInstance(decoder_attentions, (list, tuple))
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(decoder_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
)
# cross attentions
cross_attentions = outputs.cross_attentions
self.assertIsInstance(cross_attentions, (list, tuple))
self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
sub_sampled_length = (
model._compute_sub_sample_lengths_from_attention_mask(inputs_dict["attention_mask"]).max().item()
)
self.assertListEqual(
list(cross_attentions[0].shape[-3:]),
[
self.model_tester.num_attention_heads,
decoder_seq_length,
sub_sampled_length,
],
)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
if hasattr(self.model_tester, "num_hidden_states_types"):
added_hidden_states = self.model_tester.num_hidden_states_types
elif self.is_encoder_decoder:
added_hidden_states = 2
else:
added_hidden_states = 1
self.assertEqual(out_len + added_hidden_states, len(outputs))
self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
)
def test_retain_grad_hidden_states_attentions(self):
# When training the model, the first speech encoder layer is sometimes skipped.
# Setting the seed to always have the first layer.
set_seed(0)
super().test_retain_grad_hidden_states_attentions()
@require_torch
class SeamlessM4TModelWithTextInputTest(
ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase
):
is_encoder_decoder = True
fx_compatible = False
test_missing_keys = False
test_pruning = False
test_model_parallel = False
test_resize_embeddings = True
test_headmasking = False
test_torchscript = False
all_model_classes = (
(
SeamlessM4TModel,
SeamlessM4TForTextToSpeech,
SeamlessM4TForTextToText,
)
if is_torch_available()
else ()
)
all_generative_model_classes = (SeamlessM4TForTextToText,) if is_torch_available() else ()
pipeline_model_mapping = (
{
"automatic-speech-recognition": SeamlessM4TForSpeechToText,
"feature-extraction": SeamlessM4TModel,
"summarization": SeamlessM4TForTextToText,
"text-to-audio": SeamlessM4TForTextToSpeech,
"text2text-generation": SeamlessM4TForTextToText,
"translation": SeamlessM4TForTextToText,
}
if is_torch_available()
else {}
)
def setUp(self):
self.model_tester = SeamlessM4TModelTester(self, input_modality="text")
self.config_tester = ConfigTester(self, config_class=SeamlessM4TConfig)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
model_name = "facebook/hf-seamless-m4t-medium"
model = SeamlessM4TModel.from_pretrained(model_name)
self.assertIsNotNone(model)
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
uniform_init_parms = [
"conv.weight",
"masked_spec_embed",
"codevectors",
"quantizer.weight_proj.weight",
"project_hid.weight",
"project_hid.bias",
"project_q.weight",
"project_q.bias",
"pos_bias_v",
"pos_bias_u",
"pointwise_conv1",
"pointwise_conv2",
"feature_projection.projection.weight",
"feature_projection.projection.bias",
"objective.weight",
"adapter",
]
if param.requires_grad:
if any(x in name for x in uniform_init_parms):
self.assertTrue(
-1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
else:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
@unittest.skip(
reason="Expected missing keys serve when using SeamlessM4TForXXX.from_pretrained from a checkpoint saved by SeamlessM4TModel.save_pretrained."
)
def test_model_weights_reload_no_missing_tied_weights(self):
pass
@unittest.skip(reason="SeamlessM4TModel can take input_ids or input_features")
def test_forward_signature(self):
pass
def test_decoder_model_past_with_large_inputs(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
@unittest.skip(
reason="SeamlessM4TModel is base class but has actually a bigger architecture than seamlessM4T task-specific models."
)
def test_save_load_fast_init_to_base(self):
pass
@unittest.skip(reason="SeamlessM4T has no base model")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@unittest.skip(
reason="In training model, the first encoder layer is sometimes skipped. Training is not supported yet, so the test is ignored."
)
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip(
reason="This architecure has tied weights by default and there is no way to remove it, check: https://github.com/huggingface/transformers/pull/31771#issuecomment-2210915245"
)
def test_load_save_without_tied_weights(self):
pass
@require_torch
class SeamlessM4TGenerationTest(unittest.TestCase):
# test that non-standard generation works
# test generation of: SeamlessM4TModel, SeamlessM4TForSpeechToSpeech, SeamlessM4TForSpeechToText, SeamlessM4TForTextToSpeech
def setUp(self):
self.speech_model_tester = SeamlessM4TModelTester(self, input_modality="speech")
self.text_model_tester = SeamlessM4TModelTester(self, input_modality="text")
self.tmpdirname = tempfile.mkdtemp()
def update_generation(self, model):
lang_code_to_id = {
"fra": 4,
"eng": 4,
}
generation_config = copy.deepcopy(model.generation_config)
generation_config.__setattr__("text_decoder_lang_to_code_id", lang_code_to_id)
generation_config.__setattr__("t2u_lang_code_to_id", lang_code_to_id)
generation_config.__setattr__("vocoder_lang_code_to_id", lang_code_to_id)
generation_config._from_model_config = False
model.generation_config = generation_config
def prepare_text_input(self):
config, inputs, decoder_input_ids, input_mask, lm_labels = self.text_model_tester.prepare_config_and_inputs()
input_dict = {
"input_ids": inputs,
"attention_mask": input_mask,
"tgt_lang": "eng",
"num_beams": 2,
"do_sample": True,
}
return config, input_dict
def prepare_speech_input(self):
config, inputs, decoder_input_ids, input_mask, lm_labels = self.speech_model_tester.prepare_config_and_inputs()
input_dict = {
"input_features": inputs,
"attention_mask": input_mask,
"tgt_lang": "fra",
"num_beams": 2,
"do_sample": True,
}
return config, input_dict
def prepare_speech_and_text_input(self):
config, inputs, decoder_input_ids, input_mask, lm_labels = self.speech_model_tester.prepare_config_and_inputs()
input_speech = {
"input_features": inputs,
"attention_mask": input_mask,
"tgt_lang": "fra",
"num_beams": 2,
"do_sample": True,
}
config, inputs, decoder_input_ids, input_mask, lm_labels = self.text_model_tester.prepare_config_and_inputs()
input_text = {
"input_ids": inputs,
"attention_mask": input_mask,
"tgt_lang": "eng",
"num_beams": 2,
"do_sample": True,
}
return config, input_speech, input_text
def factory_generation_speech_test(self, model, inputs):
set_seed(0)
output = model.generate(**inputs)
return output
def test_speech_generation(self):
config, input_speech, input_text = self.prepare_speech_and_text_input()
model = SeamlessM4TModel(config=config)
self.update_generation(model)
model.save_pretrained(self.tmpdirname)
model.to(torch_device)
model.eval()
output_original_text = self.factory_generation_speech_test(model, input_text)
output_original_speech = self.factory_generation_speech_test(model, input_speech)
state_dict = model.state_dict()
text_model = SeamlessM4TForTextToSpeech.from_pretrained(self.tmpdirname)
self.update_generation(text_model)
text_model.to(torch_device)
text_model.eval()
output_text = self.factory_generation_speech_test(model, input_text)
speech_model = SeamlessM4TForSpeechToSpeech.from_pretrained(self.tmpdirname)
self.update_generation(speech_model)
speech_model.to(torch_device)
speech_model.eval()
for name, tensor in speech_model.state_dict().items():
right_tensor = state_dict.get(name)
self.assertEqual(tensor.tolist(), right_tensor.tolist(), f"Tensor {name}")
output_speech = self.factory_generation_speech_test(model, input_speech)
# test same text output from input text
self.assertListEqual(output_original_text[0].ravel().tolist(), output_text[0].ravel().tolist())
self.assertListEqual(output_original_text[1].ravel().tolist(), output_text[1].ravel().tolist())
# test same speech output from input text
# assertTrue because super long list makes this hang in case of failure
self.assertTrue(
output_original_speech[0].ravel().tolist() == output_speech[0].ravel().tolist(),
"Speech generated was different",
)
self.assertTrue(
output_original_speech[1].ravel().tolist() == output_speech[1].ravel().tolist(),
"Speech generated was different",
)
def test_text_generation(self):
config, input_speech, input_text = self.prepare_speech_and_text_input()
# to return speech
input_speech["generate_speech"] = False
input_text["generate_speech"] = False
model = SeamlessM4TModel(config=config)
self.update_generation(model)
model.save_pretrained(self.tmpdirname)
model.to(torch_device)
model.eval()
output_original_text = self.factory_generation_speech_test(model, input_text)
output_original_speech = self.factory_generation_speech_test(model, input_speech)
# other models don't need it
input_speech.pop("generate_speech")
input_text.pop("generate_speech")
state_dict = model.state_dict()
text_model = SeamlessM4TForTextToText.from_pretrained(self.tmpdirname)
self.update_generation(text_model)
text_model.to(torch_device)
text_model.eval()
for name, tensor in text_model.state_dict().items():
right_tensor = state_dict.get(name)
self.assertEqual(tensor.tolist(), right_tensor.tolist())
output_text = self.factory_generation_speech_test(text_model, input_text)
speech_model = SeamlessM4TForSpeechToText.from_pretrained(self.tmpdirname)
for name, tensor in speech_model.state_dict().items():
right_tensor = state_dict.get(name)
self.assertEqual(tensor.tolist(), right_tensor.tolist(), f"Tensor {name}")
self.update_generation(speech_model)
speech_model.to(torch_device)
speech_model.eval()
output_speech = self.factory_generation_speech_test(speech_model, input_speech)
# test same text output from input text
self.assertListEqual(output_original_text[0].ravel().tolist(), output_text.ravel().tolist())
# test same speech output from input text
self.assertListEqual(output_original_speech[0].ravel().tolist(), output_speech.ravel().tolist())
def test_generation(self):
config, input_speech, input_text = self.prepare_speech_and_text_input()
input_speech["num_beams"] = 3
input_speech["do_sample"] = True
input_speech["num_return_sequences"] = 3
input_text["num_beams"] = 3
input_text["do_sample"] = True
input_text["num_return_sequences"] = 3
for model_class in [SeamlessM4TForSpeechToSpeech, SeamlessM4TForSpeechToText, SeamlessM4TModel]:
model = model_class(config=config)
self.update_generation(model)
model.to(torch_device)
model.eval()
output = model.generate(**input_speech)
output = output[0] if isinstance(output, tuple) else output
self.assertEqual(output.shape[0], 3 * input_speech["input_features"].shape[0])
for model_class in [SeamlessM4TForTextToSpeech, SeamlessM4TForTextToText, SeamlessM4TModel]:
model = model_class(config=config)
self.update_generation(model)
model.to(torch_device)
model.eval()
output = model.generate(**input_text)
output = output[0] if isinstance(output, tuple) else output
self.assertEqual(output.shape[0], 3 * input_text["input_ids"].shape[0])
@require_torch
class SeamlessM4TModelIntegrationTest(unittest.TestCase):
repo_id = "facebook/hf-seamless-m4t-medium"
def assertListAlmostEqual(self, list1, list2, tol=1e-3):
self.assertEqual(len(list1), len(list2))
for a, b in zip(list1, list2):
self.assertAlmostEqual(a, b, delta=tol)
@cached_property
def processor(self):
return SeamlessM4TProcessor.from_pretrained(self.repo_id)
@cached_property
def input_text(self):
# corresponds to "C'est un test." with seamlessM4T_medium checkpoint
input_ids = torch.tensor([[256057, 152, 248116, 354, 159, 7356, 248075, 3]]) # fmt: skip
input_ids = input_ids.to(torch_device)
attention_mask = torch.ones_like(input_ids).to(torch_device)
inputs = {
"attention_mask": attention_mask,
"input_ids": input_ids,
}
return inputs
@cached_property
def input_audio(self):
set_seed(0)
seq_len = 20000
sampling_rate = 16000
input_features = torch.rand((2, seq_len))
return self.processor(audios=[input_features.tolist()], sampling_rate=sampling_rate, return_tensors="pt").to(
torch_device
)
def factory_test_task(self, class1, class2, inputs, class1_kwargs, class2_kwargs):
model1 = class1.from_pretrained(self.repo_id).to(torch_device)
model2 = class2.from_pretrained(self.repo_id).to(torch_device)
set_seed(0)
output_1 = model1.generate(**inputs, **class1_kwargs)
set_seed(0)
output_2 = model2.generate(**inputs, **class2_kwargs)
for key in output_1:
if isinstance(output_1[key], torch.Tensor):
if len(output_1[key].shape) == 0:
self.assertEqual(output_1[key].item(), output_2[key].item())
else:
self.assertListAlmostEqual(output_1[key].squeeze().tolist(), output_2[key].squeeze().tolist())
@slow
def test_to_eng_text(self):
model = SeamlessM4TModel.from_pretrained(self.repo_id).to(torch_device)
# test text - tgt lang: eng
expected_text_tokens = [3, 256047, 3291, 248116, 248066, 9, 7356, 248075, 3] # fmt: skip
# fmt: off
expected_unit_tokens = [
2,10051,8980,8212,949,1270,4311,1123,5918,2333,5311,3882,2415,5284,1123,612,8816,6370,5386,7334,4345,5645,
9437,5748,1378,9818,4319,7968,7375,2909,9119,5151,8728,5335,3896,4013,8939,8885,6048,9530,3167,5833,1072,693,
431,9867,364,7909,4608,5938,1889,9984,7947,4944,6171,3767,9861,9169,1187,8365,4571,7635,7784,7635,800,2393,
32,5380,5852,8289,2530,2762,1833,2056,3553,4641,3553,5683,370,2288,1344,1518,7534,703,8359,7699,2
]
# fmt: on
expected_wav_slice = [-3e-05, -0.0004, -0.00037, -0.00013, -6e-05, 0.00012, -0.00016, 0.00025, 7e-05, -3e-05] # fmt: skip
set_seed(0)
output = model.generate(**self.input_text, num_beams=1, tgt_lang="eng", return_intermediate_token_ids=True)
self.assertListEqual(expected_text_tokens, output.sequences.squeeze().tolist())
# FOR NOW, only first units correspondance
self.assertListEqual(expected_unit_tokens[:10], output.unit_sequences.squeeze().tolist()[:10])
self.assertListAlmostEqual(expected_wav_slice, output.waveform.squeeze().tolist()[50:60])
@slow
def test_to_swh_text(self):
model = SeamlessM4TModel.from_pretrained(self.repo_id).to(torch_device)
# test text - tgt lang: swh
expected_text_tokens = [3, 256168, 1665, 188589, 7040, 248075, 3] # fmt: skip
# fmt: off
expected_unit_tokens = [
2,10071,5729,9995,3089,7546,1204,1721,2532,4340,5623,3496,432,7730,9096,7677,3143,8211,6447,8399,4248,3565,
4529,7700,9308,217,6476,3485,9667,3194,8476,4923,5593,1148,4466,7416,4872,463,4872,253,2348,4640,3450,2133,
6318,2806,817,7613,2698,6563,8712,8344,9286,6878,6387,4281,6387,640,6387,3200,640,8355,640,6708,979,1738,2
]
# fmt: on
expected_wav_slice = [1e-05, -7e-05, -4e-05, -4e-05, -6e-05, -9e-05, -0.0001, -2e-05, -7e-05, -2e-05] # fmt: skip
set_seed(0)
output = model.generate(**self.input_text, num_beams=1, tgt_lang="swh", return_intermediate_token_ids=True)
self.assertListEqual(expected_text_tokens, output.sequences.squeeze().tolist())
self.assertListEqual(expected_unit_tokens[:10], output.unit_sequences.squeeze().tolist()[:10])
self.assertListAlmostEqual(expected_wav_slice, output.waveform.squeeze().tolist()[50:60])
@slow
def test_to_rus_speech(self):
model = SeamlessM4TModel.from_pretrained(self.repo_id).to(torch_device)
# test audio - tgt lang: rus
expected_text_tokens = [3, 256147, 1197, 73565, 3413, 537, 233331, 248075, 3] # fmt: skip
# fmt: off
expected_unit_tokens = [
2, 10067, 5729, 4798, 9631, 8378, 4446, 2393, 6901, 5983, 2817, 4629, 8532, 1991, 2931, 8576, 8857, 5936, 4317,
9000, 7740, 7995, 1225, 5980, 6094, 1420, 5373, 8771, 6600, 4487, 7029, 3630, 6740, 4870, 1483, 3003, 5585, 5511,
7465, 3222, 32, 6272, 1950, 3120, 5368, 639, 3713, 5935, 7943, 567, 6129, 6822, 1226, 5063, 9878, 7756, 8825, 1078, 5943,
457, 9282, 9668, 817, 7613, 2698, 6563, 8712, 8704, 9286, 8704, 6387, 4281, 6387, 640, 3200, 6387, 640, 8355, 6708, 979, 1738, 2
]
# fmt: on
expected_wav_slice = [0.00013, 0.00012, 0.00014, 3e-05, 0.0, -6e-05, -0.00018, -0.00016, -0.00021, -0.00018] # fmt: skip
set_seed(0)
output = model.generate(**self.input_audio, num_beams=1, tgt_lang="rus", return_intermediate_token_ids=True)
self.assertListEqual(expected_text_tokens, output.sequences.squeeze().tolist())
self.assertListEqual(expected_unit_tokens[:10], output.unit_sequences.squeeze().tolist()[:10])
self.assertListAlmostEqual(expected_wav_slice, output.waveform.squeeze().tolist()[50:60])
@slow
def test_text_to_text_model(self):
kwargs1 = {"tgt_lang": "eng", "return_intermediate_token_ids": True, "generate_speech": False}
kwargs2 = {
"tgt_lang": "eng",
"output_hidden_states": True,
"return_dict_in_generate": True,
"output_scores": True,
}
self.factory_test_task(SeamlessM4TModel, SeamlessM4TForTextToText, self.input_text, kwargs1, kwargs2)
@slow
def test_speech_to_text_model(self):
kwargs1 = {"tgt_lang": "eng", "return_intermediate_token_ids": True, "generate_speech": False}
kwargs2 = {
"tgt_lang": "eng",
"output_hidden_states": True,
"return_dict_in_generate": True,
"output_scores": True,
}
self.factory_test_task(SeamlessM4TModel, SeamlessM4TForSpeechToText, self.input_audio, kwargs1, kwargs2)
@slow
def test_speech_to_speech_model(self):
kwargs1 = {"tgt_lang": "eng", "return_intermediate_token_ids": True}
self.factory_test_task(SeamlessM4TModel, SeamlessM4TForSpeechToSpeech, self.input_audio, kwargs1, kwargs1)
@slow
def test_text_to_speech_model(self):
kwargs1 = {"tgt_lang": "eng", "return_intermediate_token_ids": True}
self.factory_test_task(SeamlessM4TModel, SeamlessM4TForTextToSpeech, self.input_text, kwargs1, kwargs1)
| transformers/tests/models/seamless_m4t/test_modeling_seamless_m4t.py/0 | {
"file_path": "transformers/tests/models/seamless_m4t/test_modeling_seamless_m4t.py",
"repo_id": "transformers",
"token_count": 21270
} |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for the SpeechT5 processors."""
import json
import os
import shutil
import tempfile
import unittest
from transformers import is_speech_available, is_torch_available
from transformers.models.speecht5 import SpeechT5Tokenizer
from transformers.testing_utils import get_tests_dir, require_torch
from transformers.utils import FEATURE_EXTRACTOR_NAME
if is_speech_available() and is_torch_available():
from transformers import SpeechT5FeatureExtractor, SpeechT5Processor
from .test_feature_extraction_speecht5 import floats_list
SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece_bpe_char.model")
@require_torch
class SpeechT5ProcessorTest(unittest.TestCase):
def setUp(self):
self.tmpdirname = tempfile.mkdtemp()
tokenizer = SpeechT5Tokenizer(SAMPLE_VOCAB)
tokenizer.save_pretrained(self.tmpdirname)
feature_extractor_map = {
"feature_size": 1,
"padding_value": 0.0,
"sampling_rate": 16000,
"do_normalize": False,
"num_mel_bins": 80,
"hop_length": 16,
"win_length": 64,
"win_function": "hann_window",
"fmin": 80,
"fmax": 7600,
"mel_floor": 1e-10,
"reduction_factor": 2,
"return_attention_mask": True,
}
self.feature_extraction_file = os.path.join(self.tmpdirname, FEATURE_EXTRACTOR_NAME)
with open(self.feature_extraction_file, "w", encoding="utf-8") as fp:
fp.write(json.dumps(feature_extractor_map) + "\n")
def get_tokenizer(self, **kwargs):
return SpeechT5Tokenizer.from_pretrained(self.tmpdirname, **kwargs)
def get_feature_extractor(self, **kwargs):
return SpeechT5FeatureExtractor.from_pretrained(self.tmpdirname, **kwargs)
def tearDown(self):
shutil.rmtree(self.tmpdirname)
def test_save_load_pretrained_default(self):
tokenizer = self.get_tokenizer()
feature_extractor = self.get_feature_extractor()
processor = SpeechT5Processor(tokenizer=tokenizer, feature_extractor=feature_extractor)
processor.save_pretrained(self.tmpdirname)
processor = SpeechT5Processor.from_pretrained(self.tmpdirname)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab())
self.assertIsInstance(processor.tokenizer, SpeechT5Tokenizer)
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string())
self.assertIsInstance(processor.feature_extractor, SpeechT5FeatureExtractor)
def test_save_load_pretrained_additional_features(self):
processor = SpeechT5Processor(tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor())
processor.save_pretrained(self.tmpdirname)
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
feature_extractor_add_kwargs = self.get_feature_extractor(do_normalize=False, padding_value=1.0)
processor = SpeechT5Processor.from_pretrained(
self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer, SpeechT5Tokenizer)
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string())
self.assertIsInstance(processor.feature_extractor, SpeechT5FeatureExtractor)
def test_feature_extractor(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = SpeechT5Processor(tokenizer=tokenizer, feature_extractor=feature_extractor)
raw_speech = floats_list((3, 1000))
input_feat_extract = feature_extractor(audio=raw_speech, return_tensors="np")
input_processor = processor(audio=raw_speech, return_tensors="np")
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
def test_feature_extractor_target(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = SpeechT5Processor(tokenizer=tokenizer, feature_extractor=feature_extractor)
raw_speech = floats_list((3, 1000))
input_feat_extract = feature_extractor(audio_target=raw_speech, return_tensors="np")
input_processor = processor(audio_target=raw_speech, return_tensors="np")
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
def test_tokenizer(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = SpeechT5Processor(tokenizer=tokenizer, feature_extractor=feature_extractor)
input_str = "This is a test string"
encoded_processor = processor(text=input_str)
encoded_tok = tokenizer(input_str)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key], encoded_processor[key])
def test_tokenizer_target(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = SpeechT5Processor(tokenizer=tokenizer, feature_extractor=feature_extractor)
input_str = "This is a test string"
encoded_processor = processor(text_target=input_str)
encoded_tok = tokenizer(input_str)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key], encoded_processor[key])
def test_tokenizer_decode(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = SpeechT5Processor(tokenizer=tokenizer, feature_extractor=feature_extractor)
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
decoded_processor = processor.batch_decode(predicted_ids)
decoded_tok = tokenizer.batch_decode(predicted_ids)
self.assertListEqual(decoded_tok, decoded_processor)
def test_model_input_names(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = SpeechT5Processor(tokenizer=tokenizer, feature_extractor=feature_extractor)
self.assertListEqual(
processor.model_input_names,
feature_extractor.model_input_names,
msg="`processor` and `feature_extractor` model input names do not match",
)
| transformers/tests/models/speecht5/test_processor_speecht5.py/0 | {
"file_path": "transformers/tests/models/speecht5/test_processor_speecht5.py",
"repo_id": "transformers",
"token_count": 2860
} |
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import (
ImageProcessingTestMixin,
prepare_image_inputs,
)
if is_torch_available():
import torch
from transformers.models.superpoint.modeling_superpoint import SuperPointKeypointDescriptionOutput
if is_vision_available():
from transformers import SuperPointImageProcessor
class SuperPointImageProcessingTester:
def __init__(
self,
parent,
batch_size=7,
num_channels=3,
image_size=18,
min_resolution=30,
max_resolution=400,
do_resize=True,
size=None,
do_grayscale=True,
):
size = size if size is not None else {"height": 480, "width": 640}
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.image_size = image_size
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.do_resize = do_resize
self.size = size
self.do_grayscale = do_grayscale
def prepare_image_processor_dict(self):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_grayscale": self.do_grayscale,
}
def expected_output_image_shape(self, images):
return self.num_channels, self.size["height"], self.size["width"]
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
return prepare_image_inputs(
batch_size=self.batch_size,
num_channels=self.num_channels,
min_resolution=self.min_resolution,
max_resolution=self.max_resolution,
equal_resolution=equal_resolution,
numpify=numpify,
torchify=torchify,
)
def prepare_keypoint_detection_output(self, pixel_values):
max_number_keypoints = 50
batch_size = len(pixel_values)
mask = torch.zeros((batch_size, max_number_keypoints))
keypoints = torch.zeros((batch_size, max_number_keypoints, 2))
scores = torch.zeros((batch_size, max_number_keypoints))
descriptors = torch.zeros((batch_size, max_number_keypoints, 16))
for i in range(batch_size):
random_number_keypoints = np.random.randint(0, max_number_keypoints)
mask[i, :random_number_keypoints] = 1
keypoints[i, :random_number_keypoints] = torch.rand((random_number_keypoints, 2))
scores[i, :random_number_keypoints] = torch.rand((random_number_keypoints,))
descriptors[i, :random_number_keypoints] = torch.rand((random_number_keypoints, 16))
return SuperPointKeypointDescriptionOutput(
loss=None, keypoints=keypoints, scores=scores, descriptors=descriptors, mask=mask, hidden_states=None
)
@require_torch
@require_vision
class SuperPointImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
image_processing_class = SuperPointImageProcessor if is_vision_available() else None
def setUp(self) -> None:
super().setUp()
self.image_processor_tester = SuperPointImageProcessingTester(self)
@property
def image_processor_dict(self):
return self.image_processor_tester.prepare_image_processor_dict()
def test_image_processing(self):
image_processing = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(image_processing, "do_resize"))
self.assertTrue(hasattr(image_processing, "size"))
self.assertTrue(hasattr(image_processing, "do_rescale"))
self.assertTrue(hasattr(image_processing, "rescale_factor"))
self.assertTrue(hasattr(image_processing, "do_grayscale"))
def test_image_processor_from_dict_with_kwargs(self):
image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size, {"height": 480, "width": 640})
image_processor = self.image_processing_class.from_dict(
self.image_processor_dict, size={"height": 42, "width": 42}
)
self.assertEqual(image_processor.size, {"height": 42, "width": 42})
@unittest.skip(reason="SuperPointImageProcessor is always supposed to return a grayscaled image")
def test_call_numpy_4_channels(self):
pass
def test_input_image_properly_converted_to_grayscale(self):
image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
image_inputs = self.image_processor_tester.prepare_image_inputs()
pre_processed_images = image_processor.preprocess(image_inputs)
for image in pre_processed_images["pixel_values"]:
self.assertTrue(np.all(image[0, ...] == image[1, ...]) and np.all(image[1, ...] == image[2, ...]))
@require_torch
def test_post_processing_keypoint_detection(self):
image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
image_inputs = self.image_processor_tester.prepare_image_inputs()
pre_processed_images = image_processor.preprocess(image_inputs, return_tensors="pt")
outputs = self.image_processor_tester.prepare_keypoint_detection_output(**pre_processed_images)
def check_post_processed_output(post_processed_output, image_size):
for post_processed_output, image_size in zip(post_processed_output, image_size):
self.assertTrue("keypoints" in post_processed_output)
self.assertTrue("descriptors" in post_processed_output)
self.assertTrue("scores" in post_processed_output)
keypoints = post_processed_output["keypoints"]
all_below_image_size = torch.all(keypoints[:, 0] <= image_size[1]) and torch.all(
keypoints[:, 1] <= image_size[0]
)
all_above_zero = torch.all(keypoints[:, 0] >= 0) and torch.all(keypoints[:, 1] >= 0)
self.assertTrue(all_below_image_size)
self.assertTrue(all_above_zero)
tuple_image_sizes = [(image.size[0], image.size[1]) for image in image_inputs]
tuple_post_processed_outputs = image_processor.post_process_keypoint_detection(outputs, tuple_image_sizes)
check_post_processed_output(tuple_post_processed_outputs, tuple_image_sizes)
tensor_image_sizes = torch.tensor([image.size for image in image_inputs]).flip(1)
tensor_post_processed_outputs = image_processor.post_process_keypoint_detection(outputs, tensor_image_sizes)
check_post_processed_output(tensor_post_processed_outputs, tensor_image_sizes)
| transformers/tests/models/superpoint/test_image_processing_superpoint.py/0 | {
"file_path": "transformers/tests/models/superpoint/test_image_processing_superpoint.py",
"repo_id": "transformers",
"token_count": 2967
} |
# coding=utf-8
# Copyright 2021 Google T5 Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest
import numpy as np
import transformers
from transformers import is_flax_available
from transformers.testing_utils import (
is_pt_flax_cross_test,
require_flax,
require_sentencepiece,
require_tokenizers,
slow,
)
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
os.environ["XLA_PYTHON_CLIENT_ALLOCATOR"] = "platform"
import jax
import jax.numpy as jnp
import optax
from flax.core.frozen_dict import unfreeze
from flax.training.common_utils import onehot
from flax.traverse_util import flatten_dict
from transformers import FLAX_MODEL_MAPPING, ByT5Tokenizer, T5Config, T5Tokenizer
from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model
from transformers.models.t5.modeling_flax_t5 import (
FlaxT5EncoderModel,
FlaxT5ForConditionalGeneration,
FlaxT5Model,
shift_tokens_right,
)
class FlaxT5ModelTester:
def __init__(
self,
parent,
vocab_size=99,
batch_size=13,
encoder_seq_length=7,
decoder_seq_length=9,
# For common tests
is_training=True,
use_attention_mask=True,
use_labels=True,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
d_ff=37,
relative_attention_num_buckets=8,
dropout_rate=0.1,
initializer_factor=0.002,
eos_token_id=1,
pad_token_id=0,
decoder_start_token_id=0,
scope=None,
decoder_layers=None,
):
self.parent = parent
self.batch_size = batch_size
self.encoder_seq_length = encoder_seq_length
self.decoder_seq_length = decoder_seq_length
# For common tests
self.seq_length = self.decoder_seq_length
self.is_training = is_training
self.use_attention_mask = use_attention_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.d_ff = d_ff
self.relative_attention_num_buckets = relative_attention_num_buckets
self.dropout_rate = dropout_rate
self.initializer_factor = initializer_factor
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.decoder_start_token_id = decoder_start_token_id
self.scope = None
self.decoder_layers = decoder_layers
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size)
decoder_input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
attention_mask = None
decoder_attention_mask = None
if self.use_attention_mask:
attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2)
decoder_attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2)
config = T5Config(
vocab_size=self.vocab_size,
d_model=self.hidden_size,
d_ff=self.d_ff,
d_kv=self.hidden_size // self.num_attention_heads,
num_layers=self.num_hidden_layers,
num_decoder_layers=self.decoder_layers,
num_heads=self.num_attention_heads,
relative_attention_num_buckets=self.relative_attention_num_buckets,
dropout_rate=self.dropout_rate,
initializer_factor=self.initializer_factor,
eos_token_id=self.eos_token_id,
bos_token_id=self.pad_token_id,
pad_token_id=self.pad_token_id,
decoder_start_token_id=self.decoder_start_token_id,
)
return (
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
)
def create_and_check_model(
self,
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
):
model = FlaxT5Model(config=config)
result = model(
input_ids=input_ids,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
)
result = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
decoder_output = result.last_hidden_state
encoder_output = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.shape, (self.batch_size, self.encoder_seq_length, self.hidden_size))
self.parent.assertEqual(decoder_output.shape, (self.batch_size, self.decoder_seq_length, self.hidden_size))
def check_use_cache_forward_with_attn_mask(
self,
model_class_name,
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
):
max_decoder_length = 20
model = model_class_name(config)
encoder_outputs = model.encode(input_ids)
# prevent fully zero'd out attention mask
decoder_attention_mask = jnp.ones_like(decoder_attention_mask)
decoder_attention_mask_cache = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])),
],
axis=-1,
)
past_key_values = model.init_cache(decoder_input_ids.shape[0], max_decoder_length, encoder_outputs)
outputs_cache = model.decode(
decoder_input_ids[:, :-1],
encoder_outputs,
decoder_attention_mask=decoder_attention_mask_cache,
past_key_values=past_key_values,
)
outputs_cache_next = model.decode(
decoder_input_ids[:, -1:],
encoder_outputs,
past_key_values=outputs_cache.past_key_values,
decoder_attention_mask=decoder_attention_mask_cache,
)
outputs = model.decode(decoder_input_ids, encoder_outputs, decoder_attention_mask=decoder_attention_mask)
diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}")
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
}
return config, inputs_dict
@require_flax
class FlaxT5ModelTest(FlaxModelTesterMixin, FlaxGenerationTesterMixin, unittest.TestCase):
all_model_classes = (FlaxT5Model, FlaxT5ForConditionalGeneration) if is_flax_available() else ()
all_generative_model_classes = (FlaxT5ForConditionalGeneration,) if is_flax_available() else ()
is_encoder_decoder = True
def setUp(self):
self.model_tester = FlaxT5ModelTester(self)
self.config_tester = ConfigTester(self, config_class=T5Config, d_model=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_v1_1(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
# check that gated gelu feed forward and different word embeddings work
config = config_and_inputs[0]
config.tie_word_embeddings = False
config.feed_forward_proj = "gated-gelu"
self.model_tester.create_and_check_model(config, *config_and_inputs[1:])
def test_use_cache_forward_with_attn_mask(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(model_class, *config_and_inputs)
def test_encode(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
model = model_class(config)
@jax.jit
def encode_jitted(input_ids, attention_mask=None, **kwargs):
return model.encode(input_ids=input_ids, attention_mask=attention_mask)
with self.subTest("JIT Enabled"):
jitted_outputs = encode_jitted(**prepared_inputs_dict).to_tuple()
with self.subTest("JIT Disabled"):
with jax.disable_jit():
outputs = encode_jitted(**prepared_inputs_dict).to_tuple()
self.assertEqual(len(outputs), len(jitted_outputs))
for jitted_output, output in zip(jitted_outputs, outputs):
self.assertEqual(jitted_output.shape, output.shape)
def test_decode(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
model = model_class(config)
encoder_outputs = model.encode(inputs_dict["input_ids"], inputs_dict["attention_mask"])
prepared_inputs_dict = {
"decoder_input_ids": inputs_dict["decoder_input_ids"],
"decoder_attention_mask": inputs_dict["decoder_attention_mask"],
"encoder_outputs": encoder_outputs,
}
@jax.jit
def decode_jitted(decoder_input_ids, decoder_attention_mask, encoder_outputs):
return model.decode(
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
encoder_outputs=encoder_outputs,
)
with self.subTest("JIT Enabled"):
jitted_outputs = decode_jitted(**prepared_inputs_dict).to_tuple()
with self.subTest("JIT Disabled"):
with jax.disable_jit():
outputs = decode_jitted(**prepared_inputs_dict).to_tuple()
self.assertEqual(len(outputs), len(jitted_outputs))
for jitted_output, output in zip(jitted_outputs, outputs):
self.assertEqual(jitted_output.shape, output.shape)
def test_shift_right(self):
decoder_start_token_id = 0
pad_token_id = 1
labels = np.arange(2, 102).reshape(5, 20)
labels[:2, 15:] = -100
decoder_input_ids = shift_tokens_right(labels, pad_token_id, decoder_start_token_id)
np_decoder_input_ids = np.array(decoder_input_ids)
padded_slice = np_decoder_input_ids[:2, (15 + 1) :]
self.assertTrue((padded_slice == 1).all())
not_padded_slice = np_decoder_input_ids[2:, 1:]
rolled_labels = np.roll(labels[2:], 1)[:, 1:]
self.assertTrue((not_padded_slice == rolled_labels).all())
self.assertTrue((np_decoder_input_ids[:, 0] == 0).all())
# overwrite since special base model prefix is used
def test_save_load_from_base(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
base_class = FLAX_MODEL_MAPPING[config.__class__]
for model_class in self.all_model_classes:
if model_class == base_class:
continue
model = base_class(config)
base_params = flatten_dict(unfreeze(model.params))
# check that all base model weights are loaded correctly
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
head_model = model_class.from_pretrained(tmpdirname)
base_param_from_head = flatten_dict(unfreeze(head_model.params))
for key in base_param_from_head.keys():
max_diff = (base_params[key] - base_param_from_head[key]).sum().item()
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
# overwrite since special base model prefix is used
def test_save_load_to_base(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
base_class = FLAX_MODEL_MAPPING[config.__class__]
for model_class in self.all_model_classes:
if model_class == base_class:
continue
model = model_class(config)
base_params_from_head = flatten_dict(unfreeze(model.params))
# check that all base model weights are loaded correctly
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
base_model = base_class.from_pretrained(tmpdirname)
base_params = flatten_dict(unfreeze(base_model.params))
for key in base_params_from_head.keys():
max_diff = (base_params[key] - base_params_from_head[key]).sum().item()
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
# overwrite since special base model prefix is used
@is_pt_flax_cross_test
def test_save_load_from_base_pt(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
base_class = FLAX_MODEL_MAPPING[config.__class__]
for model_class in self.all_model_classes:
if model_class == base_class:
continue
model = base_class(config)
base_params = flatten_dict(unfreeze(model.params))
# convert Flax model to PyTorch model
pt_model_class = getattr(transformers, base_class.__name__[4:]) # Skip the "Flax" at the beginning
pt_model = pt_model_class(config).eval()
pt_model = load_flax_weights_in_pytorch_model(pt_model, model.params)
# check that all base model weights are loaded correctly
with tempfile.TemporaryDirectory() as tmpdirname:
# save pt model
pt_model.save_pretrained(tmpdirname)
head_model = model_class.from_pretrained(tmpdirname, from_pt=True)
base_param_from_head = flatten_dict(unfreeze(head_model.params))
for key in base_param_from_head.keys():
max_diff = (base_params[key] - base_param_from_head[key]).sum().item()
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
# overwrite since special base model prefix is used
@is_pt_flax_cross_test
def test_save_load_to_base_pt(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
base_class = FLAX_MODEL_MAPPING[config.__class__]
for model_class in self.all_model_classes:
if model_class == base_class:
continue
model = model_class(config)
base_params_from_head = flatten_dict(unfreeze(model.params))
# convert Flax model to PyTorch model
pt_model_class = getattr(transformers, model_class.__name__[4:]) # Skip the "Flax" at the beginning
pt_model = pt_model_class(config).eval()
pt_model = load_flax_weights_in_pytorch_model(pt_model, model.params)
# check that all base model weights are loaded correctly
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(tmpdirname)
base_model = base_class.from_pretrained(tmpdirname, from_pt=True)
base_params = flatten_dict(unfreeze(base_model.params))
for key in base_params_from_head.keys():
max_diff = (base_params[key] - base_params_from_head[key]).sum().item()
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
# overwrite since special base model prefix is used
@is_pt_flax_cross_test
def test_save_load_bf16_to_base_pt(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
base_class = FLAX_MODEL_MAPPING[config.__class__]
for model_class in self.all_model_classes:
if model_class == base_class:
continue
model = model_class(config)
model.params = model.to_bf16(model.params)
base_params_from_head = flatten_dict(unfreeze(model.params))
# convert Flax model to PyTorch model
pt_model_class = getattr(transformers, model_class.__name__[4:]) # Skip the "Flax" at the beginning
pt_model = pt_model_class(config).eval()
pt_model = load_flax_weights_in_pytorch_model(pt_model, model.params)
# check that all base model weights are loaded correctly
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(tmpdirname)
base_model = base_class.from_pretrained(tmpdirname, from_pt=True)
base_params = flatten_dict(unfreeze(base_model.params))
for key in base_params_from_head.keys():
max_diff = (base_params[key] - base_params_from_head[key]).sum().item()
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
class FlaxT5EncoderOnlyModelTester:
def __init__(
self,
parent,
vocab_size=99,
batch_size=13,
encoder_seq_length=7,
# For common tests
is_training=True,
use_attention_mask=True,
use_labels=True,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
d_ff=37,
relative_attention_num_buckets=8,
dropout_rate=0.1,
initializer_factor=0.002,
eos_token_id=1,
pad_token_id=0,
decoder_start_token_id=0,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.encoder_seq_length = encoder_seq_length
# For common tests
self.seq_length = self.encoder_seq_length
self.is_training = is_training
self.use_attention_mask = use_attention_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.d_ff = d_ff
self.relative_attention_num_buckets = relative_attention_num_buckets
self.dropout_rate = dropout_rate
self.initializer_factor = initializer_factor
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.decoder_start_token_id = decoder_start_token_id
self.scope = None
self.decoder_layers = 0
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size)
attention_mask = None
if self.use_attention_mask:
attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2)
config = T5Config(
vocab_size=self.vocab_size,
d_model=self.hidden_size,
d_ff=self.d_ff,
d_kv=self.hidden_size // self.num_attention_heads,
num_layers=self.num_hidden_layers,
num_decoder_layers=self.decoder_layers,
num_heads=self.num_attention_heads,
relative_attention_num_buckets=self.relative_attention_num_buckets,
dropout_rate=self.dropout_rate,
initializer_factor=self.initializer_factor,
eos_token_id=self.eos_token_id,
bos_token_id=self.pad_token_id,
pad_token_id=self.pad_token_id,
decoder_start_token_id=self.decoder_start_token_id,
is_encoder_decoder=False,
)
return (
config,
input_ids,
attention_mask,
)
def create_and_check_model(
self,
config,
input_ids,
attention_mask,
):
model = FlaxT5EncoderModel(config=config)
result = model(
input_ids=input_ids,
attention_mask=attention_mask,
)
result = model(input_ids=input_ids)
encoder_output = result.last_hidden_state
self.parent.assertEqual(encoder_output.shape, (self.batch_size, self.encoder_seq_length, self.hidden_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
attention_mask,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
}
return config, inputs_dict
@require_flax
class FlaxT5EncoderOnlyModelTest(FlaxModelTesterMixin, unittest.TestCase):
all_model_classes = (FlaxT5EncoderModel,) if is_flax_available() else ()
is_encoder_decoder = False
def setUp(self):
self.model_tester = FlaxT5EncoderOnlyModelTester(self)
self.config_tester = ConfigTester(self, config_class=T5Config, d_model=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_v1_1(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
# check that gated gelu feed forward and different word embeddings work
config = config_and_inputs[0]
config.tie_word_embeddings = False
config.feed_forward_proj = "gated-gelu"
self.model_tester.create_and_check_model(config, *config_and_inputs[1:])
def test_encode(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
model = model_class(config)
@jax.jit
def encode_jitted(input_ids, attention_mask=None, **kwargs):
return model(input_ids=input_ids, attention_mask=attention_mask)
with self.subTest("JIT Enabled"):
jitted_outputs = encode_jitted(**prepared_inputs_dict).to_tuple()
with self.subTest("JIT Disabled"):
with jax.disable_jit():
outputs = encode_jitted(**prepared_inputs_dict).to_tuple()
self.assertEqual(len(outputs), len(jitted_outputs))
for jitted_output, output in zip(jitted_outputs, outputs):
self.assertEqual(jitted_output.shape, output.shape)
# overwrite since special base model prefix is used
def test_save_load_from_base(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
base_class = FLAX_MODEL_MAPPING[config.__class__]
for model_class in self.all_model_classes:
if model_class == base_class:
continue
model = base_class(config)
base_params = flatten_dict(unfreeze(model.params))
# check that all base model weights are loaded correctly
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
head_model = model_class.from_pretrained(tmpdirname)
base_param_from_head = flatten_dict(unfreeze(head_model.params))
for key in base_param_from_head.keys():
max_diff = (base_params[key] - base_param_from_head[key]).sum().item()
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
# overwrite since special base model prefix is used
def test_save_load_to_base(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
base_class = FLAX_MODEL_MAPPING[config.__class__]
for model_class in self.all_model_classes:
if model_class == base_class:
continue
model = model_class(config)
base_params_from_head = flatten_dict(unfreeze(model.params))
# check that all base model weights are loaded correctly
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
base_model = base_class.from_pretrained(tmpdirname)
base_params = flatten_dict(unfreeze(base_model.params))
for key in base_params_from_head.keys():
max_diff = (base_params[key] - base_params_from_head[key]).sum().item()
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
# overwrite since special base model prefix is used
@is_pt_flax_cross_test
def test_save_load_from_base_pt(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
base_class = FLAX_MODEL_MAPPING[config.__class__]
for model_class in self.all_model_classes:
if model_class == base_class:
continue
model = base_class(config)
base_params = flatten_dict(unfreeze(model.params))
# convert Flax model to PyTorch model
pt_model_class = getattr(transformers, base_class.__name__[4:]) # Skip the "Flax" at the beginning
pt_model = pt_model_class(config).eval()
pt_model = load_flax_weights_in_pytorch_model(pt_model, model.params)
# check that all base model weights are loaded correctly
with tempfile.TemporaryDirectory() as tmpdirname:
# save pt model
pt_model.save_pretrained(tmpdirname)
head_model = model_class.from_pretrained(tmpdirname, from_pt=True)
base_param_from_head = flatten_dict(unfreeze(head_model.params))
for key in base_param_from_head.keys():
max_diff = (base_params[key] - base_param_from_head[key]).sum().item()
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
# overwrite since special base model prefix is used
@is_pt_flax_cross_test
def test_save_load_to_base_pt(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
base_class = FLAX_MODEL_MAPPING[config.__class__]
for model_class in self.all_model_classes:
if model_class == base_class:
continue
model = model_class(config)
base_params_from_head = flatten_dict(unfreeze(model.params))
# convert Flax model to PyTorch model
pt_model_class = getattr(transformers, model_class.__name__[4:]) # Skip the "Flax" at the beginning
pt_model = pt_model_class(config).eval()
pt_model = load_flax_weights_in_pytorch_model(pt_model, model.params)
# check that all base model weights are loaded correctly
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(tmpdirname)
base_model = base_class.from_pretrained(tmpdirname, from_pt=True)
base_params = flatten_dict(unfreeze(base_model.params))
for key in base_params_from_head.keys():
max_diff = (base_params[key] - base_params_from_head[key]).sum().item()
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
# overwrite since special base model prefix is used
@is_pt_flax_cross_test
def test_save_load_bf16_to_base_pt(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
base_class = FLAX_MODEL_MAPPING[config.__class__]
for model_class in self.all_model_classes:
if model_class == base_class:
continue
model = model_class(config)
model.params = model.to_bf16(model.params)
base_params_from_head = flatten_dict(unfreeze(model.params))
# convert Flax model to PyTorch model
pt_model_class = getattr(transformers, model_class.__name__[4:]) # Skip the "Flax" at the beginning
pt_model = pt_model_class(config).eval()
pt_model = load_flax_weights_in_pytorch_model(pt_model, model.params)
# check that all base model weights are loaded correctly
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(tmpdirname)
base_model = base_class.from_pretrained(tmpdirname, from_pt=True)
base_params = flatten_dict(unfreeze(base_model.params))
for key in base_params_from_head.keys():
max_diff = (base_params[key] - base_params_from_head[key]).sum().item()
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
@require_sentencepiece
@require_tokenizers
@require_flax
class FlaxT5ModelIntegrationTests(unittest.TestCase):
@slow
def test_small_integration_test(self):
"""
For comparision run:
>>> import t5 # pip install t5==0.7.1
>>> from t5.data.sentencepiece_vocabulary import SentencePieceVocabulary
>>> path_to_mtf_small_t5_checkpoint = '<fill_in>'
>>> path_to_mtf_small_spm_model_path = '<fill_in>'
>>> t5_model = t5.models.MtfModel(model_dir=path_to_mtf_small_t5_checkpoint, batch_size=1, tpu=None)
>>> vocab = SentencePieceVocabulary(path_to_mtf_small_spm_model_path, extra_ids=100)
>>> score = t5_model.score(inputs=["Hello there"], targets=["Hi I am"], vocabulary=vocab)
"""
model = FlaxT5ForConditionalGeneration.from_pretrained("google-t5/t5-small")
tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-small")
input_ids = tokenizer("Hello there", return_tensors="np").input_ids
labels = tokenizer("Hi I am", return_tensors="np").input_ids
decoder_input_ids = shift_tokens_right(labels, model.config.pad_token_id, model.config.decoder_start_token_id)
logits = model(input_ids, decoder_input_ids=decoder_input_ids).logits
loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])).mean()
mtf_score = -(labels.shape[-1] * loss.item())
EXPECTED_SCORE = -19.0845
self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)
@slow
def test_small_v1_1_integration_test(self):
"""
For comparision run:
>>> import t5 # pip install t5==0.7.1
>>> from t5.data.sentencepiece_vocabulary import SentencePieceVocabulary
>>> path_to_mtf_small_t5_v1_1_checkpoint = '<fill_in>'
>>> path_to_mtf_small_spm_model_path = '<fill_in>'
>>> t5_model = t5.models.MtfModel(model_dir=path_to_mtf_small_t5_v1_1_checkpoint, batch_size=1, tpu=None)
>>> vocab = SentencePieceVocabulary(path_to_mtf_small_spm_model_path, extra_ids=100)
>>> score = t5_model.score(inputs=["Hello there"], targets=["Hi I am"], vocabulary=vocab)
"""
model = FlaxT5ForConditionalGeneration.from_pretrained("google/t5-v1_1-small")
tokenizer = T5Tokenizer.from_pretrained("google/t5-v1_1-small")
input_ids = tokenizer("Hello there", return_tensors="np").input_ids
labels = tokenizer("Hi I am", return_tensors="np").input_ids
decoder_input_ids = shift_tokens_right(labels, model.config.pad_token_id, model.config.decoder_start_token_id)
logits = model(input_ids, decoder_input_ids=decoder_input_ids).logits
loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])).mean()
mtf_score = -(labels.shape[-1] * loss.item())
EXPECTED_SCORE = -59.0293
self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)
@slow
def test_small_byt5_integration_test(self):
"""
For comparision run:
>>> import t5 # pip install t5==0.9.1
>>> path_to_byt5_small_checkpoint = '<fill_in>'
>>> t5_model = t5.models.MtfModel(model_dir=path_to_tf_checkpoint, batch_size=1, tpu=None)
>>> vocab = t5.data.ByteVocabulary()
>>> score = t5_model.score(inputs=["Hello there"], targets=["Hi I am"], vocabulary=vocab)
"""
model = FlaxT5ForConditionalGeneration.from_pretrained("google/byt5-small")
tokenizer = ByT5Tokenizer.from_pretrained("google/byt5-small")
input_ids = tokenizer("Hello there", return_tensors="np").input_ids
labels = tokenizer("Hi I am", return_tensors="np").input_ids
decoder_input_ids = shift_tokens_right(labels, model.config.pad_token_id, model.config.decoder_start_token_id)
logits = model(input_ids, decoder_input_ids=decoder_input_ids).logits
loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])).mean()
mtf_score = -(labels.shape[-1] * loss.item())
EXPECTED_SCORE = -60.7397
self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)
@slow
def test_small_generation(self):
model = FlaxT5ForConditionalGeneration.from_pretrained("google-t5/t5-small")
model.config.max_length = 8
model.config.num_beams = 1
model.config.do_sample = False
tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-small")
input_ids = tokenizer("summarize: Hello there", return_tensors="np").input_ids
sequences = model.generate(input_ids).sequences
output_str = tokenizer.batch_decode(sequences, skip_special_tokens=True)[0]
self.assertTrue(output_str == "Hello there!")
@slow
def test_small_generation_bfloat16(self):
model = FlaxT5ForConditionalGeneration.from_pretrained("google-t5/t5-small", dtype=jnp.bfloat16)
model.config.max_length = 8
model.config.num_beams = 1
model.config.do_sample = False
tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-small")
input_ids = tokenizer("summarize: Hello there", return_tensors="np").input_ids
sequences = model.generate(input_ids).sequences
output_str = tokenizer.batch_decode(sequences, skip_special_tokens=True)[0]
self.assertTrue(output_str == "Hello there!")
@slow
def test_summarization(self):
model = FlaxT5ForConditionalGeneration.from_pretrained("google-t5/t5-base")
tok = T5Tokenizer.from_pretrained("google-t5/t5-base")
FRANCE_ARTICLE = ( # @noqa
"Marseille, France (CNN)The French prosecutor leading an investigation into the crash of Germanwings"
" Flight 9525 insisted Wednesday that he was not aware of any video footage from on board the plane."
' Marseille prosecutor Brice Robin told CNN that "so far no videos were used in the crash investigation."'
' He added, "A person who has such a video needs to immediately give it to the investigators." Robin\'s'
" comments follow claims by two magazines, German daily Bild and French Paris Match, of a cell phone video"
" showing the harrowing final seconds from on board Germanwings Flight 9525 as it crashed into the French"
" Alps. All 150 on board were killed. Paris Match and Bild reported that the video was recovered from a"
" phone at the wreckage site. The two publications described the supposed video, but did not post it on"
" their websites. The publications said that they watched the video, which was found by a source close to"
" the investigation. \"One can hear cries of 'My God' in several languages,\" Paris Match reported."
' "Metallic banging can also be heard more than three times, perhaps of the pilot trying to open the'
" cockpit door with a heavy object. Towards the end, after a heavy shake, stronger than the others, the"
' screaming intensifies. Then nothing." "It is a very disturbing scene," said Julian Reichelt,'
" editor-in-chief of Bild online. An official with France's accident investigation agency, the BEA, said"
" the agency is not aware of any such video. Lt. Col. Jean-Marc Menichini, a French Gendarmerie spokesman"
" in charge of communications on rescue efforts around the Germanwings crash site, told CNN that the"
' reports were "completely wrong" and "unwarranted." Cell phones have been collected at the site, he said,'
' but that they "hadn\'t been exploited yet." Menichini said he believed the cell phones would need to be'
" sent to the Criminal Research Institute in Rosny sous-Bois, near Paris, in order to be analyzed by"
" specialized technicians working hand-in-hand with investigators. But none of the cell phones found so"
" far have been sent to the institute, Menichini said. Asked whether staff involved in the search could"
' have leaked a memory card to the media, Menichini answered with a categorical "no." Reichelt told "Erin'
' Burnett: Outfront" that he had watched the video and stood by the report, saying Bild and Paris Match'
' are "very confident" that the clip is real. He noted that investigators only revealed they\'d recovered'
' cell phones from the crash site after Bild and Paris Match published their reports. "That is something'
" we did not know before. ... Overall we can say many things of the investigation weren't revealed by the"
' investigation at the beginning," he said. What was mental state of Germanwings co-pilot? German airline'
" Lufthansa confirmed Tuesday that co-pilot Andreas Lubitz had battled depression years before he took the"
" controls of Germanwings Flight 9525, which he's accused of deliberately crashing last week in the"
' French Alps. Lubitz told his Lufthansa flight training school in 2009 that he had a "previous episode of'
' severe depression," the airline said Tuesday. Email correspondence between Lubitz and the school'
" discovered in an internal investigation, Lufthansa said, included medical documents he submitted in"
" connection with resuming his flight training. The announcement indicates that Lufthansa, the parent"
" company of Germanwings, knew of Lubitz's battle with depression, allowed him to continue training and"
" ultimately put him in the cockpit. Lufthansa, whose CEO Carsten Spohr previously said Lubitz was 100%"
' fit to fly, described its statement Tuesday as a "swift and seamless clarification" and said it was'
" sharing the information and documents -- including training and medical records -- with public"
" prosecutors. Spohr traveled to the crash site Wednesday, where recovery teams have been working for the"
" past week to recover human remains and plane debris scattered across a steep mountainside. He saw the"
" crisis center set up in Seyne-les-Alpes, laid a wreath in the village of Le Vernet, closer to the crash"
" site, where grieving families have left flowers at a simple stone memorial. Menichini told CNN late"
" Tuesday that no visible human remains were left at the site but recovery teams would keep searching."
" French President Francois Hollande, speaking Tuesday, said that it should be possible to identify all"
" the victims using DNA analysis by the end of the week, sooner than authorities had previously suggested."
" In the meantime, the recovery of the victims' personal belongings will start Wednesday, Menichini said."
" Among those personal belongings could be more cell phones belonging to the 144 passengers and six crew"
" on board. Check out the latest from our correspondents . The details about Lubitz's correspondence with"
" the flight school during his training were among several developments as investigators continued to"
" delve into what caused the crash and Lubitz's possible motive for downing the jet. A Lufthansa"
" spokesperson told CNN on Tuesday that Lubitz had a valid medical certificate, had passed all his"
' examinations and "held all the licenses required." Earlier, a spokesman for the prosecutor\'s office in'
" Dusseldorf, Christoph Kumpa, said medical records reveal Lubitz suffered from suicidal tendencies at"
" some point before his aviation career and underwent psychotherapy before he got his pilot's license."
" Kumpa emphasized there's no evidence suggesting Lubitz was suicidal or acting aggressively before the"
" crash. Investigators are looking into whether Lubitz feared his medical condition would cause him to"
" lose his pilot's license, a European government official briefed on the investigation told CNN on"
' Tuesday. While flying was "a big part of his life," the source said, it\'s only one theory being'
" considered. Another source, a law enforcement official briefed on the investigation, also told CNN that"
" authorities believe the primary motive for Lubitz to bring down the plane was that he feared he would"
" not be allowed to fly because of his medical problems. Lubitz's girlfriend told investigators he had"
" seen an eye doctor and a neuropsychologist, both of whom deemed him unfit to work recently and concluded"
" he had psychological issues, the European government official said. But no matter what details emerge"
" about his previous mental health struggles, there's more to the story, said Brian Russell, a forensic"
' psychologist. "Psychology can explain why somebody would turn rage inward on themselves about the fact'
" that maybe they weren't going to keep doing their job and they're upset about that and so they're"
' suicidal," he said. "But there is no mental illness that explains why somebody then feels entitled to'
" also take that rage and turn it outward on 149 other people who had nothing to do with the person's"
' problems." Germanwings crash compensation: What we know . Who was the captain of Germanwings Flight'
" 9525? CNN's Margot Haddad reported from Marseille and Pamela Brown from Dusseldorf, while Laura"
" Smith-Spark wrote from London. CNN's Frederik Pleitgen, Pamela Boykoff, Antonia Mortensen, Sandrine"
" Amiel and Anna-Maja Rappard contributed to this report."
)
SHORTER_ARTICLE = (
"(CNN)The Palestinian Authority officially became the 123rd member of the International Criminal Court on"
" Wednesday, a step that gives the court jurisdiction over alleged crimes in Palestinian territories. The"
" formal accession was marked with a ceremony at The Hague, in the Netherlands, where the court is based."
" The Palestinians signed the ICC's founding Rome Statute in January, when they also accepted its"
' jurisdiction over alleged crimes committed "in the occupied Palestinian territory, including East'
' Jerusalem, since June 13, 2014." Later that month, the ICC opened a preliminary examination into the'
" situation in Palestinian territories, paving the way for possible war crimes investigations against"
" Israelis. As members of the court, Palestinians may be subject to counter-charges as well. Israel and"
" the United States, neither of which is an ICC member, opposed the Palestinians' efforts to join the"
" body. But Palestinian Foreign Minister Riad al-Malki, speaking at Wednesday's ceremony, said it was a"
' move toward greater justice. "As Palestine formally becomes a State Party to the Rome Statute today, the'
' world is also a step closer to ending a long era of impunity and injustice," he said, according to an'
' ICC news release. "Indeed, today brings us closer to our shared goals of justice and peace." Judge'
" Kuniko Ozaki, a vice president of the ICC, said acceding to the treaty was just the first step for the"
' Palestinians. "As the Rome Statute today enters into force for the State of Palestine, Palestine'
" acquires all the rights as well as responsibilities that come with being a State Party to the Statute."
' These are substantive commitments, which cannot be taken lightly," she said. Rights group Human Rights'
' Watch welcomed the development. "Governments seeking to penalize Palestine for joining the ICC should'
" immediately end their pressure, and countries that support universal acceptance of the court's treaty"
' should speak out to welcome its membership," said Balkees Jarrah, international justice counsel for the'
" group. \"What's objectionable is the attempts to undermine international justice, not Palestine's"
' decision to join a treaty to which over 100 countries around the world are members." In January, when'
" the preliminary ICC examination was opened, Israeli Prime Minister Benjamin Netanyahu described it as an"
' outrage, saying the court was overstepping its boundaries. The United States also said it "strongly"'
" disagreed with the court's decision. \"As we have said repeatedly, we do not believe that Palestine is a"
' state and therefore we do not believe that it is eligible to join the ICC," the State Department said in'
' a statement. It urged the warring sides to resolve their differences through direct negotiations. "We'
' will continue to oppose actions against Israel at the ICC as counterproductive to the cause of peace,"'
" it said. But the ICC begs to differ with the definition of a state for its purposes and refers to the"
' territories as "Palestine." While a preliminary examination is not a formal investigation, it allows the'
" court to review evidence and determine whether to investigate suspects on both sides. Prosecutor Fatou"
' Bensouda said her office would "conduct its analysis in full independence and impartiality." The war'
" between Israel and Hamas militants in Gaza last summer left more than 2,000 people dead. The inquiry"
" will include alleged war crimes committed since June. The International Criminal Court was set up in"
" 2002 to prosecute genocide, crimes against humanity and war crimes. CNN's Vasco Cotovio, Kareem Khadder"
" and Faith Karimi contributed to this report."
)
IRAN_ARTICLE = (
"(CNN)The United States and its negotiating partners reached a very strong framework agreement with Iran"
" in Lausanne, Switzerland, on Thursday that limits Iran's nuclear program in such a way as to effectively"
" block it from building a nuclear weapon. Expect pushback anyway, if the recent past is any harbinger."
" Just last month, in an attempt to head off such an agreement, House Speaker John Boehner invited Israeli"
" Prime Minister Benjamin Netanyahu to preemptively blast it before Congress, and 47 senators sent a"
" letter to the Iranian leadership warning them away from a deal. The debate that has already begun since"
" the announcement of the new framework will likely result in more heat than light. It will not be helped"
" by the gathering swirl of dubious assumptions and doubtful assertions. Let us address some of these: ."
" The most misleading assertion, despite universal rejection by experts, is that the negotiations'"
" objective at the outset was the total elimination of any nuclear program in Iran. That is the position"
" of Netanyahu and his acolytes in the U.S. Congress. But that is not and never was the objective. If it"
" had been, there would have been no Iranian team at the negotiating table. Rather, the objective has"
" always been to structure an agreement or series of agreements so that Iran could not covertly develop a"
" nuclear arsenal before the United States and its allies could respond. The new framework has exceeded"
" expectations in achieving that goal. It would reduce Iran's low-enriched uranium stockpile, cut by"
" two-thirds its number of installed centrifuges and implement a rigorous inspection regime. Another"
" dubious assumption of opponents is that the Iranian nuclear program is a covert weapons program. Despite"
" sharp accusations by some in the United States and its allies, Iran denies having such a program, and"
" U.S. intelligence contends that Iran has not yet made the decision to build a nuclear weapon. Iran's"
" continued cooperation with International Atomic Energy Agency inspections is further evidence on this"
" point, and we'll know even more about Iran's program in the coming months and years because of the deal."
" In fact, the inspections provisions that are part of this agreement are designed to protect against any"
" covert action by the Iranians. What's more, the rhetoric of some members of Congress has implied that"
" the negotiations have been between only the United States and Iran (i.e., the 47 senators' letter"
" warning that a deal might be killed by Congress or a future president). This of course is not the case."
" The talks were between Iran and the five permanent members of the U.N. Security Council (United States,"
" United Kingdom, France, China and Russia) plus Germany, dubbed the P5+1. While the United States has"
" played a leading role in the effort, it negotiated the terms alongside its partners. If the agreement"
" reached by the P5+1 is rejected by Congress, it could result in an unraveling of the sanctions on Iran"
" and threaten NATO cohesion in other areas. Another questionable assertion is that this agreement"
" contains a sunset clause, after which Iran will be free to do as it pleases. Again, this is not the"
" case. Some of the restrictions on Iran's nuclear activities, such as uranium enrichment, will be eased"
" or eliminated over time, as long as 15 years. But most importantly, the framework agreement includes"
" Iran's ratification of the Additional Protocol, which allows IAEA inspectors expanded access to nuclear"
" sites both declared and nondeclared. This provision will be permanent. It does not sunset. Thus, going"
" forward, if Iran decides to enrich uranium to weapons-grade levels, monitors will be able to detect such"
" a move in a matter of days and alert the U.N. Security Council. Many in Congress have said that the"
' agreement should be a formal treaty requiring the Senate to "advise and consent." But the issue is not'
" suited for a treaty. Treaties impose equivalent obligations on all signatories. For example, the New"
" START treaty limits Russia and the United States to 1,550 deployed strategic warheads. But any agreement"
" with Iran will not be so balanced. The restrictions and obligations in the final framework agreement"
" will be imposed almost exclusively on Iran. The P5+1 are obligated only to ease and eventually remove"
" most but not all economic sanctions, which were imposed as leverage to gain this final deal. Finally"
" some insist that any agreement must address Iranian missile programs, human rights violations or support"
" for Hamas or Hezbollah. As important as these issues are, and they must indeed be addressed, they are"
" unrelated to the most important aim of a nuclear deal: preventing a nuclear Iran. To include them in"
" the negotiations would be a poison pill. This agreement should be judged on its merits and on how it"
" affects the security of our negotiating partners and allies, including Israel. Those judgments should be"
" fact-based, not based on questionable assertions or dubious assumptions."
)
ARTICLE_SUBWAY = (
"New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County, New York. A"
" year later, she got married again in Westchester County, but to a different man and without divorcing"
" her first husband. Only 18 days after that marriage, she got hitched yet again. Then, Barrientos"
' declared "I do" five more times, sometimes only within two weeks of each other. In 2010, she married'
" once more, this time in the Bronx. In an application for a marriage license, she stated it was her"
' "first and only" marriage. Barrientos, now 39, is facing two criminal counts of "offering a false'
' instrument for filing in the first degree," referring to her false statements on the 2010 marriage'
" license application, according to court documents. Prosecutors said the marriages were part of an"
" immigration scam. On Friday, she pleaded not guilty at State Supreme Court in the Bronx, according to"
" her attorney, Christopher Wright, who declined to comment further. After leaving court, Barrientos was"
" arrested and charged with theft of service and criminal trespass for allegedly sneaking into the New"
" York subway through an emergency exit, said Detective Annette Markowski, a police spokeswoman. In total,"
" Barrientos has been married 10 times, with nine of her marriages occurring between 1999 and 2002. All"
" occurred either in Westchester County, Long Island, New Jersey or the Bronx. She is believed to still be"
" married to four men, and at one time, she was married to eight men at once, prosecutors say. Prosecutors"
" said the immigration scam involved some of her husbands, who filed for permanent residence status"
" shortly after the marriages. Any divorces happened only after such filings were approved. It was"
" unclear whether any of the men will be prosecuted. The case was referred to the Bronx District"
" Attorney's Office by Immigration and Customs Enforcement and the Department of Homeland Security's"
' Investigation Division. Seven of the men are from so-called "red-flagged" countries, including Egypt,'
" Turkey, Georgia, Pakistan and Mali. Her eighth husband, Rashid Rajput, was deported in 2006 to his"
" native Pakistan after an investigation by the Joint Terrorism Task Force. If convicted, Barrientos faces"
" up to four years in prison. Her next court appearance is scheduled for May 18."
)
expected_summaries = [
'prosecutor: "so far no videos were used in the crash investigation" two magazines claim to have found a'
" cell phone video of the final seconds . \"one can hear cries of 'My God' in several languages,\" one"
" magazine says . all 150 on board were killed in the crash .",
"the formal accession was marked by a ceremony at The Hague, in the Netherlands . the ICC opened a"
" preliminary examination into the situation in the occupied Palestinian territory . as members of the"
" court, Palestinians may be subject to counter-charges as well .",
"the u.s. and its negotiating partners reached a very strong framework agreement with Iran . aaron miller:"
" the debate that has already begun since the announcement of the new framework will likely result in more"
" heat than light . he says the new framework would reduce Iran's low-enriched uranium stockpile and cut"
" centrifuges . miller: if it had been, there would have been no Iranian team at the table .",
"prosecutors say the marriages were part of an immigration scam . if convicted, barrientos faces two"
' criminal counts of "offering a false instrument for filing in the first degree" she has been married 10'
" times, with nine of her marriages occurring between 1999 and 2002 .",
]
dct = tok(
["summarize: " + x for x in [FRANCE_ARTICLE, SHORTER_ARTICLE, IRAN_ARTICLE, ARTICLE_SUBWAY]],
padding="max_length",
truncation=True,
return_tensors="np",
)
self.assertEqual(512, dct["input_ids"].shape[1])
hypotheses_batch = model.generate(
**dct,
num_beams=4,
length_penalty=2.0,
max_length=142,
min_length=56,
do_sample=False,
early_stopping=True,
).sequences
decoded = tok.batch_decode(hypotheses_batch, skip_special_tokens=True, clean_up_tokenization_spaces=False)
self.assertListEqual(
expected_summaries,
decoded,
)
| transformers/tests/models/t5/test_modeling_flax_t5.py/0 | {
"file_path": "transformers/tests/models/t5/test_modeling_flax_t5.py",
"repo_id": "transformers",
"token_count": 23924
} |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch TimeSformer model."""
import copy
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import TimesformerConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING,
TimesformerForVideoClassification,
TimesformerModel,
)
if is_vision_available():
from transformers import VideoMAEImageProcessor
class TimesformerModelTester:
def __init__(
self,
parent,
batch_size=13,
image_size=10,
num_channels=3,
patch_size=2,
num_frames=2,
is_training=True,
use_labels=True,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
num_labels=10,
initializer_range=0.02,
attention_type="divided_space_time",
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.num_channels = num_channels
self.patch_size = patch_size
self.num_frames = num_frames
self.is_training = is_training
self.use_labels = use_labels
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.attention_type = attention_type
self.initializer_range = initializer_range
self.scope = scope
self.num_labels = num_labels
# in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token
self.num_patches_per_frame = (image_size // patch_size) ** 2
self.seq_length = (num_frames) * self.num_patches_per_frame + 1
def prepare_config_and_inputs(self):
pixel_values = floats_tensor(
[self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size]
)
labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size], self.num_labels)
config = self.get_config()
return config, pixel_values, labels
def get_config(self):
config = TimesformerConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
num_frames=self.num_frames,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
initializer_range=self.initializer_range,
attention_type=self.attention_type,
)
config.num_labels = self.num_labels
return config
def create_and_check_model(self, config, pixel_values, labels):
model = TimesformerModel(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_video_classification(self, config, pixel_values, labels):
model = TimesformerForVideoClassification(config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
# verify the logits shape
expected_shape = torch.Size((self.batch_size, self.num_labels))
self.parent.assertEqual(result.logits.shape, expected_shape)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, labels = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class TimesformerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as TimeSformer does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else ()
pipeline_model_mapping = (
{"feature-extraction": TimesformerModel, "video-classification": TimesformerForVideoClassification}
if is_torch_available()
else {}
)
test_pruning = False
test_torchscript = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = TimesformerModelTester(self)
self.config_tester = ConfigTester(
self, config_class=TimesformerConfig, has_text_modality=False, hidden_size=37
)
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = copy.deepcopy(inputs_dict)
if return_labels:
if model_class in get_values(MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING):
inputs_dict["labels"] = torch.zeros(
self.model_tester.batch_size, dtype=torch.long, device=torch_device
)
return inputs_dict
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="TimeSformer does not use inputs_embeds")
def test_inputs_embeds(self):
pass
def test_model_get_set_embeddings(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_video_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_video_classification(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
model_name = "facebook/timesformer-base-finetuned-k400"
model = TimesformerModel.from_pretrained(model_name)
self.assertIsNotNone(model)
def test_attention_outputs(self):
if not self.has_attentions:
self.skipTest(reason="Model has no attentions")
else:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
for model_class in self.all_model_classes:
seq_len = self.model_tester.seq_length
num_frames = self.model_tester.num_frames
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1],
)
out_len = len(outputs)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
self.assertEqual(out_len + 1, len(outputs))
self_attentions = outputs.attentions
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1],
)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.hidden_states
expected_num_layers = self.model_tester.num_hidden_layers + 1
self.assertEqual(len(hidden_states), expected_num_layers)
seq_length = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[seq_length, self.model_tester.hidden_size],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
# We will verify our results on a video of eating spaghetti
# Frame indices used: [164 168 172 176 181 185 189 193 198 202 206 210 215 219 223 227]
def prepare_video():
file = hf_hub_download(
repo_id="hf-internal-testing/spaghetti-video", filename="eating_spaghetti.npy", repo_type="dataset"
)
video = np.load(file)
return list(video)
@require_torch
@require_vision
class TimesformerModelIntegrationTest(unittest.TestCase):
@cached_property
def default_image_processor(self):
# logits were tested with a different mean and std, so we use the same here
return (
VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5])
if is_vision_available()
else None
)
@slow
def test_inference_for_video_classification(self):
model = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400").to(
torch_device
)
image_processor = self.default_image_processor
video = prepare_video()
inputs = image_processor(video[:8], return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the logits
expected_shape = torch.Size((1, 400))
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = torch.tensor([-0.3016, -0.7713, -0.4205]).to(torch_device)
torch.testing.assert_close(outputs.logits[0, :3], expected_slice, rtol=1e-4, atol=1e-4)
| transformers/tests/models/timesformer/test_modeling_timesformer.py/0 | {
"file_path": "transformers/tests/models/timesformer/test_modeling_timesformer.py",
"repo_id": "transformers",
"token_count": 5966
} |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch VideoMAE model."""
import copy
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import VideoMAEConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_sdpa, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING,
VideoMAEForPreTraining,
VideoMAEForVideoClassification,
VideoMAEModel,
)
if is_vision_available():
from transformers import VideoMAEImageProcessor
class VideoMAEModelTester:
def __init__(
self,
parent,
batch_size=13,
image_size=10,
num_channels=3,
patch_size=2,
tubelet_size=2,
num_frames=2,
is_training=True,
use_labels=True,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
type_sequence_label_size=10,
initializer_range=0.02,
mask_ratio=0.9,
scope=None,
attn_implementation="eager",
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.num_channels = num_channels
self.patch_size = patch_size
self.tubelet_size = tubelet_size
self.num_frames = num_frames
self.is_training = is_training
self.use_labels = use_labels
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.mask_ratio = mask_ratio
self.scope = scope
self.attn_implementation = attn_implementation
# in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame
self.num_patches_per_frame = (image_size // patch_size) ** 2
self.seq_length = (num_frames // tubelet_size) * self.num_patches_per_frame
# use this variable to define bool_masked_pos
self.num_masks = int(mask_ratio * self.seq_length)
def prepare_config_and_inputs(self):
pixel_values = floats_tensor(
[self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size]
)
labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
config = self.get_config()
return config, pixel_values, labels
def get_config(self):
return VideoMAEConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
num_frames=self.num_frames,
tubelet_size=self.tubelet_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
is_decoder=False,
initializer_range=self.initializer_range,
decoder_hidden_size=self.hidden_size,
decoder_intermediate_size=self.intermediate_size,
decoder_num_attention_heads=self.num_attention_heads,
decoder_num_hidden_layers=self.num_hidden_layers,
attn_implementation=self.attn_implementation,
)
def create_and_check_model(self, config, pixel_values, labels):
model = VideoMAEModel(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_pretraining(self, config, pixel_values, labels):
model = VideoMAEForPreTraining(config)
model.to(torch_device)
model.eval()
# important: each video needs to have the same number of masked patches
# hence we define a single mask, which we then repeat for each example in the batch
mask = torch.ones((self.num_masks,))
mask = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0))])
bool_masked_pos = mask.expand(self.batch_size, -1).bool()
result = model(pixel_values, bool_masked_pos)
# model only returns predictions for masked patches
num_masked_patches = mask.sum().item()
decoder_num_labels = 3 * self.tubelet_size * self.patch_size**2
self.parent.assertEqual(result.logits.shape, (self.batch_size, num_masked_patches, decoder_num_labels))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, labels = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class VideoMAEModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as VideoMAE does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (
(VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else ()
)
pipeline_model_mapping = (
{"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification}
if is_torch_available()
else {}
)
test_pruning = False
test_torchscript = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = VideoMAEModelTester(self)
self.config_tester = ConfigTester(self, config_class=VideoMAEConfig, has_text_modality=False, hidden_size=37)
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = copy.deepcopy(inputs_dict)
if model_class == VideoMAEForPreTraining:
# important: each video needs to have the same number of masked patches
# hence we define a single mask, which we then repeat for each example in the batch
mask = torch.ones((self.model_tester.num_masks,))
mask = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0))])
batch_size = inputs_dict["pixel_values"].shape[0]
bool_masked_pos = mask.expand(batch_size, -1).bool()
inputs_dict["bool_masked_pos"] = bool_masked_pos.to(torch_device)
if return_labels:
if model_class in [
*get_values(MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING),
]:
inputs_dict["labels"] = torch.zeros(
self.model_tester.batch_size, dtype=torch.long, device=torch_device
)
return inputs_dict
@unittest.skip("`mse_cpu` not implemented for 'BFloat16'")
@require_torch_sdpa
def test_eager_matches_sdpa_inference_1_bfloat16(self):
pass
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="VideoMAE does not use inputs_embeds")
def test_inputs_embeds(self):
pass
def test_model_get_set_embeddings(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_pretraining(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
model_name = "MCG-NJU/videomae-base"
model = VideoMAEModel.from_pretrained(model_name)
self.assertIsNotNone(model)
def test_attention_outputs(self):
if not self.has_attentions:
self.skipTest(reason="Model does not have attentions")
else:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
for model_class in self.all_model_classes:
num_visible_patches = self.model_tester.seq_length - self.model_tester.num_masks
seq_len = (
num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length
)
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, seq_len, seq_len],
)
out_len = len(outputs)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
self.assertEqual(out_len + 1, len(outputs))
self_attentions = outputs.attentions
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, seq_len, seq_len],
)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.hidden_states
expected_num_layers = self.model_tester.num_hidden_layers + 1
self.assertEqual(len(hidden_states), expected_num_layers)
num_visible_patches = self.model_tester.seq_length - self.model_tester.num_masks
seq_length = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[seq_length, self.model_tester.hidden_size],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
# We will verify our results on a video of eating spaghetti
# Frame indices used: [164 168 172 176 181 185 189 193 198 202 206 210 215 219 223 227]
def prepare_video():
file = hf_hub_download(
repo_id="hf-internal-testing/spaghetti-video", filename="eating_spaghetti.npy", repo_type="dataset"
)
video = np.load(file)
return list(video)
@require_torch
@require_vision
class VideoMAEModelIntegrationTest(unittest.TestCase):
@cached_property
def default_image_processor(self):
# logits were tested with a different mean and std, so we use the same here
return (
VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5])
if is_vision_available()
else None
)
@slow
def test_inference_for_video_classification(self):
model = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics").to(
torch_device
)
image_processor = self.default_image_processor
video = prepare_video()
inputs = image_processor(video, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the logits
expected_shape = torch.Size((1, 400))
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = torch.tensor([0.3669, -0.0688, -0.2421]).to(torch_device)
torch.testing.assert_close(outputs.logits[0, :3], expected_slice, rtol=1e-4, atol=1e-4)
@slow
def test_inference_for_pretraining(self):
model = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short").to(torch_device)
image_processor = self.default_image_processor
video = prepare_video()
inputs = image_processor(video, return_tensors="pt").to(torch_device)
# add boolean mask, indicating which patches to mask
local_path = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos", filename="bool_masked_pos.pt")
inputs["bool_masked_pos"] = torch.load(local_path)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the logits
expected_shape = torch.Size([1, 1408, 1536])
expected_slice = torch.tensor(
[[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]], device=torch_device
)
self.assertEqual(outputs.logits.shape, expected_shape)
torch.testing.assert_close(outputs.logits[0, :3, :3], expected_slice, rtol=1e-4, atol=1e-4)
# verify the loss (`config.norm_pix_loss` = `True`)
expected_loss = torch.tensor([0.5142], device=torch_device)
torch.testing.assert_close(outputs.loss, expected_loss, rtol=1e-4, atol=1e-4)
# verify the loss (`config.norm_pix_loss` = `False`)
model = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short", norm_pix_loss=False).to(
torch_device
)
with torch.no_grad():
outputs = model(**inputs)
expected_loss = torch.tensor(torch.tensor([0.6469]), device=torch_device)
torch.testing.assert_close(outputs.loss, expected_loss, rtol=1e-4, atol=1e-4)
| transformers/tests/models/videomae/test_modeling_videomae.py/0 | {
"file_path": "transformers/tests/models/videomae/test_modeling_videomae.py",
"repo_id": "transformers",
"token_count": 7603
} |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch VitMatte model."""
import unittest
from huggingface_hub import hf_hub_download
from transformers import VitMatteConfig
from transformers.testing_utils import (
require_timm,
require_torch,
slow,
torch_device,
)
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import VitDetConfig, VitMatteForImageMatting
if is_vision_available():
from PIL import Image
from transformers import VitMatteImageProcessor
class VitMatteModelTester:
def __init__(
self,
parent,
batch_size=13,
image_size=32,
patch_size=16,
num_channels=4,
is_training=True,
use_labels=False,
hidden_size=2,
num_hidden_layers=2,
num_attention_heads=2,
hidden_act="gelu",
type_sequence_label_size=10,
initializer_range=0.02,
scope=None,
out_features=["stage1"],
fusion_hidden_sizes=[128, 64, 32, 16],
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.is_training = is_training
self.use_labels = use_labels
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.scope = scope
self.out_features = out_features
self.fusion_hidden_sizes = fusion_hidden_sizes
self.seq_length = (self.image_size // self.patch_size) ** 2
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
if self.use_labels:
raise NotImplementedError("Training is not yet supported")
config = self.get_config()
return config, pixel_values, labels
def get_backbone_config(self):
return VitDetConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
hidden_size=self.hidden_size,
is_training=self.is_training,
hidden_act=self.hidden_act,
out_features=self.out_features,
)
def get_config(self):
return VitMatteConfig(
backbone_config=self.get_backbone_config(),
backbone=None,
hidden_size=self.hidden_size,
fusion_hidden_sizes=self.fusion_hidden_sizes,
)
def create_and_check_model(self, config, pixel_values, labels):
model = VitMatteForImageMatting(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(result.alphas.shape, (self.batch_size, 1, self.image_size, self.image_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, labels = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class VitMatteModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as VitMatte does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (VitMatteForImageMatting,) if is_torch_available() else ()
pipeline_model_mapping = {}
fx_compatible = False
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = VitMatteModelTester(self)
self.config_tester = ConfigTester(
self,
config_class=VitMatteConfig,
has_text_modality=False,
hidden_size=37,
common_properties=["hidden_size"],
)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="VitMatte does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Training is not yet supported")
def test_training(self):
pass
@unittest.skip(reason="Training is not yet supported")
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@unittest.skip(reason="ViTMatte does not support input and output embeddings")
def test_model_get_set_embeddings(self):
pass
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
model_name = "hustvl/vitmatte-small-composition-1k"
model = VitMatteForImageMatting.from_pretrained(model_name)
self.assertIsNotNone(model)
@unittest.skip(reason="ViTMatte does not support retaining gradient on attention logits")
def test_retain_grad_hidden_states_attentions(self):
pass
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
expected_num_layers = getattr(
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
)
self.assertEqual(len(hidden_states), expected_num_layers)
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[2, 2],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
print("Hello we're here")
check_hidden_states_output(inputs_dict, config, model_class)
@require_timm
def test_backbone_selection(self):
def _validate_backbone_init():
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
if model.__class__.__name__ == "VitMatteForImageMatting":
# Confirm out_indices propogated to backbone
self.assertEqual(len(model.backbone.out_indices), 2)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.use_pretrained_backbone = True
config.backbone_config = None
config.backbone_kwargs = {"out_indices": [-2, -1]}
# Force load_backbone path
config.is_hybrid = False
# Load a timm backbone
config.backbone = "resnet18"
config.use_timm_backbone = True
_validate_backbone_init()
# Load a HF backbone
config.backbone = "facebook/dinov2-small"
config.use_timm_backbone = False
_validate_backbone_init()
@require_torch
class VitMatteModelIntegrationTest(unittest.TestCase):
@slow
def test_inference(self):
processor = VitMatteImageProcessor.from_pretrained("hustvl/vitmatte-small-composition-1k")
model = VitMatteForImageMatting.from_pretrained("hustvl/vitmatte-small-composition-1k").to(torch_device)
filepath = hf_hub_download(
repo_id="hf-internal-testing/image-matting-fixtures", filename="image.png", repo_type="dataset"
)
image = Image.open(filepath).convert("RGB")
filepath = hf_hub_download(
repo_id="hf-internal-testing/image-matting-fixtures", filename="trimap.png", repo_type="dataset"
)
trimap = Image.open(filepath).convert("L")
# prepare image + trimap for the model
inputs = processor(images=image, trimaps=trimap, return_tensors="pt").to(torch_device)
with torch.no_grad():
alphas = model(**inputs).alphas
expected_shape = torch.Size((1, 1, 640, 960))
self.assertEqual(alphas.shape, expected_shape)
expected_slice = torch.tensor(
[[0.9977, 0.9987, 0.9990], [0.9980, 0.9998, 0.9998], [0.9983, 0.9998, 0.9998]], device=torch_device
)
torch.testing.assert_close(alphas[0, 0, :3, :3], expected_slice, rtol=1e-4, atol=1e-4)
| transformers/tests/models/vitmatte/test_modeling_vitmatte.py/0 | {
"file_path": "transformers/tests/models/vitmatte/test_modeling_vitmatte.py",
"repo_id": "transformers",
"token_count": 4468
} |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch Wav2Vec2 model."""
import math
import multiprocessing
import os
import pickle
import tempfile
import traceback
import unittest
import numpy as np
from datasets import load_dataset
from pytest import mark
from transformers import Wav2Vec2Config, is_torch_available
from transformers.testing_utils import (
CaptureLogger,
cleanup,
is_flaky,
is_pt_flax_cross_test,
is_pyctcdecode_available,
is_torchaudio_available,
require_flash_attn,
require_pyctcdecode,
require_soundfile,
require_torch,
require_torch_gpu,
require_torchaudio,
run_test_in_subprocess,
slow,
torch_device,
)
from transformers.utils import is_torch_fx_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
ModelTesterMixin,
_config_zero_init,
floats_tensor,
ids_tensor,
random_attention_mask,
)
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from safetensors.torch import save_file as safe_save_file
from transformers import (
Wav2Vec2FeatureExtractor,
Wav2Vec2ForAudioFrameClassification,
Wav2Vec2ForCTC,
Wav2Vec2ForMaskedLM,
Wav2Vec2ForPreTraining,
Wav2Vec2ForSequenceClassification,
Wav2Vec2ForXVector,
Wav2Vec2Model,
Wav2Vec2Processor,
)
from transformers.models.wav2vec2.modeling_wav2vec2 import (
WAV2VEC2_ADAPTER_PT_FILE,
WAV2VEC2_ADAPTER_SAFE_FILE,
Wav2Vec2GumbelVectorQuantizer,
_compute_mask_indices,
_sample_negative_indices,
)
if is_torchaudio_available():
import torchaudio
if is_pyctcdecode_available():
import pyctcdecode.decoder
from transformers import Wav2Vec2ProcessorWithLM
from transformers.models.wav2vec2_with_lm import processing_wav2vec2_with_lm
if is_torch_fx_available():
from transformers.utils.fx import symbolic_trace
def _test_wav2vec2_with_lm_invalid_pool(in_queue, out_queue, timeout):
error = None
try:
_ = in_queue.get(timeout=timeout)
ds = load_dataset(
"mozilla-foundation/common_voice_11_0", "es", split="test", streaming=True, trust_remote_code=True
)
sample = next(iter(ds))
resampled_audio = torchaudio.functional.resample(
torch.tensor(sample["audio"]["array"]), 48_000, 16_000
).numpy()
model = Wav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm").to(
torch_device
)
processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values.to(torch_device)).logits
# use a spawn pool, which should trigger a warning if different than fork
with CaptureLogger(pyctcdecode.decoder.logger) as cl, multiprocessing.get_context("spawn").Pool(1) as pool:
transcription = processor.batch_decode(logits.cpu().numpy(), pool).text
unittest.TestCase().assertIn("Falling back to sequential decoding.", cl.out)
unittest.TestCase().assertEqual(transcription[0], "habitan aguas poco profundas y rocosas")
# force batch_decode to internally create a spawn pool, which should trigger a warning if different than fork
multiprocessing.set_start_method("spawn", force=True)
with CaptureLogger(processing_wav2vec2_with_lm.logger) as cl:
transcription = processor.batch_decode(logits.cpu().numpy()).text
unittest.TestCase().assertIn("Falling back to sequential decoding.", cl.out)
unittest.TestCase().assertEqual(transcription[0], "habitan aguas poco profundas y rocosas")
except Exception:
error = f"{traceback.format_exc()}"
results = {"error": error}
out_queue.put(results, timeout=timeout)
out_queue.join()
class Wav2Vec2ModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=1024, # speech is longer
is_training=False,
hidden_size=16,
feat_extract_norm="group",
feat_extract_dropout=0.0,
feat_extract_activation="gelu",
conv_dim=(32, 32, 32),
conv_stride=(4, 4, 4),
conv_kernel=(8, 8, 8),
conv_bias=False,
num_conv_pos_embeddings=16,
num_conv_pos_embedding_groups=2,
num_hidden_layers=2,
num_attention_heads=2,
hidden_dropout_prob=0.1, # this is most likely not correctly set yet
intermediate_size=20,
layer_norm_eps=1e-5,
hidden_act="gelu",
initializer_range=0.02,
mask_time_prob=0.5,
mask_time_length=2,
vocab_size=32,
do_stable_layer_norm=False,
num_adapter_layers=1,
adapter_stride=2,
tdnn_dim=(32, 32),
tdnn_kernel=(5, 3),
tdnn_dilation=(1, 2),
xvector_output_dim=32,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.hidden_size = hidden_size
self.feat_extract_norm = feat_extract_norm
self.feat_extract_dropout = feat_extract_dropout
self.feat_extract_activation = feat_extract_activation
self.conv_dim = conv_dim
self.conv_stride = conv_stride
self.conv_kernel = conv_kernel
self.conv_bias = conv_bias
self.num_conv_pos_embeddings = num_conv_pos_embeddings
self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_dropout_prob = hidden_dropout_prob
self.intermediate_size = intermediate_size
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.vocab_size = vocab_size
self.do_stable_layer_norm = do_stable_layer_norm
self.num_adapter_layers = num_adapter_layers
self.adapter_stride = adapter_stride
self.mask_time_prob = mask_time_prob
self.mask_time_length = mask_time_length
self.scope = scope
self.tdnn_dim = tdnn_dim
self.tdnn_kernel = tdnn_kernel
self.tdnn_dilation = tdnn_dilation
self.xvector_output_dim = xvector_output_dim
output_seq_length = self.seq_length
for kernel, stride in zip(self.conv_kernel, self.conv_stride):
output_seq_length = (output_seq_length - (kernel - 1)) / stride
self.output_seq_length = int(math.ceil(output_seq_length))
self.encoder_seq_length = self.output_seq_length
self.adapter_output_seq_length = (self.output_seq_length - 1) // adapter_stride + 1
def prepare_config_and_inputs(self):
input_values = floats_tensor([self.batch_size, self.seq_length], scale=1.0)
attention_mask = random_attention_mask([self.batch_size, self.seq_length])
config = self.get_config()
return config, input_values, attention_mask
def get_config(self):
return Wav2Vec2Config(
hidden_size=self.hidden_size,
feat_extract_norm=self.feat_extract_norm,
feat_extract_dropout=self.feat_extract_dropout,
feat_extract_activation=self.feat_extract_activation,
conv_dim=self.conv_dim,
conv_stride=self.conv_stride,
conv_kernel=self.conv_kernel,
conv_bias=self.conv_bias,
mask_time_prob=self.mask_time_prob,
mask_time_length=self.mask_time_length,
num_conv_pos_embeddings=self.num_conv_pos_embeddings,
num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
hidden_dropout_prob=self.hidden_dropout_prob,
intermediate_size=self.intermediate_size,
layer_norm_eps=self.layer_norm_eps,
do_stable_layer_norm=self.do_stable_layer_norm,
hidden_act=self.hidden_act,
initializer_range=self.initializer_range,
vocab_size=self.vocab_size,
num_adapter_layers=self.num_adapter_layers,
adapter_stride=self.adapter_stride,
tdnn_dim=self.tdnn_dim,
tdnn_kernel=self.tdnn_kernel,
tdnn_dilation=self.tdnn_dilation,
xvector_output_dim=self.xvector_output_dim,
)
def create_and_check_model(self, config, input_values, attention_mask):
model = Wav2Vec2Model(config=config)
model.to(torch_device)
model.eval()
result = model(input_values, attention_mask=attention_mask)
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size)
)
def create_and_check_model_with_adapter(self, config, input_values, attention_mask):
config.add_adapter = True
model = Wav2Vec2Model(config=config)
model.to(torch_device)
model.eval()
result = model(input_values, attention_mask=attention_mask)
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.adapter_output_seq_length, self.hidden_size)
)
def create_and_check_model_with_adapter_for_ctc(self, config, input_values, attention_mask):
config.add_adapter = True
config.output_hidden_size = 2 * config.hidden_size
model = Wav2Vec2ForCTC(config=config)
model.to(torch_device)
model.eval()
result = model(input_values, attention_mask=attention_mask)
self.parent.assertEqual(
result.logits.shape, (self.batch_size, self.adapter_output_seq_length, self.vocab_size)
)
def create_and_check_model_with_adapter_proj_dim(self, config, input_values, attention_mask):
config.add_adapter = True
config.output_hidden_size = 8
model = Wav2Vec2Model(config=config)
model.to(torch_device)
model.eval()
result = model(input_values, attention_mask=attention_mask)
self.parent.assertEqual(
result.last_hidden_state.shape,
(self.batch_size, self.adapter_output_seq_length, config.output_hidden_size),
)
def create_and_check_model_with_attn_adapter(self, config, input_values, attention_mask):
config.adapter_attn_dim = 16
model = Wav2Vec2ForCTC(config=config)
self.parent.assertIsNotNone(model._get_adapters())
model.to(torch_device)
model.eval()
result = model(input_values, attention_mask=attention_mask)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.output_seq_length, self.vocab_size))
def create_and_check_batch_inference(self, config, input_values, *args):
# test does not pass for models making use of `group_norm`
# check: https://github.com/pytorch/fairseq/issues/3227
model = Wav2Vec2Model(config=config)
model.to(torch_device)
model.eval()
input_values = input_values[:3]
attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.bool)
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
# pad input
for i in range(len(input_lengths)):
input_values[i, input_lengths[i] :] = 0.0
attention_mask[i, input_lengths[i] :] = 0.0
batch_outputs = model(input_values, attention_mask=attention_mask).last_hidden_state
for i in range(input_values.shape[0]):
input_slice = input_values[i : i + 1, : input_lengths[i]]
output = model(input_slice).last_hidden_state
batch_output = batch_outputs[i : i + 1, : output.shape[1]]
self.parent.assertTrue(torch.allclose(output, batch_output, atol=1e-3))
def check_ctc_loss(self, config, input_values, *args):
model = Wav2Vec2ForCTC(config=config)
model.to(torch_device)
# make sure that dropout is disabled
model.eval()
input_values = input_values[:3]
attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long)
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
labels = ids_tensor((input_values.shape[0], min(max_length_labels) - 1), model.config.vocab_size)
# pad input
for i in range(len(input_lengths)):
input_values[i, input_lengths[i] :] = 0.0
attention_mask[i, input_lengths[i] :] = 0
model.config.ctc_loss_reduction = "sum"
sum_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()
model.config.ctc_loss_reduction = "mean"
mean_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()
self.parent.assertTrue(isinstance(sum_loss, float))
self.parent.assertTrue(isinstance(mean_loss, float))
def check_seq_classifier_loss(self, config, input_values, *args):
model = Wav2Vec2ForSequenceClassification(config=config)
model.to(torch_device)
# make sure that dropout is disabled
model.eval()
input_values = input_values[:3]
attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long)
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label))
# pad input
for i in range(len(input_lengths)):
input_values[i, input_lengths[i] :] = 0.0
attention_mask[i, input_lengths[i] :] = 0
masked_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()
unmasked_loss = model(input_values, labels=labels).loss.item()
self.parent.assertTrue(isinstance(masked_loss, float))
self.parent.assertTrue(isinstance(unmasked_loss, float))
self.parent.assertTrue(masked_loss != unmasked_loss)
def check_ctc_training(self, config, input_values, *args):
config.ctc_zero_infinity = True
model = Wav2Vec2ForCTC(config=config)
model.to(torch_device)
model.train()
# freeze feature encoder
model.freeze_feature_encoder()
input_values = input_values[:3]
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size)
# pad input
for i in range(len(input_lengths)):
input_values[i, input_lengths[i] :] = 0.0
if max_length_labels[i] < labels.shape[-1]:
# it's important that we make sure that target lengths are at least
# one shorter than logit lengths to prevent -inf
labels[i, max_length_labels[i] - 1 :] = -100
loss = model(input_values, labels=labels).loss
self.parent.assertFalse(torch.isinf(loss).item())
loss.backward()
def check_seq_classifier_training(self, config, input_values, *args):
config.ctc_zero_infinity = True
model = Wav2Vec2ForSequenceClassification(config=config)
model.to(torch_device)
model.train()
# freeze everything but the classification head
model.freeze_base_model()
input_values = input_values[:3]
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label))
# pad input
for i in range(len(input_lengths)):
input_values[i, input_lengths[i] :] = 0.0
loss = model(input_values, labels=labels).loss
self.parent.assertFalse(torch.isinf(loss).item())
loss.backward()
def check_xvector_training(self, config, input_values, *args):
config.ctc_zero_infinity = True
model = Wav2Vec2ForXVector(config=config)
model.to(torch_device)
model.train()
# freeze everything but the classification head
model.freeze_base_model()
input_values = input_values[:3]
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label))
# pad input
for i in range(len(input_lengths)):
input_values[i, input_lengths[i] :] = 0.0
loss = model(input_values, labels=labels).loss
self.parent.assertFalse(torch.isinf(loss).item())
loss.backward()
def check_labels_out_of_vocab(self, config, input_values, *args):
model = Wav2Vec2ForCTC(config)
model.to(torch_device)
model.train()
input_values = input_values[:3]
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size + 100)
with self.parent.assertRaises(ValueError):
model(input_values, labels=labels)
def prepare_config_and_inputs_for_common(self):
config, input_values, attention_mask = self.prepare_config_and_inputs()
inputs_dict = {"input_values": input_values, "attention_mask": attention_mask}
return config, inputs_dict
@require_torch
class Wav2Vec2ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(Wav2Vec2ForCTC, Wav2Vec2Model, Wav2Vec2ForMaskedLM, Wav2Vec2ForSequenceClassification, Wav2Vec2ForPreTraining)
if is_torch_available()
else ()
)
pipeline_model_mapping = (
{
"audio-classification": Wav2Vec2ForSequenceClassification,
"automatic-speech-recognition": Wav2Vec2ForCTC,
"feature-extraction": Wav2Vec2Model,
"fill-mask": Wav2Vec2ForMaskedLM,
}
if is_torch_available()
else {}
)
fx_compatible = True
test_pruning = False
test_headmasking = False
def setUp(self):
self.model_tester = Wav2Vec2ModelTester(self)
self.config_tester = ConfigTester(self, config_class=Wav2Vec2Config, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_with_adapter(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_with_adapter(*config_and_inputs)
def test_model_with_adapter_for_ctc(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_with_adapter_for_ctc(*config_and_inputs)
def test_model_with_adapter_proj_dim(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_with_adapter_proj_dim(*config_and_inputs)
def test_ctc_loss_inference(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_ctc_loss(*config_and_inputs)
def test_seq_classifier_loss_inference(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_seq_classifier_loss(*config_and_inputs)
def test_ctc_train(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_ctc_training(*config_and_inputs)
def test_seq_classifier_train(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_seq_classifier_training(*config_and_inputs)
def test_xvector_train(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_xvector_training(*config_and_inputs)
def test_labels_out_of_vocab(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_labels_out_of_vocab(*config_and_inputs)
@unittest.skip(reason="Model has no inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Model has input_values instead of input_ids")
def test_forward_signature(self):
pass
@unittest.skip(reason="Model has no tokens embeds")
def test_resize_tokens_embeddings(self):
pass
@unittest.skip(reason="Model has no inputs_embeds")
def test_model_get_set_embeddings(self):
pass
@is_pt_flax_cross_test
@unittest.skip(reason="Non-rubst architecture does not exist in Flax")
def test_equivalence_flax_to_pt(self):
pass
@is_pt_flax_cross_test
@unittest.skip(reason="Non-rubst architecture does not exist in Flax")
def test_equivalence_pt_to_flax(self):
pass
def test_retain_grad_hidden_states_attentions(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.output_hidden_states = True
config.output_attentions = True
# no need to test all models as different heads yield the same functionality
model_class = self.all_model_classes[0]
model = model_class(config)
model.to(torch_device)
# set layer drop to 0
model.config.layerdrop = 0.0
input_values = inputs_dict["input_values"]
input_lengths = torch.tensor(
[input_values.shape[1] for _ in range(input_values.shape[0])], dtype=torch.long, device=torch_device
)
output_lengths = model._get_feat_extract_output_lengths(input_lengths)
labels = ids_tensor((input_values.shape[0], output_lengths[0] - 2), self.model_tester.vocab_size)
inputs_dict["attention_mask"] = torch.ones_like(inputs_dict["attention_mask"])
inputs_dict["labels"] = labels
outputs = model(**inputs_dict)
output = outputs[0]
# Encoder-/Decoder-only models
hidden_states = outputs.hidden_states[0]
attentions = outputs.attentions[0]
hidden_states.retain_grad()
attentions.retain_grad()
output.flatten()[0].backward(retain_graph=True)
self.assertIsNotNone(hidden_states.grad)
self.assertIsNotNone(attentions.grad)
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
uniform_init_parms = [
"conv.weight",
"conv.parametrizations.weight",
"masked_spec_embed",
"codevectors",
"quantizer.weight_proj.weight",
"project_hid.weight",
"project_hid.bias",
"project_q.weight",
"project_q.bias",
"feature_projection.projection.weight",
"feature_projection.projection.bias",
"objective.weight",
]
if param.requires_grad:
if any(x in name for x in uniform_init_parms):
self.assertTrue(
-1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
else:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
# overwrite from test_modeling_common
def _mock_init_weights(self, module):
if hasattr(module, "weight") and module.weight is not None:
module.weight.data.fill_(3)
if hasattr(module, "weight_g") and module.weight_g is not None:
module.weight_g.data.fill_(3)
if hasattr(module, "weight_v") and module.weight_v is not None:
module.weight_v.data.fill_(3)
if hasattr(module, "bias") and module.bias is not None:
module.bias.data.fill_(3)
if hasattr(module, "codevectors") and module.codevectors is not None:
module.codevectors.data.fill_(3)
if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None:
module.masked_spec_embed.data.fill_(3)
def test_mask_feature_prob_ctc(self):
model = Wav2Vec2ForCTC.from_pretrained(
"hf-internal-testing/tiny-random-wav2vec2", mask_feature_prob=0.2, mask_feature_length=2
)
model.to(torch_device).train()
processor = Wav2Vec2Processor.from_pretrained(
"hf-internal-testing/tiny-random-wav2vec2", return_attention_mask=True
)
batch_duration_in_seconds = [1, 3, 2, 6]
input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds]
batch = processor(
input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt"
)
logits = model(
input_values=batch["input_values"].to(torch_device),
attention_mask=batch["attention_mask"].to(torch_device),
).logits
self.assertEqual(logits.shape, (4, 1498, 32))
def test_mask_time_prob_ctc(self):
model = Wav2Vec2ForCTC.from_pretrained(
"hf-internal-testing/tiny-random-wav2vec2", mask_time_prob=0.2, mask_time_length=2
)
model.to(torch_device).train()
processor = Wav2Vec2Processor.from_pretrained(
"hf-internal-testing/tiny-random-wav2vec2", return_attention_mask=True
)
batch_duration_in_seconds = [1, 3, 2, 6]
input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds]
batch = processor(
input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt"
)
logits = model(
input_values=batch["input_values"].to(torch_device),
attention_mask=batch["attention_mask"].to(torch_device),
).logits
self.assertEqual(logits.shape, (4, 1498, 32))
@unittest.skip(reason="Feed forward chunking is not implemented")
def test_feed_forward_chunking(self):
pass
@slow
def test_model_from_pretrained(self):
model = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")
self.assertIsNotNone(model)
# Wav2Vec2 cannot be torchscripted because of group norm.
def _create_and_check_torch_fx_tracing(self, config, inputs_dict, output_loss=False):
# TODO: fix it
self.skipTest(reason="torch 2.1 breaks torch fx tests for wav2vec2/hubert.")
if not is_torch_fx_available() or not self.fx_compatible:
self.skipTest(reason="torch fx not available or not compatible with this model")
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
configs_no_init.return_dict = False
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=output_loss)
try:
input_names = [
"attention_mask",
"bbox",
"input_features",
"input_ids",
"input_values",
"pixel_values",
"token_type_ids",
"visual_feats",
"visual_pos",
]
labels = inputs.get("labels", None)
start_positions = inputs.get("start_positions", None)
end_positions = inputs.get("end_positions", None)
if labels is not None:
input_names.append("labels")
if start_positions is not None:
input_names.append("start_positions")
if end_positions is not None:
input_names.append("end_positions")
filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
input_names = list(filtered_inputs.keys())
model_output = model(**filtered_inputs)
if (
isinstance(model, Wav2Vec2ForSequenceClassification)
and not hasattr(model.config, "problem_type")
or model.config.problem_type is None
):
model.config.problem_type = "single_label_classification"
traced_model = symbolic_trace(model, input_names)
traced_output = traced_model(**filtered_inputs)
except Exception as e:
self.fail(f"Couldn't trace module: {e}")
def flatten_output(output):
flatten = []
for x in output:
if isinstance(x, (tuple, list)):
flatten += flatten_output(x)
elif not isinstance(x, torch.Tensor):
continue
else:
flatten.append(x)
return flatten
model_output = flatten_output(model_output)
traced_output = flatten_output(traced_output)
num_outputs = len(model_output)
for i in range(num_outputs):
self.assertTrue(
torch.allclose(model_output[i], traced_output[i]),
f"traced {i}th output doesn't match model {i}th output for {model_class}",
)
# Test that the model can be serialized and restored properly
with tempfile.TemporaryDirectory() as tmp_dir_name:
pkl_file_name = os.path.join(tmp_dir_name, "model.pkl")
try:
with open(pkl_file_name, "wb") as f:
pickle.dump(traced_model, f)
with open(pkl_file_name, "rb") as f:
loaded = pickle.load(f)
except Exception as e:
self.fail(f"Couldn't serialize / deserialize the traced model: {e}")
loaded_output = loaded(**filtered_inputs)
loaded_output = flatten_output(loaded_output)
for i in range(num_outputs):
self.assertTrue(
torch.allclose(model_output[i], loaded_output[i]),
f"serialized model {i}th output doesn't match model {i}th output for {model_class}",
)
# Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
# (Even with this call, there are still memory leak by ~0.04MB)
self.clear_torch_jit_class_registry()
@unittest.skip(
"Need to investigate why config.do_stable_layer_norm is set to False here when it doesn't seem to be supported"
)
def test_flax_from_pt_safetensors(self):
return
@require_torch
class Wav2Vec2RobustModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (
(
Wav2Vec2ForCTC,
Wav2Vec2Model,
Wav2Vec2ForMaskedLM,
Wav2Vec2ForSequenceClassification,
Wav2Vec2ForPreTraining,
Wav2Vec2ForAudioFrameClassification,
Wav2Vec2ForXVector,
)
if is_torch_available()
else ()
)
test_pruning = False
test_headmasking = False
def setUp(self):
self.model_tester = Wav2Vec2ModelTester(
self, conv_stride=(3, 3, 3), feat_extract_norm="layer", do_stable_layer_norm=True
)
self.config_tester = ConfigTester(self, config_class=Wav2Vec2Config, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@is_flaky(
description="The `codevector_idx` computed with `argmax()` in `Wav2Vec2GumbelVectorQuantizer.forward` is not stable."
)
def test_batching_equivalence(self):
super().test_batching_equivalence()
def test_model_with_adapter(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_with_adapter(*config_and_inputs)
def test_model_with_adapter_proj_dim(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_with_adapter_proj_dim(*config_and_inputs)
def test_model_with_attn_adapter(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_with_attn_adapter(*config_and_inputs)
def test_batched_inference(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_batch_inference(*config_and_inputs)
def test_ctc_loss_inference(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_ctc_loss(*config_and_inputs)
def test_seq_classifier_loss_inference(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_seq_classifier_loss(*config_and_inputs)
def test_ctc_train(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_ctc_training(*config_and_inputs)
def test_seq_classifier_train(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_seq_classifier_training(*config_and_inputs)
def test_xvector_train(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_xvector_training(*config_and_inputs)
def test_labels_out_of_vocab(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_labels_out_of_vocab(*config_and_inputs)
@unittest.skip(reason="Model has no input_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Model has input_values instead of input_ids")
def test_forward_signature(self):
pass
@unittest.skip(reason="Model has no token embeddings")
def test_resize_tokens_embeddings(self):
pass
@unittest.skip(reason="Model has no input_embeds")
def test_model_get_set_embeddings(self):
pass
def test_retain_grad_hidden_states_attentions(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.output_hidden_states = True
config.output_attentions = True
# no need to test all models as different heads yield the same functionality
model_class = self.all_model_classes[0]
model = model_class(config)
model.to(torch_device)
# set layer drop to 0
model.config.layerdrop = 0.0
input_values = inputs_dict["input_values"]
input_lengths = torch.tensor(
[input_values.shape[1] for _ in range(input_values.shape[0])], dtype=torch.long, device=torch_device
)
output_lengths = model._get_feat_extract_output_lengths(input_lengths)
labels = ids_tensor((input_values.shape[0], output_lengths[0] - 2), self.model_tester.vocab_size)
inputs_dict["attention_mask"] = torch.ones_like(inputs_dict["attention_mask"])
inputs_dict["labels"] = labels
outputs = model(**inputs_dict)
output = outputs[0]
# Encoder-/Decoder-only models
hidden_states = outputs.hidden_states[0]
attentions = outputs.attentions[0]
hidden_states.retain_grad()
attentions.retain_grad()
output.flatten()[0].backward(retain_graph=True)
self.assertIsNotNone(hidden_states.grad)
self.assertIsNotNone(attentions.grad)
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
uniform_init_parms = [
"conv.weight",
"conv.parametrizations.weight",
"masked_spec_embed",
"codevectors",
"quantizer.weight_proj.weight",
"project_hid.weight",
"project_hid.bias",
"project_q.weight",
"project_q.bias",
"feature_projection.projection.weight",
"feature_projection.projection.bias",
"objective.weight",
]
if param.requires_grad:
if any(x in name for x in uniform_init_parms):
self.assertTrue(
-1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
else:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
# overwrite from test_modeling_common
def _mock_init_weights(self, module):
if hasattr(module, "weight") and module.weight is not None:
module.weight.data.fill_(3)
if hasattr(module, "weight_g") and module.weight_g is not None:
module.weight_g.data.fill_(3)
if hasattr(module, "weight_v") and module.weight_v is not None:
module.weight_v.data.fill_(3)
if hasattr(module, "bias") and module.bias is not None:
module.bias.data.fill_(3)
if hasattr(module, "codevectors") and module.codevectors is not None:
module.codevectors.data.fill_(3)
if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None:
module.masked_spec_embed.data.fill_(3)
def test_model_for_pretraining(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
model = Wav2Vec2ForPreTraining(config).to(torch_device)
batch_size = inputs_dict["input_values"].shape[0]
feature_seq_length = int(model._get_feat_extract_output_lengths(inputs_dict["input_values"].shape[1]))
features_shape = (batch_size, feature_seq_length)
mask_time_indices = _compute_mask_indices(
features_shape,
model.config.mask_time_prob,
model.config.mask_time_length,
min_masks=2,
)
sampled_negative_indices = _sample_negative_indices(features_shape, 10, mask_time_indices)
mask_time_indices = torch.from_numpy(mask_time_indices).to(torch_device)
sampled_negative_indices = torch.from_numpy(sampled_negative_indices).to(torch_device)
loss = model(
inputs_dict["input_values"],
attention_mask=inputs_dict["attention_mask"],
mask_time_indices=mask_time_indices,
sampled_negative_indices=sampled_negative_indices,
).loss
# more losses
mask_time_indices[:, : mask_time_indices.shape[-1] // 2] = True
sampled_negative_indices = _sample_negative_indices(features_shape, 10, mask_time_indices.cpu().numpy())
sampled_negative_indices = torch.from_numpy(sampled_negative_indices).to(torch_device)
loss_more_masked = model(
inputs_dict["input_values"],
attention_mask=inputs_dict["attention_mask"],
mask_time_indices=mask_time_indices,
sampled_negative_indices=sampled_negative_indices,
).loss
# loss_more_masked has to be bigger or equal loss since more masked inputs have to be predicted
self.assertTrue(loss.detach().item() <= loss_more_masked.detach().item())
def test_mask_feature_prob_ctc(self):
model = Wav2Vec2ForCTC.from_pretrained(
"hf-internal-testing/tiny-random-wav2vec2", mask_feature_prob=0.2, mask_feature_length=2
)
model.to(torch_device).train()
processor = Wav2Vec2Processor.from_pretrained(
"hf-internal-testing/tiny-random-wav2vec2", return_attention_mask=True
)
batch_duration_in_seconds = [1, 3, 2, 6]
input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds]
batch = processor(
input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt"
)
logits = model(
input_values=batch["input_values"].to(torch_device),
attention_mask=batch["attention_mask"].to(torch_device),
).logits
self.assertEqual(logits.shape, (4, 1498, 32))
def test_mask_time_prob_ctc(self):
model = Wav2Vec2ForCTC.from_pretrained(
"hf-internal-testing/tiny-random-wav2vec2", mask_time_prob=0.2, mask_time_length=2
)
model.to(torch_device).train()
processor = Wav2Vec2Processor.from_pretrained(
"hf-internal-testing/tiny-random-wav2vec2", return_attention_mask=True
)
batch_duration_in_seconds = [1, 3, 2, 6]
input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds]
batch = processor(
input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt"
)
logits = model(
input_values=batch["input_values"].to(torch_device),
attention_mask=batch["attention_mask"].to(torch_device),
).logits
self.assertEqual(logits.shape, (4, 1498, 32))
def test_mask_time_feature_prob_ctc_single_batch(self):
model = Wav2Vec2ForCTC.from_pretrained(
"hf-internal-testing/tiny-random-wav2vec2",
mask_time_prob=0.2,
mask_feature_prob=0.2,
mask_time_length=2,
mask_feature_length=2,
)
model.to(torch_device).train()
processor = Wav2Vec2Processor.from_pretrained(
"hf-internal-testing/tiny-random-wav2vec2", return_attention_mask=True
)
batch_duration_in_seconds = [6]
input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds]
batch = processor(
input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt"
)
logits = model(
input_values=batch["input_values"].to(torch_device),
attention_mask=batch["attention_mask"].to(torch_device),
).logits
self.assertEqual(logits.shape, (1, 1498, 32))
@unittest.skip(reason="Feed forward chunking is not implemented")
def test_feed_forward_chunking(self):
pass
def test_load_and_set_attn_adapter(self):
processor = Wav2Vec2Processor.from_pretrained(
"hf-internal-testing/tiny-random-wav2vec2", return_attention_mask=True
)
def get_logits(model, input_features):
model = model.to(torch_device)
batch = processor(
input_features,
padding=True,
sampling_rate=processor.feature_extractor.sampling_rate,
return_tensors="pt",
)
with torch.no_grad():
logits = model(
input_values=batch["input_values"].to(torch_device),
attention_mask=batch["attention_mask"].to(torch_device),
).logits
return logits
input_features = [np.random.random(16_000 * s) for s in [1, 3, 2, 6]]
model = Wav2Vec2ForCTC.from_pretrained("hf-internal-testing/tiny-random-wav2vec2-adapter", target_lang="it")
logits = get_logits(model, input_features)
model_2 = Wav2Vec2ForCTC.from_pretrained("hf-internal-testing/tiny-random-wav2vec2-adapter")
model_2.load_adapter("it")
logits_2 = get_logits(model_2, input_features)
torch.testing.assert_close(logits, logits_2, rtol=1e-3, atol=1e-3)
# test that loading adapter weights with mismatched vocab sizes can be loaded
def test_load_target_lang_with_mismatched_size(self):
processor = Wav2Vec2Processor.from_pretrained(
"hf-internal-testing/tiny-random-wav2vec2", return_attention_mask=True
)
def get_logits(model, input_features):
model = model.to(torch_device)
batch = processor(
input_features,
padding=True,
sampling_rate=processor.feature_extractor.sampling_rate,
return_tensors="pt",
)
with torch.no_grad():
logits = model(
input_values=batch["input_values"].to(torch_device),
attention_mask=batch["attention_mask"].to(torch_device),
).logits
return logits
input_features = [np.random.random(16_000 * s) for s in [1, 3, 2, 6]]
model = Wav2Vec2ForCTC.from_pretrained(
"hf-internal-testing/tiny-random-wav2vec2-adapter", target_lang="fr", ignore_mismatched_sizes=True
)
logits = get_logits(model, input_features)
model_2 = Wav2Vec2ForCTC.from_pretrained("hf-internal-testing/tiny-random-wav2vec2-adapter")
model_2.load_adapter("fr")
logits_2 = get_logits(model_2, input_features)
torch.testing.assert_close(logits, logits_2, rtol=1e-3, atol=1e-3)
def test_load_attn_adapter(self):
processor = Wav2Vec2Processor.from_pretrained(
"hf-internal-testing/tiny-random-wav2vec2", return_attention_mask=True
)
def get_logits(model, input_features):
model = model.to(torch_device)
batch = processor(
input_features,
padding=True,
sampling_rate=processor.feature_extractor.sampling_rate,
return_tensors="pt",
)
with torch.no_grad():
logits = model(
input_values=batch["input_values"].to(torch_device),
attention_mask=batch["attention_mask"].to(torch_device),
).logits
return logits
input_features = [np.random.random(16_000 * s) for s in [1, 3, 2, 6]]
model = Wav2Vec2ForCTC.from_pretrained("hf-internal-testing/tiny-random-wav2vec2", adapter_attn_dim=16)
with tempfile.TemporaryDirectory() as tempdir:
model.save_pretrained(tempdir)
model = Wav2Vec2ForCTC.from_pretrained(tempdir)
logits = get_logits(model, input_features)
adapter_weights = model._get_adapters()
# save safe weights
safe_filepath = os.path.join(tempdir, WAV2VEC2_ADAPTER_SAFE_FILE.format("eng"))
safe_save_file(adapter_weights, safe_filepath, metadata={"format": "pt"})
model.load_adapter("eng")
model.load_adapter("eng", use_safetensors=True)
with self.assertRaises(OSError):
model.load_adapter("eng", use_safetensors=False)
with self.assertRaises(Exception):
model.load_adapter("ita", use_safetensors=True)
logits_2 = get_logits(model, input_features)
torch.testing.assert_close(logits, logits_2, rtol=1e-3, atol=1e-3)
with tempfile.TemporaryDirectory() as tempdir:
model.save_pretrained(tempdir)
model = Wav2Vec2ForCTC.from_pretrained(tempdir)
logits = get_logits(model, input_features)
adapter_weights = model._get_adapters()
# save pt weights
pt_filepath = os.path.join(tempdir, WAV2VEC2_ADAPTER_PT_FILE.format("eng"))
torch.save(adapter_weights, pt_filepath)
model.load_adapter("eng")
model.load_adapter("eng", use_safetensors=False)
with self.assertRaises(OSError):
model.load_adapter("eng", use_safetensors=True)
logits_2 = get_logits(model, input_features)
torch.testing.assert_close(logits, logits_2, rtol=1e-3, atol=1e-3)
model = Wav2Vec2ForCTC.from_pretrained("hf-internal-testing/tiny-random-wav2vec2-adapter")
logits = get_logits(model, input_features)
model.load_adapter("eng")
model.load_adapter("eng", use_safetensors=False)
model.load_adapter("eng", use_safetensors=True)
logits_2 = get_logits(model, input_features)
torch.testing.assert_close(logits, logits_2, rtol=1e-3, atol=1e-3)
@slow
def test_model_from_pretrained(self):
model = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")
self.assertIsNotNone(model)
@require_torch
class Wav2Vec2UtilsTest(unittest.TestCase):
def test_compute_mask_indices(self):
batch_size = 4
sequence_length = 60
mask_prob = 0.5
mask_length = 1
mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)
mask = torch.from_numpy(mask).to(torch_device)
self.assertListEqual(mask.sum(axis=-1).tolist(), [mask_prob * sequence_length for _ in range(batch_size)])
def test_compute_mask_indices_low_prob(self):
# with these settings num_masked_spans=0.5, which means probabilistic rounding
# ensures that in 5 out of 10 method calls, num_masked_spans=0, and in
# the other 5 out of 10, cases num_masked_spans=1
n_trials = 100
batch_size = 4
sequence_length = 100
mask_prob = 0.05
mask_length = 10
count_dimensions_masked = 0
count_dimensions_not_masked = 0
for _ in range(n_trials):
mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)
mask = torch.from_numpy(mask).to(torch_device)
num_masks = torch.sum(mask).item()
if num_masks > 0:
count_dimensions_masked += 1
else:
count_dimensions_not_masked += 1
# as we test for at least 10 masked dimension and at least
# 10 non-masked dimension, this test could fail with probability:
# P(100 coin flips, at most 9 heads) = 1.66e-18
self.assertGreater(count_dimensions_masked, int(n_trials * 0.1))
self.assertGreater(count_dimensions_not_masked, int(n_trials * 0.1))
def test_compute_mask_indices_overlap(self):
batch_size = 4
sequence_length = 80
mask_prob = 0.5
mask_length = 4
mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)
mask = torch.from_numpy(mask).to(torch_device)
# because of overlap mask don't have to add up exactly to `mask_prob * sequence_length`, but have to be smaller or equal
for batch_sum in mask.sum(axis=-1):
self.assertTrue(int(batch_sum) <= mask_prob * sequence_length)
def test_compute_mask_indices_attn_mask_overlap(self):
batch_size = 4
sequence_length = 80
mask_prob = 0.5
mask_length = 4
attention_mask = torch.ones((batch_size, sequence_length), dtype=torch.long, device=torch_device)
attention_mask[:2, sequence_length // 2 :] = 0
mask = _compute_mask_indices(
(batch_size, sequence_length), mask_prob, mask_length, attention_mask=attention_mask
)
mask = torch.from_numpy(mask).to(torch_device)
for batch_sum in mask.sum(axis=-1):
self.assertTrue(int(batch_sum) <= mask_prob * sequence_length)
self.assertTrue(mask[:2, sequence_length // 2 :].sum() == 0)
def test_compute_mask_indices_short_audio(self):
batch_size = 4
sequence_length = 100
mask_prob = 0.05
mask_length = 10
attention_mask = torch.ones((batch_size, sequence_length), dtype=torch.long, device=torch_device)
# force one example to be heavily padded
attention_mask[0, 5:] = 0
mask = _compute_mask_indices(
(batch_size, sequence_length), mask_prob, mask_length, attention_mask=attention_mask, min_masks=2
)
# make sure that non-padded examples cannot be padded
self.assertFalse(mask[0][attention_mask[0].to(torch.bool).cpu()].any())
def test_compute_perplexity(self):
probs = torch.arange(100, device=torch_device).reshape(2, 5, 10) / 100
ppl = Wav2Vec2GumbelVectorQuantizer._compute_perplexity(probs)
self.assertTrue(abs(ppl.item() - 141.4291) < 1e-3)
# mask half of the input
mask = torch.ones((2,), device=torch_device, dtype=torch.bool)
mask[0] = 0
ppl = Wav2Vec2GumbelVectorQuantizer._compute_perplexity(probs, mask)
self.assertTrue(abs(ppl.item() - 58.6757) < 1e-3)
def test_sample_negatives(self):
batch_size = 2
sequence_length = 10
hidden_size = 4
num_negatives = 3
sequence = torch.div(
torch.arange(sequence_length * hidden_size, device=torch_device), hidden_size, rounding_mode="floor"
)
features = sequence.view(sequence_length, hidden_size) # each value in vector consits of same value
features = features[None, :].expand(batch_size, sequence_length, hidden_size).contiguous()
# sample negative indices
sampled_negative_indices = _sample_negative_indices((batch_size, sequence_length), num_negatives, None)
sampled_negative_indices = torch.from_numpy(sampled_negative_indices).to(torch_device)
negatives = features.view(-1, hidden_size)[sampled_negative_indices.long().view(-1)]
negatives = negatives.view(batch_size, sequence_length, -1, hidden_size).permute(2, 0, 1, 3)
self.assertTrue(negatives.shape == (num_negatives, batch_size, sequence_length, hidden_size))
# make sure no negatively sampled vector is actually a positive one
for negative in negatives:
self.assertTrue(((negative - features) == 0).sum() == 0.0)
# make sure that full vectors are sampled and not values of vectors => this means that `unique()` yields a single value for `hidden_size` dim
self.assertEqual(negatives.unique(dim=-1).shape, (num_negatives, batch_size, sequence_length, 1))
def test_sample_negatives_with_mask(self):
batch_size = 2
sequence_length = 10
hidden_size = 4
num_negatives = 3
# second half of last input tensor is padded
mask = torch.ones((batch_size, sequence_length), dtype=torch.long, device=torch_device)
mask[-1, sequence_length // 2 :] = 0
sequence = torch.div(
torch.arange(sequence_length * hidden_size, device=torch_device), hidden_size, rounding_mode="floor"
)
features = sequence.view(sequence_length, hidden_size) # each value in vector consits of same value
features = features[None, :].expand(batch_size, sequence_length, hidden_size).contiguous()
# replace masked feature vectors with -100 to test that those are not sampled
features = torch.where(mask[:, :, None].expand(features.shape).bool(), features, -100)
# sample negative indices
sampled_negative_indices = _sample_negative_indices(
(batch_size, sequence_length), num_negatives, mask.cpu().numpy()
)
sampled_negative_indices = torch.from_numpy(sampled_negative_indices).to(torch_device)
negatives = features.view(-1, hidden_size)[sampled_negative_indices.long().view(-1)]
negatives = negatives.view(batch_size, sequence_length, -1, hidden_size).permute(2, 0, 1, 3)
self.assertTrue((negatives >= 0).all().item())
self.assertTrue(negatives.shape == (num_negatives, batch_size, sequence_length, hidden_size))
# make sure no negatively sampled vector is actually a positive one
for negative in negatives:
self.assertTrue(((negative - features) == 0).sum() == 0.0)
# make sure that full vectors are sampled and not values of vectors => this means that `unique()` yields a single value for `hidden_size` dim
self.assertEqual(negatives.unique(dim=-1).shape, (num_negatives, batch_size, sequence_length, 1))
@require_torch
@require_soundfile
@slow
class Wav2Vec2ModelIntegrationTest(unittest.TestCase):
def tearDown(self):
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
cleanup(torch_device, gc_collect=True)
def _load_datasamples(self, num_samples):
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
# automatic decoding with librispeech
speech_samples = ds.sort("id").filter(
lambda x: x["id"] in [f"1272-141231-000{i}" for i in range(num_samples)]
)[:num_samples]["audio"]
return [x["array"] for x in speech_samples]
def _load_superb(self, task, num_samples):
ds = load_dataset("anton-l/superb_dummy", task, split="test", trust_remote_code=True)
return ds[:num_samples]
def test_inference_ctc_normal(self):
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
model.to(torch_device)
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h", do_lower_case=True)
input_speech = self._load_datasamples(1)
input_values = processor(input_speech, return_tensors="pt").input_values.to(torch_device)
with torch.no_grad():
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
predicted_trans = processor.batch_decode(predicted_ids)
EXPECTED_TRANSCRIPTIONS = ["a man said to the universe sir i exist"]
self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)
def test_inference_ctc_normal_batched(self):
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
model.to(torch_device)
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h", do_lower_case=True)
input_speech = self._load_datasamples(2)
inputs = processor(input_speech, return_tensors="pt", padding=True)
input_values = inputs.input_values.to(torch_device)
with torch.no_grad():
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
predicted_trans = processor.batch_decode(predicted_ids)
EXPECTED_TRANSCRIPTIONS = [
"a man said to the universe sir i exist",
"sweat covered brion's body trickling into the tight lowing cloth that was the only garment he wore",
]
self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)
def test_inference_ctc_robust_batched(self):
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self").to(torch_device)
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self", do_lower_case=True)
input_speech = self._load_datasamples(4)
inputs = processor(input_speech, return_tensors="pt", padding=True)
input_values = inputs.input_values.to(torch_device)
attention_mask = inputs.attention_mask.to(torch_device)
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
predicted_trans = processor.batch_decode(predicted_ids)
EXPECTED_TRANSCRIPTIONS = [
"a man said to the universe sir i exist",
"sweat covered brion's body trickling into the tight loin cloth that was the only garment he wore",
"the cut on his chest still dripping blood the ache of his overstrained eyes even the soaring arena around"
" him with the thousands of spectators were trivialities not worth thinking about",
"his instant panic was followed by a small sharp blow high on his chest",
]
self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)
@unittest.skipIf(torch_device != "cpu", "cannot make deterministic on GPU")
def test_inference_integration(self):
model = Wav2Vec2ForPreTraining.from_pretrained("facebook/wav2vec2-base")
model.to(torch_device)
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("facebook/wav2vec2-base")
input_speech = self._load_datasamples(2)
inputs_dict = feature_extractor(input_speech, return_tensors="pt", padding=True)
batch_size = inputs_dict["input_values"].shape[0]
feature_seq_length = int(model._get_feat_extract_output_lengths(inputs_dict["input_values"].shape[1]))
features_shape = (batch_size, feature_seq_length)
np.random.seed(4)
mask_time_indices = _compute_mask_indices(
features_shape,
model.config.mask_time_prob,
model.config.mask_time_length,
min_masks=2,
)
mask_time_indices = torch.from_numpy(mask_time_indices).to(torch_device)
with torch.no_grad():
outputs = model(
inputs_dict.input_values.to(torch_device),
mask_time_indices=mask_time_indices,
)
# compute cosine similarity
cosine_sim = torch.cosine_similarity(outputs.projected_states, outputs.projected_quantized_states, dim=-1)
# retrieve cosine sim of masked features
cosine_sim_masked = cosine_sim[mask_time_indices]
# cosine similarity of model is all > 0.5 as model is
# pre-trained on contrastive loss
# fmt: off
expected_cosine_sim_masked = torch.tensor([
0.8523, 0.5860, 0.6905, 0.5557, 0.7456, 0.5249, 0.6639, 0.7654, 0.7565,
0.8167, 0.8222, 0.7960, 0.8034, 0.8166, 0.8310, 0.8263, 0.8274, 0.8258,
0.8179, 0.8412, 0.8536, 0.5098, 0.4728, 0.6461, 0.4498, 0.6002, 0.5774,
0.6457, 0.7123, 0.5668, 0.6866, 0.4960, 0.6293, 0.7423, 0.7419, 0.7526,
0.7768, 0.4898, 0.5393, 0.8183
], device=torch_device)
# fmt: on
torch.testing.assert_close(cosine_sim_masked, expected_cosine_sim_masked, rtol=1e-3, atol=1e-3)
def test_inference_pretrained(self):
model = Wav2Vec2ForPreTraining.from_pretrained("facebook/wav2vec2-base")
model.to(torch_device)
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
"facebook/wav2vec2-base", return_attention_mask=True
)
input_speech = self._load_datasamples(2)
inputs_dict = feature_extractor(input_speech, return_tensors="pt", padding=True)
batch_size = inputs_dict["input_values"].shape[0]
feature_seq_length = int(model._get_feat_extract_output_lengths(inputs_dict["input_values"].shape[1]))
features_shape = (batch_size, feature_seq_length)
torch.manual_seed(0)
mask_time_indices = _compute_mask_indices(
features_shape,
model.config.mask_time_prob,
model.config.mask_time_length,
min_masks=2,
)
mask_time_indices = torch.from_numpy(mask_time_indices).to(torch_device)
with torch.no_grad():
outputs = model(
inputs_dict.input_values.to(torch_device),
attention_mask=inputs_dict.attention_mask.to(torch_device),
mask_time_indices=mask_time_indices,
)
# compute cosine similarity
cosine_sim = torch.cosine_similarity(outputs.projected_states, outputs.projected_quantized_states, dim=-1)
# retrieve cosine sim of masked features
cosine_sim_masked = cosine_sim[mask_time_indices]
# ... now compare to randomly initialized model
config = Wav2Vec2Config.from_pretrained("facebook/wav2vec2-base")
model_rand = Wav2Vec2ForPreTraining(config).to(torch_device).eval()
with torch.no_grad():
outputs_rand = model_rand(
inputs_dict.input_values.to(torch_device),
attention_mask=inputs_dict.attention_mask.to(torch_device),
mask_time_indices=mask_time_indices,
)
# compute cosine similarity
cosine_sim_rand = torch.cosine_similarity(
outputs_rand.projected_states, outputs_rand.projected_quantized_states, dim=-1
)
# retrieve cosine sim of masked features
cosine_sim_masked_rand = cosine_sim_rand[mask_time_indices]
# a pretrained wav2vec2 model has learned to predict the quantized latent states
# => the cosine similarity between quantized states and predicted states > 0.5
# a random wav2vec2 model has not learned to predict the quantized latent states
# => the cosine similarity between quantized states and predicted states is very likely < 0.1
self.assertTrue(cosine_sim_masked.mean().item() - 5 * cosine_sim_masked_rand.mean().item() > 0)
@unittest.skipIf(torch_device != "cpu", "cannot make deterministic on GPU")
def test_loss_pretraining(self):
model = Wav2Vec2ForPreTraining.from_pretrained(
"facebook/wav2vec2-base",
attention_dropout=0.0,
feat_proj_dropout=0.0,
hidden_dropout=0.0,
layerdrop=0.0,
)
model.to(torch_device).train()
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
"facebook/wav2vec2-base", return_attention_mask=True
)
input_speech = self._load_datasamples(2)
inputs_dict = feature_extractor(input_speech, return_tensors="pt", padding=True)
batch_size = inputs_dict["input_values"].shape[0]
feature_seq_length = int(model._get_feat_extract_output_lengths(inputs_dict["input_values"].shape[1]))
features_shape = (batch_size, feature_seq_length)
torch.manual_seed(0)
np.random.seed(0)
mask_time_indices = _compute_mask_indices(
features_shape,
model.config.mask_time_prob,
model.config.mask_time_length,
min_masks=2,
)
sampled_negative_indices = _sample_negative_indices(
mask_time_indices.shape, model.config.num_negatives, mask_time_indices
)
mask_time_indices = torch.from_numpy(mask_time_indices).to(torch_device)
sampled_negative_indices = torch.from_numpy(sampled_negative_indices).to(torch_device)
with torch.no_grad():
outputs = model(
inputs_dict.input_values.to(torch_device),
attention_mask=inputs_dict.attention_mask.to(torch_device),
mask_time_indices=mask_time_indices,
sampled_negative_indices=sampled_negative_indices,
)
# check diversity loss
num_codevectors = model.config.num_codevectors_per_group * model.config.num_codevector_groups
diversity_loss = (num_codevectors - outputs.codevector_perplexity) / num_codevectors
self.assertTrue(abs(diversity_loss.item() - 0.9538) < 1e-3)
# check overall loss (contrastive loss + diversity loss)
expected_loss = 116.7094
self.assertTrue(abs(outputs.loss.item() - expected_loss) < 1e-3)
def test_inference_keyword_spotting(self):
model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-ks").to(torch_device)
processor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-ks")
input_data = self._load_superb("ks", 4)
inputs = processor(input_data["speech"], return_tensors="pt", padding=True)
input_values = inputs.input_values.to(torch_device)
attention_mask = inputs.attention_mask.to(torch_device)
with torch.no_grad():
outputs = model(input_values, attention_mask=attention_mask)
predicted_logits, predicted_ids = torch.max(outputs.logits, dim=-1)
expected_labels = [7, 6, 10, 9]
# s3prl logits for the same batch
expected_logits = torch.tensor([6.1186, 11.8961, 10.2931, 6.0898], device=torch_device)
self.assertListEqual(predicted_ids.tolist(), expected_labels)
torch.testing.assert_close(predicted_logits, expected_logits, rtol=1e-2, atol=1e-2)
def test_inference_intent_classification(self):
model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-ic").to(torch_device)
processor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-ic")
input_data = self._load_superb("ic", 4)
inputs = processor(input_data["speech"], return_tensors="pt", padding=True)
input_values = inputs.input_values.to(torch_device)
attention_mask = inputs.attention_mask.to(torch_device)
with torch.no_grad():
outputs = model(input_values, attention_mask=attention_mask)
predicted_logits_action, predicted_ids_action = torch.max(outputs.logits[:, :6], dim=-1)
predicted_logits_object, predicted_ids_object = torch.max(outputs.logits[:, 6:20], dim=-1)
predicted_logits_location, predicted_ids_location = torch.max(outputs.logits[:, 20:24], dim=-1)
expected_labels_action = [0, 0, 2, 3]
expected_logits_action = torch.tensor([0.4568, 11.0848, 1.6621, 9.3841], device=torch_device)
expected_labels_object = [3, 10, 3, 4]
expected_logits_object = torch.tensor([1.5322, 10.7094, 5.2469, 22.1318], device=torch_device)
expected_labels_location = [0, 0, 0, 1]
expected_logits_location = torch.tensor([1.5335, 6.5096, 10.5704, 11.0569], device=torch_device)
self.assertListEqual(predicted_ids_action.tolist(), expected_labels_action)
self.assertListEqual(predicted_ids_object.tolist(), expected_labels_object)
self.assertListEqual(predicted_ids_location.tolist(), expected_labels_location)
torch.testing.assert_close(predicted_logits_action, expected_logits_action, rtol=1e-2, atol=1e-2)
torch.testing.assert_close(predicted_logits_object, expected_logits_object, rtol=1e-2, atol=1e-2)
torch.testing.assert_close(predicted_logits_location, expected_logits_location, rtol=1e-2, atol=1e-2)
def test_inference_speaker_identification(self):
model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-sid").to(torch_device)
processor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-sid")
input_data = self._load_superb("si", 4)
output_logits = []
with torch.no_grad():
for example in input_data["speech"]:
input = processor(example, return_tensors="pt", padding=True)
output = model(input.input_values.to(torch_device), attention_mask=None)
output_logits.append(output.logits[0])
output_logits = torch.stack(output_logits)
predicted_logits, predicted_ids = torch.max(output_logits, dim=-1)
expected_labels = [251, 1, 1, 3]
# s3prl logits for the same batch
expected_logits = torch.tensor([37.5627, 71.6362, 64.2419, 31.7778], device=torch_device)
self.assertListEqual(predicted_ids.tolist(), expected_labels)
torch.testing.assert_close(predicted_logits, expected_logits, rtol=1e-2, atol=1e-2)
def test_inference_emotion_recognition(self):
model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-er").to(torch_device)
processor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-er")
input_data = self._load_superb("er", 4)
inputs = processor(input_data["speech"], return_tensors="pt", padding=True)
input_values = inputs.input_values.to(torch_device)
attention_mask = inputs.attention_mask.to(torch_device)
with torch.no_grad():
outputs = model(input_values, attention_mask=attention_mask)
predicted_logits, predicted_ids = torch.max(outputs.logits, dim=-1)
expected_labels = [1, 1, 2, 2]
# s3prl logits for the same batch
expected_logits = torch.tensor([2.1722, 3.0779, 8.0287, 6.6797], device=torch_device)
self.assertListEqual(predicted_ids.tolist(), expected_labels)
torch.testing.assert_close(predicted_logits, expected_logits, rtol=1e-2, atol=1e-2)
def test_phoneme_recognition(self):
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft").to(torch_device)
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft")
input_speech = self._load_datasamples(4)
inputs = processor(input_speech, return_tensors="pt", padding=True)
input_values = inputs.input_values.to(torch_device)
attention_mask = inputs.attention_mask.to(torch_device)
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
predicted_trans = processor.batch_decode(predicted_ids)
EXPECTED_TRANSCRIPTIONS = [
"ɐ m æ n s ɛ d t ə ð ə j uː n ɪ v ɚ s s ɚ aɪ ɛ ɡ z ɪ s t",
"s w ɛ t k ʌ v ɚ d b ɹ iː ɔ n z b ɑː d i t ɹ ɪ k l ɪ ŋ ɪ n t ə ð ə t aɪ t l oɪ n k l ɑː θ ð æ w ʌ z ð ɪ oʊ"
" n l i ɡ ɑːɹ m ə n t h iː w ɔːɹ",
"ð ə k aɪ t ɔ n h ɪ z tʃ ɛ s t s t ɪ l d ɹ ɪ p ɪ ŋ b l ʌ d ð ɪ eɪ k ʌ v h ɪ z oʊ v ɚ s t ɹ eɪ n d aɪ z iː"
" v ə n ð ə s ɔːɹ ɹ ɪ ŋ ɐ ɹ iː n ɐ ɚ ɹ aʊ n d h ɪ m w ɪ ð ə θ aʊ z ə n d z ʌ v s p ɛ k t eɪ ɾ ɚ z w ɜː t ɹ"
" ɪ v ɪ æ l ᵻ ɾ i z n ɑː t w ɜː θ θ ɪ ŋ k ɪ ŋ ɐ b aʊ t",
"h ɪ z ɪ n s t ə n t v p æ n ɪ k w ʌ z f ɑː l oʊ d b aɪ ɐ s m ɔː l ʃ ɑːɹ p b l oʊ h aɪ ɔ n h ɪ z tʃ ɛ s t",
]
# should correspond to =>:
# [
# "a man said to the universe sir i exist",
# "sweat covered brion's body trickling into the tight loin cloth that was the only garment he wore",
# "the cut on his chest still dripping blood the ache of his overstrained eyes even the soaring arena around him with the thousands of spectators were trivialities not worth thinking about",
# "his instant panic was followed by a small sharp blow high on his chest",
# ]
self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)
@require_pyctcdecode
@require_torchaudio
def test_wav2vec2_with_lm(self):
ds = load_dataset(
"mozilla-foundation/common_voice_11_0", "es", split="test", streaming=True, trust_remote_code=True
)
sample = next(iter(ds))
resampled_audio = torchaudio.functional.resample(
torch.tensor(sample["audio"]["array"]), 48_000, 16_000
).numpy()
model = Wav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm").to(
torch_device
)
processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values.to(torch_device)).logits
transcription = processor.batch_decode(logits.cpu().numpy()).text
self.assertEqual(transcription[0], "habitan aguas poco profundas y rocosas")
@require_pyctcdecode
@require_torchaudio
def test_wav2vec2_with_lm_pool(self):
ds = load_dataset(
"mozilla-foundation/common_voice_11_0", "es", split="test", streaming=True, trust_remote_code=True
)
sample = next(iter(ds))
resampled_audio = torchaudio.functional.resample(
torch.tensor(sample["audio"]["array"]), 48_000, 16_000
).numpy()
model = Wav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm").to(
torch_device
)
processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values.to(torch_device)).logits
# test user-managed pool
with multiprocessing.get_context("fork").Pool(2) as pool:
transcription = processor.batch_decode(logits.cpu().numpy(), pool).text
self.assertEqual(transcription[0], "habitan aguas poco profundas y rocosas")
# user-managed pool + num_processes should trigger a warning
with CaptureLogger(processing_wav2vec2_with_lm.logger) as cl, multiprocessing.get_context("fork").Pool(
2
) as pool:
transcription = processor.batch_decode(logits.cpu().numpy(), pool, num_processes=2).text
self.assertIn("num_process", cl.out)
self.assertIn("it will be ignored", cl.out)
self.assertEqual(transcription[0], "habitan aguas poco profundas y rocosas")
@require_pyctcdecode
@require_torchaudio
def test_wav2vec2_with_lm_invalid_pool(self):
run_test_in_subprocess(test_case=self, target_func=_test_wav2vec2_with_lm_invalid_pool, inputs=None)
def test_inference_diarization(self):
model = Wav2Vec2ForAudioFrameClassification.from_pretrained("anton-l/wav2vec2-base-superb-sd").to(torch_device)
processor = Wav2Vec2FeatureExtractor.from_pretrained("anton-l/wav2vec2-base-superb-sd")
input_data = self._load_superb("sd", 4)
inputs = processor(input_data["speech"], return_tensors="pt", padding=True, sampling_rate=16_000)
input_values = inputs.input_values.to(torch_device)
attention_mask = inputs.attention_mask.to(torch_device)
with torch.no_grad():
outputs = model(input_values, attention_mask=attention_mask)
# labels is a one-hot array of shape (num_frames, num_speakers)
labels = (outputs.logits > 0).long()
# s3prl logits for the same batch
expected_logits = torch.tensor(
[
[[-5.2807, -5.1272], [-5.4059, -4.7757], [-5.2764, -4.9621], [-5.0117, -4.5851]],
[[-1.7643, -0.5462], [-1.7369, -0.2649], [-1.5066, -0.6200], [-4.5703, -2.4863]],
[[-0.8656, -0.4783], [-0.8899, -0.3289], [-0.9267, -0.5781], [-0.7817, -0.4619]],
[[-4.8625, -2.5316], [-5.2339, -2.2155], [-4.9835, -2.0344], [-4.4727, -1.8421]],
],
device=torch_device,
)
self.assertEqual(labels[0, :, 0].sum(), 555)
self.assertEqual(labels[0, :, 1].sum(), 299)
torch.testing.assert_close(outputs.logits[:, :4], expected_logits, rtol=1e-2, atol=1e-2)
def test_inference_speaker_verification(self):
model = Wav2Vec2ForXVector.from_pretrained("anton-l/wav2vec2-base-superb-sv").to(torch_device)
processor = Wav2Vec2FeatureExtractor.from_pretrained("anton-l/wav2vec2-base-superb-sv")
input_data = self._load_superb("si", 4)
inputs = processor(input_data["speech"], return_tensors="pt", padding=True, sampling_rate=16_000)
labels = torch.tensor([5, 1, 1, 3], device=torch_device).T
with torch.no_grad():
input_values = inputs.input_values.to(torch_device)
attention_mask = inputs.attention_mask.to(torch_device)
outputs = model(input_values, attention_mask=attention_mask, labels=labels)
embeddings = torch.nn.functional.normalize(outputs.embeddings, dim=-1).cpu()
cosine_sim = torch.nn.CosineSimilarity(dim=-1)
# id10002 vs id10002
self.assertAlmostEqual(cosine_sim(embeddings[1], embeddings[2]).numpy(), 0.9758, 3)
# id10006 vs id10002
self.assertAlmostEqual(cosine_sim(embeddings[0], embeddings[1]).numpy(), 0.7579, 3)
# id10002 vs id10004
self.assertAlmostEqual(cosine_sim(embeddings[2], embeddings[3]).numpy(), 0.7594, 3)
self.assertAlmostEqual(outputs.loss.item(), 17.7963, 2)
@require_torchaudio
def test_inference_mms_1b_all(self):
model = Wav2Vec2ForCTC.from_pretrained("facebook/mms-1b-all").to(torch_device)
processor = Wav2Vec2Processor.from_pretrained("facebook/mms-1b-all")
LANG_MAP = {"it": "ita", "es": "spa", "fr": "fra", "en": "eng"}
def run_model(lang):
ds = load_dataset(
"mozilla-foundation/common_voice_11_0", lang, split="test", streaming=True, trust_remote_code=True
)
sample = next(iter(ds))
wav2vec2_lang = LANG_MAP[lang]
model.load_adapter(wav2vec2_lang)
processor.tokenizer.set_target_lang(wav2vec2_lang)
resampled_audio = torchaudio.functional.resample(
torch.tensor(sample["audio"]["array"]), 48_000, 16_000
).numpy()
inputs = processor(resampled_audio, sampling_rate=16_000, return_tensors="pt")
input_values = inputs.input_values.to(torch_device)
attention_mask = inputs.attention_mask.to(torch_device)
with torch.no_grad():
outputs = model(input_values, attention_mask=attention_mask).logits
ids = torch.argmax(outputs, dim=-1)[0]
transcription = processor.decode(ids)
return transcription
TRANSCRIPTIONS = {
"it": "il libro ha suscitato molte polemiche a causa dei suoi contenuti",
"es": "habitan aguas poco profundas y rocosas",
"fr": "ce dernier est volé tout au long de l'histoire romaine",
"en": "joe keton disapproved of films and buster also had reservations about the media",
}
for lang in LANG_MAP.keys():
assert run_model(lang) == TRANSCRIPTIONS[lang]
@require_flash_attn
@require_torch_gpu
@mark.flash_attn_test
def test_inference_ctc_fa2(self):
model_fa = Wav2Vec2ForCTC.from_pretrained(
"facebook/wav2vec2-base-960h", attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16
)
model_fa.to(torch_device)
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h", do_lower_case=True)
input_speech = self._load_datasamples(1)
input_values = processor(input_speech, return_tensors="pt").input_values.to(torch_device)
with torch.no_grad():
logits = model_fa(input_values.to(torch.bfloat16)).logits
predicted_ids = torch.argmax(logits, dim=-1)
predicted_trans = processor.batch_decode(predicted_ids)
EXPECTED_TRANSCRIPTIONS = ["a man said to the universe sir i exist"]
self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)
@require_flash_attn
@require_torch_gpu
@mark.flash_attn_test
def test_inference_ctc_fa2_batched(self):
model_fa = Wav2Vec2ForCTC.from_pretrained(
"facebook/wav2vec2-base-960h", attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16
)
model_fa.to(torch_device)
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h", do_lower_case=True)
input_speech = self._load_datasamples(2)
inputs = processor(input_speech, return_tensors="pt", padding=True, return_attention_mask=True)
inputs = inputs.to(torch_device)
with torch.no_grad():
logits = model_fa(inputs.input_values.to(torch.bfloat16), attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
predicted_trans = processor.batch_decode(predicted_ids)
EXPECTED_TRANSCRIPTIONS = [
"a man said to the universe sir i exist",
"sweat covered brion's body trickling into the tight lowing cloth that was the only garment he wore",
]
self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)
| transformers/tests/models/wav2vec2/test_modeling_wav2vec2.py/0 | {
"file_path": "transformers/tests/models/wav2vec2/test_modeling_wav2vec2.py",
"repo_id": "transformers",
"token_count": 39586
} |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
import inspect
import tempfile
import unittest
import transformers
from transformers import WhisperConfig, is_flax_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, slow
from transformers.utils import cached_property
from transformers.utils.import_utils import is_datasets_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_datasets_available():
import datasets
from datasets import load_dataset
if is_flax_available():
import jax
import numpy as np
from flax.core.frozen_dict import unfreeze
from flax.traverse_util import flatten_dict
from transformers import (
FLAX_MODEL_MAPPING,
FlaxWhisperForAudioClassification,
FlaxWhisperForConditionalGeneration,
FlaxWhisperModel,
WhisperFeatureExtractor,
WhisperProcessor,
)
from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model
from transformers.models.whisper.modeling_flax_whisper import sinusoidal_embedding_init
@require_flax
class FlaxWhisperModelTester:
config_cls = WhisperConfig
config_updates = {}
hidden_act = "gelu"
def __init__(
self,
parent,
batch_size=13,
seq_length=60,
is_training=True,
use_labels=False,
vocab_size=99,
d_model=16,
decoder_attention_heads=4,
decoder_ffn_dim=16,
decoder_layers=2,
encoder_attention_heads=4,
encoder_ffn_dim=16,
encoder_layers=2,
input_channels=1,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=70,
max_source_positions=30,
max_target_positions=40,
bos_token_id=98,
eos_token_id=98,
pad_token_id=0,
num_mel_bins=80,
decoder_start_token_id=85,
num_conv_layers=1,
suppress_tokens=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.d_model = d_model
self.hidden_size = d_model
self.num_hidden_layers = encoder_layers
self.num_attention_heads = encoder_attention_heads
self.decoder_attention_heads = decoder_attention_heads
self.decoder_ffn_dim = decoder_ffn_dim
self.decoder_layers = decoder_layers
self.encoder_attention_heads = encoder_attention_heads
self.encoder_ffn_dim = encoder_ffn_dim
self.encoder_layers = encoder_layers
self.encoder_seq_length = seq_length // 2
self.decoder_seq_length = 1
self.input_channels = input_channels
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.num_mel_bins = num_mel_bins
self.max_position_embeddings = max_position_embeddings
self.max_source_positions = max_source_positions
self.max_target_positions = max_target_positions
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
self.decoder_start_token_id = decoder_start_token_id
self.num_conv_layers = num_conv_layers
self.suppress_tokens = suppress_tokens
def prepare_config_and_inputs_for_common(self):
input_features = floats_tensor([self.batch_size, self.num_mel_bins, self.seq_length], self.vocab_size)
decoder_input_ids = np.array(self.batch_size * [[self.decoder_start_token_id]])
config = WhisperConfig(
vocab_size=self.vocab_size,
num_mel_bins=self.num_mel_bins,
decoder_start_token_id=self.decoder_start_token_id,
is_encoder_decoder=True,
activation_function=self.hidden_act,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_source_positions=self.max_source_positions,
max_target_positions=self.max_target_positions,
pad_token_id=self.pad_token_id,
bos_token_id=self.bos_token_id,
eos_token_id=self.eos_token_id,
tie_word_embeddings=True,
d_model=self.d_model,
decoder_attention_heads=self.decoder_attention_heads,
decoder_ffn_dim=self.decoder_ffn_dim,
decoder_layers=self.decoder_layers,
encoder_attention_heads=self.encoder_attention_heads,
encoder_ffn_dim=self.encoder_ffn_dim,
encoder_layers=self.encoder_layers,
suppress_tokens=self.suppress_tokens,
)
inputs_dict = prepare_whisper_inputs_dict(config, input_features, decoder_input_ids)
return config, inputs_dict
def prepare_whisper_inputs_dict(
config,
input_ids,
decoder_input_ids,
attention_mask=None,
decoder_attention_mask=None,
):
if decoder_attention_mask is None:
decoder_attention_mask = np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape, dtype=np.int8),
np.not_equal(decoder_input_ids[:, 1:], config.pad_token_id).astype(np.int8),
],
axis=-1,
)
return {
"input_features": input_ids,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
}
def partialclass(cls, *args, **kwargs):
class NewCls(cls):
__init__ = functools.partialmethod(cls.__init__, *args, **kwargs)
return NewCls
def make_partial_class(full_class, *args, **kwargs):
partial_class = partialclass(full_class, *args, **kwargs)
partial_class.__name__ = full_class.__name__
partial_class.__module__ = full_class.__module__
return partial_class
@require_flax
class FlaxWhisperModelTest(FlaxModelTesterMixin, unittest.TestCase):
all_model_classes = (FlaxWhisperForConditionalGeneration, FlaxWhisperModel) if is_flax_available() else ()
all_generative_model_classes = (FlaxWhisperForConditionalGeneration,) if is_flax_available() else ()
is_encoder_decoder = True
test_pruning = False
test_head_masking = False
test_onnx = False
def setUp(self):
self.model_tester = FlaxWhisperModelTester(self)
_, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
self.init_shape = (1,) + inputs_dict["input_features"].shape[1:]
self.all_model_classes = (
make_partial_class(model_class, input_shape=self.init_shape) for model_class in self.all_model_classes
)
self.config_tester = ConfigTester(self, config_class=WhisperConfig)
def test_config(self):
self.config_tester.run_common_tests()
# overwrite because of `input_features`
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.__call__)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["input_features", "decoder_input_ids"]
self.assertListEqual(arg_names[:2], expected_arg_names)
# overwrite because of `input_features`
def test_jit_compilation(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
model = model_class(config)
@jax.jit
def model_jitted(input_features, decoder_input_ids, **kwargs):
return model(input_features=input_features, decoder_input_ids=decoder_input_ids, **kwargs)
with self.subTest("JIT Enabled"):
jitted_outputs = model_jitted(**prepared_inputs_dict).to_tuple()
with self.subTest("JIT Disabled"):
with jax.disable_jit():
outputs = model_jitted(**prepared_inputs_dict).to_tuple()
self.assertEqual(len(outputs), len(jitted_outputs))
for jitted_output, output in zip(jitted_outputs, outputs):
self.assertEqual(jitted_output.shape, output.shape)
def check_pt_flax_outputs(self, fx_outputs, pt_outputs, model_class, tol=5e-5, name="outputs", attributes=None):
# We override with a slightly higher tol value, as test recently became flaky
super().check_pt_flax_outputs(fx_outputs, pt_outputs, model_class, tol, name, attributes)
# overwrite because of `input_features`
@is_pt_flax_cross_test
def test_save_load_bf16_to_base_pt(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
base_class = make_partial_class(FLAX_MODEL_MAPPING[config.__class__], input_shape=self.init_shape)
for model_class in self.all_model_classes:
if model_class.__name__ == base_class.__name__:
continue
model = model_class(config)
model.params = model.to_bf16(model.params)
base_params_from_head = flatten_dict(unfreeze(model.params[model.base_model_prefix]))
# convert Flax model to PyTorch model
pt_model_class = getattr(transformers, model_class.__name__[4:]) # Skip the "Flax" at the beginning
pt_model = pt_model_class(config).eval()
pt_model = load_flax_weights_in_pytorch_model(pt_model, model.params)
# check that all base model weights are loaded correctly
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(tmpdirname)
base_model = base_class.from_pretrained(tmpdirname, from_pt=True)
base_params = flatten_dict(unfreeze(base_model.params))
for key in base_params_from_head.keys():
max_diff = (base_params[key] - base_params_from_head[key]).sum().item()
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
# overwrite because of `input_features`
@is_pt_flax_cross_test
def test_save_load_from_base_pt(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
base_class = make_partial_class(FLAX_MODEL_MAPPING[config.__class__], input_shape=self.init_shape)
for model_class in self.all_model_classes:
if model_class.__name__ == base_class.__name__:
continue
model = base_class(config)
base_params = flatten_dict(unfreeze(model.params))
# convert Flax model to PyTorch model
pt_model_class = getattr(transformers, base_class.__name__[4:]) # Skip the "Flax" at the beginning
pt_model = pt_model_class(config).eval()
pt_model = load_flax_weights_in_pytorch_model(pt_model, model.params)
# check that all base model weights are loaded correctly
with tempfile.TemporaryDirectory() as tmpdirname:
# save pt model
pt_model.save_pretrained(tmpdirname)
head_model = model_class.from_pretrained(tmpdirname, from_pt=True)
base_param_from_head = flatten_dict(unfreeze(head_model.params[head_model.base_model_prefix]))
for key in base_param_from_head.keys():
max_diff = (base_params[key] - base_param_from_head[key]).sum().item()
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
# overwrite because of `input_features`
@is_pt_flax_cross_test
def test_save_load_to_base_pt(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
base_class = make_partial_class(FLAX_MODEL_MAPPING[config.__class__], input_shape=self.init_shape)
for model_class in self.all_model_classes:
if model_class.__name__ == base_class.__name__:
continue
model = model_class(config)
base_params_from_head = flatten_dict(unfreeze(model.params[model.base_model_prefix]))
# convert Flax model to PyTorch model
pt_model_class = getattr(transformers, model_class.__name__[4:]) # Skip the "Flax" at the beginning
pt_model = pt_model_class(config).eval()
pt_model = load_flax_weights_in_pytorch_model(pt_model, model.params)
# check that all base model weights are loaded correctly
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(tmpdirname)
base_model = base_class.from_pretrained(tmpdirname, from_pt=True)
base_params = flatten_dict(unfreeze(base_model.params))
for key in base_params_from_head.keys():
max_diff = (base_params[key] - base_params_from_head[key]).sum().item()
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
# overwrite because of `input_features`
def test_save_load_from_base(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
base_class = make_partial_class(FLAX_MODEL_MAPPING[config.__class__], input_shape=self.init_shape)
for model_class in self.all_model_classes:
if model_class.__name__ == base_class.__name__:
continue
model = base_class(config)
base_params = flatten_dict(unfreeze(model.params))
# check that all base model weights are loaded correctly
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
head_model = model_class.from_pretrained(tmpdirname)
base_param_from_head = flatten_dict(unfreeze(head_model.params[head_model.base_model_prefix]))
for key in base_param_from_head.keys():
max_diff = (base_params[key] - base_param_from_head[key]).sum().item()
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
# overwrite because of `input_features`
def test_save_load_to_base(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
base_class = make_partial_class(FLAX_MODEL_MAPPING[config.__class__], input_shape=self.init_shape)
for model_class in self.all_model_classes:
if model_class.__name__ == base_class.__name__:
continue
model = model_class(config)
base_params_from_head = flatten_dict(unfreeze(model.params[model.base_model_prefix]))
# check that all base model weights are loaded correctly
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
base_model = base_class.from_pretrained(tmpdirname)
base_params = flatten_dict(unfreeze(base_model.params))
for key in base_params_from_head.keys():
max_diff = (base_params[key] - base_params_from_head[key]).sum().item()
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
def test_encoder_sinusoidal_embed_positions(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
params = model.params
if model.base_model_prefix in params:
params = model.params[model.base_model_prefix]
embeds = params["encoder"]["embed_positions"]["embedding"]
sinusoids = sinusoidal_embedding_init(None, embeds.shape)
self.assertTrue(jax.numpy.allclose(embeds, sinusoids))
@slow
@require_flax
class FlaxWhisperModelIntegrationTest(unittest.TestCase):
@cached_property
def default_processor(self):
return WhisperProcessor.from_pretrained("openai/whisper-base")
def _load_datasamples(self, num_samples):
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
# automatic decoding with librispeech
speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"]
return [x["array"] for x in speech_samples]
def test_tiny_logits_librispeech(self):
model = FlaxWhisperModel.from_pretrained("openai/whisper-tiny", from_pt=True)
input_speech = self._load_datasamples(1)
feature_extractor = WhisperFeatureExtractor()
input_features = feature_extractor(input_speech, return_tensors="np").input_features
logits = model(
input_features,
decoder_input_ids=np.array([[50258, 50259, 50359]]),
output_hidden_states=False,
output_attentions=False,
return_dict=False,
)
# fmt: off
EXPECTED_LOGITS = np.array(
[
2.9892, -6.7607, 5.7348, 3.6096, 0.2152, -5.7321, 4.8855, -1.6407,
0.2823, -1.5718, 10.4269, 3.4427, 0.0219, -8.0612, 3.4784, 8.4246,
4.0575, -2.2864, 11.1084, 0.9963, 0.9884, -8.5154, -3.5469, -9.3713,
0.9786, 3.5435, 7.4850, -5.2579, -1.4366, 10.4841
]
)
# fmt: on
self.assertTrue(np.allclose(logits[0][0, 0, :30], EXPECTED_LOGITS, atol=1e-4))
def test_small_en_logits_librispeech(self):
model = FlaxWhisperModel.from_pretrained("openai/whisper-small.en", from_pt=True)
input_speech = self._load_datasamples(1)
feature_extractor = WhisperFeatureExtractor()
input_features = feature_extractor(input_speech, return_tensors="np").input_features
logits = model(
input_features,
decoder_input_ids=np.array([model.config.decoder_start_token_id]),
output_hidden_states=False,
output_attentions=False,
return_dict=False,
)
logits = logits[0] @ model.params["model"]["decoder"]["embed_tokens"]["embedding"].T
# fmt: off
EXPECTED_LOGITS = np.array(
[
-3.6784, -7.7211, -9.5070, -11.9286, -7.6489, -9.7026, -5.6188,
-8.0104, -4.6238, -5.1833, -9.0485, -3.4079, -5.4874, -2.6935,
-6.3479, -7.3398, -6.9558, -7.6867, -7.4748, -8.3463, -9.9781,
-10.8389, -10.3105, -11.7201, -9.7261, -7.1590, -5.9272, -12.4509,
-11.1146, -8.1918
]
)
# fmt: on
self.assertTrue(np.allclose(logits[0, 0, :30], EXPECTED_LOGITS, atol=1e-4))
def test_large_logits_librispeech(self):
model = FlaxWhisperModel.from_pretrained("openai/whisper-large", from_pt=True)
input_speech = self._load_datasamples(1)
processor = WhisperProcessor.from_pretrained("openai/whisper-large")
processed_inputs = processor(
audio=input_speech, text="This part of the speech", add_special_tokens=False, return_tensors="np"
)
input_features = processed_inputs.input_features
decoder_input_ids = processed_inputs.labels
logits = model(
input_features,
decoder_input_ids=decoder_input_ids,
output_hidden_states=False,
output_attentions=False,
return_dict=False,
)
logits = logits[0] @ model.params["model"]["decoder"]["embed_tokens"]["embedding"].T
# fmt: off
EXPECTED_LOGITS = np.array(
[
2.1382, 0.9381, 4.4671, 3.5589, 2.4022, 3.8576, -0.6521, 2.5472,
1.8301, 1.9957, 2.3432, 1.4678, 0.5459, 2.2597, 1.5179, 2.5357,
1.1624, 0.6194, 1.0757, 1.8259, 2.4076, 1.6601, 2.3503, 1.3376,
1.9891, 1.8635, 3.8931, 5.3699, 4.4772, 3.9184
]
)
# fmt: on
self.assertTrue(np.allclose(logits[0, 0, :30], EXPECTED_LOGITS, atol=1e-4))
def test_tiny_en_generation(self):
processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en")
model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True)
model.config.decoder_start_token_id = 50257
input_speech = self._load_datasamples(1)
input_features = processor.feature_extractor(
raw_speech=input_speech, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="jax"
).input_features
generated_ids = model.generate(input_features, num_beams=5, max_length=20).sequences
transcript = processor.tokenizer.decode(generated_ids[0])
EXPECTED_TRANSCRIPT = (
"<|startoftranscript|><|en|><|transcribe|><|notimestamps|> Mr. Quilter is the apostle of the middle"
" classes and we are glad to"
)
self.assertEqual(transcript, EXPECTED_TRANSCRIPT)
def test_tiny_generation(self):
processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny", from_pt=True)
input_speech = self._load_datasamples(1)
input_features = processor.feature_extractor(
raw_speech=input_speech, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="jax"
).input_features
generated_ids = model.generate(input_features, num_beams=5, max_length=20).sequences
transcript = processor.tokenizer.decode(generated_ids[0])
EXPECTED_TRANSCRIPT = (
"<|startoftranscript|><|en|><|transcribe|><|notimestamps|> Mr. Quilter is the apostle of the middle"
" classes and we are glad"
)
self.assertEqual(transcript, EXPECTED_TRANSCRIPT)
def test_large_generation(self):
processor = WhisperProcessor.from_pretrained("openai/whisper-large")
model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-large", from_pt=True)
input_speech = self._load_datasamples(1)
input_features = processor.feature_extractor(
raw_speech=input_speech, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="jax"
).input_features
model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language="en", task="transcribe")
generated_ids = model.generate(input_features, num_beams=5, max_length=20).sequences
transcript = processor.tokenizer.decode(generated_ids[0], skip_special_tokens=True)
EXPECTED_TRANSCRIPT = " Mr. Quilter is the apostle of the middle classes and we are glad"
self.assertEqual(transcript, EXPECTED_TRANSCRIPT)
def test_large_generation_multilingual(self):
processor = WhisperProcessor.from_pretrained("openai/whisper-large")
model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-large", from_pt=True)
ds = load_dataset("legacy-datasets/common_voice", "ja", split="test", streaming=True, trust_remote_code=True)
ds = ds.cast_column("audio", datasets.Audio(sampling_rate=16_000))
input_speech = next(iter(ds))["audio"]["array"]
input_features = processor.feature_extractor(raw_speech=input_speech, return_tensors="np")
model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language="ja", task="transcribe")
generated_ids = model.generate(input_features, do_sample=False, max_length=20).sequences
transcript = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
EXPECTED_TRANSCRIPT = "木村さんに電話を貸してもらいました"
self.assertEqual(transcript, EXPECTED_TRANSCRIPT)
model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language="en", task="transcribe")
generated_ids = model.generate(
input_features,
do_sample=False,
max_length=20,
).sequences
transcript = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
EXPECTED_TRANSCRIPT = " Kimura-san called me."
self.assertEqual(transcript, EXPECTED_TRANSCRIPT)
model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language="ja", task="translate")
generated_ids = model.generate(input_features, do_sample=False, max_length=20).sequences
transcript = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
EXPECTED_TRANSCRIPT = " I borrowed a phone from Kimura san"
self.assertEqual(transcript, EXPECTED_TRANSCRIPT)
def test_large_batched_generation(self):
processor = WhisperProcessor.from_pretrained("openai/whisper-large")
model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-large", from_pt=True)
input_speech = self._load_datasamples(4)
input_features = processor.feature_extractor(raw_speech=input_speech, return_tensors="np").input_features
generated_ids = model.generate(input_features, max_length=20).sequences
# fmt: off
EXPECTED_LOGITS = np.array(
[
[50258, 50358, 50363, 2221, 13, 2326, 388, 391, 307, 264, 50244, 295, 264, 2808, 5359, 293, 321, 366, 5404, 281],
[50258, 50358, 50363, 6966, 307, 2221, 13, 2326, 388, 391, 311, 9060, 1570, 1880, 813, 702, 1871, 13, 50257, 50257],
[50258, 50358, 50363, 634, 5112, 505, 300, 412, 341, 42729, 3196, 295, 264, 1064, 11, 365, 5272, 293, 12904, 9256],
[50258, 50358, 50363, 634, 575, 12525, 22618, 1968, 6144, 35617, 20084, 1756, 311, 589, 307, 534, 10281, 934, 439, 11]
]
)
# fmt: on
self.assertTrue(np.allclose(generated_ids, EXPECTED_LOGITS))
# fmt: off
EXPECTED_TRANSCRIPT = [
" Mr. Quilter is the apostle of the middle classes and we are glad to",
" Nor is Mr. Quilter's manner less interesting than his matter.",
" He tells us that at this festive season of the year, with Christmas and roast beef",
" He has grave doubts whether Sir Frederick Layton's work is really Greek after all,",
]
# fmt: on
transcript = processor.batch_decode(generated_ids, skip_special_tokens=True)
self.assertListEqual(transcript, EXPECTED_TRANSCRIPT)
def test_tiny_en_batched_generation(self):
processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en")
model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True)
input_speech = self._load_datasamples(4)
input_features = processor.feature_extractor(raw_speech=input_speech, return_tensors="np").input_features
generated_ids = model.generate(input_features, max_length=20).sequences
# fmt: off
EXPECTED_LOGITS = np.array(
[
[50257, 50362, 1770, 13, 2264, 346, 353, 318, 262, 46329, 286, 262, 3504, 6097, 11, 290, 356, 389, 9675, 284],
[50257, 50362, 5414, 318, 1770, 13, 2264, 346, 353, 338, 5642, 1342, 3499, 621, 465, 2300, 13, 50256, 50256, 50256],
[50257, 50362, 679, 4952, 514, 326, 379, 428, 43856, 1622, 286, 262, 614, 11, 351, 6786, 290, 32595, 12023, 28236],
[50257, 50362, 679, 468, 12296, 17188, 1771, 7361, 26113, 18881, 1122, 338, 670, 318, 1107, 8312, 706, 477, 290, 460]
]
)
# fmt: on
self.assertTrue(np.allclose(generated_ids, EXPECTED_LOGITS))
# fmt: off
EXPECTED_TRANSCRIPT = [
" Mr. Quilter is the apostle of the middle classes, and we are glad to",
" Nor is Mr. Quilter's manner less interesting than his matter.",
" He tells us that at this festive season of the year, with Christmas and roast beef looming",
" He has grave doubts whether Sir Frederick Layton's work is really Greek after all and can",
]
# fmt: on
transcript = processor.batch_decode(generated_ids, skip_special_tokens=True)
self.assertListEqual(transcript, EXPECTED_TRANSCRIPT)
@slow
def test_tiny_timestamp_generation(self):
processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
input_speech = np.concatenate(self._load_datasamples(4))
input_features = processor.feature_extractor(raw_speech=input_speech, return_tensors="jax").input_features
generate_fn = jax.jit(functools.partial(model.generate, max_length=448, return_timestamps=True))
generated_ids = generate_fn(input_features)
EXPECTED_OUTPUT = np.array([50258, 50259, 50359, 50364, 2221, 13, 2326, 388, 391, 307, 264, 50244, 295, 264, 2808, 5359, 11, 293, 321, 366, 5404, 281, 2928, 702, 14943, 13, 50692, 50692, 6966, 307, 2221, 13, 2326, 388, 391, 311, 9060, 1570, 1880, 813, 702, 1871, 13, 50926, 50926, 634, 5112, 505, 300, 412, 341, 42729, 3196, 295, 264, 1064, 11, 365, 5272, 293, 12904, 9256, 450, 10539, 51208, 51208, 949, 505, 11, 14138, 10117, 490, 3936, 293, 1080, 3542, 5160, 881, 26336, 281, 264, 1575, 13, 51552, 51552, 634, 575, 12525, 22618, 1968, 6144, 35617, 7354, 1292, 6, 589, 307, 534, 10281, 934, 439, 11, 293, 51836, 51836, 50257]) # fmt: skip
self.assertTrue(np.allclose(generated_ids, EXPECTED_OUTPUT))
EXPECTED_TRANSCRIPT = [
{
"text": (
" Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel. Nor is"
" Mr. Quilter's manner less interesting than his matter. He tells us that at this festive season"
" of the year, with Christmas and roast beef looming before us, similarly drawn from eating and"
" its results occur most readily to the mind. He has grave doubts whether Sir Frederick Latins'"
" work is really Greek after all, and"
),
"offsets": [
{
"text": (
" Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel."
),
"timestamp": (0.0, 6.5600000000000005),
},
{
"text": " Nor is Mr. Quilter's manner less interesting than his matter.",
"timestamp": (6.5600000000000005, 11.24),
},
{
"text": (
" He tells us that at this festive season of the year, with Christmas and roast beef"
" looming"
),
"timestamp": (11.24, 16.88),
},
{
"text": (
" before us, similarly drawn from eating and its results occur most readily to the mind."
),
"timestamp": (16.88, 23.76),
},
{
"text": (
" He has grave doubts whether Sir Frederick Latins' work is really Greek after all, and"
),
"timestamp": (23.76, 29.44),
},
],
}
]
transcript = processor.batch_decode(generated_ids, skip_special_tokens=True, output_offsets=True)
self.assertEqual(transcript, EXPECTED_TRANSCRIPT)
class FlaxWhisperEncoderModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=60,
is_training=True,
use_labels=True,
hidden_size=16,
num_hidden_layers=2,
num_attention_heads=4,
input_channels=1,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=20,
max_source_positions=30,
num_mel_bins=80,
num_conv_layers=1,
suppress_tokens=None,
classifier_proj_size=4,
num_labels=2,
is_encoder_decoder=False,
is_decoder=False,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_labels = use_labels
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.input_channels = input_channels
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.num_mel_bins = num_mel_bins
self.max_position_embeddings = max_position_embeddings
self.max_source_positions = max_source_positions
self.num_conv_layers = num_conv_layers
self.suppress_tokens = suppress_tokens
self.classifier_proj_size = classifier_proj_size
self.num_labels = num_labels
self.is_encoder_decoder = is_encoder_decoder
self.is_decoder = is_decoder
def get_config(self):
return WhisperConfig(
d_model=self.hidden_size,
encoder_layers=self.num_hidden_layers,
decoder_layers=self.num_hidden_layers,
encoder_attention_heads=self.num_attention_heads,
decoder_attention_heads=self.num_attention_heads,
input_channels=self.input_channels,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
max_source_positions=self.max_source_positions,
decoder_ffn_dim=self.hidden_size,
encoder_ffn_dim=self.hidden_size,
suppress_tokens=self.suppress_tokens,
classifier_proj_size=self.classifier_proj_size,
num_labels=self.num_labels,
is_encoder_decoder=self.is_encoder_decoder,
is_decoder=self.is_decoder,
)
def prepare_whisper_encoder_inputs_dict(
self,
input_features,
):
return {
"input_features": input_features,
}
def prepare_config_and_inputs(self):
input_features = floats_tensor([self.batch_size, self.num_mel_bins, self.seq_length])
config = self.get_config()
inputs_dict = self.prepare_whisper_encoder_inputs_dict(
input_features=input_features,
)
return config, inputs_dict
def prepare_config_and_inputs_for_common(self):
config, inputs_dict = self.prepare_config_and_inputs()
return config, inputs_dict
def get_subsampled_output_lengths(self, input_lengths):
"""
Computes the output length of the convolutional layers
"""
for i in range(self.num_conv_layers):
input_lengths = (input_lengths - 1) // 2 + 1
return input_lengths
@property
def encoder_seq_length(self):
return self.get_subsampled_output_lengths(self.seq_length)
@require_flax
class WhisperEncoderModelTest(FlaxModelTesterMixin, unittest.TestCase):
all_model_classes = (FlaxWhisperForAudioClassification,) if is_flax_available() else ()
is_encoder_decoder = False
fx_compatible = False
test_pruning = False
test_missing_keys = False
input_name = "input_features"
def setUp(self):
self.model_tester = FlaxWhisperEncoderModelTester(self)
_, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
self.init_shape = (1,) + inputs_dict["input_features"].shape[1:]
self.all_model_classes = (
make_partial_class(model_class, input_shape=self.init_shape) for model_class in self.all_model_classes
)
self.config_tester = ConfigTester(self, config_class=WhisperConfig)
def test_config(self):
self.config_tester.run_common_tests()
# overwrite because of `input_features`
def test_jit_compilation(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
model = model_class(config)
@jax.jit
def model_jitted(input_features, **kwargs):
return model(input_features=input_features, **kwargs)
with self.subTest("JIT Enabled"):
jitted_outputs = model_jitted(**prepared_inputs_dict).to_tuple()
with self.subTest("JIT Disabled"):
with jax.disable_jit():
outputs = model_jitted(**prepared_inputs_dict).to_tuple()
self.assertEqual(len(outputs), len(jitted_outputs))
for jitted_output, output in zip(jitted_outputs, outputs):
self.assertEqual(jitted_output.shape, output.shape)
# overwrite because of `input_features`
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.__call__)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["input_features", "attention_mask", "output_attentions"]
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
def test_inputs_embeds(self):
pass
# WhisperEncoder has no inputs_embeds and thus the `get_input_embeddings` fn is not implemented
def test_model_common_attributes(self):
pass
# WhisperEncoder cannot resize token embeddings since it has no tokens embeddings
def test_resize_tokens_embeddings(self):
pass
# WhisperEncoder does not have any base model
def test_save_load_to_base(self):
pass
# WhisperEncoder does not have any base model
def test_save_load_from_base(self):
pass
# WhisperEncoder does not have any base model
@is_pt_flax_cross_test
def test_save_load_from_base_pt(self):
pass
# WhisperEncoder does not have any base model
@is_pt_flax_cross_test
def test_save_load_to_base_pt(self):
pass
# WhisperEncoder does not have any base model
@is_pt_flax_cross_test
def test_save_load_bf16_to_base_pt(self):
pass
| transformers/tests/models/whisper/test_modeling_flax_whisper.py/0 | {
"file_path": "transformers/tests/models/whisper/test_modeling_flax_whisper.py",
"repo_id": "transformers",
"token_count": 18408
} |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import logging
import os
import sys
import tempfile
import unittest
from pathlib import Path
import datasets
import numpy as np
from huggingface_hub import HfFolder, Repository, delete_repo
from requests.exceptions import HTTPError
from transformers import (
AutomaticSpeechRecognitionPipeline,
AutoModelForSequenceClassification,
AutoTokenizer,
DistilBertForSequenceClassification,
MaskGenerationPipeline,
T5ForConditionalGeneration,
TextClassificationPipeline,
TextGenerationPipeline,
TFAutoModelForSequenceClassification,
pipeline,
)
from transformers.pipelines import PIPELINE_REGISTRY, get_task
from transformers.pipelines.base import Pipeline, _pad
from transformers.testing_utils import (
TOKEN,
USER,
CaptureLogger,
RequestCounter,
backend_empty_cache,
is_pipeline_test,
is_staging_test,
nested_simplify,
require_tensorflow_probability,
require_tf,
require_torch,
require_torch_accelerator,
require_torch_multi_accelerator,
require_torch_or_tf,
slow,
torch_device,
)
from transformers.utils import direct_transformers_import, is_tf_available, is_torch_available
from transformers.utils import logging as transformers_logging
sys.path.append(str(Path(__file__).parent.parent.parent / "utils"))
from test_module.custom_pipeline import PairClassificationPipeline # noqa E402
logger = logging.getLogger(__name__)
PATH_TO_TRANSFORMERS = os.path.join(Path(__file__).parent.parent.parent, "src/transformers")
# Dynamically import the Transformers module to grab the attribute classes of the processor form their names.
transformers_module = direct_transformers_import(PATH_TO_TRANSFORMERS)
class ANY:
def __init__(self, *_types):
self._types = _types
def __eq__(self, other):
return isinstance(other, self._types)
def __repr__(self):
return f"ANY({', '.join(_type.__name__ for _type in self._types)})"
@is_pipeline_test
class CommonPipelineTest(unittest.TestCase):
@require_torch
def test_pipeline_iteration(self):
from torch.utils.data import Dataset
class MyDataset(Dataset):
data = [
"This is a test",
"This restaurant is great",
"This restaurant is awful",
]
def __len__(self):
return 3
def __getitem__(self, i):
return self.data[i]
text_classifier = pipeline(
task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="pt"
)
dataset = MyDataset()
for output in text_classifier(dataset):
self.assertEqual(output, {"label": ANY(str), "score": ANY(float)})
@require_torch
def test_check_task_auto_inference(self):
pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert")
self.assertIsInstance(pipe, TextClassificationPipeline)
@require_torch
def test_pipeline_batch_size_global(self):
pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert")
self.assertEqual(pipe._batch_size, None)
self.assertEqual(pipe._num_workers, None)
pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert", batch_size=2, num_workers=1)
self.assertEqual(pipe._batch_size, 2)
self.assertEqual(pipe._num_workers, 1)
@require_torch
def test_pipeline_pathlike(self):
pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert")
with tempfile.TemporaryDirectory() as d:
pipe.save_pretrained(d)
path = Path(d)
newpipe = pipeline(task="text-classification", model=path)
self.assertIsInstance(newpipe, TextClassificationPipeline)
@require_torch
def test_pipeline_override(self):
class MyPipeline(TextClassificationPipeline):
pass
text_classifier = pipeline(model="hf-internal-testing/tiny-random-distilbert", pipeline_class=MyPipeline)
self.assertIsInstance(text_classifier, MyPipeline)
def test_check_task(self):
task = get_task("openai-community/gpt2")
self.assertEqual(task, "text-generation")
with self.assertRaises(RuntimeError):
# Wrong framework
get_task("espnet/siddhana_slurp_entity_asr_train_asr_conformer_raw_en_word_valid.acc.ave_10best")
@require_torch
def test_iterator_data(self):
def data(n: int):
for _ in range(n):
yield "This is a test"
pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert")
results = []
for out in pipe(data(10)):
self.assertEqual(nested_simplify(out), {"label": "LABEL_0", "score": 0.504})
results.append(out)
self.assertEqual(len(results), 10)
# When using multiple workers on streamable data it should still work
# This will force using `num_workers=1` with a warning for now.
results = []
for out in pipe(data(10), num_workers=2):
self.assertEqual(nested_simplify(out), {"label": "LABEL_0", "score": 0.504})
results.append(out)
self.assertEqual(len(results), 10)
@require_tf
def test_iterator_data_tf(self):
def data(n: int):
for _ in range(n):
yield "This is a test"
pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert", framework="tf")
out = pipe("This is a test")
results = []
for out in pipe(data(10)):
self.assertEqual(nested_simplify(out), {"label": "LABEL_0", "score": 0.504})
results.append(out)
self.assertEqual(len(results), 10)
@require_torch
def test_unbatch_attentions_hidden_states(self):
model = DistilBertForSequenceClassification.from_pretrained(
"hf-internal-testing/tiny-random-distilbert", output_hidden_states=True, output_attentions=True
)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-distilbert")
text_classifier = TextClassificationPipeline(model=model, tokenizer=tokenizer)
# Used to throw an error because `hidden_states` are a tuple of tensors
# instead of the expected tensor.
outputs = text_classifier(["This is great !"] * 20, batch_size=32)
self.assertEqual(len(outputs), 20)
@require_torch
def test_torch_dtype_property(self):
import torch
model_id = "hf-internal-testing/tiny-random-distilbert"
# If dtype is specified in the pipeline constructor, the property should return that type
pipe = pipeline(model=model_id, torch_dtype=torch.float16)
self.assertEqual(pipe.torch_dtype, torch.float16)
# If the underlying model changes dtype, the property should return the new type
pipe.model.to(torch.bfloat16)
self.assertEqual(pipe.torch_dtype, torch.bfloat16)
# If dtype is NOT specified in the pipeline constructor, the property should just return
# the dtype of the underlying model (default)
pipe = pipeline(model=model_id)
self.assertEqual(pipe.torch_dtype, torch.float32)
# If underlying model doesn't have dtype property, simply return None
pipe.model = None
self.assertIsNone(pipe.torch_dtype)
@require_torch
def test_auto_model_pipeline_registration_from_local_dir(self):
with tempfile.TemporaryDirectory() as tmp_dir:
_ = Repository(local_dir=tmp_dir, clone_from="hf-internal-testing/tiny-random-custom-architecture")
pipe = pipeline("text-generation", tmp_dir, trust_remote_code=True)
self.assertIsInstance(pipe, TextGenerationPipeline) # Assert successful load
@require_torch
def test_pipeline_with_task_parameters_no_side_effects(self):
"""
Regression test: certain pipeline flags, like `task`, modified the model configuration, causing unexpected
side-effects
"""
# This checkpoint has task-specific parameters that will modify the behavior of the pipeline
model = T5ForConditionalGeneration.from_pretrained("t5-small")
self.assertTrue(model.config.num_beams == 1)
# The task-specific parameters used to cause side-effects on `model.config` -- not anymore
pipe = pipeline(model=model, tokenizer=AutoTokenizer.from_pretrained("t5-small"), task="translation_en_to_de")
self.assertTrue(model.config.num_beams == 1)
self.assertTrue(model.generation_config.num_beams == 1)
# Under the hood: we now store a generation config in the pipeline. This generation config stores the
# task-specific paremeters.
self.assertTrue(pipe.generation_config.num_beams == 4)
# We can confirm that the task-specific parameters have an effect. (In this case, the default is `num_beams=1`,
# which would crash when `num_return_sequences=4` is passed.)
pipe("Hugging Face doesn't sell hugs.", num_return_sequences=4)
with self.assertRaises(ValueError):
pipe("Hugging Face doesn't sell hugs.", num_return_sequences=4, num_beams=1)
@is_pipeline_test
class PipelineScikitCompatTest(unittest.TestCase):
@require_torch
def test_pipeline_predict_pt(self):
data = ["This is a test"]
text_classifier = pipeline(
task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="pt"
)
expected_output = [{"label": ANY(str), "score": ANY(float)}]
actual_output = text_classifier.predict(data)
self.assertEqual(expected_output, actual_output)
@require_tf
def test_pipeline_predict_tf(self):
data = ["This is a test"]
text_classifier = pipeline(
task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="tf"
)
expected_output = [{"label": ANY(str), "score": ANY(float)}]
actual_output = text_classifier.predict(data)
self.assertEqual(expected_output, actual_output)
@require_torch
def test_pipeline_transform_pt(self):
data = ["This is a test"]
text_classifier = pipeline(
task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="pt"
)
expected_output = [{"label": ANY(str), "score": ANY(float)}]
actual_output = text_classifier.transform(data)
self.assertEqual(expected_output, actual_output)
@require_tf
def test_pipeline_transform_tf(self):
data = ["This is a test"]
text_classifier = pipeline(
task="text-classification", model="hf-internal-testing/tiny-random-distilbert", framework="tf"
)
expected_output = [{"label": ANY(str), "score": ANY(float)}]
actual_output = text_classifier.transform(data)
self.assertEqual(expected_output, actual_output)
@is_pipeline_test
class PipelinePadTest(unittest.TestCase):
@require_torch
def test_pipeline_padding(self):
import torch
items = [
{
"label": "label1",
"input_ids": torch.LongTensor([[1, 23, 24, 2]]),
"attention_mask": torch.LongTensor([[0, 1, 1, 0]]),
},
{
"label": "label2",
"input_ids": torch.LongTensor([[1, 23, 24, 43, 44, 2]]),
"attention_mask": torch.LongTensor([[0, 1, 1, 1, 1, 0]]),
},
]
self.assertEqual(_pad(items, "label", 0, "right"), ["label1", "label2"])
self.assertTrue(
torch.allclose(
_pad(items, "input_ids", 10, "right"),
torch.LongTensor([[1, 23, 24, 2, 10, 10], [1, 23, 24, 43, 44, 2]]),
)
)
self.assertTrue(
torch.allclose(
_pad(items, "input_ids", 10, "left"),
torch.LongTensor([[10, 10, 1, 23, 24, 2], [1, 23, 24, 43, 44, 2]]),
)
)
self.assertTrue(
torch.allclose(
_pad(items, "attention_mask", 0, "right"), torch.LongTensor([[0, 1, 1, 0, 0, 0], [0, 1, 1, 1, 1, 0]])
)
)
@require_torch
def test_pipeline_image_padding(self):
import torch
items = [
{
"label": "label1",
"pixel_values": torch.zeros((1, 3, 10, 10)),
},
{
"label": "label2",
"pixel_values": torch.zeros((1, 3, 10, 10)),
},
]
self.assertEqual(_pad(items, "label", 0, "right"), ["label1", "label2"])
self.assertTrue(
torch.allclose(
_pad(items, "pixel_values", 10, "right"),
torch.zeros((2, 3, 10, 10)),
)
)
@require_torch
def test_pipeline_offset_mapping(self):
import torch
items = [
{
"offset_mappings": torch.zeros([1, 11, 2], dtype=torch.long),
},
{
"offset_mappings": torch.zeros([1, 4, 2], dtype=torch.long),
},
]
self.assertTrue(
torch.allclose(
_pad(items, "offset_mappings", 0, "right"),
torch.zeros((2, 11, 2), dtype=torch.long),
),
)
@is_pipeline_test
class PipelineUtilsTest(unittest.TestCase):
@require_torch
def test_pipeline_dataset(self):
from transformers.pipelines.pt_utils import PipelineDataset
dummy_dataset = [0, 1, 2, 3]
def add(number, extra=0):
return number + extra
dataset = PipelineDataset(dummy_dataset, add, {"extra": 2})
self.assertEqual(len(dataset), 4)
outputs = [dataset[i] for i in range(4)]
self.assertEqual(outputs, [2, 3, 4, 5])
@require_torch
def test_pipeline_iterator(self):
from transformers.pipelines.pt_utils import PipelineIterator
dummy_dataset = [0, 1, 2, 3]
def add(number, extra=0):
return number + extra
dataset = PipelineIterator(dummy_dataset, add, {"extra": 2})
self.assertEqual(len(dataset), 4)
outputs = list(dataset)
self.assertEqual(outputs, [2, 3, 4, 5])
@require_torch
def test_pipeline_iterator_no_len(self):
from transformers.pipelines.pt_utils import PipelineIterator
def dummy_dataset():
for i in range(4):
yield i
def add(number, extra=0):
return number + extra
dataset = PipelineIterator(dummy_dataset(), add, {"extra": 2})
with self.assertRaises(TypeError):
len(dataset)
outputs = list(dataset)
self.assertEqual(outputs, [2, 3, 4, 5])
@require_torch
def test_pipeline_batch_unbatch_iterator(self):
from transformers.pipelines.pt_utils import PipelineIterator
dummy_dataset = [{"id": [0, 1, 2]}, {"id": [3]}]
def add(number, extra=0):
return {"id": [i + extra for i in number["id"]]}
dataset = PipelineIterator(dummy_dataset, add, {"extra": 2}, loader_batch_size=3)
outputs = list(dataset)
self.assertEqual(outputs, [{"id": 2}, {"id": 3}, {"id": 4}, {"id": 5}])
@require_torch
def test_pipeline_batch_unbatch_iterator_tensors(self):
import torch
from transformers.pipelines.pt_utils import PipelineIterator
dummy_dataset = [{"id": torch.LongTensor([[10, 20], [0, 1], [0, 2]])}, {"id": torch.LongTensor([[3]])}]
def add(number, extra=0):
return {"id": number["id"] + extra}
dataset = PipelineIterator(dummy_dataset, add, {"extra": 2}, loader_batch_size=3)
outputs = list(dataset)
self.assertEqual(
nested_simplify(outputs), [{"id": [[12, 22]]}, {"id": [[2, 3]]}, {"id": [[2, 4]]}, {"id": [[5]]}]
)
@require_torch
def test_pipeline_chunk_iterator(self):
from transformers.pipelines.pt_utils import PipelineChunkIterator
def preprocess_chunk(n: int):
for i in range(n):
yield i
dataset = [2, 3]
dataset = PipelineChunkIterator(dataset, preprocess_chunk, {}, loader_batch_size=3)
outputs = list(dataset)
self.assertEqual(outputs, [0, 1, 0, 1, 2])
@require_torch
def test_pipeline_pack_iterator(self):
from transformers.pipelines.pt_utils import PipelinePackIterator
def pack(item):
return {"id": item["id"] + 1, "is_last": item["is_last"]}
dataset = [
{"id": 0, "is_last": False},
{"id": 1, "is_last": True},
{"id": 0, "is_last": False},
{"id": 1, "is_last": False},
{"id": 2, "is_last": True},
]
dataset = PipelinePackIterator(dataset, pack, {})
outputs = list(dataset)
self.assertEqual(
outputs,
[
[
{"id": 1},
{"id": 2},
],
[
{"id": 1},
{"id": 2},
{"id": 3},
],
],
)
@require_torch
def test_pipeline_pack_unbatch_iterator(self):
from transformers.pipelines.pt_utils import PipelinePackIterator
dummy_dataset = [{"id": [0, 1, 2], "is_last": [False, True, False]}, {"id": [3], "is_last": [True]}]
def add(number, extra=0):
return {"id": [i + extra for i in number["id"]], "is_last": number["is_last"]}
dataset = PipelinePackIterator(dummy_dataset, add, {"extra": 2}, loader_batch_size=3)
outputs = list(dataset)
self.assertEqual(outputs, [[{"id": 2}, {"id": 3}], [{"id": 4}, {"id": 5}]])
# is_false Across batch
dummy_dataset = [{"id": [0, 1, 2], "is_last": [False, False, False]}, {"id": [3], "is_last": [True]}]
def add(number, extra=0):
return {"id": [i + extra for i in number["id"]], "is_last": number["is_last"]}
dataset = PipelinePackIterator(dummy_dataset, add, {"extra": 2}, loader_batch_size=3)
outputs = list(dataset)
self.assertEqual(outputs, [[{"id": 2}, {"id": 3}, {"id": 4}, {"id": 5}]])
def test_pipeline_negative_device(self):
# To avoid regressing, pipeline used to accept device=-1
classifier = pipeline("text-generation", "hf-internal-testing/tiny-random-bert", device=-1)
expected_output = [{"generated_text": ANY(str)}]
actual_output = classifier("Test input.")
self.assertEqual(expected_output, actual_output)
@require_torch_accelerator
def test_pipeline_no_device(self):
# Test when no device is passed to pipeline
import torch
from transformers import AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert")
# Case 1: Model is manually moved to device
model = AutoModelForCausalLM.from_pretrained(
"hf-internal-testing/tiny-random-bert", torch_dtype=torch.float16
).to(torch_device)
model_device = model.device
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
self.assertEqual(pipe.model.device, model_device)
# Case 2: Model is loaded by accelerate
model = AutoModelForCausalLM.from_pretrained(
"hf-internal-testing/tiny-random-bert", device_map=torch_device, torch_dtype=torch.float16
)
model_device = model.device
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
self.assertEqual(pipe.model.device, model_device)
# Case 3: device_map is passed to model and device is passed to pipeline
model = AutoModelForCausalLM.from_pretrained(
"hf-internal-testing/tiny-random-bert", device_map=torch_device, torch_dtype=torch.float16
)
with self.assertRaises(ValueError):
pipe = pipeline("text-generation", model=model, device="cpu", tokenizer=tokenizer)
@require_torch_multi_accelerator
def test_pipeline_device_not_equal_model_device(self):
# Test when device ids are different, pipeline should move the model to the passed device id
import torch
from transformers import AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert")
model_device = f"{torch_device}:1"
model = AutoModelForCausalLM.from_pretrained(
"hf-internal-testing/tiny-random-bert", torch_dtype=torch.float16
).to(model_device)
target_device = f"{torch_device}:0"
self.assertNotEqual(model_device, target_device)
pipe = pipeline("text-generation", model=model, device=target_device, tokenizer=tokenizer)
self.assertEqual(pipe.model.device, torch.device(target_device))
@slow
@require_torch
def test_load_default_pipelines_pt(self):
import torch
from transformers.pipelines import SUPPORTED_TASKS
set_seed_fn = lambda: torch.manual_seed(0) # noqa: E731
for task in SUPPORTED_TASKS.keys():
if task == "table-question-answering":
# test table in seperate test due to more dependencies
continue
self.check_default_pipeline(task, "pt", set_seed_fn, self.check_models_equal_pt)
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
backend_empty_cache(torch_device)
@slow
@require_tf
def test_load_default_pipelines_tf(self):
from transformers.modeling_tf_utils import keras
from transformers.pipelines import SUPPORTED_TASKS
set_seed_fn = lambda: keras.utils.set_random_seed(0) # noqa: E731
for task in SUPPORTED_TASKS.keys():
if task == "table-question-answering":
# test table in seperate test due to more dependencies
continue
self.check_default_pipeline(task, "tf", set_seed_fn, self.check_models_equal_tf)
# clean-up as much as possible GPU memory occupied by TF
gc.collect()
@slow
@require_torch
def test_load_default_pipelines_pt_table_qa(self):
import torch
set_seed_fn = lambda: torch.manual_seed(0) # noqa: E731
self.check_default_pipeline("table-question-answering", "pt", set_seed_fn, self.check_models_equal_pt)
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
backend_empty_cache(torch_device)
@slow
@require_torch
@require_torch_accelerator
def test_pipeline_accelerator(self):
pipe = pipeline("text-generation", device=torch_device)
_ = pipe("Hello")
@slow
@require_torch
@require_torch_accelerator
def test_pipeline_accelerator_indexed(self):
pipe = pipeline("text-generation", device=torch_device)
_ = pipe("Hello")
@slow
@require_tf
@require_tensorflow_probability
def test_load_default_pipelines_tf_table_qa(self):
import tensorflow as tf
set_seed_fn = lambda: tf.random.set_seed(0) # noqa: E731
self.check_default_pipeline("table-question-answering", "tf", set_seed_fn, self.check_models_equal_tf)
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
def check_default_pipeline(self, task, framework, set_seed_fn, check_models_equal_fn):
from transformers.pipelines import SUPPORTED_TASKS, pipeline
task_dict = SUPPORTED_TASKS[task]
# test to compare pipeline to manually loading the respective model
model = None
relevant_auto_classes = task_dict[framework]
if len(relevant_auto_classes) == 0:
# task has no default
logger.debug(f"{task} in {framework} has no default")
self.skipTest(f"{task} in {framework} has no default")
# by default use first class
auto_model_cls = relevant_auto_classes[0]
# retrieve correct model ids
if task == "translation":
# special case for translation pipeline which has multiple languages
model_ids = []
revisions = []
tasks = []
for translation_pair in task_dict["default"].keys():
model_id, revision = task_dict["default"][translation_pair]["model"][framework]
model_ids.append(model_id)
revisions.append(revision)
tasks.append(task + f"_{'_to_'.join(translation_pair)}")
else:
# normal case - non-translation pipeline
model_id, revision = task_dict["default"]["model"][framework]
model_ids = [model_id]
revisions = [revision]
tasks = [task]
# check for equality
for model_id, revision, task in zip(model_ids, revisions, tasks):
# load default model
try:
set_seed_fn()
model = auto_model_cls.from_pretrained(model_id, revision=revision)
except ValueError:
# first auto class is possible not compatible with model, go to next model class
auto_model_cls = relevant_auto_classes[1]
set_seed_fn()
model = auto_model_cls.from_pretrained(model_id, revision=revision)
# load default pipeline
set_seed_fn()
default_pipeline = pipeline(task, framework=framework)
# compare pipeline model with default model
models_are_equal = check_models_equal_fn(default_pipeline.model, model)
self.assertTrue(models_are_equal, f"{task} model doesn't match pipeline.")
logger.debug(f"{task} in {framework} succeeded with {model_id}.")
def check_models_equal_pt(self, model1, model2):
models_are_equal = True
for model1_p, model2_p in zip(model1.parameters(), model2.parameters()):
if model1_p.data.ne(model2_p.data).sum() > 0:
models_are_equal = False
return models_are_equal
def check_models_equal_tf(self, model1, model2):
models_are_equal = True
for model1_p, model2_p in zip(model1.weights, model2.weights):
if np.abs(model1_p.numpy() - model2_p.numpy()).sum() > 1e-5:
models_are_equal = False
return models_are_equal
class CustomPipeline(Pipeline):
def _sanitize_parameters(self, **kwargs):
preprocess_kwargs = {}
if "maybe_arg" in kwargs:
preprocess_kwargs["maybe_arg"] = kwargs["maybe_arg"]
return preprocess_kwargs, {}, {}
def preprocess(self, text, maybe_arg=2):
input_ids = self.tokenizer(text, return_tensors="pt")
return input_ids
def _forward(self, model_inputs):
outputs = self.model(**model_inputs)
return outputs
def postprocess(self, model_outputs):
return model_outputs["logits"].softmax(-1).numpy()
@is_pipeline_test
class CustomPipelineTest(unittest.TestCase):
def test_warning_logs(self):
transformers_logging.set_verbosity_debug()
logger_ = transformers_logging.get_logger("transformers.pipelines.base")
alias = "text-classification"
# Get the original task, so we can restore it at the end.
# (otherwise the subsequential tests in `TextClassificationPipelineTests` will fail)
_, original_task, _ = PIPELINE_REGISTRY.check_task(alias)
try:
with CaptureLogger(logger_) as cm:
PIPELINE_REGISTRY.register_pipeline(alias, PairClassificationPipeline)
self.assertIn(f"{alias} is already registered", cm.out)
finally:
# restore
PIPELINE_REGISTRY.supported_tasks[alias] = original_task
def test_register_pipeline(self):
PIPELINE_REGISTRY.register_pipeline(
"custom-text-classification",
pipeline_class=PairClassificationPipeline,
pt_model=AutoModelForSequenceClassification if is_torch_available() else None,
tf_model=TFAutoModelForSequenceClassification if is_tf_available() else None,
default={"pt": "hf-internal-testing/tiny-random-distilbert"},
type="text",
)
assert "custom-text-classification" in PIPELINE_REGISTRY.get_supported_tasks()
_, task_def, _ = PIPELINE_REGISTRY.check_task("custom-text-classification")
self.assertEqual(task_def["pt"], (AutoModelForSequenceClassification,) if is_torch_available() else ())
self.assertEqual(task_def["tf"], (TFAutoModelForSequenceClassification,) if is_tf_available() else ())
self.assertEqual(task_def["type"], "text")
self.assertEqual(task_def["impl"], PairClassificationPipeline)
self.assertEqual(task_def["default"], {"model": {"pt": "hf-internal-testing/tiny-random-distilbert"}})
# Clean registry for next tests.
del PIPELINE_REGISTRY.supported_tasks["custom-text-classification"]
@require_torch_or_tf
def test_dynamic_pipeline(self):
PIPELINE_REGISTRY.register_pipeline(
"pair-classification",
pipeline_class=PairClassificationPipeline,
pt_model=AutoModelForSequenceClassification if is_torch_available() else None,
tf_model=TFAutoModelForSequenceClassification if is_tf_available() else None,
)
classifier = pipeline("pair-classification", model="hf-internal-testing/tiny-random-bert")
# Clean registry as we won't need the pipeline to be in it for the rest to work.
del PIPELINE_REGISTRY.supported_tasks["pair-classification"]
with tempfile.TemporaryDirectory() as tmp_dir:
classifier.save_pretrained(tmp_dir)
# checks
self.assertDictEqual(
classifier.model.config.custom_pipelines,
{
"pair-classification": {
"impl": "custom_pipeline.PairClassificationPipeline",
"pt": ("AutoModelForSequenceClassification",) if is_torch_available() else (),
"tf": ("TFAutoModelForSequenceClassification",) if is_tf_available() else (),
}
},
)
# Fails if the user forget to pass along `trust_remote_code=True`
with self.assertRaises(ValueError):
_ = pipeline(model=tmp_dir)
new_classifier = pipeline(model=tmp_dir, trust_remote_code=True)
# Using trust_remote_code=False forces the traditional pipeline tag
old_classifier = pipeline("text-classification", model=tmp_dir, trust_remote_code=False)
# Can't make an isinstance check because the new_classifier is from the PairClassificationPipeline class of a
# dynamic module
self.assertEqual(new_classifier.__class__.__name__, "PairClassificationPipeline")
self.assertEqual(new_classifier.task, "pair-classification")
results = new_classifier("I hate you", second_text="I love you")
self.assertDictEqual(
nested_simplify(results),
{"label": "LABEL_0", "score": 0.505, "logits": [-0.003, -0.024]},
)
self.assertEqual(old_classifier.__class__.__name__, "TextClassificationPipeline")
self.assertEqual(old_classifier.task, "text-classification")
results = old_classifier("I hate you", text_pair="I love you")
self.assertListEqual(
nested_simplify(results),
[{"label": "LABEL_0", "score": 0.505}],
)
@require_torch_or_tf
def test_cached_pipeline_has_minimum_calls_to_head(self):
# Make sure we have cached the pipeline.
_ = pipeline("text-classification", model="hf-internal-testing/tiny-random-bert")
with RequestCounter() as counter:
_ = pipeline("text-classification", model="hf-internal-testing/tiny-random-bert")
self.assertEqual(counter["GET"], 0)
self.assertEqual(counter["HEAD"], 1)
self.assertEqual(counter.total_calls, 1)
@require_torch
def test_chunk_pipeline_batching_single_file(self):
# Make sure we have cached the pipeline.
pipe = pipeline(model="hf-internal-testing/tiny-random-Wav2Vec2ForCTC")
ds = datasets.load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
audio = ds[40]["audio"]["array"]
pipe = pipeline(model="hf-internal-testing/tiny-random-Wav2Vec2ForCTC")
# For some reason scoping doesn't work if not using `self.`
self.COUNT = 0
forward = pipe.model.forward
def new_forward(*args, **kwargs):
self.COUNT += 1
return forward(*args, **kwargs)
pipe.model.forward = new_forward
for out in pipe(audio, return_timestamps="char", chunk_length_s=3, stride_length_s=[1, 1], batch_size=1024):
pass
self.assertEqual(self.COUNT, 1)
@require_torch
def test_custom_code_with_string_tokenizer(self):
# This test checks for an edge case - tokenizer loading used to fail when using a custom code model
# with a separate tokenizer that was passed as a repo name rather than a tokenizer object.
# See https://github.com/huggingface/transformers/issues/31669
text_generator = pipeline(
"text-generation",
model="hf-internal-testing/tiny-random-custom-architecture",
tokenizer="hf-internal-testing/tiny-random-custom-architecture",
trust_remote_code=True,
)
self.assertIsInstance(text_generator, TextGenerationPipeline) # Assert successful loading
@require_torch
def test_custom_code_with_string_feature_extractor(self):
speech_recognizer = pipeline(
"automatic-speech-recognition",
model="hf-internal-testing/fake-custom-wav2vec2",
feature_extractor="hf-internal-testing/fake-custom-wav2vec2",
trust_remote_code=True,
)
self.assertIsInstance(speech_recognizer, AutomaticSpeechRecognitionPipeline) # Assert successful loading
@require_torch
def test_custom_code_with_string_preprocessor(self):
mask_generator = pipeline(
"mask-generation",
model="hf-internal-testing/fake-custom-sam",
processor="hf-internal-testing/fake-custom-sam",
trust_remote_code=True,
)
self.assertIsInstance(mask_generator, MaskGenerationPipeline) # Assert successful loading
@require_torch
@is_staging_test
class DynamicPipelineTester(unittest.TestCase):
vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "I", "love", "hate", "you"]
@classmethod
def setUpClass(cls):
cls._token = TOKEN
HfFolder.save_token(TOKEN)
@classmethod
def tearDownClass(cls):
try:
delete_repo(token=cls._token, repo_id="test-dynamic-pipeline")
except HTTPError:
pass
@unittest.skip("Broken, TODO @Yih-Dar")
def test_push_to_hub_dynamic_pipeline(self):
from transformers import BertConfig, BertForSequenceClassification, BertTokenizer
PIPELINE_REGISTRY.register_pipeline(
"pair-classification",
pipeline_class=PairClassificationPipeline,
pt_model=AutoModelForSequenceClassification,
)
config = BertConfig(
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
)
model = BertForSequenceClassification(config).eval()
with tempfile.TemporaryDirectory() as tmp_dir:
vocab_file = os.path.join(tmp_dir, "vocab.txt")
with open(vocab_file, "w", encoding="utf-8") as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens]))
tokenizer = BertTokenizer(vocab_file)
classifier = pipeline("pair-classification", model=model, tokenizer=tokenizer)
# Clean registry as we won't need the pipeline to be in it for the rest to work.
del PIPELINE_REGISTRY.supported_tasks["pair-classification"]
classifier.save_pretrained(tmp_dir)
# checks if the configuration has been added after calling the save_pretrained method
self.assertDictEqual(
classifier.model.config.custom_pipelines,
{
"pair-classification": {
"impl": "custom_pipeline.PairClassificationPipeline",
"pt": ("AutoModelForSequenceClassification",),
"tf": (),
}
},
)
# use push_to_hub method to push the pipeline
classifier.push_to_hub(f"{USER}/test-dynamic-pipeline", token=self._token)
# Fails if the user forget to pass along `trust_remote_code=True`
with self.assertRaises(ValueError):
_ = pipeline(model=f"{USER}/test-dynamic-pipeline")
new_classifier = pipeline(model=f"{USER}/test-dynamic-pipeline", trust_remote_code=True)
# Can't make an isinstance check because the new_classifier is from the PairClassificationPipeline class of a
# dynamic module
self.assertEqual(new_classifier.__class__.__name__, "PairClassificationPipeline")
# check for tag exitence, tag needs to be added when we are calling a custom pipeline from the hub
# useful for cases such as finetuning
self.assertDictEqual(
new_classifier.model.config.custom_pipelines,
{
"pair-classification": {
"impl": f"{USER}/test-dynamic-pipeline--custom_pipeline.PairClassificationPipeline",
"pt": ("AutoModelForSequenceClassification",),
"tf": (),
}
},
)
# test if the pipeline still works after the model is finetuned
# (we are actually testing if the pipeline still works from the final repo)
# this is where the user/repo--module.class is used for
new_classifier.model.push_to_hub(repo_name=f"{USER}/test-pipeline-for-a-finetuned-model", token=self._token)
del new_classifier # free up memory
new_classifier = pipeline(model=f"{USER}/test-pipeline-for-a-finetuned-model", trust_remote_code=True)
results = classifier("I hate you", second_text="I love you")
new_results = new_classifier("I hate you", second_text="I love you")
self.assertDictEqual(nested_simplify(results), nested_simplify(new_results))
# Using trust_remote_code=False forces the traditional pipeline tag
old_classifier = pipeline(
"text-classification", model=f"{USER}/test-dynamic-pipeline", trust_remote_code=False
)
self.assertEqual(old_classifier.__class__.__name__, "TextClassificationPipeline")
self.assertEqual(old_classifier.task, "text-classification")
new_results = old_classifier("I hate you", text_pair="I love you")
self.assertListEqual(
nested_simplify([{"label": results["label"], "score": results["score"]}]), nested_simplify(new_results)
)
| transformers/tests/pipelines/test_pipelines_common.py/0 | {
"file_path": "transformers/tests/pipelines/test_pipelines_common.py",
"repo_id": "transformers",
"token_count": 17527
} |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import (
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
Text2TextGenerationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, require_tf, require_torch
from transformers.utils import is_torch_available
from .test_pipelines_common import ANY
if is_torch_available():
import torch
@is_pipeline_test
class Text2TextGenerationPipelineTests(unittest.TestCase):
model_mapping = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
tf_model_mapping = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
def get_test_pipeline(
self,
model,
tokenizer=None,
image_processor=None,
feature_extractor=None,
processor=None,
torch_dtype="float32",
):
generator = Text2TextGenerationPipeline(
model=model,
tokenizer=tokenizer,
feature_extractor=feature_extractor,
image_processor=image_processor,
processor=processor,
torch_dtype=torch_dtype,
)
return generator, ["Something to write", "Something else"]
def run_pipeline_test(self, generator, _):
outputs = generator("Something there")
self.assertEqual(outputs, [{"generated_text": ANY(str)}])
# These are encoder decoder, they don't just append to incoming string
self.assertFalse(outputs[0]["generated_text"].startswith("Something there"))
outputs = generator(["This is great !", "Something else"], num_return_sequences=2, do_sample=True)
self.assertEqual(
outputs,
[
[{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
[{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
],
)
outputs = generator(
["This is great !", "Something else"], num_return_sequences=2, batch_size=2, do_sample=True
)
self.assertEqual(
outputs,
[
[{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
[{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
],
)
with self.assertRaises(ValueError):
generator(4)
@require_torch
def test_small_model_pt(self):
generator = pipeline("text2text-generation", model="patrickvonplaten/t5-tiny-random", framework="pt")
# do_sample=False necessary for reproducibility
outputs = generator("Something there", do_sample=False)
self.assertEqual(outputs, [{"generated_text": ""}])
num_return_sequences = 3
outputs = generator(
"Something there",
num_return_sequences=num_return_sequences,
num_beams=num_return_sequences,
)
target_outputs = [
{"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide Beide"},
{"generated_text": "Beide Beide Beide Beide Beide Beide Beide Beide"},
{"generated_text": ""},
]
self.assertEqual(outputs, target_outputs)
outputs = generator("This is a test", do_sample=True, num_return_sequences=2, return_tensors=True)
self.assertEqual(
outputs,
[
{"generated_token_ids": ANY(torch.Tensor)},
{"generated_token_ids": ANY(torch.Tensor)},
],
)
generator.tokenizer.pad_token_id = generator.model.config.eos_token_id
generator.tokenizer.pad_token = "<pad>"
outputs = generator(
["This is a test", "This is a second test"],
do_sample=True,
num_return_sequences=2,
batch_size=2,
return_tensors=True,
)
self.assertEqual(
outputs,
[
[
{"generated_token_ids": ANY(torch.Tensor)},
{"generated_token_ids": ANY(torch.Tensor)},
],
[
{"generated_token_ids": ANY(torch.Tensor)},
{"generated_token_ids": ANY(torch.Tensor)},
],
],
)
@require_tf
def test_small_model_tf(self):
generator = pipeline("text2text-generation", model="patrickvonplaten/t5-tiny-random", framework="tf")
# do_sample=False necessary for reproducibility
outputs = generator("Something there", do_sample=False)
self.assertEqual(outputs, [{"generated_text": ""}])
| transformers/tests/pipelines/test_pipelines_text2text_generation.py/0 | {
"file_path": "transformers/tests/pipelines/test_pipelines_text2text_generation.py",
"repo_id": "transformers",
"token_count": 2311
} |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import shutil
import sys
import tempfile
import unittest
from contextlib import contextmanager
from pathlib import Path
from git import Repo
from transformers.testing_utils import CaptureStdout
REPO_PATH = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(REPO_PATH, "utils"))
import tests_fetcher # noqa: E402
from tests_fetcher import ( # noqa: E402
checkout_commit,
clean_code,
create_reverse_dependency_map,
create_reverse_dependency_tree,
diff_is_docstring_only,
extract_imports,
get_all_tests,
get_diff,
get_module_dependencies,
get_tree_starting_at,
infer_tests_to_run,
init_test_examples_dependencies,
parse_commit_message,
print_tree_deps_of,
)
BERT_MODELING_FILE = "src/transformers/models/bert/modeling_bert.py"
BERT_MODEL_FILE = """from ...modeling_utils import PreTrainedModel
from ...utils import is_torch_available
from .configuration_bert import BertConfig
class BertModel:
'''
This is the docstring.
'''
This is the code
"""
BERT_MODEL_FILE_NEW_DOCSTRING = """from ...modeling_utils import PreTrainedModel
from ...utils import is_torch_available
from .configuration_bert import BertConfig
class BertModel:
'''
This is the docstring. It has been updated.
'''
This is the code
"""
BERT_MODEL_FILE_NEW_CODE = """from ...modeling_utils import PreTrainedModel
from ...utils import is_torch_available
from .configuration_bert import BertConfig
class BertModel:
'''
This is the docstring.
'''
This is the code. It has been updated
"""
def create_tmp_repo(tmp_dir, models=None):
"""
Creates a repository in a temporary directory mimicking the structure of Transformers. Uses the list of models
provided (which defaults to just `["bert"]`).
"""
tmp_dir = Path(tmp_dir)
if tmp_dir.exists():
shutil.rmtree(tmp_dir)
tmp_dir.mkdir(exist_ok=True)
repo = Repo.init(tmp_dir)
if models is None:
models = ["bert"]
class_names = [model[0].upper() + model[1:] for model in models]
transformers_dir = tmp_dir / "src" / "transformers"
transformers_dir.mkdir(parents=True, exist_ok=True)
with open(transformers_dir / "__init__.py", "w") as f:
init_lines = ["from .utils import cached_file, is_torch_available"]
init_lines.extend(
[f"from .models.{model} import {cls}Config, {cls}Model" for model, cls in zip(models, class_names)]
)
f.write("\n".join(init_lines) + "\n")
with open(transformers_dir / "configuration_utils.py", "w") as f:
f.write("from .utils import cached_file\n\ncode")
with open(transformers_dir / "modeling_utils.py", "w") as f:
f.write("from .utils import cached_file\n\ncode")
utils_dir = tmp_dir / "src" / "transformers" / "utils"
utils_dir.mkdir(exist_ok=True)
with open(utils_dir / "__init__.py", "w") as f:
f.write("from .hub import cached_file\nfrom .imports import is_torch_available\n")
with open(utils_dir / "hub.py", "w") as f:
f.write("import huggingface_hub\n\ncode")
with open(utils_dir / "imports.py", "w") as f:
f.write("code")
model_dir = tmp_dir / "src" / "transformers" / "models"
model_dir.mkdir(parents=True, exist_ok=True)
with open(model_dir / "__init__.py", "w") as f:
f.write("\n".join([f"import {model}" for model in models]))
for model, cls in zip(models, class_names):
model_dir = tmp_dir / "src" / "transformers" / "models" / model
model_dir.mkdir(parents=True, exist_ok=True)
with open(model_dir / "__init__.py", "w") as f:
f.write(f"from .configuration_{model} import {cls}Config\nfrom .modeling_{model} import {cls}Model\n")
with open(model_dir / f"configuration_{model}.py", "w") as f:
f.write("from ...configuration_utils import PretrainedConfig\ncode")
with open(model_dir / f"modeling_{model}.py", "w") as f:
modeling_code = BERT_MODEL_FILE.replace("bert", model).replace("Bert", cls)
f.write(modeling_code)
test_dir = tmp_dir / "tests"
test_dir.mkdir(exist_ok=True)
with open(test_dir / "test_modeling_common.py", "w") as f:
f.write("from transformers.modeling_utils import PreTrainedModel\ncode")
for model, cls in zip(models, class_names):
test_model_dir = test_dir / "models" / model
test_model_dir.mkdir(parents=True, exist_ok=True)
(test_model_dir / "__init__.py").touch()
with open(test_model_dir / f"test_modeling_{model}.py", "w") as f:
f.write(
f"from transformers import {cls}Config, {cls}Model\nfrom ...test_modeling_common import ModelTesterMixin\n\ncode"
)
example_dir = tmp_dir / "examples"
example_dir.mkdir(exist_ok=True)
for framework in ["flax", "pytorch", "tensorflow"]:
framework_dir = example_dir / framework
framework_dir.mkdir(exist_ok=True)
with open(framework_dir / f"test_{framework}_examples.py", "w") as f:
f.write("""test_args = "run_glue.py"\n""")
glue_dir = framework_dir / "text-classification"
glue_dir.mkdir(exist_ok=True)
with open(glue_dir / "run_glue.py", "w") as f:
f.write("from transformers import BertModel\n\ncode")
repo.index.add(["examples", "src", "tests"])
repo.index.commit("Initial commit")
repo.create_head("main")
repo.head.reference = repo.refs.main
repo.delete_head("master")
return repo
@contextmanager
def patch_transformer_repo_path(new_folder):
"""
Temporarily patches the variables defines in `tests_fetcher` to use a different location for the repo.
"""
old_repo_path = tests_fetcher.PATH_TO_REPO
tests_fetcher.PATH_TO_REPO = Path(new_folder).resolve()
tests_fetcher.PATH_TO_EXAMPLES = tests_fetcher.PATH_TO_REPO / "examples"
tests_fetcher.PATH_TO_TRANFORMERS = tests_fetcher.PATH_TO_REPO / "src/transformers"
tests_fetcher.PATH_TO_TESTS = tests_fetcher.PATH_TO_REPO / "tests"
try:
yield
finally:
tests_fetcher.PATH_TO_REPO = old_repo_path
tests_fetcher.PATH_TO_EXAMPLES = tests_fetcher.PATH_TO_REPO / "examples"
tests_fetcher.PATH_TO_TRANFORMERS = tests_fetcher.PATH_TO_REPO / "src/transformers"
tests_fetcher.PATH_TO_TESTS = tests_fetcher.PATH_TO_REPO / "tests"
def commit_changes(filenames, contents, repo, commit_message="Commit"):
"""
Commit new `contents` to `filenames` inside a given `repo`.
"""
if not isinstance(filenames, list):
filenames = [filenames]
if not isinstance(contents, list):
contents = [contents]
folder = Path(repo.working_dir)
for filename, content in zip(filenames, contents):
with open(folder / filename, "w") as f:
f.write(content)
repo.index.add(filenames)
commit = repo.index.commit(commit_message)
return commit.hexsha
class TestFetcherTester(unittest.TestCase):
def test_checkout_commit(self):
with tempfile.TemporaryDirectory() as tmp_folder:
tmp_folder = Path(tmp_folder)
repo = create_tmp_repo(tmp_folder)
initial_sha = repo.head.commit.hexsha
new_sha = commit_changes(BERT_MODELING_FILE, BERT_MODEL_FILE_NEW_DOCSTRING, repo)
assert repo.head.commit.hexsha == new_sha
with checkout_commit(repo, initial_sha):
assert repo.head.commit.hexsha == initial_sha
with open(tmp_folder / BERT_MODELING_FILE) as f:
assert f.read() == BERT_MODEL_FILE
assert repo.head.commit.hexsha == new_sha
with open(tmp_folder / BERT_MODELING_FILE) as f:
assert f.read() == BERT_MODEL_FILE_NEW_DOCSTRING
def test_clean_code(self):
# Clean code removes all strings in triple quotes
assert clean_code('"""\nDocstring\n"""\ncode\n"""Long string"""\ncode\n') == "code\ncode"
assert clean_code("'''\nDocstring\n'''\ncode\n'''Long string'''\ncode\n'''") == "code\ncode"
# Clean code removes all comments
assert clean_code("code\n# Comment\ncode") == "code\ncode"
assert clean_code("code # inline comment\ncode") == "code \ncode"
def test_get_all_tests(self):
with tempfile.TemporaryDirectory() as tmp_folder:
tmp_folder = Path(tmp_folder)
create_tmp_repo(tmp_folder)
with patch_transformer_repo_path(tmp_folder):
assert get_all_tests() == ["tests/models/bert", "tests/test_modeling_common.py"]
def test_get_all_tests_on_full_repo(self):
all_tests = get_all_tests()
assert "tests/models/albert" in all_tests
assert "tests/models/bert" in all_tests
assert "tests/repo_utils" in all_tests
assert "tests/test_pipeline_mixin.py" in all_tests
assert "tests/models" not in all_tests
assert "tests/__pycache__" not in all_tests
assert "tests/models/albert/test_modeling_albert.py" not in all_tests
assert "tests/repo_utils/test_tests_fetcher.py" not in all_tests
def test_diff_is_docstring_only(self):
with tempfile.TemporaryDirectory() as tmp_folder:
tmp_folder = Path(tmp_folder)
repo = create_tmp_repo(tmp_folder)
branching_point = repo.refs.main.commit
bert_file = BERT_MODELING_FILE
commit_changes(bert_file, BERT_MODEL_FILE_NEW_DOCSTRING, repo)
assert diff_is_docstring_only(repo, branching_point, bert_file)
commit_changes(bert_file, BERT_MODEL_FILE_NEW_CODE, repo)
assert not diff_is_docstring_only(repo, branching_point, bert_file)
def test_get_diff(self):
with tempfile.TemporaryDirectory() as tmp_folder:
tmp_folder = Path(tmp_folder)
repo = create_tmp_repo(tmp_folder)
initial_commit = repo.refs.main.commit
bert_file = BERT_MODELING_FILE
commit_changes(bert_file, BERT_MODEL_FILE_NEW_DOCSTRING, repo)
assert get_diff(repo, repo.head.commit, repo.head.commit.parents) == []
commit_changes(bert_file, BERT_MODEL_FILE_NEW_DOCSTRING + "\n# Adding a comment\n", repo)
assert get_diff(repo, repo.head.commit, repo.head.commit.parents) == []
commit_changes(bert_file, BERT_MODEL_FILE_NEW_CODE, repo)
assert get_diff(repo, repo.head.commit, repo.head.commit.parents) == [
"src/transformers/models/bert/modeling_bert.py"
]
commit_changes("src/transformers/utils/hub.py", "import huggingface_hub\n\nnew code", repo)
assert get_diff(repo, repo.head.commit, repo.head.commit.parents) == ["src/transformers/utils/hub.py"]
assert get_diff(repo, repo.head.commit, [initial_commit]) == [
"src/transformers/models/bert/modeling_bert.py",
"src/transformers/utils/hub.py",
]
def test_extract_imports_relative(self):
with tempfile.TemporaryDirectory() as tmp_folder:
tmp_folder = Path(tmp_folder)
create_tmp_repo(tmp_folder)
expected_bert_imports = [
("src/transformers/modeling_utils.py", ["PreTrainedModel"]),
("src/transformers/utils/__init__.py", ["is_torch_available"]),
("src/transformers/models/bert/configuration_bert.py", ["BertConfig"]),
]
expected_utils_imports = [
("src/transformers/utils/hub.py", ["cached_file"]),
("src/transformers/utils/imports.py", ["is_torch_available"]),
]
with patch_transformer_repo_path(tmp_folder):
assert extract_imports(BERT_MODELING_FILE) == expected_bert_imports
assert extract_imports("src/transformers/utils/__init__.py") == expected_utils_imports
with open(tmp_folder / BERT_MODELING_FILE, "w") as f:
f.write(
"from ...utils import cached_file, is_torch_available\nfrom .configuration_bert import BertConfig\n"
)
expected_bert_imports = [
("src/transformers/utils/__init__.py", ["cached_file", "is_torch_available"]),
("src/transformers/models/bert/configuration_bert.py", ["BertConfig"]),
]
with patch_transformer_repo_path(tmp_folder):
assert extract_imports(BERT_MODELING_FILE) == expected_bert_imports
# Test with multi-line imports
with open(tmp_folder / BERT_MODELING_FILE, "w") as f:
f.write(
"from ...utils import (\n cached_file,\n is_torch_available\n)\nfrom .configuration_bert import BertConfig\n"
)
expected_bert_imports = [
("src/transformers/models/bert/configuration_bert.py", ["BertConfig"]),
("src/transformers/utils/__init__.py", ["cached_file", "is_torch_available"]),
]
with patch_transformer_repo_path(tmp_folder):
assert extract_imports(BERT_MODELING_FILE) == expected_bert_imports
def test_extract_imports_absolute(self):
with tempfile.TemporaryDirectory() as tmp_folder:
tmp_folder = Path(tmp_folder)
create_tmp_repo(tmp_folder)
with open(tmp_folder / BERT_MODELING_FILE, "w") as f:
f.write(
"from transformers.utils import cached_file, is_torch_available\nfrom transformers.models.bert.configuration_bert import BertConfig\n"
)
expected_bert_imports = [
("src/transformers/utils/__init__.py", ["cached_file", "is_torch_available"]),
("src/transformers/models/bert/configuration_bert.py", ["BertConfig"]),
]
with patch_transformer_repo_path(tmp_folder):
assert extract_imports(BERT_MODELING_FILE) == expected_bert_imports
# Test with multi-line imports
with open(tmp_folder / BERT_MODELING_FILE, "w") as f:
f.write(
"from transformers.utils import (\n cached_file,\n is_torch_available\n)\nfrom transformers.models.bert.configuration_bert import BertConfig\n"
)
expected_bert_imports = [
("src/transformers/models/bert/configuration_bert.py", ["BertConfig"]),
("src/transformers/utils/__init__.py", ["cached_file", "is_torch_available"]),
]
with patch_transformer_repo_path(tmp_folder):
assert extract_imports(BERT_MODELING_FILE) == expected_bert_imports
# Test with base imports
with open(tmp_folder / BERT_MODELING_FILE, "w") as f:
f.write(
"from transformers.utils import (\n cached_file,\n is_torch_available\n)\nfrom transformers import BertConfig\n"
)
expected_bert_imports = [
("src/transformers/__init__.py", ["BertConfig"]),
("src/transformers/utils/__init__.py", ["cached_file", "is_torch_available"]),
]
with patch_transformer_repo_path(tmp_folder):
assert extract_imports(BERT_MODELING_FILE) == expected_bert_imports
def test_get_module_dependencies(self):
with tempfile.TemporaryDirectory() as tmp_folder:
tmp_folder = Path(tmp_folder)
create_tmp_repo(tmp_folder)
expected_bert_dependencies = [
"src/transformers/modeling_utils.py",
"src/transformers/models/bert/configuration_bert.py",
"src/transformers/utils/imports.py",
]
with patch_transformer_repo_path(tmp_folder):
assert get_module_dependencies(BERT_MODELING_FILE) == expected_bert_dependencies
expected_test_bert_dependencies = [
"tests/test_modeling_common.py",
"src/transformers/models/bert/configuration_bert.py",
"src/transformers/models/bert/modeling_bert.py",
]
with patch_transformer_repo_path(tmp_folder):
assert (
get_module_dependencies("tests/models/bert/test_modeling_bert.py")
== expected_test_bert_dependencies
)
# Test with a submodule
(tmp_folder / "src/transformers/utils/logging.py").touch()
with open(tmp_folder / BERT_MODELING_FILE, "a") as f:
f.write("from ...utils import logging\n")
expected_bert_dependencies = [
"src/transformers/modeling_utils.py",
"src/transformers/models/bert/configuration_bert.py",
"src/transformers/utils/logging.py",
"src/transformers/utils/imports.py",
]
with patch_transformer_repo_path(tmp_folder):
assert get_module_dependencies(BERT_MODELING_FILE) == expected_bert_dependencies
# Test with an object non-imported in the init
create_tmp_repo(tmp_folder)
with open(tmp_folder / BERT_MODELING_FILE, "a") as f:
f.write("from ...utils import CONSTANT\n")
expected_bert_dependencies = [
"src/transformers/modeling_utils.py",
"src/transformers/models/bert/configuration_bert.py",
"src/transformers/utils/__init__.py",
"src/transformers/utils/imports.py",
]
with patch_transformer_repo_path(tmp_folder):
assert get_module_dependencies(BERT_MODELING_FILE) == expected_bert_dependencies
# Test with an example
create_tmp_repo(tmp_folder)
expected_example_dependencies = ["src/transformers/models/bert/modeling_bert.py"]
with patch_transformer_repo_path(tmp_folder):
assert (
get_module_dependencies("examples/pytorch/text-classification/run_glue.py")
== expected_example_dependencies
)
def test_create_reverse_dependency_tree(self):
with tempfile.TemporaryDirectory() as tmp_folder:
tmp_folder = Path(tmp_folder)
create_tmp_repo(tmp_folder)
with patch_transformer_repo_path(tmp_folder):
tree = create_reverse_dependency_tree()
init_edges = [
"src/transformers/utils/hub.py",
"src/transformers/utils/imports.py",
"src/transformers/models/bert/configuration_bert.py",
"src/transformers/models/bert/modeling_bert.py",
]
assert {f for f, g in tree if g == "src/transformers/__init__.py"} == set(init_edges)
bert_edges = [
"src/transformers/modeling_utils.py",
"src/transformers/utils/imports.py",
"src/transformers/models/bert/configuration_bert.py",
]
assert {f for f, g in tree if g == "src/transformers/models/bert/modeling_bert.py"} == set(bert_edges)
test_bert_edges = [
"tests/test_modeling_common.py",
"src/transformers/models/bert/configuration_bert.py",
"src/transformers/models/bert/modeling_bert.py",
]
assert {f for f, g in tree if g == "tests/models/bert/test_modeling_bert.py"} == set(test_bert_edges)
def test_get_tree_starting_at(self):
with tempfile.TemporaryDirectory() as tmp_folder:
tmp_folder = Path(tmp_folder)
create_tmp_repo(tmp_folder)
with patch_transformer_repo_path(tmp_folder):
edges = create_reverse_dependency_tree()
bert_tree = get_tree_starting_at("src/transformers/models/bert/modeling_bert.py", edges)
config_utils_tree = get_tree_starting_at("src/transformers/configuration_utils.py", edges)
expected_bert_tree = [
"src/transformers/models/bert/modeling_bert.py",
[("src/transformers/models/bert/modeling_bert.py", "tests/models/bert/test_modeling_bert.py")],
]
assert bert_tree == expected_bert_tree
expected_config_tree = [
"src/transformers/configuration_utils.py",
[("src/transformers/configuration_utils.py", "src/transformers/models/bert/configuration_bert.py")],
[
("src/transformers/models/bert/configuration_bert.py", "tests/models/bert/test_modeling_bert.py"),
(
"src/transformers/models/bert/configuration_bert.py",
"src/transformers/models/bert/modeling_bert.py",
),
],
]
# Order of the edges is random
assert [set(v) for v in config_utils_tree] == [set(v) for v in expected_config_tree]
def test_print_tree_deps_of(self):
with tempfile.TemporaryDirectory() as tmp_folder:
tmp_folder = Path(tmp_folder)
create_tmp_repo(tmp_folder)
# There are two possible outputs since the order of the last two lines is non-deterministic.
expected_std_out = """src/transformers/models/bert/modeling_bert.py
tests/models/bert/test_modeling_bert.py
src/transformers/configuration_utils.py
src/transformers/models/bert/configuration_bert.py
src/transformers/models/bert/modeling_bert.py
tests/models/bert/test_modeling_bert.py"""
expected_std_out_2 = """src/transformers/models/bert/modeling_bert.py
tests/models/bert/test_modeling_bert.py
src/transformers/configuration_utils.py
src/transformers/models/bert/configuration_bert.py
tests/models/bert/test_modeling_bert.py
src/transformers/models/bert/modeling_bert.py"""
with patch_transformer_repo_path(tmp_folder), CaptureStdout() as cs:
print_tree_deps_of("src/transformers/models/bert/modeling_bert.py")
print_tree_deps_of("src/transformers/configuration_utils.py")
assert cs.out.strip() in [expected_std_out, expected_std_out_2]
def test_init_test_examples_dependencies(self):
with tempfile.TemporaryDirectory() as tmp_folder:
tmp_folder = Path(tmp_folder)
create_tmp_repo(tmp_folder)
expected_example_deps = {
"examples/flax/test_flax_examples.py": [
"examples/flax/text-classification/run_glue.py",
"examples/flax/test_flax_examples.py",
],
"examples/pytorch/test_pytorch_examples.py": [
"examples/pytorch/text-classification/run_glue.py",
"examples/pytorch/test_pytorch_examples.py",
],
"examples/tensorflow/test_tensorflow_examples.py": [
"examples/tensorflow/text-classification/run_glue.py",
"examples/tensorflow/test_tensorflow_examples.py",
],
}
expected_examples = {
"examples/flax/test_flax_examples.py",
"examples/flax/text-classification/run_glue.py",
"examples/pytorch/test_pytorch_examples.py",
"examples/pytorch/text-classification/run_glue.py",
"examples/tensorflow/test_tensorflow_examples.py",
"examples/tensorflow/text-classification/run_glue.py",
}
with patch_transformer_repo_path(tmp_folder):
example_deps, all_examples = init_test_examples_dependencies()
assert example_deps == expected_example_deps
assert {str(f.relative_to(tmp_folder)) for f in all_examples} == expected_examples
def test_create_reverse_dependency_map(self):
with tempfile.TemporaryDirectory() as tmp_folder:
tmp_folder = Path(tmp_folder)
create_tmp_repo(tmp_folder)
with patch_transformer_repo_path(tmp_folder):
reverse_map = create_reverse_dependency_map()
# impact of BERT modeling file (note that we stop at the inits and don't go down further)
expected_bert_deps = {
"src/transformers/__init__.py",
"src/transformers/models/bert/__init__.py",
"tests/models/bert/test_modeling_bert.py",
"examples/flax/test_flax_examples.py",
"examples/flax/text-classification/run_glue.py",
"examples/pytorch/test_pytorch_examples.py",
"examples/pytorch/text-classification/run_glue.py",
"examples/tensorflow/test_tensorflow_examples.py",
"examples/tensorflow/text-classification/run_glue.py",
}
assert set(reverse_map["src/transformers/models/bert/modeling_bert.py"]) == expected_bert_deps
# init gets the direct deps (and their recursive deps)
expected_init_deps = {
"src/transformers/utils/__init__.py",
"src/transformers/utils/hub.py",
"src/transformers/utils/imports.py",
"src/transformers/models/bert/__init__.py",
"src/transformers/models/bert/configuration_bert.py",
"src/transformers/models/bert/modeling_bert.py",
"src/transformers/configuration_utils.py",
"src/transformers/modeling_utils.py",
"tests/test_modeling_common.py",
"tests/models/bert/test_modeling_bert.py",
"examples/flax/test_flax_examples.py",
"examples/flax/text-classification/run_glue.py",
"examples/pytorch/test_pytorch_examples.py",
"examples/pytorch/text-classification/run_glue.py",
"examples/tensorflow/test_tensorflow_examples.py",
"examples/tensorflow/text-classification/run_glue.py",
}
assert set(reverse_map["src/transformers/__init__.py"]) == expected_init_deps
expected_init_deps = {
"src/transformers/__init__.py",
"src/transformers/models/bert/configuration_bert.py",
"src/transformers/models/bert/modeling_bert.py",
"tests/models/bert/test_modeling_bert.py",
"examples/flax/test_flax_examples.py",
"examples/flax/text-classification/run_glue.py",
"examples/pytorch/test_pytorch_examples.py",
"examples/pytorch/text-classification/run_glue.py",
"examples/tensorflow/test_tensorflow_examples.py",
"examples/tensorflow/text-classification/run_glue.py",
}
assert set(reverse_map["src/transformers/models/bert/__init__.py"]) == expected_init_deps
# Test that with more models init of bert only gets deps to bert.
create_tmp_repo(tmp_folder, models=["bert", "gpt2"])
with patch_transformer_repo_path(tmp_folder):
reverse_map = create_reverse_dependency_map()
# init gets the direct deps (and their recursive deps)
expected_init_deps = {
"src/transformers/__init__.py",
"src/transformers/models/bert/configuration_bert.py",
"src/transformers/models/bert/modeling_bert.py",
"tests/models/bert/test_modeling_bert.py",
"examples/flax/test_flax_examples.py",
"examples/flax/text-classification/run_glue.py",
"examples/pytorch/test_pytorch_examples.py",
"examples/pytorch/text-classification/run_glue.py",
"examples/tensorflow/test_tensorflow_examples.py",
"examples/tensorflow/text-classification/run_glue.py",
}
assert set(reverse_map["src/transformers/models/bert/__init__.py"]) == expected_init_deps
@unittest.skip("Broken for now TODO @ArthurZucker")
def test_infer_tests_to_run(self):
with tempfile.TemporaryDirectory() as tmp_folder:
tmp_folder = Path(tmp_folder)
models = ["bert", "gpt2"] + [f"bert{i}" for i in range(10)]
repo = create_tmp_repo(tmp_folder, models=models)
commit_changes("src/transformers/models/bert/modeling_bert.py", BERT_MODEL_FILE_NEW_CODE, repo)
example_tests = {
"examples/flax/test_flax_examples.py",
"examples/pytorch/test_pytorch_examples.py",
"examples/tensorflow/test_tensorflow_examples.py",
}
with patch_transformer_repo_path(tmp_folder):
infer_tests_to_run(tmp_folder / "test-output.txt", diff_with_last_commit=True)
with open(tmp_folder / "test-output.txt", "r") as f:
tests_to_run = f.read()
with open(tmp_folder / "examples_test_list.txt", "r") as f:
example_tests_to_run = f.read()
assert tests_to_run == "tests/models/bert/test_modeling_bert.py"
assert set(example_tests_to_run.split(" ")) == example_tests
# Fake a new model addition
repo = create_tmp_repo(tmp_folder, models=models)
branch = repo.create_head("new_model")
branch.checkout()
with open(tmp_folder / "src/transformers/__init__.py", "a") as f:
f.write("from .models.t5 import T5Config, T5Model\n")
model_dir = tmp_folder / "src/transformers/models/t5"
model_dir.mkdir(exist_ok=True)
with open(model_dir / "__init__.py", "w") as f:
f.write("from .configuration_t5 import T5Config\nfrom .modeling_t5 import T5Model\n")
with open(model_dir / "configuration_t5.py", "w") as f:
f.write("from ...configuration_utils import PretrainedConfig\ncode")
with open(model_dir / "modeling_t5.py", "w") as f:
modeling_code = BERT_MODEL_FILE.replace("bert", "t5").replace("Bert", "T5")
f.write(modeling_code)
test_dir = tmp_folder / "tests/models/t5"
test_dir.mkdir(exist_ok=True)
(test_dir / "__init__.py").touch()
with open(test_dir / "test_modeling_t5.py", "w") as f:
f.write(
"from transformers import T5Config, T5Model\nfrom ...test_modeling_common import ModelTesterMixin\n\ncode"
)
repo.index.add(["src", "tests"])
repo.index.commit("Add T5 model")
with patch_transformer_repo_path(tmp_folder):
infer_tests_to_run(tmp_folder / "test-output.txt")
with open(tmp_folder / "test-output.txt", "r") as f:
tests_to_run = f.read()
with open(tmp_folder / "examples_test_list.txt", "r") as f:
example_tests_to_run = f.read()
expected_tests = {
"tests/models/bert/test_modeling_bert.py",
"tests/models/gpt2/test_modeling_gpt2.py",
"tests/models/t5/test_modeling_t5.py",
"tests/test_modeling_common.py",
}
assert set(tests_to_run.split(" ")) == expected_tests
assert set(example_tests_to_run.split(" ")) == example_tests
with patch_transformer_repo_path(tmp_folder):
infer_tests_to_run(tmp_folder / "test-output.txt", filter_models=False)
with open(tmp_folder / "test-output.txt", "r") as f:
tests_to_run = f.read()
with open(tmp_folder / "examples_test_list.txt", "r") as f:
example_tests_to_run = f.read()
expected_tests = [f"tests/models/{name}/test_modeling_{name}.py" for name in models + ["t5"]]
expected_tests = set(expected_tests + ["tests/test_modeling_common.py"])
assert set(tests_to_run.split(" ")) == expected_tests
assert set(example_tests_to_run.split(" ")) == example_tests
@unittest.skip("Broken for now TODO @ArthurZucker")
def test_infer_tests_to_run_with_test_modifs(self):
with tempfile.TemporaryDirectory() as tmp_folder:
tmp_folder = Path(tmp_folder)
models = ["bert", "gpt2"] + [f"bert{i}" for i in range(10)]
repo = create_tmp_repo(tmp_folder, models=models)
commit_changes(
"tests/models/bert/test_modeling_bert.py",
"from transformers import BertConfig, BertModel\nfrom ...test_modeling_common import ModelTesterMixin\n\ncode1",
repo,
)
with patch_transformer_repo_path(tmp_folder):
infer_tests_to_run(tmp_folder / "test-output.txt", diff_with_last_commit=True)
with open(tmp_folder / "test-output.txt", "r") as f:
tests_to_run = f.read()
assert tests_to_run == "tests/models/bert/test_modeling_bert.py"
@unittest.skip("Broken for now TODO @ArthurZucker")
def test_infer_tests_to_run_with_examples_modifs(self):
with tempfile.TemporaryDirectory() as tmp_folder:
tmp_folder = Path(tmp_folder)
models = ["bert", "gpt2"]
repo = create_tmp_repo(tmp_folder, models=models)
# Modification in one example trigger the corresponding test
commit_changes(
"examples/pytorch/text-classification/run_glue.py",
"from transformers import BertModeln\n\ncode1",
repo,
)
with patch_transformer_repo_path(tmp_folder):
infer_tests_to_run(tmp_folder / "test-output.txt", diff_with_last_commit=True)
with open(tmp_folder / "examples_test_list.txt", "r") as f:
example_tests_to_run = f.read()
assert example_tests_to_run == "examples/pytorch/test_pytorch_examples.py"
# Modification in one test example file trigger that test
repo = create_tmp_repo(tmp_folder, models=models)
commit_changes(
"examples/pytorch/test_pytorch_examples.py",
"""test_args = "run_glue.py"\nmore_code""",
repo,
)
with patch_transformer_repo_path(tmp_folder):
infer_tests_to_run(tmp_folder / "test-output.txt", diff_with_last_commit=True)
with open(tmp_folder / "examples_test_list.txt", "r") as f:
example_tests_to_run = f.read()
assert example_tests_to_run == "examples/pytorch/test_pytorch_examples.py"
def test_parse_commit_message(self):
assert parse_commit_message("Normal commit") == {"skip": False, "no_filter": False, "test_all": False}
assert parse_commit_message("[skip ci] commit") == {"skip": True, "no_filter": False, "test_all": False}
assert parse_commit_message("[ci skip] commit") == {"skip": True, "no_filter": False, "test_all": False}
assert parse_commit_message("[skip-ci] commit") == {"skip": True, "no_filter": False, "test_all": False}
assert parse_commit_message("[skip_ci] commit") == {"skip": True, "no_filter": False, "test_all": False}
assert parse_commit_message("[no filter] commit") == {"skip": False, "no_filter": True, "test_all": False}
assert parse_commit_message("[no-filter] commit") == {"skip": False, "no_filter": True, "test_all": False}
assert parse_commit_message("[no_filter] commit") == {"skip": False, "no_filter": True, "test_all": False}
assert parse_commit_message("[filter-no] commit") == {"skip": False, "no_filter": True, "test_all": False}
assert parse_commit_message("[test all] commit") == {"skip": False, "no_filter": False, "test_all": True}
assert parse_commit_message("[all test] commit") == {"skip": False, "no_filter": False, "test_all": True}
assert parse_commit_message("[test-all] commit") == {"skip": False, "no_filter": False, "test_all": True}
assert parse_commit_message("[all_test] commit") == {"skip": False, "no_filter": False, "test_all": True}
| transformers/tests/repo_utils/test_tests_fetcher.py/0 | {
"file_path": "transformers/tests/repo_utils/test_tests_fetcher.py",
"repo_id": "transformers",
"token_count": 17320
} |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import json
import os
import pathlib
import tempfile
import time
import warnings
import numpy as np
import requests
from packaging import version
from transformers import AutoImageProcessor, BatchFeature
from transformers.image_utils import AnnotationFormat, AnnotionFormat
from transformers.testing_utils import (
check_json_file_has_correct_format,
require_torch,
require_torch_gpu,
require_vision,
slow,
torch_device,
)
from transformers.utils import is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
def prepare_image_inputs(
batch_size,
min_resolution,
max_resolution,
num_channels,
size_divisor=None,
equal_resolution=False,
numpify=False,
torchify=False,
):
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
or a list of PyTorch tensors if one specifies torchify=True.
One can specify whether the images are of the same resolution or not.
"""
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
image_inputs = []
for i in range(batch_size):
if equal_resolution:
width = height = max_resolution
else:
# To avoid getting image width/height 0
if size_divisor is not None:
# If `size_divisor` is defined, the image needs to have width/size >= `size_divisor`
min_resolution = max(size_divisor, min_resolution)
width, height = np.random.choice(np.arange(min_resolution, max_resolution), 2)
image_inputs.append(np.random.randint(255, size=(num_channels, width, height), dtype=np.uint8))
if not numpify and not torchify:
# PIL expects the channel dimension as last dimension
image_inputs = [Image.fromarray(np.moveaxis(image, 0, -1)) for image in image_inputs]
if torchify:
image_inputs = [torch.from_numpy(image) for image in image_inputs]
if numpify:
# Numpy images are typically in channels last format
image_inputs = [image.transpose(1, 2, 0) for image in image_inputs]
return image_inputs
def prepare_video(num_frames, num_channels, width=10, height=10, numpify=False, torchify=False):
"""This function prepares a video as a list of PIL images/NumPy arrays/PyTorch tensors."""
video = []
for i in range(num_frames):
video.append(np.random.randint(255, size=(num_channels, width, height), dtype=np.uint8))
if not numpify and not torchify:
# PIL expects the channel dimension as last dimension
video = [Image.fromarray(np.moveaxis(frame, 0, -1)) for frame in video]
if torchify:
video = [torch.from_numpy(frame) for frame in video]
return video
def prepare_video_inputs(
batch_size,
num_frames,
num_channels,
min_resolution,
max_resolution,
equal_resolution=False,
numpify=False,
torchify=False,
):
"""This function prepares a batch of videos: a list of list of PIL images, or a list of list of numpy arrays if
one specifies numpify=True, or a list of list of PyTorch tensors if one specifies torchify=True.
One can specify whether the videos are of the same resolution or not.
"""
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
video_inputs = []
for _ in range(batch_size):
if equal_resolution:
width = height = max_resolution
else:
width, height = np.random.choice(np.arange(min_resolution, max_resolution), 2)
video = prepare_video(
num_frames=num_frames,
num_channels=num_channels,
width=width,
height=height,
numpify=numpify,
torchify=torchify,
)
video_inputs.append(video)
return video_inputs
class ImageProcessingTestMixin:
test_cast_dtype = None
image_processing_class = None
fast_image_processing_class = None
image_processors_list = None
test_slow_image_processor = True
test_fast_image_processor = True
def setUp(self):
image_processor_list = []
if self.test_slow_image_processor and self.image_processing_class:
image_processor_list.append(self.image_processing_class)
if self.test_fast_image_processor and self.fast_image_processing_class:
image_processor_list.append(self.fast_image_processing_class)
self.image_processor_list = image_processor_list
@require_vision
@require_torch
def test_slow_fast_equivalence(self):
if not self.test_slow_image_processor or not self.test_fast_image_processor:
self.skipTest(reason="Skipping slow/fast equivalence test")
if self.image_processing_class is None or self.fast_image_processing_class is None:
self.skipTest(reason="Skipping slow/fast equivalence test as one of the image processors is not defined")
dummy_image = Image.open(
requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw
)
image_processor_slow = self.image_processing_class(**self.image_processor_dict)
image_processor_fast = self.fast_image_processing_class(**self.image_processor_dict)
encoding_slow = image_processor_slow(dummy_image, return_tensors="pt")
encoding_fast = image_processor_fast(dummy_image, return_tensors="pt")
self.assertTrue(torch.allclose(encoding_slow.pixel_values, encoding_fast.pixel_values, atol=1e-1))
self.assertLessEqual(
torch.mean(torch.abs(encoding_slow.pixel_values - encoding_fast.pixel_values)).item(), 1e-3
)
@require_vision
@require_torch
def test_slow_fast_equivalence_batched(self):
if not self.test_slow_image_processor or not self.test_fast_image_processor:
self.skipTest(reason="Skipping slow/fast equivalence test")
if self.image_processing_class is None or self.fast_image_processing_class is None:
self.skipTest(reason="Skipping slow/fast equivalence test as one of the image processors is not defined")
if hasattr(self.image_processor_tester, "do_center_crop") and self.image_processor_tester.do_center_crop:
self.skipTest(
reason="Skipping as do_center_crop is True and center_crop functions are not equivalent for fast and slow processors"
)
dummy_images = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
image_processor_slow = self.image_processing_class(**self.image_processor_dict)
image_processor_fast = self.fast_image_processing_class(**self.image_processor_dict)
encoding_slow = image_processor_slow(dummy_images, return_tensors="pt")
encoding_fast = image_processor_fast(dummy_images, return_tensors="pt")
self.assertTrue(torch.allclose(encoding_slow.pixel_values, encoding_fast.pixel_values, atol=1e-1))
self.assertLessEqual(
torch.mean(torch.abs(encoding_slow.pixel_values - encoding_fast.pixel_values)).item(), 1e-3
)
@require_vision
@require_torch
def test_fast_is_faster_than_slow(self):
if not self.test_slow_image_processor or not self.test_fast_image_processor:
self.skipTest(reason="Skipping speed test")
if self.image_processing_class is None or self.fast_image_processing_class is None:
self.skipTest(reason="Skipping speed test as one of the image processors is not defined")
def measure_time(image_processor, image):
# Warmup
for _ in range(5):
_ = image_processor(image, return_tensors="pt")
start = time.time()
_ = image_processor(image, return_tensors="pt")
return time.time() - start
dummy_images = torch.randint(0, 255, (4, 3, 224, 224), dtype=torch.uint8)
image_processor_slow = self.image_processing_class(**self.image_processor_dict)
image_processor_fast = self.fast_image_processing_class(**self.image_processor_dict)
fast_time = measure_time(image_processor_fast, dummy_images)
slow_time = measure_time(image_processor_slow, dummy_images)
self.assertLessEqual(fast_time, slow_time)
def test_image_processor_to_json_string(self):
for image_processing_class in self.image_processor_list:
image_processor = image_processing_class(**self.image_processor_dict)
obj = json.loads(image_processor.to_json_string())
for key, value in self.image_processor_dict.items():
self.assertEqual(obj[key], value)
def test_image_processor_to_json_file(self):
for image_processing_class in self.image_processor_list:
image_processor_first = image_processing_class(**self.image_processor_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
json_file_path = os.path.join(tmpdirname, "image_processor.json")
image_processor_first.to_json_file(json_file_path)
image_processor_second = image_processing_class.from_json_file(json_file_path)
self.assertEqual(image_processor_second.to_dict(), image_processor_first.to_dict())
def test_image_processor_from_and_save_pretrained(self):
for image_processing_class in self.image_processor_list:
image_processor_first = image_processing_class(**self.image_processor_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
saved_file = image_processor_first.save_pretrained(tmpdirname)[0]
check_json_file_has_correct_format(saved_file)
image_processor_second = image_processing_class.from_pretrained(tmpdirname)
self.assertEqual(image_processor_second.to_dict(), image_processor_first.to_dict())
def test_image_processor_save_load_with_autoimageprocessor(self):
for i, image_processing_class in enumerate(self.image_processor_list):
image_processor_first = image_processing_class(**self.image_processor_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
saved_file = image_processor_first.save_pretrained(tmpdirname)[0]
check_json_file_has_correct_format(saved_file)
use_fast = i == 1
image_processor_second = AutoImageProcessor.from_pretrained(tmpdirname, use_fast=use_fast)
self.assertEqual(image_processor_second.to_dict(), image_processor_first.to_dict())
def test_save_load_fast_slow(self):
"Test that we can load a fast image processor from a slow one and vice-versa."
if self.image_processing_class is None or self.fast_image_processing_class is None:
self.skipTest("Skipping slow/fast save/load test as one of the image processors is not defined")
image_processor_dict = self.image_processor_tester.prepare_image_processor_dict()
image_processor_slow_0 = self.image_processing_class(**image_processor_dict)
# Load fast image processor from slow one
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_slow_0.save_pretrained(tmpdirname)
image_processor_fast_0 = self.fast_image_processing_class.from_pretrained(tmpdirname)
image_processor_fast_1 = self.fast_image_processing_class(**image_processor_dict)
# Load slow image processor from fast one
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_fast_1.save_pretrained(tmpdirname)
image_processor_slow_1 = self.image_processing_class.from_pretrained(tmpdirname)
dict_slow_0 = image_processor_slow_0.to_dict()
dict_slow_1 = image_processor_slow_1.to_dict()
difference = {
key: dict_slow_0.get(key) if key in dict_slow_0 else dict_slow_1.get(key)
for key in set(dict_slow_0) ^ set(dict_slow_1)
}
dict_slow_0 = {key: dict_slow_0[key] for key in set(dict_slow_0) & set(dict_slow_1)}
dict_slow_1 = {key: dict_slow_1[key] for key in set(dict_slow_0) & set(dict_slow_1)}
# check that all additional keys are None, except for `default_to_square` which is only set in fast processors
self.assertTrue(all(value is None for key, value in difference.items() if key not in ["default_to_square"]))
# check that the remaining keys are the same
self.assertEqual(dict_slow_0, dict_slow_1)
dict_fast_0 = image_processor_fast_0.to_dict()
dict_fast_1 = image_processor_fast_1.to_dict()
difference = {
key: dict_fast_0.get(key) if key in dict_fast_0 else dict_fast_1.get(key)
for key in set(dict_fast_0) ^ set(dict_fast_1)
}
dict_fast_0 = {key: dict_fast_0[key] for key in set(dict_fast_0) & set(dict_fast_1)}
dict_fast_1 = {key: dict_fast_1[key] for key in set(dict_fast_0) & set(dict_fast_1)}
# check that all additional keys are None, except for `default_to_square` which is only set in fast processors
self.assertTrue(all(value is None for key, value in difference.items() if key not in ["default_to_square"]))
# check that the remaining keys are the same
self.assertEqual(dict_fast_0, dict_fast_1)
def test_save_load_fast_slow_auto(self):
"Test that we can load a fast image processor from a slow one and vice-versa using AutoImageProcessor."
if self.image_processing_class is None or self.fast_image_processing_class is None:
self.skipTest("Skipping slow/fast save/load test as one of the image processors is not defined")
image_processor_dict = self.image_processor_tester.prepare_image_processor_dict()
image_processor_slow_0 = self.image_processing_class(**image_processor_dict)
# Load fast image processor from slow one
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_slow_0.save_pretrained(tmpdirname)
image_processor_fast_0 = AutoImageProcessor.from_pretrained(tmpdirname, use_fast=True)
image_processor_fast_1 = self.fast_image_processing_class(**image_processor_dict)
# Load slow image processor from fast one
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_fast_1.save_pretrained(tmpdirname)
image_processor_slow_1 = AutoImageProcessor.from_pretrained(tmpdirname, use_fast=False)
dict_slow_0 = image_processor_slow_0.to_dict()
dict_slow_1 = image_processor_slow_1.to_dict()
difference = {
key: dict_slow_0.get(key) if key in dict_slow_0 else dict_slow_1.get(key)
for key in set(dict_slow_0) ^ set(dict_slow_1)
}
dict_slow_0 = {key: dict_slow_0[key] for key in set(dict_slow_0) & set(dict_slow_1)}
dict_slow_1 = {key: dict_slow_1[key] for key in set(dict_slow_0) & set(dict_slow_1)}
# check that all additional keys are None, except for `default_to_square` which is only set in fast processors
self.assertTrue(all(value is None for key, value in difference.items() if key not in ["default_to_square"]))
# check that the remaining keys are the same
self.assertEqual(dict_slow_0, dict_slow_1)
dict_fast_0 = image_processor_fast_0.to_dict()
dict_fast_1 = image_processor_fast_1.to_dict()
difference = {
key: dict_fast_0.get(key) if key in dict_fast_0 else dict_fast_1.get(key)
for key in set(dict_fast_0) ^ set(dict_fast_1)
}
dict_fast_0 = {key: dict_fast_0[key] for key in set(dict_fast_0) & set(dict_fast_1)}
dict_fast_1 = {key: dict_fast_1[key] for key in set(dict_fast_0) & set(dict_fast_1)}
# check that all additional keys are None, except for `default_to_square` which is only set in fast processors
self.assertTrue(all(value is None for key, value in difference.items() if key not in ["default_to_square"]))
# check that the remaining keys are the same
self.assertEqual(dict_fast_0, dict_fast_1)
def test_init_without_params(self):
for image_processing_class in self.image_processor_list:
image_processor = image_processing_class()
self.assertIsNotNone(image_processor)
@require_torch
@require_vision
def test_cast_dtype_device(self):
for image_processing_class in self.image_processor_list:
if self.test_cast_dtype is not None:
# Initialize image_processor
image_processor = image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
encoding = image_processor(image_inputs, return_tensors="pt")
# for layoutLM compatiblity
self.assertEqual(encoding.pixel_values.device, torch.device("cpu"))
self.assertEqual(encoding.pixel_values.dtype, torch.float32)
encoding = image_processor(image_inputs, return_tensors="pt").to(torch.float16)
self.assertEqual(encoding.pixel_values.device, torch.device("cpu"))
self.assertEqual(encoding.pixel_values.dtype, torch.float16)
encoding = image_processor(image_inputs, return_tensors="pt").to("cpu", torch.bfloat16)
self.assertEqual(encoding.pixel_values.device, torch.device("cpu"))
self.assertEqual(encoding.pixel_values.dtype, torch.bfloat16)
with self.assertRaises(TypeError):
_ = image_processor(image_inputs, return_tensors="pt").to(torch.bfloat16, "cpu")
# Try with text + image feature
encoding = image_processor(image_inputs, return_tensors="pt")
encoding.update({"input_ids": torch.LongTensor([[1, 2, 3], [4, 5, 6]])})
encoding = encoding.to(torch.float16)
self.assertEqual(encoding.pixel_values.device, torch.device("cpu"))
self.assertEqual(encoding.pixel_values.dtype, torch.float16)
self.assertEqual(encoding.input_ids.dtype, torch.long)
def test_call_pil(self):
for image_processing_class in self.image_processor_list:
# Initialize image_processing
image_processing = image_processing_class(**self.image_processor_dict)
# create random PIL images
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
for image in image_inputs:
self.assertIsInstance(image, Image.Image)
# Test not batched input
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
# Test batched
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
self.assertEqual(
tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape)
)
def test_call_numpy(self):
for image_processing_class in self.image_processor_list:
# Initialize image_processing
image_processing = image_processing_class(**self.image_processor_dict)
# create random numpy tensors
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
for image in image_inputs:
self.assertIsInstance(image, np.ndarray)
# Test not batched input
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
# Test batched
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
self.assertEqual(
tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape)
)
def test_call_pytorch(self):
for image_processing_class in self.image_processor_list:
# Initialize image_processing
image_processing = image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
for image in image_inputs:
self.assertIsInstance(image, torch.Tensor)
# Test not batched input
encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
# Test batched
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
self.assertEqual(
tuple(encoded_images.shape),
(self.image_processor_tester.batch_size, *expected_output_image_shape),
)
def test_call_numpy_4_channels(self):
for image_processing_class in self.image_processor_list:
# Test that can process images which have an arbitrary number of channels
# Initialize image_processing
image_processor = image_processing_class(**self.image_processor_dict)
# create random numpy tensors
self.image_processor_tester.num_channels = 4
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
# Test not batched input
encoded_images = image_processor(
image_inputs[0],
return_tensors="pt",
input_data_format="channels_last",
image_mean=0,
image_std=1,
).pixel_values
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape([image_inputs[0]])
self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))
# Test batched
encoded_images = image_processor(
image_inputs,
return_tensors="pt",
input_data_format="channels_last",
image_mean=0,
image_std=1,
).pixel_values
expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)
self.assertEqual(
tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape)
)
def test_image_processor_preprocess_arguments(self):
is_tested = False
for image_processing_class in self.image_processor_list:
image_processor = image_processing_class(**self.image_processor_dict)
# validation done by _valid_processor_keys attribute
if hasattr(image_processor, "_valid_processor_keys") and hasattr(image_processor, "preprocess"):
preprocess_parameter_names = inspect.getfullargspec(image_processor.preprocess).args
preprocess_parameter_names.remove("self")
preprocess_parameter_names.sort()
valid_processor_keys = image_processor._valid_processor_keys
valid_processor_keys.sort()
self.assertEqual(preprocess_parameter_names, valid_processor_keys)
is_tested = True
# validation done by @filter_out_non_signature_kwargs decorator
if hasattr(image_processor.preprocess, "_filter_out_non_signature_kwargs"):
if hasattr(self.image_processor_tester, "prepare_image_inputs"):
inputs = self.image_processor_tester.prepare_image_inputs()
elif hasattr(self.image_processor_tester, "prepare_video_inputs"):
inputs = self.image_processor_tester.prepare_video_inputs()
else:
self.skipTest(reason="No valid input preparation method found")
with warnings.catch_warnings(record=True) as raised_warnings:
warnings.simplefilter("always")
image_processor(inputs, extra_argument=True)
messages = " ".join([str(w.message) for w in raised_warnings])
self.assertGreaterEqual(len(raised_warnings), 1)
self.assertIn("extra_argument", messages)
is_tested = True
if not is_tested:
self.skipTest(reason="No validation found for `preprocess` method")
@slow
@require_torch_gpu
@require_vision
def test_can_compile_fast_image_processor(self):
if self.fast_image_processing_class is None:
self.skipTest("Skipping compilation test as fast image processor is not defined")
if version.parse(torch.__version__) < version.parse("2.3"):
self.skipTest(reason="This test requires torch >= 2.3 to run.")
torch.compiler.reset()
input_image = torch.randint(0, 255, (3, 224, 224), dtype=torch.uint8)
image_processor = self.fast_image_processing_class(**self.image_processor_dict)
output_eager = image_processor(input_image, device=torch_device, return_tensors="pt")
image_processor = torch.compile(image_processor, mode="reduce-overhead")
output_compiled = image_processor(input_image, device=torch_device, return_tensors="pt")
torch.testing.assert_close(output_eager.pixel_values, output_compiled.pixel_values, rtol=1e-4, atol=1e-4)
class AnnotationFormatTestMixin:
# this mixin adds a test to assert that usages of the
# to-be-deprecated `AnnotionFormat` continue to be
# supported for the time being
def test_processor_can_use_legacy_annotation_format(self):
image_processor_dict = self.image_processor_tester.prepare_image_processor_dict()
fixtures_path = pathlib.Path(__file__).parent / "fixtures" / "tests_samples" / "COCO"
with open(fixtures_path / "coco_annotations.txt", "r") as f:
detection_target = json.loads(f.read())
detection_annotations = {"image_id": 39769, "annotations": detection_target}
detection_params = {
"images": Image.open(fixtures_path / "000000039769.png"),
"annotations": detection_annotations,
"return_tensors": "pt",
}
with open(fixtures_path / "coco_panoptic_annotations.txt", "r") as f:
panoptic_target = json.loads(f.read())
panoptic_annotations = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": panoptic_target}
masks_path = pathlib.Path(fixtures_path / "coco_panoptic")
panoptic_params = {
"images": Image.open(fixtures_path / "000000039769.png"),
"annotations": panoptic_annotations,
"return_tensors": "pt",
"masks_path": masks_path,
}
test_cases = [
("coco_detection", detection_params),
("coco_panoptic", panoptic_params),
(AnnotionFormat.COCO_DETECTION, detection_params),
(AnnotionFormat.COCO_PANOPTIC, panoptic_params),
(AnnotationFormat.COCO_DETECTION, detection_params),
(AnnotationFormat.COCO_PANOPTIC, panoptic_params),
]
def _compare(a, b) -> None:
if isinstance(a, (dict, BatchFeature)):
self.assertEqual(a.keys(), b.keys())
for k, v in a.items():
_compare(v, b[k])
elif isinstance(a, list):
self.assertEqual(len(a), len(b))
for idx in range(len(a)):
_compare(a[idx], b[idx])
elif isinstance(a, torch.Tensor):
torch.testing.assert_close(a, b, rtol=1e-3, atol=1e-3)
elif isinstance(a, str):
self.assertEqual(a, b)
for annotation_format, params in test_cases:
with self.subTest(annotation_format):
image_processor_params = {**image_processor_dict, **{"format": annotation_format}}
image_processor_first = self.image_processing_class(**image_processor_params)
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(tmpdirname)
image_processor_second = self.image_processing_class.from_pretrained(tmpdirname)
# check the 'format' key exists and that the dicts of the
# first and second processors are equal
self.assertIn("format", image_processor_first.to_dict().keys())
self.assertEqual(image_processor_second.to_dict(), image_processor_first.to_dict())
# perform encoding using both processors and compare
# the resulting BatchFeatures
first_encoding = image_processor_first(**params)
second_encoding = image_processor_second(**params)
_compare(first_encoding, second_encoding)
| transformers/tests/test_image_processing_common.py/0 | {
"file_path": "transformers/tests/test_image_processing_common.py",
"repo_id": "transformers",
"token_count": 12839
} |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import shutil
import tempfile
import unittest
from unittest.mock import patch
from transformers import (
DefaultFlowCallback,
EarlyStoppingCallback,
IntervalStrategy,
PrinterCallback,
ProgressCallback,
Trainer,
TrainerCallback,
TrainerState,
TrainingArguments,
is_torch_available,
)
from transformers.testing_utils import require_torch
from transformers.trainer_callback import ExportableState
if is_torch_available():
from transformers.trainer import DEFAULT_CALLBACKS, TRAINER_STATE_NAME
from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel
class MyTestExportableCallback(TrainerCallback, ExportableState):
def __init__(self, my_test_state="test"):
self.my_test_state = my_test_state
def state(self):
return {
"args": {
"my_test_state": self.my_test_state,
},
}
class MyTestTrainerCallback(TrainerCallback):
"A callback that registers the events that goes through."
def __init__(self, my_test_state="test"):
self.events = []
self.my_test_state = my_test_state
def on_init_end(self, args, state, control, **kwargs):
self.events.append("on_init_end")
def on_train_begin(self, args, state, control, **kwargs):
self.events.append("on_train_begin")
def on_train_end(self, args, state, control, **kwargs):
self.events.append("on_train_end")
def on_epoch_begin(self, args, state, control, **kwargs):
self.events.append("on_epoch_begin")
def on_epoch_end(self, args, state, control, **kwargs):
self.events.append("on_epoch_end")
def on_step_begin(self, args, state, control, **kwargs):
self.events.append("on_step_begin")
def on_pre_optimizer_step(self, args, state, control, **kwargs):
self.events.append("on_pre_optimizer_step")
def on_optimizer_step(self, args, state, control, **kwargs):
self.events.append("on_optimizer_step")
def on_step_end(self, args, state, control, **kwargs):
self.events.append("on_step_end")
def on_evaluate(self, args, state, control, **kwargs):
self.events.append("on_evaluate")
def on_predict(self, args, state, control, **kwargs):
self.events.append("on_predict")
def on_save(self, args, state, control, **kwargs):
self.events.append("on_save")
def on_log(self, args, state, control, **kwargs):
self.events.append("on_log")
def on_prediction_step(self, args, state, control, **kwargs):
self.events.append("on_prediction_step")
@require_torch
class TrainerCallbackTest(unittest.TestCase):
def setUp(self):
self.output_dir = tempfile.mkdtemp()
def tearDown(self):
shutil.rmtree(self.output_dir)
def get_trainer(self, a=0, b=0, train_len=64, eval_len=64, callbacks=None, disable_tqdm=False, **kwargs):
# disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure
# its set to False since the tests later on depend on its value.
train_dataset = RegressionDataset(length=train_len)
eval_dataset = RegressionDataset(length=eval_len)
config = RegressionModelConfig(a=a, b=b)
model = RegressionPreTrainedModel(config)
args = TrainingArguments(self.output_dir, disable_tqdm=disable_tqdm, report_to=[], **kwargs)
return Trainer(
model,
args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
callbacks=callbacks,
)
def check_callbacks_equality(self, cbs1, cbs2):
self.assertEqual(len(cbs1), len(cbs2))
# Order doesn't matter
cbs1 = sorted(cbs1, key=lambda cb: cb.__name__ if isinstance(cb, type) else cb.__class__.__name__)
cbs2 = sorted(cbs2, key=lambda cb: cb.__name__ if isinstance(cb, type) else cb.__class__.__name__)
for cb1, cb2 in zip(cbs1, cbs2):
if isinstance(cb1, type) and isinstance(cb2, type):
self.assertEqual(cb1, cb2)
elif isinstance(cb1, type) and not isinstance(cb2, type):
self.assertEqual(cb1, cb2.__class__)
elif not isinstance(cb1, type) and isinstance(cb2, type):
self.assertEqual(cb1.__class__, cb2)
else:
self.assertEqual(cb1, cb2)
def get_expected_events(self, trainer):
expected_events = ["on_init_end", "on_train_begin"]
step = 0
train_dl_len = len(trainer.get_eval_dataloader())
evaluation_events = ["on_prediction_step"] * len(trainer.get_eval_dataloader()) + ["on_log", "on_evaluate"]
for _ in range(trainer.state.num_train_epochs):
expected_events.append("on_epoch_begin")
for _ in range(train_dl_len):
step += 1
expected_events += ["on_step_begin", "on_pre_optimizer_step", "on_optimizer_step", "on_step_end"]
if step % trainer.args.logging_steps == 0:
expected_events.append("on_log")
if trainer.args.eval_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0:
expected_events += evaluation_events.copy()
if step % trainer.args.save_steps == 0 or step == trainer.state.max_steps:
expected_events.append("on_save")
expected_events.append("on_epoch_end")
if trainer.args.eval_strategy == IntervalStrategy.EPOCH:
expected_events += evaluation_events.copy()
expected_events += ["on_log", "on_train_end"]
return expected_events
def test_init_callback(self):
trainer = self.get_trainer()
expected_callbacks = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks, expected_callbacks)
# Callbacks passed at init are added to the default callbacks
trainer = self.get_trainer(callbacks=[MyTestTrainerCallback])
expected_callbacks.append(MyTestTrainerCallback)
self.check_callbacks_equality(trainer.callback_handler.callbacks, expected_callbacks)
# TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback
trainer = self.get_trainer(disable_tqdm=True)
expected_callbacks = DEFAULT_CALLBACKS.copy() + [PrinterCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks, expected_callbacks)
def test_add_remove_callback(self):
expected_callbacks = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
trainer = self.get_trainer()
# We can add, pop, or remove by class name
trainer.remove_callback(DefaultFlowCallback)
expected_callbacks.remove(DefaultFlowCallback)
self.check_callbacks_equality(trainer.callback_handler.callbacks, expected_callbacks)
trainer = self.get_trainer()
cb = trainer.pop_callback(DefaultFlowCallback)
self.assertEqual(cb.__class__, DefaultFlowCallback)
self.check_callbacks_equality(trainer.callback_handler.callbacks, expected_callbacks)
trainer.add_callback(DefaultFlowCallback)
expected_callbacks.insert(0, DefaultFlowCallback)
self.check_callbacks_equality(trainer.callback_handler.callbacks, expected_callbacks)
# We can also add, pop, or remove by instance
trainer = self.get_trainer()
cb = trainer.callback_handler.callbacks[0]
trainer.remove_callback(cb)
expected_callbacks.remove(DefaultFlowCallback)
self.check_callbacks_equality(trainer.callback_handler.callbacks, expected_callbacks)
trainer = self.get_trainer()
cb1 = trainer.callback_handler.callbacks[0]
cb2 = trainer.pop_callback(cb1)
self.assertEqual(cb1, cb2)
self.check_callbacks_equality(trainer.callback_handler.callbacks, expected_callbacks)
trainer.add_callback(cb1)
expected_callbacks.insert(0, DefaultFlowCallback)
self.check_callbacks_equality(trainer.callback_handler.callbacks, expected_callbacks)
def test_event_flow(self):
import warnings
# XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested
with warnings.catch_warnings():
warnings.simplefilter(action="ignore", category=UserWarning)
trainer = self.get_trainer(callbacks=[MyTestTrainerCallback])
trainer.train()
events = trainer.callback_handler.callbacks[-2].events
self.assertEqual(events, self.get_expected_events(trainer))
# Independent log/save/eval
trainer = self.get_trainer(callbacks=[MyTestTrainerCallback], logging_steps=5)
trainer.train()
events = trainer.callback_handler.callbacks[-2].events
self.assertEqual(events, self.get_expected_events(trainer))
trainer = self.get_trainer(callbacks=[MyTestTrainerCallback], save_steps=5)
trainer.train()
events = trainer.callback_handler.callbacks[-2].events
self.assertEqual(events, self.get_expected_events(trainer))
trainer = self.get_trainer(callbacks=[MyTestTrainerCallback], eval_steps=5, eval_strategy="steps")
trainer.train()
events = trainer.callback_handler.callbacks[-2].events
self.assertEqual(events, self.get_expected_events(trainer))
trainer = self.get_trainer(callbacks=[MyTestTrainerCallback], eval_strategy="epoch")
trainer.train()
events = trainer.callback_handler.callbacks[-2].events
self.assertEqual(events, self.get_expected_events(trainer))
# A bit of everything
trainer = self.get_trainer(
callbacks=[MyTestTrainerCallback],
logging_steps=3,
save_steps=10,
eval_steps=5,
eval_strategy="steps",
)
trainer.train()
events = trainer.callback_handler.callbacks[-2].events
self.assertEqual(events, self.get_expected_events(trainer))
# warning should be emitted for duplicated callbacks
with patch("transformers.trainer_callback.logger.warning") as warn_mock:
trainer = self.get_trainer(
callbacks=[MyTestTrainerCallback, MyTestTrainerCallback],
)
assert str(MyTestTrainerCallback) in warn_mock.call_args[0][0]
def test_stateful_callbacks(self):
# Use something with non-defaults
cb = EarlyStoppingCallback(early_stopping_patience=5, early_stopping_threshold=0.2)
trainer = self.get_trainer(
callbacks=[cb],
load_best_model_at_end=True,
save_strategy="steps",
eval_strategy="steps",
save_steps=2,
eval_steps=2,
max_steps=2,
)
trainer.train()
# Create a new trainer with defaults
trainer = self.get_trainer(
callbacks=[EarlyStoppingCallback()],
load_best_model_at_end=True,
save_strategy="steps",
eval_strategy="steps",
save_steps=2,
eval_steps=2,
max_steps=2,
restore_callback_states_from_checkpoint=True,
)
# Load it back in and verify values
checkpoint = os.path.join(self.output_dir, "checkpoint-2")
trainer.train(resume_from_checkpoint=checkpoint)
cb = [
callback for callback in trainer.callback_handler.callbacks if isinstance(callback, EarlyStoppingCallback)
][0]
assert cb.early_stopping_patience == 5
assert cb.early_stopping_threshold == 0.2
def test_stateful_mixed_callbacks(self):
# Use two callbacks, one stateful one not
# Use something with non-defaults
cbs = [
MyTestTrainerCallback(my_test_state="another value"),
EarlyStoppingCallback(early_stopping_patience=5, early_stopping_threshold=0.2),
]
trainer = self.get_trainer(
callbacks=cbs,
load_best_model_at_end=True,
save_strategy="steps",
eval_strategy="steps",
save_steps=2,
eval_steps=2,
max_steps=2,
)
trainer.train()
# Create a new trainer with defaults
trainer = self.get_trainer(
callbacks=[EarlyStoppingCallback(), MyTestTrainerCallback()],
load_best_model_at_end=True,
save_strategy="steps",
eval_strategy="steps",
save_steps=2,
eval_steps=2,
max_steps=2,
restore_callback_states_from_checkpoint=True,
)
# Load it back in and verify values
checkpoint = os.path.join(self.output_dir, "checkpoint-2")
trainer.train(resume_from_checkpoint=checkpoint)
cbs = [
callback
for callback in trainer.callback_handler.callbacks
if isinstance(callback, (EarlyStoppingCallback, MyTestTrainerCallback))
]
assert len(cbs) == 2
my_test, early_stopping = cbs
assert early_stopping.early_stopping_patience == 5
assert early_stopping.early_stopping_threshold == 0.2
assert my_test.my_test_state == "test"
def test_stateful_duplicate_callbacks(self):
# Use something with non-defaults
cbs = [MyTestExportableCallback("first"), MyTestExportableCallback("second")]
trainer = self.get_trainer(
callbacks=cbs,
load_best_model_at_end=True,
save_strategy="steps",
eval_strategy="steps",
save_steps=2,
eval_steps=2,
max_steps=2,
)
trainer.train()
# Create a new trainer with defaults
trainer = self.get_trainer(
callbacks=[MyTestExportableCallback(), MyTestExportableCallback()],
load_best_model_at_end=True,
save_strategy="steps",
eval_strategy="steps",
save_steps=2,
eval_steps=2,
max_steps=2,
restore_callback_states_from_checkpoint=True,
)
# Load it back in and verify values
checkpoint = os.path.join(self.output_dir, "checkpoint-2")
trainer.train(resume_from_checkpoint=checkpoint)
cbs = [
callback
for callback in trainer.callback_handler.callbacks
if isinstance(callback, MyTestExportableCallback)
]
assert len(cbs) == 2
assert cbs[0].my_test_state == "first"
assert cbs[1].my_test_state == "second"
def test_missing_stateful_callback(self):
cb = EarlyStoppingCallback()
trainer = self.get_trainer(
callbacks=[cb],
load_best_model_at_end=True,
save_strategy="steps",
eval_strategy="steps",
save_steps=2,
eval_steps=2,
max_steps=2,
)
trainer.train()
# Create a new trainer with defaults
trainer = self.get_trainer(
save_strategy="steps",
eval_strategy="steps",
save_steps=2,
eval_steps=2,
max_steps=2,
restore_callback_states_from_checkpoint=True,
)
# Load it back in and verify values
checkpoint = os.path.join(self.output_dir, "checkpoint-2")
# warning should be emitted for not-present callbacks
with patch("transformers.trainer.logger.warning") as warn_mock:
trainer.train(resume_from_checkpoint=checkpoint)
assert "EarlyStoppingCallback" in warn_mock.call_args[0][0]
def test_stateful_control(self):
trainer = self.get_trainer(
max_steps=2,
save_strategy="steps",
save_steps=2,
)
trainer.train()
# Load it back in and verify values
trainer = self.get_trainer(max_steps=2, restore_callback_states_from_checkpoint=True)
checkpoint = os.path.join(self.output_dir, "checkpoint-2")
trainer.state = TrainerState.load_from_json(os.path.join(checkpoint, TRAINER_STATE_NAME))
trainer._load_callback_state()
assert trainer.control.should_training_stop
| transformers/tests/trainer/test_trainer_callback.py/0 | {
"file_path": "transformers/tests/trainer/test_trainer_callback.py",
"repo_id": "transformers",
"token_count": 7470
} |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import unittest
from parameterized import parameterized
from transformers import set_seed
from transformers.testing_utils import (
is_torch_available,
require_gptq,
require_non_xpu,
require_read_token,
require_torch,
require_torch_gpu,
slow,
torch_device,
)
if is_torch_available():
import torch
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
DynamicCache,
GenerationConfig,
GPT2LMHeadModel,
LlamaConfig,
SinkCache,
StaticCache,
convert_and_export_with_cache,
)
from transformers.pytorch_utils import is_torch_greater_or_equal_than_2_3
@require_torch
class CacheTest(unittest.TestCase):
def test_dynamic_cache_retrocompatibility(self):
"""Tests that we can convert back and forth between the legacy cache format and DynamicCache"""
legacy_cache = ()
new_cache = DynamicCache()
# Creates a new cache with 10 layers in both formats
for layer_idx in range(10):
new_key = torch.rand((2, 4, 8, 16))
new_value = torch.rand((2, 4, 8, 16))
new_cache.update(new_key, new_value, layer_idx)
legacy_cache += ((new_key, new_value),)
# Sanity check 1: they must have the same shapes
self.assertTrue(len(legacy_cache), len(new_cache))
for layer_idx in range(10):
self.assertTrue(len(legacy_cache[layer_idx]), len(legacy_cache[layer_idx]))
for key_value_idx in range(2):
self.assertTrue(
legacy_cache[layer_idx][key_value_idx].shape == new_cache[layer_idx][key_value_idx].shape
)
# Sanity check 2: we can get the sequence length in multiple ways with DynamicCache, and they return the
# expected value
self.assertTrue(legacy_cache[0][0].shape[-2] == new_cache[0][0].shape[-2] == new_cache.get_seq_length() == 8)
# Sanity check 3: they must be equal, and both support indexing
for layer_idx in range(10):
for key_value_idx in range(2):
self.assertTrue(
torch.allclose(new_cache[layer_idx][key_value_idx], legacy_cache[layer_idx][key_value_idx])
)
# Test 1: We can convert from legacy to new with no changes
from_legacy = DynamicCache.from_legacy_cache(legacy_cache)
for layer_idx in range(10):
for key_value_idx in range(2):
self.assertTrue(
torch.allclose(from_legacy[layer_idx][key_value_idx], legacy_cache[layer_idx][key_value_idx])
)
# Test 2: We can convert from new to legacy with no changes
to_legacy = new_cache.to_legacy_cache()
for layer_idx in range(10):
for key_value_idx in range(2):
self.assertTrue(
torch.allclose(to_legacy[layer_idx][key_value_idx], new_cache[layer_idx][key_value_idx])
)
def test_reorder_cache_retrocompatibility(self):
"""Tests that Cache.reorder_cache is retrocompatible with the legacy code path"""
legacy_reorder_fn = GPT2LMHeadModel._reorder_cache # An example of a legacy `_reorder_cache` function
legacy_cache = ()
new_cache = DynamicCache()
# Creates a new cache with 10 layers in both formats
for layer_idx in range(10):
new_key = torch.rand((4, 4, 8, 16))
new_value = torch.rand((4, 4, 8, 16))
new_cache.update(new_key, new_value, layer_idx)
legacy_cache += ((new_key, new_value),)
# Let's create some dummy beam indices. From the shape above, it is equivalent to the case where num_beams=4
# and batch_size=1
beam_idx = torch.randint(low=0, high=4, size=(4,))
legacy_cache_reordered = legacy_reorder_fn(legacy_cache, beam_idx)
new_cache.reorder_cache(beam_idx)
# Let's check that the results are the same
for layer_idx in range(10):
for key_value_idx in range(2):
self.assertTrue(
torch.allclose(
new_cache[layer_idx][key_value_idx], legacy_cache_reordered[layer_idx][key_value_idx]
)
)
def test_static_cache_mha_mqa_gqa(self):
"""
Tests that static cache works with multi-head attention (MHA), grouped query attention (GQA), and multi-query
attention (MQA)
"""
def _random_kvs(config):
# shape for key and values: (batch_size, num_heads, seq_len, head_dim)
random_keys = torch.rand(
(1, config.num_key_value_heads, 1, config.hidden_size // config.num_attention_heads),
device=torch_device,
)
random_values = torch.rand(
(1, config.num_key_value_heads, 1, config.hidden_size // config.num_attention_heads),
device=torch_device,
)
return random_keys, random_values
mha_config = LlamaConfig(num_attention_heads=32)
mha_static_cache = StaticCache(config=mha_config, batch_size=1, max_cache_len=10, device=torch_device)
cached_keys, cached_values = mha_static_cache.update(
*_random_kvs(mha_config), 0, cache_kwargs={"cache_position": torch.arange(1).to(torch_device)}
)
self.assertTrue(cached_keys.shape == (1, 32, 10, 128))
self.assertTrue(cached_values.shape == (1, 32, 10, 128))
gqa_config = LlamaConfig(num_attention_heads=32, num_key_value_heads=4)
gqa_static_cache = StaticCache(config=gqa_config, batch_size=1, max_cache_len=10, device=torch_device)
cached_keys, cached_values = gqa_static_cache.update(
*_random_kvs(gqa_config), 0, cache_kwargs={"cache_position": torch.arange(1).to(torch_device)}
)
self.assertTrue(cached_keys.shape == (1, 4, 10, 128))
self.assertTrue(cached_values.shape == (1, 4, 10, 128))
mqa_config = LlamaConfig(num_attention_heads=32, num_key_value_heads=1)
mqa_static_cache = StaticCache(config=mqa_config, batch_size=1, max_cache_len=10, device=torch_device)
cached_keys, cached_values = mqa_static_cache.update(
*_random_kvs(mqa_config), 0, cache_kwargs={"cache_position": torch.arange(1).to(torch_device)}
)
self.assertTrue(cached_keys.shape == (1, 1, 10, 128))
self.assertTrue(cached_values.shape == (1, 1, 10, 128))
@slow
@require_read_token
def test_static_cache_exportability(self):
"""
Tests that static cache works with `torch.export()`
"""
if not is_torch_greater_or_equal_than_2_3:
self.skipTest(reason="This test requires torch >= 2.3 to run.")
set_seed(0)
device = "cpu"
dtype = "bfloat16"
cache_implementation = "static"
attn_implementation = "sdpa" # Export and ExecuTorch only works for SdpaAttention
batch_size = 1
max_cache_len = 1234
model = AutoModelForCausalLM.from_pretrained(
"google/gemma-2b",
device_map=device,
torch_dtype=dtype,
attn_implementation=attn_implementation,
generation_config=GenerationConfig(
use_cache=True,
cache_implementation=cache_implementation,
max_length=max_cache_len,
cache_config={
"batch_size": batch_size,
"max_cache_len": max_cache_len,
"device": device,
},
),
)
# Check if cache config is passed through correctly
self.assertEqual(model.generation_config.use_cache, True)
self.assertEqual(model.generation_config.cache_implementation, cache_implementation)
self.assertEqual(model.generation_config.max_length, max_cache_len)
self.assertTrue(model.generation_config.cache_config is not None)
self.assertEqual(model.generation_config.cache_config.batch_size, batch_size)
self.assertEqual(model.generation_config.cache_config.max_cache_len, max_cache_len)
exported_program = convert_and_export_with_cache(model)
# Check if the exported model is configured with the `StaticCache` correctly
n_static_key_caches = n_static_value_caches = 0
for buffer_name, buffer in exported_program.named_buffers():
if buffer_name.startswith("static_cache.key_cache"):
self.assertTrue(buffer.shape[0] == batch_size)
self.assertTrue(buffer.shape[2] == max_cache_len)
n_static_key_caches = n_static_key_caches + 1
if buffer_name.startswith("static_cache.value_cache"):
self.assertTrue(buffer.shape[0] == batch_size)
self.assertTrue(buffer.shape[2] == max_cache_len)
n_static_value_caches = n_static_value_caches + 1
self.assertEqual(n_static_key_caches, model.config.num_hidden_layers)
self.assertEqual(n_static_value_caches, model.config.num_hidden_layers)
@require_torch_gpu
@slow
class CacheIntegrationTest(unittest.TestCase):
def test_dynamic_cache_hard(self):
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf", padding_side="left")
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-2-7b-hf", device_map="auto", torch_dtype=torch.float16
)
inputs = tokenizer(["Here's everything I know about cats. Cats"], return_tensors="pt").to(model.device)
# DynamicCache and the legacy cache format should be equivalent
set_seed(0)
gen_out_legacy = model.generate(**inputs, do_sample=True, max_new_tokens=256)
set_seed(0)
gen_out = model.generate(**inputs, do_sample=True, max_new_tokens=256, past_key_values=DynamicCache())
self.assertListEqual(gen_out_legacy.tolist(), gen_out.tolist())
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
expected_text = (
"Here's everything I know about cats. Cats are mysterious creatures. They can't talk, and they don't like "
"to be held. They don't play fetch, and they don't like to be hugged. But they do like to be petted.\n"
"Cats are also very independent. They don't like to be told what to do, and they don't like to be told "
"what to eat. They are also very territorial. They don't like to share their food or their toys.\nCats "
"are also very curious. They like to explore, and they like to play. They are also very fast. They can "
"run very fast, and they can jump very high.\nCats are also very smart. They can learn tricks, and they "
"can solve problems. They are also very playful. They like to play with toys, and they like to play with "
"other cats.\nCats are also very affectionate. They like to be petted, and they like to be held. They "
"also like to be scratched.\nCats are also very clean. They like to groom themselves, and they like to "
"clean their litter box.\nCats are also very independent. They don't"
)
self.assertEqual(decoded[0], expected_text)
def test_dynamic_cache_batched(self):
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf", padding_side="left")
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-2-7b-hf", device_map="auto", torch_dtype=torch.float16
)
inputs = tokenizer(["A sequence: 1, 2, 3, 4, 5", "A sequence: A, B, C"], padding=True, return_tensors="pt").to(
model.device
)
gen_out = model.generate(**inputs, do_sample=False, max_new_tokens=10, past_key_values=DynamicCache())
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
expected_text = ["A sequence: 1, 2, 3, 4, 5, 6, 7, 8,", "A sequence: A, B, C, D, E, F, G, H"]
self.assertListEqual(decoded, expected_text)
def test_dynamic_cache_beam_search(self):
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf", padding_side="left")
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-2-7b-hf", device_map="auto", torch_dtype=torch.float16
)
inputs = tokenizer(["The best color is"], return_tensors="pt").to(model.device)
gen_out = model.generate(
**inputs,
do_sample=False,
max_new_tokens=20,
num_beams=2,
num_return_sequences=2,
)
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
expected_text = [
"The best color is the one that makes you feel good.\nThe best color is the one that makes you feel good",
"The best color is the one that suits you.\nThe best color is the one that suits you. The",
]
self.assertListEqual(decoded, expected_text)
def test_hybrid_cache_n_sequences(self):
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")
model = AutoModelForCausalLM.from_pretrained(
"google/gemma-2-9b",
device_map="auto",
torch_dtype=torch.bfloat16,
attn_implementation="eager",
)
inputs = tokenizer(["Hello I am doing"], return_tensors="pt").to(model.device)
gen_out = model.generate(
**inputs,
do_sample=False,
max_new_tokens=20,
num_return_sequences=2,
num_beams=2,
)
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
expected_text = [
"Hello I am doing a project for my school and I am trying to make a program that will allow me to input a",
"Hello I am doing a project for my school and I am trying to make a program that will allow me to use a",
]
self.assertListEqual(decoded, expected_text)
@require_non_xpu
@require_gptq
def test_sink_cache_hard(self):
tokenizer = AutoTokenizer.from_pretrained("TheBloke/LLaMa-7B-GPTQ")
model = AutoModelForCausalLM.from_pretrained("TheBloke/LLaMa-7B-GPTQ", device_map="auto")
inputs = tokenizer(["Vaswani et al. (2017) introduced the Transformers"], return_tensors="pt").to(model.device)
# Set up the SinkCache. Using a small window length to contain computational complexity. If this example is run
# without a SinkCache, the last few tokens are gibberish (ends in "of the of the of a of a of")
cache = SinkCache(window_length=508, num_sink_tokens=4)
gen_out = model.generate(**inputs, do_sample=False, max_new_tokens=3000, past_key_values=cache)
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
self.assertTrue(decoded[0].endswith("to perform a variety of tasks. The Transformer is a neural network"))
def test_sink_cache_iterative_prompts(self):
"""Tests that SinkCache supports more than one new token at once, when shifting the cache"""
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta")
model = AutoModelForCausalLM.from_pretrained(
"HuggingFaceH4/zephyr-7b-beta", device_map="auto", torch_dtype=torch.float16
)
prompt = (
"Compose an engaging travel blog post about a recent trip to Hawaii, highlighting cultural experiences "
"and must-see attractions."
)
# Prepare generation settings
cache = SinkCache(window_length=256, num_sink_tokens=4)
input_ids = torch.tensor([], device=model.device, dtype=torch.int)
for _ in range(3):
# Tokenize the prompt with the correct chat template
chat = [{"role": "user", "content": prompt}]
tokenized_chat = tokenizer.apply_chat_template(chat, return_tensors="pt", add_generation_prompt=True).to(
model.device
)
input_ids = torch.cat((input_ids, tokenized_chat), dim=1)
# Perform the generation
gen_out = model.generate(
input_ids, do_sample=False, max_new_tokens=100, past_key_values=cache, use_cache=True
)
input_ids = gen_out
# We went well beyond the cache length
self.assertTrue(input_ids.shape[1] > cache.get_max_cache_shape() * 1.5)
# And it still produces a coherent english
decoded = tokenizer.batch_decode(input_ids, skip_special_tokens=True)
last_output = (
"<|assistant|>\nAs the sun began to set over the Pacific Ocean, I found myself standing on the shores of "
"Waikiki Beach, my heart filled with awe and wonder. I had just returned from a two-week journey to the "
"beautiful island of Hawaii, and it had been an unforgettable experience filled with cultural experiences "
"and must-see attractions that left me breathless.\n\nOne of the most memorable experiences of my trip "
"was visiting the historic district of Honolulu. Here,"
)
self.assertTrue(decoded[0].endswith(last_output))
@require_torch_gpu
@parameterized.expand(
[
("eager", "static"),
("sdpa", "static"),
]
)
def test_static_cache_greedy_decoding_pad_left(self, attn_implementation, cache_implementation):
EXPECTED_GENERATION = [
"The best color is the one that complements the skin tone of the",
"We should not undermind the issues at hand.\nWe should not undermind the issues",
]
tokenizer = AutoTokenizer.from_pretrained(
"NousResearch/Llama-2-7b-chat-hf", padding_side="left", pad_token="<s>"
)
model = AutoModelForCausalLM.from_pretrained(
"NousResearch/Llama-2-7b-chat-hf",
torch_dtype=torch.bfloat16,
attn_implementation=attn_implementation,
).to(torch_device)
inputs = tokenizer(
["The best color is", "We should not undermind the issues at hand"], padding=True, return_tensors="pt"
).to(model.device)
set_seed(0)
gen_out = model.generate(**inputs, do_sample=False, max_new_tokens=10)
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
with self.subTest(f"{attn_implementation}, dynamic"):
self.assertListEqual(decoded, EXPECTED_GENERATION)
set_seed(0)
model.generation_config.cache_implementation = cache_implementation
gen_out = model.generate(**inputs, do_sample=False, max_new_tokens=10)
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
with self.subTest(f"{attn_implementation}, static, eager"):
self.assertListEqual(decoded, EXPECTED_GENERATION)
set_seed(0)
model.forward = torch.compile(model.forward)
gen_out = model.generate(**inputs, do_sample=False, max_new_tokens=10)
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
with self.subTest(f"{attn_implementation}, static, compiled"):
self.assertListEqual(decoded, EXPECTED_GENERATION)
@require_torch_gpu
@parameterized.expand(
[
("eager", "static"),
("sdpa", "static"),
]
)
def test_static_cache_greedy_decoding_pad_right(self, attn_implementation, cache_implementation):
EXPECTED_GENERATION = [
"The best color isЋ the one that complements the skin tone of",
"We should not undermind the issues at hand.\nWe should not undermind the issues",
]
tokenizer = AutoTokenizer.from_pretrained(
"NousResearch/Llama-2-7b-chat-hf", padding_side="right", pad_token="<s>"
)
model = AutoModelForCausalLM.from_pretrained(
"NousResearch/Llama-2-7b-chat-hf",
torch_dtype=torch.bfloat16,
attn_implementation=attn_implementation,
).to(torch_device)
inputs = tokenizer(
["The best color is", "We should not undermind the issues at hand"], padding=True, return_tensors="pt"
).to(model.device)
set_seed(0)
gen_out = model.generate(**inputs, do_sample=False, max_new_tokens=10)
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
with self.subTest(f"{attn_implementation}, dynamic"):
self.assertListEqual(decoded, EXPECTED_GENERATION)
set_seed(0)
model.generation_config.cache_implementation = cache_implementation
gen_out = model.generate(**inputs, do_sample=False, max_new_tokens=10)
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
with self.subTest(f"{attn_implementation}, static, eager"):
self.assertListEqual(decoded, EXPECTED_GENERATION)
def test_dynamic_cache_extra_left_padding(self):
"""Tests that adding extra left-padding does not affect the generation with the dynamic cache"""
EXPECTED_GENERATION = [
"The best color is the one that complements the skin tone of the",
"We should not undermind the issues at hand.\nWe should not undermind the issues",
]
tokenizer = AutoTokenizer.from_pretrained(
"NousResearch/Llama-2-7b-chat-hf", padding_side="left", pad_token="<s>"
)
model = AutoModelForCausalLM.from_pretrained(
"NousResearch/Llama-2-7b-chat-hf",
torch_dtype=torch.bfloat16,
).to(torch_device)
inputs = tokenizer(
["The best color is", "We should not undermind the issues at hand"], padding=True, return_tensors="pt"
).to(model.device)
gen_out = model.generate(**inputs, do_sample=False, max_new_tokens=10)
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
self.assertListEqual(decoded, EXPECTED_GENERATION)
# Now with extra left-padding
inputs_expanded = tokenizer(
["The best color is", "We should not undermind the issues at hand"],
padding=True,
return_tensors="pt",
pad_to_multiple_of=32,
).to(model.device)
self.assertTrue(inputs.input_ids.shape[1] < inputs_expanded.input_ids.shape[1])
gen_out = model.generate(**inputs_expanded, do_sample=False, max_new_tokens=10)
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
self.assertListEqual(decoded, EXPECTED_GENERATION)
@parameterized.expand(
[
"static",
]
)
def test_static_cache_extra_left_padding(self, cache_implementation):
"""Tests that adding extra left-padding does not affect the generation with the static cache"""
EXPECTED_GENERATION = [
"The best color is the one that complements the skin tone of the",
"We should not undermind the issues at hand.\nWe should not undermind the issues",
]
tokenizer = AutoTokenizer.from_pretrained(
"NousResearch/Llama-2-7b-chat-hf", padding_side="left", pad_token="<s>"
)
model = AutoModelForCausalLM.from_pretrained(
"NousResearch/Llama-2-7b-chat-hf",
torch_dtype=torch.bfloat16,
).to(torch_device)
inputs = tokenizer(
["The best color is", "We should not undermind the issues at hand"], padding=True, return_tensors="pt"
).to(model.device)
model.generation_config.cache_implementation = cache_implementation
gen_out = model.generate(**inputs, do_sample=False, max_new_tokens=10)
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
self.assertListEqual(decoded, EXPECTED_GENERATION)
# Now with extra left-padding
inputs_expanded = tokenizer(
["The best color is", "We should not undermind the issues at hand"],
padding=True,
return_tensors="pt",
pad_to_multiple_of=32,
).to(model.device)
self.assertTrue(inputs.input_ids.shape[1] < inputs_expanded.input_ids.shape[1])
gen_out = model.generate(**inputs_expanded, do_sample=False, max_new_tokens=10)
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
self.assertListEqual(decoded, EXPECTED_GENERATION)
@unittest.skip(reason="TODO @gante static cache's does not support beam search yet")
def test_static_cache_beam_search(self):
pass
@require_torch_gpu
def test_offloaded_cache_equivalent_to_dynamic_cache(self):
"""Tests that OffloadedCache produces the same result as the default DynamicCache"""
model_name = "microsoft/Phi-3-mini-4k-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16)
device = model.device
input_text = "Fun fact:"
inputs = tokenizer(input_text, return_tensors="pt").to(device)
common = {
"num_beams": 4,
"num_beam_groups": 2,
"num_return_sequences": 4,
"diversity_penalty": 1.0,
"max_new_tokens": 20,
"early_stopping": True,
}
original = GenerationConfig(**common)
offloaded = GenerationConfig(cache_implementation="offloaded", **common)
original_outputs = model.generate(generation_config=original, **inputs)
offloaded_outputs = model.generate(generation_config=offloaded, **inputs)
for original_output, offloaded_output in zip(original_outputs, offloaded_outputs):
assert torch.all(original_output == offloaded_output).item()
@require_torch_gpu
def test_offloaded_cache_uses_less_memory_than_dynamic_cache(self):
"""Tests that OffloadedCache uses less memory than the default DynamicCache"""
model_name = "microsoft/Phi-3-mini-4k-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16)
device = model.device
input_text = "Fun fact:"
inputs = tokenizer(input_text, return_tensors="pt").to(device)
common = {
"num_beams": 4,
"num_beam_groups": 2,
"num_return_sequences": 4,
"diversity_penalty": 1.0,
"max_new_tokens": 20,
"early_stopping": True,
}
original = GenerationConfig(**common)
offloaded = GenerationConfig(cache_implementation="offloaded", **common)
torch.cuda.reset_peak_memory_stats(device)
model.generate(generation_config=original, **inputs)
original_peak_memory = torch.cuda.max_memory_allocated(device)
torch.cuda.reset_peak_memory_stats(device)
model.generate(generation_config=offloaded, **inputs)
offloaded_peak_memory = torch.cuda.max_memory_allocated(device)
assert offloaded_peak_memory < original_peak_memory
@require_torch_gpu
def test_cache_copy(self):
model_name = "microsoft/Phi-3-mini-4k-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="cuda", torch_dtype=torch.bfloat16)
prompt_cache = StaticCache(
config=model.config, max_batch_size=1, max_cache_len=1024, device="cuda", dtype=torch.bfloat16
)
INITIAL_PROMPT = "You are a helpful assistant. "
inputs_initial_prompt = tokenizer(INITIAL_PROMPT, return_tensors="pt").to("cuda")
# This is the common prompt cached, we need to run forward without grad to be abel to copy
with torch.no_grad():
prompt_cache = model(**inputs_initial_prompt, past_key_values=prompt_cache).past_key_values
prompts = ["Help me to write a blogpost about travelling.", "What is the capital of France?"]
responses = []
for prompt in prompts:
new_inputs = tokenizer(INITIAL_PROMPT + prompt, return_tensors="pt").to("cuda")
past_key_values = copy.deepcopy(prompt_cache)
outputs = model.generate(**new_inputs, past_key_values=past_key_values, max_new_tokens=40)
response = tokenizer.batch_decode(outputs)[0]
responses.append(response)
EXPECTED_DECODED_TEXT = [
"You are a helpful assistant. Help me to write a blogpost about travelling.\n\nTraveling is an enriching experience that broadens our horizons and exposes us to new cultures, landscapes, and people. Whether it's a week",
'You are a helpful assistant. What is the capital of France?\n\n\n## Response:Paris is the capital of France.\n\n\n\n\n\n## Query:\n\nIn a detailed analysis, compare the economic impacts of the introduction of the'
] # fmt: skip
self.assertTrue(responses == EXPECTED_DECODED_TEXT)
| transformers/tests/utils/test_cache_utils.py/0 | {
"file_path": "transformers/tests/utils/test_cache_utils.py",
"repo_id": "transformers",
"token_count": 12990
} |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import unittest
from huggingface_hub.utils import are_progress_bars_disabled
import transformers.models.bart.tokenization_bart
from transformers import logging
from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context
from transformers.utils.logging import disable_progress_bar, enable_progress_bar
class HfArgumentParserTest(unittest.TestCase):
def test_set_level(self):
logger = logging.get_logger()
# the current default level is logging.WARNING
level_origin = logging.get_verbosity()
logging.set_verbosity_error()
self.assertEqual(logger.getEffectiveLevel(), logging.get_verbosity())
logging.set_verbosity_warning()
self.assertEqual(logger.getEffectiveLevel(), logging.get_verbosity())
logging.set_verbosity_info()
self.assertEqual(logger.getEffectiveLevel(), logging.get_verbosity())
logging.set_verbosity_debug()
self.assertEqual(logger.getEffectiveLevel(), logging.get_verbosity())
# restore to the original level
logging.set_verbosity(level_origin)
def test_integration(self):
level_origin = logging.get_verbosity()
logger = logging.get_logger("transformers.models.bart.tokenization_bart")
msg = "Testing 1, 2, 3"
# should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`)
if level_origin <= logging.WARNING:
with CaptureLogger(logger) as cl:
logger.warning(msg)
self.assertEqual(cl.out, msg + "\n")
# this is setting the level for all of `transformers.*` loggers
logging.set_verbosity_error()
# should not be able to log warnings
with CaptureLogger(logger) as cl:
logger.warning(msg)
self.assertEqual(cl.out, "")
# should be able to log warnings again
logging.set_verbosity_warning()
with CaptureLogger(logger) as cl:
logger.warning(msg)
self.assertEqual(cl.out, msg + "\n")
# restore to the original level
logging.set_verbosity(level_origin)
@mockenv(TRANSFORMERS_VERBOSITY="error")
def test_env_override(self):
# reset for the env var to take effect, next time some logger call is made
transformers.utils.logging._reset_library_root_logger()
# this action activates the env var
_ = logging.get_logger("transformers.models.bart.tokenization_bart")
env_level_str = os.getenv("TRANSFORMERS_VERBOSITY", None)
env_level = logging.log_levels[env_level_str]
current_level = logging.get_verbosity()
self.assertEqual(
env_level,
current_level,
f"TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}",
)
# restore to the original level
os.environ["TRANSFORMERS_VERBOSITY"] = ""
transformers.utils.logging._reset_library_root_logger()
@mockenv(TRANSFORMERS_VERBOSITY="super-error")
def test_env_invalid_override(self):
# reset for the env var to take effect, next time some logger call is made
transformers.utils.logging._reset_library_root_logger()
logger = logging.logging.getLogger()
with CaptureLogger(logger) as cl:
# this action activates the env var
logging.get_logger("transformers.models.bart.tokenization_bart")
self.assertIn("Unknown option TRANSFORMERS_VERBOSITY=super-error", cl.out)
# no need to restore as nothing was changed
def test_advisory_warnings(self):
# testing `logger.warning_advice()`
transformers.utils.logging._reset_library_root_logger()
logger = logging.get_logger("transformers.models.bart.tokenization_bart")
msg = "Testing 1, 2, 3"
with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="1"):
# nothing should be logged as env var disables this method
with CaptureLogger(logger) as cl:
logger.warning_advice(msg)
self.assertEqual(cl.out, "")
with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS=""):
# should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset
with CaptureLogger(logger) as cl:
logger.warning_advice(msg)
self.assertEqual(cl.out, msg + "\n")
def test_set_progress_bar_enabled():
disable_progress_bar()
assert are_progress_bars_disabled()
enable_progress_bar()
assert not are_progress_bars_disabled()
| transformers/tests/utils/test_logging.py/0 | {
"file_path": "transformers/tests/utils/test_logging.py",
"repo_id": "transformers",
"token_count": 2007
} |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import importlib
from pathlib import Path
# Test all the extensions added in the setup
FILES_TO_FIND = [
"kernels/rwkv/wkv_cuda.cu",
"kernels/rwkv/wkv_op.cpp",
"kernels/deformable_detr/ms_deform_attn.h",
"kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh",
"kernels/falcon_mamba/selective_scan_with_ln_interface.py",
"kernels/falcon_mamba/__init__.py",
"kernels/__init__.py",
"models/graphormer/algos_graphormer.pyx",
]
def test_custom_files_are_present(transformers_path):
# Test all the extensions added in the setup
for file in FILES_TO_FIND:
if not (transformers_path / file).exists():
return False
return True
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--check_lib", action="store_true", help="Whether to check the build or the actual package.")
args = parser.parse_args()
if args.check_lib:
transformers_module = importlib.import_module("transformers")
transformers_path = Path(transformers_module.__file__).parent
else:
transformers_path = Path.cwd() / "build/lib/transformers"
if not test_custom_files_are_present(transformers_path):
raise ValueError("The built release does not contain the custom files. Fix this before going further!")
| transformers/utils/check_build.py/0 | {
"file_path": "transformers/utils/check_build.py",
"repo_id": "transformers",
"token_count": 677
} |
import ast
from collections import defaultdict
# Function to perform topological sorting
def topological_sort(dependencies: dict):
# Nodes are the name of the models to convert (we only add those to the graph)
nodes = {node.rsplit("modular_", 1)[1].replace(".py", "") for node in dependencies.keys()}
# This will be a graph from models to convert, to models to convert that should be converted before (as they are a dependency)
graph = {}
name_mapping = {}
for node, deps in dependencies.items():
node_name = node.rsplit("modular_", 1)[1].replace(".py", "")
dep_names = {dep.split(".")[-2] for dep in deps}
dependencies = {dep for dep in dep_names if dep in nodes and dep != node_name}
graph[node_name] = dependencies
name_mapping[node_name] = node
sorting_list = []
while len(graph) > 0:
# Find the nodes with 0 out-degree
leaf_nodes = {node for node in graph if len(graph[node]) == 0}
# Add them to the list
sorting_list += list(leaf_nodes)
# Remove the leafs from the graph (and from the deps of other nodes)
graph = {node: deps - leaf_nodes for node, deps in graph.items() if node not in leaf_nodes}
return [name_mapping[x] for x in sorting_list]
# Function to extract class and import info from a file
def extract_classes_and_imports(file_path):
with open(file_path, "r") as file:
tree = ast.parse(file.read(), filename=file_path)
imports = set()
for node in ast.walk(tree):
if isinstance(node, (ast.Import, ast.ImportFrom)):
module = node.module if isinstance(node, ast.ImportFrom) else None
if module and (".modeling_" in module or "transformers.models" in module):
imports.add(module)
return imports
# Function to map dependencies between classes
def map_dependencies(py_files):
dependencies = defaultdict(set)
# First pass: Extract all classes and map to files
for file_path in py_files:
# dependencies[file_path].add(None)
class_to_file = extract_classes_and_imports(file_path)
for module in class_to_file:
dependencies[file_path].add(module)
return dependencies
def find_priority_list(py_files):
dependencies = map_dependencies(py_files)
ordered_classes = topological_sort(dependencies)
return ordered_classes
| transformers/utils/create_dependency_mapping.py/0 | {
"file_path": "transformers/utils/create_dependency_mapping.py",
"repo_id": "transformers",
"token_count": 870
} |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import re
import time
from typing import Dict, List
from get_ci_error_statistics import get_jobs
from slack_sdk import WebClient
client = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"])
def handle_test_results(test_results):
expressions = test_results.split(" ")
failed = 0
success = 0
# When the output is short enough, the output is surrounded by = signs: "== OUTPUT =="
# When it is too long, those signs are not present.
time_spent = expressions[-2] if "=" in expressions[-1] else expressions[-1]
for i, expression in enumerate(expressions):
if "failed" in expression:
failed += int(expressions[i - 1])
if "passed" in expression:
success += int(expressions[i - 1])
return failed, success, time_spent
def extract_first_line_failure(failures_short_lines):
failures = {}
file = None
in_error = False
for line in failures_short_lines.split("\n"):
if re.search(r"_ \[doctest\]", line):
in_error = True
file = line.split(" ")[2]
elif in_error and not line.split(" ")[0].isdigit():
failures[file] = line
in_error = False
return failures
class Message:
def __init__(self, title: str, doc_test_results: Dict):
self.title = title
self.n_success = sum(job_result["n_success"] for job_result in doc_test_results.values())
self.n_failures = sum(job_result["n_failures"] for job_result in doc_test_results.values())
self.n_tests = self.n_success + self.n_failures
# Failures and success of the modeling tests
self.doc_test_results = doc_test_results
@property
def time(self) -> str:
all_results = [*self.doc_test_results.values()]
time_spent = [r["time_spent"].split(", ")[0] for r in all_results if len(r["time_spent"])]
total_secs = 0
for time in time_spent:
time_parts = time.split(":")
# Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute.
if len(time_parts) == 1:
time_parts = [0, 0, time_parts[0]]
hours, minutes, seconds = int(time_parts[0]), int(time_parts[1]), float(time_parts[2])
total_secs += hours * 3600 + minutes * 60 + seconds
hours, minutes, seconds = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60
return f"{int(hours)}h{int(minutes)}m{int(seconds)}s"
@property
def header(self) -> Dict:
return {"type": "header", "text": {"type": "plain_text", "text": self.title}}
@property
def no_failures(self) -> Dict:
return {
"type": "section",
"text": {
"type": "plain_text",
"text": f"🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.",
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}",
},
}
@property
def failures(self) -> Dict:
return {
"type": "section",
"text": {
"type": "plain_text",
"text": (
f"There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in"
f" {self.time}."
),
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}",
},
}
@property
def category_failures(self) -> List[Dict]:
failure_blocks = []
MAX_ERROR_TEXT = 3000 - len("The following examples had failures:\n\n\n\n") - len("[Truncated]\n")
line_length = 40
category_failures = {k: v["failed"] for k, v in doc_test_results.items() if isinstance(v, dict)}
def single_category_failures(category, failures):
text = ""
if len(failures) == 0:
return ""
text += f"*{category} failures*:".ljust(line_length // 2).rjust(line_length // 2) + "\n"
for idx, failure in enumerate(failures):
new_text = text + f"`{failure}`\n"
if len(new_text) > MAX_ERROR_TEXT:
text = text + "[Truncated]\n"
break
text = new_text
return text
for category, failures in category_failures.items():
report = single_category_failures(category, failures)
if len(report) == 0:
continue
block = {
"type": "section",
"text": {
"type": "mrkdwn",
"text": f"The following examples had failures:\n\n\n{report}\n",
},
}
failure_blocks.append(block)
return failure_blocks
@property
def payload(self) -> str:
blocks = [self.header]
if self.n_failures > 0:
blocks.append(self.failures)
if self.n_failures > 0:
blocks.extend(self.category_failures)
if self.n_failures == 0:
blocks.append(self.no_failures)
return json.dumps(blocks)
@staticmethod
def error_out():
payload = [
{
"type": "section",
"text": {
"type": "plain_text",
"text": "There was an issue running the tests.",
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f"https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}",
},
}
]
print("Sending the following payload")
print(json.dumps({"blocks": json.loads(payload)}))
client.chat_postMessage(
channel=SLACK_REPORT_CHANNEL_ID,
text="There was an issue running the tests.",
blocks=payload,
)
def post(self):
print("Sending the following payload")
print(json.dumps({"blocks": json.loads(self.payload)}))
text = f"{self.n_failures} failures out of {self.n_tests} tests," if self.n_failures else "All tests passed."
self.thread_ts = client.chat_postMessage(
channel=SLACK_REPORT_CHANNEL_ID,
blocks=self.payload,
text=text,
)
def get_reply_blocks(self, job_name, job_link, failures, text):
# `text` must be less than 3001 characters in Slack SDK
# keep some room for adding "[Truncated]" when necessary
MAX_ERROR_TEXT = 3000 - len("[Truncated]")
failure_text = ""
for key, value in failures.items():
new_text = failure_text + f"*{key}*\n_{value}_\n\n"
if len(new_text) > MAX_ERROR_TEXT:
# `failure_text` here has length <= 3000
failure_text = failure_text + "[Truncated]"
break
# `failure_text` here has length <= MAX_ERROR_TEXT
failure_text = new_text
title = job_name
content = {"type": "section", "text": {"type": "mrkdwn", "text": text}}
if job_link is not None:
content["accessory"] = {
"type": "button",
"text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True},
"url": job_link,
}
return [
{"type": "header", "text": {"type": "plain_text", "text": title, "emoji": True}},
content,
{"type": "section", "text": {"type": "mrkdwn", "text": failure_text}},
]
def post_reply(self):
if self.thread_ts is None:
raise ValueError("Can only post reply if a post has been made.")
sorted_dict = sorted(self.doc_test_results.items(), key=lambda t: t[0])
for job_name, job_result in sorted_dict:
if len(job_result["failures"]) > 0:
text = f"*Num failures* :{len(job_result['failed'])} \n"
failures = job_result["failures"]
blocks = self.get_reply_blocks(job_name, job_result["job_link"], failures, text=text)
print("Sending the following reply")
print(json.dumps({"blocks": blocks}))
client.chat_postMessage(
channel=SLACK_REPORT_CHANNEL_ID,
text=f"Results for {job_name}",
blocks=blocks,
thread_ts=self.thread_ts["ts"],
)
time.sleep(1)
def retrieve_artifact(name: str):
_artifact = {}
if os.path.exists(name):
files = os.listdir(name)
for file in files:
try:
with open(os.path.join(name, file), encoding="utf-8") as f:
_artifact[file.split(".")[0]] = f.read()
except UnicodeDecodeError as e:
raise ValueError(f"Could not open {os.path.join(name, file)}.") from e
return _artifact
def retrieve_available_artifacts():
class Artifact:
def __init__(self, name: str):
self.name = name
self.paths = []
def __str__(self):
return self.name
def add_path(self, path: str):
self.paths.append({"name": self.name, "path": path})
_available_artifacts: Dict[str, Artifact] = {}
directories = filter(os.path.isdir, os.listdir())
for directory in directories:
artifact_name = directory
if artifact_name not in _available_artifacts:
_available_artifacts[artifact_name] = Artifact(artifact_name)
_available_artifacts[artifact_name].add_path(directory)
return _available_artifacts
if __name__ == "__main__":
SLACK_REPORT_CHANNEL_ID = os.environ["SLACK_REPORT_CHANNEL"]
github_actions_jobs = get_jobs(
workflow_run_id=os.environ["GITHUB_RUN_ID"], token=os.environ["ACCESS_REPO_INFO_TOKEN"]
)
artifact_name_to_job_map = {}
for job in github_actions_jobs:
for step in job["steps"]:
if step["name"].startswith("Test suite reports artifacts: "):
artifact_name = step["name"][len("Test suite reports artifacts: ") :]
artifact_name_to_job_map[artifact_name] = job
break
available_artifacts = retrieve_available_artifacts()
doc_test_results = {}
# `artifact_key` is the artifact path
for artifact_key, artifact_obj in available_artifacts.items():
artifact_path = artifact_obj.paths[0]
if not artifact_path["path"].startswith("doc_tests_gpu_test_reports_"):
continue
# change "_" back to "/" (to show the job name as path)
job_name = artifact_path["path"].replace("doc_tests_gpu_test_reports_", "").replace("_", "/")
# This dict (for each job) will contain all the information relative to each doc test job, in particular:
# - failed: list of failed tests
# - failures: dict in the format 'test': 'error_message'
job_result = {}
doc_test_results[job_name] = job_result
job = artifact_name_to_job_map[artifact_path["path"]]
job_result["job_link"] = job["html_url"]
job_result["category"] = "Python Examples" if job_name.startswith("src/") else "MD Examples"
artifact = retrieve_artifact(artifact_path["path"])
if "stats" in artifact:
failed, success, time_spent = handle_test_results(artifact["stats"])
job_result["n_failures"] = failed
job_result["n_success"] = success
job_result["time_spent"] = time_spent[1:-1] + ", "
job_result["failed"] = []
job_result["failures"] = {}
all_failures = extract_first_line_failure(artifact["failures_short"])
for line in artifact["summary_short"].split("\n"):
if re.search("FAILED", line):
line = line.replace("FAILED ", "")
line = line.split()[0].replace("\n", "")
if "::" in line:
file_path, test = line.split("::")
else:
file_path, test = line, line
job_result["failed"].append(test)
failure = all_failures[test] if test in all_failures else "N/A"
job_result["failures"][test] = failure
# Save and to be uploaded as artifact
os.makedirs("doc_test_results", exist_ok=True)
with open("doc_test_results/doc_test_results.json", "w", encoding="UTF-8") as fp:
json.dump(doc_test_results, fp, ensure_ascii=False, indent=4)
message = Message("🤗 Results of the doc tests.", doc_test_results)
message.post()
message.post_reply()
| transformers/utils/notification_service_doc_tests.py/0 | {
"file_path": "transformers/utils/notification_service_doc_tests.py",
"repo_id": "transformers",
"token_count": 6488
} |
from transformers import PretrainedConfig
class CustomConfig(PretrainedConfig):
model_type = "custom"
def __init__(self, attribute=1, **kwargs):
self.attribute = attribute
super().__init__(**kwargs)
class NoSuperInitConfig(PretrainedConfig):
model_type = "custom"
def __init__(self, attribute=1, **kwargs):
self.attribute = attribute
| transformers/utils/test_module/custom_configuration.py/0 | {
"file_path": "transformers/utils/test_module/custom_configuration.py",
"repo_id": "transformers",
"token_count": 136
} |
# Using LLaMA models with TRL
We've begun rolling out examples to use Meta's LLaMA models in `trl` (see [Meta's LLaMA release](https://ai.facebook.com/blog/large-language-model-llama-meta-ai/) for the original LLaMA model).
## Efficient training strategies
Even training the smallest LLaMA model requires an enormous amount of memory. Some quick math: in bf16, every parameter uses 2 bytes (in fp32 4 bytes) in addition to 8 bytes used, e.g., in the Adam optimizer (see the [performance docs](https://huggingface.co/docs/transformers/perf_train_gpu_one#optimizer) in Transformers for more info). So a 7B parameter model would use `(2+8)*7B=70GB` just to fit in memory and would likely need more when you compute intermediate values such as attention scores. So you couldn’t train the model even on a single 80GB A100 like that. You can use some tricks, like more efficient optimizers of half-precision training, to squeeze a bit more into memory, but you’ll run out sooner or later.
Another option is to use Parameter-Efficient Fine-Tuning (PEFT) techniques, such as the [`peft`](https://github.com/huggingface/peft) library, which can perform low-rank adaptation (LoRA) on a model loaded in 8-bit.
For more on `peft` + `trl`, see the [docs](https://huggingface.co/docs/trl/sentiment_tuning_peft).
Loading the model in 8bit reduces the memory footprint drastically since you only need one byte per parameter for the weights (e.g. 7B LlaMa is 7GB in memory).
Instead of training the original weights directly, LoRA adds small adapter layers on top of some specific layers (usually the attention layers); thus, the number of trainable parameters is drastically reduced.
In this scenario, a rule of thumb is to allocate ~1.2-1.4GB per billion parameters (depending on the batch size and sequence length) to fit the entire fine-tuning setup.
This enables fine-tuning larger models (up to 50-60B scale models on a NVIDIA A100 80GB) at low cost.
Now we can fit very large models into a single GPU, but the training might still be very slow.
The simplest strategy in this scenario is data parallelism: we replicate the same training setup into separate GPUs and pass different batches to each GPU.
With this, you can parallelize the forward/backward passes of the model and scale with the number of GPUs.

We use either the `transformers.Trainer` or `accelerate`, which both support data parallelism without any code changes, by simply passing arguments when calling the scripts with `torchrun` or `accelerate launch`. The following runs a training script with 8 GPUs on a single machine with `accelerate` and `torchrun`, respectively.
```bash
accelerate launch --multi_gpu --num_machines 1 --num_processes 8 my_accelerate_script.py
torchrun --nnodes 1 --nproc_per_node 8 my_torch_script.py
```
## Supervised fine-tuning
Before we start training reward models and tuning our model with RL, it helps if the model is already good in the domain we are interested in.
In our case, we want it to answer questions, while for other use cases, we might want it to follow instructions, in which case instruction tuning is a great idea.
The easiest way to achieve this is by continuing to train the language model with the language modeling objective on texts from the domain or task.
The [StackExchange dataset](https://huggingface.co/datasets/HuggingFaceH4/stack-exchange-preferences) is enormous (over 10 million instructions), so we can easily train the language model on a subset of it.
There is nothing special about fine-tuning the model before doing RLHF - it’s just the causal language modeling objective from pretraining that we apply here.
To use the data efficiently, we use a technique called packing: instead of having one text per sample in the batch and then padding to either the longest text or the maximal context of the model, we concatenate a lot of texts with a EOS token in between and cut chunks of the context size to fill the batch without any padding.

With this approach the training is much more efficient as each token that is passed through the model is also trained in contrast to padding tokens which are usually masked from the loss.
If you don't have much data and are more concerned about occasionally cutting off some tokens that are overflowing the context you can also use a classical data loader.
The packing is handled by the `ConstantLengthDataset` and we can then use the `Trainer` after loading the model with `peft`. First, we load the model in int8, prepare it for training, and then add the LoRA adapters.
```python
# load model in 8bit
model = AutoModelForCausalLM.from_pretrained(
args.model_path,
load_in_8bit=True,
device_map={"": Accelerator().local_process_index}
)
model = prepare_model_for_kbit_training(model)
# add LoRA to model
lora_config = LoraConfig(
r=16,
lora_alpha=32,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
```
We train the model for a few thousand steps with the causal language modeling objective and save the model.
Since we will tune the model again with different objectives, we merge the adapter weights with the original model weights.
**Disclaimer:** due to LLaMA's license, we release only the adapter weights for this and the model checkpoints in the following sections.
You can apply for access to the base model's weights by filling out Meta AI's [form](https://docs.google.com/forms/d/e/1FAIpQLSfqNECQnMkycAp2jP4Z9TFX0cGR4uf7b_fBxjY_OjhJILlKGA/viewform) and then converting them to the 🤗 Transformers format by running this [script](https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py).
Note that you'll also need to install 🤗 Transformers from source until the `v4.28` is released.
Now that we have fine-tuned the model for the task, we are ready to train a reward model.
## Reward modeling and human preferences
In principle, we could fine-tune the model using RLHF directly with the human annotations.
However, this would require us to send some samples to humans for rating after each optimization iteration.
This is expensive and slow due to the number of training samples needed for convergence and the inherent latency of human reading and annotator speed.
A trick that works well instead of direct feedback is training a reward model on human annotations collected before the RL loop.
The goal of the reward model is to imitate how a human would rate a text. There are several possible strategies to build a reward model: the most straightforward way would be to predict the annotation (e.g. a rating score or a binary value for “good”/”bad”).
In practice, what works better is to predict the ranking of two examples, where the reward model is presented with two candidates `(y_k, y_j)` for a given prompt `x` and has to predict which one would be rated higher by a human annotator.
With the StackExchange dataset, we can infer which of the two answers was preferred by the users based on the score.
With that information and the loss defined above, we can then modify the `transformers.Trainer` by adding a custom loss function.
```python
class RewardTrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False):
rewards_j = model(input_ids=inputs["input_ids_j"], attention_mask=inputs["attention_mask_j"])[0]
rewards_k = model(input_ids=inputs["input_ids_k"], attention_mask=inputs["attention_mask_k"])[0]
loss = -nn.functional.logsigmoid(rewards_j - rewards_k).mean()
if return_outputs:
return loss, {"rewards_j": rewards_j, "rewards_k": rewards_k}
return loss
```
We utilize a subset of a 100,000 pair of candidates and evaluate on a held-out set of 50,000. With a modest training batch size of 4, we train the Llama model using the LoRA `peft` adapter for a single epoch using the Adam optimizer with BF16 precision. Our LoRA configuration is:
```python
peft_config = LoraConfig(
task_type=TaskType.SEQ_CLS,
inference_mode=False,
r=8,
lora_alpha=32,
lora_dropout=0.1,
)
```
As detailed in the next section, the resulting adapter can be merged into the frozen model and saved for further downstream use.
## Reinforcement Learning from Human Feedback
With the fine-tuned language model and the reward model at hand, we are now ready to run the RL loop. It follows roughly three steps:
1. Generate responses from prompts,
2. Rate the responses with the reward model,
3. Run a reinforcement learning policy-optimization step with the ratings.
The Query and Response prompts are templated as follows before being tokenized and passed to the model:
```bash
Question: <Query>
Answer: <Response>
```
The same template was used for SFT, RM and RLHF stages.
Once more, we utilize `peft` for memory-efficient training, which offers an extra advantage in the RLHF context.
Here, the reference model and policy share the same base, the SFT model, which we load in 8-bit and freeze during training.
We exclusively optimize the policy's LoRA weights using PPO while sharing the base model's weights.
```python
for epoch, batch in tqdm(enumerate(ppo_trainer.dataloader)):
question_tensors = batch["input_ids"]
# sample from the policy and to generate responses
response_tensors = ppo_trainer.generate(
question_tensors,
return_prompt=False,
length_sampler=output_length_sampler,
**generation_kwargs,
)
batch["response"] = tokenizer.batch_decode(response_tensors, skip_special_tokens=True)
# Compute sentiment score
texts = [q + r for q, r in zip(batch["query"], batch["response"])]
pipe_outputs = sentiment_pipe(texts, **sent_kwargs)
rewards = [torch.tensor(output[0]["score"] - script_args.reward_baseline) for output in pipe_outputs]
# Run PPO step
stats = ppo_trainer.step(question_tensors, response_tensors, rewards)
# Log stats to Wandb
ppo_trainer.log_stats(stats, batch, rewards)
```
For the rest of the details and evaluation, please refer to our [blog post on StackLLaMA](https://huggingface.co/blog/stackllama).
| trl/docs/source/using_llama_models.md/0 | {
"file_path": "trl/docs/source/using_llama_models.md",
"repo_id": "trl",
"token_count": 2985
} |
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
from typing import Optional
from datasets import load_dataset
from huggingface_hub import ModelCard
from transformers import HfArgumentParser
@dataclass
class ScriptArguments:
r"""
Arguments for the script.
Args:
push_to_hub (`bool`, *optional*, defaults to `False`):
Whether to push the dataset to the Hugging Face Hub.
repo_id (`str`, *optional*, defaults to `"trl-lib/tldr"`):
Hugging Face repository ID to push the dataset to.
dataset_num_proc (`int` or `None`, *optional*, defaults to `None`):
Number of workers to use for dataset processing.
"""
push_to_hub: bool = field(
default=False,
metadata={"help": "Whether to push the dataset to the Hugging Face Hub."},
)
repo_id: str = field(
default="trl-lib/tldr",
metadata={"help": "Hugging Face repository ID to push the dataset to."},
)
dataset_num_proc: Optional[int] = field(
default=None,
metadata={"help": "Number of workers to use for dataset processing."},
)
def to_prompt_completion(example):
tldr_format_str = "SUBREDDIT: r/{subreddit}\n\nTITLE: {title}\n\nPOST: {post}\n\nTL;DR:"
prompt = tldr_format_str.format(subreddit=example["subreddit"], title=example["title"], post=example["post"])
completion = " " + example["summary"] # Add a space to separate the prompt from the completion
return {"prompt": prompt, "completion": completion}
model_card = ModelCard("""
---
tags: [trl]
---
# TL;DR Dataset
## Summary
The TL;DR dataset is a processed version of Reddit posts, specifically curated to train models using the [TRL library](https://github.com/huggingface/trl) for summarization tasks. It leverages the common practice on Reddit where users append "TL;DR" (Too Long; Didn't Read) summaries to lengthy posts, providing a rich source of paired text data for training summarization models.
## Data Structure
- **Format**: [Standard](https://huggingface.co/docs/trl/main/dataset_formats#standard)
- **Type**: [Prompt-completion](https://huggingface.co/docs/trl/main/dataset_formats#prompt-completion)
Columns:
- `"prompt"`: The unabridged Reddit post.
- `"completion"`: The concise "TL;DR" summary appended by the author.
This structure enables models to learn the relationship between detailed content and its abbreviated form, enhancing their summarization capabilities.
## Generation script
The script used to generate this dataset can be found [here](https://github.com/huggingface/trl/blob/main/examples/datasets/tldr.py).
""")
if __name__ == "__main__":
parser = HfArgumentParser(ScriptArguments)
script_args = parser.parse_args_into_dataclasses()[0]
# Filtered reddit TL;DR dataset from https://github.com/openai/summarize-from-feedback?tab=readme-ov-file#reddit-tldr-dataset
data_files = {
"train": "https://openaipublic.blob.core.windows.net/summarize-from-feedback/datasets/tldr_3_filtered/train.jsonl",
"validation": "https://openaipublic.blob.core.windows.net/summarize-from-feedback/datasets/tldr_3_filtered/valid.jsonl",
"test": "https://openaipublic.blob.core.windows.net/summarize-from-feedback/datasets/tldr_3_filtered/test.jsonl",
}
dataset = load_dataset("json", data_files=data_files)
dataset = dataset.map(
to_prompt_completion,
num_proc=script_args.dataset_num_proc,
remove_columns=["id", "subreddit", "title", "post", "summary"],
)
if script_args.push_to_hub:
dataset.push_to_hub(script_args.repo_id)
model_card.push_to_hub(script_args.repo_id, repo_type="dataset")
| trl/examples/datasets/tldr.py/0 | {
"file_path": "trl/examples/datasets/tldr.py",
"repo_id": "trl",
"token_count": 1501
} |
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
from typing import Optional
from datasets import load_dataset
from transformers import HfArgumentParser
from vllm import LLM, SamplingParams
from trl import HfPairwiseJudge, OpenAIPairwiseJudge
"""
Examples:
python examples/scripts/evals/judge_tldr.py --model_name_or_path vwxyzjn/rloo_tldr --num_examples 1000
Model win rate: 31.40%
python examples/scripts/evals/judge_tldr.py --model_name_or_path vwxyzjn/rloo_tldr --judge_model gpt-3.5-turbo-0125 --num_examples 1000
Model win rate: 51.60%
python examples/scripts/evals/judge_tldr.py --model_name_or_path vwxyzjn/rloo_tldr --judge_model gpt-4o-mini --num_examples 1000
Model win rate: 51.20%
python examples/scripts/evals/judge_tldr.py --model_name_or_path vwxyzjn/ppo_tldr --num_examples 1000
Model win rate: 46.30%
python examples/scripts/evals/judge_tldr.py --model_name_or_path vwxyzjn/ppo_tldr --judge_model gpt-3.5-turbo-0125 --num_examples 1000
Model win rate: 52.50%
python examples/scripts/evals/judge_tldr.py --model_name_or_path vwxyzjn/ppo_tldr --judge_model gpt-4o-mini --num_examples 1000
Model win rate: 63.00%
"""
@dataclass
class ScriptArguments:
r"""
Arguments for the script.
Args:
model_name_or_path (`str`):
Model name or path to the model to evaluate.
judge_model (`str`, *optional*, defaults to `"meta-llama/Meta-Llama-3-70B-Instruct"`):
Model name or path to the model to use as a judge. E.g., 'gpt-3.5-turbo-0125' or
'meta-llama/Meta-Llama-3-70B-Instruct'.
num_examples (`int` or `None`, *optional*, defaults to `None`):
Number of examples to evaluate.
"""
model_name_or_path: str = field(metadata={"help": "Model name or path to the model to evaluate."})
judge_model: str = field(
default="meta-llama/Meta-Llama-3-70B-Instruct",
metadata={
"help": "Model name or path to the model to use as a judge. E.g., 'gpt-3.5-turbo-0125' or "
"'meta-llama/Meta-Llama-3-70B-Instruct'."
},
)
num_examples: Optional[int] = field(default=None, metadata={"help": "Number of examples to evaluate."})
# Parse the arguments
parser = HfArgumentParser(ScriptArguments)
script_args = parser.parse_args_into_dataclasses()[0]
# Load the dataset
dataset = load_dataset("trl-lib/tldr", split="validation")
if script_args.num_examples is not None:
dataset = dataset.select(range(script_args.num_examples))
# Extract the prompts and reference completions
prompts = dataset["prompt"]
reference_completions = dataset["completion"]
# Generate the model completions
sampling_params = SamplingParams(temperature=0.0, top_p=0.95, max_tokens=200) # very generous max token length
llm = LLM(model=script_args.model_name_or_path, tensor_parallel_size=1)
outputs = llm.generate(prompts, sampling_params)
model_completions = [output.outputs[0].text.strip() for output in outputs]
# Judge the outputs
if "gpt" in script_args.judge_model:
judge = OpenAIPairwiseJudge(script_args.judge_model)
else:
judge = HfPairwiseJudge(script_args.judge_model)
completions = [[c0, c1] for c0, c1 in zip(reference_completions, model_completions)]
best_idxs = judge.judge(prompts, completions)
model_win_rate = best_idxs.count(1) / len(best_idxs)
print(f"Model win rate: {model_win_rate*100:.2f}%")
| trl/examples/scripts/evals/judge_tldr.py/0 | {
"file_path": "trl/examples/scripts/evals/judge_tldr.py",
"repo_id": "trl",
"token_count": 1497
} |
[tool.ruff]
target-version = "py37"
line-length = 119
[tool.ruff.lint]
ignore = [
"B028", # warning without explicit stacklevel
"C408", # dict() calls (stylistic)
"C901", # function complexity
"E501",
]
extend-select = ["E", "F", "I", "W", "UP", "B", "T", "C"]
[tool.ruff.lint.per-file-ignores]
# Allow prints in auxiliary scripts
"examples/**.py" = ["T201"]
"scripts/**.py" = ["T201"]
# Ignore import violations in all `__init__.py` files.
"__init__.py" = ["F401"]
[tool.ruff.lint.isort]
lines-after-imports = 2
known-first-party = ["trl"]
| trl/pyproject.toml/0 | {
"file_path": "trl/pyproject.toml",
"repo_id": "trl",
"token_count": 227
} |
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import torch
from transformers import AutoTokenizer, GenerationConfig
from trl import AutoModelForCausalLMWithValueHead
from trl.core import LengthSampler
from trl.extras import BestOfNSampler
def queries_to_scores(list_of_strings):
return [torch.rand(1).item() for _ in list_of_strings]
class BestOfNSamplerTester(unittest.TestCase):
"""
Tests the BestOfNSampler class
"""
ref_model_name = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5"
output_length_sampler = LengthSampler(2, 6)
model = AutoModelForCausalLMWithValueHead.from_pretrained(ref_model_name)
tokenizer = AutoTokenizer.from_pretrained(ref_model_name)
tokenizer.pad_token = tokenizer.eos_token
output_length_sampler = LengthSampler(2, 6)
def test_different_input_types(self):
r"""
Tests if the different input types normalizer works
"""
generation_config = GenerationConfig(
min_length=-1,
top_k=0.0,
top_p=1.0,
do_sample=True,
pad_token_id=self.tokenizer.eos_token_id,
)
output_length_sampler = LengthSampler(2, 6)
best_of_n = BestOfNSampler(
self.model,
self.tokenizer,
queries_to_scores,
length_sampler=output_length_sampler,
generation_config=generation_config,
)
queries = ["hello world", "goodbye world"]
tokenized_queries = [self.tokenizer.encode(query) for query in queries]
various_queries_formats = [
(tokenized_queries[0], 1),
(tokenized_queries, 2),
(torch.tensor(tokenized_queries[1]), 1),
([torch.tensor(query) for query in tokenized_queries], 2),
]
for q, expected_length in various_queries_formats:
results = best_of_n.generate(q)
self.assertIsInstance(results, list)
self.assertEqual(len(results), expected_length)
def test_different_sample_sizes_and_n_candidates_values(self):
r"""
Tests different sample sizes and n_candidates values
"""
generation_config = GenerationConfig(
min_length=-1,
top_k=0.0,
top_p=1.0,
do_sample=True,
pad_token_id=self.tokenizer.eos_token_id,
)
output_length_sampler = LengthSampler(6, 10)
for sample_value, n_candidates_values, expected in [
(4, 2, 2),
(10, 3, 3),
(6, 4, 4),
]:
best_of_n = BestOfNSampler(
self.model,
self.tokenizer,
queries_to_scores,
length_sampler=output_length_sampler,
generation_config=generation_config,
sample_size=sample_value,
n_candidates=n_candidates_values,
)
queries = ["hello world", "troll the world"]
tokenized_queries = [self.tokenizer.encode(query) for query in queries]
results = best_of_n.generate(tokenized_queries)
for result in results:
self.assertEqual(len(result), expected)
| trl/tests/test_best_of_n_sampler.py/0 | {
"file_path": "trl/tests/test_best_of_n_sampler.py",
"repo_id": "trl",
"token_count": 1678
} |
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import unittest
from trl import AllTrueJudge, HfPairwiseJudge, PairRMJudge
from .testing_utils import RandomBinaryJudge, require_llm_blender
class TestJudges(unittest.TestCase):
def _get_prompts_and_pairwise_completions(self):
prompts = ["The capital of France is", "The biggest planet in the solar system is"]
completions = [["Paris", "Marseille"], ["Saturn", "Jupiter"]]
return prompts, completions
def _get_prompts_and_single_completions(self):
prompts = ["What's the capital of France?", "What's the color of the sky?"]
completions = ["Marseille", "blue"]
return prompts, completions
def test_all_true_judge(self):
judge = AllTrueJudge(judges=[RandomBinaryJudge(), RandomBinaryJudge()])
prompts, completions = self._get_prompts_and_single_completions()
judgements = judge.judge(prompts=prompts, completions=completions)
self.assertEqual(len(judgements), 2)
self.assertTrue(all(judgement in {0, 1, -1} for judgement in judgements))
@unittest.skip("This test needs to be run manually since it requires a valid Hugging Face API key.")
def test_hugging_face_judge(self):
judge = HfPairwiseJudge()
prompts, completions = self._get_prompts_and_pairwise_completions()
ranks = judge.judge(prompts=prompts, completions=completions)
self.assertEqual(len(ranks), 2)
self.assertTrue(all(isinstance(rank, int) for rank in ranks))
self.assertEqual(ranks, [0, 1])
def load_pair_rm_judge(self):
# When using concurrent tests, PairRM may fail to load the model while another job is still downloading.
# This is a workaround to retry loading the model a few times.
for _ in range(5):
try:
return PairRMJudge()
except ValueError:
time.sleep(5)
raise ValueError("Failed to load PairRMJudge")
@require_llm_blender
def test_pair_rm_judge(self):
judge = self.load_pair_rm_judge()
prompts, completions = self._get_prompts_and_pairwise_completions()
ranks = judge.judge(prompts=prompts, completions=completions)
self.assertEqual(len(ranks), 2)
self.assertTrue(all(isinstance(rank, int) for rank in ranks))
self.assertEqual(ranks, [0, 1])
@require_llm_blender
def test_pair_rm_judge_return_scores(self):
judge = self.load_pair_rm_judge()
prompts, completions = self._get_prompts_and_pairwise_completions()
probs = judge.judge(prompts=prompts, completions=completions, return_scores=True)
self.assertEqual(len(probs), 2)
self.assertTrue(all(isinstance(prob, float) for prob in probs))
self.assertTrue(all(0 <= prob <= 1 for prob in probs))
| trl/tests/test_judges.py/0 | {
"file_path": "trl/tests/test_judges.py",
"repo_id": "trl",
"token_count": 1297
} |
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest
from datasets import load_dataset
from parameterized import parameterized
from transformers import AutoModelForCausalLM, AutoModelForSequenceClassification, AutoTokenizer
from transformers.testing_utils import require_peft
from transformers.utils import is_peft_available
from trl import XPOConfig, XPOTrainer, is_llm_blender_available
from .testing_utils import RandomPairwiseJudge
if is_peft_available():
from peft import LoraConfig, get_peft_model
class TestXPOTrainer(unittest.TestCase):
def setUp(self):
self.model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5"
self.model = AutoModelForCausalLM.from_pretrained(self.model_id)
self.ref_model = AutoModelForCausalLM.from_pretrained(self.model_id)
self.reward_model = AutoModelForSequenceClassification.from_pretrained(self.model_id, num_labels=1)
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
self.tokenizer.pad_token = self.tokenizer.eos_token
@parameterized.expand([("standard_prompt_only",), ("conversational_prompt_only",)])
def test_xpo_trainer_training(self, config_name):
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = XPOConfig(
output_dir=tmp_dir,
per_device_train_batch_size=2,
max_steps=3,
remove_unused_columns=False,
gradient_accumulation_steps=1,
learning_rate=9e-1,
eval_strategy="steps",
report_to="none",
)
dummy_dataset = load_dataset("trl-internal-testing/zen", config_name)
trainer = XPOTrainer(
model=self.model,
ref_model=self.ref_model,
reward_model=self.reward_model,
args=training_args,
processing_class=self.tokenizer,
train_dataset=dummy_dataset["train"],
eval_dataset=dummy_dataset["test"],
)
trainer.train()
# Check if training loss is available
self.assertIn("train_loss", trainer.state.log_history[-1])
@require_peft
def test_training_with_peft(self):
lora_config = LoraConfig(r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM")
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = XPOConfig(
output_dir=tmp_dir,
per_device_train_batch_size=2,
max_steps=3,
learning_rate=5.0e-7,
eval_strategy="steps",
report_to="none",
)
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only")
trainer = XPOTrainer(
model=self.model,
reward_model=self.reward_model,
args=training_args,
processing_class=self.tokenizer,
train_dataset=dummy_dataset["train"],
eval_dataset=dummy_dataset["test"],
peft_config=lora_config,
)
trainer.train()
# Check if training loss is available
self.assertIn("train_loss", trainer.state.log_history[-1])
@require_peft
def test_training_with_peft_and_ref_model(self):
lora_config = LoraConfig(r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM")
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = XPOConfig(
output_dir=tmp_dir,
per_device_train_batch_size=2,
max_steps=3,
learning_rate=5.0e-7,
eval_strategy="steps",
report_to="none",
)
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only")
trainer = XPOTrainer(
model=self.model,
ref_model=self.ref_model,
reward_model=self.reward_model,
args=training_args,
processing_class=self.tokenizer,
train_dataset=dummy_dataset["train"],
eval_dataset=dummy_dataset["test"],
peft_config=lora_config,
)
trainer.train()
# Check if training loss is available
self.assertIn("train_loss", trainer.state.log_history[-1])
@require_peft
def test_training_with_peft_model_and_peft_config(self):
model_lora_config = LoraConfig(r=8, lora_alpha=16, lora_dropout=0.1, bias="none", task_type="CAUSAL_LM")
model = get_peft_model(self.model, model_lora_config)
# we want only the "train adapter" to be trained
lora_train_config = LoraConfig(r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM")
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = XPOConfig(
output_dir=tmp_dir,
per_device_train_batch_size=2,
max_steps=3,
learning_rate=5.0e-7,
eval_strategy="steps",
report_to="none",
)
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only")
trainer = XPOTrainer(
model=model,
reward_model=self.reward_model,
args=training_args,
processing_class=self.tokenizer,
train_dataset=dummy_dataset["train"],
eval_dataset=dummy_dataset["test"],
peft_config=lora_train_config,
)
trainer.train()
# Check if training loss is available
self.assertIn("train_loss", trainer.state.log_history[-1])
@unittest.skipIf(not is_llm_blender_available(), "llm-blender is not available")
@parameterized.expand([("standard_prompt_only",), ("conversational_prompt_only",)])
def test_xpo_trainer_judge_training(self, config_name):
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = XPOConfig(
output_dir=tmp_dir,
per_device_train_batch_size=2,
max_steps=3,
remove_unused_columns=False,
gradient_accumulation_steps=1,
learning_rate=9e-1,
eval_strategy="steps",
report_to="none",
)
dummy_dataset = load_dataset("trl-internal-testing/zen", config_name)
judge = RandomPairwiseJudge()
trainer = XPOTrainer(
model=self.model,
ref_model=self.ref_model,
judge=judge,
args=training_args,
processing_class=self.tokenizer,
train_dataset=dummy_dataset["train"],
eval_dataset=dummy_dataset["test"],
)
trainer.train()
# Check if training loss is available
self.assertIn("train_loss", trainer.state.log_history[-1])
| trl/tests/test_xpo_trainer.py/0 | {
"file_path": "trl/tests/test_xpo_trainer.py",
"repo_id": "trl",
"token_count": 3756
} |
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import logging
import os
from copy import deepcopy
from typing import Optional
import torch
import torch.nn as nn
from accelerate import PartialState
from huggingface_hub import hf_hub_download
from huggingface_hub.utils import (
EntryNotFoundError,
HFValidationError,
LocalEntryNotFoundError,
RepositoryNotFoundError,
)
from safetensors.torch import load_file as safe_load_file
from transformers import GenerationMixin, PreTrainedModel, is_torch_npu_available, is_torch_xpu_available
from transformers.utils import is_peft_available
if is_peft_available():
from peft import (
PeftConfig,
PeftModel,
PeftModelForCausalLM,
PeftModelForSeq2SeqLM,
PromptLearningConfig,
get_peft_model,
prepare_model_for_kbit_training,
)
from transformers.integrations.deepspeed import is_deepspeed_zero3_enabled
LAYER_PATTERNS = [
"transformer.h.{layer}",
"model.decoder.layers.{layer}",
"gpt_neox.layers.{layer}",
"model.layers.{layer}",
]
class PreTrainedModelWrapper(nn.Module):
r"""
A wrapper class around a (`transformers.PreTrainedModel`) to be compatible with the
(`~transformers.PreTrained`) class in order to keep some attributes and methods of the
(`~transformers.PreTrainedModel`) class.
Attributes:
pretrained_model (`transformers.PreTrainedModel`):
The model to be wrapped.
parent_class (`transformers.PreTrainedModel`):
The parent class of the model to be wrapped.
supported_args (`list`):
The list of arguments that are supported by the wrapper class.
"""
transformers_parent_class = None
supported_args = None
supported_modules = ("v_head",)
supported_rm_modules = ("score",)
supported_pretrained_model_architectures = (
(PreTrainedModel)
if not is_peft_available()
else (PreTrainedModel, PeftModelForCausalLM, PeftModelForSeq2SeqLM)
)
def __init__(
self, pretrained_model=None, score_module=None, supports_rm_adapter=False, rm_adapter_name=None, **kwargs
):
super().__init__()
self.pretrained_model = pretrained_model
self.config = pretrained_model.config
self.prepare_inputs_for_generation = pretrained_model.prepare_inputs_for_generation
self.is_loaded_in_8bit = getattr(pretrained_model, "is_loaded_in_8bit", False)
self.is_loaded_in_4bit = getattr(pretrained_model, "is_loaded_in_4bit", False)
self.is_sequential_parallel = False
if hasattr(pretrained_model, "gradient_checkpointing_disable"):
self.gradient_checkpointing_disable = pretrained_model.gradient_checkpointing_disable
if hasattr(pretrained_model, "gradient_checkpointing_enable"):
self.gradient_checkpointing_enable = pretrained_model.gradient_checkpointing_enable
if hasattr(pretrained_model, "enable_input_require_grads"):
self.enable_input_require_grads = pretrained_model.enable_input_require_grads
self.supports_rm_adapter = supports_rm_adapter
self.rm_adapter_name = rm_adapter_name
self.policy_adapter_name = "default"
if score_module is not None:
self.score = score_module
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
r"""
Instantiates a new model from a pretrained model from `transformers`. The
pretrained model is loaded using the `from_pretrained` method of the
`transformers.PreTrainedModel` class. The arguments that are specific to the
`transformers.PreTrainedModel` class are passed along this method and filtered
out from the `kwargs` argument.
Args:
pretrained_model_name_or_path (`str` or `transformers.PreTrainedModel`):
The path to the pretrained model or its name.
*model_args (`list`, *optional*)):
Additional positional arguments passed along to the underlying model's
`from_pretrained` method.
**kwargs (`dict`, *optional*):
Additional keyword arguments passed along to the underlying model's
`from_pretrained` method. We also pre-process the kwargs to extract
the arguments that are specific to the `transformers.PreTrainedModel`
class and the arguments that are specific to trl models. The kwargs
also support `prepare_model_for_kbit_training` arguments from
`peft` library.
"""
if kwargs is not None:
peft_config = kwargs.pop("peft_config", None)
reward_adapter = kwargs.pop("reward_adapter", None)
reward_adapter_name = kwargs.pop("reward_adapter_name", "reward_adapter")
is_trainable = kwargs.pop("is_trainable", False)
trl_model_args, pretrained_kwargs, peft_quantization_kwargs = cls._split_kwargs(kwargs)
token = pretrained_kwargs.get("token", None)
else:
peft_config = None
is_trainable = False
trl_model_args = {}
pretrained_kwargs = {}
peft_quantization_kwargs = {}
token = None
if reward_adapter is not None and not isinstance(reward_adapter, str):
raise ValueError(
"The `reward_adapter` argument should be a string representing the name of local path or the Hub id to the Reward Modeling adapter."
)
is_peft_model = False
current_device = cls._get_current_device()
if isinstance(pretrained_model_name_or_path, str):
is_loaded_in_8bit = pretrained_kwargs["load_in_8bit"] if "load_in_8bit" in pretrained_kwargs else False
is_loaded_in_4bit = pretrained_kwargs["load_in_4bit"] if "load_in_4bit" in pretrained_kwargs else False
else:
is_loaded_in_8bit = getattr(pretrained_model_name_or_path, "is_loaded_in_8bit", False)
is_loaded_in_4bit = getattr(pretrained_model_name_or_path, "is_loaded_in_4bit", False)
if (is_loaded_in_8bit or is_loaded_in_4bit) and "device_map" not in pretrained_kwargs:
# warn users
logging.warning(
"The `device_map` argument is not provided. We will override the device_map argument."
" to set the entire"
" model on the current device. If you want to set the model on multiple devices, please provide"
" a custom `device_map` argument."
)
pretrained_kwargs["device_map"] = {"": current_device}
if is_peft_available() and peft_config is not None and not isinstance(peft_config, PeftConfig):
raise ValueError("The `peft_config` argument should be an instance of `peft.PeftConfig` class.")
# First, load the pre-trained model using the parent-class
# either `AutoModelForCausalLM` or `AutoModelForSeq2SeqLM`
if isinstance(pretrained_model_name_or_path, str):
if is_peft_available():
try:
# If there is a trained peft adapter in the hub, load its config.
remote_adapter_config = hf_hub_download(
pretrained_model_name_or_path,
"adapter_config.json",
token=token,
)
except (EntryNotFoundError, LocalEntryNotFoundError, HFValidationError, RepositoryNotFoundError):
remote_adapter_config = None
else:
remote_adapter_config = None
local_adapter_present = os.path.exists(os.path.join(pretrained_model_name_or_path, "adapter_config.json"))
if (local_adapter_present or remote_adapter_config is not None) and is_peft_available():
if peft_config is not None:
logging.warning(
"`peft_config` argument ignored since a peft config file was found in "
f"{pretrained_model_name_or_path}"
)
# Load the trained peft adapter config
if local_adapter_present:
trained_adapter_config = PeftConfig.from_pretrained(pretrained_model_name_or_path)
else:
remote_adapter_dir = os.path.dirname(remote_adapter_config)
trained_adapter_config = PeftConfig.from_pretrained(remote_adapter_dir)
# Load the pretrained base model
pretrained_model = cls.transformers_parent_class.from_pretrained(
trained_adapter_config.base_model_name_or_path, *model_args, **pretrained_kwargs
)
# Wrap the pretrained model with the trained peft adapter
pretrained_model = PeftModel.from_pretrained(
pretrained_model, pretrained_model_name_or_path, is_trainable=is_trainable, token=token
)
logging.info("Trained peft adapter loaded")
else:
pretrained_model = cls.transformers_parent_class.from_pretrained(
pretrained_model_name_or_path, *model_args, **pretrained_kwargs
)
if peft_config is not None:
# Initialize a new peft adapter with the given config
if is_loaded_in_8bit or is_loaded_in_4bit:
pretrained_model = prepare_model_for_kbit_training(
pretrained_model,
**peft_quantization_kwargs,
)
pretrained_model = get_peft_model(pretrained_model, peft_config)
logging.info("peft adapter initialised")
elif isinstance(pretrained_model_name_or_path, cls.supported_pretrained_model_architectures):
pretrained_model = pretrained_model_name_or_path
if peft_config is not None and isinstance(pretrained_model, PreTrainedModel):
# Initialize a new peft adapter with the given config
if is_loaded_in_8bit or is_loaded_in_4bit:
pretrained_model = prepare_model_for_kbit_training(
pretrained_model,
**peft_quantization_kwargs,
)
pretrained_model = get_peft_model(pretrained_model, peft_config)
logging.info("peft adapter initialised")
else:
raise ValueError(
"pretrained_model_name_or_path should be a string or a PreTrainedModel, "
f"but is {type(pretrained_model_name_or_path)}"
)
if is_peft_available():
if isinstance(pretrained_model, PeftModel):
is_peft_model = True
# for backward compatibility
if hasattr(pretrained_model, "active_peft_config") and isinstance(
pretrained_model.active_peft_config, PromptLearningConfig
):
raise ValueError("PromptLearningConfig is not supported for PPO training.")
# Add reward modeling adapter if specified
if not is_peft_model and reward_adapter is not None:
raise ValueError("reward_adapter can only be used with a PeftModel. ")
elif is_peft_model and reward_adapter is not None:
score_module = cls.add_and_load_reward_modeling_adapter(
pretrained_model, reward_adapter, reward_adapter_name, token=token
)
multi_adapter_args = {
"score_module": score_module,
"supports_rm_adapter": True,
"rm_adapter_name": reward_adapter_name,
}
else:
multi_adapter_args = {"supports_rm_adapter": False}
# Then, create the full model by instantiating the wrapper class
model = cls(pretrained_model, **multi_adapter_args, **trl_model_args)
# if resume_training, load the state_dict again - this is ok since the
# state_dict is removed from the model after loading it.
is_resuming_training = True
if isinstance(pretrained_model_name_or_path, str):
safe_filename = os.path.join(pretrained_model_name_or_path, "model.safetensors")
filename = os.path.join(pretrained_model_name_or_path, "pytorch_model.bin")
sharded_index_filename = os.path.join(pretrained_model_name_or_path, "pytorch_model.bin.index.json")
safe_sharded_index_filename = os.path.join(pretrained_model_name_or_path, "model.safetensors.index.json")
is_sharded = False
use_safe = os.path.exists(safe_filename)
if not (os.path.exists(filename) or os.path.exists(safe_filename)):
# Try with `pytorch_model.bin`
filename, files_to_download, is_sharded, is_resuming_training = cls._get_checkpoint_from_hub(
pretrained_model,
pretrained_model_name_or_path,
sharded_index_filename,
token=token,
)
# Try with safetensors
if filename is None and files_to_download is None:
safe_filename, files_to_download, is_sharded, is_resuming_training = cls._get_checkpoint_from_hub(
pretrained_model,
pretrained_model_name_or_path,
safe_sharded_index_filename,
token=token,
model_name="model.safetensors",
model_index_name="model.safetensors.index.json",
)
use_safe = True
else:
use_safe = False
loading_func = safe_load_file if use_safe else torch.load
load_kwargs = {} if use_safe else {"map_location": "cpu", "weights_only": True}
if is_resuming_training:
if is_sharded:
# download each file and add it to the state_dict
state_dict = {}
for shard_file in files_to_download:
filename = hf_hub_download(
pretrained_model_name_or_path,
shard_file,
token=token,
)
state_dict.update(loading_func(filename, **load_kwargs))
else:
state_dict = loading_func(filename if not use_safe else safe_filename, **load_kwargs)
else:
state_dict = pretrained_model_name_or_path.state_dict()
model.is_peft_model = is_peft_model
model.current_device = current_device
if is_resuming_training:
model.post_init(state_dict=state_dict)
return model
@classmethod
def _get_checkpoint_from_hub(
cls,
pretrained_model,
pretrained_model_name_or_path,
index_filename,
token=None,
model_name="pytorch_model.bin",
model_index_name="pytorch_model.bin.index.json",
):
files_to_download = None
filename = None
is_resuming_training = True
is_sharded = False
try:
filename = hf_hub_download(
pretrained_model_name_or_path,
model_name,
token=token,
)
# sharded
except (EntryNotFoundError, LocalEntryNotFoundError, HFValidationError, RepositoryNotFoundError):
if os.path.exists(index_filename):
index_file_name = index_filename
else:
try:
index_file_name = hf_hub_download(
pretrained_model_name_or_path,
model_index_name,
token=token,
)
except (EntryNotFoundError, LocalEntryNotFoundError, HFValidationError, RepositoryNotFoundError):
# not continue training, do not have v_head weight
is_resuming_training = False
logging.warning(
f"A {type(pretrained_model)} model is loaded from '{pretrained_model_name_or_path}', "
f"and no v_head weight is found. This IS expected if you are not resuming PPO training."
)
# load json
if is_resuming_training:
with open(index_file_name) as f:
index = json.load(f)
# check filename with `v_head` or any known extra module:
files_to_download = set()
for k, v in index["weight_map"].items():
if any(module in k for module in cls.supported_modules):
files_to_download.add(v)
is_sharded = True
return filename, files_to_download, is_sharded, is_resuming_training
@classmethod
def _get_current_device(cls):
r"""
Get the current device. For GPU, we return the local process index using the `accelerate.PartialState`
object to handle corner cases when running scripts in distributed environments.
Returns:
current_device (`Union[int, str]`):
The current device.
"""
state = PartialState()
if is_torch_xpu_available():
return f"xpu:{state.local_process_index}"
elif is_torch_npu_available():
return f"npu:{state.local_process_index}"
else:
return state.local_process_index if torch.cuda.is_available() else "cpu"
@classmethod
def _split_kwargs(cls, kwargs):
"""
Separate the kwargs from the arguments that we support inside
`supported_args` and the ones that we don't.
"""
check_peft_kwargs = False
if is_peft_available():
from peft import prepare_model_for_kbit_training
check_peft_kwargs = True
supported_kwargs = {}
unsupported_kwargs = {}
peft_kwargs = {}
for key, value in kwargs.items():
if key in cls.supported_args:
supported_kwargs[key] = value
else:
unsupported_kwargs[key] = value
if check_peft_kwargs:
if key in prepare_model_for_kbit_training.__code__.co_varnames:
peft_kwargs[key] = value
if key in unsupported_kwargs:
unsupported_kwargs.pop(key)
return supported_kwargs, unsupported_kwargs, peft_kwargs
@classmethod
def add_and_load_reward_modeling_adapter(
cls, pretrained_model, adapter_model_id, adapter_name="reward_model_adapter", token=None
):
r"""
Add and load a reward modeling adapter. This method can only be used if the
model is a `PeftModel` and if you have initialized the model with the `reward_modeling_adapter_id`
argument, pointing to the id of the reward modeling adapter. The latest needs also to contain the
score head in order to produce the reward.
"""
pretrained_model.load_adapter(adapter_model_id, adapter_name, is_trainable=False)
pretrained_model.train()
filename = os.path.join(adapter_model_id, "adapter_model.bin")
safe_loading = False
if not os.path.exists(filename):
try:
local_filename = hf_hub_download(
adapter_model_id,
"adapter_model.bin",
token=token,
)
except Exception:
filename = os.path.join(adapter_model_id, "adapter_model.safetensors")
safe_loading = True
if not os.path.exists(filename):
try:
local_filename = hf_hub_download(
adapter_model_id,
"adapter_model.safetensors",
token=token,
)
except Exception as exc:
raise ValueError(
"Could not find adapter model in the Hub, "
"make sure you have the correct adapter model id."
) from exc
else:
local_filename = filename
else:
local_filename = filename
loading_func = safe_load_file if safe_loading else torch.load
load_kwargs = {} if safe_loading else {"map_location": "cpu", "weights_only": True}
adapter_state_dict = loading_func(local_filename, **load_kwargs)
for score_name_candidate in cls.supported_rm_modules:
if any(score_name_candidate in name for name in adapter_state_dict.keys()):
score_name = score_name_candidate
# we have found the correct head name and can break
break
score_dict = {}
for name, param in adapter_state_dict.items():
if score_name in name:
key_name = ".".join(name.split(".")[-1:])
score_dict[key_name] = param.to(cls._get_current_device())
num_labels, hidden_dim = score_dict["weight"].shape
has_bias = any("bias" in name for name in adapter_state_dict.keys())
score = nn.Linear(hidden_dim, num_labels, bias=has_bias).to(
device=cls._get_current_device(),
dtype=pretrained_model.dtype,
)
score.load_state_dict(score_dict)
for param in score.parameters():
param.requires_grad = False
return score
def push_to_hub(self, *args, **kwargs):
r"""
Push the pretrained model to the hub. This method is a wrapper around
`transformers.PreTrainedModel.push_to_hub`. Please refer to the documentation
of `transformers.PreTrainedModel.push_to_hub` for more information.
Args:
*args (`list`, *optional*):
Positional arguments passed along to the underlying model's
`push_to_hub` method.
**kwargs (`dict`, *optional*):
Keyword arguments passed along to the underlying model's
`push_to_hub` method.
"""
raise NotImplementedError
def save_pretrained(self, *args, **kwargs):
r"""
Save the pretrained model to a directory. This method is a wrapper around
`transformers.PreTrainedModel.save_pretrained`. Please refer to the documentation
of `transformers.PreTrainedModel.save_pretrained` for more information.
Args:
*args (`list`, *optional*):
Positional arguments passed along to the underlying model's
`save_pretrained` method.
**kwargs (`dict`, *optional*):
Keyword arguments passed along to the underlying model's
`save_pretrained` method.
"""
state_dict = kwargs.get("state_dict")
if state_dict is None:
state_dict = self.state_dict()
kwargs["state_dict"] = state_dict
# if it is a peft model only save the `v_head` state_dict and
# pop the `state_dict` from the kwargs to avoid slient bugs with `peft`
if self.is_peft_model:
save_path = args[0]
save_path = os.path.join(save_path, "pytorch_model.bin")
torch.save(state_dict, save_path)
_ = kwargs.pop("state_dict", None)
return self.pretrained_model.save_pretrained(*args, **kwargs)
def state_dict(self, *args, **kwargs):
r"""
Return the state_dict of the pretrained model.
"""
raise NotImplementedError
def post_init(self, *args, **kwargs):
r"""
Post initialization method. This method is called after the model is
instantiated and loaded from a checkpoint. It can be used to perform
additional operations such as loading the state_dict.
"""
raise NotImplementedError
def compute_reward_score(self, input_ids, attention_mask=None, **kwargs):
r"""
Computes the reward score for a given input. The method has first to enable the adapter
and then compute the reward score. After that the model disables the reward modeling
adapter and enables the default ppo adapter again.
"""
if not self.supports_rm_adapter:
raise ValueError("This model does not support reward modeling adapter.")
# enable rm adapter
self.pretrained_model.set_adapter(self.rm_adapter_name)
self.pretrained_model.eval()
with torch.no_grad():
base_model_output = self.pretrained_model(
input_ids=input_ids,
attention_mask=attention_mask,
output_hidden_states=True,
return_dict=True,
**kwargs,
)
last_hidden_states = base_model_output.hidden_states[-1]
scores = self.score(last_hidden_states)
self.pretrained_model.set_adapter(self.policy_adapter_name)
self.pretrained_model.eval()
return scores
def create_reference_model(
model: PreTrainedModelWrapper, num_shared_layers: Optional[int] = None, pattern: Optional[str] = None
) -> PreTrainedModelWrapper:
"""
Creates a static reference copy of a model. Note that model will be in `.eval()` mode.
Args:
model (`PreTrainedModelWrapper`): The model to be copied.
num_shared_layers (`int`, *optional*): The number of initial layers that are shared between both models and kept frozen.
pattern (`str`, *optional*): The shared layers are selected with a string pattern
(e.g. "transformer.h.{layer}" for GPT2) and if a custom pattern is necessary it can be passed here.
Returns:
`PreTrainedModelWrapper`
"""
if is_deepspeed_zero3_enabled():
raise ValueError(
"DeepSpeed ZeRO-3 is enabled and is not compatible with `create_reference_model()`. Please instantiate your reference model directly with `AutoModelForCausalLM.from_pretrained()`."
)
parameter_names = [n for n, _ in model.named_parameters()]
ref_model = deepcopy(model)
# if no layers are shared, return copy of model
if num_shared_layers is None:
for param_name in parameter_names:
param = ref_model.get_parameter(param_name)
param.requires_grad = False
return ref_model.eval()
# identify layer name pattern
if pattern is not None:
pattern = pattern.format(layer=num_shared_layers)
else:
for pattern_candidate in LAYER_PATTERNS:
pattern_candidate = pattern_candidate.format(layer=num_shared_layers)
if any(pattern_candidate in name for name in parameter_names):
pattern = pattern_candidate
break
if pattern is None:
raise ValueError("Layer pattern could not be matched.")
# divide parameters in shared and unshared parameter lists
shared_param_list = []
unshared_param_list = []
shared_parameter = True
for name, _param in model.named_parameters():
if pattern in name:
shared_parameter = False
if shared_parameter:
shared_param_list.append(name)
else:
unshared_param_list.append(name)
# create reference of the original parameter if they are shared
for param_name in shared_param_list:
param = model.get_parameter(param_name)
param.requires_grad = False
_ref_param = ref_model.get_parameter(param_name)
# for all other parameters just make sure they don't use gradients
for param_name in unshared_param_list:
param = ref_model.get_parameter(param_name)
param.requires_grad = False
if pattern is not None and len(unshared_param_list) == 0:
logging.warning("Pattern passed or found, but no layers matched in the model. Check for a typo.")
return ref_model.eval()
class GeometricMixtureWrapper(GenerationMixin):
r"""
Geometric Mixture generation wrapper that samples from the logits of two model's geometric mixture.
Args:
model (`PreTrainedModel`): The model to be wrapped.
ref_model (`PreTrainedModel`): The reference model.
generation_config (`GenerationConfig`): The generation config.
mixture_coef (`float`, *optional* - default: 0.5): The mixture coefficient.
"""
main_input_name = "input_ids"
_supports_cache_class = False
_supports_static_cache = False
def __init__(self, model, ref_model, generation_config, mixture_coef=0.5, device=None):
super().__init__()
self.model = model
self.config = model.config
self.ref_model = ref_model
self.generation_config = generation_config
self.mixture_coef = mixture_coef
self.device = device
def __call__(self, *args, **kwargs):
return self.forward(*args, **kwargs)
@torch.inference_mode()
def forward(self, *args, **kwargs):
model_outputs = self.model(*args, **kwargs)
model_logits = model_outputs.logits
ref_model_logits = self.ref_model(*args, **kwargs).logits
model_outputs.logits = torch.nn.functional.log_softmax(
self.mixture_coef * ref_model_logits + (1 - self.mixture_coef) * model_logits, dim=-1
)
return model_outputs
def prepare_inputs_for_generation(self, *args, **kwargs):
# turn off cache in the generation config
kwargs["use_cache"] = False
model_inputs = self.model.prepare_inputs_for_generation(*args, **kwargs)
_ = self.ref_model.prepare_inputs_for_generation(*args, **kwargs)
return model_inputs
def _validate_model_class(self):
self.model._validate_model_class()
def _validate_model_kwargs(self, model_kwargs):
return self.model._validate_model_kwargs(model_kwargs)
| trl/trl/models/modeling_base.py/0 | {
"file_path": "trl/trl/models/modeling_base.py",
"repo_id": "trl",
"token_count": 13951
} |
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import textwrap
from collections import defaultdict
from typing import Any, Callable, Optional, Union
from warnings import warn
import torch
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed
from huggingface_hub import PyTorchModelHubMixin
from transformers import is_wandb_available
from ..models import DDPOStableDiffusionPipeline
from .alignprop_config import AlignPropConfig
from .utils import generate_model_card, get_comet_experiment_url
if is_wandb_available():
import wandb
logger = get_logger(__name__)
class AlignPropTrainer(PyTorchModelHubMixin):
"""
The AlignPropTrainer uses Deep Diffusion Policy Optimization to optimise diffusion models.
Note, this trainer is heavily inspired by the work here: https://github.com/mihirp1998/AlignProp/
As of now only Stable Diffusion based pipelines are supported
Attributes:
config (`AlignPropConfig`):
Configuration object for AlignPropTrainer. Check the documentation of `PPOConfig` for more details.
reward_function (`Callable[[torch.Tensor, tuple[str], tuple[Any]], torch.Tensor]`):
Reward function to be used
prompt_function (`Callable[[], tuple[str, Any]]`):
Function to generate prompts to guide model
sd_pipeline (`DDPOStableDiffusionPipeline`):
Stable Diffusion pipeline to be used for training.
image_samples_hook (`Optional[Callable[[Any, Any, Any], Any]]`):
Hook to be called to log images
"""
_tag_names = ["trl", "alignprop"]
def __init__(
self,
config: AlignPropConfig,
reward_function: Callable[[torch.Tensor, tuple[str], tuple[Any]], torch.Tensor],
prompt_function: Callable[[], tuple[str, Any]],
sd_pipeline: DDPOStableDiffusionPipeline,
image_samples_hook: Optional[Callable[[Any, Any, Any], Any]] = None,
):
if image_samples_hook is None:
warn("No image_samples_hook provided; no images will be logged")
self.prompt_fn = prompt_function
self.reward_fn = reward_function
self.config = config
self.image_samples_callback = image_samples_hook
accelerator_project_config = ProjectConfiguration(**self.config.project_kwargs)
if self.config.resume_from:
self.config.resume_from = os.path.normpath(os.path.expanduser(self.config.resume_from))
if "checkpoint_" not in os.path.basename(self.config.resume_from):
# get the most recent checkpoint in this directory
checkpoints = list(
filter(
lambda x: "checkpoint_" in x,
os.listdir(self.config.resume_from),
)
)
if len(checkpoints) == 0:
raise ValueError(f"No checkpoints found in {self.config.resume_from}")
checkpoint_numbers = sorted([int(x.split("_")[-1]) for x in checkpoints])
self.config.resume_from = os.path.join(
self.config.resume_from,
f"checkpoint_{checkpoint_numbers[-1]}",
)
accelerator_project_config.iteration = checkpoint_numbers[-1] + 1
self.accelerator = Accelerator(
log_with=self.config.log_with,
mixed_precision=self.config.mixed_precision,
project_config=accelerator_project_config,
# we always accumulate gradients across timesteps; we want config.train.gradient_accumulation_steps to be the
# number of *samples* we accumulate across, so we need to multiply by the number of training timesteps to get
# the total number of optimizer steps to accumulate across.
gradient_accumulation_steps=self.config.train_gradient_accumulation_steps,
**self.config.accelerator_kwargs,
)
is_using_tensorboard = config.log_with is not None and config.log_with == "tensorboard"
if self.accelerator.is_main_process:
self.accelerator.init_trackers(
self.config.tracker_project_name,
config=dict(alignprop_trainer_config=config.to_dict())
if not is_using_tensorboard
else config.to_dict(),
init_kwargs=self.config.tracker_kwargs,
)
logger.info(f"\n{config}")
set_seed(self.config.seed, device_specific=True)
self.sd_pipeline = sd_pipeline
self.sd_pipeline.set_progress_bar_config(
position=1,
disable=not self.accelerator.is_local_main_process,
leave=False,
desc="Timestep",
dynamic_ncols=True,
)
# For mixed precision training we cast all non-trainable weights (vae, non-lora text_encoder and non-lora unet) to half-precision
# as these weights are only used for inference, keeping weights in full precision is not required.
if self.accelerator.mixed_precision == "fp16":
inference_dtype = torch.float16
elif self.accelerator.mixed_precision == "bf16":
inference_dtype = torch.bfloat16
else:
inference_dtype = torch.float32
self.sd_pipeline.vae.to(self.accelerator.device, dtype=inference_dtype)
self.sd_pipeline.text_encoder.to(self.accelerator.device, dtype=inference_dtype)
self.sd_pipeline.unet.to(self.accelerator.device, dtype=inference_dtype)
trainable_layers = self.sd_pipeline.get_trainable_layers()
self.accelerator.register_save_state_pre_hook(self._save_model_hook)
self.accelerator.register_load_state_pre_hook(self._load_model_hook)
# Enable TF32 for faster training on Ampere GPUs,
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
if self.config.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
self.optimizer = self._setup_optimizer(
trainable_layers.parameters() if not isinstance(trainable_layers, list) else trainable_layers
)
self.neg_prompt_embed = self.sd_pipeline.text_encoder(
self.sd_pipeline.tokenizer(
[""] if self.config.negative_prompts is None else self.config.negative_prompts,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=self.sd_pipeline.tokenizer.model_max_length,
).input_ids.to(self.accelerator.device)
)[0]
# NOTE: for some reason, autocast is necessary for non-lora training but for lora training it isn't necessary and it uses
# more memory
self.autocast = self.sd_pipeline.autocast or self.accelerator.autocast
if hasattr(self.sd_pipeline, "use_lora") and self.sd_pipeline.use_lora:
unet, self.optimizer = self.accelerator.prepare(trainable_layers, self.optimizer)
self.trainable_layers = list(filter(lambda p: p.requires_grad, unet.parameters()))
else:
self.trainable_layers, self.optimizer = self.accelerator.prepare(trainable_layers, self.optimizer)
if config.resume_from:
logger.info(f"Resuming from {config.resume_from}")
self.accelerator.load_state(config.resume_from)
self.first_epoch = int(config.resume_from.split("_")[-1]) + 1
else:
self.first_epoch = 0
def compute_rewards(self, prompt_image_pairs):
reward, reward_metadata = self.reward_fn(
prompt_image_pairs["images"], prompt_image_pairs["prompts"], prompt_image_pairs["prompt_metadata"]
)
return reward
def step(self, epoch: int, global_step: int):
"""
Perform a single step of training.
Args:
epoch (int): The current epoch.
global_step (int): The current global step.
Side Effects:
- Model weights are updated
- Logs the statistics to the accelerator trackers.
- If `self.image_samples_callback` is not None, it will be called with the prompt_image_pairs, global_step, and the accelerator tracker.
Returns:
global_step (int): The updated global step.
"""
info = defaultdict(list)
self.sd_pipeline.unet.train()
for _ in range(self.config.train_gradient_accumulation_steps):
with self.accelerator.accumulate(self.sd_pipeline.unet), self.autocast(), torch.enable_grad():
prompt_image_pairs = self._generate_samples(
batch_size=self.config.train_batch_size,
)
rewards = self.compute_rewards(prompt_image_pairs)
prompt_image_pairs["rewards"] = rewards
rewards_vis = self.accelerator.gather(rewards).detach().cpu().numpy()
loss = self.calculate_loss(rewards)
self.accelerator.backward(loss)
if self.accelerator.sync_gradients:
self.accelerator.clip_grad_norm_(
self.trainable_layers.parameters()
if not isinstance(self.trainable_layers, list)
else self.trainable_layers,
self.config.train_max_grad_norm,
)
self.optimizer.step()
self.optimizer.zero_grad()
info["reward_mean"].append(rewards_vis.mean())
info["reward_std"].append(rewards_vis.std())
info["loss"].append(loss.item())
# Checks if the accelerator has performed an optimization step behind the scenes
if self.accelerator.sync_gradients:
# log training-related stuff
info = {k: torch.mean(torch.tensor(v)) for k, v in info.items()}
info = self.accelerator.reduce(info, reduction="mean")
info.update({"epoch": epoch})
self.accelerator.log(info, step=global_step)
global_step += 1
info = defaultdict(list)
else:
raise ValueError(
"Optimization step should have been performed by this point. Please check calculated gradient accumulation settings."
)
# Logs generated images
if self.image_samples_callback is not None and global_step % self.config.log_image_freq == 0:
self.image_samples_callback(prompt_image_pairs, global_step, self.accelerator.trackers[0])
if epoch != 0 and epoch % self.config.save_freq == 0 and self.accelerator.is_main_process:
self.accelerator.save_state()
return global_step
def calculate_loss(self, rewards):
"""
Calculate the loss for a batch of an unpacked sample
Args:
rewards (torch.Tensor):
Differentiable reward scalars for each generated image, shape: [batch_size]
Returns:
loss (torch.Tensor)
(all of these are of shape (1,))
"""
# Loss is specific to Aesthetic Reward function used in AlignProp (https://huggingface.co/papers/2310.03739)
loss = 10.0 - (rewards).mean()
return loss
def loss(
self,
advantages: torch.Tensor,
clip_range: float,
ratio: torch.Tensor,
):
unclipped_loss = -advantages * ratio
clipped_loss = -advantages * torch.clamp(
ratio,
1.0 - clip_range,
1.0 + clip_range,
)
return torch.mean(torch.maximum(unclipped_loss, clipped_loss))
def _setup_optimizer(self, trainable_layers_parameters):
if self.config.train_use_8bit_adam:
import bitsandbytes
optimizer_cls = bitsandbytes.optim.AdamW8bit
else:
optimizer_cls = torch.optim.AdamW
return optimizer_cls(
trainable_layers_parameters,
lr=self.config.train_learning_rate,
betas=(self.config.train_adam_beta1, self.config.train_adam_beta2),
weight_decay=self.config.train_adam_weight_decay,
eps=self.config.train_adam_epsilon,
)
def _save_model_hook(self, models, weights, output_dir):
self.sd_pipeline.save_checkpoint(models, weights, output_dir)
weights.pop() # ensures that accelerate doesn't try to handle saving of the model
def _load_model_hook(self, models, input_dir):
self.sd_pipeline.load_checkpoint(models, input_dir)
models.pop() # ensures that accelerate doesn't try to handle loading of the model
def _generate_samples(self, batch_size, with_grad=True, prompts=None):
"""
Generate samples from the model
Args:
batch_size (int): Batch size to use for sampling
with_grad (bool): Whether the generated RGBs should have gradients attached to it.
Returns:
prompt_image_pairs (dict[Any])
"""
prompt_image_pairs = {}
sample_neg_prompt_embeds = self.neg_prompt_embed.repeat(batch_size, 1, 1)
if prompts is None:
prompts, prompt_metadata = zip(*[self.prompt_fn() for _ in range(batch_size)])
else:
prompt_metadata = [{} for _ in range(batch_size)]
prompt_ids = self.sd_pipeline.tokenizer(
prompts,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=self.sd_pipeline.tokenizer.model_max_length,
).input_ids.to(self.accelerator.device)
prompt_embeds = self.sd_pipeline.text_encoder(prompt_ids)[0]
if with_grad:
sd_output = self.sd_pipeline.rgb_with_grad(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=sample_neg_prompt_embeds,
num_inference_steps=self.config.sample_num_steps,
guidance_scale=self.config.sample_guidance_scale,
eta=self.config.sample_eta,
truncated_backprop_rand=self.config.truncated_backprop_rand,
truncated_backprop_timestep=self.config.truncated_backprop_timestep,
truncated_rand_backprop_minmax=self.config.truncated_rand_backprop_minmax,
output_type="pt",
)
else:
sd_output = self.sd_pipeline(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=sample_neg_prompt_embeds,
num_inference_steps=self.config.sample_num_steps,
guidance_scale=self.config.sample_guidance_scale,
eta=self.config.sample_eta,
output_type="pt",
)
images = sd_output.images
prompt_image_pairs["images"] = images
prompt_image_pairs["prompts"] = prompts
prompt_image_pairs["prompt_metadata"] = prompt_metadata
return prompt_image_pairs
def train(self, epochs: Optional[int] = None):
"""
Train the model for a given number of epochs
"""
global_step = 0
if epochs is None:
epochs = self.config.num_epochs
for epoch in range(self.first_epoch, epochs):
global_step = self.step(epoch, global_step)
def _save_pretrained(self, save_directory):
self.sd_pipeline.save_pretrained(save_directory)
self.create_model_card()
def create_model_card(
self,
model_name: Optional[str] = None,
dataset_name: Optional[str] = None,
tags: Union[str, list[str], None] = None,
):
"""
Creates a draft of a model card using the information available to the `Trainer`.
Args:
model_name (`str` or `None`, *optional*, defaults to `None`):
Name of the model.
dataset_name (`str` or `None`, *optional*, defaults to `None`):
Name of the dataset used for training.
tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`):
Tags to be associated with the model card.
"""
if not self.is_world_process_zero():
return
if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path):
base_model = self.model.config._name_or_path
else:
base_model = None
tags = tags or []
if isinstance(tags, str):
tags = [tags]
if hasattr(self.model.config, "unsloth_version"):
tags.append("unsloth")
citation = textwrap.dedent("""\
@article{prabhudesai2024aligning,
title = {{Aligning Text-to-Image Diffusion Models with Reward Backpropagation}},
author = {Mihir Prabhudesai and Anirudh Goyal and Deepak Pathak and Katerina Fragkiadaki},
year = 2024,
eprint = {arXiv:2310.03739}
}""")
model_card = generate_model_card(
base_model=base_model,
model_name=model_name,
hub_model_id=self.hub_model_id,
dataset_name=dataset_name,
tags=tags,
wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None,
comet_url=get_comet_experiment_url(),
trainer_name="AlignProp",
trainer_citation=citation,
paper_title="Aligning Text-to-Image Diffusion Models with Reward Backpropagation",
paper_id="2310.03739",
)
model_card.save(os.path.join(self.args.output_dir, "README.md"))
| trl/trl/trainer/alignprop_trainer.py/0 | {
"file_path": "trl/trl/trainer/alignprop_trainer.py",
"repo_id": "trl",
"token_count": 8255
} |
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
from typing import Any, Optional
from transformers import TrainingArguments
@dataclass
class KTOConfig(TrainingArguments):
r"""
Configuration class for the [`KTOTrainer`].
Using [`~transformers.HfArgumentParser`] we can turn this class into
[argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the
command line.
Parameters:
learning_rate (`float`, *optional*, defaults to `5e-7`):
Initial learning rate for [`AdamW`] optimizer. The default value replaces that of
[`~transformers.TrainingArguments`].
max_length (`int` or `None`, *optional*, defaults to `1024`):
Maximum length of the sequences (prompt + completion) in the batch. This argument is required if you want
to use the default data collator.
max_prompt_length (`int` or `None`, *optional*, defaults to `512`):
Maximum length of the prompt. This argument is required if you want to use the default data collator.
max_completion_length (`int` or `None`, *optional*, defaults to `None`):
Maximum length of the completion. This argument is required if you want to use the default data collator
and your model is an encoder-decoder.
beta (`float`, *optional*, defaults to `0.1`):
Parameter controlling the deviation from the reference model. Higher β means less deviation from the
reference model.
loss_type (`str`, *optional*, defaults to `"kto"`):
Type of loss to use. Possible values are:
- `"kto"`: KTO loss from the [KTO](https://huggingface.co/papers/2402.01306) paper.
- `"apo_zero_unpaired"`: Unpaired variant of APO-zero loss from the [APO](https://huggingface.co/papers/2408.06266) paper.
desirable_weight (`float`, *optional*, defaults to `1.0`):
Desirable losses are weighed by this factor to counter unequal number of desirable and undesirable paris.
undesirable_weight (`float`, *optional*, defaults to `1.0`):
Undesirable losses are weighed by this factor to counter unequal number of desirable and undesirable pairs.
label_pad_token_id (`int`, *optional*, defaults to `-100`):
Label pad token id. This argument is required if you want to use the default data collator.
padding_value (`int` or `None`, *optional*, defaults to `None`):
Padding value to use. If `None`, the padding value of the tokenizer is used.
truncation_mode (`str`, *optional*, defaults to `"keep_end"`):
Truncation mode to use when the prompt is too long. Possible values are `"keep_end"` or `"keep_start"`.
This argument is required if you want to use the default data collator.
generate_during_eval (`bool`, *optional*, defaults to `False`):
If `True`, generates and logs completions from both the model and the reference model to W&B or Comet during
evaluation.
is_encoder_decoder (`bool` or `None`, *optional*, defaults to `None`):
When using the `model_init` argument (callable) to instantiate the model instead of the `model` argument,
you need to specify if the model returned by the callable is an encoder-decoder model.
precompute_ref_log_probs (`bool`, *optional*, defaults to `False`):
Whether to precompute reference model log probabilities for training and evaluation datasets. This is
useful when training without the reference model to reduce the total GPU memory needed.
model_init_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`):
Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the model from a
string.
ref_model_init_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`):
Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the reference model
from a string.
dataset_num_proc: (`int` or `None`, *optional*, defaults to `None`):
Number of processes to use for processing the dataset.
disable_dropout (`bool`, *optional*, defaults to `True`):
Whether to disable dropout in the model and reference model.
"""
learning_rate: float = field(
default=1e-6,
metadata={
"help": "Initial learning rate for `AdamW` optimizer. The default value replaces that of "
"`transformers.TrainingArguments`."
},
)
max_length: Optional[int] = field(
default=1024,
metadata={"help": "Maximum length of the sequences (prompt + completion) in the batch."},
)
max_prompt_length: Optional[int] = field(
default=512,
metadata={
"help": "Maximum length of the prompt. This argument is required if you want to use the default data "
"collator and your model is an encoder-decoder."
},
)
max_completion_length: Optional[int] = field(
default=None,
metadata={
"help": "Maximum length of the completion. This argument is required if you want to use the default data "
"collator and your model is an encoder-decoder."
},
)
beta: float = field(
default=0.1,
metadata={
"help": "Parameter controlling the deviation from the reference model. Higher β means less deviation from "
"the reference model."
},
)
loss_type: str = field(
default="kto",
metadata={
"help": "Type of loss to use.",
"choices": ["kto", "apo_zero_unpaired"],
},
)
desirable_weight: float = field(
default=1.0,
metadata={
"help": "Desirable losses are weighed by this factor to counter unequal number of desirable and "
"undesirable pairs.",
},
)
undesirable_weight: float = field(
default=1.0,
metadata={
"help": "Undesirable losses are weighed by this factor to counter unequal number of desirable and "
"undesirable pairs.",
},
)
label_pad_token_id: int = field(
default=-100,
metadata={
"help": "Label pad token id. This argument is required if you want to use the default data collator."
},
)
padding_value: Optional[int] = field(
default=None,
metadata={"help": "Padding value to use. If `None`, the padding value of the tokenizer is used."},
)
truncation_mode: str = field(
default="keep_end",
metadata={
"help": "Truncation mode to use when the prompt is too long.",
"choices": ["keep_end", "keep_start"],
},
)
generate_during_eval: bool = field(
default=False,
metadata={
"help": "If `True`, generates and logs completions from both the model and the reference model to W&B "
"during evaluation."
},
)
is_encoder_decoder: Optional[bool] = field(
default=None,
metadata={
"help": "When using the `model_init` argument (callable) to instantiate the model instead of the `model` "
"argument, you need to specify if the model returned by the callable is an encoder-decoder model."
},
)
disable_dropout: bool = field(
default=True,
metadata={"help": "Whether to disable dropout in the model."},
)
precompute_ref_log_probs: bool = field(
default=False,
metadata={
"help": "Whether to precompute reference model log probabilities for training and evaluation datasets. "
"This is useful when training without the reference model to reduce the total GPU memory needed."
},
)
model_init_kwargs: Optional[dict[str, Any]] = field(
default=None,
metadata={
"help": "Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the model "
"from a string."
},
)
ref_model_init_kwargs: Optional[dict[str, Any]] = field(
default=None,
metadata={
"help": "Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the "
"reference model from a string."
},
)
dataset_num_proc: Optional[int] = field(
default=None,
metadata={"help": "Number of processes to use for processing the dataset."},
)
| trl/trl/trainer/kto_config.py/0 | {
"file_path": "trl/trl/trainer/kto_config.py",
"repo_id": "trl",
"token_count": 3485
} |
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import math
import os
import textwrap
import time
from collections import defaultdict
from typing import Callable, Optional, Union
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from accelerate import Accelerator
from accelerate.utils import broadcast, gather_object
from datasets import Dataset
from torch.utils.data import DataLoader
from transformers import (
BaseImageProcessor,
DataCollatorWithPadding,
FeatureExtractionMixin,
GenerationConfig,
PreTrainedTokenizerBase,
ProcessorMixin,
Trainer,
TrainerCallback,
TrainerControl,
is_wandb_available,
)
from transformers.integrations import get_reporting_integration_callbacks
from transformers.trainer import DEFAULT_CALLBACKS, DEFAULT_PROGRESS_CALLBACK
from transformers.trainer_callback import CallbackHandler, ExportableState, PrinterCallback
from ..models.utils import unwrap_model_for_generation
from ..trainer.utils import (
OnlineTrainerState,
batch_generation,
disable_dropout_in_model,
exact_div,
first_true_indices,
forward,
get_reward,
prepare_deepspeed,
print_rich_table,
selective_log_softmax,
truncate_response,
)
from .rloo_config import RLOOConfig
from .utils import generate_model_card, get_comet_experiment_url, log_table_to_comet_experiment
if is_wandb_available():
import wandb
INVALID_LOGPROB = 1.0
class RLOOTrainer(Trainer):
_tag_names = ["trl", "rloo"]
def __init__(
self,
config: RLOOConfig,
processing_class: Optional[
Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin]
],
policy: nn.Module,
ref_policy: nn.Module,
reward_model: Union[nn.Module, Callable[[list[str]], list[float]]],
train_dataset: Dataset,
data_collator: Optional[DataCollatorWithPadding] = None,
eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None,
# less commonly used
optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
callbacks: Optional[list[TrainerCallback]] = None,
) -> None:
if ref_policy is policy:
raise ValueError(
"`policy` and `ref_policy` cannot be the same object. If you want `ref_policy` to be the "
"same as `policy`, you must mass a copy of it, or `None` if you use peft."
)
self.args = config
args = config
self.processing_class = processing_class
self.policy = policy
# Define the collator if not provided
if data_collator is None:
data_collator = DataCollatorWithPadding(self.processing_class)
self.policy.generation_config.eos_token_id = (
None # disable `pad_token_id` and `eos_token_id` because we just want to
)
self.policy.generation_config.pad_token_id = None # generate tokens without truncation / padding
self.ref_policy = ref_policy
self.reward_model = reward_model
self.train_dataset = train_dataset
self.train_dataset_len = len(train_dataset)
self.data_collator = data_collator
self.eval_dataset = eval_dataset
self.optimizer, self.lr_scheduler = optimizers
self.optimizer_cls_and_kwargs = None # needed for transformers >= 4.47
#########
# calculate various batch sizes
#########
if args.total_episodes is None: # allow the users to define episodes in terms of epochs.
args.total_episodes = int(args.num_train_epochs * self.train_dataset_len)
accelerator = Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps)
self.accelerator = accelerator
args.world_size = accelerator.num_processes
args.local_batch_size = (
args.per_device_train_batch_size * args.gradient_accumulation_steps * args.num_mini_batches
)
args.micro_batch_size = int(args.per_device_train_batch_size * args.world_size)
args.batch_size = int(args.local_batch_size * args.world_size)
args.mini_batch_size = exact_div(
args.batch_size, args.num_mini_batches, "`batch_size` must be a multiple of `num_mini_batches`"
)
args.local_mini_batch_size = exact_div(
args.local_batch_size, args.num_mini_batches, "`local_batch_size` must be a multiple of `num_mini_batches`"
)
args.num_total_batches = math.ceil(
args.total_episodes / args.batch_size
) # we may train for more than `total_episodes`
time_tensor = torch.tensor(int(time.time()), device=accelerator.device)
time_int = broadcast(time_tensor, 0).item() # avoid different timestamps across processes
args.run_name = f"{args.exp_name}__{args.seed}__{time_int}"
self.local_seed = args.seed + accelerator.process_index * 100003 # Prime
if args.num_sample_generations > 0:
self.sample_generations_freq = max(1, args.num_total_batches // args.num_sample_generations)
self.local_dataloader_batch_size = exact_div(
args.local_batch_size, args.rloo_k, "`local_batch_size` must be a multiple of rloo_k"
) # RLOO logic: needed because RLOO repeats the same prompt args.rloo_k times
#########
# setup model, optimizer, and others
#########
for module in [policy, ref_policy, reward_model]:
if isinstance(module, nn.Module):
disable_dropout_in_model(module)
if args.stop_token and args.stop_token == "eos":
args.stop_token_id = self.processing_class.eos_token_id
self.model = policy
self.create_optimizer_and_scheduler(
num_training_steps=args.num_total_batches
) # note that we are calling `self.lr_scheduler.step()` manually only at the batch level
#########
### trainer specifics
#########
default_callbacks = DEFAULT_CALLBACKS + get_reporting_integration_callbacks(self.args.report_to)
self.callbacks = default_callbacks if callbacks is None else default_callbacks + callbacks
self.callback_handler = CallbackHandler(
self.callbacks, self.model, self.processing_class, self.optimizer, self.lr_scheduler
)
self.add_callback(PrinterCallback if self.args.disable_tqdm else DEFAULT_PROGRESS_CALLBACK)
self.control = TrainerControl()
self.state = OnlineTrainerState(
is_local_process_zero=self.is_local_process_zero(),
is_world_process_zero=self.is_world_process_zero(),
stateful_callbacks=[
cb for cb in self.callback_handler.callbacks + [self.control] if isinstance(cb, ExportableState)
],
)
self.current_flos = 0
self.hp_search_backend = None
self.is_deepspeed_enabled = getattr(self.accelerator.state, "deepspeed_plugin", None) is not None
self.is_fsdp_enabled = getattr(self.accelerator.state, "fsdp_plugin", None) is not None
# Create distant repo and output directory if needed
self.hub_model_id = None
if self.args.push_to_hub:
self.init_hf_repo()
if self.args.should_save:
os.makedirs(self.args.output_dir, exist_ok=True)
self.backup_model = None
# Add tags for models that have been loaded with the correct transformers version
if hasattr(self.model, "add_model_tags"):
self.model.add_model_tags(self._tag_names)
#########
### setup dataloader
#########
self.dataloader = DataLoader(
self.train_dataset,
batch_size=self.local_dataloader_batch_size,
shuffle=True,
collate_fn=self.data_collator,
drop_last=True, # needed; otherwise the last batch will be of ragged shape
)
# sync random states for DataLoader(shuffle=True) before `accelerator.prepare`
# see https://gist.github.com/vwxyzjn/2581bff1e48e185e0b85b6dfe1def79c
torch.manual_seed(args.seed)
self.model, self.optimizer, self.dataloader = accelerator.prepare(self.model, self.optimizer, self.dataloader)
torch.manual_seed(self.local_seed) # reset the local seed again
self.eval_dataloader = DataLoader(
self.eval_dataset,
batch_size=args.per_device_eval_batch_size,
collate_fn=self.data_collator,
drop_last=True,
) # no need to shuffle eval dataset
self.eval_dataloader = accelerator.prepare(self.eval_dataloader)
if self.is_deepspeed_enabled:
if isinstance(self.reward_model, nn.Module):
self.reward_model = prepare_deepspeed(
self.reward_model, args.per_device_train_batch_size, args.fp16, args.bf16
)
self.ref_policy = prepare_deepspeed(
self.ref_policy, args.per_device_train_batch_size, args.fp16, args.bf16
)
self.deepspeed = self.model
else:
self.ref_policy = self.ref_policy.to(self.accelerator.device)
if isinstance(self.reward_model, nn.Module):
self.reward_model = self.reward_model.to(self.accelerator.device)
def get_train_dataloader(self) -> DataLoader:
return self.dataloader
def get_eval_dataloader(self) -> DataLoader:
return self.eval_dataloader
def train(self):
args = self.args
accelerator = self.accelerator
optimizer = self.optimizer
model = self.model
self.model_wrapped = self.model
ref_policy = self.ref_policy
reward_model = self.reward_model
processing_class = self.processing_class
dataloader = self.dataloader
device = accelerator.device
def repeat_generator():
while True:
yield from dataloader
iter_dataloader = iter(repeat_generator())
generation_config = GenerationConfig(
max_new_tokens=args.response_length,
temperature=(args.temperature + 1e-7),
top_k=0.0,
top_p=1.0,
do_sample=True,
)
accelerator.print("===training policy===")
start_time = time.time()
stats_shape = (args.num_ppo_epochs, args.num_mini_batches, args.gradient_accumulation_steps)
approxkl_stats = torch.zeros(stats_shape, device=device)
pg_clipfrac_stats = torch.zeros(stats_shape, device=device)
pg_loss_stats = torch.zeros(stats_shape, device=device)
vf_clipfrac_stats = torch.zeros(stats_shape, device=device)
entropy_stats = torch.zeros(stats_shape, device=device)
ratio_stats = torch.zeros(stats_shape, device=device)
model.train()
# trainer state initialization
self.state.global_step = 0
self.state.episode = 0
self.state.max_steps = (args.num_total_batches * args.num_mini_batches) // 2
self.state.num_train_epochs = args.total_episodes / self.train_dataset_len
# Compute absolute values for logging, eval, and save if given as ratio
if args.logging_steps is not None:
if args.logging_steps < 1:
self.state.logging_steps = math.ceil(self.state.max_steps * args.logging_steps)
else:
self.state.logging_steps = args.logging_steps
if args.eval_steps is not None:
if args.eval_steps < 1:
self.state.eval_steps = math.ceil(self.state.max_steps * args.eval_steps)
else:
self.state.eval_steps = args.eval_steps
if args.save_steps is not None:
if args.save_steps < 1:
self.state.save_steps = math.ceil(self.state.max_steps * args.save_steps)
else:
self.state.save_steps = args.save_steps
self.control = self.callback_handler.on_train_begin(args, self.state, self.control)
for update in range(1, args.num_total_batches + 1):
self.state.episode += 1 * args.batch_size
data = next(iter_dataloader)
with torch.no_grad():
queries = data["input_ids"].to(device)
queries = queries.repeat(args.rloo_k, 1)
context_length = queries.shape[1]
responses = []
postprocessed_responses = []
logprobs = []
ref_logprobs = []
scores = []
sequence_lengths = []
# Generate responses and compute logprobs
with unwrap_model_for_generation(
self.model, self.accelerator, gather_deepspeed3_params=self.args.ds3_gather_for_generation
) as unwrapped_model:
query_responses, logitss = batch_generation(
unwrapped_model,
queries,
args.local_rollout_forward_batch_size,
processing_class.pad_token_id,
generation_config,
)
# Process responses in batches
for i in range(0, queries.shape[0], args.local_rollout_forward_batch_size):
query = queries[i : i + args.local_rollout_forward_batch_size]
query_response = query_responses[i : i + args.local_rollout_forward_batch_size]
response = query_response[:, context_length:]
logits = logitss[i : i + args.local_rollout_forward_batch_size]
logprob = selective_log_softmax(logits, response)
del logits
torch.cuda.empty_cache()
ref_output = forward(ref_policy, query_response, processing_class.pad_token_id)
ref_logits = ref_output.logits[:, context_length - 1 : -1]
ref_logits /= args.temperature + 1e-7
ref_logprob = selective_log_softmax(ref_logits, response)
del ref_output, ref_logits
torch.cuda.empty_cache()
# Response Processing 1. truncate response after the first occurrence of `stop_token_id`
postprocessed_response = response
if args.stop_token_id is not None: # handle the edge case when stop_token_id exists but is 0
postprocessed_response = truncate_response(
args.stop_token_id, processing_class.pad_token_id, response
)
# Response Processing 2. run reward model on the truncated responses
postprocessed_query_response = torch.cat((query, postprocessed_response), 1)
sequence_length = first_true_indices(postprocessed_response == processing_class.pad_token_id) - 1
if isinstance(reward_model, nn.Module):
_, score, _ = get_reward(
reward_model, postprocessed_query_response, processing_class.pad_token_id, context_length
)
else:
score = torch.tensor(
reward_model(
processing_class.batch_decode(postprocessed_query_response, skip_special_tokens=True)
),
dtype=torch.float,
).to(device)
# Store batch results
responses.append(response)
postprocessed_responses.append(postprocessed_response)
logprobs.append(logprob)
ref_logprobs.append(ref_logprob)
sequence_lengths.append(sequence_length)
scores.append(score)
# Concatenate all batched results
responses = torch.cat(responses, 0)
postprocessed_responses = torch.cat(postprocessed_responses, 0)
logprobs = torch.cat(logprobs, 0)
ref_logprobs = torch.cat(ref_logprobs, 0)
sequence_lengths = torch.cat(sequence_lengths, 0)
scores = torch.cat(scores, 0)
del (logprob, ref_logprob, score)
torch.cuda.empty_cache()
gc.collect()
# Response Processing 3. filter response. Ensure that the sample contains stop_token_id
# responses not passing that filter will receive a low (fixed) score
# only query humans on responses that pass that filter
contain_eos_token = torch.any(postprocessed_responses == processing_class.eos_token_id, dim=-1)
if args.missing_eos_penalty is not None:
scores[~contain_eos_token] -= self.args.missing_eos_penalty
# accelerator.print(f"{scores=}, {(contain_eos_token.sum() / len(contain_eos_token))=}")
# be very careful with `padding_mask_p1`; see https://excalidraw.com/#json=LWnzG4w2k5DjF_EOL_xPt,e2w3a-hFJ_gX5vOfeyXGTw
response_idxs = torch.arange(responses.shape[1], device=responses.device).repeat(responses.shape[0], 1)
padding_mask = response_idxs > sequence_lengths.unsqueeze(1)
logprobs = torch.masked_fill(logprobs, padding_mask, INVALID_LOGPROB)
ref_logprobs = torch.masked_fill(ref_logprobs, padding_mask, INVALID_LOGPROB)
# 4. compute rewards
# Compute KL divergence
kl = logprobs - ref_logprobs
# Normalize rewards
if args.normalize_reward:
scores = (scores - scores.mean()) / (scores.std() + 1e-8)
scores = torch.clamp(scores, -args.reward_clip_range, args.reward_clip_range)
# Compute total reward with KL penalty
if args.token_level_kl:
# Token-level KL penalty: apply KL penalty per token
kl_reward = -args.kl_coef * kl
# Get the index of the last non-padded token for each sequence
eos_indices = padding_mask.size(1) - 1 - padding_mask.long().fliplr().argmax(dim=1, keepdim=True)
last_reward = torch.zeros_like(kl)
# Ensure scores has correct shape and type
scores_shaped = scores.reshape(-1, 1).to(kl.dtype)
last_reward.scatter_(dim=1, index=eos_indices, src=scores_shaped)
# Combine KL reward and last reward
non_score_reward = kl_reward.sum(1) # Keep this for logging
reward = last_reward + kl_reward
rlhf_reward = reward.sum(1) # Sum across sequence length
else:
# Sequence-level KL penalty: sum KL across tokens first
sequence_kl = kl.sum(1)
non_score_reward = -args.kl_coef * sequence_kl
rlhf_reward = non_score_reward + scores
# vectorized RLOO advantages implementation
rlhf_reward = rlhf_reward.reshape(args.rloo_k, -1)
baseline = (rlhf_reward.sum(0) - rlhf_reward) / (args.rloo_k - 1)
advantages = rlhf_reward - baseline
advantages = advantages.flatten()
# Normalize advantages
if args.normalize_advantage:
advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8)
torch.cuda.empty_cache()
# Do multiple epochs of PPO training, with a fresh random shuffle in each epoch
for ppo_epoch_idx in range(args.num_ppo_epochs):
b_inds = np.random.permutation(args.local_batch_size)
minibatch_idx = 0
for mini_batch_start in range(0, args.local_batch_size, args.local_mini_batch_size):
mini_batch_end = mini_batch_start + args.local_mini_batch_size
mini_batch_inds = b_inds[mini_batch_start:mini_batch_end]
gradient_accumulation_idx = 0
for micro_batch_start in range(0, args.local_mini_batch_size, args.per_device_train_batch_size):
with accelerator.accumulate(model):
micro_batch_end = micro_batch_start + args.per_device_train_batch_size
micro_batch_inds = mini_batch_inds[micro_batch_start:micro_batch_end]
# Get batch data
mb_advantage = advantages[micro_batch_inds]
mb_responses = responses[micro_batch_inds]
mb_query_responses = query_responses[micro_batch_inds]
mb_logprobs = logprobs[micro_batch_inds]
# Forward pass
output = forward(model, mb_query_responses, processing_class.pad_token_id)
logits = output.logits[:, context_length - 1 : -1]
logits /= args.temperature + 1e-7
# Compute new logprobs
new_logprobs = selective_log_softmax(logits, mb_responses)
new_logprobs = torch.masked_fill(
new_logprobs, padding_mask[micro_batch_inds], INVALID_LOGPROB
)
# Compute probability ratios
new_ratio = (new_logprobs - mb_logprobs).exp()
new_logprobs = new_logprobs.sum(1)
mb_logprobs = mb_logprobs.sum(1)
logprobs_diff = new_logprobs - mb_logprobs
ratio = torch.exp(logprobs_diff)
# PPO clipped loss
pg_losses = -mb_advantage * ratio
pg_losses2 = -mb_advantage * torch.clamp(ratio, 1.0 - args.cliprange, 1.0 + args.cliprange)
pg_loss_max = torch.max(pg_losses, pg_losses2)
pg_loss = pg_loss_max.mean()
# Final loss
loss = pg_loss
# Optimization step
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
with torch.no_grad():
pg_clipfrac = (pg_losses2 > pg_losses).float().mean()
prob_dist = torch.nn.functional.softmax(logits, dim=-1)
entropy = torch.logsumexp(logits, dim=-1) - torch.sum(prob_dist * logits, dim=-1)
approxkl = 0.5 * (logprobs_diff**2).mean()
approxkl_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = approxkl
pg_clipfrac_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = (
pg_clipfrac
)
pg_loss_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = pg_loss
entropy_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = entropy.mean()
ratio_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = new_ratio.mean()
gradient_accumulation_idx += 1
minibatch_idx += 1
# del everything and empty cache
# fmt: off
del (
output, logits, new_logprobs, logprobs_diff, ratio, pg_losses,
pg_losses2, pg_loss, loss, pg_clipfrac, prob_dist, entropy, approxkl,
mb_advantage, mb_responses, mb_query_responses, mb_logprobs,
)
# fmt: on
torch.cuda.empty_cache()
# Compute metrics
with torch.no_grad():
mean_kl = kl.sum(1).mean()
mean_entropy = (-logprobs).sum(1).mean()
mean_non_score_reward = non_score_reward.mean()
eps = int(self.state.episode / (time.time() - start_time))
metrics = {}
metrics["eps"] = eps
metrics["objective/kl"] = self.accelerator.gather_for_metrics(mean_kl).mean().item()
metrics["objective/entropy"] = self.accelerator.gather_for_metrics(mean_entropy).mean().item()
metrics["objective/non_score_reward"] = (
self.accelerator.gather_for_metrics(mean_non_score_reward).mean().item()
)
metrics["objective/rlhf_reward"] = self.accelerator.gather_for_metrics(rlhf_reward).mean().item()
metrics["objective/scores"] = self.accelerator.gather_for_metrics(scores.mean()).mean().item()
metrics["policy/approxkl_avg"] = self.accelerator.gather_for_metrics(approxkl_stats).mean().item()
metrics["policy/clipfrac_avg"] = self.accelerator.gather_for_metrics(pg_clipfrac_stats).mean().item()
metrics["loss/policy_avg"] = self.accelerator.gather_for_metrics(pg_loss_stats).mean().item()
metrics["val/clipfrac_avg"] = self.accelerator.gather_for_metrics(vf_clipfrac_stats).mean().item()
metrics["policy/entropy_avg"] = self.accelerator.gather_for_metrics(entropy_stats).mean().item()
metrics["val/ratio"] = self.accelerator.gather_for_metrics(ratio_stats).mean().item()
metrics["val/ratio_var"] = self.accelerator.gather_for_metrics(ratio_stats).var().item()
metrics["val/num_eos_tokens"] = (responses == processing_class.eos_token_id).sum().item()
metrics["lr"] = self.lr_scheduler.get_last_lr()[0]
metrics["episode"] = self.state.episode
self.state.epoch = self.state.episode / (args.rloo_k * self.train_dataset_len) # used by self.log
self.log(metrics)
del kl, mean_kl, mean_entropy, scores
self.lr_scheduler.step()
self.state.global_step += 1
self.control = self.callback_handler.on_step_end(args, self.state, self.control)
if self.control.should_save:
self._save_checkpoint(model, trial=None)
self.control = self.callback_handler.on_save(self.args, self.state, self.control)
torch.cuda.empty_cache()
gc.collect()
if args.num_sample_generations > 0 and (update - 1) % self.sample_generations_freq == 0:
self.generate_completions(sampling=True)
# HF trainer specifics
self.control = self.callback_handler.on_train_end(args, self.state, self.control)
if self.control.should_save:
self._save_checkpoint(model, trial=None, metrics=None)
self.control = self.callback_handler.on_save(self.args, self.state, self.control)
def generate_completions(self, sampling: bool = False):
args = self.args
processing_class = self.processing_class
generation_config = GenerationConfig(
max_new_tokens=self.args.response_length,
temperature=(0.01 + 1e-7),
top_k=0.0,
top_p=1.0,
do_sample=True,
)
table = defaultdict(list)
with unwrap_model_for_generation(
self.model, self.accelerator, gather_deepspeed3_params=self.args.ds3_gather_for_generation
) as unwrapped_model:
for batch in self.eval_dataloader:
query = batch["input_ids"]
with torch.no_grad():
context_length = query.shape[1]
query_response, _ = batch_generation(
unwrapped_model,
query,
query.shape[0],
processing_class.pad_token_id,
generation_config,
)
response = query_response[:, context_length:]
postprocessed_response = response
if args.stop_token_id is not None: # handle the edge case when stop_token_id exists but is 0
postprocessed_response = truncate_response(
args.stop_token_id, processing_class.pad_token_id, response
)
table["query"].extend(
gather_object(processing_class.batch_decode(query, skip_special_tokens=True))
)
table["model response"].extend(
gather_object(processing_class.batch_decode(postprocessed_response))
)
postprocessed_query_response = torch.cat((query, postprocessed_response), 1)
if isinstance(self.reward_model, nn.Module):
_, score, _ = get_reward(
self.reward_model,
postprocessed_query_response,
processing_class.pad_token_id,
context_length,
)
else:
score = torch.tensor(
self.reward_model(
processing_class.batch_decode(postprocessed_query_response, skip_special_tokens=True)
),
dtype=torch.float,
).to(postprocessed_query_response.device)
table["score"].extend(self.accelerator.gather_for_metrics(score).float().cpu().numpy())
if sampling:
break
df = pd.DataFrame(table)
if self.accelerator.is_main_process:
print_rich_table(df.iloc[0 : 0 + 5])
if "wandb" in args.report_to:
import wandb
if wandb.run is not None:
wandb.log({"completions": wandb.Table(dataframe=df)})
if "comet_ml" in args.report_to:
log_table_to_comet_experiment(
name="completions.csv",
table=df,
)
def create_model_card(
self,
model_name: Optional[str] = None,
dataset_name: Optional[str] = None,
tags: Union[str, list[str], None] = None,
):
"""
Creates a draft of a model card using the information available to the `Trainer`.
Args:
model_name (`str` or `None`, *optional*, defaults to `None`):
Name of the model.
dataset_name (`str` or `None`, *optional*, defaults to `None`):
Name of the dataset used for training.
tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`):
Tags to be associated with the model card.
"""
if not self.is_world_process_zero():
return
if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path):
base_model = self.model.config._name_or_path
else:
base_model = None
tags = tags or []
if isinstance(tags, str):
tags = [tags]
if hasattr(self.model.config, "unsloth_version"):
tags.append("unsloth")
citation = textwrap.dedent("""\
@inproceedings{ahmadian2024back,
title = {{Back to Basics: Revisiting REINFORCE-Style Optimization for Learning from Human Feedback in LLMs}},
author = {Arash Ahmadian and Chris Cremer and Matthias Gall{\'{e}} and Marzieh Fadaee and Julia Kreutzer and Olivier Pietquin and Ahmet {\"{U}}st{\"{u}}n and Sara Hooker},
year = 2024,
booktitle = {Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), {ACL} 2024, Bangkok, Thailand, August 11-16, 2024},
publisher = {Association for Computational Linguistics},
pages = {12248--12267},
editor = {Lun{-}Wei Ku and Andre Martins and Vivek Srikumar},
}""")
model_card = generate_model_card(
base_model=base_model,
model_name=model_name,
hub_model_id=self.hub_model_id,
dataset_name=dataset_name,
tags=tags,
wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None,
comet_url=get_comet_experiment_url(),
trainer_name="RLOO",
trainer_citation=citation,
paper_title="Back to Basics: Revisiting REINFORCE-Style Optimization for Learning from Human Feedback in LLMs",
paper_id="2402.14740",
)
model_card.save(os.path.join(self.args.output_dir, "README.md"))
| trl/trl/trainer/rloo_trainer.py/0 | {
"file_path": "trl/trl/trainer/rloo_trainer.py",
"repo_id": "trl",
"token_count": 16823
} |
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script tests to ensure that `accelerate` performs at the same level as raw `MS-AMP`.
This particular script verifies this for DeepSpeed training.
NOTE: MS-AMP does *not* support ZeRO-3.
"""
# import msamp.deepspeed as msamp_deepspeed
import evaluate
import torch
from fp8_utils import evaluate_model, get_training_utilities
from msamp import deepspeed as msamp_deepspeed
from accelerate import Accelerator, DeepSpeedPlugin
from accelerate.state import AcceleratorState
from accelerate.utils import set_seed
MODEL_NAME = "bert-base-cased"
METRIC = evaluate.load("glue", "mrpc")
def train_baseline(zero_stage: int = 1, opt_level: str = "O1"):
set_seed(42)
accelerator = Accelerator()
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(
MODEL_NAME, accelerator=accelerator
)
import numpy as np
config = {
"train_batch_size": 32,
"train_micro_batch_size_per_gpu": 16,
"gradient_accumulation_steps": 1,
"zero_optimization": {
"stage": zero_stage,
"offload_optimizer": {"device": "none", "nvme_path": None},
"offload_param": {"device": "none", "nvme_path": None},
},
"gradient_clipping": 1.0,
"steps_per_print": np.inf,
"bf16": {"enabled": True},
"fp16": {"enabled": False},
"zero_allow_untested_optimizer": True,
"msamp": {
"enabled": True,
"opt_level": opt_level,
},
}
(
model,
optimizer,
_,
_,
) = msamp_deepspeed.initialize(
model=model,
optimizer=optimizer,
config_params=config,
)
base_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
model.train()
for _ in range(2):
for batch in train_dataloader:
outputs = model(**batch)
loss = outputs.loss
model.backward(loss)
model.step()
for _ in range(accelerator.num_processes):
lr_scheduler.step()
trained_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
model.destroy()
torch.cuda.empty_cache()
AcceleratorState()._reset_state(True)
assert (
trained_model_results["accuracy"] > base_model_results["accuracy"]
), f'Accuracy should be higher for the trained model: {trained_model_results["accuracy"]} > {base_model_results["accuracy"]}'
assert (
trained_model_results["f1"] > base_model_results["f1"]
), f'F1 score should be higher for the trained model: {trained_model_results["f1"]} > {base_model_results["f1"]}'
return base_model_results, trained_model_results
def train_integration(zero_stage: int = 1, opt_level: str = "O1"):
set_seed(42)
deepspeed_plugin = DeepSpeedPlugin(
zero_stage=zero_stage,
enable_msamp=True,
msamp_opt_level=opt_level,
)
accelerator = Accelerator(mixed_precision="fp8", deepspeed_plugin=deepspeed_plugin)
accelerator.state.deepspeed_plugin.deepspeed_config["train_micro_batch_size_per_gpu"] = 16
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(
MODEL_NAME, accelerator=accelerator
)
model, optimizer, lr_scheduler = accelerator.prepare(model, optimizer, lr_scheduler)
base_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
model.train()
for _ in range(2):
for batch in train_dataloader:
outputs = model(**batch)
loss = outputs.loss
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
trained_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
model.destroy()
torch.cuda.empty_cache()
assert (
trained_model_results["accuracy"] > base_model_results["accuracy"]
), f'Accuracy should be higher for the trained model: {trained_model_results["accuracy"]} > {base_model_results["accuracy"]}'
assert (
trained_model_results["f1"] > base_model_results["f1"]
), f'F1 score should be higher for the trained model: {trained_model_results["f1"]} > {base_model_results["f1"]}'
AcceleratorState()._reset_state(True)
return base_model_results, trained_model_results
if __name__ == "__main__":
for zero_stage in [1, 2]:
for opt_level in ["O1", "O2", "O3"]:
baseline_not_trained, baseline_trained = train_baseline(zero_stage, opt_level)
accelerator_not_trained, accelerator_trained = train_integration(zero_stage, opt_level)
assert (
baseline_not_trained["accuracy"] == accelerator_not_trained["accuracy"]
), f'ZERO stage {zero_stage}, opt_level={opt_level}:\nAccuracy should be the same for the baseline and accelerator: {baseline_not_trained["accuracy"]} == {accelerator_not_trained["accuracy"]}'
assert (
baseline_not_trained["f1"] == accelerator_not_trained["f1"]
), f'ZERO stage {zero_stage}, opt_level={opt_level}:\nF1 score should be the same for the baseline and accelerator: {baseline_not_trained["f1"]} == {accelerator_not_trained["f1"]}'
assert (
baseline_trained["accuracy"] == accelerator_trained["accuracy"]
), f'ZERO stage {zero_stage}, opt_level={opt_level}:\nAccuracy should be the same for the baseline and accelerator: {baseline_trained["accuracy"]} == {accelerator_trained["accuracy"]}'
assert (
baseline_trained["f1"] == accelerator_trained["f1"]
), f'ZERO stage {zero_stage}, opt_level={opt_level}:\nF1 score should be the same for the baseline and accelerator: {baseline_trained["f1"]} == {accelerator_trained["f1"]}'
torch.distributed.destroy_process_group()
| accelerate/benchmarks/fp8/ms_amp/distrib_deepspeed.py/0 | {
"file_path": "accelerate/benchmarks/fp8/ms_amp/distrib_deepspeed.py",
"repo_id": "accelerate",
"token_count": 2583
} |
- sections:
- local: index
title: 🤗 Accelerate
- local: basic_tutorials/install
title: Installation
- local: quicktour
title: Quicktour
title: Getting started
- sections:
- local: basic_tutorials/overview
title: Overview
- local: basic_tutorials/migration
title: Add Accelerate to your code
- local: basic_tutorials/execution
title: Execution process
- local: basic_tutorials/tpu
title: TPU training
- local: basic_tutorials/launch
title: Launching Accelerate scripts
- local: basic_tutorials/notebook
title: Launching distributed training from Jupyter Notebooks
title: Tutorials
- sections:
- isExpanded: true
sections:
- local: usage_guides/explore
title: Start Here!
- local: usage_guides/model_size_estimator
title: Model memory estimator
- local: usage_guides/quantization
title: Model quantization
- local: usage_guides/tracking
title: Experiment trackers
- local: usage_guides/profiler
title: Profiler
- local: usage_guides/checkpoint
title: Checkpointing
- local: basic_tutorials/troubleshooting
title: Troubleshoot
- local: usage_guides/training_zoo
title: Example Zoo
title: Accelerate
- isExpanded: true
sections:
- local: usage_guides/gradient_accumulation
title: Gradient accumulation
- local: usage_guides/local_sgd
title: Local SGD
- local: usage_guides/low_precision_training
title: Low precision (FP8) training
- local: usage_guides/deepspeed
title: DeepSpeed
- local: usage_guides/deepspeed_multiple_model
title: Using multiple models with DeepSpeed
- local: usage_guides/ddp_comm_hook
title: DDP Communication Hooks
- local: usage_guides/fsdp
title: Fully Sharded Data Parallel
- local: usage_guides/megatron_lm
title: Megatron-LM
- local: usage_guides/sagemaker
title: Amazon SageMaker
- local: usage_guides/mps
title: Apple M1 GPUs
- local: usage_guides/ipex
title: IPEX training with CPU
title: Training
- isExpanded: true
sections:
- local: usage_guides/big_modeling
title: Big Model Inference
- local: usage_guides/distributed_inference
title: Distributed inference
title: Inference
title: How to guides
- sections:
- local: concept_guides/internal_mechanism
title: Accelerate's internal mechanism
- local: concept_guides/big_model_inference
title: Loading big models into memory
- local: concept_guides/performance
title: Comparing performance across distributed setups
- local: concept_guides/deferring_execution
title: Executing and deferring jobs
- local: concept_guides/gradient_synchronization
title: Gradient synchronization
- local: concept_guides/fsdp_and_deepspeed
title: FSDP vs DeepSpeed
- local: concept_guides/low_precision_training
title: Low precision training methods
- local: concept_guides/training_tpu
title: Training on TPUs
title: Concepts and fundamentals
- sections:
- local: package_reference/accelerator
title: Accelerator
- local: package_reference/state
title: Stateful classes
- local: package_reference/cli
title: The Command Line
- local: package_reference/torch_wrappers
title: DataLoaders, Optimizers, Schedulers
- local: package_reference/tracking
title: Experiment trackers
- local: package_reference/launchers
title: Launchers
- local: package_reference/deepspeed
title: DeepSpeed utilities
- local: package_reference/logging
title: Logging
- local: package_reference/big_modeling
title: Working with large models
- local: package_reference/inference
title: Pipeline parallelism
- local: package_reference/kwargs
title: Kwargs handlers
- local: package_reference/fp8
title: FP8
- local: package_reference/utilities
title: Utility functions and classes
- local: package_reference/megatron_lm
title: Megatron-LM utilities
- local: package_reference/fsdp
title: Fully Sharded Data Parallel utilities
title: "Reference"
| accelerate/docs/source/_toctree.yml/0 | {
"file_path": "accelerate/docs/source/_toctree.yml",
"repo_id": "accelerate",
"token_count": 1411
} |
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Training on TPUs
Training on TPUs can be slightly different from training on multi-gpu, even with Accelerate. This guide aims to show you
where you should be careful and why, as well as the best practices in general.
## Training in a Notebook
The main carepoint when training on TPUs comes from the [`notebook_launcher`]. As mentioned in the [notebook tutorial](../usage_guides/notebook), you need to
restructure your training code into a function that can get passed to the [`notebook_launcher`] function and be careful about not declaring any tensors on the GPU.
While on a TPU that last part is not as important, a critical part to understand is that when you launch code from a notebook you do so through a process called **forking**.
When launching from the command-line, you perform **spawning**, where a python process is not currently running and you *spawn* a new process in. Since your Jupyter notebook is already
utilizing a python process, you need to *fork* a new process from it to launch your code.
Where this becomes important is in regard to declaring your model. On forked TPU processes, it is recommended that you instantiate your model *once* and pass this into your
training function. This is different than training on GPUs where you create `n` models that have their gradients synced and back-propagated at certain moments. Instead, one
model instance is shared between all the nodes and it is passed back and forth. This is important especially when training on low-resource TPUs such as those provided in Kaggle kernels or
on Google Colaboratory.
Below is an example of a training function passed to the [`notebook_launcher`] if training on CPUs or GPUs:
<Tip>
This code snippet is based off the one from the `simple_nlp_example` notebook found [here](https://github.com/huggingface/notebooks/blob/main/examples/accelerate_examples/simple_nlp_example.ipynb) with slight
modifications for the sake of simplicity
</Tip>
```python
def training_function():
# Initialize accelerator
accelerator = Accelerator()
model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=2)
train_dataloader, eval_dataloader = create_dataloaders(
train_batch_size=hyperparameters["train_batch_size"], eval_batch_size=hyperparameters["eval_batch_size"]
)
# Instantiate optimizer
optimizer = AdamW(params=model.parameters(), lr=hyperparameters["learning_rate"])
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader
)
num_epochs = hyperparameters["num_epochs"]
# Now we train the model
for epoch in range(num_epochs):
model.train()
for step, batch in enumerate(train_dataloader):
outputs = model(**batch)
loss = outputs.loss
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
```
```python
from accelerate import notebook_launcher
notebook_launcher(training_function)
```
<Tip>
The `notebook_launcher` will default to 8 processes if Accelerate has been configured for a TPU
</Tip>
If you use this example and declare the model *inside* the training loop, then on a low-resource system you will potentially see an error
like:
```
ProcessExitedException: process 0 terminated with signal SIGSEGV
```
This error is *extremely* cryptic but the basic explanation is you ran out of system RAM. You can avoid this entirely by reconfiguring the training function to
accept a single `model` argument, and declare it in an outside cell:
```python
# In another Jupyter cell
model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=2)
```
```diff
+ def training_function(model):
# Initialize accelerator
accelerator = Accelerator()
- model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=2)
train_dataloader, eval_dataloader = create_dataloaders(
train_batch_size=hyperparameters["train_batch_size"], eval_batch_size=hyperparameters["eval_batch_size"]
)
...
```
And finally calling the training function with:
```diff
from accelerate import notebook_launcher
- notebook_launcher(training_function)
+ notebook_launcher(training_function, (model,))
```
<Tip>
The above workaround is only needed when launching a TPU instance from a Jupyter Notebook on a low-resource server such as Google Colaboratory or Kaggle. If
using a script or launching on a much beefier server declaring the model beforehand is not needed.
</Tip>
## Mixed Precision and Global Variables
As mentioned in the [mixed precision tutorial](../usage_guides/mixed_precision), Accelerate supports fp16 and bf16, both of which can be used on TPUs.
That being said, ideally `bf16` should be utilized as it is extremely efficient to use.
There are two "layers" when using `bf16` and Accelerate on TPUs, at the base level and at the operation level.
At the base level, this is enabled when passing `mixed_precision="bf16"` to `Accelerator`, such as:
```python
accelerator = Accelerator(mixed_precision="bf16")
```
By default, this will cast `torch.float` and `torch.double` to `bfloat16` on TPUs.
The specific configuration being set is an environmental variable of `XLA_USE_BF16` is set to `1`.
There is a further configuration you can perform which is setting the `XLA_DOWNCAST_BF16` environmental variable. If set to `1`, then
`torch.float` is `bfloat16` and `torch.double` is `float32`.
This is performed in the `Accelerator` object when passing `downcast_bf16=True`:
```python
accelerator = Accelerator(mixed_precision="bf16", downcast_bf16=True)
```
Using downcasting instead of bf16 everywhere is good for when you are trying to calculate metrics, log values, and more where raw bf16 tensors would be unusable.
## Training Times on TPUs
As you launch your script, you may notice that training seems exceptionally slow at first. This is because TPUs
first run through a few batches of data to see how much memory to allocate before finally utilizing this configured
memory allocation extremely efficiently.
If you notice that your evaluation code to calculate the metrics of your model takes longer due to a larger batch size being used,
it is recommended to keep the batch size the same as the training data if it is too slow. Otherwise the memory will reallocate to this
new batch size after the first few iterations.
<Tip>
Just because the memory is allocated does not mean it will be used or that the batch size will increase when going back to your training dataloader.
</Tip>
| accelerate/docs/source/concept_guides/training_tpu.md/0 | {
"file_path": "accelerate/docs/source/concept_guides/training_tpu.md",
"repo_id": "accelerate",
"token_count": 2196
} |
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Low Precision Training Methods
Accelerate provides integrations to train on lower precision methods using specified supported hardware through the `TransformersEngine` and `MS-AMP` packages. This documentation will help guide you through what hardware is supported, how to configure your [`Accelerator`] to leverage the low precision methods, and what you can expect when training.
## What training on FP8 means
To explore more of the nitty-gritty in training in FP8 with PyTorch and Accelerate, check out the [concept_guide](../concept_guides/low_precision_training) on why this can be difficult. But essentially rather than training in BF16, some (or all) aspects of training a model can be performed using 8 bits instead of 16. The challenge is doing so without degrading final performance.
This is only enabled on specific NVIDIA hardware, namely:
* Anything after the 3000 series consumer graphics cards (such as the 4090)
* Hopper-based GPU architectures (such as the `H100` and `H200`)
What this will result in is some gain in the memory used (as we've cut the needed memory in half for some parts of training) and an increase in throughput *should* be seen as well for larger models that can replace certain layers with FP8-enabled ones.
## Configuring the Accelerator
Currently two different backends for FP8 are supported (`TransformersEngine` and `MS-AMP`), each with different capabilities and configurations.
To use either, the same core API is used. Just pass `mixed_precision="fp8"` to either the [`Accelerator`], during `accelerate config` when prompted about mixed precision, or as part of your `config.yaml` file in the `mixed_precision` key:
```{python}
from accelerate import Accelerator
accelerator = Accelerator(mixed_precision="fp8")
```
By default, if `MS-AMP` is available in your environment, Accelerate will automatically utilize it as a backend. To specify it yourself (and customize other parts of the FP8 mixed precision setup), you can utilize the [`utils.FP8RecipeKwargs`] or clarify it in your config `yaml`/during `accelerate launch`:
```{python}
from accelerate import Accelerator
from accelerate.utils import FP8RecipeKwargs
kwargs = [FP8RecipeKwargs(backend="msamp")]
# Or to specify the backend as `TransformersEngine` even if MS-AMP is installed
# kwargs = [FP8RecipeKwargs(backend="te")]
accelerator = Accelerator(mixed_precision="fp8", kwarg_handlers=kwargs)
```
```{yaml}
mixed_precision: fp8
fp8_config:
amax_compute_algorithm: max
amax_history_length: 1024
backend: TE
fp8_format: HYBRID
interval: 1
margin: 0
override_linear_precision: false
use_autocast_during_eval: false
```
## Configuring MS-AMP
Of the two, `MS-AMP` is traditionally the easier one to configure as there is only a single argument: the optimization level.
Currently two levels of optimization are supported in the Accelerate integration, `"O1"` and `"O2"` (using the letter 'o', not zero).
* `"O1"` will cast the weight gradients and `all_reduce` communications to happen in 8-bit, while the rest are done in 16 bit. This reduces the general GPU memory usage and speeds up communication bandwidths.
* `"O2"` will also cast first-order optimizer states into 8 bit, while the second order states are in FP16. (Currently just the `Adam` optimizer is supported). This tries its best to minimize final accuracy degradation and will save the highest potential memory.
To specify an optimization level, pass it to the `FP8KwargsHandler` by setting the `optimization_level` argument:
```{python}
from accelerate import Accelerator
from accelerate.utils import FP8RecipeKwargs
kwargs = [FP8RecipeKwargs(backend="msamp", optimization_level="O2")]
accelerator = Accelerator(mixed_precision="fp8", kwarg_handlers=kwargs)
```
Or during `accelerate launch` via `--fp8_backend=msamp --fp8_opt_level=O2`
Similarly this can be set in your `config.yaml`:
```{yaml}
mixed_precision: fp8
fp8_config:
backend: MSAMP
opt_level: O2
```
## Configuring TransformersEngine
TransformersEngine has much more available for customizing how and what FP8 calculations are performed. A full list of supported arguments and what they mean are available in [NVIDIA's documentation](https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/api/common.html), however they are restated as part of [`FP8KwargsHandler`]'s docstring for your convenience.
Accelerate tries to set sensible defaults, but exploring and tweaking the various parameters yourself can lead to better performance potentially.
To use it, specify `backend="te"` and modify any of the arguments you want as part of your kwarg handler:
```{python}
from accelerate import Accelerator
from accelerate.utils import FP8RecipeKwargs
kwargs = [FP8RecipeKwargs(backend="te", ...)]
accelerator = Accelerator(mixed_precision="fp8", kwarg_handlers=kwargs)
```
Or during `accelerate launch` via `--fp8_backend=te ...`. Use `accelerate launch --fp8_backend=te -h` to see relevent arguments.
Similarly this can be set in your `config.yaml`:
```{yaml}
mixed_precision: fp8
fp8_config:
amax_compute_algorithm: max
amax_history_length: 1024
backend: TE
fp8_format: HYBRID
interval: 1
margin: 0
override_linear_precision: false
use_autocast_during_eval: false
```
## Example Zoo
We have examples showcasing training with FP8 both with accelerate and its underlying implementation available in the accelerate repo.
Currently we support scripts showcasing:
* Single GPU
* Distributed Data Parallelism (Multi-GPU)
* Fully Sharded Data Parallelism
* DeepSpeed ZeRO 1 through 3
Find out more [here](https://github.com/huggingface/accelerate/tree/main/benchmarks/fp8)
## Further Reading
To learn more about training in FP8 please check out the following resources:
* [Our concept guide](../concept_guides/low_precision_training) detailing into more about both TransformersEngine and MS-AMP
* [The `transformers-engine` documentation](https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/api/common.html)
* [The `MS-AMP` documentation](https://azure.github.io/MS-AMP/docs/)
| accelerate/docs/source/usage_guides/low_precision_training.md/0 | {
"file_path": "accelerate/docs/source/usage_guides/low_precision_training.md",
"repo_id": "accelerate",
"token_count": 1933
} |
# Since we are doing FSDP (even though it's multi-GPU), we need to specify the distributed type as FSDP
distributed_type: FSDP
# Can be one of "no", "fp16", or "bf16" (see `transformer_engine.yaml` for `fp8`, but it works for FSDP as well)
mixed_precision: 'bf16'
# Specify the number of GPUs to use
num_processes: 2
# Then we can specify the FSDP config
fsdp_config:
fsdp_activation_checkpointing: false
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_backward_prefetch: BACKWARD_PRE
fsdp_cpu_ram_efficient_loading: true
fsdp_forward_prefetch: false
fsdp_offload_params: false
fsdp_sharding_strategy: FULL_SHARD
fsdp_state_dict_type: SHARDED_STATE_DICT
fsdp_sync_module_states: true
fsdp_use_orig_params: true
| accelerate/examples/config_yaml_templates/fsdp.yaml/0 | {
"file_path": "accelerate/examples/config_yaml_templates/fsdp.yaml",
"repo_id": "accelerate",
"token_count": 275
} |
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from diffusers import DiffusionPipeline
from accelerate import PartialState # Can also be Accelerator or AcceleratorState
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
distributed_state = PartialState()
pipe.to(distributed_state.device)
# Assume two processes
# On the first GPU, the prompts will be ["a dog", "a cat"],
# and on the second GPU it will be ["a chicken", "a chicken"].
# Make sure to drop the final sample, as it will be a duplicate of the previous one.
with distributed_state.split_between_processes(["a dog", "a cat", "a chicken"], apply_padding=True) as prompt:
result = pipe(prompt).images
| accelerate/examples/inference/distributed/stable_diffusion.py/0 | {
"file_path": "accelerate/examples/inference/distributed/stable_diffusion.py",
"repo_id": "accelerate",
"token_count": 363
} |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from manim import *
class Stage2(Scene):
def construct(self):
mem = Rectangle(height=0.5,width=0.5)
fill = Rectangle(height=0.46,width=0.46).set_stroke(width=0)
cpu_left_col_base = [mem.copy() for i in range(6)]
cpu_right_col_base = [mem.copy() for i in range(6)]
cpu_left_col = VGroup(*cpu_left_col_base).arrange(UP, buff=0)
cpu_right_col = VGroup(*cpu_right_col_base).arrange(UP, buff=0)
cpu_rects = VGroup(cpu_left_col,cpu_right_col).arrange(RIGHT, buff=0)
cpu_text = Text("CPU", font_size=24)
cpu = Group(cpu_rects,cpu_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN)
cpu.move_to([-2.5,-.5,0])
self.add(cpu)
gpu_base = [mem.copy() for i in range(4)]
gpu_rect = VGroup(*gpu_base).arrange(UP,buff=0)
gpu_text = Text("GPU", font_size=24)
gpu = Group(gpu_rect,gpu_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN)
gpu.move_to([-1,-1,0])
self.add(gpu)
model_base = [mem.copy() for i in range(6)]
model_rect = VGroup(*model_base).arrange(RIGHT,buff=0)
model_text = Text("Model", font_size=24)
model = Group(model_rect,model_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN)
model.move_to([3, -1., 0])
self.add(model)
cpu_targs = []
for i,rect in enumerate(model_base):
rect.set_stroke(YELLOW)
# target = fill.copy().set_fill(YELLOW, opacity=0.7)
# target.move_to(rect)
# self.add(target)
cpu_target = Rectangle(height=0.46/4,width=0.46/3).set_stroke(width=0.).set_fill(YELLOW, opacity=0.7)
if i == 0:
cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN+LEFT), buff=0.02, direction=UP)
cpu_target.set_x(cpu_target.get_x()+0.1)
elif i == 3:
cpu_target.next_to(cpu_targs[0], direction=UP, buff=0.)
else:
cpu_target.next_to(cpu_targs[i-1], direction=RIGHT, buff=0.)
self.add(cpu_target)
cpu_targs.append(cpu_target)
checkpoint_base = [mem.copy() for i in range(6)]
checkpoint_rect = VGroup(*checkpoint_base).arrange(RIGHT,buff=0)
checkpoint_text = Text("Loaded Checkpoint", font_size=24)
checkpoint = Group(checkpoint_rect,checkpoint_text).arrange(DOWN, aligned_edge=DOWN, buff=0.4)
checkpoint.move_to([3, .5, 0])
key = Square(side_length=2.2)
key.move_to([-5, 2, 0])
key_text = MarkupText(
f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model",
font_size=18,
)
key_text.move_to([-5, 2.4, 0])
self.add(key_text, key)
blue_text = MarkupText(
f"<span fgcolor='{BLUE}'>●</span> Checkpoint",
font_size=18,
)
blue_text.next_to(key_text, DOWN*2.4, aligned_edge=key_text.get_left())
step_2 = MarkupText(
f'Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.',
font_size=24
)
step_2.move_to([2, 2, 0])
self.play(
Write(step_2),
Write(blue_text)
)
self.play(
Write(checkpoint_text, run_time=1),
Create(checkpoint_rect, run_time=1)
)
first_animations = []
second_animations = []
for i,rect in enumerate(checkpoint_base):
target = fill.copy().set_fill(BLUE, opacity=0.7)
target.move_to(rect)
first_animations.append(GrowFromCenter(target, run_time=1))
cpu_target = target.copy()
cpu_target.generate_target()
if i < 5:
cpu_target.target.move_to(cpu_left_col_base[i+1])
else:
cpu_target.target.move_to(cpu_right_col_base[i-5])
second_animations.append(MoveToTarget(cpu_target, run_time=1.5))
self.play(*first_animations)
self.play(*second_animations)
self.wait() | accelerate/manim_animations/big_model_inference/stage_2.py/0 | {
"file_path": "accelerate/manim_animations/big_model_inference/stage_2.py",
"repo_id": "accelerate",
"token_count": 2354
} |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
from contextlib import contextmanager
from functools import wraps
from typing import Dict, List, Optional, Union
import torch
import torch.nn as nn
from .hooks import (
AlignDevicesHook,
CpuOffload,
UserCpuOffloadHook,
add_hook_to_module,
attach_align_device_hook,
attach_align_device_hook_on_blocks,
)
from .utils import (
OffloadedWeightsLoader,
check_cuda_p2p_ib_support,
check_device_map,
extract_submodules_state_dict,
find_tied_parameters,
get_balanced_memory,
infer_auto_device_map,
is_bnb_available,
is_mlu_available,
is_musa_available,
is_npu_available,
is_xpu_available,
load_checkpoint_in_model,
offload_state_dict,
parse_flag_from_env,
retie_parameters,
)
from .utils.other import recursive_getattr
logger = logging.getLogger(__name__)
@contextmanager
def init_empty_weights(include_buffers: bool = None):
"""
A context manager under which models are initialized with all parameters on the meta device, therefore creating an
empty model. Useful when just initializing the model would blow the available RAM.
Args:
include_buffers (`bool`, *optional*):
Whether or not to also put all buffers on the meta device while initializing.
Example:
```python
import torch.nn as nn
from accelerate import init_empty_weights
# Initialize a model with 100 billions parameters in no time and without using any RAM.
with init_empty_weights():
tst = nn.Sequential(*[nn.Linear(10000, 10000) for _ in range(1000)])
```
<Tip warning={true}>
Any model created under this context manager has no weights. As such you can't do something like
`model.to(some_device)` with it. To load weights inside your empty model, see [`load_checkpoint_and_dispatch`].
Make sure to overwrite the default device_map param for [`load_checkpoint_and_dispatch`], otherwise dispatch is not
called.
</Tip>
"""
if include_buffers is None:
include_buffers = parse_flag_from_env("ACCELERATE_INIT_INCLUDE_BUFFERS", False)
with init_on_device(torch.device("meta"), include_buffers=include_buffers) as f:
yield f
@contextmanager
def init_on_device(device: torch.device, include_buffers: bool = None):
"""
A context manager under which models are initialized with all parameters on the specified device.
Args:
device (`torch.device`):
Device to initialize all parameters on.
include_buffers (`bool`, *optional*):
Whether or not to also put all buffers on the meta device while initializing.
Example:
```python
import torch.nn as nn
from accelerate import init_on_device
with init_on_device(device=torch.device("cuda")):
tst = nn.Linear(100, 100) # on `cuda` device
```
"""
if include_buffers is None:
include_buffers = parse_flag_from_env("ACCELERATE_INIT_INCLUDE_BUFFERS", False)
if include_buffers:
with device:
yield
return
old_register_parameter = nn.Module.register_parameter
if include_buffers:
old_register_buffer = nn.Module.register_buffer
def register_empty_parameter(module, name, param):
old_register_parameter(module, name, param)
if param is not None:
param_cls = type(module._parameters[name])
kwargs = module._parameters[name].__dict__
kwargs["requires_grad"] = param.requires_grad
module._parameters[name] = param_cls(module._parameters[name].to(device), **kwargs)
def register_empty_buffer(module, name, buffer, persistent=True):
old_register_buffer(module, name, buffer, persistent=persistent)
if buffer is not None:
module._buffers[name] = module._buffers[name].to(device)
# Patch tensor creation
if include_buffers:
tensor_constructors_to_patch = {
torch_function_name: getattr(torch, torch_function_name)
for torch_function_name in ["empty", "zeros", "ones", "full"]
}
else:
tensor_constructors_to_patch = {}
def patch_tensor_constructor(fn):
def wrapper(*args, **kwargs):
kwargs["device"] = device
return fn(*args, **kwargs)
return wrapper
try:
nn.Module.register_parameter = register_empty_parameter
if include_buffers:
nn.Module.register_buffer = register_empty_buffer
for torch_function_name in tensor_constructors_to_patch.keys():
setattr(torch, torch_function_name, patch_tensor_constructor(getattr(torch, torch_function_name)))
yield
finally:
nn.Module.register_parameter = old_register_parameter
if include_buffers:
nn.Module.register_buffer = old_register_buffer
for torch_function_name, old_torch_function in tensor_constructors_to_patch.items():
setattr(torch, torch_function_name, old_torch_function)
def cpu_offload(
model: nn.Module,
execution_device: Optional[torch.device] = None,
offload_buffers: bool = False,
state_dict: Optional[Dict[str, torch.Tensor]] = None,
preload_module_classes: Optional[List[str]] = None,
):
"""
Activates full CPU offload for a model. As a result, all parameters of the model will be offloaded and only one
copy of the state dict of the model will be kept. During the forward pass, parameters will be extracted from that
state dict and put on the execution device passed as they are needed, then offloaded again.
Args:
model (`torch.nn.Module`):
The model to offload.
execution_device (`torch.device`, *optional*):
The device on which the forward pass of the model will be executed (should be a GPU). Will default to the
model first parameter device.
offload_buffers (`bool`, *optional*, defaults to `False`):
Whether or not to offload the buffers with the model parameters.
state_dict (`Dict[str, torch.Tensor]`, *optional*):
The state dict of the model that will be kept on CPU.
preload_module_classes (`List[str]`, *optional*):
A list of classes whose instances should load all their weights (even in the submodules) at the beginning
of the forward. This should only be used for classes that have submodules which are registered but not
called directly during the forward, for instance if a `dense` linear layer is registered, but at forward,
`dense.weight` and `dense.bias` are used in some operations instead of calling `dense` directly.
"""
if execution_device is None:
execution_device = next(iter(model.parameters())).device
if state_dict is None:
state_dict = {n: p.to("cpu") for n, p in model.state_dict().items()}
add_hook_to_module(model, AlignDevicesHook(io_same_device=True), append=True)
attach_align_device_hook(
model,
execution_device=execution_device,
offload=True,
offload_buffers=offload_buffers,
weights_map=state_dict,
preload_module_classes=preload_module_classes,
)
return model
def cpu_offload_with_hook(
model: torch.nn.Module,
execution_device: Optional[Union[int, str, torch.device]] = None,
prev_module_hook: Optional[UserCpuOffloadHook] = None,
):
"""
Offloads a model on the CPU and puts it back to an execution device when executed. The difference with
[`cpu_offload`] is that the model stays on the execution device after the forward and is only offloaded again when
the `offload` method of the returned `hook` is called. Useful for pipelines running a model in a loop.
Args:
model (`torch.nn.Module`):
The model to offload.
execution_device(`str`, `int` or `torch.device`, *optional*):
The device on which the model should be executed. Will default to the MPS device if it's available, then
GPU 0 if there is a GPU, and finally to the CPU.
prev_module_hook (`UserCpuOffloadHook`, *optional*):
The hook sent back by this function for a previous model in the pipeline you are running. If passed, its
offload method will be called just before the forward of the model to which this hook is attached.
Example:
```py
model_1, hook_1 = cpu_offload_with_hook(model_1, cuda_device)
model_2, hook_2 = cpu_offload_with_hook(model_2, cuda_device, prev_module_hook=hook_1)
model_3, hook_3 = cpu_offload_with_hook(model_3, cuda_device, prev_module_hook=hook_2)
hid_1 = model_1(input)
for i in range(50):
# model1 is offloaded on the CPU at the first iteration, model 2 stays on the GPU for this whole loop.
hid_2 = model_2(hid_1)
# model2 is offloaded to the CPU just before this forward.
hid_3 = model_3(hid_3)
# For model3, you need to manually call the hook offload method.
hook_3.offload()
```
"""
hook = CpuOffload(execution_device=execution_device, prev_module_hook=prev_module_hook)
add_hook_to_module(model, hook, append=True)
user_hook = UserCpuOffloadHook(model, hook)
return model, user_hook
def disk_offload(
model: nn.Module,
offload_dir: Union[str, os.PathLike],
execution_device: Optional[torch.device] = None,
offload_buffers: bool = False,
preload_module_classes: Optional[List[str]] = None,
):
"""
Activates full disk offload for a model. As a result, all parameters of the model will be offloaded as
memory-mapped array in a given folder. During the forward pass, parameters will be accessed from that folder and
put on the execution device passed as they are needed, then offloaded again.
Args:
model (`torch.nn.Module`): The model to offload.
offload_dir (`str` or `os.PathLike`):
The folder in which to offload the model weights (or where the model weights are already offloaded).
execution_device (`torch.device`, *optional*):
The device on which the forward pass of the model will be executed (should be a GPU). Will default to the
model's first parameter device.
offload_buffers (`bool`, *optional*, defaults to `False`):
Whether or not to offload the buffers with the model parameters.
preload_module_classes (`List[str]`, *optional*):
A list of classes whose instances should load all their weights (even in the submodules) at the beginning
of the forward. This should only be used for classes that have submodules which are registered but not
called directly during the forward, for instance if a `dense` linear layer is registered, but at forward,
`dense.weight` and `dense.bias` are used in some operations instead of calling `dense` directly.
"""
if not os.path.isdir(offload_dir) or not os.path.isfile(os.path.join(offload_dir, "index.json")):
offload_state_dict(offload_dir, model.state_dict())
if execution_device is None:
execution_device = next(iter(model.parameters())).device
weights_map = OffloadedWeightsLoader(save_folder=offload_dir)
add_hook_to_module(model, AlignDevicesHook(io_same_device=True), append=True)
attach_align_device_hook(
model,
execution_device=execution_device,
offload=True,
offload_buffers=offload_buffers,
weights_map=weights_map,
preload_module_classes=preload_module_classes,
)
return model
def dispatch_model(
model: nn.Module,
device_map: Dict[str, Union[str, int, torch.device]],
main_device: Optional[torch.device] = None,
state_dict: Optional[Dict[str, torch.Tensor]] = None,
offload_dir: Optional[Union[str, os.PathLike]] = None,
offload_index: Optional[Dict[str, str]] = None,
offload_buffers: bool = False,
skip_keys: Optional[Union[str, List[str]]] = None,
preload_module_classes: Optional[List[str]] = None,
force_hooks: bool = False,
):
"""
Dispatches a model according to a given device map. Layers of the model might be spread across GPUs, offloaded on
the CPU or even the disk.
Args:
model (`torch.nn.Module`):
The model to dispatch.
device_map (`Dict[str, Union[str, int, torch.device]]`):
A dictionary mapping module names in the models `state_dict` to the device they should go to. Note that
`"disk"` is accepted even if it's not a proper value for `torch.device`.
main_device (`str`, `int` or `torch.device`, *optional*):
The main execution device. Will default to the first device in the `device_map` different from `"cpu"` or
`"disk"`.
state_dict (`Dict[str, torch.Tensor]`, *optional*):
The state dict of the part of the model that will be kept on CPU.
offload_dir (`str` or `os.PathLike`):
The folder in which to offload the model weights (or where the model weights are already offloaded).
offload_index (`Dict`, *optional*):
A dictionary from weight name to their information (`dtype`/ `shape` or safetensors filename). Will default
to the index saved in `save_folder`.
offload_buffers (`bool`, *optional*, defaults to `False`):
Whether or not to offload the buffers with the model parameters.
skip_keys (`str` or `List[str]`, *optional*):
A list of keys to ignore when moving inputs or outputs between devices.
preload_module_classes (`List[str]`, *optional*):
A list of classes whose instances should load all their weights (even in the submodules) at the beginning
of the forward. This should only be used for classes that have submodules which are registered but not
called directly during the forward, for instance if a `dense` linear layer is registered, but at forward,
`dense.weight` and `dense.bias` are used in some operations instead of calling `dense` directly.
force_hooks (`bool`, *optional*, defaults to `False`):
Whether or not to force device hooks to be attached to the model even if all layers are dispatched to a
single device.
"""
# Error early if the device map is incomplete.
check_device_map(model, device_map)
# We need to force hook for quantized model that can't be moved with to()
if getattr(model, "quantization_method", "bitsandbytes") == "bitsandbytes":
# since bnb 0.43.2, we can move 4-bit model
if getattr(model, "is_loaded_in_8bit", False) or (
getattr(model, "is_loaded_in_4bit", False) and not is_bnb_available(min_version="0.43.2")
):
force_hooks = True
# We attach hooks if the device_map has at least 2 different devices or if
# force_hooks is set to `True`. Otherwise, the model in already loaded
# in the unique device and the user can decide where to dispatch the model.
# If the model is quantized, we always force-dispatch the model
if (len(set(device_map.values())) > 1) or force_hooks:
if main_device is None:
if set(device_map.values()) == {"cpu"} or set(device_map.values()) == {"cpu", "disk"}:
main_device = "cpu"
else:
main_device = [d for d in device_map.values() if d not in ["cpu", "disk"]][0]
if main_device != "cpu":
cpu_modules = [name for name, device in device_map.items() if device == "cpu"]
if state_dict is None and len(cpu_modules) > 0:
state_dict = extract_submodules_state_dict(model.state_dict(), cpu_modules)
disk_modules = [name for name, device in device_map.items() if device == "disk"]
if offload_dir is None and offload_index is None and len(disk_modules) > 0:
raise ValueError(
"We need an `offload_dir` to dispatch this model according to this `device_map`, the following submodules "
f"need to be offloaded: {', '.join(disk_modules)}."
)
if (
len(disk_modules) > 0
and offload_index is None
and (not os.path.isdir(offload_dir) or not os.path.isfile(os.path.join(offload_dir, "index.json")))
):
disk_state_dict = extract_submodules_state_dict(model.state_dict(), disk_modules)
offload_state_dict(offload_dir, disk_state_dict)
execution_device = {
name: main_device if device in ["cpu", "disk"] else device for name, device in device_map.items()
}
execution_device[""] = main_device
offloaded_devices = ["disk"] if main_device == "cpu" or main_device == "mps" else ["cpu", "disk"]
offload = {name: device in offloaded_devices for name, device in device_map.items()}
save_folder = offload_dir if len(disk_modules) > 0 else None
if state_dict is not None or save_folder is not None or offload_index is not None:
device = main_device if offload_index is not None else None
weights_map = OffloadedWeightsLoader(
state_dict=state_dict, save_folder=save_folder, index=offload_index, device=device
)
else:
weights_map = None
# When dispatching the model's parameters to the devices specified in device_map, we want to avoid allocating memory several times for the
# tied parameters. The dictionary tied_params_map keeps track of the already allocated data for a given tied parameter (represented by its
# original pointer) on each devices.
tied_params = find_tied_parameters(model)
tied_params_map = {}
for group in tied_params:
for param_name in group:
# data_ptr() is enough here, as `find_tied_parameters` finds tied params simply by comparing `param1 is param2`, so we don't need
# to care about views of tensors through storage_offset.
data_ptr = recursive_getattr(model, param_name).data_ptr()
tied_params_map[data_ptr] = {}
# Note: To handle the disk offloading case, we can not simply use weights_map[param_name].data_ptr() as the reference pointer,
# as we have no guarantee that safetensors' `file.get_tensor()` will always give the same pointer.
attach_align_device_hook_on_blocks(
model,
execution_device=execution_device,
offload=offload,
offload_buffers=offload_buffers,
weights_map=weights_map,
skip_keys=skip_keys,
preload_module_classes=preload_module_classes,
tied_params_map=tied_params_map,
)
# warn if there is any params on the meta device
offloaded_devices_str = " and ".join(
[device for device in set(device_map.values()) if device in ("cpu", "disk")]
)
if len(offloaded_devices_str) > 0:
logger.warning(
f"Some parameters are on the meta device because they were offloaded to the {offloaded_devices_str}."
)
# Attaching the hook may break tied weights, so we retie them
retie_parameters(model, tied_params)
# add warning to cuda and to method
def add_warning(fn, model):
@wraps(fn)
def wrapper(*args, **kwargs):
warning_msg = "You shouldn't move a model that is dispatched using accelerate hooks."
if str(fn.__name__) == "to":
to_device = torch._C._nn._parse_to(*args, **kwargs)[0]
if to_device is not None:
logger.warning(warning_msg)
else:
logger.warning(warning_msg)
for param in model.parameters():
if param.device == torch.device("meta"):
raise RuntimeError("You can't move a model that has some modules offloaded to cpu or disk.")
return fn(*args, **kwargs)
return wrapper
# Make sure to update _accelerate_added_attributes in hooks.py if you add any hook
model.to = add_warning(model.to, model)
if is_npu_available():
model.npu = add_warning(model.npu, model)
elif is_mlu_available():
model.mlu = add_warning(model.mlu, model)
elif is_musa_available():
model.musa = add_warning(model.musa, model)
elif is_xpu_available():
model.xpu = add_warning(model.xpu, model)
else:
model.cuda = add_warning(model.cuda, model)
# Check if we are using multi-gpus with RTX 4000 series
use_multi_gpu = len([device for device in set(device_map.values()) if device not in ("cpu", "disk")]) > 1
if use_multi_gpu and not check_cuda_p2p_ib_support():
logger.warning(
"We've detected an older driver with an RTX 4000 series GPU. These drivers have issues with P2P. "
"This can affect the multi-gpu inference when using accelerate device_map."
"Please make sure to update your driver to the latest version which resolves this."
)
else:
device = list(device_map.values())[0]
# `torch.Tensor.to(<int num>)` is not supported by `torch_npu` (see this [issue](https://github.com/Ascend/pytorch/issues/16)).
if is_npu_available() and isinstance(device, int):
device = f"npu:{device}"
elif is_mlu_available() and isinstance(device, int):
device = f"mlu:{device}"
elif is_musa_available() and isinstance(device, int):
device = f"musa:{device}"
elif is_xpu_available() and isinstance(device, int):
device = f"xpu:{device}"
if device != "disk":
model.to(device)
else:
raise ValueError(
"You are trying to offload the whole model to the disk. Please use the `disk_offload` function instead."
)
# Convert OrderedDict back to dict for easier usage
model.hf_device_map = dict(device_map)
return model
def load_checkpoint_and_dispatch(
model: nn.Module,
checkpoint: Union[str, os.PathLike],
device_map: Optional[Union[str, Dict[str, Union[int, str, torch.device]]]] = None,
max_memory: Optional[Dict[Union[int, str], Union[int, str]]] = None,
no_split_module_classes: Optional[List[str]] = None,
offload_folder: Optional[Union[str, os.PathLike]] = None,
offload_buffers: bool = False,
dtype: Optional[Union[str, torch.dtype]] = None,
offload_state_dict: Optional[bool] = None,
skip_keys: Optional[Union[str, List[str]]] = None,
preload_module_classes: Optional[List[str]] = None,
force_hooks: bool = False,
strict: bool = False,
):
"""
Loads a (potentially sharded) checkpoint inside a model, potentially sending weights to a given device as they are
loaded and adds the various hooks that will make this model run properly (even if split across devices).
Args:
model (`torch.nn.Module`): The model in which we want to load a checkpoint.
checkpoint (`str` or `os.PathLike`):
The folder checkpoint to load. It can be:
- a path to a file containing a whole model state dict
- a path to a `.json` file containing the index to a sharded checkpoint
- a path to a folder containing a unique `.index.json` file and the shards of a checkpoint.
device_map (`Dict[str, Union[int, str, torch.device]]`, *optional*):
A map that specifies where each submodule should go. It doesn't need to be refined to each parameter/buffer
name, once a given module name is inside, every submodule of it will be sent to the same device.
To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For more
information about each option see [here](../concept_guides/big_model_inference#designing-a-device-map).
Defaults to None, which means [`dispatch_model`] will not be called.
max_memory (`Dict`, *optional*):
A dictionary device identifier to maximum memory. Will default to the maximum memory available for each GPU
and the available CPU RAM if unset.
no_split_module_classes (`List[str]`, *optional*):
A list of layer class names that should never be split across device (for instance any layer that has a
residual connection).
offload_folder (`str` or `os.PathLike`, *optional*):
If the `device_map` contains any value `"disk"`, the folder where we will offload weights.
offload_buffers (`bool`, *optional*, defaults to `False`):
In the layers that are offloaded on the CPU or the hard drive, whether or not to offload the buffers as
well as the parameters.
dtype (`str` or `torch.dtype`, *optional*):
If provided, the weights will be converted to that type when loaded.
offload_state_dict (`bool`, *optional*):
If `True`, will temporarily offload the CPU state dict on the hard drive to avoid getting out of CPU RAM if
the weight of the CPU state dict + the biggest shard does not fit. Will default to `True` if the device map
picked contains `"disk"` values.
skip_keys (`str` or `List[str]`, *optional*):
A list of keys to ignore when moving inputs or outputs between devices.
preload_module_classes (`List[str]`, *optional*):
A list of classes whose instances should load all their weights (even in the submodules) at the beginning
of the forward. This should only be used for classes that have submodules which are registered but not
called directly during the forward, for instance if a `dense` linear layer is registered, but at forward,
`dense.weight` and `dense.bias` are used in some operations instead of calling `dense` directly.
force_hooks (`bool`, *optional*, defaults to `False`):
Whether or not to force device hooks to be attached to the model even if all layers are dispatched to a
single device.
strict (`bool`, *optional*, defaults to `False`):
Whether to strictly enforce that the keys in the checkpoint state_dict match the keys of the model's
state_dict.
Example:
```python
>>> from accelerate import init_empty_weights, load_checkpoint_and_dispatch
>>> from huggingface_hub import hf_hub_download
>>> from transformers import AutoConfig, AutoModelForCausalLM
>>> # Download the Weights
>>> checkpoint = "EleutherAI/gpt-j-6B"
>>> weights_location = hf_hub_download(checkpoint, "pytorch_model.bin")
>>> # Create a model and initialize it with empty weights
>>> config = AutoConfig.from_pretrained(checkpoint)
>>> with init_empty_weights():
... model = AutoModelForCausalLM.from_config(config)
>>> # Load the checkpoint and dispatch it to the right devices
>>> model = load_checkpoint_and_dispatch(
... model, weights_location, device_map="auto", no_split_module_classes=["GPTJBlock"]
... )
```
"""
if isinstance(device_map, str) and device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
raise ValueError(
"If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or "
"'sequential'."
)
if isinstance(device_map, str):
if device_map != "sequential":
max_memory = get_balanced_memory(
model,
max_memory=max_memory,
no_split_module_classes=no_split_module_classes,
dtype=dtype,
low_zero=(device_map == "balanced_low_0"),
)
device_map = infer_auto_device_map(
model,
max_memory=max_memory,
no_split_module_classes=no_split_module_classes,
dtype=dtype,
offload_buffers=offload_buffers,
)
if offload_state_dict is None and device_map is not None and "disk" in device_map.values():
offload_state_dict = True
load_checkpoint_in_model(
model,
checkpoint,
device_map=device_map,
offload_folder=offload_folder,
dtype=dtype,
offload_state_dict=offload_state_dict,
offload_buffers=offload_buffers,
strict=strict,
)
if device_map is None:
return model
return dispatch_model(
model,
device_map=device_map,
offload_dir=offload_folder,
offload_buffers=offload_buffers,
skip_keys=skip_keys,
preload_module_classes=preload_module_classes,
force_hooks=force_hooks,
)
| accelerate/src/accelerate/big_modeling.py/0 | {
"file_path": "accelerate/src/accelerate/big_modeling.py",
"repo_id": "accelerate",
"token_count": 11505
} |
# Copyright 2022 The HuggingFace Team and Brian Chao. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A utility for showing and hiding the terminal cursor on Windows and Linux, based on https://github.com/bchao1/bullet
"""
import os
import sys
from contextlib import contextmanager
# Windows only
if os.name == "nt":
import ctypes
import msvcrt # noqa
class CursorInfo(ctypes.Structure):
# _fields is a specific attr expected by ctypes
_fields_ = [("size", ctypes.c_int), ("visible", ctypes.c_byte)]
def hide_cursor():
if os.name == "nt":
ci = CursorInfo()
handle = ctypes.windll.kernel32.GetStdHandle(-11)
ctypes.windll.kernel32.GetConsoleCursorInfo(handle, ctypes.byref(ci))
ci.visible = False
ctypes.windll.kernel32.SetConsoleCursorInfo(handle, ctypes.byref(ci))
elif os.name == "posix":
sys.stdout.write("\033[?25l")
sys.stdout.flush()
def show_cursor():
if os.name == "nt":
ci = CursorInfo()
handle = ctypes.windll.kernel32.GetStdHandle(-11)
ctypes.windll.kernel32.GetConsoleCursorInfo(handle, ctypes.byref(ci))
ci.visible = True
ctypes.windll.kernel32.SetConsoleCursorInfo(handle, ctypes.byref(ci))
elif os.name == "posix":
sys.stdout.write("\033[?25h")
sys.stdout.flush()
@contextmanager
def hide():
"Context manager to hide the terminal cursor"
try:
hide_cursor()
yield
finally:
show_cursor()
| accelerate/src/accelerate/commands/menu/cursor.py/0 | {
"file_path": "accelerate/src/accelerate/commands/menu/cursor.py",
"repo_id": "accelerate",
"token_count": 763
} |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import torch
from .state import AcceleratorState, GradientState
from .utils import DistributedType, honor_type, is_lomo_available, is_torch_xla_available
if is_torch_xla_available():
import torch_xla.core.xla_model as xm
def move_to_device(state, device):
if isinstance(state, (list, tuple)):
return honor_type(state, (move_to_device(t, device) for t in state))
elif isinstance(state, dict):
return type(state)({k: move_to_device(v, device) for k, v in state.items()})
elif isinstance(state, torch.Tensor):
return state.to(device)
return state
class AcceleratedOptimizer(torch.optim.Optimizer):
"""
Internal wrapper around a torch optimizer.
Conditionally will perform `step` and `zero_grad` if gradients should be synchronized when performing gradient
accumulation.
Args:
optimizer (`torch.optim.optimizer.Optimizer`):
The optimizer to wrap.
device_placement (`bool`, *optional*, defaults to `True`):
Whether or not the optimizer should handle device placement. If so, it will place the state dictionary of
`optimizer` on the right device.
scaler (`torch.cuda.amp.grad_scaler.GradScaler`, *optional*):
The scaler to use in the step function if training with mixed precision.
"""
def __init__(self, optimizer, device_placement=True, scaler=None):
self.optimizer = optimizer
self.scaler = scaler
self.accelerator_state = AcceleratorState()
self.gradient_state = GradientState()
self.device_placement = device_placement
self._is_overflow = False
if self.scaler is not None:
self._accelerate_step_called = False
self._optimizer_original_step_method = self.optimizer.step
self._optimizer_patched_step_method = patch_optimizer_step(self, self.optimizer.step)
# Handle device placement
if device_placement:
state_dict = self.optimizer.state_dict()
if self.accelerator_state.distributed_type == DistributedType.XLA:
xm.send_cpu_data_to_device(state_dict, self.accelerator_state.device)
else:
state_dict = move_to_device(state_dict, self.accelerator_state.device)
self.optimizer.load_state_dict(state_dict)
@property
def state(self):
return self.optimizer.state
@state.setter
def state(self, state):
self.optimizer.state = state
@property
def param_groups(self):
return self.optimizer.param_groups
@param_groups.setter
def param_groups(self, param_groups):
self.optimizer.param_groups = param_groups
@property
def defaults(self):
return self.optimizer.defaults
@defaults.setter
def defaults(self, defaults):
self.optimizer.defaults = defaults
def add_param_group(self, param_group):
self.optimizer.add_param_group(param_group)
def load_state_dict(self, state_dict):
if self.accelerator_state.distributed_type == DistributedType.XLA and self.device_placement:
xm.send_cpu_data_to_device(state_dict, self.accelerator_state.device)
self.optimizer.load_state_dict(state_dict)
def state_dict(self):
return self.optimizer.state_dict()
def zero_grad(self, set_to_none=None):
if self.gradient_state.sync_gradients:
accept_arg = "set_to_none" in inspect.signature(self.optimizer.zero_grad).parameters
if accept_arg:
if set_to_none is None:
set_to_none = True
self.optimizer.zero_grad(set_to_none=set_to_none)
else:
if set_to_none is not None:
raise ValueError("`set_to_none` for Optimizer.zero_grad` is not supported by this optimizer.")
self.optimizer.zero_grad()
def train(self):
"""
Sets the optimizer to "train" mode. Useful for optimizers like `schedule_free`
"""
if hasattr(self.optimizer, "train") and callable(self.optimizer.train):
self.optimizer.train()
elif (
hasattr(self.optimizer, "optimizer")
and hasattr(self.optimizer.optimizer, "train")
and callable(self.optimizer.optimizer.train)
):
# the deepspeed optimizer further wraps the optimizer
self.optimizer.optimizer.train()
def eval(self):
"""
Sets the optimizer to "eval" mode. Useful for optimizers like `schedule_free`
"""
if hasattr(self.optimizer, "eval") and callable(self.optimizer.eval):
self.optimizer.eval()
def step(self, closure=None):
if is_lomo_available():
from lomo_optim import AdaLomo, Lomo
if (
not self.gradient_state.is_xla_gradients_synced
and self.accelerator_state.distributed_type == DistributedType.XLA
):
gradients = xm._fetch_gradients(self.optimizer)
xm.all_reduce("sum", gradients, scale=1.0 / xm.xrt_world_size())
self.gradient_state.is_xla_gradients_synced = True
if is_lomo_available():
# `step` should be a no-op for LOMO optimizers.
if isinstance(self.optimizer, (Lomo, AdaLomo)):
return
if self.gradient_state.sync_gradients:
if self.scaler is not None:
self.optimizer.step = self._optimizer_patched_step_method
self.scaler.step(self.optimizer, closure)
self.scaler.update()
if not self._accelerate_step_called:
# If the optimizer step was skipped, gradient overflow was detected.
self._is_overflow = True
else:
self._is_overflow = False
# Reset the step method to the original one
self.optimizer.step = self._optimizer_original_step_method
# Reset the indicator
self._accelerate_step_called = False
else:
self.optimizer.step(closure)
if self.accelerator_state.distributed_type == DistributedType.XLA:
self.gradient_state.is_xla_gradients_synced = False
def _switch_parameters(self, parameters_map):
for param_group in self.optimizer.param_groups:
param_group["params"] = [parameters_map.get(p, p) for p in param_group["params"]]
@property
def step_was_skipped(self):
"""Whether or not the optimizer step was skipped."""
return self._is_overflow
def __getstate__(self):
_ignored_keys = [
"_accelerate_step_called",
"_optimizer_original_step_method",
"_optimizer_patched_step_method",
]
return {k: v for k, v in self.__dict__.items() if k not in _ignored_keys}
def __setstate__(self, state):
self.__dict__.update(state)
if self.scaler is not None:
self._accelerate_step_called = False
self._optimizer_original_step_method = self.optimizer.step
self._optimizer_patched_step_method = patch_optimizer_step(self, self.optimizer.step)
def patch_optimizer_step(accelerated_optimizer: AcceleratedOptimizer, method):
def patched_step(*args, **kwargs):
accelerated_optimizer._accelerate_step_called = True
return method(*args, **kwargs)
return patched_step
| accelerate/src/accelerate/optimizer.py/0 | {
"file_path": "accelerate/src/accelerate/optimizer.py",
"repo_id": "accelerate",
"token_count": 3435
} |
#!/usr/bin/env python
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pickle
import tempfile
import warnings
from typing import List
from unittest.mock import Mock
import torch
from torch.utils.data import (
BatchSampler,
DataLoader,
Dataset,
IterableDataset,
RandomSampler,
TensorDataset,
default_collate,
)
from accelerate.accelerator import Accelerator, DataLoaderConfiguration
from accelerate.utils.dataclasses import DistributedType
NUM_ELEMENTS = 22
NUM_WORKERS = 4
BATCH_SIZE = 4
class DummyDataset(Dataset):
def __len__(self):
return NUM_ELEMENTS
def __getitem__(self, index):
squeeze = False
if isinstance(index, int):
index = [index]
squeeze = True
elif isinstance(index, slice):
index = list(range(*index.indices(self.size)))
else:
index = list(index)
batch = [{"index": i, "label": i % 2, "random_augmentation": torch.rand(1).item()} for i in index]
if squeeze:
batch = batch[0]
return batch
class DummyIterableDataset(IterableDataset):
def __init__(self, data):
self.data = data
def __iter__(self):
yield from self.data
def create_accelerator(even_batches=True):
dataloader_config = DataLoaderConfiguration(even_batches=even_batches)
accelerator = Accelerator(dataloader_config=dataloader_config)
assert accelerator.num_processes == 2, "this script expects that two GPUs are available"
return accelerator
def create_dataloader(
accelerator: Accelerator, dataset_size: int, batch_size: int, iterable: bool = False, shuffle: bool = False
):
"""
Create a simple DataLoader to use during the test cases
"""
values = torch.as_tensor(range(dataset_size))
if shuffle:
values = values[torch.randperm(values.size(0))]
if iterable:
dataset = DummyIterableDataset(values)
else:
dataset = TensorDataset(torch.as_tensor(range(dataset_size)))
dl = DataLoader(dataset, batch_size=batch_size)
dl = accelerator.prepare(dl)
return dl
def verify_dataloader_batch_sizes(
accelerator: Accelerator,
dataset_size: int,
batch_size: int,
process_0_expected_batch_sizes: List[int],
process_1_expected_batch_sizes: List[int],
):
"""
A helper function for verifying the batch sizes coming from a prepared dataloader in each process
"""
dl = create_dataloader(accelerator=accelerator, dataset_size=dataset_size, batch_size=batch_size)
batch_sizes = [len(batch[0]) for batch in dl]
if accelerator.process_index == 0:
assert batch_sizes == process_0_expected_batch_sizes
elif accelerator.process_index == 1:
assert batch_sizes == process_1_expected_batch_sizes
def test_default_ensures_even_batch_sizes():
accelerator = create_accelerator()
# without padding, we would expect a different number of batches
verify_dataloader_batch_sizes(
accelerator,
dataset_size=3,
batch_size=1,
process_0_expected_batch_sizes=[1, 1],
process_1_expected_batch_sizes=[1, 1],
)
# without padding, we would expect the same number of batches, but different sizes
verify_dataloader_batch_sizes(
accelerator,
dataset_size=7,
batch_size=2,
process_0_expected_batch_sizes=[2, 2],
process_1_expected_batch_sizes=[2, 2],
)
def test_can_disable_even_batches():
accelerator = create_accelerator(even_batches=False)
verify_dataloader_batch_sizes(
accelerator,
dataset_size=3,
batch_size=1,
process_0_expected_batch_sizes=[1, 1],
process_1_expected_batch_sizes=[1],
)
verify_dataloader_batch_sizes(
accelerator,
dataset_size=7,
batch_size=2,
process_0_expected_batch_sizes=[2, 2],
process_1_expected_batch_sizes=[2, 1],
)
def test_can_join_uneven_inputs():
accelerator = create_accelerator(even_batches=False)
model = torch.nn.Linear(1, 1)
ddp_model = accelerator.prepare(model)
dl = create_dataloader(accelerator, dataset_size=3, batch_size=1)
batch_idxs = []
with accelerator.join_uneven_inputs([ddp_model]):
for batch_idx, batch in enumerate(dl):
output = ddp_model(batch[0].float())
loss = output.sum()
loss.backward()
batch_idxs.append(batch_idx)
accelerator.wait_for_everyone()
if accelerator.process_index == 0:
assert batch_idxs == [0, 1]
elif accelerator.process_index == 1:
assert batch_idxs == [0]
def test_join_raises_warning_for_non_ddp_distributed(accelerator):
with warnings.catch_warnings(record=True) as w:
with accelerator.join_uneven_inputs([Mock()]):
pass
assert issubclass(w[-1].category, UserWarning)
assert "only supported for multi-GPU" in str(w[-1].message)
def test_join_can_override_even_batches():
default_even_batches = True
overridden_even_batches = False
accelerator = create_accelerator(even_batches=default_even_batches)
model = torch.nn.Linear(1, 1)
ddp_model = accelerator.prepare(model)
train_dl = create_dataloader(accelerator, dataset_size=3, batch_size=1)
valid_dl = create_dataloader(accelerator, dataset_size=3, batch_size=1)
with accelerator.join_uneven_inputs([ddp_model], even_batches=overridden_even_batches):
train_dl_overridden_value = train_dl.batch_sampler.even_batches
valid_dl_overridden_value = valid_dl.batch_sampler.even_batches
assert train_dl_overridden_value == overridden_even_batches
assert valid_dl_overridden_value == overridden_even_batches
assert train_dl.batch_sampler.even_batches == default_even_batches
assert valid_dl.batch_sampler.even_batches == default_even_batches
def test_join_can_override_for_mixed_type_dataloaders():
default_even_batches = True
overridden_even_batches = False
accelerator = create_accelerator(even_batches=default_even_batches)
model = torch.nn.Linear(1, 1)
ddp_model = accelerator.prepare(model)
create_dataloader(accelerator, dataset_size=3, batch_size=1, iterable=True)
batch_dl = create_dataloader(accelerator, dataset_size=3, batch_size=1)
with warnings.catch_warnings():
warnings.filterwarnings("ignore")
try:
with accelerator.join_uneven_inputs([ddp_model], even_batches=overridden_even_batches):
batch_dl_overridden_value = batch_dl.batch_sampler.even_batches
except AttributeError:
# ensure attribute error is not raised when processing iterable dl
raise AssertionError
assert batch_dl_overridden_value == overridden_even_batches
assert batch_dl.batch_sampler.even_batches == default_even_batches
def test_join_raises_warning_for_iterable_when_overriding_even_batches():
accelerator = create_accelerator()
model = torch.nn.Linear(1, 1)
ddp_model = accelerator.prepare(model)
create_dataloader(accelerator, dataset_size=3, batch_size=1, iterable=True)
with warnings.catch_warnings(record=True) as w:
with accelerator.join_uneven_inputs([ddp_model], even_batches=False):
pass
assert issubclass(w[-1].category, UserWarning)
assert "only supported for map-style datasets" in str(w[-1].message)
def test_pickle_accelerator():
accelerator = create_accelerator()
data_loader = create_dataloader(accelerator, dataset_size=32, batch_size=4)
_ = accelerator.prepare(data_loader)
pickled_accelerator = pickle.dumps(accelerator)
unpickled_accelerator = pickle.loads(pickled_accelerator)
# TODO: Maybe this should be implemented as __eq__ for AcceleratorState?
assert accelerator.state.__dict__ == unpickled_accelerator.state.__dict__
def test_data_loader(data_loader, accelerator):
# Prepare the DataLoader
data_loader = accelerator.prepare(data_loader)
all_examples = []
for i, batch in enumerate(data_loader):
index, _ = accelerator.gather_for_metrics((batch["index"], batch["label"]))
all_examples.extend(index.detach().cpu().numpy().tolist())
# Sort the examples
sorted_all_examples = sorted(all_examples)
# Check if all elements are present in the sorted list of iterated samples
assert (
len(set(sorted_all_examples)) == NUM_ELEMENTS
), "Not all the dataset elements have been iterated in an epoch due to duplication of samples across processes."
def test_stateful_dataloader(accelerator):
"""
Tests that a stateful dataloader can be iterated over, saved after a few batches using `load_state_dict`, and then
resumed from the saved state.
The result should be the same as the rest of the data that iterated over after saving.
"""
old_dataloader_config = accelerator.dataloader_config
try:
accelerator.dataloader_config = DataLoaderConfiguration(use_stateful_dataloader=True)
prepared_dl = create_dataloader(
accelerator, dataset_size=32 * accelerator.num_processes, batch_size=4, iterable=True, shuffle=True
)
untrained_batches = []
# Calculate what step that will be
total_batches = 32 * accelerator.num_processes // (4 * accelerator.num_processes)
last_batch_num = total_batches - 1
for step, batch in enumerate(prepared_dl):
# Step just before
if step == last_batch_num - 1:
state_dict = prepared_dl.state_dict()
if step >= last_batch_num:
# Otherwise grab the "unseen" batches
untrained_batches.append(batch)
not_skipped_batches = accelerator.gather(untrained_batches)
prepared_dl.load_state_dict(state_dict)
resumed_batches = []
for batch in prepared_dl:
resumed_batches.append(batch)
resumed_batches = accelerator.gather(resumed_batches)
for b1, b2 in zip(not_skipped_batches, resumed_batches):
for v1, v2 in zip(b1, b2):
assert torch.equal(v1, v2), f"Batch {b1} and {b2} are not equal"
finally:
accelerator.dataloader_config = old_dataloader_config
def test_stateful_dataloader_save_state(accelerator):
"""
Tests that a stateful dataloader can be iterated over, saved after a few batches using `Accelerator.save_state`,
and then resumed from the saved state.
The result should be the same as the rest of the data that iterated over after saving.
"""
old_dataloader_config = accelerator.dataloader_config
try:
with tempfile.TemporaryDirectory() as tmpdir:
accelerator.dataloader_config = DataLoaderConfiguration(use_stateful_dataloader=True)
prepared_dl = create_dataloader(
accelerator, dataset_size=32 * accelerator.num_processes, batch_size=4, iterable=True, shuffle=True
)
untrained_batches = []
# Calculate what step that will be
total_batches = 32 * accelerator.num_processes // (4 * accelerator.num_processes)
last_batch_num = total_batches - 1
for step, batch in enumerate(prepared_dl):
# Step just before
if step == last_batch_num - 1:
accelerator.save_state(tmpdir)
if step >= last_batch_num:
# Otherwise grab the "unseen" batches
untrained_batches.append(batch)
not_skipped_batches = accelerator.gather(untrained_batches)
accelerator.load_state(tmpdir)
resumed_batches = []
for batch in prepared_dl:
resumed_batches.append(batch)
resumed_batches = accelerator.gather(resumed_batches)
for b1, b2 in zip(not_skipped_batches, resumed_batches):
for v1, v2 in zip(b1, b2):
assert torch.equal(v1, v2), f"Batch {b1} and {b2} are not equal"
finally:
accelerator.dataloader_config = old_dataloader_config
def main():
accelerator = create_accelerator()
torch.manual_seed(accelerator.process_index)
accelerator.print("Test that even_batches variable ensures uniform batches across processes")
test_default_ensures_even_batch_sizes()
accelerator.print("Run tests with even_batches disabled")
test_can_disable_even_batches()
accelerator.print("Test joining uneven inputs")
test_can_join_uneven_inputs()
accelerator.print("Test overriding even_batches when joining uneven inputs")
test_join_can_override_even_batches()
accelerator.print("Test overriding even_batches for mixed dataloader types")
test_join_can_override_for_mixed_type_dataloaders()
accelerator.print("Test overriding even_batches raises a warning for iterable dataloaders")
test_join_raises_warning_for_iterable_when_overriding_even_batches()
accelerator.print("Test join with non DDP distributed raises warning")
original_state = accelerator.state.distributed_type
accelerator.state.distributed_type = DistributedType.FSDP
test_join_raises_warning_for_non_ddp_distributed(accelerator)
accelerator.state.distributed_type = original_state
accelerator.print("Test pickling an accelerator")
test_pickle_accelerator()
dataset = DummyDataset()
# Conventional Dataloader with shuffle=False
loader = DataLoader(dataset, shuffle=False, batch_size=BATCH_SIZE, num_workers=NUM_WORKERS)
test_data_loader(loader, accelerator)
# Conventional Dataloader with shuffle=True
loader = DataLoader(dataset, shuffle=True, batch_size=BATCH_SIZE, num_workers=NUM_WORKERS)
test_data_loader(loader, accelerator)
# Dataloader with batch_sampler
sampler = BatchSampler(RandomSampler(dataset), batch_size=BATCH_SIZE, drop_last=False)
loader = DataLoader(dataset, batch_sampler=sampler, num_workers=NUM_WORKERS)
test_data_loader(loader, accelerator)
# Dataloader with sampler as an instance of `BatchSampler`
sampler = BatchSampler(RandomSampler(dataset), batch_size=BATCH_SIZE, drop_last=False)
loader = DataLoader(dataset, sampler=sampler, batch_size=None, collate_fn=default_collate, num_workers=NUM_WORKERS)
test_data_loader(loader, accelerator)
test_stateful_dataloader(accelerator)
test_stateful_dataloader_save_state(accelerator)
accelerator.end_training()
if __name__ == "__main__":
main()
| accelerate/src/accelerate/test_utils/scripts/test_distributed_data_loop.py/0 | {
"file_path": "accelerate/src/accelerate/test_utils/scripts/test_distributed_data_loop.py",
"repo_id": "accelerate",
"token_count": 5904
} |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
import importlib.metadata
import os
import warnings
from functools import lru_cache, wraps
import torch
from packaging import version
from packaging.version import parse
from .environment import parse_flag_from_env, patch_environment, str_to_bool
from .versions import compare_versions, is_torch_version
# Try to run Torch native job in an environment with TorchXLA installed by setting this value to 0.
USE_TORCH_XLA = parse_flag_from_env("USE_TORCH_XLA", default=True)
_torch_xla_available = False
if USE_TORCH_XLA:
try:
import torch_xla.core.xla_model as xm # noqa: F401
import torch_xla.runtime
_torch_xla_available = True
except ImportError:
pass
# Keep it for is_tpu_available. It will be removed along with is_tpu_available.
_tpu_available = _torch_xla_available
# Cache this result has it's a C FFI call which can be pretty time-consuming
_torch_distributed_available = torch.distributed.is_available()
def _is_package_available(pkg_name, metadata_name=None):
# Check we're not importing a "pkg_name" directory somewhere but the actual library by trying to grab the version
package_exists = importlib.util.find_spec(pkg_name) is not None
if package_exists:
try:
# Some libraries have different names in the metadata
_ = importlib.metadata.metadata(pkg_name if metadata_name is None else metadata_name)
return True
except importlib.metadata.PackageNotFoundError:
return False
def is_torch_distributed_available() -> bool:
return _torch_distributed_available
def is_ccl_available():
try:
pass
except ImportError:
print(
"Intel(R) oneCCL Bindings for PyTorch* is required to run DDP on Intel(R) GPUs, but it is not"
" detected. If you see \"ValueError: Invalid backend: 'ccl'\" error, please install Intel(R) oneCCL"
" Bindings for PyTorch*."
)
return (
importlib.util.find_spec("torch_ccl") is not None
or importlib.util.find_spec("oneccl_bindings_for_pytorch") is not None
)
def get_ccl_version():
return importlib.metadata.version("oneccl_bind_pt")
def is_import_timer_available():
return _is_package_available("import_timer")
def is_pynvml_available():
return _is_package_available("pynvml") or _is_package_available("pynvml", "nvidia-ml-py")
def is_pytest_available():
return _is_package_available("pytest")
def is_msamp_available():
return _is_package_available("msamp", "ms-amp")
def is_schedulefree_available():
return _is_package_available("schedulefree")
def is_transformer_engine_available():
return _is_package_available("transformer_engine", "transformer-engine")
def is_lomo_available():
return _is_package_available("lomo_optim")
def is_fp8_available():
return is_msamp_available() or is_transformer_engine_available()
def is_cuda_available():
"""
Checks if `cuda` is available via an `nvml-based` check which won't trigger the drivers and leave cuda
uninitialized.
"""
with patch_environment(PYTORCH_NVML_BASED_CUDA_CHECK="1"):
available = torch.cuda.is_available()
return available
@lru_cache
def is_torch_xla_available(check_is_tpu=False, check_is_gpu=False):
"""
Check if `torch_xla` is available. To train a native pytorch job in an environment with torch xla installed, set
the USE_TORCH_XLA to false.
"""
assert not (check_is_tpu and check_is_gpu), "The check_is_tpu and check_is_gpu cannot both be true."
if not _torch_xla_available:
return False
elif check_is_gpu:
return torch_xla.runtime.device_type() in ["GPU", "CUDA"]
elif check_is_tpu:
return torch_xla.runtime.device_type() == "TPU"
return True
def is_deepspeed_available():
if is_mlu_available():
return _is_package_available("deepspeed", metadata_name="deepspeed-mlu")
return _is_package_available("deepspeed")
def is_pippy_available():
return is_torch_version(">=", "2.4.0")
def is_bf16_available(ignore_tpu=False):
"Checks if bf16 is supported, optionally ignoring the TPU"
if is_torch_xla_available(check_is_tpu=True):
return not ignore_tpu
if is_cuda_available():
return torch.cuda.is_bf16_supported()
if is_mps_available():
return False
return True
def is_4bit_bnb_available():
package_exists = _is_package_available("bitsandbytes")
if package_exists:
bnb_version = version.parse(importlib.metadata.version("bitsandbytes"))
return compare_versions(bnb_version, ">=", "0.39.0")
return False
def is_8bit_bnb_available():
package_exists = _is_package_available("bitsandbytes")
if package_exists:
bnb_version = version.parse(importlib.metadata.version("bitsandbytes"))
return compare_versions(bnb_version, ">=", "0.37.2")
return False
def is_bnb_available(min_version=None):
package_exists = _is_package_available("bitsandbytes")
if package_exists and min_version is not None:
bnb_version = version.parse(importlib.metadata.version("bitsandbytes"))
return compare_versions(bnb_version, ">=", min_version)
else:
return package_exists
def is_bitsandbytes_multi_backend_available():
if not is_bnb_available():
return False
import bitsandbytes as bnb
return "multi_backend" in getattr(bnb, "features", set())
def is_torchvision_available():
return _is_package_available("torchvision")
def is_megatron_lm_available():
if str_to_bool(os.environ.get("ACCELERATE_USE_MEGATRON_LM", "False")) == 1:
if importlib.util.find_spec("megatron") is not None:
try:
megatron_version = parse(importlib.metadata.version("megatron-core"))
if compare_versions(megatron_version, ">=", "0.8.0"):
return importlib.util.find_spec(".training", "megatron")
except Exception as e:
warnings.warn(f"Parse Megatron version failed. Exception:{e}")
return False
def is_transformers_available():
return _is_package_available("transformers")
def is_datasets_available():
return _is_package_available("datasets")
def is_peft_available():
return _is_package_available("peft")
def is_timm_available():
return _is_package_available("timm")
def is_triton_available():
if is_xpu_available():
return _is_package_available("triton", "pytorch-triton-xpu")
return _is_package_available("triton")
def is_aim_available():
package_exists = _is_package_available("aim")
if package_exists:
aim_version = version.parse(importlib.metadata.version("aim"))
return compare_versions(aim_version, "<", "4.0.0")
return False
def is_tensorboard_available():
return _is_package_available("tensorboard") or _is_package_available("tensorboardX")
def is_wandb_available():
return _is_package_available("wandb")
def is_comet_ml_available():
return _is_package_available("comet_ml")
def is_boto3_available():
return _is_package_available("boto3")
def is_rich_available():
if _is_package_available("rich"):
return parse_flag_from_env("ACCELERATE_ENABLE_RICH", False)
return False
def is_sagemaker_available():
return _is_package_available("sagemaker")
def is_tqdm_available():
return _is_package_available("tqdm")
def is_clearml_available():
return _is_package_available("clearml")
def is_pandas_available():
return _is_package_available("pandas")
def is_mlflow_available():
if _is_package_available("mlflow"):
return True
if importlib.util.find_spec("mlflow") is not None:
try:
_ = importlib.metadata.metadata("mlflow-skinny")
return True
except importlib.metadata.PackageNotFoundError:
return False
return False
def is_mps_available(min_version="1.12"):
"Checks if MPS device is available. The minimum version required is 1.12."
# With torch 1.12, you can use torch.backends.mps
# With torch 2.0.0, you can use torch.mps
return is_torch_version(">=", min_version) and torch.backends.mps.is_available() and torch.backends.mps.is_built()
def is_ipex_available():
"Checks if ipex is installed."
def get_major_and_minor_from_version(full_version):
return str(version.parse(full_version).major) + "." + str(version.parse(full_version).minor)
_torch_version = importlib.metadata.version("torch")
if importlib.util.find_spec("intel_extension_for_pytorch") is None:
return False
_ipex_version = "N/A"
try:
_ipex_version = importlib.metadata.version("intel_extension_for_pytorch")
except importlib.metadata.PackageNotFoundError:
return False
torch_major_and_minor = get_major_and_minor_from_version(_torch_version)
ipex_major_and_minor = get_major_and_minor_from_version(_ipex_version)
if torch_major_and_minor != ipex_major_and_minor:
warnings.warn(
f"Intel Extension for PyTorch {ipex_major_and_minor} needs to work with PyTorch {ipex_major_and_minor}.*,"
f" but PyTorch {_torch_version} is found. Please switch to the matching version and run again."
)
return False
return True
@lru_cache
def is_mlu_available(check_device=False):
"""
Checks if `mlu` is available via an `cndev-based` check which won't trigger the drivers and leave mlu
uninitialized.
"""
if importlib.util.find_spec("torch_mlu") is None:
return False
import torch_mlu # noqa: F401
with patch_environment(PYTORCH_CNDEV_BASED_MLU_CHECK="1"):
available = torch.mlu.is_available()
return available
@lru_cache
def is_musa_available(check_device=False):
"Checks if `torch_musa` is installed and potentially if a MUSA is in the environment"
if importlib.util.find_spec("torch_musa") is None:
return False
import torch_musa # noqa: F401
if check_device:
try:
# Will raise a RuntimeError if no MUSA is found
_ = torch.musa.device_count()
return torch.musa.is_available()
except RuntimeError:
return False
return hasattr(torch, "musa") and torch.musa.is_available()
@lru_cache
def is_npu_available(check_device=False):
"Checks if `torch_npu` is installed and potentially if a NPU is in the environment"
if importlib.util.find_spec("torch_npu") is None:
return False
import torch_npu # noqa: F401
if check_device:
try:
# Will raise a RuntimeError if no NPU is found
_ = torch.npu.device_count()
return torch.npu.is_available()
except RuntimeError:
return False
return hasattr(torch, "npu") and torch.npu.is_available()
@lru_cache
def is_xpu_available(check_device=False):
"""
Checks if XPU acceleration is available either via `intel_extension_for_pytorch` or via stock PyTorch (>=2.4) and
potentially if a XPU is in the environment
"""
"check if user disables it explicitly"
if not parse_flag_from_env("ACCELERATE_USE_XPU", default=True):
return False
if is_ipex_available():
import intel_extension_for_pytorch # noqa: F401
else:
if is_torch_version("<=", "2.3"):
return False
if check_device:
try:
# Will raise a RuntimeError if no XPU is found
_ = torch.xpu.device_count()
return torch.xpu.is_available()
except RuntimeError:
return False
return hasattr(torch, "xpu") and torch.xpu.is_available()
def is_dvclive_available():
return _is_package_available("dvclive")
def is_torchdata_available():
return _is_package_available("torchdata")
# TODO: Remove this function once stateful_dataloader is a stable feature in torchdata.
def is_torchdata_stateful_dataloader_available():
package_exists = _is_package_available("torchdata")
if package_exists:
torchdata_version = version.parse(importlib.metadata.version("torchdata"))
return compare_versions(torchdata_version, ">=", "0.8.0")
return False
# TODO: Rework this into `utils.deepspeed` and migrate the "core" chunks into `accelerate.deepspeed`
def deepspeed_required(func):
"""
A decorator that ensures the decorated function is only called when deepspeed is enabled.
"""
@wraps(func)
def wrapper(*args, **kwargs):
from accelerate.state import AcceleratorState
from accelerate.utils.dataclasses import DistributedType
if AcceleratorState._shared_state != {} and AcceleratorState().distributed_type != DistributedType.DEEPSPEED:
raise ValueError(
"DeepSpeed is not enabled, please make sure that an `Accelerator` is configured for `deepspeed` "
"before calling this function."
)
return func(*args, **kwargs)
return wrapper
def is_weights_only_available():
# Weights only with allowlist was added in 2.4.0
# ref: https://github.com/pytorch/pytorch/pull/124331
return is_torch_version(">=", "2.4.0")
def is_numpy_available(min_version="1.25.0"):
numpy_version = parse(importlib.metadata.version("numpy"))
return compare_versions(numpy_version, ">=", min_version)
| accelerate/src/accelerate/utils/imports.py/0 | {
"file_path": "accelerate/src/accelerate/utils/imports.py",
"repo_id": "accelerate",
"token_count": 5400
} |
{
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": "auto"
},
"optimizer": {
"type": "AdamW",
"params": {
"lr": "auto",
"weight_decay": "auto",
"torch_adam": true,
"adam_w_mode": true
}
},
"scheduler": {
"type": "WarmupLR",
"params": {
"warmup_min_lr": "auto",
"warmup_max_lr": "auto",
"warmup_num_steps": "auto"
}
},
"zero_optimization": {
"stage": 3,
"offload_optimizer": {
"device": "cpu",
"pin_memory": true
},
"offload_param": {
"device": "cpu",
"pin_memory": true
},
"overlap_comm": true,
"contiguous_gradients": true,
"sub_group_size": 1e9,
"reduce_bucket_size": "auto",
"stage3_prefetch_bucket_size": "auto",
"stage3_param_persistence_threshold": "auto",
"stage3_max_live_parameters": 1e9,
"stage3_max_reuse_distance": 1e9,
"stage3_gather_16bit_weights_on_model_save": "auto"
},
"gradient_accumulation_steps": 1,
"gradient_clipping": "auto",
"steps_per_print": 2000,
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"wall_clock_breakdown": false
} | accelerate/tests/deepspeed/ds_config_zero3.json/0 | {
"file_path": "accelerate/tests/deepspeed/ds_config_zero3.json",
"repo_id": "accelerate",
"token_count": 825
} |
use crate::benchmarks::{BenchDevice, BenchDeviceHandler};
use candle_core::{
quantized::{self, GgmlDType, QMatMul},
Device, Module, Tensor,
};
use criterion::{black_box, criterion_group, Criterion, Throughput};
use std::time::Instant;
fn run(matmul: &QMatMul, x: &Tensor) {
matmul.forward(x).unwrap();
}
fn run_bench(c: &mut Criterion, device: &Device, dtype: GgmlDType) {
let b = 1;
let m = 1;
let n = 1024;
let k = 1024;
let lhs = (0..(m * k))
.map(|v| v as f32 / (m * k) as f32)
.collect::<Vec<_>>();
let rhs = (0..(k * n))
.map(|v| v as f32 / (n * k) as f32)
.collect::<Vec<_>>();
let lhs = Tensor::from_slice(&lhs, (m, k), device).unwrap();
let rhs = Tensor::from_slice(&rhs, (k, n), device).unwrap();
let qtensor = quantized::QTensor::quantize(&rhs.t().unwrap(), dtype).unwrap();
let matmul = quantized::QMatMul::from_qtensor(qtensor).unwrap();
let flops = b * m * n * k;
let mut group = c.benchmark_group(device.bench_name(format!("qmatmul_{:?}", dtype)));
group.sample_size(200);
group.throughput(Throughput::Bytes(flops as u64));
group.bench_function("iter", move |b| {
b.iter_custom(|iters| {
let start = Instant::now();
for _i in 0..iters {
run(black_box(&matmul), black_box(&lhs));
}
device.sync().unwrap();
start.elapsed()
})
});
group.finish();
}
fn criterion_benchmark(c: &mut Criterion) {
let handler = BenchDeviceHandler::new().unwrap();
for device in handler.devices {
for dtype in [
GgmlDType::F32,
GgmlDType::F16,
GgmlDType::Q4_0,
GgmlDType::Q4_1,
GgmlDType::Q5_0,
GgmlDType::Q5_1,
GgmlDType::Q8_0,
GgmlDType::Q2K,
GgmlDType::Q3K,
GgmlDType::Q4K,
GgmlDType::Q5K,
GgmlDType::Q6K,
] {
run_bench(c, &device, dtype);
}
}
}
criterion_group!(benches, criterion_benchmark);
| candle/candle-core/benches/benchmarks/qmatmul.rs/0 | {
"file_path": "candle/candle-core/benches/benchmarks/qmatmul.rs",
"repo_id": "candle",
"token_count": 1085
} |
pub trait VecOps: num_traits::NumAssign + Copy {
fn min(self, rhs: Self) -> Self;
fn max(self, rhs: Self) -> Self;
/// Dot-product of two vectors.
///
/// # Safety
///
/// The length of `lhs` and `rhs` have to be at least `len`. `res` has to point to a valid
/// element.
#[inline(always)]
unsafe fn vec_dot(lhs: *const Self, rhs: *const Self, res: *mut Self, len: usize) {
*res = Self::zero();
for i in 0..len {
*res += *lhs.add(i) * *rhs.add(i)
}
}
/// Sum of all elements in a vector.
///
/// # Safety
///
/// The length of `xs` must be at least `len`. `res` has to point to a valid
/// element.
#[inline(always)]
unsafe fn vec_reduce_sum(xs: *const Self, res: *mut Self, len: usize) {
*res = Self::zero();
for i in 0..len {
*res += *xs.add(i)
}
}
/// Maximum element in a non-empty vector.
///
/// # Safety
///
/// The length of `xs` must be at least `len` and positive. `res` has to point to a valid
/// element.
#[inline(always)]
unsafe fn vec_reduce_max(xs: *const Self, res: *mut Self, len: usize) {
*res = *xs;
for i in 1..len {
*res = (*res).max(*xs.add(i))
}
}
/// Minimum element in a non-empty vector.
///
/// # Safety
///
/// The length of `xs` must be at least `len` and positive. `res` has to point to a valid
/// element.
#[inline(always)]
unsafe fn vec_reduce_min(xs: *const Self, res: *mut Self, len: usize) {
*res = *xs;
for i in 1..len {
*res = (*res).min(*xs.add(i))
}
}
}
impl VecOps for f32 {
#[inline(always)]
fn min(self, other: Self) -> Self {
Self::min(self, other)
}
#[inline(always)]
fn max(self, other: Self) -> Self {
Self::max(self, other)
}
#[inline(always)]
unsafe fn vec_dot(lhs: *const Self, rhs: *const Self, res: *mut Self, len: usize) {
super::vec_dot_f32(lhs, rhs, res, len)
}
#[inline(always)]
unsafe fn vec_reduce_sum(xs: *const Self, res: *mut Self, len: usize) {
super::vec_sum(xs, res, len)
}
}
impl VecOps for half::f16 {
#[inline(always)]
fn min(self, other: Self) -> Self {
Self::min(self, other)
}
#[inline(always)]
fn max(self, other: Self) -> Self {
Self::max(self, other)
}
#[inline(always)]
unsafe fn vec_dot(lhs: *const Self, rhs: *const Self, res: *mut Self, len: usize) {
let mut res_f32 = 0f32;
super::vec_dot_f16(lhs, rhs, &mut res_f32, len);
*res = half::f16::from_f32(res_f32);
}
}
impl VecOps for f64 {
#[inline(always)]
fn min(self, other: Self) -> Self {
Self::min(self, other)
}
#[inline(always)]
fn max(self, other: Self) -> Self {
Self::max(self, other)
}
}
impl VecOps for half::bf16 {
#[inline(always)]
fn min(self, other: Self) -> Self {
Self::min(self, other)
}
#[inline(always)]
fn max(self, other: Self) -> Self {
Self::max(self, other)
}
}
impl VecOps for u8 {
#[inline(always)]
fn min(self, other: Self) -> Self {
<Self as Ord>::min(self, other)
}
#[inline(always)]
fn max(self, other: Self) -> Self {
<Self as Ord>::max(self, other)
}
}
impl VecOps for u32 {
#[inline(always)]
fn min(self, other: Self) -> Self {
<Self as Ord>::min(self, other)
}
#[inline(always)]
fn max(self, other: Self) -> Self {
<Self as Ord>::max(self, other)
}
}
impl VecOps for i64 {
#[inline(always)]
fn min(self, other: Self) -> Self {
<Self as Ord>::min(self, other)
}
#[inline(always)]
fn max(self, other: Self) -> Self {
<Self as Ord>::max(self, other)
}
}
#[inline(always)]
pub fn par_for_each(n_threads: usize, func: impl Fn(usize) + Send + Sync) {
if n_threads == 1 {
func(0)
} else {
rayon::scope(|s| {
for thread_idx in 0..n_threads {
let func = &func;
s.spawn(move |_| func(thread_idx));
}
})
}
}
#[inline(always)]
pub fn par_range(lo: usize, up: usize, n_threads: usize, func: impl Fn(usize) + Send + Sync) {
if n_threads == 1 {
for i in lo..up {
func(i)
}
} else {
rayon::scope(|s| {
for thread_idx in 0..n_threads {
let func = &func;
s.spawn(move |_| {
for i in (thread_idx..up).step_by(n_threads) {
func(i)
}
});
}
})
}
}
| candle/candle-core/src/cpu/kernels.rs/0 | {
"file_path": "candle/candle-core/src/cpu/kernels.rs",
"repo_id": "candle",
"token_count": 2328
} |
#![allow(dead_code)]
use crate::op::{BinaryOpT, CmpOp, ReduceOp, UnaryOpT};
use crate::{CpuStorage, DType, Error, Layout, Result, Shape};
#[derive(Debug, Clone)]
pub struct MetalDevice;
#[derive(Debug)]
pub struct MetalStorage;
#[derive(thiserror::Error, Debug)]
pub enum MetalError {
#[error("{0}")]
Message(String),
}
impl From<String> for MetalError {
fn from(e: String) -> Self {
MetalError::Message(e)
}
}
macro_rules! fail {
() => {
unimplemented!("metal support has not been enabled, add `metal` feature to enable.")
};
}
impl crate::backend::BackendStorage for MetalStorage {
type Device = MetalDevice;
fn try_clone(&self, _: &Layout) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
fn dtype(&self) -> DType {
fail!()
}
fn device(&self) -> &Self::Device {
fail!()
}
fn to_cpu_storage(&self) -> Result<CpuStorage> {
Err(Error::NotCompiledWithMetalSupport)
}
fn affine(&self, _: &Layout, _: f64, _: f64) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
fn powf(&self, _: &Layout, _: f64) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
fn elu(&self, _: &Layout, _: f64) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
fn reduce_op(&self, _: ReduceOp, _: &Layout, _: &[usize]) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
fn cmp(&self, _: CmpOp, _: &Self, _: &Layout, _: &Layout) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
fn to_dtype(&self, _: &Layout, _: DType) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
fn unary_impl<B: UnaryOpT>(&self, _: &Layout) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
fn binary_impl<B: BinaryOpT>(&self, _: &Self, _: &Layout, _: &Layout) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
fn where_cond(&self, _: &Layout, _: &Self, _: &Layout, _: &Self, _: &Layout) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
fn conv1d(
&self,
_: &Layout,
_: &Self,
_: &Layout,
_: &crate::conv::ParamsConv1D,
) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
fn conv_transpose1d(
&self,
_l: &Layout,
_kernel: &Self,
_kernel_l: &Layout,
_params: &crate::conv::ParamsConvTranspose1D,
) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
fn conv2d(
&self,
_: &Layout,
_: &Self,
_: &Layout,
_: &crate::conv::ParamsConv2D,
) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
fn conv_transpose2d(
&self,
_l: &Layout,
_kernel: &Self,
_kernel_l: &Layout,
_params: &crate::conv::ParamsConvTranspose2D,
) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
fn index_select(&self, _: &Self, _: &Layout, _: &Layout, _: usize) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
fn gather(&self, _: &Layout, _: &Self, _: &Layout, _: usize) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
fn scatter_add(
&self,
_: &Layout,
_: &Self,
_: &Layout,
_: &Self,
_: &Layout,
_: usize,
) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
fn index_add(
&self,
_: &Layout,
_: &Self,
_: &Layout,
_: &Self,
_: &Layout,
_: usize,
) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
fn matmul(
&self,
_: &Self,
_: (usize, usize, usize, usize),
_: &Layout,
_: &Layout,
) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
fn copy_strided_src(&self, _: &mut Self, _: usize, _: &Layout) -> Result<()> {
Err(Error::NotCompiledWithMetalSupport)
}
fn copy2d(
&self,
_: &mut Self,
_: usize,
_: usize,
_: usize,
_: usize,
_: usize,
_: usize,
) -> Result<()> {
Err(Error::NotCompiledWithMetalSupport)
}
fn avg_pool2d(&self, _: &Layout, _: (usize, usize), _: (usize, usize)) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
fn max_pool2d(&self, _: &Layout, _: (usize, usize), _: (usize, usize)) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
fn upsample_nearest1d(&self, _: &Layout, _: usize) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
fn upsample_nearest2d(&self, _: &Layout, _: usize, _: usize) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
}
impl crate::backend::BackendDevice for MetalDevice {
type Storage = MetalStorage;
fn new(_: usize) -> Result<Self> {
Err(Error::NotCompiledWithMetalSupport)
}
fn set_seed(&self, _: u64) -> Result<()> {
Err(Error::NotCompiledWithMetalSupport)
}
fn location(&self) -> crate::DeviceLocation {
fail!()
}
fn same_device(&self, _: &Self) -> bool {
fail!()
}
fn zeros_impl(&self, _shape: &Shape, _dtype: DType) -> Result<Self::Storage> {
Err(Error::NotCompiledWithMetalSupport)
}
fn ones_impl(&self, _shape: &Shape, _dtype: DType) -> Result<Self::Storage> {
Err(Error::NotCompiledWithMetalSupport)
}
unsafe fn alloc_uninit(&self, _shape: &Shape, _dtype: DType) -> Result<Self::Storage> {
Err(Error::NotCompiledWithMetalSupport)
}
fn storage_from_slice<T: crate::WithDType>(&self, _: &[T]) -> Result<Self::Storage> {
Err(Error::NotCompiledWithMetalSupport)
}
fn storage_from_cpu_storage(&self, _: &CpuStorage) -> Result<Self::Storage> {
Err(Error::NotCompiledWithMetalSupport)
}
fn storage_from_cpu_storage_owned(&self, _: CpuStorage) -> Result<Self::Storage> {
Err(Error::NotCompiledWithMetalSupport)
}
fn rand_uniform(&self, _: &Shape, _: DType, _: f64, _: f64) -> Result<Self::Storage> {
Err(Error::NotCompiledWithMetalSupport)
}
fn rand_normal(&self, _: &Shape, _: DType, _: f64, _: f64) -> Result<Self::Storage> {
Err(Error::NotCompiledWithMetalSupport)
}
fn synchronize(&self) -> Result<()> {
Ok(())
}
}
| candle/candle-core/src/dummy_metal_backend.rs/0 | {
"file_path": "candle/candle-core/src/dummy_metal_backend.rs",
"repo_id": "candle",
"token_count": 3042
} |
//! Support for the [GGUF file format](https://github.com/philpax/ggml/blob/gguf-spec/docs/gguf.md).
//!
use super::{GgmlDType, QTensor};
use crate::{Context, Device, Result};
use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
use std::collections::HashMap;
pub const DEFAULT_ALIGNMENT: u64 = 32;
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
enum Magic {
Gguf,
}
impl TryFrom<u32> for Magic {
type Error = crate::Error;
fn try_from(value: u32) -> Result<Self> {
let magic = match value {
0x46554747 | 0x47475546 => Self::Gguf,
_ => crate::bail!("unknown magic 0x{value:08x}"),
};
Ok(magic)
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum VersionedMagic {
GgufV1,
GgufV2,
GgufV3,
}
impl VersionedMagic {
fn read<R: std::io::Read>(reader: &mut R) -> Result<Self> {
let magic = reader.read_u32::<LittleEndian>()?;
let magic = Magic::try_from(magic)?;
let version = reader.read_u32::<LittleEndian>()?;
let versioned_magic = match (magic, version) {
(Magic::Gguf, 1) => Self::GgufV1,
(Magic::Gguf, 2) => Self::GgufV2,
(Magic::Gguf, 3) => Self::GgufV3,
_ => crate::bail!("gguf: unsupported magic/version {magic:?}/{version}"),
};
Ok(versioned_magic)
}
}
#[derive(Debug)]
pub struct TensorInfo {
pub ggml_dtype: GgmlDType,
pub shape: crate::Shape,
pub offset: u64,
}
impl TensorInfo {
pub fn read<R: std::io::Seek + std::io::Read>(
&self,
reader: &mut R,
tensor_data_offset: u64,
device: &Device,
) -> Result<QTensor> {
let tensor_elems = self.shape.elem_count();
let block_size = self.ggml_dtype.block_size();
if tensor_elems % block_size != 0 {
crate::bail!(
"the number of elements {tensor_elems} is not divisible by the block size {block_size}"
)
}
let size_in_bytes = tensor_elems / block_size * self.ggml_dtype.type_size();
let mut raw_data = vec![0u8; size_in_bytes];
reader.seek(std::io::SeekFrom::Start(tensor_data_offset + self.offset))?;
reader.read_exact(&mut raw_data)?;
super::ggml_file::qtensor_from_ggml(
self.ggml_dtype,
&raw_data,
self.shape.dims().to_vec(),
device,
)
}
}
#[derive(Debug)]
pub struct Content {
pub magic: VersionedMagic,
pub metadata: HashMap<String, Value>,
pub tensor_infos: HashMap<String, TensorInfo>,
pub tensor_data_offset: u64,
}
fn read_string<R: std::io::Read>(reader: &mut R, magic: &VersionedMagic) -> Result<String> {
let len = match magic {
VersionedMagic::GgufV1 => reader.read_u32::<LittleEndian>()? as usize,
VersionedMagic::GgufV2 | VersionedMagic::GgufV3 => {
reader.read_u64::<LittleEndian>()? as usize
}
};
let mut v = vec![0u8; len];
reader.read_exact(&mut v)?;
// GGUF strings are supposed to be non-null terminated but in practice this happens.
while let Some(0) = v.last() {
v.pop();
}
// GGUF strings are utf8 encoded but there are cases that don't seem to be valid.
Ok(String::from_utf8_lossy(&v).into_owned())
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum ValueType {
// The value is a 8-bit unsigned integer.
U8,
// The value is a 8-bit signed integer.
I8,
// The value is a 16-bit unsigned little-endian integer.
U16,
// The value is a 16-bit signed little-endian integer.
I16,
// The value is a 32-bit unsigned little-endian integer.
U32,
// The value is a 32-bit signed little-endian integer.
I32,
// The value is a 64-bit unsigned little-endian integer.
U64,
// The value is a 64-bit signed little-endian integer.
I64,
// The value is a 32-bit IEEE754 floating point number.
F32,
// The value is a 64-bit IEEE754 floating point number.
F64,
// The value is a boolean.
// 1-byte value where 0 is false and 1 is true.
// Anything else is invalid, and should be treated as either the model being invalid or the reader being buggy.
Bool,
// The value is a UTF-8 non-null-terminated string, with length prepended.
String,
// The value is an array of other values, with the length and type prepended.
// Arrays can be nested, and the length of the array is the number of elements in the array, not the number of bytes.
Array,
}
#[derive(Debug, Clone)]
pub enum Value {
U8(u8),
I8(i8),
U16(u16),
I16(i16),
U32(u32),
I32(i32),
U64(u64),
I64(i64),
F32(f32),
F64(f64),
Bool(bool),
String(String),
Array(Vec<Value>),
}
impl Value {
pub fn value_type(&self) -> ValueType {
match self {
Self::U8(_) => ValueType::U8,
Self::I8(_) => ValueType::I8,
Self::U16(_) => ValueType::U16,
Self::I16(_) => ValueType::I16,
Self::U32(_) => ValueType::U32,
Self::I32(_) => ValueType::I32,
Self::U64(_) => ValueType::U64,
Self::I64(_) => ValueType::I64,
Self::F32(_) => ValueType::F32,
Self::F64(_) => ValueType::F64,
Self::Bool(_) => ValueType::Bool,
Self::String(_) => ValueType::String,
Self::Array(_) => ValueType::Array,
}
}
pub fn to_u8(&self) -> Result<u8> {
match self {
Self::U8(v) => Ok(*v),
v => crate::bail!("not a u8 {v:?}"),
}
}
pub fn to_i8(&self) -> Result<i8> {
match self {
Self::I8(v) => Ok(*v),
v => crate::bail!("not a i8 {v:?}"),
}
}
pub fn to_u16(&self) -> Result<u16> {
match self {
Self::U16(v) => Ok(*v),
v => crate::bail!("not a u16 {v:?}"),
}
}
pub fn to_i16(&self) -> Result<i16> {
match self {
Self::I16(v) => Ok(*v),
v => crate::bail!("not a i16 {v:?}"),
}
}
pub fn to_u32(&self) -> Result<u32> {
match self {
Self::U32(v) => Ok(*v),
v => crate::bail!("not a u32 {v:?}"),
}
}
pub fn to_i32(&self) -> Result<i32> {
match self {
Self::I32(v) => Ok(*v),
v => crate::bail!("not a i32 {v:?}"),
}
}
/// This will also automatically upcast any integral types which will not truncate.
pub fn to_u64(&self) -> Result<u64> {
match self {
Self::U64(v) => Ok(*v),
// Autoupcast cases here
Self::U8(v) => Ok(*v as u64),
Self::U16(v) => Ok(*v as u64),
Self::U32(v) => Ok(*v as u64),
Self::Bool(v) => Ok(*v as u64),
v => crate::bail!("not a u64 or upcastable to u64 {v:?}"),
}
}
pub fn to_i64(&self) -> Result<i64> {
match self {
Self::I64(v) => Ok(*v),
v => crate::bail!("not a i64 {v:?}"),
}
}
pub fn to_f32(&self) -> Result<f32> {
match self {
Self::F32(v) => Ok(*v),
v => crate::bail!("not a f32 {v:?}"),
}
}
pub fn to_f64(&self) -> Result<f64> {
match self {
Self::F64(v) => Ok(*v),
v => crate::bail!("not a f64 {v:?}"),
}
}
pub fn to_bool(&self) -> Result<bool> {
match self {
Self::Bool(v) => Ok(*v),
v => crate::bail!("not a bool {v:?}"),
}
}
pub fn to_vec(&self) -> Result<&Vec<Value>> {
match self {
Self::Array(v) => Ok(v),
v => crate::bail!("not a vec {v:?}"),
}
}
pub fn to_string(&self) -> Result<&String> {
match self {
Self::String(v) => Ok(v),
v => crate::bail!("not a string {v:?}"),
}
}
fn read<R: std::io::Read>(
reader: &mut R,
value_type: ValueType,
magic: &VersionedMagic,
) -> Result<Self> {
let v = match value_type {
ValueType::U8 => Self::U8(reader.read_u8()?),
ValueType::I8 => Self::I8(reader.read_i8()?),
ValueType::U16 => Self::U16(reader.read_u16::<LittleEndian>()?),
ValueType::I16 => Self::I16(reader.read_i16::<LittleEndian>()?),
ValueType::U32 => Self::U32(reader.read_u32::<LittleEndian>()?),
ValueType::I32 => Self::I32(reader.read_i32::<LittleEndian>()?),
ValueType::U64 => Self::U64(reader.read_u64::<LittleEndian>()?),
ValueType::I64 => Self::I64(reader.read_i64::<LittleEndian>()?),
ValueType::F32 => Self::F32(reader.read_f32::<LittleEndian>()?),
ValueType::F64 => Self::F64(reader.read_f64::<LittleEndian>()?),
ValueType::Bool => match reader.read_u8()? {
0 => Self::Bool(false),
1 => Self::Bool(true),
b => crate::bail!("unexpected bool value {b}"),
},
ValueType::String => Self::String(read_string(reader, magic)?),
ValueType::Array => {
let value_type = reader.read_u32::<LittleEndian>()?;
let value_type = ValueType::from_u32(value_type)?;
let len = match magic {
VersionedMagic::GgufV1 => reader.read_u32::<LittleEndian>()? as usize,
VersionedMagic::GgufV2 | VersionedMagic::GgufV3 => {
reader.read_u64::<LittleEndian>()? as usize
}
};
let mut vs = Vec::with_capacity(len);
for _ in 0..len {
vs.push(Value::read(reader, value_type, magic)?)
}
Self::Array(vs)
}
};
Ok(v)
}
fn write<W: std::io::Write>(&self, w: &mut W) -> Result<()> {
match self {
&Self::U8(v) => w.write_u8(v)?,
&Self::I8(v) => w.write_i8(v)?,
&Self::U16(v) => w.write_u16::<LittleEndian>(v)?,
&Self::I16(v) => w.write_i16::<LittleEndian>(v)?,
&Self::U32(v) => w.write_u32::<LittleEndian>(v)?,
&Self::I32(v) => w.write_i32::<LittleEndian>(v)?,
&Self::U64(v) => w.write_u64::<LittleEndian>(v)?,
&Self::I64(v) => w.write_i64::<LittleEndian>(v)?,
&Self::F32(v) => w.write_f32::<LittleEndian>(v)?,
&Self::F64(v) => w.write_f64::<LittleEndian>(v)?,
&Self::Bool(v) => w.write_u8(u8::from(v))?,
Self::String(v) => write_string(w, v.as_str())?,
Self::Array(v) => {
// The `Value` type does not enforce that all the values in an Array have the same
// type.
let value_type = if v.is_empty() {
// Doesn't matter, the array is empty.
ValueType::U32
} else {
let value_type: std::collections::HashSet<_> =
v.iter().map(|elem| elem.value_type()).collect();
if value_type.len() != 1 {
crate::bail!("multiple value-types in the same array {value_type:?}")
}
value_type.into_iter().next().context("empty value_type")?
};
w.write_u32::<LittleEndian>(value_type.to_u32())?;
w.write_u64::<LittleEndian>(v.len() as u64)?;
for elem in v.iter() {
elem.write(w)?
}
}
}
Ok(())
}
}
impl ValueType {
fn from_u32(v: u32) -> Result<Self> {
let v = match v {
0 => Self::U8,
1 => Self::I8,
2 => Self::U16,
3 => Self::I16,
4 => Self::U32,
5 => Self::I32,
6 => Self::F32,
7 => Self::Bool,
8 => Self::String,
9 => Self::Array,
10 => Self::U64,
11 => Self::I64,
12 => Self::F64,
v => crate::bail!("unrecognized value-type {v:#08x}"),
};
Ok(v)
}
fn to_u32(self) -> u32 {
match self {
Self::U8 => 0,
Self::I8 => 1,
Self::U16 => 2,
Self::I16 => 3,
Self::U32 => 4,
Self::I32 => 5,
Self::F32 => 6,
Self::Bool => 7,
Self::String => 8,
Self::Array => 9,
Self::U64 => 10,
Self::I64 => 11,
Self::F64 => 12,
}
}
}
impl Content {
pub fn read<R: std::io::Seek + std::io::Read>(reader: &mut R) -> Result<Self> {
let magic = VersionedMagic::read(reader)?;
let tensor_count = match magic {
VersionedMagic::GgufV1 => reader.read_u32::<LittleEndian>()? as usize,
VersionedMagic::GgufV2 | VersionedMagic::GgufV3 => {
reader.read_u64::<LittleEndian>()? as usize
}
};
let metadata_kv_count = match magic {
VersionedMagic::GgufV1 => reader.read_u32::<LittleEndian>()? as usize,
VersionedMagic::GgufV2 | VersionedMagic::GgufV3 => {
reader.read_u64::<LittleEndian>()? as usize
}
};
let mut metadata = HashMap::new();
for _idx in 0..metadata_kv_count {
let key = read_string(reader, &magic)?;
let value_type = reader.read_u32::<LittleEndian>()?;
let value_type = ValueType::from_u32(value_type)?;
let value = Value::read(reader, value_type, &magic)?;
metadata.insert(key, value);
}
let mut tensor_infos = HashMap::new();
for _idx in 0..tensor_count {
let tensor_name = read_string(reader, &magic)?;
let n_dimensions = reader.read_u32::<LittleEndian>()?;
let mut dimensions: Vec<usize> = match magic {
VersionedMagic::GgufV1 => {
let mut dimensions = vec![0; n_dimensions as usize];
reader.read_u32_into::<LittleEndian>(&mut dimensions)?;
dimensions.into_iter().map(|c| c as usize).collect()
}
VersionedMagic::GgufV2 | VersionedMagic::GgufV3 => {
let mut dimensions = vec![0; n_dimensions as usize];
reader.read_u64_into::<LittleEndian>(&mut dimensions)?;
dimensions.into_iter().map(|c| c as usize).collect()
}
};
dimensions.reverse();
let ggml_dtype = reader.read_u32::<LittleEndian>()?;
let ggml_dtype = GgmlDType::from_u32(ggml_dtype)?;
let offset = reader.read_u64::<LittleEndian>()?;
tensor_infos.insert(
tensor_name,
TensorInfo {
shape: crate::Shape::from(dimensions),
offset,
ggml_dtype,
},
);
}
let position = reader.stream_position()?;
let alignment = match metadata.get("general.alignment") {
Some(Value::U8(v)) => *v as u64,
Some(Value::U16(v)) => *v as u64,
Some(Value::U32(v)) => *v as u64,
Some(Value::I8(v)) if *v >= 0 => *v as u64,
Some(Value::I16(v)) if *v >= 0 => *v as u64,
Some(Value::I32(v)) if *v >= 0 => *v as u64,
_ => DEFAULT_ALIGNMENT,
};
let tensor_data_offset = position.div_ceil(alignment) * alignment;
Ok(Self {
magic,
metadata,
tensor_infos,
tensor_data_offset,
})
}
pub fn tensor<R: std::io::Seek + std::io::Read>(
&self,
reader: &mut R,
name: &str,
device: &Device,
) -> Result<QTensor> {
let tensor_info = match self.tensor_infos.get(name) {
Some(tensor_info) => tensor_info,
None => crate::bail!("cannot find tensor info for {name}"),
};
tensor_info.read(reader, self.tensor_data_offset, device)
}
}
fn write_string<W: std::io::Write>(w: &mut W, str: &str) -> Result<()> {
let bytes = str.as_bytes();
w.write_u64::<LittleEndian>(bytes.len() as u64)?;
w.write_all(bytes)?;
Ok(())
}
pub fn write<W: std::io::Seek + std::io::Write>(
w: &mut W,
metadata: &[(&str, &Value)],
tensors: &[(&str, &QTensor)],
) -> Result<()> {
w.write_u32::<LittleEndian>(0x46554747)?;
w.write_u32::<LittleEndian>(2)?; // version 2.
w.write_u64::<LittleEndian>(tensors.len() as u64)?;
w.write_u64::<LittleEndian>(metadata.len() as u64)?;
for (name, value) in metadata.iter() {
write_string(w, name)?;
w.write_u32::<LittleEndian>(value.value_type().to_u32())?;
value.write(w)?;
}
let mut offset = 0usize;
let mut offsets = Vec::with_capacity(tensors.len());
for (name, tensor) in tensors.iter() {
write_string(w, name)?;
let dims = tensor.shape().dims();
w.write_u32::<LittleEndian>(dims.len() as u32)?;
for &dim in dims.iter().rev() {
w.write_u64::<LittleEndian>(dim as u64)?;
}
w.write_u32::<LittleEndian>(tensor.dtype().to_u32())?;
w.write_u64::<LittleEndian>(offset as u64)?;
offsets.push(offset);
let size_in_bytes = tensor.storage_size_in_bytes();
let padding = 31 - (31 + size_in_bytes) % 32;
offset += size_in_bytes + padding;
}
let pos = w.stream_position()? as usize;
let padding = 31 - (31 + pos) % 32;
w.write_all(&vec![0u8; padding])?;
let tensor_start_pos = w.stream_position()? as usize;
for (offset, (_name, tensor)) in offsets.iter().zip(tensors.iter()) {
let pos = w.stream_position()? as usize;
if tensor_start_pos + offset != pos {
crate::bail!(
"internal error, unexpected current position {tensor_start_pos} {offset} {pos}"
)
}
let data = tensor.data()?;
let size_in_bytes = data.len();
w.write_all(&data)?;
let padding = 31 - (31 + size_in_bytes) % 32;
w.write_all(&vec![0u8; padding])?;
}
Ok(())
}
| candle/candle-core/src/quantized/gguf_file.rs/0 | {
"file_path": "candle/candle-core/src/quantized/gguf_file.rs",
"repo_id": "candle",
"token_count": 9550
} |
use crate::{Result, Tensor};
#[macro_export]
macro_rules! test_device {
// TODO: Switch to generating the two last arguments automatically once concat_idents is
// stable. https://github.com/rust-lang/rust/issues/29599
($fn_name: ident, $test_cpu: ident, $test_cuda: ident, $test_metal: ident) => {
#[test]
fn $test_cpu() -> Result<()> {
$fn_name(&Device::Cpu)
}
#[cfg(feature = "cuda")]
#[test]
fn $test_cuda() -> Result<()> {
$fn_name(&Device::new_cuda(0)?)
}
#[cfg(feature = "metal")]
#[test]
fn $test_metal() -> Result<()> {
$fn_name(&Device::new_metal(0)?)
}
};
}
pub fn to_vec0_round(t: &Tensor, digits: i32) -> Result<f32> {
let b = 10f32.powi(digits);
let t = t.to_vec0::<f32>()?;
Ok(f32::round(t * b) / b)
}
pub fn to_vec1_round(t: &Tensor, digits: i32) -> Result<Vec<f32>> {
let b = 10f32.powi(digits);
let t = t.to_vec1::<f32>()?;
let t = t.iter().map(|t| f32::round(t * b) / b).collect();
Ok(t)
}
pub fn to_vec2_round(t: &Tensor, digits: i32) -> Result<Vec<Vec<f32>>> {
let b = 10f32.powi(digits);
let t = t.to_vec2::<f32>()?;
let t = t
.iter()
.map(|t| t.iter().map(|t| f32::round(t * b) / b).collect())
.collect();
Ok(t)
}
pub fn to_vec3_round(t: &Tensor, digits: i32) -> Result<Vec<Vec<Vec<f32>>>> {
let b = 10f32.powi(digits);
let t = t.to_vec3::<f32>()?;
let t = t
.iter()
.map(|t| {
t.iter()
.map(|t| t.iter().map(|t| f32::round(t * b) / b).collect())
.collect()
})
.collect();
Ok(t)
}
| candle/candle-core/src/test_utils.rs/0 | {
"file_path": "candle/candle-core/src/test_utils.rs",
"repo_id": "candle",
"token_count": 923
} |
use candle_core::{DType, Result, Tensor};
struct TmpFile(std::path::PathBuf);
impl TmpFile {
fn create(base: &str) -> TmpFile {
let filename = std::env::temp_dir().join(format!(
"candle-{}-{}-{:?}",
base,
std::process::id(),
std::thread::current().id(),
));
TmpFile(filename)
}
}
impl std::convert::AsRef<std::path::Path> for TmpFile {
fn as_ref(&self) -> &std::path::Path {
self.0.as_path()
}
}
impl Drop for TmpFile {
fn drop(&mut self) {
std::fs::remove_file(&self.0).unwrap()
}
}
#[test]
fn npy() -> Result<()> {
let npy = Tensor::read_npy("tests/test.npy")?;
assert_eq!(
npy.to_dtype(DType::U8)?.to_vec1::<u8>()?,
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
);
Ok(())
}
#[test]
fn npz() -> Result<()> {
let npz = Tensor::read_npz("tests/test.npz")?;
assert_eq!(npz.len(), 2);
assert_eq!(npz[0].0, "x");
assert_eq!(npz[1].0, "x_plus_one");
assert_eq!(
npz[1].1.to_dtype(DType::U8)?.to_vec1::<u8>()?,
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
);
Ok(())
}
#[test]
fn safetensors() -> Result<()> {
use candle_core::safetensors::Load;
let tmp_file = TmpFile::create("st");
let t = Tensor::arange(0f32, 24f32, &candle_core::Device::Cpu)?;
t.save_safetensors("t", &tmp_file)?;
// Load from file.
let st = candle_core::safetensors::load(&tmp_file, &candle_core::Device::Cpu)?;
let t2 = st.get("t").unwrap();
let diff = (&t - t2)?.abs()?.sum_all()?.to_vec0::<f32>()?;
assert_eq!(diff, 0f32);
// Load from bytes.
let bytes = std::fs::read(tmp_file)?;
let st = candle_core::safetensors::SliceSafetensors::new(&bytes)?;
let t2 = st.get("t").unwrap().load(&candle_core::Device::Cpu);
let diff = (&t - t2)?.abs()?.sum_all()?.to_vec0::<f32>()?;
assert_eq!(diff, 0f32);
Ok(())
}
| candle/candle-core/tests/serialization_tests.rs/0 | {
"file_path": "candle/candle-core/tests/serialization_tests.rs",
"repo_id": "candle",
"token_count": 981
} |
[package]
name = "candle-examples"
version.workspace = true
edition.workspace = true
description.workspace = true
repository.workspace = true
keywords.workspace = true
categories.workspace = true
license.workspace = true
readme = "README.md"
[dependencies]
accelerate-src = { workspace = true, optional = true }
candle = { workspace = true }
candle-datasets = { workspace = true, optional = true }
candle-nn = { workspace = true }
candle-transformers = { workspace = true }
candle-flash-attn = { workspace = true, optional = true }
candle-onnx = { workspace = true, optional = true }
csv = "1.3.0"
cudarc = { workspace = true, optional = true }
half = { workspace = true, optional = true }
hf-hub = { workspace = true, features = ["tokio"] }
image = { workspace = true }
intel-mkl-src = { workspace = true, optional = true }
num-traits = { workspace = true }
palette = { version = "0.7.6", optional = true }
enterpolation = { version = "0.2.1", optional = true}
pyo3 = { version = "0.22.0", features = ["auto-initialize", "abi3-py311"], optional = true }
rayon = { workspace = true }
rubato = { version = "0.15.0", optional = true }
safetensors = { workspace = true }
serde = { workspace = true }
serde_json = { workspace = true }
symphonia = { version = "0.5.3", features = ["all"], optional = true }
tokenizers = { workspace = true, features = ["onig"] }
cpal = { version = "0.15.2", optional = true }
pdf2image = { version = "0.1.2" , optional = true}
[dev-dependencies]
anyhow = { workspace = true }
byteorder = { workspace = true }
clap = { workspace = true }
imageproc = { workspace = true }
memmap2 = { workspace = true }
rand = { workspace = true }
ab_glyph = { workspace = true }
tracing = { workspace = true }
tracing-chrome = { workspace = true }
tracing-subscriber = { workspace = true }
# Necessary to disambiguate with tokio in wasm examples which are 1.28.1
tokio = "1.43.0"
[build-dependencies]
anyhow = { workspace = true }
bindgen_cuda = { version = "0.1.1", optional = true }
[features]
default = []
accelerate = ["dep:accelerate-src", "candle/accelerate", "candle-nn/accelerate", "candle-transformers/accelerate"]
cuda = ["candle/cuda", "candle-nn/cuda", "candle-transformers/cuda", "dep:bindgen_cuda"]
cudnn = ["candle/cudnn"]
flash-attn = ["cuda", "candle-transformers/flash-attn", "dep:candle-flash-attn"]
mkl = ["dep:intel-mkl-src", "candle/mkl", "candle-nn/mkl", "candle-transformers/mkl"]
nccl = ["cuda", "cudarc/nccl", "dep:half"]
onnx = ["candle-onnx"]
metal = ["candle/metal", "candle-nn/metal"]
microphone = ["cpal", "rubato"]
encodec = ["cpal", "symphonia", "rubato"]
mimi = ["cpal", "symphonia", "rubato"]
depth_anything_v2 = ["palette", "enterpolation"]
[[example]]
name = "llama_multiprocess"
required-features = ["cuda", "nccl", "flash-attn"]
[[example]]
name = "reinforcement-learning"
required-features = ["pyo3"]
[[example]]
name = "onnx"
required-features = ["onnx"]
[[example]]
name = "onnx_basics"
required-features = ["onnx"]
[[example]]
name = "whisper"
required-features = ["symphonia"]
[[example]]
name = "whisper-microphone"
required-features = ["microphone"]
[[example]]
name = "mnist-training"
required-features = ["candle-datasets"]
[[example]]
name = "llama2-c"
required-features = ["candle-datasets"]
[[example]]
name = "mimi"
required-features = ["mimi"]
[[example]]
name = "encodec"
required-features = ["encodec"]
[[example]]
name = "depth_anything_v2"
required-features = ["depth_anything_v2"]
[[example]]
name = "silero-vad"
required-features = ["onnx"]
[[example]]
name = "colpali"
required-features = ["pdf2image"]
| candle/candle-examples/Cargo.toml/0 | {
"file_path": "candle/candle-examples/Cargo.toml",
"repo_id": "candle",
"token_count": 1292
} |
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use anyhow::Error as E;
use clap::Parser;
use candle::{DType, Device, Tensor};
use candle_nn::{ops::softmax, VarBuilder};
use candle_transformers::models::clip;
use tokenizers::Tokenizer;
#[derive(Parser)]
struct Args {
#[arg(long)]
model: Option<String>,
#[arg(long)]
tokenizer: Option<String>,
#[arg(long, use_value_delimiter = true)]
images: Option<Vec<String>>,
#[arg(long)]
cpu: bool,
#[arg(long, use_value_delimiter = true)]
sequences: Option<Vec<String>>,
}
fn load_image<T: AsRef<std::path::Path>>(path: T, image_size: usize) -> anyhow::Result<Tensor> {
let img = image::ImageReader::open(path)?.decode()?;
let (height, width) = (image_size, image_size);
let img = img.resize_to_fill(
width as u32,
height as u32,
image::imageops::FilterType::Triangle,
);
let img = img.to_rgb8();
let img = img.into_raw();
let img = Tensor::from_vec(img, (height, width, 3), &Device::Cpu)?
.permute((2, 0, 1))?
.to_dtype(DType::F32)?
.affine(2. / 255., -1.)?;
Ok(img)
}
fn load_images<T: AsRef<std::path::Path>>(
paths: &Vec<T>,
image_size: usize,
) -> anyhow::Result<Tensor> {
let mut images = vec![];
for path in paths {
let tensor = load_image(path, image_size)?;
images.push(tensor);
}
let images = Tensor::stack(&images, 0)?;
Ok(images)
}
pub fn main() -> anyhow::Result<()> {
let args = Args::parse();
let model_file = match args.model {
None => {
let api = hf_hub::api::sync::Api::new()?;
let api = api.repo(hf_hub::Repo::with_revision(
"openai/clip-vit-base-patch32".to_string(),
hf_hub::RepoType::Model,
"refs/pr/15".to_string(),
));
api.get("model.safetensors")?
}
Some(model) => model.into(),
};
let tokenizer = get_tokenizer(args.tokenizer)?;
let config = clip::ClipConfig::vit_base_patch32();
let device = candle_examples::device(args.cpu)?;
let vec_imgs = match args.images {
Some(imgs) => imgs,
None => vec![
"candle-examples/examples/stable-diffusion/assets/stable-diffusion-xl.jpg".to_string(),
"candle-examples/examples/yolo-v8/assets/bike.jpg".to_string(),
],
};
let images = load_images(&vec_imgs, config.image_size)?.to_device(&device)?;
let vb =
unsafe { VarBuilder::from_mmaped_safetensors(&[model_file.clone()], DType::F32, &device)? };
let model = clip::ClipModel::new(vb, &config)?;
let (input_ids, vec_seq) = tokenize_sequences(args.sequences, &tokenizer, &device)?;
let (_logits_per_text, logits_per_image) = model.forward(&images, &input_ids)?;
let softmax_image = softmax(&logits_per_image, 1)?;
let softmax_image_vec = softmax_image.flatten_all()?.to_vec1::<f32>()?;
println!("softmax_image_vec: {:?}", softmax_image_vec);
let probability_vec = softmax_image_vec
.iter()
.map(|v| v * 100.0)
.collect::<Vec<f32>>();
let probability_per_image = probability_vec.len() / vec_imgs.len();
for (i, img) in vec_imgs.iter().enumerate() {
let start = i * probability_per_image;
let end = start + probability_per_image;
let prob = &probability_vec[start..end];
println!("\n\nResults for image: {}\n", img);
for (i, p) in prob.iter().enumerate() {
println!("Probability: {:.4}% Text: {} ", p, vec_seq[i]);
}
}
Ok(())
}
pub fn get_tokenizer(tokenizer: Option<String>) -> anyhow::Result<Tokenizer> {
let tokenizer = match tokenizer {
None => {
let api = hf_hub::api::sync::Api::new()?;
let api = api.repo(hf_hub::Repo::with_revision(
"openai/clip-vit-base-patch32".to_string(),
hf_hub::RepoType::Model,
"refs/pr/15".to_string(),
));
api.get("tokenizer.json")?
}
Some(file) => file.into(),
};
Tokenizer::from_file(tokenizer).map_err(E::msg)
}
pub fn tokenize_sequences(
sequences: Option<Vec<String>>,
tokenizer: &Tokenizer,
device: &Device,
) -> anyhow::Result<(Tensor, Vec<String>)> {
let pad_id = *tokenizer
.get_vocab(true)
.get("<|endoftext|>")
.ok_or(E::msg("No pad token"))?;
let vec_seq = match sequences {
Some(seq) => seq,
None => vec![
"a cycling race".to_string(),
"a photo of two cats".to_string(),
"a robot holding a candle".to_string(),
],
};
let mut tokens = vec![];
for seq in vec_seq.clone() {
let encoding = tokenizer.encode(seq, true).map_err(E::msg)?;
tokens.push(encoding.get_ids().to_vec());
}
let max_len = tokens.iter().map(|v| v.len()).max().unwrap_or(0);
// Pad the sequences to have the same length
for token_vec in tokens.iter_mut() {
let len_diff = max_len - token_vec.len();
if len_diff > 0 {
token_vec.extend(vec![pad_id; len_diff]);
}
}
let input_ids = Tensor::new(tokens, device)?;
Ok((input_ids, vec_seq))
}
| candle/candle-examples/examples/clip/main.rs/0 | {
"file_path": "candle/candle-examples/examples/clip/main.rs",
"repo_id": "candle",
"token_count": 2483
} |
//! Depth Anything V2
//! https://huggingface.co/spaces/depth-anything/Depth-Anything-V2
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
use clap::Parser;
use std::{ffi::OsString, path::PathBuf, sync::Arc};
use candle::DType::{F32, U8};
use candle::{DType, Device, Module, Result, Tensor};
use candle_examples::{load_image, load_image_and_resize, save_image};
use candle_nn::VarBuilder;
use candle_transformers::models::depth_anything_v2::{DepthAnythingV2, DepthAnythingV2Config};
use candle_transformers::models::dinov2;
use crate::color_map::SpectralRColormap;
mod color_map;
// taken these from: https://huggingface.co/spaces/depth-anything/Depth-Anything-V2/blob/main/depth_anything_v2/dpt.py#L207
const MAGIC_MEAN: [f32; 3] = [0.485, 0.456, 0.406];
const MAGIC_STD: [f32; 3] = [0.229, 0.224, 0.225];
const DINO_IMG_SIZE: usize = 518;
#[derive(Parser)]
struct Args {
#[arg(long)]
dinov2_model: Option<PathBuf>,
#[arg(long)]
depth_anything_v2_model: Option<PathBuf>,
#[arg(long)]
image: PathBuf,
#[arg(long)]
output_dir: Option<PathBuf>,
#[arg(long)]
cpu: bool,
#[arg(long)]
color_map: bool,
}
pub fn main() -> anyhow::Result<()> {
let args = Args::parse();
let device = candle_examples::device(args.cpu)?;
let dinov2_model_file = match args.dinov2_model {
None => {
let api = hf_hub::api::sync::Api::new()?;
let api = api.model("lmz/candle-dino-v2".into());
api.get("dinov2_vits14.safetensors")?
}
Some(dinov2_model) => dinov2_model,
};
println!("Using file {:?}", dinov2_model_file);
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[dinov2_model_file], F32, &device)? };
let dinov2 = dinov2::vit_small(vb)?;
println!("DinoV2 model built");
let depth_anything_model_file = match args.depth_anything_v2_model {
None => {
let api = hf_hub::api::sync::Api::new()?;
let api = api.model("jeroenvlek/depth-anything-v2-safetensors".into());
api.get("depth_anything_v2_vits.safetensors")?
}
Some(depth_anything_model) => depth_anything_model,
};
println!("Using file {:?}", depth_anything_model_file);
let vb = unsafe {
VarBuilder::from_mmaped_safetensors(&[depth_anything_model_file], DType::F32, &device)?
};
let config = DepthAnythingV2Config::vit_small();
let depth_anything = DepthAnythingV2::new(Arc::new(dinov2), config, vb)?;
let (original_height, original_width, image) = load_and_prep_image(&args.image, &device)?;
println!("Loaded image {image:?}");
let depth = depth_anything.forward(&image)?;
println!("Got predictions {:?}", depth.shape());
let output_image = post_process_image(&depth, original_height, original_width, args.color_map)?;
let output_path = full_output_path(&args.image, &args.output_dir);
println!("Saving image to {}", output_path.to_string_lossy());
save_image(&output_image, output_path)?;
Ok(())
}
fn full_output_path(image_path: &PathBuf, output_dir: &Option<PathBuf>) -> PathBuf {
let input_file_name = image_path.file_name().unwrap();
let mut output_file_name = OsString::from("depth_");
output_file_name.push(input_file_name);
let mut output_path = match output_dir {
None => image_path.parent().unwrap().to_path_buf(),
Some(output_path) => output_path.clone(),
};
output_path.push(output_file_name);
output_path
}
fn load_and_prep_image(
image_path: &PathBuf,
device: &Device,
) -> anyhow::Result<(usize, usize, Tensor)> {
let (_original_image, original_height, original_width) = load_image(&image_path, None)?;
let image = load_image_and_resize(&image_path, DINO_IMG_SIZE, DINO_IMG_SIZE)?
.unsqueeze(0)?
.to_dtype(F32)?
.to_device(&device)?;
let max_pixel_val = Tensor::try_from(255.0f32)?
.to_device(&device)?
.broadcast_as(image.shape())?;
let image = (image / max_pixel_val)?;
let image = normalize_image(&image, &MAGIC_MEAN, &MAGIC_STD)?;
Ok((original_height, original_width, image))
}
fn normalize_image(image: &Tensor, mean: &[f32; 3], std: &[f32; 3]) -> Result<Tensor> {
let mean_tensor =
Tensor::from_vec(mean.to_vec(), (3, 1, 1), &image.device())?.broadcast_as(image.shape())?;
let std_tensor =
Tensor::from_vec(std.to_vec(), (3, 1, 1), &image.device())?.broadcast_as(image.shape())?;
image.sub(&mean_tensor)?.div(&std_tensor)
}
fn post_process_image(
image: &Tensor,
original_height: usize,
original_width: usize,
color_map: bool,
) -> Result<Tensor> {
let out = image.interpolate2d(original_height, original_width)?;
let out = scale_image(&out)?;
let out = if color_map {
let spectral_r = SpectralRColormap::new();
spectral_r.gray2color(&out)?
} else {
let rgb_slice = [&out, &out, &out];
Tensor::cat(&rgb_slice, 0)?.squeeze(1)?
};
let max_pixel_val = Tensor::try_from(255.0f32)?
.to_device(out.device())?
.broadcast_as(out.shape())?;
let out = (out * max_pixel_val)?;
out.to_dtype(U8)
}
fn scale_image(depth: &Tensor) -> Result<Tensor> {
let flat_values: Vec<f32> = depth.flatten_all()?.to_vec1()?;
let min_val = flat_values.iter().min_by(|a, b| a.total_cmp(b)).unwrap();
let max_val = flat_values.iter().max_by(|a, b| a.total_cmp(b)).unwrap();
let min_val_tensor = Tensor::try_from(*min_val)?
.to_device(depth.device())?
.broadcast_as(depth.shape())?;
let depth = (depth - min_val_tensor)?;
let range = max_val - min_val;
let range_tensor = Tensor::try_from(range)?
.to_device(depth.device())?
.broadcast_as(depth.shape())?;
depth / range_tensor
}
| candle/candle-examples/examples/depth_anything_v2/main.rs/0 | {
"file_path": "candle/candle-examples/examples/depth_anything_v2/main.rs",
"repo_id": "candle",
"token_count": 2544
} |
# candle-helium: 2b LLM with CC-BY licensed weights
Helium-1 is a lightweight model with around 2B parameters, the preview version
currently supports 6 languages, showing strong capabilities in those languages
compared to existing open weights models.
- [Blog Post](https://kyutai.org/2025/01/13/helium.html) announcing the model
release.
- [Model card](https://huggingface.co/kyutai/helium-1-preview-2b) on the HuggingFace Hub.
## Running the example
```bash
$ cargo run --example helium --release --features cuda -- --prompt 'Write helloworld code in Rust' --sample-len 150
```
| candle/candle-examples/examples/helium/README.md/0 | {
"file_path": "candle/candle-examples/examples/helium/README.md",
"repo_id": "candle",
"token_count": 174
} |
# candle-mamba-minimal: minimal implementation of Mamba
This is based on [mamba-minimal](https://github.com/johnma2006/mamba-minimal).
Compared to the mamba example, this version can handle training but is much
slower.
## Running the example
```bash
$ cargo run --example mamba-minimal --release -- --prompt "Mamba is the"
Mamba is the most popular and best-selling game in the world. It has been downloaded more than 1,000 times by over 1 million people worldwide since its release on March 18th 2016.
The Mamba series of games are a collection that combines elements from all genres including action, adventure, strategy & puzzle games with some unique gameplay features such as stealth and survival. The game is also known for its innovative graphics and the ability to play in a variety of different modes like single player or multiplayer.
```
| candle/candle-examples/examples/mamba-minimal/README.md/0 | {
"file_path": "candle/candle-examples/examples/mamba-minimal/README.md",
"repo_id": "candle",
"token_count": 206
} |
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use anyhow::{Error as E, Result};
use clap::Parser;
use candle_transformers::models::mixtral::{Config, Model};
use candle::{DType, Device, Tensor};
use candle_examples::token_output_stream::TokenOutputStream;
use candle_nn::VarBuilder;
use candle_transformers::generation::LogitsProcessor;
use hf_hub::{api::sync::Api, Repo, RepoType};
use tokenizers::Tokenizer;
struct TextGeneration {
model: Model,
device: Device,
tokenizer: TokenOutputStream,
logits_processor: LogitsProcessor,
repeat_penalty: f32,
repeat_last_n: usize,
}
impl TextGeneration {
#[allow(clippy::too_many_arguments)]
fn new(
model: Model,
tokenizer: Tokenizer,
seed: u64,
temp: Option<f64>,
top_p: Option<f64>,
repeat_penalty: f32,
repeat_last_n: usize,
device: &Device,
) -> Self {
let logits_processor = LogitsProcessor::new(seed, temp, top_p);
Self {
model,
tokenizer: TokenOutputStream::new(tokenizer),
logits_processor,
repeat_penalty,
repeat_last_n,
device: device.clone(),
}
}
fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
use std::io::Write;
self.tokenizer.clear();
let mut tokens = self
.tokenizer
.tokenizer()
.encode(prompt, true)
.map_err(E::msg)?
.get_ids()
.to_vec();
for &t in tokens.iter() {
if let Some(t) = self.tokenizer.next_token(t)? {
print!("{t}")
}
}
std::io::stdout().flush()?;
let mut generated_tokens = 0usize;
let eos_token = match self.tokenizer.get_token("</s>") {
Some(token) => token,
None => anyhow::bail!("cannot find the </s> token"),
};
let start_gen = std::time::Instant::now();
for index in 0..sample_len {
let context_size = if index > 0 { 1 } else { tokens.len() };
let start_pos = tokens.len().saturating_sub(context_size);
let ctxt = &tokens[start_pos..];
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
let logits = self.model.forward(&input, start_pos)?;
let logits = logits.squeeze(0)?.squeeze(0)?.to_dtype(DType::F32)?;
let logits = if self.repeat_penalty == 1. {
logits
} else {
let start_at = tokens.len().saturating_sub(self.repeat_last_n);
candle_transformers::utils::apply_repeat_penalty(
&logits,
self.repeat_penalty,
&tokens[start_at..],
)?
};
let next_token = self.logits_processor.sample(&logits)?;
tokens.push(next_token);
generated_tokens += 1;
if next_token == eos_token {
break;
}
if let Some(t) = self.tokenizer.next_token(next_token)? {
print!("{t}");
std::io::stdout().flush()?;
}
}
let dt = start_gen.elapsed();
if let Some(rest) = self.tokenizer.decode_rest().map_err(E::msg)? {
print!("{rest}");
}
std::io::stdout().flush()?;
println!(
"\n{generated_tokens} tokens generated ({:.2} token/s)",
generated_tokens as f64 / dt.as_secs_f64(),
);
Ok(())
}
}
#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
struct Args {
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,
/// Enable tracing (generates a trace-timestamp.json file).
#[arg(long)]
tracing: bool,
#[arg(long)]
use_flash_attn: bool,
#[arg(long)]
prompt: String,
/// The temperature used to generate samples.
#[arg(long)]
temperature: Option<f64>,
/// Nucleus sampling probability cutoff.
#[arg(long)]
top_p: Option<f64>,
/// The seed to use when generating random samples.
#[arg(long, default_value_t = 299792458)]
seed: u64,
/// The length of the sample to generate (in tokens).
#[arg(long, short = 'n', default_value_t = 10000)]
sample_len: usize,
#[arg(long, default_value = "mistralai/Mixtral-8x7B-v0.1")]
model_id: String,
#[arg(long, default_value = "main")]
revision: String,
#[arg(long)]
tokenizer_file: Option<String>,
#[arg(long)]
weight_files: Option<String>,
/// Penalty to be applied for repeating tokens, 1. means no penalty.
#[arg(long, default_value_t = 1.1)]
repeat_penalty: f32,
/// The context size to consider for the repeat penalty.
#[arg(long, default_value_t = 64)]
repeat_last_n: usize,
}
fn main() -> Result<()> {
use tracing_chrome::ChromeLayerBuilder;
use tracing_subscriber::prelude::*;
let args = Args::parse();
let _guard = if args.tracing {
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
tracing_subscriber::registry().with(chrome_layer).init();
Some(guard)
} else {
None
};
println!(
"avx: {}, neon: {}, simd128: {}, f16c: {}",
candle::utils::with_avx(),
candle::utils::with_neon(),
candle::utils::with_simd128(),
candle::utils::with_f16c()
);
println!(
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
args.temperature.unwrap_or(0.),
args.repeat_penalty,
args.repeat_last_n
);
let start = std::time::Instant::now();
let api = Api::new()?;
let repo = api.repo(Repo::with_revision(
args.model_id,
RepoType::Model,
args.revision,
));
let tokenizer_filename = match args.tokenizer_file {
Some(file) => std::path::PathBuf::from(file),
None => repo.get("tokenizer.json")?,
};
let filenames = match args.weight_files {
Some(files) => files
.split(',')
.map(std::path::PathBuf::from)
.collect::<Vec<_>>(),
None => candle_examples::hub_load_safetensors(&repo, "model.safetensors.index.json")?,
};
println!("retrieved the files in {:?}", start.elapsed());
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
let start = std::time::Instant::now();
let config = Config::v0_1_8x7b(args.use_flash_attn);
let device = candle_examples::device(args.cpu)?;
let dtype = device.bf16_default_to_f32();
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
let model = Model::new(&config, vb)?;
println!("loaded the model in {:?}", start.elapsed());
let mut pipeline = TextGeneration::new(
model,
tokenizer,
args.seed,
args.temperature,
args.top_p,
args.repeat_penalty,
args.repeat_last_n,
&device,
);
pipeline.run(&args.prompt, args.sample_len)?;
Ok(())
}
| candle/candle-examples/examples/mixtral/main.rs/0 | {
"file_path": "candle/candle-examples/examples/mixtral/main.rs",
"repo_id": "candle",
"token_count": 3396
} |
# candle-olmo: Open Language Models designed to enable the science of language models
OLMo is a series of Open Language Models designed to enable the science of language models.
- **Project Page:** https://allenai.org/olmo
- **Paper:** [Link](https://arxiv.org/abs/2402.00838)
- **Technical blog post:** https://blog.allenai.org/olmo-open-language-model-87ccfc95f580
- **W&B Logs:** https://wandb.ai/ai2-llm/OLMo-1B/reports/OLMo-1B--Vmlldzo2NzY1Njk1
<!-- - **Press release:** TODO -->
## Running the example
```bash
$ cargo run --example olmo --release -- --prompt "It is only with the heart that one can see rightly"
avx: true, neon: false, simd128: false, f16c: true
temp: 0.20 repeat-penalty: 1.10 repeat-last-n: 64
retrieved the files in 354.977µs
loaded the model in 19.87779666s
It is only with the heart that one can see rightly; what is essential is invisible to the eye.
```
Various model sizes are available via the `--model` argument.
```bash
$ cargo run --example olmo --release -- --model 1.7-7b --prompt 'It is only with the heart that one can see rightly'
avx: true, neon: false, simd128: false, f16c: true
temp: 0.20 repeat-penalty: 1.10 repeat-last-n: 64
retrieved the files in 1.226087ms
loaded the model in 171.274578609s
It is only with the heart that one can see rightly; what is essential is invisible to the eye.”
~ Antoine de Saint-Exupery, The Little Prince
I am a big fan of this quote. It reminds me that I need to be open and aware of my surroundings in order to truly appreciate them.
```
| candle/candle-examples/examples/olmo/README.md/0 | {
"file_path": "candle/candle-examples/examples/olmo/README.md",
"repo_id": "candle",
"token_count": 504
} |
use super::gym_env::{GymEnv, Step};
use candle::{DType, Device, Error, Module, Result, Tensor};
use candle_nn::{
linear, ops::log_softmax, ops::softmax, sequential::seq, Activation, AdamW, Optimizer,
ParamsAdamW, VarBuilder, VarMap,
};
use rand::{distributions::Distribution, rngs::ThreadRng, Rng};
fn new_model(
input_shape: &[usize],
num_actions: usize,
dtype: DType,
device: &Device,
) -> Result<(impl Module, VarMap)> {
let input_size = input_shape.iter().product();
let varmap = VarMap::new();
let var_builder = VarBuilder::from_varmap(&varmap, dtype, device);
let model = seq()
.add(linear(input_size, 32, var_builder.pp("lin1"))?)
.add(Activation::Relu)
.add(linear(32, num_actions, var_builder.pp("lin2"))?);
Ok((model, varmap))
}
fn accumulate_rewards(steps: &[Step<i64>]) -> Vec<f64> {
let mut rewards: Vec<f64> = steps.iter().map(|s| s.reward).collect();
let mut acc_reward = 0f64;
for (i, reward) in rewards.iter_mut().enumerate().rev() {
if steps[i].terminated {
acc_reward = 0.0;
}
acc_reward += *reward;
*reward = acc_reward;
}
rewards
}
fn weighted_sample(probs: Vec<f32>, rng: &mut ThreadRng) -> Result<usize> {
let distribution = rand::distributions::WeightedIndex::new(probs).map_err(Error::wrap)?;
let mut rng = rng;
Ok(distribution.sample(&mut rng))
}
pub fn run() -> Result<()> {
let env = GymEnv::new("CartPole-v1")?;
println!("action space: {:?}", env.action_space());
println!("observation space: {:?}", env.observation_space());
let (model, varmap) = new_model(
env.observation_space(),
env.action_space(),
DType::F32,
&Device::Cpu,
)?;
let optimizer_params = ParamsAdamW {
lr: 0.01,
weight_decay: 0.01,
..Default::default()
};
let mut optimizer = AdamW::new(varmap.all_vars(), optimizer_params)?;
let mut rng = rand::thread_rng();
for epoch_idx in 0..100 {
let mut state = env.reset(rng.gen::<u64>())?;
let mut steps: Vec<Step<i64>> = vec![];
loop {
let action = {
let action_probs: Vec<f32> =
softmax(&model.forward(&state.detach().unsqueeze(0)?)?, 1)?
.squeeze(0)?
.to_vec1()?;
weighted_sample(action_probs, &mut rng)? as i64
};
let step = env.step(action)?;
steps.push(step.copy_with_obs(&state));
if step.terminated || step.truncated {
state = env.reset(rng.gen::<u64>())?;
if steps.len() > 5000 {
break;
}
} else {
state = step.state;
}
}
let total_reward: f64 = steps.iter().map(|s| s.reward).sum();
let episodes: i64 = steps
.iter()
.map(|s| (s.terminated || s.truncated) as i64)
.sum();
println!(
"epoch: {:<3} episodes: {:<5} avg reward per episode: {:.2}",
epoch_idx,
episodes,
total_reward / episodes as f64
);
let batch_size = steps.len();
let rewards = Tensor::from_vec(accumulate_rewards(&steps), batch_size, &Device::Cpu)?
.to_dtype(DType::F32)?
.detach();
let actions_mask = {
let actions: Vec<i64> = steps.iter().map(|s| s.action).collect();
let actions_mask: Vec<Tensor> = actions
.iter()
.map(|&action| {
// One-hot encoding
let mut action_mask = vec![0.0; env.action_space()];
action_mask[action as usize] = 1.0;
Tensor::from_vec(action_mask, env.action_space(), &Device::Cpu)
.unwrap()
.to_dtype(DType::F32)
.unwrap()
})
.collect();
Tensor::stack(&actions_mask, 0)?.detach()
};
let states = {
let states: Vec<Tensor> = steps.into_iter().map(|s| s.state).collect();
Tensor::stack(&states, 0)?.detach()
};
let log_probs = actions_mask
.mul(&log_softmax(&model.forward(&states)?, 1)?)?
.sum(1)?;
let loss = rewards.mul(&log_probs)?.neg()?.mean_all()?;
optimizer.backward_step(&loss)?;
}
Ok(())
}
| candle/candle-examples/examples/reinforcement-learning/policy_gradient.rs/0 | {
"file_path": "candle/candle-examples/examples/reinforcement-learning/policy_gradient.rs",
"repo_id": "candle",
"token_count": 2332
} |
# candle-vit
Vision Transformer (ViT) model implementation following the lines of
[vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224)
This uses a classification head trained on the ImageNet dataset and returns the
probabilities for the top-5 classes.
## Running an example
```
$ cargo run --example vit --release -- --image tiger.jpg
loaded image Tensor[dims 3, 224, 224; f32]
model built
tiger, Panthera tigris : 100.00%
tiger cat : 0.00%
jaguar, panther, Panthera onca, Felis onca: 0.00%
leopard, Panthera pardus: 0.00%
lion, king of beasts, Panthera leo: 0.00%
```
| candle/candle-examples/examples/vit/README.md/0 | {
"file_path": "candle/candle-examples/examples/vit/README.md",
"repo_id": "candle",
"token_count": 219
} |
use candle::{Device, Result, Tensor};
pub const IMAGENET_MEAN: [f32; 3] = [0.485f32, 0.456, 0.406];
pub const IMAGENET_STD: [f32; 3] = [0.229f32, 0.224, 0.225];
/// Loads an image from disk using the image crate at the requested resolution,
/// using the given std and mean parameters.
/// This returns a tensor with shape (3, res, res). imagenet normalization is applied.
pub fn load_image_with_std_mean<P: AsRef<std::path::Path>>(
p: P,
res: usize,
mean: &[f32; 3],
std: &[f32; 3],
) -> Result<Tensor> {
let img = image::ImageReader::open(p)?
.decode()
.map_err(candle::Error::wrap)?
.resize_to_fill(
res as u32,
res as u32,
image::imageops::FilterType::Triangle,
);
let img = img.to_rgb8();
let data = img.into_raw();
let data = Tensor::from_vec(data, (res, res, 3), &Device::Cpu)?.permute((2, 0, 1))?;
let mean = Tensor::new(mean, &Device::Cpu)?.reshape((3, 1, 1))?;
let std = Tensor::new(std, &Device::Cpu)?.reshape((3, 1, 1))?;
(data.to_dtype(candle::DType::F32)? / 255.)?
.broadcast_sub(&mean)?
.broadcast_div(&std)
}
/// Loads an image from disk using the image crate at the requested resolution.
/// This returns a tensor with shape (3, res, res). imagenet normalization is applied.
pub fn load_image<P: AsRef<std::path::Path>>(p: P, res: usize) -> Result<Tensor> {
load_image_with_std_mean(p, res, &IMAGENET_MEAN, &IMAGENET_STD)
}
/// Loads an image from disk using the image crate, this returns a tensor with shape
/// (3, 224, 224). imagenet normalization is applied.
pub fn load_image224<P: AsRef<std::path::Path>>(p: P) -> Result<Tensor> {
load_image(p, 224)
}
/// Loads an image from disk using the image crate, this returns a tensor with shape
/// (3, 518, 518). imagenet normalization is applied.
/// The model dinov2 reg4 analyzes images with dimensions 3x518x518 (resulting in 37x37 transformer tokens).
pub fn load_image518<P: AsRef<std::path::Path>>(p: P) -> Result<Tensor> {
load_image(p, 518)
}
pub const CLASS_COUNT: i64 = 1000;
pub const CLASSES: [&str; 1000] = [
"tench, Tinca tinca",
"goldfish, Carassius auratus",
"great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias",
"tiger shark, Galeocerdo cuvieri",
"hammerhead, hammerhead shark",
"electric ray, crampfish, numbfish, torpedo",
"stingray",
"cock",
"hen",
"ostrich, Struthio camelus",
"brambling, Fringilla montifringilla",
"goldfinch, Carduelis carduelis",
"house finch, linnet, Carpodacus mexicanus",
"junco, snowbird",
"indigo bunting, indigo finch, indigo bird, Passerina cyanea",
"robin, American robin, Turdus migratorius",
"bulbul",
"jay",
"magpie",
"chickadee",
"water ouzel, dipper",
"kite",
"bald eagle, American eagle, Haliaeetus leucocephalus",
"vulture",
"great grey owl, great gray owl, Strix nebulosa",
"European fire salamander, Salamandra salamandra",
"common newt, Triturus vulgaris",
"eft",
"spotted salamander, Ambystoma maculatum",
"axolotl, mud puppy, Ambystoma mexicanum",
"bullfrog, Rana catesbeiana",
"tree frog, tree-frog",
"tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui",
"loggerhead, loggerhead turtle, Caretta caretta",
"leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea",
"mud turtle",
"terrapin",
"box turtle, box tortoise",
"banded gecko",
"common iguana, iguana, Iguana iguana",
"American chameleon, anole, Anolis carolinensis",
"whiptail, whiptail lizard",
"agama",
"frilled lizard, Chlamydosaurus kingi",
"alligator lizard",
"Gila monster, Heloderma suspectum",
"green lizard, Lacerta viridis",
"African chameleon, Chamaeleo chamaeleon",
"Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis",
"African crocodile, Nile crocodile, Crocodylus niloticus",
"American alligator, Alligator mississipiensis",
"triceratops",
"thunder snake, worm snake, Carphophis amoenus",
"ringneck snake, ring-necked snake, ring snake",
"hognose snake, puff adder, sand viper",
"green snake, grass snake",
"king snake, kingsnake",
"garter snake, grass snake",
"water snake",
"vine snake",
"night snake, Hypsiglena torquata",
"boa constrictor, Constrictor constrictor",
"rock python, rock snake, Python sebae",
"Indian cobra, Naja naja",
"green mamba",
"sea snake",
"horned viper, cerastes, sand viper, horned asp, Cerastes cornutus",
"diamondback, diamondback rattlesnake, Crotalus adamanteus",
"sidewinder, horned rattlesnake, Crotalus cerastes",
"trilobite",
"harvestman, daddy longlegs, Phalangium opilio",
"scorpion",
"black and gold garden spider, Argiope aurantia",
"barn spider, Araneus cavaticus",
"garden spider, Aranea diademata",
"black widow, Latrodectus mactans",
"tarantula",
"wolf spider, hunting spider",
"tick",
"centipede",
"black grouse",
"ptarmigan",
"ruffed grouse, partridge, Bonasa umbellus",
"prairie chicken, prairie grouse, prairie fowl",
"peacock",
"quail",
"partridge",
"African grey, African gray, Psittacus erithacus",
"macaw",
"sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita",
"lorikeet",
"coucal",
"bee eater",
"hornbill",
"hummingbird",
"jacamar",
"toucan",
"drake",
"red-breasted merganser, Mergus serrator",
"goose",
"black swan, Cygnus atratus",
"tusker",
"echidna, spiny anteater, anteater",
"platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus",
"wallaby, brush kangaroo",
"koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus",
"wombat",
"jellyfish",
"sea anemone, anemone",
"brain coral",
"flatworm, platyhelminth",
"nematode, nematode worm, roundworm",
"conch",
"snail",
"slug",
"sea slug, nudibranch",
"chiton, coat-of-mail shell, sea cradle, polyplacophore",
"chambered nautilus, pearly nautilus, nautilus",
"Dungeness crab, Cancer magister",
"rock crab, Cancer irroratus",
"fiddler crab",
"king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica",
"American lobster, Northern lobster, Maine lobster, Homarus americanus",
"spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish",
"crayfish, crawfish, crawdad, crawdaddy",
"hermit crab",
"isopod",
"white stork, Ciconia ciconia",
"black stork, Ciconia nigra",
"spoonbill",
"flamingo",
"little blue heron, Egretta caerulea",
"American egret, great white heron, Egretta albus",
"bittern",
"crane",
"limpkin, Aramus pictus",
"European gallinule, Porphyrio porphyrio",
"American coot, marsh hen, mud hen, water hen, Fulica americana",
"bustard",
"ruddy turnstone, Arenaria interpres",
"red-backed sandpiper, dunlin, Erolia alpina",
"redshank, Tringa totanus",
"dowitcher",
"oystercatcher, oyster catcher",
"pelican",
"king penguin, Aptenodytes patagonica",
"albatross, mollymawk",
"grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus",
"killer whale, killer, orca, grampus, sea wolf, Orcinus orca",
"dugong, Dugong dugon",
"sea lion",
"Chihuahua",
"Japanese spaniel",
"Maltese dog, Maltese terrier, Maltese",
"Pekinese, Pekingese, Peke",
"Shih-Tzu",
"Blenheim spaniel",
"papillon",
"toy terrier",
"Rhodesian ridgeback",
"Afghan hound, Afghan",
"basset, basset hound",
"beagle",
"bloodhound, sleuthhound",
"bluetick",
"black-and-tan coonhound",
"Walker hound, Walker foxhound",
"English foxhound",
"redbone",
"borzoi, Russian wolfhound",
"Irish wolfhound",
"Italian greyhound",
"whippet",
"Ibizan hound, Ibizan Podenco",
"Norwegian elkhound, elkhound",
"otterhound, otter hound",
"Saluki, gazelle hound",
"Scottish deerhound, deerhound",
"Weimaraner",
"Staffordshire bullterrier, Staffordshire bull terrier",
"American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier",
"Bedlington terrier",
"Border terrier",
"Kerry blue terrier",
"Irish terrier",
"Norfolk terrier",
"Norwich terrier",
"Yorkshire terrier",
"wire-haired fox terrier",
"Lakeland terrier",
"Sealyham terrier, Sealyham",
"Airedale, Airedale terrier",
"cairn, cairn terrier",
"Australian terrier",
"Dandie Dinmont, Dandie Dinmont terrier",
"Boston bull, Boston terrier",
"miniature schnauzer",
"giant schnauzer",
"standard schnauzer",
"Scotch terrier, Scottish terrier, Scottie",
"Tibetan terrier, chrysanthemum dog",
"silky terrier, Sydney silky",
"soft-coated wheaten terrier",
"West Highland white terrier",
"Lhasa, Lhasa apso",
"flat-coated retriever",
"curly-coated retriever",
"golden retriever",
"Labrador retriever",
"Chesapeake Bay retriever",
"German short-haired pointer",
"vizsla, Hungarian pointer",
"English setter",
"Irish setter, red setter",
"Gordon setter",
"Brittany spaniel",
"clumber, clumber spaniel",
"English springer, English springer spaniel",
"Welsh springer spaniel",
"cocker spaniel, English cocker spaniel, cocker",
"Sussex spaniel",
"Irish water spaniel",
"kuvasz",
"schipperke",
"groenendael",
"malinois",
"briard",
"kelpie",
"komondor",
"Old English sheepdog, bobtail",
"Shetland sheepdog, Shetland sheep dog, Shetland",
"collie",
"Border collie",
"Bouvier des Flandres, Bouviers des Flandres",
"Rottweiler",
"German shepherd, German shepherd dog, German police dog, alsatian",
"Doberman, Doberman pinscher",
"miniature pinscher",
"Greater Swiss Mountain dog",
"Bernese mountain dog",
"Appenzeller",
"EntleBucher",
"boxer",
"bull mastiff",
"Tibetan mastiff",
"French bulldog",
"Great Dane",
"Saint Bernard, St Bernard",
"Eskimo dog, husky",
"malamute, malemute, Alaskan malamute",
"Siberian husky",
"dalmatian, coach dog, carriage dog",
"affenpinscher, monkey pinscher, monkey dog",
"basenji",
"pug, pug-dog",
"Leonberg",
"Newfoundland, Newfoundland dog",
"Great Pyrenees",
"Samoyed, Samoyede",
"Pomeranian",
"chow, chow chow",
"keeshond",
"Brabancon griffon",
"Pembroke, Pembroke Welsh corgi",
"Cardigan, Cardigan Welsh corgi",
"toy poodle",
"miniature poodle",
"standard poodle",
"Mexican hairless",
"timber wolf, grey wolf, gray wolf, Canis lupus",
"white wolf, Arctic wolf, Canis lupus tundrarum",
"red wolf, maned wolf, Canis rufus, Canis niger",
"coyote, prairie wolf, brush wolf, Canis latrans",
"dingo, warrigal, warragal, Canis dingo",
"dhole, Cuon alpinus",
"African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus",
"hyena, hyaena",
"red fox, Vulpes vulpes",
"kit fox, Vulpes macrotis",
"Arctic fox, white fox, Alopex lagopus",
"grey fox, gray fox, Urocyon cinereoargenteus",
"tabby, tabby cat",
"tiger cat",
"Persian cat",
"Siamese cat, Siamese",
"Egyptian cat",
"cougar, puma, catamount, mountain lion, painter, panther, Felis concolor",
"lynx, catamount",
"leopard, Panthera pardus",
"snow leopard, ounce, Panthera uncia",
"jaguar, panther, Panthera onca, Felis onca",
"lion, king of beasts, Panthera leo",
"tiger, Panthera tigris",
"cheetah, chetah, Acinonyx jubatus",
"brown bear, bruin, Ursus arctos",
"American black bear, black bear, Ursus americanus, Euarctos americanus",
"ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus",
"sloth bear, Melursus ursinus, Ursus ursinus",
"mongoose",
"meerkat, mierkat",
"tiger beetle",
"ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle",
"ground beetle, carabid beetle",
"long-horned beetle, longicorn, longicorn beetle",
"leaf beetle, chrysomelid",
"dung beetle",
"rhinoceros beetle",
"weevil",
"fly",
"bee",
"ant, emmet, pismire",
"grasshopper, hopper",
"cricket",
"walking stick, walkingstick, stick insect",
"cockroach, roach",
"mantis, mantid",
"cicada, cicala",
"leafhopper",
"lacewing, lacewing fly",
"dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk",
"damselfly",
"admiral",
"ringlet, ringlet butterfly",
"monarch, monarch butterfly, milkweed butterfly, Danaus plexippus",
"cabbage butterfly",
"sulphur butterfly, sulfur butterfly",
"lycaenid, lycaenid butterfly",
"starfish, sea star",
"sea urchin",
"sea cucumber, holothurian",
"wood rabbit, cottontail, cottontail rabbit",
"hare",
"Angora, Angora rabbit",
"hamster",
"porcupine, hedgehog",
"fox squirrel, eastern fox squirrel, Sciurus niger",
"marmot",
"beaver",
"guinea pig, Cavia cobaya",
"sorrel",
"zebra",
"hog, pig, grunter, squealer, Sus scrofa",
"wild boar, boar, Sus scrofa",
"warthog",
"hippopotamus, hippo, river horse, Hippopotamus amphibius",
"ox",
"water buffalo, water ox, Asiatic buffalo, Bubalus bubalis",
"bison",
"ram, tup",
"bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis",
"ibex, Capra ibex",
"hartebeest",
"impala, Aepyceros melampus",
"gazelle",
"Arabian camel, dromedary, Camelus dromedarius",
"llama",
"weasel",
"mink",
"polecat, fitch, foulmart, foumart, Mustela putorius",
"black-footed ferret, ferret, Mustela nigripes",
"otter",
"skunk, polecat, wood pussy",
"badger",
"armadillo",
"three-toed sloth, ai, Bradypus tridactylus",
"orangutan, orang, orangutang, Pongo pygmaeus",
"gorilla, Gorilla gorilla",
"chimpanzee, chimp, Pan troglodytes",
"gibbon, Hylobates lar",
"siamang, Hylobates syndactylus, Symphalangus syndactylus",
"guenon, guenon monkey",
"patas, hussar monkey, Erythrocebus patas",
"baboon",
"macaque",
"langur",
"colobus, colobus monkey",
"proboscis monkey, Nasalis larvatus",
"marmoset",
"capuchin, ringtail, Cebus capucinus",
"howler monkey, howler",
"titi, titi monkey",
"spider monkey, Ateles geoffroyi",
"squirrel monkey, Saimiri sciureus",
"Madagascar cat, ring-tailed lemur, Lemur catta",
"indri, indris, Indri indri, Indri brevicaudatus",
"Indian elephant, Elephas maximus",
"African elephant, Loxodonta africana",
"lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens",
"giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca",
"barracouta, snoek",
"eel",
"coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch",
"rock beauty, Holocanthus tricolor",
"anemone fish",
"sturgeon",
"gar, garfish, garpike, billfish, Lepisosteus osseus",
"lionfish",
"puffer, pufferfish, blowfish, globefish",
"abacus",
"abaya",
"academic gown, academic robe, judge's robe",
"accordion, piano accordion, squeeze box",
"acoustic guitar",
"aircraft carrier, carrier, flattop, attack aircraft carrier",
"airliner",
"airship, dirigible",
"altar",
"ambulance",
"amphibian, amphibious vehicle",
"analog clock",
"apiary, bee house",
"apron",
"ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin",
"assault rifle, assault gun",
"backpack, back pack, knapsack, packsack, rucksack, haversack",
"bakery, bakeshop, bakehouse",
"balance beam, beam",
"balloon",
"ballpoint, ballpoint pen, ballpen, Biro",
"Band Aid",
"banjo",
"bannister, banister, balustrade, balusters, handrail",
"barbell",
"barber chair",
"barbershop",
"barn",
"barometer",
"barrel, cask",
"barrow, garden cart, lawn cart, wheelbarrow",
"baseball",
"basketball",
"bassinet",
"bassoon",
"bathing cap, swimming cap",
"bath towel",
"bathtub, bathing tub, bath, tub",
"beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon",
"beacon, lighthouse, beacon light, pharos",
"beaker",
"bearskin, busby, shako",
"beer bottle",
"beer glass",
"bell cote, bell cot",
"bib",
"bicycle-built-for-two, tandem bicycle, tandem",
"bikini, two-piece",
"binder, ring-binder",
"binoculars, field glasses, opera glasses",
"birdhouse",
"boathouse",
"bobsled, bobsleigh, bob",
"bolo tie, bolo, bola tie, bola",
"bonnet, poke bonnet",
"bookcase",
"bookshop, bookstore, bookstall",
"bottlecap",
"bow",
"bow tie, bow-tie, bowtie",
"brass, memorial tablet, plaque",
"brassiere, bra, bandeau",
"breakwater, groin, groyne, mole, bulwark, seawall, jetty",
"breastplate, aegis, egis",
"broom",
"bucket, pail",
"buckle",
"bulletproof vest",
"bullet train, bullet",
"butcher shop, meat market",
"cab, hack, taxi, taxicab",
"caldron, cauldron",
"candle, taper, wax light",
"cannon",
"canoe",
"can opener, tin opener",
"cardigan",
"car mirror",
"carousel, carrousel, merry-go-round, roundabout, whirligig",
"carpenter's kit, tool kit",
"carton",
"car wheel",
"cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM",
"cassette",
"cassette player",
"castle",
"catamaran",
"CD player",
"cello, violoncello",
"cellular telephone, cellular phone, cellphone, cell, mobile phone",
"chain",
"chainlink fence",
"chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour",
"chain saw, chainsaw",
"chest",
"chiffonier, commode",
"chime, bell, gong",
"china cabinet, china closet",
"Christmas stocking",
"church, church building",
"cinema, movie theater, movie theatre, movie house, picture palace",
"cleaver, meat cleaver, chopper",
"cliff dwelling",
"cloak",
"clog, geta, patten, sabot",
"cocktail shaker",
"coffee mug",
"coffeepot",
"coil, spiral, volute, whorl, helix",
"combination lock",
"computer keyboard, keypad",
"confectionery, confectionary, candy store",
"container ship, containership, container vessel",
"convertible",
"corkscrew, bottle screw",
"cornet, horn, trumpet, trump",
"cowboy boot",
"cowboy hat, ten-gallon hat",
"cradle",
"crane",
"crash helmet",
"crate",
"crib, cot",
"Crock Pot",
"croquet ball",
"crutch",
"cuirass",
"dam, dike, dyke",
"desk",
"desktop computer",
"dial telephone, dial phone",
"diaper, nappy, napkin",
"digital clock",
"digital watch",
"dining table, board",
"dishrag, dishcloth",
"dishwasher, dish washer, dishwashing machine",
"disk brake, disc brake",
"dock, dockage, docking facility",
"dogsled, dog sled, dog sleigh",
"dome",
"doormat, welcome mat",
"drilling platform, offshore rig",
"drum, membranophone, tympan",
"drumstick",
"dumbbell",
"Dutch oven",
"electric fan, blower",
"electric guitar",
"electric locomotive",
"entertainment center",
"envelope",
"espresso maker",
"face powder",
"feather boa, boa",
"file, file cabinet, filing cabinet",
"fireboat",
"fire engine, fire truck",
"fire screen, fireguard",
"flagpole, flagstaff",
"flute, transverse flute",
"folding chair",
"football helmet",
"forklift",
"fountain",
"fountain pen",
"four-poster",
"freight car",
"French horn, horn",
"frying pan, frypan, skillet",
"fur coat",
"garbage truck, dustcart",
"gasmask, respirator, gas helmet",
"gas pump, gasoline pump, petrol pump, island dispenser",
"goblet",
"go-kart",
"golf ball",
"golfcart, golf cart",
"gondola",
"gong, tam-tam",
"gown",
"grand piano, grand",
"greenhouse, nursery, glasshouse",
"grille, radiator grille",
"grocery store, grocery, food market, market",
"guillotine",
"hair slide",
"hair spray",
"half track",
"hammer",
"hamper",
"hand blower, blow dryer, blow drier, hair dryer, hair drier",
"hand-held computer, hand-held microcomputer",
"handkerchief, hankie, hanky, hankey",
"hard disc, hard disk, fixed disk",
"harmonica, mouth organ, harp, mouth harp",
"harp",
"harvester, reaper",
"hatchet",
"holster",
"home theater, home theatre",
"honeycomb",
"hook, claw",
"hoopskirt, crinoline",
"horizontal bar, high bar",
"horse cart, horse-cart",
"hourglass",
"iPod",
"iron, smoothing iron",
"jack-o'-lantern",
"jean, blue jean, denim",
"jeep, landrover",
"jersey, T-shirt, tee shirt",
"jigsaw puzzle",
"jinrikisha, ricksha, rickshaw",
"joystick",
"kimono",
"knee pad",
"knot",
"lab coat, laboratory coat",
"ladle",
"lampshade, lamp shade",
"laptop, laptop computer",
"lawn mower, mower",
"lens cap, lens cover",
"letter opener, paper knife, paperknife",
"library",
"lifeboat",
"lighter, light, igniter, ignitor",
"limousine, limo",
"liner, ocean liner",
"lipstick, lip rouge",
"Loafer",
"lotion",
"loudspeaker, speaker, speaker unit, loudspeaker system, speaker system",
"loupe, jeweler's loupe",
"lumbermill, sawmill",
"magnetic compass",
"mailbag, postbag",
"mailbox, letter box",
"maillot",
"maillot, tank suit",
"manhole cover",
"maraca",
"marimba, xylophone",
"mask",
"matchstick",
"maypole",
"maze, labyrinth",
"measuring cup",
"medicine chest, medicine cabinet",
"megalith, megalithic structure",
"microphone, mike",
"microwave, microwave oven",
"military uniform",
"milk can",
"minibus",
"miniskirt, mini",
"minivan",
"missile",
"mitten",
"mixing bowl",
"mobile home, manufactured home",
"Model T",
"modem",
"monastery",
"monitor",
"moped",
"mortar",
"mortarboard",
"mosque",
"mosquito net",
"motor scooter, scooter",
"mountain bike, all-terrain bike, off-roader",
"mountain tent",
"mouse, computer mouse",
"mousetrap",
"moving van",
"muzzle",
"nail",
"neck brace",
"necklace",
"nipple",
"notebook, notebook computer",
"obelisk",
"oboe, hautboy, hautbois",
"ocarina, sweet potato",
"odometer, hodometer, mileometer, milometer",
"oil filter",
"organ, pipe organ",
"oscilloscope, scope, cathode-ray oscilloscope, CRO",
"overskirt",
"oxcart",
"oxygen mask",
"packet",
"paddle, boat paddle",
"paddlewheel, paddle wheel",
"padlock",
"paintbrush",
"pajama, pyjama, pj's, jammies",
"palace",
"panpipe, pandean pipe, syrinx",
"paper towel",
"parachute, chute",
"parallel bars, bars",
"park bench",
"parking meter",
"passenger car, coach, carriage",
"patio, terrace",
"pay-phone, pay-station",
"pedestal, plinth, footstall",
"pencil box, pencil case",
"pencil sharpener",
"perfume, essence",
"Petri dish",
"photocopier",
"pick, plectrum, plectron",
"pickelhaube",
"picket fence, paling",
"pickup, pickup truck",
"pier",
"piggy bank, penny bank",
"pill bottle",
"pillow",
"ping-pong ball",
"pinwheel",
"pirate, pirate ship",
"pitcher, ewer",
"plane, carpenter's plane, woodworking plane",
"planetarium",
"plastic bag",
"plate rack",
"plow, plough",
"plunger, plumber's helper",
"Polaroid camera, Polaroid Land camera",
"pole",
"police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria",
"poncho",
"pool table, billiard table, snooker table",
"pop bottle, soda bottle",
"pot, flowerpot",
"potter's wheel",
"power drill",
"prayer rug, prayer mat",
"printer",
"prison, prison house",
"projectile, missile",
"projector",
"puck, hockey puck",
"punching bag, punch bag, punching ball, punchball",
"purse",
"quill, quill pen",
"quilt, comforter, comfort, puff",
"racer, race car, racing car",
"racket, racquet",
"radiator",
"radio, wireless",
"radio telescope, radio reflector",
"rain barrel",
"recreational vehicle, RV, R.V.",
"reel",
"reflex camera",
"refrigerator, icebox",
"remote control, remote",
"restaurant, eating house, eating place, eatery",
"revolver, six-gun, six-shooter",
"rifle",
"rocking chair, rocker",
"rotisserie",
"rubber eraser, rubber, pencil eraser",
"rugby ball",
"rule, ruler",
"running shoe",
"safe",
"safety pin",
"saltshaker, salt shaker",
"sandal",
"sarong",
"sax, saxophone",
"scabbard",
"scale, weighing machine",
"school bus",
"schooner",
"scoreboard",
"screen, CRT screen",
"screw",
"screwdriver",
"seat belt, seatbelt",
"sewing machine",
"shield, buckler",
"shoe shop, shoe-shop, shoe store",
"shoji",
"shopping basket",
"shopping cart",
"shovel",
"shower cap",
"shower curtain",
"ski",
"ski mask",
"sleeping bag",
"slide rule, slipstick",
"sliding door",
"slot, one-armed bandit",
"snorkel",
"snowmobile",
"snowplow, snowplough",
"soap dispenser",
"soccer ball",
"sock",
"solar dish, solar collector, solar furnace",
"sombrero",
"soup bowl",
"space bar",
"space heater",
"space shuttle",
"spatula",
"speedboat",
"spider web, spider's web",
"spindle",
"sports car, sport car",
"spotlight, spot",
"stage",
"steam locomotive",
"steel arch bridge",
"steel drum",
"stethoscope",
"stole",
"stone wall",
"stopwatch, stop watch",
"stove",
"strainer",
"streetcar, tram, tramcar, trolley, trolley car",
"stretcher",
"studio couch, day bed",
"stupa, tope",
"submarine, pigboat, sub, U-boat",
"suit, suit of clothes",
"sundial",
"sunglass",
"sunglasses, dark glasses, shades",
"sunscreen, sunblock, sun blocker",
"suspension bridge",
"swab, swob, mop",
"sweatshirt",
"swimming trunks, bathing trunks",
"swing",
"switch, electric switch, electrical switch",
"syringe",
"table lamp",
"tank, army tank, armored combat vehicle, armoured combat vehicle",
"tape player",
"teapot",
"teddy, teddy bear",
"television, television system",
"tennis ball",
"thatch, thatched roof",
"theater curtain, theatre curtain",
"thimble",
"thresher, thrasher, threshing machine",
"throne",
"tile roof",
"toaster",
"tobacco shop, tobacconist shop, tobacconist",
"toilet seat",
"torch",
"totem pole",
"tow truck, tow car, wrecker",
"toyshop",
"tractor",
"trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi",
"tray",
"trench coat",
"tricycle, trike, velocipede",
"trimaran",
"tripod",
"triumphal arch",
"trolleybus, trolley coach, trackless trolley",
"trombone",
"tub, vat",
"turnstile",
"typewriter keyboard",
"umbrella",
"unicycle, monocycle",
"upright, upright piano",
"vacuum, vacuum cleaner",
"vase",
"vault",
"velvet",
"vending machine",
"vestment",
"viaduct",
"violin, fiddle",
"volleyball",
"waffle iron",
"wall clock",
"wallet, billfold, notecase, pocketbook",
"wardrobe, closet, press",
"warplane, military plane",
"washbasin, handbasin, washbowl, lavabo, wash-hand basin",
"washer, automatic washer, washing machine",
"water bottle",
"water jug",
"water tower",
"whiskey jug",
"whistle",
"wig",
"window screen",
"window shade",
"Windsor tie",
"wine bottle",
"wing",
"wok",
"wooden spoon",
"wool, woolen, woollen",
"worm fence, snake fence, snake-rail fence, Virginia fence",
"wreck",
"yawl",
"yurt",
"web site, website, internet site, site",
"comic book",
"crossword puzzle, crossword",
"street sign",
"traffic light, traffic signal, stoplight",
"book jacket, dust cover, dust jacket, dust wrapper",
"menu",
"plate",
"guacamole",
"consomme",
"hot pot, hotpot",
"trifle",
"ice cream, icecream",
"ice lolly, lolly, lollipop, popsicle",
"French loaf",
"bagel, beigel",
"pretzel",
"cheeseburger",
"hotdog, hot dog, red hot",
"mashed potato",
"head cabbage",
"broccoli",
"cauliflower",
"zucchini, courgette",
"spaghetti squash",
"acorn squash",
"butternut squash",
"cucumber, cuke",
"artichoke, globe artichoke",
"bell pepper",
"cardoon",
"mushroom",
"Granny Smith",
"strawberry",
"orange",
"lemon",
"fig",
"pineapple, ananas",
"banana",
"jackfruit, jak, jack",
"custard apple",
"pomegranate",
"hay",
"carbonara",
"chocolate sauce, chocolate syrup",
"dough",
"meat loaf, meatloaf",
"pizza, pizza pie",
"potpie",
"burrito",
"red wine",
"espresso",
"cup",
"eggnog",
"alp",
"bubble",
"cliff, drop, drop-off",
"coral reef",
"geyser",
"lakeside, lakeshore",
"promontory, headland, head, foreland",
"sandbar, sand bar",
"seashore, coast, seacoast, sea-coast",
"valley, vale",
"volcano",
"ballplayer, baseball player",
"groom, bridegroom",
"scuba diver",
"rapeseed",
"daisy",
"yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum",
"corn",
"acorn",
"hip, rose hip, rosehip",
"buckeye, horse chestnut, conker",
"coral fungus",
"agaric",
"gyromitra",
"stinkhorn, carrion fungus",
"earthstar",
"hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa",
"bolete",
"ear, spike, capitulum",
"toilet tissue, toilet paper, bathroom tissue",
];
| candle/candle-examples/src/imagenet.rs/0 | {
"file_path": "candle/candle-examples/src/imagenet.rs",
"repo_id": "candle",
"token_count": 13048
} |
// This header is not specific to our application and you'll probably want
// something like this for any extension you're building. This includes the
// infrastructure needed to serialize descriptors that are used with the
// "opaque" parameter of the GPU custom call. In our example we'll use this
// parameter to pass the size of our problem.
#ifndef _GPU_OPS_KERNEL_HELPERS_H_
#define _GPU_OPS_KERNEL_HELPERS_H_
#include <cstdint>
#include <stdexcept>
#include <string>
#include <type_traits>
#define JAX_APEX_WARP_SIZE 32
namespace gpu_ops {
// https://en.cppreference.com/w/cpp/numeric/bit_cast
template <class To, class From>
typename std::enable_if<sizeof(To) == sizeof(From) &&
std::is_trivially_copyable<From>::value &&
std::is_trivially_copyable<To>::value,
To>::type
bit_cast(const From &src) noexcept {
static_assert(std::is_trivially_constructible<To>::value,
"This implementation additionally requires destination type to "
"be trivially constructible");
To dst;
memcpy(&dst, &src, sizeof(To));
return dst;
}
template <typename T> std::string PackDescriptorAsString(const T &descriptor) {
return std::string(bit_cast<const char *>(&descriptor), sizeof(T));
}
template <typename T>
const T *UnpackDescriptor(const char *opaque, std::size_t opaque_len) {
if (opaque_len != sizeof(T)) {
throw std::runtime_error("Invalid opaque object size");
}
return bit_cast<const T *>(opaque);
}
} // namespace gpu_ops
#endif
| candle/candle-flash-attn/kernels/kernel_helpers.h/0 | {
"file_path": "candle/candle-flash-attn/kernels/kernel_helpers.h",
"repo_id": "candle",
"token_count": 600
} |
#include "cuda_utils.cuh"
#include<stdint.h>
#define AFFINE_OP(TYPENAME, FN_NAME) \
extern "C" __global__ void FN_NAME( \
const size_t numel, \
const size_t num_dims, \
const size_t *info, \
const TYPENAME *inp, \
TYPENAME *out, \
const TYPENAME mul, \
const TYPENAME add \
) { \
const size_t *dims = info; \
const size_t *strides = info + num_dims; \
if (info == nullptr || is_contiguous(num_dims, dims, strides)) { \
for (unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; i < numel; i += blockDim.x * gridDim.x) { \
TYPENAME x = inp ? inp[i] : out[i]; \
out[i] = x * mul + add; \
} \
} \
else { \
for (unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; i < numel; i += blockDim.x * gridDim.x) { \
unsigned strided_i = get_strided_index(i, num_dims, dims, strides); \
TYPENAME x = inp ? inp[strided_i] : out[i]; \
out[i] = x * mul + add; \
} \
} \
} \
#if __CUDA_ARCH__ >= 800
AFFINE_OP(__nv_bfloat16, affine_bf16)
#endif
#if __CUDA_ARCH__ >= 530
AFFINE_OP(__half, affine_f16)
#endif
AFFINE_OP(float, affine_f32)
AFFINE_OP(double, affine_f64)
AFFINE_OP(uint8_t, affine_u8)
AFFINE_OP(uint32_t, affine_u32)
AFFINE_OP(int64_t, affine_i64)
| candle/candle-kernels/src/affine.cu/0 | {
"file_path": "candle/candle-kernels/src/affine.cu",
"repo_id": "candle",
"token_count": 659
} |
// Imported from https://github.com/ggerganov/llama.cpp/blob/master/ggml-metal.metal
#include <metal_stdlib>
using namespace metal;
#define SWAP(x, y) { auto tmp = (x); (x) = (y); (y) = tmp; }
#define SORT_ASC 1
#define SORT_DESC 0
template<int order, typename T>
METAL_FUNC void argsort(
device const T * x,
device uint32_t * dst,
constant int64_t & ncols,
constant int64_t & ncols_pad,
threadgroup uint32_t * shared_values [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]]) {
int col = tpitg[0];
int row = tgpig[1];
if (col >= ncols_pad) return;
device const T * x_row = x + row * ncols;
threadgroup uint32_t * dst_row = shared_values;
// initialize indices
dst_row[col] = col;
threadgroup_barrier(mem_flags::mem_threadgroup);
for (int k = 2; k <= ncols_pad; k *= 2) {
for (int j = k / 2; j > 0; j /= 2) {
int ixj = col ^ j;
if (ixj > col) {
if ((col & k) == 0) {
if (dst_row[col] >= ncols ||
(dst_row[ixj] < ncols && (order == SORT_ASC ?
x_row[dst_row[col]] > x_row[dst_row[ixj]] :
x_row[dst_row[col]] < x_row[dst_row[ixj]]))
) {
SWAP(dst_row[col], dst_row[ixj]);
}
} else {
if (dst_row[ixj] >= ncols ||
(dst_row[col] < ncols && (order == SORT_ASC ?
x_row[dst_row[col]] < x_row[dst_row[ixj]] :
x_row[dst_row[col]] > x_row[dst_row[ixj]]))
) {
SWAP(dst_row[col], dst_row[ixj]);
}
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
}
}
// copy the result to dst without the padding
if (col < ncols) {
dst[row * ncols + col] = dst_row[col];
}
}
#define ARGSORT(T, RUST_T) \
kernel void asort_asc_##RUST_T( \
device const T * x, \
device uint32_t * dst, \
constant int64_t & ncols, \
constant int64_t & ncols_pad, \
threadgroup uint32_t * shared_values [[threadgroup(0)]], \
uint3 tgpig[[threadgroup_position_in_grid]], \
uint3 tpitg[[thread_position_in_threadgroup]] \
) { \
argsort<SORT_ASC, T>(x, dst, ncols, ncols_pad, shared_values, tgpig, tpitg); \
} \
kernel void asort_desc_##RUST_T( \
device const T * x, \
device uint32_t * dst, \
constant int64_t & ncols, \
constant int64_t & ncols_pad, \
threadgroup uint32_t * shared_values [[threadgroup(0)]], \
uint3 tgpig[[threadgroup_position_in_grid]], \
uint3 tpitg[[thread_position_in_threadgroup]] \
) { \
argsort<SORT_DESC, T>(x, dst, ncols, ncols_pad, shared_values, tgpig, tpitg); \
} \
ARGSORT(float, f32)
ARGSORT(half, f16)
ARGSORT(uint8_t, u8)
ARGSORT(uint32_t, u32)
#if __METAL_VERSION__ >= 220
ARGSORT(int64_t, i64)
#endif
#if defined(__HAVE_BFLOAT__)
ARGSORT(bfloat, bf16)
#endif
| candle/candle-metal-kernels/src/sort.metal/0 | {
"file_path": "candle/candle-metal-kernels/src/sort.metal",
"repo_id": "candle",
"token_count": 1748
} |
//! Loss Calculations
//!
use candle::{Result, Tensor};
/// The negative log likelihood loss.
///
/// Arguments
///
/// * [inp]: The input tensor of dimensions `N, C` where `N` is the batch size and `C` the number
/// of categories. This is expected to contain log probabilities.
/// * [target]: The ground truth labels as a tensor of u32 of dimension `N`.
///
/// The resulting tensor is a scalar containing the average value over the batch.
pub fn nll(inp: &Tensor, target: &Tensor) -> Result<Tensor> {
let b_sz = match target.dims() {
&[b_sz] => b_sz,
dims => candle::bail!("the target tensor should have a single dimension ({dims:?})"),
};
match inp.dims() {
&[inp_b_sz, _] => {
if inp_b_sz != b_sz {
candle::bail!("batch size mismatch between inp ({inp_b_sz}) and target ({b_sz})")
}
}
dims => candle::bail!("the target tensor should have two dimensions ({dims:?})"),
}
inp.gather(&target.unsqueeze(1)?, 1)?
.sum_all()?
.affine(-1f64 / b_sz as f64, 0.)
}
/// The cross-entropy loss.
///
/// Arguments
///
/// * [inp]: The input tensor of dimensions `N, C` where `N` is the batch size and `C` the number
/// of categories. This is expected to raw logits.
/// * [target]: The ground truth labels as a tensor of u32 of dimension `N`.
///
/// The resulting tensor is a scalar containing the average value over the batch.
pub fn cross_entropy(inp: &Tensor, target: &Tensor) -> Result<Tensor> {
if inp.rank() != 2 {
candle::bail!("cross_entropy expects an input tensor of rank 2")
}
let inp = crate::ops::log_softmax(inp, 1)?;
nll(&inp, target)
}
/// The mean squared error loss.
pub fn mse(inp: &Tensor, target: &Tensor) -> Result<Tensor> {
(inp - target)?.sqr()?.mean_all()
}
/// The binary cross-entropy with logit loss.
///
/// Arguments
///
/// * [inp]: The input tensor of dimensions `N, C` where `N` is the batch size and `C` the number
/// of categories. This is expected to raw logits.
/// * [target]: The ground truth labels as a tensor of u32 of dimension `N, C` where `N` is the batch size and `C` the number
/// of categories.
///
/// The resulting tensor is a scalar containing the average value over the batch.
pub fn binary_cross_entropy_with_logit(inp: &Tensor, target: &Tensor) -> Result<Tensor> {
let inp = crate::ops::sigmoid(inp)?;
let left_side = target * inp.log()?;
let right_side = (target.affine(-1., 1.))? * inp.affine(-1., 1.)?.log()?;
let loss = left_side? + right_side?;
let loss = loss?.neg()?.mean_all()?;
Ok(loss)
}
| candle/candle-nn/src/loss.rs/0 | {
"file_path": "candle/candle-nn/src/loss.rs",
"repo_id": "candle",
"token_count": 1049
} |
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use candle::{test_utils::to_vec2_round, DType, Device, Result, Tensor};
use candle_nn::RNN;
/* The following test can be verified against PyTorch using the following snippet.
import torch
from torch import nn
lstm = nn.LSTM(2, 3, 1)
lstm.weight_ih_l0 = torch.nn.Parameter(torch.arange(0., 24.).reshape(12, 2).cos())
lstm.weight_hh_l0 = torch.nn.Parameter(torch.arange(0., 36.).reshape(12, 3).sin())
lstm.bias_ih_l0 = torch.nn.Parameter(torch.tensor([-1., 1., -0.5, 2, -1, 1, -0.5, 2, -1, 1, -0.5, 2]))
lstm.bias_hh_l0 = torch.nn.Parameter(torch.tensor([-1., 1., -0.5, 2, -1, 1, -0.5, 2, -1, 1, -0.5, 2]).cos())
state = torch.zeros((1, 3)), torch.zeros((1, 3))
for inp in [3., 1., 4., 1., 5., 9., 2.]:
inp = torch.tensor([[inp, inp * 0.5]])
_out, state = lstm(inp, state)
print(state)
# (tensor([[ 0.9919, 0.1738, -0.1451]], grad_fn=...), tensor([[ 5.7250, 0.4458, -0.2908]], grad_fn=...))
*/
#[test]
fn lstm() -> Result<()> {
let cpu = &Device::Cpu;
let w_ih = Tensor::arange(0f32, 24f32, cpu)?.reshape((12, 2))?;
let w_ih = w_ih.cos()?;
let w_hh = Tensor::arange(0f32, 36f32, cpu)?.reshape((12, 3))?;
let w_hh = w_hh.sin()?;
let b_ih = Tensor::new(
&[-1f32, 1., -0.5, 2., -1., 1., -0.5, 2., -1., 1., -0.5, 2.],
cpu,
)?;
let b_hh = b_ih.cos()?;
let tensors: std::collections::HashMap<_, _> = [
("weight_ih_l0".to_string(), w_ih),
("weight_hh_l0".to_string(), w_hh),
("bias_ih_l0".to_string(), b_ih),
("bias_hh_l0".to_string(), b_hh),
]
.into_iter()
.collect();
let vb = candle_nn::VarBuilder::from_tensors(tensors, DType::F32, cpu);
let lstm = candle_nn::lstm(2, 3, Default::default(), vb)?;
let mut state = lstm.zero_state(1)?;
for inp in [3f32, 1., 4., 1., 5., 9., 2.] {
let inp = Tensor::new(&[[inp, inp * 0.5]], cpu)?;
state = lstm.step(&inp, &state)?
}
let h = state.h();
let c = state.c();
assert_eq!(to_vec2_round(h, 4)?, &[[0.9919, 0.1738, -0.1451]]);
assert_eq!(to_vec2_round(c, 4)?, &[[5.725, 0.4458, -0.2908]]);
Ok(())
}
/* The following test can be verified against PyTorch using the following snippet.
import torch
from torch import nn
gru = nn.GRU(2, 3, 1)
gru.weight_ih_l0 = torch.nn.Parameter(torch.arange(0., 18.).reshape(9, 2).cos())
gru.weight_hh_l0 = torch.nn.Parameter(torch.arange(0., 27.).reshape(9, 3).sin())
gru.bias_ih_l0 = torch.nn.Parameter(torch.tensor([-1., 1., -0.5, 2, -1, 1, -0.5, 2, -1]))
gru.bias_hh_l0 = torch.nn.Parameter(torch.tensor([-1., 1., -0.5, 2, -1, 1, -0.5, 2, -1]).cos())
state = torch.zeros((1, 3))
for inp in [3., 1., 4., 1., 5., 9., 2.]:
inp = torch.tensor([[inp, inp * 0.5]])
_out, state = gru(inp, state)
print(state)
# tensor([[ 0.0579, 0.8836, -0.9991]], grad_fn=<SqueezeBackward1>)
*/
#[test]
fn gru() -> Result<()> {
let cpu = &Device::Cpu;
let w_ih = Tensor::arange(0f32, 18f32, cpu)?.reshape((9, 2))?;
let w_ih = w_ih.cos()?;
let w_hh = Tensor::arange(0f32, 27f32, cpu)?.reshape((9, 3))?;
let w_hh = w_hh.sin()?;
let b_ih = Tensor::new(&[-1f32, 1., -0.5, 2., -1., 1., -0.5, 2., -1.], cpu)?;
let b_hh = b_ih.cos()?;
let tensors: std::collections::HashMap<_, _> = [
("weight_ih_l0".to_string(), w_ih),
("weight_hh_l0".to_string(), w_hh),
("bias_ih_l0".to_string(), b_ih),
("bias_hh_l0".to_string(), b_hh),
]
.into_iter()
.collect();
let vb = candle_nn::VarBuilder::from_tensors(tensors, DType::F32, cpu);
let gru = candle_nn::gru(2, 3, Default::default(), vb)?;
let mut state = gru.zero_state(1)?;
for inp in [3f32, 1., 4., 1., 5., 9., 2.] {
let inp = Tensor::new(&[[inp, inp * 0.5]], cpu)?;
state = gru.step(&inp, &state)?
}
let h = state.h();
assert_eq!(to_vec2_round(h, 4)?, &[[0.0579, 0.8836, -0.9991]]);
Ok(())
}
| candle/candle-nn/tests/rnn.rs/0 | {
"file_path": "candle/candle-nn/tests/rnn.rs",
"repo_id": "candle",
"token_count": 2010
} |
import logging
try:
from .candle import *
except ImportError as e:
# If we are in development mode, or we did not bundle the DLLs, we try to locate them here
# PyO3 wont give us any information about what DLLs are missing, so we can only try to load
# the DLLs and re-import the module
logging.warning("DLLs were not bundled with this package. Trying to locate them...")
import os
import platform
def locate_cuda_dlls():
logging.warning("Locating CUDA DLLs...")
# Try to locate CUDA_PATH environment variable
cuda_path = os.environ.get("CUDA_PATH", None)
if cuda_path:
logging.warning(f"Found CUDA_PATH environment variable: {cuda_path}")
if platform.system() == "Windows":
cuda_path = os.path.join(cuda_path, "bin")
else:
cuda_path = os.path.join(cuda_path, "lib64")
logging.warning(f"Adding {cuda_path} to DLL search path...")
os.add_dll_directory(cuda_path)
else:
logging.warning("CUDA_PATH environment variable not found!")
def locate_mkl_dlls():
# Try to locate ONEAPI_ROOT environment variable
oneapi_root = os.environ.get("ONEAPI_ROOT", None)
if oneapi_root:
if platform.system() == "Windows":
mkl_path = os.path.join(
oneapi_root, "compiler", "latest", "windows", "redist", "intel64_win", "compiler"
)
else:
mkl_path = os.path.join(oneapi_root, "mkl", "latest", "lib", "intel64")
logging.warning(f"Adding {mkl_path} to DLL search path...")
os.add_dll_directory(mkl_path)
else:
logging.warning("ONEAPI_ROOT environment variable not found!")
locate_cuda_dlls()
locate_mkl_dlls()
try:
from .candle import *
except ImportError as inner_e:
raise ImportError("Could not locate DLLs. Please check the documentation for more information.")
__doc__ = candle.__doc__
if hasattr(candle, "__all__"):
__all__ = candle.__all__
| candle/candle-pyo3/py_src/candle/__init__.py/0 | {
"file_path": "candle/candle-pyo3/py_src/candle/__init__.py",
"repo_id": "candle",
"token_count": 919
} |
from typing import TypeVar, Union, Sequence
_T = TypeVar("_T")
_ArrayLike = Union[
_T,
Sequence[_T],
Sequence[Sequence[_T]],
Sequence[Sequence[Sequence[_T]]],
Sequence[Sequence[Sequence[Sequence[_T]]]],
]
CPU: str = "cpu"
CUDA: str = "cuda"
Device = TypeVar("Device", CPU, CUDA)
Scalar = Union[int, float]
Index = Union[int, slice, None, "Ellipsis"]
Shape = Union[int, Sequence[int]]
| candle/candle-pyo3/py_src/candle/typing/__init__.py/0 | {
"file_path": "candle/candle-pyo3/py_src/candle/typing/__init__.py",
"repo_id": "candle",
"token_count": 166
} |
from candle import Tensor
from candle import rand
import pytest
def test_absolute_shapes_are_valid():
a = rand((10, 20))
assert a.shape == (10, 20)
b = rand(10, 20)
assert b.shape == (10, 20)
pytest.raises(OverflowError, lambda: rand((10, 20, -1)))
pytest.raises(OverflowError, lambda: rand(-1, 20))
pytest.raises(TypeError, lambda: rand("foo", True))
def test_relative_shapes_are_valid():
a = rand(10, 20)
a = a.reshape((1, -1))
assert a.shape == (1, 200)
b = rand(10, 20)
b = b.reshape(-1, 1)
assert b.shape == (200, 1)
c = rand(10, 20)
pytest.raises(TypeError, lambda: c.reshape(1, "foo"))
pytest.raises(ValueError, lambda: c.reshape(1, -2))
pytest.raises(ValueError, lambda: c.reshape((-2, 1)))
pytest.raises(ValueError, lambda: c.reshape((0, 1)))
pytest.raises(ValueError, lambda: c.reshape((1, -1, -1)))
| candle/candle-pyo3/tests/native/test_shape.py/0 | {
"file_path": "candle/candle-pyo3/tests/native/test_shape.py",
"repo_id": "candle",
"token_count": 385
} |
//! Chinese contrastive Language-Image Pre-Training
//!
//! Chinese contrastive Language-Image Pre-Training (CLIP) is an architecture trained on
//! pairs of images with related texts.
//!
//! - 💻 [Chinese-CLIP](https://github.com/OFA-Sys/Chinese-CLIP)
//! - 💻 [GH](https://github.com/huggingface/transformers/blob/5af7d41e49bbfc8319f462eb45253dcb3863dfb7/src/transformers/models/chinese_clip/modeling_chinese_clip.py_
use candle::{Context, DType, IndexOp, Module, Result, Shape, Tensor, D};
use candle_nn as nn;
use super::{Activation, EncoderConfig};
#[derive(Clone, Debug)]
pub struct ChineseClipVisionConfig {
pub hidden_size: usize,
pub intermediate_size: usize,
pub projection_dim: usize,
pub num_hidden_layers: usize,
pub num_attention_heads: usize,
pub num_channels: usize,
pub image_size: usize,
pub patch_size: usize,
pub hidden_act: Activation,
pub layer_norm_eps: f64,
pub attention_dropout: f32,
pub initializer_range: f32,
pub initializer_factor: f32,
}
impl Default for ChineseClipVisionConfig {
fn default() -> Self {
ChineseClipVisionConfig {
hidden_size: 768,
intermediate_size: 3072,
projection_dim: 512,
num_hidden_layers: 12,
num_attention_heads: 12,
num_channels: 3,
image_size: 224,
patch_size: 32,
hidden_act: Activation::QuickGelu,
layer_norm_eps: 1e-5,
attention_dropout: 0.0,
initializer_range: 0.02,
initializer_factor: 1.0,
}
}
}
impl ChineseClipVisionConfig {
/// [referer](https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16/blob/main/config.json)
pub fn clip_vit_base_patch16() -> Self {
Self {
hidden_size: 768,
intermediate_size: 3072,
projection_dim: 512,
num_hidden_layers: 12,
num_attention_heads: 12,
num_channels: 3,
image_size: 224,
patch_size: 16,
hidden_act: Activation::QuickGelu,
layer_norm_eps: 1e-5,
attention_dropout: 0.0,
initializer_range: 0.02,
initializer_factor: 1.0,
}
}
}
#[derive(Clone, Debug)]
pub struct ChineseClipVisionEmbeddings {
patch_embedding: nn::Conv2d,
position_ids: Tensor,
class_embedding: Tensor,
position_embedding: nn::Embedding,
}
impl ChineseClipVisionEmbeddings {
pub fn new(var: nn::VarBuilder, config: &ChineseClipVisionConfig) -> Result<Self> {
let embed_dim = config.hidden_size;
// originally nn.Parameter
let class_embedding = if var.contains_tensor("class_embedding") {
var.get(embed_dim, "class_embedding")?
} else {
Tensor::randn(0f32, 1f32, embed_dim, var.device())?
};
let num_patches = (config.image_size / config.patch_size).pow(2);
let num_positions = num_patches + 1;
let position_ids = Tensor::arange(0, num_positions as i64, var.device())?;
let conv2dconfig = nn::Conv2dConfig {
stride: config.patch_size,
..Default::default()
};
let position_embedding =
nn::embedding(num_positions, embed_dim, var.pp("position_embedding"))?;
let patch_embedding = nn::conv2d_no_bias(
config.num_channels,
embed_dim,
config.patch_size,
conv2dconfig,
var.pp("patch_embedding"),
)?;
Ok(Self {
patch_embedding,
position_ids,
class_embedding,
position_embedding,
})
}
}
impl Module for ChineseClipVisionEmbeddings {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let batch_size = xs.shape().dims();
let patch_embeds = self
.patch_embedding
.forward(xs)?
.flatten_from(2)?
.transpose(1, 2)?;
let shape = Shape::from((batch_size[0], 1, self.class_embedding.dim(D::Minus1)?));
let class_embeds = self.class_embedding.expand(shape)?;
let embeddings = Tensor::cat(&[class_embeds, patch_embeds], 1)?;
let position_embedding = self.position_embedding.forward(&self.position_ids)?;
embeddings.broadcast_add(&position_embedding)
}
}
#[derive(Clone, Debug)]
struct ChineseClipVisionAttention {
k_proj: nn::Linear,
v_proj: nn::Linear,
q_proj: nn::Linear,
out_proj: nn::Linear,
head_dim: usize,
scale: f64,
num_attention_heads: usize,
}
impl ChineseClipVisionAttention {
fn new(var: nn::VarBuilder, config: &EncoderConfig) -> Result<Self> {
let embed_dim = config.embed_dim();
let num_attention_heads = config.num_attention_heads();
let k_proj = nn::linear(embed_dim, embed_dim, var.pp("k_proj"))?;
let v_proj = nn::linear(embed_dim, embed_dim, var.pp("v_proj"))?;
let q_proj = nn::linear(embed_dim, embed_dim, var.pp("q_proj"))?;
let out_proj = nn::linear(embed_dim, embed_dim, var.pp("out_proj"))?;
let head_dim = embed_dim / num_attention_heads;
let scale = (head_dim as f64).powf(-0.5);
Ok(ChineseClipVisionAttention {
k_proj,
v_proj,
q_proj,
out_proj,
head_dim,
scale,
num_attention_heads,
})
}
fn shape(&self, xs: &Tensor, seq_len: usize, bsz: usize) -> Result<Tensor> {
xs.reshape((bsz, seq_len, self.num_attention_heads, self.head_dim))?
.transpose(1, 2)?
.contiguous()
}
fn forward(&self, xs: &Tensor, causal_attention_mask: Option<&Tensor>) -> Result<Tensor> {
let in_dtype = xs.dtype();
let (bsz, seq_len, embed_dim) = xs.dims3()?;
let proj_shape = (bsz * self.num_attention_heads, seq_len, self.head_dim);
let query_states = self
.shape(&(self.q_proj.forward(xs)? * self.scale)?, seq_len, bsz)?
.reshape(proj_shape)?
.to_dtype(DType::F32)?;
let key_states = self
.shape(&self.k_proj.forward(xs)?, seq_len, bsz)?
.reshape(proj_shape)?
.to_dtype(DType::F32)?;
let value_states = self
.shape(&self.v_proj.forward(xs)?, seq_len, bsz)?
.reshape(proj_shape)?
.to_dtype(DType::F32)?;
let attn_weights = query_states.matmul(&key_states.transpose(1, 2)?)?;
let src_len = key_states.dim(1)?;
let attn_weights = if let Some(causal_attention_mask) = causal_attention_mask {
attn_weights
.reshape((bsz, self.num_attention_heads, seq_len, src_len))?
.broadcast_add(causal_attention_mask)?
.reshape((bsz * self.num_attention_heads, seq_len, src_len))?
} else {
attn_weights
};
let attn_weights = nn::ops::softmax(&attn_weights, D::Minus1)?;
let attn_output = attn_weights.matmul(&value_states)?.to_dtype(in_dtype)?;
let attn_output = attn_output
.reshape((bsz, self.num_attention_heads, seq_len, self.head_dim))?
.transpose(1, 2)?
.reshape((bsz, seq_len, embed_dim))?;
self.out_proj.forward(&attn_output)
}
}
#[derive(Clone, Debug)]
struct ChineseClipVisionMlp {
fc1: nn::Linear,
fc2: nn::Linear,
activation: Activation,
}
impl ChineseClipVisionMlp {
fn new(var: nn::VarBuilder, config: &EncoderConfig) -> Result<Self> {
let fc1 = nn::linear(
config.embed_dim(),
config.intermediate_size(),
var.pp("fc1"),
)?;
let fc2 = nn::linear(
config.intermediate_size(),
config.embed_dim(),
var.pp("fc2"),
)?;
Ok(ChineseClipVisionMlp {
fc1,
fc2,
activation: config.activation(),
})
}
}
impl ChineseClipVisionMlp {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let xs = self.fc1.forward(xs)?;
self.fc2.forward(&self.activation.forward(&xs)?)
}
}
#[derive(Clone, Debug)]
struct ChineseClipVisionEncoderLayer {
self_attn: ChineseClipVisionAttention,
layer_norm1: nn::LayerNorm,
mlp: ChineseClipVisionMlp,
layer_norm2: nn::LayerNorm,
}
impl ChineseClipVisionEncoderLayer {
fn new(var: nn::VarBuilder, config: &EncoderConfig) -> Result<Self> {
let self_attn = ChineseClipVisionAttention::new(var.pp("self_attn"), config)?;
let layer_norm1 = nn::layer_norm(
config.embed_dim(),
config.layer_norm_eps(),
var.pp("layer_norm1"),
)?;
let mlp = ChineseClipVisionMlp::new(var.pp("mlp"), config)?;
let layer_norm2 = nn::layer_norm(
config.embed_dim(),
config.layer_norm_eps(),
var.pp("layer_norm2"),
)?;
Ok(ChineseClipVisionEncoderLayer {
self_attn,
layer_norm1,
mlp,
layer_norm2,
})
}
fn forward(&self, xs: &Tensor, causal_attention_mask: Option<&Tensor>) -> Result<Tensor> {
let residual = xs;
let xs = self.layer_norm1.forward(xs)?;
let xs = self.self_attn.forward(&xs, causal_attention_mask)?;
let xs = (xs + residual)?;
let residual = &xs;
let xs = self.layer_norm2.forward(&xs)?;
let xs = self.mlp.forward(&xs)?;
xs + residual
}
}
#[derive(Clone, Debug)]
pub struct ChineseClipVisionEncoder {
layers: Vec<ChineseClipVisionEncoderLayer>,
}
impl ChineseClipVisionEncoder {
pub fn new(var: nn::VarBuilder, config: &EncoderConfig) -> Result<Self> {
let vs = var.pp("layers");
let mut layers: Vec<ChineseClipVisionEncoderLayer> = Vec::new();
for index in 0..config.num_hidden_layers() {
let layer = ChineseClipVisionEncoderLayer::new(vs.pp(index.to_string()), config)?;
layers.push(layer)
}
Ok(ChineseClipVisionEncoder { layers })
}
pub fn forward(&self, xs: &Tensor, causal_attention_mask: Option<&Tensor>) -> Result<Tensor> {
let mut xs = xs.clone();
for layer in self.layers.iter() {
xs = layer.forward(&xs, causal_attention_mask)?;
}
Ok(xs)
}
// required by LLaVA
pub fn output_hidden_states(
&self,
xs: &Tensor,
causal_attention_mask: Option<&Tensor>,
) -> Result<Vec<Tensor>> {
let mut xs = xs.clone();
let mut hidden_states = Vec::new();
for layer in self.layers.iter() {
xs = layer.forward(&xs, causal_attention_mask)?;
hidden_states.push(xs.clone());
}
Ok(hidden_states)
}
}
#[derive(Clone, Debug)]
pub struct ChineseClipVisionTransformer {
embeddings: ChineseClipVisionEmbeddings,
encoder: ChineseClipVisionEncoder,
pre_layer_norm: nn::LayerNorm,
final_layer_norm: nn::LayerNorm,
}
impl ChineseClipVisionTransformer {
pub fn new(var: nn::VarBuilder, config: &ChineseClipVisionConfig) -> Result<Self> {
let embed_dim = config.hidden_size;
let embeddings = ChineseClipVisionEmbeddings::new(var.pp("embeddings"), config)?;
let pre_layer_norm =
nn::layer_norm(embed_dim, config.layer_norm_eps, var.pp("pre_layrnorm"))?;
let encoder = ChineseClipVisionEncoder::new(
var.pp("encoder"),
&EncoderConfig::Vision(config.clone()),
)?;
let final_layer_norm =
nn::layer_norm(embed_dim, config.layer_norm_eps, var.pp("post_layernorm"))?;
Ok(Self {
embeddings,
encoder,
final_layer_norm,
pre_layer_norm,
})
}
// required by LLaVA
pub fn output_hidden_states(&self, pixel_values: &Tensor) -> Result<Vec<Tensor>> {
let hidden_states = pixel_values
.apply(&self.embeddings)?
.apply(&self.pre_layer_norm)?;
let mut result = self.encoder.output_hidden_states(&hidden_states, None)?;
let encoder_outputs = result.last().context("no last")?;
let pooled_output = encoder_outputs.i((.., 0, ..))?;
result.push(self.final_layer_norm.forward(&pooled_output)?.clone());
Ok(result)
}
}
impl Module for ChineseClipVisionTransformer {
fn forward(&self, pixel_values: &Tensor) -> Result<Tensor> {
let hidden_states = pixel_values
.apply(&self.embeddings)?
.apply(&self.pre_layer_norm)?;
let encoder_outputs = self.encoder.forward(&hidden_states, None)?;
// referer: https://github.com/huggingface/transformers/blob/f6fa0f0bf0796ac66f201f23bdb8585de1609add/src/transformers/models/clip/modeling_clip.py#L787
let pooled_output = encoder_outputs.i((.., 0, ..))?;
self.final_layer_norm.forward(&pooled_output)
}
}
| candle/candle-transformers/src/models/chinese_clip/vision_model.rs/0 | {
"file_path": "candle/candle-transformers/src/models/chinese_clip/vision_model.rs",
"repo_id": "candle",
"token_count": 6262
} |
//! EnCodec neural audio codec based on the Encodec implementation.
//!
//! See ["High Fidelity Neural Audio Compression"](https://arxiv.org/abs/2210.13438)
//!
//! Based on implementation from [huggingface/transformers](https://github.com/huggingface/transformers/blob/main/src/transformers/models/encodec/modeling_encodec.py)
use candle::{DType, IndexOp, Layout, Module, Result, Shape, Tensor, D};
use candle_nn::{conv1d, Conv1d, ConvTranspose1d, VarBuilder};
// Encodec Model
// https://github.com/huggingface/transformers/blob/main/src/transformers/models/encodec/modeling_encodec.py
#[derive(Debug, Copy, Clone, PartialEq, Eq, serde::Deserialize)]
pub enum NormType {
WeightNorm,
TimeGroupNorm,
None,
}
#[derive(Debug, Copy, Clone, PartialEq, Eq, serde::Deserialize)]
pub enum PadMode {
Constant,
Reflect,
Replicate,
}
#[derive(Debug, Clone, PartialEq, serde::Deserialize)]
pub struct Config {
pub target_bandwidths: Vec<f64>,
pub sampling_rate: usize,
pub audio_channels: usize,
pub normalize: bool,
pub chunk_length_s: Option<usize>,
pub overlap: Option<usize>,
pub hidden_size: usize,
pub num_filters: usize,
pub num_residual_layers: usize,
pub upsampling_ratios: Vec<usize>,
pub norm_type: NormType,
pub kernel_size: usize,
pub last_kernel_size: usize,
pub residual_kernel_size: usize,
pub dilation_growth_rate: usize,
pub use_causal_conv: bool,
pub pad_mode: PadMode,
pub compress: usize,
pub num_lstm_layers: usize,
pub trim_right_ratio: f64,
pub codebook_size: usize,
pub codebook_dim: Option<usize>,
pub use_conv_shortcut: bool,
}
impl Default for Config {
fn default() -> Self {
Self {
target_bandwidths: vec![1.5, 3.0, 6.0, 12.0, 24.0],
sampling_rate: 24_000,
audio_channels: 1,
normalize: false,
chunk_length_s: None,
overlap: None,
hidden_size: 128,
num_filters: 32,
num_residual_layers: 1,
upsampling_ratios: vec![8, 5, 4, 2],
norm_type: NormType::WeightNorm,
kernel_size: 7,
last_kernel_size: 7,
residual_kernel_size: 3,
dilation_growth_rate: 2,
use_causal_conv: true,
// This should be PadMode::Reflect which is currently unsupported in candle.
pad_mode: PadMode::Replicate,
compress: 2,
num_lstm_layers: 2,
trim_right_ratio: 1.0,
codebook_size: 1024,
codebook_dim: None,
use_conv_shortcut: true,
}
}
}
impl Config {
fn codebook_dim(&self) -> usize {
self.codebook_dim.unwrap_or(self.hidden_size)
}
fn frame_rate(&self) -> usize {
let hop_length: usize = self.upsampling_ratios.iter().product();
self.sampling_rate.div_ceil(hop_length)
}
fn num_quantizers(&self) -> usize {
let num = 1000f64
* self
.target_bandwidths
.last()
.expect("empty target_bandwidths");
(num as usize) / (self.frame_rate() * 10)
}
}
fn get_extra_padding_for_conv1d(
xs: &Tensor,
k_size: usize,
stride: usize,
padding_total: usize,
) -> Result<usize> {
let len = xs.dim(D::Minus1)?;
let n_frames = (len + padding_total).saturating_sub(k_size) as f64 / stride as f64 + 1.0;
let ideal_len =
((n_frames.ceil() as usize - 1) * stride + k_size).saturating_sub(padding_total);
Ok(ideal_len.saturating_sub(len))
}
fn pad1d(xs: &Tensor, pad_l: usize, pad_r: usize, mode: PadMode) -> Result<Tensor> {
match mode {
PadMode::Constant => xs.pad_with_zeros(D::Minus1, pad_l, pad_r),
PadMode::Reflect => candle::bail!("pad-mode 'reflect' is not supported"),
PadMode::Replicate => xs.pad_with_same(D::Minus1, pad_l, pad_r),
}
}
// Applies weight norm for inference by recomputing the weight tensor. This
// does not apply to training.
// https://pytorch.org/docs/stable/generated/torch.nn.utils.weight_norm.html
pub fn conv1d_weight_norm(
in_c: usize,
out_c: usize,
kernel_size: usize,
config: candle_nn::Conv1dConfig,
vb: VarBuilder,
) -> Result<Conv1d> {
let weight_g = vb.get((out_c, 1, 1), "weight_g")?;
let weight_v = vb.get((out_c, in_c, kernel_size), "weight_v")?;
let norm_v = weight_v.sqr()?.sum_keepdim((1, 2))?.sqrt()?;
let weight = weight_v.broadcast_mul(&weight_g)?.broadcast_div(&norm_v)?;
let bias = vb.get(out_c, "bias")?;
Ok(Conv1d::new(weight, Some(bias), config))
}
pub fn conv_transpose1d_weight_norm(
in_c: usize,
out_c: usize,
kernel_size: usize,
bias: bool,
config: candle_nn::ConvTranspose1dConfig,
vb: VarBuilder,
) -> Result<ConvTranspose1d> {
let weight_g = vb.get((in_c, 1, 1), "weight_g")?;
let weight_v = vb.get((in_c, out_c, kernel_size), "weight_v")?;
let norm_v = weight_v.sqr()?.sum_keepdim((1, 2))?.sqrt()?;
let weight = weight_v.broadcast_mul(&weight_g)?.broadcast_div(&norm_v)?;
let bias = if bias {
Some(vb.get(out_c, "bias")?)
} else {
None
};
Ok(ConvTranspose1d::new(weight, bias, config))
}
struct CodebookEncode;
impl candle::CustomOp2 for CodebookEncode {
fn name(&self) -> &'static str {
"cb"
}
fn cpu_fwd(
&self,
lhs_storage: &candle::CpuStorage,
lhs_layout: &Layout,
rhs_storage: &candle::CpuStorage,
rhs_layout: &Layout,
) -> Result<(candle::CpuStorage, Shape)> {
use rayon::prelude::*;
let (lhs_dim1, lhs_dim2) = lhs_layout.shape().dims2()?;
let (rhs_dim1, rhs_dim2) = rhs_layout.shape().dims2()?;
if lhs_dim2 != rhs_dim2 {
candle::bail!("CodebookEncode, mismatch on last dim, {lhs_layout:?} {rhs_layout:?}");
}
if lhs_dim2 == 0 {
candle::bail!("CodebookEncode, empty last dim {lhs_layout:?}")
}
let lhs = match lhs_layout.contiguous_offsets() {
None => candle::bail!("CodebookEncode, lhs has to be contiguous, got {lhs_layout:?}"),
Some((o1, o2)) => {
let slice = lhs_storage.as_slice::<f32>()?;
&slice[o1..o2]
}
};
let rhs = match rhs_layout.contiguous_offsets() {
None => candle::bail!("CodebookEncode, rhs has to be contiguous, got {rhs_layout:?}"),
Some((o1, o2)) => {
let slice = rhs_storage.as_slice::<f32>()?;
&slice[o1..o2]
}
};
let dst = (0..lhs_dim1)
.into_par_iter()
.map(|idx1| {
let mut where_min = 0;
let mut min_dist = f32::INFINITY;
let lhs = &lhs[idx1 * lhs_dim2..(idx1 + 1) * lhs_dim2];
for idx2 in 0..rhs_dim1 {
let rhs = &rhs[idx2 * rhs_dim2..(idx2 + 1) * rhs_dim2];
let mut dist = 0f32;
for (a, b) in lhs.iter().zip(rhs.iter()) {
dist += (a - b) * (a - b)
}
if dist < min_dist {
min_dist = dist;
where_min = idx2;
}
}
where_min as u32
})
.collect();
let storage = candle::WithDType::to_cpu_storage_owned(dst);
Ok((storage, (lhs_dim1,).into()))
}
}
// https://github.com/huggingface/transformers/blob/abaca9f9432a84cfaa95531de4c72334f38a42f2/src/transformers/models/encodec/modeling_encodec.py#L340
#[allow(unused)]
#[derive(Clone, Debug)]
pub struct EuclideanCodebook {
inited: Tensor,
cluster_size: Tensor,
embed: candle_nn::Embedding,
embed_avg: Tensor,
c2: Tensor,
}
impl EuclideanCodebook {
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let inited = vb.get(1, "inited")?;
let cluster_size = vb.get(cfg.codebook_size, "cluster_size")?;
let e_shape = (cfg.codebook_size, cfg.codebook_dim());
let embed = vb.get(e_shape, "embed")?;
let c2 = ((&embed * &embed)?.sum(D::Minus1)? / 2.0)?;
let embed_avg = vb.get(e_shape, "embed_avg")?;
Ok(Self {
inited,
cluster_size,
embed: candle_nn::Embedding::new(embed, cfg.codebook_dim()),
embed_avg,
c2,
})
}
pub fn encode_slow(&self, xs: &Tensor) -> Result<Tensor> {
let mut target_shape = xs.dims().to_vec();
target_shape.pop();
let xs = xs.flatten_to(D::Minus2)?;
let _ = xs.dims2()?;
let dot_prod = xs.matmul(&self.embed.embeddings().t()?)?;
let codes = self.c2.broadcast_sub(&dot_prod)?.argmin(D::Minus1)?;
codes.reshape(target_shape)
}
pub fn encode(&self, xs: &Tensor) -> Result<Tensor> {
let mut target_shape = xs.dims().to_vec();
target_shape.pop();
let xs = xs.flatten_to(D::Minus2)?;
let _ = xs.dims2()?;
let codes = Tensor::apply_op2(&xs, self.embed.embeddings(), CodebookEncode)?;
codes.reshape(target_shape)
}
pub fn decode(&self, embed_ind: &Tensor) -> Result<Tensor> {
let quantize = self.embed.forward(embed_ind)?;
Ok(quantize)
}
}
#[derive(Clone, Debug)]
pub struct VectorQuantization {
codebook: EuclideanCodebook,
}
impl VectorQuantization {
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let codebook = EuclideanCodebook::new(cfg, vb.pp("codebook"))?;
Ok(Self { codebook })
}
pub fn encode(&self, xs: &Tensor) -> Result<Tensor> {
let xs = xs.transpose(1, 2)?;
self.codebook.encode_slow(&xs)
}
pub fn decode(&self, embed_ind: &Tensor) -> Result<Tensor> {
let quantize = self.codebook.decode(embed_ind)?;
let quantize = quantize.transpose(1, 2)?;
Ok(quantize)
}
}
#[derive(Clone, Debug)]
pub struct ResidualVectorQuantizer {
layers: Vec<VectorQuantization>,
dtype: DType,
}
impl ResidualVectorQuantizer {
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let vb = &vb.pp("layers");
let layers = (0..cfg.num_quantizers())
.map(|i| VectorQuantization::new(cfg, vb.pp(i)))
.collect::<Result<Vec<_>>>()?;
Ok(Self {
layers,
dtype: vb.dtype(),
})
}
pub fn encode(&self, xs: &Tensor) -> Result<Tensor> {
let mut codes = Vec::with_capacity(self.layers.len());
let mut residual = xs.clone();
for layer in self.layers.iter() {
let indices = layer.encode(&residual)?;
let quantized = layer.decode(&indices)?;
residual = (residual - quantized)?;
codes.push(indices)
}
Tensor::stack(&codes, 0)
}
pub fn decode(&self, codes: &Tensor) -> Result<Tensor> {
let mut quantized_out = Tensor::zeros((), self.dtype, codes.device())?;
let ncodes = codes.dim(0)?;
if ncodes > self.layers.len() {
candle::bail!(
"codes shape {:?} does not match the number of quantization layers {}",
codes.shape(),
self.layers.len()
)
}
for (i, layer) in self.layers.iter().take(ncodes).enumerate() {
let quantized = layer.decode(&codes.i(i)?)?;
quantized_out = quantized.broadcast_add(&quantized_out)?;
}
Ok(quantized_out)
}
}
// https://github.com/huggingface/transformers/blob/abaca9f9432a84cfaa95531de4c72334f38a42f2/src/transformers/models/encodec/modeling_encodec.py#L226
#[derive(Clone, Debug)]
pub struct EncodecLSTM {
layers: Vec<candle_nn::LSTM>,
}
impl EncodecLSTM {
pub fn new(dim: usize, cfg: &Config, vb: VarBuilder) -> Result<Self> {
let vb = &vb.pp("lstm");
let mut layers = vec![];
for layer_idx in 0..cfg.num_lstm_layers {
let config = candle_nn::LSTMConfig {
layer_idx,
..Default::default()
};
let lstm = candle_nn::lstm(dim, dim, config, vb.clone())?;
layers.push(lstm)
}
Ok(Self { layers })
}
}
impl Module for EncodecLSTM {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
use candle_nn::RNN;
// This is different from the Python transformers version as candle LSTM is batch first.
let xs = xs.t()?;
let residual = &xs;
let mut xs = xs.clone();
for layer in self.layers.iter() {
let states = layer.seq(&xs)?;
xs = layer.states_to_tensor(&states)?;
}
let xs = (xs + residual)?.t()?;
Ok(xs)
}
}
#[derive(Clone, Debug)]
pub struct EncodecConvTranspose1d {
conv: ConvTranspose1d,
}
impl EncodecConvTranspose1d {
fn new(
in_c: usize,
out_c: usize,
k: usize,
stride: usize,
_cfg: &Config,
vb: VarBuilder,
) -> Result<Self> {
let cfg = candle_nn::ConvTranspose1dConfig {
stride,
..Default::default()
};
let conv = conv_transpose1d_weight_norm(in_c, out_c, k, true, cfg, vb.pp("conv"))?;
Ok(Self { conv })
}
}
impl Module for EncodecConvTranspose1d {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
xs.apply(&self.conv)
}
}
#[derive(Clone, Debug)]
pub struct EncodecConv1d {
causal: bool,
conv: Conv1d,
norm: Option<candle_nn::GroupNorm>,
pad_mode: PadMode,
}
impl EncodecConv1d {
pub fn new(
in_c: usize,
out_c: usize,
kernel_size: usize,
stride: usize,
dilation: usize,
cfg: &Config,
vb: VarBuilder,
) -> Result<Self> {
let conv = match cfg.norm_type {
NormType::WeightNorm => conv1d_weight_norm(
in_c,
out_c,
kernel_size,
candle_nn::Conv1dConfig {
stride,
dilation,
..Default::default()
},
vb.pp("conv"),
)?,
NormType::None | NormType::TimeGroupNorm => conv1d(
in_c,
out_c,
kernel_size,
candle_nn::Conv1dConfig {
padding: 0,
stride,
groups: 1,
dilation: 1,
},
vb.pp("conv"),
)?,
};
let norm = match cfg.norm_type {
NormType::None | NormType::WeightNorm => None,
NormType::TimeGroupNorm => {
let gn = candle_nn::group_norm(1, out_c, 1e-5, vb.pp("norm"))?;
Some(gn)
}
};
Ok(Self {
causal: cfg.use_causal_conv,
conv,
norm,
pad_mode: cfg.pad_mode,
})
}
}
impl Module for EncodecConv1d {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let (_b, _t, _c) = xs.dims3()?;
let k_size = self.conv.weight().dim(D::Minus1)?;
let conv_cfg = self.conv.config();
// Effective kernel size with dilations.
let k_size = (k_size - 1) * conv_cfg.dilation + 1;
let padding_total = k_size - conv_cfg.stride;
let extra_padding =
get_extra_padding_for_conv1d(xs, k_size, conv_cfg.stride, padding_total)?;
let xs = if self.causal {
pad1d(xs, padding_total, extra_padding, self.pad_mode)?
} else {
let padding_right = padding_total / 2;
let padding_left = padding_total - padding_right;
pad1d(
xs,
padding_left,
padding_right + extra_padding,
self.pad_mode,
)?
};
let xs = self.conv.forward(&xs)?;
match &self.norm {
None => Ok(xs),
Some(norm) => xs.apply(norm),
}
}
}
#[derive(Clone, Debug)]
pub struct EncodecResnetBlock {
block_conv1: EncodecConv1d,
block_conv2: EncodecConv1d,
shortcut: Option<EncodecConv1d>,
}
impl EncodecResnetBlock {
pub fn new(
dim: usize,
(dilation1, dilation2): (usize, usize),
cfg: &Config,
vb: VarBuilder,
) -> Result<Self> {
let h = dim / cfg.compress;
let mut layer = Layer::new(vb.pp("block"));
// TODO: Apply dilations!
layer.inc();
let block_conv1 = EncodecConv1d::new(
dim,
h,
cfg.residual_kernel_size,
1,
dilation1,
cfg,
layer.next(),
)?;
layer.inc();
let block_conv2 = EncodecConv1d::new(h, dim, 1, 1, dilation2, cfg, layer.next())?;
let shortcut = if cfg.use_conv_shortcut {
let conv = EncodecConv1d::new(dim, dim, 1, 1, 1, cfg, vb.pp("shortcut"))?;
Some(conv)
} else {
None
};
Ok(Self {
block_conv1,
block_conv2,
shortcut,
})
}
}
impl Module for EncodecResnetBlock {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let residual = xs.clone();
let xs = xs.elu(1.)?;
let xs = self.block_conv1.forward(&xs)?;
let xs = xs.elu(1.)?;
let xs = self.block_conv2.forward(&xs)?;
let xs = match &self.shortcut {
None => (xs + residual)?,
Some(shortcut) => xs.add(&shortcut.forward(&residual)?)?,
};
Ok(xs)
}
}
struct Layer<'a> {
vb: VarBuilder<'a>,
cnt: usize,
}
impl<'a> Layer<'a> {
fn new(vb: VarBuilder<'a>) -> Self {
Self { vb, cnt: 0 }
}
fn inc(&mut self) {
self.cnt += 1;
}
fn next(&mut self) -> VarBuilder {
let vb = self.vb.pp(self.cnt.to_string());
self.cnt += 1;
vb
}
}
#[derive(Clone, Debug)]
pub struct Encoder {
init_conv: EncodecConv1d,
sampling_layers: Vec<(Vec<EncodecResnetBlock>, EncodecConv1d)>,
final_lstm: EncodecLSTM,
final_conv: EncodecConv1d,
}
impl Encoder {
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let mut layer = Layer::new(vb.pp("layers"));
let init_conv = EncodecConv1d::new(
cfg.audio_channels,
cfg.num_filters,
cfg.kernel_size,
1,
1,
cfg,
layer.next(),
)?;
let mut sampling_layers = vec![];
let mut scaling = 1;
for &ratio in cfg.upsampling_ratios.iter().rev() {
let current_scale = scaling * cfg.num_filters;
let mut resnets = vec![];
for j in 0..(cfg.num_residual_layers as u32) {
let resnet = EncodecResnetBlock::new(
current_scale,
(cfg.dilation_growth_rate.pow(j), 1),
cfg,
layer.next(),
)?;
resnets.push(resnet)
}
layer.inc(); // ELU
let conv1d = EncodecConv1d::new(
current_scale,
current_scale * 2,
ratio * 2,
ratio,
1,
cfg,
layer.next(),
)?;
sampling_layers.push((resnets, conv1d));
scaling *= 2;
}
let final_lstm = EncodecLSTM::new(cfg.num_filters * scaling, cfg, layer.next())?;
layer.inc(); // ELU
let final_conv = EncodecConv1d::new(
cfg.num_filters * scaling,
cfg.hidden_size,
cfg.last_kernel_size,
1,
1,
cfg,
layer.next(),
)?;
Ok(Self {
init_conv,
sampling_layers,
final_conv,
final_lstm,
})
}
}
impl Module for Encoder {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let mut xs = xs.apply(&self.init_conv)?;
for (resnets, conv) in self.sampling_layers.iter() {
for resnet in resnets.iter() {
xs = xs.apply(resnet)?;
}
xs = xs.elu(1.0)?.apply(conv)?;
}
xs.apply(&self.final_lstm)?
.elu(1.0)?
.apply(&self.final_conv)
}
}
#[derive(Clone, Debug)]
pub struct Decoder {
init_conv: EncodecConv1d,
init_lstm: EncodecLSTM,
sampling_layers: Vec<(EncodecConvTranspose1d, Vec<EncodecResnetBlock>)>,
final_conv: EncodecConv1d,
}
impl Decoder {
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let mut layer = Layer::new(vb.pp("layers"));
let mut scaling = usize::pow(2, cfg.upsampling_ratios.len() as u32);
let init_conv = EncodecConv1d::new(
cfg.hidden_size,
cfg.num_filters * scaling,
cfg.last_kernel_size,
1,
1,
cfg,
layer.next(),
)?;
let init_lstm = EncodecLSTM::new(cfg.num_filters * scaling, cfg, layer.next())?;
let mut sampling_layers = vec![];
for &ratio in cfg.upsampling_ratios.iter() {
let current_scale = scaling * cfg.num_filters;
layer.inc(); // ELU
let conv1d = EncodecConvTranspose1d::new(
current_scale,
current_scale / 2,
ratio * 2,
ratio,
cfg,
layer.next(),
)?;
let mut resnets = vec![];
for j in 0..(cfg.num_residual_layers as u32) {
let resnet = EncodecResnetBlock::new(
current_scale / 2,
(cfg.dilation_growth_rate.pow(j), 1),
cfg,
layer.next(),
)?;
resnets.push(resnet)
}
sampling_layers.push((conv1d, resnets));
scaling /= 2;
}
layer.inc(); // ELU
let final_conv = EncodecConv1d::new(
cfg.num_filters,
cfg.audio_channels,
cfg.last_kernel_size,
1,
1,
cfg,
layer.next(),
)?;
Ok(Self {
init_conv,
init_lstm,
sampling_layers,
final_conv,
})
}
}
impl Module for Decoder {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let mut xs = xs.apply(&self.init_conv)?.apply(&self.init_lstm)?;
for (conv, resnets) in self.sampling_layers.iter() {
xs = xs.elu(1.)?.apply(conv)?;
for resnet in resnets.iter() {
xs = xs.apply(resnet)?
}
}
xs.elu(1.)?.apply(&self.final_conv)
}
}
#[derive(Debug)]
pub struct Model {
encoder: Encoder,
decoder: Decoder,
quantizer: ResidualVectorQuantizer,
}
impl Model {
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let encoder = Encoder::new(cfg, vb.pp("encoder"))?;
let decoder = Decoder::new(cfg, vb.pp("decoder"))?;
let quantizer = ResidualVectorQuantizer::new(cfg, vb.pp("quantizer"))?;
Ok(Self {
encoder,
decoder,
quantizer,
})
}
pub fn encode(&self, xs: &Tensor) -> Result<Tensor> {
let xs = self.encoder.forward(xs)?;
let codes = self.quantizer.encode(&xs)?;
codes.transpose(0, 1)
}
pub fn decode(&self, codes: &Tensor) -> Result<Tensor> {
let (_b_sz, _codebooks, _seqlen) = codes.dims3()?;
let codes = codes.transpose(0, 1)?;
let embeddings = self.quantizer.decode(&codes)?;
let outputs = self.decoder.forward(&embeddings)?;
Ok(outputs)
}
}
| candle/candle-transformers/src/models/encodec.rs/0 | {
"file_path": "candle/candle-transformers/src/models/encodec.rs",
"repo_id": "candle",
"token_count": 12744
} |
//! MixFormer (Microsoft's Phi Architecture)
//!
//! See "Textbooks Are All You Need II: phi-1.5 technical report", Lin et al. 2023
//! - [Arxiv](https://arxiv.org/abs/2309.05463)
//! - [Github](https://huggingface.co/microsoft/phi-1_5)
//!
use crate::models::with_tracing::{linear, Embedding as E, Linear};
/// MixFormer model.
/// https://huggingface.co/microsoft/phi-1_5
/// https://arxiv.org/abs/2309.05463
use candle::{DType, Device, IndexOp, Module, Result, Tensor, D};
use candle_nn::{Activation, VarBuilder};
use serde::Deserialize;
const MAX_SEQ_LEN: usize = 4096;
// https://huggingface.co/microsoft/phi-1_5/blob/d38e6f954ec29b96fe2cf033937dad64e279b5d9/configuration_mixformer_sequential.py
#[derive(Debug, Clone, PartialEq, Deserialize)]
pub struct Config {
pub(crate) vocab_size: usize,
pub(crate) n_positions: usize,
pub(crate) n_embd: usize,
pub(crate) n_layer: usize,
pub(crate) n_inner: Option<usize>,
pub(crate) n_head: usize,
pub(crate) rotary_dim: usize,
pub(crate) activation_function: Activation,
pub(crate) layer_norm_epsilon: f64,
pub(crate) tie_word_embeddings: bool,
pub(crate) pad_vocab_size_multiple: usize,
}
impl Config {
pub fn v1() -> Self {
Self {
vocab_size: 50304,
n_positions: 2048,
n_embd: 1024,
n_layer: 20,
n_inner: None,
n_head: 16,
rotary_dim: usize::min(32, 1024 / 16),
activation_function: Activation::Gelu,
layer_norm_epsilon: 1e-5,
tie_word_embeddings: false,
pad_vocab_size_multiple: 64,
}
}
pub fn v1_5() -> Self {
Self {
vocab_size: 51200,
n_positions: 2048,
n_embd: 2048,
n_layer: 24,
n_inner: None,
n_head: 32,
rotary_dim: usize::min(32, 2048 / 32),
activation_function: Activation::Gelu,
layer_norm_epsilon: 1e-5,
tie_word_embeddings: false,
pad_vocab_size_multiple: 64,
}
}
pub fn v2() -> Self {
Self {
vocab_size: 51200,
n_positions: 2048,
n_embd: 2560,
n_layer: 32,
n_inner: None,
n_head: 32,
rotary_dim: usize::min(32, 2560 / 32),
activation_function: Activation::Gelu,
layer_norm_epsilon: 1e-5,
tie_word_embeddings: false,
pad_vocab_size_multiple: 64,
}
}
// https://huggingface.co/teknium/Puffin-Phi-v2/blob/main/config.json
pub fn puffin_phi_v2() -> Self {
Self {
vocab_size: 50304,
n_positions: 2048,
n_embd: 2048,
n_layer: 24,
n_inner: None,
n_head: 32,
rotary_dim: usize::min(32, 2048 / 32),
activation_function: Activation::Gelu,
layer_norm_epsilon: 1e-5,
tie_word_embeddings: false,
pad_vocab_size_multiple: 64,
}
}
// https://huggingface.co/teknium/Phi-Hermes-1.3B/blob/main/config.json
pub fn phi_hermes_1_3b() -> Self {
Self {
vocab_size: 50304,
n_positions: 2048,
n_embd: 2048,
n_layer: 24,
n_inner: None,
n_head: 32,
rotary_dim: usize::min(32, 2048 / 32),
activation_function: Activation::NewGelu,
layer_norm_epsilon: 1e-5,
tie_word_embeddings: false,
pad_vocab_size_multiple: 64,
}
}
}
#[derive(Debug, Clone)]
struct Embedding {
wte: E,
}
impl Embedding {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let wte = E::new(cfg.vocab_size, cfg.n_embd, vb.pp("wte"))?;
Ok(Self { wte })
}
}
impl Module for Embedding {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
self.wte.forward(xs)
}
}
fn get_mask(size: usize, dtype: DType, device: &Device) -> Result<Tensor> {
let mask: Vec<_> = (0..size)
.flat_map(|i| (0..size).map(move |j| if j > i { f32::NEG_INFINITY } else { 0. }))
.collect();
Tensor::from_slice(&mask, (size, size), device)?.to_dtype(dtype)
}
#[derive(Debug, Clone)]
struct RotaryEmbedding {
sin: Tensor,
cos: Tensor,
}
impl RotaryEmbedding {
fn new(dim: usize, max_seq_len: usize, dtype: DType, dev: &Device) -> Result<Self> {
let inv_freq: Vec<_> = (0..dim)
.step_by(2)
.map(|i| 1f32 / 10000f32.powf(i as f32 / dim as f32))
.collect();
let inv_freq_len = inv_freq.len();
let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?;
let t = Tensor::arange(0u32, max_seq_len as u32, dev)?
.to_dtype(DType::F32)?
.reshape((max_seq_len, 1))?;
let freqs = t.matmul(&inv_freq)?;
Ok(Self {
sin: freqs.sin()?.to_dtype(dtype)?,
cos: freqs.cos()?.to_dtype(dtype)?,
})
}
fn apply_rotary_emb_qkv(
&self,
qkv: &Tensor,
seqlen_offset: usize,
) -> Result<(Tensor, Tensor, Tensor)> {
let (_b_size, seqlen, three, _, _headdim) = qkv.dims5()?;
if three != 3 {
candle::bail!("unexpected shape for qkv {:?}", qkv.shape())
}
let (_rotary_seqlen, rotary_dim) = self.cos.dims2()?;
let rotary_dim = rotary_dim * 2;
let q_rot = qkv.i((.., .., 0, .., ..rotary_dim))?.contiguous()?;
let q_pass = qkv.i((.., .., 0, .., rotary_dim..))?;
let k_rot = qkv.i((.., .., 1, .., ..rotary_dim))?.contiguous()?;
let k_pass = qkv.i((.., .., 1, .., rotary_dim..))?;
let c = self.cos.narrow(0, seqlen_offset, seqlen)?;
let s = self.sin.narrow(0, seqlen_offset, seqlen)?;
let q_rot = candle_nn::rotary_emb::rope_thd(&q_rot, &c, &s)?;
let k_rot = candle_nn::rotary_emb::rope_thd(&k_rot, &c, &s)?;
let q = Tensor::cat(&[&q_rot, &q_pass], D::Minus1)?;
let k = Tensor::cat(&[&k_rot, &k_pass], D::Minus1)?;
let v = qkv.i((.., .., 2))?;
Ok((q, k, v))
}
}
#[derive(Debug, Clone)]
#[allow(clippy::upper_case_acronyms)]
struct MLP {
fc1: Linear,
fc2: Linear,
act: Activation,
span: tracing::Span,
}
impl MLP {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let n_inner = cfg.n_inner.unwrap_or(4 * cfg.n_embd);
let fc1 = linear(cfg.n_embd, n_inner, vb.pp("fc1"))?;
let fc2 = linear(n_inner, cfg.n_embd, vb.pp("fc2"))?;
Ok(Self {
fc1,
fc2,
act: cfg.activation_function,
span: tracing::span!(tracing::Level::TRACE, "mlp"),
})
}
}
impl Module for MLP {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let _enter = self.span.enter();
xs.apply(&self.fc1)?.apply(&self.act)?.apply(&self.fc2)
}
}
#[derive(Debug, Clone)]
struct CausalLMHead {
ln: candle_nn::LayerNorm,
linear: Linear,
}
impl CausalLMHead {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let ln = candle_nn::layer_norm(cfg.n_embd, cfg.layer_norm_epsilon, vb.pp("ln"))?;
let linear = linear(cfg.n_embd, cfg.vocab_size, vb.pp("linear"))?;
Ok(Self { ln, linear })
}
}
impl Module for CausalLMHead {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
xs.apply(&self.ln)?
.apply(&self.linear)?
.to_dtype(DType::F32)
}
}
#[derive(Debug, Clone)]
#[allow(clippy::upper_case_acronyms)]
struct MHA {
wqkv: Linear,
out_proj: Linear,
rotary_emb: RotaryEmbedding,
kv_cache: Option<(Tensor, Tensor)>,
head_dim: usize,
softmax_scale: f64,
span: tracing::Span,
span_rope: tracing::Span,
span_mask: tracing::Span,
span_softmax: tracing::Span,
}
impl MHA {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let head_dim = cfg.n_embd / cfg.n_head;
let op_size = cfg.n_embd;
let wqkv = linear(cfg.n_embd, 3 * op_size, vb.pp("Wqkv"))?;
let out_proj = linear(op_size, cfg.n_embd, vb.pp("out_proj"))?;
let rotary_emb =
RotaryEmbedding::new(cfg.rotary_dim, MAX_SEQ_LEN, vb.dtype(), vb.device())?;
let softmax_scale = 1f64 / (head_dim as f64).sqrt();
Ok(Self {
wqkv,
out_proj,
head_dim,
kv_cache: None,
rotary_emb,
softmax_scale,
span: tracing::span!(tracing::Level::TRACE, "mha"),
span_rope: tracing::span!(tracing::Level::TRACE, "rope"),
span_mask: tracing::span!(tracing::Level::TRACE, "mask"),
span_softmax: tracing::span!(tracing::Level::TRACE, "softmax"),
})
}
fn forward(&mut self, xs: &Tensor, mask: Option<&Tensor>) -> Result<Tensor> {
let _enter = self.span.enter();
let (b_size, seq_len, _n_embd) = xs.dims3()?;
let qkv = self
.wqkv
.forward(xs)?
.reshape((b_size, seq_len, 3, (), self.head_dim))?;
let seqlen_offset = match &self.kv_cache {
None => 0,
Some((prev_k, _)) => prev_k.dim(1)?,
};
// In the python implementation, a single tensor is returned with the third axis of size 3.
let (q, k, v) = {
let _enter = self.span_rope.enter();
self.rotary_emb.apply_rotary_emb_qkv(&qkv, seqlen_offset)?
};
let (k, v) = match &self.kv_cache {
None => (k, v),
Some((prev_k, prev_v)) => {
let k = Tensor::cat(&[prev_k, &k], 1)?;
let v = Tensor::cat(&[prev_v, &v], 1)?;
(k, v)
}
};
self.kv_cache = Some((k.clone(), v.clone()));
// scores = torch.einsum('bthd,bshd->bhts', q, k * softmax_scale)
let q = q.transpose(1, 2)?.flatten_to(1)?; // b*h, t, d
let k = k.transpose(1, 2)?.flatten_to(1)?; // b*h, s, d
let v = v.transpose(1, 2)?.flatten_to(1)?; // b*h, s, d
let attn_weights = (q.matmul(&k.t()?)? * self.softmax_scale)?; // b*h, t, s
// causal_mask = torch.triu(torch.full((seqlen_q, seqlen_k), -10000.0, device=scores.device), 1)
// scores = scores + causal_mask.to(dtype=scores.dtype)
let attn_weights = match mask {
None => attn_weights,
Some(mask) => {
let _enter = self.span_mask.enter();
attn_weights.broadcast_add(mask)?
}
};
let attn_weights = {
let _enter = self.span_softmax.enter();
candle_nn::ops::softmax_last_dim(&attn_weights)?
};
// output = torch.einsum('bhts,bshd->bthd', attention_drop, v)
// attn_weights: b*h,t,s, v: b*h,s,d
let attn_output = attn_weights.matmul(&v)?;
// b*h,t,d
let attn_output = attn_output
.reshape((b_size, (), seq_len, self.head_dim))?
.transpose(1, 2)?
.flatten_from(D::Minus2)?;
attn_output.apply(&self.out_proj)
}
fn clear_kv_cache(&mut self) {
self.kv_cache = None
}
}
#[derive(Debug, Clone)]
struct ParallelBlock {
ln: candle_nn::LayerNorm,
mixer: MHA,
mlp: MLP,
span: tracing::Span,
}
impl ParallelBlock {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let ln = candle_nn::layer_norm(cfg.n_embd, cfg.layer_norm_epsilon, vb.pp("ln"))?;
let mixer = MHA::new(cfg, vb.pp("mixer"))?;
let mlp = MLP::new(cfg, vb.pp("mlp"))?;
Ok(Self {
ln,
mixer,
mlp,
span: tracing::span!(tracing::Level::TRACE, "block"),
})
}
fn forward(&mut self, xs: &Tensor, mask: Option<&Tensor>) -> Result<Tensor> {
let _enter = self.span.enter();
let residual = xs;
let xs = xs.apply(&self.ln)?;
let attn_outputs = self.mixer.forward(&xs, mask)?;
let feed_forward_hidden_states = self.mlp.forward(&xs)?;
attn_outputs + feed_forward_hidden_states + residual
}
fn clear_kv_cache(&mut self) {
self.mixer.clear_kv_cache()
}
}
#[derive(Debug, Clone)]
pub struct MixFormerSequentialForCausalLM {
embedding: Embedding,
blocks: Vec<ParallelBlock>,
head: CausalLMHead,
span: tracing::Span,
}
impl MixFormerSequentialForCausalLM {
pub fn new_v2(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let vb_head = vb.pp("lm_head");
let vb = vb.pp("transformer");
let embedding = Embedding::new(cfg, vb.pp("embd"))?;
let mut blocks = Vec::new();
for i in 0..cfg.n_layer {
let block = ParallelBlock::new(cfg, vb.pp("h").pp(i))?;
blocks.push(block)
}
let head = CausalLMHead::new(cfg, vb_head)?;
Ok(Self {
embedding,
blocks,
head,
span: tracing::span!(tracing::Level::TRACE, "mixformer"),
})
}
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let vb = vb.pp("layers");
let embedding = Embedding::new(cfg, vb.pp(0))?;
let mut blocks = Vec::new();
for i in 0..cfg.n_layer {
let block = ParallelBlock::new(cfg, vb.pp(i + 1))?;
blocks.push(block)
}
let head = CausalLMHead::new(cfg, vb.pp(cfg.n_layer + 1))?;
Ok(Self {
embedding,
blocks,
head,
span: tracing::span!(tracing::Level::TRACE, "mixformer"),
})
}
pub fn forward(&mut self, xs: &Tensor) -> Result<Tensor> {
let _enter = self.span.enter();
let (_b_size, seq_len) = xs.dims2()?;
let mut xs = xs.apply(&self.embedding)?;
let mask = if seq_len <= 1 {
None
} else {
Some(get_mask(seq_len, xs.dtype(), xs.device())?)
};
for block in self.blocks.iter_mut() {
xs = block.forward(&xs, mask.as_ref())?
}
xs.narrow(1, seq_len - 1, 1)?.apply(&self.head)?.squeeze(1)
}
pub fn forward_with_img(
&mut self,
bos_token: &Tensor,
xs: &Tensor,
img_embeds: &Tensor,
) -> Result<Tensor> {
let _enter = self.span.enter();
let xs = xs.apply(&self.embedding)?;
let bos_token = bos_token.apply(&self.embedding)?;
// Python implementation sequence order is <bos token embedding><img embedding><rest of text embedding>
// https://github.com/vikhyat/moondream/blob/a9d788a20d1543fb1479edc54106e88cff7759d3/moondream/moondream.py#L43-L56
let mut xs = Tensor::cat(&[bos_token, img_embeds.clone(), xs], 1)?;
let (_b_size, seq_len, _embds) = xs.dims3()?;
let mask = Some(get_mask(seq_len, xs.dtype(), xs.device())?);
for block in self.blocks.iter_mut() {
xs = block.forward(&xs, mask.as_ref())?
}
let xs = xs
.narrow(1, seq_len - 1, 1)?
.apply(&self.head)?
.squeeze(1)?;
Ok(xs)
}
pub fn clear_kv_cache(&mut self) {
self.blocks.iter_mut().for_each(|b| b.clear_kv_cache())
}
}
| candle/candle-transformers/src/models/mixformer.rs/0 | {
"file_path": "candle/candle-transformers/src/models/mixformer.rs",
"repo_id": "candle",
"token_count": 8060
} |
use super::embedding::Model as EmbeddingModel;
use crate::models::{
mistral::Config,
with_tracing::{layer_norm, linear, linear_no_bias, LayerNorm, Linear},
};
use candle::{DType, Device, Result, Tensor, D};
use candle_nn::{ops::softmax_last_dim, LayerNormConfig, Module, VarBuilder};
// Geglu and feedforward from candle-transformers/src/models/stable_diffusion/attention.rs
#[derive(Debug)]
struct GeGlu {
proj: Linear,
span: tracing::Span,
}
impl GeGlu {
fn new(vs: VarBuilder, dim_in: usize, dim_out: usize) -> Result<Self> {
let proj = linear(dim_in, dim_out * 2, vs)?;
let span = tracing::span!(tracing::Level::TRACE, "geglu");
Ok(Self { proj, span })
}
}
impl Module for GeGlu {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let _enter = self.span.enter();
let hidden_states_and_gate = self.proj.forward(xs)?.chunk(2, D::Minus1)?;
&hidden_states_and_gate[0] * hidden_states_and_gate[1].gelu()?
}
}
#[derive(Debug)]
struct FeedForward {
project_in: GeGlu,
linear: Linear,
span: tracing::Span,
}
impl FeedForward {
fn new(vs: VarBuilder, dim: usize, dim_out: Option<usize>, mult: usize) -> Result<Self> {
let inner_dim = dim * mult;
let dim_out = dim_out.unwrap_or(dim);
let vs = vs.pp("net");
let project_in = GeGlu::new(vs.pp("0"), dim, inner_dim)?;
let linear = linear(inner_dim, dim_out, vs.pp("2"))?;
let span = tracing::span!(tracing::Level::TRACE, "ff");
Ok(Self {
project_in,
linear,
span,
})
}
}
impl Module for FeedForward {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let _enter = self.span.enter();
let xs = self.project_in.forward(xs)?;
self.linear.forward(&xs)
}
}
// CrossAttention from candle-transformers/src/models/stable_diffusion/attention.rs
#[derive(Debug)]
struct CrossAttention {
to_q: Linear,
to_kv: Linear,
to_out: Linear,
heads: usize,
scale: f64,
span: tracing::Span,
span_attn: tracing::Span,
span_softmax: tracing::Span,
}
impl CrossAttention {
fn new(
vs: VarBuilder,
query_dim: usize,
context_dim: Option<usize>,
heads: usize,
dim_head: usize,
) -> Result<Self> {
let inner_dim = dim_head * heads;
let context_dim = context_dim.unwrap_or(query_dim);
let scale = 1.0 / f64::sqrt(dim_head as f64);
let to_q = linear_no_bias(query_dim, inner_dim, vs.pp("to_q"))?;
let to_kv = linear_no_bias(context_dim, inner_dim * 2, vs.pp("to_kv"))?;
let to_out = linear_no_bias(inner_dim, query_dim, vs.pp("to_out"))?;
let span = tracing::span!(tracing::Level::TRACE, "xa");
let span_attn = tracing::span!(tracing::Level::TRACE, "xa-attn");
let span_softmax = tracing::span!(tracing::Level::TRACE, "xa-softmax");
Ok(Self {
to_q,
to_kv,
to_out,
heads,
scale,
span,
span_attn,
span_softmax,
})
}
fn reshape_heads_to_batch_dim(&self, xs: &Tensor) -> Result<Tensor> {
let (batch_size, seq_len, dim) = xs.dims3()?;
xs.reshape((batch_size, seq_len, self.heads, dim / self.heads))?
.transpose(1, 2)?
.reshape((batch_size * self.heads, seq_len, dim / self.heads))
}
fn reshape_batch_dim_to_heads(&self, xs: &Tensor) -> Result<Tensor> {
let (batch_size, seq_len, dim) = xs.dims3()?;
xs.reshape((batch_size / self.heads, self.heads, seq_len, dim))?
.transpose(1, 2)?
.reshape((batch_size / self.heads, seq_len, dim * self.heads))
}
fn attention(&self, query: &Tensor, key: &Tensor, value: &Tensor) -> Result<Tensor> {
let _enter = self.span_attn.enter();
let in_dtype = query.dtype();
let query = query.to_dtype(DType::F32)?;
let key = key.to_dtype(DType::F32)?;
let value = value.to_dtype(DType::F32)?;
let xs = query.matmul(&(key.t()? * self.scale)?)?;
let xs = {
let _enter = self.span_softmax.enter();
softmax_last_dim(&xs)?
};
let xs = xs.matmul(&value)?.to_dtype(in_dtype)?;
self.reshape_batch_dim_to_heads(&xs)
}
fn forward(&self, xs: &Tensor, context: Option<&Tensor>) -> Result<Tensor> {
let _enter = self.span.enter();
let query = self.to_q.forward(xs)?;
let context = context.unwrap_or(xs).contiguous()?;
let kv_chunks = self
.to_kv
.forward(&context)?
.chunk(2, context.shape().dims().len() - 1)?;
let (key, value) = (kv_chunks[0].clone(), kv_chunks[1].clone());
let query = self.reshape_heads_to_batch_dim(&query)?;
let key = self.reshape_heads_to_batch_dim(&key)?;
let value = self.reshape_heads_to_batch_dim(&value)?;
let xs = self.attention(&query, &key, &value)?;
self.to_out.forward(&xs)
}
}
#[derive(Debug)]
pub struct Model {
embedding_model: EmbeddingModel,
cross_attn: CrossAttention,
cross_attn_norm: LayerNorm,
cross_attn_context_norm: LayerNorm,
ff: FeedForward,
ff_norm: LayerNorm,
latents: Tensor,
pub device: Device,
pub dtype: DType,
}
impl Model {
pub fn new(vb: VarBuilder) -> Result<Self> {
// Embedding model
let cfg = Config::config_7b_v0_1(false);
let embedding_model = EmbeddingModel::new(&cfg, vb.pp("embedding_model"))?;
// Latent attention
let dim = 4096;
let vb = vb.pp("latent_attention_model");
let latents = vb.get((512, dim), "latents")?;
// Cross attend blocks
let vb = vb.pp("cross_attend_blocks");
let cross_attn_norm = layer_norm(dim, LayerNormConfig::default(), vb.pp("0.norm"))?;
let cross_attn_context_norm = layer_norm(
dim,
candle_nn::LayerNormConfig::default(),
vb.pp("0.norm_context"),
)?;
let cross_attn = CrossAttention::new(vb.pp("0.fn"), dim, None, 8, 4096)?;
let ff_norm = layer_norm(dim, LayerNormConfig::default(), vb.pp("1.norm"))?;
let ff = FeedForward::new(vb.pp("1.fn"), dim, None, 4)?;
Ok(Self {
embedding_model,
cross_attn,
cross_attn_norm,
cross_attn_context_norm,
ff,
ff_norm,
latents,
device: vb.device().clone(),
dtype: vb.dtype(),
})
}
pub fn forward(
&mut self,
input_ids: &Tensor,
attn_mask: &Tensor,
pool_mask: &Tensor,
) -> Result<Tensor> {
// Embedding model
let hiddens = self
.embedding_model
.forward(attn_mask, input_ids, self.dtype)?;
// Latent attention
let b = hiddens.dims()[0];
let x = self.latents.unsqueeze(0)?.repeat((b, 1, 1))?;
let original_hiddens = &hiddens;
let hiddens = self.cross_attn_norm.forward(original_hiddens)?;
let x = self.cross_attn_context_norm.forward(&x)?;
let cross_hiddens = (self.cross_attn.forward(&hiddens, Some(&x))? + original_hiddens)?;
let hiddens = self.ff_norm.forward(&cross_hiddens)?;
let hiddens = (self.ff.forward(&hiddens)? + cross_hiddens)?;
// Mean pooling
let hiddens_masked = hiddens.broadcast_mul(&pool_mask.unsqueeze(D::Minus1)?)?;
let s = hiddens_masked.sum(1)?;
let d = pool_mask.sum_keepdim(1)?;
s.broadcast_div(&d)
}
}
| candle/candle-transformers/src/models/nvembed_v2/model.rs/0 | {
"file_path": "candle/candle-transformers/src/models/nvembed_v2/model.rs",
"repo_id": "candle",
"token_count": 3730
} |
//! Quantized MetaVoice model implementation.
//!
//! MetaVoice is a conditional text-to-speech model based on a transformer architecture.
//! This implementation provides quantization for reduced memory and compute.
//!
//! Key characteristics:
//! - Transformer-based autoregressive decoder
//! - Speaker conditioning
//! - Support for 8-bit quantization
//! - Key-value caching for efficient inference
//! - RMS normalization layers
//!
//! References:
//! - [MetaVoice Code](https://github.com/metavoiceio/metavoice)
//!
use crate::quantized_nn::{linear_b, Embedding, Linear, RmsNorm};
pub use crate::quantized_var_builder::VarBuilder;
use crate::models::metavoice::repeat_interleave;
use candle::{Module, Result, Tensor, D};
pub mod transformer {
use super::*;
type Config = crate::models::metavoice::transformer::Config;
#[derive(Debug, Clone)]
struct FeedForward {
w1: Linear,
w2: Linear,
w3: Linear,
span: tracing::Span,
}
impl FeedForward {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let i_size = cfg.intermediate_size();
let w1 = linear_b(cfg.dim, i_size, false, vb.pp("swiglu.w1"))?;
let w2 = linear_b(i_size, cfg.dim, false, vb.pp("w2"))?;
let w3 = linear_b(cfg.dim, i_size, false, vb.pp("swiglu.w3"))?;
Ok(Self {
w1,
w2,
w3,
span: tracing::span!(tracing::Level::TRACE, "feed-forward"),
})
}
}
impl Module for FeedForward {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let _enter = self.span.enter();
let swiglu = (candle_nn::ops::silu(&xs.apply(&self.w1)?)? * xs.apply(&self.w3))?;
swiglu.apply(&self.w2)
}
}
#[derive(Debug, Clone)]
struct Attention {
wqkv: Linear,
wo: Linear,
dim: usize,
kv_size: usize,
n_local_heads: usize,
head_dim: usize,
n_head: usize,
kv_cache: Option<(Tensor, Tensor)>,
span: tracing::Span,
}
impl Attention {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let n_local_heads = cfg.n_local_heads();
let head_dim = cfg.head_dim();
let total_head_dim = (cfg.n_head + 2 * n_local_heads) * head_dim;
let wqkv = linear_b(cfg.dim, total_head_dim, false, vb.pp("wqkv"))?;
let wo = linear_b(cfg.dim, cfg.dim, false, vb.pp("wo"))?;
Ok(Self {
wqkv,
wo,
dim: cfg.dim,
kv_size: n_local_heads * head_dim,
n_local_heads,
head_dim,
n_head: cfg.n_head,
kv_cache: None,
span: tracing::span!(tracing::Level::TRACE, "attention"),
})
}
fn forward(&mut self, xs: &Tensor, _pos: usize, mask: &Tensor) -> Result<Tensor> {
let _enter = self.span.enter();
let (b_sz, seqlen, _) = xs.dims3()?;
let qkv = xs.apply(&self.wqkv)?;
let q = qkv.narrow(D::Minus1, 0, self.dim)?;
let k = qkv.narrow(D::Minus1, self.dim, self.kv_size)?;
let v = qkv.narrow(D::Minus1, self.dim + self.kv_size, self.kv_size)?;
let q = q
.reshape((b_sz, seqlen, self.n_head, self.head_dim))?
.transpose(1, 2)?
.contiguous()?;
let k = k
.reshape((b_sz, seqlen, self.n_local_heads, self.head_dim))?
.transpose(1, 2)?;
let v = v
.reshape((b_sz, seqlen, self.n_local_heads, self.head_dim))?
.transpose(1, 2)?;
let (k, v) = match &self.kv_cache {
None => (k, v),
Some((prev_k, prev_v)) => {
let k = Tensor::cat(&[prev_k, &k], 2)?;
let v = Tensor::cat(&[prev_v, &v], 2)?;
(k, v)
}
};
self.kv_cache = Some((k.clone(), v.clone()));
let k = repeat_interleave(&k, self.n_head / self.n_local_heads, 1)?;
let v = repeat_interleave(&v, self.n_head / self.n_local_heads, 1)?;
let scale = 1f64 / f64::sqrt(self.head_dim as f64);
let attn_weights = (q.matmul(&k.transpose(2, 3)?)? * scale)?;
let attn_weights = attn_weights.broadcast_add(mask)?;
let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?;
let attn_output = attn_weights.matmul(&v)?;
attn_output
.transpose(1, 2)?
.reshape((b_sz, seqlen, self.dim))?
.apply(&self.wo)
}
fn clear_kv_cache(&mut self) {
self.kv_cache = None
}
}
#[derive(Debug, Clone)]
struct Block {
attention: Attention,
feed_forward: FeedForward,
ffn_norm: RmsNorm,
attention_norm: RmsNorm,
span: tracing::Span,
}
impl Block {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let attention = Attention::new(cfg, vb.pp("attention"))?;
let feed_forward = FeedForward::new(cfg, vb.pp("feed_forward"))?;
let ffn_norm = RmsNorm::new(cfg.dim, cfg.norm_eps, vb.pp("ffn_norm"))?;
let attention_norm = RmsNorm::new(cfg.dim, cfg.norm_eps, vb.pp("attention_norm"))?;
Ok(Self {
attention,
feed_forward,
ffn_norm,
attention_norm,
span: tracing::span!(tracing::Level::TRACE, "block"),
})
}
fn forward(&mut self, xs: &Tensor, pos: usize, mask: &Tensor) -> Result<Tensor> {
let _enter = self.span.enter();
let hs = xs.apply(&self.attention_norm)?;
let hs = (xs + self.attention.forward(&hs, pos, mask))?;
&hs + hs.apply(&self.ffn_norm)?.apply(&self.feed_forward)
}
fn clear_kv_cache(&mut self) {
self.attention.clear_kv_cache()
}
}
#[derive(Debug, Clone)]
pub struct Model {
tok_embeddings: Embedding,
pos_embeddings: Embedding,
speaker_cond_pos: Linear,
layers: Vec<Block>,
norm: RmsNorm,
output: Linear,
spk_cond_mask: Tensor,
span: tracing::Span,
}
impl Model {
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let tok_embeddings = Embedding::new(cfg.vocab_size, cfg.dim, vb.pp("tok_embeddings"))?;
let pos_embeddings = Embedding::new(cfg.block_size, cfg.dim, vb.pp("pos_embeddings"))?;
let speaker_cond_pos = linear_b(
cfg.speaker_emb_dim,
cfg.dim,
false,
vb.pp("speaker_cond_pos"),
)?;
let mut layers = Vec::with_capacity(cfg.n_layer);
let vb_l = vb.pp("layers");
for layer_idx in 0..cfg.n_layer {
let layer = Block::new(cfg, vb_l.pp(layer_idx))?;
layers.push(layer)
}
let norm = RmsNorm::new(cfg.dim, cfg.norm_eps, vb.pp("norm"))?;
let output = linear_b(cfg.dim, cfg.vocab_size, false, vb.pp("output"))?;
let spk_cond_mask = Tensor::cat(
&[
Tensor::ones((1, 1, cfg.dim), candle::DType::F32, vb.device())?,
Tensor::zeros((1, 1, cfg.dim), candle::DType::F32, vb.device())?,
],
0,
)?;
Ok(Self {
tok_embeddings,
pos_embeddings,
speaker_cond_pos,
layers,
norm,
output,
spk_cond_mask,
span: tracing::span!(tracing::Level::TRACE, "qtransformer"),
})
}
pub fn clear_kv_cache(&mut self) {
for layer in self.layers.iter_mut() {
layer.clear_kv_cache()
}
}
pub fn forward(&mut self, xs: &Tensor, spk_emb: &Tensor, pos: usize) -> Result<Tensor> {
let _enter = self.span.enter();
let (_b_sz, seqlen) = xs.dims2()?;
let mask: Vec<_> = (0..seqlen)
.flat_map(|i| (0..seqlen).map(move |j| if i < j { f32::NEG_INFINITY } else { 0. }))
.collect();
let mask = Tensor::from_slice(&mask, (1, 1, seqlen, seqlen), xs.device())?;
let input_pos = Tensor::arange(pos as u32, (pos + seqlen) as u32, xs.device())?;
let tok_embeddings = xs.apply(&self.tok_embeddings)?;
let pos_embeddings = input_pos.apply(&self.pos_embeddings)?;
let mut xs = tok_embeddings
.broadcast_add(&pos_embeddings)?
.broadcast_add(
&spk_emb
.apply(&self.speaker_cond_pos)?
.broadcast_mul(&self.spk_cond_mask)?,
)?;
let mask = mask.to_dtype(xs.dtype())?;
for layer in self.layers.iter_mut() {
xs = layer.forward(&xs, pos, &mask)?
}
xs.narrow(1, seqlen - 1, 1)?
.contiguous()?
.apply(&self.norm)?
.apply(&self.output)
}
}
}
| candle/candle-transformers/src/models/quantized_metavoice.rs/0 | {
"file_path": "candle/candle-transformers/src/models/quantized_metavoice.rs",
"repo_id": "candle",
"token_count": 5192
} |
//! RepVGG inference implementation
//!
//! Key characteristics:
//! - Efficient inference architecture through structural reparameterization
//! - Single 3x3 conv layer after fusing 3x3 branch, 1x1 branch and identity branch
//! - Different configurations including a0-a2, b0-b3 and variants with group convolutions
//! - High accuracy with VGG-like plain architecture and training
//!
//! References:
//! - [RepVGG Paper](https://arxiv.org/abs/2101.03697). RepVGG: Making VGG-style ConvNets Great Again
//! - [Official Implementation](https://github.com/DingXiaoH/RepVGG)
//!
use candle::{Result, Tensor, D};
use candle_nn::{
batch_norm, conv2d_no_bias, linear, BatchNorm, Conv2d, Conv2dConfig, Func, VarBuilder,
};
const CHANNELS_PER_STAGE: [usize; 5] = [64, 64, 128, 256, 512];
#[derive(Clone)]
pub struct Config {
a: f32,
b: f32,
groups: usize,
stages: [usize; 4],
}
impl Config {
pub fn a0() -> Self {
Self {
a: 0.75,
b: 2.5,
groups: 1,
stages: [2, 4, 14, 1],
}
}
pub fn a1() -> Self {
Self {
a: 1.0,
b: 2.5,
groups: 1,
stages: [2, 4, 14, 1],
}
}
pub fn a2() -> Self {
Self {
a: 1.5,
b: 2.75,
groups: 1,
stages: [2, 4, 14, 1],
}
}
pub fn b0() -> Self {
Self {
a: 1.0,
b: 2.5,
groups: 1,
stages: [4, 6, 16, 1],
}
}
pub fn b1() -> Self {
Self {
a: 2.0,
b: 4.0,
groups: 1,
stages: [4, 6, 16, 1],
}
}
pub fn b2() -> Self {
Self {
a: 2.5,
b: 5.0,
groups: 1,
stages: [4, 6, 16, 1],
}
}
pub fn b3() -> Self {
Self {
a: 3.0,
b: 5.0,
groups: 1,
stages: [4, 6, 16, 1],
}
}
pub fn b1g4() -> Self {
Self {
a: 2.0,
b: 4.0,
groups: 4,
stages: [4, 6, 16, 1],
}
}
pub fn b2g4() -> Self {
Self {
a: 2.5,
b: 5.0,
groups: 4,
stages: [4, 6, 16, 1],
}
}
pub fn b3g4() -> Self {
Self {
a: 3.0,
b: 5.0,
groups: 4,
stages: [4, 6, 16, 1],
}
}
}
// fuses a convolutional kernel and a batchnorm layer into a convolutional layer
// based on the _fuse_bn_tensor method in timm
// see https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/byobnet.py#L602
fn fuse_conv_bn(weights: &Tensor, bn: BatchNorm) -> Result<(Tensor, Tensor)> {
let (gamma, beta) = bn.weight_and_bias().unwrap();
let mu = bn.running_mean();
let sigma = (bn.running_var() + bn.eps())?.sqrt();
let gps = (gamma / sigma)?;
let bias = (beta - mu * &gps)?;
let weights = weights.broadcast_mul(&gps.reshape(((), 1, 1, 1))?)?;
Ok((weights, bias))
}
// A RepVGG layer has a different training time and inference time architecture.
// The latter is a simple and efficient equivalent transformation of the former
// realized by a structural reparameterization technique, where 3x3 and 1x1 convolutions
// along with identity branches and batchnorm layers are fused into a single 3x3 convolution.
fn repvgg_layer(
has_identity: bool,
dim: usize,
stride: usize,
in_channels: usize,
out_channels: usize,
groups: usize,
vb: VarBuilder,
) -> Result<Func<'static>> {
let conv2d_cfg = Conv2dConfig {
stride,
groups,
padding: 1,
..Default::default()
};
// read and reparameterize the 1x1 conv and bn into w1 and b1
// based on https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/byobnet.py#L543
let conv1x1_bn = batch_norm(dim, 1e-5, vb.pp("conv_1x1.bn"))?;
let conv1x1 = conv2d_no_bias(
in_channels,
out_channels,
1,
conv2d_cfg,
vb.pp("conv_1x1.conv"),
)?;
let (mut w1, b1) = fuse_conv_bn(conv1x1.weight(), conv1x1_bn)?;
// resize to 3x3
w1 = w1.pad_with_zeros(D::Minus1, 1, 1)?;
w1 = w1.pad_with_zeros(D::Minus2, 1, 1)?;
// read and reparameterize the 3x3 conv and bn into w3 and b3
let convkxk_bn = batch_norm(dim, 1e-5, vb.pp("conv_kxk.bn"))?;
let conv3x3 = conv2d_no_bias(
in_channels,
out_channels,
3,
conv2d_cfg,
vb.pp("conv_kxk.conv"),
)?;
let (w3, b3) = fuse_conv_bn(conv3x3.weight(), convkxk_bn)?;
let mut w = (w1 + w3)?;
let mut b = (b1 + b3)?;
// read and reparameterize the identity bn into wi and bi
if has_identity {
let identity_bn = batch_norm(dim, 1e-5, vb.pp("identity"))?;
// create a 3x3 convolution equivalent to the identity branch
let mut weights: Vec<f32> = vec![0.0; conv3x3.weight().elem_count()];
// https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/byobnet.py#L620
let in_dim = in_channels / groups;
for i in 0..in_channels {
weights[i * in_dim * 3 * 3 + (i % in_dim) * 3 * 3 + 4] = 1.0;
}
let weights = &Tensor::from_vec(weights, w.shape(), w.device())?;
let (wi, bi) = fuse_conv_bn(weights, identity_bn)?;
w = (w + wi)?;
b = (b + bi)?;
}
// create the 3x3 conv equivalent to the sum of 3x3, 1x1 and identity branches
let reparam_conv = Conv2d::new(w, Some(b), conv2d_cfg);
Ok(Func::new(move |xs| {
let xs = xs.apply(&reparam_conv)?.relu()?;
Ok(xs)
}))
}
// Get the number of output channels per stage taking into account the multipliers
fn output_channels_per_stage(a: f32, b: f32, stage: usize) -> usize {
let channels = CHANNELS_PER_STAGE[stage] as f32;
match stage {
0 => std::cmp::min(64, (channels * a) as usize),
4 => (channels * b) as usize,
_ => (channels * a) as usize,
}
}
// Each stage is made of layers. The first layer always downsamples with stride 2.
// All but the first layer have a residual connection.
// The G4 variants have a groupwise convolution instead of a dense one on odd layers
// counted across stage boundaries, so we keep track of which layer we are in the
// full model.
fn repvgg_stage(cfg: &Config, idx: usize, vb: VarBuilder) -> Result<Func<'static>> {
let nlayers = cfg.stages[idx - 1];
let mut layers = Vec::with_capacity(nlayers);
let prev_layers: usize = cfg.stages[..idx - 1].iter().sum();
let out_channels_prev = output_channels_per_stage(cfg.a, cfg.b, idx - 1);
let out_channels = output_channels_per_stage(cfg.a, cfg.b, idx);
for layer_idx in 0..nlayers {
let (has_identity, stride, in_channels) = if layer_idx == 0 {
(false, 2, out_channels_prev)
} else {
(true, 1, out_channels)
};
let groups = if (prev_layers + layer_idx) % 2 == 1 {
cfg.groups
} else {
1
};
layers.push(repvgg_layer(
has_identity,
out_channels,
stride,
in_channels,
out_channels,
groups,
vb.pp(layer_idx),
)?)
}
Ok(Func::new(move |xs| {
let mut xs = xs.clone();
for layer in layers.iter() {
xs = xs.apply(layer)?
}
Ok(xs)
}))
}
// Build a RepVGG model for a given configuration.
fn repvgg_model(config: &Config, nclasses: Option<usize>, vb: VarBuilder) -> Result<Func<'static>> {
let cls = match nclasses {
None => None,
Some(nclasses) => {
let outputs = output_channels_per_stage(config.a, config.b, 4);
let linear = linear(outputs, nclasses, vb.pp("head.fc"))?;
Some(linear)
}
};
let stem_dim = output_channels_per_stage(config.a, config.b, 0);
let stem = repvgg_layer(false, stem_dim, 2, 3, stem_dim, 1, vb.pp("stem"))?;
let vb = vb.pp("stages");
let stage1 = repvgg_stage(config, 1, vb.pp(0))?;
let stage2 = repvgg_stage(config, 2, vb.pp(1))?;
let stage3 = repvgg_stage(config, 3, vb.pp(2))?;
let stage4 = repvgg_stage(config, 4, vb.pp(3))?;
Ok(Func::new(move |xs| {
let xs = xs
.apply(&stem)?
.apply(&stage1)?
.apply(&stage2)?
.apply(&stage3)?
.apply(&stage4)?
.mean(D::Minus1)?
.mean(D::Minus1)?;
match &cls {
None => Ok(xs),
Some(cls) => xs.apply(cls),
}
}))
}
pub fn repvgg(cfg: &Config, nclasses: usize, vb: VarBuilder) -> Result<Func<'static>> {
repvgg_model(cfg, Some(nclasses), vb)
}
pub fn repvgg_no_final_layer(cfg: &Config, vb: VarBuilder) -> Result<Func<'static>> {
repvgg_model(cfg, None, vb)
}
| candle/candle-transformers/src/models/repvgg.rs/0 | {
"file_path": "candle/candle-transformers/src/models/repvgg.rs",
"repo_id": "candle",
"token_count": 4487
} |
use super::schedulers::{betas_for_alpha_bar, BetaSchedule, PredictionType};
use candle::{Result, Tensor};
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum DDPMVarianceType {
FixedSmall,
FixedSmallLog,
FixedLarge,
FixedLargeLog,
Learned,
}
impl Default for DDPMVarianceType {
fn default() -> Self {
Self::FixedSmall
}
}
#[derive(Debug, Clone)]
pub struct DDPMSchedulerConfig {
/// The value of beta at the beginning of training.
pub beta_start: f64,
/// The value of beta at the end of training.
pub beta_end: f64,
/// How beta evolved during training.
pub beta_schedule: BetaSchedule,
/// Option to predicted sample between -1 and 1 for numerical stability.
pub clip_sample: bool,
/// Option to clip the variance used when adding noise to the denoised sample.
pub variance_type: DDPMVarianceType,
/// prediction type of the scheduler function
pub prediction_type: PredictionType,
/// number of diffusion steps used to train the model.
pub train_timesteps: usize,
}
impl Default for DDPMSchedulerConfig {
fn default() -> Self {
Self {
beta_start: 0.00085,
beta_end: 0.012,
beta_schedule: BetaSchedule::ScaledLinear,
clip_sample: false,
variance_type: DDPMVarianceType::FixedSmall,
prediction_type: PredictionType::Epsilon,
train_timesteps: 1000,
}
}
}
pub struct DDPMScheduler {
alphas_cumprod: Vec<f64>,
init_noise_sigma: f64,
timesteps: Vec<usize>,
step_ratio: usize,
pub config: DDPMSchedulerConfig,
}
impl DDPMScheduler {
pub fn new(inference_steps: usize, config: DDPMSchedulerConfig) -> Result<Self> {
let betas = match config.beta_schedule {
BetaSchedule::ScaledLinear => super::utils::linspace(
config.beta_start.sqrt(),
config.beta_end.sqrt(),
config.train_timesteps,
)?
.sqr()?,
BetaSchedule::Linear => {
super::utils::linspace(config.beta_start, config.beta_end, config.train_timesteps)?
}
BetaSchedule::SquaredcosCapV2 => betas_for_alpha_bar(config.train_timesteps, 0.999)?,
};
let betas = betas.to_vec1::<f64>()?;
let mut alphas_cumprod = Vec::with_capacity(betas.len());
for &beta in betas.iter() {
let alpha = 1.0 - beta;
alphas_cumprod.push(alpha * *alphas_cumprod.last().unwrap_or(&1f64))
}
// min(train_timesteps, inference_steps)
// https://github.com/huggingface/diffusers/blob/8331da46837be40f96fbd24de6a6fb2da28acd11/src/diffusers/schedulers/scheduling_ddpm.py#L187
let inference_steps = inference_steps.min(config.train_timesteps);
// arange the number of the scheduler's timesteps
let step_ratio = config.train_timesteps / inference_steps;
let timesteps: Vec<usize> = (0..inference_steps).map(|s| s * step_ratio).rev().collect();
Ok(Self {
alphas_cumprod,
init_noise_sigma: 1.0,
timesteps,
step_ratio,
config,
})
}
fn get_variance(&self, timestep: usize) -> f64 {
let prev_t = timestep as isize - self.step_ratio as isize;
let alpha_prod_t = self.alphas_cumprod[timestep];
let alpha_prod_t_prev = if prev_t >= 0 {
self.alphas_cumprod[prev_t as usize]
} else {
1.0
};
let current_beta_t = 1. - alpha_prod_t / alpha_prod_t_prev;
// For t > 0, compute predicted variance βt (see formula (6) and (7) from [the pdf](https://arxiv.org/pdf/2006.11239.pdf))
// and sample from it to get previous sample
// x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
let variance = (1. - alpha_prod_t_prev) / (1. - alpha_prod_t) * current_beta_t;
// retrieve variance
match self.config.variance_type {
DDPMVarianceType::FixedSmall => variance.max(1e-20),
// for rl-diffuser https://arxiv.org/abs/2205.09991
DDPMVarianceType::FixedSmallLog => {
let variance = variance.max(1e-20).ln();
(variance * 0.5).exp()
}
DDPMVarianceType::FixedLarge => current_beta_t,
DDPMVarianceType::FixedLargeLog => current_beta_t.ln(),
DDPMVarianceType::Learned => variance,
}
}
pub fn timesteps(&self) -> &[usize] {
self.timesteps.as_slice()
}
/// Ensures interchangeability with schedulers that need to scale the denoising model input
/// depending on the current timestep.
pub fn scale_model_input(&self, sample: Tensor, _timestep: usize) -> Tensor {
sample
}
pub fn step(&self, model_output: &Tensor, timestep: usize, sample: &Tensor) -> Result<Tensor> {
let prev_t = timestep as isize - self.step_ratio as isize;
// https://github.com/huggingface/diffusers/blob/df2b548e893ccb8a888467c2508756680df22821/src/diffusers/schedulers/scheduling_ddpm.py#L272
// 1. compute alphas, betas
let alpha_prod_t = self.alphas_cumprod[timestep];
let alpha_prod_t_prev = if prev_t >= 0 {
self.alphas_cumprod[prev_t as usize]
} else {
1.0
};
let beta_prod_t = 1. - alpha_prod_t;
let beta_prod_t_prev = 1. - alpha_prod_t_prev;
let current_alpha_t = alpha_prod_t / alpha_prod_t_prev;
let current_beta_t = 1. - current_alpha_t;
// 2. compute predicted original sample from predicted noise also called "predicted x_0" of formula (15)
let mut pred_original_sample = match self.config.prediction_type {
PredictionType::Epsilon => {
((sample - model_output * beta_prod_t.sqrt())? / alpha_prod_t.sqrt())?
}
PredictionType::Sample => model_output.clone(),
PredictionType::VPrediction => {
((sample * alpha_prod_t.sqrt())? - model_output * beta_prod_t.sqrt())?
}
};
// 3. clip predicted x_0
if self.config.clip_sample {
pred_original_sample = pred_original_sample.clamp(-1f32, 1f32)?;
}
// 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
// See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
let pred_original_sample_coeff = (alpha_prod_t_prev.sqrt() * current_beta_t) / beta_prod_t;
let current_sample_coeff = current_alpha_t.sqrt() * beta_prod_t_prev / beta_prod_t;
// 5. Compute predicted previous sample µ_t
// See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
let pred_prev_sample = ((&pred_original_sample * pred_original_sample_coeff)?
+ sample * current_sample_coeff)?;
// https://github.com/huggingface/diffusers/blob/df2b548e893ccb8a888467c2508756680df22821/src/diffusers/schedulers/scheduling_ddpm.py#L305
// 6. Add noise
let mut variance = model_output.zeros_like()?;
if timestep > 0 {
let variance_noise = model_output.randn_like(0., 1.)?;
if self.config.variance_type == DDPMVarianceType::FixedSmallLog {
variance = (variance_noise * self.get_variance(timestep))?;
} else {
variance = (variance_noise * self.get_variance(timestep).sqrt())?;
}
}
&pred_prev_sample + variance
}
pub fn add_noise(
&self,
original_samples: &Tensor,
noise: Tensor,
timestep: usize,
) -> Result<Tensor> {
(original_samples * self.alphas_cumprod[timestep].sqrt())?
+ noise * (1. - self.alphas_cumprod[timestep]).sqrt()
}
pub fn init_noise_sigma(&self) -> f64 {
self.init_noise_sigma
}
}
| candle/candle-transformers/src/models/stable_diffusion/ddpm.rs/0 | {
"file_path": "candle/candle-transformers/src/models/stable_diffusion/ddpm.rs",
"repo_id": "candle",
"token_count": 3666
} |
//! VGG-16 model implementation.
//!
//! VGG-16 is a convolutional neural network architecture. It consists of 13
//! convolutional layers followed by 3 fully connected layers.
//!
//! Key characteristics:
//! - Conv layers with 3x3 filters
//! - Max pooling after every 2-3 conv layers
//! - Three fully connected layers of 4096, 4096, 1000 units
//! - ReLU activation and dropout
//!
//! References:
//! - [Very Deep Convolutional Networks for Large-Scale Image Recognition](https://arxiv.org/abs/1409.1556)
//!
use candle::{ModuleT, Result, Tensor};
use candle_nn::{FuncT, VarBuilder};
// Enum representing the different VGG models
pub enum Models {
Vgg13,
Vgg16,
Vgg19,
}
// Struct representing a VGG model
#[derive(Debug)]
pub struct Vgg<'a> {
blocks: Vec<FuncT<'a>>,
}
// Struct representing the configuration for the pre-logit layer
struct PreLogitConfig {
in_dim: (usize, usize, usize, usize),
target_in: usize,
target_out: usize,
}
// Implementation of the VGG model
impl<'a> Vgg<'a> {
// Function to create a new VGG model
pub fn new(vb: VarBuilder<'a>, model: Models) -> Result<Self> {
let blocks = match model {
Models::Vgg13 => vgg13_blocks(vb)?,
Models::Vgg16 => vgg16_blocks(vb)?,
Models::Vgg19 => vgg19_blocks(vb)?,
};
Ok(Self { blocks })
}
}
// Implementation of the forward pass for the VGG model
impl ModuleT for Vgg<'_> {
fn forward_t(&self, xs: &Tensor, train: bool) -> Result<Tensor> {
let mut xs = xs.unsqueeze(0)?;
for block in self.blocks.iter() {
xs = xs.apply_t(block, train)?;
}
Ok(xs)
}
}
// Function to create a conv2d block
// The block is composed of two conv2d layers followed by a max pool layer
fn conv2d_block(convs: &[(usize, usize, &str)], vb: &VarBuilder) -> Result<FuncT<'static>> {
let layers = convs
.iter()
.map(|&(in_c, out_c, name)| {
candle_nn::conv2d(
in_c,
out_c,
3,
candle_nn::Conv2dConfig {
stride: 1,
padding: 1,
..Default::default()
},
vb.pp(name),
)
})
.collect::<Result<Vec<_>>>()?;
Ok(FuncT::new(move |xs, _train| {
let mut xs = xs.clone();
for layer in layers.iter() {
xs = xs.apply(layer)?.relu()?
}
xs = xs.max_pool2d_with_stride(2, 2)?;
Ok(xs)
}))
}
// Function to create a fully connected layer
// The layer is composed of two linear layers followed by a dropout layer
fn fully_connected(
num_classes: usize,
pre_logit_1: PreLogitConfig,
pre_logit_2: PreLogitConfig,
vb: VarBuilder,
) -> Result<FuncT> {
let lin = get_weights_and_biases(
&vb.pp("pre_logits.fc1"),
pre_logit_1.in_dim,
pre_logit_1.target_in,
pre_logit_1.target_out,
)?;
let lin2 = get_weights_and_biases(
&vb.pp("pre_logits.fc2"),
pre_logit_2.in_dim,
pre_logit_2.target_in,
pre_logit_2.target_out,
)?;
let dropout1 = candle_nn::Dropout::new(0.5);
let dropout2 = candle_nn::Dropout::new(0.5);
let dropout3 = candle_nn::Dropout::new(0.5);
Ok(FuncT::new(move |xs, train| {
let xs = xs.reshape((1, pre_logit_1.target_out))?;
let xs = xs.apply_t(&dropout1, train)?.apply(&lin)?.relu()?;
let xs = xs.apply_t(&dropout2, train)?.apply(&lin2)?.relu()?;
let lin3 = candle_nn::linear(4096, num_classes, vb.pp("head.fc"))?;
let xs = xs.apply_t(&dropout3, train)?.apply(&lin3)?.relu()?;
Ok(xs)
}))
}
// Function to get the weights and biases for a layer
// This is required because the weights and biases are stored in different format than our linear layer expects
fn get_weights_and_biases(
vs: &VarBuilder,
in_dim: (usize, usize, usize, usize),
target_in: usize,
target_out: usize,
) -> Result<candle_nn::Linear> {
let init_ws = candle_nn::init::DEFAULT_KAIMING_NORMAL;
let ws = vs.get_with_hints(in_dim, "weight", init_ws)?;
let ws = ws.reshape((target_in, target_out))?;
let bound = 1. / (target_out as f64).sqrt();
let init_bs = candle_nn::Init::Uniform {
lo: -bound,
up: bound,
};
let bs = vs.get_with_hints(target_in, "bias", init_bs)?;
Ok(candle_nn::Linear::new(ws, Some(bs)))
}
fn vgg13_blocks(vb: VarBuilder) -> Result<Vec<FuncT>> {
let num_classes = 1000;
let blocks = vec![
conv2d_block(&[(3, 64, "features.0"), (64, 64, "features.2")], &vb)?,
conv2d_block(&[(64, 128, "features.5"), (128, 128, "features.7")], &vb)?,
conv2d_block(&[(128, 256, "features.10"), (256, 256, "features.12")], &vb)?,
conv2d_block(&[(256, 512, "features.15"), (512, 512, "features.17")], &vb)?,
conv2d_block(&[(512, 512, "features.20"), (512, 512, "features.22")], &vb)?,
fully_connected(
num_classes,
PreLogitConfig {
in_dim: (4096, 512, 7, 7),
target_in: 4096,
target_out: 512 * 7 * 7,
},
PreLogitConfig {
in_dim: (4096, 4096, 1, 1),
target_in: 4096,
target_out: 4096,
},
vb.clone(),
)?,
];
Ok(blocks)
}
fn vgg16_blocks(vb: VarBuilder) -> Result<Vec<FuncT>> {
let num_classes = 1000;
let blocks = vec![
conv2d_block(&[(3, 64, "features.0"), (64, 64, "features.2")], &vb)?,
conv2d_block(&[(64, 128, "features.5"), (128, 128, "features.7")], &vb)?,
conv2d_block(
&[
(128, 256, "features.10"),
(256, 256, "features.12"),
(256, 256, "features.14"),
],
&vb,
)?,
conv2d_block(
&[
(256, 512, "features.17"),
(512, 512, "features.19"),
(512, 512, "features.21"),
],
&vb,
)?,
conv2d_block(
&[
(512, 512, "features.24"),
(512, 512, "features.26"),
(512, 512, "features.28"),
],
&vb,
)?,
fully_connected(
num_classes,
PreLogitConfig {
in_dim: (4096, 512, 7, 7),
target_in: 4096,
target_out: 512 * 7 * 7,
},
PreLogitConfig {
in_dim: (4096, 4096, 1, 1),
target_in: 4096,
target_out: 4096,
},
vb.clone(),
)?,
];
Ok(blocks)
}
fn vgg19_blocks(vb: VarBuilder) -> Result<Vec<FuncT>> {
let num_classes = 1000;
let blocks = vec![
conv2d_block(&[(3, 64, "features.0"), (64, 64, "features.2")], &vb)?,
conv2d_block(&[(64, 128, "features.5"), (128, 128, "features.7")], &vb)?,
conv2d_block(
&[
(128, 256, "features.10"),
(256, 256, "features.12"),
(256, 256, "features.14"),
(256, 256, "features.16"),
],
&vb,
)?,
conv2d_block(
&[
(256, 512, "features.19"),
(512, 512, "features.21"),
(512, 512, "features.23"),
(512, 512, "features.25"),
],
&vb,
)?,
conv2d_block(
&[
(512, 512, "features.28"),
(512, 512, "features.30"),
(512, 512, "features.32"),
(512, 512, "features.34"),
],
&vb,
)?,
fully_connected(
num_classes,
PreLogitConfig {
in_dim: (4096, 512, 7, 7),
target_in: 4096,
target_out: 512 * 7 * 7,
},
PreLogitConfig {
in_dim: (4096, 4096, 1, 1),
target_in: 4096,
target_out: 4096,
},
vb.clone(),
)?,
];
Ok(blocks)
}
| candle/candle-transformers/src/models/vgg.rs/0 | {
"file_path": "candle/candle-transformers/src/models/vgg.rs",
"repo_id": "candle",
"token_count": 4390
} |
//! Bounding Boxes and Intersection
//!
//! This module provides functionality for handling bounding boxes and their manipulation,
//! particularly in the context of object detection. It includes tools for calculating
//! intersection over union (IoU) and non-maximum suppression (NMS).
/// A bounding box around an object.
#[derive(Debug, Clone)]
pub struct Bbox<D> {
pub xmin: f32,
pub ymin: f32,
pub xmax: f32,
pub ymax: f32,
pub confidence: f32,
pub data: D,
}
#[derive(Debug, Clone, Copy, PartialEq)]
pub struct KeyPoint {
pub x: f32,
pub y: f32,
pub mask: f32,
}
/// Intersection over union of two bounding boxes.
pub fn iou<D>(b1: &Bbox<D>, b2: &Bbox<D>) -> f32 {
let b1_area = (b1.xmax - b1.xmin + 1.) * (b1.ymax - b1.ymin + 1.);
let b2_area = (b2.xmax - b2.xmin + 1.) * (b2.ymax - b2.ymin + 1.);
let i_xmin = b1.xmin.max(b2.xmin);
let i_xmax = b1.xmax.min(b2.xmax);
let i_ymin = b1.ymin.max(b2.ymin);
let i_ymax = b1.ymax.min(b2.ymax);
let i_area = (i_xmax - i_xmin + 1.).max(0.) * (i_ymax - i_ymin + 1.).max(0.);
i_area / (b1_area + b2_area - i_area)
}
pub fn non_maximum_suppression<D>(bboxes: &mut [Vec<Bbox<D>>], threshold: f32) {
// Perform non-maximum suppression.
for bboxes_for_class in bboxes.iter_mut() {
bboxes_for_class.sort_by(|b1, b2| b2.confidence.partial_cmp(&b1.confidence).unwrap());
let mut current_index = 0;
for index in 0..bboxes_for_class.len() {
let mut drop = false;
for prev_index in 0..current_index {
let iou = iou(&bboxes_for_class[prev_index], &bboxes_for_class[index]);
if iou > threshold {
drop = true;
break;
}
}
if !drop {
bboxes_for_class.swap(current_index, index);
current_index += 1;
}
}
bboxes_for_class.truncate(current_index);
}
}
// Updates confidences starting at highest and comparing subsequent boxes.
fn update_confidences<D>(
bboxes_for_class: &[Bbox<D>],
updated_confidences: &mut [f32],
iou_threshold: f32,
sigma: f32,
) {
let len = bboxes_for_class.len();
for current_index in 0..len {
let current_bbox = &bboxes_for_class[current_index];
for index in (current_index + 1)..len {
let iou_val = iou(current_bbox, &bboxes_for_class[index]);
if iou_val > iou_threshold {
// Decay calculation from page 4 of: https://arxiv.org/pdf/1704.04503
let decay = (-iou_val * iou_val / sigma).exp();
let updated_confidence = bboxes_for_class[index].confidence * decay;
updated_confidences[index] = updated_confidence;
}
}
}
}
// Sorts the bounding boxes by confidence and applies soft non-maximum suppression.
// This function is based on the algorithm described in https://arxiv.org/pdf/1704.04503
pub fn soft_non_maximum_suppression<D>(
bboxes: &mut [Vec<Bbox<D>>],
iou_threshold: Option<f32>,
confidence_threshold: Option<f32>,
sigma: Option<f32>,
) {
let iou_threshold = iou_threshold.unwrap_or(0.5);
let confidence_threshold = confidence_threshold.unwrap_or(0.1);
let sigma = sigma.unwrap_or(0.5);
for bboxes_for_class in bboxes.iter_mut() {
// Sort boxes by confidence in descending order
bboxes_for_class.sort_by(|b1, b2| b2.confidence.partial_cmp(&b1.confidence).unwrap());
let mut updated_confidences = bboxes_for_class
.iter()
.map(|bbox| bbox.confidence)
.collect::<Vec<_>>();
update_confidences(
bboxes_for_class,
&mut updated_confidences,
iou_threshold,
sigma,
);
// Update confidences, set to 0.0 if below threshold
for (i, &confidence) in updated_confidences.iter().enumerate() {
bboxes_for_class[i].confidence = if confidence < confidence_threshold {
0.0
} else {
confidence
};
}
}
}
| candle/candle-transformers/src/object_detection.rs/0 | {
"file_path": "candle/candle-transformers/src/object_detection.rs",
"repo_id": "candle",
"token_count": 1950
} |
use candle::{Device, Tensor};
use candle_transformers::generation::LogitsProcessor;
use candle_wasm_example_llama2::worker::{Model as M, ModelData};
use wasm_bindgen::prelude::*;
#[wasm_bindgen]
pub struct Model {
inner: M,
logits_processor: LogitsProcessor,
tokens: Vec<u32>,
repeat_penalty: f32,
}
impl Model {
fn process(&mut self, tokens: &[u32]) -> candle::Result<String> {
const REPEAT_LAST_N: usize = 64;
let dev = Device::Cpu;
let input = Tensor::new(tokens, &dev)?.unsqueeze(0)?;
let logits = self.inner.llama.forward(&input, tokens.len())?;
let logits = logits.squeeze(0)?;
let logits = if self.repeat_penalty == 1. || tokens.is_empty() {
logits
} else {
let start_at = self.tokens.len().saturating_sub(REPEAT_LAST_N);
candle_transformers::utils::apply_repeat_penalty(
&logits,
self.repeat_penalty,
&self.tokens[start_at..],
)?
};
let next_token = self.logits_processor.sample(&logits)?;
self.tokens.push(next_token);
let text = match self.inner.tokenizer.id_to_token(next_token) {
Some(text) => text.replace('▁', " ").replace("<0x0A>", "\n"),
None => "".to_string(),
};
Ok(text)
}
}
#[wasm_bindgen]
impl Model {
#[wasm_bindgen(constructor)]
pub fn new(weights: Vec<u8>, tokenizer: Vec<u8>) -> Result<Model, JsError> {
let model = M::load(ModelData {
tokenizer,
model: weights,
});
let logits_processor = LogitsProcessor::new(299792458, None, None);
match model {
Ok(inner) => Ok(Self {
inner,
logits_processor,
tokens: vec![],
repeat_penalty: 1.,
}),
Err(e) => Err(JsError::new(&e.to_string())),
}
}
#[wasm_bindgen]
pub fn get_seq_len(&mut self) -> usize {
self.inner.config.seq_len
}
#[wasm_bindgen]
pub fn init_with_prompt(
&mut self,
prompt: String,
temp: f64,
top_p: f64,
repeat_penalty: f32,
seed: u64,
) -> Result<String, JsError> {
// First reset the cache.
{
let mut cache = self.inner.cache.kvs.lock().unwrap();
for elem in cache.iter_mut() {
*elem = None
}
}
let temp = if temp <= 0. { None } else { Some(temp) };
let top_p = if top_p <= 0. || top_p >= 1. {
None
} else {
Some(top_p)
};
self.logits_processor = LogitsProcessor::new(seed, temp, top_p);
self.repeat_penalty = repeat_penalty;
self.tokens.clear();
let tokens = self
.inner
.tokenizer
.encode(prompt, true)
.map_err(|m| JsError::new(&m.to_string()))?
.get_ids()
.to_vec();
let text = self
.process(&tokens)
.map_err(|m| JsError::new(&m.to_string()))?;
Ok(text)
}
#[wasm_bindgen]
pub fn next_token(&mut self) -> Result<String, JsError> {
let last_token = *self.tokens.last().unwrap();
let text = self
.process(&[last_token])
.map_err(|m| JsError::new(&m.to_string()))?;
Ok(text)
}
}
fn main() {}
| candle/candle-wasm-examples/llama2-c/src/bin/m.rs/0 | {
"file_path": "candle/candle-wasm-examples/llama2-c/src/bin/m.rs",
"repo_id": "candle",
"token_count": 1807
} |
<html>
<head>
<meta content="text/html;charset=utf-8" http-equiv="Content-Type" />
<title>Candle Phi 1.5 / Phi 2.0 Rust/WASM</title>
</head>
<body></body>
</html>
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<link
rel="stylesheet"
href="https://cdn.jsdelivr.net/gh/highlightjs/[email protected]/build/styles/default.min.css"
/>
<style>
@import url("https://fonts.googleapis.com/css2?family=Source+Code+Pro:wght@200;300;400&family=Source+Sans+3:wght@100;200;300;400;500;600;700;800;900&display=swap");
html,
body {
font-family: "Source Sans 3", sans-serif;
}
code,
output,
select,
pre {
font-family: "Source Code Pro", monospace;
}
</style>
<style type="text/tailwindcss">
.link {
@apply underline hover:text-blue-500 hover:no-underline;
}
</style>
<script src="https://cdn.tailwindcss.com"></script>
<script type="module">
import snarkdown from "https://cdn.skypack.dev/snarkdown";
import hljs from "https://cdn.skypack.dev/highlight.js";
// models base url
const MODELS = {
phi_1_5_q4k: {
base_url:
"https://huggingface.co/lmz/candle-quantized-phi/resolve/main/",
model: "model-q4k.gguf",
tokenizer: "tokenizer.json",
config: "phi-1_5.json",
quantized: true,
seq_len: 2048,
size: "800 MB",
},
phi_1_5_q80: {
base_url:
"https://huggingface.co/lmz/candle-quantized-phi/resolve/main/",
model: "model-q80.gguf",
tokenizer: "tokenizer.json",
config: "phi-1_5.json",
quantized: true,
seq_len: 2048,
size: "1.51 GB",
},
phi_2_0_q4k: {
base_url:
"https://huggingface.co/radames/phi-2-quantized/resolve/main/",
model: [
"model-v2-q4k.gguf_aa.part",
"model-v2-q4k.gguf_ab.part",
"model-v2-q4k.gguf_ac.part",
],
tokenizer: "tokenizer.json",
config: "config.json",
quantized: true,
seq_len: 2048,
size: "1.57GB",
},
puffin_phi_v2_q4k: {
base_url:
"https://huggingface.co/lmz/candle-quantized-phi/resolve/main/",
model: "model-puffin-phi-v2-q4k.gguf",
tokenizer: "tokenizer-puffin-phi-v2.json",
config: "puffin-phi-v2.json",
quantized: true,
seq_len: 2048,
size: "798 MB",
},
puffin_phi_v2_q80: {
base_url:
"https://huggingface.co/lmz/candle-quantized-phi/resolve/main/",
model: "model-puffin-phi-v2-q80.gguf",
tokenizer: "tokenizer-puffin-phi-v2.json",
config: "puffin-phi-v2.json",
quantized: true,
seq_len: 2048,
size: "1.50 GB",
},
};
const TEMPLATES = [
{
title: "Simple prompt",
prompt: `Sebastien is in London today, it’s the middle of July yet it’s raining, so Sebastien is feeling gloomy. He`,
},
{
title: "Think step by step",
prompt: `Suppose Alice originally had 3 apples, then Bob gave Alice 7 apples, then Alice gave Cook 5 apples, and then Tim gave Alice 3x the amount of apples Alice had. How many apples does Alice have now?
Let’s think step by step.`,
},
{
title: "Explaing a code snippet",
prompt: `What does this script do?
\`\`\`python
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind(('', 0))
s.listen(1)
conn, addr = s.accept()
print('Connected by', addr)
return conn.getsockname()[1]
\`\`\`
Let’s think step by step.`,
},
{
title: "Question answering",
prompt: `Instruct: What is the capital of France?
Output:`,
},
{
title: "Chat mode",
prompt: `Alice: Can you tell me how to create a python application to go through all the files
in one directory where the file’s name DOES NOT end with '.json'?
Bob:`,
},
{
title: "Python code completion",
prompt: `"""write a python function called batch(function, list) which call function(x) for x in
list in parallel"""
Solution:`,
},
{
title: "Python Sample",
prompt: `"""Can you make sure those histograms appear side by side on the same plot:
\`\`\`python
plt.hist(intreps_retrained[0][1].view(64,-1).norm(dim=1).detach().cpu().numpy(), bins = 20)
plt.hist(intreps_pretrained[0][1].view(64,-1).norm(dim=1).detach().cpu().numpy(), bins = 20)
\`\`\`
"""`,
},
{
title: "Write a Twitter post",
prompt: `Write a twitter post for the discovery of gravitational wave.
Twitter Post:`,
},
{
title: "Write a review",
prompt: `Write a polite review complaining that the video game 'Random Game' was too badly optimized and it burned my laptop.
Very polite review:`,
},
];
const phiWorker = new Worker("./phiWorker.js", {
type: "module",
});
async function generateSequence(controller) {
const getValue = (id) => document.querySelector(`#${id}`).value;
const modelID = getValue("model");
const model = MODELS[modelID];
const weightsURL =
model.model instanceof Array
? model.model.map((m) => model.base_url + m)
: model.base_url + model.model;
const tokenizerURL = model.base_url + model.tokenizer;
const configURL = model.base_url + model.config;
const prompt = getValue("prompt").trim();
const temperature = getValue("temperature");
const topP = getValue("top-p");
const repeatPenalty = getValue("repeat_penalty");
const seed = getValue("seed");
const maxSeqLen = getValue("max-seq");
function updateStatus(data) {
const outStatus = document.querySelector("#output-status");
const outGen = document.querySelector("#output-generation");
const outCounter = document.querySelector("#output-counter");
switch (data.status) {
case "loading":
outStatus.hidden = false;
outStatus.textContent = data.message;
outGen.hidden = true;
outCounter.hidden = true;
break;
case "generating":
const { message, prompt, sentence, tokensSec, totalTime } = data;
outStatus.hidden = true;
outCounter.hidden = false;
outGen.hidden = false;
outGen.innerHTML = snarkdown(prompt + sentence);
outCounter.innerHTML = `${(totalTime / 1000).toFixed(
2
)}s (${tokensSec.toFixed(2)} tok/s)`;
hljs.highlightAll();
break;
case "complete":
outStatus.hidden = true;
outGen.hidden = false;
break;
}
}
return new Promise((resolve, reject) => {
phiWorker.postMessage({
weightsURL,
modelID,
tokenizerURL,
configURL,
quantized: model.quantized,
prompt,
temp: temperature,
top_p: topP,
repeatPenalty,
seed: seed,
maxSeqLen,
command: "start",
});
const handleAbort = () => {
phiWorker.postMessage({ command: "abort" });
};
const handleMessage = (event) => {
const { status, error, message, prompt, sentence } = event.data;
if (status) updateStatus(event.data);
if (error) {
phiWorker.removeEventListener("message", handleMessage);
reject(new Error(error));
}
if (status === "aborted") {
phiWorker.removeEventListener("message", handleMessage);
resolve(event.data);
}
if (status === "complete") {
phiWorker.removeEventListener("message", handleMessage);
resolve(event.data);
}
};
controller.signal.addEventListener("abort", handleAbort);
phiWorker.addEventListener("message", handleMessage);
});
}
const form = document.querySelector("#form");
const prompt = document.querySelector("#prompt");
const clearBtn = document.querySelector("#clear-btn");
const runBtn = document.querySelector("#run");
const modelSelect = document.querySelector("#model");
const promptTemplates = document.querySelector("#prompt-templates");
let runController = new AbortController();
let isRunning = false;
document.addEventListener("DOMContentLoaded", () => {
for (const [id, model] of Object.entries(MODELS)) {
const option = document.createElement("option");
option.value = id;
option.innerText = `${id} (${model.size})`;
modelSelect.appendChild(option);
}
const query = new URLSearchParams(window.location.search);
const modelID = query.get("model");
if (modelID) {
modelSelect.value = modelID;
} else {
modelSelect.value = "phi_1_5_q4k";
}
for (const [i, { title, prompt }] of TEMPLATES.entries()) {
const div = document.createElement("div");
const input = document.createElement("input");
input.type = "radio";
input.name = "task";
input.id = `templates-${i}`;
input.classList.add("font-light", "cursor-pointer");
input.value = prompt;
const label = document.createElement("label");
label.htmlFor = `templates-${i}`;
label.classList.add("cursor-pointer");
label.innerText = title;
div.appendChild(input);
div.appendChild(label);
promptTemplates.appendChild(div);
}
});
promptTemplates.addEventListener("change", (e) => {
const template = e.target.value;
prompt.value = template;
prompt.style.height = "auto";
prompt.style.height = prompt.scrollHeight + "px";
runBtn.disabled = false;
clearBtn.classList.remove("invisible");
});
modelSelect.addEventListener("change", (e) => {
const query = new URLSearchParams(window.location.search);
query.set("model", e.target.value);
window.history.replaceState(
{},
"",
`${window.location.pathname}?${query}`
);
window.parent.postMessage({ queryString: "?" + query }, "*");
const model = MODELS[e.target.value];
document.querySelector("#max-seq").max = model.seq_len;
document.querySelector("#max-seq").nextElementSibling.value = 200;
});
form.addEventListener("submit", async (e) => {
e.preventDefault();
if (isRunning) {
stopRunning();
} else {
startRunning();
await generateSequence(runController);
stopRunning();
}
});
function startRunning() {
isRunning = true;
runBtn.textContent = "Stop";
}
function stopRunning() {
runController.abort();
runController = new AbortController();
runBtn.textContent = "Run";
isRunning = false;
}
clearBtn.addEventListener("click", (e) => {
e.preventDefault();
prompt.value = "";
clearBtn.classList.add("invisible");
runBtn.disabled = true;
stopRunning();
});
prompt.addEventListener("input", (e) => {
runBtn.disabled = false;
if (e.target.value.length > 0) {
clearBtn.classList.remove("invisible");
} else {
clearBtn.classList.add("invisible");
}
});
</script>
</head>
<body class="container max-w-4xl mx-auto p-4 text-gray-800">
<main class="grid grid-cols-1 gap-8 relative">
<span class="absolute text-5xl -ml-[1em]"> 🕯️ </span>
<div>
<h1 class="text-5xl font-bold">Candle Phi 1.5 / Phi 2.0</h1>
<h2 class="text-2xl font-bold">Rust/WASM Demo</h2>
<p class="max-w-lg">
The
<a
href="https://huggingface.co/microsoft/phi-1_5"
class="link"
target="_blank"
>Phi-1.5</a
>
and
<a
href="https://huggingface.co/microsoft/phi-2"
class="link"
target="_blank"
>Phi-2</a
>
models achieve state-of-the-art performance with only 1.3 billion and
2.7 billion parameters, compared to larger models with up to 13
billion parameters. Here you can try the quantized versions.
Additional prompt examples are available in the
<a
href="https://arxiv.org/pdf/2309.05463.pdf#page=8"
class="link"
target="_blank"
>
technical report </a
>.
</p>
<p class="max-w-lg">
You can also try
<a
href="https://huggingface.co/teknium/Puffin-Phi-v2"
class="link"
target="_blank"
>Puffin-Phi V2
</a>
quantized version, a fine-tuned version of Phi-1.5 on the
<a
href="https://huggingface.co/datasets/LDJnr/Puffin"
class="link"
target="_blank"
>Puffin dataset
</a>
</p>
</div>
<div>
<p class="text-xs italic max-w-lg">
<b>Note:</b>
When first run, the app will download and cache the model, which could
take a few minutes. The models are <b>~800MB</b> or <b>~1.57GB</b> in
size.
</p>
</div>
<div>
<label for="model" class="font-medium">Models Options: </label>
<select
id="model"
class="border-2 border-gray-500 rounded-md font-light"
></select>
</div>
<div>
<details>
<summary class="font-medium cursor-pointer">Prompt Templates</summary>
<form
id="prompt-templates"
class="grid grid-cols-1 sm:grid-cols-2 gap-1 my-2"
></form>
</details>
</div>
<form
id="form"
class="flex text-normal px-1 py-1 border border-gray-700 rounded-md items-center"
>
<input type="submit" hidden />
<textarea
type="text"
id="prompt"
class="font-light text-lg w-full px-3 py-2 mx-1 resize-none outline-none"
oninput="this.style.height = 0;this.style.height = this.scrollHeight + 'px'"
placeholder="Add your prompt here..."
>
Instruct: Write a detailed analogy between mathematics and a lighthouse.
Output:</textarea
>
<button id="clear-btn">
<svg
fill="none"
xmlns="http://www.w3.org/2000/svg"
width="40"
viewBox="0 0 70 40"
>
<path opacity=".5" d="M39 .2v40.2" stroke="#1F2937" />
<path
d="M1.5 11.5 19 29.1m0-17.6L1.5 29.1"
opacity=".5"
stroke="#1F2937"
stroke-width="2"
/>
</svg>
</button>
<button
id="run"
class="bg-gray-700 hover:bg-gray-800 text-white font-normal py-2 w-16 rounded disabled:bg-gray-300 disabled:cursor-not-allowed"
>
Run
</button>
</form>
<details>
<summary class="font-medium cursor-pointer">Advanced Options</summary>
<div class="grid grid-cols-3 max-w-md items-center gap-3 py-3">
<label class="text-sm font-medium" for="max-seq"
>Maximum length
</label>
<input
type="range"
id="max-seq"
name="max-seq"
min="1"
max="2048"
step="1"
value="200"
oninput="this.nextElementSibling.value = Number(this.value)"
/>
<output
class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md"
>
200</output
>
<label class="text-sm font-medium" for="temperature"
>Temperature</label
>
<input
type="range"
id="temperature"
name="temperature"
min="0"
max="2"
step="0.01"
value="0.00"
oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)"
/>
<output
class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md"
>
0.00</output
>
<label class="text-sm font-medium" for="top-p">Top-p</label>
<input
type="range"
id="top-p"
name="top-p"
min="0"
max="1"
step="0.01"
value="1.00"
oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)"
/>
<output
class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md"
>
1.00</output
>
<label class="text-sm font-medium" for="repeat_penalty"
>Repeat Penalty</label
>
<input
type="range"
id="repeat_penalty"
name="repeat_penalty"
min="1"
max="2"
step="0.01"
value="1.10"
oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)"
/>
<output
class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md"
>1.10</output
>
<label class="text-sm font-medium" for="seed">Seed</label>
<input
type="number"
id="seed"
name="seed"
value="299792458"
class="font-light border border-gray-700 text-right rounded-md p-2"
/>
<button
id="run"
onclick="document.querySelector('#seed').value = Math.floor(Math.random() * Number.MAX_SAFE_INTEGER)"
class="bg-gray-700 hover:bg-gray-800 text-white font-normal py-1 w-[50px] rounded disabled:bg-gray-300 disabled:cursor-not-allowed text-sm"
>
Rand
</button>
</div>
</details>
<div>
<h3 class="font-medium">Generation:</h3>
<div
class="min-h-[250px] bg-slate-100 text-gray-500 p-4 rounded-md flex flex-col gap-2"
>
<div
id="output-counter"
hidden
class="ml-auto font-semibold grid-rows-1"
></div>
<p hidden id="output-generation" class="grid-rows-2 text-lg"></p>
<span id="output-status" class="m-auto font-light"
>No output yet</span
>
</div>
</div>
</main>
</body>
</html>
| candle/candle-wasm-examples/phi/index.html/0 | {
"file_path": "candle/candle-wasm-examples/phi/index.html",
"repo_id": "candle",
"token_count": 9818
} |
<html>
<head>
<meta content="text/html;charset=utf-8" http-equiv="Content-Type" />
<title>Candle T5</title>
</head>
<body></body>
</html>
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<style>
@import url("https://fonts.googleapis.com/css2?family=Source+Code+Pro:wght@200;300;400&family=Source+Sans+3:wght@100;200;300;400;500;600;700;800;900&display=swap");
html,
body {
font-family: "Source Sans 3", sans-serif;
}
</style>
<style type="text/tailwindcss">
.link {
@apply underline hover:text-blue-500 hover:no-underline;
}
</style>
<script src="https://cdn.tailwindcss.com"></script>
<script type="module">
import {
getModelInfo,
MODELS,
extractEmbeddings,
generateText,
} from "./utils.js";
const t5ModelEncoderWorker = new Worker("./T5ModelEncoderWorker.js", {
type: "module",
});
const t5ModelConditionalGeneration = new Worker(
"./T5ModelConditionalGeneration.js",
{ type: "module" }
);
const formEl = document.querySelector("#form");
const modelEl = document.querySelector("#model");
const promptEl = document.querySelector("#prompt");
const temperatureEl = document.querySelector("#temperature");
const toppEL = document.querySelector("#top-p");
const repeatPenaltyEl = document.querySelector("#repeat_penalty");
const seedEl = document.querySelector("#seed");
const outputEl = document.querySelector("#output-generation");
const tasksEl = document.querySelector("#tasks");
let selectedTaskID = "";
document.addEventListener("DOMContentLoaded", () => {
for (const [id, model] of Object.entries(MODELS)) {
const option = document.createElement("option");
option.value = id;
option.innerText = `${id} (${model.size})`;
modelEl.appendChild(option);
}
populateTasks(modelEl.value);
modelEl.addEventListener("change", (e) => {
populateTasks(e.target.value);
});
tasksEl.addEventListener("change", (e) => {
const task = e.target.value;
const modelID = modelEl.value;
promptEl.value = MODELS[modelID].tasks[task].prefix;
selectedTaskID = task;
});
});
function populateTasks(modelID) {
const tasks = MODELS[modelID].tasks;
tasksEl.innerHTML = "";
for (const [task, params] of Object.entries(tasks)) {
const div = document.createElement("div");
div.innerHTML = `
<input
type="radio"
name="task"
id="${task}"
class="font-light cursor-pointer"
value="${task}" />
<label for="${task}" class="cursor-pointer">
${params.prefix}
</label>
`;
tasksEl.appendChild(div);
}
selectedTaskID = Object.keys(tasks)[0];
tasksEl.querySelector(`#${selectedTaskID}`).checked = true;
}
form.addEventListener("submit", (e) => {
e.preventDefault();
const promptText = promptEl.value;
const modelID = modelEl.value;
const { modelURL, configURL, tokenizerURL, maxLength } = getModelInfo(
modelID,
selectedTaskID
);
const params = {
temperature: Number(temperatureEl.value),
top_p: Number(toppEL.value),
repetition_penalty: Number(repeatPenaltyEl.value),
seed: BigInt(seedEl.value),
max_length: maxLength,
};
generateText(
t5ModelConditionalGeneration,
modelURL,
tokenizerURL,
configURL,
modelID,
promptText,
params,
(status) => {
if (status.status === "loading") {
outputEl.innerText = "Loading model...";
}
if (status.status === "decoding") {
outputEl.innerText = "Generating...";
}
}
).then(({ output }) => {
outputEl.innerText = output.generation;
});
});
</script>
</head>
<body class="container max-w-4xl mx-auto p-4">
<main class="grid grid-cols-1 gap-8 relative">
<span class="absolute text-5xl -ml-[1em]"> 🕯️ </span>
<div>
<h1 class="text-5xl font-bold">Candle T5 Transformer</h1>
<h2 class="text-2xl font-bold">Rust/WASM Demo</h2>
<p class="max-w-lg">
This demo showcase Text-To-Text Transfer Transformer (<a
href="https://blog.research.google/2020/02/exploring-transfer-learning-with-t5.html"
target="_blank"
class="link"
>T5</a
>) models right in your browser, thanks to
<a
href="https://github.com/huggingface/candle/"
target="_blank"
class="link">
Candle
</a>
ML framework and rust/wasm. You can choose from a range of available
models, including
<a
href="https://huggingface.co/t5-small"
target="_blank"
class="link">
t5-small</a
>,
<a href="https://huggingface.co/t5-base" target="_blank" class="link"
>t5-base</a
>,
<a
href="https://huggingface.co/google/flan-t5-small"
target="_blank"
class="link"
>flan-t5-small</a
>,
several
<a
href="https://huggingface.co/lmz/candle-quantized-t5/tree/main"
target="_blank"
class="link">
t5 quantized gguf models</a
>, and also a quantized
<a
href="https://huggingface.co/jbochi/candle-coedit-quantized/tree/main"
target="_blank"
class="link">
CoEdIT model for text rewrite</a
>.
</p>
</div>
<div>
<label for="model" class="font-medium">Models Options: </label>
<select
id="model"
class="border-2 border-gray-500 rounded-md font-light"></select>
</div>
<div>
<h3 class="font-medium">Task Prefix:</h3>
<form id="tasks" class="flex flex-col gap-1 my-2"></form>
</div>
<form
id="form"
class="flex text-normal px-1 py-1 border border-gray-700 rounded-md items-center">
<input type="submit" hidden />
<input
type="text"
id="prompt"
class="font-light w-full px-3 py-2 mx-1 resize-none outline-none"
placeholder="Add prompt here, e.g. 'translate English to German: Today I'm going to eat Ice Cream'"
value="translate English to German: Today I'm going to eat Ice Cream" />
<button
class="bg-gray-700 hover:bg-gray-800 text-white font-normal py-2 w-16 rounded disabled:bg-gray-300 disabled:cursor-not-allowed">
Run
</button>
</form>
<div class="grid grid-cols-3 max-w-md items-center gap-3">
<label class="text-sm font-medium" for="temperature">Temperature</label>
<input
type="range"
id="temperature"
name="temperature"
min="0"
max="2"
step="0.01"
value="0.00"
oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)" />
<output
class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md">
0.00</output
>
<label class="text-sm font-medium" for="top-p">Top-p</label>
<input
type="range"
id="top-p"
name="top-p"
min="0"
max="1"
step="0.01"
value="1.00"
oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)" />
<output
class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md">
1.00</output
>
<label class="text-sm font-medium" for="repeat_penalty"
>Repeat Penalty</label
>
<input
type="range"
id="repeat_penalty"
name="repeat_penalty"
min="1"
max="2"
step="0.01"
value="1.10"
oninput="this.nextElementSibling.value = Number(this.value).toFixed(2)" />
<output
class="text-xs w-[50px] text-center font-light px-1 py-1 border border-gray-700 rounded-md"
>1.10</output
>
<label class="text-sm font-medium" for="seed">Seed</label>
<input
type="number"
id="seed"
name="seed"
value="299792458"
class="font-light border border-gray-700 text-right rounded-md p-2" />
<button
id="run"
onclick="document.querySelector('#seed').value = BigInt(Math.floor(Math.random() * 2**64-1))"
class="bg-gray-700 hover:bg-gray-800 text-white font-normal py-1 w-[50px] rounded disabled:bg-gray-300 disabled:cursor-not-allowed text-sm">
Rand
</button>
</div>
<div>
<h3 class="font-medium">Generation:</h3>
<div
class="min-h-[250px] bg-slate-100 text-gray-500 p-4 rounded-md flex flex-col gap-2 text-lg">
<p id="output-generation" class="grid-rows-2">No output yet</p>
</div>
</div>
</main>
</body>
</html>
| candle/candle-wasm-examples/t5/index.html/0 | {
"file_path": "candle/candle-wasm-examples/t5/index.html",
"repo_id": "candle",
"token_count": 4724
} |
pub const LANGUAGES: [(&str, &str); 99] = [
("en", "english"),
("zh", "chinese"),
("de", "german"),
("es", "spanish"),
("ru", "russian"),
("ko", "korean"),
("fr", "french"),
("ja", "japanese"),
("pt", "portuguese"),
("tr", "turkish"),
("pl", "polish"),
("ca", "catalan"),
("nl", "dutch"),
("ar", "arabic"),
("sv", "swedish"),
("it", "italian"),
("id", "indonesian"),
("hi", "hindi"),
("fi", "finnish"),
("vi", "vietnamese"),
("he", "hebrew"),
("uk", "ukrainian"),
("el", "greek"),
("ms", "malay"),
("cs", "czech"),
("ro", "romanian"),
("da", "danish"),
("hu", "hungarian"),
("ta", "tamil"),
("no", "norwegian"),
("th", "thai"),
("ur", "urdu"),
("hr", "croatian"),
("bg", "bulgarian"),
("lt", "lithuanian"),
("la", "latin"),
("mi", "maori"),
("ml", "malayalam"),
("cy", "welsh"),
("sk", "slovak"),
("te", "telugu"),
("fa", "persian"),
("lv", "latvian"),
("bn", "bengali"),
("sr", "serbian"),
("az", "azerbaijani"),
("sl", "slovenian"),
("kn", "kannada"),
("et", "estonian"),
("mk", "macedonian"),
("br", "breton"),
("eu", "basque"),
("is", "icelandic"),
("hy", "armenian"),
("ne", "nepali"),
("mn", "mongolian"),
("bs", "bosnian"),
("kk", "kazakh"),
("sq", "albanian"),
("sw", "swahili"),
("gl", "galician"),
("mr", "marathi"),
("pa", "punjabi"),
("si", "sinhala"),
("km", "khmer"),
("sn", "shona"),
("yo", "yoruba"),
("so", "somali"),
("af", "afrikaans"),
("oc", "occitan"),
("ka", "georgian"),
("be", "belarusian"),
("tg", "tajik"),
("sd", "sindhi"),
("gu", "gujarati"),
("am", "amharic"),
("yi", "yiddish"),
("lo", "lao"),
("uz", "uzbek"),
("fo", "faroese"),
("ht", "haitian creole"),
("ps", "pashto"),
("tk", "turkmen"),
("nn", "nynorsk"),
("mt", "maltese"),
("sa", "sanskrit"),
("lb", "luxembourgish"),
("my", "myanmar"),
("bo", "tibetan"),
("tl", "tagalog"),
("mg", "malagasy"),
("as", "assamese"),
("tt", "tatar"),
("haw", "hawaiian"),
("ln", "lingala"),
("ha", "hausa"),
("ba", "bashkir"),
("jw", "javanese"),
("su", "sundanese"),
];
| candle/candle-wasm-examples/whisper/src/languages.rs/0 | {
"file_path": "candle/candle-wasm-examples/whisper/src/languages.rs",
"repo_id": "candle",
"token_count": 1175
} |
use crate::model::{report_detect, report_pose, Bbox, Multiples, YoloV8, YoloV8Pose};
use candle::{DType, Device, Result, Tensor};
use candle_nn::{Module, VarBuilder};
use serde::{Deserialize, Serialize};
use wasm_bindgen::prelude::*;
use yew_agent::{HandlerId, Public, WorkerLink};
#[wasm_bindgen]
extern "C" {
// Use `js_namespace` here to bind `console.log(..)` instead of just
// `log(..)`
#[wasm_bindgen(js_namespace = console)]
pub fn log(s: &str);
}
#[macro_export]
macro_rules! console_log {
// Note that this is using the `log` function imported above during
// `bare_bones`
($($t:tt)*) => ($crate::worker::log(&format_args!($($t)*).to_string()))
}
// Communication to the worker happens through bincode, the model weights and configs are fetched
// on the main thread and transferred via the following structure.
#[derive(Serialize, Deserialize)]
pub struct ModelData {
pub weights: Vec<u8>,
pub model_size: String,
}
#[derive(Serialize, Deserialize)]
pub struct RunData {
pub image_data: Vec<u8>,
pub conf_threshold: f32,
pub iou_threshold: f32,
}
pub struct Model {
model: YoloV8,
}
impl Model {
pub fn run(
&self,
image_data: Vec<u8>,
conf_threshold: f32,
iou_threshold: f32,
) -> Result<Vec<Vec<Bbox>>> {
console_log!("image data: {}", image_data.len());
let image_data = std::io::Cursor::new(image_data);
let original_image = image::ImageReader::new(image_data)
.with_guessed_format()?
.decode()
.map_err(candle::Error::wrap)?;
let (width, height) = {
let w = original_image.width() as usize;
let h = original_image.height() as usize;
if w < h {
let w = w * 640 / h;
// Sizes have to be divisible by 32.
(w / 32 * 32, 640)
} else {
let h = h * 640 / w;
(640, h / 32 * 32)
}
};
let image_t = {
let img = original_image.resize_exact(
width as u32,
height as u32,
image::imageops::FilterType::CatmullRom,
);
let data = img.to_rgb8().into_raw();
Tensor::from_vec(
data,
(img.height() as usize, img.width() as usize, 3),
&Device::Cpu,
)?
.permute((2, 0, 1))?
};
let image_t = (image_t.unsqueeze(0)?.to_dtype(DType::F32)? * (1. / 255.))?;
let predictions = self.model.forward(&image_t)?.squeeze(0)?;
console_log!("generated predictions {predictions:?}");
let bboxes = report_detect(
&predictions,
original_image,
width,
height,
conf_threshold,
iou_threshold,
)?;
Ok(bboxes)
}
pub fn load_(weights: Vec<u8>, model_size: &str) -> Result<Self> {
let multiples = match model_size {
"n" => Multiples::n(),
"s" => Multiples::s(),
"m" => Multiples::m(),
"l" => Multiples::l(),
"x" => Multiples::x(),
_ => Err(candle::Error::Msg(
"invalid model size: must be n, s, m, l or x".to_string(),
))?,
};
let dev = &Device::Cpu;
let vb = VarBuilder::from_buffered_safetensors(weights, DType::F32, dev)?;
let model = YoloV8::load(vb, multiples, 80)?;
Ok(Self { model })
}
pub fn load(md: ModelData) -> Result<Self> {
Self::load_(md.weights, &md.model_size.to_string())
}
}
pub struct ModelPose {
model: YoloV8Pose,
}
impl ModelPose {
pub fn run(
&self,
image_data: Vec<u8>,
conf_threshold: f32,
iou_threshold: f32,
) -> Result<Vec<Bbox>> {
console_log!("image data: {}", image_data.len());
let image_data = std::io::Cursor::new(image_data);
let original_image = image::ImageReader::new(image_data)
.with_guessed_format()?
.decode()
.map_err(candle::Error::wrap)?;
let (width, height) = {
let w = original_image.width() as usize;
let h = original_image.height() as usize;
if w < h {
let w = w * 640 / h;
// Sizes have to be divisible by 32.
(w / 32 * 32, 640)
} else {
let h = h * 640 / w;
(640, h / 32 * 32)
}
};
let image_t = {
let img = original_image.resize_exact(
width as u32,
height as u32,
image::imageops::FilterType::CatmullRom,
);
let data = img.to_rgb8().into_raw();
Tensor::from_vec(
data,
(img.height() as usize, img.width() as usize, 3),
&Device::Cpu,
)?
.permute((2, 0, 1))?
};
let image_t = (image_t.unsqueeze(0)?.to_dtype(DType::F32)? * (1. / 255.))?;
let predictions = self.model.forward(&image_t)?.squeeze(0)?;
console_log!("generated predictions {predictions:?}");
let bboxes = report_pose(
&predictions,
original_image,
width,
height,
conf_threshold,
iou_threshold,
)?;
Ok(bboxes)
}
pub fn load_(weights: Vec<u8>, model_size: &str) -> Result<Self> {
let multiples = match model_size {
"n" => Multiples::n(),
"s" => Multiples::s(),
"m" => Multiples::m(),
"l" => Multiples::l(),
"x" => Multiples::x(),
_ => Err(candle::Error::Msg(
"invalid model size: must be n, s, m, l or x".to_string(),
))?,
};
let dev = &Device::Cpu;
let vb = VarBuilder::from_buffered_safetensors(weights, DType::F32, dev)?;
let model = YoloV8Pose::load(vb, multiples, 1, (17, 3))?;
Ok(Self { model })
}
pub fn load(md: ModelData) -> Result<Self> {
Self::load_(md.weights, &md.model_size.to_string())
}
}
pub struct Worker {
link: WorkerLink<Self>,
model: Option<Model>,
}
#[derive(Serialize, Deserialize)]
pub enum WorkerInput {
ModelData(ModelData),
RunData(RunData),
}
#[derive(Serialize, Deserialize)]
pub enum WorkerOutput {
ProcessingDone(std::result::Result<Vec<Vec<Bbox>>, String>),
WeightsLoaded,
}
impl yew_agent::Worker for Worker {
type Input = WorkerInput;
type Message = ();
type Output = std::result::Result<WorkerOutput, String>;
type Reach = Public<Self>;
fn create(link: WorkerLink<Self>) -> Self {
Self { link, model: None }
}
fn update(&mut self, _msg: Self::Message) {
// no messaging
}
fn handle_input(&mut self, msg: Self::Input, id: HandlerId) {
let output = match msg {
WorkerInput::ModelData(md) => match Model::load(md) {
Ok(model) => {
self.model = Some(model);
Ok(WorkerOutput::WeightsLoaded)
}
Err(err) => Err(format!("model creation error {err:?}")),
},
WorkerInput::RunData(rd) => match &mut self.model {
None => Err("model has not been set yet".to_string()),
Some(model) => {
let result = model
.run(rd.image_data, rd.conf_threshold, rd.iou_threshold)
.map_err(|e| e.to_string());
Ok(WorkerOutput::ProcessingDone(result))
}
},
};
self.link.respond(id, output);
}
fn name_of_resource() -> &'static str {
"worker.js"
}
fn resource_path_is_relative() -> bool {
true
}
}
| candle/candle-wasm-examples/yolo/src/worker.rs/0 | {
"file_path": "candle/candle-wasm-examples/yolo/src/worker.rs",
"repo_id": "candle",
"token_count": 4075
} |
- local: index
title: 🤗 Chat UI
- title: Installation
sections:
- local: installation/local
title: Local
- local: installation/spaces
title: Spaces
- local: installation/docker
title: Docker
- local: installation/helm
title: Helm
- title: Configuration
sections:
- local: configuration/overview
title: Overview
- local: configuration/theming
title: Theming
- local: configuration/open-id
title: OpenID
- local: configuration/web-search
title: Web Search
- local: configuration/metrics
title: Metrics
- local: configuration/embeddings
title: Text Embedding Models
- title: Models
sections:
- local: configuration/models/overview
title: Overview
- local: configuration/models/multimodal
title: Multimodal
- local: configuration/models/tools
title: Tools
- title: Providers
sections:
- local: configuration/models/providers/anthropic
title: Anthropic
- local: configuration/models/providers/aws
title: AWS
- local: configuration/models/providers/cloudflare
title: Cloudflare
- local: configuration/models/providers/cohere
title: Cohere
- local: configuration/models/providers/google
title: Google
- local: configuration/models/providers/langserve
title: Langserve
- local: configuration/models/providers/llamacpp
title: Llama.cpp
- local: configuration/models/providers/ollama
title: Ollama
- local: configuration/models/providers/openai
title: OpenAI
- local: configuration/models/providers/tgi
title: TGI
- local: configuration/common-issues
title: Common Issues
- title: Developing
sections:
- local: developing/architecture
title: Architecture
- local: developing/copy-huggingchat
title: Copy HuggingChat
| chat-ui/docs/source/_toctree.yml/0 | {
"file_path": "chat-ui/docs/source/_toctree.yml",
"repo_id": "chat-ui",
"token_count": 879
} |
# Tools
Tool calling instructs the model to generate an output matching a user-defined schema, which may be parsed for invoking external tools. The model simply chooses the tools and their parameters. Currently, only `TGI` and `Cohere` with `Command R+` are supported.
<div class="flex justify-center">
<img class="block dark:hidden" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/chat-ui/tools-light.png" height="auto"/>
<img class="hidden dark:block" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/chat-ui/tools-dark.png" height="auto"/>
</div>
## TGI Configuration
A custom tokenizer is required for prompting the model for generating tool calls, as well as prompting with the results. The expected format for these tools and the resulting tool calls are hard coded for TGI, so it's likely that only the following configuration will work:
```ini
MODELS=`[
{
"name" : "CohereForAI/c4ai-command-r-plus",
"displayName": "Command R+",
"description": "Command R+ is Cohere's latest LLM and is the first open weight model to beat GPT4 in the Chatbot Arena!",
"tools": true,
"tokenizer": "Xenova/c4ai-command-r-v01-tokenizer",
"modelUrl": "https://huggingface.co/CohereForAI/c4ai-command-r-plus",
"websiteUrl": "https://docs.cohere.com/docs/command-r-plus",
"logoUrl": "https://huggingface.co/datasets/huggingchat/models-logo/resolve/main/cohere-logo.png",
"parameters": {
"stop": ["<|END_OF_TURN_TOKEN|>"],
"truncate" : 28672,
"max_new_tokens" : 4096,
"temperature" : 0.3
}
}
]`
```
## Cohere Configuration
The Cohere provider supports the endpoint native method of tool calling. Refer to the `endpoints/cohere` for implementation details.
```ini
MODELS=`[
{
"name": "command-r-plus",
"displayName": "Command R+",
"description": "Command R+ is Cohere's latest LLM and is the first open weight model to beat GPT4 in the Chatbot Arena!",
"tools": true,
"websiteUrl": "https://docs.cohere.com/docs/command-r-plus",
"logoUrl": "https://huggingface.co/datasets/huggingchat/models-logo/resolve/main/cohere-logo.png",
"endpoints": [{
"type": "cohere",
"apiKey": "YOUR_API_KEY"
}]
}
]`
```
## Adding Tools
Tool implementations are placed in `src/lib/server/tools`, with helpers available for easy integration with HuggingFace Zero GPU spaces. In the future, there may be an OpenAPI interface for adding tools.
## Adding Support for Additional Models
The TGI implementation uses a custom tokenizer and hard coded schema for supporting tools. The Cohere implementation, on the other hand, uses the native support in the SDK to emit tool calls. This is the recommended way to add support for more models. Please see the `endpoints/cohere` section of the code for implementation details.
| chat-ui/docs/source/configuration/models/tools.md/0 | {
"file_path": "chat-ui/docs/source/configuration/models/tools.md",
"repo_id": "chat-ui",
"token_count": 948
} |
import readline from "readline";
import minimist from "minimist";
// @ts-expect-error: vite-node makes the var available but the typescript compiler doesn't see them
import { env } from "$env/dynamic/private";
import { faker } from "@faker-js/faker";
import { ObjectId } from "mongodb";
// @ts-expect-error: vite-node makes the var available but the typescript compiler doesn't see them
import { collections } from "$lib/server/database";
import { models } from "../src/lib/server/models.ts";
import type { User } from "../src/lib/types/User";
import type { Assistant } from "../src/lib/types/Assistant";
import type { Conversation } from "../src/lib/types/Conversation";
import type { Settings } from "../src/lib/types/Settings";
import type { CommunityToolDB, ToolLogoColor, ToolLogoIcon } from "../src/lib/types/Tool";
import { defaultEmbeddingModel } from "../src/lib/server/embeddingModels.ts";
import { Message } from "../src/lib/types/Message.ts";
import { addChildren } from "../src/lib/utils/tree/addChildren.ts";
import { generateSearchTokens } from "../src/lib/utils/searchTokens.ts";
import { ReviewStatus } from "../src/lib/types/Review.ts";
const rl = readline.createInterface({
input: process.stdin,
output: process.stdout,
});
rl.on("close", function () {
process.exit(0);
});
const possibleFlags = ["reset", "all", "users", "settings", "assistants", "conversations", "tools"];
const argv = minimist(process.argv.slice(2));
const flags = argv["_"].filter((flag) => possibleFlags.includes(flag));
async function generateMessages(preprompt?: string): Promise<Message[]> {
const isLinear = faker.datatype.boolean(0.5);
const isInterrupted = faker.datatype.boolean(0.05);
const messages: Message[] = [];
messages.push({
id: crypto.randomUUID(),
from: "system",
content: preprompt ?? "",
createdAt: faker.date.recent({ days: 30 }),
updatedAt: faker.date.recent({ days: 30 }),
});
let isUser = true;
let lastId = messages[0].id;
if (isLinear) {
const convLength = faker.number.int({ min: 1, max: 25 }) * 2; // must always be even
for (let i = 0; i < convLength; i++) {
lastId = addChildren(
{
messages,
rootMessageId: messages[0].id,
},
{
from: isUser ? "user" : "assistant",
content: faker.lorem.sentence({
min: 10,
max: isUser ? 50 : 200,
}),
createdAt: faker.date.recent({ days: 30 }),
updatedAt: faker.date.recent({ days: 30 }),
interrupted: i === convLength - 1 && isInterrupted,
},
lastId
);
isUser = !isUser;
}
} else {
const convLength = faker.number.int({ min: 2, max: 200 });
for (let i = 0; i < convLength; i++) {
addChildren(
{
messages,
rootMessageId: messages[0].id,
},
{
from: isUser ? "user" : "assistant",
content: faker.lorem.sentence({
min: 10,
max: isUser ? 50 : 200,
}),
createdAt: faker.date.recent({ days: 30 }),
updatedAt: faker.date.recent({ days: 30 }),
interrupted: i === convLength - 1 && isInterrupted,
},
faker.helpers.arrayElement([
messages[0].id,
...messages.filter((m) => m.from === (isUser ? "assistant" : "user")).map((m) => m.id),
])
);
isUser = !isUser;
}
}
return messages;
}
async function seed() {
console.log("Seeding...");
const modelIds = models.map((model) => model.id);
if (flags.includes("reset")) {
console.log("Starting reset of DB");
await collections.users.deleteMany({});
await collections.settings.deleteMany({});
await collections.assistants.deleteMany({});
await collections.conversations.deleteMany({});
await collections.tools.deleteMany({});
await collections.migrationResults.deleteMany({});
await collections.semaphores.deleteMany({});
console.log("Reset done");
}
if (flags.includes("users") || flags.includes("all")) {
console.log("Creating 100 new users");
const newUsers: User[] = Array.from({ length: 100 }, () => ({
_id: new ObjectId(),
createdAt: faker.date.recent({ days: 30 }),
updatedAt: faker.date.recent({ days: 30 }),
username: faker.internet.userName(),
name: faker.person.fullName(),
hfUserId: faker.string.alphanumeric(24),
avatarUrl: faker.image.avatar(),
}));
await collections.users.insertMany(newUsers);
console.log("Done creating users.");
}
const users = await collections.users.find().toArray();
if (flags.includes("settings") || flags.includes("all")) {
console.log("Updating settings for all users");
users.forEach(async (user) => {
const settings: Settings = {
userId: user._id,
shareConversationsWithModelAuthors: faker.datatype.boolean(0.25),
hideEmojiOnSidebar: faker.datatype.boolean(0.25),
ethicsModalAcceptedAt: faker.date.recent({ days: 30 }),
activeModel: faker.helpers.arrayElement(modelIds),
createdAt: faker.date.recent({ days: 30 }),
updatedAt: faker.date.recent({ days: 30 }),
disableStream: faker.datatype.boolean(0.25),
directPaste: faker.datatype.boolean(0.25),
customPrompts: {},
assistants: [],
};
await collections.settings.updateOne(
{ userId: user._id },
{ $set: { ...settings } },
{ upsert: true }
);
});
console.log("Done updating settings.");
}
if (flags.includes("assistants") || flags.includes("all")) {
console.log("Creating assistants for all users");
await Promise.all(
users.map(async (user) => {
const name = faker.animal.insect();
const assistants = faker.helpers.multiple<Assistant>(
() => ({
_id: new ObjectId(),
name,
createdById: user._id,
createdByName: user.username,
createdAt: faker.date.recent({ days: 30 }),
updatedAt: faker.date.recent({ days: 30 }),
userCount: faker.number.int({ min: 1, max: 100000 }),
review: faker.helpers.enumValue(ReviewStatus),
modelId: faker.helpers.arrayElement(modelIds),
description: faker.lorem.sentence(),
preprompt: faker.hacker.phrase(),
exampleInputs: faker.helpers.multiple(() => faker.lorem.sentence(), {
count: faker.number.int({ min: 0, max: 4 }),
}),
searchTokens: generateSearchTokens(name),
last24HoursCount: faker.number.int({ min: 0, max: 1000 }),
}),
{ count: faker.number.int({ min: 3, max: 10 }) }
);
await collections.assistants.insertMany(assistants);
await collections.settings.updateOne(
{ userId: user._id },
{ $set: { assistants: assistants.map((a) => a._id.toString()) } },
{ upsert: true }
);
})
);
console.log("Done creating assistants.");
}
if (flags.includes("conversations") || flags.includes("all")) {
console.log("Creating conversations for all users");
await Promise.all(
users.map(async (user) => {
const conversations = faker.helpers.multiple(
async () => {
const settings = await collections.settings.findOne<Settings>({ userId: user._id });
const assistantId =
settings?.assistants && settings.assistants.length > 0 && faker.datatype.boolean(0.1)
? faker.helpers.arrayElement<ObjectId>(settings.assistants)
: undefined;
const preprompt =
(assistantId
? await collections.assistants
.findOne({ _id: assistantId })
.then((assistant: Assistant) => assistant?.preprompt ?? "")
: faker.helpers.maybe(() => faker.hacker.phrase(), { probability: 0.5 })) ?? "";
const messages = await generateMessages(preprompt);
const conv = {
_id: new ObjectId(),
userId: user._id,
assistantId,
preprompt,
createdAt: faker.date.recent({ days: 145 }),
updatedAt: faker.date.recent({ days: 145 }),
model: faker.helpers.arrayElement(modelIds),
title: faker.internet.emoji() + " " + faker.hacker.phrase(),
embeddingModel: defaultEmbeddingModel.id,
messages,
rootMessageId: messages[0].id,
} satisfies Conversation;
return conv;
},
{ count: faker.number.int({ min: 10, max: 200 }) }
);
await collections.conversations.insertMany(await Promise.all(conversations));
})
);
console.log("Done creating conversations.");
}
// generate Community Tools
if (flags.includes("tools") || flags.includes("all")) {
const tools = await Promise.all(
faker.helpers.multiple(
() => {
const _id = new ObjectId();
const displayName = faker.company.catchPhrase();
const description = faker.company.catchPhrase();
const color = faker.helpers.arrayElement([
"purple",
"blue",
"green",
"yellow",
"red",
]) satisfies ToolLogoColor;
const icon = faker.helpers.arrayElement([
"wikis",
"tools",
"camera",
"code",
"email",
"cloud",
"terminal",
"game",
"chat",
"speaker",
"video",
]) satisfies ToolLogoIcon;
const baseUrl = faker.helpers.arrayElement([
"stabilityai/stable-diffusion-3-medium",
"multimodalart/cosxl",
"gokaygokay/SD3-Long-Captioner",
"xichenhku/MimicBrush",
]);
// keep empty for populate for now
const user: User = faker.helpers.arrayElement(users);
const createdById = user._id;
const createdByName = user.username ?? user.name;
return {
type: "community" as const,
_id,
createdById,
createdByName,
displayName,
name: displayName.toLowerCase().replace(" ", "_"),
endpoint: "/test",
description,
color,
icon,
baseUrl,
inputs: [],
outputPath: null,
outputType: "str" as const,
showOutput: false,
useCount: faker.number.int({ min: 0, max: 100000 }),
last24HoursUseCount: faker.number.int({ min: 0, max: 1000 }),
createdAt: faker.date.recent({ days: 30 }),
updatedAt: faker.date.recent({ days: 30 }),
searchTokens: generateSearchTokens(displayName),
review: faker.helpers.enumValue(ReviewStatus),
outputComponent: null,
outputComponentIdx: null,
};
},
{ count: faker.number.int({ min: 10, max: 200 }) }
)
);
await collections.tools.insertMany(tools satisfies CommunityToolDB[]);
}
}
// run seed
(async () => {
try {
rl.question(
"You're about to run a seeding script on the following MONGODB_URL: \x1b[31m" +
env.MONGODB_URL +
"\x1b[0m\n\n With the following flags: \x1b[31m" +
flags.join("\x1b[0m , \x1b[31m") +
"\x1b[0m\n \n\n Are you sure you want to continue? (yes/no): ",
async (confirm) => {
if (confirm !== "yes") {
console.log("Not 'yes', exiting.");
rl.close();
process.exit(0);
}
console.log("Starting seeding...");
await seed();
console.log("Seeding done.");
rl.close();
}
);
} catch (e) {
console.error(e);
process.exit(1);
}
})();
| chat-ui/scripts/populate.ts/0 | {
"file_path": "chat-ui/scripts/populate.ts",
"repo_id": "chat-ui",
"token_count": 4497
} |
<script lang="ts">
import { base } from "$app/paths";
import { page } from "$app/state";
import { env as envPublic } from "$env/dynamic/public";
import LogoHuggingFaceBorderless from "$lib/components/icons/LogoHuggingFaceBorderless.svelte";
import Modal from "$lib/components/Modal.svelte";
import { useSettingsStore } from "$lib/stores/settings";
import { cookiesAreEnabled } from "$lib/utils/cookiesAreEnabled";
import Logo from "./icons/Logo.svelte";
const settings = useSettingsStore();
</script>
<Modal on:close>
<div
class="from-primary-500/40 via-primary-500/10 to-primary-500/0 flex w-full flex-col items-center gap-6 bg-gradient-to-b px-5 pb-8 pt-9 text-center sm:px-6"
>
<h2 class="flex items-center text-2xl font-semibold text-gray-800">
<Logo classNames="mr-1" />
{envPublic.PUBLIC_APP_NAME}
</h2>
<p class="text-lg font-semibold leading-snug text-gray-800" style="text-wrap: balance;">
{envPublic.PUBLIC_APP_DESCRIPTION}
</p>
<p class="text-sm text-gray-500">
{envPublic.PUBLIC_APP_DISCLAIMER_MESSAGE}
</p>
<div class="flex w-full flex-col items-center gap-2">
<button
class="w-full justify-center rounded-full border-2 border-gray-300 bg-black px-5 py-2 text-lg font-semibold text-gray-100 transition-colors hover:bg-gray-900"
class:bg-white={page.data.loginEnabled}
class:text-gray-800={page.data.loginEnabled}
class:hover:bg-slate-100={page.data.loginEnabled}
onclick={(e) => {
e.preventDefault();
e.stopPropagation();
if (!cookiesAreEnabled()) {
window.open(window.location.href, "_blank");
}
$settings.ethicsModalAccepted = true;
}}
>
{#if page.data.loginEnabled}
{#if page.data.guestMode}
Continue as guest
{:else}
Explore the app
{/if}
{:else}
Start chatting
{/if}
</button>
{#if page.data.loginEnabled}
<form action="{base}/login" target="_parent" method="POST" class="w-full">
<button
type="submit"
class="flex w-full flex-wrap items-center justify-center whitespace-nowrap rounded-full border-2 border-black bg-black px-5 py-2 text-lg font-semibold text-gray-100 transition-colors hover:bg-gray-900"
>
Sign in
{#if envPublic.PUBLIC_APP_NAME === "HuggingChat"}
<span class="flex items-center">
with <LogoHuggingFaceBorderless classNames="text-xl mr-1 ml-1.5 flex-none" /> Hugging
Face
</span>
{/if}
</button>
</form>
{/if}
</div>
</div>
</Modal>
| chat-ui/src/lib/components/DisclaimerModal.svelte/0 | {
"file_path": "chat-ui/src/lib/components/DisclaimerModal.svelte",
"repo_id": "chat-ui",
"token_count": 1086
} |
<script lang="ts">
import { fade } from "svelte/transition";
import { onDestroy, untrack } from "svelte";
import IconChevron from "./icons/IconChevron.svelte";
let visible = $state(false);
interface Props {
scrollNode: HTMLElement;
class?: string;
}
let { scrollNode, class: className = "" }: Props = $props();
let observer: ResizeObserver | null = $state(null);
function updateVisibility() {
if (!scrollNode) return;
visible =
Math.ceil(scrollNode.scrollTop) + 200 < scrollNode.scrollHeight - scrollNode.clientHeight &&
scrollNode.scrollTop > 200;
}
function scrollToPrevious() {
if (!scrollNode) return;
const messages = scrollNode.querySelectorAll("[data-message-id]");
const scrollTop = scrollNode.scrollTop;
let previousMessage: Element | null = null;
for (let i = messages.length - 1; i >= 0; i--) {
const messageTop =
messages[i].getBoundingClientRect().top +
scrollTop -
scrollNode.getBoundingClientRect().top;
if (messageTop < scrollTop - 1) {
previousMessage = messages[i];
break;
}
}
if (previousMessage) {
previousMessage.scrollIntoView({ behavior: "smooth", block: "start" });
}
}
function destroy() {
observer?.disconnect();
scrollNode?.removeEventListener("scroll", updateVisibility);
}
onDestroy(destroy);
$effect(() => {
scrollNode &&
untrack(() => {
if (scrollNode) {
destroy();
if (window.ResizeObserver) {
observer = new ResizeObserver(() => {
updateVisibility();
});
observer.observe(scrollNode);
}
scrollNode.addEventListener("scroll", updateVisibility);
}
});
});
</script>
{#if visible}
<button
transition:fade={{ duration: 150 }}
onclick={scrollToPrevious}
class="btn absolute flex h-[41px] w-[41px] rounded-full border bg-white shadow-md transition-all hover:bg-gray-100 dark:border-gray-600 dark:bg-gray-700 dark:shadow-gray-950 dark:hover:bg-gray-600 {className}"
>
<IconChevron classNames="rotate-180 mt-[2px]" />
</button>
{/if}
| chat-ui/src/lib/components/ScrollToPreviousBtn.svelte/0 | {
"file_path": "chat-ui/src/lib/components/ScrollToPreviousBtn.svelte",
"repo_id": "chat-ui",
"token_count": 771
} |
<script lang="ts">
import { run } from "svelte/legacy";
import type { Message } from "$lib/types/Message";
import { createEventDispatcher, tick } from "svelte";
import { page } from "$app/state";
import CopyToClipBoardBtn from "../CopyToClipBoardBtn.svelte";
import IconLoading from "../icons/IconLoading.svelte";
import CarbonRotate360 from "~icons/carbon/rotate-360";
import CarbonDownload from "~icons/carbon/download";
import CarbonPen from "~icons/carbon/pen";
import UploadedFile from "./UploadedFile.svelte";
import OpenWebSearchResults from "../OpenWebSearchResults.svelte";
import {
MessageUpdateType,
MessageWebSearchUpdateType,
type MessageToolUpdate,
type MessageWebSearchSourcesUpdate,
type MessageWebSearchUpdate,
type MessageFinalAnswerUpdate,
type MessageReasoningUpdate,
MessageReasoningUpdateType,
} from "$lib/types/MessageUpdate";
import { base } from "$app/paths";
import ToolUpdate from "./ToolUpdate.svelte";
import MarkdownRenderer from "./MarkdownRenderer.svelte";
import OpenReasoningResults from "./OpenReasoningResults.svelte";
import Alternatives from "./Alternatives.svelte";
import Vote from "./Vote.svelte";
interface Props {
message: Message;
loading?: boolean;
isAuthor?: boolean;
readOnly?: boolean;
isTapped?: boolean;
alternatives?: Message["id"][];
editMsdgId?: Message["id"] | null;
isLast?: boolean;
}
let {
message,
loading = false,
isAuthor = true,
readOnly = false,
isTapped = $bindable(false),
alternatives = [],
editMsdgId = $bindable(null),
isLast = false,
}: Props = $props();
const dispatch = createEventDispatcher<{
retry: { content?: string; id: Message["id"] };
}>();
let contentEl: HTMLElement | undefined = $state();
let isCopied = $state(false);
function handleKeyDown(e: KeyboardEvent) {
if (e.key === "Enter" && (e.metaKey || e.ctrlKey)) {
editFormEl?.requestSubmit();
}
}
let editContentEl: HTMLTextAreaElement | undefined = $state();
let editFormEl: HTMLFormElement | undefined = $state();
let searchUpdates = $derived(
(message.updates?.filter(({ type }) => type === MessageUpdateType.WebSearch) ??
[]) as MessageWebSearchUpdate[]
);
let reasoningUpdates = $derived(
(message.updates?.filter(({ type }) => type === MessageUpdateType.Reasoning) ??
[]) as MessageReasoningUpdate[]
);
let messageFinalAnswer = $derived(
message.updates?.find(
({ type }) => type === MessageUpdateType.FinalAnswer
) as MessageFinalAnswerUpdate
);
// filter all updates with type === "tool" then group them by uuid field
let toolUpdates = $derived(
message.updates
?.filter(({ type }) => type === "tool")
.reduce(
(acc, update) => {
if (update.type !== "tool") {
return acc;
}
acc[update.uuid] = acc[update.uuid] ?? [];
acc[update.uuid].push(update);
return acc;
},
{} as Record<string, MessageToolUpdate[]>
)
);
let urlNotTrailing = $derived(page.url.pathname.replace(/\/$/, ""));
let downloadLink = $derived(urlNotTrailing + `/message/${message.id}/prompt`);
let webSearchSources = $derived(
searchUpdates?.find(
(update): update is MessageWebSearchSourcesUpdate =>
update.subtype === MessageWebSearchUpdateType.Sources
)?.sources
);
run(() => {
if (isCopied) {
setTimeout(() => {
isCopied = false;
}, 1000);
}
});
let editMode = $derived(editMsdgId === message.id);
run(() => {
if (editMode) {
tick();
if (editContentEl) {
editContentEl.value = message.content;
editContentEl?.focus();
}
}
});
</script>
{#if message.from === "assistant"}
<div
class="group relative -mb-4 flex items-start justify-start gap-4 pb-4 leading-relaxed"
data-message-id={message.id}
data-message-role="assistant"
role="presentation"
onclick={() => (isTapped = !isTapped)}
onkeydown={() => (isTapped = !isTapped)}
>
{#if page.data?.assistant?.avatar}
<img
src="{base}/settings/assistants/{page.data.assistant._id}/avatar.jpg"
alt="Avatar"
class="mt-5 h-3 w-3 flex-none select-none rounded-full shadow-lg"
/>
{:else}
<img
alt=""
src="https://huggingface.co/avatars/2edb18bd0206c16b433841a47f53fa8e.svg"
class="mt-5 h-3 w-3 flex-none select-none rounded-full shadow-lg"
/>
{/if}
<div
class="relative min-h-[calc(2rem+theme(spacing[3.5])*2)] min-w-[60px] break-words rounded-2xl border border-gray-100 bg-gradient-to-br from-gray-50 px-5 py-3.5 text-gray-600 prose-pre:my-2 dark:border-gray-800 dark:from-gray-800/40 dark:text-gray-300"
>
{#if message.files?.length}
<div class="flex h-fit flex-wrap gap-x-5 gap-y-2">
{#each message.files as file}
<UploadedFile {file} canClose={false} />
{/each}
</div>
{/if}
{#if searchUpdates && searchUpdates.length > 0}
<OpenWebSearchResults webSearchMessages={searchUpdates} />
{/if}
{#if reasoningUpdates && reasoningUpdates.length > 0 && message.reasoning && message.reasoning.trim().length > 0}
{@const summaries = reasoningUpdates
.filter((u) => u.subtype === MessageReasoningUpdateType.Status)
.map((u) => u.status)}
<OpenReasoningResults
summary={summaries[summaries.length - 1] || ""}
content={message.reasoning || ""}
loading={loading && message.content.length === 0}
/>
{/if}
{#if toolUpdates}
{#each Object.values(toolUpdates) as tool}
{#if tool.length}
{#key tool[0].uuid}
<ToolUpdate {tool} {loading} />
{/key}
{/if}
{/each}
{/if}
<div
bind:this={contentEl}
class:mt-2={reasoningUpdates.length > 0 || searchUpdates.length > 0}
>
{#if isLast && loading && message.content.length === 0}
<IconLoading classNames="loading inline ml-2 first:ml-0" />
{/if}
<div
class="prose max-w-none dark:prose-invert max-sm:prose-sm prose-headings:font-semibold prose-h1:text-lg prose-h2:text-base prose-h3:text-base prose-pre:bg-gray-800 dark:prose-pre:bg-gray-900"
>
<MarkdownRenderer content={message.content} sources={webSearchSources} />
</div>
</div>
<!-- Web Search sources -->
{#if webSearchSources?.length}
<div class="mt-4 flex flex-wrap items-center gap-x-2 gap-y-1.5 text-sm">
<div class="text-gray-400">Sources:</div>
{#each webSearchSources as { link, title }}
<a
class="flex items-center gap-2 whitespace-nowrap rounded-lg border bg-white px-2 py-1.5 leading-none hover:border-gray-300 dark:border-gray-800 dark:bg-gray-900 dark:hover:border-gray-700"
href={link}
target="_blank"
>
<img
class="h-3.5 w-3.5 rounded"
src="https://www.google.com/s2/favicons?sz=64&domain_url={new URL(link).hostname ||
'placeholder'}"
alt="{title} favicon"
/>
<div>{new URL(link).hostname.replace(/^www\./, "")}</div>
</a>
{/each}
</div>
{/if}
<!-- Endpoint web sources -->
{#if messageFinalAnswer?.webSources && messageFinalAnswer.webSources.length}
<div class="mt-4 flex flex-wrap items-center gap-x-2 gap-y-1.5 text-sm">
<div class="text-gray-400">Sources:</div>
{#each messageFinalAnswer.webSources as { uri, title }}
<a
class="flex items-center gap-2 whitespace-nowrap rounded-lg border bg-white px-2 py-1.5 leading-none hover:border-gray-300 dark:border-gray-800 dark:bg-gray-900 dark:hover:border-gray-700"
href={uri}
target="_blank"
>
<img
class="h-3.5 w-3.5 rounded"
src="https://www.google.com/s2/favicons?sz=64&domain_url={new URL(uri).hostname ||
'placeholder'}"
alt="{title} favicon"
/>
<div>{title}</div>
</a>
{/each}
</div>
{/if}
</div>
{#if !loading && (message.content || toolUpdates)}
<div
class="absolute -bottom-4 right-0 flex max-md:transition-all md:group-hover:visible md:group-hover:opacity-100
{message.score ? 'visible opacity-100' : 'invisible max-md:-translate-y-4 max-md:opacity-0'}
{isTapped || isCopied ? 'max-md:visible max-md:translate-y-0 max-md:opacity-100' : ''}
"
>
{#if isAuthor}
<Vote {message} on:vote />
{/if}
<button
class="btn rounded-sm p-1 text-sm text-gray-400 hover:text-gray-500 focus:ring-0 dark:text-gray-400 dark:hover:text-gray-300"
title="Retry"
type="button"
onclick={() => {
dispatch("retry", { id: message.id });
}}
>
<CarbonRotate360 />
</button>
<CopyToClipBoardBtn
onClick={() => {
isCopied = true;
}}
classNames="btn rounded-sm p-1 text-sm text-gray-400 hover:text-gray-500 focus:ring-0 dark:text-gray-400 dark:hover:text-gray-300"
value={message.content}
/>
</div>
{/if}
</div>
{#if alternatives.length > 1 && editMsdgId === null}
<Alternatives {message} {alternatives} {loading} on:showAlternateMsg />
{/if}
{/if}
{#if message.from === "user"}
<div
class="group relative w-full items-start justify-start gap-4 max-sm:text-sm"
data-message-id={message.id}
data-message-type="user"
role="presentation"
onclick={() => (isTapped = !isTapped)}
onkeydown={() => (isTapped = !isTapped)}
>
<div class="flex w-full flex-col gap-2">
{#if message.files?.length}
<div class="flex w-fit gap-4 px-5">
{#each message.files as file}
<UploadedFile {file} canClose={false} />
{/each}
</div>
{/if}
<div class="flex w-full flex-row flex-nowrap">
{#if !editMode}
<p
class="disabled w-full appearance-none whitespace-break-spaces text-wrap break-words bg-inherit px-5 py-3.5 text-gray-500 dark:text-gray-400"
>
{message.content.trim()}
</p>
{:else}
<form
class="flex w-full flex-col"
bind:this={editFormEl}
onsubmit={(e) => {
e.preventDefault();
dispatch("retry", { content: editContentEl?.value, id: message.id });
editMsdgId = null;
}}
>
<textarea
class="w-full whitespace-break-spaces break-words rounded-xl bg-gray-100 px-5 py-3.5 text-gray-500 *:h-max dark:bg-gray-800 dark:text-gray-400"
rows="5"
bind:this={editContentEl}
value={message.content.trim()}
onkeydown={handleKeyDown}
required
></textarea>
<div class="flex w-full flex-row flex-nowrap items-center justify-center gap-2 pt-2">
<button
type="submit"
class="btn rounded-lg px-3 py-1.5 text-sm
{loading
? 'bg-gray-300 text-gray-400 dark:bg-gray-700 dark:text-gray-600'
: 'bg-gray-200 text-gray-600 hover:text-gray-800 focus:ring-0 dark:bg-gray-800 dark:text-gray-300 dark:hover:text-gray-200'}
"
disabled={loading}
>
Submit
</button>
<button
type="button"
class="btn rounded-sm p-2 text-sm text-gray-400 hover:text-gray-500 focus:ring-0 dark:text-gray-400 dark:hover:text-gray-300"
onclick={() => {
editMsdgId = null;
}}
>
Cancel
</button>
</div>
</form>
{/if}
{#if !loading && !editMode}
<div
class="
max-md:opacity-0' invisible absolute
right-0 top-3.5 z-10 h-max max-md:-translate-y-4 max-md:transition-all md:bottom-0 md:group-hover:visible md:group-hover:opacity-100 {isTapped ||
isCopied
? 'max-md:visible max-md:translate-y-0 max-md:opacity-100'
: ''}"
>
<div class="mx-auto flex flex-row flex-nowrap gap-2">
<a
class="rounded-lg border border-gray-100 bg-gray-100 p-1 text-xs text-gray-400 group-hover:block hover:text-gray-500 dark:border-gray-800 dark:bg-gray-800 dark:text-gray-400 dark:hover:text-gray-300 max-sm:!hidden md:hidden"
title="Download prompt and parameters"
type="button"
target="_blank"
href={downloadLink}
>
<CarbonDownload />
</a>
{#if !readOnly}
<button
class="cursor-pointer rounded-lg border border-gray-100 bg-gray-100 p-1 text-xs text-gray-400 group-hover:block hover:text-gray-500 dark:border-gray-800 dark:bg-gray-800 dark:text-gray-400 dark:hover:text-gray-300 md:hidden lg:-right-2"
title="Branch"
type="button"
onclick={() => (editMsdgId = message.id)}
>
<CarbonPen />
</button>
{/if}
</div>
</div>
{/if}
</div>
{#if alternatives.length > 1 && editMsdgId === null}
<Alternatives {message} {alternatives} {loading} on:showAlternateMsg />
{/if}
</div>
</div>
{/if}
<style>
@keyframes loading {
to {
stroke-dashoffset: 122.9;
}
}
</style>
| chat-ui/src/lib/components/chat/ChatMessage.svelte/0 | {
"file_path": "chat-ui/src/lib/components/chat/ChatMessage.svelte",
"repo_id": "chat-ui",
"token_count": 5655
} |
<script lang="ts">
interface Props {
classNames?: string;
}
let { classNames = "" }: Props = $props();
</script>
<svg
class={classNames}
xmlns="http://www.w3.org/2000/svg"
aria-hidden="true"
focusable="false"
role="img"
width="1em"
height="1em"
fill="currentColor"
preserveAspectRatio="xMidYMid meet"
viewBox="0 0 32 32"
><path
d="M19.02 5.57a5.77 5.77 0 1 1 8.56 7.74L16.6 25.45l-.02.01v.01A7.87 7.87 0 0 1 4.92 14.9L12.95 6A1.18 1.18 0 0 1 14.7 7.6l-8.03 8.87a5.51 5.51 0 1 0 8.19 7.4l10.97-12.14a3.41 3.41 0 1 0-5.06-4.58l-9.32 10.3a1.27 1.27 0 1 0 1.88 1.7l6.28-6.94a1.18 1.18 0 0 1 1.75 1.59l-6.28 6.94a3.63 3.63 0 0 1-5.41-4.83l.02-.02 9.33-10.32Z"
fill="currentColor"
/></svg
>
| chat-ui/src/lib/components/icons/IconPaperclip.svelte/0 | {
"file_path": "chat-ui/src/lib/components/icons/IconPaperclip.svelte",
"repo_id": "chat-ui",
"token_count": 381
} |
import type { Migration } from ".";
import { collections } from "$lib/server/database";
import { ObjectId, type WithId } from "mongodb";
import type { Conversation } from "$lib/types/Conversation";
import type { WebSearchSource } from "$lib/types/WebSearch";
import {
MessageUpdateStatus,
MessageUpdateType,
MessageWebSearchUpdateType,
type MessageUpdate,
type MessageWebSearchFinishedUpdate,
} from "$lib/types/MessageUpdate";
import type { Message } from "$lib/types/Message";
import { isMessageWebSearchSourcesUpdate } from "$lib/utils/messageUpdates";
// -----------
// Copy of the previous message update types
export type FinalAnswer = {
type: "finalAnswer";
text: string;
};
export type TextStreamUpdate = {
type: "stream";
token: string;
};
type WebSearchUpdate = {
type: "webSearch";
messageType: "update" | "error" | "sources";
message: string;
args?: string[];
sources?: WebSearchSource[];
};
type StatusUpdate = {
type: "status";
status: "started" | "pending" | "finished" | "error" | "title";
message?: string;
};
type ErrorUpdate = {
type: "error";
message: string;
name: string;
};
type FileUpdate = {
type: "file";
sha: string;
};
type OldMessageUpdate =
| FinalAnswer
| TextStreamUpdate
| WebSearchUpdate
| StatusUpdate
| ErrorUpdate
| FileUpdate;
/** Converts the old message update to the new schema */
function convertMessageUpdate(message: Message, update: OldMessageUpdate): MessageUpdate | null {
try {
// Text and files
if (update.type === "finalAnswer") {
return {
type: MessageUpdateType.FinalAnswer,
text: update.text,
interrupted: message.interrupted ?? false,
};
} else if (update.type === "stream") {
return {
type: MessageUpdateType.Stream,
token: update.token,
};
} else if (update.type === "file") {
return {
type: MessageUpdateType.File,
name: "Unknown",
sha: update.sha,
// assume jpeg but could be any image. should be harmless
mime: "image/jpeg",
};
}
// Status
else if (update.type === "status") {
if (update.status === "title") {
return {
type: MessageUpdateType.Title,
title: update.message ?? "New Chat",
};
}
if (update.status === "pending") return null;
const status =
update.status === "started"
? MessageUpdateStatus.Started
: update.status === "finished"
? MessageUpdateStatus.Finished
: MessageUpdateStatus.Error;
return {
type: MessageUpdateType.Status,
status,
message: update.message,
};
} else if (update.type === "error") {
// Treat it as an error status update
return {
type: MessageUpdateType.Status,
status: MessageUpdateStatus.Error,
message: update.message,
};
}
// Web Search
else if (update.type === "webSearch") {
if (update.messageType === "update") {
return {
type: MessageUpdateType.WebSearch,
subtype: MessageWebSearchUpdateType.Update,
message: update.message,
args: update.args,
};
} else if (update.messageType === "error") {
return {
type: MessageUpdateType.WebSearch,
subtype: MessageWebSearchUpdateType.Error,
message: update.message,
args: update.args,
};
} else if (update.messageType === "sources") {
return {
type: MessageUpdateType.WebSearch,
subtype: MessageWebSearchUpdateType.Sources,
message: update.message,
sources: update.sources ?? [],
};
}
}
console.warn("Unknown message update during migration:", update);
return null;
} catch (error) {
console.error("Error converting message update during migration. Skipping it... Error:", error);
return null;
}
}
const updateMessageUpdates: Migration = {
_id: new ObjectId("5f9f7f7f7f7f7f7f7f7f7f7f"),
name: "Convert message updates to the new schema",
up: async () => {
const allConversations = collections.conversations.find({});
let conversation: WithId<Pick<Conversation, "messages">> | null = null;
while ((conversation = await allConversations.tryNext())) {
const messages = conversation.messages.map((message) => {
// Convert all of the existing updates to the new schema
const updates = message.updates
?.map((update) => convertMessageUpdate(message, update as OldMessageUpdate))
.filter((update): update is MessageUpdate => Boolean(update));
// Add the new web search finished update if the sources update exists and webSearch is defined
const webSearchSourcesUpdateIndex = updates?.findIndex(isMessageWebSearchSourcesUpdate);
if (
message.webSearch &&
updates &&
webSearchSourcesUpdateIndex &&
webSearchSourcesUpdateIndex !== -1
) {
const webSearchFinishedUpdate: MessageWebSearchFinishedUpdate = {
type: MessageUpdateType.WebSearch,
subtype: MessageWebSearchUpdateType.Finished,
};
updates.splice(webSearchSourcesUpdateIndex + 1, 0, webSearchFinishedUpdate);
}
return { ...message, updates };
});
// Set the new messages array
await collections.conversations.updateOne({ _id: conversation._id }, { $set: { messages } });
}
return true;
},
runEveryTime: false,
};
export default updateMessageUpdates;
| chat-ui/src/lib/migrations/routines/04-update-message-updates.ts/0 | {
"file_path": "chat-ui/src/lib/migrations/routines/04-update-message-updates.ts",
"repo_id": "chat-ui",
"token_count": 1830
} |
import { env } from "$env/dynamic/private";
import { z } from "zod";
import { sum } from "$lib/utils/sum";
import {
embeddingEndpoints,
embeddingEndpointSchema,
type EmbeddingEndpoint,
} from "$lib/server/embeddingEndpoints/embeddingEndpoints";
import { embeddingEndpointTransformersJS } from "$lib/server/embeddingEndpoints/transformersjs/embeddingEndpoints";
import JSON5 from "json5";
const modelConfig = z.object({
/** Used as an identifier in DB */
id: z.string().optional(),
/** Used to link to the model page, and for inference */
name: z.string().min(1),
displayName: z.string().min(1).optional(),
description: z.string().min(1).optional(),
websiteUrl: z.string().url().optional(),
modelUrl: z.string().url().optional(),
endpoints: z.array(embeddingEndpointSchema).nonempty(),
chunkCharLength: z.number().positive(),
maxBatchSize: z.number().positive().optional(),
preQuery: z.string().default(""),
prePassage: z.string().default(""),
});
// Default embedding model for backward compatibility
const rawEmbeddingModelJSON =
env.TEXT_EMBEDDING_MODELS ||
`[
{
"name": "Xenova/gte-small",
"chunkCharLength": 512,
"endpoints": [
{ "type": "transformersjs" }
]
}
]`;
const embeddingModelsRaw = z.array(modelConfig).parse(JSON5.parse(rawEmbeddingModelJSON));
const processEmbeddingModel = async (m: z.infer<typeof modelConfig>) => ({
...m,
id: m.id || m.name,
});
const addEndpoint = (m: Awaited<ReturnType<typeof processEmbeddingModel>>) => ({
...m,
getEndpoint: async (): Promise<EmbeddingEndpoint> => {
if (!m.endpoints) {
return embeddingEndpointTransformersJS({
type: "transformersjs",
weight: 1,
model: m,
});
}
const totalWeight = sum(m.endpoints.map((e) => e.weight));
let random = Math.random() * totalWeight;
for (const endpoint of m.endpoints) {
if (random < endpoint.weight) {
const args = { ...endpoint, model: m };
switch (args.type) {
case "tei":
return embeddingEndpoints.tei(args);
case "transformersjs":
return embeddingEndpoints.transformersjs(args);
case "openai":
return embeddingEndpoints.openai(args);
case "hfapi":
return embeddingEndpoints.hfapi(args);
default:
throw new Error(`Unknown endpoint type: ${args}`);
}
}
random -= endpoint.weight;
}
throw new Error(`Failed to select embedding endpoint`);
},
});
export const embeddingModels = await Promise.all(
embeddingModelsRaw.map((e) => processEmbeddingModel(e).then(addEndpoint))
);
export const defaultEmbeddingModel = embeddingModels[0];
const validateEmbeddingModel = (_models: EmbeddingBackendModel[], key: "id" | "name") => {
return z.enum([_models[0][key], ..._models.slice(1).map((m) => m[key])]);
};
export const validateEmbeddingModelById = (_models: EmbeddingBackendModel[]) => {
return validateEmbeddingModel(_models, "id");
};
export const validateEmbeddingModelByName = (_models: EmbeddingBackendModel[]) => {
return validateEmbeddingModel(_models, "name");
};
export type EmbeddingBackendModel = typeof defaultEmbeddingModel;
| chat-ui/src/lib/server/embeddingModels.ts/0 | {
"file_path": "chat-ui/src/lib/server/embeddingModels.ts",
"repo_id": "chat-ui",
"token_count": 1115
} |
import { z } from "zod";
import { openAICompletionToTextGenerationStream } from "./openAICompletionToTextGenerationStream";
import { openAIChatToTextGenerationStream } from "./openAIChatToTextGenerationStream";
import type { CompletionCreateParamsStreaming } from "openai/resources/completions";
import type {
ChatCompletionCreateParamsStreaming,
ChatCompletionTool,
} from "openai/resources/chat/completions";
import type { FunctionDefinition, FunctionParameters } from "openai/resources/shared";
import { buildPrompt } from "$lib/buildPrompt";
import { env } from "$env/dynamic/private";
import type { Endpoint } from "../endpoints";
import type OpenAI from "openai";
import { createImageProcessorOptionsValidator, makeImageProcessor } from "../images";
import type { MessageFile } from "$lib/types/Message";
import { type Tool } from "$lib/types/Tool";
import type { EndpointMessage } from "../endpoints";
import { v4 as uuidv4 } from "uuid";
function createChatCompletionToolsArray(tools: Tool[] | undefined): ChatCompletionTool[] {
const toolChoices = [] as ChatCompletionTool[];
if (tools === undefined) {
return toolChoices;
}
for (const t of tools) {
const requiredProperties = [] as string[];
const properties = {} as Record<string, unknown>;
for (const idx in t.inputs) {
const parameterDefinition = t.inputs[idx];
const parameter = {} as Record<string, unknown>;
switch (parameterDefinition.type) {
case "str":
parameter.type = "string";
break;
case "float":
case "int":
parameter.type = "number";
break;
case "bool":
parameter.type = "boolean";
break;
case "file":
throw new Error("File type's currently not supported");
default:
throw new Error(`Unknown tool IO type: ${t}`);
}
if ("description" in parameterDefinition) {
parameter.description = parameterDefinition.description;
}
if (parameterDefinition.paramType == "required") {
requiredProperties.push(t.inputs[idx].name);
}
properties[t.inputs[idx].name] = parameter;
}
const functionParameters: FunctionParameters = {
type: "object",
...(requiredProperties.length > 0 ? { required: requiredProperties } : {}),
properties,
};
const functionDefinition: FunctionDefinition = {
name: t.name,
description: t.description,
parameters: functionParameters,
};
const toolDefinition: ChatCompletionTool = {
type: "function",
function: functionDefinition,
};
toolChoices.push(toolDefinition);
}
return toolChoices;
}
export const endpointOAIParametersSchema = z.object({
weight: z.number().int().positive().default(1),
model: z.any(),
type: z.literal("openai"),
baseURL: z.string().url().default("https://api.openai.com/v1"),
apiKey: z.string().default(env.OPENAI_API_KEY || env.HF_TOKEN || "sk-"),
completion: z
.union([z.literal("completions"), z.literal("chat_completions")])
.default("chat_completions"),
defaultHeaders: z.record(z.string()).optional(),
defaultQuery: z.record(z.string()).optional(),
extraBody: z.record(z.any()).optional(),
multimodal: z
.object({
image: createImageProcessorOptionsValidator({
supportedMimeTypes: [
"image/png",
"image/jpeg",
"image/webp",
"image/avif",
"image/tiff",
"image/gif",
],
preferredMimeType: "image/webp",
maxSizeInMB: Infinity,
maxWidth: 4096,
maxHeight: 4096,
}),
})
.default({}),
/* enable use of max_completion_tokens in place of max_tokens */
useCompletionTokens: z.boolean().default(false),
});
export async function endpointOai(
input: z.input<typeof endpointOAIParametersSchema>
): Promise<Endpoint> {
const {
baseURL,
apiKey,
completion,
model,
defaultHeaders,
defaultQuery,
multimodal,
extraBody,
useCompletionTokens,
} = endpointOAIParametersSchema.parse(input);
let OpenAI;
try {
OpenAI = (await import("openai")).OpenAI;
} catch (e) {
throw new Error("Failed to import OpenAI", { cause: e });
}
const openai = new OpenAI({
apiKey: apiKey || "sk-",
baseURL,
defaultHeaders,
defaultQuery,
});
const imageProcessor = makeImageProcessor(multimodal.image);
if (completion === "completions") {
if (model.tools) {
throw new Error(
"Tools are not supported for 'completions' mode, switch to 'chat_completions' instead"
);
}
return async ({ messages, preprompt, continueMessage, generateSettings, conversationId }) => {
const prompt = await buildPrompt({
messages,
continueMessage,
preprompt,
model,
});
const parameters = { ...model.parameters, ...generateSettings };
const body: CompletionCreateParamsStreaming = {
model: model.id ?? model.name,
prompt,
stream: true,
max_tokens: parameters?.max_new_tokens,
stop: parameters?.stop,
temperature: parameters?.temperature,
top_p: parameters?.top_p,
frequency_penalty: parameters?.repetition_penalty,
presence_penalty: parameters?.presence_penalty,
};
const openAICompletion = await openai.completions.create(body, {
body: { ...body, ...extraBody },
headers: {
"ChatUI-Conversation-ID": conversationId?.toString() ?? "",
"X-use-cache": "false",
},
});
return openAICompletionToTextGenerationStream(openAICompletion);
};
} else if (completion === "chat_completions") {
return async ({
messages,
preprompt,
generateSettings,
tools,
toolResults,
conversationId,
}) => {
let messagesOpenAI: OpenAI.Chat.Completions.ChatCompletionMessageParam[] =
await prepareMessages(messages, imageProcessor, !model.tools && model.multimodal);
if (messagesOpenAI?.[0]?.role !== "system") {
messagesOpenAI = [{ role: "system", content: "" }, ...messagesOpenAI];
}
if (messagesOpenAI?.[0]) {
messagesOpenAI[0].content = preprompt ?? "";
}
// if system role is not supported, convert first message to a user message.
if (!model.systemRoleSupported && messagesOpenAI?.[0]?.role === "system") {
messagesOpenAI[0] = {
...messagesOpenAI[0],
role: "user",
};
}
if (toolResults && toolResults.length > 0) {
const toolCallRequests: OpenAI.Chat.Completions.ChatCompletionAssistantMessageParam = {
role: "assistant",
content: null,
tool_calls: [],
};
const responses: Array<OpenAI.Chat.Completions.ChatCompletionToolMessageParam> = [];
for (const result of toolResults) {
const id = uuidv4();
const toolCallResult: OpenAI.Chat.Completions.ChatCompletionMessageToolCall = {
type: "function",
function: {
name: result.call.name,
arguments: JSON.stringify(result.call.parameters),
},
id,
};
toolCallRequests.tool_calls?.push(toolCallResult);
const toolCallResponse: OpenAI.Chat.Completions.ChatCompletionToolMessageParam = {
role: "tool",
content: "",
tool_call_id: id,
};
if ("outputs" in result) {
toolCallResponse.content = JSON.stringify(result.outputs);
}
responses.push(toolCallResponse);
}
messagesOpenAI.push(toolCallRequests);
messagesOpenAI.push(...responses);
}
const parameters = { ...model.parameters, ...generateSettings };
const toolCallChoices = createChatCompletionToolsArray(tools);
const body: ChatCompletionCreateParamsStreaming = {
model: model.id ?? model.name,
messages: messagesOpenAI,
stream: true,
...(useCompletionTokens
? { max_completion_tokens: parameters?.max_new_tokens }
: { max_tokens: parameters?.max_new_tokens }),
stop: parameters?.stop,
temperature: parameters?.temperature,
top_p: parameters?.top_p,
frequency_penalty: parameters?.repetition_penalty,
presence_penalty: parameters?.presence_penalty,
...(toolCallChoices.length > 0 ? { tools: toolCallChoices, tool_choice: "auto" } : {}),
};
const openChatAICompletion = await openai.chat.completions.create(body, {
body: { ...body, ...extraBody },
headers: {
"ChatUI-Conversation-ID": conversationId?.toString() ?? "",
"X-use-cache": "false",
},
});
return openAIChatToTextGenerationStream(openChatAICompletion);
};
} else {
throw new Error("Invalid completion type");
}
}
async function prepareMessages(
messages: EndpointMessage[],
imageProcessor: ReturnType<typeof makeImageProcessor>,
isMultimodal: boolean
): Promise<OpenAI.Chat.Completions.ChatCompletionMessageParam[]> {
return Promise.all(
messages.map(async (message) => {
if (message.from === "user" && isMultimodal) {
return {
role: message.from,
content: [
...(await prepareFiles(imageProcessor, message.files ?? [])),
{ type: "text", text: message.content },
],
};
}
return {
role: message.from,
content: message.content,
};
})
);
}
async function prepareFiles(
imageProcessor: ReturnType<typeof makeImageProcessor>,
files: MessageFile[]
): Promise<OpenAI.Chat.Completions.ChatCompletionContentPartImage[]> {
const processedFiles = await Promise.all(
files.filter((file) => file.mime.startsWith("image/")).map(imageProcessor)
);
return processedFiles.map((file) => ({
type: "image_url" as const,
image_url: {
url: `data:${file.mime};base64,${file.image.toString("base64")}`,
},
}));
}
| chat-ui/src/lib/server/endpoints/openai/endpointOai.ts/0 | {
"file_path": "chat-ui/src/lib/server/endpoints/openai/endpointOai.ts",
"repo_id": "chat-ui",
"token_count": 3562
} |
import type { ConfigTool } from "$lib/types/Tool";
import { ObjectId } from "mongodb";
import vm from "node:vm";
const calculator: ConfigTool = {
_id: new ObjectId("00000000000000000000000C"),
type: "config",
description: "Calculate the result of a mathematical expression",
color: "blue",
icon: "code",
displayName: "Calculator",
name: "calculator",
endpoint: null,
inputs: [
{
name: "equation",
type: "str",
description:
"A mathematical expression to be evaluated. The result of the expression will be returned.",
paramType: "required",
},
],
outputComponent: null,
outputComponentIdx: null,
showOutput: false,
async *call({ equation }) {
try {
const blocks = String(equation).split("\n");
const query = blocks[blocks.length - 1].replace(/[^-()\d/*+.]/g, "");
return {
outputs: [{ calculator: `${query} = ${vm.runInNewContext(query)}` }],
};
} catch (cause) {
throw new Error("Invalid expression", { cause });
}
},
};
export default calculator;
| chat-ui/src/lib/server/tools/calculator.ts/0 | {
"file_path": "chat-ui/src/lib/server/tools/calculator.ts",
"repo_id": "chat-ui",
"token_count": 360
} |
import type { SerializedHTMLElement } from "../../scrape/types";
import { MarkdownElementType, type MarkdownElement } from "../types";
// --- Markdown Elements ---
/** Converts markdown element to a string with formatting */
export function stringifyMarkdownElement(elem: MarkdownElement): string {
const content = elem.content.trim();
if (elem.type === MarkdownElementType.Header) return `${"#".repeat(elem.level)} ${content}\n\n`;
if (elem.type === MarkdownElementType.BlockQuote) {
return `${"> ".repeat(elem.depth)}${content}\n\n`;
}
if (elem.type === MarkdownElementType.CodeBlock) return `\`\`\`\n${content}\n\`\`\`\n\n`;
if (elem.type === MarkdownElementType.UnorderedListItem) return `- ${content}\n`;
if (elem.type === MarkdownElementType.OrderedListItem) {
const siblings = elem.parent?.children ?? [elem];
const currentIndex = siblings.indexOf(elem);
const lastAdjacentIndex = siblings
.slice(currentIndex + 1)
.findLastIndex((child) => child.type === MarkdownElementType.OrderedListItem);
const order = currentIndex - lastAdjacentIndex + 1;
return `${order}. ${content}\n`;
}
return `${content}\n\n`;
}
/** Converts a tree of markdown elements to a string with formatting */
export function stringifyMarkdownElementTree(elem: MarkdownElement): string {
const stringified = stringifyMarkdownElement(elem);
if (!("children" in elem)) return stringified;
return stringified + elem.children.map(stringifyMarkdownElementTree).join("");
}
// ----- HTML Elements -----
/** Ignores all non-inline tag types and grabs their text. Converts inline tags to markdown */
export function stringifyHTMLElements(elems: (SerializedHTMLElement | string)[]): string {
return elems.map(stringifyHTMLElement).join("").trim();
}
/** Ignores all non-inline tag types and grabs their text. Converts inline tags to markdown */
export function stringifyHTMLElement(elem: SerializedHTMLElement | string): string {
if (typeof elem === "string") return elem;
if (elem.tagName === "br") return "\n";
const content = elem.content.map(stringifyHTMLElement).join("");
if (content.length === 0) return content;
if (elem.tagName === "strong" || elem.tagName === "b") return `**${content}**`;
if (elem.tagName === "em" || elem.tagName === "i") return `*${content}*`;
if (elem.tagName === "s" || elem.tagName === "strike") return `~~${content}~~`;
if (elem.tagName === "code" || elem.tagName === "var" || elem.tagName === "tt") {
return `\`${content}\``;
}
if (elem.tagName === "sup") return `<sup>${content}</sup>`;
if (elem.tagName === "sub") return `<sub>${content}</sub>`;
if (elem.tagName === "a" && content.trim().length > 0) {
const href = elem.attributes.href;
if (!href) return elem.content.map(stringifyHTMLElement).join("");
return `[${elem.content.map(stringifyHTMLElement).join("")}](${href})`;
}
return elem.content.map(stringifyHTMLElement).join("");
}
/** Grabs all text content directly, ignoring HTML tags */
export function stringifyHTMLElementsUnformatted(
elems: (SerializedHTMLElement | string)[]
): string {
return elems.map(stringifyHTMLElementUnformatted).join("");
}
/** Grabs all text content directly, ignoring HTML tags */
function stringifyHTMLElementUnformatted(elem: SerializedHTMLElement | string): string {
if (typeof elem === "string") return elem;
return elem.content.map(stringifyHTMLElementUnformatted).join("");
}
| chat-ui/src/lib/server/websearch/markdown/utils/stringify.ts/0 | {
"file_path": "chat-ui/src/lib/server/websearch/markdown/utils/stringify.ts",
"repo_id": "chat-ui",
"token_count": 1149
} |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.