text
stringlengths
96
319k
id
stringlengths
14
178
metadata
dict
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Stable Diffusion pipelines Stable Diffusion is a text-to-image latent diffusion model created by the researchers and engineers from [CompVis](https://github.com/CompVis), [Stability AI](https://stability.ai/) and [LAION](https://laion.ai/). Latent diffusion applies the diffusion process over a lower dimensional latent space to reduce memory and compute complexity. This specific type of diffusion model was proposed in [High-Resolution Image Synthesis with Latent Diffusion Models](https://huggingface.co/papers/2112.10752) by Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, Björn Ommer. Stable Diffusion is trained on 512x512 images from a subset of the LAION-5B dataset. This model uses a frozen CLIP ViT-L/14 text encoder to condition the model on text prompts. With its 860M UNet and 123M text encoder, the model is relatively lightweight and can run on consumer GPUs. For more details about how Stable Diffusion works and how it differs from the base latent diffusion model, take a look at the Stability AI [announcement](https://stability.ai/blog/stable-diffusion-announcement) and our own [blog post](https://huggingface.co/blog/stable_diffusion#how-does-stable-diffusion-work) for more technical details. You can find the original codebase for Stable Diffusion v1.0 at [CompVis/stable-diffusion](https://github.com/CompVis/stable-diffusion) and Stable Diffusion v2.0 at [Stability-AI/stablediffusion](https://github.com/Stability-AI/stablediffusion) as well as their original scripts for various tasks. Additional official checkpoints for the different Stable Diffusion versions and tasks can be found on the [CompVis](https://huggingface.co/CompVis), [Runway](https://huggingface.co/runwayml), and [Stability AI](https://huggingface.co/stabilityai) Hub organizations. Explore these organizations to find the best checkpoint for your use-case! The table below summarizes the available Stable Diffusion pipelines, their supported tasks, and an interactive demo: <div class="flex justify-center"> <div class="rounded-xl border border-gray-200"> <table class="min-w-full divide-y-2 divide-gray-200 bg-white text-sm"> <thead> <tr> <th class="px-4 py-2 font-medium text-gray-900 text-left"> Pipeline </th> <th class="px-4 py-2 font-medium text-gray-900 text-left"> Supported tasks </th> <th class="px-4 py-2 font-medium text-gray-900 text-left"> 🤗 Space </th> </tr> </thead> <tbody class="divide-y divide-gray-200"> <tr> <td class="px-4 py-2 text-gray-700"> <a href="./text2img">StableDiffusion</a> </td> <td class="px-4 py-2 text-gray-700">text-to-image</td> <td class="px-4 py-2"><a href="https://huggingface.co/spaces/stabilityai/stable-diffusion"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"/></a> </td> </tr> <tr> <td class="px-4 py-2 text-gray-700"> <a href="./img2img">StableDiffusionImg2Img</a> </td> <td class="px-4 py-2 text-gray-700">image-to-image</td> <td class="px-4 py-2"><a href="https://huggingface.co/spaces/huggingface/diffuse-the-rest"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"/></a> </td> </tr> <tr> <td class="px-4 py-2 text-gray-700"> <a href="./inpaint">StableDiffusionInpaint</a> </td> <td class="px-4 py-2 text-gray-700">inpainting</td> <td class="px-4 py-2"><a href="https://huggingface.co/spaces/runwayml/stable-diffusion-inpainting"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"/></a> </td> </tr> <tr> <td class="px-4 py-2 text-gray-700"> <a href="./depth2img">StableDiffusionDepth2Img</a> </td> <td class="px-4 py-2 text-gray-700">depth-to-image</td> <td class="px-4 py-2"><a href="https://huggingface.co/spaces/radames/stable-diffusion-depth2img"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"/></a> </td> </tr> <tr> <td class="px-4 py-2 text-gray-700"> <a href="./image_variation">StableDiffusionImageVariation</a> </td> <td class="px-4 py-2 text-gray-700">image variation</td> <td class="px-4 py-2"><a href="https://huggingface.co/spaces/lambdalabs/stable-diffusion-image-variations"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"/></a> </td> </tr> <tr> <td class="px-4 py-2 text-gray-700"> <a href="./stable_diffusion_safe">StableDiffusionPipelineSafe</a> </td> <td class="px-4 py-2 text-gray-700">filtered text-to-image</td> <td class="px-4 py-2"><a href="https://huggingface.co/spaces/AIML-TUDA/unsafe-vs-safe-stable-diffusion"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"/></a> </td> </tr> <tr> <td class="px-4 py-2 text-gray-700"> <a href="./stable_diffusion_2">StableDiffusion2</a> </td> <td class="px-4 py-2 text-gray-700">text-to-image, inpainting, depth-to-image, super-resolution</td> <td class="px-4 py-2"><a href="https://huggingface.co/spaces/stabilityai/stable-diffusion"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"/></a> </td> </tr> <tr> <td class="px-4 py-2 text-gray-700"> <a href="./stable_diffusion_xl">StableDiffusionXL</a> </td> <td class="px-4 py-2 text-gray-700">text-to-image, image-to-image</td> <td class="px-4 py-2"><a href="https://huggingface.co/spaces/RamAnanth1/stable-diffusion-xl"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"/></a> </td> </tr> <tr> <td class="px-4 py-2 text-gray-700"> <a href="./latent_upscale">StableDiffusionLatentUpscale</a> </td> <td class="px-4 py-2 text-gray-700">super-resolution</td> <td class="px-4 py-2"><a href="https://huggingface.co/spaces/huggingface-projects/stable-diffusion-latent-upscaler"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"/></a> </td> </tr> <tr> <td class="px-4 py-2 text-gray-700"> <a href="./upscale">StableDiffusionUpscale</a> </td> <td class="px-4 py-2 text-gray-700">super-resolution</td> </tr> <tr> <td class="px-4 py-2 text-gray-700"> <a href="./ldm3d_diffusion">StableDiffusionLDM3D</a> </td> <td class="px-4 py-2 text-gray-700">text-to-rgb, text-to-depth, text-to-pano</td> <td class="px-4 py-2"><a href="https://huggingface.co/spaces/r23/ldm3d-space"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"/></a> </td> </tr> <tr> <td class="px-4 py-2 text-gray-700"> <a href="./ldm3d_diffusion">StableDiffusionUpscaleLDM3D</a> </td> <td class="px-4 py-2 text-gray-700">ldm3d super-resolution</td> </tr> </tbody> </table> </div> </div> ## Tips To help you get the most out of the Stable Diffusion pipelines, here are a few tips for improving performance and usability. These tips are applicable to all Stable Diffusion pipelines. ### Explore tradeoff between speed and quality [`StableDiffusionPipeline`] uses the [`PNDMScheduler`] by default, but 🤗 Diffusers provides many other schedulers (some of which are faster or output better quality) that are compatible. For example, if you want to use the [`EulerDiscreteScheduler`] instead of the default: ```py from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler pipeline = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4") pipeline.scheduler = EulerDiscreteScheduler.from_config(pipeline.scheduler.config) # or euler_scheduler = EulerDiscreteScheduler.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="scheduler") pipeline = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", scheduler=euler_scheduler) ``` ### Reuse pipeline components to save memory To save memory and use the same components across multiple pipelines, use the `.components` method to avoid loading weights into RAM more than once. ```py from diffusers import ( StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, StableDiffusionInpaintPipeline, ) text2img = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4") img2img = StableDiffusionImg2ImgPipeline(**text2img.components) inpaint = StableDiffusionInpaintPipeline(**text2img.components) # now you can use text2img(...), img2img(...), inpaint(...) just like the call methods of each respective pipeline ``` ### Create web demos using `gradio` The Stable Diffusion pipelines are automatically supported in [Gradio](https://github.com/gradio-app/gradio/), a library that makes creating beautiful and user-friendly machine learning apps on the web a breeze. First, make sure you have Gradio installed: ```sh pip install -U gradio ``` Then, create a web demo around any Stable Diffusion-based pipeline. For example, you can create an image generation pipeline in a single line of code with Gradio's [`Interface.from_pipeline`](https://www.gradio.app/docs/interface#interface-from-pipeline) function: ```py from diffusers import StableDiffusionPipeline import gradio as gr pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4") gr.Interface.from_pipeline(pipe).launch() ``` which opens an intuitive drag-and-drop interface in your browser: ![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/gradio-panda.png) Similarly, you could create a demo for an image-to-image pipeline with: ```py from diffusers import StableDiffusionImg2ImgPipeline import gradio as gr pipe = StableDiffusionImg2ImgPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5") gr.Interface.from_pipeline(pipe).launch() ``` By default, the web demo runs on a local server. If you'd like to share it with others, you can generate a temporary public link by setting `share=True` in `launch()`. Or, you can host your demo on [Hugging Face Spaces](https://huggingface.co/spaces)https://huggingface.co/spaces for a permanent link.
diffusers/docs/source/en/api/pipelines/stable_diffusion/overview.md/0
{ "file_path": "diffusers/docs/source/en/api/pipelines/stable_diffusion/overview.md", "repo_id": "diffusers", "token_count": 4765 }
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Quantization Quantization techniques reduce memory and computational costs by representing weights and activations with lower-precision data types like 8-bit integers (int8). This enables loading larger models you normally wouldn't be able to fit into memory, and speeding up inference. Diffusers supports 8-bit and 4-bit quantization with [bitsandbytes](https://huggingface.co/docs/bitsandbytes/en/index). Quantization techniques that aren't supported in Transformers can be added with the [`DiffusersQuantizer`] class. <Tip> Learn how to quantize models in the [Quantization](../quantization/overview) guide. </Tip> ## BitsAndBytesConfig [[autodoc]] BitsAndBytesConfig ## GGUFQuantizationConfig [[autodoc]] GGUFQuantizationConfig ## TorchAoConfig [[autodoc]] TorchAoConfig ## DiffusersQuantizer [[autodoc]] quantizers.base.DiffusersQuantizer
diffusers/docs/source/en/api/quantization.md/0
{ "file_path": "diffusers/docs/source/en/api/quantization.md", "repo_id": "diffusers", "token_count": 374 }
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Reduce memory usage A barrier to using diffusion models is the large amount of memory required. To overcome this challenge, there are several memory-reducing techniques you can use to run even some of the largest models on free-tier or consumer GPUs. Some of these techniques can even be combined to further reduce memory usage. <Tip> In many cases, optimizing for memory or speed leads to improved performance in the other, so you should try to optimize for both whenever you can. This guide focuses on minimizing memory usage, but you can also learn more about how to [Speed up inference](fp16). </Tip> The results below are obtained from generating a single 512x512 image from the prompt a photo of an astronaut riding a horse on mars with 50 DDIM steps on a Nvidia Titan RTX, demonstrating the speed-up you can expect as a result of reduced memory consumption. | | latency | speed-up | | ---------------- | ------- | ------- | | original | 9.50s | x1 | | fp16 | 3.61s | x2.63 | | channels last | 3.30s | x2.88 | | traced UNet | 3.21s | x2.96 | | memory-efficient attention | 2.63s | x3.61 | ## Sliced VAE Sliced VAE enables decoding large batches of images with limited VRAM or batches with 32 images or more by decoding the batches of latents one image at a time. You'll likely want to couple this with [`~ModelMixin.enable_xformers_memory_efficient_attention`] to reduce memory use further if you have xFormers installed. To use sliced VAE, call [`~StableDiffusionPipeline.enable_vae_slicing`] on your pipeline before inference: ```python import torch from diffusers import StableDiffusionPipeline pipe = StableDiffusionPipeline.from_pretrained( "stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True, ) pipe = pipe.to("cuda") prompt = "a photo of an astronaut riding a horse on mars" pipe.enable_vae_slicing() #pipe.enable_xformers_memory_efficient_attention() images = pipe([prompt] * 32).images ``` You may see a small performance boost in VAE decoding on multi-image batches, and there should be no performance impact on single-image batches. ## Tiled VAE Tiled VAE processing also enables working with large images on limited VRAM (for example, generating 4k images on 8GB of VRAM) by splitting the image into overlapping tiles, decoding the tiles, and then blending the outputs together to compose the final image. You should also used tiled VAE with [`~ModelMixin.enable_xformers_memory_efficient_attention`] to reduce memory use further if you have xFormers installed. To use tiled VAE processing, call [`~StableDiffusionPipeline.enable_vae_tiling`] on your pipeline before inference: ```python import torch from diffusers import StableDiffusionPipeline, UniPCMultistepScheduler pipe = StableDiffusionPipeline.from_pretrained( "stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True, ) pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) pipe = pipe.to("cuda") prompt = "a beautiful landscape photograph" pipe.enable_vae_tiling() #pipe.enable_xformers_memory_efficient_attention() image = pipe([prompt], width=3840, height=2224, num_inference_steps=20).images[0] ``` The output image has some tile-to-tile tone variation because the tiles are decoded separately, but you shouldn't see any sharp and obvious seams between the tiles. Tiling is turned off for images that are 512x512 or smaller. ## CPU offloading Offloading the weights to the CPU and only loading them on the GPU when performing the forward pass can also save memory. Often, this technique can reduce memory consumption to less than 3GB. To perform CPU offloading, call [`~StableDiffusionPipeline.enable_sequential_cpu_offload`]: ```Python import torch from diffusers import StableDiffusionPipeline pipe = StableDiffusionPipeline.from_pretrained( "stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True, ) prompt = "a photo of an astronaut riding a horse on mars" pipe.enable_sequential_cpu_offload() image = pipe(prompt).images[0] ``` CPU offloading works on submodules rather than whole models. This is the best way to minimize memory consumption, but inference is much slower due to the iterative nature of the diffusion process. The UNet component of the pipeline runs several times (as many as `num_inference_steps`); each time, the different UNet submodules are sequentially onloaded and offloaded as needed, resulting in a large number of memory transfers. <Tip> Consider using [model offloading](#model-offloading) if you want to optimize for speed because it is much faster. The tradeoff is your memory savings won't be as large. </Tip> <Tip warning={true}> When using [`~StableDiffusionPipeline.enable_sequential_cpu_offload`], don't move the pipeline to CUDA beforehand or else the gain in memory consumption will only be minimal (see this [issue](https://github.com/huggingface/diffusers/issues/1934) for more information). [`~StableDiffusionPipeline.enable_sequential_cpu_offload`] is a stateful operation that installs hooks on the models. </Tip> ## Model offloading <Tip> Model offloading requires 🤗 Accelerate version 0.17.0 or higher. </Tip> [Sequential CPU offloading](#cpu-offloading) preserves a lot of memory but it makes inference slower because submodules are moved to GPU as needed, and they're immediately returned to the CPU when a new module runs. Full-model offloading is an alternative that moves whole models to the GPU, instead of handling each model's constituent *submodules*. There is a negligible impact on inference time (compared with moving the pipeline to `cuda`), and it still provides some memory savings. During model offloading, only one of the main components of the pipeline (typically the text encoder, UNet and VAE) is placed on the GPU while the others wait on the CPU. Components like the UNet that run for multiple iterations stay on the GPU until they're no longer needed. Enable model offloading by calling [`~StableDiffusionPipeline.enable_model_cpu_offload`] on the pipeline: ```Python import torch from diffusers import StableDiffusionPipeline pipe = StableDiffusionPipeline.from_pretrained( "stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True, ) prompt = "a photo of an astronaut riding a horse on mars" pipe.enable_model_cpu_offload() image = pipe(prompt).images[0] ``` <Tip warning={true}> In order to properly offload models after they're called, it is required to run the entire pipeline and models are called in the pipeline's expected order. Exercise caution if models are reused outside the context of the pipeline after hooks have been installed. See [Removing Hooks](https://huggingface.co/docs/accelerate/en/package_reference/big_modeling#accelerate.hooks.remove_hook_from_module) for more information. [`~StableDiffusionPipeline.enable_model_cpu_offload`] is a stateful operation that installs hooks on the models and state on the pipeline. </Tip> ## FP8 layerwise weight-casting PyTorch supports `torch.float8_e4m3fn` and `torch.float8_e5m2` as weight storage dtypes, but they can't be used for computation in many different tensor operations due to unimplemented kernel support. However, you can use these dtypes to store model weights in fp8 precision and upcast them on-the-fly when the layers are used in the forward pass. This is known as layerwise weight-casting. Typically, inference on most models is done with `torch.float16` or `torch.bfloat16` weight/computation precision. Layerwise weight-casting cuts down the memory footprint of the model weights by approximately half. ```python import torch from diffusers import CogVideoXPipeline, CogVideoXTransformer3DModel from diffusers.utils import export_to_video model_id = "THUDM/CogVideoX-5b" # Load the model in bfloat16 and enable layerwise casting transformer = CogVideoXTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.bfloat16) transformer.enable_layerwise_casting(storage_dtype=torch.float8_e4m3fn, compute_dtype=torch.bfloat16) # Load the pipeline pipe = CogVideoXPipeline.from_pretrained(model_id, transformer=transformer, torch_dtype=torch.bfloat16) pipe.to("cuda") prompt = ( "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. " "The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other " "pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, " "casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. " "The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical " "atmosphere of this unique musical performance." ) video = pipe(prompt=prompt, guidance_scale=6, num_inference_steps=50).frames[0] export_to_video(video, "output.mp4", fps=8) ``` In the above example, layerwise casting is enabled on the transformer component of the pipeline. By default, certain layers are skipped from the FP8 weight casting because it can lead to significant degradation of generation quality. The normalization and modulation related weight parameters are also skipped by default. However, you gain more control and flexibility by directly utilizing the [`~hooks.layerwise_casting.apply_layerwise_casting`] function instead of [`~ModelMixin.enable_layerwise_casting`]. ## Channels-last memory format The channels-last memory format is an alternative way of ordering NCHW tensors in memory to preserve dimension ordering. Channels-last tensors are ordered in such a way that the channels become the densest dimension (storing images pixel-per-pixel). Since not all operators currently support the channels-last format, it may result in worst performance but you should still try and see if it works for your model. For example, to set the pipeline's UNet to use the channels-last format: ```python print(pipe.unet.conv_out.state_dict()["weight"].stride()) # (2880, 9, 3, 1) pipe.unet.to(memory_format=torch.channels_last) # in-place operation print( pipe.unet.conv_out.state_dict()["weight"].stride() ) # (2880, 1, 960, 320) having a stride of 1 for the 2nd dimension proves that it works ``` ## Tracing Tracing runs an example input tensor through the model and captures the operations that are performed on it as that input makes its way through the model's layers. The executable or `ScriptFunction` that is returned is optimized with just-in-time compilation. To trace a UNet: ```python import time import torch from diffusers import StableDiffusionPipeline import functools # torch disable grad torch.set_grad_enabled(False) # set variables n_experiments = 2 unet_runs_per_experiment = 50 # load inputs def generate_inputs(): sample = torch.randn((2, 4, 64, 64), device="cuda", dtype=torch.float16) timestep = torch.rand(1, device="cuda", dtype=torch.float16) * 999 encoder_hidden_states = torch.randn((2, 77, 768), device="cuda", dtype=torch.float16) return sample, timestep, encoder_hidden_states pipe = StableDiffusionPipeline.from_pretrained( "stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True, ).to("cuda") unet = pipe.unet unet.eval() unet.to(memory_format=torch.channels_last) # use channels_last memory format unet.forward = functools.partial(unet.forward, return_dict=False) # set return_dict=False as default # warmup for _ in range(3): with torch.inference_mode(): inputs = generate_inputs() orig_output = unet(*inputs) # trace print("tracing..") unet_traced = torch.jit.trace(unet, inputs) unet_traced.eval() print("done tracing") # warmup and optimize graph for _ in range(5): with torch.inference_mode(): inputs = generate_inputs() orig_output = unet_traced(*inputs) # benchmarking with torch.inference_mode(): for _ in range(n_experiments): torch.cuda.synchronize() start_time = time.time() for _ in range(unet_runs_per_experiment): orig_output = unet_traced(*inputs) torch.cuda.synchronize() print(f"unet traced inference took {time.time() - start_time:.2f} seconds") for _ in range(n_experiments): torch.cuda.synchronize() start_time = time.time() for _ in range(unet_runs_per_experiment): orig_output = unet(*inputs) torch.cuda.synchronize() print(f"unet inference took {time.time() - start_time:.2f} seconds") # save the model unet_traced.save("unet_traced.pt") ``` Replace the `unet` attribute of the pipeline with the traced model: ```python from diffusers import StableDiffusionPipeline import torch from dataclasses import dataclass @dataclass class UNet2DConditionOutput: sample: torch.Tensor pipe = StableDiffusionPipeline.from_pretrained( "stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True, ).to("cuda") # use jitted unet unet_traced = torch.jit.load("unet_traced.pt") # del pipe.unet class TracedUNet(torch.nn.Module): def __init__(self): super().__init__() self.in_channels = pipe.unet.config.in_channels self.device = pipe.unet.device def forward(self, latent_model_input, t, encoder_hidden_states): sample = unet_traced(latent_model_input, t, encoder_hidden_states)[0] return UNet2DConditionOutput(sample=sample) pipe.unet = TracedUNet() with torch.inference_mode(): image = pipe([prompt] * 1, num_inference_steps=50).images[0] ``` ## Memory-efficient attention Recent work on optimizing bandwidth in the attention block has generated huge speed-ups and reductions in GPU memory usage. The most recent type of memory-efficient attention is [Flash Attention](https://arxiv.org/abs/2205.14135) (you can check out the original code at [HazyResearch/flash-attention](https://github.com/HazyResearch/flash-attention)). <Tip> If you have PyTorch >= 2.0 installed, you should not expect a speed-up for inference when enabling `xformers`. </Tip> To use Flash Attention, install the following: - PyTorch > 1.12 - CUDA available - [xFormers](xformers) Then call [`~ModelMixin.enable_xformers_memory_efficient_attention`] on the pipeline: ```python from diffusers import DiffusionPipeline import torch pipe = DiffusionPipeline.from_pretrained( "stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True, ).to("cuda") pipe.enable_xformers_memory_efficient_attention() with torch.inference_mode(): sample = pipe("a small cat") # optional: You can disable it via # pipe.disable_xformers_memory_efficient_attention() ``` The iteration speed when using `xformers` should match the iteration speed of PyTorch 2.0 as described [here](torch2.0).
diffusers/docs/source/en/optimization/memory.md/0
{ "file_path": "diffusers/docs/source/en/optimization/memory.md", "repo_id": "diffusers", "token_count": 4880 }
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Effective and efficient diffusion [[open-in-colab]] Getting the [`DiffusionPipeline`] to generate images in a certain style or include what you want can be tricky. Often times, you have to run the [`DiffusionPipeline`] several times before you end up with an image you're happy with. But generating something out of nothing is a computationally intensive process, especially if you're running inference over and over again. This is why it's important to get the most *computational* (speed) and *memory* (GPU vRAM) efficiency from the pipeline to reduce the time between inference cycles so you can iterate faster. This tutorial walks you through how to generate faster and better with the [`DiffusionPipeline`]. Begin by loading the [`stable-diffusion-v1-5/stable-diffusion-v1-5`](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) model: ```python from diffusers import DiffusionPipeline model_id = "stable-diffusion-v1-5/stable-diffusion-v1-5" pipeline = DiffusionPipeline.from_pretrained(model_id, use_safetensors=True) ``` The example prompt you'll use is a portrait of an old warrior chief, but feel free to use your own prompt: ```python prompt = "portrait photo of a old warrior chief" ``` ## Speed <Tip> 💡 If you don't have access to a GPU, you can use one for free from a GPU provider like [Colab](https://colab.research.google.com/)! </Tip> One of the simplest ways to speed up inference is to place the pipeline on a GPU the same way you would with any PyTorch module: ```python pipeline = pipeline.to("cuda") ``` To make sure you can use the same image and improve on it, use a [`Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) and set a seed for [reproducibility](./using-diffusers/reusing_seeds): ```python import torch generator = torch.Generator("cuda").manual_seed(0) ``` Now you can generate an image: ```python image = pipeline(prompt, generator=generator).images[0] image ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/stable_diffusion_101/sd_101_1.png"> </div> This process took ~30 seconds on a T4 GPU (it might be faster if your allocated GPU is better than a T4). By default, the [`DiffusionPipeline`] runs inference with full `float32` precision for 50 inference steps. You can speed this up by switching to a lower precision like `float16` or running fewer inference steps. Let's start by loading the model in `float16` and generate an image: ```python import torch pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, use_safetensors=True) pipeline = pipeline.to("cuda") generator = torch.Generator("cuda").manual_seed(0) image = pipeline(prompt, generator=generator).images[0] image ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/stable_diffusion_101/sd_101_2.png"> </div> This time, it only took ~11 seconds to generate the image, which is almost 3x faster than before! <Tip> 💡 We strongly suggest always running your pipelines in `float16`, and so far, we've rarely seen any degradation in output quality. </Tip> Another option is to reduce the number of inference steps. Choosing a more efficient scheduler could help decrease the number of steps without sacrificing output quality. You can find which schedulers are compatible with the current model in the [`DiffusionPipeline`] by calling the `compatibles` method: ```python pipeline.scheduler.compatibles [ diffusers.schedulers.scheduling_lms_discrete.LMSDiscreteScheduler, diffusers.schedulers.scheduling_unipc_multistep.UniPCMultistepScheduler, diffusers.schedulers.scheduling_k_dpm_2_discrete.KDPM2DiscreteScheduler, diffusers.schedulers.scheduling_deis_multistep.DEISMultistepScheduler, diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler, diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler, diffusers.schedulers.scheduling_ddpm.DDPMScheduler, diffusers.schedulers.scheduling_dpmsolver_singlestep.DPMSolverSinglestepScheduler, diffusers.schedulers.scheduling_k_dpm_2_ancestral_discrete.KDPM2AncestralDiscreteScheduler, diffusers.utils.dummy_torch_and_torchsde_objects.DPMSolverSDEScheduler, diffusers.schedulers.scheduling_heun_discrete.HeunDiscreteScheduler, diffusers.schedulers.scheduling_pndm.PNDMScheduler, diffusers.schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteScheduler, diffusers.schedulers.scheduling_ddim.DDIMScheduler, ] ``` The Stable Diffusion model uses the [`PNDMScheduler`] by default which usually requires ~50 inference steps, but more performant schedulers like [`DPMSolverMultistepScheduler`], require only ~20 or 25 inference steps. Use the [`~ConfigMixin.from_config`] method to load a new scheduler: ```python from diffusers import DPMSolverMultistepScheduler pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config) ``` Now set the `num_inference_steps` to 20: ```python generator = torch.Generator("cuda").manual_seed(0) image = pipeline(prompt, generator=generator, num_inference_steps=20).images[0] image ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/stable_diffusion_101/sd_101_3.png"> </div> Great, you've managed to cut the inference time to just 4 seconds! ⚡️ ## Memory The other key to improving pipeline performance is consuming less memory, which indirectly implies more speed, since you're often trying to maximize the number of images generated per second. The easiest way to see how many images you can generate at once is to try out different batch sizes until you get an `OutOfMemoryError` (OOM). Create a function that'll generate a batch of images from a list of prompts and `Generators`. Make sure to assign each `Generator` a seed so you can reuse it if it produces a good result. ```python def get_inputs(batch_size=1): generator = [torch.Generator("cuda").manual_seed(i) for i in range(batch_size)] prompts = batch_size * [prompt] num_inference_steps = 20 return {"prompt": prompts, "generator": generator, "num_inference_steps": num_inference_steps} ``` Start with `batch_size=4` and see how much memory you've consumed: ```python from diffusers.utils import make_image_grid images = pipeline(**get_inputs(batch_size=4)).images make_image_grid(images, 2, 2) ``` Unless you have a GPU with more vRAM, the code above probably returned an `OOM` error! Most of the memory is taken up by the cross-attention layers. Instead of running this operation in a batch, you can run it sequentially to save a significant amount of memory. All you have to do is configure the pipeline to use the [`~DiffusionPipeline.enable_attention_slicing`] function: ```python pipeline.enable_attention_slicing() ``` Now try increasing the `batch_size` to 8! ```python images = pipeline(**get_inputs(batch_size=8)).images make_image_grid(images, rows=2, cols=4) ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/stable_diffusion_101/sd_101_5.png"> </div> Whereas before you couldn't even generate a batch of 4 images, now you can generate a batch of 8 images at ~3.5 seconds per image! This is probably the fastest you can go on a T4 GPU without sacrificing quality. ## Quality In the last two sections, you learned how to optimize the speed of your pipeline by using `fp16`, reducing the number of inference steps by using a more performant scheduler, and enabling attention slicing to reduce memory consumption. Now you're going to focus on how to improve the quality of generated images. ### Better checkpoints The most obvious step is to use better checkpoints. The Stable Diffusion model is a good starting point, and since its official launch, several improved versions have also been released. However, using a newer version doesn't automatically mean you'll get better results. You'll still have to experiment with different checkpoints yourself, and do a little research (such as using [negative prompts](https://minimaxir.com/2022/11/stable-diffusion-negative-prompt/)) to get the best results. As the field grows, there are more and more high-quality checkpoints finetuned to produce certain styles. Try exploring the [Hub](https://huggingface.co/models?library=diffusers&sort=downloads) and [Diffusers Gallery](https://huggingface.co/spaces/huggingface-projects/diffusers-gallery) to find one you're interested in! ### Better pipeline components You can also try replacing the current pipeline components with a newer version. Let's try loading the latest [autoencoder](https://huggingface.co/stabilityai/stable-diffusion-2-1/tree/main/vae) from Stability AI into the pipeline, and generate some images: ```python from diffusers import AutoencoderKL vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16).to("cuda") pipeline.vae = vae images = pipeline(**get_inputs(batch_size=8)).images make_image_grid(images, rows=2, cols=4) ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/stable_diffusion_101/sd_101_6.png"> </div> ### Better prompt engineering The text prompt you use to generate an image is super important, so much so that it is called *prompt engineering*. Some considerations to keep during prompt engineering are: - How is the image or similar images of the one I want to generate stored on the internet? - What additional detail can I give that steers the model towards the style I want? With this in mind, let's improve the prompt to include color and higher quality details: ```python prompt += ", tribal panther make up, blue on red, side profile, looking away, serious eyes" prompt += " 50mm portrait photography, hard rim lighting photography--beta --ar 2:3 --beta --upbeta" ``` Generate a batch of images with the new prompt: ```python images = pipeline(**get_inputs(batch_size=8)).images make_image_grid(images, rows=2, cols=4) ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/stable_diffusion_101/sd_101_7.png"> </div> Pretty impressive! Let's tweak the second image - corresponding to the `Generator` with a seed of `1` - a bit more by adding some text about the age of the subject: ```python prompts = [ "portrait photo of the oldest warrior chief, tribal panther make up, blue on red, side profile, looking away, serious eyes 50mm portrait photography, hard rim lighting photography--beta --ar 2:3 --beta --upbeta", "portrait photo of an old warrior chief, tribal panther make up, blue on red, side profile, looking away, serious eyes 50mm portrait photography, hard rim lighting photography--beta --ar 2:3 --beta --upbeta", "portrait photo of a warrior chief, tribal panther make up, blue on red, side profile, looking away, serious eyes 50mm portrait photography, hard rim lighting photography--beta --ar 2:3 --beta --upbeta", "portrait photo of a young warrior chief, tribal panther make up, blue on red, side profile, looking away, serious eyes 50mm portrait photography, hard rim lighting photography--beta --ar 2:3 --beta --upbeta", ] generator = [torch.Generator("cuda").manual_seed(1) for _ in range(len(prompts))] images = pipeline(prompt=prompts, generator=generator, num_inference_steps=25).images make_image_grid(images, 2, 2) ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/stable_diffusion_101/sd_101_8.png"> </div> ## Next steps In this tutorial, you learned how to optimize a [`DiffusionPipeline`] for computational and memory efficiency as well as improving the quality of generated outputs. If you're interested in making your pipeline even faster, take a look at the following resources: - Learn how [PyTorch 2.0](./optimization/torch2.0) and [`torch.compile`](https://pytorch.org/docs/stable/generated/torch.compile.html) can yield 5 - 300% faster inference speed. On an A100 GPU, inference can be up to 50% faster! - If you can't use PyTorch 2, we recommend you install [xFormers](./optimization/xformers). Its memory-efficient attention mechanism works great with PyTorch 1.13.1 for faster speed and reduced memory consumption. - Other optimization techniques, such as model offloading, are covered in [this guide](./optimization/fp16).
diffusers/docs/source/en/stable_diffusion.md/0
{ "file_path": "diffusers/docs/source/en/stable_diffusion.md", "repo_id": "diffusers", "token_count": 3981 }
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Text-to-image <Tip warning={true}> The text-to-image script is experimental, and it's easy to overfit and run into issues like catastrophic forgetting. Try exploring different hyperparameters to get the best results on your dataset. </Tip> Text-to-image models like Stable Diffusion are conditioned to generate images given a text prompt. Training a model can be taxing on your hardware, but if you enable `gradient_checkpointing` and `mixed_precision`, it is possible to train a model on a single 24GB GPU. If you're training with larger batch sizes or want to train faster, it's better to use GPUs with more than 30GB of memory. You can reduce your memory footprint by enabling memory-efficient attention with [xFormers](../optimization/xformers). JAX/Flax training is also supported for efficient training on TPUs and GPUs, but it doesn't support gradient checkpointing, gradient accumulation or xFormers. A GPU with at least 30GB of memory or a TPU v3 is recommended for training with Flax. This guide will explore the [train_text_to_image.py](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py) training script to help you become familiar with it, and how you can adapt it for your own use-case. Before running the script, make sure you install the library from source: ```bash git clone https://github.com/huggingface/diffusers cd diffusers pip install . ``` Then navigate to the example folder containing the training script and install the required dependencies for the script you're using: <hfoptions id="installation"> <hfoption id="PyTorch"> ```bash cd examples/text_to_image pip install -r requirements.txt ``` </hfoption> <hfoption id="Flax"> ```bash cd examples/text_to_image pip install -r requirements_flax.txt ``` </hfoption> </hfoptions> <Tip> 🤗 Accelerate is a library for helping you train on multiple GPUs/TPUs or with mixed-precision. It'll automatically configure your training setup based on your hardware and environment. Take a look at the 🤗 Accelerate [Quick tour](https://huggingface.co/docs/accelerate/quicktour) to learn more. </Tip> Initialize an 🤗 Accelerate environment: ```bash accelerate config ``` To setup a default 🤗 Accelerate environment without choosing any configurations: ```bash accelerate config default ``` Or if your environment doesn't support an interactive shell, like a notebook, you can use: ```py from accelerate.utils import write_basic_config write_basic_config() ``` Lastly, if you want to train a model on your own dataset, take a look at the [Create a dataset for training](create_dataset) guide to learn how to create a dataset that works with the training script. ## Script parameters <Tip> The following sections highlight parts of the training script that are important for understanding how to modify it, but it doesn't cover every aspect of the script in detail. If you're interested in learning more, feel free to read through the [script](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py) and let us know if you have any questions or concerns. </Tip> The training script provides many parameters to help you customize your training run. All of the parameters and their descriptions are found in the [`parse_args()`](https://github.com/huggingface/diffusers/blob/8959c5b9dec1c94d6ba482c94a58d2215c5fd026/examples/text_to_image/train_text_to_image.py#L193) function. This function provides default values for each parameter, such as the training batch size and learning rate, but you can also set your own values in the training command if you'd like. For example, to speedup training with mixed precision using the fp16 format, add the `--mixed_precision` parameter to the training command: ```bash accelerate launch train_text_to_image.py \ --mixed_precision="fp16" ``` Some basic and important parameters include: - `--pretrained_model_name_or_path`: the name of the model on the Hub or a local path to the pretrained model - `--dataset_name`: the name of the dataset on the Hub or a local path to the dataset to train on - `--image_column`: the name of the image column in the dataset to train on - `--caption_column`: the name of the text column in the dataset to train on - `--output_dir`: where to save the trained model - `--push_to_hub`: whether to push the trained model to the Hub - `--checkpointing_steps`: frequency of saving a checkpoint as the model trains; this is useful if for some reason training is interrupted, you can continue training from that checkpoint by adding `--resume_from_checkpoint` to your training command ### Min-SNR weighting The [Min-SNR](https://huggingface.co/papers/2303.09556) weighting strategy can help with training by rebalancing the loss to achieve faster convergence. The training script supports predicting `epsilon` (noise) or `v_prediction`, but Min-SNR is compatible with both prediction types. This weighting strategy is only supported by PyTorch and is unavailable in the Flax training script. Add the `--snr_gamma` parameter and set it to the recommended value of 5.0: ```bash accelerate launch train_text_to_image.py \ --snr_gamma=5.0 ``` You can compare the loss surfaces for different `snr_gamma` values in this [Weights and Biases](https://wandb.ai/sayakpaul/text2image-finetune-minsnr) report. For smaller datasets, the effects of Min-SNR may not be as obvious compared to larger datasets. ## Training script The dataset preprocessing code and training loop are found in the [`main()`](https://github.com/huggingface/diffusers/blob/8959c5b9dec1c94d6ba482c94a58d2215c5fd026/examples/text_to_image/train_text_to_image.py#L490) function. If you need to adapt the training script, this is where you'll need to make your changes. The `train_text_to_image` script starts by [loading a scheduler](https://github.com/huggingface/diffusers/blob/8959c5b9dec1c94d6ba482c94a58d2215c5fd026/examples/text_to_image/train_text_to_image.py#L543) and tokenizer. You can choose to use a different scheduler here if you want: ```py noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") tokenizer = CLIPTokenizer.from_pretrained( args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision ) ``` Then the script [loads the UNet](https://github.com/huggingface/diffusers/blob/8959c5b9dec1c94d6ba482c94a58d2215c5fd026/examples/text_to_image/train_text_to_image.py#L619) model: ```py load_model = UNet2DConditionModel.from_pretrained(input_dir, subfolder="unet") model.register_to_config(**load_model.config) model.load_state_dict(load_model.state_dict()) ``` Next, the text and image columns of the dataset need to be preprocessed. The [`tokenize_captions`](https://github.com/huggingface/diffusers/blob/8959c5b9dec1c94d6ba482c94a58d2215c5fd026/examples/text_to_image/train_text_to_image.py#L724) function handles tokenizing the inputs, and the [`train_transforms`](https://github.com/huggingface/diffusers/blob/8959c5b9dec1c94d6ba482c94a58d2215c5fd026/examples/text_to_image/train_text_to_image.py#L742) function specifies the type of transforms to apply to the image. Both of these functions are bundled into `preprocess_train`: ```py def preprocess_train(examples): images = [image.convert("RGB") for image in examples[image_column]] examples["pixel_values"] = [train_transforms(image) for image in images] examples["input_ids"] = tokenize_captions(examples) return examples ``` Lastly, the [training loop](https://github.com/huggingface/diffusers/blob/8959c5b9dec1c94d6ba482c94a58d2215c5fd026/examples/text_to_image/train_text_to_image.py#L878) handles everything else. It encodes images into latent space, adds noise to the latents, computes the text embeddings to condition on, updates the model parameters, and saves and pushes the model to the Hub. If you want to learn more about how the training loop works, check out the [Understanding pipelines, models and schedulers](../using-diffusers/write_own_pipeline) tutorial which breaks down the basic pattern of the denoising process. ## Launch the script Once you've made all your changes or you're okay with the default configuration, you're ready to launch the training script! 🚀 <hfoptions id="training-inference"> <hfoption id="PyTorch"> Let's train on the [Naruto BLIP captions](https://huggingface.co/datasets/lambdalabs/naruto-blip-captions) dataset to generate your own Naruto characters. Set the environment variables `MODEL_NAME` and `dataset_name` to the model and the dataset (either from the Hub or a local path). If you're training on more than one GPU, add the `--multi_gpu` parameter to the `accelerate launch` command. <Tip> To train on a local dataset, set the `TRAIN_DIR` and `OUTPUT_DIR` environment variables to the path of the dataset and where to save the model to. </Tip> ```bash export MODEL_NAME="stable-diffusion-v1-5/stable-diffusion-v1-5" export dataset_name="lambdalabs/naruto-blip-captions" accelerate launch --mixed_precision="fp16" train_text_to_image.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --dataset_name=$dataset_name \ --use_ema \ --resolution=512 --center_crop --random_flip \ --train_batch_size=1 \ --gradient_accumulation_steps=4 \ --gradient_checkpointing \ --max_train_steps=15000 \ --learning_rate=1e-05 \ --max_grad_norm=1 \ --enable_xformers_memory_efficient_attention \ --lr_scheduler="constant" --lr_warmup_steps=0 \ --output_dir="sd-naruto-model" \ --push_to_hub ``` </hfoption> <hfoption id="Flax"> Training with Flax can be faster on TPUs and GPUs thanks to [@duongna211](https://github.com/duongna21). Flax is more efficient on a TPU, but GPU performance is also great. Set the environment variables `MODEL_NAME` and `dataset_name` to the model and the dataset (either from the Hub or a local path). <Tip> To train on a local dataset, set the `TRAIN_DIR` and `OUTPUT_DIR` environment variables to the path of the dataset and where to save the model to. </Tip> ```bash export MODEL_NAME="stable-diffusion-v1-5/stable-diffusion-v1-5" export dataset_name="lambdalabs/naruto-blip-captions" python train_text_to_image_flax.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --dataset_name=$dataset_name \ --resolution=512 --center_crop --random_flip \ --train_batch_size=1 \ --max_train_steps=15000 \ --learning_rate=1e-05 \ --max_grad_norm=1 \ --output_dir="sd-naruto-model" \ --push_to_hub ``` </hfoption> </hfoptions> Once training is complete, you can use your newly trained model for inference: <hfoptions id="training-inference"> <hfoption id="PyTorch"> ```py from diffusers import StableDiffusionPipeline import torch pipeline = StableDiffusionPipeline.from_pretrained("path/to/saved_model", torch_dtype=torch.float16, use_safetensors=True).to("cuda") image = pipeline(prompt="yoda").images[0] image.save("yoda-naruto.png") ``` </hfoption> <hfoption id="Flax"> ```py import jax import numpy as np from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxStableDiffusionPipeline pipeline, params = FlaxStableDiffusionPipeline.from_pretrained("path/to/saved_model", dtype=jax.numpy.bfloat16) prompt = "yoda naruto" prng_seed = jax.random.PRNGKey(0) num_inference_steps = 50 num_samples = jax.device_count() prompt = num_samples * [prompt] prompt_ids = pipeline.prepare_inputs(prompt) # shard inputs and rng params = replicate(params) prng_seed = jax.random.split(prng_seed, jax.device_count()) prompt_ids = shard(prompt_ids) images = pipeline(prompt_ids, params, prng_seed, num_inference_steps, jit=True).images images = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:]))) image.save("yoda-naruto.png") ``` </hfoption> </hfoptions> ## Next steps Congratulations on training your own text-to-image model! To learn more about how to use your new model, the following guides may be helpful: - Learn how to [load LoRA weights](../using-diffusers/loading_adapters#LoRA) for inference if you trained your model with LoRA. - Learn more about how certain parameters like guidance scale or techniques such as prompt weighting can help you control inference in the [Text-to-image](../using-diffusers/conditional_image_generation) task guide.
diffusers/docs/source/en/training/text2image.md/0
{ "file_path": "diffusers/docs/source/en/training/text2image.md", "repo_id": "diffusers", "token_count": 4048 }
# Create a server Diffusers' pipelines can be used as an inference engine for a server. It supports concurrent and multithreaded requests to generate images that may be requested by multiple users at the same time. This guide will show you how to use the [`StableDiffusion3Pipeline`] in a server, but feel free to use any pipeline you want. Start by navigating to the `examples/server` folder and installing all of the dependencies. ```py pip install . pip install -f requirements.txt ``` Launch the server with the following command. ```py python server.py ``` The server is accessed at http://localhost:8000. You can curl this model with the following command. ``` curl -X POST -H "Content-Type: application/json" --data '{"model": "something", "prompt": "a kitten in front of a fireplace"}' http://localhost:8000/v1/images/generations ``` If you need to upgrade some dependencies, you can use either [pip-tools](https://github.com/jazzband/pip-tools) or [uv](https://github.com/astral-sh/uv). For example, upgrade the dependencies with `uv` using the following command. ``` uv pip compile requirements.in -o requirements.txt ``` The server is built with [FastAPI](https://fastapi.tiangolo.com/async/). The endpoint for `v1/images/generations` is shown below. ```py @app.post("/v1/images/generations") async def generate_image(image_input: TextToImageInput): try: loop = asyncio.get_event_loop() scheduler = shared_pipeline.pipeline.scheduler.from_config(shared_pipeline.pipeline.scheduler.config) pipeline = StableDiffusion3Pipeline.from_pipe(shared_pipeline.pipeline, scheduler=scheduler) generator = torch.Generator(device="cuda") generator.manual_seed(random.randint(0, 10000000)) output = await loop.run_in_executor(None, lambda: pipeline(image_input.prompt, generator = generator)) logger.info(f"output: {output}") image_url = save_image(output.images[0]) return {"data": [{"url": image_url}]} except Exception as e: if isinstance(e, HTTPException): raise e elif hasattr(e, 'message'): raise HTTPException(status_code=500, detail=e.message + traceback.format_exc()) raise HTTPException(status_code=500, detail=str(e) + traceback.format_exc()) ``` The `generate_image` function is defined as asynchronous with the [async](https://fastapi.tiangolo.com/async/) keyword so that FastAPI knows that whatever is happening in this function won't necessarily return a result right away. Once it hits some point in the function that it needs to await some other [Task](https://docs.python.org/3/library/asyncio-task.html#asyncio.Task), the main thread goes back to answering other HTTP requests. This is shown in the code below with the [await](https://fastapi.tiangolo.com/async/#async-and-await) keyword. ```py output = await loop.run_in_executor(None, lambda: pipeline(image_input.prompt, generator = generator)) ``` At this point, the execution of the pipeline function is placed onto a [new thread](https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.loop.run_in_executor), and the main thread performs other things until a result is returned from the `pipeline`. Another important aspect of this implementation is creating a `pipeline` from `shared_pipeline`. The goal behind this is to avoid loading the underlying model more than once onto the GPU while still allowing for each new request that is running on a separate thread to have its own generator and scheduler. The scheduler, in particular, is not thread-safe, and it will cause errors like: `IndexError: index 21 is out of bounds for dimension 0 with size 21` if you try to use the same scheduler across multiple threads.
diffusers/docs/source/en/using-diffusers/create_a_server.md/0
{ "file_path": "diffusers/docs/source/en/using-diffusers/create_a_server.md", "repo_id": "diffusers", "token_count": 1150 }
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Overview The inference pipeline supports and enables a wide range of techniques that are divided into two categories: * Pipeline functionality: these techniques modify the pipeline or extend it for other applications. For example, pipeline callbacks add new features to a pipeline and a pipeline can also be extended for distributed inference. * Improve inference quality: these techniques increase the visual quality of the generated images. For example, you can enhance your prompts with GPT2 to create better images with lower effort.
diffusers/docs/source/en/using-diffusers/overview_techniques.md/0
{ "file_path": "diffusers/docs/source/en/using-diffusers/overview_techniques.md", "repo_id": "diffusers", "token_count": 243 }
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Understanding pipelines, models and schedulers [[open-in-colab]] 🧨 Diffusers is designed to be a user-friendly and flexible toolbox for building diffusion systems tailored to your use-case. At the core of the toolbox are models and schedulers. While the [`DiffusionPipeline`] bundles these components together for convenience, you can also unbundle the pipeline and use the models and schedulers separately to create new diffusion systems. In this tutorial, you'll learn how to use models and schedulers to assemble a diffusion system for inference, starting with a basic pipeline and then progressing to the Stable Diffusion pipeline. ## Deconstruct a basic pipeline A pipeline is a quick and easy way to run a model for inference, requiring no more than four lines of code to generate an image: ```py >>> from diffusers import DDPMPipeline >>> ddpm = DDPMPipeline.from_pretrained("google/ddpm-cat-256", use_safetensors=True).to("cuda") >>> image = ddpm(num_inference_steps=25).images[0] >>> image ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ddpm-cat.png" alt="Image of cat created from DDPMPipeline"/> </div> That was super easy, but how did the pipeline do that? Let's breakdown the pipeline and take a look at what's happening under the hood. In the example above, the pipeline contains a [`UNet2DModel`] model and a [`DDPMScheduler`]. The pipeline denoises an image by taking random noise the size of the desired output and passing it through the model several times. At each timestep, the model predicts the *noise residual* and the scheduler uses it to predict a less noisy image. The pipeline repeats this process until it reaches the end of the specified number of inference steps. To recreate the pipeline with the model and scheduler separately, let's write our own denoising process. 1. Load the model and scheduler: ```py >>> from diffusers import DDPMScheduler, UNet2DModel >>> scheduler = DDPMScheduler.from_pretrained("google/ddpm-cat-256") >>> model = UNet2DModel.from_pretrained("google/ddpm-cat-256", use_safetensors=True).to("cuda") ``` 2. Set the number of timesteps to run the denoising process for: ```py >>> scheduler.set_timesteps(50) ``` 3. Setting the scheduler timesteps creates a tensor with evenly spaced elements in it, 50 in this example. Each element corresponds to a timestep at which the model denoises an image. When you create the denoising loop later, you'll iterate over this tensor to denoise an image: ```py >>> scheduler.timesteps tensor([980, 960, 940, 920, 900, 880, 860, 840, 820, 800, 780, 760, 740, 720, 700, 680, 660, 640, 620, 600, 580, 560, 540, 520, 500, 480, 460, 440, 420, 400, 380, 360, 340, 320, 300, 280, 260, 240, 220, 200, 180, 160, 140, 120, 100, 80, 60, 40, 20, 0]) ``` 4. Create some random noise with the same shape as the desired output: ```py >>> import torch >>> sample_size = model.config.sample_size >>> noise = torch.randn((1, 3, sample_size, sample_size), device="cuda") ``` 5. Now write a loop to iterate over the timesteps. At each timestep, the model does a [`UNet2DModel.forward`] pass and returns the noisy residual. The scheduler's [`~DDPMScheduler.step`] method takes the noisy residual, timestep, and input and it predicts the image at the previous timestep. This output becomes the next input to the model in the denoising loop, and it'll repeat until it reaches the end of the `timesteps` array. ```py >>> input = noise >>> for t in scheduler.timesteps: ... with torch.no_grad(): ... noisy_residual = model(input, t).sample ... previous_noisy_sample = scheduler.step(noisy_residual, t, input).prev_sample ... input = previous_noisy_sample ``` This is the entire denoising process, and you can use this same pattern to write any diffusion system. 6. The last step is to convert the denoised output into an image: ```py >>> from PIL import Image >>> import numpy as np >>> image = (input / 2 + 0.5).clamp(0, 1).squeeze() >>> image = (image.permute(1, 2, 0) * 255).round().to(torch.uint8).cpu().numpy() >>> image = Image.fromarray(image) >>> image ``` In the next section, you'll put your skills to the test and breakdown the more complex Stable Diffusion pipeline. The steps are more or less the same. You'll initialize the necessary components, and set the number of timesteps to create a `timestep` array. The `timestep` array is used in the denoising loop, and for each element in this array, the model predicts a less noisy image. The denoising loop iterates over the `timestep`'s, and at each timestep, it outputs a noisy residual and the scheduler uses it to predict a less noisy image at the previous timestep. This process is repeated until you reach the end of the `timestep` array. Let's try it out! ## Deconstruct the Stable Diffusion pipeline Stable Diffusion is a text-to-image *latent diffusion* model. It is called a latent diffusion model because it works with a lower-dimensional representation of the image instead of the actual pixel space, which makes it more memory efficient. The encoder compresses the image into a smaller representation, and a decoder converts the compressed representation back into an image. For text-to-image models, you'll need a tokenizer and an encoder to generate text embeddings. From the previous example, you already know you need a UNet model and a scheduler. As you can see, this is already more complex than the DDPM pipeline which only contains a UNet model. The Stable Diffusion model has three separate pretrained models. <Tip> 💡 Read the [How does Stable Diffusion work?](https://huggingface.co/blog/stable_diffusion#how-does-stable-diffusion-work) blog for more details about how the VAE, UNet, and text encoder models work. </Tip> Now that you know what you need for the Stable Diffusion pipeline, load all these components with the [`~ModelMixin.from_pretrained`] method. You can find them in the pretrained [`stable-diffusion-v1-5/stable-diffusion-v1-5`](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) checkpoint, and each component is stored in a separate subfolder: ```py >>> from PIL import Image >>> import torch >>> from transformers import CLIPTextModel, CLIPTokenizer >>> from diffusers import AutoencoderKL, UNet2DConditionModel, PNDMScheduler >>> vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae", use_safetensors=True) >>> tokenizer = CLIPTokenizer.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="tokenizer") >>> text_encoder = CLIPTextModel.from_pretrained( ... "CompVis/stable-diffusion-v1-4", subfolder="text_encoder", use_safetensors=True ... ) >>> unet = UNet2DConditionModel.from_pretrained( ... "CompVis/stable-diffusion-v1-4", subfolder="unet", use_safetensors=True ... ) ``` Instead of the default [`PNDMScheduler`], exchange it for the [`UniPCMultistepScheduler`] to see how easy it is to plug a different scheduler in: ```py >>> from diffusers import UniPCMultistepScheduler >>> scheduler = UniPCMultistepScheduler.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="scheduler") ``` To speed up inference, move the models to a GPU since, unlike the scheduler, they have trainable weights: ```py >>> torch_device = "cuda" >>> vae.to(torch_device) >>> text_encoder.to(torch_device) >>> unet.to(torch_device) ``` ### Create text embeddings The next step is to tokenize the text to generate embeddings. The text is used to condition the UNet model and steer the diffusion process towards something that resembles the input prompt. <Tip> 💡 The `guidance_scale` parameter determines how much weight should be given to the prompt when generating an image. </Tip> Feel free to choose any prompt you like if you want to generate something else! ```py >>> prompt = ["a photograph of an astronaut riding a horse"] >>> height = 512 # default height of Stable Diffusion >>> width = 512 # default width of Stable Diffusion >>> num_inference_steps = 25 # Number of denoising steps >>> guidance_scale = 7.5 # Scale for classifier-free guidance >>> generator = torch.manual_seed(0) # Seed generator to create the initial latent noise >>> batch_size = len(prompt) ``` Tokenize the text and generate the embeddings from the prompt: ```py >>> text_input = tokenizer( ... prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt" ... ) >>> with torch.no_grad(): ... text_embeddings = text_encoder(text_input.input_ids.to(torch_device))[0] ``` You'll also need to generate the *unconditional text embeddings* which are the embeddings for the padding token. These need to have the same shape (`batch_size` and `seq_length`) as the conditional `text_embeddings`: ```py >>> max_length = text_input.input_ids.shape[-1] >>> uncond_input = tokenizer([""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt") >>> uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0] ``` Let's concatenate the conditional and unconditional embeddings into a batch to avoid doing two forward passes: ```py >>> text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) ``` ### Create random noise Next, generate some initial random noise as a starting point for the diffusion process. This is the latent representation of the image, and it'll be gradually denoised. At this point, the `latent` image is smaller than the final image size but that's okay though because the model will transform it into the final 512x512 image dimensions later. <Tip> 💡 The height and width are divided by 8 because the `vae` model has 3 down-sampling layers. You can check by running the following: ```py 2 ** (len(vae.config.block_out_channels) - 1) == 8 ``` </Tip> ```py >>> latents = torch.randn( ... (batch_size, unet.config.in_channels, height // 8, width // 8), ... generator=generator, ... device=torch_device, ... ) ``` ### Denoise the image Start by scaling the input with the initial noise distribution, *sigma*, the noise scale value, which is required for improved schedulers like [`UniPCMultistepScheduler`]: ```py >>> latents = latents * scheduler.init_noise_sigma ``` The last step is to create the denoising loop that'll progressively transform the pure noise in `latents` to an image described by your prompt. Remember, the denoising loop needs to do three things: 1. Set the scheduler's timesteps to use during denoising. 2. Iterate over the timesteps. 3. At each timestep, call the UNet model to predict the noise residual and pass it to the scheduler to compute the previous noisy sample. ```py >>> from tqdm.auto import tqdm >>> scheduler.set_timesteps(num_inference_steps) >>> for t in tqdm(scheduler.timesteps): ... # expand the latents if we are doing classifier-free guidance to avoid doing two forward passes. ... latent_model_input = torch.cat([latents] * 2) ... latent_model_input = scheduler.scale_model_input(latent_model_input, timestep=t) ... # predict the noise residual ... with torch.no_grad(): ... noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample ... # perform guidance ... noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) ... noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) ... # compute the previous noisy sample x_t -> x_t-1 ... latents = scheduler.step(noise_pred, t, latents).prev_sample ``` ### Decode the image The final step is to use the `vae` to decode the latent representation into an image and get the decoded output with `sample`: ```py # scale and decode the image latents with vae latents = 1 / 0.18215 * latents with torch.no_grad(): image = vae.decode(latents).sample ``` Lastly, convert the image to a `PIL.Image` to see your generated image! ```py >>> image = (image / 2 + 0.5).clamp(0, 1).squeeze() >>> image = (image.permute(1, 2, 0) * 255).to(torch.uint8).cpu().numpy() >>> image = Image.fromarray(image) >>> image ``` <div class="flex justify-center"> <img src="https://huggingface.co/blog/assets/98_stable_diffusion/stable_diffusion_k_lms.png"/> </div> ## Next steps From basic to complex pipelines, you've seen that all you really need to write your own diffusion system is a denoising loop. The loop should set the scheduler's timesteps, iterate over them, and alternate between calling the UNet model to predict the noise residual and passing it to the scheduler to compute the previous noisy sample. This is really what 🧨 Diffusers is designed for: to make it intuitive and easy to write your own diffusion system using models and schedulers. For your next steps, feel free to: * Learn how to [build and contribute a pipeline](../using-diffusers/contribute_pipeline) to 🧨 Diffusers. We can't wait and see what you'll come up with! * Explore [existing pipelines](../api/pipelines/overview) in the library, and see if you can deconstruct and build a pipeline from scratch using the models and schedulers separately.
diffusers/docs/source/en/using-diffusers/write_own_pipeline.md/0
{ "file_path": "diffusers/docs/source/en/using-diffusers/write_own_pipeline.md", "repo_id": "diffusers", "token_count": 4156 }
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # 설치 사용하시는 라이브러리에 맞는 🤗 Diffusers를 설치하세요. 🤗 Diffusers는 Python 3.8+, PyTorch 1.7.0+ 및 flax에서 테스트되었습니다. 사용중인 딥러닝 라이브러리에 대한 아래의 설치 안내를 따르세요. - [PyTorch 설치 안내](https://pytorch.org/get-started/locally/) - [Flax 설치 안내](https://flax.readthedocs.io/en/latest/) ## pip를 이용한 설치 [가상 환경](https://docs.python.org/3/library/venv.html)에 🤗 Diffusers를 설치해야 합니다. Python 가상 환경에 익숙하지 않은 경우 [가상환경 pip 설치 가이드](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/)를 살펴보세요. 가상 환경을 사용하면 서로 다른 프로젝트를 더 쉽게 관리하고, 종속성간의 호환성 문제를 피할 수 있습니다. 프로젝트 디렉토리에 가상 환경을 생성하는 것으로 시작하세요: ```bash python -m venv .env ``` 그리고 가상 환경을 활성화합니다: ```bash source .env/bin/activate ``` 이제 다음의 명령어로 🤗 Diffusers를 설치할 준비가 되었습니다: **PyTorch의 경우** ```bash pip install diffusers["torch"] ``` **Flax의 경우** ```bash pip install diffusers["flax"] ``` ## 소스로부터 설치 소스에서 `diffusers`를 설치하기 전에, `torch` 및 `accelerate`이 설치되어 있는지 확인하세요. `torch` 설치에 대해서는 [torch docs](https://pytorch.org/get-started/locally/#start-locally)를 참고하세요. 다음과 같이 `accelerate`을 설치하세요. ```bash pip install accelerate ``` 다음 명령어를 사용하여 소스에서 🤗 Diffusers를 설치하세요: ```bash pip install git+https://github.com/huggingface/diffusers ``` 이 명령어는 최신 `stable` 버전이 아닌 최첨단 `main` 버전을 설치합니다. `main` 버전은 최신 개발 정보를 최신 상태로 유지하는 데 유용합니다. 예를 들어 마지막 공식 릴리즈 이후 버그가 수정되었지만, 새 릴리즈가 아직 출시되지 않은 경우입니다. 그러나 이는 `main` 버전이 항상 안정적이지 않을 수 있음을 의미합니다. 우리는 `main` 버전이 지속적으로 작동하도록 노력하고 있으며, 대부분의 문제는 보통 몇 시간 또는 하루 안에 해결됩니다. 문제가 발생하면 더 빨리 해결할 수 있도록 [Issue](https://github.com/huggingface/transformers/issues)를 열어주세요! ## 편집가능한 설치 다음을 수행하려면 편집가능한 설치가 필요합니다: * 소스 코드의 `main` 버전을 사용 * 🤗 Diffusers에 기여 (코드의 변경 사항을 테스트하기 위해 필요) 저장소를 복제하고 다음 명령어를 사용하여 🤗 Diffusers를 설치합니다: ```bash git clone https://github.com/huggingface/diffusers.git cd diffusers ``` **PyTorch의 경우** ```sh pip install -e ".[torch]" ``` **Flax의 경우** ```sh pip install -e ".[flax]" ``` 이러한 명령어들은 저장소를 복제한 폴더와 Python 라이브러리 경로를 연결합니다. Python은 이제 일반 라이브러리 경로에 더하여 복제한 폴더 내부를 살펴봅니다. 예를들어 Python 패키지가 `~/anaconda3/envs/main/lib/python3.10/site-packages/`에 설치되어 있는 경우 Python은 복제한 폴더인 `~/diffusers/`도 검색합니다. <Tip warning={true}> 라이브러리를 계속 사용하려면 `diffusers` 폴더를 유지해야 합니다. </Tip> 이제 다음 명령어를 사용하여 최신 버전의 🤗 Diffusers로 쉽게 업데이트할 수 있습니다: ```bash cd ~/diffusers/ git pull ``` 이렇게 하면, 다음에 실행할 때 Python 환경이 🤗 Diffusers의 `main` 버전을 찾게 됩니다. ## 텔레메트리 로깅에 대한 알림 우리 라이브러리는 `from_pretrained()` 요청 중에 텔레메트리 정보를 원격으로 수집합니다. 이 데이터에는 Diffusers 및 PyTorch/Flax의 버전, 요청된 모델 또는 파이프라인 클래스, 그리고 허브에서 호스팅되는 경우 사전학습된 체크포인트에 대한 경로를 포함합니다. 이 사용 데이터는 문제를 디버깅하고 새로운 기능의 우선순위를 지정하는데 도움이 됩니다. 텔레메트리는 HuggingFace 허브에서 모델과 파이프라인을 불러올 때만 전송되며, 로컬 사용 중에는 수집되지 않습니다. 우리는 추가 정보를 공유하지 않기를 원하는 사람이 있다는 것을 이해하고 개인 정보를 존중하므로, 터미널에서 `DISABLE_TELEMETRY` 환경 변수를 설정하여 텔레메트리 수집을 비활성화할 수 있습니다. Linux/MacOS에서: ```bash export DISABLE_TELEMETRY=YES ``` Windows에서: ```bash set DISABLE_TELEMETRY=YES ```
diffusers/docs/source/ko/installation.md/0
{ "file_path": "diffusers/docs/source/ko/installation.md", "repo_id": "diffusers", "token_count": 3689 }
# 여러 GPU를 사용한 분산 추론 분산 설정에서는 여러 개의 프롬프트를 동시에 생성할 때 유용한 🤗 [Accelerate](https://huggingface.co/docs/accelerate/index) 또는 [PyTorch Distributed](https://pytorch.org/tutorials/beginner/dist_overview.html)를 사용하여 여러 GPU에서 추론을 실행할 수 있습니다. 이 가이드에서는 분산 추론을 위해 🤗 Accelerate와 PyTorch Distributed를 사용하는 방법을 보여드립니다. ## 🤗 Accelerate 🤗 [Accelerate](https://huggingface.co/docs/accelerate/index)는 분산 설정에서 추론을 쉽게 훈련하거나 실행할 수 있도록 설계된 라이브러리입니다. 분산 환경 설정 프로세스를 간소화하여 PyTorch 코드에 집중할 수 있도록 해줍니다. 시작하려면 Python 파일을 생성하고 [`accelerate.PartialState`]를 초기화하여 분산 환경을 생성하면, 설정이 자동으로 감지되므로 `rank` 또는 `world_size`를 명시적으로 정의할 필요가 없습니다. ['DiffusionPipeline`]을 `distributed_state.device`로 이동하여 각 프로세스에 GPU를 할당합니다. 이제 컨텍스트 관리자로 [`~accelerate.PartialState.split_between_processes`] 유틸리티를 사용하여 프로세스 수에 따라 프롬프트를 자동으로 분배합니다. ```py from accelerate import PartialState from diffusers import DiffusionPipeline pipeline = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16) distributed_state = PartialState() pipeline.to(distributed_state.device) with distributed_state.split_between_processes(["a dog", "a cat"]) as prompt: result = pipeline(prompt).images[0] result.save(f"result_{distributed_state.process_index}.png") ``` Use the `--num_processes` argument to specify the number of GPUs to use, and call `accelerate launch` to run the script: ```bash accelerate launch run_distributed.py --num_processes=2 ``` <Tip>자세한 내용은 [🤗 Accelerate를 사용한 분산 추론](https://huggingface.co/docs/accelerate/en/usage_guides/distributed_inference#distributed-inference-with-accelerate) 가이드를 참조하세요. </Tip> ## Pytoerch 분산 PyTorch는 데이터 병렬 처리를 가능하게 하는 [`DistributedDataParallel`](https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html)을 지원합니다. 시작하려면 Python 파일을 생성하고 `torch.distributed` 및 `torch.multiprocessing`을 임포트하여 분산 프로세스 그룹을 설정하고 각 GPU에서 추론용 프로세스를 생성합니다. 그리고 [`DiffusionPipeline`]도 초기화해야 합니다: 확산 파이프라인을 `rank`로 이동하고 `get_rank`를 사용하여 각 프로세스에 GPU를 할당하면 각 프로세스가 다른 프롬프트를 처리합니다: ```py import torch import torch.distributed as dist import torch.multiprocessing as mp from diffusers import DiffusionPipeline sd = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16) ``` 사용할 백엔드 유형, 현재 프로세스의 `rank`, `world_size` 또는 참여하는 프로세스 수로 분산 환경 생성을 처리하는 함수[`init_process_group`]를 만들어 추론을 실행해야 합니다. 2개의 GPU에서 추론을 병렬로 실행하는 경우 `world_size`는 2입니다. ```py def run_inference(rank, world_size): dist.init_process_group("nccl", rank=rank, world_size=world_size) sd.to(rank) if torch.distributed.get_rank() == 0: prompt = "a dog" elif torch.distributed.get_rank() == 1: prompt = "a cat" image = sd(prompt).images[0] image.save(f"./{'_'.join(prompt)}.png") ``` 분산 추론을 실행하려면 [`mp.spawn`](https://pytorch.org/docs/stable/multiprocessing.html#torch.multiprocessing.spawn)을 호출하여 `world_size`에 정의된 GPU 수에 대해 `run_inference` 함수를 실행합니다: ```py def main(): world_size = 2 mp.spawn(run_inference, args=(world_size,), nprocs=world_size, join=True) if __name__ == "__main__": main() ``` 추론 스크립트를 완료했으면 `--nproc_per_node` 인수를 사용하여 사용할 GPU 수를 지정하고 `torchrun`을 호출하여 스크립트를 실행합니다: ```bash torchrun run_distributed.py --nproc_per_node=2 ```
diffusers/docs/source/ko/training/distributed_inference.md/0
{ "file_path": "diffusers/docs/source/ko/training/distributed_inference.md", "repo_id": "diffusers", "token_count": 2616 }
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Text-guided 이미지 인페인팅(inpainting) [[open-in-colab]] [`StableDiffusionInpaintPipeline`]은 마스크와 텍스트 프롬프트를 제공하여 이미지의 특정 부분을 편집할 수 있도록 합니다. 이 기능은 인페인팅 작업을 위해 특별히 훈련된 [`runwayml/stable-diffusion-inpainting`](https://huggingface.co/runwayml/stable-diffusion-inpainting)과 같은 Stable Diffusion 버전을 사용합니다. 먼저 [`StableDiffusionInpaintPipeline`] 인스턴스를 불러옵니다: ```python import PIL import requests import torch from io import BytesIO from diffusers import StableDiffusionInpaintPipeline pipeline = StableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, ) pipeline = pipeline.to("cuda") ``` 나중에 교체할 강아지 이미지와 마스크를 다운로드하세요: ```python def download_image(url): response = requests.get(url) return PIL.Image.open(BytesIO(response.content)).convert("RGB") img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png" mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png" init_image = download_image(img_url).resize((512, 512)) mask_image = download_image(mask_url).resize((512, 512)) ``` 이제 마스크를 다른 것으로 교체하라는 프롬프트를 만들 수 있습니다: ```python prompt = "Face of a yellow cat, high resolution, sitting on a park bench" image = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images[0] ``` `image` | `mask_image` | `prompt` | output | :-------------------------:|:-------------------------:|:-------------------------:|-------------------------:| <img src="https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png" alt="drawing" width="250"/> | <img src="https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png" alt="drawing" width="250"/> | ***Face of a yellow cat, high resolution, sitting on a park bench*** | <img src="https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/in_paint/yellow_cat_sitting_on_a_park_bench.png" alt="drawing" width="250"/> | <Tip warning={true}> 이전의 실험적인 인페인팅 구현에서는 품질이 낮은 다른 프로세스를 사용했습니다. 이전 버전과의 호환성을 보장하기 위해 새 모델이 포함되지 않은 사전학습된 파이프라인을 불러오면 이전 인페인팅 방법이 계속 적용됩니다. </Tip> 아래 Space에서 이미지 인페인팅을 직접 해보세요! <iframe src="https://runwayml-stable-diffusion-inpainting.hf.space" frameborder="0" width="850" height="500" ></iframe>
diffusers/docs/source/ko/using-diffusers/inpaint.md/0
{ "file_path": "diffusers/docs/source/ko/using-diffusers/inpaint.md", "repo_id": "diffusers", "token_count": 1656 }
#!/usr/bin/env python # coding=utf-8 # Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and import argparse import gc import hashlib import itertools import logging import math import os import re import shutil import warnings from contextlib import nullcontext from pathlib import Path from typing import List, Optional import numpy as np import torch import torch.nn.functional as F # imports of the TokenEmbeddingsHandler class import torch.utils.checkpoint import transformers from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed from huggingface_hub import create_repo, upload_folder from packaging import version from peft import LoraConfig, set_peft_model_state_dict from peft.utils import get_peft_model_state_dict from PIL import Image from PIL.ImageOps import exif_transpose from safetensors.torch import load_file, save_file from torch.utils.data import Dataset from torchvision import transforms from tqdm.auto import tqdm from transformers import AutoTokenizer, PretrainedConfig import diffusers from diffusers import ( AutoencoderKL, DDPMScheduler, DPMSolverMultistepScheduler, StableDiffusionPipeline, UNet2DConditionModel, ) from diffusers.loaders import StableDiffusionLoraLoaderMixin from diffusers.optimization import get_scheduler from diffusers.training_utils import _set_state_dict_into_text_encoder, cast_training_params, compute_snr from diffusers.utils import ( check_min_version, convert_all_state_dict_to_peft, convert_state_dict_to_diffusers, convert_state_dict_to_kohya, convert_unet_state_dict_to_peft, is_wandb_available, ) from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card from diffusers.utils.import_utils import is_xformers_available # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.33.0.dev0") logger = get_logger(__name__) def save_model_card( repo_id: str, use_dora: bool, images: list = None, base_model: str = None, train_text_encoder=False, train_text_encoder_ti=False, token_abstraction_dict=None, instance_prompt=None, validation_prompt=None, repo_folder=None, vae_path=None, ): lora = "lora" if not use_dora else "dora" widget_dict = [] if images is not None: for i, image in enumerate(images): image.save(os.path.join(repo_folder, f"image_{i}.png")) widget_dict.append( {"text": validation_prompt if validation_prompt else " ", "output": {"url": f"image_{i}.png"}} ) else: widget_dict.append({"text": instance_prompt}) embeddings_filename = f"{repo_folder}_emb" instance_prompt_webui = re.sub(r"<s\d+>", "", re.sub(r"<s\d+>", embeddings_filename, instance_prompt, count=1)) ti_keys = ", ".join(f'"{match}"' for match in re.findall(r"<s\d+>", instance_prompt)) if instance_prompt_webui != embeddings_filename: instance_prompt_sentence = f"For example, `{instance_prompt_webui}`" else: instance_prompt_sentence = "" trigger_str = f"You should use {instance_prompt} to trigger the image generation." diffusers_imports_pivotal = "" diffusers_example_pivotal = "" webui_example_pivotal = "" if train_text_encoder_ti: trigger_str = ( "To trigger image generation of trained concept(or concepts) replace each concept identifier " "in you prompt with the new inserted tokens:\n" ) diffusers_imports_pivotal = """from huggingface_hub import hf_hub_download from safetensors.torch import load_file """ diffusers_example_pivotal = f"""embedding_path = hf_hub_download(repo_id='{repo_id}', filename='{embeddings_filename}.safetensors', repo_type="model") state_dict = load_file(embedding_path) pipeline.load_textual_inversion(state_dict["clip_l"], token=[{ti_keys}], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer) """ webui_example_pivotal = f"""- *Embeddings*: download **[`{embeddings_filename}.safetensors` here 💾](/{repo_id}/blob/main/{embeddings_filename}.safetensors)**. - Place it on it on your `embeddings` folder - Use it by adding `{embeddings_filename}` to your prompt. {instance_prompt_sentence} (you need both the LoRA and the embeddings as they were trained together for this LoRA) """ if token_abstraction_dict: for key, value in token_abstraction_dict.items(): tokens = "".join(value) trigger_str += f""" to trigger concept `{key}` → use `{tokens}` in your prompt \n """ model_description = f""" # SD1.5 LoRA DreamBooth - {repo_id} <Gallery /> ## Model description ### These are {repo_id} LoRA adaption weights for {base_model}. ## Download model ### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke - **LoRA**: download **[`{repo_folder}.safetensors` here 💾](/{repo_id}/blob/main/{repo_folder}.safetensors)**. - Place it on your `models/Lora` folder. - On AUTOMATIC1111, load the LoRA by adding `<lora:{repo_folder}:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/). {webui_example_pivotal} ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch {diffusers_imports_pivotal} pipeline = AutoPipelineForText2Image.from_pretrained('stable-diffusion-v1-5/stable-diffusion-v1-5', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('{repo_id}', weight_name='pytorch_lora_weights.safetensors') {diffusers_example_pivotal} image = pipeline('{validation_prompt if validation_prompt else instance_prompt}').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Trigger words {trigger_str} ## Details All [Files & versions](/{repo_id}/tree/main). The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sd15_advanced.py). LoRA for the text encoder was enabled. {train_text_encoder}. Pivotal tuning was enabled: {train_text_encoder_ti}. Special VAE used for training: {vae_path}. """ model_card = load_or_create_model_card( repo_id_or_path=repo_id, from_training=True, license="openrail++", base_model=base_model, prompt=instance_prompt, model_description=model_description, inference=True, widget=widget_dict, ) tags = [ "text-to-image", "diffusers", "diffusers-training", lora, "template:sd-lora" "stable-diffusion", "stable-diffusion-diffusers", ] model_card = populate_model_card(model_card, tags=tags) model_card.save(os.path.join(repo_folder, "README.md")) def import_model_class_from_model_name_or_path( pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder" ): text_encoder_config = PretrainedConfig.from_pretrained( pretrained_model_name_or_path, subfolder=subfolder, revision=revision ) model_class = text_encoder_config.architectures[0] if model_class == "CLIPTextModel": from transformers import CLIPTextModel return CLIPTextModel elif model_class == "CLIPTextModelWithProjection": from transformers import CLIPTextModelWithProjection return CLIPTextModelWithProjection else: raise ValueError(f"{model_class} is not supported.") def parse_args(input_args=None): parser = argparse.ArgumentParser(description="Simple example of a training script.") parser.add_argument( "--pretrained_model_name_or_path", type=str, default=None, required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--pretrained_vae_model_name_or_path", type=str, default=None, help="Path to pretrained VAE model with better numerical stability. More details: https://github.com/huggingface/diffusers/pull/4038.", ) parser.add_argument( "--revision", type=str, default=None, required=False, help="Revision of pretrained model identifier from huggingface.co/models.", ) parser.add_argument( "--variant", type=str, default=None, help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", ) parser.add_argument( "--dataset_name", type=str, default=None, help=( "The name of the Dataset (from the HuggingFace hub) containing the training data of instance images (could be your own, possibly private," " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," " or to a folder containing files that 🤗 Datasets can understand.To load the custom captions, the training set directory needs to follow the structure of a " "datasets ImageFolder, containing both the images and the corresponding caption for each image. see: " "https://huggingface.co/docs/datasets/image_dataset for more information" ), ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The config of the Dataset. In some cases, a dataset may have more than one configuration (for example " "if it contains different subsets of data within, and you only wish to load a specific subset - in that case specify the desired configuration using --dataset_config_name. Leave as " "None if there's only one config.", ) parser.add_argument( "--instance_data_dir", type=str, default=None, help="A path to local folder containing the training data of instance images. Specify this arg instead of " "--dataset_name if you wish to train using a local folder without custom captions. If you wish to train with custom captions please specify " "--dataset_name instead.", ) parser.add_argument( "--cache_dir", type=str, default=None, help="The directory where the downloaded models and datasets will be stored.", ) parser.add_argument( "--image_column", type=str, default="image", help="The column of the dataset containing the target image. By " "default, the standard Image Dataset maps out 'file_name' " "to 'image'.", ) parser.add_argument( "--caption_column", type=str, default=None, help="The column of the dataset containing the instance prompt for each image", ) parser.add_argument("--repeats", type=int, default=1, help="How many times to repeat the training data.") parser.add_argument( "--class_data_dir", type=str, default=None, required=False, help="A folder containing the training data of class images.", ) parser.add_argument( "--instance_prompt", type=str, default=None, required=True, help="The prompt with identifier specifying the instance, e.g. 'photo of a TOK dog', 'in the style of TOK'", ) parser.add_argument( "--token_abstraction", type=str, default="TOK", help="identifier specifying the instance(or instances) as used in instance_prompt, validation prompt, " "captions - e.g. TOK. To use multiple identifiers, please specify them in a comma separated string - e.g. " "'TOK,TOK2,TOK3' etc.", ) parser.add_argument( "--num_new_tokens_per_abstraction", type=int, default=2, help="number of new tokens inserted to the tokenizers per token_abstraction identifier when " "--train_text_encoder_ti = True. By default, each --token_abstraction (e.g. TOK) is mapped to 2 new " "tokens - <si><si+1> ", ) parser.add_argument( "--class_prompt", type=str, default=None, help="The prompt to specify images in the same class as provided instance images.", ) parser.add_argument( "--validation_prompt", type=str, default=None, help="A prompt that is used during validation to verify that the model is learning.", ) parser.add_argument( "--num_validation_images", type=int, default=4, help="Number of images that should be generated during validation with `validation_prompt`.", ) parser.add_argument( "--validation_epochs", type=int, default=50, help=( "Run dreambooth validation every X epochs. Dreambooth validation consists of running the prompt" " `args.validation_prompt` multiple times: `args.num_validation_images`." ), ) parser.add_argument( "--with_prior_preservation", default=False, action="store_true", help="Flag to add prior preservation loss.", ) parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.") parser.add_argument( "--num_class_images", type=int, default=100, help=( "Minimal class images for prior preservation loss. If there are not enough images already present in" " class_data_dir, additional images will be sampled with class_prompt." ), ) parser.add_argument( "--output_dir", type=str, default="lora-dreambooth-model", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--resolution", type=int, default=512, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--center_crop", default=False, action="store_true", help=( "Whether to center crop the input images to the resolution. If not set, the images will be randomly" " cropped. The images will be resized to the resolution first before cropping." ), ) parser.add_argument( "--train_text_encoder", action="store_true", help="Whether to train the text encoder. If set, the text encoder should be float32 precision.", ) parser.add_argument( "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." ) parser.add_argument( "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images." ) parser.add_argument("--num_train_epochs", type=int, default=1) parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--checkpointing_steps", type=int, default=500, help=( "Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" " checkpoints in case they are better than the last checkpoint, and are also suitable for resuming" " training using `--resume_from_checkpoint`." ), ) parser.add_argument( "--checkpoints_total_limit", type=int, default=None, help=("Max number of checkpoints to store."), ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help=( "Whether training should be resumed from a previous checkpoint. Use a path saved by" ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' ), ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--gradient_checkpointing", action="store_true", help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", ) parser.add_argument( "--learning_rate", type=float, default=1e-4, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--text_encoder_lr", type=float, default=5e-6, help="Text encoder learning rate to use.", ) parser.add_argument( "--scale_lr", action="store_true", default=False, help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", ) parser.add_argument( "--lr_scheduler", type=str, default="constant", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--snr_gamma", type=float, default=None, help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. " "More details here: https://arxiv.org/abs/2303.09556.", ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument( "--lr_num_cycles", type=int, default=1, help="Number of hard resets of the lr in cosine_with_restarts scheduler.", ) parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") parser.add_argument( "--dataloader_num_workers", type=int, default=0, help=( "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." ), ) parser.add_argument( "--train_text_encoder_ti", action="store_true", help=("Whether to use textual inversion"), ) parser.add_argument( "--train_text_encoder_ti_frac", type=float, default=0.5, help=("The percentage of epochs to perform textual inversion"), ) parser.add_argument( "--train_text_encoder_frac", type=float, default=1.0, help=("The percentage of epochs to perform text encoder tuning"), ) parser.add_argument( "--optimizer", type=str, default="adamW", help=('The optimizer type to use. Choose between ["AdamW", "prodigy"]'), ) parser.add_argument( "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes. Ignored if optimizer is not set to AdamW", ) parser.add_argument( "--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam and Prodigy optimizers." ) parser.add_argument( "--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam and Prodigy optimizers." ) parser.add_argument( "--prodigy_beta3", type=float, default=None, help="coefficients for computing the Prodigy stepsize using running averages. If set to None, " "uses the value of square root of beta2. Ignored if optimizer is adamW", ) parser.add_argument("--prodigy_decouple", type=bool, default=True, help="Use AdamW style decoupled weight decay") parser.add_argument("--adam_weight_decay", type=float, default=1e-04, help="Weight decay to use for unet params") parser.add_argument( "--adam_weight_decay_text_encoder", type=float, default=None, help="Weight decay to use for text_encoder" ) parser.add_argument( "--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer and Prodigy optimizers.", ) parser.add_argument( "--prodigy_use_bias_correction", type=bool, default=True, help="Turn on Adam's bias correction. True by default. Ignored if optimizer is adamW", ) parser.add_argument( "--prodigy_safeguard_warmup", type=bool, default=True, help="Remove lr from the denominator of D estimate to avoid issues during warm-up stage. True by default. " "Ignored if optimizer is adamW", ) parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--allow_tf32", action="store_true", help=( "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" ), ) parser.add_argument( "--report_to", type=str, default="tensorboard", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' ), ) parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." ), ) parser.add_argument( "--prior_generation_precision", type=str, default=None, choices=["no", "fp32", "fp16", "bf16"], help=( "Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" " 1.10.and an Nvidia Ampere GPU. Default to fp16 if a GPU is available else fp32." ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument( "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." ) parser.add_argument("--noise_offset", type=float, default=0, help="The scale of noise offset.") parser.add_argument( "--rank", type=int, default=4, help=("The dimension of the LoRA update matrices."), ) parser.add_argument( "--use_dora", action="store_true", default=False, help=( "Wether to train a DoRA as proposed in- DoRA: Weight-Decomposed Low-Rank Adaptation https://arxiv.org/abs/2402.09353. " "Note: to use DoRA you need to install peft from main, `pip install git+https://github.com/huggingface/peft.git`" ), ) parser.add_argument( "--cache_latents", action="store_true", default=False, help="Cache the VAE latents", ) if input_args is not None: args = parser.parse_args(input_args) else: args = parser.parse_args() if args.dataset_name is None and args.instance_data_dir is None: raise ValueError("Specify either `--dataset_name` or `--instance_data_dir`") if args.dataset_name is not None and args.instance_data_dir is not None: raise ValueError("Specify only one of `--dataset_name` or `--instance_data_dir`") if args.train_text_encoder and args.train_text_encoder_ti: raise ValueError( "Specify only one of `--train_text_encoder` or `--train_text_encoder_ti. " "For full LoRA text encoder training check --train_text_encoder, for textual " "inversion training check `--train_text_encoder_ti`" ) env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank if args.with_prior_preservation: if args.class_data_dir is None: raise ValueError("You must specify a data directory for class images.") if args.class_prompt is None: raise ValueError("You must specify prompt for class images.") else: # logger is not available yet if args.class_data_dir is not None: warnings.warn("You need not use --class_data_dir without --with_prior_preservation.") if args.class_prompt is not None: warnings.warn("You need not use --class_prompt without --with_prior_preservation.") return args # Taken from https://github.com/replicate/cog-sdxl/blob/main/dataset_and_utils.py class TokenEmbeddingsHandler: def __init__(self, text_encoders, tokenizers): self.text_encoders = text_encoders self.tokenizers = tokenizers self.train_ids: Optional[torch.Tensor] = None self.inserting_toks: Optional[List[str]] = None self.embeddings_settings = {} def initialize_new_tokens(self, inserting_toks: List[str]): idx = 0 for tokenizer, text_encoder in zip(self.tokenizers, self.text_encoders): assert isinstance(inserting_toks, list), "inserting_toks should be a list of strings." assert all( isinstance(tok, str) for tok in inserting_toks ), "All elements in inserting_toks should be strings." self.inserting_toks = inserting_toks special_tokens_dict = {"additional_special_tokens": self.inserting_toks} tokenizer.add_special_tokens(special_tokens_dict) text_encoder.resize_token_embeddings(len(tokenizer)) self.train_ids = tokenizer.convert_tokens_to_ids(self.inserting_toks) # random initialization of new tokens std_token_embedding = text_encoder.text_model.embeddings.token_embedding.weight.data.std() print(f"{idx} text encoder's std_token_embedding: {std_token_embedding}") text_encoder.text_model.embeddings.token_embedding.weight.data[self.train_ids] = ( torch.randn(len(self.train_ids), text_encoder.text_model.config.hidden_size) .to(device=self.device) .to(dtype=self.dtype) * std_token_embedding ) self.embeddings_settings[ f"original_embeddings_{idx}" ] = text_encoder.text_model.embeddings.token_embedding.weight.data.clone() self.embeddings_settings[f"std_token_embedding_{idx}"] = std_token_embedding inu = torch.ones((len(tokenizer),), dtype=torch.bool) inu[self.train_ids] = False self.embeddings_settings[f"index_no_updates_{idx}"] = inu print(self.embeddings_settings[f"index_no_updates_{idx}"].shape) idx += 1 # Copied from train_dreambooth_lora_sdxl_advanced.py def save_embeddings(self, file_path: str): assert self.train_ids is not None, "Initialize new tokens before saving embeddings." tensors = {} # text_encoder_0 - CLIP ViT-L/14, text_encoder_1 - CLIP ViT-G/14 - TODO - change for sd idx_to_text_encoder_name = {0: "clip_l", 1: "clip_g"} for idx, text_encoder in enumerate(self.text_encoders): assert text_encoder.text_model.embeddings.token_embedding.weight.data.shape[0] == len( self.tokenizers[0] ), "Tokenizers should be the same." new_token_embeddings = text_encoder.text_model.embeddings.token_embedding.weight.data[self.train_ids] # New tokens for each text encoder are saved under "clip_l" (for text_encoder 0), "clip_g" (for # text_encoder 1) to keep compatible with the ecosystem. # Note: When loading with diffusers, any name can work - simply specify in inference tensors[idx_to_text_encoder_name[idx]] = new_token_embeddings # tensors[f"text_encoders_{idx}"] = new_token_embeddings save_file(tensors, file_path) @property def dtype(self): return self.text_encoders[0].dtype @property def device(self): return self.text_encoders[0].device @torch.no_grad() def retract_embeddings(self): for idx, text_encoder in enumerate(self.text_encoders): index_no_updates = self.embeddings_settings[f"index_no_updates_{idx}"] text_encoder.text_model.embeddings.token_embedding.weight.data[index_no_updates] = ( self.embeddings_settings[f"original_embeddings_{idx}"][index_no_updates] .to(device=text_encoder.device) .to(dtype=text_encoder.dtype) ) # for the parts that were updated, we need to normalize them # to have the same std as before std_token_embedding = self.embeddings_settings[f"std_token_embedding_{idx}"] index_updates = ~index_no_updates new_embeddings = text_encoder.text_model.embeddings.token_embedding.weight.data[index_updates] off_ratio = std_token_embedding / new_embeddings.std() new_embeddings = new_embeddings * (off_ratio**0.1) text_encoder.text_model.embeddings.token_embedding.weight.data[index_updates] = new_embeddings class DreamBoothDataset(Dataset): """ A dataset to prepare the instance and class images with the prompts for fine-tuning the model. It pre-processes the images. """ def __init__( self, instance_data_root, instance_prompt, class_prompt, dataset_name, dataset_config_name, cache_dir, image_column, caption_column, train_text_encoder_ti, class_data_root=None, class_num=None, token_abstraction_dict=None, # token mapping for textual inversion size=1024, repeats=1, center_crop=False, ): self.size = size self.center_crop = center_crop self.instance_prompt = instance_prompt self.custom_instance_prompts = None self.class_prompt = class_prompt self.token_abstraction_dict = token_abstraction_dict self.train_text_encoder_ti = train_text_encoder_ti # if --dataset_name is provided or a metadata jsonl file is provided in the local --instance_data directory, # we load the training data using load_dataset if dataset_name is not None: try: from datasets import load_dataset except ImportError: raise ImportError( "You are trying to load your data using the datasets library. If you wish to train using custom " "captions please install the datasets library: `pip install datasets`. If you wish to load a " "local folder containing images only, specify --instance_data_dir instead." ) # Downloading and loading a dataset from the hub. # See more about loading custom images at # https://huggingface.co/docs/datasets/v2.0.0/en/dataset_script dataset = load_dataset( dataset_name, dataset_config_name, cache_dir=cache_dir, ) # Preprocessing the datasets. column_names = dataset["train"].column_names # 6. Get the column names for input/target. if image_column is None: image_column = column_names[0] logger.info(f"image column defaulting to {image_column}") else: if image_column not in column_names: raise ValueError( f"`--image_column` value '{image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}" ) instance_images = dataset["train"][image_column] if caption_column is None: logger.info( "No caption column provided, defaulting to instance_prompt for all images. If your dataset " "contains captions/prompts for the images, make sure to specify the " "column as --caption_column" ) self.custom_instance_prompts = None else: if caption_column not in column_names: raise ValueError( f"`--caption_column` value '{caption_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}" ) custom_instance_prompts = dataset["train"][caption_column] # create final list of captions according to --repeats self.custom_instance_prompts = [] for caption in custom_instance_prompts: self.custom_instance_prompts.extend(itertools.repeat(caption, repeats)) else: self.instance_data_root = Path(instance_data_root) if not self.instance_data_root.exists(): raise ValueError("Instance images root doesn't exists.") instance_images = [Image.open(path) for path in list(Path(instance_data_root).iterdir())] self.custom_instance_prompts = None self.instance_images = [] for img in instance_images: self.instance_images.extend(itertools.repeat(img, repeats)) self.num_instance_images = len(self.instance_images) self._length = self.num_instance_images if class_data_root is not None: self.class_data_root = Path(class_data_root) self.class_data_root.mkdir(parents=True, exist_ok=True) self.class_images_path = list(self.class_data_root.iterdir()) if class_num is not None: self.num_class_images = min(len(self.class_images_path), class_num) else: self.num_class_images = len(self.class_images_path) self._length = max(self.num_class_images, self.num_instance_images) else: self.class_data_root = None self.image_transforms = transforms.Compose( [ transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR), transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __len__(self): return self._length def __getitem__(self, index): example = {} instance_image = self.instance_images[index % self.num_instance_images] instance_image = exif_transpose(instance_image) if not instance_image.mode == "RGB": instance_image = instance_image.convert("RGB") example["instance_images"] = self.image_transforms(instance_image) if self.custom_instance_prompts: caption = self.custom_instance_prompts[index % self.num_instance_images] if caption: if self.train_text_encoder_ti: # replace instances of --token_abstraction in caption with the new tokens: "<si><si+1>" etc. for token_abs, token_replacement in self.token_abstraction_dict.items(): caption = caption.replace(token_abs, "".join(token_replacement)) example["instance_prompt"] = caption else: example["instance_prompt"] = self.instance_prompt else: # custom prompts were provided, but length does not match size of image dataset example["instance_prompt"] = self.instance_prompt if self.class_data_root: class_image = Image.open(self.class_images_path[index % self.num_class_images]) class_image = exif_transpose(class_image) if not class_image.mode == "RGB": class_image = class_image.convert("RGB") example["class_images"] = self.image_transforms(class_image) example["class_prompt"] = self.class_prompt return example def collate_fn(examples, with_prior_preservation=False): pixel_values = [example["instance_images"] for example in examples] prompts = [example["instance_prompt"] for example in examples] # Concat class and instance examples for prior preservation. # We do this to avoid doing two forward passes. if with_prior_preservation: pixel_values += [example["class_images"] for example in examples] prompts += [example["class_prompt"] for example in examples] pixel_values = torch.stack(pixel_values) pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() batch = {"pixel_values": pixel_values, "prompts": prompts} return batch class PromptDataset(Dataset): """A simple dataset to prepare the prompts to generate class images on multiple GPUs.""" def __init__(self, prompt, num_samples): self.prompt = prompt self.num_samples = num_samples def __len__(self): return self.num_samples def __getitem__(self, index): example = {} example["prompt"] = self.prompt example["index"] = index return example def tokenize_prompt(tokenizer, prompt, add_special_tokens=False): text_inputs = tokenizer( prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, add_special_tokens=add_special_tokens, return_tensors="pt", ) text_input_ids = text_inputs.input_ids return text_input_ids # Adapted from pipelines.StableDiffusionXLPipeline.encode_prompt def encode_prompt(text_encoders, tokenizers, prompt, text_input_ids_list=None): for i, text_encoder in enumerate(text_encoders): if tokenizers is not None: tokenizer = tokenizers[i] text_input_ids = tokenize_prompt(tokenizer, prompt) else: assert text_input_ids_list is not None text_input_ids = text_input_ids_list[i] prompt_embeds = text_encoder( text_input_ids.to(text_encoder.device), output_hidden_states=True, ) return prompt_embeds[0] def main(args): if args.report_to == "wandb" and args.hub_token is not None: raise ValueError( "You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token." " Please use `huggingface-cli login` to authenticate with the Hub." ) logging_dir = Path(args.output_dir, args.logging_dir) accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) kwargs = DistributedDataParallelKwargs(find_unused_parameters=True) accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, log_with=args.report_to, project_config=accelerator_project_config, kwargs_handlers=[kwargs], ) if args.report_to == "wandb": if not is_wandb_available(): raise ImportError("Make sure to install wandb if you want to use it for logging during training.") import wandb # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: transformers.utils.logging.set_verbosity_warning() diffusers.utils.logging.set_verbosity_info() else: transformers.utils.logging.set_verbosity_error() diffusers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Generate class images if prior preservation is enabled. if args.with_prior_preservation: class_images_dir = Path(args.class_data_dir) if not class_images_dir.exists(): class_images_dir.mkdir(parents=True) cur_class_images = len(list(class_images_dir.iterdir())) if cur_class_images < args.num_class_images: torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32 if args.prior_generation_precision == "fp32": torch_dtype = torch.float32 elif args.prior_generation_precision == "fp16": torch_dtype = torch.float16 elif args.prior_generation_precision == "bf16": torch_dtype = torch.bfloat16 pipeline = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, torch_dtype=torch_dtype, revision=args.revision, variant=args.variant, ) pipeline.set_progress_bar_config(disable=True) num_new_images = args.num_class_images - cur_class_images logger.info(f"Number of class images to sample: {num_new_images}.") sample_dataset = PromptDataset(args.class_prompt, num_new_images) sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size) sample_dataloader = accelerator.prepare(sample_dataloader) pipeline.to(accelerator.device) for example in tqdm( sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process ): images = pipeline(example["prompt"]).images for i, image in enumerate(images): hash_image = hashlib.sha1(image.tobytes()).hexdigest() image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg" image.save(image_filename) del pipeline if torch.cuda.is_available(): torch.cuda.empty_cache() # Handle the repository creation if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) model_id = args.hub_model_id or Path(args.output_dir).name repo_id = None if args.push_to_hub: repo_id = create_repo(repo_id=model_id, exist_ok=True, token=args.hub_token).repo_id # Load the tokenizers tokenizer_one = AutoTokenizer.from_pretrained( args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision, variant=args.variant, use_fast=False, ) # import correct text encoder classes text_encoder_cls_one = import_model_class_from_model_name_or_path( args.pretrained_model_name_or_path, args.revision ) # Load scheduler and models noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") text_encoder_one = text_encoder_cls_one.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant ) vae_path = ( args.pretrained_model_name_or_path if args.pretrained_vae_model_name_or_path is None else args.pretrained_vae_model_name_or_path ) vae = AutoencoderKL.from_pretrained( vae_path, subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None, revision=args.revision, variant=args.variant, ) vae_scaling_factor = vae.config.scaling_factor unet = UNet2DConditionModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant ) if args.train_text_encoder_ti: # we parse the provided token identifier (or identifiers) into a list. s.t. - "TOK" -> ["TOK"], "TOK, # TOK2" -> ["TOK", "TOK2"] etc. token_abstraction_list = "".join(args.token_abstraction.split()).split(",") logger.info(f"list of token identifiers: {token_abstraction_list}") token_abstraction_dict = {} token_idx = 0 for i, token in enumerate(token_abstraction_list): token_abstraction_dict[token] = [ f"<s{token_idx + i + j}>" for j in range(args.num_new_tokens_per_abstraction) ] token_idx += args.num_new_tokens_per_abstraction - 1 # replace instances of --token_abstraction in --instance_prompt with the new tokens: "<si><si+1>" etc. for token_abs, token_replacement in token_abstraction_dict.items(): args.instance_prompt = args.instance_prompt.replace(token_abs, "".join(token_replacement)) if args.with_prior_preservation: args.class_prompt = args.class_prompt.replace(token_abs, "".join(token_replacement)) # initialize the new tokens for textual inversion embedding_handler = TokenEmbeddingsHandler([text_encoder_one], [tokenizer_one]) inserting_toks = [] for new_tok in token_abstraction_dict.values(): inserting_toks.extend(new_tok) embedding_handler.initialize_new_tokens(inserting_toks=inserting_toks) # We only train the additional adapter LoRA layers vae.requires_grad_(False) text_encoder_one.requires_grad_(False) unet.requires_grad_(False) # For mixed precision training we cast all non-trainable weights (vae, non-lora text_encoder and non-lora unet) to half-precision # as these weights are only used for inference, keeping weights in full precision is not required. weight_dtype = torch.float32 if accelerator.mixed_precision == "fp16": weight_dtype = torch.float16 elif accelerator.mixed_precision == "bf16": weight_dtype = torch.bfloat16 # Move unet, vae and text_encoder to device and cast to weight_dtype unet.to(accelerator.device, dtype=weight_dtype) # The VAE is always in float32 to avoid NaN losses. vae.to(accelerator.device, dtype=torch.float32) text_encoder_one.to(accelerator.device, dtype=weight_dtype) if args.enable_xformers_memory_efficient_attention: if is_xformers_available(): import xformers xformers_version = version.parse(xformers.__version__) if xformers_version == version.parse("0.0.16"): logger.warning( "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, " "please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." ) unet.enable_xformers_memory_efficient_attention() else: raise ValueError("xformers is not available. Make sure it is installed correctly") if args.gradient_checkpointing: unet.enable_gradient_checkpointing() if args.train_text_encoder: text_encoder_one.gradient_checkpointing_enable() # now we will add new LoRA weights to the attention layers unet_lora_config = LoraConfig( r=args.rank, lora_alpha=args.rank, use_dora=args.use_dora, init_lora_weights="gaussian", target_modules=["to_k", "to_q", "to_v", "to_out.0"], ) unet.add_adapter(unet_lora_config) # The text encoder comes from 🤗 transformers, so we cannot directly modify it. # So, instead, we monkey-patch the forward calls of its attention-blocks. if args.train_text_encoder: text_lora_config = LoraConfig( r=args.rank, lora_alpha=args.rank, use_dora=args.use_dora, init_lora_weights="gaussian", target_modules=["q_proj", "k_proj", "v_proj", "out_proj"], ) text_encoder_one.add_adapter(text_lora_config) # if we use textual inversion, we freeze all parameters except for the token embeddings # in text encoder elif args.train_text_encoder_ti: text_lora_parameters_one = [] for name, param in text_encoder_one.named_parameters(): if "token_embedding" in name: # ensure that dtype is float32, even if rest of the model that isn't trained is loaded in fp16 param = param.to(dtype=torch.float32) param.requires_grad = True text_lora_parameters_one.append(param) else: param.requires_grad = False # Make sure the trainable params are in float32. if args.mixed_precision == "fp16": models = [unet] if args.train_text_encoder: models.extend([text_encoder_one]) for model in models: for param in model.parameters(): # only upcast trainable parameters (LoRA) into fp32 if param.requires_grad: param.data = param.to(torch.float32) # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format def save_model_hook(models, weights, output_dir): if accelerator.is_main_process: # there are only two options here. Either are just the unet attn processor layers # or there are the unet and text encoder atten layers unet_lora_layers_to_save = None text_encoder_one_lora_layers_to_save = None for model in models: if isinstance(model, type(accelerator.unwrap_model(unet))): unet_lora_layers_to_save = convert_state_dict_to_diffusers(get_peft_model_state_dict(model)) elif isinstance(model, type(accelerator.unwrap_model(text_encoder_one))): if args.train_text_encoder: text_encoder_one_lora_layers_to_save = convert_state_dict_to_diffusers( get_peft_model_state_dict(model) ) else: raise ValueError(f"unexpected save model: {model.__class__}") # make sure to pop weight so that corresponding model is not saved again weights.pop() StableDiffusionPipeline.save_lora_weights( output_dir, unet_lora_layers=unet_lora_layers_to_save, text_encoder_lora_layers=text_encoder_one_lora_layers_to_save, ) if args.train_text_encoder_ti: embedding_handler.save_embeddings(f"{args.output_dir}/{Path(args.output_dir).name}_emb.safetensors") def load_model_hook(models, input_dir): unet_ = None text_encoder_one_ = None while len(models) > 0: model = models.pop() if isinstance(model, type(accelerator.unwrap_model(unet))): unet_ = model elif isinstance(model, type(accelerator.unwrap_model(text_encoder_one))): text_encoder_one_ = model else: raise ValueError(f"unexpected save model: {model.__class__}") lora_state_dict, network_alphas = StableDiffusionPipeline.lora_state_dict(input_dir) unet_state_dict = {f'{k.replace("unet.", "")}': v for k, v in lora_state_dict.items() if k.startswith("unet.")} unet_state_dict = convert_unet_state_dict_to_peft(unet_state_dict) incompatible_keys = set_peft_model_state_dict(unet_, unet_state_dict, adapter_name="default") if incompatible_keys is not None: # check only for unexpected keys unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None) if unexpected_keys: logger.warning( f"Loading adapter weights from state_dict led to unexpected keys not found in the model: " f" {unexpected_keys}. " ) if args.train_text_encoder: # Do we need to call `scale_lora_layers()` here? _set_state_dict_into_text_encoder(lora_state_dict, prefix="text_encoder.", text_encoder=text_encoder_one_) _set_state_dict_into_text_encoder( lora_state_dict, prefix="text_encoder_2.", text_encoder=text_encoder_one_ ) # Make sure the trainable params are in float32. This is again needed since the base models # are in `weight_dtype`. More details: # https://github.com/huggingface/diffusers/pull/6514#discussion_r1449796804 if args.mixed_precision == "fp16": models = [unet_] if args.train_text_encoder: models.extend([text_encoder_one_]) # only upcast trainable parameters (LoRA) into fp32 cast_training_params(models) lora_state_dict, network_alphas = StableDiffusionLoraLoaderMixin.lora_state_dict(input_dir) StableDiffusionLoraLoaderMixin.load_lora_into_unet(lora_state_dict, network_alphas=network_alphas, unet=unet_) text_encoder_state_dict = {k: v for k, v in lora_state_dict.items() if "text_encoder." in k} StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder( text_encoder_state_dict, network_alphas=network_alphas, text_encoder=text_encoder_one_ ) accelerator.register_save_state_pre_hook(save_model_hook) accelerator.register_load_state_pre_hook(load_model_hook) # Enable TF32 for faster training on Ampere GPUs, # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices if args.allow_tf32: torch.backends.cuda.matmul.allow_tf32 = True if args.scale_lr: args.learning_rate = ( args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes ) unet_lora_parameters = list(filter(lambda p: p.requires_grad, unet.parameters())) if args.train_text_encoder: text_lora_parameters_one = list(filter(lambda p: p.requires_grad, text_encoder_one.parameters())) # If neither --train_text_encoder nor --train_text_encoder_ti, text_encoders remain frozen during training freeze_text_encoder = not (args.train_text_encoder or args.train_text_encoder_ti) # Optimization parameters unet_lora_parameters_with_lr = {"params": unet_lora_parameters, "lr": args.learning_rate} if not freeze_text_encoder: # different learning rate for text encoder and unet text_lora_parameters_one_with_lr = { "params": text_lora_parameters_one, "weight_decay": args.adam_weight_decay_text_encoder if args.adam_weight_decay_text_encoder else args.adam_weight_decay, "lr": args.text_encoder_lr if args.text_encoder_lr else args.learning_rate, } params_to_optimize = [unet_lora_parameters_with_lr, text_lora_parameters_one_with_lr] else: params_to_optimize = [unet_lora_parameters_with_lr] # Optimizer creation if not (args.optimizer.lower() == "prodigy" or args.optimizer.lower() == "adamw"): logger.warning( f"Unsupported choice of optimizer: {args.optimizer}.Supported optimizers include [adamW, prodigy]." "Defaulting to adamW" ) args.optimizer = "adamw" if args.use_8bit_adam and not args.optimizer.lower() == "adamw": logger.warning( f"use_8bit_adam is ignored when optimizer is not set to 'AdamW'. Optimizer was " f"set to {args.optimizer.lower()}" ) if args.optimizer.lower() == "adamw": if args.use_8bit_adam: try: import bitsandbytes as bnb except ImportError: raise ImportError( "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." ) optimizer_class = bnb.optim.AdamW8bit else: optimizer_class = torch.optim.AdamW optimizer = optimizer_class( params_to_optimize, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, ) if args.optimizer.lower() == "prodigy": try: import prodigyopt except ImportError: raise ImportError("To use Prodigy, please install the prodigyopt library: `pip install prodigyopt`") optimizer_class = prodigyopt.Prodigy if args.learning_rate <= 0.1: logger.warning( "Learning rate is too low. When using prodigy, it's generally better to set learning rate around 1.0" ) if args.train_text_encoder and args.text_encoder_lr: logger.warning( f"Learning rates were provided both for the unet and the text encoder- e.g. text_encoder_lr:" f" {args.text_encoder_lr} and learning_rate: {args.learning_rate}. " f"When using prodigy only learning_rate is used as the initial learning rate." ) # changes the learning rate of text_encoder_parameters_one to be # --learning_rate params_to_optimize[1]["lr"] = args.learning_rate optimizer = optimizer_class( params_to_optimize, betas=(args.adam_beta1, args.adam_beta2), beta3=args.prodigy_beta3, weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, decouple=args.prodigy_decouple, use_bias_correction=args.prodigy_use_bias_correction, safeguard_warmup=args.prodigy_safeguard_warmup, ) # Dataset and DataLoaders creation: train_dataset = DreamBoothDataset( instance_data_root=args.instance_data_dir, instance_prompt=args.instance_prompt, class_prompt=args.class_prompt, dataset_name=args.dataset_name, dataset_config_name=args.dataset_config_name, cache_dir=args.cache_dir, image_column=args.image_column, train_text_encoder_ti=args.train_text_encoder_ti, caption_column=args.caption_column, class_data_root=args.class_data_dir if args.with_prior_preservation else None, token_abstraction_dict=token_abstraction_dict if args.train_text_encoder_ti else None, class_num=args.num_class_images, size=args.resolution, repeats=args.repeats, center_crop=args.center_crop, ) train_dataloader = torch.utils.data.DataLoader( train_dataset, batch_size=args.train_batch_size, shuffle=True, collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation), num_workers=args.dataloader_num_workers, ) if not args.train_text_encoder: tokenizers = [tokenizer_one] text_encoders = [text_encoder_one] def compute_text_embeddings(prompt, text_encoders, tokenizers): with torch.no_grad(): prompt_embeds = encode_prompt(text_encoders, tokenizers, prompt) prompt_embeds = prompt_embeds.to(accelerator.device) return prompt_embeds # If no type of tuning is done on the text_encoder and custom instance prompts are NOT # provided (i.e. the --instance_prompt is used for all images), we encode the instance prompt once to avoid # the redundant encoding. if freeze_text_encoder and not train_dataset.custom_instance_prompts: instance_prompt_hidden_states = compute_text_embeddings(args.instance_prompt, text_encoders, tokenizers) # Handle class prompt for prior-preservation. if args.with_prior_preservation: if freeze_text_encoder: class_prompt_hidden_states = compute_text_embeddings(args.class_prompt, text_encoders, tokenizers) # Clear the memory here if freeze_text_encoder and not train_dataset.custom_instance_prompts: del tokenizers, text_encoders gc.collect() torch.cuda.empty_cache() # if --train_text_encoder_ti we need add_special_tokens to be True for textual inversion add_special_tokens = True if args.train_text_encoder_ti else False if not train_dataset.custom_instance_prompts: if freeze_text_encoder: prompt_embeds = instance_prompt_hidden_states if args.with_prior_preservation: prompt_embeds = torch.cat([prompt_embeds, class_prompt_hidden_states], dim=0) # if we're optimizing the text encoder (both if instance prompt is used for all images or custom prompts) we need to tokenize and encode the # batch prompts on all training steps else: tokens_one = tokenize_prompt(tokenizer_one, args.instance_prompt, add_special_tokens) if args.with_prior_preservation: class_tokens_one = tokenize_prompt(tokenizer_one, args.class_prompt, add_special_tokens) tokens_one = torch.cat([tokens_one, class_tokens_one], dim=0) if args.train_text_encoder_ti and args.validation_prompt: # replace instances of --token_abstraction in validation prompt with the new tokens: "<si><si+1>" etc. for token_abs, token_replacement in train_dataset.token_abstraction_dict.items(): args.validation_prompt = args.validation_prompt.replace(token_abs, "".join(token_replacement)) print("validation prompt:", args.validation_prompt) if args.cache_latents: latents_cache = [] for batch in tqdm(train_dataloader, desc="Caching latents"): with torch.no_grad(): batch["pixel_values"] = batch["pixel_values"].to( accelerator.device, non_blocking=True, dtype=torch.float32 ) latents_cache.append(vae.encode(batch["pixel_values"]).latent_dist) if args.validation_prompt is None: del vae if torch.cuda.is_available(): torch.cuda.empty_cache() # Scheduler and math around the number of training steps. # Check the PR https://github.com/huggingface/diffusers/pull/8312 for detailed explanation. num_warmup_steps_for_scheduler = args.lr_warmup_steps * accelerator.num_processes if args.max_train_steps is None: len_train_dataloader_after_sharding = math.ceil(len(train_dataloader) / accelerator.num_processes) num_update_steps_per_epoch = math.ceil(len_train_dataloader_after_sharding / args.gradient_accumulation_steps) num_training_steps_for_scheduler = ( args.num_train_epochs * num_update_steps_per_epoch * accelerator.num_processes ) else: num_training_steps_for_scheduler = args.max_train_steps * accelerator.num_processes lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=num_warmup_steps_for_scheduler, num_training_steps=num_training_steps_for_scheduler, num_cycles=args.lr_num_cycles, power=args.lr_power, ) # Prepare everything with our `accelerator`. if not freeze_text_encoder: unet, text_encoder_one, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( unet, text_encoder_one, optimizer, train_dataloader, lr_scheduler ) else: unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( unet, optimizer, train_dataloader, lr_scheduler ) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch if num_training_steps_for_scheduler != args.max_train_steps * accelerator.num_processes: logger.warning( f"The length of the 'train_dataloader' after 'accelerator.prepare' ({len(train_dataloader)}) does not match " f"the expected length ({len_train_dataloader_after_sharding}) when the learning rate scheduler was created. " f"This inconsistency may result in the learning rate scheduler not functioning properly." ) # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if accelerator.is_main_process: accelerator.init_trackers("dreambooth-lora-sd-15", config=vars(args)) # Train! total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num batches each epoch = {len(train_dataloader)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") global_step = 0 first_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint != "latest": path = os.path.basename(args.resume_from_checkpoint) else: # Get the mos recent checkpoint dirs = os.listdir(args.output_dir) dirs = [d for d in dirs if d.startswith("checkpoint")] dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) path = dirs[-1] if len(dirs) > 0 else None if path is None: accelerator.print( f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." ) args.resume_from_checkpoint = None initial_global_step = 0 else: accelerator.print(f"Resuming from checkpoint {path}") accelerator.load_state(os.path.join(args.output_dir, path)) global_step = int(path.split("-")[1]) initial_global_step = global_step first_epoch = global_step // num_update_steps_per_epoch else: initial_global_step = 0 progress_bar = tqdm( range(0, args.max_train_steps), initial=initial_global_step, desc="Steps", # Only show the progress bar once on each machine. disable=not accelerator.is_local_main_process, ) if args.train_text_encoder: num_train_epochs_text_encoder = int(args.train_text_encoder_frac * args.num_train_epochs) elif args.train_text_encoder_ti: # args.train_text_encoder_ti num_train_epochs_text_encoder = int(args.train_text_encoder_ti_frac * args.num_train_epochs) for epoch in range(first_epoch, args.num_train_epochs): # if performing any kind of optimization of text_encoder params if args.train_text_encoder or args.train_text_encoder_ti: if epoch == num_train_epochs_text_encoder: print("PIVOT HALFWAY", epoch) # stopping optimization of text_encoder params # re setting the optimizer to optimize only on unet params optimizer.param_groups[1]["lr"] = 0.0 else: # still optimizng the text encoder text_encoder_one.train() # set top parameter requires_grad = True for gradient checkpointing works if args.train_text_encoder: text_encoder_one.text_model.embeddings.requires_grad_(True) unet.train() for step, batch in enumerate(train_dataloader): with accelerator.accumulate(unet): prompts = batch["prompts"] # encode batch prompts when custom prompts are provided for each image - if train_dataset.custom_instance_prompts: if freeze_text_encoder: prompt_embeds = compute_text_embeddings(prompts, text_encoders, tokenizers) else: tokens_one = tokenize_prompt(tokenizer_one, prompts, add_special_tokens) if args.cache_latents: model_input = latents_cache[step].sample() else: pixel_values = batch["pixel_values"].to(dtype=vae.dtype) model_input = vae.encode(pixel_values).latent_dist.sample() model_input = model_input * vae_scaling_factor if args.pretrained_vae_model_name_or_path is None: model_input = model_input.to(weight_dtype) # Sample noise that we'll add to the latents noise = torch.randn_like(model_input) if args.noise_offset: # https://www.crosslabs.org//blog/diffusion-with-offset-noise noise += args.noise_offset * torch.randn( (model_input.shape[0], model_input.shape[1], 1, 1), device=model_input.device ) bsz = model_input.shape[0] # Sample a random timestep for each image timesteps = torch.randint( 0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device ) timesteps = timesteps.long() # Add noise to the model input according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps) # Calculate the elements to repeat depending on the use of prior-preservation and custom captions. if not train_dataset.custom_instance_prompts: elems_to_repeat_text_embeds = bsz // 2 if args.with_prior_preservation else bsz else: elems_to_repeat_text_embeds = 1 # Predict the noise residual if freeze_text_encoder: prompt_embeds_input = prompt_embeds.repeat(elems_to_repeat_text_embeds, 1, 1) model_pred = unet(noisy_model_input, timesteps, prompt_embeds_input).sample else: prompt_embeds = encode_prompt( text_encoders=[text_encoder_one], tokenizers=None, prompt=None, text_input_ids_list=[tokens_one], ) prompt_embeds_input = prompt_embeds.repeat(elems_to_repeat_text_embeds, 1, 1) model_pred = unet(noisy_model_input, timesteps, prompt_embeds_input).sample # Get the target for loss depending on the prediction type if noise_scheduler.config.prediction_type == "epsilon": target = noise elif noise_scheduler.config.prediction_type == "v_prediction": target = noise_scheduler.get_velocity(model_input, noise, timesteps) else: raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") if args.with_prior_preservation: # Chunk the noise and model_pred into two parts and compute the loss on each part separately. model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0) target, target_prior = torch.chunk(target, 2, dim=0) # Compute prior loss prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean") if args.snr_gamma is None: loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") else: # Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556. # Since we predict the noise instead of x_0, the original formulation is slightly changed. # This is discussed in Section 4.2 of the same paper. if args.with_prior_preservation: # if we're using prior preservation, we calc snr for instance loss only - # and hence only need timesteps corresponding to instance images snr_timesteps, _ = torch.chunk(timesteps, 2, dim=0) else: snr_timesteps = timesteps snr = compute_snr(noise_scheduler, snr_timesteps) base_weight = ( torch.stack([snr, args.snr_gamma * torch.ones_like(snr_timesteps)], dim=1).min(dim=1)[0] / snr ) if noise_scheduler.config.prediction_type == "v_prediction": # Velocity objective needs to be floored to an SNR weight of one. mse_loss_weights = base_weight + 1 else: # Epsilon and sample both use the same loss weights. mse_loss_weights = base_weight loss = F.mse_loss(model_pred.float(), target.float(), reduction="none") loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights loss = loss.mean() if args.with_prior_preservation: # Add the prior loss to the instance loss. loss = loss + args.prior_loss_weight * prior_loss accelerator.backward(loss) if accelerator.sync_gradients: params_to_clip = ( itertools.chain(unet_lora_parameters, text_lora_parameters_one) if (args.train_text_encoder or args.train_text_encoder_ti) else unet_lora_parameters ) accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # every step, we reset the embeddings to the original embeddings. if args.train_text_encoder_ti: for idx, text_encoder in enumerate(text_encoders): embedding_handler.retract_embeddings() # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) global_step += 1 if accelerator.is_main_process: if global_step % args.checkpointing_steps == 0: # _before_ saving state, check if this save would set us over the `checkpoints_total_limit` if args.checkpoints_total_limit is not None: checkpoints = os.listdir(args.output_dir) checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints if len(checkpoints) >= args.checkpoints_total_limit: num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 removing_checkpoints = checkpoints[0:num_to_remove] logger.info( f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" ) logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") for removing_checkpoint in removing_checkpoints: removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) shutil.rmtree(removing_checkpoint) save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") accelerator.save_state(save_path) logger.info(f"Saved state to {save_path}") logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) accelerator.log(logs, step=global_step) if global_step >= args.max_train_steps: break if accelerator.is_main_process: if args.validation_prompt is not None and epoch % args.validation_epochs == 0: logger.info( f"Running validation... \n Generating {args.num_validation_images} images with prompt:" f" {args.validation_prompt}." ) # create pipeline if freeze_text_encoder: text_encoder_one = text_encoder_cls_one.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant, ) pipeline = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, vae=vae, tokenizer=tokenizer_one, text_encoder=accelerator.unwrap_model(text_encoder_one), unet=accelerator.unwrap_model(unet), revision=args.revision, variant=args.variant, torch_dtype=weight_dtype, ) # We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it scheduler_args = {} if "variance_type" in pipeline.scheduler.config: variance_type = pipeline.scheduler.config.variance_type if variance_type in ["learned", "learned_range"]: variance_type = "fixed_small" scheduler_args["variance_type"] = variance_type pipeline.scheduler = DPMSolverMultistepScheduler.from_config( pipeline.scheduler.config, **scheduler_args ) pipeline = pipeline.to(accelerator.device) pipeline.set_progress_bar_config(disable=True) # run inference generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None pipeline_args = {"prompt": args.validation_prompt} if torch.backends.mps.is_available(): autocast_ctx = nullcontext() else: autocast_ctx = torch.autocast(accelerator.device.type) with autocast_ctx: images = [ pipeline(**pipeline_args, generator=generator).images[0] for _ in range(args.num_validation_images) ] for tracker in accelerator.trackers: if tracker.name == "tensorboard": np_images = np.stack([np.asarray(img) for img in images]) tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC") if tracker.name == "wandb": tracker.log( { "validation": [ wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images) ] } ) del pipeline torch.cuda.empty_cache() # Save the lora layers accelerator.wait_for_everyone() if accelerator.is_main_process: unet = accelerator.unwrap_model(unet) unet = unet.to(torch.float32) unet_lora_layers = convert_state_dict_to_diffusers(get_peft_model_state_dict(unet)) if args.train_text_encoder: text_encoder_one = accelerator.unwrap_model(text_encoder_one) text_encoder_lora_layers = convert_state_dict_to_diffusers( get_peft_model_state_dict(text_encoder_one.to(torch.float32)) ) else: text_encoder_lora_layers = None StableDiffusionPipeline.save_lora_weights( save_directory=args.output_dir, unet_lora_layers=unet_lora_layers, text_encoder_lora_layers=text_encoder_lora_layers, ) if args.train_text_encoder_ti: embeddings_path = f"{args.output_dir}/{args.output_dir}_emb.safetensors" embedding_handler.save_embeddings(embeddings_path) images = [] if args.validation_prompt and args.num_validation_images > 0: # Final inference # Load previous pipeline vae = AutoencoderKL.from_pretrained( vae_path, subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None, revision=args.revision, variant=args.variant, torch_dtype=weight_dtype, ) pipeline = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, vae=vae, revision=args.revision, variant=args.variant, torch_dtype=weight_dtype, ) # We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it scheduler_args = {} if "variance_type" in pipeline.scheduler.config: variance_type = pipeline.scheduler.config.variance_type if variance_type in ["learned", "learned_range"]: variance_type = "fixed_small" scheduler_args["variance_type"] = variance_type pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config, **scheduler_args) # load attention processors pipeline.load_lora_weights(args.output_dir) # load new tokens if args.train_text_encoder_ti: state_dict = load_file(embeddings_path) all_new_tokens = [] for key, value in token_abstraction_dict.items(): all_new_tokens.extend(value) pipeline.load_textual_inversion( state_dict["clip_l"], token=all_new_tokens, text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer, ) # run inference pipeline = pipeline.to(accelerator.device) generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None images = [ pipeline(args.validation_prompt, num_inference_steps=25, generator=generator).images[0] for _ in range(args.num_validation_images) ] for tracker in accelerator.trackers: if tracker.name == "tensorboard": np_images = np.stack([np.asarray(img) for img in images]) tracker.writer.add_images("test", np_images, epoch, dataformats="NHWC") if tracker.name == "wandb": tracker.log( { "test": [ wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images) ] } ) # Convert to WebUI format lora_state_dict = load_file(f"{args.output_dir}/pytorch_lora_weights.safetensors") peft_state_dict = convert_all_state_dict_to_peft(lora_state_dict) kohya_state_dict = convert_state_dict_to_kohya(peft_state_dict) save_file(kohya_state_dict, f"{args.output_dir}/{Path(args.output_dir).name}.safetensors") save_model_card( model_id if not args.push_to_hub else repo_id, use_dora=args.use_dora, images=images, base_model=args.pretrained_model_name_or_path, train_text_encoder=args.train_text_encoder, train_text_encoder_ti=args.train_text_encoder_ti, token_abstraction_dict=train_dataset.token_abstraction_dict, instance_prompt=args.instance_prompt, validation_prompt=args.validation_prompt, repo_folder=args.output_dir, vae_path=args.pretrained_vae_model_name_or_path, ) if args.push_to_hub: upload_folder( repo_id=repo_id, folder_path=args.output_dir, commit_message="End of training", ignore_patterns=["step_*", "epoch_*"], ) accelerator.end_training() if __name__ == "__main__": args = parse_args() main(args)
diffusers/examples/advanced_diffusion_training/train_dreambooth_lora_sd15_advanced.py/0
{ "file_path": "diffusers/examples/advanced_diffusion_training/train_dreambooth_lora_sd15_advanced.py", "repo_id": "diffusers", "token_count": 39442 }
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect from typing import Callable, List, Optional, Union import torch from packaging import version from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNet2DConditionModel from diffusers.pipelines.pipeline_utils import StableDiffusionMixin from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from diffusers.utils import deprecate, logging logger = logging.get_logger(__name__) # pylint: disable=invalid-name class ComposableStableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin): r""" Pipeline for text-to-image generation using Stable Diffusion. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`CLIPTextModel`]): Frozen text-encoder. Stable Diffusion uses the text portion of [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. feature_extractor ([`CLIPImageProcessor`]): Model that extracts features from generated images to be used as inputs for the `safety_checker`. """ _optional_components = ["safety_checker", "feature_extractor"] def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ], safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, requires_safety_checker: bool = True, ): super().__init__() if scheduler is not None and getattr(scheduler.config, "steps_offset", 1) != 1: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["steps_offset"] = 1 scheduler._internal_dict = FrozenDict(new_config) if scheduler is not None and getattr(scheduler.config, "clip_sample", False) is True: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." " `clip_sample` should be set to False in the configuration file. Please make sure to update the" " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" ) deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["clip_sample"] = False scheduler._internal_dict = FrozenDict(new_config) if safety_checker is None and requires_safety_checker: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) if safety_checker is not None and feature_extractor is None: raise ValueError( "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." ) is_unet_version_less_0_9_0 = ( unet is not None and hasattr(unet.config, "_diffusers_version") and version.parse(version.parse(unet.config._diffusers_version).base_version) < version.parse("0.9.0.dev0") ) is_unet_sample_size_less_64 = ( unet is not None and hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 ) if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: deprecation_message = ( "The configuration file of the unet has set the default `sample_size` to smaller than" " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the" " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" " in the config might lead to incorrect results in future versions. If you have downloaded this" " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" " the `unet/config.json` file" ) deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(unet.config) new_config["sample_size"] = 64 unet._internal_dict = FrozenDict(new_config) self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 self.register_to_config(requires_safety_checker=requires_safety_checker) def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `list(int)`): prompt to be encoded device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). """ batch_size = len(prompt) if isinstance(prompt, list) else 1 text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None text_embeddings = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask, ) text_embeddings = text_embeddings[0] # duplicate text embeddings for each generation per prompt, using mps friendly method bs_embed, seq_len, _ = text_embeddings.shape text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1) text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt max_length = text_input_ids.shape[-1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = uncond_input.attention_mask.to(device) else: attention_mask = None uncond_embeddings = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=attention_mask, ) uncond_embeddings = uncond_embeddings[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = uncond_embeddings.shape[1] uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1) uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) return text_embeddings def run_safety_checker(self, image, device, dtype): if self.safety_checker is not None: safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device) image, has_nsfw_concept = self.safety_checker( images=image, clip_input=safety_checker_input.pixel_values.to(dtype) ) else: has_nsfw_concept = None return image, has_nsfw_concept def decode_latents(self, latents): latents = 1 / 0.18215 * latents image = self.vae.decode(latents).sample image = (image / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 image = image.cpu().permute(0, 2, 3, 1).float().numpy() return image def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs(self, prompt, height, width, callback_steps): if not isinstance(prompt, str) and not isinstance(prompt, list): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): shape = ( batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor, ) if latents is None: if device.type == "mps": # randn does not work reproducibly on mps latents = torch.randn(shape, generator=generator, device="cpu", dtype=dtype).to(device) else: latents = torch.randn(shape, generator=generator, device=device, dtype=dtype) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents @torch.no_grad() def __call__( self, prompt: Union[str, List[str]], height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, guidance_scale: float = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[torch.Generator] = None, latents: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: int = 1, weights: Optional[str] = "", ): r""" Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The height in pixels of the generated image. width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 5.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator`, *optional*): A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step. Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, according to the `safety_checker`. """ # 0. Default height and width to unet height = height or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor # 1. Check inputs. Raise error if not correct self.check_inputs(prompt, height, width, callback_steps) # 2. Define call parameters batch_size = 1 if isinstance(prompt, str) else len(prompt) device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 if "|" in prompt: prompt = [x.strip() for x in prompt.split("|")] print(f"composing {prompt}...") if not weights: # specify weights for prompts (excluding the unconditional score) print("using equal positive weights (conjunction) for all prompts...") weights = torch.tensor([guidance_scale] * len(prompt), device=self.device).reshape(-1, 1, 1, 1) else: # set prompt weight for each num_prompts = len(prompt) if isinstance(prompt, list) else 1 weights = [float(w.strip()) for w in weights.split("|")] # guidance scale as the default if len(weights) < num_prompts: weights.append(guidance_scale) else: weights = weights[:num_prompts] assert len(weights) == len(prompt), "weights specified are not equal to the number of prompts" weights = torch.tensor(weights, device=self.device).reshape(-1, 1, 1, 1) else: weights = guidance_scale # 3. Encode input prompt text_embeddings = self._encode_prompt( prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt ) # 4. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 5. Prepare latent variables num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, text_embeddings.dtype, device, generator, latents, ) # composable diffusion if isinstance(prompt, list) and batch_size == 1: # remove extra unconditional embedding # N = one unconditional embed + conditional embeds text_embeddings = text_embeddings[len(prompt) - 1 :] # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 7. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual noise_pred = [] for j in range(text_embeddings.shape[0]): noise_pred.append( self.unet(latent_model_input[:1], t, encoder_hidden_states=text_embeddings[j : j + 1]).sample ) noise_pred = torch.cat(noise_pred, dim=0) # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred[:1], noise_pred[1:] noise_pred = noise_pred_uncond + (weights * (noise_pred_text - noise_pred_uncond)).sum( dim=0, keepdims=True ) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) # 8. Post-processing image = self.decode_latents(latents) # 9. Run safety checker image, has_nsfw_concept = self.run_safety_checker(image, device, text_embeddings.dtype) # 10. Convert to PIL if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
diffusers/examples/community/composable_stable_diffusion.py/0
{ "file_path": "diffusers/examples/community/composable_stable_diffusion.py", "repo_id": "diffusers", "token_count": 11960 }
# Copyright 2024 Stanford University Team and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, ConfigMixin, DiffusionPipeline, SchedulerMixin, UNet2DConditionModel, logging from diffusers.configuration_utils import register_to_config from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import BaseOutput logger = logging.get_logger(__name__) # pylint: disable=invalid-name class LatentConsistencyModelPipeline(DiffusionPipeline): _optional_components = ["scheduler"] def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: "LCMScheduler", safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, requires_safety_checker: bool = True, ): super().__init__() scheduler = ( scheduler if scheduler is not None else LCMScheduler( beta_start=0.00085, beta_end=0.0120, beta_schedule="scaled_linear", prediction_type="epsilon" ) ) self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) def _encode_prompt( self, prompt, device, num_images_per_prompt, prompt_embeds: None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. """ if prompt is not None and isinstance(prompt, str): pass elif prompt is not None and isinstance(prompt, list): len(prompt) else: prompt_embeds.shape[0] if prompt_embeds is None: text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None prompt_embeds = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask, ) prompt_embeds = prompt_embeds[0] if self.text_encoder is not None: prompt_embeds_dtype = self.text_encoder.dtype elif self.unet is not None: prompt_embeds_dtype = self.unet.dtype else: prompt_embeds_dtype = prompt_embeds.dtype prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) # Don't need to get uncond prompt embedding because of LCM Guided Distillation return prompt_embeds def run_safety_checker(self, image, device, dtype): if self.safety_checker is None: has_nsfw_concept = None else: if torch.is_tensor(image): feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") else: feature_extractor_input = self.image_processor.numpy_to_pil(image) safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) image, has_nsfw_concept = self.safety_checker( images=image, clip_input=safety_checker_input.pixel_values.to(dtype) ) return image, has_nsfw_concept def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, latents=None): shape = ( batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor, ) if latents is None: latents = torch.randn(shape, dtype=dtype).to(device) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents def get_w_embedding(self, w, embedding_dim=512, dtype=torch.float32): """ see https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 Args: timesteps: torch.Tensor: generate embedding vectors at these timesteps embedding_dim: int: dimension of the embeddings to generate dtype: data type of the generated embeddings Returns: embedding vectors with shape `(len(timesteps), embedding_dim)` """ assert len(w.shape) == 1 w = w * 1000.0 half_dim = embedding_dim // 2 emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) emb = w.to(dtype)[:, None] * emb[None, :] emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) if embedding_dim % 2 == 1: # zero pad emb = torch.nn.functional.pad(emb, (0, 1)) assert emb.shape == (w.shape[0], embedding_dim) return emb @torch.no_grad() def __call__( self, prompt: Union[str, List[str]] = None, height: Optional[int] = 768, width: Optional[int] = 768, guidance_scale: float = 7.5, num_images_per_prompt: Optional[int] = 1, latents: Optional[torch.Tensor] = None, num_inference_steps: int = 4, lcm_origin_steps: int = 50, prompt_embeds: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, cross_attention_kwargs: Optional[Dict[str, Any]] = None, ): # 0. Default height and width to unet height = height or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # do_classifier_free_guidance = guidance_scale > 0.0 # In LCM Implementation: cfg_noise = noise_cond + cfg_scale * (noise_cond - noise_uncond) , (cfg_scale > 0.0 using CFG) # 3. Encode input prompt prompt_embeds = self._encode_prompt( prompt, device, num_images_per_prompt, prompt_embeds=prompt_embeds, ) # 4. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, lcm_origin_steps) timesteps = self.scheduler.timesteps # 5. Prepare latent variable num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, latents, ) bs = batch_size * num_images_per_prompt # 6. Get Guidance Scale Embedding w = torch.tensor(guidance_scale).repeat(bs) w_embedding = self.get_w_embedding(w, embedding_dim=256).to(device=device, dtype=latents.dtype) # 7. LCM MultiStep Sampling Loop: with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): ts = torch.full((bs,), t, device=device, dtype=torch.long) latents = latents.to(prompt_embeds.dtype) # model prediction (v-prediction, eps, x) model_pred = self.unet( latents, ts, timestep_cond=w_embedding, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, return_dict=False, )[0] # compute the previous noisy sample x_t -> x_t-1 latents, denoised = self.scheduler.step(model_pred, i, t, latents, return_dict=False) # # call the callback, if provided # if i == len(timesteps) - 1: progress_bar.update() denoised = denoised.to(prompt_embeds.dtype) if not output_type == "latent": image = self.vae.decode(denoised / self.vae.config.scaling_factor, return_dict=False)[0] image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) else: image = denoised has_nsfw_concept = None if has_nsfw_concept is None: do_denormalize = [True] * image.shape[0] else: do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class LCMSchedulerOutput(BaseOutput): """ Output class for the scheduler's `step` function output. Args: prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample `(x_{0})` based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. """ prev_sample: torch.Tensor denoised: Optional[torch.Tensor] = None # Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar def betas_for_alpha_bar( num_diffusion_timesteps, max_beta=0.999, alpha_transform_type="cosine", ): """ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of (1-beta) over time from t = [0,1]. Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up to that part of the diffusion process. Args: num_diffusion_timesteps (`int`): the number of betas to produce. max_beta (`float`): the maximum beta to use; use values lower than 1 to prevent singularities. alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar. Choose from `cosine` or `exp` Returns: betas (`np.ndarray`): the betas used by the scheduler to step the model outputs """ if alpha_transform_type == "cosine": def alpha_bar_fn(t): return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(t): return math.exp(t * -12.0) else: raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}") betas = [] for i in range(num_diffusion_timesteps): t1 = i / num_diffusion_timesteps t2 = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) return torch.tensor(betas, dtype=torch.float32) def rescale_zero_terminal_snr(betas): """ Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1) Args: betas (`torch.Tensor`): the betas that the scheduler is being initialized with. Returns: `torch.Tensor`: rescaled betas with zero terminal SNR """ # Convert betas to alphas_bar_sqrt alphas = 1.0 - betas alphas_cumprod = torch.cumprod(alphas, dim=0) alphas_bar_sqrt = alphas_cumprod.sqrt() # Store old values. alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone() alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone() # Shift so the last timestep is zero. alphas_bar_sqrt -= alphas_bar_sqrt_T # Scale so the first timestep is back to the old value. alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T) # Convert alphas_bar_sqrt to betas alphas_bar = alphas_bar_sqrt**2 # Revert sqrt alphas = alphas_bar[1:] / alphas_bar[:-1] # Revert cumprod alphas = torch.cat([alphas_bar[0:1], alphas]) betas = 1 - alphas return betas class LCMScheduler(SchedulerMixin, ConfigMixin): """ `LCMScheduler` extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with non-Markovian guidance. This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic methods the library implements for all schedulers such as loading and saving. Args: num_train_timesteps (`int`, defaults to 1000): The number of diffusion steps to train the model. beta_start (`float`, defaults to 0.0001): The starting `beta` value of inference. beta_end (`float`, defaults to 0.02): The final `beta` value. beta_schedule (`str`, defaults to `"linear"`): The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from `linear`, `scaled_linear`, or `squaredcos_cap_v2`. trained_betas (`np.ndarray`, *optional*): Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`. clip_sample (`bool`, defaults to `True`): Clip the predicted sample for numerical stability. clip_sample_range (`float`, defaults to 1.0): The maximum magnitude for sample clipping. Valid only when `clip_sample=True`. set_alpha_to_one (`bool`, defaults to `True`): Each diffusion step uses the alphas product value at that step and at the previous one. For the final step there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`, otherwise it uses the alpha value at step 0. steps_offset (`int`, defaults to 0): An offset added to the inference steps, as required by some model families. prediction_type (`str`, defaults to `epsilon`, *optional*): Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen Video](https://imagen.research.google/video/paper.pdf) paper). thresholding (`bool`, defaults to `False`): Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such as Stable Diffusion. dynamic_thresholding_ratio (`float`, defaults to 0.995): The ratio for the dynamic thresholding method. Valid only when `thresholding=True`. sample_max_value (`float`, defaults to 1.0): The threshold value for dynamic thresholding. Valid only when `thresholding=True`. timestep_spacing (`str`, defaults to `"leading"`): The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information. rescale_betas_zero_snr (`bool`, defaults to `False`): Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and dark samples instead of limiting it to samples with medium brightness. Loosely related to [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506). """ # _compatibles = [e.name for e in KarrasDiffusionSchedulers] order = 1 @register_to_config def __init__( self, num_train_timesteps: int = 1000, beta_start: float = 0.0001, beta_end: float = 0.02, beta_schedule: str = "linear", trained_betas: Optional[Union[np.ndarray, List[float]]] = None, clip_sample: bool = True, set_alpha_to_one: bool = True, steps_offset: int = 0, prediction_type: str = "epsilon", thresholding: bool = False, dynamic_thresholding_ratio: float = 0.995, clip_sample_range: float = 1.0, sample_max_value: float = 1.0, timestep_spacing: str = "leading", rescale_betas_zero_snr: bool = False, ): if trained_betas is not None: self.betas = torch.tensor(trained_betas, dtype=torch.float32) elif beta_schedule == "linear": self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule self.betas = betas_for_alpha_bar(num_train_timesteps) else: raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}") # Rescale for zero SNR if rescale_betas_zero_snr: self.betas = rescale_zero_terminal_snr(self.betas) self.alphas = 1.0 - self.betas self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) # At every step in ddim, we are looking into the previous alphas_cumprod # For the final step, there is no previous alphas_cumprod because we are already at 0 # `set_alpha_to_one` decides whether we set this parameter simply to one or # whether we use the final alpha of the "non-previous" one. self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0] # standard deviation of the initial noise distribution self.init_noise_sigma = 1.0 # setable values self.num_inference_steps = None self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64)) def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor: """ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep. Args: sample (`torch.Tensor`): The input sample. timestep (`int`, *optional*): The current timestep in the diffusion chain. Returns: `torch.Tensor`: A scaled input sample. """ return sample def _get_variance(self, timestep, prev_timestep): alpha_prod_t = self.alphas_cumprod[timestep] alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod beta_prod_t = 1 - alpha_prod_t beta_prod_t_prev = 1 - alpha_prod_t_prev variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev) return variance # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor: """ "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing pixels from saturation at each step. We find that dynamic thresholding results in significantly better photorealism as well as better image-text alignment, especially when using very large guidance weights." https://arxiv.org/abs/2205.11487 """ dtype = sample.dtype batch_size, channels, height, width = sample.shape if dtype not in (torch.float32, torch.float64): sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half # Flatten sample for doing quantile calculation along each image sample = sample.reshape(batch_size, channels * height * width) abs_sample = sample.abs() # "a certain percentile absolute pixel value" s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1) s = torch.clamp( s, min=1, max=self.config.sample_max_value ) # When clamped to min=1, equivalent to standard clipping to [-1, 1] s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0 sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s" sample = sample.reshape(batch_size, channels, height, width) sample = sample.to(dtype) return sample def set_timesteps(self, num_inference_steps: int, lcm_origin_steps: int, device: Union[str, torch.device] = None): """ Sets the discrete timesteps used for the diffusion chain (to be run before inference). Args: num_inference_steps (`int`): The number of diffusion steps used when generating samples with a pre-trained model. """ if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:" f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle" f" maximal {self.config.num_train_timesteps} timesteps." ) self.num_inference_steps = num_inference_steps # LCM Timesteps Setting: # Linear Spacing c = self.config.num_train_timesteps // lcm_origin_steps lcm_origin_timesteps = np.asarray(list(range(1, lcm_origin_steps + 1))) * c - 1 # LCM Training Steps Schedule skipping_step = len(lcm_origin_timesteps) // num_inference_steps timesteps = lcm_origin_timesteps[::-skipping_step][:num_inference_steps] # LCM Inference Steps Schedule self.timesteps = torch.from_numpy(timesteps.copy()).to(device) def get_scalings_for_boundary_condition_discrete(self, t): self.sigma_data = 0.5 # Default: 0.5 # By dividing 0.1: This is almost a delta function at t=0. c_skip = self.sigma_data**2 / ((t / 0.1) ** 2 + self.sigma_data**2) c_out = (t / 0.1) / ((t / 0.1) ** 2 + self.sigma_data**2) ** 0.5 return c_skip, c_out def step( self, model_output: torch.Tensor, timeindex: int, timestep: int, sample: torch.Tensor, eta: float = 0.0, use_clipped_model_output: bool = False, generator=None, variance_noise: Optional[torch.Tensor] = None, return_dict: bool = True, ) -> Union[LCMSchedulerOutput, Tuple]: """ Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion process from the learned model outputs (most often the predicted noise). Args: model_output (`torch.Tensor`): The direct output from learned diffusion model. timestep (`float`): The current discrete timestep in the diffusion chain. sample (`torch.Tensor`): A current instance of a sample created by the diffusion process. eta (`float`): The weight of noise for added noise in diffusion step. use_clipped_model_output (`bool`, defaults to `False`): If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no clipping has happened, "corrected" `model_output` would coincide with the one provided as input and `use_clipped_model_output` has no effect. generator (`torch.Generator`, *optional*): A random number generator. variance_noise (`torch.Tensor`): Alternative to generating noise with `generator` by directly providing the noise for the variance itself. Useful for methods such as [`CycleDiffusion`]. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~schedulers.scheduling_lcm.LCMSchedulerOutput`] or `tuple`. Returns: [`~schedulers.scheduling_utils.LCMSchedulerOutput`] or `tuple`: If return_dict is `True`, [`~schedulers.scheduling_lcm.LCMSchedulerOutput`] is returned, otherwise a tuple is returned where the first element is the sample tensor. """ if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) # 1. get previous step value prev_timeindex = timeindex + 1 if prev_timeindex < len(self.timesteps): prev_timestep = self.timesteps[prev_timeindex] else: prev_timestep = timestep # 2. compute alphas, betas alpha_prod_t = self.alphas_cumprod[timestep] alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod beta_prod_t = 1 - alpha_prod_t beta_prod_t_prev = 1 - alpha_prod_t_prev # 3. Get scalings for boundary conditions c_skip, c_out = self.get_scalings_for_boundary_condition_discrete(timestep) # 4. Different Parameterization: parameterization = self.config.prediction_type if parameterization == "epsilon": # noise-prediction pred_x0 = (sample - beta_prod_t.sqrt() * model_output) / alpha_prod_t.sqrt() elif parameterization == "sample": # x-prediction pred_x0 = model_output elif parameterization == "v_prediction": # v-prediction pred_x0 = alpha_prod_t.sqrt() * sample - beta_prod_t.sqrt() * model_output # 4. Denoise model output using boundary conditions denoised = c_out * pred_x0 + c_skip * sample # 5. Sample z ~ N(0, I), For MultiStep Inference # Noise is not used for one-step sampling. if len(self.timesteps) > 1: noise = torch.randn(model_output.shape).to(model_output.device) prev_sample = alpha_prod_t_prev.sqrt() * denoised + beta_prod_t_prev.sqrt() * noise else: prev_sample = denoised if not return_dict: return (prev_sample, denoised) return LCMSchedulerOutput(prev_sample=prev_sample, denoised=denoised) # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise def add_noise( self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor, ) -> torch.Tensor: # Make sure alphas_cumprod and timestep have same device and dtype as original_samples alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype) timesteps = timesteps.to(original_samples.device) sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 sqrt_alpha_prod = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape) < len(original_samples.shape): sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.get_velocity def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor: # Make sure alphas_cumprod and timestep have same device and dtype as sample alphas_cumprod = self.alphas_cumprod.to(device=sample.device, dtype=sample.dtype) timesteps = timesteps.to(sample.device) sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 sqrt_alpha_prod = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape) < len(sample.shape): sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape): sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity def __len__(self): return self.config.num_train_timesteps
diffusers/examples/community/latent_consistency_txt2img.py/0
{ "file_path": "diffusers/examples/community/latent_consistency_txt2img.py", "repo_id": "diffusers", "token_count": 14339 }
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect from typing import Any, Callable, Dict, List, Optional, Union import intel_extension_for_pytorch as ipex import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection from diffusers.image_processor import PipelineImageInput from diffusers.loaders import IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel, UNetMotionModel from diffusers.models.lora import adjust_lora_scale_text_encoder from diffusers.models.unets.unet_motion_model import MotionAdapter from diffusers.pipelines.animatediff.pipeline_output import AnimateDiffPipelineOutput from diffusers.pipelines.free_init_utils import FreeInitMixin from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin from diffusers.schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from diffusers.utils import ( USE_PEFT_BACKEND, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers, ) from diffusers.utils.torch_utils import randn_tensor from diffusers.video_processor import VideoProcessor logger = logging.get_logger(__name__) # pylint: disable=invalid-name EXAMPLE_DOC_STRING = """ Examples: ```py >>> import torch >>> from diffusers import MotionAdapter, AnimateDiffPipelineIpex, EulerDiscreteScheduler >>> from diffusers.utils import export_to_gif >>> from safetensors.torch import load_file >>> device = "cpu" >>> dtype = torch.float32 >>> # ByteDance/AnimateDiff-Lightning, a distilled version of AnimateDiff SD1.5 v2, >>> # a lightning-fast text-to-video generation model which can generate videos >>> # more than ten times faster than the original AnimateDiff. >>> step = 8 # Options: [1,2,4,8] >>> repo = "ByteDance/AnimateDiff-Lightning" >>> ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors" >>> base = "emilianJR/epiCRealism" # Choose to your favorite base model. >>> adapter = MotionAdapter().to(device, dtype) >>> adapter.load_state_dict(load_file(hf_hub_download(repo ,ckpt), device=device)) >>> pipe = AnimateDiffPipelineIpex.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device) >>> pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear") >>> # For Float32 >>> pipe.prepare_for_ipex(torch.float32, prompt = "A girl smiling") >>> # For BFloat16 >>> pipe.prepare_for_ipex(torch.bfloat16, prompt = "A girl smiling") >>> # For Float32 >>> output = pipe(prompt = "A girl smiling", guidance_scale=1.0, num_inference_steps = step) >>> # For BFloat16 >>> with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloat16): >>> output = pipe(prompt = "A girl smiling", guidance_scale=1.0, num_inference_steps = step) >>> frames = output.frames[0] >>> export_to_gif(frames, "animation.gif") ``` """ class AnimateDiffPipelineIpex( DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, IPAdapterMixin, LoraLoaderMixin, FreeInitMixin, ): r""" Pipeline for text-to-video generation. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). The pipeline also inherits the following loading methods: - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`CLIPTextModel`]): Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). tokenizer (`CLIPTokenizer`): A [`~transformers.CLIPTokenizer`] to tokenize text. unet ([`UNet2DConditionModel`]): A [`UNet2DConditionModel`] used to create a UNetMotionModel to denoise the encoded video latents. motion_adapter ([`MotionAdapter`]): A [`MotionAdapter`] to be used in combination with `unet` to denoise the encoded video latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. """ model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae" _optional_components = ["feature_extractor", "image_encoder", "motion_adapter"] _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: Union[UNet2DConditionModel, UNetMotionModel], motion_adapter: MotionAdapter, scheduler: Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ], feature_extractor: CLIPImageProcessor = None, image_encoder: CLIPVisionModelWithProjection = None, ): super().__init__() if isinstance(unet, UNet2DConditionModel): unet = UNetMotionModel.from_unet2d(unet, motion_adapter) self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, motion_adapter=motion_adapter, scheduler=scheduler, feature_extractor=feature_extractor, image_encoder=image_encoder, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 self.video_processor = VideoProcessor(do_resize=False, vae_scale_factor=self.vae_scale_factor) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt with num_images_per_prompt -> num_videos_per_prompt def encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, lora_scale: Optional[float] = None, clip_skip: Optional[int] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. lora_scale (`float`, *optional*): A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. """ # set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, LoraLoaderMixin): self._lora_scale = lora_scale # dynamically adjust the LoRA scale if not USE_PEFT_BACKEND: adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) else: scale_lora_layers(self.text_encoder, lora_scale) if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: # textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, self.tokenizer) text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None if clip_skip is None: prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) prompt_embeds = prompt_embeds[0] else: prompt_embeds = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True ) # Access the `hidden_states` first, that contains a tuple of # all the hidden states from the encoder layers. Then index into # the tuple to access the hidden states from the desired layer. prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] # We also need to apply the final LayerNorm here to not mess with the # representations. The `last_hidden_states` that we typically use for # obtaining the final prompt representations passes through the LayerNorm # layer. prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) if self.text_encoder is not None: prompt_embeds_dtype = self.text_encoder.dtype elif self.unet is not None: prompt_embeds_dtype = self.unet.dtype else: prompt_embeds_dtype = prompt_embeds.dtype prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt # textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = uncond_input.attention_mask.to(device) else: attention_mask = None negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0] if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) if self.text_encoder is not None: if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder, lora_scale) return prompt_embeds, negative_prompt_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): dtype = next(self.image_encoder.parameters()).dtype if not isinstance(image, torch.Tensor): image = self.feature_extractor(image, return_tensors="pt").pixel_values image = image.to(device=device, dtype=dtype) if output_hidden_states: image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) uncond_image_enc_hidden_states = self.image_encoder( torch.zeros_like(image), output_hidden_states=True ).hidden_states[-2] uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave( num_images_per_prompt, dim=0 ) return image_enc_hidden_states, uncond_image_enc_hidden_states else: image_embeds = self.image_encoder(image).image_embeds image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) uncond_image_embeds = torch.zeros_like(image_embeds) return image_embeds, uncond_image_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds def prepare_ip_adapter_image_embeds( self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance ): if ip_adapter_image_embeds is None: if not isinstance(ip_adapter_image, list): ip_adapter_image = [ip_adapter_image] if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): raise ValueError( f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters." ) image_embeds = [] for single_ip_adapter_image, image_proj_layer in zip( ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers ): output_hidden_state = not isinstance(image_proj_layer, ImageProjection) single_image_embeds, single_negative_image_embeds = self.encode_image( single_ip_adapter_image, device, 1, output_hidden_state ) single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0) single_negative_image_embeds = torch.stack( [single_negative_image_embeds] * num_images_per_prompt, dim=0 ) if do_classifier_free_guidance: single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds]) single_image_embeds = single_image_embeds.to(device) image_embeds.append(single_image_embeds) else: repeat_dims = [1] image_embeds = [] for single_image_embeds in ip_adapter_image_embeds: if do_classifier_free_guidance: single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2) single_image_embeds = single_image_embeds.repeat( num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:])) ) single_negative_image_embeds = single_negative_image_embeds.repeat( num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:])) ) single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds]) else: single_image_embeds = single_image_embeds.repeat( num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:])) ) image_embeds.append(single_image_embeds) return image_embeds # Copied from diffusers.pipelines.text_to_video_synthesis/pipeline_text_to_video_synth.TextToVideoSDPipeline.decode_latents def decode_latents(self, latents): latents = 1 / self.vae.config.scaling_factor * latents batch_size, channels, num_frames, height, width = latents.shape latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width) image = self.vae.decode(latents).sample video = image[None, :].reshape((batch_size, num_frames, -1) + image.shape[2:]).permute(0, 2, 1, 3, 4) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 video = video.float() return video # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.check_inputs def check_inputs( self, prompt, height, width, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, callback_on_step_end_tensor_inputs=None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if ip_adapter_image is not None and ip_adapter_image_embeds is not None: raise ValueError( "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined." ) if ip_adapter_image_embeds is not None: if not isinstance(ip_adapter_image_embeds, list): raise ValueError( f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}" ) elif ip_adapter_image_embeds[0].ndim not in [3, 4]: raise ValueError( f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D" ) # Copied from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_synth.TextToVideoSDPipeline.prepare_latents def prepare_latents( self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None ): shape = ( batch_size, num_channels_latents, num_frames, height // self.vae_scale_factor, width // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=torch.float32) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents @property def guidance_scale(self): return self._guidance_scale @property def clip_skip(self): return self._clip_skip # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. @property def do_classifier_free_guidance(self): return self._guidance_scale > 1 @property def cross_attention_kwargs(self): return self._cross_attention_kwargs @property def num_timesteps(self): return self._num_timesteps @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]] = None, num_frames: Optional[int] = 16, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, guidance_scale: float = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_videos_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, ip_adapter_image: Optional[PipelineImageInput] = None, ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, output_type: Optional[str] = "pil", return_dict: bool = True, cross_attention_kwargs: Optional[Dict[str, Any]] = None, clip_skip: Optional[int] = None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], ): r""" The call function to the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The height in pixels of the generated video. width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The width in pixels of the generated video. num_frames (`int`, *optional*, defaults to 16): The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds amounts to 2 seconds of video. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality videos at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. Latents should be of shape `(batch_size, num_channel, num_frames, height, width)`. prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not provided, embeddings are computed from the `ip_adapter_image` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated video. Choose between `torch.Tensor`, `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] instead of a plain tuple. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. Examples: Returns: [`~pipelines.animatediff.pipeline_output.AnimateDiffPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.animatediff.pipeline_output.AnimateDiffPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated frames. """ # 0. Default height and width to unet height = height or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor num_videos_per_prompt = 1 # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, height, width, negative_prompt, prompt_embeds, negative_prompt_embeds, ip_adapter_image, ip_adapter_image_embeds, callback_on_step_end_tensor_inputs, ) self._guidance_scale = guidance_scale self._clip_skip = clip_skip self._cross_attention_kwargs = cross_attention_kwargs # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # 3. Encode input prompt text_encoder_lora_scale = ( self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None ) prompt_embeds, negative_prompt_embeds = self.encode_prompt( prompt, device, num_videos_per_prompt, self.do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=self.clip_skip, ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes if self.do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) if ip_adapter_image is not None or ip_adapter_image_embeds is not None: image_embeds = self.prepare_ip_adapter_image_embeds( ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_videos_per_prompt, self.do_classifier_free_guidance, ) # 4. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 5. Prepare latent variables num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents( batch_size * num_videos_per_prompt, num_channels_latents, num_frames, height, width, prompt_embeds.dtype, device, generator, latents, ) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 7. Add image embeds for IP-Adapter added_cond_kwargs = ( {"image_embeds": image_embeds} if ip_adapter_image is not None or ip_adapter_image_embeds is not None else None ) num_free_init_iters = self._free_init_num_iters if self.free_init_enabled else 1 for free_init_iter in range(num_free_init_iters): if self.free_init_enabled: latents, timesteps = self._apply_free_init( latents, free_init_iter, num_inference_steps, device, latents.dtype, generator ) self._num_timesteps = len(timesteps) num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order # 8. Denoising loop with self.progress_bar(total=self._num_timesteps) as progress_bar: for i, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, # cross_attention_kwargs=cross_attention_kwargs, # added_cond_kwargs=added_cond_kwargs, # ).sample )["sample"] # perform guidance if self.do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() # 9. Post processing if output_type == "latent": video = latents else: video_tensor = self.decode_latents(latents) video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type) # 10. Offload all models self.maybe_free_model_hooks() if not return_dict: return (video,) return AnimateDiffPipelineOutput(frames=video) @torch.no_grad() def prepare_for_ipex( self, dtype=torch.float32, prompt: Union[str, List[str]] = None, num_frames: Optional[int] = 16, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, guidance_scale: float = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_videos_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, ip_adapter_image: Optional[PipelineImageInput] = None, ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, output_type: Optional[str] = "pil", return_dict: bool = True, cross_attention_kwargs: Optional[Dict[str, Any]] = None, clip_skip: Optional[int] = None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], ): # 0. Default height and width to unet height = height or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor num_videos_per_prompt = 1 # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, height, width, negative_prompt, prompt_embeds, negative_prompt_embeds, ip_adapter_image, ip_adapter_image_embeds, callback_on_step_end_tensor_inputs, ) self._guidance_scale = guidance_scale self._clip_skip = clip_skip self._cross_attention_kwargs = cross_attention_kwargs # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # 3. Encode input prompt text_encoder_lora_scale = ( self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None ) prompt_embeds, negative_prompt_embeds = self.encode_prompt( prompt, device, num_videos_per_prompt, self.do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=self.clip_skip, ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes if self.do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) # 4. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 5. Prepare latent variables num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents( batch_size * num_videos_per_prompt, num_channels_latents, num_frames, height, width, prompt_embeds.dtype, device, generator, latents, ) num_free_init_iters = self._free_init_num_iters if self.free_init_enabled else 1 for free_init_iter in range(num_free_init_iters): if self.free_init_enabled: latents, timesteps = self._apply_free_init( latents, free_init_iter, num_inference_steps, device, latents.dtype, generator ) self._num_timesteps = len(timesteps) dummy = timesteps[0] latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, dummy) self.unet = self.unet.to(memory_format=torch.channels_last) self.vae.decoder = self.vae.decoder.to(memory_format=torch.channels_last) self.text_encoder = self.text_encoder.to(memory_format=torch.channels_last) unet_input_example = { "sample": latent_model_input, "timestep": dummy, "encoder_hidden_states": prompt_embeds, } fake_latents = 1 / self.vae.config.scaling_factor * latents batch_size, channels, num_frames, height, width = fake_latents.shape fake_latents = fake_latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width) vae_decoder_input_example = fake_latents # optimize with ipex if dtype == torch.bfloat16: self.unet = ipex.optimize(self.unet.eval(), dtype=torch.bfloat16, inplace=True) self.vae.decoder = ipex.optimize(self.vae.decoder.eval(), dtype=torch.bfloat16, inplace=True) self.text_encoder = ipex.optimize(self.text_encoder.eval(), dtype=torch.bfloat16, inplace=True) elif dtype == torch.float32: self.unet = ipex.optimize( self.unet.eval(), dtype=torch.float32, inplace=True, # sample_input=unet_input_example, level="O1", weights_prepack=True, auto_kernel_selection=False, ) self.vae.decoder = ipex.optimize( self.vae.decoder.eval(), dtype=torch.float32, inplace=True, level="O1", weights_prepack=True, auto_kernel_selection=False, ) self.text_encoder = ipex.optimize( self.text_encoder.eval(), dtype=torch.float32, inplace=True, level="O1", weights_prepack=True, auto_kernel_selection=False, ) else: raise ValueError(" The value of 'dtype' should be 'torch.bfloat16' or 'torch.float32' !") # trace unet model to get better performance on IPEX with torch.cpu.amp.autocast(enabled=dtype == torch.bfloat16), torch.no_grad(): unet_trace_model = torch.jit.trace( self.unet, example_kwarg_inputs=unet_input_example, check_trace=False, strict=False ) unet_trace_model = torch.jit.freeze(unet_trace_model) self.unet.forward = unet_trace_model.forward # trace vae.decoder model to get better performance on IPEX with torch.cpu.amp.autocast(enabled=dtype == torch.bfloat16), torch.no_grad(): vae_decoder_trace_model = torch.jit.trace( self.vae.decoder, vae_decoder_input_example, check_trace=False, strict=False ) vae_decoder_trace_model = torch.jit.freeze(vae_decoder_trace_model) self.vae.decoder.forward = vae_decoder_trace_model.forward
diffusers/examples/community/pipeline_animatediff_ipex.py/0
{ "file_path": "diffusers/examples/community/pipeline_animatediff_ipex.py", "repo_id": "diffusers", "token_count": 21962 }
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNet2DConditionModel, ) from diffusers.pipelines.pipeline_utils import StableDiffusionMixin from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging logger = logging.get_logger(__name__) # pylint: disable=invalid-name class SpeechToImagePipeline(DiffusionPipeline, StableDiffusionMixin): def __init__( self, speech_model: WhisperForConditionalGeneration, speech_processor: WhisperProcessor, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, ): super().__init__() if safety_checker is None: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( speech_model=speech_model, speech_processor=speech_processor, vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, feature_extractor=feature_extractor, ) @torch.no_grad() def __call__( self, audio, sampling_rate=16_000, height: int = 512, width: int = 512, num_inference_steps: int = 50, guidance_scale: float = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[torch.Generator] = None, latents: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: int = 1, **kwargs, ): inputs = self.speech_processor.feature_extractor( audio, return_tensors="pt", sampling_rate=sampling_rate ).input_features.to(self.device) predicted_ids = self.speech_model.generate(inputs, max_length=480_000) prompt = self.speech_processor.tokenizer.batch_decode(predicted_ids, skip_special_tokens=True, normalize=True)[ 0 ] if isinstance(prompt, str): batch_size = 1 elif isinstance(prompt, list): batch_size = len(prompt) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) # get prompt text embeddings text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, return_tensors="pt", ) text_input_ids = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length] text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0] # duplicate text embeddings for each generation per prompt, using mps friendly method bs_embed, seq_len, _ = text_embeddings.shape text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1) text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt max_length = text_input_ids.shape[-1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = uncond_embeddings.shape[1] uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1) uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. latents_shape = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) latents_dtype = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to( self.device ) else: latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") latents = latents.to(self.device) # set timesteps self.scheduler.set_timesteps(num_inference_steps) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand timesteps_tensor = self.scheduler.timesteps.to(self.device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta for i, t in enumerate(self.progress_bar(timesteps_tensor)): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) latents = 1 / 0.18215 * latents image = self.vae.decode(latents).sample image = (image / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 image = image.cpu().permute(0, 2, 3, 1).float().numpy() if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return image return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None)
diffusers/examples/community/speech_to_image_diffusion.py/0
{ "file_path": "diffusers/examples/community/speech_to_image_diffusion.py", "repo_id": "diffusers", "token_count": 5031 }
from typing import Callable, List, Optional, Union import PIL.Image import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNet2DConditionModel from diffusers.pipelines.pipeline_utils import StableDiffusionMixin from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, logging logger = logging.get_logger(__name__) # pylint: disable=invalid-name class TextInpainting(DiffusionPipeline, StableDiffusionMixin): r""" Pipeline for text based inpainting using Stable Diffusion. Uses CLIPSeg to get a mask from the given text, then calls the Inpainting pipeline with the generated mask This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: segmentation_model ([`CLIPSegForImageSegmentation`]): CLIPSeg Model to generate mask from the given text. Please refer to the [model card]() for details. segmentation_processor ([`CLIPSegProcessor`]): CLIPSeg processor to get image, text features to translate prompt to English, if necessary. Please refer to the [model card](https://huggingface.co/docs/transformers/model_doc/clipseg) for details. vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`CLIPTextModel`]): Frozen text-encoder. Stable Diffusion uses the text portion of [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. feature_extractor ([`CLIPImageProcessor`]): Model that extracts features from generated images to be used as inputs for the `safety_checker`. """ def __init__( self, segmentation_model: CLIPSegForImageSegmentation, segmentation_processor: CLIPSegProcessor, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, ): super().__init__() if scheduler is not None and getattr(scheduler.config, "steps_offset", 1) != 1: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["steps_offset"] = 1 scheduler._internal_dict = FrozenDict(new_config) if scheduler is not None and getattr(scheduler.config, "skip_prk_steps", True) is False: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} has not set the configuration" " `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" " sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" " incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" " Hub, it would be very nice if you could open a Pull request for the" " `scheduler/scheduler_config.json` file" ) deprecate("skip_prk_steps not set", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["skip_prk_steps"] = True scheduler._internal_dict = FrozenDict(new_config) if safety_checker is None: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( segmentation_model=segmentation_model, segmentation_processor=segmentation_processor, vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, ) @torch.no_grad() def __call__( self, prompt: Union[str, List[str]], image: Union[torch.Tensor, PIL.Image.Image], text: str, height: int = 512, width: int = 512, num_inference_steps: int = 50, guidance_scale: float = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[torch.Generator] = None, latents: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: int = 1, **kwargs, ): r""" Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. image (`PIL.Image.Image`): `Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will be masked out with `mask_image` and repainted according to `prompt`. text (`str``): The text to use to generate the mask. height (`int`, *optional*, defaults to 512): The height in pixels of the generated image. width (`int`, *optional*, defaults to 512): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator`, *optional*): A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step. Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, according to the `safety_checker`. """ # We use the input text to generate the mask inputs = self.segmentation_processor( text=[text], images=[image], padding="max_length", return_tensors="pt" ).to(self.device) outputs = self.segmentation_model(**inputs) mask = torch.sigmoid(outputs.logits).cpu().detach().unsqueeze(-1).numpy() mask_pil = self.numpy_to_pil(mask)[0].resize(image.size) # Run inpainting pipeline with the generated mask inpainting_pipeline = StableDiffusionInpaintPipeline( vae=self.vae, text_encoder=self.text_encoder, tokenizer=self.tokenizer, unet=self.unet, scheduler=self.scheduler, safety_checker=self.safety_checker, feature_extractor=self.feature_extractor, ) return inpainting_pipeline( prompt=prompt, image=image, mask_image=mask_pil, height=height, width=width, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, negative_prompt=negative_prompt, num_images_per_prompt=num_images_per_prompt, eta=eta, generator=generator, latents=latents, output_type=output_type, return_dict=return_dict, callback=callback, callback_steps=callback_steps, )
diffusers/examples/community/text_inpainting.py/0
{ "file_path": "diffusers/examples/community/text_inpainting.py", "repo_id": "diffusers", "token_count": 5459 }
# ControlNet training example for FLUX The `train_controlnet_flux.py` script shows how to implement the ControlNet training procedure and adapt it for [FLUX](https://github.com/black-forest-labs/flux). Training script provided by LibAI, which is an institution dedicated to the progress and achievement of artificial general intelligence. LibAI is the developer of [cutout.pro](https://www.cutout.pro/) and [promeai.pro](https://www.promeai.pro/). > [!NOTE] > **Memory consumption** > > Flux can be quite expensive to run on consumer hardware devices and as a result, ControlNet training of it comes with higher memory requirements than usual. > **Gated access** > > As the model is gated, before using it with diffusers you first need to go to the [FLUX.1 [dev] Hugging Face page](https://huggingface.co/black-forest-labs/FLUX.1-dev), fill in the form and accept the gate. Once you are in, you need to log in so that your system knows you’ve accepted the gate. Use the command below to log in: `huggingface-cli login` ## Running locally with PyTorch ### Installing the dependencies Before running the scripts, make sure to install the library's training dependencies: **Important** To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment: ```bash git clone https://github.com/huggingface/diffusers cd diffusers pip install -e . ``` Then cd in the `examples/controlnet` folder and run ```bash pip install -r requirements_flux.txt ``` And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with: ```bash accelerate config ``` Or for a default accelerate configuration without answering questions about your environment ```bash accelerate config default ``` Or if your environment doesn't support an interactive shell (e.g., a notebook) ```python from accelerate.utils import write_basic_config write_basic_config() ``` When running `accelerate config`, if we specify torch compile mode to True there can be dramatic speedups. ## Custom Datasets We support dataset formats: The original dataset is hosted in the [ControlNet repo](https://huggingface.co/lllyasviel/ControlNet/blob/main/training/fill50k.zip). We re-uploaded it to be compatible with `datasets` [here](https://huggingface.co/datasets/fusing/fill50k). Note that `datasets` handles dataloading within the training script. To use our example, add `--dataset_name=fusing/fill50k \` to the script and remove line `--jsonl_for_train` mentioned below. We also support importing data from jsonl(xxx.jsonl),using `--jsonl_for_train` to enable it, here is a brief example of jsonl files: ```sh {"image": "xxx", "text": "xxx", "conditioning_image": "xxx"} {"image": "xxx", "text": "xxx", "conditioning_image": "xxx"} ``` ## Training Our training examples use two test conditioning images. They can be downloaded by running ```sh wget https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_training/conditioning_image_1.png wget https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_training/conditioning_image_2.png ``` Then run `huggingface-cli login` to log into your Hugging Face account. This is needed to be able to push the trained ControlNet parameters to Hugging Face Hub. we can define the num_layers, num_single_layers, which determines the size of the control(default values are num_layers=4, num_single_layers=10) ```bash accelerate launch train_controlnet_flux.py \ --pretrained_model_name_or_path="black-forest-labs/FLUX.1-dev" \ --dataset_name=fusing/fill50k \ --conditioning_image_column=conditioning_image \ --image_column=image \ --caption_column=text \ --output_dir="path to save model" \ --mixed_precision="bf16" \ --resolution=512 \ --learning_rate=1e-5 \ --max_train_steps=15000 \ --validation_steps=100 \ --checkpointing_steps=200 \ --validation_image "./conditioning_image_1.png" "./conditioning_image_2.png" \ --validation_prompt "red circle with blue background" "cyan circle with brown floral background" \ --train_batch_size=1 \ --gradient_accumulation_steps=4 \ --report_to="wandb" \ --num_double_layers=4 \ --num_single_layers=0 \ --seed=42 \ --push_to_hub \ ``` To better track our training experiments, we're using the following flags in the command above: * `report_to="wandb` will ensure the training runs are tracked on Weights and Biases. * `validation_image`, `validation_prompt`, and `validation_steps` to allow the script to do a few validation inference runs. This allows us to qualitatively check if the training is progressing as expected. Our experiments were conducted on a single 80GB A100 GPU. ### Inference Once training is done, we can perform inference like so: ```python import torch from diffusers.utils import load_image from diffusers.pipelines.flux.pipeline_flux_controlnet import FluxControlNetPipeline from diffusers.models.controlnet_flux import FluxControlNetModel base_model = 'black-forest-labs/FLUX.1-dev' controlnet_model = 'promeai/FLUX.1-controlnet-lineart-promeai' controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16) pipe = FluxControlNetPipeline.from_pretrained( base_model, controlnet=controlnet, torch_dtype=torch.bfloat16 ) # enable memory optimizations pipe.enable_model_cpu_offload() control_image = load_image("https://huggingface.co/promeai/FLUX.1-controlnet-lineart-promeai/resolve/main/images/example-control.jpg")resize((1024, 1024)) prompt = "cute anime girl with massive fluffy fennec ears and a big fluffy tail blonde messy long hair blue eyes wearing a maid outfit with a long black gold leaf pattern dress and a white apron mouth open holding a fancy black forest cake with candles on top in the kitchen of an old dark Victorian mansion lit by candlelight with a bright window to the foggy forest and very expensive stuff everywhere" image = pipe( prompt, control_image=control_image, controlnet_conditioning_scale=0.6, num_inference_steps=28, guidance_scale=3.5, ).images[0] image.save("./output.png") ``` ## Apply Deepspeed Zero3 This is an experimental process, I am not sure if it is suitable for everyone, we used this process to successfully train 512 resolution on A100(40g) * 8. Please modify some of the code in the script. ### 1.Customize zero3 settings Copy the **accelerate_config_zero3.yaml**,modify `num_processes` according to the number of gpus you want to use: ```bash compute_environment: LOCAL_MACHINE debug: false deepspeed_config: gradient_accumulation_steps: 8 offload_optimizer_device: cpu offload_param_device: cpu zero3_init_flag: true zero3_save_16bit_model: true zero_stage: 3 distributed_type: DEEPSPEED downcast_bf16: 'no' enable_cpu_affinity: false machine_rank: 0 main_training_function: main mixed_precision: bf16 num_machines: 1 num_processes: 8 rdzv_backend: static same_network: true tpu_env: [] tpu_use_cluster: false tpu_use_sudo: false use_cpu: false ``` ### 2.Precompute all inputs (latent, embeddings) In the train_controlnet_flux.py, We need to pre-calculate all parameters and put them into batches.So we first need to rewrite the `compute_embeddings` function. ```python def compute_embeddings(batch, proportion_empty_prompts, vae, flux_controlnet_pipeline, weight_dtype, is_train=True): ### compute text embeddings prompt_batch = batch[args.caption_column] captions = [] for caption in prompt_batch: if random.random() < proportion_empty_prompts: captions.append("") elif isinstance(caption, str): captions.append(caption) elif isinstance(caption, (list, np.ndarray)): # take a random caption if there are multiple captions.append(random.choice(caption) if is_train else caption[0]) prompt_batch = captions prompt_embeds, pooled_prompt_embeds, text_ids = flux_controlnet_pipeline.encode_prompt( prompt_batch, prompt_2=prompt_batch ) prompt_embeds = prompt_embeds.to(dtype=weight_dtype) pooled_prompt_embeds = pooled_prompt_embeds.to(dtype=weight_dtype) text_ids = text_ids.to(dtype=weight_dtype) # text_ids [512,3] to [bs,512,3] text_ids = text_ids.unsqueeze(0).expand(prompt_embeds.shape[0], -1, -1) ### compute latents def _pack_latents(latents, batch_size, num_channels_latents, height, width): latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2) latents = latents.permute(0, 2, 4, 1, 3, 5) latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4) return latents # vae encode pixel_values = batch["pixel_values"] pixel_values = torch.stack([image for image in pixel_values]).to(dtype=weight_dtype).to(vae.device) pixel_latents_tmp = vae.encode(pixel_values).latent_dist.sample() pixel_latents_tmp = (pixel_latents_tmp - vae.config.shift_factor) * vae.config.scaling_factor pixel_latents = _pack_latents( pixel_latents_tmp, pixel_values.shape[0], pixel_latents_tmp.shape[1], pixel_latents_tmp.shape[2], pixel_latents_tmp.shape[3], ) control_values = batch["conditioning_pixel_values"] control_values = torch.stack([image for image in control_values]).to(dtype=weight_dtype).to(vae.device) control_latents = vae.encode(control_values).latent_dist.sample() control_latents = (control_latents - vae.config.shift_factor) * vae.config.scaling_factor control_latents = _pack_latents( control_latents, control_values.shape[0], control_latents.shape[1], control_latents.shape[2], control_latents.shape[3], ) # copied from pipeline_flux_controlnet def _prepare_latent_image_ids(batch_size, height, width, device, dtype): latent_image_ids = torch.zeros(height // 2, width // 2, 3) latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None] latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :] latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1) latent_image_ids = latent_image_ids.reshape( batch_size, latent_image_id_height * latent_image_id_width, latent_image_id_channels ) return latent_image_ids.to(device=device, dtype=dtype) latent_image_ids = _prepare_latent_image_ids( batch_size=pixel_latents_tmp.shape[0], height=pixel_latents_tmp.shape[2], width=pixel_latents_tmp.shape[3], device=pixel_values.device, dtype=pixel_values.dtype, ) # unet_added_cond_kwargs = {"pooled_prompt_embeds": pooled_prompt_embeds, "text_ids": text_ids} return {"prompt_embeds": prompt_embeds, "pooled_prompt_embeds": pooled_prompt_embeds, "text_ids": text_ids, "pixel_latents": pixel_latents, "control_latents": control_latents, "latent_image_ids": latent_image_ids} ``` Because we need images to pass through vae, we need to preprocess the images in the dataset first. At the same time, vae requires more gpu memory, so you may need to modify the `batch_size` below ```diff +train_dataset = prepare_train_dataset(train_dataset, accelerator) with accelerator.main_process_first(): from datasets.fingerprint import Hasher # fingerprint used by the cache for the other processes to load the result # details: https://github.com/huggingface/diffusers/pull/4038#discussion_r1266078401 new_fingerprint = Hasher.hash(args) train_dataset = train_dataset.map( - compute_embeddings_fn, batched=True, new_fingerprint=new_fingerprint, batch_size=100 + compute_embeddings_fn, batched=True, new_fingerprint=new_fingerprint, batch_size=10 ) del text_encoders, tokenizers gc.collect() torch.cuda.empty_cache() # Then get the training dataset ready to be passed to the dataloader. -train_dataset = prepare_train_dataset(train_dataset, accelerator) ``` ### 3.Redefine the behavior of getting batchsize Now that we have all the preprocessing done, we need to modify the `collate_fn` function. ```python def collate_fn(examples): pixel_values = torch.stack([example["pixel_values"] for example in examples]) pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() conditioning_pixel_values = torch.stack([example["conditioning_pixel_values"] for example in examples]) conditioning_pixel_values = conditioning_pixel_values.to(memory_format=torch.contiguous_format).float() pixel_latents = torch.stack([torch.tensor(example["pixel_latents"]) for example in examples]) pixel_latents = pixel_latents.to(memory_format=torch.contiguous_format).float() control_latents = torch.stack([torch.tensor(example["control_latents"]) for example in examples]) control_latents = control_latents.to(memory_format=torch.contiguous_format).float() latent_image_ids= torch.stack([torch.tensor(example["latent_image_ids"]) for example in examples]) prompt_ids = torch.stack([torch.tensor(example["prompt_embeds"]) for example in examples]) pooled_prompt_embeds = torch.stack([torch.tensor(example["pooled_prompt_embeds"]) for example in examples]) text_ids = torch.stack([torch.tensor(example["text_ids"]) for example in examples]) return { "pixel_values": pixel_values, "conditioning_pixel_values": conditioning_pixel_values, "pixel_latents": pixel_latents, "control_latents": control_latents, "latent_image_ids": latent_image_ids, "prompt_ids": prompt_ids, "unet_added_conditions": {"pooled_prompt_embeds": pooled_prompt_embeds, "time_ids": text_ids}, } ``` Finally, we just need to modify the way of obtaining various parameters during training. ```python for epoch in range(first_epoch, args.num_train_epochs): for step, batch in enumerate(train_dataloader): with accelerator.accumulate(flux_controlnet): # Convert images to latent space pixel_latents = batch["pixel_latents"].to(dtype=weight_dtype) control_image = batch["control_latents"].to(dtype=weight_dtype) latent_image_ids = batch["latent_image_ids"].to(dtype=weight_dtype) # Sample noise that we'll add to the latents noise = torch.randn_like(pixel_latents).to(accelerator.device).to(dtype=weight_dtype) bsz = pixel_latents.shape[0] # Sample a random timestep for each image t = torch.sigmoid(torch.randn((bsz,), device=accelerator.device, dtype=weight_dtype)) # apply flow matching noisy_latents = ( 1 - t.unsqueeze(1).unsqueeze(2).repeat(1, pixel_latents.shape[1], pixel_latents.shape[2]) ) * pixel_latents + t.unsqueeze(1).unsqueeze(2).repeat( 1, pixel_latents.shape[1], pixel_latents.shape[2] ) * noise guidance_vec = torch.full( (noisy_latents.shape[0],), 3.5, device=noisy_latents.device, dtype=weight_dtype ) controlnet_block_samples, controlnet_single_block_samples = flux_controlnet( hidden_states=noisy_latents, controlnet_cond=control_image, timestep=t, guidance=guidance_vec, pooled_projections=batch["unet_added_conditions"]["pooled_prompt_embeds"].to(dtype=weight_dtype), encoder_hidden_states=batch["prompt_ids"].to(dtype=weight_dtype), txt_ids=batch["unet_added_conditions"]["time_ids"][0].to(dtype=weight_dtype), img_ids=latent_image_ids[0], return_dict=False, ) noise_pred = flux_transformer( hidden_states=noisy_latents, timestep=t, guidance=guidance_vec, pooled_projections=batch["unet_added_conditions"]["pooled_prompt_embeds"].to(dtype=weight_dtype), encoder_hidden_states=batch["prompt_ids"].to(dtype=weight_dtype), controlnet_block_samples=[sample.to(dtype=weight_dtype) for sample in controlnet_block_samples] if controlnet_block_samples is not None else None, controlnet_single_block_samples=[ sample.to(dtype=weight_dtype) for sample in controlnet_single_block_samples ] if controlnet_single_block_samples is not None else None, txt_ids=batch["unet_added_conditions"]["time_ids"][0].to(dtype=weight_dtype), img_ids=latent_image_ids[0], return_dict=False, )[0] ``` Congratulations! You have completed all the required code modifications required for deepspeedzero3. ### 4.Training with deepspeedzero3 Start!!! ```bash export pretrained_model_name_or_path='flux-dev-model-path' export MODEL_TYPE='train_model_type' export TRAIN_JSON_FILE="your_json_file" export CONTROL_TYPE='control_preprocessor_type' export CAPTION_COLUMN='caption_column' export CACHE_DIR="/data/train_csr/.cache/huggingface/" export OUTPUT_DIR='/data/train_csr/FLUX/MODEL_OUT/'$MODEL_TYPE # The first step is to use Python to precompute all caches.Replace the first line below with this line. (I am not sure why using acclerate would cause problems.) CUDA_VISIBLE_DEVICES=0 python3 train_controlnet_flux.py \ # The second step is to use the above accelerate config to train accelerate launch --config_file "./accelerate_config_zero3.yaml" train_controlnet_flux.py \ --pretrained_model_name_or_path=$pretrained_model_name_or_path \ --jsonl_for_train=$TRAIN_JSON_FILE \ --conditioning_image_column=$CONTROL_TYPE \ --image_column=image \ --caption_column=$CAPTION_COLUMN\ --cache_dir=$CACHE_DIR \ --tracker_project_name=$MODEL_TYPE \ --output_dir=$OUTPUT_DIR \ --max_train_steps=500000 \ --mixed_precision bf16 \ --checkpointing_steps=1000 \ --gradient_accumulation_steps=8 \ --resolution=512 \ --train_batch_size=1 \ --learning_rate=1e-5 \ --num_double_layers=4 \ --num_single_layers=0 \ --gradient_checkpointing \ --resume_from_checkpoint="latest" \ # --use_adafactor \ dont use # --validation_steps=3 \ not support # --validation_image $VALIDATION_IMAGE \ not support # --validation_prompt "xxx" \ not support ```
diffusers/examples/controlnet/README_flux.md/0
{ "file_path": "diffusers/examples/controlnet/README_flux.md", "repo_id": "diffusers", "token_count": 7094 }
# Copyright 2024 Custom Diffusion authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def retrieve(class_prompt, class_data_dir, num_class_images): factor = 1.5 num_images = int(factor * num_class_images) client = ClipClient( url="https://knn.laion.ai/knn-service", indice_name="laion_400m", num_images=num_images, aesthetic_weight=0.1 ) os.makedirs(f"{class_data_dir}/images", exist_ok=True) if len(list(Path(f"{class_data_dir}/images").iterdir())) >= num_class_images: return while True: class_images = client.query(text=class_prompt) if len(class_images) >= factor * num_class_images or num_images > 1e4: break else: num_images = int(factor * num_images) client = ClipClient( url="https://knn.laion.ai/knn-service", indice_name="laion_400m", num_images=num_images, aesthetic_weight=0.1, ) count = 0 total = 0 pbar = tqdm(desc="downloading real regularization images", total=num_class_images) with open(f"{class_data_dir}/caption.txt", "w") as f1, open(f"{class_data_dir}/urls.txt", "w") as f2, open( f"{class_data_dir}/images.txt", "w" ) as f3: while total < num_class_images: images = class_images[count] count += 1 try: img = requests.get(images["url"], timeout=30) if img.status_code == 200: _ = Image.open(BytesIO(img.content)) with open(f"{class_data_dir}/images/{total}.jpg", "wb") as f: f.write(img.content) f1.write(images["caption"] + "\n") f2.write(images["url"] + "\n") f3.write(f"{class_data_dir}/images/{total}.jpg" + "\n") total += 1 pbar.update(1) else: continue except Exception: continue return def parse_args(): parser = argparse.ArgumentParser("", add_help=False) parser.add_argument("--class_prompt", help="text prompt to retrieve images", required=True, type=str) parser.add_argument("--class_data_dir", help="path to save images", required=True, type=str) parser.add_argument("--num_class_images", help="number of images to download", default=200, type=int) return parser.parse_args() if __name__ == "__main__": args = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
diffusers/examples/custom_diffusion/retrieve.py/0
{ "file_path": "diffusers/examples/custom_diffusion/retrieve.py", "repo_id": "diffusers", "token_count": 1429 }
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import shutil import sys import tempfile from diffusers import DiffusionPipeline, FluxTransformer2DModel sys.path.append("..") from test_examples_utils import ExamplesTestsAccelerate, run_command # noqa: E402 logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger() stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class DreamBoothFlux(ExamplesTestsAccelerate): instance_data_dir = "docs/source/en/imgs" instance_prompt = "photo" pretrained_model_name_or_path = "hf-internal-testing/tiny-flux-pipe" script_path = "examples/dreambooth/train_dreambooth_flux.py" def test_dreambooth(self): with tempfile.TemporaryDirectory() as tmpdir: test_args = f""" {self.script_path} --pretrained_model_name_or_path {self.pretrained_model_name_or_path} --instance_data_dir {self.instance_data_dir} --instance_prompt {self.instance_prompt} --resolution 64 --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 2 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --output_dir {tmpdir} """.split() run_command(self._launch_args + test_args) # save_pretrained smoke test self.assertTrue(os.path.isfile(os.path.join(tmpdir, "transformer", "diffusion_pytorch_model.safetensors"))) self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json"))) def test_dreambooth_checkpointing(self): with tempfile.TemporaryDirectory() as tmpdir: # Run training script with checkpointing # max_train_steps == 4, checkpointing_steps == 2 # Should create checkpoints at steps 2, 4 initial_run_args = f""" {self.script_path} --pretrained_model_name_or_path {self.pretrained_model_name_or_path} --instance_data_dir {self.instance_data_dir} --instance_prompt {self.instance_prompt} --resolution 64 --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 4 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --output_dir {tmpdir} --checkpointing_steps=2 --seed=0 """.split() run_command(self._launch_args + initial_run_args) # check can run the original fully trained output pipeline pipe = DiffusionPipeline.from_pretrained(tmpdir) pipe(self.instance_prompt, num_inference_steps=1) # check checkpoint directories exist self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-2"))) self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-4"))) # check can run an intermediate checkpoint transformer = FluxTransformer2DModel.from_pretrained(tmpdir, subfolder="checkpoint-2/transformer") pipe = DiffusionPipeline.from_pretrained(self.pretrained_model_name_or_path, transformer=transformer) pipe(self.instance_prompt, num_inference_steps=1) # Remove checkpoint 2 so that we can check only later checkpoints exist after resuming shutil.rmtree(os.path.join(tmpdir, "checkpoint-2")) # Run training script for 7 total steps resuming from checkpoint 4 resume_run_args = f""" {self.script_path} --pretrained_model_name_or_path {self.pretrained_model_name_or_path} --instance_data_dir {self.instance_data_dir} --instance_prompt {self.instance_prompt} --resolution 64 --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 6 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --output_dir {tmpdir} --checkpointing_steps=2 --resume_from_checkpoint=checkpoint-4 --seed=0 """.split() run_command(self._launch_args + resume_run_args) # check can run new fully trained pipeline pipe = DiffusionPipeline.from_pretrained(tmpdir) pipe(self.instance_prompt, num_inference_steps=1) # check old checkpoints do not exist self.assertFalse(os.path.isdir(os.path.join(tmpdir, "checkpoint-2"))) # check new checkpoints exist self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-4"))) self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-6"))) def test_dreambooth_checkpointing_checkpoints_total_limit(self): with tempfile.TemporaryDirectory() as tmpdir: test_args = f""" {self.script_path} --pretrained_model_name_or_path={self.pretrained_model_name_or_path} --instance_data_dir={self.instance_data_dir} --output_dir={tmpdir} --instance_prompt={self.instance_prompt} --resolution=64 --train_batch_size=1 --gradient_accumulation_steps=1 --max_train_steps=6 --checkpoints_total_limit=2 --checkpointing_steps=2 """.split() run_command(self._launch_args + test_args) self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-4", "checkpoint-6"}, ) def test_dreambooth_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self): with tempfile.TemporaryDirectory() as tmpdir: test_args = f""" {self.script_path} --pretrained_model_name_or_path={self.pretrained_model_name_or_path} --instance_data_dir={self.instance_data_dir} --output_dir={tmpdir} --instance_prompt={self.instance_prompt} --resolution=64 --train_batch_size=1 --gradient_accumulation_steps=1 --max_train_steps=4 --checkpointing_steps=2 """.split() run_command(self._launch_args + test_args) self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-2", "checkpoint-4"}, ) resume_run_args = f""" {self.script_path} --pretrained_model_name_or_path={self.pretrained_model_name_or_path} --instance_data_dir={self.instance_data_dir} --output_dir={tmpdir} --instance_prompt={self.instance_prompt} --resolution=64 --train_batch_size=1 --gradient_accumulation_steps=1 --max_train_steps=8 --checkpointing_steps=2 --resume_from_checkpoint=checkpoint-4 --checkpoints_total_limit=2 """.split() run_command(self._launch_args + resume_run_args) self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-6", "checkpoint-8"})
diffusers/examples/dreambooth/test_dreambooth_flux.py/0
{ "file_path": "diffusers/examples/dreambooth/test_dreambooth_flux.py", "repo_id": "diffusers", "token_count": 3854 }
# Training Flux Control This (experimental) example shows how to train Control LoRAs with [Flux](https://huggingface.co/black-forest-labs/FLUX.1-dev) by conditioning it with additional structural controls (like depth maps, poses, etc.). We provide a script for full fine-tuning, too, refer to [this section](#full-fine-tuning). To know more about Flux Control family, refer to the following resources: * [Docs](https://github.com/black-forest-labs/flux/blob/main/docs/structural-conditioning.md) by Black Forest Labs * Diffusers docs ([1](https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux#canny-control), [2](https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux#depth-control)) To incorporate additional condition latents, we expand the input features of Flux.1-Dev from 64 to 128. The first 64 channels correspond to the original input latents to be denoised, while the latter 64 channels correspond to control latents. This expansion happens on the `x_embedder` layer, where the combined latents are projected to the expected feature dimension of rest of the network. Inference is performed using the `FluxControlPipeline`. > [!NOTE] > **Gated model** > > As the model is gated, before using it with diffusers you first need to go to the [FLUX.1 [dev] Hugging Face page](https://huggingface.co/black-forest-labs/FLUX.1-dev), fill in the form and accept the gate. Once you are in, you need to log in so that your system knows you’ve accepted the gate. Use the command below to log in: ```bash huggingface-cli login ``` The example command below shows how to launch fine-tuning for pose conditions. The dataset ([`raulc0399/open_pose_controlnet`](https://huggingface.co/datasets/raulc0399/open_pose_controlnet)) being used here already has the pose conditions of the original images, so we don't have to compute them. ```bash accelerate launch train_control_lora_flux.py \ --pretrained_model_name_or_path="black-forest-labs/FLUX.1-dev" \ --dataset_name="raulc0399/open_pose_controlnet" \ --output_dir="pose-control-lora" \ --mixed_precision="bf16" \ --train_batch_size=1 \ --rank=64 \ --gradient_accumulation_steps=4 \ --gradient_checkpointing \ --use_8bit_adam \ --learning_rate=1e-4 \ --report_to="wandb" \ --lr_scheduler="constant" \ --lr_warmup_steps=0 \ --max_train_steps=5000 \ --validation_image="openpose.png" \ --validation_prompt="A couple, 4k photo, highly detailed" \ --offload \ --seed="0" \ --push_to_hub ``` `openpose.png` comes from [here](https://huggingface.co/Adapter/t2iadapter/resolve/main/openpose.png). You need to install `diffusers` from the branch of [this PR](https://github.com/huggingface/diffusers/pull/9999). When it's merged, you should install `diffusers` from the `main`. The training script exposes additional CLI args that might be useful to experiment with: * `use_lora_bias`: When set, additionally trains the biases of the `lora_B` layer. * `train_norm_layers`: When set, additionally trains the normalization scales. Takes care of saving and loading. * `lora_layers`: Specify the layers you want to apply LoRA to. If you specify "all-linear", all the linear layers will be LoRA-attached. ### Training with DeepSpeed It's possible to train with [DeepSpeed](https://github.com/microsoft/DeepSpeed), specifically leveraging the Zero2 system optimization. To use it, save the following config to an YAML file (feel free to modify as needed): ```yaml compute_environment: LOCAL_MACHINE debug: false deepspeed_config: gradient_accumulation_steps: 1 gradient_clipping: 1.0 offload_optimizer_device: cpu offload_param_device: cpu zero3_init_flag: false zero_stage: 2 distributed_type: DEEPSPEED downcast_bf16: 'no' enable_cpu_affinity: false machine_rank: 0 main_training_function: main mixed_precision: bf16 num_machines: 1 num_processes: 1 rdzv_backend: static same_network: true tpu_env: [] tpu_use_cluster: false tpu_use_sudo: false use_cpu: false ``` And then while launching training, pass the config file: ```bash accelerate launch --config_file=CONFIG_FILE.yaml ... ``` ### Inference The pose images in our dataset were computed using the [`controlnet_aux`](https://github.com/huggingface/controlnet_aux) library. Let's install it first: ```bash pip install controlnet_aux ``` And then we are ready: ```py from controlnet_aux import OpenposeDetector from diffusers import FluxControlPipeline from diffusers.utils import load_image from PIL import Image import numpy as np import torch pipe = FluxControlPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to("cuda") pipe.load_lora_weights("...") # change this. open_pose = OpenposeDetector.from_pretrained("lllyasviel/Annotators") # prepare pose condition. url = "https://huggingface.co/Adapter/t2iadapter/resolve/main/people.jpg" image = load_image(url) image = open_pose(image, detect_resolution=512, image_resolution=1024) image = np.array(image)[:, :, ::-1] image = Image.fromarray(np.uint8(image)) prompt = "A couple, 4k photo, highly detailed" gen_images = pipe( prompt=prompt, control_image=image, num_inference_steps=50, joint_attention_kwargs={"scale": 0.9}, guidance_scale=25., ).images[0] gen_images.save("output.png") ``` ## Full fine-tuning We provide a non-LoRA version of the training script `train_control_flux.py`. Here is an example command: ```bash accelerate launch --config_file=accelerate_ds2.yaml train_control_flux.py \ --pretrained_model_name_or_path="black-forest-labs/FLUX.1-dev" \ --dataset_name="raulc0399/open_pose_controlnet" \ --output_dir="pose-control" \ --mixed_precision="bf16" \ --train_batch_size=2 \ --dataloader_num_workers=4 \ --gradient_accumulation_steps=4 \ --gradient_checkpointing \ --use_8bit_adam \ --proportion_empty_prompts=0.2 \ --learning_rate=5e-5 \ --adam_weight_decay=1e-4 \ --report_to="wandb" \ --lr_scheduler="cosine" \ --lr_warmup_steps=1000 \ --checkpointing_steps=1000 \ --max_train_steps=10000 \ --validation_steps=200 \ --validation_image "2_pose_1024.jpg" "3_pose_1024.jpg" \ --validation_prompt "two friends sitting by each other enjoying a day at the park, full hd, cinematic" "person enjoying a day at the park, full hd, cinematic" \ --offload \ --seed="0" \ --push_to_hub ``` Change the `validation_image` and `validation_prompt` as needed. For inference, this time, we will run: ```py from controlnet_aux import OpenposeDetector from diffusers import FluxControlPipeline, FluxTransformer2DModel from diffusers.utils import load_image from PIL import Image import numpy as np import torch transformer = FluxTransformer2DModel.from_pretrained("...") # change this. pipe = FluxControlPipeline.from_pretrained( "black-forest-labs/FLUX.1-dev", transformer=transformer, torch_dtype=torch.bfloat16 ).to("cuda") open_pose = OpenposeDetector.from_pretrained("lllyasviel/Annotators") # prepare pose condition. url = "https://huggingface.co/Adapter/t2iadapter/resolve/main/people.jpg" image = load_image(url) image = open_pose(image, detect_resolution=512, image_resolution=1024) image = np.array(image)[:, :, ::-1] image = Image.fromarray(np.uint8(image)) prompt = "A couple, 4k photo, highly detailed" gen_images = pipe( prompt=prompt, control_image=image, num_inference_steps=50, guidance_scale=25., ).images[0] gen_images.save("output.png") ``` ## Things to note * The scripts provided in this directory are experimental and educational. This means we may have to tweak things around to get good results on a given condition. We believe this is best done with the community 🤗 * The scripts are not memory-optimized but we offload the VAE and the text encoders to CPU when they are not used if `--offload` is specified. * We can extract LoRAs from the fully fine-tuned model. While we currently don't provide any utilities for that, users are welcome to refer to [this script](https://github.com/Stability-AI/stability-ComfyUI-nodes/blob/master/control_lora_create.py) that provides a similar functionality.
diffusers/examples/flux-control/README.md/0
{ "file_path": "diffusers/examples/flux-control/README.md", "repo_id": "diffusers", "token_count": 2716 }
import argparse import math import os from pathlib import Path import colossalai import torch import torch.nn.functional as F import torch.utils.checkpoint from colossalai.context.parallel_mode import ParallelMode from colossalai.core import global_context as gpc from colossalai.logging import disable_existing_loggers, get_dist_logger from colossalai.nn.optimizer.gemini_optimizer import GeminiAdamOptimizer from colossalai.nn.parallel.utils import get_static_torch_model from colossalai.utils import get_current_device from colossalai.utils.model.colo_init_context import ColoInitContext from huggingface_hub import create_repo, upload_folder from huggingface_hub.utils import insecure_hashlib from PIL import Image from torch.utils.data import Dataset from torchvision import transforms from tqdm.auto import tqdm from transformers import AutoTokenizer, PretrainedConfig from diffusers import AutoencoderKL, DDPMScheduler, DiffusionPipeline, UNet2DConditionModel from diffusers.optimization import get_scheduler disable_existing_loggers() logger = get_dist_logger() def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str): text_encoder_config = PretrainedConfig.from_pretrained( pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, ) model_class = text_encoder_config.architectures[0] if model_class == "CLIPTextModel": from transformers import CLIPTextModel return CLIPTextModel elif model_class == "RobertaSeriesModelWithTransformation": from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation return RobertaSeriesModelWithTransformation else: raise ValueError(f"{model_class} is not supported.") def parse_args(input_args=None): parser = argparse.ArgumentParser(description="Simple example of a training script.") parser.add_argument( "--pretrained_model_name_or_path", type=str, default=None, required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--revision", type=str, default=None, required=False, help="Revision of pretrained model identifier from huggingface.co/models.", ) parser.add_argument( "--tokenizer_name", type=str, default=None, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--instance_data_dir", type=str, default=None, required=True, help="A folder containing the training data of instance images.", ) parser.add_argument( "--class_data_dir", type=str, default=None, required=False, help="A folder containing the training data of class images.", ) parser.add_argument( "--instance_prompt", type=str, default="a photo of sks dog", required=False, help="The prompt with identifier specifying the instance", ) parser.add_argument( "--class_prompt", type=str, default=None, help="The prompt to specify images in the same class as provided instance images.", ) parser.add_argument( "--with_prior_preservation", default=False, action="store_true", help="Flag to add prior preservation loss.", ) parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.") parser.add_argument( "--num_class_images", type=int, default=100, help=( "Minimal class images for prior preservation loss. If there are not enough images already present in" " class_data_dir, additional images will be sampled with class_prompt." ), ) parser.add_argument( "--output_dir", type=str, default="text-inversion-model", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--resolution", type=int, default=512, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--placement", type=str, default="cpu", help="Placement Policy for Gemini. Valid when using colossalai as dist plan.", ) parser.add_argument( "--center_crop", default=False, action="store_true", help=( "Whether to center crop the input images to the resolution. If not set, the images will be randomly" " cropped. The images will be resized to the resolution first before cropping." ), ) parser.add_argument( "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." ) parser.add_argument( "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images." ) parser.add_argument("--num_train_epochs", type=int, default=1) parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.") parser.add_argument( "--gradient_checkpointing", action="store_true", help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", ) parser.add_argument( "--learning_rate", type=float, default=5e-6, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--scale_lr", action="store_true", default=False, help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", ) parser.add_argument( "--lr_scheduler", type=str, default="constant", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument( "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." ) parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") if input_args is not None: args = parser.parse_args(input_args) else: args = parser.parse_args() env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank if args.with_prior_preservation: if args.class_data_dir is None: raise ValueError("You must specify a data directory for class images.") if args.class_prompt is None: raise ValueError("You must specify prompt for class images.") else: if args.class_data_dir is not None: logger.warning("You need not use --class_data_dir without --with_prior_preservation.") if args.class_prompt is not None: logger.warning("You need not use --class_prompt without --with_prior_preservation.") return args class DreamBoothDataset(Dataset): """ A dataset to prepare the instance and class images with the prompts for fine-tuning the model. It pre-processes the images and the tokenizes prompts. """ def __init__( self, instance_data_root, instance_prompt, tokenizer, class_data_root=None, class_prompt=None, size=512, center_crop=False, ): self.size = size self.center_crop = center_crop self.tokenizer = tokenizer self.instance_data_root = Path(instance_data_root) if not self.instance_data_root.exists(): raise ValueError("Instance images root doesn't exists.") self.instance_images_path = list(Path(instance_data_root).iterdir()) self.num_instance_images = len(self.instance_images_path) self.instance_prompt = instance_prompt self._length = self.num_instance_images if class_data_root is not None: self.class_data_root = Path(class_data_root) self.class_data_root.mkdir(parents=True, exist_ok=True) self.class_images_path = list(self.class_data_root.iterdir()) self.num_class_images = len(self.class_images_path) self._length = max(self.num_class_images, self.num_instance_images) self.class_prompt = class_prompt else: self.class_data_root = None self.image_transforms = transforms.Compose( [ transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR), transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __len__(self): return self._length def __getitem__(self, index): example = {} instance_image = Image.open(self.instance_images_path[index % self.num_instance_images]) if not instance_image.mode == "RGB": instance_image = instance_image.convert("RGB") example["instance_images"] = self.image_transforms(instance_image) example["instance_prompt_ids"] = self.tokenizer( self.instance_prompt, padding="do_not_pad", truncation=True, max_length=self.tokenizer.model_max_length, ).input_ids if self.class_data_root: class_image = Image.open(self.class_images_path[index % self.num_class_images]) if not class_image.mode == "RGB": class_image = class_image.convert("RGB") example["class_images"] = self.image_transforms(class_image) example["class_prompt_ids"] = self.tokenizer( self.class_prompt, padding="do_not_pad", truncation=True, max_length=self.tokenizer.model_max_length, ).input_ids return example class PromptDataset(Dataset): """A simple dataset to prepare the prompts to generate class images on multiple GPUs.""" def __init__(self, prompt, num_samples): self.prompt = prompt self.num_samples = num_samples def __len__(self): return self.num_samples def __getitem__(self, index): example = {} example["prompt"] = self.prompt example["index"] = index return example # Gemini + ZeRO DDP def gemini_zero_dpp(model: torch.nn.Module, placememt_policy: str = "auto"): from colossalai.nn.parallel import GeminiDDP model = GeminiDDP( model, device=get_current_device(), placement_policy=placememt_policy, pin_memory=True, search_range_mb=64 ) return model def main(args): if args.seed is None: colossalai.launch_from_torch(config={}) else: colossalai.launch_from_torch(config={}, seed=args.seed) local_rank = gpc.get_local_rank(ParallelMode.DATA) world_size = gpc.get_world_size(ParallelMode.DATA) if args.with_prior_preservation: class_images_dir = Path(args.class_data_dir) if not class_images_dir.exists(): class_images_dir.mkdir(parents=True) cur_class_images = len(list(class_images_dir.iterdir())) if cur_class_images < args.num_class_images: torch_dtype = torch.float16 if get_current_device() == "cuda" else torch.float32 pipeline = DiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, torch_dtype=torch_dtype, safety_checker=None, revision=args.revision, ) pipeline.set_progress_bar_config(disable=True) num_new_images = args.num_class_images - cur_class_images logger.info(f"Number of class images to sample: {num_new_images}.") sample_dataset = PromptDataset(args.class_prompt, num_new_images) sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size) pipeline.to(get_current_device()) for example in tqdm( sample_dataloader, desc="Generating class images", disable=not local_rank == 0, ): images = pipeline(example["prompt"]).images for i, image in enumerate(images): hash_image = insecure_hashlib.sha1(image.tobytes()).hexdigest() image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg" image.save(image_filename) del pipeline # Handle the repository creation if local_rank == 0: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) if args.push_to_hub: repo_id = create_repo( repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token ).repo_id # Load the tokenizer if args.tokenizer_name: logger.info(f"Loading tokenizer from {args.tokenizer_name}", ranks=[0]) tokenizer = AutoTokenizer.from_pretrained( args.tokenizer_name, revision=args.revision, use_fast=False, ) elif args.pretrained_model_name_or_path: logger.info("Loading tokenizer from pretrained model", ranks=[0]) tokenizer = AutoTokenizer.from_pretrained( args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision, use_fast=False, ) # import correct text encoder class text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path) # Load models and create wrapper for stable diffusion logger.info(f"Loading text_encoder from {args.pretrained_model_name_or_path}", ranks=[0]) text_encoder = text_encoder_cls.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, ) logger.info(f"Loading AutoencoderKL from {args.pretrained_model_name_or_path}", ranks=[0]) vae = AutoencoderKL.from_pretrained( args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, ) logger.info(f"Loading UNet2DConditionModel from {args.pretrained_model_name_or_path}", ranks=[0]) with ColoInitContext(device=get_current_device()): unet = UNet2DConditionModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, low_cpu_mem_usage=False ) vae.requires_grad_(False) text_encoder.requires_grad_(False) if args.gradient_checkpointing: unet.enable_gradient_checkpointing() if args.scale_lr: args.learning_rate = args.learning_rate * args.train_batch_size * world_size unet = gemini_zero_dpp(unet, args.placement) # config optimizer for colossalai zero optimizer = GeminiAdamOptimizer(unet, lr=args.learning_rate, initial_scale=2**5, clipping_norm=args.max_grad_norm) # load noise_scheduler noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") # prepare dataset logger.info(f"Prepare dataset from {args.instance_data_dir}", ranks=[0]) train_dataset = DreamBoothDataset( instance_data_root=args.instance_data_dir, instance_prompt=args.instance_prompt, class_data_root=args.class_data_dir if args.with_prior_preservation else None, class_prompt=args.class_prompt, tokenizer=tokenizer, size=args.resolution, center_crop=args.center_crop, ) def collate_fn(examples): input_ids = [example["instance_prompt_ids"] for example in examples] pixel_values = [example["instance_images"] for example in examples] # Concat class and instance examples for prior preservation. # We do this to avoid doing two forward passes. if args.with_prior_preservation: input_ids += [example["class_prompt_ids"] for example in examples] pixel_values += [example["class_images"] for example in examples] pixel_values = torch.stack(pixel_values) pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() input_ids = tokenizer.pad( {"input_ids": input_ids}, padding="max_length", max_length=tokenizer.model_max_length, return_tensors="pt", ).input_ids batch = { "input_ids": input_ids, "pixel_values": pixel_values, } return batch train_dataloader = torch.utils.data.DataLoader( train_dataset, batch_size=args.train_batch_size, shuffle=True, collate_fn=collate_fn, num_workers=1 ) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(len(train_dataloader)) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=args.lr_warmup_steps, num_training_steps=args.max_train_steps, ) weight_dtype = torch.float32 if args.mixed_precision == "fp16": weight_dtype = torch.float16 elif args.mixed_precision == "bf16": weight_dtype = torch.bfloat16 # Move text_encode and vae to gpu. # For mixed precision training we cast the text_encoder and vae weights to half-precision # as these models are only used for inference, keeping weights in full precision is not required. vae.to(get_current_device(), dtype=weight_dtype) text_encoder.to(get_current_device(), dtype=weight_dtype) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader)) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # Train! total_batch_size = args.train_batch_size * world_size logger.info("***** Running training *****", ranks=[0]) logger.info(f" Num examples = {len(train_dataset)}", ranks=[0]) logger.info(f" Num batches each epoch = {len(train_dataloader)}", ranks=[0]) logger.info(f" Num Epochs = {args.num_train_epochs}", ranks=[0]) logger.info(f" Instantaneous batch size per device = {args.train_batch_size}", ranks=[0]) logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}", ranks=[0]) logger.info(f" Total optimization steps = {args.max_train_steps}", ranks=[0]) # Only show the progress bar once on each machine. progress_bar = tqdm(range(args.max_train_steps), disable=not local_rank == 0) progress_bar.set_description("Steps") global_step = 0 torch.cuda.synchronize() for epoch in range(args.num_train_epochs): unet.train() for step, batch in enumerate(train_dataloader): torch.cuda.reset_peak_memory_stats() # Move batch to gpu for key, value in batch.items(): batch[key] = value.to(get_current_device(), non_blocking=True) # Convert images to latent space optimizer.zero_grad() latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample() latents = latents * 0.18215 # Sample noise that we'll add to the latents noise = torch.randn_like(latents) bsz = latents.shape[0] # Sample a random timestep for each image timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) timesteps = timesteps.long() # Add noise to the latents according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) # Get the text embedding for conditioning encoder_hidden_states = text_encoder(batch["input_ids"])[0] # Predict the noise residual model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample # Get the target for loss depending on the prediction type if noise_scheduler.config.prediction_type == "epsilon": target = noise elif noise_scheduler.config.prediction_type == "v_prediction": target = noise_scheduler.get_velocity(latents, noise, timesteps) else: raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") if args.with_prior_preservation: # Chunk the noise and model_pred into two parts and compute the loss on each part separately. model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0) target, target_prior = torch.chunk(target, 2, dim=0) # Compute instance loss loss = F.mse_loss(model_pred.float(), target.float(), reduction="none").mean([1, 2, 3]).mean() # Compute prior loss prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean") # Add the prior loss to the instance loss. loss = loss + args.prior_loss_weight * prior_loss else: loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") optimizer.backward(loss) optimizer.step() lr_scheduler.step() logger.info(f"max GPU_mem cost is {torch.cuda.max_memory_allocated()/2**20} MB", ranks=[0]) # Checks if the accelerator has performed an optimization step behind the scenes progress_bar.update(1) global_step += 1 logs = { "loss": loss.detach().item(), "lr": optimizer.param_groups[0]["lr"], } # lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) if global_step % args.save_steps == 0: torch.cuda.synchronize() torch_unet = get_static_torch_model(unet) if local_rank == 0: pipeline = DiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, unet=torch_unet, revision=args.revision, ) save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") pipeline.save_pretrained(save_path) logger.info(f"Saving model checkpoint to {save_path}", ranks=[0]) if global_step >= args.max_train_steps: break torch.cuda.synchronize() unet = get_static_torch_model(unet) if local_rank == 0: pipeline = DiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, unet=unet, revision=args.revision, ) pipeline.save_pretrained(args.output_dir) logger.info(f"Saving model checkpoint to {args.output_dir}", ranks=[0]) if args.push_to_hub: upload_folder( repo_id=repo_id, folder_path=args.output_dir, commit_message="End of training", ignore_patterns=["step_*", "epoch_*"], ) if __name__ == "__main__": args = parse_args() main(args)
diffusers/examples/research_projects/colossalai/train_dreambooth_colossalai.py/0
{ "file_path": "diffusers/examples/research_projects/colossalai/train_dreambooth_colossalai.py", "repo_id": "diffusers", "token_count": 11177 }
import argparse import math import os import random from pathlib import Path import numpy as np import torch import torch.nn.functional as F import torch.utils.checkpoint from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import ProjectConfiguration, set_seed from huggingface_hub import create_repo, upload_folder from huggingface_hub.utils import insecure_hashlib from PIL import Image, ImageDraw from torch.utils.data import Dataset from torchvision import transforms from tqdm.auto import tqdm from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionInpaintPipeline, UNet2DConditionModel from diffusers.loaders import AttnProcsLayers from diffusers.models.attention_processor import LoRAAttnProcessor from diffusers.optimization import get_scheduler from diffusers.utils import check_min_version from diffusers.utils.import_utils import is_xformers_available # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.13.0.dev0") logger = get_logger(__name__) def prepare_mask_and_masked_image(image, mask): image = np.array(image.convert("RGB")) image = image[None].transpose(0, 3, 1, 2) image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 mask = np.array(mask.convert("L")) mask = mask.astype(np.float32) / 255.0 mask = mask[None, None] mask[mask < 0.5] = 0 mask[mask >= 0.5] = 1 mask = torch.from_numpy(mask) masked_image = image * (mask < 0.5) return mask, masked_image # generate random masks def random_mask(im_shape, ratio=1, mask_full_image=False): mask = Image.new("L", im_shape, 0) draw = ImageDraw.Draw(mask) size = (random.randint(0, int(im_shape[0] * ratio)), random.randint(0, int(im_shape[1] * ratio))) # use this to always mask the whole image if mask_full_image: size = (int(im_shape[0] * ratio), int(im_shape[1] * ratio)) limits = (im_shape[0] - size[0] // 2, im_shape[1] - size[1] // 2) center = (random.randint(size[0] // 2, limits[0]), random.randint(size[1] // 2, limits[1])) draw_type = random.randint(0, 1) if draw_type == 0 or mask_full_image: draw.rectangle( (center[0] - size[0] // 2, center[1] - size[1] // 2, center[0] + size[0] // 2, center[1] + size[1] // 2), fill=255, ) else: draw.ellipse( (center[0] - size[0] // 2, center[1] - size[1] // 2, center[0] + size[0] // 2, center[1] + size[1] // 2), fill=255, ) return mask def parse_args(): parser = argparse.ArgumentParser(description="Simple example of a training script.") parser.add_argument( "--pretrained_model_name_or_path", type=str, default=None, required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--tokenizer_name", type=str, default=None, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--instance_data_dir", type=str, default=None, required=True, help="A folder containing the training data of instance images.", ) parser.add_argument( "--class_data_dir", type=str, default=None, required=False, help="A folder containing the training data of class images.", ) parser.add_argument( "--instance_prompt", type=str, default=None, help="The prompt with identifier specifying the instance", ) parser.add_argument( "--class_prompt", type=str, default=None, help="The prompt to specify images in the same class as provided instance images.", ) parser.add_argument( "--with_prior_preservation", default=False, action="store_true", help="Flag to add prior preservation loss.", ) parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.") parser.add_argument( "--num_class_images", type=int, default=100, help=( "Minimal class images for prior preservation loss. If not have enough images, additional images will be" " sampled with class_prompt." ), ) parser.add_argument( "--output_dir", type=str, default="dreambooth-inpaint-model", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--resolution", type=int, default=512, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--center_crop", default=False, action="store_true", help=( "Whether to center crop the input images to the resolution. If not set, the images will be randomly" " cropped. The images will be resized to the resolution first before cropping." ), ) parser.add_argument("--train_text_encoder", action="store_true", help="Whether to train the text encoder") parser.add_argument( "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." ) parser.add_argument( "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images." ) parser.add_argument("--num_train_epochs", type=int, default=1) parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--gradient_checkpointing", action="store_true", help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", ) parser.add_argument( "--learning_rate", type=float, default=5e-6, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--scale_lr", action="store_true", default=False, help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", ) parser.add_argument( "--lr_scheduler", type=str, default="constant", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument( "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." ) parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--mixed_precision", type=str, default="no", choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument( "--checkpointing_steps", type=int, default=500, help=( "Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" " checkpoints in case they are better than the last checkpoint and are suitable for resuming training" " using `--resume_from_checkpoint`." ), ) parser.add_argument( "--checkpoints_total_limit", type=int, default=None, help=( "Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`." " See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state" " for more docs" ), ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help=( "Whether training should be resumed from a previous checkpoint. Use a path saved by" ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' ), ) parser.add_argument( "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." ) args = parser.parse_args() env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank if args.instance_data_dir is None: raise ValueError("You must specify a train data directory.") if args.with_prior_preservation: if args.class_data_dir is None: raise ValueError("You must specify a data directory for class images.") if args.class_prompt is None: raise ValueError("You must specify prompt for class images.") return args class DreamBoothDataset(Dataset): """ A dataset to prepare the instance and class images with the prompts for fine-tuning the model. It pre-processes the images and the tokenizes prompts. """ def __init__( self, instance_data_root, instance_prompt, tokenizer, class_data_root=None, class_prompt=None, size=512, center_crop=False, ): self.size = size self.center_crop = center_crop self.tokenizer = tokenizer self.instance_data_root = Path(instance_data_root) if not self.instance_data_root.exists(): raise ValueError("Instance images root doesn't exists.") self.instance_images_path = list(Path(instance_data_root).iterdir()) self.num_instance_images = len(self.instance_images_path) self.instance_prompt = instance_prompt self._length = self.num_instance_images if class_data_root is not None: self.class_data_root = Path(class_data_root) self.class_data_root.mkdir(parents=True, exist_ok=True) self.class_images_path = list(self.class_data_root.iterdir()) self.num_class_images = len(self.class_images_path) self._length = max(self.num_class_images, self.num_instance_images) self.class_prompt = class_prompt else: self.class_data_root = None self.image_transforms_resize_and_crop = transforms.Compose( [ transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR), transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size), ] ) self.image_transforms = transforms.Compose( [ transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __len__(self): return self._length def __getitem__(self, index): example = {} instance_image = Image.open(self.instance_images_path[index % self.num_instance_images]) if not instance_image.mode == "RGB": instance_image = instance_image.convert("RGB") instance_image = self.image_transforms_resize_and_crop(instance_image) example["PIL_images"] = instance_image example["instance_images"] = self.image_transforms(instance_image) example["instance_prompt_ids"] = self.tokenizer( self.instance_prompt, padding="do_not_pad", truncation=True, max_length=self.tokenizer.model_max_length, ).input_ids if self.class_data_root: class_image = Image.open(self.class_images_path[index % self.num_class_images]) if not class_image.mode == "RGB": class_image = class_image.convert("RGB") class_image = self.image_transforms_resize_and_crop(class_image) example["class_images"] = self.image_transforms(class_image) example["class_PIL_images"] = class_image example["class_prompt_ids"] = self.tokenizer( self.class_prompt, padding="do_not_pad", truncation=True, max_length=self.tokenizer.model_max_length, ).input_ids return example class PromptDataset(Dataset): """A simple dataset to prepare the prompts to generate class images on multiple GPUs.""" def __init__(self, prompt, num_samples): self.prompt = prompt self.num_samples = num_samples def __len__(self): return self.num_samples def __getitem__(self, index): example = {} example["prompt"] = self.prompt example["index"] = index return example def main(): args = parse_args() logging_dir = Path(args.output_dir, args.logging_dir) accelerator_project_config = ProjectConfiguration( total_limit=args.checkpoints_total_limit, project_dir=args.output_dir, logging_dir=logging_dir ) accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, log_with="tensorboard", project_config=accelerator_project_config, ) # Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate # This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models. # TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate. if args.train_text_encoder and args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1: raise ValueError( "Gradient accumulation is not supported when training the text encoder in distributed training. " "Please set gradient_accumulation_steps to 1. This feature will be supported in the future." ) if args.seed is not None: set_seed(args.seed) if args.with_prior_preservation: class_images_dir = Path(args.class_data_dir) if not class_images_dir.exists(): class_images_dir.mkdir(parents=True) cur_class_images = len(list(class_images_dir.iterdir())) if cur_class_images < args.num_class_images: torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32 pipeline = StableDiffusionInpaintPipeline.from_pretrained( args.pretrained_model_name_or_path, torch_dtype=torch_dtype, safety_checker=None ) pipeline.set_progress_bar_config(disable=True) num_new_images = args.num_class_images - cur_class_images logger.info(f"Number of class images to sample: {num_new_images}.") sample_dataset = PromptDataset(args.class_prompt, num_new_images) sample_dataloader = torch.utils.data.DataLoader( sample_dataset, batch_size=args.sample_batch_size, num_workers=1 ) sample_dataloader = accelerator.prepare(sample_dataloader) pipeline.to(accelerator.device) transform_to_pil = transforms.ToPILImage() for example in tqdm( sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process ): bsz = len(example["prompt"]) fake_images = torch.rand((3, args.resolution, args.resolution)) transform_to_pil = transforms.ToPILImage() fake_pil_images = transform_to_pil(fake_images) fake_mask = random_mask((args.resolution, args.resolution), ratio=1, mask_full_image=True) images = pipeline(prompt=example["prompt"], mask_image=fake_mask, image=fake_pil_images).images for i, image in enumerate(images): hash_image = insecure_hashlib.sha1(image.tobytes()).hexdigest() image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg" image.save(image_filename) del pipeline if torch.cuda.is_available(): torch.cuda.empty_cache() # Handle the repository creation if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) if args.push_to_hub: repo_id = create_repo( repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token ).repo_id # Load the tokenizer if args.tokenizer_name: tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name) elif args.pretrained_model_name_or_path: tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer") # Load models and create wrapper for stable diffusion text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder") vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae") unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet") # We only train the additional adapter LoRA layers vae.requires_grad_(False) text_encoder.requires_grad_(False) unet.requires_grad_(False) weight_dtype = torch.float32 if args.mixed_precision == "fp16": weight_dtype = torch.float16 elif args.mixed_precision == "bf16": weight_dtype = torch.bfloat16 # Move text_encode and vae to gpu. # For mixed precision training we cast the text_encoder and vae weights to half-precision # as these models are only used for inference, keeping weights in full precision is not required. unet.to(accelerator.device, dtype=weight_dtype) vae.to(accelerator.device, dtype=weight_dtype) text_encoder.to(accelerator.device, dtype=weight_dtype) if args.enable_xformers_memory_efficient_attention: if is_xformers_available(): unet.enable_xformers_memory_efficient_attention() else: raise ValueError("xformers is not available. Make sure it is installed correctly") # now we will add new LoRA weights to the attention layers # It's important to realize here how many attention weights will be added and of which sizes # The sizes of the attention layers consist only of two different variables: # 1) - the "hidden_size", which is increased according to `unet.config.block_out_channels`. # 2) - the "cross attention size", which is set to `unet.config.cross_attention_dim`. # Let's first see how many attention processors we will have to set. # For Stable Diffusion, it should be equal to: # - down blocks (2x attention layers) * (2x transformer layers) * (3x down blocks) = 12 # - mid blocks (2x attention layers) * (1x transformer layers) * (1x mid blocks) = 2 # - up blocks (2x attention layers) * (3x transformer layers) * (3x down blocks) = 18 # => 32 layers # Set correct lora layers lora_attn_procs = {} for name in unet.attn_processors.keys(): cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim if name.startswith("mid_block"): hidden_size = unet.config.block_out_channels[-1] elif name.startswith("up_blocks"): block_id = int(name[len("up_blocks.")]) hidden_size = list(reversed(unet.config.block_out_channels))[block_id] elif name.startswith("down_blocks"): block_id = int(name[len("down_blocks.")]) hidden_size = unet.config.block_out_channels[block_id] lora_attn_procs[name] = LoRAAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim) unet.set_attn_processor(lora_attn_procs) lora_layers = AttnProcsLayers(unet.attn_processors) accelerator.register_for_checkpointing(lora_layers) if args.scale_lr: args.learning_rate = ( args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes ) # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs if args.use_8bit_adam: try: import bitsandbytes as bnb except ImportError: raise ImportError( "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." ) optimizer_class = bnb.optim.AdamW8bit else: optimizer_class = torch.optim.AdamW optimizer = optimizer_class( lora_layers.parameters(), lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, ) noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") train_dataset = DreamBoothDataset( instance_data_root=args.instance_data_dir, instance_prompt=args.instance_prompt, class_data_root=args.class_data_dir if args.with_prior_preservation else None, class_prompt=args.class_prompt, tokenizer=tokenizer, size=args.resolution, center_crop=args.center_crop, ) def collate_fn(examples): input_ids = [example["instance_prompt_ids"] for example in examples] pixel_values = [example["instance_images"] for example in examples] # Concat class and instance examples for prior preservation. # We do this to avoid doing two forward passes. if args.with_prior_preservation: input_ids += [example["class_prompt_ids"] for example in examples] pixel_values += [example["class_images"] for example in examples] pior_pil = [example["class_PIL_images"] for example in examples] masks = [] masked_images = [] for example in examples: pil_image = example["PIL_images"] # generate a random mask mask = random_mask(pil_image.size, 1, False) # prepare mask and masked image mask, masked_image = prepare_mask_and_masked_image(pil_image, mask) masks.append(mask) masked_images.append(masked_image) if args.with_prior_preservation: for pil_image in pior_pil: # generate a random mask mask = random_mask(pil_image.size, 1, False) # prepare mask and masked image mask, masked_image = prepare_mask_and_masked_image(pil_image, mask) masks.append(mask) masked_images.append(masked_image) pixel_values = torch.stack(pixel_values) pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() input_ids = tokenizer.pad({"input_ids": input_ids}, padding=True, return_tensors="pt").input_ids masks = torch.stack(masks) masked_images = torch.stack(masked_images) batch = {"input_ids": input_ids, "pixel_values": pixel_values, "masks": masks, "masked_images": masked_images} return batch train_dataloader = torch.utils.data.DataLoader( train_dataset, batch_size=args.train_batch_size, shuffle=True, collate_fn=collate_fn ) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, num_training_steps=args.max_train_steps * accelerator.num_processes, ) # Prepare everything with our `accelerator`. lora_layers, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( lora_layers, optimizer, train_dataloader, lr_scheduler ) # accelerator.register_for_checkpointing(lr_scheduler) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if accelerator.is_main_process: accelerator.init_trackers("dreambooth-inpaint-lora", config=vars(args)) # Train! total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num batches each epoch = {len(train_dataloader)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") global_step = 0 first_epoch = 0 if args.resume_from_checkpoint: if args.resume_from_checkpoint != "latest": path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = os.listdir(args.output_dir) dirs = [d for d in dirs if d.startswith("checkpoint")] dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) path = dirs[-1] if len(dirs) > 0 else None if path is None: accelerator.print( f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." ) args.resume_from_checkpoint = None else: accelerator.print(f"Resuming from checkpoint {path}") accelerator.load_state(os.path.join(args.output_dir, path)) global_step = int(path.split("-")[1]) resume_global_step = global_step * args.gradient_accumulation_steps first_epoch = global_step // num_update_steps_per_epoch resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps) # Only show the progress bar once on each machine. progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process) progress_bar.set_description("Steps") for epoch in range(first_epoch, args.num_train_epochs): unet.train() for step, batch in enumerate(train_dataloader): # Skip steps until we reach the resumed step if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step: if step % args.gradient_accumulation_steps == 0: progress_bar.update(1) continue with accelerator.accumulate(unet): # Convert images to latent space latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample() latents = latents * vae.config.scaling_factor # Convert masked images to latent space masked_latents = vae.encode( batch["masked_images"].reshape(batch["pixel_values"].shape).to(dtype=weight_dtype) ).latent_dist.sample() masked_latents = masked_latents * vae.config.scaling_factor masks = batch["masks"] # resize the mask to latents shape as we concatenate the mask to the latents mask = torch.stack( [ torch.nn.functional.interpolate(mask, size=(args.resolution // 8, args.resolution // 8)) for mask in masks ] ).to(dtype=weight_dtype) mask = mask.reshape(-1, 1, args.resolution // 8, args.resolution // 8) # Sample noise that we'll add to the latents noise = torch.randn_like(latents) bsz = latents.shape[0] # Sample a random timestep for each image timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) timesteps = timesteps.long() # Add noise to the latents according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) # concatenate the noised latents with the mask and the masked latents latent_model_input = torch.cat([noisy_latents, mask, masked_latents], dim=1) # Get the text embedding for conditioning encoder_hidden_states = text_encoder(batch["input_ids"])[0] # Predict the noise residual noise_pred = unet(latent_model_input, timesteps, encoder_hidden_states).sample # Get the target for loss depending on the prediction type if noise_scheduler.config.prediction_type == "epsilon": target = noise elif noise_scheduler.config.prediction_type == "v_prediction": target = noise_scheduler.get_velocity(latents, noise, timesteps) else: raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") if args.with_prior_preservation: # Chunk the noise and noise_pred into two parts and compute the loss on each part separately. noise_pred, noise_pred_prior = torch.chunk(noise_pred, 2, dim=0) target, target_prior = torch.chunk(target, 2, dim=0) # Compute instance loss loss = F.mse_loss(noise_pred.float(), target.float(), reduction="none").mean([1, 2, 3]).mean() # Compute prior loss prior_loss = F.mse_loss(noise_pred_prior.float(), target_prior.float(), reduction="mean") # Add the prior loss to the instance loss. loss = loss + args.prior_loss_weight * prior_loss else: loss = F.mse_loss(noise_pred.float(), target.float(), reduction="mean") accelerator.backward(loss) if accelerator.sync_gradients: params_to_clip = lora_layers.parameters() accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) global_step += 1 if global_step % args.checkpointing_steps == 0: if accelerator.is_main_process: save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") accelerator.save_state(save_path) logger.info(f"Saved state to {save_path}") logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) accelerator.log(logs, step=global_step) if global_step >= args.max_train_steps: break accelerator.wait_for_everyone() # Save the lora layers if accelerator.is_main_process: unet = unet.to(torch.float32) unet.save_attn_procs(args.output_dir) if args.push_to_hub: upload_folder( repo_id=repo_id, folder_path=args.output_dir, commit_message="End of training", ignore_patterns=["step_*", "epoch_*"], ) accelerator.end_training() if __name__ == "__main__": main()
diffusers/examples/research_projects/dreambooth_inpaint/train_dreambooth_inpaint_lora.py/0
{ "file_path": "diffusers/examples/research_projects/dreambooth_inpaint/train_dreambooth_inpaint_lora.py", "repo_id": "diffusers", "token_count": 14812 }
#!/usr/bin/env python # coding=utf-8 # Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Script to fine-tune Stable Diffusion for LORA InstructPix2Pix. Base code referred from: https://github.com/huggingface/diffusers/blob/main/examples/instruct_pix2pix/train_instruct_pix2pix.py """ import argparse import logging import math import os import shutil from contextlib import nullcontext from pathlib import Path import accelerate import datasets import numpy as np import PIL import requests import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint import transformers from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import ProjectConfiguration, set_seed from datasets import load_dataset from huggingface_hub import create_repo, upload_folder from packaging import version from peft import LoraConfig from peft.utils import get_peft_model_state_dict from torchvision import transforms from tqdm.auto import tqdm from transformers import CLIPTextModel, CLIPTokenizer import diffusers from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionInstructPix2PixPipeline, UNet2DConditionModel from diffusers.optimization import get_scheduler from diffusers.training_utils import EMAModel, cast_training_params from diffusers.utils import check_min_version, convert_state_dict_to_diffusers, deprecate, is_wandb_available from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.torch_utils import is_compiled_module if is_wandb_available(): import wandb # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.32.0.dev0") logger = get_logger(__name__, log_level="INFO") DATASET_NAME_MAPPING = { "fusing/instructpix2pix-1000-samples": ("input_image", "edit_prompt", "edited_image"), } WANDB_TABLE_COL_NAMES = ["original_image", "edited_image", "edit_prompt"] def save_model_card( repo_id: str, images: list = None, base_model: str = None, dataset_name: str = None, repo_folder: str = None, ): img_str = "" if images is not None: for i, image in enumerate(images): image.save(os.path.join(repo_folder, f"image_{i}.png")) img_str += f"![img_{i}](./image_{i}.png)\n" model_description = f""" # LoRA text2image fine-tuning - {repo_id} These are LoRA adaption weights for {base_model}. The weights were fine-tuned on the {dataset_name} dataset. You can find some example images in the following. \n {img_str} """ model_card = load_or_create_model_card( repo_id_or_path=repo_id, from_training=True, license="creativeml-openrail-m", base_model=base_model, model_description=model_description, inference=True, ) tags = [ "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "instruct-pix2pix", "diffusers", "diffusers-training", "lora", ] model_card = populate_model_card(model_card, tags=tags) model_card.save(os.path.join(repo_folder, "README.md")) def log_validation( pipeline, args, accelerator, generator, ): logger.info( f"Running validation... \n Generating {args.num_validation_images} images with prompt:" f" {args.validation_prompt}." ) pipeline = pipeline.to(accelerator.device) pipeline.set_progress_bar_config(disable=True) # run inference original_image = download_image(args.val_image_url) edited_images = [] if torch.backends.mps.is_available(): autocast_ctx = nullcontext() else: autocast_ctx = torch.autocast(accelerator.device.type) with autocast_ctx: for _ in range(args.num_validation_images): edited_images.append( pipeline( args.validation_prompt, image=original_image, num_inference_steps=20, image_guidance_scale=1.5, guidance_scale=7, generator=generator, ).images[0] ) for tracker in accelerator.trackers: if tracker.name == "wandb": wandb_table = wandb.Table(columns=WANDB_TABLE_COL_NAMES) for edited_image in edited_images: wandb_table.add_data(wandb.Image(original_image), wandb.Image(edited_image), args.validation_prompt) tracker.log({"validation": wandb_table}) return edited_images def parse_args(): parser = argparse.ArgumentParser(description="Simple example of a training script for InstructPix2Pix.") parser.add_argument( "--pretrained_model_name_or_path", type=str, default=None, required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--revision", type=str, default=None, required=False, help="Revision of pretrained model identifier from huggingface.co/models.", ) parser.add_argument( "--variant", type=str, default=None, help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", ) parser.add_argument( "--dataset_name", type=str, default=None, help=( "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," " or to a folder containing files that 🤗 Datasets can understand." ), ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The config of the Dataset, leave as None if there's only one config.", ) parser.add_argument( "--train_data_dir", type=str, default=None, help=( "A folder containing the training data. Folder contents must follow the structure described in" " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" " must exist to provide the captions for the images. Ignored if `dataset_name` is specified." ), ) parser.add_argument( "--original_image_column", type=str, default="input_image", help="The column of the dataset containing the original image on which edits where made.", ) parser.add_argument( "--edited_image_column", type=str, default="edited_image", help="The column of the dataset containing the edited image.", ) parser.add_argument( "--edit_prompt_column", type=str, default="edit_prompt", help="The column of the dataset containing the edit instruction.", ) parser.add_argument( "--val_image_url", type=str, default=None, help="URL to the original image that you would like to edit (used during inference for debugging purposes).", ) parser.add_argument( "--validation_prompt", type=str, default=None, help="A prompt that is sampled during training for inference." ) parser.add_argument( "--num_validation_images", type=int, default=4, help="Number of images that should be generated during validation with `validation_prompt`.", ) parser.add_argument( "--validation_epochs", type=int, default=1, help=( "Run fine-tuning validation every X epochs. The validation process consists of running the prompt" " `args.validation_prompt` multiple times: `args.num_validation_images`." ), ) parser.add_argument( "--max_train_samples", type=int, default=None, help=( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ), ) parser.add_argument( "--output_dir", type=str, default="instruct-pix2pix-model", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument( "--cache_dir", type=str, default=None, help="The directory where the downloaded models and datasets will be stored.", ) parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--resolution", type=int, default=256, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--center_crop", default=False, action="store_true", help=( "Whether to center crop the input images to the resolution. If not set, the images will be randomly" " cropped. The images will be resized to the resolution first before cropping." ), ) parser.add_argument( "--random_flip", action="store_true", help="whether to randomly flip images horizontally", ) parser.add_argument( "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." ) parser.add_argument("--num_train_epochs", type=int, default=100) parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--gradient_checkpointing", action="store_true", help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", ) parser.add_argument( "--learning_rate", type=float, default=1e-4, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--scale_lr", action="store_true", default=False, help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", ) parser.add_argument( "--lr_scheduler", type=str, default="constant", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument( "--conditioning_dropout_prob", type=float, default=None, help="Conditioning dropout probability. Drops out the conditionings (image and edit prompt) used in training InstructPix2Pix. See section 3.2.1 in the paper: https://arxiv.org/abs/2211.09800.", ) parser.add_argument( "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." ) parser.add_argument( "--allow_tf32", action="store_true", help=( "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" ), ) parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.") parser.add_argument( "--non_ema_revision", type=str, default=None, required=False, help=( "Revision of pretrained non-ema model identifier. Must be a branch, tag or git identifier of the local or" " remote repository specified with --pretrained_model_name_or_path." ), ) parser.add_argument( "--dataloader_num_workers", type=int, default=0, help=( "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." ), ) parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." ), ) parser.add_argument( "--report_to", type=str, default="tensorboard", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument( "--checkpointing_steps", type=int, default=500, help=( "Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming" " training using `--resume_from_checkpoint`." ), ) parser.add_argument( "--checkpoints_total_limit", type=int, default=None, help=("Max number of checkpoints to store."), ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help=( "Whether training should be resumed from a previous checkpoint. Use a path saved by" ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' ), ) parser.add_argument( "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." ) parser.add_argument( "--rank", type=int, default=4, help=("The dimension of the LoRA update matrices."), ) args = parser.parse_args() env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank # Sanity checks if args.dataset_name is None and args.train_data_dir is None: raise ValueError("Need either a dataset name or a training folder.") # default to using the same revision for the non-ema model if not specified if args.non_ema_revision is None: args.non_ema_revision = args.revision return args def convert_to_np(image, resolution): image = image.convert("RGB").resize((resolution, resolution)) return np.array(image).transpose(2, 0, 1) def download_image(url): image = PIL.Image.open(requests.get(url, stream=True).raw) image = PIL.ImageOps.exif_transpose(image) image = image.convert("RGB") return image def main(): args = parse_args() if args.report_to == "wandb" and args.hub_token is not None: raise ValueError( "You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token." " Please use `huggingface-cli login` to authenticate with the Hub." ) if args.non_ema_revision is not None: deprecate( "non_ema_revision!=None", "0.15.0", message=( "Downloading 'non_ema' weights from revision branches of the Hub is deprecated. Please make sure to" " use `--variant=non_ema` instead." ), ) logging_dir = os.path.join(args.output_dir, args.logging_dir) accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, log_with=args.report_to, project_config=accelerator_project_config, ) # Disable AMP for MPS. if torch.backends.mps.is_available(): accelerator.native_amp = False generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() diffusers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() diffusers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) if args.push_to_hub: repo_id = create_repo( repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token ).repo_id # Load scheduler, tokenizer and models. noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") tokenizer = CLIPTokenizer.from_pretrained( args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision ) text_encoder = CLIPTextModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant ) vae = AutoencoderKL.from_pretrained( args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant=args.variant ) unet = UNet2DConditionModel.from_pretrained( args.pretrained_model_name_or_path, subfolder="unet", revision=args.non_ema_revision ) # InstructPix2Pix uses an additional image for conditioning. To accommodate that, # it uses 8 channels (instead of 4) in the first (conv) layer of the UNet. This UNet is # then fine-tuned on the custom InstructPix2Pix dataset. This modified UNet is initialized # from the pre-trained checkpoints. For the extra channels added to the first layer, they are # initialized to zero. logger.info("Initializing the InstructPix2Pix UNet from the pretrained UNet.") in_channels = 8 out_channels = unet.conv_in.out_channels unet.register_to_config(in_channels=in_channels) with torch.no_grad(): new_conv_in = nn.Conv2d( in_channels, out_channels, unet.conv_in.kernel_size, unet.conv_in.stride, unet.conv_in.padding ) new_conv_in.weight.zero_() new_conv_in.weight[:, :in_channels, :, :].copy_(unet.conv_in.weight) unet.conv_in = new_conv_in # Freeze vae, text_encoder and unet vae.requires_grad_(False) text_encoder.requires_grad_(False) unet.requires_grad_(False) # referred to https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image_lora.py # For mixed precision training we cast all non-trainable weights (vae, non-lora text_encoder and non-lora unet) to half-precision # as these weights are only used for inference, keeping weights in full precision is not required. weight_dtype = torch.float32 if accelerator.mixed_precision == "fp16": weight_dtype = torch.float16 elif accelerator.mixed_precision == "bf16": weight_dtype = torch.bfloat16 # Freeze the unet parameters before adding adapters unet.requires_grad_(False) unet_lora_config = LoraConfig( r=args.rank, lora_alpha=args.rank, init_lora_weights="gaussian", target_modules=["to_k", "to_q", "to_v", "to_out.0"], ) # Move unet, vae and text_encoder to device and cast to weight_dtype unet.to(accelerator.device, dtype=weight_dtype) vae.to(accelerator.device, dtype=weight_dtype) text_encoder.to(accelerator.device, dtype=weight_dtype) # Add adapter and make sure the trainable params are in float32. unet.add_adapter(unet_lora_config) if args.mixed_precision == "fp16": # only upcast trainable parameters (LoRA) into fp32 cast_training_params(unet, dtype=torch.float32) # Create EMA for the unet. if args.use_ema: ema_unet = EMAModel(unet.parameters(), model_cls=UNet2DConditionModel, model_config=unet.config) if args.enable_xformers_memory_efficient_attention: if is_xformers_available(): import xformers xformers_version = version.parse(xformers.__version__) if xformers_version == version.parse("0.0.16"): logger.warning( "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." ) unet.enable_xformers_memory_efficient_attention() else: raise ValueError("xformers is not available. Make sure it is installed correctly") trainable_params = filter(lambda p: p.requires_grad, unet.parameters()) def unwrap_model(model): model = accelerator.unwrap_model(model) model = model._orig_mod if is_compiled_module(model) else model return model # `accelerate` 0.16.0 will have better support for customized saving if version.parse(accelerate.__version__) >= version.parse("0.16.0"): # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format def save_model_hook(models, weights, output_dir): if accelerator.is_main_process: if args.use_ema: ema_unet.save_pretrained(os.path.join(output_dir, "unet_ema")) for i, model in enumerate(models): model.save_pretrained(os.path.join(output_dir, "unet")) # make sure to pop weight so that corresponding model is not saved again if weights: weights.pop() def load_model_hook(models, input_dir): if args.use_ema: load_model = EMAModel.from_pretrained(os.path.join(input_dir, "unet_ema"), UNet2DConditionModel) ema_unet.load_state_dict(load_model.state_dict()) ema_unet.to(accelerator.device) del load_model for i in range(len(models)): # pop models so that they are not loaded again model = models.pop() # load diffusers style into model load_model = UNet2DConditionModel.from_pretrained(input_dir, subfolder="unet") model.register_to_config(**load_model.config) model.load_state_dict(load_model.state_dict()) del load_model accelerator.register_save_state_pre_hook(save_model_hook) accelerator.register_load_state_pre_hook(load_model_hook) if args.gradient_checkpointing: unet.enable_gradient_checkpointing() # Enable TF32 for faster training on Ampere GPUs, # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices if args.allow_tf32: torch.backends.cuda.matmul.allow_tf32 = True if args.scale_lr: args.learning_rate = ( args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes ) # Initialize the optimizer if args.use_8bit_adam: try: import bitsandbytes as bnb except ImportError: raise ImportError( "Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`" ) optimizer_cls = bnb.optim.AdamW8bit else: optimizer_cls = torch.optim.AdamW # train on only lora_layers optimizer = optimizer_cls( trainable_params, lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, ) # Get the datasets: you can either provide your own training and evaluation files (see below) # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub). # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. if args.dataset_name is not None: # Downloading and loading a dataset from the hub. dataset = load_dataset( args.dataset_name, args.dataset_config_name, cache_dir=args.cache_dir, ) else: data_files = {} if args.train_data_dir is not None: data_files["train"] = os.path.join(args.train_data_dir, "**") dataset = load_dataset( "imagefolder", data_files=data_files, cache_dir=args.cache_dir, ) # See more about loading custom images at # https://huggingface.co/docs/datasets/main/en/image_load#imagefolder # Preprocessing the datasets. # We need to tokenize inputs and targets. column_names = dataset["train"].column_names # 6. Get the column names for input/target. dataset_columns = DATASET_NAME_MAPPING.get(args.dataset_name, None) if args.original_image_column is None: original_image_column = dataset_columns[0] if dataset_columns is not None else column_names[0] else: original_image_column = args.original_image_column if original_image_column not in column_names: raise ValueError( f"--original_image_column' value '{args.original_image_column}' needs to be one of: {', '.join(column_names)}" ) if args.edit_prompt_column is None: edit_prompt_column = dataset_columns[1] if dataset_columns is not None else column_names[1] else: edit_prompt_column = args.edit_prompt_column if edit_prompt_column not in column_names: raise ValueError( f"--edit_prompt_column' value '{args.edit_prompt_column}' needs to be one of: {', '.join(column_names)}" ) if args.edited_image_column is None: edited_image_column = dataset_columns[2] if dataset_columns is not None else column_names[2] else: edited_image_column = args.edited_image_column if edited_image_column not in column_names: raise ValueError( f"--edited_image_column' value '{args.edited_image_column}' needs to be one of: {', '.join(column_names)}" ) # Preprocessing the datasets. # We need to tokenize input captions and transform the images. def tokenize_captions(captions): inputs = tokenizer( captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt" ) return inputs.input_ids # Preprocessing the datasets. train_transforms = transforms.Compose( [ transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution), transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x), ] ) def preprocess_images(examples): original_images = np.concatenate( [convert_to_np(image, args.resolution) for image in examples[original_image_column]] ) edited_images = np.concatenate( [convert_to_np(image, args.resolution) for image in examples[edited_image_column]] ) # We need to ensure that the original and the edited images undergo the same # augmentation transforms. images = np.concatenate([original_images, edited_images]) images = torch.tensor(images) images = 2 * (images / 255) - 1 return train_transforms(images) def preprocess_train(examples): # Preprocess images. preprocessed_images = preprocess_images(examples) # Since the original and edited images were concatenated before # applying the transformations, we need to separate them and reshape # them accordingly. original_images, edited_images = preprocessed_images.chunk(2) original_images = original_images.reshape(-1, 3, args.resolution, args.resolution) edited_images = edited_images.reshape(-1, 3, args.resolution, args.resolution) # Collate the preprocessed images into the `examples`. examples["original_pixel_values"] = original_images examples["edited_pixel_values"] = edited_images # Preprocess the captions. captions = list(examples[edit_prompt_column]) examples["input_ids"] = tokenize_captions(captions) return examples with accelerator.main_process_first(): if args.max_train_samples is not None: dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples)) # Set the training transforms train_dataset = dataset["train"].with_transform(preprocess_train) def collate_fn(examples): original_pixel_values = torch.stack([example["original_pixel_values"] for example in examples]) original_pixel_values = original_pixel_values.to(memory_format=torch.contiguous_format).float() edited_pixel_values = torch.stack([example["edited_pixel_values"] for example in examples]) edited_pixel_values = edited_pixel_values.to(memory_format=torch.contiguous_format).float() input_ids = torch.stack([example["input_ids"] for example in examples]) return { "original_pixel_values": original_pixel_values, "edited_pixel_values": edited_pixel_values, "input_ids": input_ids, } # DataLoaders creation: train_dataloader = torch.utils.data.DataLoader( train_dataset, shuffle=True, collate_fn=collate_fn, batch_size=args.train_batch_size, num_workers=args.dataloader_num_workers, ) # Scheduler and math around the number of training steps. # Check the PR https://github.com/huggingface/diffusers/pull/8312 for detailed explanation. num_warmup_steps_for_scheduler = args.lr_warmup_steps * accelerator.num_processes if args.max_train_steps is None: len_train_dataloader_after_sharding = math.ceil(len(train_dataloader) / accelerator.num_processes) num_update_steps_per_epoch = math.ceil(len_train_dataloader_after_sharding / args.gradient_accumulation_steps) num_training_steps_for_scheduler = ( args.num_train_epochs * num_update_steps_per_epoch * accelerator.num_processes ) else: num_training_steps_for_scheduler = args.max_train_steps * accelerator.num_processes lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=num_warmup_steps_for_scheduler, num_training_steps=num_training_steps_for_scheduler, ) # Prepare everything with our `accelerator`. unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( unet, optimizer, train_dataloader, lr_scheduler ) if args.use_ema: ema_unet.to(accelerator.device) # For mixed precision training we cast the text_encoder and vae weights to half-precision # as these models are only used for inference, keeping weights in full precision is not required. weight_dtype = torch.float32 if accelerator.mixed_precision == "fp16": weight_dtype = torch.float16 elif accelerator.mixed_precision == "bf16": weight_dtype = torch.bfloat16 # Move text_encode and vae to gpu and cast to weight_dtype text_encoder.to(accelerator.device, dtype=weight_dtype) vae.to(accelerator.device, dtype=weight_dtype) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch if num_training_steps_for_scheduler != args.max_train_steps * accelerator.num_processes: logger.warning( f"The length of the 'train_dataloader' after 'accelerator.prepare' ({len(train_dataloader)}) does not match " f"the expected length ({len_train_dataloader_after_sharding}) when the learning rate scheduler was created. " f"This inconsistency may result in the learning rate scheduler not functioning properly." ) # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if accelerator.is_main_process: accelerator.init_trackers("instruct-pix2pix", config=vars(args)) # Train! total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") global_step = 0 first_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint != "latest": path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = os.listdir(args.output_dir) dirs = [d for d in dirs if d.startswith("checkpoint")] dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) path = dirs[-1] if len(dirs) > 0 else None if path is None: accelerator.print( f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." ) args.resume_from_checkpoint = None else: accelerator.print(f"Resuming from checkpoint {path}") accelerator.load_state(os.path.join(args.output_dir, path)) global_step = int(path.split("-")[1]) resume_global_step = global_step * args.gradient_accumulation_steps first_epoch = global_step // num_update_steps_per_epoch resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps) # Only show the progress bar once on each machine. progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process) progress_bar.set_description("Steps") for epoch in range(first_epoch, args.num_train_epochs): unet.train() train_loss = 0.0 for step, batch in enumerate(train_dataloader): # Skip steps until we reach the resumed step if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step: if step % args.gradient_accumulation_steps == 0: progress_bar.update(1) continue with accelerator.accumulate(unet): # We want to learn the denoising process w.r.t the edited images which # are conditioned on the original image (which was edited) and the edit instruction. # So, first, convert images to latent space. latents = vae.encode(batch["edited_pixel_values"].to(weight_dtype)).latent_dist.sample() latents = latents * vae.config.scaling_factor # Sample noise that we'll add to the latents noise = torch.randn_like(latents) bsz = latents.shape[0] # Sample a random timestep for each image timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) timesteps = timesteps.long() # Add noise to the latents according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) # Get the text embedding for conditioning. encoder_hidden_states = text_encoder(batch["input_ids"])[0] # Get the additional image embedding for conditioning. # Instead of getting a diagonal Gaussian here, we simply take the mode. original_image_embeds = vae.encode(batch["original_pixel_values"].to(weight_dtype)).latent_dist.mode() # Conditioning dropout to support classifier-free guidance during inference. For more details # check out the section 3.2.1 of the original paper https://arxiv.org/abs/2211.09800. if args.conditioning_dropout_prob is not None: random_p = torch.rand(bsz, device=latents.device, generator=generator) # Sample masks for the edit prompts. prompt_mask = random_p < 2 * args.conditioning_dropout_prob prompt_mask = prompt_mask.reshape(bsz, 1, 1) # Final text conditioning. null_conditioning = text_encoder(tokenize_captions([""]).to(accelerator.device))[0] encoder_hidden_states = torch.where(prompt_mask, null_conditioning, encoder_hidden_states) # Sample masks for the original images. image_mask_dtype = original_image_embeds.dtype image_mask = 1 - ( (random_p >= args.conditioning_dropout_prob).to(image_mask_dtype) * (random_p < 3 * args.conditioning_dropout_prob).to(image_mask_dtype) ) image_mask = image_mask.reshape(bsz, 1, 1, 1) # Final image conditioning. original_image_embeds = image_mask * original_image_embeds # Concatenate the `original_image_embeds` with the `noisy_latents`. concatenated_noisy_latents = torch.cat([noisy_latents, original_image_embeds], dim=1) # Get the target for loss depending on the prediction type if noise_scheduler.config.prediction_type == "epsilon": target = noise elif noise_scheduler.config.prediction_type == "v_prediction": target = noise_scheduler.get_velocity(latents, noise, timesteps) else: raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") # Predict the noise residual and compute loss model_pred = unet(concatenated_noisy_latents, timesteps, encoder_hidden_states, return_dict=False)[0] loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") # Gather the losses across all processes for logging (if we use distributed training). avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean() train_loss += avg_loss.item() / args.gradient_accumulation_steps # Backpropagate accelerator.backward(loss) if accelerator.sync_gradients: accelerator.clip_grad_norm_(trainable_params, args.max_grad_norm) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: if args.use_ema: ema_unet.step(trainable_params) progress_bar.update(1) global_step += 1 accelerator.log({"train_loss": train_loss}, step=global_step) train_loss = 0.0 if global_step % args.checkpointing_steps == 0: if accelerator.is_main_process: # _before_ saving state, check if this save would set us over the `checkpoints_total_limit` if args.checkpoints_total_limit is not None: checkpoints = os.listdir(args.output_dir) checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints if len(checkpoints) >= args.checkpoints_total_limit: num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 removing_checkpoints = checkpoints[0:num_to_remove] logger.info( f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" ) logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") for removing_checkpoint in removing_checkpoints: removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) shutil.rmtree(removing_checkpoint) save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") accelerator.save_state(save_path) unwrapped_unet = unwrap_model(unet) unet_lora_state_dict = convert_state_dict_to_diffusers( get_peft_model_state_dict(unwrapped_unet) ) StableDiffusionInstructPix2PixPipeline.save_lora_weights( save_directory=save_path, unet_lora_layers=unet_lora_state_dict, safe_serialization=True, ) logger.info(f"Saved state to {save_path}") logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) if global_step >= args.max_train_steps: break if accelerator.is_main_process: if ( (args.val_image_url is not None) and (args.validation_prompt is not None) and (epoch % args.validation_epochs == 0) ): logger.info( f"Running validation... \n Generating {args.num_validation_images} images with prompt:" f" {args.validation_prompt}." ) # create pipeline if args.use_ema: # Store the UNet parameters temporarily and load the EMA parameters to perform inference. ema_unet.store(unet.parameters()) ema_unet.copy_to(unet.parameters()) # The models need unwrapping because for compatibility in distributed training mode. pipeline = StableDiffusionInstructPix2PixPipeline.from_pretrained( args.pretrained_model_name_or_path, unet=unwrap_model(unet), text_encoder=unwrap_model(text_encoder), vae=unwrap_model(vae), revision=args.revision, variant=args.variant, torch_dtype=weight_dtype, ) # run inference log_validation( pipeline, args, accelerator, generator, ) if args.use_ema: # Switch back to the original UNet parameters. ema_unet.restore(unet.parameters()) del pipeline torch.cuda.empty_cache() # Create the pipeline using the trained modules and save it. accelerator.wait_for_everyone() if accelerator.is_main_process: if args.use_ema: ema_unet.copy_to(unet.parameters()) # store only LORA layers unet = unet.to(torch.float32) unwrapped_unet = unwrap_model(unet) unet_lora_state_dict = convert_state_dict_to_diffusers(get_peft_model_state_dict(unwrapped_unet)) StableDiffusionInstructPix2PixPipeline.save_lora_weights( save_directory=args.output_dir, unet_lora_layers=unet_lora_state_dict, safe_serialization=True, ) pipeline = StableDiffusionInstructPix2PixPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=unwrap_model(text_encoder), vae=unwrap_model(vae), unet=unwrap_model(unet), revision=args.revision, variant=args.variant, ) pipeline.load_lora_weights(args.output_dir) images = None if (args.val_image_url is not None) and (args.validation_prompt is not None): images = log_validation( pipeline, args, accelerator, generator, ) if args.push_to_hub: save_model_card( repo_id, images=images, base_model=args.pretrained_model_name_or_path, dataset_name=args.dataset_name, repo_folder=args.output_dir, ) upload_folder( repo_id=repo_id, folder_path=args.output_dir, commit_message="End of training", ignore_patterns=["step_*", "epoch_*"], ) accelerator.end_training() if __name__ == "__main__": main()
diffusers/examples/research_projects/instructpix2pix_lora/train_instruct_pix2pix_lora.py/0
{ "file_path": "diffusers/examples/research_projects/instructpix2pix_lora/train_instruct_pix2pix_lora.py", "repo_id": "diffusers", "token_count": 21329 }
# Stable Diffusion text-to-image fine-tuning This extended LoRA training script was authored by [haofanwang](https://github.com/haofanwang). This is an experimental LoRA extension of [this example](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image_lora.py). We further support add LoRA layers for text encoder. ## Training with LoRA Low-Rank Adaption of Large Language Models was first introduced by Microsoft in [LoRA: Low-Rank Adaptation of Large Language Models](https://arxiv.org/abs/2106.09685) by *Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen*. In a nutshell, LoRA allows adapting pretrained models by adding pairs of rank-decomposition matrices to existing weights and **only** training those newly added weights. This has a couple of advantages: - Previous pretrained weights are kept frozen so that model is not prone to [catastrophic forgetting](https://www.pnas.org/doi/10.1073/pnas.1611835114). - Rank-decomposition matrices have significantly fewer parameters than original model, which means that trained LoRA weights are easily portable. - LoRA attention layers allow to control to which extent the model is adapted toward new training images via a `scale` parameter. [cloneofsimo](https://github.com/cloneofsimo) was the first to try out LoRA training for Stable Diffusion in the popular [lora](https://github.com/cloneofsimo/lora) GitHub repository. With LoRA, it's possible to fine-tune Stable Diffusion on a custom image-caption pair dataset on consumer GPUs like Tesla T4, Tesla V100. ### Training First, you need to set up your development environment as is explained in the [installation section](#installing-the-dependencies). Make sure to set the `MODEL_NAME` and `DATASET_NAME` environment variables. Here, we will use [Stable Diffusion v1-4](https://hf.co/CompVis/stable-diffusion-v1-4) and the [Narutos dataset](https://huggingface.co/datasets/lambdalabs/naruto-blip-captions). **___Note: Change the `resolution` to 768 if you are using the [stable-diffusion-2](https://huggingface.co/stabilityai/stable-diffusion-2) 768x768 model.___** **___Note: It is quite useful to monitor the training progress by regularly generating sample images during training. [Weights and Biases](https://docs.wandb.ai/quickstart) is a nice solution to easily see generating images during training. All you need to do is to run `pip install wandb` before training to automatically log images.___** ```bash export MODEL_NAME="CompVis/stable-diffusion-v1-4" export DATASET_NAME="lambdalabs/naruto-blip-captions" ``` For this example we want to directly store the trained LoRA embeddings on the Hub, so we need to be logged in and add the `--push_to_hub` flag. ```bash huggingface-cli login ``` Now we can start training! ```bash accelerate launch --mixed_precision="fp16" train_text_to_image_lora.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --dataset_name=$DATASET_NAME --caption_column="text" \ --resolution=512 --random_flip \ --train_batch_size=1 \ --num_train_epochs=100 --checkpointing_steps=5000 \ --learning_rate=1e-04 --lr_scheduler="constant" --lr_warmup_steps=0 \ --seed=42 \ --output_dir="sd-naruto-model-lora" \ --validation_prompt="cute dragon creature" --report_to="wandb" --use_peft \ --lora_r=4 --lora_alpha=32 \ --lora_text_encoder_r=4 --lora_text_encoder_alpha=32 ``` The above command will also run inference as fine-tuning progresses and log the results to Weights and Biases. **___Note: When using LoRA we can use a much higher learning rate compared to non-LoRA fine-tuning. Here we use *1e-4* instead of the usual *1e-5*. Also, by using LoRA, it's possible to run `train_text_to_image_lora.py` in consumer GPUs like T4 or V100.___** The final LoRA embedding weights have been uploaded to [sayakpaul/sd-model-finetuned-lora-t4](https://huggingface.co/sayakpaul/sd-model-finetuned-lora-t4). **___Note: [The final weights](https://huggingface.co/sayakpaul/sd-model-finetuned-lora-t4/blob/main/pytorch_lora_weights.bin) are only 3 MB in size, which is orders of magnitudes smaller than the original model.___** You can check some inference samples that were logged during the course of the fine-tuning process [here](https://wandb.ai/sayakpaul/text2image-fine-tune/runs/q4lc0xsw). ### Inference Once you have trained a model using above command, the inference can be done simply using the `StableDiffusionPipeline` after loading the trained LoRA weights. You need to pass the `output_dir` for loading the LoRA weights which, in this case, is `sd-naruto-model-lora`. ```python from diffusers import StableDiffusionPipeline import torch model_path = "sayakpaul/sd-model-finetuned-lora-t4" pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16) pipe.unet.load_attn_procs(model_path) pipe.to("cuda") prompt = "A naruto with green eyes and red legs." image = pipe(prompt, num_inference_steps=30, guidance_scale=7.5).images[0] image.save("naruto.png") ```
diffusers/examples/research_projects/lora/README.md/0
{ "file_path": "diffusers/examples/research_projects/lora/README.md", "repo_id": "diffusers", "token_count": 1624 }
# Stable Diffusion text-to-image fine-tuning The `train_text_to_image.py` script shows how to fine-tune stable diffusion model on your own dataset. ___Note___: ___This script is experimental. The script fine-tunes the whole model and often times the model overfits and runs into issues like catastrophic forgetting. It's recommended to try different hyperparamters to get the best result on your dataset.___ ## Running locally with PyTorch ### Installing the dependencies Before running the scripts, make sure to install the library's training dependencies: **Important** To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment: ```bash git clone https://github.com/huggingface/diffusers cd diffusers pip install . ``` Then cd in the example folder and run ```bash pip install -r requirements.txt ``` And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with: ```bash accelerate config ``` ### Naruto example You need to accept the model license before downloading or using the weights. In this example we'll use model version `v1-4`, so you'll need to visit [its card](https://huggingface.co/CompVis/stable-diffusion-v1-4), read the license and tick the checkbox if you agree. You have to be a registered user in 🤗 Hugging Face Hub, and you'll also need to use an access token for the code to work. For more information on access tokens, please refer to [this section of the documentation](https://huggingface.co/docs/hub/security-tokens). Run the following command to authenticate your token ```bash huggingface-cli login ``` If you have already cloned the repo, then you won't need to go through these steps. <br> ## Use ONNXRuntime to accelerate training In order to leverage onnxruntime to accelerate training, please use train_text_to_image.py The command to train a DDPM UNetCondition model on the Naruto dataset with onnxruntime: ```bash export MODEL_NAME="CompVis/stable-diffusion-v1-4" export dataset_name="lambdalabs/naruto-blip-captions" accelerate launch --mixed_precision="fp16" train_text_to_image.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --dataset_name=$dataset_name \ --use_ema \ --resolution=512 --center_crop --random_flip \ --train_batch_size=1 \ --gradient_accumulation_steps=4 \ --gradient_checkpointing \ --max_train_steps=15000 \ --learning_rate=1e-05 \ --max_grad_norm=1 \ --lr_scheduler="constant" --lr_warmup_steps=0 \ --output_dir="sd-naruto-model" ``` Please contact Prathik Rao (prathikr), Sunghoon Choi (hanbitmyths), Ashwini Khade (askhade), or Peng Wang (pengwa) on github with any questions.
diffusers/examples/research_projects/onnxruntime/text_to_image/README.md/0
{ "file_path": "diffusers/examples/research_projects/onnxruntime/text_to_image/README.md", "repo_id": "diffusers", "token_count": 847 }
# PromptDiffusion Pipeline From the project [page](https://zhendong-wang.github.io/prompt-diffusion.github.io/) "With a prompt consisting of a task-specific example pair of images and text guidance, and a new query image, Prompt Diffusion can comprehend the desired task and generate the corresponding output image on both seen (trained) and unseen (new) task types." For any usage questions, please refer to the [paper](https://arxiv.org/abs/2305.01115). Prepare models by converting them from the [checkpoint](https://huggingface.co/zhendongw/prompt-diffusion) To convert the controlnet, use cldm_v15.yaml from the [repository](https://github.com/Zhendong-Wang/Prompt-Diffusion/tree/main/models/): ```bash python convert_original_promptdiffusion_to_diffusers.py --checkpoint_path path-to-network-step04999.ckpt --original_config_file path-to-cldm_v15.yaml --dump_path path-to-output-directory ``` To learn about how to convert the fine-tuned stable diffusion model, see the [Load different Stable Diffusion formats guide](https://huggingface.co/docs/diffusers/main/en/using-diffusers/other-formats). ```py import torch from diffusers import UniPCMultistepScheduler from diffusers.utils import load_image from promptdiffusioncontrolnet import PromptDiffusionControlNetModel from pipeline_prompt_diffusion import PromptDiffusionPipeline from PIL import ImageOps image_a = ImageOps.invert(load_image("https://github.com/Zhendong-Wang/Prompt-Diffusion/blob/main/images_to_try/house_line.png?raw=true")) image_b = load_image("https://github.com/Zhendong-Wang/Prompt-Diffusion/blob/main/images_to_try/house.png?raw=true") query = ImageOps.invert(load_image("https://github.com/Zhendong-Wang/Prompt-Diffusion/blob/main/images_to_try/new_01.png?raw=true")) # load prompt diffusion controlnet and prompt diffusion controlnet = PromptDiffusionControlNetModel.from_pretrained("iczaw/prompt-diffusion-diffusers", subfolder="controlnet", torch_dtype=torch.float16) model_id = "path-to-model" pipe = PromptDiffusionPipeline.from_pretrained("iczaw/prompt-diffusion-diffusers", subfolder="base", controlnet=controlnet, torch_dtype=torch.float16, variant="fp16") # speed up diffusion process with faster scheduler and memory optimization pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) # remove following line if xformers is not installed pipe.enable_xformers_memory_efficient_attention() pipe.enable_model_cpu_offload() # generate image generator = torch.manual_seed(0) image = pipe("a tortoise", num_inference_steps=20, generator=generator, image_pair=[image_a,image_b], image=query).images[0] ```
diffusers/examples/research_projects/promptdiffusion/README.md/0
{ "file_path": "diffusers/examples/research_projects/promptdiffusion/README.md", "repo_id": "diffusers", "token_count": 828 }
#!/usr/bin/env python # coding=utf-8 # Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and import argparse import typing from typing import Optional, Union import torch from PIL import Image from torchvision import transforms # type: ignore from diffusers.image_processor import VaeImageProcessor from diffusers.models.autoencoders.autoencoder_kl import ( AutoencoderKL, AutoencoderKLOutput, ) from diffusers.models.autoencoders.autoencoder_tiny import ( AutoencoderTiny, AutoencoderTinyOutput, ) from diffusers.models.autoencoders.vae import DecoderOutput SupportedAutoencoder = Union[AutoencoderKL, AutoencoderTiny] def load_vae_model( *, device: torch.device, model_name_or_path: str, revision: Optional[str], variant: Optional[str], # NOTE: use subfolder="vae" if the pointed model is for stable diffusion as a whole instead of just the VAE subfolder: Optional[str], use_tiny_nn: bool, ) -> SupportedAutoencoder: if use_tiny_nn: # NOTE: These scaling factors don't have to be the same as each other. down_scale = 2 up_scale = 2 vae = AutoencoderTiny.from_pretrained( # type: ignore model_name_or_path, subfolder=subfolder, revision=revision, variant=variant, downscaling_scaling_factor=down_scale, upsampling_scaling_factor=up_scale, ) assert isinstance(vae, AutoencoderTiny) else: vae = AutoencoderKL.from_pretrained( # type: ignore model_name_or_path, subfolder=subfolder, revision=revision, variant=variant, ) assert isinstance(vae, AutoencoderKL) vae = vae.to(device) vae.eval() # Set the model to inference mode return vae def pil_to_nhwc( *, device: torch.device, image: Image.Image, ) -> torch.Tensor: assert image.mode == "RGB" transform = transforms.ToTensor() nhwc = transform(image).unsqueeze(0).to(device) # type: ignore assert isinstance(nhwc, torch.Tensor) return nhwc def nhwc_to_pil( *, nhwc: torch.Tensor, ) -> Image.Image: assert nhwc.shape[0] == 1 hwc = nhwc.squeeze(0).cpu() return transforms.ToPILImage()(hwc) # type: ignore def concatenate_images( *, left: Image.Image, right: Image.Image, vertical: bool = False, ) -> Image.Image: width1, height1 = left.size width2, height2 = right.size if vertical: total_height = height1 + height2 max_width = max(width1, width2) new_image = Image.new("RGB", (max_width, total_height)) new_image.paste(left, (0, 0)) new_image.paste(right, (0, height1)) else: total_width = width1 + width2 max_height = max(height1, height2) new_image = Image.new("RGB", (total_width, max_height)) new_image.paste(left, (0, 0)) new_image.paste(right, (width1, 0)) return new_image def to_latent( *, rgb_nchw: torch.Tensor, vae: SupportedAutoencoder, ) -> torch.Tensor: rgb_nchw = VaeImageProcessor.normalize(rgb_nchw) # type: ignore encoding_nchw = vae.encode(typing.cast(torch.FloatTensor, rgb_nchw)) if isinstance(encoding_nchw, AutoencoderKLOutput): latent = encoding_nchw.latent_dist.sample() # type: ignore assert isinstance(latent, torch.Tensor) elif isinstance(encoding_nchw, AutoencoderTinyOutput): latent = encoding_nchw.latents do_internal_vae_scaling = False # Is this needed? if do_internal_vae_scaling: latent = vae.scale_latents(latent).mul(255).round().byte() # type: ignore latent = vae.unscale_latents(latent / 255.0) # type: ignore assert isinstance(latent, torch.Tensor) else: assert False, f"Unknown encoding type: {type(encoding_nchw)}" return latent def from_latent( *, latent_nchw: torch.Tensor, vae: SupportedAutoencoder, ) -> torch.Tensor: decoding_nchw = vae.decode(latent_nchw) # type: ignore assert isinstance(decoding_nchw, DecoderOutput) rgb_nchw = VaeImageProcessor.denormalize(decoding_nchw.sample) # type: ignore assert isinstance(rgb_nchw, torch.Tensor) return rgb_nchw def main_kwargs( *, device: torch.device, input_image_path: str, pretrained_model_name_or_path: str, revision: Optional[str], variant: Optional[str], subfolder: Optional[str], use_tiny_nn: bool, ) -> None: vae = load_vae_model( device=device, model_name_or_path=pretrained_model_name_or_path, revision=revision, variant=variant, subfolder=subfolder, use_tiny_nn=use_tiny_nn, ) original_pil = Image.open(input_image_path).convert("RGB") original_image = pil_to_nhwc( device=device, image=original_pil, ) print(f"Original image shape: {original_image.shape}") reconstructed_image: Optional[torch.Tensor] = None with torch.no_grad(): latent_image = to_latent(rgb_nchw=original_image, vae=vae) print(f"Latent shape: {latent_image.shape}") reconstructed_image = from_latent(latent_nchw=latent_image, vae=vae) reconstructed_pil = nhwc_to_pil(nhwc=reconstructed_image) combined_image = concatenate_images( left=original_pil, right=reconstructed_pil, vertical=False, ) combined_image.show("Original | Reconstruction") print(f"Reconstructed image shape: {reconstructed_image.shape}") def parse_args() -> argparse.Namespace: parser = argparse.ArgumentParser(description="Inference with VAE") parser.add_argument( "--input_image", type=str, required=True, help="Path to the input image for inference.", ) parser.add_argument( "--pretrained_model_name_or_path", type=str, required=True, help="Path to pretrained VAE model.", ) parser.add_argument( "--revision", type=str, default=None, help="Model version.", ) parser.add_argument( "--variant", type=str, default=None, help="Model file variant, e.g., 'fp16'.", ) parser.add_argument( "--subfolder", type=str, default=None, help="Subfolder in the model file.", ) parser.add_argument( "--use_cuda", action="store_true", help="Use CUDA if available.", ) parser.add_argument( "--use_tiny_nn", action="store_true", help="Use tiny neural network.", ) return parser.parse_args() # EXAMPLE USAGE: # # python vae_roundtrip.py --use_cuda --pretrained_model_name_or_path "runwayml/stable-diffusion-v1-5" --subfolder "vae" --input_image "foo.png" # # python vae_roundtrip.py --use_cuda --pretrained_model_name_or_path "madebyollin/taesd" --use_tiny_nn --input_image "foo.png" # def main_cli() -> None: args = parse_args() input_image_path = args.input_image assert isinstance(input_image_path, str) pretrained_model_name_or_path = args.pretrained_model_name_or_path assert isinstance(pretrained_model_name_or_path, str) revision = args.revision assert isinstance(revision, (str, type(None))) variant = args.variant assert isinstance(variant, (str, type(None))) subfolder = args.subfolder assert isinstance(subfolder, (str, type(None))) use_cuda = args.use_cuda assert isinstance(use_cuda, bool) use_tiny_nn = args.use_tiny_nn assert isinstance(use_tiny_nn, bool) device = torch.device("cuda" if use_cuda else "cpu") main_kwargs( device=device, input_image_path=input_image_path, pretrained_model_name_or_path=pretrained_model_name_or_path, revision=revision, variant=variant, subfolder=subfolder, use_tiny_nn=use_tiny_nn, ) if __name__ == "__main__": main_cli()
diffusers/examples/research_projects/vae/vae_roundtrip.py/0
{ "file_path": "diffusers/examples/research_projects/vae/vae_roundtrip.py", "repo_id": "diffusers", "token_count": 3616 }
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import shutil import subprocess import tempfile import unittest from typing import List from accelerate.utils import write_basic_config # These utils relate to ensuring the right error message is received when running scripts class SubprocessCallException(Exception): pass def run_command(command: List[str], return_stdout=False): """ Runs `command` with `subprocess.check_output` and will potentially return the `stdout`. Will also properly capture if an error occurred while running `command` """ try: output = subprocess.check_output(command, stderr=subprocess.STDOUT) if return_stdout: if hasattr(output, "decode"): output = output.decode("utf-8") return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f"Command `{' '.join(command)}` failed with the following error:\n\n{e.output.decode()}" ) from e class ExamplesTestsAccelerate(unittest.TestCase): @classmethod def setUpClass(cls): super().setUpClass() cls._tmpdir = tempfile.mkdtemp() cls.configPath = os.path.join(cls._tmpdir, "default_config.yml") write_basic_config(save_location=cls.configPath) cls._launch_args = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def tearDownClass(cls): super().tearDownClass() shutil.rmtree(cls._tmpdir)
diffusers/examples/test_examples_utils.py/0
{ "file_path": "diffusers/examples/test_examples_utils.py", "repo_id": "diffusers", "token_count": 714 }
import argparse import json import torch from diffusers import AutoencoderKL, DDPMPipeline, DDPMScheduler, UNet2DModel, VQModel def shave_segments(path, n_shave_prefix_segments=1): """ Removes segments. Positive values shave the first segments, negative shave the last segments. """ if n_shave_prefix_segments >= 0: return ".".join(path.split(".")[n_shave_prefix_segments:]) else: return ".".join(path.split(".")[:n_shave_prefix_segments]) def renew_resnet_paths(old_list, n_shave_prefix_segments=0): mapping = [] for old_item in old_list: new_item = old_item new_item = new_item.replace("block.", "resnets.") new_item = new_item.replace("conv_shorcut", "conv1") new_item = new_item.replace("in_shortcut", "conv_shortcut") new_item = new_item.replace("temb_proj", "time_emb_proj") new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) mapping.append({"old": old_item, "new": new_item}) return mapping def renew_attention_paths(old_list, n_shave_prefix_segments=0, in_mid=False): mapping = [] for old_item in old_list: new_item = old_item # In `model.mid`, the layer is called `attn`. if not in_mid: new_item = new_item.replace("attn", "attentions") new_item = new_item.replace(".k.", ".key.") new_item = new_item.replace(".v.", ".value.") new_item = new_item.replace(".q.", ".query.") new_item = new_item.replace("proj_out", "proj_attn") new_item = new_item.replace("norm", "group_norm") new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) mapping.append({"old": old_item, "new": new_item}) return mapping def assign_to_checkpoint( paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None ): assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys." if attention_paths_to_split is not None: if config is None: raise ValueError("Please specify the config if setting 'attention_paths_to_split' to 'True'.") for path, path_map in attention_paths_to_split.items(): old_tensor = old_checkpoint[path] channels = old_tensor.shape[0] // 3 target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1) num_heads = old_tensor.shape[0] // config.get("num_head_channels", 1) // 3 old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]) query, key, value = old_tensor.split(channels // num_heads, dim=1) checkpoint[path_map["query"]] = query.reshape(target_shape).squeeze() checkpoint[path_map["key"]] = key.reshape(target_shape).squeeze() checkpoint[path_map["value"]] = value.reshape(target_shape).squeeze() for path in paths: new_path = path["new"] if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue new_path = new_path.replace("down.", "down_blocks.") new_path = new_path.replace("up.", "up_blocks.") if additional_replacements is not None: for replacement in additional_replacements: new_path = new_path.replace(replacement["old"], replacement["new"]) if "attentions" in new_path: checkpoint[new_path] = old_checkpoint[path["old"]].squeeze() else: checkpoint[new_path] = old_checkpoint[path["old"]] def convert_ddpm_checkpoint(checkpoint, config): """ Takes a state dict and a config, and returns a converted checkpoint. """ new_checkpoint = {} new_checkpoint["time_embedding.linear_1.weight"] = checkpoint["temb.dense.0.weight"] new_checkpoint["time_embedding.linear_1.bias"] = checkpoint["temb.dense.0.bias"] new_checkpoint["time_embedding.linear_2.weight"] = checkpoint["temb.dense.1.weight"] new_checkpoint["time_embedding.linear_2.bias"] = checkpoint["temb.dense.1.bias"] new_checkpoint["conv_norm_out.weight"] = checkpoint["norm_out.weight"] new_checkpoint["conv_norm_out.bias"] = checkpoint["norm_out.bias"] new_checkpoint["conv_in.weight"] = checkpoint["conv_in.weight"] new_checkpoint["conv_in.bias"] = checkpoint["conv_in.bias"] new_checkpoint["conv_out.weight"] = checkpoint["conv_out.weight"] new_checkpoint["conv_out.bias"] = checkpoint["conv_out.bias"] num_down_blocks = len({".".join(layer.split(".")[:2]) for layer in checkpoint if "down" in layer}) down_blocks = { layer_id: [key for key in checkpoint if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks) } num_up_blocks = len({".".join(layer.split(".")[:2]) for layer in checkpoint if "up" in layer}) up_blocks = {layer_id: [key for key in checkpoint if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)} for i in range(num_down_blocks): block_id = (i - 1) // (config["layers_per_block"] + 1) if any("downsample" in layer for layer in down_blocks[i]): new_checkpoint[f"down_blocks.{i}.downsamplers.0.conv.weight"] = checkpoint[ f"down.{i}.downsample.op.weight" ] new_checkpoint[f"down_blocks.{i}.downsamplers.0.conv.bias"] = checkpoint[f"down.{i}.downsample.op.bias"] # new_checkpoint[f'down_blocks.{i}.downsamplers.0.op.weight'] = checkpoint[f'down.{i}.downsample.conv.weight'] # new_checkpoint[f'down_blocks.{i}.downsamplers.0.op.bias'] = checkpoint[f'down.{i}.downsample.conv.bias'] if any("block" in layer for layer in down_blocks[i]): num_blocks = len( {".".join(shave_segments(layer, 2).split(".")[:2]) for layer in down_blocks[i] if "block" in layer} ) blocks = { layer_id: [key for key in down_blocks[i] if f"block.{layer_id}" in key] for layer_id in range(num_blocks) } if num_blocks > 0: for j in range(config["layers_per_block"]): paths = renew_resnet_paths(blocks[j]) assign_to_checkpoint(paths, new_checkpoint, checkpoint) if any("attn" in layer for layer in down_blocks[i]): num_attn = len( {".".join(shave_segments(layer, 2).split(".")[:2]) for layer in down_blocks[i] if "attn" in layer} ) attns = { layer_id: [key for key in down_blocks[i] if f"attn.{layer_id}" in key] for layer_id in range(num_blocks) } if num_attn > 0: for j in range(config["layers_per_block"]): paths = renew_attention_paths(attns[j]) assign_to_checkpoint(paths, new_checkpoint, checkpoint, config=config) mid_block_1_layers = [key for key in checkpoint if "mid.block_1" in key] mid_block_2_layers = [key for key in checkpoint if "mid.block_2" in key] mid_attn_1_layers = [key for key in checkpoint if "mid.attn_1" in key] # Mid new 2 paths = renew_resnet_paths(mid_block_1_layers) assign_to_checkpoint( paths, new_checkpoint, checkpoint, additional_replacements=[{"old": "mid.", "new": "mid_new_2."}, {"old": "block_1", "new": "resnets.0"}], ) paths = renew_resnet_paths(mid_block_2_layers) assign_to_checkpoint( paths, new_checkpoint, checkpoint, additional_replacements=[{"old": "mid.", "new": "mid_new_2."}, {"old": "block_2", "new": "resnets.1"}], ) paths = renew_attention_paths(mid_attn_1_layers, in_mid=True) assign_to_checkpoint( paths, new_checkpoint, checkpoint, additional_replacements=[{"old": "mid.", "new": "mid_new_2."}, {"old": "attn_1", "new": "attentions.0"}], ) for i in range(num_up_blocks): block_id = num_up_blocks - 1 - i if any("upsample" in layer for layer in up_blocks[i]): new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = checkpoint[ f"up.{i}.upsample.conv.weight" ] new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = checkpoint[f"up.{i}.upsample.conv.bias"] if any("block" in layer for layer in up_blocks[i]): num_blocks = len( {".".join(shave_segments(layer, 2).split(".")[:2]) for layer in up_blocks[i] if "block" in layer} ) blocks = { layer_id: [key for key in up_blocks[i] if f"block.{layer_id}" in key] for layer_id in range(num_blocks) } if num_blocks > 0: for j in range(config["layers_per_block"] + 1): replace_indices = {"old": f"up_blocks.{i}", "new": f"up_blocks.{block_id}"} paths = renew_resnet_paths(blocks[j]) assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[replace_indices]) if any("attn" in layer for layer in up_blocks[i]): num_attn = len( {".".join(shave_segments(layer, 2).split(".")[:2]) for layer in up_blocks[i] if "attn" in layer} ) attns = { layer_id: [key for key in up_blocks[i] if f"attn.{layer_id}" in key] for layer_id in range(num_blocks) } if num_attn > 0: for j in range(config["layers_per_block"] + 1): replace_indices = {"old": f"up_blocks.{i}", "new": f"up_blocks.{block_id}"} paths = renew_attention_paths(attns[j]) assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[replace_indices]) new_checkpoint = {k.replace("mid_new_2", "mid_block"): v for k, v in new_checkpoint.items()} return new_checkpoint def convert_vq_autoenc_checkpoint(checkpoint, config): """ Takes a state dict and a config, and returns a converted checkpoint. """ new_checkpoint = {} new_checkpoint["encoder.conv_norm_out.weight"] = checkpoint["encoder.norm_out.weight"] new_checkpoint["encoder.conv_norm_out.bias"] = checkpoint["encoder.norm_out.bias"] new_checkpoint["encoder.conv_in.weight"] = checkpoint["encoder.conv_in.weight"] new_checkpoint["encoder.conv_in.bias"] = checkpoint["encoder.conv_in.bias"] new_checkpoint["encoder.conv_out.weight"] = checkpoint["encoder.conv_out.weight"] new_checkpoint["encoder.conv_out.bias"] = checkpoint["encoder.conv_out.bias"] new_checkpoint["decoder.conv_norm_out.weight"] = checkpoint["decoder.norm_out.weight"] new_checkpoint["decoder.conv_norm_out.bias"] = checkpoint["decoder.norm_out.bias"] new_checkpoint["decoder.conv_in.weight"] = checkpoint["decoder.conv_in.weight"] new_checkpoint["decoder.conv_in.bias"] = checkpoint["decoder.conv_in.bias"] new_checkpoint["decoder.conv_out.weight"] = checkpoint["decoder.conv_out.weight"] new_checkpoint["decoder.conv_out.bias"] = checkpoint["decoder.conv_out.bias"] num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in checkpoint if "down" in layer}) down_blocks = { layer_id: [key for key in checkpoint if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks) } num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in checkpoint if "up" in layer}) up_blocks = {layer_id: [key for key in checkpoint if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)} for i in range(num_down_blocks): block_id = (i - 1) // (config["layers_per_block"] + 1) if any("downsample" in layer for layer in down_blocks[i]): new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = checkpoint[ f"encoder.down.{i}.downsample.conv.weight" ] new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = checkpoint[ f"encoder.down.{i}.downsample.conv.bias" ] if any("block" in layer for layer in down_blocks[i]): num_blocks = len( {".".join(shave_segments(layer, 3).split(".")[:3]) for layer in down_blocks[i] if "block" in layer} ) blocks = { layer_id: [key for key in down_blocks[i] if f"block.{layer_id}" in key] for layer_id in range(num_blocks) } if num_blocks > 0: for j in range(config["layers_per_block"]): paths = renew_resnet_paths(blocks[j]) assign_to_checkpoint(paths, new_checkpoint, checkpoint) if any("attn" in layer for layer in down_blocks[i]): num_attn = len( {".".join(shave_segments(layer, 3).split(".")[:3]) for layer in down_blocks[i] if "attn" in layer} ) attns = { layer_id: [key for key in down_blocks[i] if f"attn.{layer_id}" in key] for layer_id in range(num_blocks) } if num_attn > 0: for j in range(config["layers_per_block"]): paths = renew_attention_paths(attns[j]) assign_to_checkpoint(paths, new_checkpoint, checkpoint, config=config) mid_block_1_layers = [key for key in checkpoint if "mid.block_1" in key] mid_block_2_layers = [key for key in checkpoint if "mid.block_2" in key] mid_attn_1_layers = [key for key in checkpoint if "mid.attn_1" in key] # Mid new 2 paths = renew_resnet_paths(mid_block_1_layers) assign_to_checkpoint( paths, new_checkpoint, checkpoint, additional_replacements=[{"old": "mid.", "new": "mid_new_2."}, {"old": "block_1", "new": "resnets.0"}], ) paths = renew_resnet_paths(mid_block_2_layers) assign_to_checkpoint( paths, new_checkpoint, checkpoint, additional_replacements=[{"old": "mid.", "new": "mid_new_2."}, {"old": "block_2", "new": "resnets.1"}], ) paths = renew_attention_paths(mid_attn_1_layers, in_mid=True) assign_to_checkpoint( paths, new_checkpoint, checkpoint, additional_replacements=[{"old": "mid.", "new": "mid_new_2."}, {"old": "attn_1", "new": "attentions.0"}], ) for i in range(num_up_blocks): block_id = num_up_blocks - 1 - i if any("upsample" in layer for layer in up_blocks[i]): new_checkpoint[f"decoder.up_blocks.{block_id}.upsamplers.0.conv.weight"] = checkpoint[ f"decoder.up.{i}.upsample.conv.weight" ] new_checkpoint[f"decoder.up_blocks.{block_id}.upsamplers.0.conv.bias"] = checkpoint[ f"decoder.up.{i}.upsample.conv.bias" ] if any("block" in layer for layer in up_blocks[i]): num_blocks = len( {".".join(shave_segments(layer, 3).split(".")[:3]) for layer in up_blocks[i] if "block" in layer} ) blocks = { layer_id: [key for key in up_blocks[i] if f"block.{layer_id}" in key] for layer_id in range(num_blocks) } if num_blocks > 0: for j in range(config["layers_per_block"] + 1): replace_indices = {"old": f"up_blocks.{i}", "new": f"up_blocks.{block_id}"} paths = renew_resnet_paths(blocks[j]) assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[replace_indices]) if any("attn" in layer for layer in up_blocks[i]): num_attn = len( {".".join(shave_segments(layer, 3).split(".")[:3]) for layer in up_blocks[i] if "attn" in layer} ) attns = { layer_id: [key for key in up_blocks[i] if f"attn.{layer_id}" in key] for layer_id in range(num_blocks) } if num_attn > 0: for j in range(config["layers_per_block"] + 1): replace_indices = {"old": f"up_blocks.{i}", "new": f"up_blocks.{block_id}"} paths = renew_attention_paths(attns[j]) assign_to_checkpoint(paths, new_checkpoint, checkpoint, additional_replacements=[replace_indices]) new_checkpoint = {k.replace("mid_new_2", "mid_block"): v for k, v in new_checkpoint.items()} new_checkpoint["quant_conv.weight"] = checkpoint["quant_conv.weight"] new_checkpoint["quant_conv.bias"] = checkpoint["quant_conv.bias"] if "quantize.embedding.weight" in checkpoint: new_checkpoint["quantize.embedding.weight"] = checkpoint["quantize.embedding.weight"] new_checkpoint["post_quant_conv.weight"] = checkpoint["post_quant_conv.weight"] new_checkpoint["post_quant_conv.bias"] = checkpoint["post_quant_conv.bias"] return new_checkpoint if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the architecture.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") args = parser.parse_args() checkpoint = torch.load(args.checkpoint_path) with open(args.config_file) as f: config = json.loads(f.read()) # unet case key_prefix_set = {key.split(".")[0] for key in checkpoint.keys()} if "encoder" in key_prefix_set and "decoder" in key_prefix_set: converted_checkpoint = convert_vq_autoenc_checkpoint(checkpoint, config) else: converted_checkpoint = convert_ddpm_checkpoint(checkpoint, config) if "ddpm" in config: del config["ddpm"] if config["_class_name"] == "VQModel": model = VQModel(**config) model.load_state_dict(converted_checkpoint) model.save_pretrained(args.dump_path) elif config["_class_name"] == "AutoencoderKL": model = AutoencoderKL(**config) model.load_state_dict(converted_checkpoint) model.save_pretrained(args.dump_path) else: model = UNet2DModel(**config) model.load_state_dict(converted_checkpoint) scheduler = DDPMScheduler.from_config("/".join(args.checkpoint_path.split("/")[:-1])) pipe = DDPMPipeline(unet=model, scheduler=scheduler) pipe.save_pretrained(args.dump_path)
diffusers/scripts/convert_ddpm_original_checkpoint_to_diffusers.py/0
{ "file_path": "diffusers/scripts/convert_ddpm_original_checkpoint_to_diffusers.py", "repo_id": "diffusers", "token_count": 8490 }
import argparse import os import tempfile import torch from accelerate import load_checkpoint_and_dispatch from diffusers import UNet2DConditionModel from diffusers.models.transformers.prior_transformer import PriorTransformer from diffusers.models.vq_model import VQModel """ Example - From the diffusers root directory: Download weights: ```sh $ wget https://huggingface.co/ai-forever/Kandinsky_2.1/blob/main/prior_fp16.ckpt ``` Convert the model: ```sh python scripts/convert_kandinsky_to_diffusers.py \ --prior_checkpoint_path /home/yiyi_huggingface_co/Kandinsky-2/checkpoints_Kandinsky_2.1/prior_fp16.ckpt \ --clip_stat_path /home/yiyi_huggingface_co/Kandinsky-2/checkpoints_Kandinsky_2.1/ViT-L-14_stats.th \ --text2img_checkpoint_path /home/yiyi_huggingface_co/Kandinsky-2/checkpoints_Kandinsky_2.1/decoder_fp16.ckpt \ --inpaint_text2img_checkpoint_path /home/yiyi_huggingface_co/Kandinsky-2/checkpoints_Kandinsky_2.1/inpainting_fp16.ckpt \ --movq_checkpoint_path /home/yiyi_huggingface_co/Kandinsky-2/checkpoints_Kandinsky_2.1/movq_final.ckpt \ --dump_path /home/yiyi_huggingface_co/dump \ --debug decoder ``` """ # prior PRIOR_ORIGINAL_PREFIX = "model" # Uses default arguments PRIOR_CONFIG = {} def prior_model_from_original_config(): model = PriorTransformer(**PRIOR_CONFIG) return model def prior_original_checkpoint_to_diffusers_checkpoint(model, checkpoint, clip_stats_checkpoint): diffusers_checkpoint = {} # <original>.time_embed.0 -> <diffusers>.time_embedding.linear_1 diffusers_checkpoint.update( { "time_embedding.linear_1.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.0.weight"], "time_embedding.linear_1.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.0.bias"], } ) # <original>.clip_img_proj -> <diffusers>.proj_in diffusers_checkpoint.update( { "proj_in.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.clip_img_proj.weight"], "proj_in.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.clip_img_proj.bias"], } ) # <original>.text_emb_proj -> <diffusers>.embedding_proj diffusers_checkpoint.update( { "embedding_proj.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.text_emb_proj.weight"], "embedding_proj.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.text_emb_proj.bias"], } ) # <original>.text_enc_proj -> <diffusers>.encoder_hidden_states_proj diffusers_checkpoint.update( { "encoder_hidden_states_proj.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.text_enc_proj.weight"], "encoder_hidden_states_proj.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.text_enc_proj.bias"], } ) # <original>.positional_embedding -> <diffusers>.positional_embedding diffusers_checkpoint.update({"positional_embedding": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.positional_embedding"]}) # <original>.prd_emb -> <diffusers>.prd_embedding diffusers_checkpoint.update({"prd_embedding": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.prd_emb"]}) # <original>.time_embed.2 -> <diffusers>.time_embedding.linear_2 diffusers_checkpoint.update( { "time_embedding.linear_2.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.2.weight"], "time_embedding.linear_2.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.2.bias"], } ) # <original>.resblocks.<x> -> <diffusers>.transformer_blocks.<x> for idx in range(len(model.transformer_blocks)): diffusers_transformer_prefix = f"transformer_blocks.{idx}" original_transformer_prefix = f"{PRIOR_ORIGINAL_PREFIX}.transformer.resblocks.{idx}" # <original>.attn -> <diffusers>.attn1 diffusers_attention_prefix = f"{diffusers_transformer_prefix}.attn1" original_attention_prefix = f"{original_transformer_prefix}.attn" diffusers_checkpoint.update( prior_attention_to_diffusers( checkpoint, diffusers_attention_prefix=diffusers_attention_prefix, original_attention_prefix=original_attention_prefix, attention_head_dim=model.attention_head_dim, ) ) # <original>.mlp -> <diffusers>.ff diffusers_ff_prefix = f"{diffusers_transformer_prefix}.ff" original_ff_prefix = f"{original_transformer_prefix}.mlp" diffusers_checkpoint.update( prior_ff_to_diffusers( checkpoint, diffusers_ff_prefix=diffusers_ff_prefix, original_ff_prefix=original_ff_prefix ) ) # <original>.ln_1 -> <diffusers>.norm1 diffusers_checkpoint.update( { f"{diffusers_transformer_prefix}.norm1.weight": checkpoint[ f"{original_transformer_prefix}.ln_1.weight" ], f"{diffusers_transformer_prefix}.norm1.bias": checkpoint[f"{original_transformer_prefix}.ln_1.bias"], } ) # <original>.ln_2 -> <diffusers>.norm3 diffusers_checkpoint.update( { f"{diffusers_transformer_prefix}.norm3.weight": checkpoint[ f"{original_transformer_prefix}.ln_2.weight" ], f"{diffusers_transformer_prefix}.norm3.bias": checkpoint[f"{original_transformer_prefix}.ln_2.bias"], } ) # <original>.final_ln -> <diffusers>.norm_out diffusers_checkpoint.update( { "norm_out.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.final_ln.weight"], "norm_out.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.final_ln.bias"], } ) # <original>.out_proj -> <diffusers>.proj_to_clip_embeddings diffusers_checkpoint.update( { "proj_to_clip_embeddings.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.out_proj.weight"], "proj_to_clip_embeddings.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.out_proj.bias"], } ) # clip stats clip_mean, clip_std = clip_stats_checkpoint clip_mean = clip_mean[None, :] clip_std = clip_std[None, :] diffusers_checkpoint.update({"clip_mean": clip_mean, "clip_std": clip_std}) return diffusers_checkpoint def prior_attention_to_diffusers( checkpoint, *, diffusers_attention_prefix, original_attention_prefix, attention_head_dim ): diffusers_checkpoint = {} # <original>.c_qkv -> <diffusers>.{to_q, to_k, to_v} [q_weight, k_weight, v_weight], [q_bias, k_bias, v_bias] = split_attentions( weight=checkpoint[f"{original_attention_prefix}.c_qkv.weight"], bias=checkpoint[f"{original_attention_prefix}.c_qkv.bias"], split=3, chunk_size=attention_head_dim, ) diffusers_checkpoint.update( { f"{diffusers_attention_prefix}.to_q.weight": q_weight, f"{diffusers_attention_prefix}.to_q.bias": q_bias, f"{diffusers_attention_prefix}.to_k.weight": k_weight, f"{diffusers_attention_prefix}.to_k.bias": k_bias, f"{diffusers_attention_prefix}.to_v.weight": v_weight, f"{diffusers_attention_prefix}.to_v.bias": v_bias, } ) # <original>.c_proj -> <diffusers>.to_out.0 diffusers_checkpoint.update( { f"{diffusers_attention_prefix}.to_out.0.weight": checkpoint[f"{original_attention_prefix}.c_proj.weight"], f"{diffusers_attention_prefix}.to_out.0.bias": checkpoint[f"{original_attention_prefix}.c_proj.bias"], } ) return diffusers_checkpoint def prior_ff_to_diffusers(checkpoint, *, diffusers_ff_prefix, original_ff_prefix): diffusers_checkpoint = { # <original>.c_fc -> <diffusers>.net.0.proj f"{diffusers_ff_prefix}.net.{0}.proj.weight": checkpoint[f"{original_ff_prefix}.c_fc.weight"], f"{diffusers_ff_prefix}.net.{0}.proj.bias": checkpoint[f"{original_ff_prefix}.c_fc.bias"], # <original>.c_proj -> <diffusers>.net.2 f"{diffusers_ff_prefix}.net.{2}.weight": checkpoint[f"{original_ff_prefix}.c_proj.weight"], f"{diffusers_ff_prefix}.net.{2}.bias": checkpoint[f"{original_ff_prefix}.c_proj.bias"], } return diffusers_checkpoint # done prior # unet # We are hardcoding the model configuration for now. If we need to generalize to more model configurations, we can # update then. UNET_CONFIG = { "act_fn": "silu", "addition_embed_type": "text_image", "addition_embed_type_num_heads": 64, "attention_head_dim": 64, "block_out_channels": [384, 768, 1152, 1536], "center_input_sample": False, "class_embed_type": None, "class_embeddings_concat": False, "conv_in_kernel": 3, "conv_out_kernel": 3, "cross_attention_dim": 768, "cross_attention_norm": None, "down_block_types": [ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", "SimpleCrossAttnDownBlock2D", "SimpleCrossAttnDownBlock2D", ], "downsample_padding": 1, "dual_cross_attention": False, "encoder_hid_dim": 1024, "encoder_hid_dim_type": "text_image_proj", "flip_sin_to_cos": True, "freq_shift": 0, "in_channels": 4, "layers_per_block": 3, "mid_block_only_cross_attention": None, "mid_block_scale_factor": 1, "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "norm_eps": 1e-05, "norm_num_groups": 32, "num_class_embeds": None, "only_cross_attention": False, "out_channels": 8, "projection_class_embeddings_input_dim": None, "resnet_out_scale_factor": 1.0, "resnet_skip_time_act": False, "resnet_time_scale_shift": "scale_shift", "sample_size": 64, "time_cond_proj_dim": None, "time_embedding_act_fn": None, "time_embedding_dim": None, "time_embedding_type": "positional", "timestep_post_act": None, "up_block_types": [ "SimpleCrossAttnUpBlock2D", "SimpleCrossAttnUpBlock2D", "SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D", ], "upcast_attention": False, "use_linear_projection": False, } def unet_model_from_original_config(): model = UNet2DConditionModel(**UNET_CONFIG) return model def unet_original_checkpoint_to_diffusers_checkpoint(model, checkpoint): diffusers_checkpoint = {} num_head_channels = UNET_CONFIG["attention_head_dim"] diffusers_checkpoint.update(unet_time_embeddings(checkpoint)) diffusers_checkpoint.update(unet_conv_in(checkpoint)) diffusers_checkpoint.update(unet_add_embedding(checkpoint)) diffusers_checkpoint.update(unet_encoder_hid_proj(checkpoint)) # <original>.input_blocks -> <diffusers>.down_blocks original_down_block_idx = 1 for diffusers_down_block_idx in range(len(model.down_blocks)): checkpoint_update, num_original_down_blocks = unet_downblock_to_diffusers_checkpoint( model, checkpoint, diffusers_down_block_idx=diffusers_down_block_idx, original_down_block_idx=original_down_block_idx, num_head_channels=num_head_channels, ) original_down_block_idx += num_original_down_blocks diffusers_checkpoint.update(checkpoint_update) # done <original>.input_blocks -> <diffusers>.down_blocks diffusers_checkpoint.update( unet_midblock_to_diffusers_checkpoint( model, checkpoint, num_head_channels=num_head_channels, ) ) # <original>.output_blocks -> <diffusers>.up_blocks original_up_block_idx = 0 for diffusers_up_block_idx in range(len(model.up_blocks)): checkpoint_update, num_original_up_blocks = unet_upblock_to_diffusers_checkpoint( model, checkpoint, diffusers_up_block_idx=diffusers_up_block_idx, original_up_block_idx=original_up_block_idx, num_head_channels=num_head_channels, ) original_up_block_idx += num_original_up_blocks diffusers_checkpoint.update(checkpoint_update) # done <original>.output_blocks -> <diffusers>.up_blocks diffusers_checkpoint.update(unet_conv_norm_out(checkpoint)) diffusers_checkpoint.update(unet_conv_out(checkpoint)) return diffusers_checkpoint # done unet # inpaint unet # We are hardcoding the model configuration for now. If we need to generalize to more model configurations, we can # update then. INPAINT_UNET_CONFIG = { "act_fn": "silu", "addition_embed_type": "text_image", "addition_embed_type_num_heads": 64, "attention_head_dim": 64, "block_out_channels": [384, 768, 1152, 1536], "center_input_sample": False, "class_embed_type": None, "class_embeddings_concat": None, "conv_in_kernel": 3, "conv_out_kernel": 3, "cross_attention_dim": 768, "cross_attention_norm": None, "down_block_types": [ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", "SimpleCrossAttnDownBlock2D", "SimpleCrossAttnDownBlock2D", ], "downsample_padding": 1, "dual_cross_attention": False, "encoder_hid_dim": 1024, "encoder_hid_dim_type": "text_image_proj", "flip_sin_to_cos": True, "freq_shift": 0, "in_channels": 9, "layers_per_block": 3, "mid_block_only_cross_attention": None, "mid_block_scale_factor": 1, "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "norm_eps": 1e-05, "norm_num_groups": 32, "num_class_embeds": None, "only_cross_attention": False, "out_channels": 8, "projection_class_embeddings_input_dim": None, "resnet_out_scale_factor": 1.0, "resnet_skip_time_act": False, "resnet_time_scale_shift": "scale_shift", "sample_size": 64, "time_cond_proj_dim": None, "time_embedding_act_fn": None, "time_embedding_dim": None, "time_embedding_type": "positional", "timestep_post_act": None, "up_block_types": [ "SimpleCrossAttnUpBlock2D", "SimpleCrossAttnUpBlock2D", "SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D", ], "upcast_attention": False, "use_linear_projection": False, } def inpaint_unet_model_from_original_config(): model = UNet2DConditionModel(**INPAINT_UNET_CONFIG) return model def inpaint_unet_original_checkpoint_to_diffusers_checkpoint(model, checkpoint): diffusers_checkpoint = {} num_head_channels = INPAINT_UNET_CONFIG["attention_head_dim"] diffusers_checkpoint.update(unet_time_embeddings(checkpoint)) diffusers_checkpoint.update(unet_conv_in(checkpoint)) diffusers_checkpoint.update(unet_add_embedding(checkpoint)) diffusers_checkpoint.update(unet_encoder_hid_proj(checkpoint)) # <original>.input_blocks -> <diffusers>.down_blocks original_down_block_idx = 1 for diffusers_down_block_idx in range(len(model.down_blocks)): checkpoint_update, num_original_down_blocks = unet_downblock_to_diffusers_checkpoint( model, checkpoint, diffusers_down_block_idx=diffusers_down_block_idx, original_down_block_idx=original_down_block_idx, num_head_channels=num_head_channels, ) original_down_block_idx += num_original_down_blocks diffusers_checkpoint.update(checkpoint_update) # done <original>.input_blocks -> <diffusers>.down_blocks diffusers_checkpoint.update( unet_midblock_to_diffusers_checkpoint( model, checkpoint, num_head_channels=num_head_channels, ) ) # <original>.output_blocks -> <diffusers>.up_blocks original_up_block_idx = 0 for diffusers_up_block_idx in range(len(model.up_blocks)): checkpoint_update, num_original_up_blocks = unet_upblock_to_diffusers_checkpoint( model, checkpoint, diffusers_up_block_idx=diffusers_up_block_idx, original_up_block_idx=original_up_block_idx, num_head_channels=num_head_channels, ) original_up_block_idx += num_original_up_blocks diffusers_checkpoint.update(checkpoint_update) # done <original>.output_blocks -> <diffusers>.up_blocks diffusers_checkpoint.update(unet_conv_norm_out(checkpoint)) diffusers_checkpoint.update(unet_conv_out(checkpoint)) return diffusers_checkpoint # done inpaint unet # unet utils # <original>.time_embed -> <diffusers>.time_embedding def unet_time_embeddings(checkpoint): diffusers_checkpoint = {} diffusers_checkpoint.update( { "time_embedding.linear_1.weight": checkpoint["time_embed.0.weight"], "time_embedding.linear_1.bias": checkpoint["time_embed.0.bias"], "time_embedding.linear_2.weight": checkpoint["time_embed.2.weight"], "time_embedding.linear_2.bias": checkpoint["time_embed.2.bias"], } ) return diffusers_checkpoint # <original>.input_blocks.0 -> <diffusers>.conv_in def unet_conv_in(checkpoint): diffusers_checkpoint = {} diffusers_checkpoint.update( { "conv_in.weight": checkpoint["input_blocks.0.0.weight"], "conv_in.bias": checkpoint["input_blocks.0.0.bias"], } ) return diffusers_checkpoint def unet_add_embedding(checkpoint): diffusers_checkpoint = {} diffusers_checkpoint.update( { "add_embedding.text_norm.weight": checkpoint["ln_model_n.weight"], "add_embedding.text_norm.bias": checkpoint["ln_model_n.bias"], "add_embedding.text_proj.weight": checkpoint["proj_n.weight"], "add_embedding.text_proj.bias": checkpoint["proj_n.bias"], "add_embedding.image_proj.weight": checkpoint["img_layer.weight"], "add_embedding.image_proj.bias": checkpoint["img_layer.bias"], } ) return diffusers_checkpoint def unet_encoder_hid_proj(checkpoint): diffusers_checkpoint = {} diffusers_checkpoint.update( { "encoder_hid_proj.image_embeds.weight": checkpoint["clip_to_seq.weight"], "encoder_hid_proj.image_embeds.bias": checkpoint["clip_to_seq.bias"], "encoder_hid_proj.text_proj.weight": checkpoint["to_model_dim_n.weight"], "encoder_hid_proj.text_proj.bias": checkpoint["to_model_dim_n.bias"], } ) return diffusers_checkpoint # <original>.out.0 -> <diffusers>.conv_norm_out def unet_conv_norm_out(checkpoint): diffusers_checkpoint = {} diffusers_checkpoint.update( { "conv_norm_out.weight": checkpoint["out.0.weight"], "conv_norm_out.bias": checkpoint["out.0.bias"], } ) return diffusers_checkpoint # <original>.out.2 -> <diffusers>.conv_out def unet_conv_out(checkpoint): diffusers_checkpoint = {} diffusers_checkpoint.update( { "conv_out.weight": checkpoint["out.2.weight"], "conv_out.bias": checkpoint["out.2.bias"], } ) return diffusers_checkpoint # <original>.input_blocks -> <diffusers>.down_blocks def unet_downblock_to_diffusers_checkpoint( model, checkpoint, *, diffusers_down_block_idx, original_down_block_idx, num_head_channels ): diffusers_checkpoint = {} diffusers_resnet_prefix = f"down_blocks.{diffusers_down_block_idx}.resnets" original_down_block_prefix = "input_blocks" down_block = model.down_blocks[diffusers_down_block_idx] num_resnets = len(down_block.resnets) if down_block.downsamplers is None: downsampler = False else: assert len(down_block.downsamplers) == 1 downsampler = True # The downsample block is also a resnet num_resnets += 1 for resnet_idx_inc in range(num_resnets): full_resnet_prefix = f"{original_down_block_prefix}.{original_down_block_idx + resnet_idx_inc}.0" if downsampler and resnet_idx_inc == num_resnets - 1: # this is a downsample block full_diffusers_resnet_prefix = f"down_blocks.{diffusers_down_block_idx}.downsamplers.0" else: # this is a regular resnet block full_diffusers_resnet_prefix = f"{diffusers_resnet_prefix}.{resnet_idx_inc}" diffusers_checkpoint.update( resnet_to_diffusers_checkpoint( checkpoint, resnet_prefix=full_resnet_prefix, diffusers_resnet_prefix=full_diffusers_resnet_prefix ) ) if hasattr(down_block, "attentions"): num_attentions = len(down_block.attentions) diffusers_attention_prefix = f"down_blocks.{diffusers_down_block_idx}.attentions" for attention_idx_inc in range(num_attentions): full_attention_prefix = f"{original_down_block_prefix}.{original_down_block_idx + attention_idx_inc}.1" full_diffusers_attention_prefix = f"{diffusers_attention_prefix}.{attention_idx_inc}" diffusers_checkpoint.update( attention_to_diffusers_checkpoint( checkpoint, attention_prefix=full_attention_prefix, diffusers_attention_prefix=full_diffusers_attention_prefix, num_head_channels=num_head_channels, ) ) num_original_down_blocks = num_resnets return diffusers_checkpoint, num_original_down_blocks # <original>.middle_block -> <diffusers>.mid_block def unet_midblock_to_diffusers_checkpoint(model, checkpoint, *, num_head_channels): diffusers_checkpoint = {} # block 0 original_block_idx = 0 diffusers_checkpoint.update( resnet_to_diffusers_checkpoint( checkpoint, diffusers_resnet_prefix="mid_block.resnets.0", resnet_prefix=f"middle_block.{original_block_idx}", ) ) original_block_idx += 1 # optional block 1 if hasattr(model.mid_block, "attentions") and model.mid_block.attentions[0] is not None: diffusers_checkpoint.update( attention_to_diffusers_checkpoint( checkpoint, diffusers_attention_prefix="mid_block.attentions.0", attention_prefix=f"middle_block.{original_block_idx}", num_head_channels=num_head_channels, ) ) original_block_idx += 1 # block 1 or block 2 diffusers_checkpoint.update( resnet_to_diffusers_checkpoint( checkpoint, diffusers_resnet_prefix="mid_block.resnets.1", resnet_prefix=f"middle_block.{original_block_idx}", ) ) return diffusers_checkpoint # <original>.output_blocks -> <diffusers>.up_blocks def unet_upblock_to_diffusers_checkpoint( model, checkpoint, *, diffusers_up_block_idx, original_up_block_idx, num_head_channels ): diffusers_checkpoint = {} diffusers_resnet_prefix = f"up_blocks.{diffusers_up_block_idx}.resnets" original_up_block_prefix = "output_blocks" up_block = model.up_blocks[diffusers_up_block_idx] num_resnets = len(up_block.resnets) if up_block.upsamplers is None: upsampler = False else: assert len(up_block.upsamplers) == 1 upsampler = True # The upsample block is also a resnet num_resnets += 1 has_attentions = hasattr(up_block, "attentions") for resnet_idx_inc in range(num_resnets): if upsampler and resnet_idx_inc == num_resnets - 1: # this is an upsample block if has_attentions: # There is a middle attention block that we skip original_resnet_block_idx = 2 else: original_resnet_block_idx = 1 # we add the `minus 1` because the last two resnets are stuck together in the same output block full_resnet_prefix = ( f"{original_up_block_prefix}.{original_up_block_idx + resnet_idx_inc - 1}.{original_resnet_block_idx}" ) full_diffusers_resnet_prefix = f"up_blocks.{diffusers_up_block_idx}.upsamplers.0" else: # this is a regular resnet block full_resnet_prefix = f"{original_up_block_prefix}.{original_up_block_idx + resnet_idx_inc}.0" full_diffusers_resnet_prefix = f"{diffusers_resnet_prefix}.{resnet_idx_inc}" diffusers_checkpoint.update( resnet_to_diffusers_checkpoint( checkpoint, resnet_prefix=full_resnet_prefix, diffusers_resnet_prefix=full_diffusers_resnet_prefix ) ) if has_attentions: num_attentions = len(up_block.attentions) diffusers_attention_prefix = f"up_blocks.{diffusers_up_block_idx}.attentions" for attention_idx_inc in range(num_attentions): full_attention_prefix = f"{original_up_block_prefix}.{original_up_block_idx + attention_idx_inc}.1" full_diffusers_attention_prefix = f"{diffusers_attention_prefix}.{attention_idx_inc}" diffusers_checkpoint.update( attention_to_diffusers_checkpoint( checkpoint, attention_prefix=full_attention_prefix, diffusers_attention_prefix=full_diffusers_attention_prefix, num_head_channels=num_head_channels, ) ) num_original_down_blocks = num_resnets - 1 if upsampler else num_resnets return diffusers_checkpoint, num_original_down_blocks def resnet_to_diffusers_checkpoint(checkpoint, *, diffusers_resnet_prefix, resnet_prefix): diffusers_checkpoint = { f"{diffusers_resnet_prefix}.norm1.weight": checkpoint[f"{resnet_prefix}.in_layers.0.weight"], f"{diffusers_resnet_prefix}.norm1.bias": checkpoint[f"{resnet_prefix}.in_layers.0.bias"], f"{diffusers_resnet_prefix}.conv1.weight": checkpoint[f"{resnet_prefix}.in_layers.2.weight"], f"{diffusers_resnet_prefix}.conv1.bias": checkpoint[f"{resnet_prefix}.in_layers.2.bias"], f"{diffusers_resnet_prefix}.time_emb_proj.weight": checkpoint[f"{resnet_prefix}.emb_layers.1.weight"], f"{diffusers_resnet_prefix}.time_emb_proj.bias": checkpoint[f"{resnet_prefix}.emb_layers.1.bias"], f"{diffusers_resnet_prefix}.norm2.weight": checkpoint[f"{resnet_prefix}.out_layers.0.weight"], f"{diffusers_resnet_prefix}.norm2.bias": checkpoint[f"{resnet_prefix}.out_layers.0.bias"], f"{diffusers_resnet_prefix}.conv2.weight": checkpoint[f"{resnet_prefix}.out_layers.3.weight"], f"{diffusers_resnet_prefix}.conv2.bias": checkpoint[f"{resnet_prefix}.out_layers.3.bias"], } skip_connection_prefix = f"{resnet_prefix}.skip_connection" if f"{skip_connection_prefix}.weight" in checkpoint: diffusers_checkpoint.update( { f"{diffusers_resnet_prefix}.conv_shortcut.weight": checkpoint[f"{skip_connection_prefix}.weight"], f"{diffusers_resnet_prefix}.conv_shortcut.bias": checkpoint[f"{skip_connection_prefix}.bias"], } ) return diffusers_checkpoint def attention_to_diffusers_checkpoint(checkpoint, *, diffusers_attention_prefix, attention_prefix, num_head_channels): diffusers_checkpoint = {} # <original>.norm -> <diffusers>.group_norm diffusers_checkpoint.update( { f"{diffusers_attention_prefix}.group_norm.weight": checkpoint[f"{attention_prefix}.norm.weight"], f"{diffusers_attention_prefix}.group_norm.bias": checkpoint[f"{attention_prefix}.norm.bias"], } ) # <original>.qkv -> <diffusers>.{query, key, value} [q_weight, k_weight, v_weight], [q_bias, k_bias, v_bias] = split_attentions( weight=checkpoint[f"{attention_prefix}.qkv.weight"][:, :, 0], bias=checkpoint[f"{attention_prefix}.qkv.bias"], split=3, chunk_size=num_head_channels, ) diffusers_checkpoint.update( { f"{diffusers_attention_prefix}.to_q.weight": q_weight, f"{diffusers_attention_prefix}.to_q.bias": q_bias, f"{diffusers_attention_prefix}.to_k.weight": k_weight, f"{diffusers_attention_prefix}.to_k.bias": k_bias, f"{diffusers_attention_prefix}.to_v.weight": v_weight, f"{diffusers_attention_prefix}.to_v.bias": v_bias, } ) # <original>.encoder_kv -> <diffusers>.{context_key, context_value} [encoder_k_weight, encoder_v_weight], [encoder_k_bias, encoder_v_bias] = split_attentions( weight=checkpoint[f"{attention_prefix}.encoder_kv.weight"][:, :, 0], bias=checkpoint[f"{attention_prefix}.encoder_kv.bias"], split=2, chunk_size=num_head_channels, ) diffusers_checkpoint.update( { f"{diffusers_attention_prefix}.add_k_proj.weight": encoder_k_weight, f"{diffusers_attention_prefix}.add_k_proj.bias": encoder_k_bias, f"{diffusers_attention_prefix}.add_v_proj.weight": encoder_v_weight, f"{diffusers_attention_prefix}.add_v_proj.bias": encoder_v_bias, } ) # <original>.proj_out (1d conv) -> <diffusers>.proj_attn (linear) diffusers_checkpoint.update( { f"{diffusers_attention_prefix}.to_out.0.weight": checkpoint[f"{attention_prefix}.proj_out.weight"][ :, :, 0 ], f"{diffusers_attention_prefix}.to_out.0.bias": checkpoint[f"{attention_prefix}.proj_out.bias"], } ) return diffusers_checkpoint # TODO maybe document and/or can do more efficiently (build indices in for loop and extract once for each split?) def split_attentions(*, weight, bias, split, chunk_size): weights = [None] * split biases = [None] * split weights_biases_idx = 0 for starting_row_index in range(0, weight.shape[0], chunk_size): row_indices = torch.arange(starting_row_index, starting_row_index + chunk_size) weight_rows = weight[row_indices, :] bias_rows = bias[row_indices] if weights[weights_biases_idx] is None: assert weights[weights_biases_idx] is None weights[weights_biases_idx] = weight_rows biases[weights_biases_idx] = bias_rows else: assert weights[weights_biases_idx] is not None weights[weights_biases_idx] = torch.concat([weights[weights_biases_idx], weight_rows]) biases[weights_biases_idx] = torch.concat([biases[weights_biases_idx], bias_rows]) weights_biases_idx = (weights_biases_idx + 1) % split return weights, biases # done unet utils def prior(*, args, checkpoint_map_location): print("loading prior") prior_checkpoint = torch.load(args.prior_checkpoint_path, map_location=checkpoint_map_location) clip_stats_checkpoint = torch.load(args.clip_stat_path, map_location=checkpoint_map_location) prior_model = prior_model_from_original_config() prior_diffusers_checkpoint = prior_original_checkpoint_to_diffusers_checkpoint( prior_model, prior_checkpoint, clip_stats_checkpoint ) del prior_checkpoint del clip_stats_checkpoint load_checkpoint_to_model(prior_diffusers_checkpoint, prior_model, strict=True) print("done loading prior") return prior_model def text2img(*, args, checkpoint_map_location): print("loading text2img") text2img_checkpoint = torch.load(args.text2img_checkpoint_path, map_location=checkpoint_map_location) unet_model = unet_model_from_original_config() unet_diffusers_checkpoint = unet_original_checkpoint_to_diffusers_checkpoint(unet_model, text2img_checkpoint) del text2img_checkpoint load_checkpoint_to_model(unet_diffusers_checkpoint, unet_model, strict=True) print("done loading text2img") return unet_model def inpaint_text2img(*, args, checkpoint_map_location): print("loading inpaint text2img") inpaint_text2img_checkpoint = torch.load( args.inpaint_text2img_checkpoint_path, map_location=checkpoint_map_location ) inpaint_unet_model = inpaint_unet_model_from_original_config() inpaint_unet_diffusers_checkpoint = inpaint_unet_original_checkpoint_to_diffusers_checkpoint( inpaint_unet_model, inpaint_text2img_checkpoint ) del inpaint_text2img_checkpoint load_checkpoint_to_model(inpaint_unet_diffusers_checkpoint, inpaint_unet_model, strict=True) print("done loading inpaint text2img") return inpaint_unet_model # movq MOVQ_CONFIG = { "in_channels": 3, "out_channels": 3, "latent_channels": 4, "down_block_types": ("DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D"), "up_block_types": ("AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"), "num_vq_embeddings": 16384, "block_out_channels": (128, 256, 256, 512), "vq_embed_dim": 4, "layers_per_block": 2, "norm_type": "spatial", } def movq_model_from_original_config(): movq = VQModel(**MOVQ_CONFIG) return movq def movq_encoder_to_diffusers_checkpoint(model, checkpoint): diffusers_checkpoint = {} # conv_in diffusers_checkpoint.update( { "encoder.conv_in.weight": checkpoint["encoder.conv_in.weight"], "encoder.conv_in.bias": checkpoint["encoder.conv_in.bias"], } ) # down_blocks for down_block_idx, down_block in enumerate(model.encoder.down_blocks): diffusers_down_block_prefix = f"encoder.down_blocks.{down_block_idx}" down_block_prefix = f"encoder.down.{down_block_idx}" # resnets for resnet_idx, resnet in enumerate(down_block.resnets): diffusers_resnet_prefix = f"{diffusers_down_block_prefix}.resnets.{resnet_idx}" resnet_prefix = f"{down_block_prefix}.block.{resnet_idx}" diffusers_checkpoint.update( movq_resnet_to_diffusers_checkpoint( resnet, checkpoint, diffusers_resnet_prefix=diffusers_resnet_prefix, resnet_prefix=resnet_prefix ) ) # downsample # do not include the downsample when on the last down block # There is no downsample on the last down block if down_block_idx != len(model.encoder.down_blocks) - 1: # There's a single downsample in the original checkpoint but a list of downsamples # in the diffusers model. diffusers_downsample_prefix = f"{diffusers_down_block_prefix}.downsamplers.0.conv" downsample_prefix = f"{down_block_prefix}.downsample.conv" diffusers_checkpoint.update( { f"{diffusers_downsample_prefix}.weight": checkpoint[f"{downsample_prefix}.weight"], f"{diffusers_downsample_prefix}.bias": checkpoint[f"{downsample_prefix}.bias"], } ) # attentions if hasattr(down_block, "attentions"): for attention_idx, _ in enumerate(down_block.attentions): diffusers_attention_prefix = f"{diffusers_down_block_prefix}.attentions.{attention_idx}" attention_prefix = f"{down_block_prefix}.attn.{attention_idx}" diffusers_checkpoint.update( movq_attention_to_diffusers_checkpoint( checkpoint, diffusers_attention_prefix=diffusers_attention_prefix, attention_prefix=attention_prefix, ) ) # mid block # mid block attentions # There is a single hardcoded attention block in the middle of the VQ-diffusion encoder diffusers_attention_prefix = "encoder.mid_block.attentions.0" attention_prefix = "encoder.mid.attn_1" diffusers_checkpoint.update( movq_attention_to_diffusers_checkpoint( checkpoint, diffusers_attention_prefix=diffusers_attention_prefix, attention_prefix=attention_prefix ) ) # mid block resnets for diffusers_resnet_idx, resnet in enumerate(model.encoder.mid_block.resnets): diffusers_resnet_prefix = f"encoder.mid_block.resnets.{diffusers_resnet_idx}" # the hardcoded prefixes to `block_` are 1 and 2 orig_resnet_idx = diffusers_resnet_idx + 1 # There are two hardcoded resnets in the middle of the VQ-diffusion encoder resnet_prefix = f"encoder.mid.block_{orig_resnet_idx}" diffusers_checkpoint.update( movq_resnet_to_diffusers_checkpoint( resnet, checkpoint, diffusers_resnet_prefix=diffusers_resnet_prefix, resnet_prefix=resnet_prefix ) ) diffusers_checkpoint.update( { # conv_norm_out "encoder.conv_norm_out.weight": checkpoint["encoder.norm_out.weight"], "encoder.conv_norm_out.bias": checkpoint["encoder.norm_out.bias"], # conv_out "encoder.conv_out.weight": checkpoint["encoder.conv_out.weight"], "encoder.conv_out.bias": checkpoint["encoder.conv_out.bias"], } ) return diffusers_checkpoint def movq_decoder_to_diffusers_checkpoint(model, checkpoint): diffusers_checkpoint = {} # conv in diffusers_checkpoint.update( { "decoder.conv_in.weight": checkpoint["decoder.conv_in.weight"], "decoder.conv_in.bias": checkpoint["decoder.conv_in.bias"], } ) # up_blocks for diffusers_up_block_idx, up_block in enumerate(model.decoder.up_blocks): # up_blocks are stored in reverse order in the VQ-diffusion checkpoint orig_up_block_idx = len(model.decoder.up_blocks) - 1 - diffusers_up_block_idx diffusers_up_block_prefix = f"decoder.up_blocks.{diffusers_up_block_idx}" up_block_prefix = f"decoder.up.{orig_up_block_idx}" # resnets for resnet_idx, resnet in enumerate(up_block.resnets): diffusers_resnet_prefix = f"{diffusers_up_block_prefix}.resnets.{resnet_idx}" resnet_prefix = f"{up_block_prefix}.block.{resnet_idx}" diffusers_checkpoint.update( movq_resnet_to_diffusers_checkpoint_spatial_norm( resnet, checkpoint, diffusers_resnet_prefix=diffusers_resnet_prefix, resnet_prefix=resnet_prefix ) ) # upsample # there is no up sample on the last up block if diffusers_up_block_idx != len(model.decoder.up_blocks) - 1: # There's a single upsample in the VQ-diffusion checkpoint but a list of downsamples # in the diffusers model. diffusers_downsample_prefix = f"{diffusers_up_block_prefix}.upsamplers.0.conv" downsample_prefix = f"{up_block_prefix}.upsample.conv" diffusers_checkpoint.update( { f"{diffusers_downsample_prefix}.weight": checkpoint[f"{downsample_prefix}.weight"], f"{diffusers_downsample_prefix}.bias": checkpoint[f"{downsample_prefix}.bias"], } ) # attentions if hasattr(up_block, "attentions"): for attention_idx, _ in enumerate(up_block.attentions): diffusers_attention_prefix = f"{diffusers_up_block_prefix}.attentions.{attention_idx}" attention_prefix = f"{up_block_prefix}.attn.{attention_idx}" diffusers_checkpoint.update( movq_attention_to_diffusers_checkpoint_spatial_norm( checkpoint, diffusers_attention_prefix=diffusers_attention_prefix, attention_prefix=attention_prefix, ) ) # mid block # mid block attentions # There is a single hardcoded attention block in the middle of the VQ-diffusion decoder diffusers_attention_prefix = "decoder.mid_block.attentions.0" attention_prefix = "decoder.mid.attn_1" diffusers_checkpoint.update( movq_attention_to_diffusers_checkpoint_spatial_norm( checkpoint, diffusers_attention_prefix=diffusers_attention_prefix, attention_prefix=attention_prefix ) ) # mid block resnets for diffusers_resnet_idx, resnet in enumerate(model.encoder.mid_block.resnets): diffusers_resnet_prefix = f"decoder.mid_block.resnets.{diffusers_resnet_idx}" # the hardcoded prefixes to `block_` are 1 and 2 orig_resnet_idx = diffusers_resnet_idx + 1 # There are two hardcoded resnets in the middle of the VQ-diffusion decoder resnet_prefix = f"decoder.mid.block_{orig_resnet_idx}" diffusers_checkpoint.update( movq_resnet_to_diffusers_checkpoint_spatial_norm( resnet, checkpoint, diffusers_resnet_prefix=diffusers_resnet_prefix, resnet_prefix=resnet_prefix ) ) diffusers_checkpoint.update( { # conv_norm_out "decoder.conv_norm_out.norm_layer.weight": checkpoint["decoder.norm_out.norm_layer.weight"], "decoder.conv_norm_out.norm_layer.bias": checkpoint["decoder.norm_out.norm_layer.bias"], "decoder.conv_norm_out.conv_y.weight": checkpoint["decoder.norm_out.conv_y.weight"], "decoder.conv_norm_out.conv_y.bias": checkpoint["decoder.norm_out.conv_y.bias"], "decoder.conv_norm_out.conv_b.weight": checkpoint["decoder.norm_out.conv_b.weight"], "decoder.conv_norm_out.conv_b.bias": checkpoint["decoder.norm_out.conv_b.bias"], # conv_out "decoder.conv_out.weight": checkpoint["decoder.conv_out.weight"], "decoder.conv_out.bias": checkpoint["decoder.conv_out.bias"], } ) return diffusers_checkpoint def movq_resnet_to_diffusers_checkpoint(resnet, checkpoint, *, diffusers_resnet_prefix, resnet_prefix): rv = { # norm1 f"{diffusers_resnet_prefix}.norm1.weight": checkpoint[f"{resnet_prefix}.norm1.weight"], f"{diffusers_resnet_prefix}.norm1.bias": checkpoint[f"{resnet_prefix}.norm1.bias"], # conv1 f"{diffusers_resnet_prefix}.conv1.weight": checkpoint[f"{resnet_prefix}.conv1.weight"], f"{diffusers_resnet_prefix}.conv1.bias": checkpoint[f"{resnet_prefix}.conv1.bias"], # norm2 f"{diffusers_resnet_prefix}.norm2.weight": checkpoint[f"{resnet_prefix}.norm2.weight"], f"{diffusers_resnet_prefix}.norm2.bias": checkpoint[f"{resnet_prefix}.norm2.bias"], # conv2 f"{diffusers_resnet_prefix}.conv2.weight": checkpoint[f"{resnet_prefix}.conv2.weight"], f"{diffusers_resnet_prefix}.conv2.bias": checkpoint[f"{resnet_prefix}.conv2.bias"], } if resnet.conv_shortcut is not None: rv.update( { f"{diffusers_resnet_prefix}.conv_shortcut.weight": checkpoint[f"{resnet_prefix}.nin_shortcut.weight"], f"{diffusers_resnet_prefix}.conv_shortcut.bias": checkpoint[f"{resnet_prefix}.nin_shortcut.bias"], } ) return rv def movq_resnet_to_diffusers_checkpoint_spatial_norm(resnet, checkpoint, *, diffusers_resnet_prefix, resnet_prefix): rv = { # norm1 f"{diffusers_resnet_prefix}.norm1.norm_layer.weight": checkpoint[f"{resnet_prefix}.norm1.norm_layer.weight"], f"{diffusers_resnet_prefix}.norm1.norm_layer.bias": checkpoint[f"{resnet_prefix}.norm1.norm_layer.bias"], f"{diffusers_resnet_prefix}.norm1.conv_y.weight": checkpoint[f"{resnet_prefix}.norm1.conv_y.weight"], f"{diffusers_resnet_prefix}.norm1.conv_y.bias": checkpoint[f"{resnet_prefix}.norm1.conv_y.bias"], f"{diffusers_resnet_prefix}.norm1.conv_b.weight": checkpoint[f"{resnet_prefix}.norm1.conv_b.weight"], f"{diffusers_resnet_prefix}.norm1.conv_b.bias": checkpoint[f"{resnet_prefix}.norm1.conv_b.bias"], # conv1 f"{diffusers_resnet_prefix}.conv1.weight": checkpoint[f"{resnet_prefix}.conv1.weight"], f"{diffusers_resnet_prefix}.conv1.bias": checkpoint[f"{resnet_prefix}.conv1.bias"], # norm2 f"{diffusers_resnet_prefix}.norm2.norm_layer.weight": checkpoint[f"{resnet_prefix}.norm2.norm_layer.weight"], f"{diffusers_resnet_prefix}.norm2.norm_layer.bias": checkpoint[f"{resnet_prefix}.norm2.norm_layer.bias"], f"{diffusers_resnet_prefix}.norm2.conv_y.weight": checkpoint[f"{resnet_prefix}.norm2.conv_y.weight"], f"{diffusers_resnet_prefix}.norm2.conv_y.bias": checkpoint[f"{resnet_prefix}.norm2.conv_y.bias"], f"{diffusers_resnet_prefix}.norm2.conv_b.weight": checkpoint[f"{resnet_prefix}.norm2.conv_b.weight"], f"{diffusers_resnet_prefix}.norm2.conv_b.bias": checkpoint[f"{resnet_prefix}.norm2.conv_b.bias"], # conv2 f"{diffusers_resnet_prefix}.conv2.weight": checkpoint[f"{resnet_prefix}.conv2.weight"], f"{diffusers_resnet_prefix}.conv2.bias": checkpoint[f"{resnet_prefix}.conv2.bias"], } if resnet.conv_shortcut is not None: rv.update( { f"{diffusers_resnet_prefix}.conv_shortcut.weight": checkpoint[f"{resnet_prefix}.nin_shortcut.weight"], f"{diffusers_resnet_prefix}.conv_shortcut.bias": checkpoint[f"{resnet_prefix}.nin_shortcut.bias"], } ) return rv def movq_attention_to_diffusers_checkpoint(checkpoint, *, diffusers_attention_prefix, attention_prefix): return { # norm f"{diffusers_attention_prefix}.group_norm.weight": checkpoint[f"{attention_prefix}.norm.weight"], f"{diffusers_attention_prefix}.group_norm.bias": checkpoint[f"{attention_prefix}.norm.bias"], # query f"{diffusers_attention_prefix}.to_q.weight": checkpoint[f"{attention_prefix}.q.weight"][:, :, 0, 0], f"{diffusers_attention_prefix}.to_q.bias": checkpoint[f"{attention_prefix}.q.bias"], # key f"{diffusers_attention_prefix}.to_k.weight": checkpoint[f"{attention_prefix}.k.weight"][:, :, 0, 0], f"{diffusers_attention_prefix}.to_k.bias": checkpoint[f"{attention_prefix}.k.bias"], # value f"{diffusers_attention_prefix}.to_v.weight": checkpoint[f"{attention_prefix}.v.weight"][:, :, 0, 0], f"{diffusers_attention_prefix}.to_v.bias": checkpoint[f"{attention_prefix}.v.bias"], # proj_attn f"{diffusers_attention_prefix}.to_out.0.weight": checkpoint[f"{attention_prefix}.proj_out.weight"][:, :, 0, 0], f"{diffusers_attention_prefix}.to_out.0.bias": checkpoint[f"{attention_prefix}.proj_out.bias"], } def movq_attention_to_diffusers_checkpoint_spatial_norm(checkpoint, *, diffusers_attention_prefix, attention_prefix): return { # norm f"{diffusers_attention_prefix}.spatial_norm.norm_layer.weight": checkpoint[ f"{attention_prefix}.norm.norm_layer.weight" ], f"{diffusers_attention_prefix}.spatial_norm.norm_layer.bias": checkpoint[ f"{attention_prefix}.norm.norm_layer.bias" ], f"{diffusers_attention_prefix}.spatial_norm.conv_y.weight": checkpoint[ f"{attention_prefix}.norm.conv_y.weight" ], f"{diffusers_attention_prefix}.spatial_norm.conv_y.bias": checkpoint[f"{attention_prefix}.norm.conv_y.bias"], f"{diffusers_attention_prefix}.spatial_norm.conv_b.weight": checkpoint[ f"{attention_prefix}.norm.conv_b.weight" ], f"{diffusers_attention_prefix}.spatial_norm.conv_b.bias": checkpoint[f"{attention_prefix}.norm.conv_b.bias"], # query f"{diffusers_attention_prefix}.to_q.weight": checkpoint[f"{attention_prefix}.q.weight"][:, :, 0, 0], f"{diffusers_attention_prefix}.to_q.bias": checkpoint[f"{attention_prefix}.q.bias"], # key f"{diffusers_attention_prefix}.to_k.weight": checkpoint[f"{attention_prefix}.k.weight"][:, :, 0, 0], f"{diffusers_attention_prefix}.to_k.bias": checkpoint[f"{attention_prefix}.k.bias"], # value f"{diffusers_attention_prefix}.to_v.weight": checkpoint[f"{attention_prefix}.v.weight"][:, :, 0, 0], f"{diffusers_attention_prefix}.to_v.bias": checkpoint[f"{attention_prefix}.v.bias"], # proj_attn f"{diffusers_attention_prefix}.to_out.0.weight": checkpoint[f"{attention_prefix}.proj_out.weight"][:, :, 0, 0], f"{diffusers_attention_prefix}.to_out.0.bias": checkpoint[f"{attention_prefix}.proj_out.bias"], } def movq_original_checkpoint_to_diffusers_checkpoint(model, checkpoint): diffusers_checkpoint = {} diffusers_checkpoint.update(movq_encoder_to_diffusers_checkpoint(model, checkpoint)) # quant_conv diffusers_checkpoint.update( { "quant_conv.weight": checkpoint["quant_conv.weight"], "quant_conv.bias": checkpoint["quant_conv.bias"], } ) # quantize diffusers_checkpoint.update({"quantize.embedding.weight": checkpoint["quantize.embedding.weight"]}) # post_quant_conv diffusers_checkpoint.update( { "post_quant_conv.weight": checkpoint["post_quant_conv.weight"], "post_quant_conv.bias": checkpoint["post_quant_conv.bias"], } ) # decoder diffusers_checkpoint.update(movq_decoder_to_diffusers_checkpoint(model, checkpoint)) return diffusers_checkpoint def movq(*, args, checkpoint_map_location): print("loading movq") movq_checkpoint = torch.load(args.movq_checkpoint_path, map_location=checkpoint_map_location) movq_model = movq_model_from_original_config() movq_diffusers_checkpoint = movq_original_checkpoint_to_diffusers_checkpoint(movq_model, movq_checkpoint) del movq_checkpoint load_checkpoint_to_model(movq_diffusers_checkpoint, movq_model, strict=True) print("done loading movq") return movq_model def load_checkpoint_to_model(checkpoint, model, strict=False): with tempfile.NamedTemporaryFile(delete=False) as file: torch.save(checkpoint, file.name) del checkpoint if strict: model.load_state_dict(torch.load(file.name), strict=True) else: load_checkpoint_and_dispatch(model, file.name, device_map="auto") os.remove(file.name) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--prior_checkpoint_path", default=None, type=str, required=False, help="Path to the prior checkpoint to convert.", ) parser.add_argument( "--clip_stat_path", default=None, type=str, required=False, help="Path to the clip stats checkpoint to convert.", ) parser.add_argument( "--text2img_checkpoint_path", default=None, type=str, required=False, help="Path to the text2img checkpoint to convert.", ) parser.add_argument( "--movq_checkpoint_path", default=None, type=str, required=False, help="Path to the text2img checkpoint to convert.", ) parser.add_argument( "--inpaint_text2img_checkpoint_path", default=None, type=str, required=False, help="Path to the inpaint text2img checkpoint to convert.", ) parser.add_argument( "--checkpoint_load_device", default="cpu", type=str, required=False, help="The device passed to `map_location` when loading checkpoints.", ) parser.add_argument( "--debug", default=None, type=str, required=False, help="Only run a specific stage of the convert script. Used for debugging", ) args = parser.parse_args() print(f"loading checkpoints to {args.checkpoint_load_device}") checkpoint_map_location = torch.device(args.checkpoint_load_device) if args.debug is not None: print(f"debug: only executing {args.debug}") if args.debug is None: print("to-do") elif args.debug == "prior": prior_model = prior(args=args, checkpoint_map_location=checkpoint_map_location) prior_model.save_pretrained(args.dump_path) elif args.debug == "text2img": unet_model = text2img(args=args, checkpoint_map_location=checkpoint_map_location) unet_model.save_pretrained(f"{args.dump_path}/unet") elif args.debug == "inpaint_text2img": inpaint_unet_model = inpaint_text2img(args=args, checkpoint_map_location=checkpoint_map_location) inpaint_unet_model.save_pretrained(f"{args.dump_path}/inpaint_unet") elif args.debug == "decoder": decoder = movq(args=args, checkpoint_map_location=checkpoint_map_location) decoder.save_pretrained(f"{args.dump_path}/decoder") else: raise ValueError(f"unknown debug value : {args.debug}")
diffusers/scripts/convert_kandinsky_to_diffusers.py/0
{ "file_path": "diffusers/scripts/convert_kandinsky_to_diffusers.py", "repo_id": "diffusers", "token_count": 23602 }
import argparse import os import torch from transformers import T5EncoderModel, T5Tokenizer from diffusers import AutoencoderKL, DPMSolverMultistepScheduler, PixArtAlphaPipeline, Transformer2DModel ckpt_id = "PixArt-alpha/PixArt-alpha" # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/scripts/inference.py#L125 interpolation_scale = {256: 0.5, 512: 1, 1024: 2} def main(args): all_state_dict = torch.load(args.orig_ckpt_path, map_location="cpu") state_dict = all_state_dict.pop("state_dict") converted_state_dict = {} # Patch embeddings. converted_state_dict["pos_embed.proj.weight"] = state_dict.pop("x_embedder.proj.weight") converted_state_dict["pos_embed.proj.bias"] = state_dict.pop("x_embedder.proj.bias") # Caption projection. converted_state_dict["caption_projection.linear_1.weight"] = state_dict.pop("y_embedder.y_proj.fc1.weight") converted_state_dict["caption_projection.linear_1.bias"] = state_dict.pop("y_embedder.y_proj.fc1.bias") converted_state_dict["caption_projection.linear_2.weight"] = state_dict.pop("y_embedder.y_proj.fc2.weight") converted_state_dict["caption_projection.linear_2.bias"] = state_dict.pop("y_embedder.y_proj.fc2.bias") # AdaLN-single LN converted_state_dict["adaln_single.emb.timestep_embedder.linear_1.weight"] = state_dict.pop( "t_embedder.mlp.0.weight" ) converted_state_dict["adaln_single.emb.timestep_embedder.linear_1.bias"] = state_dict.pop("t_embedder.mlp.0.bias") converted_state_dict["adaln_single.emb.timestep_embedder.linear_2.weight"] = state_dict.pop( "t_embedder.mlp.2.weight" ) converted_state_dict["adaln_single.emb.timestep_embedder.linear_2.bias"] = state_dict.pop("t_embedder.mlp.2.bias") if args.image_size == 1024: # Resolution. converted_state_dict["adaln_single.emb.resolution_embedder.linear_1.weight"] = state_dict.pop( "csize_embedder.mlp.0.weight" ) converted_state_dict["adaln_single.emb.resolution_embedder.linear_1.bias"] = state_dict.pop( "csize_embedder.mlp.0.bias" ) converted_state_dict["adaln_single.emb.resolution_embedder.linear_2.weight"] = state_dict.pop( "csize_embedder.mlp.2.weight" ) converted_state_dict["adaln_single.emb.resolution_embedder.linear_2.bias"] = state_dict.pop( "csize_embedder.mlp.2.bias" ) # Aspect ratio. converted_state_dict["adaln_single.emb.aspect_ratio_embedder.linear_1.weight"] = state_dict.pop( "ar_embedder.mlp.0.weight" ) converted_state_dict["adaln_single.emb.aspect_ratio_embedder.linear_1.bias"] = state_dict.pop( "ar_embedder.mlp.0.bias" ) converted_state_dict["adaln_single.emb.aspect_ratio_embedder.linear_2.weight"] = state_dict.pop( "ar_embedder.mlp.2.weight" ) converted_state_dict["adaln_single.emb.aspect_ratio_embedder.linear_2.bias"] = state_dict.pop( "ar_embedder.mlp.2.bias" ) # Shared norm. converted_state_dict["adaln_single.linear.weight"] = state_dict.pop("t_block.1.weight") converted_state_dict["adaln_single.linear.bias"] = state_dict.pop("t_block.1.bias") for depth in range(28): # Transformer blocks. converted_state_dict[f"transformer_blocks.{depth}.scale_shift_table"] = state_dict.pop( f"blocks.{depth}.scale_shift_table" ) # Attention is all you need 🤘 # Self attention. q, k, v = torch.chunk(state_dict.pop(f"blocks.{depth}.attn.qkv.weight"), 3, dim=0) q_bias, k_bias, v_bias = torch.chunk(state_dict.pop(f"blocks.{depth}.attn.qkv.bias"), 3, dim=0) converted_state_dict[f"transformer_blocks.{depth}.attn1.to_q.weight"] = q converted_state_dict[f"transformer_blocks.{depth}.attn1.to_q.bias"] = q_bias converted_state_dict[f"transformer_blocks.{depth}.attn1.to_k.weight"] = k converted_state_dict[f"transformer_blocks.{depth}.attn1.to_k.bias"] = k_bias converted_state_dict[f"transformer_blocks.{depth}.attn1.to_v.weight"] = v converted_state_dict[f"transformer_blocks.{depth}.attn1.to_v.bias"] = v_bias # Projection. converted_state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.weight"] = state_dict.pop( f"blocks.{depth}.attn.proj.weight" ) converted_state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.bias"] = state_dict.pop( f"blocks.{depth}.attn.proj.bias" ) # Feed-forward. converted_state_dict[f"transformer_blocks.{depth}.ff.net.0.proj.weight"] = state_dict.pop( f"blocks.{depth}.mlp.fc1.weight" ) converted_state_dict[f"transformer_blocks.{depth}.ff.net.0.proj.bias"] = state_dict.pop( f"blocks.{depth}.mlp.fc1.bias" ) converted_state_dict[f"transformer_blocks.{depth}.ff.net.2.weight"] = state_dict.pop( f"blocks.{depth}.mlp.fc2.weight" ) converted_state_dict[f"transformer_blocks.{depth}.ff.net.2.bias"] = state_dict.pop( f"blocks.{depth}.mlp.fc2.bias" ) # Cross-attention. q = state_dict.pop(f"blocks.{depth}.cross_attn.q_linear.weight") q_bias = state_dict.pop(f"blocks.{depth}.cross_attn.q_linear.bias") k, v = torch.chunk(state_dict.pop(f"blocks.{depth}.cross_attn.kv_linear.weight"), 2, dim=0) k_bias, v_bias = torch.chunk(state_dict.pop(f"blocks.{depth}.cross_attn.kv_linear.bias"), 2, dim=0) converted_state_dict[f"transformer_blocks.{depth}.attn2.to_q.weight"] = q converted_state_dict[f"transformer_blocks.{depth}.attn2.to_q.bias"] = q_bias converted_state_dict[f"transformer_blocks.{depth}.attn2.to_k.weight"] = k converted_state_dict[f"transformer_blocks.{depth}.attn2.to_k.bias"] = k_bias converted_state_dict[f"transformer_blocks.{depth}.attn2.to_v.weight"] = v converted_state_dict[f"transformer_blocks.{depth}.attn2.to_v.bias"] = v_bias converted_state_dict[f"transformer_blocks.{depth}.attn2.to_out.0.weight"] = state_dict.pop( f"blocks.{depth}.cross_attn.proj.weight" ) converted_state_dict[f"transformer_blocks.{depth}.attn2.to_out.0.bias"] = state_dict.pop( f"blocks.{depth}.cross_attn.proj.bias" ) # Final block. converted_state_dict["proj_out.weight"] = state_dict.pop("final_layer.linear.weight") converted_state_dict["proj_out.bias"] = state_dict.pop("final_layer.linear.bias") converted_state_dict["scale_shift_table"] = state_dict.pop("final_layer.scale_shift_table") # DiT XL/2 transformer = Transformer2DModel( sample_size=args.image_size // 8, num_layers=28, attention_head_dim=72, in_channels=4, out_channels=8, patch_size=2, attention_bias=True, num_attention_heads=16, cross_attention_dim=1152, activation_fn="gelu-approximate", num_embeds_ada_norm=1000, norm_type="ada_norm_single", norm_elementwise_affine=False, norm_eps=1e-6, caption_channels=4096, ) transformer.load_state_dict(converted_state_dict, strict=True) assert transformer.pos_embed.pos_embed is not None state_dict.pop("pos_embed") state_dict.pop("y_embedder.y_embedding") assert len(state_dict) == 0, f"State dict is not empty, {state_dict.keys()}" num_model_params = sum(p.numel() for p in transformer.parameters()) print(f"Total number of transformer parameters: {num_model_params}") if args.only_transformer: transformer.save_pretrained(os.path.join(args.dump_path, "transformer")) else: scheduler = DPMSolverMultistepScheduler() vae = AutoencoderKL.from_pretrained(ckpt_id, subfolder="sd-vae-ft-ema") tokenizer = T5Tokenizer.from_pretrained(ckpt_id, subfolder="t5-v1_1-xxl") text_encoder = T5EncoderModel.from_pretrained(ckpt_id, subfolder="t5-v1_1-xxl") pipeline = PixArtAlphaPipeline( tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, vae=vae, scheduler=scheduler ) pipeline.save_pretrained(args.dump_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--orig_ckpt_path", default=None, type=str, required=False, help="Path to the checkpoint to convert." ) parser.add_argument( "--image_size", default=1024, type=int, choices=[256, 512, 1024], required=False, help="Image size of pretrained model, either 512 or 1024.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output pipeline.") parser.add_argument("--only_transformer", default=True, type=bool, required=True) args = parser.parse_args() main(args)
diffusers/scripts/convert_pixart_alpha_to_diffusers.py/0
{ "file_path": "diffusers/scripts/convert_pixart_alpha_to_diffusers.py", "repo_id": "diffusers", "token_count": 4082 }
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL is_torch_less_than_1_11 = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def onnx_export( model, model_args: tuple, output_path: Path, ordered_input_names, output_names, dynamic_axes, opset, use_external_data_format=False, ): output_path.parent.mkdir(parents=True, exist_ok=True) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( model, model_args, f=output_path.as_posix(), input_names=ordered_input_names, output_names=output_names, dynamic_axes=dynamic_axes, do_constant_folding=True, use_external_data_format=use_external_data_format, enable_onnx_checker=True, opset_version=opset, ) else: export( model, model_args, f=output_path.as_posix(), input_names=ordered_input_names, output_names=output_names, dynamic_axes=dynamic_axes, do_constant_folding=True, opset_version=opset, ) @torch.no_grad() def convert_models(model_path: str, output_path: str, opset: int, fp16: bool = False): dtype = torch.float16 if fp16 else torch.float32 if fp16 and torch.cuda.is_available(): device = "cuda" elif fp16 and not torch.cuda.is_available(): raise ValueError("`float16` model export is only supported on GPUs with CUDA") else: device = "cpu" output_path = Path(output_path) # VAE DECODER vae_decoder = AutoencoderKL.from_pretrained(model_path + "/vae") vae_latent_channels = vae_decoder.config.latent_channels # forward only through the decoder part vae_decoder.forward = vae_decoder.decode onnx_export( vae_decoder, model_args=( torch.randn(1, vae_latent_channels, 25, 25).to(device=device, dtype=dtype), False, ), output_path=output_path / "vae_decoder" / "model.onnx", ordered_input_names=["latent_sample", "return_dict"], output_names=["sample"], dynamic_axes={ "latent_sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, }, opset=opset, ) del vae_decoder if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") args = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fp16) print("SD: Done: ONNX")
diffusers/scripts/convert_vae_diff_to_onnx.py/0
{ "file_path": "diffusers/scripts/convert_vae_diff_to_onnx.py", "repo_id": "diffusers", "token_count": 1684 }
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers pkgs_to_check_at_runtime = "python requests filelock numpy".split() for pkg in pkgs_to_check_at_runtime: if pkg in deps: require_version_core(deps[pkg]) else: raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def dep_version_check(pkg, hint=None): require_version(deps[pkg], hint)
diffusers/src/diffusers/dependency_versions_check.py/0
{ "file_path": "diffusers/src/diffusers/dependency_versions_check.py", "repo_id": "diffusers", "token_count": 381 }
# coding=utf-8 # Copyright 2025 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import os from functools import partial from pathlib import Path from typing import Dict, List, Optional, Union import safetensors import torch from ..utils import ( MIN_PEFT_VERSION, USE_PEFT_BACKEND, check_peft_version, convert_unet_state_dict_to_peft, delete_adapter_layers, get_adapter_name, get_peft_kwargs, is_peft_available, is_peft_version, logging, set_adapter_layers, set_weights_and_activate_adapters, ) from .lora_base import _fetch_state_dict, _func_optionally_disable_offloading from .unet_loader_utils import _maybe_expand_lora_scales logger = logging.get_logger(__name__) _SET_ADAPTER_SCALE_FN_MAPPING = { "UNet2DConditionModel": _maybe_expand_lora_scales, "UNetMotionModel": _maybe_expand_lora_scales, "SD3Transformer2DModel": lambda model_cls, weights: weights, "FluxTransformer2DModel": lambda model_cls, weights: weights, "CogVideoXTransformer3DModel": lambda model_cls, weights: weights, "ConsisIDTransformer3DModel": lambda model_cls, weights: weights, "MochiTransformer3DModel": lambda model_cls, weights: weights, "HunyuanVideoTransformer3DModel": lambda model_cls, weights: weights, "LTXVideoTransformer3DModel": lambda model_cls, weights: weights, "SanaTransformer2DModel": lambda model_cls, weights: weights, } def _maybe_adjust_config(config): """ We may run into some ambiguous configuration values when a model has module names, sharing a common prefix (`proj_out.weight` and `blocks.transformer.proj_out.weight`, for example) and they have different LoRA ranks. This method removes the ambiguity by following what is described here: https://github.com/huggingface/diffusers/pull/9985#issuecomment-2493840028. """ rank_pattern = config["rank_pattern"].copy() target_modules = config["target_modules"] original_r = config["r"] for key in list(rank_pattern.keys()): key_rank = rank_pattern[key] # try to detect ambiguity # `target_modules` can also be a str, in which case this loop would loop # over the chars of the str. The technically correct way to match LoRA keys # in PEFT is to use LoraModel._check_target_module_exists (lora_config, key). # But this cuts it for now. exact_matches = [mod for mod in target_modules if mod == key] substring_matches = [mod for mod in target_modules if key in mod and mod != key] ambiguous_key = key if exact_matches and substring_matches: # if ambiguous we update the rank associated with the ambiguous key (`proj_out`, for example) config["r"] = key_rank # remove the ambiguous key from `rank_pattern` and update its rank to `r`, instead del config["rank_pattern"][key] for mod in substring_matches: # avoid overwriting if the module already has a specific rank if mod not in config["rank_pattern"]: config["rank_pattern"][mod] = original_r # update the rest of the keys with the `original_r` for mod in target_modules: if mod != ambiguous_key and mod not in config["rank_pattern"]: config["rank_pattern"][mod] = original_r # handle alphas to deal with cases like # https://github.com/huggingface/diffusers/pull/9999#issuecomment-2516180777 has_different_ranks = len(config["rank_pattern"]) > 1 and list(config["rank_pattern"])[0] != config["r"] if has_different_ranks: config["lora_alpha"] = config["r"] alpha_pattern = {} for module_name, rank in config["rank_pattern"].items(): alpha_pattern[module_name] = rank config["alpha_pattern"] = alpha_pattern return config class PeftAdapterMixin: """ A class containing all functions for loading and using adapters weights that are supported in PEFT library. For more details about adapters and injecting them in a base model, check out the PEFT [documentation](https://huggingface.co/docs/peft/index). Install the latest version of PEFT, and use this mixin to: - Attach new adapters in the model. - Attach multiple adapters and iteratively activate/deactivate them. - Activate/deactivate all adapters from the model. - Get a list of the active adapters. """ _hf_peft_config_loaded = False @classmethod # Copied from diffusers.loaders.lora_base.LoraBaseMixin._optionally_disable_offloading def _optionally_disable_offloading(cls, _pipeline): """ Optionally removes offloading in case the pipeline has been already sequentially offloaded to CPU. Args: _pipeline (`DiffusionPipeline`): The pipeline to disable offloading for. Returns: tuple: A tuple indicating if `is_model_cpu_offload` or `is_sequential_cpu_offload` is True. """ return _func_optionally_disable_offloading(_pipeline=_pipeline) def load_lora_adapter(self, pretrained_model_name_or_path_or_dict, prefix="transformer", **kwargs): r""" Loads a LoRA adapter into the underlying model. Parameters: pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): Can be either: - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on the Hub. - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved with [`ModelMixin.save_pretrained`]. - A [torch state dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). prefix (`str`, *optional*): Prefix to filter the state dict. cache_dir (`Union[str, os.PathLike]`, *optional*): Path to a directory where a downloaded pretrained model configuration is cached if the standard cache is not used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. local_files_only (`bool`, *optional*, defaults to `False`): Whether to only load local model weights and configuration files or not. If set to `True`, the model won't be downloaded from the Hub. token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from `diffusers-cli login` (stored in `~/.huggingface`) is used. revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier allowed by Git. subfolder (`str`, *optional*, defaults to `""`): The subfolder location of a model file within a larger model repository on the Hub or locally. network_alphas (`Dict[str, float]`): The value of the network alpha used for stable learning and preventing underflow. This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning). low_cpu_mem_usage (`bool`, *optional*): Speed up model loading by only loading the pretrained LoRA weights and not initializing the random weights. """ from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict from peft.tuners.tuners_utils import BaseTunerLayer cache_dir = kwargs.pop("cache_dir", None) force_download = kwargs.pop("force_download", False) proxies = kwargs.pop("proxies", None) local_files_only = kwargs.pop("local_files_only", None) token = kwargs.pop("token", None) revision = kwargs.pop("revision", None) subfolder = kwargs.pop("subfolder", None) weight_name = kwargs.pop("weight_name", None) use_safetensors = kwargs.pop("use_safetensors", None) adapter_name = kwargs.pop("adapter_name", None) network_alphas = kwargs.pop("network_alphas", None) _pipeline = kwargs.pop("_pipeline", None) low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", False) allow_pickle = False if low_cpu_mem_usage and is_peft_version("<=", "0.13.0"): raise ValueError( "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." ) user_agent = { "file_type": "attn_procs_weights", "framework": "pytorch", } state_dict = _fetch_state_dict( pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict, weight_name=weight_name, use_safetensors=use_safetensors, local_files_only=local_files_only, cache_dir=cache_dir, force_download=force_download, proxies=proxies, token=token, revision=revision, subfolder=subfolder, user_agent=user_agent, allow_pickle=allow_pickle, ) if network_alphas is not None and prefix is None: raise ValueError("`network_alphas` cannot be None when `prefix` is None.") if prefix is not None: keys = list(state_dict.keys()) model_keys = [k for k in keys if k.startswith(f"{prefix}.")] if len(model_keys) > 0: state_dict = {k.replace(f"{prefix}.", ""): v for k, v in state_dict.items() if k in model_keys} if len(state_dict) > 0: if adapter_name in getattr(self, "peft_config", {}): raise ValueError( f"Adapter name {adapter_name} already in use in the model - please select a new adapter name." ) # check with first key if is not in peft format first_key = next(iter(state_dict.keys())) if "lora_A" not in first_key: state_dict = convert_unet_state_dict_to_peft(state_dict) rank = {} for key, val in state_dict.items(): # Cannot figure out rank from lora layers that don't have atleast 2 dimensions. # Bias layers in LoRA only have a single dimension if "lora_B" in key and val.ndim > 1: rank[key] = val.shape[1] if network_alphas is not None and len(network_alphas) >= 1: alpha_keys = [k for k in network_alphas.keys() if k.startswith(f"{prefix}.")] network_alphas = {k.replace(f"{prefix}.", ""): v for k, v in network_alphas.items() if k in alpha_keys} lora_config_kwargs = get_peft_kwargs(rank, network_alpha_dict=network_alphas, peft_state_dict=state_dict) lora_config_kwargs = _maybe_adjust_config(lora_config_kwargs) if "use_dora" in lora_config_kwargs: if lora_config_kwargs["use_dora"]: if is_peft_version("<", "0.9.0"): raise ValueError( "You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`." ) else: if is_peft_version("<", "0.9.0"): lora_config_kwargs.pop("use_dora") if "lora_bias" in lora_config_kwargs: if lora_config_kwargs["lora_bias"]: if is_peft_version("<=", "0.13.2"): raise ValueError( "You need `peft` 0.14.0 at least to use `lora_bias` in LoRAs. Please upgrade your installation of `peft`." ) else: if is_peft_version("<=", "0.13.2"): lora_config_kwargs.pop("lora_bias") lora_config = LoraConfig(**lora_config_kwargs) # adapter_name if adapter_name is None: adapter_name = get_adapter_name(self) # <Unsafe code # We can be sure that the following works as it just sets attention processors, lora layers and puts all in the same dtype # Now we remove any existing hooks to `_pipeline`. # In case the pipeline has been already offloaded to CPU - temporarily remove the hooks # otherwise loading LoRA weights will lead to an error is_model_cpu_offload, is_sequential_cpu_offload = self._optionally_disable_offloading(_pipeline) peft_kwargs = {} if is_peft_version(">=", "0.13.1"): peft_kwargs["low_cpu_mem_usage"] = low_cpu_mem_usage # To handle scenarios where we cannot successfully set state dict. If it's unsucessful, # we should also delete the `peft_config` associated to the `adapter_name`. try: inject_adapter_in_model(lora_config, self, adapter_name=adapter_name, **peft_kwargs) incompatible_keys = set_peft_model_state_dict(self, state_dict, adapter_name, **peft_kwargs) except Exception as e: # In case `inject_adapter_in_model()` was unsuccessful even before injecting the `peft_config`. if hasattr(self, "peft_config"): for module in self.modules(): if isinstance(module, BaseTunerLayer): active_adapters = module.active_adapters for active_adapter in active_adapters: if adapter_name in active_adapter: module.delete_adapter(adapter_name) self.peft_config.pop(adapter_name) logger.error(f"Loading {adapter_name} was unsucessful with the following error: \n{e}") raise warn_msg = "" if incompatible_keys is not None: # Check only for unexpected keys. unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None) if unexpected_keys: lora_unexpected_keys = [k for k in unexpected_keys if "lora_" in k and adapter_name in k] if lora_unexpected_keys: warn_msg = ( f"Loading adapter weights from state_dict led to unexpected keys found in the model:" f" {', '.join(lora_unexpected_keys)}. " ) # Filter missing keys specific to the current adapter. missing_keys = getattr(incompatible_keys, "missing_keys", None) if missing_keys: lora_missing_keys = [k for k in missing_keys if "lora_" in k and adapter_name in k] if lora_missing_keys: warn_msg += ( f"Loading adapter weights from state_dict led to missing keys in the model:" f" {', '.join(lora_missing_keys)}." ) if warn_msg: logger.warning(warn_msg) # Offload back. if is_model_cpu_offload: _pipeline.enable_model_cpu_offload() elif is_sequential_cpu_offload: _pipeline.enable_sequential_cpu_offload() # Unsafe code /> def save_lora_adapter( self, save_directory, adapter_name: str = "default", upcast_before_saving: bool = False, safe_serialization: bool = True, weight_name: Optional[str] = None, ): """ Save the LoRA parameters corresponding to the underlying model. Arguments: save_directory (`str` or `os.PathLike`): Directory to save LoRA parameters to. Will be created if it doesn't exist. adapter_name: (`str`, defaults to "default"): The name of the adapter to serialize. Useful when the underlying model has multiple adapters loaded. upcast_before_saving (`bool`, defaults to `False`): Whether to cast the underlying model to `torch.float32` before serialization. save_function (`Callable`): The function to use to save the state dictionary. Useful during distributed training when you need to replace `torch.save` with another method. Can be configured with the environment variable `DIFFUSERS_SAVE_MODE`. safe_serialization (`bool`, *optional*, defaults to `True`): Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. weight_name: (`str`, *optional*, defaults to `None`): Name of the file to serialize the state dict with. """ from peft.utils import get_peft_model_state_dict from .lora_base import LORA_WEIGHT_NAME, LORA_WEIGHT_NAME_SAFE if adapter_name is None: adapter_name = get_adapter_name(self) if adapter_name not in getattr(self, "peft_config", {}): raise ValueError(f"Adapter name {adapter_name} not found in the model.") lora_layers_to_save = get_peft_model_state_dict( self.to(dtype=torch.float32 if upcast_before_saving else None), adapter_name=adapter_name ) if os.path.isfile(save_directory): raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file") if safe_serialization: def save_function(weights, filename): return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"}) else: save_function = torch.save os.makedirs(save_directory, exist_ok=True) if weight_name is None: if safe_serialization: weight_name = LORA_WEIGHT_NAME_SAFE else: weight_name = LORA_WEIGHT_NAME # TODO: we could consider saving the `peft_config` as well. save_path = Path(save_directory, weight_name).as_posix() save_function(lora_layers_to_save, save_path) logger.info(f"Model weights saved in {save_path}") def set_adapters( self, adapter_names: Union[List[str], str], weights: Optional[Union[float, Dict, List[float], List[Dict], List[None]]] = None, ): """ Set the currently active adapters for use in the UNet. Args: adapter_names (`List[str]` or `str`): The names of the adapters to use. adapter_weights (`Union[List[float], float]`, *optional*): The adapter(s) weights to use with the UNet. If `None`, the weights are set to `1.0` for all the adapters. Example: ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ).to("cuda") pipeline.load_lora_weights( "jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic" ) pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") pipeline.set_adapters(["cinematic", "pixel"], adapter_weights=[0.5, 0.5]) ``` """ if not USE_PEFT_BACKEND: raise ValueError("PEFT backend is required for `set_adapters()`.") adapter_names = [adapter_names] if isinstance(adapter_names, str) else adapter_names # Expand weights into a list, one entry per adapter # examples for e.g. 2 adapters: [{...}, 7] -> [7,7] ; None -> [None, None] if not isinstance(weights, list): weights = [weights] * len(adapter_names) if len(adapter_names) != len(weights): raise ValueError( f"Length of adapter names {len(adapter_names)} is not equal to the length of their weights {len(weights)}." ) # Set None values to default of 1.0 # e.g. [{...}, 7] -> [{...}, 7] ; [None, None] -> [1.0, 1.0] weights = [w if w is not None else 1.0 for w in weights] # e.g. [{...}, 7] -> [{expanded dict...}, 7] scale_expansion_fn = _SET_ADAPTER_SCALE_FN_MAPPING[self.__class__.__name__] weights = scale_expansion_fn(self, weights) set_weights_and_activate_adapters(self, adapter_names, weights) def add_adapter(self, adapter_config, adapter_name: str = "default") -> None: r""" Adds a new adapter to the current model for training. If no adapter name is passed, a default name is assigned to the adapter to follow the convention of the PEFT library. If you are not familiar with adapters and PEFT methods, we invite you to read more about them in the PEFT [documentation](https://huggingface.co/docs/peft). Args: adapter_config (`[~peft.PeftConfig]`): The configuration of the adapter to add; supported adapters are non-prefix tuning and adaption prompt methods. adapter_name (`str`, *optional*, defaults to `"default"`): The name of the adapter to add. If no name is passed, a default name is assigned to the adapter. """ check_peft_version(min_version=MIN_PEFT_VERSION) if not is_peft_available(): raise ImportError("PEFT is not available. Please install PEFT to use this function: `pip install peft`.") from peft import PeftConfig, inject_adapter_in_model if not self._hf_peft_config_loaded: self._hf_peft_config_loaded = True elif adapter_name in self.peft_config: raise ValueError(f"Adapter with name {adapter_name} already exists. Please use a different name.") if not isinstance(adapter_config, PeftConfig): raise ValueError( f"adapter_config should be an instance of PeftConfig. Got {type(adapter_config)} instead." ) # Unlike transformers, here we don't need to retrieve the name_or_path of the unet as the loading logic is # handled by the `load_lora_layers` or `StableDiffusionLoraLoaderMixin`. Therefore we set it to `None` here. adapter_config.base_model_name_or_path = None inject_adapter_in_model(adapter_config, self, adapter_name) self.set_adapter(adapter_name) def set_adapter(self, adapter_name: Union[str, List[str]]) -> None: """ Sets a specific adapter by forcing the model to only use that adapter and disables the other adapters. If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT [documentation](https://huggingface.co/docs/peft). Args: adapter_name (Union[str, List[str]])): The list of adapters to set or the adapter name in the case of a single adapter. """ check_peft_version(min_version=MIN_PEFT_VERSION) if not self._hf_peft_config_loaded: raise ValueError("No adapter loaded. Please load an adapter first.") if isinstance(adapter_name, str): adapter_name = [adapter_name] missing = set(adapter_name) - set(self.peft_config) if len(missing) > 0: raise ValueError( f"Following adapter(s) could not be found: {', '.join(missing)}. Make sure you are passing the correct adapter name(s)." f" current loaded adapters are: {list(self.peft_config.keys())}" ) from peft.tuners.tuners_utils import BaseTunerLayer _adapters_has_been_set = False for _, module in self.named_modules(): if isinstance(module, BaseTunerLayer): if hasattr(module, "set_adapter"): module.set_adapter(adapter_name) # Previous versions of PEFT does not support multi-adapter inference elif not hasattr(module, "set_adapter") and len(adapter_name) != 1: raise ValueError( "You are trying to set multiple adapters and you have a PEFT version that does not support multi-adapter inference. Please upgrade to the latest version of PEFT." " `pip install -U peft` or `pip install -U git+https://github.com/huggingface/peft.git`" ) else: module.active_adapter = adapter_name _adapters_has_been_set = True if not _adapters_has_been_set: raise ValueError( "Did not succeeded in setting the adapter. Please make sure you are using a model that supports adapters." ) def disable_adapters(self) -> None: r""" Disable all adapters attached to the model and fallback to inference with the base model only. If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT [documentation](https://huggingface.co/docs/peft). """ check_peft_version(min_version=MIN_PEFT_VERSION) if not self._hf_peft_config_loaded: raise ValueError("No adapter loaded. Please load an adapter first.") from peft.tuners.tuners_utils import BaseTunerLayer for _, module in self.named_modules(): if isinstance(module, BaseTunerLayer): if hasattr(module, "enable_adapters"): module.enable_adapters(enabled=False) else: # support for older PEFT versions module.disable_adapters = True def enable_adapters(self) -> None: """ Enable adapters that are attached to the model. The model uses `self.active_adapters()` to retrieve the list of adapters to enable. If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT [documentation](https://huggingface.co/docs/peft). """ check_peft_version(min_version=MIN_PEFT_VERSION) if not self._hf_peft_config_loaded: raise ValueError("No adapter loaded. Please load an adapter first.") from peft.tuners.tuners_utils import BaseTunerLayer for _, module in self.named_modules(): if isinstance(module, BaseTunerLayer): if hasattr(module, "enable_adapters"): module.enable_adapters(enabled=True) else: # support for older PEFT versions module.disable_adapters = False def active_adapters(self) -> List[str]: """ Gets the current list of active adapters of the model. If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT [documentation](https://huggingface.co/docs/peft). """ check_peft_version(min_version=MIN_PEFT_VERSION) if not is_peft_available(): raise ImportError("PEFT is not available. Please install PEFT to use this function: `pip install peft`.") if not self._hf_peft_config_loaded: raise ValueError("No adapter loaded. Please load an adapter first.") from peft.tuners.tuners_utils import BaseTunerLayer for _, module in self.named_modules(): if isinstance(module, BaseTunerLayer): return module.active_adapter def fuse_lora(self, lora_scale=1.0, safe_fusing=False, adapter_names=None): if not USE_PEFT_BACKEND: raise ValueError("PEFT backend is required for `fuse_lora()`.") self.lora_scale = lora_scale self._safe_fusing = safe_fusing self.apply(partial(self._fuse_lora_apply, adapter_names=adapter_names)) def _fuse_lora_apply(self, module, adapter_names=None): from peft.tuners.tuners_utils import BaseTunerLayer merge_kwargs = {"safe_merge": self._safe_fusing} if isinstance(module, BaseTunerLayer): if self.lora_scale != 1.0: module.scale_layer(self.lora_scale) # For BC with prevous PEFT versions, we need to check the signature # of the `merge` method to see if it supports the `adapter_names` argument. supported_merge_kwargs = list(inspect.signature(module.merge).parameters) if "adapter_names" in supported_merge_kwargs: merge_kwargs["adapter_names"] = adapter_names elif "adapter_names" not in supported_merge_kwargs and adapter_names is not None: raise ValueError( "The `adapter_names` argument is not supported with your PEFT version. Please upgrade" " to the latest version of PEFT. `pip install -U peft`" ) module.merge(**merge_kwargs) def unfuse_lora(self): if not USE_PEFT_BACKEND: raise ValueError("PEFT backend is required for `unfuse_lora()`.") self.apply(self._unfuse_lora_apply) def _unfuse_lora_apply(self, module): from peft.tuners.tuners_utils import BaseTunerLayer if isinstance(module, BaseTunerLayer): module.unmerge() def unload_lora(self): if not USE_PEFT_BACKEND: raise ValueError("PEFT backend is required for `unload_lora()`.") from ..utils import recurse_remove_peft_layers recurse_remove_peft_layers(self) if hasattr(self, "peft_config"): del self.peft_config def disable_lora(self): """ Disables the active LoRA layers of the underlying model. Example: ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ).to("cuda") pipeline.load_lora_weights( "jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic" ) pipeline.disable_lora() ``` """ if not USE_PEFT_BACKEND: raise ValueError("PEFT backend is required for this method.") set_adapter_layers(self, enabled=False) def enable_lora(self): """ Enables the active LoRA layers of the underlying model. Example: ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ).to("cuda") pipeline.load_lora_weights( "jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic" ) pipeline.enable_lora() ``` """ if not USE_PEFT_BACKEND: raise ValueError("PEFT backend is required for this method.") set_adapter_layers(self, enabled=True) def delete_adapters(self, adapter_names: Union[List[str], str]): """ Delete an adapter's LoRA layers from the underlying model. Args: adapter_names (`Union[List[str], str]`): The names (single string or list of strings) of the adapter to delete. Example: ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ).to("cuda") pipeline.load_lora_weights( "jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_names="cinematic" ) pipeline.delete_adapters("cinematic") ``` """ if not USE_PEFT_BACKEND: raise ValueError("PEFT backend is required for this method.") if isinstance(adapter_names, str): adapter_names = [adapter_names] for adapter_name in adapter_names: delete_adapter_layers(self, adapter_name) # Pop also the corresponding adapter from the config if hasattr(self, "peft_config"): self.peft_config.pop(adapter_name, None)
diffusers/src/diffusers/loaders/peft.py/0
{ "file_path": "diffusers/src/diffusers/loaders/peft.py", "repo_id": "diffusers", "token_count": 14849 }
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import math from typing import Callable, List, Optional, Tuple, Union import torch import torch.nn.functional as F from torch import nn from ..image_processor import IPAdapterMaskProcessor from ..utils import deprecate, is_torch_xla_available, logging from ..utils.import_utils import is_torch_npu_available, is_torch_xla_version, is_xformers_available from ..utils.torch_utils import is_torch_version, maybe_allow_in_graph logger = logging.get_logger(__name__) # pylint: disable=invalid-name if is_torch_npu_available(): import torch_npu if is_xformers_available(): import xformers import xformers.ops else: xformers = None if is_torch_xla_available(): # flash attention pallas kernel is introduced in the torch_xla 2.3 release. if is_torch_xla_version(">", "2.2"): from torch_xla.experimental.custom_kernel import flash_attention from torch_xla.runtime import is_spmd XLA_AVAILABLE = True else: XLA_AVAILABLE = False @maybe_allow_in_graph class Attention(nn.Module): r""" A cross attention layer. Parameters: query_dim (`int`): The number of channels in the query. cross_attention_dim (`int`, *optional*): The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`. heads (`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention. kv_heads (`int`, *optional*, defaults to `None`): The number of key and value heads to use for multi-head attention. Defaults to `heads`. If `kv_heads=heads`, the model will use Multi Head Attention (MHA), if `kv_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. dim_head (`int`, *optional*, defaults to 64): The number of channels in each head. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. bias (`bool`, *optional*, defaults to False): Set to `True` for the query, key, and value linear layers to contain a bias parameter. upcast_attention (`bool`, *optional*, defaults to False): Set to `True` to upcast the attention computation to `float32`. upcast_softmax (`bool`, *optional*, defaults to False): Set to `True` to upcast the softmax computation to `float32`. cross_attention_norm (`str`, *optional*, defaults to `None`): The type of normalization to use for the cross attention. Can be `None`, `layer_norm`, or `group_norm`. cross_attention_norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the group norm in the cross attention. added_kv_proj_dim (`int`, *optional*, defaults to `None`): The number of channels to use for the added key and value projections. If `None`, no projection is used. norm_num_groups (`int`, *optional*, defaults to `None`): The number of groups to use for the group norm in the attention. spatial_norm_dim (`int`, *optional*, defaults to `None`): The number of channels to use for the spatial normalization. out_bias (`bool`, *optional*, defaults to `True`): Set to `True` to use a bias in the output linear layer. scale_qk (`bool`, *optional*, defaults to `True`): Set to `True` to scale the query and key by `1 / sqrt(dim_head)`. only_cross_attention (`bool`, *optional*, defaults to `False`): Set to `True` to only use cross attention and not added_kv_proj_dim. Can only be set to `True` if `added_kv_proj_dim` is not `None`. eps (`float`, *optional*, defaults to 1e-5): An additional value added to the denominator in group normalization that is used for numerical stability. rescale_output_factor (`float`, *optional*, defaults to 1.0): A factor to rescale the output by dividing it with this value. residual_connection (`bool`, *optional*, defaults to `False`): Set to `True` to add the residual connection to the output. _from_deprecated_attn_block (`bool`, *optional*, defaults to `False`): Set to `True` if the attention block is loaded from a deprecated state dict. processor (`AttnProcessor`, *optional*, defaults to `None`): The attention processor to use. If `None`, defaults to `AttnProcessor2_0` if `torch 2.x` is used and `AttnProcessor` otherwise. """ def __init__( self, query_dim: int, cross_attention_dim: Optional[int] = None, heads: int = 8, kv_heads: Optional[int] = None, dim_head: int = 64, dropout: float = 0.0, bias: bool = False, upcast_attention: bool = False, upcast_softmax: bool = False, cross_attention_norm: Optional[str] = None, cross_attention_norm_num_groups: int = 32, qk_norm: Optional[str] = None, added_kv_proj_dim: Optional[int] = None, added_proj_bias: Optional[bool] = True, norm_num_groups: Optional[int] = None, spatial_norm_dim: Optional[int] = None, out_bias: bool = True, scale_qk: bool = True, only_cross_attention: bool = False, eps: float = 1e-5, rescale_output_factor: float = 1.0, residual_connection: bool = False, _from_deprecated_attn_block: bool = False, processor: Optional["AttnProcessor"] = None, out_dim: int = None, out_context_dim: int = None, context_pre_only=None, pre_only=False, elementwise_affine: bool = True, is_causal: bool = False, ): super().__init__() # To prevent circular import. from .normalization import FP32LayerNorm, LpNorm, RMSNorm self.inner_dim = out_dim if out_dim is not None else dim_head * heads self.inner_kv_dim = self.inner_dim if kv_heads is None else dim_head * kv_heads self.query_dim = query_dim self.use_bias = bias self.is_cross_attention = cross_attention_dim is not None self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim self.upcast_attention = upcast_attention self.upcast_softmax = upcast_softmax self.rescale_output_factor = rescale_output_factor self.residual_connection = residual_connection self.dropout = dropout self.fused_projections = False self.out_dim = out_dim if out_dim is not None else query_dim self.out_context_dim = out_context_dim if out_context_dim is not None else query_dim self.context_pre_only = context_pre_only self.pre_only = pre_only self.is_causal = is_causal # we make use of this private variable to know whether this class is loaded # with an deprecated state dict so that we can convert it on the fly self._from_deprecated_attn_block = _from_deprecated_attn_block self.scale_qk = scale_qk self.scale = dim_head**-0.5 if self.scale_qk else 1.0 self.heads = out_dim // dim_head if out_dim is not None else heads # for slice_size > 0 the attention score computation # is split across the batch axis to save memory # You can set slice_size with `set_attention_slice` self.sliceable_head_dim = heads self.added_kv_proj_dim = added_kv_proj_dim self.only_cross_attention = only_cross_attention if self.added_kv_proj_dim is None and self.only_cross_attention: raise ValueError( "`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`." ) if norm_num_groups is not None: self.group_norm = nn.GroupNorm(num_channels=query_dim, num_groups=norm_num_groups, eps=eps, affine=True) else: self.group_norm = None if spatial_norm_dim is not None: self.spatial_norm = SpatialNorm(f_channels=query_dim, zq_channels=spatial_norm_dim) else: self.spatial_norm = None if qk_norm is None: self.norm_q = None self.norm_k = None elif qk_norm == "layer_norm": self.norm_q = nn.LayerNorm(dim_head, eps=eps, elementwise_affine=elementwise_affine) self.norm_k = nn.LayerNorm(dim_head, eps=eps, elementwise_affine=elementwise_affine) elif qk_norm == "fp32_layer_norm": self.norm_q = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps) self.norm_k = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps) elif qk_norm == "layer_norm_across_heads": # Lumina applies qk norm across all heads self.norm_q = nn.LayerNorm(dim_head * heads, eps=eps) self.norm_k = nn.LayerNorm(dim_head * kv_heads, eps=eps) elif qk_norm == "rms_norm": self.norm_q = RMSNorm(dim_head, eps=eps) self.norm_k = RMSNorm(dim_head, eps=eps) elif qk_norm == "rms_norm_across_heads": # LTX applies qk norm across all heads self.norm_q = RMSNorm(dim_head * heads, eps=eps) self.norm_k = RMSNorm(dim_head * kv_heads, eps=eps) elif qk_norm == "l2": self.norm_q = LpNorm(p=2, dim=-1, eps=eps) self.norm_k = LpNorm(p=2, dim=-1, eps=eps) else: raise ValueError(f"unknown qk_norm: {qk_norm}. Should be None,'layer_norm','fp32_layer_norm','rms_norm'") if cross_attention_norm is None: self.norm_cross = None elif cross_attention_norm == "layer_norm": self.norm_cross = nn.LayerNorm(self.cross_attention_dim) elif cross_attention_norm == "group_norm": if self.added_kv_proj_dim is not None: # The given `encoder_hidden_states` are initially of shape # (batch_size, seq_len, added_kv_proj_dim) before being projected # to (batch_size, seq_len, cross_attention_dim). The norm is applied # before the projection, so we need to use `added_kv_proj_dim` as # the number of channels for the group norm. norm_cross_num_channels = added_kv_proj_dim else: norm_cross_num_channels = self.cross_attention_dim self.norm_cross = nn.GroupNorm( num_channels=norm_cross_num_channels, num_groups=cross_attention_norm_num_groups, eps=1e-5, affine=True ) else: raise ValueError( f"unknown cross_attention_norm: {cross_attention_norm}. Should be None, 'layer_norm' or 'group_norm'" ) self.to_q = nn.Linear(query_dim, self.inner_dim, bias=bias) if not self.only_cross_attention: # only relevant for the `AddedKVProcessor` classes self.to_k = nn.Linear(self.cross_attention_dim, self.inner_kv_dim, bias=bias) self.to_v = nn.Linear(self.cross_attention_dim, self.inner_kv_dim, bias=bias) else: self.to_k = None self.to_v = None self.added_proj_bias = added_proj_bias if self.added_kv_proj_dim is not None: self.add_k_proj = nn.Linear(added_kv_proj_dim, self.inner_kv_dim, bias=added_proj_bias) self.add_v_proj = nn.Linear(added_kv_proj_dim, self.inner_kv_dim, bias=added_proj_bias) if self.context_pre_only is not None: self.add_q_proj = nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias) else: self.add_q_proj = None self.add_k_proj = None self.add_v_proj = None if not self.pre_only: self.to_out = nn.ModuleList([]) self.to_out.append(nn.Linear(self.inner_dim, self.out_dim, bias=out_bias)) self.to_out.append(nn.Dropout(dropout)) else: self.to_out = None if self.context_pre_only is not None and not self.context_pre_only: self.to_add_out = nn.Linear(self.inner_dim, self.out_context_dim, bias=out_bias) else: self.to_add_out = None if qk_norm is not None and added_kv_proj_dim is not None: if qk_norm == "fp32_layer_norm": self.norm_added_q = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps) self.norm_added_k = FP32LayerNorm(dim_head, elementwise_affine=False, bias=False, eps=eps) elif qk_norm == "rms_norm": self.norm_added_q = RMSNorm(dim_head, eps=eps) self.norm_added_k = RMSNorm(dim_head, eps=eps) else: raise ValueError( f"unknown qk_norm: {qk_norm}. Should be one of `None,'layer_norm','fp32_layer_norm','rms_norm'`" ) else: self.norm_added_q = None self.norm_added_k = None # set attention processor # We use the AttnProcessor2_0 by default when torch 2.x is used which uses # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1 if processor is None: processor = ( AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor() ) self.set_processor(processor) def set_use_xla_flash_attention( self, use_xla_flash_attention: bool, partition_spec: Optional[Tuple[Optional[str], ...]] = None, is_flux=False, ) -> None: r""" Set whether to use xla flash attention from `torch_xla` or not. Args: use_xla_flash_attention (`bool`): Whether to use pallas flash attention kernel from `torch_xla` or not. partition_spec (`Tuple[]`, *optional*): Specify the partition specification if using SPMD. Otherwise None. """ if use_xla_flash_attention: if not is_torch_xla_available: raise "torch_xla is not available" elif is_torch_xla_version("<", "2.3"): raise "flash attention pallas kernel is supported from torch_xla version 2.3" elif is_spmd() and is_torch_xla_version("<", "2.4"): raise "flash attention pallas kernel using SPMD is supported from torch_xla version 2.4" else: if is_flux: processor = XLAFluxFlashAttnProcessor2_0(partition_spec) else: processor = XLAFlashAttnProcessor2_0(partition_spec) else: processor = ( AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor() ) self.set_processor(processor) def set_use_npu_flash_attention(self, use_npu_flash_attention: bool) -> None: r""" Set whether to use npu flash attention from `torch_npu` or not. """ if use_npu_flash_attention: processor = AttnProcessorNPU() else: # set attention processor # We use the AttnProcessor2_0 by default when torch 2.x is used which uses # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1 processor = ( AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor() ) self.set_processor(processor) def set_use_memory_efficient_attention_xformers( self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None ) -> None: r""" Set whether to use memory efficient attention from `xformers` or not. Args: use_memory_efficient_attention_xformers (`bool`): Whether to use memory efficient attention from `xformers` or not. attention_op (`Callable`, *optional*): The attention operation to use. Defaults to `None` which uses the default attention operation from `xformers`. """ is_custom_diffusion = hasattr(self, "processor") and isinstance( self.processor, (CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor, CustomDiffusionAttnProcessor2_0), ) is_added_kv_processor = hasattr(self, "processor") and isinstance( self.processor, ( AttnAddedKVProcessor, AttnAddedKVProcessor2_0, SlicedAttnAddedKVProcessor, XFormersAttnAddedKVProcessor, ), ) is_ip_adapter = hasattr(self, "processor") and isinstance( self.processor, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0, IPAdapterXFormersAttnProcessor), ) is_joint_processor = hasattr(self, "processor") and isinstance( self.processor, ( JointAttnProcessor2_0, XFormersJointAttnProcessor, ), ) if use_memory_efficient_attention_xformers: if is_added_kv_processor and is_custom_diffusion: raise NotImplementedError( f"Memory efficient attention is currently not supported for custom diffusion for attention processor type {self.processor}" ) if not is_xformers_available(): raise ModuleNotFoundError( ( "Refer to https://github.com/facebookresearch/xformers for more information on how to install" " xformers" ), name="xformers", ) elif not torch.cuda.is_available(): raise ValueError( "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is" " only available for GPU " ) else: try: # Make sure we can run the memory efficient attention dtype = None if attention_op is not None: op_fw, op_bw = attention_op dtype, *_ = op_fw.SUPPORTED_DTYPES q = torch.randn((1, 2, 40), device="cuda", dtype=dtype) _ = xformers.ops.memory_efficient_attention(q, q, q) except Exception as e: raise e if is_custom_diffusion: processor = CustomDiffusionXFormersAttnProcessor( train_kv=self.processor.train_kv, train_q_out=self.processor.train_q_out, hidden_size=self.processor.hidden_size, cross_attention_dim=self.processor.cross_attention_dim, attention_op=attention_op, ) processor.load_state_dict(self.processor.state_dict()) if hasattr(self.processor, "to_k_custom_diffusion"): processor.to(self.processor.to_k_custom_diffusion.weight.device) elif is_added_kv_processor: # TODO(Patrick, Suraj, William) - currently xformers doesn't work for UnCLIP # which uses this type of cross attention ONLY because the attention mask of format # [0, ..., -10.000, ..., 0, ...,] is not supported # throw warning logger.info( "Memory efficient attention with `xformers` might currently not work correctly if an attention mask is required for the attention operation." ) processor = XFormersAttnAddedKVProcessor(attention_op=attention_op) elif is_ip_adapter: processor = IPAdapterXFormersAttnProcessor( hidden_size=self.processor.hidden_size, cross_attention_dim=self.processor.cross_attention_dim, num_tokens=self.processor.num_tokens, scale=self.processor.scale, attention_op=attention_op, ) processor.load_state_dict(self.processor.state_dict()) if hasattr(self.processor, "to_k_ip"): processor.to( device=self.processor.to_k_ip[0].weight.device, dtype=self.processor.to_k_ip[0].weight.dtype ) elif is_joint_processor: processor = XFormersJointAttnProcessor(attention_op=attention_op) else: processor = XFormersAttnProcessor(attention_op=attention_op) else: if is_custom_diffusion: attn_processor_class = ( CustomDiffusionAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else CustomDiffusionAttnProcessor ) processor = attn_processor_class( train_kv=self.processor.train_kv, train_q_out=self.processor.train_q_out, hidden_size=self.processor.hidden_size, cross_attention_dim=self.processor.cross_attention_dim, ) processor.load_state_dict(self.processor.state_dict()) if hasattr(self.processor, "to_k_custom_diffusion"): processor.to(self.processor.to_k_custom_diffusion.weight.device) elif is_ip_adapter: processor = IPAdapterAttnProcessor2_0( hidden_size=self.processor.hidden_size, cross_attention_dim=self.processor.cross_attention_dim, num_tokens=self.processor.num_tokens, scale=self.processor.scale, ) processor.load_state_dict(self.processor.state_dict()) if hasattr(self.processor, "to_k_ip"): processor.to( device=self.processor.to_k_ip[0].weight.device, dtype=self.processor.to_k_ip[0].weight.dtype ) else: # set attention processor # We use the AttnProcessor2_0 by default when torch 2.x is used which uses # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1 processor = ( AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor() ) self.set_processor(processor) def set_attention_slice(self, slice_size: int) -> None: r""" Set the slice size for attention computation. Args: slice_size (`int`): The slice size for attention computation. """ if slice_size is not None and slice_size > self.sliceable_head_dim: raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.") if slice_size is not None and self.added_kv_proj_dim is not None: processor = SlicedAttnAddedKVProcessor(slice_size) elif slice_size is not None: processor = SlicedAttnProcessor(slice_size) elif self.added_kv_proj_dim is not None: processor = AttnAddedKVProcessor() else: # set attention processor # We use the AttnProcessor2_0 by default when torch 2.x is used which uses # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1 processor = ( AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor() ) self.set_processor(processor) def set_processor(self, processor: "AttnProcessor") -> None: r""" Set the attention processor to use. Args: processor (`AttnProcessor`): The attention processor to use. """ # if current processor is in `self._modules` and if passed `processor` is not, we need to # pop `processor` from `self._modules` if ( hasattr(self, "processor") and isinstance(self.processor, torch.nn.Module) and not isinstance(processor, torch.nn.Module) ): logger.info(f"You are removing possibly trained weights of {self.processor} with {processor}") self._modules.pop("processor") self.processor = processor def get_processor(self, return_deprecated_lora: bool = False) -> "AttentionProcessor": r""" Get the attention processor in use. Args: return_deprecated_lora (`bool`, *optional*, defaults to `False`): Set to `True` to return the deprecated LoRA attention processor. Returns: "AttentionProcessor": The attention processor in use. """ if not return_deprecated_lora: return self.processor def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, **cross_attention_kwargs, ) -> torch.Tensor: r""" The forward method of the `Attention` class. Args: hidden_states (`torch.Tensor`): The hidden states of the query. encoder_hidden_states (`torch.Tensor`, *optional*): The hidden states of the encoder. attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied. **cross_attention_kwargs: Additional keyword arguments to pass along to the cross attention. Returns: `torch.Tensor`: The output of the attention layer. """ # The `Attention` class can call different attention processors / attention functions # here we simply pass along all tensors to the selected processor class # For standard processors that are defined here, `**cross_attention_kwargs` is empty attn_parameters = set(inspect.signature(self.processor.__call__).parameters.keys()) quiet_attn_parameters = {"ip_adapter_masks", "ip_hidden_states"} unused_kwargs = [ k for k, _ in cross_attention_kwargs.items() if k not in attn_parameters and k not in quiet_attn_parameters ] if len(unused_kwargs) > 0: logger.warning( f"cross_attention_kwargs {unused_kwargs} are not expected by {self.processor.__class__.__name__} and will be ignored." ) cross_attention_kwargs = {k: w for k, w in cross_attention_kwargs.items() if k in attn_parameters} return self.processor( self, hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, **cross_attention_kwargs, ) def batch_to_head_dim(self, tensor: torch.Tensor) -> torch.Tensor: r""" Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size // heads, seq_len, dim * heads]`. `heads` is the number of heads initialized while constructing the `Attention` class. Args: tensor (`torch.Tensor`): The tensor to reshape. Returns: `torch.Tensor`: The reshaped tensor. """ head_size = self.heads batch_size, seq_len, dim = tensor.shape tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) return tensor def head_to_batch_dim(self, tensor: torch.Tensor, out_dim: int = 3) -> torch.Tensor: r""" Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size, seq_len, heads, dim // heads]` `heads` is the number of heads initialized while constructing the `Attention` class. Args: tensor (`torch.Tensor`): The tensor to reshape. out_dim (`int`, *optional*, defaults to `3`): The output dimension of the tensor. If `3`, the tensor is reshaped to `[batch_size * heads, seq_len, dim // heads]`. Returns: `torch.Tensor`: The reshaped tensor. """ head_size = self.heads if tensor.ndim == 3: batch_size, seq_len, dim = tensor.shape extra_dim = 1 else: batch_size, extra_dim, seq_len, dim = tensor.shape tensor = tensor.reshape(batch_size, seq_len * extra_dim, head_size, dim // head_size) tensor = tensor.permute(0, 2, 1, 3) if out_dim == 3: tensor = tensor.reshape(batch_size * head_size, seq_len * extra_dim, dim // head_size) return tensor def get_attention_scores( self, query: torch.Tensor, key: torch.Tensor, attention_mask: Optional[torch.Tensor] = None ) -> torch.Tensor: r""" Compute the attention scores. Args: query (`torch.Tensor`): The query tensor. key (`torch.Tensor`): The key tensor. attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied. Returns: `torch.Tensor`: The attention probabilities/scores. """ dtype = query.dtype if self.upcast_attention: query = query.float() key = key.float() if attention_mask is None: baddbmm_input = torch.empty( query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device ) beta = 0 else: baddbmm_input = attention_mask beta = 1 attention_scores = torch.baddbmm( baddbmm_input, query, key.transpose(-1, -2), beta=beta, alpha=self.scale, ) del baddbmm_input if self.upcast_softmax: attention_scores = attention_scores.float() attention_probs = attention_scores.softmax(dim=-1) del attention_scores attention_probs = attention_probs.to(dtype) return attention_probs def prepare_attention_mask( self, attention_mask: torch.Tensor, target_length: int, batch_size: int, out_dim: int = 3 ) -> torch.Tensor: r""" Prepare the attention mask for the attention computation. Args: attention_mask (`torch.Tensor`): The attention mask to prepare. target_length (`int`): The target length of the attention mask. This is the length of the attention mask after padding. batch_size (`int`): The batch size, which is used to repeat the attention mask. out_dim (`int`, *optional*, defaults to `3`): The output dimension of the attention mask. Can be either `3` or `4`. Returns: `torch.Tensor`: The prepared attention mask. """ head_size = self.heads if attention_mask is None: return attention_mask current_length: int = attention_mask.shape[-1] if current_length != target_length: if attention_mask.device.type == "mps": # HACK: MPS: Does not support padding by greater than dimension of input tensor. # Instead, we can manually construct the padding tensor. padding_shape = (attention_mask.shape[0], attention_mask.shape[1], target_length) padding = torch.zeros(padding_shape, dtype=attention_mask.dtype, device=attention_mask.device) attention_mask = torch.cat([attention_mask, padding], dim=2) else: # TODO: for pipelines such as stable-diffusion, padding cross-attn mask: # we want to instead pad by (0, remaining_length), where remaining_length is: # remaining_length: int = target_length - current_length # TODO: re-enable tests/models/test_models_unet_2d_condition.py#test_model_xattn_padding attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) if out_dim == 3: if attention_mask.shape[0] < batch_size * head_size: attention_mask = attention_mask.repeat_interleave(head_size, dim=0) elif out_dim == 4: attention_mask = attention_mask.unsqueeze(1) attention_mask = attention_mask.repeat_interleave(head_size, dim=1) return attention_mask def norm_encoder_hidden_states(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor: r""" Normalize the encoder hidden states. Requires `self.norm_cross` to be specified when constructing the `Attention` class. Args: encoder_hidden_states (`torch.Tensor`): Hidden states of the encoder. Returns: `torch.Tensor`: The normalized encoder hidden states. """ assert self.norm_cross is not None, "self.norm_cross must be defined to call self.norm_encoder_hidden_states" if isinstance(self.norm_cross, nn.LayerNorm): encoder_hidden_states = self.norm_cross(encoder_hidden_states) elif isinstance(self.norm_cross, nn.GroupNorm): # Group norm norms along the channels dimension and expects # input to be in the shape of (N, C, *). In this case, we want # to norm along the hidden dimension, so we need to move # (batch_size, sequence_length, hidden_size) -> # (batch_size, hidden_size, sequence_length) encoder_hidden_states = encoder_hidden_states.transpose(1, 2) encoder_hidden_states = self.norm_cross(encoder_hidden_states) encoder_hidden_states = encoder_hidden_states.transpose(1, 2) else: assert False return encoder_hidden_states @torch.no_grad() def fuse_projections(self, fuse=True): device = self.to_q.weight.data.device dtype = self.to_q.weight.data.dtype if not self.is_cross_attention: # fetch weight matrices. concatenated_weights = torch.cat([self.to_q.weight.data, self.to_k.weight.data, self.to_v.weight.data]) in_features = concatenated_weights.shape[1] out_features = concatenated_weights.shape[0] # create a new single projection layer and copy over the weights. self.to_qkv = nn.Linear(in_features, out_features, bias=self.use_bias, device=device, dtype=dtype) self.to_qkv.weight.copy_(concatenated_weights) if self.use_bias: concatenated_bias = torch.cat([self.to_q.bias.data, self.to_k.bias.data, self.to_v.bias.data]) self.to_qkv.bias.copy_(concatenated_bias) else: concatenated_weights = torch.cat([self.to_k.weight.data, self.to_v.weight.data]) in_features = concatenated_weights.shape[1] out_features = concatenated_weights.shape[0] self.to_kv = nn.Linear(in_features, out_features, bias=self.use_bias, device=device, dtype=dtype) self.to_kv.weight.copy_(concatenated_weights) if self.use_bias: concatenated_bias = torch.cat([self.to_k.bias.data, self.to_v.bias.data]) self.to_kv.bias.copy_(concatenated_bias) # handle added projections for SD3 and others. if ( getattr(self, "add_q_proj", None) is not None and getattr(self, "add_k_proj", None) is not None and getattr(self, "add_v_proj", None) is not None ): concatenated_weights = torch.cat( [self.add_q_proj.weight.data, self.add_k_proj.weight.data, self.add_v_proj.weight.data] ) in_features = concatenated_weights.shape[1] out_features = concatenated_weights.shape[0] self.to_added_qkv = nn.Linear( in_features, out_features, bias=self.added_proj_bias, device=device, dtype=dtype ) self.to_added_qkv.weight.copy_(concatenated_weights) if self.added_proj_bias: concatenated_bias = torch.cat( [self.add_q_proj.bias.data, self.add_k_proj.bias.data, self.add_v_proj.bias.data] ) self.to_added_qkv.bias.copy_(concatenated_bias) self.fused_projections = fuse class SanaMultiscaleAttentionProjection(nn.Module): def __init__( self, in_channels: int, num_attention_heads: int, kernel_size: int, ) -> None: super().__init__() channels = 3 * in_channels self.proj_in = nn.Conv2d( channels, channels, kernel_size, padding=kernel_size // 2, groups=channels, bias=False, ) self.proj_out = nn.Conv2d(channels, channels, 1, 1, 0, groups=3 * num_attention_heads, bias=False) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.proj_in(hidden_states) hidden_states = self.proj_out(hidden_states) return hidden_states class SanaMultiscaleLinearAttention(nn.Module): r"""Lightweight multi-scale linear attention""" def __init__( self, in_channels: int, out_channels: int, num_attention_heads: Optional[int] = None, attention_head_dim: int = 8, mult: float = 1.0, norm_type: str = "batch_norm", kernel_sizes: Tuple[int, ...] = (5,), eps: float = 1e-15, residual_connection: bool = False, ): super().__init__() # To prevent circular import from .normalization import get_normalization self.eps = eps self.attention_head_dim = attention_head_dim self.norm_type = norm_type self.residual_connection = residual_connection num_attention_heads = ( int(in_channels // attention_head_dim * mult) if num_attention_heads is None else num_attention_heads ) inner_dim = num_attention_heads * attention_head_dim self.to_q = nn.Linear(in_channels, inner_dim, bias=False) self.to_k = nn.Linear(in_channels, inner_dim, bias=False) self.to_v = nn.Linear(in_channels, inner_dim, bias=False) self.to_qkv_multiscale = nn.ModuleList() for kernel_size in kernel_sizes: self.to_qkv_multiscale.append( SanaMultiscaleAttentionProjection(inner_dim, num_attention_heads, kernel_size) ) self.nonlinearity = nn.ReLU() self.to_out = nn.Linear(inner_dim * (1 + len(kernel_sizes)), out_channels, bias=False) self.norm_out = get_normalization(norm_type, num_features=out_channels) self.processor = SanaMultiscaleAttnProcessor2_0() def apply_linear_attention(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor) -> torch.Tensor: value = F.pad(value, (0, 0, 0, 1), mode="constant", value=1) # Adds padding scores = torch.matmul(value, key.transpose(-1, -2)) hidden_states = torch.matmul(scores, query) hidden_states = hidden_states.to(dtype=torch.float32) hidden_states = hidden_states[:, :, :-1] / (hidden_states[:, :, -1:] + self.eps) return hidden_states def apply_quadratic_attention(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor) -> torch.Tensor: scores = torch.matmul(key.transpose(-1, -2), query) scores = scores.to(dtype=torch.float32) scores = scores / (torch.sum(scores, dim=2, keepdim=True) + self.eps) hidden_states = torch.matmul(value, scores.to(value.dtype)) return hidden_states def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return self.processor(self, hidden_states) class MochiAttention(nn.Module): def __init__( self, query_dim: int, added_kv_proj_dim: int, processor: "MochiAttnProcessor2_0", heads: int = 8, dim_head: int = 64, dropout: float = 0.0, bias: bool = False, added_proj_bias: bool = True, out_dim: Optional[int] = None, out_context_dim: Optional[int] = None, out_bias: bool = True, context_pre_only: bool = False, eps: float = 1e-5, ): super().__init__() from .normalization import MochiRMSNorm self.inner_dim = out_dim if out_dim is not None else dim_head * heads self.out_dim = out_dim if out_dim is not None else query_dim self.out_context_dim = out_context_dim if out_context_dim else query_dim self.context_pre_only = context_pre_only self.heads = out_dim // dim_head if out_dim is not None else heads self.norm_q = MochiRMSNorm(dim_head, eps, True) self.norm_k = MochiRMSNorm(dim_head, eps, True) self.norm_added_q = MochiRMSNorm(dim_head, eps, True) self.norm_added_k = MochiRMSNorm(dim_head, eps, True) self.to_q = nn.Linear(query_dim, self.inner_dim, bias=bias) self.to_k = nn.Linear(query_dim, self.inner_dim, bias=bias) self.to_v = nn.Linear(query_dim, self.inner_dim, bias=bias) self.add_k_proj = nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias) self.add_v_proj = nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias) if self.context_pre_only is not None: self.add_q_proj = nn.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias) self.to_out = nn.ModuleList([]) self.to_out.append(nn.Linear(self.inner_dim, self.out_dim, bias=out_bias)) self.to_out.append(nn.Dropout(dropout)) if not self.context_pre_only: self.to_add_out = nn.Linear(self.inner_dim, self.out_context_dim, bias=out_bias) self.processor = processor def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, **kwargs, ): return self.processor( self, hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, **kwargs, ) class MochiAttnProcessor2_0: """Attention processor used in Mochi.""" def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("MochiAttnProcessor2_0 requires PyTorch 2.0. To use it, please upgrade PyTorch to 2.0.") def __call__( self, attn: "MochiAttention", hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, attention_mask: torch.Tensor, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.Tensor: query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) query = query.unflatten(2, (attn.heads, -1)) key = key.unflatten(2, (attn.heads, -1)) value = value.unflatten(2, (attn.heads, -1)) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) encoder_query = attn.add_q_proj(encoder_hidden_states) encoder_key = attn.add_k_proj(encoder_hidden_states) encoder_value = attn.add_v_proj(encoder_hidden_states) encoder_query = encoder_query.unflatten(2, (attn.heads, -1)) encoder_key = encoder_key.unflatten(2, (attn.heads, -1)) encoder_value = encoder_value.unflatten(2, (attn.heads, -1)) if attn.norm_added_q is not None: encoder_query = attn.norm_added_q(encoder_query) if attn.norm_added_k is not None: encoder_key = attn.norm_added_k(encoder_key) if image_rotary_emb is not None: def apply_rotary_emb(x, freqs_cos, freqs_sin): x_even = x[..., 0::2].float() x_odd = x[..., 1::2].float() cos = (x_even * freqs_cos - x_odd * freqs_sin).to(x.dtype) sin = (x_even * freqs_sin + x_odd * freqs_cos).to(x.dtype) return torch.stack([cos, sin], dim=-1).flatten(-2) query = apply_rotary_emb(query, *image_rotary_emb) key = apply_rotary_emb(key, *image_rotary_emb) query, key, value = query.transpose(1, 2), key.transpose(1, 2), value.transpose(1, 2) encoder_query, encoder_key, encoder_value = ( encoder_query.transpose(1, 2), encoder_key.transpose(1, 2), encoder_value.transpose(1, 2), ) sequence_length = query.size(2) encoder_sequence_length = encoder_query.size(2) total_length = sequence_length + encoder_sequence_length batch_size, heads, _, dim = query.shape attn_outputs = [] for idx in range(batch_size): mask = attention_mask[idx][None, :] valid_prompt_token_indices = torch.nonzero(mask.flatten(), as_tuple=False).flatten() valid_encoder_query = encoder_query[idx : idx + 1, :, valid_prompt_token_indices, :] valid_encoder_key = encoder_key[idx : idx + 1, :, valid_prompt_token_indices, :] valid_encoder_value = encoder_value[idx : idx + 1, :, valid_prompt_token_indices, :] valid_query = torch.cat([query[idx : idx + 1], valid_encoder_query], dim=2) valid_key = torch.cat([key[idx : idx + 1], valid_encoder_key], dim=2) valid_value = torch.cat([value[idx : idx + 1], valid_encoder_value], dim=2) attn_output = F.scaled_dot_product_attention( valid_query, valid_key, valid_value, dropout_p=0.0, is_causal=False ) valid_sequence_length = attn_output.size(2) attn_output = F.pad(attn_output, (0, 0, 0, total_length - valid_sequence_length)) attn_outputs.append(attn_output) hidden_states = torch.cat(attn_outputs, dim=0) hidden_states = hidden_states.transpose(1, 2).flatten(2, 3) hidden_states, encoder_hidden_states = hidden_states.split_with_sizes( (sequence_length, encoder_sequence_length), dim=1 ) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if hasattr(attn, "to_add_out"): encoder_hidden_states = attn.to_add_out(encoder_hidden_states) return hidden_states, encoder_hidden_states class AttnProcessor: r""" Default processor for performing attention-related computations. """ def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, *args, **kwargs, ) -> torch.Tensor: if len(args) > 0 or kwargs.get("scale", None) is not None: deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." deprecate("scale", "1.0.0", deprecation_message) residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) query = attn.head_to_batch_dim(query) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) attention_probs = attn.get_attention_scores(query, key, attention_mask) hidden_states = torch.bmm(attention_probs, value) hidden_states = attn.batch_to_head_dim(hidden_states) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class CustomDiffusionAttnProcessor(nn.Module): r""" Processor for implementing attention for the Custom Diffusion method. Args: train_kv (`bool`, defaults to `True`): Whether to newly train the key and value matrices corresponding to the text features. train_q_out (`bool`, defaults to `True`): Whether to newly train query matrices corresponding to the latent image features. hidden_size (`int`, *optional*, defaults to `None`): The hidden size of the attention layer. cross_attention_dim (`int`, *optional*, defaults to `None`): The number of channels in the `encoder_hidden_states`. out_bias (`bool`, defaults to `True`): Whether to include the bias parameter in `train_q_out`. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. """ def __init__( self, train_kv: bool = True, train_q_out: bool = True, hidden_size: Optional[int] = None, cross_attention_dim: Optional[int] = None, out_bias: bool = True, dropout: float = 0.0, ): super().__init__() self.train_kv = train_kv self.train_q_out = train_q_out self.hidden_size = hidden_size self.cross_attention_dim = cross_attention_dim # `_custom_diffusion` id for easy serialization and loading. if self.train_kv: self.to_k_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) self.to_v_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) if self.train_q_out: self.to_q_custom_diffusion = nn.Linear(hidden_size, hidden_size, bias=False) self.to_out_custom_diffusion = nn.ModuleList([]) self.to_out_custom_diffusion.append(nn.Linear(hidden_size, hidden_size, bias=out_bias)) self.to_out_custom_diffusion.append(nn.Dropout(dropout)) def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: batch_size, sequence_length, _ = hidden_states.shape attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) if self.train_q_out: query = self.to_q_custom_diffusion(hidden_states).to(attn.to_q.weight.dtype) else: query = attn.to_q(hidden_states.to(attn.to_q.weight.dtype)) if encoder_hidden_states is None: crossattn = False encoder_hidden_states = hidden_states else: crossattn = True if attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) if self.train_kv: key = self.to_k_custom_diffusion(encoder_hidden_states.to(self.to_k_custom_diffusion.weight.dtype)) value = self.to_v_custom_diffusion(encoder_hidden_states.to(self.to_v_custom_diffusion.weight.dtype)) key = key.to(attn.to_q.weight.dtype) value = value.to(attn.to_q.weight.dtype) else: key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) if crossattn: detach = torch.ones_like(key) detach[:, :1, :] = detach[:, :1, :] * 0.0 key = detach * key + (1 - detach) * key.detach() value = detach * value + (1 - detach) * value.detach() query = attn.head_to_batch_dim(query) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) attention_probs = attn.get_attention_scores(query, key, attention_mask) hidden_states = torch.bmm(attention_probs, value) hidden_states = attn.batch_to_head_dim(hidden_states) if self.train_q_out: # linear proj hidden_states = self.to_out_custom_diffusion[0](hidden_states) # dropout hidden_states = self.to_out_custom_diffusion[1](hidden_states) else: # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) return hidden_states class AttnAddedKVProcessor: r""" Processor for performing attention-related computations with extra learnable key and value matrices for the text encoder. """ def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, *args, **kwargs, ) -> torch.Tensor: if len(args) > 0 or kwargs.get("scale", None) is not None: deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." deprecate("scale", "1.0.0", deprecation_message) residual = hidden_states hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2) batch_size, sequence_length, _ = hidden_states.shape attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) query = attn.head_to_batch_dim(query) encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj) encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj) if not attn.only_cross_attention: key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) key = torch.cat([encoder_hidden_states_key_proj, key], dim=1) value = torch.cat([encoder_hidden_states_value_proj, value], dim=1) else: key = encoder_hidden_states_key_proj value = encoder_hidden_states_value_proj attention_probs = attn.get_attention_scores(query, key, attention_mask) hidden_states = torch.bmm(attention_probs, value) hidden_states = attn.batch_to_head_dim(hidden_states) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape) hidden_states = hidden_states + residual return hidden_states class AttnAddedKVProcessor2_0: r""" Processor for performing scaled dot-product attention (enabled by default if you're using PyTorch 2.0), with extra learnable key and value matrices for the text encoder. """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "AttnAddedKVProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, *args, **kwargs, ) -> torch.Tensor: if len(args) > 0 or kwargs.get("scale", None) is not None: deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." deprecate("scale", "1.0.0", deprecation_message) residual = hidden_states hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2) batch_size, sequence_length, _ = hidden_states.shape attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size, out_dim=4) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) query = attn.head_to_batch_dim(query, out_dim=4) encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj, out_dim=4) encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj, out_dim=4) if not attn.only_cross_attention: key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) key = attn.head_to_batch_dim(key, out_dim=4) value = attn.head_to_batch_dim(value, out_dim=4) key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) else: key = encoder_hidden_states_key_proj value = encoder_hidden_states_value_proj # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, residual.shape[1]) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape) hidden_states = hidden_states + residual return hidden_states class JointAttnProcessor2_0: """Attention processor used typically in processing the SD3-like self-attention projections.""" def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, *args, **kwargs, ) -> torch.FloatTensor: residual = hidden_states batch_size = hidden_states.shape[0] # `sample` projections. query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # `context` projections. if encoder_hidden_states is not None: encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) if attn.norm_added_q is not None: encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) if attn.norm_added_k is not None: encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) query = torch.cat([query, encoder_hidden_states_query_proj], dim=2) key = torch.cat([key, encoder_hidden_states_key_proj], dim=2) value = torch.cat([value, encoder_hidden_states_value_proj], dim=2) hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) if encoder_hidden_states is not None: # Split the attention outputs. hidden_states, encoder_hidden_states = ( hidden_states[:, : residual.shape[1]], hidden_states[:, residual.shape[1] :], ) if not attn.context_pre_only: encoder_hidden_states = attn.to_add_out(encoder_hidden_states) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if encoder_hidden_states is not None: return hidden_states, encoder_hidden_states else: return hidden_states class PAGJointAttnProcessor2_0: """Attention processor used typically in processing the SD3-like self-attention projections.""" def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "PAGJointAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, ) -> torch.FloatTensor: residual = hidden_states input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) context_input_ndim = encoder_hidden_states.ndim if context_input_ndim == 4: batch_size, channel, height, width = encoder_hidden_states.shape encoder_hidden_states = encoder_hidden_states.view(batch_size, channel, height * width).transpose(1, 2) # store the length of image patch sequences to create a mask that prevents interaction between patches # similar to making the self-attention map an identity matrix identity_block_size = hidden_states.shape[1] # chunk hidden_states_org, hidden_states_ptb = hidden_states.chunk(2) encoder_hidden_states_org, encoder_hidden_states_ptb = encoder_hidden_states.chunk(2) ################## original path ################## batch_size = encoder_hidden_states_org.shape[0] # `sample` projections. query_org = attn.to_q(hidden_states_org) key_org = attn.to_k(hidden_states_org) value_org = attn.to_v(hidden_states_org) # `context` projections. encoder_hidden_states_org_query_proj = attn.add_q_proj(encoder_hidden_states_org) encoder_hidden_states_org_key_proj = attn.add_k_proj(encoder_hidden_states_org) encoder_hidden_states_org_value_proj = attn.add_v_proj(encoder_hidden_states_org) # attention query_org = torch.cat([query_org, encoder_hidden_states_org_query_proj], dim=1) key_org = torch.cat([key_org, encoder_hidden_states_org_key_proj], dim=1) value_org = torch.cat([value_org, encoder_hidden_states_org_value_proj], dim=1) inner_dim = key_org.shape[-1] head_dim = inner_dim // attn.heads query_org = query_org.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key_org = key_org.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value_org = value_org.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) hidden_states_org = F.scaled_dot_product_attention( query_org, key_org, value_org, dropout_p=0.0, is_causal=False ) hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states_org = hidden_states_org.to(query_org.dtype) # Split the attention outputs. hidden_states_org, encoder_hidden_states_org = ( hidden_states_org[:, : residual.shape[1]], hidden_states_org[:, residual.shape[1] :], ) # linear proj hidden_states_org = attn.to_out[0](hidden_states_org) # dropout hidden_states_org = attn.to_out[1](hidden_states_org) if not attn.context_pre_only: encoder_hidden_states_org = attn.to_add_out(encoder_hidden_states_org) if input_ndim == 4: hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width) if context_input_ndim == 4: encoder_hidden_states_org = encoder_hidden_states_org.transpose(-1, -2).reshape( batch_size, channel, height, width ) ################## perturbed path ################## batch_size = encoder_hidden_states_ptb.shape[0] # `sample` projections. query_ptb = attn.to_q(hidden_states_ptb) key_ptb = attn.to_k(hidden_states_ptb) value_ptb = attn.to_v(hidden_states_ptb) # `context` projections. encoder_hidden_states_ptb_query_proj = attn.add_q_proj(encoder_hidden_states_ptb) encoder_hidden_states_ptb_key_proj = attn.add_k_proj(encoder_hidden_states_ptb) encoder_hidden_states_ptb_value_proj = attn.add_v_proj(encoder_hidden_states_ptb) # attention query_ptb = torch.cat([query_ptb, encoder_hidden_states_ptb_query_proj], dim=1) key_ptb = torch.cat([key_ptb, encoder_hidden_states_ptb_key_proj], dim=1) value_ptb = torch.cat([value_ptb, encoder_hidden_states_ptb_value_proj], dim=1) inner_dim = key_ptb.shape[-1] head_dim = inner_dim // attn.heads query_ptb = query_ptb.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key_ptb = key_ptb.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value_ptb = value_ptb.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # create a full mask with all entries set to 0 seq_len = query_ptb.size(2) full_mask = torch.zeros((seq_len, seq_len), device=query_ptb.device, dtype=query_ptb.dtype) # set the attention value between image patches to -inf full_mask[:identity_block_size, :identity_block_size] = float("-inf") # set the diagonal of the attention value between image patches to 0 full_mask[:identity_block_size, :identity_block_size].fill_diagonal_(0) # expand the mask to match the attention weights shape full_mask = full_mask.unsqueeze(0).unsqueeze(0) # Add batch and num_heads dimensions hidden_states_ptb = F.scaled_dot_product_attention( query_ptb, key_ptb, value_ptb, attn_mask=full_mask, dropout_p=0.0, is_causal=False ) hidden_states_ptb = hidden_states_ptb.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states_ptb = hidden_states_ptb.to(query_ptb.dtype) # split the attention outputs. hidden_states_ptb, encoder_hidden_states_ptb = ( hidden_states_ptb[:, : residual.shape[1]], hidden_states_ptb[:, residual.shape[1] :], ) # linear proj hidden_states_ptb = attn.to_out[0](hidden_states_ptb) # dropout hidden_states_ptb = attn.to_out[1](hidden_states_ptb) if not attn.context_pre_only: encoder_hidden_states_ptb = attn.to_add_out(encoder_hidden_states_ptb) if input_ndim == 4: hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width) if context_input_ndim == 4: encoder_hidden_states_ptb = encoder_hidden_states_ptb.transpose(-1, -2).reshape( batch_size, channel, height, width ) ################ concat ############### hidden_states = torch.cat([hidden_states_org, hidden_states_ptb]) encoder_hidden_states = torch.cat([encoder_hidden_states_org, encoder_hidden_states_ptb]) return hidden_states, encoder_hidden_states class PAGCFGJointAttnProcessor2_0: """Attention processor used typically in processing the SD3-like self-attention projections.""" def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "PAGCFGJointAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, *args, **kwargs, ) -> torch.FloatTensor: residual = hidden_states input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) context_input_ndim = encoder_hidden_states.ndim if context_input_ndim == 4: batch_size, channel, height, width = encoder_hidden_states.shape encoder_hidden_states = encoder_hidden_states.view(batch_size, channel, height * width).transpose(1, 2) identity_block_size = hidden_states.shape[ 1 ] # patch embeddings width * height (correspond to self-attention map width or height) # chunk hidden_states_uncond, hidden_states_org, hidden_states_ptb = hidden_states.chunk(3) hidden_states_org = torch.cat([hidden_states_uncond, hidden_states_org]) ( encoder_hidden_states_uncond, encoder_hidden_states_org, encoder_hidden_states_ptb, ) = encoder_hidden_states.chunk(3) encoder_hidden_states_org = torch.cat([encoder_hidden_states_uncond, encoder_hidden_states_org]) ################## original path ################## batch_size = encoder_hidden_states_org.shape[0] # `sample` projections. query_org = attn.to_q(hidden_states_org) key_org = attn.to_k(hidden_states_org) value_org = attn.to_v(hidden_states_org) # `context` projections. encoder_hidden_states_org_query_proj = attn.add_q_proj(encoder_hidden_states_org) encoder_hidden_states_org_key_proj = attn.add_k_proj(encoder_hidden_states_org) encoder_hidden_states_org_value_proj = attn.add_v_proj(encoder_hidden_states_org) # attention query_org = torch.cat([query_org, encoder_hidden_states_org_query_proj], dim=1) key_org = torch.cat([key_org, encoder_hidden_states_org_key_proj], dim=1) value_org = torch.cat([value_org, encoder_hidden_states_org_value_proj], dim=1) inner_dim = key_org.shape[-1] head_dim = inner_dim // attn.heads query_org = query_org.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key_org = key_org.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value_org = value_org.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) hidden_states_org = F.scaled_dot_product_attention( query_org, key_org, value_org, dropout_p=0.0, is_causal=False ) hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states_org = hidden_states_org.to(query_org.dtype) # Split the attention outputs. hidden_states_org, encoder_hidden_states_org = ( hidden_states_org[:, : residual.shape[1]], hidden_states_org[:, residual.shape[1] :], ) # linear proj hidden_states_org = attn.to_out[0](hidden_states_org) # dropout hidden_states_org = attn.to_out[1](hidden_states_org) if not attn.context_pre_only: encoder_hidden_states_org = attn.to_add_out(encoder_hidden_states_org) if input_ndim == 4: hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width) if context_input_ndim == 4: encoder_hidden_states_org = encoder_hidden_states_org.transpose(-1, -2).reshape( batch_size, channel, height, width ) ################## perturbed path ################## batch_size = encoder_hidden_states_ptb.shape[0] # `sample` projections. query_ptb = attn.to_q(hidden_states_ptb) key_ptb = attn.to_k(hidden_states_ptb) value_ptb = attn.to_v(hidden_states_ptb) # `context` projections. encoder_hidden_states_ptb_query_proj = attn.add_q_proj(encoder_hidden_states_ptb) encoder_hidden_states_ptb_key_proj = attn.add_k_proj(encoder_hidden_states_ptb) encoder_hidden_states_ptb_value_proj = attn.add_v_proj(encoder_hidden_states_ptb) # attention query_ptb = torch.cat([query_ptb, encoder_hidden_states_ptb_query_proj], dim=1) key_ptb = torch.cat([key_ptb, encoder_hidden_states_ptb_key_proj], dim=1) value_ptb = torch.cat([value_ptb, encoder_hidden_states_ptb_value_proj], dim=1) inner_dim = key_ptb.shape[-1] head_dim = inner_dim // attn.heads query_ptb = query_ptb.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key_ptb = key_ptb.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value_ptb = value_ptb.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # create a full mask with all entries set to 0 seq_len = query_ptb.size(2) full_mask = torch.zeros((seq_len, seq_len), device=query_ptb.device, dtype=query_ptb.dtype) # set the attention value between image patches to -inf full_mask[:identity_block_size, :identity_block_size] = float("-inf") # set the diagonal of the attention value between image patches to 0 full_mask[:identity_block_size, :identity_block_size].fill_diagonal_(0) # expand the mask to match the attention weights shape full_mask = full_mask.unsqueeze(0).unsqueeze(0) # Add batch and num_heads dimensions hidden_states_ptb = F.scaled_dot_product_attention( query_ptb, key_ptb, value_ptb, attn_mask=full_mask, dropout_p=0.0, is_causal=False ) hidden_states_ptb = hidden_states_ptb.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states_ptb = hidden_states_ptb.to(query_ptb.dtype) # split the attention outputs. hidden_states_ptb, encoder_hidden_states_ptb = ( hidden_states_ptb[:, : residual.shape[1]], hidden_states_ptb[:, residual.shape[1] :], ) # linear proj hidden_states_ptb = attn.to_out[0](hidden_states_ptb) # dropout hidden_states_ptb = attn.to_out[1](hidden_states_ptb) if not attn.context_pre_only: encoder_hidden_states_ptb = attn.to_add_out(encoder_hidden_states_ptb) if input_ndim == 4: hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width) if context_input_ndim == 4: encoder_hidden_states_ptb = encoder_hidden_states_ptb.transpose(-1, -2).reshape( batch_size, channel, height, width ) ################ concat ############### hidden_states = torch.cat([hidden_states_org, hidden_states_ptb]) encoder_hidden_states = torch.cat([encoder_hidden_states_org, encoder_hidden_states_ptb]) return hidden_states, encoder_hidden_states class FusedJointAttnProcessor2_0: """Attention processor used typically in processing the SD3-like self-attention projections.""" def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, *args, **kwargs, ) -> torch.FloatTensor: residual = hidden_states input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) context_input_ndim = encoder_hidden_states.ndim if context_input_ndim == 4: batch_size, channel, height, width = encoder_hidden_states.shape encoder_hidden_states = encoder_hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size = encoder_hidden_states.shape[0] # `sample` projections. qkv = attn.to_qkv(hidden_states) split_size = qkv.shape[-1] // 3 query, key, value = torch.split(qkv, split_size, dim=-1) # `context` projections. encoder_qkv = attn.to_added_qkv(encoder_hidden_states) split_size = encoder_qkv.shape[-1] // 3 ( encoder_hidden_states_query_proj, encoder_hidden_states_key_proj, encoder_hidden_states_value_proj, ) = torch.split(encoder_qkv, split_size, dim=-1) # attention query = torch.cat([query, encoder_hidden_states_query_proj], dim=1) key = torch.cat([key, encoder_hidden_states_key_proj], dim=1) value = torch.cat([value, encoder_hidden_states_value_proj], dim=1) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # Split the attention outputs. hidden_states, encoder_hidden_states = ( hidden_states[:, : residual.shape[1]], hidden_states[:, residual.shape[1] :], ) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if not attn.context_pre_only: encoder_hidden_states = attn.to_add_out(encoder_hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if context_input_ndim == 4: encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) return hidden_states, encoder_hidden_states class XFormersJointAttnProcessor: r""" Processor for implementing memory efficient attention using xFormers. Args: attention_op (`Callable`, *optional*, defaults to `None`): The base [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best operator. """ def __init__(self, attention_op: Optional[Callable] = None): self.attention_op = attention_op def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, *args, **kwargs, ) -> torch.FloatTensor: residual = hidden_states # `sample` projections. query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) query = attn.head_to_batch_dim(query).contiguous() key = attn.head_to_batch_dim(key).contiguous() value = attn.head_to_batch_dim(value).contiguous() if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # `context` projections. if encoder_hidden_states is not None: encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) encoder_hidden_states_query_proj = attn.head_to_batch_dim(encoder_hidden_states_query_proj).contiguous() encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj).contiguous() encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj).contiguous() if attn.norm_added_q is not None: encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) if attn.norm_added_k is not None: encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) query = torch.cat([query, encoder_hidden_states_query_proj], dim=1) key = torch.cat([key, encoder_hidden_states_key_proj], dim=1) value = torch.cat([value, encoder_hidden_states_value_proj], dim=1) hidden_states = xformers.ops.memory_efficient_attention( query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale ) hidden_states = hidden_states.to(query.dtype) hidden_states = attn.batch_to_head_dim(hidden_states) if encoder_hidden_states is not None: # Split the attention outputs. hidden_states, encoder_hidden_states = ( hidden_states[:, : residual.shape[1]], hidden_states[:, residual.shape[1] :], ) if not attn.context_pre_only: encoder_hidden_states = attn.to_add_out(encoder_hidden_states) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if encoder_hidden_states is not None: return hidden_states, encoder_hidden_states else: return hidden_states class AllegroAttnProcessor2_0: r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is used in the Allegro model. It applies a normalization layer and rotary embedding on the query and key vector. """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "AllegroAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.Tensor: residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # Apply RoPE if needed if image_rotary_emb is not None and not attn.is_cross_attention: from .embeddings import apply_rotary_emb_allegro query = apply_rotary_emb_allegro(query, image_rotary_emb[0], image_rotary_emb[1]) key = apply_rotary_emb_allegro(key, image_rotary_emb[0], image_rotary_emb[1]) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class AuraFlowAttnProcessor2_0: """Attention processor used typically in processing Aura Flow.""" def __init__(self): if not hasattr(F, "scaled_dot_product_attention") and is_torch_version("<", "2.1"): raise ImportError( "AuraFlowAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to at least 2.1 or above as we use `scale` in `F.scaled_dot_product_attention()`. " ) def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, *args, **kwargs, ) -> torch.FloatTensor: batch_size = hidden_states.shape[0] # `sample` projections. query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) # `context` projections. if encoder_hidden_states is not None: encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) # Reshape. inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim) key = key.view(batch_size, -1, attn.heads, head_dim) value = value.view(batch_size, -1, attn.heads, head_dim) # Apply QK norm. if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # Concatenate the projections. if encoder_hidden_states is not None: encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( batch_size, -1, attn.heads, head_dim ) encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(batch_size, -1, attn.heads, head_dim) encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( batch_size, -1, attn.heads, head_dim ) if attn.norm_added_q is not None: encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) if attn.norm_added_k is not None: encoder_hidden_states_key_proj = attn.norm_added_q(encoder_hidden_states_key_proj) query = torch.cat([encoder_hidden_states_query_proj, query], dim=1) key = torch.cat([encoder_hidden_states_key_proj, key], dim=1) value = torch.cat([encoder_hidden_states_value_proj, value], dim=1) query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) # Attention. hidden_states = F.scaled_dot_product_attention( query, key, value, dropout_p=0.0, scale=attn.scale, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # Split the attention outputs. if encoder_hidden_states is not None: hidden_states, encoder_hidden_states = ( hidden_states[:, encoder_hidden_states.shape[1] :], hidden_states[:, : encoder_hidden_states.shape[1]], ) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if encoder_hidden_states is not None: encoder_hidden_states = attn.to_add_out(encoder_hidden_states) if encoder_hidden_states is not None: return hidden_states, encoder_hidden_states else: return hidden_states class FusedAuraFlowAttnProcessor2_0: """Attention processor used typically in processing Aura Flow with fused projections.""" def __init__(self): if not hasattr(F, "scaled_dot_product_attention") and is_torch_version("<", "2.1"): raise ImportError( "FusedAuraFlowAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to at least 2.1 or above as we use `scale` in `F.scaled_dot_product_attention()`. " ) def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, *args, **kwargs, ) -> torch.FloatTensor: batch_size = hidden_states.shape[0] # `sample` projections. qkv = attn.to_qkv(hidden_states) split_size = qkv.shape[-1] // 3 query, key, value = torch.split(qkv, split_size, dim=-1) # `context` projections. if encoder_hidden_states is not None: encoder_qkv = attn.to_added_qkv(encoder_hidden_states) split_size = encoder_qkv.shape[-1] // 3 ( encoder_hidden_states_query_proj, encoder_hidden_states_key_proj, encoder_hidden_states_value_proj, ) = torch.split(encoder_qkv, split_size, dim=-1) # Reshape. inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim) key = key.view(batch_size, -1, attn.heads, head_dim) value = value.view(batch_size, -1, attn.heads, head_dim) # Apply QK norm. if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # Concatenate the projections. if encoder_hidden_states is not None: encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( batch_size, -1, attn.heads, head_dim ) encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(batch_size, -1, attn.heads, head_dim) encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( batch_size, -1, attn.heads, head_dim ) if attn.norm_added_q is not None: encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) if attn.norm_added_k is not None: encoder_hidden_states_key_proj = attn.norm_added_q(encoder_hidden_states_key_proj) query = torch.cat([encoder_hidden_states_query_proj, query], dim=1) key = torch.cat([encoder_hidden_states_key_proj, key], dim=1) value = torch.cat([encoder_hidden_states_value_proj, value], dim=1) query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) # Attention. hidden_states = F.scaled_dot_product_attention( query, key, value, dropout_p=0.0, scale=attn.scale, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # Split the attention outputs. if encoder_hidden_states is not None: hidden_states, encoder_hidden_states = ( hidden_states[:, encoder_hidden_states.shape[1] :], hidden_states[:, : encoder_hidden_states.shape[1]], ) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if encoder_hidden_states is not None: encoder_hidden_states = attn.to_add_out(encoder_hidden_states) if encoder_hidden_states is not None: return hidden_states, encoder_hidden_states else: return hidden_states class FluxAttnProcessor2_0: """Attention processor used typically in processing the SD3-like self-attention projections.""" def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.FloatTensor: batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape # `sample` projections. query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states` if encoder_hidden_states is not None: # `context` projections. encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) if attn.norm_added_q is not None: encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) if attn.norm_added_k is not None: encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) # attention query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) if image_rotary_emb is not None: from .embeddings import apply_rotary_emb query = apply_rotary_emb(query, image_rotary_emb) key = apply_rotary_emb(key, image_rotary_emb) hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) if encoder_hidden_states is not None: encoder_hidden_states, hidden_states = ( hidden_states[:, : encoder_hidden_states.shape[1]], hidden_states[:, encoder_hidden_states.shape[1] :], ) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) encoder_hidden_states = attn.to_add_out(encoder_hidden_states) return hidden_states, encoder_hidden_states else: return hidden_states class FluxAttnProcessor2_0_NPU: """Attention processor used typically in processing the SD3-like self-attention projections.""" def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "FluxAttnProcessor2_0_NPU requires PyTorch 2.0 and torch NPU, to use it, please upgrade PyTorch to 2.0 and install torch NPU" ) def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.FloatTensor: batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape # `sample` projections. query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states` if encoder_hidden_states is not None: # `context` projections. encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) if attn.norm_added_q is not None: encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) if attn.norm_added_k is not None: encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) # attention query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) if image_rotary_emb is not None: from .embeddings import apply_rotary_emb query = apply_rotary_emb(query, image_rotary_emb) key = apply_rotary_emb(key, image_rotary_emb) if query.dtype in (torch.float16, torch.bfloat16): hidden_states = torch_npu.npu_fusion_attention( query, key, value, attn.heads, input_layout="BNSD", pse=None, scale=1.0 / math.sqrt(query.shape[-1]), pre_tockens=65536, next_tockens=65536, keep_prob=1.0, sync=False, inner_precise=0, )[0] else: hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) if encoder_hidden_states is not None: encoder_hidden_states, hidden_states = ( hidden_states[:, : encoder_hidden_states.shape[1]], hidden_states[:, encoder_hidden_states.shape[1] :], ) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) encoder_hidden_states = attn.to_add_out(encoder_hidden_states) return hidden_states, encoder_hidden_states else: return hidden_states class FusedFluxAttnProcessor2_0: """Attention processor used typically in processing the SD3-like self-attention projections.""" def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "FusedFluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.FloatTensor: batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape # `sample` projections. qkv = attn.to_qkv(hidden_states) split_size = qkv.shape[-1] // 3 query, key, value = torch.split(qkv, split_size, dim=-1) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states` # `context` projections. if encoder_hidden_states is not None: encoder_qkv = attn.to_added_qkv(encoder_hidden_states) split_size = encoder_qkv.shape[-1] // 3 ( encoder_hidden_states_query_proj, encoder_hidden_states_key_proj, encoder_hidden_states_value_proj, ) = torch.split(encoder_qkv, split_size, dim=-1) encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) if attn.norm_added_q is not None: encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) if attn.norm_added_k is not None: encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) # attention query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) if image_rotary_emb is not None: from .embeddings import apply_rotary_emb query = apply_rotary_emb(query, image_rotary_emb) key = apply_rotary_emb(key, image_rotary_emb) hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) if encoder_hidden_states is not None: encoder_hidden_states, hidden_states = ( hidden_states[:, : encoder_hidden_states.shape[1]], hidden_states[:, encoder_hidden_states.shape[1] :], ) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) encoder_hidden_states = attn.to_add_out(encoder_hidden_states) return hidden_states, encoder_hidden_states else: return hidden_states class FusedFluxAttnProcessor2_0_NPU: """Attention processor used typically in processing the SD3-like self-attention projections.""" def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "FluxAttnProcessor2_0_NPU requires PyTorch 2.0 and torch NPU, to use it, please upgrade PyTorch to 2.0, and install torch NPU" ) def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.FloatTensor: batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape # `sample` projections. qkv = attn.to_qkv(hidden_states) split_size = qkv.shape[-1] // 3 query, key, value = torch.split(qkv, split_size, dim=-1) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states` # `context` projections. if encoder_hidden_states is not None: encoder_qkv = attn.to_added_qkv(encoder_hidden_states) split_size = encoder_qkv.shape[-1] // 3 ( encoder_hidden_states_query_proj, encoder_hidden_states_key_proj, encoder_hidden_states_value_proj, ) = torch.split(encoder_qkv, split_size, dim=-1) encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) if attn.norm_added_q is not None: encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) if attn.norm_added_k is not None: encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) # attention query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) if image_rotary_emb is not None: from .embeddings import apply_rotary_emb query = apply_rotary_emb(query, image_rotary_emb) key = apply_rotary_emb(key, image_rotary_emb) if query.dtype in (torch.float16, torch.bfloat16): hidden_states = torch_npu.npu_fusion_attention( query, key, value, attn.heads, input_layout="BNSD", pse=None, scale=1.0 / math.sqrt(query.shape[-1]), pre_tockens=65536, next_tockens=65536, keep_prob=1.0, sync=False, inner_precise=0, )[0] else: hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) if encoder_hidden_states is not None: encoder_hidden_states, hidden_states = ( hidden_states[:, : encoder_hidden_states.shape[1]], hidden_states[:, encoder_hidden_states.shape[1] :], ) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) encoder_hidden_states = attn.to_add_out(encoder_hidden_states) return hidden_states, encoder_hidden_states else: return hidden_states class FluxIPAdapterJointAttnProcessor2_0(torch.nn.Module): """Flux Attention processor for IP-Adapter.""" def __init__( self, hidden_size: int, cross_attention_dim: int, num_tokens=(4,), scale=1.0, device=None, dtype=None ): super().__init__() if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( f"{self.__class__.__name__} requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) self.hidden_size = hidden_size self.cross_attention_dim = cross_attention_dim if not isinstance(num_tokens, (tuple, list)): num_tokens = [num_tokens] if not isinstance(scale, list): scale = [scale] * len(num_tokens) if len(scale) != len(num_tokens): raise ValueError("`scale` should be a list of integers with the same length as `num_tokens`.") self.scale = scale self.to_k_ip = nn.ModuleList( [ nn.Linear(cross_attention_dim, hidden_size, bias=True, device=device, dtype=dtype) for _ in range(len(num_tokens)) ] ) self.to_v_ip = nn.ModuleList( [ nn.Linear(cross_attention_dim, hidden_size, bias=True, device=device, dtype=dtype) for _ in range(len(num_tokens)) ] ) def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ip_hidden_states: Optional[List[torch.Tensor]] = None, ip_adapter_masks: Optional[torch.Tensor] = None, ) -> torch.FloatTensor: batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape # `sample` projections. hidden_states_query_proj = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads hidden_states_query_proj = hidden_states_query_proj.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: hidden_states_query_proj = attn.norm_q(hidden_states_query_proj) if attn.norm_k is not None: key = attn.norm_k(key) # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states` if encoder_hidden_states is not None: # `context` projections. encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) if attn.norm_added_q is not None: encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) if attn.norm_added_k is not None: encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) # attention query = torch.cat([encoder_hidden_states_query_proj, hidden_states_query_proj], dim=2) key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) if image_rotary_emb is not None: from .embeddings import apply_rotary_emb query = apply_rotary_emb(query, image_rotary_emb) key = apply_rotary_emb(key, image_rotary_emb) hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) if encoder_hidden_states is not None: encoder_hidden_states, hidden_states = ( hidden_states[:, : encoder_hidden_states.shape[1]], hidden_states[:, encoder_hidden_states.shape[1] :], ) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) encoder_hidden_states = attn.to_add_out(encoder_hidden_states) # IP-adapter ip_query = hidden_states_query_proj ip_attn_output = None # for ip-adapter # TODO: support for multiple adapters for current_ip_hidden_states, scale, to_k_ip, to_v_ip in zip( ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip ): ip_key = to_k_ip(current_ip_hidden_states) ip_value = to_v_ip(current_ip_hidden_states) ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 ip_attn_output = F.scaled_dot_product_attention( ip_query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False ) ip_attn_output = ip_attn_output.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) ip_attn_output = scale * ip_attn_output ip_attn_output = ip_attn_output.to(ip_query.dtype) return hidden_states, encoder_hidden_states, ip_attn_output else: return hidden_states class CogVideoXAttnProcessor2_0: r""" Processor for implementing scaled dot-product attention for the CogVideoX model. It applies a rotary embedding on query and key vectors, but does not include spatial normalization. """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("CogVideoXAttnProcessor requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.Tensor: text_seq_length = encoder_hidden_states.size(1) hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # Apply RoPE if needed if image_rotary_emb is not None: from .embeddings import apply_rotary_emb query[:, :, text_seq_length:] = apply_rotary_emb(query[:, :, text_seq_length:], image_rotary_emb) if not attn.is_cross_attention: key[:, :, text_seq_length:] = apply_rotary_emb(key[:, :, text_seq_length:], image_rotary_emb) hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) encoder_hidden_states, hidden_states = hidden_states.split( [text_seq_length, hidden_states.size(1) - text_seq_length], dim=1 ) return hidden_states, encoder_hidden_states class FusedCogVideoXAttnProcessor2_0: r""" Processor for implementing scaled dot-product attention for the CogVideoX model. It applies a rotary embedding on query and key vectors, but does not include spatial normalization. """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("CogVideoXAttnProcessor requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.Tensor: text_seq_length = encoder_hidden_states.size(1) hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) qkv = attn.to_qkv(hidden_states) split_size = qkv.shape[-1] // 3 query, key, value = torch.split(qkv, split_size, dim=-1) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # Apply RoPE if needed if image_rotary_emb is not None: from .embeddings import apply_rotary_emb query[:, :, text_seq_length:] = apply_rotary_emb(query[:, :, text_seq_length:], image_rotary_emb) if not attn.is_cross_attention: key[:, :, text_seq_length:] = apply_rotary_emb(key[:, :, text_seq_length:], image_rotary_emb) hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) encoder_hidden_states, hidden_states = hidden_states.split( [text_seq_length, hidden_states.size(1) - text_seq_length], dim=1 ) return hidden_states, encoder_hidden_states class XFormersAttnAddedKVProcessor: r""" Processor for implementing memory efficient attention using xFormers. Args: attention_op (`Callable`, *optional*, defaults to `None`): The base [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best operator. """ def __init__(self, attention_op: Optional[Callable] = None): self.attention_op = attention_op def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: residual = hidden_states hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2) batch_size, sequence_length, _ = hidden_states.shape attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) query = attn.head_to_batch_dim(query) encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj) encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj) if not attn.only_cross_attention: key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) key = torch.cat([encoder_hidden_states_key_proj, key], dim=1) value = torch.cat([encoder_hidden_states_value_proj, value], dim=1) else: key = encoder_hidden_states_key_proj value = encoder_hidden_states_value_proj hidden_states = xformers.ops.memory_efficient_attention( query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale ) hidden_states = hidden_states.to(query.dtype) hidden_states = attn.batch_to_head_dim(hidden_states) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape) hidden_states = hidden_states + residual return hidden_states class XFormersAttnProcessor: r""" Processor for implementing memory efficient attention using xFormers. Args: attention_op (`Callable`, *optional*, defaults to `None`): The base [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best operator. """ def __init__(self, attention_op: Optional[Callable] = None): self.attention_op = attention_op def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, *args, **kwargs, ) -> torch.Tensor: if len(args) > 0 or kwargs.get("scale", None) is not None: deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." deprecate("scale", "1.0.0", deprecation_message) residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, key_tokens, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) attention_mask = attn.prepare_attention_mask(attention_mask, key_tokens, batch_size) if attention_mask is not None: # expand our mask's singleton query_tokens dimension: # [batch*heads, 1, key_tokens] -> # [batch*heads, query_tokens, key_tokens] # so that it can be added as a bias onto the attention scores that xformers computes: # [batch*heads, query_tokens, key_tokens] # we do this explicitly because xformers doesn't broadcast the singleton dimension for us. _, query_tokens, _ = hidden_states.shape attention_mask = attention_mask.expand(-1, query_tokens, -1) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) query = attn.head_to_batch_dim(query).contiguous() key = attn.head_to_batch_dim(key).contiguous() value = attn.head_to_batch_dim(value).contiguous() hidden_states = xformers.ops.memory_efficient_attention( query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale ) hidden_states = hidden_states.to(query.dtype) hidden_states = attn.batch_to_head_dim(hidden_states) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class AttnProcessorNPU: r""" Processor for implementing flash attention using torch_npu. Torch_npu supports only fp16 and bf16 data types. If fp32 is used, F.scaled_dot_product_attention will be used for computation, but the acceleration effect on NPU is not significant. """ def __init__(self): if not is_torch_npu_available(): raise ImportError("AttnProcessorNPU requires torch_npu extensions and is supported only on npu devices.") def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, *args, **kwargs, ) -> torch.Tensor: if len(args) > 0 or kwargs.get("scale", None) is not None: deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." deprecate("scale", "1.0.0", deprecation_message) residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) attention_mask = attention_mask.repeat(1, 1, hidden_states.shape[1], 1) if attention_mask.dtype == torch.bool: attention_mask = torch.logical_not(attention_mask.bool()) else: attention_mask = attention_mask.bool() if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) if query.dtype in (torch.float16, torch.bfloat16): hidden_states = torch_npu.npu_fusion_attention( query, key, value, attn.heads, input_layout="BNSD", pse=None, atten_mask=attention_mask, scale=1.0 / math.sqrt(query.shape[-1]), pre_tockens=65536, next_tockens=65536, keep_prob=1.0, sync=False, inner_precise=0, )[0] else: # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class AttnProcessor2_0: r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, *args, **kwargs, ) -> torch.Tensor: if len(args) > 0 or kwargs.get("scale", None) is not None: deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." deprecate("scale", "1.0.0", deprecation_message) residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class XLAFlashAttnProcessor2_0: r""" Processor for implementing scaled dot-product attention with pallas flash attention kernel if using `torch_xla`. """ def __init__(self, partition_spec: Optional[Tuple[Optional[str], ...]] = None): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "XLAFlashAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) if is_torch_xla_version("<", "2.3"): raise ImportError("XLA flash attention requires torch_xla version >= 2.3.") if is_spmd() and is_torch_xla_version("<", "2.4"): raise ImportError("SPMD support for XLA flash attention needs torch_xla version >= 2.4.") self.partition_spec = partition_spec def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, *args, **kwargs, ) -> torch.Tensor: residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 if all(tensor.shape[2] >= 4096 for tensor in [query, key, value]): if attention_mask is not None: attention_mask = attention_mask.view(batch_size, 1, 1, attention_mask.shape[-1]) # Convert mask to float and replace 0s with -inf and 1s with 0 attention_mask = ( attention_mask.float() .masked_fill(attention_mask == 0, float("-inf")) .masked_fill(attention_mask == 1, float(0.0)) ) # Apply attention mask to key key = key + attention_mask query /= math.sqrt(query.shape[3]) partition_spec = self.partition_spec if is_spmd() else None hidden_states = flash_attention(query, key, value, causal=False, partition_spec=partition_spec) else: logger.warning( "Unable to use the flash attention pallas kernel API call due to QKV sequence length < 4096." ) hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class XLAFluxFlashAttnProcessor2_0: r""" Processor for implementing scaled dot-product attention with pallas flash attention kernel if using `torch_xla`. """ def __init__(self, partition_spec: Optional[Tuple[Optional[str], ...]] = None): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "XLAFlashAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) if is_torch_xla_version("<", "2.3"): raise ImportError("XLA flash attention requires torch_xla version >= 2.3.") if is_spmd() and is_torch_xla_version("<", "2.4"): raise ImportError("SPMD support for XLA flash attention needs torch_xla version >= 2.4.") self.partition_spec = partition_spec def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.FloatTensor: batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape # `sample` projections. query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states` if encoder_hidden_states is not None: # `context` projections. encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) if attn.norm_added_q is not None: encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) if attn.norm_added_k is not None: encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) # attention query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) if image_rotary_emb is not None: from .embeddings import apply_rotary_emb query = apply_rotary_emb(query, image_rotary_emb) key = apply_rotary_emb(key, image_rotary_emb) query /= math.sqrt(head_dim) hidden_states = flash_attention(query, key, value, causal=False) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) if encoder_hidden_states is not None: encoder_hidden_states, hidden_states = ( hidden_states[:, : encoder_hidden_states.shape[1]], hidden_states[:, encoder_hidden_states.shape[1] :], ) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) encoder_hidden_states = attn.to_add_out(encoder_hidden_states) return hidden_states, encoder_hidden_states else: return hidden_states class MochiVaeAttnProcessor2_0: r""" Attention processor used in Mochi VAE. """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: residual = hidden_states is_single_frame = hidden_states.shape[1] == 1 batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if is_single_frame: hidden_states = attn.to_v(hidden_states) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=attn.is_causal ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class StableAudioAttnProcessor2_0: r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is used in the Stable Audio model. It applies rotary embedding on query and key vector, and allows MHA, GQA or MQA. """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "StableAudioAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) def apply_partial_rotary_emb( self, x: torch.Tensor, freqs_cis: Tuple[torch.Tensor], ) -> torch.Tensor: from .embeddings import apply_rotary_emb rot_dim = freqs_cis[0].shape[-1] x_to_rotate, x_unrotated = x[..., :rot_dim], x[..., rot_dim:] x_rotated = apply_rotary_emb(x_to_rotate, freqs_cis, use_real=True, use_real_unbind_dim=-2) out = torch.cat((x_rotated, x_unrotated), dim=-1) return out def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, rotary_emb: Optional[torch.Tensor] = None, ) -> torch.Tensor: from .embeddings import apply_rotary_emb residual = hidden_states input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) head_dim = query.shape[-1] // attn.heads kv_heads = key.shape[-1] // head_dim query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, kv_heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, kv_heads, head_dim).transpose(1, 2) if kv_heads != attn.heads: # if GQA or MQA, repeat the key/value heads to reach the number of query heads. heads_per_kv_head = attn.heads // kv_heads key = torch.repeat_interleave(key, heads_per_kv_head, dim=1) value = torch.repeat_interleave(value, heads_per_kv_head, dim=1) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # Apply RoPE if needed if rotary_emb is not None: query_dtype = query.dtype key_dtype = key.dtype query = query.to(torch.float32) key = key.to(torch.float32) rot_dim = rotary_emb[0].shape[-1] query_to_rotate, query_unrotated = query[..., :rot_dim], query[..., rot_dim:] query_rotated = apply_rotary_emb(query_to_rotate, rotary_emb, use_real=True, use_real_unbind_dim=-2) query = torch.cat((query_rotated, query_unrotated), dim=-1) if not attn.is_cross_attention: key_to_rotate, key_unrotated = key[..., :rot_dim], key[..., rot_dim:] key_rotated = apply_rotary_emb(key_to_rotate, rotary_emb, use_real=True, use_real_unbind_dim=-2) key = torch.cat((key_rotated, key_unrotated), dim=-1) query = query.to(query_dtype) key = key.to(key_dtype) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class HunyuanAttnProcessor2_0: r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is used in the HunyuanDiT model. It applies a s normalization layer and rotary embedding on query and key vector. """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.Tensor: from .embeddings import apply_rotary_emb residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # Apply RoPE if needed if image_rotary_emb is not None: query = apply_rotary_emb(query, image_rotary_emb) if not attn.is_cross_attention: key = apply_rotary_emb(key, image_rotary_emb) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class FusedHunyuanAttnProcessor2_0: r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0) with fused projection layers. This is used in the HunyuanDiT model. It applies a s normalization layer and rotary embedding on query and key vector. """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "FusedHunyuanAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.Tensor: from .embeddings import apply_rotary_emb residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) if encoder_hidden_states is None: qkv = attn.to_qkv(hidden_states) split_size = qkv.shape[-1] // 3 query, key, value = torch.split(qkv, split_size, dim=-1) else: if attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) query = attn.to_q(hidden_states) kv = attn.to_kv(encoder_hidden_states) split_size = kv.shape[-1] // 2 key, value = torch.split(kv, split_size, dim=-1) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # Apply RoPE if needed if image_rotary_emb is not None: query = apply_rotary_emb(query, image_rotary_emb) if not attn.is_cross_attention: key = apply_rotary_emb(key, image_rotary_emb) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class PAGHunyuanAttnProcessor2_0: r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is used in the HunyuanDiT model. It applies a normalization layer and rotary embedding on query and key vector. This variant of the processor employs [Pertubed Attention Guidance](https://arxiv.org/abs/2403.17377). """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "PAGHunyuanAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.Tensor: from .embeddings import apply_rotary_emb residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) # chunk hidden_states_org, hidden_states_ptb = hidden_states.chunk(2) # 1. Original Path batch_size, sequence_length, _ = ( hidden_states_org.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states_org = attn.group_norm(hidden_states_org.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states_org) if encoder_hidden_states is None: encoder_hidden_states = hidden_states_org elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # Apply RoPE if needed if image_rotary_emb is not None: query = apply_rotary_emb(query, image_rotary_emb) if not attn.is_cross_attention: key = apply_rotary_emb(key, image_rotary_emb) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states_org = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states_org = hidden_states_org.to(query.dtype) # linear proj hidden_states_org = attn.to_out[0](hidden_states_org) # dropout hidden_states_org = attn.to_out[1](hidden_states_org) if input_ndim == 4: hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width) # 2. Perturbed Path if attn.group_norm is not None: hidden_states_ptb = attn.group_norm(hidden_states_ptb.transpose(1, 2)).transpose(1, 2) hidden_states_ptb = attn.to_v(hidden_states_ptb) hidden_states_ptb = hidden_states_ptb.to(query.dtype) # linear proj hidden_states_ptb = attn.to_out[0](hidden_states_ptb) # dropout hidden_states_ptb = attn.to_out[1](hidden_states_ptb) if input_ndim == 4: hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width) # cat hidden_states = torch.cat([hidden_states_org, hidden_states_ptb]) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class PAGCFGHunyuanAttnProcessor2_0: r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is used in the HunyuanDiT model. It applies a normalization layer and rotary embedding on query and key vector. This variant of the processor employs [Pertubed Attention Guidance](https://arxiv.org/abs/2403.17377). """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "PAGCFGHunyuanAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.Tensor: from .embeddings import apply_rotary_emb residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) # chunk hidden_states_uncond, hidden_states_org, hidden_states_ptb = hidden_states.chunk(3) hidden_states_org = torch.cat([hidden_states_uncond, hidden_states_org]) # 1. Original Path batch_size, sequence_length, _ = ( hidden_states_org.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states_org = attn.group_norm(hidden_states_org.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states_org) if encoder_hidden_states is None: encoder_hidden_states = hidden_states_org elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # Apply RoPE if needed if image_rotary_emb is not None: query = apply_rotary_emb(query, image_rotary_emb) if not attn.is_cross_attention: key = apply_rotary_emb(key, image_rotary_emb) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states_org = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states_org = hidden_states_org.to(query.dtype) # linear proj hidden_states_org = attn.to_out[0](hidden_states_org) # dropout hidden_states_org = attn.to_out[1](hidden_states_org) if input_ndim == 4: hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width) # 2. Perturbed Path if attn.group_norm is not None: hidden_states_ptb = attn.group_norm(hidden_states_ptb.transpose(1, 2)).transpose(1, 2) hidden_states_ptb = attn.to_v(hidden_states_ptb) hidden_states_ptb = hidden_states_ptb.to(query.dtype) # linear proj hidden_states_ptb = attn.to_out[0](hidden_states_ptb) # dropout hidden_states_ptb = attn.to_out[1](hidden_states_ptb) if input_ndim == 4: hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width) # cat hidden_states = torch.cat([hidden_states_org, hidden_states_ptb]) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class LuminaAttnProcessor2_0: r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is used in the LuminaNextDiT model. It applies a s normalization layer and rotary embedding on query and key vector. """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, query_rotary_emb: Optional[torch.Tensor] = None, key_rotary_emb: Optional[torch.Tensor] = None, base_sequence_length: Optional[int] = None, ) -> torch.Tensor: from .embeddings import apply_rotary_emb input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = hidden_states.shape # Get Query-Key-Value Pair query = attn.to_q(hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) query_dim = query.shape[-1] inner_dim = key.shape[-1] head_dim = query_dim // attn.heads dtype = query.dtype # Get key-value heads kv_heads = inner_dim // head_dim # Apply Query-Key Norm if needed if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) query = query.view(batch_size, -1, attn.heads, head_dim) key = key.view(batch_size, -1, kv_heads, head_dim) value = value.view(batch_size, -1, kv_heads, head_dim) # Apply RoPE if needed if query_rotary_emb is not None: query = apply_rotary_emb(query, query_rotary_emb, use_real=False) if key_rotary_emb is not None: key = apply_rotary_emb(key, key_rotary_emb, use_real=False) query, key = query.to(dtype), key.to(dtype) # Apply proportional attention if true if key_rotary_emb is None: softmax_scale = None else: if base_sequence_length is not None: softmax_scale = math.sqrt(math.log(sequence_length, base_sequence_length)) * attn.scale else: softmax_scale = attn.scale # perform Grouped-qurey Attention (GQA) n_rep = attn.heads // kv_heads if n_rep >= 1: key = key.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3) value = value.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.bool().view(batch_size, 1, 1, -1) attention_mask = attention_mask.expand(-1, attn.heads, sequence_length, -1) query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, scale=softmax_scale ) hidden_states = hidden_states.transpose(1, 2).to(dtype) return hidden_states class FusedAttnProcessor2_0: r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). It uses fused projection layers. For self-attention modules, all projection matrices (i.e., query, key, value) are fused. For cross-attention modules, key and value projection matrices are fused. <Tip warning={true}> This API is currently 🧪 experimental in nature and can change in future. </Tip> """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "FusedAttnProcessor2_0 requires at least PyTorch 2.0, to use it. Please upgrade PyTorch to > 2.0." ) def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, *args, **kwargs, ) -> torch.Tensor: if len(args) > 0 or kwargs.get("scale", None) is not None: deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." deprecate("scale", "1.0.0", deprecation_message) residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) if encoder_hidden_states is None: qkv = attn.to_qkv(hidden_states) split_size = qkv.shape[-1] // 3 query, key, value = torch.split(qkv, split_size, dim=-1) else: if attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) query = attn.to_q(hidden_states) kv = attn.to_kv(encoder_hidden_states) split_size = kv.shape[-1] // 2 key, value = torch.split(kv, split_size, dim=-1) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class CustomDiffusionXFormersAttnProcessor(nn.Module): r""" Processor for implementing memory efficient attention using xFormers for the Custom Diffusion method. Args: train_kv (`bool`, defaults to `True`): Whether to newly train the key and value matrices corresponding to the text features. train_q_out (`bool`, defaults to `True`): Whether to newly train query matrices corresponding to the latent image features. hidden_size (`int`, *optional*, defaults to `None`): The hidden size of the attention layer. cross_attention_dim (`int`, *optional*, defaults to `None`): The number of channels in the `encoder_hidden_states`. out_bias (`bool`, defaults to `True`): Whether to include the bias parameter in `train_q_out`. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. attention_op (`Callable`, *optional*, defaults to `None`): The base [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best operator. """ def __init__( self, train_kv: bool = True, train_q_out: bool = False, hidden_size: Optional[int] = None, cross_attention_dim: Optional[int] = None, out_bias: bool = True, dropout: float = 0.0, attention_op: Optional[Callable] = None, ): super().__init__() self.train_kv = train_kv self.train_q_out = train_q_out self.hidden_size = hidden_size self.cross_attention_dim = cross_attention_dim self.attention_op = attention_op # `_custom_diffusion` id for easy serialization and loading. if self.train_kv: self.to_k_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) self.to_v_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) if self.train_q_out: self.to_q_custom_diffusion = nn.Linear(hidden_size, hidden_size, bias=False) self.to_out_custom_diffusion = nn.ModuleList([]) self.to_out_custom_diffusion.append(nn.Linear(hidden_size, hidden_size, bias=out_bias)) self.to_out_custom_diffusion.append(nn.Dropout(dropout)) def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) if self.train_q_out: query = self.to_q_custom_diffusion(hidden_states).to(attn.to_q.weight.dtype) else: query = attn.to_q(hidden_states.to(attn.to_q.weight.dtype)) if encoder_hidden_states is None: crossattn = False encoder_hidden_states = hidden_states else: crossattn = True if attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) if self.train_kv: key = self.to_k_custom_diffusion(encoder_hidden_states.to(self.to_k_custom_diffusion.weight.dtype)) value = self.to_v_custom_diffusion(encoder_hidden_states.to(self.to_v_custom_diffusion.weight.dtype)) key = key.to(attn.to_q.weight.dtype) value = value.to(attn.to_q.weight.dtype) else: key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) if crossattn: detach = torch.ones_like(key) detach[:, :1, :] = detach[:, :1, :] * 0.0 key = detach * key + (1 - detach) * key.detach() value = detach * value + (1 - detach) * value.detach() query = attn.head_to_batch_dim(query).contiguous() key = attn.head_to_batch_dim(key).contiguous() value = attn.head_to_batch_dim(value).contiguous() hidden_states = xformers.ops.memory_efficient_attention( query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale ) hidden_states = hidden_states.to(query.dtype) hidden_states = attn.batch_to_head_dim(hidden_states) if self.train_q_out: # linear proj hidden_states = self.to_out_custom_diffusion[0](hidden_states) # dropout hidden_states = self.to_out_custom_diffusion[1](hidden_states) else: # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) return hidden_states class CustomDiffusionAttnProcessor2_0(nn.Module): r""" Processor for implementing attention for the Custom Diffusion method using PyTorch 2.0’s memory-efficient scaled dot-product attention. Args: train_kv (`bool`, defaults to `True`): Whether to newly train the key and value matrices corresponding to the text features. train_q_out (`bool`, defaults to `True`): Whether to newly train query matrices corresponding to the latent image features. hidden_size (`int`, *optional*, defaults to `None`): The hidden size of the attention layer. cross_attention_dim (`int`, *optional*, defaults to `None`): The number of channels in the `encoder_hidden_states`. out_bias (`bool`, defaults to `True`): Whether to include the bias parameter in `train_q_out`. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. """ def __init__( self, train_kv: bool = True, train_q_out: bool = True, hidden_size: Optional[int] = None, cross_attention_dim: Optional[int] = None, out_bias: bool = True, dropout: float = 0.0, ): super().__init__() self.train_kv = train_kv self.train_q_out = train_q_out self.hidden_size = hidden_size self.cross_attention_dim = cross_attention_dim # `_custom_diffusion` id for easy serialization and loading. if self.train_kv: self.to_k_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) self.to_v_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) if self.train_q_out: self.to_q_custom_diffusion = nn.Linear(hidden_size, hidden_size, bias=False) self.to_out_custom_diffusion = nn.ModuleList([]) self.to_out_custom_diffusion.append(nn.Linear(hidden_size, hidden_size, bias=out_bias)) self.to_out_custom_diffusion.append(nn.Dropout(dropout)) def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: batch_size, sequence_length, _ = hidden_states.shape attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) if self.train_q_out: query = self.to_q_custom_diffusion(hidden_states) else: query = attn.to_q(hidden_states) if encoder_hidden_states is None: crossattn = False encoder_hidden_states = hidden_states else: crossattn = True if attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) if self.train_kv: key = self.to_k_custom_diffusion(encoder_hidden_states.to(self.to_k_custom_diffusion.weight.dtype)) value = self.to_v_custom_diffusion(encoder_hidden_states.to(self.to_v_custom_diffusion.weight.dtype)) key = key.to(attn.to_q.weight.dtype) value = value.to(attn.to_q.weight.dtype) else: key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) if crossattn: detach = torch.ones_like(key) detach[:, :1, :] = detach[:, :1, :] * 0.0 key = detach * key + (1 - detach) * key.detach() value = detach * value + (1 - detach) * value.detach() inner_dim = hidden_states.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) if self.train_q_out: # linear proj hidden_states = self.to_out_custom_diffusion[0](hidden_states) # dropout hidden_states = self.to_out_custom_diffusion[1](hidden_states) else: # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) return hidden_states class SlicedAttnProcessor: r""" Processor for implementing sliced attention. Args: slice_size (`int`, *optional*): The number of steps to compute attention. Uses as many slices as `attention_head_dim // slice_size`, and `attention_head_dim` must be a multiple of the `slice_size`. """ def __init__(self, slice_size: int): self.slice_size = slice_size def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: residual = hidden_states input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) dim = query.shape[-1] query = attn.head_to_batch_dim(query) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) batch_size_attention, query_tokens, _ = query.shape hidden_states = torch.zeros( (batch_size_attention, query_tokens, dim // attn.heads), device=query.device, dtype=query.dtype ) for i in range((batch_size_attention - 1) // self.slice_size + 1): start_idx = i * self.slice_size end_idx = (i + 1) * self.slice_size query_slice = query[start_idx:end_idx] key_slice = key[start_idx:end_idx] attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice) attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx]) hidden_states[start_idx:end_idx] = attn_slice hidden_states = attn.batch_to_head_dim(hidden_states) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class SlicedAttnAddedKVProcessor: r""" Processor for implementing sliced attention with extra learnable key and value matrices for the text encoder. Args: slice_size (`int`, *optional*): The number of steps to compute attention. Uses as many slices as `attention_head_dim // slice_size`, and `attention_head_dim` must be a multiple of the `slice_size`. """ def __init__(self, slice_size): self.slice_size = slice_size def __call__( self, attn: "Attention", hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, ) -> torch.Tensor: residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2) batch_size, sequence_length, _ = hidden_states.shape attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) dim = query.shape[-1] query = attn.head_to_batch_dim(query) encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj) encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj) if not attn.only_cross_attention: key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) key = torch.cat([encoder_hidden_states_key_proj, key], dim=1) value = torch.cat([encoder_hidden_states_value_proj, value], dim=1) else: key = encoder_hidden_states_key_proj value = encoder_hidden_states_value_proj batch_size_attention, query_tokens, _ = query.shape hidden_states = torch.zeros( (batch_size_attention, query_tokens, dim // attn.heads), device=query.device, dtype=query.dtype ) for i in range((batch_size_attention - 1) // self.slice_size + 1): start_idx = i * self.slice_size end_idx = (i + 1) * self.slice_size query_slice = query[start_idx:end_idx] key_slice = key[start_idx:end_idx] attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice) attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx]) hidden_states[start_idx:end_idx] = attn_slice hidden_states = attn.batch_to_head_dim(hidden_states) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape) hidden_states = hidden_states + residual return hidden_states class SpatialNorm(nn.Module): """ Spatially conditioned normalization as defined in https://arxiv.org/abs/2209.09002. Args: f_channels (`int`): The number of channels for input to group normalization layer, and output of the spatial norm layer. zq_channels (`int`): The number of channels for the quantized vector as described in the paper. """ def __init__( self, f_channels: int, zq_channels: int, ): super().__init__() self.norm_layer = nn.GroupNorm(num_channels=f_channels, num_groups=32, eps=1e-6, affine=True) self.conv_y = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0) self.conv_b = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0) def forward(self, f: torch.Tensor, zq: torch.Tensor) -> torch.Tensor: f_size = f.shape[-2:] zq = F.interpolate(zq, size=f_size, mode="nearest") norm_f = self.norm_layer(f) new_f = norm_f * self.conv_y(zq) + self.conv_b(zq) return new_f class IPAdapterAttnProcessor(nn.Module): r""" Attention processor for Multiple IP-Adapters. Args: hidden_size (`int`): The hidden size of the attention layer. cross_attention_dim (`int`): The number of channels in the `encoder_hidden_states`. num_tokens (`int`, `Tuple[int]` or `List[int]`, defaults to `(4,)`): The context length of the image features. scale (`float` or List[`float`], defaults to 1.0): the weight scale of image prompt. """ def __init__(self, hidden_size, cross_attention_dim=None, num_tokens=(4,), scale=1.0): super().__init__() self.hidden_size = hidden_size self.cross_attention_dim = cross_attention_dim if not isinstance(num_tokens, (tuple, list)): num_tokens = [num_tokens] self.num_tokens = num_tokens if not isinstance(scale, list): scale = [scale] * len(num_tokens) if len(scale) != len(num_tokens): raise ValueError("`scale` should be a list of integers with the same length as `num_tokens`.") self.scale = scale self.to_k_ip = nn.ModuleList( [nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))] ) self.to_v_ip = nn.ModuleList( [nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))] ) def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, scale: float = 1.0, ip_adapter_masks: Optional[torch.Tensor] = None, ): residual = hidden_states # separate ip_hidden_states from encoder_hidden_states if encoder_hidden_states is not None: if isinstance(encoder_hidden_states, tuple): encoder_hidden_states, ip_hidden_states = encoder_hidden_states else: deprecation_message = ( "You have passed a tensor as `encoder_hidden_states`. This is deprecated and will be removed in a future release." " Please make sure to update your script to pass `encoder_hidden_states` as a tuple to suppress this warning." ) deprecate("encoder_hidden_states not a tuple", "1.0.0", deprecation_message, standard_warn=False) end_pos = encoder_hidden_states.shape[1] - self.num_tokens[0] encoder_hidden_states, ip_hidden_states = ( encoder_hidden_states[:, :end_pos, :], [encoder_hidden_states[:, end_pos:, :]], ) if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) query = attn.head_to_batch_dim(query) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) attention_probs = attn.get_attention_scores(query, key, attention_mask) hidden_states = torch.bmm(attention_probs, value) hidden_states = attn.batch_to_head_dim(hidden_states) if ip_adapter_masks is not None: if not isinstance(ip_adapter_masks, List): # for backward compatibility, we accept `ip_adapter_mask` as a tensor of shape [num_ip_adapter, 1, height, width] ip_adapter_masks = list(ip_adapter_masks.unsqueeze(1)) if not (len(ip_adapter_masks) == len(self.scale) == len(ip_hidden_states)): raise ValueError( f"Length of ip_adapter_masks array ({len(ip_adapter_masks)}) must match " f"length of self.scale array ({len(self.scale)}) and number of ip_hidden_states " f"({len(ip_hidden_states)})" ) else: for index, (mask, scale, ip_state) in enumerate(zip(ip_adapter_masks, self.scale, ip_hidden_states)): if mask is None: continue if not isinstance(mask, torch.Tensor) or mask.ndim != 4: raise ValueError( "Each element of the ip_adapter_masks array should be a tensor with shape " "[1, num_images_for_ip_adapter, height, width]." " Please use `IPAdapterMaskProcessor` to preprocess your mask" ) if mask.shape[1] != ip_state.shape[1]: raise ValueError( f"Number of masks ({mask.shape[1]}) does not match " f"number of ip images ({ip_state.shape[1]}) at index {index}" ) if isinstance(scale, list) and not len(scale) == mask.shape[1]: raise ValueError( f"Number of masks ({mask.shape[1]}) does not match " f"number of scales ({len(scale)}) at index {index}" ) else: ip_adapter_masks = [None] * len(self.scale) # for ip-adapter for current_ip_hidden_states, scale, to_k_ip, to_v_ip, mask in zip( ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip, ip_adapter_masks ): skip = False if isinstance(scale, list): if all(s == 0 for s in scale): skip = True elif scale == 0: skip = True if not skip: if mask is not None: if not isinstance(scale, list): scale = [scale] * mask.shape[1] current_num_images = mask.shape[1] for i in range(current_num_images): ip_key = to_k_ip(current_ip_hidden_states[:, i, :, :]) ip_value = to_v_ip(current_ip_hidden_states[:, i, :, :]) ip_key = attn.head_to_batch_dim(ip_key) ip_value = attn.head_to_batch_dim(ip_value) ip_attention_probs = attn.get_attention_scores(query, ip_key, None) _current_ip_hidden_states = torch.bmm(ip_attention_probs, ip_value) _current_ip_hidden_states = attn.batch_to_head_dim(_current_ip_hidden_states) mask_downsample = IPAdapterMaskProcessor.downsample( mask[:, i, :, :], batch_size, _current_ip_hidden_states.shape[1], _current_ip_hidden_states.shape[2], ) mask_downsample = mask_downsample.to(dtype=query.dtype, device=query.device) hidden_states = hidden_states + scale[i] * (_current_ip_hidden_states * mask_downsample) else: ip_key = to_k_ip(current_ip_hidden_states) ip_value = to_v_ip(current_ip_hidden_states) ip_key = attn.head_to_batch_dim(ip_key) ip_value = attn.head_to_batch_dim(ip_value) ip_attention_probs = attn.get_attention_scores(query, ip_key, None) current_ip_hidden_states = torch.bmm(ip_attention_probs, ip_value) current_ip_hidden_states = attn.batch_to_head_dim(current_ip_hidden_states) hidden_states = hidden_states + scale * current_ip_hidden_states # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class IPAdapterAttnProcessor2_0(torch.nn.Module): r""" Attention processor for IP-Adapter for PyTorch 2.0. Args: hidden_size (`int`): The hidden size of the attention layer. cross_attention_dim (`int`): The number of channels in the `encoder_hidden_states`. num_tokens (`int`, `Tuple[int]` or `List[int]`, defaults to `(4,)`): The context length of the image features. scale (`float` or `List[float]`, defaults to 1.0): the weight scale of image prompt. """ def __init__(self, hidden_size, cross_attention_dim=None, num_tokens=(4,), scale=1.0): super().__init__() if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( f"{self.__class__.__name__} requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) self.hidden_size = hidden_size self.cross_attention_dim = cross_attention_dim if not isinstance(num_tokens, (tuple, list)): num_tokens = [num_tokens] self.num_tokens = num_tokens if not isinstance(scale, list): scale = [scale] * len(num_tokens) if len(scale) != len(num_tokens): raise ValueError("`scale` should be a list of integers with the same length as `num_tokens`.") self.scale = scale self.to_k_ip = nn.ModuleList( [nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))] ) self.to_v_ip = nn.ModuleList( [nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))] ) def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, scale: float = 1.0, ip_adapter_masks: Optional[torch.Tensor] = None, ): residual = hidden_states # separate ip_hidden_states from encoder_hidden_states if encoder_hidden_states is not None: if isinstance(encoder_hidden_states, tuple): encoder_hidden_states, ip_hidden_states = encoder_hidden_states else: deprecation_message = ( "You have passed a tensor as `encoder_hidden_states`. This is deprecated and will be removed in a future release." " Please make sure to update your script to pass `encoder_hidden_states` as a tuple to suppress this warning." ) deprecate("encoder_hidden_states not a tuple", "1.0.0", deprecation_message, standard_warn=False) end_pos = encoder_hidden_states.shape[1] - self.num_tokens[0] encoder_hidden_states, ip_hidden_states = ( encoder_hidden_states[:, :end_pos, :], [encoder_hidden_states[:, end_pos:, :]], ) if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) if ip_adapter_masks is not None: if not isinstance(ip_adapter_masks, List): # for backward compatibility, we accept `ip_adapter_mask` as a tensor of shape [num_ip_adapter, 1, height, width] ip_adapter_masks = list(ip_adapter_masks.unsqueeze(1)) if not (len(ip_adapter_masks) == len(self.scale) == len(ip_hidden_states)): raise ValueError( f"Length of ip_adapter_masks array ({len(ip_adapter_masks)}) must match " f"length of self.scale array ({len(self.scale)}) and number of ip_hidden_states " f"({len(ip_hidden_states)})" ) else: for index, (mask, scale, ip_state) in enumerate(zip(ip_adapter_masks, self.scale, ip_hidden_states)): if mask is None: continue if not isinstance(mask, torch.Tensor) or mask.ndim != 4: raise ValueError( "Each element of the ip_adapter_masks array should be a tensor with shape " "[1, num_images_for_ip_adapter, height, width]." " Please use `IPAdapterMaskProcessor` to preprocess your mask" ) if mask.shape[1] != ip_state.shape[1]: raise ValueError( f"Number of masks ({mask.shape[1]}) does not match " f"number of ip images ({ip_state.shape[1]}) at index {index}" ) if isinstance(scale, list) and not len(scale) == mask.shape[1]: raise ValueError( f"Number of masks ({mask.shape[1]}) does not match " f"number of scales ({len(scale)}) at index {index}" ) else: ip_adapter_masks = [None] * len(self.scale) # for ip-adapter for current_ip_hidden_states, scale, to_k_ip, to_v_ip, mask in zip( ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip, ip_adapter_masks ): skip = False if isinstance(scale, list): if all(s == 0 for s in scale): skip = True elif scale == 0: skip = True if not skip: if mask is not None: if not isinstance(scale, list): scale = [scale] * mask.shape[1] current_num_images = mask.shape[1] for i in range(current_num_images): ip_key = to_k_ip(current_ip_hidden_states[:, i, :, :]) ip_value = to_v_ip(current_ip_hidden_states[:, i, :, :]) ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 _current_ip_hidden_states = F.scaled_dot_product_attention( query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False ) _current_ip_hidden_states = _current_ip_hidden_states.transpose(1, 2).reshape( batch_size, -1, attn.heads * head_dim ) _current_ip_hidden_states = _current_ip_hidden_states.to(query.dtype) mask_downsample = IPAdapterMaskProcessor.downsample( mask[:, i, :, :], batch_size, _current_ip_hidden_states.shape[1], _current_ip_hidden_states.shape[2], ) mask_downsample = mask_downsample.to(dtype=query.dtype, device=query.device) hidden_states = hidden_states + scale[i] * (_current_ip_hidden_states * mask_downsample) else: ip_key = to_k_ip(current_ip_hidden_states) ip_value = to_v_ip(current_ip_hidden_states) ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 current_ip_hidden_states = F.scaled_dot_product_attention( query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False ) current_ip_hidden_states = current_ip_hidden_states.transpose(1, 2).reshape( batch_size, -1, attn.heads * head_dim ) current_ip_hidden_states = current_ip_hidden_states.to(query.dtype) hidden_states = hidden_states + scale * current_ip_hidden_states # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class IPAdapterXFormersAttnProcessor(torch.nn.Module): r""" Attention processor for IP-Adapter using xFormers. Args: hidden_size (`int`): The hidden size of the attention layer. cross_attention_dim (`int`): The number of channels in the `encoder_hidden_states`. num_tokens (`int`, `Tuple[int]` or `List[int]`, defaults to `(4,)`): The context length of the image features. scale (`float` or `List[float]`, defaults to 1.0): the weight scale of image prompt. attention_op (`Callable`, *optional*, defaults to `None`): The base [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best operator. """ def __init__( self, hidden_size, cross_attention_dim=None, num_tokens=(4,), scale=1.0, attention_op: Optional[Callable] = None, ): super().__init__() self.hidden_size = hidden_size self.cross_attention_dim = cross_attention_dim self.attention_op = attention_op if not isinstance(num_tokens, (tuple, list)): num_tokens = [num_tokens] self.num_tokens = num_tokens if not isinstance(scale, list): scale = [scale] * len(num_tokens) if len(scale) != len(num_tokens): raise ValueError("`scale` should be a list of integers with the same length as `num_tokens`.") self.scale = scale self.to_k_ip = nn.ModuleList( [nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) for _ in range(len(num_tokens))] ) self.to_v_ip = nn.ModuleList( [nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) for _ in range(len(num_tokens))] ) def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0, ip_adapter_masks: Optional[torch.FloatTensor] = None, ): residual = hidden_states # separate ip_hidden_states from encoder_hidden_states if encoder_hidden_states is not None: if isinstance(encoder_hidden_states, tuple): encoder_hidden_states, ip_hidden_states = encoder_hidden_states else: deprecation_message = ( "You have passed a tensor as `encoder_hidden_states`. This is deprecated and will be removed in a future release." " Please make sure to update your script to pass `encoder_hidden_states` as a tuple to suppress this warning." ) deprecate("encoder_hidden_states not a tuple", "1.0.0", deprecation_message, standard_warn=False) end_pos = encoder_hidden_states.shape[1] - self.num_tokens[0] encoder_hidden_states, ip_hidden_states = ( encoder_hidden_states[:, :end_pos, :], [encoder_hidden_states[:, end_pos:, :]], ) if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # expand our mask's singleton query_tokens dimension: # [batch*heads, 1, key_tokens] -> # [batch*heads, query_tokens, key_tokens] # so that it can be added as a bias onto the attention scores that xformers computes: # [batch*heads, query_tokens, key_tokens] # we do this explicitly because xformers doesn't broadcast the singleton dimension for us. _, query_tokens, _ = hidden_states.shape attention_mask = attention_mask.expand(-1, query_tokens, -1) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) query = attn.head_to_batch_dim(query).contiguous() key = attn.head_to_batch_dim(key).contiguous() value = attn.head_to_batch_dim(value).contiguous() hidden_states = xformers.ops.memory_efficient_attention( query, key, value, attn_bias=attention_mask, op=self.attention_op ) hidden_states = hidden_states.to(query.dtype) hidden_states = attn.batch_to_head_dim(hidden_states) if ip_hidden_states: if ip_adapter_masks is not None: if not isinstance(ip_adapter_masks, List): # for backward compatibility, we accept `ip_adapter_mask` as a tensor of shape [num_ip_adapter, 1, height, width] ip_adapter_masks = list(ip_adapter_masks.unsqueeze(1)) if not (len(ip_adapter_masks) == len(self.scale) == len(ip_hidden_states)): raise ValueError( f"Length of ip_adapter_masks array ({len(ip_adapter_masks)}) must match " f"length of self.scale array ({len(self.scale)}) and number of ip_hidden_states " f"({len(ip_hidden_states)})" ) else: for index, (mask, scale, ip_state) in enumerate( zip(ip_adapter_masks, self.scale, ip_hidden_states) ): if mask is None: continue if not isinstance(mask, torch.Tensor) or mask.ndim != 4: raise ValueError( "Each element of the ip_adapter_masks array should be a tensor with shape " "[1, num_images_for_ip_adapter, height, width]." " Please use `IPAdapterMaskProcessor` to preprocess your mask" ) if mask.shape[1] != ip_state.shape[1]: raise ValueError( f"Number of masks ({mask.shape[1]}) does not match " f"number of ip images ({ip_state.shape[1]}) at index {index}" ) if isinstance(scale, list) and not len(scale) == mask.shape[1]: raise ValueError( f"Number of masks ({mask.shape[1]}) does not match " f"number of scales ({len(scale)}) at index {index}" ) else: ip_adapter_masks = [None] * len(self.scale) # for ip-adapter for current_ip_hidden_states, scale, to_k_ip, to_v_ip, mask in zip( ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip, ip_adapter_masks ): skip = False if isinstance(scale, list): if all(s == 0 for s in scale): skip = True elif scale == 0: skip = True if not skip: if mask is not None: mask = mask.to(torch.float16) if not isinstance(scale, list): scale = [scale] * mask.shape[1] current_num_images = mask.shape[1] for i in range(current_num_images): ip_key = to_k_ip(current_ip_hidden_states[:, i, :, :]) ip_value = to_v_ip(current_ip_hidden_states[:, i, :, :]) ip_key = attn.head_to_batch_dim(ip_key).contiguous() ip_value = attn.head_to_batch_dim(ip_value).contiguous() _current_ip_hidden_states = xformers.ops.memory_efficient_attention( query, ip_key, ip_value, op=self.attention_op ) _current_ip_hidden_states = _current_ip_hidden_states.to(query.dtype) _current_ip_hidden_states = attn.batch_to_head_dim(_current_ip_hidden_states) mask_downsample = IPAdapterMaskProcessor.downsample( mask[:, i, :, :], batch_size, _current_ip_hidden_states.shape[1], _current_ip_hidden_states.shape[2], ) mask_downsample = mask_downsample.to(dtype=query.dtype, device=query.device) hidden_states = hidden_states + scale[i] * (_current_ip_hidden_states * mask_downsample) else: ip_key = to_k_ip(current_ip_hidden_states) ip_value = to_v_ip(current_ip_hidden_states) ip_key = attn.head_to_batch_dim(ip_key).contiguous() ip_value = attn.head_to_batch_dim(ip_value).contiguous() current_ip_hidden_states = xformers.ops.memory_efficient_attention( query, ip_key, ip_value, op=self.attention_op ) current_ip_hidden_states = current_ip_hidden_states.to(query.dtype) current_ip_hidden_states = attn.batch_to_head_dim(current_ip_hidden_states) hidden_states = hidden_states + scale * current_ip_hidden_states # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class SD3IPAdapterJointAttnProcessor2_0(torch.nn.Module): """ Attention processor for IP-Adapter used typically in processing the SD3-like self-attention projections, with additional image-based information and timestep embeddings. Args: hidden_size (`int`): The number of hidden channels. ip_hidden_states_dim (`int`): The image feature dimension. head_dim (`int`): The number of head channels. timesteps_emb_dim (`int`, defaults to 1280): The number of input channels for timestep embedding. scale (`float`, defaults to 0.5): IP-Adapter scale. """ def __init__( self, hidden_size: int, ip_hidden_states_dim: int, head_dim: int, timesteps_emb_dim: int = 1280, scale: float = 0.5, ): super().__init__() # To prevent circular import from .normalization import AdaLayerNorm, RMSNorm self.norm_ip = AdaLayerNorm(timesteps_emb_dim, output_dim=ip_hidden_states_dim * 2, norm_eps=1e-6, chunk_dim=1) self.to_k_ip = nn.Linear(ip_hidden_states_dim, hidden_size, bias=False) self.to_v_ip = nn.Linear(ip_hidden_states_dim, hidden_size, bias=False) self.norm_q = RMSNorm(head_dim, 1e-6) self.norm_k = RMSNorm(head_dim, 1e-6) self.norm_ip_k = RMSNorm(head_dim, 1e-6) self.scale = scale def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, ip_hidden_states: torch.FloatTensor = None, temb: torch.FloatTensor = None, ) -> torch.FloatTensor: """ Perform the attention computation, integrating image features (if provided) and timestep embeddings. If `ip_hidden_states` is `None`, this is equivalent to using JointAttnProcessor2_0. Args: attn (`Attention`): Attention instance. hidden_states (`torch.FloatTensor`): Input `hidden_states`. encoder_hidden_states (`torch.FloatTensor`, *optional*): The encoder hidden states. attention_mask (`torch.FloatTensor`, *optional*): Attention mask. ip_hidden_states (`torch.FloatTensor`, *optional*): Image embeddings. temb (`torch.FloatTensor`, *optional*): Timestep embeddings. Returns: `torch.FloatTensor`: Output hidden states. """ residual = hidden_states batch_size = hidden_states.shape[0] # `sample` projections. query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) img_query = query img_key = key img_value = value if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # `context` projections. if encoder_hidden_states is not None: encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) if attn.norm_added_q is not None: encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) if attn.norm_added_k is not None: encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) query = torch.cat([query, encoder_hidden_states_query_proj], dim=2) key = torch.cat([key, encoder_hidden_states_key_proj], dim=2) value = torch.cat([value, encoder_hidden_states_value_proj], dim=2) hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) if encoder_hidden_states is not None: # Split the attention outputs. hidden_states, encoder_hidden_states = ( hidden_states[:, : residual.shape[1]], hidden_states[:, residual.shape[1] :], ) if not attn.context_pre_only: encoder_hidden_states = attn.to_add_out(encoder_hidden_states) # IP Adapter if self.scale != 0 and ip_hidden_states is not None: # Norm image features norm_ip_hidden_states = self.norm_ip(ip_hidden_states, temb=temb) # To k and v ip_key = self.to_k_ip(norm_ip_hidden_states) ip_value = self.to_v_ip(norm_ip_hidden_states) # Reshape ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # Norm query = self.norm_q(img_query) img_key = self.norm_k(img_key) ip_key = self.norm_ip_k(ip_key) # cat img key = torch.cat([img_key, ip_key], dim=2) value = torch.cat([img_value, ip_value], dim=2) ip_hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) ip_hidden_states = ip_hidden_states.transpose(1, 2).view(batch_size, -1, attn.heads * head_dim) ip_hidden_states = ip_hidden_states.to(query.dtype) hidden_states = hidden_states + ip_hidden_states * self.scale # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if encoder_hidden_states is not None: return hidden_states, encoder_hidden_states else: return hidden_states class PAGIdentitySelfAttnProcessor2_0: r""" Processor for implementing PAG using scaled dot-product attention (enabled by default if you're using PyTorch 2.0). PAG reference: https://arxiv.org/abs/2403.17377 """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "PAGIdentitySelfAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, temb: Optional[torch.FloatTensor] = None, ) -> torch.Tensor: residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) # chunk hidden_states_org, hidden_states_ptb = hidden_states.chunk(2) # original path batch_size, sequence_length, _ = hidden_states_org.shape if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states_org = attn.group_norm(hidden_states_org.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states_org) key = attn.to_k(hidden_states_org) value = attn.to_v(hidden_states_org) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states_org = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states_org = hidden_states_org.to(query.dtype) # linear proj hidden_states_org = attn.to_out[0](hidden_states_org) # dropout hidden_states_org = attn.to_out[1](hidden_states_org) if input_ndim == 4: hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width) # perturbed path (identity attention) batch_size, sequence_length, _ = hidden_states_ptb.shape if attn.group_norm is not None: hidden_states_ptb = attn.group_norm(hidden_states_ptb.transpose(1, 2)).transpose(1, 2) hidden_states_ptb = attn.to_v(hidden_states_ptb) hidden_states_ptb = hidden_states_ptb.to(query.dtype) # linear proj hidden_states_ptb = attn.to_out[0](hidden_states_ptb) # dropout hidden_states_ptb = attn.to_out[1](hidden_states_ptb) if input_ndim == 4: hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width) # cat hidden_states = torch.cat([hidden_states_org, hidden_states_ptb]) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class PAGCFGIdentitySelfAttnProcessor2_0: r""" Processor for implementing PAG using scaled dot-product attention (enabled by default if you're using PyTorch 2.0). PAG reference: https://arxiv.org/abs/2403.17377 """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "PAGCFGIdentitySelfAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, temb: Optional[torch.FloatTensor] = None, ) -> torch.Tensor: residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) # chunk hidden_states_uncond, hidden_states_org, hidden_states_ptb = hidden_states.chunk(3) hidden_states_org = torch.cat([hidden_states_uncond, hidden_states_org]) # original path batch_size, sequence_length, _ = hidden_states_org.shape if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states_org = attn.group_norm(hidden_states_org.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states_org) key = attn.to_k(hidden_states_org) value = attn.to_v(hidden_states_org) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states_org = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states_org = hidden_states_org.to(query.dtype) # linear proj hidden_states_org = attn.to_out[0](hidden_states_org) # dropout hidden_states_org = attn.to_out[1](hidden_states_org) if input_ndim == 4: hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width) # perturbed path (identity attention) batch_size, sequence_length, _ = hidden_states_ptb.shape if attn.group_norm is not None: hidden_states_ptb = attn.group_norm(hidden_states_ptb.transpose(1, 2)).transpose(1, 2) value = attn.to_v(hidden_states_ptb) hidden_states_ptb = value hidden_states_ptb = hidden_states_ptb.to(query.dtype) # linear proj hidden_states_ptb = attn.to_out[0](hidden_states_ptb) # dropout hidden_states_ptb = attn.to_out[1](hidden_states_ptb) if input_ndim == 4: hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width) # cat hidden_states = torch.cat([hidden_states_org, hidden_states_ptb]) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class SanaMultiscaleAttnProcessor2_0: r""" Processor for implementing multiscale quadratic attention. """ def __call__(self, attn: SanaMultiscaleLinearAttention, hidden_states: torch.Tensor) -> torch.Tensor: height, width = hidden_states.shape[-2:] if height * width > attn.attention_head_dim: use_linear_attention = True else: use_linear_attention = False residual = hidden_states batch_size, _, height, width = list(hidden_states.size()) original_dtype = hidden_states.dtype hidden_states = hidden_states.movedim(1, -1) query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) hidden_states = torch.cat([query, key, value], dim=3) hidden_states = hidden_states.movedim(-1, 1) multi_scale_qkv = [hidden_states] for block in attn.to_qkv_multiscale: multi_scale_qkv.append(block(hidden_states)) hidden_states = torch.cat(multi_scale_qkv, dim=1) if use_linear_attention: # for linear attention upcast hidden_states to float32 hidden_states = hidden_states.to(dtype=torch.float32) hidden_states = hidden_states.reshape(batch_size, -1, 3 * attn.attention_head_dim, height * width) query, key, value = hidden_states.chunk(3, dim=2) query = attn.nonlinearity(query) key = attn.nonlinearity(key) if use_linear_attention: hidden_states = attn.apply_linear_attention(query, key, value) hidden_states = hidden_states.to(dtype=original_dtype) else: hidden_states = attn.apply_quadratic_attention(query, key, value) hidden_states = torch.reshape(hidden_states, (batch_size, -1, height, width)) hidden_states = attn.to_out(hidden_states.movedim(1, -1)).movedim(-1, 1) if attn.norm_type == "rms_norm": hidden_states = attn.norm_out(hidden_states.movedim(1, -1)).movedim(-1, 1) else: hidden_states = attn.norm_out(hidden_states) if attn.residual_connection: hidden_states = hidden_states + residual return hidden_states class LoRAAttnProcessor: r""" Processor for implementing attention with LoRA. """ def __init__(self): pass class LoRAAttnProcessor2_0: r""" Processor for implementing attention with LoRA (enabled by default if you're using PyTorch 2.0). """ def __init__(self): pass class LoRAXFormersAttnProcessor: r""" Processor for implementing attention with LoRA using xFormers. """ def __init__(self): pass class LoRAAttnAddedKVProcessor: r""" Processor for implementing attention with LoRA with extra learnable key and value matrices for the text encoder. """ def __init__(self): pass class FluxSingleAttnProcessor2_0(FluxAttnProcessor2_0): r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). """ def __init__(self): deprecation_message = "`FluxSingleAttnProcessor2_0` is deprecated and will be removed in a future version. Please use `FluxAttnProcessor2_0` instead." deprecate("FluxSingleAttnProcessor2_0", "0.32.0", deprecation_message) super().__init__() class SanaLinearAttnProcessor2_0: r""" Processor for implementing scaled dot-product linear attention. """ def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: original_dtype = hidden_states.dtype if encoder_hidden_states is None: encoder_hidden_states = hidden_states query = attn.to_q(hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) query = query.transpose(1, 2).unflatten(1, (attn.heads, -1)) key = key.transpose(1, 2).unflatten(1, (attn.heads, -1)).transpose(2, 3) value = value.transpose(1, 2).unflatten(1, (attn.heads, -1)) query = F.relu(query) key = F.relu(key) query, key, value = query.float(), key.float(), value.float() value = F.pad(value, (0, 0, 0, 1), mode="constant", value=1.0) scores = torch.matmul(value, key) hidden_states = torch.matmul(scores, query) hidden_states = hidden_states[:, :, :-1] / (hidden_states[:, :, -1:] + 1e-15) hidden_states = hidden_states.flatten(1, 2).transpose(1, 2) hidden_states = hidden_states.to(original_dtype) hidden_states = attn.to_out[0](hidden_states) hidden_states = attn.to_out[1](hidden_states) if original_dtype == torch.float16: hidden_states = hidden_states.clip(-65504, 65504) return hidden_states class PAGCFGSanaLinearAttnProcessor2_0: r""" Processor for implementing scaled dot-product linear attention. """ def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: original_dtype = hidden_states.dtype hidden_states_uncond, hidden_states_org, hidden_states_ptb = hidden_states.chunk(3) hidden_states_org = torch.cat([hidden_states_uncond, hidden_states_org]) query = attn.to_q(hidden_states_org) key = attn.to_k(hidden_states_org) value = attn.to_v(hidden_states_org) query = query.transpose(1, 2).unflatten(1, (attn.heads, -1)) key = key.transpose(1, 2).unflatten(1, (attn.heads, -1)).transpose(2, 3) value = value.transpose(1, 2).unflatten(1, (attn.heads, -1)) query = F.relu(query) key = F.relu(key) query, key, value = query.float(), key.float(), value.float() value = F.pad(value, (0, 0, 0, 1), mode="constant", value=1.0) scores = torch.matmul(value, key) hidden_states_org = torch.matmul(scores, query) hidden_states_org = hidden_states_org[:, :, :-1] / (hidden_states_org[:, :, -1:] + 1e-15) hidden_states_org = hidden_states_org.flatten(1, 2).transpose(1, 2) hidden_states_org = hidden_states_org.to(original_dtype) hidden_states_org = attn.to_out[0](hidden_states_org) hidden_states_org = attn.to_out[1](hidden_states_org) # perturbed path (identity attention) hidden_states_ptb = attn.to_v(hidden_states_ptb).to(original_dtype) hidden_states_ptb = attn.to_out[0](hidden_states_ptb) hidden_states_ptb = attn.to_out[1](hidden_states_ptb) hidden_states = torch.cat([hidden_states_org, hidden_states_ptb]) if original_dtype == torch.float16: hidden_states = hidden_states.clip(-65504, 65504) return hidden_states class PAGIdentitySanaLinearAttnProcessor2_0: r""" Processor for implementing scaled dot-product linear attention. """ def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: original_dtype = hidden_states.dtype hidden_states_org, hidden_states_ptb = hidden_states.chunk(2) query = attn.to_q(hidden_states_org) key = attn.to_k(hidden_states_org) value = attn.to_v(hidden_states_org) query = query.transpose(1, 2).unflatten(1, (attn.heads, -1)) key = key.transpose(1, 2).unflatten(1, (attn.heads, -1)).transpose(2, 3) value = value.transpose(1, 2).unflatten(1, (attn.heads, -1)) query = F.relu(query) key = F.relu(key) query, key, value = query.float(), key.float(), value.float() value = F.pad(value, (0, 0, 0, 1), mode="constant", value=1.0) scores = torch.matmul(value, key) hidden_states_org = torch.matmul(scores, query) if hidden_states_org.dtype in [torch.float16, torch.bfloat16]: hidden_states_org = hidden_states_org.float() hidden_states_org = hidden_states_org[:, :, :-1] / (hidden_states_org[:, :, -1:] + 1e-15) hidden_states_org = hidden_states_org.flatten(1, 2).transpose(1, 2) hidden_states_org = hidden_states_org.to(original_dtype) hidden_states_org = attn.to_out[0](hidden_states_org) hidden_states_org = attn.to_out[1](hidden_states_org) # perturbed path (identity attention) hidden_states_ptb = attn.to_v(hidden_states_ptb).to(original_dtype) hidden_states_ptb = attn.to_out[0](hidden_states_ptb) hidden_states_ptb = attn.to_out[1](hidden_states_ptb) hidden_states = torch.cat([hidden_states_org, hidden_states_ptb]) if original_dtype == torch.float16: hidden_states = hidden_states.clip(-65504, 65504) return hidden_states ADDED_KV_ATTENTION_PROCESSORS = ( AttnAddedKVProcessor, SlicedAttnAddedKVProcessor, AttnAddedKVProcessor2_0, XFormersAttnAddedKVProcessor, ) CROSS_ATTENTION_PROCESSORS = ( AttnProcessor, AttnProcessor2_0, XFormersAttnProcessor, SlicedAttnProcessor, IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0, FluxIPAdapterJointAttnProcessor2_0, ) AttentionProcessor = Union[ AttnProcessor, CustomDiffusionAttnProcessor, AttnAddedKVProcessor, AttnAddedKVProcessor2_0, JointAttnProcessor2_0, PAGJointAttnProcessor2_0, PAGCFGJointAttnProcessor2_0, FusedJointAttnProcessor2_0, AllegroAttnProcessor2_0, AuraFlowAttnProcessor2_0, FusedAuraFlowAttnProcessor2_0, FluxAttnProcessor2_0, FluxAttnProcessor2_0_NPU, FusedFluxAttnProcessor2_0, FusedFluxAttnProcessor2_0_NPU, CogVideoXAttnProcessor2_0, FusedCogVideoXAttnProcessor2_0, XFormersAttnAddedKVProcessor, XFormersAttnProcessor, XLAFlashAttnProcessor2_0, AttnProcessorNPU, AttnProcessor2_0, MochiVaeAttnProcessor2_0, MochiAttnProcessor2_0, StableAudioAttnProcessor2_0, HunyuanAttnProcessor2_0, FusedHunyuanAttnProcessor2_0, PAGHunyuanAttnProcessor2_0, PAGCFGHunyuanAttnProcessor2_0, LuminaAttnProcessor2_0, FusedAttnProcessor2_0, CustomDiffusionXFormersAttnProcessor, CustomDiffusionAttnProcessor2_0, SlicedAttnProcessor, SlicedAttnAddedKVProcessor, SanaLinearAttnProcessor2_0, PAGCFGSanaLinearAttnProcessor2_0, PAGIdentitySanaLinearAttnProcessor2_0, SanaMultiscaleLinearAttention, SanaMultiscaleAttnProcessor2_0, SanaMultiscaleAttentionProjection, IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0, IPAdapterXFormersAttnProcessor, SD3IPAdapterJointAttnProcessor2_0, PAGIdentitySelfAttnProcessor2_0, PAGCFGIdentitySelfAttnProcessor2_0, LoRAAttnProcessor, LoRAAttnProcessor2_0, LoRAXFormersAttnProcessor, LoRAAttnAddedKVProcessor, ]
diffusers/src/diffusers/models/attention_processor.py/0
{ "file_path": "diffusers/src/diffusers/models/attention_processor.py", "repo_id": "diffusers", "token_count": 121917 }
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..utils.logging import get_logger logger = get_logger(__name__) # pylint: disable=invalid-name class CacheMixin: r""" A class for enable/disabling caching techniques on diffusion models. Supported caching techniques: - [Pyramid Attention Broadcast](https://huggingface.co/papers/2408.12588) """ _cache_config = None @property def is_cache_enabled(self) -> bool: return self._cache_config is not None def enable_cache(self, config) -> None: r""" Enable caching techniques on the model. Args: config (`Union[PyramidAttentionBroadcastConfig]`): The configuration for applying the caching technique. Currently supported caching techniques are: - [`~hooks.PyramidAttentionBroadcastConfig`] Example: ```python >>> import torch >>> from diffusers import CogVideoXPipeline, PyramidAttentionBroadcastConfig >>> pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-5b", torch_dtype=torch.bfloat16) >>> pipe.to("cuda") >>> config = PyramidAttentionBroadcastConfig( ... spatial_attention_block_skip_range=2, ... spatial_attention_timestep_skip_range=(100, 800), ... current_timestep_callback=lambda: pipe.current_timestep, ... ) >>> pipe.transformer.enable_cache(config) ``` """ from ..hooks import PyramidAttentionBroadcastConfig, apply_pyramid_attention_broadcast if isinstance(config, PyramidAttentionBroadcastConfig): apply_pyramid_attention_broadcast(self, config) else: raise ValueError(f"Cache config {type(config)} is not supported.") self._cache_config = config def disable_cache(self) -> None: from ..hooks import HookRegistry, PyramidAttentionBroadcastConfig if self._cache_config is None: logger.warning("Caching techniques have not been enabled, so there's nothing to disable.") return if isinstance(self._cache_config, PyramidAttentionBroadcastConfig): registry = HookRegistry.check_if_exists_or_initialize(self) registry.remove_hook("pyramid_attention_broadcast", recurse=True) else: raise ValueError(f"Cache config {type(self._cache_config)} is not supported.") self._cache_config = None def _reset_stateful_cache(self, recurse: bool = True) -> None: from ..hooks import HookRegistry HookRegistry.check_if_exists_or_initialize(self).reset_stateful_hooks(recurse=recurse)
diffusers/src/diffusers/models/cache_utils.py/0
{ "file_path": "diffusers/src/diffusers/models/cache_utils.py", "repo_id": "diffusers", "token_count": 1197 }
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import List, Optional, Tuple, Union import numpy as np import torch import torch.nn.functional as F from torch import nn from ..utils import deprecate from .activations import FP32SiLU, get_activation from .attention_processor import Attention def get_timestep_embedding( timesteps: torch.Tensor, embedding_dim: int, flip_sin_to_cos: bool = False, downscale_freq_shift: float = 1, scale: float = 1, max_period: int = 10000, ): """ This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings. Args timesteps (torch.Tensor): a 1-D Tensor of N indices, one per batch element. These may be fractional. embedding_dim (int): the dimension of the output. flip_sin_to_cos (bool): Whether the embedding order should be `cos, sin` (if True) or `sin, cos` (if False) downscale_freq_shift (float): Controls the delta between frequencies between dimensions scale (float): Scaling factor applied to the embeddings. max_period (int): Controls the maximum frequency of the embeddings Returns torch.Tensor: an [N x dim] Tensor of positional embeddings. """ assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array" half_dim = embedding_dim // 2 exponent = -math.log(max_period) * torch.arange( start=0, end=half_dim, dtype=torch.float32, device=timesteps.device ) exponent = exponent / (half_dim - downscale_freq_shift) emb = torch.exp(exponent) emb = timesteps[:, None].float() * emb[None, :] # scale embeddings emb = scale * emb # concat sine and cosine embeddings emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1) # flip sine and cosine embeddings if flip_sin_to_cos: emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1) # zero pad if embedding_dim % 2 == 1: emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) return emb def get_3d_sincos_pos_embed( embed_dim: int, spatial_size: Union[int, Tuple[int, int]], temporal_size: int, spatial_interpolation_scale: float = 1.0, temporal_interpolation_scale: float = 1.0, device: Optional[torch.device] = None, output_type: str = "np", ) -> torch.Tensor: r""" Creates 3D sinusoidal positional embeddings. Args: embed_dim (`int`): The embedding dimension of inputs. It must be divisible by 16. spatial_size (`int` or `Tuple[int, int]`): The spatial dimension of positional embeddings. If an integer is provided, the same size is applied to both spatial dimensions (height and width). temporal_size (`int`): The temporal dimension of postional embeddings (number of frames). spatial_interpolation_scale (`float`, defaults to 1.0): Scale factor for spatial grid interpolation. temporal_interpolation_scale (`float`, defaults to 1.0): Scale factor for temporal grid interpolation. Returns: `torch.Tensor`: The 3D sinusoidal positional embeddings of shape `[temporal_size, spatial_size[0] * spatial_size[1], embed_dim]`. """ if output_type == "np": return _get_3d_sincos_pos_embed_np( embed_dim=embed_dim, spatial_size=spatial_size, temporal_size=temporal_size, spatial_interpolation_scale=spatial_interpolation_scale, temporal_interpolation_scale=temporal_interpolation_scale, ) if embed_dim % 4 != 0: raise ValueError("`embed_dim` must be divisible by 4") if isinstance(spatial_size, int): spatial_size = (spatial_size, spatial_size) embed_dim_spatial = 3 * embed_dim // 4 embed_dim_temporal = embed_dim // 4 # 1. Spatial grid_h = torch.arange(spatial_size[1], device=device, dtype=torch.float32) / spatial_interpolation_scale grid_w = torch.arange(spatial_size[0], device=device, dtype=torch.float32) / spatial_interpolation_scale grid = torch.meshgrid(grid_w, grid_h, indexing="xy") # here w goes first grid = torch.stack(grid, dim=0) grid = grid.reshape([2, 1, spatial_size[1], spatial_size[0]]) pos_embed_spatial = get_2d_sincos_pos_embed_from_grid(embed_dim_spatial, grid, output_type="pt") # 2. Temporal grid_t = torch.arange(temporal_size, device=device, dtype=torch.float32) / temporal_interpolation_scale pos_embed_temporal = get_1d_sincos_pos_embed_from_grid(embed_dim_temporal, grid_t, output_type="pt") # 3. Concat pos_embed_spatial = pos_embed_spatial[None, :, :] pos_embed_spatial = pos_embed_spatial.repeat_interleave(temporal_size, dim=0) # [T, H*W, D // 4 * 3] pos_embed_temporal = pos_embed_temporal[:, None, :] pos_embed_temporal = pos_embed_temporal.repeat_interleave( spatial_size[0] * spatial_size[1], dim=1 ) # [T, H*W, D // 4] pos_embed = torch.concat([pos_embed_temporal, pos_embed_spatial], dim=-1) # [T, H*W, D] return pos_embed def _get_3d_sincos_pos_embed_np( embed_dim: int, spatial_size: Union[int, Tuple[int, int]], temporal_size: int, spatial_interpolation_scale: float = 1.0, temporal_interpolation_scale: float = 1.0, ) -> np.ndarray: r""" Creates 3D sinusoidal positional embeddings. Args: embed_dim (`int`): The embedding dimension of inputs. It must be divisible by 16. spatial_size (`int` or `Tuple[int, int]`): The spatial dimension of positional embeddings. If an integer is provided, the same size is applied to both spatial dimensions (height and width). temporal_size (`int`): The temporal dimension of postional embeddings (number of frames). spatial_interpolation_scale (`float`, defaults to 1.0): Scale factor for spatial grid interpolation. temporal_interpolation_scale (`float`, defaults to 1.0): Scale factor for temporal grid interpolation. Returns: `np.ndarray`: The 3D sinusoidal positional embeddings of shape `[temporal_size, spatial_size[0] * spatial_size[1], embed_dim]`. """ deprecation_message = ( "`get_3d_sincos_pos_embed` uses `torch` and supports `device`." " `from_numpy` is no longer required." " Pass `output_type='pt' to use the new version now." ) deprecate("output_type=='np'", "0.33.0", deprecation_message, standard_warn=False) if embed_dim % 4 != 0: raise ValueError("`embed_dim` must be divisible by 4") if isinstance(spatial_size, int): spatial_size = (spatial_size, spatial_size) embed_dim_spatial = 3 * embed_dim // 4 embed_dim_temporal = embed_dim // 4 # 1. Spatial grid_h = np.arange(spatial_size[1], dtype=np.float32) / spatial_interpolation_scale grid_w = np.arange(spatial_size[0], dtype=np.float32) / spatial_interpolation_scale grid = np.meshgrid(grid_w, grid_h) # here w goes first grid = np.stack(grid, axis=0) grid = grid.reshape([2, 1, spatial_size[1], spatial_size[0]]) pos_embed_spatial = get_2d_sincos_pos_embed_from_grid(embed_dim_spatial, grid) # 2. Temporal grid_t = np.arange(temporal_size, dtype=np.float32) / temporal_interpolation_scale pos_embed_temporal = get_1d_sincos_pos_embed_from_grid(embed_dim_temporal, grid_t) # 3. Concat pos_embed_spatial = pos_embed_spatial[np.newaxis, :, :] pos_embed_spatial = np.repeat(pos_embed_spatial, temporal_size, axis=0) # [T, H*W, D // 4 * 3] pos_embed_temporal = pos_embed_temporal[:, np.newaxis, :] pos_embed_temporal = np.repeat(pos_embed_temporal, spatial_size[0] * spatial_size[1], axis=1) # [T, H*W, D // 4] pos_embed = np.concatenate([pos_embed_temporal, pos_embed_spatial], axis=-1) # [T, H*W, D] return pos_embed def get_2d_sincos_pos_embed( embed_dim, grid_size, cls_token=False, extra_tokens=0, interpolation_scale=1.0, base_size=16, device: Optional[torch.device] = None, output_type: str = "np", ): """ Creates 2D sinusoidal positional embeddings. Args: embed_dim (`int`): The embedding dimension. grid_size (`int`): The size of the grid height and width. cls_token (`bool`, defaults to `False`): Whether or not to add a classification token. extra_tokens (`int`, defaults to `0`): The number of extra tokens to add. interpolation_scale (`float`, defaults to `1.0`): The scale of the interpolation. Returns: pos_embed (`torch.Tensor`): Shape is either `[grid_size * grid_size, embed_dim]` if not using cls_token, or `[1 + grid_size*grid_size, embed_dim]` if using cls_token """ if output_type == "np": deprecation_message = ( "`get_2d_sincos_pos_embed` uses `torch` and supports `device`." " `from_numpy` is no longer required." " Pass `output_type='pt' to use the new version now." ) deprecate("output_type=='np'", "0.33.0", deprecation_message, standard_warn=False) return get_2d_sincos_pos_embed_np( embed_dim=embed_dim, grid_size=grid_size, cls_token=cls_token, extra_tokens=extra_tokens, interpolation_scale=interpolation_scale, base_size=base_size, ) if isinstance(grid_size, int): grid_size = (grid_size, grid_size) grid_h = ( torch.arange(grid_size[0], device=device, dtype=torch.float32) / (grid_size[0] / base_size) / interpolation_scale ) grid_w = ( torch.arange(grid_size[1], device=device, dtype=torch.float32) / (grid_size[1] / base_size) / interpolation_scale ) grid = torch.meshgrid(grid_w, grid_h, indexing="xy") # here w goes first grid = torch.stack(grid, dim=0) grid = grid.reshape([2, 1, grid_size[1], grid_size[0]]) pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid, output_type=output_type) if cls_token and extra_tokens > 0: pos_embed = torch.concat([torch.zeros([extra_tokens, embed_dim]), pos_embed], dim=0) return pos_embed def get_2d_sincos_pos_embed_from_grid(embed_dim, grid, output_type="np"): r""" This function generates 2D sinusoidal positional embeddings from a grid. Args: embed_dim (`int`): The embedding dimension. grid (`torch.Tensor`): Grid of positions with shape `(H * W,)`. Returns: `torch.Tensor`: The 2D sinusoidal positional embeddings with shape `(H * W, embed_dim)` """ if output_type == "np": deprecation_message = ( "`get_2d_sincos_pos_embed_from_grid` uses `torch` and supports `device`." " `from_numpy` is no longer required." " Pass `output_type='pt' to use the new version now." ) deprecate("output_type=='np'", "0.33.0", deprecation_message, standard_warn=False) return get_2d_sincos_pos_embed_from_grid_np( embed_dim=embed_dim, grid=grid, ) if embed_dim % 2 != 0: raise ValueError("embed_dim must be divisible by 2") # use half of dimensions to encode grid_h emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0], output_type=output_type) # (H*W, D/2) emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1], output_type=output_type) # (H*W, D/2) emb = torch.concat([emb_h, emb_w], dim=1) # (H*W, D) return emb def get_1d_sincos_pos_embed_from_grid(embed_dim, pos, output_type="np"): """ This function generates 1D positional embeddings from a grid. Args: embed_dim (`int`): The embedding dimension `D` pos (`torch.Tensor`): 1D tensor of positions with shape `(M,)` Returns: `torch.Tensor`: Sinusoidal positional embeddings of shape `(M, D)`. """ if output_type == "np": deprecation_message = ( "`get_1d_sincos_pos_embed_from_grid` uses `torch` and supports `device`." " `from_numpy` is no longer required." " Pass `output_type='pt' to use the new version now." ) deprecate("output_type=='np'", "0.33.0", deprecation_message, standard_warn=False) return get_1d_sincos_pos_embed_from_grid_np(embed_dim=embed_dim, pos=pos) if embed_dim % 2 != 0: raise ValueError("embed_dim must be divisible by 2") omega = torch.arange(embed_dim // 2, device=pos.device, dtype=torch.float64) omega /= embed_dim / 2.0 omega = 1.0 / 10000**omega # (D/2,) pos = pos.reshape(-1) # (M,) out = torch.outer(pos, omega) # (M, D/2), outer product emb_sin = torch.sin(out) # (M, D/2) emb_cos = torch.cos(out) # (M, D/2) emb = torch.concat([emb_sin, emb_cos], dim=1) # (M, D) return emb def get_2d_sincos_pos_embed_np( embed_dim, grid_size, cls_token=False, extra_tokens=0, interpolation_scale=1.0, base_size=16 ): """ Creates 2D sinusoidal positional embeddings. Args: embed_dim (`int`): The embedding dimension. grid_size (`int`): The size of the grid height and width. cls_token (`bool`, defaults to `False`): Whether or not to add a classification token. extra_tokens (`int`, defaults to `0`): The number of extra tokens to add. interpolation_scale (`float`, defaults to `1.0`): The scale of the interpolation. Returns: pos_embed (`np.ndarray`): Shape is either `[grid_size * grid_size, embed_dim]` if not using cls_token, or `[1 + grid_size*grid_size, embed_dim]` if using cls_token """ if isinstance(grid_size, int): grid_size = (grid_size, grid_size) grid_h = np.arange(grid_size[0], dtype=np.float32) / (grid_size[0] / base_size) / interpolation_scale grid_w = np.arange(grid_size[1], dtype=np.float32) / (grid_size[1] / base_size) / interpolation_scale grid = np.meshgrid(grid_w, grid_h) # here w goes first grid = np.stack(grid, axis=0) grid = grid.reshape([2, 1, grid_size[1], grid_size[0]]) pos_embed = get_2d_sincos_pos_embed_from_grid_np(embed_dim, grid) if cls_token and extra_tokens > 0: pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0) return pos_embed def get_2d_sincos_pos_embed_from_grid_np(embed_dim, grid): r""" This function generates 2D sinusoidal positional embeddings from a grid. Args: embed_dim (`int`): The embedding dimension. grid (`np.ndarray`): Grid of positions with shape `(H * W,)`. Returns: `np.ndarray`: The 2D sinusoidal positional embeddings with shape `(H * W, embed_dim)` """ if embed_dim % 2 != 0: raise ValueError("embed_dim must be divisible by 2") # use half of dimensions to encode grid_h emb_h = get_1d_sincos_pos_embed_from_grid_np(embed_dim // 2, grid[0]) # (H*W, D/2) emb_w = get_1d_sincos_pos_embed_from_grid_np(embed_dim // 2, grid[1]) # (H*W, D/2) emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) return emb def get_1d_sincos_pos_embed_from_grid_np(embed_dim, pos): """ This function generates 1D positional embeddings from a grid. Args: embed_dim (`int`): The embedding dimension `D` pos (`numpy.ndarray`): 1D tensor of positions with shape `(M,)` Returns: `numpy.ndarray`: Sinusoidal positional embeddings of shape `(M, D)`. """ if embed_dim % 2 != 0: raise ValueError("embed_dim must be divisible by 2") omega = np.arange(embed_dim // 2, dtype=np.float64) omega /= embed_dim / 2.0 omega = 1.0 / 10000**omega # (D/2,) pos = pos.reshape(-1) # (M,) out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product emb_sin = np.sin(out) # (M, D/2) emb_cos = np.cos(out) # (M, D/2) emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) return emb class PatchEmbed(nn.Module): """ 2D Image to Patch Embedding with support for SD3 cropping. Args: height (`int`, defaults to `224`): The height of the image. width (`int`, defaults to `224`): The width of the image. patch_size (`int`, defaults to `16`): The size of the patches. in_channels (`int`, defaults to `3`): The number of input channels. embed_dim (`int`, defaults to `768`): The output dimension of the embedding. layer_norm (`bool`, defaults to `False`): Whether or not to use layer normalization. flatten (`bool`, defaults to `True`): Whether or not to flatten the output. bias (`bool`, defaults to `True`): Whether or not to use bias. interpolation_scale (`float`, defaults to `1`): The scale of the interpolation. pos_embed_type (`str`, defaults to `"sincos"`): The type of positional embedding. pos_embed_max_size (`int`, defaults to `None`): The maximum size of the positional embedding. """ def __init__( self, height=224, width=224, patch_size=16, in_channels=3, embed_dim=768, layer_norm=False, flatten=True, bias=True, interpolation_scale=1, pos_embed_type="sincos", pos_embed_max_size=None, # For SD3 cropping ): super().__init__() num_patches = (height // patch_size) * (width // patch_size) self.flatten = flatten self.layer_norm = layer_norm self.pos_embed_max_size = pos_embed_max_size self.proj = nn.Conv2d( in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias ) if layer_norm: self.norm = nn.LayerNorm(embed_dim, elementwise_affine=False, eps=1e-6) else: self.norm = None self.patch_size = patch_size self.height, self.width = height // patch_size, width // patch_size self.base_size = height // patch_size self.interpolation_scale = interpolation_scale # Calculate positional embeddings based on max size or default if pos_embed_max_size: grid_size = pos_embed_max_size else: grid_size = int(num_patches**0.5) if pos_embed_type is None: self.pos_embed = None elif pos_embed_type == "sincos": pos_embed = get_2d_sincos_pos_embed( embed_dim, grid_size, base_size=self.base_size, interpolation_scale=self.interpolation_scale, output_type="pt", ) persistent = True if pos_embed_max_size else False self.register_buffer("pos_embed", pos_embed.float().unsqueeze(0), persistent=persistent) else: raise ValueError(f"Unsupported pos_embed_type: {pos_embed_type}") def cropped_pos_embed(self, height, width): """Crops positional embeddings for SD3 compatibility.""" if self.pos_embed_max_size is None: raise ValueError("`pos_embed_max_size` must be set for cropping.") height = height // self.patch_size width = width // self.patch_size if height > self.pos_embed_max_size: raise ValueError( f"Height ({height}) cannot be greater than `pos_embed_max_size`: {self.pos_embed_max_size}." ) if width > self.pos_embed_max_size: raise ValueError( f"Width ({width}) cannot be greater than `pos_embed_max_size`: {self.pos_embed_max_size}." ) top = (self.pos_embed_max_size - height) // 2 left = (self.pos_embed_max_size - width) // 2 spatial_pos_embed = self.pos_embed.reshape(1, self.pos_embed_max_size, self.pos_embed_max_size, -1) spatial_pos_embed = spatial_pos_embed[:, top : top + height, left : left + width, :] spatial_pos_embed = spatial_pos_embed.reshape(1, -1, spatial_pos_embed.shape[-1]) return spatial_pos_embed def forward(self, latent): if self.pos_embed_max_size is not None: height, width = latent.shape[-2:] else: height, width = latent.shape[-2] // self.patch_size, latent.shape[-1] // self.patch_size latent = self.proj(latent) if self.flatten: latent = latent.flatten(2).transpose(1, 2) # BCHW -> BNC if self.layer_norm: latent = self.norm(latent) if self.pos_embed is None: return latent.to(latent.dtype) # Interpolate or crop positional embeddings as needed if self.pos_embed_max_size: pos_embed = self.cropped_pos_embed(height, width) else: if self.height != height or self.width != width: pos_embed = get_2d_sincos_pos_embed( embed_dim=self.pos_embed.shape[-1], grid_size=(height, width), base_size=self.base_size, interpolation_scale=self.interpolation_scale, device=latent.device, output_type="pt", ) pos_embed = pos_embed.float().unsqueeze(0) else: pos_embed = self.pos_embed return (latent + pos_embed).to(latent.dtype) class LuminaPatchEmbed(nn.Module): """ 2D Image to Patch Embedding with support for Lumina-T2X Args: patch_size (`int`, defaults to `2`): The size of the patches. in_channels (`int`, defaults to `4`): The number of input channels. embed_dim (`int`, defaults to `768`): The output dimension of the embedding. bias (`bool`, defaults to `True`): Whether or not to use bias. """ def __init__(self, patch_size=2, in_channels=4, embed_dim=768, bias=True): super().__init__() self.patch_size = patch_size self.proj = nn.Linear( in_features=patch_size * patch_size * in_channels, out_features=embed_dim, bias=bias, ) def forward(self, x, freqs_cis): """ Patchifies and embeds the input tensor(s). Args: x (List[torch.Tensor] | torch.Tensor): The input tensor(s) to be patchified and embedded. Returns: Tuple[torch.Tensor, torch.Tensor, List[Tuple[int, int]], torch.Tensor]: A tuple containing the patchified and embedded tensor(s), the mask indicating the valid patches, the original image size(s), and the frequency tensor(s). """ freqs_cis = freqs_cis.to(x[0].device) patch_height = patch_width = self.patch_size batch_size, channel, height, width = x.size() height_tokens, width_tokens = height // patch_height, width // patch_width x = x.view(batch_size, channel, height_tokens, patch_height, width_tokens, patch_width).permute( 0, 2, 4, 1, 3, 5 ) x = x.flatten(3) x = self.proj(x) x = x.flatten(1, 2) mask = torch.ones(x.shape[0], x.shape[1], dtype=torch.int32, device=x.device) return ( x, mask, [(height, width)] * batch_size, freqs_cis[:height_tokens, :width_tokens].flatten(0, 1).unsqueeze(0), ) class CogVideoXPatchEmbed(nn.Module): def __init__( self, patch_size: int = 2, patch_size_t: Optional[int] = None, in_channels: int = 16, embed_dim: int = 1920, text_embed_dim: int = 4096, bias: bool = True, sample_width: int = 90, sample_height: int = 60, sample_frames: int = 49, temporal_compression_ratio: int = 4, max_text_seq_length: int = 226, spatial_interpolation_scale: float = 1.875, temporal_interpolation_scale: float = 1.0, use_positional_embeddings: bool = True, use_learned_positional_embeddings: bool = True, ) -> None: super().__init__() self.patch_size = patch_size self.patch_size_t = patch_size_t self.embed_dim = embed_dim self.sample_height = sample_height self.sample_width = sample_width self.sample_frames = sample_frames self.temporal_compression_ratio = temporal_compression_ratio self.max_text_seq_length = max_text_seq_length self.spatial_interpolation_scale = spatial_interpolation_scale self.temporal_interpolation_scale = temporal_interpolation_scale self.use_positional_embeddings = use_positional_embeddings self.use_learned_positional_embeddings = use_learned_positional_embeddings if patch_size_t is None: # CogVideoX 1.0 checkpoints self.proj = nn.Conv2d( in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias ) else: # CogVideoX 1.5 checkpoints self.proj = nn.Linear(in_channels * patch_size * patch_size * patch_size_t, embed_dim) self.text_proj = nn.Linear(text_embed_dim, embed_dim) if use_positional_embeddings or use_learned_positional_embeddings: persistent = use_learned_positional_embeddings pos_embedding = self._get_positional_embeddings(sample_height, sample_width, sample_frames) self.register_buffer("pos_embedding", pos_embedding, persistent=persistent) def _get_positional_embeddings( self, sample_height: int, sample_width: int, sample_frames: int, device: Optional[torch.device] = None ) -> torch.Tensor: post_patch_height = sample_height // self.patch_size post_patch_width = sample_width // self.patch_size post_time_compression_frames = (sample_frames - 1) // self.temporal_compression_ratio + 1 num_patches = post_patch_height * post_patch_width * post_time_compression_frames pos_embedding = get_3d_sincos_pos_embed( self.embed_dim, (post_patch_width, post_patch_height), post_time_compression_frames, self.spatial_interpolation_scale, self.temporal_interpolation_scale, device=device, output_type="pt", ) pos_embedding = pos_embedding.flatten(0, 1) joint_pos_embedding = pos_embedding.new_zeros( 1, self.max_text_seq_length + num_patches, self.embed_dim, requires_grad=False ) joint_pos_embedding.data[:, self.max_text_seq_length :].copy_(pos_embedding) return joint_pos_embedding def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor): r""" Args: text_embeds (`torch.Tensor`): Input text embeddings. Expected shape: (batch_size, seq_length, embedding_dim). image_embeds (`torch.Tensor`): Input image embeddings. Expected shape: (batch_size, num_frames, channels, height, width). """ text_embeds = self.text_proj(text_embeds) batch_size, num_frames, channels, height, width = image_embeds.shape if self.patch_size_t is None: image_embeds = image_embeds.reshape(-1, channels, height, width) image_embeds = self.proj(image_embeds) image_embeds = image_embeds.view(batch_size, num_frames, *image_embeds.shape[1:]) image_embeds = image_embeds.flatten(3).transpose(2, 3) # [batch, num_frames, height x width, channels] image_embeds = image_embeds.flatten(1, 2) # [batch, num_frames x height x width, channels] else: p = self.patch_size p_t = self.patch_size_t image_embeds = image_embeds.permute(0, 1, 3, 4, 2) image_embeds = image_embeds.reshape( batch_size, num_frames // p_t, p_t, height // p, p, width // p, p, channels ) image_embeds = image_embeds.permute(0, 1, 3, 5, 7, 2, 4, 6).flatten(4, 7).flatten(1, 3) image_embeds = self.proj(image_embeds) embeds = torch.cat( [text_embeds, image_embeds], dim=1 ).contiguous() # [batch, seq_length + num_frames x height x width, channels] if self.use_positional_embeddings or self.use_learned_positional_embeddings: if self.use_learned_positional_embeddings and (self.sample_width != width or self.sample_height != height): raise ValueError( "It is currently not possible to generate videos at a different resolution that the defaults. This should only be the case with 'THUDM/CogVideoX-5b-I2V'." "If you think this is incorrect, please open an issue at https://github.com/huggingface/diffusers/issues." ) pre_time_compression_frames = (num_frames - 1) * self.temporal_compression_ratio + 1 if ( self.sample_height != height or self.sample_width != width or self.sample_frames != pre_time_compression_frames ): pos_embedding = self._get_positional_embeddings( height, width, pre_time_compression_frames, device=embeds.device ) else: pos_embedding = self.pos_embedding pos_embedding = pos_embedding.to(dtype=embeds.dtype) embeds = embeds + pos_embedding return embeds class CogView3PlusPatchEmbed(nn.Module): def __init__( self, in_channels: int = 16, hidden_size: int = 2560, patch_size: int = 2, text_hidden_size: int = 4096, pos_embed_max_size: int = 128, ): super().__init__() self.in_channels = in_channels self.hidden_size = hidden_size self.patch_size = patch_size self.text_hidden_size = text_hidden_size self.pos_embed_max_size = pos_embed_max_size # Linear projection for image patches self.proj = nn.Linear(in_channels * patch_size**2, hidden_size) # Linear projection for text embeddings self.text_proj = nn.Linear(text_hidden_size, hidden_size) pos_embed = get_2d_sincos_pos_embed( hidden_size, pos_embed_max_size, base_size=pos_embed_max_size, output_type="pt" ) pos_embed = pos_embed.reshape(pos_embed_max_size, pos_embed_max_size, hidden_size) self.register_buffer("pos_embed", pos_embed.float(), persistent=False) def forward(self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor) -> torch.Tensor: batch_size, channel, height, width = hidden_states.shape if height % self.patch_size != 0 or width % self.patch_size != 0: raise ValueError("Height and width must be divisible by patch size") height = height // self.patch_size width = width // self.patch_size hidden_states = hidden_states.view(batch_size, channel, height, self.patch_size, width, self.patch_size) hidden_states = hidden_states.permute(0, 2, 4, 1, 3, 5).contiguous() hidden_states = hidden_states.view(batch_size, height * width, channel * self.patch_size * self.patch_size) # Project the patches hidden_states = self.proj(hidden_states) encoder_hidden_states = self.text_proj(encoder_hidden_states) hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) # Calculate text_length text_length = encoder_hidden_states.shape[1] image_pos_embed = self.pos_embed[:height, :width].reshape(height * width, -1) text_pos_embed = torch.zeros( (text_length, self.hidden_size), dtype=image_pos_embed.dtype, device=image_pos_embed.device ) pos_embed = torch.cat([text_pos_embed, image_pos_embed], dim=0)[None, ...] return (hidden_states + pos_embed).to(hidden_states.dtype) def get_3d_rotary_pos_embed( embed_dim, crops_coords, grid_size, temporal_size, theta: int = 10000, use_real: bool = True, grid_type: str = "linspace", max_size: Optional[Tuple[int, int]] = None, device: Optional[torch.device] = None, ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: """ RoPE for video tokens with 3D structure. Args: embed_dim: (`int`): The embedding dimension size, corresponding to hidden_size_head. crops_coords (`Tuple[int]`): The top-left and bottom-right coordinates of the crop. grid_size (`Tuple[int]`): The grid size of the spatial positional embedding (height, width). temporal_size (`int`): The size of the temporal dimension. theta (`float`): Scaling factor for frequency computation. grid_type (`str`): Whether to use "linspace" or "slice" to compute grids. Returns: `torch.Tensor`: positional embedding with shape `(temporal_size * grid_size[0] * grid_size[1], embed_dim/2)`. """ if use_real is not True: raise ValueError(" `use_real = False` is not currently supported for get_3d_rotary_pos_embed") if grid_type == "linspace": start, stop = crops_coords grid_size_h, grid_size_w = grid_size grid_h = torch.linspace( start[0], stop[0] * (grid_size_h - 1) / grid_size_h, grid_size_h, device=device, dtype=torch.float32 ) grid_w = torch.linspace( start[1], stop[1] * (grid_size_w - 1) / grid_size_w, grid_size_w, device=device, dtype=torch.float32 ) grid_t = torch.arange(temporal_size, device=device, dtype=torch.float32) grid_t = torch.linspace( 0, temporal_size * (temporal_size - 1) / temporal_size, temporal_size, device=device, dtype=torch.float32 ) elif grid_type == "slice": max_h, max_w = max_size grid_size_h, grid_size_w = grid_size grid_h = torch.arange(max_h, device=device, dtype=torch.float32) grid_w = torch.arange(max_w, device=device, dtype=torch.float32) grid_t = torch.arange(temporal_size, device=device, dtype=torch.float32) else: raise ValueError("Invalid value passed for `grid_type`.") # Compute dimensions for each axis dim_t = embed_dim // 4 dim_h = embed_dim // 8 * 3 dim_w = embed_dim // 8 * 3 # Temporal frequencies freqs_t = get_1d_rotary_pos_embed(dim_t, grid_t, theta=theta, use_real=True) # Spatial frequencies for height and width freqs_h = get_1d_rotary_pos_embed(dim_h, grid_h, theta=theta, use_real=True) freqs_w = get_1d_rotary_pos_embed(dim_w, grid_w, theta=theta, use_real=True) # BroadCast and concatenate temporal and spaial frequencie (height and width) into a 3d tensor def combine_time_height_width(freqs_t, freqs_h, freqs_w): freqs_t = freqs_t[:, None, None, :].expand( -1, grid_size_h, grid_size_w, -1 ) # temporal_size, grid_size_h, grid_size_w, dim_t freqs_h = freqs_h[None, :, None, :].expand( temporal_size, -1, grid_size_w, -1 ) # temporal_size, grid_size_h, grid_size_2, dim_h freqs_w = freqs_w[None, None, :, :].expand( temporal_size, grid_size_h, -1, -1 ) # temporal_size, grid_size_h, grid_size_2, dim_w freqs = torch.cat( [freqs_t, freqs_h, freqs_w], dim=-1 ) # temporal_size, grid_size_h, grid_size_w, (dim_t + dim_h + dim_w) freqs = freqs.view( temporal_size * grid_size_h * grid_size_w, -1 ) # (temporal_size * grid_size_h * grid_size_w), (dim_t + dim_h + dim_w) return freqs t_cos, t_sin = freqs_t # both t_cos and t_sin has shape: temporal_size, dim_t h_cos, h_sin = freqs_h # both h_cos and h_sin has shape: grid_size_h, dim_h w_cos, w_sin = freqs_w # both w_cos and w_sin has shape: grid_size_w, dim_w if grid_type == "slice": t_cos, t_sin = t_cos[:temporal_size], t_sin[:temporal_size] h_cos, h_sin = h_cos[:grid_size_h], h_sin[:grid_size_h] w_cos, w_sin = w_cos[:grid_size_w], w_sin[:grid_size_w] cos = combine_time_height_width(t_cos, h_cos, w_cos) sin = combine_time_height_width(t_sin, h_sin, w_sin) return cos, sin def get_3d_rotary_pos_embed_allegro( embed_dim, crops_coords, grid_size, temporal_size, interpolation_scale: Tuple[float, float, float] = (1.0, 1.0, 1.0), theta: int = 10000, device: Optional[torch.device] = None, ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: # TODO(aryan): docs start, stop = crops_coords grid_size_h, grid_size_w = grid_size interpolation_scale_t, interpolation_scale_h, interpolation_scale_w = interpolation_scale grid_t = torch.linspace( 0, temporal_size * (temporal_size - 1) / temporal_size, temporal_size, device=device, dtype=torch.float32 ) grid_h = torch.linspace( start[0], stop[0] * (grid_size_h - 1) / grid_size_h, grid_size_h, device=device, dtype=torch.float32 ) grid_w = torch.linspace( start[1], stop[1] * (grid_size_w - 1) / grid_size_w, grid_size_w, device=device, dtype=torch.float32 ) # Compute dimensions for each axis dim_t = embed_dim // 3 dim_h = embed_dim // 3 dim_w = embed_dim // 3 # Temporal frequencies freqs_t = get_1d_rotary_pos_embed( dim_t, grid_t / interpolation_scale_t, theta=theta, use_real=True, repeat_interleave_real=False ) # Spatial frequencies for height and width freqs_h = get_1d_rotary_pos_embed( dim_h, grid_h / interpolation_scale_h, theta=theta, use_real=True, repeat_interleave_real=False ) freqs_w = get_1d_rotary_pos_embed( dim_w, grid_w / interpolation_scale_w, theta=theta, use_real=True, repeat_interleave_real=False ) return freqs_t, freqs_h, freqs_w, grid_t, grid_h, grid_w def get_2d_rotary_pos_embed( embed_dim, crops_coords, grid_size, use_real=True, device: Optional[torch.device] = None, output_type: str = "np" ): """ RoPE for image tokens with 2d structure. Args: embed_dim: (`int`): The embedding dimension size crops_coords (`Tuple[int]`) The top-left and bottom-right coordinates of the crop. grid_size (`Tuple[int]`): The grid size of the positional embedding. use_real (`bool`): If True, return real part and imaginary part separately. Otherwise, return complex numbers. device: (`torch.device`, **optional**): The device used to create tensors. Returns: `torch.Tensor`: positional embedding with shape `( grid_size * grid_size, embed_dim/2)`. """ if output_type == "np": deprecation_message = ( "`get_2d_sincos_pos_embed` uses `torch` and supports `device`." " `from_numpy` is no longer required." " Pass `output_type='pt' to use the new version now." ) deprecate("output_type=='np'", "0.33.0", deprecation_message, standard_warn=False) return _get_2d_rotary_pos_embed_np( embed_dim=embed_dim, crops_coords=crops_coords, grid_size=grid_size, use_real=use_real, ) start, stop = crops_coords # scale end by (steps−1)/steps matches np.linspace(..., endpoint=False) grid_h = torch.linspace( start[0], stop[0] * (grid_size[0] - 1) / grid_size[0], grid_size[0], device=device, dtype=torch.float32 ) grid_w = torch.linspace( start[1], stop[1] * (grid_size[1] - 1) / grid_size[1], grid_size[1], device=device, dtype=torch.float32 ) grid = torch.meshgrid(grid_w, grid_h, indexing="xy") grid = torch.stack(grid, dim=0) # [2, W, H] grid = grid.reshape([2, 1, *grid.shape[1:]]) pos_embed = get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=use_real) return pos_embed def _get_2d_rotary_pos_embed_np(embed_dim, crops_coords, grid_size, use_real=True): """ RoPE for image tokens with 2d structure. Args: embed_dim: (`int`): The embedding dimension size crops_coords (`Tuple[int]`) The top-left and bottom-right coordinates of the crop. grid_size (`Tuple[int]`): The grid size of the positional embedding. use_real (`bool`): If True, return real part and imaginary part separately. Otherwise, return complex numbers. Returns: `torch.Tensor`: positional embedding with shape `( grid_size * grid_size, embed_dim/2)`. """ start, stop = crops_coords grid_h = np.linspace(start[0], stop[0], grid_size[0], endpoint=False, dtype=np.float32) grid_w = np.linspace(start[1], stop[1], grid_size[1], endpoint=False, dtype=np.float32) grid = np.meshgrid(grid_w, grid_h) # here w goes first grid = np.stack(grid, axis=0) # [2, W, H] grid = grid.reshape([2, 1, *grid.shape[1:]]) pos_embed = get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=use_real) return pos_embed def get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=False): """ Get 2D RoPE from grid. Args: embed_dim: (`int`): The embedding dimension size, corresponding to hidden_size_head. grid (`np.ndarray`): The grid of the positional embedding. use_real (`bool`): If True, return real part and imaginary part separately. Otherwise, return complex numbers. Returns: `torch.Tensor`: positional embedding with shape `( grid_size * grid_size, embed_dim/2)`. """ assert embed_dim % 4 == 0 # use half of dimensions to encode grid_h emb_h = get_1d_rotary_pos_embed( embed_dim // 2, grid[0].reshape(-1), use_real=use_real ) # (H*W, D/2) if use_real else (H*W, D/4) emb_w = get_1d_rotary_pos_embed( embed_dim // 2, grid[1].reshape(-1), use_real=use_real ) # (H*W, D/2) if use_real else (H*W, D/4) if use_real: cos = torch.cat([emb_h[0], emb_w[0]], dim=1) # (H*W, D) sin = torch.cat([emb_h[1], emb_w[1]], dim=1) # (H*W, D) return cos, sin else: emb = torch.cat([emb_h, emb_w], dim=1) # (H*W, D/2) return emb def get_2d_rotary_pos_embed_lumina(embed_dim, len_h, len_w, linear_factor=1.0, ntk_factor=1.0): """ Get 2D RoPE from grid. Args: embed_dim: (`int`): The embedding dimension size, corresponding to hidden_size_head. grid (`np.ndarray`): The grid of the positional embedding. linear_factor (`float`): The linear factor of the positional embedding, which is used to scale the positional embedding in the linear layer. ntk_factor (`float`): The ntk factor of the positional embedding, which is used to scale the positional embedding in the ntk layer. Returns: `torch.Tensor`: positional embedding with shape `( grid_size * grid_size, embed_dim/2)`. """ assert embed_dim % 4 == 0 emb_h = get_1d_rotary_pos_embed( embed_dim // 2, len_h, linear_factor=linear_factor, ntk_factor=ntk_factor ) # (H, D/4) emb_w = get_1d_rotary_pos_embed( embed_dim // 2, len_w, linear_factor=linear_factor, ntk_factor=ntk_factor ) # (W, D/4) emb_h = emb_h.view(len_h, 1, embed_dim // 4, 1).repeat(1, len_w, 1, 1) # (H, W, D/4, 1) emb_w = emb_w.view(1, len_w, embed_dim // 4, 1).repeat(len_h, 1, 1, 1) # (H, W, D/4, 1) emb = torch.cat([emb_h, emb_w], dim=-1).flatten(2) # (H, W, D/2) return emb def get_1d_rotary_pos_embed( dim: int, pos: Union[np.ndarray, int], theta: float = 10000.0, use_real=False, linear_factor=1.0, ntk_factor=1.0, repeat_interleave_real=True, freqs_dtype=torch.float32, # torch.float32, torch.float64 (flux) ): """ Precompute the frequency tensor for complex exponentials (cis) with given dimensions. This function calculates a frequency tensor with complex exponentials using the given dimension 'dim' and the end index 'end'. The 'theta' parameter scales the frequencies. The returned tensor contains complex values in complex64 data type. Args: dim (`int`): Dimension of the frequency tensor. pos (`np.ndarray` or `int`): Position indices for the frequency tensor. [S] or scalar theta (`float`, *optional*, defaults to 10000.0): Scaling factor for frequency computation. Defaults to 10000.0. use_real (`bool`, *optional*): If True, return real part and imaginary part separately. Otherwise, return complex numbers. linear_factor (`float`, *optional*, defaults to 1.0): Scaling factor for the context extrapolation. Defaults to 1.0. ntk_factor (`float`, *optional*, defaults to 1.0): Scaling factor for the NTK-Aware RoPE. Defaults to 1.0. repeat_interleave_real (`bool`, *optional*, defaults to `True`): If `True` and `use_real`, real part and imaginary part are each interleaved with themselves to reach `dim`. Otherwise, they are concateanted with themselves. freqs_dtype (`torch.float32` or `torch.float64`, *optional*, defaults to `torch.float32`): the dtype of the frequency tensor. Returns: `torch.Tensor`: Precomputed frequency tensor with complex exponentials. [S, D/2] """ assert dim % 2 == 0 if isinstance(pos, int): pos = torch.arange(pos) if isinstance(pos, np.ndarray): pos = torch.from_numpy(pos) # type: ignore # [S] theta = theta * ntk_factor freqs = ( 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=freqs_dtype, device=pos.device)[: (dim // 2)] / dim)) / linear_factor ) # [D/2] freqs = torch.outer(pos, freqs) # type: ignore # [S, D/2] if use_real and repeat_interleave_real: # flux, hunyuan-dit, cogvideox freqs_cos = freqs.cos().repeat_interleave(2, dim=1).float() # [S, D] freqs_sin = freqs.sin().repeat_interleave(2, dim=1).float() # [S, D] return freqs_cos, freqs_sin elif use_real: # stable audio, allegro freqs_cos = torch.cat([freqs.cos(), freqs.cos()], dim=-1).float() # [S, D] freqs_sin = torch.cat([freqs.sin(), freqs.sin()], dim=-1).float() # [S, D] return freqs_cos, freqs_sin else: # lumina freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 # [S, D/2] return freqs_cis def apply_rotary_emb( x: torch.Tensor, freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]], use_real: bool = True, use_real_unbind_dim: int = -1, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting tensors contain rotary embeddings and are returned as real tensors. Args: x (`torch.Tensor`): Query or key tensor to apply rotary embeddings. [B, H, S, D] xk (torch.Tensor): Key tensor to apply freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],) Returns: Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings. """ if use_real: cos, sin = freqs_cis # [S, D] cos = cos[None, None] sin = sin[None, None] cos, sin = cos.to(x.device), sin.to(x.device) if use_real_unbind_dim == -1: # Used for flux, cogvideox, hunyuan-dit x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2] x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3) elif use_real_unbind_dim == -2: # Used for Stable Audio x_real, x_imag = x.reshape(*x.shape[:-1], 2, -1).unbind(-2) # [B, S, H, D//2] x_rotated = torch.cat([-x_imag, x_real], dim=-1) else: raise ValueError(f"`use_real_unbind_dim={use_real_unbind_dim}` but should be -1 or -2.") out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype) return out else: # used for lumina x_rotated = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2)) freqs_cis = freqs_cis.unsqueeze(2) x_out = torch.view_as_real(x_rotated * freqs_cis).flatten(3) return x_out.type_as(x) def apply_rotary_emb_allegro(x: torch.Tensor, freqs_cis, positions): # TODO(aryan): rewrite def apply_1d_rope(tokens, pos, cos, sin): cos = F.embedding(pos, cos)[:, None, :, :] sin = F.embedding(pos, sin)[:, None, :, :] x1, x2 = tokens[..., : tokens.shape[-1] // 2], tokens[..., tokens.shape[-1] // 2 :] tokens_rotated = torch.cat((-x2, x1), dim=-1) return (tokens.float() * cos + tokens_rotated.float() * sin).to(tokens.dtype) (t_cos, t_sin), (h_cos, h_sin), (w_cos, w_sin) = freqs_cis t, h, w = x.chunk(3, dim=-1) t = apply_1d_rope(t, positions[0], t_cos, t_sin) h = apply_1d_rope(h, positions[1], h_cos, h_sin) w = apply_1d_rope(w, positions[2], w_cos, w_sin) x = torch.cat([t, h, w], dim=-1) return x class FluxPosEmbed(nn.Module): # modified from https://github.com/black-forest-labs/flux/blob/c00d7c60b085fce8058b9df845e036090873f2ce/src/flux/modules/layers.py#L11 def __init__(self, theta: int, axes_dim: List[int]): super().__init__() self.theta = theta self.axes_dim = axes_dim def forward(self, ids: torch.Tensor) -> torch.Tensor: n_axes = ids.shape[-1] cos_out = [] sin_out = [] pos = ids.float() is_mps = ids.device.type == "mps" is_npu = ids.device.type == "npu" freqs_dtype = torch.float32 if (is_mps or is_npu) else torch.float64 for i in range(n_axes): cos, sin = get_1d_rotary_pos_embed( self.axes_dim[i], pos[:, i], theta=self.theta, repeat_interleave_real=True, use_real=True, freqs_dtype=freqs_dtype, ) cos_out.append(cos) sin_out.append(sin) freqs_cos = torch.cat(cos_out, dim=-1).to(ids.device) freqs_sin = torch.cat(sin_out, dim=-1).to(ids.device) return freqs_cos, freqs_sin class TimestepEmbedding(nn.Module): def __init__( self, in_channels: int, time_embed_dim: int, act_fn: str = "silu", out_dim: int = None, post_act_fn: Optional[str] = None, cond_proj_dim=None, sample_proj_bias=True, ): super().__init__() self.linear_1 = nn.Linear(in_channels, time_embed_dim, sample_proj_bias) if cond_proj_dim is not None: self.cond_proj = nn.Linear(cond_proj_dim, in_channels, bias=False) else: self.cond_proj = None self.act = get_activation(act_fn) if out_dim is not None: time_embed_dim_out = out_dim else: time_embed_dim_out = time_embed_dim self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim_out, sample_proj_bias) if post_act_fn is None: self.post_act = None else: self.post_act = get_activation(post_act_fn) def forward(self, sample, condition=None): if condition is not None: sample = sample + self.cond_proj(condition) sample = self.linear_1(sample) if self.act is not None: sample = self.act(sample) sample = self.linear_2(sample) if self.post_act is not None: sample = self.post_act(sample) return sample class Timesteps(nn.Module): def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float, scale: int = 1): super().__init__() self.num_channels = num_channels self.flip_sin_to_cos = flip_sin_to_cos self.downscale_freq_shift = downscale_freq_shift self.scale = scale def forward(self, timesteps): t_emb = get_timestep_embedding( timesteps, self.num_channels, flip_sin_to_cos=self.flip_sin_to_cos, downscale_freq_shift=self.downscale_freq_shift, scale=self.scale, ) return t_emb class GaussianFourierProjection(nn.Module): """Gaussian Fourier embeddings for noise levels.""" def __init__( self, embedding_size: int = 256, scale: float = 1.0, set_W_to_weight=True, log=True, flip_sin_to_cos=False ): super().__init__() self.weight = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False) self.log = log self.flip_sin_to_cos = flip_sin_to_cos if set_W_to_weight: # to delete later del self.weight self.W = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False) self.weight = self.W del self.W def forward(self, x): if self.log: x = torch.log(x) x_proj = x[:, None] * self.weight[None, :] * 2 * np.pi if self.flip_sin_to_cos: out = torch.cat([torch.cos(x_proj), torch.sin(x_proj)], dim=-1) else: out = torch.cat([torch.sin(x_proj), torch.cos(x_proj)], dim=-1) return out class SinusoidalPositionalEmbedding(nn.Module): """Apply positional information to a sequence of embeddings. Takes in a sequence of embeddings with shape (batch_size, seq_length, embed_dim) and adds positional embeddings to them Args: embed_dim: (int): Dimension of the positional embedding. max_seq_length: Maximum sequence length to apply positional embeddings """ def __init__(self, embed_dim: int, max_seq_length: int = 32): super().__init__() position = torch.arange(max_seq_length).unsqueeze(1) div_term = torch.exp(torch.arange(0, embed_dim, 2) * (-math.log(10000.0) / embed_dim)) pe = torch.zeros(1, max_seq_length, embed_dim) pe[0, :, 0::2] = torch.sin(position * div_term) pe[0, :, 1::2] = torch.cos(position * div_term) self.register_buffer("pe", pe) def forward(self, x): _, seq_length, _ = x.shape x = x + self.pe[:, :seq_length] return x class ImagePositionalEmbeddings(nn.Module): """ Converts latent image classes into vector embeddings. Sums the vector embeddings with positional embeddings for the height and width of the latent space. For more details, see figure 10 of the dall-e paper: https://arxiv.org/abs/2102.12092 For VQ-diffusion: Output vector embeddings are used as input for the transformer. Note that the vector embeddings for the transformer are different than the vector embeddings from the VQVAE. Args: num_embed (`int`): Number of embeddings for the latent pixels embeddings. height (`int`): Height of the latent image i.e. the number of height embeddings. width (`int`): Width of the latent image i.e. the number of width embeddings. embed_dim (`int`): Dimension of the produced vector embeddings. Used for the latent pixel, height, and width embeddings. """ def __init__( self, num_embed: int, height: int, width: int, embed_dim: int, ): super().__init__() self.height = height self.width = width self.num_embed = num_embed self.embed_dim = embed_dim self.emb = nn.Embedding(self.num_embed, embed_dim) self.height_emb = nn.Embedding(self.height, embed_dim) self.width_emb = nn.Embedding(self.width, embed_dim) def forward(self, index): emb = self.emb(index) height_emb = self.height_emb(torch.arange(self.height, device=index.device).view(1, self.height)) # 1 x H x D -> 1 x H x 1 x D height_emb = height_emb.unsqueeze(2) width_emb = self.width_emb(torch.arange(self.width, device=index.device).view(1, self.width)) # 1 x W x D -> 1 x 1 x W x D width_emb = width_emb.unsqueeze(1) pos_emb = height_emb + width_emb # 1 x H x W x D -> 1 x L xD pos_emb = pos_emb.view(1, self.height * self.width, -1) emb = emb + pos_emb[:, : emb.shape[1], :] return emb class LabelEmbedding(nn.Module): """ Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. Args: num_classes (`int`): The number of classes. hidden_size (`int`): The size of the vector embeddings. dropout_prob (`float`): The probability of dropping a label. """ def __init__(self, num_classes, hidden_size, dropout_prob): super().__init__() use_cfg_embedding = dropout_prob > 0 self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size) self.num_classes = num_classes self.dropout_prob = dropout_prob def token_drop(self, labels, force_drop_ids=None): """ Drops labels to enable classifier-free guidance. """ if force_drop_ids is None: drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob else: drop_ids = torch.tensor(force_drop_ids == 1) labels = torch.where(drop_ids, self.num_classes, labels) return labels def forward(self, labels: torch.LongTensor, force_drop_ids=None): use_dropout = self.dropout_prob > 0 if (self.training and use_dropout) or (force_drop_ids is not None): labels = self.token_drop(labels, force_drop_ids) embeddings = self.embedding_table(labels) return embeddings class TextImageProjection(nn.Module): def __init__( self, text_embed_dim: int = 1024, image_embed_dim: int = 768, cross_attention_dim: int = 768, num_image_text_embeds: int = 10, ): super().__init__() self.num_image_text_embeds = num_image_text_embeds self.image_embeds = nn.Linear(image_embed_dim, self.num_image_text_embeds * cross_attention_dim) self.text_proj = nn.Linear(text_embed_dim, cross_attention_dim) def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor): batch_size = text_embeds.shape[0] # image image_text_embeds = self.image_embeds(image_embeds) image_text_embeds = image_text_embeds.reshape(batch_size, self.num_image_text_embeds, -1) # text text_embeds = self.text_proj(text_embeds) return torch.cat([image_text_embeds, text_embeds], dim=1) class ImageProjection(nn.Module): def __init__( self, image_embed_dim: int = 768, cross_attention_dim: int = 768, num_image_text_embeds: int = 32, ): super().__init__() self.num_image_text_embeds = num_image_text_embeds self.image_embeds = nn.Linear(image_embed_dim, self.num_image_text_embeds * cross_attention_dim) self.norm = nn.LayerNorm(cross_attention_dim) def forward(self, image_embeds: torch.Tensor): batch_size = image_embeds.shape[0] # image image_embeds = self.image_embeds(image_embeds.to(self.image_embeds.weight.dtype)) image_embeds = image_embeds.reshape(batch_size, self.num_image_text_embeds, -1) image_embeds = self.norm(image_embeds) return image_embeds class IPAdapterFullImageProjection(nn.Module): def __init__(self, image_embed_dim=1024, cross_attention_dim=1024): super().__init__() from .attention import FeedForward self.ff = FeedForward(image_embed_dim, cross_attention_dim, mult=1, activation_fn="gelu") self.norm = nn.LayerNorm(cross_attention_dim) def forward(self, image_embeds: torch.Tensor): return self.norm(self.ff(image_embeds)) class IPAdapterFaceIDImageProjection(nn.Module): def __init__(self, image_embed_dim=1024, cross_attention_dim=1024, mult=1, num_tokens=1): super().__init__() from .attention import FeedForward self.num_tokens = num_tokens self.cross_attention_dim = cross_attention_dim self.ff = FeedForward(image_embed_dim, cross_attention_dim * num_tokens, mult=mult, activation_fn="gelu") self.norm = nn.LayerNorm(cross_attention_dim) def forward(self, image_embeds: torch.Tensor): x = self.ff(image_embeds) x = x.reshape(-1, self.num_tokens, self.cross_attention_dim) return self.norm(x) class CombinedTimestepLabelEmbeddings(nn.Module): def __init__(self, num_classes, embedding_dim, class_dropout_prob=0.1): super().__init__() self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=1) self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) self.class_embedder = LabelEmbedding(num_classes, embedding_dim, class_dropout_prob) def forward(self, timestep, class_labels, hidden_dtype=None): timesteps_proj = self.time_proj(timestep) timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (N, D) class_labels = self.class_embedder(class_labels) # (N, D) conditioning = timesteps_emb + class_labels # (N, D) return conditioning class CombinedTimestepTextProjEmbeddings(nn.Module): def __init__(self, embedding_dim, pooled_projection_dim): super().__init__() self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu") def forward(self, timestep, pooled_projection): timesteps_proj = self.time_proj(timestep) timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype)) # (N, D) pooled_projections = self.text_embedder(pooled_projection) conditioning = timesteps_emb + pooled_projections return conditioning class CombinedTimestepGuidanceTextProjEmbeddings(nn.Module): def __init__(self, embedding_dim, pooled_projection_dim): super().__init__() self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) self.guidance_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu") def forward(self, timestep, guidance, pooled_projection): timesteps_proj = self.time_proj(timestep) timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype)) # (N, D) guidance_proj = self.time_proj(guidance) guidance_emb = self.guidance_embedder(guidance_proj.to(dtype=pooled_projection.dtype)) # (N, D) time_guidance_emb = timesteps_emb + guidance_emb pooled_projections = self.text_embedder(pooled_projection) conditioning = time_guidance_emb + pooled_projections return conditioning class CogView3CombinedTimestepSizeEmbeddings(nn.Module): def __init__(self, embedding_dim: int, condition_dim: int, pooled_projection_dim: int, timesteps_dim: int = 256): super().__init__() self.time_proj = Timesteps(num_channels=timesteps_dim, flip_sin_to_cos=True, downscale_freq_shift=0) self.condition_proj = Timesteps(num_channels=condition_dim, flip_sin_to_cos=True, downscale_freq_shift=0) self.timestep_embedder = TimestepEmbedding(in_channels=timesteps_dim, time_embed_dim=embedding_dim) self.condition_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu") def forward( self, timestep: torch.Tensor, original_size: torch.Tensor, target_size: torch.Tensor, crop_coords: torch.Tensor, hidden_dtype: torch.dtype, ) -> torch.Tensor: timesteps_proj = self.time_proj(timestep) original_size_proj = self.condition_proj(original_size.flatten()).view(original_size.size(0), -1) crop_coords_proj = self.condition_proj(crop_coords.flatten()).view(crop_coords.size(0), -1) target_size_proj = self.condition_proj(target_size.flatten()).view(target_size.size(0), -1) # (B, 3 * condition_dim) condition_proj = torch.cat([original_size_proj, crop_coords_proj, target_size_proj], dim=1) timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (B, embedding_dim) condition_emb = self.condition_embedder(condition_proj.to(dtype=hidden_dtype)) # (B, embedding_dim) conditioning = timesteps_emb + condition_emb return conditioning class HunyuanDiTAttentionPool(nn.Module): # Copied from https://github.com/Tencent/HunyuanDiT/blob/cb709308d92e6c7e8d59d0dff41b74d35088db6a/hydit/modules/poolers.py#L6 def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None): super().__init__() self.positional_embedding = nn.Parameter(torch.randn(spacial_dim + 1, embed_dim) / embed_dim**0.5) self.k_proj = nn.Linear(embed_dim, embed_dim) self.q_proj = nn.Linear(embed_dim, embed_dim) self.v_proj = nn.Linear(embed_dim, embed_dim) self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) self.num_heads = num_heads def forward(self, x): x = x.permute(1, 0, 2) # NLC -> LNC x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (L+1)NC x = x + self.positional_embedding[:, None, :].to(x.dtype) # (L+1)NC x, _ = F.multi_head_attention_forward( query=x[:1], key=x, value=x, embed_dim_to_check=x.shape[-1], num_heads=self.num_heads, q_proj_weight=self.q_proj.weight, k_proj_weight=self.k_proj.weight, v_proj_weight=self.v_proj.weight, in_proj_weight=None, in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]), bias_k=None, bias_v=None, add_zero_attn=False, dropout_p=0, out_proj_weight=self.c_proj.weight, out_proj_bias=self.c_proj.bias, use_separate_proj_weight=True, training=self.training, need_weights=False, ) return x.squeeze(0) class HunyuanCombinedTimestepTextSizeStyleEmbedding(nn.Module): def __init__( self, embedding_dim, pooled_projection_dim=1024, seq_len=256, cross_attention_dim=2048, use_style_cond_and_image_meta_size=True, ): super().__init__() self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) self.size_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) self.pooler = HunyuanDiTAttentionPool( seq_len, cross_attention_dim, num_heads=8, output_dim=pooled_projection_dim ) # Here we use a default learned embedder layer for future extension. self.use_style_cond_and_image_meta_size = use_style_cond_and_image_meta_size if use_style_cond_and_image_meta_size: self.style_embedder = nn.Embedding(1, embedding_dim) extra_in_dim = 256 * 6 + embedding_dim + pooled_projection_dim else: extra_in_dim = pooled_projection_dim self.extra_embedder = PixArtAlphaTextProjection( in_features=extra_in_dim, hidden_size=embedding_dim * 4, out_features=embedding_dim, act_fn="silu_fp32", ) def forward(self, timestep, encoder_hidden_states, image_meta_size, style, hidden_dtype=None): timesteps_proj = self.time_proj(timestep) timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (N, 256) # extra condition1: text pooled_projections = self.pooler(encoder_hidden_states) # (N, 1024) if self.use_style_cond_and_image_meta_size: # extra condition2: image meta size embedding image_meta_size = self.size_proj(image_meta_size.view(-1)) image_meta_size = image_meta_size.to(dtype=hidden_dtype) image_meta_size = image_meta_size.view(-1, 6 * 256) # (N, 1536) # extra condition3: style embedding style_embedding = self.style_embedder(style) # (N, embedding_dim) # Concatenate all extra vectors extra_cond = torch.cat([pooled_projections, image_meta_size, style_embedding], dim=1) else: extra_cond = torch.cat([pooled_projections], dim=1) conditioning = timesteps_emb + self.extra_embedder(extra_cond) # [B, D] return conditioning class LuminaCombinedTimestepCaptionEmbedding(nn.Module): def __init__(self, hidden_size=4096, cross_attention_dim=2048, frequency_embedding_size=256): super().__init__() self.time_proj = Timesteps( num_channels=frequency_embedding_size, flip_sin_to_cos=True, downscale_freq_shift=0.0 ) self.timestep_embedder = TimestepEmbedding(in_channels=frequency_embedding_size, time_embed_dim=hidden_size) self.caption_embedder = nn.Sequential( nn.LayerNorm(cross_attention_dim), nn.Linear( cross_attention_dim, hidden_size, bias=True, ), ) def forward(self, timestep, caption_feat, caption_mask): # timestep embedding: time_freq = self.time_proj(timestep) time_embed = self.timestep_embedder(time_freq.to(dtype=caption_feat.dtype)) # caption condition embedding: caption_mask_float = caption_mask.float().unsqueeze(-1) caption_feats_pool = (caption_feat * caption_mask_float).sum(dim=1) / caption_mask_float.sum(dim=1) caption_feats_pool = caption_feats_pool.to(caption_feat) caption_embed = self.caption_embedder(caption_feats_pool) conditioning = time_embed + caption_embed return conditioning class MochiCombinedTimestepCaptionEmbedding(nn.Module): def __init__( self, embedding_dim: int, pooled_projection_dim: int, text_embed_dim: int, time_embed_dim: int = 256, num_attention_heads: int = 8, ) -> None: super().__init__() self.time_proj = Timesteps(num_channels=time_embed_dim, flip_sin_to_cos=True, downscale_freq_shift=0.0) self.timestep_embedder = TimestepEmbedding(in_channels=time_embed_dim, time_embed_dim=embedding_dim) self.pooler = MochiAttentionPool( num_attention_heads=num_attention_heads, embed_dim=text_embed_dim, output_dim=embedding_dim ) self.caption_proj = nn.Linear(text_embed_dim, pooled_projection_dim) def forward( self, timestep: torch.LongTensor, encoder_hidden_states: torch.Tensor, encoder_attention_mask: torch.Tensor, hidden_dtype: Optional[torch.dtype] = None, ): time_proj = self.time_proj(timestep) time_emb = self.timestep_embedder(time_proj.to(dtype=hidden_dtype)) pooled_projections = self.pooler(encoder_hidden_states, encoder_attention_mask) caption_proj = self.caption_proj(encoder_hidden_states) conditioning = time_emb + pooled_projections return conditioning, caption_proj class TextTimeEmbedding(nn.Module): def __init__(self, encoder_dim: int, time_embed_dim: int, num_heads: int = 64): super().__init__() self.norm1 = nn.LayerNorm(encoder_dim) self.pool = AttentionPooling(num_heads, encoder_dim) self.proj = nn.Linear(encoder_dim, time_embed_dim) self.norm2 = nn.LayerNorm(time_embed_dim) def forward(self, hidden_states): hidden_states = self.norm1(hidden_states) hidden_states = self.pool(hidden_states) hidden_states = self.proj(hidden_states) hidden_states = self.norm2(hidden_states) return hidden_states class TextImageTimeEmbedding(nn.Module): def __init__(self, text_embed_dim: int = 768, image_embed_dim: int = 768, time_embed_dim: int = 1536): super().__init__() self.text_proj = nn.Linear(text_embed_dim, time_embed_dim) self.text_norm = nn.LayerNorm(time_embed_dim) self.image_proj = nn.Linear(image_embed_dim, time_embed_dim) def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor): # text time_text_embeds = self.text_proj(text_embeds) time_text_embeds = self.text_norm(time_text_embeds) # image time_image_embeds = self.image_proj(image_embeds) return time_image_embeds + time_text_embeds class ImageTimeEmbedding(nn.Module): def __init__(self, image_embed_dim: int = 768, time_embed_dim: int = 1536): super().__init__() self.image_proj = nn.Linear(image_embed_dim, time_embed_dim) self.image_norm = nn.LayerNorm(time_embed_dim) def forward(self, image_embeds: torch.Tensor): # image time_image_embeds = self.image_proj(image_embeds) time_image_embeds = self.image_norm(time_image_embeds) return time_image_embeds class ImageHintTimeEmbedding(nn.Module): def __init__(self, image_embed_dim: int = 768, time_embed_dim: int = 1536): super().__init__() self.image_proj = nn.Linear(image_embed_dim, time_embed_dim) self.image_norm = nn.LayerNorm(time_embed_dim) self.input_hint_block = nn.Sequential( nn.Conv2d(3, 16, 3, padding=1), nn.SiLU(), nn.Conv2d(16, 16, 3, padding=1), nn.SiLU(), nn.Conv2d(16, 32, 3, padding=1, stride=2), nn.SiLU(), nn.Conv2d(32, 32, 3, padding=1), nn.SiLU(), nn.Conv2d(32, 96, 3, padding=1, stride=2), nn.SiLU(), nn.Conv2d(96, 96, 3, padding=1), nn.SiLU(), nn.Conv2d(96, 256, 3, padding=1, stride=2), nn.SiLU(), nn.Conv2d(256, 4, 3, padding=1), ) def forward(self, image_embeds: torch.Tensor, hint: torch.Tensor): # image time_image_embeds = self.image_proj(image_embeds) time_image_embeds = self.image_norm(time_image_embeds) hint = self.input_hint_block(hint) return time_image_embeds, hint class AttentionPooling(nn.Module): # Copied from https://github.com/deep-floyd/IF/blob/2f91391f27dd3c468bf174be5805b4cc92980c0b/deepfloyd_if/model/nn.py#L54 def __init__(self, num_heads, embed_dim, dtype=None): super().__init__() self.dtype = dtype self.positional_embedding = nn.Parameter(torch.randn(1, embed_dim) / embed_dim**0.5) self.k_proj = nn.Linear(embed_dim, embed_dim, dtype=self.dtype) self.q_proj = nn.Linear(embed_dim, embed_dim, dtype=self.dtype) self.v_proj = nn.Linear(embed_dim, embed_dim, dtype=self.dtype) self.num_heads = num_heads self.dim_per_head = embed_dim // self.num_heads def forward(self, x): bs, length, width = x.size() def shape(x): # (bs, length, width) --> (bs, length, n_heads, dim_per_head) x = x.view(bs, -1, self.num_heads, self.dim_per_head) # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head) x = x.transpose(1, 2) # (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head) x = x.reshape(bs * self.num_heads, -1, self.dim_per_head) # (bs*n_heads, length, dim_per_head) --> (bs*n_heads, dim_per_head, length) x = x.transpose(1, 2) return x class_token = x.mean(dim=1, keepdim=True) + self.positional_embedding.to(x.dtype) x = torch.cat([class_token, x], dim=1) # (bs, length+1, width) # (bs*n_heads, class_token_length, dim_per_head) q = shape(self.q_proj(class_token)) # (bs*n_heads, length+class_token_length, dim_per_head) k = shape(self.k_proj(x)) v = shape(self.v_proj(x)) # (bs*n_heads, class_token_length, length+class_token_length): scale = 1 / math.sqrt(math.sqrt(self.dim_per_head)) weight = torch.einsum("bct,bcs->bts", q * scale, k * scale) # More stable with f16 than dividing afterwards weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) # (bs*n_heads, dim_per_head, class_token_length) a = torch.einsum("bts,bcs->bct", weight, v) # (bs, length+1, width) a = a.reshape(bs, -1, 1).transpose(1, 2) return a[:, 0, :] # cls_token class MochiAttentionPool(nn.Module): def __init__( self, num_attention_heads: int, embed_dim: int, output_dim: Optional[int] = None, ) -> None: super().__init__() self.output_dim = output_dim or embed_dim self.num_attention_heads = num_attention_heads self.to_kv = nn.Linear(embed_dim, 2 * embed_dim) self.to_q = nn.Linear(embed_dim, embed_dim) self.to_out = nn.Linear(embed_dim, self.output_dim) @staticmethod def pool_tokens(x: torch.Tensor, mask: torch.Tensor, *, keepdim=False) -> torch.Tensor: """ Pool tokens in x using mask. NOTE: We assume x does not require gradients. Args: x: (B, L, D) tensor of tokens. mask: (B, L) boolean tensor indicating which tokens are not padding. Returns: pooled: (B, D) tensor of pooled tokens. """ assert x.size(1) == mask.size(1) # Expected mask to have same length as tokens. assert x.size(0) == mask.size(0) # Expected mask to have same batch size as tokens. mask = mask[:, :, None].to(dtype=x.dtype) mask = mask / mask.sum(dim=1, keepdim=True).clamp(min=1) pooled = (x * mask).sum(dim=1, keepdim=keepdim) return pooled def forward(self, x: torch.Tensor, mask: torch.BoolTensor) -> torch.Tensor: r""" Args: x (`torch.Tensor`): Tensor of shape `(B, S, D)` of input tokens. mask (`torch.Tensor`): Boolean ensor of shape `(B, S)` indicating which tokens are not padding. Returns: `torch.Tensor`: `(B, D)` tensor of pooled tokens. """ D = x.size(2) # Construct attention mask, shape: (B, 1, num_queries=1, num_keys=1+L). attn_mask = mask[:, None, None, :].bool() # (B, 1, 1, L). attn_mask = F.pad(attn_mask, (1, 0), value=True) # (B, 1, 1, 1+L). # Average non-padding token features. These will be used as the query. x_pool = self.pool_tokens(x, mask, keepdim=True) # (B, 1, D) # Concat pooled features to input sequence. x = torch.cat([x_pool, x], dim=1) # (B, L+1, D) # Compute queries, keys, values. Only the mean token is used to create a query. kv = self.to_kv(x) # (B, L+1, 2 * D) q = self.to_q(x[:, 0]) # (B, D) # Extract heads. head_dim = D // self.num_attention_heads kv = kv.unflatten(2, (2, self.num_attention_heads, head_dim)) # (B, 1+L, 2, H, head_dim) kv = kv.transpose(1, 3) # (B, H, 2, 1+L, head_dim) k, v = kv.unbind(2) # (B, H, 1+L, head_dim) q = q.unflatten(1, (self.num_attention_heads, head_dim)) # (B, H, head_dim) q = q.unsqueeze(2) # (B, H, 1, head_dim) # Compute attention. x = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask, dropout_p=0.0) # (B, H, 1, head_dim) # Concatenate heads and run output. x = x.squeeze(2).flatten(1, 2) # (B, D = H * head_dim) x = self.to_out(x) return x def get_fourier_embeds_from_boundingbox(embed_dim, box): """ Args: embed_dim: int box: a 3-D tensor [B x N x 4] representing the bounding boxes for GLIGEN pipeline Returns: [B x N x embed_dim] tensor of positional embeddings """ batch_size, num_boxes = box.shape[:2] emb = 100 ** (torch.arange(embed_dim) / embed_dim) emb = emb[None, None, None].to(device=box.device, dtype=box.dtype) emb = emb * box.unsqueeze(-1) emb = torch.stack((emb.sin(), emb.cos()), dim=-1) emb = emb.permute(0, 1, 3, 4, 2).reshape(batch_size, num_boxes, embed_dim * 2 * 4) return emb class GLIGENTextBoundingboxProjection(nn.Module): def __init__(self, positive_len, out_dim, feature_type="text-only", fourier_freqs=8): super().__init__() self.positive_len = positive_len self.out_dim = out_dim self.fourier_embedder_dim = fourier_freqs self.position_dim = fourier_freqs * 2 * 4 # 2: sin/cos, 4: xyxy if isinstance(out_dim, tuple): out_dim = out_dim[0] if feature_type == "text-only": self.linears = nn.Sequential( nn.Linear(self.positive_len + self.position_dim, 512), nn.SiLU(), nn.Linear(512, 512), nn.SiLU(), nn.Linear(512, out_dim), ) self.null_positive_feature = torch.nn.Parameter(torch.zeros([self.positive_len])) elif feature_type == "text-image": self.linears_text = nn.Sequential( nn.Linear(self.positive_len + self.position_dim, 512), nn.SiLU(), nn.Linear(512, 512), nn.SiLU(), nn.Linear(512, out_dim), ) self.linears_image = nn.Sequential( nn.Linear(self.positive_len + self.position_dim, 512), nn.SiLU(), nn.Linear(512, 512), nn.SiLU(), nn.Linear(512, out_dim), ) self.null_text_feature = torch.nn.Parameter(torch.zeros([self.positive_len])) self.null_image_feature = torch.nn.Parameter(torch.zeros([self.positive_len])) self.null_position_feature = torch.nn.Parameter(torch.zeros([self.position_dim])) def forward( self, boxes, masks, positive_embeddings=None, phrases_masks=None, image_masks=None, phrases_embeddings=None, image_embeddings=None, ): masks = masks.unsqueeze(-1) # embedding position (it may includes padding as placeholder) xyxy_embedding = get_fourier_embeds_from_boundingbox(self.fourier_embedder_dim, boxes) # B*N*4 -> B*N*C # learnable null embedding xyxy_null = self.null_position_feature.view(1, 1, -1) # replace padding with learnable null embedding xyxy_embedding = xyxy_embedding * masks + (1 - masks) * xyxy_null # positionet with text only information if positive_embeddings is not None: # learnable null embedding positive_null = self.null_positive_feature.view(1, 1, -1) # replace padding with learnable null embedding positive_embeddings = positive_embeddings * masks + (1 - masks) * positive_null objs = self.linears(torch.cat([positive_embeddings, xyxy_embedding], dim=-1)) # positionet with text and image information else: phrases_masks = phrases_masks.unsqueeze(-1) image_masks = image_masks.unsqueeze(-1) # learnable null embedding text_null = self.null_text_feature.view(1, 1, -1) image_null = self.null_image_feature.view(1, 1, -1) # replace padding with learnable null embedding phrases_embeddings = phrases_embeddings * phrases_masks + (1 - phrases_masks) * text_null image_embeddings = image_embeddings * image_masks + (1 - image_masks) * image_null objs_text = self.linears_text(torch.cat([phrases_embeddings, xyxy_embedding], dim=-1)) objs_image = self.linears_image(torch.cat([image_embeddings, xyxy_embedding], dim=-1)) objs = torch.cat([objs_text, objs_image], dim=1) return objs class PixArtAlphaCombinedTimestepSizeEmbeddings(nn.Module): """ For PixArt-Alpha. Reference: https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L164C9-L168C29 """ def __init__(self, embedding_dim, size_emb_dim, use_additional_conditions: bool = False): super().__init__() self.outdim = size_emb_dim self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) self.use_additional_conditions = use_additional_conditions if use_additional_conditions: self.additional_condition_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) self.resolution_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim) self.aspect_ratio_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim) def forward(self, timestep, resolution, aspect_ratio, batch_size, hidden_dtype): timesteps_proj = self.time_proj(timestep) timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (N, D) if self.use_additional_conditions: resolution_emb = self.additional_condition_proj(resolution.flatten()).to(hidden_dtype) resolution_emb = self.resolution_embedder(resolution_emb).reshape(batch_size, -1) aspect_ratio_emb = self.additional_condition_proj(aspect_ratio.flatten()).to(hidden_dtype) aspect_ratio_emb = self.aspect_ratio_embedder(aspect_ratio_emb).reshape(batch_size, -1) conditioning = timesteps_emb + torch.cat([resolution_emb, aspect_ratio_emb], dim=1) else: conditioning = timesteps_emb return conditioning class PixArtAlphaTextProjection(nn.Module): """ Projects caption embeddings. Also handles dropout for classifier-free guidance. Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py """ def __init__(self, in_features, hidden_size, out_features=None, act_fn="gelu_tanh"): super().__init__() if out_features is None: out_features = hidden_size self.linear_1 = nn.Linear(in_features=in_features, out_features=hidden_size, bias=True) if act_fn == "gelu_tanh": self.act_1 = nn.GELU(approximate="tanh") elif act_fn == "silu": self.act_1 = nn.SiLU() elif act_fn == "silu_fp32": self.act_1 = FP32SiLU() else: raise ValueError(f"Unknown activation function: {act_fn}") self.linear_2 = nn.Linear(in_features=hidden_size, out_features=out_features, bias=True) def forward(self, caption): hidden_states = self.linear_1(caption) hidden_states = self.act_1(hidden_states) hidden_states = self.linear_2(hidden_states) return hidden_states class IPAdapterPlusImageProjectionBlock(nn.Module): def __init__( self, embed_dims: int = 768, dim_head: int = 64, heads: int = 16, ffn_ratio: float = 4, ) -> None: super().__init__() from .attention import FeedForward self.ln0 = nn.LayerNorm(embed_dims) self.ln1 = nn.LayerNorm(embed_dims) self.attn = Attention( query_dim=embed_dims, dim_head=dim_head, heads=heads, out_bias=False, ) self.ff = nn.Sequential( nn.LayerNorm(embed_dims), FeedForward(embed_dims, embed_dims, activation_fn="gelu", mult=ffn_ratio, bias=False), ) def forward(self, x, latents, residual): encoder_hidden_states = self.ln0(x) latents = self.ln1(latents) encoder_hidden_states = torch.cat([encoder_hidden_states, latents], dim=-2) latents = self.attn(latents, encoder_hidden_states) + residual latents = self.ff(latents) + latents return latents class IPAdapterPlusImageProjection(nn.Module): """Resampler of IP-Adapter Plus. Args: embed_dims (int): The feature dimension. Defaults to 768. output_dims (int): The number of output channels, that is the same number of the channels in the `unet.config.cross_attention_dim`. Defaults to 1024. hidden_dims (int): The number of hidden channels. Defaults to 1280. depth (int): The number of blocks. Defaults to 8. dim_head (int): The number of head channels. Defaults to 64. heads (int): Parallel attention heads. Defaults to 16. num_queries (int): The number of queries. Defaults to 8. ffn_ratio (float): The expansion ratio of feedforward network hidden layer channels. Defaults to 4. """ def __init__( self, embed_dims: int = 768, output_dims: int = 1024, hidden_dims: int = 1280, depth: int = 4, dim_head: int = 64, heads: int = 16, num_queries: int = 8, ffn_ratio: float = 4, ) -> None: super().__init__() self.latents = nn.Parameter(torch.randn(1, num_queries, hidden_dims) / hidden_dims**0.5) self.proj_in = nn.Linear(embed_dims, hidden_dims) self.proj_out = nn.Linear(hidden_dims, output_dims) self.norm_out = nn.LayerNorm(output_dims) self.layers = nn.ModuleList( [IPAdapterPlusImageProjectionBlock(hidden_dims, dim_head, heads, ffn_ratio) for _ in range(depth)] ) def forward(self, x: torch.Tensor) -> torch.Tensor: """Forward pass. Args: x (torch.Tensor): Input Tensor. Returns: torch.Tensor: Output Tensor. """ latents = self.latents.repeat(x.size(0), 1, 1) x = self.proj_in(x) for block in self.layers: residual = latents latents = block(x, latents, residual) latents = self.proj_out(latents) return self.norm_out(latents) class IPAdapterFaceIDPlusImageProjection(nn.Module): """FacePerceiverResampler of IP-Adapter Plus. Args: embed_dims (int): The feature dimension. Defaults to 768. output_dims (int): The number of output channels, that is the same number of the channels in the `unet.config.cross_attention_dim`. Defaults to 1024. hidden_dims (int): The number of hidden channels. Defaults to 1280. depth (int): The number of blocks. Defaults to 8. dim_head (int): The number of head channels. Defaults to 64. heads (int): Parallel attention heads. Defaults to 16. num_tokens (int): Number of tokens num_queries (int): The number of queries. Defaults to 8. ffn_ratio (float): The expansion ratio of feedforward network hidden layer channels. Defaults to 4. ffproj_ratio (float): The expansion ratio of feedforward network hidden layer channels (for ID embeddings). Defaults to 4. """ def __init__( self, embed_dims: int = 768, output_dims: int = 768, hidden_dims: int = 1280, id_embeddings_dim: int = 512, depth: int = 4, dim_head: int = 64, heads: int = 16, num_tokens: int = 4, num_queries: int = 8, ffn_ratio: float = 4, ffproj_ratio: int = 2, ) -> None: super().__init__() from .attention import FeedForward self.num_tokens = num_tokens self.embed_dim = embed_dims self.clip_embeds = None self.shortcut = False self.shortcut_scale = 1.0 self.proj = FeedForward(id_embeddings_dim, embed_dims * num_tokens, activation_fn="gelu", mult=ffproj_ratio) self.norm = nn.LayerNorm(embed_dims) self.proj_in = nn.Linear(hidden_dims, embed_dims) self.proj_out = nn.Linear(embed_dims, output_dims) self.norm_out = nn.LayerNorm(output_dims) self.layers = nn.ModuleList( [IPAdapterPlusImageProjectionBlock(embed_dims, dim_head, heads, ffn_ratio) for _ in range(depth)] ) def forward(self, id_embeds: torch.Tensor) -> torch.Tensor: """Forward pass. Args: id_embeds (torch.Tensor): Input Tensor (ID embeds). Returns: torch.Tensor: Output Tensor. """ id_embeds = id_embeds.to(self.clip_embeds.dtype) id_embeds = self.proj(id_embeds) id_embeds = id_embeds.reshape(-1, self.num_tokens, self.embed_dim) id_embeds = self.norm(id_embeds) latents = id_embeds clip_embeds = self.proj_in(self.clip_embeds) x = clip_embeds.reshape(-1, clip_embeds.shape[2], clip_embeds.shape[3]) for block in self.layers: residual = latents latents = block(x, latents, residual) latents = self.proj_out(latents) out = self.norm_out(latents) if self.shortcut: out = id_embeds + self.shortcut_scale * out return out class IPAdapterTimeImageProjectionBlock(nn.Module): """Block for IPAdapterTimeImageProjection. Args: hidden_dim (`int`, defaults to 1280): The number of hidden channels. dim_head (`int`, defaults to 64): The number of head channels. heads (`int`, defaults to 20): Parallel attention heads. ffn_ratio (`int`, defaults to 4): The expansion ratio of feedforward network hidden layer channels. """ def __init__( self, hidden_dim: int = 1280, dim_head: int = 64, heads: int = 20, ffn_ratio: int = 4, ) -> None: super().__init__() from .attention import FeedForward self.ln0 = nn.LayerNorm(hidden_dim) self.ln1 = nn.LayerNorm(hidden_dim) self.attn = Attention( query_dim=hidden_dim, cross_attention_dim=hidden_dim, dim_head=dim_head, heads=heads, bias=False, out_bias=False, ) self.ff = FeedForward(hidden_dim, hidden_dim, activation_fn="gelu", mult=ffn_ratio, bias=False) # AdaLayerNorm self.adaln_silu = nn.SiLU() self.adaln_proj = nn.Linear(hidden_dim, 4 * hidden_dim) self.adaln_norm = nn.LayerNorm(hidden_dim) # Set attention scale and fuse KV self.attn.scale = 1 / math.sqrt(math.sqrt(dim_head)) self.attn.fuse_projections() self.attn.to_k = None self.attn.to_v = None def forward(self, x: torch.Tensor, latents: torch.Tensor, timestep_emb: torch.Tensor) -> torch.Tensor: """Forward pass. Args: x (`torch.Tensor`): Image features. latents (`torch.Tensor`): Latent features. timestep_emb (`torch.Tensor`): Timestep embedding. Returns: `torch.Tensor`: Output latent features. """ # Shift and scale for AdaLayerNorm emb = self.adaln_proj(self.adaln_silu(timestep_emb)) shift_msa, scale_msa, shift_mlp, scale_mlp = emb.chunk(4, dim=1) # Fused Attention residual = latents x = self.ln0(x) latents = self.ln1(latents) * (1 + scale_msa[:, None]) + shift_msa[:, None] batch_size = latents.shape[0] query = self.attn.to_q(latents) kv_input = torch.cat((x, latents), dim=-2) key, value = self.attn.to_kv(kv_input).chunk(2, dim=-1) inner_dim = key.shape[-1] head_dim = inner_dim // self.attn.heads query = query.view(batch_size, -1, self.attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, self.attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, self.attn.heads, head_dim).transpose(1, 2) weight = (query * self.attn.scale) @ (key * self.attn.scale).transpose(-2, -1) weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) latents = weight @ value latents = latents.transpose(1, 2).reshape(batch_size, -1, self.attn.heads * head_dim) latents = self.attn.to_out[0](latents) latents = self.attn.to_out[1](latents) latents = latents + residual ## FeedForward residual = latents latents = self.adaln_norm(latents) * (1 + scale_mlp[:, None]) + shift_mlp[:, None] return self.ff(latents) + residual # Modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py class IPAdapterTimeImageProjection(nn.Module): """Resampler of SD3 IP-Adapter with timestep embedding. Args: embed_dim (`int`, defaults to 1152): The feature dimension. output_dim (`int`, defaults to 2432): The number of output channels. hidden_dim (`int`, defaults to 1280): The number of hidden channels. depth (`int`, defaults to 4): The number of blocks. dim_head (`int`, defaults to 64): The number of head channels. heads (`int`, defaults to 20): Parallel attention heads. num_queries (`int`, defaults to 64): The number of queries. ffn_ratio (`int`, defaults to 4): The expansion ratio of feedforward network hidden layer channels. timestep_in_dim (`int`, defaults to 320): The number of input channels for timestep embedding. timestep_flip_sin_to_cos (`bool`, defaults to True): Flip the timestep embedding order to `cos, sin` (if True) or `sin, cos` (if False). timestep_freq_shift (`int`, defaults to 0): Controls the timestep delta between frequencies between dimensions. """ def __init__( self, embed_dim: int = 1152, output_dim: int = 2432, hidden_dim: int = 1280, depth: int = 4, dim_head: int = 64, heads: int = 20, num_queries: int = 64, ffn_ratio: int = 4, timestep_in_dim: int = 320, timestep_flip_sin_to_cos: bool = True, timestep_freq_shift: int = 0, ) -> None: super().__init__() self.latents = nn.Parameter(torch.randn(1, num_queries, hidden_dim) / hidden_dim**0.5) self.proj_in = nn.Linear(embed_dim, hidden_dim) self.proj_out = nn.Linear(hidden_dim, output_dim) self.norm_out = nn.LayerNorm(output_dim) self.layers = nn.ModuleList( [IPAdapterTimeImageProjectionBlock(hidden_dim, dim_head, heads, ffn_ratio) for _ in range(depth)] ) self.time_proj = Timesteps(timestep_in_dim, timestep_flip_sin_to_cos, timestep_freq_shift) self.time_embedding = TimestepEmbedding(timestep_in_dim, hidden_dim, act_fn="silu") def forward(self, x: torch.Tensor, timestep: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """Forward pass. Args: x (`torch.Tensor`): Image features. timestep (`torch.Tensor`): Timestep in denoising process. Returns: `Tuple`[`torch.Tensor`, `torch.Tensor`]: The pair (latents, timestep_emb). """ timestep_emb = self.time_proj(timestep).to(dtype=x.dtype) timestep_emb = self.time_embedding(timestep_emb) latents = self.latents.repeat(x.size(0), 1, 1) x = self.proj_in(x) x = x + timestep_emb[:, None] for block in self.layers: latents = block(x, latents, timestep_emb) latents = self.proj_out(latents) latents = self.norm_out(latents) return latents, timestep_emb class MultiIPAdapterImageProjection(nn.Module): def __init__(self, IPAdapterImageProjectionLayers: Union[List[nn.Module], Tuple[nn.Module]]): super().__init__() self.image_projection_layers = nn.ModuleList(IPAdapterImageProjectionLayers) def forward(self, image_embeds: List[torch.Tensor]): projected_image_embeds = [] # currently, we accept `image_embeds` as # 1. a tensor (deprecated) with shape [batch_size, embed_dim] or [batch_size, sequence_length, embed_dim] # 2. list of `n` tensors where `n` is number of ip-adapters, each tensor can hae shape [batch_size, num_images, embed_dim] or [batch_size, num_images, sequence_length, embed_dim] if not isinstance(image_embeds, list): deprecation_message = ( "You have passed a tensor as `image_embeds`.This is deprecated and will be removed in a future release." " Please make sure to update your script to pass `image_embeds` as a list of tensors to suppress this warning." ) deprecate("image_embeds not a list", "1.0.0", deprecation_message, standard_warn=False) image_embeds = [image_embeds.unsqueeze(1)] if len(image_embeds) != len(self.image_projection_layers): raise ValueError( f"image_embeds must have the same length as image_projection_layers, got {len(image_embeds)} and {len(self.image_projection_layers)}" ) for image_embed, image_projection_layer in zip(image_embeds, self.image_projection_layers): batch_size, num_images = image_embed.shape[0], image_embed.shape[1] image_embed = image_embed.reshape((batch_size * num_images,) + image_embed.shape[2:]) image_embed = image_projection_layer(image_embed) image_embed = image_embed.reshape((batch_size, num_images) + image_embed.shape[1:]) projected_image_embeds.append(image_embed) return projected_image_embeds
diffusers/src/diffusers/models/embeddings.py/0
{ "file_path": "diffusers/src/diffusers/models/embeddings.py", "repo_id": "diffusers", "token_count": 47238 }
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...utils import logging from ..attention import BasicTransformerBlock from ..embeddings import PatchEmbed from ..modeling_outputs import Transformer2DModelOutput from ..modeling_utils import ModelMixin logger = logging.get_logger(__name__) # pylint: disable=invalid-name class DiTTransformer2DModel(ModelMixin, ConfigMixin): r""" A 2D Transformer model as introduced in DiT (https://arxiv.org/abs/2212.09748). Parameters: num_attention_heads (int, optional, defaults to 16): The number of heads to use for multi-head attention. attention_head_dim (int, optional, defaults to 72): The number of channels in each head. in_channels (int, defaults to 4): The number of channels in the input. out_channels (int, optional): The number of channels in the output. Specify this parameter if the output channel number differs from the input. num_layers (int, optional, defaults to 28): The number of layers of Transformer blocks to use. dropout (float, optional, defaults to 0.0): The dropout probability to use within the Transformer blocks. norm_num_groups (int, optional, defaults to 32): Number of groups for group normalization within Transformer blocks. attention_bias (bool, optional, defaults to True): Configure if the Transformer blocks' attention should contain a bias parameter. sample_size (int, defaults to 32): The width of the latent images. This parameter is fixed during training. patch_size (int, defaults to 2): Size of the patches the model processes, relevant for architectures working on non-sequential data. activation_fn (str, optional, defaults to "gelu-approximate"): Activation function to use in feed-forward networks within Transformer blocks. num_embeds_ada_norm (int, optional, defaults to 1000): Number of embeddings for AdaLayerNorm, fixed during training and affects the maximum denoising steps during inference. upcast_attention (bool, optional, defaults to False): If true, upcasts the attention mechanism dimensions for potentially improved performance. norm_type (str, optional, defaults to "ada_norm_zero"): Specifies the type of normalization used, can be 'ada_norm_zero'. norm_elementwise_affine (bool, optional, defaults to False): If true, enables element-wise affine parameters in the normalization layers. norm_eps (float, optional, defaults to 1e-5): A small constant added to the denominator in normalization layers to prevent division by zero. """ _skip_layerwise_casting_patterns = ["pos_embed", "norm"] _supports_gradient_checkpointing = True @register_to_config def __init__( self, num_attention_heads: int = 16, attention_head_dim: int = 72, in_channels: int = 4, out_channels: Optional[int] = None, num_layers: int = 28, dropout: float = 0.0, norm_num_groups: int = 32, attention_bias: bool = True, sample_size: int = 32, patch_size: int = 2, activation_fn: str = "gelu-approximate", num_embeds_ada_norm: Optional[int] = 1000, upcast_attention: bool = False, norm_type: str = "ada_norm_zero", norm_elementwise_affine: bool = False, norm_eps: float = 1e-5, ): super().__init__() # Validate inputs. if norm_type != "ada_norm_zero": raise NotImplementedError( f"Forward pass is not implemented when `patch_size` is not None and `norm_type` is '{norm_type}'." ) elif norm_type == "ada_norm_zero" and num_embeds_ada_norm is None: raise ValueError( f"When using a `patch_size` and this `norm_type` ({norm_type}), `num_embeds_ada_norm` cannot be None." ) # Set some common variables used across the board. self.attention_head_dim = attention_head_dim self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim self.out_channels = in_channels if out_channels is None else out_channels self.gradient_checkpointing = False # 2. Initialize the position embedding and transformer blocks. self.height = self.config.sample_size self.width = self.config.sample_size self.patch_size = self.config.patch_size self.pos_embed = PatchEmbed( height=self.config.sample_size, width=self.config.sample_size, patch_size=self.config.patch_size, in_channels=self.config.in_channels, embed_dim=self.inner_dim, ) self.transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( self.inner_dim, self.config.num_attention_heads, self.config.attention_head_dim, dropout=self.config.dropout, activation_fn=self.config.activation_fn, num_embeds_ada_norm=self.config.num_embeds_ada_norm, attention_bias=self.config.attention_bias, upcast_attention=self.config.upcast_attention, norm_type=norm_type, norm_elementwise_affine=self.config.norm_elementwise_affine, norm_eps=self.config.norm_eps, ) for _ in range(self.config.num_layers) ] ) # 3. Output blocks. self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6) self.proj_out_1 = nn.Linear(self.inner_dim, 2 * self.inner_dim) self.proj_out_2 = nn.Linear( self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels ) def forward( self, hidden_states: torch.Tensor, timestep: Optional[torch.LongTensor] = None, class_labels: Optional[torch.LongTensor] = None, cross_attention_kwargs: Dict[str, Any] = None, return_dict: bool = True, ): """ The [`DiTTransformer2DModel`] forward method. Args: hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous): Input `hidden_states`. timestep ( `torch.LongTensor`, *optional*): Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*): Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in `AdaLayerZeroNorm`. cross_attention_kwargs ( `Dict[str, Any]`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. Returns: If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a `tuple` where the first element is the sample tensor. """ # 1. Input height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size hidden_states = self.pos_embed(hidden_states) # 2. Blocks for block in self.transformer_blocks: if torch.is_grad_enabled() and self.gradient_checkpointing: hidden_states = self._gradient_checkpointing_func( block, hidden_states, None, None, None, timestep, cross_attention_kwargs, class_labels, ) else: hidden_states = block( hidden_states, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, timestep=timestep, cross_attention_kwargs=cross_attention_kwargs, class_labels=class_labels, ) # 3. Output conditioning = self.transformer_blocks[0].norm1.emb(timestep, class_labels, hidden_dtype=hidden_states.dtype) shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1) hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None] hidden_states = self.proj_out_2(hidden_states) # unpatchify height = width = int(hidden_states.shape[1] ** 0.5) hidden_states = hidden_states.reshape( shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels) ) hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states) output = hidden_states.reshape( shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size) ) if not return_dict: return (output,) return Transformer2DModelOutput(sample=output)
diffusers/src/diffusers/models/transformers/dit_transformer_2d.py/0
{ "file_path": "diffusers/src/diffusers/models/transformers/dit_transformer_2d.py", "repo_id": "diffusers", "token_count": 4513 }
# Copyright 2024 The Genmo team and The HuggingFace Team. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, Optional, Tuple import torch import torch.nn as nn from ...configuration_utils import ConfigMixin, register_to_config from ...loaders import PeftAdapterMixin from ...loaders.single_file_model import FromOriginalModelMixin from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers from ...utils.torch_utils import maybe_allow_in_graph from ..attention import FeedForward from ..attention_processor import MochiAttention, MochiAttnProcessor2_0 from ..cache_utils import CacheMixin from ..embeddings import MochiCombinedTimestepCaptionEmbedding, PatchEmbed from ..modeling_outputs import Transformer2DModelOutput from ..modeling_utils import ModelMixin from ..normalization import AdaLayerNormContinuous, RMSNorm logger = logging.get_logger(__name__) # pylint: disable=invalid-name class MochiModulatedRMSNorm(nn.Module): def __init__(self, eps: float): super().__init__() self.eps = eps self.norm = RMSNorm(0, eps, False) def forward(self, hidden_states, scale=None): hidden_states_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) hidden_states = self.norm(hidden_states) if scale is not None: hidden_states = hidden_states * scale hidden_states = hidden_states.to(hidden_states_dtype) return hidden_states class MochiLayerNormContinuous(nn.Module): def __init__( self, embedding_dim: int, conditioning_embedding_dim: int, eps=1e-5, bias=True, ): super().__init__() # AdaLN self.silu = nn.SiLU() self.linear_1 = nn.Linear(conditioning_embedding_dim, embedding_dim, bias=bias) self.norm = MochiModulatedRMSNorm(eps=eps) def forward( self, x: torch.Tensor, conditioning_embedding: torch.Tensor, ) -> torch.Tensor: input_dtype = x.dtype # convert back to the original dtype in case `conditioning_embedding`` is upcasted to float32 (needed for hunyuanDiT) scale = self.linear_1(self.silu(conditioning_embedding).to(x.dtype)) x = self.norm(x, (1 + scale.unsqueeze(1).to(torch.float32))) return x.to(input_dtype) class MochiRMSNormZero(nn.Module): r""" Adaptive RMS Norm used in Mochi. Parameters: embedding_dim (`int`): The size of each embedding vector. """ def __init__( self, embedding_dim: int, hidden_dim: int, eps: float = 1e-5, elementwise_affine: bool = False ) -> None: super().__init__() self.silu = nn.SiLU() self.linear = nn.Linear(embedding_dim, hidden_dim) self.norm = RMSNorm(0, eps, False) def forward( self, hidden_states: torch.Tensor, emb: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: hidden_states_dtype = hidden_states.dtype emb = self.linear(self.silu(emb)) scale_msa, gate_msa, scale_mlp, gate_mlp = emb.chunk(4, dim=1) hidden_states = self.norm(hidden_states.to(torch.float32)) * (1 + scale_msa[:, None].to(torch.float32)) hidden_states = hidden_states.to(hidden_states_dtype) return hidden_states, gate_msa, scale_mlp, gate_mlp @maybe_allow_in_graph class MochiTransformerBlock(nn.Module): r""" Transformer block used in [Mochi](https://huggingface.co/genmo/mochi-1-preview). Args: dim (`int`): The number of channels in the input and output. num_attention_heads (`int`): The number of heads to use for multi-head attention. attention_head_dim (`int`): The number of channels in each head. qk_norm (`str`, defaults to `"rms_norm"`): The normalization layer to use. activation_fn (`str`, defaults to `"swiglu"`): Activation function to use in feed-forward. context_pre_only (`bool`, defaults to `False`): Whether or not to process context-related conditions with additional layers. eps (`float`, defaults to `1e-6`): Epsilon value for normalization layers. """ def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, pooled_projection_dim: int, qk_norm: str = "rms_norm", activation_fn: str = "swiglu", context_pre_only: bool = False, eps: float = 1e-6, ) -> None: super().__init__() self.context_pre_only = context_pre_only self.ff_inner_dim = (4 * dim * 2) // 3 self.ff_context_inner_dim = (4 * pooled_projection_dim * 2) // 3 self.norm1 = MochiRMSNormZero(dim, 4 * dim, eps=eps, elementwise_affine=False) if not context_pre_only: self.norm1_context = MochiRMSNormZero(dim, 4 * pooled_projection_dim, eps=eps, elementwise_affine=False) else: self.norm1_context = MochiLayerNormContinuous( embedding_dim=pooled_projection_dim, conditioning_embedding_dim=dim, eps=eps, ) self.attn1 = MochiAttention( query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, bias=False, added_kv_proj_dim=pooled_projection_dim, added_proj_bias=False, out_dim=dim, out_context_dim=pooled_projection_dim, context_pre_only=context_pre_only, processor=MochiAttnProcessor2_0(), eps=1e-5, ) # TODO(aryan): norm_context layers are not needed when `context_pre_only` is True self.norm2 = MochiModulatedRMSNorm(eps=eps) self.norm2_context = MochiModulatedRMSNorm(eps=eps) if not self.context_pre_only else None self.norm3 = MochiModulatedRMSNorm(eps) self.norm3_context = MochiModulatedRMSNorm(eps=eps) if not self.context_pre_only else None self.ff = FeedForward(dim, inner_dim=self.ff_inner_dim, activation_fn=activation_fn, bias=False) self.ff_context = None if not context_pre_only: self.ff_context = FeedForward( pooled_projection_dim, inner_dim=self.ff_context_inner_dim, activation_fn=activation_fn, bias=False, ) self.norm4 = MochiModulatedRMSNorm(eps=eps) self.norm4_context = MochiModulatedRMSNorm(eps=eps) def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, temb: torch.Tensor, encoder_attention_mask: torch.Tensor, image_rotary_emb: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: norm_hidden_states, gate_msa, scale_mlp, gate_mlp = self.norm1(hidden_states, temb) if not self.context_pre_only: norm_encoder_hidden_states, enc_gate_msa, enc_scale_mlp, enc_gate_mlp = self.norm1_context( encoder_hidden_states, temb ) else: norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states, temb) attn_hidden_states, context_attn_hidden_states = self.attn1( hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states, image_rotary_emb=image_rotary_emb, attention_mask=encoder_attention_mask, ) hidden_states = hidden_states + self.norm2(attn_hidden_states, torch.tanh(gate_msa).unsqueeze(1)) norm_hidden_states = self.norm3(hidden_states, (1 + scale_mlp.unsqueeze(1).to(torch.float32))) ff_output = self.ff(norm_hidden_states) hidden_states = hidden_states + self.norm4(ff_output, torch.tanh(gate_mlp).unsqueeze(1)) if not self.context_pre_only: encoder_hidden_states = encoder_hidden_states + self.norm2_context( context_attn_hidden_states, torch.tanh(enc_gate_msa).unsqueeze(1) ) norm_encoder_hidden_states = self.norm3_context( encoder_hidden_states, (1 + enc_scale_mlp.unsqueeze(1).to(torch.float32)) ) context_ff_output = self.ff_context(norm_encoder_hidden_states) encoder_hidden_states = encoder_hidden_states + self.norm4_context( context_ff_output, torch.tanh(enc_gate_mlp).unsqueeze(1) ) return hidden_states, encoder_hidden_states class MochiRoPE(nn.Module): r""" RoPE implementation used in [Mochi](https://huggingface.co/genmo/mochi-1-preview). Args: base_height (`int`, defaults to `192`): Base height used to compute interpolation scale for rotary positional embeddings. base_width (`int`, defaults to `192`): Base width used to compute interpolation scale for rotary positional embeddings. """ def __init__(self, base_height: int = 192, base_width: int = 192) -> None: super().__init__() self.target_area = base_height * base_width def _centers(self, start, stop, num, device, dtype) -> torch.Tensor: edges = torch.linspace(start, stop, num + 1, device=device, dtype=dtype) return (edges[:-1] + edges[1:]) / 2 def _get_positions( self, num_frames: int, height: int, width: int, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ) -> torch.Tensor: scale = (self.target_area / (height * width)) ** 0.5 t = torch.arange(num_frames, device=device, dtype=dtype) h = self._centers(-height * scale / 2, height * scale / 2, height, device, dtype) w = self._centers(-width * scale / 2, width * scale / 2, width, device, dtype) grid_t, grid_h, grid_w = torch.meshgrid(t, h, w, indexing="ij") positions = torch.stack([grid_t, grid_h, grid_w], dim=-1).view(-1, 3) return positions def _create_rope(self, freqs: torch.Tensor, pos: torch.Tensor) -> torch.Tensor: with torch.autocast(freqs.device.type, torch.float32): # Always run ROPE freqs computation in FP32 freqs = torch.einsum("nd,dhf->nhf", pos.to(torch.float32), freqs.to(torch.float32)) freqs_cos = torch.cos(freqs) freqs_sin = torch.sin(freqs) return freqs_cos, freqs_sin def forward( self, pos_frequencies: torch.Tensor, num_frames: int, height: int, width: int, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: pos = self._get_positions(num_frames, height, width, device, dtype) rope_cos, rope_sin = self._create_rope(pos_frequencies, pos) return rope_cos, rope_sin @maybe_allow_in_graph class MochiTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, CacheMixin): r""" A Transformer model for video-like data introduced in [Mochi](https://huggingface.co/genmo/mochi-1-preview). Args: patch_size (`int`, defaults to `2`): The size of the patches to use in the patch embedding layer. num_attention_heads (`int`, defaults to `24`): The number of heads to use for multi-head attention. attention_head_dim (`int`, defaults to `128`): The number of channels in each head. num_layers (`int`, defaults to `48`): The number of layers of Transformer blocks to use. in_channels (`int`, defaults to `12`): The number of channels in the input. out_channels (`int`, *optional*, defaults to `None`): The number of channels in the output. qk_norm (`str`, defaults to `"rms_norm"`): The normalization layer to use. text_embed_dim (`int`, defaults to `4096`): Input dimension of text embeddings from the text encoder. time_embed_dim (`int`, defaults to `256`): Output dimension of timestep embeddings. activation_fn (`str`, defaults to `"swiglu"`): Activation function to use in feed-forward. max_sequence_length (`int`, defaults to `256`): The maximum sequence length of text embeddings supported. """ _supports_gradient_checkpointing = True _no_split_modules = ["MochiTransformerBlock"] _skip_layerwise_casting_patterns = ["patch_embed", "norm"] @register_to_config def __init__( self, patch_size: int = 2, num_attention_heads: int = 24, attention_head_dim: int = 128, num_layers: int = 48, pooled_projection_dim: int = 1536, in_channels: int = 12, out_channels: Optional[int] = None, qk_norm: str = "rms_norm", text_embed_dim: int = 4096, time_embed_dim: int = 256, activation_fn: str = "swiglu", max_sequence_length: int = 256, ) -> None: super().__init__() inner_dim = num_attention_heads * attention_head_dim out_channels = out_channels or in_channels self.patch_embed = PatchEmbed( patch_size=patch_size, in_channels=in_channels, embed_dim=inner_dim, pos_embed_type=None, ) self.time_embed = MochiCombinedTimestepCaptionEmbedding( embedding_dim=inner_dim, pooled_projection_dim=pooled_projection_dim, text_embed_dim=text_embed_dim, time_embed_dim=time_embed_dim, num_attention_heads=8, ) self.pos_frequencies = nn.Parameter(torch.full((3, num_attention_heads, attention_head_dim // 2), 0.0)) self.rope = MochiRoPE() self.transformer_blocks = nn.ModuleList( [ MochiTransformerBlock( dim=inner_dim, num_attention_heads=num_attention_heads, attention_head_dim=attention_head_dim, pooled_projection_dim=pooled_projection_dim, qk_norm=qk_norm, activation_fn=activation_fn, context_pre_only=i == num_layers - 1, ) for i in range(num_layers) ] ) self.norm_out = AdaLayerNormContinuous( inner_dim, inner_dim, elementwise_affine=False, eps=1e-6, norm_type="layer_norm", ) self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * out_channels) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, timestep: torch.LongTensor, encoder_attention_mask: torch.Tensor, attention_kwargs: Optional[Dict[str, Any]] = None, return_dict: bool = True, ) -> torch.Tensor: if attention_kwargs is not None: attention_kwargs = attention_kwargs.copy() lora_scale = attention_kwargs.pop("scale", 1.0) else: lora_scale = 1.0 if USE_PEFT_BACKEND: # weight the lora layers by setting `lora_scale` for each PEFT layer scale_lora_layers(self, lora_scale) else: if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None: logger.warning( "Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective." ) batch_size, num_channels, num_frames, height, width = hidden_states.shape p = self.config.patch_size post_patch_height = height // p post_patch_width = width // p temb, encoder_hidden_states = self.time_embed( timestep, encoder_hidden_states, encoder_attention_mask, hidden_dtype=hidden_states.dtype, ) hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1) hidden_states = self.patch_embed(hidden_states) hidden_states = hidden_states.unflatten(0, (batch_size, -1)).flatten(1, 2) image_rotary_emb = self.rope( self.pos_frequencies, num_frames, post_patch_height, post_patch_width, device=hidden_states.device, dtype=torch.float32, ) for i, block in enumerate(self.transformer_blocks): if torch.is_grad_enabled() and self.gradient_checkpointing: hidden_states, encoder_hidden_states = self._gradient_checkpointing_func( block, hidden_states, encoder_hidden_states, temb, encoder_attention_mask, image_rotary_emb, ) else: hidden_states, encoder_hidden_states = block( hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb, encoder_attention_mask=encoder_attention_mask, image_rotary_emb=image_rotary_emb, ) hidden_states = self.norm_out(hidden_states, temb) hidden_states = self.proj_out(hidden_states) hidden_states = hidden_states.reshape(batch_size, num_frames, post_patch_height, post_patch_width, p, p, -1) hidden_states = hidden_states.permute(0, 6, 1, 2, 4, 3, 5) output = hidden_states.reshape(batch_size, -1, num_frames, height, width) if USE_PEFT_BACKEND: # remove `lora_scale` from each PEFT layer unscale_lora_layers(self, lora_scale) if not return_dict: return (output,) return Transformer2DModelOutput(sample=output)
diffusers/src/diffusers/models/transformers/transformer_mochi.py/0
{ "file_path": "diffusers/src/diffusers/models/transformers/transformer_mochi.py", "repo_id": "diffusers", "token_count": 8519 }
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ...configuration_utils import ConfigMixin, register_to_config from ...loaders import UNet2DConditionLoadersMixin from ...utils import BaseOutput, logging from ..attention_processor import CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnProcessor from ..embeddings import TimestepEmbedding, Timesteps from ..modeling_utils import ModelMixin from .unet_3d_blocks import UNetMidBlockSpatioTemporal, get_down_block, get_up_block logger = logging.get_logger(__name__) # pylint: disable=invalid-name @dataclass class UNetSpatioTemporalConditionOutput(BaseOutput): """ The output of [`UNetSpatioTemporalConditionModel`]. Args: sample (`torch.Tensor` of shape `(batch_size, num_frames, num_channels, height, width)`): The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model. """ sample: torch.Tensor = None class UNetSpatioTemporalConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin): r""" A conditional Spatio-Temporal UNet model that takes a noisy video frames, conditional state, and a timestep and returns a sample shaped output. This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented for all models (such as downloading or saving). Parameters: sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`): Height and width of input/output sample. in_channels (`int`, *optional*, defaults to 8): Number of channels in the input sample. out_channels (`int`, *optional*, defaults to 4): Number of channels in the output. down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlockSpatioTemporal", "CrossAttnDownBlockSpatioTemporal", "CrossAttnDownBlockSpatioTemporal", "DownBlockSpatioTemporal")`): The tuple of downsample blocks to use. up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal")`): The tuple of upsample blocks to use. block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): The tuple of output channels for each block. addition_time_embed_dim: (`int`, defaults to 256): Dimension to to encode the additional time ids. projection_class_embeddings_input_dim (`int`, defaults to 768): The dimension of the projection of encoded `added_time_ids`. layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block. cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280): The dimension of the cross attention features. transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1): The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for [`~models.unets.unet_3d_blocks.CrossAttnDownBlockSpatioTemporal`], [`~models.unets.unet_3d_blocks.CrossAttnUpBlockSpatioTemporal`], [`~models.unets.unet_3d_blocks.UNetMidBlockSpatioTemporal`]. num_attention_heads (`int`, `Tuple[int]`, defaults to `(5, 10, 10, 20)`): The number of attention heads. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. """ _supports_gradient_checkpointing = True @register_to_config def __init__( self, sample_size: Optional[int] = None, in_channels: int = 8, out_channels: int = 4, down_block_types: Tuple[str] = ( "CrossAttnDownBlockSpatioTemporal", "CrossAttnDownBlockSpatioTemporal", "CrossAttnDownBlockSpatioTemporal", "DownBlockSpatioTemporal", ), up_block_types: Tuple[str] = ( "UpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal", ), block_out_channels: Tuple[int] = (320, 640, 1280, 1280), addition_time_embed_dim: int = 256, projection_class_embeddings_input_dim: int = 768, layers_per_block: Union[int, Tuple[int]] = 2, cross_attention_dim: Union[int, Tuple[int]] = 1024, transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1, num_attention_heads: Union[int, Tuple[int]] = (5, 10, 20, 20), num_frames: int = 25, ): super().__init__() self.sample_size = sample_size # Check inputs if len(down_block_types) != len(up_block_types): raise ValueError( f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}." ) if len(block_out_channels) != len(down_block_types): raise ValueError( f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." ) if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types): raise ValueError( f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}." ) if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types): raise ValueError( f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}." ) if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types): raise ValueError( f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}." ) # input self.conv_in = nn.Conv2d( in_channels, block_out_channels[0], kernel_size=3, padding=1, ) # time time_embed_dim = block_out_channels[0] * 4 self.time_proj = Timesteps(block_out_channels[0], True, downscale_freq_shift=0) timestep_input_dim = block_out_channels[0] self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) self.add_time_proj = Timesteps(addition_time_embed_dim, True, downscale_freq_shift=0) self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) self.down_blocks = nn.ModuleList([]) self.up_blocks = nn.ModuleList([]) if isinstance(num_attention_heads, int): num_attention_heads = (num_attention_heads,) * len(down_block_types) if isinstance(cross_attention_dim, int): cross_attention_dim = (cross_attention_dim,) * len(down_block_types) if isinstance(layers_per_block, int): layers_per_block = [layers_per_block] * len(down_block_types) if isinstance(transformer_layers_per_block, int): transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types) blocks_time_embed_dim = time_embed_dim # down output_channel = block_out_channels[0] for i, down_block_type in enumerate(down_block_types): input_channel = output_channel output_channel = block_out_channels[i] is_final_block = i == len(block_out_channels) - 1 down_block = get_down_block( down_block_type, num_layers=layers_per_block[i], transformer_layers_per_block=transformer_layers_per_block[i], in_channels=input_channel, out_channels=output_channel, temb_channels=blocks_time_embed_dim, add_downsample=not is_final_block, resnet_eps=1e-5, cross_attention_dim=cross_attention_dim[i], num_attention_heads=num_attention_heads[i], resnet_act_fn="silu", ) self.down_blocks.append(down_block) # mid self.mid_block = UNetMidBlockSpatioTemporal( block_out_channels[-1], temb_channels=blocks_time_embed_dim, transformer_layers_per_block=transformer_layers_per_block[-1], cross_attention_dim=cross_attention_dim[-1], num_attention_heads=num_attention_heads[-1], ) # count how many layers upsample the images self.num_upsamplers = 0 # up reversed_block_out_channels = list(reversed(block_out_channels)) reversed_num_attention_heads = list(reversed(num_attention_heads)) reversed_layers_per_block = list(reversed(layers_per_block)) reversed_cross_attention_dim = list(reversed(cross_attention_dim)) reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block)) output_channel = reversed_block_out_channels[0] for i, up_block_type in enumerate(up_block_types): is_final_block = i == len(block_out_channels) - 1 prev_output_channel = output_channel output_channel = reversed_block_out_channels[i] input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] # add upsample block for all BUT final layer if not is_final_block: add_upsample = True self.num_upsamplers += 1 else: add_upsample = False up_block = get_up_block( up_block_type, num_layers=reversed_layers_per_block[i] + 1, transformer_layers_per_block=reversed_transformer_layers_per_block[i], in_channels=input_channel, out_channels=output_channel, prev_output_channel=prev_output_channel, temb_channels=blocks_time_embed_dim, add_upsample=add_upsample, resnet_eps=1e-5, resolution_idx=i, cross_attention_dim=reversed_cross_attention_dim[i], num_attention_heads=reversed_num_attention_heads[i], resnet_act_fn="silu", ) self.up_blocks.append(up_block) prev_output_channel = output_channel # out self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=32, eps=1e-5) self.conv_act = nn.SiLU() self.conv_out = nn.Conv2d( block_out_channels[0], out_channels, kernel_size=3, padding=1, ) @property def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors( name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor], ): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor() for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor) def set_default_attn_processor(self): """ Disables custom attention processors and sets the default attention implementation. """ if all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): processor = AttnProcessor() else: raise ValueError( f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" ) self.set_attn_processor(processor) # Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None: """ Sets the attention processor to use [feed forward chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers). Parameters: chunk_size (`int`, *optional*): The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually over each tensor of dim=`dim`. dim (`int`, *optional*, defaults to `0`): The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch) or dim=1 (sequence length). """ if dim not in [0, 1]: raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}") # By default chunk size is 1 chunk_size = chunk_size or 1 def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): if hasattr(module, "set_chunk_feed_forward"): module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) for child in module.children(): fn_recursive_feed_forward(child, chunk_size, dim) for module in self.children(): fn_recursive_feed_forward(module, chunk_size, dim) def forward( self, sample: torch.Tensor, timestep: Union[torch.Tensor, float, int], encoder_hidden_states: torch.Tensor, added_time_ids: torch.Tensor, return_dict: bool = True, ) -> Union[UNetSpatioTemporalConditionOutput, Tuple]: r""" The [`UNetSpatioTemporalConditionModel`] forward method. Args: sample (`torch.Tensor`): The noisy input tensor with the following shape `(batch, num_frames, channel, height, width)`. timestep (`torch.Tensor` or `float` or `int`): The number of timesteps to denoise an input. encoder_hidden_states (`torch.Tensor`): The encoder hidden states with shape `(batch, sequence_length, cross_attention_dim)`. added_time_ids: (`torch.Tensor`): The additional time ids with shape `(batch, num_additional_ids)`. These are encoded with sinusoidal embeddings and added to the time embeddings. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] instead of a plain tuple. Returns: [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] or `tuple`: If `return_dict` is True, an [`~models.unet_slatio_temporal.UNetSpatioTemporalConditionOutput`] is returned, otherwise a `tuple` is returned where the first element is the sample tensor. """ # By default samples have to be AT least a multiple of the overall upsampling factor. # The overall upsampling factor is equal to 2 ** (# num of upsampling layears). # However, the upsampling interpolation output size can be forced to fit any upsampling size # on the fly if necessary. default_overall_up_factor = 2**self.num_upsamplers # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` forward_upsample_size = False upsample_size = None if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): logger.info("Forward upsample size to force interpolation output size.") forward_upsample_size = True # 1. time timesteps = timestep if not torch.is_tensor(timesteps): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) is_mps = sample.device.type == "mps" is_npu = sample.device.type == "npu" if isinstance(timestep, float): dtype = torch.float32 if (is_mps or is_npu) else torch.float64 else: dtype = torch.int32 if (is_mps or is_npu) else torch.int64 timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) elif len(timesteps.shape) == 0: timesteps = timesteps[None].to(sample.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML batch_size, num_frames = sample.shape[:2] timesteps = timesteps.expand(batch_size) t_emb = self.time_proj(timesteps) # `Timesteps` does not contain any weights and will always return f32 tensors # but time_embedding might actually be running in fp16. so we need to cast here. # there might be better ways to encapsulate this. t_emb = t_emb.to(dtype=sample.dtype) emb = self.time_embedding(t_emb) time_embeds = self.add_time_proj(added_time_ids.flatten()) time_embeds = time_embeds.reshape((batch_size, -1)) time_embeds = time_embeds.to(emb.dtype) aug_emb = self.add_embedding(time_embeds) emb = emb + aug_emb # Flatten the batch and frames dimensions # sample: [batch, frames, channels, height, width] -> [batch * frames, channels, height, width] sample = sample.flatten(0, 1) # Repeat the embeddings num_video_frames times # emb: [batch, channels] -> [batch * frames, channels] emb = emb.repeat_interleave(num_frames, dim=0) # encoder_hidden_states: [batch, 1, channels] -> [batch * frames, 1, channels] encoder_hidden_states = encoder_hidden_states.repeat_interleave(num_frames, dim=0) # 2. pre-process sample = self.conv_in(sample) image_only_indicator = torch.zeros(batch_size, num_frames, dtype=sample.dtype, device=sample.device) down_block_res_samples = (sample,) for downsample_block in self.down_blocks: if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: sample, res_samples = downsample_block( hidden_states=sample, temb=emb, encoder_hidden_states=encoder_hidden_states, image_only_indicator=image_only_indicator, ) else: sample, res_samples = downsample_block( hidden_states=sample, temb=emb, image_only_indicator=image_only_indicator, ) down_block_res_samples += res_samples # 4. mid sample = self.mid_block( hidden_states=sample, temb=emb, encoder_hidden_states=encoder_hidden_states, image_only_indicator=image_only_indicator, ) # 5. up for i, upsample_block in enumerate(self.up_blocks): is_final_block = i == len(self.up_blocks) - 1 res_samples = down_block_res_samples[-len(upsample_block.resnets) :] down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] # if we have not reached the final block and need to forward the # upsample size, we do it here if not is_final_block and forward_upsample_size: upsample_size = down_block_res_samples[-1].shape[2:] if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: sample = upsample_block( hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, encoder_hidden_states=encoder_hidden_states, upsample_size=upsample_size, image_only_indicator=image_only_indicator, ) else: sample = upsample_block( hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size, image_only_indicator=image_only_indicator, ) # 6. post-process sample = self.conv_norm_out(sample) sample = self.conv_act(sample) sample = self.conv_out(sample) # 7. Reshape back to original shape sample = sample.reshape(batch_size, num_frames, *sample.shape[1:]) if not return_dict: return (sample,) return UNetSpatioTemporalConditionOutput(sample=sample)
diffusers/src/diffusers/models/unets/unet_spatio_temporal_condition.py/0
{ "file_path": "diffusers/src/diffusers/models/unets/unet_spatio_temporal_condition.py", "repo_id": "diffusers", "token_count": 10332 }
from typing import TYPE_CHECKING from ...utils import ( DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available, ) _dummy_objects = {} _import_structure = {"pipeline_output": ["AnimateDiffPipelineOutput"]} try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils import dummy_torch_and_transformers_objects _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) else: _import_structure["pipeline_animatediff"] = ["AnimateDiffPipeline"] _import_structure["pipeline_animatediff_controlnet"] = ["AnimateDiffControlNetPipeline"] _import_structure["pipeline_animatediff_sdxl"] = ["AnimateDiffSDXLPipeline"] _import_structure["pipeline_animatediff_sparsectrl"] = ["AnimateDiffSparseControlNetPipeline"] _import_structure["pipeline_animatediff_video2video"] = ["AnimateDiffVideoToVideoPipeline"] _import_structure["pipeline_animatediff_video2video_controlnet"] = ["AnimateDiffVideoToVideoControlNetPipeline"] if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * else: from .pipeline_animatediff import AnimateDiffPipeline from .pipeline_animatediff_controlnet import AnimateDiffControlNetPipeline from .pipeline_animatediff_sdxl import AnimateDiffSDXLPipeline from .pipeline_animatediff_sparsectrl import AnimateDiffSparseControlNetPipeline from .pipeline_animatediff_video2video import AnimateDiffVideoToVideoPipeline from .pipeline_animatediff_video2video_controlnet import AnimateDiffVideoToVideoControlNetPipeline from .pipeline_output import AnimateDiffPipelineOutput else: import sys sys.modules[__name__] = _LazyModule( __name__, globals()["__file__"], _import_structure, module_spec=__spec__, ) for name, value in _dummy_objects.items(): setattr(sys.modules[__name__], name, value)
diffusers/src/diffusers/pipelines/animatediff/__init__.py/0
{ "file_path": "diffusers/src/diffusers/pipelines/animatediff/__init__.py", "repo_id": "diffusers", "token_count": 880 }
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import OptionalDependencyNotAvailable, is_torch_available, is_transformers_available try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .blip_image_processing import BlipImageProcessor from .modeling_blip2 import Blip2QFormerModel from .modeling_ctx_clip import ContextCLIPTextModel from .pipeline_blip_diffusion import BlipDiffusionPipeline
diffusers/src/diffusers/pipelines/blip_diffusion/__init__.py/0
{ "file_path": "diffusers/src/diffusers/pipelines/blip_diffusion/__init__.py", "repo_id": "diffusers", "token_count": 219 }
# Copyright 2024 ConsisID Authors and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import math from typing import Any, Callable, Dict, List, Optional, Tuple, Union import cv2 import numpy as np import PIL import torch from transformers import T5EncoderModel, T5Tokenizer from ...callbacks import MultiPipelineCallbacks, PipelineCallback from ...image_processor import PipelineImageInput from ...loaders import CogVideoXLoraLoaderMixin from ...models import AutoencoderKLCogVideoX, ConsisIDTransformer3DModel from ...models.embeddings import get_3d_rotary_pos_embed from ...pipelines.pipeline_utils import DiffusionPipeline from ...schedulers import CogVideoXDPMScheduler from ...utils import logging, replace_example_docstring from ...utils.torch_utils import randn_tensor from ...video_processor import VideoProcessor from .pipeline_output import ConsisIDPipelineOutput logger = logging.get_logger(__name__) # pylint: disable=invalid-name EXAMPLE_DOC_STRING = """ Examples: ```python >>> import torch >>> from diffusers import ConsisIDPipeline >>> from diffusers.pipelines.consisid.consisid_utils import prepare_face_models, process_face_embeddings_infer >>> from diffusers.utils import export_to_video >>> from huggingface_hub import snapshot_download >>> snapshot_download(repo_id="BestWishYsh/ConsisID-preview", local_dir="BestWishYsh/ConsisID-preview") >>> face_helper_1, face_helper_2, face_clip_model, face_main_model, eva_transform_mean, eva_transform_std = ( ... prepare_face_models("BestWishYsh/ConsisID-preview", device="cuda", dtype=torch.bfloat16) ... ) >>> pipe = ConsisIDPipeline.from_pretrained("BestWishYsh/ConsisID-preview", torch_dtype=torch.bfloat16) >>> pipe.to("cuda") >>> # ConsisID works well with long and well-described prompts. Make sure the face in the image is clearly visible (e.g., preferably half-body or full-body). >>> prompt = "The video captures a boy walking along a city street, filmed in black and white on a classic 35mm camera. His expression is thoughtful, his brow slightly furrowed as if he's lost in contemplation. The film grain adds a textured, timeless quality to the image, evoking a sense of nostalgia. Around him, the cityscape is filled with vintage buildings, cobblestone sidewalks, and softly blurred figures passing by, their outlines faint and indistinct. Streetlights cast a gentle glow, while shadows play across the boy's path, adding depth to the scene. The lighting highlights the boy's subtle smile, hinting at a fleeting moment of curiosity. The overall cinematic atmosphere, complete with classic film still aesthetics and dramatic contrasts, gives the scene an evocative and introspective feel." >>> image = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/consisid/consisid_input.png?download=true" >>> id_cond, id_vit_hidden, image, face_kps = process_face_embeddings_infer( ... face_helper_1, ... face_clip_model, ... face_helper_2, ... eva_transform_mean, ... eva_transform_std, ... face_main_model, ... "cuda", ... torch.bfloat16, ... image, ... is_align_face=True, ... ) >>> video = pipe( ... image=image, ... prompt=prompt, ... num_inference_steps=50, ... guidance_scale=6.0, ... use_dynamic_cfg=False, ... id_vit_hidden=id_vit_hidden, ... id_cond=id_cond, ... kps_cond=face_kps, ... generator=torch.Generator("cuda").manual_seed(42), ... ) >>> export_to_video(video.frames[0], "output.mp4", fps=8) ``` """ def draw_kps(image_pil, kps, color_list=[(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255)]): """ This function draws keypoints and the limbs connecting them on an image. Parameters: - image_pil (PIL.Image): Input image as a PIL object. - kps (list of tuples): A list of keypoints where each keypoint is a tuple of (x, y) coordinates. - color_list (list of tuples, optional): List of colors (in RGB format) for each keypoint. Default is a set of five colors. Returns: - PIL.Image: Image with the keypoints and limbs drawn. """ stickwidth = 4 limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]]) kps = np.array(kps) w, h = image_pil.size out_img = np.zeros([h, w, 3]) for i in range(len(limbSeq)): index = limbSeq[i] color = color_list[index[0]] x = kps[index][:, 0] y = kps[index][:, 1] length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5 angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1])) polygon = cv2.ellipse2Poly( (int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1 ) out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color) out_img = (out_img * 0.6).astype(np.uint8) for idx_kp, kp in enumerate(kps): color = color_list[idx_kp] x, y = kp out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1) out_img_pil = PIL.Image.fromarray(out_img.astype(np.uint8)) return out_img_pil # Similar to diffusers.pipelines.hunyuandit.pipeline_hunyuandit.get_resize_crop_region_for_grid def get_resize_crop_region_for_grid(src, tgt_width, tgt_height): """ This function calculates the resize and crop region for an image to fit a target width and height while preserving the aspect ratio. Parameters: - src (tuple): A tuple containing the source image's height (h) and width (w). - tgt_width (int): The target width to resize the image. - tgt_height (int): The target height to resize the image. Returns: - tuple: Two tuples representing the crop region: 1. The top-left coordinates of the crop region. 2. The bottom-right coordinates of the crop region. """ tw = tgt_width th = tgt_height h, w = src r = h / w if r > (th / tw): resize_height = th resize_width = int(round(th / h * w)) else: resize_width = tw resize_height = int(round(tw / w * h)) crop_top = int(round((th - resize_height) / 2.0)) crop_left = int(round((tw - resize_width) / 2.0)) return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps def retrieve_timesteps( scheduler, num_inference_steps: Optional[int] = None, device: Optional[Union[str, torch.device]] = None, timesteps: Optional[List[int]] = None, sigmas: Optional[List[float]] = None, **kwargs, ): r""" Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. Args: scheduler (`SchedulerMixin`): The scheduler to get timesteps from. num_inference_steps (`int`): The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` must be `None`. device (`str` or `torch.device`, *optional*): The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. timesteps (`List[int]`, *optional*): Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, `num_inference_steps` and `sigmas` must be `None`. sigmas (`List[float]`, *optional*): Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, `num_inference_steps` and `timesteps` must be `None`. Returns: `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the second element is the number of inference steps. """ if timesteps is not None and sigmas is not None: raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") if timesteps is not None: accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) if not accepts_timesteps: raise ValueError( f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" f" timestep schedules. Please check whether you are using the correct scheduler." ) scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) timesteps = scheduler.timesteps num_inference_steps = len(timesteps) elif sigmas is not None: accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) if not accept_sigmas: raise ValueError( f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" f" sigmas schedules. Please check whether you are using the correct scheduler." ) scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) timesteps = scheduler.timesteps num_inference_steps = len(timesteps) else: scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) timesteps = scheduler.timesteps return timesteps, num_inference_steps # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents def retrieve_latents( encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" ): if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": return encoder_output.latent_dist.sample(generator) elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": return encoder_output.latent_dist.mode() elif hasattr(encoder_output, "latents"): return encoder_output.latents else: raise AttributeError("Could not access latents of provided encoder_output") class ConsisIDPipeline(DiffusionPipeline, CogVideoXLoraLoaderMixin): r""" Pipeline for image-to-video generation using ConsisID. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations. text_encoder ([`T5EncoderModel`]): Frozen text-encoder. ConsisID uses [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel); specifically the [t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant. tokenizer (`T5Tokenizer`): Tokenizer of class [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer). transformer ([`ConsisIDTransformer3DModel`]): A text conditioned `ConsisIDTransformer3DModel` to denoise the encoded video latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `transformer` to denoise the encoded video latents. """ _optional_components = [] model_cpu_offload_seq = "text_encoder->transformer->vae" _callback_tensor_inputs = [ "latents", "prompt_embeds", "negative_prompt_embeds", ] def __init__( self, tokenizer: T5Tokenizer, text_encoder: T5EncoderModel, vae: AutoencoderKLCogVideoX, transformer: ConsisIDTransformer3DModel, scheduler: CogVideoXDPMScheduler, ): super().__init__() self.register_modules( tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler, ) self.vae_scale_factor_spatial = ( 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8 ) self.vae_scale_factor_temporal = ( self.vae.config.temporal_compression_ratio if hasattr(self, "vae") and self.vae is not None else 4 ) self.vae_scaling_factor_image = ( self.vae.config.scaling_factor if hasattr(self, "vae") and self.vae is not None else 0.7 ) self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial) # Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline._get_t5_prompt_embeds def _get_t5_prompt_embeds( self, prompt: Union[str, List[str]] = None, num_videos_per_prompt: int = 1, max_sequence_length: int = 226, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ): device = device or self._execution_device dtype = dtype or self.text_encoder.dtype prompt = [prompt] if isinstance(prompt, str) else prompt batch_size = len(prompt) text_inputs = self.tokenizer( prompt, padding="max_length", max_length=max_sequence_length, truncation=True, add_special_tokens=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1]) logger.warning( "The following part of your input was truncated because `max_sequence_length` is set to " f" {max_sequence_length} tokens: {removed_text}" ) prompt_embeds = self.text_encoder(text_input_ids.to(device))[0] prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) # duplicate text embeddings for each generation per prompt, using mps friendly method _, seq_len, _ = prompt_embeds.shape prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1) prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1) return prompt_embeds # Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline.encode_prompt def encode_prompt( self, prompt: Union[str, List[str]], negative_prompt: Optional[Union[str, List[str]]] = None, do_classifier_free_guidance: bool = True, num_videos_per_prompt: int = 1, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, max_sequence_length: int = 226, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): Whether to use classifier free guidance or not. num_videos_per_prompt (`int`, *optional*, defaults to 1): Number of videos that should be generated per prompt. torch device to place the resulting embeddings on prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. device: (`torch.device`, *optional*): torch device dtype: (`torch.dtype`, *optional*): torch dtype """ device = device or self._execution_device prompt = [prompt] if isinstance(prompt, str) else prompt if prompt is not None: batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: prompt_embeds = self._get_t5_prompt_embeds( prompt=prompt, num_videos_per_prompt=num_videos_per_prompt, max_sequence_length=max_sequence_length, device=device, dtype=dtype, ) if do_classifier_free_guidance and negative_prompt_embeds is None: negative_prompt = negative_prompt or "" negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt if prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) negative_prompt_embeds = self._get_t5_prompt_embeds( prompt=negative_prompt, num_videos_per_prompt=num_videos_per_prompt, max_sequence_length=max_sequence_length, device=device, dtype=dtype, ) return prompt_embeds, negative_prompt_embeds def prepare_latents( self, image: torch.Tensor, batch_size: int = 1, num_channels_latents: int = 16, num_frames: int = 13, height: int = 60, width: int = 90, dtype: Optional[torch.dtype] = None, device: Optional[torch.device] = None, generator: Optional[torch.Generator] = None, latents: Optional[torch.Tensor] = None, kps_cond: Optional[torch.Tensor] = None, ): if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) num_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1 shape = ( batch_size, num_frames, num_channels_latents, height // self.vae_scale_factor_spatial, width // self.vae_scale_factor_spatial, ) image = image.unsqueeze(2) # [B, C, F, H, W] if isinstance(generator, list): image_latents = [ retrieve_latents(self.vae.encode(image[i].unsqueeze(0)), generator[i]) for i in range(batch_size) ] if kps_cond is not None: kps_cond = kps_cond.unsqueeze(2) kps_cond_latents = [ retrieve_latents(self.vae.encode(kps_cond[i].unsqueeze(0)), generator[i]) for i in range(batch_size) ] else: image_latents = [retrieve_latents(self.vae.encode(img.unsqueeze(0)), generator) for img in image] if kps_cond is not None: kps_cond = kps_cond.unsqueeze(2) kps_cond_latents = [retrieve_latents(self.vae.encode(img.unsqueeze(0)), generator) for img in kps_cond] image_latents = torch.cat(image_latents, dim=0).to(dtype).permute(0, 2, 1, 3, 4) # [B, F, C, H, W] image_latents = self.vae_scaling_factor_image * image_latents if kps_cond is not None: kps_cond_latents = torch.cat(kps_cond_latents, dim=0).to(dtype).permute(0, 2, 1, 3, 4) # [B, F, C, H, W] kps_cond_latents = self.vae_scaling_factor_image * kps_cond_latents padding_shape = ( batch_size, num_frames - 2, num_channels_latents, height // self.vae_scale_factor_spatial, width // self.vae_scale_factor_spatial, ) else: padding_shape = ( batch_size, num_frames - 1, num_channels_latents, height // self.vae_scale_factor_spatial, width // self.vae_scale_factor_spatial, ) latent_padding = torch.zeros(padding_shape, device=device, dtype=dtype) if kps_cond is not None: image_latents = torch.cat([image_latents, kps_cond_latents, latent_padding], dim=1) else: image_latents = torch.cat([image_latents, latent_padding], dim=1) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents, image_latents # Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline.decode_latents def decode_latents(self, latents: torch.Tensor) -> torch.Tensor: latents = latents.permute(0, 2, 1, 3, 4) # [batch_size, num_channels, num_frames, height, width] latents = 1 / self.vae_scaling_factor_image * latents frames = self.vae.decode(latents).sample return frames # Copied from diffusers.pipelines.animatediff.pipeline_animatediff_video2video.AnimateDiffVideoToVideoPipeline.get_timesteps def get_timesteps(self, num_inference_steps, timesteps, strength, device): # get the original timestep using init_timestep init_timestep = min(int(num_inference_steps * strength), num_inference_steps) t_start = max(num_inference_steps - init_timestep, 0) timesteps = timesteps[t_start * self.scheduler.order :] return timesteps, num_inference_steps - t_start # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs( self, image, prompt, height, width, negative_prompt, callback_on_step_end_tensor_inputs, latents=None, prompt_embeds=None, negative_prompt_embeds=None, ): if ( not isinstance(image, torch.Tensor) and not isinstance(image, PIL.Image.Image) and not isinstance(image, list) ): raise ValueError( "`image` has to be of type `torch.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is" f" {type(image)}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) def _prepare_rotary_positional_embeddings( self, height: int, width: int, num_frames: int, device: torch.device, ) -> Tuple[torch.Tensor, torch.Tensor]: grid_height = height // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) grid_width = width // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) base_size_width = self.transformer.config.sample_width // self.transformer.config.patch_size base_size_height = self.transformer.config.sample_height // self.transformer.config.patch_size grid_crops_coords = get_resize_crop_region_for_grid( (grid_height, grid_width), base_size_width, base_size_height ) freqs_cos, freqs_sin = get_3d_rotary_pos_embed( embed_dim=self.transformer.config.attention_head_dim, crops_coords=grid_crops_coords, grid_size=(grid_height, grid_width), temporal_size=num_frames, device=device, ) return freqs_cos, freqs_sin @property def guidance_scale(self): return self._guidance_scale @property def num_timesteps(self): return self._num_timesteps @property def attention_kwargs(self): return self._attention_kwargs @property def interrupt(self): return self._interrupt @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, image: PipelineImageInput, prompt: Optional[Union[str, List[str]]] = None, negative_prompt: Optional[Union[str, List[str]]] = None, height: int = 480, width: int = 720, num_frames: int = 49, num_inference_steps: int = 50, guidance_scale: float = 6.0, use_dynamic_cfg: bool = False, num_videos_per_prompt: int = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: str = "pil", return_dict: bool = True, attention_kwargs: Optional[Dict[str, Any]] = None, callback_on_step_end: Optional[ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] ] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], max_sequence_length: int = 226, id_vit_hidden: Optional[torch.Tensor] = None, id_cond: Optional[torch.Tensor] = None, kps_cond: Optional[torch.Tensor] = None, ) -> Union[ConsisIDPipelineOutput, Tuple]: """ Function invoked when calling the pipeline for generation. Args: image (`PipelineImageInput`): The input image to condition the generation on. Must be an image, a list of images or a `torch.Tensor`. prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). height (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial): The height in pixels of the generated image. This is set to 480 by default for the best results. width (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial): The width in pixels of the generated image. This is set to 720 by default for the best results. num_frames (`int`, defaults to `49`): Number of frames to generate. Must be divisible by self.vae_scale_factor_temporal. Generated video will contain 1 extra frame because ConsisID is conditioned with (num_seconds * fps + 1) frames where num_seconds is 6 and fps is 4. However, since videos can be saved at any fps, the only condition that needs to be satisfied is that of divisibility mentioned above. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 6): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. use_dynamic_cfg (`bool`, *optional*, defaults to `False`): If True, dynamically adjusts the guidance scale during inference. This allows the model to use a progressive guidance scale, improving the balance between text-guided generation and image quality over the course of the inference steps. Typically, early inference steps use a higher guidance scale for more faithful image generation, while later steps reduce it for more diverse and natural results. num_videos_per_prompt (`int`, *optional*, defaults to 1): The number of videos to generate per prompt. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead of a plain tuple. attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. max_sequence_length (`int`, defaults to `226`): Maximum sequence length in encoded prompt. Must be consistent with `self.transformer.config.max_text_seq_length` otherwise may lead to poor results. id_vit_hidden (`Optional[torch.Tensor]`, *optional*): The tensor representing the hidden features extracted from the face model, which are used to condition the local facial extractor. This is crucial for the model to obtain high-frequency information of the face. If not provided, the local facial extractor will not run normally. id_cond (`Optional[torch.Tensor]`, *optional*): The tensor representing the hidden features extracted from the clip model, which are used to condition the local facial extractor. This is crucial for the model to edit facial features If not provided, the local facial extractor will not run normally. kps_cond (`Optional[torch.Tensor]`, *optional*): A tensor that determines whether the global facial extractor use keypoint information for conditioning. If provided, this tensor controls whether facial keypoints such as eyes, nose, and mouth landmarks are used during the generation process. This helps ensure the model retains more facial low-frequency information. Examples: Returns: [`~pipelines.consisid.pipeline_output.ConsisIDPipelineOutput`] or `tuple`: [`~pipelines.consisid.pipeline_output.ConsisIDPipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated images. """ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs height = height or self.transformer.config.sample_height * self.vae_scale_factor_spatial width = width or self.transformer.config.sample_width * self.vae_scale_factor_spatial num_frames = num_frames or self.transformer.config.sample_frames num_videos_per_prompt = 1 # 1. Check inputs. Raise error if not correct self.check_inputs( image=image, prompt=prompt, height=height, width=width, negative_prompt=negative_prompt, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, latents=latents, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, ) self._guidance_scale = guidance_scale self._attention_kwargs = attention_kwargs self._interrupt = False # 2. Default call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt prompt_embeds, negative_prompt_embeds = self.encode_prompt( prompt=prompt, negative_prompt=negative_prompt, do_classifier_free_guidance=do_classifier_free_guidance, num_videos_per_prompt=num_videos_per_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, max_sequence_length=max_sequence_length, device=device, ) if do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) # 4. Prepare timesteps timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device) self._num_timesteps = len(timesteps) # 5. Prepare latents is_kps = getattr(self.transformer.config, "is_kps", False) kps_cond = kps_cond if is_kps else None if kps_cond is not None: kps_cond = draw_kps(image, kps_cond) kps_cond = self.video_processor.preprocess(kps_cond, height=height, width=width).to( device, dtype=prompt_embeds.dtype ) image = self.video_processor.preprocess(image, height=height, width=width).to( device, dtype=prompt_embeds.dtype ) latent_channels = self.transformer.config.in_channels // 2 latents, image_latents = self.prepare_latents( image, batch_size * num_videos_per_prompt, latent_channels, num_frames, height, width, prompt_embeds.dtype, device, generator, latents, kps_cond, ) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 7. Create rotary embeds if required image_rotary_emb = ( self._prepare_rotary_positional_embeddings(height, width, latents.size(1), device) if self.transformer.config.use_rotary_positional_embeddings else None ) # 8. Denoising loop num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) with self.progress_bar(total=num_inference_steps) as progress_bar: # for DPM-solver++ old_pred_original_sample = None timesteps_cpu = timesteps.cpu() for i, t in enumerate(timesteps): if self.interrupt: continue latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) latent_image_input = torch.cat([image_latents] * 2) if do_classifier_free_guidance else image_latents latent_model_input = torch.cat([latent_model_input, latent_image_input], dim=2) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timestep = t.expand(latent_model_input.shape[0]) # predict noise model_output noise_pred = self.transformer( hidden_states=latent_model_input, encoder_hidden_states=prompt_embeds, timestep=timestep, image_rotary_emb=image_rotary_emb, attention_kwargs=attention_kwargs, return_dict=False, id_vit_hidden=id_vit_hidden, id_cond=id_cond, )[0] noise_pred = noise_pred.float() # perform guidance if use_dynamic_cfg: self._guidance_scale = 1 + guidance_scale * ( ( 1 - math.cos( math.pi * ((num_inference_steps - timesteps_cpu[i].item()) / num_inference_steps) ** 5.0 ) ) / 2 ) if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 if not isinstance(self.scheduler, CogVideoXDPMScheduler): latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] else: latents, old_pred_original_sample = self.scheduler.step( noise_pred, old_pred_original_sample, t, timesteps[i - 1] if i > 0 else None, latents, **extra_step_kwargs, return_dict=False, ) latents = latents.to(prompt_embeds.dtype) # call the callback, if provided if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if not output_type == "latent": video = self.decode_latents(latents) video = self.video_processor.postprocess_video(video=video, output_type=output_type) else: video = latents # Offload all models self.maybe_free_model_hooks() if not return_dict: return (video,) return ConsisIDPipelineOutput(frames=video)
diffusers/src/diffusers/pipelines/consisid/pipeline_consisid.py/0
{ "file_path": "diffusers/src/diffusers/pipelines/consisid/pipeline_consisid.py", "repo_id": "diffusers", "token_count": 20495 }
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from functools import partial from typing import Dict, List, Optional, Union import jax import jax.numpy as jnp import numpy as np from flax.core.frozen_dict import FrozenDict from flax.jax_utils import unreplicate from flax.training.common_utils import shard from PIL import Image from transformers import CLIPImageProcessor, CLIPTokenizer, FlaxCLIPTextModel from ...models import FlaxAutoencoderKL, FlaxControlNetModel, FlaxUNet2DConditionModel from ...schedulers import ( FlaxDDIMScheduler, FlaxDPMSolverMultistepScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, ) from ...utils import PIL_INTERPOLATION, logging, replace_example_docstring from ..pipeline_flax_utils import FlaxDiffusionPipeline from ..stable_diffusion import FlaxStableDiffusionPipelineOutput from ..stable_diffusion.safety_checker_flax import FlaxStableDiffusionSafetyChecker logger = logging.get_logger(__name__) # pylint: disable=invalid-name # Set to True to use python for loop instead of jax.fori_loop for easier debugging DEBUG = False EXAMPLE_DOC_STRING = """ Examples: ```py >>> import jax >>> import numpy as np >>> import jax.numpy as jnp >>> from flax.jax_utils import replicate >>> from flax.training.common_utils import shard >>> from diffusers.utils import load_image, make_image_grid >>> from PIL import Image >>> from diffusers import FlaxStableDiffusionControlNetPipeline, FlaxControlNetModel >>> def create_key(seed=0): ... return jax.random.PRNGKey(seed) >>> rng = create_key(0) >>> # get canny image >>> canny_image = load_image( ... "https://huggingface.co/datasets/YiYiXu/test-doc-assets/resolve/main/blog_post_cell_10_output_0.jpeg" ... ) >>> prompts = "best quality, extremely detailed" >>> negative_prompts = "monochrome, lowres, bad anatomy, worst quality, low quality" >>> # load control net and stable diffusion v1-5 >>> controlnet, controlnet_params = FlaxControlNetModel.from_pretrained( ... "lllyasviel/sd-controlnet-canny", from_pt=True, dtype=jnp.float32 ... ) >>> pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained( ... "stable-diffusion-v1-5/stable-diffusion-v1-5", ... controlnet=controlnet, ... revision="flax", ... dtype=jnp.float32, ... ) >>> params["controlnet"] = controlnet_params >>> num_samples = jax.device_count() >>> rng = jax.random.split(rng, jax.device_count()) >>> prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples) >>> negative_prompt_ids = pipe.prepare_text_inputs([negative_prompts] * num_samples) >>> processed_image = pipe.prepare_image_inputs([canny_image] * num_samples) >>> p_params = replicate(params) >>> prompt_ids = shard(prompt_ids) >>> negative_prompt_ids = shard(negative_prompt_ids) >>> processed_image = shard(processed_image) >>> output = pipe( ... prompt_ids=prompt_ids, ... image=processed_image, ... params=p_params, ... prng_seed=rng, ... num_inference_steps=50, ... neg_prompt_ids=negative_prompt_ids, ... jit=True, ... ).images >>> output_images = pipe.numpy_to_pil(np.asarray(output.reshape((num_samples,) + output.shape[-3:]))) >>> output_images = make_image_grid(output_images, num_samples // 4, 4) >>> output_images.save("generated_image.png") ``` """ class FlaxStableDiffusionControlNetPipeline(FlaxDiffusionPipeline): r""" Flax-based pipeline for text-to-image generation using Stable Diffusion with ControlNet Guidance. This model inherits from [`FlaxDiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). Args: vae ([`FlaxAutoencoderKL`]): Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. text_encoder ([`~transformers.FlaxCLIPTextModel`]): Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). tokenizer ([`~transformers.CLIPTokenizer`]): A `CLIPTokenizer` to tokenize text. unet ([`FlaxUNet2DConditionModel`]): A `FlaxUNet2DConditionModel` to denoise the encoded image latents. controlnet ([`FlaxControlNetModel`]: Provides additional conditioning to the `unet` during the denoising process. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`FlaxDDIMScheduler`], [`FlaxLMSDiscreteScheduler`], [`FlaxPNDMScheduler`], or [`FlaxDPMSolverMultistepScheduler`]. safety_checker ([`FlaxStableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. """ def __init__( self, vae: FlaxAutoencoderKL, text_encoder: FlaxCLIPTextModel, tokenizer: CLIPTokenizer, unet: FlaxUNet2DConditionModel, controlnet: FlaxControlNetModel, scheduler: Union[ FlaxDDIMScheduler, FlaxPNDMScheduler, FlaxLMSDiscreteScheduler, FlaxDPMSolverMultistepScheduler ], safety_checker: FlaxStableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, dtype: jnp.dtype = jnp.float32, ): super().__init__() self.dtype = dtype if safety_checker is None: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, controlnet=controlnet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 def prepare_text_inputs(self, prompt: Union[str, List[str]]): if not isinstance(prompt, (str, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") text_input = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="np", ) return text_input.input_ids def prepare_image_inputs(self, image: Union[Image.Image, List[Image.Image]]): if not isinstance(image, (Image.Image, list)): raise ValueError(f"image has to be of type `PIL.Image.Image` or list but is {type(image)}") if isinstance(image, Image.Image): image = [image] processed_images = jnp.concatenate([preprocess(img, jnp.float32) for img in image]) return processed_images def _get_has_nsfw_concepts(self, features, params): has_nsfw_concepts = self.safety_checker(features, params) return has_nsfw_concepts def _run_safety_checker(self, images, safety_model_params, jit=False): # safety_model_params should already be replicated when jit is True pil_images = [Image.fromarray(image) for image in images] features = self.feature_extractor(pil_images, return_tensors="np").pixel_values if jit: features = shard(features) has_nsfw_concepts = _p_get_has_nsfw_concepts(self, features, safety_model_params) has_nsfw_concepts = unshard(has_nsfw_concepts) safety_model_params = unreplicate(safety_model_params) else: has_nsfw_concepts = self._get_has_nsfw_concepts(features, safety_model_params) images_was_copied = False for idx, has_nsfw_concept in enumerate(has_nsfw_concepts): if has_nsfw_concept: if not images_was_copied: images_was_copied = True images = images.copy() images[idx] = np.zeros(images[idx].shape, dtype=np.uint8) # black image if any(has_nsfw_concepts): warnings.warn( "Potential NSFW content was detected in one or more images. A black image will be returned" " instead. Try again with a different prompt and/or seed." ) return images, has_nsfw_concepts def _generate( self, prompt_ids: jnp.ndarray, image: jnp.ndarray, params: Union[Dict, FrozenDict], prng_seed: jax.Array, num_inference_steps: int, guidance_scale: float, latents: Optional[jnp.ndarray] = None, neg_prompt_ids: Optional[jnp.ndarray] = None, controlnet_conditioning_scale: float = 1.0, ): height, width = image.shape[-2:] if height % 64 != 0 or width % 64 != 0: raise ValueError(f"`height` and `width` have to be divisible by 64 but are {height} and {width}.") # get prompt text embeddings prompt_embeds = self.text_encoder(prompt_ids, params=params["text_encoder"])[0] # TODO: currently it is assumed `do_classifier_free_guidance = guidance_scale > 1.0` # implement this conditional `do_classifier_free_guidance = guidance_scale > 1.0` batch_size = prompt_ids.shape[0] max_length = prompt_ids.shape[-1] if neg_prompt_ids is None: uncond_input = self.tokenizer( [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="np" ).input_ids else: uncond_input = neg_prompt_ids negative_prompt_embeds = self.text_encoder(uncond_input, params=params["text_encoder"])[0] context = jnp.concatenate([negative_prompt_embeds, prompt_embeds]) image = jnp.concatenate([image] * 2) latents_shape = ( batch_size, self.unet.config.in_channels, height // self.vae_scale_factor, width // self.vae_scale_factor, ) if latents is None: latents = jax.random.normal(prng_seed, shape=latents_shape, dtype=jnp.float32) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") def loop_body(step, args): latents, scheduler_state = args # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes latents_input = jnp.concatenate([latents] * 2) t = jnp.array(scheduler_state.timesteps, dtype=jnp.int32)[step] timestep = jnp.broadcast_to(t, latents_input.shape[0]) latents_input = self.scheduler.scale_model_input(scheduler_state, latents_input, t) down_block_res_samples, mid_block_res_sample = self.controlnet.apply( {"params": params["controlnet"]}, jnp.array(latents_input), jnp.array(timestep, dtype=jnp.int32), encoder_hidden_states=context, controlnet_cond=image, conditioning_scale=controlnet_conditioning_scale, return_dict=False, ) # predict the noise residual noise_pred = self.unet.apply( {"params": params["unet"]}, jnp.array(latents_input), jnp.array(timestep, dtype=jnp.int32), encoder_hidden_states=context, down_block_additional_residuals=down_block_res_samples, mid_block_additional_residual=mid_block_res_sample, ).sample # perform guidance noise_pred_uncond, noise_prediction_text = jnp.split(noise_pred, 2, axis=0) noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents, scheduler_state = self.scheduler.step(scheduler_state, noise_pred, t, latents).to_tuple() return latents, scheduler_state scheduler_state = self.scheduler.set_timesteps( params["scheduler"], num_inference_steps=num_inference_steps, shape=latents_shape ) # scale the initial noise by the standard deviation required by the scheduler latents = latents * params["scheduler"].init_noise_sigma if DEBUG: # run with python for loop for i in range(num_inference_steps): latents, scheduler_state = loop_body(i, (latents, scheduler_state)) else: latents, _ = jax.lax.fori_loop(0, num_inference_steps, loop_body, (latents, scheduler_state)) # scale and decode the image latents with vae latents = 1 / self.vae.config.scaling_factor * latents image = self.vae.apply({"params": params["vae"]}, latents, method=self.vae.decode).sample image = (image / 2 + 0.5).clip(0, 1).transpose(0, 2, 3, 1) return image @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt_ids: jnp.ndarray, image: jnp.ndarray, params: Union[Dict, FrozenDict], prng_seed: jax.Array, num_inference_steps: int = 50, guidance_scale: Union[float, jnp.ndarray] = 7.5, latents: jnp.ndarray = None, neg_prompt_ids: jnp.ndarray = None, controlnet_conditioning_scale: Union[float, jnp.ndarray] = 1.0, return_dict: bool = True, jit: bool = False, ): r""" The call function to the pipeline for generation. Args: prompt_ids (`jnp.ndarray`): The prompt or prompts to guide the image generation. image (`jnp.ndarray`): Array representing the ControlNet input condition to provide guidance to the `unet` for generation. params (`Dict` or `FrozenDict`): Dictionary containing the model parameters/weights. prng_seed (`jax.Array`): Array containing random number generator key. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. latents (`jnp.ndarray`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents array is generated by sampling using the supplied random `generator`. controlnet_conditioning_scale (`float` or `jnp.ndarray`, *optional*, defaults to 1.0): The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added to the residual in the original `unet`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] instead of a plain tuple. jit (`bool`, defaults to `False`): Whether to run `pmap` versions of the generation and safety scoring functions. <Tip warning={true}> This argument exists because `__call__` is not yet end-to-end pmap-able. It will be removed in a future release. </Tip> Examples: Returns: [`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images and the second element is a list of `bool`s indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content. """ height, width = image.shape[-2:] if isinstance(guidance_scale, float): # Convert to a tensor so each device gets a copy. Follow the prompt_ids for # shape information, as they may be sharded (when `jit` is `True`), or not. guidance_scale = jnp.array([guidance_scale] * prompt_ids.shape[0]) if len(prompt_ids.shape) > 2: # Assume sharded guidance_scale = guidance_scale[:, None] if isinstance(controlnet_conditioning_scale, float): # Convert to a tensor so each device gets a copy. Follow the prompt_ids for # shape information, as they may be sharded (when `jit` is `True`), or not. controlnet_conditioning_scale = jnp.array([controlnet_conditioning_scale] * prompt_ids.shape[0]) if len(prompt_ids.shape) > 2: # Assume sharded controlnet_conditioning_scale = controlnet_conditioning_scale[:, None] if jit: images = _p_generate( self, prompt_ids, image, params, prng_seed, num_inference_steps, guidance_scale, latents, neg_prompt_ids, controlnet_conditioning_scale, ) else: images = self._generate( prompt_ids, image, params, prng_seed, num_inference_steps, guidance_scale, latents, neg_prompt_ids, controlnet_conditioning_scale, ) if self.safety_checker is not None: safety_params = params["safety_checker"] images_uint8_casted = (images * 255).round().astype("uint8") num_devices, batch_size = images.shape[:2] images_uint8_casted = np.asarray(images_uint8_casted).reshape(num_devices * batch_size, height, width, 3) images_uint8_casted, has_nsfw_concept = self._run_safety_checker(images_uint8_casted, safety_params, jit) images = np.array(images) # block images if any(has_nsfw_concept): for i, is_nsfw in enumerate(has_nsfw_concept): if is_nsfw: images[i] = np.asarray(images_uint8_casted[i]) images = images.reshape(num_devices, batch_size, height, width, 3) else: images = np.asarray(images) has_nsfw_concept = False if not return_dict: return (images, has_nsfw_concept) return FlaxStableDiffusionPipelineOutput(images=images, nsfw_content_detected=has_nsfw_concept) # Static argnums are pipe, num_inference_steps. A change would trigger recompilation. # Non-static args are (sharded) input tensors mapped over their first dimension (hence, `0`). @partial( jax.pmap, in_axes=(None, 0, 0, 0, 0, None, 0, 0, 0, 0), static_broadcasted_argnums=(0, 5), ) def _p_generate( pipe, prompt_ids, image, params, prng_seed, num_inference_steps, guidance_scale, latents, neg_prompt_ids, controlnet_conditioning_scale, ): return pipe._generate( prompt_ids, image, params, prng_seed, num_inference_steps, guidance_scale, latents, neg_prompt_ids, controlnet_conditioning_scale, ) @partial(jax.pmap, static_broadcasted_argnums=(0,)) def _p_get_has_nsfw_concepts(pipe, features, params): return pipe._get_has_nsfw_concepts(features, params) def unshard(x: jnp.ndarray): # einops.rearrange(x, 'd b ... -> (d b) ...') num_devices, batch_size = x.shape[:2] rest = x.shape[2:] return x.reshape(num_devices * batch_size, *rest) def preprocess(image, dtype): image = image.convert("RGB") w, h = image.size w, h = (x - x % 64 for x in (w, h)) # resize to integer multiple of 64 image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]) image = jnp.array(image).astype(dtype) / 255.0 image = image[None].transpose(0, 3, 1, 2) return image
diffusers/src/diffusers/pipelines/controlnet/pipeline_flax_controlnet.py/0
{ "file_path": "diffusers/src/diffusers/pipelines/controlnet/pipeline_flax_controlnet.py", "repo_id": "diffusers", "token_count": 10022 }
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL.Image from ....utils import ( BaseOutput, ) @dataclass # Copied from diffusers.pipelines.stable_diffusion.pipeline_output.StableDiffusionPipelineOutput with Stable->Alt class AltDiffusionPipelineOutput(BaseOutput): """ Output class for Alt Diffusion pipelines. Args: images (`List[PIL.Image.Image]` or `np.ndarray`) List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width, num_channels)`. nsfw_content_detected (`List[bool]`) List indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content or `None` if safety checking could not be performed. """ images: Union[List[PIL.Image.Image], np.ndarray] nsfw_content_detected: Optional[List[bool]]
diffusers/src/diffusers/pipelines/deprecated/alt_diffusion/pipeline_output.py/0
{ "file_path": "diffusers/src/diffusers/pipelines/deprecated/alt_diffusion/pipeline_output.py", "repo_id": "diffusers", "token_count": 344 }
# Copyright 2022 The Music Spectrogram Diffusion Authors. # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ....models import T5FilmDecoder from ....schedulers import DDPMScheduler from ....utils import is_onnx_available, logging from ....utils.torch_utils import randn_tensor if is_onnx_available(): from ...onnx_utils import OnnxRuntimeModel from ...pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continuous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder logger = logging.get_logger(__name__) # pylint: disable=invalid-name TARGET_FEATURE_LENGTH = 256 class SpectrogramDiffusionPipeline(DiffusionPipeline): r""" Pipeline for unconditional audio generation. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). Args: notes_encoder ([`SpectrogramNotesEncoder`]): continuous_encoder ([`SpectrogramContEncoder`]): decoder ([`T5FilmDecoder`]): A [`T5FilmDecoder`] to denoise the encoded audio latents. scheduler ([`DDPMScheduler`]): A scheduler to be used in combination with `decoder` to denoise the encoded audio latents. melgan ([`OnnxRuntimeModel`]): """ _optional_components = ["melgan"] def __init__( self, notes_encoder: SpectrogramNotesEncoder, continuous_encoder: SpectrogramContEncoder, decoder: T5FilmDecoder, scheduler: DDPMScheduler, melgan: OnnxRuntimeModel if is_onnx_available() else Any, ) -> None: super().__init__() # From MELGAN self.min_value = math.log(1e-5) # Matches MelGAN training. self.max_value = 4.0 # Largest value for most examples self.n_dims = 128 self.register_modules( notes_encoder=notes_encoder, continuous_encoder=continuous_encoder, decoder=decoder, scheduler=scheduler, melgan=melgan, ) def scale_features(self, features, output_range=(-1.0, 1.0), clip=False): """Linearly scale features to network outputs range.""" min_out, max_out = output_range if clip: features = torch.clip(features, self.min_value, self.max_value) # Scale to [0, 1]. zero_one = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def scale_to_features(self, outputs, input_range=(-1.0, 1.0), clip=False): """Invert by linearly scaling network outputs to features range.""" min_out, max_out = input_range outputs = torch.clip(outputs, min_out, max_out) if clip else outputs # Scale to [0, 1]. zero_one = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def encode(self, input_tokens, continuous_inputs, continuous_mask): tokens_mask = input_tokens > 0 tokens_encoded, tokens_mask = self.notes_encoder( encoder_input_tokens=input_tokens, encoder_inputs_mask=tokens_mask ) continuous_encoded, continuous_mask = self.continuous_encoder( encoder_inputs=continuous_inputs, encoder_inputs_mask=continuous_mask ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def decode(self, encodings_and_masks, input_tokens, noise_time): timesteps = noise_time if not torch.is_tensor(timesteps): timesteps = torch.tensor([timesteps], dtype=torch.long, device=input_tokens.device) elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0: timesteps = timesteps[None].to(input_tokens.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timesteps = timesteps * torch.ones(input_tokens.shape[0], dtype=timesteps.dtype, device=timesteps.device) logits = self.decoder( encodings_and_masks=encodings_and_masks, decoder_input_tokens=input_tokens, decoder_noise_time=timesteps ) return logits @torch.no_grad() def __call__( self, input_tokens: List[List[int]], generator: Optional[torch.Generator] = None, num_inference_steps: int = 100, return_dict: bool = True, output_type: str = "np", callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: int = 1, ) -> Union[AudioPipelineOutput, Tuple]: if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) r""" The call function to the pipeline for generation. Args: input_tokens (`List[List[int]]`): generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. num_inference_steps (`int`, *optional*, defaults to 100): The number of denoising steps. More denoising steps usually lead to a higher quality audio at the expense of slower inference. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.AudioPipelineOutput`] instead of a plain tuple. output_type (`str`, *optional*, defaults to `"np"`): The output format of the generated audio. callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. Example: ```py >>> from diffusers import SpectrogramDiffusionPipeline, MidiProcessor >>> pipe = SpectrogramDiffusionPipeline.from_pretrained("google/music-spectrogram-diffusion") >>> pipe = pipe.to("cuda") >>> processor = MidiProcessor() >>> # Download MIDI from: wget http://www.piano-midi.de/midis/beethoven/beethoven_hammerklavier_2.mid >>> output = pipe(processor("beethoven_hammerklavier_2.mid")) >>> audio = output.audios[0] ``` Returns: [`pipelines.AudioPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`pipelines.AudioPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated audio. """ pred_mel = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims], dtype=np.float32) full_pred_mel = np.zeros([1, 0, self.n_dims], np.float32) ones = torch.ones((1, TARGET_FEATURE_LENGTH), dtype=bool, device=self.device) for i, encoder_input_tokens in enumerate(input_tokens): if i == 0: encoder_continuous_inputs = torch.from_numpy(pred_mel[:1].copy()).to( device=self.device, dtype=self.decoder.dtype ) # The first chunk has no previous context. encoder_continuous_mask = torch.zeros((1, TARGET_FEATURE_LENGTH), dtype=bool, device=self.device) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. encoder_continuous_mask = ones encoder_continuous_inputs = self.scale_features( encoder_continuous_inputs, output_range=[-1.0, 1.0], clip=True ) encodings_and_masks = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens]).to(device=self.device), continuous_inputs=encoder_continuous_inputs, continuous_mask=encoder_continuous_mask, ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop x = randn_tensor( shape=encoder_continuous_inputs.shape, generator=generator, device=self.device, dtype=self.decoder.dtype, ) # set step values self.scheduler.set_timesteps(num_inference_steps) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps)): output = self.decode( encodings_and_masks=encodings_and_masks, input_tokens=x, noise_time=t / self.scheduler.config.num_train_timesteps, # rescale to [0, 1) ) # Compute previous output: x_t -> x_t-1 x = self.scheduler.step(output, t, x, generator=generator).prev_sample mel = self.scale_to_features(x, input_range=[-1.0, 1.0]) encoder_continuous_inputs = mel[:1] pred_mel = mel.cpu().float().numpy() full_pred_mel = np.concatenate([full_pred_mel, pred_mel[:1]], axis=1) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(i, full_pred_mel) logger.info("Generated segment", i) if output_type == "np" and not is_onnx_available(): raise ValueError( "Cannot return output in 'np' format if ONNX is not available. Make sure to have ONNX installed or set 'output_type' to 'mel'." ) elif output_type == "np" and self.melgan is None: raise ValueError( "Cannot return output in 'np' format if melgan component is not defined. Make sure to define `self.melgan` or set 'output_type' to 'mel'." ) if output_type == "np": output = self.melgan(input_features=full_pred_mel.astype(np.float32)) else: output = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=output)
diffusers/src/diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py/0
{ "file_path": "diffusers/src/diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py", "repo_id": "diffusers", "token_count": 4994 }
from typing import TYPE_CHECKING from ....utils import ( DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_transformers_available, ) _dummy_objects = {} _import_structure = {} try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ....utils.dummy_torch_and_transformers_objects import ( LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline, ) _dummy_objects.update( { "LearnedClassifierFreeSamplingEmbeddings": LearnedClassifierFreeSamplingEmbeddings, "VQDiffusionPipeline": VQDiffusionPipeline, } ) else: _import_structure["pipeline_vq_diffusion"] = ["LearnedClassifierFreeSamplingEmbeddings", "VQDiffusionPipeline"] if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ....utils.dummy_torch_and_transformers_objects import ( LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline, ) else: from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline else: import sys sys.modules[__name__] = _LazyModule( __name__, globals()["__file__"], _import_structure, module_spec=__spec__, ) for name, value in _dummy_objects.items(): setattr(sys.modules[__name__], name, value)
diffusers/src/diffusers/pipelines/deprecated/vq_diffusion/__init__.py/0
{ "file_path": "diffusers/src/diffusers/pipelines/deprecated/vq_diffusion/__init__.py", "repo_id": "diffusers", "token_count": 682 }
# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Optional, Union import torch from PIL import Image from transformers import ( CLIPTextModel, CLIPTokenizer, SiglipImageProcessor, SiglipVisionModel, T5EncoderModel, T5TokenizerFast, ) from ...image_processor import PipelineImageInput from ...loaders import FluxLoraLoaderMixin, TextualInversionLoaderMixin from ...utils import ( USE_PEFT_BACKEND, is_torch_xla_available, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers, ) from ..pipeline_utils import DiffusionPipeline from .modeling_flux import ReduxImageEncoder from .pipeline_output import FluxPriorReduxPipelineOutput if is_torch_xla_available(): XLA_AVAILABLE = True else: XLA_AVAILABLE = False logger = logging.get_logger(__name__) # pylint: disable=invalid-name EXAMPLE_DOC_STRING = """ Examples: ```py >>> import torch >>> from diffusers import FluxPriorReduxPipeline, FluxPipeline >>> from diffusers.utils import load_image >>> device = "cuda" >>> dtype = torch.bfloat16 >>> repo_redux = "black-forest-labs/FLUX.1-Redux-dev" >>> repo_base = "black-forest-labs/FLUX.1-dev" >>> pipe_prior_redux = FluxPriorReduxPipeline.from_pretrained(repo_redux, torch_dtype=dtype).to(device) >>> pipe = FluxPipeline.from_pretrained( ... repo_base, text_encoder=None, text_encoder_2=None, torch_dtype=torch.bfloat16 ... ).to(device) >>> image = load_image( ... "https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/style_ziggy/img5.png" ... ) >>> pipe_prior_output = pipe_prior_redux(image) >>> images = pipe( ... guidance_scale=2.5, ... num_inference_steps=50, ... generator=torch.Generator("cpu").manual_seed(0), ... **pipe_prior_output, ... ).images >>> images[0].save("flux-redux.png") ``` """ class FluxPriorReduxPipeline(DiffusionPipeline): r""" The Flux Redux pipeline for image-to-image generation. Reference: https://blackforestlabs.ai/flux-1-tools/ Args: image_encoder ([`SiglipVisionModel`]): SIGLIP vision model to encode the input image. feature_extractor ([`SiglipImageProcessor`]): Image processor for preprocessing images for the SIGLIP model. image_embedder ([`ReduxImageEncoder`]): Redux image encoder to process the SIGLIP embeddings. text_encoder ([`CLIPTextModel`], *optional*): [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. text_encoder_2 ([`T5EncoderModel`], *optional*): [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant. tokenizer (`CLIPTokenizer`, *optional*): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer). tokenizer_2 (`T5TokenizerFast`, *optional*): Second Tokenizer of class [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast). """ model_cpu_offload_seq = "image_encoder->image_embedder" _optional_components = [ "text_encoder", "tokenizer", "text_encoder_2", "tokenizer_2", ] _callback_tensor_inputs = [] def __init__( self, image_encoder: SiglipVisionModel, feature_extractor: SiglipImageProcessor, image_embedder: ReduxImageEncoder, text_encoder: CLIPTextModel = None, tokenizer: CLIPTokenizer = None, text_encoder_2: T5EncoderModel = None, tokenizer_2: T5TokenizerFast = None, ): super().__init__() self.register_modules( image_encoder=image_encoder, feature_extractor=feature_extractor, image_embedder=image_embedder, text_encoder=text_encoder, tokenizer=tokenizer, text_encoder_2=text_encoder_2, tokenizer_2=tokenizer_2, ) self.tokenizer_max_length = ( self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77 ) def check_inputs( self, image, prompt, prompt_2, prompt_embeds=None, pooled_prompt_embeds=None, prompt_embeds_scale=1.0, pooled_prompt_embeds_scale=1.0, ): if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt_2 is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") if prompt is not None and (isinstance(prompt, list) and isinstance(image, list) and len(prompt) != len(image)): raise ValueError( f"number of prompts must be equal to number of images, but {len(prompt)} prompts were provided and {len(image)} images" ) if prompt_embeds is not None and pooled_prompt_embeds is None: raise ValueError( "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." ) if isinstance(prompt_embeds_scale, list) and ( isinstance(image, list) and len(prompt_embeds_scale) != len(image) ): raise ValueError( f"number of weights must be equal to number of images, but {len(prompt_embeds_scale)} weights were provided and {len(image)} images" ) def encode_image(self, image, device, num_images_per_prompt): dtype = next(self.image_encoder.parameters()).dtype image = self.feature_extractor.preprocess( images=image, do_resize=True, return_tensors="pt", do_convert_rgb=True ) image = image.to(device=device, dtype=dtype) image_enc_hidden_states = self.image_encoder(**image).last_hidden_state image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) return image_enc_hidden_states # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_t5_prompt_embeds def _get_t5_prompt_embeds( self, prompt: Union[str, List[str]] = None, num_images_per_prompt: int = 1, max_sequence_length: int = 512, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ): device = device or self._execution_device dtype = dtype or self.text_encoder.dtype prompt = [prompt] if isinstance(prompt, str) else prompt batch_size = len(prompt) if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2) text_inputs = self.tokenizer_2( prompt, padding="max_length", max_length=max_sequence_length, truncation=True, return_length=False, return_overflowing_tokens=False, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because `max_sequence_length` is set to " f" {max_sequence_length} tokens: {removed_text}" ) prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0] dtype = self.text_encoder_2.dtype prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) _, seq_len, _ = prompt_embeds.shape # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) return prompt_embeds # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_clip_prompt_embeds def _get_clip_prompt_embeds( self, prompt: Union[str, List[str]], num_images_per_prompt: int = 1, device: Optional[torch.device] = None, ): device = device or self._execution_device prompt = [prompt] if isinstance(prompt, str) else prompt batch_size = len(prompt) if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, self.tokenizer) text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer_max_length, truncation=True, return_overflowing_tokens=False, return_length=False, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer_max_length} tokens: {removed_text}" ) prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False) # Use pooled output of CLIPTextModel prompt_embeds = prompt_embeds.pooler_output prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt) prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1) return prompt_embeds # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.encode_prompt def encode_prompt( self, prompt: Union[str, List[str]], prompt_2: Union[str, List[str]], device: Optional[torch.device] = None, num_images_per_prompt: int = 1, prompt_embeds: Optional[torch.FloatTensor] = None, pooled_prompt_embeds: Optional[torch.FloatTensor] = None, max_sequence_length: int = 512, lora_scale: Optional[float] = None, ): r""" Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is used in all text-encoders device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. pooled_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled text embeddings will be generated from `prompt` input argument. lora_scale (`float`, *optional*): A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. """ device = device or self._execution_device # set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin): self._lora_scale = lora_scale # dynamically adjust the LoRA scale if self.text_encoder is not None and USE_PEFT_BACKEND: scale_lora_layers(self.text_encoder, lora_scale) if self.text_encoder_2 is not None and USE_PEFT_BACKEND: scale_lora_layers(self.text_encoder_2, lora_scale) prompt = [prompt] if isinstance(prompt, str) else prompt if prompt_embeds is None: prompt_2 = prompt_2 or prompt prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 # We only use the pooled prompt output from the CLIPTextModel pooled_prompt_embeds = self._get_clip_prompt_embeds( prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, ) prompt_embeds = self._get_t5_prompt_embeds( prompt=prompt_2, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, device=device, ) if self.text_encoder is not None: if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder, lora_scale) if self.text_encoder_2 is not None: if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder_2, lora_scale) dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype) return prompt_embeds, pooled_prompt_embeds, text_ids @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, image: PipelineImageInput, prompt: Union[str, List[str]] = None, prompt_2: Optional[Union[str, List[str]]] = None, prompt_embeds: Optional[torch.FloatTensor] = None, pooled_prompt_embeds: Optional[torch.FloatTensor] = None, prompt_embeds_scale: Optional[Union[float, List[float]]] = 1.0, pooled_prompt_embeds_scale: Optional[Union[float, List[float]]] = 1.0, return_dict: bool = True, ): r""" Function invoked when calling the pipeline for generation. Args: image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): `Image`, numpy array or tensor representing an image batch to be used as the starting point. For both numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. **experimental feature**: to use this feature, make sure to explicitly load text encoders to the pipeline. Prompts will be ignored if text encoders are not loaded. prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. pooled_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated pooled text embeddings. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.flux.FluxPriorReduxPipelineOutput`] instead of a plain tuple. Examples: Returns: [`~pipelines.flux.FluxPriorReduxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPriorReduxPipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated images. """ # 1. Check inputs. Raise error if not correct self.check_inputs( image, prompt, prompt_2, prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, prompt_embeds_scale=prompt_embeds_scale, pooled_prompt_embeds_scale=pooled_prompt_embeds_scale, ) # 2. Define call parameters if image is not None and isinstance(image, Image.Image): batch_size = 1 elif image is not None and isinstance(image, list): batch_size = len(image) else: batch_size = image.shape[0] if prompt is not None and isinstance(prompt, str): prompt = batch_size * [prompt] if isinstance(prompt_embeds_scale, float): prompt_embeds_scale = batch_size * [prompt_embeds_scale] if isinstance(pooled_prompt_embeds_scale, float): pooled_prompt_embeds_scale = batch_size * [pooled_prompt_embeds_scale] device = self._execution_device # 3. Prepare image embeddings image_latents = self.encode_image(image, device, 1) image_embeds = self.image_embedder(image_latents).image_embeds image_embeds = image_embeds.to(device=device) # 3. Prepare (dummy) text embeddings if hasattr(self, "text_encoder") and self.text_encoder is not None: ( prompt_embeds, pooled_prompt_embeds, _, ) = self.encode_prompt( prompt=prompt, prompt_2=prompt_2, prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, device=device, num_images_per_prompt=1, max_sequence_length=512, lora_scale=None, ) else: if prompt is not None: logger.warning( "prompt input is ignored when text encoders are not loaded to the pipeline. " "Make sure to explicitly load the text encoders to enable prompt input. " ) # max_sequence_length is 512, t5 encoder hidden size is 4096 prompt_embeds = torch.zeros((batch_size, 512, 4096), device=device, dtype=image_embeds.dtype) # pooled_prompt_embeds is 768, clip text encoder hidden size pooled_prompt_embeds = torch.zeros((batch_size, 768), device=device, dtype=image_embeds.dtype) # scale & concatenate image and text embeddings prompt_embeds = torch.cat([prompt_embeds, image_embeds], dim=1) prompt_embeds *= torch.tensor(prompt_embeds_scale, device=device, dtype=image_embeds.dtype)[:, None, None] pooled_prompt_embeds *= torch.tensor(pooled_prompt_embeds_scale, device=device, dtype=image_embeds.dtype)[ :, None ] # weighted sum prompt_embeds = torch.sum(prompt_embeds, dim=0, keepdim=True) pooled_prompt_embeds = torch.sum(pooled_prompt_embeds, dim=0, keepdim=True) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (prompt_embeds, pooled_prompt_embeds) return FluxPriorReduxPipelineOutput(prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds)
diffusers/src/diffusers/pipelines/flux/pipeline_flux_prior_redux.py/0
{ "file_path": "diffusers/src/diffusers/pipelines/flux/pipeline_flux_prior_redux.py", "repo_id": "diffusers", "token_count": 9758 }
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL.Image import torch from transformers import CLIPImageProcessor, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionModelWithProjection from ...models import PriorTransformer from ...schedulers import UnCLIPScheduler from ...utils import ( BaseOutput, is_torch_xla_available, logging, replace_example_docstring, ) from ...utils.torch_utils import randn_tensor from ..pipeline_utils import DiffusionPipeline if is_torch_xla_available(): import torch_xla.core.xla_model as xm XLA_AVAILABLE = True else: XLA_AVAILABLE = False logger = logging.get_logger(__name__) # pylint: disable=invalid-name EXAMPLE_DOC_STRING = """ Examples: ```py >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline >>> import torch >>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-1-prior") >>> pipe_prior.to("cuda") >>> prompt = "red cat, 4k photo" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> negative_image_emb = out.negative_image_embeds >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1") >>> pipe.to("cuda") >>> image = pipe( ... prompt, ... image_embeds=image_emb, ... negative_image_embeds=negative_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... ).images >>> image[0].save("cat.png") ``` """ EXAMPLE_INTERPOLATE_DOC_STRING = """ Examples: ```py >>> from diffusers import KandinskyPriorPipeline, KandinskyPipeline >>> from diffusers.utils import load_image >>> import PIL >>> import torch >>> from torchvision import transforms >>> pipe_prior = KandinskyPriorPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16 ... ) >>> pipe_prior.to("cuda") >>> img1 = load_image( ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" ... "/kandinsky/cat.png" ... ) >>> img2 = load_image( ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" ... "/kandinsky/starry_night.jpeg" ... ) >>> images_texts = ["a cat", img1, img2] >>> weights = [0.3, 0.3, 0.4] >>> image_emb, zero_image_emb = pipe_prior.interpolate(images_texts, weights) >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16) >>> pipe.to("cuda") >>> image = pipe( ... "", ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=150, ... ).images[0] >>> image.save("starry_cat.png") ``` """ @dataclass class KandinskyPriorPipelineOutput(BaseOutput): """ Output class for KandinskyPriorPipeline. Args: image_embeds (`torch.Tensor`) clip image embeddings for text prompt negative_image_embeds (`List[PIL.Image.Image]` or `np.ndarray`) clip image embeddings for unconditional tokens """ image_embeds: Union[torch.Tensor, np.ndarray] negative_image_embeds: Union[torch.Tensor, np.ndarray] class KandinskyPriorPipeline(DiffusionPipeline): """ Pipeline for generating image prior for Kandinsky This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: prior ([`PriorTransformer`]): The canonical unCLIP prior to approximate the image embedding from the text embedding. image_encoder ([`CLIPVisionModelWithProjection`]): Frozen image-encoder. text_encoder ([`CLIPTextModelWithProjection`]): Frozen text-encoder. tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). scheduler ([`UnCLIPScheduler`]): A scheduler to be used in combination with `prior` to generate image embedding. """ _exclude_from_cpu_offload = ["prior"] model_cpu_offload_seq = "text_encoder->prior" def __init__( self, prior: PriorTransformer, image_encoder: CLIPVisionModelWithProjection, text_encoder: CLIPTextModelWithProjection, tokenizer: CLIPTokenizer, scheduler: UnCLIPScheduler, image_processor: CLIPImageProcessor, ): super().__init__() self.register_modules( prior=prior, text_encoder=text_encoder, tokenizer=tokenizer, scheduler=scheduler, image_encoder=image_encoder, image_processor=image_processor, ) @torch.no_grad() @replace_example_docstring(EXAMPLE_INTERPOLATE_DOC_STRING) def interpolate( self, images_and_prompts: List[Union[str, PIL.Image.Image, torch.Tensor]], weights: List[float], num_images_per_prompt: int = 1, num_inference_steps: int = 25, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, negative_prior_prompt: Optional[str] = None, negative_prompt: str = "", guidance_scale: float = 4.0, device=None, ): """ Function invoked when using the prior pipeline for interpolation. Args: images_and_prompts (`List[Union[str, PIL.Image.Image, torch.Tensor]]`): list of prompts and images to guide the image generation. weights: (`List[float]`): list of weights for each condition in `images_and_prompts` num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. num_inference_steps (`int`, *optional*, defaults to 25): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. negative_prior_prompt (`str`, *optional*): The prompt not to guide the prior diffusion process. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). negative_prompt (`str` or `List[str]`, *optional*): The prompt not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). guidance_scale (`float`, *optional*, defaults to 4.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. Examples: Returns: [`KandinskyPriorPipelineOutput`] or `tuple` """ device = device or self.device if len(images_and_prompts) != len(weights): raise ValueError( f"`images_and_prompts` contains {len(images_and_prompts)} items and `weights` contains {len(weights)} items - they should be lists of same length" ) image_embeddings = [] for cond, weight in zip(images_and_prompts, weights): if isinstance(cond, str): image_emb = self( cond, num_inference_steps=num_inference_steps, num_images_per_prompt=num_images_per_prompt, generator=generator, latents=latents, negative_prompt=negative_prior_prompt, guidance_scale=guidance_scale, ).image_embeds elif isinstance(cond, (PIL.Image.Image, torch.Tensor)): if isinstance(cond, PIL.Image.Image): cond = ( self.image_processor(cond, return_tensors="pt") .pixel_values[0] .unsqueeze(0) .to(dtype=self.image_encoder.dtype, device=device) ) image_emb = self.image_encoder(cond)["image_embeds"] else: raise ValueError( f"`images_and_prompts` can only contains elements to be of type `str`, `PIL.Image.Image` or `torch.Tensor` but is {type(cond)}" ) image_embeddings.append(image_emb * weight) image_emb = torch.cat(image_embeddings).sum(dim=0, keepdim=True) out_zero = self( negative_prompt, num_inference_steps=num_inference_steps, num_images_per_prompt=num_images_per_prompt, generator=generator, latents=latents, negative_prompt=negative_prior_prompt, guidance_scale=guidance_scale, ) zero_image_emb = out_zero.negative_image_embeds if negative_prompt == "" else out_zero.image_embeds return KandinskyPriorPipelineOutput(image_embeds=image_emb, negative_image_embeds=zero_image_emb) # Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") latents = latents.to(device) latents = latents * scheduler.init_noise_sigma return latents def get_zero_embed(self, batch_size=1, device=None): device = device or self.device zero_img = torch.zeros(1, 3, self.image_encoder.config.image_size, self.image_encoder.config.image_size).to( device=device, dtype=self.image_encoder.dtype ) zero_image_emb = self.image_encoder(zero_img)["image_embeds"] zero_image_emb = zero_image_emb.repeat(batch_size, 1) return zero_image_emb def _encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, ): batch_size = len(prompt) if isinstance(prompt, list) else 1 # get prompt text embeddings text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids text_mask = text_inputs.attention_mask.bool().to(device) untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length] text_encoder_output = self.text_encoder(text_input_ids.to(device)) prompt_embeds = text_encoder_output.text_embeds text_encoder_hidden_states = text_encoder_output.last_hidden_state prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0) if do_classifier_free_guidance: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) uncond_text_mask = uncond_input.attention_mask.bool().to(device) negative_prompt_embeds_text_encoder_output = self.text_encoder(uncond_input.input_ids.to(device)) negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.text_embeds uncond_text_encoder_hidden_states = negative_prompt_embeds_text_encoder_output.last_hidden_state # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len) seq_len = uncond_text_encoder_hidden_states.shape[1] uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1) uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt, seq_len, -1 ) uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states]) text_mask = torch.cat([uncond_text_mask, text_mask]) return prompt_embeds, text_encoder_hidden_states, text_mask @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]], negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: int = 1, num_inference_steps: int = 25, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, guidance_scale: float = 4.0, output_type: Optional[str] = "pt", return_dict: bool = True, ): """ Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. num_inference_steps (`int`, *optional*, defaults to 25): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. guidance_scale (`float`, *optional*, defaults to 4.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. output_type (`str`, *optional*, defaults to `"pt"`): The output format of the generate image. Choose between: `"np"` (`np.array`) or `"pt"` (`torch.Tensor`). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. Examples: Returns: [`KandinskyPriorPipelineOutput`] or `tuple` """ if isinstance(prompt, str): prompt = [prompt] elif not isinstance(prompt, list): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if isinstance(negative_prompt, str): negative_prompt = [negative_prompt] elif not isinstance(negative_prompt, list) and negative_prompt is not None: raise ValueError(f"`negative_prompt` has to be of type `str` or `list` but is {type(negative_prompt)}") # if the negative prompt is defined we double the batch size to # directly retrieve the negative prompt embedding if negative_prompt is not None: prompt = prompt + negative_prompt negative_prompt = 2 * negative_prompt device = self._execution_device batch_size = len(prompt) batch_size = batch_size * num_images_per_prompt do_classifier_free_guidance = guidance_scale > 1.0 prompt_embeds, text_encoder_hidden_states, text_mask = self._encode_prompt( prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt ) # prior self.scheduler.set_timesteps(num_inference_steps, device=device) prior_timesteps_tensor = self.scheduler.timesteps embedding_dim = self.prior.config.embedding_dim latents = self.prepare_latents( (batch_size, embedding_dim), prompt_embeds.dtype, device, generator, latents, self.scheduler, ) for i, t in enumerate(self.progress_bar(prior_timesteps_tensor)): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents predicted_image_embedding = self.prior( latent_model_input, timestep=t, proj_embedding=prompt_embeds, encoder_hidden_states=text_encoder_hidden_states, attention_mask=text_mask, ).predicted_image_embedding if do_classifier_free_guidance: predicted_image_embedding_uncond, predicted_image_embedding_text = predicted_image_embedding.chunk(2) predicted_image_embedding = predicted_image_embedding_uncond + guidance_scale * ( predicted_image_embedding_text - predicted_image_embedding_uncond ) if i + 1 == prior_timesteps_tensor.shape[0]: prev_timestep = None else: prev_timestep = prior_timesteps_tensor[i + 1] latents = self.scheduler.step( predicted_image_embedding, timestep=t, sample=latents, generator=generator, prev_timestep=prev_timestep, ).prev_sample if XLA_AVAILABLE: xm.mark_step() latents = self.prior.post_process_latents(latents) image_embeddings = latents # if negative prompt has been defined, we retrieve split the image embedding into two if negative_prompt is None: zero_embeds = self.get_zero_embed(latents.shape[0], device=latents.device) self.maybe_free_model_hooks() else: image_embeddings, zero_embeds = image_embeddings.chunk(2) if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: self.prior_hook.offload() if output_type not in ["pt", "np"]: raise ValueError(f"Only the output types `pt` and `np` are supported not output_type={output_type}") if output_type == "np": image_embeddings = image_embeddings.cpu().numpy() zero_embeds = zero_embeds.cpu().numpy() if not return_dict: return (image_embeddings, zero_embeds) return KandinskyPriorPipelineOutput(image_embeds=image_embeddings, negative_image_embeds=zero_embeds)
diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py/0
{ "file_path": "diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py", "repo_id": "diffusers", "token_count": 10731 }
# Copyright 2024 Stability AI, Kwai-Kolors Team and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from ...callbacks import MultiPipelineCallbacks, PipelineCallback from ...image_processor import PipelineImageInput, VaeImageProcessor from ...loaders import IPAdapterMixin, StableDiffusionXLLoraLoaderMixin from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel from ...models.attention_processor import AttnProcessor2_0, FusedAttnProcessor2_0, XFormersAttnProcessor from ...schedulers import KarrasDiffusionSchedulers from ...utils import is_torch_xla_available, logging, replace_example_docstring from ...utils.torch_utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin from .pipeline_output import KolorsPipelineOutput from .text_encoder import ChatGLMModel from .tokenizer import ChatGLMTokenizer if is_torch_xla_available(): import torch_xla.core.xla_model as xm XLA_AVAILABLE = True else: XLA_AVAILABLE = False logger = logging.get_logger(__name__) # pylint: disable=invalid-name EXAMPLE_DOC_STRING = """ Examples: ```py >>> import torch >>> from diffusers import KolorsPipeline >>> pipe = KolorsPipeline.from_pretrained( ... "Kwai-Kolors/Kolors-diffusers", variant="fp16", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to("cuda") >>> prompt = ( ... "A photo of a ladybug, macro, zoom, high quality, film, holding a wooden sign with the text 'KOLORS'" ... ) >>> image = pipe(prompt).images[0] ``` """ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps def retrieve_timesteps( scheduler, num_inference_steps: Optional[int] = None, device: Optional[Union[str, torch.device]] = None, timesteps: Optional[List[int]] = None, sigmas: Optional[List[float]] = None, **kwargs, ): r""" Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. Args: scheduler (`SchedulerMixin`): The scheduler to get timesteps from. num_inference_steps (`int`): The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` must be `None`. device (`str` or `torch.device`, *optional*): The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. timesteps (`List[int]`, *optional*): Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, `num_inference_steps` and `sigmas` must be `None`. sigmas (`List[float]`, *optional*): Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, `num_inference_steps` and `timesteps` must be `None`. Returns: `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the second element is the number of inference steps. """ if timesteps is not None and sigmas is not None: raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") if timesteps is not None: accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) if not accepts_timesteps: raise ValueError( f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" f" timestep schedules. Please check whether you are using the correct scheduler." ) scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) timesteps = scheduler.timesteps num_inference_steps = len(timesteps) elif sigmas is not None: accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) if not accept_sigmas: raise ValueError( f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" f" sigmas schedules. Please check whether you are using the correct scheduler." ) scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) timesteps = scheduler.timesteps num_inference_steps = len(timesteps) else: scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) timesteps = scheduler.timesteps return timesteps, num_inference_steps class KolorsPipeline(DiffusionPipeline, StableDiffusionMixin, StableDiffusionXLLoraLoaderMixin, IPAdapterMixin): r""" Pipeline for text-to-image generation using Kolors. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) The pipeline also inherits the following loading methods: - [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights - [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`ChatGLMModel`]): Frozen text-encoder. Kolors uses [ChatGLM3-6B](https://huggingface.co/THUDM/chatglm3-6b). tokenizer (`ChatGLMTokenizer`): Tokenizer of class [ChatGLMTokenizer](https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py). unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"False"`): Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of `Kwai-Kolors/Kolors-diffusers`. """ model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae" _optional_components = [ "image_encoder", "feature_extractor", ] _callback_tensor_inputs = [ "latents", "prompt_embeds", "negative_prompt_embeds", "add_text_embeds", "add_time_ids", "negative_pooled_prompt_embeds", "negative_add_time_ids", ] def __init__( self, vae: AutoencoderKL, text_encoder: ChatGLMModel, tokenizer: ChatGLMTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, image_encoder: CLIPVisionModelWithProjection = None, feature_extractor: CLIPImageProcessor = None, force_zeros_for_empty_prompt: bool = False, ): super().__init__() self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, image_encoder=image_encoder, feature_extractor=feature_extractor, ) self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) self.default_sample_size = ( self.unet.config.sample_size if hasattr(self, "unet") and self.unet is not None and hasattr(self.unet.config, "sample_size") else 128 ) def encode_prompt( self, prompt, device: Optional[torch.device] = None, num_images_per_prompt: int = 1, do_classifier_free_guidance: bool = True, negative_prompt=None, prompt_embeds: Optional[torch.FloatTensor] = None, pooled_prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, max_sequence_length: int = 256, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. pooled_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. negative_pooled_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` input argument. max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`. """ # from IPython import embed; embed(); exit() device = device or self._execution_device if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] # Define tokenizers and text encoders tokenizers = [self.tokenizer] text_encoders = [self.text_encoder] if prompt_embeds is None: prompt_embeds_list = [] for tokenizer, text_encoder in zip(tokenizers, text_encoders): text_inputs = tokenizer( prompt, padding="max_length", max_length=max_sequence_length, truncation=True, return_tensors="pt", ).to(device) output = text_encoder( input_ids=text_inputs["input_ids"], attention_mask=text_inputs["attention_mask"], position_ids=text_inputs["position_ids"], output_hidden_states=True, ) # [max_sequence_length, batch, hidden_size] -> [batch, max_sequence_length, hidden_size] # clone to have a contiguous tensor prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone() # [max_sequence_length, batch, hidden_size] -> [batch, hidden_size] pooled_prompt_embeds = output.hidden_states[-1][-1, :, :].clone() bs_embed, seq_len, _ = prompt_embeds.shape prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) prompt_embeds_list.append(prompt_embeds) prompt_embeds = prompt_embeds_list[0] # get unconditional embeddings for classifier free guidance zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: negative_prompt_embeds = torch.zeros_like(prompt_embeds) elif do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt negative_prompt_embeds_list = [] for tokenizer, text_encoder in zip(tokenizers, text_encoders): uncond_input = tokenizer( uncond_tokens, padding="max_length", max_length=max_sequence_length, truncation=True, return_tensors="pt", ).to(device) output = text_encoder( input_ids=uncond_input["input_ids"], attention_mask=uncond_input["attention_mask"], position_ids=uncond_input["position_ids"], output_hidden_states=True, ) # [max_sequence_length, batch, hidden_size] -> [batch, max_sequence_length, hidden_size] # clone to have a contiguous tensor negative_prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone() # [max_sequence_length, batch, hidden_size] -> [batch, hidden_size] negative_pooled_prompt_embeds = output.hidden_states[-1][-1, :, :].clone() if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=text_encoder.dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view( batch_size * num_images_per_prompt, seq_len, -1 ) negative_prompt_embeds_list.append(negative_prompt_embeds) negative_prompt_embeds = negative_prompt_embeds_list[0] bs_embed = pooled_prompt_embeds.shape[0] pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( bs_embed * num_images_per_prompt, -1 ) if do_classifier_free_guidance: negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( bs_embed * num_images_per_prompt, -1 ) return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): dtype = next(self.image_encoder.parameters()).dtype if not isinstance(image, torch.Tensor): image = self.feature_extractor(image, return_tensors="pt").pixel_values image = image.to(device=device, dtype=dtype) if output_hidden_states: image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) uncond_image_enc_hidden_states = self.image_encoder( torch.zeros_like(image), output_hidden_states=True ).hidden_states[-2] uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave( num_images_per_prompt, dim=0 ) return image_enc_hidden_states, uncond_image_enc_hidden_states else: image_embeds = self.image_encoder(image).image_embeds image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) uncond_image_embeds = torch.zeros_like(image_embeds) return image_embeds, uncond_image_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds def prepare_ip_adapter_image_embeds( self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance ): image_embeds = [] if do_classifier_free_guidance: negative_image_embeds = [] if ip_adapter_image_embeds is None: if not isinstance(ip_adapter_image, list): ip_adapter_image = [ip_adapter_image] if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): raise ValueError( f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters." ) for single_ip_adapter_image, image_proj_layer in zip( ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers ): output_hidden_state = not isinstance(image_proj_layer, ImageProjection) single_image_embeds, single_negative_image_embeds = self.encode_image( single_ip_adapter_image, device, 1, output_hidden_state ) image_embeds.append(single_image_embeds[None, :]) if do_classifier_free_guidance: negative_image_embeds.append(single_negative_image_embeds[None, :]) else: for single_image_embeds in ip_adapter_image_embeds: if do_classifier_free_guidance: single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2) negative_image_embeds.append(single_negative_image_embeds) image_embeds.append(single_image_embeds) ip_adapter_image_embeds = [] for i, single_image_embeds in enumerate(image_embeds): single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) if do_classifier_free_guidance: single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) single_image_embeds = single_image_embeds.to(device=device) ip_adapter_image_embeds.append(single_image_embeds) return ip_adapter_image_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs( self, prompt, num_inference_steps, height, width, negative_prompt=None, prompt_embeds=None, pooled_prompt_embeds=None, negative_prompt_embeds=None, negative_pooled_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, callback_on_step_end_tensor_inputs=None, max_sequence_length=None, ): if not isinstance(num_inference_steps, int) or num_inference_steps <= 0: raise ValueError( f"`num_inference_steps` has to be a positive integer but is {num_inference_steps} of type" f" {type(num_inference_steps)}." ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if prompt_embeds is not None and pooled_prompt_embeds is None: raise ValueError( "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." ) if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: raise ValueError( "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." ) if ip_adapter_image is not None and ip_adapter_image_embeds is not None: raise ValueError( "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined." ) if ip_adapter_image_embeds is not None: if not isinstance(ip_adapter_image_embeds, list): raise ValueError( f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}" ) elif ip_adapter_image_embeds[0].ndim not in [3, 4]: raise ValueError( f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D" ) if max_sequence_length is not None and max_sequence_length > 256: raise ValueError(f"`max_sequence_length` cannot be greater than 256 but is {max_sequence_length}") # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): shape = ( batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline._get_add_time_ids def _get_add_time_ids( self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None ): add_time_ids = list(original_size + crops_coords_top_left + target_size) passed_add_embed_dim = ( self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim ) expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features if expected_add_embed_dim != passed_add_embed_dim: raise ValueError( f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." ) add_time_ids = torch.tensor([add_time_ids], dtype=dtype) return add_time_ids # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.upcast_vae def upcast_vae(self): dtype = self.vae.dtype self.vae.to(dtype=torch.float32) use_torch_2_0_or_xformers = isinstance( self.vae.decoder.mid_block.attentions[0].processor, ( AttnProcessor2_0, XFormersAttnProcessor, FusedAttnProcessor2_0, ), ) # if xformers or torch_2_0 is used attention block does not need # to be in float32 which can save lots of memory if use_torch_2_0_or_xformers: self.vae.post_quant_conv.to(dtype) self.vae.decoder.conv_in.to(dtype) self.vae.decoder.mid_block.to(dtype) # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding def get_guidance_scale_embedding( self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32 ) -> torch.Tensor: """ See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 Args: w (`torch.Tensor`): Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings. embedding_dim (`int`, *optional*, defaults to 512): Dimension of the embeddings to generate. dtype (`torch.dtype`, *optional*, defaults to `torch.float32`): Data type of the generated embeddings. Returns: `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`. """ assert len(w.shape) == 1 w = w * 1000.0 half_dim = embedding_dim // 2 emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) emb = w.to(dtype)[:, None] * emb[None, :] emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) if embedding_dim % 2 == 1: # zero pad emb = torch.nn.functional.pad(emb, (0, 1)) assert emb.shape == (w.shape[0], embedding_dim) return emb @property def guidance_scale(self): return self._guidance_scale # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. @property def do_classifier_free_guidance(self): return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None @property def cross_attention_kwargs(self): return self._cross_attention_kwargs @property def denoising_end(self): return self._denoising_end @property def num_timesteps(self): return self._num_timesteps @property def interrupt(self): return self._interrupt @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]] = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, timesteps: List[int] = None, sigmas: List[float] = None, denoising_end: Optional[float] = None, guidance_scale: float = 5.0, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, pooled_prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, ip_adapter_image: Optional[PipelineImageInput] = None, ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, output_type: Optional[str] = "pil", return_dict: bool = True, cross_attention_kwargs: Optional[Dict[str, Any]] = None, original_size: Optional[Tuple[int, int]] = None, crops_coords_top_left: Tuple[int, int] = (0, 0), target_size: Optional[Tuple[int, int]] = None, negative_original_size: Optional[Tuple[int, int]] = None, negative_crops_coords_top_left: Tuple[int, int] = (0, 0), negative_target_size: Optional[Tuple[int, int]] = None, callback_on_step_end: Optional[ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] ] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], max_sequence_length: int = 256, ): r""" Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The height in pixels of the generated image. This is set to 1024 by default for the best results. Anything below 512 pixels won't work well for [Kwai-Kolors/Kolors-diffusers](https://huggingface.co/Kwai-Kolors/Kolors-diffusers) and checkpoints that are not specifically fine-tuned on low resolutions. width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The width in pixels of the generated image. This is set to 1024 by default for the best results. Anything below 512 pixels won't work well for [Kwai-Kolors/Kolors-diffusers](https://huggingface.co/Kwai-Kolors/Kolors-diffusers) and checkpoints that are not specifically fine-tuned on low resolutions. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. timesteps (`List[int]`, *optional*): Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. Must be in descending order. sigmas (`List[float]`, *optional*): Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. denoising_end (`float`, *optional*): When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be completed before it is intentionally prematurely terminated. As a result, the returned sample will still retain a substantial amount of noise as determined by the discrete timesteps selected by the scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output) guidance_scale (`float`, *optional*, defaults to 5.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. pooled_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. negative_pooled_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` input argument. ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not provided, embeddings are computed from the `ip_adapter_image` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.kolors.KolorsPipelineOutput`] instead of a plain tuple. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled. `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): For most cases, `target_size` should be set to the desired height and width of the generated image. If not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): To negatively condition the generation process based on a specific image resolution. Part of SDXL's micro-conditioning as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's micro-conditioning as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): To negatively condition the generation process based on a target image resolution. It should be as same as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*): A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of each denoising step during the inference. with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`. Examples: Returns: [`~pipelines.kolors.KolorsPipelineOutput`] or `tuple`: [`~pipelines.kolors.KolorsPipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated images. """ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs # 0. Default height and width to unet height = height or self.default_sample_size * self.vae_scale_factor width = width or self.default_sample_size * self.vae_scale_factor original_size = original_size or (height, width) target_size = target_size or (height, width) # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, num_inference_steps, height, width, negative_prompt, prompt_embeds, pooled_prompt_embeds, negative_prompt_embeds, negative_pooled_prompt_embeds, ip_adapter_image, ip_adapter_image_embeds, callback_on_step_end_tensor_inputs, max_sequence_length=max_sequence_length, ) self._guidance_scale = guidance_scale self._cross_attention_kwargs = cross_attention_kwargs self._denoising_end = denoising_end self._interrupt = False # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # 3. Encode input prompt ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = self.encode_prompt( prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, ) # 4. Prepare timesteps timesteps, num_inference_steps = retrieve_timesteps( self.scheduler, num_inference_steps, device, timesteps, sigmas ) # 5. Prepare latent variables num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 7. Prepare added time ids & embeddings add_text_embeds = pooled_prompt_embeds text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) add_time_ids = self._get_add_time_ids( original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim, ) if negative_original_size is not None and negative_target_size is not None: negative_add_time_ids = self._get_add_time_ids( negative_original_size, negative_crops_coords_top_left, negative_target_size, dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim, ) else: negative_add_time_ids = add_time_ids if self.do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) prompt_embeds = prompt_embeds.to(device) add_text_embeds = add_text_embeds.to(device) add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) if ip_adapter_image is not None or ip_adapter_image_embeds is not None: image_embeds = self.prepare_ip_adapter_image_embeds( ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, self.do_classifier_free_guidance, ) # 8. Denoising loop num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) # 8.1 Apply denoising_end if ( self.denoising_end is not None and isinstance(self.denoising_end, float) and self.denoising_end > 0 and self.denoising_end < 1 ): discrete_timestep_cutoff = int( round( self.scheduler.config.num_train_timesteps - (self.denoising_end * self.scheduler.config.num_train_timesteps) ) ) num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) timesteps = timesteps[:num_inference_steps] # 9. Optionally get Guidance Scale Embedding timestep_cond = None if self.unet.config.time_cond_proj_dim is not None: guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) timestep_cond = self.get_guidance_scale_embedding( guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim ).to(device=device, dtype=latents.dtype) self._num_timesteps = len(timesteps) with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): if self.interrupt: continue # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} if ip_adapter_image is not None or ip_adapter_image_embeds is not None: added_cond_kwargs["image_embeds"] = image_embeds noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, timestep_cond=timestep_cond, cross_attention_kwargs=self.cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, return_dict=False, )[0] # perform guidance if self.do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents_dtype = latents.dtype latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] if latents.dtype != latents_dtype: if torch.backends.mps.is_available(): # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 latents = latents.to(latents_dtype) if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds) negative_pooled_prompt_embeds = callback_outputs.pop( "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds ) add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids) negative_add_time_ids = callback_outputs.pop("negative_add_time_ids", negative_add_time_ids) if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if XLA_AVAILABLE: xm.mark_step() if not output_type == "latent": # make sure the VAE is in float32 mode, as it overflows in float16 needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: self.upcast_vae() latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) elif latents.dtype != self.vae.dtype: if torch.backends.mps.is_available(): # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 self.vae = self.vae.to(latents.dtype) # unscale/denormalize the latents latents = latents / self.vae.config.scaling_factor image = self.vae.decode(latents, return_dict=False)[0] # cast back to fp16 if needed if needs_upcasting: self.vae.to(dtype=torch.float16) else: image = latents if not output_type == "latent": image = self.image_processor.postprocess(image, output_type=output_type) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image,) return KolorsPipelineOutput(images=image)
diffusers/src/diffusers/pipelines/kolors/pipeline_kolors.py/0
{ "file_path": "diffusers/src/diffusers/pipelines/kolors/pipeline_kolors.py", "repo_id": "diffusers", "token_count": 24974 }
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL.Image from ...utils import BaseOutput @dataclass class LEditsPPDiffusionPipelineOutput(BaseOutput): """ Output class for LEdits++ Diffusion pipelines. Args: images (`List[PIL.Image.Image]` or `np.ndarray`) List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width, num_channels)`. nsfw_content_detected (`List[bool]`) List indicating whether the corresponding generated image contains “not-safe-for-work” (nsfw) content or `None` if safety checking could not be performed. """ images: Union[List[PIL.Image.Image], np.ndarray] nsfw_content_detected: Optional[List[bool]] @dataclass class LEditsPPInversionPipelineOutput(BaseOutput): """ Output class for LEdits++ Diffusion pipelines. Args: input_images (`List[PIL.Image.Image]` or `np.ndarray`) List of the cropped and resized input images as PIL images of length `batch_size` or NumPy array of shape ` (batch_size, height, width, num_channels)`. vae_reconstruction_images (`List[PIL.Image.Image]` or `np.ndarray`) List of VAE reconstruction of all input images as PIL images of length `batch_size` or NumPy array of shape ` (batch_size, height, width, num_channels)`. """ images: Union[List[PIL.Image.Image], np.ndarray] vae_reconstruction_images: Union[List[PIL.Image.Image], np.ndarray]
diffusers/src/diffusers/pipelines/ledits_pp/pipeline_output.py/0
{ "file_path": "diffusers/src/diffusers/pipelines/ledits_pp/pipeline_output.py", "repo_id": "diffusers", "token_count": 613 }
# coding=utf-8 # Copyright 2025 The HuggingFace Inc. team. # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from huggingface_hub.utils import validate_hf_hub_args from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort logger = logging.get_logger(__name__) ORT_TO_NP_TYPE = { "tensor(bool)": np.bool_, "tensor(int8)": np.int8, "tensor(uint8)": np.uint8, "tensor(int16)": np.int16, "tensor(uint16)": np.uint16, "tensor(int32)": np.int32, "tensor(uint32)": np.uint32, "tensor(int64)": np.int64, "tensor(uint64)": np.uint64, "tensor(float16)": np.float16, "tensor(float)": np.float32, "tensor(double)": np.float64, } class OnnxRuntimeModel: def __init__(self, model=None, **kwargs): logger.info("`diffusers.OnnxRuntimeModel` is experimental and might change in the future.") self.model = model self.model_save_dir = kwargs.get("model_save_dir", None) self.latest_model_name = kwargs.get("latest_model_name", ONNX_WEIGHTS_NAME) def __call__(self, **kwargs): inputs = {k: np.array(v) for k, v in kwargs.items()} return self.model.run(None, inputs) @staticmethod def load_model(path: Union[str, Path], provider=None, sess_options=None, provider_options=None): """ Loads an ONNX Inference session with an ExecutionProvider. Default provider is `CPUExecutionProvider` Arguments: path (`str` or `Path`): Directory from which to load provider(`str`, *optional*): Onnxruntime execution provider to use for loading the model, defaults to `CPUExecutionProvider` """ if provider is None: logger.info("No onnxruntime provider specified, using CPUExecutionProvider") provider = "CPUExecutionProvider" return ort.InferenceSession( path, providers=[provider], sess_options=sess_options, provider_options=provider_options ) def _save_pretrained(self, save_directory: Union[str, Path], file_name: Optional[str] = None, **kwargs): """ Save a model and its configuration file to a directory, so that it can be re-loaded using the [`~optimum.onnxruntime.modeling_ort.ORTModel.from_pretrained`] class method. It will always save the latest_model_name. Arguments: save_directory (`str` or `Path`): Directory where to save the model file. file_name(`str`, *optional*): Overwrites the default model file name from `"model.onnx"` to `file_name`. This allows you to save the model with a different name. """ model_file_name = file_name if file_name is not None else ONNX_WEIGHTS_NAME src_path = self.model_save_dir.joinpath(self.latest_model_name) dst_path = Path(save_directory).joinpath(model_file_name) try: shutil.copyfile(src_path, dst_path) except shutil.SameFileError: pass # copy external weights (for models >2GB) src_path = self.model_save_dir.joinpath(ONNX_EXTERNAL_WEIGHTS_NAME) if src_path.exists(): dst_path = Path(save_directory).joinpath(ONNX_EXTERNAL_WEIGHTS_NAME) try: shutil.copyfile(src_path, dst_path) except shutil.SameFileError: pass def save_pretrained( self, save_directory: Union[str, os.PathLike], **kwargs, ): """ Save a model to a directory, so that it can be re-loaded using the [`~OnnxModel.from_pretrained`] class method.: Arguments: save_directory (`str` or `os.PathLike`): Directory to which to save. Will be created if it doesn't exist. """ if os.path.isfile(save_directory): logger.error(f"Provided path ({save_directory}) should be a directory, not a file") return os.makedirs(save_directory, exist_ok=True) # saving model weights/files self._save_pretrained(save_directory, **kwargs) @classmethod @validate_hf_hub_args def _from_pretrained( cls, model_id: Union[str, Path], token: Optional[Union[bool, str, None]] = None, revision: Optional[Union[str, None]] = None, force_download: bool = False, cache_dir: Optional[str] = None, file_name: Optional[str] = None, provider: Optional[str] = None, sess_options: Optional["ort.SessionOptions"] = None, **kwargs, ): """ Load a model from a directory or the HF Hub. Arguments: model_id (`str` or `Path`): Directory from which to load token (`str` or `bool`): Is needed to load models from a private or gated repository revision (`str`): Revision is the specific model version to use. It can be a branch name, a tag name, or a commit id cache_dir (`Union[str, Path]`, *optional*): Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. file_name(`str`): Overwrites the default model file name from `"model.onnx"` to `file_name`. This allows you to load different model files from the same repository or directory. provider(`str`): The ONNX runtime provider, e.g. `CPUExecutionProvider` or `CUDAExecutionProvider`. kwargs (`Dict`, *optional*): kwargs will be passed to the model during initialization """ model_file_name = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(model_id): model = OnnxRuntimeModel.load_model( Path(model_id, model_file_name).as_posix(), provider=provider, sess_options=sess_options ) kwargs["model_save_dir"] = Path(model_id) # load model from hub else: # download model model_cache_path = hf_hub_download( repo_id=model_id, filename=model_file_name, token=token, revision=revision, cache_dir=cache_dir, force_download=force_download, ) kwargs["model_save_dir"] = Path(model_cache_path).parent kwargs["latest_model_name"] = Path(model_cache_path).name model = OnnxRuntimeModel.load_model(model_cache_path, provider=provider, sess_options=sess_options) return cls(model=model, **kwargs) @classmethod @validate_hf_hub_args def from_pretrained( cls, model_id: Union[str, Path], force_download: bool = True, token: Optional[str] = None, cache_dir: Optional[str] = None, **model_kwargs, ): revision = None if len(str(model_id).split("@")) == 2: model_id, revision = model_id.split("@") return cls._from_pretrained( model_id=model_id, revision=revision, cache_dir=cache_dir, force_download=force_download, token=token, **model_kwargs, )
diffusers/src/diffusers/pipelines/onnx_utils.py/0
{ "file_path": "diffusers/src/diffusers/pipelines/onnx_utils.py", "repo_id": "diffusers", "token_count": 3657 }
from dataclasses import dataclass from typing import List, Union import numpy as np import PIL.Image from ...utils import BaseOutput @dataclass class SanaPipelineOutput(BaseOutput): """ Output class for Sana pipelines. Args: images (`List[PIL.Image.Image]` or `np.ndarray`) List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width, num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline. """ images: Union[List[PIL.Image.Image], np.ndarray]
diffusers/src/diffusers/pipelines/sana/pipeline_output.py/0
{ "file_path": "diffusers/src/diffusers/pipelines/sana/pipeline_output.py", "repo_id": "diffusers", "token_count": 211 }
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from math import ceil from typing import Callable, Dict, List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionModelWithProjection from ...models import StableCascadeUNet from ...schedulers import DDPMWuerstchenScheduler from ...utils import BaseOutput, is_torch_xla_available, logging, replace_example_docstring from ...utils.torch_utils import randn_tensor from ..pipeline_utils import DiffusionPipeline if is_torch_xla_available(): import torch_xla.core.xla_model as xm XLA_AVAILABLE = True else: XLA_AVAILABLE = False logger = logging.get_logger(__name__) # pylint: disable=invalid-name DEFAULT_STAGE_C_TIMESTEPS = list(np.linspace(1.0, 2 / 3, 20)) + list(np.linspace(2 / 3, 0.0, 11))[1:] EXAMPLE_DOC_STRING = """ Examples: ```py >>> import torch >>> from diffusers import StableCascadePriorPipeline >>> prior_pipe = StableCascadePriorPipeline.from_pretrained( ... "stabilityai/stable-cascade-prior", torch_dtype=torch.bfloat16 ... ).to("cuda") >>> prompt = "an image of a shiba inu, donning a spacesuit and helmet" >>> prior_output = pipe(prompt) ``` """ @dataclass class StableCascadePriorPipelineOutput(BaseOutput): """ Output class for WuerstchenPriorPipeline. Args: image_embeddings (`torch.Tensor` or `np.ndarray`) Prior image embeddings for text prompt prompt_embeds (`torch.Tensor`): Text embeddings for the prompt. negative_prompt_embeds (`torch.Tensor`): Text embeddings for the negative prompt. """ image_embeddings: Union[torch.Tensor, np.ndarray] prompt_embeds: Union[torch.Tensor, np.ndarray] prompt_embeds_pooled: Union[torch.Tensor, np.ndarray] negative_prompt_embeds: Union[torch.Tensor, np.ndarray] negative_prompt_embeds_pooled: Union[torch.Tensor, np.ndarray] class StableCascadePriorPipeline(DiffusionPipeline): """ Pipeline for generating image prior for Stable Cascade. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: prior ([`StableCascadeUNet`]): The Stable Cascade prior to approximate the image embedding from the text and/or image embedding. text_encoder ([`CLIPTextModelWithProjection`]): Frozen text-encoder ([laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)). feature_extractor ([`~transformers.CLIPImageProcessor`]): Model that extracts features from generated images to be used as inputs for the `image_encoder`. image_encoder ([`CLIPVisionModelWithProjection`]): Frozen CLIP image-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). scheduler ([`DDPMWuerstchenScheduler`]): A scheduler to be used in combination with `prior` to generate image embedding. resolution_multiple ('float', *optional*, defaults to 42.67): Default resolution for multiple images generated. """ unet_name = "prior" text_encoder_name = "text_encoder" model_cpu_offload_seq = "image_encoder->text_encoder->prior" _optional_components = ["image_encoder", "feature_extractor"] _callback_tensor_inputs = ["latents", "text_encoder_hidden_states", "negative_prompt_embeds"] def __init__( self, tokenizer: CLIPTokenizer, text_encoder: CLIPTextModelWithProjection, prior: StableCascadeUNet, scheduler: DDPMWuerstchenScheduler, resolution_multiple: float = 42.67, feature_extractor: Optional[CLIPImageProcessor] = None, image_encoder: Optional[CLIPVisionModelWithProjection] = None, ) -> None: super().__init__() self.register_modules( tokenizer=tokenizer, text_encoder=text_encoder, image_encoder=image_encoder, feature_extractor=feature_extractor, prior=prior, scheduler=scheduler, ) self.register_to_config(resolution_multiple=resolution_multiple) def prepare_latents( self, batch_size, height, width, num_images_per_prompt, dtype, device, generator, latents, scheduler ): latent_shape = ( num_images_per_prompt * batch_size, self.prior.config.in_channels, ceil(height / self.config.resolution_multiple), ceil(width / self.config.resolution_multiple), ) if latents is None: latents = randn_tensor(latent_shape, generator=generator, device=device, dtype=dtype) else: if latents.shape != latent_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latent_shape}") latents = latents.to(device) latents = latents * scheduler.init_noise_sigma return latents def encode_prompt( self, device, batch_size, num_images_per_prompt, do_classifier_free_guidance, prompt=None, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, prompt_embeds_pooled: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds_pooled: Optional[torch.Tensor] = None, ): if prompt_embeds is None: # get prompt text embeddings text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids attention_mask = text_inputs.attention_mask untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length] attention_mask = attention_mask[:, : self.tokenizer.model_max_length] text_encoder_output = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask.to(device), output_hidden_states=True ) prompt_embeds = text_encoder_output.hidden_states[-1] if prompt_embeds_pooled is None: prompt_embeds_pooled = text_encoder_output.text_embeds.unsqueeze(1) prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) prompt_embeds_pooled = prompt_embeds_pooled.to(dtype=self.text_encoder.dtype, device=device) prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) prompt_embeds_pooled = prompt_embeds_pooled.repeat_interleave(num_images_per_prompt, dim=0) if negative_prompt_embeds is None and do_classifier_free_guidance: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) negative_prompt_embeds_text_encoder_output = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=uncond_input.attention_mask.to(device), output_hidden_states=True, ) negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.hidden_states[-1] negative_prompt_embeds_pooled = negative_prompt_embeds_text_encoder_output.text_embeds.unsqueeze(1) if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) seq_len = negative_prompt_embeds_pooled.shape[1] negative_prompt_embeds_pooled = negative_prompt_embeds_pooled.to( dtype=self.text_encoder.dtype, device=device ) negative_prompt_embeds_pooled = negative_prompt_embeds_pooled.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds_pooled = negative_prompt_embeds_pooled.view( batch_size * num_images_per_prompt, seq_len, -1 ) # done duplicates return prompt_embeds, prompt_embeds_pooled, negative_prompt_embeds, negative_prompt_embeds_pooled def encode_image(self, images, device, dtype, batch_size, num_images_per_prompt): image_embeds = [] for image in images: image = self.feature_extractor(image, return_tensors="pt").pixel_values image = image.to(device=device, dtype=dtype) image_embed = self.image_encoder(image).image_embeds.unsqueeze(1) image_embeds.append(image_embed) image_embeds = torch.cat(image_embeds, dim=1) image_embeds = image_embeds.repeat(batch_size * num_images_per_prompt, 1, 1) negative_image_embeds = torch.zeros_like(image_embeds) return image_embeds, negative_image_embeds def check_inputs( self, prompt, images=None, image_embeds=None, negative_prompt=None, prompt_embeds=None, prompt_embeds_pooled=None, negative_prompt_embeds=None, negative_prompt_embeds_pooled=None, callback_on_step_end_tensor_inputs=None, ): if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if prompt_embeds is not None and prompt_embeds_pooled is None: raise ValueError( "If `prompt_embeds` are provided, `prompt_embeds_pooled` must also be provided. Make sure to generate `prompt_embeds_pooled` from the same text encoder that was used to generate `prompt_embeds`" ) if negative_prompt_embeds is not None and negative_prompt_embeds_pooled is None: raise ValueError( "If `negative_prompt_embeds` are provided, `negative_prompt_embeds_pooled` must also be provided. Make sure to generate `prompt_embeds_pooled` from the same text encoder that was used to generate `prompt_embeds`" ) if prompt_embeds_pooled is not None and negative_prompt_embeds_pooled is not None: if prompt_embeds_pooled.shape != negative_prompt_embeds_pooled.shape: raise ValueError( "`prompt_embeds_pooled` and `negative_prompt_embeds_pooled` must have the same shape when passed" f"directly, but got: `prompt_embeds_pooled` {prompt_embeds_pooled.shape} !=" f"`negative_prompt_embeds_pooled` {negative_prompt_embeds_pooled.shape}." ) if image_embeds is not None and images is not None: raise ValueError( f"Cannot forward both `images`: {images} and `image_embeds`: {image_embeds}. Please make sure to" " only forward one of the two." ) if images: for i, image in enumerate(images): if not isinstance(image, torch.Tensor) and not isinstance(image, PIL.Image.Image): raise TypeError( f"'images' must contain images of type 'torch.Tensor' or 'PIL.Image.Image, but got" f"{type(image)} for image number {i}." ) @property def guidance_scale(self): return self._guidance_scale @property def do_classifier_free_guidance(self): return self._guidance_scale > 1 @property def num_timesteps(self): return self._num_timesteps def get_timestep_ratio_conditioning(self, t, alphas_cumprod): s = torch.tensor([0.008]) clamp_range = [0, 1] min_var = torch.cos(s / (1 + s) * torch.pi * 0.5) ** 2 var = alphas_cumprod[t] var = var.clamp(*clamp_range) s, min_var = s.to(var.device), min_var.to(var.device) ratio = (((var * min_var) ** 0.5).acos() / (torch.pi * 0.5)) * (1 + s) - s return ratio @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Optional[Union[str, List[str]]] = None, images: Union[torch.Tensor, PIL.Image.Image, List[torch.Tensor], List[PIL.Image.Image]] = None, height: int = 1024, width: int = 1024, num_inference_steps: int = 20, timesteps: List[float] = None, guidance_scale: float = 4.0, negative_prompt: Optional[Union[str, List[str]]] = None, prompt_embeds: Optional[torch.Tensor] = None, prompt_embeds_pooled: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds_pooled: Optional[torch.Tensor] = None, image_embeds: Optional[torch.Tensor] = None, num_images_per_prompt: Optional[int] = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, output_type: Optional[str] = "pt", return_dict: bool = True, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], ): """ Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. height (`int`, *optional*, defaults to 1024): The height in pixels of the generated image. width (`int`, *optional*, defaults to 1024): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 60): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 8.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `decoder_guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `decoder_guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `decoder_guidance_scale` is less than `1`). prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. prompt_embeds_pooled (`torch.Tensor`, *optional*): Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. negative_prompt_embeds_pooled (`torch.Tensor`, *optional*): Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds_pooled will be generated from `negative_prompt` input argument. image_embeds (`torch.Tensor`, *optional*): Pre-generated image embeddings. Can be used to easily tweak image inputs, *e.g.* prompt weighting. If not provided, image embeddings will be generated from `image` input argument if existing. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` (`np.array`) or `"pt"` (`torch.Tensor`). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. Examples: Returns: [`StableCascadePriorPipelineOutput`] or `tuple` [`StableCascadePriorPipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated image embeddings. """ # 0. Define commonly used variables device = self._execution_device dtype = next(self.prior.parameters()).dtype self._guidance_scale = guidance_scale if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, images=images, image_embeds=image_embeds, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, prompt_embeds_pooled=prompt_embeds_pooled, negative_prompt_embeds=negative_prompt_embeds, negative_prompt_embeds_pooled=negative_prompt_embeds_pooled, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, ) # 2. Encode caption + images ( prompt_embeds, prompt_embeds_pooled, negative_prompt_embeds, negative_prompt_embeds_pooled, ) = self.encode_prompt( prompt=prompt, device=device, batch_size=batch_size, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, prompt_embeds_pooled=prompt_embeds_pooled, negative_prompt_embeds=negative_prompt_embeds, negative_prompt_embeds_pooled=negative_prompt_embeds_pooled, ) if images is not None: image_embeds_pooled, uncond_image_embeds_pooled = self.encode_image( images=images, device=device, dtype=dtype, batch_size=batch_size, num_images_per_prompt=num_images_per_prompt, ) elif image_embeds is not None: image_embeds_pooled = image_embeds.repeat(batch_size * num_images_per_prompt, 1, 1) uncond_image_embeds_pooled = torch.zeros_like(image_embeds_pooled) else: image_embeds_pooled = torch.zeros( batch_size * num_images_per_prompt, 1, self.prior.config.clip_image_in_channels, device=device, dtype=dtype, ) uncond_image_embeds_pooled = torch.zeros( batch_size * num_images_per_prompt, 1, self.prior.config.clip_image_in_channels, device=device, dtype=dtype, ) if self.do_classifier_free_guidance: image_embeds = torch.cat([image_embeds_pooled, uncond_image_embeds_pooled], dim=0) else: image_embeds = image_embeds_pooled # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes text_encoder_hidden_states = ( torch.cat([prompt_embeds, negative_prompt_embeds]) if negative_prompt_embeds is not None else prompt_embeds ) text_encoder_pooled = ( torch.cat([prompt_embeds_pooled, negative_prompt_embeds_pooled]) if negative_prompt_embeds is not None else prompt_embeds_pooled ) # 4. Prepare and set timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 5. Prepare latents latents = self.prepare_latents( batch_size, height, width, num_images_per_prompt, dtype, device, generator, latents, self.scheduler ) if isinstance(self.scheduler, DDPMWuerstchenScheduler): timesteps = timesteps[:-1] else: if hasattr(self.scheduler.config, "clip_sample") and self.scheduler.config.clip_sample: self.scheduler.config.clip_sample = False # disample sample clipping logger.warning(" set `clip_sample` to be False") # 6. Run denoising loop if hasattr(self.scheduler, "betas"): alphas = 1.0 - self.scheduler.betas alphas_cumprod = torch.cumprod(alphas, dim=0) else: alphas_cumprod = [] self._num_timesteps = len(timesteps) for i, t in enumerate(self.progress_bar(timesteps)): if not isinstance(self.scheduler, DDPMWuerstchenScheduler): if len(alphas_cumprod) > 0: timestep_ratio = self.get_timestep_ratio_conditioning(t.long().cpu(), alphas_cumprod) timestep_ratio = timestep_ratio.expand(latents.size(0)).to(dtype).to(device) else: timestep_ratio = t.float().div(self.scheduler.timesteps[-1]).expand(latents.size(0)).to(dtype) else: timestep_ratio = t.expand(latents.size(0)).to(dtype) # 7. Denoise image embeddings predicted_image_embedding = self.prior( sample=torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents, timestep_ratio=torch.cat([timestep_ratio] * 2) if self.do_classifier_free_guidance else timestep_ratio, clip_text_pooled=text_encoder_pooled, clip_text=text_encoder_hidden_states, clip_img=image_embeds, return_dict=False, )[0] # 8. Check for classifier free guidance and apply it if self.do_classifier_free_guidance: predicted_image_embedding_text, predicted_image_embedding_uncond = predicted_image_embedding.chunk(2) predicted_image_embedding = torch.lerp( predicted_image_embedding_uncond, predicted_image_embedding_text, self.guidance_scale ) # 9. Renoise latents to next timestep if not isinstance(self.scheduler, DDPMWuerstchenScheduler): timestep_ratio = t latents = self.scheduler.step( model_output=predicted_image_embedding, timestep=timestep_ratio, sample=latents, generator=generator ).prev_sample if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) if XLA_AVAILABLE: xm.mark_step() # Offload all models self.maybe_free_model_hooks() if output_type == "np": latents = latents.cpu().float().numpy() # float() as bfloat16-> numpy doesnt work prompt_embeds = prompt_embeds.cpu().float().numpy() # float() as bfloat16-> numpy doesnt work negative_prompt_embeds = ( negative_prompt_embeds.cpu().float().numpy() if negative_prompt_embeds is not None else None ) # float() as bfloat16-> numpy doesnt work if not return_dict: return ( latents, prompt_embeds, prompt_embeds_pooled, negative_prompt_embeds, negative_prompt_embeds_pooled, ) return StableCascadePriorPipelineOutput( image_embeddings=latents, prompt_embeds=prompt_embeds, prompt_embeds_pooled=prompt_embeds_pooled, negative_prompt_embeds=negative_prompt_embeds, negative_prompt_embeds_pooled=negative_prompt_embeds_pooled, )
diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py/0
{ "file_path": "diffusers/src/diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py", "repo_id": "diffusers", "token_count": 14327 }
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import math from typing import Any, Callable, Dict, List, Optional, Tuple, Union import numpy as np import torch from torch.nn import functional as F from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from ...image_processor import VaeImageProcessor from ...loaders import StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin from ...models import AutoencoderKL, UNet2DConditionModel from ...models.attention_processor import Attention from ...models.lora import adjust_lora_scale_text_encoder from ...schedulers import KarrasDiffusionSchedulers from ...utils import ( USE_PEFT_BACKEND, deprecate, is_torch_xla_available, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers, ) from ...utils.torch_utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin from ..stable_diffusion import StableDiffusionPipelineOutput from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker if is_torch_xla_available(): import torch_xla.core.xla_model as xm XLA_AVAILABLE = True else: XLA_AVAILABLE = False logger = logging.get_logger(__name__) EXAMPLE_DOC_STRING = """ Examples: ```py >>> import torch >>> from diffusers import StableDiffusionAttendAndExcitePipeline >>> pipe = StableDiffusionAttendAndExcitePipeline.from_pretrained( ... "CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16 ... ).to("cuda") >>> prompt = "a cat and a frog" >>> # use get_indices function to find out indices of the tokens you want to alter >>> pipe.get_indices(prompt) {0: '<|startoftext|>', 1: 'a</w>', 2: 'cat</w>', 3: 'and</w>', 4: 'a</w>', 5: 'frog</w>', 6: '<|endoftext|>'} >>> token_indices = [2, 5] >>> seed = 6141 >>> generator = torch.Generator("cuda").manual_seed(seed) >>> images = pipe( ... prompt=prompt, ... token_indices=token_indices, ... guidance_scale=7.5, ... generator=generator, ... num_inference_steps=50, ... max_iter_to_alter=25, ... ).images >>> image = images[0] >>> image.save(f"../images/{prompt}_{seed}.png") ``` """ class AttentionStore: @staticmethod def get_empty_store(): return {"down": [], "mid": [], "up": []} def __call__(self, attn, is_cross: bool, place_in_unet: str): if self.cur_att_layer >= 0 and is_cross: if attn.shape[1] == np.prod(self.attn_res): self.step_store[place_in_unet].append(attn) self.cur_att_layer += 1 if self.cur_att_layer == self.num_att_layers: self.cur_att_layer = 0 self.between_steps() def between_steps(self): self.attention_store = self.step_store self.step_store = self.get_empty_store() def get_average_attention(self): average_attention = self.attention_store return average_attention def aggregate_attention(self, from_where: List[str]) -> torch.Tensor: """Aggregates the attention across the different layers and heads at the specified resolution.""" out = [] attention_maps = self.get_average_attention() for location in from_where: for item in attention_maps[location]: cross_maps = item.reshape(-1, self.attn_res[0], self.attn_res[1], item.shape[-1]) out.append(cross_maps) out = torch.cat(out, dim=0) out = out.sum(0) / out.shape[0] return out def reset(self): self.cur_att_layer = 0 self.step_store = self.get_empty_store() self.attention_store = {} def __init__(self, attn_res): """ Initialize an empty AttentionStore :param step_index: used to visualize only a specific step in the diffusion process """ self.num_att_layers = -1 self.cur_att_layer = 0 self.step_store = self.get_empty_store() self.attention_store = {} self.curr_step_index = 0 self.attn_res = attn_res class AttendExciteAttnProcessor: def __init__(self, attnstore, place_in_unet): super().__init__() self.attnstore = attnstore self.place_in_unet = place_in_unet def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None): batch_size, sequence_length, _ = hidden_states.shape attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) query = attn.to_q(hidden_states) is_cross = encoder_hidden_states is not None encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) query = attn.head_to_batch_dim(query) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) attention_probs = attn.get_attention_scores(query, key, attention_mask) # only need to store attention maps during the Attend and Excite process if attention_probs.requires_grad: self.attnstore(attention_probs, is_cross, self.place_in_unet) hidden_states = torch.bmm(attention_probs, value) hidden_states = attn.batch_to_head_dim(hidden_states) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) return hidden_states class StableDiffusionAttendAndExcitePipeline(DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin): r""" Pipeline for text-to-image generation using Stable Diffusion and Attend-and-Excite. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). The pipeline also inherits the following loading methods: - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. text_encoder ([`~transformers.CLIPTextModel`]): Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). tokenizer ([`~transformers.CLIPTokenizer`]): A `CLIPTokenizer` to tokenize text. unet ([`UNet2DConditionModel`]): A `UNet2DConditionModel` to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. """ model_cpu_offload_seq = "text_encoder->unet->vae" _optional_components = ["safety_checker", "feature_extractor"] _exclude_from_cpu_offload = ["safety_checker"] def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, requires_safety_checker: bool = True, ): super().__init__() if safety_checker is None and requires_safety_checker: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) if safety_checker is not None and feature_extractor is None: raise ValueError( "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." ) self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) self.register_to_config(requires_safety_checker=requires_safety_checker) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt def _encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, lora_scale: Optional[float] = None, **kwargs, ): deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple." deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False) prompt_embeds_tuple = self.encode_prompt( prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs, ) # concatenate for backwards comp prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) return prompt_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt def encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, lora_scale: Optional[float] = None, clip_skip: Optional[int] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. lora_scale (`float`, *optional*): A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. """ # set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): self._lora_scale = lora_scale # dynamically adjust the LoRA scale if not USE_PEFT_BACKEND: adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) else: scale_lora_layers(self.text_encoder, lora_scale) if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: # textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, self.tokenizer) text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None if clip_skip is None: prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) prompt_embeds = prompt_embeds[0] else: prompt_embeds = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True ) # Access the `hidden_states` first, that contains a tuple of # all the hidden states from the encoder layers. Then index into # the tuple to access the hidden states from the desired layer. prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] # We also need to apply the final LayerNorm here to not mess with the # representations. The `last_hidden_states` that we typically use for # obtaining the final prompt representations passes through the LayerNorm # layer. prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) if self.text_encoder is not None: prompt_embeds_dtype = self.text_encoder.dtype elif self.unet is not None: prompt_embeds_dtype = self.unet.dtype else: prompt_embeds_dtype = prompt_embeds.dtype prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt # textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = uncond_input.attention_mask.to(device) else: attention_mask = None negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0] if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) if self.text_encoder is not None: if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder, lora_scale) return prompt_embeds, negative_prompt_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker def run_safety_checker(self, image, device, dtype): if self.safety_checker is None: has_nsfw_concept = None else: if torch.is_tensor(image): feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") else: feature_extractor_input = self.image_processor.numpy_to_pil(image) safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) image, has_nsfw_concept = self.safety_checker( images=image, clip_input=safety_checker_input.pixel_values.to(dtype) ) return image, has_nsfw_concept # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents def decode_latents(self, latents): deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) latents = 1 / self.vae.config.scaling_factor * latents image = self.vae.decode(latents, return_dict=False)[0] image = (image / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 image = image.cpu().permute(0, 2, 3, 1).float().numpy() return image # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs( self, prompt, indices, height, width, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) indices_is_list_ints = isinstance(indices, list) and isinstance(indices[0], int) indices_is_list_list_ints = ( isinstance(indices, list) and isinstance(indices[0], list) and isinstance(indices[0][0], int) ) if not indices_is_list_ints and not indices_is_list_list_ints: raise TypeError("`indices` must be a list of ints or a list of a list of ints") if indices_is_list_ints: indices_batch_size = 1 elif indices_is_list_list_ints: indices_batch_size = len(indices) if prompt is not None and isinstance(prompt, str): prompt_batch_size = 1 elif prompt is not None and isinstance(prompt, list): prompt_batch_size = len(prompt) elif prompt_embeds is not None: prompt_batch_size = prompt_embeds.shape[0] if indices_batch_size != prompt_batch_size: raise ValueError( f"indices batch size must be same as prompt batch size. indices batch size: {indices_batch_size}, prompt batch size: {prompt_batch_size}" ) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): shape = ( batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents @staticmethod def _compute_max_attention_per_index( attention_maps: torch.Tensor, indices: List[int], ) -> List[torch.Tensor]: """Computes the maximum attention value for each of the tokens we wish to alter.""" attention_for_text = attention_maps[:, :, 1:-1] attention_for_text *= 100 attention_for_text = torch.nn.functional.softmax(attention_for_text, dim=-1) # Shift indices since we removed the first token indices = [index - 1 for index in indices] # Extract the maximum values max_indices_list = [] for i in indices: image = attention_for_text[:, :, i] smoothing = GaussianSmoothing().to(attention_maps.device) input = F.pad(image.unsqueeze(0).unsqueeze(0), (1, 1, 1, 1), mode="reflect") image = smoothing(input).squeeze(0).squeeze(0) max_indices_list.append(image.max()) return max_indices_list def _aggregate_and_get_max_attention_per_token( self, indices: List[int], ): """Aggregates the attention for each token and computes the max activation value for each token to alter.""" attention_maps = self.attention_store.aggregate_attention( from_where=("up", "down", "mid"), ) max_attention_per_index = self._compute_max_attention_per_index( attention_maps=attention_maps, indices=indices, ) return max_attention_per_index @staticmethod def _compute_loss(max_attention_per_index: List[torch.Tensor]) -> torch.Tensor: """Computes the attend-and-excite loss using the maximum attention value for each token.""" losses = [max(0, 1.0 - curr_max) for curr_max in max_attention_per_index] loss = max(losses) return loss @staticmethod def _update_latent(latents: torch.Tensor, loss: torch.Tensor, step_size: float) -> torch.Tensor: """Update the latent according to the computed loss.""" grad_cond = torch.autograd.grad(loss.requires_grad_(True), [latents], retain_graph=True)[0] latents = latents - step_size * grad_cond return latents def _perform_iterative_refinement_step( self, latents: torch.Tensor, indices: List[int], loss: torch.Tensor, threshold: float, text_embeddings: torch.Tensor, step_size: float, t: int, max_refinement_steps: int = 20, ): """ Performs the iterative latent refinement introduced in the paper. Here, we continuously update the latent code according to our loss objective until the given threshold is reached for all tokens. """ iteration = 0 target_loss = max(0, 1.0 - threshold) while loss > target_loss: iteration += 1 latents = latents.clone().detach().requires_grad_(True) self.unet(latents, t, encoder_hidden_states=text_embeddings).sample self.unet.zero_grad() # Get max activation value for each subject token max_attention_per_index = self._aggregate_and_get_max_attention_per_token( indices=indices, ) loss = self._compute_loss(max_attention_per_index) if loss != 0: latents = self._update_latent(latents, loss, step_size) logger.info(f"\t Try {iteration}. loss: {loss}") if iteration >= max_refinement_steps: logger.info(f"\t Exceeded max number of iterations ({max_refinement_steps})! ") break # Run one more time but don't compute gradients and update the latents. # We just need to compute the new loss - the grad update will occur below latents = latents.clone().detach().requires_grad_(True) _ = self.unet(latents, t, encoder_hidden_states=text_embeddings).sample self.unet.zero_grad() # Get max activation value for each subject token max_attention_per_index = self._aggregate_and_get_max_attention_per_token( indices=indices, ) loss = self._compute_loss(max_attention_per_index) logger.info(f"\t Finished with loss of: {loss}") return loss, latents, max_attention_per_index def register_attention_control(self): attn_procs = {} cross_att_count = 0 for name in self.unet.attn_processors.keys(): if name.startswith("mid_block"): place_in_unet = "mid" elif name.startswith("up_blocks"): place_in_unet = "up" elif name.startswith("down_blocks"): place_in_unet = "down" else: continue cross_att_count += 1 attn_procs[name] = AttendExciteAttnProcessor(attnstore=self.attention_store, place_in_unet=place_in_unet) self.unet.set_attn_processor(attn_procs) self.attention_store.num_att_layers = cross_att_count def get_indices(self, prompt: str) -> Dict[str, int]: """Utility function to list the indices of the tokens you wish to alte""" ids = self.tokenizer(prompt).input_ids indices = {i: tok for tok, i in zip(self.tokenizer.convert_ids_to_tokens(ids), range(len(ids)))} return indices @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]], token_indices: Union[List[int], List[List[int]]], height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, guidance_scale: float = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: int = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: int = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, max_iter_to_alter: int = 25, thresholds: dict = {0: 0.05, 10: 0.5, 20: 0.8}, scale_factor: int = 20, attn_res: Optional[Tuple[int]] = (16, 16), clip_skip: Optional[int] = None, ): r""" The call function to the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. token_indices (`List[int]`): The token indices to alter with attend-and-excite. height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The height in pixels of the generated image. width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). max_iter_to_alter (`int`, *optional*, defaults to `25`): Number of denoising steps to apply attend-and-excite. The `max_iter_to_alter` denoising steps are when attend-and-excite is applied. For example, if `max_iter_to_alter` is `25` and there are a total of `30` denoising steps, the first `25` denoising steps applies attend-and-excite and the last `5` will not. thresholds (`dict`, *optional*, defaults to `{0: 0.05, 10: 0.5, 20: 0.8}`): Dictionary defining the iterations and desired thresholds to apply iterative latent refinement in. scale_factor (`int`, *optional*, default to 20): Scale factor to control the step size of each attend-and-excite update. attn_res (`tuple`, *optional*, default computed from width and height): The 2D resolution of the semantic attention map. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. Examples: Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images and the second element is a list of `bool`s indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content. """ # 0. Default height and width to unet height = height or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, token_indices, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, ) # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt prompt_embeds, negative_prompt_embeds = self.encode_prompt( prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, clip_skip=clip_skip, ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes if do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) # 4. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 5. Prepare latent variables num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) if attn_res is None: attn_res = int(np.ceil(width / 32)), int(np.ceil(height / 32)) self.attention_store = AttentionStore(attn_res) original_attn_proc = self.unet.attn_processors self.register_attention_control() # default config for step size from original repo scale_range = np.linspace(1.0, 0.5, len(self.scheduler.timesteps)) step_size = scale_factor * np.sqrt(scale_range) text_embeddings = ( prompt_embeds[batch_size * num_images_per_prompt :] if do_classifier_free_guidance else prompt_embeds ) if isinstance(token_indices[0], int): token_indices = [token_indices] indices = [] for ind in token_indices: indices = indices + [ind] * num_images_per_prompt # 7. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # Attend and excite process with torch.enable_grad(): latents = latents.clone().detach().requires_grad_(True) updated_latents = [] for latent, index, text_embedding in zip(latents, indices, text_embeddings): # Forward pass of denoising with text conditioning latent = latent.unsqueeze(0) text_embedding = text_embedding.unsqueeze(0) self.unet( latent, t, encoder_hidden_states=text_embedding, cross_attention_kwargs=cross_attention_kwargs, ).sample self.unet.zero_grad() # Get max activation value for each subject token max_attention_per_index = self._aggregate_and_get_max_attention_per_token( indices=index, ) loss = self._compute_loss(max_attention_per_index=max_attention_per_index) # If this is an iterative refinement step, verify we have reached the desired threshold for all if i in thresholds.keys() and loss > 1.0 - thresholds[i]: loss, latent, max_attention_per_index = self._perform_iterative_refinement_step( latents=latent, indices=index, loss=loss, threshold=thresholds[i], text_embeddings=text_embedding, step_size=step_size[i], t=t, ) # Perform gradient update if i < max_iter_to_alter: if loss != 0: latent = self._update_latent( latents=latent, loss=loss, step_size=step_size[i], ) logger.info(f"Iteration {i} | Loss: {loss:0.4f}") updated_latents.append(latent) latents = torch.cat(updated_latents, dim=0) # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, ).sample # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if XLA_AVAILABLE: xm.mark_step() # 8. Post-processing if not output_type == "latent": image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) else: image = latents has_nsfw_concept = None if has_nsfw_concept is None: do_denormalize = [True] * image.shape[0] else: do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) self.maybe_free_model_hooks() # make sure to set the original attention processors back self.unet.set_attn_processor(original_attn_proc) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) class GaussianSmoothing(torch.nn.Module): """ Arguments: Apply gaussian smoothing on a 1d, 2d or 3d tensor. Filtering is performed seperately for each channel in the input using a depthwise convolution. channels (int, sequence): Number of channels of the input tensors. Output will have this number of channels as well. kernel_size (int, sequence): Size of the gaussian kernel. sigma (float, sequence): Standard deviation of the gaussian kernel. dim (int, optional): The number of dimensions of the data. Default value is 2 (spatial). """ # channels=1, kernel_size=kernel_size, sigma=sigma, dim=2 def __init__( self, channels: int = 1, kernel_size: int = 3, sigma: float = 0.5, dim: int = 2, ): super().__init__() if isinstance(kernel_size, int): kernel_size = [kernel_size] * dim if isinstance(sigma, float): sigma = [sigma] * dim # The gaussian kernel is the product of the # gaussian function of each dimension. kernel = 1 meshgrids = torch.meshgrid([torch.arange(size, dtype=torch.float32) for size in kernel_size]) for size, std, mgrid in zip(kernel_size, sigma, meshgrids): mean = (size - 1) / 2 kernel *= 1 / (std * math.sqrt(2 * math.pi)) * torch.exp(-(((mgrid - mean) / (2 * std)) ** 2)) # Make sure sum of values in gaussian kernel equals 1. kernel = kernel / torch.sum(kernel) # Reshape to depthwise convolutional weight kernel = kernel.view(1, 1, *kernel.size()) kernel = kernel.repeat(channels, *[1] * (kernel.dim() - 1)) self.register_buffer("weight", kernel) self.groups = channels if dim == 1: self.conv = F.conv1d elif dim == 2: self.conv = F.conv2d elif dim == 3: self.conv = F.conv3d else: raise RuntimeError("Only 1, 2 and 3 dimensions are supported. Received {}.".format(dim)) def forward(self, input): """ Arguments: Apply gaussian filter to input. input (torch.Tensor): Input to apply gaussian filter on. Returns: filtered (torch.Tensor): Filtered output. """ return self.conv(input, weight=self.weight.to(input.dtype), groups=self.groups)
diffusers/src/diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py/0
{ "file_path": "diffusers/src/diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py", "repo_id": "diffusers", "token_count": 22907 }
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging logger = logging.get_logger(__name__) def cosine_distance(image_embeds, text_embeds): normalized_image_embeds = nn.functional.normalize(image_embeds) normalized_text_embeds = nn.functional.normalize(text_embeds) return torch.mm(normalized_image_embeds, normalized_text_embeds.t()) class SafeStableDiffusionSafetyChecker(PreTrainedModel): config_class = CLIPConfig _no_split_modules = ["CLIPEncoderLayer"] def __init__(self, config: CLIPConfig): super().__init__(config) self.vision_model = CLIPVisionModel(config.vision_config) self.visual_projection = nn.Linear(config.vision_config.hidden_size, config.projection_dim, bias=False) self.concept_embeds = nn.Parameter(torch.ones(17, config.projection_dim), requires_grad=False) self.special_care_embeds = nn.Parameter(torch.ones(3, config.projection_dim), requires_grad=False) self.concept_embeds_weights = nn.Parameter(torch.ones(17), requires_grad=False) self.special_care_embeds_weights = nn.Parameter(torch.ones(3), requires_grad=False) @torch.no_grad() def forward(self, clip_input, images): pooled_output = self.vision_model(clip_input)[1] # pooled_output image_embeds = self.visual_projection(pooled_output) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds).cpu().float().numpy() cos_dist = cosine_distance(image_embeds, self.concept_embeds).cpu().float().numpy() result = [] batch_size = image_embeds.shape[0] for i in range(batch_size): result_img = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images adjustment = 0.0 for concept_idx in range(len(special_cos_dist[0])): concept_cos = special_cos_dist[i][concept_idx] concept_threshold = self.special_care_embeds_weights[concept_idx].item() result_img["special_scores"][concept_idx] = round(concept_cos - concept_threshold + adjustment, 3) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]}) adjustment = 0.01 for concept_idx in range(len(cos_dist[0])): concept_cos = cos_dist[i][concept_idx] concept_threshold = self.concept_embeds_weights[concept_idx].item() result_img["concept_scores"][concept_idx] = round(concept_cos - concept_threshold + adjustment, 3) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(concept_idx) result.append(result_img) has_nsfw_concepts = [len(res["bad_concepts"]) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def forward_onnx(self, clip_input: torch.Tensor, images: torch.Tensor): pooled_output = self.vision_model(clip_input)[1] # pooled_output image_embeds = self.visual_projection(pooled_output) special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds) cos_dist = cosine_distance(image_embeds, self.concept_embeds) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images adjustment = 0.0 special_scores = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) special_care = torch.any(special_scores > 0, dim=1) special_adjustment = special_care * 0.01 special_adjustment = special_adjustment.unsqueeze(1).expand(-1, cos_dist.shape[1]) concept_scores = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) has_nsfw_concepts = torch.any(concept_scores > 0, dim=1) return images, has_nsfw_concepts
diffusers/src/diffusers/pipelines/stable_diffusion_safe/safety_checker.py/0
{ "file_path": "diffusers/src/diffusers/pipelines/stable_diffusion_safe/safety_checker.py", "repo_id": "diffusers", "token_count": 1962 }
from typing import TYPE_CHECKING from ...utils import ( DIFFUSERS_SLOW_IMPORT, OptionalDependencyNotAvailable, _LazyModule, get_objects_from_module, is_torch_available, is_transformers_available, ) _dummy_objects = {} _import_structure = {} try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils import dummy_torch_and_transformers_objects # noqa F403 _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) else: _import_structure["pipeline_output"] = ["TextToVideoSDPipelineOutput"] _import_structure["pipeline_text_to_video_synth"] = ["TextToVideoSDPipeline"] _import_structure["pipeline_text_to_video_synth_img2img"] = ["VideoToVideoSDPipeline"] _import_structure["pipeline_text_to_video_zero"] = ["TextToVideoZeroPipeline"] _import_structure["pipeline_text_to_video_zero_sdxl"] = ["TextToVideoZeroSDXLPipeline"] if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_output import TextToVideoSDPipelineOutput from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_img2img import VideoToVideoSDPipeline from .pipeline_text_to_video_zero import TextToVideoZeroPipeline from .pipeline_text_to_video_zero_sdxl import TextToVideoZeroSDXLPipeline else: import sys sys.modules[__name__] = _LazyModule( __name__, globals()["__file__"], _import_structure, module_spec=__spec__, ) for name, value in _dummy_objects.items(): setattr(sys.modules[__name__], name, value)
diffusers/src/diffusers/pipelines/text_to_video_synthesis/__init__.py/0
{ "file_path": "diffusers/src/diffusers/pipelines/text_to_video_synthesis/__init__.py", "repo_id": "diffusers", "token_count": 788 }
# Copyright (c) 2022 Dominic Rampas MIT License # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Union import torch import torch.nn as nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.autoencoders.vae import DecoderOutput, VectorQuantizer from ...models.modeling_utils import ModelMixin from ...models.vq_model import VQEncoderOutput from ...utils.accelerate_utils import apply_forward_hook class MixingResidualBlock(nn.Module): """ Residual block with mixing used by Paella's VQ-VAE. """ def __init__(self, inp_channels, embed_dim): super().__init__() # depthwise self.norm1 = nn.LayerNorm(inp_channels, elementwise_affine=False, eps=1e-6) self.depthwise = nn.Sequential( nn.ReplicationPad2d(1), nn.Conv2d(inp_channels, inp_channels, kernel_size=3, groups=inp_channels) ) # channelwise self.norm2 = nn.LayerNorm(inp_channels, elementwise_affine=False, eps=1e-6) self.channelwise = nn.Sequential( nn.Linear(inp_channels, embed_dim), nn.GELU(), nn.Linear(embed_dim, inp_channels) ) self.gammas = nn.Parameter(torch.zeros(6), requires_grad=True) def forward(self, x): mods = self.gammas x_temp = self.norm1(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) * (1 + mods[0]) + mods[1] x = x + self.depthwise(x_temp) * mods[2] x_temp = self.norm2(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) * (1 + mods[3]) + mods[4] x = x + self.channelwise(x_temp.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) * mods[5] return x class PaellaVQModel(ModelMixin, ConfigMixin): r"""VQ-VAE model from Paella model. This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library implements for all the model (such as downloading or saving, etc.) Parameters: in_channels (int, *optional*, defaults to 3): Number of channels in the input image. out_channels (int, *optional*, defaults to 3): Number of channels in the output. up_down_scale_factor (int, *optional*, defaults to 2): Up and Downscale factor of the input image. levels (int, *optional*, defaults to 2): Number of levels in the model. bottleneck_blocks (int, *optional*, defaults to 12): Number of bottleneck blocks in the model. embed_dim (int, *optional*, defaults to 384): Number of hidden channels in the model. latent_channels (int, *optional*, defaults to 4): Number of latent channels in the VQ-VAE model. num_vq_embeddings (int, *optional*, defaults to 8192): Number of codebook vectors in the VQ-VAE. scale_factor (float, *optional*, defaults to 0.3764): Scaling factor of the latent space. """ @register_to_config def __init__( self, in_channels: int = 3, out_channels: int = 3, up_down_scale_factor: int = 2, levels: int = 2, bottleneck_blocks: int = 12, embed_dim: int = 384, latent_channels: int = 4, num_vq_embeddings: int = 8192, scale_factor: float = 0.3764, ): super().__init__() c_levels = [embed_dim // (2**i) for i in reversed(range(levels))] # Encoder blocks self.in_block = nn.Sequential( nn.PixelUnshuffle(up_down_scale_factor), nn.Conv2d(in_channels * up_down_scale_factor**2, c_levels[0], kernel_size=1), ) down_blocks = [] for i in range(levels): if i > 0: down_blocks.append(nn.Conv2d(c_levels[i - 1], c_levels[i], kernel_size=4, stride=2, padding=1)) block = MixingResidualBlock(c_levels[i], c_levels[i] * 4) down_blocks.append(block) down_blocks.append( nn.Sequential( nn.Conv2d(c_levels[-1], latent_channels, kernel_size=1, bias=False), nn.BatchNorm2d(latent_channels), # then normalize them to have mean 0 and std 1 ) ) self.down_blocks = nn.Sequential(*down_blocks) # Vector Quantizer self.vquantizer = VectorQuantizer(num_vq_embeddings, vq_embed_dim=latent_channels, legacy=False, beta=0.25) # Decoder blocks up_blocks = [nn.Sequential(nn.Conv2d(latent_channels, c_levels[-1], kernel_size=1))] for i in range(levels): for j in range(bottleneck_blocks if i == 0 else 1): block = MixingResidualBlock(c_levels[levels - 1 - i], c_levels[levels - 1 - i] * 4) up_blocks.append(block) if i < levels - 1: up_blocks.append( nn.ConvTranspose2d( c_levels[levels - 1 - i], c_levels[levels - 2 - i], kernel_size=4, stride=2, padding=1 ) ) self.up_blocks = nn.Sequential(*up_blocks) self.out_block = nn.Sequential( nn.Conv2d(c_levels[0], out_channels * up_down_scale_factor**2, kernel_size=1), nn.PixelShuffle(up_down_scale_factor), ) @apply_forward_hook def encode(self, x: torch.Tensor, return_dict: bool = True) -> VQEncoderOutput: h = self.in_block(x) h = self.down_blocks(h) if not return_dict: return (h,) return VQEncoderOutput(latents=h) @apply_forward_hook def decode( self, h: torch.Tensor, force_not_quantize: bool = True, return_dict: bool = True ) -> Union[DecoderOutput, torch.Tensor]: if not force_not_quantize: quant, _, _ = self.vquantizer(h) else: quant = h x = self.up_blocks(quant) dec = self.out_block(x) if not return_dict: return (dec,) return DecoderOutput(sample=dec) def forward(self, sample: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: r""" Args: sample (`torch.Tensor`): Input sample. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`DecoderOutput`] instead of a plain tuple. """ x = sample h = self.encode(x).latents dec = self.decode(h).sample if not return_dict: return (dec,) return DecoderOutput(sample=dec)
diffusers/src/diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py/0
{ "file_path": "diffusers/src/diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py", "repo_id": "diffusers", "token_count": 3040 }
# Copyright 2024 The HuggingFace Team and City96. All rights reserved. # # # # Licensed under the Apache License, Version 2.0 (the "License"); # # you may not use this file except in compliance with the License. # # You may obtain a copy of the License at # # # # http://www.apache.org/licenses/LICENSE-2.0 # # # # Unless required by applicable law or agreed to in writing, software # # distributed under the License is distributed on an "AS IS" BASIS, # # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # # limitations under the License. import inspect from contextlib import nullcontext import gguf import torch import torch.nn as nn from ...utils import is_accelerate_available if is_accelerate_available(): import accelerate from accelerate import init_empty_weights from accelerate.hooks import add_hook_to_module, remove_hook_from_module # Copied from diffusers.quantizers.bitsandbytes.utils._create_accelerate_new_hook def _create_accelerate_new_hook(old_hook): r""" Creates a new hook based on the old hook. Use it only if you know what you are doing ! This method is a copy of: https://github.com/huggingface/peft/blob/748f7968f3a31ec06a1c2b0328993319ad9a150a/src/peft/utils/other.py#L245 with some changes """ old_hook_cls = getattr(accelerate.hooks, old_hook.__class__.__name__) old_hook_attr = old_hook.__dict__ filtered_old_hook_attr = {} old_hook_init_signature = inspect.signature(old_hook_cls.__init__) for k in old_hook_attr.keys(): if k in old_hook_init_signature.parameters: filtered_old_hook_attr[k] = old_hook_attr[k] new_hook = old_hook_cls(**filtered_old_hook_attr) return new_hook def _replace_with_gguf_linear(model, compute_dtype, state_dict, prefix="", modules_to_not_convert=[]): def _should_convert_to_gguf(state_dict, prefix): weight_key = prefix + "weight" return weight_key in state_dict and isinstance(state_dict[weight_key], GGUFParameter) has_children = list(model.children()) if not has_children: return for name, module in model.named_children(): module_prefix = prefix + name + "." _replace_with_gguf_linear(module, compute_dtype, state_dict, module_prefix, modules_to_not_convert) if ( isinstance(module, nn.Linear) and _should_convert_to_gguf(state_dict, module_prefix) and name not in modules_to_not_convert ): ctx = init_empty_weights if is_accelerate_available() else nullcontext with ctx(): model._modules[name] = GGUFLinear( module.in_features, module.out_features, module.bias is not None, compute_dtype=compute_dtype, ) model._modules[name].source_cls = type(module) # Force requires_grad to False to avoid unexpected errors model._modules[name].requires_grad_(False) return model def _dequantize_gguf_and_restore_linear(model, modules_to_not_convert=[]): for name, module in model.named_children(): if isinstance(module, GGUFLinear) and name not in modules_to_not_convert: device = module.weight.device bias = getattr(module, "bias", None) ctx = init_empty_weights if is_accelerate_available() else nullcontext with ctx(): new_module = nn.Linear( module.in_features, module.out_features, module.bias is not None, device=device, ) new_module.weight = nn.Parameter(dequantize_gguf_tensor(module.weight)) if bias is not None: new_module.bias = bias # Create a new hook and attach it in case we use accelerate if hasattr(module, "_hf_hook"): old_hook = module._hf_hook new_hook = _create_accelerate_new_hook(old_hook) remove_hook_from_module(module) add_hook_to_module(new_module, new_hook) new_module.to(device) model._modules[name] = new_module has_children = list(module.children()) if has_children: _dequantize_gguf_and_restore_linear(module, modules_to_not_convert) return model # dequantize operations based on torch ports of GGUF dequantize_functions # from City96 # more info: https://github.com/city96/ComfyUI-GGUF/blob/main/dequant.py QK_K = 256 K_SCALE_SIZE = 12 def to_uint32(x): x = x.view(torch.uint8).to(torch.int32) return (x[:, 0] | x[:, 1] << 8 | x[:, 2] << 16 | x[:, 3] << 24).unsqueeze(1) def split_block_dims(blocks, *args): n_max = blocks.shape[1] dims = list(args) + [n_max - sum(args)] return torch.split(blocks, dims, dim=1) def get_scale_min(scales): n_blocks = scales.shape[0] scales = scales.view(torch.uint8) scales = scales.reshape((n_blocks, 3, 4)) d, m, m_d = torch.split(scales, scales.shape[-2] // 3, dim=-2) sc = torch.cat([d & 0x3F, (m_d & 0x0F) | ((d >> 2) & 0x30)], dim=-1) min = torch.cat([m & 0x3F, (m_d >> 4) | ((m >> 2) & 0x30)], dim=-1) return (sc.reshape((n_blocks, 8)), min.reshape((n_blocks, 8))) def dequantize_blocks_Q8_0(blocks, block_size, type_size, dtype=None): d, x = split_block_dims(blocks, 2) d = d.view(torch.float16).to(dtype) x = x.view(torch.int8) return d * x def dequantize_blocks_Q5_1(blocks, block_size, type_size, dtype=None): n_blocks = blocks.shape[0] d, m, qh, qs = split_block_dims(blocks, 2, 2, 4) d = d.view(torch.float16).to(dtype) m = m.view(torch.float16).to(dtype) qh = to_uint32(qh) qh = qh.reshape((n_blocks, 1)) >> torch.arange(32, device=d.device, dtype=torch.int32).reshape(1, 32) ql = qs.reshape((n_blocks, -1, 1, block_size // 2)) >> torch.tensor( [0, 4], device=d.device, dtype=torch.uint8 ).reshape(1, 1, 2, 1) qh = (qh & 1).to(torch.uint8) ql = (ql & 0x0F).reshape((n_blocks, -1)) qs = ql | (qh << 4) return (d * qs) + m def dequantize_blocks_Q5_0(blocks, block_size, type_size, dtype=None): n_blocks = blocks.shape[0] d, qh, qs = split_block_dims(blocks, 2, 4) d = d.view(torch.float16).to(dtype) qh = to_uint32(qh) qh = qh.reshape(n_blocks, 1) >> torch.arange(32, device=d.device, dtype=torch.int32).reshape(1, 32) ql = qs.reshape(n_blocks, -1, 1, block_size // 2) >> torch.tensor( [0, 4], device=d.device, dtype=torch.uint8 ).reshape(1, 1, 2, 1) qh = (qh & 1).to(torch.uint8) ql = (ql & 0x0F).reshape(n_blocks, -1) qs = (ql | (qh << 4)).to(torch.int8) - 16 return d * qs def dequantize_blocks_Q4_1(blocks, block_size, type_size, dtype=None): n_blocks = blocks.shape[0] d, m, qs = split_block_dims(blocks, 2, 2) d = d.view(torch.float16).to(dtype) m = m.view(torch.float16).to(dtype) qs = qs.reshape((n_blocks, -1, 1, block_size // 2)) >> torch.tensor( [0, 4], device=d.device, dtype=torch.uint8 ).reshape(1, 1, 2, 1) qs = (qs & 0x0F).reshape(n_blocks, -1) return (d * qs) + m def dequantize_blocks_Q4_0(blocks, block_size, type_size, dtype=None): n_blocks = blocks.shape[0] d, qs = split_block_dims(blocks, 2) d = d.view(torch.float16).to(dtype) qs = qs.reshape((n_blocks, -1, 1, block_size // 2)) >> torch.tensor( [0, 4], device=d.device, dtype=torch.uint8 ).reshape((1, 1, 2, 1)) qs = (qs & 0x0F).reshape((n_blocks, -1)).to(torch.int8) - 8 return d * qs def dequantize_blocks_Q6_K(blocks, block_size, type_size, dtype=None): n_blocks = blocks.shape[0] ( ql, qh, scales, d, ) = split_block_dims(blocks, QK_K // 2, QK_K // 4, QK_K // 16) scales = scales.view(torch.int8).to(dtype) d = d.view(torch.float16).to(dtype) d = (d * scales).reshape((n_blocks, QK_K // 16, 1)) ql = ql.reshape((n_blocks, -1, 1, 64)) >> torch.tensor([0, 4], device=d.device, dtype=torch.uint8).reshape( (1, 1, 2, 1) ) ql = (ql & 0x0F).reshape((n_blocks, -1, 32)) qh = qh.reshape((n_blocks, -1, 1, 32)) >> torch.tensor([0, 2, 4, 6], device=d.device, dtype=torch.uint8).reshape( (1, 1, 4, 1) ) qh = (qh & 0x03).reshape((n_blocks, -1, 32)) q = (ql | (qh << 4)).to(torch.int8) - 32 q = q.reshape((n_blocks, QK_K // 16, -1)) return (d * q).reshape((n_blocks, QK_K)) def dequantize_blocks_Q5_K(blocks, block_size, type_size, dtype=None): n_blocks = blocks.shape[0] d, dmin, scales, qh, qs = split_block_dims(blocks, 2, 2, K_SCALE_SIZE, QK_K // 8) d = d.view(torch.float16).to(dtype) dmin = dmin.view(torch.float16).to(dtype) sc, m = get_scale_min(scales) d = (d * sc).reshape((n_blocks, -1, 1)) dm = (dmin * m).reshape((n_blocks, -1, 1)) ql = qs.reshape((n_blocks, -1, 1, 32)) >> torch.tensor([0, 4], device=d.device, dtype=torch.uint8).reshape( (1, 1, 2, 1) ) qh = qh.reshape((n_blocks, -1, 1, 32)) >> torch.arange(0, 8, device=d.device, dtype=torch.uint8).reshape( (1, 1, 8, 1) ) ql = (ql & 0x0F).reshape((n_blocks, -1, 32)) qh = (qh & 0x01).reshape((n_blocks, -1, 32)) q = ql | (qh << 4) return (d * q - dm).reshape((n_blocks, QK_K)) def dequantize_blocks_Q4_K(blocks, block_size, type_size, dtype=None): n_blocks = blocks.shape[0] d, dmin, scales, qs = split_block_dims(blocks, 2, 2, K_SCALE_SIZE) d = d.view(torch.float16).to(dtype) dmin = dmin.view(torch.float16).to(dtype) sc, m = get_scale_min(scales) d = (d * sc).reshape((n_blocks, -1, 1)) dm = (dmin * m).reshape((n_blocks, -1, 1)) qs = qs.reshape((n_blocks, -1, 1, 32)) >> torch.tensor([0, 4], device=d.device, dtype=torch.uint8).reshape( (1, 1, 2, 1) ) qs = (qs & 0x0F).reshape((n_blocks, -1, 32)) return (d * qs - dm).reshape((n_blocks, QK_K)) def dequantize_blocks_Q3_K(blocks, block_size, type_size, dtype=None): n_blocks = blocks.shape[0] hmask, qs, scales, d = split_block_dims(blocks, QK_K // 8, QK_K // 4, 12) d = d.view(torch.float16).to(dtype) lscales, hscales = scales[:, :8], scales[:, 8:] lscales = lscales.reshape((n_blocks, 1, 8)) >> torch.tensor([0, 4], device=d.device, dtype=torch.uint8).reshape( (1, 2, 1) ) lscales = lscales.reshape((n_blocks, 16)) hscales = hscales.reshape((n_blocks, 1, 4)) >> torch.tensor( [0, 2, 4, 6], device=d.device, dtype=torch.uint8 ).reshape((1, 4, 1)) hscales = hscales.reshape((n_blocks, 16)) scales = (lscales & 0x0F) | ((hscales & 0x03) << 4) scales = scales.to(torch.int8) - 32 dl = (d * scales).reshape((n_blocks, 16, 1)) ql = qs.reshape((n_blocks, -1, 1, 32)) >> torch.tensor([0, 2, 4, 6], device=d.device, dtype=torch.uint8).reshape( (1, 1, 4, 1) ) qh = hmask.reshape(n_blocks, -1, 1, 32) >> torch.arange(0, 8, device=d.device, dtype=torch.uint8).reshape( (1, 1, 8, 1) ) ql = ql.reshape((n_blocks, 16, QK_K // 16)) & 3 qh = (qh.reshape((n_blocks, 16, QK_K // 16)) & 1) ^ 1 q = ql.to(torch.int8) - (qh << 2).to(torch.int8) return (dl * q).reshape((n_blocks, QK_K)) def dequantize_blocks_Q2_K(blocks, block_size, type_size, dtype=None): n_blocks = blocks.shape[0] scales, qs, d, dmin = split_block_dims(blocks, QK_K // 16, QK_K // 4, 2) d = d.view(torch.float16).to(dtype) dmin = dmin.view(torch.float16).to(dtype) # (n_blocks, 16, 1) dl = (d * (scales & 0xF)).reshape((n_blocks, QK_K // 16, 1)) ml = (dmin * (scales >> 4)).reshape((n_blocks, QK_K // 16, 1)) shift = torch.tensor([0, 2, 4, 6], device=d.device, dtype=torch.uint8).reshape((1, 1, 4, 1)) qs = (qs.reshape((n_blocks, -1, 1, 32)) >> shift) & 3 qs = qs.reshape((n_blocks, QK_K // 16, 16)) qs = dl * qs - ml return qs.reshape((n_blocks, -1)) def dequantize_blocks_BF16(blocks, block_size, type_size, dtype=None): return (blocks.view(torch.int16).to(torch.int32) << 16).view(torch.float32) GGML_QUANT_SIZES = gguf.GGML_QUANT_SIZES dequantize_functions = { gguf.GGMLQuantizationType.BF16: dequantize_blocks_BF16, gguf.GGMLQuantizationType.Q8_0: dequantize_blocks_Q8_0, gguf.GGMLQuantizationType.Q5_1: dequantize_blocks_Q5_1, gguf.GGMLQuantizationType.Q5_0: dequantize_blocks_Q5_0, gguf.GGMLQuantizationType.Q4_1: dequantize_blocks_Q4_1, gguf.GGMLQuantizationType.Q4_0: dequantize_blocks_Q4_0, gguf.GGMLQuantizationType.Q6_K: dequantize_blocks_Q6_K, gguf.GGMLQuantizationType.Q5_K: dequantize_blocks_Q5_K, gguf.GGMLQuantizationType.Q4_K: dequantize_blocks_Q4_K, gguf.GGMLQuantizationType.Q3_K: dequantize_blocks_Q3_K, gguf.GGMLQuantizationType.Q2_K: dequantize_blocks_Q2_K, } SUPPORTED_GGUF_QUANT_TYPES = list(dequantize_functions.keys()) def _quant_shape_from_byte_shape(shape, type_size, block_size): return (*shape[:-1], shape[-1] // type_size * block_size) def dequantize_gguf_tensor(tensor): if not hasattr(tensor, "quant_type"): return tensor quant_type = tensor.quant_type dequant_fn = dequantize_functions[quant_type] block_size, type_size = GGML_QUANT_SIZES[quant_type] tensor = tensor.view(torch.uint8) shape = _quant_shape_from_byte_shape(tensor.shape, type_size, block_size) n_blocks = tensor.numel() // type_size blocks = tensor.reshape((n_blocks, type_size)) dequant = dequant_fn(blocks, block_size, type_size) dequant = dequant.reshape(shape) return dequant.as_tensor() class GGUFParameter(torch.nn.Parameter): def __new__(cls, data, requires_grad=False, quant_type=None): data = data if data is not None else torch.empty(0) self = torch.Tensor._make_subclass(cls, data, requires_grad) self.quant_type = quant_type return self def as_tensor(self): return torch.Tensor._make_subclass(torch.Tensor, self, self.requires_grad) @classmethod def __torch_function__(cls, func, types, args=(), kwargs=None): if kwargs is None: kwargs = {} result = super().__torch_function__(func, types, args, kwargs) # When converting from original format checkpoints we often use splits, cats etc on tensors # this method ensures that the returned tensor type from those operations remains GGUFParameter # so that we preserve quant_type information quant_type = None for arg in args: if isinstance(arg, list) and (arg[0], GGUFParameter): quant_type = arg[0].quant_type break if isinstance(arg, GGUFParameter): quant_type = arg.quant_type break if isinstance(result, torch.Tensor): return cls(result, quant_type=quant_type) # Handle tuples and lists elif isinstance(result, (tuple, list)): # Preserve the original type (tuple or list) wrapped = [cls(x, quant_type=quant_type) if isinstance(x, torch.Tensor) else x for x in result] return type(result)(wrapped) else: return result class GGUFLinear(nn.Linear): def __init__( self, in_features, out_features, bias=False, compute_dtype=None, device=None, ) -> None: super().__init__(in_features, out_features, bias, device) self.compute_dtype = compute_dtype def forward(self, inputs): weight = dequantize_gguf_tensor(self.weight) weight = weight.to(self.compute_dtype) bias = self.bias.to(self.compute_dtype) if self.bias is not None else None output = torch.nn.functional.linear(inputs, weight, bias) return output
diffusers/src/diffusers/quantizers/gguf/utils.py/0
{ "file_path": "diffusers/src/diffusers/quantizers/gguf/utils.py", "repo_id": "diffusers", "token_count": 7407 }
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class DDIMSchedulerOutput(BaseOutput): """ Output class for the scheduler's `step` function output. Args: prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample `(x_{0})` based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. """ prev_sample: torch.Tensor pred_original_sample: Optional[torch.Tensor] = None # Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar def betas_for_alpha_bar( num_diffusion_timesteps, max_beta=0.999, alpha_transform_type="cosine", ): """ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of (1-beta) over time from t = [0,1]. Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up to that part of the diffusion process. Args: num_diffusion_timesteps (`int`): the number of betas to produce. max_beta (`float`): the maximum beta to use; use values lower than 1 to prevent singularities. alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar. Choose from `cosine` or `exp` Returns: betas (`np.ndarray`): the betas used by the scheduler to step the model outputs """ if alpha_transform_type == "cosine": def alpha_bar_fn(t): return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(t): return math.exp(t * -12.0) else: raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}") betas = [] for i in range(num_diffusion_timesteps): t1 = i / num_diffusion_timesteps t2 = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) return torch.tensor(betas, dtype=torch.float32) # Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr def rescale_zero_terminal_snr(betas): """ Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1) Args: betas (`torch.Tensor`): the betas that the scheduler is being initialized with. Returns: `torch.Tensor`: rescaled betas with zero terminal SNR """ # Convert betas to alphas_bar_sqrt alphas = 1.0 - betas alphas_cumprod = torch.cumprod(alphas, dim=0) alphas_bar_sqrt = alphas_cumprod.sqrt() # Store old values. alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone() alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone() # Shift so the last timestep is zero. alphas_bar_sqrt -= alphas_bar_sqrt_T # Scale so the first timestep is back to the old value. alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T) # Convert alphas_bar_sqrt to betas alphas_bar = alphas_bar_sqrt**2 # Revert sqrt alphas = alphas_bar[1:] / alphas_bar[:-1] # Revert cumprod alphas = torch.cat([alphas_bar[0:1], alphas]) betas = 1 - alphas return betas class DDIMInverseScheduler(SchedulerMixin, ConfigMixin): """ `DDIMInverseScheduler` is the reverse scheduler of [`DDIMScheduler`]. This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic methods the library implements for all schedulers such as loading and saving. Args: num_train_timesteps (`int`, defaults to 1000): The number of diffusion steps to train the model. beta_start (`float`, defaults to 0.0001): The starting `beta` value of inference. beta_end (`float`, defaults to 0.02): The final `beta` value. beta_schedule (`str`, defaults to `"linear"`): The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from `linear`, `scaled_linear`, or `squaredcos_cap_v2`. trained_betas (`np.ndarray`, *optional*): Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`. clip_sample (`bool`, defaults to `True`): Clip the predicted sample for numerical stability. clip_sample_range (`float`, defaults to 1.0): The maximum magnitude for sample clipping. Valid only when `clip_sample=True`. set_alpha_to_one (`bool`, defaults to `True`): Each diffusion step uses the alphas product value at that step and at the previous one. For the final step there is no previous alpha. When this option is `True` the previous alpha product is fixed to 0, otherwise it uses the alpha value at step `num_train_timesteps - 1`. steps_offset (`int`, defaults to 0): An offset added to the inference steps, as required by some model families. prediction_type (`str`, defaults to `epsilon`, *optional*): Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen Video](https://imagen.research.google/video/paper.pdf) paper). timestep_spacing (`str`, defaults to `"leading"`): The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information. rescale_betas_zero_snr (`bool`, defaults to `False`): Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and dark samples instead of limiting it to samples with medium brightness. Loosely related to [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506). """ order = 1 ignore_for_config = ["kwargs"] _deprecated_kwargs = ["set_alpha_to_zero"] @register_to_config def __init__( self, num_train_timesteps: int = 1000, beta_start: float = 0.0001, beta_end: float = 0.02, beta_schedule: str = "linear", trained_betas: Optional[Union[np.ndarray, List[float]]] = None, clip_sample: bool = True, set_alpha_to_one: bool = True, steps_offset: int = 0, prediction_type: str = "epsilon", clip_sample_range: float = 1.0, timestep_spacing: str = "leading", rescale_betas_zero_snr: bool = False, **kwargs, ): if kwargs.get("set_alpha_to_zero", None) is not None: deprecation_message = ( "The `set_alpha_to_zero` argument is deprecated. Please use `set_alpha_to_one` instead." ) deprecate("set_alpha_to_zero", "1.0.0", deprecation_message, standard_warn=False) set_alpha_to_one = kwargs["set_alpha_to_zero"] if trained_betas is not None: self.betas = torch.tensor(trained_betas, dtype=torch.float32) elif beta_schedule == "linear": self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule self.betas = betas_for_alpha_bar(num_train_timesteps) else: raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}") # Rescale for zero SNR if rescale_betas_zero_snr: self.betas = rescale_zero_terminal_snr(self.betas) self.alphas = 1.0 - self.betas self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the initial step, there is no current alphas_cumprod, and the index is out of bounds # `set_alpha_to_one` decides whether we set this parameter simply to one # in this case, self.step() just output the predicted noise # or whether we use the initial alpha used in training the diffusion model. self.initial_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0] # standard deviation of the initial noise distribution self.init_noise_sigma = 1.0 # setable values self.num_inference_steps = None self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps).copy().astype(np.int64)) # Copied from diffusers.schedulers.scheduling_ddim.DDIMScheduler.scale_model_input def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor: """ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep. Args: sample (`torch.Tensor`): The input sample. timestep (`int`, *optional*): The current timestep in the diffusion chain. Returns: `torch.Tensor`: A scaled input sample. """ return sample def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): """ Sets the discrete timesteps used for the diffusion chain (to be run before inference). Args: num_inference_steps (`int`): The number of diffusion steps used when generating samples with a pre-trained model. """ if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:" f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle" f" maximal {self.config.num_train_timesteps} timesteps." ) self.num_inference_steps = num_inference_steps # "leading" and "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "leading": step_ratio = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 timesteps = (np.arange(0, num_inference_steps) * step_ratio).round().copy().astype(np.int64) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": step_ratio = self.config.num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)[::-1]).astype(np.int64) timesteps -= 1 else: raise ValueError( f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'leading' or 'trailing'." ) self.timesteps = torch.from_numpy(timesteps).to(device) def step( self, model_output: torch.Tensor, timestep: int, sample: torch.Tensor, return_dict: bool = True, ) -> Union[DDIMSchedulerOutput, Tuple]: """ Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion process from the learned model outputs (most often the predicted noise). Args: model_output (`torch.Tensor`): The direct output from learned diffusion model. timestep (`float`): The current discrete timestep in the diffusion chain. sample (`torch.Tensor`): A current instance of a sample created by the diffusion process. eta (`float`): The weight of noise for added noise in diffusion step. use_clipped_model_output (`bool`, defaults to `False`): If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no clipping has happened, "corrected" `model_output` would coincide with the one provided as input and `use_clipped_model_output` has no effect. variance_noise (`torch.Tensor`): Alternative to generating noise with `generator` by directly providing the noise for the variance itself. Useful for methods such as [`CycleDiffusion`]. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~schedulers.scheduling_ddim_inverse.DDIMInverseSchedulerOutput`] or `tuple`. Returns: [`~schedulers.scheduling_ddim_inverse.DDIMInverseSchedulerOutput`] or `tuple`: If return_dict is `True`, [`~schedulers.scheduling_ddim_inverse.DDIMInverseSchedulerOutput`] is returned, otherwise a tuple is returned where the first element is the sample tensor. """ # 1. get previous step value (=t+1) prev_timestep = timestep timestep = min( timestep - self.config.num_train_timesteps // self.num_inference_steps, self.config.num_train_timesteps - 1 ) # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process alpha_prod_t = self.alphas_cumprod[timestep] if timestep >= 0 else self.initial_alpha_cumprod alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] beta_prod_t = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) pred_epsilon = model_output elif self.config.prediction_type == "sample": pred_original_sample = model_output pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5) elif self.config.prediction_type == "v_prediction": pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output pred_epsilon = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" " `v_prediction`" ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: pred_original_sample = pred_original_sample.clamp( -self.config.clip_sample_range, self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf pred_sample_direction = (1 - alpha_prod_t_prev) ** (0.5) * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample) def __len__(self): return self.config.num_train_timesteps
diffusers/src/diffusers/schedulers/scheduling_ddim_inverse.py/0
{ "file_path": "diffusers/src/diffusers/schedulers/scheduling_ddim_inverse.py", "repo_id": "diffusers", "token_count": 7307 }
# Copyright 2024 Katherine Crowson and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, is_scipy_available, logging from ..utils.torch_utils import randn_tensor from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin if is_scipy_available(): import scipy.stats logger = logging.get_logger(__name__) # pylint: disable=invalid-name @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->EulerDiscrete class EulerDiscreteSchedulerOutput(BaseOutput): """ Output class for the scheduler's `step` function output. Args: prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample `(x_{0})` based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. """ prev_sample: torch.Tensor pred_original_sample: Optional[torch.Tensor] = None # Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar def betas_for_alpha_bar( num_diffusion_timesteps, max_beta=0.999, alpha_transform_type="cosine", ): """ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of (1-beta) over time from t = [0,1]. Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up to that part of the diffusion process. Args: num_diffusion_timesteps (`int`): the number of betas to produce. max_beta (`float`): the maximum beta to use; use values lower than 1 to prevent singularities. alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar. Choose from `cosine` or `exp` Returns: betas (`np.ndarray`): the betas used by the scheduler to step the model outputs """ if alpha_transform_type == "cosine": def alpha_bar_fn(t): return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(t): return math.exp(t * -12.0) else: raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}") betas = [] for i in range(num_diffusion_timesteps): t1 = i / num_diffusion_timesteps t2 = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) return torch.tensor(betas, dtype=torch.float32) # Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr def rescale_zero_terminal_snr(betas): """ Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1) Args: betas (`torch.Tensor`): the betas that the scheduler is being initialized with. Returns: `torch.Tensor`: rescaled betas with zero terminal SNR """ # Convert betas to alphas_bar_sqrt alphas = 1.0 - betas alphas_cumprod = torch.cumprod(alphas, dim=0) alphas_bar_sqrt = alphas_cumprod.sqrt() # Store old values. alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone() alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone() # Shift so the last timestep is zero. alphas_bar_sqrt -= alphas_bar_sqrt_T # Scale so the first timestep is back to the old value. alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T) # Convert alphas_bar_sqrt to betas alphas_bar = alphas_bar_sqrt**2 # Revert sqrt alphas = alphas_bar[1:] / alphas_bar[:-1] # Revert cumprod alphas = torch.cat([alphas_bar[0:1], alphas]) betas = 1 - alphas return betas class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin): """ Euler scheduler. This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic methods the library implements for all schedulers such as loading and saving. Args: num_train_timesteps (`int`, defaults to 1000): The number of diffusion steps to train the model. beta_start (`float`, defaults to 0.0001): The starting `beta` value of inference. beta_end (`float`, defaults to 0.02): The final `beta` value. beta_schedule (`str`, defaults to `"linear"`): The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from `linear` or `scaled_linear`. trained_betas (`np.ndarray`, *optional*): Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`. prediction_type (`str`, defaults to `epsilon`, *optional*): Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen Video](https://imagen.research.google/video/paper.pdf) paper). interpolation_type(`str`, defaults to `"linear"`, *optional*): The interpolation type to compute intermediate sigmas for the scheduler denoising steps. Should be on of `"linear"` or `"log_linear"`. use_karras_sigmas (`bool`, *optional*, defaults to `False`): Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`, the sigmas are determined according to a sequence of noise levels {σi}. use_exponential_sigmas (`bool`, *optional*, defaults to `False`): Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process. use_beta_sigmas (`bool`, *optional*, defaults to `False`): Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information. timestep_spacing (`str`, defaults to `"linspace"`): The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information. steps_offset (`int`, defaults to 0): An offset added to the inference steps, as required by some model families. rescale_betas_zero_snr (`bool`, defaults to `False`): Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and dark samples instead of limiting it to samples with medium brightness. Loosely related to [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506). final_sigmas_type (`str`, defaults to `"zero"`): The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0. """ _compatibles = [e.name for e in KarrasDiffusionSchedulers] order = 1 @register_to_config def __init__( self, num_train_timesteps: int = 1000, beta_start: float = 0.0001, beta_end: float = 0.02, beta_schedule: str = "linear", trained_betas: Optional[Union[np.ndarray, List[float]]] = None, prediction_type: str = "epsilon", interpolation_type: str = "linear", use_karras_sigmas: Optional[bool] = False, use_exponential_sigmas: Optional[bool] = False, use_beta_sigmas: Optional[bool] = False, sigma_min: Optional[float] = None, sigma_max: Optional[float] = None, timestep_spacing: str = "linspace", timestep_type: str = "discrete", # can be "discrete" or "continuous" steps_offset: int = 0, rescale_betas_zero_snr: bool = False, final_sigmas_type: str = "zero", # can be "zero" or "sigma_min" ): if self.config.use_beta_sigmas and not is_scipy_available(): raise ImportError("Make sure to install scipy if you want to use beta sigmas.") if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1: raise ValueError( "Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used." ) if trained_betas is not None: self.betas = torch.tensor(trained_betas, dtype=torch.float32) elif beta_schedule == "linear": self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule self.betas = betas_for_alpha_bar(num_train_timesteps) else: raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}") if rescale_betas_zero_snr: self.betas = rescale_zero_terminal_snr(self.betas) self.alphas = 1.0 - self.betas self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) if rescale_betas_zero_snr: # Close to 0 without being 0 so first sigma is not inf # FP16 smallest positive subnormal works well here self.alphas_cumprod[-1] = 2**-24 sigmas = (((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5).flip(0) timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=float)[::-1].copy() timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32) # setable values self.num_inference_steps = None # TODO: Support the full EDM scalings for all prediction types and timestep types if timestep_type == "continuous" and prediction_type == "v_prediction": self.timesteps = torch.Tensor([0.25 * sigma.log() for sigma in sigmas]) else: self.timesteps = timesteps self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)]) self.is_scale_input_called = False self.use_karras_sigmas = use_karras_sigmas self.use_exponential_sigmas = use_exponential_sigmas self.use_beta_sigmas = use_beta_sigmas self._step_index = None self._begin_index = None self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication @property def init_noise_sigma(self): # standard deviation of the initial noise distribution max_sigma = max(self.sigmas) if isinstance(self.sigmas, list) else self.sigmas.max() if self.config.timestep_spacing in ["linspace", "trailing"]: return max_sigma return (max_sigma**2 + 1) ** 0.5 @property def step_index(self): """ The index counter for current timestep. It will increase 1 after each scheduler step. """ return self._step_index @property def begin_index(self): """ The index for the first timestep. It should be set from pipeline with `set_begin_index` method. """ return self._begin_index # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index def set_begin_index(self, begin_index: int = 0): """ Sets the begin index for the scheduler. This function should be run from pipeline before the inference. Args: begin_index (`int`): The begin index for the scheduler. """ self._begin_index = begin_index def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor: """ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm. Args: sample (`torch.Tensor`): The input sample. timestep (`int`, *optional*): The current timestep in the diffusion chain. Returns: `torch.Tensor`: A scaled input sample. """ if self.step_index is None: self._init_step_index(timestep) sigma = self.sigmas[self.step_index] sample = sample / ((sigma**2 + 1) ** 0.5) self.is_scale_input_called = True return sample def set_timesteps( self, num_inference_steps: int = None, device: Union[str, torch.device] = None, timesteps: Optional[List[int]] = None, sigmas: Optional[List[float]] = None, ): """ Sets the discrete timesteps used for the diffusion chain (to be run before inference). Args: num_inference_steps (`int`): The number of diffusion steps used when generating samples with a pre-trained model. device (`str` or `torch.device`, *optional*): The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. timesteps (`List[int]`, *optional*): Custom timesteps used to support arbitrary timesteps schedule. If `None`, timesteps will be generated based on the `timestep_spacing` attribute. If `timesteps` is passed, `num_inference_steps` and `sigmas` must be `None`, and `timestep_spacing` attribute will be ignored. sigmas (`List[float]`, *optional*): Custom sigmas used to support arbitrary timesteps schedule schedule. If `None`, timesteps and sigmas will be generated based on the relevant scheduler attributes. If `sigmas` is passed, `num_inference_steps` and `timesteps` must be `None`, and the timesteps will be generated based on the custom sigmas schedule. """ if timesteps is not None and sigmas is not None: raise ValueError("Only one of `timesteps` or `sigmas` should be set.") if num_inference_steps is None and timesteps is None and sigmas is None: raise ValueError("Must pass exactly one of `num_inference_steps` or `timesteps` or `sigmas.") if num_inference_steps is not None and (timesteps is not None or sigmas is not None): raise ValueError("Can only pass one of `num_inference_steps` or `timesteps` or `sigmas`.") if timesteps is not None and self.config.use_karras_sigmas: raise ValueError("Cannot set `timesteps` with `config.use_karras_sigmas = True`.") if timesteps is not None and self.config.use_exponential_sigmas: raise ValueError("Cannot set `timesteps` with `config.use_exponential_sigmas = True`.") if timesteps is not None and self.config.use_beta_sigmas: raise ValueError("Cannot set `timesteps` with `config.use_beta_sigmas = True`.") if ( timesteps is not None and self.config.timestep_type == "continuous" and self.config.prediction_type == "v_prediction" ): raise ValueError( "Cannot set `timesteps` with `config.timestep_type = 'continuous'` and `config.prediction_type = 'v_prediction'`." ) if num_inference_steps is None: num_inference_steps = len(timesteps) if timesteps is not None else len(sigmas) - 1 self.num_inference_steps = num_inference_steps if sigmas is not None: log_sigmas = np.log(np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)) sigmas = np.array(sigmas).astype(np.float32) timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas[:-1]]) else: if timesteps is not None: timesteps = np.array(timesteps).astype(np.float32) else: # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": timesteps = np.linspace( 0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=np.float32 )[::-1].copy() elif self.config.timestep_spacing == "leading": step_ratio = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 timesteps = ( (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.float32) ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": step_ratio = self.config.num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 timesteps = ( (np.arange(self.config.num_train_timesteps, 0, -step_ratio)).round().copy().astype(np.float32) ) timesteps -= 1 else: raise ValueError( f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." ) sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) log_sigmas = np.log(sigmas) if self.config.interpolation_type == "linear": sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas) elif self.config.interpolation_type == "log_linear": sigmas = torch.linspace(np.log(sigmas[-1]), np.log(sigmas[0]), num_inference_steps + 1).exp().numpy() else: raise ValueError( f"{self.config.interpolation_type} is not implemented. Please specify interpolation_type to either" " 'linear' or 'log_linear'" ) if self.config.use_karras_sigmas: sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps) timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]) elif self.config.use_exponential_sigmas: sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps) timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]) elif self.config.use_beta_sigmas: sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps) timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]) if self.config.final_sigmas_type == "sigma_min": sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5 elif self.config.final_sigmas_type == "zero": sigma_last = 0 else: raise ValueError( f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}" ) sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32) sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device) # TODO: Support the full EDM scalings for all prediction types and timestep types if self.config.timestep_type == "continuous" and self.config.prediction_type == "v_prediction": self.timesteps = torch.Tensor([0.25 * sigma.log() for sigma in sigmas[:-1]]).to(device=device) else: self.timesteps = torch.from_numpy(timesteps.astype(np.float32)).to(device=device) self._step_index = None self._begin_index = None self.sigmas = sigmas.to("cpu") # to avoid too much CPU/GPU communication def _sigma_to_t(self, sigma, log_sigmas): # get log sigma log_sigma = np.log(np.maximum(sigma, 1e-10)) # get distribution dists = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2) high_idx = low_idx + 1 low = log_sigmas[low_idx] high = log_sigmas[high_idx] # interpolate sigmas w = (low - log_sigma) / (low - high) w = np.clip(w, 0, 1) # transform interpolation to time range t = (1 - w) * low_idx + w * high_idx t = t.reshape(sigma.shape) return t # Copied from https://github.com/crowsonkb/k-diffusion/blob/686dbad0f39640ea25c8a8c6a6e56bb40eacefa2/k_diffusion/sampling.py#L17 def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor: """Constructs the noise schedule of Karras et al. (2022).""" # Hack to make sure that other schedulers which copy this function don't break # TODO: Add this logic to the other schedulers if hasattr(self.config, "sigma_min"): sigma_min = self.config.sigma_min else: sigma_min = None if hasattr(self.config, "sigma_max"): sigma_max = self.config.sigma_max else: sigma_max = None sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item() sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item() rho = 7.0 # 7.0 is the value used in the paper ramp = np.linspace(0, 1, num_inference_steps) min_inv_rho = sigma_min ** (1 / rho) max_inv_rho = sigma_max ** (1 / rho) sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas # Copied from https://github.com/crowsonkb/k-diffusion/blob/686dbad0f39640ea25c8a8c6a6e56bb40eacefa2/k_diffusion/sampling.py#L26 def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor: """Constructs an exponential noise schedule.""" # Hack to make sure that other schedulers which copy this function don't break # TODO: Add this logic to the other schedulers if hasattr(self.config, "sigma_min"): sigma_min = self.config.sigma_min else: sigma_min = None if hasattr(self.config, "sigma_max"): sigma_max = self.config.sigma_max else: sigma_max = None sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item() sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item() sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps)) return sigmas def _convert_to_beta( self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6 ) -> torch.Tensor: """From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)""" # Hack to make sure that other schedulers which copy this function don't break # TODO: Add this logic to the other schedulers if hasattr(self.config, "sigma_min"): sigma_min = self.config.sigma_min else: sigma_min = None if hasattr(self.config, "sigma_max"): sigma_max = self.config.sigma_max else: sigma_max = None sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item() sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item() sigmas = np.array( [ sigma_min + (ppf * (sigma_max - sigma_min)) for ppf in [ scipy.stats.beta.ppf(timestep, alpha, beta) for timestep in 1 - np.linspace(0, 1, num_inference_steps) ] ] ) return sigmas def index_for_timestep(self, timestep, schedule_timesteps=None): if schedule_timesteps is None: schedule_timesteps = self.timesteps indices = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) pos = 1 if len(indices) > 1 else 0 return indices[pos].item() def _init_step_index(self, timestep): if self.begin_index is None: if isinstance(timestep, torch.Tensor): timestep = timestep.to(self.timesteps.device) self._step_index = self.index_for_timestep(timestep) else: self._step_index = self._begin_index def step( self, model_output: torch.Tensor, timestep: Union[float, torch.Tensor], sample: torch.Tensor, s_churn: float = 0.0, s_tmin: float = 0.0, s_tmax: float = float("inf"), s_noise: float = 1.0, generator: Optional[torch.Generator] = None, return_dict: bool = True, ) -> Union[EulerDiscreteSchedulerOutput, Tuple]: """ Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion process from the learned model outputs (most often the predicted noise). Args: model_output (`torch.Tensor`): The direct output from learned diffusion model. timestep (`float`): The current discrete timestep in the diffusion chain. sample (`torch.Tensor`): A current instance of a sample created by the diffusion process. s_churn (`float`): s_tmin (`float`): s_tmax (`float`): s_noise (`float`, defaults to 1.0): Scaling factor for noise added to the sample. generator (`torch.Generator`, *optional*): A random number generator. return_dict (`bool`): Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or tuple. Returns: [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`: If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is returned, otherwise a tuple is returned where the first element is the sample tensor. """ if isinstance(timestep, (int, torch.IntTensor, torch.LongTensor)): raise ValueError( ( "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" " `EulerDiscreteScheduler.step()` is not supported. Make sure to pass" " one of the `scheduler.timesteps` as a timestep." ), ) if not self.is_scale_input_called: logger.warning( "The `scale_model_input` function should be called before `step` to ensure correct denoising. " "See `StableDiffusionPipeline` for a usage example." ) if self.step_index is None: self._init_step_index(timestep) # Upcast to avoid precision issues when computing prev_sample sample = sample.to(torch.float32) sigma = self.sigmas[self.step_index] gamma = min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0 sigma_hat = sigma * (gamma + 1) if gamma > 0: noise = randn_tensor( model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator ) eps = noise * s_noise sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5 # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise # NOTE: "original_sample" should not be an expected prediction_type but is left in for # backwards compatibility if self.config.prediction_type == "original_sample" or self.config.prediction_type == "sample": pred_original_sample = model_output elif self.config.prediction_type == "epsilon": pred_original_sample = sample - sigma_hat * model_output elif self.config.prediction_type == "v_prediction": # denoised = model_output * c_out + input * c_skip pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1)) else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) # 2. Convert to an ODE derivative derivative = (sample - pred_original_sample) / sigma_hat dt = self.sigmas[self.step_index + 1] - sigma_hat prev_sample = sample + derivative * dt # Cast sample back to model compatible dtype prev_sample = prev_sample.to(model_output.dtype) # upon completion increase step index by one self._step_index += 1 if not return_dict: return ( prev_sample, pred_original_sample, ) return EulerDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample) def add_noise( self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.Tensor, ) -> torch.Tensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) if original_samples.device.type == "mps" and torch.is_floating_point(timesteps): # mps does not support float64 schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) timesteps = timesteps.to(original_samples.device, dtype=torch.float32) else: schedule_timesteps = self.timesteps.to(original_samples.device) timesteps = timesteps.to(original_samples.device) # self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index if self.begin_index is None: step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps] elif self.step_index is not None: # add_noise is called after first denoising step (for inpainting) step_indices = [self.step_index] * timesteps.shape[0] else: # add noise is called before first denoising step to create initial latent(img2img) step_indices = [self.begin_index] * timesteps.shape[0] sigma = sigmas[step_indices].flatten() while len(sigma.shape) < len(original_samples.shape): sigma = sigma.unsqueeze(-1) noisy_samples = original_samples + noise * sigma return noisy_samples def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.Tensor) -> torch.Tensor: if ( isinstance(timesteps, int) or isinstance(timesteps, torch.IntTensor) or isinstance(timesteps, torch.LongTensor) ): raise ValueError( ( "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" " `EulerDiscreteScheduler.get_velocity()` is not supported. Make sure to pass" " one of the `scheduler.timesteps` as a timestep." ), ) if sample.device.type == "mps" and torch.is_floating_point(timesteps): # mps does not support float64 schedule_timesteps = self.timesteps.to(sample.device, dtype=torch.float32) timesteps = timesteps.to(sample.device, dtype=torch.float32) else: schedule_timesteps = self.timesteps.to(sample.device) timesteps = timesteps.to(sample.device) step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps] alphas_cumprod = self.alphas_cumprod.to(sample) sqrt_alpha_prod = alphas_cumprod[step_indices] ** 0.5 sqrt_alpha_prod = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape) < len(sample.shape): sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[step_indices]) ** 0.5 sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape): sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity def __len__(self): return self.config.num_train_timesteps
diffusers/src/diffusers/schedulers/scheduling_euler_discrete.py/0
{ "file_path": "diffusers/src/diffusers/schedulers/scheduling_euler_discrete.py", "repo_id": "diffusers", "token_count": 15517 }
# Copyright 2024 Google Brain and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from ..utils.torch_utils import randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class SdeVeOutput(BaseOutput): """ Output class for the scheduler's `step` function output. Args: prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the denoising loop. prev_sample_mean (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): Mean averaged `prev_sample` over previous timesteps. """ prev_sample: torch.Tensor prev_sample_mean: torch.Tensor class ScoreSdeVeScheduler(SchedulerMixin, ConfigMixin): """ `ScoreSdeVeScheduler` is a variance exploding stochastic differential equation (SDE) scheduler. This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic methods the library implements for all schedulers such as loading and saving. Args: num_train_timesteps (`int`, defaults to 1000): The number of diffusion steps to train the model. snr (`float`, defaults to 0.15): A coefficient weighting the step from the `model_output` sample (from the network) to the random noise. sigma_min (`float`, defaults to 0.01): The initial noise scale for the sigma sequence in the sampling procedure. The minimum sigma should mirror the distribution of the data. sigma_max (`float`, defaults to 1348.0): The maximum value used for the range of continuous timesteps passed into the model. sampling_eps (`float`, defaults to 1e-5): The end value of sampling where timesteps decrease progressively from 1 to epsilon. correct_steps (`int`, defaults to 1): The number of correction steps performed on a produced sample. """ order = 1 @register_to_config def __init__( self, num_train_timesteps: int = 2000, snr: float = 0.15, sigma_min: float = 0.01, sigma_max: float = 1348.0, sampling_eps: float = 1e-5, correct_steps: int = 1, ): # standard deviation of the initial noise distribution self.init_noise_sigma = sigma_max # setable values self.timesteps = None self.set_sigmas(num_train_timesteps, sigma_min, sigma_max, sampling_eps) def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor: """ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep. Args: sample (`torch.Tensor`): The input sample. timestep (`int`, *optional*): The current timestep in the diffusion chain. Returns: `torch.Tensor`: A scaled input sample. """ return sample def set_timesteps( self, num_inference_steps: int, sampling_eps: float = None, device: Union[str, torch.device] = None ): """ Sets the continuous timesteps used for the diffusion chain (to be run before inference). Args: num_inference_steps (`int`): The number of diffusion steps used when generating samples with a pre-trained model. sampling_eps (`float`, *optional*): The final timestep value (overrides value given during scheduler instantiation). device (`str` or `torch.device`, *optional*): The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. """ sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps self.timesteps = torch.linspace(1, sampling_eps, num_inference_steps, device=device) def set_sigmas( self, num_inference_steps: int, sigma_min: float = None, sigma_max: float = None, sampling_eps: float = None ): """ Sets the noise scales used for the diffusion chain (to be run before inference). The sigmas control the weight of the `drift` and `diffusion` components of the sample update. Args: num_inference_steps (`int`): The number of diffusion steps used when generating samples with a pre-trained model. sigma_min (`float`, optional): The initial noise scale value (overrides value given during scheduler instantiation). sigma_max (`float`, optional): The final noise scale value (overrides value given during scheduler instantiation). sampling_eps (`float`, optional): The final timestep value (overrides value given during scheduler instantiation). """ sigma_min = sigma_min if sigma_min is not None else self.config.sigma_min sigma_max = sigma_max if sigma_max is not None else self.config.sigma_max sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(num_inference_steps, sampling_eps) self.sigmas = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) self.discrete_sigmas = torch.exp(torch.linspace(math.log(sigma_min), math.log(sigma_max), num_inference_steps)) self.sigmas = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps]) def get_adjacent_sigma(self, timesteps, t): return torch.where( timesteps == 0, torch.zeros_like(t.to(timesteps.device)), self.discrete_sigmas[timesteps - 1].to(timesteps.device), ) def step_pred( self, model_output: torch.Tensor, timestep: int, sample: torch.Tensor, generator: Optional[torch.Generator] = None, return_dict: bool = True, ) -> Union[SdeVeOutput, Tuple]: """ Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion process from the learned model outputs (most often the predicted noise). Args: model_output (`torch.Tensor`): The direct output from learned diffusion model. timestep (`int`): The current discrete timestep in the diffusion chain. sample (`torch.Tensor`): A current instance of a sample created by the diffusion process. generator (`torch.Generator`, *optional*): A random number generator. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`. Returns: [`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`: If return_dict is `True`, [`~schedulers.scheduling_sde_ve.SdeVeOutput`] is returned, otherwise a tuple is returned where the first element is the sample tensor. """ if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) timestep = timestep * torch.ones( sample.shape[0], device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) timesteps = (timestep * (len(self.timesteps) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda timesteps = timesteps.to(self.discrete_sigmas.device) sigma = self.discrete_sigmas[timesteps].to(sample.device) adjacent_sigma = self.get_adjacent_sigma(timesteps, timestep).to(sample.device) drift = torch.zeros_like(sample) diffusion = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods diffusion = diffusion.flatten() while len(diffusion.shape) < len(sample.shape): diffusion = diffusion.unsqueeze(-1) drift = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of noise = randn_tensor( sample.shape, layout=sample.layout, generator=generator, device=sample.device, dtype=sample.dtype ) prev_sample_mean = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? prev_sample = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=prev_sample, prev_sample_mean=prev_sample_mean) def step_correct( self, model_output: torch.Tensor, sample: torch.Tensor, generator: Optional[torch.Generator] = None, return_dict: bool = True, ) -> Union[SchedulerOutput, Tuple]: """ Correct the predicted sample based on the `model_output` of the network. This is often run repeatedly after making the prediction for the previous timestep. Args: model_output (`torch.Tensor`): The direct output from learned diffusion model. sample (`torch.Tensor`): A current instance of a sample created by the diffusion process. generator (`torch.Generator`, *optional*): A random number generator. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`. Returns: [`~schedulers.scheduling_sde_ve.SdeVeOutput`] or `tuple`: If return_dict is `True`, [`~schedulers.scheduling_sde_ve.SdeVeOutput`] is returned, otherwise a tuple is returned where the first element is the sample tensor. """ if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction noise = randn_tensor(sample.shape, layout=sample.layout, generator=generator).to(sample.device) # compute step size from the model_output, the noise, and the snr grad_norm = torch.norm(model_output.reshape(model_output.shape[0], -1), dim=-1).mean() noise_norm = torch.norm(noise.reshape(noise.shape[0], -1), dim=-1).mean() step_size = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 step_size = step_size * torch.ones(sample.shape[0]).to(sample.device) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term step_size = step_size.flatten() while len(step_size.shape) < len(sample.shape): step_size = step_size.unsqueeze(-1) prev_sample_mean = sample + step_size * model_output prev_sample = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=prev_sample) def add_noise( self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.Tensor, ) -> torch.Tensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples timesteps = timesteps.to(original_samples.device) sigmas = self.discrete_sigmas.to(original_samples.device)[timesteps] noise = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(original_samples) * sigmas[:, None, None, None] ) noisy_samples = noise + original_samples return noisy_samples def __len__(self): return self.config.num_train_timesteps
diffusers/src/diffusers/schedulers/scheduling_sde_ve.py/0
{ "file_path": "diffusers/src/diffusers/schedulers/scheduling_sde_ve.py", "repo_id": "diffusers", "token_count": 5379 }
# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends class MidiProcessor(metaclass=DummyObject): _backends = ["note_seq"] def __init__(self, *args, **kwargs): requires_backends(self, ["note_seq"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["note_seq"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["note_seq"])
diffusers/src/diffusers/utils/dummy_note_seq_objects.py/0
{ "file_path": "diffusers/src/diffusers/utils/dummy_note_seq_objects.py", "repo_id": "diffusers", "token_count": 201 }
# coding=utf-8 # Copyright 2024 Optuna, Hugging Face # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Logging utilities.""" import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Dict, Optional from tqdm import auto as tqdm_lib _lock = threading.Lock() _default_handler: Optional[logging.Handler] = None log_levels = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } _default_log_level = logging.WARNING _tqdm_active = True def _get_default_logging_level() -> int: """ If DIFFUSERS_VERBOSITY env var is set to one of the valid choices return that as the new default level. If it is not - fall back to `_default_log_level` """ env_level_str = os.getenv("DIFFUSERS_VERBOSITY", None) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"Unknown option DIFFUSERS_VERBOSITY={env_level_str}, " f"has to be one of: { ', '.join(log_levels.keys()) }" ) return _default_log_level def _get_library_name() -> str: return __name__.split(".")[0] def _get_library_root_logger() -> logging.Logger: return logging.getLogger(_get_library_name()) def _configure_library_root_logger() -> None: global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _default_handler = logging.StreamHandler() # Set sys.stderr as stream. if sys.stderr: # only if sys.stderr exists, e.g. when not using pythonw in windows _default_handler.flush = sys.stderr.flush # Apply our default configuration to the library root logger. library_root_logger = _get_library_root_logger() library_root_logger.addHandler(_default_handler) library_root_logger.setLevel(_get_default_logging_level()) library_root_logger.propagate = False def _reset_library_root_logger() -> None: global _default_handler with _lock: if not _default_handler: return library_root_logger = _get_library_root_logger() library_root_logger.removeHandler(_default_handler) library_root_logger.setLevel(logging.NOTSET) _default_handler = None def get_log_levels_dict() -> Dict[str, int]: return log_levels def get_logger(name: Optional[str] = None) -> logging.Logger: """ Return a logger with the specified name. This function is not supposed to be directly accessed unless you are writing a custom diffusers module. """ if name is None: name = _get_library_name() _configure_library_root_logger() return logging.getLogger(name) def get_verbosity() -> int: """ Return the current level for the 🤗 Diffusers' root logger as an `int`. Returns: `int`: Logging level integers which can be one of: - `50`: `diffusers.logging.CRITICAL` or `diffusers.logging.FATAL` - `40`: `diffusers.logging.ERROR` - `30`: `diffusers.logging.WARNING` or `diffusers.logging.WARN` - `20`: `diffusers.logging.INFO` - `10`: `diffusers.logging.DEBUG` """ _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def set_verbosity(verbosity: int) -> None: """ Set the verbosity level for the 🤗 Diffusers' root logger. Args: verbosity (`int`): Logging level which can be one of: - `diffusers.logging.CRITICAL` or `diffusers.logging.FATAL` - `diffusers.logging.ERROR` - `diffusers.logging.WARNING` or `diffusers.logging.WARN` - `diffusers.logging.INFO` - `diffusers.logging.DEBUG` """ _configure_library_root_logger() _get_library_root_logger().setLevel(verbosity) def set_verbosity_info() -> None: """Set the verbosity to the `INFO` level.""" return set_verbosity(INFO) def set_verbosity_warning() -> None: """Set the verbosity to the `WARNING` level.""" return set_verbosity(WARNING) def set_verbosity_debug() -> None: """Set the verbosity to the `DEBUG` level.""" return set_verbosity(DEBUG) def set_verbosity_error() -> None: """Set the verbosity to the `ERROR` level.""" return set_verbosity(ERROR) def disable_default_handler() -> None: """Disable the default handler of the 🤗 Diffusers' root logger.""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler) def enable_default_handler() -> None: """Enable the default handler of the 🤗 Diffusers' root logger.""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler) def add_handler(handler: logging.Handler) -> None: """adds a handler to the HuggingFace Diffusers' root logger.""" _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(handler) def remove_handler(handler: logging.Handler) -> None: """removes given handler from the HuggingFace Diffusers' root logger.""" _configure_library_root_logger() assert handler is not None and handler in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(handler) def disable_propagation() -> None: """ Disable propagation of the library log outputs. Note that log propagation is disabled by default. """ _configure_library_root_logger() _get_library_root_logger().propagate = False def enable_propagation() -> None: """ Enable propagation of the library log outputs. Please disable the HuggingFace Diffusers' default handler to prevent double logging if the root logger has been configured. """ _configure_library_root_logger() _get_library_root_logger().propagate = True def enable_explicit_format() -> None: """ Enable explicit formatting for every 🤗 Diffusers' logger. The explicit formatter is as follows: ``` [LEVELNAME|FILENAME|LINE NUMBER] TIME >> MESSAGE ``` All handlers currently bound to the root logger are affected by this method. """ handlers = _get_library_root_logger().handlers for handler in handlers: formatter = logging.Formatter("[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s") handler.setFormatter(formatter) def reset_format() -> None: """ Resets the formatting for 🤗 Diffusers' loggers. All handlers currently bound to the root logger are affected by this method. """ handlers = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(None) def warning_advice(self, *args, **kwargs) -> None: """ This method is identical to `logger.warning()`, but if env var DIFFUSERS_NO_ADVISORY_WARNINGS=1 is set, this warning will not be printed """ no_advisory_warnings = os.getenv("DIFFUSERS_NO_ADVISORY_WARNINGS", False) if no_advisory_warnings: return self.warning(*args, **kwargs) logging.Logger.warning_advice = warning_advice class EmptyTqdm: """Dummy tqdm which doesn't do anything.""" def __init__(self, *args, **kwargs): # pylint: disable=unused-argument self._iterator = args[0] if args else None def __iter__(self): return iter(self._iterator) def __getattr__(self, _): """Return empty function.""" def empty_fn(*args, **kwargs): # pylint: disable=unused-argument return return empty_fn def __enter__(self): return self def __exit__(self, type_, value, traceback): return class _tqdm_cls: def __call__(self, *args, **kwargs): if _tqdm_active: return tqdm_lib.tqdm(*args, **kwargs) else: return EmptyTqdm(*args, **kwargs) def set_lock(self, *args, **kwargs): self._lock = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*args, **kwargs) def get_lock(self): if _tqdm_active: return tqdm_lib.tqdm.get_lock() tqdm = _tqdm_cls() def is_progress_bar_enabled() -> bool: """Return a boolean indicating whether tqdm progress bars are enabled.""" global _tqdm_active return bool(_tqdm_active) def enable_progress_bar() -> None: """Enable tqdm progress bar.""" global _tqdm_active _tqdm_active = True def disable_progress_bar() -> None: """Disable tqdm progress bar.""" global _tqdm_active _tqdm_active = False
diffusers/src/diffusers/utils/logging.py/0
{ "file_path": "diffusers/src/diffusers/utils/logging.py", "repo_id": "diffusers", "token_count": 3654 }
import os import tempfile import unittest import torch from diffusers.loaders.lora_base import LoraBaseMixin class UtilityMethodDeprecationTests(unittest.TestCase): def test_fetch_state_dict_cls_method_raises_warning(self): state_dict = torch.nn.Linear(3, 3).state_dict() with self.assertWarns(FutureWarning) as warning: _ = LoraBaseMixin._fetch_state_dict( state_dict, weight_name=None, use_safetensors=False, local_files_only=True, cache_dir=None, force_download=False, proxies=None, token=None, revision=None, subfolder=None, user_agent=None, allow_pickle=None, ) warning_message = str(warning.warnings[0].message) assert "Using the `_fetch_state_dict()` method from" in warning_message def test_best_guess_weight_name_cls_method_raises_warning(self): with tempfile.TemporaryDirectory() as tmpdir: state_dict = torch.nn.Linear(3, 3).state_dict() torch.save(state_dict, os.path.join(tmpdir, "pytorch_lora_weights.bin")) with self.assertWarns(FutureWarning) as warning: _ = LoraBaseMixin._best_guess_weight_name(pretrained_model_name_or_path_or_dict=tmpdir) warning_message = str(warning.warnings[0].message) assert "Using the `_best_guess_weight_name()` method from" in warning_message
diffusers/tests/lora/test_deprecated_utilities.py/0
{ "file_path": "diffusers/tests/lora/test_deprecated_utilities.py", "repo_id": "diffusers", "token_count": 740 }
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( backend_empty_cache, enable_full_determinism, floats_tensor, load_hf_numpy, require_torch_accelerator, require_torch_accelerator_with_fp16, require_torch_gpu, skip_mps, slow, torch_all_close, torch_device, ) from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class AutoencoderKLTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): model_class = AutoencoderKL main_input_name = "sample" base_precision = 1e-2 def get_autoencoder_kl_config(self, block_out_channels=None, norm_num_groups=None): block_out_channels = block_out_channels or [2, 4] norm_num_groups = norm_num_groups or 2 init_dict = { "block_out_channels": block_out_channels, "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D"] * len(block_out_channels), "up_block_types": ["UpDecoderBlock2D"] * len(block_out_channels), "latent_channels": 4, "norm_num_groups": norm_num_groups, } return init_dict @property def dummy_input(self): batch_size = 4 num_channels = 3 sizes = (32, 32) image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) return {"sample": image} @property def input_shape(self): return (3, 32, 32) @property def output_shape(self): return (3, 32, 32) def prepare_init_args_and_inputs_for_common(self): init_dict = self.get_autoencoder_kl_config() inputs_dict = self.dummy_input return init_dict, inputs_dict def test_enable_disable_tiling(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() torch.manual_seed(0) model = self.model_class(**init_dict).to(torch_device) inputs_dict.update({"return_dict": False}) torch.manual_seed(0) output_without_tiling = model(**inputs_dict, generator=torch.manual_seed(0))[0] torch.manual_seed(0) model.enable_tiling() output_with_tiling = model(**inputs_dict, generator=torch.manual_seed(0))[0] self.assertLess( (output_without_tiling.detach().cpu().numpy() - output_with_tiling.detach().cpu().numpy()).max(), 0.5, "VAE tiling should not affect the inference results", ) torch.manual_seed(0) model.disable_tiling() output_without_tiling_2 = model(**inputs_dict, generator=torch.manual_seed(0))[0] self.assertEqual( output_without_tiling.detach().cpu().numpy().all(), output_without_tiling_2.detach().cpu().numpy().all(), "Without tiling outputs should match with the outputs when tiling is manually disabled.", ) def test_enable_disable_slicing(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() torch.manual_seed(0) model = self.model_class(**init_dict).to(torch_device) inputs_dict.update({"return_dict": False}) torch.manual_seed(0) output_without_slicing = model(**inputs_dict, generator=torch.manual_seed(0))[0] torch.manual_seed(0) model.enable_slicing() output_with_slicing = model(**inputs_dict, generator=torch.manual_seed(0))[0] self.assertLess( (output_without_slicing.detach().cpu().numpy() - output_with_slicing.detach().cpu().numpy()).max(), 0.5, "VAE slicing should not affect the inference results", ) torch.manual_seed(0) model.disable_slicing() output_without_slicing_2 = model(**inputs_dict, generator=torch.manual_seed(0))[0] self.assertEqual( output_without_slicing.detach().cpu().numpy().all(), output_without_slicing_2.detach().cpu().numpy().all(), "Without slicing outputs should match with the outputs when slicing is manually disabled.", ) def test_gradient_checkpointing_is_applied(self): expected_set = {"Decoder", "Encoder", "UNetMidBlock2D"} super().test_gradient_checkpointing_is_applied(expected_set=expected_set) def test_from_pretrained_hub(self): model, loading_info = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy", output_loading_info=True) self.assertIsNotNone(model) self.assertEqual(len(loading_info["missing_keys"]), 0) model.to(torch_device) image = model(**self.dummy_input) assert image is not None, "Make sure output is not None" def test_output_pretrained(self): model = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy") model = model.to(torch_device) model.eval() # Keep generator on CPU for non-CUDA devices to compare outputs with CPU result tensors generator_device = "cpu" if not torch_device.startswith("cuda") else "cuda" if torch_device != "mps": generator = torch.Generator(device=generator_device).manual_seed(0) else: generator = torch.manual_seed(0) image = torch.randn( 1, model.config.in_channels, model.config.sample_size, model.config.sample_size, generator=torch.manual_seed(0), ) image = image.to(torch_device) with torch.no_grad(): output = model(image, sample_posterior=True, generator=generator).sample output_slice = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": expected_output_slice = torch.tensor( [ -4.0078e-01, -3.8323e-04, -1.2681e-01, -1.1462e-01, 2.0095e-01, 1.0893e-01, -8.8247e-02, -3.0361e-01, -9.8644e-03, ] ) elif generator_device == "cpu": expected_output_slice = torch.tensor( [ -0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026, ] ) else: expected_output_slice = torch.tensor( [ -0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485, ] ) self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2)) @slow class AutoencoderKLIntegrationTests(unittest.TestCase): def get_file_format(self, seed, shape): return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy" def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() backend_empty_cache(torch_device) def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False): dtype = torch.float16 if fp16 else torch.float32 image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype) return image def get_sd_vae_model(self, model_id="CompVis/stable-diffusion-v1-4", fp16=False): revision = "fp16" if fp16 else None torch_dtype = torch.float16 if fp16 else torch.float32 model = AutoencoderKL.from_pretrained( model_id, subfolder="vae", torch_dtype=torch_dtype, revision=revision, ) model.to(torch_device) return model def get_generator(self, seed=0): generator_device = "cpu" if not torch_device.startswith("cuda") else "cuda" if torch_device != "mps": return torch.Generator(device=generator_device).manual_seed(seed) return torch.manual_seed(seed) @parameterized.expand( [ # fmt: off [ 33, [-0.1556, 0.9848, -0.0410, -0.0642, -0.2685, 0.8381, -0.2004, -0.0700], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824], ], [ 47, [-0.2376, 0.1200, 0.1337, -0.4830, -0.2504, -0.0759, -0.0486, -0.4077], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131], ], # fmt: on ] ) def test_stable_diffusion(self, seed, expected_slice, expected_slice_mps): model = self.get_sd_vae_model() image = self.get_sd_image(seed) generator = self.get_generator(seed) with torch.no_grad(): sample = model(image, generator=generator, sample_posterior=True).sample assert sample.shape == image.shape output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice) assert torch_all_close(output_slice, expected_output_slice, atol=3e-3) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_accelerator_with_fp16 def test_stable_diffusion_fp16(self, seed, expected_slice): model = self.get_sd_vae_model(fp16=True) image = self.get_sd_image(seed, fp16=True) generator = self.get_generator(seed) with torch.no_grad(): sample = model(image, generator=generator, sample_posterior=True).sample assert sample.shape == image.shape output_slice = sample[-1, -2:, :2, -2:].flatten().float().cpu() expected_output_slice = torch.tensor(expected_slice) assert torch_all_close(output_slice, expected_output_slice, atol=1e-2) @parameterized.expand( [ # fmt: off [ 33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824], ], [ 47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131], ], # fmt: on ] ) def test_stable_diffusion_mode(self, seed, expected_slice, expected_slice_mps): model = self.get_sd_vae_model() image = self.get_sd_image(seed) with torch.no_grad(): sample = model(image).sample assert sample.shape == image.shape output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice) assert torch_all_close(output_slice, expected_output_slice, atol=3e-3) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_accelerator @skip_mps def test_stable_diffusion_decode(self, seed, expected_slice): model = self.get_sd_vae_model() encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64)) with torch.no_grad(): sample = model.decode(encoding).sample assert list(sample.shape) == [3, 3, 512, 512] output_slice = sample[-1, -2:, :2, -2:].flatten().cpu() expected_output_slice = torch.tensor(expected_slice) assert torch_all_close(output_slice, expected_output_slice, atol=1e-3) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_accelerator_with_fp16 def test_stable_diffusion_decode_fp16(self, seed, expected_slice): model = self.get_sd_vae_model(fp16=True) encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64), fp16=True) with torch.no_grad(): sample = model.decode(encoding).sample assert list(sample.shape) == [3, 3, 512, 512] output_slice = sample[-1, -2:, :2, -2:].flatten().float().cpu() expected_output_slice = torch.tensor(expected_slice) assert torch_all_close(output_slice, expected_output_slice, atol=5e-3) @parameterized.expand([(13,), (16,), (27,)]) @require_torch_gpu @unittest.skipIf( not is_xformers_available(), reason="xformers is not required when using PyTorch 2.0.", ) def test_stable_diffusion_decode_xformers_vs_2_0_fp16(self, seed): model = self.get_sd_vae_model(fp16=True) encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64), fp16=True) with torch.no_grad(): sample = model.decode(encoding).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): sample_2 = model.decode(encoding).sample assert list(sample.shape) == [3, 3, 512, 512] assert torch_all_close(sample, sample_2, atol=1e-1) @parameterized.expand([(13,), (16,), (37,)]) @require_torch_gpu @unittest.skipIf( not is_xformers_available(), reason="xformers is not required when using PyTorch 2.0.", ) def test_stable_diffusion_decode_xformers_vs_2_0(self, seed): model = self.get_sd_vae_model() encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64)) with torch.no_grad(): sample = model.decode(encoding).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): sample_2 = model.decode(encoding).sample assert list(sample.shape) == [3, 3, 512, 512] assert torch_all_close(sample, sample_2, atol=1e-2) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def test_stable_diffusion_encode_sample(self, seed, expected_slice): model = self.get_sd_vae_model() image = self.get_sd_image(seed) generator = self.get_generator(seed) with torch.no_grad(): dist = model.encode(image).latent_dist sample = dist.sample(generator=generator) assert list(sample.shape) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] output_slice = sample[0, -1, -3:, -3:].flatten().cpu() expected_output_slice = torch.tensor(expected_slice) tolerance = 3e-3 if torch_device != "mps" else 1e-2 assert torch_all_close(output_slice, expected_output_slice, atol=tolerance)
diffusers/tests/models/autoencoders/test_models_autoencoder_kl.py/0
{ "file_path": "diffusers/tests/models/autoencoders/test_models_autoencoder_kl.py", "repo_id": "diffusers", "token_count": 8226 }
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from diffusers import DiTTransformer2DModel, Transformer2DModel from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, slow, torch_device, ) from ..test_modeling_common import ModelTesterMixin enable_full_determinism() class DiTTransformer2DModelTests(ModelTesterMixin, unittest.TestCase): model_class = DiTTransformer2DModel main_input_name = "hidden_states" @property def dummy_input(self): batch_size = 4 in_channels = 4 sample_size = 8 scheduler_num_train_steps = 1000 num_class_labels = 4 hidden_states = floats_tensor((batch_size, in_channels, sample_size, sample_size)).to(torch_device) timesteps = torch.randint(0, scheduler_num_train_steps, size=(batch_size,)).to(torch_device) class_label_ids = torch.randint(0, num_class_labels, size=(batch_size,)).to(torch_device) return {"hidden_states": hidden_states, "timestep": timesteps, "class_labels": class_label_ids} @property def input_shape(self): return (4, 8, 8) @property def output_shape(self): return (8, 8, 8) def prepare_init_args_and_inputs_for_common(self): init_dict = { "in_channels": 4, "out_channels": 8, "activation_fn": "gelu-approximate", "num_attention_heads": 2, "attention_head_dim": 4, "attention_bias": True, "num_layers": 1, "norm_type": "ada_norm_zero", "num_embeds_ada_norm": 8, "patch_size": 2, "sample_size": 8, } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_output(self): super().test_output( expected_output_shape=(self.dummy_input[self.main_input_name].shape[0],) + self.output_shape ) def test_correct_class_remapping_from_dict_config(self): init_dict, _ = self.prepare_init_args_and_inputs_for_common() model = Transformer2DModel.from_config(init_dict) assert isinstance(model, DiTTransformer2DModel) def test_gradient_checkpointing_is_applied(self): expected_set = {"DiTTransformer2DModel"} super().test_gradient_checkpointing_is_applied(expected_set=expected_set) def test_effective_gradient_checkpointing(self): super().test_effective_gradient_checkpointing(loss_tolerance=1e-4) def test_correct_class_remapping_from_pretrained_config(self): config = DiTTransformer2DModel.load_config("facebook/DiT-XL-2-256", subfolder="transformer") model = Transformer2DModel.from_config(config) assert isinstance(model, DiTTransformer2DModel) @slow def test_correct_class_remapping(self): model = Transformer2DModel.from_pretrained("facebook/DiT-XL-2-256", subfolder="transformer") assert isinstance(model, DiTTransformer2DModel)
diffusers/tests/models/transformers/test_models_dit_transformer2d.py/0
{ "file_path": "diffusers/tests/models/transformers/test_models_dit_transformer2d.py", "repo_id": "diffusers", "token_count": 1438 }
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from diffusers import SD3Transformer2DModel from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, torch_device, ) from ..test_modeling_common import ModelTesterMixin enable_full_determinism() class SD3TransformerTests(ModelTesterMixin, unittest.TestCase): model_class = SD3Transformer2DModel main_input_name = "hidden_states" @property def dummy_input(self): batch_size = 2 num_channels = 4 height = width = embedding_dim = 32 pooled_embedding_dim = embedding_dim * 2 sequence_length = 154 hidden_states = torch.randn((batch_size, num_channels, height, width)).to(torch_device) encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device) pooled_prompt_embeds = torch.randn((batch_size, pooled_embedding_dim)).to(torch_device) timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device) return { "hidden_states": hidden_states, "encoder_hidden_states": encoder_hidden_states, "pooled_projections": pooled_prompt_embeds, "timestep": timestep, } @property def input_shape(self): return (4, 32, 32) @property def output_shape(self): return (4, 32, 32) def prepare_init_args_and_inputs_for_common(self): init_dict = { "sample_size": 32, "patch_size": 1, "in_channels": 4, "num_layers": 1, "attention_head_dim": 8, "num_attention_heads": 4, "caption_projection_dim": 32, "joint_attention_dim": 32, "pooled_projection_dim": 64, "out_channels": 4, "pos_embed_max_size": 96, "dual_attention_layers": (), "qk_norm": None, } inputs_dict = self.dummy_input return init_dict, inputs_dict @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def test_xformers_enable_works(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) model.enable_xformers_memory_efficient_attention() assert ( model.transformer_blocks[0].attn.processor.__class__.__name__ == "XFormersJointAttnProcessor" ), "xformers is not enabled" @unittest.skip("SD3Transformer2DModel uses a dedicated attention processor. This test doesn't apply") def test_set_attn_processor_for_determinism(self): pass def test_gradient_checkpointing_is_applied(self): expected_set = {"SD3Transformer2DModel"} super().test_gradient_checkpointing_is_applied(expected_set=expected_set) class SD35TransformerTests(ModelTesterMixin, unittest.TestCase): model_class = SD3Transformer2DModel main_input_name = "hidden_states" @property def dummy_input(self): batch_size = 2 num_channels = 4 height = width = embedding_dim = 32 pooled_embedding_dim = embedding_dim * 2 sequence_length = 154 hidden_states = torch.randn((batch_size, num_channels, height, width)).to(torch_device) encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device) pooled_prompt_embeds = torch.randn((batch_size, pooled_embedding_dim)).to(torch_device) timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device) return { "hidden_states": hidden_states, "encoder_hidden_states": encoder_hidden_states, "pooled_projections": pooled_prompt_embeds, "timestep": timestep, } @property def input_shape(self): return (4, 32, 32) @property def output_shape(self): return (4, 32, 32) def prepare_init_args_and_inputs_for_common(self): init_dict = { "sample_size": 32, "patch_size": 1, "in_channels": 4, "num_layers": 2, "attention_head_dim": 8, "num_attention_heads": 4, "caption_projection_dim": 32, "joint_attention_dim": 32, "pooled_projection_dim": 64, "out_channels": 4, "pos_embed_max_size": 96, "dual_attention_layers": (0,), "qk_norm": "rms_norm", } inputs_dict = self.dummy_input return init_dict, inputs_dict @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def test_xformers_enable_works(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) model.enable_xformers_memory_efficient_attention() assert ( model.transformer_blocks[0].attn.processor.__class__.__name__ == "XFormersJointAttnProcessor" ), "xformers is not enabled" @unittest.skip("SD3Transformer2DModel uses a dedicated attention processor. This test doesn't apply") def test_set_attn_processor_for_determinism(self): pass def test_gradient_checkpointing_is_applied(self): expected_set = {"SD3Transformer2DModel"} super().test_gradient_checkpointing_is_applied(expected_set=expected_set) def test_skip_layers(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict).to(torch_device) # Forward pass without skipping layers output_full = model(**inputs_dict).sample # Forward pass with skipping layers 0 (since there's only one layer in this test setup) inputs_dict_with_skip = inputs_dict.copy() inputs_dict_with_skip["skip_layers"] = [0] output_skip = model(**inputs_dict_with_skip).sample # Check that the outputs are different self.assertFalse( torch.allclose(output_full, output_skip, atol=1e-5), "Outputs should differ when layers are skipped" ) # Check that the outputs have the same shape self.assertEqual(output_full.shape, output_skip.shape, "Outputs should have the same shape")
diffusers/tests/models/transformers/test_models_transformer_sd3.py/0
{ "file_path": "diffusers/tests/models/transformers/test_models_transformer_sd3.py", "repo_id": "diffusers", "token_count": 3022 }
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import unittest from importlib import import_module class DependencyTester(unittest.TestCase): def test_diffusers_import(self): try: import diffusers # noqa: F401 except ImportError: assert False def test_backend_registration(self): import diffusers from diffusers.dependency_versions_table import deps all_classes = inspect.getmembers(diffusers, inspect.isclass) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": backend = "k-diffusion" elif backend == "invisible_watermark": backend = "invisible-watermark" assert backend in deps, f"{backend} is not in the deps table!" def test_pipeline_imports(self): import diffusers import diffusers.pipelines all_classes = inspect.getmembers(diffusers, inspect.isclass) for cls_name, cls_module in all_classes: if hasattr(diffusers.pipelines, cls_name): pipeline_folder_module = ".".join(str(cls_module.__module__).split(".")[:3]) _ = import_module(pipeline_folder_module, str(cls_name))
diffusers/tests/others/test_dependencies.py/0
{ "file_path": "diffusers/tests/others/test_dependencies.py", "repo_id": "diffusers", "token_count": 775 }
# Copyright 2024 The HuggingFace Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import unittest import numpy as np import torch from PIL import Image from transformers import AutoTokenizer, T5EncoderModel from diffusers import AutoencoderKLCogVideoX, CogVideoXFunControlPipeline, CogVideoXTransformer3DModel, DDIMScheduler from diffusers.utils.testing_utils import ( enable_full_determinism, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineTesterMixin, check_qkv_fusion_matches_attn_procs_length, check_qkv_fusion_processors_exist, to_np, ) enable_full_determinism() class CogVideoXFunControlPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = CogVideoXFunControlPipeline params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"} batch_params = TEXT_TO_IMAGE_BATCH_PARAMS.union({"control_video"}) image_params = TEXT_TO_IMAGE_IMAGE_PARAMS image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS required_optional_params = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback_on_step_end", "callback_on_step_end_tensor_inputs", ] ) test_xformers_attention = False test_layerwise_casting = True def get_dummy_components(self): torch.manual_seed(0) transformer = CogVideoXTransformer3DModel( # Product of num_attention_heads * attention_head_dim must be divisible by 16 for 3D positional embeddings # But, since we are using tiny-random-t5 here, we need the internal dim of CogVideoXTransformer3DModel # to be 32. The internal dim is product of num_attention_heads and attention_head_dim num_attention_heads=4, attention_head_dim=8, in_channels=8, out_channels=4, time_embed_dim=2, text_embed_dim=32, # Must match with tiny-random-t5 num_layers=1, sample_width=2, # latent width: 2 -> final width: 16 sample_height=2, # latent height: 2 -> final height: 16 sample_frames=9, # latent frames: (9 - 1) / 4 + 1 = 3 -> final frames: 9 patch_size=2, temporal_compression_ratio=4, max_text_seq_length=16, ) torch.manual_seed(0) vae = AutoencoderKLCogVideoX( in_channels=3, out_channels=3, down_block_types=( "CogVideoXDownBlock3D", "CogVideoXDownBlock3D", "CogVideoXDownBlock3D", "CogVideoXDownBlock3D", ), up_block_types=( "CogVideoXUpBlock3D", "CogVideoXUpBlock3D", "CogVideoXUpBlock3D", "CogVideoXUpBlock3D", ), block_out_channels=(8, 8, 8, 8), latent_channels=4, layers_per_block=1, norm_num_groups=2, temporal_compression_ratio=4, ) torch.manual_seed(0) scheduler = DDIMScheduler() text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") components = { "transformer": transformer, "vae": vae, "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def get_dummy_inputs(self, device, seed: int = 0, num_frames: int = 8): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) # Cannot reduce because convolution kernel becomes bigger than sample height = 16 width = 16 control_video = [Image.new("RGB", (width, height))] * num_frames inputs = { "prompt": "dance monkey", "negative_prompt": "", "control_video": control_video, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "height": height, "width": width, "max_sequence_length": 16, "output_type": "pt", } return inputs def test_inference(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) video = pipe(**inputs).frames generated_video = video[0] self.assertEqual(generated_video.shape, (8, 3, 16, 16)) expected_video = torch.randn(8, 3, 16, 16) max_diff = np.abs(generated_video - expected_video).max() self.assertLessEqual(max_diff, 1e10) def test_callback_inputs(self): sig = inspect.signature(self.pipeline_class.__call__) has_callback_tensor_inputs = "callback_on_step_end_tensor_inputs" in sig.parameters has_callback_step_end = "callback_on_step_end" in sig.parameters if not (has_callback_tensor_inputs and has_callback_step_end): return components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) self.assertTrue( hasattr(pipe, "_callback_tensor_inputs"), f" {self.pipeline_class} should have `_callback_tensor_inputs` that defines a list of tensor variables its callback function can use as inputs", ) def callback_inputs_subset(pipe, i, t, callback_kwargs): # iterate over callback args for tensor_name, tensor_value in callback_kwargs.items(): # check that we're only passing in allowed tensor inputs assert tensor_name in pipe._callback_tensor_inputs return callback_kwargs def callback_inputs_all(pipe, i, t, callback_kwargs): for tensor_name in pipe._callback_tensor_inputs: assert tensor_name in callback_kwargs # iterate over callback args for tensor_name, tensor_value in callback_kwargs.items(): # check that we're only passing in allowed tensor inputs assert tensor_name in pipe._callback_tensor_inputs return callback_kwargs inputs = self.get_dummy_inputs(torch_device) # Test passing in a subset inputs["callback_on_step_end"] = callback_inputs_subset inputs["callback_on_step_end_tensor_inputs"] = ["latents"] output = pipe(**inputs)[0] # Test passing in a everything inputs["callback_on_step_end"] = callback_inputs_all inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs output = pipe(**inputs)[0] def callback_inputs_change_tensor(pipe, i, t, callback_kwargs): is_last = i == (pipe.num_timesteps - 1) if is_last: callback_kwargs["latents"] = torch.zeros_like(callback_kwargs["latents"]) return callback_kwargs inputs["callback_on_step_end"] = callback_inputs_change_tensor inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs output = pipe(**inputs)[0] assert output.abs().sum() < 1e10 def test_inference_batch_single_identical(self): self._test_inference_batch_single_identical(batch_size=3, expected_max_diff=1e-3) def test_attention_slicing_forward_pass( self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3 ): if not self.test_attention_slicing: return components = self.get_dummy_components() pipe = self.pipeline_class(**components) for component in pipe.components.values(): if hasattr(component, "set_default_attn_processor"): component.set_default_attn_processor() pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) generator_device = "cpu" inputs = self.get_dummy_inputs(generator_device) output_without_slicing = pipe(**inputs)[0] pipe.enable_attention_slicing(slice_size=1) inputs = self.get_dummy_inputs(generator_device) output_with_slicing1 = pipe(**inputs)[0] pipe.enable_attention_slicing(slice_size=2) inputs = self.get_dummy_inputs(generator_device) output_with_slicing2 = pipe(**inputs)[0] if test_max_difference: max_diff1 = np.abs(to_np(output_with_slicing1) - to_np(output_without_slicing)).max() max_diff2 = np.abs(to_np(output_with_slicing2) - to_np(output_without_slicing)).max() self.assertLess( max(max_diff1, max_diff2), expected_max_diff, "Attention slicing should not affect the inference results", ) def test_vae_tiling(self, expected_diff_max: float = 0.5): # NOTE(aryan): This requires a higher expected_max_diff than other CogVideoX pipelines generator_device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to("cpu") pipe.set_progress_bar_config(disable=None) # Without tiling inputs = self.get_dummy_inputs(generator_device) inputs["height"] = inputs["width"] = 128 output_without_tiling = pipe(**inputs)[0] # With tiling pipe.vae.enable_tiling( tile_sample_min_height=96, tile_sample_min_width=96, tile_overlap_factor_height=1 / 12, tile_overlap_factor_width=1 / 12, ) inputs = self.get_dummy_inputs(generator_device) inputs["height"] = inputs["width"] = 128 output_with_tiling = pipe(**inputs)[0] self.assertLess( (to_np(output_without_tiling) - to_np(output_with_tiling)).max(), expected_diff_max, "VAE tiling should not affect the inference results", ) def test_fused_qkv_projections(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) frames = pipe(**inputs).frames # [B, F, C, H, W] original_image_slice = frames[0, -2:, -1, -3:, -3:] pipe.fuse_qkv_projections() assert check_qkv_fusion_processors_exist( pipe.transformer ), "Something wrong with the fused attention processors. Expected all the attention processors to be fused." assert check_qkv_fusion_matches_attn_procs_length( pipe.transformer, pipe.transformer.original_attn_processors ), "Something wrong with the attention processors concerning the fused QKV projections." inputs = self.get_dummy_inputs(device) frames = pipe(**inputs).frames image_slice_fused = frames[0, -2:, -1, -3:, -3:] pipe.transformer.unfuse_qkv_projections() inputs = self.get_dummy_inputs(device) frames = pipe(**inputs).frames image_slice_disabled = frames[0, -2:, -1, -3:, -3:] assert np.allclose( original_image_slice, image_slice_fused, atol=1e-3, rtol=1e-3 ), "Fusion of QKV projections shouldn't affect the outputs." assert np.allclose( image_slice_fused, image_slice_disabled, atol=1e-3, rtol=1e-3 ), "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled." assert np.allclose( original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2 ), "Original outputs should match when fused QKV projections are disabled."
diffusers/tests/pipelines/cogvideo/test_cogvideox_fun_control.py/0
{ "file_path": "diffusers/tests/pipelines/cogvideo/test_cogvideox_fun_control.py", "repo_id": "diffusers", "token_count": 5762 }
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, EulerDiscreteScheduler, StableDiffusionXLControlNetImg2ImgPipeline, UNet2DConditionModel, ) from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, require_torch_accelerator, torch_device, ) from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS, ) from ..test_pipelines_common import ( IPAdapterTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class ControlNetPipelineSDXLImg2ImgFastTests( IPAdapterTesterMixin, PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase, ): pipeline_class = StableDiffusionXLControlNetImg2ImgPipeline params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"} batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS image_latents_params = IMAGE_TO_IMAGE_IMAGE_PARAMS callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS.union( {"add_text_embeds", "add_time_ids", "add_neg_time_ids"} ) def get_dummy_components(self, skip_first_text_encoder=False): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), # SD2-specific config below attention_head_dim=(2, 4), use_linear_projection=True, addition_embed_type="text_time", addition_time_embed_dim=8, transformer_layers_per_block=(1, 2), projection_class_embeddings_input_dim=80, # 6 * 8 + 32 cross_attention_dim=64 if not skip_first_text_encoder else 32, ) torch.manual_seed(0) controlnet = ControlNetModel( block_out_channels=(32, 64), layers_per_block=2, in_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), conditioning_embedding_out_channels=(16, 32), # SD2-specific config below attention_head_dim=(2, 4), use_linear_projection=True, addition_embed_type="text_time", addition_time_embed_dim=8, transformer_layers_per_block=(1, 2), projection_class_embeddings_input_dim=80, # 6 * 8 + 32 cross_attention_dim=64, ) torch.manual_seed(0) scheduler = EulerDiscreteScheduler( beta_start=0.00085, beta_end=0.012, steps_offset=1, beta_schedule="scaled_linear", timestep_spacing="leading", ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, # SD2-specific config below hidden_act="gelu", projection_dim=32, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config) tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") components = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder if not skip_first_text_encoder else None, "tokenizer": tokenizer if not skip_first_text_encoder else None, "text_encoder_2": text_encoder_2, "tokenizer_2": tokenizer_2, "image_encoder": None, "feature_extractor": None, } return components def get_dummy_inputs(self, device, seed=0): controlnet_embedder_scale_factor = 2 image = floats_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), rng=random.Random(seed), ).to(device) if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "np", "image": image, "control_image": image, } return inputs def test_ip_adapter(self): expected_pipe_slice = None if torch_device == "cpu": expected_pipe_slice = np.array([0.6276, 0.5271, 0.5205, 0.5393, 0.5774, 0.5872, 0.5456, 0.5415, 0.5354]) # TODO: update after slices.p return super().test_ip_adapter(expected_pipe_slice=expected_pipe_slice) def test_stable_diffusion_xl_controlnet_img2img(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array( [0.5557202, 0.46418434, 0.46983826, 0.623529, 0.5557242, 0.49262643, 0.6070508, 0.5702978, 0.43777135] ) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_xl_controlnet_img2img_guess(self): device = "cpu" components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) inputs["guess_mode"] = True output = sd_pipe(**inputs) image_slice = output.images[0, -3:, -3:, -1] assert output.images.shape == (1, 64, 64, 3) expected_slice = np.array( [0.5557202, 0.46418434, 0.46983826, 0.623529, 0.5557242, 0.49262643, 0.6070508, 0.5702978, 0.43777135] ) # make sure that it's equal assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_attention_slicing_forward_pass(self): return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def test_xformers_attention_forwardGenerator_pass(self): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) def test_inference_batch_single_identical(self): self._test_inference_batch_single_identical(expected_max_diff=2e-3) # TODO(Patrick, Sayak) - skip for now as this requires more refiner tests def test_save_load_optional_components(self): pass @require_torch_accelerator def test_stable_diffusion_xl_offloads(self): pipes = [] components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components).to(torch_device) pipes.append(sd_pipe) components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components) sd_pipe.enable_model_cpu_offload(device=torch_device) pipes.append(sd_pipe) components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components) sd_pipe.enable_sequential_cpu_offload(device=torch_device) pipes.append(sd_pipe) image_slices = [] for pipe in pipes: pipe.unet.set_default_attn_processor() inputs = self.get_dummy_inputs(torch_device) image = pipe(**inputs).images image_slices.append(image[0, -3:, -3:, -1].flatten()) assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3 def test_stable_diffusion_xl_multi_prompts(self): components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components).to(torch_device) # forward with single prompt inputs = self.get_dummy_inputs(torch_device) output = sd_pipe(**inputs) image_slice_1 = output.images[0, -3:, -3:, -1] # forward with same prompt duplicated inputs = self.get_dummy_inputs(torch_device) inputs["prompt_2"] = inputs["prompt"] output = sd_pipe(**inputs) image_slice_2 = output.images[0, -3:, -3:, -1] # ensure the results are equal assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 # forward with different prompt inputs = self.get_dummy_inputs(torch_device) inputs["prompt_2"] = "different prompt" output = sd_pipe(**inputs) image_slice_3 = output.images[0, -3:, -3:, -1] # ensure the results are not equal assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4 # manually set a negative_prompt inputs = self.get_dummy_inputs(torch_device) inputs["negative_prompt"] = "negative prompt" output = sd_pipe(**inputs) image_slice_1 = output.images[0, -3:, -3:, -1] # forward with same negative_prompt duplicated inputs = self.get_dummy_inputs(torch_device) inputs["negative_prompt"] = "negative prompt" inputs["negative_prompt_2"] = inputs["negative_prompt"] output = sd_pipe(**inputs) image_slice_2 = output.images[0, -3:, -3:, -1] # ensure the results are equal assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 # forward with different negative_prompt inputs = self.get_dummy_inputs(torch_device) inputs["negative_prompt"] = "negative prompt" inputs["negative_prompt_2"] = "different negative prompt" output = sd_pipe(**inputs) image_slice_3 = output.images[0, -3:, -3:, -1] # ensure the results are not equal assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4 # Copied from test_stable_diffusion_xl.py def test_stable_diffusion_xl_prompt_embeds(self): components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components) sd_pipe = sd_pipe.to(torch_device) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) # forward without prompt embeds inputs = self.get_dummy_inputs(torch_device) inputs["prompt"] = 2 * [inputs["prompt"]] inputs["num_images_per_prompt"] = 2 output = sd_pipe(**inputs) image_slice_1 = output.images[0, -3:, -3:, -1] # forward with prompt embeds inputs = self.get_dummy_inputs(torch_device) prompt = 2 * [inputs.pop("prompt")] ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = sd_pipe.encode_prompt(prompt) output = sd_pipe( **inputs, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, ) image_slice_2 = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4
diffusers/tests/pipelines/controlnet/test_controlnet_sdxl_img2img.py/0
{ "file_path": "diffusers/tests/pipelines/controlnet/test_controlnet_sdxl_img2img.py", "repo_id": "diffusers", "token_count": 6323 }
import unittest import numpy as np import torch from PIL import Image from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel from diffusers import ( AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxControlImg2ImgPipeline, FluxTransformer2DModel, ) from diffusers.utils.testing_utils import enable_full_determinism, torch_device from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class FluxControlImg2ImgPipelineFastTests(unittest.TestCase, PipelineTesterMixin): pipeline_class = FluxControlImg2ImgPipeline params = frozenset(["prompt", "height", "width", "guidance_scale", "prompt_embeds", "pooled_prompt_embeds"]) batch_params = frozenset(["prompt"]) test_xformers_attention = False def get_dummy_components(self): torch.manual_seed(0) transformer = FluxTransformer2DModel( patch_size=1, in_channels=8, out_channels=4, num_layers=1, num_single_layers=1, attention_head_dim=16, num_attention_heads=2, joint_attention_dim=32, pooled_projection_dim=32, axes_dims_rope=[4, 4, 8], ) clip_text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, hidden_act="gelu", projection_dim=32, ) torch.manual_seed(0) text_encoder = CLIPTextModel(clip_text_encoder_config) torch.manual_seed(0) text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") torch.manual_seed(0) vae = AutoencoderKL( sample_size=32, in_channels=3, out_channels=3, block_out_channels=(4,), layers_per_block=1, latent_channels=1, norm_num_groups=1, use_quant_conv=False, use_post_quant_conv=False, shift_factor=0.0609, scaling_factor=1.5035, ) scheduler = FlowMatchEulerDiscreteScheduler() return { "scheduler": scheduler, "text_encoder": text_encoder, "text_encoder_2": text_encoder_2, "tokenizer": tokenizer, "tokenizer_2": tokenizer_2, "transformer": transformer, "vae": vae, } def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device="cpu").manual_seed(seed) image = Image.new("RGB", (16, 16), 0) control_image = Image.new("RGB", (16, 16), 0) inputs = { "prompt": "A painting of a squirrel eating a burger", "image": image, "control_image": control_image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 5.0, "height": 8, "width": 8, "max_sequence_length": 48, "strength": 0.8, "output_type": "np", } return inputs def test_flux_different_prompts(self): pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) inputs = self.get_dummy_inputs(torch_device) output_same_prompt = pipe(**inputs).images[0] inputs = self.get_dummy_inputs(torch_device) inputs["prompt_2"] = "a different prompt" output_different_prompts = pipe(**inputs).images[0] max_diff = np.abs(output_same_prompt - output_different_prompts).max() # Outputs should be different here # For some reasons, they don't show large differences assert max_diff > 1e-6 def test_flux_prompt_embeds(self): pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) inputs = self.get_dummy_inputs(torch_device) output_with_prompt = pipe(**inputs).images[0] inputs = self.get_dummy_inputs(torch_device) prompt = inputs.pop("prompt") (prompt_embeds, pooled_prompt_embeds, text_ids) = pipe.encode_prompt( prompt, prompt_2=None, device=torch_device, max_sequence_length=inputs["max_sequence_length"], ) output_with_embeds = pipe( prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, **inputs, ).images[0] max_diff = np.abs(output_with_prompt - output_with_embeds).max() assert max_diff < 1e-4 def test_flux_image_output_shape(self): pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) inputs = self.get_dummy_inputs(torch_device) height_width_pairs = [(32, 32), (72, 57)] for height, width in height_width_pairs: expected_height = height - height % (pipe.vae_scale_factor * 2) expected_width = width - width % (pipe.vae_scale_factor * 2) inputs.update({"height": height, "width": width}) image = pipe(**inputs).images[0] output_height, output_width, _ = image.shape assert (output_height, output_width) == (expected_height, expected_width)
diffusers/tests/pipelines/flux/test_pipeline_flux_control_img2img.py/0
{ "file_path": "diffusers/tests/pipelines/flux/test_pipeline_flux_control_img2img.py", "repo_id": "diffusers", "token_count": 2800 }
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import ( DDIMScheduler, DDPMScheduler, KandinskyImg2ImgPipeline, KandinskyPriorPipeline, UNet2DConditionModel, VQModel, ) from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class Dummies: @property def text_embedder_hidden_size(self): return 32 @property def time_input_dim(self): return 32 @property def block_out_channels_0(self): return self.time_input_dim @property def time_embed_dim(self): return self.time_input_dim * 4 @property def cross_attention_dim(self): return 32 @property def dummy_tokenizer(self): tokenizer = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base") return tokenizer @property def dummy_text_encoder(self): torch.manual_seed(0) config = MCLIPConfig( numDims=self.cross_attention_dim, transformerDimensions=self.text_embedder_hidden_size, hidden_size=self.text_embedder_hidden_size, intermediate_size=37, num_attention_heads=4, num_hidden_layers=5, vocab_size=1005, ) text_encoder = MultilingualCLIP(config) text_encoder = text_encoder.eval() return text_encoder @property def dummy_unet(self): torch.manual_seed(0) model_kwargs = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } model = UNet2DConditionModel(**model_kwargs) return model @property def dummy_movq_kwargs(self): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def dummy_movq(self): torch.manual_seed(0) model = VQModel(**self.dummy_movq_kwargs) return model def get_dummy_components(self): text_encoder = self.dummy_text_encoder tokenizer = self.dummy_tokenizer unet = self.dummy_unet movq = self.dummy_movq ddim_config = { "num_train_timesteps": 1000, "beta_schedule": "linear", "beta_start": 0.00085, "beta_end": 0.012, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } scheduler = DDIMScheduler(**ddim_config) components = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def get_dummy_inputs(self, device, seed=0): image_embeds = floats_tensor((1, self.cross_attention_dim), rng=random.Random(seed)).to(device) negative_image_embeds = floats_tensor((1, self.cross_attention_dim), rng=random.Random(seed + 1)).to(device) # create init_image image = floats_tensor((1, 3, 64, 64), rng=random.Random(seed)).to(device) image = image.cpu().permute(0, 2, 3, 1)[0] init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((256, 256)) if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "horse", "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs class KandinskyImg2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = KandinskyImg2ImgPipeline params = ["prompt", "image_embeds", "negative_image_embeds", "image"] batch_params = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", ] required_optional_params = [ "generator", "height", "width", "strength", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] test_xformers_attention = False supports_dduf = False def get_dummy_components(self): dummies = Dummies() return dummies.get_dummy_components() def get_dummy_inputs(self, device, seed=0): dummies = Dummies() return dummies.get_dummy_inputs(device=device, seed=seed) def test_kandinsky_img2img(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) output = pipe(**self.get_dummy_inputs(device)) image = output.images image_from_tuple = pipe( **self.get_dummy_inputs(device), return_dict=False, )[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.5816, 0.5872, 0.4634, 0.5982, 0.4767, 0.4710, 0.4669, 0.4717, 0.4966]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @require_torch_gpu def test_offloads(self): pipes = [] components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components).to(torch_device) pipes.append(sd_pipe) components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components) sd_pipe.enable_model_cpu_offload() pipes.append(sd_pipe) components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components) sd_pipe.enable_sequential_cpu_offload() pipes.append(sd_pipe) image_slices = [] for pipe in pipes: inputs = self.get_dummy_inputs(torch_device) image = pipe(**inputs).images image_slices.append(image[0, -3:, -3:, -1].flatten()) assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3 def test_dict_tuple_outputs_equivalent(self): super().test_dict_tuple_outputs_equivalent(expected_max_difference=5e-4) @slow @require_torch_gpu class KandinskyImg2ImgPipelineIntegrationTests(unittest.TestCase): def setUp(self): # clean up the VRAM before each test super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_kandinsky_img2img(self): expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_img2img_frog.npy" ) init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) prompt = "A red cartoon frog, 4k" pipe_prior = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16 ) pipe_prior.to(torch_device) pipeline = KandinskyImg2ImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16 ) pipeline = pipeline.to(torch_device) pipeline.set_progress_bar_config(disable=None) generator = torch.Generator(device="cpu").manual_seed(0) image_emb, zero_image_emb = pipe_prior( prompt, generator=generator, num_inference_steps=5, negative_prompt="", ).to_tuple() output = pipeline( prompt, image=init_image, image_embeds=image_emb, negative_image_embeds=zero_image_emb, generator=generator, num_inference_steps=100, height=768, width=768, strength=0.2, output_type="np", ) image = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(image, expected_image) @nightly @require_torch_gpu class KandinskyImg2ImgPipelineNightlyTests(unittest.TestCase): def setUp(self): # clean up the VRAM before each test super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_kandinsky_img2img_ddpm(self): expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_img2img_ddpm_frog.npy" ) init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/frog.png" ) prompt = "A red cartoon frog, 4k" pipe_prior = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16 ) pipe_prior.to(torch_device) scheduler = DDPMScheduler.from_pretrained("kandinsky-community/kandinsky-2-1", subfolder="ddpm_scheduler") pipeline = KandinskyImg2ImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1", scheduler=scheduler, torch_dtype=torch.float16 ) pipeline = pipeline.to(torch_device) pipeline.set_progress_bar_config(disable=None) generator = torch.Generator(device="cpu").manual_seed(0) image_emb, zero_image_emb = pipe_prior( prompt, generator=generator, num_inference_steps=5, negative_prompt="", ).to_tuple() output = pipeline( prompt, image=init_image, image_embeds=image_emb, negative_image_embeds=zero_image_emb, generator=generator, num_inference_steps=100, height=768, width=768, strength=0.2, output_type="np", ) image = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(image, expected_image)
diffusers/tests/pipelines/kandinsky/test_kandinsky_img2img.py/0
{ "file_path": "diffusers/tests/pipelines/kandinsky/test_kandinsky_img2img.py", "repo_id": "diffusers", "token_count": 6448 }
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import torch from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, KolorsPipeline, UNet2DConditionModel, ) from diffusers.pipelines.kolors import ChatGLMModel, ChatGLMTokenizer from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import ( TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class KolorsPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = KolorsPipeline params = TEXT_TO_IMAGE_PARAMS batch_params = TEXT_TO_IMAGE_BATCH_PARAMS image_params = TEXT_TO_IMAGE_IMAGE_PARAMS image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS.union({"add_text_embeds", "add_time_ids"}) supports_dduf = False test_layerwise_casting = True def get_dummy_components(self, time_cond_proj_dim=None): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(2, 4), layers_per_block=2, time_cond_proj_dim=time_cond_proj_dim, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), # specific config below attention_head_dim=(2, 4), use_linear_projection=True, addition_embed_type="text_time", addition_time_embed_dim=8, transformer_layers_per_block=(1, 2), projection_class_embeddings_input_dim=56, cross_attention_dim=8, norm_num_groups=1, ) scheduler = EulerDiscreteScheduler( beta_start=0.00085, beta_end=0.012, steps_offset=1, beta_schedule="scaled_linear", timestep_spacing="leading", ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, sample_size=128, ) torch.manual_seed(0) text_encoder = ChatGLMModel.from_pretrained("hf-internal-testing/tiny-random-chatglm3-6b") tokenizer = ChatGLMTokenizer.from_pretrained("hf-internal-testing/tiny-random-chatglm3-6b") components = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "image_encoder": None, "feature_extractor": None, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 5.0, "output_type": "np", } return inputs def test_inference(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] self.assertEqual(image.shape, (1, 64, 64, 3)) expected_slice = np.array( [0.26413745, 0.4425478, 0.4102801, 0.42693347, 0.52529025, 0.3867405, 0.47512037, 0.41538602, 0.43855375] ) max_diff = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(max_diff, 1e-3) def test_save_load_optional_components(self): super().test_save_load_optional_components(expected_max_difference=2e-4) def test_save_load_float16(self): super().test_save_load_float16(expected_max_diff=2e-1) def test_inference_batch_single_identical(self): self._test_inference_batch_single_identical(expected_max_diff=5e-4)
diffusers/tests/pipelines/kolors/test_kolors.py/0
{ "file_path": "diffusers/tests/pipelines/kolors/test_kolors.py", "repo_id": "diffusers", "token_count": 2367 }
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import unittest import numpy as np import torch from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, KolorsPAGPipeline, KolorsPipeline, UNet2DConditionModel, ) from diffusers.pipelines.kolors import ChatGLMModel, ChatGLMTokenizer from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import ( TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS, ) from ..test_pipelines_common import ( PipelineFromPipeTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class KolorsPAGPipelineFastTests( PipelineTesterMixin, PipelineFromPipeTesterMixin, unittest.TestCase, ): pipeline_class = KolorsPAGPipeline params = TEXT_TO_IMAGE_PARAMS.union({"pag_scale", "pag_adaptive_scale"}) batch_params = TEXT_TO_IMAGE_BATCH_PARAMS image_params = TEXT_TO_IMAGE_IMAGE_PARAMS image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS.union({"add_text_embeds", "add_time_ids"}) supports_dduf = False # Copied from tests.pipelines.kolors.test_kolors.KolorsPipelineFastTests.get_dummy_components def get_dummy_components(self, time_cond_proj_dim=None): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(2, 4), layers_per_block=2, time_cond_proj_dim=time_cond_proj_dim, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), # specific config below attention_head_dim=(2, 4), use_linear_projection=True, addition_embed_type="text_time", addition_time_embed_dim=8, transformer_layers_per_block=(1, 2), projection_class_embeddings_input_dim=56, cross_attention_dim=8, norm_num_groups=1, ) scheduler = EulerDiscreteScheduler( beta_start=0.00085, beta_end=0.012, steps_offset=1, beta_schedule="scaled_linear", timestep_spacing="leading", ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, sample_size=128, ) torch.manual_seed(0) text_encoder = ChatGLMModel.from_pretrained("hf-internal-testing/tiny-random-chatglm3-6b") tokenizer = ChatGLMTokenizer.from_pretrained("hf-internal-testing/tiny-random-chatglm3-6b") components = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "image_encoder": None, "feature_extractor": None, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 5.0, "pag_scale": 0.9, "output_type": "np", } return inputs def test_pag_disable_enable(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() # base pipeline (expect same output when pag is disabled) pipe_sd = KolorsPipeline(**components) pipe_sd = pipe_sd.to(device) pipe_sd.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) del inputs["pag_scale"] assert ( "pag_scale" not in inspect.signature(pipe_sd.__call__).parameters ), f"`pag_scale` should not be a call parameter of the base pipeline {pipe_sd.__class__.__name__}." out = pipe_sd(**inputs).images[0, -3:, -3:, -1] # pag disabled with pag_scale=0.0 pipe_pag = self.pipeline_class(**components) pipe_pag = pipe_pag.to(device) pipe_pag.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) inputs["pag_scale"] = 0.0 out_pag_disabled = pipe_pag(**inputs).images[0, -3:, -3:, -1] # pag enabled pipe_pag = self.pipeline_class(**components, pag_applied_layers=["mid", "up", "down"]) pipe_pag = pipe_pag.to(device) pipe_pag.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) out_pag_enabled = pipe_pag(**inputs).images[0, -3:, -3:, -1] assert np.abs(out.flatten() - out_pag_disabled.flatten()).max() < 1e-3 assert np.abs(out.flatten() - out_pag_enabled.flatten()).max() > 1e-3 def test_pag_applied_layers(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() # base pipeline pipe = self.pipeline_class(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) # pag_applied_layers = ["mid","up","down"] should apply to all self-attention layers all_self_attn_layers = [k for k in pipe.unet.attn_processors.keys() if "attn1" in k] original_attn_procs = pipe.unet.attn_processors pag_layers = ["mid", "down", "up"] pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) assert set(pipe.pag_attn_processors) == set(all_self_attn_layers) all_self_attn_mid_layers = [ "mid_block.attentions.0.transformer_blocks.0.attn1.processor", "mid_block.attentions.0.transformer_blocks.1.attn1.processor", ] pipe.unet.set_attn_processor(original_attn_procs.copy()) pag_layers = ["mid"] pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) assert set(pipe.pag_attn_processors) == set(all_self_attn_mid_layers) pipe.unet.set_attn_processor(original_attn_procs.copy()) pag_layers = ["mid_block"] pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) assert set(pipe.pag_attn_processors) == set(all_self_attn_mid_layers) pipe.unet.set_attn_processor(original_attn_procs.copy()) pag_layers = ["mid_block.attentions.0"] pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) assert set(pipe.pag_attn_processors) == set(all_self_attn_mid_layers) # pag_applied_layers = ["mid.block_0.attentions_1"] does not exist in the model pipe.unet.set_attn_processor(original_attn_procs.copy()) pag_layers = ["mid_block.attentions.1"] with self.assertRaises(ValueError): pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) # pag_applied_layers = "down" should apply to all self-attention layers in down_blocks pipe.unet.set_attn_processor(original_attn_procs.copy()) pag_layers = ["down"] pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) assert len(pipe.pag_attn_processors) == 4 pipe.unet.set_attn_processor(original_attn_procs.copy()) pag_layers = ["down_blocks.0"] with self.assertRaises(ValueError): pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) pipe.unet.set_attn_processor(original_attn_procs.copy()) pag_layers = ["down_blocks.1"] pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) assert len(pipe.pag_attn_processors) == 4 pipe.unet.set_attn_processor(original_attn_procs.copy()) pag_layers = ["down_blocks.1.attentions.1"] pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) assert len(pipe.pag_attn_processors) == 2 def test_pag_inference(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() pipe_pag = self.pipeline_class(**components, pag_applied_layers=["mid", "up", "down"]) pipe_pag = pipe_pag.to(device) pipe_pag.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = pipe_pag(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == ( 1, 64, 64, 3, ), f"the shape of the output image should be (1, 64, 64, 3) but got {image.shape}" expected_slice = np.array( [0.26030684, 0.43192005, 0.4042826, 0.4189067, 0.5181305, 0.3832534, 0.472135, 0.4145031, 0.43726248] ) max_diff = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(max_diff, 1e-3) def test_inference_batch_single_identical(self): self._test_inference_batch_single_identical(expected_max_diff=3e-3)
diffusers/tests/pipelines/pag/test_pag_kolors.py/0
{ "file_path": "diffusers/tests/pipelines/pag/test_pag_kolors.py", "repo_id": "diffusers", "token_count": 4766 }
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import DDPMWuerstchenScheduler, StableCascadeCombinedPipeline from diffusers.models import StableCascadeUNet from diffusers.pipelines.wuerstchen import PaellaVQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class StableCascadeCombinedPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = StableCascadeCombinedPipeline params = ["prompt"] batch_params = ["prompt", "negative_prompt"] required_optional_params = [ "generator", "height", "width", "latents", "prior_guidance_scale", "decoder_guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "prior_num_inference_steps", "output_type", ] test_xformers_attention = True @property def text_embedder_hidden_size(self): return 32 @property def dummy_prior(self): torch.manual_seed(0) model_kwargs = { "conditioning_dim": 128, "block_out_channels": (128, 128), "num_attention_heads": (2, 2), "down_num_layers_per_block": (1, 1), "up_num_layers_per_block": (1, 1), "clip_image_in_channels": 768, "switch_level": (False,), "clip_text_in_channels": self.text_embedder_hidden_size, "clip_text_pooled_in_channels": self.text_embedder_hidden_size, } model = StableCascadeUNet(**model_kwargs) return model.eval() @property def dummy_tokenizer(self): tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") return tokenizer @property def dummy_text_encoder(self): torch.manual_seed(0) config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, projection_dim=self.text_embedder_hidden_size, hidden_size=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModelWithProjection(config).eval() @property def dummy_vqgan(self): torch.manual_seed(0) model_kwargs = { "bottleneck_blocks": 1, "num_vq_embeddings": 2, } model = PaellaVQModel(**model_kwargs) return model.eval() @property def dummy_decoder(self): torch.manual_seed(0) model_kwargs = { "in_channels": 4, "out_channels": 4, "conditioning_dim": 128, "block_out_channels": (16, 32, 64, 128), "num_attention_heads": (-1, -1, 1, 2), "down_num_layers_per_block": (1, 1, 1, 1), "up_num_layers_per_block": (1, 1, 1, 1), "down_blocks_repeat_mappers": (1, 1, 1, 1), "up_blocks_repeat_mappers": (3, 3, 2, 2), "block_types_per_layer": ( ("SDCascadeResBlock", "SDCascadeTimestepBlock"), ("SDCascadeResBlock", "SDCascadeTimestepBlock"), ("SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"), ("SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"), ), "switch_level": None, "clip_text_pooled_in_channels": 32, "dropout": (0.1, 0.1, 0.1, 0.1), } model = StableCascadeUNet(**model_kwargs) return model.eval() def get_dummy_components(self): prior = self.dummy_prior scheduler = DDPMWuerstchenScheduler() tokenizer = self.dummy_tokenizer text_encoder = self.dummy_text_encoder decoder = self.dummy_decoder vqgan = self.dummy_vqgan prior_text_encoder = self.dummy_text_encoder prior_tokenizer = self.dummy_tokenizer components = { "text_encoder": text_encoder, "tokenizer": tokenizer, "decoder": decoder, "scheduler": scheduler, "vqgan": vqgan, "prior_text_encoder": prior_text_encoder, "prior_tokenizer": prior_tokenizer, "prior_prior": prior, "prior_scheduler": scheduler, "prior_feature_extractor": None, "prior_image_encoder": None, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "horse", "generator": generator, "prior_guidance_scale": 4.0, "decoder_guidance_scale": 4.0, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "np", "height": 128, "width": 128, } return inputs def test_stable_cascade(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) output = pipe(**self.get_dummy_inputs(device)) image = output.images image_from_tuple = pipe(**self.get_dummy_inputs(device), return_dict=False)[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[-3:, -3:, -1] assert image.shape == (1, 128, 128, 3) expected_slice = np.array([0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 0.0]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @require_torch_gpu def test_offloads(self): pipes = [] components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components).to(torch_device) pipes.append(sd_pipe) components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components) sd_pipe.enable_sequential_cpu_offload() pipes.append(sd_pipe) components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components) sd_pipe.enable_model_cpu_offload() pipes.append(sd_pipe) image_slices = [] for pipe in pipes: inputs = self.get_dummy_inputs(torch_device) image = pipe(**inputs).images image_slices.append(image[0, -3:, -3:, -1].flatten()) assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3 def test_inference_batch_single_identical(self): super().test_inference_batch_single_identical(expected_max_diff=2e-2) @unittest.skip(reason="fp16 not supported") def test_float16_inference(self): super().test_float16_inference() @unittest.skip(reason="no callback test for combined pipeline") def test_callback_inputs(self): super().test_callback_inputs() def test_stable_cascade_combined_prompt_embeds(self): device = "cpu" components = self.get_dummy_components() pipe = StableCascadeCombinedPipeline(**components) pipe.set_progress_bar_config(disable=None) prompt = "A photograph of a shiba inu, wearing a hat" ( prompt_embeds, prompt_embeds_pooled, negative_prompt_embeds, negative_prompt_embeds_pooled, ) = pipe.prior_pipe.encode_prompt(device, 1, 1, False, prompt=prompt) generator = torch.Generator(device=device) output_prompt = pipe( prompt=prompt, num_inference_steps=1, prior_num_inference_steps=1, output_type="np", generator=generator.manual_seed(0), ) output_prompt_embeds = pipe( prompt=None, prompt_embeds=prompt_embeds, prompt_embeds_pooled=prompt_embeds_pooled, negative_prompt_embeds=negative_prompt_embeds, negative_prompt_embeds_pooled=negative_prompt_embeds_pooled, num_inference_steps=1, prior_num_inference_steps=1, output_type="np", generator=generator.manual_seed(0), ) assert np.abs(output_prompt.images - output_prompt_embeds.images).max() < 1e-5
diffusers/tests/pipelines/stable_cascade/test_stable_cascade_combined.py/0
{ "file_path": "diffusers/tests/pipelines/stable_cascade/test_stable_cascade_combined.py", "repo_id": "diffusers", "token_count": 4571 }
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNet2DConditionModel, ) from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, nightly, numpy_cosine_similarity_distance, require_torch_gpu, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineFromPipeTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class StableDiffusionDiffEditPipelineFastTests( PipelineLatentTesterMixin, PipelineTesterMixin, PipelineFromPipeTesterMixin, unittest.TestCase ): pipeline_class = StableDiffusionDiffEditPipeline params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"} batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"} image_params = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess image_latents_params = frozenset([]) def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, # SD2-specific config below attention_head_dim=(2, 4), use_linear_projection=True, ) scheduler = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, ) inverse_scheduler = DDIMInverseScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_zero=False, ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, sample_size=128, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, # SD2-specific config below hidden_act="gelu", projection_dim=512, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") components = { "unet": unet, "scheduler": scheduler, "inverse_scheduler": inverse_scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def get_dummy_inputs(self, device, seed=0): mask = floats_tensor((1, 16, 16), rng=random.Random(seed)).to(device) latents = floats_tensor((1, 2, 4, 16, 16), rng=random.Random(seed)).to(device) if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "a dog and a newt", "mask_image": mask, "image_latents": latents, "generator": generator, "num_inference_steps": 2, "inpaint_strength": 1.0, "guidance_scale": 6.0, "output_type": "np", } return inputs def get_dummy_mask_inputs(self, device, seed=0): image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) image = image.cpu().permute(0, 2, 3, 1)[0] image = Image.fromarray(np.uint8(image)).convert("RGB") if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "image": image, "source_prompt": "a cat and a frog", "target_prompt": "a dog and a newt", "generator": generator, "num_inference_steps": 2, "num_maps_per_mask": 2, "mask_encode_strength": 1.0, "guidance_scale": 6.0, "output_type": "np", } return inputs def get_dummy_inversion_inputs(self, device, seed=0): image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) image = image.cpu().permute(0, 2, 3, 1)[0] image = Image.fromarray(np.uint8(image)).convert("RGB") if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "image": image, "prompt": "a cat and a frog", "generator": generator, "num_inference_steps": 2, "inpaint_strength": 1.0, "guidance_scale": 6.0, "decode_latents": True, "output_type": "np", } return inputs def test_save_load_optional_components(self): if not hasattr(self.pipeline_class, "_optional_components"): return components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(pipe, optional_component, None) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components}) inputs = self.get_dummy_inputs(torch_device) output = pipe(**inputs)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(tmpdir) pipe_loaded = self.pipeline_class.from_pretrained(tmpdir) pipe_loaded.to(torch_device) pipe_loaded.set_progress_bar_config(disable=None) for optional_component in pipe._optional_components: self.assertTrue( getattr(pipe_loaded, optional_component) is None, f"`{optional_component}` did not stay set to None after loading.", ) inputs = self.get_dummy_inputs(torch_device) output_loaded = pipe_loaded(**inputs)[0] max_diff = np.abs(output - output_loaded).max() self.assertLess(max_diff, 1e-4) def test_mask(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_mask_inputs(device) mask = pipe.generate_mask(**inputs) mask_slice = mask[0, -3:, -3:] self.assertEqual(mask.shape, (1, 16, 16)) expected_slice = np.array([0] * 9) max_diff = np.abs(mask_slice.flatten() - expected_slice).max() self.assertLessEqual(max_diff, 1e-3) self.assertEqual(mask[0, -3, -4], 0) def test_inversion(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inversion_inputs(device) image = pipe.invert(**inputs).images image_slice = image[0, -1, -3:, -3:] self.assertEqual(image.shape, (2, 32, 32, 3)) expected_slice = np.array( [0.5160, 0.5115, 0.5060, 0.5456, 0.4704, 0.5060, 0.5019, 0.4405, 0.4726], ) max_diff = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(max_diff, 1e-3) def test_inference_batch_single_identical(self): super().test_inference_batch_single_identical(expected_max_diff=5e-3) def test_inversion_dpm(self): device = "cpu" components = self.get_dummy_components() scheduler_args = {"beta_start": 0.00085, "beta_end": 0.012, "beta_schedule": "scaled_linear"} components["scheduler"] = DPMSolverMultistepScheduler(**scheduler_args) components["inverse_scheduler"] = DPMSolverMultistepInverseScheduler(**scheduler_args) pipe = self.pipeline_class(**components) pipe.to(device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inversion_inputs(device) image = pipe.invert(**inputs).images image_slice = image[0, -1, -3:, -3:] self.assertEqual(image.shape, (2, 32, 32, 3)) expected_slice = np.array( [0.5305, 0.4673, 0.5314, 0.5308, 0.4886, 0.5279, 0.5142, 0.4724, 0.4892], ) max_diff = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(max_diff, 1e-3) @require_torch_gpu @nightly class StableDiffusionDiffEditPipelineIntegrationTests(unittest.TestCase): def setUp(self): super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def setUpClass(cls): raw_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png" ) raw_image = raw_image.convert("RGB").resize((256, 256)) cls.raw_image = raw_image def test_stable_diffusion_diffedit_full(self): generator = torch.manual_seed(0) pipe = StableDiffusionDiffEditPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1-base", safety_checker=None, torch_dtype=torch.float16 ) pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) pipe.scheduler.clip_sample = True pipe.inverse_scheduler = DDIMInverseScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) source_prompt = "a bowl of fruit" target_prompt = "a bowl of pears" mask_image = pipe.generate_mask( image=self.raw_image, source_prompt=source_prompt, target_prompt=target_prompt, generator=generator, ) inv_latents = pipe.invert( prompt=source_prompt, image=self.raw_image, inpaint_strength=0.7, generator=generator, num_inference_steps=5, ).latents image = pipe( prompt=target_prompt, mask_image=mask_image, image_latents=inv_latents, generator=generator, negative_prompt=source_prompt, inpaint_strength=0.7, num_inference_steps=5, output_type="np", ).images[0] expected_image = ( np.array( load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/diffedit/pears.png" ).resize((256, 256)) ) / 255 ) assert numpy_cosine_similarity_distance(expected_image.flatten(), image.flatten()) < 2e-1 @nightly @require_torch_gpu class StableDiffusionDiffEditPipelineNightlyTests(unittest.TestCase): def setUp(self): super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def setUpClass(cls): raw_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png" ) raw_image = raw_image.convert("RGB").resize((768, 768)) cls.raw_image = raw_image def test_stable_diffusion_diffedit_dpm(self): generator = torch.manual_seed(0) pipe = StableDiffusionDiffEditPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1", safety_checker=None, torch_dtype=torch.float16 ) pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.inverse_scheduler = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) source_prompt = "a bowl of fruit" target_prompt = "a bowl of pears" mask_image = pipe.generate_mask( image=self.raw_image, source_prompt=source_prompt, target_prompt=target_prompt, generator=generator, ) inv_latents = pipe.invert( prompt=source_prompt, image=self.raw_image, inpaint_strength=0.7, generator=generator, num_inference_steps=25, ).latents image = pipe( prompt=target_prompt, mask_image=mask_image, image_latents=inv_latents, generator=generator, negative_prompt=source_prompt, inpaint_strength=0.7, num_inference_steps=25, output_type="np", ).images[0] expected_image = ( np.array( load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/diffedit/pears.png" ).resize((768, 768)) ) / 255 ) assert np.abs((expected_image - image).max()) < 5e-1
diffusers/tests/pipelines/stable_diffusion_2/test_stable_diffusion_diffedit.py/0
{ "file_path": "diffusers/tests/pipelines/stable_diffusion_2/test_stable_diffusion_diffedit.py", "repo_id": "diffusers", "token_count": 7367 }
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import torch from transformers import ( CLIPProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, StableDiffusionGLIGENTextImagePipeline, UNet2DConditionModel, ) from diffusers.pipelines.stable_diffusion import CLIPImageProjection from diffusers.utils import load_image from diffusers.utils.testing_utils import enable_full_determinism, torch_device from ..pipeline_params import ( TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS, ) from ..test_pipelines_common import ( PipelineFromPipeTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class GligenTextImagePipelineFastTests( PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, PipelineFromPipeTesterMixin, unittest.TestCase, ): pipeline_class = StableDiffusionGLIGENTextImagePipeline params = TEXT_TO_IMAGE_PARAMS | {"gligen_phrases", "gligen_images", "gligen_boxes"} batch_params = TEXT_TO_IMAGE_BATCH_PARAMS image_params = TEXT_TO_IMAGE_IMAGE_PARAMS image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS supports_dduf = False def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, attention_type="gated-text-image", ) # unet.position_net = PositionNet(32,32) scheduler = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, sample_size=128, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") image_encoder_config = CLIPVisionConfig( hidden_size=32, projection_dim=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, ) image_encoder = CLIPVisionModelWithProjection(image_encoder_config) processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14") image_project = CLIPImageProjection(hidden_size=32) components = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, "image_encoder": image_encoder, "image_project": image_project, "processor": processor, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) gligen_images = load_image( "https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/gligen/livingroom_modern.png" ) inputs = { "prompt": "A modern livingroom", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "gligen_phrases": ["a birthday cake"], "gligen_images": [gligen_images], "gligen_boxes": [[0.2676, 0.6088, 0.4773, 0.7183]], "output_type": "np", } return inputs def test_dict_tuple_outputs_equivalent(self): expected_slice = None if torch_device == "cpu": expected_slice = np.array([0.5052, 0.5546, 0.4567, 0.4770, 0.5195, 0.4085, 0.5026, 0.4909, 0.4495]) super().test_dict_tuple_outputs_equivalent(expected_slice=expected_slice) def test_stable_diffusion_gligen_text_image_default_case(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionGLIGENTextImagePipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.5069, 0.5561, 0.4577, 0.4792, 0.5203, 0.4089, 0.5039, 0.4919, 0.4499]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_gligen_k_euler_ancestral(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionGLIGENTextImagePipeline(**components) sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.425, 0.494, 0.429, 0.469, 0.525, 0.417, 0.533, 0.5, 0.47]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_attention_slicing_forward_pass(self): super().test_attention_slicing_forward_pass(expected_max_diff=3e-3) def test_inference_batch_single_identical(self): super().test_inference_batch_single_identical(batch_size=3, expected_max_diff=3e-3)
diffusers/tests/pipelines/stable_diffusion_gligen_text_image/test_stable_diffusion_gligen_text_image.py/0
{ "file_path": "diffusers/tests/pipelines/stable_diffusion_gligen_text_image/test_stable_diffusion_gligen_text_image.py", "repo_id": "diffusers", "token_count": 3447 }
# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( AutoencoderKL, AutoencoderTiny, EDMDPMSolverMultistepScheduler, EulerDiscreteScheduler, LCMScheduler, StableDiffusionXLImg2ImgPipeline, UNet2DConditionModel, ) from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS, ) from ..test_pipelines_common import ( IPAdapterTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, SDXLOptionalComponentsTesterMixin, ) enable_full_determinism() class StableDiffusionXLImg2ImgPipelineFastTests( IPAdapterTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, unittest.TestCase ): pipeline_class = StableDiffusionXLImg2ImgPipeline params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"} batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS image_latents_params = IMAGE_TO_IMAGE_IMAGE_PARAMS callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS.union( {"add_text_embeds", "add_time_ids", "add_neg_time_ids"} ) supports_dduf = False def get_dummy_components(self, skip_first_text_encoder=False, time_cond_proj_dim=None): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, time_cond_proj_dim=time_cond_proj_dim, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), # SD2-specific config below attention_head_dim=(2, 4), use_linear_projection=True, addition_embed_type="text_time", addition_time_embed_dim=8, transformer_layers_per_block=(1, 2), projection_class_embeddings_input_dim=72, # 5 * 8 + 32 cross_attention_dim=64 if not skip_first_text_encoder else 32, ) scheduler = EulerDiscreteScheduler( beta_start=0.00085, beta_end=0.012, steps_offset=1, beta_schedule="scaled_linear", timestep_spacing="leading", ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, sample_size=128, ) torch.manual_seed(0) image_encoder_config = CLIPVisionConfig( hidden_size=32, image_size=224, projection_dim=32, intermediate_size=37, num_attention_heads=4, num_channels=3, num_hidden_layers=5, patch_size=14, ) image_encoder = CLIPVisionModelWithProjection(image_encoder_config) feature_extractor = CLIPImageProcessor( crop_size=224, do_center_crop=True, do_normalize=True, do_resize=True, image_mean=[0.48145466, 0.4578275, 0.40821073], image_std=[0.26862954, 0.26130258, 0.27577711], resample=3, size=224, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, # SD2-specific config below hidden_act="gelu", projection_dim=32, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config) tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") components = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder if not skip_first_text_encoder else None, "tokenizer": tokenizer if not skip_first_text_encoder else None, "text_encoder_2": text_encoder_2, "tokenizer_2": tokenizer_2, "requires_aesthetics_score": True, "image_encoder": image_encoder, "feature_extractor": feature_extractor, } return components def get_dummy_tiny_autoencoder(self): return AutoencoderTiny(in_channels=3, out_channels=3, latent_channels=4) def test_components_function(self): init_components = self.get_dummy_components() init_components.pop("requires_aesthetics_score") pipe = self.pipeline_class(**init_components) self.assertTrue(hasattr(pipe, "components")) self.assertTrue(set(pipe.components.keys()) == set(init_components.keys())) def get_dummy_inputs(self, device, seed=0): image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) image = image / 2 + 0.5 if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 5.0, "output_type": "np", "strength": 0.8, } return inputs def test_stable_diffusion_xl_img2img_euler(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionXLImg2ImgPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) expected_slice = np.array([0.4664, 0.4886, 0.4403, 0.6902, 0.5592, 0.4534, 0.5931, 0.5951, 0.5224]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_xl_img2img_euler_lcm(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components(time_cond_proj_dim=256) sd_pipe = StableDiffusionXLImg2ImgPipeline(**components) sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.config) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) expected_slice = np.array([0.5604, 0.4352, 0.4717, 0.5844, 0.5101, 0.6704, 0.6290, 0.5460, 0.5286]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_stable_diffusion_xl_img2img_euler_lcm_custom_timesteps(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components(time_cond_proj_dim=256) sd_pipe = StableDiffusionXLImg2ImgPipeline(**components) sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.config) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) del inputs["num_inference_steps"] inputs["timesteps"] = [999, 499] image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) expected_slice = np.array([0.5604, 0.4352, 0.4717, 0.5844, 0.5101, 0.6704, 0.6290, 0.5460, 0.5286]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_attention_slicing_forward_pass(self): super().test_attention_slicing_forward_pass(expected_max_diff=3e-3) def test_inference_batch_single_identical(self): super().test_inference_batch_single_identical(expected_max_diff=3e-3) # TODO(Patrick, Sayak) - skip for now as this requires more refiner tests def test_save_load_optional_components(self): pass def test_stable_diffusion_xl_img2img_negative_prompt_embeds(self): components = self.get_dummy_components() sd_pipe = StableDiffusionXLImg2ImgPipeline(**components) sd_pipe = sd_pipe.to(torch_device) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) # forward without prompt embeds generator_device = "cpu" inputs = self.get_dummy_inputs(generator_device) negative_prompt = 3 * ["this is a negative prompt"] inputs["negative_prompt"] = negative_prompt inputs["prompt"] = 3 * [inputs["prompt"]] output = sd_pipe(**inputs) image_slice_1 = output.images[0, -3:, -3:, -1] # forward with prompt embeds generator_device = "cpu" inputs = self.get_dummy_inputs(generator_device) negative_prompt = 3 * ["this is a negative prompt"] prompt = 3 * [inputs.pop("prompt")] ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = sd_pipe.encode_prompt(prompt, negative_prompt=negative_prompt) output = sd_pipe( **inputs, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, ) image_slice_2 = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 def test_ip_adapter(self): expected_pipe_slice = None if torch_device == "cpu": expected_pipe_slice = np.array([0.5133, 0.4626, 0.4970, 0.6273, 0.5160, 0.6891, 0.6639, 0.5892, 0.5709]) return super().test_ip_adapter(expected_pipe_slice=expected_pipe_slice) def test_stable_diffusion_xl_img2img_tiny_autoencoder(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionXLImg2ImgPipeline(**components) sd_pipe.vae = self.get_dummy_tiny_autoencoder() sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 32, 32, 3) expected_slice = np.array([0.0, 0.0, 0.0106, 0.0, 0.0, 0.0087, 0.0052, 0.0062, 0.0177]) assert np.allclose(image_slice, expected_slice, atol=1e-4, rtol=1e-4) @require_torch_gpu def test_stable_diffusion_xl_offloads(self): pipes = [] components = self.get_dummy_components() sd_pipe = StableDiffusionXLImg2ImgPipeline(**components).to(torch_device) pipes.append(sd_pipe) components = self.get_dummy_components() sd_pipe = StableDiffusionXLImg2ImgPipeline(**components) sd_pipe.enable_model_cpu_offload() pipes.append(sd_pipe) components = self.get_dummy_components() sd_pipe = StableDiffusionXLImg2ImgPipeline(**components) sd_pipe.enable_sequential_cpu_offload() pipes.append(sd_pipe) image_slices = [] for pipe in pipes: pipe.unet.set_default_attn_processor() generator_device = "cpu" inputs = self.get_dummy_inputs(generator_device) image = pipe(**inputs).images image_slices.append(image[0, -3:, -3:, -1].flatten()) assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3 def test_stable_diffusion_xl_multi_prompts(self): components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components).to(torch_device) # forward with single prompt generator_device = "cpu" inputs = self.get_dummy_inputs(generator_device) inputs["num_inference_steps"] = 5 output = sd_pipe(**inputs) image_slice_1 = output.images[0, -3:, -3:, -1] # forward with same prompt duplicated generator_device = "cpu" inputs = self.get_dummy_inputs(generator_device) inputs["num_inference_steps"] = 5 inputs["prompt_2"] = inputs["prompt"] output = sd_pipe(**inputs) image_slice_2 = output.images[0, -3:, -3:, -1] # ensure the results are equal assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 # forward with different prompt generator_device = "cpu" inputs = self.get_dummy_inputs(generator_device) inputs["num_inference_steps"] = 5 inputs["prompt_2"] = "different prompt" output = sd_pipe(**inputs) image_slice_3 = output.images[0, -3:, -3:, -1] # ensure the results are not equal assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4 # manually set a negative_prompt generator_device = "cpu" inputs = self.get_dummy_inputs(generator_device) inputs["num_inference_steps"] = 5 inputs["negative_prompt"] = "negative prompt" output = sd_pipe(**inputs) image_slice_1 = output.images[0, -3:, -3:, -1] # forward with same negative_prompt duplicated generator_device = "cpu" inputs = self.get_dummy_inputs(generator_device) inputs["num_inference_steps"] = 5 inputs["negative_prompt"] = "negative prompt" inputs["negative_prompt_2"] = inputs["negative_prompt"] output = sd_pipe(**inputs) image_slice_2 = output.images[0, -3:, -3:, -1] # ensure the results are equal assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 # forward with different negative_prompt generator_device = "cpu" inputs = self.get_dummy_inputs(generator_device) inputs["num_inference_steps"] = 5 inputs["negative_prompt"] = "negative prompt" inputs["negative_prompt_2"] = "different negative prompt" output = sd_pipe(**inputs) image_slice_3 = output.images[0, -3:, -3:, -1] # ensure the results are not equal assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4 def test_stable_diffusion_xl_img2img_negative_conditions(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice_with_no_neg_conditions = image[0, -3:, -3:, -1] image = sd_pipe( **inputs, negative_original_size=(512, 512), negative_crops_coords_top_left=( 0, 0, ), negative_target_size=(1024, 1024), ).images image_slice_with_neg_conditions = image[0, -3:, -3:, -1] assert ( np.abs(image_slice_with_no_neg_conditions.flatten() - image_slice_with_neg_conditions.flatten()).max() > 1e-4 ) def test_pipeline_interrupt(self): components = self.get_dummy_components() sd_pipe = StableDiffusionXLImg2ImgPipeline(**components) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) prompt = "hey" num_inference_steps = 5 # store intermediate latents from the generation process class PipelineState: def __init__(self): self.state = [] def apply(self, pipe, i, t, callback_kwargs): self.state.append(callback_kwargs["latents"]) return callback_kwargs pipe_state = PipelineState() sd_pipe( prompt, image=inputs["image"], strength=0.8, num_inference_steps=num_inference_steps, output_type="np", generator=torch.Generator("cpu").manual_seed(0), callback_on_step_end=pipe_state.apply, ).images # interrupt generation at step index interrupt_step_idx = 1 def callback_on_step_end(pipe, i, t, callback_kwargs): if i == interrupt_step_idx: pipe._interrupt = True return callback_kwargs output_interrupted = sd_pipe( prompt, image=inputs["image"], strength=0.8, num_inference_steps=num_inference_steps, output_type="latent", generator=torch.Generator("cpu").manual_seed(0), callback_on_step_end=callback_on_step_end, ).images # fetch intermediate latents at the interrupted step # from the completed generation process intermediate_latent = pipe_state.state[interrupt_step_idx] # compare the intermediate latent to the output of the interrupted process # they should be the same assert torch.allclose(intermediate_latent, output_interrupted, atol=1e-4) class StableDiffusionXLImg2ImgRefinerOnlyPipelineFastTests( PipelineLatentTesterMixin, PipelineTesterMixin, SDXLOptionalComponentsTesterMixin, unittest.TestCase ): pipeline_class = StableDiffusionXLImg2ImgPipeline params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"} batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS image_latents_params = IMAGE_TO_IMAGE_IMAGE_PARAMS def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), # SD2-specific config below attention_head_dim=(2, 4), use_linear_projection=True, addition_embed_type="text_time", addition_time_embed_dim=8, transformer_layers_per_block=(1, 2), projection_class_embeddings_input_dim=72, # 5 * 8 + 32 cross_attention_dim=32, ) scheduler = EulerDiscreteScheduler( beta_start=0.00085, beta_end=0.012, steps_offset=1, beta_schedule="scaled_linear", timestep_spacing="leading", ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, sample_size=128, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, # SD2-specific config below hidden_act="gelu", projection_dim=32, ) text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config) tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") components = { "unet": unet, "scheduler": scheduler, "vae": vae, "tokenizer": None, "text_encoder": None, "text_encoder_2": text_encoder_2, "tokenizer_2": tokenizer_2, "requires_aesthetics_score": True, "image_encoder": None, "feature_extractor": None, } return components def test_components_function(self): init_components = self.get_dummy_components() init_components.pop("requires_aesthetics_score") pipe = self.pipeline_class(**init_components) self.assertTrue(hasattr(pipe, "components")) self.assertTrue(set(pipe.components.keys()) == set(init_components.keys())) def get_dummy_inputs(self, device, seed=0): image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) image = image / 2 + 0.5 if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 5.0, "output_type": "np", "strength": 0.8, } return inputs def test_stable_diffusion_xl_img2img_euler(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = StableDiffusionXLImg2ImgPipeline(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) expected_slice = np.array([0.4745, 0.4924, 0.4338, 0.6468, 0.5547, 0.4419, 0.5646, 0.5897, 0.5146]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @require_torch_gpu def test_stable_diffusion_xl_offloads(self): pipes = [] components = self.get_dummy_components() sd_pipe = StableDiffusionXLImg2ImgPipeline(**components).to(torch_device) pipes.append(sd_pipe) components = self.get_dummy_components() sd_pipe = StableDiffusionXLImg2ImgPipeline(**components) sd_pipe.enable_model_cpu_offload() pipes.append(sd_pipe) components = self.get_dummy_components() sd_pipe = StableDiffusionXLImg2ImgPipeline(**components) sd_pipe.enable_sequential_cpu_offload() pipes.append(sd_pipe) image_slices = [] for pipe in pipes: pipe.unet.set_default_attn_processor() generator_device = "cpu" inputs = self.get_dummy_inputs(generator_device) image = pipe(**inputs).images image_slices.append(image[0, -3:, -3:, -1].flatten()) assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3 def test_stable_diffusion_xl_img2img_negative_conditions(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = self.pipeline_class(**components) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = sd_pipe(**inputs).images image_slice_with_no_neg_conditions = image[0, -3:, -3:, -1] image = sd_pipe( **inputs, negative_original_size=(512, 512), negative_crops_coords_top_left=( 0, 0, ), negative_target_size=(1024, 1024), ).images image_slice_with_neg_conditions = image[0, -3:, -3:, -1] assert ( np.abs(image_slice_with_no_neg_conditions.flatten() - image_slice_with_neg_conditions.flatten()).max() > 1e-4 ) def test_stable_diffusion_xl_img2img_negative_prompt_embeds(self): components = self.get_dummy_components() sd_pipe = StableDiffusionXLImg2ImgPipeline(**components) sd_pipe = sd_pipe.to(torch_device) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) # forward without prompt embeds generator_device = "cpu" inputs = self.get_dummy_inputs(generator_device) negative_prompt = 3 * ["this is a negative prompt"] inputs["negative_prompt"] = negative_prompt inputs["prompt"] = 3 * [inputs["prompt"]] output = sd_pipe(**inputs) image_slice_1 = output.images[0, -3:, -3:, -1] # forward with prompt embeds generator_device = "cpu" inputs = self.get_dummy_inputs(generator_device) negative_prompt = 3 * ["this is a negative prompt"] prompt = 3 * [inputs.pop("prompt")] ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = sd_pipe.encode_prompt(prompt, negative_prompt=negative_prompt) output = sd_pipe( **inputs, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, ) image_slice_2 = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 def test_stable_diffusion_xl_img2img_prompt_embeds_only(self): components = self.get_dummy_components() sd_pipe = StableDiffusionXLImg2ImgPipeline(**components) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) # forward without prompt embeds generator_device = "cpu" inputs = self.get_dummy_inputs(generator_device) inputs["prompt"] = 3 * [inputs["prompt"]] output = sd_pipe(**inputs) image_slice_1 = output.images[0, -3:, -3:, -1] # forward with prompt embeds generator_device = "cpu" inputs = self.get_dummy_inputs(generator_device) prompt = 3 * [inputs.pop("prompt")] ( prompt_embeds, _, pooled_prompt_embeds, _, ) = sd_pipe.encode_prompt(prompt) output = sd_pipe( **inputs, prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, ) image_slice_2 = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 def test_attention_slicing_forward_pass(self): super().test_attention_slicing_forward_pass(expected_max_diff=3e-3) def test_inference_batch_single_identical(self): super().test_inference_batch_single_identical(expected_max_diff=3e-3) def test_save_load_optional_components(self): self._test_save_load_optional_components() @slow class StableDiffusionXLImg2ImgPipelineIntegrationTests(unittest.TestCase): def setUp(self): super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def test_stable_diffusion_xl_img2img_playground(self): torch.manual_seed(0) model_path = "playgroundai/playground-v2.5-1024px-aesthetic" sd_pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained( model_path, torch_dtype=torch.float16, variant="fp16", add_watermarker=False ) sd_pipe.enable_model_cpu_offload() sd_pipe.scheduler = EDMDPMSolverMultistepScheduler.from_config( sd_pipe.scheduler.config, use_karras_sigmas=True ) sd_pipe.set_progress_bar_config(disable=None) prompt = "a photo of an astronaut riding a horse on mars" url = "https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/aa_xl/000000009.png" init_image = load_image(url).convert("RGB") image = sd_pipe( prompt, num_inference_steps=30, guidance_scale=8.0, image=init_image, height=1024, width=1024, output_type="np", ).images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 1024, 1024, 3) expected_slice = np.array([0.3519, 0.3149, 0.3364, 0.3505, 0.3402, 0.3371, 0.3554, 0.3495, 0.3333]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
diffusers/tests/pipelines/stable_diffusion_xl/test_stable_diffusion_xl_img2img.py/0
{ "file_path": "diffusers/tests/pipelines/stable_diffusion_xl/test_stable_diffusion_xl_img2img.py", "repo_id": "diffusers", "token_count": 14633 }
# coding=utf-8 # Copyright 2024 The HuggingFace Team Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a clone of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import os import tempfile import unittest import numpy as np import pytest import safetensors.torch from huggingface_hub import hf_hub_download from diffusers import BitsAndBytesConfig, DiffusionPipeline, FluxTransformer2DModel, SD3Transformer2DModel from diffusers.utils import is_accelerate_version, logging from diffusers.utils.testing_utils import ( CaptureLogger, is_bitsandbytes_available, is_torch_available, is_transformers_available, load_pt, numpy_cosine_similarity_distance, require_accelerate, require_bitsandbytes_version_greater, require_torch, require_torch_gpu, require_transformers_version_greater, slow, torch_device, ) def get_some_linear_layer(model): if model.__class__.__name__ in ["SD3Transformer2DModel", "FluxTransformer2DModel"]: return model.transformer_blocks[0].attn.to_q else: return NotImplementedError("Don't know what layer to retrieve here.") if is_transformers_available(): from transformers import BitsAndBytesConfig as BnbConfig from transformers import T5EncoderModel if is_torch_available(): import torch import torch.nn as nn class LoRALayer(nn.Module): """Wraps a linear layer with LoRA-like adapter - Used for testing purposes only Taken from https://github.com/huggingface/transformers/blob/566302686a71de14125717dea9a6a45b24d42b37/tests/quantization/bnb/test_4bit.py#L62C5-L78C77 """ def __init__(self, module: nn.Module, rank: int): super().__init__() self.module = module self.adapter = nn.Sequential( nn.Linear(module.in_features, rank, bias=False), nn.Linear(rank, module.out_features, bias=False), ) small_std = (2.0 / (5 * min(module.in_features, module.out_features))) ** 0.5 nn.init.normal_(self.adapter[0].weight, std=small_std) nn.init.zeros_(self.adapter[1].weight) self.adapter.to(module.weight.device) def forward(self, input, *args, **kwargs): return self.module(input, *args, **kwargs) + self.adapter(input) if is_bitsandbytes_available(): import bitsandbytes as bnb @require_bitsandbytes_version_greater("0.43.2") @require_accelerate @require_torch @require_torch_gpu @slow class Base4bitTests(unittest.TestCase): # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only SD3 to test our module model_name = "stabilityai/stable-diffusion-3-medium-diffusers" # This was obtained on audace so the number might slightly change expected_rel_difference = 3.69 prompt = "a beautiful sunset amidst the mountains." num_inference_steps = 10 seed = 0 def get_dummy_inputs(self): prompt_embeds = load_pt( "https://huggingface.co/datasets/hf-internal-testing/bnb-diffusers-testing-artifacts/resolve/main/prompt_embeds.pt" ) pooled_prompt_embeds = load_pt( "https://huggingface.co/datasets/hf-internal-testing/bnb-diffusers-testing-artifacts/resolve/main/pooled_prompt_embeds.pt" ) latent_model_input = load_pt( "https://huggingface.co/datasets/hf-internal-testing/bnb-diffusers-testing-artifacts/resolve/main/latent_model_input.pt" ) input_dict_for_transformer = { "hidden_states": latent_model_input, "encoder_hidden_states": prompt_embeds, "pooled_projections": pooled_prompt_embeds, "timestep": torch.Tensor([1.0]), "return_dict": False, } return input_dict_for_transformer class BnB4BitBasicTests(Base4bitTests): def setUp(self): gc.collect() torch.cuda.empty_cache() # Models self.model_fp16 = SD3Transformer2DModel.from_pretrained( self.model_name, subfolder="transformer", torch_dtype=torch.float16 ) nf4_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16, ) self.model_4bit = SD3Transformer2DModel.from_pretrained( self.model_name, subfolder="transformer", quantization_config=nf4_config ) def tearDown(self): del self.model_fp16 del self.model_4bit gc.collect() torch.cuda.empty_cache() def test_quantization_num_parameters(self): r""" Test if the number of returned parameters is correct """ num_params_4bit = self.model_4bit.num_parameters() num_params_fp16 = self.model_fp16.num_parameters() self.assertEqual(num_params_4bit, num_params_fp16) def test_quantization_config_json_serialization(self): r""" A simple test to check if the quantization config is correctly serialized and deserialized """ config = self.model_4bit.config self.assertTrue("quantization_config" in config) _ = config["quantization_config"].to_dict() _ = config["quantization_config"].to_diff_dict() _ = config["quantization_config"].to_json_string() def test_memory_footprint(self): r""" A simple test to check if the model conversion has been done correctly by checking on the memory footprint of the converted model and the class type of the linear layers of the converted models """ mem_fp16 = self.model_fp16.get_memory_footprint() mem_4bit = self.model_4bit.get_memory_footprint() self.assertAlmostEqual(mem_fp16 / mem_4bit, self.expected_rel_difference, delta=1e-2) linear = get_some_linear_layer(self.model_4bit) self.assertTrue(linear.weight.__class__ == bnb.nn.Params4bit) def test_original_dtype(self): r""" A simple test to check if the model succesfully stores the original dtype """ self.assertTrue("_pre_quantization_dtype" in self.model_4bit.config) self.assertFalse("_pre_quantization_dtype" in self.model_fp16.config) self.assertTrue(self.model_4bit.config["_pre_quantization_dtype"] == torch.float16) def test_keep_modules_in_fp32(self): r""" A simple tests to check if the modules under `_keep_in_fp32_modules` are kept in fp32. Also ensures if inference works. """ fp32_modules = SD3Transformer2DModel._keep_in_fp32_modules SD3Transformer2DModel._keep_in_fp32_modules = ["proj_out"] nf4_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16, ) model = SD3Transformer2DModel.from_pretrained( self.model_name, subfolder="transformer", quantization_config=nf4_config ) for name, module in model.named_modules(): if isinstance(module, torch.nn.Linear): if name in model._keep_in_fp32_modules: self.assertTrue(module.weight.dtype == torch.float32) else: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uint8) # test if inference works. with torch.no_grad() and torch.amp.autocast("cuda", dtype=torch.float16): input_dict_for_transformer = self.get_dummy_inputs() model_inputs = { k: v.to(device=torch_device) for k, v in input_dict_for_transformer.items() if not isinstance(v, bool) } model_inputs.update({k: v for k, v in input_dict_for_transformer.items() if k not in model_inputs}) _ = model(**model_inputs) SD3Transformer2DModel._keep_in_fp32_modules = fp32_modules def test_linear_are_4bit(self): r""" A simple test to check if the model conversion has been done correctly by checking on the memory footprint of the converted model and the class type of the linear layers of the converted models """ self.model_fp16.get_memory_footprint() self.model_4bit.get_memory_footprint() for name, module in self.model_4bit.named_modules(): if isinstance(module, torch.nn.Linear): if name not in ["proj_out"]: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uint8) def test_config_from_pretrained(self): transformer_4bit = FluxTransformer2DModel.from_pretrained( "hf-internal-testing/flux.1-dev-nf4-pkg", subfolder="transformer" ) linear = get_some_linear_layer(transformer_4bit) self.assertTrue(linear.weight.__class__ == bnb.nn.Params4bit) self.assertTrue(hasattr(linear.weight, "quant_state")) self.assertTrue(linear.weight.quant_state.__class__ == bnb.functional.QuantState) def test_device_assignment(self): mem_before = self.model_4bit.get_memory_footprint() # Move to CPU self.model_4bit.to("cpu") self.assertEqual(self.model_4bit.device.type, "cpu") self.assertAlmostEqual(self.model_4bit.get_memory_footprint(), mem_before) # Move back to CUDA device for device in [0, "cuda", "cuda:0", "call()"]: if device == "call()": self.model_4bit.cuda(0) else: self.model_4bit.to(device) self.assertEqual(self.model_4bit.device, torch.device(0)) self.assertAlmostEqual(self.model_4bit.get_memory_footprint(), mem_before) self.model_4bit.to("cpu") def test_device_and_dtype_assignment(self): r""" Test whether trying to cast (or assigning a device to) a model after converting it in 4-bit will throw an error. Checks also if other models are casted correctly. Device placement, however, is supported. """ with self.assertRaises(ValueError): # Tries with a `dtype` self.model_4bit.to(torch.float16) with self.assertRaises(ValueError): # Tries with a `device` and `dtype` self.model_4bit.to(device="cuda:0", dtype=torch.float16) with self.assertRaises(ValueError): # Tries with a cast self.model_4bit.float() with self.assertRaises(ValueError): # Tries with a cast self.model_4bit.half() # This should work self.model_4bit.to("cuda") # Test if we did not break anything self.model_fp16 = self.model_fp16.to(dtype=torch.float32, device=torch_device) input_dict_for_transformer = self.get_dummy_inputs() model_inputs = { k: v.to(dtype=torch.float32, device=torch_device) for k, v in input_dict_for_transformer.items() if not isinstance(v, bool) } model_inputs.update({k: v for k, v in input_dict_for_transformer.items() if k not in model_inputs}) with torch.no_grad(): _ = self.model_fp16(**model_inputs) # Check this does not throw an error _ = self.model_fp16.to("cpu") # Check this does not throw an error _ = self.model_fp16.half() # Check this does not throw an error _ = self.model_fp16.float() # Check that this does not throw an error _ = self.model_fp16.cuda() def test_bnb_4bit_wrong_config(self): r""" Test whether creating a bnb config with unsupported values leads to errors. """ with self.assertRaises(ValueError): _ = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_storage="add") def test_bnb_4bit_errors_loading_incorrect_state_dict(self): r""" Test if loading with an incorrect state dict raises an error. """ with tempfile.TemporaryDirectory() as tmpdirname: nf4_config = BitsAndBytesConfig(load_in_4bit=True) model_4bit = SD3Transformer2DModel.from_pretrained( self.model_name, subfolder="transformer", quantization_config=nf4_config ) model_4bit.save_pretrained(tmpdirname) del model_4bit with self.assertRaises(ValueError) as err_context: state_dict = safetensors.torch.load_file( os.path.join(tmpdirname, "diffusion_pytorch_model.safetensors") ) # corrupt the state dict key_to_target = "context_embedder.weight" # can be other keys too. compatible_param = state_dict[key_to_target] corrupted_param = torch.randn(compatible_param.shape[0] - 1, 1) state_dict[key_to_target] = bnb.nn.Params4bit(corrupted_param, requires_grad=False) safetensors.torch.save_file( state_dict, os.path.join(tmpdirname, "diffusion_pytorch_model.safetensors") ) _ = SD3Transformer2DModel.from_pretrained(tmpdirname) assert key_to_target in str(err_context.exception) class BnB4BitTrainingTests(Base4bitTests): def setUp(self): gc.collect() torch.cuda.empty_cache() nf4_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16, ) self.model_4bit = SD3Transformer2DModel.from_pretrained( self.model_name, subfolder="transformer", quantization_config=nf4_config ) def test_training(self): # Step 1: freeze all parameters for param in self.model_4bit.parameters(): param.requires_grad = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability param.data = param.data.to(torch.float32) # Step 2: add adapters for _, module in self.model_4bit.named_modules(): if "Attention" in repr(type(module)): module.to_k = LoRALayer(module.to_k, rank=4) module.to_q = LoRALayer(module.to_q, rank=4) module.to_v = LoRALayer(module.to_v, rank=4) # Step 3: dummy batch input_dict_for_transformer = self.get_dummy_inputs() model_inputs = { k: v.to(device=torch_device) for k, v in input_dict_for_transformer.items() if not isinstance(v, bool) } model_inputs.update({k: v for k, v in input_dict_for_transformer.items() if k not in model_inputs}) # Step 4: Check if the gradient is not None with torch.amp.autocast("cuda", dtype=torch.float16): out = self.model_4bit(**model_inputs)[0] out.norm().backward() for module in self.model_4bit.modules(): if isinstance(module, LoRALayer): self.assertTrue(module.adapter[1].weight.grad is not None) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0) @require_transformers_version_greater("4.44.0") class SlowBnb4BitTests(Base4bitTests): def setUp(self) -> None: gc.collect() torch.cuda.empty_cache() nf4_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16, ) model_4bit = SD3Transformer2DModel.from_pretrained( self.model_name, subfolder="transformer", quantization_config=nf4_config ) self.pipeline_4bit = DiffusionPipeline.from_pretrained( self.model_name, transformer=model_4bit, torch_dtype=torch.float16 ) self.pipeline_4bit.enable_model_cpu_offload() def tearDown(self): del self.pipeline_4bit gc.collect() torch.cuda.empty_cache() def test_quality(self): output = self.pipeline_4bit( prompt=self.prompt, num_inference_steps=self.num_inference_steps, generator=torch.manual_seed(self.seed), output_type="np", ).images out_slice = output[0, -3:, -3:, -1].flatten() expected_slice = np.array([0.1123, 0.1296, 0.1609, 0.1042, 0.1230, 0.1274, 0.0928, 0.1165, 0.1216]) max_diff = numpy_cosine_similarity_distance(expected_slice, out_slice) self.assertTrue(max_diff < 1e-2) def test_generate_quality_dequantize(self): r""" Test that loading the model and unquantize it produce correct results. """ self.pipeline_4bit.transformer.dequantize() output = self.pipeline_4bit( prompt=self.prompt, num_inference_steps=self.num_inference_steps, generator=torch.manual_seed(self.seed), output_type="np", ).images out_slice = output[0, -3:, -3:, -1].flatten() expected_slice = np.array([0.1216, 0.1387, 0.1584, 0.1152, 0.1318, 0.1282, 0.1062, 0.1226, 0.1228]) max_diff = numpy_cosine_similarity_distance(expected_slice, out_slice) self.assertTrue(max_diff < 1e-3) # Since we offloaded the `pipeline_4bit.transformer` to CPU (result of `enable_model_cpu_offload()), check # the following. self.assertTrue(self.pipeline_4bit.transformer.device.type == "cpu") # calling it again shouldn't be a problem _ = self.pipeline_4bit( prompt=self.prompt, num_inference_steps=2, generator=torch.manual_seed(self.seed), output_type="np", ).images def test_moving_to_cpu_throws_warning(self): nf4_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16, ) model_4bit = SD3Transformer2DModel.from_pretrained( self.model_name, subfolder="transformer", quantization_config=nf4_config ) logger = logging.get_logger("diffusers.pipelines.pipeline_utils") logger.setLevel(30) with CaptureLogger(logger) as cap_logger: # Because `model.dtype` will return torch.float16 as SD3 transformer has # a conv layer as the first layer. _ = DiffusionPipeline.from_pretrained( self.model_name, transformer=model_4bit, torch_dtype=torch.float16 ).to("cpu") assert "Pipelines loaded with `dtype=torch.float16`" in cap_logger.out @pytest.mark.xfail( condition=is_accelerate_version("<=", "1.1.1"), reason="Test will pass after https://github.com/huggingface/accelerate/pull/3223 is in a release.", strict=True, ) def test_pipeline_cuda_placement_works_with_nf4(self): transformer_nf4_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16, ) transformer_4bit = SD3Transformer2DModel.from_pretrained( self.model_name, subfolder="transformer", quantization_config=transformer_nf4_config, torch_dtype=torch.float16, ) text_encoder_3_nf4_config = BnbConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16, ) text_encoder_3_4bit = T5EncoderModel.from_pretrained( self.model_name, subfolder="text_encoder_3", quantization_config=text_encoder_3_nf4_config, torch_dtype=torch.float16, ) # CUDA device placement works. pipeline_4bit = DiffusionPipeline.from_pretrained( self.model_name, transformer=transformer_4bit, text_encoder_3=text_encoder_3_4bit, torch_dtype=torch.float16, ).to("cuda") # Check if inference works. _ = pipeline_4bit("table", max_sequence_length=20, num_inference_steps=2) del pipeline_4bit @require_transformers_version_greater("4.44.0") class SlowBnb4BitFluxTests(Base4bitTests): def setUp(self) -> None: gc.collect() torch.cuda.empty_cache() model_id = "hf-internal-testing/flux.1-dev-nf4-pkg" t5_4bit = T5EncoderModel.from_pretrained(model_id, subfolder="text_encoder_2") transformer_4bit = FluxTransformer2DModel.from_pretrained(model_id, subfolder="transformer") self.pipeline_4bit = DiffusionPipeline.from_pretrained( "black-forest-labs/FLUX.1-dev", text_encoder_2=t5_4bit, transformer=transformer_4bit, torch_dtype=torch.float16, ) self.pipeline_4bit.enable_model_cpu_offload() def tearDown(self): del self.pipeline_4bit gc.collect() torch.cuda.empty_cache() def test_quality(self): # keep the resolution and max tokens to a lower number for faster execution. output = self.pipeline_4bit( prompt=self.prompt, num_inference_steps=self.num_inference_steps, generator=torch.manual_seed(self.seed), height=256, width=256, max_sequence_length=64, output_type="np", ).images out_slice = output[0, -3:, -3:, -1].flatten() expected_slice = np.array([0.0583, 0.0586, 0.0632, 0.0815, 0.0813, 0.0947, 0.1040, 0.1145, 0.1265]) max_diff = numpy_cosine_similarity_distance(expected_slice, out_slice) self.assertTrue(max_diff < 1e-3) def test_lora_loading(self): self.pipeline_4bit.load_lora_weights( hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), adapter_name="hyper-sd" ) self.pipeline_4bit.set_adapters("hyper-sd", adapter_weights=0.125) output = self.pipeline_4bit( prompt=self.prompt, height=256, width=256, max_sequence_length=64, output_type="np", num_inference_steps=8, generator=torch.Generator().manual_seed(42), ).images out_slice = output[0, -3:, -3:, -1].flatten() expected_slice = np.array([0.5347, 0.5342, 0.5283, 0.5093, 0.4988, 0.5093, 0.5044, 0.5015, 0.4946]) max_diff = numpy_cosine_similarity_distance(expected_slice, out_slice) self.assertTrue(max_diff < 1e-3) @slow class BaseBnb4BitSerializationTests(Base4bitTests): def tearDown(self): gc.collect() torch.cuda.empty_cache() def test_serialization(self, quant_type="nf4", double_quant=True, safe_serialization=True): r""" Test whether it is possible to serialize a model in 4-bit. Uses most typical params as default. See ExtendedSerializationTest class for more params combinations. """ self.quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type=quant_type, bnb_4bit_use_double_quant=double_quant, bnb_4bit_compute_dtype=torch.bfloat16, ) model_0 = SD3Transformer2DModel.from_pretrained( self.model_name, subfolder="transformer", quantization_config=self.quantization_config ) self.assertTrue("_pre_quantization_dtype" in model_0.config) with tempfile.TemporaryDirectory() as tmpdirname: model_0.save_pretrained(tmpdirname, safe_serialization=safe_serialization) config = SD3Transformer2DModel.load_config(tmpdirname) self.assertTrue("quantization_config" in config) self.assertTrue("_pre_quantization_dtype" not in config) model_1 = SD3Transformer2DModel.from_pretrained(tmpdirname) # checking quantized linear module weight linear = get_some_linear_layer(model_1) self.assertTrue(linear.weight.__class__ == bnb.nn.Params4bit) self.assertTrue(hasattr(linear.weight, "quant_state")) self.assertTrue(linear.weight.quant_state.__class__ == bnb.functional.QuantState) # checking memory footpring self.assertAlmostEqual(model_0.get_memory_footprint() / model_1.get_memory_footprint(), 1, places=2) # Matching all parameters and their quant_state items: d0 = dict(model_0.named_parameters()) d1 = dict(model_1.named_parameters()) self.assertTrue(d0.keys() == d1.keys()) for k in d0.keys(): self.assertTrue(d0[k].shape == d1[k].shape) self.assertTrue(d0[k].device.type == d1[k].device.type) self.assertTrue(d0[k].device == d1[k].device) self.assertTrue(d0[k].dtype == d1[k].dtype) self.assertTrue(torch.equal(d0[k], d1[k].to(d0[k].device))) if isinstance(d0[k], bnb.nn.modules.Params4bit): for v0, v1 in zip( d0[k].quant_state.as_dict().values(), d1[k].quant_state.as_dict().values(), ): if isinstance(v0, torch.Tensor): self.assertTrue(torch.equal(v0, v1.to(v0.device))) else: self.assertTrue(v0 == v1) # comparing forward() outputs dummy_inputs = self.get_dummy_inputs() inputs = {k: v.to(torch_device) for k, v in dummy_inputs.items() if isinstance(v, torch.Tensor)} inputs.update({k: v for k, v in dummy_inputs.items() if k not in inputs}) out_0 = model_0(**inputs)[0] out_1 = model_1(**inputs)[0] self.assertTrue(torch.equal(out_0, out_1)) class ExtendedSerializationTest(BaseBnb4BitSerializationTests): """ tests more combinations of parameters """ def test_nf4_single_unsafe(self): self.test_serialization(quant_type="nf4", double_quant=False, safe_serialization=False) def test_nf4_single_safe(self): self.test_serialization(quant_type="nf4", double_quant=False, safe_serialization=True) def test_nf4_double_unsafe(self): self.test_serialization(quant_type="nf4", double_quant=True, safe_serialization=False) # nf4 double safetensors quantization is tested in test_serialization() method from the parent class def test_fp4_single_unsafe(self): self.test_serialization(quant_type="fp4", double_quant=False, safe_serialization=False) def test_fp4_single_safe(self): self.test_serialization(quant_type="fp4", double_quant=False, safe_serialization=True) def test_fp4_double_unsafe(self): self.test_serialization(quant_type="fp4", double_quant=True, safe_serialization=False) def test_fp4_double_safe(self): self.test_serialization(quant_type="fp4", double_quant=True, safe_serialization=True)
diffusers/tests/quantization/bnb/test_4bit.py/0
{ "file_path": "diffusers/tests/quantization/bnb/test_4bit.py", "repo_id": "diffusers", "token_count": 12546 }
import tempfile import unittest import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class DPMSolverSinglestepSchedulerTest(SchedulerCommonTest): scheduler_classes = (DPMSolverSinglestepScheduler,) forward_default_kwargs = (("num_inference_steps", 25),) def get_scheduler_config(self, **kwargs): config = { "num_train_timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, "prediction_type": "epsilon", "thresholding": False, "sample_max_value": 1.0, "algorithm_type": "dpmsolver++", "solver_type": "midpoint", "lambda_min_clipped": -float("inf"), "variance_type": None, "final_sigmas_type": "sigma_min", } config.update(**kwargs) return config def check_over_configs(self, time_step=0, **config): kwargs = dict(self.forward_default_kwargs) num_inference_steps = kwargs.pop("num_inference_steps", None) sample = self.dummy_sample residual = 0.1 * sample dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: scheduler_config = self.get_scheduler_config(**config) scheduler = scheduler_class(**scheduler_config) scheduler.set_timesteps(num_inference_steps) # copy over dummy past residuals scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(tmpdirname) new_scheduler = scheduler_class.from_pretrained(tmpdirname) new_scheduler.set_timesteps(num_inference_steps) # copy over dummy past residuals new_scheduler.model_outputs = dummy_past_residuals[: new_scheduler.config.solver_order] output, new_output = sample, sample for t in range(time_step, time_step + scheduler.config.solver_order + 1): t = scheduler.timesteps[t] output = scheduler.step(residual, t, output, **kwargs).prev_sample new_output = new_scheduler.step(residual, t, new_output, **kwargs).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" @unittest.skip("Test not supported.") def test_from_save_pretrained(self): pass def check_over_forward(self, time_step=0, **forward_kwargs): kwargs = dict(self.forward_default_kwargs) num_inference_steps = kwargs.pop("num_inference_steps", None) sample = self.dummy_sample residual = 0.1 * sample dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) scheduler.set_timesteps(num_inference_steps) # copy over dummy past residuals (must be after setting timesteps) scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(tmpdirname) new_scheduler = scheduler_class.from_pretrained(tmpdirname) # copy over dummy past residuals new_scheduler.set_timesteps(num_inference_steps) # copy over dummy past residual (must be after setting timesteps) new_scheduler.model_outputs = dummy_past_residuals[: new_scheduler.config.solver_order] output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def full_loop(self, scheduler=None, **config): if scheduler is None: scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config(**config) scheduler = scheduler_class(**scheduler_config) num_inference_steps = 10 model = self.dummy_model() sample = self.dummy_sample_deter scheduler.set_timesteps(num_inference_steps) for i, t in enumerate(scheduler.timesteps): residual = model(sample, t) sample = scheduler.step(residual, t, sample).prev_sample return sample def full_loop_custom_timesteps(self, **config): scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config(**config) scheduler = scheduler_class(**scheduler_config) num_inference_steps = 10 scheduler.set_timesteps(num_inference_steps) timesteps = scheduler.timesteps # reset the timesteps using`timesteps` scheduler = scheduler_class(**scheduler_config) scheduler.set_timesteps(num_inference_steps=None, timesteps=timesteps) model = self.dummy_model() sample = self.dummy_sample_deter for i, t in enumerate(scheduler.timesteps): residual = model(sample, t) sample = scheduler.step(residual, t, sample).prev_sample return sample def test_full_uneven_loop(self): scheduler = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) num_inference_steps = 50 model = self.dummy_model() sample = self.dummy_sample_deter scheduler.set_timesteps(num_inference_steps) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:]): residual = model(sample, t) sample = scheduler.step(residual, t, sample).prev_sample result_mean = torch.mean(torch.abs(sample)) assert abs(result_mean.item() - 0.2574) < 1e-3 def test_timesteps(self): for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=timesteps) def test_switch(self): # make sure that iterating over schedulers with same config names gives same results # for defaults scheduler = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) sample = self.full_loop(scheduler=scheduler) result_mean = torch.mean(torch.abs(sample)) assert abs(result_mean.item() - 0.2791) < 1e-3 scheduler = DEISMultistepScheduler.from_config(scheduler.config) scheduler = DPMSolverMultistepScheduler.from_config(scheduler.config) scheduler = UniPCMultistepScheduler.from_config(scheduler.config) scheduler = DPMSolverSinglestepScheduler.from_config(scheduler.config) sample = self.full_loop(scheduler=scheduler) result_mean = torch.mean(torch.abs(sample)) assert abs(result_mean.item() - 0.2791) < 1e-3 def test_thresholding(self): self.check_over_configs(thresholding=False) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=True, prediction_type=prediction_type, sample_max_value=threshold, algorithm_type="dpmsolver++", solver_order=order, solver_type=solver_type, ) def test_prediction_type(self): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=prediction_type) def test_solver_order_and_type(self): for algorithm_type in ["dpmsolver", "dpmsolver++", "sde-dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: if algorithm_type == "sde-dpmsolver++": if order == 3: continue else: self.check_over_configs( solver_order=order, solver_type=solver_type, prediction_type=prediction_type, algorithm_type=algorithm_type, ) sample = self.full_loop( solver_order=order, solver_type=solver_type, prediction_type=prediction_type, algorithm_type=algorithm_type, ) assert not torch.isnan(sample).any(), "Samples have nan numbers" def test_lower_order_final(self): self.check_over_configs(lower_order_final=True) self.check_over_configs(lower_order_final=False) def test_lambda_min_clipped(self): self.check_over_configs(lambda_min_clipped=-float("inf")) self.check_over_configs(lambda_min_clipped=-5.1) def test_variance_type(self): self.check_over_configs(variance_type=None) self.check_over_configs(variance_type="learned_range") def test_inference_steps(self): for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=num_inference_steps, time_step=0) def test_full_loop_no_noise(self): sample = self.full_loop() result_mean = torch.mean(torch.abs(sample)) assert abs(result_mean.item() - 0.2791) < 1e-3 def test_full_loop_with_karras(self): sample = self.full_loop(use_karras_sigmas=True) result_mean = torch.mean(torch.abs(sample)) assert abs(result_mean.item() - 0.2248) < 1e-3 def test_full_loop_with_v_prediction(self): sample = self.full_loop(prediction_type="v_prediction") result_mean = torch.mean(torch.abs(sample)) assert abs(result_mean.item() - 0.1453) < 1e-3 def test_full_loop_with_karras_and_v_prediction(self): sample = self.full_loop(prediction_type="v_prediction", use_karras_sigmas=True) result_mean = torch.mean(torch.abs(sample)) assert abs(result_mean.item() - 0.0649) < 1e-3 def test_fp16_support(self): scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config(thresholding=True, dynamic_thresholding_ratio=0) scheduler = scheduler_class(**scheduler_config) num_inference_steps = 10 model = self.dummy_model() sample = self.dummy_sample_deter.half() scheduler.set_timesteps(num_inference_steps) for i, t in enumerate(scheduler.timesteps): residual = model(sample, t) sample = scheduler.step(residual, t, sample).prev_sample assert sample.dtype == torch.float16 def test_step_shape(self): kwargs = dict(self.forward_default_kwargs) num_inference_steps = kwargs.pop("num_inference_steps", None) for scheduler_class in self.scheduler_classes: scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) sample = self.dummy_sample residual = 0.1 * sample if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): scheduler.set_timesteps(num_inference_steps) elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): kwargs["num_inference_steps"] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10] scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order] time_step_0 = scheduler.timesteps[0] time_step_1 = scheduler.timesteps[1] output_0 = scheduler.step(residual, time_step_0, sample, **kwargs).prev_sample output_1 = scheduler.step(residual, time_step_1, sample, **kwargs).prev_sample self.assertEqual(output_0.shape, sample.shape) self.assertEqual(output_0.shape, output_1.shape) def test_full_loop_with_noise(self): scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) num_inference_steps = 10 t_start = 5 model = self.dummy_model() sample = self.dummy_sample_deter scheduler.set_timesteps(num_inference_steps) # add noise noise = self.dummy_noise_deter timesteps = scheduler.timesteps[t_start * scheduler.order :] sample = scheduler.add_noise(sample, noise, timesteps[:1]) for i, t in enumerate(timesteps): residual = model(sample, t) sample = scheduler.step(residual, t, sample).prev_sample result_sum = torch.sum(torch.abs(sample)) result_mean = torch.mean(torch.abs(sample)) assert abs(result_sum.item() - 269.2187) < 1e-2, f" expected result sum 269.2187, but get {result_sum}" assert abs(result_mean.item() - 0.3505) < 1e-3, f" expected result mean 0.3505, but get {result_mean}" def test_custom_timesteps(self): for prediction_type in ["epsilon", "sample", "v_prediction"]: for lower_order_final in [True, False]: for final_sigmas_type in ["sigma_min", "zero"]: sample = self.full_loop( prediction_type=prediction_type, lower_order_final=lower_order_final, final_sigmas_type=final_sigmas_type, ) sample_custom_timesteps = self.full_loop_custom_timesteps( prediction_type=prediction_type, lower_order_final=lower_order_final, final_sigmas_type=final_sigmas_type, ) assert ( torch.sum(torch.abs(sample - sample_custom_timesteps)) < 1e-5 ), f"Scheduler outputs are not identical for prediction_type: {prediction_type}, lower_order_final: {lower_order_final} and final_sigmas_type: {final_sigmas_type}" def test_beta_sigmas(self): self.check_over_configs(use_beta_sigmas=True) def test_exponential_sigmas(self): self.check_over_configs(use_exponential_sigmas=True)
diffusers/tests/schedulers/test_scheduler_dpm_single.py/0
{ "file_path": "diffusers/tests/schedulers/test_scheduler_dpm_single.py", "repo_id": "diffusers", "token_count": 7204 }
import unittest import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest # UnCLIPScheduler is a modified DDPMScheduler with a subset of the configuration. class UnCLIPSchedulerTest(SchedulerCommonTest): scheduler_classes = (UnCLIPScheduler,) def get_scheduler_config(self, **kwargs): config = { "num_train_timesteps": 1000, "variance_type": "fixed_small_log", "clip_sample": True, "clip_sample_range": 1.0, "prediction_type": "epsilon", } config.update(**kwargs) return config def test_timesteps(self): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=timesteps) def test_variance_type(self): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=variance) def test_clip_sample(self): for clip_sample in [True, False]: self.check_over_configs(clip_sample=clip_sample) def test_clip_sample_range(self): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=clip_sample_range) def test_prediction_type(self): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=prediction_type) def test_time_indices(self): for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=time_step, prev_timestep=prev_timestep) def test_variance_fixed_small_log(self): scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config(variance_type="fixed_small_log") scheduler = scheduler_class(**scheduler_config) assert torch.sum(torch.abs(scheduler._get_variance(0) - 1.0000e-10)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.0549625)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.9994987)) < 1e-5 def test_variance_learned_range(self): scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config(variance_type="learned_range") scheduler = scheduler_class(**scheduler_config) predicted_variance = 0.5 assert scheduler._get_variance(1, predicted_variance=predicted_variance) - -10.1712790 < 1e-5 assert scheduler._get_variance(487, predicted_variance=predicted_variance) - -5.7998052 < 1e-5 assert scheduler._get_variance(999, predicted_variance=predicted_variance) - -0.0010011 < 1e-5 def test_full_loop(self): scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) timesteps = scheduler.timesteps model = self.dummy_model() sample = self.dummy_sample_deter generator = torch.manual_seed(0) for i, t in enumerate(timesteps): # 1. predict noise residual residual = model(sample, t) # 2. predict previous mean of sample x_t-1 pred_prev_sample = scheduler.step(residual, t, sample, generator=generator).prev_sample sample = pred_prev_sample result_sum = torch.sum(torch.abs(sample)) result_mean = torch.mean(torch.abs(sample)) assert abs(result_sum.item() - 252.2682495) < 1e-2 assert abs(result_mean.item() - 0.3284743) < 1e-3 def test_full_loop_skip_timesteps(self): scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) scheduler.set_timesteps(25) timesteps = scheduler.timesteps model = self.dummy_model() sample = self.dummy_sample_deter generator = torch.manual_seed(0) for i, t in enumerate(timesteps): # 1. predict noise residual residual = model(sample, t) if i + 1 == timesteps.shape[0]: prev_timestep = None else: prev_timestep = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 pred_prev_sample = scheduler.step( residual, t, sample, prev_timestep=prev_timestep, generator=generator ).prev_sample sample = pred_prev_sample result_sum = torch.sum(torch.abs(sample)) result_mean = torch.mean(torch.abs(sample)) assert abs(result_sum.item() - 258.2044983) < 1e-2 assert abs(result_mean.item() - 0.3362038) < 1e-3 @unittest.skip("Test not supported.") def test_trained_betas(self): pass @unittest.skip("Test not supported.") def test_add_noise_device(self): pass
diffusers/tests/schedulers/test_scheduler_unclip.py/0
{ "file_path": "diffusers/tests/schedulers/test_scheduler_unclip.py", "repo_id": "diffusers", "token_count": 2263 }
import gc import unittest import torch from diffusers import ( StableDiffusionInpaintPipeline, ) from diffusers.utils import load_image from diffusers.utils.testing_utils import ( backend_empty_cache, enable_full_determinism, require_torch_accelerator, slow, torch_device, ) from .single_file_testing_utils import SDSingleFileTesterMixin enable_full_determinism() @slow @require_torch_accelerator class StableDiffusionInpaintPipelineSingleFileSlowTests(unittest.TestCase, SDSingleFileTesterMixin): pipeline_class = StableDiffusionInpaintPipeline ckpt_path = "https://huggingface.co/botp/stable-diffusion-v1-5-inpainting/blob/main/sd-v1-5-inpainting.ckpt" original_config = "https://raw.githubusercontent.com/runwayml/stable-diffusion/main/configs/stable-diffusion/v1-inpainting-inference.yaml" repo_id = "botp/stable-diffusion-v1-5-inpainting" def setUp(self): super().setUp() gc.collect() backend_empty_cache(torch_device) def tearDown(self): super().tearDown() gc.collect() backend_empty_cache(torch_device) def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): generator = torch.Generator(device=generator_device).manual_seed(seed) init_image = load_image( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_inpaint/input_bench_image.png" ) mask_image = load_image( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_inpaint/input_bench_mask.png" ) inputs = { "prompt": "Face of a yellow cat, high resolution, sitting on a park bench", "image": init_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "np", } return inputs def test_single_file_format_inference_is_same_as_pretrained(self): super().test_single_file_format_inference_is_same_as_pretrained(expected_max_diff=1e-3) def test_single_file_loading_4_channel_unet(self): # Test loading single file inpaint with a 4 channel UNet ckpt_path = "https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.safetensors" pipe = self.pipeline_class.from_single_file(ckpt_path) assert pipe.unet.config.in_channels == 4 @unittest.skip("runwayml original config has been removed") def test_single_file_components_with_original_config(self): return @unittest.skip("runwayml original config has been removed") def test_single_file_components_with_original_config_local_files_only(self): return @slow @require_torch_accelerator class StableDiffusion21InpaintPipelineSingleFileSlowTests(unittest.TestCase, SDSingleFileTesterMixin): pipeline_class = StableDiffusionInpaintPipeline ckpt_path = ( "https://huggingface.co/stabilityai/stable-diffusion-2-inpainting/blob/main/512-inpainting-ema.safetensors" ) original_config = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inpainting-inference.yaml" repo_id = "stabilityai/stable-diffusion-2-inpainting" def setUp(self): super().setUp() gc.collect() backend_empty_cache(torch_device) def tearDown(self): super().tearDown() gc.collect() backend_empty_cache(torch_device) def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): generator = torch.Generator(device=generator_device).manual_seed(seed) init_image = load_image( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_inpaint/input_bench_image.png" ) mask_image = load_image( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_inpaint/input_bench_mask.png" ) inputs = { "prompt": "Face of a yellow cat, high resolution, sitting on a park bench", "image": init_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "np", } return inputs def test_single_file_format_inference_is_same_as_pretrained(self): super().test_single_file_format_inference_is_same_as_pretrained(expected_max_diff=1e-3)
diffusers/tests/single_file/test_stable_diffusion_inpaint_single_file.py/0
{ "file_path": "diffusers/tests/single_file/test_stable_diffusion_inpaint_single_file.py", "repo_id": "diffusers", "token_count": 2043 }
# coding=utf-8 # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import requests from packaging.version import parse # GitHub repository details USER = "huggingface" REPO = "diffusers" def fetch_all_branches(user, repo): branches = [] # List to store all branches page = 1 # Start from first page while True: # Make a request to the GitHub API for the branches response = requests.get(f"https://api.github.com/repos/{user}/{repo}/branches", params={"page": page}) # Check if the request was successful if response.status_code == 200: # Add the branches from the current page to the list branches.extend([branch["name"] for branch in response.json()]) # Check if there is a 'next' link for pagination if "next" in response.links: page += 1 # Move to the next page else: break # Exit loop if there is no next page else: print("Failed to retrieve branches:", response.status_code) break return branches def main(): # Fetch all branches branches = fetch_all_branches(USER, REPO) # Filter branches. # print(f"Total branches: {len(branches)}") filtered_branches = [] for branch in branches: if branch.startswith("v") and ("-release" in branch or "-patch" in branch): filtered_branches.append(branch) # print(f"Filtered: {branch}") sorted_branches = sorted(filtered_branches, key=lambda x: parse(x.split("-")[0][1:]), reverse=True) latest_branch = sorted_branches[0] # print(f"Latest branch: {latest_branch}") return latest_branch if __name__ == "__main__": print(main())
diffusers/utils/fetch_latest_release_branch.py/0
{ "file_path": "diffusers/utils/fetch_latest_release_branch.py", "repo_id": "diffusers", "token_count": 824 }
{ "homing_offset": [ 2048, 3072, 3072, -1024, -1024, 2048, -2048, 2048, -2048 ], "drive_mode": [ 1, 1, 1, 0, 0, 1, 0, 1, 0 ], "start_pos": [ 2068, 3034, 3030, 1038, 1041, 1991, 1948, 2090, 1985 ], "end_pos": [ -1025, -2014, -2015, 2058, 2060, -955, 3091, -940, 2576 ], "calib_mode": [ "DEGREE", "DEGREE", "DEGREE", "DEGREE", "DEGREE", "DEGREE", "DEGREE", "DEGREE", "LINEAR" ], "motor_names": [ "waist", "shoulder", "shoulder_shadow", "elbow", "elbow_shadow", "forearm_roll", "wrist_angle", "wrist_rotate", "gripper" ] }
lerobot/.cache/calibration/aloha_default/right_leader.json/0
{ "file_path": "lerobot/.cache/calibration/aloha_default/right_leader.json", "repo_id": "lerobot", "token_count": 714 }
# Configure image ARG PYTHON_VERSION=3.10 FROM python:${PYTHON_VERSION}-slim ARG PYTHON_VERSION ARG DEBIAN_FRONTEND=noninteractive # Install apt dependencies RUN apt-get update && apt-get install -y --no-install-recommends \ build-essential cmake git git-lfs \ libglib2.0-0 libgl1-mesa-glx libegl1-mesa ffmpeg \ speech-dispatcher libgeos-dev \ && apt-get clean && rm -rf /var/lib/apt/lists/* # Create virtual environment RUN ln -s /usr/bin/python${PYTHON_VERSION} /usr/bin/python RUN python -m venv /opt/venv ENV PATH="/opt/venv/bin:$PATH" RUN echo "source /opt/venv/bin/activate" >> /root/.bashrc # Install LeRobot RUN git lfs install RUN git clone https://github.com/huggingface/lerobot.git /lerobot WORKDIR /lerobot RUN pip install --upgrade --no-cache-dir pip RUN pip install --no-cache-dir ".[test, aloha, xarm, pusht, dynamixel]" \ --extra-index-url https://download.pytorch.org/whl/cpu # Set EGL as the rendering backend for MuJoCo ENV MUJOCO_GL="egl" # Execute in bash shell rather than python CMD ["/bin/bash"]
lerobot/docker/lerobot-cpu/Dockerfile/0
{ "file_path": "lerobot/docker/lerobot-cpu/Dockerfile", "repo_id": "lerobot", "token_count": 412 }
#!/usr/bin/env python # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib.resources import json import logging import textwrap from collections.abc import Iterator from itertools import accumulate from pathlib import Path from pprint import pformat from types import SimpleNamespace from typing import Any import datasets import jsonlines import numpy as np import pyarrow.compute as pc import torch from datasets.table import embed_table_storage from huggingface_hub import DatasetCard, DatasetCardData, HfApi from PIL import Image as PILImage from torchvision import transforms from lerobot.common.robot_devices.robots.utils import Robot from lerobot.configs.types import DictLike, FeatureType, PolicyFeature DEFAULT_CHUNK_SIZE = 1000 # Max number of episodes per chunk INFO_PATH = "meta/info.json" EPISODES_PATH = "meta/episodes.jsonl" STATS_PATH = "meta/stats.json" TASKS_PATH = "meta/tasks.jsonl" DEFAULT_VIDEO_PATH = "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4" DEFAULT_PARQUET_PATH = "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet" DEFAULT_IMAGE_PATH = "images/{image_key}/episode_{episode_index:06d}/frame_{frame_index:06d}.png" DATASET_CARD_TEMPLATE = """ --- # Metadata will go there --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## {} """ DEFAULT_FEATURES = { "timestamp": {"dtype": "float32", "shape": (1,), "names": None}, "frame_index": {"dtype": "int64", "shape": (1,), "names": None}, "episode_index": {"dtype": "int64", "shape": (1,), "names": None}, "index": {"dtype": "int64", "shape": (1,), "names": None}, "task_index": {"dtype": "int64", "shape": (1,), "names": None}, } def flatten_dict(d: dict, parent_key: str = "", sep: str = "/") -> dict: """Flatten a nested dictionary structure by collapsing nested keys into one key with a separator. For example: ``` >>> dct = {"a": {"b": 1, "c": {"d": 2}}, "e": 3}` >>> print(flatten_dict(dct)) {"a/b": 1, "a/c/d": 2, "e": 3} """ items = [] for k, v in d.items(): new_key = f"{parent_key}{sep}{k}" if parent_key else k if isinstance(v, dict): items.extend(flatten_dict(v, new_key, sep=sep).items()) else: items.append((new_key, v)) return dict(items) def unflatten_dict(d: dict, sep: str = "/") -> dict: outdict = {} for key, value in d.items(): parts = key.split(sep) d = outdict for part in parts[:-1]: if part not in d: d[part] = {} d = d[part] d[parts[-1]] = value return outdict def get_nested_item(obj: DictLike, flattened_key: str, sep: str = "/") -> Any: split_keys = flattened_key.split(sep) getter = obj[split_keys[0]] if len(split_keys) == 1: return getter for key in split_keys[1:]: getter = getter[key] return getter def serialize_dict(stats: dict[str, torch.Tensor | np.ndarray | dict]) -> dict: serialized_dict = {key: value.tolist() for key, value in flatten_dict(stats).items()} return unflatten_dict(serialized_dict) def write_parquet(dataset: datasets.Dataset, fpath: Path) -> None: # Embed image bytes into the table before saving to parquet format = dataset.format dataset = dataset.with_format("arrow") dataset = dataset.map(embed_table_storage, batched=False) dataset = dataset.with_format(**format) dataset.to_parquet(fpath) def load_json(fpath: Path) -> Any: with open(fpath) as f: return json.load(f) def write_json(data: dict, fpath: Path) -> None: fpath.parent.mkdir(exist_ok=True, parents=True) with open(fpath, "w") as f: json.dump(data, f, indent=4, ensure_ascii=False) def load_jsonlines(fpath: Path) -> list[Any]: with jsonlines.open(fpath, "r") as reader: return list(reader) def write_jsonlines(data: dict, fpath: Path) -> None: fpath.parent.mkdir(exist_ok=True, parents=True) with jsonlines.open(fpath, "w") as writer: writer.write_all(data) def append_jsonlines(data: dict, fpath: Path) -> None: fpath.parent.mkdir(exist_ok=True, parents=True) with jsonlines.open(fpath, "a") as writer: writer.write(data) def load_info(local_dir: Path) -> dict: info = load_json(local_dir / INFO_PATH) for ft in info["features"].values(): ft["shape"] = tuple(ft["shape"]) return info def load_stats(local_dir: Path) -> dict: if not (local_dir / STATS_PATH).exists(): return None stats = load_json(local_dir / STATS_PATH) stats = {key: torch.tensor(value) for key, value in flatten_dict(stats).items()} return unflatten_dict(stats) def load_tasks(local_dir: Path) -> dict: tasks = load_jsonlines(local_dir / TASKS_PATH) return {item["task_index"]: item["task"] for item in sorted(tasks, key=lambda x: x["task_index"])} def load_episodes(local_dir: Path) -> dict: return load_jsonlines(local_dir / EPISODES_PATH) def load_image_as_numpy(fpath: str | Path, dtype="float32", channel_first: bool = True) -> np.ndarray: img = PILImage.open(fpath).convert("RGB") img_array = np.array(img, dtype=dtype) if channel_first: # (H, W, C) -> (C, H, W) img_array = np.transpose(img_array, (2, 0, 1)) if "float" in dtype: img_array /= 255.0 return img_array def hf_transform_to_torch(items_dict: dict[torch.Tensor | None]): """Get a transform function that convert items from Hugging Face dataset (pyarrow) to torch tensors. Importantly, images are converted from PIL, which corresponds to a channel last representation (h w c) of uint8 type, to a torch image representation with channel first (c h w) of float32 type in range [0,1]. """ for key in items_dict: first_item = items_dict[key][0] if isinstance(first_item, PILImage.Image): to_tensor = transforms.ToTensor() items_dict[key] = [to_tensor(img) for img in items_dict[key]] elif first_item is None: pass else: items_dict[key] = [torch.tensor(x) for x in items_dict[key]] return items_dict def _get_major_minor(version: str) -> tuple[int]: split = version.strip("v").split(".") return int(split[0]), int(split[1]) class BackwardCompatibilityError(Exception): def __init__(self, repo_id, version): message = textwrap.dedent(f""" BackwardCompatibilityError: The dataset you requested ({repo_id}) is in {version} format. We introduced a new format since v2.0 which is not backward compatible with v1.x. Please, use our conversion script. Modify the following command with your own task description: ``` python lerobot/common/datasets/v2/convert_dataset_v1_to_v2.py \\ --repo-id {repo_id} \\ --single-task "TASK DESCRIPTION." # <---- /!\\ Replace TASK DESCRIPTION /!\\ ``` A few examples to replace TASK DESCRIPTION: "Pick up the blue cube and place it into the bin.", "Insert the peg into the socket.", "Slide open the ziploc bag.", "Take the elevator to the 1st floor.", "Open the top cabinet, store the pot inside it then close the cabinet.", "Push the T-shaped block onto the T-shaped target.", "Grab the spray paint on the shelf and place it in the bin on top of the robot dog.", "Fold the sweatshirt.", ... If you encounter a problem, contact LeRobot maintainers on [Discord](https://discord.com/invite/s3KuuzsPFb) or open an [issue on GitHub](https://github.com/huggingface/lerobot/issues/new/choose). """) super().__init__(message) def check_version_compatibility( repo_id: str, version_to_check: str, current_version: str, enforce_breaking_major: bool = True ) -> None: current_major, _ = _get_major_minor(current_version) major_to_check, _ = _get_major_minor(version_to_check) if major_to_check < current_major and enforce_breaking_major: raise BackwardCompatibilityError(repo_id, version_to_check) elif float(version_to_check.strip("v")) < float(current_version.strip("v")): logging.warning( f"""The dataset you requested ({repo_id}) was created with a previous version ({version_to_check}) of the codebase. The current codebase version is {current_version}. You should be fine since backward compatibility is maintained. If you encounter a problem, contact LeRobot maintainers on Discord ('https://discord.com/invite/s3KuuzsPFb') or open an issue on github.""", ) def get_hub_safe_version(repo_id: str, version: str) -> str: api = HfApi() dataset_info = api.list_repo_refs(repo_id, repo_type="dataset") branches = [b.name for b in dataset_info.branches] if version not in branches: num_version = float(version.strip("v")) hub_num_versions = [float(v.strip("v")) for v in branches if v.startswith("v")] if num_version >= 2.0 and all(v < 2.0 for v in hub_num_versions): raise BackwardCompatibilityError(repo_id, version) logging.warning( f"""You are trying to load a dataset from {repo_id} created with a previous version of the codebase. The following versions are available: {branches}. The requested version ('{version}') is not found. You should be fine since backward compatibility is maintained. If you encounter a problem, contact LeRobot maintainers on Discord ('https://discord.com/invite/s3KuuzsPFb') or open an issue on github.""", ) if "main" not in branches: raise ValueError(f"Version 'main' not found on {repo_id}") return "main" else: return version def get_hf_features_from_features(features: dict) -> datasets.Features: hf_features = {} for key, ft in features.items(): if ft["dtype"] == "video": continue elif ft["dtype"] == "image": hf_features[key] = datasets.Image() elif ft["shape"] == (1,): hf_features[key] = datasets.Value(dtype=ft["dtype"]) else: assert len(ft["shape"]) == 1 hf_features[key] = datasets.Sequence( length=ft["shape"][0], feature=datasets.Value(dtype=ft["dtype"]) ) return datasets.Features(hf_features) def get_features_from_robot(robot: Robot, use_videos: bool = True) -> dict: camera_ft = {} if robot.cameras: camera_ft = { key: {"dtype": "video" if use_videos else "image", **ft} for key, ft in robot.camera_features.items() } return {**robot.motor_features, **camera_ft, **DEFAULT_FEATURES} def dataset_to_policy_features(features: dict[str, dict]) -> dict[str, PolicyFeature]: # TODO(aliberts): Implement "type" in dataset features and simplify this policy_features = {} for key, ft in features.items(): shape = ft["shape"] if ft["dtype"] in ["image", "video"]: type = FeatureType.VISUAL if len(shape) != 3: raise ValueError(f"Number of dimensions of {key} != 3 (shape={shape})") names = ft["names"] # Backward compatibility for "channel" which is an error introduced in LeRobotDataset v2.0 for ported datasets. if names[2] in ["channel", "channels"]: # (h, w, c) -> (c, h, w) shape = (shape[2], shape[0], shape[1]) elif key == "observation.environment_state": type = FeatureType.ENV elif key.startswith("observation"): type = FeatureType.STATE elif key == "action": type = FeatureType.ACTION else: continue policy_features[key] = PolicyFeature( type=type, shape=shape, ) return policy_features def create_empty_dataset_info( codebase_version: str, fps: int, robot_type: str, features: dict, use_videos: bool, ) -> dict: return { "codebase_version": codebase_version, "robot_type": robot_type, "total_episodes": 0, "total_frames": 0, "total_tasks": 0, "total_videos": 0, "total_chunks": 0, "chunks_size": DEFAULT_CHUNK_SIZE, "fps": fps, "splits": {}, "data_path": DEFAULT_PARQUET_PATH, "video_path": DEFAULT_VIDEO_PATH if use_videos else None, "features": features, } def get_episode_data_index( episode_dicts: list[dict], episodes: list[int] | None = None ) -> dict[str, torch.Tensor]: episode_lengths = {ep_idx: ep_dict["length"] for ep_idx, ep_dict in enumerate(episode_dicts)} if episodes is not None: episode_lengths = {ep_idx: episode_lengths[ep_idx] for ep_idx in episodes} cumulative_lenghts = list(accumulate(episode_lengths.values())) return { "from": torch.LongTensor([0] + cumulative_lenghts[:-1]), "to": torch.LongTensor(cumulative_lenghts), } def calculate_total_episode( hf_dataset: datasets.Dataset, raise_if_not_contiguous: bool = True ) -> dict[str, torch.Tensor]: episode_indices = sorted(hf_dataset.unique("episode_index")) total_episodes = len(episode_indices) if raise_if_not_contiguous and episode_indices != list(range(total_episodes)): raise ValueError("episode_index values are not sorted and contiguous.") return total_episodes def calculate_episode_data_index(hf_dataset: datasets.Dataset) -> dict[str, torch.Tensor]: episode_lengths = [] table = hf_dataset.data.table total_episodes = calculate_total_episode(hf_dataset) for ep_idx in range(total_episodes): ep_table = table.filter(pc.equal(table["episode_index"], ep_idx)) episode_lengths.insert(ep_idx, len(ep_table)) cumulative_lenghts = list(accumulate(episode_lengths)) return { "from": torch.LongTensor([0] + cumulative_lenghts[:-1]), "to": torch.LongTensor(cumulative_lenghts), } def check_timestamps_sync( hf_dataset: datasets.Dataset, episode_data_index: dict[str, torch.Tensor], fps: int, tolerance_s: float, raise_value_error: bool = True, ) -> bool: """ This check is to make sure that each timestamps is separated to the next by 1/fps +/- tolerance to account for possible numerical error. """ timestamps = torch.stack(hf_dataset["timestamp"]) diffs = torch.diff(timestamps) within_tolerance = torch.abs(diffs - 1 / fps) <= tolerance_s # We mask differences between the timestamp at the end of an episode # and the one at the start of the next episode since these are expected # to be outside tolerance. mask = torch.ones(len(diffs), dtype=torch.bool) ignored_diffs = episode_data_index["to"][:-1] - 1 mask[ignored_diffs] = False filtered_within_tolerance = within_tolerance[mask] if not torch.all(filtered_within_tolerance): # Track original indices before masking original_indices = torch.arange(len(diffs)) filtered_indices = original_indices[mask] outside_tolerance_filtered_indices = torch.nonzero(~filtered_within_tolerance) # .squeeze() outside_tolerance_indices = filtered_indices[outside_tolerance_filtered_indices] episode_indices = torch.stack(hf_dataset["episode_index"]) outside_tolerances = [] for idx in outside_tolerance_indices: entry = { "timestamps": [timestamps[idx], timestamps[idx + 1]], "diff": diffs[idx], "episode_index": episode_indices[idx].item(), } outside_tolerances.append(entry) if raise_value_error: raise ValueError( f"""One or several timestamps unexpectedly violate the tolerance inside episode range. This might be due to synchronization issues with timestamps during data collection. \n{pformat(outside_tolerances)}""" ) return False return True def check_delta_timestamps( delta_timestamps: dict[str, list[float]], fps: int, tolerance_s: float, raise_value_error: bool = True ) -> bool: """This will check if all the values in delta_timestamps are multiples of 1/fps +/- tolerance. This is to ensure that these delta_timestamps added to any timestamp from a dataset will themselves be actual timestamps from the dataset. """ outside_tolerance = {} for key, delta_ts in delta_timestamps.items(): within_tolerance = [abs(ts * fps - round(ts * fps)) / fps <= tolerance_s for ts in delta_ts] if not all(within_tolerance): outside_tolerance[key] = [ ts for ts, is_within in zip(delta_ts, within_tolerance, strict=True) if not is_within ] if len(outside_tolerance) > 0: if raise_value_error: raise ValueError( f""" The following delta_timestamps are found outside of tolerance range. Please make sure they are multiples of 1/{fps} +/- tolerance and adjust their values accordingly. \n{pformat(outside_tolerance)} """ ) return False return True def get_delta_indices(delta_timestamps: dict[str, list[float]], fps: int) -> dict[str, list[int]]: delta_indices = {} for key, delta_ts in delta_timestamps.items(): delta_indices[key] = [round(d * fps) for d in delta_ts] return delta_indices def cycle(iterable): """The equivalent of itertools.cycle, but safe for Pytorch dataloaders. See https://github.com/pytorch/pytorch/issues/23900 for information on why itertools.cycle is not safe. """ iterator = iter(iterable) while True: try: yield next(iterator) except StopIteration: iterator = iter(iterable) def create_branch(repo_id, *, branch: str, repo_type: str | None = None) -> None: """Create a branch on a existing Hugging Face repo. Delete the branch if it already exists before creating it. """ api = HfApi() branches = api.list_repo_refs(repo_id, repo_type=repo_type).branches refs = [branch.ref for branch in branches] ref = f"refs/heads/{branch}" if ref in refs: api.delete_branch(repo_id, repo_type=repo_type, branch=branch) api.create_branch(repo_id, repo_type=repo_type, branch=branch) def create_lerobot_dataset_card( tags: list | None = None, dataset_info: dict | None = None, **kwargs, ) -> DatasetCard: """ Keyword arguments will be used to replace values in ./lerobot/common/datasets/card_template.md. Note: If specified, license must be one of https://huggingface.co/docs/hub/repositories-licenses. """ card_tags = ["LeRobot"] if tags: card_tags += tags if dataset_info: dataset_structure = "[meta/info.json](meta/info.json):\n" dataset_structure += f"```json\n{json.dumps(dataset_info, indent=4)}\n```\n" kwargs = {**kwargs, "dataset_structure": dataset_structure} card_data = DatasetCardData( license=kwargs.get("license"), tags=card_tags, task_categories=["robotics"], configs=[ { "config_name": "default", "data_files": "data/*/*.parquet", } ], ) card_template = (importlib.resources.files("lerobot.common.datasets") / "card_template.md").read_text() return DatasetCard.from_template( card_data=card_data, template_str=card_template, **kwargs, ) class IterableNamespace(SimpleNamespace): """ A namespace object that supports both dictionary-like iteration and dot notation access. Automatically converts nested dictionaries into IterableNamespaces. This class extends SimpleNamespace to provide: - Dictionary-style iteration over keys - Access to items via both dot notation (obj.key) and brackets (obj["key"]) - Dictionary-like methods: items(), keys(), values() - Recursive conversion of nested dictionaries Args: dictionary: Optional dictionary to initialize the namespace **kwargs: Additional keyword arguments passed to SimpleNamespace Examples: >>> data = {"name": "Alice", "details": {"age": 25}} >>> ns = IterableNamespace(data) >>> ns.name 'Alice' >>> ns.details.age 25 >>> list(ns.keys()) ['name', 'details'] >>> for key, value in ns.items(): ... print(f"{key}: {value}") name: Alice details: IterableNamespace(age=25) """ def __init__(self, dictionary: dict[str, Any] = None, **kwargs): super().__init__(**kwargs) if dictionary is not None: for key, value in dictionary.items(): if isinstance(value, dict): setattr(self, key, IterableNamespace(value)) else: setattr(self, key, value) def __iter__(self) -> Iterator[str]: return iter(vars(self)) def __getitem__(self, key: str) -> Any: return vars(self)[key] def items(self): return vars(self).items() def values(self): return vars(self).values() def keys(self): return vars(self).keys()
lerobot/lerobot/common/datasets/utils.py/0
{ "file_path": "lerobot/lerobot/common/datasets/utils.py", "repo_id": "lerobot", "token_count": 8989 }
#!/usr/bin/env python # Copyright 2024 Columbia Artificial Intelligence, Robotics Lab, # and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass, field from lerobot.common.optim.optimizers import AdamConfig from lerobot.common.optim.schedulers import DiffuserSchedulerConfig from lerobot.configs.policies import PreTrainedConfig from lerobot.configs.types import NormalizationMode @PreTrainedConfig.register_subclass("diffusion") @dataclass class DiffusionConfig(PreTrainedConfig): """Configuration class for DiffusionPolicy. Defaults are configured for training with PushT providing proprioceptive and single camera observations. The parameters you will most likely need to change are the ones which depend on the environment / sensors. Those are: `input_shapes` and `output_shapes`. Notes on the inputs and outputs: - "observation.state" is required as an input key. - Either: - At least one key starting with "observation.image is required as an input. AND/OR - The key "observation.environment_state" is required as input. - If there are multiple keys beginning with "observation.image" they are treated as multiple camera views. Right now we only support all images having the same shape. - "action" is required as an output key. Args: n_obs_steps: Number of environment steps worth of observations to pass to the policy (takes the current step and additional steps going back). horizon: Diffusion model action prediction size as detailed in `DiffusionPolicy.select_action`. n_action_steps: The number of action steps to run in the environment for one invocation of the policy. See `DiffusionPolicy.select_action` for more details. input_shapes: A dictionary defining the shapes of the input data for the policy. The key represents the input data name, and the value is a list indicating the dimensions of the corresponding data. For example, "observation.image" refers to an input from a camera with dimensions [3, 96, 96], indicating it has three color channels and 96x96 resolution. Importantly, `input_shapes` doesn't include batch dimension or temporal dimension. output_shapes: A dictionary defining the shapes of the output data for the policy. The key represents the output data name, and the value is a list indicating the dimensions of the corresponding data. For example, "action" refers to an output shape of [14], indicating 14-dimensional actions. Importantly, `output_shapes` doesn't include batch dimension or temporal dimension. input_normalization_modes: A dictionary with key representing the modality (e.g. "observation.state"), and the value specifies the normalization mode to apply. The two available modes are "mean_std" which subtracts the mean and divides by the standard deviation and "min_max" which rescale in a [-1, 1] range. output_normalization_modes: Similar dictionary as `normalize_input_modes`, but to unnormalize to the original scale. Note that this is also used for normalizing the training targets. vision_backbone: Name of the torchvision resnet backbone to use for encoding images. crop_shape: (H, W) shape to crop images to as a preprocessing step for the vision backbone. Must fit within the image size. If None, no cropping is done. crop_is_random: Whether the crop should be random at training time (it's always a center crop in eval mode). pretrained_backbone_weights: Pretrained weights from torchvision to initalize the backbone. `None` means no pretrained weights. use_group_norm: Whether to replace batch normalization with group normalization in the backbone. The group sizes are set to be about 16 (to be precise, feature_dim // 16). spatial_softmax_num_keypoints: Number of keypoints for SpatialSoftmax. use_separate_rgb_encoders_per_camera: Whether to use a separate RGB encoder for each camera view. down_dims: Feature dimension for each stage of temporal downsampling in the diffusion modeling Unet. You may provide a variable number of dimensions, therefore also controlling the degree of downsampling. kernel_size: The convolutional kernel size of the diffusion modeling Unet. n_groups: Number of groups used in the group norm of the Unet's convolutional blocks. diffusion_step_embed_dim: The Unet is conditioned on the diffusion timestep via a small non-linear network. This is the output dimension of that network, i.e., the embedding dimension. use_film_scale_modulation: FiLM (https://arxiv.org/abs/1709.07871) is used for the Unet conditioning. Bias modulation is used be default, while this parameter indicates whether to also use scale modulation. noise_scheduler_type: Name of the noise scheduler to use. Supported options: ["DDPM", "DDIM"]. num_train_timesteps: Number of diffusion steps for the forward diffusion schedule. beta_schedule: Name of the diffusion beta schedule as per DDPMScheduler from Hugging Face diffusers. beta_start: Beta value for the first forward-diffusion step. beta_end: Beta value for the last forward-diffusion step. prediction_type: The type of prediction that the diffusion modeling Unet makes. Choose from "epsilon" or "sample". These have equivalent outcomes from a latent variable modeling perspective, but "epsilon" has been shown to work better in many deep neural network settings. clip_sample: Whether to clip the sample to [-`clip_sample_range`, +`clip_sample_range`] for each denoising step at inference time. WARNING: you will need to make sure your action-space is normalized to fit within this range. clip_sample_range: The magnitude of the clipping range as described above. num_inference_steps: Number of reverse diffusion steps to use at inference time (steps are evenly spaced). If not provided, this defaults to be the same as `num_train_timesteps`. do_mask_loss_for_padding: Whether to mask the loss when there are copy-padded actions. See `LeRobotDataset` and `load_previous_and_future_frames` for mor information. Note, this defaults to False as the original Diffusion Policy implementation does the same. """ # Inputs / output structure. n_obs_steps: int = 2 horizon: int = 16 n_action_steps: int = 8 normalization_mapping: dict[str, NormalizationMode] = field( default_factory=lambda: { "VISUAL": NormalizationMode.MEAN_STD, "STATE": NormalizationMode.MIN_MAX, "ACTION": NormalizationMode.MIN_MAX, } ) # The original implementation doesn't sample frames for the last 7 steps, # which avoids excessive padding and leads to improved training results. drop_n_last_frames: int = 7 # horizon - n_action_steps - n_obs_steps + 1 # Architecture / modeling. # Vision backbone. vision_backbone: str = "resnet18" crop_shape: tuple[int, int] | None = (84, 84) crop_is_random: bool = True pretrained_backbone_weights: str | None = None use_group_norm: bool = True spatial_softmax_num_keypoints: int = 32 use_separate_rgb_encoder_per_camera: bool = False # Unet. down_dims: tuple[int, ...] = (512, 1024, 2048) kernel_size: int = 5 n_groups: int = 8 diffusion_step_embed_dim: int = 128 use_film_scale_modulation: bool = True # Noise scheduler. noise_scheduler_type: str = "DDPM" num_train_timesteps: int = 100 beta_schedule: str = "squaredcos_cap_v2" beta_start: float = 0.0001 beta_end: float = 0.02 prediction_type: str = "epsilon" clip_sample: bool = True clip_sample_range: float = 1.0 # Inference num_inference_steps: int | None = None # Loss computation do_mask_loss_for_padding: bool = False # Training presets optimizer_lr: float = 1e-4 optimizer_betas: tuple = (0.95, 0.999) optimizer_eps: float = 1e-8 optimizer_weight_decay: float = 1e-6 scheduler_name: str = "cosine" scheduler_warmup_steps: int = 500 def __post_init__(self): super().__post_init__() """Input validation (not exhaustive).""" if not self.vision_backbone.startswith("resnet"): raise ValueError( f"`vision_backbone` must be one of the ResNet variants. Got {self.vision_backbone}." ) supported_prediction_types = ["epsilon", "sample"] if self.prediction_type not in supported_prediction_types: raise ValueError( f"`prediction_type` must be one of {supported_prediction_types}. Got {self.prediction_type}." ) supported_noise_schedulers = ["DDPM", "DDIM"] if self.noise_scheduler_type not in supported_noise_schedulers: raise ValueError( f"`noise_scheduler_type` must be one of {supported_noise_schedulers}. " f"Got {self.noise_scheduler_type}." ) # Check that the horizon size and U-Net downsampling is compatible. # U-Net downsamples by 2 with each stage. downsampling_factor = 2 ** len(self.down_dims) if self.horizon % downsampling_factor != 0: raise ValueError( "The horizon should be an integer multiple of the downsampling factor (which is determined " f"by `len(down_dims)`). Got {self.horizon=} and {self.down_dims=}" ) def get_optimizer_preset(self) -> AdamConfig: return AdamConfig( lr=self.optimizer_lr, betas=self.optimizer_betas, eps=self.optimizer_eps, weight_decay=self.optimizer_weight_decay, ) def get_scheduler_preset(self) -> DiffuserSchedulerConfig: return DiffuserSchedulerConfig( name=self.scheduler_name, num_warmup_steps=self.scheduler_warmup_steps, ) def validate_features(self) -> None: if len(self.image_features) == 0 and self.env_state_feature is None: raise ValueError("You must provide at least one image or the environment state among the inputs.") if self.crop_shape is not None: for key, image_ft in self.image_features.items(): if self.crop_shape[0] > image_ft.shape[1] or self.crop_shape[1] > image_ft.shape[2]: raise ValueError( f"`crop_shape` should fit within the images shapes. Got {self.crop_shape} " f"for `crop_shape` and {image_ft.shape} for " f"`{key}`." ) # Check that all input images have the same shape. first_image_key, first_image_ft = next(iter(self.image_features.items())) for key, image_ft in self.image_features.items(): if image_ft.shape != first_image_ft.shape: raise ValueError( f"`{key}` does not match `{first_image_key}`, but we " "expect all image shapes to match." ) @property def observation_delta_indices(self) -> list: return list(range(1 - self.n_obs_steps, 1)) @property def action_delta_indices(self) -> list: return list(range(1 - self.n_obs_steps, 1 - self.n_obs_steps + self.horizon)) @property def reward_delta_indices(self) -> None: return None
lerobot/lerobot/common/policies/diffusion/configuration_diffusion.py/0
{ "file_path": "lerobot/lerobot/common/policies/diffusion/configuration_diffusion.py", "repo_id": "lerobot", "token_count": 4541 }
#!/usr/bin/env python # Copyright 2024 Seungjae Lee and Yibin Wang and Haritheja Etukuru # and H. Jin Kim and Nur Muhammad Mahi Shafiullah and Lerrel Pinto # and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass, field from lerobot.common.optim.optimizers import AdamConfig from lerobot.common.optim.schedulers import VQBeTSchedulerConfig from lerobot.configs.policies import PreTrainedConfig from lerobot.configs.types import NormalizationMode @PreTrainedConfig.register_subclass("vqbet") @dataclass class VQBeTConfig(PreTrainedConfig): """Configuration class for VQ-BeT. Defaults are configured for training with PushT providing proprioceptive and single camera observations. The parameters you will most likely need to change are the ones which depend on the environment / sensors. Those are: `input_shapes` and `output_shapes`. Notes on the inputs and outputs: - "observation.state" is required as an input key. - At least one key starting with "observation.image is required as an input. - If there are multiple keys beginning with "observation.image" they are treated as multiple camera views. Right now we only support all images having the same shape. - "action" is required as an output key. Args: n_obs_steps: Number of environment steps worth of observations to pass to the policy (takes the current step and additional steps going back). n_action_pred_token: Total number of current token and future tokens that VQ-BeT predicts. action_chunk_size: Action chunk size of each action prediction token. input_shapes: A dictionary defining the shapes of the input data for the policy. The key represents the input data name, and the value is a list indicating the dimensions of the corresponding data. For example, "observation.image" refers to an input from a camera with dimensions [3, 96, 96], indicating it has three color channels and 96x96 resolution. Importantly, shapes doesnt include batch dimension or temporal dimension. output_shapes: A dictionary defining the shapes of the output data for the policy. The key represents the output data name, and the value is a list indicating the dimensions of the corresponding data. For example, "action" refers to an output shape of [14], indicating 14-dimensional actions. Importantly, shapes doesnt include batch dimension or temporal dimension. input_normalization_modes: A dictionary with key representing the modality (e.g. "observation.state"), and the value specifies the normalization mode to apply. The two available modes are "mean_std" which subtracts the mean and divides by the standard deviation and "min_max" which rescale in a [-1, 1] range. output_normalization_modes: Similar dictionary as `normalize_input_modes`, but to unnormalize to the original scale. Note that this is also used for normalizing the training targets. vision_backbone: Name of the torchvision resnet backbone to use for encoding images. crop_shape: (H, W) shape to crop images to as a preprocessing step for the vision backbone. Must fit within the image size. If None, no cropping is done. crop_is_random: Whether the crop should be random at training time (it's always a center crop in eval mode). pretrained_backbone_weights: Pretrained weights from torchvision to initalize the backbone. `None` means no pretrained weights. use_group_norm: Whether to replace batch normalization with group normalization in the backbone. The group sizes are set to be about 16 (to be precise, feature_dim // 16). spatial_softmax_num_keypoints: Number of keypoints for SpatialSoftmax. n_vqvae_training_steps: Number of optimization steps for training Residual VQ. vqvae_n_embed: Number of embedding vectors in the RVQ dictionary (each layer). vqvae_embedding_dim: Dimension of each embedding vector in the RVQ dictionary. vqvae_enc_hidden_dim: Size of hidden dimensions of Encoder / Decoder part of Residaul VQ-VAE gpt_block_size: Max block size of minGPT (should be larger than the number of input tokens) gpt_input_dim: Size of output input of GPT. This is also used as the dimension of observation features. gpt_output_dim: Size of output dimension of GPT. This is also used as a input dimension of offset / bin prediction headers. gpt_n_layer: Number of layers of GPT gpt_n_head: Number of headers of GPT gpt_hidden_dim: Size of hidden dimensions of GPT dropout: Dropout rate for GPT mlp_hidden_dim: Size of hidden dimensions of offset header / bin prediction headers parts of VQ-BeT offset_loss_weight: A constant that is multiplied to the offset loss primary_code_loss_weight: A constant that is multiplied to the primary code prediction loss secondary_code_loss_weight: A constant that is multiplied to the secondary code prediction loss bet_softmax_temperature: Sampling temperature of code for rollout with VQ-BeT sequentially_select: Whether select code of primary / secondary as sequentially (pick primary code, and then select secodnary code), or at the same time. """ # Inputs / output structure. n_obs_steps: int = 5 n_action_pred_token: int = 3 action_chunk_size: int = 5 normalization_mapping: dict[str, NormalizationMode] = field( default_factory=lambda: { "VISUAL": NormalizationMode.IDENTITY, "STATE": NormalizationMode.MIN_MAX, "ACTION": NormalizationMode.MIN_MAX, } ) # Architecture / modeling. # Vision backbone. vision_backbone: str = "resnet18" crop_shape: tuple[int, int] | None = (84, 84) crop_is_random: bool = True pretrained_backbone_weights: str | None = None use_group_norm: bool = True spatial_softmax_num_keypoints: int = 32 # VQ-VAE n_vqvae_training_steps: int = 20000 vqvae_n_embed: int = 16 vqvae_embedding_dim: int = 256 vqvae_enc_hidden_dim: int = 128 # VQ-BeT gpt_block_size: int = 500 gpt_input_dim: int = 512 gpt_output_dim: int = 512 gpt_n_layer: int = 8 gpt_n_head: int = 8 gpt_hidden_dim: int = 512 dropout: float = 0.1 mlp_hidden_dim: int = 1024 offset_loss_weight: float = 10000.0 primary_code_loss_weight: float = 5.0 secondary_code_loss_weight: float = 0.5 bet_softmax_temperature: float = 0.1 sequentially_select: bool = False # Training presets optimizer_lr: float = 1e-4 optimizer_betas: tuple = (0.95, 0.999) optimizer_eps: float = 1e-8 optimizer_weight_decay: float = 1e-6 optimizer_vqvae_lr: float = 1e-3 optimizer_vqvae_weight_decay: float = 1e-4 scheduler_warmup_steps: int = 500 def __post_init__(self): super().__post_init__() """Input validation (not exhaustive).""" if not self.vision_backbone.startswith("resnet"): raise ValueError( f"`vision_backbone` must be one of the ResNet variants. Got {self.vision_backbone}." ) def get_optimizer_preset(self) -> AdamConfig: return AdamConfig( lr=self.optimizer_lr, betas=self.optimizer_betas, eps=self.optimizer_eps, weight_decay=self.optimizer_weight_decay, ) def get_scheduler_preset(self) -> VQBeTSchedulerConfig: return VQBeTSchedulerConfig( num_warmup_steps=self.scheduler_warmup_steps, num_vqvae_training_steps=self.n_vqvae_training_steps, ) def validate_features(self) -> None: # Note: this check was previously performed inside VQBeTRgbEncoder in the form of # assert len(image_keys) == 1 if not len(self.image_features) == 1: raise ValueError("You must provide only one image among the inputs.") if self.crop_shape is not None: for key, image_ft in self.image_features.items(): if self.crop_shape[0] > image_ft.shape[1] or self.crop_shape[1] > image_ft.shape[2]: raise ValueError( f"`crop_shape` should fit within the images shapes. Got {self.crop_shape} " f"for `crop_shape` and {image_ft.shape} for " f"`{key}`." ) # Check that all input images have the same shape. first_image_key, first_image_ft = next(iter(self.image_features.items())) for key, image_ft in self.image_features.items(): if image_ft.shape != first_image_ft.shape: raise ValueError( f"`{key}` does not match `{first_image_key}`, but we " "expect all image shapes to match." ) @property def observation_delta_indices(self) -> list: return list(range(1 - self.n_obs_steps, 1)) @property def action_delta_indices(self) -> list: return list(range(1 - self.n_obs_steps, self.n_action_pred_token + self.action_chunk_size - 1)) @property def reward_delta_indices(self) -> None: return None
lerobot/lerobot/common/policies/vqbet/configuration_vqbet.py/0
{ "file_path": "lerobot/lerobot/common/policies/vqbet/configuration_vqbet.py", "repo_id": "lerobot", "token_count": 3681 }
"""Contains logic to instantiate a robot, read information from its motors and cameras, and send orders to its motors. """ # TODO(rcadene, aliberts): reorganize the codebase into one file per robot, with the associated # calibration procedure, to make it easy for people to add their own robot. import json import logging import time import warnings from pathlib import Path import numpy as np import torch from lerobot.common.robot_devices.cameras.utils import make_cameras_from_configs from lerobot.common.robot_devices.motors.utils import MotorsBus, make_motors_buses_from_configs from lerobot.common.robot_devices.robots.configs import ManipulatorRobotConfig from lerobot.common.robot_devices.robots.utils import get_arm_id from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError, RobotDeviceNotConnectedError def ensure_safe_goal_position( goal_pos: torch.Tensor, present_pos: torch.Tensor, max_relative_target: float | list[float] ): # Cap relative action target magnitude for safety. diff = goal_pos - present_pos max_relative_target = torch.tensor(max_relative_target) safe_diff = torch.minimum(diff, max_relative_target) safe_diff = torch.maximum(safe_diff, -max_relative_target) safe_goal_pos = present_pos + safe_diff if not torch.allclose(goal_pos, safe_goal_pos): logging.warning( "Relative goal position magnitude had to be clamped to be safe.\n" f" requested relative goal position target: {diff}\n" f" clamped relative goal position target: {safe_diff}" ) return safe_goal_pos class ManipulatorRobot: # TODO(rcadene): Implement force feedback """This class allows to control any manipulator robot of various number of motors. Non exaustive list of robots: - [Koch v1.0](https://github.com/AlexanderKoch-Koch/low_cost_robot), with and without the wrist-to-elbow expansion, developed by Alexander Koch from [Tau Robotics](https://tau-robotics.com) - [Koch v1.1](https://github.com/jess-moss/koch-v1-1) developed by Jess Moss - [Aloha](https://www.trossenrobotics.com/aloha-kits) developed by Trossen Robotics Example of instantiation, a pre-defined robot config is required: ```python robot = ManipulatorRobot(KochRobotConfig()) ``` Example of overwritting motors during instantiation: ```python # Defines how to communicate with the motors of the leader and follower arms leader_arms = { "main": DynamixelMotorsBusConfig( port="/dev/tty.usbmodem575E0031751", motors={ # name: (index, model) "shoulder_pan": (1, "xl330-m077"), "shoulder_lift": (2, "xl330-m077"), "elbow_flex": (3, "xl330-m077"), "wrist_flex": (4, "xl330-m077"), "wrist_roll": (5, "xl330-m077"), "gripper": (6, "xl330-m077"), }, ), } follower_arms = { "main": DynamixelMotorsBusConfig( port="/dev/tty.usbmodem575E0032081", motors={ # name: (index, model) "shoulder_pan": (1, "xl430-w250"), "shoulder_lift": (2, "xl430-w250"), "elbow_flex": (3, "xl330-m288"), "wrist_flex": (4, "xl330-m288"), "wrist_roll": (5, "xl330-m288"), "gripper": (6, "xl330-m288"), }, ), } robot_config = KochRobotConfig(leader_arms=leader_arms, follower_arms=follower_arms) robot = ManipulatorRobot(robot_config) ``` Example of overwritting cameras during instantiation: ```python # Defines how to communicate with 2 cameras connected to the computer. # Here, the webcam of the laptop and the phone (connected in USB to the laptop) # can be reached respectively using the camera indices 0 and 1. These indices can be # arbitrary. See the documentation of `OpenCVCamera` to find your own camera indices. cameras = { "laptop": OpenCVCamera(camera_index=0, fps=30, width=640, height=480), "phone": OpenCVCamera(camera_index=1, fps=30, width=640, height=480), } robot = ManipulatorRobot(KochRobotConfig(cameras=cameras)) ``` Once the robot is instantiated, connect motors buses and cameras if any (Required): ```python robot.connect() ``` Example of highest frequency teleoperation, which doesn't require cameras: ```python while True: robot.teleop_step() ``` Example of highest frequency data collection from motors and cameras (if any): ```python while True: observation, action = robot.teleop_step(record_data=True) ``` Example of controlling the robot with a policy: ```python while True: # Uses the follower arms and cameras to capture an observation observation = robot.capture_observation() # Assumes a policy has been instantiated with torch.inference_mode(): action = policy.select_action(observation) # Orders the robot to move robot.send_action(action) ``` Example of disconnecting which is not mandatory since we disconnect when the object is deleted: ```python robot.disconnect() ``` """ def __init__( self, config: ManipulatorRobotConfig, ): self.config = config self.robot_type = self.config.type self.calibration_dir = Path(self.config.calibration_dir) self.leader_arms = make_motors_buses_from_configs(self.config.leader_arms) self.follower_arms = make_motors_buses_from_configs(self.config.follower_arms) self.cameras = make_cameras_from_configs(self.config.cameras) self.is_connected = False self.logs = {} def get_motor_names(self, arm: dict[str, MotorsBus]) -> list: return [f"{arm}_{motor}" for arm, bus in arm.items() for motor in bus.motors] @property def camera_features(self) -> dict: cam_ft = {} for cam_key, cam in self.cameras.items(): key = f"observation.images.{cam_key}" cam_ft[key] = { "shape": (cam.height, cam.width, cam.channels), "names": ["height", "width", "channels"], "info": None, } return cam_ft @property def motor_features(self) -> dict: action_names = self.get_motor_names(self.leader_arms) state_names = self.get_motor_names(self.leader_arms) return { "action": { "dtype": "float32", "shape": (len(action_names),), "names": action_names, }, "observation.state": { "dtype": "float32", "shape": (len(state_names),), "names": state_names, }, } @property def features(self): return {**self.motor_features, **self.camera_features} @property def has_camera(self): return len(self.cameras) > 0 @property def num_cameras(self): return len(self.cameras) @property def available_arms(self): available_arms = [] for name in self.follower_arms: arm_id = get_arm_id(name, "follower") available_arms.append(arm_id) for name in self.leader_arms: arm_id = get_arm_id(name, "leader") available_arms.append(arm_id) return available_arms def connect(self): if self.is_connected: raise RobotDeviceAlreadyConnectedError( "ManipulatorRobot is already connected. Do not run `robot.connect()` twice." ) if not self.leader_arms and not self.follower_arms and not self.cameras: raise ValueError( "ManipulatorRobot doesn't have any device to connect. See example of usage in docstring of the class." ) # Connect the arms for name in self.follower_arms: print(f"Connecting {name} follower arm.") self.follower_arms[name].connect() for name in self.leader_arms: print(f"Connecting {name} leader arm.") self.leader_arms[name].connect() if self.robot_type in ["koch", "koch_bimanual", "aloha"]: from lerobot.common.robot_devices.motors.dynamixel import TorqueMode elif self.robot_type in ["so100", "moss"]: from lerobot.common.robot_devices.motors.feetech import TorqueMode # We assume that at connection time, arms are in a rest position, and torque can # be safely disabled to run calibration and/or set robot preset configurations. for name in self.follower_arms: self.follower_arms[name].write("Torque_Enable", TorqueMode.DISABLED.value) for name in self.leader_arms: self.leader_arms[name].write("Torque_Enable", TorqueMode.DISABLED.value) self.activate_calibration() # Set robot preset (e.g. torque in leader gripper for Koch v1.1) if self.robot_type in ["koch", "koch_bimanual"]: self.set_koch_robot_preset() elif self.robot_type == "aloha": self.set_aloha_robot_preset() elif self.robot_type in ["so100", "moss"]: self.set_so100_robot_preset() # Enable torque on all motors of the follower arms for name in self.follower_arms: print(f"Activating torque on {name} follower arm.") self.follower_arms[name].write("Torque_Enable", 1) if self.config.gripper_open_degree is not None: if self.robot_type not in ["koch", "koch_bimanual"]: raise NotImplementedError( f"{self.robot_type} does not support position AND current control in the handle, which is require to set the gripper open." ) # Set the leader arm in torque mode with the gripper motor set to an angle. This makes it possible # to squeeze the gripper and have it spring back to an open position on its own. for name in self.leader_arms: self.leader_arms[name].write("Torque_Enable", 1, "gripper") self.leader_arms[name].write("Goal_Position", self.config.gripper_open_degree, "gripper") # Check both arms can be read for name in self.follower_arms: self.follower_arms[name].read("Present_Position") for name in self.leader_arms: self.leader_arms[name].read("Present_Position") # Connect the cameras for name in self.cameras: self.cameras[name].connect() self.is_connected = True def activate_calibration(self): """After calibration all motors function in human interpretable ranges. Rotations are expressed in degrees in nominal range of [-180, 180], and linear motions (like gripper of Aloha) in nominal range of [0, 100]. """ def load_or_run_calibration_(name, arm, arm_type): arm_id = get_arm_id(name, arm_type) arm_calib_path = self.calibration_dir / f"{arm_id}.json" if arm_calib_path.exists(): with open(arm_calib_path) as f: calibration = json.load(f) else: # TODO(rcadene): display a warning in __init__ if calibration file not available print(f"Missing calibration file '{arm_calib_path}'") if self.robot_type in ["koch", "koch_bimanual", "aloha"]: from lerobot.common.robot_devices.robots.dynamixel_calibration import run_arm_calibration calibration = run_arm_calibration(arm, self.robot_type, name, arm_type) elif self.robot_type in ["so100", "moss"]: from lerobot.common.robot_devices.robots.feetech_calibration import ( run_arm_manual_calibration, ) calibration = run_arm_manual_calibration(arm, self.robot_type, name, arm_type) print(f"Calibration is done! Saving calibration file '{arm_calib_path}'") arm_calib_path.parent.mkdir(parents=True, exist_ok=True) with open(arm_calib_path, "w") as f: json.dump(calibration, f) return calibration for name, arm in self.follower_arms.items(): calibration = load_or_run_calibration_(name, arm, "follower") arm.set_calibration(calibration) for name, arm in self.leader_arms.items(): calibration = load_or_run_calibration_(name, arm, "leader") arm.set_calibration(calibration) def set_koch_robot_preset(self): def set_operating_mode_(arm): from lerobot.common.robot_devices.motors.dynamixel import TorqueMode if (arm.read("Torque_Enable") != TorqueMode.DISABLED.value).any(): raise ValueError("To run set robot preset, the torque must be disabled on all motors.") # Use 'extended position mode' for all motors except gripper, because in joint mode the servos can't # rotate more than 360 degrees (from 0 to 4095) And some mistake can happen while assembling the arm, # you could end up with a servo with a position 0 or 4095 at a crucial point See [ # https://emanual.robotis.com/docs/en/dxl/x/x_series/#operating-mode11] all_motors_except_gripper = [name for name in arm.motor_names if name != "gripper"] if len(all_motors_except_gripper) > 0: # 4 corresponds to Extended Position on Koch motors arm.write("Operating_Mode", 4, all_motors_except_gripper) # Use 'position control current based' for gripper to be limited by the limit of the current. # For the follower gripper, it means it can grasp an object without forcing too much even tho, # it's goal position is a complete grasp (both gripper fingers are ordered to join and reach a touch). # For the leader gripper, it means we can use it as a physical trigger, since we can force with our finger # to make it move, and it will move back to its original target position when we release the force. # 5 corresponds to Current Controlled Position on Koch gripper motors "xl330-m077, xl330-m288" arm.write("Operating_Mode", 5, "gripper") for name in self.follower_arms: set_operating_mode_(self.follower_arms[name]) # Set better PID values to close the gap between recorded states and actions # TODO(rcadene): Implement an automatic procedure to set optimial PID values for each motor self.follower_arms[name].write("Position_P_Gain", 1500, "elbow_flex") self.follower_arms[name].write("Position_I_Gain", 0, "elbow_flex") self.follower_arms[name].write("Position_D_Gain", 600, "elbow_flex") if self.config.gripper_open_degree is not None: for name in self.leader_arms: set_operating_mode_(self.leader_arms[name]) # Enable torque on the gripper of the leader arms, and move it to 45 degrees, # so that we can use it as a trigger to close the gripper of the follower arms. self.leader_arms[name].write("Torque_Enable", 1, "gripper") self.leader_arms[name].write("Goal_Position", self.config.gripper_open_degree, "gripper") def set_aloha_robot_preset(self): def set_shadow_(arm): # Set secondary/shadow ID for shoulder and elbow. These joints have two motors. # As a result, if only one of them is required to move to a certain position, # the other will follow. This is to avoid breaking the motors. if "shoulder_shadow" in arm.motor_names: shoulder_idx = arm.read("ID", "shoulder") arm.write("Secondary_ID", shoulder_idx, "shoulder_shadow") if "elbow_shadow" in arm.motor_names: elbow_idx = arm.read("ID", "elbow") arm.write("Secondary_ID", elbow_idx, "elbow_shadow") for name in self.follower_arms: set_shadow_(self.follower_arms[name]) for name in self.leader_arms: set_shadow_(self.leader_arms[name]) for name in self.follower_arms: # Set a velocity limit of 131 as advised by Trossen Robotics self.follower_arms[name].write("Velocity_Limit", 131) # Use 'extended position mode' for all motors except gripper, because in joint mode the servos can't # rotate more than 360 degrees (from 0 to 4095) And some mistake can happen while assembling the arm, # you could end up with a servo with a position 0 or 4095 at a crucial point See [ # https://emanual.robotis.com/docs/en/dxl/x/x_series/#operating-mode11] all_motors_except_gripper = [ name for name in self.follower_arms[name].motor_names if name != "gripper" ] if len(all_motors_except_gripper) > 0: # 4 corresponds to Extended Position on Aloha motors self.follower_arms[name].write("Operating_Mode", 4, all_motors_except_gripper) # Use 'position control current based' for follower gripper to be limited by the limit of the current. # It can grasp an object without forcing too much even tho, # it's goal position is a complete grasp (both gripper fingers are ordered to join and reach a touch). # 5 corresponds to Current Controlled Position on Aloha gripper follower "xm430-w350" self.follower_arms[name].write("Operating_Mode", 5, "gripper") # Note: We can't enable torque on the leader gripper since "xc430-w150" doesn't have # a Current Controlled Position mode. if self.config.gripper_open_degree is not None: warnings.warn( f"`gripper_open_degree` is set to {self.config.gripper_open_degree}, but None is expected for Aloha instead", stacklevel=1, ) def set_so100_robot_preset(self): for name in self.follower_arms: # Mode=0 for Position Control self.follower_arms[name].write("Mode", 0) # Set P_Coefficient to lower value to avoid shakiness (Default is 32) self.follower_arms[name].write("P_Coefficient", 16) # Set I_Coefficient and D_Coefficient to default value 0 and 32 self.follower_arms[name].write("I_Coefficient", 0) self.follower_arms[name].write("D_Coefficient", 32) # Close the write lock so that Maximum_Acceleration gets written to EPROM address, # which is mandatory for Maximum_Acceleration to take effect after rebooting. self.follower_arms[name].write("Lock", 0) # Set Maximum_Acceleration to 254 to speedup acceleration and deceleration of # the motors. Note: this configuration is not in the official STS3215 Memory Table self.follower_arms[name].write("Maximum_Acceleration", 254) self.follower_arms[name].write("Acceleration", 254) def teleop_step( self, record_data=False ) -> None | tuple[dict[str, torch.Tensor], dict[str, torch.Tensor]]: if not self.is_connected: raise RobotDeviceNotConnectedError( "ManipulatorRobot is not connected. You need to run `robot.connect()`." ) # Prepare to assign the position of the leader to the follower leader_pos = {} for name in self.leader_arms: before_lread_t = time.perf_counter() leader_pos[name] = self.leader_arms[name].read("Present_Position") leader_pos[name] = torch.from_numpy(leader_pos[name]) self.logs[f"read_leader_{name}_pos_dt_s"] = time.perf_counter() - before_lread_t # Send goal position to the follower follower_goal_pos = {} for name in self.follower_arms: before_fwrite_t = time.perf_counter() goal_pos = leader_pos[name] # Cap goal position when too far away from present position. # Slower fps expected due to reading from the follower. if self.config.max_relative_target is not None: present_pos = self.follower_arms[name].read("Present_Position") present_pos = torch.from_numpy(present_pos) goal_pos = ensure_safe_goal_position(goal_pos, present_pos, self.config.max_relative_target) # Used when record_data=True follower_goal_pos[name] = goal_pos goal_pos = goal_pos.numpy().astype(np.int32) self.follower_arms[name].write("Goal_Position", goal_pos) self.logs[f"write_follower_{name}_goal_pos_dt_s"] = time.perf_counter() - before_fwrite_t # Early exit when recording data is not requested if not record_data: return # TODO(rcadene): Add velocity and other info # Read follower position follower_pos = {} for name in self.follower_arms: before_fread_t = time.perf_counter() follower_pos[name] = self.follower_arms[name].read("Present_Position") follower_pos[name] = torch.from_numpy(follower_pos[name]) self.logs[f"read_follower_{name}_pos_dt_s"] = time.perf_counter() - before_fread_t # Create state by concatenating follower current position state = [] for name in self.follower_arms: if name in follower_pos: state.append(follower_pos[name]) state = torch.cat(state) # Create action by concatenating follower goal position action = [] for name in self.follower_arms: if name in follower_goal_pos: action.append(follower_goal_pos[name]) action = torch.cat(action) # Capture images from cameras images = {} for name in self.cameras: before_camread_t = time.perf_counter() images[name] = self.cameras[name].async_read() images[name] = torch.from_numpy(images[name]) self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs["delta_timestamp_s"] self.logs[f"async_read_camera_{name}_dt_s"] = time.perf_counter() - before_camread_t # Populate output dictionnaries obs_dict, action_dict = {}, {} obs_dict["observation.state"] = state action_dict["action"] = action for name in self.cameras: obs_dict[f"observation.images.{name}"] = images[name] return obs_dict, action_dict def capture_observation(self): """The returned observations do not have a batch dimension.""" if not self.is_connected: raise RobotDeviceNotConnectedError( "ManipulatorRobot is not connected. You need to run `robot.connect()`." ) # Read follower position follower_pos = {} for name in self.follower_arms: before_fread_t = time.perf_counter() follower_pos[name] = self.follower_arms[name].read("Present_Position") follower_pos[name] = torch.from_numpy(follower_pos[name]) self.logs[f"read_follower_{name}_pos_dt_s"] = time.perf_counter() - before_fread_t # Create state by concatenating follower current position state = [] for name in self.follower_arms: if name in follower_pos: state.append(follower_pos[name]) state = torch.cat(state) # Capture images from cameras images = {} for name in self.cameras: before_camread_t = time.perf_counter() images[name] = self.cameras[name].async_read() images[name] = torch.from_numpy(images[name]) self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs["delta_timestamp_s"] self.logs[f"async_read_camera_{name}_dt_s"] = time.perf_counter() - before_camread_t # Populate output dictionnaries and format to pytorch obs_dict = {} obs_dict["observation.state"] = state for name in self.cameras: obs_dict[f"observation.images.{name}"] = images[name] return obs_dict def send_action(self, action: torch.Tensor) -> torch.Tensor: """Command the follower arms to move to a target joint configuration. The relative action magnitude may be clipped depending on the configuration parameter `max_relative_target`. In this case, the action sent differs from original action. Thus, this function always returns the action actually sent. Args: action: tensor containing the concatenated goal positions for the follower arms. """ if not self.is_connected: raise RobotDeviceNotConnectedError( "ManipulatorRobot is not connected. You need to run `robot.connect()`." ) from_idx = 0 to_idx = 0 action_sent = [] for name in self.follower_arms: # Get goal position of each follower arm by splitting the action vector to_idx += len(self.follower_arms[name].motor_names) goal_pos = action[from_idx:to_idx] from_idx = to_idx # Cap goal position when too far away from present position. # Slower fps expected due to reading from the follower. if self.config.max_relative_target is not None: present_pos = self.follower_arms[name].read("Present_Position") present_pos = torch.from_numpy(present_pos) goal_pos = ensure_safe_goal_position(goal_pos, present_pos, self.config.max_relative_target) # Save tensor to concat and return action_sent.append(goal_pos) # Send goal position to each follower goal_pos = goal_pos.numpy().astype(np.int32) self.follower_arms[name].write("Goal_Position", goal_pos) return torch.cat(action_sent) def print_logs(self): pass # TODO(aliberts): move robot-specific logs logic here def disconnect(self): if not self.is_connected: raise RobotDeviceNotConnectedError( "ManipulatorRobot is not connected. You need to run `robot.connect()` before disconnecting." ) for name in self.follower_arms: self.follower_arms[name].disconnect() for name in self.leader_arms: self.leader_arms[name].disconnect() for name in self.cameras: self.cameras[name].disconnect() self.is_connected = False def __del__(self): if getattr(self, "is_connected", False): self.disconnect()
lerobot/lerobot/common/robot_devices/robots/manipulator.py/0
{ "file_path": "lerobot/lerobot/common/robot_devices/robots/manipulator.py", "repo_id": "lerobot", "token_count": 11680 }
""" Utilities to control a robot. Useful to record a dataset, replay a recorded episode, run the policy on your robot and record an evaluation dataset, and to recalibrate your robot if needed. Examples of usage: - Recalibrate your robot: ```bash python lerobot/scripts/control_robot.py \ --robot.type=so100 \ --control.type=calibrate ``` - Unlimited teleoperation at highest frequency (~200 Hz is expected), to exit with CTRL+C: ```bash python lerobot/scripts/control_robot.py \ --robot.type=so100 \ --robot.cameras='{}' \ --control.type=teleoperate # Add the cameras from the robot definition to visualize them: python lerobot/scripts/control_robot.py \ --robot.type=so100 \ --control.type=teleoperate ``` - Unlimited teleoperation at a limited frequency of 30 Hz, to simulate data recording frequency: ```bash python lerobot/scripts/control_robot.py \ --robot.type=so100 \ --control.type=teleoperate \ --control.fps=30 ``` - Record one episode in order to test replay: ```bash python lerobot/scripts/control_robot.py \ --robot.type=so100 \ --control.type=record \ --control.fps=30 \ --control.single_task="Grasp a lego block and put it in the bin." \ --control.repo_id=$USER/koch_test \ --control.num_episodes=1 \ --control.push_to_hub=True ``` - Visualize dataset: ```bash python lerobot/scripts/visualize_dataset.py \ --repo-id $USER/koch_test \ --episode-index 0 ``` - Replay this test episode: ```bash python lerobot/scripts/control_robot.py replay \ --robot.type=so100 \ --control.type=replay \ --control.fps=30 \ --control.repo_id=$USER/koch_test \ --control.episode=0 ``` - Record a full dataset in order to train a policy, with 2 seconds of warmup, 30 seconds of recording for each episode, and 10 seconds to reset the environment in between episodes: ```bash python lerobot/scripts/control_robot.py record \ --robot.type=so100 \ --control.type=record \ --control.fps 30 \ --control.repo_id=$USER/koch_pick_place_lego \ --control.num_episodes=50 \ --control.warmup_time_s=2 \ --control.episode_time_s=30 \ --control.reset_time_s=10 ``` **NOTE**: You can use your keyboard to control data recording flow. - Tap right arrow key '->' to early exit while recording an episode and go to resseting the environment. - Tap right arrow key '->' to early exit while resetting the environment and got to recording the next episode. - Tap left arrow key '<-' to early exit and re-record the current episode. - Tap escape key 'esc' to stop the data recording. This might require a sudo permission to allow your terminal to monitor keyboard events. **NOTE**: You can resume/continue data recording by running the same data recording command and adding `--control.resume=true`. If the dataset you want to extend is not on the hub, you also need to add `--control.local_files_only=true`. - Train on this dataset with the ACT policy: ```bash python lerobot/scripts/train.py \ --dataset.repo_id=${HF_USER}/koch_pick_place_lego \ --policy.type=act \ --output_dir=outputs/train/act_koch_pick_place_lego \ --job_name=act_koch_pick_place_lego \ --device=cuda \ --wandb.enable=true ``` - Run the pretrained policy on the robot: ```bash python lerobot/scripts/control_robot.py \ --robot.type=so100 \ --control.type=record \ --control.fps=30 \ --control.single_task="Grasp a lego block and put it in the bin." \ --control.repo_id=$USER/eval_act_koch_pick_place_lego \ --control.num_episodes=10 \ --control.warmup_time_s=2 \ --control.episode_time_s=30 \ --control.reset_time_s=10 \ --control.push_to_hub=true \ --control.policy.path=outputs/train/act_koch_pick_place_lego/checkpoints/080000/pretrained_model ``` """ import logging import time from dataclasses import asdict from pprint import pformat # from safetensors.torch import load_file, save_file from lerobot.common.datasets.lerobot_dataset import LeRobotDataset from lerobot.common.policies.factory import make_policy from lerobot.common.robot_devices.control_configs import ( CalibrateControlConfig, ControlPipelineConfig, RecordControlConfig, ReplayControlConfig, TeleoperateControlConfig, ) from lerobot.common.robot_devices.control_utils import ( control_loop, init_keyboard_listener, log_control_info, record_episode, reset_environment, sanity_check_dataset_name, sanity_check_dataset_robot_compatibility, stop_recording, warmup_record, ) from lerobot.common.robot_devices.robots.utils import Robot, make_robot_from_config from lerobot.common.robot_devices.utils import busy_wait, safe_disconnect from lerobot.common.utils.utils import has_method, init_logging, log_say from lerobot.configs import parser ######################################################################################## # Control modes ######################################################################################## @safe_disconnect def calibrate(robot: Robot, cfg: CalibrateControlConfig): # TODO(aliberts): move this code in robots' classes if robot.robot_type.startswith("stretch"): if not robot.is_connected: robot.connect() if not robot.is_homed(): robot.home() return arms = robot.available_arms if cfg.arms is None else cfg.arms unknown_arms = [arm_id for arm_id in arms if arm_id not in robot.available_arms] available_arms_str = " ".join(robot.available_arms) unknown_arms_str = " ".join(unknown_arms) if arms is None or len(arms) == 0: raise ValueError( "No arm provided. Use `--arms` as argument with one or more available arms.\n" f"For instance, to recalibrate all arms add: `--arms {available_arms_str}`" ) if len(unknown_arms) > 0: raise ValueError( f"Unknown arms provided ('{unknown_arms_str}'). Available arms are `{available_arms_str}`." ) for arm_id in arms: arm_calib_path = robot.calibration_dir / f"{arm_id}.json" if arm_calib_path.exists(): print(f"Removing '{arm_calib_path}'") arm_calib_path.unlink() else: print(f"Calibration file not found '{arm_calib_path}'") if robot.is_connected: robot.disconnect() # Calling `connect` automatically runs calibration # when the calibration file is missing robot.connect() robot.disconnect() print("Calibration is done! You can now teleoperate and record datasets!") @safe_disconnect def teleoperate(robot: Robot, cfg: TeleoperateControlConfig): control_loop( robot, control_time_s=cfg.teleop_time_s, fps=cfg.fps, teleoperate=True, display_cameras=cfg.display_cameras, ) @safe_disconnect def record( robot: Robot, cfg: RecordControlConfig, ) -> LeRobotDataset: # TODO(rcadene): Add option to record logs if cfg.resume: dataset = LeRobotDataset( cfg.repo_id, root=cfg.root, local_files_only=cfg.local_files_only, ) if len(robot.cameras) > 0: dataset.start_image_writer( num_processes=cfg.num_image_writer_processes, num_threads=cfg.num_image_writer_threads_per_camera * len(robot.cameras), ) sanity_check_dataset_robot_compatibility(dataset, robot, cfg.fps, cfg.video) else: # Create empty dataset or load existing saved episodes sanity_check_dataset_name(cfg.repo_id, cfg.policy) dataset = LeRobotDataset.create( cfg.repo_id, cfg.fps, root=cfg.root, robot=robot, use_videos=cfg.video, image_writer_processes=cfg.num_image_writer_processes, image_writer_threads=cfg.num_image_writer_threads_per_camera * len(robot.cameras), ) # Load pretrained policy policy = None if cfg.policy is None else make_policy(cfg.policy, cfg.device, ds_meta=dataset.meta) if not robot.is_connected: robot.connect() listener, events = init_keyboard_listener() # Execute a few seconds without recording to: # 1. teleoperate the robot to move it in starting position if no policy provided, # 2. give times to the robot devices to connect and start synchronizing, # 3. place the cameras windows on screen enable_teleoperation = policy is None log_say("Warmup record", cfg.play_sounds) warmup_record(robot, events, enable_teleoperation, cfg.warmup_time_s, cfg.display_cameras, cfg.fps) if has_method(robot, "teleop_safety_stop"): robot.teleop_safety_stop() recorded_episodes = 0 while True: if recorded_episodes >= cfg.num_episodes: break log_say(f"Recording episode {dataset.num_episodes}", cfg.play_sounds) record_episode( dataset=dataset, robot=robot, events=events, episode_time_s=cfg.episode_time_s, display_cameras=cfg.display_cameras, policy=policy, device=cfg.device, use_amp=cfg.use_amp, fps=cfg.fps, ) # Execute a few seconds without recording to give time to manually reset the environment # Current code logic doesn't allow to teleoperate during this time. # TODO(rcadene): add an option to enable teleoperation during reset # Skip reset for the last episode to be recorded if not events["stop_recording"] and ( (recorded_episodes < cfg.num_episodes - 1) or events["rerecord_episode"] ): log_say("Reset the environment", cfg.play_sounds) reset_environment(robot, events, cfg.reset_time_s) if events["rerecord_episode"]: log_say("Re-record episode", cfg.play_sounds) events["rerecord_episode"] = False events["exit_early"] = False dataset.clear_episode_buffer() continue dataset.save_episode(cfg.single_task) recorded_episodes += 1 if events["stop_recording"]: break log_say("Stop recording", cfg.play_sounds, blocking=True) stop_recording(robot, listener, cfg.display_cameras) if cfg.run_compute_stats: logging.info("Computing dataset statistics") dataset.consolidate(cfg.run_compute_stats) if cfg.push_to_hub: dataset.push_to_hub(tags=cfg.tags, private=cfg.private) log_say("Exiting", cfg.play_sounds) return dataset @safe_disconnect def replay( robot: Robot, cfg: ReplayControlConfig, ): # TODO(rcadene, aliberts): refactor with control_loop, once `dataset` is an instance of LeRobotDataset # TODO(rcadene): Add option to record logs dataset = LeRobotDataset( cfg.repo_id, root=cfg.root, episodes=[cfg.episode], local_files_only=cfg.local_files_only ) actions = dataset.hf_dataset.select_columns("action") if not robot.is_connected: robot.connect() log_say("Replaying episode", cfg.play_sounds, blocking=True) for idx in range(dataset.num_frames): start_episode_t = time.perf_counter() action = actions[idx]["action"] robot.send_action(action) dt_s = time.perf_counter() - start_episode_t busy_wait(1 / cfg.fps - dt_s) dt_s = time.perf_counter() - start_episode_t log_control_info(robot, dt_s, fps=cfg.fps) @parser.wrap() def control_robot(cfg: ControlPipelineConfig): init_logging() logging.info(pformat(asdict(cfg))) robot = make_robot_from_config(cfg.robot) if isinstance(cfg.control, CalibrateControlConfig): calibrate(robot, cfg.control) elif isinstance(cfg.control, TeleoperateControlConfig): teleoperate(robot, cfg.control) elif isinstance(cfg.control, RecordControlConfig): record(robot, cfg.control) elif isinstance(cfg.control, ReplayControlConfig): replay(robot, cfg.control) if robot.is_connected: # Disconnect manually to avoid a "Core dump" during process # termination due to camera threads not properly exiting. robot.disconnect() if __name__ == "__main__": control_robot()
lerobot/lerobot/scripts/control_robot.py/0
{ "file_path": "lerobot/lerobot/scripts/control_robot.py", "repo_id": "lerobot", "token_count": 4895 }
from lerobot.common.datasets.lerobot_dataset import LEROBOT_HOME LEROBOT_TEST_DIR = LEROBOT_HOME / "_testing" DUMMY_REPO_ID = "dummy/repo" DUMMY_ROBOT_TYPE = "dummy_robot" DUMMY_MOTOR_FEATURES = { "action": { "dtype": "float32", "shape": (6,), "names": ["shoulder_pan", "shoulder_lift", "elbow_flex", "wrist_flex", "wrist_roll", "gripper"], }, "state": { "dtype": "float32", "shape": (6,), "names": ["shoulder_pan", "shoulder_lift", "elbow_flex", "wrist_flex", "wrist_roll", "gripper"], }, } DUMMY_CAMERA_FEATURES = { "laptop": {"shape": (480, 640, 3), "names": ["height", "width", "channels"], "info": None}, "phone": {"shape": (480, 640, 3), "names": ["height", "width", "channels"], "info": None}, } DEFAULT_FPS = 30 DUMMY_VIDEO_INFO = { "video.fps": DEFAULT_FPS, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": False, "has_audio": False, }
lerobot/tests/fixtures/constants.py/0
{ "file_path": "lerobot/tests/fixtures/constants.py", "repo_id": "lerobot", "token_count": 458 }
import pytest import torch from datasets import Dataset from lerobot.common.datasets.utils import ( calculate_episode_data_index, check_delta_timestamps, check_timestamps_sync, get_delta_indices, hf_transform_to_torch, ) from tests.fixtures.constants import DUMMY_MOTOR_FEATURES @pytest.fixture(scope="module") def synced_hf_dataset_factory(hf_dataset_factory): def _create_synced_hf_dataset(fps: int = 30) -> Dataset: return hf_dataset_factory(fps=fps) return _create_synced_hf_dataset @pytest.fixture(scope="module") def unsynced_hf_dataset_factory(synced_hf_dataset_factory): def _create_unsynced_hf_dataset(fps: int = 30, tolerance_s: float = 1e-4) -> Dataset: hf_dataset = synced_hf_dataset_factory(fps=fps) features = hf_dataset.features df = hf_dataset.to_pandas() dtype = df["timestamp"].dtype # This is to avoid pandas type warning # Modify a single timestamp just outside tolerance df.at[30, "timestamp"] = dtype.type(df.at[30, "timestamp"] + (tolerance_s * 1.1)) unsynced_hf_dataset = Dataset.from_pandas(df, features=features) unsynced_hf_dataset.set_transform(hf_transform_to_torch) return unsynced_hf_dataset return _create_unsynced_hf_dataset @pytest.fixture(scope="module") def slightly_off_hf_dataset_factory(synced_hf_dataset_factory): def _create_slightly_off_hf_dataset(fps: int = 30, tolerance_s: float = 1e-4) -> Dataset: hf_dataset = synced_hf_dataset_factory(fps=fps) features = hf_dataset.features df = hf_dataset.to_pandas() dtype = df["timestamp"].dtype # This is to avoid pandas type warning # Modify a single timestamp just inside tolerance df.at[30, "timestamp"] = dtype.type(df.at[30, "timestamp"] + (tolerance_s * 0.9)) unsynced_hf_dataset = Dataset.from_pandas(df, features=features) unsynced_hf_dataset.set_transform(hf_transform_to_torch) return unsynced_hf_dataset return _create_slightly_off_hf_dataset @pytest.fixture(scope="module") def valid_delta_timestamps_factory(): def _create_valid_delta_timestamps( fps: int = 30, keys: list = DUMMY_MOTOR_FEATURES, min_max_range: tuple[int, int] = (-10, 10) ) -> dict: delta_timestamps = {key: [i * (1 / fps) for i in range(*min_max_range)] for key in keys} return delta_timestamps return _create_valid_delta_timestamps @pytest.fixture(scope="module") def invalid_delta_timestamps_factory(valid_delta_timestamps_factory): def _create_invalid_delta_timestamps( fps: int = 30, tolerance_s: float = 1e-4, keys: list = DUMMY_MOTOR_FEATURES ) -> dict: delta_timestamps = valid_delta_timestamps_factory(fps, keys) # Modify a single timestamp just outside tolerance for key in keys: delta_timestamps[key][3] += tolerance_s * 1.1 return delta_timestamps return _create_invalid_delta_timestamps @pytest.fixture(scope="module") def slightly_off_delta_timestamps_factory(valid_delta_timestamps_factory): def _create_slightly_off_delta_timestamps( fps: int = 30, tolerance_s: float = 1e-4, keys: list = DUMMY_MOTOR_FEATURES ) -> dict: delta_timestamps = valid_delta_timestamps_factory(fps, keys) # Modify a single timestamp just inside tolerance for key in delta_timestamps: delta_timestamps[key][3] += tolerance_s * 0.9 delta_timestamps[key][-3] += tolerance_s * 0.9 return delta_timestamps return _create_slightly_off_delta_timestamps @pytest.fixture(scope="module") def delta_indices_factory(): def _delta_indices(keys: list = DUMMY_MOTOR_FEATURES, min_max_range: tuple[int, int] = (-10, 10)) -> dict: return {key: list(range(*min_max_range)) for key in keys} return _delta_indices def test_check_timestamps_sync_synced(synced_hf_dataset_factory): fps = 30 tolerance_s = 1e-4 synced_hf_dataset = synced_hf_dataset_factory(fps) episode_data_index = calculate_episode_data_index(synced_hf_dataset) result = check_timestamps_sync( hf_dataset=synced_hf_dataset, episode_data_index=episode_data_index, fps=fps, tolerance_s=tolerance_s, ) assert result is True def test_check_timestamps_sync_unsynced(unsynced_hf_dataset_factory): fps = 30 tolerance_s = 1e-4 unsynced_hf_dataset = unsynced_hf_dataset_factory(fps, tolerance_s) episode_data_index = calculate_episode_data_index(unsynced_hf_dataset) with pytest.raises(ValueError): check_timestamps_sync( hf_dataset=unsynced_hf_dataset, episode_data_index=episode_data_index, fps=fps, tolerance_s=tolerance_s, ) def test_check_timestamps_sync_unsynced_no_exception(unsynced_hf_dataset_factory): fps = 30 tolerance_s = 1e-4 unsynced_hf_dataset = unsynced_hf_dataset_factory(fps, tolerance_s) episode_data_index = calculate_episode_data_index(unsynced_hf_dataset) result = check_timestamps_sync( hf_dataset=unsynced_hf_dataset, episode_data_index=episode_data_index, fps=fps, tolerance_s=tolerance_s, raise_value_error=False, ) assert result is False def test_check_timestamps_sync_slightly_off(slightly_off_hf_dataset_factory): fps = 30 tolerance_s = 1e-4 slightly_off_hf_dataset = slightly_off_hf_dataset_factory(fps, tolerance_s) episode_data_index = calculate_episode_data_index(slightly_off_hf_dataset) result = check_timestamps_sync( hf_dataset=slightly_off_hf_dataset, episode_data_index=episode_data_index, fps=fps, tolerance_s=tolerance_s, ) assert result is True def test_check_timestamps_sync_single_timestamp(): single_timestamp_hf_dataset = Dataset.from_dict({"timestamp": [0.0], "episode_index": [0]}) single_timestamp_hf_dataset.set_transform(hf_transform_to_torch) episode_data_index = {"to": torch.tensor([1]), "from": torch.tensor([0])} fps = 30 tolerance_s = 1e-4 result = check_timestamps_sync( hf_dataset=single_timestamp_hf_dataset, episode_data_index=episode_data_index, fps=fps, tolerance_s=tolerance_s, ) assert result is True # TODO(aliberts): Change behavior of hf_transform_to_torch so that it can work with empty dataset @pytest.mark.skip("TODO: fix") def test_check_timestamps_sync_empty_dataset(): fps = 30 tolerance_s = 1e-4 empty_hf_dataset = Dataset.from_dict({"timestamp": [], "episode_index": []}) empty_hf_dataset.set_transform(hf_transform_to_torch) episode_data_index = { "to": torch.tensor([], dtype=torch.int64), "from": torch.tensor([], dtype=torch.int64), } result = check_timestamps_sync( hf_dataset=empty_hf_dataset, episode_data_index=episode_data_index, fps=fps, tolerance_s=tolerance_s, ) assert result is True def test_check_delta_timestamps_valid(valid_delta_timestamps_factory): fps = 30 tolerance_s = 1e-4 valid_delta_timestamps = valid_delta_timestamps_factory(fps) result = check_delta_timestamps( delta_timestamps=valid_delta_timestamps, fps=fps, tolerance_s=tolerance_s, ) assert result is True def test_check_delta_timestamps_slightly_off(slightly_off_delta_timestamps_factory): fps = 30 tolerance_s = 1e-4 slightly_off_delta_timestamps = slightly_off_delta_timestamps_factory(fps, tolerance_s) result = check_delta_timestamps( delta_timestamps=slightly_off_delta_timestamps, fps=fps, tolerance_s=tolerance_s, ) assert result is True def test_check_delta_timestamps_invalid(invalid_delta_timestamps_factory): fps = 30 tolerance_s = 1e-4 invalid_delta_timestamps = invalid_delta_timestamps_factory(fps, tolerance_s) with pytest.raises(ValueError): check_delta_timestamps( delta_timestamps=invalid_delta_timestamps, fps=fps, tolerance_s=tolerance_s, ) def test_check_delta_timestamps_invalid_no_exception(invalid_delta_timestamps_factory): fps = 30 tolerance_s = 1e-4 invalid_delta_timestamps = invalid_delta_timestamps_factory(fps, tolerance_s) result = check_delta_timestamps( delta_timestamps=invalid_delta_timestamps, fps=fps, tolerance_s=tolerance_s, raise_value_error=False, ) assert result is False def test_check_delta_timestamps_empty(): delta_timestamps = {} fps = 30 tolerance_s = 1e-4 result = check_delta_timestamps( delta_timestamps=delta_timestamps, fps=fps, tolerance_s=tolerance_s, ) assert result is True def test_delta_indices(valid_delta_timestamps_factory, delta_indices_factory): fps = 50 min_max_range = (-100, 100) delta_timestamps = valid_delta_timestamps_factory(fps, min_max_range=min_max_range) expected_delta_indices = delta_indices_factory(min_max_range=min_max_range) actual_delta_indices = get_delta_indices(delta_timestamps, fps) assert expected_delta_indices == actual_delta_indices
lerobot/tests/test_delta_timestamps.py/0
{ "file_path": "lerobot/tests/test_delta_timestamps.py", "repo_id": "lerobot", "token_count": 4146 }
# coding=utf-8 # Copyright 2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass, field from typing import Optional import trl # TODO: add the shared options with a mixin to reduce code duplication @dataclass class GRPOConfig(trl.GRPOConfig): """ args for callbacks, benchmarks etc """ benchmarks: list[str] = field( default_factory=lambda: [], metadata={"help": "The benchmarks to run after training."} ) callbacks: list[str] = field( default_factory=lambda: [], metadata={"help": "The callbacks to run during training."} ) system_prompt: Optional[str] = field( default=None, metadata={"help": "The optional system prompt to use for benchmarking."} ) hub_model_revision: Optional[str] = field( default="main", metadata={"help": "The Hub model branch to push the model to."} ) overwrite_hub_revision: bool = field(default=False, metadata={"help": "Whether to overwrite the Hub revision."}) push_to_hub_revision: bool = field(default=False, metadata={"help": "Whether to push to a Hub revision/branch."}) @dataclass class SFTConfig(trl.SFTConfig): """ args for callbacks, benchmarks etc """ benchmarks: list[str] = field( default_factory=lambda: [], metadata={"help": "The benchmarks to run after training."} ) callbacks: list[str] = field( default_factory=lambda: [], metadata={"help": "The callbacks to run during training."} ) system_prompt: Optional[str] = field( default=None, metadata={"help": "The optional system prompt to use for benchmarking."}, ) hub_model_revision: Optional[str] = field( default="main", metadata={"help": "The Hub model branch to push the model to."}, ) overwrite_hub_revision: bool = field(default=False, metadata={"help": "Whether to overwrite the Hub revision."}) push_to_hub_revision: bool = field(default=False, metadata={"help": "Whether to push to a Hub revision/branch."})
open-r1/src/open_r1/configs.py/0
{ "file_path": "open-r1/src/open_r1/configs.py", "repo_id": "open-r1", "token_count": 844 }
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Custom models Some fine-tuning techniques, such as prompt tuning, are specific to language models. That means in 🤗 PEFT, it is assumed a 🤗 Transformers model is being used. However, other fine-tuning techniques - like [LoRA](../conceptual_guides/lora) - are not restricted to specific model types. In this guide, we will see how LoRA can be applied to a multilayer perceptron, a computer vision model from the [timm](https://huggingface.co/docs/timm/index) library, or a new 🤗 Transformers architecture. ## Multilayer perceptron Let's assume that we want to fine-tune a multilayer perceptron with LoRA. Here is the definition: ```python from torch import nn class MLP(nn.Module): def __init__(self, num_units_hidden=2000): super().__init__() self.seq = nn.Sequential( nn.Linear(20, num_units_hidden), nn.ReLU(), nn.Linear(num_units_hidden, num_units_hidden), nn.ReLU(), nn.Linear(num_units_hidden, 2), nn.LogSoftmax(dim=-1), ) def forward(self, X): return self.seq(X) ``` This is a straightforward multilayer perceptron with an input layer, a hidden layer, and an output layer. <Tip> For this toy example, we choose an exceedingly large number of hidden units to highlight the efficiency gains from PEFT, but those gains are in line with more realistic examples. </Tip> There are a few linear layers in this model that could be tuned with LoRA. When working with common 🤗 Transformers models, PEFT will know which layers to apply LoRA to, but in this case, it is up to us as a user to choose the layers. To determine the names of the layers to tune: ```python print([(n, type(m)) for n, m in MLP().named_modules()]) ``` This should print: ``` [('', __main__.MLP), ('seq', torch.nn.modules.container.Sequential), ('seq.0', torch.nn.modules.linear.Linear), ('seq.1', torch.nn.modules.activation.ReLU), ('seq.2', torch.nn.modules.linear.Linear), ('seq.3', torch.nn.modules.activation.ReLU), ('seq.4', torch.nn.modules.linear.Linear), ('seq.5', torch.nn.modules.activation.LogSoftmax)] ``` Let's say we want to apply LoRA to the input layer and to the hidden layer, those are `'seq.0'` and `'seq.2'`. Moreover, let's assume we want to update the output layer without LoRA, that would be `'seq.4'`. The corresponding config would be: ```python from peft import LoraConfig config = LoraConfig( target_modules=["seq.0", "seq.2"], modules_to_save=["seq.4"], ) ``` With that, we can create our PEFT model and check the fraction of parameters trained: ```python from peft import get_peft_model model = MLP() peft_model = get_peft_model(model, config) peft_model.print_trainable_parameters() # prints trainable params: 56,164 || all params: 4,100,164 || trainable%: 1.369798866581922 ``` Finally, we can use any training framework we like, or write our own fit loop, to train the `peft_model`. For a complete example, check out [this notebook](https://github.com/huggingface/peft/blob/main/examples/multilayer_perceptron/multilayer_perceptron_lora.ipynb). ## timm models The [timm](https://huggingface.co/docs/timm/index) library contains a large number of pretrained computer vision models. Those can also be fine-tuned with PEFT. Let's check out how this works in practice. To start, ensure that timm is installed in the Python environment: ```bash python -m pip install -U timm ``` Next we load a timm model for an image classification task: ```python import timm num_classes = ... model_id = "timm/poolformer_m36.sail_in1k" model = timm.create_model(model_id, pretrained=True, num_classes=num_classes) ``` Again, we need to make a decision about what layers to apply LoRA to. Since LoRA supports 2D conv layers, and since those are a major building block of this model, we should apply LoRA to the 2D conv layers. To identify the names of those layers, let's look at all the layer names: ```python print([(n, type(m)) for n, m in model.named_modules()]) ``` This will print a very long list, we'll only show the first few: ``` [('', timm.models.metaformer.MetaFormer), ('stem', timm.models.metaformer.Stem), ('stem.conv', torch.nn.modules.conv.Conv2d), ('stem.norm', torch.nn.modules.linear.Identity), ('stages', torch.nn.modules.container.Sequential), ('stages.0', timm.models.metaformer.MetaFormerStage), ('stages.0.downsample', torch.nn.modules.linear.Identity), ('stages.0.blocks', torch.nn.modules.container.Sequential), ('stages.0.blocks.0', timm.models.metaformer.MetaFormerBlock), ('stages.0.blocks.0.norm1', timm.layers.norm.GroupNorm1), ('stages.0.blocks.0.token_mixer', timm.models.metaformer.Pooling), ('stages.0.blocks.0.token_mixer.pool', torch.nn.modules.pooling.AvgPool2d), ('stages.0.blocks.0.drop_path1', torch.nn.modules.linear.Identity), ('stages.0.blocks.0.layer_scale1', timm.models.metaformer.Scale), ('stages.0.blocks.0.res_scale1', torch.nn.modules.linear.Identity), ('stages.0.blocks.0.norm2', timm.layers.norm.GroupNorm1), ('stages.0.blocks.0.mlp', timm.layers.mlp.Mlp), ('stages.0.blocks.0.mlp.fc1', torch.nn.modules.conv.Conv2d), ('stages.0.blocks.0.mlp.act', torch.nn.modules.activation.GELU), ('stages.0.blocks.0.mlp.drop1', torch.nn.modules.dropout.Dropout), ('stages.0.blocks.0.mlp.norm', torch.nn.modules.linear.Identity), ('stages.0.blocks.0.mlp.fc2', torch.nn.modules.conv.Conv2d), ('stages.0.blocks.0.mlp.drop2', torch.nn.modules.dropout.Dropout), ('stages.0.blocks.0.drop_path2', torch.nn.modules.linear.Identity), ('stages.0.blocks.0.layer_scale2', timm.models.metaformer.Scale), ('stages.0.blocks.0.res_scale2', torch.nn.modules.linear.Identity), ('stages.0.blocks.1', timm.models.metaformer.MetaFormerBlock), ('stages.0.blocks.1.norm1', timm.layers.norm.GroupNorm1), ('stages.0.blocks.1.token_mixer', timm.models.metaformer.Pooling), ('stages.0.blocks.1.token_mixer.pool', torch.nn.modules.pooling.AvgPool2d), ... ('head.global_pool.flatten', torch.nn.modules.linear.Identity), ('head.norm', timm.layers.norm.LayerNorm2d), ('head.flatten', torch.nn.modules.flatten.Flatten), ('head.drop', torch.nn.modules.linear.Identity), ('head.fc', torch.nn.modules.linear.Linear)] ] ``` Upon closer inspection, we see that the 2D conv layers have names such as `"stages.0.blocks.0.mlp.fc1"` and `"stages.0.blocks.0.mlp.fc2"`. How can we match those layer names specifically? You can write a [regular expressions](https://docs.python.org/3/library/re.html) to match the layer names. For our case, the regex `r".*\.mlp\.fc\d"` should do the job. Furthermore, as in the first example, we should ensure that the output layer, in this case the classification head, is also updated. Looking at the end of the list printed above, we can see that it's named `'head.fc'`. With that in mind, here is our LoRA config: ```python config = LoraConfig(target_modules=r".*\.mlp\.fc\d", modules_to_save=["head.fc"]) ``` Then we only need to create the PEFT model by passing our base model and the config to `get_peft_model`: ```python peft_model = get_peft_model(model, config) peft_model.print_trainable_parameters() # prints trainable params: 1,064,454 || all params: 56,467,974 || trainable%: 1.88505789139876 ``` This shows us that we only need to train less than 2% of all parameters, which is a huge efficiency gain. For a complete example, check out [this notebook](https://github.com/huggingface/peft/blob/main/examples/image_classification/image_classification_timm_peft_lora.ipynb). ## New transformers architectures When new popular transformers architectures are released, we do our best to quickly add them to PEFT. If you come across a transformers model that is not supported out of the box, don't worry, it will most likely still work if the config is set correctly. Specifically, you have to identify the layers that should be adapted and set them correctly when initializing the corresponding config class, e.g. `LoraConfig`. Here are some tips to help with this. As a first step, it is a good idea is to check the existing models for inspiration. You can find them inside of [constants.py](https://github.com/huggingface/peft/blob/main/src/peft/utils/constants.py) in the PEFT repository. Often, you'll find a similar architecture that uses the same names. For example, if the new model architecture is a variation of the "mistral" model and you want to apply LoRA, you can see that the entry for "mistral" in `TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING` contains `["q_proj", "v_proj"]`. This tells you that for "mistral" models, the `target_modules` for LoRA should be `["q_proj", "v_proj"]`: ```python from peft import LoraConfig, get_peft_model my_mistral_model = ... config = LoraConfig( target_modules=["q_proj", "v_proj"], ..., # other LoRA arguments ) peft_model = get_peft_model(my_mistral_model, config) ``` If that doesn't help, check the existing modules in your model architecture with the `named_modules` method and try to identify the attention layers, especially the key, query, and value layers. Those will often have names such as `c_attn`, `query`, `q_proj`, etc. The key layer is not always adapted, and ideally, you should check whether including it results in better performance. Additionally, linear layers are common targets to be adapted (e.g. in [QLoRA paper](https://arxiv.org/abs/2305.14314), authors suggest to adapt them as well). Their names will often contain the strings `fc` or `dense`. If you want to add a new model to PEFT, please create an entry in [constants.py](https://github.com/huggingface/peft/blob/main/src/peft/utils/constants.py) and open a pull request on the [repository](https://github.com/huggingface/peft/pulls). Don't forget to update the [README](https://github.com/huggingface/peft#models-support-matrix) as well. ## Verify parameters and layers You can verify whether you've correctly applied a PEFT method to your model in a few ways. * Check the fraction of parameters that are trainable with the [`~PeftModel.print_trainable_parameters`] method. If this number is lower or higher than expected, check the model `repr` by printing the model. This shows the names of all the layer types in the model. Ensure that only the intended target layers are replaced by the adapter layers. For example, if LoRA is applied to `nn.Linear` layers, then you should only see `lora.Linear` layers being used. ```py peft_model.print_trainable_parameters() ``` * Another way you can view the adapted layers is to use the `targeted_module_names` attribute to list the name of each module that was adapted. ```python print(peft_model.targeted_module_names) ``` ## Unsupported module types Methods like LoRA only work if the target modules are supported by PEFT. For example, it's possible to apply LoRA to `nn.Linear` and `nn.Conv2d` layers, but not, for instance, to `nn.LSTM`. If you find a layer class you want to apply PEFT to is not supported, you can: - define a custom mapping to dynamically dispatch custom modules in LoRA - open an [issue](https://github.com/huggingface/peft/issues) and request the feature where maintainers will implement it or guide you on how to implement it yourself if demand for this module type is sufficiently high ### Experimental support for dynamic dispatch of custom modules in LoRA > [!WARNING] > This feature is experimental and subject to change, depending on its reception by the community. We will introduce a public and stable API if there is significant demand for it. PEFT supports an experimental API for custom module types for LoRA. Let's assume you have a LoRA implementation for LSTMs. Normally, you would not be able to tell PEFT to use it, even if it would theoretically work with PEFT. However, this is possible with dynamic dispatch of custom layers. The experimental API currently looks like this: ```python class MyLoraLSTMLayer: ... base_model = ... # load the base model that uses LSTMs # add the LSTM layer names to target_modules config = LoraConfig(..., target_modules=["lstm"]) # define a mapping from base layer type to LoRA layer type custom_module_mapping = {nn.LSTM: MyLoraLSTMLayer} # register the new mapping config._register_custom_module(custom_module_mapping) # after registration, create the PEFT model peft_model = get_peft_model(base_model, config) # do training ``` <Tip> When you call [`get_peft_model`], you will see a warning because PEFT does not recognize the targeted module type. In this case, you can ignore this warning. </Tip> By supplying a custom mapping, PEFT first checks the base model's layers against the custom mapping and dispatches to the custom LoRA layer type if there is a match. If there is no match, PEFT checks the built-in LoRA layer types for a match. Therefore, this feature can also be used to override existing dispatch logic, e.g. if you want to use your own LoRA layer for `nn.Linear` instead of using the one provided by PEFT. When creating your custom LoRA module, please follow the same rules as the [existing LoRA modules](https://github.com/huggingface/peft/blob/main/src/peft/tuners/lora/layer.py). Some important constraints to consider: - The custom module should inherit from `nn.Module` and `peft.tuners.lora.layer.LoraLayer`. - The `__init__` method of the custom module should have the positional arguments `base_layer` and `adapter_name`. After this, there are additional `**kwargs` that you are free to use or ignore. - The learnable parameters should be stored in an `nn.ModuleDict` or `nn.ParameterDict`, where the key corresponds to the name of the specific adapter (remember that a model can have more than one adapter at a time). - The name of these learnable parameter attributes should start with `"lora_"`, e.g. `self.lora_new_param = ...`. - Some methods are optional, e.g. you only need to implement `merge` and `unmerge` if you want to support weight merging. Currently, the information about the custom module does not persist when you save the model. When loading the model, you have to register the custom modules again. ```python # saving works as always and includes the parameters of the custom modules peft_model.save_pretrained(<model-path>) # loading the model later: base_model = ... # load the LoRA config that you saved earlier config = LoraConfig.from_pretrained(<model-path>) # register the custom module again, the same way as the first time custom_module_mapping = {nn.LSTM: MyLoraLSTMLayer} config._register_custom_module(custom_module_mapping) # pass the config instance to from_pretrained: peft_model = PeftModel.from_pretrained(model, tmp_path / "lora-custom-module", config=config) ``` If you use this feature and find it useful, or if you encounter problems, let us know by creating an issue or a discussion on GitHub. This allows us to estimate the demand for this feature and add a public API if it is sufficiently high.
peft/docs/source/developer_guides/custom_models.md/0
{ "file_path": "peft/docs/source/developer_guides/custom_models.md", "repo_id": "peft", "token_count": 4859 }
# Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # The implementation is based on "Parameter-Efficient Orthogonal Finetuning # via Butterfly Factorization" (https://arxiv.org/abs/2311.06243) in ICLR 2024. import glob import os from pathlib import Path import cv2 import face_alignment import numpy as np import torch from accelerate import Accelerator from skimage.io import imread from torchvision.utils import save_image from tqdm import tqdm from transformers import AutoTokenizer from utils.args_loader import parse_args from utils.dataset import make_dataset detect_model = face_alignment.FaceAlignment(face_alignment.LandmarksType.TWO_D, device="cuda:0", flip_input=False) # with open('./data/celebhq-text/prompt_val_blip_full.json', 'rt') as f: # fill50k, COCO # for line in f: # val_data = json.loads(line) end_list = np.array([17, 22, 27, 42, 48, 31, 36, 68], dtype=np.int32) - 1 def count_txt_files(directory): pattern = os.path.join(directory, "*.txt") txt_files = glob.glob(pattern) return len(txt_files) def plot_kpts(image, kpts, color="g"): """Draw 68 key points Args: image: the input image kpt: (68, 3). """ if color == "r": c = (255, 0, 0) elif color == "g": c = (0, 255, 0) elif color == "b": c = (255, 0, 0) image = image.copy() kpts = kpts.copy() radius = max(int(min(image.shape[0], image.shape[1]) / 200), 1) for i in range(kpts.shape[0]): st = kpts[i, :2] if kpts.shape[1] == 4: if kpts[i, 3] > 0.5: c = (0, 255, 0) else: c = (0, 0, 255) image = cv2.circle(image, (int(st[0]), int(st[1])), radius, c, radius * 2) if i in end_list: continue ed = kpts[i + 1, :2] image = cv2.line(image, (int(st[0]), int(st[1])), (int(ed[0]), int(ed[1])), (255, 255, 255), radius) return image def generate_landmark2d(dataset, input_dir, pred_lmk_dir, gt_lmk_dir, vis=False): print("Generate 2d landmarks ...") os.makedirs(pred_lmk_dir, exist_ok=True) imagepath_list = sorted(glob.glob(f"{input_dir}/pred*.png")) for imagepath in tqdm(imagepath_list): name = Path(imagepath).stem idx = int(name.split("_")[-1]) pred_txt_path = os.path.join(pred_lmk_dir, f"{idx}.txt") gt_lmk_path = os.path.join(gt_lmk_dir, f"{idx}_gt_lmk.jpg") gt_txt_path = os.path.join(gt_lmk_dir, f"{idx}.txt") gt_img_path = os.path.join(gt_lmk_dir, f"{idx}_gt_img.jpg") if (not os.path.exists(pred_txt_path)) or (not os.path.exists(gt_txt_path)): image = imread(imagepath) # [:, :, :3] out = detect_model.get_landmarks(image) if out is None: continue pred_kpt = out[0].squeeze() np.savetxt(pred_txt_path, pred_kpt) # Your existing code for obtaining the image tensor gt_lmk_img = dataset[idx]["conditioning_pixel_values"] save_image(gt_lmk_img, gt_lmk_path) gt_img = (dataset[idx]["pixel_values"]) * 0.5 + 0.5 save_image(gt_img, gt_img_path) gt_img = (gt_img.permute(1, 2, 0) * 255).type(torch.uint8).cpu().numpy() out = detect_model.get_landmarks(gt_img) if out is None: continue gt_kpt = out[0].squeeze() np.savetxt(gt_txt_path, gt_kpt) # gt_image = cv2.resize(cv2.imread(gt_lmk_path), (512, 512)) if vis: gt_lmk_image = cv2.imread(gt_lmk_path) # visualize predicted landmarks vis_path = os.path.join(pred_lmk_dir, f"{idx}_overlay.jpg") image = cv2.imread(imagepath) image_point = plot_kpts(image, pred_kpt) cv2.imwrite(vis_path, np.concatenate([image_point, gt_lmk_image], axis=1)) # visualize gt landmarks vis_path = os.path.join(gt_lmk_dir, f"{idx}_overlay.jpg") image = cv2.imread(gt_img_path) image_point = plot_kpts(image, gt_kpt) cv2.imwrite(vis_path, np.concatenate([image_point, gt_lmk_image], axis=1)) def landmark_comparison(val_dataset, lmk_dir, gt_lmk_dir): print("Calculating reprojection error") lmk_err = [] pbar = tqdm(range(len(val_dataset))) for i in pbar: # line = val_dataset[i] # img_name = line["image"].split(".")[0] lmk1_path = os.path.join(gt_lmk_dir, f"{i}.txt") lmk1 = np.loadtxt(lmk1_path) lmk2_path = os.path.join(lmk_dir, f"{i}.txt") if not os.path.exists(lmk2_path): print(f"{lmk2_path} not exist") continue lmk2 = np.loadtxt(lmk2_path) lmk_err.append(np.mean(np.linalg.norm(lmk1 - lmk2, axis=1))) pbar.set_description(f"lmk_err: {np.mean(lmk_err):.5f}") print("Reprojection error:", np.mean(lmk_err)) np.save(os.path.join(lmk_dir, "lmk_err.npy"), lmk_err) def main(args): logging_dir = Path(args.output_dir, args.logging_dir) accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, log_with=args.report_to, project_dir=logging_dir, ) # Load the tokenizer if args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False) elif args.pretrained_model_name_or_path: tokenizer = AutoTokenizer.from_pretrained( args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision, use_fast=False, ) val_dataset = make_dataset(args, tokenizer, accelerator, "test") gt_lmk_dir = os.path.join(args.output_dir, "gt_lmk") if not os.path.exists(gt_lmk_dir): os.makedirs(gt_lmk_dir, exist_ok=True) pred_lmk_dir = os.path.join(args.output_dir, "pred_lmk") if not os.path.exists(pred_lmk_dir): os.makedirs(pred_lmk_dir, exist_ok=True) input_dir = os.path.join(args.output_dir, "results") generate_landmark2d(val_dataset, input_dir, pred_lmk_dir, gt_lmk_dir, args.vis_overlays) if count_txt_files(pred_lmk_dir) == len(val_dataset) and count_txt_files(gt_lmk_dir) == len(val_dataset): landmark_comparison(val_dataset, pred_lmk_dir, gt_lmk_dir) if __name__ == "__main__": args = parse_args() main(args)
peft/examples/boft_controlnet/eval.py/0
{ "file_path": "peft/examples/boft_controlnet/eval.py", "repo_id": "peft", "token_count": 3390 }
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # DreamBooth fine-tuning with BOFT This guide demonstrates how to use BOFT, an orthogonal fine-tuning method, to fine-tune Dreambooth with either `stabilityai/stable-diffusion-2-1` or `runwayml/stable-diffusion-v1-5` model. By using BOFT from 🤗 PEFT, we can significantly reduce the number of trainable parameters while still achieving impressive results in various fine-tuning tasks across different foundation models. BOFT enhances model efficiency by integrating full-rank orthogonal matrices with a butterfly structure into specific model blocks, such as attention blocks, mirroring the approach used in LoRA. During fine-tuning, only these inserted matrices are trained, leaving the original model parameters untouched. During inference, the trainable BOFT paramteres can be merged into the original model, eliminating any additional computational costs. As a member of the **orthogonal finetuning** class, BOFT presents a systematic and principled method for fine-tuning. It possesses several unique properties and has demonstrated superior performance compared to LoRA in a variety of scenarios. For further details on BOFT, please consult the [PEFT's GitHub repo's concept guide OFT](https://https://huggingface.co/docs/peft/index), the [original BOFT paper](https://arxiv.org/abs/2311.06243) and the [original OFT paper](https://arxiv.org/abs/2306.07280). In this guide we provide a Dreambooth fine-tuning script that is available in [PEFT's GitHub repo examples](https://github.com/huggingface/peft/tree/main/examples/boft_dreambooth). This implementation is adapted from [peft's lora_dreambooth](https://github.com/huggingface/peft/tree/main/examples/lora_dreambooth). You can try it out and finetune on your custom images. ## Set up your environment Start by cloning the PEFT repository: ```bash git clone --recursive https://github.com/huggingface/peft ``` Navigate to the directory containing the training scripts for fine-tuning Dreambooth with BOFT: ```bash cd peft/examples/boft_dreambooth ``` Set up your environment: install PEFT, and all the required libraries. At the time of writing this guide we recommend installing PEFT from source. The following environment setup should work on A100 and H100: ```bash conda create --name peft python=3.10 conda activate peft conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=11.8 -c pytorch -c nvidia conda install xformers -c xformers pip install -r requirements.txt pip install git+https://github.com/huggingface/peft ``` ## Download the data [dreambooth](https://github.com/google/dreambooth) dataset should have been automatically cloned in the following structure when running the training script. ``` boft_dreambooth ├── data │ ├── data_dir │ └── dreambooth │ └── data │ ├── backpack │ └── backpack_dog │ ... ``` You can also put your custom images into `boft_dreambooth/data/dreambooth`. ## Finetune Dreambooth with BOFT ```bash ./train_dreambooth.sh ``` or using the following script arguments: ```bash export MODEL_NAME="runwayml/stable-diffusion-v1-5" export INSTANCE_DIR="path-to-instance-images" export CLASS_DIR="path-to-class-images" export OUTPUT_DIR="path-to-save-model" ``` Here: - `INSTANCE_DIR`: The directory containing the images that you intend to use for training your model. - `CLASS_DIR`: The directory containing class-specific images. In this example, we use prior preservation to avoid overfitting and language-drift. For prior preservation, you need other images of the same class as part of the training process. However, these images can be generated and the training script will save them to a local path you specify here. - `OUTPUT_DIR`: The destination folder for storing the trained model's weights. To learn more about DreamBooth fine-tuning with prior-preserving loss, check out the [Diffusers documentation](https://huggingface.co/docs/diffusers/training/dreambooth#finetuning-with-priorpreserving-loss). Launch the training script with `accelerate` and pass hyperparameters, as well as LoRa-specific arguments to it such as: - `use_boft`: Enables BOFT in the training script. - `boft_block_size`: the BOFT matrix block size across different layers, expressed in `int`. Smaller block size results in sparser update matrices with fewer trainable paramters. **Note**, please choose it to be dividable to most layer `in_features` dimension, e.g., 4, 8, 16. Also, you can only specify either `boft_block_size` or `boft_block_num`, but not both simultaneously, because `boft_block_size` x `boft_block_num` = layer dimension. - `boft_block_num`: the number of BOFT matrix blocks across different layers, expressed in `int`. Fewer blocks result in sparser update matrices with fewer trainable paramters. **Note**, please choose it to be dividable to most layer `in_features` dimension, e.g., 4, 8, 16. Also, you can only specify either `boft_block_size` or `boft_block_num`, but not both simultaneously, because `boft_block_size` x `boft_block_num` = layer dimension. - `boft_n_butterfly_factor`: the number of butterfly factors. **Note**, for `boft_n_butterfly_factor=1`, BOFT is the same as vanilla OFT, for `boft_n_butterfly_factor=2`, the effective block size of OFT becomes twice as big and the number of blocks become half. - `bias`: specify if the `bias` paramteres should be traind. Can be `none`, `all` or `boft_only`. - `boft_dropout`: specify the probability of multiplicative dropout. Here's what the full set of script arguments may look like: ```bash PEFT_TYPE="boft" BLOCK_NUM=8 BLOCK_SIZE=0 N_BUTTERFLY_FACTOR=1 VALIDATION_PROMPT=${PROMPT_LIST[@]} INSTANCE_PROMPT="a photo of ${UNIQUE_TOKEN} ${CLASS_TOKEN}" CLASS_PROMPT="a photo of ${CLASS_TOKEN}" export MODEL_NAME="stabilityai/stable-diffusion-2-1" # export MODEL_NAME="runwayml/stable-diffusion-v1-5" export PROJECT_NAME="dreambooth_${PEFT_TYPE}" export RUN_NAME="${SELECTED_SUBJECT}_${PEFT_TYPE}_${BLOCK_NUM}${BLOCK_SIZE}${N_BUTTERFLY_FACTOR}" export INSTANCE_DIR="./data/dreambooth/dataset/${SELECTED_SUBJECT}" export CLASS_DIR="./data/class_data/${CLASS_TOKEN}" export OUTPUT_DIR="./data/output/${PEFT_TYPE}" accelerate launch train_dreambooth.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --instance_data_dir=$INSTANCE_DIR \ --class_data_dir="$CLASS_DIR" \ --output_dir=$OUTPUT_DIR \ --wandb_project_name=$PROJECT_NAME \ --wandb_run_name=$RUN_NAME \ --with_prior_preservation --prior_loss_weight=1.0 \ --instance_prompt="$INSTANCE_PROMPT" \ --validation_prompt="$VALIDATION_PROMPT" \ --class_prompt="$CLASS_PROMPT" \ --resolution=512 \ --train_batch_size=1 \ --num_dataloader_workers=2 \ --lr_scheduler="constant" \ --lr_warmup_steps=0 \ --num_class_images=200 \ --use_boft \ --boft_block_num=$BLOCK_NUM \ --boft_block_size=$BLOCK_SIZE \ --boft_n_butterfly_factor=$N_BUTTERFLY_FACTOR \ --boft_dropout=0.1 \ --boft_bias="boft_only" \ --learning_rate=3e-5 \ --max_train_steps=1010 \ --checkpointing_steps=200 \ --validation_steps=200 \ --enable_xformers_memory_efficient_attention \ --report_to="wandb" \ ``` or use this training script: ```bash ./train_dreambooth.sh $idx ``` with the `$idx` corresponds to different subjects. If you are running this script on Windows, you may need to set the `--num_dataloader_workers` to 0. ## Inference with a single adapter To run inference with the fine-tuned model, simply run the jupyter notebook `dreambooth_inference.ipynb` for visualization with `jupyter notebook` under `./examples/boft_dreambooth`.
peft/examples/boft_dreambooth/boft_dreambooth.md/0
{ "file_path": "peft/examples/boft_dreambooth/boft_dreambooth.md", "repo_id": "peft", "token_count": 2634 }
<jupyter_start><jupyter_code>from transformers import AutoModelForCausalLM from peft import get_peft_config, get_peft_model, PrefixTuningConfig, TaskType, PeftType import torch from datasets import load_dataset import os from transformers import AutoTokenizer from torch.utils.data import DataLoader from transformers import default_data_collator, get_linear_schedule_with_warmup from tqdm import tqdm from datasets import load_dataset device = "cuda" model_name_or_path = "bigscience/bloomz-560m" tokenizer_name_or_path = "bigscience/bloomz-560m" peft_config = PrefixTuningConfig(task_type=TaskType.CAUSAL_LM, num_virtual_tokens=30) dataset_name = "twitter_complaints" checkpoint_name = f"{dataset_name}_{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}_v1.pt".replace( "/", "_" ) text_column = "Tweet text" label_column = "text_label" max_length = 64 lr = 3e-2 num_epochs = 50 batch_size = 8 from datasets import load_dataset dataset = load_dataset("ought/raft", dataset_name) classes = [k.replace("_", " ") for k in dataset["train"].features["Label"].names] print(classes) dataset = dataset.map( lambda x: {"text_label": [classes[label] for label in x["Label"]]}, batched=True, num_proc=1, ) print(dataset) dataset["train"][0] # data preprocessing tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) if tokenizer.pad_token_id is None: tokenizer.pad_token_id = tokenizer.eos_token_id target_max_length = max([len(tokenizer(class_label)["input_ids"]) for class_label in classes]) print(target_max_length) def preprocess_function(examples): batch_size = len(examples[text_column]) inputs = [f"{text_column} : {x} Label : " for x in examples[text_column]] targets = [str(x) for x in examples[label_column]] model_inputs = tokenizer(inputs) labels = tokenizer(targets, add_special_tokens=False) # don't add bos token because we concatenate with inputs for i in range(batch_size): sample_input_ids = model_inputs["input_ids"][i] label_input_ids = labels["input_ids"][i] + [tokenizer.eos_token_id] # print(i, sample_input_ids, label_input_ids) model_inputs["input_ids"][i] = sample_input_ids + label_input_ids labels["input_ids"][i] = [-100] * len(sample_input_ids) + label_input_ids model_inputs["attention_mask"][i] = [1] * len(model_inputs["input_ids"][i]) # print(model_inputs) for i in range(batch_size): sample_input_ids = model_inputs["input_ids"][i] label_input_ids = labels["input_ids"][i] model_inputs["input_ids"][i] = [tokenizer.pad_token_id] * ( max_length - len(sample_input_ids) ) + sample_input_ids model_inputs["attention_mask"][i] = [0] * (max_length - len(sample_input_ids)) + model_inputs[ "attention_mask" ][i] labels["input_ids"][i] = [-100] * (max_length - len(sample_input_ids)) + label_input_ids model_inputs["input_ids"][i] = torch.tensor(model_inputs["input_ids"][i][:max_length]) model_inputs["attention_mask"][i] = torch.tensor(model_inputs["attention_mask"][i][:max_length]) labels["input_ids"][i] = torch.tensor(labels["input_ids"][i][:max_length]) model_inputs["labels"] = labels["input_ids"] return model_inputs processed_datasets = dataset.map( preprocess_function, batched=True, num_proc=1, remove_columns=dataset["train"].column_names, load_from_cache_file=False, desc="Running tokenizer on dataset", ) train_dataset = processed_datasets["train"] eval_dataset = processed_datasets["train"] train_dataloader = DataLoader( train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True ) eval_dataloader = DataLoader(eval_dataset, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True) def test_preprocess_function(examples): batch_size = len(examples[text_column]) inputs = [f"{text_column} : {x} Label : " for x in examples[text_column]] model_inputs = tokenizer(inputs) # print(model_inputs) for i in range(batch_size): sample_input_ids = model_inputs["input_ids"][i] model_inputs["input_ids"][i] = [tokenizer.pad_token_id] * ( max_length - len(sample_input_ids) ) + sample_input_ids model_inputs["attention_mask"][i] = [0] * (max_length - len(sample_input_ids)) + model_inputs[ "attention_mask" ][i] model_inputs["input_ids"][i] = torch.tensor(model_inputs["input_ids"][i][:max_length]) model_inputs["attention_mask"][i] = torch.tensor(model_inputs["attention_mask"][i][:max_length]) return model_inputs test_dataset = dataset["test"].map( test_preprocess_function, batched=True, num_proc=1, remove_columns=dataset["train"].column_names, load_from_cache_file=False, desc="Running tokenizer on dataset", ) test_dataloader = DataLoader(test_dataset, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True) next(iter(test_dataloader)) next(iter(train_dataloader)) len(test_dataloader) next(iter(test_dataloader)) # creating model model = AutoModelForCausalLM.from_pretrained(model_name_or_path) model = get_peft_model(model, peft_config) model.print_trainable_parameters() model.print_trainable_parameters() model model.peft_config # model # optimizer and lr scheduler optimizer = torch.optim.AdamW(model.parameters(), lr=lr) lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=0, num_training_steps=(len(train_dataloader) * num_epochs), ) # training and evaluation model = model.to(device) for epoch in range(num_epochs): model.train() total_loss = 0 for step, batch in enumerate(tqdm(train_dataloader)): batch = {k: v.to(device) for k, v in batch.items()} # print(batch) # print(batch["input_ids"].shape) outputs = model(**batch) loss = outputs.loss total_loss += loss.detach().float() loss.backward() optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() eval_loss = 0 eval_preds = [] for step, batch in enumerate(tqdm(eval_dataloader)): batch = {k: v.to(device) for k, v in batch.items()} with torch.no_grad(): outputs = model(**batch) loss = outputs.loss eval_loss += loss.detach().float() eval_preds.extend( tokenizer.batch_decode(torch.argmax(outputs.logits, -1).detach().cpu().numpy(), skip_special_tokens=True) ) eval_epoch_loss = eval_loss / len(eval_dataloader) eval_ppl = torch.exp(eval_epoch_loss) train_epoch_loss = total_loss / len(train_dataloader) train_ppl = torch.exp(train_epoch_loss) print(f"{epoch=}: {train_ppl=} {train_epoch_loss=} {eval_ppl=} {eval_epoch_loss=}") model.eval() i = 16 inputs = tokenizer(f'{text_column} : {dataset["test"][i]["Tweet text"]} Label : ', return_tensors="pt") print(dataset["test"][i]["Tweet text"]) print(inputs) with torch.no_grad(): inputs = {k: v.to(device) for k, v in inputs.items()} outputs = model.generate( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], max_new_tokens=10, eos_token_id=3 ) print(outputs) print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))<jupyter_output>Hey @nytimes your link to cancel my subscription isn't working and nobody is answering the chat. Please don't play that kind of stupid game. {'input_ids': tensor([[227985, 5484, 915, 54078, 2566, 7782, 24502, 2632, 8989, 427, 36992, 2670, 140711, 21994, 10789, 530, 88399, 632, 183542, 368, 44799, 17, 29901, 5926, 7229, 861, 11596, 461, 78851, 14775, 17, 77658, 915, 210]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])} tensor([[227985, 5484, 915, 54078, 2566, 7782, 24502, 2632, 8989, 427, 36992, 2670, 140711, 21994, 10789, 530, 88399, 632, 183542, 368, 44799, 17, 29901, 5926, 7229, 861, 11596, 461, 78851, 14775, 17, 77658, 915, 210, 16449, 5952, 3]], device='cuda:0') ["Tweet text : Hey @nytimes your [...]<jupyter_text>You can push model to hub or save model locally. - Option1: Pushing the model to Hugging Face Hub```pythonmodel.push_to_hub( f"{dataset_name}_{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}".replace("/", "_"), token = "hf_...")```token (`bool` or `str`, *optional*): `token` is to be used for HTTP Bearer authorization when accessing remote files. If `True`, will use the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). Will default to `True` if `repo_url` is not specified. Or you can get your token from https://huggingface.co/settings/token```- Or save model locally```pythonpeft_model_id = f"{dataset_name}_{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}".replace("/", "_")model.save_pretrained(peft_model_id)```<jupyter_code># saving model peft_model_id = f"{dataset_name}_{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}".replace( "/", "_" ) model.save_pretrained(peft_model_id) ckpt = f"{peft_model_id}/adapter_model.bin" !du -h $ckpt from peft import PeftModel, PeftConfig peft_model_id = f"{dataset_name}_{model_name_or_path}_{peft_config.peft_type}_{peft_config.task_type}".replace( "/", "_" ) config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path) model = PeftModel.from_pretrained(model, peft_model_id) model.to(device) model.eval() i = 4 inputs = tokenizer(f'{text_column} : {dataset["test"][i]["Tweet text"]} Label : ', return_tensors="pt") print(dataset["test"][i]["Tweet text"]) print(inputs) with torch.no_grad(): inputs = {k: v.to(device) for k, v in inputs.items()} outputs = model.generate( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], max_new_tokens=10, eos_token_id=3 ) print(outputs) print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))<jupyter_output>@greateranglia Ok thanks... {'input_ids': tensor([[227985, 5484, 915, 2566, 14173, 2960, 29906, 387, 20706, 49337, 1369, 77658, 915, 210]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])} tensor([[227985, 5484, 915, 2566, 14173, 2960, 29906, 387, 20706, 49337, 1369, 77658, 915, 210, 1936, 106863, 3]], device='cuda:0') ['Tweet text : @greateranglia Ok thanks... Label : no complaint']
peft/examples/causal_language_modeling/peft_prefix_tuning_clm.ipynb/0
{ "file_path": "peft/examples/causal_language_modeling/peft_prefix_tuning_clm.ipynb", "repo_id": "peft", "token_count": 4714 }
# Copyright 2024-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import os from dataclasses import dataclass, field from typing import Dict, List, Optional, Sequence import torch import transformers from datasets import load_dataset from transformers import Trainer from peft import LoraConfig, PeftModel, get_peft_model IGNORE_INDEX = -100 PROMPT = ( "Below is an instruction that describes a task. " "Write a response that appropriately completes the request.\n\n" "### Instruction:\n{instruction}\n\n### Response:" ) def get_nb_trainable_parameters(model) -> tuple[int, int]: r""" Returns the number of trainable parameters and the number of all parameters in the model. """ trainable_params = 0 all_param = 0 for _, param in model.named_parameters(): num_params = param.numel() # if using DS Zero 3 and the weights are initialized empty if num_params == 0 and hasattr(param, "ds_numel"): num_params = param.ds_numel # Due to the design of 4bit linear layers from bitsandbytes # one needs to multiply the number of parameters by 2 to get # the correct number of parameters if param.__class__.__name__ == "Params4bit": num_bytes = param.quant_storage.itemsize if hasattr(param, "quant_storage") else 1 num_params = num_params * 2 * num_bytes all_param += num_params if param.requires_grad: trainable_params += num_params return trainable_params, all_param @dataclass class TrainingArguments(transformers.TrainingArguments): model_name_or_path: Optional[str] = field(default="facebook/opt-125m") data_path: str = field(default=None, metadata={"help": "Path to the training data."}) dataset_split: str = field(default="train[:100000]", metadata={"help": "(`['train', 'test', 'eval']`):"}) dataset_field: List[str] = field(default=None, metadata={"help": "Fields of dataset input and output."}) dataloader_num_proc: int = field(default=16, metadata={"help": "Number of processes to load dataset"}) dataloader_batch_size: int = field( default=3000, metadata={ "help": "batch size to load dataset. To set the batch size for training, you should pass --batch_size argument instead." }, ) optim: str = field(default="adamw_torch") model_max_length: int = field( default=512, metadata={"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."}, ) lora_r: int = field( default=None, metadata={"help": "The rank of LoRA adapter. When passing `None`, CorDA or full fine-tuning is used."}, ) corda_mode: bool = field(default=True, metadata={"help": "True for CorDA mode"}) def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str): """Collects the state dict and dump to disk.""" state_dict = trainer.model.state_dict() if trainer.args.should_save: cpu_state_dict = {key: value.cpu() for key, value in state_dict.items()} del state_dict trainer._save(output_dir, state_dict=cpu_state_dict) # noqa def smart_tokenizer_and_embedding_resize( special_tokens_dict: Dict, tokenizer: transformers.PreTrainedTokenizer, model: transformers.PreTrainedModel, ): """Resize tokenizer and embedding. Note: This is the unoptimized version that may make your embedding size not be divisible by 64. """ num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict) model.resize_token_embeddings(len(tokenizer)) if num_new_tokens > 0: input_embeddings = model.get_input_embeddings().weight.data output_embeddings = model.get_output_embeddings().weight.data input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True) output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True) input_embeddings[-num_new_tokens:] = input_embeddings_avg output_embeddings[-num_new_tokens:] = output_embeddings_avg def _tokenize_fn(strings: Sequence[str], tokenizer: transformers.PreTrainedTokenizer) -> Dict: """Tokenize a list of strings.""" tokenized_list = [ tokenizer( text, return_tensors="pt", padding="longest", max_length=tokenizer.model_max_length, truncation=True, ) for text in strings ] input_ids = labels = [tokenized.input_ids[0] for tokenized in tokenized_list] input_ids_lens = labels_lens = [ tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item() for tokenized in tokenized_list ] return { "input_ids": input_ids, "labels": labels, "input_ids_lens": input_ids_lens, "labels_lens": labels_lens, } def preprocess( sources: Sequence[str], targets: Sequence[str], tokenizer: transformers.PreTrainedTokenizer, ) -> Dict: """Preprocess the data by tokenizing.""" examples = [s + t for s, t in zip(sources, targets)] examples_tokenized, sources_tokenized = (_tokenize_fn(strings, tokenizer) for strings in (examples, sources)) input_ids = examples_tokenized["input_ids"] labels = copy.deepcopy(input_ids) for label, source_len in zip(labels, sources_tokenized["input_ids_lens"]): label[:source_len] = IGNORE_INDEX return { "input_ids": input_ids, "labels": labels, } @dataclass class DataCollatorForSupervisedDataset: """Collate examples for supervised fine-tuning.""" tokenizer: transformers.PreTrainedTokenizer def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]: input_ids, labels = tuple([instance[key] for instance in instances] for key in ("input_ids", "labels")) input_ids = [torch.tensor(x) for x in input_ids] input_ids = torch.nn.utils.rnn.pad_sequence( input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id ) labels = [torch.tensor(x) for x in labels] labels = torch.nn.utils.rnn.pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX) return { "input_ids": input_ids, "labels": labels, "attention_mask": input_ids.ne(self.tokenizer.pad_token_id), } def train_tokenize_function(examples, tokenizer, query, response): sources = [ PROMPT.format_map( { "instruction": instruction, } ) for instruction in examples[query] ] targets = [f"{output}{tokenizer.eos_token}" for output in examples[response]] data_dict = preprocess(sources, targets, tokenizer) return data_dict def train(): parser = transformers.HfArgumentParser(TrainingArguments) script_args = parser.parse_args_into_dataclasses()[0] print(script_args) if script_args.corda_mode: print("Train in CorDA mode") res_model = transformers.AutoModelForCausalLM.from_pretrained( script_args.model_name_or_path, device_map="auto", ) model = PeftModel.from_pretrained( res_model, script_args.model_name_or_path, subfolder="corda_init", is_trainable=True ) elif script_args.lora_r is not None: print("Train in LoRA mode") model = transformers.AutoModelForCausalLM.from_pretrained( script_args.model_name_or_path, device_map="auto", ) lora_config = LoraConfig( r=script_args.lora_r, lora_alpha=script_args.lora_r, init_lora_weights=True, # script_args.init_lora_weights, target_modules=["q_proj", "o_proj", "k_proj", "v_proj", "gate_proj", "up_proj", "down_proj"], lora_dropout=0, bias="none", task_type="CAUSAL_LM", ) model = get_peft_model(model, lora_config) else: print("Train in Full Finetuning mode") model = transformers.AutoModelForCausalLM.from_pretrained( script_args.model_name_or_path, torch_dtype=torch.bfloat16, device_map="auto", ) trainable_params, all_param = get_nb_trainable_parameters(model) print( f"trainable params: {trainable_params:,d} || all params: {all_param:,d} || trainable%: {100 * trainable_params / all_param}" ) tokenizer = transformers.AutoTokenizer.from_pretrained( script_args.model_name_or_path, model_max_length=script_args.model_max_length, padding_side="right", use_fast=True, trust_remote_code=True, ) tokenizer.pad_token_id = tokenizer.eos_token_id raw_train_datasets = load_dataset(script_args.data_path, split=script_args.dataset_split) train_dataset = raw_train_datasets.map( train_tokenize_function, batched=True, batch_size=script_args.dataloader_batch_size, num_proc=script_args.dataloader_num_proc, remove_columns=raw_train_datasets.column_names, load_from_cache_file=True, desc="Running tokenizer on train dataset", fn_kwargs={ "tokenizer": tokenizer, "query": script_args.dataset_field[0], "response": script_args.dataset_field[1], }, ) data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer) data_module = { "train_dataset": train_dataset, "data_collator": data_collator, } trainer = Trainer(model=model, tokenizer=tokenizer, args=script_args, **data_module) trainer.train() trainer.save_state() model.save_pretrained(os.path.join(script_args.output_dir, "ft")) if __name__ == "__main__": train()
peft/examples/corda_finetuning/corda_finetuning.py/0
{ "file_path": "peft/examples/corda_finetuning/corda_finetuning.py", "repo_id": "peft", "token_count": 4224 }