text
stringlengths
96
319k
id
stringlengths
14
178
metadata
dict
import argparse import json import logging import os from collections import Counter from dataclasses import dataclass from operator import attrgetter from typing import Dict, List, Optional, Union import safetensors import torch import torch.nn as nn from diffusers import UNet2DConditionModel from transformers import CLIPTextModel from peft import LoHaConfig, LoKrConfig, LoraConfig, PeftType, get_peft_model, set_peft_model_state_dict from peft.tuners.lokr.layer import factorization # Default kohya_ss LoRA replacement modules # https://github.com/kohya-ss/sd-scripts/blob/c924c47f374ac1b6e33e71f82948eb1853e2243f/networks/lora.py#L661 UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel", "Attention"] UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 = ["ResnetBlock2D", "Downsample2D", "Upsample2D"] TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"] PREFIX_UNET = "lora_unet" PREFIX_TEXT_ENCODER = "lora_te" @dataclass class LoRAInfo: kohya_key: str peft_key: str alpha: Optional[float] = None rank: Optional[int] = None lora_A: Optional[torch.Tensor] = None lora_B: Optional[torch.Tensor] = None def peft_state_dict(self) -> Dict[str, torch.Tensor]: if self.lora_A is None or self.lora_B is None: raise ValueError("At least one of lora_A or lora_B is None, they must both be provided") return { f"base_model.model.{self.peft_key}.lora_A.weight": self.lora_A, f"base_model.model.{self.peft_key}.lora_B.weight": self.lora_B, } @dataclass class LoHaInfo: kohya_key: str peft_key: str alpha: Optional[float] = None rank: Optional[int] = None hada_w1_a: Optional[torch.Tensor] = None hada_w1_b: Optional[torch.Tensor] = None hada_w2_a: Optional[torch.Tensor] = None hada_w2_b: Optional[torch.Tensor] = None hada_t1: Optional[torch.Tensor] = None hada_t2: Optional[torch.Tensor] = None def peft_state_dict(self) -> Dict[str, torch.Tensor]: if self.hada_w1_a is None or self.hada_w1_b is None or self.hada_w2_a is None or self.hada_w2_b is None: raise ValueError( "At least one of hada_w1_a, hada_w1_b, hada_w2_a, hada_w2_b is missing, they all must be provided" ) state_dict = { f"base_model.model.{self.peft_key}.hada_w1_a": self.hada_w1_a, f"base_model.model.{self.peft_key}.hada_w1_b": self.hada_w1_b, f"base_model.model.{self.peft_key}.hada_w2_a": self.hada_w2_a, f"base_model.model.{self.peft_key}.hada_w2_b": self.hada_w2_b, } if not ( (self.hada_t1 is None and self.hada_t2 is None) or (self.hada_t1 is not None and self.hada_t2 is not None) ): raise ValueError("hada_t1 and hada_t2 must be either both present or not present at the same time") if self.hada_t1 is not None and self.hada_t2 is not None: state_dict[f"base_model.model.{self.peft_key}.hada_t1"] = self.hada_t1 state_dict[f"base_model.model.{self.peft_key}.hada_t2"] = self.hada_t2 return state_dict @dataclass class LoKrInfo: kohya_key: str peft_key: str alpha: Optional[float] = None rank: Optional[int] = None lokr_w1: Optional[torch.Tensor] = None lokr_w1_a: Optional[torch.Tensor] = None lokr_w1_b: Optional[torch.Tensor] = None lokr_w2: Optional[torch.Tensor] = None lokr_w2_a: Optional[torch.Tensor] = None lokr_w2_b: Optional[torch.Tensor] = None lokr_t2: Optional[torch.Tensor] = None def peft_state_dict(self) -> Dict[str, torch.Tensor]: if (self.lokr_w1 is None) and ((self.lokr_w1_a is None) or (self.lokr_w1_b is None)): raise ValueError("Either lokr_w1 or both lokr_w1_a and lokr_w1_b should be provided") if (self.lokr_w2 is None) and ((self.lokr_w2_a is None) or (self.lokr_w2_b is None)): raise ValueError("Either lokr_w2 or both lokr_w2_a and lokr_w2_b should be provided") state_dict = {} if self.lokr_w1 is not None: state_dict[f"base_model.model.{self.peft_key}.lokr_w1"] = self.lokr_w1 elif self.lokr_w1_a is not None: state_dict[f"base_model.model.{self.peft_key}.lokr_w1_a"] = self.lokr_w1_a state_dict[f"base_model.model.{self.peft_key}.lokr_w1_b"] = self.lokr_w1_b if self.lokr_w2 is not None: state_dict[f"base_model.model.{self.peft_key}.lokr_w2"] = self.lokr_w2 elif self.lokr_w2_a is not None: state_dict[f"base_model.model.{self.peft_key}.lokr_w2_a"] = self.lokr_w2_a state_dict[f"base_model.model.{self.peft_key}.lokr_w2_b"] = self.lokr_w2_b if self.lokr_t2 is not None: state_dict[f"base_model.model.{self.peft_key}.lokr_t2"] = self.lokr_t2 return state_dict def construct_peft_loraconfig(info: Dict[str, LoRAInfo], **kwargs) -> LoraConfig: """Constructs LoraConfig from data extracted from adapter checkpoint Args: info (Dict[str, LoRAInfo]): Information extracted from adapter checkpoint Returns: LoraConfig: config for constructing LoRA """ # Unpack all ranks and alphas ranks = {key: val.rank for key, val in info.items()} alphas = {x[0]: x[1].alpha or x[1].rank for x in info.items()} # Determine which modules needs to be transformed target_modules = sorted(info.keys()) # Determine most common rank and alpha r = int(Counter(ranks.values()).most_common(1)[0][0]) lora_alpha = Counter(alphas.values()).most_common(1)[0][0] # Determine which modules have different rank and alpha rank_pattern = dict(sorted(filter(lambda x: x[1] != r, ranks.items()), key=lambda x: x[0])) alpha_pattern = dict(sorted(filter(lambda x: x[1] != lora_alpha, alphas.items()), key=lambda x: x[0])) config = LoraConfig( r=r, lora_alpha=lora_alpha, target_modules=target_modules, lora_dropout=0.0, bias="none", init_lora_weights=False, rank_pattern=rank_pattern, alpha_pattern=alpha_pattern, ) return config def construct_peft_lohaconfig(info: Dict[str, LoHaInfo], **kwargs) -> LoHaConfig: """Constructs LoHaConfig from data extracted from adapter checkpoint Args: info (Dict[str, LoHaInfo]): Information extracted from adapter checkpoint Returns: LoHaConfig: config for constructing LoHA """ # Unpack all ranks and alphas ranks = {x[0]: x[1].rank for x in info.items()} alphas = {x[0]: x[1].alpha or x[1].rank for x in info.items()} # Determine which modules needs to be transformed target_modules = sorted(info.keys()) # Determine most common rank and alpha r = int(Counter(ranks.values()).most_common(1)[0][0]) alpha = Counter(alphas.values()).most_common(1)[0][0] # Determine which modules have different rank and alpha rank_pattern = dict(sorted(filter(lambda x: x[1] != r, ranks.items()), key=lambda x: x[0])) alpha_pattern = dict(sorted(filter(lambda x: x[1] != alpha, alphas.items()), key=lambda x: x[0])) # Determine whether any of modules have effective conv2d decomposition use_effective_conv2d = any((val.hada_t1 is not None) or (val.hada_t2 is not None) for val in info.values()) config = LoHaConfig( r=r, alpha=alpha, target_modules=target_modules, rank_dropout=0.0, module_dropout=0.0, init_weights=False, rank_pattern=rank_pattern, alpha_pattern=alpha_pattern, use_effective_conv2d=use_effective_conv2d, ) return config def construct_peft_lokrconfig(info: Dict[str, LoKrInfo], decompose_factor: int = -1, **kwargs) -> LoKrConfig: """Constructs LoKrConfig from data extracted from adapter checkpoint Args: info (Dict[str, LoKrInfo]): Information extracted from adapter checkpoint Returns: LoKrConfig: config for constructing LoKr """ # Unpack all ranks and alphas ranks = {x[0]: x[1].rank for x in info.items()} alphas = {x[0]: x[1].alpha or x[1].rank for x in info.items()} # Determine which modules needs to be transformed target_modules = sorted(info.keys()) # Determine most common rank and alpha r = int(Counter(ranks.values()).most_common(1)[0][0]) alpha = Counter(alphas.values()).most_common(1)[0][0] # Determine which modules have different rank and alpha rank_pattern = dict(sorted(filter(lambda x: x[1] != r, ranks.items()), key=lambda x: x[0])) alpha_pattern = dict(sorted(filter(lambda x: x[1] != alpha, alphas.items()), key=lambda x: x[0])) # Determine whether any of modules have effective conv2d decomposition use_effective_conv2d = any((val.lokr_t2 is not None) for val in info.values()) # decompose_both should be enabled if any w1 matrix in any layer is decomposed into 2 decompose_both = any((val.lokr_w1_a is not None and val.lokr_w1_b is not None) for val in info.values()) # Determining decompose factor is a bit tricky (but it is most often -1) # Check that decompose_factor is equal to provided for val in info.values(): # Determine shape of first matrix if val.lokr_w1 is not None: w1_shape = tuple(val.lokr_w1.shape) else: w1_shape = (val.lokr_w1_a.shape[0], val.lokr_w1_b.shape[1]) # Determine shape of second matrix if val.lokr_w2 is not None: w2_shape = tuple(val.lokr_w2.shape[:2]) elif val.lokr_t2 is not None: w2_shape = (val.lokr_w2_a.shape[1], val.lokr_w2_b.shape[1]) else: # We may iterate over Conv2d layer, for which second item in shape is multiplied by ksize^2 w2_shape = (val.lokr_w2_a.shape[0], val.lokr_w2_b.shape[1]) # We need to check, whether decompose_factor is really -1 or not shape = (w1_shape[0], w2_shape[0]) if factorization(shape[0] * shape[1], factor=-1) != shape: raise ValueError("Cannot infer decompose_factor, probably it is not equal to -1") config = LoKrConfig( r=r, alpha=alpha, target_modules=target_modules, rank_dropout=0.0, module_dropout=0.0, init_weights=False, rank_pattern=rank_pattern, alpha_pattern=alpha_pattern, use_effective_conv2d=use_effective_conv2d, decompose_both=decompose_both, decompose_factor=decompose_factor, ) return config def combine_peft_state_dict(info: Dict[str, Union[LoRAInfo, LoHaInfo]]) -> Dict[str, torch.Tensor]: result = {} for key_info in info.values(): result.update(key_info.peft_state_dict()) return result def detect_adapter_type(keys: List[str]) -> PeftType: # Detect type of adapter by keys # Inspired by this: # https://github.com/bmaltais/kohya_ss/blob/ed4e3b0239a40506de9a17e550e6cf2d0b867a4f/tools/lycoris_utils.py#L312 for key in keys: if "alpha" in key: continue elif any(x in key for x in ["lora_down", "lora_up"]): # LoRA return PeftType.LORA elif any(x in key for x in ["hada_w1", "hada_w2", "hada_t1", "hada_t2"]): # LoHa may have the following keys: # hada_w1_a, hada_w1_b, hada_w2_a, hada_w2_b, hada_t1, hada_t2 return PeftType.LOHA elif any(x in key for x in ["lokr_w1", "lokr_w2", "lokr_t1", "lokr_t2"]): # LoKr may have the following keys: # lokr_w1, lokr_w2, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t1, lokr_t2 return PeftType.LOKR elif "diff" in key: raise ValueError("Currently full diff adapters are not implemented") else: raise ValueError("Unknown adapter type, probably not implemented") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--sd_checkpoint", default=None, type=str, required=True, help="SD checkpoint to use") parser.add_argument( "--adapter_path", default=None, type=str, required=True, help="Path to downloaded adapter to convert", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output peft adapter.") parser.add_argument("--half", action="store_true", help="Save weights in half precision.") parser.add_argument( "--loha_conv2d_weights_fix", action="store_true", help="""LoHa checkpoints trained with lycoris-lora<=1.9.0 contain a bug described in this PR https://github.com/KohakuBlueleaf/LyCORIS/pull/115. This option fixes this bug during weight conversion (replaces hada_t2 with hada_t1 for Conv2d 3x3 layers). The output results may differ from webui, but in general, they should be better in terms of quality. This option should be set to True in case the provided checkpoint has been trained with lycoris-lora version for which the mentioned PR wasn't merged. This option should be set to False in case the provided checkpoint has been trained with lycoris-lora version for which the mentioned PR is merged or full compatibility with webui outputs is required.""", ) args = parser.parse_args() # Load all models that we need to add adapter to text_encoder = CLIPTextModel.from_pretrained(args.sd_checkpoint, subfolder="text_encoder") unet = UNet2DConditionModel.from_pretrained(args.sd_checkpoint, subfolder="unet") # Construct possible mapping from kohya keys to peft keys models_keys = {} for model, model_key, model_name in [ (text_encoder, PREFIX_TEXT_ENCODER, "text_encoder"), (unet, PREFIX_UNET, "unet"), ]: models_keys.update( { f"{model_key}.{peft_key}".replace(".", "_"): peft_key for peft_key in (x[0] for x in model.named_modules()) } ) # Store conversion info (model_type -> peft_key -> LoRAInfo | LoHaInfo | LoKrInfo) adapter_info: Dict[str, Dict[str, Union[LoRAInfo, LoHaInfo, LoKrInfo]]] = { "text_encoder": {}, "unet": {}, } # Store decompose_factor for LoKr decompose_factor = -1 # Open adapter checkpoint with safetensors.safe_open(args.adapter_path, framework="pt", device="cpu") as f: # Extract information about adapter structure metadata = f.metadata() # It may be difficult to determine rank for LoKr adapters # If checkpoint was trained with large rank it may not be utilized during weights creation at all # So we need to get it from checkpoint metadata (along with decompose_factor) rank, conv_rank = None, None if metadata is not None: rank = metadata.get("ss_network_dim", None) rank = int(rank) if rank else None if "ss_network_args" in metadata: network_args = json.loads(metadata["ss_network_args"]) conv_rank = network_args.get("conv_dim", None) conv_rank = int(conv_rank) if conv_rank else rank decompose_factor = network_args.get("factor", -1) decompose_factor = int(decompose_factor) # Detect adapter type based on keys adapter_type = detect_adapter_type(f.keys()) adapter_info_cls = { PeftType.LORA: LoRAInfo, PeftType.LOHA: LoHaInfo, PeftType.LOKR: LoKrInfo, }[adapter_type] # Iterate through available info and unpack all the values for key in f.keys(): kohya_key, kohya_type = key.split(".")[:2] # Find which model this key belongs to if kohya_key.startswith(PREFIX_TEXT_ENCODER): model_type, model = "text_encoder", text_encoder elif kohya_key.startswith(PREFIX_UNET): model_type, model = "unet", unet else: raise ValueError(f"Cannot determine model for key: {key}") # Find corresponding peft key if kohya_key not in models_keys: raise ValueError(f"Cannot find corresponding key for diffusers/transformers model: {kohya_key}") peft_key = models_keys[kohya_key] # Retrieve corresponding layer of model layer = attrgetter(peft_key)(model) # Create a corresponding adapter info if peft_key not in adapter_info[model_type]: adapter_info[model_type][peft_key] = adapter_info_cls(kohya_key=kohya_key, peft_key=peft_key) tensor = f.get_tensor(key) if kohya_type == "alpha": adapter_info[model_type][peft_key].alpha = tensor.item() elif kohya_type == "lora_down": adapter_info[model_type][peft_key].lora_A = tensor adapter_info[model_type][peft_key].rank = tensor.shape[0] elif kohya_type == "lora_up": adapter_info[model_type][peft_key].lora_B = tensor adapter_info[model_type][peft_key].rank = tensor.shape[1] elif kohya_type == "hada_w1_a": adapter_info[model_type][peft_key].hada_w1_a = tensor elif kohya_type == "hada_w1_b": adapter_info[model_type][peft_key].hada_w1_b = tensor adapter_info[model_type][peft_key].rank = tensor.shape[0] elif kohya_type == "hada_w2_a": adapter_info[model_type][peft_key].hada_w2_a = tensor elif kohya_type == "hada_w2_b": adapter_info[model_type][peft_key].hada_w2_b = tensor adapter_info[model_type][peft_key].rank = tensor.shape[0] elif kohya_type in {"hada_t1", "hada_t2"}: if args.loha_conv2d_weights_fix: if kohya_type == "hada_t1": # This code block fixes a bug that exists for some LoHa checkpoints # that resulted in accidentally using hada_t1 weight instead of hada_t2, see # https://github.com/KohakuBlueleaf/LyCORIS/pull/115 adapter_info[model_type][peft_key].hada_t1 = tensor adapter_info[model_type][peft_key].hada_t2 = tensor adapter_info[model_type][peft_key].rank = tensor.shape[0] else: if kohya_type == "hada_t1": adapter_info[model_type][peft_key].hada_t1 = tensor adapter_info[model_type][peft_key].rank = tensor.shape[0] elif kohya_type == "hada_t2": adapter_info[model_type][peft_key].hada_t2 = tensor adapter_info[model_type][peft_key].rank = tensor.shape[0] elif kohya_type == "lokr_t2": adapter_info[model_type][peft_key].lokr_t2 = tensor adapter_info[model_type][peft_key].rank = tensor.shape[0] elif kohya_type == "lokr_w1": adapter_info[model_type][peft_key].lokr_w1 = tensor if isinstance(layer, nn.Linear) or ( isinstance(layer, nn.Conv2d) and tuple(layer.weight.shape[2:]) == (1, 1) ): adapter_info[model_type][peft_key].rank = rank elif isinstance(layer, nn.Conv2d): adapter_info[model_type][peft_key].rank = conv_rank elif kohya_type == "lokr_w2": adapter_info[model_type][peft_key].lokr_w2 = tensor if isinstance(layer, nn.Linear) or ( isinstance(layer, nn.Conv2d) and tuple(layer.weight.shape[2:]) == (1, 1) ): adapter_info[model_type][peft_key].rank = rank elif isinstance(layer, nn.Conv2d): adapter_info[model_type][peft_key].rank = conv_rank elif kohya_type == "lokr_w1_a": adapter_info[model_type][peft_key].lokr_w1_a = tensor adapter_info[model_type][peft_key].rank = tensor.shape[1] elif kohya_type == "lokr_w1_b": adapter_info[model_type][peft_key].lokr_w1_b = tensor adapter_info[model_type][peft_key].rank = tensor.shape[0] elif kohya_type == "lokr_w2_a": adapter_info[model_type][peft_key].lokr_w2_a = tensor elif kohya_type == "lokr_w2_b": adapter_info[model_type][peft_key].lokr_w2_b = tensor else: raise ValueError(f"Unknown weight name in key: {key} - {kohya_type}") # Get function which will create adapter config based on extracted info construct_config_fn = { PeftType.LORA: construct_peft_loraconfig, PeftType.LOHA: construct_peft_lohaconfig, PeftType.LOKR: construct_peft_lokrconfig, }[adapter_type] # Process each model sequentially for model, model_name in [(text_encoder, "text_encoder"), (unet, "unet")]: # Skip model if no data was provided if len(adapter_info[model_name]) == 0: continue config = construct_config_fn(adapter_info[model_name], decompose_factor=decompose_factor) # Output warning for LoHa with use_effective_conv2d if ( isinstance(config, LoHaConfig) and getattr(config, "use_effective_conv2d", False) and args.loha_conv2d_weights_fix is False ): logging.warning( 'lycoris-lora<=1.9.0 LoHa implementation contains a bug, which can be fixed with "--loha_conv2d_weights_fix".\n' "For more info, please refer to https://github.com/huggingface/peft/pull/1021 and https://github.com/KohakuBlueleaf/LyCORIS/pull/115" ) model = get_peft_model(model, config) missing_keys, unexpected_keys = set_peft_model_state_dict( model, combine_peft_state_dict(adapter_info[model_name]) ) if len(unexpected_keys) > 0: raise ValueError(f"Unexpected keys {unexpected_keys} found during conversion") if args.half: model.to(torch.float16) # Save model to disk model.save_pretrained(os.path.join(args.dump_path, model_name))
peft/examples/stable_diffusion/convert_sd_adapter_to_peft.py/0
{ "file_path": "peft/examples/stable_diffusion/convert_sd_adapter_to_peft.py", "repo_id": "peft", "token_count": 10390 }
# Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import json import os import warnings from dataclasses import asdict, dataclass, field from typing import Dict, Optional, Union from huggingface_hub import hf_hub_download from transformers.utils import PushToHubMixin from .utils import CONFIG_NAME, PeftType, TaskType # we expect at least these keys to be present in a PEFT adapter_config.json MIN_EXPECTED_CONFIG_KEYS = {"peft_type"} def _check_and_remove_unused_kwargs(cls, kwargs): """Make PEFT configs forward-compatible by removing unused kwargs that were added in later PEFT versions. This assumes that removing the unused kwargs will not affect the default behavior. Returns the filtered kwargs and the set of removed keys. """ # it's not pretty but eh signature_parameters = inspect.signature(cls.__init__).parameters unexpected_kwargs = set(kwargs.keys()) - set(signature_parameters.keys()) for key in unexpected_kwargs: del kwargs[key] return kwargs, unexpected_kwargs @dataclass class PeftConfigMixin(PushToHubMixin): r""" This is the base configuration class for PEFT adapter models. It contains all the methods that are common to all PEFT adapter models. This class inherits from [`~transformers.utils.PushToHubMixin`] which contains the methods to push your model to the Hub. The method `save_pretrained` will save the configuration of your adapter model in a directory. The method `from_pretrained` will load the configuration of your adapter model from a directory. Args: peft_type (Union[[`~peft.utils.config.PeftType`], `str`]): The type of Peft method to use. """ task_type: Optional[TaskType] = field(default=None, metadata={"help": "The type of task."}) peft_type: Optional[PeftType] = field(default=None, metadata={"help": "The type of PEFT model."}) auto_mapping: Optional[dict] = field( default=None, metadata={"help": "An auto mapping dict to help retrieve the base model class if needed."} ) def __post_init__(self): # check for invalid task type if (self.task_type is not None) and (self.task_type not in list(TaskType)): raise ValueError( f"Invalid task type: '{self.task_type}'. Must be one of the following task types: {', '.join(TaskType)}." ) def to_dict(self) -> Dict: r""" Returns the configuration for your adapter model as a dictionary. """ return asdict(self) def save_pretrained(self, save_directory: str, **kwargs) -> None: r""" This method saves the configuration of your adapter model in a directory. Args: save_directory (`str`): The directory where the configuration will be saved. kwargs (additional keyword arguments, *optional*): Additional keyword arguments passed along to the [`~transformers.utils.PushToHubMixin.push_to_hub`] method. """ if os.path.isfile(save_directory): raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file") os.makedirs(save_directory, exist_ok=True) auto_mapping_dict = kwargs.pop("auto_mapping_dict", None) output_dict = self.to_dict() # converting set type to list for key, value in output_dict.items(): if isinstance(value, set): output_dict[key] = list(value) output_path = os.path.join(save_directory, CONFIG_NAME) # Add auto mapping details for custom models. if auto_mapping_dict is not None: output_dict["auto_mapping"] = auto_mapping_dict # save it with open(output_path, "w") as writer: writer.write(json.dumps(output_dict, indent=2, sort_keys=True)) @classmethod def from_peft_type(cls, **kwargs): r""" This method loads the configuration of your adapter model from a set of kwargs. The appropriate configuration type is determined by the `peft_type` argument. If `peft_type` is not provided, the calling class type is instantiated. Args: kwargs (configuration keyword arguments): Keyword arguments passed along to the configuration initialization. """ # Avoid circular dependency .. TODO: fix this with a larger refactor from peft.mapping import PEFT_TYPE_TO_CONFIG_MAPPING # TODO: this hack is needed to fix the following issue (on commit 702f937): # if someone saves a default config and loads it back with `PeftConfig` class it yields to # not loading the correct config class. # # from peft import AdaLoraConfig, PeftConfig # peft_config = AdaLoraConfig() # print(peft_config) # >>> AdaLoraConfig(peft_type=<PeftType.ADALORA: 'ADALORA'>, auto_mapping=None, base_model_name_or_path=None, # revision=None, task_type=None, inference_mode=False, r=8, target_modules=None, lora_alpha=8, lora_dropout=0.0, ... # # peft_config.save_pretrained("./test_config") # peft_config = PeftConfig.from_pretrained("./test_config") # print(peft_config) # >>> PeftConfig(peft_type='ADALORA', auto_mapping=None, base_model_name_or_path=None, revision=None, task_type=None, inference_mode=False) if "peft_type" in kwargs: peft_type = kwargs["peft_type"] config_cls = PEFT_TYPE_TO_CONFIG_MAPPING[peft_type] else: config_cls = cls try: config = config_cls(**kwargs) except TypeError as exc: # Here we potentially handle forward compatibility. Sometimes new keywords are added to configs, which makes # new configs incompatible with older PEFT versions. We catch these and remove them to allow the program to # continue, but warn the user about it. # First check if the error is due to unexpected keyword arguments, we don't want to accidentally catch # other TypeErrors. if "got an unexpected keyword argument" not in str(exc): raise exc filtered_kwargs, unexpected_kwargs = _check_and_remove_unused_kwargs(cls, kwargs) if not MIN_EXPECTED_CONFIG_KEYS.issubset(set(filtered_kwargs.keys())): raise TypeError( f"The {cls.__name__} config that is trying to be loaded is missing required keys: " f"{MIN_EXPECTED_CONFIG_KEYS}." ) warnings.warn( f"Unexpected keyword arguments {sorted(unexpected_kwargs)} for class {cls.__name__}, these are " "ignored. This probably means that you're loading a configuration file that was saved using a " "higher version of the library and additional parameters have been introduced since. It is " "highly recommended to upgrade the PEFT version before continuing (e.g. by running `pip install " "-U peft`)." ) config = config_cls.from_peft_type(**filtered_kwargs) return config @classmethod def from_pretrained(cls, pretrained_model_name_or_path: str, subfolder: Optional[str] = None, **kwargs): r""" This method loads the configuration of your adapter model from a directory. Args: pretrained_model_name_or_path (`str`): The directory or the Hub repository id where the configuration is saved. kwargs (additional keyword arguments, *optional*): Additional keyword arguments passed along to the child class initialization. """ path = ( os.path.join(pretrained_model_name_or_path, subfolder) if subfolder is not None else pretrained_model_name_or_path ) hf_hub_download_kwargs, class_kwargs, _ = cls._split_kwargs(kwargs) if os.path.isfile(os.path.join(path, CONFIG_NAME)): config_file = os.path.join(path, CONFIG_NAME) else: try: config_file = hf_hub_download( pretrained_model_name_or_path, CONFIG_NAME, subfolder=subfolder, **hf_hub_download_kwargs ) except Exception as exc: raise ValueError(f"Can't find '{CONFIG_NAME}' at '{pretrained_model_name_or_path}'") from exc loaded_attributes = cls.from_json_file(config_file) kwargs = {**class_kwargs, **loaded_attributes} kwargs = cls.check_kwargs(**kwargs) return cls.from_peft_type(**kwargs) @classmethod def from_json_file(cls, path_json_file: str, **kwargs): r""" Loads a configuration file from a json file. Args: path_json_file (`str`): The path to the json file. """ with open(path_json_file) as file: json_object = json.load(file) # Sanity check that config does not contain a runtime_config if "runtime_config" in json_object: warnings.warn( "The configuration file contains a `runtime_config` key. This is ignored. Runtime configurations are only valid at runtime." ) del json_object["runtime_config"] return json_object @classmethod def _split_kwargs(cls, kwargs): hf_hub_download_kwargs = {} class_kwargs = {} other_kwargs = {} for key, value in kwargs.items(): if key in inspect.signature(hf_hub_download).parameters: hf_hub_download_kwargs[key] = value elif key in list(cls.__annotations__): class_kwargs[key] = value else: other_kwargs[key] = value return hf_hub_download_kwargs, class_kwargs, other_kwargs @classmethod def _get_peft_type( cls, model_id: str, **hf_hub_download_kwargs, ): subfolder = hf_hub_download_kwargs.get("subfolder", None) path = os.path.join(model_id, subfolder) if subfolder is not None else model_id if os.path.isfile(os.path.join(path, CONFIG_NAME)): config_file = os.path.join(path, CONFIG_NAME) else: try: config_file = hf_hub_download( model_id, CONFIG_NAME, **hf_hub_download_kwargs, ) except Exception: raise ValueError(f"Can't find '{CONFIG_NAME}' at '{model_id}'") loaded_attributes = cls.from_json_file(config_file) return loaded_attributes["peft_type"] @classmethod def check_kwargs(cls, **kwargs): """Check kwargs before initializing the config instance. Subclasses can override this method to add specific checks. """ return kwargs @property def is_prompt_learning(self) -> bool: r""" Utility method to check if the configuration is for prompt learning. """ return False @property def is_adaption_prompt(self) -> bool: """Return True if this is an adaption prompt config.""" return False @dataclass class PeftConfig(PeftConfigMixin): """ This is the base configuration class to store the configuration of a [`PeftModel`]. Args: peft_type (Union[[`~peft.utils.config.PeftType`], `str`]): The type of Peft method to use. task_type (Union[[`~peft.utils.config.TaskType`], `str`]): The type of task to perform. inference_mode (`bool`, defaults to `False`): Whether to use the Peft model in inference mode. """ base_model_name_or_path: Optional[str] = field( default=None, metadata={"help": "The name of the base model to use."} ) revision: Optional[str] = field(default=None, metadata={"help": "The specific base model version to use."}) peft_type: Optional[Union[str, PeftType]] = field(default=None, metadata={"help": "Peft type"}) task_type: Optional[Union[str, TaskType]] = field(default=None, metadata={"help": "Task type"}) inference_mode: bool = field(default=False, metadata={"help": "Whether to use inference mode"}) @dataclass class PromptLearningConfig(PeftConfig): """ This is the base configuration class to store the configuration of [`PrefixTuning`], [`PromptEncoder`], or [`PromptTuning`]. Args: num_virtual_tokens (`int`): The number of virtual tokens to use. token_dim (`int`): The hidden embedding dimension of the base transformer model. num_transformer_submodules (`int`): The number of transformer submodules in the base transformer model. num_attention_heads (`int`): The number of attention heads in the base transformer model. num_layers (`int`): The number of layers in the base transformer model. """ num_virtual_tokens: int = field(default=None, metadata={"help": "Number of virtual tokens"}) token_dim: int = field( default=None, metadata={"help": "The hidden embedding dimension of the base transformer model"} ) num_transformer_submodules: Optional[int] = field( default=None, metadata={"help": "Number of transformer submodules"} ) num_attention_heads: Optional[int] = field(default=None, metadata={"help": "Number of attention heads"}) num_layers: Optional[int] = field(default=None, metadata={"help": "Number of transformer layers"}) @property def is_prompt_learning(self) -> bool: r""" Utility method to check if the configuration is for prompt learning. """ return True
peft/src/peft/config.py/0
{ "file_path": "peft/src/peft/config.py", "repo_id": "peft", "token_count": 5717 }
# Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import Any, List, Optional import packaging import torch import transformers from torch import nn from peft.tuners.lora import LoraLayer from peft.tuners.tuners_utils import check_adapters_to_merge from peft.utils import transpose if packaging.version.parse(transformers.__version__) >= packaging.version.parse("4.33.0"): from transformers.integrations import deepspeed_config else: from transformers.deepspeed import deepspeed_config class AdaLoraLayer(LoraLayer): # List all names of layers that may contain adapter weights # Note: ranknum doesn't need to be included as it is not an nn.Module adapter_layer_names = ("lora_A", "lora_B", "lora_E", "lora_embedding_A", "lora_embedding_B") # All names of other parameters that may contain adapter-related parameters other_param_names = ("r", "lora_alpha", "scaling", "lora_dropout", "ranknum") def __init__(self, base_layer: nn.Module) -> None: super().__init__(base_layer) self.lora_E = nn.ParameterDict({}) self.lora_A = nn.ParameterDict({}) self.lora_B = nn.ParameterDict({}) self.ranknum = nn.ParameterDict({}) def update_layer(self, adapter_name, r, lora_alpha, lora_dropout, init_lora_weights): if r < 0: # note: r == 0 is allowed for AdaLora, see #1539 raise ValueError(f"`r` should be a positive integer or 0, but the value passed is {r}") self.r[adapter_name] = r self.lora_alpha[adapter_name] = lora_alpha if lora_dropout > 0.0: lora_dropout_layer = nn.Dropout(p=lora_dropout) else: lora_dropout_layer = nn.Identity() self.lora_dropout[adapter_name] = lora_dropout_layer # Actual trainable parameters # Right singular vectors self.lora_A[adapter_name] = nn.Parameter(torch.randn(r, self.in_features)) # Singular values self.lora_E[adapter_name] = nn.Parameter(torch.randn(r, 1)) # Left singular vectors self.lora_B[adapter_name] = nn.Parameter(torch.randn(self.out_features, r)) # The current rank self.ranknum[adapter_name] = nn.Parameter(torch.randn(1), requires_grad=False) self.ranknum[adapter_name].data.fill_(float(r)) self.ranknum[adapter_name].requires_grad = False self.scaling[adapter_name] = lora_alpha if lora_alpha > 0 else float(r) if init_lora_weights: self.reset_lora_parameters(adapter_name) self._move_adapter_to_device_of_base_layer(adapter_name) self.set_adapter(self.active_adapters) def reset_lora_parameters(self, adapter_name): if adapter_name in self.lora_A.keys(): nn.init.zeros_(self.lora_E[adapter_name]) nn.init.normal_(self.lora_A[adapter_name], mean=0.0, std=0.02) nn.init.normal_(self.lora_B[adapter_name], mean=0.0, std=0.02) class SVDLinear(nn.Module, AdaLoraLayer): # SVD-based adaptation by a dense layer def __init__( self, base_layer: nn.Module, adapter_name: str, r: int = 0, lora_alpha: int = 1, lora_dropout: float = 0.0, fan_in_fan_out: bool = False, init_lora_weights: bool = True, **kwargs, ) -> None: super().__init__() AdaLoraLayer.__init__(self, base_layer) # Freezing the pre-trained weight matrix self.get_base_layer().weight.requires_grad = False self.fan_in_fan_out = fan_in_fan_out self._active_adapter = adapter_name self.update_layer(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights) def merge(self, safe_merge: bool = False, adapter_names: Optional[List[str]] = None) -> None: """ Merge the active adapter weights into the base weights Args: safe_merge (`bool`, *optional*): If True, the merge operation will be performed in a copy of the original weights and check for NaNs before merging the weights. This is useful if you want to check if the merge operation will produce NaNs. Defaults to `False`. adapter_names (`List[str]`, *optional*): The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults to `None`. """ adapter_names = check_adapters_to_merge(self, adapter_names) if not adapter_names: # no adapter to merge return for active_adapter in adapter_names: base_layer = self.get_base_layer() if active_adapter in self.lora_A.keys(): if safe_merge: # Note that safe_merge will be slower than the normal merge # because of the copy operation. orig_weights = base_layer.weight.data.clone() orig_weights += self.get_delta_weight(active_adapter) if not torch.isfinite(orig_weights).all(): raise ValueError( f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken" ) base_layer.weight.data = orig_weights else: base_layer.weight.data += self.get_delta_weight(active_adapter) self.merged_adapters.append(active_adapter) def unmerge(self) -> None: """ This method unmerges all merged adapter layers from the base weights. """ if not self.merged: warnings.warn("Already unmerged. Nothing to do.") return while len(self.merged_adapters) > 0: active_adapter = self.merged_adapters.pop() if active_adapter in self.lora_A.keys(): self.get_base_layer().weight.data -= self.get_delta_weight(active_adapter) def get_delta_weight(self, adapter) -> torch.Tensor: return ( transpose(self.lora_B[adapter] @ (self.lora_A[adapter] * self.lora_E[adapter]), self.fan_in_fan_out) * self.scaling[adapter] / (self.ranknum[adapter] + 1e-5) ) def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: if self.disable_adapters: if self.merged: self.unmerge() result = self.base_layer(x, *args, **kwargs) elif self.merged: result = self.base_layer(x, *args, **kwargs) else: result = self.base_layer(x, *args, **kwargs) for active_adapter in self.active_adapters: if active_adapter not in self.lora_A.keys(): continue lora_A = self.lora_A[active_adapter] lora_B = self.lora_B[active_adapter] lora_E = self.lora_E[active_adapter] dropout = self.lora_dropout[active_adapter] scaling = self.scaling[active_adapter] ranknum = self.ranknum[active_adapter] + 1e-5 x = self._cast_input_dtype(x, lora_A.dtype) result += (dropout(x) @ (lora_A * lora_E).T @ lora_B.T) * scaling / ranknum return result def __repr__(self) -> str: rep = super().__repr__() return "adalora." + rep class RankAllocator: """ The RankAllocator for AdaLoraModel. Paper: https://openreview.net/pdf?id=lq62uWRJjiY Args: config ([`AdaLoraConfig`]): The configuration of the AdaLora model. model: the model that we apply AdaLoRA to. """ def __init__(self, model, peft_config, adapter_name): self.peft_config = peft_config self.adapter_name = adapter_name self.beta1 = peft_config.beta1 self.beta2 = peft_config.beta2 assert self.beta1 > 0 and self.beta1 < 1 assert self.beta2 > 0 and self.beta2 < 1 self.reset_ipt() self._set_budget_scheduler(model) def set_total_step(self, total_step): self.peft_config.total_step = total_step def reset_ipt(self): self.ipt = {} self.exp_avg_ipt = {} self.exp_avg_unc = {} def _set_budget_scheduler(self, model): self.init_bgt = 0 self.name_set = set() for n, p in model.named_parameters(): if f"lora_A.{self.adapter_name}" in n: self.init_bgt += p.size(0) self.name_set.add(n.replace("lora_A", "%s")) self.name_set = sorted(self.name_set) # The total final rank budget self.target_bgt = self.peft_config.target_r * len(self.name_set) def budget_schedule(self, step: int): tinit = self.peft_config.tinit tfinal = self.peft_config.tfinal total_step = self.peft_config.total_step # Initial warmup if step <= tinit: budget = self.init_bgt mask_ind = False # Final fine-tuning elif step > total_step - tfinal: budget = self.target_bgt mask_ind = True else: # Budget decreasing with a cubic scheduler mul_coeff = 1 - (step - tinit) / (total_step - tfinal - tinit) budget = int((self.init_bgt - self.target_bgt) * (mul_coeff**3) + self.target_bgt) mask_ind = True if step % self.peft_config.deltaT == 0 else False return budget, mask_ind def update_ipt(self, model): # Update the sensitivity and uncertainty for every weight for n, p in model.named_parameters(): if "lora_" in n and self.adapter_name in n: if n not in self.ipt: self.ipt[n] = torch.zeros_like(p) self.exp_avg_ipt[n] = torch.zeros_like(p) self.exp_avg_unc[n] = torch.zeros_like(p) with torch.no_grad(): if deepspeed_config() is not None: import deepspeed grad = deepspeed.utils.safe_get_full_grad(p) self.ipt[n] = (p * grad).abs().detach() else: self.ipt[n] = (p * p.grad).abs().detach() # Sensitivity smoothing self.exp_avg_ipt[n] = self.beta1 * self.exp_avg_ipt[n] + (1 - self.beta1) * self.ipt[n] # Uncertainty quantification self.exp_avg_unc[n] = ( self.beta2 * self.exp_avg_unc[n] + (1 - self.beta2) * (self.ipt[n] - self.exp_avg_ipt[n]).abs() ) def _element_score(self, n): return self.exp_avg_ipt[n] * self.exp_avg_unc[n] def _combine_ipt(self, ipt_E, ipt_AB): ipt_AB = ipt_AB.sum(dim=1, keepdim=False) sum_ipt = ipt_E.view(-1) + ipt_AB.view(-1) return sum_ipt def mask_to_budget(self, model, budget): value_ipt = {} vector_ipt = {} triplet_ipt = {} # Get the importance score for A, E, B for n, p in model.named_parameters(): if f"lora_A.{self.adapter_name}" in n: entry_ipt = self._element_score(n) comb_ipt = torch.mean(entry_ipt, dim=1, keepdim=True) name_m = n.replace("lora_A", "%s") if name_m not in vector_ipt: vector_ipt[name_m] = [comb_ipt] else: vector_ipt[name_m].append(comb_ipt) if f"lora_B.{self.adapter_name}" in n: entry_ipt = self._element_score(n) comb_ipt = torch.mean(entry_ipt, dim=0, keepdim=False).view(-1, 1) name_m = n.replace("lora_B", "%s") if name_m not in vector_ipt: vector_ipt[name_m] = [comb_ipt] else: vector_ipt[name_m].append(comb_ipt) if f"lora_E.{self.adapter_name}" in n: entry_ipt = self._element_score(n) name_m = n.replace("lora_E", "%s") value_ipt[name_m] = entry_ipt all_score = [] # Calculate the score for each triplet for name_m in vector_ipt: ipt_E = value_ipt[name_m] ipt_AB = torch.cat(vector_ipt[name_m], dim=1) sum_ipt = self._combine_ipt(ipt_E, ipt_AB) name_E = name_m % "lora_E" triplet_ipt[name_E] = sum_ipt.view(-1, 1) all_score.append(sum_ipt.view(-1)) # Get the threshold by ranking ipt mask_threshold = torch.kthvalue( torch.cat(all_score), k=self.init_bgt - budget, )[0].item() rank_pattern = {} # Mask the unimportant triplets with torch.no_grad(): for n, p in model.named_parameters(): if f"lora_E.{self.adapter_name}" in n: p.masked_fill_(triplet_ipt[n] <= mask_threshold, 0.0) rank_pattern[n] = (~(triplet_ipt[n] <= mask_threshold)).view(-1).tolist() return rank_pattern def update_and_allocate(self, model, global_step, force_mask=False): # # Update the importance score and allocate the budget if global_step < self.peft_config.total_step - self.peft_config.tfinal: self.update_ipt(model) budget, mask_ind = self.budget_schedule(global_step) # Allocate the budget according to importance scores if mask_ind or force_mask: rank_pattern = self.mask_to_budget(model, budget) else: rank_pattern = None return budget, rank_pattern def mask_using_rank_pattern(self, model, rank_pattern): # Mask the unimportant triplets is_adapter_name_truncated = False if self.adapter_name not in next(iter(rank_pattern.keys())): is_adapter_name_truncated = True with torch.no_grad(): for n, p in model.named_parameters(): if f"lora_E.{self.adapter_name}" in n: key = n if not is_adapter_name_truncated else n.replace(f".{self.adapter_name}", "") mask = torch.Tensor(rank_pattern[key]).unsqueeze(-1).to(p.device) p.masked_fill_(~mask.bool(), 0.0)
peft/src/peft/tuners/adalora/layer.py/0
{ "file_path": "peft/src/peft/tuners/adalora/layer.py", "repo_id": "peft", "token_count": 7174 }
# Copyright 2024-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import warnings from typing import Any, List, Optional, Union import torch import torch.nn as nn import torch.nn.functional as F from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge class BoneLayer(BaseTunerLayer): # All names of layers that may contain (trainable) adapter weights adapter_layer_names = ("bone_block",) # All names of other parameters that may contain adapter-related parameters other_param_names = ("bone_r",) def __init__(self, base_layer: nn.Module, **kwargs) -> None: self.base_layer = base_layer self.bone_r = {} self.bone_block = nn.ParameterDict({}) # Mark the weight as unmerged self._disable_adapters = False self.merged_adapters = [] self.kwargs = kwargs base_layer = self.get_base_layer() if isinstance(base_layer, nn.Linear): self.in_features, self.out_features = base_layer.in_features, base_layer.out_features else: raise ValueError(f"Unsupported layer type {type(base_layer)}") def update_layer( self, adapter_name: str, r: int, init_weights: bool, **kwargs, ) -> None: """Internal function to create bone adapter Args: adapter_name (`str`): Name for the adapter to add. r (`int`): Rank for the added adapter. init_weights (`bool`): Whether to initialize weights. """ if r <= 0: raise ValueError(f"`r` should be a positive integer value but the value passed is {r}") self.bone_r[adapter_name] = r # Determine shape of Bone weights base_layer = self.get_base_layer() if isinstance(base_layer, nn.Linear): self.bone_block[adapter_name] = nn.Parameter(torch.zeros(r, self.out_features), requires_grad=True) else: raise TypeError(f"Bone is not implemented for base layers of type {type(base_layer).__name__}") # Initialize weights if init_weights == "bat": if self.in_features % r != 0 or self.out_features % r != 0: raise ValueError("The weight matrix must be fully divisible into [r, r] blocks.") self.reset_bat_parameters(adapter_name, r) elif init_weights: self.reset_bone_parameters(adapter_name, r) else: self.reset_bone_parameters_random(adapter_name) # Move new weights to device self._move_adapter_to_device_of_base_layer(adapter_name) self.set_adapter(self.active_adapters) def reset_bone_parameters(self, adapter_name: str, r): self.bone_block[adapter_name] = nn.Parameter(torch.zeros(r, self.out_features), requires_grad=True) def reset_bat_parameters(self, adapter_name: str, r): self.bone_block[adapter_name] = nn.Parameter(torch.zeros(self.out_features // r, r, r), requires_grad=True) def reset_bone_parameters_random(self, adapter_name: str): nn.init.kaiming_uniform_(self.bone_block[adapter_name], a=math.sqrt(5)) def scale_layer(self, scale: float) -> None: if scale == 1: return for active_adapter in self.active_adapters: if active_adapter not in self.bone_block.keys(): continue warnings.warn("Scaling operation for Bone not supported! Automatically set scale to 1.") def unscale_layer(self, scale=None) -> None: for active_adapter in self.active_adapters: if active_adapter not in self.bone_block.keys(): continue warnings.warn("Unscaling operation for Bone not supported! Keeping scale at 1.") class BoneLinear(nn.Module, BoneLayer): """ Bone implemented in a dense layer. """ def __init__( self, base_layer, adapter_name: str, r: int = 0, init_weights: Union[bool, str] = True, **kwargs, ) -> None: super().__init__() BoneLayer.__init__(self, base_layer, **kwargs) self._active_adapter = adapter_name self.update_layer(adapter_name, r, init_weights, **kwargs) self.bone_fn = init_weights def merge(self, safe_merge: bool = False, adapter_names: Optional[List[str]] = None) -> None: """ Merge the active adapter weights into the base weights Args: safe_merge (`bool`, *optional*): If `True`, the merge operation will be performed in a copy of the original weights and check for NaNs before merging the weights. This is useful if you want to check if the merge operation will produce NaNs. Defaults to `False`. adapter_names (`List[str]`, *optional*): The list of adapter names that should be merged. If `None`, all active adapters will be merged. Defaults to `None`. """ adapter_names = check_adapters_to_merge(self, adapter_names) if not adapter_names: # no adapter to merge return for active_adapter in adapter_names: if active_adapter in self.bone_block.keys(): base_layer = self.get_base_layer() if safe_merge: # Note that safe_merge will be slower than the normal merge # because of the copy operation. orig_weight = base_layer.weight.data.clone() if self.bone_fn == "bat": delta_weight = self.get_delta_weight(active_adapter, orig_weight) orig_weight += delta_weight else: delta_weight = self.get_delta_weight_bone(active_adapter, self.base_layer.weight.data) orig_weight = delta_weight if not torch.isfinite(orig_weight).all(): raise ValueError( f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken" ) self.base_layer.weight.data = orig_weight else: if self.bone_fn == "bat": delta_weight = self.get_delta_weight(active_adapter, self.base_layer.weight.data) self.base_layer.weight.data += delta_weight else: delta_weight = self.get_delta_weight_bone(active_adapter, self.base_layer.weight.data) self.base_layer.weight.data = delta_weight self.merged_adapters.append(active_adapter) def unmerge(self) -> None: """ This method unmerges all merged adapter layers from the base weights. """ if not self.merged: warnings.warn("Already unmerged. Nothing to do.") return while len(self.merged_adapters) > 0: active_adapter = self.merged_adapters.pop() if active_adapter in self.bone_block.keys(): orig_weight = self.get_base_layer().weight.data.clone() if self.bone_fn == "bat": delta_weight = self.get_delta_weight(active_adapter, orig_weight, re=True) else: delta_weight = self.get_delta_weight_bone(active_adapter, orig_weight, re=True) self.get_base_layer().weight.data = delta_weight def get_delta_weight(self, adapter, orig_weight, re: bool = False) -> torch.Tensor: """ Compute the delta weight for the given adapter. Args: adapter (str): The name of the adapter for which the delta weight should be computed. """ device = self.bone_block[adapter].device dtype = self.bone_block[adapter].dtype # In case users wants to merge the adapter weights that are in # (b)float16 while being on CPU, we need to cast the weights to float32, perform the merge and then cast back to # (b)float16 because some CPUs have slow bf16/fp16 matmuls. cast_to_fp32 = device.type == "cpu" and (dtype == torch.float16 or dtype == torch.bfloat16) weight_bone = self.bone_block[adapter] if cast_to_fp32: weight_bone = weight_bone.float() r = weight_bone.size(-1) if re: o = orig_weight.reshape(orig_weight.size(0) // r, r, orig_weight.size(1) // r, r).permute(2, 0, 1, 3) one = torch.eye(weight_bone.size(-1)).to(weight_bone.device) inv_I_plus_b = torch.inverse(one + weight_bone) w = (o - weight_bone) @ inv_I_plus_b output_tensor = w.permute(1, 2, 0, 3).reshape(*orig_weight.shape) else: w = ( orig_weight.reshape(orig_weight.size(0) // r, r, orig_weight.size(1) // r, r).permute(2, 0, 1, 3) @ weight_bone + weight_bone ) output_tensor = w.permute(1, 2, 0, 3).reshape(*orig_weight.shape) if cast_to_fp32: output_tensor = output_tensor.to(dtype=dtype) # cast back the weights self.bone_block[adapter].data = weight_bone.to(dtype) return output_tensor def get_delta_weight_bone(self, adapter, orig_weight, re: bool = False) -> torch.Tensor: """ Compute the delta weight for the given adapter. Args: adapter (str): The name of the adapter for which the delta weight should be computed. """ device = self.bone_block[adapter].device dtype = self.bone_block[adapter].dtype # In case users wants to merge the adapter weights that are in # (b)float16 while being on CPU, we need to cast the weights to float32, perform the merge and then cast back to # (b)float16 because some CPUs have slow bf16/fp16 matmuls. cast_to_fp32 = device.type == "cpu" and (dtype == torch.float16 or dtype == torch.bfloat16) weight_bone = self.bone_block[adapter] if cast_to_fp32: weight_bone = weight_bone.float() in_features = orig_weight.size(-1) r = weight_bone.size(0) if in_features % r != 0: last_size = in_features % r n_block = in_features // r n_block_size = n_block * r if re: orig_weight[:, :n_block_size] = ( (orig_weight[:, :n_block_size].reshape(-1, n_block, r).permute(1, 2, 0) - weight_bone) .permute(2, 0, 1) .reshape(*orig_weight[:, :n_block_size].shape) ) orig_weight[:, n_block_size:] = ( orig_weight[:, n_block_size:] - (weight_bone.transpose(0, 1))[:, :last_size] ) else: orig_weight[:, :n_block_size] = ( (orig_weight[:, :n_block_size].reshape(-1, n_block, r).permute(1, 2, 0) + weight_bone) .permute(2, 0, 1) .reshape(*orig_weight[:, :n_block_size].shape) ) orig_weight[:, n_block_size:] = ( orig_weight[:, n_block_size:] + (weight_bone.transpose(0, 1))[:, :last_size] ) output_tensor = orig_weight else: if re: w = orig_weight.reshape(-1, orig_weight.size(1) // r, r).permute(1, 2, 0) - weight_bone output_tensor = w.permute(2, 0, 1).reshape(*orig_weight.shape) else: w = orig_weight.reshape(-1, orig_weight.size(1) // r, r).permute(1, 2, 0) + weight_bone output_tensor = w.permute(2, 0, 1).reshape(*orig_weight.shape) if cast_to_fp32: output_tensor = output_tensor.to(dtype=dtype) # cast back the weights self.bone_block[adapter].data = weight_bone.to(dtype) return output_tensor def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: previous_dtype = x.dtype if self.disable_adapters: if self.merged: self.unmerge() result = self.base_layer(x, *args, **kwargs) elif self.merged: result = self.base_layer(x, *args, **kwargs) else: if self.bone_fn == "bat": orig_weight = self.base_layer.weight.data.clone() for active_adapter in self.active_adapters: if active_adapter not in self.bone_block.keys(): continue delta_weight = self.get_delta_weight(active_adapter, orig_weight) orig_weight = orig_weight + delta_weight result = F.linear(input=x, weight=orig_weight, bias=self.base_layer.bias) else: result = self.base_layer(x, *args, **kwargs) for active_adapter in self.active_adapters: if active_adapter not in self.bone_block.keys(): continue bone = self.bone_block[active_adapter] r = bone.size(0) if x.size(-1) % r != 0: padding_size = (r - x.size(-1) % r) % r x = F.pad(x, (0, padding_size)) result = result + torch.sum(x.reshape(*x.shape[:-1], x.size(-1) // r, r), dim=-2) @ bone result = result.to(previous_dtype) return result def __repr__(self) -> str: rep = super().__repr__() return "bone." + rep
peft/src/peft/tuners/bone/layer.py/0
{ "file_path": "peft/src/peft/tuners/bone/layer.py", "repo_id": "peft", "token_count": 6693 }
# Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import Any, List, Optional import torch import torch.nn as nn from transformers.pytorch_utils import Conv1D from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge from peft.utils import transpose class IA3Layer(BaseTunerLayer): # All names of layers that may contain adapter weights adapter_layer_names = ("ia3_l",) def __init__(self, base_layer: nn.Module, is_feedforward: bool, **kwargs) -> None: self.base_layer = base_layer self.ia3_l = nn.ParameterDict({}) # Mark the weight as unmerged self._disable_adapters = False self.merged_adapters = [] self.is_feedforward = is_feedforward base_layer = self.get_base_layer() if isinstance(base_layer, nn.Linear): in_features, out_features = base_layer.in_features, base_layer.out_features elif isinstance(base_layer, (nn.Conv2d, nn.Conv3d)): in_features, out_features = base_layer.in_channels, base_layer.out_channels elif isinstance(base_layer, nn.Embedding): in_features, out_features = base_layer.num_embeddings, base_layer.embedding_dim elif isinstance(base_layer, Conv1D): in_features, out_features = ( base_layer.weight.ds_shape if hasattr(base_layer.weight, "ds_shape") else base_layer.weight.shape ) else: raise ValueError(f"Unsupported layer type {type(base_layer)}") self.in_features = in_features self.out_features = out_features def update_layer(self, adapter_name, init_ia3_weights): # This code works for linear layers, override for other layer types # Actual trainable parameters if self.is_feedforward: weight = torch.randn((1, self.in_features)) else: weight = torch.randn((self.out_features, 1)) self.ia3_l[adapter_name] = nn.Parameter(weight) if init_ia3_weights: self.reset_ia3_parameters(adapter_name) self._move_adapter_to_device_of_base_layer(adapter_name) self.set_adapter(self.active_adapters) def reset_ia3_parameters(self, adapter_name): if adapter_name in self.ia3_l.keys(): # initialize learned vector with torch.ones nn.init.constant_(self.ia3_l[adapter_name], 1.0) class Linear(nn.Module, IA3Layer): # (IA)^3 implemented in a dense layer def __init__( self, base_layer: nn.Module, adapter_name: str, fan_in_fan_out: bool = False, # Set this to True if the layer to replace stores weight like (fan_in, fan_out) is_feedforward: bool = False, # Set to True if the layer is treated as a feedforward layer is_target_conv_1d_layer: bool = False, # whether target module is a conv1d layer. useful while unloading later init_ia3_weights: bool = True, # whether to initialize IA3 weights **kwargs, ) -> None: super().__init__() IA3Layer.__init__(self, base_layer, is_feedforward=is_feedforward) self.fan_in_fan_out = fan_in_fan_out self.is_target_conv_1d_layer = is_target_conv_1d_layer self._active_adapter = adapter_name self.update_layer(adapter_name, init_ia3_weights) def merge(self, safe_merge: bool = False, adapter_names: Optional[List[str]] = None) -> None: """ Merge the active adapter weights into the base weights Args: safe_merge (`bool`, *optional*): If True, the merge operation will be performed in a copy of the original weights and check for NaNs before merging the weights. This is useful if you want to check if the merge operation will produce NaNs. Defaults to `False`. adapter_names (`List[str]`, *optional*): The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults to `None`. """ adapter_names = check_adapters_to_merge(self, adapter_names) if not adapter_names: # no adapter to merge return for active_adapter in adapter_names: if active_adapter in self.ia3_l.keys(): base_layer = self.get_base_layer() ia3_l = transpose(self.ia3_l[active_adapter].data, self.fan_in_fan_out) orig_dtype = base_layer.weight.data.dtype if safe_merge: orig_weights = base_layer.weight.data orig_weights = torch.mul(orig_weights, ia3_l) if not torch.isfinite(orig_weights).all(): raise ValueError( f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken" ) base_layer.weight.data = orig_weights.to(orig_dtype) else: base_layer.weight.data = torch.mul(base_layer.weight.data, ia3_l).to(orig_dtype) if not self.is_feedforward and (base_layer.bias is not None): scaling = self.ia3_l[active_adapter].reshape(base_layer.bias.shape) orig_dtype = base_layer.bias.data.dtype base_layer.bias.data = torch.mul(base_layer.bias.data, scaling.data).to(orig_dtype) self.merged_adapters.append(active_adapter) def unmerge(self) -> None: """ This method unmerges all merged adapter layers from the base weights. """ if not self.merged: warnings.warn("Already unmerged. Nothing to do.") return warnings.warn("Unmerge result can be inaccurate for (IA)^3.") while len(self.merged_adapters) > 0: active_adapter = self.merged_adapters.pop() if active_adapter in self.ia3_l.keys(): base_layer = self.get_base_layer() # Add tolerace to avoid division by zero ia3_l = transpose(self.ia3_l[active_adapter].data, self.fan_in_fan_out) + 1e-8 orig_dtype = base_layer.weight.data.dtype base_layer.weight.data = torch.div(base_layer.weight.data, ia3_l).to(orig_dtype) if not self.is_feedforward and (base_layer.bias is not None): scaling = self.ia3_l[active_adapter].reshape(base_layer.bias.shape) orig_dtype = base_layer.bias.data.dtype base_layer.bias.data = torch.div(base_layer.bias.data, scaling.data + 1e-8).to(orig_dtype) def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: dtype = previous_dtype = x.dtype if self.disable_adapters: if self.merged: self.unmerge() result = self.base_layer(x, *args, **kwargs) elif self.merged: result = self.base_layer(x, *args, **kwargs) else: ia3_scaling = 1 for active_adapter in self.active_adapters: if active_adapter not in self.ia3_l.keys(): continue dtype = self.ia3_l[active_adapter].dtype ia3_scaling *= self.ia3_l[active_adapter].flatten() if self.is_feedforward: x = x.to(dtype) # TODO: weight.dtype can be != self.ia3_l[self.active_adapters].dtype # e.g. bf16 vs fp32. Is that okay? interm = (x * ia3_scaling).to(previous_dtype) result = self.base_layer(interm, *args, **kwargs) else: result = self.base_layer(x, *args, **kwargs) result_dtype = result.dtype result = (result * ia3_scaling).to(result_dtype) return result class _ConvNd(nn.Module, IA3Layer): def __init__( self, base_layer: nn.Module, adapter_name: str, fan_in_fan_out: bool = False, # Set this to True if the layer to replace stores weight like (fan_in, fan_out) is_feedforward: bool = False, # Set to True if the layer is treated as a feedforward layer init_ia3_weights: bool = True, **kwargs, ) -> None: super().__init__() IA3Layer.__init__(self, base_layer, is_feedforward=is_feedforward) self.fan_in_fan_out = fan_in_fan_out self._active_adapter = adapter_name self._kernel_dim = base_layer.weight.dim() self.update_layer(adapter_name, init_ia3_weights) def update_layer(self, adapter_name, init_ia3_weights): # Actual trainable parameters num_features = self.in_features if self.is_feedforward else self.out_features weights_size = (1, num_features) + (1,) * (self._kernel_dim - 2) weight = torch.randn(weights_size) self.ia3_l[adapter_name] = nn.Parameter(weight) if init_ia3_weights: self.reset_ia3_parameters(adapter_name) self._move_adapter_to_device_of_base_layer(adapter_name) self.set_adapter(self.active_adapters) def merge(self, safe_merge: bool = False, adapter_names: Optional[List[str]] = None) -> None: """ Merge the active adapter weights into the base weights Args: safe_merge (`bool`, *optional*): If True, the merge operation will be performed in a copy of the original weights and check for NaNs before merging the weights. This is useful if you want to check if the merge operation will produce NaNs. Defaults to `False`. adapter_names (`List[str]`, *optional*): The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults to `None`. """ adapter_names = check_adapters_to_merge(self, adapter_names) if not adapter_names: # no adapter to merge return for active_adapter in adapter_names: if active_adapter in self.ia3_l.keys(): base_layer = self.get_base_layer() ia3_scaling = self.ia3_l[active_adapter].data if not self.is_feedforward: ia3_scaling = ia3_scaling.transpose(0, 1) if safe_merge: output_weight = torch.mul(base_layer.weight.data, ia3_scaling).clone() if not torch.isfinite(output_weight).all(): raise ValueError( f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken" ) base_layer.weight.data = output_weight else: base_layer.weight.data = torch.mul(base_layer.weight.data, ia3_scaling) if not self.is_feedforward and (base_layer.bias is not None): scaling = self.ia3_l[active_adapter].reshape(base_layer.bias.shape) base_layer.bias.data = torch.mul(base_layer.bias.data, scaling.data) self.merged_adapters.append(active_adapter) def unmerge(self) -> None: """ This method unmerges all merged adapter layers from the base weights. """ if not self.merged: warnings.warn("Already unmerged. Nothing to do.") return warnings.warn("Unmerge result can be inaccurate for (IA)^3.") while len(self.merged_adapters) > 0: active_adapter = self.merged_adapters.pop() if active_adapter in self.ia3_l.keys(): base_layer = self.get_base_layer() # divide by (IA)^3 vector. Add tolerace to avoid division by zero ia3_scaling = self.ia3_l[active_adapter].data if not self.is_feedforward: ia3_scaling = ia3_scaling.transpose(0, 1) base_layer.weight.data = torch.div(base_layer.weight.data, ia3_scaling + 1e-8) if not self.is_feedforward and (base_layer.bias is not None): scaling = self.ia3_l[active_adapter].reshape(base_layer.bias.shape) base_layer.bias.data = torch.mul(base_layer.bias.data, scaling.data) def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: dtype = previous_dtype = x.dtype if self.disable_adapters: if self.merged: self.unmerge() result = self.base_layer(x, *args, **kwargs) elif self.merged: result = self.base_layer(x, *args, **kwargs) else: ia3_scaling = 1 for active_adapter in self.active_adapters: if active_adapter not in self.ia3_l.keys(): continue dtype = self.ia3_l[active_adapter].dtype ia3_scaling *= self.ia3_l[active_adapter] if self.is_feedforward: x = x.to(dtype) # TODO: weight.dtype can be != self.ia3_l[self.active_adapters].dtype # e.g. bf16 vs fp32. Is that okay? interm = (x * ia3_scaling).to(self.get_base_layer().weight.dtype) result = self.base_layer(interm, *args, **kwargs) else: result = self.base_layer(x, *args, **kwargs) result = result.to(dtype) * ia3_scaling result = result.to(previous_dtype) return result class Conv2d(_ConvNd): # IA3 implemented in a 2D convolutional layer def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if not self._kernel_dim == 4: raise ValueError(f"Conv2d layer kernel must have 4 dimensions, not {self._kernel_dim}") class Conv3d(_ConvNd): # IA3 implemented in a 3D convolutional layer def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if not self._kernel_dim == 5: raise ValueError(f"Conv2d layer kernel must have 5 dimensions, not {self._kernel_dim}")
peft/src/peft/tuners/ia3/layer.py/0
{ "file_path": "peft/src/peft/tuners/ia3/layer.py", "repo_id": "peft", "token_count": 6856 }
# Copyright 2024-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib.metadata as importlib_metadata from typing import Any, Optional import packaging.version import torch from peft.import_utils import is_auto_awq_available from peft.tuners.lora.layer import LoraLayer from peft.tuners.tuners_utils import BaseTunerLayer class AwqLoraLinear(torch.nn.Module, LoraLayer): def __init__( self, base_layer, adapter_name, r: int = 0, lora_alpha: int = 1, lora_dropout: float = 0.0, init_lora_weights: bool = True, use_rslora: bool = False, use_dora: bool = False, lora_bias: bool = False, **kwargs, ): if use_dora: raise ValueError(f"{self.__class__.__name__} does not support DoRA yet, please set it to False") super().__init__() LoraLayer.__init__(self, base_layer) # self.base_layer and self.quant_linear_module are the same; we need the former for consistency and the latter # for backwards compatibility self.quant_linear_module = base_layer self._active_adapter = adapter_name self.update_layer( adapter_name, r, lora_alpha=lora_alpha, lora_dropout=lora_dropout, init_lora_weights=init_lora_weights, use_rslora=use_rslora, use_dora=use_dora, lora_bias=lora_bias, ) def forward(self, x: torch.Tensor): result = self.quant_linear_module(x) if self.disable_adapters: return result for active_adapter in self.active_adapters: if active_adapter not in self.lora_A.keys(): continue lora_A = self.lora_A[active_adapter] lora_B = self.lora_B[active_adapter] dropout = self.lora_dropout[active_adapter] scaling = self.scaling[active_adapter] requires_conversion = not torch.is_autocast_enabled() if requires_conversion: expected_dtype = result.dtype x = self._cast_input_dtype(x, lora_A.weight.dtype) output = lora_B(lora_A(dropout(x))) if requires_conversion: output = output.to(expected_dtype) output = output * scaling result = result + output return result def __repr__(self) -> str: rep = super().__repr__() return "lora." + rep def dispatch_awq( target: torch.nn.Module, adapter_name: str, **kwargs: Any, ) -> Optional[torch.nn.Module]: new_module = None if isinstance(target, BaseTunerLayer): target_base_layer = target.get_base_layer() else: target_base_layer = target if is_auto_awq_available(): from awq.modules.linear import WQLinear_GEMM if isinstance(target_base_layer, WQLinear_GEMM): # Raise the error only at the dispatch level AUTOAWQ_MINIMUM_VERSION = packaging.version.parse("0.2.0") version_autoawq = packaging.version.parse(importlib_metadata.version("autoawq")) if AUTOAWQ_MINIMUM_VERSION > version_autoawq: raise ImportError( f"Found an incompatible version of auto-awq. Found version {version_autoawq}, " f"but only versions above {AUTOAWQ_MINIMUM_VERSION} are supported for PEFT." ) new_module = AwqLoraLinear(target, adapter_name, **kwargs) target.qweight = target_base_layer.qweight return new_module
peft/src/peft/tuners/lora/awq.py/0
{ "file_path": "peft/src/peft/tuners/lora/awq.py", "repo_id": "peft", "token_count": 1820 }
# Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass, field from peft.config import PromptLearningConfig from peft.utils import PeftType @dataclass class PrefixTuningConfig(PromptLearningConfig): """ This is the configuration class to store the configuration of a [`PrefixEncoder`]. Args: encoder_hidden_size (`int`): The hidden size of the prompt encoder. prefix_projection (`bool`): Whether to project the prefix embeddings. """ encoder_hidden_size: int = field( default=None, metadata={"help": "The hidden size of the encoder"}, ) prefix_projection: bool = field( default=False, metadata={"help": "Whether to project the prefix tokens"}, ) def __post_init__(self): super().__post_init__() self.peft_type = PeftType.PREFIX_TUNING
peft/src/peft/tuners/prefix_tuning/config.py/0
{ "file_path": "peft/src/peft/tuners/prefix_tuning/config.py", "repo_id": "peft", "token_count": 463 }
# Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import builtins from typing import Optional, Union import torch import torch.nn as nn from .config import XLoraConfig Number = Union[builtins.int, builtins.float, builtins.bool] class TemperatureScaledSoftmax(nn.Module): def __init__(self, temperature=1.0): super().__init__() self.temperature = temperature self.softmax = nn.Softmax(dim=-1) def forward(self, logits): # Scale logits by the temperature scaled_logits = logits / self.temperature # Apply softmax to the scaled logits return self.softmax(scaled_logits) class XLoraClassifier(nn.Module): """ A classifier to select LoRA layers for XLora. """ def __init__( self, model: nn.Module, # PeftModel config: XLoraConfig, n_classes: int, n_layers: int, device: torch.device, ): """ Construct an X-LoRA classifier from a model, config and some metadata. Note that n_layers is the number of LoRA adapter layers, not the number of model layers. """ super().__init__() self.n_classes = n_classes self.n_layers = n_layers self.config = config self.log_scalings = [] self.softmax = TemperatureScaledSoftmax(temperature=self.config.softmax_temperature) self.override_scaling_pass_value: Number = config.scaling_pass_value self.scalings_logging = False self.dtype = next(model.parameters()).dtype add_dropout = config.xlora_dropout_p > 0.0 layers = [] if self.config.xlora_depth == 1: if config.layerwise_scalings: # bias=False if we have just one layer last = nn.Linear(config.hidden_size, n_classes * n_layers, bias=True).to(device).to(self.dtype) else: last = nn.Linear(config.hidden_size, n_classes, bias=True).to(device).to(self.dtype) else: if self.config.xlora_depth <= 0: raise ValueError("X-LoRA depth must be strictly positive.") layers.append(nn.Linear(config.hidden_size, config.xlora_size, bias=True).to(device).to(self.dtype)) layers.append(nn.ReLU()) if add_dropout: layers.append(nn.Dropout(p=config.xlora_dropout_p)) for _ in range(config.xlora_depth - 2): layers.append(nn.Linear(config.xlora_size, config.xlora_size, bias=True).to(device).to(self.dtype)) layers.append(nn.ReLU()) if add_dropout: layers.append(nn.Dropout(p=config.xlora_dropout_p)) if config.layerwise_scalings: last = nn.Linear(config.xlora_size, n_classes * n_layers, bias=True).to(device).to(self.dtype) else: last = nn.Linear(config.xlora_size, n_classes, bias=True).to(device).to(self.dtype) self.layers = nn.Sequential(*layers, last) def make_dummy_scalings( self, input_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, *args, **kwargs, ) -> torch.Tensor: """ Make some dummy scalings for the scalings pass (the one to get the logits for the X-LoRA classifier). These are of shape (batch_size, seq_len, n_layers, n_classes) and filled with the override scalings pass value. Note that n_layers is the number of LoRA adapter layers, not the number of model layers. """ if input_ids is not None: batch_size = input_ids.shape[0] device = input_ids.device seq_len = input_ids.shape[1] else: batch_size = inputs_embeds.shape[0] device = inputs_embeds.device seq_len = inputs_embeds.shape[1] return torch.full( # type: ignore (batch_size, seq_len, self.n_layers, self.n_classes), self.override_scaling_pass_value, ).to(device=device, dtype=self.dtype) def forward( self, result, input_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, *args, **kwargs, ) -> torch.Tensor: """ Using the hidden states of the model, predict `n_classes` LoRA alpha values. Returns the scalings. """ if input_ids is not None: batch_size = input_ids.shape[0] seq_len = input_ids.shape[1] else: batch_size = inputs_embeds.shape[0] seq_len = inputs_embeds.shape[1] hidden_states = result.hidden_states # type: ignore hidden_state = hidden_states[-1] # Get the last hidden state ### Classifier run # hidden_state=[batch_size, seq_len, hidden_size] logits = self.layers.forward(hidden_state) ### Repeat to make layerwise scalings ### If layerwise_scalings=False, then the classifier only outputs logits which are not layer-wise. ### So, we expand them to the correct shape. if not self.config.layerwise_scalings: logits = logits.unsqueeze(2) logits = logits.expand(-1, -1, self.n_layers, -1) ### Classifier run scalings = logits.reshape(batch_size, seq_len, self.n_layers, self.n_classes) # scalings = [batch_size, seq_len, n_layers, n_classes] if self.config.enable_softmax: scalings = self.softmax(scalings) if self.scalings_logging: self.log_scalings.append(scalings) return scalings def _get_bucketed_scalings(self) -> dict[int, tuple[list[int], list[torch.Tensor]]]: """ Returns bucketed scalings, bucketed by seq_len. Each value consists of the positions (the first) and the associated tensors. The positions are paired with the associated tensors and give the position in the scaling log. Each scaling is a tensor of shape (batch_size, seq_len, n_layers, n_classes)). """ seqlens_map: dict[int, tuple[list[int], list[torch.Tensor]]] = {} for i, scaling in enumerate(self.log_scalings): seq_len = scaling.shape[1] if seq_len not in seqlens_map: seqlens_map[seq_len] = ([i], [scaling]) else: seqlens_map[seq_len][0].append(i) seqlens_map[seq_len][1].append(scaling) return seqlens_map def _set_override_scaling_pass_value(self, value: Union[Number, None]): if value is None: self.override_scaling_pass_value = 1 / self.n_classes else: self.override_scaling_pass_value = value self.config.scaling_pass_value = self.override_scaling_pass_value
peft/src/peft/tuners/xlora/classifier.py/0
{ "file_path": "peft/src/peft/tuners/xlora/classifier.py", "repo_id": "peft", "token_count": 3252 }
# Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest def pytest_addoption(parser): parser.addoption("--regression", action="store_true", default=False, help="run regression tests") def pytest_configure(config): config.addinivalue_line("markers", "regression: mark regression tests") def pytest_collection_modifyitems(config, items): if config.getoption("--regression"): return skip_regression = pytest.mark.skip(reason="need --regression option to run regression tests") for item in items: if "regression" in item.keywords: item.add_marker(skip_regression)
peft/tests/conftest.py/0
{ "file_path": "peft/tests/conftest.py", "repo_id": "peft", "token_count": 356 }
# Copyright 2024-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Adapted from https://github.com/scikit-learn/scikit-learn/blob/main/sklearn/decomposition/tests/test_incremental_pca.py import pytest import torch from datasets import load_dataset from torch.testing import assert_close from peft.utils.incremental_pca import IncrementalPCA torch.manual_seed(1999) iris = load_dataset("scikit-learn/iris", split="train") def test_incremental_pca(): # Incremental PCA on dense arrays. n_components = 2 X = torch.tensor([iris["SepalLengthCm"], iris["SepalWidthCm"], iris["PetalLengthCm"], iris["PetalWidthCm"]]).T batch_size = X.shape[0] // 3 ipca = IncrementalPCA(n_components=n_components, batch_size=batch_size) ipca.fit(X) X_transformed = ipca.transform(X) # PCA U, S, Vh = torch.linalg.svd(X - torch.mean(X, dim=0)) max_abs_rows = torch.argmax(torch.abs(Vh), dim=1) signs = torch.sign(Vh[range(Vh.shape[0]), max_abs_rows]) Vh *= signs.view(-1, 1) explained_variance = S**2 / (X.size(0) - 1) explained_variance_ratio = explained_variance / explained_variance.sum() assert X_transformed.shape == (X.shape[0], 2) assert_close( ipca.explained_variance_ratio_.sum().item(), explained_variance_ratio[:n_components].sum().item(), rtol=1e-3, atol=1e-3, ) def test_incremental_pca_check_projection(): # Test that the projection of data is correct. n, p = 100, 3 X = torch.randn(n, p, dtype=torch.float64) * 0.1 X[:10] += torch.tensor([3, 4, 5]) Xt = 0.1 * torch.randn(1, p, dtype=torch.float64) + torch.tensor([3, 4, 5]) # Get the reconstruction of the generated data X # Note that Xt has the same "components" as X, just separated # This is what we want to ensure is recreated correctly Yt = IncrementalPCA(n_components=2).fit(X).transform(Xt) # Normalize Yt /= torch.sqrt((Yt**2).sum()) # Make sure that the first element of Yt is ~1, this means # the reconstruction worked as expected assert_close(torch.abs(Yt[0][0]).item(), 1.0, atol=1e-1, rtol=1e-1) def test_incremental_pca_validation(): # Test that n_components is <= n_features. X = torch.tensor([[0, 1, 0], [1, 0, 0]]) n_samples, n_features = X.shape n_components = 4 with pytest.raises( ValueError, match=( f"n_components={n_components} invalid" f" for n_features={n_features}, need more rows than" " columns for IncrementalPCA" " processing" ), ): IncrementalPCA(n_components, batch_size=10).fit(X) # Tests that n_components is also <= n_samples. n_components = 3 with pytest.raises( ValueError, match=(f"n_components={n_components} must be less or equal to the batch number of samples {n_samples}"), ): IncrementalPCA(n_components=n_components).partial_fit(X) def test_n_components_none(): # Ensures that n_components == None is handled correctly for n_samples, n_features in [(50, 10), (10, 50)]: X = torch.rand(n_samples, n_features) ipca = IncrementalPCA(n_components=None) # First partial_fit call, ipca.n_components_ is inferred from # min(X.shape) ipca.partial_fit(X) assert ipca.n_components == min(X.shape) def test_incremental_pca_num_features_change(): # Test that changing n_components will raise an error. n_samples = 100 X = torch.randn(n_samples, 20) X2 = torch.randn(n_samples, 50) ipca = IncrementalPCA(n_components=None) ipca.fit(X) with pytest.raises(ValueError): ipca.partial_fit(X2) def test_incremental_pca_batch_signs(): # Test that components_ sign is stable over batch sizes. n_samples = 100 n_features = 3 X = torch.randn(n_samples, n_features) all_components = [] batch_sizes = torch.arange(10, 20) for batch_size in batch_sizes: ipca = IncrementalPCA(n_components=None, batch_size=batch_size).fit(X) all_components.append(ipca.components_) for i, j in zip(all_components[:-1], all_components[1:]): assert_close(torch.sign(i), torch.sign(j), rtol=1e-6, atol=1e-6) def test_incremental_pca_batch_values(): # Test that components_ values are stable over batch sizes. n_samples = 100 n_features = 3 X = torch.randn(n_samples, n_features) all_components = [] batch_sizes = torch.arange(20, 40, 3) for batch_size in batch_sizes: ipca = IncrementalPCA(n_components=None, batch_size=batch_size).fit(X) all_components.append(ipca.components_) for i, j in zip(all_components[:-1], all_components[1:]): assert_close(i, j, rtol=1e-1, atol=1e-1) def test_incremental_pca_partial_fit(): # Test that fit and partial_fit get equivalent results. n, p = 50, 3 X = torch.randn(n, p) # spherical data X[:, 1] *= 0.00001 # make middle component relatively small X += torch.tensor([5, 4, 3]) # make a large mean # same check that we can find the original data from the transformed # signal (since the data is almost of rank n_components) batch_size = 10 ipca = IncrementalPCA(n_components=2, batch_size=batch_size).fit(X) pipca = IncrementalPCA(n_components=2, batch_size=batch_size) # Add one to make sure endpoint is included batch_itr = torch.arange(0, n + 1, batch_size) for i, j in zip(batch_itr[:-1], batch_itr[1:]): pipca.partial_fit(X[i:j, :]) assert_close(ipca.components_, pipca.components_, rtol=1e-3, atol=1e-3) def test_incremental_pca_lowrank(): # Test that lowrank mode is equivalent to non-lowrank mode. n_components = 2 X = torch.tensor([iris["SepalLengthCm"], iris["SepalWidthCm"], iris["PetalLengthCm"], iris["PetalWidthCm"]]).T batch_size = X.shape[0] // 3 ipca = IncrementalPCA(n_components=n_components, batch_size=batch_size) ipca.fit(X) ipcalr = IncrementalPCA(n_components=n_components, batch_size=batch_size, lowrank=True) ipcalr.fit(X) assert_close(ipca.components_, ipcalr.components_, rtol=1e-7, atol=1e-7)
peft/tests/test_incremental_pca.py/0
{ "file_path": "peft/tests/test_incremental_pca.py", "repo_id": "peft", "token_count": 2752 }
# Copyright 2024-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This is not a full on test suite of vision models, since we already run many tests on dummy models with Conv2d layers # and on stable diffusion models. Instead, this file contains specific tests for bugs that have been found in the past. import gc import numpy as np import pytest import torch from datasets import load_dataset from safetensors.torch import load_file from transformers import ( AutoImageProcessor, AutoModelForImageClassification, AutoProcessor, LlavaForConditionalGeneration, ) from peft import ( HRAConfig, LoHaConfig, LoKrConfig, LoraConfig, OFTConfig, PeftModel, PrefixTuningConfig, get_peft_model, ) CONFIGS = { "lora": LoraConfig(target_modules=["convolution"], modules_to_save=["classifier", "normalization"]), "loha": LoHaConfig(target_modules=["convolution"], modules_to_save=["classifier", "normalization"]), "lokr": LoKrConfig(target_modules=["convolution"], modules_to_save=["classifier", "normalization"]), "oft": OFTConfig(r=1, target_modules=["convolution"], modules_to_save=["classifier", "normalization"]), "hra": HRAConfig(target_modules=["convolution"], modules_to_save=["classifier", "normalization"]), # TODO: cannot use BOFT because some convolutional kernel dimensions are even (64) and others odd (147). There is no # common denominator for the boft_block_size except 1, but using 1 results in an error in the fbd_cuda kernel: # > Error in forward_fast_block_diag_cuda_kernel: an illegal memory access was encountered # "boft": BOFTConfig(target_modules=["convolution"], modules_to_save=["classifier", "normalization"], boft_block_size=2), } # Ensure that models like Llava that pass past_key_values automatically do not fail, see #1938 class TestPastKV: def test_past_kv(self): model_id = "peft-internal-testing/tiny-LlavaForConditionalGeneration" prompt = "USER: <image>\nWhat are these?\nASSISTANT:" # prepare model and inputs model = LlavaForConditionalGeneration.from_pretrained( model_id, low_cpu_mem_usage=True, ) processor = AutoProcessor.from_pretrained(model_id) raw_image = np.random.randint(0, 255, (224, 224, 3), dtype=np.uint8) inputs = processor(prompt, raw_image, return_tensors="pt") # get peft model peft_config = PrefixTuningConfig(task_type="CAUSAL_LM", num_virtual_tokens=20) model.language_model = get_peft_model(model.language_model, peft_config) # check that this does not raise model(**inputs, output_hidden_states=True) class TestResnet: model_id = "hf-internal-testing/tiny-random-ResNetForImageClassification" @pytest.fixture(autouse=True) def teardown(self): r""" Efficient mechanism to free GPU memory after each test. Based on https://github.com/huggingface/transformers/issues/21094 """ gc.collect() if torch.cuda.is_available(): torch.cuda.empty_cache() gc.collect() @pytest.fixture(scope="class") def image_processor(self): image_processor = AutoImageProcessor.from_pretrained(self.model_id) return image_processor @pytest.fixture(scope="class") def data(self, image_processor): dataset = load_dataset("huggingface/cats-image", trust_remote_code=True) image = dataset["test"]["image"][0] return image_processor(image, return_tensors="pt") @pytest.mark.parametrize("config", CONFIGS.values(), ids=CONFIGS.keys()) def test_model_with_batchnorm_reproducibility(self, config, tmp_path, data): # see 1732 torch.manual_seed(0) model = AutoModelForImageClassification.from_pretrained(self.model_id) model = get_peft_model(model, config) # record outputs before training model.eval() with torch.inference_mode(): output_before = model(**data) model.train() # train the model optimizer = torch.optim.AdamW(model.parameters(), lr=1e-3) batch_size = 4 max_steps = 5 * batch_size labels = torch.zeros(1, 3) labels[0, 1] = 1 for i in range(0, max_steps, batch_size): optimizer.zero_grad() outputs = model(**data, labels=labels) loss = outputs.loss loss.backward() optimizer.step() # record outputs after training model.eval() with torch.inference_mode(): output_after = model(**data) assert torch.isfinite(output_after.logits).all() atol, rtol = 1e-4, 1e-4 # sanity check: model was updated assert not torch.allclose(output_before.logits, output_after.logits, atol=atol, rtol=rtol) # check saving the model and loading it model.save_pretrained(tmp_path) del model torch.manual_seed(0) model = AutoModelForImageClassification.from_pretrained(self.model_id) model = PeftModel.from_pretrained(model, tmp_path).eval() with torch.inference_mode(): output_loaded = model(**data) assert torch.allclose(output_after.logits, output_loaded.logits, atol=atol, rtol=rtol) # ensure that the checkpoint file contains the buffers model_running_mean = len([k for k in model.state_dict().keys() if "running_mean" in k]) state_dict = load_file(tmp_path / "adapter_model.safetensors") checkpoint_running_mean = len([k for k in state_dict.keys() if "running_mean" in k]) # note that the model has twice as many "running_mean", as there is one copy per ModulesToSaveWrapper, we need # to multiply by 2 to get the same number assert model_running_mean == checkpoint_running_mean * 2
peft/tests/test_vision_models.py/0
{ "file_path": "peft/tests/test_vision_models.py", "repo_id": "peft", "token_count": 2462 }
# Adversarial Inception v3 **Inception v3** is a convolutional neural network architecture from the Inception family that makes several improvements including using [Label Smoothing](https://paperswithcode.com/method/label-smoothing), Factorized 7 x 7 convolutions, and the use of an [auxiliary classifier](https://paperswithcode.com/method/auxiliary-classifier) to propagate label information lower down the network (along with the use of batch normalization for layers in the sidehead). The key building block is an [Inception Module](https://paperswithcode.com/method/inception-v3-module). This particular model was trained for study of adversarial examples (adversarial training). The weights from this model were ported from [Tensorflow/Models](https://github.com/tensorflow/models). ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('adv_inception_v3', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `adv_inception_v3`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('adv_inception_v3', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../training_script) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/abs-1804-00097, author = {Alexey Kurakin and Ian J. Goodfellow and Samy Bengio and Yinpeng Dong and Fangzhou Liao and Ming Liang and Tianyu Pang and Jun Zhu and Xiaolin Hu and Cihang Xie and Jianyu Wang and Zhishuai Zhang and Zhou Ren and Alan L. Yuille and Sangxia Huang and Yao Zhao and Yuzhe Zhao and Zhonglin Han and Junjiajia Long and Yerkebulan Berdibekov and Takuya Akiba and Seiya Tokui and Motoki Abe}, title = {Adversarial Attacks and Defences Competition}, journal = {CoRR}, volume = {abs/1804.00097}, year = {2018}, url = {http://arxiv.org/abs/1804.00097}, archivePrefix = {arXiv}, eprint = {1804.00097}, timestamp = {Thu, 31 Oct 2019 16:31:22 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1804-00097.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <!-- Type: model-index Collections: - Name: Adversarial Inception v3 Paper: Title: Adversarial Attacks and Defences Competition URL: https://paperswithcode.com/paper/adversarial-attacks-and-defences-competition Models: - Name: adv_inception_v3 In Collection: Adversarial Inception v3 Metadata: FLOPs: 7352418880 Parameters: 23830000 File Size: 95549439 Architecture: - 1x1 Convolution - Auxiliary Classifier - Average Pooling - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inception-v3 Module - Max Pooling - ReLU - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: adv_inception_v3 Crop Pct: '0.875' Image Size: '299' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/inception_v3.py#L456 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/adv_inception_v3-9e27bd63.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.58% Top 5 Accuracy: 93.74% -->
pytorch-image-models/hfdocs/source/models/adversarial-inception-v3.mdx/0
{ "file_path": "pytorch-image-models/hfdocs/source/models/adversarial-inception-v3.mdx", "repo_id": "pytorch-image-models", "token_count": 2249 }
# (Gluon) ResNet **Residual Networks**, or **ResNets**, learn residual functions with reference to the layer inputs, instead of learning unreferenced functions. Instead of hoping each few stacked layers directly fit a desired underlying mapping, residual nets let these layers fit a residual mapping. They stack [residual blocks](https://paperswithcode.com/method/residual-block) ontop of each other to form network: e.g. a ResNet-50 has fifty layers using these blocks. The weights from this model were ported from [Gluon](https://cv.gluon.ai/model_zoo/classification.html). ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('gluon_resnet101_v1b', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `gluon_resnet101_v1b`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('gluon_resnet101_v1b', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../training_script) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/HeZRS15, author = {Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun}, title = {Deep Residual Learning for Image Recognition}, journal = {CoRR}, volume = {abs/1512.03385}, year = {2015}, url = {http://arxiv.org/abs/1512.03385}, archivePrefix = {arXiv}, eprint = {1512.03385}, timestamp = {Wed, 17 Apr 2019 17:23:45 +0200}, biburl = {https://dblp.org/rec/journals/corr/HeZRS15.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <!-- Type: model-index Collections: - Name: Gloun ResNet Paper: Title: Deep Residual Learning for Image Recognition URL: https://paperswithcode.com/paper/deep-residual-learning-for-image-recognition Models: - Name: gluon_resnet101_v1b In Collection: Gloun ResNet Metadata: FLOPs: 10068547584 Parameters: 44550000 File Size: 178723172 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnet101_v1b Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L89 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet101_v1b-3b017079.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.3% Top 5 Accuracy: 94.53% - Name: gluon_resnet101_v1c In Collection: Gloun ResNet Metadata: FLOPs: 10376567296 Parameters: 44570000 File Size: 178802575 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnet101_v1c Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L113 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet101_v1c-1f26822a.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.53% Top 5 Accuracy: 94.59% - Name: gluon_resnet101_v1d In Collection: Gloun ResNet Metadata: FLOPs: 10377018880 Parameters: 44570000 File Size: 178802755 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnet101_v1d Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L138 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet101_v1d-0f9c8644.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.4% Top 5 Accuracy: 95.02% - Name: gluon_resnet101_v1s In Collection: Gloun ResNet Metadata: FLOPs: 11805511680 Parameters: 44670000 File Size: 179221777 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnet101_v1s Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L166 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet101_v1s-60fe0cc1.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.29% Top 5 Accuracy: 95.16% - Name: gluon_resnet152_v1b In Collection: Gloun ResNet Metadata: FLOPs: 14857660416 Parameters: 60190000 File Size: 241534001 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnet152_v1b Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L97 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet152_v1b-c1edb0dd.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.69% Top 5 Accuracy: 94.73% - Name: gluon_resnet152_v1c In Collection: Gloun ResNet Metadata: FLOPs: 15165680128 Parameters: 60210000 File Size: 241613404 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnet152_v1c Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L121 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet152_v1c-a3bb0b98.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.91% Top 5 Accuracy: 94.85% - Name: gluon_resnet152_v1d In Collection: Gloun ResNet Metadata: FLOPs: 15166131712 Parameters: 60210000 File Size: 241613584 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnet152_v1d Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L147 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet152_v1d-bd354e12.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.48% Top 5 Accuracy: 95.2% - Name: gluon_resnet152_v1s In Collection: Gloun ResNet Metadata: FLOPs: 16594624512 Parameters: 60320000 File Size: 242032606 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnet152_v1s Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L175 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet152_v1s-dcc41b81.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 81.02% Top 5 Accuracy: 95.42% - Name: gluon_resnet18_v1b In Collection: Gloun ResNet Metadata: FLOPs: 2337073152 Parameters: 11690000 File Size: 46816736 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnet18_v1b Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L65 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet18_v1b-0757602b.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 70.84% Top 5 Accuracy: 89.76% - Name: gluon_resnet34_v1b In Collection: Gloun ResNet Metadata: FLOPs: 4718469120 Parameters: 21800000 File Size: 87295112 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnet34_v1b Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L73 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet34_v1b-c6d82d59.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 74.59% Top 5 Accuracy: 92.0% - Name: gluon_resnet50_v1b In Collection: Gloun ResNet Metadata: FLOPs: 5282531328 Parameters: 25560000 File Size: 102493763 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnet50_v1b Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L81 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet50_v1b-0ebe02e2.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.58% Top 5 Accuracy: 93.72% - Name: gluon_resnet50_v1c In Collection: Gloun ResNet Metadata: FLOPs: 5590551040 Parameters: 25580000 File Size: 102573166 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnet50_v1c Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L105 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet50_v1c-48092f55.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.01% Top 5 Accuracy: 93.99% - Name: gluon_resnet50_v1d In Collection: Gloun ResNet Metadata: FLOPs: 5591002624 Parameters: 25580000 File Size: 102573346 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnet50_v1d Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L129 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet50_v1d-818a1b1b.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.06% Top 5 Accuracy: 94.46% - Name: gluon_resnet50_v1s In Collection: Gloun ResNet Metadata: FLOPs: 7019495424 Parameters: 25680000 File Size: 102992368 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnet50_v1s Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L156 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet50_v1s-1762acc0.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.7% Top 5 Accuracy: 94.25% -->
pytorch-image-models/hfdocs/source/models/gloun-resnet.mdx/0
{ "file_path": "pytorch-image-models/hfdocs/source/models/gloun-resnet.mdx", "repo_id": "pytorch-image-models", "token_count": 7212 }
# MobileNet v3 **MobileNetV3** is a convolutional neural network that is designed for mobile phone CPUs. The network design includes the use of a [hard swish activation](https://paperswithcode.com/method/hard-swish) and [squeeze-and-excitation](https://paperswithcode.com/method/squeeze-and-excitation-block) modules in the [MBConv blocks](https://paperswithcode.com/method/inverted-residual-block). ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('mobilenetv3_large_100', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `mobilenetv3_large_100`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('mobilenetv3_large_100', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../training_script) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/abs-1905-02244, author = {Andrew Howard and Mark Sandler and Grace Chu and Liang{-}Chieh Chen and Bo Chen and Mingxing Tan and Weijun Wang and Yukun Zhu and Ruoming Pang and Vijay Vasudevan and Quoc V. Le and Hartwig Adam}, title = {Searching for MobileNetV3}, journal = {CoRR}, volume = {abs/1905.02244}, year = {2019}, url = {http://arxiv.org/abs/1905.02244}, archivePrefix = {arXiv}, eprint = {1905.02244}, timestamp = {Tue, 12 Jan 2021 15:30:06 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1905-02244.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <!-- Type: model-index Collections: - Name: MobileNet V3 Paper: Title: Searching for MobileNetV3 URL: https://paperswithcode.com/paper/searching-for-mobilenetv3 Models: - Name: mobilenetv3_large_100 In Collection: MobileNet V3 Metadata: FLOPs: 287193752 Parameters: 5480000 File Size: 22076443 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Depthwise Separable Convolution - Dropout - Global Average Pooling - Hard Swish - Inverted Residual Block - ReLU - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - RMSProp - Weight Decay Training Data: - ImageNet Training Resources: 4x4 TPU Pod ID: mobilenetv3_large_100 LR: 0.1 Dropout: 0.8 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 4096 Image Size: '224' Weight Decay: 1.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/mobilenetv3.py#L363 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_large_100_ra-f55367f5.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.77% Top 5 Accuracy: 92.54% - Name: mobilenetv3_rw In Collection: MobileNet V3 Metadata: FLOPs: 287190638 Parameters: 5480000 File Size: 22064048 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Depthwise Separable Convolution - Dropout - Global Average Pooling - Hard Swish - Inverted Residual Block - ReLU - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - RMSProp - Weight Decay Training Data: - ImageNet Training Resources: 4x4 TPU Pod ID: mobilenetv3_rw LR: 0.1 Dropout: 0.8 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 4096 Image Size: '224' Weight Decay: 1.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/mobilenetv3.py#L384 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_100-35495452.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.62% Top 5 Accuracy: 92.71% -->
pytorch-image-models/hfdocs/source/models/mobilenet-v3.mdx/0
{ "file_path": "pytorch-image-models/hfdocs/source/models/mobilenet-v3.mdx", "repo_id": "pytorch-image-models", "token_count": 2581 }
# SK-ResNet **SK ResNet** is a variant of a [ResNet](https://www.paperswithcode.com/method/resnet) that employs a [Selective Kernel](https://paperswithcode.com/method/selective-kernel) unit. In general, all the large kernel convolutions in the original bottleneck blocks in ResNet are replaced by the proposed [SK convolutions](https://paperswithcode.com/method/selective-kernel-convolution), enabling the network to choose appropriate receptive field sizes in an adaptive manner. ## How do I use this model on an image? To load a pretrained model: ```py >>> import timm >>> model = timm.create_model('skresnet18', pretrained=True) >>> model.eval() ``` To load and preprocess the image: ```py >>> import urllib >>> from PIL import Image >>> from timm.data import resolve_data_config >>> from timm.data.transforms_factory import create_transform >>> config = resolve_data_config({}, model=model) >>> transform = create_transform(**config) >>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") >>> urllib.request.urlretrieve(url, filename) >>> img = Image.open(filename).convert('RGB') >>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```py >>> import torch >>> with torch.no_grad(): ... out = model(tensor) >>> probabilities = torch.nn.functional.softmax(out[0], dim=0) >>> print(probabilities.shape) >>> # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```py >>> # Get imagenet class mappings >>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") >>> urllib.request.urlretrieve(url, filename) >>> with open("imagenet_classes.txt", "r") as f: ... categories = [s.strip() for s in f.readlines()] >>> # Print top categories per image >>> top5_prob, top5_catid = torch.topk(probabilities, 5) >>> for i in range(top5_prob.size(0)): ... print(categories[top5_catid[i]], top5_prob[i].item()) >>> # prints class names and probabilities like: >>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `skresnet18`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```py >>> model = timm.create_model('skresnet18', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](../training_script) for training a new model afresh. ## Citation ```BibTeX @misc{li2019selective, title={Selective Kernel Networks}, author={Xiang Li and Wenhai Wang and Xiaolin Hu and Jian Yang}, year={2019}, eprint={1903.06586}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: SKResNet Paper: Title: Selective Kernel Networks URL: https://paperswithcode.com/paper/selective-kernel-networks Models: - Name: skresnet18 In Collection: SKResNet Metadata: FLOPs: 2333467136 Parameters: 11960000 File Size: 47923238 Architecture: - Convolution - Dense Connections - Global Average Pooling - Max Pooling - Residual Connection - Selective Kernel - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x GPUs ID: skresnet18 LR: 0.1 Epochs: 100 Layers: 18 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 4.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/sknet.py#L148 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnet18_ra-4eec2804.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 73.03% Top 5 Accuracy: 91.17% - Name: skresnet34 In Collection: SKResNet Metadata: FLOPs: 4711849952 Parameters: 22280000 File Size: 89299314 Architecture: - Convolution - Dense Connections - Global Average Pooling - Max Pooling - Residual Connection - Selective Kernel - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x GPUs ID: skresnet34 LR: 0.1 Epochs: 100 Layers: 34 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 4.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/sknet.py#L165 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnet34_ra-bdc0ccde.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 76.93% Top 5 Accuracy: 93.32% -->
pytorch-image-models/hfdocs/source/models/skresnet.mdx/0
{ "file_path": "pytorch-image-models/hfdocs/source/models/skresnet.mdx", "repo_id": "pytorch-image-models", "token_count": 2084 }
from copy import deepcopy __all__ = ['get_img_extensions', 'is_img_extension', 'set_img_extensions', 'add_img_extensions', 'del_img_extensions'] IMG_EXTENSIONS = ('.png', '.jpg', '.jpeg') # singleton, kept public for bwd compat use _IMG_EXTENSIONS_SET = set(IMG_EXTENSIONS) # set version, private, kept in sync def _set_extensions(extensions): global IMG_EXTENSIONS global _IMG_EXTENSIONS_SET dedupe = set() # NOTE de-duping tuple while keeping original order IMG_EXTENSIONS = tuple(x for x in extensions if x not in dedupe and not dedupe.add(x)) _IMG_EXTENSIONS_SET = set(extensions) def _valid_extension(x: str): return x and isinstance(x, str) and len(x) >= 2 and x.startswith('.') def is_img_extension(ext): return ext in _IMG_EXTENSIONS_SET def get_img_extensions(as_set=False): return deepcopy(_IMG_EXTENSIONS_SET if as_set else IMG_EXTENSIONS) def set_img_extensions(extensions): assert len(extensions) for x in extensions: assert _valid_extension(x) _set_extensions(extensions) def add_img_extensions(ext): if not isinstance(ext, (list, tuple, set)): ext = (ext,) for x in ext: assert _valid_extension(x) extensions = IMG_EXTENSIONS + tuple(ext) _set_extensions(extensions) def del_img_extensions(ext): if not isinstance(ext, (list, tuple, set)): ext = (ext,) extensions = tuple(x for x in IMG_EXTENSIONS if x not in ext) _set_extensions(extensions)
pytorch-image-models/timm/data/readers/img_extensions.py/0
{ "file_path": "pytorch-image-models/timm/data/readers/img_extensions.py", "repo_id": "pytorch-image-models", "token_count": 582 }
""" Activations A collection of activations fn and modules with a common interface so that they can easily be swapped. All have an `inplace` arg even if not used. Hacked together by / Copyright 2020 Ross Wightman """ import torch from torch import nn as nn from torch.nn import functional as F def swish(x, inplace: bool = False): """Swish - Described in: https://arxiv.org/abs/1710.05941 """ return x.mul_(x.sigmoid()) if inplace else x.mul(x.sigmoid()) class Swish(nn.Module): def __init__(self, inplace: bool = False): super(Swish, self).__init__() self.inplace = inplace def forward(self, x): return swish(x, self.inplace) def mish(x, inplace: bool = False): """Mish: A Self Regularized Non-Monotonic Neural Activation Function - https://arxiv.org/abs/1908.08681 NOTE: I don't have a working inplace variant """ return x.mul(F.softplus(x).tanh()) class Mish(nn.Module): """Mish: A Self Regularized Non-Monotonic Neural Activation Function - https://arxiv.org/abs/1908.08681 """ def __init__(self, inplace: bool = False): super(Mish, self).__init__() def forward(self, x): return mish(x) def sigmoid(x, inplace: bool = False): return x.sigmoid_() if inplace else x.sigmoid() # PyTorch has this, but not with a consistent inplace argument interface class Sigmoid(nn.Module): def __init__(self, inplace: bool = False): super(Sigmoid, self).__init__() self.inplace = inplace def forward(self, x): return x.sigmoid_() if self.inplace else x.sigmoid() def tanh(x, inplace: bool = False): return x.tanh_() if inplace else x.tanh() # PyTorch has this, but not with a consistent inplace argument interface class Tanh(nn.Module): def __init__(self, inplace: bool = False): super(Tanh, self).__init__() self.inplace = inplace def forward(self, x): return x.tanh_() if self.inplace else x.tanh() def hard_swish(x, inplace: bool = False): inner = F.relu6(x + 3.).div_(6.) return x.mul_(inner) if inplace else x.mul(inner) class HardSwish(nn.Module): def __init__(self, inplace: bool = False): super(HardSwish, self).__init__() self.inplace = inplace def forward(self, x): return hard_swish(x, self.inplace) def hard_sigmoid(x, inplace: bool = False): if inplace: return x.add_(3.).clamp_(0., 6.).div_(6.) else: return F.relu6(x + 3.) / 6. class HardSigmoid(nn.Module): def __init__(self, inplace: bool = False): super(HardSigmoid, self).__init__() self.inplace = inplace def forward(self, x): return hard_sigmoid(x, self.inplace) def hard_mish(x, inplace: bool = False): """ Hard Mish Experimental, based on notes by Mish author Diganta Misra at https://github.com/digantamisra98/H-Mish/blob/0da20d4bc58e696b6803f2523c58d3c8a82782d0/README.md """ if inplace: return x.mul_(0.5 * (x + 2).clamp(min=0, max=2)) else: return 0.5 * x * (x + 2).clamp(min=0, max=2) class HardMish(nn.Module): def __init__(self, inplace: bool = False): super(HardMish, self).__init__() self.inplace = inplace def forward(self, x): return hard_mish(x, self.inplace) class PReLU(nn.PReLU): """Applies PReLU (w/ dummy inplace arg) """ def __init__(self, num_parameters: int = 1, init: float = 0.25, inplace: bool = False) -> None: super(PReLU, self).__init__(num_parameters=num_parameters, init=init) def forward(self, input: torch.Tensor) -> torch.Tensor: return F.prelu(input, self.weight) def gelu(x: torch.Tensor, inplace: bool = False) -> torch.Tensor: return F.gelu(x) class GELU(nn.Module): """Applies the Gaussian Error Linear Units function (w/ dummy inplace arg) """ def __init__(self, inplace: bool = False): super(GELU, self).__init__() def forward(self, input: torch.Tensor) -> torch.Tensor: return F.gelu(input) def gelu_tanh(x: torch.Tensor, inplace: bool = False) -> torch.Tensor: return F.gelu(x, approximate='tanh') class GELUTanh(nn.Module): """Applies the Gaussian Error Linear Units function (w/ dummy inplace arg) """ def __init__(self, inplace: bool = False): super(GELUTanh, self).__init__() def forward(self, input: torch.Tensor) -> torch.Tensor: return F.gelu(input, approximate='tanh') def quick_gelu(x: torch.Tensor, inplace: bool = False) -> torch.Tensor: return x * torch.sigmoid(1.702 * x) class QuickGELU(nn.Module): """Applies the Gaussian Error Linear Units function (w/ dummy inplace arg) """ def __init__(self, inplace: bool = False): super(QuickGELU, self).__init__() def forward(self, input: torch.Tensor) -> torch.Tensor: return quick_gelu(input)
pytorch-image-models/timm/layers/activations.py/0
{ "file_path": "pytorch-image-models/timm/layers/activations.py", "repo_id": "pytorch-image-models", "token_count": 2008 }
""" Create Conv2d Factory Method Hacked together by / Copyright 2020 Ross Wightman """ from .mixed_conv2d import MixedConv2d from .cond_conv2d import CondConv2d from .conv2d_same import create_conv2d_pad def create_conv2d(in_channels, out_channels, kernel_size, **kwargs): """ Select a 2d convolution implementation based on arguments Creates and returns one of torch.nn.Conv2d, Conv2dSame, MixedConv2d, or CondConv2d. Used extensively by EfficientNet, MobileNetv3 and related networks. """ if isinstance(kernel_size, list): assert 'num_experts' not in kwargs # MixNet + CondConv combo not supported currently if 'groups' in kwargs: groups = kwargs.pop('groups') if groups == in_channels: kwargs['depthwise'] = True else: assert groups == 1 # We're going to use only lists for defining the MixedConv2d kernel groups, # ints, tuples, other iterables will continue to pass to normal conv and specify h, w. m = MixedConv2d(in_channels, out_channels, kernel_size, **kwargs) else: depthwise = kwargs.pop('depthwise', False) # for DW out_channels must be multiple of in_channels as must have out_channels % groups == 0 groups = in_channels if depthwise else kwargs.pop('groups', 1) if 'num_experts' in kwargs and kwargs['num_experts'] > 0: m = CondConv2d(in_channels, out_channels, kernel_size, groups=groups, **kwargs) else: m = create_conv2d_pad(in_channels, out_channels, kernel_size, groups=groups, **kwargs) return m
pytorch-image-models/timm/layers/create_conv2d.py/0
{ "file_path": "pytorch-image-models/timm/layers/create_conv2d.py", "repo_id": "pytorch-image-models", "token_count": 652 }
import torch from torch import nn as nn try: from inplace_abn.functions import inplace_abn, inplace_abn_sync has_iabn = True except ImportError: has_iabn = False def inplace_abn(x, weight, bias, running_mean, running_var, training=True, momentum=0.1, eps=1e-05, activation="leaky_relu", activation_param=0.01): raise ImportError( "Please install InplaceABN:'pip install git+https://github.com/mapillary/[email protected]'") def inplace_abn_sync(**kwargs): inplace_abn(**kwargs) class InplaceAbn(nn.Module): """Activated Batch Normalization This gathers a BatchNorm and an activation function in a single module Parameters ---------- num_features : int Number of feature channels in the input and output. eps : float Small constant to prevent numerical issues. momentum : float Momentum factor applied to compute running statistics. affine : bool If `True` apply learned scale and shift transformation after normalization. act_layer : str or nn.Module type Name or type of the activation functions, one of: `leaky_relu`, `elu` act_param : float Negative slope for the `leaky_relu` activation. """ def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True, apply_act=True, act_layer="leaky_relu", act_param=0.01, drop_layer=None): super(InplaceAbn, self).__init__() self.num_features = num_features self.affine = affine self.eps = eps self.momentum = momentum if apply_act: if isinstance(act_layer, str): assert act_layer in ('leaky_relu', 'elu', 'identity', '') self.act_name = act_layer if act_layer else 'identity' else: # convert act layer passed as type to string if act_layer == nn.ELU: self.act_name = 'elu' elif act_layer == nn.LeakyReLU: self.act_name = 'leaky_relu' elif act_layer is None or act_layer == nn.Identity: self.act_name = 'identity' else: assert False, f'Invalid act layer {act_layer.__name__} for IABN' else: self.act_name = 'identity' self.act_param = act_param if self.affine: self.weight = nn.Parameter(torch.ones(num_features)) self.bias = nn.Parameter(torch.zeros(num_features)) else: self.register_parameter('weight', None) self.register_parameter('bias', None) self.register_buffer('running_mean', torch.zeros(num_features)) self.register_buffer('running_var', torch.ones(num_features)) self.reset_parameters() def reset_parameters(self): nn.init.constant_(self.running_mean, 0) nn.init.constant_(self.running_var, 1) if self.affine: nn.init.constant_(self.weight, 1) nn.init.constant_(self.bias, 0) def forward(self, x): output = inplace_abn( x, self.weight, self.bias, self.running_mean, self.running_var, self.training, self.momentum, self.eps, self.act_name, self.act_param) if isinstance(output, tuple): output = output[0] return output
pytorch-image-models/timm/layers/inplace_abn.py/0
{ "file_path": "pytorch-image-models/timm/layers/inplace_abn.py", "repo_id": "pytorch-image-models", "token_count": 1556 }
""" Position Embedding Utilities Hacked together by / Copyright 2022 Ross Wightman """ import logging import math from typing import List, Tuple, Optional, Union import torch import torch.nn.functional as F from .helpers import to_2tuple _logger = logging.getLogger(__name__) def resample_abs_pos_embed( posemb: torch.Tensor, new_size: List[int], old_size: Optional[List[int]] = None, num_prefix_tokens: int = 1, interpolation: str = 'bicubic', antialias: bool = True, verbose: bool = False, ): # sort out sizes, assume square if old size not provided num_pos_tokens = posemb.shape[1] num_new_tokens = new_size[0] * new_size[1] + num_prefix_tokens if num_new_tokens == num_pos_tokens and new_size[0] == new_size[1]: return posemb if old_size is None: hw = int(math.sqrt(num_pos_tokens - num_prefix_tokens)) old_size = hw, hw if num_prefix_tokens: posemb_prefix, posemb = posemb[:, :num_prefix_tokens], posemb[:, num_prefix_tokens:] else: posemb_prefix, posemb = None, posemb # do the interpolation embed_dim = posemb.shape[-1] orig_dtype = posemb.dtype posemb = posemb.float() # interpolate needs float32 posemb = posemb.reshape(1, old_size[0], old_size[1], -1).permute(0, 3, 1, 2) posemb = F.interpolate(posemb, size=new_size, mode=interpolation, antialias=antialias) posemb = posemb.permute(0, 2, 3, 1).reshape(1, -1, embed_dim) posemb = posemb.to(orig_dtype) # add back extra (class, etc) prefix tokens if posemb_prefix is not None: posemb = torch.cat([posemb_prefix, posemb], dim=1) if not torch.jit.is_scripting() and verbose: _logger.info(f'Resized position embedding: {old_size} to {new_size}.') return posemb def resample_abs_pos_embed_nhwc( posemb: torch.Tensor, new_size: List[int], interpolation: str = 'bicubic', antialias: bool = True, verbose: bool = False, ): if new_size[0] == posemb.shape[-3] and new_size[1] == posemb.shape[-2]: return posemb orig_dtype = posemb.dtype posemb = posemb.float() posemb = posemb.reshape(1, posemb.shape[-3], posemb.shape[-2], posemb.shape[-1]).permute(0, 3, 1, 2) posemb = F.interpolate(posemb, size=new_size, mode=interpolation, antialias=antialias) posemb = posemb.permute(0, 2, 3, 1).to(orig_dtype) if not torch.jit.is_scripting() and verbose: _logger.info(f'Resized position embedding: {posemb.shape[-3:-1]} to {new_size}.') return posemb
pytorch-image-models/timm/layers/pos_embed.py/0
{ "file_path": "pytorch-image-models/timm/layers/pos_embed.py", "repo_id": "pytorch-image-models", "token_count": 1128 }
""" Binary Cross Entropy w/ a few extras Hacked together by / Copyright 2021 Ross Wightman """ from typing import Optional, Union import torch import torch.nn as nn import torch.nn.functional as F class BinaryCrossEntropy(nn.Module): """ BCE with optional one-hot from dense targets, label smoothing, thresholding NOTE for experiments comparing CE to BCE /w label smoothing, may remove """ def __init__( self, smoothing=0.1, target_threshold: Optional[float] = None, weight: Optional[torch.Tensor] = None, reduction: str = 'mean', sum_classes: bool = False, pos_weight: Optional[Union[torch.Tensor, float]] = None, ): super(BinaryCrossEntropy, self).__init__() assert 0. <= smoothing < 1.0 if pos_weight is not None: if not isinstance(pos_weight, torch.Tensor): pos_weight = torch.tensor(pos_weight) self.smoothing = smoothing self.target_threshold = target_threshold self.reduction = 'none' if sum_classes else reduction self.sum_classes = sum_classes self.register_buffer('weight', weight) self.register_buffer('pos_weight', pos_weight) def forward(self, x: torch.Tensor, target: torch.Tensor) -> torch.Tensor: batch_size = x.shape[0] assert batch_size == target.shape[0] if target.shape != x.shape: # NOTE currently assume smoothing or other label softening is applied upstream if targets are already sparse num_classes = x.shape[-1] # FIXME should off/on be different for smoothing w/ BCE? Other impl out there differ off_value = self.smoothing / num_classes on_value = 1. - self.smoothing + off_value target = target.long().view(-1, 1) target = torch.full( (batch_size, num_classes), off_value, device=x.device, dtype=x.dtype).scatter_(1, target, on_value) if self.target_threshold is not None: # Make target 0, or 1 if threshold set target = target.gt(self.target_threshold).to(dtype=target.dtype) loss = F.binary_cross_entropy_with_logits( x, target, self.weight, pos_weight=self.pos_weight, reduction=self.reduction, ) if self.sum_classes: loss = loss.sum(-1).mean() return loss
pytorch-image-models/timm/loss/binary_cross_entropy.py/0
{ "file_path": "pytorch-image-models/timm/loss/binary_cross_entropy.py", "repo_id": "pytorch-image-models", "token_count": 1082 }
""" DeiT - Data-efficient Image Transformers DeiT model defs and weights from https://github.com/facebookresearch/deit, original copyright below paper: `DeiT: Data-efficient Image Transformers` - https://arxiv.org/abs/2012.12877 paper: `DeiT III: Revenge of the ViT` - https://arxiv.org/abs/2204.07118 Modifications copyright 2021, Ross Wightman """ # Copyright (c) 2015-present, Facebook, Inc. # All rights reserved. from functools import partial from typing import Optional import torch from torch import nn as nn from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import resample_abs_pos_embed from timm.models.vision_transformer import VisionTransformer, trunc_normal_, checkpoint_filter_fn from ._builder import build_model_with_cfg from ._registry import generate_default_cfgs, register_model, register_model_deprecations __all__ = ['VisionTransformerDistilled'] # model_registry will add each entrypoint fn to this class VisionTransformerDistilled(VisionTransformer): """ Vision Transformer w/ Distillation Token and Head Distillation token & head support for `DeiT: Data-efficient Image Transformers` - https://arxiv.org/abs/2012.12877 """ def __init__(self, *args, **kwargs): weight_init = kwargs.pop('weight_init', '') super().__init__(*args, **kwargs, weight_init='skip') assert self.global_pool in ('token',) self.num_prefix_tokens = 2 self.dist_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim)) self.pos_embed = nn.Parameter( torch.zeros(1, self.patch_embed.num_patches + self.num_prefix_tokens, self.embed_dim)) self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if self.num_classes > 0 else nn.Identity() self.distilled_training = False # must set this True to train w/ distillation token self.init_weights(weight_init) def init_weights(self, mode=''): trunc_normal_(self.dist_token, std=.02) super().init_weights(mode=mode) @torch.jit.ignore def group_matcher(self, coarse=False): return dict( stem=r'^cls_token|pos_embed|patch_embed|dist_token', blocks=[ (r'^blocks\.(\d+)', None), (r'^norm', (99999,))] # final norm w/ last block ) @torch.jit.ignore def get_classifier(self) -> nn.Module: return self.head, self.head_dist def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): self.num_classes = num_classes self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity() @torch.jit.ignore def set_distilled_training(self, enable=True): self.distilled_training = enable def _pos_embed(self, x): if self.dynamic_img_size: B, H, W, C = x.shape prev_grid_size = self.patch_embed.grid_size pos_embed = resample_abs_pos_embed( self.pos_embed, new_size=(H, W), old_size=prev_grid_size, num_prefix_tokens=0 if self.no_embed_class else self.num_prefix_tokens, ) x = x.view(B, -1, C) else: pos_embed = self.pos_embed if self.no_embed_class: # deit-3, updated JAX (big vision) # position embedding does not overlap with class token, add then concat x = x + pos_embed x = torch.cat(( self.cls_token.expand(x.shape[0], -1, -1), self.dist_token.expand(x.shape[0], -1, -1), x), dim=1) else: # original timm, JAX, and deit vit impl # pos_embed has entry for class token, concat then add x = torch.cat(( self.cls_token.expand(x.shape[0], -1, -1), self.dist_token.expand(x.shape[0], -1, -1), x), dim=1) x = x + pos_embed return self.pos_drop(x) def forward_head(self, x, pre_logits: bool = False) -> torch.Tensor: x, x_dist = x[:, 0], x[:, 1] if pre_logits: return (x + x_dist) / 2 x = self.head(x) x_dist = self.head_dist(x_dist) if self.distilled_training and self.training and not torch.jit.is_scripting(): # only return separate classification predictions when training in distilled mode return x, x_dist else: # during standard train / finetune, inference average the classifier predictions return (x + x_dist) / 2 def _create_deit(variant, pretrained=False, distilled=False, **kwargs): out_indices = kwargs.pop('out_indices', 3) model_cls = VisionTransformerDistilled if distilled else VisionTransformer model = build_model_with_cfg( model_cls, variant, pretrained, pretrained_filter_fn=partial(checkpoint_filter_fn, adapt_layer_scale=True), feature_cfg=dict(out_indices=out_indices, feature_cls='getter'), **kwargs, ) return model def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'patch_embed.proj', 'classifier': 'head', **kwargs } default_cfgs = generate_default_cfgs({ # deit models (FB weights) 'deit_tiny_patch16_224.fb_in1k': _cfg( hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_tiny_patch16_224-a1311bcf.pth'), 'deit_small_patch16_224.fb_in1k': _cfg( hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth'), 'deit_base_patch16_224.fb_in1k': _cfg( hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth'), 'deit_base_patch16_384.fb_in1k': _cfg( hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_384-8de9b5d1.pth', input_size=(3, 384, 384), crop_pct=1.0), 'deit_tiny_distilled_patch16_224.fb_in1k': _cfg( hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_tiny_distilled_patch16_224-b40b3cf7.pth', classifier=('head', 'head_dist')), 'deit_small_distilled_patch16_224.fb_in1k': _cfg( hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_small_distilled_patch16_224-649709d9.pth', classifier=('head', 'head_dist')), 'deit_base_distilled_patch16_224.fb_in1k': _cfg( hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_224-df68dfff.pth', classifier=('head', 'head_dist')), 'deit_base_distilled_patch16_384.fb_in1k': _cfg( hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_384-d0272ac0.pth', input_size=(3, 384, 384), crop_pct=1.0, classifier=('head', 'head_dist')), 'deit3_small_patch16_224.fb_in1k': _cfg( hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_3_small_224_1k.pth'), 'deit3_small_patch16_384.fb_in1k': _cfg( hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_3_small_384_1k.pth', input_size=(3, 384, 384), crop_pct=1.0), 'deit3_medium_patch16_224.fb_in1k': _cfg( hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_3_medium_224_1k.pth'), 'deit3_base_patch16_224.fb_in1k': _cfg( hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_3_base_224_1k.pth'), 'deit3_base_patch16_384.fb_in1k': _cfg( hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_3_base_384_1k.pth', input_size=(3, 384, 384), crop_pct=1.0), 'deit3_large_patch16_224.fb_in1k': _cfg( hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_3_large_224_1k.pth'), 'deit3_large_patch16_384.fb_in1k': _cfg( hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_3_large_384_1k.pth', input_size=(3, 384, 384), crop_pct=1.0), 'deit3_huge_patch14_224.fb_in1k': _cfg( hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_3_huge_224_1k.pth'), 'deit3_small_patch16_224.fb_in22k_ft_in1k': _cfg( hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_3_small_224_21k.pth', crop_pct=1.0), 'deit3_small_patch16_384.fb_in22k_ft_in1k': _cfg( hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_3_small_384_21k.pth', input_size=(3, 384, 384), crop_pct=1.0), 'deit3_medium_patch16_224.fb_in22k_ft_in1k': _cfg( hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_3_medium_224_21k.pth', crop_pct=1.0), 'deit3_base_patch16_224.fb_in22k_ft_in1k': _cfg( hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_3_base_224_21k.pth', crop_pct=1.0), 'deit3_base_patch16_384.fb_in22k_ft_in1k': _cfg( hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_3_base_384_21k.pth', input_size=(3, 384, 384), crop_pct=1.0), 'deit3_large_patch16_224.fb_in22k_ft_in1k': _cfg( hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_3_large_224_21k.pth', crop_pct=1.0), 'deit3_large_patch16_384.fb_in22k_ft_in1k': _cfg( hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_3_large_384_21k.pth', input_size=(3, 384, 384), crop_pct=1.0), 'deit3_huge_patch14_224.fb_in22k_ft_in1k': _cfg( hf_hub_id='timm/', url='https://dl.fbaipublicfiles.com/deit/deit_3_huge_224_21k_v1.pth', crop_pct=1.0), }) @register_model def deit_tiny_patch16_224(pretrained=False, **kwargs) -> VisionTransformer: """ DeiT-tiny model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). ImageNet-1k weights from https://github.com/facebookresearch/deit. """ model_args = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3) model = _create_deit('deit_tiny_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def deit_small_patch16_224(pretrained=False, **kwargs) -> VisionTransformer: """ DeiT-small model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). ImageNet-1k weights from https://github.com/facebookresearch/deit. """ model_args = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6) model = _create_deit('deit_small_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def deit_base_patch16_224(pretrained=False, **kwargs) -> VisionTransformer: """ DeiT base model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). ImageNet-1k weights from https://github.com/facebookresearch/deit. """ model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12) model = _create_deit('deit_base_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def deit_base_patch16_384(pretrained=False, **kwargs) -> VisionTransformer: """ DeiT base model @ 384x384 from paper (https://arxiv.org/abs/2012.12877). ImageNet-1k weights from https://github.com/facebookresearch/deit. """ model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12) model = _create_deit('deit_base_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def deit_tiny_distilled_patch16_224(pretrained=False, **kwargs) -> VisionTransformerDistilled: """ DeiT-tiny distilled model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). ImageNet-1k weights from https://github.com/facebookresearch/deit. """ model_args = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3) model = _create_deit( 'deit_tiny_distilled_patch16_224', pretrained=pretrained, distilled=True, **dict(model_args, **kwargs)) return model @register_model def deit_small_distilled_patch16_224(pretrained=False, **kwargs) -> VisionTransformerDistilled: """ DeiT-small distilled model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). ImageNet-1k weights from https://github.com/facebookresearch/deit. """ model_args = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6) model = _create_deit( 'deit_small_distilled_patch16_224', pretrained=pretrained, distilled=True, **dict(model_args, **kwargs)) return model @register_model def deit_base_distilled_patch16_224(pretrained=False, **kwargs) -> VisionTransformerDistilled: """ DeiT-base distilled model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). ImageNet-1k weights from https://github.com/facebookresearch/deit. """ model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12) model = _create_deit( 'deit_base_distilled_patch16_224', pretrained=pretrained, distilled=True, **dict(model_args, **kwargs)) return model @register_model def deit_base_distilled_patch16_384(pretrained=False, **kwargs) -> VisionTransformerDistilled: """ DeiT-base distilled model @ 384x384 from paper (https://arxiv.org/abs/2012.12877). ImageNet-1k weights from https://github.com/facebookresearch/deit. """ model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12) model = _create_deit( 'deit_base_distilled_patch16_384', pretrained=pretrained, distilled=True, **dict(model_args, **kwargs)) return model @register_model def deit3_small_patch16_224(pretrained=False, **kwargs) -> VisionTransformer: """ DeiT-3 small model @ 224x224 from paper (https://arxiv.org/abs/2204.07118). ImageNet-1k weights from https://github.com/facebookresearch/deit. """ model_args = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, no_embed_class=True, init_values=1e-6) model = _create_deit('deit3_small_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def deit3_small_patch16_384(pretrained=False, **kwargs) -> VisionTransformer: """ DeiT-3 small model @ 384x384 from paper (https://arxiv.org/abs/2204.07118). ImageNet-1k weights from https://github.com/facebookresearch/deit. """ model_args = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, no_embed_class=True, init_values=1e-6) model = _create_deit('deit3_small_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def deit3_medium_patch16_224(pretrained=False, **kwargs) -> VisionTransformer: """ DeiT-3 medium model @ 224x224 (https://arxiv.org/abs/2012.12877). ImageNet-1k weights from https://github.com/facebookresearch/deit. """ model_args = dict(patch_size=16, embed_dim=512, depth=12, num_heads=8, no_embed_class=True, init_values=1e-6) model = _create_deit('deit3_medium_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def deit3_base_patch16_224(pretrained=False, **kwargs) -> VisionTransformer: """ DeiT-3 base model @ 224x224 from paper (https://arxiv.org/abs/2204.07118). ImageNet-1k weights from https://github.com/facebookresearch/deit. """ model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, no_embed_class=True, init_values=1e-6) model = _create_deit('deit3_base_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def deit3_base_patch16_384(pretrained=False, **kwargs) -> VisionTransformer: """ DeiT-3 base model @ 384x384 from paper (https://arxiv.org/abs/2204.07118). ImageNet-1k weights from https://github.com/facebookresearch/deit. """ model_args = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, no_embed_class=True, init_values=1e-6) model = _create_deit('deit3_base_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def deit3_large_patch16_224(pretrained=False, **kwargs) -> VisionTransformer: """ DeiT-3 large model @ 224x224 from paper (https://arxiv.org/abs/2204.07118). ImageNet-1k weights from https://github.com/facebookresearch/deit. """ model_args = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, no_embed_class=True, init_values=1e-6) model = _create_deit('deit3_large_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def deit3_large_patch16_384(pretrained=False, **kwargs) -> VisionTransformer: """ DeiT-3 large model @ 384x384 from paper (https://arxiv.org/abs/2204.07118). ImageNet-1k weights from https://github.com/facebookresearch/deit. """ model_args = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16, no_embed_class=True, init_values=1e-6) model = _create_deit('deit3_large_patch16_384', pretrained=pretrained, **dict(model_args, **kwargs)) return model @register_model def deit3_huge_patch14_224(pretrained=False, **kwargs) -> VisionTransformer: """ DeiT-3 base model @ 384x384 from paper (https://arxiv.org/abs/2204.07118). ImageNet-1k weights from https://github.com/facebookresearch/deit. """ model_args = dict(patch_size=14, embed_dim=1280, depth=32, num_heads=16, no_embed_class=True, init_values=1e-6) model = _create_deit('deit3_huge_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs)) return model register_model_deprecations(__name__, { 'deit3_small_patch16_224_in21ft1k': 'deit3_small_patch16_224.fb_in22k_ft_in1k', 'deit3_small_patch16_384_in21ft1k': 'deit3_small_patch16_384.fb_in22k_ft_in1k', 'deit3_medium_patch16_224_in21ft1k': 'deit3_medium_patch16_224.fb_in22k_ft_in1k', 'deit3_base_patch16_224_in21ft1k': 'deit3_base_patch16_224.fb_in22k_ft_in1k', 'deit3_base_patch16_384_in21ft1k': 'deit3_base_patch16_384.fb_in22k_ft_in1k', 'deit3_large_patch16_224_in21ft1k': 'deit3_large_patch16_224.fb_in22k_ft_in1k', 'deit3_large_patch16_384_in21ft1k': 'deit3_large_patch16_384.fb_in22k_ft_in1k', 'deit3_huge_patch14_224_in21ft1k': 'deit3_huge_patch14_224.fb_in22k_ft_in1k' })
pytorch-image-models/timm/models/deit.py/0
{ "file_path": "pytorch-image-models/timm/models/deit.py", "repo_id": "pytorch-image-models", "token_count": 8370 }
""" Global Context ViT From scratch implementation of GCViT in the style of timm swin_transformer_v2_cr.py Global Context Vision Transformers -https://arxiv.org/abs/2206.09959 @article{hatamizadeh2022global, title={Global Context Vision Transformers}, author={Hatamizadeh, Ali and Yin, Hongxu and Kautz, Jan and Molchanov, Pavlo}, journal={arXiv preprint arXiv:2206.09959}, year={2022} } Free of any code related to NVIDIA GCVit impl at https://github.com/NVlabs/GCVit. The license for this code release is Apache 2.0 with no commercial restrictions. However, weight files adapted from NVIDIA GCVit impl ARE under a non-commercial share-alike license (https://creativecommons.org/licenses/by-nc-sa/4.0/) until I have a chance to train new ones... Hacked together by / Copyright 2022, Ross Wightman """ import math from functools import partial from typing import Callable, List, Optional, Tuple, Union import torch import torch.nn as nn from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import DropPath, to_2tuple, to_ntuple, Mlp, ClassifierHead, LayerNorm2d, \ get_attn, get_act_layer, get_norm_layer, RelPosBias, _assert from ._builder import build_model_with_cfg from ._features_fx import register_notrace_function from ._manipulate import named_apply, checkpoint from ._registry import register_model, generate_default_cfgs __all__ = ['GlobalContextVit'] class MbConvBlock(nn.Module): """ A depthwise separable / fused mbconv style residual block with SE, `no norm. """ def __init__( self, in_chs, out_chs=None, expand_ratio=1.0, attn_layer='se', bias=False, act_layer=nn.GELU, ): super().__init__() attn_kwargs = dict(act_layer=act_layer) if isinstance(attn_layer, str) and attn_layer == 'se' or attn_layer == 'eca': attn_kwargs['rd_ratio'] = 0.25 attn_kwargs['bias'] = False attn_layer = get_attn(attn_layer) out_chs = out_chs or in_chs mid_chs = int(expand_ratio * in_chs) self.conv_dw = nn.Conv2d(in_chs, mid_chs, 3, 1, 1, groups=in_chs, bias=bias) self.act = act_layer() self.se = attn_layer(mid_chs, **attn_kwargs) self.conv_pw = nn.Conv2d(mid_chs, out_chs, 1, 1, 0, bias=bias) def forward(self, x): shortcut = x x = self.conv_dw(x) x = self.act(x) x = self.se(x) x = self.conv_pw(x) x = x + shortcut return x class Downsample2d(nn.Module): def __init__( self, dim, dim_out=None, reduction='conv', act_layer=nn.GELU, norm_layer=LayerNorm2d, # NOTE in NCHW ): super().__init__() dim_out = dim_out or dim self.norm1 = norm_layer(dim) if norm_layer is not None else nn.Identity() self.conv_block = MbConvBlock(dim, act_layer=act_layer) assert reduction in ('conv', 'max', 'avg') if reduction == 'conv': self.reduction = nn.Conv2d(dim, dim_out, 3, 2, 1, bias=False) elif reduction == 'max': assert dim == dim_out self.reduction = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) else: assert dim == dim_out self.reduction = nn.AvgPool2d(kernel_size=2) self.norm2 = norm_layer(dim_out) if norm_layer is not None else nn.Identity() def forward(self, x): x = self.norm1(x) x = self.conv_block(x) x = self.reduction(x) x = self.norm2(x) return x class FeatureBlock(nn.Module): def __init__( self, dim, levels=0, reduction='max', act_layer=nn.GELU, ): super().__init__() reductions = levels levels = max(1, levels) if reduction == 'avg': pool_fn = partial(nn.AvgPool2d, kernel_size=2) else: pool_fn = partial(nn.MaxPool2d, kernel_size=3, stride=2, padding=1) self.blocks = nn.Sequential() for i in range(levels): self.blocks.add_module(f'conv{i+1}', MbConvBlock(dim, act_layer=act_layer)) if reductions: self.blocks.add_module(f'pool{i+1}', pool_fn()) reductions -= 1 def forward(self, x): return self.blocks(x) class Stem(nn.Module): def __init__( self, in_chs: int = 3, out_chs: int = 96, act_layer: Callable = nn.GELU, norm_layer: Callable = LayerNorm2d, # NOTE stem in NCHW ): super().__init__() self.conv1 = nn.Conv2d(in_chs, out_chs, kernel_size=3, stride=2, padding=1) self.down = Downsample2d(out_chs, act_layer=act_layer, norm_layer=norm_layer) def forward(self, x): x = self.conv1(x) x = self.down(x) return x class WindowAttentionGlobal(nn.Module): def __init__( self, dim: int, num_heads: int, window_size: Tuple[int, int], use_global: bool = True, qkv_bias: bool = True, attn_drop: float = 0., proj_drop: float = 0., ): super().__init__() window_size = to_2tuple(window_size) self.window_size = window_size self.num_heads = num_heads self.head_dim = dim // num_heads self.scale = self.head_dim ** -0.5 self.use_global = use_global self.rel_pos = RelPosBias(window_size=window_size, num_heads=num_heads) if self.use_global: self.qkv = nn.Linear(dim, dim * 2, bias=qkv_bias) else: self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, q_global: Optional[torch.Tensor] = None): B, N, C = x.shape if self.use_global and q_global is not None: _assert(x.shape[-1] == q_global.shape[-1], 'x and q_global seq lengths should be equal') kv = self.qkv(x) kv = kv.reshape(B, N, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) k, v = kv.unbind(0) q = q_global.repeat(B // q_global.shape[0], 1, 1, 1) q = q.reshape(B, N, self.num_heads, self.head_dim).permute(0, 2, 1, 3) else: qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(0) q = q * self.scale attn = q @ k.transpose(-2, -1).contiguous() # NOTE contiguous() fixes an odd jit bug in PyTorch 2.0 attn = self.rel_pos(attn) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x def window_partition(x, window_size: Tuple[int, int]): B, H, W, C = x.shape x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C) windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C) return windows @register_notrace_function # reason: int argument is a Proxy def window_reverse(windows, window_size: Tuple[int, int], img_size: Tuple[int, int]): H, W = img_size C = windows.shape[-1] x = windows.view(-1, H // window_size[0], W // window_size[1], window_size[0], window_size[1], C) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, H, W, C) return x class LayerScale(nn.Module): def __init__(self, dim, init_values=1e-5, inplace=False): super().__init__() self.inplace = inplace self.gamma = nn.Parameter(init_values * torch.ones(dim)) def forward(self, x): return x.mul_(self.gamma) if self.inplace else x * self.gamma class GlobalContextVitBlock(nn.Module): def __init__( self, dim: int, feat_size: Tuple[int, int], num_heads: int, window_size: int = 7, mlp_ratio: float = 4., use_global: bool = True, qkv_bias: bool = True, layer_scale: Optional[float] = None, proj_drop: float = 0., attn_drop: float = 0., drop_path: float = 0., attn_layer: Callable = WindowAttentionGlobal, act_layer: Callable = nn.GELU, norm_layer: Callable = nn.LayerNorm, ): super().__init__() feat_size = to_2tuple(feat_size) window_size = to_2tuple(window_size) self.window_size = window_size self.num_windows = int((feat_size[0] // window_size[0]) * (feat_size[1] // window_size[1])) self.norm1 = norm_layer(dim) self.attn = attn_layer( dim, num_heads=num_heads, window_size=window_size, use_global=use_global, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=proj_drop, ) self.ls1 = LayerScale(dim, layer_scale) if layer_scale is not None else nn.Identity() self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=proj_drop) self.ls2 = LayerScale(dim, layer_scale) if layer_scale is not None else nn.Identity() self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() def _window_attn(self, x, q_global: Optional[torch.Tensor] = None): B, H, W, C = x.shape x_win = window_partition(x, self.window_size) x_win = x_win.view(-1, self.window_size[0] * self.window_size[1], C) attn_win = self.attn(x_win, q_global) x = window_reverse(attn_win, self.window_size, (H, W)) return x def forward(self, x, q_global: Optional[torch.Tensor] = None): x = x + self.drop_path1(self.ls1(self._window_attn(self.norm1(x), q_global))) x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) return x class GlobalContextVitStage(nn.Module): def __init__( self, dim, depth: int, num_heads: int, feat_size: Tuple[int, int], window_size: Tuple[int, int], downsample: bool = True, global_norm: bool = False, stage_norm: bool = False, mlp_ratio: float = 4., qkv_bias: bool = True, layer_scale: Optional[float] = None, proj_drop: float = 0., attn_drop: float = 0., drop_path: Union[List[float], float] = 0.0, act_layer: Callable = nn.GELU, norm_layer: Callable = nn.LayerNorm, norm_layer_cl: Callable = LayerNorm2d, ): super().__init__() if downsample: self.downsample = Downsample2d( dim=dim, dim_out=dim * 2, norm_layer=norm_layer, ) dim = dim * 2 feat_size = (feat_size[0] // 2, feat_size[1] // 2) else: self.downsample = nn.Identity() self.feat_size = feat_size window_size = to_2tuple(window_size) feat_levels = int(math.log2(min(feat_size) / min(window_size))) self.global_block = FeatureBlock(dim, feat_levels) self.global_norm = norm_layer_cl(dim) if global_norm else nn.Identity() self.blocks = nn.ModuleList([ GlobalContextVitBlock( dim=dim, num_heads=num_heads, feat_size=feat_size, window_size=window_size, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, use_global=(i % 2 != 0), layer_scale=layer_scale, proj_drop=proj_drop, attn_drop=attn_drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, act_layer=act_layer, norm_layer=norm_layer_cl, ) for i in range(depth) ]) self.norm = norm_layer_cl(dim) if stage_norm else nn.Identity() self.dim = dim self.feat_size = feat_size self.grad_checkpointing = False def forward(self, x): # input NCHW, downsample & global block are 2d conv + pooling x = self.downsample(x) global_query = self.global_block(x) # reshape NCHW --> NHWC for transformer blocks x = x.permute(0, 2, 3, 1) global_query = self.global_norm(global_query.permute(0, 2, 3, 1)) for blk in self.blocks: if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint.checkpoint(blk, x) else: x = blk(x, global_query) x = self.norm(x) x = x.permute(0, 3, 1, 2).contiguous() # back to NCHW return x class GlobalContextVit(nn.Module): def __init__( self, in_chans: int = 3, num_classes: int = 1000, global_pool: str = 'avg', img_size: Tuple[int, int] = 224, window_ratio: Tuple[int, ...] = (32, 32, 16, 32), window_size: Tuple[int, ...] = None, embed_dim: int = 64, depths: Tuple[int, ...] = (3, 4, 19, 5), num_heads: Tuple[int, ...] = (2, 4, 8, 16), mlp_ratio: float = 3.0, qkv_bias: bool = True, layer_scale: Optional[float] = None, drop_rate: float = 0., proj_drop_rate: float = 0., attn_drop_rate: float = 0., drop_path_rate: float = 0., weight_init='', act_layer: str = 'gelu', norm_layer: str = 'layernorm2d', norm_layer_cl: str = 'layernorm', norm_eps: float = 1e-5, ): super().__init__() act_layer = get_act_layer(act_layer) norm_layer = partial(get_norm_layer(norm_layer), eps=norm_eps) norm_layer_cl = partial(get_norm_layer(norm_layer_cl), eps=norm_eps) img_size = to_2tuple(img_size) feat_size = tuple(d // 4 for d in img_size) # stem reduction by 4 self.global_pool = global_pool self.num_classes = num_classes self.drop_rate = drop_rate num_stages = len(depths) self.num_features = self.head_hidden_size = int(embed_dim * 2 ** (num_stages - 1)) if window_size is not None: window_size = to_ntuple(num_stages)(window_size) else: assert window_ratio is not None window_size = tuple([(img_size[0] // r, img_size[1] // r) for r in to_ntuple(num_stages)(window_ratio)]) self.stem = Stem( in_chs=in_chans, out_chs=embed_dim, act_layer=act_layer, norm_layer=norm_layer ) dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] stages = [] for i in range(num_stages): last_stage = i == num_stages - 1 stage_scale = 2 ** max(i - 1, 0) stages.append(GlobalContextVitStage( dim=embed_dim * stage_scale, depth=depths[i], num_heads=num_heads[i], feat_size=(feat_size[0] // stage_scale, feat_size[1] // stage_scale), window_size=window_size[i], downsample=i != 0, stage_norm=last_stage, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, layer_scale=layer_scale, proj_drop=proj_drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], act_layer=act_layer, norm_layer=norm_layer, norm_layer_cl=norm_layer_cl, )) self.stages = nn.Sequential(*stages) # Classifier head self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate) if weight_init: named_apply(partial(self._init_weights, scheme=weight_init), self) def _init_weights(self, module, name, scheme='vit'): # note Conv2d left as default init if scheme == 'vit': if isinstance(module, nn.Linear): nn.init.xavier_uniform_(module.weight) if module.bias is not None: if 'mlp' in name: nn.init.normal_(module.bias, std=1e-6) else: nn.init.zeros_(module.bias) else: if isinstance(module, nn.Linear): nn.init.normal_(module.weight, std=.02) if module.bias is not None: nn.init.zeros_(module.bias) @torch.jit.ignore def no_weight_decay(self): return { k for k, _ in self.named_parameters() if any(n in k for n in ["relative_position_bias_table", "rel_pos.mlp"])} @torch.jit.ignore def group_matcher(self, coarse=False): matcher = dict( stem=r'^stem', # stem and embed blocks=r'^stages\.(\d+)' ) return matcher @torch.jit.ignore def set_grad_checkpointing(self, enable=True): for s in self.stages: s.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self) -> nn.Module: return self.head.fc def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): self.num_classes = num_classes if global_pool is None: global_pool = self.head.global_pool.pool_type self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate) def forward_features(self, x: torch.Tensor) -> torch.Tensor: x = self.stem(x) x = self.stages(x) return x def forward_head(self, x, pre_logits: bool = False): return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.forward_features(x) x = self.forward_head(x) return x def _create_gcvit(variant, pretrained=False, **kwargs): if kwargs.get('features_only', None): raise RuntimeError('features_only not implemented for Vision Transformer models.') model = build_model_with_cfg(GlobalContextVit, variant, pretrained, **kwargs) return model def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.conv1', 'classifier': 'head.fc', 'fixed_input_size': True, **kwargs } default_cfgs = generate_default_cfgs({ 'gcvit_xxtiny.in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-morevit/gcvit_xxtiny_224_nvidia-d1d86009.pth'), 'gcvit_xtiny.in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-morevit/gcvit_xtiny_224_nvidia-274b92b7.pth'), 'gcvit_tiny.in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-morevit/gcvit_tiny_224_nvidia-ac783954.pth'), 'gcvit_small.in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-morevit/gcvit_small_224_nvidia-4e98afa2.pth'), 'gcvit_base.in1k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-morevit/gcvit_base_224_nvidia-f009139b.pth'), }) @register_model def gcvit_xxtiny(pretrained=False, **kwargs) -> GlobalContextVit: model_kwargs = dict( depths=(2, 2, 6, 2), num_heads=(2, 4, 8, 16), **kwargs) return _create_gcvit('gcvit_xxtiny', pretrained=pretrained, **model_kwargs) @register_model def gcvit_xtiny(pretrained=False, **kwargs) -> GlobalContextVit: model_kwargs = dict( depths=(3, 4, 6, 5), num_heads=(2, 4, 8, 16), **kwargs) return _create_gcvit('gcvit_xtiny', pretrained=pretrained, **model_kwargs) @register_model def gcvit_tiny(pretrained=False, **kwargs) -> GlobalContextVit: model_kwargs = dict( depths=(3, 4, 19, 5), num_heads=(2, 4, 8, 16), **kwargs) return _create_gcvit('gcvit_tiny', pretrained=pretrained, **model_kwargs) @register_model def gcvit_small(pretrained=False, **kwargs) -> GlobalContextVit: model_kwargs = dict( depths=(3, 4, 19, 5), num_heads=(3, 6, 12, 24), embed_dim=96, mlp_ratio=2, layer_scale=1e-5, **kwargs) return _create_gcvit('gcvit_small', pretrained=pretrained, **model_kwargs) @register_model def gcvit_base(pretrained=False, **kwargs) -> GlobalContextVit: model_kwargs = dict( depths=(3, 4, 19, 5), num_heads=(4, 8, 16, 32), embed_dim=128, mlp_ratio=2, layer_scale=1e-5, **kwargs) return _create_gcvit('gcvit_base', pretrained=pretrained, **model_kwargs)
pytorch-image-models/timm/models/gcvit.py/0
{ "file_path": "pytorch-image-models/timm/models/gcvit.py", "repo_id": "pytorch-image-models", "token_count": 10814 }
""" MaxVit and CoAtNet Vision Transformer - CNN Hybrids in PyTorch This is a from-scratch implementation of both CoAtNet and MaxVit in PyTorch. 99% of the implementation was done from papers, however last minute some adjustments were made based on the (as yet unfinished?) public code release https://github.com/google-research/maxvit There are multiple sets of models defined for both architectures. Typically, names with a `_rw` suffix are my own original configs prior to referencing https://github.com/google-research/maxvit. These configs work well and appear to be a bit faster / lower resource than the paper. The models without extra prefix / suffix' (coatnet_0_224, maxvit_tiny_224, etc), are intended to match paper, BUT, without any official pretrained weights it's difficult to confirm a 100% match. Papers: MaxViT: Multi-Axis Vision Transformer - https://arxiv.org/abs/2204.01697 @article{tu2022maxvit, title={MaxViT: Multi-Axis Vision Transformer}, author={Tu, Zhengzhong and Talebi, Hossein and Zhang, Han and Yang, Feng and Milanfar, Peyman and Bovik, Alan and Li, Yinxiao}, journal={ECCV}, year={2022}, } CoAtNet: Marrying Convolution and Attention for All Data Sizes - https://arxiv.org/abs/2106.04803 @article{DBLP:journals/corr/abs-2106-04803, author = {Zihang Dai and Hanxiao Liu and Quoc V. Le and Mingxing Tan}, title = {CoAtNet: Marrying Convolution and Attention for All Data Sizes}, journal = {CoRR}, volume = {abs/2106.04803}, year = {2021} } Hacked together by / Copyright 2022, Ross Wightman """ import math from collections import OrderedDict from dataclasses import dataclass, replace, field from functools import partial from typing import Callable, Optional, Union, Tuple, List import torch from torch import nn from torch.jit import Final from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import Mlp, ConvMlp, DropPath, LayerNorm, ClassifierHead, NormMlpClassifierHead from timm.layers import create_attn, get_act_layer, get_norm_layer, get_norm_act_layer, create_conv2d, create_pool2d from timm.layers import trunc_normal_tf_, to_2tuple, extend_tuple, make_divisible, _assert from timm.layers import RelPosMlp, RelPosBias, RelPosBiasTf, use_fused_attn, resize_rel_pos_bias_table from ._builder import build_model_with_cfg from ._features import feature_take_indices from ._features_fx import register_notrace_function from ._manipulate import named_apply, checkpoint_seq from ._registry import generate_default_cfgs, register_model __all__ = ['MaxxVitCfg', 'MaxxVitConvCfg', 'MaxxVitTransformerCfg', 'MaxxVit'] @dataclass class MaxxVitTransformerCfg: dim_head: int = 32 head_first: bool = True # head ordering in qkv channel dim expand_ratio: float = 4.0 expand_first: bool = True shortcut_bias: bool = True attn_bias: bool = True attn_drop: float = 0. proj_drop: float = 0. pool_type: str = 'avg2' rel_pos_type: str = 'bias' rel_pos_dim: int = 512 # for relative position types w/ MLP partition_ratio: int = 32 window_size: Optional[Tuple[int, int]] = None grid_size: Optional[Tuple[int, int]] = None no_block_attn: bool = False # disable window block attention for maxvit (ie only grid) use_nchw_attn: bool = False # for MaxViT variants (not used for CoAt), keep tensors in NCHW order init_values: Optional[float] = None act_layer: str = 'gelu' norm_layer: str = 'layernorm2d' norm_layer_cl: str = 'layernorm' norm_eps: float = 1e-6 def __post_init__(self): if self.grid_size is not None: self.grid_size = to_2tuple(self.grid_size) if self.window_size is not None: self.window_size = to_2tuple(self.window_size) if self.grid_size is None: self.grid_size = self.window_size @dataclass class MaxxVitConvCfg: block_type: str = 'mbconv' expand_ratio: float = 4.0 expand_output: bool = True # calculate expansion channels from output (vs input chs) kernel_size: int = 3 group_size: int = 1 # 1 == depthwise pre_norm_act: bool = False # activation after pre-norm output_bias: bool = True # bias for shortcut + final 1x1 projection conv stride_mode: str = 'dw' # stride done via one of 'pool', '1x1', 'dw' pool_type: str = 'avg2' downsample_pool_type: str = 'avg2' padding: str = '' attn_early: bool = False # apply attn between conv2 and norm2, instead of after norm2 attn_layer: str = 'se' attn_act_layer: str = 'silu' attn_ratio: float = 0.25 init_values: Optional[float] = 1e-6 # for ConvNeXt block, ignored by MBConv act_layer: str = 'gelu' norm_layer: str = '' norm_layer_cl: str = '' norm_eps: Optional[float] = None def __post_init__(self): # mbconv vs convnext blocks have different defaults, set in post_init to avoid explicit config args assert self.block_type in ('mbconv', 'convnext') use_mbconv = self.block_type == 'mbconv' if not self.norm_layer: self.norm_layer = 'batchnorm2d' if use_mbconv else 'layernorm2d' if not self.norm_layer_cl and not use_mbconv: self.norm_layer_cl = 'layernorm' if self.norm_eps is None: self.norm_eps = 1e-5 if use_mbconv else 1e-6 self.downsample_pool_type = self.downsample_pool_type or self.pool_type @dataclass class MaxxVitCfg: embed_dim: Tuple[int, ...] = (96, 192, 384, 768) depths: Tuple[int, ...] = (2, 3, 5, 2) block_type: Tuple[Union[str, Tuple[str, ...]], ...] = ('C', 'C', 'T', 'T') stem_width: Union[int, Tuple[int, int]] = 64 stem_bias: bool = False conv_cfg: MaxxVitConvCfg = field(default_factory=MaxxVitConvCfg) transformer_cfg: MaxxVitTransformerCfg = field(default_factory=MaxxVitTransformerCfg) head_hidden_size: int = None weight_init: str = 'vit_eff' class Attention2d(nn.Module): fused_attn: Final[bool] """ multi-head attention for 2D NCHW tensors""" def __init__( self, dim: int, dim_out: Optional[int] = None, dim_head: int = 32, bias: bool = True, expand_first: bool = True, head_first: bool = True, rel_pos_cls: Callable = None, attn_drop: float = 0., proj_drop: float = 0. ): super().__init__() dim_out = dim_out or dim dim_attn = dim_out if expand_first else dim self.num_heads = dim_attn // dim_head self.dim_head = dim_head self.head_first = head_first self.scale = dim_head ** -0.5 self.fused_attn = use_fused_attn() self.qkv = nn.Conv2d(dim, dim_attn * 3, 1, bias=bias) self.rel_pos = rel_pos_cls(num_heads=self.num_heads) if rel_pos_cls else None self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Conv2d(dim_attn, dim_out, 1, bias=bias) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, shared_rel_pos: Optional[torch.Tensor] = None): B, C, H, W = x.shape if self.head_first: q, k, v = self.qkv(x).view(B, self.num_heads, self.dim_head * 3, -1).chunk(3, dim=2) else: q, k, v = self.qkv(x).reshape(B, 3, self.num_heads, self.dim_head, -1).unbind(1) if self.fused_attn: attn_bias = None if self.rel_pos is not None: attn_bias = self.rel_pos.get_bias() elif shared_rel_pos is not None: attn_bias = shared_rel_pos x = torch.nn.functional.scaled_dot_product_attention( q.transpose(-1, -2).contiguous(), k.transpose(-1, -2).contiguous(), v.transpose(-1, -2).contiguous(), attn_mask=attn_bias, dropout_p=self.attn_drop.p if self.training else 0., ).transpose(-1, -2).reshape(B, -1, H, W) else: q = q * self.scale attn = q.transpose(-2, -1) @ k if self.rel_pos is not None: attn = self.rel_pos(attn) elif shared_rel_pos is not None: attn = attn + shared_rel_pos attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (v @ attn.transpose(-2, -1)).view(B, -1, H, W) x = self.proj(x) x = self.proj_drop(x) return x class AttentionCl(nn.Module): """ Channels-last multi-head attention (B, ..., C) """ fused_attn: Final[bool] def __init__( self, dim: int, dim_out: Optional[int] = None, dim_head: int = 32, bias: bool = True, expand_first: bool = True, head_first: bool = True, rel_pos_cls: Callable = None, attn_drop: float = 0., proj_drop: float = 0. ): super().__init__() dim_out = dim_out or dim dim_attn = dim_out if expand_first and dim_out > dim else dim assert dim_attn % dim_head == 0, 'attn dim should be divisible by head_dim' self.num_heads = dim_attn // dim_head self.dim_head = dim_head self.head_first = head_first self.scale = dim_head ** -0.5 self.fused_attn = use_fused_attn() self.qkv = nn.Linear(dim, dim_attn * 3, bias=bias) self.rel_pos = rel_pos_cls(num_heads=self.num_heads) if rel_pos_cls else None self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim_attn, dim_out, bias=bias) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, shared_rel_pos: Optional[torch.Tensor] = None): B = x.shape[0] restore_shape = x.shape[:-1] if self.head_first: q, k, v = self.qkv(x).view(B, -1, self.num_heads, self.dim_head * 3).transpose(1, 2).chunk(3, dim=3) else: q, k, v = self.qkv(x).reshape(B, -1, 3, self.num_heads, self.dim_head).transpose(1, 3).unbind(2) if self.fused_attn: attn_bias = None if self.rel_pos is not None: attn_bias = self.rel_pos.get_bias() elif shared_rel_pos is not None: attn_bias = shared_rel_pos x = torch.nn.functional.scaled_dot_product_attention( q, k, v, attn_mask=attn_bias, dropout_p=self.attn_drop.p if self.training else 0., ) else: q = q * self.scale attn = q @ k.transpose(-2, -1) if self.rel_pos is not None: attn = self.rel_pos(attn, shared_rel_pos=shared_rel_pos) elif shared_rel_pos is not None: attn = attn + shared_rel_pos attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = attn @ v x = x.transpose(1, 2).reshape(restore_shape + (-1,)) x = self.proj(x) x = self.proj_drop(x) return x class LayerScale(nn.Module): def __init__(self, dim, init_values=1e-5, inplace=False): super().__init__() self.inplace = inplace self.gamma = nn.Parameter(init_values * torch.ones(dim)) def forward(self, x): gamma = self.gamma return x.mul_(gamma) if self.inplace else x * gamma class LayerScale2d(nn.Module): def __init__(self, dim, init_values=1e-5, inplace=False): super().__init__() self.inplace = inplace self.gamma = nn.Parameter(init_values * torch.ones(dim)) def forward(self, x): gamma = self.gamma.view(1, -1, 1, 1) return x.mul_(gamma) if self.inplace else x * gamma class Downsample2d(nn.Module): """ A downsample pooling module supporting several maxpool and avgpool modes * 'max' - MaxPool2d w/ kernel_size 3, stride 2, padding 1 * 'max2' - MaxPool2d w/ kernel_size = stride = 2 * 'avg' - AvgPool2d w/ kernel_size 3, stride 2, padding 1 * 'avg2' - AvgPool2d w/ kernel_size = stride = 2 """ def __init__( self, dim: int, dim_out: int, pool_type: str = 'avg2', padding: str = '', bias: bool = True, ): super().__init__() assert pool_type in ('max', 'max2', 'avg', 'avg2') if pool_type == 'max': self.pool = create_pool2d('max', kernel_size=3, stride=2, padding=padding or 1) elif pool_type == 'max2': self.pool = create_pool2d('max', 2, padding=padding or 0) # kernel_size == stride == 2 elif pool_type == 'avg': self.pool = create_pool2d( 'avg', kernel_size=3, stride=2, count_include_pad=False, padding=padding or 1) else: self.pool = create_pool2d('avg', 2, padding=padding or 0) if dim != dim_out: self.expand = nn.Conv2d(dim, dim_out, 1, bias=bias) else: self.expand = nn.Identity() def forward(self, x): x = self.pool(x) # spatial downsample x = self.expand(x) # expand chs return x def _init_transformer(module, name, scheme=''): if isinstance(module, (nn.Conv2d, nn.Linear)): if scheme == 'normal': nn.init.normal_(module.weight, std=.02) if module.bias is not None: nn.init.zeros_(module.bias) elif scheme == 'trunc_normal': trunc_normal_tf_(module.weight, std=.02) if module.bias is not None: nn.init.zeros_(module.bias) elif scheme == 'xavier_normal': nn.init.xavier_normal_(module.weight) if module.bias is not None: nn.init.zeros_(module.bias) else: # vit like nn.init.xavier_uniform_(module.weight) if module.bias is not None: if 'mlp' in name: nn.init.normal_(module.bias, std=1e-6) else: nn.init.zeros_(module.bias) class TransformerBlock2d(nn.Module): """ Transformer block with 2D downsampling '2D' NCHW tensor layout Some gains can be seen on GPU using a 1D / CL block, BUT w/ the need to switch back/forth to NCHW for spatial pooling, the benefit is minimal so ended up using just this variant for CoAt configs. This impl was faster on TPU w/ PT XLA than the 1D experiment. """ def __init__( self, dim: int, dim_out: int, stride: int = 1, rel_pos_cls: Callable = None, cfg: MaxxVitTransformerCfg = MaxxVitTransformerCfg(), drop_path: float = 0., ): super().__init__() norm_layer = partial(get_norm_layer(cfg.norm_layer), eps=cfg.norm_eps) act_layer = get_act_layer(cfg.act_layer) if stride == 2: self.shortcut = Downsample2d(dim, dim_out, pool_type=cfg.pool_type, bias=cfg.shortcut_bias) self.norm1 = nn.Sequential(OrderedDict([ ('norm', norm_layer(dim)), ('down', Downsample2d(dim, dim, pool_type=cfg.pool_type)), ])) else: assert dim == dim_out self.shortcut = nn.Identity() self.norm1 = norm_layer(dim) self.attn = Attention2d( dim, dim_out, dim_head=cfg.dim_head, expand_first=cfg.expand_first, bias=cfg.attn_bias, rel_pos_cls=rel_pos_cls, attn_drop=cfg.attn_drop, proj_drop=cfg.proj_drop ) self.ls1 = LayerScale2d(dim_out, init_values=cfg.init_values) if cfg.init_values else nn.Identity() self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim_out) self.mlp = ConvMlp( in_features=dim_out, hidden_features=int(dim_out * cfg.expand_ratio), act_layer=act_layer, drop=cfg.proj_drop) self.ls2 = LayerScale2d(dim_out, init_values=cfg.init_values) if cfg.init_values else nn.Identity() self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() def init_weights(self, scheme=''): named_apply(partial(_init_transformer, scheme=scheme), self) def forward(self, x, shared_rel_pos: Optional[torch.Tensor] = None): x = self.shortcut(x) + self.drop_path1(self.ls1(self.attn(self.norm1(x), shared_rel_pos=shared_rel_pos))) x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) return x def _init_conv(module, name, scheme=''): if isinstance(module, nn.Conv2d): if scheme == 'normal': nn.init.normal_(module.weight, std=.02) if module.bias is not None: nn.init.zeros_(module.bias) elif scheme == 'trunc_normal': trunc_normal_tf_(module.weight, std=.02) if module.bias is not None: nn.init.zeros_(module.bias) elif scheme == 'xavier_normal': nn.init.xavier_normal_(module.weight) if module.bias is not None: nn.init.zeros_(module.bias) else: # efficientnet like fan_out = module.kernel_size[0] * module.kernel_size[1] * module.out_channels fan_out //= module.groups nn.init.normal_(module.weight, 0, math.sqrt(2.0 / fan_out)) if module.bias is not None: nn.init.zeros_(module.bias) def num_groups(group_size, channels): if not group_size: # 0 or None return 1 # normal conv with 1 group else: # NOTE group_size == 1 -> depthwise conv assert channels % group_size == 0 return channels // group_size class MbConvBlock(nn.Module): """ Pre-Norm Conv Block - 1x1 - kxk - 1x1, w/ inverted bottleneck (expand) """ def __init__( self, in_chs: int, out_chs: int, stride: int = 1, dilation: Tuple[int, int] = (1, 1), cfg: MaxxVitConvCfg = MaxxVitConvCfg(), drop_path: float = 0. ): super(MbConvBlock, self).__init__() norm_act_layer = partial(get_norm_act_layer(cfg.norm_layer, cfg.act_layer), eps=cfg.norm_eps) mid_chs = make_divisible((out_chs if cfg.expand_output else in_chs) * cfg.expand_ratio) groups = num_groups(cfg.group_size, mid_chs) if stride == 2: self.shortcut = Downsample2d( in_chs, out_chs, pool_type=cfg.pool_type, bias=cfg.output_bias, padding=cfg.padding) else: self.shortcut = nn.Identity() assert cfg.stride_mode in ('pool', '1x1', 'dw') stride_pool, stride_1, stride_2 = 1, 1, 1 if cfg.stride_mode == 'pool': # NOTE this is not described in paper, experiment to find faster option that doesn't stride in 1x1 stride_pool, dilation_2 = stride, dilation[1] # FIXME handle dilation of avg pool elif cfg.stride_mode == '1x1': # NOTE I don't like this option described in paper, 1x1 w/ stride throws info away stride_1, dilation_2 = stride, dilation[1] else: stride_2, dilation_2 = stride, dilation[0] self.pre_norm = norm_act_layer(in_chs, apply_act=cfg.pre_norm_act) if stride_pool > 1: self.down = Downsample2d(in_chs, in_chs, pool_type=cfg.downsample_pool_type, padding=cfg.padding) else: self.down = nn.Identity() self.conv1_1x1 = create_conv2d(in_chs, mid_chs, 1, stride=stride_1) self.norm1 = norm_act_layer(mid_chs) self.conv2_kxk = create_conv2d( mid_chs, mid_chs, cfg.kernel_size, stride=stride_2, dilation=dilation_2, groups=groups, padding=cfg.padding) attn_kwargs = {} if isinstance(cfg.attn_layer, str): if cfg.attn_layer == 'se' or cfg.attn_layer == 'eca': attn_kwargs['act_layer'] = cfg.attn_act_layer attn_kwargs['rd_channels'] = int(cfg.attn_ratio * (out_chs if cfg.expand_output else mid_chs)) # two different orderings for SE and norm2 (due to some weights and trials using SE before norm2) if cfg.attn_early: self.se_early = create_attn(cfg.attn_layer, mid_chs, **attn_kwargs) self.norm2 = norm_act_layer(mid_chs) self.se = None else: self.se_early = None self.norm2 = norm_act_layer(mid_chs) self.se = create_attn(cfg.attn_layer, mid_chs, **attn_kwargs) self.conv3_1x1 = create_conv2d(mid_chs, out_chs, 1, bias=cfg.output_bias) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() def init_weights(self, scheme=''): named_apply(partial(_init_conv, scheme=scheme), self) def forward(self, x): shortcut = self.shortcut(x) x = self.pre_norm(x) x = self.down(x) # 1x1 expansion conv & norm-act x = self.conv1_1x1(x) x = self.norm1(x) # depthwise / grouped 3x3 conv w/ SE (or other) channel attention & norm-act x = self.conv2_kxk(x) if self.se_early is not None: x = self.se_early(x) x = self.norm2(x) if self.se is not None: x = self.se(x) # 1x1 linear projection to output width x = self.conv3_1x1(x) x = self.drop_path(x) + shortcut return x class ConvNeXtBlock(nn.Module): """ ConvNeXt Block """ def __init__( self, in_chs: int, out_chs: Optional[int] = None, kernel_size: int = 7, stride: int = 1, dilation: Tuple[int, int] = (1, 1), cfg: MaxxVitConvCfg = MaxxVitConvCfg(), conv_mlp: bool = True, drop_path: float = 0. ): super().__init__() out_chs = out_chs or in_chs act_layer = get_act_layer(cfg.act_layer) if conv_mlp: norm_layer = partial(get_norm_layer(cfg.norm_layer), eps=cfg.norm_eps) mlp_layer = ConvMlp else: assert 'layernorm' in cfg.norm_layer norm_layer = LayerNorm mlp_layer = Mlp self.use_conv_mlp = conv_mlp if stride == 2: self.shortcut = Downsample2d(in_chs, out_chs) elif in_chs != out_chs: self.shortcut = nn.Conv2d(in_chs, out_chs, kernel_size=1, bias=cfg.output_bias) else: self.shortcut = nn.Identity() assert cfg.stride_mode in ('pool', 'dw') stride_pool, stride_dw = 1, 1 # FIXME handle dilation? if cfg.stride_mode == 'pool': stride_pool = stride else: stride_dw = stride if stride_pool == 2: self.down = Downsample2d(in_chs, in_chs, pool_type=cfg.downsample_pool_type) else: self.down = nn.Identity() self.conv_dw = create_conv2d( in_chs, out_chs, kernel_size=kernel_size, stride=stride_dw, dilation=dilation[1], depthwise=True, bias=cfg.output_bias) self.norm = norm_layer(out_chs) self.mlp = mlp_layer(out_chs, int(cfg.expand_ratio * out_chs), bias=cfg.output_bias, act_layer=act_layer) if conv_mlp: self.ls = LayerScale2d(out_chs, cfg.init_values) if cfg.init_values else nn.Identity() else: self.ls = LayerScale(out_chs, cfg.init_values) if cfg.init_values else nn.Identity() self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() def forward(self, x): shortcut = self.shortcut(x) x = self.down(x) x = self.conv_dw(x) if self.use_conv_mlp: x = self.norm(x) x = self.mlp(x) x = self.ls(x) else: x = x.permute(0, 2, 3, 1) x = self.norm(x) x = self.mlp(x) x = self.ls(x) x = x.permute(0, 3, 1, 2) x = self.drop_path(x) + shortcut return x def window_partition(x, window_size: List[int]): B, H, W, C = x.shape _assert(H % window_size[0] == 0, f'height ({H}) must be divisible by window ({window_size[0]})') _assert(W % window_size[1] == 0, f'width ({W}) must be divisible by window ({window_size[1]})') x = x.view(B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C) windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size[0], window_size[1], C) return windows @register_notrace_function # reason: int argument is a Proxy def window_reverse(windows, window_size: List[int], img_size: List[int]): H, W = img_size C = windows.shape[-1] x = windows.view(-1, H // window_size[0], W // window_size[1], window_size[0], window_size[1], C) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, H, W, C) return x def grid_partition(x, grid_size: List[int]): B, H, W, C = x.shape _assert(H % grid_size[0] == 0, f'height {H} must be divisible by grid {grid_size[0]}') _assert(W % grid_size[1] == 0, f'width {W} must be divisible by grid {grid_size[1]}') x = x.view(B, grid_size[0], H // grid_size[0], grid_size[1], W // grid_size[1], C) windows = x.permute(0, 2, 4, 1, 3, 5).contiguous().view(-1, grid_size[0], grid_size[1], C) return windows @register_notrace_function # reason: int argument is a Proxy def grid_reverse(windows, grid_size: List[int], img_size: List[int]): H, W = img_size C = windows.shape[-1] x = windows.view(-1, H // grid_size[0], W // grid_size[1], grid_size[0], grid_size[1], C) x = x.permute(0, 3, 1, 4, 2, 5).contiguous().view(-1, H, W, C) return x def get_rel_pos_cls(cfg: MaxxVitTransformerCfg, window_size): rel_pos_cls = None if cfg.rel_pos_type == 'mlp': rel_pos_cls = partial(RelPosMlp, window_size=window_size, hidden_dim=cfg.rel_pos_dim) elif cfg.rel_pos_type == 'bias': rel_pos_cls = partial(RelPosBias, window_size=window_size) elif cfg.rel_pos_type == 'bias_tf': rel_pos_cls = partial(RelPosBiasTf, window_size=window_size) return rel_pos_cls class PartitionAttentionCl(nn.Module): """ Grid or Block partition + Attn + FFN. NxC 'channels last' tensor layout. """ def __init__( self, dim: int, partition_type: str = 'block', cfg: MaxxVitTransformerCfg = MaxxVitTransformerCfg(), drop_path: float = 0., ): super().__init__() norm_layer = partial(get_norm_layer(cfg.norm_layer_cl), eps=cfg.norm_eps) # NOTE this block is channels-last act_layer = get_act_layer(cfg.act_layer) self.partition_block = partition_type == 'block' self.partition_size = to_2tuple(cfg.window_size if self.partition_block else cfg.grid_size) rel_pos_cls = get_rel_pos_cls(cfg, self.partition_size) self.norm1 = norm_layer(dim) self.attn = AttentionCl( dim, dim, dim_head=cfg.dim_head, bias=cfg.attn_bias, head_first=cfg.head_first, rel_pos_cls=rel_pos_cls, attn_drop=cfg.attn_drop, proj_drop=cfg.proj_drop, ) self.ls1 = LayerScale(dim, init_values=cfg.init_values) if cfg.init_values else nn.Identity() self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) self.mlp = Mlp( in_features=dim, hidden_features=int(dim * cfg.expand_ratio), act_layer=act_layer, drop=cfg.proj_drop) self.ls2 = LayerScale(dim, init_values=cfg.init_values) if cfg.init_values else nn.Identity() self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() def _partition_attn(self, x): img_size = x.shape[1:3] if self.partition_block: partitioned = window_partition(x, self.partition_size) else: partitioned = grid_partition(x, self.partition_size) partitioned = self.attn(partitioned) if self.partition_block: x = window_reverse(partitioned, self.partition_size, img_size) else: x = grid_reverse(partitioned, self.partition_size, img_size) return x def forward(self, x): x = x + self.drop_path1(self.ls1(self._partition_attn(self.norm1(x)))) x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) return x class ParallelPartitionAttention(nn.Module): """ Experimental. Grid and Block partition + single FFN NxC tensor layout. """ def __init__( self, dim: int, cfg: MaxxVitTransformerCfg = MaxxVitTransformerCfg(), drop_path: float = 0., ): super().__init__() assert dim % 2 == 0 norm_layer = partial(get_norm_layer(cfg.norm_layer_cl), eps=cfg.norm_eps) # NOTE this block is channels-last act_layer = get_act_layer(cfg.act_layer) assert cfg.window_size == cfg.grid_size self.partition_size = to_2tuple(cfg.window_size) rel_pos_cls = get_rel_pos_cls(cfg, self.partition_size) self.norm1 = norm_layer(dim) self.attn_block = AttentionCl( dim, dim // 2, dim_head=cfg.dim_head, bias=cfg.attn_bias, head_first=cfg.head_first, rel_pos_cls=rel_pos_cls, attn_drop=cfg.attn_drop, proj_drop=cfg.proj_drop, ) self.attn_grid = AttentionCl( dim, dim // 2, dim_head=cfg.dim_head, bias=cfg.attn_bias, head_first=cfg.head_first, rel_pos_cls=rel_pos_cls, attn_drop=cfg.attn_drop, proj_drop=cfg.proj_drop, ) self.ls1 = LayerScale(dim, init_values=cfg.init_values) if cfg.init_values else nn.Identity() self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) self.mlp = Mlp( in_features=dim, hidden_features=int(dim * cfg.expand_ratio), out_features=dim, act_layer=act_layer, drop=cfg.proj_drop) self.ls2 = LayerScale(dim, init_values=cfg.init_values) if cfg.init_values else nn.Identity() self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() def _partition_attn(self, x): img_size = x.shape[1:3] partitioned_block = window_partition(x, self.partition_size) partitioned_block = self.attn_block(partitioned_block) x_window = window_reverse(partitioned_block, self.partition_size, img_size) partitioned_grid = grid_partition(x, self.partition_size) partitioned_grid = self.attn_grid(partitioned_grid) x_grid = grid_reverse(partitioned_grid, self.partition_size, img_size) return torch.cat([x_window, x_grid], dim=-1) def forward(self, x): x = x + self.drop_path1(self.ls1(self._partition_attn(self.norm1(x)))) x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) return x def window_partition_nchw(x, window_size: List[int]): B, C, H, W = x.shape _assert(H % window_size[0] == 0, f'height ({H}) must be divisible by window ({window_size[0]})') _assert(W % window_size[1] == 0, f'width ({W}) must be divisible by window ({window_size[1]})') x = x.view(B, C, H // window_size[0], window_size[0], W // window_size[1], window_size[1]) windows = x.permute(0, 2, 4, 1, 3, 5).contiguous().view(-1, C, window_size[0], window_size[1]) return windows @register_notrace_function # reason: int argument is a Proxy def window_reverse_nchw(windows, window_size: List[int], img_size: List[int]): H, W = img_size C = windows.shape[1] x = windows.view(-1, H // window_size[0], W // window_size[1], C, window_size[0], window_size[1]) x = x.permute(0, 3, 1, 4, 2, 5).contiguous().view(-1, C, H, W) return x def grid_partition_nchw(x, grid_size: List[int]): B, C, H, W = x.shape _assert(H % grid_size[0] == 0, f'height {H} must be divisible by grid {grid_size[0]}') _assert(W % grid_size[1] == 0, f'width {W} must be divisible by grid {grid_size[1]}') x = x.view(B, C, grid_size[0], H // grid_size[0], grid_size[1], W // grid_size[1]) windows = x.permute(0, 3, 5, 1, 2, 4).contiguous().view(-1, C, grid_size[0], grid_size[1]) return windows @register_notrace_function # reason: int argument is a Proxy def grid_reverse_nchw(windows, grid_size: List[int], img_size: List[int]): H, W = img_size C = windows.shape[1] x = windows.view(-1, H // grid_size[0], W // grid_size[1], C, grid_size[0], grid_size[1]) x = x.permute(0, 3, 4, 1, 5, 2).contiguous().view(-1, C, H, W) return x class PartitionAttention2d(nn.Module): """ Grid or Block partition + Attn + FFN '2D' NCHW tensor layout. """ def __init__( self, dim: int, partition_type: str = 'block', cfg: MaxxVitTransformerCfg = MaxxVitTransformerCfg(), drop_path: float = 0., ): super().__init__() norm_layer = partial(get_norm_layer(cfg.norm_layer), eps=cfg.norm_eps) # NOTE this block is channels-last act_layer = get_act_layer(cfg.act_layer) self.partition_block = partition_type == 'block' self.partition_size = to_2tuple(cfg.window_size if self.partition_block else cfg.grid_size) rel_pos_cls = get_rel_pos_cls(cfg, self.partition_size) self.norm1 = norm_layer(dim) self.attn = Attention2d( dim, dim, dim_head=cfg.dim_head, bias=cfg.attn_bias, head_first=cfg.head_first, rel_pos_cls=rel_pos_cls, attn_drop=cfg.attn_drop, proj_drop=cfg.proj_drop, ) self.ls1 = LayerScale2d(dim, init_values=cfg.init_values) if cfg.init_values else nn.Identity() self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) self.mlp = ConvMlp( in_features=dim, hidden_features=int(dim * cfg.expand_ratio), act_layer=act_layer, drop=cfg.proj_drop) self.ls2 = LayerScale2d(dim, init_values=cfg.init_values) if cfg.init_values else nn.Identity() self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity() def _partition_attn(self, x): img_size = x.shape[-2:] if self.partition_block: partitioned = window_partition_nchw(x, self.partition_size) else: partitioned = grid_partition_nchw(x, self.partition_size) partitioned = self.attn(partitioned) if self.partition_block: x = window_reverse_nchw(partitioned, self.partition_size, img_size) else: x = grid_reverse_nchw(partitioned, self.partition_size, img_size) return x def forward(self, x): x = x + self.drop_path1(self.ls1(self._partition_attn(self.norm1(x)))) x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x)))) return x class MaxxVitBlock(nn.Module): """ MaxVit conv, window partition + FFN , grid partition + FFN """ def __init__( self, dim: int, dim_out: int, stride: int = 1, conv_cfg: MaxxVitConvCfg = MaxxVitConvCfg(), transformer_cfg: MaxxVitTransformerCfg = MaxxVitTransformerCfg(), drop_path: float = 0., ): super().__init__() self.nchw_attn = transformer_cfg.use_nchw_attn conv_cls = ConvNeXtBlock if conv_cfg.block_type == 'convnext' else MbConvBlock self.conv = conv_cls(dim, dim_out, stride=stride, cfg=conv_cfg, drop_path=drop_path) attn_kwargs = dict(dim=dim_out, cfg=transformer_cfg, drop_path=drop_path) partition_layer = PartitionAttention2d if self.nchw_attn else PartitionAttentionCl self.attn_block = None if transformer_cfg.no_block_attn else partition_layer(**attn_kwargs) self.attn_grid = partition_layer(partition_type='grid', **attn_kwargs) def init_weights(self, scheme=''): if self.attn_block is not None: named_apply(partial(_init_transformer, scheme=scheme), self.attn_block) named_apply(partial(_init_transformer, scheme=scheme), self.attn_grid) named_apply(partial(_init_conv, scheme=scheme), self.conv) def forward(self, x): # NCHW format x = self.conv(x) if not self.nchw_attn: x = x.permute(0, 2, 3, 1) # to NHWC (channels-last) if self.attn_block is not None: x = self.attn_block(x) x = self.attn_grid(x) if not self.nchw_attn: x = x.permute(0, 3, 1, 2) # back to NCHW return x class ParallelMaxxVitBlock(nn.Module): """ MaxVit block with parallel cat(window + grid), one FF Experimental timm block. """ def __init__( self, dim, dim_out, stride=1, num_conv=2, conv_cfg: MaxxVitConvCfg = MaxxVitConvCfg(), transformer_cfg: MaxxVitTransformerCfg = MaxxVitTransformerCfg(), drop_path=0., ): super().__init__() conv_cls = ConvNeXtBlock if conv_cfg.block_type == 'convnext' else MbConvBlock if num_conv > 1: convs = [conv_cls(dim, dim_out, stride=stride, cfg=conv_cfg, drop_path=drop_path)] convs += [conv_cls(dim_out, dim_out, cfg=conv_cfg, drop_path=drop_path)] * (num_conv - 1) self.conv = nn.Sequential(*convs) else: self.conv = conv_cls(dim, dim_out, stride=stride, cfg=conv_cfg, drop_path=drop_path) self.attn = ParallelPartitionAttention(dim=dim_out, cfg=transformer_cfg, drop_path=drop_path) def init_weights(self, scheme=''): named_apply(partial(_init_transformer, scheme=scheme), self.attn) named_apply(partial(_init_conv, scheme=scheme), self.conv) def forward(self, x): x = self.conv(x) x = x.permute(0, 2, 3, 1) x = self.attn(x) x = x.permute(0, 3, 1, 2) return x class MaxxVitStage(nn.Module): def __init__( self, in_chs: int, out_chs: int, stride: int = 2, depth: int = 4, feat_size: Tuple[int, int] = (14, 14), block_types: Union[str, Tuple[str]] = 'C', transformer_cfg: MaxxVitTransformerCfg = MaxxVitTransformerCfg(), conv_cfg: MaxxVitConvCfg = MaxxVitConvCfg(), drop_path: Union[float, List[float]] = 0., ): super().__init__() self.grad_checkpointing = False block_types = extend_tuple(block_types, depth) blocks = [] for i, t in enumerate(block_types): block_stride = stride if i == 0 else 1 assert t in ('C', 'T', 'M', 'PM') if t == 'C': conv_cls = ConvNeXtBlock if conv_cfg.block_type == 'convnext' else MbConvBlock blocks += [conv_cls( in_chs, out_chs, stride=block_stride, cfg=conv_cfg, drop_path=drop_path[i], )] elif t == 'T': rel_pos_cls = get_rel_pos_cls(transformer_cfg, feat_size) blocks += [TransformerBlock2d( in_chs, out_chs, stride=block_stride, rel_pos_cls=rel_pos_cls, cfg=transformer_cfg, drop_path=drop_path[i], )] elif t == 'M': blocks += [MaxxVitBlock( in_chs, out_chs, stride=block_stride, conv_cfg=conv_cfg, transformer_cfg=transformer_cfg, drop_path=drop_path[i], )] elif t == 'PM': blocks += [ParallelMaxxVitBlock( in_chs, out_chs, stride=block_stride, conv_cfg=conv_cfg, transformer_cfg=transformer_cfg, drop_path=drop_path[i], )] in_chs = out_chs self.blocks = nn.Sequential(*blocks) def forward(self, x): if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint_seq(self.blocks, x) else: x = self.blocks(x) return x class Stem(nn.Module): def __init__( self, in_chs: int, out_chs: int, kernel_size: int = 3, padding: str = '', bias: bool = False, act_layer: str = 'gelu', norm_layer: str = 'batchnorm2d', norm_eps: float = 1e-5, ): super().__init__() if not isinstance(out_chs, (list, tuple)): out_chs = to_2tuple(out_chs) norm_act_layer = partial(get_norm_act_layer(norm_layer, act_layer), eps=norm_eps) self.out_chs = out_chs[-1] self.stride = 2 self.conv1 = create_conv2d(in_chs, out_chs[0], kernel_size, stride=2, padding=padding, bias=bias) self.norm1 = norm_act_layer(out_chs[0]) self.conv2 = create_conv2d(out_chs[0], out_chs[1], kernel_size, stride=1, padding=padding, bias=bias) def init_weights(self, scheme=''): named_apply(partial(_init_conv, scheme=scheme), self) def forward(self, x): x = self.conv1(x) x = self.norm1(x) x = self.conv2(x) return x def cfg_window_size(cfg: MaxxVitTransformerCfg, img_size: Tuple[int, int]): if cfg.window_size is not None: assert cfg.grid_size return cfg partition_size = img_size[0] // cfg.partition_ratio, img_size[1] // cfg.partition_ratio cfg = replace(cfg, window_size=partition_size, grid_size=partition_size) return cfg def _overlay_kwargs(cfg: MaxxVitCfg, **kwargs): transformer_kwargs = {} conv_kwargs = {} base_kwargs = {} for k, v in kwargs.items(): if k.startswith('transformer_'): transformer_kwargs[k.replace('transformer_', '')] = v elif k.startswith('conv_'): conv_kwargs[k.replace('conv_', '')] = v else: base_kwargs[k] = v cfg = replace( cfg, transformer_cfg=replace(cfg.transformer_cfg, **transformer_kwargs), conv_cfg=replace(cfg.conv_cfg, **conv_kwargs), **base_kwargs ) return cfg class MaxxVit(nn.Module): """ CoaTNet + MaxVit base model. Highly configurable for different block compositions, tensor layouts, pooling types. """ def __init__( self, cfg: MaxxVitCfg, img_size: Union[int, Tuple[int, int]] = 224, in_chans: int = 3, num_classes: int = 1000, global_pool: str = 'avg', drop_rate: float = 0., drop_path_rate: float = 0., **kwargs, ): super().__init__() img_size = to_2tuple(img_size) if kwargs: cfg = _overlay_kwargs(cfg, **kwargs) transformer_cfg = cfg_window_size(cfg.transformer_cfg, img_size) self.num_classes = num_classes self.global_pool = global_pool self.num_features = self.embed_dim = cfg.embed_dim[-1] self.drop_rate = drop_rate self.grad_checkpointing = False self.feature_info = [] self.stem = Stem( in_chs=in_chans, out_chs=cfg.stem_width, padding=cfg.conv_cfg.padding, bias=cfg.stem_bias, act_layer=cfg.conv_cfg.act_layer, norm_layer=cfg.conv_cfg.norm_layer, norm_eps=cfg.conv_cfg.norm_eps, ) stride = self.stem.stride self.feature_info += [dict(num_chs=self.stem.out_chs, reduction=2, module='stem')] feat_size = tuple([i // s for i, s in zip(img_size, to_2tuple(stride))]) num_stages = len(cfg.embed_dim) assert len(cfg.depths) == num_stages dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(cfg.depths)).split(cfg.depths)] in_chs = self.stem.out_chs stages = [] for i in range(num_stages): stage_stride = 2 out_chs = cfg.embed_dim[i] feat_size = tuple([(r - 1) // stage_stride + 1 for r in feat_size]) stages += [MaxxVitStage( in_chs, out_chs, depth=cfg.depths[i], block_types=cfg.block_type[i], conv_cfg=cfg.conv_cfg, transformer_cfg=transformer_cfg, feat_size=feat_size, drop_path=dpr[i], )] stride *= stage_stride in_chs = out_chs self.feature_info += [dict(num_chs=out_chs, reduction=stride, module=f'stages.{i}')] self.stages = nn.Sequential(*stages) final_norm_layer = partial(get_norm_layer(cfg.transformer_cfg.norm_layer), eps=cfg.transformer_cfg.norm_eps) if cfg.head_hidden_size: self.norm = nn.Identity() self.head_hidden_size = cfg.head_hidden_size self.head = NormMlpClassifierHead( self.num_features, num_classes, hidden_size=self.head_hidden_size, pool_type=global_pool, drop_rate=drop_rate, norm_layer=final_norm_layer, ) else: # standard classifier head w/ norm, pooling, fc classifier self.head_hidden_size = self.num_features self.norm = final_norm_layer(self.num_features) self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate) # Weight init (default PyTorch init works well for AdamW if scheme not set) assert cfg.weight_init in ('', 'normal', 'trunc_normal', 'xavier_normal', 'vit_eff') if cfg.weight_init: named_apply(partial(self._init_weights, scheme=cfg.weight_init), self) def _init_weights(self, module, name, scheme=''): if hasattr(module, 'init_weights'): try: module.init_weights(scheme=scheme) except TypeError: module.init_weights() @torch.jit.ignore def no_weight_decay(self): return { k for k, _ in self.named_parameters() if any(n in k for n in ["relative_position_bias_table", "rel_pos.mlp"])} @torch.jit.ignore def group_matcher(self, coarse=False): matcher = dict( stem=r'^stem', # stem and embed blocks=[(r'^stages\.(\d+)', None), (r'^norm', (99999,))] ) return matcher @torch.jit.ignore def set_grad_checkpointing(self, enable=True): for s in self.stages: s.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self) -> nn.Module: return self.head.fc def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): self.num_classes = num_classes self.head.reset(num_classes, global_pool) def forward_intermediates( self, x: torch.Tensor, indices: Optional[Union[int, List[int]]] = None, norm: bool = False, stop_early: bool = False, output_fmt: str = 'NCHW', intermediates_only: bool = False, ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: """ Forward features that returns intermediates. Args: x: Input image tensor indices: Take last n blocks if int, all if None, select matching indices if sequence norm: Apply norm layer to compatible intermediates stop_early: Stop iterating over blocks when last desired intermediate hit output_fmt: Shape of intermediate feature outputs intermediates_only: Only return intermediate features Returns: """ assert output_fmt in ('NCHW',), 'Output shape must be NCHW.' intermediates = [] take_indices, max_index = feature_take_indices(len(self.stages) + 1, indices) # forward pass feat_idx = 0 # stem is index 0 x = self.stem(x) if feat_idx in take_indices: intermediates.append(x) last_idx = len(self.stages) if torch.jit.is_scripting() or not stop_early: # can't slice blocks in torchscript stages = self.stages else: stages = self.stages[:max_index] for stage in stages: feat_idx += 1 x = stage(x) if feat_idx in take_indices: if norm and feat_idx == last_idx: x_inter = self.norm(x) # applying final norm to last intermediate else: x_inter = x intermediates.append(x_inter) if intermediates_only: return intermediates x = self.norm(x) return x, intermediates def prune_intermediate_layers( self, indices: Union[int, List[int]] = 1, prune_norm: bool = False, prune_head: bool = True, ): """ Prune layers not required for specified intermediates. """ take_indices, max_index = feature_take_indices(len(self.stages) + 1, indices) self.stages = self.stages[:max_index] # truncate blocks w/ stem as idx 0 if prune_norm: self.norm = nn.Identity() if prune_head: self.head = self.reset_classifier(0, '') return take_indices def forward_features(self, x): x = self.stem(x) x = self.stages(x) x = self.norm(x) return x def forward_head(self, x, pre_logits: bool = False): return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x def _rw_coat_cfg( stride_mode='pool', pool_type='avg2', conv_output_bias=False, conv_attn_early=False, conv_attn_act_layer='relu', conv_norm_layer='', transformer_shortcut_bias=True, transformer_norm_layer='layernorm2d', transformer_norm_layer_cl='layernorm', init_values=None, rel_pos_type='bias', rel_pos_dim=512, ): # 'RW' timm variant models were created and trained before seeing https://github.com/google-research/maxvit # Common differences for initial timm models: # - pre-norm layer in MZBConv included an activation after norm # - mbconv expansion calculated from input instead of output chs # - mbconv shortcut and final 1x1 conv did not have a bias # - SE act layer was relu, not silu # - mbconv uses silu in timm, not gelu # - expansion in attention block done via output proj, not input proj # Variable differences (evolved over training initial models): # - avg pool with kernel_size=2 favoured downsampling (instead of maxpool for coat) # - SE attention was between conv2 and norm/act # - default to avg pool for mbconv downsample instead of 1x1 or dw conv # - transformer block shortcut has no bias return dict( conv_cfg=MaxxVitConvCfg( stride_mode=stride_mode, pool_type=pool_type, pre_norm_act=True, expand_output=False, output_bias=conv_output_bias, attn_early=conv_attn_early, attn_act_layer=conv_attn_act_layer, act_layer='silu', norm_layer=conv_norm_layer, ), transformer_cfg=MaxxVitTransformerCfg( expand_first=False, shortcut_bias=transformer_shortcut_bias, pool_type=pool_type, init_values=init_values, norm_layer=transformer_norm_layer, norm_layer_cl=transformer_norm_layer_cl, rel_pos_type=rel_pos_type, rel_pos_dim=rel_pos_dim, ), ) def _rw_max_cfg( stride_mode='dw', pool_type='avg2', conv_output_bias=False, conv_attn_ratio=1 / 16, conv_norm_layer='', transformer_norm_layer='layernorm2d', transformer_norm_layer_cl='layernorm', window_size=None, dim_head=32, init_values=None, rel_pos_type='bias', rel_pos_dim=512, ): # 'RW' timm variant models were created and trained before seeing https://github.com/google-research/maxvit # Differences of initial timm models: # - mbconv expansion calculated from input instead of output chs # - mbconv shortcut and final 1x1 conv did not have a bias # - mbconv uses silu in timm, not gelu # - expansion in attention block done via output proj, not input proj return dict( conv_cfg=MaxxVitConvCfg( stride_mode=stride_mode, pool_type=pool_type, expand_output=False, output_bias=conv_output_bias, attn_ratio=conv_attn_ratio, act_layer='silu', norm_layer=conv_norm_layer, ), transformer_cfg=MaxxVitTransformerCfg( expand_first=False, pool_type=pool_type, dim_head=dim_head, window_size=window_size, init_values=init_values, norm_layer=transformer_norm_layer, norm_layer_cl=transformer_norm_layer_cl, rel_pos_type=rel_pos_type, rel_pos_dim=rel_pos_dim, ), ) def _next_cfg( stride_mode='dw', pool_type='avg2', conv_norm_layer='layernorm2d', conv_norm_layer_cl='layernorm', transformer_norm_layer='layernorm2d', transformer_norm_layer_cl='layernorm', window_size=None, no_block_attn=False, init_values=1e-6, rel_pos_type='mlp', # MLP by default for maxxvit rel_pos_dim=512, ): # For experimental models with convnext instead of mbconv init_values = to_2tuple(init_values) return dict( conv_cfg=MaxxVitConvCfg( block_type='convnext', stride_mode=stride_mode, pool_type=pool_type, expand_output=False, init_values=init_values[0], norm_layer=conv_norm_layer, norm_layer_cl=conv_norm_layer_cl, ), transformer_cfg=MaxxVitTransformerCfg( expand_first=False, pool_type=pool_type, window_size=window_size, no_block_attn=no_block_attn, # enabled for MaxxViT-V2 init_values=init_values[1], norm_layer=transformer_norm_layer, norm_layer_cl=transformer_norm_layer_cl, rel_pos_type=rel_pos_type, rel_pos_dim=rel_pos_dim, ), ) def _tf_cfg(): return dict( conv_cfg=MaxxVitConvCfg( norm_eps=1e-3, act_layer='gelu_tanh', padding='same', ), transformer_cfg=MaxxVitTransformerCfg( norm_eps=1e-5, act_layer='gelu_tanh', head_first=False, # heads are interleaved (q_nh, q_hdim, k_nh, q_hdim, ....) rel_pos_type='bias_tf', ), ) model_cfgs = dict( # timm specific CoAtNet configs coatnet_pico_rw=MaxxVitCfg( embed_dim=(64, 128, 256, 512), depths=(2, 3, 5, 2), stem_width=(32, 64), **_rw_max_cfg( # using newer max defaults here conv_output_bias=True, conv_attn_ratio=0.25, ), ), coatnet_nano_rw=MaxxVitCfg( embed_dim=(64, 128, 256, 512), depths=(3, 4, 6, 3), stem_width=(32, 64), **_rw_max_cfg( # using newer max defaults here stride_mode='pool', conv_output_bias=True, conv_attn_ratio=0.25, ), ), coatnet_0_rw=MaxxVitCfg( embed_dim=(96, 192, 384, 768), depths=(2, 3, 7, 2), # deeper than paper '0' model stem_width=(32, 64), **_rw_coat_cfg( conv_attn_early=True, transformer_shortcut_bias=False, ), ), coatnet_1_rw=MaxxVitCfg( embed_dim=(96, 192, 384, 768), depths=(2, 6, 14, 2), stem_width=(32, 64), **_rw_coat_cfg( stride_mode='dw', conv_attn_early=True, transformer_shortcut_bias=False, ) ), coatnet_2_rw=MaxxVitCfg( embed_dim=(128, 256, 512, 1024), depths=(2, 6, 14, 2), stem_width=(64, 128), **_rw_coat_cfg( stride_mode='dw', conv_attn_act_layer='silu', #init_values=1e-6, ), ), coatnet_3_rw=MaxxVitCfg( embed_dim=(192, 384, 768, 1536), depths=(2, 6, 14, 2), stem_width=(96, 192), **_rw_coat_cfg( stride_mode='dw', conv_attn_act_layer='silu', init_values=1e-6, ), ), # Experimental CoAtNet configs w/ ImageNet-1k train (different norm layers, MLP rel-pos) coatnet_bn_0_rw=MaxxVitCfg( embed_dim=(96, 192, 384, 768), depths=(2, 3, 7, 2), # deeper than paper '0' model stem_width=(32, 64), **_rw_coat_cfg( stride_mode='dw', conv_attn_early=True, transformer_shortcut_bias=False, transformer_norm_layer='batchnorm2d', ) ), coatnet_rmlp_nano_rw=MaxxVitCfg( embed_dim=(64, 128, 256, 512), depths=(3, 4, 6, 3), stem_width=(32, 64), **_rw_max_cfg( conv_output_bias=True, conv_attn_ratio=0.25, rel_pos_type='mlp', rel_pos_dim=384, ), ), coatnet_rmlp_0_rw=MaxxVitCfg( embed_dim=(96, 192, 384, 768), depths=(2, 3, 7, 2), # deeper than paper '0' model stem_width=(32, 64), **_rw_coat_cfg( stride_mode='dw', rel_pos_type='mlp', ), ), coatnet_rmlp_1_rw=MaxxVitCfg( embed_dim=(96, 192, 384, 768), depths=(2, 6, 14, 2), stem_width=(32, 64), **_rw_coat_cfg( pool_type='max', conv_attn_early=True, transformer_shortcut_bias=False, rel_pos_type='mlp', rel_pos_dim=384, # was supposed to be 512, woops ), ), coatnet_rmlp_1_rw2=MaxxVitCfg( embed_dim=(96, 192, 384, 768), depths=(2, 6, 14, 2), stem_width=(32, 64), **_rw_coat_cfg( stride_mode='dw', rel_pos_type='mlp', rel_pos_dim=512, # was supposed to be 512, woops ), ), coatnet_rmlp_2_rw=MaxxVitCfg( embed_dim=(128, 256, 512, 1024), depths=(2, 6, 14, 2), stem_width=(64, 128), **_rw_coat_cfg( stride_mode='dw', conv_attn_act_layer='silu', init_values=1e-6, rel_pos_type='mlp' ), ), coatnet_rmlp_3_rw=MaxxVitCfg( embed_dim=(192, 384, 768, 1536), depths=(2, 6, 14, 2), stem_width=(96, 192), **_rw_coat_cfg( stride_mode='dw', conv_attn_act_layer='silu', init_values=1e-6, rel_pos_type='mlp' ), ), coatnet_nano_cc=MaxxVitCfg( embed_dim=(64, 128, 256, 512), depths=(3, 4, 6, 3), stem_width=(32, 64), block_type=('C', 'C', ('C', 'T'), ('C', 'T')), **_rw_coat_cfg(), ), coatnext_nano_rw=MaxxVitCfg( embed_dim=(64, 128, 256, 512), depths=(3, 4, 6, 3), stem_width=(32, 64), weight_init='normal', **_next_cfg( rel_pos_type='bias', init_values=(1e-5, None) ), ), # Trying to be like the CoAtNet paper configs coatnet_0=MaxxVitCfg( embed_dim=(96, 192, 384, 768), depths=(2, 3, 5, 2), stem_width=64, head_hidden_size=768, ), coatnet_1=MaxxVitCfg( embed_dim=(96, 192, 384, 768), depths=(2, 6, 14, 2), stem_width=64, head_hidden_size=768, ), coatnet_2=MaxxVitCfg( embed_dim=(128, 256, 512, 1024), depths=(2, 6, 14, 2), stem_width=128, head_hidden_size=1024, ), coatnet_3=MaxxVitCfg( embed_dim=(192, 384, 768, 1536), depths=(2, 6, 14, 2), stem_width=192, head_hidden_size=1536, ), coatnet_4=MaxxVitCfg( embed_dim=(192, 384, 768, 1536), depths=(2, 12, 28, 2), stem_width=192, head_hidden_size=1536, ), coatnet_5=MaxxVitCfg( embed_dim=(256, 512, 1280, 2048), depths=(2, 12, 28, 2), stem_width=192, head_hidden_size=2048, ), # Experimental MaxVit configs maxvit_pico_rw=MaxxVitCfg( embed_dim=(32, 64, 128, 256), depths=(2, 2, 5, 2), block_type=('M',) * 4, stem_width=(24, 32), **_rw_max_cfg(), ), maxvit_nano_rw=MaxxVitCfg( embed_dim=(64, 128, 256, 512), depths=(1, 2, 3, 1), block_type=('M',) * 4, stem_width=(32, 64), **_rw_max_cfg(), ), maxvit_tiny_rw=MaxxVitCfg( embed_dim=(64, 128, 256, 512), depths=(2, 2, 5, 2), block_type=('M',) * 4, stem_width=(32, 64), **_rw_max_cfg(), ), maxvit_tiny_pm=MaxxVitCfg( embed_dim=(64, 128, 256, 512), depths=(2, 2, 5, 2), block_type=('PM',) * 4, stem_width=(32, 64), **_rw_max_cfg(), ), maxvit_rmlp_pico_rw=MaxxVitCfg( embed_dim=(32, 64, 128, 256), depths=(2, 2, 5, 2), block_type=('M',) * 4, stem_width=(24, 32), **_rw_max_cfg(rel_pos_type='mlp'), ), maxvit_rmlp_nano_rw=MaxxVitCfg( embed_dim=(64, 128, 256, 512), depths=(1, 2, 3, 1), block_type=('M',) * 4, stem_width=(32, 64), **_rw_max_cfg(rel_pos_type='mlp'), ), maxvit_rmlp_tiny_rw=MaxxVitCfg( embed_dim=(64, 128, 256, 512), depths=(2, 2, 5, 2), block_type=('M',) * 4, stem_width=(32, 64), **_rw_max_cfg(rel_pos_type='mlp'), ), maxvit_rmlp_small_rw=MaxxVitCfg( embed_dim=(96, 192, 384, 768), depths=(2, 2, 5, 2), block_type=('M',) * 4, stem_width=(32, 64), **_rw_max_cfg( rel_pos_type='mlp', init_values=1e-6, ), ), maxvit_rmlp_base_rw=MaxxVitCfg( embed_dim=(96, 192, 384, 768), depths=(2, 6, 14, 2), block_type=('M',) * 4, stem_width=(32, 64), head_hidden_size=768, **_rw_max_cfg( rel_pos_type='mlp', ), ), maxxvit_rmlp_nano_rw=MaxxVitCfg( embed_dim=(64, 128, 256, 512), depths=(1, 2, 3, 1), block_type=('M',) * 4, stem_width=(32, 64), weight_init='normal', **_next_cfg(), ), maxxvit_rmlp_tiny_rw=MaxxVitCfg( embed_dim=(64, 128, 256, 512), depths=(2, 2, 5, 2), block_type=('M',) * 4, stem_width=(32, 64), **_next_cfg(), ), maxxvit_rmlp_small_rw=MaxxVitCfg( embed_dim=(96, 192, 384, 768), depths=(2, 2, 5, 2), block_type=('M',) * 4, stem_width=(48, 96), **_next_cfg(), ), maxxvitv2_nano_rw=MaxxVitCfg( embed_dim=(96, 192, 384, 768), depths=(1, 2, 3, 1), block_type=('M',) * 4, stem_width=(48, 96), weight_init='normal', **_next_cfg( no_block_attn=True, rel_pos_type='bias', ), ), maxxvitv2_rmlp_base_rw=MaxxVitCfg( embed_dim=(128, 256, 512, 1024), depths=(2, 6, 12, 2), block_type=('M',) * 4, stem_width=(64, 128), **_next_cfg( no_block_attn=True, ), ), maxxvitv2_rmlp_large_rw=MaxxVitCfg( embed_dim=(160, 320, 640, 1280), depths=(2, 6, 16, 2), block_type=('M',) * 4, stem_width=(80, 160), head_hidden_size=1280, **_next_cfg( no_block_attn=True, ), ), # Trying to be like the MaxViT paper configs maxvit_tiny_tf=MaxxVitCfg( embed_dim=(64, 128, 256, 512), depths=(2, 2, 5, 2), block_type=('M',) * 4, stem_width=64, stem_bias=True, head_hidden_size=512, **_tf_cfg(), ), maxvit_small_tf=MaxxVitCfg( embed_dim=(96, 192, 384, 768), depths=(2, 2, 5, 2), block_type=('M',) * 4, stem_width=64, stem_bias=True, head_hidden_size=768, **_tf_cfg(), ), maxvit_base_tf=MaxxVitCfg( embed_dim=(96, 192, 384, 768), depths=(2, 6, 14, 2), block_type=('M',) * 4, stem_width=64, stem_bias=True, head_hidden_size=768, **_tf_cfg(), ), maxvit_large_tf=MaxxVitCfg( embed_dim=(128, 256, 512, 1024), depths=(2, 6, 14, 2), block_type=('M',) * 4, stem_width=128, stem_bias=True, head_hidden_size=1024, **_tf_cfg(), ), maxvit_xlarge_tf=MaxxVitCfg( embed_dim=(192, 384, 768, 1536), depths=(2, 6, 14, 2), block_type=('M',) * 4, stem_width=192, stem_bias=True, head_hidden_size=1536, **_tf_cfg(), ), ) def checkpoint_filter_fn(state_dict, model: nn.Module): model_state_dict = model.state_dict() out_dict = {} for k, v in state_dict.items(): if k.endswith('relative_position_bias_table'): m = model.get_submodule(k[:-29]) if v.shape != m.relative_position_bias_table.shape or m.window_size[0] != m.window_size[1]: v = resize_rel_pos_bias_table( v, new_window_size=m.window_size, new_bias_shape=m.relative_position_bias_table.shape, ) if k in model_state_dict and v.ndim != model_state_dict[k].ndim and v.numel() == model_state_dict[k].numel(): # adapt between conv2d / linear layers assert v.ndim in (2, 4) v = v.reshape(model_state_dict[k].shape) out_dict[k] = v return out_dict def _create_maxxvit(variant, cfg_variant=None, pretrained=False, **kwargs): if cfg_variant is None: if variant in model_cfgs: cfg_variant = variant else: cfg_variant = '_'.join(variant.split('_')[:-1]) return build_model_with_cfg( MaxxVit, variant, pretrained, model_cfg=model_cfgs[cfg_variant], feature_cfg=dict(flatten_sequential=True), pretrained_filter_fn=checkpoint_filter_fn, **kwargs) def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.95, 'interpolation': 'bicubic', 'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5), 'first_conv': 'stem.conv1', 'classifier': 'head.fc', 'fixed_input_size': True, **kwargs } default_cfgs = generate_default_cfgs({ # timm specific CoAtNet configs, ImageNet-1k pretrain, fixed rel-pos 'coatnet_pico_rw_224.untrained': _cfg(url=''), 'coatnet_nano_rw_224.sw_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnet_nano_rw_224_sw-f53093b4.pth', crop_pct=0.9), 'coatnet_0_rw_224.sw_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnet_0_rw_224_sw-a6439706.pth'), 'coatnet_1_rw_224.sw_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnet_1_rw_224_sw-5cae1ea8.pth' ), # timm specific CoAtNet configs, ImageNet-12k pretrain w/ 1k fine-tune, fixed rel-pos 'coatnet_2_rw_224.sw_in12k_ft_in1k': _cfg( hf_hub_id='timm/'), #'coatnet_3_rw_224.untrained': _cfg(url=''), # Experimental CoAtNet configs w/ ImageNet-12k pretrain -> 1k fine-tune (different norm layers, MLP rel-pos) 'coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k': _cfg( hf_hub_id='timm/'), 'coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k': _cfg( hf_hub_id='timm/'), 'coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k': _cfg( hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), # Experimental CoAtNet configs w/ ImageNet-1k train (different norm layers, MLP rel-pos) 'coatnet_bn_0_rw_224.sw_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnet_bn_0_rw_224_sw-c228e218.pth', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, crop_pct=0.95), 'coatnet_rmlp_nano_rw_224.sw_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnet_rmlp_nano_rw_224_sw-bd1d51b3.pth', crop_pct=0.9), 'coatnet_rmlp_0_rw_224.untrained': _cfg(url=''), 'coatnet_rmlp_1_rw_224.sw_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnet_rmlp_1_rw_224_sw-9051e6c3.pth'), 'coatnet_rmlp_2_rw_224.sw_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnet_rmlp_2_rw_224_sw-5ccfac55.pth'), 'coatnet_rmlp_3_rw_224.untrained': _cfg(url=''), 'coatnet_nano_cc_224.untrained': _cfg(url=''), 'coatnext_nano_rw_224.sw_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/coatnext_nano_rw_224_ad-22cb71c2.pth', crop_pct=0.9), # ImagenNet-12k pretrain CoAtNet 'coatnet_2_rw_224.sw_in12k': _cfg( hf_hub_id='timm/', num_classes=11821), 'coatnet_3_rw_224.sw_in12k': _cfg( hf_hub_id='timm/', num_classes=11821), 'coatnet_rmlp_1_rw2_224.sw_in12k': _cfg( hf_hub_id='timm/', num_classes=11821), 'coatnet_rmlp_2_rw_224.sw_in12k': _cfg( hf_hub_id='timm/', num_classes=11821), # Trying to be like the CoAtNet paper configs (will adapt if 'tf' weights are ever released) 'coatnet_0_224.untrained': _cfg(url=''), 'coatnet_1_224.untrained': _cfg(url=''), 'coatnet_2_224.untrained': _cfg(url=''), 'coatnet_3_224.untrained': _cfg(url=''), 'coatnet_4_224.untrained': _cfg(url=''), 'coatnet_5_224.untrained': _cfg(url=''), # timm specific MaxVit configs, ImageNet-1k pretrain or untrained 'maxvit_pico_rw_256.untrained': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8)), 'maxvit_nano_rw_256.sw_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxvit_nano_rw_256_sw-fb127241.pth', input_size=(3, 256, 256), pool_size=(8, 8)), 'maxvit_tiny_rw_224.sw_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxvit_tiny_rw_224_sw-7d0dffeb.pth'), 'maxvit_tiny_rw_256.untrained': _cfg( url='', input_size=(3, 256, 256), pool_size=(8, 8)), 'maxvit_tiny_pm_256.untrained': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8)), # timm specific MaxVit w/ MLP rel-pos, ImageNet-1k pretrain 'maxvit_rmlp_pico_rw_256.sw_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxvit_rmlp_pico_rw_256_sw-8d82f2c6.pth', input_size=(3, 256, 256), pool_size=(8, 8)), 'maxvit_rmlp_nano_rw_256.sw_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxvit_rmlp_nano_rw_256_sw-c17bb0d6.pth', input_size=(3, 256, 256), pool_size=(8, 8)), 'maxvit_rmlp_tiny_rw_256.sw_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxvit_rmlp_tiny_rw_256_sw-bbef0ff5.pth', input_size=(3, 256, 256), pool_size=(8, 8)), 'maxvit_rmlp_small_rw_224.sw_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxvit_rmlp_small_rw_224_sw-6ef0ae4f.pth', crop_pct=0.9, ), 'maxvit_rmlp_small_rw_256.untrained': _cfg( url='', input_size=(3, 256, 256), pool_size=(8, 8)), # timm specific MaxVit w/ ImageNet-12k pretrain and 1k fine-tune 'maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k': _cfg( hf_hub_id='timm/', ), 'maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k': _cfg( hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), # timm specific MaxVit w/ ImageNet-12k pretrain 'maxvit_rmlp_base_rw_224.sw_in12k': _cfg( hf_hub_id='timm/', num_classes=11821, ), # timm MaxxViT configs (ConvNeXt conv blocks mixed with MaxVit transformer blocks) 'maxxvit_rmlp_nano_rw_256.sw_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxxvit_rmlp_nano_rw_256_sw-0325d459.pth', input_size=(3, 256, 256), pool_size=(8, 8)), 'maxxvit_rmlp_tiny_rw_256.untrained': _cfg(url='', input_size=(3, 256, 256), pool_size=(8, 8)), 'maxxvit_rmlp_small_rw_256.sw_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights-maxx/maxxvit_rmlp_small_rw_256_sw-37e217ff.pth', input_size=(3, 256, 256), pool_size=(8, 8)), # timm MaxxViT-V2 configs (ConvNeXt conv blocks mixed with MaxVit transformer blocks, more width, no block attn) 'maxxvitv2_nano_rw_256.sw_in1k': _cfg( hf_hub_id='timm/', input_size=(3, 256, 256), pool_size=(8, 8)), 'maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k': _cfg( hf_hub_id='timm/'), 'maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k': _cfg( hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'maxxvitv2_rmlp_large_rw_224.untrained': _cfg(url=''), 'maxxvitv2_rmlp_base_rw_224.sw_in12k': _cfg( hf_hub_id='timm/', num_classes=11821), # MaxViT models ported from official Tensorflow impl 'maxvit_tiny_tf_224.in1k': _cfg( hf_hub_id='timm/', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), 'maxvit_tiny_tf_384.in1k': _cfg( hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'maxvit_tiny_tf_512.in1k': _cfg( hf_hub_id='timm/', input_size=(3, 512, 512), pool_size=(16, 16), crop_pct=1.0, crop_mode='squash'), 'maxvit_small_tf_224.in1k': _cfg( hf_hub_id='timm/', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), 'maxvit_small_tf_384.in1k': _cfg( hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'maxvit_small_tf_512.in1k': _cfg( hf_hub_id='timm/', input_size=(3, 512, 512), pool_size=(16, 16), crop_pct=1.0, crop_mode='squash'), 'maxvit_base_tf_224.in1k': _cfg( hf_hub_id='timm/', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), 'maxvit_base_tf_384.in1k': _cfg( hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'maxvit_base_tf_512.in1k': _cfg( hf_hub_id='timm/', input_size=(3, 512, 512), pool_size=(16, 16), crop_pct=1.0, crop_mode='squash'), 'maxvit_large_tf_224.in1k': _cfg( hf_hub_id='timm/', mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD), 'maxvit_large_tf_384.in1k': _cfg( hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'maxvit_large_tf_512.in1k': _cfg( hf_hub_id='timm/', input_size=(3, 512, 512), pool_size=(16, 16), crop_pct=1.0, crop_mode='squash'), 'maxvit_base_tf_224.in21k': _cfg( hf_hub_id='timm/', num_classes=21843), 'maxvit_base_tf_384.in21k_ft_in1k': _cfg( hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'maxvit_base_tf_512.in21k_ft_in1k': _cfg( hf_hub_id='timm/', input_size=(3, 512, 512), pool_size=(16, 16), crop_pct=1.0, crop_mode='squash'), 'maxvit_large_tf_224.in21k': _cfg( hf_hub_id='timm/', num_classes=21843), 'maxvit_large_tf_384.in21k_ft_in1k': _cfg( hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'maxvit_large_tf_512.in21k_ft_in1k': _cfg( hf_hub_id='timm/', input_size=(3, 512, 512), crop_pct=1.0, crop_mode='squash'), 'maxvit_xlarge_tf_224.in21k': _cfg( hf_hub_id='timm/', num_classes=21843), 'maxvit_xlarge_tf_384.in21k_ft_in1k': _cfg( hf_hub_id='timm/', input_size=(3, 384, 384), pool_size=(12, 12), crop_pct=1.0, crop_mode='squash'), 'maxvit_xlarge_tf_512.in21k_ft_in1k': _cfg( hf_hub_id='timm/', input_size=(3, 512, 512), pool_size=(16, 16), crop_pct=1.0, crop_mode='squash'), }) @register_model def coatnet_pico_rw_224(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('coatnet_pico_rw_224', pretrained=pretrained, **kwargs) @register_model def coatnet_nano_rw_224(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('coatnet_nano_rw_224', pretrained=pretrained, **kwargs) @register_model def coatnet_0_rw_224(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('coatnet_0_rw_224', pretrained=pretrained, **kwargs) @register_model def coatnet_1_rw_224(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('coatnet_1_rw_224', pretrained=pretrained, **kwargs) @register_model def coatnet_2_rw_224(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('coatnet_2_rw_224', pretrained=pretrained, **kwargs) @register_model def coatnet_3_rw_224(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('coatnet_3_rw_224', pretrained=pretrained, **kwargs) @register_model def coatnet_bn_0_rw_224(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('coatnet_bn_0_rw_224', pretrained=pretrained, **kwargs) @register_model def coatnet_rmlp_nano_rw_224(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('coatnet_rmlp_nano_rw_224', pretrained=pretrained, **kwargs) @register_model def coatnet_rmlp_0_rw_224(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('coatnet_rmlp_0_rw_224', pretrained=pretrained, **kwargs) @register_model def coatnet_rmlp_1_rw_224(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('coatnet_rmlp_1_rw_224', pretrained=pretrained, **kwargs) @register_model def coatnet_rmlp_1_rw2_224(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('coatnet_rmlp_1_rw2_224', pretrained=pretrained, **kwargs) @register_model def coatnet_rmlp_2_rw_224(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('coatnet_rmlp_2_rw_224', pretrained=pretrained, **kwargs) @register_model def coatnet_rmlp_2_rw_384(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('coatnet_rmlp_2_rw_384', pretrained=pretrained, **kwargs) @register_model def coatnet_rmlp_3_rw_224(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('coatnet_rmlp_3_rw_224', pretrained=pretrained, **kwargs) @register_model def coatnet_nano_cc_224(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('coatnet_nano_cc_224', pretrained=pretrained, **kwargs) @register_model def coatnext_nano_rw_224(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('coatnext_nano_rw_224', pretrained=pretrained, **kwargs) @register_model def coatnet_0_224(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('coatnet_0_224', pretrained=pretrained, **kwargs) @register_model def coatnet_1_224(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('coatnet_1_224', pretrained=pretrained, **kwargs) @register_model def coatnet_2_224(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('coatnet_2_224', pretrained=pretrained, **kwargs) @register_model def coatnet_3_224(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('coatnet_3_224', pretrained=pretrained, **kwargs) @register_model def coatnet_4_224(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('coatnet_4_224', pretrained=pretrained, **kwargs) @register_model def coatnet_5_224(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('coatnet_5_224', pretrained=pretrained, **kwargs) @register_model def maxvit_pico_rw_256(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('maxvit_pico_rw_256', pretrained=pretrained, **kwargs) @register_model def maxvit_nano_rw_256(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('maxvit_nano_rw_256', pretrained=pretrained, **kwargs) @register_model def maxvit_tiny_rw_224(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('maxvit_tiny_rw_224', pretrained=pretrained, **kwargs) @register_model def maxvit_tiny_rw_256(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('maxvit_tiny_rw_256', pretrained=pretrained, **kwargs) @register_model def maxvit_rmlp_pico_rw_256(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('maxvit_rmlp_pico_rw_256', pretrained=pretrained, **kwargs) @register_model def maxvit_rmlp_nano_rw_256(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('maxvit_rmlp_nano_rw_256', pretrained=pretrained, **kwargs) @register_model def maxvit_rmlp_tiny_rw_256(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('maxvit_rmlp_tiny_rw_256', pretrained=pretrained, **kwargs) @register_model def maxvit_rmlp_small_rw_224(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('maxvit_rmlp_small_rw_224', pretrained=pretrained, **kwargs) @register_model def maxvit_rmlp_small_rw_256(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('maxvit_rmlp_small_rw_256', pretrained=pretrained, **kwargs) @register_model def maxvit_rmlp_base_rw_224(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('maxvit_rmlp_base_rw_224', pretrained=pretrained, **kwargs) @register_model def maxvit_rmlp_base_rw_384(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('maxvit_rmlp_base_rw_384', pretrained=pretrained, **kwargs) @register_model def maxvit_tiny_pm_256(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('maxvit_tiny_pm_256', pretrained=pretrained, **kwargs) @register_model def maxxvit_rmlp_nano_rw_256(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('maxxvit_rmlp_nano_rw_256', pretrained=pretrained, **kwargs) @register_model def maxxvit_rmlp_tiny_rw_256(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('maxxvit_rmlp_tiny_rw_256', pretrained=pretrained, **kwargs) @register_model def maxxvit_rmlp_small_rw_256(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('maxxvit_rmlp_small_rw_256', pretrained=pretrained, **kwargs) @register_model def maxxvitv2_nano_rw_256(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('maxxvitv2_nano_rw_256', pretrained=pretrained, **kwargs) @register_model def maxxvitv2_rmlp_base_rw_224(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('maxxvitv2_rmlp_base_rw_224', pretrained=pretrained, **kwargs) @register_model def maxxvitv2_rmlp_base_rw_384(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('maxxvitv2_rmlp_base_rw_384', pretrained=pretrained, **kwargs) @register_model def maxxvitv2_rmlp_large_rw_224(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('maxxvitv2_rmlp_large_rw_224', pretrained=pretrained, **kwargs) @register_model def maxvit_tiny_tf_224(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('maxvit_tiny_tf_224', 'maxvit_tiny_tf', pretrained=pretrained, **kwargs) @register_model def maxvit_tiny_tf_384(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('maxvit_tiny_tf_384', 'maxvit_tiny_tf', pretrained=pretrained, **kwargs) @register_model def maxvit_tiny_tf_512(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('maxvit_tiny_tf_512', 'maxvit_tiny_tf', pretrained=pretrained, **kwargs) @register_model def maxvit_small_tf_224(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('maxvit_small_tf_224', 'maxvit_small_tf', pretrained=pretrained, **kwargs) @register_model def maxvit_small_tf_384(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('maxvit_small_tf_384', 'maxvit_small_tf', pretrained=pretrained, **kwargs) @register_model def maxvit_small_tf_512(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('maxvit_small_tf_512', 'maxvit_small_tf', pretrained=pretrained, **kwargs) @register_model def maxvit_base_tf_224(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('maxvit_base_tf_224', 'maxvit_base_tf', pretrained=pretrained, **kwargs) @register_model def maxvit_base_tf_384(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('maxvit_base_tf_384', 'maxvit_base_tf', pretrained=pretrained, **kwargs) @register_model def maxvit_base_tf_512(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('maxvit_base_tf_512', 'maxvit_base_tf', pretrained=pretrained, **kwargs) @register_model def maxvit_large_tf_224(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('maxvit_large_tf_224', 'maxvit_large_tf', pretrained=pretrained, **kwargs) @register_model def maxvit_large_tf_384(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('maxvit_large_tf_384', 'maxvit_large_tf', pretrained=pretrained, **kwargs) @register_model def maxvit_large_tf_512(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('maxvit_large_tf_512', 'maxvit_large_tf', pretrained=pretrained, **kwargs) @register_model def maxvit_xlarge_tf_224(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('maxvit_xlarge_tf_224', 'maxvit_xlarge_tf', pretrained=pretrained, **kwargs) @register_model def maxvit_xlarge_tf_384(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('maxvit_xlarge_tf_384', 'maxvit_xlarge_tf', pretrained=pretrained, **kwargs) @register_model def maxvit_xlarge_tf_512(pretrained=False, **kwargs) -> MaxxVit: return _create_maxxvit('maxvit_xlarge_tf_512', 'maxvit_xlarge_tf', pretrained=pretrained, **kwargs)
pytorch-image-models/timm/models/maxxvit.py/0
{ "file_path": "pytorch-image-models/timm/models/maxxvit.py", "repo_id": "pytorch-image-models", "token_count": 43954 }
""" An implementation of RepGhostNet Model as defined in: RepGhost: A Hardware-Efficient Ghost Module via Re-parameterization. https://arxiv.org/abs/2211.06088 Original implementation: https://github.com/ChengpengChen/RepGhost """ import copy from functools import partial from typing import Optional import torch import torch.nn as nn import torch.nn.functional as F from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import SelectAdaptivePool2d, Linear, make_divisible from ._builder import build_model_with_cfg from ._efficientnet_blocks import SqueezeExcite, ConvBnAct from ._manipulate import checkpoint_seq from ._registry import register_model, generate_default_cfgs __all__ = ['RepGhostNet'] _SE_LAYER = partial(SqueezeExcite, gate_layer='hard_sigmoid', rd_round_fn=partial(make_divisible, divisor=4)) class RepGhostModule(nn.Module): def __init__( self, in_chs, out_chs, kernel_size=1, dw_size=3, stride=1, relu=True, reparam=True, ): super(RepGhostModule, self).__init__() self.out_chs = out_chs init_chs = out_chs new_chs = out_chs self.primary_conv = nn.Sequential( nn.Conv2d(in_chs, init_chs, kernel_size, stride, kernel_size // 2, bias=False), nn.BatchNorm2d(init_chs), nn.ReLU(inplace=True) if relu else nn.Identity(), ) fusion_conv = [] fusion_bn = [] if reparam: fusion_conv.append(nn.Identity()) fusion_bn.append(nn.BatchNorm2d(init_chs)) self.fusion_conv = nn.Sequential(*fusion_conv) self.fusion_bn = nn.Sequential(*fusion_bn) self.cheap_operation = nn.Sequential( nn.Conv2d(init_chs, new_chs, dw_size, 1, dw_size//2, groups=init_chs, bias=False), nn.BatchNorm2d(new_chs), # nn.ReLU(inplace=True) if relu else nn.Identity(), ) self.relu = nn.ReLU(inplace=False) if relu else nn.Identity() def forward(self, x): x1 = self.primary_conv(x) x2 = self.cheap_operation(x1) for conv, bn in zip(self.fusion_conv, self.fusion_bn): x2 = x2 + bn(conv(x1)) return self.relu(x2) def get_equivalent_kernel_bias(self): kernel3x3, bias3x3 = self._fuse_bn_tensor(self.cheap_operation[0], self.cheap_operation[1]) for conv, bn in zip(self.fusion_conv, self.fusion_bn): kernel, bias = self._fuse_bn_tensor(conv, bn, kernel3x3.shape[0], kernel3x3.device) kernel3x3 += self._pad_1x1_to_3x3_tensor(kernel) bias3x3 += bias return kernel3x3, bias3x3 @staticmethod def _pad_1x1_to_3x3_tensor(kernel1x1): if kernel1x1 is None: return 0 else: return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1]) @staticmethod def _fuse_bn_tensor(conv, bn, in_channels=None, device=None): in_channels = in_channels if in_channels else bn.running_mean.shape[0] device = device if device else bn.weight.device if isinstance(conv, nn.Conv2d): kernel = conv.weight assert conv.bias is None else: assert isinstance(conv, nn.Identity) kernel = torch.ones(in_channels, 1, 1, 1, device=device) if isinstance(bn, nn.BatchNorm2d): running_mean = bn.running_mean running_var = bn.running_var gamma = bn.weight beta = bn.bias eps = bn.eps std = (running_var + eps).sqrt() t = (gamma / std).reshape(-1, 1, 1, 1) return kernel * t, beta - running_mean * gamma / std assert isinstance(bn, nn.Identity) return kernel, torch.zeros(in_channels).to(kernel.device) def switch_to_deploy(self): if len(self.fusion_conv) == 0 and len(self.fusion_bn) == 0: return kernel, bias = self.get_equivalent_kernel_bias() self.cheap_operation = nn.Conv2d( in_channels=self.cheap_operation[0].in_channels, out_channels=self.cheap_operation[0].out_channels, kernel_size=self.cheap_operation[0].kernel_size, padding=self.cheap_operation[0].padding, dilation=self.cheap_operation[0].dilation, groups=self.cheap_operation[0].groups, bias=True) self.cheap_operation.weight.data = kernel self.cheap_operation.bias.data = bias self.__delattr__('fusion_conv') self.__delattr__('fusion_bn') self.fusion_conv = [] self.fusion_bn = [] def reparameterize(self): self.switch_to_deploy() class RepGhostBottleneck(nn.Module): """ RepGhost bottleneck w/ optional SE""" def __init__( self, in_chs, mid_chs, out_chs, dw_kernel_size=3, stride=1, act_layer=nn.ReLU, se_ratio=0., reparam=True, ): super(RepGhostBottleneck, self).__init__() has_se = se_ratio is not None and se_ratio > 0. self.stride = stride # Point-wise expansion self.ghost1 = RepGhostModule(in_chs, mid_chs, relu=True, reparam=reparam) # Depth-wise convolution if self.stride > 1: self.conv_dw = nn.Conv2d( mid_chs, mid_chs, dw_kernel_size, stride=stride, padding=(dw_kernel_size-1)//2, groups=mid_chs, bias=False) self.bn_dw = nn.BatchNorm2d(mid_chs) else: self.conv_dw = None self.bn_dw = None # Squeeze-and-excitation self.se = _SE_LAYER(mid_chs, rd_ratio=se_ratio) if has_se else None # Point-wise linear projection self.ghost2 = RepGhostModule(mid_chs, out_chs, relu=False, reparam=reparam) # shortcut if in_chs == out_chs and self.stride == 1: self.shortcut = nn.Sequential() else: self.shortcut = nn.Sequential( nn.Conv2d( in_chs, in_chs, dw_kernel_size, stride=stride, padding=(dw_kernel_size-1)//2, groups=in_chs, bias=False), nn.BatchNorm2d(in_chs), nn.Conv2d(in_chs, out_chs, 1, stride=1, padding=0, bias=False), nn.BatchNorm2d(out_chs), ) def forward(self, x): shortcut = x # 1st ghost bottleneck x = self.ghost1(x) # Depth-wise convolution if self.conv_dw is not None: x = self.conv_dw(x) x = self.bn_dw(x) # Squeeze-and-excitation if self.se is not None: x = self.se(x) # 2nd ghost bottleneck x = self.ghost2(x) x += self.shortcut(shortcut) return x class RepGhostNet(nn.Module): def __init__( self, cfgs, num_classes=1000, width=1.0, in_chans=3, output_stride=32, global_pool='avg', drop_rate=0.2, reparam=True, ): super(RepGhostNet, self).__init__() # setting of inverted residual blocks assert output_stride == 32, 'only output_stride==32 is valid, dilation not supported' self.cfgs = cfgs self.num_classes = num_classes self.drop_rate = drop_rate self.grad_checkpointing = False self.feature_info = [] # building first layer stem_chs = make_divisible(16 * width, 4) self.conv_stem = nn.Conv2d(in_chans, stem_chs, 3, 2, 1, bias=False) self.feature_info.append(dict(num_chs=stem_chs, reduction=2, module=f'conv_stem')) self.bn1 = nn.BatchNorm2d(stem_chs) self.act1 = nn.ReLU(inplace=True) prev_chs = stem_chs # building inverted residual blocks stages = nn.ModuleList([]) block = RepGhostBottleneck stage_idx = 0 net_stride = 2 for cfg in self.cfgs: layers = [] s = 1 for k, exp_size, c, se_ratio, s in cfg: out_chs = make_divisible(c * width, 4) mid_chs = make_divisible(exp_size * width, 4) layers.append(block(prev_chs, mid_chs, out_chs, k, s, se_ratio=se_ratio, reparam=reparam)) prev_chs = out_chs if s > 1: net_stride *= 2 self.feature_info.append(dict( num_chs=prev_chs, reduction=net_stride, module=f'blocks.{stage_idx}')) stages.append(nn.Sequential(*layers)) stage_idx += 1 out_chs = make_divisible(exp_size * width * 2, 4) stages.append(nn.Sequential(ConvBnAct(prev_chs, out_chs, 1))) self.pool_dim = prev_chs = out_chs self.blocks = nn.Sequential(*stages) # building last several layers self.num_features = prev_chs self.head_hidden_size = out_chs = 1280 self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) self.conv_head = nn.Conv2d(prev_chs, out_chs, 1, 1, 0, bias=True) self.act2 = nn.ReLU(inplace=True) self.flatten = nn.Flatten(1) if global_pool else nn.Identity() # don't flatten if pooling disabled self.classifier = Linear(out_chs, num_classes) if num_classes > 0 else nn.Identity() @torch.jit.ignore def group_matcher(self, coarse=False): matcher = dict( stem=r'^conv_stem|bn1', blocks=[ (r'^blocks\.(\d+)' if coarse else r'^blocks\.(\d+)\.(\d+)', None), (r'conv_head', (99999,)) ] ) return matcher @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self) -> nn.Module: return self.classifier def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): self.num_classes = num_classes if global_pool is not None: # NOTE: cannot meaningfully change pooling of efficient head after creation self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) self.flatten = nn.Flatten(1) if global_pool else nn.Identity() # don't flatten if pooling disabled self.classifier = Linear(self.head_hidden_size, num_classes) if num_classes > 0 else nn.Identity() def forward_features(self, x): x = self.conv_stem(x) x = self.bn1(x) x = self.act1(x) if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint_seq(self.blocks, x, flatten=True) else: x = self.blocks(x) return x def forward_head(self, x, pre_logits: bool = False): x = self.global_pool(x) x = self.conv_head(x) x = self.act2(x) x = self.flatten(x) if self.drop_rate > 0.: x = F.dropout(x, p=self.drop_rate, training=self.training) return x if pre_logits else self.classifier(x) def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x def convert_to_deploy(self): repghost_model_convert(self, do_copy=False) def repghost_model_convert(model: torch.nn.Module, save_path=None, do_copy=True): """ taken from from https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py """ if do_copy: model = copy.deepcopy(model) for module in model.modules(): if hasattr(module, 'switch_to_deploy'): module.switch_to_deploy() if save_path is not None: torch.save(model.state_dict(), save_path) return model def _create_repghostnet(variant, width=1.0, pretrained=False, **kwargs): """ Constructs a RepGhostNet model """ cfgs = [ # k, t, c, SE, s # stage1 [[3, 8, 16, 0, 1]], # stage2 [[3, 24, 24, 0, 2]], [[3, 36, 24, 0, 1]], # stage3 [[5, 36, 40, 0.25, 2]], [[5, 60, 40, 0.25, 1]], # stage4 [[3, 120, 80, 0, 2]], [[3, 100, 80, 0, 1], [3, 120, 80, 0, 1], [3, 120, 80, 0, 1], [3, 240, 112, 0.25, 1], [3, 336, 112, 0.25, 1] ], # stage5 [[5, 336, 160, 0.25, 2]], [[5, 480, 160, 0, 1], [5, 480, 160, 0.25, 1], [5, 480, 160, 0, 1], [5, 480, 160, 0.25, 1] ] ] model_kwargs = dict( cfgs=cfgs, width=width, **kwargs, ) return build_model_with_cfg( RepGhostNet, variant, pretrained, feature_cfg=dict(flatten_sequential=True), **model_kwargs, ) def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'conv_stem', 'classifier': 'classifier', **kwargs } default_cfgs = generate_default_cfgs({ 'repghostnet_050.in1k': _cfg( hf_hub_id='timm/', # url='https://github.com/ChengpengChen/RepGhost/releases/download/RepGhost/repghostnet_0_5x_43M_66.95.pth.tar' ), 'repghostnet_058.in1k': _cfg( hf_hub_id='timm/', # url='https://github.com/ChengpengChen/RepGhost/releases/download/RepGhost/repghostnet_0_58x_60M_68.94.pth.tar' ), 'repghostnet_080.in1k': _cfg( hf_hub_id='timm/', # url='https://github.com/ChengpengChen/RepGhost/releases/download/RepGhost/repghostnet_0_8x_96M_72.24.pth.tar' ), 'repghostnet_100.in1k': _cfg( hf_hub_id='timm/', # url='https://github.com/ChengpengChen/RepGhost/releases/download/RepGhost/repghostnet_1_0x_142M_74.22.pth.tar' ), 'repghostnet_111.in1k': _cfg( hf_hub_id='timm/', # url='https://github.com/ChengpengChen/RepGhost/releases/download/RepGhost/repghostnet_1_11x_170M_75.07.pth.tar' ), 'repghostnet_130.in1k': _cfg( hf_hub_id='timm/', # url='https://github.com/ChengpengChen/RepGhost/releases/download/RepGhost/repghostnet_1_3x_231M_76.37.pth.tar' ), 'repghostnet_150.in1k': _cfg( hf_hub_id='timm/', # url='https://github.com/ChengpengChen/RepGhost/releases/download/RepGhost/repghostnet_1_5x_301M_77.45.pth.tar' ), 'repghostnet_200.in1k': _cfg( hf_hub_id='timm/', # url='https://github.com/ChengpengChen/RepGhost/releases/download/RepGhost/repghostnet_2_0x_516M_78.81.pth.tar' ), }) @register_model def repghostnet_050(pretrained=False, **kwargs) -> RepGhostNet: """ RepGhostNet-0.5x """ model = _create_repghostnet('repghostnet_050', width=0.5, pretrained=pretrained, **kwargs) return model @register_model def repghostnet_058(pretrained=False, **kwargs) -> RepGhostNet: """ RepGhostNet-0.58x """ model = _create_repghostnet('repghostnet_058', width=0.58, pretrained=pretrained, **kwargs) return model @register_model def repghostnet_080(pretrained=False, **kwargs) -> RepGhostNet: """ RepGhostNet-0.8x """ model = _create_repghostnet('repghostnet_080', width=0.8, pretrained=pretrained, **kwargs) return model @register_model def repghostnet_100(pretrained=False, **kwargs) -> RepGhostNet: """ RepGhostNet-1.0x """ model = _create_repghostnet('repghostnet_100', width=1.0, pretrained=pretrained, **kwargs) return model @register_model def repghostnet_111(pretrained=False, **kwargs) -> RepGhostNet: """ RepGhostNet-1.11x """ model = _create_repghostnet('repghostnet_111', width=1.11, pretrained=pretrained, **kwargs) return model @register_model def repghostnet_130(pretrained=False, **kwargs) -> RepGhostNet: """ RepGhostNet-1.3x """ model = _create_repghostnet('repghostnet_130', width=1.3, pretrained=pretrained, **kwargs) return model @register_model def repghostnet_150(pretrained=False, **kwargs) -> RepGhostNet: """ RepGhostNet-1.5x """ model = _create_repghostnet('repghostnet_150', width=1.5, pretrained=pretrained, **kwargs) return model @register_model def repghostnet_200(pretrained=False, **kwargs) -> RepGhostNet: """ RepGhostNet-2.0x """ model = _create_repghostnet('repghostnet_200', width=2.0, pretrained=pretrained, **kwargs) return model
pytorch-image-models/timm/models/repghost.py/0
{ "file_path": "pytorch-image-models/timm/models/repghost.py", "repo_id": "pytorch-image-models", "token_count": 8221 }
""" TResNet: High Performance GPU-Dedicated Architecture https://arxiv.org/pdf/2003.13630.pdf Original model: https://github.com/mrT23/TResNet """ from collections import OrderedDict from functools import partial from typing import Optional import torch import torch.nn as nn from timm.layers import SpaceToDepth, BlurPool2d, ClassifierHead, SEModule, ConvNormAct, DropPath from ._builder import build_model_with_cfg from ._manipulate import checkpoint_seq from ._registry import register_model, generate_default_cfgs, register_model_deprecations __all__ = ['TResNet'] # model_registry will add each entrypoint fn to this class BasicBlock(nn.Module): expansion = 1 def __init__( self, inplanes, planes, stride=1, downsample=None, use_se=True, aa_layer=None, drop_path_rate=0. ): super(BasicBlock, self).__init__() self.downsample = downsample self.stride = stride act_layer = partial(nn.LeakyReLU, negative_slope=1e-3) self.conv1 = ConvNormAct(inplanes, planes, kernel_size=3, stride=stride, act_layer=act_layer, aa_layer=aa_layer) self.conv2 = ConvNormAct(planes, planes, kernel_size=3, stride=1, apply_act=False) self.act = nn.ReLU(inplace=True) rd_chs = max(planes * self.expansion // 4, 64) self.se = SEModule(planes * self.expansion, rd_channels=rd_chs) if use_se else None self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity() def forward(self, x): if self.downsample is not None: shortcut = self.downsample(x) else: shortcut = x out = self.conv1(x) out = self.conv2(out) if self.se is not None: out = self.se(out) out = self.drop_path(out) + shortcut out = self.act(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__( self, inplanes, planes, stride=1, downsample=None, use_se=True, act_layer=None, aa_layer=None, drop_path_rate=0., ): super(Bottleneck, self).__init__() self.downsample = downsample self.stride = stride act_layer = act_layer or partial(nn.LeakyReLU, negative_slope=1e-3) self.conv1 = ConvNormAct( inplanes, planes, kernel_size=1, stride=1, act_layer=act_layer) self.conv2 = ConvNormAct( planes, planes, kernel_size=3, stride=stride, act_layer=act_layer, aa_layer=aa_layer) reduction_chs = max(planes * self.expansion // 8, 64) self.se = SEModule(planes, rd_channels=reduction_chs) if use_se else None self.conv3 = ConvNormAct( planes, planes * self.expansion, kernel_size=1, stride=1, apply_act=False) self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity() self.act = nn.ReLU(inplace=True) def forward(self, x): if self.downsample is not None: shortcut = self.downsample(x) else: shortcut = x out = self.conv1(x) out = self.conv2(out) if self.se is not None: out = self.se(out) out = self.conv3(out) out = self.drop_path(out) + shortcut out = self.act(out) return out class TResNet(nn.Module): def __init__( self, layers, in_chans=3, num_classes=1000, width_factor=1.0, v2=False, global_pool='fast', drop_rate=0., drop_path_rate=0., ): self.num_classes = num_classes self.drop_rate = drop_rate self.grad_checkpointing = False super(TResNet, self).__init__() aa_layer = BlurPool2d act_layer = nn.LeakyReLU # TResnet stages self.inplanes = int(64 * width_factor) self.planes = int(64 * width_factor) if v2: self.inplanes = self.inplanes // 8 * 8 self.planes = self.planes // 8 * 8 dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(layers)).split(layers)] conv1 = ConvNormAct(in_chans * 16, self.planes, stride=1, kernel_size=3, act_layer=act_layer) layer1 = self._make_layer( Bottleneck if v2 else BasicBlock, self.planes, layers[0], stride=1, use_se=True, aa_layer=aa_layer, drop_path_rate=dpr[0]) layer2 = self._make_layer( Bottleneck if v2 else BasicBlock, self.planes * 2, layers[1], stride=2, use_se=True, aa_layer=aa_layer, drop_path_rate=dpr[1]) layer3 = self._make_layer( Bottleneck, self.planes * 4, layers[2], stride=2, use_se=True, aa_layer=aa_layer, drop_path_rate=dpr[2]) layer4 = self._make_layer( Bottleneck, self.planes * 8, layers[3], stride=2, use_se=False, aa_layer=aa_layer, drop_path_rate=dpr[3]) # body self.body = nn.Sequential(OrderedDict([ ('s2d', SpaceToDepth()), ('conv1', conv1), ('layer1', layer1), ('layer2', layer2), ('layer3', layer3), ('layer4', layer4), ])) self.feature_info = [ dict(num_chs=self.planes, reduction=2, module=''), # Not with S2D? dict(num_chs=self.planes * (Bottleneck.expansion if v2 else 1), reduction=4, module='body.layer1'), dict(num_chs=self.planes * 2 * (Bottleneck.expansion if v2 else 1), reduction=8, module='body.layer2'), dict(num_chs=self.planes * 4 * Bottleneck.expansion, reduction=16, module='body.layer3'), dict(num_chs=self.planes * 8 * Bottleneck.expansion, reduction=32, module='body.layer4'), ] # head self.num_features = self.head_hidden_size = (self.planes * 8) * Bottleneck.expansion self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=drop_rate) # model initialization for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='leaky_relu') if isinstance(m, nn.Linear): m.weight.data.normal_(0, 0.01) # residual connections special initialization for m in self.modules(): if isinstance(m, BasicBlock): nn.init.zeros_(m.conv2.bn.weight) if isinstance(m, Bottleneck): nn.init.zeros_(m.conv3.bn.weight) def _make_layer(self, block, planes, blocks, stride=1, use_se=True, aa_layer=None, drop_path_rate=0.): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: layers = [] if stride == 2: # avg pooling before 1x1 conv layers.append(nn.AvgPool2d(kernel_size=2, stride=2, ceil_mode=True, count_include_pad=False)) layers += [ConvNormAct( self.inplanes, planes * block.expansion, kernel_size=1, stride=1, apply_act=False)] downsample = nn.Sequential(*layers) layers = [] for i in range(blocks): layers.append(block( self.inplanes, planes, stride=stride if i == 0 else 1, downsample=downsample if i == 0 else None, use_se=use_se, aa_layer=aa_layer, drop_path_rate=drop_path_rate[i] if isinstance(drop_path_rate, list) else drop_path_rate, )) self.inplanes = planes * block.expansion return nn.Sequential(*layers) @torch.jit.ignore def group_matcher(self, coarse=False): matcher = dict(stem=r'^body\.conv1', blocks=r'^body\.layer(\d+)' if coarse else r'^body\.layer(\d+)\.(\d+)') return matcher @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self) -> nn.Module: return self.head.fc def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): self.num_classes = num_classes self.head.reset(num_classes, pool_type=global_pool) def forward_features(self, x): if self.grad_checkpointing and not torch.jit.is_scripting(): x = self.body.s2d(x) x = self.body.conv1(x) x = checkpoint_seq([ self.body.layer1, self.body.layer2, self.body.layer3, self.body.layer4], x, flatten=True) else: x = self.body(x) return x def forward_head(self, x, pre_logits: bool = False): return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x def checkpoint_filter_fn(state_dict, model): if 'body.conv1.conv.weight' in state_dict: return state_dict import re state_dict = state_dict.get('model', state_dict) state_dict = state_dict.get('state_dict', state_dict) out_dict = {} for k, v in state_dict.items(): k = re.sub(r'conv(\d+)\.0.0', lambda x: f'conv{int(x.group(1))}.conv', k) k = re.sub(r'conv(\d+)\.0.1', lambda x: f'conv{int(x.group(1))}.bn', k) k = re.sub(r'conv(\d+)\.0', lambda x: f'conv{int(x.group(1))}.conv', k) k = re.sub(r'conv(\d+)\.1', lambda x: f'conv{int(x.group(1))}.bn', k) k = re.sub(r'downsample\.(\d+)\.0', lambda x: f'downsample.{int(x.group(1))}.conv', k) k = re.sub(r'downsample\.(\d+)\.1', lambda x: f'downsample.{int(x.group(1))}.bn', k) if k.endswith('bn.weight'): # convert weight from inplace_abn to batchnorm v = v.abs().add(1e-5) out_dict[k] = v return out_dict def _create_tresnet(variant, pretrained=False, **kwargs): return build_model_with_cfg( TResNet, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(out_indices=(1, 2, 3, 4), flatten_sequential=True), **kwargs, ) def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bilinear', 'mean': (0., 0., 0.), 'std': (1., 1., 1.), 'first_conv': 'body.conv1.conv', 'classifier': 'head.fc', **kwargs } default_cfgs = generate_default_cfgs({ 'tresnet_m.miil_in21k_ft_in1k': _cfg(hf_hub_id='timm/'), 'tresnet_m.miil_in21k': _cfg(hf_hub_id='timm/', num_classes=11221), 'tresnet_m.miil_in1k': _cfg(hf_hub_id='timm/'), 'tresnet_l.miil_in1k': _cfg(hf_hub_id='timm/'), 'tresnet_xl.miil_in1k': _cfg(hf_hub_id='timm/'), 'tresnet_m.miil_in1k_448': _cfg( input_size=(3, 448, 448), pool_size=(14, 14), hf_hub_id='timm/'), 'tresnet_l.miil_in1k_448': _cfg( input_size=(3, 448, 448), pool_size=(14, 14), hf_hub_id='timm/'), 'tresnet_xl.miil_in1k_448': _cfg( input_size=(3, 448, 448), pool_size=(14, 14), hf_hub_id='timm/'), 'tresnet_v2_l.miil_in21k_ft_in1k': _cfg(hf_hub_id='timm/'), 'tresnet_v2_l.miil_in21k': _cfg(hf_hub_id='timm/', num_classes=11221), }) @register_model def tresnet_m(pretrained=False, **kwargs) -> TResNet: model_args = dict(layers=[3, 4, 11, 3]) return _create_tresnet('tresnet_m', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def tresnet_l(pretrained=False, **kwargs) -> TResNet: model_args = dict(layers=[4, 5, 18, 3], width_factor=1.2) return _create_tresnet('tresnet_l', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def tresnet_xl(pretrained=False, **kwargs) -> TResNet: model_args = dict(layers=[4, 5, 24, 3], width_factor=1.3) return _create_tresnet('tresnet_xl', pretrained=pretrained, **dict(model_args, **kwargs)) @register_model def tresnet_v2_l(pretrained=False, **kwargs) -> TResNet: model_args = dict(layers=[3, 4, 23, 3], width_factor=1.0, v2=True) return _create_tresnet('tresnet_v2_l', pretrained=pretrained, **dict(model_args, **kwargs)) register_model_deprecations(__name__, { 'tresnet_m_miil_in21k': 'tresnet_m.miil_in21k', 'tresnet_m_448': 'tresnet_m.miil_in1k_448', 'tresnet_l_448': 'tresnet_l.miil_in1k_448', 'tresnet_xl_448': 'tresnet_xl.miil_in1k_448', })
pytorch-image-models/timm/models/tresnet.py/0
{ "file_path": "pytorch-image-models/timm/models/tresnet.py", "repo_id": "pytorch-image-models", "token_count": 6188 }
import logging from itertools import islice from typing import Collection, Optional from torch import nn as nn from timm.models import group_parameters _logger = logging.getLogger(__name__) def param_groups_weight_decay( model: nn.Module, weight_decay: float = 1e-5, no_weight_decay_list: Collection[str] = (), ): no_weight_decay_list = set(no_weight_decay_list) decay = [] no_decay = [] for name, param in model.named_parameters(): if not param.requires_grad: continue if param.ndim <= 1 or name.endswith(".bias") or name in no_weight_decay_list: no_decay.append(param) else: decay.append(param) return [ {'params': no_decay, 'weight_decay': 0.}, {'params': decay, 'weight_decay': weight_decay}] def _group(it, size): it = iter(it) return iter(lambda: tuple(islice(it, size)), ()) def auto_group_layers(model, layers_per_group=12, num_groups=None): def _in_head(n, hp): if not hp: return True elif isinstance(hp, (tuple, list)): return any([n.startswith(hpi) for hpi in hp]) else: return n.startswith(hp) head_prefix = getattr(model, 'pretrained_cfg', {}).get('classifier', None) names_trunk = [] names_head = [] for n, _ in model.named_parameters(): names_head.append(n) if _in_head(n, head_prefix) else names_trunk.append(n) # group non-head layers num_trunk_layers = len(names_trunk) if num_groups is not None: layers_per_group = -(num_trunk_layers // -num_groups) names_trunk = list(_group(names_trunk, layers_per_group)) num_trunk_groups = len(names_trunk) layer_map = {n: i for i, l in enumerate(names_trunk) for n in l} layer_map.update({n: num_trunk_groups for n in names_head}) return layer_map _layer_map = auto_group_layers # backward compat def param_groups_layer_decay( model: nn.Module, weight_decay: float = 0.05, no_weight_decay_list: Collection[str] = (), weight_decay_exclude_1d: bool = True, layer_decay: float = .75, end_layer_decay: Optional[float] = None, verbose: bool = False, ): """ Parameter groups for layer-wise lr decay & weight decay Based on BEiT: https://github.com/microsoft/unilm/blob/master/beit/optim_factory.py#L58 """ no_weight_decay_list = set(no_weight_decay_list) param_group_names = {} # NOTE for debugging param_groups = {} if hasattr(model, 'group_matcher'): # FIXME interface needs more work layer_map = group_parameters(model, model.group_matcher(coarse=False), reverse=True) else: # fallback layer_map = auto_group_layers(model) num_layers = max(layer_map.values()) + 1 layer_max = num_layers - 1 layer_scales = list(layer_decay ** (layer_max - i) for i in range(num_layers)) for name, param in model.named_parameters(): if not param.requires_grad: continue # no decay: all 1D parameters and model specific ones if (weight_decay_exclude_1d and param.ndim <= 1) or name in no_weight_decay_list: g_decay = "no_decay" this_decay = 0. else: g_decay = "decay" this_decay = weight_decay layer_id = layer_map.get(name, layer_max) group_name = "layer_%d_%s" % (layer_id, g_decay) if group_name not in param_groups: this_scale = layer_scales[layer_id] param_group_names[group_name] = { "lr_scale": this_scale, "weight_decay": this_decay, "param_names": [], } param_groups[group_name] = { "lr_scale": this_scale, "weight_decay": this_decay, "params": [], } param_group_names[group_name]["param_names"].append(name) param_groups[group_name]["params"].append(param) if verbose: import json _logger.info("parameter groups: \n%s" % json.dumps(param_group_names, indent=2)) return list(param_groups.values())
pytorch-image-models/timm/optim/_param_groups.py/0
{ "file_path": "pytorch-image-models/timm/optim/_param_groups.py", "repo_id": "pytorch-image-models", "token_count": 1915 }
""" PyTorch MADGRAD optimizer MADGRAD: https://arxiv.org/abs/2101.11075 Code from: https://github.com/facebookresearch/madgrad """ # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from typing import TYPE_CHECKING, Any, Callable, Optional import torch import torch.optim if TYPE_CHECKING: from torch.optim.optimizer import _params_t else: _params_t = Any class MADGRAD(torch.optim.Optimizer): """ MADGRAD_: A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization. .. _MADGRAD: https://arxiv.org/abs/2101.11075 MADGRAD is a general purpose optimizer that can be used in place of SGD or Adam may converge faster and generalize better. Currently GPU-only. Typically, the same learning rate schedule that is used for SGD or Adam may be used. The overall learning rate is not comparable to either method and should be determined by a hyper-parameter sweep. MADGRAD requires less weight decay than other methods, often as little as zero. Momentum values used for SGD or Adam's beta1 should work here also. On sparse problems both weight_decay and momentum should be set to 0. Arguments: params (iterable): Iterable of parameters to optimize or dicts defining parameter groups. lr (float): Learning rate (default: 1e-2). momentum (float): Momentum value in the range [0,1) (default: 0.9). weight_decay (float): Weight decay, i.e. a L2 penalty (default: 0). eps (float): Term added to the denominator outside of the root operation to improve numerical stability. (default: 1e-6). """ def __init__( self, params: _params_t, lr: float = 1e-2, momentum: float = 0.9, weight_decay: float = 0, eps: float = 1e-6, decoupled_decay: bool = False, ): if momentum < 0 or momentum >= 1: raise ValueError(f"Momentum {momentum} must be in the range [0,1]") if lr <= 0: raise ValueError(f"Learning rate {lr} must be positive") if weight_decay < 0: raise ValueError(f"Weight decay {weight_decay} must be non-negative") if eps < 0: raise ValueError(f"Eps must be non-negative") defaults = dict( lr=lr, eps=eps, momentum=momentum, weight_decay=weight_decay, decoupled_decay=decoupled_decay, ) super().__init__(params, defaults) @property def supports_memory_efficient_fp16(self) -> bool: return False @property def supports_flat_params(self) -> bool: return True @torch.no_grad() def step(self, closure: Optional[Callable[[], float]] = None) -> Optional[float]: """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: eps = group['eps'] lr = group['lr'] + eps weight_decay = group['weight_decay'] momentum = group['momentum'] ck = 1 - momentum for p in group["params"]: if p.grad is None: continue grad = p.grad if momentum != 0.0 and grad.is_sparse: raise RuntimeError("momentum != 0 is not compatible with sparse gradients") state = self.state[p] if len(state) == 0: state['step'] = 0 state['grad_sum_sq'] = torch.zeros_like(p) state['s'] = torch.zeros_like(p) if momentum != 0: state['x0'] = torch.clone(p).detach() state['step'] += 1 grad_sum_sq = state['grad_sum_sq'] s = state['s'] lamb = lr * math.sqrt(state['step']) # Apply weight decay if weight_decay != 0: if group['decoupled_decay']: p.mul_(1.0 - group['lr'] * weight_decay) else: if grad.is_sparse: raise RuntimeError("weight_decay option is not compatible with sparse gradients") grad.add_(p, alpha=weight_decay) if grad.is_sparse: grad = grad.coalesce() grad_val = grad._values() p_masked = p.sparse_mask(grad) grad_sum_sq_masked = grad_sum_sq.sparse_mask(grad) s_masked = s.sparse_mask(grad) # Compute x_0 from other known quantities rms_masked_vals = grad_sum_sq_masked._values().pow(1 / 3).add_(eps) x0_masked_vals = p_masked._values().addcdiv(s_masked._values(), rms_masked_vals, value=1) # Dense + sparse op grad_sq = grad * grad grad_sum_sq.add_(grad_sq, alpha=lamb) grad_sum_sq_masked.add_(grad_sq, alpha=lamb) rms_masked_vals = grad_sum_sq_masked._values().pow_(1 / 3).add_(eps) s.add_(grad, alpha=lamb) s_masked._values().add_(grad_val, alpha=lamb) # update masked copy of p p_kp1_masked_vals = x0_masked_vals.addcdiv(s_masked._values(), rms_masked_vals, value=-1) # Copy updated masked p to dense p using an add operation p_masked._values().add_(p_kp1_masked_vals, alpha=-1) p.add_(p_masked, alpha=-1) else: if momentum == 0: # Compute x_0 from other known quantities rms = grad_sum_sq.pow(1 / 3).add_(eps) x0 = p.addcdiv(s, rms, value=1) else: x0 = state['x0'] # Accumulate second moments grad_sum_sq.addcmul_(grad, grad, value=lamb) rms = grad_sum_sq.pow(1 / 3).add_(eps) # Update s s.add_(grad, alpha=lamb) # Step if momentum == 0: p.copy_(x0.addcdiv(s, rms, value=-1)) else: z = x0.addcdiv(s, rms, value=-1) # p is a moving average of z p.mul_(1 - ck).add_(z, alpha=ck) return loss
pytorch-image-models/timm/optim/madgrad.py/0
{ "file_path": "pytorch-image-models/timm/optim/madgrad.py", "repo_id": "pytorch-image-models", "token_count": 3562 }
import abc from abc import ABC from typing import Any, Dict, List, Optional import torch class Scheduler(ABC): """ Parameter Scheduler Base Class A scheduler base class that can be used to schedule any optimizer parameter groups. Unlike the builtin PyTorch schedulers, this is intended to be consistently called * At the END of each epoch, before incrementing the epoch count, to calculate next epoch's value * At the END of each optimizer update, after incrementing the update count, to calculate next update's value The schedulers built on this should try to remain as stateless as possible (for simplicity). This family of schedulers is attempting to avoid the confusion of the meaning of 'last_epoch' and -1 values for special behaviour. All epoch and update counts must be tracked in the training code and explicitly passed in to the schedulers on the corresponding step or step_update call. Based on ideas from: * https://github.com/pytorch/fairseq/tree/master/fairseq/optim/lr_scheduler * https://github.com/allenai/allennlp/tree/master/allennlp/training/learning_rate_schedulers """ def __init__( self, optimizer: torch.optim.Optimizer, param_group_field: str, t_in_epochs: bool = True, noise_range_t=None, noise_type='normal', noise_pct=0.67, noise_std=1.0, noise_seed=None, initialize: bool = True, ) -> None: self.optimizer = optimizer self.param_group_field = param_group_field self._initial_param_group_field = f"initial_{param_group_field}" if initialize: for i, group in enumerate(self.optimizer.param_groups): if param_group_field not in group: raise KeyError(f"{param_group_field} missing from param_groups[{i}]") group.setdefault(self._initial_param_group_field, group[param_group_field]) else: for i, group in enumerate(self.optimizer.param_groups): if self._initial_param_group_field not in group: raise KeyError(f"{self._initial_param_group_field} missing from param_groups[{i}]") self.base_values = [group[self._initial_param_group_field] for group in self.optimizer.param_groups] self.metric = None # any point to having this for all? self.t_in_epochs = t_in_epochs self.noise_range_t = noise_range_t self.noise_pct = noise_pct self.noise_type = noise_type self.noise_std = noise_std self.noise_seed = noise_seed if noise_seed is not None else 42 self.update_groups(self.base_values) def state_dict(self) -> Dict[str, Any]: return {key: value for key, value in self.__dict__.items() if key != 'optimizer'} def load_state_dict(self, state_dict: Dict[str, Any]) -> None: self.__dict__.update(state_dict) @abc.abstractmethod def _get_lr(self, t: int) -> List[float]: pass def _get_values(self, t: int, on_epoch: bool = True) -> Optional[List[float]]: proceed = (on_epoch and self.t_in_epochs) or (not on_epoch and not self.t_in_epochs) if not proceed: return None return self._get_lr(t) def step(self, epoch: int, metric: float = None) -> None: self.metric = metric values = self._get_values(epoch, on_epoch=True) if values is not None: values = self._add_noise(values, epoch) self.update_groups(values) def step_update(self, num_updates: int, metric: float = None): self.metric = metric values = self._get_values(num_updates, on_epoch=False) if values is not None: values = self._add_noise(values, num_updates) self.update_groups(values) def update_groups(self, values): if not isinstance(values, (list, tuple)): values = [values] * len(self.optimizer.param_groups) for param_group, value in zip(self.optimizer.param_groups, values): if 'lr_scale' in param_group: param_group[self.param_group_field] = value * param_group['lr_scale'] else: param_group[self.param_group_field] = value def _add_noise(self, lrs, t): if self._is_apply_noise(t): noise = self._calculate_noise(t) lrs = [v + v * noise for v in lrs] return lrs def _is_apply_noise(self, t) -> bool: """Return True if scheduler in noise range.""" apply_noise = False if self.noise_range_t is not None: if isinstance(self.noise_range_t, (list, tuple)): apply_noise = self.noise_range_t[0] <= t < self.noise_range_t[1] else: apply_noise = t >= self.noise_range_t return apply_noise def _calculate_noise(self, t) -> float: g = torch.Generator() g.manual_seed(self.noise_seed + t) if self.noise_type == 'normal': while True: # resample if noise out of percent limit, brute force but shouldn't spin much noise = torch.randn(1, generator=g).item() if abs(noise) < self.noise_pct: return noise else: noise = 2 * (torch.rand(1, generator=g).item() - 0.5) * self.noise_pct return noise
pytorch-image-models/timm/scheduler/scheduler.py/0
{ "file_path": "pytorch-image-models/timm/scheduler/scheduler.py", "repo_id": "pytorch-image-models", "token_count": 2368 }
""" Model / state_dict utils Hacked together by / Copyright 2020 Ross Wightman """ import fnmatch from copy import deepcopy import torch from torchvision.ops.misc import FrozenBatchNorm2d from timm.layers import BatchNormAct2d, SyncBatchNormAct, FrozenBatchNormAct2d,\ freeze_batch_norm_2d, unfreeze_batch_norm_2d from .model_ema import ModelEma def unwrap_model(model): if isinstance(model, ModelEma): return unwrap_model(model.ema) else: if hasattr(model, 'module'): return unwrap_model(model.module) elif hasattr(model, '_orig_mod'): return unwrap_model(model._orig_mod) else: return model def get_state_dict(model, unwrap_fn=unwrap_model): return unwrap_fn(model).state_dict() def avg_sq_ch_mean(model, input, output): """ calculate average channel square mean of output activations """ return torch.mean(output.mean(axis=[0, 2, 3]) ** 2).item() def avg_ch_var(model, input, output): """ calculate average channel variance of output activations """ return torch.mean(output.var(axis=[0, 2, 3])).item() def avg_ch_var_residual(model, input, output): """ calculate average channel variance of output activations """ return torch.mean(output.var(axis=[0, 2, 3])).item() class ActivationStatsHook: """Iterates through each of `model`'s modules and matches modules using unix pattern matching based on `hook_fn_locs` and registers `hook_fn` to the module if there is a match. Arguments: model (nn.Module): model from which we will extract the activation stats hook_fn_locs (List[str]): List of `hook_fn` locations based on Unix type string matching with the name of model's modules. hook_fns (List[Callable]): List of hook functions to be registered at every module in `layer_names`. Inspiration from https://docs.fast.ai/callback.hook.html. Refer to https://gist.github.com/amaarora/6e56942fcb46e67ba203f3009b30d950 for an example on how to plot Signal Propagation Plots using `ActivationStatsHook`. """ def __init__(self, model, hook_fn_locs, hook_fns): self.model = model self.hook_fn_locs = hook_fn_locs self.hook_fns = hook_fns if len(hook_fn_locs) != len(hook_fns): raise ValueError("Please provide `hook_fns` for each `hook_fn_locs`, \ their lengths are different.") self.stats = dict((hook_fn.__name__, []) for hook_fn in hook_fns) for hook_fn_loc, hook_fn in zip(hook_fn_locs, hook_fns): self.register_hook(hook_fn_loc, hook_fn) def _create_hook(self, hook_fn): def append_activation_stats(module, input, output): out = hook_fn(module, input, output) self.stats[hook_fn.__name__].append(out) return append_activation_stats def register_hook(self, hook_fn_loc, hook_fn): for name, module in self.model.named_modules(): if not fnmatch.fnmatch(name, hook_fn_loc): continue module.register_forward_hook(self._create_hook(hook_fn)) def extract_spp_stats( model, hook_fn_locs, hook_fns, input_shape=[8, 3, 224, 224]): """Extract average square channel mean and variance of activations during forward pass to plot Signal Propagation Plots (SPP). Paper: https://arxiv.org/abs/2101.08692 Example Usage: https://gist.github.com/amaarora/6e56942fcb46e67ba203f3009b30d950 """ x = torch.normal(0., 1., input_shape) hook = ActivationStatsHook(model, hook_fn_locs=hook_fn_locs, hook_fns=hook_fns) _ = model(x) return hook.stats def _freeze_unfreeze(root_module, submodules=[], include_bn_running_stats=True, mode='freeze'): """ Freeze or unfreeze parameters of the specified modules and those of all their hierarchical descendants. This is done in place. Args: root_module (nn.Module, optional): Root module relative to which the `submodules` are referenced. submodules (list[str]): List of modules for which the parameters will be (un)frozen. They are to be provided as named modules relative to the root module (accessible via `root_module.named_modules()`). An empty list means that the whole root module will be (un)frozen. Defaults to [] include_bn_running_stats (bool): Whether to also (un)freeze the running statistics of batch norm 2d layers. Defaults to `True`. mode (bool): Whether to freeze ("freeze") or unfreeze ("unfreeze"). Defaults to `"freeze"`. """ assert mode in ["freeze", "unfreeze"], '`mode` must be one of "freeze" or "unfreeze"' if isinstance(root_module, ( torch.nn.modules.batchnorm.BatchNorm2d, torch.nn.modules.batchnorm.SyncBatchNorm, BatchNormAct2d, SyncBatchNormAct, )): # Raise assertion here because we can't convert it in place raise AssertionError( "You have provided a batch norm layer as the `root module`. Please use " "`timm.utils.model.freeze_batch_norm_2d` or `timm.utils.model.unfreeze_batch_norm_2d` instead.") if isinstance(submodules, str): submodules = [submodules] named_modules = submodules submodules = [root_module.get_submodule(m) for m in submodules] if not len(submodules): named_modules, submodules = list(zip(*root_module.named_children())) for n, m in zip(named_modules, submodules): # (Un)freeze parameters for p in m.parameters(): p.requires_grad = False if mode == 'freeze' else True if include_bn_running_stats: # Helper to add submodule specified as a named_module def _add_submodule(module, name, submodule): split = name.rsplit('.', 1) if len(split) > 1: module.get_submodule(split[0]).add_module(split[1], submodule) else: module.add_module(name, submodule) # Freeze batch norm if mode == 'freeze': res = freeze_batch_norm_2d(m) # It's possible that `m` is a type of BatchNorm in itself, in which case `unfreeze_batch_norm_2d` won't # convert it in place, but will return the converted result. In this case `res` holds the converted # result and we may try to re-assign the named module if isinstance(m, ( torch.nn.modules.batchnorm.BatchNorm2d, torch.nn.modules.batchnorm.SyncBatchNorm, BatchNormAct2d, SyncBatchNormAct, )): _add_submodule(root_module, n, res) # Unfreeze batch norm else: res = unfreeze_batch_norm_2d(m) # Ditto. See note above in mode == 'freeze' branch if isinstance(m, (FrozenBatchNorm2d, FrozenBatchNormAct2d)): _add_submodule(root_module, n, res) def freeze(root_module, submodules=[], include_bn_running_stats=True): """ Freeze parameters of the specified modules and those of all their hierarchical descendants. This is done in place. Args: root_module (nn.Module): Root module relative to which `submodules` are referenced. submodules (list[str]): List of modules for which the parameters will be frozen. They are to be provided as named modules relative to the root module (accessible via `root_module.named_modules()`). An empty list means that the whole root module will be frozen. Defaults to `[]`. include_bn_running_stats (bool): Whether to also freeze the running statistics of `BatchNorm2d` and `SyncBatchNorm` layers. These will be converted to `FrozenBatchNorm2d` in place. Hint: During fine tuning, it's good practice to freeze batch norm stats. And note that these are different to the affine parameters which are just normal PyTorch parameters. Defaults to `True`. Hint: If you want to freeze batch norm ONLY, use `timm.utils.model.freeze_batch_norm_2d`. Examples:: >>> model = timm.create_model('resnet18') >>> # Freeze up to and including layer2 >>> submodules = [n for n, _ in model.named_children()] >>> print(submodules) ['conv1', 'bn1', 'act1', 'maxpool', 'layer1', 'layer2', 'layer3', 'layer4', 'global_pool', 'fc'] >>> freeze(model, submodules[:submodules.index('layer2') + 1]) >>> # Check for yourself that it works as expected >>> print(model.layer2[0].conv1.weight.requires_grad) False >>> print(model.layer3[0].conv1.weight.requires_grad) True >>> # Unfreeze >>> unfreeze(model) """ _freeze_unfreeze(root_module, submodules, include_bn_running_stats=include_bn_running_stats, mode="freeze") def unfreeze(root_module, submodules=[], include_bn_running_stats=True): """ Unfreeze parameters of the specified modules and those of all their hierarchical descendants. This is done in place. Args: root_module (nn.Module): Root module relative to which `submodules` are referenced. submodules (list[str]): List of submodules for which the parameters will be (un)frozen. They are to be provided as named modules relative to the root module (accessible via `root_module.named_modules()`). An empty list means that the whole root module will be unfrozen. Defaults to `[]`. include_bn_running_stats (bool): Whether to also unfreeze the running statistics of `FrozenBatchNorm2d` layers. These will be converted to `BatchNorm2d` in place. Defaults to `True`. See example in docstring for `freeze`. """ _freeze_unfreeze(root_module, submodules, include_bn_running_stats=include_bn_running_stats, mode="unfreeze") def reparameterize_model(model: torch.nn.Module, inplace=False) -> torch.nn.Module: if not inplace: model = deepcopy(model) def _fuse(m): for child_name, child in m.named_children(): if hasattr(child, 'fuse'): setattr(m, child_name, child.fuse()) elif hasattr(child, "reparameterize"): child.reparameterize() elif hasattr(child, "switch_to_deploy"): child.switch_to_deploy() _fuse(child) _fuse(model) return model
pytorch-image-models/timm/utils/model.py/0
{ "file_path": "pytorch-image-models/timm/utils/model.py", "repo_id": "pytorch-image-models", "token_count": 4328 }
# Base Python image FROM python:3.12-slim # Set working directory WORKDIR /app # Install build dependencies RUN apt-get update && apt-get install -y \ build-essential \ zlib1g-dev \ libjpeg-dev \ libpng-dev \ && rm -rf /var/lib/apt/lists/* # Copy package files COPY . /app/ # Install dependencies RUN pip install --no-cache-dir -r requirements.txt # Install the package RUN pip install -e . COPY server.py /app/server.py # Expose the port your server will run on EXPOSE 65432 CMD ["python", "/app/server.py"]
smolagents/Dockerfile/0
{ "file_path": "smolagents/Dockerfile", "repo_id": "smolagents", "token_count": 198 }
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Models <Tip warning={true}> Smolagents is an experimental API which is subject to change at any time. Results returned by the agents can vary as the APIs or underlying models are prone to change. </Tip> To learn more about agents and tools make sure to read the [introductory guide](../index). This page contains the API docs for the underlying classes. ## Models You're free to create and use your own models to power your agent. You could use any `model` callable for your agent, as long as: 1. It follows the [messages format](./chat_templating) (`List[Dict[str, str]]`) for its input `messages`, and it returns a `str`. 2. It stops generating outputs *before* the sequences passed in the argument `stop_sequences` For defining your LLM, you can make a `custom_model` method which accepts a list of [messages](./chat_templating) and returns an object with a .content attribute containing the text. This callable also needs to accept a `stop_sequences` argument that indicates when to stop generating. ```python from huggingface_hub import login, InferenceClient login("<YOUR_HUGGINGFACEHUB_API_TOKEN>") model_id = "meta-llama/Llama-3.3-70B-Instruct" client = InferenceClient(model=model_id) def custom_model(messages, stop_sequences=["Task"]): response = client.chat_completion(messages, stop=stop_sequences, max_tokens=1000) answer = response.choices[0].message return answer ``` Additionally, `custom_model` can also take a `grammar` argument. In the case where you specify a `grammar` upon agent initialization, this argument will be passed to the calls to model, with the `grammar` that you defined upon initialization, to allow [constrained generation](https://huggingface.co/docs/text-generation-inference/conceptual/guidance) in order to force properly-formatted agent outputs. ### TransformersModel For convenience, we have added a `TransformersModel` that implements the points above by building a local `transformers` pipeline for the model_id given at initialization. ```python from smolagents import TransformersModel model = TransformersModel(model_id="HuggingFaceTB/SmolLM-135M-Instruct") print(model([{"role": "user", "content": [{"type": "text", "text": "Ok!"}]}], stop_sequences=["great"])) ``` ```text >>> What a ``` > [!TIP] > You must have `transformers` and `torch` installed on your machine. Please run `pip install smolagents[transformers]` if it's not the case. [[autodoc]] TransformersModel ### HfApiModel The `HfApiModel` wraps huggingface_hub's [InferenceClient](https://huggingface.co/docs/huggingface_hub/main/en/guides/inference) for the execution of the LLM. It supports both HF's own [Inference API](https://huggingface.co/docs/api-inference/index) as well as all [Inference Providers](https://huggingface.co/blog/inference-providers) available on the Hub. ```python from smolagents import HfApiModel messages = [ {"role": "user", "content": [{"type": "text", "text": "Hello, how are you?"}]} ] model = HfApiModel() print(model(messages)) ``` ```text >>> Of course! If you change your mind, feel free to reach out. Take care! ``` [[autodoc]] HfApiModel ### LiteLLMModel The `LiteLLMModel` leverages [LiteLLM](https://www.litellm.ai/) to support 100+ LLMs from various providers. You can pass kwargs upon model initialization that will then be used whenever using the model, for instance below we pass `temperature`. ```python from smolagents import LiteLLMModel messages = [ {"role": "user", "content": [{"type": "text", "text": "Hello, how are you?"}]} ] model = LiteLLMModel("anthropic/claude-3-5-sonnet-latest", temperature=0.2, max_tokens=10) print(model(messages)) ``` [[autodoc]] LiteLLMModel ### OpenAIServerModel This class lets you call any OpenAIServer compatible model. Here's how you can set it (you can customise the `api_base` url to point to another server): ```py import os from smolagents import OpenAIServerModel model = OpenAIServerModel( model_id="gpt-4o", api_base="https://api.openai.com/v1", api_key=os.environ["OPENAI_API_KEY"], ) ``` [[autodoc]] OpenAIServerModel ### AzureOpenAIServerModel `AzureOpenAIServerModel` allows you to connect to any Azure OpenAI deployment. Below you can find an example of how to set it up, note that you can omit the `azure_endpoint`, `api_key`, and `api_version` arguments, provided you've set the corresponding environment variables -- `AZURE_OPENAI_ENDPOINT`, `AZURE_OPENAI_API_KEY`, and `OPENAI_API_VERSION`. Pay attention to the lack of an `AZURE_` prefix for `OPENAI_API_VERSION`, this is due to the way the underlying [openai](https://github.com/openai/openai-python) package is designed. ```py import os from smolagents import AzureOpenAIServerModel model = AzureOpenAIServerModel( model_id = os.environ.get("AZURE_OPENAI_MODEL"), azure_endpoint=os.environ.get("AZURE_OPENAI_ENDPOINT"), api_key=os.environ.get("AZURE_OPENAI_API_KEY"), api_version=os.environ.get("OPENAI_API_VERSION") ) ``` [[autodoc]] AzureOpenAIServerModel
smolagents/docs/source/en/reference/models.md/0
{ "file_path": "smolagents/docs/source/en/reference/models.md", "repo_id": "smolagents", "token_count": 1797 }
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Tools <Tip warning={true}> Smolagents एक experimental API है जो किसी भी समय बदल सकता है। एजेंट्स द्वारा लौटाए गए परिणाम भिन्न हो सकते हैं क्योंकि APIs या underlying मॉडल बदलने की संभावना रखते हैं। </Tip> एजेंट्स और टूल्स के बारे में अधिक जानने के लिए [introductory guide](../index) पढ़ना सुनिश्चित करें। यह पेज underlying क्लासेज के लिए API docs को शामिल करता है। ## Tools ### load_tool [[autodoc]] load_tool ### tool [[autodoc]] tool ### Tool [[autodoc]] Tool ### launch_gradio_demo [[autodoc]] launch_gradio_demo ## Default Tools ### PythonInterpreterTool [[autodoc]] PythonInterpreterTool ### DuckDuckGoSearchTool [[autodoc]] DuckDuckGoSearchTool ### VisitWebpageTool [[autodoc]] VisitWebpageTool ### UserInputTool [[autodoc]] UserInputTool ## ToolCollection [[autodoc]] ToolCollection ## Agent टाइप्स एजेंट्स टूल्स के बीच किसी भी प्रकार की ऑब्जेक्ट को संभाल सकते हैं; टूल्स, पूरी तरह से मल्टीमोडल होने के कारण, टेक्स्ट, इमेज, ऑडियो, वीडियो सहित अन्य प्रकारों को स्वीकार और रिटर्न कर सकते हैं। टूल्स के बीच अनुकूलता बढ़ाने के साथ-साथ इन रिटर्न्स को ipython (jupyter, colab, ipython notebooks, ...) में सही ढंग से रेंडर करने के लिए, हम इन टाइप्स के आसपास रैपर क्लासेज को लागू करते हैं। रैप किए गए ऑब्जेक्ट्स को प्रारंभ में जैसा व्यवहार करना चाहिए वैसा ही करना जारी रखना चाहिए; एक टेक्स्ट ऑब्जेक्ट को अभी भी स्ट्रिंग की तरह व्यवहार करना चाहिए| एक इमेज ऑब्जेक्ट को अभी भी `PIL.Image` की तरह व्यवहार करना चाहिए। इन टाइप्स के तीन विशिष्ट उद्देश्य हैं: - टाइप पर `to_raw` को कॉल करने से अंतर्निहित ऑब्जेक्ट रिटर्न होना चाहिए - टाइप पर `to_string` को कॉल करने से ऑब्जेक्ट को स्ट्रिंग के रूप में रिटर्न होना चाहिए: वह `AgentText` के मामले में स्ट्रिंग हो सकती है लेकिन अन्य उदाहरणों में ऑब्जेक्ट के सीरियलाइज्ड वर्जन का पाथ होगा - इसे एक ipython kernel में प्रदर्शित करने पर ऑब्जेक्ट को सही ढंग से प्रदर्शित करना चाहिए ### AgentText [[autodoc]] smolagents.agent_types.AgentText ### AgentImage [[autodoc]] smolagents.agent_types.AgentImage ### AgentAudio [[autodoc]] smolagents.agent_types.AgentAudio
smolagents/docs/source/hi/reference/tools.md/0
{ "file_path": "smolagents/docs/source/hi/reference/tools.md", "repo_id": "smolagents", "token_count": 2277 }
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # 构建好用的 agent [[open-in-colab]] 能良好工作的 agent 和不能工作的 agent 之间,有天壤之别。 我们怎么样才能构建出属于前者的 agent 呢? 在本指南中,我们将看到构建 agent 的最佳实践。 > [!TIP] > 如果你是 agent 构建的新手,请确保首先阅读 [agent 介绍](../conceptual_guides/intro_agents) 和 [smolagents 导览](../guided_tour)。 ### 最好的 agent 系统是最简单的:尽可能简化工作流 在你的工作流中赋予 LLM 一些自主权,会引入一些错误风险。 经过良好编程的 agent 系统,通常具有良好的错误日志记录和重试机制,因此 LLM 引擎有机会自我纠错。但为了最大限度地降低 LLM 错误的风险,你应该简化你的工作流! 让我们回顾一下 [agent 介绍](../conceptual_guides/intro_agents) 中的例子:一个为冲浪旅行公司回答用户咨询的机器人。 与其让 agent 每次被问及新的冲浪地点时,都分别调用 "旅行距离 API" 和 "天气 API",你可以只创建一个统一的工具 "return_spot_information",一个同时调用这两个 API,并返回它们连接输出的函数。 这可以降低成本、延迟和错误风险! 主要的指导原则是:尽可能减少 LLM 调用的次数。 这可以带来一些启发: - 尽可能把两个工具合并为一个,就像我们两个 API 的例子。 - 尽可能基于确定性函数,而不是 agent 决策,来实现逻辑。 ### 改善流向 LLM 引擎的信息流 记住,你的 LLM 引擎就像一个 ~智能~ 机器人,被关在一个房间里,与外界唯一的交流方式是通过门缝传递的纸条。 如果你没有明确地将信息放入其提示中,它将不知道发生的任何事情。 所以首先要让你的任务非常清晰! 由于 agent 由 LLM 驱动,任务表述的微小变化可能会产生完全不同的结果。 然后,改善工具使用中流向 agent 的信息流。 需要遵循的具体指南: - 每个工具都应该记录(只需在工具的 `forward` 方法中使用 `print` 语句)对 LLM 引擎可能有用的所有信息。 - 特别是,记录工具执行错误的详细信息会很有帮助! 例如,这里有一个根据位置和日期时间检索天气数据的工具: 首先,这是一个糟糕的版本: ```python import datetime from smolagents import tool def get_weather_report_at_coordinates(coordinates, date_time): # 虚拟函数,返回 [温度(°C),降雨风险(0-1),浪高(m)] return [28.0, 0.35, 0.85] def get_coordinates_from_location(location): # 返回虚拟坐标 return [3.3, -42.0] @tool def get_weather_api(location: str, date_time: str) -> str: """ Returns the weather report. Args: location: the name of the place that you want the weather for. date_time: the date and time for which you want the report. """ lon, lat = convert_location_to_coordinates(location) date_time = datetime.strptime(date_time) return str(get_weather_report_at_coordinates((lon, lat), date_time)) ``` 为什么它不好? - 没有说明 `date_time` 应该使用的格式 - 没有说明位置应该如何指定 - 没有记录机制来处理明确的报错情况,如位置格式不正确或 date_time 格式不正确 - 输出格式难以理解 如果工具调用失败,内存中记录的错误跟踪,可以帮助 LLM 逆向工程工具来修复错误。但为什么要让它做这么多繁重的工作呢? 构建这个工具的更好方式如下: ```python @tool def get_weather_api(location: str, date_time: str) -> str: """ Returns the weather report. Args: location: the name of the place that you want the weather for. Should be a place name, followed by possibly a city name, then a country, like "Anchor Point, Taghazout, Morocco". date_time: the date and time for which you want the report, formatted as '%m/%d/%y %H:%M:%S'. """ lon, lat = convert_location_to_coordinates(location) try: date_time = datetime.strptime(date_time) except Exception as e: raise ValueError("Conversion of `date_time` to datetime format failed, make sure to provide a string in format '%m/%d/%y %H:%M:%S'. Full trace:" + str(e)) temperature_celsius, risk_of_rain, wave_height = get_weather_report_at_coordinates((lon, lat), date_time) return f"Weather report for {location}, {date_time}: Temperature will be {temperature_celsius}°C, risk of rain is {risk_of_rain*100:.0f}%, wave height is {wave_height}m." ``` 一般来说,为了减轻 LLM 的负担,要问自己的好问题是:"如果我是一个第一次使用这个工具的傻瓜,使用这个工具编程并纠正自己的错误有多容易?"。 ### 给 agent 更多参数 除了简单的任务描述字符串外,你还可以使用 `additional_args` 参数传递任何类型的对象: ```py from smolagents import CodeAgent, HfApiModel model_id = "meta-llama/Llama-3.3-70B-Instruct" agent = CodeAgent(tools=[], model=HfApiModel(model_id=model_id), add_base_tools=True) agent.run( "Why does Mike not know many people in New York?", additional_args={"mp3_sound_file_url":'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/recording.mp3'} ) ``` 例如,你可以使用这个 `additional_args` 参数传递你希望 agent 利用的图像或字符串。 ## 如何调试你的 agent ### 1. 使用更强大的 LLM 在 agent 工作流中,有些错误是实际错误,有些则是你的 LLM 引擎没有正确推理的结果。 例如,参考这个我要求创建一个汽车图片的 `CodeAgent` 的运行记录: ```text ==================================================================================================== New task ==================================================================================================== Make me a cool car picture ──────────────────────────────────────────────────────────────────────────────────────────────────── New step ───────────────────────────────────────────────────────────────────────────────────────────────────── Agent is executing the code below: ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── image_generator(prompt="A cool, futuristic sports car with LED headlights, aerodynamic design, and vibrant color, high-res, photorealistic") ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── Last output from code snippet: ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── /var/folders/6m/9b1tts6d5w960j80wbw9tx3m0000gn/T/tmpx09qfsdd/652f0007-3ee9-44e2-94ac-90dae6bb89a4.png Step 1: - Time taken: 16.35 seconds - Input tokens: 1,383 - Output tokens: 77 ──────────────────────────────────────────────────────────────────────────────────────────────────── New step ───────────────────────────────────────────────────────────────────────────────────────────────────── Agent is executing the code below: ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── final_answer("/var/folders/6m/9b1tts6d5w960j80wbw9tx3m0000gn/T/tmpx09qfsdd/652f0007-3ee9-44e2-94ac-90dae6bb89a4.png") ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── Print outputs: Last output from code snippet: ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── /var/folders/6m/9b1tts6d5w960j80wbw9tx3m0000gn/T/tmpx09qfsdd/652f0007-3ee9-44e2-94ac-90dae6bb89a4.png Final answer: /var/folders/6m/9b1tts6d5w960j80wbw9tx3m0000gn/T/tmpx09qfsdd/652f0007-3ee9-44e2-94ac-90dae6bb89a4.png ``` 用户看到的是返回了一个路径,而不是图像。 这看起来像是系统的错误,但实际上 agent 系统并没有导致错误:只是 LLM 大脑犯了一个错误,没有把图像输出,保存到变量中。 因此,它无法再次访问图像,只能利用保存图像时记录的路径,所以它返回的是路径,而不是图像。 调试 agent 的第一步是"使用更强大的 LLM"。像 `Qwen2.5-72B-Instruct` 这样的替代方案不会犯这种错误。 ### 2. 提供更多指导/更多信息 你也可以使用不太强大的模型,只要你更有效地指导它们。 站在模型的角度思考:如果你是模型在解决任务,你会因为系统提示+任务表述+工具描述中提供的信息而挣扎吗? 你需要一些额外的说明吗? 为了提供额外信息,我们不建议立即更改系统提示:默认系统提示有许多调整,除非你非常了解提示,否则你很容易翻车。 更好的指导 LLM 引擎的方法是: - 如果是关于要解决的任务:把所有细节添加到任务中。任务可以有几百页长。 - 如果是关于如何使用工具:你的工具的 description 属性。 ### 3. 更改系统提示(通常不建议) 如果上述说明不够,你可以更改系统提示。 让我们看看它是如何工作的。例如,让我们检查 [`CodeAgent`] 的默认系统提示(下面的版本通过跳过零样本示例进行了缩短)。 ```python print(agent.prompt_templates["system_prompt"]) ``` 你会得到: ```text You are an expert assistant who can solve any task using code blobs. You will be given a task to solve as best you can. To do so, you have been given access to a list of tools: these tools are basically Python functions which you can call with code. To solve the task, you must plan forward to proceed in a series of steps, in a cycle of 'Thought:', 'Code:', and 'Observation:' sequences. At each step, in the 'Thought:' sequence, you should first explain your reasoning towards solving the task and the tools that you want to use. Then in the 'Code:' sequence, you should write the code in simple Python. The code sequence must end with '<end_code>' sequence. During each intermediate step, you can use 'print()' to save whatever important information you will then need. These print outputs will then appear in the 'Observation:' field, which will be available as input for the next step. In the end you have to return a final answer using the `final_answer` tool. Here are a few examples using notional tools: --- {examples} Above example were using notional tools that might not exist for you. On top of performing computations in the Python code snippets that you create, you only have access to these tools: {{tool_descriptions}} {{managed_agents_descriptions}} Here are the rules you should always follow to solve your task: 1. Always provide a 'Thought:' sequence, and a 'Code:\n```py' sequence ending with '```<end_code>' sequence, else you will fail. 2. Use only variables that you have defined! 3. Always use the right arguments for the tools. DO NOT pass the arguments as a dict as in 'answer = wiki({'query': "What is the place where James Bond lives?"})', but use the arguments directly as in 'answer = wiki(query="What is the place where James Bond lives?")'. 4. Take care to not chain too many sequential tool calls in the same code block, especially when the output format is unpredictable. For instance, a call to search has an unpredictable return format, so do not have another tool call that depends on its output in the same block: rather output results with print() to use them in the next block. 5. Call a tool only when needed, and never re-do a tool call that you previously did with the exact same parameters. 6. Don't name any new variable with the same name as a tool: for instance don't name a variable 'final_answer'. 7. Never create any notional variables in our code, as having these in your logs might derail you from the true variables. 8. You can use imports in your code, but only from the following list of modules: {{authorized_imports}} 9. The state persists between code executions: so if in one step you've created variables or imported modules, these will all persist. 10. Don't give up! You're in charge of solving the task, not providing directions to solve it. Now Begin! If you solve the task correctly, you will receive a reward of $1,000,000. ``` 如你所见,有一些占位符,如 `"{{tool_descriptions}}"`:这些将在 agent 初始化时用于插入某些自动生成的工具或管理 agent 的描述。 因此,虽然你可以通过将自定义提示作为参数传递给 `system_prompt` 参数来覆盖此系统提示模板,但你的新系统提示必须包含以下占位符: - `"{{tool_descriptions}}"` 用于插入工具描述。 - `"{{managed_agents_description}}"` 用于插入 managed agent 的描述(如果有)。 - 仅限 `CodeAgent`:`"{{authorized_imports}}"` 用于插入授权导入列表。 然后你可以根据如下,更改系统提示: ```py from smolagents.prompts import CODE_SYSTEM_PROMPT modified_system_prompt = CODE_SYSTEM_PROMPT + "\nHere you go!" # 在此更改系统提示 agent = CodeAgent( tools=[], model=HfApiModel(), system_prompt=modified_system_prompt ) ``` 这也适用于 [`ToolCallingAgent`]。 ### 4. 额外规划 我们提供了一个用于补充规划步骤的模型,agent 可以在正常操作步骤之间定期运行。在此步骤中,没有工具调用,LLM 只是被要求更新它知道的事实列表,并根据这些事实反推它应该采取的下一步。 ```py from smolagents import load_tool, CodeAgent, HfApiModel, DuckDuckGoSearchTool from dotenv import load_dotenv load_dotenv() # 从 Hub 导入工具 image_generation_tool = load_tool("m-ric/text-to-image", trust_remote_code=True) search_tool = DuckDuckGoSearchTool() agent = CodeAgent( tools=[search_tool], model=HfApiModel("Qwen/Qwen2.5-72B-Instruct"), planning_interval=3 # 这是你激活规划的地方! ) # 运行它! result = agent.run( "How long would a cheetah at full speed take to run the length of Pont Alexandre III?", ) ```
smolagents/docs/source/zh/tutorials/building_good_agents.md/0
{ "file_path": "smolagents/docs/source/zh/tutorials/building_good_agents.md", "repo_id": "smolagents", "token_count": 6802 }
import re import string import warnings def normalize_number_str(number_str: str) -> float: # we replace these common units and commas to allow # conversion to float for char in ["$", "%", ","]: number_str = number_str.replace(char, "") try: return float(number_str) except ValueError: print(f"String {number_str} cannot be normalized to number str.") return float("inf") def split_string( s: str, char_list: list[str] = [",", ";"], ) -> list[str]: pattern = f"[{''.join(char_list)}]" return re.split(pattern, s) def is_float(element: any) -> bool: try: float(element) return True except ValueError: return False def question_scorer( model_answer: str, ground_truth: str, ) -> bool: # if gt is a number if is_float(ground_truth): normalized_answer = normalize_number_str(str(model_answer)) return normalized_answer == float(ground_truth) # if gt is a list elif any(char in ground_truth for char in [",", ";"]): # question with the fish: normalization removes punct gt_elems = split_string(ground_truth) ma_elems = split_string(model_answer) # check length is the same if len(gt_elems) != len(ma_elems): warnings.warn("Answer lists have different lengths, returning False.", UserWarning) return False # compare each element as float or str comparisons = [] for ma_elem, gt_elem in zip(ma_elems, gt_elems): if is_float(gt_elem): normalized_ma_elem = normalize_number_str(ma_elem) comparisons.append(normalized_ma_elem == float(gt_elem)) else: # we do not remove punct since comparisons can include punct comparisons.append( normalize_str(ma_elem, remove_punct=False) == normalize_str(gt_elem, remove_punct=False) ) return all(comparisons) # if gt is a str else: return normalize_str(model_answer) == normalize_str(ground_truth) def check_prediction_contains_answer_letters_in_order(prediction, true_answer): prediction = prediction.lower() true_answer = true_answer.lower() if len(prediction) > len(true_answer) * 3: return False i = 0 for letter in true_answer: if letter in prediction[i:]: i += prediction[i:].index(letter) else: return False return True def check_close_call(prediction, true_answer, is_correct): if is_correct: return True else: if is_float(true_answer): return is_correct else: if ( check_prediction_contains_answer_letters_in_order(str(prediction), str(true_answer)) and len(str(true_answer)) * 0.5 <= len(str(prediction)) <= len(str(true_answer)) * 2 ): print(f"Close call: {prediction} vs {true_answer}") return True else: return False def normalize_str(input_str, remove_punct=True) -> str: """ Normalize a string by: - Removing all white spaces - Optionally removing punctuation (if remove_punct is True) - Converting to lowercase Parameters: - input_str: str, the string to normalize - remove_punct: bool, whether to remove punctuation (default: True) Returns: - str, the normalized string """ # Remove all white spaces. Required e.g for seagull vs. sea gull no_spaces = re.sub(r"\s", "", input_str) # Remove punctuation, if specified. if remove_punct: translator = str.maketrans("", "", string.punctuation) return no_spaces.lower().translate(translator) else: return no_spaces.lower()
smolagents/examples/open_deep_research/scripts/gaia_scorer.py/0
{ "file_path": "smolagents/examples/open_deep_research/scripts/gaia_scorer.py", "repo_id": "smolagents", "token_count": 1643 }
#!/usr/bin/env python # coding=utf-8 # Copyright 2025 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from dotenv import load_dotenv from smolagents import CodeAgent, HfApiModel, LiteLLMModel, Model, OpenAIServerModel, Tool, TransformersModel from smolagents.default_tools import TOOL_MAPPING leopard_prompt = "How many seconds would it take for a leopard at full speed to run through Pont des Arts?" def parse_arguments(description): parser = argparse.ArgumentParser(description=description) parser.add_argument( "prompt", type=str, nargs="?", # Makes it optional default=leopard_prompt, help="The prompt to run with the agent", ) parser.add_argument( "--model-type", type=str, default="HfApiModel", help="The model type to use (e.g., HfApiModel, OpenAIServerModel, LiteLLMModel, TransformersModel)", ) parser.add_argument( "--model-id", type=str, default="Qwen/Qwen2.5-Coder-32B-Instruct", help="The model ID to use for the specified model type", ) parser.add_argument( "--imports", nargs="*", # accepts zero or more arguments default=[], help="Space-separated list of imports to authorize (e.g., 'numpy pandas')", ) parser.add_argument( "--tools", nargs="*", default=["web_search"], help="Space-separated list of tools that the agent can use (e.g., 'tool1 tool2 tool3')", ) parser.add_argument( "--verbosity-level", type=int, default=1, help="The verbosity level, as an int in [0, 1, 2].", ) return parser.parse_args() def load_model(model_type: str, model_id: str) -> Model: if model_type == "OpenAIServerModel": return OpenAIServerModel( api_key=os.getenv("FIREWORKS_API_KEY"), api_base="https://api.fireworks.ai/inference/v1", model_id=model_id, ) elif model_type == "LiteLLMModel": return LiteLLMModel( model_id=model_id, api_key=os.getenv("OPENAI_API_KEY"), ) elif model_type == "TransformersModel": return TransformersModel(model_id=model_id, device_map="auto", flatten_messages_as_text=False) elif model_type == "HfApiModel": return HfApiModel( token=os.getenv("HF_API_KEY"), model_id=model_id, ) else: raise ValueError(f"Unsupported model type: {model_type}") def main(): load_dotenv() args = parse_arguments(description="Run a CodeAgent with all specified parameters") model = load_model(args.model_type, args.model_id) available_tools = [] for tool_name in args.tools: if "/" in tool_name: available_tools.append(Tool.from_space(tool_name)) else: if tool_name in TOOL_MAPPING: available_tools.append(TOOL_MAPPING[tool_name]()) else: raise ValueError(f"Tool {tool_name} is not recognized either as a default tool or a Space.") print(f"Running agent with these tools: {args.tools}") agent = CodeAgent(tools=available_tools, model=model, additional_authorized_imports=args.imports) agent.run(args.prompt) if __name__ == "__main__": main()
smolagents/src/smolagents/cli.py/0
{ "file_path": "smolagents/src/smolagents/cli.py", "repo_id": "smolagents", "token_count": 1576 }
# coding=utf-8 # Copyright 2025-present, the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Check that all tests are called in CI.""" from pathlib import Path ROOT = Path(__file__).parent.parent TESTS_FOLDER = ROOT / "tests" CI_WORKFLOW_FILE = ROOT / ".github" / "workflows" / "tests.yml" def check_tests_in_ci(): """List all test files in `./tests/` and check if they are listed in the CI workflow. Since each test file is triggered separately in the CI workflow, it is easy to forget a new one when adding new tests, hence this check. NOTE: current implementation is quite naive but should work for now. Must be updated if one want to ignore some tests or if file naming is updated (currently only files starting by `test_*` are checked) """ test_files = [ path.relative_to(TESTS_FOLDER).as_posix() for path in TESTS_FOLDER.glob("**/*.py") if path.name.startswith("test_") ] ci_workflow_file_content = CI_WORKFLOW_FILE.read_text() missing_test_files = [test_file for test_file in test_files if test_file not in ci_workflow_file_content] if missing_test_files: print( "❌ Some test files seem to be ignored in the CI:\n" + "\n".join(f" - {test_file}" for test_file in missing_test_files) + f"\n Please add them manually in {CI_WORKFLOW_FILE}." ) exit(1) else: print("✅ All good!") exit(0) if __name__ == "__main__": check_tests_in_ci()
smolagents/utils/check_tests_in_ci.py/0
{ "file_path": "smolagents/utils/check_tests_in_ci.py", "repo_id": "smolagents", "token_count": 729 }
# Text Generation Inference - TensorRT-LLM Backend Implementation ## Description This folder provides the sources of the TensorRT-LLM backend implementation powered by TensorRT-LLM Executor new API ## Simplified Request Sequence ```mermaid sequenceDiagram actor User participant TextGenerationInference.HttpServer participant TextGenerationInference.TensorRtLlmBackend participant TextGenerationInference.TensorRtLlmWorkerThread participant TensorRtLlm.Executor participant Nvidia.Gpu User ->> TextGenerationInference.HttpServer: POST /generate TextGenerationInference.HttpServer ->> TextGenerationInference.TensorRtLlmBackend: Validate and forward inputs & parameters TextGenerationInference.TensorRtLlmBackend ->> TextGenerationInference.TensorRtLlmWorkerThread: Allocate a new context and spawn a new thread to handle the request TextGenerationInference.TensorRtLlmWorkerThread ->> TensorRtLlm.Executor: Submit the request to the In-Flight Batcher activate Nvidia.Gpu TensorRtLlm.Executor ->> Nvidia.Gpu: Add the request to the poll for execution TensorRtLlm.Executor -->> TextGenerationInference.TensorRtLlmWorkerThread: Response with an unique request identifier rect rgb(10, 92, 54) loop every 100us rect rgb(15, 81, 50) alt Acquire lock to query executor TextGenerationInference.TensorRtLlmWorkerThread ->> TensorRtLlm.Executor: Poll request number of new token(s) generated else There are new generated tokens TextGenerationInference.TensorRtLlmWorkerThread ->> TensorRtLlm.Executor: Retrieve newly generated tokens TensorRtLlm.Executor -->> TextGenerationInference.TensorRtLlmWorkerThread: Return decoded token information and potential error (omitted) rect rgb(11, 110, 79) alt Generated token is final TensorRtLlm.Executor ->> Nvidia.Gpu: Remove request from the scheduler and from the GPU TextGenerationInference.TensorRtLlmWorkerThread -->> User: Stream the remaining decoded tokens and flush the connection else Generated token is not final TextGenerationInference.TensorRtLlmWorkerThread -->> User: Stream token back to the user as they get decoded end end end end deactivate Nvidia.Gpu end end ```
text-generation-inference/backends/trtllm/README.md/0
{ "file_path": "text-generation-inference/backends/trtllm/README.md", "repo_id": "text-generation-inference", "token_count": 1019 }
/// /// Extract the first line of the provided string reference. /// If there is no lines in the buffer, it returns a string /// which content is defined by the content of `fail` /// # Arguments /// /// * `s`: The string buffer to extract the first-line from /// * `fail`: A string content which is returned if no lines are /// present in `s` /// /// returns: String /// /// # Examples /// /// ``` /// let s = "My name is Morgan.\n I'm working at Hugging Face."; /// first_line(s, "No line in string"); /// ``` #[inline] pub(crate) fn first_line(s: &str, fail: &str) -> String { s.lines().next().unwrap_or(fail).to_string() }
text-generation-inference/backends/trtllm/src/utils.rs/0
{ "file_path": "text-generation-inference/backends/trtllm/src/utils.rs", "repo_id": "text-generation-inference", "token_count": 201 }
use std::sync::Arc; use tokio::sync::{mpsc, oneshot}; use crate::radix::RadixAllocator; #[derive(Debug, Clone)] pub struct BlockAllocation { pub allocation_id: u64, pub blocks: Vec<u32>, pub slots: Vec<u32>, /// Prefix that was cached and for which the KV does not have to /// be recomputed. pub prefix_len: u32, pub(crate) block_allocator: Option<BlockAllocator>, } impl Drop for BlockAllocation { fn drop(&mut self) { if let Some(block_allocator) = self.block_allocator.as_mut() { block_allocator.free(self.blocks.clone(), self.allocation_id) } } } #[derive(Debug, Clone)] pub struct BlockAllocator { /// Channel to communicate with the background task block_allocator: mpsc::UnboundedSender<BlockAllocatorCommand>, } impl BlockAllocator { pub(crate) fn new( max_batch_total_tokens: u32, block_size: u32, prefix_caching: bool, window_size: Option<u32>, ) -> Self { // Create channel let (sender, receiver) = mpsc::unbounded_channel(); // Launch background queue task tokio::spawn(block_allocator_task( max_batch_total_tokens / block_size, block_size, prefix_caching, window_size, receiver, )); Self { block_allocator: sender, } } pub(crate) async fn allocate( &self, tokens: u32, prefill_tokens: Option<Arc<Vec<u32>>>, ) -> Option<BlockAllocation> { let (response_sender, response_receiver) = oneshot::channel(); self.block_allocator .send(BlockAllocatorCommand::Allocate { tokens, prefill_tokens, response_sender, }) .unwrap(); response_receiver.await.unwrap().map(|mut allocation| { allocation.block_allocator = Some(self.clone()); allocation }) } pub(crate) fn free(&self, blocks: Vec<u32>, allocation_id: u64) { self.block_allocator .send(BlockAllocatorCommand::Free { allocation_id, blocks, }) .unwrap(); } } async fn block_allocator_task( blocks: u32, block_size: u32, prefix_caching: bool, window_size: Option<u32>, mut receiver: mpsc::UnboundedReceiver<BlockAllocatorCommand>, ) { let mut allocator: Box<dyn Allocator + Send> = if prefix_caching { Box::new(RadixAllocator::new(block_size, blocks, window_size)) } else { Box::new(SimpleAllocator::new(blocks, block_size, window_size)) }; while let Some(cmd) = receiver.recv().await { match cmd { BlockAllocatorCommand::Free { blocks, allocation_id, } => allocator.free(blocks, allocation_id), BlockAllocatorCommand::Allocate { tokens, prefill_tokens, response_sender, } => { response_sender .send(allocator.allocate(tokens, prefill_tokens)) .unwrap(); } } } } #[derive(Debug)] enum BlockAllocatorCommand { Free { blocks: Vec<u32>, allocation_id: u64, }, Allocate { tokens: u32, prefill_tokens: Option<Arc<Vec<u32>>>, response_sender: oneshot::Sender<Option<BlockAllocation>>, }, } pub trait Allocator { fn allocate( &mut self, tokens: u32, prefill_tokens: Option<Arc<Vec<u32>>>, ) -> Option<BlockAllocation>; fn free(&mut self, blocks: Vec<u32>, allocation_id: u64); } pub struct SimpleAllocator { free_blocks: Vec<u32>, block_size: u32, window_size: Option<u32>, } impl SimpleAllocator { fn new(blocks: u32, block_size: u32, window_size: Option<u32>) -> Self { SimpleAllocator { block_size, // Block 0 is reserved for health checks free_blocks: (1..blocks).collect(), window_size, } } } impl Allocator for SimpleAllocator { fn allocate( &mut self, tokens: u32, _prefill_tokens: Option<Arc<Vec<u32>>>, ) -> Option<BlockAllocation> { // Apply window size let (required_blocks, repeats) = { let (tokens, repeats) = match self.window_size { None => (tokens, 1), Some(window_size) => { let repeats = tokens.div_ceil(window_size); let tokens = core::cmp::min(tokens, window_size); (tokens, repeats as usize) } }; // Pad to a multiple of block size let required_blocks = tokens.div_ceil(self.block_size); (required_blocks, repeats) }; let tokens = tokens as usize; if required_blocks > self.free_blocks.len() as u32 { None } else { let blocks = self .free_blocks .split_off(self.free_blocks.len() - required_blocks as usize); let mut slots = Vec::with_capacity((required_blocks * self.block_size * repeats as u32) as usize); 'slots: for block_id in blocks.repeat(repeats).iter() { for s in (block_id * self.block_size)..((block_id + 1) * self.block_size) { slots.push(s); if slots.len() == tokens { break 'slots; } } } Some(BlockAllocation { allocation_id: 0, blocks, slots, prefix_len: 0, block_allocator: None, }) } } fn free(&mut self, blocks: Vec<u32>, _allocation_id: u64) { self.free_blocks.extend(blocks) } }
text-generation-inference/backends/v3/src/block_allocator.rs/0
{ "file_path": "text-generation-inference/backends/v3/src/block_allocator.rs", "repo_id": "text-generation-inference", "token_count": 3008 }
/// MIT License // // Copyright (c) 2020 hatoo // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. use std::collections::BTreeMap; pub(crate) fn histogram(values: &[f64], bins: usize) -> Vec<(f64, usize)> { assert!(bins >= 2); let mut bucket: Vec<usize> = vec![0; bins]; let min = values.iter().collect::<average::Min>().min(); let max = values.iter().collect::<average::Max>().max(); let step = (max - min) / (bins - 1) as f64; for &v in values { let i = std::cmp::min(((v - min) / step).ceil() as usize, bins - 1); bucket[i] += 1; } bucket .into_iter() .enumerate() .map(|(i, v)| (min + step * i as f64, v)) .collect() } pub(crate) fn percentiles(values: &[f64], pecents: &[i32]) -> BTreeMap<String, f64> { pecents .iter() .map(|&p| { let i = (f64::from(p) / 100.0 * values.len() as f64) as usize; (format!("p{p}"), *values.get(i).unwrap_or(&f64::NAN)) }) .collect() }
text-generation-inference/benchmark/src/utils.rs/0
{ "file_path": "text-generation-inference/benchmark/src/utils.rs", "repo_id": "text-generation-inference", "token_count": 598 }
# Vision Language Model Inference in TGI Visual Language Model (VLM) are models that consume both image and text inputs to generate text. VLM's are trained on a combination of image and text data and can handle a wide range of tasks, such as image captioning, visual question answering, and visual dialog. > What distinguishes VLMs from other text and image models is their ability to handle long context and generate text that is coherent and relevant to the image even after multiple turns or in some cases, multiple images. Below are couple of common use cases for vision language models: - **Image Captioning**: Given an image, generate a caption that describes the image. - **Visual Question Answering (VQA)**: Given an image and a question about the image, generate an answer to the question. - **Mulimodal Dialog**: Generate response to multiple turns of images and conversations. - **Image Information Retrieval**: Given an image, retrieve information from the image. ## How to Use a Vision Language Model? ### Hugging Face Hub Python Library To infer with vision language models through Python, you can use the [`huggingface_hub`](https://pypi.org/project/huggingface-hub/) library. The `InferenceClient` class provides a simple way to interact with the [Inference API](https://huggingface.co/docs/api-inference/index). Images can be passed as URLs or base64-encoded strings. The `InferenceClient` will automatically detect the image format. ```python from huggingface_hub import InferenceClient client = InferenceClient("http://127.0.0.1:3000") image = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png" prompt = f"![]({image})What is this a picture of?\n\n" for token in client.text_generation(prompt, max_new_tokens=16, stream=True): print(token) # This is a picture of an anthropomorphic rabbit in a space suit. ``` ```python from huggingface_hub import InferenceClient import base64 import requests import io client = InferenceClient("http://127.0.0.1:3000") # read image from local file image_path = "rabbit.png" with open(image_path, "rb") as f: image = base64.b64encode(f.read()).decode("utf-8") image = f"data:image/png;base64,{image}" prompt = f"![]({image})What is this a picture of?\n\n" for token in client.text_generation(prompt, max_new_tokens=10, stream=True): print(token) # This is a picture of an anthropomorphic rabbit in a space suit. ``` or via the `chat_completion` endpoint: ```python from huggingface_hub import InferenceClient client = InferenceClient("http://127.0.0.1:3000") chat = client.chat_completion( messages=[ { "role": "user", "content": [ {"type": "text", "text": "Whats in this image?"}, { "type": "image_url", "image_url": { "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png" }, }, ], }, ], seed=42, max_tokens=100, ) print(chat) # ChatCompletionOutput(choices=[ChatCompletionOutputComplete(finish_reason='length', index=0, message=ChatCompletionOutputMessage(role='assistant', content=" The image you've provided features an anthropomorphic rabbit in spacesuit attire. This rabbit is depicted with human-like posture and movement, standing on a rocky terrain with a vast, reddish-brown landscape in the background. The spacesuit is detailed with mission patches, circuitry, and a helmet that covers the rabbit's face and ear, with an illuminated red light on the chest area.\n\nThe artwork style is that of a", name=None, tool_calls=None), logprobs=None)], created=1714589614, id='', model='llava-hf/llava-v1.6-mistral-7b-hf', object='text_completion', system_fingerprint='2.0.2-native', usage=ChatCompletionOutputUsage(completion_tokens=100, prompt_tokens=2943, total_tokens=3043)) ``` or with OpenAI's [client library](https://github.com/openai/openai-python): ```python from openai import OpenAI # init the client but point it to TGI client = OpenAI(base_url="http://localhost:3000/v1", api_key="-") chat_completion = client.chat.completions.create( model="tgi", messages=[ { "role": "user", "content": [ {"type": "text", "text": "Whats in this image?"}, { "type": "image_url", "image_url": { "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png" }, }, ], }, ], stream=False, ) print(chat_completion) # ChatCompletion(id='', choices=[Choice(finish_reason='eos_token', index=0, logprobs=None, message=ChatCompletionMessage(content=' The image depicts an anthropomorphic rabbit dressed in a space suit with gear that resembles NASA attire. The setting appears to be a solar eclipse with dramatic mountain peaks and a partial celestial body in the sky. The artwork is detailed and vivid, with a warm color palette and a sense of an adventurous bunny exploring or preparing for a journey beyond Earth. ', role='assistant', function_call=None, tool_calls=None))], created=1714589732, model='llava-hf/llava-v1.6-mistral-7b-hf', object='text_completion', system_fingerprint='2.0.2-native', usage=CompletionUsage(completion_tokens=84, prompt_tokens=2943, total_tokens=3027)) ``` ### Inference Through Sending `cURL` Requests To use the `generate_stream` endpoint with curl, you can add the `-N` flag. This flag disables curl default buffering and shows data as it arrives from the server. ```bash curl -N 127.0.0.1:3000/generate_stream \ -X POST \ -d '{"inputs":"![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png)What is this a picture of?\n\n","parameters":{"max_new_tokens":16, "seed": 42}}' \ -H 'Content-Type: application/json' # ... # data:{"index":16,"token":{"id":28723,"text":".","logprob":-0.6196289,"special":false},"generated_text":"This is a picture of an anthropomorphic rabbit in a space suit.","details":null} ``` ### Inference Through JavaScript First, we need to install the `@huggingface/inference` library. ```bash npm install @huggingface/inference ``` If you're using the free Inference API, you can use [Huggingface.js](https://huggingface.co/docs/huggingface.js/inference/README)'s `HfInference`. If you're using inference endpoints, you can use `HfInferenceEndpoint` class to easily interact with the Inference API. We can create a `HfInferenceEndpoint` providing our endpoint URL and We can create a `HfInferenceEndpoint` providing our endpoint URL and [Hugging Face access token](https://huggingface.co/settings/tokens). ```js import { HfInferenceEndpoint } from "@huggingface/inference"; const hf = new HfInferenceEndpoint("http://127.0.0.1:3000", "HF_TOKEN"); const prompt = "![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png)What is this a picture of?\n\n"; const stream = hf.textGenerationStream({ inputs: prompt, parameters: { max_new_tokens: 16, seed: 42 }, }); for await (const r of stream) { // yield the generated token process.stdout.write(r.token.text); } // This is a picture of an anthropomorphic rabbit in a space suit. ``` ## Combining Vision Language Models with Other Features VLMs in TGI have several advantages, for example these models can be used in tandem with other features for more complex tasks. For example, you can use VLMs with [Guided Generation](/docs/conceptual/guided-generation) to generate specific JSON data from an image. <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png" width="400" /> </div> For example we can extract information from the rabbit image and generate a JSON object with the location, activity, number of animals seen, and the animals seen. That would look like this: ```json { "activity": "Standing", "animals": ["Rabbit"], "animals_seen": 1, "location": "Rocky surface with mountains in the background and a red light on the rabbit's chest" } ``` All we need to do is provide a JSON schema to the VLM model and it will generate the JSON object for us. ```bash curl localhost:3000/generate \ -X POST \ -H 'Content-Type: application/json' \ -d '{ "inputs":"![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png)What is this a picture of?\n\n", "parameters": { "max_new_tokens": 100, "seed": 42, "grammar": { "type": "json", "value": { "properties": { "location": { "type": "string" }, "activity": { "type": "string" }, "animals_seen": { "type": "integer", "minimum": 1, "maximum": 5 }, "animals": { "type": "array", "items": { "type": "string" } } }, "required": ["location", "activity", "animals_seen", "animals"] } } } }' # { # "generated_text": "{ \"activity\": \"Standing\", \"animals\": [ \"Rabbit\" ], \"animals_seen\": 1, \"location\": \"Rocky surface with mountains in the background and a red light on the rabbit's chest\" }" # } ``` Want to learn more about how Vision Language Models work? Check out the [awesome blog post on the topic](https://huggingface.co/blog/vlms).
text-generation-inference/docs/source/basic_tutorials/visual_language_models.md/0
{ "file_path": "text-generation-inference/docs/source/basic_tutorials/visual_language_models.md", "repo_id": "text-generation-inference", "token_count": 3724 }
import os import json for root, dirs, files in os.walk("."): for filename in files: if filename.endswith(".json"): with open(os.path.join(root, filename), "r") as f: data = json.load(f) print(os.path.join(root, filename)) try: if filename.endswith("_load.json"): for i in range(len(data)): data[i]["details"]["prefill"] = [] else: data["details"]["prefill"] = [] except Exception: pass with open(os.path.join(root, filename), "w") as f: json.dump(data, f, indent=2, ensure_ascii=False)
text-generation-inference/integration-tests/models/__snapshots__/test.py/0
{ "file_path": "text-generation-inference/integration-tests/models/__snapshots__/test.py", "repo_id": "text-generation-inference", "token_count": 388 }
{ "details": { "best_of_sequences": null, "finish_reason": "length", "generated_tokens": 10, "prefill": [], "seed": null, "tokens": [ { "id": 28747, "logprob": -0.54785156, "special": false, "text": ":" }, { "id": 3169, "logprob": -1.4091797, "special": false, "text": " Let" }, { "id": 307, "logprob": -3.0273438, "special": false, "text": " n" }, { "id": 327, "logprob": -0.94433594, "special": false, "text": " =" }, { "id": 28705, "logprob": -0.81347656, "special": false, "text": " " }, { "id": 28740, "logprob": -1.2958984, "special": false, "text": "1" }, { "id": 28734, "logprob": -2.0644531, "special": false, "text": "0" }, { "id": 387, "logprob": -1.9580078, "special": false, "text": " -" }, { "id": 28705, "logprob": -0.5073242, "special": false, "text": " " }, { "id": 28740, "logprob": -1.1816406, "special": false, "text": "1" } ], "top_tokens": null }, "generated_text": ": Let n = 10 - 1" }
text-generation-inference/integration-tests/models/__snapshots__/test_flash_mistral/test_flash_mistral.json/0
{ "file_path": "text-generation-inference/integration-tests/models/__snapshots__/test_flash_mistral/test_flash_mistral.json", "repo_id": "text-generation-inference", "token_count": 865 }
{ "details": { "best_of_sequences": null, "finish_reason": "eos_token", "generated_tokens": 2, "prefill": [], "seed": null, "tokens": [ { "id": 54901, "logprob": -0.84765625, "special": false, "text": "beach" }, { "id": 1, "logprob": -0.008666992, "special": true, "text": "<eos>" } ], "top_tokens": null }, "generated_text": "beach" }
text-generation-inference/integration-tests/models/__snapshots__/test_flash_pali_gemma/test_flash_pali_gemma.json/0
{ "file_path": "text-generation-inference/integration-tests/models/__snapshots__/test_flash_pali_gemma/test_flash_pali_gemma.json", "repo_id": "text-generation-inference", "token_count": 266 }
{ "details": { "best_of_sequences": null, "finish_reason": "length", "generated_tokens": 10, "prefill": [], "seed": null, "tokens": [ { "id": 1241, "logprob": -0.9863281, "special": false, "text": "():" }, { "id": 258, "logprob": -0.21447754, "special": false, "text": "\n " }, { "id": 942, "logprob": -0.43701172, "special": false, "text": " print" }, { "id": 372, "logprob": -0.5361328, "special": false, "text": "(\"" }, { "id": 7371, "logprob": -0.44555664, "special": false, "text": "Hello" }, { "id": 9956, "logprob": -1.2412109, "special": false, "text": " World" }, { "id": 8657, "logprob": -0.7583008, "special": false, "text": "!\")" }, { "id": 185, "logprob": -0.76171875, "special": false, "text": "\n" }, { "id": 185, "logprob": -0.20837402, "special": false, "text": "\n" }, { "id": 1018, "logprob": -1.2470703, "special": false, "text": "print" } ] }, "generated_text": "():\n print(\"Hello World!\")\n\nprint" }
text-generation-inference/integration-tests/models/__snapshots__/test_flash_santacoder/test_flash_santacoder.json/0
{ "file_path": "text-generation-inference/integration-tests/models/__snapshots__/test_flash_santacoder/test_flash_santacoder.json", "repo_id": "text-generation-inference", "token_count": 866 }
{ "choices": [ { "finish_reason": "stop", "index": 0, "logprobs": null, "message": { "content": "{ \"unit\": \"fahrenheit\", \"temperature\": [ 72, 79, 88 ] }", "role": "assistant" } } ], "created": 1732525803, "id": "", "model": "TinyLlama/TinyLlama-1.1B-Chat-v1.0", "object": "chat.completion", "system_fingerprint": "2.4.1-dev0-native", "usage": { "completion_tokens": 29, "prompt_tokens": 136, "total_tokens": 165 } }
text-generation-inference/integration-tests/models/__snapshots__/test_grammar_response_format_llama/test_grammar_response_format_llama_json.json/0
{ "file_path": "text-generation-inference/integration-tests/models/__snapshots__/test_grammar_response_format_llama/test_grammar_response_format_llama_json.json", "repo_id": "text-generation-inference", "token_count": 255 }
import pytest @pytest.fixture(scope="module") def flash_llama_chat_handle(launcher): with launcher( "TinyLlama/TinyLlama-1.1B-Chat-v1.0", num_shard=2, disable_grammar_support=False ) as handle: yield handle @pytest.fixture(scope="module") async def flash_llama_chat(flash_llama_chat_handle): await flash_llama_chat_handle.health(300) return flash_llama_chat_handle.client @pytest.mark.private async def test_flash_llama_simple(flash_llama_chat, response_snapshot): response = await flash_llama_chat.chat( max_tokens=100, seed=1, messages=[ { "role": "system", "content": "Youre a helpful assistant! Answer the users question best you can.", }, { "role": "user", "content": "What is the weather like in Brooklyn, New York?", }, ], ) print(repr(response.choices[0].message.content)) assert ( response.choices[0].message.content == "As of your last question, the weather in Brooklyn, New York, is typically hot and humid throughout the year. The suburbs around New York City are jealously sheltered, and at least in the Lower Bronx, there are very few outdoor environments to appreciate nature.\n\nIn terms of temperature, the warmest times of the year are from June to August, when average high temperatures typically range from around 73°F or 23°C" ) assert response == response_snapshot
text-generation-inference/integration-tests/models/test_chat_llama.py/0
{ "file_path": "text-generation-inference/integration-tests/models/test_chat_llama.py", "repo_id": "text-generation-inference", "token_count": 594 }
import pytest import json from text_generation.types import GrammarType @pytest.fixture(scope="module") def flash_llama_grammar_handle(launcher): with launcher( "TinyLlama/TinyLlama-1.1B-Chat-v1.0", num_shard=2, disable_grammar_support=False ) as handle: yield handle @pytest.fixture(scope="module") async def flash_llama_grammar(flash_llama_grammar_handle): await flash_llama_grammar_handle.health(300) return flash_llama_grammar_handle.client @pytest.mark.asyncio async def test_flash_llama_grammar(flash_llama_grammar, response_snapshot): response = await flash_llama_grammar.generate( "Test request", max_new_tokens=10, decoder_input_details=True ) assert response.details.generated_tokens == 10 assert response == response_snapshot @pytest.mark.skip @pytest.mark.asyncio async def test_flash_llama_grammar_regex(flash_llama_grammar, response_snapshot): response = await flash_llama_grammar.generate( "Whats Googles DNS", max_new_tokens=10, decoder_input_details=True, seed=0, grammar={ "type": GrammarType.Regex, # "regex" "value": "((25[0-5]|2[0-4]\\d|[01]?\\d\\d?)\\.){3}(25[0-5]|2[0-4]\\d|[01]?\\d\\d?)", }, ) assert response.details.generated_tokens == 10 assert response.generated_text == "42.1.1.101" assert response == response_snapshot @pytest.mark.skip @pytest.mark.asyncio async def test_flash_llama_grammar_json(flash_llama_grammar, response_snapshot): response = await flash_llama_grammar.generate( "info: david holtz like trees and has two cats. ", max_new_tokens=100, decoder_input_details=True, seed=0, grammar={ "type": GrammarType.Json, # "json" "value": json.dumps( { "type": "object", "$id": "https://example.com/person.schema.json", "$schema": "https://json-schema.org/draft/2020-12/schema", "title": "Person", "properties": { "firstName": { "type": "string", "description": "The person'''s first name.", }, "lastName": { "type": "string", "description": "The person'''s last name.", }, "hobby": { "description": "The person'''s hobby.", "type": "string", }, "numCats": { "description": "The number of cats the person has.", "type": "integer", "minimum": 0, }, }, "required": ["firstName", "lastName", "hobby", "numCats"], } ), }, ) assert response.details.generated_tokens == 30 assert ( response.generated_text == '{"firstName":"David","hobby":"Trees","lastName":"Holtz","numCats":2}' ) assert response == response_snapshot @pytest.mark.skip @pytest.mark.asyncio async def test_flash_llama_grammar_load( flash_llama_grammar, generate_load, response_snapshot ): responses = await generate_load( flash_llama_grammar, "name: david. email: ", max_new_tokens=10, n=4, stop_sequences=[".com"], seed=0, grammar={ "type": GrammarType.Regex, # "regex" "value": "[\\w-]+@([\\w-]+\\.)+[\\w-]+", # email regex }, ) assert len(responses) == 4 expected = "[email protected]" for response in responses: assert response.generated_text == expected assert all([r.generated_text == responses[0].generated_text for r in responses]) assert responses == response_snapshot # this is the same as the above test, but only fires off a single request # this is only to ensure that the parallel and single inference produce the same result @pytest.mark.skip @pytest.mark.asyncio async def test_flash_llama_grammar_single_load_instance( flash_llama_grammar, generate_load, response_snapshot ): response = await flash_llama_grammar.generate( "name: david. email: ", max_new_tokens=10, stop_sequences=[".com"], seed=0, grammar={ "type": GrammarType.Regex, # "regex" "value": "[\\w-]+@([\\w-]+\\.)+[\\w-]+", # email regex }, ) # assert response.details.generated_tokens == 30 assert response.generated_text == "[email protected]" assert response == response_snapshot
text-generation-inference/integration-tests/models/test_flash_grammar_llama.py/0
{ "file_path": "text-generation-inference/integration-tests/models/test_flash_grammar_llama.py", "repo_id": "text-generation-inference", "token_count": 2366 }
import pytest @pytest.fixture(scope="module") def flash_neox_sharded_handle(launcher): with launcher("OpenAssistant/oasst-sft-1-pythia-12b", num_shard=2) as handle: yield handle @pytest.fixture(scope="module") async def flash_neox_sharded(flash_neox_sharded_handle): await flash_neox_sharded_handle.health(300) return flash_neox_sharded_handle.client @pytest.mark.release @pytest.mark.asyncio async def test_flash_neox(flash_neox_sharded, response_snapshot): response = await flash_neox_sharded.generate( "<|prompter|>What is a meme, and what's the history behind this word?<|endoftext|><|assistant|>", max_new_tokens=10, decoder_input_details=True, ) assert response.details.generated_tokens == 10 assert response == response_snapshot @pytest.mark.release @pytest.mark.asyncio async def test_flash_neox_load(flash_neox_sharded, generate_load, response_snapshot): responses = await generate_load( flash_neox_sharded, "<|prompter|>What is a meme, and what's the history behind this word?<|endoftext|><|assistant|>", max_new_tokens=10, n=4, ) assert len(responses) == 4 assert all([r.generated_text == responses[0].generated_text for r in responses]) assert responses == response_snapshot
text-generation-inference/integration-tests/models/test_flash_neox_sharded.py/0
{ "file_path": "text-generation-inference/integration-tests/models/test_flash_neox_sharded.py", "repo_id": "text-generation-inference", "token_count": 507 }
import pytest @pytest.fixture(scope="module") def flash_idefics3_next_handle(launcher): with launcher("HuggingFaceM4/Idefics3-8B-Llama3") as handle: yield handle @pytest.fixture(scope="module") async def flash_idefics3_next(flash_idefics3_next_handle): await flash_idefics3_next_handle.health(300) return flash_idefics3_next_handle.client @pytest.mark.asyncio @pytest.mark.private async def test_flash_idefics3_next_simple_url(flash_idefics3_next, response_snapshot): ny_skyline = "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg" query = "What is in this image?" response = await flash_idefics3_next.generate( f"<|begin_of_text|><|begin_of_text|>User:![]({ny_skyline}){query}<end_of_utterance>\nAssistant:", max_new_tokens=10, seed=1337, ) print(response) assert ( response.generated_text == " There is a statue in the image." ), f"{repr(response.generated_text)}" assert response.details.generated_tokens == 9 assert response == response_snapshot
text-generation-inference/integration-tests/models/test_idefics3.py/0
{ "file_path": "text-generation-inference/integration-tests/models/test_idefics3.py", "repo_id": "text-generation-inference", "token_count": 454 }
{ buildPythonPackage, poetry-core, huggingface-hub, pydantic, }: buildPythonPackage { name = "text-generation"; src = ../clients/python; pyproject = true; build-system = [ poetry-core ]; dependencies = [ huggingface-hub pydantic ]; }
text-generation-inference/nix/client.nix/0
{ "file_path": "text-generation-inference/nix/client.nix", "repo_id": "text-generation-inference", "token_count": 98 }
/// Text Generation Inference Webserver pub mod config; pub mod infer; pub mod server; pub mod validation; #[cfg(feature = "kserve")] mod kserve; pub mod logging; mod sagemaker; pub mod usage_stats; mod vertex; use crate::infer::tool_grammar::ToolGrammar; use crate::infer::{Infer, InferError}; use pyo3::prelude::*; use pyo3::types::IntoPyDict; use serde::{Deserialize, Serialize}; use tokenizers::Encoding; use tracing::warn; use utoipa::ToSchema; use validation::Validation; #[allow(clippy::large_enum_variant)] #[derive(Clone)] pub enum Tokenizer { Python { tokenizer_name: String, revision: Option<String>, trust_remote_code: bool, }, Rust(tokenizers::Tokenizer), } pub struct PyTokenizer<'a>(pyo3::Bound<'a, pyo3::PyAny>); impl<'a> PyTokenizer<'a> { fn from_py( py: Python<'a>, tokenizer_name: String, revision: Option<String>, trust_remote_code: bool, ) -> PyResult<PyTokenizer<'a>> { let transformers = py.import_bound("transformers")?; let auto = transformers.getattr("AutoTokenizer")?; let from_pretrained = auto.getattr("from_pretrained")?; let args = (tokenizer_name,); let kwargs = if let Some(rev) = &revision { [ ("revision", rev.to_string().into_py(py)), ("trust_remote_code", trust_remote_code.into_py(py)), ] .into_py_dict_bound(py) } else { [("trust_remote_code", trust_remote_code.into_py(py))].into_py_dict_bound(py) }; let tokenizer = from_pretrained.call(args, Some(&kwargs))?; tracing::info!("Loaded a python tokenizer"); Ok(PyTokenizer(tokenizer)) } } trait TokenizerTrait { fn encode_trait( &self, query: String, add_special_tokens: bool, ) -> Result<tokenizers::Encoding, Box<dyn std::error::Error + Send + Sync>>; } impl TokenizerTrait for tokenizers::Tokenizer { fn encode_trait( &self, query: String, add_special_tokens: bool, ) -> Result<tokenizers::Encoding, Box<dyn std::error::Error + Send + Sync>> { self.encode(query, add_special_tokens) } } impl TokenizerTrait for PyTokenizer<'_> { fn encode_trait( &self, query: String, add_special_tokens: bool, ) -> Result<tokenizers::Encoding, Box<dyn std::error::Error + Send + Sync>> { let py = self.0.py(); let kwargs = [ ("text", query.into_py(py)), ("add_special_tokens", add_special_tokens.into_py(py)), ] .into_py_dict_bound(py); let encode = self.0.getattr("encode")?; let input_ids: Vec<u32> = encode.call((), Some(&kwargs))?.extract()?; Ok(Encoding::new( input_ids, vec![], // type ids vec![], // tokens (strings) vec![], // words vec![], // offsets vec![], // special_tokens_mask vec![], // attention_mask vec![], // overflowing std::collections::HashMap::new(), //sequence_ranges )) } } /// Hub type #[derive(Clone, Debug, Deserialize)] pub struct HubModelInfo { #[serde(rename(deserialize = "id"))] pub model_id: String, pub sha: Option<String>, pub pipeline_tag: Option<String>, } #[derive(Debug, Clone, Serialize, Deserialize, PartialEq)] pub struct ChatTemplate { name: String, template: String, } #[derive(Debug, Clone, Serialize, Deserialize, PartialEq)] #[serde(untagged)] pub enum ChatTemplateVersions { Single(String), Multiple(Vec<ChatTemplate>), } use std::path::Path; #[derive(Debug, Clone, Serialize, Deserialize, Default)] pub struct HubTokenizerConfig { pub chat_template: Option<ChatTemplateVersions>, pub completion_template: Option<String>, pub bos_token: Option<TokenizerConfigToken>, pub eos_token: Option<TokenizerConfigToken>, pub tokenizer_class: Option<String>, pub add_bos_token: Option<bool>, pub add_eos_token: Option<bool>, } impl HubTokenizerConfig { pub fn from_file<P: AsRef<Path>>(filename: P) -> Option<Self> { std::fs::read_to_string(filename) .ok() .and_then(|content| serde_json::from_str(&content).ok()) } } #[derive(Debug, Clone, Deserialize, Serialize, PartialEq)] #[serde(untagged)] pub enum TokenizerConfigToken { String(String), Object { content: String }, } impl TokenizerConfigToken { pub fn as_str(&self) -> &str { match self { TokenizerConfigToken::String(s) => s, TokenizerConfigToken::Object { content } => content, } } } #[derive(Debug, Clone, Serialize, Deserialize)] #[serde(tag = "processor_class")] pub enum HubPreprocessorConfig { Idefics2Processor(Idefics2Preprocessor), Idefics3Processor(Idefics2Preprocessor), } impl HubPreprocessorConfig { pub fn from_file<P: AsRef<std::path::Path>>(filename: P) -> Option<Self> { let content = std::fs::read_to_string(filename).ok()?; serde_json::from_str(&content).ok() } } #[derive(Clone, Debug, Serialize, Deserialize)] pub struct Idefics2Preprocessor { #[serde(default)] do_image_splitting: bool, } #[derive(Debug, Clone, Deserialize, Default)] pub struct HubProcessorConfig { pub chat_template: Option<ChatTemplateVersions>, pub image_seq_len: usize, pub processor_class: Option<String>, } impl HubProcessorConfig { pub fn from_file<P: AsRef<Path>>(filename: P) -> Option<Self> { std::fs::read_to_string(filename) .ok() .and_then(|content| serde_json::from_str(&content).ok()) } } #[derive(Clone, Debug, Deserialize, ToSchema, Serialize)] #[cfg_attr(test, derive(PartialEq))] #[serde(tag = "type", content = "value")] pub(crate) enum GrammarType { /// A string that represents a [JSON Schema](https://json-schema.org/). /// /// JSON Schema is a declarative language that allows to annotate JSON documents /// with types and descriptions. #[serde(rename = "json")] #[serde(alias = "json_object")] #[schema(example = json ! ({"properties": {"location":{"type": "string"}}}))] Json(serde_json::Value), #[serde(rename = "regex")] Regex(String), } #[derive(Clone, Debug, Serialize, ToSchema)] pub struct Info { /// Model info #[schema(example = "bigscience/blomm-560m")] pub model_id: String, #[schema(nullable = true, example = "e985a63cdc139290c5f700ff1929f0b5942cced2")] pub model_sha: Option<String>, // #[schema(example = "torch.float16")] // pub model_dtype: String, // #[schema(example = "cuda")] // pub model_device_type: String, #[schema(nullable = true, example = "text-generation")] pub model_pipeline_tag: Option<String>, /// Router Parameters #[schema(example = "128")] pub max_concurrent_requests: usize, #[schema(example = "2")] pub max_best_of: usize, #[schema(example = "4")] pub max_stop_sequences: usize, #[schema(example = "1024")] pub max_input_tokens: usize, #[schema(example = "2048")] pub max_total_tokens: usize, #[schema(example = "2")] pub validation_workers: usize, #[schema(example = "32")] pub max_client_batch_size: usize, /// Router Info #[schema(example = "text-generation-router")] pub router: &'static str, #[schema(example = "0.5.0")] pub version: &'static str, #[schema(nullable = true, example = "null")] pub sha: Option<&'static str>, #[schema(nullable = true, example = "null")] pub docker_label: Option<&'static str>, } #[derive(Clone, Debug, Deserialize, ToSchema, Default)] #[cfg_attr(test, derive(PartialEq))] pub(crate) struct GenerateParameters { /// Generate best_of sequences and return the one if the highest token logprobs. #[serde(default)] #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 1)] pub best_of: Option<usize>, /// The value used to module the logits distribution. #[serde(default)] #[schema( exclusive_minimum = 0.0, nullable = true, default = "null", example = 0.5 )] pub temperature: Option<f32>, /// The parameter for repetition penalty. 1.0 means no penalty. /// See [this paper](https://arxiv.org/pdf/1909.05858.pdf) for more details. #[serde(default)] #[schema( exclusive_minimum = 0.0, nullable = true, default = "null", example = 1.03 )] pub repetition_penalty: Option<f32>, /// The parameter for frequency penalty. 1.0 means no penalty /// Penalize new tokens based on their existing frequency in the text so far, /// decreasing the model's likelihood to repeat the same line verbatim. #[serde(default)] #[schema( exclusive_minimum = -2.0, nullable = true, default = "null", example = 0.1 )] pub frequency_penalty: Option<f32>, /// The number of highest probability vocabulary tokens to keep for top-k-filtering. #[serde(default)] #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 10)] pub top_k: Option<i32>, /// Top-p value for nucleus sampling. #[serde(default)] #[schema( exclusive_minimum = 0.0, maximum = 1.0, nullable = true, default = "null", example = 0.95 )] pub top_p: Option<f32>, /// Typical Decoding mass /// See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information. #[serde(default)] #[schema( exclusive_minimum = 0.0, maximum = 1.0, nullable = true, default = "null", example = 0.95 )] pub typical_p: Option<f32>, /// Activate logits sampling. #[serde(default)] #[schema(default = "false", example = true)] pub do_sample: bool, /// Maximum number of tokens to generate. #[serde(default)] #[schema(nullable = true, default = "1024", example = "20")] pub max_new_tokens: Option<u32>, /// Whether to prepend the prompt to the generated text #[serde(default)] #[schema(nullable = true, default = "null", example = false)] pub return_full_text: Option<bool>, /// Stop generating tokens if a member of `stop` is generated. #[serde(default)] #[schema(inline, max_items = 4, example = json ! (["photographer"]))] pub stop: Vec<String>, /// Truncate inputs tokens to the given size. #[serde(default)] #[schema(nullable = true, default = "null", example = "null")] pub truncate: Option<usize>, /// Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226). #[serde(default)] #[schema(default = "false", example = true)] pub watermark: bool, /// Whether to return generation details. #[serde(default)] #[schema(default = "true")] pub details: bool, /// Whether to return decoder input token logprobs and ids. #[serde(default)] #[schema(default = "false")] pub decoder_input_details: bool, /// Random sampling seed. #[serde(default)] #[schema( exclusive_minimum = 0, nullable = true, default = "null", example = "null" )] pub seed: Option<u64>, /// The number of highest probability vocabulary tokens to keep for top-n-filtering. #[serde(default)] #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 5)] pub top_n_tokens: Option<u32>, /// Grammar constraints for the generation. #[serde(default)] #[schema(nullable = true, default = "null", example = "null")] pub grammar: Option<GrammarType>, /// Lora adapter id #[serde(default)] #[schema(nullable = true, default = "null", example = "null")] pub adapter_id: Option<String>, } fn default_parameters() -> GenerateParameters { GenerateParameters { best_of: None, temperature: None, repetition_penalty: None, frequency_penalty: None, top_k: None, top_p: None, typical_p: None, do_sample: true, max_new_tokens: None, return_full_text: None, stop: Vec::new(), truncate: None, watermark: false, details: false, decoder_input_details: false, seed: None, top_n_tokens: None, grammar: None, adapter_id: None, } } #[derive(Clone, Deserialize, Serialize, ToSchema, Debug)] #[serde(try_from = "PromptDeserializer")] pub struct Prompt(pub Vec<String>); #[derive(Deserialize)] #[serde(untagged)] enum PromptDeserializer { Single(String), Multiple(Vec<String>), } impl TryFrom<PromptDeserializer> for Prompt { type Error = String; fn try_from(value: PromptDeserializer) -> Result<Self, Self::Error> { match value { PromptDeserializer::Single(s) => Ok(Prompt(vec![s])), PromptDeserializer::Multiple(v) => { if v.is_empty() { Err( "Empty array detected. Do not use an empty array for the prompt." .to_string(), ) } else { Ok(Prompt(v)) } } } } } #[derive(Clone, Deserialize, Serialize, ToSchema, Debug)] pub struct CompletionRequest { /// UNUSED #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")] /// ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API. pub model: Option<String>, /// The prompt to generate completions for. #[schema(example = "What is Deep Learning?")] pub prompt: Prompt, /// The maximum number of tokens that can be generated in the chat completion. #[serde(default)] #[schema(default = "1024", example = "32")] pub max_tokens: Option<u32>, /// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while /// lower values like 0.2 will make it more focused and deterministic. We generally recommend altering this or `top_p` but not both. #[serde(default)] #[schema(nullable = true, example = 1.0)] pub temperature: Option<f32>, /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the /// tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered. #[serde(default)] #[schema(nullable = true, example = 0.95)] pub top_p: Option<f32>, #[serde(default = "bool::default")] pub stream: bool, #[schema(nullable = true, example = 42)] pub seed: Option<u64>, /// The text to append to the prompt. This is useful for completing sentences or generating a paragraph of text. /// please see the completion_template field in the model's tokenizer_config.json file for completion template. #[serde(default)] pub suffix: Option<String>, #[serde(default)] pub repetition_penalty: Option<f32>, /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, /// decreasing the model's likelihood to repeat the same line verbatim. #[serde(default)] #[schema(example = "1.0")] pub frequency_penalty: Option<f32>, /// Up to 4 sequences where the API will stop generating further tokens. #[serde(default)] #[schema(nullable = true, example = "null")] pub stop: Option<Vec<String>>, } #[derive(Clone, Serialize, ToSchema)] #[serde(tag = "object")] enum Completion { #[serde(rename = "text_completion")] Chunk(Chunk), #[serde(rename = "text_completion")] Final(CompletionFinal), } #[derive(Clone, Deserialize, Serialize, ToSchema, Default)] pub(crate) struct CompletionFinal { pub id: String, #[schema(example = "1706270835")] pub created: u64, #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")] pub model: String, pub system_fingerprint: String, pub choices: Vec<CompletionComplete>, pub usage: Usage, } #[derive(Clone, Deserialize, Serialize, ToSchema)] pub(crate) struct CompletionComplete { pub index: u32, pub text: String, pub logprobs: Option<Vec<f32>>, pub finish_reason: String, } #[derive(Clone, Deserialize, Serialize, ToSchema)] pub(crate) struct Chunk { pub id: String, pub created: u64, pub choices: Vec<CompletionComplete>, pub model: String, pub system_fingerprint: String, } #[derive(Clone, Deserialize, Serialize, ToSchema)] pub(crate) struct ChatCompletion { pub id: String, #[schema(example = "1706270835")] pub created: u64, #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")] pub model: String, pub system_fingerprint: String, pub choices: Vec<ChatCompletionComplete>, pub usage: Usage, } #[derive(Clone, Deserialize, Serialize, ToSchema)] pub(crate) struct ChatCompletionComplete { pub index: u32, pub message: OutputMessage, pub logprobs: Option<ChatCompletionLogprobs>, pub finish_reason: String, } #[derive(Clone, Deserialize, Serialize, ToSchema)] pub(crate) struct ChatCompletionLogprobs { content: Vec<ChatCompletionLogprob>, } impl From<(Token, Vec<Token>)> for ChatCompletionLogprobs { fn from(value: (Token, Vec<Token>)) -> Self { let (token, top_tokens) = value; Self { content: vec![ChatCompletionLogprob { token: token.text, logprob: token.logprob, top_logprobs: top_tokens .into_iter() .map(|t| ChatCompletionTopLogprob { token: t.text, logprob: t.logprob, }) .collect(), }], } } } impl From<(Vec<Token>, Vec<Vec<Token>>)> for ChatCompletionLogprobs { fn from(value: (Vec<Token>, Vec<Vec<Token>>)) -> Self { let (tokens, top_tokens) = value; // Create an iterator that produces None for top_tokens once it's exhausted let top_tokens_iter = top_tokens .into_iter() .map(Some) .chain(std::iter::repeat(None)); let content = tokens .into_iter() .zip(top_tokens_iter) .map(|(t, top_t_option)| ChatCompletionLogprob { token: t.text, logprob: t.logprob, top_logprobs: match top_t_option { Some(top_t) => top_t .into_iter() .map(|t| ChatCompletionTopLogprob { token: t.text, logprob: t.logprob, }) .collect(), None => vec![], // Handle the case where there are no top tokens }, }) .collect(); Self { content } } } #[derive(Clone, Deserialize, Serialize, ToSchema)] pub(crate) struct ChatCompletionLogprob { token: String, logprob: f32, top_logprobs: Vec<ChatCompletionTopLogprob>, } #[derive(Clone, Deserialize, Serialize, ToSchema)] pub(crate) struct ChatCompletionTopLogprob { token: String, logprob: f32, } #[derive(Clone, Deserialize, Serialize, ToSchema, Default)] pub(crate) struct Usage { pub prompt_tokens: u32, pub completion_tokens: u32, pub total_tokens: u32, } #[derive(Clone, Serialize, ToSchema)] #[serde(tag = "object")] enum CompletionType { #[serde(rename = "chat.completion.chunk")] ChatCompletionChunk(ChatCompletionChunk), #[serde(rename = "chat.completion")] ChatCompletion(ChatCompletion), } impl ChatCompletion { #[allow(clippy::too_many_arguments)] pub(crate) fn new( model: String, system_fingerprint: String, output: Option<String>, created: u64, details: Details, return_logprobs: bool, tool_calls: Option<Vec<ToolCall>>, prompt_tokens: u32, ) -> Self { let message = match (output, tool_calls) { (Some(content), None) => OutputMessage::ChatMessage(TextMessage { role: "assistant".into(), content, }), (None, Some(tool_calls)) => OutputMessage::ToolCall(ToolCallMessage { role: "assistant".to_string(), tool_calls, }), (Some(output), Some(_)) => { warn!("Received both chat and tool call"); OutputMessage::ChatMessage(TextMessage { role: "assistant".into(), content: output, }) } (None, None) => { warn!("Didn't receive an answer"); OutputMessage::ChatMessage(TextMessage { role: "assistant".into(), content: "".to_string(), }) } }; Self { id: String::new(), created, model, system_fingerprint, choices: vec![ChatCompletionComplete { index: 0, message, logprobs: return_logprobs .then(|| ChatCompletionLogprobs::from((details.tokens, details.top_tokens))), finish_reason: details.finish_reason.format(true), }], usage: Usage { prompt_tokens, completion_tokens: details.generated_tokens, total_tokens: prompt_tokens + details.generated_tokens, }, } } } #[derive(Clone, Serialize, ToSchema)] pub(crate) struct ChatCompletionChunk { pub id: String, #[schema(example = "1706270978")] pub created: u64, #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")] pub model: String, pub system_fingerprint: String, pub choices: Vec<ChatCompletionChoice>, pub usage: Option<Usage>, } #[derive(Clone, Serialize, ToSchema)] pub(crate) struct ChatCompletionChoice { pub index: u32, pub delta: ChatCompletionDelta, pub logprobs: Option<ChatCompletionLogprobs>, pub finish_reason: Option<String>, } #[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)] pub struct ToolCallDelta { #[schema(example = "assistant")] role: String, tool_calls: DeltaToolCall, } #[derive(Clone, Debug, Serialize, ToSchema)] #[serde(untagged)] enum ChatCompletionDelta { Chat(TextMessage), Tool(ToolCallDelta), } #[derive(Clone, Deserialize, Serialize, ToSchema, Debug, PartialEq)] pub(crate) struct DeltaToolCall { pub index: u32, pub id: String, pub r#type: String, pub function: Function, } #[derive(Clone, Deserialize, Serialize, ToSchema, Debug, PartialEq)] pub(crate) struct Function { pub name: Option<String>, pub arguments: String, } #[allow(clippy::too_many_arguments)] impl ChatCompletionChunk { pub(crate) fn new( model: String, system_fingerprint: String, delta: Option<String>, tool_calls: Option<Vec<String>>, created: u64, logprobs: Option<ChatCompletionLogprobs>, finish_reason: Option<String>, usage: Option<Usage>, ) -> Self { let delta = match (delta, tool_calls) { (Some(delta), _) => ChatCompletionDelta::Chat(TextMessage { role: "assistant".to_string(), content: delta, }), (None, Some(tool_calls)) => ChatCompletionDelta::Tool(ToolCallDelta { role: "assistant".to_string(), tool_calls: DeltaToolCall { index: 0, id: String::new(), r#type: "function".to_string(), function: Function { name: None, arguments: tool_calls[0].to_string(), }, }, }), (None, None) => ChatCompletionDelta::Chat(TextMessage { role: "assistant".to_string(), content: "".to_string(), }), }; Self { id: String::new(), created, model, system_fingerprint, choices: vec![ChatCompletionChoice { index: 0, delta, logprobs, finish_reason, }], usage, } } } #[derive(Clone, Deserialize, ToSchema, Serialize)] #[cfg_attr(test, derive(Debug, PartialEq, Default))] pub(crate) struct ChatRequest { #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")] /// [UNUSED] ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API. pub model: Option<String>, /// A list of messages comprising the conversation so far. #[schema(example = "[{\"role\": \"user\", \"content\": \"What is Deep Learning?\"}]")] pub messages: Vec<Message>, /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, /// decreasing the model's likelihood to repeat the same line verbatim. #[serde(default)] #[schema(example = "1.0")] pub frequency_penalty: Option<f32>, /// UNUSED /// Modify the likelihood of specified tokens appearing in the completion. Accepts a JSON object that maps tokens /// (specified by their token ID in the tokenizer) to an associated bias value from -100 to 100. Mathematically, /// the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model, /// but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should /// result in a ban or exclusive selection of the relevant token. #[serde(default)] pub logit_bias: Option<Vec<f32>>, /// Whether to return log probabilities of the output tokens or not. If true, returns the log probabilities of each /// output token returned in the content of message. #[serde(default)] #[schema(example = "false")] pub logprobs: Option<bool>, /// An integer between 0 and 5 specifying the number of most likely tokens to return at each token position, each with /// an associated log probability. logprobs must be set to true if this parameter is used. #[serde(default)] #[schema(example = "5")] pub top_logprobs: Option<u32>, /// The maximum number of tokens that can be generated in the chat completion. #[serde(default, alias = "max_completion_tokens")] #[schema(default = "1024", example = "32")] pub max_tokens: Option<u32>, /// UNUSED /// How many chat completion choices to generate for each input message. Note that you will be charged based on the /// number of generated tokens across all of the choices. Keep n as 1 to minimize costs. #[serde(default)] #[schema(nullable = true, example = "2")] pub n: Option<u32>, /// Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, /// increasing the model's likelihood to talk about new topics #[serde(default)] #[schema(nullable = true, example = 0.1)] pub presence_penalty: Option<f32>, /// Up to 4 sequences where the API will stop generating further tokens. #[serde(default)] #[schema(nullable = true, example = "null")] pub stop: Option<Vec<String>>, #[serde(default = "bool::default")] pub stream: bool, #[schema(nullable = true, example = 42)] pub seed: Option<u64>, /// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while /// lower values like 0.2 will make it more focused and deterministic. /// /// We generally recommend altering this or `top_p` but not both. #[serde(default)] #[schema(nullable = true, example = 1.0)] pub temperature: Option<f32>, /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the /// tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered. #[serde(default)] #[schema(nullable = true, example = 0.95)] pub top_p: Option<f32>, /// A list of tools the model may call. Currently, only functions are supported as a tool. Use this to provide a list of /// functions the model may generate JSON inputs for. #[serde(default)] #[schema(nullable = true, example = "null")] pub tools: Option<Vec<Tool>>, /// A prompt to be appended before the tools #[serde(default)] #[schema( nullable = true, example = "Given the functions available, please respond with a JSON for a function call with its proper arguments that best answers the given prompt. Respond in the format {name: function name, parameters: dictionary of argument name and its value}.Do not use variables." )] pub tool_prompt: Option<String>, /// A specific tool to use. If not provided, the model will default to use any of the tools provided in the tools parameter. #[serde(default)] #[schema(nullable = true, default = "auto", example = "auto")] pub tool_choice: ToolChoice, /// Response format constraints for the generation. /// /// NOTE: A request can use `response_format` OR `tools` but not both. #[serde(default)] #[schema(nullable = true, default = "null", example = "null")] pub response_format: Option<GrammarType>, /// Options for streaming response. Only set this when you set stream: true. #[serde(default)] #[schema(nullable = true, example = "null")] pub stream_options: Option<StreamOptions>, } impl ChatRequest { fn try_into_generate(self, infer: &Infer) -> Result<(GenerateRequest, bool), InferError> { let ChatRequest { model, max_tokens, messages, seed, stop, tools, tool_choice, tool_prompt, temperature, response_format, presence_penalty, frequency_penalty, top_p, top_logprobs, .. } = self; let repetition_penalty = presence_penalty.map(|x| x + 2.0); let max_new_tokens = max_tokens; let tool_prompt = tool_prompt .filter(|s| !s.is_empty()) .unwrap_or_else(default_tool_prompt); let stop = stop.unwrap_or_default(); // enable greedy only when temperature is 0 let (do_sample, temperature) = match temperature { Some(temperature) if temperature == 0.0 => (false, None), other => (true, other), }; if response_format.is_some() && tools.is_some() { return Err(InferError::ToolError( "Grammar and tools are mutually exclusive".into(), )); } let (inputs, grammar, using_tools) = match response_format { Some(format) => { let inputs = infer.apply_chat_template(messages, None)?; (inputs, Some(format), false) } None => { if let Some(tools) = tools { match ToolGrammar::apply(tools, tool_choice)? { Some((updated_tools, tool_schema)) => { let grammar = GrammarType::Json(serde_json::json!(tool_schema)); let inputs: String = infer.apply_chat_template( messages, Some((updated_tools, tool_prompt)), )?; (inputs, Some(grammar), true) } None => { // same as if no response_format or tools are set let inputs = infer.apply_chat_template(messages, None)?; (inputs, None, false) } } } else { // if no response_format or tools are set simply apply the chat template to generate inputs let inputs = infer.apply_chat_template(messages, None)?; (inputs, None, false) } } }; Ok(( GenerateRequest { inputs: inputs.to_string(), add_special_tokens: false, parameters: GenerateParameters { best_of: None, temperature, repetition_penalty, frequency_penalty, top_k: None, top_p, typical_p: None, do_sample, max_new_tokens, return_full_text: None, stop, truncate: None, watermark: false, details: true, decoder_input_details: false, seed, top_n_tokens: top_logprobs, grammar, adapter_id: model.filter(|m| *m != "tgi").map(String::from), }, }, using_tools, )) } } #[derive(Clone, Deserialize, ToSchema, Serialize)] #[cfg_attr(test, derive(Debug, PartialEq))] struct StreamOptions { /// If set, an additional chunk will be streamed before the data: [DONE] message. The usage field on this chunk shows the token usage statistics for the entire request, and the choices field will always be an empty array. All other chunks will also include a usage field, but with a null value. #[schema(example = "true")] include_usage: bool, } pub fn default_tool_prompt() -> String { "\nGiven the functions available, please respond with a JSON for a function call with its proper arguments that best answers the given prompt. Respond in the format {name: function name, parameters: dictionary of argument name and its value}.Do not use variables.\n".to_string() } #[derive(Clone, Debug, Deserialize, PartialEq, Serialize)] #[serde(tag = "type")] pub enum TypedChoice { #[serde(rename = "function")] Function { function: FunctionName }, } #[derive(Debug, Clone, PartialEq, Serialize, Deserialize, ToSchema)] pub struct FunctionName { pub name: String, } #[derive(Debug, Clone, PartialEq, Serialize, Deserialize, ToSchema, Default)] #[serde(from = "ToolTypeDeserializer")] #[serde(rename_all = "snake_case")] /// <https://platform.openai.com/docs/guides/function-calling/configuring-function-calling-behavior-using-the-tool_choice-parameter> pub enum ToolChoice { /// Means the model can pick between generating a message or calling one or more tools. #[default] Auto, /// Means the model will not call any tool and instead generates a message. #[serde(rename = "none")] NoTool, /// Means the model must call one or more tools. Required, /// Forces the model to call a specific tool. This structure aligns with the `OpenAI` API schema to force a specific tool. Function(FunctionName), } #[derive(Deserialize, ToSchema)] #[serde(untagged)] /// Controls which (if any) tool is called by the model. /// - `none` means the model will not call any tool and instead generates a message. /// - `auto` means the model can pick between generating a message or calling one or more tools. /// - `required` means the model must call one or more tools. /// - Specifying a particular tool via `{\"type\": \"function\", \"function\": {\"name\": \"my_function\"}}` forces the model to call that tool. /// /// `none` is the default when no tools are present. `auto` is the default if tools are present." enum ToolTypeDeserializer { /// None means `null` was passed in the JSON, and the default choice is applied based on the presence of tools. Null, /// `auto` means the model can pick between generating a message or calling one or more tools. #[schema(example = "auto")] String(String), /// Specifying a particular tool forces the model to call that tool, with structured function details. #[schema(example = r#"{"type": "function", "function": {"name": "my_function"}}"#)] TypedChoice(TypedChoice), } impl From<ToolTypeDeserializer> for ToolChoice { fn from(value: ToolTypeDeserializer) -> Self { match value { ToolTypeDeserializer::Null => ToolChoice::Auto, ToolTypeDeserializer::String(s) => match s.as_str() { "none" => ToolChoice::NoTool, "auto" => ToolChoice::Auto, "required" => ToolChoice::Required, _ => ToolChoice::Function(FunctionName { name: s }), }, ToolTypeDeserializer::TypedChoice(TypedChoice::Function { function }) => { ToolChoice::Function(function) } } } } #[derive(Debug, Deserialize, Serialize, ToSchema, PartialEq)] pub struct JsonSchemaTool { #[serde(flatten)] functions_map: FunctionsMap, properties: Properties, } #[derive(Debug, Serialize, Deserialize, PartialEq)] struct FunctionsMap { #[serde(rename = "$functions")] functions: std::collections::HashMap<String, serde_json::Value>, } #[derive(Debug, Serialize, Deserialize, PartialEq)] struct FunctionRef { #[serde(rename = "$ref")] ref_path: String, } #[derive(Debug, Serialize, Deserialize, PartialEq)] struct Properties { #[serde(serialize_with = "serialize_function")] function: Vec<FunctionRef>, } fn serialize_function<S>(functions: &Vec<FunctionRef>, serializer: S) -> Result<S::Ok, S::Error> where S: serde::Serializer, { use serde::ser::SerializeStruct; let mut state = serializer.serialize_struct("Function", 1)?; state.serialize_field("anyOf", functions)?; state.end() } #[derive(Clone, Debug, Deserialize, Serialize, ToSchema, Default, PartialEq)] pub(crate) struct FunctionDefinition { #[serde(default)] pub description: Option<String>, pub name: String, #[serde(alias = "parameters")] pub arguments: serde_json::Value, } #[derive(Clone, Debug, Deserialize, Serialize, ToSchema)] #[cfg_attr(test, derive(PartialEq))] pub(crate) struct Tool { // The type of the tool. Currently, only 'function' is supported. #[schema(example = "function")] pub r#type: String, // Grab the tool as generic JSON for debugging purposes. pub function: FunctionDefinition, } #[derive(Clone, Serialize, Deserialize, Default)] pub(crate) struct ChatTemplateInputs<'a> { messages: Vec<TextMessage>, bos_token: Option<&'a str>, eos_token: Option<&'a str>, add_generation_prompt: bool, tools: Option<Vec<Tool>>, } #[derive(Clone, Deserialize, Serialize, ToSchema, Default, Debug, PartialEq)] pub(crate) struct ToolCall { pub id: String, pub r#type: String, pub function: FunctionDefinition, } #[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)] pub struct Url { url: String, } #[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)] #[serde(tag = "type")] #[serde(rename_all = "snake_case")] pub enum MessageChunk { Text { text: String }, ImageUrl { image_url: Url }, } #[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)] pub struct Message { #[schema(example = "user")] role: String, #[schema(example = "My name is David and I")] pub content: MessageContent, #[serde(default, skip_serializing_if = "Option::is_none")] #[schema(example = "\"David\"")] name: Option<String>, } #[derive(Clone, Deserialize, Serialize, ToSchema, Debug, PartialEq)] #[serde(untagged)] pub enum MessageContent { SingleText(String), MultipleChunks(Vec<MessageChunk>), } // Pushing a chunk to a single text message will convert it to a multiple chunks message impl MessageContent { pub fn push(&mut self, chunk: MessageChunk) { match self { MessageContent::SingleText(text) => { *self = MessageContent::MultipleChunks(vec![ MessageChunk::Text { text: text.clone() }, chunk, ]); } MessageContent::MultipleChunks(chunks) => { chunks.push(chunk); } } } } #[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)] pub struct TextMessage { #[schema(example = "user")] pub role: String, #[schema(example = "My name is David and I")] pub content: String, } impl From<Message> for TextMessage { fn from(value: Message) -> Self { TextMessage { role: value.role, content: match value.content { MessageContent::SingleText(text) => text, MessageContent::MultipleChunks(chunks) => chunks .into_iter() .map(|chunk| match chunk { MessageChunk::Text { text } => text, MessageChunk::ImageUrl { image_url } => format!("![]({})", image_url.url), }) .collect::<Vec<_>>() .join(""), }, } } } #[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)] pub struct ToolCallMessage { #[schema(example = "assistant")] role: String, tool_calls: Vec<ToolCall>, } #[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)] #[serde(untagged)] pub(crate) enum OutputMessage { ChatMessage(TextMessage), ToolCall(ToolCallMessage), } #[derive(Clone, Debug, Deserialize, ToSchema)] #[cfg_attr(test, derive(PartialEq))] pub(crate) struct GenerateRequest { #[schema(example = "My name is Olivier and I")] pub inputs: String, #[serde(default = "default_parameters")] pub parameters: GenerateParameters, /// This is used internally because some requests /// already contain the templated input therefore /// we shouldn't add the special tokens. #[serde(default = "default_true", skip)] pub add_special_tokens: bool, } fn default_true() -> bool { true } #[derive(Clone, Debug, Deserialize, ToSchema)] pub(crate) struct CompatGenerateRequest { #[schema(example = "My name is Olivier and I")] pub inputs: String, #[serde(default = "default_parameters")] pub parameters: GenerateParameters, #[serde(default)] #[schema(default = "false")] pub stream: bool, } impl From<CompatGenerateRequest> for GenerateRequest { fn from(req: CompatGenerateRequest) -> Self { Self { inputs: req.inputs, add_special_tokens: true, parameters: req.parameters, } } } #[derive(Debug, Serialize, ToSchema)] pub struct PrefillToken { #[schema(example = 0)] pub id: u32, #[schema(example = "test")] pub text: String, #[schema(nullable = true, example = - 0.34)] pub logprob: f32, } #[derive(Debug, Serialize, ToSchema, Clone)] pub struct Token { #[schema(example = 0)] pub id: u32, #[schema(example = "test")] pub text: String, #[schema(nullable = true, example = - 0.34)] pub logprob: f32, #[schema(example = "false")] pub special: bool, } #[derive(Debug, Serialize, ToSchema)] pub struct SimpleToken { #[schema(example = 0)] id: u32, #[schema(example = "test")] text: String, #[schema(example = 0)] start: usize, #[schema(example = 2)] stop: usize, } #[derive(Debug, Serialize, ToSchema, Clone)] #[serde(rename_all(serialize = "snake_case"))] #[schema(example = "Length")] pub enum FinishReason { #[schema(rename = "length")] Length, #[serde(rename = "eos_token")] #[schema(rename = "eos_token")] EndOfSequenceToken, #[schema(rename = "stop_sequence")] StopSequence, } impl std::fmt::Display for FinishReason { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { match self { FinishReason::Length => write!(f, "length"), FinishReason::EndOfSequenceToken => write!(f, "eos_token"), FinishReason::StopSequence => write!(f, "stop_sequence"), } } } impl FinishReason { pub fn format(&self, use_stop: bool) -> String { match self { FinishReason::EndOfSequenceToken if use_stop => "stop".to_string(), _ => self.to_string(), } } } #[derive(Serialize, ToSchema)] pub(crate) struct BestOfSequence { #[schema(example = "test")] pub generated_text: String, #[schema(example = "length")] pub finish_reason: FinishReason, #[schema(example = 1)] pub generated_tokens: u32, #[schema(nullable = true, example = 42)] pub seed: Option<u64>, pub prefill: Vec<PrefillToken>, pub tokens: Vec<Token>, #[serde(skip_serializing_if = "Vec::is_empty")] pub top_tokens: Vec<Vec<Token>>, } #[derive(Serialize, ToSchema)] pub(crate) struct Details { #[schema(example = "length")] pub finish_reason: FinishReason, #[schema(example = 1)] pub generated_tokens: u32, #[schema(nullable = true, example = 42)] pub seed: Option<u64>, pub prefill: Vec<PrefillToken>, pub tokens: Vec<Token>, #[serde(skip_serializing_if = "Option::is_none")] pub best_of_sequences: Option<Vec<BestOfSequence>>, #[serde(skip_serializing_if = "Vec::is_empty")] pub top_tokens: Vec<Vec<Token>>, } #[derive(Serialize, ToSchema)] pub(crate) struct GenerateResponse { #[schema(example = "test")] pub generated_text: String, #[serde(skip_serializing_if = "Option::is_none")] pub details: Option<Details>, } #[derive(Serialize, ToSchema)] pub(crate) struct ChatTokenizeResponse { pub(crate) tokenize_response: TokenizeResponse, pub(crate) templated_text: String, } #[derive(Serialize, ToSchema)] #[serde(transparent)] pub(crate) struct TokenizeResponse(Vec<SimpleToken>); #[derive(Serialize, ToSchema)] pub(crate) struct StreamDetails { #[schema(example = "length")] pub finish_reason: FinishReason, #[schema(example = 1)] pub generated_tokens: u32, #[schema(nullable = true, example = 42)] pub seed: Option<u64>, #[schema(example = 1)] pub input_length: u32, } #[derive(Serialize, ToSchema)] pub(crate) struct StreamResponse { pub index: u32, pub token: Token, #[serde(skip_serializing_if = "Vec::is_empty")] pub top_tokens: Vec<Token>, #[schema(nullable = true, default = "null", example = "test")] pub generated_text: Option<String>, #[schema(nullable = true, default = "null")] pub details: Option<StreamDetails>, } #[derive(Serialize, ToSchema)] pub(crate) struct ErrorResponse { pub error: String, pub error_type: String, } #[derive(Serialize, Deserialize, ToSchema)] pub(crate) struct ModelInfo { #[schema(example = "gpt2")] pub id: String, #[schema(example = "model")] pub object: String, #[schema(example = 1686935002)] pub created: u64, #[schema(example = "openai")] pub owned_by: String, } #[derive(Serialize, Deserialize, ToSchema)] pub(crate) struct ModelsInfo { #[schema(example = "list")] pub object: String, pub data: Vec<ModelInfo>, } impl Default for ModelsInfo { fn default() -> Self { ModelsInfo { object: "list".to_string(), data: Vec::new(), } } } #[cfg(test)] mod tests { use super::*; use serde_json::json; pub(crate) fn get_tokenizer() -> Tokenizer { let api = hf_hub::api::sync::Api::new().unwrap(); let repo = api.model("gpt2".to_string()); let filename = repo.get("tokenizer.json").unwrap(); Tokenizer::Rust(tokenizers::Tokenizer::from_file(filename).unwrap()) } #[test] fn test_hub_nested_tokens_tokenizer_config() { // this is a subset of the tokenizer.json file // in this case we expect the tokens to be encoded as simple strings let json_content = r#"{ "chat_template": "test", "bos_token": "<|begin▁of▁sentence|>", "eos_token": "<|end▁of▁sentence|>" }"#; let config: HubTokenizerConfig = serde_json::from_str(json_content).unwrap(); // check that we successfully parsed the tokens assert_eq!( config.chat_template, Some(ChatTemplateVersions::Single("test".to_string())) ); assert_eq!( config.bos_token, Some(TokenizerConfigToken::String( "<|begin▁of▁sentence|>".to_string() )) ); assert_eq!( config.eos_token, Some(TokenizerConfigToken::String( "<|end▁of▁sentence|>".to_string() )) ); // in this case we expect the tokens to be encoded as structured tokens // we want the content of the structured token let json_content = r#"{ "chat_template": "test", "bos_token": { "__type": "AddedToken", "content": "<|begin▁of▁sentence|>", "lstrip": false, "normalized": true, "rstrip": false, "single_word": false }, "eos_token": { "__type": "AddedToken", "content": "<|end▁of▁sentence|>", "lstrip": false, "normalized": true, "rstrip": false, "single_word": false } }"#; let config: HubTokenizerConfig = serde_json::from_str(json_content).unwrap(); // check that we successfully parsed the tokens assert_eq!( config.chat_template, Some(ChatTemplateVersions::Single("test".to_string())) ); assert_eq!( config.bos_token, Some(TokenizerConfigToken::Object { content: "<|begin▁of▁sentence|>".to_string() }) ); assert_eq!( config.eos_token, Some(TokenizerConfigToken::Object { content: "<|end▁of▁sentence|>".to_string() }) ); } #[test] fn test_chat_simple_string() { let json = json!({ "model": "", "messages": [{ "role": "user", "content": "What is Deep Learning?" }] }); let request: ChatRequest = serde_json::from_str(json.to_string().as_str()).unwrap(); assert_eq!( request.messages[0], Message { role: "user".to_string(), content: MessageContent::SingleText("What is Deep Learning?".to_string()), name: None } ); } #[test] fn test_message_content_append() { let mut content = MessageContent::SingleText("Initial text".to_string()); let chunk = MessageChunk::Text { text: "Additional text".to_string(), }; content.push(chunk); match content { MessageContent::MultipleChunks(chunks) => { assert_eq!(chunks.len(), 2); assert_eq!( chunks[0], MessageChunk::Text { text: "Initial text".to_string() } ); assert_eq!( chunks[1], MessageChunk::Text { text: "Additional text".to_string() } ); } _ => panic!("Expected MultipleChunks, but got a different variant"), } } #[test] fn test_chat_request() { let json = json!({ "model": "", "messages": [{ "role": "user", "content": [ {"type": "text", "text": "Whats in this image?"}, {"type": "image_url", "image_url": {"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png"}}, ] }] }); let request: ChatRequest = serde_json::from_str(json.to_string().as_str()).unwrap(); assert_eq!( request.messages[0], Message{ role: "user".to_string(), content: MessageContent::MultipleChunks(vec![ MessageChunk::Text { text: "Whats in this image?".to_string() }, MessageChunk::ImageUrl { image_url: Url { url: "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png".to_string() }}, ]), name: None } ); } #[test] fn text_message_convert() { let message = Message{ role: "user".to_string(), content: MessageContent::MultipleChunks(vec![ MessageChunk::Text { text: "Whats in this image?".to_string() }, MessageChunk::ImageUrl { image_url: Url { url: "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png".to_string() } } ]), name: None }; let textmsg: TextMessage = message.into(); assert_eq!(textmsg.content, "Whats in this image?![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png)"); } #[test] fn test_chat_stream_options() { let json = json!({ "model": "", "stream_options": {"include_usage": true}, "messages": [{ "role": "user", "content": "Hello" }] }); let request: ChatRequest = serde_json::from_str(json.to_string().as_str()).unwrap(); assert!(matches!( request.stream_options, Some(StreamOptions { include_usage: true }) )); } #[test] fn openai_output() { let message = OutputMessage::ChatMessage(TextMessage { role: "assistant".to_string(), content: "This is the answer".to_string(), }); let serialized = serde_json::to_string(&message).unwrap(); assert_eq!( serialized, r#"{"role":"assistant","content":"This is the answer"}"# ); let message = OutputMessage::ToolCall(ToolCallMessage { role: "assistant".to_string(), tool_calls: vec![ToolCall { id: "0".to_string(), r#type: "function".to_string(), function: FunctionDefinition { description: None, name: "myfn".to_string(), arguments: json!({ "format": "csv" }), }, }], }); let serialized = serde_json::to_string(&message).unwrap(); assert_eq!( serialized, r#"{"role":"assistant","tool_calls":[{"id":"0","type":"function","function":{"description":null,"name":"myfn","arguments":{"format":"csv"}}}]}"# ); } #[test] fn tool_choice_formats() { #[derive(Deserialize)] struct TestRequest { tool_choice: ToolChoice, } let de_none: TestRequest = serde_json::from_str(r#"{"tool_choice":"none"}"#).unwrap(); assert_eq!(de_none.tool_choice, ToolChoice::NoTool); let de_auto: TestRequest = serde_json::from_str(r#"{"tool_choice":"auto"}"#).unwrap(); assert_eq!(de_auto.tool_choice, ToolChoice::Auto); let de_required: TestRequest = serde_json::from_str(r#"{"tool_choice":"required"}"#).unwrap(); assert_eq!(de_required.tool_choice, ToolChoice::Required); let de_named: TestRequest = serde_json::from_str(r#"{"tool_choice":"myfn"}"#).unwrap(); assert_eq!( de_named.tool_choice, ToolChoice::Function(FunctionName { name: "myfn".to_string(), }) ); let de_openai_named: TestRequest = serde_json::from_str( r#"{"tool_choice":{"type":"function","function":{"name":"myfn"}}}"#, ) .unwrap(); assert_eq!( de_openai_named.tool_choice, ToolChoice::Function(FunctionName { name: "myfn".to_string(), }) ); } }
text-generation-inference/router/src/lib.rs/0
{ "file_path": "text-generation-inference/router/src/lib.rs", "repo_id": "text-generation-inference", "token_count": 25379 }
// Adapted from turboderp exllama: https://github.com/turboderp/exllama #include <ATen/cuda/CUDAContext.h> #include "q4_matrix.cuh" #include <vector> #include "../util.cuh" #include "../matrix.cuh" using namespace std; const int UNSHUF_BLOCKSIZE_X = 64; const int RECONS_THREADS_X = 64; // Block size and thread count along columns in out, each thread converts 1 column const int RECONS_THREADS_Y = 1; // Block size and thread count along rows in x and out, each thread converts 8 rows vector<Q4Matrix*> g_q4_matrices; void g_q4_keep_matrix(Q4Matrix* m) { g_q4_matrices.push_back(m); } void g_q4_free_matrices() { for (const auto& m : g_q4_matrices) delete m; g_q4_matrices.clear(); } Q4Matrix::Q4Matrix ( const int _height, const int _width, const int _groups, uint32_t* _qweight, uint32_t* _qzeros, half* _scales, uint32_t* _g_idx, const int _device ) : height(_height), width(_width), groups(_groups), device(_device) { cudaSetDevice(device); cuda_qweight = _qweight; cuda_qzeros = _qzeros; cuda_scales = _scales; groupsize = height / groups; if (_g_idx) make_sequential(_g_idx); } Q4Matrix::~Q4Matrix() { } // Make sequential __global__ void make_sequential_kernel ( const uint32_t* __restrict__ w, uint32_t* __restrict__ w_new, const uint32_t* __restrict__ x_map, const int w_height, const int w_width ) { const uint64_t* w2 = (uint64_t*) w; uint64_t* w_new2 = (uint64_t*) w_new; int w2_stride = w_width >> 1; int w2_column = UNSHUF_BLOCKSIZE_X * blockIdx.x + threadIdx.x; int w_new2_row = blockIdx.y; int x_map_idx = w_new2_row << 3; uint64_t dst = 0; #pragma unroll for (int i = 0; i < 8; i++) { int source_row = x_map[x_map_idx++]; int w2_row = source_row >> 3; int w2_subrow = source_row & 0x07; int w2_row_shift = w2_subrow << 2; int wnew2_row_shift = i << 2; uint64_t src = w2[w2_row * w2_stride + w2_column]; src >>= w2_row_shift; src &= 0x0000000f0000000f; src <<= wnew2_row_shift; dst |= src; } w_new2[w_new2_row * w2_stride + w2_column] = dst; } void Q4Matrix::make_sequential(const uint32_t* cpu_g_idx) { uint32_t* cuda_new_qweight = NULL; cudaMalloc(&cuda_new_qweight, height / 8 * width * sizeof(uint32_t)); cudaMalloc(&cuda_x_map, height * sizeof(uint32_t)); // TODO: Should probably be allocated in PyTorch uint32_t* cpu_g_idx_map = (uint32_t*) calloc(groups, sizeof(uint32_t)); uint32_t* cpu_x_map = (uint32_t*) malloc(height * sizeof(uint32_t)); uint32_t* cpu_x_map_inv = (uint32_t*) malloc(height * sizeof(uint32_t)); // Group histogram for (int i = 0; i < height; i++) cpu_g_idx_map[cpu_g_idx[i]]++; // Group map for (int i = 0, acc = 0; i < groups; i++) { short tmp = cpu_g_idx_map[i]; cpu_g_idx_map[i] = acc; acc += tmp; } // X map (inverse) for (int row = 0; row < height; row++) { uint32_t target_group = cpu_g_idx[row]; uint32_t target_row = cpu_g_idx_map[target_group]; cpu_g_idx_map[target_group]++; cpu_x_map_inv[row] = target_row; } // X map for (int row = 0; row < height; row++) cpu_x_map[cpu_x_map_inv[row]] = row; // Move to CUDA cudaMemcpyAsync(cuda_x_map, cpu_x_map, height * sizeof(uint32_t), cudaMemcpyHostToDevice); // Rearrange rows in w dim3 threads(UNSHUF_BLOCKSIZE_X, 1, 1); dim3 blocks(width / UNSHUF_BLOCKSIZE_X / 2, height / 8, 1); const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); make_sequential_kernel<<<blocks, threads, 0, stream>>>(cuda_qweight, cuda_new_qweight, cuda_x_map, height / 8, width); // Replace qweights cudaMemcpyAsync(cuda_qweight, cuda_new_qweight, height / 8 * width * sizeof(uint32_t), cudaMemcpyDeviceToDevice); // Cleanup cudaDeviceSynchronize(); cudaFree(cuda_new_qweight); free(cpu_g_idx_map); free(cpu_x_map); free(cpu_x_map_inv); } __global__ void reconstruct_kernel ( const uint32_t* __restrict__ w, half* __restrict__ out, // (y) const half* __restrict__ w_scales, const uint32_t* __restrict__ w_zeros, const int height, const int width, const int groupsize ) { // Start of block int column = RECONS_THREADS_X * blockIdx.x + threadIdx.x; int row = (RECONS_THREADS_Y * blockIdx.y + threadIdx.y) * 8; // Views MatrixView_q4_column w_(w, height, width); MatrixView_half_rw out_(out, height, width); MatrixView_half w_scales_(w_scales, height / groupsize, width); MatrixView_q4_row w_zeros_(w_zeros, height / groupsize, width); // Groupsize version int group = row / groupsize; half w_scale = w_scales_.item(group, column); uint32_t w_zero = (w_zeros_.item(group, column) + 1) & 0x0F; uint32_t w_read = w_.item_uint32_t(row, column); half* out_ptr = out_.item_ptr(row, column); #pragma unroll for (int s = 0; s < 32; s += 4) { half w_item = __hmul(__int2half_rn((int)((w_read >> s) & 0x0f) - w_zero), w_scale); *out_ptr = w_item; out_ptr += out_.width; } } void Q4Matrix::reconstruct(half* out) { dim3 threads(RECONS_THREADS_X, RECONS_THREADS_Y, 1); dim3 blocks ( (width + threads.x - 1) / threads.x, (height / 8 + threads.y - 1) / threads.y, 1 ); const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); reconstruct_kernel<<<blocks, threads, 0, stream>>>(cuda_qweight, out, cuda_scales, cuda_qzeros, height / 8, width, groupsize); }
text-generation-inference/server/exllama_kernels/exllama_kernels/cuda_func/q4_matrix.cu/0
{ "file_path": "text-generation-inference/server/exllama_kernels/exllama_kernels/cuda_func/q4_matrix.cu", "repo_id": "text-generation-inference", "token_count": 2592 }
#include "q_matrix.cuh" #include "matrix_view.cuh" #include "util.cuh" #include "quant/qdq_2.cuh" #include "quant/qdq_3.cuh" #include "quant/qdq_4.cuh" #include "quant/qdq_5.cuh" #include "quant/qdq_6.cuh" #include "quant/qdq_8.cuh" #define BLOCK_KN_SIZE 128 #define THREADS_X 32 #define THREADS_Y 32 // Shuffle quantized data on load __global__ void shuffle_kernel ( uint32_t* __restrict__ b_q_weight, const int size_k, const int size_n, const int rows_8, const int rows_6, const int rows_5, const int rows_4, const int rows_3, const int rows_2 ) { int n = blockIdx.x * THREADS_X + threadIdx.x; if (n >= size_n) return; int k = 0; uint32_t* b_ptr = b_q_weight + n; while (k < rows_8) { shuffle_8bit_4 (b_ptr, size_n); b_ptr += 1 * size_n; k += 4; } while (k < rows_6) { shuffle_6bit_16(b_ptr, size_n); b_ptr += 3 * size_n; k += 16; } while (k < rows_5) { shuffle_5bit_32(b_ptr, size_n); b_ptr += 5 * size_n; k += 32; } while (k < rows_4) { shuffle_4bit_8 (b_ptr, size_n); b_ptr += 1 * size_n; k += 8; } while (k < rows_3) { shuffle_3bit_32(b_ptr, size_n); b_ptr += 3 * size_n; k += 32; } while (k < rows_2) { shuffle_2bit_16(b_ptr, size_n); b_ptr += 1 * size_n; k += 16; } } // QMatrix constructor QMatrix::QMatrix ( const int _device, const int _height, const int _width, const int _groups, uint32_t* _q_weight, uint16_t* _q_perm, uint16_t* _q_invperm, uint32_t* _q_scale, half* _q_scale_max, uint16_t* _q_groups, uint16_t* _q_group_map, uint32_t* _gptq_qzeros, half* _gptq_scales, uint32_t* _gptq_g_idx, half* _temp_dq ) : device(_device), height(_height), width(_width), groups(_groups), temp_dq(_temp_dq) { cudaSetDevice(device); failed = false; cuda_q_weight = _q_weight; cuda_q_perm = _q_perm; cuda_q_invperm = _q_invperm; cuda_q_scale = _q_scale; cuda_q_scale_max = _q_scale_max; cuda_q_groups = _q_groups; cuda_q_group_map = _q_group_map; cuda_gptq_qzeros = _gptq_qzeros; cuda_gptq_scales = _gptq_scales; is_gptq = (_gptq_qzeros != NULL); if (is_gptq) { gptq_groupsize = 1; while (gptq_groupsize * groups < height) gptq_groupsize *= 2; } // Create group map rows_8 = 0; rows_6 = 0; rows_5 = 0; rows_4 = 0; rows_3 = 0; rows_2 = 0; if (!is_gptq) { uint16_t* cpu_q_groups = (uint16_t*)calloc(groups * 2, sizeof(uint16_t)); cudaMemcpy(cpu_q_groups, cuda_q_groups, groups * 2 * sizeof(uint16_t), cudaMemcpyDeviceToHost); int row = 0; for (int i = 0; i < groups; i++) { int bits = cpu_q_groups[i * 2]; int rows; if (i < groups - 1) { int qrows = cpu_q_groups[i * 2 + 3] - cpu_q_groups[i * 2 + 1]; rows = qrows * 32 / bits; } else rows = height - row; if (bits == 8) rows_8 += rows; if (bits == 6) rows_6 += rows; if (bits == 5) rows_5 += rows; if (bits == 4) rows_4 += rows; if (bits == 3) rows_3 += rows; if (bits == 2) rows_2 += rows; row += rows; } free(cpu_q_groups); rows_6 += rows_8; rows_5 += rows_6; rows_4 += rows_5; rows_3 += rows_4; rows_2 += rows_3; } else { rows_4 = height; rows_3 = height; rows_2 = height; if (_gptq_g_idx) { if (!make_sequential(_gptq_g_idx)) { failed = true; //printf("FAIL\n"); return; } } } // DBGI(rows_8); // DBGI(rows_6); // DBGI(rows_5); // DBGI(rows_4); // DBGI(rows_3); // DBGI(rows_2); // Shuffle quantized data dim3 blockDim, gridDim; blockDim.x = THREADS_X; blockDim.y = 1; gridDim.x = DIVIDE(width, THREADS_X); gridDim.y = 1; const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); shuffle_kernel<<<gridDim, blockDim, 0, stream>>>(cuda_q_weight, height, width, rows_8, rows_6, rows_5, rows_4, rows_3, rows_2); } QMatrix::~QMatrix() { } // Reconstruct b[k,n] (GPTQ) __global__ void reconstruct_gptq_kernel ( const uint32_t* __restrict__ b_q_weight, const uint16_t* __restrict__ b_q_perm, const uint32_t* __restrict__ b_gptq_qzeros, const half* __restrict__ b_gptq_scales, //const uint16_t* __restrict__ b_q_groups, const int size_k, const int size_n, const int groupsize, const int groups, half* __restrict__ b, const int rows_4 ) { MatrixView_half_rw b_(b, size_k, size_n); MatrixView_q4_row b_gptq_qzeros_(b_gptq_qzeros, groups, size_n); MatrixView_half b_gptq_scales_(b_gptq_scales, groups, size_n); int offset_k = BLOCK_KN_SIZE * blockIdx.y; int offset_n = BLOCK_KN_SIZE * blockIdx.x * 4; int end_k = min(offset_k + BLOCK_KN_SIZE, size_k); // Preload remapping table __shared__ uint16_t perm[BLOCK_KN_SIZE]; int t = threadIdx.x; if (b_q_perm) { if (offset_k + t < size_k) perm[t] = b_q_perm[offset_k + t]; } // Column int n = offset_n + t * 4; if (n >= size_n) return; // Find initial group int group = offset_k / groupsize; int nextgroup = offset_k + groupsize; // b offset int qk = offset_k / (32 / 4); const uint32_t* b_ptr = b_q_weight + qk * size_n + n; // Initial zeros/scale int zeros[4]; half2 scales[4]; half2 z1z16[4][2]; half2 y1y16[4][2]; b_gptq_qzeros_.item4(zeros, group, n); b_gptq_scales_.item4_h2(scales, group, n); dequant_4bit_8_prep_zero((zeros[0] + 1) & 0x0F, z1z16[0], y1y16[0]); dequant_4bit_8_prep_zero((zeros[1] + 1) & 0x0F, z1z16[1], y1y16[1]); dequant_4bit_8_prep_zero((zeros[2] + 1) & 0x0F, z1z16[2], y1y16[2]); dequant_4bit_8_prep_zero((zeros[3] + 1) & 0x0F, z1z16[3], y1y16[3]); __syncthreads(); int k = offset_k; int lk = 0; while (k < end_k) { if (k == nextgroup) { group++; nextgroup += groupsize; b_gptq_qzeros_.item4(zeros, group, n); b_gptq_scales_.item4_h2(scales, group, n); dequant_4bit_8_prep_zero((zeros[0] + 1) & 0x0F, z1z16[0], y1y16[0]); dequant_4bit_8_prep_zero((zeros[1] + 1) & 0x0F, z1z16[1], y1y16[1]); dequant_4bit_8_prep_zero((zeros[2] + 1) & 0x0F, z1z16[2], y1y16[2]); dequant_4bit_8_prep_zero((zeros[3] + 1) & 0x0F, z1z16[3], y1y16[3]); } for (int p = 0; p < 4; p++) { half2 dq[4][4]; const int4* b_ptr4 = (int4*) b_ptr; int4 load_int4 = *b_ptr4; dequant_4bit_8_gptq(load_int4.x, dq[0], z1z16[0], y1y16[0], size_n, false); dequant_4bit_8_gptq(load_int4.y, dq[1], z1z16[1], y1y16[1], size_n, false); dequant_4bit_8_gptq(load_int4.z, dq[2], z1z16[2], y1y16[2], size_n, false); dequant_4bit_8_gptq(load_int4.w, dq[3], z1z16[3], y1y16[3], size_n, false); b_ptr += size_n; //half* dqh = (half*)dq; if (b_q_perm) { for (int j = 0; j < 4; j++) { for (int v = 0; v < 4; v++) dq[v][j] = __hmul2(scales[v], dq[v][j]); b_.set4(perm[lk++], n, __low2half(dq[0][j]), __low2half(dq[1][j]), __low2half(dq[2][j]), __low2half(dq[3][j])); b_.set4(perm[lk++], n, __high2half(dq[0][j]), __high2half(dq[1][j]), __high2half(dq[2][j]), __high2half(dq[3][j])); } } else { for (int j = 0; j < 4; j++) { for (int v = 0; v < 4; v++) dq[v][j] = __hmul2(scales[v], dq[v][j]); b_.set4(offset_k + lk++, n, __low2half(dq[0][j]), __low2half(dq[1][j]), __low2half(dq[2][j]), __low2half(dq[3][j])); b_.set4(offset_k + lk++, n, __high2half(dq[0][j]), __high2half(dq[1][j]), __high2half(dq[2][j]), __high2half(dq[3][j])); } } } k += 32; } } // Reconstruct b[k,n] __global__ void reconstruct_kernel ( const uint32_t* __restrict__ b_q_weight, const uint16_t* __restrict__ b_q_perm, const uint32_t* __restrict__ b_q_scale, const half* __restrict__ b_q_scale_max, const uint16_t* __restrict__ b_q_group_map, const int size_k, const int size_n, //const int groupsize, const int groups, half* __restrict__ b, const int rows_8, const int rows_6, const int rows_5, const int rows_4, const int rows_3, const int rows_2 ) { MatrixView_half_rw b_(b, size_k, size_n); MatrixView_q4_row b_q_scale_(b_q_scale, groups, size_n); int offset_k = BLOCK_KN_SIZE * blockIdx.y; int offset_n = BLOCK_KN_SIZE * blockIdx.x; // Preload remapping table int t = threadIdx.x; __shared__ uint16_t perm[BLOCK_KN_SIZE]; if (offset_k + t < size_k) perm[t] = b_q_perm[offset_k + t]; // Column int n = offset_n + t; if (n >= size_n) return; // Find initial group // int group = offset_k / groupsize; int group = b_q_group_map[offset_k * 2]; int pre_rows_8 = min(rows_8, offset_k); int pre_rows_6 = offset_k > rows_8 ? min(rows_6, offset_k) - rows_8 : 0; int pre_rows_5 = offset_k > rows_6 ? min(rows_5, offset_k) - rows_6 : 0; int pre_rows_4 = offset_k > rows_5 ? min(rows_4, offset_k) - rows_5 : 0; int pre_rows_3 = offset_k > rows_4 ? min(rows_3, offset_k) - rows_4 : 0; int pre_rows_2 = offset_k > rows_3 ? min(rows_2, offset_k) - rows_3 : 0; int qk = 0; qk += pre_rows_8 / 32 * 8; qk += pre_rows_6 / 32 * 6; qk += pre_rows_5 / 32 * 5; qk += pre_rows_4 / 32 * 4; qk += pre_rows_3 / 32 * 3; qk += pre_rows_2 / 32 * 2; const uint32_t* b_ptr = b_q_weight + qk * size_n + n; half qs_h = dq_scale(b_q_scale_.item(group, n), b_q_scale_max[group]); half2 qs_h2 = __halves2half2(qs_h, qs_h); int nextgroup = offset_k + b_q_group_map[offset_k * 2 + 1]; int end_k = min(offset_k + BLOCK_KN_SIZE, size_k); int k = offset_k; int lk = 0; __syncthreads(); while (k < rows_8 && k < end_k) { if (k == nextgroup) { group++; qs_h = dq_scale(b_q_scale_.item(group, n), b_q_scale_max[group]); nextgroup += b_q_group_map[k * 2 + 1]; qs_h2 = __halves2half2(qs_h, qs_h); } for (int p = 0; p < 4; p++) { half2 dq[4]; uint32_t q_0 = *b_ptr; b_ptr += size_n; uint32_t q_1 = *b_ptr; b_ptr += size_n; dequant_8bit_8(q_0, q_1, dq, size_n); for (int j = 0; j < 4; j++) dq[j] = __hmul2(dq[j], qs_h2); half* dqh = (half*) dq; for (int j = 0; j < 8; j++) b_.set(perm[lk++], n, dqh[j]); } k += 32; } while (k < rows_6 && k < end_k) { if (k == nextgroup) { group++; qs_h = dq_scale(b_q_scale_.item(group, n), b_q_scale_max[group]); nextgroup += b_q_group_map[k * 2 + 1]; qs_h2 = __halves2half2(qs_h, qs_h); } for (int p = 0; p < 2; p++) { half2 dq[8]; uint32_t q_0 = *b_ptr; b_ptr += size_n; uint32_t q_1 = *b_ptr; b_ptr += size_n; uint32_t q_2 = *b_ptr; b_ptr += size_n; dequant_6bit_16(q_0, q_1, q_2, dq, size_n); for (int j = 0; j < 8; j++) dq[j] = __hmul2(dq[j], qs_h2); half* dqh = (half*) dq; for (int j = 0; j < 16; j++) b_.set(perm[lk++], n, dqh[j]); } k += 32; } while (k < rows_5 && k < end_k) { if (k == nextgroup) { group++; qs_h = dq_scale(b_q_scale_.item(group, n), b_q_scale_max[group]); nextgroup += b_q_group_map[k * 2 + 1]; qs_h2 = __halves2half2(qs_h, qs_h); } for (int p = 0; p < 1; p++) { half2 dq[16]; uint32_t q_0 = *b_ptr; b_ptr += size_n; uint32_t q_1 = *b_ptr; b_ptr += size_n; uint32_t q_2 = *b_ptr; b_ptr += size_n; uint32_t q_3 = *b_ptr; b_ptr += size_n; uint32_t q_4 = *b_ptr; b_ptr += size_n; dequant_5bit_32(q_0, q_1, q_2, q_3, q_4, dq, size_n); for (int j = 0; j < 16; j++) dq[j] = __hmul2(dq[j], qs_h2); half* dqh = (half*) dq; for (int j = 0; j < 32; j++) b_.set(perm[lk++], n, dqh[j]); } k += 32; } while (k < rows_4 && k < end_k) { if (k == nextgroup) { group++; qs_h = dq_scale(b_q_scale_.item(group, n), b_q_scale_max[group]); nextgroup += b_q_group_map[k * 2 + 1]; qs_h2 = __halves2half2(qs_h, qs_h); } for (int p = 0; p < 4; p++) { half2 dq[4]; uint32_t q_0 = *b_ptr; b_ptr += size_n; dequant_4bit_8(q_0, dq, size_n); for (int j = 0; j < 4; j++) dq[j] = __hmul2(dq[j], qs_h2); half* dqh = (half*) dq; for (int j = 0; j < 8; j++) b_.set(perm[lk++], n, dqh[j]); } k += 32; } while (k < rows_3 && k < end_k) { if (k == nextgroup) { group++; qs_h = dq_scale(b_q_scale_.item(group, n), b_q_scale_max[group]); nextgroup += b_q_group_map[k * 2 + 1]; qs_h2 = __halves2half2(qs_h, qs_h); } for (int p = 0; p < 1; p++) { half2 dq[16]; uint32_t q_0 = *b_ptr; b_ptr += size_n; uint32_t q_1 = *b_ptr; b_ptr += size_n; uint32_t q_2 = *b_ptr; b_ptr += size_n; dequant_3bit_32(q_0, q_1, q_2, dq, size_n); for (int j = 0; j < 16; j++) dq[j] = __hmul2(dq[j], qs_h2); half* dqh = (half*) dq; for (int j = 0; j < 32; j++) b_.set(perm[lk++], n, dqh[j]); } k += 32; } while (k < rows_2 && k < end_k) { if (k == nextgroup) { group++; qs_h = dq_scale(b_q_scale_.item(group, n), b_q_scale_max[group]); nextgroup += b_q_group_map[k * 2 + 1]; qs_h2 = __halves2half2(qs_h, qs_h); } for (int p = 0; p < 1; p++) { half2 dq[8]; uint32_t q_0 = *b_ptr; b_ptr += size_n; dequant_2bit_16(q_0, dq, size_n); for (int j = 0; j < 8; j++) dq[j] = __hmul2(dq[j], qs_h2); half* dqh = (half*) dq; for (int j = 0; j < 16; j++) b_.set(perm[lk++], n, dqh[j]); } k += 16; } } void QMatrix::reconstruct(half* out) { dim3 blockDim, gridDim; blockDim.x = BLOCK_KN_SIZE; blockDim.y = 1; gridDim.y = DIVIDE(height, BLOCK_KN_SIZE); const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); if (!is_gptq) { gridDim.x = DIVIDE(width, BLOCK_KN_SIZE); reconstruct_kernel<<<gridDim, blockDim, 0, stream>>> ( cuda_q_weight, cuda_q_perm, cuda_q_scale, cuda_q_scale_max, cuda_q_group_map, height, width, //groupsize, groups, out, rows_8, rows_6, rows_5, rows_4, rows_3, rows_2 ); } else { gridDim.x = DIVIDE(width, BLOCK_KN_SIZE * 4); reconstruct_gptq_kernel<<<gridDim, blockDim, 0, stream>>> ( cuda_q_weight, cuda_q_perm, cuda_gptq_qzeros, cuda_gptq_scales, //const uint16_t* __restrict__ b_q_groups, height, width, gptq_groupsize, groups, out, rows_4 ); } } __global__ void make_sequential_kernel ( const uint32_t* __restrict__ w, uint32_t* __restrict__ w_new, const uint16_t* __restrict__ q_perm, const int w_height, const int w_width ) { const uint64_t* w2 = (uint64_t*) w; uint64_t* w_new2 = (uint64_t*) w_new; int w2_stride = w_width >> 1; int w2_column = THREADS_X * blockIdx.x + threadIdx.x; if (w2_column >= w2_stride) return; int w_new2_row = blockIdx.y; int q_perm_idx = w_new2_row << 3; uint64_t dst = 0; #pragma unroll for (int i = 0; i < 8; i++) { int source_row = q_perm[q_perm_idx++]; int w2_row = source_row >> 3; int w2_subrow = source_row & 0x07; int w2_row_shift = w2_subrow << 2; int wnew2_row_shift = i << 2; uint64_t src = w2[w2_row * w2_stride + w2_column]; src >>= w2_row_shift; src &= 0x0000000f0000000f; src <<= wnew2_row_shift; dst |= src; } w_new2[w_new2_row * w2_stride + w2_column] = dst; } bool QMatrix::make_sequential(const uint32_t* cpu_g_idx) { const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); uint32_t* cuda_new_qweight = NULL; cudaError_t err = cudaMalloc(&cuda_new_qweight, height / 8 * width * sizeof(uint32_t)); if (err != cudaSuccess) { cudaError_t cuda_status = cudaGetLastError(); // Clear error return false; } uint32_t* cpu_g_idx_map = (uint32_t*) calloc(groups, sizeof(uint32_t)); uint32_t* cpu_x_map = (uint32_t*) malloc(height * sizeof(uint32_t)); uint32_t* cpu_x_map_inv = (uint32_t*) malloc(height * sizeof(uint32_t)); // Group histogram for (int i = 0; i < height; i++) cpu_g_idx_map[cpu_g_idx[i]]++; // Group map for (int i = 0, acc = 0; i < groups; i++) { short tmp = cpu_g_idx_map[i]; cpu_g_idx_map[i] = acc; acc += tmp; } // X map (inverse) for (int row = 0; row < height; row++) { uint32_t target_group = cpu_g_idx[row]; uint32_t target_row = cpu_g_idx_map[target_group]; cpu_g_idx_map[target_group]++; cpu_x_map_inv[row] = target_row; } // X map for (int row = 0; row < height; row++) cpu_x_map[cpu_x_map_inv[row]] = row; // Reduce to uint16_t uint16_t* cpu_x_map16 = (uint16_t*)cpu_x_map; uint16_t* cpu_x_map_inv16 = (uint16_t*)cpu_x_map_inv; for (int row = 0; row < height; row++) cpu_x_map16[row] = (uint16_t) cpu_x_map[row]; for (int row = 0; row < height; row++) cpu_x_map_inv16[row] = (uint16_t) cpu_x_map_inv[row]; // Move to CUDA cudaMemcpyAsync(cuda_q_perm, cpu_x_map16, height * sizeof(uint16_t), cudaMemcpyHostToDevice); cudaMemcpyAsync(cuda_q_invperm, cpu_x_map_inv16, height * sizeof(uint16_t), cudaMemcpyHostToDevice); // Rearrange rows in w dim3 blockDim, gridDim; blockDim.x = THREADS_X; blockDim.y = 1; gridDim.x = DIVIDE(width, THREADS_X); gridDim.y = height / 8; make_sequential_kernel<<<gridDim, blockDim, 0, stream>>> ( cuda_q_weight, cuda_new_qweight, cuda_q_perm, height / 8, width ); // Replace qweights cudaMemcpyAsync(cuda_q_weight, cuda_new_qweight, height / 8 * width * sizeof(uint32_t), cudaMemcpyDeviceToDevice); // Cleanup cudaDeviceSynchronize(); cudaFree(cuda_new_qweight); free(cpu_g_idx_map); free(cpu_x_map); free(cpu_x_map_inv); return true; }
text-generation-inference/server/exllamav2_kernels/exllamav2_kernels/cuda/q_matrix.cu/0
{ "file_path": "text-generation-inference/server/exllamav2_kernels/exllamav2_kernels/cuda/q_matrix.cu", "repo_id": "text-generation-inference", "token_count": 10524 }
# Origin: https://github.com/predibase/lorax # Path: lorax/server/lorax_server/adapters/__init__.py # License: Apache License Version 2.0, January 2004 from text_generation_server.adapters.weights import ( AdapterBatchData, AdapterBatchMetadata, ) __all__ = [ "AdapterBatchData", "AdapterBatchMetadata", ]
text-generation-inference/server/text_generation_server/adapters/__init__.py/0
{ "file_path": "text-generation-inference/server/text_generation_server/adapters/__init__.py", "repo_id": "text-generation-inference", "token_count": 125 }
import torch from typing import List AWQ_PACK_ORDER = [0, 2, 4, 6, 1, 3, 5, 7] REVERSE_AWQ_PACK_ORDER = [0, 4, 1, 5, 2, 6, 3, 7] def pack(imatrix: torch.Tensor, direction: str = "column"): """ Packs a 4-bit integer matrix into a packed 32-bit integer matrix. Args: imatrix (torch.Tensor): matrix of integers direction (str): direction of packing, either "column" or "row" Returns: qmatrix (torch.Tensor): packed matrix of integers """ shifts = torch.arange(0, 32, 4, dtype=torch.int32, device=imatrix.device) imatrix = imatrix.to(torch.int8) & 0x0F # eventually correct overflow if direction == "column": imatrix = imatrix.view(-1, imatrix.shape[1] // (32 // 4), (32 // 4)) qmatrix = torch.bitwise_left_shift(imatrix, shifts[None, None, :]).sum(dim=-1) elif direction == "row": imatrix = imatrix.view(imatrix.shape[0] // (32 // 4), (32 // 4), -1) qmatrix = torch.bitwise_left_shift(imatrix, shifts[None, :, None]).sum(dim=1) qmatrix = qmatrix.to(torch.int32) return qmatrix def unpack(qmatrix: torch.Tensor, direction: str = "column"): """ Unpacks a 32-bit packed integer matrix into a 4-bit integer matrix. Args: qmatrix (torch.Tensor): matrix of packed integers direction (str): direction of unpacking, either "column" or "row" Returns: imatrix (torch.Tensor): matrix of integers """ shifts = torch.arange(0, 32, 4, device=qmatrix.device) if direction == "column": imatrix = torch.bitwise_right_shift( qmatrix[:, :, None], shifts[None, None, :] ).view(qmatrix.shape[0], -1) elif direction == "row": imatrix = torch.bitwise_right_shift( qmatrix[:, None, :], shifts[None, :, None] ).view(-1, qmatrix.shape[-1]) imatrix = imatrix.to(torch.int8) & 0x0F # eventually correct overflow return imatrix def apply_order( imatrix: torch.Tensor, direction: str = "column", order: List[int] = AWQ_PACK_ORDER, ): """ Applies the order to a 4-bit integer matrix. Args: imatrix (torch.Tensor): matrix of integers direction (str): direction of applying order, either "column" or "row" order (List[int]): order to apply, default is AWQ_PACK_ORDER Returns: imatrix (torch.Tensor): matrix of integers """ if direction == "column": imatrix = imatrix.view(-1, (32 // 4))[:, order].view(imatrix.shape) elif direction == "row": imatrix = imatrix.view((32 // 4), -1)[order, :].view(imatrix.shape) return imatrix def fast_awq_to_gptq(qweight, qzeros): # awq uses column packing for both weights and zeros izeros = unpack(qzeros, direction="column") iweights = unpack(qweight, direction="column") # Reverse the order of the iweight and izeros tensors izeros = apply_order(izeros, direction="column", order=REVERSE_AWQ_PACK_ORDER) iweights = apply_order(iweights, direction="column", order=REVERSE_AWQ_PACK_ORDER) # Subtract 1 from the izeros tensor (gptq adds 1 to the zeros) izeros = izeros - 1 # exllama uses row packing for weights and column packing for zeros qzeros = pack(izeros, direction="column") qweight = pack(iweights, direction="row") return qweight, qzeros
text-generation-inference/server/text_generation_server/layers/awq/conversion_utils.py/0
{ "file_path": "text-generation-inference/server/text_generation_server/layers/awq/conversion_utils.py", "repo_id": "text-generation-inference", "token_count": 1384 }
# https://github.com/fpgaminer/GPTQ-triton """ Mostly the same as the autotuner in Triton, but with a few changes like using 40 runs instead of 100. """ import builtins import math import time from typing import Dict import triton class Autotuner(triton.KernelInterface): def __init__( self, fn, arg_names, configs, key, reset_to_zero, prune_configs_by: Dict = None, nearest_power_of_two: bool = False, ): """ :param prune_configs_by: a dict of functions that are used to prune configs, fields: 'perf_model': performance model used to predicate running time with different configs, returns running time 'top_k': number of configs to bench 'prune_num_stages_by'(optional): a function used to prune num_stages. It take configs:List[Config] as its input, and returns pruned configs. 'nearest_power_of_two'(optional): whether to round key arguments to the nearest power of two when caching tuning results """ if not configs: self.configs = [triton.Config({}, num_warps=4, num_stages=2)] else: self.configs = configs self.key_idx = [arg_names.index(k) for k in key] self.nearest_power_of_two = nearest_power_of_two self.cache = {} # hook to reset all required tensor to zeros before relaunching a kernel self.hook = lambda args: 0 if reset_to_zero is not None: self.reset_idx = [arg_names.index(k) for k in reset_to_zero] def _hook(args): for i in self.reset_idx: args[i].zero_() self.hook = _hook self.arg_names = arg_names # prune configs if prune_configs_by: perf_model, top_k = ( prune_configs_by["perf_model"], prune_configs_by["top_k"], ) if "early_config_prune" in prune_configs_by: early_config_prune = prune_configs_by["early_config_prune"] else: perf_model, top_k, early_config_prune = None, None, None self.perf_model, self.configs_top_k = perf_model, top_k self.early_config_prune = early_config_prune self.fn = fn def _bench(self, *args, config, **meta): # check for conflicts, i.e. meta-parameters both provided # as kwargs and by the autotuner conflicts = meta.keys() & config.kwargs.keys() if conflicts: raise ValueError( f"Conflicting meta-parameters: {', '.join(conflicts)}." " Make sure that you don't re-define auto-tuned symbols." ) # augment meta-parameters with tunable ones current = dict(meta, **config.kwargs) def kernel_call(): if config.pre_hook: config.pre_hook(self.nargs) self.hook(args) self.fn.run( *args, num_warps=config.num_warps, num_stages=config.num_stages, **current, ) try: # In testings using only 40 reps seems to be close enough and it appears to be what PyTorch uses # PyTorch also sets fast_flush to True, but I didn't see any speedup so I'll leave the default return triton.testing.do_bench( kernel_call, quantiles=(0.5, 0.2, 0.8), rep=40 ) except triton.OutOfResources: return [float("inf"), float("inf"), float("inf")] def run(self, *args, **kwargs): self.nargs = dict(zip(self.arg_names, args)) if len(self.configs) > 1: key = tuple(args[i] for i in self.key_idx) # This reduces the amount of autotuning by rounding the keys to the nearest power of two # In my testing this gives decent results, and greatly reduces the amount of tuning required if self.nearest_power_of_two: key = tuple([2 ** int(math.log2(x) + 0.5) for x in key]) if key not in self.cache: # prune configs pruned_configs = self.prune_configs(kwargs) bench_start = time.time() timings = { config: self._bench(*args, config=config, **kwargs) for config in pruned_configs } bench_end = time.time() self.bench_time = bench_end - bench_start self.cache[key] = builtins.min(timings, key=timings.get) self.hook(args) self.configs_timings = timings config = self.cache[key] else: config = self.configs[0] self.best_config = config if config.pre_hook is not None: config.pre_hook(self.nargs) return self.fn.run( *args, num_warps=config.num_warps, num_stages=config.num_stages, **kwargs, **config.kwargs, ) def prune_configs(self, kwargs): pruned_configs = self.configs if self.early_config_prune: pruned_configs = self.early_config_prune(self.configs, self.nargs) if self.perf_model: top_k = self.configs_top_k if isinstance(top_k, float) and top_k <= 1.0: top_k = int(len(self.configs) * top_k) if len(pruned_configs) > top_k: est_timing = { config: self.perf_model( **self.nargs, **kwargs, **config.kwargs, num_stages=config.num_stages, num_warps=config.num_warps, ) for config in pruned_configs } pruned_configs = sorted(est_timing.keys(), key=lambda x: est_timing[x])[ :top_k ] return pruned_configs def warmup(self, *args, **kwargs): self.nargs = dict(zip(self.arg_names, args)) for config in self.prune_configs(kwargs): self.fn.warmup( *args, num_warps=config.num_warps, num_stages=config.num_stages, **kwargs, **config.kwargs, ) self.nargs = None def autotune( configs, key, prune_configs_by=None, reset_to_zero=None, nearest_power_of_two=False ): """ Decorator for auto-tuning a :code:`triton.jit`'d function. .. highlight:: python .. code-block:: python @triton.autotune(configs=[ triton.Config(meta={'BLOCK_SIZE': 128}, num_warps=4), triton.Config(meta={'BLOCK_SIZE': 1024}, num_warps=8), ], key=['x_size'] # the two above configs will be evaluated anytime # the value of x_size changes ) @triton.jit def kernel(x_ptr, x_size, **META): BLOCK_SIZE = META['BLOCK_SIZE'] :note: When all the configurations are evaluated, the kernel will run multiple time. This means that whatever value the kernel updates will be updated multiple times. To avoid this undesired behavior, you can use the `reset_to_zero` argument, which reset the value of the provided tensor to `zero` before running any configuration. :param configs: a list of :code:`triton.Config` objects :type configs: list[triton.Config] :param key: a list of argument names whose change in value will trigger the evaluation of all provided configs. :type key: list[str] :param prune_configs_by: a dict of functions that are used to prune configs, fields: 'perf_model': performance model used to predicate running time with different configs, returns running time 'top_k': number of configs to bench 'early_config_prune'(optional): a function used to do early prune (eg, num_stages). It take configs:List[Config] as its input, and returns pruned configs. :param reset_to_zero: a list of argument names whose value will be reset to zero before evaluating any configs. :type reset_to_zero: list[str] """ def decorator(fn): return Autotuner( fn, fn.arg_names, configs, key, reset_to_zero, prune_configs_by, nearest_power_of_two, ) return decorator def matmul248_kernel_config_pruner(configs, nargs): """ The main purpose of this function is to shrink BLOCK_SIZE_* when the corresponding dimension is smaller. """ m = max(2 ** int(math.ceil(math.log2(nargs["M"]))), 16) n = max(2 ** int(math.ceil(math.log2(nargs["N"]))), 16) k = max(2 ** int(math.ceil(math.log2(nargs["K"]))), 16) used = set() for config in configs: block_size_m = min(m, config.kwargs["BLOCK_SIZE_M"]) block_size_n = min(n, config.kwargs["BLOCK_SIZE_N"]) block_size_k = min(k, config.kwargs["BLOCK_SIZE_K"]) group_size_m = config.kwargs["GROUP_SIZE_M"] if ( block_size_m, block_size_n, block_size_k, group_size_m, config.num_stages, config.num_warps, ) in used: continue used.add( ( block_size_m, block_size_n, block_size_k, group_size_m, config.num_stages, config.num_warps, ) ) yield triton.Config( { "BLOCK_SIZE_M": block_size_m, "BLOCK_SIZE_N": block_size_n, "BLOCK_SIZE_K": block_size_k, "GROUP_SIZE_M": group_size_m, }, num_stages=config.num_stages, num_warps=config.num_warps, )
text-generation-inference/server/text_generation_server/layers/gptq/custom_autotune.py/0
{ "file_path": "text-generation-inference/server/text_generation_server/layers/gptq/custom_autotune.py", "repo_id": "text-generation-inference", "token_count": 5117 }
import torch import math from torch import nn from torch.nn import functional as F from typing import Optional, Tuple from text_generation_server.layers import TensorParallelEmbedding, FastLinear from text_generation_server.layers.tensor_parallel import TensorParallelHead from text_generation_server.utils.speculate import get_speculate class MLPSpeculatorLayerNorm(nn.Module): """ A L2 normalization implementation ... Args ---- normalized_shape : int Dimensionality of input data (size of final tensor axis) elementwise_scale_weight : torch.Tensor learned scaling term after normalization? elementwise_shift_bias : torch.Tensor learned bias term after normalization? eps : float Safety term to prevent division by zero. Make sure the chosen value fits in the range of your encoding scheme (i.e. fp16 requires eps >= 6e-8). """ def __init__( self, prefix, config, weights, eps=1e-06, ): super(MLPSpeculatorLayerNorm, self).__init__() self.weight = weights.get_tensor(f"{prefix}.weight") self.bias = weights.get_tensor(f"{prefix}.bias") self.eps = eps def forward(self, x): xf = x xf = xf * torch.rsqrt(xf.pow(2).mean(-1, keepdim=True) + self.eps) x = xf.type_as(x) x = self.weight * x x = x + self.bias return x INV_SQRT2 = 2**-0.5 def simple_norm(x: torch.Tensor, eps=1e-06): xf = x xf = xf * torch.rsqrt(xf.pow(2).mean(-1, keepdim=True) + eps) x = xf.type_as(x) return x * INV_SQRT2 class MLPSpeculatorModelTied(torch.nn.Module): def __init__(self, config, prefix, weights): super().__init__() self.config = config self.n_predict = get_speculate() self.hidden_size = config.hidden_size self.emb = TensorParallelEmbedding(f"{prefix}.emb.0", weights) self.proj0 = FastLinear.load( config, prefix=f"{prefix}.proj.0", weights=weights, bias=False, ) self.proj1 = FastLinear.load( config, prefix=f"{prefix}.proj.1", weights=weights, bias=False, ) self.head = FastLinear.load(config, f"{prefix}.head.0", weights, bias=False) self.ln = MLPSpeculatorLayerNorm( prefix=f"{prefix}.ln.0", config=config, weights=weights, ) # Weights ensure that state_0 accounts for 50% of state magnitude by final head in expectation self.state_weight = 0.5 ** (0.5 / self.n_predict) if self.n_predict > 0 else 1 self.activation = nn.GELU() self.vsize = config.vocab_size self.inner_dim = config.speculator_config["inner_dim"] self.top_k_tokens_per_head = [1] * self.n_predict self.emb_weight = math.sqrt(1 - self.state_weight**2) * math.sqrt( self.inner_dim / 2 ) self.emb.weight *= self.emb_weight def forward( self, hidden_states: torch.Tensor, input_ids: torch.Tensor, ): top_k_tokens_per_head = self.top_k_tokens_per_head # k indicates # of candidates # h indicates # of generated tokens state = hidden_states b = state.size(0) ind = input_ids.unsqueeze(0) all_probs = torch.empty( b, self.n_predict, self.vsize, device=state.device ) # b k h v assert ( len(top_k_tokens_per_head) == self.n_predict ), f"You must provide a topk number for each head ({self.n_predict} heads, {len(top_k_tokens_per_head)} provided)" for i in range(self.n_predict): # Project and predict z = self.emb(ind) # z = z.mul(self.emb_weight) # b k d if i == 0: state = self.proj0(state) * self.state_weight + z else: state = self.proj1(state) * self.state_weight + z state = self.activation(self.ln(state)) # b k d probs = F.log_softmax(self.head(state), dim=-1) # b k v _probs, preds = probs.topk(top_k_tokens_per_head[i], dim=-1) # b k k' # Update candidate set with new predictions # Update distribution set with new logits all_probs[:, i] = probs.exp() # Update state, log_probs and ind for new predictions state = state.unsqueeze(2).expand( -1, -1, top_k_tokens_per_head[i], -1 ) # b k k' d state = state.reshape(-1, b, state.size(3)) # b kk' d ind = preds.view(-1, b) # b kk' speculative_logits = all_probs return speculative_logits class MLPSpeculatorModel(torch.nn.Module): def __init__(self, config, prefix, weights): super().__init__() self.config = config self.n_predict = get_speculate() self.hidden_size = config.hidden_size self.emb = nn.ModuleList( [ TensorParallelEmbedding(f"{prefix}.emb.{i}", weights) for i in range(self.n_predict) ] ) self.proj = [ FastLinear.load( config, prefix=f"{prefix}.proj.{i}", weights=weights, bias=False, ) for i in range(self.n_predict) ] self.head = nn.ModuleList( [ FastLinear.load(config, f"{prefix}.head.{i}", weights, bias=False) for i in range(self.n_predict) ] ) self.ln = nn.ModuleList( [ MLPSpeculatorLayerNorm( prefix=f"{prefix}.ln.{i}", config=config, weights=weights, ) for i in range(self.n_predict) ] ) # Weights ensure that state_0 accounts for 50% of state magnitude by final head in expectation self.state_weight = 0.5 ** (0.5 / self.n_predict) if self.n_predict > 0 else 1 self.activation = nn.GELU() self.vsize = config.vocab_size self.inner_dim = config.speculator_config["inner_dim"] self.top_k_tokens_per_head = [1] * self.n_predict self.emb_weight = math.sqrt(1 - self.state_weight**2) * math.sqrt( self.inner_dim / 2 ) self.emb.weight *= self.emb_weight def forward( self, hidden_states: torch.Tensor, input_ids: torch.Tensor, ): top_k_tokens_per_head = self.top_k_tokens_per_head # k indicates # of candidates # h indicates # of generated tokens state = hidden_states b = state.size(0) ind = input_ids.unsqueeze(0) all_probs = torch.empty( b, self.n_predict, self.vsize, device=state.device ) # b k h v assert ( len(top_k_tokens_per_head) == self.n_predict ), f"You must provide a topk number for each head ({self.n_predict} heads, {len(top_k_tokens_per_head)} provided)" for i in range(self.n_predict): # Project and predict z = self.emb[i](ind) # z = z.mul(self.emb_weight) # b k d state = self.proj[i](state) * self.state_weight + z state = self.activation(self.ln[i](state)) # b k d probs = F.log_softmax(self.head[i](state), dim=-1) # b k v _probs, preds = probs.topk(top_k_tokens_per_head[i], dim=-1) # b k k' # Update candidate set with new predictions # Update distribution set with new logits all_probs[:, i] = probs.exp() # Update state, log_probs and ind for new predictions state = state.unsqueeze(2).expand( -1, -1, top_k_tokens_per_head[i], -1 ) # b k k' d state = state.reshape(-1, b, state.size(3)) # b kk' d ind = preds.view(-1, b) # b kk' speculative_logits = all_probs return speculative_logits class MLPSpeculatorHead(nn.Module): def __init__(self, lm_head, mlp_speculator, scale_input: bool): super().__init__() self.lm_head = lm_head self.mlp_speculator = mlp_speculator self.scale_input = scale_input def forward( self, input: torch.Tensor ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: logits = self.lm_head(input) # If we have too many tokens, we skip speculative logits if input.shape[0] > 128: return logits, None input_ids = logits.argmax(dim=-1) if self.scale_input: input = simple_norm(input) speculative_logits = self.mlp_speculator(input, input_ids) return logits, speculative_logits @staticmethod def load(config, prefix: str, weights): from pathlib import Path from safetensors import safe_open speculator_path = config.speculator["path"] for fname in config.speculator["model_paths"]: filename = str(Path(speculator_path) / fname) routing = weights.routing with safe_open(filename, framework="pytorch") as f: for k in f.keys(): if k in routing and routing[k] != filename: raise RuntimeError( f"Key {k} was found in multiple files: {filename} and {routing[k]}" ) routing[k] = filename tie_weights = config.speculator_config.get("tie_weights", False) if tie_weights: mlp_speculator = MLPSpeculatorModelTied(config, "speculator", weights) else: mlp_speculator = MLPSpeculatorModel(config, "speculator", weights) # This is used in https://huggingface.co/ibm-fms/llama3-70b-accelerator scale_input = config.speculator_config.get("scale_input", False) lm_head = TensorParallelHead.load(config, prefix, weights) return MLPSpeculatorHead(lm_head, mlp_speculator, scale_input)
text-generation-inference/server/text_generation_server/layers/mlp.py/0
{ "file_path": "text-generation-inference/server/text_generation_server/layers/mlp.py", "repo_id": "text-generation-inference", "token_count": 5007 }
# coding=utf-8 # Copyright 2022 HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.distributed from torch import nn from transformers.activations import ACT2FN from transformers.configuration_utils import PretrainedConfig from typing import Optional, List, Tuple, Any from text_generation_server.layers.attention.kv_cache import get_kv_scales from text_generation_server.utils.import_utils import SYSTEM if SYSTEM == "ipex": from intel_extension_for_pytorch.llm.modules import GatedMLPMOE else: from moe_kernels.fused_moe import fused_moe from text_generation_server.layers.attention import ( paged_attention, attention, Seqlen, ) from text_generation_server.layers import ( FastLinear, TensorParallelRowLinear, TensorParallelColumnLinear, TensorParallelEmbedding, SpeculativeHead, get_linear, ) from text_generation_server.layers.rotary import ( PositionRotaryEmbedding, ) from text_generation_server.layers.layernorm import ( FastLayerNorm, ) class DbrxAttentionConfig(PretrainedConfig): def __init__( self, attn_pdrop: float = 0, clip_qkv: Optional[float] = None, kv_n_heads: int = 1, rope_theta: float = 10000.0, **kwargs: Any, ): super().__init__(**kwargs) self.attn_pdrop = attn_pdrop self.clip_qkv = clip_qkv self.kv_n_heads = kv_n_heads self.rope_theta = rope_theta for k in ["model_type"]: if k in kwargs: kwargs.pop(k) if len(kwargs) != 0: raise ValueError(f"Found unknown {kwargs=}") class DbrxFFNConfig(PretrainedConfig): def __init__( self, ffn_act_fn: Optional[dict] = None, ffn_hidden_size: int = 3584, moe_num_experts: int = 4, moe_top_k: int = 1, moe_jitter_eps: Optional[float] = None, moe_loss_weight: float = 0.01, moe_normalize_expert_weights: Optional[float] = 1, uniform_expert_assignment: bool = False, **kwargs: Any, ): super().__init__() if ffn_act_fn is None: ffn_act_fn = {"name": "silu"} self.ffn_act_fn = ffn_act_fn self.ffn_hidden_size = ffn_hidden_size self.moe_num_experts = moe_num_experts self.moe_top_k = moe_top_k self.moe_jitter_eps = moe_jitter_eps self.moe_loss_weight = moe_loss_weight self.moe_normalize_expert_weights = moe_normalize_expert_weights self.uniform_expert_assignment = uniform_expert_assignment if uniform_expert_assignment: raise ValueError("`uniform_expert_assignment = True` is not supported") for k in ["model_type"]: if k in kwargs: kwargs.pop(k) if len(kwargs) != 0: raise ValueError(f"Found unknown {kwargs=}") class DbrxConfig(PretrainedConfig): attribute_map = { "hidden_size": "d_model", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", } def __init__( self, d_model: int = 2048, n_heads: int = 16, n_layers: int = 24, max_seq_len: int = 2048, vocab_size: int = 32000, resid_pdrop: float = 0.0, emb_pdrop: float = 0.0, attn_config: Optional[DbrxAttentionConfig] = None, ffn_config: Optional[DbrxFFNConfig] = None, use_cache: bool = True, initializer_range: float = 0.02, output_router_logits: bool = False, router_aux_loss_coef: float = 0.05, **kwargs: Any, ): if attn_config is None: self.attn_config = DbrxAttentionConfig() elif isinstance(attn_config, dict): self.attn_config = DbrxAttentionConfig(**attn_config) else: self.attn_config = attn_config if ffn_config is None: self.ffn_config = DbrxFFNConfig() elif isinstance(ffn_config, dict): self.ffn_config = DbrxFFNConfig(**ffn_config) else: self.ffn_config = ffn_config self.d_model = d_model self.n_heads = n_heads self.n_layers = n_layers self.max_seq_len = max_seq_len self.vocab_size = vocab_size self.resid_pdrop = resid_pdrop self.emb_pdrop = emb_pdrop self.use_cache = use_cache self.initializer_range = initializer_range self.output_router_logits = output_router_logits self.router_aux_loss_coef = router_aux_loss_coef tie_word_embeddings = kwargs.pop("tie_word_embeddings", False) if tie_word_embeddings: raise ValueError("tie_word_embeddings is not supported for Dbrx models.") super().__init__( tie_word_embeddings=tie_word_embeddings, **kwargs, ) @property def num_key_value_heads(self): # We can't use the attribute map, since this the number of KV # heads is not top-level. return self.attn_config.kv_n_heads def promote_scalar(x: torch.Tensor) -> torch.Tensor: return x.view(1) if len(x.size()) == 0 else x def load_attention(config, prefix, weights): return TensorParallelColumnLinear.load_qkv( config, prefix=f"{prefix}.Wqkv", weights=weights, bias=False, num_heads=config.n_heads, num_key_value_heads=config.attn_config.kv_n_heads, ) def _load_experts(config, prefix, weights): world_size = weights.process_group.size() rank = weights.process_group.rank() assert ( config.ffn_config.ffn_hidden_size % world_size == 0 ), f"The chosen size {config.ffn_config.ffn_hidden_size} is not compatible with sharding on {world_size} shards" expert_size = config.ffn_config.ffn_hidden_size block_size = expert_size // world_size start = rank * block_size stop = (rank + 1) * block_size tensor = torch.empty( (config.ffn_config.moe_num_experts * block_size, config.d_model), dtype=weights.dtype, device=weights.device, ) slice_ = weights._get_slice(f"{prefix}") for i in range(config.ffn_config.moe_num_experts): offset = i * expert_size expert_slice = slice_[start + offset : stop + offset] tensor[i * block_size : (i + 1) * block_size] = expert_slice.to( dtype=weights.dtype ).to(device=weights.device) return tensor def _load_experts_quantized(config, prefix, weights, cls): world_size = weights.process_group.size() rank = weights.process_group.rank() assert ( config.ffn_config.ffn_hidden_size % world_size == 0 ), f"The chosen size {config.ffn_config.ffn_hidden_size} is not compatible with sharding on {world_size} shards" expert_size = config.ffn_config.ffn_hidden_size block_size = expert_size // world_size start = rank * block_size stop = (rank + 1) * block_size slice_ = weights._get_slice(f"{prefix}") experts = [] for i in range(config.ffn_config.moe_num_experts): if config.quantize in ["gptq", "awq"]: raise NotImplementedError( "Dbrx does not support gptq/awq quantization yet." ) else: offset = i * expert_size expert_slice = ( slice_[start + offset : stop + offset] .to(dtype=weights.dtype) .to(device=weights.device) ) if cls == TensorParallelRowLinear: expert_slice = expert_slice.t().contiguous() linear = get_linear(expert_slice, None) experts.append(cls(linear, weights.process_group)) else: linear = get_linear(expert_slice, None) experts.append(cls(linear)) return experts class DbrxAttention(torch.nn.Module): def __init__( self, prefix: str, config, weights, ): super().__init__() self.clip_qkv = config.attn_config.clip_qkv self.num_heads = config.n_heads self.hidden_size = config.d_model self.head_size = self.hidden_size // self.num_heads self.rotary_emb = PositionRotaryEmbedding.static( config=config, dim=self.head_size, base=config.attn_config.rope_theta, device=weights.device, ) self.softmax_scale = self.head_size**-0.5 if self.num_heads % weights.process_group.size() != 0: raise ValueError( f"`num_heads` must be divisible by `num_shards` (got `num_heads`: {self.num_heads} " f"and `num_shards`: {weights.process_group.size()}" ) self.num_heads = self.num_heads // weights.process_group.size() self.num_key_value_heads = ( config.attn_config.kv_n_heads // weights.process_group.size() ) self.query_key_value = load_attention(config, prefix, weights) self.kv_scales = get_kv_scales(weights, f"{prefix}") self.o_proj = TensorParallelRowLinear.load( config, prefix=f"{prefix}.out_proj", weights=weights, bias=False, ) self.num_groups = self.num_heads // self.num_key_value_heads self.kv_head_mapping = torch.arange( 0, self.num_key_value_heads, dtype=torch.int32, device=weights.device ).repeat_interleave(self.num_groups) def forward( self, hidden_states, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, seqlen, max_s, ): qkv = self.query_key_value(hidden_states) if self.clip_qkv is not None: qkv = qkv.clamp(min=-self.clip_qkv, max=self.clip_qkv) query, kv = qkv.split( [ self.head_size * self.num_heads, 2 * self.head_size * self.num_key_value_heads, ], dim=1, ) query = query.view(-1, self.num_heads, self.head_size) kv = kv.view(-1, 2, self.num_key_value_heads, self.head_size) self.rotary_emb(query, torch.select(kv, dim=1, index=0), cos, sin) kv_cache.store( key=kv[:, 0], value=kv[:, 1], slots=slots, kv_scales=self.kv_scales, ) # Prefill if cu_seqlen_prefill is not None: # flash attention attn_output = attention( query=query, key=kv[:, 0], value=kv[:, 1], kv_cache=kv_cache, kv_scales=self.kv_scales, seqlen=seqlen, block_tables=block_tables, softmax_scale=self.softmax_scale, ) # Decode else: attn_output = paged_attention( query, kv_cache, self.kv_head_mapping, self.softmax_scale, block_tables, seqlen, max_s, kv_scales=self.kv_scales, ) return self.o_proj(attn_output.view(-1, self.num_heads * self.head_size)) class DbrxNormAttentionNorm(nn.Module): def __init__( self, prefix: str, config, weights, ): super().__init__() self.norm_1 = FastLayerNorm.load_no_bias( prefix=f"{prefix}.norm_1", weights=weights, eps=1e-5 ) self.self_attn = DbrxAttention( prefix=f"{prefix}.attn", config=config, weights=weights ) self.norm_2 = FastLayerNorm.load_no_bias( prefix=f"{prefix}.norm_2", weights=weights, eps=1e-5, ) def forward( self, hidden_states, residual, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, seqlen, max_s, ): normed_hidden_states, res = self.norm_1(hidden_states, residual) # Self Attention attn_output = self.self_attn( normed_hidden_states, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, seqlen, max_s, ) # faster post attention rms norm normed_attn_res_output, attn_res = self.norm_2(attn_output, res) return normed_attn_res_output, attn_res @torch.jit.script def select_experts( gate_logits: torch.Tensor, top_k: int, moe_normalize_expert_weights: int ): # all_probs: (sequence_length, n_experts) and upcast for softmax all_probs = torch.nn.functional.softmax(gate_logits, dim=1, dtype=torch.float) # weights, selected_experts: (sequence_length, top-k) weights, selected_experts = torch.topk(all_probs, top_k, dim=-1) if moe_normalize_expert_weights: weights = weights / torch.norm( weights, p=moe_normalize_expert_weights, dim=-1, keepdim=True ) weights = weights.view(-1) selected_experts = selected_experts.view(-1) return selected_experts, weights @torch.jit.script def round_up(x: torch.Tensor, value: int): return torch.div(x + (value - 1), value, rounding_mode="trunc") * value class BlockSparseMoE(nn.Module): def __init__(self, prefix, config: DbrxConfig, weights): super().__init__() self.moe_normalize_expert_weights = ( config.ffn_config.moe_normalize_expert_weights ) self.hidden_dim = config.d_model self.ffn_dim = config.ffn_config.ffn_hidden_size // weights.process_group.size() self.num_experts = config.ffn_config.moe_num_experts self.top_k = config.ffn_config.moe_top_k act = config.ffn_config.ffn_act_fn["name"] if "gelu" in act: self.act = lambda x: torch.nn.functional.gelu( x, approximate=( "tanh" if act in ["gelu_fast", "gelu_pytorch_tanh"] else "none" ), ) elif "silu" in act: self.act = torch.nn.functional.silu else: self.act = ACT2FN[act] # gating self.gate = FastLinear.load( config, f"{prefix}.router.layer", weights, bias=False ) # merged expert weights, all of size (n_experts * ffn_dim, hidden_dim) w1 = _load_experts(config, f"{prefix}.experts.mlp.w1", weights).view( self.num_experts, self.ffn_dim, self.hidden_dim ) v1 = _load_experts(config, f"{prefix}.experts.mlp.v1", weights).view( self.num_experts, self.ffn_dim, self.hidden_dim ) self.wv1 = torch.cat([w1, v1], dim=1) self.w2 = ( _load_experts(config, f"{prefix}.experts.mlp.w2", weights) .view(self.num_experts, self.ffn_dim, self.hidden_dim) .transpose(1, 2) .contiguous() ) self.process_group = weights.process_group if SYSTEM == "ipex": self.ipex_fused_moe = GatedMLPMOE( W13=self.wv1, W2=self.w2, use_prepack=True ) def forward(self, x: torch.Tensor) -> torch.Tensor: # router_logits: (num_tokens, n_experts) router_logits = self.gate(x) if SYSTEM == "ipex": out = self.ipex_fused_moe( hidden_states=x, router_logits=router_logits, top_k=self.top_k, renormalize=self.moe_normalize_expert_weights, use_grouped_topk=False, num_expert_group=None, topk_group=None, ) else: out = fused_moe( x, self.wv1, self.w2, router_logits, self.top_k, renormalize=self.moe_normalize_expert_weights, inplace=True, ) # Reduce sum if self.process_group.size() > 1: torch.distributed.all_reduce(out, group=self.process_group) return out.view(*x.shape) class DenseMoE(nn.Module): def __init__(self, prefix, config: DbrxConfig, weights): super().__init__() self.moe_normalize_expert_weights = ( config.ffn_config.moe_normalize_expert_weights ) self.hidden_dim = config.d_model self.ffn_dim = config.ffn_config.ffn_hidden_size // weights.process_group.size() self.num_experts = config.ffn_config.moe_num_experts self.top_k = config.ffn_config.moe_top_k act = config.ffn_config.ffn_act_fn["name"] if "gelu" in act: self.act = lambda x: torch.nn.functional.gelu( x, approximate=( "tanh" if act in ["gelu_fast", "gelu_pytorch_tanh"] else "none" ), ) elif "silu" in act: self.act = torch.nn.functional.silu else: self.act = ACT2FN[act] # gating self.gate = FastLinear.load( config, f"{prefix}.router.layer", weights, bias=False ) self.w1 = _load_experts_quantized( config, prefix=f"{prefix}.experts.mlp.w1", weights=weights, cls=TensorParallelColumnLinear, ) self.w2 = _load_experts_quantized( config, prefix=f"{prefix}.experts.mlp.w2", weights=weights, cls=TensorParallelRowLinear, ) self.v1 = _load_experts_quantized( config, prefix=f"{prefix}.experts.mlp.v1", weights=weights, cls=TensorParallelColumnLinear, ) self.process_group = weights.process_group def forward(self, x: torch.Tensor) -> torch.Tensor: """ x: (sequence_length, model_dim) gate_logits: (sequence_length, n_experts) """ # optional reshape input_shape = x.shape x = x.view(-1, input_shape[-1]) # gate_logits: (sequence_length, n_experts) gate_logits = self.gate(x) # all_probs: (sequence_length, n_experts) and upcast for softmax weights = torch.nn.functional.softmax(gate_logits, dim=1, dtype=torch.float) if self.top_k < self.num_experts: _, not_selected_experts = torch.topk( weights, self.num_experts - self.top_k, largest=False, sorted=False, dim=1, ) # Mask not selected experts weights.scatter_(1, not_selected_experts, 0) # Re-normalize if self.moe_normalize_expert_weights: weights = weights / torch.norm( weights, p=self.moe_normalize_expert_weights, dim=-1, keepdim=True ) weights = weights.to(x.dtype) # Final output tensor out = x.new_zeros(x.shape[0], self.hidden_dim) for i in range(self.num_experts): h = self.act(self.w1[i](x)) * self.v1[i](x) h = self.w2[i](h, reduce=False) # Add expert output to out with masking out += h * weights[:, i].view(-1, 1) # Reduce sum if self.process_group.size() > 1: torch.distributed.all_reduce(out, group=self.process_group) return out class DbrxLayer(nn.Module): def __init__(self, prefix: str, layer_id, config, weights): super().__init__() prefix = f"{prefix}.blocks.{layer_id}" self.attn = DbrxNormAttentionNorm( prefix=f"{prefix}.norm_attn_norm", config=config, weights=weights ) moe_cls = BlockSparseMoE if config.quantize is None else DenseMoE self.moe = moe_cls(f"{prefix}.ffn", config, weights) def forward( self, hidden_states, residual, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, seqlen, max_s, ): # Self Attention attn_output, attn_res = self.attn( hidden_states, residual, cos, sin, cu_seqlen_prefill, kv_cache, block_tables, slots, seqlen, max_s, ) moe_output = self.moe(attn_output) return moe_output, attn_res class DbrxModel(torch.nn.Module): def __init__(self, prefix: str, config, weights): super().__init__() self.embed_tokens = TensorParallelEmbedding( prefix=f"{prefix}.wte", weights=weights ) self.layers = nn.ModuleList( [ DbrxLayer( prefix, layer_id, config, weights, ) for layer_id in range(config.n_layers) ] ) self.norm = FastLayerNorm.load_no_bias( prefix=f"{prefix}.norm_f", weights=weights, eps=1e-5 ) self.head_size = self.layers[0].attn.self_attn.head_size self.num_heads = self.layers[0].attn.self_attn.num_heads self.num_key_value_heads = self.layers[0].attn.self_attn.num_key_value_heads def forward( self, input_ids: torch.Tensor, position_ids: torch.Tensor, cu_seqlen_prefill: Optional[torch.Tensor], kv_cache: List[Tuple[torch.Tensor, torch.Tensor]], block_tables: torch.Tensor, slots: torch.Tensor, seqlen: Seqlen, max_s: int, ) -> torch.Tensor: hidden_states = self.embed_tokens(input_ids) # Get rotary cos and sin for this forward # Avoid to index in each layer cos, sin = self.layers[0].attn.self_attn.rotary_emb.get_cos_sin( position_ids, max_s, hidden_states.dtype ) residual = None for i, layer in enumerate(self.layers): hidden_states, residual = layer( hidden_states, residual, cos, sin, cu_seqlen_prefill, kv_cache[i], block_tables, slots, seqlen, max_s, ) hidden_states, _ = self.norm(hidden_states, residual) return hidden_states class FlashDbrxForCausalLM(torch.nn.Module): def __init__(self, prefix: str, config, weights): super().__init__() if not prefix: prefix = "transformer" else: prefix = f"{prefix}.transformer" self.model = DbrxModel(prefix, config, weights) self.lm_head = SpeculativeHead.load( config, prefix="lm_head", weights=weights, ) def forward( self, input_ids: torch.Tensor, position_ids: torch.Tensor, cu_seqlen_prefill: Optional[torch.Tensor], kv_cache: List[Tuple[torch.Tensor, torch.Tensor]], block_tables: torch.Tensor, slots: torch.Tensor, seqlen: Seqlen, max_s: int, prefill_cache_indices: Optional[torch.Tensor], lm_head_indices: Optional[torch.Tensor] = None, adapter_data: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: hidden_states = self.model( input_ids, position_ids, cu_seqlen_prefill, kv_cache, block_tables, slots, seqlen, max_s, ) if lm_head_indices is not None: hidden_states = hidden_states[lm_head_indices] logits, speculative_logits = self.lm_head(hidden_states) return logits, speculative_logits
text-generation-inference/server/text_generation_server/models/custom_modeling/flash_dbrx_modeling.py/0
{ "file_path": "text-generation-inference/server/text_generation_server/models/custom_modeling/flash_dbrx_modeling.py", "repo_id": "text-generation-inference", "token_count": 12466 }
import torch import torch.distributed from torch import nn from transformers.activations import ACT2FN from typing import Optional, List, Tuple from text_generation_server.layers.attention import ( paged_attention, attention, Seqlen, ) from text_generation_server.layers import ( TensorParallelRowLinear, TensorParallelColumnLinear, SpeculativeHead, TensorParallelEmbedding, get_linear, ) from text_generation_server.layers.attention.kv_cache import get_kv_scales from text_generation_server.layers.gptq import GPTQWeightsLoader from text_generation_server.layers.layernorm import ( FastLayerNorm, ) def load_multi_mqa( config, prefix: str, weights, bias: bool, head_size, num_heads, hidden_size ): if config.quantize == "gptq": return _load_multi_mqa_gptq( config, prefix, weights, bias, head_size, num_heads, hidden_size ) elif config.quantize == "marlin": raise RuntimeError( "santacoder models with marlin quantization are not yet supported" ) else: return _load_multi_mqa( config, prefix, weights, bias, head_size, num_heads, hidden_size ) def _load_multi_mqa_gptq( config, prefix: str, weights, bias: bool, head_size, num_heads, hidden_size ): from text_generation_server.layers.gptq import GPTQWeight if any("c_attn" in k for k in weights.routing.keys()) and not config.transpose: world_size = weights.process_group.size() rank = weights.process_group.rank() slice_ = weights._get_slice(f"{prefix}.c_attn.qweight") shape = slice_.get_shape() block_size = (shape[1] - 2 * head_size) // world_size start = rank * block_size stop = (rank + 1) * block_size assert (shape[1] - 2 * head_size) % world_size == 0 q_tensor = slice_[:, start:stop] kv_tensor = slice_[:, -2 * head_size :] qweight = torch.cat([q_tensor, kv_tensor], dim=1) qweight = qweight.to(device=weights.device) slice_ = weights._get_slice(f"{prefix}.c_attn.scales") shape = slice_.get_shape() block_size = (shape[1] - 2 * head_size) // world_size start = rank * block_size stop = (rank + 1) * block_size assert (shape[1] - 2 * head_size) % world_size == 0 q_tensor = slice_[:, start:stop] kv_tensor = slice_[:, -2 * head_size :] scales = torch.cat([q_tensor, kv_tensor], dim=1) scales = scales.to(device=weights.device) slice_ = weights._get_slice(f"{prefix}.c_attn.qzeros") shape = slice_.get_shape() block_size = (shape[1] - (2 * head_size) * 4 // 32) // world_size start = rank * block_size stop = (rank + 1) * block_size assert 2 * head_size % (32 // 4) == 0 q_tensor = slice_[:, start:stop] kv_tensor = slice_[:, -2 * head_size * 4 // 32 :] qzeros = torch.cat([q_tensor, kv_tensor], dim=1) qzeros = qzeros.to(device=weights.device) loader = weights.weights_loader assert isinstance(loader, GPTQWeightsLoader) loader._get_gptq_params(weights) if loader.quant_method == "gptq": g_idx = weights.get_tensor(f"{prefix}.c_attn.g_idx") g_idx = g_idx.to(device=weights.device) elif loader.quant_method == "awq": g_idx = None from text_generation_server.layers.awq.conversion_utils import ( fast_awq_to_gptq, ) qweight, qzeros = fast_awq_to_gptq(qweight, qzeros) from text_generation_server.layers.gptq import HAS_EXLLAMA weight = GPTQWeight( qweight=qweight, qzeros=qzeros, scales=scales, g_idx=g_idx, bits=loader.bits, groupsize=loader.groupsize, use_awq_kernel=loader.quantize == "awq", use_exllama=HAS_EXLLAMA, ) if bias: slice_ = weights._get_slice(f"{prefix}.c_attn.bias") shape = slice_.get_shape() block_size = (shape[0] - 2 * head_size) // world_size assert (shape[0] - 2 * head_size) % world_size == 0 q_tensor = slice_[start:stop] start = rank * block_size stop = (rank + 1) * block_size q_tensor = slice_[start:stop] kv_tensor = slice_[-2 * head_size :] bias = torch.cat([q_tensor, kv_tensor], dim=0) bias = bias.to(device=weights.device) return TensorParallelColumnLinear(get_linear(weight, bias)) else: raise NotImplementedError("Gptq loading with santacoder is not implemented") def _load_multi_mqa( config, prefix: str, weights, bias: bool, head_size, num_heads, hidden_size ): if any("c_attn" in k for k in weights.routing.keys()): slice_ = weights._get_slice(f"{prefix}.c_attn.weight") shape = slice_.get_shape() world_size = weights.process_group.size() rank = weights.process_group.rank() if config.transpose: block_size = (shape[1] - 2 * head_size) // world_size start = rank * block_size stop = (rank + 1) * block_size assert (shape[1] - 2 * head_size) % world_size == 0 q_tensor = slice_[:, start:stop] kv_tensor = slice_[:, -2 * head_size :] weight = torch.cat([q_tensor, kv_tensor], dim=1).T else: block_size = (shape[0] - 2 * head_size) // world_size start = rank * block_size stop = (rank + 1) * block_size assert (shape[0] - 2 * head_size) % world_size == 0 q_tensor = slice_[start:stop] kv_tensor = slice_[-2 * head_size :] weight = torch.cat([q_tensor, kv_tensor], dim=0) if bias: slice_ = weights._get_slice(f"{prefix}.c_attn.bias") shape = slice_.get_shape() block_size = (shape[0] - 2 * head_size) // world_size assert (shape[0] - 2 * head_size) % world_size == 0 start = rank * block_size stop = (rank + 1) * block_size q_tensor = slice_[start:stop] kv_tensor = slice_[-2 * head_size :] bias = torch.cat([q_tensor, kv_tensor], dim=0) else: if config.transpose: w = [ weights.get_sharded(f"{prefix}.q_attn.weight", dim=1).T, weights.get_tensor(f"{prefix}.kv_attn.weight").T, ] weight = torch.cat(w, dim=0) else: w = [ weights.get_sharded(f"{prefix}.q_attn.weight", dim=0), weights.get_tensor(f"{prefix}.kv_attn.weight"), ] weight = torch.cat(w, dim=1) if bias: b = [ weights.get_sharded(f"{prefix}.q_attn.bias", dim=0), weights.get_tensor(f"{prefix}.kv_attn.bias"), ] bias = torch.cat(b, dim=0) else: bias = None weight = weight.to(dtype=weights.dtype).to(device=weights.device) assert list(weight.shape) == [ (num_heads + 2) * head_size, hidden_size, ], f"{weight.shape} != {[(num_heads + 2) * head_size, hidden_size]}" if bias is not None: bias = bias.to(dtype=weights.dtype).to(device=weights.device) assert list(bias.shape) == [ (num_heads + 2) * head_size ], f"{weight.shape} != {[(num_heads + 2) * head_size]}" return TensorParallelColumnLinear(get_linear(weight, bias)) def load_col(config, prefix: str, weights, bias: bool): if config.transpose: weight = weights.get_sharded(f"{prefix}.weight", dim=1).T else: weight = weights.get_multi_weights_col([prefix], dim=0) if bias: bias = weights.get_sharded(f"{prefix}.bias", dim=0) else: bias = None return TensorParallelColumnLinear(get_linear(weight, bias)) def load_row(config, prefix: str, weights, bias: bool): if config.transpose: weight = weights.get_sharded(f"{prefix}.weight", dim=0).T else: weight = weights.get_weights_row(prefix) if bias and weights.process_group.rank() == 0: # Rank is only on the first rank process bias = weights.get_tensor(f"{prefix}.bias") else: bias = None return TensorParallelRowLinear( get_linear(weight, bias), process_group=weights.process_group ) class FlashMQAttention(torch.nn.Module): def __init__(self, prefix, config, weights): super().__init__() num_heads = config.num_attention_heads hidden_size = config.hidden_size self.num_heads = num_heads self.hidden_size = hidden_size self.head_size = hidden_size // num_heads if self.num_heads % weights.process_group.size() != 0: raise ValueError( f"`num_heads` must be divisible by `num_shards` (got `num_heads`: {self.num_heads} " f"and `num_shards`: {weights.process_group.size()}" ) self.num_heads = self.num_heads // weights.process_group.size() self.softmax_scale = self.head_size ** (-0.5) self.c_attn = load_multi_mqa( config, prefix=prefix, weights=weights, bias=True, head_size=self.head_size, hidden_size=hidden_size, num_heads=self.num_heads, ) self.c_proj = load_row( config, prefix=f"{prefix}.c_proj", weights=weights, bias=True ) self.kv_scales = get_kv_scales(weights, f"{prefix}") self.kv_head_mapping = torch.zeros( self.num_heads, dtype=torch.int32, device=weights.device ) def forward( self, hidden_states, cu_seqlen_prefill, kv_cache, block_tables, slots, seqlen, max_s, ): qkv = self.c_attn(hidden_states) # Split query from key_value query, key_value = qkv.split( [self.head_size * self.num_heads, 2 * self.head_size], dim=1 ) # Prepare query and key_value for indexing query = query.view(-1, self.num_heads, self.head_size) key_value = key_value.view(-1, 2, 1, self.head_size) kv_cache.store( key=key_value[:, 0], value=key_value[:, 1], slots=slots, kv_scales=self.kv_scales, ) # Prefill if cu_seqlen_prefill is not None: # flash attention attn_output = attention( query=query, key=key_value[:, 0], value=key_value[:, 1], kv_cache=kv_cache, kv_scales=self.kv_scales, seqlen=seqlen, block_tables=block_tables, softmax_scale=self.softmax_scale, ) # Decode else: attn_output = paged_attention( query, kv_cache, self.kv_head_mapping, self.softmax_scale, block_tables, seqlen, max_s, kv_scales=self.kv_scales, ) return self.c_proj(attn_output.view(-1, self.num_heads * self.head_size)) class MLP(nn.Module): def __init__(self, prefix, config, weights): super().__init__() act = config.activation_function self.act = ( ACT2FN[act] if "gelu" not in act else lambda x: torch.nn.functional.gelu( x, approximate=( "tanh" if act in ["gelu_fast", "gelu_pytorch_tanh"] else "none" ), ) ) self.c_fc = load_col( config, prefix=f"{prefix}.c_fc", weights=weights, bias=True ) self.c_proj = load_row( config, prefix=f"{prefix}.c_proj", weights=weights, bias=True ) def forward(self, hidden_states): hidden_states = self.c_fc(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.c_proj(hidden_states) return hidden_states class Block(nn.Module): def __init__(self, prefix: str, layer_id, config, weights): super().__init__() prefix = f"{prefix}.h.{layer_id}" self.ln_1 = FastLayerNorm.load( prefix=f"{prefix}.ln_1", weights=weights, eps=config.layer_norm_epsilon ) self.ln_2 = FastLayerNorm.load( prefix=f"{prefix}.ln_2", weights=weights, eps=config.layer_norm_epsilon ) self.self_attn = FlashMQAttention( prefix=f"{prefix}.attn", config=config, weights=weights, ) self.mlp = MLP( prefix=f"{prefix}.mlp", config=config, weights=weights, ) def forward( self, hidden_states, residual, cu_seqlen_prefill, kv_cache, block_tables, slots, seqlen, max_s, ): hidden_states, residual = self.ln_1(hidden_states, residual) hidden_states = self.self_attn( hidden_states, cu_seqlen_prefill, kv_cache, block_tables, slots, seqlen, max_s, ) hidden_states, residual = self.ln_2(hidden_states, residual) mlp_output = self.mlp(hidden_states) return mlp_output, residual class FlashSantacoderModel(nn.Module): def __init__(self, prefix: str, config, weights): super().__init__() self.config = config self.process_group = weights.process_group self.wte = TensorParallelEmbedding( prefix=f"{prefix}.wte", weights=weights, reduce=False, ) self.wpe = TensorParallelEmbedding( prefix=f"{prefix}.wpe", weights=weights, reduce=False, ) self.layers = nn.ModuleList( [ Block( prefix, layer_id, config, weights, ) for layer_id in range(config.num_hidden_layers) ] ) self.ln_f = FastLayerNorm.load( prefix="transformer.ln_f", weights=weights, eps=config.layer_norm_epsilon ) self.head_size = self.layers[0].self_attn.head_size self.num_heads = self.layers[0].self_attn.num_heads def forward( self, input_ids: torch.Tensor, position_ids: torch.Tensor, cu_seqlen_prefill: Optional[torch.Tensor], kv_cache: List[Tuple[torch.Tensor, torch.Tensor]], block_tables: torch.Tensor, slots: torch.Tensor, seqlen: Seqlen, max_s: int, ) -> torch.Tensor: hidden_states = self.wte(input_ids) + self.wpe(position_ids) if self.process_group.size() > 1: torch.distributed.all_reduce(hidden_states, group=self.process_group) residual = None for i, layer in enumerate(self.layers): hidden_states, residual = layer( hidden_states, residual, cu_seqlen_prefill, kv_cache[i], block_tables, slots, seqlen, max_s, ) hidden_states, _ = self.ln_f(hidden_states, residual) return hidden_states class FlashSantacoderForCausalLM(nn.Module): def __init__(self, prefix, config, weights): super().__init__() if not prefix: prefix = "transformer" else: prefix = f"{prefix}.transformer" config.transpose = config.architectures[0].startswith("GPT2") self.model = FlashSantacoderModel(prefix, config, weights) self.lm_head = SpeculativeHead.load( config, prefix=f"{prefix}.wte", weights=weights ) def forward( self, input_ids: torch.Tensor, position_ids: torch.Tensor, cu_seqlen_prefill: Optional[torch.Tensor], kv_cache: List[Tuple[torch.Tensor, torch.Tensor]], block_tables: torch.Tensor, slots: torch.Tensor, seqlen: Seqlen, max_s: int, prefill_cache_indices: Optional[torch.Tensor], lm_head_indices: Optional[torch.Tensor] = None, adapter_data: Optional[torch.Tensor] = None, ) -> torch.Tensor: hidden_states = self.model( input_ids, position_ids, cu_seqlen_prefill, kv_cache, block_tables, slots, seqlen, max_s, ) if lm_head_indices is not None: hidden_states = hidden_states[lm_head_indices] logits = self.lm_head(hidden_states) return logits
text-generation-inference/server/text_generation_server/models/custom_modeling/flash_santacoder_modeling.py/0
{ "file_path": "text-generation-inference/server/text_generation_server/models/custom_modeling/flash_santacoder_modeling.py", "repo_id": "text-generation-inference", "token_count": 8648 }
# imlementation of the PhiModel and PhiForCausalLM classes import torch import torch.distributed import math from torch import nn from typing import Optional, List, Tuple from transformers.configuration_utils import PretrainedConfig from transformers.modeling_outputs import CausalLMOutputWithPast from text_generation_server.layers import ( TensorParallelRowLinear, TensorParallelColumnLinear, TensorParallelEmbedding, SpeculativeHead, FastLinear, ) # PhiConfig is the configuration class for the PhiModel. class PhiConfig(PretrainedConfig): def __init__( self, vocab_size=51200, n_positions=2048, n_embd=2560, n_layer=32, n_inner=None, n_head=32, rotary_dim=32, layer_norm_epsilon=1e-5, tie_word_embeddings=False, pad_vocab_size_multiple=64, pad_token_id=0, bos_token_id=1, eos_token_id=2, no_bias=False, **kwargs, ): self.vocab_size = vocab_size self.n_positions = n_positions self.n_embd = n_embd self.n_layer = n_layer self.n_inner = n_inner self.n_head = n_head self.rotary_dim = rotary_dim self.layer_norm_epsilon = layer_norm_epsilon self.tie_word_embeddings = tie_word_embeddings self.pad_vocab_size_multiple = pad_vocab_size_multiple self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id self.eos_token_id = eos_token_id self.no_bias = no_bias super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) # RotaryEmbedding is a class that implements the rotary embedding. class RotaryEmbedding(nn.Module): def __init__(self, dim, max_seq_len): super().__init__() inv_freq = [1.0 / 10000.0 ** (i / dim) for i in range(0, dim, 2)] inv_freq_len = len(inv_freq) inv_freq = torch.tensor(inv_freq).view(1, inv_freq_len) t = torch.arange(0, max_seq_len, dtype=torch.float).view(max_seq_len, 1) freqs = t.matmul(inv_freq) self.sin = freqs.sin() self.cos = freqs.cos() def apply_rotary_emb_qkv(self, qkv, seqlen_offset): b_size, seqlen, three, _, _headdim = qkv.shape if three != 3: raise Exception("unexpected shape for qkv") _, rotary_dim = self.cos.shape rotary_dim = rotary_dim * 2 q_rot = qkv[:, :, 0, :, :rotary_dim] q_pass = qkv[:, :, 0, :, rotary_dim:] k_rot = qkv[:, :, 1, :, :rotary_dim] k_pass = qkv[:, :, 1, :, rotary_dim:] q12 = torch.chunk(q_rot, 2, dim=-1) k12 = torch.chunk(k_rot, 2, dim=-1) q1, q2 = q12[0], q12[1] k1, k2 = k12[0], k12[1] c = self.cos.narrow(0, seqlen_offset, seqlen).unsqueeze(1) s = self.sin.narrow(0, seqlen_offset, seqlen).unsqueeze(1) q_rot = torch.cat( [ q1 * c - q2 * s, q1 * s + q2 * c, ], dim=-1, ) k_rot = torch.cat( [ k1 * c - k2 * s, k1 * s + k2 * c, ], dim=-1, ) q = torch.cat([q_rot, q_pass], dim=-1) k = torch.cat([k_rot, k_pass], dim=-1) v = qkv[:, :, 2] return q, k, v # PhiCausalLMHead is the head of the PhiModel. It is a linear layer with a layer norm. class PhiCausalLMHead(nn.Module): def __init__(self, config, weights): super().__init__() self.ln = nn.LayerNorm.load( prefix="lm_head.ln", weights=weights, eps=config.layer_norm_epsilon, ) self.linear = SpeculativeHead.load( config=config, prefix="lm_head.linear", weights=weights ) def forward(self, hidden_states): hidden_states = self.ln(hidden_states) hidden_states = self.linear(hidden_states) return hidden_states # PhiMHA is a multi-head attention layer. This layer uses an attention mask to prevent tokens from attending to subsequent tokens. class PhiMHA(nn.Module): def __init__(self, prefix, config, weights): super().__init__() self.Wqkv = TensorParallelColumnLinear.load( config, prefix=f"{prefix}.Wqkv", weights=weights, bias=not config.no_bias ) self.out_proj = TensorParallelRowLinear.load( config, prefix=f"{prefix}.out_proj", weights=weights, bias=not config.no_bias, ) self.op_size = config.n_embd self.head_dim = int(config.n_embd / config.n_head) self.num_heads = config.n_head self.rotary_emb = RotaryEmbedding( config.rotary_dim, config.n_positions, ) self.softmax_scale = 1.0 / math.sqrt(self.head_dim) def forward( self, hidden_states, past_kv_cache, attention_mask=None, ): b_size, seq_len, _n_embd = hidden_states.shape qkv = self.Wqkv(hidden_states) qkv = qkv.view(b_size, seq_len, 3, self.num_heads, self.head_dim) seqlen_offset = 0 if past_kv_cache is None else past_kv_cache[0].shape[1] q, k, v = self.rotary_emb.apply_rotary_emb_qkv(qkv, seqlen_offset) # if there is a kv_cache, then we need to concatenate if past_kv_cache is not None: prev_k, prev_v = past_kv_cache k = torch.cat([prev_k, k], dim=1) v = torch.cat([prev_v, v], dim=1) past_kv_cache = [k, v] attn_weights = torch.einsum("bthd,bshd->bhts", q, k * self.softmax_scale) if attention_mask is not None: seqlen_k = k.shape[1] seqlen_q = q.shape[1] causal_mask = torch.triu( torch.full((seqlen_q, seqlen_k), -10000.0, device=attn_weights.device), 1, ) attn_weights = attn_weights + causal_mask.to(dtype=attn_weights.dtype) attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1) attn_output = attn_weights.matmul(v.transpose(1, 2)).squeeze(0) attn_output = ( attn_output.view((b_size, self.num_heads, seq_len, self.head_dim)) .transpose(1, 2) .flatten(-2) ) return self.out_proj(attn_output), past_kv_cache # PhiMLP is a multi-layer perceptron. It contains two linear layers with a gelu activation function. class PhiMLP(nn.Module): def __init__(self, prefix, config, weights): super().__init__() self.n_inner = config.n_inner self.fc1 = FastLinear.load( config=config, prefix=f"{prefix}.fc1", weights=weights, bias=False, ) self.fc2 = FastLinear.load( config=config, prefix=f"{prefix}.fc2", weights=weights, bias=False, ) self.activation = torch.nn.functional.gelu def forward(self, hidden_states): hidden_states = self.fc1(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states # PhiBlock is a single transformer block. It contains a layer norm, a multi-head attention layer and an multi-layer perceptron. class PhiBlock(nn.Module): def __init__(self, layer_id, config, weights): super().__init__() self.layer_id = layer_id self.layer_norm = nn.LayerNorm.load( prefix=f"{layer_id}.ln", weights=weights, eps=config.layer_norm_epsilon ) self.mixer = PhiMHA(prefix=f"{layer_id}.mixer", config=config, weights=weights) self.mlp = PhiMLP(prefix=f"{layer_id}.mlp", config=config, weights=weights) def forward( self, hidden_states, kv_cache, attention_mask, ): residual = hidden_states hidden_states = self.layer_norm(hidden_states) attn_outputs, past_kv_cache = self.mixer( hidden_states, kv_cache, attention_mask ) feed_forward_hidden_states = self.mlp(hidden_states) out = attn_outputs + feed_forward_hidden_states + residual return out, past_kv_cache # PhiModel implements the embedding layer and the transformer blocks. class PhiModel(nn.Module): def __init__(self, prefix: str, config, weights): super().__init__() self.tp_rank = weights.process_group.rank() self.tp_world_size = weights.process_group.size() self.embed_tokens = TensorParallelEmbedding( prefix=f"{prefix}.embd.wte", weights=weights ) self.blocks = nn.ModuleList( [ PhiBlock(f"{prefix}.h.{layer_id}", config, weights) for layer_id in range(config.n_layer) ] ) def forward( self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None, attention_mask: Optional[torch.ByteTensor] = None, return_dict: Optional[bool] = None, use_cache: Optional[bool] = None, ) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]: hidden_states = self.embed_tokens(input_ids) seq_len = hidden_states.shape[1] mask = None if seq_len <= 1 else attention_mask past_key_values = ( [None] * len(self.blocks) if past_key_values is None else past_key_values ) for index, block in enumerate(self.blocks): hidden_states, new_key_values = block( hidden_states, past_key_values[index], mask ) past_key_values[index] = new_key_values return hidden_states, past_key_values # PhiForCausalLM wraps the PhiModel and PhiCausalLMHead together and returns a CausalLMOutputWithPast object. class PhiForCausalLM(torch.nn.Module): def __init__(self, prefix: str, config, weights): super().__init__() if not prefix: prefix = "transformer" else: prefix = f"{prefix}.transformer" self.model = PhiModel(prefix, config, weights) self.lm_head = PhiCausalLMHead(config, weights) def forward( self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]] = None, attention_mask: Optional[torch.ByteTensor] = None, return_dict: Optional[bool] = None, use_cache: Optional[bool] = None, labels: Optional[torch.LongTensor] = None, ) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]: model_output = self.model( input_ids, past_key_values, attention_mask, return_dict, use_cache ) logits = self.lm_head(model_output[0]) loss = None if labels is not None: loss = nn.CrossEntropyLoss()( logits[:, :-1].view(-1, logits.size(-1)), labels[:, 1:].view(-1) ) if not return_dict: return ( ((loss,) + (logits,) + model_output[1:]) if loss is not None else (logits,) + model_output[1:] ) return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=model_output[1], hidden_states=None, attentions=None, )
text-generation-inference/server/text_generation_server/models/custom_modeling/phi_modeling.py/0
{ "file_path": "text-generation-inference/server/text_generation_server/models/custom_modeling/phi_modeling.py", "repo_id": "text-generation-inference", "token_count": 5696 }
import torch from abc import ABC, abstractmethod from dataclasses import dataclass from typing import List, Optional from transformers import PreTrainedTokenizerBase from text_generation_server.pb import generate_pb2 from text_generation_server.pb.generate_pb2 import FinishReason class Batch(ABC): @abstractmethod def to_pb(self) -> generate_pb2.CachedBatch: raise NotImplementedError @classmethod @abstractmethod def from_pb( cls, pb: generate_pb2.Batch, tokenizer: PreTrainedTokenizerBase, dtype: torch.dtype, device: torch.device, ) -> "Batch": raise NotImplementedError @abstractmethod def filter(self, request_ids: List[int]) -> "Batch": raise NotImplementedError @classmethod @abstractmethod def concatenate(cls, batches: List["Batch"]) -> "Batch": raise NotImplementedError @abstractmethod def __len__(self): raise NotImplementedError @dataclass class GeneratedText: text: str generated_tokens: int finish_reason: FinishReason seed: Optional[int] def to_pb(self) -> generate_pb2.GeneratedText: return generate_pb2.GeneratedText( text=self.text, generated_tokens=self.generated_tokens, finish_reason=self.finish_reason, seed=self.seed, ) @dataclass class Tokens: token_ids: List[int] logprobs: List[float] texts: List[str] is_special: List[bool] def to_pb(self) -> generate_pb2.Tokens: return generate_pb2.Tokens( ids=self.token_ids, logprobs=self.logprobs, texts=self.texts, is_special=self.is_special, ) def __len__(self): return len(self.token_ids) def __add__(self, other: "Tokens") -> "Tokens": return Tokens( self.token_ids + other.token_ids, self.logprobs + other.logprobs, self.texts + other.texts, self.is_special + other.is_special, ) @dataclass class Generation: request_id: int prefill_tokens: Optional[Tokens] tokens: Tokens generated_text: Optional[GeneratedText] # Optional for now, since it's not yet supported for every model. top_tokens: Optional[List[Tokens]] def to_pb(self) -> generate_pb2.Generation: return generate_pb2.Generation( request_id=self.request_id, prefill_tokens=( self.prefill_tokens.to_pb() if self.prefill_tokens is not None else None ), tokens=self.tokens.to_pb(), generated_text=( self.generated_text.to_pb() if self.generated_text is not None else None ), top_tokens=( [top_tokens.to_pb() for top_tokens in self.top_tokens] if self.top_tokens is not None else None ), )
text-generation-inference/server/text_generation_server/models/types.py/0
{ "file_path": "text-generation-inference/server/text_generation_server/models/types.py", "repo_id": "text-generation-inference", "token_count": 1353 }
import os from typing import Union from loguru import logger import torch from transformers import AutoTokenizer from peft import AutoPeftModelForCausalLM, AutoPeftModelForSeq2SeqLM def download_and_unload_peft(model_id, revision, trust_remote_code): torch_dtype = torch.float16 logger.info("Trying to load a Peft model. It might take a while without feedback") try: model = AutoPeftModelForCausalLM.from_pretrained( model_id, revision=revision, torch_dtype=torch_dtype, trust_remote_code=trust_remote_code, low_cpu_mem_usage=True, ) except Exception: model = AutoPeftModelForSeq2SeqLM.from_pretrained( model_id, revision=revision, torch_dtype=torch_dtype, trust_remote_code=trust_remote_code, low_cpu_mem_usage=True, ) logger.info("Peft model detected.") logger.info("Merging the lora weights.") base_model_id = model.peft_config["default"].base_model_name_or_path model = model.merge_and_unload() os.makedirs(model_id, exist_ok=True) cache_dir = model_id logger.info(f"Saving the newly created merged model to {cache_dir}") tokenizer = AutoTokenizer.from_pretrained( base_model_id, trust_remote_code=trust_remote_code ) model.save_pretrained(cache_dir, safe_serialization=True) model.config.save_pretrained(cache_dir) tokenizer.save_pretrained(cache_dir) def download_peft( model_id: Union[str, os.PathLike], revision: str, trust_remote_code: bool ): torch_dtype = torch.float16 try: _model = AutoPeftModelForCausalLM.from_pretrained( model_id, revision=revision, torch_dtype=torch_dtype, trust_remote_code=trust_remote_code, low_cpu_mem_usage=True, ) except Exception: _model = AutoPeftModelForSeq2SeqLM.from_pretrained( model_id, revision=revision, torch_dtype=torch_dtype, trust_remote_code=trust_remote_code, low_cpu_mem_usage=True, ) logger.info("Peft model downloaded.")
text-generation-inference/server/text_generation_server/utils/peft.py/0
{ "file_path": "text-generation-inference/server/text_generation_server/utils/peft.py", "repo_id": "text-generation-inference", "token_count": 981 }
/* tslint:disable */ /* eslint-disable */ /* auto-generated by NAPI-RS */ export function bpeDecoder(suffix?: string | undefined | null): Decoder export function byteFallbackDecoder(): Decoder export function ctcDecoder( padToken?: string = '<pad>', wordDelimiterToken?: string | undefined | null, cleanup?: boolean | undefined | null, ): Decoder export function fuseDecoder(): Decoder export function metaspaceDecoder( replacement?: string = '▁', prependScheme?: prepend_scheme = 'always', split?: split = true, ): Decoder export function replaceDecoder(pattern: string, content: string): Decoder export function sequenceDecoder(decoders: Array<Decoder>): Decoder export function stripDecoder(content: string, left: number, right: number): Decoder export function wordPieceDecoder(prefix?: string = '##', cleanup?: bool = true): Decoder export const enum TruncationDirection { Left = 'Left', Right = 'Right', } export const enum TruncationStrategy { LongestFirst = 'LongestFirst', OnlyFirst = 'OnlyFirst', OnlySecond = 'OnlySecond', } export interface BpeOptions { cacheCapacity?: number dropout?: number unkToken?: string continuingSubwordPrefix?: string endOfWordSuffix?: string fuseUnk?: boolean byteFallback?: boolean } export interface WordPieceOptions { unkToken?: string continuingSubwordPrefix?: string maxInputCharsPerWord?: number } export interface WordLevelOptions { unkToken?: string } export interface UnigramOptions { unkId?: number byteFallback?: boolean } export function prependNormalizer(prepend: string): Normalizer export function stripAccentsNormalizer(): Normalizer export interface BertNormalizerOptions { cleanText?: boolean handleChineseChars?: boolean stripAccents?: boolean lowercase?: boolean } /** * bert_normalizer(options?: { * cleanText?: bool = true, * handleChineseChars?: bool = true, * stripAccents?: bool = true, * lowercase?: bool = true * }) */ export function bertNormalizer(options?: BertNormalizerOptions | undefined | null): Normalizer export function nfdNormalizer(): Normalizer export function nfkdNormalizer(): Normalizer export function nfcNormalizer(): Normalizer export function nfkcNormalizer(): Normalizer export function stripNormalizer(left?: boolean | undefined | null, right?: boolean | undefined | null): Normalizer export function sequenceNormalizer(normalizers: Array<Normalizer>): Normalizer export function lowercase(): Normalizer export function replace(pattern: string, content: string): Normalizer export function nmt(): Normalizer export function precompiled(bytes: Array<number>): Normalizer export const enum JsSplitDelimiterBehavior { Removed = 'Removed', Isolated = 'Isolated', MergedWithPrevious = 'MergedWithPrevious', MergedWithNext = 'MergedWithNext', Contiguous = 'Contiguous', } /** byte_level(addPrefixSpace: bool = true, useRegex: bool = true) */ export function byteLevelPreTokenizer( addPrefixSpace?: boolean | undefined | null, useRegex?: boolean | undefined | null, ): PreTokenizer export function byteLevelAlphabet(): Array<string> export function whitespacePreTokenizer(): PreTokenizer export function whitespaceSplitPreTokenizer(): PreTokenizer export function bertPreTokenizer(): PreTokenizer export function metaspacePreTokenizer( replacement?: string = '▁', prependScheme?: prepend_scheme = 'always', split?: split = true, ): PreTokenizer export function splitPreTokenizer(pattern: string, behavior: string, invert?: boolean | undefined | null): PreTokenizer export function punctuationPreTokenizer(behavior?: string | undefined | null): PreTokenizer export function sequencePreTokenizer(preTokenizers: Array<PreTokenizer>): PreTokenizer export function charDelimiterSplit(delimiter: string): PreTokenizer export function digitsPreTokenizer(individualDigits?: boolean | undefined | null): PreTokenizer export function bertProcessing(sep: [string, number], cls: [string, number]): Processor export function robertaProcessing( sep: [string, number], cls: [string, number], trimOffsets?: boolean | undefined | null, addPrefixSpace?: boolean | undefined | null, ): Processor export function byteLevelProcessing(trimOffsets?: boolean | undefined | null): Processor export function templateProcessing( single: string, pair?: string | undefined | null, specialTokens?: Array<[string, number]> | undefined | null, ): Processor export function sequenceProcessing(processors: Array<Processor>): Processor export const enum PaddingDirection { Left = 0, Right = 1, } export interface PaddingOptions { maxLength?: number direction?: string | PaddingDirection padToMultipleOf?: number padId?: number padTypeId?: number padToken?: string } export interface EncodeOptions { isPretokenized?: boolean addSpecialTokens?: boolean } export interface TruncationOptions { maxLength?: number strategy?: TruncationStrategy direction?: string | TruncationDirection stride?: number } export interface AddedTokenOptions { singleWord?: boolean leftStrip?: boolean rightStrip?: boolean normalized?: boolean } export interface JsFromPretrainedParameters { revision?: string authToken?: string } export function slice(s: string, beginIndex?: number | undefined | null, endIndex?: number | undefined | null): string export function mergeEncodings(encodings: Array<Encoding>, growingOffsets?: boolean | undefined | null): Encoding /** Decoder */ export class Decoder { decode(tokens: Array<string>): string } export type JsEncoding = Encoding export class Encoding { constructor() getLength(): number getNSequences(): number getIds(): Array<number> getTypeIds(): Array<number> getAttentionMask(): Array<number> getSpecialTokensMask(): Array<number> getTokens(): Array<string> getOffsets(): Array<Array<number>> getWordIds(): Array<number | undefined | null> charToToken(pos: number, seqId?: number | undefined | null): number | null charToWord(pos: number, seqId?: number | undefined | null): number | null pad(length: number, options?: PaddingOptions | undefined | null): void truncate( length: number, stride?: number | undefined | null, direction?: string | TruncationDirection | undefined | null, ): void wordToTokens(word: number, seqId?: number | undefined | null): [number, number] | null | undefined wordToChars(word: number, seqId?: number | undefined | null): [number, number] | null | undefined tokenToChars(token: number): [number, [number, number]] | null | undefined tokenToWord(token: number): number | null getOverflowing(): Array<Encoding> getSequenceIds(): Array<number | undefined | null> tokenToSequence(token: number): number | null } export class Model {} export type Bpe = BPE export class BPE { static empty(): Model static init(vocab: Vocab, merges: Merges, options?: BpeOptions | undefined | null): Model static fromFile(vocab: string, merges: string, options?: BpeOptions | undefined | null): Promise<Model> } export class WordPiece { static init(vocab: Vocab, options?: WordPieceOptions | undefined | null): Model static empty(): WordPiece static fromFile(vocab: string, options?: WordPieceOptions | undefined | null): Promise<Model> } export class WordLevel { static init(vocab: Vocab, options?: WordLevelOptions | undefined | null): Model static empty(): WordLevel static fromFile(vocab: string, options?: WordLevelOptions | undefined | null): Promise<Model> } export class Unigram { static init(vocab: Array<[string, number]>, options?: UnigramOptions | undefined | null): Model static empty(): Model } /** Normalizer */ export class Normalizer { normalizeString(sequence: string): string } /** PreTokenizers */ export class PreTokenizer { preTokenizeString(sequence: string): [string, [number, number]][] } export class Processor {} export class AddedToken { constructor(token: string, isSpecial: boolean, options?: AddedTokenOptions | undefined | null) getContent(): string } export class Tokenizer { constructor(model: Model) setPreTokenizer(preTokenizer: PreTokenizer): void setDecoder(decoder: Decoder): void setModel(model: Model): void setPostProcessor(postProcessor: Processor): void setNormalizer(normalizer: Normalizer): void save(path: string, pretty?: boolean | undefined | null): void addAddedTokens(tokens: Array<AddedToken>): number addTokens(tokens: Array<string>): number encode( sentence: InputSequence, pair?: InputSequence | null, encodeOptions?: EncodeOptions | undefined | null, ): Promise<JsEncoding> encodeBatch(sentences: EncodeInput[], encodeOptions?: EncodeOptions | undefined | null): Promise<JsEncoding[]> decode(ids: Array<number>, skipSpecialTokens: boolean): Promise<string> decodeBatch(ids: Array<Array<number>>, skipSpecialTokens: boolean): Promise<string[]> static fromString(s: string): Tokenizer static fromFile(file: string): Tokenizer addSpecialTokens(tokens: Array<string>): void setTruncation(maxLength: number, options?: TruncationOptions | undefined | null): void disableTruncation(): void setPadding(options?: PaddingOptions | undefined | null): void disablePadding(): void getDecoder(): Decoder | null getNormalizer(): Normalizer | null getPreTokenizer(): PreTokenizer | null getPostProcessor(): Processor | null getVocab(withAddedTokens?: boolean | undefined | null): Record<string, number> getVocabSize(withAddedTokens?: boolean | undefined | null): number idToToken(id: number): string | null tokenToId(token: string): number | null train(files: Array<string>): void runningTasks(): number postProcess( encoding: Encoding, pair?: Encoding | undefined | null, addSpecialTokens?: boolean | undefined | null, ): Encoding } export class Trainer {}
tokenizers/bindings/node/index.d.ts/0
{ "file_path": "tokenizers/bindings/node/index.d.ts", "repo_id": "tokenizers", "token_count": 2753 }
use crate::arc_rwlock_serde; use napi::bindgen_prelude::*; use napi_derive::napi; use serde::{Deserialize, Serialize}; use std::sync::{Arc, RwLock}; use tk::pre_tokenizers::PreTokenizerWrapper; use tk::PreTokenizedString; use tk::SplitDelimiterBehavior; use tokenizers as tk; #[napi(string_enum)] pub enum JsSplitDelimiterBehavior { Removed, Isolated, MergedWithPrevious, MergedWithNext, Contiguous, } impl TryFrom<String> for JsSplitDelimiterBehavior { type Error = Error; fn try_from(value: String) -> Result<Self> { match &value[..] { "removed" => Ok(JsSplitDelimiterBehavior::Removed), "isolated" => Ok(JsSplitDelimiterBehavior::Isolated), "mergedWithPrevious" => Ok(JsSplitDelimiterBehavior::MergedWithPrevious), "mergedWithNext" => Ok(JsSplitDelimiterBehavior::MergedWithNext), "contiguous" => Ok(JsSplitDelimiterBehavior::Contiguous), _ => Err(Error::from_reason( "Wrong value for SplitDelimiterBehavior, expected one of: \ `removed, isolated, mergedWithPrevious, mergedWithNext, contiguous`" .to_string(), )), } } } impl From<JsSplitDelimiterBehavior> for SplitDelimiterBehavior { fn from(value: JsSplitDelimiterBehavior) -> Self { match value { JsSplitDelimiterBehavior::Removed => SplitDelimiterBehavior::Removed, JsSplitDelimiterBehavior::Isolated => SplitDelimiterBehavior::Isolated, JsSplitDelimiterBehavior::MergedWithPrevious => SplitDelimiterBehavior::MergedWithPrevious, JsSplitDelimiterBehavior::MergedWithNext => SplitDelimiterBehavior::MergedWithNext, JsSplitDelimiterBehavior::Contiguous => SplitDelimiterBehavior::Contiguous, } } } /// PreTokenizers #[derive(Clone, Debug, Serialize, Deserialize)] #[napi] pub struct PreTokenizer { #[serde(flatten, with = "arc_rwlock_serde")] pretok: Option<Arc<RwLock<PreTokenizerWrapper>>>, } impl tk::PreTokenizer for PreTokenizer { fn pre_tokenize(&self, pretokenized: &mut PreTokenizedString) -> tk::Result<()> { self .pretok .as_ref() .ok_or("Uninitialized PreTokenizer")? .read() .unwrap() .pre_tokenize(pretokenized)?; Ok(()) } } #[napi] impl PreTokenizer { #[napi(ts_return_type = "[string, [number, number]][]")] pub fn pre_tokenize_string(&self, sequence: String, env: Env) -> Result<Vec<Array>> { use tk::PreTokenizer; let mut pretokenized = PreTokenizedString::from(sequence); self .pre_tokenize(&mut pretokenized) .map_err(|e| Error::from_reason(format!("{}", e)))?; pretokenized .get_splits(tk::OffsetReferential::Original, tk::OffsetType::Char) .into_iter() .map(|(s, (start, end), _)| -> Result<Array> { let mut arr = env.create_array(2)?; let mut offset = env.create_array(2)?; offset.set(0, env.create_uint32(start as u32)?)?; offset.set(1, env.create_uint32(end as u32)?)?; arr.set(0, env.create_string(s)?)?; arr.set(1, offset)?; Ok(arr) }) .collect::<Result<Vec<_>>>() } } /// byte_level(addPrefixSpace: bool = true, useRegex: bool = true) #[napi] pub fn byte_level_pre_tokenizer( add_prefix_space: Option<bool>, use_regex: Option<bool>, ) -> PreTokenizer { let mut byte_level = tk::pre_tokenizers::byte_level::ByteLevel::default(); if let Some(add_prefix_space) = add_prefix_space { byte_level = byte_level.add_prefix_space(add_prefix_space); } if let Some(use_regex) = use_regex { byte_level = byte_level.use_regex(use_regex); } PreTokenizer { pretok: Some(Arc::new(RwLock::new(byte_level.into()))), } } #[napi] pub fn byte_level_alphabet() -> Vec<String> { tk::pre_tokenizers::byte_level::ByteLevel::alphabet() .into_iter() .map(|c| c.to_string()) .collect::<Vec<_>>() } #[napi] pub fn whitespace_pre_tokenizer() -> PreTokenizer { PreTokenizer { pretok: Some(Arc::new(RwLock::new( tk::pre_tokenizers::whitespace::Whitespace.into(), ))), } } #[napi] pub fn whitespace_split_pre_tokenizer() -> PreTokenizer { PreTokenizer { pretok: Some(Arc::new(RwLock::new( tk::pre_tokenizers::whitespace::WhitespaceSplit.into(), ))), } } #[napi] pub fn bert_pre_tokenizer() -> PreTokenizer { PreTokenizer { pretok: Some(Arc::new(RwLock::new( tk::pre_tokenizers::bert::BertPreTokenizer.into(), ))), } } #[napi] pub fn metaspace_pre_tokenizer( #[napi(ts_arg_type = "string = '▁'")] replacement: Option<String>, #[napi(ts_arg_type = "prepend_scheme = 'always'")] prepend_scheme: Option<String>, #[napi(ts_arg_type = "split = true")] split: Option<bool>, ) -> Result<PreTokenizer> { use tk::pre_tokenizers::metaspace::PrependScheme; let split = split.unwrap_or(true); let replacement = replacement.unwrap_or("▁".to_string()); if replacement.chars().count() != 1 { return Err(Error::from_reason( "replacement is supposed to be a single char", )); } let replacement = replacement.chars().next().unwrap(); let prepend_scheme: PrependScheme = match prepend_scheme.unwrap_or(String::from("always")).as_str() { "always" => PrependScheme::Always, "first" => PrependScheme::First, "never" => PrependScheme::Never, _ => { return Err(Error::from_reason( "prepend_scheme is supposed to be either 'always', 'first' or 'never'", )); } }; Ok(PreTokenizer { pretok: Some(Arc::new(RwLock::new( tk::pre_tokenizers::metaspace::Metaspace::new(replacement, prepend_scheme, split).into(), ))), }) } #[napi] pub fn split_pre_tokenizer( pattern: String, behavior: String, invert: Option<bool>, ) -> Result<PreTokenizer> { let behavior: JsSplitDelimiterBehavior = behavior.try_into()?; let invert = invert.unwrap_or(false); Ok(PreTokenizer { pretok: Some(Arc::new(RwLock::new( tk::pre_tokenizers::split::Split::new(pattern, behavior.into(), invert) .map_err(|e| Error::from_reason(e.to_string()))? .into(), ))), }) } #[napi] pub fn punctuation_pre_tokenizer(behavior: Option<String>) -> Result<PreTokenizer> { let behavior = match behavior { Some(behavior) => behavior.try_into()?, None => JsSplitDelimiterBehavior::Isolated, }; Ok(PreTokenizer { pretok: Some(Arc::new(RwLock::new( tk::pre_tokenizers::punctuation::Punctuation::new(behavior.into()).into(), ))), }) } #[napi] pub fn sequence_pre_tokenizer(pre_tokenizers: Vec<&PreTokenizer>) -> PreTokenizer { let mut sequence: Vec<PreTokenizerWrapper> = Vec::with_capacity(pre_tokenizers.len()); pre_tokenizers.into_iter().for_each(|pre_tokenizer| { if let Some(pre_tokenizer) = &pre_tokenizer.pretok { sequence.push((**pre_tokenizer).read().unwrap().clone()) } }); PreTokenizer { pretok: Some(Arc::new(RwLock::new(PreTokenizerWrapper::Sequence( tk::pre_tokenizers::sequence::Sequence::new(sequence), )))), } } #[napi] pub fn char_delimiter_split(delimiter: String) -> Result<PreTokenizer> { if delimiter.chars().count() != 1 { return Err(Error::from_reason( "delimiter is supposed to be a single char", )); } let delimiter = delimiter.chars().next().unwrap(); Ok(PreTokenizer { pretok: Some(Arc::new(RwLock::new( tk::pre_tokenizers::delimiter::CharDelimiterSplit::new(delimiter).into(), ))), }) } #[napi] pub fn digits_pre_tokenizer(individual_digits: Option<bool>) -> PreTokenizer { let individual_digits = individual_digits.unwrap_or(false); PreTokenizer { pretok: Some(Arc::new(RwLock::new( tk::pre_tokenizers::digits::Digits::new(individual_digits).into(), ))), } }
tokenizers/bindings/node/src/pre_tokenizers.rs/0
{ "file_path": "tokenizers/bindings/node/src/pre_tokenizers.rs", "repo_id": "tokenizers", "token_count": 3152 }
.PHONY: style check-style test DATA_DIR = data dir_guard=@mkdir -p $(@D) check_dirs := examples py_src/tokenizers tests # Format source code automatically style: python stub.py ruff check $(check_dirs) --fix ruff format $(check_dirs) # Check the source code is formatted correctly check-style: python stub.py --check ruff check $(check_dirs) ruff format --check $(check_dirs) TESTS_RESOURCES = $(DATA_DIR)/small.txt $(DATA_DIR)/roberta.json # Launch the test suite test: $(TESTS_RESOURCES) pip install pytest requests setuptools_rust numpy pyarrow datasets python -m pytest -s -v tests cargo test --no-default-features $(DATA_DIR)/big.txt : $(dir_guard) wget https://norvig.com/big.txt -O $@ $(DATA_DIR)/small.txt : $(DATA_DIR)/big.txt head -100 $(DATA_DIR)/big.txt > $@ $(DATA_DIR)/roberta.json : $(dir_guard) wget https://huggingface.co/roberta-large/raw/main/tokenizer.json -O $@
tokenizers/bindings/python/Makefile/0
{ "file_path": "tokenizers/bindings/python/Makefile", "repo_id": "tokenizers", "token_count": 349 }
from typing import Dict, Iterator, List, Optional, Union from tokenizers import AddedToken, Tokenizer, decoders, trainers from tokenizers.models import WordPiece from tokenizers.normalizers import BertNormalizer from tokenizers.pre_tokenizers import BertPreTokenizer from tokenizers.processors import BertProcessing from .base_tokenizer import BaseTokenizer class BertWordPieceTokenizer(BaseTokenizer): """Bert WordPiece Tokenizer""" def __init__( self, vocab: Optional[Union[str, Dict[str, int]]] = None, unk_token: Union[str, AddedToken] = "[UNK]", sep_token: Union[str, AddedToken] = "[SEP]", cls_token: Union[str, AddedToken] = "[CLS]", pad_token: Union[str, AddedToken] = "[PAD]", mask_token: Union[str, AddedToken] = "[MASK]", clean_text: bool = True, handle_chinese_chars: bool = True, strip_accents: Optional[bool] = None, lowercase: bool = True, wordpieces_prefix: str = "##", ): if vocab is not None: tokenizer = Tokenizer(WordPiece(vocab, unk_token=str(unk_token))) else: tokenizer = Tokenizer(WordPiece(unk_token=str(unk_token))) # Let the tokenizer know about special tokens if they are part of the vocab if tokenizer.token_to_id(str(unk_token)) is not None: tokenizer.add_special_tokens([str(unk_token)]) if tokenizer.token_to_id(str(sep_token)) is not None: tokenizer.add_special_tokens([str(sep_token)]) if tokenizer.token_to_id(str(cls_token)) is not None: tokenizer.add_special_tokens([str(cls_token)]) if tokenizer.token_to_id(str(pad_token)) is not None: tokenizer.add_special_tokens([str(pad_token)]) if tokenizer.token_to_id(str(mask_token)) is not None: tokenizer.add_special_tokens([str(mask_token)]) tokenizer.normalizer = BertNormalizer( clean_text=clean_text, handle_chinese_chars=handle_chinese_chars, strip_accents=strip_accents, lowercase=lowercase, ) tokenizer.pre_tokenizer = BertPreTokenizer() if vocab is not None: sep_token_id = tokenizer.token_to_id(str(sep_token)) if sep_token_id is None: raise TypeError("sep_token not found in the vocabulary") cls_token_id = tokenizer.token_to_id(str(cls_token)) if cls_token_id is None: raise TypeError("cls_token not found in the vocabulary") tokenizer.post_processor = BertProcessing((str(sep_token), sep_token_id), (str(cls_token), cls_token_id)) tokenizer.decoder = decoders.WordPiece(prefix=wordpieces_prefix) parameters = { "model": "BertWordPiece", "unk_token": unk_token, "sep_token": sep_token, "cls_token": cls_token, "pad_token": pad_token, "mask_token": mask_token, "clean_text": clean_text, "handle_chinese_chars": handle_chinese_chars, "strip_accents": strip_accents, "lowercase": lowercase, "wordpieces_prefix": wordpieces_prefix, } super().__init__(tokenizer, parameters) @staticmethod def from_file(vocab: str, **kwargs): vocab = WordPiece.read_file(vocab) return BertWordPieceTokenizer(vocab, **kwargs) def train( self, files: Union[str, List[str]], vocab_size: int = 30000, min_frequency: int = 2, limit_alphabet: int = 1000, initial_alphabet: List[str] = [], special_tokens: List[Union[str, AddedToken]] = [ "[PAD]", "[UNK]", "[CLS]", "[SEP]", "[MASK]", ], show_progress: bool = True, wordpieces_prefix: str = "##", ): """Train the model using the given files""" trainer = trainers.WordPieceTrainer( vocab_size=vocab_size, min_frequency=min_frequency, limit_alphabet=limit_alphabet, initial_alphabet=initial_alphabet, special_tokens=special_tokens, show_progress=show_progress, continuing_subword_prefix=wordpieces_prefix, ) if isinstance(files, str): files = [files] self._tokenizer.train(files, trainer=trainer) def train_from_iterator( self, iterator: Union[Iterator[str], Iterator[Iterator[str]]], vocab_size: int = 30000, min_frequency: int = 2, limit_alphabet: int = 1000, initial_alphabet: List[str] = [], special_tokens: List[Union[str, AddedToken]] = [ "[PAD]", "[UNK]", "[CLS]", "[SEP]", "[MASK]", ], show_progress: bool = True, wordpieces_prefix: str = "##", length: Optional[int] = None, ): """Train the model using the given iterator""" trainer = trainers.WordPieceTrainer( vocab_size=vocab_size, min_frequency=min_frequency, limit_alphabet=limit_alphabet, initial_alphabet=initial_alphabet, special_tokens=special_tokens, show_progress=show_progress, continuing_subword_prefix=wordpieces_prefix, ) self._tokenizer.train_from_iterator( iterator, trainer=trainer, length=length, )
tokenizers/bindings/python/py_src/tokenizers/implementations/bert_wordpiece.py/0
{ "file_path": "tokenizers/bindings/python/py_src/tokenizers/implementations/bert_wordpiece.py", "repo_id": "tokenizers", "token_count": 2637 }
use pyo3::prelude::*; use tk::Token; #[pyclass(module = "tokenizers", name = "Token")] #[derive(Clone)] pub struct PyToken { token: Token, } impl From<Token> for PyToken { fn from(token: Token) -> Self { Self { token } } } impl From<PyToken> for Token { fn from(token: PyToken) -> Self { token.token } } #[pymethods] impl PyToken { #[new] #[pyo3(text_signature = None)] fn new(id: u32, value: String, offsets: (usize, usize)) -> PyToken { Token::new(id, value, offsets).into() } #[getter] fn get_id(&self) -> u32 { self.token.id } #[getter] fn get_value(&self) -> &str { &self.token.value } #[getter] fn get_offsets(&self) -> (usize, usize) { self.token.offsets } fn as_tuple(&self) -> (u32, &str, (usize, usize)) { (self.token.id, &self.token.value, self.token.offsets) } }
tokenizers/bindings/python/src/token.rs/0
{ "file_path": "tokenizers/bindings/python/src/token.rs", "repo_id": "tokenizers", "token_count": 439 }
import pickle import pytest from tokenizers import NormalizedString from tokenizers.normalizers import ( BertNormalizer, Lowercase, Normalizer, Precompiled, Sequence, Strip, Prepend, Replace, ) class TestBertNormalizer: def test_instantiate(self): assert isinstance(BertNormalizer(), Normalizer) assert isinstance(BertNormalizer(), BertNormalizer) assert isinstance(pickle.loads(pickle.dumps(BertNormalizer())), BertNormalizer) def test_strip_accents(self): normalizer = BertNormalizer(strip_accents=True, lowercase=False, handle_chinese_chars=False, clean_text=False) output = normalizer.normalize_str("Héllò") assert output == "Hello" def test_handle_chinese_chars(self): normalizer = BertNormalizer(strip_accents=False, lowercase=False, handle_chinese_chars=True, clean_text=False) output = normalizer.normalize_str("你好") assert output == " 你 好 " def test_clean_text(self): normalizer = BertNormalizer(strip_accents=False, lowercase=False, handle_chinese_chars=False, clean_text=True) output = normalizer.normalize_str("\ufeffHello") assert output == "Hello" def test_lowercase(self): normalizer = BertNormalizer(strip_accents=False, lowercase=True, handle_chinese_chars=False, clean_text=False) output = normalizer.normalize_str("Héllò") assert output == "héllò" def test_can_modify(self): normalizer = BertNormalizer(clean_text=True, handle_chinese_chars=True, strip_accents=True, lowercase=True) assert normalizer.clean_text == True assert normalizer.handle_chinese_chars == True assert normalizer.strip_accents == True assert normalizer.lowercase == True # Modify these normalizer.clean_text = False assert normalizer.clean_text == False normalizer.handle_chinese_chars = False assert normalizer.handle_chinese_chars == False normalizer.strip_accents = None assert normalizer.strip_accents == None normalizer.lowercase = False assert normalizer.lowercase == False class TestSequence: def test_instantiate(self): assert isinstance(Sequence([]), Normalizer) assert isinstance(Sequence([]), Sequence) assert isinstance(pickle.loads(pickle.dumps(Sequence([]))), Sequence) def test_can_make_sequences(self): normalizer = Sequence([Lowercase(), Strip()]) output = normalizer.normalize_str(" HELLO ") assert output == "hello" def test_set_item(self): normalizers = Sequence( [ BertNormalizer(True, True), Prepend(prepend="test"), ] ) assert normalizers[0].__class__ == BertNormalizer assert normalizers[1].__class__ == Prepend normalizers[1] = Strip() assert normalizers[1].__class__ == Strip with pytest.raises(IndexError): print(normalizers[2]) def test_item_getters_and_setters(self): normalizers = Sequence( [ BertNormalizer(clean_text=True, handle_chinese_chars=True, strip_accents=True, lowercase=True), Strip(left=True, right=True), Prepend(prepend="_"), Replace(pattern="something", content="else"), ] ) assert normalizers[0].__class__ == BertNormalizer normalizers[0].clean_text = False normalizers[0].handle_chinese_chars = False normalizers[0].strip_accents = False normalizers[0].lowercase = False assert not normalizers[0].clean_text assert not normalizers[0].handle_chinese_chars assert not normalizers[0].strip_accents assert not normalizers[0].lowercase assert normalizers[1].__class__ == Strip normalizers[1].left = False normalizers[1].right = False assert not normalizers[1].left assert not normalizers[1].right assert normalizers[2].__class__ == Prepend normalizers[2].prepend = " " assert normalizers[2].prepend == " " assert normalizers[3].__class__ == Replace with pytest.raises(Exception): normalizers[3].pattern = "test" with pytest.raises(Exception): print(normalizers[3].pattern) normalizers[3].content = "test" assert normalizers[3].content == "test" class TestLowercase: def test_instantiate(self): assert isinstance(Lowercase(), Normalizer) assert isinstance(Lowercase(), Lowercase) assert isinstance(pickle.loads(pickle.dumps(Lowercase())), Lowercase) def test_lowercase(self): normalizer = Lowercase() output = normalizer.normalize_str("HELLO") assert output == "hello" class TestStrip: def test_instantiate(self): assert isinstance(Strip(), Normalizer) assert isinstance(Strip(), Strip) assert isinstance(pickle.loads(pickle.dumps(Strip())), Strip) def test_left_strip(self): normalizer = Strip(left=True, right=False) output = normalizer.normalize_str(" hello ") assert output == "hello " def test_right_strip(self): normalizer = Strip(left=False, right=True) output = normalizer.normalize_str(" hello ") assert output == " hello" def test_full_strip(self): normalizer = Strip(left=True, right=True) output = normalizer.normalize_str(" hello ") assert output == "hello" def test_can_modify(self): normalizer = Strip(left=True, right=True) assert normalizer.left == True assert normalizer.right == True # Modify these normalizer.left = False assert normalizer.left == False normalizer.right = False assert normalizer.right == False class TestPrepend: def test_instantiate(self): assert isinstance(Prepend("▁"), Normalizer) assert isinstance(Prepend("▁"), Prepend) assert isinstance(pickle.loads(pickle.dumps(Prepend("▁"))), Prepend) def test_prepend(self): normalizer = Prepend(prepend="▁") output = normalizer.normalize_str("hello") assert output == "▁hello" def test_can_modify(self): normalizer = Prepend("▁") assert normalizer.prepend == "▁" # Modify these normalizer.prepend = "-" assert normalizer.prepend == "-" class TestCustomNormalizer: class BadCustomNormalizer: def normalize(self, normalized, wrong): pass class GoodCustomNormalizer: def normalize(self, normalized): self.kept_normalized = normalized normalized.replace("there", "you") def use_after_normalize(self): self.kept_normalized.replace("something", "else") def test_instantiate(self): bad = Normalizer.custom(TestCustomNormalizer.BadCustomNormalizer()) good_custom = TestCustomNormalizer.GoodCustomNormalizer() good = Normalizer.custom(good_custom) assert isinstance(bad, Normalizer) assert isinstance(good, Normalizer) with pytest.raises(Exception, match="TypeError:.*normalize()"): bad.normalize_str("Hey there!") assert good.normalize_str("Hey there!") == "Hey you!" with pytest.raises(Exception, match="Cannot use a NormalizedStringRefMut outside `normalize`"): good_custom.use_after_normalize() def test_normalizer_interface(self): normalizer = Normalizer.custom(TestCustomNormalizer.GoodCustomNormalizer()) normalized = NormalizedString("Hey there!") normalizer.normalize(normalized) assert repr(normalized) == 'NormalizedString(original="Hey there!", normalized="Hey you!")' assert str(normalized) == "Hey you!"
tokenizers/bindings/python/tests/bindings/test_normalizers.py/0
{ "file_path": "tokenizers/bindings/python/tests/bindings/test_normalizers.py", "repo_id": "tokenizers", "token_count": 3243 }
import multiprocessing as mp import os import pytest import requests DATA_PATH = os.path.join("tests", "data") def download(url, with_filename=None): filename = with_filename if with_filename is not None else url.rsplit("/")[-1] filepath = os.path.join(DATA_PATH, filename) if not os.path.exists(filepath): with open(filepath, "wb") as f: response = requests.get(url, stream=True) response.raise_for_status() for chunk in response.iter_content(1024): f.write(chunk) return filepath @pytest.fixture(scope="session") def data_dir(): assert os.getcwd().endswith("python") exist = os.path.exists(DATA_PATH) and os.path.isdir(DATA_PATH) if not exist: os.mkdir(DATA_PATH) @pytest.fixture(scope="session") def roberta_files(data_dir): return { "vocab": download("https://s3.amazonaws.com/models.huggingface.co/bert/roberta-base-vocab.json"), "merges": download("https://s3.amazonaws.com/models.huggingface.co/bert/roberta-base-merges.txt"), } @pytest.fixture(scope="session") def bert_files(data_dir): return { "vocab": download("https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt"), } @pytest.fixture(scope="session") def openai_files(data_dir): return { "vocab": download("https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-vocab.json"), "merges": download("https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-merges.txt"), } @pytest.fixture(scope="session") def train_files(data_dir): big = download("https://norvig.com/big.txt") small = os.path.join(DATA_PATH, "small.txt") with open(small, "w") as f: with open(big, "r") as g: for i, line in enumerate(g): f.write(line) if i > 100: break return { "small": small, "big": big, } @pytest.fixture(scope="session") def albert_base(data_dir): return download("https://s3.amazonaws.com/models.huggingface.co/bert/albert-base-v1-tokenizer.json") @pytest.fixture(scope="session") def doc_wiki_tokenizer(data_dir): return download( "https://s3.amazonaws.com/models.huggingface.co/bert/anthony/doc-quicktour/tokenizer.json", "tokenizer-wiki.json", ) @pytest.fixture(scope="session") def doc_pipeline_bert_tokenizer(data_dir): return download( "https://s3.amazonaws.com/models.huggingface.co/bert/anthony/doc-pipeline/tokenizer.json", "bert-wiki.json", ) # On MacOS Python 3.8+ the default was modified to `spawn`, we need `fork` in tests. mp.set_start_method("fork") def multiprocessing_with_parallelism(tokenizer, enabled: bool): """ This helper can be used to test that disabling parallelism avoids dead locks when the same tokenizer is used after forking. """ # It's essential to this test that we call 'encode' or 'encode_batch' # before the fork. This causes the main process to "lock" some resources # provided by the Rust "rayon" crate that are needed for parallel processing. tokenizer.encode("Hi") tokenizer.encode_batch(["hi", "there"]) def encode(tokenizer): tokenizer.encode("Hi") tokenizer.encode_batch(["hi", "there"]) # Make sure this environment variable is set before the fork happens os.environ["TOKENIZERS_PARALLELISM"] = str(enabled) p = mp.Process(target=encode, args=(tokenizer,)) p.start() p.join(timeout=1) # At this point the process should have successfully exited, depending on whether parallelism # was activated or not. So we check the status and kill it if needed alive = p.is_alive() if alive: p.terminate() assert (alive and mp.get_start_method() == "fork") == enabled
tokenizers/bindings/python/tests/utils.py/0
{ "file_path": "tokenizers/bindings/python/tests/utils.py", "repo_id": "tokenizers", "token_count": 1569 }
[package] authors = ["Anthony MOI <[email protected]>", "Nicolas Patry <[email protected]>"] edition = "2018" name = "tokenizers" version = "0.21.0-dev.0" homepage = "https://github.com/huggingface/tokenizers" repository = "https://github.com/huggingface/tokenizers" documentation = "https://docs.rs/tokenizers/" license = "Apache-2.0" keywords = ["tokenizer", "NLP", "huggingface", "BPE", "WordPiece"] readme = "./README.md" description = """ Provides an implementation of today's most used tokenizers, with a focus on performances and versatility. """ exclude = [ "rust-toolchain", "target/*", "Cargo.lock", "benches/*.txt", "benches/*.json", "data/*" ] [lib] name = "tokenizers" path = "src/lib.rs" bench = false [[bench]] name = "bpe_benchmark" harness = false [[bench]] name = "bert_benchmark" harness = false [[bench]] name = "layout_benchmark" harness = false [[bench]] name = "unigram_benchmark" harness = false [[bench]] name = "llama3" required-features = ["http"] harness = false [dependencies] lazy_static = "1.4" rand = "0.8" onig = { version = "6.4", default-features = false, optional = true } regex = "1.10" regex-syntax = "0.8" rayon = "1.10" rayon-cond = "0.3" serde = { version = "1.0", features = [ "derive" ] } serde_json = "1.0" unicode-normalization-alignments = "0.1" unicode_categories = "0.1" unicode-segmentation = "1.11" indicatif = {version = "0.17", optional = true} itertools = "0.13" log = "0.4" derive_builder = "0.20" spm_precompiled = "0.1.3" hf-hub = { version = "0.3.2", optional = true } aho-corasick = "1.1" paste = "1.0.14" macro_rules_attribute = "0.2.0" thiserror = "2" fancy-regex = { version = "0.14", optional = true} getrandom = { version = "0.2.10" } esaxx-rs = { version = "0.1.10", default-features = false, features=[]} monostate = "0.1.12" [features] default = ["progressbar", "onig", "esaxx_fast"] esaxx_fast = ["esaxx-rs/cpp"] progressbar = ["indicatif"] http = ["hf-hub"] unstable_wasm = ["fancy-regex", "getrandom/js"] [dev-dependencies] criterion = "0.5" tempfile = "3.10" assert_approx_eq = "1.1" tracing = "0.1" tracing-subscriber = "0.3.18" [profile.release] lto = "fat" [[example]] name = "encode_batch" required-features = ["http"]
tokenizers/tokenizers/Cargo.toml/0
{ "file_path": "tokenizers/tokenizers/Cargo.toml", "repo_id": "tokenizers", "token_count": 908 }
mod utils; use tokenizers::models::bpe::{Vocab, BPE}; use tokenizers::Tokenizer; use wasm_bindgen::prelude::*; // When the `wee_alloc` feature is enabled, use `wee_alloc` as the global // allocator. #[cfg(feature = "wee_alloc")] #[global_allocator] static ALLOC: wee_alloc::WeeAlloc = wee_alloc::WeeAlloc::INIT; #[wasm_bindgen] pub fn tokenize(string: &str) -> Vec<u32> { let vocab: Vocab = vec![ ("a".to_string(), 0), ("##b".to_string(), 1), ("##c".to_string(), 2), ("ab".to_string(), 3), ("abc".to_string(), 4), ] .into_iter() .collect(); let merges = vec![ ("a".to_string(), "##b".to_string()), ("ab".to_string(), "##c".to_string()), ]; let bpe = BPE::builder() .vocab_and_merges(vocab, merges) .unk_token("[UNK]".to_string()) .continuing_subword_prefix("##".to_string()) .build() .unwrap(); let tokenizer = Tokenizer::new(bpe); tokenizer .encode(string, false) .unwrap() .get_ids() .into_iter() .cloned() .collect() }
tokenizers/tokenizers/examples/unstable_wasm/src/lib.rs/0
{ "file_path": "tokenizers/tokenizers/examples/unstable_wasm/src/lib.rs", "repo_id": "tokenizers", "token_count": 543 }
use crate::tokenizer::{Decoder, Result}; use serde::{Deserialize, Serialize}; #[derive(Deserialize, Clone, Debug, Serialize)] /// Allows decoding Original BPE by joining all the tokens and then replacing /// the suffix used to identify end-of-words by whitespaces #[serde(tag = "type")] #[non_exhaustive] pub struct BPEDecoder { pub suffix: String, } impl BPEDecoder { pub fn new(suffix: String) -> Self { Self { suffix } } } impl Default for BPEDecoder { fn default() -> Self { Self::new("</w>".into()) } } impl Decoder for BPEDecoder { fn decode_chain(&self, tokens: Vec<String>) -> Result<Vec<String>> { let n = tokens.len() - 1; Ok(tokens .into_iter() .enumerate() .map(|(i, token)| { let replacement = if i == n { "" } else { " " }; token.replace(&self.suffix, replacement) }) .collect()) } }
tokenizers/tokenizers/src/decoders/bpe.rs/0
{ "file_path": "tokenizers/tokenizers/src/decoders/bpe.rs", "repo_id": "tokenizers", "token_count": 419 }
//! [Unigram](https://arxiv.org/abs/1804.10959) model. mod lattice; mod model; mod serialization; mod trainer; mod trie; pub use lattice::*; pub use model::*; pub use trainer::*;
tokenizers/tokenizers/src/models/unigram/mod.rs/0
{ "file_path": "tokenizers/tokenizers/src/models/unigram/mod.rs", "repo_id": "tokenizers", "token_count": 72 }
use crate::tokenizer::pattern::Pattern; use crate::tokenizer::Decoder; use crate::tokenizer::{NormalizedString, Normalizer, Result}; use crate::utils::SysRegex; use serde::{Deserialize, Serialize}; /// Represents the different patterns that `Replace` can use #[derive(Debug, Clone, PartialEq, Serialize, Deserialize, Eq)] pub enum ReplacePattern { String(String), Regex(String), } impl From<String> for ReplacePattern { fn from(v: String) -> Self { Self::String(v) } } impl From<&str> for ReplacePattern { fn from(v: &str) -> Self { Self::String(v.to_owned()) } } /// We use this custom deserializer to provide the value for `regex` for `Replace` #[doc(hidden)] #[derive(Deserialize)] #[serde(tag = "type")] struct ReplaceDeserializer { pattern: ReplacePattern, content: String, } impl std::convert::TryFrom<ReplaceDeserializer> for Replace { type Error = Box<dyn std::error::Error + Send + Sync>; fn try_from(v: ReplaceDeserializer) -> Result<Self> { Self::new(v.pattern, v.content) } } /// This normalizer will take a `pattern` (for now only a String) /// and replace every occurrence with `content`. #[derive(Debug, Serialize, Deserialize)] #[serde(tag = "type", try_from = "ReplaceDeserializer")] pub struct Replace { pattern: ReplacePattern, pub content: String, #[serde(skip)] regex: SysRegex, } impl Clone for Replace { fn clone(&self) -> Self { Self::new(self.pattern.clone(), &self.content).unwrap() } } impl PartialEq for Replace { fn eq(&self, other: &Self) -> bool { self.pattern == other.pattern && self.content == other.content } } impl Replace { pub fn new<I: Into<ReplacePattern>, C: Into<String>>(pattern: I, content: C) -> Result<Self> { let pattern: ReplacePattern = pattern.into(); let regex = match &pattern { ReplacePattern::String(s) => SysRegex::new(&regex::escape(s))?, ReplacePattern::Regex(r) => SysRegex::new(r)?, }; Ok(Self { pattern, content: content.into(), regex, }) } } impl Normalizer for Replace { fn normalize(&self, normalized: &mut NormalizedString) -> Result<()> { normalized.replace(&self.regex, &self.content) } } impl Decoder for Replace { fn decode_chain(&self, tokens: Vec<String>) -> Result<Vec<String>> { tokens .into_iter() .map(|token| -> Result<String> { let mut new_token = "".to_string(); for ((start, stop), is_match) in (&self.regex).find_matches(&token)? { if is_match { new_token.push_str(&self.content); } else { new_token.push_str(&token[start..stop]); } } Ok(new_token) }) .collect() } } #[cfg(test)] mod tests { use super::*; #[test] fn test_replace() { let original = "This is a ''test''"; let normalized = "This is a \"test\""; let mut n = NormalizedString::from(original); Replace::new("''", "\"").unwrap().normalize(&mut n).unwrap(); assert_eq!(&n.get(), &normalized); } #[test] fn test_replace_regex() { let original = "This is a test"; let normalized = "This is a test"; let mut n = NormalizedString::from(original); Replace::new(ReplacePattern::Regex(r"\s+".into()), ' ') .unwrap() .normalize(&mut n) .unwrap(); assert_eq!(&n.get(), &normalized); } #[test] fn serialization() { let replace = Replace::new("Hello", "Hey").unwrap(); let replace_s = r#"{"type":"Replace","pattern":{"String":"Hello"},"content":"Hey"}"#; assert_eq!(serde_json::to_string(&replace).unwrap(), replace_s); assert_eq!(serde_json::from_str::<Replace>(replace_s).unwrap(), replace); let replace = Replace::new(ReplacePattern::Regex(r"\s+".into()), ' ').unwrap(); let replace_s = r#"{"type":"Replace","pattern":{"Regex":"\\s+"},"content":" "}"#; assert_eq!(serde_json::to_string(&replace).unwrap(), replace_s); assert_eq!(serde_json::from_str::<Replace>(replace_s).unwrap(), replace); } #[test] fn test_replace_decode() { let original = vec!["hello".to_string(), "_hello".to_string()]; let replace = Replace::new("_", " ").unwrap(); assert_eq!( replace.decode_chain(original).unwrap(), vec!["hello", " hello"] ); } }
tokenizers/tokenizers/src/normalizers/replace.rs/0
{ "file_path": "tokenizers/tokenizers/src/normalizers/replace.rs", "repo_id": "tokenizers", "token_count": 2049 }
use regex::Regex; use crate::tokenizer::{ pattern::Invert, PreTokenizedString, PreTokenizer, Result, SplitDelimiterBehavior, }; use crate::utils::macro_rules_attribute; #[derive(Clone, Debug, PartialEq, Eq)] #[macro_rules_attribute(impl_serde_type!)] pub struct Whitespace; impl Default for Whitespace { fn default() -> Self { Self } } impl PreTokenizer for Whitespace { fn pre_tokenize(&self, pretokenized: &mut PreTokenizedString) -> Result<()> { lazy_static! { static ref RE: Regex = Regex::new(r"\w+|[^\w\s]+").unwrap(); } let re_ref: &Regex = &RE; pretokenized.split(|_, normalized| { normalized.split(Invert(re_ref), SplitDelimiterBehavior::Removed) }) } } #[derive(Copy, Clone, Debug, PartialEq, Eq)] #[macro_rules_attribute(impl_serde_type!)] pub struct WhitespaceSplit; impl PreTokenizer for WhitespaceSplit { fn pre_tokenize(&self, pretokenized: &mut PreTokenizedString) -> Result<()> { pretokenized.split(|_, normalized| { normalized.split(char::is_whitespace, SplitDelimiterBehavior::Removed) }) } } #[cfg(test)] mod tests { use super::*; use crate::{OffsetReferential, OffsetType, PreTokenizer}; #[test] fn basic() { let tests = vec![ ( "Hey man!", vec![("Hey", (0, 3)), ("man", (4, 7)), ("!", (7, 8))], ), ( "How are you doing?", vec![ ("How", (0, 3)), ("are", (4, 7)), ("you", (8, 11)), ("doing", (12, 17)), ("?", (17, 18)), ], ), ("\n", vec![]), ]; let pretok = Whitespace {}; for (s, res) in tests { let mut pretokenized = PreTokenizedString::from(s); pretok.pre_tokenize(&mut pretokenized).unwrap(); assert_eq!( pretokenized .get_splits(OffsetReferential::Original, OffsetType::Byte) .into_iter() .map(|(s, o, _)| (s, o)) .collect::<Vec<_>>(), res ); } } #[test] fn whitespace_split() { let tests = vec![ ("Hey man!", vec![("Hey", (0, 3)), ("man!", (4, 8))]), ( "Hey, man, Good?", vec![("Hey,", (0, 4)), ("man,", (5, 9)), ("Good?", (10, 15))], ), ]; let pretok = WhitespaceSplit; for (s, res) in tests { let mut pretokenized = PreTokenizedString::from(s); pretok.pre_tokenize(&mut pretokenized).unwrap(); assert_eq!( pretokenized .get_splits(OffsetReferential::Original, OffsetType::Byte) .into_iter() .map(|(s, o, _)| (s, o)) .collect::<Vec<_>>(), res ); } } }
tokenizers/tokenizers/src/pre_tokenizers/whitespace.rs/0
{ "file_path": "tokenizers/tokenizers/src/pre_tokenizers/whitespace.rs", "repo_id": "tokenizers", "token_count": 1660 }
//! This comes from the Rust libcore and is duplicated here because it is not exported //! (cf <https://github.com/rust-lang/rust/blob/25091ed9b7739e12466fb2490baa1e8a2815121c/src/libcore/iter/adapters/mod.rs#L2664>) //! We are now using the version from <https://stackoverflow.com/questions/44544323/how-to-unzip-a-sequence-of-resulta-b-e-to-a-veca-vecb-and-stop-on-f> //! because the one from the libcore seems to cause overflowing stacks in some cases //! It also contains a lines_with_ending that copies std::io::BufRead but keeps line endings. use std::io::BufRead; pub struct ResultShunt<I, E> { iter: I, error: Option<E>, } impl<I, T, E> ResultShunt<I, E> where I: Iterator<Item = Result<T, E>>, { /// Process the given iterator as if it yielded a `T` instead of a /// `Result<T, _>`. Any errors will stop the inner iterator and /// the overall result will be an error. pub fn process<F, U>(iter: I, mut f: F) -> Result<U, E> where F: FnMut(&mut Self) -> U, { let mut shunt = ResultShunt::new(iter); let value = f(shunt.by_ref()); shunt.reconstruct(value) } fn new(iter: I) -> Self { ResultShunt { iter, error: None } } /// Consume the adapter and rebuild a `Result` value. This should /// *always* be called, otherwise any potential error would be /// lost. fn reconstruct<U>(self, val: U) -> Result<U, E> { match self.error { None => Ok(val), Some(e) => Err(e), } } } impl<I, T, E> Iterator for ResultShunt<I, E> where I: Iterator<Item = Result<T, E>>, { type Item = T; fn next(&mut self) -> Option<Self::Item> { match self.iter.next() { Some(Ok(v)) => Some(v), Some(Err(e)) => { self.error = Some(e); None } None => None, } } } /// Copied from std::io::BufRead but keep newline characters. #[derive(Debug)] pub struct Lines<B> { buf: B, } pub trait LinesWithEnding<B> { fn lines_with_ending(self) -> Lines<B>; } impl<B> LinesWithEnding<B> for B where B: BufRead, { fn lines_with_ending(self) -> Lines<B> { Lines::<B> { buf: self } } } impl<B: BufRead> Iterator for Lines<B> { type Item = std::io::Result<String>; fn next(&mut self) -> Option<Self::Item> { let mut buf = String::new(); match self.buf.read_line(&mut buf) { Ok(0) => None, Ok(_n) => { // if buf.ends_with('\n') { // buf.pop(); // if buf.ends_with('\r') { // buf.pop(); // } // } Some(Ok(buf)) } Err(e) => Some(Err(e)), } } }
tokenizers/tokenizers/src/utils/iter.rs/0
{ "file_path": "tokenizers/tokenizers/src/utils/iter.rs", "repo_id": "tokenizers", "token_count": 1339 }
import re README_TEMPLATE = """ <p align="center"> <br/> <picture> <source media="(prefers-color-scheme: dark)" srcset="https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/transformersjs-dark.svg" width="500" style="max-width: 100%;"> <source media="(prefers-color-scheme: light)" srcset="https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/transformersjs-light.svg" width="500" style="max-width: 100%;"> <img alt="transformers.js javascript library logo" src="https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/transformersjs-light.svg" width="500" style="max-width: 100%;"> </picture> <br/> </p> <p align="center"> <a href="https://www.npmjs.com/package/@huggingface/transformers"><img alt="NPM" src="https://img.shields.io/npm/v/@huggingface/transformers"></a> <a href="https://www.npmjs.com/package/@huggingface/transformers"><img alt="NPM Downloads" src="https://img.shields.io/npm/dw/@huggingface/transformers"></a> <a href="https://www.jsdelivr.com/package/npm/@huggingface/transformers"><img alt="jsDelivr Hits" src="https://img.shields.io/jsdelivr/npm/hw/@huggingface/transformers"></a> <a href="https://github.com/huggingface/transformers.js/blob/main/LICENSE"><img alt="License" src="https://img.shields.io/github/license/huggingface/transformers.js?color=blue"></a> <a href="https://huggingface.co/docs/transformers.js/index"><img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/transformers.js/index.svg?down_color=red&down_message=offline&up_message=online"></a> </p> {intro} ## Installation {installation} ## Quick tour {quick_tour} ## Examples {examples} ## Custom usage {custom_usage} ## Supported tasks/models Here is the list of all tasks and architectures currently supported by Transformers.js. If you don't see your task/model listed here or it is not yet supported, feel free to open up a feature request [here](https://github.com/huggingface/transformers.js/issues/new/choose). To find compatible models on the Hub, select the "transformers.js" library tag in the filter menu (or visit [this link](https://huggingface.co/models?library=transformers.js)). You can refine your search by selecting the task you're interested in (e.g., [text-classification](https://huggingface.co/models?pipeline_tag=text-classification&library=transformers.js)). {tasks} {models} """ FILES_TO_INCLUDE = dict( intro='./docs/snippets/0_introduction.snippet', quick_tour='./docs/snippets/1_quick-tour.snippet', installation='./docs/snippets/2_installation.snippet', examples='./docs/snippets/3_examples.snippet', custom_usage='./docs/snippets/4_custom-usage.snippet', tasks='./docs/snippets/5_supported-tasks.snippet', models='./docs/snippets/6_supported-models.snippet', ) DOCS_BASE_URL = 'https://huggingface.co/docs/transformers.js' # Map of custom links to replace, typically used for links to other sections of the README. CUSTOM_LINK_MAP = { '/custom_usage#convert-your-models-to-onnx': '#convert-your-models-to-onnx', './api/env': DOCS_BASE_URL + '/api/env', './guides/webgpu': DOCS_BASE_URL + '/guides/webgpu', './guides/dtypes': DOCS_BASE_URL + '/guides/dtypes', } def main(): file_data = {} for key, file_path in FILES_TO_INCLUDE.items(): with open(file_path, encoding='utf-8') as f: file_data[key] = f.read() # Fix links: # NOTE: This regex does not match all markdown links, but works for the ones we need to replace. LINK_RE = r'(?<=\])\((.+?)\)' def replace_fn(match): link = match.group(1) if link in CUSTOM_LINK_MAP: link = CUSTOM_LINK_MAP[link] elif link.startswith('/'): # Link to docs link = DOCS_BASE_URL + link elif link.startswith('./'): # Relative link to file pass elif link.startswith('http'): # Link to external site pass return f'({link})' result = README_TEMPLATE.format(**file_data) result = re.sub(LINK_RE, replace_fn, result, 0, re.MULTILINE) with open('README.md', 'w', encoding='utf-8') as f: f.write(result) if __name__ == '__main__': main()
transformers.js/docs/scripts/build_readme.py/0
{ "file_path": "transformers.js/docs/scripts/build_readme.py", "repo_id": "transformers.js", "token_count": 1756 }
# Transformers.js <include> { "path": "../snippets/0_introduction.snippet" } </include> ## Quick tour <include> { "path": "../snippets/1_quick-tour.snippet" } </include> ## Contents The documentation is organized into 4 sections: 1. **GET STARTED** provides a quick tour of the library and installation instructions to get up and running. 2. **TUTORIALS** are a great place to start if you're a beginner! We also include sample applications for you to play around with! 3. **DEVELOPER GUIDES** show you how to use the library to achieve a specific goal. 4. **API REFERENCE** describes all classes and functions, as well as their available parameters and types. ## Examples <include> { "path": "../snippets/3_examples.snippet" } </include> ## Supported tasks/models Here is the list of all tasks and architectures currently supported by Transformers.js. If you don't see your task/model listed here or it is not yet supported, feel free to open up a feature request [here](https://github.com/huggingface/transformers.js/issues/new/choose). To find compatible models on the Hub, select the "transformers.js" library tag in the filter menu (or visit [this link](https://huggingface.co/models?library=transformers.js)). You can refine your search by selecting the task you're interested in (e.g., [text-classification](https://huggingface.co/models?pipeline_tag=text-classification&library=transformers.js)). <include> { "path": "../snippets/5_supported-tasks.snippet" } </include> <include> { "path": "../snippets/6_supported-models.snippet" } </include>
transformers.js/docs/source/index.md/0
{ "file_path": "transformers.js/docs/source/index.md", "repo_id": "transformers.js", "token_count": 495 }
import { useState, useRef, useEffect, useCallback } from 'react' import './App.css' const PLACEHOLDER_TEXTS = [ "A panda is a large black-and-white bear native to China.", "The typical life span of a panda is 20 years in the wild.", "A panda's diet consists almost entirely of bamboo.", "Ailuropoda melanoleuca is a bear species endemic to China.", "I love pandas so much!", "Bamboo is a fast-growing, woody grass.", "My favorite movie is Kung Fu Panda.", "I love the color blue.", "Once upon a time, in a land far, far away...", "Hello world.", "This is an example sentence.", ].sort(() => Math.random() - 0.5); function normalize(embedding) { const magnitude = Math.sqrt(embedding.reduce((sum, val) => sum + val * val, 0)); return embedding.map((val) => val / magnitude); } function dot(a, b) { return a.reduce((acc, val, i) => acc + val * b[i], 0); } function App() { const [status, setStatus] = useState('idle'); const [source, setSource] = useState('What is a panda?'); const [text, setText] = useState(PLACEHOLDER_TEXTS.join('\n')); const [dimensions, setDimensions] = useState(768); const [embeddings, setEmbeddings] = useState([]); const [results, setResults] = useState([]); // Create a reference to the worker object. const worker = useRef(null); // We use the `useEffect` hook to setup the worker as soon as the `App` component is mounted. useEffect(() => { if (!worker.current) { // Create the worker if it does not yet exist. worker.current = new Worker(new URL('./worker.js', import.meta.url), { type: 'module' }); } // Create a callback function for messages from the worker thread. const onMessageReceived = (e) => { const status = e.data.status; if (status === 'initiate') { setStatus('loading'); } else if (status === 'ready') { setStatus('ready'); } else if (status === 'complete') { const embeddings = e.data.embeddings; setDimensions(embeddings[0].length); setEmbeddings(embeddings); setStatus('idle'); } }; // Attach the callback function as an event listener. worker.current.addEventListener('message', onMessageReceived); // Define a cleanup function for when the component is unmounted. return () => worker.current.removeEventListener('message', onMessageReceived); }, []); const run = useCallback(() => { setStatus('processing'); worker.current.postMessage({ source, text, }); }, [source, text]) useEffect(() => { if (embeddings.length === 0) return; const slicedEmbeddings = embeddings.map(x => normalize(x.slice(0, dimensions))); const sourceEmbedding = slicedEmbeddings[0]; const sentenceEmbeddings = slicedEmbeddings.slice(1); // Compute the cosine similarity between the source sentence and the other sentences. // NOTE: Since vectors are normalized, we use the dot product. const similarities = sentenceEmbeddings.map((embedding) => dot(sourceEmbedding, embedding)); setResults(text.trim().split('\n').map((sentence, i) => ({ sentence, similarity: similarities[i] })).sort((a, b) => b.similarity - a.similarity)); }, [text, embeddings, dimensions]) const busy = status !== 'idle'; return ( <div className='flex flex-col h-full'> <h1 className='text-2xl md:text-4xl font-bold text-center mb-1'>Adaptive Retrieval w/ Matryoshka Embeddings</h1> <p className='text-lg md:text-xl font-medium text-center mb-2'>Powered by <a href='https://huggingface.co/nomic-ai/nomic-embed-text-v1.5'>Nomic Embed v1.5</a> and <a href='http://huggingface.co/docs/transformers.js'>🤗 Transformers.js</a></p> <div className='flex-grow flex flex-wrap p-4'> <div className='flex flex-col items-center gap-y-1 w-full md:w-1/2'> <label className='text-lg font-medium'>Query</label> <textarea placeholder='Enter source sentence.' className='border w-full p-1 resize-none overflow-hidden h-10' value={source} onChange={e => { setSource(e.target.value); setResults([]); setEmbeddings([]); }} ></textarea> <label className='text-lg font-medium mt-1'>Text</label> <textarea placeholder='Enter sentences to compare with the source sentence. One sentence per line.' className='border w-full p-1 h-full resize-none' value={text} onChange={e => { setText(e.target.value); setResults([]); setEmbeddings([]); }} ></textarea> <button className='border py-1 px-2 bg-blue-400 rounded text-white text-lg font-medium disabled:opacity-50 disabled:cursor-not-allowed' disabled={busy} onClick={run}>{ !busy ? (embeddings.length === 0 ? 'Compute Embeddings' : 'Recompute Embeddings') : status === 'loading' ? 'Model loading...' : 'Processing' }</button> </div> <div className='flex flex-col items-center w-full md:w-1/2 gap-y-1'> {embeddings.length > 0 && (<> <label className='text-lg font-medium'>Dimensions</label> <input type="range" min="64" max="768" step="1" value={dimensions} onChange={e => { setDimensions(e.target.value); }} className="w-[98%] h-[10px]" /> <p className="font-bold text-sm">{dimensions}</p> <div className='w-full flex flex-col gap-y-1'> <label className='text-lg font-medium text-center mt-1'>Results</label> <div className='flex flex-col gap-y-1'> {results.map((result, i) => ( <div key={i} className='flex gap-x-2 border mx-2 p-1'> <span className='font-bold'>{result.similarity.toFixed(3)}</span> <span>{result.sentence}</span> </div> ))} </div> </div> </>) } </div> </div> </div> ) } export default App
transformers.js/examples/adaptive-retrieval/src/App.jsx/0
{ "file_path": "transformers.js/examples/adaptive-retrieval/src/App.jsx", "repo_id": "transformers.js", "token_count": 2829 }
@tailwind base; @tailwind components; @tailwind utilities; :root { font-family: Inter, system-ui, Avenir, Helvetica, Arial, sans-serif; line-height: 1.5; font-weight: 400; color-scheme: light dark; color: rgba(255, 255, 255, 0.87); background-color: #242424; font-synthesis: none; text-rendering: optimizeLegibility; -webkit-font-smoothing: antialiased; -moz-osx-font-smoothing: grayscale; -webkit-text-size-adjust: 100%; } a { font-weight: 500; color: #646cff; text-decoration: inherit; } a:hover { color: #535bf2; } body { margin: 0; display: flex; place-items: center; } h1 { font-size: 3.2em; line-height: 1.1; } button { border-radius: 8px; border: 1px solid transparent; padding: 0.6em 1.2em; font-size: 1em; font-weight: 500; font-family: inherit; background-color: #1a1a1a; cursor: pointer; transition: border-color 0.25s; } button:hover { border-color: #646cff; } button:focus, button:focus-visible { outline: 4px auto -webkit-focus-ring-color; } @media (prefers-color-scheme: light) { :root { color: #213547; background-color: #ffffff; } a:hover { color: #747bff; } button { background-color: #f9f9f9; } }
transformers.js/examples/code-completion/src/index.css/0
{ "file_path": "transformers.js/examples/code-completion/src/index.css", "repo_id": "transformers.js", "token_count": 514 }
{ "manifest_version": 3, "name": "extension", "description": "Transformers.js | Sample browser extension", "version": "0.0.1", "permissions": [ "activeTab", "scripting", "contextMenus", "storage", "unlimitedStorage" ], "background": { "service_worker": "background.js", "type": "module" }, "content_scripts": [ { "matches": [ "<all_urls>" ], "js": [ "content.js" ] } ], "minimum_chrome_version": "92", "action": { "default_icon": { "16": "icons/icon.png", "24": "icons/icon.png", "32": "icons/icon.png" }, "default_title": "Transformers.js", "default_popup": "popup.html" }, "content_security_policy": { "extension_pages": "script-src 'self' 'wasm-unsafe-eval'" }, "icons": { "16": "icons/icon.png", "48": "icons/icon.png", "128": "icons/icon.png" } }
transformers.js/examples/extension/public/manifest.json/0
{ "file_path": "transformers.js/examples/extension/public/manifest.json", "repo_id": "transformers.js", "token_count": 421 }
@tailwind base; @tailwind components; @tailwind utilities; @layer utilities { .scrollbar-thin::-webkit-scrollbar { @apply w-2; } .scrollbar-thin::-webkit-scrollbar-track { @apply rounded-full bg-gray-100 dark:bg-gray-700; } .scrollbar-thin::-webkit-scrollbar-thumb { @apply rounded-full bg-gray-300 dark:bg-gray-600; } .scrollbar-thin::-webkit-scrollbar-thumb:hover { @apply bg-gray-500; } }
transformers.js/examples/florence2-webgpu/src/index.css/0
{ "file_path": "transformers.js/examples/florence2-webgpu/src/index.css", "repo_id": "transformers.js", "token_count": 173 }
import { pipeline } from "@huggingface/transformers"; // Use the Singleton pattern to enable lazy construction of the pipeline. class PipelineSingleton { static task = 'text-classification'; static model = 'Xenova/distilbert-base-uncased-finetuned-sst-2-english'; static instance = null; static async getInstance(progress_callback = null) { this.instance ??= pipeline(this.task, this.model, { progress_callback }); return this.instance; } } // Listen for messages from the main thread self.addEventListener('message', async (event) => { // Retrieve the classification pipeline. When called for the first time, // this will load the pipeline and save it for future use. const classifier = await PipelineSingleton.getInstance(x => { // We also add a progress callback to the pipeline so that we can // track model loading. self.postMessage(x); }); // Actually perform the classification const output = await classifier(event.data.text); // Send the output back to the main thread self.postMessage({ status: 'complete', output: output, }); });
transformers.js/examples/next-client/src/app/worker.js/0
{ "file_path": "transformers.js/examples/next-client/src/app/worker.js", "repo_id": "transformers.js", "token_count": 369 }
// The full list of languages in FLORES-200 is available here: // https://github.com/facebookresearch/flores/blob/main/flores200/README.md#languages-in-flores-200 const LANGUAGES = { "Acehnese (Arabic script)": "ace_Arab", "Acehnese (Latin script)": "ace_Latn", "Afrikaans": "afr_Latn", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "Armenian": "hye_Armn", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Ayacucho Quechua": "quy_Latn", "Balinese": "ban_Latn", "Bambara": "bam_Latn", "Banjar (Arabic script)": "bjn_Arab", "Banjar (Latin script)": "bjn_Latn", "Bashkir": "bak_Cyrl", "Basque": "eus_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Burmese": "mya_Mymr", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Central Aymara": "ayr_Latn", "Central Kanuri (Arabic script)": "knc_Arab", "Central Kanuri (Latin script)": "knc_Latn", "Central Kurdish": "ckb_Arab", "Chhattisgarhi": "hne_Deva", "Chinese (Simplified)": "zho_Hans", "Chinese (Traditional)": "zho_Hant", "Chokwe": "cjk_Latn", "Crimean Tatar": "crh_Latn", "Croatian": "hrv_Latn", "Czech": "ces_Latn", "Danish": "dan_Latn", "Dari": "prs_Arab", "Dutch": "nld_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Eastern Panjabi": "pan_Guru", "Eastern Yiddish": "ydd_Hebr", "Egyptian Arabic": "arz_Arab", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Galician": "glg_Latn", "Ganda": "lug_Latn", "Georgian": "kat_Geor", "German": "deu_Latn", "Greek": "ell_Grek", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Halh Mongolian": "khk_Cyrl", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Hungarian": "hun_Latn", "Icelandic": "isl_Latn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Irish": "gle_Latn", "Italian": "ita_Latn", "Japanese": "jpn_Jpan", "Javanese": "jav_Latn", "Jingpho": "kac_Latn", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Kabyle": "kab_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri (Arabic script)": "kas_Arab", "Kashmiri (Devanagari script)": "kas_Deva", "Kazakh": "kaz_Cyrl", "Khmer": "khm_Khmr", "Kikongo": "kon_Latn", "Kikuyu": "kik_Latn", "Kimbundu": "kmb_Latn", "Kinyarwanda": "kin_Latn", "Korean": "kor_Hang", "Kyrgyz": "kir_Cyrl", "Lao": "lao_Laoo", "Latgalian": "ltg_Latn", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Luba-Kasai": "lua_Latn", "Luo": "luo_Latn", "Luxembourgish": "ltz_Latn", "Macedonian": "mkd_Cyrl", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Maltese": "mlt_Latn", "Maori": "mri_Latn", "Marathi": "mar_Deva", "Meitei (Bengali script)": "mni_Beng", "Mesopotamian Arabic": "acm_Arab", "Minangkabau (Arabic script)": "min_Arab", "Minangkabau (Latin script)": "min_Latn", "Mizo": "lus_Latn", "Modern Standard Arabic (Romanized)": "arb_Latn", "Modern Standard Arabic": "arb_Arab", "Moroccan Arabic": "ary_Arab", "Mossi": "mos_Latn", "Najdi Arabic": "ars_Arab", "Nepali": "npi_Deva", "Nigerian Fulfulde": "fuv_Latn", "North Azerbaijani": "azj_Latn", "North Levantine Arabic": "apc_Arab", "Northern Kurdish": "kmr_Latn", "Northern Sotho": "nso_Latn", "Northern Uzbek": "uzn_Latn", "Norwegian Bokmål": "nob_Latn", "Norwegian Nynorsk": "nno_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Papiamento": "pap_Latn", "Plateau Malagasy": "plt_Latn", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Samoan": "smo_Latn", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sardinian": "srd_Latn", "Scottish Gaelic": "gla_Latn", "Serbian": "srp_Cyrl", "Shan": "shn_Mymr", "Shona": "sna_Latn", "Sicilian": "scn_Latn", "Silesian": "szl_Latn", "Sindhi": "snd_Arab", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Somali": "som_Latn", "South Azerbaijani": "azb_Arab", "South Levantine Arabic": "ajp_Arab", "Southern Pashto": "pbt_Arab", "Southern Sotho": "sot_Latn", "Southwestern Dinka": "dik_Latn", "Spanish": "spa_Latn", "Standard Latvian": "lvs_Latn", "Standard Malay": "zsm_Latn", "Standard Tibetan": "bod_Tibt", "Sundanese": "sun_Latn", "Swahili": "swh_Latn", "Swati": "ssw_Latn", "Swedish": "swe_Latn", "Tagalog": "tgl_Latn", "Tajik": "tgk_Cyrl", "Tamasheq (Latin script)": "taq_Latn", "Tamasheq (Tifinagh script)": "taq_Tfng", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Ta’izzi-Adeni Arabic": "acq_Arab", "Telugu": "tel_Telu", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tok Pisin": "tpi_Latn", "Tosk Albanian": "als_Latn", "Tsonga": "tso_Latn", "Tswana": "tsn_Latn", "Tumbuka": "tum_Latn", "Tunisian Arabic": "aeb_Arab", "Turkish": "tur_Latn", "Turkmen": "tuk_Latn", "Twi": "twi_Latn", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Uyghur": "uig_Arab", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Welsh": "cym_Latn", "West Central Oromo": "gaz_Latn", "Western Persian": "pes_Arab", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Zulu": "zul_Latn", } export default function LanguageSelector({ type, onChange, defaultLanguage }) { return ( <div className='language-selector'> <label>{type}: </label> <select onChange={onChange} defaultValue={defaultLanguage}> {Object.entries(LANGUAGES).map(([key, value]) => { return <option key={key} value={value}>{key}</option> })} </select> </div> ) }
transformers.js/examples/react-translator/src/components/LanguageSelector.jsx/0
{ "file_path": "transformers.js/examples/react-translator/src/components/LanguageSelector.jsx", "repo_id": "transformers.js", "token_count": 3102 }
// Reference the elements we will use const statusLabel = document.getElementById('status'); const fileUpload = document.getElementById('upload'); const imageContainer = document.getElementById('container'); const example = document.getElementById('example'); const maskCanvas = document.getElementById('mask-output'); const uploadButton = document.getElementById('upload-button'); const resetButton = document.getElementById('reset-image'); const clearButton = document.getElementById('clear-points'); const cutButton = document.getElementById('cut-mask'); // State variables let lastPoints = null; let isEncoded = false; let isDecoding = false; let isMultiMaskMode = false; let modelReady = false; let imageDataURI = null; // Constants const BASE_URL = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/'; const EXAMPLE_URL = BASE_URL + 'corgi.jpg'; // Create a web worker so that the main (UI) thread is not blocked during inference. const worker = new Worker( new URL('./worker.js', import.meta.url), { type: 'module' } ); // Preload star and cross images to avoid lag on first click const star = new Image(); star.src = BASE_URL + 'star-icon.png'; star.className = 'icon'; const cross = new Image(); cross.src = BASE_URL + 'cross-icon.png'; cross.className = 'icon'; // Set up message handler worker.addEventListener('message', (e) => { const { type, data } = e.data; if (type === 'ready') { modelReady = true; statusLabel.textContent = 'Ready'; } else if (type === 'decode_result') { isDecoding = false; if (!isEncoded) { return; // We are not ready to decode yet } if (!isMultiMaskMode && lastPoints) { // Perform decoding with the last point decode(); lastPoints = null; } const { mask, scores } = data; // Update canvas dimensions (if different) if (maskCanvas.width !== mask.width || maskCanvas.height !== mask.height) { maskCanvas.width = mask.width; maskCanvas.height = mask.height; } // Create context and allocate buffer for pixel data const context = maskCanvas.getContext('2d'); const imageData = context.createImageData(maskCanvas.width, maskCanvas.height); // Select best mask const numMasks = scores.length; // 3 let bestIndex = 0; for (let i = 1; i < numMasks; ++i) { if (scores[i] > scores[bestIndex]) { bestIndex = i; } } statusLabel.textContent = `Segment score: ${scores[bestIndex].toFixed(2)}`; // Fill mask with colour const pixelData = imageData.data; for (let i = 0; i < pixelData.length; ++i) { if (mask.data[numMasks * i + bestIndex] === 1) { const offset = 4 * i; pixelData[offset] = 0; // red pixelData[offset + 1] = 114; // green pixelData[offset + 2] = 189; // blue pixelData[offset + 3] = 255; // alpha } } // Draw image data to context context.putImageData(imageData, 0, 0); } else if (type === 'segment_result') { if (data === 'start') { statusLabel.textContent = 'Extracting image embedding...'; } else { statusLabel.textContent = 'Embedding extracted!'; isEncoded = true; } } }); function decode() { isDecoding = true; worker.postMessage({ type: 'decode', data: lastPoints }); } function clearPointsAndMask() { // Reset state isMultiMaskMode = false; lastPoints = null; // Remove points from previous mask (if any) document.querySelectorAll('.icon').forEach(e => e.remove()); // Disable cut button cutButton.disabled = true; // Reset mask canvas maskCanvas.getContext('2d').clearRect(0, 0, maskCanvas.width, maskCanvas.height); } clearButton.addEventListener('click', clearPointsAndMask); resetButton.addEventListener('click', () => { // Update state isEncoded = false; imageDataURI = null; // Indicate to worker that we have reset the state worker.postMessage({ type: 'reset' }); // Clear points and mask (if present) clearPointsAndMask(); // Update UI cutButton.disabled = true; imageContainer.style.backgroundImage = 'none'; uploadButton.style.display = 'flex'; statusLabel.textContent = 'Ready'; }); function segment(data) { // Update state isEncoded = false; if (!modelReady) { statusLabel.textContent = 'Loading model...'; } imageDataURI = data; // Update UI imageContainer.style.backgroundImage = `url(${data})`; uploadButton.style.display = 'none'; cutButton.disabled = true; // Instruct worker to segment the image worker.postMessage({ type: 'segment', data }); } // Handle file selection fileUpload.addEventListener('change', function (e) { const file = e.target.files[0]; if (!file) { return; } const reader = new FileReader(); // Set up a callback when the file is loaded reader.onload = e2 => segment(e2.target.result); reader.readAsDataURL(file); }); example.addEventListener('click', (e) => { e.preventDefault(); segment(EXAMPLE_URL); }); function addIcon({ point, label }) { const icon = (label === 1 ? star : cross).cloneNode(); icon.style.left = `${point[0] * 100}%`; icon.style.top = `${point[1] * 100}%`; imageContainer.appendChild(icon); } // Attach hover event to image container imageContainer.addEventListener('mousedown', e => { if (e.button !== 0 && e.button !== 2) { return; // Ignore other buttons } if (!isEncoded) { return; // Ignore if not encoded yet } if (!isMultiMaskMode) { lastPoints = []; isMultiMaskMode = true; cutButton.disabled = false; } const point = getPoint(e); lastPoints.push(point); // add icon addIcon(point); decode(); }); // Clamp a value inside a range [min, max] function clamp(x, min = 0, max = 1) { return Math.max(Math.min(x, max), min) } function getPoint(e) { // Get bounding box const bb = imageContainer.getBoundingClientRect(); // Get the mouse coordinates relative to the container const mouseX = clamp((e.clientX - bb.left) / bb.width); const mouseY = clamp((e.clientY - bb.top) / bb.height); return { point: [mouseX, mouseY], label: e.button === 2 // right click ? 0 // negative prompt : 1, // positive prompt } } // Do not show context menu on right click imageContainer.addEventListener('contextmenu', e => { e.preventDefault(); }); // Attach hover event to image container imageContainer.addEventListener('mousemove', e => { if (!isEncoded || isMultiMaskMode) { // Ignore mousemove events if the image is not encoded yet, // or we are in multi-mask mode return; } lastPoints = [getPoint(e)]; if (!isDecoding) { decode(); // Only decode if we are not already decoding } }); // Handle cut button click cutButton.addEventListener('click', () => { const [w, h] = [maskCanvas.width, maskCanvas.height]; // Get the mask pixel data const maskContext = maskCanvas.getContext('2d'); const maskPixelData = maskContext.getImageData(0, 0, w, h); // Load the image const image = new Image(); image.crossOrigin = 'anonymous'; image.onload = async () => { // Create a new canvas to hold the image const imageCanvas = new OffscreenCanvas(w, h); const imageContext = imageCanvas.getContext('2d'); imageContext.drawImage(image, 0, 0, w, h); const imagePixelData = imageContext.getImageData(0, 0, w, h); // Create a new canvas to hold the cut-out const cutCanvas = new OffscreenCanvas(w, h); const cutContext = cutCanvas.getContext('2d'); const cutPixelData = cutContext.getImageData(0, 0, w, h); // Copy the image pixel data to the cut canvas for (let i = 3; i < maskPixelData.data.length; i += 4) { if (maskPixelData.data[i] > 0) { for (let j = 0; j < 4; ++j) { const offset = i - j; cutPixelData.data[offset] = imagePixelData.data[offset]; } } } cutContext.putImageData(cutPixelData, 0, 0); // Download image const link = document.createElement('a'); link.download = 'image.png'; link.href = URL.createObjectURL(await cutCanvas.convertToBlob()); link.click(); link.remove(); } image.src = imageDataURI; });
transformers.js/examples/segment-anything-client/index.js/0
{ "file_path": "transformers.js/examples/segment-anything-client/index.js", "repo_id": "transformers.js", "token_count": 3452 }
export default function Progress({ text, percentage }) { percentage ??= 0; return ( <div className="relative text-black bg-white rounded-lg text-left overflow-hidden"> <div className='px-2 w-[1%] h-full bg-blue-500 whitespace-nowrap' style={{ width: `${percentage}%` }}> {text} ({`${percentage.toFixed(2)}%`}) </div> </div> ); }
transformers.js/examples/text-to-speech-client/src/components/Progress.jsx/0
{ "file_path": "transformers.js/examples/text-to-speech-client/src/components/Progress.jsx", "repo_id": "transformers.js", "token_count": 144 }
import { useCallback, useEffect, useRef, useState } from 'react' import { Token } from './components/Token' import './App.css' // Define list of tokenizers and their corresponding human-readable names const TOKENIZER_OPTIONS = Object.freeze({ 'Xenova/gpt-4': 'gpt-4 / gpt-3.5-turbo / text-embedding-ada-002', 'Xenova/text-davinci-003': 'text-davinci-003 / text-davinci-002', 'Xenova/gpt-3': 'gpt-3', 'Xenova/grok-1-tokenizer': 'Grok-1', 'Xenova/claude-tokenizer': 'Claude', 'Xenova/mistral-tokenizer-v3': 'Mistral v3', 'Xenova/mistral-tokenizer-v1': 'Mistral v1', 'Xenova/gemma-tokenizer': 'Gemma', 'Xenova/llama-3-tokenizer': 'Llama 3', 'Xenova/llama-tokenizer': 'LLaMA / Llama 2', 'Xenova/c4ai-command-r-v01-tokenizer': 'Cohere Command-R', 'Xenova/t5-small': 'T5', 'Xenova/bert-base-cased': 'bert-base-cased', '': 'Custom', }) function App() { // Allow user to set tokenizer and text via URL query parameters const urlParams = new URLSearchParams(window.location.search); const tokenizerParam = urlParams.get('tokenizer'); const textParam = urlParams.get('text'); const [tokenIds, setTokenIds] = useState([]); const [decodedTokens, setDecodedTokens] = useState([]); const [margins, setMargins] = useState([]); const [outputOption, setOutputOption] = useState('text'); const [tokenizer, setTokenizer] = useState(tokenizerParam ?? 'Xenova/gpt-4'); const [customTokenizer, setCustomTokenizer] = useState(''); const textareaRef = useRef(null); const outputRef = useRef(null); // Create a reference to the worker object. const worker = useRef(null); // We use the `useEffect` hook to set up the worker as soon as the `App` component is mounted. useEffect(() => { if (!worker.current) { // Create the worker if it does not yet exist. worker.current = new Worker(new URL('./worker.js', import.meta.url), { type: 'module' }); } // Create a callback function for messages from the worker thread. const onMessageReceived = (e) => { setTokenIds(e.data.token_ids); setDecodedTokens(e.data.decoded); setMargins(e.data.margins); }; // Attach the callback function as an event listener. worker.current.addEventListener('message', onMessageReceived); // Define a cleanup function for when the component is unmounted. return () => worker.current.removeEventListener('message', onMessageReceived); }, []); const resetOutput = useCallback(() => { setOutputOption('text'); setTokenIds([]); setDecodedTokens([]); setMargins([]); }, []); const onInputChange = useCallback((e) => { const model_id = tokenizer; const text = e.target.value; if (text.length > 10000) { setOutputOption(null); console.log('User most likely pasted in a large body of text (> 10k chars), so we hide the output (until specifically requested by the user).'); } worker.current.postMessage({ model_id, text }); }, [tokenizer]); useEffect(() => { if (textParam) { onInputChange({ target: { value: textParam } }); } }, [onInputChange, textParam]); const onTokenizerChange = useCallback((e) => { const model_id = e.target.value; setTokenizer(model_id); if (!model_id) return; worker.current.postMessage({ model_id, text: textareaRef.current.value }); }, []); return ( <div className='w-full max-w-[720px] flex flex-col gap-4 items-center'> <div> <h1 className='text-5xl font-bold mb-2'>The Tokenizer Playground</h1> <h2 className='text-lg font-normal'>Experiment with different tokenizers (running <a className="text-gray-900 underline" href="https://github.com/huggingface/transformers.js">locally</a> in your browser).</h2> </div> <div> <select value={(tokenizer in TOKENIZER_OPTIONS && !customTokenizer) ? tokenizer : ''} onChange={(e) => { resetOutput(); setCustomTokenizer(''); onTokenizerChange(e); }} className="bg-gray-50 border border-gray-300 text-gray-900 text-sm rounded-lg focus:ring-blue-500 focus:border-blue-500 block w-full p-2"> {Object.entries(TOKENIZER_OPTIONS).map(([value, label]) => ( <option key={value} value={value}>{label}</option> ))} </select> {(!(tokenizer in TOKENIZER_OPTIONS) || customTokenizer || tokenizer === '') && ( <input type="text" placeholder="Custom tokenizer" defaultValue={customTokenizer || tokenizer} onChange={(e) => { setCustomTokenizer(e.target.value); onTokenizerChange(e); }} className="bg-white border border-gray-300 text-gray-900 text-sm rounded-lg focus:ring-blue-500 focus:border-blue-500 block w-full py-1 px-2 mt-1" /> )} </div> <textarea ref={textareaRef} onChange={onInputChange} rows="8" className="font-mono text-lg block w-full p-2.5 text-gray-900 bg-gray-50 rounded-lg border border-gray-200" placeholder="Enter some text" defaultValue={textParam ?? textareaRef.current?.value ?? ''} ></textarea> <div className='flex justify-center gap-5'> <div className='flex flex-col'> <h2 className='font-semibold uppercase leading-4'>Tokens</h2> <h3 className='font-semibold text-3xl'>{tokenIds.length.toLocaleString()}</h3> </div> <div className='flex flex-col'> <h2 className='font-semibold uppercase leading-4'>Characters</h2> <h3 className='font-semibold text-3xl'>{(textareaRef.current?.value.length ?? 0).toLocaleString()}</h3> </div> </div> <div ref={outputRef} className='font-mono text-lg p-2.5 w-full bg-gray-100 rounded-lg border border-gray-200 whitespace-pre-wrap text-left h-[200px] overflow-y-auto'> {outputOption === 'text' ? ( decodedTokens.map( (token, index) => <Token key={index} text={token} position={index} margin={margins[index]} /> ) ) : outputOption === 'token_ids' ? ( `[${tokenIds.join(', ')}]` ) : null} </div> <div className="flex items-center gap-2 self-end"> <div className="flex items-center"> <input checked={outputOption === 'text'} onChange={() => setOutputOption('text')} id="output-radio-1" type="radio" value="" name="output-radio" className="w-4 h-4 text-blue-600 bg-gray-100 border-gray-300 focus:ring-blue-500" /> <label htmlFor="output-radio-1" className="ml-1 text-sm font-medium text-gray-900 dark:text-gray-300">Text</label> </div> <div className="flex items-center"> <input checked={outputOption === 'token_ids'} onChange={() => setOutputOption('token_ids')} id="output-radio-2" type="radio" value="" name="output-radio" className="w-4 h-4 text-blue-600 bg-gray-100 border-gray-300 focus:ring-blue-500" /> <label htmlFor="output-radio-2" className="ml-1 text-sm font-medium text-gray-900 dark:text-gray-300">Token IDs</label> </div> <div className="flex items-center"> <input checked={outputOption === null} onChange={() => setOutputOption(null)} id="output-radio-3" type="radio" value="" name="output-radio" className="w-4 h-4 text-blue-600 bg-gray-100 border-gray-300 focus:ring-blue-500" /> <label htmlFor="output-radio-3" className="ml-1 text-sm font-medium text-gray-900 dark:text-gray-300">Hide</label> </div> </div> </div > ) } export default App
transformers.js/examples/tokenizer-playground/src/App.jsx/0
{ "file_path": "transformers.js/examples/tokenizer-playground/src/App.jsx", "repo_id": "transformers.js", "token_count": 3075 }
* { box-sizing: border-box; padding: 0; margin: 0; font-family: sans-serif; } html, body { height: 100%; } body { padding: 16px 32px; display: flex; flex-direction: column; justify-content: center; align-items: center; } h1 { text-align: center; } #status { min-height: 16px; margin: 8px 0; text-align: center; } button { transition: all .25s; background: rgba(40, 44, 52, 0.05); border: 1px solid transparent; border-radius: 6px; color: #3080d0; text-decoration: none !important; display: inline-block; font-size: 14px; font-weight: 500; padding: 8px 16px; cursor: pointer; -webkit-user-select: none; -moz-user-select: none; user-select: none; } button:disabled { background: rgba(40, 44, 52, 0.1); color: #a0a0a0; cursor: not-allowed; } button:hover { background: rgba(40, 44, 52, 0.1); } p { text-align: center; font-size: 12px; max-width: 600px; padding: 8px; } #chart-container { position: relative; height: 60vh; width: min(90vw, 800px); padding-right: 50px; margin-bottom: 10px; } details { position: fixed; background-color: white; right: 0; top: 0; padding: 16px; } summary { text-align: right; } hr { margin: 8px 0; }
transformers.js/examples/webgpu-embedding-benchmark/style.css/0
{ "file_path": "transformers.js/examples/webgpu-embedding-benchmark/style.css", "repo_id": "transformers.js", "token_count": 518 }
import { useMemo } from "react"; const Chunk = ({ chunk, currentTime, onClick, ...props }) => { const { text, timestamp } = chunk; const [start, end] = timestamp; const bolded = start <= currentTime && currentTime < end; return ( <span {...props}> {text.startsWith(' ') ? " " : ""} <span onClick={onClick} className="text-md text-gray-600 cursor-pointer hover:text-red-600" title={timestamp.map(x => x.toFixed(2)).join(' → ')} style={{ textDecoration: bolded ? 'underline' : 'none', textShadow: bolded ? '0 0 1px #000' : 'none', }} >{text.trim()}</span> </span> ) } const Transcript = ({ transcript, currentTime, setCurrentTime, ...props }) => { const jsonTranscript = useMemo(() => { return JSON.stringify(transcript, null, 2) // post-process the JSON to make it more readable .replace(/( {4}"timestamp": )\[\s+(\S+)\s+(\S+)\s+\]/gm, "$1[$2 $3]"); }, [transcript]); const downloadTranscript = () => { const blob = new Blob([jsonTranscript], { type: 'application/json' }); const url = URL.createObjectURL(blob); const a = document.createElement('a'); a.href = url; a.download = 'transcript.json'; a.click(); URL.revokeObjectURL(url); } return (<> <div {...props}> { transcript.chunks.map((chunk, i) => <Chunk key={i} chunk={chunk} currentTime={currentTime} onClick={e => { setCurrentTime(chunk.timestamp[0]) // Set to start of chunk }} />) } </div> <div className="flex justify-center border-t text-sm text-gray-600 max-h-[150px] overflow-y-auto p-2 scrollbar-thin"> <button className="flex items-center border px-2 py-1 rounded-lg bg-green-400 text-white hover:bg-green-500" onClick={downloadTranscript} > <svg xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 24 24" strokeWidth={1.5} stroke="currentColor" className="size-6 mr-1"> <path strokeLinecap="round" strokeLinejoin="round" d="M3 16.5v2.25A2.25 2.25 0 0 0 5.25 21h13.5A2.25 2.25 0 0 0 21 18.75V16.5M16.5 12 12 16.5m0 0L7.5 12m4.5 4.5V3" /> </svg> Download transcript </button> </div> </>) }; export default Transcript;
transformers.js/examples/whisper-word-timestamps/src/components/Transcript.jsx/0
{ "file_path": "transformers.js/examples/whisper-word-timestamps/src/components/Transcript.jsx", "repo_id": "transformers.js", "token_count": 1253 }
import { env, pipeline } from '@xenova/transformers'; // Skip local model check since we are downloading the model from the Hugging Face Hub. env.allowLocalModels = false; class MyZeroShotClassificationPipeline { static task = 'zero-shot-classification'; static model = 'MoritzLaurer/deberta-v3-xsmall-zeroshot-v1.1-all-33'; static instance = null; static async getInstance(progress_callback = null) { if (this.instance === null) { this.instance = pipeline(this.task, this.model, { quantized: true, progress_callback, }); } return this.instance; } } // Listen for messages from the main thread self.addEventListener('message', async (event) => { // Retrieve the pipeline. When called for the first time, // this will load the pipeline and save it for future use. const classifier = await MyZeroShotClassificationPipeline.getInstance(x => { // We also add a progress callback to the pipeline so that we can // track model loading. self.postMessage(x); }); const { text, labels } = event.data; const split = text.split('\n'); for (const line of split) { const output = await classifier(line, labels, { hypothesis_template: 'This text is about {}.', multi_label: true, }); // Send the output back to the main thread self.postMessage({ status: 'output', output }); } // Send the output back to the main thread self.postMessage({ status: 'complete' }); });
transformers.js/examples/zero-shot-classification/src/worker.js/0
{ "file_path": "transformers.js/examples/zero-shot-classification/src/worker.js", "repo_id": "transformers.js", "token_count": 584 }
from optimum.exporters.onnx.model_configs import WhisperOnnxConfig from optimum.exporters.onnx.base import ConfigBehavior from typing import Dict # List of [layer, head] pairs that select the cross-attention heads that are highly correlated to word-level timing. # Source: https://gist.github.com/hollance/42e32852f24243b748ae6bc1f985b13a ALIGNMENT_HEADS_MAPPING = { 'whisper-tiny.en': [[1, 0], [2, 0], [2, 5], [3, 0], [3, 1], [3, 2], [3, 3], [3, 4]], 'whisper-tiny': [[2, 2], [3, 0], [3, 2], [3, 3], [3, 4], [3, 5]], 'whisper-base.en': [[3, 3], [4, 7], [5, 1], [5, 5], [5, 7]], 'whisper-base': [[3, 1], [4, 2], [4, 3], [4, 7], [5, 1], [5, 2], [5, 4], [5, 6]], 'whisper-small.en': [[6, 6], [7, 0], [7, 3], [7, 8], [8, 2], [8, 5], [8, 7], [9, 0], [9, 4], [9, 8], [9, 10], [10, 0], [10, 1], [10, 2], [10, 3], [10, 6], [10, 11], [11, 2], [11, 4]], 'whisper-small': [[5, 3], [5, 9], [8, 0], [8, 4], [8, 7], [8, 8], [9, 0], [9, 7], [9, 9], [10, 5]], 'whisper-medium.en': [[11, 4], [14, 1], [14, 12], [14, 14], [15, 4], [16, 0], [16, 4], [16, 9], [17, 12], [17, 14], [18, 7], [18, 10], [18, 15], [20, 0], [20, 3], [20, 9], [20, 14], [21, 12]], 'whisper-medium': [[13, 15], [15, 4], [15, 15], [16, 1], [20, 0], [23, 4]], 'whisper-large-v3-turbo': [[2, 4], [2, 11], [3, 3], [3, 6], [3, 11], [3, 14]], 'whisper-large-v2': [[10, 12], [13, 17], [16, 11], [16, 12], [16, 13], [17, 15], [17, 16], [18, 4], [18, 11], [18, 19], [19, 11], [21, 2], [21, 3], [22, 3], [22, 9], [22, 12], [23, 5], [23, 7], [23, 13], [25, 5], [26, 1], [26, 12], [27, 15]], 'whisper-large': [[9, 19], [11, 2], [11, 4], [11, 17], [22, 7], [22, 11], [22, 17], [23, 2], [23, 15]], } class CustomWhisperOnnxConfig(WhisperOnnxConfig): """ Custom ONNX config for Whisper models to output cross attentions. Needed to compute token-level timestamps. """ @property def outputs(self) -> Dict[str, Dict[int, str]]: common_outputs = super().outputs if self._behavior is ConfigBehavior.DECODER: for i in range(self._config.decoder_layers): common_outputs[f"cross_attentions.{i}"] = { 0: "batch_size", 2: "decoder_sequence_length", 3: "encoder_sequence_length_out" } return common_outputs def get_main_export_kwargs(config, task): # See https://github.com/huggingface/optimum/blob/a39b1f5637af9725c0c788b86ca1fdf71ad3dcc2/docs/source/exporters/onnx/usage_guides/export_a_model.mdx#L264 custom_config = CustomWhisperOnnxConfig(config=config, task=task) custom_onnx_configs = dict( encoder_model=custom_config.with_behavior("encoder"), decoder_model=custom_config.with_behavior("decoder", use_past=True, use_past_in_inputs=False), decoder_with_past_model=custom_config.with_behavior("decoder", use_past=True, use_past_in_inputs=True), ) return dict( model_kwargs={"output_attentions": True}, custom_onnx_configs=custom_onnx_configs, ) def get_alignment_heads(config): if getattr(config, '_name_or_path', None) is None: raise ValueError( "Unable to determine model type from config. Please specify `_name_or_path` in the config.") for model_name, heads in ALIGNMENT_HEADS_MAPPING.items(): if model_name in config._name_or_path: return heads raise ValueError( f"Unknown model type: {config._name_or_path}. Please add one of the following model types to `_name_or_path` in the config file: {list(ALIGNMENT_HEADS_MAPPING.keys())}")
transformers.js/scripts/extra/whisper.py/0
{ "file_path": "transformers.js/scripts/extra/whisper.py", "repo_id": "transformers.js", "token_count": 1700 }
import { Processor } from "../../base/processing_utils.js"; import { AutoImageProcessor } from "../auto/image_processing_auto.js"; import { AutoTokenizer } from "../../tokenizers.js"; export class Florence2Processor extends Processor { static tokenizer_class = AutoTokenizer static image_processor_class = AutoImageProcessor constructor(config, components) { super(config, components); const { // @ts-expect-error TS2339 tasks_answer_post_processing_type, // @ts-expect-error TS2339 task_prompts_without_inputs, // @ts-expect-error TS2339 task_prompts_with_input, } = this.image_processor.config; /** @type {Map<string, string>} */ this.tasks_answer_post_processing_type = new Map(Object.entries(tasks_answer_post_processing_type ?? {})); /** @type {Map<string, string>} */ this.task_prompts_without_inputs = new Map(Object.entries(task_prompts_without_inputs ?? {})); /** @type {Map<string, string>} */ this.task_prompts_with_input = new Map(Object.entries(task_prompts_with_input ?? {})); this.regexes = { quad_boxes: /(.+?)<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>/gm, bboxes: /([^<]+)?<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>/gm, } this.size_per_bin = 1000; } /** * Helper function to construct prompts from input texts * @param {string|string[]} text * @returns {string[]} */ construct_prompts(text) { if (typeof text === 'string') { text = [text]; } const prompts = []; for (const t of text) { // 1. fixed task prompts without additional inputs if (this.task_prompts_without_inputs.has(t)) { prompts.push(this.task_prompts_without_inputs.get(t)); } // 2. task prompts with additional inputs else { for (const [task, prompt] of this.task_prompts_with_input) { if (t.includes(task)) { prompts.push(prompt.replaceAll('{input}', t).replaceAll(task, '')); break; } } // 3. default prompt if (prompts.length !== text.length) { prompts.push(t); } } } return prompts; } /** * Post-process the output of the model to each of the task outputs. * @param {string} text The text to post-process. * @param {string} task The task to post-process the text for. * @param {[number, number]} image_size The size of the image. height x width. */ post_process_generation(text, task, image_size) { const task_answer_post_processing_type = this.tasks_answer_post_processing_type.get(task) ?? 'pure_text'; // remove the special tokens text = text.replaceAll('<s>', '').replaceAll('</s>', ''); let final_answer; switch (task_answer_post_processing_type) { case 'pure_text': final_answer = text; break; case 'description_with_bboxes': case 'bboxes': case 'phrase_grounding': case 'ocr': const key = task_answer_post_processing_type === 'ocr' ? 'quad_boxes' : 'bboxes'; const matches = text.matchAll(this.regexes[key]); const labels = []; const items = []; for (const [_, label, ...locations] of matches) { // Push new label, or duplicate the last label labels.push(label ? label.trim() : labels.at(-1) ?? ''); items.push(locations.map((x, i) => // NOTE: Add 0.5 to use the center position of the bin as the coordinate. (Number(x) + 0.5) / this.size_per_bin * image_size[i % 2]) ); } final_answer = { labels, [key]: items }; break; default: throw new Error(`Task "${task}" (of type "${task_answer_post_processing_type}") not yet implemented.`); } return { [task]: final_answer } } // NOTE: images and text are switched from the python version // `images` is required, `text` is optional async _call(images, text=null, kwargs = {}) { if (!images && !text){ throw new Error('Either text or images must be provided'); } const image_inputs = await this.image_processor(images, kwargs); const text_inputs = text ? this.tokenizer(text, kwargs) : {}; return { ...image_inputs, ...text_inputs, } } }
transformers.js/src/models/florence2/processing_florence2.js/0
{ "file_path": "transformers.js/src/models/florence2/processing_florence2.js", "repo_id": "transformers.js", "token_count": 2334 }
import { Processor } from '../../base/processing_utils.js'; import { PyAnnoteFeatureExtractor } from './feature_extraction_pyannote.js'; export class PyAnnoteProcessor extends Processor { static feature_extractor_class = PyAnnoteFeatureExtractor /** * Calls the feature_extractor function with the given audio input. * @param {any} audio The audio input to extract features from. * @returns {Promise<any>} A Promise that resolves with the extracted features. */ async _call(audio) { return await this.feature_extractor(audio) } /** @type {PyAnnoteFeatureExtractor['post_process_speaker_diarization']} */ post_process_speaker_diarization(...args) { return /** @type {PyAnnoteFeatureExtractor} */(this.feature_extractor).post_process_speaker_diarization(...args); } get sampling_rate() { return this.feature_extractor.config.sampling_rate; } }
transformers.js/src/models/pyannote/processing_pyannote.js/0
{ "file_path": "transformers.js/src/models/pyannote/processing_pyannote.js", "repo_id": "transformers.js", "token_count": 316 }
import { FeatureExtractor, validate_audio_inputs } from "../../base/feature_extraction_utils.js"; import { Tensor } from "../../utils/tensor.js"; export class Wav2Vec2FeatureExtractor extends FeatureExtractor { /** * @param {Float32Array} input_values * @returns {Float32Array} */ _zero_mean_unit_var_norm(input_values) { // TODO support batch? const sum = input_values.reduce((a, b) => a + b, 0); const mean = sum / input_values.length; const variance = input_values.reduce((a, b) => a + (b - mean) ** 2, 0) / input_values.length; return input_values.map(x => (x - mean) / Math.sqrt(variance + 1e-7)); } /** * Asynchronously extracts features from a given audio using the provided configuration. * @param {Float32Array|Float64Array} audio The audio data as a Float32Array/Float64Array. * @returns {Promise<{ input_values: Tensor; attention_mask: Tensor }>} A Promise resolving to an object containing the extracted input features and attention mask as Tensors. */ async _call(audio) { validate_audio_inputs(audio, 'Wav2Vec2FeatureExtractor'); if (audio instanceof Float64Array) { audio = new Float32Array(audio); } let input_values = audio; // zero-mean and unit-variance normalization if (this.config.do_normalize) { input_values = this._zero_mean_unit_var_norm(input_values); } // TODO: allow user to pass in attention mask const shape = [1, input_values.length]; return { input_values: new Tensor('float32', input_values, shape), attention_mask: new Tensor('int64', new BigInt64Array(input_values.length).fill(1n), shape) }; } }
transformers.js/src/models/wav2vec2/feature_extraction_wav2vec2.js/0
{ "file_path": "transformers.js/src/models/wav2vec2/feature_extraction_wav2vec2.js", "repo_id": "transformers.js", "token_count": 700 }
/** * @file Custom data structures. * * These are only used internally, meaning an end-user shouldn't * need to access anything here. * * @module utils/data-structures */ /** * Efficient Heap-based Implementation of a Priority Queue. * It uses an array-based binary heap, where the root is at index `0`, and the * children of node `i` are located at indices `2i + 1` and `2i + 2`, respectively. * * Adapted from the following sources: * - https://stackoverflow.com/a/42919752/13989043 (original) * - https://github.com/belladoreai/llama-tokenizer-js (minor improvements) */ export class PriorityQueue { /** * Create a new PriorityQueue. * @param {function(any, any): boolean} comparator Comparator function to determine priority. Defaults to a MaxHeap. */ constructor(comparator = (a, b) => a > b, maxSize = Infinity) { this._heap = []; this._comparator = comparator; this._maxSize = maxSize; } /** * The size of the queue */ get size() { return this._heap.length; } /** * Check if the queue is empty. * @returns {boolean} `true` if the queue is empty, `false` otherwise. */ isEmpty() { return this.size === 0; } /** * Return the element with the highest priority in the queue. * @returns {any} The highest priority element in the queue. */ peek() { return this._heap[0]; } /** * Add one or more elements to the queue. * @param {...any} values The values to push into the queue. * @returns {number} The new size of the queue. */ push(...values) { return this.extend(values); } /** * Add multiple elements to the queue. * @param {any[]} values The values to push into the queue. * @returns {number} The new size of the queue. */ extend(values) { for (const value of values) { if (this.size < this._maxSize) { this._heap.push(value); this._siftUp(); } else { // Get index of value with the lowest priority const smallest = this._smallest(); // If the new value has higher priority than the smallest value in the heap // then replace the smallest value with the new value and update the heap if (this._comparator(value, this._heap[smallest])) { this._heap[smallest] = value; this._siftUpFrom(smallest); } } } return this.size; } /** * Remove and return the element with the highest priority in the queue. * @returns {any} The element with the highest priority in the queue. */ pop() { const poppedValue = this.peek(); const bottom = this.size - 1; if (bottom > 0) { this._swap(0, bottom); } this._heap.pop(); this._siftDown(); return poppedValue; } /** * Replace the element with the highest priority in the queue with a new value. * @param {*} value The new value. * @returns {*} The replaced value. */ replace(value) { const replacedValue = this.peek(); this._heap[0] = value; this._siftDown(); return replacedValue; } /** * Compute the index for the parent of the node at index `i`. * @param {number} i The index of the node to get the parent of. * @returns {number} The index of the parent node. * @private */ _parent(i) { return ((i + 1) >>> 1) - 1; } /** * Compute the index for the left child of the node at index `i`. * @param {number} i The index of the node to get the left child of. * @returns {number} The index of the left child. * @private */ _left(i) { return (i << 1) + 1; } /** * Compute the index for the right child of the node at index `i`. * @param {number} i The index of the node to get the right child of. * @returns {number} The index of the right child. * @private */ _right(i) { return (i + 1) << 1; } /** * Check if the element at index `i` is greater than the element at index `j`. * @param {number} i The index of the first element to compare. * @param {number} j The index of the second element to compare. * @returns {boolean} `true` if the element at index `i` is greater than the element at index `j`, `false` otherwise. * @private */ _greater(i, j) { return this._comparator(this._heap[i], this._heap[j]); } /** * Swap the elements at indices `i` and `j`. * @param {number} i The index of the first element to swap. * @param {number} j The index of the second element to swap. * @private */ _swap(i, j) { const temp = this._heap[i]; this._heap[i] = this._heap[j]; this._heap[j] = temp; } /** * Maintain the heap property by updating positions in the heap, * starting at the last element and moving up the heap. * @private */ _siftUp() { this._siftUpFrom(this.size - 1); } /** * Helper function to sift up from a given node. * @param {number} node The index of the node to start sifting up from. */ _siftUpFrom(node) { while (node > 0 && this._greater(node, this._parent(node))) { this._swap(node, this._parent(node)); node = this._parent(node); } } /** * Maintain the heap property by updating positions in the heap, * starting at the first element and moving down the heap. * @private */ _siftDown() { let node = 0; while ( (this._left(node) < this.size && this._greater(this._left(node), node)) || (this._right(node) < this.size && this._greater(this._right(node), node)) ) { const maxChild = (this._right(node) < this.size && this._greater(this._right(node), this._left(node))) ? this._right(node) : this._left(node); this._swap(node, maxChild); node = maxChild; } } /** * Get the index of the smallest element in the heap. Since we use an array-based heap, * the index can be computed without needing to traverse the heap. * @private */ _smallest() { return (2 ** (Math.floor(Math.log2(this.size))) - 1); } } /** * A trie structure to efficiently store and search for strings. */ export class CharTrie { constructor() { this.root = CharTrieNode.default(); } /** * Adds one or more `texts` to the trie. * @param {string[]} texts The strings to add to the trie. */ extend(texts) { for (const text of texts) { this.push(text); } } /** * Adds text to the trie. * @param {string} text The string to add to the trie. */ push(text) { let node = this.root; for (const ch of text) { let child = node.children.get(ch); if (child === undefined) { child = CharTrieNode.default(); node.children.set(ch, child); } node = child; } node.isLeaf = true; } /** * Searches the trie for all strings with a common prefix of `text`. * @param {string} text The common prefix to search for. * @yields {string} Each string in the trie that has `text` as a prefix. */ *commonPrefixSearch(text) { let node = this.root; if (node === undefined) return; let prefix = ""; for (const ch of text) { prefix += ch; node = node.children.get(ch); if (node === undefined) return; if (node.isLeaf) { yield prefix; } } } } /** * Represents a node in a character trie. */ class CharTrieNode { /** * Create a new CharTrieNode. * @param {boolean} isLeaf Whether the node is a leaf node or not. * @param {Map<string, CharTrieNode>} children A map containing the node's children, where the key is a character and the value is a `CharTrieNode`. */ constructor(isLeaf, children) { this.isLeaf = isLeaf; this.children = children; } /** * Returns a new `CharTrieNode` instance with default values. * @returns {CharTrieNode} A new `CharTrieNode` instance with `isLeaf` set to `false` and an empty `children` map. */ static default() { return new CharTrieNode(false, new Map()); } } /** * A lattice data structure to be used for tokenization. */ export class TokenLattice { /** * Creates a new TokenLattice instance. * * @param {string} sentence The input sentence to be tokenized. * @param {number} bosTokenId The beginning-of-sequence token ID. * @param {number} eosTokenId The end-of-sequence token ID. */ constructor(sentence, bosTokenId, eosTokenId) { this.chars = Array.from(sentence); this.len = this.chars.length; this.bosTokenId = bosTokenId; this.eosTokenId = eosTokenId; this.nodes = []; this.beginNodes = Array.from({ length: this.len + 1 }, () => []); this.endNodes = Array.from({ length: this.len + 1 }, () => []); const bos = new TokenLatticeNode(this.bosTokenId, 0, 0, 0, 0.0); const eos = new TokenLatticeNode(this.eosTokenId, 1, this.len, 0, 0.0); this.nodes.push(bos.clone()); this.nodes.push(eos.clone()); this.beginNodes[this.len].push(eos); this.endNodes[0].push(bos); } /** * Inserts a new token node into the token lattice. * * @param {number} pos The starting position of the token. * @param {number} length The length of the token. * @param {number} score The score of the token. * @param {number} tokenId The token ID of the token. */ insert(pos, length, score, tokenId) { const nodeId = this.nodes.length; const node = new TokenLatticeNode(tokenId, nodeId, pos, length, score); this.beginNodes[pos].push(node); this.endNodes[pos + length].push(node); this.nodes.push(node); } /** * Implements the Viterbi algorithm to compute the most likely sequence of tokens. * * @returns {TokenLatticeNode[]} The most likely sequence of tokens. */ viterbi() { const len = this.len; let pos = 0; while (pos <= len) { if (this.beginNodes[pos].length == 0) { return []; } for (let rnode of this.beginNodes[pos]) { rnode.prev = null; let bestScore = 0.0; let bestNode = null; for (let lnode of this.endNodes[pos]) { const score = lnode.backtraceScore + rnode.score; if (bestNode === null || score > bestScore) { bestNode = lnode.clone(); bestScore = score; } } if (bestNode !== null) { rnode.prev = bestNode; rnode.backtraceScore = bestScore; } else { return []; } } ++pos; } const results = []; const root = this.beginNodes[len][0]; const prev = root.prev; if (prev === null) { return []; } let node = prev.clone(); while (node.prev !== null) { results.push(node.clone()); const n = node.clone(); node = n.prev.clone(); } results.reverse(); return results; } /** * @param {TokenLatticeNode} node * @returns {string} The array of nodes representing the most likely sequence of tokens. */ piece(node) { return this.chars.slice(node.pos, node.pos + node.length).join(''); } /** * @returns {string[]} The most likely sequence of tokens. */ tokens() { const nodes = this.viterbi(); return nodes.map(x => this.piece(x)); } /** * @returns {number[]} The most likely sequence of token ids. */ tokenIds() { const nodes = this.viterbi(); return nodes.map(x => x.tokenId); } } class TokenLatticeNode { /** * Represents a node in a token lattice for a given sentence. * @param {number} tokenId The ID of the token associated with this node. * @param {number} nodeId The ID of this node. * @param {number} pos The starting position of the token in the sentence. * @param {number} length The length of the token. * @param {number} score The score associated with the token. */ constructor(tokenId, nodeId, pos, length, score) { this.tokenId = tokenId; this.nodeId = nodeId; this.pos = pos; this.length = length; this.score = score; this.prev = null; this.backtraceScore = 0.0; } /** * Returns a clone of this node. * @returns {TokenLatticeNode} A clone of this node. */ clone() { const n = new TokenLatticeNode(this.tokenId, this.nodeId, this.pos, this.length, this.score); n.prev = this.prev; n.backtraceScore = this.backtraceScore; return n; } }
transformers.js/src/utils/data-structures.js/0
{ "file_path": "transformers.js/src/utils/data-structures.js", "repo_id": "transformers.js", "token_count": 5931 }
import { AutoFeatureExtractor, ASTFeatureExtractor } from "../../../src/transformers.js"; import { load_cached_audio } from "../../asset_cache.js"; import { MAX_FEATURE_EXTRACTOR_LOAD_TIME, MAX_TEST_EXECUTION_TIME } from "../../init.js"; export default () => { // ASTFeatureExtractor describe("ASTFeatureExtractor", () => { const model_id = "Xenova/ast-finetuned-audioset-10-10-0.4593"; /** @type {ASTFeatureExtractor} */ let feature_extractor; beforeAll(async () => { feature_extractor = await AutoFeatureExtractor.from_pretrained(model_id); }, MAX_FEATURE_EXTRACTOR_LOAD_TIME); it( "truncation", async () => { const audio = await load_cached_audio("mlk"); const { input_values } = await feature_extractor(audio); expect(input_values.dims).toEqual([1, 1024, 128]); expect(input_values.mean().item()).toBeCloseTo(-0.04054912979309085); expect(input_values.data[0]).toBeCloseTo(-0.5662586092948914); expect(input_values.data[1]).toBeCloseTo(-1.0300861597061157); expect(input_values.data[129]).toBeCloseTo(-1.084834098815918); expect(input_values.data[1025]).toBeCloseTo(-1.1204065084457397); }, MAX_TEST_EXECUTION_TIME, ); it( "padding", async () => { const audio = await load_cached_audio("mlk"); const { input_values } = await feature_extractor(audio.slice(0, 1000)); expect(input_values.dims).toEqual([1, 1024, 128]); // [1, 4, 128] -> (padded to) -> [1, 1024, 128] expect(input_values.mean().item()).toBeCloseTo(0.4647964835166931); expect(input_values.data[0]).toBeCloseTo(-0.5662586092948914); expect(input_values.data[1]).toBeCloseTo(-1.0300861597061157); expect(input_values.data[129]).toBeCloseTo(-1.084834098815918); // padded values expect(input_values.data[1025]).toBeCloseTo(0.46703237295150757); expect(input_values.data[2049]).toBeCloseTo(0.46703237295150757); expect(input_values.data[10000]).toBeCloseTo(0.46703237295150757); }, MAX_TEST_EXECUTION_TIME, ); }); };
transformers.js/tests/models/audio_spectrogram_transformer/test_feature_extraction_audio_spectrogram_transformer.js/0
{ "file_path": "transformers.js/tests/models/audio_spectrogram_transformer/test_feature_extraction_audio_spectrogram_transformer.js", "repo_id": "transformers.js", "token_count": 926 }
import { GPT2Tokenizer } from "../../../src/tokenizers.js"; import { BASE_TEST_STRINGS, SENTENCEPIECE_TEST_STRINGS } from "../test_strings.js"; export const TOKENIZER_CLASS = GPT2Tokenizer; export const TEST_CONFIG = { // - clean_up_tokenization_spaces=true // - default pretokenization regex "Xenova/gpt2": { SIMPLE: { text: BASE_TEST_STRINGS.SIMPLE, tokens: ["How", "\u0120are", "\u0120you", "\u0120doing", "?"], ids: [2437, 389, 345, 1804, 30], decoded: "How are you doing?", }, SIMPLE_WITH_PUNCTUATION: { text: BASE_TEST_STRINGS.SIMPLE_WITH_PUNCTUATION, tokens: ["You", "\u0120should", "'ve", "\u0120done", "\u0120this"], ids: [1639, 815, 1053, 1760, 428], decoded: "You should've done this", }, NUMBERS: { text: BASE_TEST_STRINGS.NUMBERS, tokens: ["01", "23", "45", "67", "89", "Ġ0", "Ġ1", "Ġ2", "Ġ3", "Ġ4", "Ġ5", "Ġ6", "Ġ7", "Ġ8", "Ġ9", "Ġ10", "Ġ100", "Ġ1000"], ids: [486, 1954, 2231, 3134, 4531, 657, 352, 362, 513, 604, 642, 718, 767, 807, 860, 838, 1802, 8576], decoded: "0123456789 0 1 2 3 4 5 6 7 8 9 10 100 1000", }, TEXT_WITH_NUMBERS: { text: BASE_TEST_STRINGS.TEXT_WITH_NUMBERS, tokens: ["The", "\u0120company", "\u0120was", "\u0120founded", "\u0120in", "\u01202016", "."], ids: [464, 1664, 373, 9393, 287, 1584, 13], decoded: "The company was founded in 2016.", }, PUNCTUATION: { text: BASE_TEST_STRINGS.PUNCTUATION, tokens: ["A", "\u010a", "'ll", "\u0120!!", "to", "?'", "d", "''", "d", "\u0120of", ",", "\u0120can", "'t", "."], ids: [32, 198, 1183, 37867, 1462, 8348, 67, 7061, 67, 286, 11, 460, 470, 13], decoded: "A\n'll!!to?'d''d of, can't.", }, PYTHON_CODE: { text: BASE_TEST_STRINGS.PYTHON_CODE, tokens: ["def", "\u0120main", "():", "\u010a", "\u0109", "pass"], ids: [4299, 1388, 33529, 198, 197, 6603], decoded: "def main():\n\tpass", }, JAVASCRIPT_CODE: { text: BASE_TEST_STRINGS.JAVASCRIPT_CODE, tokens: ["let", "\u0120a", "\u0120=", "\u0120obj", ".", "to", "String", "();", "\u010a", "to", "String", "();"], ids: [1616, 257, 796, 26181, 13, 1462, 10100, 9783, 198, 1462, 10100, 9783], decoded: "let a = obj.toString();\ntoString();", }, NEWLINES: { text: BASE_TEST_STRINGS.NEWLINES, tokens: ["This", "\u010a", "\u010a", "is", "\u010a", "a", "\u010a", "test", "."], ids: [1212, 198, 198, 271, 198, 64, 198, 9288, 13], decoded: "This\n\nis\na\ntest.", }, BASIC: { text: BASE_TEST_STRINGS.BASIC, tokens: ["UN", "want", "\u00c3\u00a9", "d", ",", "running"], ids: [4944, 42949, 2634, 67, 11, 20270], decoded: "UNwant\u00e9d,running", }, CONTROL_TOKENS: { text: BASE_TEST_STRINGS.CONTROL_TOKENS, tokens: ["1", "\u0100", "2", "\u00ef\u00bf\u00bd", "3"], ids: [16, 188, 17, 4210, 18], decoded: "1\u00002\ufffd3", }, HELLO_WORLD_TITLECASE: { text: BASE_TEST_STRINGS.HELLO_WORLD_TITLECASE, tokens: ["Hello", "\u0120World"], ids: [15496, 2159], decoded: "Hello World", }, HELLO_WORLD_LOWERCASE: { text: BASE_TEST_STRINGS.HELLO_WORLD_LOWERCASE, tokens: ["hello", "\u0120world"], ids: [31373, 995], decoded: "hello world", }, CHINESE_ONLY: { text: BASE_TEST_STRINGS.CHINESE_ONLY, tokens: ["\u00e7\u0136\u0141", "\u00e6", "\u00b4", "\u00bb", "\u00e7\u013c\u0126", "\u00e7\u013e", "\u0141", "\u00e8", "\u00b0", "\u013d", "\u00e6\u013a\u00af"], ids: [37955, 162, 112, 119, 21410, 40367, 253, 164, 108, 249, 42468], decoded: "\u751f\u6d3b\u7684\u771f\u8c1b\u662f", }, LEADING_SPACE: { text: BASE_TEST_STRINGS.LEADING_SPACE, tokens: ["\u0120", "\u0120", "\u0120leading", "\u0120space"], ids: [220, 220, 3756, 2272], decoded: " leading space", }, TRAILING_SPACE: { text: BASE_TEST_STRINGS.TRAILING_SPACE, tokens: ["tra", "iling", "\u0120space", "\u0120", "\u0120", "\u0120"], ids: [9535, 4386, 2272, 220, 220, 220], decoded: "trailing space ", }, DOUBLE_SPACE: { text: BASE_TEST_STRINGS.DOUBLE_SPACE, tokens: ["Hi", "\u0120", "\u0120Hello"], ids: [17250, 220, 18435], decoded: "Hi Hello", }, CURRENCY: { text: BASE_TEST_STRINGS.CURRENCY, tokens: ["test", "\u0120$", "1", "\u0120R", "2", "\u0120#", "3", "\u0120\u00e2\u0124\u00ac", "4", "\u0120\u00c2\u00a3", "5", "\u0120\u00c2\u00a5", "6", "\u0120\u00e2", "\u0124", "\u00a3", "7", "\u0120\u00e2", "\u0124", "\u00b9", "8", "\u0120\u00e2", "\u0124", "\u00b1", "9", "\u0120test"], ids: [9288, 720, 16, 371, 17, 1303, 18, 10432, 19, 4248, 20, 38221, 21, 2343, 224, 96, 22, 2343, 224, 117, 23, 2343, 224, 109, 24, 1332], decoded: "test $1 R2 #3 \u20ac4 \u00a35 \u00a56 \u20a37 \u20b98 \u20b19 test", }, CURRENCY_WITH_DECIMALS: { text: BASE_TEST_STRINGS.CURRENCY_WITH_DECIMALS, tokens: ["I", "\u0120bought", "\u0120an", "\u0120apple", "\u0120for", "\u0120$", "1", ".", "00", "\u0120at", "\u0120the", "\u0120store", "."], ids: [40, 5839, 281, 17180, 329, 720, 16, 13, 405, 379, 262, 3650, 13], decoded: "I bought an apple for $1.00 at the store.", }, ELLIPSIS: { text: BASE_TEST_STRINGS.ELLIPSIS, tokens: ["you", "\u00e2\u0122\u00a6", "\u0120", "\u0120"], ids: [5832, 1399, 220, 220], decoded: "you\u2026 ", }, TEXT_WITH_ESCAPE_CHARACTERS: { text: BASE_TEST_STRINGS.TEXT_WITH_ESCAPE_CHARACTERS, tokens: ["you", "\u00e2\u0122\u00a6", "\u00c2\u0142\u00c2\u0142"], ids: [5832, 1399, 4603], decoded: "you\u2026\u00a0\u00a0", }, TEXT_WITH_ESCAPE_CHARACTERS_2: { text: BASE_TEST_STRINGS.TEXT_WITH_ESCAPE_CHARACTERS_2, tokens: ["you", "\u00e2\u0122\u00a6", "\u00c2\u0142", "\u00c2\u0142", "you", "\u00e2\u0122\u00a6", "\u00c2\u0142\u00c2\u0142"], ids: [5832, 1399, 1849, 1849, 5832, 1399, 4603], decoded: "you\u2026\u00a0\u00a0you\u2026\u00a0\u00a0", }, TILDE_NORMALIZATION: { text: BASE_TEST_STRINGS.TILDE_NORMALIZATION, tokens: ["we", "ird", "\u0120\u00ef", "\u00bd", "\u0140", "\u0120edge", "\u0120\u00ef", "\u00bd", "\u0140", "\u0120case"], ids: [732, 1447, 27332, 121, 252, 5743, 27332, 121, 252, 1339], decoded: "weird \uff5e edge \uff5e case", }, SPIECE_UNDERSCORE: { text: BASE_TEST_STRINGS.SPIECE_UNDERSCORE, tokens: ["\u00e2\u0138", "\u0123", "This", "\u0120\u00e2\u0138", "\u0123", "is", "\u0120\u00e2\u0138", "\u0123", "a", "\u0120\u00e2\u0138", "\u0123", "test", "\u0120\u00e2\u0138", "\u0123", "."], ids: [5008, 223, 1212, 11019, 223, 271, 11019, 223, 64, 11019, 223, 9288, 11019, 223, 13], decoded: "\u2581This \u2581is \u2581a \u2581test \u2581.", }, SPECIAL_WITH_TRAILING_WHITESPACE: { text: SENTENCEPIECE_TEST_STRINGS.SPECIAL_WITH_TRAILING_WHITESPACE, tokens: ["<", "s", ">", "\u010a"], ids: [27, 82, 29, 198], decoded: "<s>\n", }, SPECIAL_SURROUNDED_BY_WHITESPACE: { text: SENTENCEPIECE_TEST_STRINGS.SPECIAL_SURROUNDED_BY_WHITESPACE, tokens: ["\u0120</", "s", ">", "\u0120test", "\u0120</", "s", ">", "\u0120"], ids: [7359, 82, 29, 1332, 7359, 82, 29, 220], decoded: " </s> test </s> ", }, SPECIAL_NO_WHITESPACE: { text: SENTENCEPIECE_TEST_STRINGS.SPECIAL_NO_WHITESPACE, tokens: ["</", "s", ">", "test", "</", "s", ">"], ids: [3556, 82, 29, 9288, 3556, 82, 29], decoded: "</s>test</s>", }, }, // - clean_up_tokenization_spaces=false // - custom pretokenization regex "Xenova/gpt-4": { PUNCTUATION: { text: BASE_TEST_STRINGS.PUNCTUATION, tokens: ["A", "\u010a", "'ll", "\u0120!!", "to", "?'", "d", "''", "d", "\u0120of", ",", "\u0120can", "'t", "."], ids: [32, 198, 3358, 11261, 998, 20837, 67, 4708, 67, 315, 11, 649, 956, 13], decoded: "A\n'll !!to?'d''d of, can't.", }, JAVASCRIPT_CODE: { text: BASE_TEST_STRINGS.JAVASCRIPT_CODE, tokens: ["let", "\u0120a", "\u0120=", "\u0120obj", ".toString", "();\u010a", "toString", "();"], ids: [1169, 264, 284, 2909, 5180, 545, 6712, 2178], decoded: "let a = obj.toString();\ntoString();", }, CURRENCY: { text: BASE_TEST_STRINGS.CURRENCY, tokens: ["test", "\u0120$", "1", "\u0120R", "2", "\u0120#", "3", "\u0120\u00e2\u0124\u00ac", "4", "\u0120\u00c2\u00a3", "5", "\u0120\u00c2\u00a5", "6", "\u0120\u00e2", "\u0124", "\u00a3", "7", "\u0120\u00e2\u0124\u00b9", "8", "\u0120\u00e2", "\u0124", "\u00b1", "9", "\u0120test"], ids: [1985, 400, 16, 432, 17, 674, 18, 13281, 19, 7083, 20, 72588, 21, 2928, 224, 96, 22, 90891, 23, 2928, 224, 109, 24, 1296], decoded: "test $1 R2 #3 \u20ac4 \u00a35 \u00a56 \u20a37 \u20b98 \u20b19 test", }, TILDE_NORMALIZATION: { text: BASE_TEST_STRINGS.TILDE_NORMALIZATION, tokens: ["we", "ird", "\u0120", "\u00ef\u00bd\u0140", "\u0120edge", "\u0120", "\u00ef\u00bd\u0140", "\u0120case"], ids: [906, 2668, 220, 21909, 6964, 220, 21909, 1162], decoded: "weird \uff5e edge \uff5e case", }, }, "Xenova/gpt-4o": { NUMBERS: { text: BASE_TEST_STRINGS.NUMBERS, tokens: ["012", "345", "678", "9", "Ġ", "0", "Ġ", "1", "Ġ", "2", "Ġ", "3", "Ġ", "4", "Ġ", "5", "Ġ", "6", "Ġ", "7", "Ġ", "8", "Ġ", "9", "Ġ", "10", "Ġ", "100", "Ġ", "100", "0"], ids: [19267, 22901, 30833, 24, 220, 15, 220, 16, 220, 17, 220, 18, 220, 19, 220, 20, 220, 21, 220, 22, 220, 23, 220, 24, 220, 702, 220, 1353, 220, 1353, 15], decoded: "0123456789 0 1 2 3 4 5 6 7 8 9 10 100 1000", }, TEXT_WITH_NUMBERS: { text: BASE_TEST_STRINGS.TEXT_WITH_NUMBERS, tokens: ["The", "\u0120company", "\u0120was", "\u0120founded", "\u0120in", "\u0120", "201", "6", "."], ids: [976, 3175, 673, 24303, 306, 220, 667, 21, 13], decoded: "The company was founded in 2016.", }, PUNCTUATION: { text: BASE_TEST_STRINGS.PUNCTUATION, tokens: ["A", "\u010a", "'ll", "\u0120!!", "to", "?'", "d", "''", "d", "\u0120of", ",", "\u0120can't", "."], ids: [32, 198, 6090, 17131, 935, 48511, 67, 5830, 67, 328, 11, 8535, 13], decoded: "A\n'll !!to?'d''d of, can't.", }, PYTHON_CODE: { text: BASE_TEST_STRINGS.PYTHON_CODE, tokens: ["def", "\u0120main", "():\u010a", "\u0109pass"], ids: [1314, 2758, 8595, 100653], decoded: "def main():\n\tpass", }, JAVASCRIPT_CODE: { text: BASE_TEST_STRINGS.JAVASCRIPT_CODE, tokens: ["let", "\u0120a", "\u0120=", "\u0120obj", ".to", "String", "();\u010a", "to", "String", "();"], ids: [1347, 261, 314, 4099, 3552, 916, 740, 935, 916, 4177], decoded: "let a = obj.toString();\ntoString();", }, NEWLINES: { text: BASE_TEST_STRINGS.NEWLINES, tokens: ["This", "\u010a\u010a", "is", "\u010a", "a", "\u010a", "test", "."], ids: [2500, 279, 276, 198, 64, 198, 3190, 13], decoded: "This\n\nis\na\ntest.", }, BASIC: { text: BASE_TEST_STRINGS.BASIC, tokens: ["UN", "want", "\u00c3\u00a9d", ",r", "unning"], ids: [2926, 72517, 6383, 33654, 11244], decoded: "UNwant\u00e9d,running", }, CHINESE_ONLY: { text: BASE_TEST_STRINGS.CHINESE_ONLY, tokens: ["\u00e7\u0136\u0141\u00e6\u00b4\u00bb", "\u00e7\u013c\u0126", "\u00e7\u013e\u0141", "\u00e8\u00b0", "\u013d", "\u00e6\u013a\u00af"], ids: [32479, 1616, 7910, 7856, 249, 3221], decoded: "\u751f\u6d3b\u7684\u771f\u8c1b\u662f", }, LEADING_SPACE: { text: BASE_TEST_STRINGS.LEADING_SPACE, tokens: ["\u0120\u0120", "\u0120leading", "\u0120space"], ids: [256, 8117, 4918], decoded: " leading space", }, TRAILING_SPACE: { text: BASE_TEST_STRINGS.TRAILING_SPACE, tokens: ["tr", "ailing", "\u0120space", "\u0120\u0120\u0120"], ids: [371, 24408, 4918, 271], decoded: "trailing space ", }, CURRENCY: { text: BASE_TEST_STRINGS.CURRENCY, tokens: ["test", "\u0120$", "1", "\u0120R", "2", "\u0120#", "3", "\u0120\u00e2\u0124\u00ac", "4", "\u0120\u00c2\u00a3", "5", "\u0120\u00c2\u00a5", "6", "\u0120\u00e2\u0124", "\u00a3", "7", "\u0120\u00e2\u0124\u00b9", "8", "\u0120\u00e2\u0124", "\u00b1", "9", "\u0120test"], ids: [3190, 548, 16, 460, 17, 1069, 18, 7950, 19, 8989, 20, 123814, 21, 59790, 96, 22, 73406, 23, 59790, 109, 24, 1746], decoded: "test $1 R2 #3 \u20ac4 \u00a35 \u00a56 \u20a37 \u20b98 \u20b19 test", }, ELLIPSIS: { text: BASE_TEST_STRINGS.ELLIPSIS, tokens: ["you", "\u00e2\u0122\u00a6", "\u0120\u0120"], ids: [13320, 1131, 256], decoded: "you\u2026 ", }, TILDE_NORMALIZATION: { text: BASE_TEST_STRINGS.TILDE_NORMALIZATION, tokens: ["we", "ird", "\u0120\u00ef\u00bd\u0140", "\u0120edge", "\u0120\u00ef\u00bd\u0140", "\u0120case"], ids: [854, 2716, 105665, 11165, 105665, 1890], decoded: "weird \uff5e edge \uff5e case", }, SPIECE_UNDERSCORE: { text: BASE_TEST_STRINGS.SPIECE_UNDERSCORE, tokens: ["\u00e2\u0138", "\u0123", "This", "\u0120\u00e2\u0138\u0123", "is", "\u0120\u00e2\u0138\u0123", "a", "\u0120\u00e2\u0138\u0123", "test", "\u0120\u00e2\u0138\u0123", "."], ids: [6762, 223, 2500, 39960, 276, 39960, 64, 39960, 3190, 39960, 13], decoded: "\u2581This \u2581is \u2581a \u2581test \u2581.", }, SPECIAL_WITH_TRAILING_WHITESPACE: { text: SENTENCEPIECE_TEST_STRINGS.SPECIAL_WITH_TRAILING_WHITESPACE, tokens: ["<s", ">\u010a"], ids: [101950, 523], decoded: "<s>\n", }, }, "Xenova/claude-tokenizer": { JAVASCRIPT_CODE: { text: BASE_TEST_STRINGS.JAVASCRIPT_CODE, tokens: ["let", "\u0120a", "\u0120=", "\u0120obj", ".", "toString", "();", "\u010a", "toString", "();"], ids: [1785, 269, 284, 2652, 18, 26492, 4370, 203, 26492, 4370], decoded: "let a = obj.toString();\ntoString();", }, BASIC: { text: BASE_TEST_STRINGS.BASIC, tokens: ["UN", "want", "\u00c3\u00a9d", ",", "running"], ids: [2359, 17571, 37911, 16, 7889], decoded: "UNwant\u00e9d,running", }, CHINESE_ONLY: { text: BASE_TEST_STRINGS.CHINESE_ONLY, tokens: ["\u00e7\u0136\u0141", "\u00e6\u00b4\u00bb", "\u00e7\u013c\u0126", "\u00e7\u013e\u0141", "\u00e8\u00b0", "\u013d", "\u00e6\u013a\u00af"], ids: [14706, 37675, 2471, 56904, 15959, 254, 5977], decoded: "\u751f\u6d3b\u7684\u771f\u8c1b\u662f", }, TRAILING_SPACE: { text: BASE_TEST_STRINGS.TRAILING_SPACE, tokens: ["trailing", "\u0120space", "\u0120\u0120\u0120"], ids: [40110, 3384, 264], decoded: "trailing space ", }, CURRENCY: { text: BASE_TEST_STRINGS.CURRENCY, tokens: ["test", "\u0120$", "1", "\u0120R", "2", "\u0120#", "3", "\u0120\u00e2\u0124\u00ac", "4", "\u0120\u00c2\u00a3", "5", "\u0120\u00c2", "\u00a5", "6", "\u0120\u00e2", "\u0124", "\u00a3", "7", "\u0120\u00e2", "\u0124", "\u00b9", "8", "\u0120\u00e2", "\u0124", "\u00b1", "9", "\u0120test"], ids: [765, 734, 21, 487, 22, 379, 23, 36714, 24, 13206, 25, 2455, 103, 26, 4937, 229, 101, 27, 4937, 229, 122, 28, 4937, 229, 114, 29, 722], decoded: "test $1 R2 #3 \u20ac4 \u00a35 \u00a56 \u20a37 \u20b98 \u20b19 test", }, ELLIPSIS: { text: BASE_TEST_STRINGS.ELLIPSIS, tokens: ["you", "...", "\u0120\u0120"], ids: [6773, 1174, 261], decoded: "you... ", }, TEXT_WITH_ESCAPE_CHARACTERS: { text: BASE_TEST_STRINGS.TEXT_WITH_ESCAPE_CHARACTERS, tokens: ["you", "...", "\u0120\u0120"], ids: [6773, 1174, 261], decoded: "you... ", }, TEXT_WITH_ESCAPE_CHARACTERS_2: { text: BASE_TEST_STRINGS.TEXT_WITH_ESCAPE_CHARACTERS_2, tokens: ["you", "...", "\u0120", "\u0120you", "...", "\u0120\u0120"], ids: [6773, 1174, 225, 583, 1174, 261], decoded: "you... you... ", }, TILDE_NORMALIZATION: { text: BASE_TEST_STRINGS.TILDE_NORMALIZATION, tokens: ["we", "ird", "\u0120~", "\u0120edge", "\u0120~", "\u0120case"], ids: [798, 2650, 6217, 4915, 6217, 1544], decoded: "weird ~ edge ~ case", }, }, "bigcode/santacoder": { NUMBERS: { text: BASE_TEST_STRINGS.NUMBERS, tokens: ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "Ġ", "0", "Ġ", "1", "Ġ", "2", "Ġ", "3", "Ġ", "4", "Ġ", "5", "Ġ", "6", "Ġ", "7", "Ġ", "8", "Ġ", "9", "Ġ", "1", "0", "Ġ", "1", "0", "0", "Ġ", "1", "0", "0", "0"], ids: [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 207, 15, 207, 16, 207, 17, 207, 18, 207, 19, 207, 20, 207, 21, 207, 22, 207, 23, 207, 24, 207, 16, 15, 207, 16, 15, 15, 207, 16, 15, 15, 15], decoded: "0123456789 0 1 2 3 4 5 6 7 8 9 10 100 1000", }, TEXT_WITH_NUMBERS: { text: BASE_TEST_STRINGS.TEXT_WITH_NUMBERS, tokens: ["The", "\u0120company", "\u0120was", "\u0120fo", "unded", "\u0120in", "\u0120", "2", "0", "1", "6", "."], ids: [2111, 10107, 2501, 17436, 7584, 319, 207, 17, 15, 16, 21, 13], decoded: "The company was founded in 2016.", }, CHINESE_ONLY: { text: BASE_TEST_STRINGS.CHINESE_ONLY, tokens: ["\u00e7\u0136\u0141", "\u00e6\u00b4\u00bb", "\u00e7\u013c\u0126", "\u00e7\u013e\u0141", "\u00e8\u00b0", "\u013d", "\u00e6\u013a\u00af"], ids: [8715, 24543, 1825, 34717, 37452, 236, 4343], decoded: "\u751f\u6d3b\u7684\u771f\u8c1b\u662f", }, CURRENCY_WITH_DECIMALS: { text: BASE_TEST_STRINGS.CURRENCY_WITH_DECIMALS, tokens: ["I", "\u0120bo", "ught", "\u0120an", "\u0120apple", "\u0120for", "\u0120$", "1", ".", "0", "0", "\u0120at", "\u0120the", "\u0120store", "."], ids: [40, 12307, 10310, 743, 29806, 408, 763, 16, 13, 15, 15, 869, 331, 2823, 13], decoded: "I bought an apple for $1.00 at the store.", }, TILDE_NORMALIZATION: { text: BASE_TEST_STRINGS.TILDE_NORMALIZATION, tokens: ["we", "ird", "\u0120", "\u00ef\u00bd", "\u0140", "\u0120edge", "\u0120", "\u00ef\u00bd", "\u0140", "\u0120case"], ids: [1850, 4427, 207, 29217, 239, 4959, 207, 29217, 239, 1210], decoded: "weird \uff5e edge \uff5e case", }, SPIECE_UNDERSCORE: { text: BASE_TEST_STRINGS.SPIECE_UNDERSCORE, tokens: ["\u00e2\u0138", "\u0123", "This", "\u0120", "\u00e2\u0138", "\u0123", "is", "\u0120", "\u00e2\u0138", "\u0123", "a", "\u0120", "\u00e2\u0138", "\u0123", "test", "\u0120", "\u00e2\u0138", "\u0123", "."], ids: [3718, 210, 3456, 207, 3718, 210, 280, 207, 3718, 210, 64, 207, 3718, 210, 706, 207, 3718, 210, 13], decoded: "\u2581This \u2581is \u2581a \u2581test \u2581.", }, }, "Xenova/CodeGPT-tokenizer": { CHINESE_ONLY: { text: BASE_TEST_STRINGS.CHINESE_ONLY, tokens: ["\u00e7\u0136\u0141", "\u00e6", "\u00b4", "\u00bb", "\u00e7\u013c\u0126", "\u00e7\u013e", "\u0141", "\u00e8\u00b0", "\u013d", "\u00e6\u013a\u00af"], ids: [25506, 165, 115, 122, 5137, 43415, 256, 20679, 252, 13283], decoded: "\u751f\u6d3b\u7684\u771f\u8c1b\u662f", }, TRAILING_SPACE: { text: BASE_TEST_STRINGS.TRAILING_SPACE, tokens: ["trailing", "\u0120space", "\u0120", "\u0120", "\u0120"], ids: [15584, 3497, 223, 223, 223], decoded: "trailing space ", }, TEXT_WITH_ESCAPE_CHARACTERS: { text: BASE_TEST_STRINGS.TEXT_WITH_ESCAPE_CHARACTERS, tokens: ["you", "\u00e2\u0122\u00a6", "\u00c2", "\u0142", "\u00c2", "\u0142"], ids: [13953, 29502, 129, 257, 129, 257], decoded: "you\u2026\u00a0\u00a0", }, TEXT_WITH_ESCAPE_CHARACTERS_2: { text: BASE_TEST_STRINGS.TEXT_WITH_ESCAPE_CHARACTERS_2, tokens: ["you", "\u00e2\u0122\u00a6", "\u00c2", "\u0142", "\u00c2", "\u0142", "you", "\u00e2\u0122\u00a6", "\u00c2", "\u0142", "\u00c2", "\u0142"], ids: [13953, 29502, 129, 257, 129, 257, 13953, 29502, 129, 257, 129, 257], decoded: "you\u2026\u00a0\u00a0you\u2026\u00a0\u00a0", }, }, "huggingface-course/codeparrot-ds": { NUMBERS: { text: BASE_TEST_STRINGS.NUMBERS, tokens: ["0123456789", "Ġ0", "Ġ1", "Ġ2", "Ġ3", "Ġ4", "Ġ5", "Ġ6", "Ġ7", "Ġ8", "Ġ9", "Ġ10", "Ġ100", "Ġ1000"], ids: [25218, 443, 396, 554, 869, 1163, 1462, 1911, 2624, 2070, 2837, 2009, 3038, 4764], decoded: "0123456789 0 1 2 3 4 5 6 7 8 9 10 100 1000", }, TEXT_WITH_NUMBERS: { text: BASE_TEST_STRINGS.TEXT_WITH_NUMBERS, tokens: ["The", "\u0120company", "\u0120was", "\u0120fo", "unded", "\u0120in", "\u01202016", "."], ids: [2096, 16502, 1442, 11689, 7865, 253, 8780, 14], decoded: "The company was founded in 2016.", }, PUNCTUATION: { text: BASE_TEST_STRINGS.PUNCTUATION, tokens: ["A", "\u010a", "'ll", "\u0120!", "!", "to", "?'", "d", "''", "d", "\u0120of", ",", "\u0120can", "'t", "."], ids: [33, 173, 6402, 905, 1, 403, 15227, 68, 589, 68, 311, 12, 796, 1059, 14], decoded: "A\n'll!!to?'d''d of, can't.", }, JAVASCRIPT_CODE: { text: BASE_TEST_STRINGS.JAVASCRIPT_CODE, tokens: ["let", "\u0120a", "\u0120=", "\u0120obj", ".", "toString", "();", "\u010a", "toString", "();"], ids: [2047, 231, 233, 1300, 14, 30494, 16248, 173, 30494, 16248], decoded: "let a = obj.toString();\ntoString();", }, CHINESE_ONLY: { text: BASE_TEST_STRINGS.CHINESE_ONLY, tokens: ["\u00e7\u0136\u0141", "\u00e6\u00b4", "\u00bb", "\u00e7\u013c\u0126", "\u00e7\u013e", "\u0141", "\u00e8\u00b0", "\u013d", "\u00e6\u013a\u00af"], ids: [20185, 43799, 120, 3994, 37782, 211, 15933, 207, 11130], decoded: "\u751f\u6d3b\u7684\u771f\u8c1b\u662f", }, TRAILING_SPACE: { text: BASE_TEST_STRINGS.TRAILING_SPACE, tokens: ["trailing", "\u0120space", "\u0120\u0120\u0120"], ids: [17031, 3000, 216], decoded: "trailing space ", }, CURRENCY: { text: BASE_TEST_STRINGS.CURRENCY, tokens: ["test", "\u0120$", "1", "\u0120R", "2", "\u0120#", "3", "\u0120\u00e2", "\u0124\u00ac", "4", "\u0120\u00c2", "\u00a3", "5", "\u0120\u00c2", "\u00a5", "6", "\u0120\u00e2", "\u0124", "\u00a3", "7", "\u0120\u00e2", "\u0124", "\u00b9", "8", "\u0120\u00e2", "\u0124", "\u00b1", "9", "\u0120test"], ids: [1824, 3748, 17, 683, 18, 294, 19, 5161, 28898, 20, 23446, 97, 21, 23446, 99, 22, 5161, 182, 97, 23, 5161, 182, 118, 24, 5161, 182, 110, 25, 1737], decoded: "test $1 R2 #3 \u20ac4 \u00a35 \u00a56 \u20a37 \u20b98 \u20b19 test", }, CURRENCY_WITH_DECIMALS: { text: BASE_TEST_STRINGS.CURRENCY_WITH_DECIMALS, tokens: ["I", "\u0120bo", "ught", "\u0120an", "\u0120app", "le", "\u0120for", "\u0120$", "1", ".", "00", "\u0120at", "\u0120the", "\u0120store", "."], ids: [41, 772, 8272, 309, 870, 239, 296, 3748, 17, 14, 543, 815, 256, 2689, 14], decoded: "I bought an apple for $1.00 at the store.", }, TILDE_NORMALIZATION: { text: BASE_TEST_STRINGS.TILDE_NORMALIZATION, tokens: ["we", "ird", "\u0120", "\u00ef", "\u00bd", "\u0140", "\u0120edge", "\u0120", "\u00ef", "\u00bd", "\u0140", "\u0120case"], ids: [955, 6075, 179, 166, 122, 210, 2703, 179, 166, 122, 210, 1539], decoded: "weird \uff5e edge \uff5e case", }, }, };
transformers.js/tests/models/gpt2/test_tokenization_gpt2.js/0
{ "file_path": "transformers.js/tests/models/gpt2/test_tokenization_gpt2.js", "repo_id": "transformers.js", "token_count": 12344 }
import { SamProcessor, SamModel } from "../../../src/transformers.js"; import { load_cached_image } from "../../asset_cache.js"; import { MAX_MODEL_LOAD_TIME, MAX_TEST_EXECUTION_TIME, MAX_MODEL_DISPOSE_TIME, DEFAULT_MODEL_OPTIONS } from "../../init.js"; export default () => { describe("SamModel", () => { const model_id = "Xenova/slimsam-77-uniform"; /** @type {SamModel} */ let model; /** @type {SamProcessor} */ let processor; beforeAll(async () => { model = await SamModel.from_pretrained(model_id, DEFAULT_MODEL_OPTIONS); processor = await SamProcessor.from_pretrained(model_id); }, MAX_MODEL_LOAD_TIME); it( "w/ input_points", async () => { // Prepare image and input points const raw_image = await load_cached_image("corgi"); const input_points = [[[340, 250]]]; // Process inputs and perform mask generation const inputs = await processor(raw_image, { input_points }); const { pred_masks, iou_scores } = await model(inputs); expect(pred_masks.dims).toEqual([1, 1, 3, 256, 256]); expect(pred_masks.mean().item()).toBeCloseTo(-5.76981782913208, 5); expect(iou_scores.dims).toEqual([1, 1, 3]); expect(iou_scores.tolist()).toBeCloseToNested([[[0.8583833575248718, 0.9773167967796326, 0.8511142730712891]]]); // Post-process masks const masks = await processor.post_process_masks(pred_masks, inputs.original_sizes, inputs.reshaped_input_sizes); expect(masks).toHaveLength(1); expect(masks[0].dims).toEqual([1, 3, 410, 614]); expect(masks[0].type).toEqual("bool"); }, MAX_TEST_EXECUTION_TIME, ); afterAll(async () => { await model?.dispose(); }, MAX_MODEL_DISPOSE_TIME); }); };
transformers.js/tests/models/sam/test_modeling_sam.js/0
{ "file_path": "transformers.js/tests/models/sam/test_modeling_sam.js", "repo_id": "transformers.js", "token_count": 770 }